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Collaborative filtering approaches have produced some of the most accurate and person-

alized recommender systems to date by mining for similarities in large-scale datasets.

However, despite their stellar performance in accuracy based metrics, researchers have

demonstrated a propensity by such algorithms to exaggerate the biases inherent in the

data such as popularity or the a�nity of users to certain kinds of content. Meanwhile,

recommender systems have only grown in importance and have become an integral part

of the internet ecosystem, with many users interacting with many recommender sys-

tems daily on e-commerce sites, social networks and apps. Therefore, the biases in

recommender systems have come to critically impact a company’s bottom line, user sat-

isfaction levels and public image, making it an imperative to develop recommendation

diversification methods to explicitly counteract them.

In this thesis we make three key contributions to the growing field of sales diversity,

which aims to reduce popularity biases inherent in many collaborative filtering based

recommender systems. First, we consider the problem of making item-item recommen-

dations, with the goal of redundantly linking from popular items to less popular items

in order to bring them more exposure on the web. Next, we consider to the setting

of user-item recommendations, and develop a metric we call “discrepancy” to measure

the distance between the recommendation distribution desired by a business and the

distribution obtained by the recommender system, and develop algorithms to reduce

discrepancy while maintaining high recommendation quality. Lastly, we turn our atten-

tion to item catalogs and user bases where items and users are clustered into disjoint or

overlapping subgroups, and develop metrics to quantify the recommendation diversity

experienced both by the users and the items.

Our approaches to all three of these problems are unified under a framework of subgraph

selection, the use of network flow problems for modeling, and a focus on providing

either exact polynomial algorithms or e�cient approximation algorithms with concrete

performance guarantees. This stands in contrast with existing approaches, most of which

are reranking based heuristics for which no performance guarantees can be given. In each

of these settings, we augment our theoretical findings with an empirical evaluation on

real life datasets from online retailers or standard recommender system datasets provided

by Netflix and the MovieLens group, and show that our methods provide superior sales

diversity value when compared with competing approaches.



Acknowledgements

I would first like to thank Ravi, my advisor, without whom this thesis would not even be

a possibility. Ravi has an incredibly sharp technical mind, and an excellent intuition for

what makes a problem practically interesting and feasible to solve. His help has guided

me throughout my graduate school career, and my gratitude for his mentorship goes

beyond what I can express in this short acknowledgements section. Ravi took me on as

his student in my second year and never gave up on me, always seeing the best in me

and my work. It is my sincerest hope that this work makes him proud.

I also extend my thanks to Dr. Srinath Sridhar and Bloomreach Inc, for providing me

with the motivation for the problem addressed in Chapter 2, and providing the datasets

we used for the validation of our methods. Bloomreach and Srinath provided me with

all the tools and the funding I needed to have a productive research internship, and I

could not have asked for a better experience. I would also like to extend my thanks

to Dr. Charalampos Tsouriakis and Prof. Alan Frieze for sharing their expertise in

random graphs and guiding our research questions in Chapter 2. Finally, I would like to

thank Tanvi Bajpai, who provided invaluable help in formulating proofs and collecting

the data which went into the experimental validation of Chapter 4. I also want to thank

the members of my PhD committee, Professors Alan Frieze and Christos Faloutsos for

their suggestions in general.

On a final note, I would like to thank my family and friends. Nobody chooses their

family and that is an unfair fact of life. I was lucky, profoundly lucky, to have the

parents who gave birth to me. My mother, an excellent programmer and entrepreneur,

and my father an academic himself. This PhD thesis lies in the intersection of both of

their interests. They are kind, generous and loving people who not only instilled the

love of science and math in me, but also left me wanting for nothing when it came to

providing me with the opportunities I needed to excel. They are my lifeblood, and I

dedicate this work to them.

iv



Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 The Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Increasing Discoverability on the Web 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Web Relevance Engines . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Structural Optimization of Websites . . . . . . . . . . . . . . . . . 6

2.1.3 Recommendation Systems as a Subgraph Selection Problem . . . . 6

2.1.4 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Our Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 The Recommendation Subgraph Problem . . . . . . . . . . . . . . 10

2.3.2 Practical Requirements . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Simple Approximation Algorithms . . . . . . . . . . . . . . . . . . 11

2.4 Algorithms for Recommendation Subgraphs . . . . . . . . . . . . . . . . . 12

2.4.1 The Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 The Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 The Partition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Generalized Models of Recommendation Graphs . . . . . . . . . . . . . . 24

2.5.1 Hierarchical Tree Model . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Cartesian Product Model . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



Contents vi

2.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Discrepancy 35

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 A New Graph Optimization Problem . . . . . . . . . . . . . . . . . . . . . 36

3.3 Post-processing a CF Recommender . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Sales Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Construction of the Flow Network . . . . . . . . . . . . . . . . . . 44

3.5.2 Incorporating Recommendation Relevance . . . . . . . . . . . . . . 47

3.5.2.1 Cumulative Gain . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.2.2 Discounted Cumulative Gain . . . . . . . . . . . . . . . . 48

3.5.2.3 Bicriteria Optimization . . . . . . . . . . . . . . . . . . . 50

3.5.3 Category Level Constraints . . . . . . . . . . . . . . . . . . . . . . 50

3.5.4 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Comparison To Other Methods and Metrics . . . . . . . . . . . . . 56

3.6.1.1 Large Dataset . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.2 E↵ect of Recommendation List Length . . . . . . . . . . . . . . . . 63

3.6.3 Trading O↵ Discrepancy and Precision . . . . . . . . . . . . . . . . 64

3.6.4 Qualitative Parameter Tuning: Choice of Target Distribution . . . 67

3.6.5 Qualitative Parameter Tuning: Convex Cost Functions . . . . . . . 68

3.6.6 Resource Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Category and Type Coverage 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Related Work and Our Contributions . . . . . . . . . . . . . . . . 76

4.1.2 Category-Aware Metrics . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.3 Sales Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.4 Submodularity and NP-Completeness . . . . . . . . . . . . . . . . 78

4.1.5 Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Disjoint Types and Categories . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Global edge-wise diversity . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Diversity Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Overlapping Types and Categories . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Category and Type Diversity . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.1 Disjoint Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Non-disjoint Types and Categories . . . . . . . . . . . . . . . . . . 92

4.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.2 Quality evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Contents vii

4.6.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7.1 Experiments on Overlapping Categories . . . . . . . . . . . . . . . 96

4.7.2 Experiments on Disjoint Categories . . . . . . . . . . . . . . . . . . 99

4.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Conclusions 103

Bibliography 104



List of Figures

2.1 The definition of the (c, a)-recommendation subgraph problem . . . . . . 10

2.2 Complexities of the di↵erent algorithms (assuming constant a and c) . . . 12

2.3 Approx ratio as a function of ck . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The required ck to obtain 95% optimality for (c, a)-recommendation sub-
graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 One step of the greedy algorithm. When v selects edges to u
1

, . . . , ua, it
can remove v

1

, . . . , va from the pool of candidates that are available. The
potentially invalidated edges are shown in red. . . . . . . . . . . . . . . . 18

2.6 Percent edges for depth-4 products by LCA of endpoints in reality (from
hierarchical data) and simulated uniform distribution of edges. . . . . . . 25

2.7 Histogram of percent edges between pairs of clusters. Each point on x-
axis is a pair of clusters. The x-axis has no inherent order but they have
been sorted by number of edges for easier visualization. The tail is omitted. 26

2.8 This diagram shows the notation we use for this model and the 1-to-1
correspondence of subtrees. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 Time needed to solve a (10,3)-recommendation problem in random graphs
where |R|/|L| = 4 (Notice the log-log scale.) . . . . . . . . . . . . . . . . . 29

2.10 Space needed to solve a (10,3)-recommendation problem in random graphs
where |R|/|L| = 4 (Notice the log-log scale.) . . . . . . . . . . . . . . . . . 29

2.11 Solution quality for the (c, 1)-recommendation subgraph problem in graphs
with |L| = 25k, |R| = 100k, d = 20 . . . . . . . . . . . . . . . . . . . . . . 30

2.12 Solution quality for the (c, 1)-recommendation subgraph problem in graphs
with |L| = 50k, |R| = 100k, d = 20 . . . . . . . . . . . . . . . . . . . . . . 30

2.13 Solution quality for the (c, 2)-recommendation subgraph problem in graphs
with |L| = 50k, |R| = 100k, d = 20 . . . . . . . . . . . . . . . . . . . . . . 31

2.14 Solution quality for the (c, 4)-recommendation subgraph problem in graphs
with |L| = 50k, |R| = 100k, d = 20 . . . . . . . . . . . . . . . . . . . . . . 31

2.15 Solution quality for the (c, 1)-recommendation subgraph problem in re-
tailer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.16 Solution quality for the (c, 2)-recommendation subgraph problem in re-
tailer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.17 Solution quality for the (c, 3)-recommendation subgraph problem in re-
tailer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 The definition of the MIN-DISCREPANCY problem. . . . . . . . . . . . . 37

3.2 The definition of the MAX-WEIGHT-MIN-DISCREPANCY problem. . . 38

viii



List of Figures ix

3.3 The network flow model for the MIN-DISCREPANCY problem with nodes
labelled with their supply and arcs labeled with their cost/capacity. Un-
labelled nodes have zero supply. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 The network flow model for category targets with nodes labelled with
their supply and arcs labeled with their cost/capacity. The central node
with no supply or demand is the distributor s

1

. The rightmost node is
the supersink s

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 The e↵ect of recommendation list length on distributional diversity mea-
sures in the MovieLens Matrix Factorization graph with 200 candidate
recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Recommendation quality vs normalized discrepancy from the uniform tar-
get in MovieLens and Netflix generated graphs. In each series, the number
of edges in the input graph increases towards the left. . . . . . . . . . . . 66

3.7 Degree distribution in a log-scale of the solution subgraphs as the ↵ of
the target distribution is varied in a top-10 recommendation task. The
underlying supergraph is the MovieLens graph generated by Item Based
recommender and thresholded to the top 200 recommendations. Note the
presence of large outliers when the target distribution is close to uniform. 68

3.8 Cumulative degree distribution of the solution subgraph with di↵erent ↵
and cost functions for a candidate supergraph on the Netflix data. . . . . 69

3.9 Time to optimize the top-10 recommendation task in MovieLens-1m based
graphs in seconds (|L|=5800,|R|=3600) . . . . . . . . . . . . . . . . . . . . 70

3.10 Time to optimize the top-10 recommendation task in Netflix based graphs
in seconds (|L|=8000,|R|=5000) . . . . . . . . . . . . . . . . . . . . . . . . 71

3.11 Time to optimize the top-10 recommendation task in Netflix based graphs
in seconds (|L|=67000,|R|=9000) . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 The definition of the MAX�Div�,µ problem. . . . . . . . . . . . . . . . . 81

4.2 Construction of the flow problem in Theorem 4.4. The labels on the arcs
denote cost/capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 The definition of the MAX� TDiv�,µ problem. . . . . . . . . . . . . . . . 85

4.4 Construction of the flow problem in Theorem 4.5. . . . . . . . . . . . . . 86

4.5 Construction of the flow problem in Theorem 4.12. . . . . . . . . . . . . 91

4.6 A radial graph showing the relative performance of the reranking methods
we tested for MovieLens data and gender based diversification. . . . . . . 98

4.7 A radial graph showing the relative performance of the reranking methods
we tested for MovieLens data and age group based diversification . . . . 99



List of Tables

2.1 Notation for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Notation for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 The number of nodes and arcs in each of our di↵erence relevance models.
The non-discounted models are the most e�cient, followed by the binary
cumulative discounted model. The full discounted gain model is likely to
be prohibitively expensive for most settings of c. . . . . . . . . . . . . . . 50

3.3 Comparison of di↵erent diversifiers systems on various diversification met-
rics for the 10 item recommendation task. The underlying dataset is
the MovieLens-1m dataset and the candidate recommendations were gen-
erated using Matrix Factorization (MF), Item-Based (IB), User-Based
(UB), and Random Walk Recommenders (RW). The bolded entries show
the best values in each metric (ignoring the greedy algorithm), and ital-
icized values show a statistically insignificant change from the baseline
with p < 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Comparison of di↵erent diversifiers systems on various diversification met-
rics for the 10 item recommendation task. The underlying dataset is the
Netflix dataset and the candidate recommendations were generated using
Matrix Factorization (MF), Item-Based (IB), User-Based (UB), and Ran-
dom Walk Recommenders (RW). The bolded entries show the best values
in each metric (ignoring the greedy algorithm), and italicized values show
a statistically insignificant change from the baseline with p < 0.01. . . . . 59

3.5 Comparison of di↵erent diversifiers systems on various diversification met-
rics for the 10 item recommendation task. The underlying dataset is the
MovieLens-10m dataset and the candidate recommendations were gener-
ated using Matrix Factorization (MF), Item-Based (IB), User-Based (UB)
recommenders. The bolded entries show the best values in each metric
(ignoring the greedy algorithm), and italicized values show a statistically
insignificant change from the baseline with p < 0.01. . . . . . . . . . . . . 60

3.6 Pairwise discrepancy between di↵erent target distributions in the top-10
recommendation task in the MovieLens-1mItem-Based recommender and
thresholded to 300 candidate recommendations . . . . . . . . . . . . . . . 67

3.7 Rating loss vs reduction in discrepancy given di↵erent target distributions
when compared with the top 10 recommendations, in the MovieLens-1m
Item-Based recommender and thresholded to 200 candidate recommen-
dations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Notation for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x



List of Tables xi

4.2 MovieLens diversifications for based on artistic genre based categories and
age group based types. The best value in each metric is bolded. . . . . . 97

4.3 MovieLens diversifications for based on artistic genre based categories and
occupation based types. The best value in each metric is bolded. . . . . . 97

4.4 MovieLens diversifications for based on artistic genre based categories and
gender based type data. The best value in each metric is bolded. . . . . 97

4.5 MovieLens diversifications based on movie studio based categories and
age group based types. The best value in each metric is bolded. . . . . . 100

4.6 MovieLens diversifications based on movie studio based categories and
occupation based types. The best value in each metric is bolded. . . . . . 100

4.7 MovieLens diversifications based on movie studio categories and gender
based types data. The best value in each metric is bolded. . . . . . . . . 100

4.8 Running time of the 5 di↵erent rerankers on the diversification task in
Table 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



Dedicated to my parents

xii



Chapter 1

Introduction

Recommender systems have been an area of active and independent field of research since

at least the middle of the 1990s, with the influence and reach of the field expanding ever

since. This timeline corresponds very closely with the genesis and popularization of the

World Wide Web. The vast amounts of data that the web generated was responsible

for an urgent need to summarize and present catalogs of content or merchandise with

which human curated recommendations could not keep up.

Initially, the answer to this problem came in the form of specialized recommender systems

called content-based recommenders. These recommenders work by reducing each item in

the catalog to a vector of explicitly defined features. Treating every item in a homogenous

way as a collection of numerical values makes it possible to mine similarities among items.

In order for this approach to be successful, the features must be chosen carefully and

must be broadly applicable across the catalog, as well as easily computable given the

raw data for an item. Therefore, content-based systems merely o✏oad the di�culty

of finding similar items to the task of defining and extracting features that adequately

summarize the data. If the automated extraction of a feature is not feasible, then this

step must be substituted with large-scale crowdsourcing tasks. Due to these di�culties,

content-based systems can only be applied in very specific domains, such as music or

movies. Since features used for one type of content are not easy to carry over to another

type of content, the versatility of these systems are similarly limited.

With content-based systems facing the significant limitations mentioned above, researchers

directed their attention to more general-purpose algorithms for building recommenda-

tion systems. Interestingly, the scale of the problem also proved to be the solution to

the recommendation task: with enough data, feedback from users could be mined for

patterns that could not be uncovered in smaller datasets. Explicit features describing

1



Chapter 1. Introduction 2

the items are not needed to establish similarity if we can find an abundance of users who

have a simultaneous preference for two di↵erent items. This is the main idea behind

the field of collaborative filtering, that has achieved tremendous success in producing

recommender systems with high predictive accuracy [1–4].

Unfortunately, the collaborative filtering algorithms have their own drawbacks. The

foremost among these is the tendency to exaggerate biases in the data. Recommender

systems cannot make an unlimited number of recommendations due to space and time

constraints. When a large interaction history is condensed into a small representative set

of recommendations, some information is necessarily lost. This becomes an undesirable

feature when we consider the fact that the output of recommender systems are consumed

by users or other algorithms, and their feedback is often fed back into recommender

as training data. This creates an undesirable feedback loop which can diminish the

usefulness of a recommender, and skew its results. Filter bubbles pigeonhole users into

narrow interest bands which can hurt user satisfaction, while echo chambers can hamper

a business’ ability to collect meaningful feedback from its users [5, 6]. These problems

have only compounded in importance as more and more businesses have come to rely

on recommender systems for driving both revenue and user satisfaction [7].

While significant e↵ort has been expended by the recommendation diversification field

to combat this problem and diversify the kinds of recommendation any one user sees

[8–11], significantly less e↵ort has been directed towards sales diversity measures, which

measure diversity as a function of the distribution of recommendations among the items

in the catalog. Sales diversity measures address the needs of a business to surface

more of the items in their catalog and direct users towards particular sets of items.

Improvements in sales diversity have been linked to favorable outcomes for businesses

such as increased consumption [12], more e�cient use of inventories [13, 14] and even

increased user satisfaction levels [15, 16]. Therefore, the main purpose of this thesis is

the development of optimization frameworks which can be used to maximize a variety

of sales diversity measures.

1.1 The Structure of This Thesis

In Chapter 2, we consider the problem of making item-to-item recommendations. We

partition the item set into two parts, one consisting of items which are adequately

surfaced to search engines and another which consists of items we would like to bring

into the first half. Since redundant linking is a necessary part of getting a product

page into search engine indices, we seek to maximize the number of items which have
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a minimum number of recommendations from items in the first half. We model this

problem as a subgraph selection problem, and develop 3 di↵erent algorithms to solve

it: two streaming algorithms (the greedy and sampling algorithms) and one based on

perfect matchings (the partition algorithm). For sampling algorithm we provide constant

factor approximation guarantees which hold in expectation. For the partition and greedy

algorithms we provide approximation guarantees which obtain only an additive sublinear

error term. Finally, for the greedy algorithm we prove a constant factor approximation

guarantee which holds even in the worst case. We validate the e↵ectiveness of our

algorithms on both synthetic data which match our random graph models, as well as on

data provided by Bloomreach Inc. from large internet retailers. This work has appeared

in WWW ’15 [17].

In Chapter 3, we consider the problem of making user-to-item recommendations and

consider the need of a business to shape the distribution of recommendations provided

by their recommender systems. We introduce a new measure of sales diversity we call

“discrepancy” in order to measure the di↵erence between the distribution obtained by a

recommender system and the distribution desired by the business. By formulating the

discrepancy minimization problem as a minimum cost-flow problem, we obtain polyno-

mial time algorithms which can maximize recommendation relevance while simultane-

ously minimizing the discrepancy from the desired target. Our framework is stated in a

very general way and contains as a special case the problem of maximizing aggregate di-

versity (or coverage), which is the sales diversity measure which has previously attracted

the most attention by researchers. We validate the e↵ectiveness of our discrepancy min-

imization framework on MovieLens and Netflix Prize datasets which are standard in

recommender systems research, and show that our algorithms are better suited for opti-

mizing not only our discrepancy metric, but other sales diversity metrics such as entropy

and the Gini index when compared with other reranking based approaches.

In Chapter 4, we once again consider the problem of making user-to-item recommen-

dations, this time in a setting where category information is available on the item set

and type information is available for the user set. For this setting, we define two new

diversity measures called TUDiv and TIDiv. The former is a measure of the diversity

of categories among the items presented to a user, and the latter is a measure of the

diversity of user types to whom an item is shown. TUDiv mimics the structure and

the goals of many previous approaches which have been used to provide diversified links

to users, and is similar to existing intent-aware metrics. TIDiv is a novel refinement

of aggregate diversity, whose goal is to promote not only coverage, but coverage across

many di↵erent types of users, whose feedback would otherwise be ignored due to filter

bubbles formed by unmodified collaborative filtering algorithms. We show that both of
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these metrics can be optimized by minimum cost flow models when the categories and

types are disjoint. We provide NP-hardness and approximation results for the case when

types and categories are allowed to overlap. Once again, we validate our results using

the MovieLens dataset and show that none of the existing category-aware approaches

we tested perform well on improving TIDiv or other sales diversity measures.

Taken together, our methods contribute new methods to a growing of field increasing

sales diversity in recommender systems based on collaborative filtering. Our contribu-

tions are unified under a framework of subgraph selection. In each chapter of this work,

we begin with a bipartite graph G
0

of known interactions. In Chapter 2, these known

interactions are co-purchasing information between di↵erent items in the catalog. In

Chapters 3 and 4, the known interactions are ratings assigned to items by users. We use

G
0

as an input to standard collaborative filtering algorithms to generate a new graph

G of candidate recommendations we can make. We then use explicit optimization al-

gorithms, often based on the machinery of minimum cost flows, in order to produce a

subset H of G which has higher sales diversity values than the standard recommendation

approaches. In this way, we present a unified optimization based framework for sales

diversity maximization, and provide a new perspective and new tools to the field of sales

diversity in recommender systems.



Chapter 2

Increasing Discoverability on the

Web

Table 2.1: Notation for Chapter 2

L Set of popular items.
R Set of less popular items.

G(L,R,E) Bipartite graph of candidate recommendations.
H A subset of G denoting the recommendations made by the

system.
S Number of items with at least a incoming recommendations.
d The number of candidate recommendations per user.
c The display constraint.
a The degree requirement for an item in R .
k The ratio of L to R.

2.1 Introduction

2.1.1 Web Relevance Engines

The digital discovery divide [18] refers to the problem of companies not being able

to present users with what they seek in the short time they spend looking for this

information. The problem is prevalent not only in e-commerce websites but also in social

networks and micro-blogging sites where surfacing relevant content quickly is important

for user engagement.

5
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BloomReach is a big-data marketing company that uses the client’s content as well as

web-wide data to optimize both customer acquisition and satisfaction for e-retailers.

BloomReach’s clients include top internet retail companies from around the country.

In this chapter, we describe the structure optimizer component of BloomReach’s Web

Relevance Engine. This component works on top of the recommendation engine so as to

carefully add a set of links across pages that ensures that users can e�ciently navigate

the entire website.

2.1.2 Structural Optimization of Websites

An important concern of retail website owners is whether a significant fraction of the site

is not recommended at all (or ‘hardly’ recommended) from other more popular pages

within their site. One way to address this problem is to try to ensure that every page

will obtain at least a baseline number of links from popular pages so that great content

does not remain undiscovered, and thus bridge the discovery divide mentioned above. If

the website remains connected, this also ensures a simple conductance for the underlying

link graph.

We use this criterion of discoverability as the objective for the choice of the links to

recommend. We start with a small set of already discovered or popular nodes available at

a site, and want to use this set to make as many new nodes discoverable as possible. This

objective leads to a new structural formulation of the recommendation selection problem.

In particular, we think of commonly visited pages in a site as the already discovered

pages, from which there are a large number of possible recommendations available (using

more traditional information retrieval methods) to related but less visited peripheral

pages. The problem of choosing a limited number of pages to recommend at each

discovered page can be cast with the objective of maximizing the number of peripheral

non-visited pages that are redundantly linked. We formulate this as a recommendation

subgraph problem, and study practical algorithms for solving these problems at scale

with real-life data.

2.1.3 Recommendation Systems as a Subgraph Selection Problem

Formally, we divide all pages in a site into two groups: the discovered pages and

the undiscovered ones. Furthermore, we assume that traditional recommendation sys-

tems [9, 19, 20] provide us with a large set of related candidate undiscovered page recom-

mendations for each discovered page using relevance metrics. In this work, we assume

d such related candidates are available per page creating a candidate recommendation
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bipartite graph (with degree d at each discovered page node). Our goal is to analyze

how to prune this set to c < d recommendations such that globally we ensure that the

number of undiscovered pages that have at least a � 1 recommendations to them in the

chosen subgraph is maximized. This gives the (c, a)-recommendation subgraph intro-

duced in Section 2.3.1. Even though the case of a = 1 reduces to a polynomially solvable

version of a matching problem, the more usual cases of a > 1 are most likely NP-hard

prohibiting exact solution methods at scale. Even the simple versions that reduce to

matching are too computational expensive on memory and processing to run on real-life

instances

2.1.4 Our Contributions

We introduce three simple heuristic methods that can be implemented in linear or near-

linear time and thoroughly investigate their theoretical performance. In particular, we

delineate when each method will work e↵ectively on popular random graph models, and

when a practitioner will need to employ a more sophisticated algorithm. We then eval-

uate how these simple methods perform on simulated data, both in terms of solution

quality and running time. Finally, we show the deployment of these methods on Bloom-

Reach’s real-world client link graph and measure their actual performance in terms of

running-times, memory usage and accuracy. It is worthwhile to note that the simplest

of the three methods that we propose (sampling) can be easily adapted to the incremen-

tal dynamic setting when the set of pages and candidate recommendations is changing

rapidly.

To summarize, our contributions are as follows.

1. The development of a new structural model for recommendation systems as a

subgraph selection problem for maximizing discoverability (Section 2.3).

2. The proposal of three methods (sampling, greedy and partition) with increasing

sophistication to solve the problem at scale along with associated theoretical per-

formance guarantee analyses (Section 2.4). In particular, we show very strong

theoretical bounds on the size of the discoverable set for the sampling algorithm

in the fixed degree random graph model (Theorem 2.1); in the Erdös-Renyi model

for the greedy algorithm (Theorem 2.7) and for a partition-based algorithm (The-

orem 2.10).

3. An empirical validation of our conclusions with simulated and real-life data (Sec-

tion 2.6). Our simulations show that sampling is the least resource intensive and
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performs satisfactorily, while partition is the most resource intensive but performs

better for small values of discoverability threshold a; Greedy is the overall best-

performer using a single pass over the data and producing good results over a

variety of parameters. In the tests with real retailer data, we see these trends

broadly reflected in the results: Greedy performs well when c gets moderately

large giving almost optimal starting from a = 2. The partition method is promis-

ing when the targeted a value is low. Sampling is typically worse than greedy, but

unlike the partition algorithm, its performance improves dramatically as c becomes

larger, and does not worsen as quickly when a gets larger.

2.2 Related Work

Recommendation systems have been studied extensively in the literature, and can be

broadly separated into two di↵erent streams: collaborative filtering systems and content-

based recommender systems [21]. Much attention has been focused on the former ap-

proach, where either users are clustered by considering the items they have consumed

or items are clustered by considering the users that have bought them. Both item-

to-item and user-to-user recommendation systems based on collaborative filtering have

been adopted by many industry giants such as Twitter [22], Amazon [23] and Google [4]

and Netflix [24].

Content based systems instead look at each item and its intrinsic properties. For ex-

ample, Pandora has categorical information such as Artist, Genre, Year, Singer, Tempo

etc. on each song it indexes. Similarly, Netflix has a lot of categorical data on movies

and TV such as Cast, Director, Producers, Release Date, Budget, etc. This categorical

data can then be used to recommend new songs that are similar to the songs that a user

has liked before. Depending on user feedback, a recommender system can learn which

of the categories are more or less important to a user and adjust its recommendations.

A drawback of the first type of system is that is that they require multiple visits by

many users so that a taste profile for each user, or a user profile for each item can

be built. Similarly, content-based systems also require significant user participation to

train the underlying system. These conditions are possible to meet for large commerce

or entertainment hubs, but not very likely for most online retailers that specialize in a

just a few areas, but have a long-tail [25] of product o↵erings.

Because of this constraint, in this chapter we focus on a recommender system that typi-

cally uses many di↵erent algorithms that extract categorical data from item descriptions
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and uses this data to establish weak links between items (candidate recommendations).

In the absence of other data that would enable us to choose among these many links, we

consider every potential recommendation to be of equal value and focus on the objective

of discovery, which has not been studied before. Using heuristics for building this graph

is not only practical, but is theoretically sound as well[26]. In this way, our work di↵ers

from all the previous work on recommendation systems that emphasize on finding rec-

ommendations of high relevance and quality rather than on structural navigability of the

realized link structure. However, some of our approaches can be extended to the more

general case where di↵erent recommendations have di↵erent weights (See Theorem 2.5).

On the graph algorithms side, our problem is related to the bipartite matching and more

generally, the maximum b-matching problems. There has been considerable work done

in this area. In particular, both the weighted matching and b-matching problems have

exact polynomial time solutions [27]. Furthermore the matching problem admits a near

linear time (1�✏)-approximation algorithm [28], while the weighted b-matching problem

admits a 1/2-approximation algorithm [29]. However, all such algorithms are based on

combinatorial properties of matchings and b-matchings, and do not carry over to the

more important version of our problem when a > 1.

Finally, our problem bears resemblance to some covering problems. For example, the

maximum coverage problem asks for the maximum number of elements that can be

covered by a fixed number of sets and has a greedy (1 � 1/e)-approximation [30].

However, as mentioned earlier, our formulation requires multiple coverage of elements.

Furthermore note that the collection of sets that can be used in the redundant coverage

are all possible subsets of c out of the d candidate links, and is expressed implicitly in

our problem. The currently known theoretical methods for maximum coverage heavily

rely on the submodularity of the objective function, which our objective doesn’t satisfy.

Hence the line of recent work on approximation algorithms for submodular maximization

does not apply to our problems.

2.3 Our Model

We model the structure optimization of recommendations by using a bipartite digraph,

where one partition L represents the set of discovered (i.e., often visited) items for which

we are required to suggest recommendations and the other partition R representing the

set of undiscovered (not visited) items that can be potentially recommended. If needed,

the same item can be represented in both L and R.
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Input: A bipartite graph G(L,R,E), a display constraint c, a target degree a.
Output: A subgraph H ✓ G, with maximum degree c at any node in L, which
maximizes the number of vertices in R which have degree at least a.

Figure 2.1: The definition of the (c, a)-recommendation subgraph problem

2.3.1 The Recommendation Subgraph Problem

We introduce and study this as the the (c, a)-recommendation subgraph problem

in this chapter :

Note that if a = c = 1 this is simply the maximum bipartite matching problem [31]. If

a = 1 and c > 1, we obtain a b-matching problem, that can be converted to a bipartite

matching problem [27]. The typical and interesting cases when a > 1 is most likely

NP-hard, ruling out the possibility of e�cient exact algorithms.

We now describe typical web graph characteristics by discussing the sizes of L, R, c

and a in practice. As noted before, in most websites, a small number of ‘head’ pages

contribute to a significant amount of the tra�c while a long tail of the remaining pages

contribute to the rest [32–34]. This is supported by our own experience with the 80/20

rule, i.e. 80% of a site’s tra�c is captured by 20% of the pages. Therefore, the ratio

k = |L|/|R| is typically between 1/3 to 1/5, but may be even lower.

From our own work at BloomReach (and by observing recommendations of Quora,

Amazon, and YouTube), typical values for c range from 3 to 20 recommendations per

page. Values of a are harder to nail down but it typically ranges from 1 to 5.

2.3.2 Practical Requirements

There are two key requirements in making graph algorithms practical. The first is that

the method used must be very simple to implement, debug, deploy and most importantly

maintain long-term. The second is that the method must scale gracefully with larger

sizes.

Graph matching algorithms require linear memory and super-linear run-time which does

not scale well. For example, an e-commerce website of a client of BloomReach with 1M

product pages and 100 recommendation candidates per product would require easily

over 160GB in main memory to store the graph and run exact matching algorithms; this

can be reduced by using graph compression techniques but that adds more technical dif-

ficulties in development and maintenance. Algorithms that are time intensive can some-

times be sped-up by using distributed computing techniques such as map-reduce [35].
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However, e�cient map-reduce algorithms for graph problems are notoriously di�cult.

Finally, all of these methods apply only to the special case of our problem when a = 1,

leaving open the question of solving the more interesting and typical cases of redundant

coverage when a > 1.

2.3.3 Simple Approximation Algorithms

To satisfy these practical requirements, we propose the study of three simple approximate

solutions strategies that not only can be shown to scale well in practice but also have

good theoretical properties that we demonstrate using approximation ratios.

• Sampling: The first solution is a simple random sampling solution that selects

a random subset of c links out of the available d from every page. Note that

this solution requires no memory overhead to store these results a-priori and the

recommendations can be generated using a random number generator on the fly.

While this might seem trivial at first, for su�cient (and often real-world) values

of c and a we show that this can be optimal. Also, this method is very easy to

adapt to the case when the underlying graph is dynamic with both nodes and

edges changing over time. Furthermore, our approach can be extended to the

case where the recommendation edges have weights representing varying strengths

of association as is typically provided by the traditional methods that generate

candidate recommendation links.

• Greedy: The second solution we propose is a greedy algorithm that chooses

the recommendation links so as to maximize the number of nodes in R that can

accumulate a in-links. In particular, we keep track of the number of in-links

required for each node in R to reach the target of a and choose the links from

each node in L giving preference to adding links to nodes in R that are closer

to the target in-degree a. This method bears close resemblance in strategy with

greedy methods used for maximum coverage and its more general submodular

maximization variants.

• Partition: The third solution is inspired by a theoretically rigorous method to

find optimal subgraphs in su�ciently dense graphs: it partitions the edges into

a subsets by random sub-sampling, such that there is a good chance of finding a

perfect matching from L to R in each of the subsets. The union of the matchings

so found will thus result in most nodes in R achieving the target degree a. We

require the number of edges in the underlying graph to be significantly large for

this method to work very well; moreover, we need to run a (near-)perfect matching
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Sampling Greedy Partition
Time O(|E|) O(|E|) O(|E|

p
|V |)

Working Space O(1) O(V ) O(|E|)

Figure 2.2: Complexities of the di↵erent algorithms (assuming constant a and c)

algorithm in each of the edge-subsets which is also a computationally expensive

subroutine. Hence, even though this method works very well in dense graphs, its

resource requirements may not scale well in terms of running time and space.

As a summary, the Figure 2.1 below shows the time and space complexity of our di↵erent

algorithms.

In the next section, we elaborate on these methods, their running times, implementation

details, and theoretical performance guarantees. In the section after that, we present our

comprehensive empirical evaluations of all three methods, first the results on simulated

data and then the results on real data from some clients of BloomReach.

2.4 Algorithms for Recommendation Subgraphs

2.4.1 The Sampling Algorithm

We present the sampling algorithm for the (c, a)-recommendation subgraph formally

below.

Data: A bipartite graph G = (L,R,E)
Result: A (c, a)-recommendation subgraph H
for u in L do

S  a random sample of c vertices without replacement in N(u);
for v in S do

H  H [ {(u, v)};
end

end
return H;

Algorithm 1: The sampling algorithm

Given a bipartite graph G, the algorithm has runtime complexity of O(|E|) since every

edge is considered at most once. The space complexity can be taken to be O(1), since

the adjacency representation of G can be assumed to be pre-sorted by the endpoint of

each edge in L.
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We next introduce a simple random graph model for the supergraph from which we are

allowed to choose recommendations and present a bound on its expected performance

when the underlying supergraph G = (L,R,E) is chosen probabilistically according to

this model.

Fixed Degree Model: In this model for generating the candidate recommendation

graph, each vertex u 2 L uniformly and independently samples d neighbors from R

with replacement. While this allows each vertex in L to have the same vertex as a

neighbor multiple times, in reality r � d is so edge repetition is very unlikely. This

model is similar to, but is distinct from the more commonly known Erdös-Renyi model

of random graphs [36]. In particular, while the degree of each vertex in L is fixed under

our model, concentration bounds can show that the degrees of the vertices in L would

have similarly been concentrated around d for p = d/r in the Erdös-Renyi model. We

prove the following theorem about the performance of the Sampling Algorithm. We

denote the ratio of the size of L and R by k, i.e., we define k = l
r .

Theorem 2.1. Let S be the random variable denoting the number of vertices v 2 R

such that degH(v) � a in the fixed-degree model. Then

E[S] � r

✓
1� e�ck+a�1

r
(ck)a � 1

ck � 1

◆

To get a quick sense of the very good performance bounds reflected in this theorem,

please see Figure 2.3 that plots the approximation ratio as a function of ck for the (c, 1)-

recommendation subgraph problem, as well as Figure 2.4 that shows how large c needs

to be (in terms of k) for the solution to be 95% optimal for di↵erent values of a, both

in the fixed degree model.

Proof. We will analyze the sampling algorithm as if it picks the neighbors of each u 2 L

with replacement, the same way the fixed-degree model generates G. This variant would

obviously waste some edges, and perform worse than the variant which samples neighbors

without replacement. This means that any performance guarantee we prove for this

variant holds for our original statement of the algorithm as well.

To prove the claim let Xv be the random variable that represents the degree of the

vertex v 2 R in our chosen subgraph H. Because our algorithm uniformly subsamples

a uniformly random selection of edges, we can assume that H was generated the same

way as G but sampled c instead of d edges for each vertex u 2 L. Since there are cl

edges in H that can be incident on v, and each of these edges has a 1/r probability of

being incident on a given vertex in L, we can now calculate that
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Pr[Xv = i] =

✓
cl

i

◆
(1� 1

r
)cl�i

✓
1

r

◆i

 (cl)i(1� 1

r
)cl�i

✓
1

r

◆i

Using a union bound, we can combine these inequalities to upper bound the probability

that degH(v) < a.

Pr[Xv < a] =
a�1X

i=0

✓
cl

i

◆✓
1� 1

r

◆cl�i✓1

r

◆i


a�1X

i=0

✓
cl

r

◆i✓
1� 1

r

◆cl�i


✓
1� 1

r

◆cl�(a�1)

a�1X

i=0

(ck)i


✓
1� 1

r

◆cl�(a�1) (ck)a � 1

ck � 1

 e�ck+a�1
r

(ck)a � 1

ck � 1

Letting Yv = [Xv � a], we now see that

E[S] = E

"
X

v2R
Yv

#
� r

✓
1� e�ck+a�1

r
(ck)a � 1

ck � 1

◆

We can combine this lower bound with a trivial upper bound to obtain an approximation

ratio that holds in expectation.

Theorem 2.2. The above sampling algorithm gives a
�
1� 1

e

�
-factor approximation to

the (c, 1)-graph recommendation problem in expectation.

Proof. The size of the optimal solution is bounded above by both the number of edges

in the graph and the number of vertices in R. The former of these is cl = ckr

and the latter is r, which shows that the optimal solution size OPT  rmin(ck, 1).

Therefore, by simple case analysis the approximation ratio in expectation is at least

(1� exp(�ck))/min(ck, 1) � 1� 1

e
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Figure 2.3: Approx ratio as a function of ck

a 1 2 3 4 5
c 3.00k�1 4.74k�1 7.05k�1 10.01k�1 13.48k�1

Figure 2.4: The required ck to obtain 95% optimality for (c, a)-recommendation
subgraph

For the (c, 1)-recommendation subgraph problem the approximation obtained by this

sampling approach can be much better for certain values of ck. In particular, if ck > 1,

then the approximation ratio is 1 � exp(�ck), which approaches 1 as ck ! 1. When

ck = 3, then the solution will be at least 95% as good as the optimal solution even with

our trivial bounds. Similarly, when ck < 1, the approximation ratio is (1�exp(�ck))/ck
which also approaches 1 as ck ! 0. In particular, if ck = 0.1 then the solution will be

at 95% as good as the optimal solution. The case when ck = 1 represents the worst case

outcome for this model where we only guarantee 63% optimality. Figure 2.3 shows the

approximation ratio as a function of ck for the (c, 1)-recommendation subgraph problem

in the fixed degree model.

For the general (c, a)-recommendation subgraph problem, if ck > a, then the problem

is easy on average. This is in comparison to the trivial estimate of cl. For a fixed a,

a random solution gets better as ck increases because the decrease in e�ck more than

compensates for the polynomial in ck next to it. However, in the more realistic case,

the undiscovered pages in R too numerous to be all covered even if we used the full set

of budgeted links allowed out of L, i.e. cl < ra or rearranging, ck < a; in this case, we

need to use the trivial estimate of ckr/a, and the analysis for a = 1 does not extend

here. For practical purposes, the table in Figure 2.4 shows how large c needs to be (in

terms of k) for the solution to be 95% optimal for di↵erent values of a, again in the fixed

degree model.
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We close out this section by showing that the main result that holds in expectation also

hold with high probability for a = 1, using the following variant of Cherno↵ bounds.

Theorem 2.3. [37] Let X
1

, . . . , Xn be non-positively correlated variables. If X =
Pn

i=1

Xi, then for any � � 0

Pr[X � (1 + �)E[X]] 
✓

e�

(1 + �)1+�

◆E[X]

Using this we can convert our expectation result to one that holds with high probability.

Theorem 2.4. Let S be the random variable denoting the number of vertices v 2 R such

that degH(v) � 1. Then S  r(1�2 exp(�ck)) with probability at most (e/4)r(1�exp(�ck)).

Proof. We can write S as
P

v2R(1�Xv) where Xv is the indicator variable that denotes

that Xv is matched. Note that the variables 1 �Xv for each v 2 R are non-positively

correlated. In particular, if N(v) and N(v0) are disjoint, then 1 � Xv and 1 � Xv0 are

independent. Otherwise, v not claiming any edges can only increase the probability that

v0 has an edge from any vertex u 2 N(v)\N(v0). Also note that the expected size of S

is r(1� exp(�ck)) by Theorem 2.1. Therefore, we can apply Theorem 2.3 with � = 1 to

obtain the result.

For realistic scenarios where r is very large, the above theorem gives very tight bounds on

the size of the solution, also explaining the e↵ectiveness of the simple sampling algorithm

in such instances.

The results presented in this section can be naturally extended to weighted models as

shown by the theorem below. The proof is left out due to space constraints.

Theorem 2.5. Let G = Kl,r be a complete bipartite graph where the edges have i.i.d.

weights and come from a distribution with mean µ that is supported on [0, b]; Assume

that ckµ � 1 + ✏ for some ✏ > 0. If the algorithm from Section 2.4.1 is used to sample

a subgraph H from G and S is the set of vertices in R of incident weight at least one,

then

E[S] =
X

v2R
E[Xv] = r

✓
1� exp

✓
�2l✏2

b2

◆◆

2.4.2 The Greedy Algorithm

The results in the previous section concentrated on producing nearly optimal solutions

in expectation. In this section, we will show that it is possible to obtain good solutions

regardless of the model that generated the recommendation subgraph.
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We next analyze the natural greedy algorithm for constructing a (c, a)-recommendation

subgraph H iteratively. In the following algorithm, we use N(u) to refer to the neighbors

of a vertex u.

Data: A bipartite graph G = (L,R,E)
Result: A (c, a)-recommendation subgraph H
for u in L do

d[u] 0
end
for v in R do

F  {u 2 N(v)|d[u] < c};
if |F | � a then

restrict F to a elements;
for u in F do

H  H [ {(u, v)};
d[u] d[u] + 1;

end

end

end
return H;

Algorithm 2: The greedy Algorithm

The algorithm loops through each vertex in R, and considers each edge once. Therefore,

the runtime is ⇥(|E|). Furthermore, the only data structure we use is an array which

keeps track of degH(u) for each u 2 L, so the memory consumption is ⇥(|L|). Finally,

we prove the following tight approximation property of this algorithm.

Theorem 2.6. The greedy algorithm gives a 1/(a+1)-approximation to the (c, a)-graph

recommendation problem.

Proof. Let RGREEDY , ROPT ✓ R be the set of vertices that have degree � a in the

greedy and optimal solutions respectively. Note that any v 2 ROPT along with neighbors

{u
1

, . . . ua} forms a set of candidate edges that can be used by the greedy algorithm. So

we can consider ROPT as a candidate pool for RGREEDY . Each selection of the greedy

algorithm might result in some candidates becoming infeasible, but it can continue as

long as the candidate pool is not depleted. Each time the greedy algorithm selects

some vertex v 2 R with edges to {u
1

, . . . , ua}, we remove v from the candidate pool.

Furthermore each ui could have degree c in the optimal solution and used each of its

edges to make a neighbor attain degree a. The greedy choice of an edge to ui requires

us to remove such an edge to an arbitrary vertex vi 2 R adjacent to ui in the optimal

solution, and thus remove vi from further consideration in the candidate pool. In other

words, by using an edge of ui, we force it to not use an edge it used to some other vi,

which might cause the degree of vi to go below a. Therefore, at each step of the greedy
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Figure 2.5: One step of the greedy algorithm. When v selects edges to u1, . . . , ua, it
can remove v1, . . . , va from the pool of candidates that are available. The potentially

invalidated edges are shown in red.

algorithm, we may remove at most a+ 1 vertices from the candidate pool as illustrated

in Figure 4. Since our candidate pool has size OPT , the greedy algorithm can not stop

before it has added OPT/(a+ 1) vertices to the solution.

This approximation guarantee is as good as we can expect, since for a = 1 we recover

the familiar 1/2-approximation of the greedy algorithm for matchings. Furthermore,

even in the case of matchings (a = 1), randomizing the order in which the vertices are

processed is still known to leave a constant factor gap in the quality of the solution

[38]. Despite this result, the greedy algorithm fares much better when we analyze its

expected performance. Switching to the Erdös-Renyi model [39] instead of the fixed

degree model used in the previous section, we now prove the near optimality of the

greedy algorithm for the (c, a)-recommendation subgraph problem. Recall that in this

model (sometimes referred to as Gn,p), each possible edge is inserted with probability

p independent of other edges. In our version Gl,r,p, we only add edges from L to R

each with probability p independent of other edges in this complete bipartite candidate

graph. For technical reasons, we need to assume that lp � 1 in the following theorem.

However, this is a very weak assumption since lp is simply the expected degree of a

vertex v 2 R. Typical values for p for our applications will be ⌦(log(l)/l) making the

expected degree lp = ⌦(log l).
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Theorem 2.7. Let G = (L,R,E) be a graph drawn from the Gl,r,p where lp � 1. If S is

the size of the (c, a)-recommendation subgraph produced by the greedy algorithm, then:

E[S] � r � a(lp)a�1

(1� p)a

r�1X

i=0

(1� p)l�
ia
c

When the underlying random graph is su�ciently dense, Theorem 2.8 shows that the

above guarantee is asymptotically optimal.

Proof. Note that if edges are generated uniformly, we can consider the graph as being

revealed to us one vertex at a time as the greedy algorithm runs. In particular, consider

the event Xi+1

that the greedy algorithm matches the (i+1)st vertex it inspects. While,

Xi+1

is dependent on X
1

, . . . , Xi, the worst condition for Xi+1

is when all the previous

i vertices were from the same vertices in L, which are now not available for matching

the (i + 1)st vertex. The maximum number of such invalidated vertices is at most

dia/ce. Therefore, the bad event is that we have fewer than a of the at least l � dia/ce
available vertices having an edge to this vertex. The probability of this bad event

is at most Pr[Y ⇠ Bin(l � ia
c , p) : Y < a], the probability that a Binomial random

variable with l � ia
c trials of probability p of success for each trial has less than a

successes. We can bound this probability by using a union bound and upper-bounding

Pr[Y ⇠ Bin(l� ia
c , p) : Y = t] for each 0  t  a� 1. By using the trivial estimate that

�n
i

�
 ni for all n and i, we obtain:

Pr[Y ⇠ Bin(l � ia

c
, p) : Y = t] =

✓
l � ia

c

t

◆
(1� p)l�

ia
c
�tpt


✓
l � ia

c

◆t

(1� p)l�
ia
c
�tpt

 (lp)t(1� p)l�
ia
c
�t

Notice that the largest exponent lp can take within the bounds of our sum is a � 1.

Similarly, the smallest exponent (1 � p) can take within the bounds of our sum is l �
ia
c � a+ 1. Now applying the union bound gives:
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Pr[Y ⇠ Bin(l � ia

c
, p) : Y < a]


a�1X

t=0

Pr[Y ⇠ Bin(l � ia

c
, p) : Y = t]


a�1X

t=0

(lp)t(1� p)l�
ia
c
�t

= a(lp)a�1(1� p)l�
ia
c
�a+1

Finally, summing over all the Xi using the linearity of expectation and this upper bound,

we obtain

E[S] � r �
r�1X

i=0

E[¬Xi]

� r �
r�1X

i=0

Pr[Y ⇠ Bin(l � ia

c
, p) : Y < a]

� r � a(lp)a�1

r�1X

i=0

(1� p)l�
ia
c
�a+1

Asymptotically, this result explains why the greedy algorithm does much better in ex-

pectation than 1/(a + 1) guarantee we can prove in the worst case. In particular, for

a reasonable setting of the right parameters, we can prove that the error term of our

greedy approximation will be sublinear.

Theorem 2.8. Let G = (L,R,E) be a graph drawn from the Gl,r,p where p = � log l
l for

some � � 1. Suppose that c, a and ✏ > 0 are such that lc = (1 + ✏)ra and that l and r

go to infinity while satisfying this relation. If S is the size of the (c, a)-recommendation

subgraph produced by the greedy algorithm, then

E[S] � r � o(r)

Proof. We will prove this claim by applying Theorem 2.7. Note that it su�ces to prove

that (lp)a�1

Pr�1

i=0

(1 � p)l�
ia
c = o(r) since the other terms are just constants. We first

bound the elements of this summation. Using the facts that p = � log l
l , lc/a = (1 + ✏)r

and that i < r throughout the summation, we get the following bound on each term:



Chapter 2. Increasing Discoverability on the Web 21

(1� p)l�
ia
c 

✓
1� � log l

l

◆l� ia
c

 exp

✓
�� log l

l

✓
l � ia

c

◆◆

= exp

✓
(� log l)

✓
� � ia

lc

◆◆

= l��+ ia
lc = l

��+ i
(1+✏)r

 l�1+

1
1+✏ = l�

✏
1+✏

Finally, we can evaluate the whole sum:

(lp)a�1

r�1X

i=0

(1� p)l�
ia
c 

�
loga�1 l

� r�1X

i=0

l�
✏

1+✏


�
loga�1 l

�
rl�

✏
1+✏

=
�
loga�1 l

� c

(1 + ✏)a
l1�

✏
1+✏ = o(l)

However, since r is a constant times l, any function that is o(l) is also o(r) and this

proves the claim.

2.4.3 The Partition Algorithm

To motivate the partition algorithm, we first define optimal solutions for the recommen-

dation subgraph problem.

Perfect Recommendation Subgraphs: We define a perfect (c, a)-recommendation

subgraph on G to be a subgraph H such that degH(u)  c for all u 2 L and degH(v) = a

for min(r, bcl/ac) of the vertices in R.

The reason we define perfect (c, a)-recommendation subgraphs is that when one exists,

it’s possible to recover it in polynomial time using a min-cost b-matching algorithm

(matchings with a specified degree b on each vertex) for any setting of a and c. How-

ever, implementations of b-matching algorithms often incur significant overheads even
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over regular bipartite matchings. This motivates a solution that uses regular bipartite

matching algorithms to find an approximately optimal solution given that a perfect one

exists.

We do this by proving a su�cient condition for perfect (c, a)-recommendation subgraphs

to exist with high probability in a bipartite graph G under the Erdös-Renyi model [39]

where edges are sampled uniformly and independently with probability p. This argument

then guides our formulation of a heuristic that overlays matchings carefully to obtain

(c, a)-recommendation subgraphs.

Theorem 2.9. [36] Let G be a bipartite graph drawn from Gn,n,p. If p � logn+log logn
n ,

then as n!1, the probability that G has a perfect matching approaches 1.

We will prove that a perfect (c, a)-recommendation subgraph exists in random graphs

with high probability by building it up from a matchings each of which must exist with

high probability if p is su�ciently high. To find these matchings, we identify subsets

of size l in R that we can perfectly match to L. These subsets overlap, and we choose

them so that each vertex in R is in a subsets. While the theorem is stated for the case

when a  c, it applies equally well to the a > c case by partitioning L instead of R in

the following proof.

Theorem 2.10. Let G be a random bipartite graph drawn from Gl,r,p with p � a log l+log log l
l

then the probability that G has a perfect (c, a)-recommendation subgraph tends to 1 as

l, r !1.

This theorem guarantees the existence of an optimal recommendation subgraph in suf-

ficiently dense subgraphs, and provides a constructive proof of this fact that is also the

basis of our partition algorithm.

Proof. We start by either padding or restricting R to a set of lc
a before we start our

analysis. If r � lc
a , then we restrict R to an arbitrary subset R0 of size lc

a . Since induced

subgraphs of Erdös-Renyi graphs are also Erdös-Renyi graphs, we can instead apply

our analysis to the induced subgraph. Since the optimal solution has size bounded

above by lc
a a perfect (c, a)-recommendation subgraph in G[L,R0] will imply a perfect

recommendation subgraph in G[L,R].

On the other hand, if r  lc
a , then we can pad R with lc

a � r dummy vertices and

adding an edge from each such vertex to each vertex in L with probability p. We call

the resulting right side of the graph R0. Note that G[L,R0] is still generated by the

Erdös-Renyi process. Further, since the original graph G[L,R] is a subgraph of this new
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graph, if we prove the existence of a perfect (c, a)-recommendation subgraph in this new

graph, it will imply the existence of a perfect recommendation subgraph in G[L,R].

Having picked an R0 satisfying |R0| = lc
a , we pick an enumeration of the vertices in

R0 = {v
0

, . . . , vlc/a�1

} and add each of these vertices into a subsets as follows. Define

Ri = {v
(i�1)l/a, . . . , v(i�1)l/a+l�1

} for each 1  i  c where the arithmetic in the indices

is done modulo lc/a. Note both L and all of the Ri’s have size l.

Using these new sets we define the graphs Gi on the bipartitions (L,Ri). Since the sets

Ri are intersecting, we cannot define the graphs Gi to be induced subgraphs. However,

note that each vertex v 2 R0 falls into exactly a of these subsets.

Therefore, we can uniformly randomly assign each edge in G to one of a graphs among

{G
1

, . . . , Gc} it can fall into, and make each of those graphs a random graph. In fact,

while the di↵erent Gi are coupled, taken in isolation we can consider any single Gi to

be drawn from the distribution Gl,l,p/a since G was drawn from Gl,r,p. Since p/a �
(log l + log log l)/l by assumption, we conclude by Theorem 2.9, the probability that a

particular Gi has no perfect matching is o(1).

If we fix c, we can conclude by a union bound that except for a o(1) probability, each

one of the Gi’s has a perfect matching. By superimposing all of these perfect matchings,

we can see that every vertex in R0 has degree a. Since each vertex in L is in exactly c

matchings, each vertex in L has degree c. It follows that except for a o(1) probability

there exists a (c, a)-recommendation subgraph in G.

Approximation Algorithm Using Perfect Matchings: The above result now en-

ables us to design a near linear time algorithm with a (1� ✏) approximation guarantee

to the (c, a)-recommendation subgraph problem by leveraging combinatorial properties

of matchings. In particular, we use the fact a matching that does not have augmenting

paths of length > 2↵ is a 1 � 1/↵ approximation to the maximum matching problem.

We call this method the Partition Algorithm, and we outline it below.

Theorem 2.11. Let G be a bipartite random graph drawn from Gl,r,p where p � a log l+log log l
l .

Then Algorithm 3 finds a (1� ✏)-approximation in O( |E|
✏ ) time with probability 1� o(1).

Proof. Using the previous theorem, we know that each of the graphs Gi has a perfect

matching with high probability. These perfect matchings can be approximated to a

1 � ✏/c factor by finding matchings that do not have augmenting paths of length �
2c/✏ [31]. This can be done for each Gi in O(|E|c/✏) time. Furthermore, the union

of unmatched vertices makes up an at most c(✏/c) fraction of R0, which proves the

claim.
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Data: A bipartite graph G = (L,R,E)
Result: A (c,a)-recommendation subgraph H
R0  a random sample of |L|c/a vertices from R;
Choose G[L,R

1

], . . . , G[L,Rc] as in Theorem 2.10;
for i in [1..c] do

Mi  A matching of G[L,Ri] with no augmenting path of length 2c/✏;
end
H  M

1

S
. . .
S
Mc;

return H;

Algorithm 3: The partition algorithm

Notice that if we were to run the augmenting paths algorithm to completeness for each

matching Mi, then this algorithm would take O(|E||L|) time. We could reduce this

further to O(|E|
p
L) by using Hopcroft-Karp. [40]

Assuming a sparse graph where |E| = ⇥(|L| log |L|), the time complexity of this algo-

rithm is ⇥(|L|3/2 log |L|). The space complexity is only ⇥(|E|) = ⇥(|L| log |L|), but a

large constant is hidden by the big-Oh notation that makes this algorithm impractical

in real test cases.

2.5 Generalized Models of Recommendation Graphs

Even though we studied the fixed-degree uniform model in detail, recommendation sys-

tems based on relevance in practice will not have edges that are spread uniformly at

random. Items that are about specific topics are much more likely to interlink within

themselves than to those outside that topic, leading to clusters of recommendations. To

understand this clustering in underlying graphs in practice, we compiled results from

several e-commerce retailers that have been aggregated and anonymized in the table

shown below. For each retailer, we compiled the product ontology present within the

site that places a product in this tree-like categorization. E.g., a juicer called “Breville

Juice Fountain Plus” is in the tree path: Home ! Juicers ! High Speed Juicers !
Breville Juice Fountain Plus. We then examined the recommendations from products at

di↵erent depths of the hierarchy. In the table in Figure 2.6 we show the edges adjacent

to products at depth 4 or greater. We calculated the percentage of edges connecting

to products that had di↵erent least common ancestors (LCA) with the current prod-

uct. We then randomized the edges so that we can compare how the graph would have

looked if there was no clusters and re-calculated the distribution of the edges and the

LCA levels. We noticed that the uniform distribution had edges that had very shallow

LCA indicating that most edges did not follow the product hierarchy while in reality, the
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endpoints of edges recommended had much deeper LCA meaning recommendation edges

were clustered based on the product hierarchy. This led us to formalize this new model

of input graphs that we study in Subsection 2.5.1 as the hierarchical tree model. In a

LCALevel 0 1 2 3 4 5 6
Uniform 13.4 69.7 12.5 2.6 1.2 0.6 0.0

Hierarchical 7.1 1.9 8.0 24.9 52.3 5.5 0.2

Figure 2.6: Percent edges for depth-4 products by LCA of endpoints in reality (from
hierarchical data) and simulated uniform distribution of edges.

second analysis, we simply truncated the product hierarchy at depth 3 and collected the

resulting disjoint clusters in the hierarchy. We then examined all the recommendations

and partitioned them into those going between each pair of these clusters. In a uniform

distribution, we would expect the edges to be equally likely to span across each pair

of clusters (if clusters are equal sized). But what we observed was that di↵erent pairs

of clusters had di↵erent edge-densities. For instance, an Espresso Machine might point

more to other Co↵ee Machines or Co↵ee Beans (note that Co↵ee Beans and Espresso

Machine might share no LCA apart from the root) than to other clusters. These results

are shown in Figure 2.7 which clearly demonstrates that the pairs of clusters respon-

sible for the most number of recommendation edges produce many more edges than

the uniform model would predict. This motivated us to define and study the cartesian

product model in Subsection 2.5.2 which is orthogonal to the uniform and hierarchical

tree models.

The way we performed the analyses for these new models are similar to those that we

carried out for the uniform model. While we only present results for the approximation

of (c, 1)-recommendation subgraphs for brevity, these results can be extended to the

more general problem of finding (c, a)-recommendation subgraphs as done in Section

2.4.1.

2.5.1 Hierarchical Tree Model

In this model, the vertex sets L and R are the leaf sets of two trees TL and TR of depth

D where there is a 1-to-1 correspondence between the subtrees of these two trees. We

also assume that each branching in both TL and TR splits the nodes evenly into the two

subtrees. As in the previous sections, we set |L|/|R| = k, and require that this ratio

is still k if we divide the size of any subtree on the left and that of its corresponding

subtree on the right. For simplicity of notation, we will use a subtree and its leaf

set interchangeably. We assume that the trees are fixed in advance but the bipartite

recommendation graph G = (L,R,E) is generated probabilistically according to the
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Figure 2.7: Histogram of percent edges between pairs of clusters. Each point on
x-axis is a pair of clusters. The x-axis has no inherent order but they have been sorted

by number of edges for easier visualization. The tail is omitted.

following procedure. Let u 2 L and T 0

L, . . . T
D�1

L be the subtrees it belongs at depths

0, . . . , D � 1. Also, let T 0

R, . . . , T
D�1

R be the subtrees on the right that correspond to

these trees on the left. We let u make a recommending edge to dD�1

of the vertices in

TD�1

R , dD�2

edges to the vertices in TD�2

R \TD�1

R and so on. The di edges out of u are

chosen uniformly from T i
R \ T i+1

R . Let d = d
0

+ . . .+ dD�1

.

Figure 2.8: This diagram shows the notation we use for
this model and the 1-to-1 correspondence of subtrees.

For the a = 1 case, our goal now is to find a b-matching [27] in this graph that is close

to optimal in expectation. That is, our degree upper and lower bounds on vertices in L

and R are c and 1 respectively. Let c = c
0

+ . . . + cD�1

be similar to how we defined

d. To combine the analysis of the randomness of the algorithm and the randomness of

the graph, the algorithm will pick ci edges uniformly from among the di edges going to

each level of the subtree to form a (c, 1)-recommendation subgraph H. This enables us

to think of H as being generated by the same process that generated G but with fewer

neighbors selected. With this model and parameters in place, we can have the following

analog of our main theorem for a = 1 for the hierarchical model.
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Theorem 2.12. Let S be the subset of edges v 2 R such that degH(v) � 1 in the

hierarchical tree model. Then

E[S] � r(1� exp(�ck))

Proof. Let v 2 R and let TD�1

L , TD�2

L \TD�1

L , . . . , T 0

L\T 1

L be the sets it can take edges

from. Since TL and TR split perfectly evenly at each node the vertices in these sets will

be chosen from rD�1

, rD�1

, rD�2

, . . . , r
1

vertices in R as neighbors, where ri is the size

of subtree of the right tree rooted at depth i. Furthermore, each of these sets described

above have size lD�1

, lD�1

, lD�2

, . . . , l
1

respectively, where li is the size of a subtree of

TL rooted at depth i. It follows that the probability that v does not receive any edges

at all is at most

Pr[¬Xv] =

✓
1� 1

rD�1

◆c0lD�1 D�1Y

i=1

✓
1� 1

ri

◆cD�ili

 exp

✓
� lD�1

rD�1

c
0

◆D�1Y

i=1

exp

✓
� li
ri
cD�i

◆

= exp (�(c
0

+ . . .+ cD�1

)k)

= exp(�ck)

Since this is an indicator variable, it follows that

E[S] = E

"
X

v2R
Xv

#
� r (1� exp(�ck))

Note that this is the same result as we obtained for the fixed degree model in Section

2.4.1. In fact, the approximation guarantees when ck ⌧ 1 or ck � 1 hold exactly as

before.

The algorithmic sampling of H is convenient in this model because we separated out

the edge generation process at a given depth from the edge generation process at deeper

subtrees. If we superimpose TL and TR, then an edge between u 2 L and v 2 R must

have come from an edge generated by the process corresponding to the lowest common

ancestor of u and v in the same hierarchy. This way, the algorithm can actually sample

intelligently and in the same way that the graph was generated in the first place, which

is also the key to our simple analysis. Note that we do not have to assume that the trees
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TL and TR are binary. We only need the trees to be regular and evenly divided at each

vertex since the proof only relies on the proportions of the sizes of the subtrees in TL

and TR.

2.5.2 Cartesian Product Model

In this model, we assume that L has been partitioned into t subsets L
1

, . . . , Lt and that

R has been partitioned into t0 subsets R
1

, . . . , Rt0 . For convenience, we let |Li| = li and

|Rj | = rj . Given this, for each 1  i  t and each 1  j  t0, we let G[Li, Rj ] be

an instance of the fixed degree model with d = dij . This allows us to assume di↵erent

densities of edges between di↵erent pairs of clusters. However, we require that for all i,

we have
Pt0

j=1

dij = d for some fixed d. We also require that we have fixed in advance

cij  dij for each 1  i  t and 1  j  t0 that satisfy
Pt0

j=1

cij = c for all i for some

fixed c. To sample H from G, we sample cij neighbors from Rj for each u 2 Li. Letting

S be the set of vertices in v 2 R that satisfy degH(v) � 1, we can show the following

theorem.

Theorem 2.13. Let S be the subset of edges v 2 R such that degH(v) � 1 in the

cartesian product model. Then

E[S] � r �
t0X

j=1

rj exp

 
�

tX

i=1

cij
li
rj

!

Proof. Let vj 2 Rj be an arbitrary vertex and let Xvj be the indicator variable for the

event that degH(vi) � 1. The probability that none of the neighbors of some ui 2 Ri

is vj is exactly (1 � 1

rj
)cij . It follows that the probability that the degree of vj in the

subgraph H[Li, Rj ] is 0 is at most (1� 1

rj
)cij li . Considering this probability over all Rj

gives us:

Pr[Xvi = 0] =
tY

i=1

✓
1� 1

rj

◆cij li

 exp

 
�

tX

i=1

cij
li
rj

!

By linearity of expectation E[S] =
Pt0

i=1

riE[Xvi ], so it follows that

E[S] �
t0X

j=1

rj

 
1� exp

 
�

tX

i=1

cij
li
rj

!!
= r �

t0X

j=1

rj exp

 
�

tX

i=1

cij
li
rj

!

A powerful aspect of this model and the algorithm we described for sampling H is that

we are free to select cij . In particular, cij can be chosen to maximize the approximation
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Figure 2.9: Time needed to solve
a (10,3)-recommendation problem in
random graphs where |R|/|L| = 4

(Notice the log-log scale.)

Figure 2.10: Space needed to solve
a (10,3)-recommendation problem in
random graphs where |R|/|L| = 4

(Notice the log-log scale.)

guarantee in expectation we obtained above using gradient descent or other first order

methods prior to running the recommendation algorithm to increases the quality of the

solution.

2.6 Experimental Results

2.6.1 Simulated Data

We simulated performance of our algorithms on random graphs generated by the graph

models we outlined. In the following figures, each data point is obtained by averaging

the measurements over 100 random graphs. We first present the time and space usage of

these algorithms when solving a (10, 3)-recommendation subgraph problem in di↵erent

sized graphs. In all our charts, error bars are present, but too small to be noticeable.

Note that varying the value of a and c would only change space and time usage by a

constant, so these two graphs are indicative of time and space usage over all ranges of

parameters.

Recall that the partition algorithm split the graph into multiple graphs and found match-

ings (using an implementation of Hopcroft-Karp [40]) in these smaller graphs which were

then combined into a recommendation subgraph. For this reason, a run of the partition

algorithm takes much longer to solve a problem instance than either the sampling or

greedy algorithms. It also takes significantly more memory as can be seen in Figures

5 and 6. Compare this to greedy and sampling which both require a single pass over

the graph, and no advanced data structures. In fact, if the edges of G is pre-sorted by

the edge’s endpoint in L, then the sampling algorithm can be implemented as an online

algorithm with constant space and in constant time per link selection. Similarly, if the

edges of G is pre-sorted by the edge’s endpoint in R, then the greedy algorithm can be
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Figure 2.11: Solution quality for
the (c, 1)-recommendation subgraph
problem in graphs with |L| = 25k,

|R| = 100k, d = 20

Figure 2.12: Solution quality for
the (c, 1)-recommendation subgraph
problem in graphs with |L| = 50k,

|R| = 100k, d = 20

implemented so that the entire graph does not have to be kept in memory. In this event,

greedy uses only O(|L|) memory.

Next, we analyze the relative qualities of the solutions each method produces. Fig-

ures 2.11 and 2.12 plot the average performance ratio of the three methods compared

to the trivial upper bounds as the value of c, the number of recommendations allowed is

varied, while keeping a = 1. They collectively show that the lower bound we calculated

for the expected performance of the sampling algorithm accurately captures its behav-

ior when a = 1. Indeed, the inequality we used is an accurate approximation of the

expectation, up to lower order terms, as is demonstrated in these simulated runs. The

random sampling algorithm does well, both when c is low and high, but falters when

ck = 1. The greedy algorithm outperforms the sampling algorithm in all cases, but its

advantage vanishes as c gets larger. Note that the dip in the graphs when cl = ar, at

c = 4 in Figure 2.11 and c = 2 in Figure 2.12 is expected and was previously demon-

strated in Figure 2.3. The partition algorithm is immune to this drop that a↵ects both

the greedy and the sampling algorithms, but comes with the cost of higher time and

space utilization.

In contrast to the case when a = 1, the sampling algorithm performs worse when a > 1

but performs increasingly better with c as demonstrated by Figures 2.13 and 2.14. The

greedy algorithm continues to produce solutions that are nearly optimal, regardless of

the settings of c and a, even beating the partition algorithm with increasing values of

a. Our simulations suggest that in most cases, one can simply use our sampling method

for solving the (c, a)-recommendation subgraph problem. In cases where the sampling is

not suitable as flagged by our analysis, we still find that the greedy performs adequately

and is also simple to implement. These two algorithms thus confirm to our requirements

we initially laid out for deployment in large-scale real systems in practice.

To summarize, our synthetic experiments show the following strengths of each algorithm:
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Figure 2.13: Solution quality for
the (c, 2)-recommendation subgraph
problem in graphs with |L| = 50k,

|R| = 100k, d = 20

Figure 2.14: Solution quality for
the (c, 4)-recommendation subgraph
problem in graphs with |L| = 50k,

|R| = 100k, d = 20

Sampling Algorithm: Sampling uses little to no memory and can be implemented

as an online algorithm. If keeping the underlying graph in memory is an issue, then

chances are this algorithm will do well while only needing a fraction of the resources the

other two algorithms would need.

Partition Algorithm: This algorithm does well, but only when a is small. In partic-

ular, when a = 1 or 2, partition seems to be the best algorithm, but the quality of the

solutions degrade quickly after that point. However this performance comes at expense

of significant runtime and space. Since greedy performs almost as well without requiring

large amounts of space or time, partition is best suited for instances where a is low the

quality of the solution is more important than anything else.

Greedy Algorithm: This algorithm is the all-round best performing algorithm we

tested. It only requires a single pass over the data thus very quickly, and uses relatively

little amounts of space enabling it run completely in memory for graphs with as many

as tens of millions of edges. It is not as fast as sampling or accurate as partition when

a is small, but it has very good performance over all parameter ranges.

2.6.2 Real Data

We now present the results of running our algorithms on several real datasets. In the

graphs that we use, each node corresponds to a single product in the catalog of a

merchant and the edges connect similar products. For each product up to 50 most

similar products were selected by a proprietary algorithm of BloomReach that uses

text-based features such as keywords, color, brand, gender (where applicable) as well

as user browsing patterns to determine the similarity between pairs of products. Such

algorithms are commonly used in e-commerce websites such as Amazon, Overstock, eBay

etc to display the most related products to the user when they are browsing a specific

product.
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Two of the client merchants of BloomReach presented here had moderate-sized relation

graphs with about 105 vertices and 106 input edges (candidate recommendations); the

remaining merchants (3, 4 and 5) have on the order of 106 vertices and 107 input edges

between them. We estimated an upper bound on the optimum solution by taking the

minimum of |L|c/a and the number of vertices in R of degree at least a. Figures 2.15, 2.16

and 2.17 plot the average of the optimality percentage of the sampling, greedy and

partition algorithms across all the merchants respectively. Note that we could only run

the partition algorithm for the first two merchants due to memory constraints.

Figure 2.15: Solution quality for
the (c, 1)-recommendation subgraph

problem in retailer data

Figure 2.16: Solution quality for
the (c, 2)-recommendation subgraph

problem in retailer data

Figure 2.17: Solution quality for
the (c, 3)-recommendation subgraph

problem in retailer data

From these results, we can see that that greedy performs exceptionally well when c gets

even moderately large. For the realistic value of c = 6, the greedy algorithm produced

a solution that was 85% optimal for all the merchants we tested. For several of the

merchants, its results were almost optimal starting from a = 2.
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The partition method is also promising, especially when the a value that is targeted is

low. Indeed, when a = 1 or a = 2, its performance is comparable or better than greedy,

though the di↵erence is not as pronounced as it is in the simulations. However, for larger

values of a the partition algorithm performs worse.

The sampling algorithm performs mostly well on real data, especially when c is large.

It is typically worse than greedy, but unlike the partition algorithm, its performance

improves dramatically as c becomes larger, and its performance does not worsen as

quickly when a gets larger. Therefore, for large c sampling becomes a viable alternative

to greedy mainly in cases where the linear memory cost of the greedy algorithm is too

prohibitive.

2.7 Conclusions and Future Work

We have presented a new class of structural recommendation problems cast as compu-

tationally hard subgraph selection problems, and analyzed three algorithmic strategies

to solve these problems. The sampling method is most e�cient, the greedy approach

trades o↵ computational cost with quality, and the partition method is e↵ective for

smaller problem sizes. We have proved e↵ective theoretical bounds on the quality of

these methods, and also substantiated them with experimental validation both from

simulated data and real data from retail web sites. Our findings have been very useful

in the deployment of e↵ective structural recommendations in web relevance engines that

drive many of the leading websites of popular retailers.

We believe that our work lends itself to promising future work in two directions. The

first is that through a better understanding of the underlying graph’s topology, more

precise or complex models can be used. This would require an empirical validation of

the proposed graph model and the adaptation of our methods to di↵erent random graph

models.

The second is that most of our algorithms aren’t particularly suited for the weighted

setting. While our sampling result carries over to the weighted regime as seen in Theorem

2.5, our other algorithms don’t, and even this result is weak compared to the unweighted

result we presented in full. The problem presented by ignoring weights is that some really

high value recommendations might be ignored by the randomness of the algorithm by

chance. In practice, it’s possible to mitigate this issue by hardcoding in the really

desirable edges, and using seeding either the greedy or sampling algorithm with these

edges. While this can work well in practice, it would be nonetheless be valuable to prove

strong approximation guarantees in the weighted regime as well.
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Chapter 3

Discrepancy

Table 3.1: Notation for Chapter 3

L Set of users.
R Set of items.

G(L,R,E) Bipartite graph of candidate recommendations.
H A subset of G denoting the recommendations made by the

system.
ui The ith user.
vj The jth item.
ci The display constraint for the ith user.
aj The target degree for the jth item.

N(ui) The set of ci recommendations made to the ith in H.
T (ui) The set of held-out recommendations for the ith user in the

test set.

3.1 Motivation

Collaborative filtering has long been a favored approach in recommender systems since

its recommendations are derived mainly from the record of interactions between users

and items. However, a key concern of CF systems is the filter bubble, the idea that rec-

ommendation systems that focus solely on accuracy lead to echo chambers that amplify

“rich-get-richer” e↵ects among the recommended items [5, 12, 41, 42]. This problem

stems from the way these systems are designed since they can only make confident rec-

ommendations on items that have had a lot of engagement, and hence increase their

importance. This is the main motivation to diversify the recommendations of such CF

systems.

35
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Recent ethical concerns about algorithms have focused on similar issues about algorith-

mic results inherently being biased [43, 44]. One approach to counter the status quo,

also advocated by Karger [44] is to explicitly design algorithms that do not discrimi-

nate by designing an appropriate objective function that will increase diversity in CF

recommendations.

The importance of diversifying recommendations for the sake of the user arises from

their intrinsic appreciation for novelty and serendipity, a view that is supported by

psychological studies [45]. Conversely, research in recommendation systems [15] has

shown that focusing solely on ratings hurts user satisfaction. This has led to a subfield

of recommendation systems that focuses on improving diversity for the benefit of the

user [16, 46].

A third motivation is the business need for diversifying recommendations: long-tail

catalogs that are frequent in the internet [13, 47] as well as media distributors with

all-you-can-play business models [14] require that the recommendations influence users

to consume diverse content by driving more tra�c to di↵erent portions of the site.

Roadmap: In this chapter , we address the non-diverse nature of CF recommenda-

tions, the needs of a long-tail business to shape tra�c on its own site, and diversifying

recommendations for the benefit of the users. We define a notion of diversity conducive

to all these needs based on the degree-properties of the graph defined by the recommen-

dations (Sections 3.2, 3.3 ). After reviewing related work (Section 3.4), we show that

the design problem for this notion can be solved e�ciently both in theory and practice

using network flow techniques (Section 3.5). We validate our method by showing how to

adapt standard collaborative filtering algorithms with an e�cient post-processing step

to optimize for our measure of diversity by sacrificing very little on the recommendation

quality on standard data sets (Section 3.6).

3.2 A New Graph Optimization Problem

We model all the user-item recommendations provided by a CF system as a bipartite

graph, and the choice of recommendations actually given to the users as a subgraph

selection problem in this graph. The constraints on the number of items that can be

recommended to a user put bounds on the out-degree of the user nodes. Following

our earlier work [17], we model the problem of achieving diversity among the items as

specifying target in-degree values for each item and then finding a subgraph that satisfies

these constraints as closely as possible. We develop the resulting graph optimization

problem next.
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Input: A bipartite graph G(L,R,E), a vector of display constraints {ci}li=1

, a vector
of target degrees {ai}ri=1

.
Output: A subgraph H ✓ G, of maximum degree c at any node in L, which minimizes
the discrepancy from the given target distribution.

Figure 3.1: The definition of the MIN-DISCREPANCY problem.

We start our discussion by reviewing the well known b-matching problem on bipartite

graphs [48]. In the b-matching problem, an underlying bipartite graph G = (L,R)

with edge set E is given, along with a nonnegative weight g on the edges, and two

vectors of non-negative integers (c
1

, . . . , cl) and (a
1

, . . . , ar) (degree bounds) such that
Pl

i=1

ci =
Pr

i=1

ai. The goal is to find a maximum g-weight (or minimum g-cost)

subgraph H where the degree of vertex ui 2 L in H is ci for every 1  i  l and

the degree of vertex vj 2 R in H is aj for every 1  j  r. This problem generalizes

the well-known maximum weight perfect matching problem, which can be obtained as

a special case if we set all target degrees to 1. Like the perfect matching problem in

bipartite graphs, the b-matching problem can be solved by a reduction to a network flow

model by adding a source with arcs to L, a sink with arcs from R and using the degree

constraints as capacities on these respective arcs.

Assume that the degree bounds are given. The vector (c
1

, . . . , cl) will be taken as a

vector of hard constraints that must be met exactly, based on display constraints for

the users. In other words, we consider a subgraph H to be a feasible solution if and

only if deg+H(ui) = ci for all uj 2 L. The vector (a
1

, . . . , ar) will be specified by the

recommendation system designer to reflect the motivations described above (increase

the coverage of items in CF results, increase the novelty to users on average, or shape

tra�c to some items). However, this target degree bounds may be unattainable (i.e.

there is no feasible b-matching for these degree bounds). To handle this potential in-

feasibility, we incorporate them in the objective. We call the vector (a
1

, . . . , ar), the

target degree distribution. We now define the objective for a given feasible solution H,

D(H) =
X

vj2R
|deg�H(vj)� aj |

which is simply the sum of the violations (in both directions) of the degree constraints

for R. We call this objective the discrepancy between H and the degree distribution

(a
1

, . . . , ar), and we name the problem of meeting the hard constraints (c
1

, . . . , cl) while

minimizing this objective the MIN-DISCREPANCY problem.

The MIN-DISCREPANCY problem defined above generalizes the b-matching problem,

and has objective value zero i↵ there is a feasible b-matching for the given degree bounds.
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Input: A weighted bipartite graph G(L,R,E), a vector of display constraints {ci}li=1

,
a vector of target degrees {ai}ri=1

.
Output: A maximal weight subgraph H ✓ G, of maximum degree c at any node in
L, chosen among the subgraphs which have minimal discrepancy from the given target
distribution.

Figure 3.2: The definition of the MAX-WEIGHT-MIN-DISCREPANCY problem.

Like the weighted b-matching problem mentioned above, we can adapt our problem to

the weighted setting where each edge has a real-valued weight. In this setting, the

objective to maximize the total weight of the chosen edges, among graphs that have the

minimal discrepancy possible from the given targets. We call this variant of the problem

the MAX-WEIGHT-MIN-DISCREPANCY problem.

3.3 Post-processing a CF Recommender

We now show how we can apply the graph optimization problem defined above to post-

processing the results of a CF recommendation system. As input to a CF system, we have

a set of items I, a set of users U , and list of known ratings given by each user to di↵erent

subsets of the items. The CF system outputs a relevance function rel : U⇥I ! [a, b] that

takes pairs of users and items to a predicted recommendation quality in some interval

on the real line. (If g can be thought of as a similarity measure, then 1

a(b � rel(u, i))

can be thought of as a dissimilarity measure.) Without any extra information on the

problem domain, CF systems employ user-based filtering, item-based filtering, matrix

factorization, or other methods to arrive at these predicted rating qualities. For the

rest of this paper, this rating function will be considered to be given as a black-box

since its implementation details have no consequence on our model, even though we will

experiment with various options in our empirical tests.

A Surplus of Candidate Recommendations. To generate the graph G that will

serve as input to our optimization problem, we choose only the recommendations for

which the CF recommender predicts a rating above a certain threshold – we enforce this

by constraining each user’s recommendation list to their top-k candidate recommenda-

tions. This is a standard approach used in recommendation diversification [46, 49] and

ensures that none of our candidate recommendations are below a certain quality level,

thus establishing a quality baseline for our algorithm.

We apply our max-weight min-discrepancy method on this graph with the given pre-

dicted ratings as weights and given degree bounds as a post-processing step for the CF
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system results to increase their diversity.

3.3.1 Summary of Contributions

1. Following our earlier work [17], we model the problem of post-processing recom-

mendations from a CF system to increase diversity as a maximum-weight degree-

constrained subgraph selection problem to minimize the discrepancy from a target

distribution.

2. We demonstrate that the problem of finding maximum-weight min-discrepancy

subgraph can be reduced to the problem of finding minimum cost flows. In partic-

ular, this shows that the discrepancy between a recommendation system and any

desired indegree distribution can be minimized in polynomial time. The abundance

of fast solvers [50] for this problem makes our model not just theoretically inter-

esting, but also practically feasible. Moreover, we prove that aggregate diversity

maximization can be implemented special case of the discrepancy minimization

problem. This generalizes the work of Adomavicius and Kwon on maximizing ag-

gregate diversity [51] while simultaneously maximizing recommendation quality,

while matching the same asymptotic runtimes.

3. We conduct experiments on standard datasets such as MovieLens-1m, and Netflix

Prize data. By feeding our discrepancy minimizer as a post-processing step on the

undiversified recommendation networks created by standard collaborative filtering

algorithms, we measure the trade-o↵ our algorithm makes between discrepancy

and recommendation quality under a variety of parameter settings. We compare

against baselines and other diversification approaches, and find that our diversifier

makes more relevant recommendations despite achieving higher diversity gains, as

measured not only by our discrepancy measure, but also by standard sales diversity

metrics such as the Gini index or aggregate diversity.

3.4 Related Work

First we review related work on various collaborative filtering approaches, and then

discuss various extant notions of diversity already considered in the recommender system

literature.
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3.4.1 Collaborative Filtering

Collaborative filtering is the most versatile and widely accepted way of building rec-

ommender systems. The main idea behind collaborative filtering is to exploit the sim-

ilarities between di↵erent users or between di↵erent items using user feedback. While

there are many di↵erent methods for doing this, we constrain our evaluation to three

representative approaches.

1. Matrix factorization approaches assume the existence of D latent features which

describe both users and items, and seeks to find two rank D matrices whose prod-

uct approximates the matrix of all known rankings. The advantage is that D

is typically much smaller than the number of users or items. In our work, we

experiment with a version of this approach due to Hu [1].

2. Another popular approach is neighborhood based recommenders, which can either

be user-based or item-based. These approaches define a distance between pairs

of users and pairs of items respectively, using measures like cosine similarity or

Pearson correlation [52]. The user-based approach then predicts the unknown

rating from user u to item i by taking a distance weighted linear combination of

the ratings of similar users on item i. The item-based approach operates similarly,

but instead takes a weighted combination of the ratings of user u on items similar

to item i. We use the implementations of these methods in RankSys [53] in our

experiments.

3. Finally, we consider a graph based recommender strategy due to Cooper et. al.

[54]. This method considers a bipartite graph of known user and item interactions,

ignoring all rating information. In this graph, a random walk of length 2 from a

user u corresponds to the selection of a user similar to u, in the sense that both

u and any user reachable from u in 2 steps have at least one item as a common

interest. Therefore, a random walk of length 3 corresponds to sampling an item

liked by a similar user, and recommendations for a user u are ranked according

to how many random walks of length 3 starting at that user terminate at a given

item. Since this method is both simple to state and implement on small to medium

sized datasets, we use our own implementation of this method in our empirical

comparisons. While less commonly used than the first two types of recommenders

we discussed, this approach is still representative of a large class of recommendation

strategies such as UserRank [55], ItemRank [56], or other other random walk based

techniques [57].
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3.4.2 Sales Diversity

User-Focused Diversity: User novelty has been called intra-list diversity [58], with

the list referring to the list of recommendations made to a particular user. The need for

novelty from the user’s point of view is a psychological one [45]. While lack of intra-list

diversity was a particularly bad shortcoming of early recommender systems [59], these

problems have since been addressed in many works [60]. In this work, we do not consider

diversity at a user level, and instead take a system level view, which motivated more by

business needs than user needs.

The Need for Sales Diversity: As mentioned above, the need for system-level diversi-

fication in recommenders is a business related one. Since the internet enables businesses

with low inventory costs, focusing on making more recommendations in the long tail can

be an e↵ective retail strategy. This view is most clearly expressed by Anderson, who

advocates selling “selling less of more” [25]. Interestingly, recommender systems rarely

capitalize on this opportunity, and often compound the problems observed with popu-

larity bias. Indeed, Zhou et. al. find that YouTube’s recommendation module leads to

an increase in popularity for the most popular items [42]. Similarly, Celma et. al. report

similar findings for music recommendations on Last.fm [41]. Hosanagar and Fleder show

that this popularity bias can lead to subpar pairings between users and items, potentially

hurting customer satisfaction [12], and McNee reports that a focus on accuracy alone

has hurt the user experience of recommender systems [15]. Since recommendations have

an outsized impact on customer behavior [51, 61], businesses have a need to control the

distribution of recommendations that they surface in their recommenders.

Metrics for Sales Diversity: There are several well-established metrics for measuring

sales diversity, and we focus our attention on three.

1. The most popular among these is the aggregate diversity, which is the total number

of objects that have been recommended to at least one user. Under this name, this

measure has been used notably by Adomavicius and Kwon [49, 51] and by Castells

and Vargas [60]. It has also been used as a measure of system-wide diversity un-

der the name of coverage [62, 63]. While easy to understand and measure, the

aggregate diversity leaves a lot be desired as a measure of distributional equality.

In particular, aggregate diversity treats an item which was recommended once as

well-covered as an item which was recommended thousands of times. For exam-

ple, imagine a system that recommends each item in a set of n items twice. This

network will have the same aggregate diversity as a network which recommends

one of the items n times, and every other item only once, even though this sys-

tem is much more biased than the first. Moreover, aggregate diversity can be a
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misleading measure of diversity when the number of users far outnumbers the size

of the catalog. Under these circumstances, even very obscure items may get rec-

ommended at least once. Therefore, while aggregate diversity is a good baseline,

more refined measures are needed to evaluate the equitability of the distribution

of recommendations.

2. An example of a more nuanced metric is provided by the Gini index. This mea-

sure is most popularly used in economics, as a quantization of wealth or income

inequality. The Gini Index can be adapted for the recommendation setting by

considering the number of recommendations an item gets as its “wealth” in the

system. The Gini index defines the most equitable distribution to be the one where

every item is recommended an equal number of times. Given the actually realized

distribution of recommendations, it aggregates the di↵erence between the number

of recommendations the bottom nth percentile gets in the system and the num-

ber of recommendations they would have obtained under the uniform distribution

where n ranges from 0 to 100%. The measure we propose is a particularly good

proxy for the Gini index, since both measure a notion of distance from the uni-

form distribution. Since recommender systems produce distributions even more

unequal than the typical wealth distributions within a country, this metric has

found widespread acceptance in the recommendation community [62, 64–66].

3. Finally, we consider the entropy of the distribution of recommendations. Entropy

has its roots in physics and information theory, where it is used to measure the

amount of information contained in a stochastic process. For every item, we can

define a probability of being surfaced by the recommender by counting what frac-

tion of recommendations (made to any user) point to this item. As with the Gini

index, optimal entropy is achieved if and only if the recommendation distribution

is uniform. While less common than either aggregate diversity or the Gini index,

the entropy of the recommender system has also been used by many researchers

[64, 67].

We measure the diversification performance of our methods and the baselines we test in

our experimental section by all three of these metrics - aggregate diversity, Gini index

and entropy.

Approaches for Increasing Sales Diversity: Attempts at increasing sales diversity

fall into two approaches: optimization and reranking.

1. The optimization approach has been taken up most notably by Adomavicius and

Kwon [51], who consider heuristic and exact algorithms for improving aggregate
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diversity. Their flow based solution is approximate, while their exact solution to

this problem relies on integer programming and has exponential complexity. Our

work in this chapter subsumes these approaches by giving an exact polynomial

algorithm for aggregate diversity maximization. To the best of our knowledge,

neither the Gini index nor the entropy of the degree distribution can be optimized

in an exact sense.

2. The reranking based approaches are by far the more popular choice in increasing

sales diversity. Here, we consider three di↵erent approaches by Castells and Vargas,

spread across two di↵erent papers. The first two approaches model discovery in

a recommender system by associating each user-item pair with a binary random

variable called seen which represents the event that a user is familiar with the given

item, with the assumption that an unseen item is novel to the user. Given a training

dataset ✓ which maps pairs of users from U and items from I to known rating

values, the authors use a maximum likelihood model to estimate the probability

that an item is seen by a user. In particular, they set the probability of an item i

already being known to a user as the fraction of users who have rated that item

p(seen|i, ✓) = |{u 2 U |r(u, i) 6= ;}|
|U |

Given these probabilities, the popularity complement similarly defines the nov-

elty of an item i as novPC(i|✓) = 1 � p(seen|i, ✓). The free discovery method

of measuring novelty similarly defines the novelty of an item i to a user u as

novFD(i|✓) = � log
2

(p(seen|i, ✓)). After these probabilities are estimated from

the training data, the candidate list of recommendations are reranked according

to the a score which is the average of the predicted relevance of the item and the

novelty of the item [46].

Instead of combining novelty and relevance components in the same function, the

Bayes Rule method by the same authors explicitly adjusts the rating prediction

function. In particular, let rel : U ⇥ I ! [0, 1] be the function which predicts

the strength of a recommendation between user and item pairs. The authors sug-

gest that the probability that an item is relevant to a user is proportional to its

predicted rating, and verify this claim experimentally. Combining this assump-

tion with Bayesian inversion, they come up with a revised prediction function

relBR(u, i) = rel(u, i) (
P

u0 rel(u0, i))
�↵, and rerank the recommendations accord-

ing to this function. Note that predicted quality of a recommendation only di↵ers

from the original prediction by a factor of (
P

u0 rel(u0, i))
�↵. This term is a func-

tion of the item i, and grows larger as the sum of the predicted ratings of i goes
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lower. Therefore, rescoring in this manner dampens the predicted ratings of pop-

ular items, while increasing the predicted ratings of less popular items [68].

Constrained Recommendations: Finally, our problem is one of constrained recom-

mendation, and this problem has been studied in contexts where the data is both large

and small. In the small data end of the of the spectrum, recommenders have been de-

veloped to solve problems such as matching students to courses based on prerequisites

and requirements [69] or matching reviewers to paper submissions [70, 71]. These types

of models perform well because they are built specifically for the task at hand, but they

are not suited for general purpose recommendation tasks for increasing diversity.

On the other end of the spectrum, in a context of matching buyers with sellers with

the goal of maximizing revenue [72], the problem has been modeled as a matching

problem to maximize the number of recommended edges (rather than their diversity).

Similarly, large-scale matching problems modeling recommendations have been tackled

in a distributed setting [73] using degree bounds, but these methods are unable to

accurately enforce degree lower bounds on the items begin recommended (so they are

simply set to zero). Here again, the objective is to maximize the number of edges chosen

rather than any measure of diversity. While our methods do not scale to the same level,

we are able to model diversity with degree bounds more accurately.

3.5 Algorithms

In this section, we prove that discrepancy from a target distribution can be minimized

e�ciently by reducing this problem to one invocation of a minimum cost flow problem.

This result holds regardless of the target in-degree distribution and the required out-

degree distribution.

3.5.1 Construction of the Flow Network

Let G = (L,R,E) be the input bipartite graph which contains candidate recommenda-

tions. We construct a flow network out of G such that the min-cost feasible flow will

have cost equal to the min-discrepancy. Our network will have |V |+2 nodes: two special

sink nodes t
1

and t
2

, as well as a copy of each node in G (See Figure 3.3). We set the

supply of each node ui to ci (its specified out-degree), and the demand of the sink t
2

to
Pr

j=1

aj =
Pl

i=1

ci. Next, for each arc (ui, vj) 2 G, we create an arc (ui, vj) in the

flow network, with unit capacity and zero cost. For each node vj , we create an arc to
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Figure 3.3: The network flow model for the MIN-DISCREPANCY problem with
nodes labelled with their supply and arcs labeled with their cost/capacity. Unlabelled

nodes have zero supply.

each sink. We add the arc (vj , t1) of capacity aj (its target out-degree) and zero cost,

and the arc (vj , t2) of infinite capacity and cost 2. We finally add to our network an

arc (t
1

, t
2

) between the two sinks, with infinite capacity and zero cost. Our assumptions

ensure that total supply,
Pl

i=1

ci meets total demand
Pr

j=1

aj , and that a feasible flow

exists since each node ui in L can send as much as deg+G(ui) � ci flow to the sink t
2

via

any ci di↵erent neighbors. Note that there are |E| + 2|R| + 1 arcs in total in our flow

network. The complete flow network constructed this way is shown in Figure 3.3.

Our main theorem shows that the minimum cost of a flow in this network is the same as

the minimum discrepancy a subgraph of G has from our target in-degree distribution.

Theorem 3.1. Suppose G = (V,E) satisfies deg+G(ui) � ci for all ui 2 L and the degree

distributions satisfy
Pl

i=1

ci =
Pr

i=1

ai. Then the minimum cost flow in the network

constructed above has the same cost as the value of the MIN-DISCREPANCY problem

and can be computed O(|E||V |2 log(|V |)) time.

Proof. Consider a minimum cost flow in this network. Since the network’s capacities

and supplies are all integral, we may assume that this minimum cost flow is integral

as well [74]. This means each edge crossing from L to R is either fully used or unused

because it is unit capacity.
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We let H be a subgraph of G defined by taking the edges of the form (ui, vj) where

(ui, vj) is used in the flow. Since each such edge is either used or unused, and the supply

of node ui is ci, we will satisfy the constraints of the form deg+H(ui) = ci. To see that

the cost of this flow is the same as the cost of our objective, note that we can partition

the vertices in R into two halves: P for the vertices satisfying their degree requirement

deg�H(vj) � aj , and N for the vertices not satisfying their degree requirement. We can

now write our objective as follows.

X

vj2R
| deg�H(vj)� aj | =

X

vj2P

�
deg�H(vj)� aj

�
+

X

vj2N

�
aj � deg�H(vj)

�

However, note that our flow is feasible. Therefore, the total number of edges recom-

mended is
Pl

i=1

ci. It now follows that
P

vj2R(deg
�
H(vj) � aj) =

P
vj2R deg�H(vj) �

Pl
i=1

ci = 0 from our assumption that
Pl

i=1

ci =
Pr

j=1

aj . Adding this to the expres-

sion above gives the following.

X

vj2R
| deg�H(vj)� aj | = 2

X

vj2P

�
deg�H(vj)� aj

�

In our formulation, we only pay for the flow going through a node vj if the flow is in

excess of aj . Since we pay 2 units of cost for each unit of this type of flow, and don’t

pay for anything else, our objective matches that of the flow problem.

By reversing our reduction, we can show that every subgraph H with the desired prop-

erties induces a flow with the same cost as well. Therefore, the minimum discrepancy

problem can be solved by a single invocation of a minimum cost flow algorithm, on

a network with |L| + |R| + 2 nodes and 2|R| + |E| + 1 edges with capacity bounded

by |V |. This can be solved in O(|E||V |2 log(|V |)) time, using capacity scaling or other

competitive methods [75].

Aggregate Diversity. Recall that aggregate diversity is the total number of items

recommended by a recommender system. Aggregate diversity does not correspond to

discrepancy from any target distribution, however it can be maximized by our model as

well.

Theorem 3.2. Suppose
Pl

i=1

ci � r = |R|. Aggregate diversity is maximized by the min-

imum cost flow solution in the network constructed for the MIN-DISCREPANCY(G, {ci}li=1

, {1}rj=1

).
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Proof. The su�ciency of our condition is obvious as it is needed to make sure that

the supply of the nodes in L can be absorbed by the sink node. Now suppose that a

recommender system achieves aggregate diversity r. A total of
Pl

i=1

ci units of flow

make it to the sink, and each has to travel through an arc of cost 0 or 1. Since there

are r di↵erent items in R, and each can send 1 unit of flow without cost, this solution

has cost
⇣Pl

i=1

ci
⌘
� r. Conversely, suppose some solution obtains cost

⇣Pl
i=1

ci
⌘
� r.

The only way the cost can be reduced below
⇣Pl

i=1

ci
⌘
is achievable is through the use

of 0 cost arcs. Since each such arc has capacity 1, at least r such arcs must be used in

the solution. This implies that a solution of aggregate diversity r exists.

3.5.2 Incorporating Recommendation Relevance

3.5.2.1 Cumulative Gain

Note that we have had to assign zero costs to all the edges crossing between the two

sides of our bipartition in order for our reduction to work. Recommendation strengths

can be taken into account by our flow based methods, and we can find the graph that

has the highest total recommendation quality given a discrepancy value using an extra

pass with a flow solver. This can be done accomplished as follows: first, we solve the

regular discrepancy problem, and finding the lowest discrepancy value OPT attainable

by the underlying G. Knowing this value, we can now fix the flow between t
1

and

t
2

in the original flow network to lc � OPT , where lc is the total out-degree of the

subgraph from L. This constrains the flow solver to choose subgraphs where exactly

OPT of the recommendations go over the charged edges. We then keep all the other

capacities the same and add new nonzero weights reflecting recommendation quality

while removing all other costs. In a second pass, we find the highest cost flow in this

network, which corresponds to the recommender graph with OPT discrepancy with the

highest total recommendation quality. Therefore, we can solve the MAX-WEIGHT-

MIN-DISCREPANCY problem with only two calls to a minimum cost flow solver. We

call this approach the two-pass method1. Maximizing average recommendation quality

in this fashion corresponds to the finding the recommendation subgraph with the highest

cumulative gain.

In some cases, recommendation algorithms do not give each recommendation a score

that falls in a uniform interval, and instead rank the resulting recommendations among

themselves. In this case, we cannot use the average recommendation quality as a mea-

sure of the quality of our recommendations. An appropriate measure of quality in this

1This follows the goal-programming methodology for two-objective functions, popular in Operations
Research.
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case is the precision-in-top-c metric, where the quality of the recommendations made

to the user ui is measured as |N(ui) \ Bk(ui)|/c, where Bk(ui) is the list of top-k rec-

ommendations for the user u. When c recommendations are made for each user, the

average recommendation quality of the system is

X

ui2L

|N(ui) \Bk(ui)|
c

=
1

c

X

ui2L
|N(ui) \Bk(ui)|

Note that the quantity inside the sum is simply a linear function of the recommendations

made by the subgraph: recommendation edges which are in the top-k for a user u have

weight 1, while every other edge has weight 0. Therefore, we can optimize the average

of the accuracy-in-top-k using a flow model as well. The objective we maximize in this

setting corresponds to the average cumulative gain in the binary relevance setting.

3.5.2.2 Discounted Cumulative Gain

Not every recommendation in a list is considered equally valuable, and the value of

recommendation slot depends on its rank among the presented recommendations. Dis-

counted cumulative gain accomplishes this by weighing the relevance of the jth slot by

1/ log(j + 1). That is, if we let v
1

, . . . , vc be the recommendations made to user ui and

rel(ui, vj) the relevance of the jth recommendation

CDG(ui) =
cX

j=1

rel(ui, vj)

log(j + 1)

We first show how to maximize CDG in the binary relevance case, which has a simpler

construction than the general case.

Theorem 3.3. The recommendation graph having the minimum discrepancy from a

target distribution {ai}ri=1

while having the highest cumulative discounted gain in the

binary relevance setting and can be computed with two invocations to a minimum cost

flow solver.

Proof. We use the construction in Theorem 3.1 as our starting point and set the cost of

each arc to 0. We fix the flow between t
1

and t
2

to lc�OPT to constrain the solver to

solutions which have the desired discrepancy as discussed above.

Note that when k relevant recommendations are made to a user, then the resulting

discounted cumulative gain is
Pk

j=1

1

log(j) . In order to be able to charge this quantity
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in our flow model, we create create an intermediary node nu,c. Every recommendation

(u, v) which has binary relevance 1, now connects nu,c to v instead of u and c. We also

connect nu,c to node u by using c parallel arcs with costs �1,�1/ log(2), . . . ,�1/ log(c),
each of capacity 1. This modification only adds an extra node and c arcs for each user.

Furthermore, the cost of the flow is the negation of the CDG function summed across all

users, and this can be minimized with a single invocation of a min-cost flow solver.

The rationale behind discounting the value of later recommendations is based on a a

model of the user’s consumption of the recommendations: later recommendations are

less likely to receive attention from the user, which diminishes their usefulness. However,

the discounting serves another beneficial purpose in our model. In particular, the value

of making k relevant recommendations in the binary relevance model is

kX

j=1

1

log(j)
= ⇥

✓
k

log(k)

◆

This function grows slower than linearly, which means that there are diminishing returns

as more and more relevant recommendations are made to the same user. It is therefore,

more advantageous to make a second relevant recommendation for a user u than to make

a tenth relevant recommendation to a user u0. This can be used to ensure that no user

gets a disproportionate share of irrelevant recommendations.

Theorem 3.4. The recommendation graph having the minimum discrepancy from a

target distribution {ai}ri=1

while having the highest cumulative discounted gain can be

computed with two invocations to a minimum cost flow solver.

Proof. We use the construction in Theorem 3.1 as our starting point and set the cost of

each arc to 0. We fix the flow between t
1

and t
2

to lc�OPT to constrain the solver to

solutions which have the desired discrepancy as discussed above.

Since cumulative discounted gain depends on the ranking of the recommendations made,

we create c nodes for each user nu,1, . . . , nu,c. We connect each of these to the user node

u by an arc of cost 0 and capacity 1. For each candidate recommendation (u, v) 2 G

we create c arcs in total. For each 1  j  c, the node nu,j is connected to node v by

a cost �rel(u, v)/ log(j + 1) capacity 1 arc. The rest of the construction remains the

same, and these modifications add |V | vertices to the construction, as well as (c� 1)|E|
additional arcs since every recommendation edge now has c copies instead of just 1.

In a feasible solution, no more than c recommendations can be made to a user because

the total capacity of the arcs coming out of node u is c. The single unit of flow that
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is allowed to leave nu,j discounts the value of this recommendation by log(j + 1) due

to the way we set the costs. The sum of these contributions gives us the negation of

the cumulative discounted gain for the system, which can be minimized with one extra

min-cost flow invocation.

Table 3.2 summarizes the number of arcs and nodes in each of our constructions.

Arcs Nodes
Cumulative Gain (Binary) 2|R|+ |E|+ 1 |L|+ |R|+ 2
Cumulative Gain 2|R|+ |E|+ 1 |L|+ |R|+ 2
Cumulative Discounted Gain (Binary) (c+ 1)|L|+ 2|R|+ |E|+ 1 2|L|+ |R|+ 2
Cumulative Discounted Gain |L|+ 2|R|+ c|E|+ 1 c|L|+ |R|+ 2

Table 3.2: The number of nodes and arcs in each of our di↵erence relevance models.
The non-discounted models are the most e�cient, followed by the binary cumulative
discounted model. The full discounted gain model is likely to be prohibitively expensive

for most settings of c.

3.5.2.3 Bicriteria Optimization

In each of the constructions above, we needed to make an extra pass with a flow solver

in order to find a solution with a high level of relevance. If we used these cost settings

along with the cost settings we used in 3.1, we would no longer be optimizing only for

ratings, or only for discrepancy. Instead, this results in a bicriteria objective of the form

discrepancy(H)� µ · rel(H), where µ can be any real number, and where relevance of a

solution graph denotes the average relevance of the recommendations in H as predicted

by the underlying CF recommender. We call this approach the weighted method, and

demonstrate that while it is strictly worse than the two-pass method in theory, it yields

acceptable results in practice while saving an extra pass of flow minimization. We discuss

the performance di↵erences in our experimental section.

3.5.3 Category Level Constraints

It is sometimes desirable to set multiple goals in an optimization problem. For exam-

ple, a news website might have a target distribution for the articles in mind, but might

also want to ensure that none of the di↵erent categories such as current events, politics,

sports, entertainment, etc. are neglected. Alternatively, due to a payment from a spon-

sor, a vendor may wish to boost the profile of a specific subset of movies in the catalog,

and might need to balance its own needs about the distribution of recommendations

with their commitment to their sponsor.
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This type of problem can be accommodated by our model in the following way. Let there

be k categories C
1

, . . . , Ck that partition the items in R with minimum targets A
1

, . . . , Ak

respectively. We will require have At 
P

vj2At
aj , i.e., the category requirements are

less stringent than the aggregate of the individual target requirements. For ease of

notation, let D
1

, . . . , Dk be the number of times an item from category C
1

, . . . , Ck are

recommended. In this setting, we can optimize the objective
P

vi2R | deg�H(vj) � aj | +
Pk

i=1

min(Ai�Di, 0). Note that this objective is simply the discrepancy objective, plus

another term which looks like discrepancy objective for categories. However, we must

make an important distinction. The discrepancy objective penalizes low degree nodes

both directly, and indirectly via the targets degrees for other nodes, since an extra

recommendation for one node is one “stolen” from another node. The second term

in our new objective penalizes low-degree categories, but does not necessarily penalize

oversaturated categories.

Theorem 3.5. Assume the conditions of theorem 1, and let C
1

, . . . , Ck be a partition of

L, with A
1

, . . . , Ak an arbitrary sequence of non-negative integers. Then a flow network

exists, whose flow cost equals the objective
P

vi2R | deg�H(vj)�aj |+
Pk

i=1

min(Ai�Di, 0).

Proof. The proof is similar to that of Theorem 3.1. For each category Ci, we create

three nodes: ti
1

, ti
2

and ti
3

. The first two of these nodes are connected to the items in their

category with arcs having the same costs/capacities as they did in the original network.

Unlike the original network, where ti
2

would have non-zero demand, both nodes in this

construction have zero demand for flow. We set the demand for t3i to be the category

constraint Ai, and connect it to ti
2

with an arc of capacity Ai and cost 0.

In addition to these nodes, we create two more nodes, common to all categories: a

distributor node s
1

and a supersink s
2

that are common to all the categories. The

distributor s
1

can accept any amount of flow from a node of type ti
2

at cost 1. It can

also move any amount of flow to a node of type ti
3

at 0 cost. Finally, the supersink

s
2

has demand lc �
Pk

i=1

Ai, and accepts unbounded flow from nodes of type ti
3

at no

cost. Since we require that the category requirements sum to less than the total number

of requirements, this node always has non-negative demand, and feasibility is ensured.

Figure 3.4 illustrates the construction:

From the proof of Theorem 1, it follows that ignoring the cost of moving flow between

nodes of type t
2

and t
3

, the cost of the flow in this network is the discrepancy of the

network from the target distribution. Therefore, we only need to account for the second

term in our objective. The arc connecting ti
2

and ti
3

ensures that only Ai units of flow

can go uncharged towards the sink ti
3

. Every other unit of flow must first go to the

distributor, then to ti
3

to satisfy the demand of this node. Since the demand of this node
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Figure 3.4: The network flow model for category targets with nodes labelled with their
supply and arcs labeled with their cost/capacity. The central node with no supply or

demand is the distributor s1. The rightmost node is the supersink s2.

is only Ai, we charge 1 unit of cost for every unit of flow we can’t send to this category,

but no cost for units of flow above the demand of this node. This gives us the term

min(Ai�Di, 0) for the contribution of this category to the objective, and completes the

proof.

We extend the results of this section in Chapter 4, where we present a more thorough

analysis of the use category information in increasing sales diversity.

3.5.4 Greedy Algorithm

In this section we describe an alternative approach to solving the discrepancy mini-

mization problem that does not require the use minimum cost flow solvers, which can

be e�cient in practice, but do not guarantee linear runtimes. Our greedy algorithm

constructs the solution subgraph iteratively, making a discrepancy reducing recommen-

dation whenever possible. If such an edge is not available, then we choose from all

available recommendations. Our choice of recommendation is conditioned on the qual-

ity of this recommendation, as measured by our black-box relevance function rel.
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Since the greedy algorithm considers all discrepancy reducing recommendations for a

user at the same time, a large number of candidate recommendations may lead to the

greedy algorithm making subpar selections, since almost every recommendation we con-

sider early on will likely be a discrepancy reducing edge. In order to moderate this e↵ect,

we include a parameter q > 1 which we use to reweigh the relevance scores. The larger

the q is, the more our greedy algorithm prefers making relevant recommendations. On

the other hand, if we pick a q which is too large, then we overprioritize high relevance

values, and the greedy algorithm e↵ectively turns into the standard recommendation

approach. To balance these concerns, we run the greedy algorithm with di↵erent set-

tings of q, and select the solution with the highest predicted rating quality which has

discrepancy at most 10% higher than the best solution we generate.

Data: G = (L,R,E), the graph of candidate recommendations, a target indegree
distribution {av}rv=1

, tuning parameter q, and a relevance function
rel : L⇥R! [0, 1]

Result: Solution subgraph H
H  � ;;
for j = 1 to c do

foreach u 2 L do
D  � {v 2 NG(u) : degH(v) < av};
if D 6= ; then

Sample e = (u, v) from D with p(e) / rel(u, v)q;
else

Sample e = (u, v) from NG(u) with p(e) / rel(u, v)q;
end
H  � H

S
{(u, v)};

end

end

Algorithm 4: The Greedy Algorithm for Discrepancy Minimization for a fixed value
of q

3.6 Experiments

In this section, we put our model to the test. Our findings are summarized below, and

we discuss each point further in the following subsections.

1. Our fast models perform well at optimizing for pre-existing notions of diversity

such as aggregate diversity and the Gini index despite these measures not being

explicitly referenced in our model. Conversely, we show that optimizing directly

only for aggregate diversity (either by using heuristics or solving to optimality)

does not yield results that are diverse by the other measures (See Tables 3.3, 3.4,

3.5).
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2. Normalized discrepancy can often be reduced by more than 50%, at the cost of only

a 15-30% change in average recommendation quality. Both the two-pass method,

and the weighted method performed well in producing a smooth trade-o↵ between

recommendation quality and discrepancy reduction, with large gains in discrepancy

being made for minimal recommendation quality loss (See Figure 3.6). The two-

pass method is optimal, but the weighted-model provides a good approximation

of two-pass method’s output with less computational overhead.

3. Sales diversity maximization problems become easier as the display constraints are

relaxed since there are more opportunities for the system to make unconventional

recommendations. We show that the advantage our optimization based approach

has over competing approaches gets bigger as display constraints are tightened,

which is desirable for applications on mobile platforms where screen real estate is

scarce (see Figure 3.5).

4. Using the uniform target distribution can lead the optimizer to pick subgraphs

where degree constraints are violated by large margins at certain nodes. To remedy

this, we advocate the use of target distributions that move towards resembling the

underlying degree distribution rather than the uniform distribution.

Experimental Setup and Datasets. All of our experiments were conducted on a

desktop computer with an Intel i5 processor clocked at 2.7GHz, and with 16GB of

memory. We used three rating datasets to generate the graphs we fed to our flow

solvers: MovieLens-1m, MovieLens-10m [76] and the Netflix Prize dataset.

We pre-process the datasets to ensure that every user and every item has an adequate

amount of data on which to base predictions. This post processing leaves the MovieLens-

1m data with 5800 users and 3600 items, the MovieLens-10m dataset with 67000 users

and 9000 items, and the Netflix dataset with 8000 users and 5000 items. The use of

these datasets is standard in the recommender systems literature. In this chapter, we

consider the rating data to be triples of the form (user, item, rating), and discard any

extra information.

We used version 0.4.4 of the RankSys project to generate recommendations using stan-

dard collaborative filtering approaches [53]. The resulting network flow problems were

optimized using a modified version of the MCFSimplex solver due to Bertolini and

Frangioni [77]. Our choice of MCFSimplex was motivated by its open-source status and

e�ciency, but any other minimum cost flow solver such as CPLEX or Gurobi which ac-

cepts flow problems in the standard DIMACS format can also be used by our algorithms.

Our discrepancy minimization code is available at Github.

https://github.com/antikacioglu
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Quality Evaluation. To evaluate the quality of our method, we employ a modified

version of k-fold cross-validation. In particular, for each user in our datasets who has

an high enough number of observed ratings, we divide the rating set into 10 equal sized

subsets, and place each subset in one of 10 test sets. When creating the test sets, we

filter out the items which received a rating of 1 or 2 and keep the items which received a

rating of 3 or higher in order to ensure the relevance of our selections. We then define the

precision of our recommendation list to be the number of items we recommend among all

of our top-c recommendations which are also included in the test set. This provides an

underestimate of the relevance of our recommendations, as there might be items which

are relevant, but for which we have no record of the user liking. A simpler version of

our hold-out method is utilized in other works [54, 68] where only a single random split

is made. Using a 10-fold split of the test data enables us to run a signed rank test,

and test whether the improvements made by our algorithms are statistically significant.

This evaluation methodology will applied again in Chapter 4.

Our methodology stands in contrast with the methodology used by Adomavicius and

Kwon to evaluate the e↵ectiveness of their aggregate diversity maximization framework

[51]. They use a metric called prediction-in-top-c, which measures the average predicted

relevance of the c recommended items for each user. We believe that using predicted rat-

ings for relevance evaluation purposes is flawed since these predictions are approximate

in the first place. Furthermore, using the relevance values used by the recommender

make comparisons across di↵erent recommenders di�cult, as each recommender has its

own scale.

Supergraph Generation. All of our optimization problems require that a supergraph

of candidate recommendations be given. For each dataset we used, we generated 240

supergraphs in total. This is the result of using 10 training sets, 4 di↵erent recommender

approaches, and 6 di↵erent quality thresholds enforced by picking the top 50, 100, 200,

300, 400 and 500 recommendations for each user. We use k to denote the number of

candidate recommendations in the supergraph. The matrix factorization model we uti-

lize [1] comes with three parameter settings: a regularization parameter �, a confidence

parameter ↵ and the number of latent factors [1].

While the authors report an ↵ value of 40 is suitable for most applications, we set a

lower value of ↵ = 30 in order to obtain more diverse candidate recommendation lists.

The regularization parameter � was tuned with cross-validation as recommended by

the authors, and the model was trained with 50 latent factors. For the neighborhood

based methods, we consider neighborhoods of size 100 in both the item-based and user-

based cases. For these recommenders we opted use the inverted neighborhood policy

approach described in [68] in order to obtain more diverse candidate recommendation
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lists. Instead of using the top 100 most similar items to an item i as the neighborhood,

this approach uses the items which have item i in their top 100 neighborhoods. We also

used Jaccard similarity in order to measure similarity between pairs of users and items

in the neighborhood based methods.

The authors of the random walk recommender we implemented consider a parameter

setting ↵ which raises every element of the transition matrix to the power ↵ and find that

predictive accuracy is maximized for ↵ = 1.5 [54]. Since they conduct their experimental

validation on the same datasets as ours, we also use this parameter in our tests. In our

tables, we shorten the names of these recommenders as MF for the matrix factorization

model, IB and UB for the (item- and user-) neighborhood based approaches, and RW

for the random walk approach.

Trading O↵ Discrepancy and Rating Quality. The higher we set the number of

candidate recommendations per user, the larger the input graph G will be, giving our

algorithm more freedom to minimize discrepancy. On the other hand, in order to include

more edges in G, we will have to resort to using more lower quality recommendations

which will be reflected in our post-processed solution. Therefore, there is a trade-o↵

between minimizing the discrepancy from the target distribution, and maintaining a

high average recommendation quality. We will quantify this trade-o↵ in our experiments

and show that large discrepancy reductions can be made even with small compromises

in recommendation quality.

Post-Processing CF for a Diversified Recommender. To summarize the discus-

sion so far, we start with an arbitrary rating function which can predict the relevance

of any item to a given user. We use this rating function to generate a large number of

candidate recommendations which we encode in a weighted bipartite graph. We use this

graph along with the designer-specified degree constraints on users and items to create

a discrepancy minimization problem. Finally, we measure the quality of the resulting

solution by comparing the predictive accuracy on the held-out test data.

3.6.1 Comparison To Other Methods and Metrics

In this section we compare our discrepancy minimization framework to other similar

approaches. In particular, we test 6 di↵erent approaches to diversifying the recommen-

dation lists.

• Top(TOP): The standard method considers the unmodified output of the under-

lying recommender, and makes the top-k recommendations for each user. This is

the undiversified solution but provides the highest rating quality.
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• Two pass (GOL): The two-pass method first finds the lowest discrepancy value

achievable with the given graph for the current target degrees, and then in a second

pass, finds the highest rating solution which achieves this minimum.

• Aggregate Diversity (AGG): The aggregate diversity maximizing method is

also optimized using our own flow-based framework, by running our min-cost flow

algorithms with the setting of ai = 1 as described in Theorem 3.2.

• PC Reranking (PC), FD Reranking (FD) and Bayes Rule Reranking

(AB): These diversifiers are due Vargas and Castells [46, 68], and were discussed

in detail in our related work section.

• Greedy (GRD): This is an implementation of the greedy heuristic described in

Section 3.5.4.

We evaluate these di↵erent approaches on the following metrics, all measured for the

top-n recommendation task on both the MovieLens and Netflix data.

• D@n: Discrepancy from the uniform distribution, normalized to fit in the [0, 1]

range by dividing by the maximum discrepancy achievable, i.e. 2
Pl

i=1

ci.

• A@n: The fraction of items which received a recommendation.

• G@n: The Gini index of the degree distribution of items. If the degree distribution

of the items is given as a sorted list {di}ri=1

, then the Gini index is defined as follows:

G =
1

r

✓
r + 1� 2

Pr
i=1

(r + 1� i)diPr
i=1

di

◆

• E@n: The entropy of the probability distribution formed by normalizing this

degree distribution. Given the same degree distribution as above, entropy is defined

as follows:

E =
rX

i=1

� diPr
i=1

di
log

✓
diPr
i=1

di

◆

• P@n: Precision, measured as the fraction of items in the recommendation list

which are part of the test set.

Table 3.4 summarizes our results for the Netflix dataset and Table 3.3 does the same for

the MovieLens-1m dataset.

We start our discussion with the results on the two medium sized datasets. The first

thing to notice in these tables is that the undiversified recommendation lists perform
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very poorly with respect to all distributional measures. This is true with respect to

even the simplest measure, aggregate diversity. The Random Walk Recommender in

particular surfaces only 3% of the items in the Netflix catalog and 7% of the items in

the MovieLens catalog. Other recommenders do not do particularly better, and only

surface 15-20% of items to the users via top-10 recommendation lists.

We also note that an optimization based approach using aggregate diversity as the

objective function is unlikely to make a large di↵erence in the degree distribution of

the underlying recommender system. Indeed, for all the recommenders and for both

of the datasets, the aggregate diversity maximization approach only makes significant

improvements with respect to its own metric. This is to be expected from a crude

measure of system-level diversity such as aggregate diversity, as it is possible to have

a very lopsided recommendation distribution even while achieving full coverage of the

item catalog. As an extreme example, consider a recommender which seeks to make

2 recommendations per user, and suppose there are as many users as there are items.

If the recommender recommends one unique item to each users, and one of the items

to every user, aggregate diversity will be maximized. However, the Gini index will

be high and the entropy of the degree distribution will be low. Aggregate diversity is

still a valuable measure of the coverage properties of the recommender, as our baseline

approaches do not achieve good values for even this simple metric. However, all of the

other approaches we tested also make significant gains in aggregate diversity while also

significantly impacting the other metrics at the same time. In particular, the Bayes Rule

reranking approach and our own discrepancy minimization almost maximize aggregate

diversity on the MovieLens-1m and Netflix datasets respectively. Therefore, we believe

that the best approach to aggregate diversity maximization is to optimize it by proxy,

by optimizing for a more refined measure of recommendation diversity.

As expected, our method performs the best with respect to minimizing discrepancy

from the uniform distribution. However, the other methods we tested also make gains

towards minimizing discrepancy, which lends credibility to the use of discrepancy from

the uniform distribution as a metric for evaluating the system-wide diversity of recom-

mendations.

Among the methods we tested, the most aggressive diversifier is the Bayes Rule reranker,

which obtains the best scores with respect to every metric, in almost every instance.

Among the metrics we tested, our method is best suited for optimizing for aggregate

diversity, the Gini index, and entropy of the degree distribution, in that order. Even

though the two-pass method does not always obtain the best diversity improvements,

it does so at a very low predictive cost. Furthermore, as more edges are included in

the list of permissible recommendations (the second column of Tables 3.3,3.4,3.5), the



Chapter 3. Discrepancy 62

advantage of the Bayes Rule reranker almost vanishes with respect to the Gini and

aggregate diversity metrics, despite our recommender surfacing between 30% to 120%

more relevant recommendations. The predictive accuracy of the Popularity Complement

and Free Discovery reranking methods fall o↵ at a slower rate than the Bayes Rule

reranking method, but our method dominates those two methods in every metric except

for entropy. When 500 candidate recommendations are included for each user, our

recommender creates solutions with better diversity values and better precision values

than all the other recommenders we tested, even when they were supplied with more

accurate and shorter candidate recommendation lists.

Finally, we comment on the performance of the greedy discrepancy reducing technique.

With a relatively small number of candidate recommendations per user like k = 50, the

greedy algorithm can strike a good balance between discrepancy reduction and maintain-

ing the relevance of recommendations. However, in this regime, the greedy diversifier is

matched on all diversity metrics by the corresponding reranking based techniques, which

also beat it in predictive accuracy. The greedy algorithm is much quicker to improve

diversity as more candidate recommendations are added; However, in this regime the

Bayes Rule Reranker matches it well in diversity measures while beating it in predictive

accuracy. Since the predictive losses are too great, the greedy algorithm is an inadequate

replacement for the full flow based methods.

3.6.1.1 Large Dataset

The large dataset we tested deserves a special discussion for two reasons. First, the

MovieLens-10m dataset has 7 times as many users as it has items in its catalog, com-

pared to only a 1.5 times ratio in the MovieLens-1m dataset. With 70 times as many

recommendations as items, even the standard recommendation approach achieved 80%

coverage of the item catalog. This renders aggregate diversity maximization ine↵ective

as a method for increasing the equitability of the recommendation distribution. Second,

the large dataset is too large to solve in one batch by our flow methods. Therefore for

these experiments, we split the user base into 4 batches, find the minimum discrepancy

graph in each of these problems and combine them. Naturally, this leads to a higher

discrepancy and lower precision than solving the entire problem in one go. Despite these

factors, our results for the precision, Gini index and entropy measurements follow the

trends found in the medium sized datasets.
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Figure 3.5: The e↵ect of recommendation list length on distributional diversity mea-
sures in the MovieLens Matrix Factorization graph with 200 candidate recommenda-

tions.

3.6.2 E↵ect of Recommendation List Length

With more computer usage shifting from devices with larger displays like desktops and

laptops to mobile devices like phones and tablets, display constraints that govern the

number of recommendations we can make to user have gotten tighter. Therefore, it has

become increasingly important for diversification approaches to be e↵ective even when

there is space for only a few recommendations to be made. In the set of graphs below,

we fix the underlying subgraph to be the graph generated by our Matrix Factoriza-

tion recommender with 200 candidate recommendations for each user, and measure the

performance of the di↵erent diversifiers with display constraints set to c = 5, 10 and 20.

We note that our diversifier performs better as the display constraints get tighter. All

approaches su↵ered precision loss as display constraints were tightened, which is to be

expected. The lowest level of losses came from the Bayes Reranking approach, but this
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approach had such low baseline precision that all the other algorithms kept outperform-

ing it even as recommendation lists got longer. Moreover, our two-pass method increased

both its absolute and relative edge over the Free Discovery and Popularity Complement

diversifiers as c was set lower.

Our two-pass method also performed better in increasing diversity metrics when the (ini-

tial) recommendation lists were shorter. In particular, there was no significant changes

in the aggregate diversity achieved by our algorithms as c was varied. This was also the

case for Bayes Rule Reranking approach, but not for the novelty based reranking ap-

proaches FD and PC. These approaches would have needed lists of size c = 50 to achieve

comparable aggregate diversity values, at which point the precision of these diversifiers

su↵er considerably.

For the top-5 recommendation task, our method e↵ectively outperformed all other di-

versifiers. Our two-pass method loses out to the aggregate diversity and the baseline

approaches in precision, which achieve low diversity values. It loses out to aggregate

diversity maximization when considering the A@5 metric, but only by a small and sta-

tistically insignificant margin. We also achieve the highest G@5 value, while beating the

runner-up Bayes Rule Reranker significantly in precision. We only achieve the second

highest E@5 value, but once again beat our main competition in the Bayes Rule reanker

in precision. Considering all of these factors, we conclude that an optimization based

framework works better in applications where display constraints are particularly tight.

The reranking approaches make recommendations for each user independently, whereas

our optimization framework makes all of these recommendations at once, while optimiz-

ing explicitly for a diversity metric. Therefore, our two-pass method is better able to

coordinate a small number of recommendations to make large gains in diversity while

also keeping precision high.

3.6.3 Trading O↵ Discrepancy and Precision

In this section we explore the discrepancy/precision trade-o↵s made by our di↵erent

models. Throughout the section, we consider the discrepancy from the uniform target

distribution. This target indegree distribution sets aj = c · l/r for each vj 2 R for a

fixed c which represents the display constraints. The discrepancy from this target can

be thought of as an extreme measure of diversity, since we are measuring distance from

the most equitable distribution.

For the set of comparison graphs in Figure 3.6, we increase the number of candidate

recommendations for each user from 100 to 500 in increments of 100, and show how
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this a↵ects the recommendation quality of our solution as well as the lowest discrepancy

achievable. We plot the normalized discrepancy to the uniform target on the x-axis

against precision in the y-axis. Discrepancy improves towards the left, and recommen-

dation quality improves towards the top.

We consider 4 di↵erent approaches to reducing discrepancy. The first is our two-pass

method, which optimizes for discrepancy first, then for average predicted relevance across

the system. We also consider the weighted method with the settings µ = 1, and µ = 1/2

and µ = 0.01. Recall that the weighted method optimizes the objective discrepancy(H)�
µ · rel(H), where rel(H) denotes the average recommendation quality in the solution

graph H we produce. Therefore, the weighted method does not optimize for discrepancy.

Instead, it find a solution where the cost of reducing discrepancy by µ units is the

same as reducing aggregate predicted relevance by 1 unit. When run on the same input

graph, the predicted relevance of the two-pass method is always lower than the predicted

relevance of the µ = 1 model, and the predicted relevance of the weighted method with

µ is always lower than the predicted relevance of the weighted method with µ0 > µ. The

discrepancies produced by these algorithms on the same graph are also ordered in the

same way.

From these graphs we can immediately notice certain features. First, all three algorithms

produce highly clustered data with initial normalized discrepancy from the uniform

distribution always being over 0.8. Second, the fall-o↵ in discrepancy happens first

quickly, then slowly as more edges are included. Therefore, significant gains are possible

even while including a small number of candidate recommendations. Third, the choice

of recommender matters. It is harder to improve the discrepancy on graphs generated

by the Random Walk recommender than on any of the other other graphs we generated.

Fourth, with a high enough number of edges, discrepancy to the uniform target can be

driven down towards 0. However, this may come at significant quality loss in recom-

mendation quality depending on the underlying graph. In particular, after the addition

of 500 candidate recommendations for each user, we were able to reduce discrepancy

from the uniform distribution on every one of the graphs except for the Random Walk

Recommender by nearly 50% over the baseline. This drops the number of relevant recom-

mendations surfaced by our method by 15%-30%. These precision losses are smaller than

the losses produced the reranking diversifiers we tested, even when they were supplied

with a shorter candidate recommendation lists which contain more relevant recommen-

dations (see Table 3.3). Nonetheless, this level of loss in precision is not insignificant,

and we suggest that users of our methods explore the full range of the trade-o↵s possible

before putting the algorithms into commercial use.
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Figure 3.6: Recommendation quality vs normalized discrepancy from the uniform
target in MovieLens and Netflix generated graphs. In each series, the number of edges

in the input graph increases towards the left.

Two-pass versus Weighted Methods. One notable di↵erence between the weighted

methods and the two-pass method is that in the weighted method, the discrepancy im-

provements start slowing down as more and more candidate edges are included in the

supergraph. As mentioned above, the bicriteria objectives improve when discrepancy

gains can be made which o↵set the fall in predicted relevance. As we enlarge the candi-

date set of recommendations, we enable discrepancy increases with edges that are less

and less able to make up for the corresponding relevance losses. Therefore, the solu-

tion graph stops changing though lower discrepancies are possible. Where this limiting

point lies depends on the structure of the graph and the distribution of relevance values

assigned by the underlying recommender and is not easy to predict. We find that the
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d
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0.86 0.85 0.64 0.42 0.21 0

Table 3.6: Pairwise discrepancy between di↵erent target distributions in the top-10
recommendation task in the MovieLens-1mItem-Based recommender and thresholded

to 300 candidate recommendations

Matrix Factorization and User Based recommenders were more amenable to bicriteria

optimization than the Item Based or Random Walk Based recommenders. We also find

that for suitably low values of µ, the weighted method can adequately approximate the

output of the two-pass method, achieving essentially the same trade-o↵ curves.

3.6.4 Qualitative Parameter Tuning: Choice of Target Distribution

It might not be realistic to set the same target indegree for every item since the popular

items are probably popular for a good reason. In order to create alternative distribution,

we will use a convex combination of two di↵erent distributions. The first distribution

we use is f , the uniform target indegree distribution. We also generate a more skewed

distribution p by taking the indegree distribution of the candidate supergraph, and

normalizing it so that it sums to the same value as the flat distribution. This distribution,

while more diversified than the top c distribution, should still be significantly unbalanced.

Finally, we generate the distribution d↵ = ↵f + (1�↵)p to be used as our target. Since

both f and p satisfy our feasibility criterion
P

ai =
P

cj , so does d↵ for all ↵ 2 [0, 1].

Furthermore, for 0  ↵  1, this function smoothly interpolates between f and p and

produces a non-negative vector of target indegree values.

The particular setting of ↵ is not special, and provided there are enough edges in the

underlying graph, the two-pass method can achieve significant improvements regardless

of the distribution used. To demonstrate this, fix the candidate supergraph to be the

graph generated by applying the Item Based recommender to the MovieLens-1m dataset

and thresholding candidate recommendations to the top 300 recommendations. Table 3.6

below shows that as we vary ↵, we get significantly di↵erent target distributions in the

top-10 recommendation problem.

Table 3.7 shows that our diversifier achieves significant normalized discrepancy reduction

in each case with the same modest rating loss.
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Table 3.7: Rating loss vs reduction in discrepancy given di↵erent target distributions
when compared with the top 10 recommendations, in the MovieLens-1m Item-Based

recommender and thresholded to 200 candidate recommendations
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Figure 3.7: Degree distribution in a log-scale of the solution subgraphs as the ↵ of the
target distribution is varied in a top-10 recommendation task. The underlying super-
graph is the MovieLens graph generated by Item Based recommender and thresholded
to the top 200 recommendations. Note the presence of large outliers when the target

distribution is close to uniform.

We have mentioned earlier that it is not always desirable to use the uniform target. In our

modeling section, we gave a semantically motivated reason for this: a recommendation

engine that recommends every item the same number of times would do a poor job of

endorsing any item, even the ones that obviously deserve such endorsement. Here, we

give an empirically motivated reason as well. When targeting the uniform distribution

(d
0

), discrepancy can do a poor job of producing a pleasing in-degree distribution at

the items. We reduce the degrees of more vertices, more drastically this way, but this

can mean that we produce a small group of vertices with really high indegree as well.

In the Figure 3.7, we show the in-degree distributions of the items in the solutions

produced by our two-pass method on the same underlying graph, but with varying

target distributions. It demonstrates that the degree distribution is much smoother in

the global sense when a proportional target is used, and that the number of outliers

with very large degree are reduced.

3.6.5 Qualitative Parameter Tuning: Convex Cost Functions

As noted in the Algorithms section, we can change the way we charge for degree overruns

and change the types of distributions that the flow model prefers. This can be used to

remedy a particular behavior of the `
1

norm, which is used in the discrepancy definition,

to prefer sparse solutions. The flipside is that the majority of the contributions to
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Figure 3.8: Cumulative degree distribution of the solution subgraph with di↵erent ↵
and cost functions for a candidate supergraph on the Netflix data.

discrepancy come from relatively few vertices. Since the amount a vertex can contribute

to discrepancy by undershooting its target indegree is bounded, these vertices must in

fact be very high degree vertices. Therefore, while straightforward `
1

norm minimization

still has benefits in spreading degree more equitably among lower degree vertices, it does

not necessarily cut down on the long tail. While it is possible to use another `p norm in

the objective by approximating the costs by piecewise linear cost functions [78], common

network flow solvers neither provide tools to convert arbitrary convex costs to piecewise

linear costs, nor do they implement algorithms that can e�ciently solve convex cost

versions of flow problems.

We can overcome this problem by more strictly punishing degree overruns. To demon-

strate this, we fix our attention to the supergraph generated on the Netflix data using

User Based Filtering, thresholded to the top 300 recommendations. We then diversified

the graph against the target indegree distributions d
0

, d
1/3, d2/3, d1, as defined in the

previous section. In one set of runs, we optimized our flow model directly for discrep-

ancy. In another set of runs, labelled “2-slope” in the chart below, we added a second

sink, which does not charge for the first av edges, charges a cost for the next 20 edges,

and charges double the cost for any edges beyond that. The name is due to the fact that

the cost of a network edge increases first with slope 1, then with slope 2, as opposed

to the usual setting where it increases with slope 1 throughout. On the x-axis, we put

the number of times an item is recommended. On the y-axis, we show the fraction

of recommendations in the system which were made to items with fewer than a given

number of recommendations.

As predicted, the 2-slope runs are much better at cutting down on the long tail. Solu-

tions optimized for regular discrepancy tend to satisfy the indegree requirement of more

vertices exactly. So when ↵ is small, and the target distribution close to uniform, there

tends to a large bump in the degree distribution near the average indegree of the target
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distribution. When the extra sink is added, it causes a secondary bump. The location of

this bump can be seen to be 20 units higher than the first bump, showing the reluctance

of the optimizer to go above the threshold. Secondary bumps like this cause more of the

long tail to be subsumed under given thresholds. However, it should be noted that this

e↵ect is not true across all target distributions. For example, in Figure 3.8, we can see

that there is no di↵erence between the 2-slope and regular runs against the d
1

target

distribution. The reason for this is that when ↵ is high, the target indegrees can all be

met exactly, leading to no di↵erence between the solutions produced by the two di↵erent

schemes.

3.6.6 Resource Use

Since our methods are based on minimum cost flow, the problems that result from our

reduction can be solved e�ciently. The two graphs below show the cost of optimiz-

ing for uniform discrepancy with the two-pass method and the weighted method in the

MovieLens-1m and Netflix graphs. We increase the number of candidate recommenda-

tions from 100 to 500, and report the average runtime across the di↵erent recommenders.

The labels for this plot are identical to the labels we have been using so far, with the

exception of WGT, which denotes a run of the weighted method. We did not find signif-

icant runtime di↵erences between di↵erent settings of µ for this model, and present the

results for a representative run with the setting µ = 1. While our methods do not run

as e�ciently as reranking methods, they provide much better diversification, and even

instances with tens of millions of candidate recommendations can be run on a desktop.
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Figure 3.9: Time to optimize the top-10 recommendation task in MovieLens-1m based
graphs in seconds (|L|=5800,|R|=3600)

We also note that the two-pass method takes noticeably longer than twice runtime the

cost of the weighted method. It may be possible to improve this by a using a better

implementation of the two-pass method, whereby the feasible solution found in the first
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Figure 3.11: Time to optimize the top-10 recommendation task in Netflix based
graphs in seconds (|L|=67000,|R|=9000)

pass is fed as a seed solution to the second pass. While we do not test this approach,

we recommend its use to anyone who would like to use our framework in a commercial

setting. Even if this improvement were to be made, the second pass of the two-pass

method optimization is still a more challenging optimization problem than the first pass

since it includes a stricter set of constraints. Moreover, the di�culty of the second pass

is determined by how close the discrepancy target we set is to the lowest discrepancy

achievable, which can lead to a significant increase in resource use. This problem can

be dealt with in practice either by reducing the size of the discrepancy problems as

mentioned in Section 3.6.1.1, or by using the weighted method instead of the two-pass

method as described in Section 3.6.1.
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3.7 Conclusions

We have proposed a new way of measuring how equitably a recommender system dis-

tributes its recommendations called discrepancy, and showed that it can be optimized

for in polynomial time using network flow techniques. We validated the e↵ectiveness

and the e�ciency of our method by conducting extensive tests on MovieLens and Net-

flix datasets, and showed it to improve diversity across a variety of measures. Our work

demonstrates that distributional diversity measures like discrepancy can be e�ciently

optimized to allow information designers to have more control over their recommender

systems.

Acknowledgements: This work was conducted jointly with my advisor, R Ravi.
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Category and Type Coverage

Table 4.1: Notation for Chapter 4

L Set of users.
R Set of items.
L Set of user types.
R Set of item categories.
Lb A subset of the users denoting users of type b.
Ra A subset of the items denoting items of belonging to category

a.
G(L,R,E) Bipartite graph of candidate recommendations.

H A subset of G denoting the recommendations made by the
system.

ui The ith user.
vj The jth item.
ci The display constraint for the ith user.
aj The target degree for the jth item.

�j(Lb) The threshold for item j’s recommendations from type b.
⇢i(Ra) The threshold for user i’s recommendations from category

a.
� The relative weight of the user diversity term.
µ The relative weight of the item diversity term.

N(ui) The set of ci recommendations made to the ith in H.
T (ui) The set of held-out recommendations for the ith user in the

test set.

4.1 Introduction

The traditional goal in the design of recommendation systems is the accuracy of predic-

tions as measured by implied relevance of the recommended items. Often, such systems

73
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operate on item catalogs and user bases that have natural clusterings into user types

or item categories, by political a�liation, artistic genres, or product hierarchies. The

single-minded focus on relevance fails to incorporate requirements of diversity of the

recommendations among the item categories and item types. Our problem is moti-

vated by three di↵erent considerations in incorporating such diversity in the design of

recommender systems.

First, the individual users need to be presented with a diverse set of items. In real life

datasets, users’ interaction histories often show a broad interest in di↵erent categories

of items. Unlike search tools, recommender systems do not necessarily have knowledge

of the user’s intent, and must hedge their bets on which types of items the user is

interested in at a given point. Therefore, diversity of recommendations within a user’s

list a necessary consideration in making the system useful to the users. Moreover, this

lack of knowledge about the user’s intent provides an opportunity to broaden the user’s

taste profile by exposing her to previously unknown types of items. This motivates

the incorporation of user-focused diversity metrics in optimization problems involving

recommender systems.

The second consideration we look at is item-level diversity, that is, we wish to show

each item to a diverse set of users. Each item usually has a standard type of user

“audience” that it gets shown to based on those users’ search queries and interaction

history; horror movies are typically shown to users who display some sort of interest

in that particular genre or theme. Similarly, certain brands of items on an e-commerce

website are typically shown to customers who have purchased other items from that

brand. If we show items to only that niche set of users, we are ultimately preventing

those items from being discovered by new types of users and receiving new feedback.

Restricting items to only their traditional “audience” also prompts the recommender to

keep recommending canonically popular items, since those items reach a broader set of

users, while failing to recommend items that are less popular or ”long tail” items that

have a more niche audience. This creates a “filter bubble” that allows the more popular

items to keep getting popular while stunting the popularity and discoverability of less-

viewed items [5]. Showing items to users that fall outside of their traditional “audience”

of gives items the opportunity to collect new feedback (both positive and negative)

from a more diverse set of users that could potentially help them be recommended to

other users. User-level diversity fails to consider item-level diversity, since assigning

recommendations based on user-satisfaction would still only show items to users who

fall in their traditional “audience.” This would result in bad item-level diversity but

could still give high user-level diversity if recommendations are diverse enough.
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Finally, the third consideration we have is system-level diversity, which involves aggre-

gating the recommendations made to all users, and studying the resulting distribution

of recommendations. The business running the recommender system often has concerns

other than pure user satisfaction or item recommendation diversity, the two factors men-

tioned above. Examples of such concerns include achieving good coverage of the item

catalog and avoiding the perpetuation of biases across the system such as popularity

bias or filter bubbles. Despite the fact that these considerations are often studied un-

der the same “diversity” umbrella, systems that optimize for user-level diversity do not

necessarily score well in system-level diversity. For example, a recommender system

that recommends the same set of 10 most diverse items achieves almost negligible cat-

alog coverage when aggregated across all users. Conversely, a recommender that makes

monotonous recommendations at the user-level can score very well in coverage-style met-

rics provided that the user base is diverse enough. Due to this lack of correlation between

user-level diversity and system-level diversity, both measures must be explicitly factored

into a recommender system in order for the system to score well in both dimensions.

Prior work has mainly focused on defining intent-aware metrics among categories and

maximizing relevance of the resulting recommendations, which we review in the next

section. Following that, we provide two new diversity metrics to simultaneously address

the problems of diversifying the categories of items that each user sees, diversifying the

types of users that each item is shown, and maintaining high recommendation quality.

Following that, we model this problem as a subgraph selection problem on the bipar-

tite graph of candidate recommendations between users and items. In Section 4.3, we

consider the case of disjoint item categories and user types, and show that the resulting

problems can be solved exactly in polynomial time, by a reduction to the minimum

cost flow problem. Following that in Section 4.4, we address the case of non-disjoint

categories and user types, we present e�cient approximation algorithms using the sub-

modularity of the objective, after proving NP-completeness of the objectives. Both of

the above subgroup-based diversity metrics can also be generalized if we truncate the

diversity contribution of any item category or user type by a threshold. These define

thresholded versions of our metrics which we employ in our experiments to reflect the rel-

ative importance of various categories and types. Finally, in Section 4.6, we validate the

e↵ectiveness of our algorithms on the MovieLens-1m and Netflix datasets, and show that

algorithms designed for our objective also perform well on sales diversity metrics, and

even some intent-aware diversity metrics. Our experimental results justify the validity

of our new item-based diversity metrics.



Chapter 4. Category and Type Coverage 76

4.1.1 Related Work and Our Contributions

First we survey previous work on category-aware metrics for diversification, describing

relevant new metrics defined by this body of work since we also compare our systems

according to these metrics. Next, we survey work on sales diversity measures that

are system-wide measures of diversification. Finally we review some related work on

submodularity and crowd-sourcing.

4.1.2 Category-Aware Metrics

Others have previously investigated the use of category information in building recom-

mender systems, and defined metrics for measuring the diversity contained in user lists.

In our work, we focus on three, each of which informs one of the baseline algorithms we

compare against in our experimental section.

Intra-list Distance: We define a recommendation set’s intra-list distance (ILD) as the

average pairwise distance among items [79]. This is used to measure the diversity of an

individual user’s recommendations and quantifies user-novelty. The distance dist(vk, vj)

between items we consider is measured using the cosine similarity between the items’

category membership vectors. Given a list L of recommendations, defined by item lists

of length cu for user u, the intra-list distance is defined as follows (we use L to denote

the left-side of the bipartite graph representation representing the users, and N(ui) to

represent the neighbors of user ui, which are items in the right-hand side recommended

to her).

1

|L|
X

ui2L

1

ci(ci � 1)

X

(vk,vj)2N(ui)

dist(vk, vj).

Maximizing this objective enforces items in the recommendation list of a user to be

dissimilar, but ILD does not influence the resulting distribution of categories in the

resulting list. Furthermore, over-representation of certain categories is not explicitly

punished by this metric. The MMR method [79] approximately optimizes the ILD

metric, by greedily growing a recommendation list S. The next item to be added

to the recommendation list is chosen to be the one which maximizes the quantity

�rel(ui, vk) + (1 � �)minvj2S dist(vk, vj), where � is a trade-o↵ parameter between 0

and 1, and rel(ui, vk) represents the relevance score of item vk to user ui.
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Intent-Aware Expected Reciprocal Rank (ERR-IA): The ERR-IA metric is the

intent-aware version of Expected Reciprocal Rank metric, introduced by Chapelle et al

[80]. ERR-IA considers the sum of each item category’s weighted marginal relevance.

To do so, we consider the quantity p(Ri), which is the probability that the desired

recommendation set’s target category is Ri. Chapelle et al [80] formally define ERR-IA

for some u’s given recommendation set N(ui) = {vj}cij=1

as follows (rel(vk) denotes the

relevance of item vk to the given category):

X

Ra2R
p(Ra)

ciX

k=1

1

k
rel(vk)

k�1Y

`=1

(1� rel(v`)).

ERR-IA is a personalized metric and aims for good coverage of relevant categories in the

recommendation list. However, it does not explicitly penalize the over-representation of

a particular category provided that it is well-covered. This metric is optimized by the

xQuAD reranking strategy [81]. Similar to the MMR method, xQuAD greedily opti-

mizes for its metric by greedily picking items which maximize the marginal change in

the ERR-IA metric plus a relevance term.

Binomial Diversity: Binomial diversity is a diversity measure due to Vargas et al [82].

They model the number of times each category g is surfaced to a user as a binomial

random variable Xg which depends on the display constraint, and the user’s interest in

that category. The probability of the user’s interest in a given category is estimated

from the training data, as the fraction of movies the user has shown interest in which

belong to that category. Given a set of items S, which cover categories g
1

, . . . , gm out

of a total of n categories g
1

, . . . , gn, the Binomial coverage score of S is defined as

BinomialCov(S) =

 
nY

i=m+1

P (Xgi = 0)

!
1/n

.

Given that S covers each of categories g
1

, . . . , gm a total of k
1

, . . . , km times each, the

binomial non-redundancy score is defined as

BinomialNonRed(S) =

 
mY

i=1

P (Xgi > kgi |Xgi > 0)

!
1/m

.

With these two measures in place, we can finally define
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BinomialDiv(S) = BinomialCov(S) ·BinomialNonRed(S).

Binomial diversity punishes both under-representation and over-representation of a given

category in a user’s list, and strives for a balance between coverage and non-redundancy.

The binomial coverage function obtains a high value when many categories which should

appear at least once in a recommendation list do not make an appearance at all. The

binomial non-redundancy term penalizes each genre for being either over or under-

represented beyond its prevalence in the training data. Binomial diversity can be opti-

mized for in the same way as xQuAD optimizes for the ERR-IA metric, and a thorough

experimental evaluation of this method is carried out by [82]. However, due to the com-

plexity of the metric, no explicit guarantees can be given for the performance of the

algorithm.

4.1.3 Sales Diversity

In addition to adding diversity to a single user’s recommendation list, we are also inter-

ested in surfacing content for increased feedback from the users. Since it is impossible

for the users to gain feedback on items that are not surfaced adequately by the system,

we measure our algorithms by two sales diversity measures as well. The first of these

metrics is aggregate diversity, which counts the number of items that are shown to at

least one user [49, 62, 63]. Our thresholded item diversity objective can be thought

of as a refinement of aggregate diversity, where each item needs to be recommended to

multiple di↵erent types of users instead of just once to anyone in the system. The second

sales diversity measure that we employ in our experiments is the Gini index which is

also widely employed in the recommender system community [62, 64–66, 83]. Category-

aware metrics surveyed above try to solve the filter bubble problem for the users, while

the type information can be used to solve the same problem for the business running the

recommender system. We incorporate aggregate information symmetrically from both

item-category and user-type information in our metrics to address this aspect.

4.1.4 Submodularity and NP-Completeness

The problem of maximizing a submodular set function have been extensively analyzed

in the last 40 years, starting with Nemhauser et. al. [30] Many of the problems we

pose reduce to maximizing such a function, which is NP-hard even when the function is

monotone increasing. Nonetheless, the problem can be approximated using the greedy

algorithm, which gives a (1 � 1/e)-approximation in the simplest case. Moreover, the
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constraint of choosing a subset of a fixed size, which corresponds to a uniform matroid

constraint, can be replaced by any other matroid constraint without a↵ecting the ap-

proximation ratio [84]. Further advancements have made it possible to incorporate more

types of constraints [85, 86] and yielded e�cient algorithms for di↵erent types of com-

puter architectures [87]. Since the coverage type objectives we define in this chapter are

submodular, and our main type of constraints form a partition matroid constraint, we

make extensive use of results in this area. Other researchers have considered the use of

submodular functions in diversifying recommendations, but only over the set of a single

user’s recommendation set [88? –90].

4.1.5 Crowdsourcing

Finally, our work is related to some problems from the field of crowdsourcing. In crowd-

sourcing problems a large number of tasks need to be assigned to a number of human

agents. The human agents have limited time, which gives rise to constraints similar to

the display constraints we have in our recommender task. Moreover, every task needs to

be attended to, making coverage an essential objective. There’s a wealth of literature,

some of which overlaps with the recommendation field, which seeks to solve these prob-

lems [91–93]. However, coverage of every item from every category is not a strict goal for

us, and we seek only to increase coverage using post-processing while maintaining the

relevance of the results. The relaxation of this constraint makes crowdsourcing results

not directly applicable to the problems we pose.

4.2 Summary of Contributions

1. We introduce two new metrics for recommendation diversity that we call thresh-

olded item-diversity (TIDiv) and thresholded user-diversity (TUDiv) which con-

sider the distribution of user types among an item’s recommended user set and the

distribution of item categories in a user’s recommendation item set respectively.

TUDiv is an objective that is similar to other category-aware diversity metrics, but

TIDiv is unique in considering diversity among an item’s recommendees. TIDiv

can be thought of as a sales diversity metric, and explicitly addresses the need of

a business to collect feedback from di↵erent types of users.

2. In the case of disjoint types and categories, we model the problem of maximizing

type diversity across all items and category diversity across all users as a sub-

graph selection problem. We reduce the resulting problem to a minimum cost flow

problem and obtain exact polynomial time algorithms (Theorem 4.5) .
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3. In the case of non-disjoint types and categories, we prove that the problem of

maximizing the same objectives mentioned above is NP-complete (Theorem 4.6).

While this rules out an exact polynomial time solution, we obtain a (1 � 1/e)-

approximation using the submodularity of our objectives. We also show how to

modify the algorithm to run in nearly linear time in the number of candidate

recommendations (Theorem 4.11), making it very e�cient.

4. Using the MovieLens dataset, we conduct experiments that consider both disjoint

item categories and overlapping ones. We show that despite being flow based, our

algorithms for the disjoint case can easily handle problems involving millions of

candidate edges. We also show that the greedy algorithm we describe is compet-

itive in e�ciency with the reranking approaches we compare against (Subsection

4.7.1), and competitive with our optimal flow based approach when used with dis-

joint categories and types (Subsection 4.7.2). Our algorithms perform better than

the baselines across the board on sales diversity metrics, and obtain good values

for the other intent-aware metrics despite only optimizing for them by proxy.

4.3 Disjoint Types and Categories

We model the problem of making recommendations as a subgraph selection problem on

a bipartite graph G = (L [ R,E) where the partition L represents a set of users and

partition R represents a set of items. For each user ui, we have a space constraint ci,

which is due to display space limitations on a given webpage. In this section, we model

the case when the subgroups of users and items are disjoint.

We define a collection of subsets L = {L
1

, L
2

, ...Ln} on the user set L that represent

di↵erent types of users and are mutually disjoint. Similarly, we define a collection

of subsets R = {R
1

, R
2

, ..., Rm} on the item catalog which partition R to represent

di↵erent categories or genres of items. This means there exists well-defined functions

type : L ! L, which maps users to their designated type, and cat : R ! R, which

maps items to their corresponding category. The edges between users and items in G

represent possible recommendations that can be made. We wish to output a subgraph

H of recommendations where each user ui has ci recommendations.

4.3.1 Global edge-wise diversity

Consider a recommendation edge (ui, vj) in the subgraph H. Let �Hi (cat(vj)) denote the

number of neighbors user ui has in vj ’s category and �Hj (type(ui)) denote the number of
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Input: A weighted bipartite graph G(L,R,E), a vector of display constraints {ci}li=1

,
a collection of user types L, a collection of item categories R, real-valued parameters
�, µ .
Output: A subgraph H ✓ G, of maximum degree ci at each node ui 2 L, and
maximizing the objective Div�,µ(H) + rel(H).

Figure 4.1: The definition of the MAX�Div�,µ problem.

neighbors vj has in ui’s type so far in H. In order to achieve a diverse set of recommen-

dations, we would like each user to see a large number of categories, while also showing

each item to a large number of user-types. To define a diversity metric that takes both

of these considerations into account, we consider assigning the following weight to each

edge where � and µ are real valued parameters

wij =
�

�Hi (cat(vj))
+

µ

�Hj (type(ui))
.

A weighting like this is natural, since we are assigning less weight to recommendations

that are not novel for either the user type or the item category that this recommendation

serves. For instance, a recommendation edge that gives the user the only item from a

category, and the item the only user from a type, will have the maximum weight of

� + µ. We can now define the diversity of a solution subgraph H as follows.

Div�,µ(H) =
X

uivj2H
wij

and subsequently maximize this objective for a highly diverse set of recommendations.

Proposition 4.1. With the definition above

Div�,µ(H) = �
X

ui2L
|a : Ra \N(ui) 6= ;|+ µ

X

vj2R
|a : La \N(vj) 6= ;|.

Proof. We can think of each edge weight as a user contributing a fractional value towards

the category the user is hitting as well as an item contributing a fractional value of

towards the user-type the item gets hit by. For example, if a user ui has 4 edges to

some category, the value of each �
�Hi (cat(vj))

for every item v in that category that u is

connected to is �
4

. If some item vj has 3 edges coming from the same user-type, the

value for µ
�Hj (type(ui))

for each user vj is connected to is µ
3

. This means that, Div(H) gets

a value of � for every category a user hits, and a value of µ for every user-type an item
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hits:

Div�,µ(H) =
X

uivj2H

�

�Hi (cat(vj))
+

µ

�Hj (type(ui))

=
X

ui2H

X

Ra\N(ui)

�

|Ra \N(ui)|
+
X

vj2H

X

Lb\N(vj)

µ

|Lb \N(vj)|

= �
X

ui2L
|a : Ra \N(ui) 6= ;|+ µ

X

vj2R
|a : La \N(vj) 6= ;|.

We can isolate both terms of this expression as their own objectives, which may be

formalized as follows:

UserDiv(H) =
X

ui2L

X

Ra

1[9vj 2 Ra : uivj 2 H].

ItemDiv(H) =
X

vj2R

X

La

1[9ui 2 La : uivj 2 H].

Here, UserDiv(H) will give us reward proportional to the number of categories hit for

each user and ItemDiv(H) will give us reward proportional to the number of user types

hit for each item.

Ignoring type information, we first show that UserDiv(H) can be optimized in polyno-

mial time, since this construction is simpler to formulate and solve in practice.

Theorem 4.2. The problem of maximizing Div�,µ can be reduced to a minimum cost

flow problem if the categories are disjoint, i.e. Ra \Rb = ; for all a, b.

Proof. For each ui 2 L, we set supplies of ci, and a demand of
P

ui2L ci for a newly

created sink node t. For each user ui and category Ra such that 9vj 2 Ra such that

uivj 2 G we create nodes ni,a and n0
i,a. We will create an arc of capacity 1 and cost �1

between every ui and n0
i,a. We will also add arcs of capacity 1 and cost 0 between every

n0
i,a and ni,a and arcs of unbounded capacity and cost 0 between ui and ni,a. For each

edge uivj in G where vj 2 Ra we create an arc of capacity 1 and cost 0 between ni,a and

vj . Finally, from each vj 2 R we make an arc of unbounded capacity and cost 0 to the

sink node t.

We let the solution subgraph H be the subgraph of G formed by using edges uivj

for all arcs of the form (ni,a,vj) used in the flow. Each node now gets to take one
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recommendation in each new category for a cost of �1, Therefore, the cost of a flow

defined by H is �
P

ui2L
P

Ra
1[9vj 2 Ra : uivj 2 H]. Minimizing this quantity is the

same as maximizing UserDiv(H), which proves the result.

Proposition 4.3. If every user is his own type, then subject to display constraints,

Div�,µ(H) / UserDiv(H), and Div(H) can be maximized exactly in polynomial time.

Proof. If every user is his own type, then the quantity |a : La\N(vj) 6= ;| simply counts

the number of edges incident on an item vj . Therefore, we obtain

Div�,µ(H) = �
X

ui2L
|a : Ra \N(ui) 6= ;|+ µ

X

vj2R
�H(vj)

= �UserDiv(H) + µ
X

ui2L
�H(ui)

= �UserDiv(H) + µ
X

ui2L
ci.

Since the quantity on the right is constant, the result follows from Theorem 4.2.

Finally, we prove that the theorem in the most general case, by combining the objec-

tives UserDiv(H) and ItemDiv(H). In fact, this is possible while incorporating rating

relevance into the objective. In particular, let rel(ui, vj) denote the relevance of item vj

to user ui. Then the relevance based quality of the entire recommender system can be

computed as rel(H) =
P

(ui,vj)2H rel(ui, vj). We can now state the main result of this

section.

Theorem 4.4. The problem of maximizing Div�,µ(H) can be reduced to a minimum cost

network flow problem if both user types and item categories are disjoint, i.e. Ra\Rb = ;
and La \ Lb = ; for all a, b.

Proof. Our network will have nodes for all users ui 2 L and items vj 2 R of G(L[R,E),

and a sink node t. The supply for each user ui will be its corresponding space constraint

ci. For each user ui, we will create two nodes for each item category Ra its edges hit,

ni,a and n0
i,a. Let there be an arc of capacity 1 and cost �� between ui and n0

i,a and

an arc with capacity 1 and cost 0 between n0
i,a and ni,a. There will also be an arc with

unbounded capacity and cost 0 between ui and ni,a. Similarly, for an item vj , we will

create two nodes for each user type Lb its incoming edges are from, mj,b and m0
j,b. Let

there be an arc of capacity 1 and cost �µ between m0
j,b and vj , and an arc of capacity 1

and cost 0 between mj,b and m0
j,b. We will also add an arc of unbounded capacity and
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Figure 4.2: Construction of the flow problem in Theorem 4.4. The labels on the arcs
denote cost/capacity.

cost 0 between mj,b and v. For each edge (ui, vj) 2 E, where vj is in category Ra and

ui is of type Lb, we will add an arc with cost �rel(ui, vj) and capacity 1 between ni,a

and mj,b. Finally, there will be an arc from every item vi to the sink t with unbounded

capacity and cost 0. A diagram of the construction can be found in Figure 4.2.

We let the solution subgraph H be the subgraph of G formed by using edges (ui, vj) for

all arcs of the form (ni,a,mj,b) used in the flow. The cost of the flow induced by H will

therefore be ��
P

ui2L |a : Ra \ N(ui) 6= ;| � µ
P

vj2L |a : La \ N(vj) 6= ;| � rel(H),

since for each new category a user ui hits, we use one arc of cost �� and similarly, we

will use one arc of cost �µ for each new user type an item vj gets hit by. Observe that

this quantity is ��UserDiv(H) � µItemDiv(H) � rel(H). Therefore, minimizing this

quantity is the same as maximizing �UserDiv(H) + µItemDiv(H).

4.3.2 Diversity Thresholds

While increasing user and item diversity is important, one downfall to our method is

that it fails to take into account the fact that the relevance of each category to a user
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Input: A weighted bipartite graph G(L,R,E), a vector of display constraints {ci}li=1

,
a collection of user types L, a collection of item categories R, user-category thresholds
{⇢i(Ra)}i,a, item-type thresholds {�j(Lb)}j,b, real-valued parameters �, µ .
Output: A subgraph H ✓ G, of maximum degree ci at each node ui 2 L, and
maximizing the objective TDiv�,µ(H) + rel(H).

Figure 4.3: The definition of the MAX� TDiv�,µ problem.

may be di↵erent. It may not be beneficial for our recommender to show a user items

from every di↵erent category possible, since that user may not be interested in some of

those categories to begin with. The same can be said for the item side: item diversity

may increase an item’s popularity and help it collect feedback, however, an item should

be shown to users in its target audience more than users outside its target audience.

To fix this, and help guide our algorithm to selecting more relevant recommendations

for each user and item, we propose setting diversity thresholds for each user-category

and item-type pair. For categories that the user cares a lot about, we can increase this

threshold while setting it to zero for those that the user is not interested in at all. Let

us denote ⇢i(Ra) as user ui’s threshold for recommendations made to items in category

Ra, and �j(Lb) be an item vj ’s threshold for recommendations made from users of type

Lb. We now define two updated objectives that take these thresholds into account:

TUDiv(H) =
X

ui2L

X

Ra

min(⇢i(Ra), �
H
i (Ra)).

T IDiv(H) =
X

vj2R

X

Lb

min(�j(Lb), �
H
j (Lb)).

We can again consider these two objectives together to form a single objective that

will maximize the thresholded diversity of a solution subgraph H, where � and µ are

real-valued parameters:

TDiv�,µ(H) = �TUDiv(H) + µTIDiv(H).

The main result of this section is that in the case where user types and item categories

are disjoint, TDiv(H) can still be optimized in polynomial time.

Theorem 4.5. The MAX� TDiv�,µ problem reduced to a minimum cost network flow

problem if both user types and item categories are disjoint, i.e. Ra \ Rb = ; and and

La \ Lb = ; for all a, b.
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Figure 4.4: Construction of the flow problem in Theorem 4.5.

Proof. Our flow construction will be the same as that of Theorem 4.4. However let the

capacity of the arc between all nodes ui and n0
i,a and between n0

i,a and ni,a be ⇢i(Ra) in-

stead of just 1. Likewise, let the capacity between all nodes m0
j,b and vj and between mj,b

andm0
j,b be �j(Lb). We extract the solution subgraphH the same way as in Theorem 4.4.

The cost of the flow induced byH will therefore cost��
P

ui2L
P

Ra
min(⇢i(Ra), �Hi (Ra))�

µ
P

vj2R
P

Lb
min(�j(Lb), �Hj (Lb))� rel(H), since we may use the �� cost arc for each

user-category pair and the �µ cost arc item-type pair up until they reaches capacity.

This quantity is simply ��TUDiv(H)�µTIDiv(H)�rel(H) = �TDiv�,µ(H)�rel(H),

therefore, minimizing this quantity will maximize TDiv�,µ(H) + rel(H). A diagram of

our construction can be found in Figure 4.4.

In order for our algorithms to produce useful results, these thresholds must be set in a

way that reflect the true category interests of the users and the type interests of items.

Therefore, these thresholds must be set using the training data, and we leave a full

discussion of how the thresholds are set in practice to Section 4.6 where we detail our

experimental setup.
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Our results about disjoint categories and type are useful in applications such as retail

catalogs where the products (items) are split into natural retail categories according to

product ontologies, and when the users are split according to natural mutually exclusive

demographic types such as gender or age and income brackets. However, the more

general case is the one when categories and items are not necessarily disjoint which we

turn to next.

4.4 Overlapping Types and Categories

Although cases involving disjoint user-types and categories are solvable in polynomial

time, in actual practice, categories of items are not necessarily disjoint, and users may

be assigned to more than one user-type. When item categories and user types are non-

disjoint, maximizing TDiv(H) is NP-Hard, which can be seen in the following theorem.

Theorem 4.6. Finding an optimal solution to maximize TDiv�,µ(H) with non-disjoint

categories and types is NP-Hard.

Proof. We fix � = µ = 1 since proving the NP-Hardness of a special case is su�cient. We

show that optimizing just TUDiv�,µ(H) with a single user is NP-Hard with the following

reduction from the Max-Cover problem, a well known NP-Hard problem: Given a set of

elements {1, 2, 3, ..., n}, a collection of m sets S, and an integer k, we want to find the

largest number of elements covered by at most k sets.

We construct a bipartite graph G(L [R,E) where |L| = 1 and |R| = m with the items

representing elements. The vertex u 2 L has an out-degree of m, one for each directed

edge to the vertices in R. We then create subsets R
1

, R
2

, R
3

, ..., Rn ✓ R with one such

subset corresponding to each set Si in S: the subset of vertices in Ri correspond to the

set of elements in the subset Si. We also set {⇢
1

(Ri)}ni=1

= 1. We let c
1

= k. An optimal

solution for TUDiv(H) would give an optimal solution to Max-Cover, since finding the

maximum number of categories hit with k edges out of L would find the maximum

number of elements we can cover with k sets.

Since finding the optimal solution to TUDiv�,µ(H) is NP-Hard, and TUDiv(H) is a

special case of TDiv�,µ(H), we have shown that optimizing UserDiv(H) will also be

NP-Hard, thus proving the desired result.

Since we are not able to maximize TDiv�,µ(H) optimally, we can make use of the fact

that TDiv�,µ(H) is both monotone and submodular, which will allow us to apply a

greedy algorithm which will yield a (1� 1/e)-approximation ratio.
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Proposition 4.7. TUDiv(H) is submodular.

Proof. LetX and Y be two sets of edges such thatX ✓ Y and let e be an edge not inX or

Y . Consider the quantity TUDiv(X[{e})�TUDiv(X). Observe that this is the number

of categories Ri that e will saturate (not including categories that have already reached

their threshold). This will be at least as much as the number of categories e saturates

in Y , since Y could contain edges that have already saturated categories that e would

saturate. It follows that TUDiv(X[{e})�TUDiv(X) � TUDiv(Y [{e})�TUDiv(Y ).

This satisfies the “diminishing returns” property of submodular functions. Therefore

TUDiv(H) is submodular.

We get the following from a symmetric argument.

Proposition 4.8. TIDiv(H) is submodular.

Proof. We again consider edge sets X and Y where X ✓ Y and let e be an edge not

yet in X or Y . Observe that the quantity TIDiv(X [ {e}) � TIDiv(X) counts the

number of types Li that e saturates (not counting user types that have already reached

their threshold). This will be at least as much as the number of types e saturates in

Y , since Y could contain edges that saturate types that e saturates. This means that

TIDiv(X [ {e})� TIDiv(X) � TIDiv(Y [ {e})� TIDiv(Y ). Therefore, TIDiv(H) is

submodular.

Corollary 4.9. TDiv�,µ(H) is submodular.

Proof. Since both TUDiv(H) and TIDiv(H) are submodular, and non-negative lin-

ear combinations of submodular functions are also submodular, TDiv(H) will also be

submodular.

Corollary 4.10. The objective function rel(H) is submodular.

Proof. The sum of the relevance values of all the recommendations is a linear function.

Linear functions are modular and hence also submodular, and submodular functions are

closed under addition, so this function is submodular as well.

The monotonicity and the submodularity of the objective now allows us to write the

following simple greedy algorithm:

Stated in its current form, the greedy algorithm takes O(E2) to run. However, it is

possible to speed it up significantly by using better data structures.
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Data: A bipartite graph G = (L,R,E) and display constraint c
Result: A solution graph H maximizing TDiv�,µ(H) + rel(H)
while some vertex ui 2 L has degH(ui) < ci do

(ui, vj) = e � argmaxe02E TDiv�,µ(H [ {e0})� TDiv�,µ(H) + rel(e0);
if degH(ui) < c then

H  H [ {e}
end

end
return H;

Algorithm 5: The greedy algorithm for TIDiv and TUDiv maximization

Theorem 4.11. Let R
1

, . . . , Rk be the set of overlapping categories and L
1

, . . . , Lp be the

set of overlapping types for a TDiv maximization problem. Then the greedy algorithm

can be made to run in time, O((E +
Pk

i=aRa +
Pp

i=b Lb) log(E)).

Proof. Let u 2 L, v 2 R, and let u, v 2 G be a candidate recommendation. The category

contribution of this edge to a partial solution H is the number of categories Ri that v

belongs to, for which ⇢(Ri) < �HL (Ri) is satisfied. Similarly, the type contribution of

this edge is the number of types Lj that u belongs to, for which �(Lj) < �HR (Lj). While

constructing the solution, both of these quantities can only decrease. Furthermore, we

are only ever interested in the node with the highest marginal contribution.

Therefore, we can keep track of the potential contribution of each edge in a max-heap.

Initially, the priority of each edge is set to be the number of categories and number

types it covers. Each time an edge meets a category target, we decrease the priority of

every unused edge incident on that category by �. Similarly, when a user type target

is satisfied, we decrease the priority of every unused edge incident on that type by µ.

Both operations take logarithmic time using a heap which supports the decrease-key

operation. This operation is performed at most once for each type and category.

This means that we are maintaining a max-heap with |E| elements, removing the max-

imal element |E| times, and decreasing the key of some edge by at most
Pk

a=1

Ra +
Pp

i=b Lb times. Both of these operations can be done in O(log(E)) time, which gives us

the desired runtime.

4.5 Category and Type Diversity

In this section, we lift the definition of user and item diversity to the level of types and

categories. In other words, rather than looking at the diversity of individual users and

items, we can instead consider the user type diversity for a specific category, i.e. the



Chapter 4. Category and Type Coverage 90

number of user-types that a certain category receives recommendations from. Likewise,

we may consider the category diversity for each user-type, as in the number of categories

a certain user-type has recommendations to.

When looking at these quantities, just like before, it is useful to consider setting ‘diversity

thresholds’ for types and categories, which represent the desired number of types hit by

a specific category (⇢(Ra)) or categories hit by a specific type (�(Lb)). If we take the

minimum of ⇢(Ra) and the quantity �HL (Ra), which counts the number of di↵erent user

types by which a category Ra is hit in H, we can make sure as many ‘thresholds’ of

categories are met (as opposed to having some categories achieve great diversity in user-

types while other categories remain significantly less diverse in comparison). The same

can be done with �(Lb) and �HR(Lb), which counts the number of categories a user-type

Lb hits in H. This motivates the following objective:

�(H) =
X

Ra

min(⇢(Ra), �
H
L (Ra)) +

X

Lb

min(�(Lb), �
H
R(Lb))

It is useful to consider both terms of R(H) separately, by defining the following two

sub-objectives:

(H) =
X

Ra

min(⇢(Ra), �
H
L (Ra))

⌧(H) =
X

Lb

min(�(Lb), �
H
R(Lb))

4.5.1 Disjoint Categories

When item categories are disjoint, we are able to solve certain sub-cases of R(H) opti-

mally. For instance, if every user is his own type and diversity thresholds for each type

is unbounded, it is the case that

R(H) = (H) + UserDiv(H).

Using similar flow structure as the previous section, we can construct a flow that will

maximize R(H) in this case in polynomial time.

Theorem 4.12. The problem of maximizing the objective (H)+UserDiv(H)+rel(H)

subject to display constraints and category thresholds can be reduced to a minimum cost

network flow problem if Ra \Rb = ; for all a, b.
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Figure 4.5: Construction of the flow problem in Theorem 4.12.

Proof. Similar to the network flow constructed in Theorem 4.2, we will set the supplies

of each ui 2 L to ci and create a sink node t with a demand
P

i ci. For each user ui

and category Ra such that vj 2 Ra and uivj 2 G we create nodes ni,a and n0
i,a. We

will create an arc of capacity 1 and cost �1 between every ui and n0
i,a. We will also

add arcs of capacity 1 and cost 0 between every n0
i,a and ni,a and arcs of unbounded

capacity and cost 0 between ui and ni,a. For each edge (ui, vj) in G where vj 2 Ra we

create an arc of capacity 1 and cost �rel(ui, vj) between nu,a and v. For each category

Ra we will create a collector node Na and create arcs of unbounded capacity and cost 0

between every item vj 2 Ra and Na. From each collector node Na we will create an arc

of capacity ⇢(Ra) and cost 0 to the sink node. We will also create an arc of unbounded

capacity and cost 1 between all Na’s and a second sink node, t0. Finally, we will create

an arc of unbounded capacity and cost 0 from t0 to t. A diagram of the construction

can be found in Figure 4.5.

We let the solution subgraph H be formed by using edges (ui, vj) for all arcs of the form

(ni,a,vj) used in the flow. Each node will take one recommendation in each new category

for �1 cost. For each category, we will incur a cost of �min(⇢(Ra), �HL (Ra)). Therefore,

the cost of the flow induced by a solution subgraphH will be�
P

Ra
min(⇢(Ra), �HL (Ra))�

P
ui2L

P
Ra

1[9vj 2 Ra : uivj 2 H], which is �(H) � UserDiv(H). Thus, minimizing
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this quantity will maximize �(H) (when every user is his own type and categories are

disjoint) in polynomial time.

Similarly, if every item is its own category (and has unbounded diversity thresholds)

and all user types are disjoint, our objective function becomes

�(H) = ItemDiv(H) + ⌧(H).

This can also be solved using the same flow structure as in Theorem 4.12.

Corollary 4.13. Maximizing the objective ItemDiv(H) + ⌧(H) + rel(H) subject to

display constraints and user-type thresholds can be reduced to a minimum cost network

flow problem if La \ Lb = ; for all a, b.

Proof. We can construct a network that is essentially a reflection of the network flow in

Theorem 4.12. The cost of the flow will be�
P

Lb
min(�(Lb), �HR(Lb))�

P
vj2R

P
La

1[9ui 2
La : uivj 2 H], which is �ItemDiv(H) � ⌧(H). Therefore, minimizing this quantity

will maximize ItemDiv(H) + ⌧(H)

4.5.2 Non-disjoint Types and Categories

As before the more interesting practical case is when item categories and user types are

non-disjoint, and in this case, maximizing �(H) is NP-Hard using the same reduction

as in Theorem 4.6.

Theorem 4.14. Finding an optimal solution to maximize �(H) is NP-Hard.

Again we will show that �(H) is both monotone and submodular, which will allow us

to apply a greedy (1� 1/e)-approximation algorithm.

Proposition 4.15. (H) is submodular.

Proof. Let X and Y be two sets of edges such that X ✓ Y and let e be an edge

not in X or Y . Consider the quantity (X [ {e}) � (X). Observe that this is the

number of categories Ri that e will contribute type-value to (not including categories

that have already reached their threshold). This will be at least as much as the number of

categories e will contribute to in Y , since Y could contain edges that already contribute

to categories that e could contribute to. It follows that (X [ {e}) � (X) � (Y [
{e})�(Y ). This satisfies the “diminishing returns” property of submodular functions.

Therefore (H) is submodular.
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A symmetric argument shows the following.

Proposition 4.16. ⌧(H) is submodular.

Corollary 4.17. �(H) is submodular.

Proof. Since both (H) and ⌧(H) are submodular, and non-negative linear combinations

of submodular functions are also submodular, �(H) will also be submodular.

As before if each recommendation is assigned a non-negative rating w, we get the fol-

lowing.

Corollary 4.18. The objective function �(H) + w(H) is submodular.

The monotonicity and the submodularity of the objective now allows us to write a simple

greedy algorithm for the category coverage maximization problem:

Since our degree constraints form a partition matroid, the greedy algorithm once again

achieves a (1� 1/e) approximation ratio. The regular greedy algorithm takes O(E2) to

run. However, it is possible to speed it up significantly by using better data structures

as in Theorem 4.11.

Theorem 4.19. Let R
1

, . . . , Rk be the set of categories for a category coverage prob-

lem. Then the greedy algorithm can be made to run in time, O((E +
Pk

i=aRa +
Pp

i=b Lb) log(E)).

4.6 Experimental Setup

4.6.1 Datasets

Category Data: In addition to the rating data, we use type and category data from

the MovieLens-1m dataset and category data from IMDB. For disjoint user types in the

MovieLens dataset, we use 3 the three di↵erent demographic data points included in

the data: age-group (6 di↵erent values), gender (2 di↵erent values), and occupation (19

di↵erent values) each of which form a partition the user set. Since the Netflix dataset

does not include demographic data, we partition the user set into clusters using the

k-means clustering algorithm on the user feature matrix provided by the underlying

matrix factorization algorithm.

Supergraph Generation: We used two rating datasets to generate the graphs we fed

to our algorithms: MovieLens-1m [76] and the Netflix Prize dataset. We pre-processed
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the datasets to ensure that every user and every item has an adequate amount of data

on which to base predictions. This post processing leaves the MovieLens-1m data with

5800 users and 3600 items, and the Netflix dataset with 8000 users and 5000 items. The

use of these datasets is standard in the recommender systems literature. In this chapter

, we consider the rating data to be triples of the form (user, item, rating), and discard

any extra information.

Each dataset was processed in two di↵erent ways, once for experiments involving disjoint

categories and once for experiments involving overlapping categories. In each case, the

full dataset was filtered for items for which the category information was known. Each

of these were then split 5-ways into holdout test sets and training sets. Only users for

which more than 50 ratings were considered for inclusion in the test, and we denote

this set of users by LT ✓ L. The training sets were then fed into a matrix factorization

algorithm due to Hu et al. [1] with 50 latent factors. We set the input confidence value

parameter ↵ in their method to the recommended value of 40, as recommended by the

authors, and grid searched for the best regularization parameter � using 5-fold cross

validation. Using the resulting user and item factor matrices, for each user we predicted

the ratings of all the items for which the user did not provide feedback in the training

test. Among these predicted ratings, we retained the 250 highest rated items along with

their predicted ratings to feed into our reranking algorithms.

4.6.2 Quality evaluation

We measure the e↵ectiveness of our algorithms and others’ along several orthogonal

dimensions. For relevance, we report precision values, i.e. the fraction of items in the

recommendation set that match items given in the test set. Formally, if we denote the

set of recommendations given to a user given H as N(ui) and the set of relevant held-out

items for the user as T (ui), we define precision as

P =
1

|LT |
X

ui2LT

|N(ui) \ T (ui)|
ci

In this paper, a held-out item is considered to be relevant to a user in our evaluation if

its assigned rating was 3 or higher. Aside from relevance based metrics, we also report

two sales diversity metrics: aggregate diversity and the Gini index.

The definitions of these metrics can be found in 3.

Finally, we report the objectives for which our methods explicitly optimize. These are

ERR-IA for the xQuAD reranker, ILD for the MMR reranker, Binomial Diversity for



Chapter 4. Category and Type Coverage 95

the Binomial Diversity reranker. Among these, only the Binomial Diversity reranking

method takes a parameter ↵, which corresponds to a personalization parameter. The

authors use the value ↵ = 0.5 in their experimental evaluation [82], and we also use this

setting. We measure each of these metrics as well as our own TUDiv and TIDiv as

they are measured among only the relevant items in the test set.

As mentioned in Subsection 4.3.2 the TUDiv and TIDiv metrics, we set the thresholds

using the training data. In particular, for the case of disjoint categories, we count the

number of times each category appears in a user’s training set, normalize these values to

sum to the display constraint, and round to integer values. For the case of overlapping

categories, we perform the same operation, but normalize the thresholds to sum to the

display constraint times the average number of categories for an item in the training

set. In the case of disjoint types, we again set the type thresholds proportional to the

distribution of types found in the training data, but normalize the distribution to sum

to 20% of the average number of recommendations an item would have received if every

item were equally promoted by the recommender system. This allows the measure to

promote sales diversity among items, while respecting its interaction history with the

users.

In our tables, we abbreviate the names of these metrics as P for Precision, A for aggre-

gate diversity, G for the Gini index, BD for Binomial Diversity, and ILD for intra-list

distance. The number next to each metric denotes the cuto↵ at which it was evaluated.

4.6.3 Baselines

We compare our method against 3 baselines methods: the Binomial Diversity reranker

due to Vargas et al. [82], the MMR reranker due to Carbonell et. al [79], and the xQuAD

algorithm due to Santos et al. [81]. Each method takes a parameter � 2 [0, 1] which

trades o↵ relevance with the metric which is being optimized. For each of these methods,

we grid searched for the best trade-o↵ parameter, and report all the measurements for

the setting which produced the best results for the method’s corresponding metric. Since

our algorithms have two trade-o↵ parameters µ and � in the objective rel(H)+TDiv�,µ

corresponding to two di↵erent metrics, we grid search along both dimensions and report

the two solutions which maximize TIDiv and TUDiv respectively. We additionally

report the same metrics for the undiversified recommendation lists provided by the

matrix factorization method under the heading “TOP”.
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4.6.4 Software

For the matrix factorization based recommender we trained, we used the implementation

of Hu’s matrix factorization method found in Ranksys [53]. The baseline methods we

compare against are also implemented in the same library. Our methods and metrics

were implemented in a way to be compatible with the same library, and can be found

on Github. Additionally, we used a minimum cost network flow optimizer written by

Bertolini and Frangioni [77]. Our choice of MCFSimplex was motivated by its open-

source status and e�ciency, but any other minimum cost flow solver such as CPLEX or

Gurobi can be used as well.

4.7 Experiments

In this section we report our findings on diversifying recommendations in MovieLens

derived recommendation problems. Our findings can be summarized as follows:

1. In the setting of overlapping item categories, the greedy algorithm leveraging the

submodularity of the TDiv objective obtains significant gains in the TIDiv and

TUDiv recommendation diversity metrics. Our algorithm preserves or improves

the accuracy of the baseline recommender system, while also increasing sales di-

versity metrics.

2. In the setting of disjoint item categories, we show that the flow based algorithm

obtains solutions which have higher predictive accuracy and higher sales diversity

measurements. However, the di↵erences are small enough for the greedy algorithm

to make a suitable replacement for the more expensive, flow-based optimization

technique.

3. The greedy algorithm is faster than competing diversification techniques, making

it suitable for large scale recommendation tasks, provided that the heap used in

its implementation can fit in memory.

4.7.1 Experiments on Overlapping Categories

We first present our experiments on overlapping categories based on the artistic genre

information. Our results are summarized in Tables 4.2,4.3,4.4 and the relative perfor-

mance of the methods we tested can be seen in Figure 4.6. As expected each diversifi-

cation method is best at maximizing their own objectives. In the case of our methods,

https://github.com/antikacioglu
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Figure 4.6: A radial graph showing the relative performance of the reranking methods
we tested for MovieLens data and gender based diversification.

this is true for both TIDiv and TUDiv. Among the metrics we tested, both our greedy

algorithm and the xQuAD algorithms made minor improvements to the precision of

the recommendation lists, while Binomial Diversity and MMR slightly deteriorated the

precision values. However, these di↵erences are minor and each algorithm was able to

find a good trade-o↵ between relevance and diversity under suitable parameter settings.

Among the intent-aware metrics we have tested, our algorithms provide a very good

proxy for Binomial Diversity, while performing less well on the Intra-List Distance and

ERR-IA metrics. This can be explained by the fact that Binomial Diversity, unlike

the ERR-IA and ILD metrics, explicitly penalizes redundancy. In contrast, our metric

TUDiv is similar to binomial diversity in the sense that it sets thresholds which im-

plicitly penalize over-redundancy by taking away the reward for hitting new categories.

However, the converse is not true, and the Binomial Diversity reranking method achieves

poor values for both the TIDiv and TUDiv metrics.

Among the methods we tested, the best proxy for our TUDiv metric was provided by

the xQuAD approach and none of the algorithms we tested provided a good proxy for

TIDiv. While this deficiency can be excused, as none of these algorithms take as input

the various user type grouping we provide to our diversifiers, each of the other baselines

also regressed or insignificantly changed the sales diversity metrics aggregate diversity

and Gini index. This validates our hypothesis that TIDiv is best thought of as a sales

diversity measure and that being category-aware is not enough for a reranking algorithm

to produce diverse results for items.
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Figure 4.7: A radial graph showing the relative performance of the reranking methods
we tested for MovieLens data and age group based diversification

4.7.2 Experiments on Disjoint Categories

In this section we present the diversification results for disjoint item categories derived

from movie studio information. This is intended to simulate the scenario where a content

aggregator would like to diversify recommendations among di↵erent content providers.

Since we can apply both the greedy algorithm and the flow based algorithm in this case,

we report results for both. Our results for the top-10 recommendation diversification

task are summarized in Tables 4.2,4.3,4.4 . We note that once again, every reranker

optimizes its metric the best, with the exception of the xQuAD, whose objective is

actually maximized by the Binomial Diversity reranking method. We also note that the

precision based e↵ectiveness of our greedy algorithm is reduced in this setting, while its

e↵ectiveness in the sales diversity metrics is amplified.

Our flow-based method and greedy algorithm show several notable di↵erences in exper-

imental evaluation. First, we find that the greedy algorithm actually performs better

than the flow-based method in our intent-aware metrics TUDiv and TIDiv, although

our flow based methods produce more accurate recommendation lists. The solution

each algorithm produces creates a di↵erent split between the TUDiv term of the ob-

jective, the TIDiv term of the objective and the predicted relevance term of the objec-

tive. Therefore, they can produce qualitatively di↵erent solutions when measured with

relevance-based metrics on hold-out data. In addition to this, both optimize Binomial

Diversity equally well, while the flow based method increases intra-list distance and ag-

gregate diversity better than the greedy algorithm. The two methods’ overall results are
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Method Greedy Flow MMR xQuAD BD
Runtime (s) 5.83 20.3 8.18 11.25 31.3

Table 4.8: Running time of the 5 di↵erent rerankers on the diversification task in
Table 4.5 .

similar enough that if precision is not as big a concern as intent-aware diversification,

the two algorithms can be used interchangeably.

This is a significant finding as our flow-based algorithms, while more accurate, takes

more time to run to completion. In particular, our greedy algorithms have runtime

proportional to O(|E| log(|E|)) where |E| is the number of candidate edges, while our

flow-based algorithms have complexity at least O(|E|(|R|+ |L|)) and significantly higher

overheads. While flow problems derived from medium-sized datasets such as MovieLens-

1m or even MovieLens-10m can be solved in a matter of seconds on a desktop computer,

the greedy algorithm can scale to much larger datasets. Moreover, it is the fastest among

the methods we tested, which can be seen in Table 4.8. Since all edges are considered

at once, the greedy and flow algorithms have higher space requirements than the other

rerankers we tested. However, the simple form of our objectives makes it possible to

make incremental updates to the priority of the edges in the priority queue used by the

greedy algorithm (see Theorem 4.11), which avoids the problem of having to compute

a complicated objective for every candidate recommendation for a given user in each

iteration.

4.8 Conclusions and Future Work

In this work we introduced two new recommendation diversity metrics: TUDiv which is

similar to other category aware metrics such as Binomial Diversity, and TIDiv, which

is a novel intent-aware diversity metric for increasing the diversity of users an item sees.

We demonstrated mathematically that these metrics can be optimized either exactly or

approximately, while keeping average recommendation quality high across the recom-

mender system as measured by relevance-aware metrics. In the future, we would like to

run an empirical analysis of our methods on news recommender data, where the idea of

disjoint types and categories makes natural sense, and where our methods can increase

the feedback received from di↵erent types of users, increasing the likelihood of flagging

undesirable outcomes like the dissemination of fake news. Unfortunately, we could not

find a suitable publicly available dataset on which we could perform these tests. More-

over, it is di�cult to obtain any demographic data on the users in most publicly available

datasets due to increased concerns of identifiability. MovieLens is a notable exception to
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this trend. We hope that the curators of these datasets find a way to protect both the

privacy of the their users and provide context-rich datasets which enable further lines

of research.

Acknowledgements: This research for this chapter was conducted jointly with my

advisor, R Ravi, and Tanvi Bajpai.



Chapter 5

Conclusions

In this work we have proposed three di↵erent optimization based approaches for in-

creasing sales diversity. Our models provide answers to natural problems that modern

businesses relying on recommender systems face:

1. How can we leverage the popular parts of an item catalog in order to spotlight less

popular items? (Chapter 2)

2. How can we create a recommender system which produces recommendations with

a prescribed distribution in order to satisfy business objectives? (Chapter 3)

3. How can we measure and alleviate the e↵ects of echo chambers, and collect more

reliable feedback from users by showing each recommended items to di↵erent types

of users? (Chapter 4)

We address each of these questions with a unified framework of subgraph selection, and

a strategy of explicit optimization for the various metrics we define. Since customers

interact with recommender systems daily, and their consumption choices are dictated by

the options they are presented by a business, there is a significant need for a business to

be in complete control of the distribution of recommendations across their sites. Sales

diversity is a notion that is distinct from diversity among a user’s recommendation

list, or the novelty of the recommendations a user faces. By conducting experiments on

publicly available datasets, we demonstrate that this our approach is superior to previous

attempts at increasing sales diversity which have focused on heuristic approaches and

novelty at a user-level. We hope that our contributions motivate further research into

sales diversity maximization.
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[67] Zoltán Szlávik, Wojtek Kowalczyk, and Martijn Schut. Diversity measurement of

recommender systems under di↵erent user choice models. In Fifth International

AAAI Conference on Weblogs and Social Media, 2011.

[68] Saúl Vargas and Pablo Castells. Improving sales diversity by recommending users

to items. In Proceedings of the 8th ACM Conference on Recommender systems,

pages 145–152. ACM, 2014.

[69] Aditya Parameswaran, Petros Venetis, and Hector Garcia-Molina. Recommen-

dation systems with complex constraints: A course recommendation perspective.

ACM Trans. on Inform. Systems (TOIS), 29(4):20, 2011.



Bibliography 110

[70] David Mimno and Andrew McCallum. Expertise modeling for matching papers

with reviewers. In Proc. of the 13th ACM SIGKDD Int. Conf. on Knowl. discovery

and data mining, pages 500–509. ACM, 2007.

[71] Maryam Karimzadehgan and ChengXiang Zhai. Constrained multi-aspect expertise

matching for committee review assignment. In Proc. of the 18th ACM Conf. on

Inform. and Knowledge Management, pages 1697–1700. ACM, 2009.

[72] Cheng Chen, Lan Zheng, Venkatesh Srinivasan, Alex Thomo, Kui Wu, and An-

thony Sukow. Conflict-aware weighted bipartite b-matching and its application to

e-commerce. IEEE Trans. on Knowl. and Data Eng., 28(6):1475–1488, 2016.

[73] Faraz Makari and Rainer Gemulla. A distributed approximation algorithm for

mixed packing-covering linear programs. In NIPS 2013 Workshop on Big Learning.

NIPS, 2013.

[74] Ravindra Ahuja, Thomas Magnanti, and James Orlin. Network flows: theory,

algorithms, and applications. Prentice Hall, 1993.

[75] James B Orlin. A polynomial time primal network simplex algorithm for minimum

cost flows. Mathematical Programming, 78(2):109–129, 1997.

[76] GroupLens. Movielens-1m data set. http://grouplens.org/datasets/

movielens/1m/, 2015. Accessed: 03/2015.

[77] Antonio Frangioni and Luis Perez Sanchez. Searching the best (formulation, solver,

configuration) for structured problems. In Complex Systems Design & Management,

pages 85–98. Springer, 2010.
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