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Abstract

Inclusion of multi-meson operators allows lattice QCD calculations to extract
energies of resonances above two-meson thresholds, as well as to study two-meson
scattering. Previously, temporal correlations involving multi-hadron operators were
difficult to evaluate due to contributions from quark propagators which begin and end
on the same time slice. The stochastic LapH method allows for efficient computations
of such contributions and is applied in this work to compute the low-energy spectrum
of the I = 1, S = 0, T+

1u channel, as well as the P -wave ππ scattering phase shift. The
calculations use 412 gauge-field configurations generated by a Monte Carlo method
utilizing clover-improved Wilson fermions on an anisotropic 323 × 256 lattice with a
pion mass near 240 MeV. The masses of the ρ meson and several excited mesons are
computed using a 63× 63 correlator matrix for total zero momentum and are shown
to agree with experiment. Additionally, the low-energy spectrum of stationary states
in several channels of nonzero total momenta are calculated. The ππ stationary-
state energies in a finite box are used to calculate the infinite-volume I = 1 P -wave
scattering phase shifts, from which the width of the ρ resonance is determined.
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Chapter 1

Introduction

The standard model of particle physics works admirably well for describing the dy-

namics of all known subatomic particles. It has been accurate at describing a wide

variety of scattering phenomena and successfully predicting new particles and inter-

actions for the past few decades. Many observed particles, known as hadrons, are

not elementary but are composites consisting of quarks and gluons. The sector of the

theory describing the interactions of these quarks and gluons is known as Quantum

Chromodynamics (QCD). QCD is also responsible for the binding of protons and

neutrons inside the nuclei of atoms.

Quarks are spin-1
2

fermions with fractional electric charges and come in six types

known as flavors. The six flavors are named up u, down d, strange s, charm c, bottom

b, and top t, in order of increasing mass. Quarks also possess another kind of charge

that can take one of three different values. This charge is capriciously named color

and has values called red, green, and blue, in analogy with the primary colors in

the visible spectrum of light. Quarks interact by exchanging gluons, which are spin-1

massless bosons that also possess color, but in a different way from that of the quarks.

QCD is a quantum field theory involving the quark and gluon fields whose in-

teractions are governed by a Lagrangian which is invariant under local nonabelian

SU(3) color gauge transformations. The QCD action looks deceptively similar to

that of quantum electrodynamics (QED). The carrier of the QED force, the photon,

is electrically neutral, and photons do not directly interact with one another. In con-

trast, the gluon possesses color charge, and gluons strongly interact with one another.

These features cause the properties of QCD to radically differ from those of QED.

QCD has the interesting propriety that the so-called renormalization group β
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function of the theory is negative at small coupling. The β function describes the

running of the coupling, or the strength of interactions, at different energies. At

very small distances, the running QCD coupling becomes small, a property known as

asymptotic freedom. Due to this feature of the theory, high energy processes, such as

deep inelastic scattering, can be reliably calculated using standard Feynman diagram

techniques, such as those which work well in quantum electrodynamics. However, at

large distance scales, the running coupling is not small, and computing low-energy

quantities, such as hadron masses and decay constants, cannot be reliably done with

small-coupling perturbative expansions.

To study hadron formation in QCD, a nonperturbative approach is needed. For-

mulating the theory on a space-time lattice and using Monte Carlo methods to esti-

mate the resulting lattice QCD path integrals is one such powerful approach. Lattice

QCD began with Ken Wilson’s seminal paper in 1974 [1]. Space and time are dis-

cretized using a lattice, which both regulates the theory, providing an ultraviolet

cutoff by excluding very short wavelengths, as well as makes calculations feasible us-

ing computers and Monte Carlo methods. However, such calculations require large

amounts of computer resources, and calculations of many quantities in lattice cal-

culations are only now becoming feasible. Computational limitations caused early

calculations to use small and coarse lattices, which introduced large discretization er-

rors, to use quark masses producing unphysically large pion masses, and to ignoring

the fermion determinant in the action all together (which was known as the quenched

approximation).

Lattice Monte Carlo calculations are only feasible in a finite space-time volume

with a nonzero lattice spacing. Using a coarser spacing allows for simulating larger

volumes for the same computing power at the cost of increased discretization errors.

Modern theoretical improvements in how the action is discretized can mitigate some

of the effects of finite lattice spacing. To reduce computational costs, most simula-

tions choose parameters such that the pion mass is nonphysically heavy. Algorithm

improvements and increases in raw computing power are making simulations at or

close to the physical pion mass possible only in recent years.

The correlation functions, or n-point Green’s functions, of QCD provide the in-

formation needed to extract hadron properties. Correlators involving the quark fields

require evaluating quark propagators from one space-time location to another. Eval-

uating these quark propagators is the most computationally expensive part of any

2



lattice QCD calculation. Studying excited hadrons and hadron-hadron scattering

processes in lattice QCD has not been possible until very recently due to the large

number of quark propagators needed in such calculations. However, new methods

are making such studies possible now. In this work, we use a method, known as the

stochastic LapH method, to compute the low-energy spectrum of the I = 1, S = 0,

T+
1u channel, as well as the P -wave ππ scattering phase shifts, from which the width

of the ρ resonance is determined.

The organization of this work is as follows. Chapter 2 provides a basic overview

of QCD and how observables can be computed using a lattice regularization. This

is followed by Chapter 3 which discusses constructing interpolating operators with

particular symmetries to probe the stationary states of interest. Chapter 4 outlines

the stochastic LapH method and how to estimate two-point correlation functions

between the operators selected. In Chapter 5, we describe how scattering phase shifts

can be obtained from the energies of two-particle stationary states in finite volume.

Chapter 6 covers the analysis of the correlation functions and how to fit the data

to extract the energies of the stationary states. Finally, results of the excitation

spectrum in the I = 1, S = 0, T+
1u channel, as well as the P -wave ππ scattering phase

shifts, using a 323 × 256 anisotropic lattice are presented in Chapter 7, followed by

conclusions in Chapter 8.

3



Chapter 2

Lattice QCD

Since standard perturbative methods fail to be useful for QCD at low energies, a non-

perturbative approach known as Lattice gauge theory was developed. This involves

treating space-time as a grid of discrete points. If the discretization is done properly,

calculations can be performed which recover the original theory as the spacing between

each of the lattice points, a, approaches zero.

Discretizing space-time into grid points regulates the ultraviolet divergences of the

theory as modes with wavelengths much smaller than the lattice spacing are excluded

and the quantum field theory becomes finite and mathematically well defined. An

added benefit of treating space-time as discrete points is that it allows the theory to

be modeled by computers. The path integrals which yield the correlation functions

of the theory from which one extracts the physics can be approximated with Monte

Carlo methods. To evaluate physical results reliably, a small lattice spacing is needed,

or an extrapolation to zero spacing must be carried out.

This chapter will discuss the foundations of lattice QCD and how QCD is formu-

lated on a lattice in Sec. 2.1. Next, Sec. 2.2 introduces the lattice QCD correlation

functions from which observables are obtained. Sec. 2.3 contains an explanation of

how the correlation functions are evaluated using computers. Finally, the specific

details of the lattices and methods used in this work are given in Sec. 2.4.
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2.1 Lattice Formulation

2.1.1 QCD in the continuum

This section discusses the details of QCD and how to formulate the theory on a space-

time lattice. To begin, we define the continuum version and then discuss the process of

discretization. First, the fields and the continuum action are introduced in Euclidean

space-time (the imaginary time formalism), as opposed to the more usual Minkowski

space-time. The reason for this will be given later. To define the theory in Euclidean

space-time, one performs a Wick rotation to imaginary time t → −iτ . Under this

transformation, there is no distinction between covariant and contravariant indices.

We define a space-time vector xµ to take indices µ = 1, 2, 3, 4 where index µ = 4 is

the imaginary time coordinate. This gives a relation between a vector in Euclidean

and Minkowski space-time as:

xj = xj = xjMinkowski = −xjMinkowski (2.1)

x4 = x4 = x0
Minkowski = −x0 Minkowski (2.2)

The quark fields are represented by Dirac 4-spinors:

ψf,cα (x), ψ
f,c

α (x) (2.3)

where α is the Dirac index α = 1, 2, 3, 4 for the four spinor components, and c is a

quantum number known as color. Note that in Euclidean space-time ψ and ψ are

independent integration variables, so the relation for Minkowskian operators does

not hold ψ 6= ψ†γ0. The quark fields come in six flavors (designated by the index f)

named up, down, strange, charm, top, and bottom. The masses of all of these flavors

are input parameters to the theory. The masses of flavors can differ by ≈ 105 and for

studying phenomena at lower energy (such as this work), the heavier flavors can be

ignored. In addition to the quark fields, QCD contains gauge fields named gluons,

Aµ(x) =
8∑

a=1

Aaµ(x)T a (2.4)

where T a are the generators of the Lie algebra SU(3), known as the Gell-Mann

matrices. The index µ is a Lorentz index which denotes the direction in space-time.

5



For free quarks, the Lagrangian is:

Lfree =
∑

f=u,d,s,...

ψ
f
(/∂ +mf )ψ

f . (2.5)

QCD is said to be an SU(3) gauge theory, which means the Lagrangian of the theory

is invariant under local gauge transformations which are elements of SU(3). To ensure

the Lagrangian is gauge-invariant, we replace the derivative with a gauge-covariant

derivative

Lquark =
∑

f=u,d,s,...

ψ
f
( /D +mf )ψ

f where Dµ = ∂µ + igAµ(x) (2.6)

which couples the quarks and gluons, where g is the QCD coupling, and we include

an interaction for the gauge bosons of the form

Lgauge =
1

4

8∑
a=1

F a
µν(x)F a

µν(x). (2.7)

Summing the two gives us the Lagrangian for QCD in the continuum. The next step

is to define the lattice discretization of this theory.

2.1.2 Lattice Discretization

Discretization is redefining the continuum action onto a Euclidean space-time lattice.

Instead of each field existing on all points in the manifold, we only consider discrete

points separated by some spacing in each direction aµ. The discretization of space-

time regulates the theory by providing a momentum cut-off ∝ 1/aµ removing any

ultraviolet divergences. This also makes approximating path integrals feasible as

there are now a finite number of sites in a given region of space-time. If we are only

interested in the physics at low energies, then quantities should be insensitive to the

removal of information at distances less than aµ. If this is done carefully, then the

continuum theory should be recovered by taking the limit aµ → 0. In this work, an

anisotropic lattice is used so the spacing in the spacial directions, as is different than

the lattice spacing in the temporal direction at. However, for simplicity, this section

will treat the discretization for an isotropic case and the anisoptroic action will be

discussed in Sec. 2.1.3.

6



In Eqs. 2.3 and 2.4, the fields are functions of the variable x representing location

in space-time. This must be replaced by discrete points so the fields are now functions

of xµ → nµaµ where nµ is a label for each of the points in the grid. The first issue to

consider is the derivative term in the quark action. This derivative can be discretized

as a finite difference as

∂µφ(x)→ 1

2a
(φ(n+ µ̂)− φ(n− µ̂)) . (2.8)

When applied to the covariant derivative of the quark and gluon fields, this produces

an action which is not gauge invariant. We need to produce the analog of a covariant

derivative, and introduce the gauge field in a way which preserves the gauge symmetry.

Wilson proposed[1] a way to do this by introducing the gauge field as a set of link

variables Uµ(n). Each Uµ(n) is an element of SU(3) associated with the link starting

at n and terminating at n+ µ̂.

This idea comes from considering a gauge transporter, G(x, y), which is a path-

ordered exponential integral of the gauge field along some curve C.

G(x, y) = P exp

(
ig

∫
C

A · ds
)

(2.9)

Wilson’s link variables are simply the gauge transporters along the links of the lattice

Uµ(n) = P exp

(
ig

∫ n+µ̂

n

A · ds
)
. (2.10)

Using these link variables, we must now define a discretized version of the gluonic

action and the quark action which has the desired transformation properties. First,

we start with the gluonic action. Representing the gluonic fields on the links rather

than the lattice sites makes the action look different that the continuum version, but

it is recovered in the limit of small spacing. It is important to build an object out

of the link variables which is gauge invariant. The Wilson gauge action is built out

of objects called “plaquettes” which are products of four link variables which form a

closed loop:

Pµν = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν(n). (2.11)

The trace of any product of links which forms a closed loop is a gauge-invariant object.
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The simplest closed loop of the plaquette is sufficient to build the gauge action. The

Wilson gauge action is defined as the sum over the trace of all plaquettes

SG[U ] =
2

g2

∑
x

∑
µ<ν

Re Tr (1− Pµν) (2.12)

This reduces to the continuum action by using Eq. 2.10 and expanding for small a.

Inserting 2.10 into Eq. 2.11 and using the Baker-Campbell-Hausdorff formula we get

Pµν = exp (ia2Fµν +O(a3)). This results in the Wilson gauge action approximating

the continuum action up to order O(a2).

We also need to define a discretized version of the quark action using the link

variables. A quark action which is gauge invariant can be obtained using a covariant

finite difference:

Dµ(x, y)→ ∆µ(n,m) =
1

2aµ

[
Uµ(n)δ(n+ µ̂,m)− U †µ(n− µ̂)δ(n− µ̂,m)

]
(2.13)

The simplest gauge-invariant quark Lagrangian density can be written

Lµ =

[
ψ(n)γµ

Uµψ(n+ µ̂)− U †µ(x− µ̂)ψ(n− µ)

2aµ
+ ψ(n)mψ(n)

]
(2.14)

in which the flavor and color indices have been suppressed. One can see this approx-

imates the continuum action by inserting Uµ(n) = 1 + iaAµ(n) +O(a2).

Unfortunately, this discretization suffers from a problem known as the fermion

doubling problem. The quark action is often written as

Sf = a4
∑
n,m

ψ(n)M(n,m)ψ(m) (2.15)

where M is the Dirac matrix

M(n,m) =
∑
µ

γµ∆(n,m) +mfδ(n,m). (2.16)

The problem can be seen by looking at the inverse of the Dirac matrix 2.16. This is

known as the quark propagator and should have a single pole at p2 = −m2 in the

free theory. However, the discretization scheme causes there to be extra nonphysical
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poles in the free quark propagator

〈
ψ(p)ψ(q)

〉
=M−1(p, q) = δ(p, q)

−i
∑

µ
1
aµ
γµ sin(pµaµ) +m∑

µ
1
a2µ

sin2(pµaµ) +m2
. (2.17)

The free quark propagator has the correct continuum limit, but for non-zero lattice

spacing, there are extra poles when sin(aµpµ)2 = −m2. These extra poles are referred

to as fermion doublers.

The fermion doubling problem is an artifact of our discretization scheme. Wilson

proposed a different discretization which still recovers the continuum action in the

limit of the lattice spacing going to zero, but removes the nonphysical poles. This is

done by adding an extra term to the Dirac operator which vanishes for a→ 0, to order

O(a), but at finite a, gives an extra mass to the doublers which is proportional to 1
a
.

This means that in approaching the continuum limit, the doublers become extremely

heavy and can be ignored. The additional term suggested by Wilson has the form

MW (n,m) =M(n,m)− a

[
Uµ(n)δ(n+ µ̂,m)− 2δ(n,m) + U †µ(n− µ̂)δ(n− µ̂,m)

2a2
µ

]
.

(2.18)

The addition of this term solves the fermion doubling problem. However, the action

no longer preserves chiral symmetry. There is a famous no-go theorem[2] which proves

that there is no lattice regularization which respects Hermiticity, locality, and trans-

lational invariance without breaking chiral symmetry. The approach above solves

the problem by explicitly breaking chiral symmetry, but there have been other ap-

proaches to fermions in lattice field theory. Other choices may decide to break the

requirement of locality in order to preserve features of chiral symmetry. The choice of

discretization scheme depends on the physics of interest and the cost to implement.

In this work, Wilson fermions are used which explicitly breaks chiral symmetry.

However, the effect of this breaking is reduced by including an additional term named

the “clover” term[3]. The inclusion of the additional clover term, and the use of

smeared gauge link variables in place of the raw link variables, has been shown to

mitigate some of the effects [4], [5] of the broken chiral symmetry. Further discussion

of this improvement is in Sec. 2.1.3, with the details of link smearing covered in

Sec. 3.1.1.
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2.1.3 Action Improvements

Sec. 2.1.2 presented the basics of how to build an action on the lattice which repro-

duces the QCD action in the continuum limit. That action is not unique and other

ways to discretize the action can be used provided they have the same continuum

behavior. In this work, we use an “improved” action which recovers the continuum

behavior to a higher order in the lattice spacing a. Additionally, the action is split

into temporal and spatial parts with different lattice spacing as and at to give a finer

resolution in the temporal direction at � as. This section presents the improvements

to both the fermionic and gluonic parts of the action used in this work.

As will be seen in Chapter 6, information about the energy states is extracted

from the temporal evolution of a correlation function. The temporal resolution can

be increased without requiring a larger number of spatial lattice points by setting the

temporal lattice spacing to be smaller than the spatial one as = ξat with ξ > 1. Before

proceeding to write down the improved action, we express the Wilson gauge action

2.12 and Wilson fermionic action 2.15 on an anisotropic lattice. The unimproved

anisotropic Wilson gluonic action is given by:

SWG =
5β

3ξg
ΩP
s +

4βξg
3

ΩP
t (2.19)

ΩP
s =

∑
i<j

Re Tr (1− Pij) (2.20)

ΩP
t =

∑
i

Re Tr (1− Pit) (2.21)

where P are the plaquettes defined in Eq. 2.11, ξg is the bare gauge anisotropy and

β = 2Nc/g = 6/g is in place of the bare coupling. The Wilson fermionic action is split

up similarly, with separate temporal and spatial parts for both the lattice derivatives

and Laplacian. The anisotropic fermionic action is

SWf = a4
∑
n,m

ψ(n)

[
mf + γt∇t −

at
2
∇2
t +

1

ξf

∑
i

γi∇i −
as
2
∇2
i

]
ψ(m) (2.22)

where ξf is the bare fermionic aspect ratio.

One check which can be done on lattice calculations is to look at short range

quantities where perturbation theory should be valid. It was found that there was

significant disagreement between lattice results and perturbation theory for a variety
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of short-distance quantities. However, the largest source of the disagreement was

found to be contributions from so-called tadpole diagrams. Lepage and Mackenzie [6]

developed a tadpole improvement scheme to absorb the nonphysical ultraviolet effects

introduced by the expansion of the gauge transporter. This was done by normalizing

the link variables through a mean-field approximation, replacing U with U/u where

u =

〈
1

3
ReTr (Uµν)

〉1/4

. (2.23)

This mean field should be closer to unity and its use reduced the discrepancies men-

tioned above. On our anisotropic lattices, we require two different tadpole factors

one for the spatial directions us an one for the temporal direction ut.

Using the standard Wilson gauge action gives the correct continuum limit (a→ 0),

but Wilson’s gauge action has discretization errors of O(a2) and the fermionic action

has errors of O(a). There is nothing unique about these choices of discretization

and we are free to discretize differently to remove leading order discretization errors,

provided the terms preserve all symmetries of interest. Changing the discretization

scheme to achieve faster approach to continuum behavior is known as a Symanzik

improvement program [7–9].

The idea behind Symanzik improvement is that, given a finite difference approxi-

mation to a derivative, the Taylor expansion of the leading term is the desired deriva-

tive, but the error will be determined by higher terms which can be expressed as

higher derivatives. As an example, a first derivative D1 = (f(x + h)− f(x− h))/2h

has an expansion D1 = f ′(x) + h2

6
f ′′′(x) + O(h4). Alternatively, one can expand

the same derivative as D2 = (f(x + 2h) − f(x − 2h))/4h, which again produces a

first derivative in the limit of h → 0, but the leading error is 2h2

3
f ′′′(x). One can

then combine the two into a more complicated finite difference (4/3)D1− (1/3)D2 to

approximate the first derivative, whose errors are now O(h4).

First, we apply the Symanzik improvement program to the Wilson gluonic action,

which is order a2. Rather than just looking at 1 × 1 plaquettes, we can remove the

order a contribution by introducing 2× 1 rectangular loops. The temporal rectangles

are arranged such that the length-2 side is never in the time direction, because terms

in the action which contain more than one site in the temporal direction cause the

transfer matrix to not be positive definite, and unphysical negative norm states can

occur. One then defines ΩR’s which are the same as the ΩP ’s defined in Eq. 2.19,
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but replacing the plaquettes with the 2× 1 loops R. The Symanzik improved gauge

action is then written

Sg =
5β

3ξgu4
s

ΩP
s +

4βξg
3u2

su
2
t

ΩP
t +

β

12ξgu6
s

ΩR
s +

4βξg
12u4

su
2
t

ΩP
t . (2.24)

The tadpole factors in the gauge action were set to us = 0.7336 and ut = 1 from

the work in Ref. [4]. This improved action has leading order discretization effects of

O (a2
t , g

2a2
s, a

4
s).

The Wilson fermionic action has discretization errors of O (a) and the Symanzik

procedure can be used here as well. One introduces a clover term which is named by

the shape made by the gauge links. This term is

cψ
1

2
σµνFµνψ (2.25)

and the discretized version of Fµν is Fµν = 1
8ia2

=
(
Qµν −Q†µν

)
, where Q is the

average of four plaquettes around the lattice point depicted pictorially in Fig. 2.1.

The clover parameter c is tuned using perturbation theory. Again, there will be

separate parameters for directions cs and ct. The clover-Wilson tadpole improved

action has the form

Sf = a4
∑
n,m

ψ(n)M(n,m)ψ(m), (2.26)

where

M = mf +
1

ũt

(
γt∇t −

at
2
∇2
t

)
+

1

ũsξf

(∑
i

γi∇i −
as
2
∇2
i

)
− csas

2ũ3
s

∑
i<j

σijFij −
ctat

2ũtũ2
s

∑
i

σtjFtj, (2.27)

and the ũt and ũt are the tadpole factors for the fermionic action which were set to

0.9267 and 1, respectively. The cs and ct are the clover parameters and were tuned to

cs = 1 and ct = 1
2

(1 + ξ), where here ξ is the desired renormalized anisotropy. The

improved action used in this work has discretization error of O(g2as, g
2at, a

2
s, a

2
t ).
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n

Figure 2.1: Diagram of Qµν in terms of the link variables in the clover term.

2.2 Correlation Functions

The above sections described the discretized action to be used in our lattice QCD

studies. This section will discuss how we calculate observables of interest within

the discretized quantum field theory we have developed. This is done using the

path integral formulation of quantum field theory. The energies of the stationary

states of the Hamiltonian can be determined from the temporal fall-off of a two-point

correlation function. This section will identify how two-point correlation functions

are defined in our formalism and how energies can be extracted from them.

The path integral formulation of quantum mechanics expresses transition ampli-

tudes from one state to another as an integral over all paths. All paths are considered,

but each path has an associated phase of exp (iS[x(t)]/~), where x(t) is a given path.

This shows a connection to the classical principle of least action as paths whose small

alterations change the action significantly compared to ~ cancel one another.

In a quantum field theory, the time-ordered vacuum expectation value of quantum

field operators can be expressed as a functional integral over all field configurations.

After changing units such that ~ = 1, this is written as

Cij(t, t0) = 〈0|TOi[φ, φ, U ](t)Oj[φ, φ, U ](t0)|0〉

=

∫
DφDφDU Oi[φ, φ, U ](t)Oj[φ, φ, U ](t0) exp

(
−S[φ, φ, U ]

)∫
DφDφDU exp

(
−SG[φ, φ, U ]

) (2.28)

where T is time ordering, Oi and Oj are operators which create or annihilate states,

and S is the action and Dφ,Dφ,DU represents an integration over all possible field
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configurations. The exponential factors are not oscillatory due to the Wick rota-

tion. The replacement of t → −iτ makes the oscillatory exponential factors enter

as Boltzmann-like factors exp(−S). Since exp(−S) is real and positive, it can be

interpreted as a probability distribution, which is the key to being able to evaluate

the integrals on a computer with the Monte Carlo method. The details of this will

be discussed in Sec. 2.3.1.

We want to use two-point correlation functions to determine the energies of the

stationary states of the lattice Hamiltonian. Let |n〉 be the nth eigenstate of the

lattice Hamiltonian which has energy En. Since we do not know the eigenstates

of QCD (which is what we are ultimately trying to determine), our operators will

not be creation operators for any one eigenstate |n〉. Instead we expect our operators

operating on the vacuum to create a large number of eigenstates. Since the calculation

is being done in a finite volume, the energies of the eigenstates |n〉 are discrete due to

momentum quantization. With that in mind, inserting a complete set of states gives

a spectral representation of the two point function. By viewing our operators in the

Heisenberg-picture operators Oi(t) = eHtOi(0)e−Ht, the two point function becomes

Cij(t2, t1) = 〈0|TOi(t2)Oj(t1)|0〉 =
∑
n

Zn
i

(
Zn
j

)∗
exp (−En(t1 − t2)) (2.29)

where Zi and Zj are

Zn
i = 〈0|Oi|n〉, (Zn

i )∗ = 〈n|Oi|0〉. (2.30)

The quantities 〈0|Oi|n〉 are called overlaps as they represent how much our opera-

tor produces the eigenstate |n〉. The spectral representation Eq. 2.29 is the central

equation for computing the energies of QCD on the lattice. The key feature is that

computing the fall off of the correlation function at different time separations t2 − t1
gives information about the energy.

Using Eq. 2.29 allows computation of the lowest energy of all states produced

by Oj acting the vacuum at large temporal separation, as contributions from higher

energies decay away more quickly. Energies above the lowest-lying state are difficult

to determine from a single correlation function as a particular operator will have many

states |n〉 created and the magnitudes will be unknown. Fitting a single correlator to

a large sum of exponentials is technically possible, but has far too many parameters
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to be practical for a small number of data points. Instead, a set of Nop operators {Oi}
are used to produce an Nop × Nop matrix of two point correlation functions. This

matrix can then be rotated by finding a basis which makes the matrix diagonal. If

this is done properly, the diagonal elements will be dominated by a single exponential

and a spectrum of energies can be determined. Details of this process will be shown

in Sec. 6.3.

2.2.1 Fermions

The quark fields are fermionic and must anti-commute. This is done by representing

the fields with Grassman values. Manipulating Grassmann fields in computer software

is difficult to do. Fortunately, it is possible to integrate out the fermion fields exactly,

as described in this section.

Recall that the action is split into two parts: a gluonic part and fermionic part

S[ψ, ψ, U ] = Sg[U ] + Sf [ψ, ψ, U ]. (2.31)

The fermionic part of the action can be written as a bi-linear of the quark fields

Sf [ψ, ψ, U ] =
∑
x1,x2

ψ(x1)M(x1, x2|U)ψ(x2) (2.32)

where M is the Dirac matrix from Eq. 2.18. The integral over the fermionic part

of the action is a Gaussian integral. A Gaussian integral over Grassman variables

can be evaluated with the Matthews-Salam formula [10, 11]. The integration over

the fermion fields with an integrand containing only the exponential of the action

evaluates to a determinant of the Dirac matrix∫
DU exp (−Sg)

∫
DψDψ exp (−Sf ) =

∫
DU exp (−Sg) detM. (2.33)

The hadron operators we use in our correlator calculations depend upon the quark

fields, and thus, these need to be included at this stage. The results depend on what

operators are included. The integral can be evaluated using Wick’s theorem and will

be in terms of products ofM−1 corresponding to contractions of the chosen operators.

By defining F [M−1, U ] to be the results of the Wick contractions of creation and
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annihilation operators within Oi(t) and Oj(t0), the correlator integral can be written

Cij =

∫
DU F [M−1, U ] detM exp (−Sg[U ])∫

DU detM exp (−Sg[U ])
. (2.34)

The determinant of the Dirac matrix, detM, is called the fermion determinant. Un-

fortunately, it is non-local and is very expensive to compute. Because of the difficulty

in computing this, early lattice calculations made a simplification of simply setting

the value equal to one. This is known as the quenched approximation. With the com-

puting power available today, this approximation is no longer needed, and simulations

which include the fermion determinant are referred to as simulations with dynamical

quarks.

2.3 Computational Methods

2.3.1 Monte Carlo

To estimate correlation functions requires computing the ratio of integrals in Eq. 2.34.

Since we are restricting ourselves to a lattice, the fields can be represented by using

a finite number of link variables. If we consider just the gauge links on a 4D lattice

of N points in each direction, there are 4 × N4 gauge link variables. Since each

link variable is represented by an element of SU(3) which can be represented using

at fewest 8 parameters, just representing the entire lattice requires a large amount

of computer storage/memory. Additionally, there are an infinite number of possible

values for each link variable so generating all possible field configurations is impossible.

Because of the exponential weighting of the Boltzmann factor, not all configura-

tions contribute in a significant way. This allows us to do “importance sampling”

Monte Carlo to statistically approximate the integral. Rather than enumerate all

possible field configurations, we examine a small sample of configurations. The trick

is to create a set of configurations in which each configuration is added to the set with

a probability corresponding to the Boltzmann factor. By producing a set of configu-

rations which are selected from a distribution according to the correct probabilities,
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the value of an integral of interest becomes a simple sum

〈X〉 ≈ 1

N

N∑
i=i

X(Ci) (2.35)

where the set of configurations {C} are distributed according to the distribution

W [Ci] =
exp(−S[Ci]) det[K]

Z
. (2.36)

The challenge then becomes how to create a set of field configurations which

follows the correct distribution. The basic idea of importance sampling Monte Carlo

is to use a stochastic process to generate configurations constrained in such a way

that the configurations are added with the correct probabilities. This process is

done using a Markov chain whose fixed point is W . The Markov chain is generated

by a process which randomly selects a new configuration which only depends on

the previous entry in the chain. Let pi→j denote the probability of selecting Cj if

the previous entry is Ci. A long chain of configurations are then generated starting

with some random configuration and iterating one configuration at a time. Each

configuration added is one “step”. It is possible to construct a Markov chain such

that after reaching equilibrium, the configurations will be distributed according to

the desired probability distribution. The process of reaching the equilibrium state

from any random configuration is called thermalization.

The Markov chain of configurations has the correct distribution if a few properties

are satisfied. First is the requirement that any field configuration can eventually be

generated from any starting point. The second requirement is the process be aperi-

odic, meaning it does not return to the same configuration at fixed intervals. These

two requirements together are called ergodicity, and without it, there may be classes

of configurations between which the chain could never transition. An additional re-

quirement is that the chain be reversible, that the probability of transitioning from a

configuration Ci to Cj, pi→j, be the same as the probability of transitioning from Cj
to Cj or

pi→j = pj→i. (2.37)

For an ergodic reversible Markov chain, there exists a fixed point towards which
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the chain will converge and configurations in the chain once in equilibrium will be

distributed with that fixed-point distribution. We can then evaluate our integrals

by setting up a Markov process to generate configurations which, after a period of

thermalization, have the desired target distribution.

Since each configuration in the chain is generated using the previous configura-

tion, there will be some dependency upon earlier elements. Even though elements

of the chain follow the target distribution W in the long term, nearby elements are

related and are not statistically independent. This is known as auto-correlation and is

undesirable in Monte Carlo integration and increases the error in the estimate. Using

a set of configurations generated as above, we can get an estimate of an integral∫
WXDc ≈ 〈X〉 ± 1√

N

√
A0(X) + 2

∑
h≥1

Ah(X) (2.38)

where N is the number of configurations used and Ah is the auto-correlation function

between values h steps away given by

Ah(X) =
1

N − h

N−h∑
i=1

(X(Ci)− 〈X〉) (X(Ci+h)− 〈X〉) . (2.39)

The auto correlations depend upon the integrand and the method of generating a new

Monte Carlo step. In practice, a simple way to reduce auto correlations is to not use

every element of the chain, but only use every nth element. The error is scaled overall

by the square root of the number of configurations used, so we require an efficient

method of generating elements for the Markov chain.

2.3.2 Configuration Generation

This section describes the process of generating the Markov chain which has the

desired target distribution. It is desired to have a large number of configurations

which have small auto-correlations. Due to the requirement of a large number of

configurations, it is important to have a computationally efficient method of producing

each step in the chain. This section presents the method used to produce the field

configurations generated for the needed correlation functions.

A method of producing a Markov chain with a desired target distribution W is the

Metropolis-Hastings method. In this method, one proposes a new candidate element
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of the chain using the current configuration with probability R(Cj ← Ci). One then

accepts the element as a new step with probability

Paccept = min

(
1,
R(Cj ← Ci)W (Cj)
R(Ci ← Cj)W (Ci)

)
. (2.40)

If it is accepted, use Cj as the next element, otherwise keep the previous configuration.

Repeat the process again proposing a new candidate from the last element of the

chain. This simplifies in the case of a reversible proposal probability as the acceptance

probability becomes min (1,W (Cj)/W (Ci)). This boils down to always adding new

elements if they are weighted higher in W than the current configuration, but only

sometimes adding new elements which are weighted lower. When the acceptance

probability is not unity, the use of uniform random numbers are required to test

acceptance. One benefit of this method is that the normalization of W does not need

to be known which is often difficult to compute. In the context of the quantum field

theory integrals of interest, this process be seen as accepting configurations which

lower the action, but only accepting configurations which increase the action some of

the time.

This method relies on some choice of the proposal probability density R. A poor

choice for R could result in almost all candidates becoming rejected which would

waste time computing new states without making progress. It is also important that

R make changes which have enough difference from the current configuration or the

auto-correlations could be large and one could only use configurations separated by

many steps. The auto-correlations depend on the observable being calculated. Local

updates, such as a change to a single link variable at a time, have large autocorrela-

tions with the previous configuration. So to reduce auto-correlations, we would like

to use an R which proposes states which are significantly different from the current

state. The presence of the fermion determinant in Eq. 2.36 complicates matters sig-

nificantly. There is no advantage in proposing a local change since the determinant

must be recalculated on the entire lattice. Thus, we need a proposal probability that

generates a global change but in such a way that only small changes to the action are

made to achieve a reasonable probability of acceptance.
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2.3.3 The Hybrid Monte Carlo method

To propose a global modification to the gauge field which results in the action changing

very little requires a clever algorithm. One such method involves forming a fictitious

“Hamiltonian” and evolving the system according to Hamilton’s equations of motion.

This method hinges on being able to rewrite the weight function in the form of a

Hamiltonian. For an even number of equal mass quark flavors, this can be done

by introducing a pseudo-fermion field. This method is called Hybrid Monte Carlo

(HMC)[12]. This section presents the HMC method, while the following method

(RHMC) extends the method to add in the third quark flavor required for this work.

The first step is to rewrite our action in a form which can be expressed as a

Hamiltonian. To deal with the fermion determinant, we introduce an additional field

φ which is a bosonic complex-valued field. This field is often referred to as a pseudo-

fermion field as it will be used to compute the fermion determinant despite being a

bosonic field. With this field, we can express the quark determinant as an integral

detM =

∫
Dφ exp

(
φ†M−1φ

)
. (2.41)

This means that instead of attempting to use Grassman valued fields, we can simulate

using the bosonic φ which has a non-local “action”. This is simply extended to the

case of two degenerate light quark fields by

detMu detMd = detM†
lMl =

∫
Dφ exp

(
φ†
(
M†

lMl

)−1

φ

)
. (2.42)

This works becauseM† = γ5M†γ5, the determinant of det(γ5)2 = 1, and the product

of the Dirac matrix with itself is guaranteed to be positive. We can use this to rewrite

the action in terms of the gauge fields U and the pseudo fermion fields φ:

S[U, φ] = φ†(M†M)−1φ+ Sg[U ]. (2.43)

In order to build a “Hamiltonian”, we introduce fictitious “momenta” Πµ, which

are viewed as canonically conjugate to the Uµ fields, by inserting unity expressed as

1 =

∫
DΠµ(x) exp

[
−1

2
Π†Π

]
. (2.44)
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Using this representation of unity, we insert it into the integral of interest∫
DΠ exp

[
−1

2
Π†Π

] ∫
DUDφ†Dφ exp (−S) (2.45)∫

DΠDUDφ†Dφ exp

[
−1

2
Π†Π− S

]
(2.46)∫

DΠDUDφ†Dφ exp [−H] (2.47)

where we introduce our fictitious “Hamiltonian” as

H =
1

2
Π†µΠµ + S[U, φ]. (2.48)

Using this definition, we can evolve the system forward in fictitious time according

to Hamilton’s equation of motion. We solve Hamilton’s equations using a finite step

size δτ with a symplectic integration scheme. The state of Π and U after the discrete

time evolution are then used as the proposed new element for the Metropolis-Hastings

method. The time evolution nearly conserves H. Errors due to the discrete time steps

used in the integration method cause the conservation to be only approximate. The

accuracy of the integrator determines the acceptance rate for the proposed new field

configuration. In this work, a second order Omelyan integrator was used [4] which is

area preserving (required for detailed balance) and is accurate to O(δτ 3).

The above method is not quite sufficient as it does not include the strange quark

field. Extending the HMC method to include the strange quark field is called the

Rational Hybrid Monte-Carlo method[13]. Before, we expressed the two light quark

determinants in terms of an integral over pseudo fermion fields. We follow a similar

process for the determinant over the strange field

detMs = det
(
M†

sMs

) 1
2 =

∫
Dφ exp

(
φ†
(
M†

sMs

)−1/2
φ
)
. (2.49)

However, this is only allowed if det (Ms) is positive. Since the strange quark mass is

rather heavy, this is generally true.

This gives a relation from the pseudo fermion fields to the fermion fields of

φ =
(
M†

sMs

) 1
4 ψ. This can be computed using the same pseudo fermion fields but

requires computation of the fourth root M†
sMs. This is done by using a rational
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approximation

(
M†

sMs

) 1
4 ≈ α0I +

∑
i

αi

M†
sMs + βk

. (2.50)

Computing [M†
sMs + βk]

−1φ is done simultaneously for all k using a multi-shift

conjugate gradient solver.

2.4 The Lattice and Bare Parameters

The previous sections outlined the theoretical basis for our lattice calculations. This

section discusses practical considerations of calculating on the lattice which must be

addressed. Since discretization errors scale with the lattice spacing, one would like as

fine a lattice as possible. However, decreasing the lattice spacing requires an increase

in the number of lattice points to avoid finite volume effects. The physical size of

the lattice should be much larger than the largest correlation length of the system,

which will be determined by the mass of the pion. This requires a large number of

lattice points, which drastically increases the computational requirements. So a trade

off of accuracy due to discretization versus the computational requirements must be

considered to determine how fine or coarse a lattice should be used.

The input parameters of the lattice QCD action are dimensionless. The main

QCD coupling input parameter is β, and the so-called “bare” or Lagrangian quark

masses are input in terms of the dimensionless products atmq. We do not input a

value for mq in terms of MeV, but instead, a value for atmq. The tuning of the bare

parameters is detailed in Ref. [4], and a brief overview will be provided below. Given

this, all results obtained are dimensionless. For example, an energy E of a given level

is not determined directly, but rather, the dimensionless product atE is determined.

To obtain dimensionful estimates, we need some way of setting the lattice spacings

at, as. This is known as “setting the scale.” Since QCD is a renormalizable field

theory, the scale can be set using a renormalization procedure.

The bare parameters which must be input to our discretized lattice action are

β, the dimensionless light quark mass, m`, (suppressing the at), the strange quark

mass, ms, the gauge anisotropy ξg and the fermionic anisotropy ξf . One would like to

choose these parameters such that the theory reproduces the correct physics of QCD.

This must be done non-perturbatively, meaning testing many possible values for the
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parameters and running a simulation and computing the n independent observables

until it produces their physical values. Each bare parameter is associated with a mea-

surable quantity, which is computed using many values of the input bare parameter

to find a suitable choice. However, for computational feasibility, it is common to tune

the bare quark mass such that the pion mass is set nonphysically large, as explained

in the next section.

2.4.1 Nonphysical pion mass

Lattice calculations at the physical pion mass are only now becoming feasible. There

are huge computational costs associated with computing using a physical pion, and

so most calculations are still done with bare parameters set to yield a pion mass that

is heavier than in nature. Lattice calculations are then simulating a QCD-like theory

which has a heavier pion, and results must be extrapolated to the physical point.

This section will outline some of the computational challenges of computing using

light pion masses.

The largest computational cost in lattice QCD is by far inverting the Dirac ma-

trix. While the Dirac matrix is guaranteed to have positive eigenvalues if m > 0, the

broken chiral symmetry of the Wilson term means the fermion masses are not pro-

tected from additive renormalization. It turns out that to achieve physically relevant

observables, the bare quark masses must be negative. This makes computing the in-

verse challenging as eigenvalues may be very small, making the matrix ill-conditioned.

With very small eigenvalues, standard numerical techniques to compute the inverse

take a large amount of computer power to converge.

Additionally, it is required that the lattice be large enough so that the finite volume

does not have a significant effect on the observables. The long distance correlations

are dominated by the lightest particle. So working with a heavier pion means that

long distance effects are reduced and the simulation can use a smaller number of

spatial points for a given lattice spacing. It has been established as a rule of thumb

that finite volume effects in most quantities of interest are smaller than 1% if the

mass of the pion mass times the spatial extent of the lattice sastisfies mπL > 4.

A light pion also poses a challenge for the extraction of excited state energies.

As we will see in Chapter 6, reliably extracting energy levels above the ground state

requires inclusion of operators which have large overlaps with every state below the
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state of interest. Approaching the physical pion mass means an increasing number

of multi-hadron states will be below the resonances of interest. In this work, we

include operators which should have strong overlaps with single and multi-hadron-

like states. At low pion masses, consideration of three-pion or four-pion bound states

could appear below most states of interest and may be significant.

As computer power increases and calculation methods improve, lattice studies are

becoming more feasible at lighter pion masses. The community is now at a point that

simple calculations at the physical pion mass are possible. However, these calculations

are still limited to coarse lattices to reduce the computer resources required.

2.4.2 Lattice parameters

To determine the bare parameters, a Schrödinger functional approach was used which

involves using a background field in the z direction. Details of the tuning process are

in Ref. [4]. The bare quark masses were tuned using the following dimensionless

quantities:

sΩ =
9(m2

K −m2
π)

4m2
Ω

(2.51)

lΩ =
9m2

π

4m2
Ω

(2.52)

where mπ,mK and mΩ are the masses of the pion, kaon and Ω baryon respectively.

These quantities are proportional to the masses of the strange quark and the light

quarks to leading order in chiral effective theory [14]. The s quark mass was tuned to

the value ms = −0.0743 such that sΩ corresponded to the physical value. The running

of sΩ with respect to the light quark mass was found to be small. The light quark mass

was tuned to m` = −0.0840 and m` = −0.0860 for the different lattices used in this

work. These values correspond to mπ ≈ 390 MeV and mπ ≈ 240 MeV respectively. A

summary of the parameter choices is shown in Table 2.1. When discussing a particular

lattice, the naming convention of {spatial extent} {light quark mass × − 10, 000} is

used, for example the second lattice in table 2.1 will be referred to as 243 840.

The value of the coupling used was β = 1.5. If the Ω baryon mass is used to set the

scale, then one finds as ≈ 0.12 fm and at ≈ 0.035 fm. So our 163, 244 and 323 lattices

would have a spatial extent L of ≈ 1.93 fm, ≈ 2.88 fm and ≈ 3.84 fm, respectively.

These spatial lengths should be enough such that the finite volume of the box does
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Spatial Extent Time Extent # of Configurations m` mπ mπ × L
163 128 100 -0.0840 ≈ 390 ≈ 3.8
243 128 551 -0.0840 ≈ 390 ≈ 5.7
243 128 584 -0.0860 ≈ 240 ≈ 3.5
323 256 412 -0.0860 ≈ 240 ≈ 4.7

Table 2.1: Lattices used in this work. The 163 lattice was mainly used for testing
operators, while the 323 lattice was the target for the results. The number of configu-
rations are how many field configurations were available to work with. m` is the bare
light quark mass and the final column is the approximate pion mass which resulted
from the bare mass input. The 243 lattice with the lighter pion was only used for
testing purposes in this work as mπL is small, meaning it has large contributions due
to finite volume.

not have a major effect. Since the pion is the lightest state, we should require that

mπL be large. For the 243 840 and 323 860 ensembles, mπL > 4 indicating finite

volume effects are negligible which are the two lattices for which we report results.

The parameter ξg, or the spatial aspect ratio, was tuned using a ratio of Wilson

loops in the spatial and temporal directions. A closed loop of gauge links oriented in

two spatial directions or a spatial direction and the temporal direction are computed.

The parameter in the anisotropic gauge action is then adjusted to give the desired

aspect ratio of the two dimensions. In our calculations the desired anisotropy was 3.5

and it was found that a bare anisotropy of ξg = 4.3 gave close to the desired results.

The anisotropy in the fermionic action was determined using the pion dispersion

relation

a2
tE

2(p) = a2
tm

2 +
1

ξ2
f

a2
x|p|2. (2.53)

Using a few low values for the three-momenta on the lattice, the bare anisotropy was

set to 3.4, which again yielded a value of ≈ 3.5.
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Chapter 3

Operator Construction

Producing QCD correlators that allow the extraction of excited-state hadron physics

requires a careful choice of operators. This chapter discusses the methods used to

construct operators which are effective at creating the states we wish to study.

The operators used come in two major types, “single hadron” operators involving

fields to create a quark-antiquark pair, and multi-hadron operators which are con-

structed from the single hadron operators. The goal is to select a set of operators

which together can create all expected eigenstates below some energy. In this set, at

least one operator should have some coupling to each of the first N states. These

operators should be constructed so their couplings to the first N states are large and

couplings to higher levels are suppressed.

The first ingredient in making useful operators is to smear the field variables.

Smeared fields have dramatically reduced couplings to high energy states. Also, using

operators which transfer according to the irreducible representations of the symmetry

group of the system helps to block-diagonalize the Hamiltonian, so that we can focus

our efforts separately on individual channels.

3.1 Smearing

One method to minimize the coupling to higher energy states is to use smeared quark

and gluon fields. Smearing replacing the fields at a given point by a local average

of the fields in such a way that all symmetries of the original fields are preserved by

the smeared field. In this work, the gluon fields are smeared using the so-called stout

smearing method, while Laplacian Heaviside smearing is used for the quark fields.
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3.1.1 Stout Smearing

One iteration of stout smearing replaces each link U with a new link U ′

U ′µ(x) = exp (iQµ(x))Uµ(x). (3.1)

The use of the exponential keeps the link variable within the Lie group. The matrix

Qµ is Hermitian and trace-less matrix defined as

Qµ =
i

2

(
Ω†µ(x)− Ωµ(x)

)
− 1

6
Tr
(
Ω†µ(x)− Ωµ(x)

)
(3.2)

Ωµ(x) = Cµ(x)U †µ(x) (3.3)

where Cµ is a weighted sum of nearby links given by

Cµ(x) =
∑
ν 6=µ

ρµν
[
Uν(x)Uµ(x+ ν̂)U †ν(x+ µ̂) (3.4)

+U †ν(x− ν̂)Uµ(x− ν̂)Uν(x− ν̂ + µ̂)
]
. (3.5)

Cµ is referred to as a staple because of the shape it makes with the link variables. The

weights ρµν are tunable and we selected ρ4µ = ρµ4 = 0. This means the smearing is

only done in the spatial directions and the temporal links are not smeared nor used in

smearing the spatial links. This is done to preserve positively of the transfer matrix

for all times. For the rest of the values of ρ, we select a common value so ρij = ρ.

This procedure is iterative and the updated links can be smeared again using the

same procedure to produce a final smeared field Ũ via

U → U ′ → U ′′ → . . .→ U (N) = Ũ (3.6)

The parameters were set to ρ = 0.14 with N = 2 iterations for the links when used

in the action, and set to ρ = 0.1 and N = 10 for generating operators. The static

quark-antiquark potential was used to determine these parameters, as described in

Ref. [15].
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3.1.2 Quark field smearing

It is also necessary to smear the quark fields. This was done using a method called

Laplacian Heaviside (LapH) smearing[16]. The discretized covariant three-dimensional

Laplacian operator, ∇2, is defined as

∇2
ab(x, y, Ũ) =

∑
k=1

(
Ũab
k (x)δ(y, x+ k̂)− 2δ(x, y)δab + Ũ †

ab

k (x)δ(y, x− k̂)

)
(3.7)

where Ũ are the stout smeared link variables discussed in the previous section. ∇2

is rotationally invariant, which makes it a good operator on which to base the quark

field smearing. Since ∇2 is a Hermitian matrix, the eigenvalues are real, and in this

case, all negative. Smearing will be effective if the eigenvectors of −∇2 with larger

eigenvalues are weighted less than the lowest lying ones. One choice is Gaussian

smearing,

ψ̃Aaα(x) =
(

1− σ

n
∇2

ab

)n
ψAbα(x) (3.8)

which suppresses the higher eigenmodes exponentially provided that n is large. In

the limit of n → ∞, this results in eσ∇
2
, where σ is a tunable parameter for the

suppression.

The above procedure results in only a small number of modes contributing sub-

stantially. An even simpler method is to project down to a subset of the modes and

remove the eigenvalues below a threshold, such as

ψ̃Aaα(x) = Θ
(
σs +∇2

ab

)
ψAbα(x) (3.9)

where Θ is the Heaviside function. This method is known as Laplacian Heaviside

(LapH) smearing. To simplify the smearing in practice, we truncate to a fixed num-

ber Nv of eigenvectors on each time slice, which is approximately equivalent to the

Heaviside operation. In short, our smearing operator is

S =
Nv∑
k=1

vkvk† = V V † (3.10)

where the kth column of V contains the kth eigenvector of the smeared covariant
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Laplacian, and the smeared quark fields used in our calculations are defined by

ψ̃Aaα(x) = Sab(x, y)ψAbα(y). (3.11)

We must also consider the ψ fields. In Minkowski space ψ = ψ†γ0, so creation

operators would involve ψγ0. In the imaginary time formalism, we consider γ0 → γ4,

and it is convenient to introduce

χ ≡ ψγ4. (3.12)

Using this, we define the smeared field

χ̃ = ψ
A

bα(y)γ4Sab(x, y). (3.13)

Computation of the eigenvectors can be done separately on each time slice and

each configuration. The covariant Laplacian is a large matrix for reasonably sized

lattices, but computation of the eigenvectors with smallest eigenvalues can be done

using an iterative Lanczos method. In this work, the Krylov-Spectral Restarted

Lanczos method was used [15], which is a modification of the thick restarted Lanczos

method described in Ref. [17].

3.2 Symmetries

Rather than compute the energy of every possible stationary state on the lattice

simultaneously, it is possible to restrict to a subset of states. Stationary states can

be classified according to how they transform under a system operation, such as a

rotation or reflection. Using operators which transform irreducibly according to a

symmetry of the Hamiltonian allows us to restrict the analysis to a single channel

at time. Particles in the continuum are often categorized by JPC , which is spin (J),

parity (P ), and charge conjugation (C). Unfortunately, due to being in a finite box

(and discretized space-time), spin is not a good quantum number, and so lattice

states cannot be described this way. This section will discuss the symmetries which

are present on the lattice, and construction of operators which transform irreducibly

under the available symmetries.
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3.2.1 Rotations and Parity

This work aims to compute the spectra of states of QCD in a finite box with periodic

boundary conditions. Putting QCD in a box breaks continuous rotational symmetry

of space, even in the continuum limit. The finite box and discretized lattice do have

symmetry under discrete rotations. The allowed spatial rotations of the cubic lattice

are those of the octahedral group O.

The group O has 24 elements which can be categorized into 5 conjugacy classes.

The elements in each conjugacy class are listed with the number of elements in each

class are:

• Identity (1)

• Rotations by 2π/3 and 4π/3 through the 4 corners (8)

• Rotations by π about the x, y or z axes (3)

• Rotations by π/2 or 3π/2 about axes normal to the cube faces (6)

• Rotations by π through axes through the midpoint of the cubes edge (6)

Since O has 5 conjugacy classes, there are 5 irreducible representations. These

representations are named A1, A2, E, T1, and T2. The A representations are one-

dimensional, E is two dimensional, and the T ’s are three dimensional. The A1 repre-

sentation is the identity.

The cubic lattice has an additional symmetry of spatial inversion, or parity. The

addition of parity to the groupO produces theOh group. This group has 10 irreducible

representations, two for each of the irreducible representations of O one which is even

under parity and one which is odd. These are denoted by a subscript g if they are

even under parity and u if it is odd under parity (e.g. A1g, A1u, Eg . . .). This comes

from gerade and ungerade, meaning even and odd in German. Superscripts +,− will

be used for G-parity.

3.2.2 Momentum on the lattice

The periodic boundary conditions of the cubic lattice quantize momentum. Momen-

tum is restricted to k = 2πn/L where n is a three vector with integer components

and L is the spatial length of the lattice. The operators we construct will create states
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of definite momentum, and in the case of multi-hadron operators, the building blocks

will be hadrons of definite momenta which sum to the desired total momenta. For

example, a multi-hadron operator at rest may be composed of single hadrons with

opposing momenta.

Considering operators with nonzero momenta reduces the symmetry allowed. Spa-

tial inversion and certain rotations rotate the momentum vector k so the symmetry

elements must be restricted those which leave k unchanged. The elements of a sub-

group which leave a particular vector unchanged make up the so-called little group

of k. Since we are only after the low energy spectra, we do not have to consider all

possible momenta. We restrict our attention to momenta on axis (OA) along the

x, y, z axes of the lattice, such as k = (k, 0, 0), momenta which are planar diagonal

(PD), such as k = (k, k, 0), and momenta directed along a cubic diagonal (CD), such

as k = (k, k, k) ). Other momenta are possible, but the energies of particles with

momenta larger than a single unit each of x, y, and z have more energy than the low

spectra of interest.

The elements of Oh which preserve an on-axis momentum vector consist of the

identity, rotations about the momentum axis by π/2, π and 3π/2, and then 4 oper-

ations which are rotations by π about axis orthogonal to the momentum direction,

which flip the momentum vector, followed by a spatial inversion. This eight-element

group is denoted C4v. The elements can be grouped into 5 conjugacy classes, so there

are 5 irreducible representations. These by convention are named A1, A2, B2, B2, and

E. Each of the irreducible representations is one-dimensional, except for E which is

two dimensional.

For planar diagonal and cubic diagonal momenta, the associated little groups are

C2v and C3v respectively. The C2v little group only contains 4 elements, each in their

own conjugacy class. The group has 4 irreps, which are labeled A1, A2, B1, and B2.

C3v has 6 elements but only 3 irreps labeled A1, A2, and E. The details of the little

groups, and choices for representation of the matrices, are given in Ref. [18].

3.2.3 Group subductions

The lattice stationary states can be categorized by the lattice symmetries, and so our

operators should transform according to the irreps of the symmetry group. However,

to compare to experiment, it is needed to say how the lattice states relate to the
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continuum particles. It is possible through a method of subduction to determine

which irreps of SO(3), J , map onto the irreps of the little groups.

The octahedral group O is a subgroup of SO(3). If we restrict to the subgroup

O, we can count the number of times each irreducible representation of O occurs

in the subduced representations of SO(3) restricted to O, written J ↓ O [19]. The

results of this subduction are presented in Table 3.1. This shows that for a given

stationary state on the lattice, there is not an unambiguous identification of spin. For

example, the states produced using T1 operators will produce states which correspond

to J = 1, 3, 4, 5, . . . in the continuum limit. This provides a major challenge for

comparing results on the lattice with experimental results.

J A1 A2 E T1 T2

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1
5 0 0 1 2 1

Table 3.1: The number of times each irreducible representation of the group O occurs
in the subduced representations J ↓ O for values of J < 6. Higher J values generally
correspond to higher energies.

For certain states of interest, mapping lattice states to continuum states can be

done by identifying nearly degenerate energy levels which appear in two or more

different lattice channels. For example, for a spin-2 state, 3 polarizations appear in

the T2 irrep, and the other 2 polarizations occur in E.

The other use of subductions is mapping irreps of Oh to the irreps of the little

groups for nonzero momenta. This is needed for constructing and choosing operators

which we expect to show up in a particular channel. The subductions for Oh onto

the three little groups of interest are given in Table 3.2. These map each irrep of Oh

to one or more irreps of the little groups. Note that the mappings are different for

different parities. For example, the ρ meson has JP = 1−, so when at rest, it shows

up in the T1u lattice channel. The moving ρ with nonzero on-axis momentum will

show up in both the A1 and E lattice channels.
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Oh ↓ C4v ↓ C3v ↓ C2v

A1g A1 A1 A1

A1u A2 A2 A2

A2g B1 A2 B2

A2u B2 A1 B1

Eg A1 ⊕B1 E A1 ⊕B2

Eu A2 ⊕B2 E A2 ⊕B1

T1g A2 ⊕ E A2 ⊕ E A2 ⊕B1 ⊕B2

T1u A1 ⊕ E A1 ⊕ E A1 ⊕B1 ⊕B2

T2g B2 ⊕ E A1 ⊕ E A1 ⊕ A2 ⊕B1

T2u B1 ⊕ E A2 ⊕ E A1 ⊕ A2 ⊕B2

Table 3.2: Subductions of irreducible representations of Oh onto those of the little
groups for on-axis, planar-diagonal, and cubic-diagonal momenta. These allow us to
construct multi-hadron operators.

3.2.4 Isospin

We use the approximation mu = md in our action, which yields an additional internal

symmetry which rotates u quarks into d quarks. This symmetry is an SU(2) symmetry

called isospin. This means that that u and d quarks can be viewed as two states of

an object having isospin I = 1
2
. Choosing an axis in isospin space and quantizing,

we designate the u quark to be the state I3 = +1
2

and d to be the I3 = −1
2

state.

The s quark has isospin zero. Using this, we can categorize states consisting of u, d, s

quarks by their total isospin I and isospin projection I3, as well as strangeness, and

build operators accordingly.

In reality, this isospin symmetry is broken by electomagnetic effects and the fact

that the quark masses mu and md are slightly different, so that the π± and π0 have

different masses, and the proton mass differs from that of the neutron. However,

these differences are small, especially compared to the precision of our calculations

here. Our computations do not assume any SU(3) flavor symmetry.

3.2.5 G-parity

Another symmetry of QCD is charge conjugation, which transforms a particle into its

corresponding antiparticle. However, only uncharged particles, such as the π0 meson,

are eigenstates of charge conjugation. Another symmetry, known as G-parity, consists
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of charge conjugation C, plus a rotation by π about the second axis in isospin space:

G = C exp(−iπI2). (3.14)

Particle multiplets which have an average electric charge of zero are eigenstates of

G-parity. Our meson operators are constructed (where appropriate) to have definite

G-parity. Meson operators which have nonzero strangeness do not have a symmetry

under G-parity. The G-parity of a channel is labeled with + or − superscript. Each of

the irreps discussed in Sec. 3.2.1 can be projected onto positive or negative G-parity,

such as A+
1u or A−1u. Recall that spatial parity is represented by the u or g subscripts.

3.3 Covariant Displacements

We expect that hadron resonances are objects with large physical extents. Hadron

operators with substantial extents are needed to capture such radial and orbital struc-

ture. A simple way to build operators with large extents is to use covariantly-displaced

smeared quark fields.

To preserve gauge invariance, displacements must be made using the parallel trans-

porters, that is, the link variables. For a spatial direction j, we define a covariant

displacement operator which displaces a field from x→ x′ by p lattice sites as

Dp
j (x, x

′) = Ũj(x)Ũj(x+ ĵ) . . . Ũj(x+ (p− 1)ĵ) δx′,x+pĵ (3.15)

Note that these are defined using the smeared link variables as described in Sec. 3.1.

To simplify calculations p was fixed to a single value and all displacements were done

at the same fixed p. A preliminary study was done and we found p = 3as to be a good

choice for meson operators. Thus, the basic building blocks of our meson operators

are the displaced fields q defined as

q = Djψ̃, q = χ̃D†j (3.16)

where Dj denotes a product of displacements as in Eq. (3.15), yielding a total dis-

placement d = p(ĵ1 + ĵ2 + ĵ3 + . . . ĵn). The smeared fields ψ̃ and χ̃ are defined as in

Eq. (3.11) and (3.13).
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3.4 Single Hadron Operators

Our meson-annihilation operators are superpositions of the following elemental quan-

tities:

ΦAB
αβ =

∑
x

exp

(
−ip ·

(
x+

1

2
(dα + dβ)

))
δabq

A
aα(x, t)qBbβ(x, t). (3.17)

Here the fields q and q are the covariantly-displaced LapH-smeared quark fields defined

in the previous section. dα and dβ are the total displacements of the respective quark

fields. The indices α, and β denote the spin components, and A and B indicate the

flavor of the quark field. The δ-function ensures that only a color-singlet combination

is formed. The above operator annihilates a definite momentum p.

We construct objects of the form 3.17 for a set of fixed shapes. It is hoped that

these simple shapes are enough to capture the spatial structure of the desired states.

The simplest choice is to have no displacements at all, with both quark and antiquark

operator at the same lattice site. This type of object we denote as a single-site (SS)

operator. The next simplest shape is to have the quark displaced from the anti-quark

in a single direction, denoted singly-displaced (SD). For operators which are not at rest

the singly displaced operators come in two forms: transversely-singly-displaced (TSD)

if the displacement is perpendicular to the axis of momentum, and longitudinally-

singly-displaced (LSD) or planar-singly-displaced (PSD) if the momentum is along

the axis of momentum, or in the same plane in the case of PD moving operators.

For operators at rest, we also consider more extended displacements. We can

displace both the quark and the anti-quark in perpendicular directions, which we

name doubly-displaced-L (DDL). Displacing both the quark and anti-quark along the

same axis just results in a singly displaced operator with a larger displacement, which

we do not consider. Finally, we consider triply displaced operators of which there are

two types; triply-displaced-U (TDU) if two of the displacements are parallel and

triply-displaced-O (TDO) if all three displacements are perpendicular. The explicit

construction of all of these operators, and a visual representation is given in Table 3.3.

3.4.1 Group theory projections

Having constructed the building blocks as given in the previous section, we use them

to construct our final operators. The objects in Eq. (3.17) do not transform according
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Illustration Name Explicit form (|i| 6= |j| 6= |k| 6= 0)

ev single-site δab χ̃
A
aα ψ̃

B
bβ

e v singly-displaced δab χ̃
A
aα

(
Djψ̃

)B
bβ

e
v doubly-displaced-L δab

(
χ̃ D†j

)A
aα

(
Dkψ̃

)B
bβ

e v
triply-displaced-U δab

(
χ̃ D†j

)A
aα

(
DkDjψ̃

)B
bβ

e v�� triply-displaced-O δab

(
χ̃ D†i

)A
aα

(
DjDkψ̃

)B
bβ

Table 3.3: The five types of displacements we use for our meson elementals are illus-
trated here. The smeared quark fields are represented by solid circles, the smeared
barred antiquark fields by empty circles, and solid lines connecting them indicate
displacement operators.

to an irreducible representation of Oh. Linear combinations of them are constructed

which do transform irreducibly. The details of this method applied to baryon opera-

tors are explained in Ref. [20]. We start with a set of N linearly independent building

blocks which transform among each other under Oh. A Maple program was used

to carry out the needed operator transformations. Using such a set of operators, we

construct an N ×N matrix Wij that describes their transformations:

URΦi(t)U
†
R =

N∑
j=1

Φj(t)Wij (3.18)

URΦi(t)U
†
R =

N∑
j=1

Φj(t)W
∗
ij (3.19)
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The elements of W are determined by explicitly transforming the building blocks and

using a Moore-Penrose pseudoinverse [21]. Once W is computed, group theoretical

projections are used to find the basis-change to produce operators that transform

according to the irreducible representations of Oh

Given all elements R of Oh, we can construct linear combinations of the Φ ele-

mentals which transform according to a given irreducible representation Λ using the

projection

OΛµ
i (t) =

dΛ

gOh

∑
R

ΓΛ
µµ(R)URΦi(t)U

†
R, (3.20)

where dΛ is the dimension of the irreducible representation, gOh is the number of

elements in the group, UR is the operator which effects the group element R and Γ

is an explicit matrix representation of the transformation R. This projects onto a

single row µ of the representation. Only one row is required as the particle energies

are independent of the row of the irrep. Calculations using different rows can be

averaged to increase statistics.

Starting with a set of r building blocks, the projections in Eq. (3.20) produce r

operators, some of which may be zero or linearly dependent. A Gram-Schmidt proce-

dure is then needed to construct a set of independent projected operators. Since the

W matrices may not be unitary, this requires defining an appropriate inner product

with a metric defined by

Mij =
1

gOh

∑
R

N∑
k

Wki(R)∗Wkj(R). (3.21)

The resulting operators are expressed as

Oi(t) =
N∑
j

cijOj(t) (3.22)

where the coefficients cij satisfy

N∑
k,l

cikMklcjl = δij. (3.23)
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These operators are what we refer to as single-hadron operators to distinguish them

from the operators described in the next section.

3.5 Multi-Hadron Operators

To extract the low-energy spectrum of every channel, we should also include multi-

hadron like operators. While in many channels the lowest state may be a single

hadron, in some channels one expects two-pions to be the lightest stationary state.

Additionally, the excited states above the ground states in most channels will have

a plethora of multi-hadron states that are lower in energy than some excited meson

resonances. To address these issues, we use multi-hadron operators which use the

single-hadron operators of the previous section as the building blocks. The process

proceeds much the same way as Sec. 3.4.1, except instead of Eq. (3.17) as the starting

point, the fully constructed single-hadron operators are used. We construct multi-

hadron operator which create states of definite total momentum.

The first classification of our multi-hadron operators is by flavor. The different

combinations of quark flavor fields will produce operators with different strangeness

S and isospin I. This section discusses construction of multi-hadron operators of

different flavor structure and our naming scheme for such operators to help identify

them.

First, consider operators made of only light quark fields, u or d and excluding the

strange quark. Here, we have S = 0 for any combination. To build a multi-meson

operator, each individual meson can have total isospin I = 1 or I = 0. Combining

two of them to form a two-hadron operator allows for isospins of I = 0, I = 1 or

I = 2. Since we are working with perfect isospin symmetry, we only have to classify

states by their total isospin, and states with different isospin projections I3 will have

degenerate energies. So only one of the projections needs to be considered. Since

only one is required, we are free to choose which one and in this work, we always

construct operators which have maximal I3 or I3 = I.

For every combination of flavor structure, we will label the single meson building

block by a representative meson with that structure. So for operators with S = 0

and I = 1, we use the label π as they are pion-like operators. This refers only to

the flavor structure of the operator and not how it behaves under rotation, parity or

G-parity, despite a physical pion having definite properties under those operations.
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I S Flavor Structure Label

0 0 uu+ dd η
0 0 ss φ
1 0 uu π
1
2

1 sd K
1
2
−1 us Kc

Table 3.4: The labels given to the creation operators with a given flavor structure.
Operators with quark content du are labeled π as a pion-like operator. This labeling
is independent of other quantum numbers and refers only to flavor.

Likewise, operators with flavor content uu + dd having S = 0 and I = 0 are here

represented as an η or eta-like operator. Including the strange quark, we are able to

produce three more flavor structures. Again, S = 0 and I = 0 is possible with ss, so

such operators are denoted as φ operators. The final quark anti-quark combinations

are su or sd with strangeness S = 1 denoted K and finally us or ds with strangeness

S = −1 denoted Kc to indicate charge conjugated versions. The difference between

K and Kc on their own does not matter as the spectrum should be the same, but

the distinction is required when considering multi-hadron states. These labels are

summarized in Table 3.4.

We now want to consider all multi-particle flavor combinations. These can be

expressed as combinations of the flavors in Table 3.4. If we take two π, or pion-like

operators, together, we can form I = 0, I = 1 or I = 2 states each with S = 0.

However for S = 0 we can make I = 0 and I = 1 states by the combination πη or πφ

as well. Table 3.5 contains a list of the possible single- and two-particle operators for

a given isospin and flavor content.

Since many of the single meson operators have definite G-parity, constructing two-

meson operators of a desired G-parity is straightforward. Even G-parity is produced

by combining two operators of the same G-parity, and odd G-parity uses single-meson

operators with opposite G-parities. Our “kaon” type operators do not have definite G-

parity as UGKU
†
G = Kc and UGK

cU †G = −K, but KKc operators can form operators

which create states of definite G-parity via O± = O ± UGOU †G.
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I = I3 S Flavor Content

0 0 η, φ, G, ηη, ηφ, φφ, ππ, KKc

1 0 π, ππ, ηπ, φπ, KKc

2 0 ππ

1
2

1 K, Kπ, Kη, Kφ

3
2

1 Kπ

0 2 KK

1 2 KK

Table 3.5: The type of operators which can appear in each channel, considering only
flavor structure. This uses the designations in Table 3.4 to show combinations which
produce definite total isospin and strangeness. For some channels, both single hadrons
and two-hadron operators appear.

3.6 Operator Selection and Pruning

Ideally, we would like to produce all possible operators which have the correct transfor-

mation properties for a given channel. However, limited computer resources requires

restricting our attention to prudent choices of operators. Following the above guide-

lines, there are many different possible operators to construct. For an operator with

a given flavor structure and other quantum numbers, there are many different choices

for displacements for that operator. Certain displacements could couple poorly to

the states of interest, or poorly to all states on the lattice. These operators which

couple poorly to states of interest are not worth the computer resources to produce, so

we prune them out of the list of produced operators. Additionally, for multi-hadron

states, there may be many possible operators which can have the quantum numbers

for a channel of interest, but many will be exceedingly high energy states. So a

method of selecting which multi-particle operators to use in each channel is needed.

3.6.1 Pruning

Operator selection or “pruning” is somewhat subjective. We followed certain rules of

thumb. First, we eliminated operators whose correlators had large statistical errors.

Monte Carlo calculations on small 163 and 243 lattices were done to prune out these

noisy operators. The correlators were computed in each channel and sorted by their
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type at rest (single only) at rest on axis planar diagonal cubic diagonal

π 228 37 47 47 26
K 139 30 30 30 18
η,φ 209 63 46 47 39

Table 3.6: The total number of operators produced of each flavor type and momentum
direction. These are the totals over all different irreps for the corresponding little
group. For isoscalar mesons, the same operators were chosen for our `` (η) and ss
(φ) type.

statistical error, and those with the largest errors were removed from the list. Second,

operators which produced correlators whose effective masses (see later) appeared to

level off at energies higher than a cutoff energy Ec were discarded, as their couplings

to the lower-lying states of interest were deemed too small. We chose

atEc =
√

(0.5)2 − atEπ(p)2 (3.24)

for momentum p. Third, we removed operators that produced states not sufficiently

independent from the states created by other operators. A final set of operators to

retain was determined by examining the condition number of the correlation matrix,

suitably normalized, of the operators left after step two. Restricting operators whose

normalized correlation matrix at an early time separation yields a condition number

of less than ≈ 100 gives a reasonable set of approximately twenty or fewer for each

channel.

Even with judicious pruning of operators in each channel, the total number of op-

erators remained large due to the number of possible channels and allowed momenta.

The number of operators which we considered computing are in Table 3.6.

3.6.2 Two-hadron Operator Selection

The pruning process limits the number of single-hadron operators we consider to a

reasonable number, but for a given channel, there are still a huge number of possible

two-hadron operators. Table 3.5 gives the list of possible flavor combinations for each

channel. Since it is not feasible to include all possible two-hadron operators, we must

have some guiding principle to select which operators to include.

In the absence of hadron interactions, the energies and natures of all free two-
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hadron states is easily known using symmetry, the known single-particle energies,

and the available momenta on the lattice. Maple code was written to discover all

of these states below a certain energy-cutoff. We then use these lists of expected free

two-meson states as a guide in selecting two-hadron operators. In each channel, we

make sure to include at least one operator, known as a primary operator, that should

couple strongly to each stationary state corresponding to each expected free level.

It is not essential to include an operator which approximates each of the stationary

states in a channel as the operator will have overlaps with many states, but getting a

set which is closer hopefully produces a better signal. Additional so-called secondary

operators were also added to ensure our computations would capture all two-meson

states in the interacting theory.

For example, consider the I = 1/2, S = 1, T1u channel with total momentum

zero. Given the available momenta, we expect the K∗(892) meson at rest to be the

lightest state in this channel. Assuming small hadron-hadron interactions, the second

lowest state in the channel on our 323 lattice is expected to be a pion-kaon state with

each having a single unit of momentum back to back. So we would include operators

which is expected to pick up that level, choosing an operator built from a pion-like

operator which transforms as A2m and a kaon-like operator which transforms as A2.

The next lowest state is again expected to be a pion-kaon state with each having

minimal nonzero planar-diagonal opposite momenta, and so on.

One could have simply chosen a random assortment of operators, including all

possible flavor combinations which are allowed in the channel of interest. Since the

operators we make will never exactly correspond with the actual stationary states

any given operator will create a linear combination of many or all of the stationary

states. By choosing operators to match the non-interacting spectrum, we except

the operators will have strong overlaps with all of the low energy states resulting

in a stronger signal. Now that the process of operator selection has been discussed

we proceed to the next chapter on how to evaluate the operators to produce the

correlation functions.
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Chapter 4

Computing the Correlators

Sec. 2.2 introduced two-point correlation functions in terms of path integrals. This

section outlines how the correlators are evaluated. The idea of a quark line is intro-

duced to describe propagation of the quarks. These quark lines require multiplying

the inverse of the Dirac matrix onto certain vectors. This is computationally expen-

sive, especially for correlators involving multi-hadron operators. Such computations

are made feasible using the stochastic LapH method.

4.1 Quark Lines

Recall from Sec. 2.2.1 that the fermion fields are integrated out, yielding functions

F [M−1, U ] involving products of M−1 that depend on the quark fields present in

the operators for a particular correlator. Evaluating the correlator using Eq. (2.34)

comes down to simply evaluating F [M−1, U ] using the configurations in a Monte

Carlo ensemble and averaging. This section describes the form of F [M−1, U ] needed

for a correlator of interest. The combinations of Dirac matrix inversions needed are

determined by Wick’s theorem.

Our single hadron creation operators Oi are given in Eq. (3.22) and are built from

objects given in Eq. (3.17). A correlation function between an operator which creates

a single meson O and a similar annihilation operator O has the form

C(tF − t0) = cf1αβc
f2
α′β′

1

Nt

∑
t0

∑
xx′

e−ip(x+ 1
2

(dα+dβ))e−ip(x
′+ 1

2
(d′α+d′β))

×
〈
qaα(x, tf )qaβ(x, tf )qa′β′(x

′, t0)qa′α′(x
′, t0)

〉
. (4.1)
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The first trick is to employ invariance under time translations to realize one does

not have to evaluate on all values t0. This means we can fix the time of the source

operator to one (or a few) times to reduce the computational cost. A similar trick can

sometimes be used to not have to evaluate the source at all spatial sites, as long as the

summation at the sink time is maintained to project out the definite momentum. This

is known as the point-to-all method and works very well when it can be applied. The

problem is that this method cannot be applied if the operators require contractions

of the fields on the same sink-to-sink time slice, such as for isoscalar mesons, or the

source operator involves more than one summation over sites, such as in a multi-

hadron operator.

To illustrate the problem with using the point-to-all method, we explicitly evaluate

a path integral over the fermion fields. For isovector mesons involving u and d quarks

given by

Ov(x, t) =
∑
x0

eip·xquaα(x, t)qdaβ(x, t) (4.2)

Ov(x, t) =
∑
x′

eip
′·xqubα′(x, t)q

d
bβ′(x, t) (4.3)

the Grassman integrations lead to

F (M−1) = −
∑
x,x′

eip·xeip
′·x′M−1d

bβ′,aα(x, t|x0, t0)M−1u
aβ,bα′(x0, t0|x, t). (4.4)

For isoscalar meson operators involving terms such as

Os(x, t) =
∑
x0

eip·xquaα(x, t)quaβ(x, t) (4.5)

Os(x, t) =
∑
x′

eip
′·xqubα′(x, t)q

u
bβ′(x, t) (4.6)

there is an additional way to do the contractions, giving two terms

F (M−1) = −
∑
x,x′

eip·xeip
′·x′M−1u

bβ′,aα(x, t|x0, t0)M−1u
aβ,bα′(x, t|x0, t0)

+
∑
x,x′

eip·xeip
′·x′M−1u

bβ′,bα′(x, t|x, t)M−1u
aβ,aα(x0, t0|x0, t0). (4.7)
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(a) Connected diagram

t t
0

(b) Disconnected diagram

Figure 4.1: Possible contractions for correlators of a single meson source and a sin-
gle meson sink. The disconnected diagram contributes only in the case of isoscalar
mesons.

The contractions for this are shown graphically in Fig. 4.1. Each of the diagrams

corresponds to a term in F . The lines in each diagram are the result of a particular

contraction between a ψ and χ, which we refer to as a quark line. Defining Ω = γ4M,

then a quark line describing the propagation of q = χ̃D†j at t0 to a q = Djψ̃ at t is

Qij(t, t0) = DiSΩ−1(t, t0)SD†j . (4.8)

There are three types of quark lines. A forward-time quark line connects a χ at the

source time to a ψ at the sink, a backward-time quark line connects a χ at a later

time t to a ψ at an earlier time t0, and a same-time line which connects ψ and χ on

the same time slice. The details of computing these are discussed in Sec. 4.2.3.

The graphical representation in Fig. 4.1 is useful to visualize the Wick contractions

of a particular correlator. The number of possible quark line connections increases

when dealing with multi-hadron operators. The possible Wick contractions for a

correlator of a meson-meson source to a meson sink are shown in Fig. 4.2. Not

all diagrams may contribute, depending on the flavor of the quarks in the mesons

involved. Diagrams which depict a contraction of quarks of different flavors are taken

to be zero. For example, each of the diagrams involving quark lines that start and

end inside the same meson are zero unless that meson is an isoscalar.

There are 24 possible contributing diagrams for the case of a two-meson source to a

two-meson sink. These are shown in Fig. 4.3. Again, only the diagrams which connect

quarks of the same flavor contribute. Here, we can see there are many diagrams which

involve same-time quark lines.
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Figure 4.2: All possible Wick contractions for a meson-meson source to a single-
meson sink. For a particular correlator, these are summed with appropriate signs,
excluding any diagrams which connect two quarks of different flavors. A similar set
of diagrams exists corresponding to the contractions for a single meson at the source
and a meson-meson sink.

4.2 Stochastic LapH Method

Since all of our calculations are computed within a Monte Carlo estimate, exact

inversions of the Dirac matrix are not needed. The statistical error due to the variance

of the field configurations generated by our Markov chain is known as the gauge

noise limit. What is needed is a method which is computationally easy which can

approximate the inversion to an accuracy comparable to that of our Monte Carlo
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Figure 4.3: All possible Wick contractions for a meson-meson source to a meson-
meson sink. For a particular correlator, these are summed with appropriate signs,
excluding any diagrams which connect two quarks of different flavors.
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estimates. We use the stochastic LapH method[15] to estimate the many quark lines

involved in our correlators.

4.2.1 Stochastic estimation of matrix inverses

In one way to stochastically estimate a matrix inverse, a set of random noise vec-

tors ρk are introduced, where the value of each component is randomly chosen from

1,−1, i,−i with equal probability, referred to as Z4 noise. There are other possible

choices for the noise vectors, but it is required that the noise vectors satisfy

E(ρ) = 0 and E(ρρ†) = I, (4.9)

where E(ρ) denotes the expected value. Other possible choices of noise could be

Gaussian noise, U(1) noise or other choices of Zn noise. The choice of Z4 is simple

and has the desirable property that ρρ∗ = 1 exactly, not just on average. To estimate

the inverse of a matrix using such random noise vectors, the linear system MX = ρ is

solved for X. Once X is found, the expectation value of Xρ yields the matrix inverse:

E(Xiρ
∗
j) = E

(∑
k

M−1
ik ρkρ

∗
j

)
=
∑
k

M−1
ik E(ρkρ

∗
j) = M−1

ij . (4.10)

Using this method, the inverse of M can be approximated by solving for X using

many different random vectors and averaging.

Meson correlators contain products of Dirac matrix inverses, which can also be

estimated stochastically. To estimate a product of matrix inverses without bias, two

random noise vectors are used. Again, MX(a) = ρ(a) is solved for X(a) and the

product of inverses can be estimated by

E
(
X1
i ρ

1
j
∗
X2
kρ

2
`
∗)

=
∑
p

∑
q

M−1
ip M

−1
kq E

(
ρ2
pρ

1
j
∗
ρ2
qρ

2
`
∗)

= M−1
ij M

−1
k` . (4.11)

In the case of two-meson correlators, there will be products of four inverses, which is

a simple extension of this process. A noise vector is required for each quark line.
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4.2.2 Variance Reduction using Noise Dilution

The stochastic method described above yields estimates with unacceptably large er-

rors. Also, the error decreases only as 1/
√
N for N noise vectors. A significant

variance reduction can be achieved using a method of dilution[22] by breaking the

noise vectors into a sum of noise vectors ρ =
∑

d ρ
(d) . The inversions are then done

on each of the smaller noise vectors and then summed to get the result.

A dilution scheme is defined by a set of projectors P a. The vectors are then

defined as a sum over projectors

ρ =
∑
a

P aρa. (4.12)

Since the inversions are done on each ρa, one can choose a set of projectors which

gives the desired variance.

All-to-all correlators have values for each time slice, spatial location, color index,

and spin index. We must introduce projectors which have support on only some of

these values to minimize the number of inversions needed, while still getting good

convergence to the exact correlator. We would like a dilution scheme which gives

good results for a minimal number of projectors. For example, spatial dilution could

be done “even-odd”, in which each projector has support on either the even or odd

sites on the lattice. Options such as blocking, where each projector has support on a

group of adjacent indices, or interlacing, where each has support on every nth index

for some value of n, are possible choices.

Since we are using LapH smeared quark fields, a dramatic reduction in variance can

be achieved by introducing noise only in the LapH subspace. Recall from Sec. 3.1.2

that our smeared quark fields are defined using V V †, where the columns of V are

the lowest-lying eigenvectors of minus the gauge-covariant Laplacian. The matrix V

has NtN
3
sNc rows but the number of columns is NvNt where Nv are the number of

eigenmodes included on each time slice. We can then use random noise vectors of

the form ρtαn, where t indicates time, α is a Dirac spin component, and n is a LapH

eigenvector number. Fig. 4.4 illustrates the reduction in the number of inversions

required to get a small error between lattice noise and noise in the LapH subspace.

The LapH dilution schemes are denoted by a triplet (T,S,L) for time, spin and

LapH eigenvector. Many different schemes were tested and the results are discussed

in Ref. [23]. These tests were done on a small lattice where the exact results were
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Figure 4.4: Comparison of the statistical error σ relative to the limiting noise from
the gauge configurations σg using noise in the LapH subspace, or using the spatial
lattice points and color. ND is the number of dilution projectors. Results from the
163 lattice.

feasible to compute so they could be compared with the various dilution schemes. It

was found that, provided there are enough projectors in the LapH subspace, there

was little difference between interlacing or blocking the indices. It was also found that

employing full spin dilution significantly reduced the variance in some disconnected

diagrams. Using those tests, it was decided, for quark lines on different times, to

use a dilution scheme of (TF, SF, LI8), which is full dilution in time and spin, and

interlacing in the LapH subspace where each projector has support on every 8th

eigenvector number. For quark lines which are on the same time, the dilution scheme

(TI16, SF, LI8) was selected.

50



4.2.3 Stochastic Estimates of the Quark lines

Our quark lines are of the form

Qij = DiV V
†Ω−1V V †D†j , (4.13)

using Eq. (3.10) with S = V V † and Ω = γ4M. Since our diluted random noise

vectors are in the LapH subspace, we insert them between the rightmost V matrices

and our stochastic estimates have the form

Qij =
∑
a

DiV V
†Ω−1V P aE(ρρ†)P a† V †D†j (4.14)

=
∑
a

E
((
DiV V

†Ω−1V P aρ
)

(P aV Djρ)†
)
. (4.15)

We define a stochastic source and sink by

%ai (ρ) = DiV P aρ, (4.16)

ϕai (ρ) = DiSΩ−1V P aρ, (4.17)

where ρ is a noise vector in time, spin and LapH eigenvector index. For each dilution

projector, we must solve the linear system

ΩXa = V P aρ (4.18)

for X such that X = Ω−1V P aρ. Obtaining these solutions is the most expensive part

of the computations. Then our quark lines are estimated according to

Qij ≈
1

N

N∑
n=1

∑
a

ϕai [n]%aj
†[n]. (4.19)

The stochastic sources and sinks are computed and combined into single-hadron

sources and sinks. These are stored on disk and later combined to make all needed

correlators. The factorization of the source and sink hadrons is an incredibly use-

ful advantage of the stochastic LapH method. It dramatically simplifies the task of

forming the correlators of many different operators.

To estimate backwards-time quark lines, one does not need to compute anything

51



new since we can take advantage of γ5-Hermiticity to switch the source and the sink.

Since M† = γ5Mγ5, Q† can be found from

Q† =
(
DSΩ−1SD†

)†
= DSΩ−1†SD† = DS

(
γ4M−1

)† SD†
= γ4DS

(
γ5M−1γ5

)
SD† = γ4γ5DSM−1γ4γ4SD†γ5

= −γ5γ4Qγ4γ5, (4.20)

using γ2
4 = 1 and the fact that the γ-matrices anti-commute. Define

%ai (ρ) = −γ5γ4% (4.21)

ϕai (ρ) = γ5γ4ϕ, (4.22)

and replace these for their counterparts in Eq. (4.19).

4.3 Computing Correlators

The stochastic LapH method allows us to estimate the quark lines needed for eval-

uating all temporal correlators. In summary, the steps involved in estimating the

correlators using any Monte Carlo ensemble of gauge configuration are as follows:

• Evaluate the smeared gauge fields Ũ

Although the dependence on Ũ was left off in this chapter, the quark lines and

stochastic sources all depend on the gauge field configurations generated using

the methods in Sec. 2.3.1. These are smeared using stout smearing and stored

on disk for each configuration.

• Evaluate the LapH eigenvectors V

Using the smeared gauge fields on each configuration, the low-lying eigenvectors

of the Laplacian are computed and stored on disk. These are used to smear the

quark fields and must be read from disk when computing the stochastic sources

and sinks. Only Nv vectors are computed and stored, where Nv is chosen for

each lattice depending on its size.

• Randomly generate the noise vectors ρ

For each gauge configuration, a set of Z4 random noises are produced. These

random noises are produced in the LapH subspace for each time and spin index.
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The random values are produced using the Mersenne twister[24] pseudo-random

number generator.

• Evaluate the quark sinks ϕ

Using the random vectors ρ, quark sinks are computed by solving the linear

system ΩXa = V P aρ for X for each dilution projector. A multi-precision

biconjugate gradient method is used. These solutions are obtained for each

noise vector on each configuration. The quark sources can simply be computed

when needed on the fly from ρ and V , which are already on disk.

• Compute the single-hadron sources and sinks

Ultimately we want correlators between operators which have definite momenta

and transformation properties as discussed in Chapter 3. These operators are

produced by combinations of quark sinks and sources with some set of coeffi-

cients. So the ϕ, %, ϕ, and % are put together to make the single-hadron line

ends.

Once the operators are stored on disk, they are assembled into correlation functions.

A set of operators of interest is used to make many correlators with the same quantum

numbers allowing us to extract information about the energies of the stationary states

on the lattice. The analysis of the correlation functions is discussed in the next

chapter.
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Chapter 5

Scattering Phase Shifts from

Finite-Volume Energies

Monte Carlo calculations in lattice QCD are necessarily carried out in finite volume.

However, most of the excited hadrons we seek to study are unstable resonances. In

finite volume with particular boundary conditions, the eigenstates of the Hamiltonian

are discrete since only certain momenta are allowed in order to satisfy the boundary

conditions. Diagonalization of the Hamiltonian leads to a knowledge of the discrete

stationary states. In infinite volume, a continuum of momenta are available and

unstable excited hadrons decay to multi-hadron asymptotic states. In finite volume,

there are no decays; instead, there is only quantum mechanical mixing between the

Fock states. Fortunately, it is still possible to study the excited resonances by using

finite-volume calculations. In this chapter, we show how the finite-volume stationary-

state energies are related to particular infinite-volume scattering phase shifts. Once

these phase shifts are determined, resonance energies and widths can then be deduced.

The idea that finite-volume energies can be related to infinite-volume scattering

processes is actually rather old, dating back to Refs. [25, 26] in the mid-1950s. First

suggestions of applying such techniques for gauge field theories appeared in Ref. [27].

In Ref. [28] in 1986, Lüscher studied the volume dependence of the energy spectrum

of stable particle states in massive quantum field theories, then examined the volume

dependence of scattering states in Ref. [29] soon thereafter. In Ref. [30] in 1991,

Lüscher then found relationships between finite-volume energies and infinite-volume

scattering phase shifts in the case of two identical spinless particles having zero total

momentum and interacting via a central potential. The advantages of using sectors
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with non-zero total momenta were then described by Rummukainen and Gottlieb in

Ref. [31] in 1995. These calculations were later revisited in 2005 using an entirely

field theoretic approach in the key work of Kim, Sachrajda, and Sharpe in Ref. [32].

This work focused on the case of a single channel of identical spinless particles, but

the total momentum could be any value allowed by the boundary conditions. As

lattice QCD computations improved to the point where it is now becoming possible

to calculate scattering phase shifts with reasonable accuracy, the results of Ref. [32]

were eventually generalized in Refs. [33–37], among others, to treat multi-channels

with different particle masses and nonzero spins.

This chapter mainly follows Ref. [32], but the derivation has been generalized to

arbitrary masses and spins and numbers of channels. The calculations are rather

lengthy and complicated, but the final formulas that will be needed end up being

fairly simple, when expressed in terms of certain generalized zeta functions.

5.1 Two-particle states and scattering phase shifts

We begin with a brief review of single- and two-particle states. For a detailed descrip-

tion of such states, see Refs. [38–40]. We then introduce the partial wave scattering

phase shifts.

The concepts of orbital angular momentum and intrinsic spin can be generalized

to relativistic situations using the Pauli-Lubanski tensor:

W µ = −1
2
εµναβMναPβ, (5.1)

where P µ generates space-time shifts (a four momentum) and the antisymmetric

tensor M combines generators of rotations and boosts:

Ki = M0i, J i =
1

2
εijkMjk. (5.2)

Note that

W 0 = P · J , W = P 0J − P ×K. (5.3)

For a particle of nonzero mass m, PµP
µ = m2 and one can define intrinsic spin S and
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orbital angular momentum L using

mS = W − (m+ P 0)−1PW 0, (5.4)

L = J − S. (5.5)

Note that S2 = −W µWµ/m
2 is a Lorentz invariant and that Si and Li satisfy the

following:

[ P µ,S ] = 0, P ·L = 0,

[ Si, Sj ] = i εijk Sk, [ Li, Lj ] = i εijk Lk,

[ J i, Sj ] = i εijk Sk, [ Li, Sj ] = 0.

(5.6)

Single particle states can be labeled using the eigenvalues of a set of mutually

commuting observables: the mass m from the eigenvalue m2 of P µPµ, where P µ is

the four-momentum operator, three-momentum p from the spatial components of

P µ, the spin s from the eigenvalue s(s+ 1) of −W µWµ/m
2, and a spin projection λ,

usually the helicity from (J · P )(P · P )−1/2 = (S · P )(P · P )−1/2 or the eigenvalue

of S3. We denote the single-particle states of definite momentum by |psλ〉 and the

conventional normalization of such states has the Lorentz invariant form

〈p′sλ′|psλ〉 = (2π)3(2Ep)δ
(3)(p′ − p)δλ′λ, (5.7)

where Ep =
√
p2 +m2. The spin s is an intrinsic property of each particle, just

like the mass m, which has only one value for each particle type. States of different

particle types are taken to be orthogonal.

Two-particles states can be built out of direct products of these,

|p1s1λ1,p2s2λ2〉 = |p1s1λ1〉 ⊗ |p2s2λ2〉. (5.8)

To simplify notation, we will suppress the explicit s1, s2 quantum numbers in the

two-particle basis states. These will be assumed implicit. The usual normalization

convention for these states (for distinguishable particles) is the Lorentz invariant form

below:

〈p′1λ′1; p′2λ
′
2|p1λ1; p2λ2〉 = 4E1E2(2π)6δ(3)(p′1 − p1)δ(3)(p′2 − p2)δλ′1λ1δλ′2λ2 , (5.9)
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where E1 =
√
p2

1 +m2
1 and E2 =

√
p2

2 +m2
2.

Such two-particle states have definite total linear momentum and relative momen-

tum, but when dealing with scattering phase shifts, it is more convenient to work with

states that have definite total linear momentum and definite angular momentum in

the cm frame instead. As a first step towards creating such states, make a change

of variables from p1,p2 to P = p1 + p2 and 2q = p1 − p2, then express the relative

momentum q in spherical components: magnitude q, polar angle θ, and azimuthal

angle φ. Lastly, replace q by E = P 0 = E1 + E2, where P = (P 0,P ) is the total

four momentum. With these variables, we label the two-particle states by |PΩλ1λ2〉,
introducing the solid angle Ω = (θ, φ) and again suppressing the explicit s1, s2 labels,

remembering that they are implicit. The normalization of the two-particle states in

terms of these variables is given by

〈P ′Ω′λ′1λ′2|PΩλ1λ2〉 =
4P 0

q
(2π)6δ(4)(P ′ − P )δ(2)(Ω′ − Ω)δλ′1λ1δλ′2λ2 . (5.10)

Because these two-particle states are eigenstates of total four-momentum P µ, it

is often useful to write such states as

|PΩλ1λ2〉 = (2π)3

[
4P 0

q

]1/2

|Ωλ1λ2〉 ⊗ |P 〉, (5.11)

where the normalizations are chosen to be

〈P ′|P 〉 = δ(4)(P ′ − P ), (5.12)

〈Ω′λ′1λ′2|Ωλ1λ2〉 = δ(2)(Ω′ − Ω)δλ′1λ1δλ′2λ2 . (5.13)

In order to construct states with definite total angular momentum, we must first

make a choice of spin projection type. Often, it is most convenient to choose helicity

which uses the direction of the momentum as the spin projection axis. Our goal

here is to relate finite-volume energies to partial wave scattering phase shifts. Partial

waves are generally defined in terms of parity eigenstates, and helicity states are not

eigenstates of parity. States in the so-called LS basis, where S denotes the total

intrinsic spin of the two particles, and L is related to the relative orbital angular

momentum, are parity eigenstates, so we prefer to work in the LS basis. Since it is

easier to form the LS states using single-particle states which are eigenstates of S3,
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we choose the z-axis as our spin projection axis.

For two-particle systems, intrinsic spin can be generalized by defining the two-

body spin operators

S = S1 + S2, (5.14)

where S1 and S2 are the spins of particles 1 and 2, respectively. In the cm frame, the

two-particle state with total spin S can be defined in terms of single particle states

in the standard way,

|ΩSmS〉 =
∑

ms1 ,ms2

|Ω, s1ms1 , s2ms2〉〈s1ms1 , s2ms2|SmS〉, (5.15)

where 〈s1ms1 , s2ms2|SmS〉 denotes a Clebsch-Gordan coefficient. Lastly, we can trans-

form from angular coordinates to states with definite orbital angular momentum by

integration over all angles of the relative momentum with the appropriate spherical

harmonic

|LmL, SmS〉 =

∫
d2Ω YLmL(Ω) |Ω, SmS〉, (5.16)

where mL is the azimuthal component of the orbital angular momentum. Using

Clebsch-Gordan coefficients, these states can be added appropriately to give a state

with total angular momentum

|JmJ , LS〉 =
∑
mL,mS

|LmL, SmS〉〈LmL, SmS|JmJ〉. (5.17)

These states are orthonormal:

〈J ′mJ ′ , L
′S ′|JmJ , LS〉 = δJ ′JδmJ′mJ δL′LδS′S, (5.18)

ignoring other quantum numbers.

A key quantity in two-particle scattering processes is the so-called S-matrix:

〈p′1λ′1,p′2λ′2|S|p1λ1,p2λ2〉. The S-matrix is often written in terms of the transition

matrix T by S = 1+ iT. Uninteresting processes in which the particles fail to interact

are described by the first term equal to unity, and the interesting interactions are

govern by T . The transition matrix elements are usually evaluated using Feynman

rules. Feynman rules in their usual form generally yield answers for the transition

matrix in terms of the basis states |p1λ1,p2λ2〉. In other words, Feynman rules are
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useful for evaluating the matrix elements

〈p′1λ′1,p′2λ′2| iT |p1λ1,p2λ2〉 = 〈P ′Ω′λ′1λ′2| iT |PΩλ1λ2〉. (5.19)

For processes of interest here, total four-momentum is conserved. Using Eq. (5.11)

and writing T = I⊗TP , where I acts on the total four momentum degrees of freedom

and TP acts on the other degrees of freedom, then

〈P ′Ω′λ′1λ′2| iT |PΩλ1λ2〉 = 4P 0q−1(2π)6〈P ′|I|P 〉 〈Ω′λ′1λ′2| iTP |Ωλ1λ2〉,

= 4P 0q−1(2π)6δ(4)(P ′ − P ) 〈Ω′λ′1λ′2| iTP |Ωλ1λ2〉.(5.20)

The so-called invariant scattering amplitude iM is defined by

〈p′1λ′1,p′2λ′2| iT |p1λ1,p2λ2〉 = (2π)4δ(4)(P ′−P ) 〈p′1λ′1,p′2λ′2| iM |p1λ1,p2λ2〉. (5.21)

Thus, we have

〈Ω′λ′1λ′2| iTP |Ωλ1λ2〉 =
q

16π2P 0
iM, (5.22)

and in terms of LS states, one obtains

〈L′mL′ , S
′mS′| iTP |LmL, SmS〉 =

q

16π2P 0

∫
d2Ω′ d2Ω Y ∗L′mL′ (Ω

′)YLmL(Ω) iM.

(5.23)

iM is the quantity that is directly computed with Feynman diagrams. Eq. (5.17) can

then be used to obtain the matrix elements

〈J ′m′J ′L′S ′| iTP |JmJLS〉 =
∑

mL′mLmS′mS

〈J ′mJ ′| L′mL′ , S
′mS′〉

×〈L′mL′ , S
′mS′| iTP |LmL, SmS〉 〈LmL, SmS|JmJ〉. (5.24)

The scattering processes we study conserve both total angular momentum J and

the projection of total angular momentum, say MJ . Given orthonormal states, then

the unitarity of the S-matrix tells us that

〈J ′m′J ′L′S ′a′| S |JmJLSa〉 = δJ ′JδmJ′mJ s
(J)
L′S′a′, LSa(E), (5.25)

where a′, a denote other defining quantum numbers, such as channel, and s(J) is a

59



unitary matrix that is independent of mJ due to rotational invariance. If the two

particles have zero spin s1 = s2 = 0 and there is only one channel, then

s(J) = s(L) = e2iδL(E), (5.26)

where δL(E) are known as the scattering phase shifts. The factor of 2 is conventional

to agree with a certain definition when scattering from a central potential.

For systems that are rotationally invariant and invariant under parity, then

s
(J)
L′S′a′, LSa(E) = 0 for L− L′ odd, (R+P invariance). (5.27)

For systems invariant under rotations and time invariance,

s
(J)
L′S′a′, LSa(E) = s

(J)
LSa, L′S′a′(E) (R+T invariance). (5.28)

5.2 Quantization condition

We define our field theory within an L3 spatial volume, where L is the extent along

each of the three orthogonal Cartesian directions, and we assume the temporal extent

is infinite. All fields are required to satisfy certain boundary conditions. The most

commonly used boundary conditions are periodic ψ(x + nL) = ψ(x), where n is

an integer-triplet, but twisted boundary conditions ψ(x + nL) = eiθ·n ψ(x), where

0 ≤ θj ≤ 2π, are sometimes imposed. We work here in Minkowski space, instead of

the usual Euclidean space of lattice QCD simulations, but the final results obtained

will not depend on this.

Correlation functions, also known as n-point Green’s functions, and physical ob-

servables, such as masses and energies, in the theory defined in the L3 spatial volume

differ from their counterparts in the infinite-volume theory. Typically, one finds two

broad classes of differences: those that fall off slowly as a power of 1/L, and those

that fall off exponentially quickly as e−L/r, where r is the range of the interactions

between the hadrons. Here, we assume that L is much larger than r, so that e−L/r

corrections can be safely neglected. Thus, we focus our study on the 1/L power-

law corrections. We restrict attention to energies and momenta below all three- and

four-particle thresholds.

We begin by introducing a two-body interpolating operator σ(x) which couples to
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all open two-body channels. Although this operator need not be local (that is, it can

be spatially extended), we must be able to associate a single site x with it. Following

Refs. [36] and [32], we define

CL(P ) =

∫
L

d4x ei(Ex
0−P ·x) 〈0|σ(x)σ†(0) |0〉, (5.29)

where P = (E,P ) is the total four momentum of the two particle system (in the

frame where the finite volume condition is applied), and the spatial integration is

over the L3 volume, with the temporal integration of infinite extent. In infinite

volume, C∞(P ) has branch cuts where the two-particle thresholds begin, but the

quantization of momenta in finite volume causes these cuts to be replaced by a series

of poles. The poles of CL give the energy spectrum of the finite-volume theory (for

those stationary states that couple to σ(x)), and thus, the condition that CL diverge

is the quantization condition we are after.

We write CL in terms of the Bethe-Salpeter kernel, as illustrated in Fig. 5.1:

CL(P ) =

∫
L;q

σa(q)B
L
a (q)σ†a(q) +

∫
L;q,q′

σa(q)B
L
a (q) iKab(q, q

′)BL
b (q′)σ†b(q

′) + · · · .

(5.30)

The notation here is as follows. Indices a, b, refer to the two-particle channel. σa(q)

and σ†a(q
′) are related to the Fourier transforms of σ(x) and σ†(x) and describe the

coupling of the operators σ and σ† to the two-particle channel a. Their detailed form

is not relevant; all we need to know is that they are regular functions of q. The two-

particle intermediate states are summed/integrated as is appropriate to finite spatial

volume (infinite in time)∫
L;q

=
1

L3

∑
q

∫ ∞
−∞

dq0

2π
,

∫
L;q,q′

=
1

L6

∑
q,q′

∫ ∞
−∞

dq0

2π

dq′0

2π
, . . . , (5.31)

where the allowed momenta are q = (2π/L)n + θ/L for integer triplet n and θj are

the twist angles. For periodic boundary conditions, θj = 0. Each component nj is an

unbounded sum over integers: nj = 0,±1,±2, . . . . If channel a consists of a hadron

of type a1 and another hadron of type a2, then the factor BL
a (q), which is the product

of the two fully-dressed propagators for particles a1 and a2, is given by

BL
a (q) = ρa

[
za1(q)∆a1(q)

][
za2(P − q)∆a2(P − q)

]
, (5.32)
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+ ...

C (P) =
L

Figure 5.1: The initial series of ladder diagrams which builds up CL (see Eq. (5.30)).
The Bethe-Salpeter kernels iK are connected by fully dressed propagators. The
dashed rectangle indicates finite volume momentum sum/integrals. The different col-
ors of the single-particle propagators indicate different types of particles, but choosing
the same color allows for identical particles. σ is the two-body interpolating operator
that couples to all open two-body channels. Initial states are on the right, final states
on the left.

where ρa is a possible symmetry factor for channel a and the fully-dressed propagator

for a hadron of type α is given by

zα(q)∆α(q) =

∫
d4x eiq·x〈φα(x)φ†α(0)〉, (no summation over α), (5.33)

∆α(q) =
i

q2 −m2
α + iε

. (5.34)

Here φα denotes an interpolating field for a hadron of type α, chosen such that zα = 1

on shell. K is related to the Bethe-Salpeter kernel and is the sum of all amputated

a← b scattering diagrams which are two-particle-irreducible in the s-channel. Recall

that a Feynman diagram is n-particle irreducible if it is connected (all vertices are

connected to all other vertices by lines) and cannot be disconnected by cutting n

internal lines. Amputated refers to a Feynman diagram in which the external legs

have been removed. Note that K can include diagrams with a single internal line,

such as a ρ-meson. Allowed diagrams are shown in Fig. 5.2. We restrict our attention

to energies E below all three- and four-particle thresholds, so intermediate states with

three or more lines can be neglected. Keep in mind that for hadrons of nonzero spin,

the residue functions zα are tensors, and similarly, iK can have tensor indices, so

the order of these terms in Eq. (5.30) is important. These tensor indices have been

suppressed in Eq. (5.30).

We emphasize two important features of Eq. (5.30). First, it does not rely on
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= + +

+

iK

+

Figure 5.2: Allowed diagrams in the kernel iK which is the sum of all amputated a← b
scattering diagrams that are two-particle-irreducible in the s-channel. Contact inter-
actions (first diagram), t- and u-channel diagrams (second and third, respectively),
and possible meson exchange diagrams (fourth) are included. An annihilation process
through a single hadron (fifth diagram) may also be possible. Initial states are on the
right, final states on the left.

= +

F

Figure 5.3: The finite-volume momentum sum/integration (indicated by the dashed
rectangle) over the two single-particle fully-dressed propagators (shown on the left)
equals the infinite-volume integration (first term on right with no dashed rectangle)
plus a finite-volume correction F (the second term on the right). This expression
essentially defines F .

any choice of interactions between the hadrons. All the quantities that enter can be

written in terms of non-perturbatively defined correlation functions. Second, the ker-

nel iK and the propagator dressing, or residue, functions zα have only exponentially

suppressed dependence on the volume[28, 29]. Finite-volume changes loop-integrals

to loop-momentum-sums. Later, we will see that the differences between these sums

and integrals fall off exponentially fast for nonsingular, finite-ranged functions (see

Eq. (5.47)). The residue functions zα are smooth, and iK is also smooth well away

from the t-channel cut. Single-particle propagators typically behave as modified K

Bessel functions, which fall off exponentially at large distances. The t- and u-channel

loops allowed in iK (see Fig. 5.2) have poles/branch cuts that are well away from

the kinematical situation relevant for the s-channel scattering processes being consid-
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ered here. Alternatively, consider the t- and u-channel loops in position space as the

product of two propagators from, say, the origin to x, integrated over x. Each of the

propagators equals the infinite-volume form plus a series of image contributions that

are exponentially suppressed (and depend weakly on x). This is true for all x, and

thus, the exponential suppression holds also after the integral over x. The fact that

the integral runs only over the finite volume rather than infinite volume leads only

to exponentially suppressed corrections. In the s-channel loops, we will see that one

particular pole becomes relevant and causes non-exponentially small corrections.

Since we assume L is large enough so that such exponential corrections are negli-

gible, we can take iK and the zα to have their infinite-volume forms. The dominant

power-law volume dependence enters through the momentum sums in the two-hadron

loops. This is indicated by the dashed boxes in Fig. 5.1.

For the moment, we write BL = B + F , where B = B∞ is the value of BL as

L → ∞, and F is the finite-volume correction. This is shown diagramatically in

Fig. 5.3. Applying the substitutions shown in Fig. 5.3 to Fig. 5.1 leads to, using

matrix notation (dropping all indices and summations)

CL(P ) = σBL

∞∑
n=0

[
(iK)BL

]n
σ† = σ(B + F)

∞∑
n=0

[
(iK)(B + F)

]n
σ†. (5.35)

Now we expand this out and collect terms that have the same number of F insertions.

Define

A = σ
∞∑
n=0

(BiK)n, A′ =
∞∑
n=0

(iKB)n σ†, iM = iK
∞∑
n=0

(BiK)n, (5.36)

as shown in Fig. 5.4. Defining Csub(P ) = CL(P )− C∞(P ), we obtain

Csub(P ) = AF
∞∑
n=0

(iMF)n A′, (5.37)

as depicted in Fig. 5.4. Notice that iM is the infinite-volume scattering amplitude.

For a matrix X, it is easy to see that (1−X)
∑∞

n=0X
n = 1, which means that

∞∑
n=0

Xn = (1−X)−1. (5.38)
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Figure 5.4: Expressing Csub(P ) = CL(P ) − C∞(P ) in terms of A,A′, iM, defined
above, and the F insertions.

We can use this result to get

Csub(P ) = A F(1− iMF)−1 A′. (5.39)

We will see that F has poles at all energies corresponding to two free particles in the

moving frame, but if iM 6= 0, which should be true in the presence of interactions,

the quantity (1− iMF)−1 has zeros at all of these free energies. In other words, the

free-energy poles in F in the numerator are cancelled by the same poles in (1− iMF)

in the denominator.
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We will later find that detF 6= 0, so we can write F = (F−1)−1 and use X−1Y −1 =

(Y X)−1 to obtain

Csub(P ) = A (F−1 − iM)−1 A′. (5.40)

The infinite-volume correlator C∞(P ) does not contain the poles that we are

seeking. Since CL(P ) does contain the poles we want, then Csub(P ) must contain

the poles we are after, as well as the cuts which must cancel those in C∞(P ). The

poles do not come from the A,A′ factors. The A,A′ factors involve nonsingular terms

involving the σ, σ†, and a geometric series of contributions with insertions of iK and

infinite-volume loop momentum. These infinite-volume factors may produce branch

cuts, but not the finite-volume poles we seek. Given the above expression, the poles

can only occur whenever one encounters a zero eigenvalue of the matrix: F−1 − iM.

Thus, the interacting poles of Csub(P ) occur whenever one encounters

det(F−1 − iM) = 0. (5.41)

To put this into a more convenient form that does not require taking the inverse of

a matrix, we multiply by detF 6= 0. Thus, an equivalent statement of the above

condition is detF det(F−1 − iM) = 0, which gives us

det(1− iFM) = 0. (5.42)

This is the crucial quantization condition that relates the finite-volume two-particle

energies to the infinite-volume scattering amplitudes iM. Expressing the infinite-

volume scattering amplitudes in terms of the scattering phase shifts allows us to

determine these phase shifts from our finite-volume energies.

5.3 Finite-volume effects in the loop summation

To express the above quantization condition in a more useful form, we need to examine

the quantity F in more detail. Using Eqs. (5.30), (5.32), (5.33), and (5.34), it is not

difficult to see that F will involve an integral/summation of the form

I ≡ 1

L3

∑
k

∫
dk0

2π

f(k0,k)

(k2 −m2
1 + iε)((P − k)2 −m2

2 + iε)
, (5.43)
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where k = (k0,k) and P = (E,P ) are four-vectors and

f(k0,k) = gKL(k) (i)2 ρa za1(k) za2(P − k) gKR(k), (5.44)

with the factors gKR and gKL coming from the iK (or σ, σ†) factors on the right and

left, respectively, of BL. Since E,P are fixed, f can be expressed as a function of k

alone. The only properties of f that we need are that is has no singularities for real

k, and its ultraviolet behavior is such as to render the integral and sum convergent.

5.3.1 Poisson summation

The well-known Poisson summation formula leads to

1

L3

∑
p

g̃(p) =

∫
d3k

(2π)3
g̃(k) +

∑
l 6=0

∫
d3k

(2π)3
eiLk·lg̃(k), (5.45)

where the summation on the left-hand side is over p = (2π/L)n for integer-triplet n,

and on the right-hand side, l is an integer triplet that excludes l = (0, 0, 0). From now

on, we assume periodic boundary conditions. Using the inverse Fourier transform, we

obtain
1

L3

∑
p

g̃(p) =

∫
d3k

(2π)3
g̃(k) +

∑
l6=0

g(Ll). (5.46)

Eq. (5.46) tells us that for functions g̃(k) whose inverse Fourier transforms in

coordinate space g(r) are nonsingular and either contained within a finite spatial

region or decrease exponentially as |r| → ∞, the terms with l 6= 0 on the right-hand

side of Eq. (5.46) decrease at least exponentially as the box size L becomes large, so

1

L3

∑
p

gc(p) =

∫
d3k

(2π)3
gc(k)+O(e−mL), (gc(p) spatially contained and regular),

(5.47)

where m ∼ 1/r is some mass scale, such as the pion mass, with r being the typical

range of interactions (assumed smaller than L). The key point here is that whenever

we carry out a summation of a finite-ranged integrand without singularities, we can

take the large L limit by replacing the momentum summation with a momentum

integration, ignoring exponentially suppressed terms.
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Re k0

E+ω 2

ω 1

Im k0

−ω1

E −ω2

Figure 5.5: Poles in the complex k0 plane for the integrand in Eq. (5.43). The contour
used to do the k0 integration is shown.

5.3.2 Isolating the finite volume effects

To isolate the finite-volume effects, we now proceed as described in Ref. [32]. First,

we integrate over k0. Define

ω1 =
√
k2 +m2

1, ω2 =
√

(P − k)2 +m2
2, (5.48)

then the integrand in Eq. (5.43) has poles at

k0 = ω1 − iε, k0 = −ω1 + iε, k0 = E + ω2 − iε, k0 = E − ω2 + iε, (5.49)

where ε > 0 is any positive real infinitesimal quantity. Since E is the total energy of

the system, we expect that E is greater than ω2, so the poles in the complex k0 plane

look as shown in Fig. 5.5. We close the contour in the left half-plane since temporal

evolution is expected to have the behavior e−iEt, then the contribution from the half

circle goes to zero as the radius of the contour becomes large. Thus, we obtain

I =
−i
L3

∑
k

{
f(ω1,k)

2ω1((E − ω1)2 − ω2
2)

+
f(E + ω2,k)

2ω2((E + ω2)2 − ω2
1)

}
, (5.50)
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from residue theory. We now drop the iε in the remaining summation, which assumes

that the poles do not coincide with any of the allowed values of k = (2π/L)n,

assuming periodic boundary conditions. Since the energies of interest are shifted by

interactions away from those of two free particles, this should hold in general in finite

volume. Of course, in infinite volume, an integral must be performed and the factors

of iε must be retained.

Consider the second term above. Write the total energy as E = ω1 + ω2 + ∆.

For free particles, ∆ = 0. Note that ∆ could be positive or negative depending on

the interactions between the two particles. Substituting this expression for E into

the denominator, we can then solve to find what values of ∆ cause the denominator

to become zero. We find that zeros occur when ∆ = −2ω2 and ∆ = −2(ω1 + ω2).

These are large negative values, indicating very strong binding. We work under

the scattering assumption that the two-particle finite-volume energies do not deviate

very much from their free values. Thus, the second term contains no singularities, so

the summation will only have exponentially small corrections from the large-L limit.

Since we are neglecting such terms, we can approximate the second term by its large-

L value. The first term is a different matter, since it does contain a singularity and

must be treated carefully. We, thus, write

I = I1 + I2, (5.51)

where

I1 =
−i
L3

∑
k

f(ω1,k)

2ω1((E − ω1)2 − ω2
2)
, (5.52)

I2 = −i
∫

d3k

(2π)3

f(E + ω2,k)

2ω2((E + ω2)2 − ω2
1)
. (5.53)

5.3.3 Center-of-mass variables

To continue with I1, we now work in the center-of-mass (cm) frame which will facilitate

an expansion in terms of partial waves. In the lab frame (in which the boundary

conditions are imposed), the total four-momentum is (E,P ). We now boost to the cm

frame in which the total four-momentum is (E∗,0). Recall how energy and momentum
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transform under a Lorentz boost (remember we use c = 1):

p′‖ = γ(p‖ − βE), p′⊥ = p⊥, E ′ = γ(E − β · p‖), (5.54)

where γ = (1−β2)−1/2 and β is the velocity of frame S ′ as seen in frame S. As viewed

from the lab frame (unprimed), the cm frame (primed) moves with momentum P .

So with p⊥ = 0 and p‖ = P , we want

p′‖ = 0 = γ(P − βE). (5.55)

This means β = P /E and γ = (1− P 2/E2)−1/2. Then

E ′ = E∗ = γ(E − βP ) =
(E − P 2/E)√

1− P 2/E2
=
√
E2 − P 2. (5.56)

Hence, for a known allowed total momentum P = (2π/L)d, where d is an integer

triplet, we can determine the finite-volume energy E in our lattice calculations, then

obtain E∗ from the above formula. From the above expression for γ, we see that

γ = E/E∗, and keep in mind that β = |P |/E.
In what follows, the subscripts ‖ and ⊥ refer to the direction of P . Again, k is

the momentum of the particle of mass m1 in the lab frame with ω1 =
√
k2 +m2

1,

then in the cm frame, denote its momentum by k∗ and define ω∗1 =
√
k∗2 +m2

1, then

k∗‖ = γ(k‖ − βω1), k∗⊥ = k⊥, ω∗1 = γ(ω1 − βk‖). (5.57)

The momentum of the second particle of mass m2 in the lab frame is P − k and

remember that ω2 =
√

(P − k)2 +m2
2. Then in the cm frame,

ω∗2 = γ(ω2 − β(P − k‖)). (5.58)

After some tedious algebraic manipulations, we find the denominator of 5.52 is

(E − ω1)2− ω2
2 = E∗(E∗− 2ω∗1) +m2

1−m2
2 = E∗

(
E∗ − 2ω∗1 +

(m2
1 −m2

2)

E∗

)
. (5.59)

70



With this, we can write I1 as

I1 =
−i
L3

1

E∗

∑
k

1

(2ω1)

f ∗(k∗)

[E∗ − 2ω∗1 + (m2
1 −m2

2)/E∗]
, (5.60)

where f ∗ is the function f rewritten in terms of the cm variables. Since ω∗1 is a

dependent variable, we write f ∗ as a function of k∗ alone.

We now introduce q∗2, defined by√
q∗2 +m2

1 +
√
q∗2 +m2

2 = E∗. (5.61)

Note that q∗2 is the square of the three-momentum of each particle in the cm frame

for a system of two free particles of masses m1 and m2 having total energy E∗ in the

cm frame. Solving for q∗2 gives

q∗2 =
1

4
E∗2 − 1

2
(m2

1 +m2
2) +

(m2
1 −m2

2)2

4E∗2
. (5.62)

This quantity will play a key role in the formulas developed below.

Returning our attention to I1, first note that

[E∗ + (m2
1 −m2

2)/E∗ − 2ω∗1][E∗ + (m2
1 −m2

2)/E∗ + 2ω∗1]

= [E∗ + (m2
1 −m2

2)/E∗]2 − 4ω∗21

= E∗2 + 2(m2
1 −m2

2) + (m2
1 −m2

2)2/E∗2 − 4k∗2 − 4m2
1

= E∗2 − 2(m2
1 +m2

2) + (m2
1 −m2

2)2/E∗2 − 4k∗2

= 4(q∗2 − k∗2). (5.63)

With this, we can now massage I1 into the form

I1 =
−i
L3

1

(2E∗)

∑
k

ω∗1
ω1

f ∗(k∗)

(q∗2 − k∗2)

(
E∗ + (m2

1 −m2
2)/E∗ + 2ω∗1

4ω∗1

)
. (5.64)

A factor of 1/ω1 has been deliberately not written in terms of cm variables in order

to simplify a particular term later.
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5.3.4 Expansion in partial waves

We continue along the lines described in Ref. [32]. Consider a momentum summation

of the form

S(q∗2) ≡ 1

L3

∑
k

ω∗1
ω1

hr(k
∗)

(q∗2 − k∗2)
, (5.65)

where the summation is over k = (2π/L)n, with n being a vector of integers, and the

quantities q∗2,k∗, ω1, ω
∗
1 are cm factors as previously described. hr(k

∗) is a spatially

contained, regular function. A summation of this form occurs in I1.

If it were not for the (q∗2 − k∗2) in the denominator, we could replace the sum-

mation with an integral and neglect the O(e−mL) error made in doing this. Since we

are trying to find a relationship between finite-volume energies and scattering phase

shifts, and since phase shifts are generally expressed in terms of partial waves, we pro-

ceed by writing k∗ in terms of spherical polar coordinates (k∗, θ∗, φ∗) and expanding

hr in terms of spherical harmonics Ylm:

hr(k
∗) =

√
4π

∞∑
l=0

l∑
m=−l

hlm(k∗) k∗l Ylm(θ∗, φ∗). (5.66)

The factor
√

4π = 1/Y00 is introduced to simplify subsequent expressions for l = 0.

We will comment on the purpose of the k∗l factors below. From the above expression,

one sees that

hlm(k∗) =
1√

4π k∗l

∫
d2Ω∗hr(k

∗) Y ∗lm(θ∗, φ∗). (5.67)

We now have

S(q∗2) =
∑
lm

Slm(q∗2), Slm(q∗2) =

√
4π

L3

∑
k

ω∗1
ω1

hlm(k∗)

(q∗2 − k∗2)
k∗l Ylm(θ∗, φ∗).

(5.68)

We can now focus on each Slm(q∗2) individually.

To isolate the effect of the pole at k∗ = q∗ =
√
q∗2 (remember that k∗ must be

positive in spherical polar coordinates so the −q∗ pole cannot occur), we subtract a

term chosen to cancel the pole, then add it back in:

Slm(q∗2) =

√
4π

L3

∑
k

ω∗1
ω1

[hlm(k∗)− hlm(q∗)eλ(q∗2−k∗2)]

(q∗ − k∗)(q∗ + k∗)
k∗l Ylm(θ∗, φ∗)
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+

√
4π

L3

∑
k

ω∗1
ω1

hlm(q∗)eλ(q∗2−k∗2)

(q∗2 − k∗2)
k∗l Ylm(θ∗, φ∗). (5.69)

A Taylor expansion of hlm(k∗) = hlm(q∗) + (k∗− q∗)h′lm(q∗) + . . . shows that the pole

has been removed in the first term above. The exponential factors eλ(q∗2−k∗2) with

λ > 0 are included so that the subtraction does not introduce ultraviolet divergences.

Notice that a subtraction of the form hr(k
∗)− hr(q∗), done before the expansion

in spherical harmonics, would not exactly cancel the pole. Also, one can now see

that the k∗l factors are needed so the subtraction does not introduce a singularity at

k∗ = 0. The spherical harmonics for l > 0 are ill-defined at the origin, because the

polar and azimuthal angles are ill-defined at the origin. Another way of saying this is

that the result at the origin depends on the direction of approach. Thus, derivatives

of some order are divergent, which means that if the harmonics are part of a summand

that is otherwise smooth, one cannot replace the sum with an integral and make only

exponentially small errors. The k∗l factors are exactly what are needed to avoid this

problem: k∗lYlm(k̂∗) are polynomials in the components of k∗, and thus, infinitely

differentiable. Note that the end results will not depend on the parameter λ. Any λ

dependence will enter in the exponentially small terms which we ignore.

Using Eq. (5.47), we obtain

Slm(q∗2) =
√

4π P
∫

d3k

(2π)3

ω∗1
ω1

[hlm(k∗)− hlm(q∗)eλ(q∗2−k∗2)]

(q∗2 − k∗2)
k∗l Ylm(θ∗, φ∗)

+hlm(q∗)

√
4π

L3

∑
k

ω∗1
ω1

eλ(q∗2−k∗2)

(q∗2 − k∗2)
k∗l Ylm(θ∗, φ∗), (5.70)

where P denotes principal value. The integrand in the first term is regular, so the

principal value is superfluous at this point. In a moment, we will split up this integral,

so we will need the principal value for the separate pieces. Using Eq. (5.57), we see

that

dk∗‖
dk‖

=
d

dk‖
γ
(
k‖ − β

√
k2
‖ + k2

⊥ +m2
1

)
= γ − βγ

k‖
ω1

= γ(ω1 − βk‖)/ω1 =
ω∗1
ω1

. (5.71)

Since k∗⊥ = k⊥, then

d3k =
ω1

ω∗1
d3k∗ (5.72)
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and we obtain

Slm(q∗2) =
√

4π P
∫

d3k∗

(2π)3

[hlm(k∗)− hlm(q∗)eλ(q∗2−k∗2)]

(q∗2 − k∗2)
k∗l Ylm(θ∗, φ∗)

+hlm(q∗)

√
4π

L3

∑
k

ω∗1
ω1

eλ(q∗2−k∗2)

(q∗2 − k∗2)
k∗l Ylm(θ∗, φ∗), (5.73)

which now explains why the factor of ω∗1/ω1 was retained in Eq. (5.64). Having made

this change of variables, the angular integrations can be done in the first term. All

terms vanish except for the l = 0 term:

Slm(q∗2) = δl0 P
∫

d3k∗

(2π)3

[hlm(k∗)− hlm(q∗)eλ(q∗2−k∗2)]

(q∗2 − k∗2)
k∗l

+hlm(q∗)

√
4π

L3

∑
k

ω∗1
ω1

eλ(q∗2−k∗2)

(q∗2 − k∗2)
k∗l Ylm(θ∗, φ∗). (5.74)

Rewrite this as

Slm(q∗2) = δl0 P
∫

d3k∗

(2π)3

hlm(k∗)

(q∗2 − k∗2)
k∗l − δl0 hlm(q∗) P

∫
d3k∗

(2π)3

eλ(q∗2−k∗2)

(q∗2 − k∗2)
k∗l

+hlm(q∗)

√
4π

L3

∑
k

ω∗1
ω1

eλ(q∗2−k∗2)

(q∗2 − k∗2)
k∗l Ylm(θ∗, φ∗). (5.75)

This leads us to define

cPlm(q∗2) ≡
√

4π

L3

∑
k

ω∗1
ω1

eλ(q∗2−k∗2)

(q∗2 − k∗2)
k∗l Ylm(θ∗, φ∗)−δl0 P

∫
d3k∗

(2π)3

eλ(q∗2−k∗2)

(q∗2 − k∗2)
. (5.76)

These coefficients will be very important in what follows. Returning to the original

S(q∗2), we now have

S(q∗2) =
∑
lm

δl0 P
∫

d3k∗

(2π)3

hlm(k∗)

(q∗2 − k∗2)
k∗l +

∑
lm

hlm(q∗) cPlm(q∗2). (5.77)

Since the angular integration over Ylm vanishes unless l = 0, we can rewrite the first

term √
4π
∑
lm

P
∫

d3k∗

(2π)3

hlm(k∗)Ylm(θ∗, φ∗)

(q∗2 − k∗2)
k∗l. (5.78)
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Now use Eq. (5.66) to obtain

S(q∗2) = P
∫

d3k∗

(2π)3

hr(k
∗)

(q∗2 − k∗2)
+
∑
lm

hlm(q∗) cPlm(q∗2). (5.79)

After a few more manipulations, we eventually find that we can write

IFV =

∫
d2Ω IFV (Ω), (5.80)

where

IFV (Ω) =
q∗f(q∗)

32π2E∗

(
1− i(4π)3/2

∑
lm

Y ∗lm(Ω) cPlm(q∗2)

q∗(l+1)

)
. (5.81)

The quantity IFV is the finite-volume correction related to the F factors we pre-

viously introduced. The coefficients cPlm(q∗2) are independent of the vertex factors

and are completely defined by Eq. (5.76). We will look at these coefficients in more

detail later.

5.4 Quantization condition revisited

A key point about the finite-volume correction is that the numerator function f ∗ is

only needed at k∗2 = q∗2 so that both particles are on mass shell. This results in an

important simplification. Each renormalized fully-dressed single-particle propagator

has the form
iz(p)

(p2 −m2 + iε)
, (5.82)

where z(p) is a matrix of functions of p depending on the spin of the particle. For

example, the running mass can be accounted for in these functions. Regardless of how

complicated the z(p) functions are off-shell, the z(p) for each renormalized propagator

is required to be the identity matrix when p2 = m2 on the mass shell. Using Eq. (5.44),

we then have

IFV (Ω) =
−ρaq∗

32π2E∗
gKL(q∗) gKR(q∗)

(
1− i(4π)3/2

∑
lm

Y ∗lm(Ω) cPlm(q∗2)

q∗(l+1)

)
. (5.83)

We now peel off the gKL and gKL factors that are not associated with F and restore

the spin indices. Clearly, F is diagonal in channel space, and F is diagonal in the
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particle helicities, or alternatively, in the single-particle spin projections onto the z-

axis mS1 ,mS2 . Given that z(p) becomes the identity matrix on shell, this is equivalent

to diagonality in total S and mS. Hence, we can write

〈Ω′S ′mS′a
′|F|ΩSmSa〉 = δa′aδS′SδmS′mSδ(Ω

′ − Ω)FP (Ω), (5.84)

where

FP (Ω) = − ρaq
∗

32π2E∗

(
1− i(4π)3/2

∑
lm

Y ∗lm(Ω) cPlm(q∗2)

q∗(l+1)

)
. (5.85)

Rewrite Eq. (5.37) in the same form as the starting Eq. (5.30) to obtain

Csub(P ) =

∫
d4k

(2π)4
A(k)F(k)A′(k)+

∫
d4k

(2π)4

d4k′

(2π)4
A(k)F(k)iM(k, k′)F(k′)A′(k′)+. . . ,

suppressing all spin indices. The function F(k) is defined so that, for example, in the

first term, the integration gives∫
d4k

(2π)4
A(k)F(k)A′(k) =

∫
d2Ω A(k̂)FP (Ω)A′(k̂), (5.86)

remembering Eq. (5.84) with spin indices suppressed. Similarly, in the second term

above, we will have∫
d4k

(2π)4

d4k′

(2π)4
A(k)F(k)iM(k, k′)F(k′) A′(k′) =

∫
d2Ωd2Ω′A(k̂)FP (Ω)

×iM(k̂, k̂′)FP (Ω′)A′(k̂′). (5.87)

From Eq. (5.37) and pondering how Feynman rules are applied, one concludes that

the iM(k, k′) factors must correspond to the quantity 〈P ′Ω′|iTP |PΩ〉, where the

normalization of these states is given in Eq. (5.10). We want to write this in terms

of angular states that can be integrated to obtain orthonormalized LmL states, so we

use Eq. (5.22) and write

iM(k, k′) =
16π2E∗

q∗
〈Ω|iM|Ω′〉, (5.88)
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with normalization 〈Ω|Ω′〉 = δ(2)(Ω′ − Ω). Now use Eq. (5.16) to obtain

〈LmL, SmS|iM|L′mL′ , S
′mS′〉 =

∫
d2Ωd2Ω′ Y ∗LmL(Ω)YL′mL′ (Ω

′)〈ΩSmS|iM|Ω′S ′mS′〉.

Since we will always deal with the product iFM, we can absorb the factor in

Eq. (5.88) into the definition of a rescaled F matrix, as well as absorb a minus sign:

F (P )(Ω) = −16π2E∗

q∗
FP (Ω) =

ρa
2

(
1− i(4π)3/2

∑
lm

Y ∗lm(Ω) cPlm(q∗2)

q∗(l+1)

)
. (5.89)

We can now use Eq. (5.16) to find the matrix elements of F in the LmL basis:

〈L′mL′S
′mS′a

′|F (P )|LmLSmSa〉 = δa′aδS′SδmS′mS

×
∫
d2Ω′d2Ωδ(Ω′ − Ω)F (P )(Ω) YLmL(Ω)Y ∗L′mL′ (Ω

′). (5.90)

Substitute in the expression for F (P )(Ω) and simplify. Define

W
(s,γ,u)
L′mL′ ; LmL

= −i(4π)3/2
∑
lm

cPlm(q∗2)

q∗(l+1)

∫
d2Ω Y ∗L′mL′ (Ω)Y ∗lm(Ω)YLmL(Ω) (5.91)

then

〈L′mL′S
′mS′a

′|F (P )|LmLSmSa〉 = δa′aδS′SδmS′mS
ρa
2

(
δL′LδmL′mL +W

(s,γ,u)
L′mL′ ; LmL

)
.

(5.92)

Use Eq. (5.17) to express the above matrix elements in terms of those in the

|JmJ , LS, a〉 basis states:

〈J ′mJ ′ , L
′S ′a′|F (P )|JmJ , LS, a〉 = 〈L′mL′S

′mS′a
′|F (P )|LmLSmSa〉

×〈J ′mJ ′ |L′mL′S
′mS′〉〈LmLSmS|JmJ〉. (5.93)

We end up with

〈J ′mJ ′ , L
′S ′a′|F (P )|JmJ , LS, a〉 = δa′aδS′S

ρa
2

{
δJ ′JδmJ′mJ δL′L

+〈J ′mJ ′|L′mL′SmS〉〈LmLSmS|JmJ〉W (s,γ,u)
L′mL′ ; LmL

}
. (5.94)
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The quantization condition of Eq. (5.42)

det[1 + F (P )(S − 1)] = 0, (5.95)

is then ready for straightforward use in the |JmJ , LS, a〉 basis states.

So far, our manipulations above assumed that the two particles were distinguish-

able. In such a case, we set ρa = 1. For indistinguishable particles, we must divide

by 2 between all matrices in Eq. (5.37) due to how the closure relation changes in

terms of the particle creation/annihilation operators. The second effect of indistin-

guishable particles comes in the evaluation of F itself. Given that the two particles

are identical, there are two ways of forming the two-particle loops. Hence, we must

multiply by 2 for each F . The end effect is to replace F by 1
2
F in Eq. (5.37). Thus,

we set ρa = 1
2

for identical particles.

5.5 The RGL shifted zeta functions

In Eq. (5.76), the following quantities emerged as very important:

cPlm(q∗2) =

√
4π

L3

∑
k

ω∗1
ω1

k∗lYlm(k̂∗)

(q∗2 − k∗2)
eλ(q∗2−k∗2) − δl0P

∫
d3k∗

(2π)3

eλ(q∗2−k∗2)

(q∗2 − k∗2)
, (5.96)

where k = (2π/L)n for integer triplets n, P denotes a principal value, ω1 =
√
k2 +m2

1,

and ω∗1,k
∗ are given in Eq. (5.57). These coefficients also depend on m1 and m2, in

addition to q∗2, but this dependence is left implicit to simplify the notation.

The summation in Eq. (5.96) is over k = (2π/L)n, where n is a vector of integers,

which are the allowed momenta of the particle of mass m1. Except for the ω1 =√
k2 +m2

1 factor, the summand is expressed entirely in terms of k∗. The vector

k∗ = k∗(k) is rather complicated to determine. From Eq. (5.57), we see that

k∗‖ = γ(k‖ − β
√
k2 +m2

1), k∗⊥ = k⊥, (5.97)

and the factor ω∗1(k)/ω1(k) is similarly complicated. More specifically, the quantities

ω∗1, ω1 and the Cartesian components of k∗ are not simple polynomials of k2.

It has become customary to express these coefficients in terms of functions that

were introduced by Lüscher in Ref. [29] for P = 0 and generalized by Rummukainen
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and Gottlieb for nonzero P in Ref. [31] which involve a summation over a vector r(k)

given by

r‖ = γ−1(k‖ − %P ), r⊥ = k⊥, γ = E/E∗, % =
1

2

(
1 +

(m2
1 −m2

2)

E∗2

)
. (5.98)

Although k∗(k) and r(k) are both dependent on k, the key point here is that r is a

simpler function of k. The manipulations to re-express the coefficients in terms of r

are described in Ref. [32].

After a fair bit of work, one finds the following. For a given total momentum

P = (2π/L)d, where d is a vector of integers, we determine the total energy E

in the lab frame for a particular two-particle interacting state in our lattice QCD

simulations. Then

E∗ =
√
E2 − P 2, (5.99)

γ =
E

E∗
, (5.100)

q∗2 =
1

4
E∗2 − 1

2
(m2

1 +m2
2) +

(m2
1 −m2

2)2

4E∗2
, (5.101)

u2 =
L2q∗2

(2π)2
, (5.102)

s =

(
1 +

(m2
1 −m2

2)

E∗2

)
d, (5.103)

z = n− γ−1

[
1

2
+ (γ − 1)s−2n · s

]
s, (5.104)

then the coefficients are given by

cPlm(q∗2) = −
√

4π

γL3

(
2π

L

)l−2

Zlm(s, γ, u2). (5.105)

We define the Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions by

Zlm(s, γ, u2) =
∑
n∈Z3

Ylm(z)

(z2 − u2
)eλ(u2−z2) − δl0γ√

4π
P
∫
d3y

eλ(u2−y2)

(y2 − u2)
, (5.106)

for constant shift vector s, constant boost factor γ, and with ultraviolet regulator
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λ→ 0, and where

Ylm(x) = |x|l Ylm(x̂) (5.107)

are polynomials in the components of x. We assume the components of s are real,

and that γ, u2 are real.

To determine the functions Ylm(x) from the standard spherical harmonics, express

the integer vector x in spherical polar coordinates (x, θ, φ): x1 = x sin θ cosφ, x2 =

x sin θ sinφ, and x3 = x cos θ. Then

x sin θeiφ = x1 + ix2, x cos θ = x3. (5.108)

For m ≥ 0, we have

Ylm(x) =
(−1)m

2ll!

√
(2l + 1)

4π

(l −m)!

(l +m)!
(x1 + ix2)mxl−m

[
d(m+l)

dv(m+l)
(v2 − 1)l

]
v=x3/x

(5.109)

where x = (x2
1 + x2

2 + x2
3)1/2, and Yl,−m(x) = (−1)mY∗lm(x). The lowest few functions

are found to be

Y00(x) =
1√
4π
,

Y11(x) = −
√

3

8π
(x1 + ix2),

Y10(x) =

√
3

4π
(x3),

Y22(x) =

√
15

32π
(x1 + ix2)2,

Y21(x) = −
√

15

8π
(x1 + ix2)x3,

Y20(x) =

√
5

16π

(
2x2

3 − x2
1 − x2

2

)
.

The most straightforward way to evaluate the zeta functions is to simply perform

the summation in Eq. (5.106) numerically with a computer for various decreasing

values of λ, then extrapolate the results to λ → 0. Unfortunately, for larger values

of l, this is difficult to do, even given the incredible speed of modern computers.

Convergence of the l > 0 summations depends on subtle angular cancellations due
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to the spherical harmonics. Another method is needed. Using tricks described in

Ref. [30, 33, 41] finds

Zlm(s, γ, u2) =
∑
n∈Z3

Ylm(z)

(z2 − u2)
e−Λ(z2−u2) + δl0γπe

Λu2
(

2uD(u
√

Λ)− Λ−1/2
)

+
ilγ

Λl+1/2

∫ 1

0

dt
(π
t

)l+3/2

eΛtu2
∑
n∈Z3
n 6=0

eπin·sYlm(w) e−π
2w2/(tΛ), (5.110)

where D(x) is the Dawson function, defined by

D(x) = e−x
2

∫ x

0

dt et
2

. (5.111)

We choose Λ ≈ 1, although the final answer is independent of this choice. Choosing

Λ near unity allows sufficient convergence speed of the summations. We have written

a C++ subroutine to evaluate these functions. Gauss-Legendre quadrature is used to

perform the integral, and the method described in Numerical Recipes [42] is used to

evaluate the Dawson function, with modifications for double precision.

5.6 The angular integrations

The relationship between the finite-volume two-particle energy E and the infinite-

volume scattering amplitudes (and phase shifts) is encoded in the matrix equation:

det[1 + F (s,γ,u)(S − 1)] = 0, (5.112)

where S is the usual S-matrix whose elements can be written in terms of the scattering

phase shifts, and the F matrix is given by

F
(s,γ,u)
J ′mJ′L

′S′a′; JmJLSa
=
ρa
2
δa′aδS′S

{
δJ ′JδmJ′mJ δL′L +W

(s,γ,u)
L′mL′ ; LmL

×〈J ′mJ ′|L′mL′ , SmS〉〈LmL, SmS|JmJ〉

}
, (5.113)
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(S is a total intrinsic spin in the above equation) with

W
(s,γ,u)
L′mL′ ; LmL

=
2i

πγul+1
Zlm(s, γ, u2)

∫
d2Ω Y ∗L′mL′ (Ω)Y ∗lm(Ω)YLmL(Ω). (5.114)

Notice that F (s,γ,u) is diagonal in channel space, but mixes different total angular

momentum sectors, whereas S is diagonal in angular momentum, but has off-diagonal

elements in channel space. Also, the matrix elements of F (s,γ,u) depend on the total

momentum P through s, whereas the matrix elements of S do not.

To proceed, examine the symmetries and transformation properties of the W

matrix in Eq. (5.114). First, if the mL,mL′ parameters change signs, we find that

W
(s,γ,u)
L′,−mL′ ; L,−mL

= (−1)mL′+mL+1 W
(s,γ,u)∗
L′,mL′ ; L,mL

. (5.115)

Under interchange of the rows and columns of W , we have

W
(s,γ,u)
LmL; L′mL′

= −W (s,γ,u)∗
L′,mL′ ; L,mL

. (5.116)

If we define

wlm =
Zlm(s, γ, u2)

γπ3/2ul+1
, (5.117)

then explicit expressions for some elements of W are given below:

−iW0,0; 0,0 = w0,0

−iW0,0; 1,−1 = w1,−1

−iW0,0; 1,0 = w1,0

−iW0,0; 1,1 = w1,1

−iW1,0; 1,−1 =

√
15

5
w2,−1

−iW1,0; 1,0 = w0,0 +
2
√

5

5
w2,0

−iW1,0; 1,1 =

√
15

5
w2,1

−iW1,1; 1,−1 = −
√

30

5
w2,−2

−iW1,1; 1,0 = −
√

15

5
w2,−1
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−iW1,1; 1,1 = w0,0 −
√

5

5
w2,0. (5.118)

5.7 Block diagonalization

So far we have determined both the matrix F and the scattering matrix S in terms

of the basis states labelled |JmJLSa〉. In this basis, the quantization condition

det[1 + F (s,γ,u)(S − 1)] = 0, (5.119)

is often problematic due to the need to evaluate the determinant. If we can switch

to a basis in which both F and S are block diagonal, then we only need to evaluate

the determinant separately in each block.

Define the unitary matrix

B
(R)
J ′mJ′L

′S′a′; JmJLSa
= δJ ′JδL′LδS′Sδa′aD

(J)∗
mJ′mJ

(R). (5.120)

Under an ordinary spatial rotation R, one can show that

F (Rs,γ,u) = B(R) F (s,γ,u) B(R)†. (5.121)

The above expression also applies for improper transformations R that involve spatial

inversion or other reflections.

The result in Eq. (5.121) is very important since it will allow us to substantially

reduce (that is, block diagonalize) the F matrix. If R is an element of the little group

of P and hence, s, then Rs = s and we have

F (s,γ,u) = B(R) F (s,γ,u) B(R)†, (R in little group of P ). (5.122)

Multiply by B(R) on the right of both sides of the above equation and use the unitarity

of B(R) to obtain

F (s,γ,u) B(R) = B(R) F (s,γ,u). (5.123)

Eq. (5.123) tells us that the F matrix commutes with the matrix B. This means

that we can simultaneously diagonalize F and B. By rotating into a basis formed

by the eigenvectors of B, we can reduce the F matrix into a block diagonal form
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which should simplify the evaluation of the determinant needed in the quantization

condition. The matrix B involves D(J)∗, which is the complex conjugate of D(J), so

if we use D(J), then we can block diagonalize F ∗. But if F ∗ is block diagonal, then

so is the matrix F .

Given the sparseness of the B matrix, a partial diagonalization of F can be

achieved by diagonalizing D
(J)
m′m(R) for each J , or equivalently, by projecting onto

the irreducible representations of the little group. These eigenvectors or projections

can be labelled by the irrep Λ and irrep row λ of the little group, and possibly an

integer n identifying each occurrence of the irrep Λ in the D
(J)
m′m(R) reducible repre-

sentation. In other words, we do a change of basis:

|ΛλnJLSa〉 =
∑
mJ

cΛλn
JmJ
|JmJLSa〉 (5.124)

Making such a change of basis, F will be diagonal in Λ, λ, but not in nΛ. We can

now focus on the matrix elements:

F
(s,γ,u)(Λ,λ)
J ′n′L′S′a′; JnLSa. (5.125)

To construct the states that transform irreducibly under the little group, for a

given J , we apply the standard group theoretical projections onto the 2(2J + 1) basis

vectors |JP , J〉, |JP , J − 1〉, . . . , |JP ,−J〉 for parity P = ±1, for the first row λ = 1

of each irrep of the little group

|Λλ〉 =
dΛ

gG

∑
R∈G

Γ
(Λ)∗
λλ (R)D

(J)
m′mJ

(R) |JPm′〉, (5.126)

where G denotes the little group, gG is the order of the little group (the number of

elements), and dΛ is the dimension of the irrep Λ, and Γ(Λ)(R) is the unitary matrix

representing R in the Λ irrep. The matrix of spatial inversion is diagonal, with +1 on

the diagonal elements corresponding to the even parity states and −1 for the diagonal

elements associated with the odd parity states. If the irrep Λ does not occur in the

J rep of SU(2) subduced to G, all of the resulting vectors will be zero. If the irrep

Λ occurs once in the subduction, then only one nonzero resulting vector will occur,

which can then be suitably normalized. If the Λ irrep occurs more than once, then

there is some freedom in choosing the basis vectors. We make an arbitrary choice
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Table 5.1: The basis vectors that block diagonalize the F matrix for total zero mo-
mentum. Each basis vector is labelled by an irreducible representation Λ of the little
double group OD

h , the row λ (as defined in Ref. [18]), the spin J , and the occurrence
number n of Λ in the subduction of Jη to the little group. In the first column, η = g
for even parity, η = u for odd parity. In the last column, |Jη,mJ〉 refers to |JmJLSa〉,
where η = η1η2(−1)L and ηj is the intrinsic parity of particle j = 1, 2. Only spins
J ≤ 1 are considered in this table.

Λ λ J n Basis vectors

A1η 1 0 1 |0η, 0〉
T1η 1 1 1 1√

2
(−|1η, 1〉+ |1η,−1〉)

T1η 2 1 1 i√
2
(|1η, 1〉+ |1η,−1〉)

T1η 3 1 1 |1η, 0〉

based on simplicity of the results, but ensuring the choices are orthonormal. We apply

a Gram-Schmidt procedure to the resulting vectors.

Once we have basis vectors for the first row λ = 1 of all Λ irreps, we then obtain

the partner basis vectors for the other rows µ using the transfer operation

|Λµ〉 =
dΛ

gG

∑
R∈G

Γ
(Λ)∗
µλ (R) R|Λλ〉. (5.127)

Our choices of irreducible representation matrices are presented in Ref. [18], and the

irrep labels for the various little groups are listed in Ref. [18] as well. Given these

choices, we apply the above procedure, and the resulting basis states are summarized

in Tables 5.1, 5.2, 5.3, and 5.4, for spins J ≤ 1.

5.8 Application to ππ scattering

For single-channel ππ scattering, s1 = s2 = 0, so S = 0 and J = L, in which case

Eq. (5.113) simplifies to

F
(s,γ,u)
L′mL′ ; LmL

=
ρa
2

(
δL′LδmL′mL +WL′mL′ ; LmL

)
. (5.128)
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Table 5.2: The basis vectors that block diagonalize the F matrix for on-axis total
momentum (0,0,1). Each basis vector is labelled by an irreducible representation Λ
of the little double group CD

4v, the row λ (as defined in Ref. [18]), the spin J , and the
occurrence number n of Λ in the subduction of JP to the little group. In the last
column, |Jη,mJ〉 refers to |JmJLSa〉, where η = η1η2(−1)L and ηj is the intrinsic
parity of particle j = 1, 2. Only integer spins J ≤ 1 are considered in this table.

Λ λ J n Basis vectors

A1 1 0 1 |0+, 0〉
A2 1 0 1 |0−, 0〉
A1 1 1 1 |1−, 0〉
A2 1 1 1 |1+, 0〉
E 1 1 1 1√

2
(|1+, 1〉+ |1+,−1〉)

E 2 1 1 i√
2
(−|1+, 1〉+ |1+,−1〉)

E 1 1 2 1√
2
(−|1−, 1〉+ |1−,−1〉)

E 2 1 2 i√
2
(|1−, 1〉+ |1−,−1〉)

Table 5.3: The basis vectors that block diagonalize the F matrix for planar-diagonal
total momentum (0,1,1). Each basis vector is labelled by an irreducible representation
Λ of the little double group CD

2v, the row λ (as defined in Ref. [18]), the spin J , and
the occurrence number n of Λ in the subduction of JP to the little group. In the last
column, |Jη,mJ〉 refers to |JmJLSa〉, where η = η1η2(−1)L and ηj is the intrinsic
parity of particle j = 1, 2. Only integer spins J ≤ 1 are considered in this table.

Λ λ J n Basis vectors

A1 1 0 1 |0+, 0〉
A2 1 0 1 |0−, 0〉
A1 1 1 1 1

2
(|1−, 1〉 − i

√
2|1−, 0〉+ |1−,−1〉)

A2 1 1 1 1
2
(|1+, 1〉 − i

√
2|1+, 0〉+ |1+,−1〉)

B1 1 1 1 1
2
(|1+, 1〉+ i

√
2|1+, 0〉+ |1+,−1〉)

B1 1 1 2 1√
2
(−|1−, 1〉+ |1−,−1〉)

B2 1 1 1 1√
2
(|1+, 1〉 − |1+,−1〉)

B2 1 1 2 1
2
(|1−, 1〉+ i

√
2|1−, 0〉+ |1−,−1〉)
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Table 5.4: The basis vectors that block diagonalize the F matrix for cubic-diagonal
total momentum (1,1,1). Each basis vector is labelled by an irreducible representation
Λ of the little double group CD

3v, the row λ (as defined in Ref. [18]), the spin J , and
the occurrence number n of Λ in the subduction of JP to the little group. In the last
column, |Jη,mJ〉 refers to |JmJLSa〉, where η = η1η2(−1)L and ηj is the intrinsic
parity of particle j = 1, 2. Only integer spins J ≤ 1 are considered in this table.

Λ λ J n Basis vectors

A1 1 0 1 |0+, 0〉
A2 1 0 1 |0−, 0〉
A1 1 1 1 − 1√

6
(−
√

2|1−, 1〉+ (1 + i)|1−, 0〉+ i
√

2|1−,−1〉)
A2 1 1 1 − 1√

6
(−
√

2|1+, 1〉+ (1 + i)|1+, 0〉+ i
√

2|1+,−1〉)
E 1 1 1 1√

6
(|1+, 1〉+ (1 + i)

√
2|1+, 0〉 − i|1+,−1〉)

E 2 1 1 1√
2
(i|1+, 1〉 − |1+,−1〉)

E 1 1 2 1√
2
(|1−, 1〉+ i|1−,−1〉)

E 2 1 2 1√
6
(i|1−, 1〉 − (1− i)

√
2|1−, 0〉+ |1−,−1〉)

5.8.1 S-wave scattering

In the simplest case of S-wave scattering, assume 〈L′mL′|S−1|LmL〉 = 0 for L,L′ > 0.

Then the determinant equation det[1 +F (s,γ,u)(S−1)] = 0 becomes very simple. The

matrix F (s,γ,u)(S − 1) has nonzero entries only in its first column corresponding to

L = mL = 0. Hence, the diagonal elements of 1 + F (s,γ,u)(S − 1) are all unity, except

for the first element, and the off-diagonal elements are nonzero only in its first column.

Taking the determinant is simple, yielding

det[1 + F (s,γ,u)(S − 1)] = 1 + 1
2
(1 + iw00)(e2iδ0 − 1) = 0. (5.129)

Using

e2iδ0 − 1 =
2i

cot δ0 − i
, (5.130)

the above equation becomes

cot δ0 = w00 =
Z00(s, γ, u2)

γπ3/2u
, (5.131)
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assuming the particles are not identical, such as in π+π− scattering. Note that w0,0

is real since Zl0 is real. To emphasize this, we write

cot δ0 = Rew00 =
ReZ00(s, γ, u2)

γπ3/2u
. (5.132)

5.8.2 P -wave scattering

In the case of P -wave scattering, we assume δL = 0 for all L except L = 1. Hence,

the matrix elements of S−1 are all zero, except for diagonal entries with L = 1. This

means the matrix F (S − 1) has non-zero entries only for columns with L = 1. The

matrix 1 + F (S − 1) has the form

Q = 1 + F (S − 1) =

 1 Q(a) 0

0 Q(d) 0

0 Q(b) 1

 ,
where Q(d) refers to the block whose columns and rows involve L = 1 only. Given

the above form, one easily sees that det[1 +F (S − 1)] = detQ(d). So we only need to

consider the block involving L = 1 only. The Q(d) block is a 3× 3 matrix. The basis

states are |1−, 1〉, |1−, 0〉, |1−,−1〉. The parity must be η2
π(−1)L = −1. In all cases,

we will be able to reduce the 3 × 3 matrix to diagonal form, where each diagonal

element has the form

F = 1
2
(1 + iW). (5.133)

Then the determinant equation is trivial (using ρa = 1 for distinguishable pions):

1 + 1
2
(1 + iW)(e2iδ1 − 1) = 0. (5.134)

Using

e2iδ1 − 1 =
2i

cot δ1 − i
, (5.135)

the above equation becomes

cot δ1 =W . (5.136)

Since we will only need the matrix elements ofW corresponding to the three states
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Table 5.5: Expressions for the P -wave phase shifts relevant for I = 1 ππ scattering.

d Λ cot δ1

(0,0,0) T+
1u Re w0,0

(0,0,1) A+
1 Re w0,0 + 2√

5
Re w2,0

E+ Re w0,0 − 1√
5
Re w2,0

(0,1,1) A+
1 Re w0,0 + 1

2
√

5
Re w2,0 −

√
6
5
Im w2,1 −

√
3
10

Re w2,2,

B+
1 Re w0,0 − 1√

5
Re w2,0 +

√
6
5
Re w2,2,

B+
2 Re w0,0 + 1

2
√

5
Re w2,0 +

√
6
5
Imw2,1 −

√
3
10

Re w2,2

(1,1,1) A+
1 Re w0,0 + 2

√
6
5
Im w2,2

E+ Re w0,0 −
√

6
5
Im w2,2

|1−, 1〉, |1−, 0〉, |1−,−1〉, we only have to consider

−iW1,1; 1,1 = w0,0 − 1√
5
w2,0

−iW1,1; 1,0 = −
√

3
5
w2,−1

−iW1,1; 1,−1 = −
√

6
5
w2,−2

−iW1,0; 1,0 = w0,0 + 2√
5
w2,0. (5.137)

We can use Eqs. (5.115) and (5.116) to get the other needed matrix elements. Also,

we know that wl0 is real for all l.

We carry out the block diagonalization using the results given in Tables 5.2, 5.3,

and 5.4, and evaluate the resulting determinants. We summarize our results in Ta-

ble 5.5.
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Chapter 6

Analysis

6.1 Energy Extraction from Correlators

The spectral representation of the correlation functions is given by Eq. 2.29. This

indicates that the spectrum of stationary states excited by a particular operator can be

determined by the decay rates in the temporal evolution of the correlator. The lowest

energy can be extracted by looking at the large time behavior of the correlator since

the excited states decay away more quickly. However, the signal to noise ratio falls

with time, so the correlator must be analyzed at times before the signal is dominated

by statistical noise.

6.2 The effective mass

A common way of visualizing the properties of a correlator is to compute and plot a

so-called “effective mass” defined by

meff(t) = − 1

∆t
ln

(
C(t+ ∆t)

C(t)

)
. (6.1)

The effective mass is a function of time separation t that tends to the exact energy

of the lowest-lying state created by the operator of the correlator as t becomes large.

Generally, the effective mass decreases with time until it levels off at its plateau value

when the contributions from higher-lying states become negligible. Fig. 6.1 is an

example of a correlator and the corresponding effective mass. At times before the
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Figure 6.1: Plot of an example two-point correlation function (left) and its effective
mass (right). At small times, the effective mass is decreasing, but at larger times,
the effective mass levels off at a plateau, indicating the correlator is dominated by
a single exponential decay. This correlator is for the I = 1, S = 0, A−1u channel
(corresponding to the pion) using the same single-hadron operator on the source and
sink.

plateau, the effective mass shows contributions from higher energy levels. Effective

masses often have error bars which increase significantly for larger time separations.

6.3 Correlator Matrices

It is not feasible to extract more than one energy by fitting to a single correlation

function given the small number of times at which we can typically estimate the

correlator. To determine the energies of higher-lying states, the best way to proceed

is to determine estimates for a matrix of correlators and exploit orthogonality.

For a particular channel, we design a set of N interpolating operators {Oi} which

have the same transformation properties, then evaluate the matrix elements

Cij(t) = 〈0|Oi(t+ t0)O†j(t0)|0〉. (6.2)

This is an N × N matrix for each t, which is the temporal separation between the

source time t0 and the sink time tf = t + t0 requiring that t be positive due to

time ordering. We design our operators such that Cij(t) is Hermitian, so to save

on computing resources, we only have to produce the upper or lower triangle of the
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matrix. It is convenient to work with a rescaled correlation matrix

Ĉij(t) =
Cij(t)√

Cii(tn)Cjj(tn)
, (6.3)

where the reference normalization time tn is chosen to be a very early time, such as

tn = 3, where the error on the correlator is small. This rescaled correlator matrix is

the starting point for our analysis.

The rescaled matrix Ĉ is then rotated to produce a matrix C̃ that is diagonal on

two time slices τi and τd. Rotating the matrix to be diagonal is tantamount to defining

a new set of operators using linear combinations of the original set such that each

only has significant overlap with a single level. The rotated correlation matrix will

be the identity matrix at τi and exactly diagonal at time τd. The rotation coefficients

are determined by solving the generalized eigenvalue problem specified by

Ĉ(τd)y = λĈ(τi)y. (6.4)

Alternatively, one can solve

Ĉ(τi)
−1/2Ĉ(τd)Ĉ(τi)

−1/2x = λx, (6.5)

where x = Ĉ(τi)
1/2y. Using the eigenvectors y as columns, we build a matrix U . This

is a unitary matrix which can be used to rotate our correlator matrix. The rotated

correlator matrix is defined by

C̃ij(t) = U †Ĉ(t)U. (6.6)

This guarantees that C̃ij(τi) = I and C̃ij(τd) is diagonal. However, we try to choose

values of τi and τd such that C̃(t) remains diagonal for all t > τd. After the rotation,

the off-diagonals are inspected to ensure they are zero within statistical error.

If the set of operators is not sufficiently linearly independent, the matrix can

become ill-conditioned. Due to statistical fluctuations, the matrix may have zero or

even negative eigenvalues at large times. This poses a serious problem as the formulas

above are not valid if Ĉ is not positive definite. As N becomes large, it often becomes

necessary to inspect the eigenvectors of Ĉ and exclude those vectors which correspond

to a negative or very small eigenvalue.
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6.4 Error Estimation

We use standard resampling techniques to evaluate the statistical uncertainties in our

Monte Carlo estimates. In particular, we use the jackknife and bootstrap resampling

methods.

6.4.1 Jackknife

A Monte Carlo estimate of an observable, f , is given by its mean value

〈f〉 =
1

N

∑
i

f(Ui), (6.7)

where f(Ui) is the value of f using the i-th gauge-field configuration in the Monte

Carlo ensemble, and N is the number of such configurations in the ensemble. We

assume the number of RHMC trajectories between retained configurations in the

ensemble is such that autocorrelations are negligible. The jackknife variance is then

defined by

σ2(f) =
N − 1

N

N∑
i=1

(〈f〉i − 〈f〉)
2 (6.8)

where 〈f〉i is the mean value of f using all configurations in the ensemble except

the i-th one. In this work, we use jackknife errors for simple observables, such as

the correlator values and effective masses. For more complicated observables, such

as parameters obtained from fitting functional forms to our Monte Carlo estimates,

bootstrap resampling is used.

6.4.2 Bootstrap

The bootstrap resampling method works by building new sets of configurations from

the original set randomly with repeats allowed. A sufficiently large number Nb is

chosen to be the number of new configuration sets to generate. Generally, Nb is

set to ≈ 1000. For each new bootstrap set of configurations, N configurations from

the original set are selected randomly with equal probabilities, allowing the same

configuration to be chosen more than once. This results in Nb samplings of N data

values each. The observable, such as a fit, is computed on each of the Nb samplings.
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Let fb denote the mean value of f evaluated using the b-th sampling. Two quantities

are calculated

f̃ =
1

Nb

Nb∑
b=1

fb, and σ2
f̃

=
1

Nb

Nb∑
b=1

(fb − f̃)2, (6.9)

where f̃ is the bootstrap estimate of the mean value and σ2
f̃

is the bootstrap estimate

of the variance. The observable is then reported either using f̃ ±σf̃ or f̃
+σup
−σdown

, where

84% of all bootstrap samplings lie below f̃ + σup and 84% lie above f̃ − σdown. This

gives asymmetric errors that correspond within a standard deviation. Additionally,

one can use the difference of the bootstrap average f̃ and the average on the full data

set to give the bias of the bootstrap resampling. If this difference is large, the number

of bootstrap samples may be too low, or indicates that the true average may be far

from the average given by limited statistics.

6.5 Fitting

The Monte Carlo method gives us statistical estimates of the correlation functions

Cij(t). The spectral representations of the correlators can then be used to extract the

physical observables, such as energies. Typically, this involves fitting the correlator

estimates using fit forms involving the physical observables. This section describes

how such fits are carried out, and what fit forms are used.

6.5.1 Correlated-χ2 fitting

If N quantities are believed to be described by some model function f(α, i) involv-

ing some number of parameters α, then estimates of the parameters α are usually

determined by minimizing

χ2 =
N∑
i=1

(di − f(α, i))2

σ2
i

, (6.10)

where di denote the mean values of the measurements of the N quantities, and σi are

the variances of the measurements. The above formula assumes that the measure-

ments of the quantities are all done independently.
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Here, this is not true since the estimates of all correlators are done using the same

Monte Carlo ensemble. To account for this, we perform a correlated-χ2 minimization

which incorporates the covariances of the measurements:

χ2 =
N∑

i,j=1

(di − f(α, i)) Cov−1
ij (dj − f(α, j)). (6.11)

Note that the model function f(α, i) can explicitly depend only on the parameters

α and other exactly known identifying information i about the data, but not on the

values of the data di in the above equation.

In our study, the stationary-state energies are determined by fitting a model func-

tion to a temporal correlation function. Here, each “data” points is the value of a

rotated correlator at a particular time separation: C̃(t), and we estimate the covari-

ance matrix using

Cov(t, t′) ≈ 1

N − 1

〈(
C̃(t)−

〈
C̃(t)

〉)(
C̃(t′)−

〈
C̃(t′)

〉)〉
(6.12)

where the angle brackets indicate average over all of the configurations. Using this,

we define our correlator χ2 to be

χ2 =
∑
t,t′

(
C̃(t)− f(t)

)
Cov−1(t, t′)

(
C̃(t′)− f(t′)

)
. (6.13)

To perform fits to the scattering phase shift requires fitting to a function which

has uncertainty in the center of mass energy which is the input to the fit function.

This uncertainty is correlated with the uncertainty of the phase shift, δ. To account

for this the total co-variance is computed using a fit function f(α,Ei)

Cov(δi, δj) +
∂f

∂Ei

∂f

∂Ej
Cov(Ei, Ej)−

∂f

∂Ej
Cov(δi, Ej)−

∂f

∂Ei
Cov(Ei, δj) (6.14)

We carry out the minimization using the Minuit minimization suite [43]. Mean

values of the parameters are determined from a fit using the entire ensemble. Boot-

strap resampling is then done to estimate the uncertainities on the fit parameters.
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6.5.2 Single Exponential Fits and Temporal Wrap Around

Because the lattice is periodic in time, for particles with large correlation lengths, we

can expect there to be small signals from particles/antiparticles propagating back-

wards in time. To take this into account, we can use a fit function

f (0)(t) = A exp(−Et) + A exp(−E (T − t)), (6.15)

where T is the temporal length of the lattice, or equivalently, we can use the form

f ′(0)(t) = A′ cosh

(
−E

(
t− T

2

))
, (6.16)

where the fit parameters are the energy E and the overlaps A or A′. Both forms above

assume that the operator creating the forward-propagating and backward-propagating

particles/antiparticles is either symmetric or antisymmetric under time reversal.

The wrap around effects are more complicated for two-meson states. Then one

has the additional possibility of one meson propagating forward in time and the

other propagating backward. This contributes a factor ∝ exp(−EmT ) where Em is

the energy of one of the mesons. Since this is not dependent on time, it is simply a

constant and can be mocked up by adding a constant as a new parameter to the fit

function as below:

f (1)(t) = A exp(−Et) + A exp(−E (T − t)) +D (6.17)

Alternatively, this can be removed by defining a subtracted correlator by C ′(t) =

C(ts)−C(t) and then fitting to C ′(t) with an appropriate adjusted fit function. The

subtracted correlator method uses one less parameter in the fit function, but testing

found that fitting to the three parameter fit with a constant always gave equivalent

results. The effects due to temporal wrap around are nonnegligible on our smaller

lattices. However, on the 323 × 256 lattice, the temporal extent is so large that the

constant term was always found to be negligible.

We can fit to each diagonal element of the rotated correlator matrix for a range

of time separations tmin to tmax using the above model functions. Such fits are known

as “single exponential” fits, even though a cosh behavior is used, since the forward

exponential tends to dominate the signal, and hence, the fit. One would like to choose
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tmin as small as possible to make use of a large number of data points. However, con-

tributions from higher-lying states eventually cause the quality of fit to dramatically

drop as tmin is made smaller and smaller. Thus, finding an appropriate tmin can be

time consuming, especially when fitting to a large number of correlators. We must

use a tmin that produces a good quality of fit. At large times, the correlator can be fit

out to tmax until the value of the correlator is consistent with zero. A measurement

of the correlator which is consistent with zero indicates the signal is indistinguishable

from statistical noise.

The effect of ttmin can be seen in Fig. 6.2 showing the fit value for the energy

parameter against tmin for a fixed tmax on an example correlator. The color on the

plot indicates the quality of fit. We can see that including early times in the fit gives

a larger fit value, but the quality of fit is unacceptable. Eventually, the fit values

reach a plateau once the correlator is dominated by a single exponential. The single

exponential fit gives a good χ2 value for the region without excited state contamina-

tion. It is possible to programmatically determine the appropriate fit range using the

quality of the fit, but this can be time consuming, especially when fitting to a large

number of correlators.

6.5.3 Two-exponential Fits

The so-called “single exponential” fits described in the previous section tend to be

sensitive to the choice of tmin. An easy way to avoid this sensitivity is to use a “two-

exponential” fit form. It is not actually expected that the excited-state contamination

will be contributing from only a single level, but the extra parameters from the second

exponential are able to effectively mock up their effect. Provided there is enough data

in the region dominated by the single exponential, the fit values of the parameters in

the asymptotic exponential should agree with those obtained from single-exponential

fits. The two-exponential function can also incorporate the effects of finite temporal

extent discussed in the previous section giving a form:

f (2) = A exp(−Et)
[
1 +B exp(−∆2t)

]
+ A exp(−E (T − t))

[
1 +B exp(−∆2 (T − t))

]
. (6.18)
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Figure 6.2: A plot of the fit values of the energy parameter using a cosh model
function. For each point, the same value of tmax is used, but the choice of tmin is
varied, and shown on the horizontal axis. The color of each point indicates the quality
of the fit. Choosing a tmin to be in the region dominated by a single exponential gives
a good fit and is stable to changes of tmin. This correlator is for the lightest state in
the channel with P = (0, 0, 1), I = 1, S = 0, A+

1 .

Writing the two exponential function in this way includes a second exponential with

an amplitude of A2 = AB and a decay rate of E2 = E + ∆2, ensuring E2 > E.

Using a two-exponential fit allows a larger range of times to include when fitting.

In particular, tmin can be chosen much smaller and still maintain a good quality of fit.

Also, we can often get good qualities of fit for a large number of different correlators

using the same tmin, which dramatically simplifies the analysis of our spectrum and

phase shifts. Note that adequate statistics and enough time separations are needed

to be able to minimize with respect to the four parameters in the model function. If

the minimizer fails, we fall back to the single exponential fit. However, this does not

happen very often, and usually only for very high lying levels.

For the two-exponential fits, tmax was chosen to be the largest time separation

for which the correlator value was still comparable to or larger than its stastistical

uncertainty. Usually, this was the largest time separation which was computed. The

start of the fit range tmin was chosen to be typically between 3 and 8.
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Chapter 7

Results

Our main results using the analysis described in the previous chapters are described

in this chapter. These results are obtained from correlators on the large 323 860

lattice. First, the energy spectrum of the stationary states of the I = 1, S = 0, T+
1u

channel of zero total momentum which can be created by our single and two hadron

operators is presented. Previous analysis of this channel has been done on the smaller

243 840 lattice in Ref. [44]. Secondly, the I = 1, ππ scattering phase shift is computed

from the finite-volume energies of the two-pion states in many channels with zero and

nonzero total momenta below the inelastic threshold. The mass and width of the ρ

resonance are then deduced from this phase shift.

7.1 Computational Details

Generating the Monte Carlo ensembles of gauge configurations was carried out mainly

on the Department of Energy (DOE) sponsored Jaguar system at Oak Ridge Na-

tional Laboratory’s Leadership Computing Facility and on the University of Ten-

nessee Kraken system, sponsored by the National Science Foundation (NSF). For the

ensembles used in our work, approximately 200 million core-hours were used in this

first stage.

The second stage of the computations involves computing the quark propagators

Q−1. Our software was written in C++ with MPI and OpenMP threading, and

the USQCD QDP++ library[45] was used. A key component of this stage of the

computations, as well as the first stage, is multiplying the Dirac matrix M onto

a vector. Much work has gone into optimizing this operation since it dominates
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the computational cost. Even-odd preconditioning is used, and some of the low-

level matrix multiplies were written in assembly language with SSE3 Intel intrinsics.

Calculations in this second phase were done mainly on Kraken, totally approximately

100 million core-hours, with jobs typically utilizing a few thousand cores.

The later stages of the computations involve evaluating the hadron source and

sink functions and carrying out the correlator contractions that tie together theM−1

elements. These operations are dependent on I/O. Access to large lustre partitions is

crucial in the final stages, making systems such as those available through the Extreme

Science and Engineering Discovery Environment (XSEDE) of the NSF ideal. We are

currently using Stampede at the Texas Advanced Computing Center (TACC) for this

final part of our computations. Computing the hadrons and making the correlators

has utilized about 40 million core-hours to date, and storage of intermediate quantities

totals nearly 300 terabytes on TACC’s Ranch tape system.

The software used in our calculations is driven by input in XML format. Given

the multi-stage nature of the computations and the need to represent thousands of

different single- and multi-hadron operators, as well as the myriad of files that must be

accessed, the XML input files required are rather complicated. The complex logistics

of carrying out the tens of thousands of runs done for our study and handling the

thousands of file movements between tape and scratch disk with checksum testing

necessitated the use of a sophisticated scripting language. The object-oriented Ruby

language was used and worked very well for us. With Ruby, we were able to build

up the complicated XML structures needed to drive our code and to make the job-

submission scripts. In fact, the time spent developing our ruby scripts was not a

negligible fraction of that taken to develop our C++ code.

7.2 T+
1u Spectrum on 323 860

This section presents the results of the spectrum of stationary states excited by our qq

and multi-meson operators for the I = 1, S = 0, T+
1u channel of zero total momentum.

In the continuum, this channel should contain the ρ(770) meson, as well has a handful

of its excitations. In addition to the spin-1 ρ resonances, the T1 irrep of Oh also

includes the spin-3 states, such as the ρ3(1690).
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7.2.1 Operator Selection

Operators were selected with the goal of having some coupling to all stationary states

with significant single-hadron and two-meson content and energies below ≈ 2GeV.

This was done by selecting a large number of single and two-particle operators with

the appropriate symmetries which roughly matched the states expected to appear

in the absence of interactions. This selection utilized a list of the expected states

by assuming non-interacting energies and simply summing the masses of meson pairs

which can be produced in this channel. This is just a guide to select enough operators

of each flavor and momentum which should have large overlaps with the states we are

interested in. In reality, our operators will not couple to a single stationary state, but

will excite many states. However, choosing operators using some information about

what states are expected to appear should ensure that no expected states are missed.

More specifically, 10 single-hadron operators that transformed according to the

T+
1u irrep at rest were included. Tables 7.1-7.2 contain lists of two-meson combina-

tions with particular momenta which are expected to appear in this channel below

≈ 2GeV. For each meson pair in the table, one or more operators were included.

Such operators were referred to as primary two-meson operators. As an example,

the lightest expected two-hadron state in the channel is two pions, each with a single

unit of momentum. This corresponds to operators where each meson is an isovector,

with one unit of momentum, and each transforms as A−2 . This is because pions are

spin zero particles with negative parity, which at rest corresponds to A1u subduced

to the little group A2 for on-axis momenta. This process is repeated for each of

the two-meson expected levels. In order to ensure many of the low-lying states have

good signals, a handful of additional operators, known as secondary operators, were

selected which are listed in Table 7.3.

Correlators for all of the operators listed were evaluated. However, some of the

operators turned out to be unacceptably noisy, and did not couple strongly to any

of the low-energy states. The operators whose diagonal correlators were zero within

error before time-slice 20 were removed in the subsequent analysis. The list was

pruned down to a total of 63 operators.

Our goal was to ensure that all of the lowest energy states dominated by single-

meson and two-meson components had a large overlap with at least one of the oper-

ators included. By including as many operators as were feasible, we minimized the

possibility of our operator set missing important levels. Note that some three- and
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Meson 1 Meson 2 operators

π(140)[1] π(140)[1] A−2 SS1 – A−2 SS1

π(140)[2] π(140)[2] A−2 SS0 – A−2 SS0

K(497)[1] K(497)[1] A2 SS1 – A2 SS1

π(140)[3] π(140)[3] A−2 SS0 – A−2 SS0

ω(782)[1] π(140)[1] E− SS1 – A−2 SS1

K(497)[2] K(497)[2] A2 SS0 – A2 SS0

π(140)[4] π(140)[4] A−2 SS1 – A−2 SS1

h1(1170)[0] π(140)[0] T−1g SS0 – A−1u SS0

ω(782)[2] π(140)[2] B−1 SS1 – A−1u SS0

B−2 SS1 – A−1u SS0

π(140)[0] a1(1260)[0] A−1u SS0 – T−1g SS0

φ(1020)[1] π(140)[1] E− SS1 – A−2 SS1

η(547)[1] ρ(770)[1] A+
2 SS1 – E+ SS1

K(497)[3] K(497)[3] A2 SS0 – A2 SS0

π(140)[5] π(140)[5] A−2 SS0 – A−2 SS0

K(497)[1] K∗(892)[1] E SS2 – A2 SS1

ω(782)[3] π(140)[3] E− SS1 – A−2 SS0

η(547)[2] ρ(770)[2] A+
2 SS0 – A+

2 SS1

A+
2 SS0 – B+

2 SS2

h1(1170)[1] π(140)[1] E− SS2 – A−2 SS1

A−2 LSD3 – A−2 SS1

K(497)[4] K(497)[4] A2 SS1 – A2 SS1

π(140)[2] φ(1020)[2] B−1 SS1 – A−1u SS0

B−2 SS2 – A−1u SS0

π(140)[6] π(140)[6] A−2 SS0 – A−2 SS0

Table 7.1: Expected two-meson states below 2 GeV in the absence of meson interac-
tions. For each two-meson expected state, an operator is included with the appropri-
ate flavor structure and internal momenta. For isoscalar mesons, such as φ, ω, η, and
h1, two operators were added for each level: one operator using only light quarks,
and one using strange quarks. The third column lists the irrep and displacements
selected. Some states there have multiple irreps possible, and an operator is chosen
for each. The number in square brackets indicates the momentum squared, e.g. [2]
→ d2 = 2 or d = (0, 1, 1).
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Meson 1 Meson 2 Operators

π(140)[1] a1(1260)[1] A−2 SS1 – A−2 SS0

A−2 SS1 – E− SS0

K(497)[2] K∗(892)[2] B1 SS1 – A2 SS0

B2 SS3 – A2 SS0

ρ(770)[1] ρ(770)[1] A+
1 SS1 – A+

1 SS1

A+
1 SS1 – E+ SS1

E+ SS1 – E+ SS1

ω(782)[4] π(140)[4] E− SS1 – A−2 SS1

η(547)[3] ρ(770)[3] A+
2 SS0 – E+ SS1

π(140)[1] π(1300)[1] A−2 SS1 – A−2 TSD0

K(497)[5] K(497)[5] A−2 SS0 – A−2 SS0

π(140)[1] a2(1320)[1] A−2 SS1 – E− TSD1

ω(782)[0] a0(980)[0] T−1u SS0 – A−1g SS0

K(497)[0] K1(1270)[0] T1g SS0 – A−1u SS0

φ(1020)[3] π(140)[3] E− SS1 – A−2 SS1

h1(1170)[2] π(140)[2] A−2 SS0 – A−2 SS0

B−1 SS2 – A−2 SS0

B−2 SS0 – A−2 SS0

η(547)[0] b1(1235)[0] A+
1u SS0 – T+

1g SS0

π(140)[1] π1(1400)[1] A−2 SS1 – E− LSD1

ρ(770)[2] ρ(770)[2] A+
1 SS2 – A+

1 SS2

A+
1 SS2 – B+

1 SS1

A+
1 SS2 – B+

2 SS2

K(497)[3] K∗(892)[3] E SS1 – A2 SS0

π(140)[2] a1(1260)[2] A−2 SS0 – A−2 SS1

A−2 SS0 – B−1 SS0

A−2 SS0 – B−2 SS0

π(140) [2] π(1300) [2] A−2 SS1 – A−2 TSD0

Table 7.2: Expected two-meson states continued.
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π [0] A−1u TDO1 π [0] T−1g SS0

π [1] A−2 TSD2 π [1] A−2 TSD1
π [2] A−2 SS1 π [2] A−2 SS0
π [4] A−2 SS1 π [4] A−2 TSD0
η [0] T−1g SD1 π [0] A−1u SS0

η [3] E− SD6 π [3] A−2 SS0

K [1] E SS3 K [1] A2 SS0

K [2] A2 SS0 K [2] A2 SS1

K [3] A2 SS0 K [3] A2 SS1

Table 7.3: Additional operators included to get a better signal for some of the lower
energy states.

four-meson levels are expected in the energy range we study. The couplings of our

operators to such states are expected to be dramatically suppressed by factors pro-

portional to the inverse of the spatial volume. This initial study did not attempt to

include three- and four-meson operators, since our main goal was finding the single-

meson states.

Once the operator list was determined, a correlator matrix was produced as de-

scribed in Sec. 6.3. These correlation functions were computed for time separations

between 3at and 25at, inclusively. The matrix was then diagonalized using τi = 5

and τd = 8, which was sufficiently large for the matrix’s off-diagonal elements to be

consistent with zero for the ranges of t that the fits were performed as seen in Fig. 7.1.

The matrix was ill conditioned, due to some of the single-hadron operators being in-

sufficiently independent one all others, so removal of the eigenvectors corresponding

to the noisy directions as described in Sec. 6.3 was applied. Removing just one level

resulted in a condition number of ≈ 400.

Fits to the diagonal correlators were carried out to get the spectrum of energies.

This was done using the bootstrap method with 1000 bootstrap resamplings. Each

sampling was fit using the periodic two-exponential function given in Eq. (6.18), and

according to the methodology described in Sec. 6.5.3. The levels were then num-

bered according to increasing best-fit values of the energies. Many of the correlators

with higher energies were noisy, and the energies as well as the error bars increased

dramatically after the first 50 levels, corresponding to an energy near 2 GeV. Our

operator sets were selected to saturate all single-meson and two-meson levels below 2

GeV, so energies above this chosen cutoff were not seriously considered.
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# (tmin, tmax) Fit Energy χ2/dof note

0 5, 25 0.1284(14) 0.8471 ρ
1 7, 25 0.1371(74) 0.7385 π[1]− π[1]
2 5, 25 0.177(11) 1.6523 π[2]− π[2]
3 5, 25 0.208(13) 2.1665 η[1]− π[1]
4 8, 25 0.2084(19) 1.0349 K[1]−K[1]
5 5, 25 0.238(14) 1.3133
6 4, 25 0.243(11) 1.3221 φ[3]− π[3]
7 5, 25 0.249(10) 1.2780 φ[1]− π[1]
8 3, 25 0.2497(40) 1.9590 K[2]−K[2]
9 3, 23 0.253(12) 1.0498 π[0]− π[0]
10 3, 25 0.2713(10) 1.7219
11 4, 23 0.276(20) 1.5506
12 4, 25 0.2793(99) 0.7780
13 5, 25 0.2852(39) 1.3607 φ[2]− π[2]
14 3, 25 0.2875(61) 2.1628 K[3]−K[3]
15 4, 23 0.288(19) 1.4598 K[2]−K[2]
16 4, 25 0.2890(72) 1.6656
17 3, 23 0.2918(62) 1.4153
18 3, 25 0.2943(75) 2.2117 K[1]−K[1]
19 3, 25 0.2977(78) 1.3868 qq
20 4, 23 0.2982(75) 2.3735
21 3, 25 0.299(11) 1.2518
22 3, 25 0.3003(96) 1.2973
23 3, 25 0.3053(68) 1.6659
24 3, 25 0.305(10) 0.8332

Table 7.4: The results of periodic two-exponential fits to the first 25 the diagonal
levels. The note on certain levels indicates that a particular operator has overlaps
with only a single level. If that is the case the flavor and internal momentum of the
operator is listed.

The diagonal correlators for the 50 low-lying levels are displayed in Figs. 7.2 and

7.3, with the fit function plotted as a dashed line. The effective masses (eq. 6.1)

corresponding to these correlators are shown in Figs. 7.4 and 7.5. These plots include

the effective mass of the fit function, and a band indicating the value and standard

deviation of the fitted mass parameter.
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# (tmin, tmax) Fit Energy χ2/dof notes

25 4, 25 0.3066(59) 0.8744 φ[3]− π[3]
26 3, 23 0.3094(51) 2.1435
27 4, 21 0.310(24) 1.1783 qq
28 3, 25 0.3114(91) 1.2336
29 3, 25 0.313(20) 1.6611
30 3, 22 0.3138(85) 1.1806 qq
31 4, 24 0.317(18) 0.8966 π[2]− π[2]
32 5, 25 0.317(14) 0.8218
33 5, 22 0.323(15) 1.2148
34 4, 24 0.324(13) 0.4844
35 4, 25 0.3254(83) 1.2818
36 5, 25 0.3274(50) 0.8198 φ[2]− π[2]
37 3, 22 0.3274(89) 1.0671
38 3, 25 0.328(13) 1.9359 K[0]−K[0]
39 3, 24 0.3286(80) 0.9472
40 3, 22 0.330(10) 1.0911 qq
41 3, 22 0.333(23) 2.0288
42 4, 25 0.3340(82) 1.0978
43 4, 25 0.336(13) 0.4344
44 3, 21 0.3361(88) 0.8062
45 3, 23 0.3405(88) 0.7079
46 4, 23 0.3490(86) 1.5028
47 3, 19 0.353(19) 1.7727
48 3, 24 0.3607(64) 1.1605 φ[2]− π[2]
49 3, 15 0.378(39) 1.6047 qq

Table 7.5: The results of periodic two-exponential fits to diagonal levels 25-49.

7.2.2 Level Identification

Ideally, one would like to identify which of the stationary energy levels correspond to

single hadron resonances, and which are two-particle states. However, this is difficult

as we are simulating a fully interacting theory in a finite volume, and the stationary

states are not likely to be exact one-meson or two-meson states. Additionally, most

of our operators have overlaps with many states. In fact, if operators only coupled to

a certain set of states, there would be no need to include multi-hadron operators to

extract the spectrum of excited mesons, as single hadron operators would be sufficient.

The correlators between operators with different internal flavor structure and mo-

menta are usually small. If these cross correlators were exactly zero, we could classify
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Figure 7.1: The off-diagonal correlators for the matrix after variational improvement
for the lowest energy state with the first 25 states performing diagonalization at τi = 5
and τd = 8.

each lattice state as an excited meson, a π−π state, a K−K state, etc, depending on

which type of operator overlapped with that state. We do observe mixing, so a strict

identification is not possible. In some cases, an operator will overlap significantly with

only a single state, in which case, identifying that particular state with the features

of the creating operator is reasonable. When an operator only overlaps with a single

state, the identification is listed in Tables 7.4-7.5. In most cases, operators overlap
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Figure 7.2: The first 25 diagonal correlators of the rotated correlator matrix for the
T+

1u channel. The dashed line indicates the best fit of the function in Eq. (6.18).
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Figure 7.3: The diagonal correlators 25-49 of the rotated correlator matrix for the
T+

1u channel. The dashed line indicates the best fit of the function in Eq. (6.18).

significantly with more than one state. This can be seen in Fig. 7.6, which compares

the overlaps of two single-hadron operators of different displacements. One operator

has overlaps which are overwhelmingly dominated by a single state, while the other

couples to many of the stationary states.

Our main goal here is to determine the pattern of energies corresponding to quark-

antiquark resonances in infinite volume. To accomplish this, we first inspect a matrix

built of the subset of operators including only the single hadron qq operators. This
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Figure 7.4: Effective masses using ∆t = 3 of the correlators displayed in Fig. 7.2.
The dashed line is the effective mass of the fit function. The gray band shows the
standard deviation in the best fit value of the mass parameter.
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Figure 7.5: Effective masses using ∆t = 3 of the correlators displayed in Fig. 7.3.
The dashed line is the effective mass of the fit function. The gray band shows the
standard deviation in the best fit value of the mass parameter.

matrix is diagonalized to find linear combinations which are orthogonal to get the

spectrum if only these operators were included. These linear combinations of opera-

tors we refer to as “optimized” single-hadron operators. We then look at the overlaps

of these operators with the stationary states determined by the entire correlation

matrix. The overlaps with the optimized linear combinations are shown in Fig. 7.7.

In all cases, either one level or a handful of levels have significant overlaps, and in
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(a) TDO1 (b) DDL1

Figure 7.6: Overlaps |Zn
j |2 for hadron operators j with displacement TDO (left) and

DDL (right) with the levels n. The TDO operator is dominated by a single state
while the DDL operator has significant coupling to several levels.

cases where there are several large overlaps, the energies of those levels are all the

same within errors. Hence, we can use the energy of these levels of largest overlaps

as a qualitative estimate of the quark-antiquark resonance energies.

The energies of all states are plotted in Fig. 7.8, which we affectionately refer to

as a staircase plot, with indicators of which states are dominated by single hadron

operators. For each of the optimized linear combinations of the single-hadron oper-

ators, the state which has the largest overlap is marked in dark blue indicating a qq

state. To indicate that some of the combinations do not couple to only a single state,

states which have overlaps >75% of the largest are outlined in dark blue, indicating

significant mixing with our qq operators.

This spectrum of qq states agrees with the findings in reference [44] which used

similar analysis on a 243 × 128 lattice with pion mass of 390MeV. His results also

indicate five qq states below 2GeV with the lightest state being much lighter than the

other four. Comparison of two particle states is not useful as the allowed momenta

do not match on the different lattices. The extraction of 50 energy levels by including

two-hadron operators is unprecedented and there are no other results for comparison.
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Figure 7.7: Overlap |Zn
j |2 of each of the “optimized” single-hadron operators j with

levels n.

7.2.3 Comparing to Experiment

The energies in our calculations are determined in terms of the temporal lattice

spacing at, but energy ratios are well defined and can be compared directly with

experiment. The mass of the kaon is a convenient reference energy. We present our

results as ratios with the kaon rest mass, which occurs as the lightest state in the A1u

channel with zero total momentum and strangeness S = 1. Two exponential fits to

this state yield a measurement of atmK = 0.083538± 0.00015 for the kaon mass. The

experimental value for the kaon mass was taken from the PDG[46] average of the K+

and K0 as 495.6MeV.

The T1 channel in a cubic volume contains states in the continuum with spins 1,

3, 4, 5, and so on. The relevant experimental resonances which should show up in

the T+
1u channel below ≈ 2GeV are the spin-1 ρ, ρ(1450), ρ(1570), ρ(1700), ρ(2150);

and spin-3 ρ3(1690), ρ3(1990). Most of these states have large widths, on the order of

100 MeV. A comparison of the experimental spectrum with our finite-volume results

is shown in Fig. 7.9. The energies shown on the right-hand side of this figure are the

same as the dark blue results in Fig. 7.8.

Fig. 7.9 compares our results with experiment. Note that our results are believed

to be quark-antiquark excitations, identified as previously described. Since our ener-
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Figure 7.9: Comparison of the experimental spectrum of resonances with our finite-
volume energies corresponding to quark-antiquark excitations. In the left hand side of
the figure, dark red boxes indicate the experimental masses, with the vertical heights
showing the uncertainties in the mass measurements. The light red boxes indicate
the experimental widths of the resonances. In the right hand side, our results are
shown by dark blue boxes, whose heights indicate statistical uncertainties only. The
experimental results include both ρ (spin 1) and ρ3 (spin 3) states.

gies are determined in finite volume, we can expect agreement with experiment only

within the widths of the corresponding infinite-volume resonances. Such agreement

is observed, without exception. We do not find any quark-antiquark excitations at

energies where experiment observes nothing. However, experiment observes more

resonances than indicated by our calculations. First, some of the experimental de-

terminations are still controversial. Secondly, our current analysis can only identify

quark-antiquark excitations. Resonances that do not correspond to quark-antiquark

excitations, such as meson-meson “molecular” type states, have to be identified with

the scattering phase shift techniques described later. The analysis of this spectrum

is not yet finished. In the future, we will examine the spin structure of our levels,

as well as the dominant two-meson mixing modes, which should help us identify the

correspondences between our levels and the experimental resonances.
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7.3 The Width of the ρ Resonance

Chapter 5 presented a method of determining scattering phase shifts in the continuum

from the energies of stationary states in finite volume. In this section, we look at the

spectrum of energies in channels which have zero and nonzero total momentum in

which the ρ meson appears. We compute the P -wave ππ scattering phase shifts from

these energies, and then deduce the mass and width of the ρ resonance.

7.3.1 ππ I = 1 Energies

At rest, the spin 1, positive G-parity ρ meson appears in the T+
1u channel, but for

nonzero total momenta, we must use Table 3.2 to see which little groups will contain

the ρ. We can see that the ρ will appear in irreps A+
1 and E+ of C4v for on-axis

momenta, in the A+
1 , B+

1 and B+
2 irreps of C2v for planar-diagonal momenta, and A+

1

and E+ irreps of C3v for cubic-diagonal momenta. The spectrum of energies from

each of these channels can be used to compute the I = 1 ππ P -wave scattering phase

shift, and hence, determine the mass and width of the ρ resonance.

In determining the ππ scattering phase shifts, only energy levels below the inelastic

thresholds can be used. In each of the above channels, we need to include enough two-

pion operators of different individual momenta to get a good signal for all states below

such thresholds. Operator selection is again done as previously described, using the

expected energies in the absence of interactions as a guide. Using the single-hadron

energies and the momenta allowed on our 323 lattice, there are between one and four

pion-pion states which are expected to be below inelastic thresholds in the above

channels. The thresholds in these channels are two-meson states which are either a

K −K state or a π−ω. Two-pion operators were included to couple to the expected

two-meson states for the expected levels up to the inelastic threshold.

For each of the channels, a correlator matrix was produced and diagonalized. The

correlation functions for these channels were produced for time separations of 3at to

38at. The time extent was chosen larger than used in the previous section due to

the lower energies involved and the need for greater accuracy here. The correlator

matrices encountered were all well conditioned, and diagonalizations were performed

using τi = 5, τd = 8, which was sufficient for the off-diagonal elements to be consistent

with zero. The energies determined for the levels below threshold in each of the

channels are given in Tables 7.6-7.9. Each channel has between 1 and 5 levels with
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Figure 7.10: Energies of ππ states with d2 = 1. Dashed lines indicate the non-
interacting energies of allowed ππ states. The shaded region indicates the inelastic
thresholds. Diamond markers indicate levels with large overlaps with the qq ρ oper-
ator.

energies below the inelastic thresholds. Figs. 7.10-7.13 display the energies for the

levels, along with the energies of allowed ππ states in the absence of meson-meson

interactions. The non-interacting energies plotted come from summing the energies

of the individual pions from Table 7.10.

Irrep Level (tmin, tmax) Fit Energy χ2/dof

A+
1 0 7, 38 0.10831(43) 0.6539

A+
1 1 7, 38 0.1416(17) 0.6373

A+
1 2 7, 38 0.1632(16) 1.3688

E+ 0 8, 38 0.1378(24) 0.8939
E+ 1 7, 38 0.1643(23) 1.1575

Table 7.6: The fitted energies for I = 1 ππ with d2 = 1.
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Irrep Level (tmin, tmax) Fit Energy χ2/dof

A+
1 0 9, 38 0.12661(91) 0.8932

A+
1 1 9, 38 0.1492(32) 1.8102

A+
1 2 7, 38 0.1735(19) 1.0632

A+
1 3 5, 38 0.2109(22) 0.9061

A+
1 4 4, 38 0.2131(7) 1.1036

B+
1 0 6, 38 0.1531(13) 1.2569

B+
1 1 7, 38 0.1761(18) 0.8562

B+
1 2 7, 38 0.1848(22) 1.4645

B+
2 0 8, 38 0.1353(12) 0.8600

B+
2 1 6, 38 0.1574(12) 0.9689

B+
2 2 7, 38 0.1798(22) 1.0992

Table 7.7: The fitted energies for I = 1 ππ with d2 = 2.

7.3.2 Measurement of the Anisotropy

To compute the scattering phase-shifts using the energies for nonzero total mo-

menta, transformation to the center-of-mass frame is required. Since we are using
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Irrep Level (tmin, tmax) Fit Energy χ2/dof

A+
1 0 5, 38 0.14697(93) 1.3660

A+
1 1 7, 38 0.1616(13) 1.3692

A+
1 2 5, 38 0.1632(16) 0.8673

E+ 0 9, 38 0.1536(33) 0.6078
E+ 1 5, 38 0.1701(17) 0.9030

Table 7.8: The fitted energies for I = 1 ππ with d2 = 3.

an anisotropic lattice, energies are measured in terms of the temporal spacing at,

while the momenta are in terms of the larger spatial spacing as. This means changing

frames requires a precise knowledge of the renormalized anisotropy ξ = as/at.

One way to determine the anisotropy is using the dispersion relation of a particle

with various momenta. The energy of a free particle with momentum P = (2π/L)d

is given by

(atEd)
2 = (atm)2 +

1

ξ2

(
2π

L/as

)2

d2. (7.1)
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Irrep Level (tmin, tmax) Fit Energy χ2/dof

A+
1 0 6, 38 0.1587(26) 1.1336

A+
1 1 4, 38 0.0.1737(18) 0.8538

A+
1 2 6, 36 0.2044(49) 1.364

E+ 0 5, 38 0.1723(25) 1.1061
E+ 1 7, 38 0.1856(26) 0.9369
E+ 2 6, 38 0.2021(66) 1.3147
E+ 3 5, 35 0.2148(36) 1.3647

Table 7.9: The fitted energies for I = 1 ππ with d2 = 4.

So by evaluating the energies of a particle with different momenta, ξ can be deter-

mined.

Table 7.10 shows the energies for pions at 8 different momenta, which are plotted

in Fig. 7.14. These were determined by two-exponential fits to a correlator of just a

single operator with itself for many different momenta. The parameter ξ was fit using

a standard least squares fit on each bootstrap resampling. The average fit value of

ξ in the function in Eq. (7.1) is shown in Fig. 7.15. The anisotropy was computed
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Figure 7.14: Effective masses for pion correlators corresponding to various momenta.
From bottom to top, d2 = 0, 1, 2, 3, 4, 5, 6, 8. Dashed lines show two-exponential
best-fit results, without errors.

separately on each bootstrap sample, so it may be used in computing the scattering

phase shift independently for each bootstrap.

d2 Fit Energy χ2/dof

0 0.03950(20) 0.9342
1 0.06898(21) 0.8441
2 0.08904(44) 0.8927
3 0.10599(63) 1.1042
4 0.1183(16) 1.0125
5 0.13415(65) 1.2313
6 0.1463(11) 1.2460
8 0.1652(26) 0.5999

Table 7.10: Fit values for pion energies for various d2.

7.3.3 Scattering Phase Shift Results

For each of the energies displayed in Tables 7.6-7.9, as well as the lowest three states

from the results at rest in Table 7.4, the δ1 phase shift was computed using the
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formulas given in Table 5.5. The phase shift requires not only the energy of the

particular state, but also the mass of the pion at rest and the renormalized anisotropy

ξ to convert to the energies in the center of mass frame. This was done separately for

each bootstrap resampling to estimate the error in the phase shift.

The formulas in Table 5.5 yield cot δ1, which means that care with respect to quad-

rant must be taken when determining δ1 for measurements on different bootstraps.

The prescription taken here was to take the median value of δ1 and shift the value

on each bootstrap sample by π to be within ±π/2 of the median value. If the state

is very close to the non-interacting state, the phase shift may jump between values

close to 0 or close π for different bootstrap samples. When considering such cases, we

shift by π those below resonance to be ≈ 0, and those above the resonance are shifted

to be ≈ π. This shifting is done only for measurements whose estimates are within

a standard deviation of either 0 or π The results of the phase shifts for each of the

energy levels are plotted in Fig. 7.16, showing the medians and standard deviations

for the values of Ecm and δ1 in degrees for each input level. The data points use color

to indicate the momentum squared of the state used and point shape to indicate the

irrep.
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Figure 7.16: Values for the P -wave phase shift δ1 from each of the energy levels. The
color indicates the momentum squared of the level used, while the shape indicates the
irrep. Points which overlap 0◦ or 180◦ within error are shifted by ±180, as explained
in the text. The dashed line indicates the best fit to a Breit-Wigner with the gray
band indicating the bootstrap errors in the fit function.

One can determine the location, mr, and width, Γ, of the resonance by fitting the

phase shifts to a Breit-Wigner form

tan(δ1) =
Γ/2

mr − E
+ A. (7.2)

However the width can be parameterized in terms of a coupling constant, g,

g =

√√√√ 6πΓm2
r(

m2
r

4
−m2

π

)3/2
(7.3)

which should be independent of the quark mass [47, 48]. This function is then fit by

minimizing the χ2 to determine the parameters mr and Γ on each bootstrap. The

median value and standard deviation of the fits on each bootstrap results in

mr = 0.1284± 0.0010 and g = 5.04± 0.48. (7.4)
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the value of g is consistent with results utilizing [49] smaller lattice and heavier pion

masses.

The location of the resonance is consistent with the value obtained from the spec-

trum of states in a finite box for channel of T+
1u in Sec. 7.2, which had a value

for the lowest energy level of 0.1284 ± 0.0014. Again, by taking the ratio with

respect to the kaon mass and using the experimental value of the kaon mass to

convert to physical units, this sets the resonance location to mr = 761.8 ± 6.2MeV

with a width of Γ = 63 ± 12MeV, which compares to the experimental values of

mexp
ρ = 775.26± 0.25MeV and Γexp = 149.1± 0.8MeV. The value of Γ may be lower

due to a reduced phase space of decay resulting from a heavier pion.

7.3.4 Comparison with Other Works

This section will compare the results of section with results for the I = 1 ππ phase

shift by other lattice groups [47–52]. Past results have been done using heavier pions

masses and smaller volumes. A comparison of previous results to those from this work

are shown in Figure 7.17. Each color represents results from one or more lattices from

other collaborations and the experimental values taken from the PDG [PDF2013 ]

plotted in black for comparison. The horizontal location of each data points indicates

the pion mass used by each collaboration. The different pion masses used by each

calculation has a noticeable effect on the energy of the resonance and as calculations

at higher pion mass produce results with a larger energy. It should be noted that

the scale setting procedure is not consistent for each of these results so comparing

energies directly should be done with caution. On the other hand the value of the

ρ → ππ coupling, g, should be independent of the pion mass and past results are

distributed on either side of the experimental value.

The lattice parameters used in other works are compared in Table 7.11. This work

utilized the largest lattice and lightest pion mass to date. The heavier pion mass from

previous results means fewer ππ states are below the inelastic threshold and fewer

finite-volume energies are available. Additionally many collaborations did calculations

on a smaller set of total momentum. From reference [47] the phase shift was computed

using only two stationary-state lattice energies on a coarse 123 × 24 lattice in 2007.

The ETMC collaboration [48] computed the phase shift using six energies from four

different lattices each with a different pion mass. Their results are plotted as four
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Figure 7.17: Values of the energy of the ρ resonance and the coupling, g, between
ρ and ππ in various lattice studies. The horizontal axis shows the pion mass used
in the lattice study as the energy of the resonance should be dependent on the light
quark mass but the coupling is expected to be independent of the light quark mass.
The black points shows the experimental results from the PDG [46] plotted at the
physical pion mass. The red points show the values from this work shown in the
previous section. The remain colors come from results from other collaborations or
authors. Details of each of the other studies is explained in the text.

separate points in Figure 7.17 for the four different pion masses used. Their values for

the energy of the resonance appears to be inconstantly large compared to other results

though this may be a due to their method of setting the scale [53]. The calculation

which previously had the lowest pion mass was from Lang et al. [50] however their

lattice is small relative to their pion mass resulting in mπL < 4 indicating that

finite volume effects could be significant. The results from the Hadron Spectrum

Collaboration [49] uses energies computed from 3 different anisotropic lattices with

approximately the same pion mass to perform a single fit to the scattering phase shift.

This may introduce systematic error as the pion mass or anisotropy may be different

on each different volume. However all the listed results have values of the ρ → ππ

coupling which are consistent within 2-3 standard deviation. Future results may be

able to compute the phase shift on larger lattices and pion masses approaching the
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mπ # of lattice points # of energies used mπL

This work 240 323 × 256 30 4.7
CP-PACS 320 123 × 24 2 4.2
ETMC 290-480 244, 324 5-6 ≥ 3.7
Lang et al. 270 163 × 32 5 2.7
PACS-CS 300, 410 323 × 64 6 ≥ 4.4
Pelissier et al. 300 242 × (24, 30, 48)× 48 6 ≥ 4.6
Hadron Spectrum 390 (163, 203, 243)× 128 29∗ ≥ 3.8

Table 7.11: Lattice parameters used by other collaborations for the I = 1 ππ scatter-
ing phase shift. If multiple lattices are used then all are listed and in such cases the
mπL listed corresponds to the lattice with the smallest value for mπL. The fourth
column shows the number of stationary state energies used to compute the phase
shift with the exception of the last row where the 29 energy levels were used from all
three lattices for a single fit for the phase shift.

physical pion mass as computing power and computational methods improve.
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Chapter 8

Conclusions

The ability to efficiently compute temporal correlators for multi-meson operators in

lattice QCD using the stochastic LapH method has opened up studies of excited

states and scattering phase shifts. Figs. 7.9 and 7.16 summarize the main results

of this work. The calculations presented here used 412 gauge-field configurations

generated by a Monte Carlo method utilizing clover-improved Wilson fermions on an

anisotropic 323 × 256 lattice with a pion mass near 240 MeV.

First, the low-energy spectrum of stationary states in the I = 1, S = 0, T+
1u channel

was determined. A matrix of correlators built from 10 single meson operators and

53 two-meson operators was analyzed to extract the spectrum in this channel. The

overlaps of the operators were inspected to identify the dominant particle content of

each energy level in the finite volume. Levels with significant overlaps with the single-

hadron operators were tentatively identified as “precursor” resonance states. In other

words, we expect these levels should evolve into the actual resonance states as the

volume becomes large. The masses of these states were compared with experiment.

We outlined how finite-volume two-particle energies can be related to infinite-

volume scattering phase shifts. The energies were obtained for 30 ππ states of total

isospin I = 1 with total zero and nonzero momenta in a variety of channels. These

used to compute the ππ P -wave scattering phase shift in the vicinity of the ρ res-

onance. We were then able to estimate the mass and width of the ρ resonance by

performing a Breit-Wigner fit to the energy dependence of the phase-shift.

In the future, we will compute the spectrum of meson and baryon resonances in

other channels, as well as scattering phase shifts for a variety of other particles. The

two-particle operators used here are not limited to ππ states, so the phase shift of Kπ
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or ηπ systems can be looked at with simple modifications. The methods used here

can apply to all meson channels, including isoscalar mesons, as the stochastic LapH

method can reliably and efficiently estimate quark propagation from all spatial sites

on one time slice to all spatial sites on any other or the same time slice.

Increased computing power and new Monte Carlo algorithms are steadily improv-

ing our ability to study the interactions of quarks and gluons inside hadrons using

lattice QCD. The stochastic LapH method, combined with availability of petascale

heterogeneous computing resources, such as those provided by NSF XSEDE, which

allows studies of large numbers of heavier excited hadrons that could not be inves-

tigated before. As more and more lattice QCD groups adapt the stochastic LapH

method, our understanding of the excited hadron resonances, and hence, the inner

workings of the atomic nucleus, will grow.

128



Bibliography

[1] K. G. Wilson, “Confinement of Quarks”, Phys. Rev. D10, 2445–2459 (1974).

[2] H. B. Nielsen and M. Ninomiya, “No Go Theorem for Regularizing Chiral

Fermions”, Phys. Lett. B105, 219 (1981).

[3] B. Sheikholeslami and R. Wohlert, “Improved Continuum Limit Lattice Action

for QCD with Wilson Fermions”, Nucl. Phys. B259, 572 (1985).

[4] R. G. Edwards, B. Joo, and H.-W. Lin, “Tuning for Three-flavors of Anisotropic

Clover Fermions with Stout-link Smearing”, Phys. Rev. D78, 054501 (2008).

[5] T. DeGrand, A. Hasenfratz, and T. G. Kovács, “Improving the chiral properties
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