
I 
 

Quantifying Strength Size Effects in Polycrystalline Silicon and Aluminum with 
On-chip Test Platforms 

 
 
 

 

Submitted in partial fulfillment of the requirements for 

the degree of  

Doctor of Philosophy  

in 

Mechanical Engineering 

 
 
 
 
 

Mohamed E. Saleh 
 

B. S. Aeronautical Engineering, Tripoli University 
M. S. Mechanical Engineering, Carnegie Mellon University 

 
 
 
 

 
 
 
 
 
 

Carnegie Mellon University 
Pittsburgh, PA 

 

May, 2015 

 



II 
 

ACKNOWLEDGMENTS 

I  would truly and sincerely like to express my deepest gratitude and appreciation to all those 

who helped me on my journey to receiving my PhD.  

Firstly, I would like to thank my PhD advisors, Prof. Maarten de Boer and Prof. Jack Beuth, for 

giving me the opportunity to learn from them as well as  for their guidance and support during 

my PhD study at CMU. I cannot express enough how much I appreciated their help and their 

insightful comments that helped me to increase my knowledge and sharpen my skills.  

For serving as my thesis committee and for all of their advice, I'd like to thank Prof. Maarten de 

Boer (Chair), Prof. Jack Beuth, Prof. Steve Collins and Prof. Yoosuf Picard 

For all of their help and for teaching me how to use the EBSD technique, I'd like to thank Prof. 

Yoosuf Picard and Prof. Elena Miranda. Likewise, I want to express my gratitude to Thomas 

Nuhfer and Adam Wise for their help with SEM. 

I am thankful to NSF for supporting this project and to Sandia National Labs for fabricating my 

test structures.  

I would like to thank Chris Hertz for his help with degree requirements, Michael Scampone for 

processing my conference reimbursements and Melissa Hyzy for facilitating and setting up 

ANSYS on my personal computer. 

This work would not have been easy without the support from my friends, so I am eternally 

grateful to Sidharth Hazra for his help during the early stages of my PhD and Vitali Brand, 

Emrecan Soylemez, Ryan Pocratsky, Sameer Shroff, Ramesh Shrestha, Changho Oh, Prince 

Singh and Kuo-Kang Hung for all of their help and friendship. 



III 
 

I am forever thankful to my wife, Fautma Eshnuk, for all of her support and help throughout my 

years of study which helped me to succeed on my journey and achieve my goals. And last but 

not least, I am thankful to my two year old son who distracted me from the stress of my work 

and provided me with many laughs! 

 

 

 

 

 

 

 

 

 

  



IV 
 

Abstract 
 

Mechanical strength of components increases as their size decreases.  Optimum design of 

reliable systems at the micro- and nanoscales will account for such size-dependent strength. 

However, the dependencies of strength on size in brittle ceramic and ductile metal thin films are 

not well known because of limited data.  Therefore, in this thesis, high throughput platforms 

were designed, fabricated and tested. The strength size effect for polycrystalline silicon 

(polysilicon) and polycrystalline aluminum thin films has been investigated by on-chip testing 

techniques. 

Polysilicon structures over a size range of 100 increase in characteristic strength from 2.7 GPa to 

4.2 GPa.  A Weibull function alone was insufficient to predict the strength size effect for 

polysilicon.  After taking into account the non-uniform stress distribution in the smallest 

specimens, both the characteristic strength and the full strength probability distribution function 

was well predicted.  Also, a Monte Carlo technique was developed to predict strength size effects 

and to assess the minimum number of tests required for accurate characterization of strength 

distribution.   

Aluminum thin film structures over a size range of 6.5 increase in average yield strength from 

140 MPa to 300 MPa.  Unlike macroscale specimens, these samples also exhibit significant 

scatter in strength.  The ratio of the standard deviation in yield strength to the average yield 

strength is 0.06 for 1 µm thick samples, and more than doubles to 0.13 for 0.6 µm thick samples.   

High throughput test platforms provide an important method to assess strength and strength 

distribution data at the micro- and nanoscales. 
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Chapter I: Introduction and Overview 

1.1 Motivation 

Micro- and nanoelectromechanical systems (MEMS/NEMS) have been implemented in many 

products that are used in our daily lives such as cars, phones and drug delivery units [1], [2]. The 

demand for smaller, smarter and more efficient products has driven the design, production and 

commercialization of many MEMS such as accelerometers [3], gyroscopes [4], microphones [5], 

and display devices [6]. New engineering fields such as micro- and nanorobotics have emerged 

where a significant effort is directed towards designing components in the order of microns or 

even nanometers [7]. The trend of making increasingly smaller products is expected to continue.  

One of the most important mechanical properties is strength. MEMS structures are made at 

different sizes, spanning from a few microns to thousands of microns.  Their strength has a 

strong dependence on size because smaller structures tend to have fewer flaws. Therefore, it is 

important to predict how strength changes with size for reliable and robust design of MEMS 

structures.  In this work, the size effect in strength for two different materials, polysilicon and 

aluminum, is investigated.   

Polysilicon is the most commonly used material in MEMS.  Its widespread use derives from its 

excellent mechanical properties (low residual stress, low stress gradient, high and consistent 

Young’s modulus [8], [9]  and from its compatibility with integrated circuit microfabrication 

techniques [10]. However, polysilicon can be considered to be a technical ceramic and as such is 

a brittle material.  Subjecting a ceramic material to tension is antithetical to structural engineers.  

Therefore, quantifying and understanding the high strength of polysilicon is important.  The 

distribution of strength for a given polysilicon specimen has received much attention [11]–[19].  
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By testing a large number of samples, it recently has become clear that a lower bound value of 

strength for polysilicon processed by thin film techniques is ~2 GPa, [18], [19], as high as the 

strongest steels.  However, the dependence of strength on size is not yet well understood. 

Metal microscale components often consist of at most a few grains of size 𝑑 through the 

thickness 𝑡. Although in metals small grains tend to increase strength due to the Hall-Petch 

effect, a large 𝑑/𝑡 ratio can reduce strength because dislocations that annihilate at a free surface 

cannot form pileups [20]. This can also reduce ductility due to the influence of a single weak 

grain [21]. Therefore, it also becomes imperative to test and understand the mechanical behavior 

of small metal structures for successful design of micro- and nanodevices.   

Aluminum thin films exhibit higher yield stress than macroscale aluminum structures.  However 

this comes at the expense of reduced elongation. Due to its low strength, microscale aluminum 

applications are limited to components that bear small loads [6]. To fully utilize aluminum in 

reliable MEMS products, quantification of its yield strength and ductility and their variabilities at 

small sizes is needed.  

1.2 Deformation and Failure Mechanisms 

1.2-1 Polysilicon Fracture Mechanics 

The deformation and fracture behavior of brittle materials differs from that of ductile materials. 

Polysilicon tensile specimens exhibit linear elastic behavior up to the point of fracture.  As just 

stated, it does fracture at relatively large stresses [17], [19], [22]. Usually, micro-cracks in the 

form of surface roughness or grain boundaries are present in the brittle material and the structure 
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fails when the stress intensity factor 𝐾 of one of these micro-cracks reaches a critical value 

which is the fracture toughness 𝐾𝐼𝑐 of the material.  

The dispersion in strength is believed to be due to the distribution of processing flaws. The 

largest flaw in a given structure is not necessarily the same as the largest flaw in another 

structure of the same nominal size and shape. Due to the strength dispersion in brittle materials, 

mathematical techniques have been used to study the strength distribution. Weibull [23], [24] 

developed an equation from the weakest link theory and it has been extensively used to describe 

the strength distribution of brittle materials. Equation (1.1) shows Weibull three parameter 

function where 𝑃 is the probability of a given specimen, 𝜎𝑢 is the threshold (or lower bound) 

strength, 𝑚 is the Weibull exponent and 𝜎𝜃 is scale parameter. 

𝑃 = 1 − 𝑒𝑥𝑝 (− (
𝜎 − 𝜎𝑢

𝜎𝜃
)

𝑚

)                                                         (1.1) 

With the Weibull function, we need only to specify three of the material's parameters (𝜎𝑢, 𝜎𝜃 

and 𝑚) to fully describe the strength distribution. First, the strength data is sorted in ascending 

order and the probability of the 𝑖th
 specimen from a total of 𝑛 specimens can be estimated using 

the rank equation 

𝑃 =
𝑖 − 0.5

𝑁
                                                                                        (1.2) 

Then by taking the natural log of equation (1.1) twice, we will get the equation 

ln (ln (
1

1 − 𝑃
)) = 𝑚 ln(𝜎 − 𝜎𝑢) − 𝑚 ln(𝜎𝜃)   ,                         (1.3) 
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which is linear in the form 𝑦 = 𝑚𝑥 + 𝑐, where 𝑦 ≡ ln (ln (
1

1−𝑃
)) and 𝑥 ≡  ln(𝜎 − 𝜎𝑢). The 

materials constants are estimated by plotting ln (ln (
1

1−𝑃
))  against ln(𝜎 − 𝜎𝑢).  More details 

about the derivation and applications of Weibull equation will be provided in Chapter II. 

Another important aspect of brittle fracture is the identification of the source of the fracture and 

this is usually done by utilizing fractography observations. In brittle materials, features such as 

mirror, mist and hackle zones that are used to identify fracture origin [16]–[18]. The crack starts 

to propagate and expand smoothly, thus, the mirror region is obtained. The mirror region is 

perpendicular to the maximum stress direction. When the crack reaches to a critical size, it 

transforms to mist and hackle region which is much rougher. 

Boyce and colleagues [17], [18] have studied the fracture of polysilicon tensile bars with length 

of 20 μm, width of 2 μm and thickness of 2.25 μm. The samples studied were fabricated in the 

SUMMiT V
TM

 process [25], as were the samples studied in this thesis.  More than 300 fracture 

surfaces were imaged in the scanning electron microscope (SEM). They were able to identify the 

fracture origin of around 245 specimens. The grain size is large relative to the size of the 

fractured surface and flaw size has complicated the analysis, however, hackle lines helped 

elucidate fracture origin. These hackle lines appear to emanate away from the origin of failure as 

shown in Fig. 1.1. Boyce found that the fracture originated from the sidewall with preference for 

the bottom corners. No failures initiated in the middle of the bottom or the top surface, nor were 

any failures initiated within the interior of the specimen [19]. Thus the strength controlling flaws 

were limited to the sidewalls. 

Atomic Force Microscopy (AFM) was performed to investigate the nature of the flaws on the 

sidewall area [19]. A narrow deep V shape grain boundaries grooves, which are most likely 
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generated by preferential etching of sidewall grain boundaries, were determined as the most 

probable source for failure to initiate.  

 

Fig 1.1 Fractographic observations to identify fracture origin (from Boyce et al., 2010), The flaw 

originates at the location indicated by the arrow. 

 

1.2-2 Aluminum Deformation Mechanisms 

Aluminum has a simple face centered cubic (FCC) structure.  There are many mechanisms for 

the deformation and fracture of ductile FCC metals. However, some of these are not likely to be 

applicable to aluminum. For instance, aluminum has large stacking fault energy (250 MJ/m
2
 

[26]), thus, twinning and nucleation and forming of partial dislocations [27]–[29] are unlikely 

deformation mechanisms. These are therefore neglected in the following sections. Rather, the 
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possible deformation mechanisms for aluminum are based on dislocation mechanics such as 

dislocation nucleation, glide, multiplication and pileup. 

1.2-2-1 Dislocations in metals  

Dislocations are line defects always present in a metal, though after annealing their density is as 

low as 10
8
/cm

2
.  When subject to shear stress, dislocations become mobile, and accommodate 

plastic strain.  However, they can be blocked by each other or by hard particles.  If sufficient 

stress is applied, they will multiply by the Frank-Read mechanism [30].  A grain boundary is the 

interfacial region between two crystalline grains of different orientations.   Dislocations that pile 

up at the grain boundaries cause a large stress concentration.  This may lead to nucleation and 

emission of dislocations at adjacent grains at relatively low applied stress [31]. 

1.2-2-2 Dislocation Pile-up (Hall-Petch Effect) 

Hall [32] and Petch [33] have demonstrated that the grain size play a role on the strength of 

materials. They have developed an equation that describes the change in strength with the change 

in grain size. Their model is based on dislocation pile-up at the boundaries. The change in yield 

stress with respect to grain boundaries can be expressed as 

𝜎𝑦 = 𝜎𝑜 +
𝑘

√𝑑
                                        (1.4) 

where 𝜎𝑦 is the yield stress, 𝜎𝑜 and 𝑘: are constants and 𝑑 is the grain size. 

Venkatraman et al [34] have used a similar formula to account for the change in yield stress due 

to thickness and grain size. Their formula is based on experimental observations of the yield 

stress of aluminum thin film on silicon wafer. Their formula can be expressed as  
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𝜎𝑦 =
𝑚𝑡ℎ𝑖𝑐𝑘

𝑡
+

𝑚𝐻𝑃

√𝑑
                               (1.5) 

where 𝑚𝑡ℎ𝑖𝑐𝑘 and 𝑚𝐻𝑃 are constants, and 𝑡 is the thin film thickness. 

1.2-2-3 Grain Thinning 

Lee et al. [20] studied deformation mechanisms in thin film aluminum by transmission electron 

microscopy (TEM). They observed grain thinning due to the movement of dislocations from the 

grain interior to the grain boundary. In this mechanism, the dislocations move from the interior 

of the grain and some annihilate at the surface while the rest are trapped at grain boundaries. The 

loss of dislocations to the free surface leads to softening of the interior of grain and hardening of 

grain boundaries.  Thus, plastic deformation becomes concentrated in the grain center and local 

thinning occurs. Fig 1.2 shows the suggested deformation mechanism.  In this picture, it is 

assumed that the native oxide is thin and does not play an important role in blocking 

dislocations, in contrast to ref. [34].  

 

Fig 1.2  Grain thinning mechanism.  (Lee et al. 2002) 
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1.2-2-4 Dislocation Starvation 

The motion of dislocations is usually followed by dislocation multiplication. However, according 

to the dislocation starvation model by Greer and Nix [35], [36], dislocation multiplication cannot 

happen in small volume structures because the dislocations have a higher probability of 

annihilating at nearby free surfaces than the probability for dislocation multiplication or 

dislocation pinning by other dislocations. Greer et al. [35] suggested that the dislocation needs a 

minimum travel distance (breeding distance) 𝛿 to multiply. Therefore, if the structure has a 

dimension less than the breeding distance that would imply that dislocation multiplication is 

inhibited and dislocations leave before they multiply. Eventually the structure becomes 

dislocation free and the plastic deformation has to be accommodated by the nucleation and 

motion of newly generated dislocations.  

1.3 Test Platforms 

Quantifying the mechanical behavior of micro and nanodevices require the successful design of a 

test platform that can reliably measure the required property. Many test approaches have been 

developed to test thin film mechanical properties. In this section we discuss some of these works.  

Numerous test techniques have been developed to test the mechanical properties of microscale 

components. These can be divided into techniques where a non-uniform or a uniform stress field 

is applied on the specimen. Non-uniform stress techniques such as nanoindentation [37], bulge 

test [38], torsion [39] and bending [40] induce non-uniform stress states. They are complex in 

nature and require a detailed analysis which may include the consideration of geometrically 

necessary dislocations [41]. A uniform stress is simpler and can provide valuable information 

about the mechanisms that are responsible for plastic deformation. Some of these techniques are 
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micropillar compression [42], the slack chain test [18] and the membrane deflection experiment 

[43]. In the above mentioned test techniques, an external or off-chip actuation method is used to 

apply stress on the specimens. This can be a source of error if the specimen and the load source 

are not well aligned. Therefore, some investigators prefer on-chip actuation utilizing chevron-

shaped thermal actuators (TAs) [44], [45]. In this review, we will focus on detailing some of the 

uniform stress techniques. The uniform stress test techniques can be divided into two groups: 

(i) test techniques where an external actuator is used to apply load (off chip actuation) and 

(ii) test techniques where the actuator is fabricated with the test specimen (on chip actuation). 

1.3-1 Test Platforms with Off-chip Actuators 

One of the earliest test techniques was developed by Read et al. [46]. Their test platform consists 

of a tensile specimen connected to a fixed platen on one side and to sliding platens from the other 

side. The sliding platen is connected to a series of load springs. The specimens are made of a 

Ti/Al/Ti stack with thicknesses of 0.1, 1.98, and 0.1 μm respectively. Four parallel specimens of 

250 μm width and 1000 μm  length were tested. Failure strength of 200 MPa and elongation only 

up to 2% was observed in their work. The high strength values and low ductility was completely 

different than macro scale observations of 20 MPa strength and up to 50% elongation. Fig. 1.3 

shows a schematic view of the test system. 

 

Fig 1.3 Image of the test system from Read et al, 1993 
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Tsuchiya et al. [11] developed a test system that was implemented in the scanning electron 

microscope. The test system, as shown in Fig 1.4, consisted of polysilicon specimens of 2 µm 

thickness that are fixed to a substrate on one side and connected to a free standing large plate on 

the other side. During loading, the free standing plate is gripped by a probe using electrostatic 

force. Tsuchiya et al. [11] experimented on 6 different samples with lengths of 30, 100 and 300 

µm and widths of 2 and 5 µm. About 17 specimens have been tested from each type. The mean 

strength increased from 2 GPa for the 300 µm length scale sample to 2.7 GPa for the 30 µm 

sample. The sample width had no effect on strength indicating that the specimens failed due to 

edge flaws. A two parameter Weibull analysis (assuming 𝜎𝜃 =0) performed on all the specimens 

yielded a Weibull modulus ranging between 𝑚=5.3 to 𝑚=6.9.  

 

Fig 1.4 Electrostatic gripping test technique, Tsuchiya et al., 1998 

 

Greek et al. [12], as shown in Fig 1.5, developed a tensile testing technique with polycrystalline 

silicon specimen attached to the substrate by a base plate from one end and to a ring from the 

other end. A cylindrical probe is inserted into the ring and pulled during testing. The diameter of 

the ring is chosen such that the inner rim of the ring interacts with the cylindrical probe to align 
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the force along the tensile specimen's longitudinal axis. The test system was used to measure 

Young’s modulus and fracture strength of polysilicon. 

 

Fig. 1.5 Tensile tester by Greek et al. 1999 

Sharpe and colleagues [14], [47] developed tensile tests where both the axial and lateral strains 

were measured by laser interferometry using markers deposited on the surface of the specimen. 

They used this technique to measure Young’s modulus, strength and Poisson’s ratio of 

polysilicon specimens with thicknesses of 3.5 µm and widths of 600 µm. The tensile bars were 

made from five different production runs from the MUMPs process. The Young’s modulus, 

strength and Poisson’s ratio were about 169 GPa, 1.2 MPa and 0.22 respectively. Fig 1.6 shows a 

schematic view of the test system and the measurement approach.  

 

Fig 1.6 Test system by Sharpe et al 1997 
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Boyce [18] developed an elegant and efficient testing method that enabled him to test over 1000 

polysilicon tensile bars within 16 hours. The “slack-chain” testing technique [18] is an 

improvement over an earlier testing method called “pull tab” [17]. Force is applied to the free 

end of the chain by using a cylindrical probe and the force is transmitted to only the tensile bar 

that is the closest to the applied force. The tensile bar fractures upon applying enough force and 

the force is then transmitted to the next one. Boyce used this method to show that the Weibull 

three-parameter function better describes the polysilicon strength distribution than the Weibull 

two-parameter function. Fig 1.7 shows the test structure and schematic view of how this test 

technique works.  One drawback in this method is that the probe friction force is not well known.  

 

Fig 1.7 Slack chain test method by Boyce 2009 

 

Espinosa et al. [48] developed the membrane deflection experiment as shown in Fig 1.8 . In this 

implementation, a fixed-fixed beam is loaded out of plane by a nanoindenter. The nanoindenter 

should be well aligned with the sample. Mirau interferometry is used to observe the deflection of 

the samples in real time; the deflection results are obtained from the interferometry while the 

force results are obtained from an atomic force microscope connected to the nanoindenter. The 
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specimens are long to approach state of uniaxial tension. Gold, copper and aluminum were tested 

using this test technique [49]. 

 

Fig 1.8 The membrane deflection experiment (Espinosa et al. 2003) 

 

Uchic et al. [50], [51] developed the micropillar compression test. The micropillars were 

constructed by focused ion beam milling and a nanoindenter was used to compress these pillars. 

Sensors were attached to the nanoindenter to measure force and displacement. They were able to 

test and study size effect in single crystal Ni by using this technique.   

The advantages of testing tensile specimens using off-chip actuation are simplicity and the wide 

variety of different materials that can be tested such as Al, Ni, Au, and Cu. However, the 

disadvantage of this approach is the difficulty in alignment of the actuator to the samples which 

might introduce uncertainty in the results depending on how effective the alignment process is. 

1.3-2 Test Platforms with On-chip Actuators 

One important advantage of on-chip actuation is the good alignment between the force and the 

longitudinal axis of the specimen.  This aides tremendously in obtaining results whose accuracy 
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can be assessed with high confidence.  The second major advantage is that because of the 

microfabrication process, hundreds to thousands of nominally identical samples can be produced.  

This enables assessment of the variability in mechanical properties.  As we shall see, the 

variability in both polysilicon and aluminum thin films is significant and depends on size.   

To implement on-chip actuation successfully, an actuator needs to be designed that provides 

sufficient force and displacement to fracture the specimen. The main type of actuator used in 

MEMS for on-chip testing of thin films is a chevron thermal actuator [44], [45]. It is a robust and 

reliable on-chip actuator that can apply large force and displacement. A current is applied 

through V-shaped beams resulting in a joule heating and expansion of the beams, which in turn 

leads to a rectilinear movement of the connected parts. The disadvantage of a thermal actuator is 

the large heat flow and temperature the specimen experiences during testing which considerably 

alters the mechanical properties of some materials. This inherit problem limits the applicability 

of thermal actuators to materials with properties that have a negligible temperature dependence. 

Zhu et al. [52], as shown in Fig 1.9, developed a test system with heat sink beams emanating 

from the shuttle and connected to the substrate.  The beams heat sinks are short for effective heat 

dissipation. The disadvantages of this design are the small displacement range and the force loss 

to the fixed beams which make the test system only applicable to nanoscale applications. 



15 
 

 

Fig 1.9 Test system for nano scale materials (Zhu et al 2006) 

 

Gravier et al. [53] developed an on-chip test system that does not include a thermal actuator, 

rather the residual stress in silicon nitride is utilized for actuation. The test technique as shown in 

Fig 1.10 simply consists of a tensile specimen deposited on top of silicon nitride, which has a 

large tensile residual stress. The specimen is loaded upon the release of the structure. This 

technique enables the assessment of elongation to failure data for many samples [21], and an 

approximate failure probability versus elongation to failure plot has been constructed for various 

tensile specimen sizes.  However, only one value of stress and one value of strain are extracted 

from each structure, and therefore the full stress strain curve cannot be determined for a given 

sample. 
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Fig 1.10 Schematic of test technique by Gravier et al. 2009 

 

The on-chip testing methods that have been developed so far still suffer from some drawbacks 

such as the limited displacement range or the limited measurement data. So a new test system 

needs to be designed such that the whole stress vs strain curve is probed and the heat transferred 

to the specimen is limited. 

1. 4 Test Set-up 

1.4-1 Probe Station  

The probe station used in this thesis is the same as that used by Hazra [54].  It consists of a light 

optical microscope equipped with a long-working distance interferometer, as shown in Fig1.11. 

The interferometric apparatus was obtained from EM Optomechanical Inc., NM, model 622-X. 

The microscope is equipped with a a Sony XCD SX910 camera, mounted above the objective 

lens. The camera is connected to the computer through a firewire connection which enables 
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image acquisition. The mechanical tests are performed with custom MEMScript software 

developed at Sandia National Labs . 

 

Fig 1.11 Optical microscope used in our mechanical test (Hazra 2010) 

 

1.4-2 Scanning Electron Microscopy 

 A scanning electron microscope was used to obtain qualitative and quantitative information such 

as a specimen’s dimensions. The basic principle of the SEM is that it employs an electron beam 

directed toward the specimen to study its surface. A field emission gun (FEG) source is used to 

generate electrons and the electrons are accelerated to energy between 1 keV to 30 keV and 

directed toward the specimen. When the electron beam hits the specimen, secondary electrons 

scatter inelastically from the surface and these electrons are gathered by the detector to create the 

image. In our work, FEI Quanta 600 FEG SEM was used to study the specimens.  

1.5 Contributions 

The major contributions of this thesis are listed next.  Regarding the polysilicon specimens, the 

largest specimens were simple tensile bars, while the smallest specimens were notched.  All the 

aluminum specimens were tensile bars.   
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Polysilicon thin films: 

 An existing test platform was evaluated.  It was found that for smaller shorter specimens, 

bending occurred which biased results.   

 A new test platform with excellent in-plane sample alignment for all specimen sizes was 

been developed for polysilicon testing.  The new platform was modeled, designed, fabricated 

and tested with a specimen size range of 100.   

 Test results indicated that polysilicon strength increased as specimen size decreased over a 

size range of 100 from 2.7 GPa to 4.2 GPa 

 Prediction of strength size effects based on strength data from a single large tensile bar does 

not work very well.  The strength data sets from two different size tensile bars are better at 

identifying threshold strength and yield a better prediction of the not only the characteristic 

strength, but also the strength distribution, of small specimens. 

 Threshold strength is commonly taken to be a material property reflecting the largest flaw 

resulting from processing.  For notched tensile bars, it is not a material property because for 

the same size flaw the apparent strength depends on the stress distribution across the notch 

region. 

 Test results indicated that an upper bound to the strength of polysilicon is reached, as 

demonstrated by the observation that the strength distribution is the same between the two 

smallest specimen sizes.  While all materials have an upper bound strength on the order of 

𝐸/10, the maximum measured strength is well below this limit.  The upper bound strength is 

not predicted by Weibull statistics.  

 A new Monte Carlo simulation was developed to characterize and predict strength 

distribution of polysilicon.   
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 The Monte Carlo simulation fits the strength data of the largest specimen well and it predicts 

the strength distribution of the uniformly loaded specimens accurately. It does an adequate 

job at predicting the notched specimens stress distribution. 

Aluminum thin films: 

 A new test platform for in-situ on-chip testing of aluminum was designed. The test platform 

incorporated high force, large displacement range thermal actuators and pre inserted 

microgrippers to relieve residual stress in the aluminum specimens.   

 Heat can leak from thermal actuators into the aluminum test sample.  The strength of this 

material is known to be temperature-dependent.  This issue was resolved by introducing a 

thermal resistor and heat sinks that shunt heat to the substrate.  Using finite element method, 

the temperature gradient along aluminum tensile bars is found to be less than 3 ºC in air. 

 Uncertainty analysis that the stress is measured within 5% accuracy and the modulus of 

elasticity E can be measured within 21% accuracy.   

 Aluminum thin film structures over a size range of 6.5 increase in average yield strength 

from 140 MPa to 300 MPa.  Unlike macroscale specimens, these samples also exhibit 

significant scatter in strength.  The ratio of the standard deviation in yield strength to the 

average yield strength is 0.06 for 1 µm thick samples, and more than doubles to 0.13 for 0.6 

µm thick samples.   

1.6 Dissertation Organization 

This dissertation can has been divided into two main themes: Chapter 2 is concerned with the 

polysilicon size effect while Chapters 3 and 4 are concerned with aluminum test specimens and 

the aluminum strength size effect.  
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Chapter 2 discusses in details the work on polysilicon specimens. It begins by showing how the 

Weibull function is derived and used to estimate the strength size effect. It then analyzes the test 

platform that was used.  Specifically, it is shown how to account for polysilicon residual stress so 

that the strength is properly quantified.  Then, the Weibull function is used to predict strength 

and the prediction is compared with experimental data. The traditional approach of using a single 

threshold strength value is discussed from a linear fracture mechanics point of view and a new 

approach utilizing a weight function that depends on stress gradient in notched samples is used to 

modify the threshold strength and produce a better estimate to size effect. 

Chapter 3 discusses the design of a test platform for aluminum thin film specimens. First we 

present the platform.  The details of the thermal actuator characteristics, the load cell, the thermal 

isolation scheme and the pre-inserted grippers are described.  Then we report preliminary results 

of stress versus strain curves.  The chapter ends with a detailed error analysis of the test platform. 

Chapter 4 is devoted to the study of the yield strength and elongation for the aluminum 

specimens for various specimen sizes.  A simple mathematical model for the change in yield 

stress with size fits the data of the longest specimens well.  

Finally, a conclusion and guidance for future work are presented in Chapter 5.  

1.7 Journal Papers 

The following journal papers resulting from this thesis, and their current status is listed next. 

1. Mohamed E. Saleh, Jack L. Beuth, and Maarten P. de Boer, “Validated Prediction of the 

Strength Size Effect in Polycrystalline Silicon Using the Three-Parameter Weibull 

Function”. J. Am. Ceram. Soc., 1–9 (2014) (published) 
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2. Mohamed E. Saleh, Jack L. Beuth, Yoosuf N. Picard, Maarten P. de Boer, “ In-situ 

Platform for Isothermal Testing of Thin Film Mechanical Properties using Thermal 

Actuators” JMEMS (submitted March 20, 2015) 

3. Vitali Brand, Mohamed E. Saleh, Maarten P. de Boer “Effects of Electrical Current and 

Temperature on Contamination-induced Degradation in Ohmic Switch Contacts” Trib. 

Letters, 85, 48-55 (2015) (published) 

4. Mohamed E. Saleh, Jack L. Beuth, Yoosuf N. Picard, Maarten de Boer “Statistical 

Investigation of Size Effect of Yield Stress and Elongation for Free-standing 

Polycrystalline Al-0.5% Cu Thin Film”  Scripta. Mat. (in progress) 

 

1.8 Conference Presentations 

The work in this thesis was presented at the following conferences: 

1. “The role of threshold strength on predicting polysilicon strength size effect,” M. Saleh, 

M. P. de Boer and J.L. Beuth, MRS Fall Symposium JJ: Materials Fundamentals of 

Fatigue and Fracture, Boston, MA, Dec. 3, 2013.  

2. “An In-situ Test Platform Design for Testing Thin Film Mechanical Properties”, M. 

Saleh, J.L. Beuth. Y. N. Picard and M. P. de Boer, Society of Experimental Mechanics 

Conference, Greenville, SC, June 5, 2014. 

3. “Novel in-situ testing technique for studying the mechanical properties of thin films”, M. 

E. Saleh, J. L. Beuth and M. P. de Boer, Bennett Conference, Pittsburgh, PA April 25, 

2014.   

http://www.sem.org/APP-CONF-AC-List2-Abstract.asp?PaperNo=267
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4. “Investigation of strength-size effects in aluminum thin films,” M. E Saleh, J. L. Beuth, 

Y. N. Picard and M. P. de Boer, Bennett Conference, Pittsburgh, PA, March 20, 2015. 
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Chapter 2: Polysilicon strength Size effect 

As discussed in the Introduction of this thesis, it has recently been shown [17], [19] that a three-

parameter Weibull function with a large threshold strength of ≈ 2 GPa is needed to accurately 

describe the failure strength statistics of a micromachined polycrystalline silicon specimen. In 

this chapter, we explore how to apply this function to predict strength size effects over a size 

range of 100. A two-parameter function is unsatisfactory in predicting the size effect. If a three-

parameter Weibull fit to only the largest specimen is used, the prediction also does not 

satisfactorily agree with strength data in smaller specimens. The prediction is greatly improved if 

the two largest specimens, a factor of 10 different in size, are used for fitting. It is further 

demonstrated that the threshold strength depends on geometry in notched samples due to their 

large stress gradients [55].
1
 

2.1 Introduction 

Surface micromachined devices including accelerometers [56], [57], gyroscopes [58], and 

microphones [59] are key enablers in many products and applications used today in daily life. 

They are commonly fabricated from polycrystalline silicon (polysilicon), which is brittle, with 

measured fracture toughness KIc of 0.82–1.2 𝑃𝑎 √𝑚  [60]. As such, polysilicon can be 

considered to be a technical ceramic. Such materials possess a propensity toward brittle failure, 

which is of critical concern for micromachined products. 

Weibull introduced a probability function to describe the strength distribution of brittle materials 

based on the weakest link concept [23], [24]. Investigators have used a two-parameter Weibull 

                                                           
1 Most of the material in this chapter is reprinted from ref [55] with permission to be requested from the 
Journal of the American Ceramics Society.    
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(W2P) probability distribution function (PDF) P(𝜎) to characterize polysilicon strength 𝜎 at 

different size scales [11], [13], [15], [17]. Specimens display a size effect depending on surface 

area, [11], [17] in which specimens with larger surface area are weaker. Extensive SEM and 

TEM images have confirmed that specimens fail due to flaws at the surface, specifically at 

etched sidewalls [17], and exhibit the mirror, mist, hackle signatures typical of brittle materials 

[61]. Investigators attribute this to sidewall roughness [12], [13], [15], [16] or more specifically 

to crack-like flaws at grain boundaries that intersect sidewalls [19]. Typically about 30 

specimens of each size were tested, and the W2P fits resulted in a Weibull modulus m of in the 

range of 10–20 [11]–[13], [15], [16]. Investigators have also applied W2P fits to predict the 

strength of brittle thin films at different size scales [12], [16], [19], [62]–[66]. While the 

predictions are good, W2P intrinsically assumes a minimum or threshold strength 𝜎𝑢 = 0. This 

would imply that there is a nonzero probability that any given specimen will fail at any nonzero 

applied load.  

Recently, by testing large numbers of specimens, it has become clear that a three-parameter 

Weibull (W3P) distribution better describes the failure probability of polysilicon than does W2P. 

It was found that the W3P fit describes the failure of 1008 nominally identical specimens 

significantly better than does the W2P fit [18]. Using a sequential test method, Boyce found 

𝜎𝑢 = 1.45 GPa [18]. This result was corroborated using an entirely different in-situ test approach 

[19]. For 231 in-situ specimens, a value of 𝜎𝑢 = 2.08 GPa was determined, while for 671 

specimens tested by the sequential test method, a value of 𝜎𝑢 = 1.78 GPa was determined. The 

specimens were cofabricated adjacent to each other on the same chips, thereby ruling out 

processing differences as a possible artifact [19]. The applicability of W3P to anisotropically 
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etched single crystal silicon has also been established [67]. Table 2.1 shows a summary of some 

of the work in polysilicon 

Table 2.1 Summary of some of the work in polysilicon 

Author/year Geometry (µm) No. of 

samples 

Avg. No. 

of tests per 

sample 

Avg. Strength 

enhancement 

(GPa) 

Weibull 

modulus 

Controlling 

flaws 

location  

Tsuchiya/1998 t=2. w=2, 5. L=30, 

100, 300 
16 17 2-2.7 3.7-5.6 

Surface 

Ding/2001 t=2.4. w= 20, 40, 

80, 100. L=100, 

300 660 

8 5 1.24-1.53 
10.4-

11.7 

Not 

identified 

Boyce/2007 t=1, 1.5, 2.25, 2.5 

w=2. L=30, 150, 

750, 3750 
21 7 

1.3-1.75 Poly2 

1.65-2 Poly12 

2.1-2.5 Poly3 

2.4-3 Poly4 

19.3-30 

Surface 

Greek/1997 t= 2, 10. w=10. 

L=1000 
2 28 0.6-0.8 7-11 

Surface 

Bagdahn/2003 t= 3.5. w=20,50. 

L=250 

Notch and hole 

with radius=2.5 

6 30 1.27-2.83 6.2-6.9 

Surface 

Reedy t=2.25. w=2. L=20, 

70.  

Notch radius=0.6 

3 616 2.5-4.1 
3.03-

5.78 

Surface 

 

The polysilicon results clearly demonstrate that 𝜎𝑢 > 0 and that  𝜎𝑢 is large at ≈2 GPa [18], 

[19]. However, the tests covered only a relatively small range of specimen size—a factor of 3. A 

Weibull failure PDF is expected only if the distribution function g(a) of the effective flaw size 

(a) fits a power law, that is, g(𝑎)~𝑎−𝑛 [68]. Other requirements include [69] an absence of R-

curve behavior, a single flaw distribution mode, only surface or only volume flaws, an absence of 

interactions between flaws and an absence of internal residual stress fields (e.g., due to thermal 

contraction interacting with elastically anisotropic grains[70] ). 

Polysilicon microstructure exhibits only minor intrinsic toughening mechanisms due to local 

grain orientation changes and grain-boundary toughening [71]. Hence, there is negligible R-
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curve behavior. As noted above, there is much evidence that only surface flaws control its 

strength. Specimens can be mass produced using modern microfabrication techniques, resulting 

in highly uniform processing. They can be tested by an in-situ apparatus without any handling or 

contact by other objects, minimizing the possibility of test artifacts such as unintended scratches 

or contamination. Strength scaling predictions can be validated by testing a wide range of 

specimen sizes [72]. A range of specimen sizes is easily accomplished using photolithographic 

methods. Hence, an excellent platform exists to probe polysilicon strength scaling effects. 

A significantly smaller 𝑚 results if W3P rather than W2P fits are used. This, in turn, results in a 

stronger strength scaling relationship. Therefore, it is important to assess the effectiveness of 

W3P in predicting strength scaling effects. In a first attempt to test polysilicon strength scaling 

using W3P, Reedy et al [19] studied the size effect in three different specimens, two of which 

were standard uniaxial tensile specimens with lengths of 20 and 70 μm and width of 2 μm. The 

third was a 10-μm-wide double-edge-notched (DEN) specimen with a notch length of 3 μm and 

notch radius of 0.6 μm. In each case, the thickness was 2.25 μm. While the larger two specimens 

could be related satisfactorily using W3P scaling fits (Fig. 9 of Ref. [19] indicates agreement 

within ~5%), the DEN specimen could not (Fig. 14 of Ref. [19] was underpredicted by ~30%). 

Besides assessing W3P in predicting strength size effect, it would also be highly desirable to 

reduce the number of required tests. In this work, we test four different specimens over a size 

range of 100. We then examine several fitting methods to determine how best to predict strength 

scaling effects. We demonstrate that size effects are well predicted with 100 specimens from the 

largest two specimens, which are a factor of 10 different in size. Satisfactory predictions of both 

the characteristic strength and the full PDF for specimens another factor of 10 smaller are 

achieved. 
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This study is organized as follows. In Section 2.2, we review W2P and W3P Weibull scaling 

theory. In Section 2.3, we introduce and analyze a new in-situ test structure that enables accurate 

strength measurements for specimens a factor of 100 different in size. In Section 2.4, we report 

experimental results including a residual stress correction. In Section 2.5, the results are analyzed 

and it is found that only by accounting for the effect of stress gradient on 𝜎𝑢 in DEN specimens, 

good predictions are achieved. 

2.2 Theoretical Background 

According to the weakest link theory [23], [24], the probability of survival of n links in series 

can be expressed as 

(1 − 𝑃) = (1 − 𝑃𝑖)𝑛.             (2.1) 

Here 𝑃 is the probability of failure of the entire structure,  𝑃𝑖 is the probability of failure of the i
th

 

link, (1 − 𝑃𝑖) is the probability of survival of the i
th

 link, and (1 − 𝑃) is the probability of 

survival of the chain. 

The failure probability of the i
th

 link is assumed to follow a power law according to 

𝑃𝑖 = 𝑘 • 𝜎𝑚 ,           (2.2) 

where 𝑘 and 𝑚 are constants and 𝜎 is the applied stress.  Without loss of generality, it can be 

shown that the size and orientation of a flaw can equivalently be described by a single 

variable[68], [72], the effective flaw length, 𝑎, oriented normal to the applied uniaxial stress.   

Equation (2.2) then corresponds to assuming a power law in the effective flaw frequency 

distribution, 𝑔(𝑎) [68].  The constant 𝑘 can be chosen such that 

𝑘 = 𝑉𝑖/𝜎𝑜
𝑚,           (2.3) 
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where 𝑉𝑖 is the volume of the i
th

 link, and  𝜎𝑜 will be defined below.  Substituting Eqs. (2.3) and 

(2.2) into Eq. (2.1), 

𝑃 = 1 − (1 − 𝑉𝑖 (
𝜎

𝜎𝑜
)

𝑚

)
𝑛

 .         (2.4) 

For a continuum material, rupture can take place anywhere in the specimen.  If a large number of 

links 𝑛 is assumed, then using exp (𝑐) = lim𝑛→∞ (1 +
𝑐

𝑛
)

𝑛

, the Weibull function can be derived 

as 

𝑃 = lim𝑛→∞ [1 − (1 −
𝑛

𝑛
𝑉𝑖 (

𝜎

𝜎𝑜
)

𝑚

)
𝑛

]  = 1 − exp (−𝑉 (
𝜎

𝜎𝑜
)

𝑚

) .               (2.5a) 

Here, 𝑚 is the Weibull modulus and 𝑉 is the total sample volume. 𝑚 is considered to be a 

constant that reflects the flaw distribution (large 𝑚 is associated with a narrow range of flaw 

sizes probed in strength tests of specimens of a uniform size).  Also, 𝜎𝑜 (GPa•m
3/m

) is a scale 

parameter, which is taken to be independent of the size or the shape of the structure, and 𝑉 is the 

total volume of the structure. 

So far, flaws are assumed to originate somewhere inside the volume.  However, fracture initiates 

at surface flaws for polysilicon.  In this case the volume in equation (2.5a) is replaced by the 

surface area, 𝐴.  Then, 

𝑃 = 1 − exp (−𝐴 (
𝜎

𝜎𝑜
)

𝑚

)  ,          (2.5b) 

where 𝜎𝑜 now has units of GPa•m
2/m

.  If there is a minimum or threshold strength value (𝜎𝑢) 

below which the structure does not fail, the stress 𝜎 is replaced by 𝜎 − 𝜎𝑢 

𝑃 = 1 − exp (−𝐴 (
𝜎−𝜎𝑢

𝜎𝑜
)

𝑚

) .        (2.6) 
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A second scale parameter, defined as 

𝜎𝜃 = 𝜎𝑜(1/𝐴1/𝑚)   ,          (2.7) 

has units of GPa.  While 𝜎𝑜 has a unique value, 𝜎𝜃 depends on specimen size.  Substituting back 

into Eq. (2.6), the W3P function is found as 

𝑃 = 1 − exp (− (
𝜎−𝜎𝑢

𝜎𝜃
)

𝑚

).         (2.8a) 

The quantity (𝜎𝜃 + 𝜎𝑢) is called the characteristic strength.  For 𝜎=𝜎𝜃+𝜎𝑢, P=0.632.  If 𝜎𝑢=0, 

then Eq. (2.8a) reduces to the widely-used W2P function. 

For a given data set, Weibull parameters can be evaluated by taking the natural log of Eq. (2.8a) 

twice. The resulting linear equation, 

ln [ln (
1

1−𝑃
)] = 𝑚 • ln(𝜎 − 𝜎𝑢) − 𝑚 • ln(𝜎𝜃),      (2.8b) 

can be fit to experimental strength data, as shown in Section 2.4.  For 𝑁 speciemens, measured 

strength values are ranked r=1 to 𝑁 in ascending order and probability is assigned according to 

P=(r-0.5)/𝑁.             (2.9) 

For a small number of measured specimens (𝑁 ≲40), W2P fits the data satisfactorily [11], [12], 

[15], [17], [63], [64], [66].  As N increases to 233 [19] or 1008 [18], the quality of the linearized 

two-parameter fit diminishes and the data is better fit using three parameters [18], [19]. Hence, 

increasing values of 𝑁 improve the estimate of the 𝜎𝑢 value. 

In this work, we are interested in predicting the characteristic strength and strength distribution 

of different specimen sizes from a small 𝑁 and a minimum set of specimen sizes.  One 
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customary approach [16], [19], [62], [64], [66] is to estimate Weibull parameters from data of a 

single specimen size. The data is then fit to Eq. (2.8). 

For two different size tensile bars at the same failure probability, 

1 − exp (−𝐴1 (
𝜎1−𝜎𝑢1

𝜎𝑜1
)

𝑚1

) = 1 − exp (−𝐴2 (
𝜎2−𝜎𝑢2

𝜎𝑜2
)

𝑚2

)       .   (2.10) 

Here 𝜎1 and 𝜎2 are the stresses applied to the two different size specimens for that failure 

probability.  This equation reduces to 

(𝜎1 − 𝜎𝑢1)𝑚1

(𝜎2 − 𝜎𝑢2)𝑚2
=

𝜎𝑜1
𝑚1

𝜎𝑜2
𝑚2  

𝐴2

𝐴1
                                                                                                                   (2.11) 

Equation (2.11) is general and can be used to compare results of two different size specimens 

from different micro-fabrication process and between different brittle materials type.  But, 

usually specimens are compared from the same fabrication process and from the same materials. 

Therefore, 𝜎𝑜 is the same (𝜎𝑜1 = 𝜎𝑜2 = 𝜎𝑜).  For a single flaw population mode, the Weibull 

exponent will also be the same (𝑚1 = 𝑚2 = 𝑚).  Finally the threshold strength, which is the 

estimated value of strength due the largest flaw, should be the same in uniformly stressed 

specimens (𝜎𝑢1 = 𝜎𝑢2 = 𝜎𝑢).  Hence, Eq. (2.11) reduces to the W3P scaling equation, 

𝜎1 − 𝜎𝑢

𝜎2 − 𝜎𝑢
= (

𝐴2

𝐴1
)

1/𝑚

                                                                                                                             (2.12𝑎) 

Substituting 𝜎𝑢 + 𝜎𝜃𝑗 for 𝜎𝑗, 

𝜎𝜃1

𝜎𝜃2
= (

𝐴2

𝐴1
)

1/𝑚

                                                                                                                                     (2.12𝑏) 
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where 𝜎𝑢 + 𝜎𝜃𝑗 is the characteristic strength of a specimen of area 𝐴𝑗.  The scaling relationship is 

the same for W3P and W2P.   In a W3P fit, 𝜎𝑢 is subtracted from the strength data.  The range of 

𝑙𝑛(𝜎 − 𝜎𝑢) in Eq. 2.8(b) becomes larger, which decreases m.  Hence, proportionally, a larger 

strength scaling effect is expected if 𝜎𝑢 > 0. 

In tensile bars of constant width, stresses are distributed uniformly along the gage section 

provided that the specimen is well aligned.  Hence, polysilicon failure could occur anywhere 

along the sidewall area and the strength is expected to scale with the sidewall area according to 

Eq. (2.12b). If the stress distribution along the sidewall area is not constant as in the case of 

notched tensile bars, the generalized form of Eq. (2.6) is 

𝑃 = 1 − exp (− ∫ (
𝜎𝑛𝑜𝑡𝑐ℎ − 𝜎𝑢,𝑛𝑜𝑡𝑐ℎ

𝜎𝑜
)

𝑚

𝑑𝐴
𝐴𝑟𝑒𝑎

)                                                                         (2.13) 

Here, 𝜎𝑛𝑜𝑡𝑐ℎ is the stress along the sidewall, and 𝜎𝑢,𝑛𝑜𝑡𝑐ℎ is the threshold strength for a notched 

specimen.  Equation (2.13) is used with a finite element model of the notched specimens and 

numerical integration is performed to determine the probability at different applied loads.  The 

value for 𝜎𝑜 (=𝜎𝜃𝐴1/𝑚) is determined from experiments as seen in Section 2.4 below.  Also, an 

equivalent area of the notched specimens can be defined as the area of a tensile bar that has the 

same probability of failure as a notched specimen.  Therefore, the equivalent area for each 

notched specimen can be determined by applying Eq. (2.13).  Then, using the stress in the notch 

region, Eq. (2.12) is applied to determine the equivalent uniformly stressed area.  In the present 

work, all specimens have the same thickness 𝑡 and therefore, the controlling factor is the sidewall 

length.  Thus, the results are presented in terms of effective length, 𝐿𝑒𝑓𝑓, rather than equivalent 

area, 𝑡•𝐿𝑒𝑓𝑓. 
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2.3- Experimental Approach 

A very useful in-situ test platform to test the mechanical properties of polysilicon was designed 

by Hazra [54]. The test platform introduced a gripper mechanism for gripping the tensile 

specimen which completely relieves the residual stresses from the specimens. We had originally 

intended to use Hazra’s design for our work, so several tests were performed using this design. 

However, a misalignment issue was discovered during our tests and this issue was more critical 

for the smaller scale tensile bars tested in this project. Therefore, a new test platform was 

developed and used in our studies.  The misalignment issue with Hazra’s design for the small 

specimens is discussed in Appendix A.  In this section we describe and analyze our new test 

platform. 

2.3-1 Test Platform and Tensile Bar Designs 

As presented in Fig. 2.1, the new test platform consists of a microtensile bar connected to the 

substrate through an anchor pad on one side.  On the other side it is connected to a crosshead 

which is in turn connected to a thermal actuator (TA) through a shuttle.  The TA expands 

forcefully due to Joule heating when current passes through its legs until the tensile bar fractures.  

A displacement gage is connected to both sides of the crosshead and the tensile bar displacement 

is optically monitored (objective numerical aperture=0.55, camera magnification=50 X).  The 

change in displacement is determined to ~5 nm accuracy by detecting the relative phase of 

reference and object gratings.  As detailed below, a linear finite element model of the test 

structure is used to calculate tensile bar strain from the displacement data.  A value of Young’s 

modulus E=164 GPa [9] is assumed to calculate stress from the strain.  The heat sink serves to 

shunt heat to the substrate to minimize the tensile bar temperature excursion.  The fracture 
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strength of polysilicon is insensitive to temperatures up to at least 200 ºC [17].  For this test 

platform geometry and for applied voltages used in the tests, it was estimated by finite element 

analysis (FEA) that the specimens reach a maximum temperature of 200 ºC. 

 

Fig. 2.1 Optical image of test platform. The salient features including the thermal actuator, 

shuttle, crosshead, displacement gage, and anchor pad are indicated. 

 

The tensile specimen geometries, as indicated in Fig. 2.2, include two uniformly stressed tensile 

bars and two double edge-notched (DEN) tensile bars. The uniform tensile bars have gage 

lengths of 70 and 7 μm and their width is nominally 2 μm.  Shorter gage sections begin to be 

influenced by stress contours penetrating from the fillets.  Therefore, double edge notched 

(DEN) tensile bars were designed.  They are 10 μm wide and have 4 μm deep notches on each 

side.  Their notch radii are 4 μm and 1 μm for the 4/4 and 4/1 DEN specimens, respectively.  The 

thickness of all tensile bars is 2.25 μm -- only the in-plane dimensions are used to vary the 
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specimen geometry. The actual widths are less due to a linewidth loss of ~0.1 μm per edge due to 

etching (0.2 μm total).  The specimens in Fig. 2.2 are henceforth referred to as Specimens 1-4 

(Sp 1-4 in figure legends), respectively.  The geometries chosen increase the range of 𝐿𝑒𝑓𝑓 to 

100X compared 3.5X [19].  Details of the thermal actuator leg geometry are given in ref. [73]. 

 

Fig. 2.2 Optical images of Specimens 1–4. (1) 70 μm × 2 μm, (2) 7 μm × 2 μm, (3) 4/4 DEN, 

and (4) 4/1 DEN (DEN = double-edge notch, Specimens 3 and 4 are 10 μm wide, have 4 μm 

deep notches and a radius of curvature designated by the number after the slash). 

 

The test platform design is a variation on our previous work [54], [73], [74].  The main 

difference is that the previous design incorporated prehensile grippers between the shuttle and 

the crosshead. Male grips were first inserted into female grips by expanding the TA legs.  Then, 

the voltage was reduced, the grips engaged and fracture occurred.  That approach had the 

advantage of eliminating the need to account for residual stress in the analysis.  However, it was 

found in preliminary work that the shorter stiffer Specimens 2-4 were not well aligned, giving 

rise to in-plane bending and non-uniform stress.  This issue was noticed because displacement 

readings were significantly different depending on whether the gage on the left or the right of 

Fig. 2.1 was used.  The new design directly connects the shuttle to the crosshead.  Alignment is 
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always maintained but this configuration imparts residual stress into the specimen, which must 

be taken into account. 

The test platforms were fabricated using the Sandia National Labs SUMMiT V micromachining 

process [25]. Five polysilicon layers are manufactured, four of which are freestanding after 

releasing them from sacrificial oxide material in hydrofluoric acid in the last process step.  The 

test specimens are in the third layer, designated as MMPOLY3, while the thermal actuator legs 

consist of three layers – MMPOLY12, MMPOLY3 and MMPOLY4 – that are connected by 

sacrificial oxide cuts.  The same process was previously used to fabricate similar samples in refs. 

[18]and [19].  Cross section images (Fig. 4 in ref.[19]) of fractured tensile bars indicate nearly 

vertical sidewalls (i.e. no apparent taper).  Atomic force microscope scans (Fig. 10 of ref. [19]) 

of the sidewalls using a 3-4 nm radius of curvature tip indicate columnar grains of ~0.2 to 0.6 m 

diameter, ≈20 nm root mean square surface roughness and grooves as deep as 40 nm which are 

thought to be generated by preferential etching of sidewall grain boundaries.  Extensive 

fractography revealed that cracks originate at sidewalls [18], [19]. 

2.3-2 Test Structure Analysis 

We first outline the procedure for quantifying residual stress in the TA legs.  Then, we discuss 

procedure for extracting fracture strength from the displacement measurements. 

2.3-2-1 Residual Stress 

After fabrication, the thermal actuator legs are under a small compressive residual stress (≈10 to 

20 MPa).  The residual stress is taken to be uniform within the specimen, unlike the non-uniform 

residual stresses between anisotropic grains mentioned in the Introduction.  Because they are 
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force amplifiers, expansion of the thermal actuator legs during the release process induces a 

significant stress in the tensile bar, which acts to constrain their expansion. 

The stress imparted to the test specimens must be quantified for accurate determination of 

strength data.  To this end, two finite element analysis (FEA) models were created.  One model is 

for the TA legs and the other is for the specimen.  In the TA model, a uniform residual stress was 

applied in the legs and they were allowed to expand freely.  Then a force was applied to the 

shuttle, and displacement was extracted. By doing so, force-displacement curves were 

constructed for TA legs with different values of residual stress as shown by the solid lines in 

Fig. 2.3.  For the test specimen model, a force was applied to the crosshead end and the 

displacement was extracted, as indicated by the dashed lines in Fig. 2.3.  (The shuttle between 

the TA legs and the crosshead is constructed of three layers of polysilicon and is effectively rigid 

compared to the test specimens).  The thermal actuator legs and the tensile bar are in static 

equilibrium.  The force after release, but before test, lies at the point of intersection of the TA 

and tensile bar load lines, as designated for Specimen 2 by the circle in Fig. 2.3.  The specimen 

displacement due to TA residual stress alone is designated by 𝑑𝑎.  When the TA fractures, it will 

no longer exert force, and its displacement will increase.  This is represented by ∆𝑑 in Fig. 2.3, 

and can be obtained by measurement. 

As shown in Fig. 2.4, a voltage is applied until the tensile bar fractures, at which point there is a 

large excursion in the displacement because the tensile bar no longer acts as a constraint.  Further 

voltage increments are applied because the voltage needed to fracture specimens in all tests must 

be exceeded.  Then the voltage is reduced to 0 V and ∆𝑑 is obtained.  In Fig. 2.4, ∆𝑑2 indicates 

the free expansion of Specimen 2.  This dimension was also indicated on Fig. 2.3.  There is a 

unique starting point of residual stress at which the ∆𝑑2 arrow begins (at 15 MPa in Fig. 2.3) 
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such that the vertical extension at the arrow end intersects the pre-measurement static 

equilibrium indicated by the circle.  This determines the residual stress.  Values ranging from 14 

to 18 MPa were found across all test specimens.  This is in reasonable agreement with a 

previously published value for the SUMMiT V process [8]. 

 
Fig. 2.3. Determination of residual stress from the force displacement plot. There is a single 

starting point of residual stress at which the Δ𝑑2 arrow begins such that the vertical extension of 

the arrow end intersects the tensile bar load line/residual stress intersection. 

 

A concern with this method is that the TA legs could experience permanent deformation due to 

heating while they were actuated, and therefore that the ∆𝑑 value will be larger than that due to 

elastic extension alone.  To check this, the same actuator was raised to larger voltages of 6 and 7 

volts.  No difference was noted in ∆𝑑 even at 7 V. 
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Fig. 2.4. Example measurement of test sample fracture in Specimen 2, and of the residual 

displacement Δ𝑑2 due to the elastic expansion of thermal actuator legs after fracture. 

 

A correction to the above analysis relates to specimen linewidth loss.  The tensile bar linewidth 

is not the same as the nominal linewidth in the original design due to processing steps such as 

photolithography and etching.  This reduces the calculated slope of the specimen load line.  

There also are known variations in linewidth loss across a wafer due to process non-uniformities.  

However, test platforms adjacent to each other on the chip will have very almost the same 

linewidth loss.  Therefore, these effects were accounted for by comparing results in adjacent test 

platforms, one containing Specimen 1 and the other Specimen 2.  Specifically, for two adjacent 

Specimens 1 and 2, ∆𝑑1 (reflecting ∆𝑑 for Specimen 1) and ∆𝑑2 data were measured. The slopes 

of lines Sp 1 and Sp 2 in Fig. 2.3 were determined for different linewidth losses.  When a 

particular value of linewidth loss was used, a unique residual stress value was found.  This value 

was typically 0.10 m/edge, in good agreement with previous SEM measurements.  Hence, in 
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addition to yielding more accurate results, the method also serves as a way to determine 

linewidth loss by a mechanical means. 

Finally, due to its residual compression, the tensile bar will actually have a small displacement at 

zero force.  This will shift the tensile bar load line slightly to the right in Fig. 2.3.  This shift, 

however, is small.  For Specimen 1, it is 9 nm if the residual compression is 20 MPa, which can 

be compared with 180 nm induced by the TA legs.  It is less for the other specimens. 

2.3-2-2 Finite element analysis of the notch region 

As seen in Fig. 2.4, voltage was increased while monitoring the change in displacement until 

fracture.  At low voltages (0-3.5 V), the increments were large (0.10 V) because the 

displacements are small.  Above 3.5 V, the increments were reduced to 0.02 V to maintain high 

displacement resolution. 

The displacement to fracture, df, is the sum of the calculated displacement due to residual stress 

(𝑑𝑎, Fig 2.3) and the change in displacement until fracture (𝑑𝑏, Fig 2.4), 

𝑑𝑓 = 𝑑𝑎 + 𝑑𝑏  .                                                                                            (2.14) 

The displacement to fracture is itself the sum of the gage section and fillet region extensions.  A 

two-dimensional linear FEA was performed to determine the gage section displacement 

component.  A compliance calibration factor (𝑐𝑓) was extracted from the analysis for Specimens 

1 and 2. It is the ratio of the gage section displacement to the total displacement of the tensile bar 

including the fillets.  Hence, the strength of the tensile bar is calculated by applying Hooke’s law 

as 

𝜎𝑓 = 𝑐𝑓

𝑑𝑓

𝐿
𝐸  (Specimens 1 and 2) ,      (2.15a) 
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where L is the length of the gauge section and E is Young’s modulus. 

FEA was also performed on Specimens 3 and 4. The stress to displacement ratio (𝑠𝑑𝑟), i.e., the 

ratio of the stress at the notch root to the applied displacement was extracted. The fracture 

displacement from experiments was converted to fracture stress according to 

𝜎𝑓 = 𝑠𝑑𝑟 • 𝑑𝑓  (Specimens 3 and 4) .      (2.15b) 

2.4 Results and Discussion 

Between 𝑁=43 and 75 specimens were tested of each type for a total number of 237 strength 

tests (Appendix B contains the displacement results for different specimen).  After each fracture, 

the specimen was inspected optically.  All tensile specimens fractured in the gage section, while 

all DEN samples fractured in the notch region.  An example of a fractured Specimen 4 is shown 

in Fig. 2.5. We first present the probability versus strength results. Then we examine Weibull 

scaling procedures in order to compare predictions to results. 

 

Fig.2.5. SEM image of a fractured Specimen 4 (4/1 DEN). 
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2.4-1 Strength distribution 

The data points in Fig 2.6 show the strength distribution for each tensile bar after accounting for 

the residual stress as described in Section 2.3-2, and indicates a significant size effect.  For a 

given strength value, the main uncertainty is due to the displacement value.  The displacement 

measurement error (measured 20,000 times over a 1000 minute time frame) was analyzed and 

found to be ± 5 nm (one sigma).  It is due to focus variations, which are caused by thermal 

expansion of aluminum rails that support the microscope objective. This is ultimately due to 

room temperature variations of ± 2 ºC.  An autofocus routine corrects for the thermal expansion, 

however the noise floor is due to the vertical stage step size limit.  The displacement uncertainty 

itself is the same for all specimens, but smaller specimens have greater stiffness.  The 

corresponding uncertainties for each measured strength value were calculated to be ±0.0025, 

±0.025, ±0.05 and ±0.1 GPa for Specimens 1-4 GPa, respectively.  This is small compared to the 

differences in the strength populations; hence they are clearly distinct. 

 

Fig. 2.6. Probability versus strength data for Specimens 1–4. 
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2.4-2 Analysis 1 - Strength prediction based on Specimen 1 

The data for each specimen was fit both to W2P and W3P functions (see Appendix C, Fig. C1).  

For W3P, the maximum likelihood method [75]–[77] was used to obtain the Weibull parameters.  

Although W3P fits were better, the difference was not large, as expected given that  was well 

below 100 for each specimen.  Our focus here is to assess the fits with respect to how well each 

predicts the strength size effect.  Using Specimen 1 and Eq. 2.12(b) and Eq. 2.13, a W2P fit to 

predict the Specimen 2-4 data was performed, but was clearly inadequate (see Fig. C2 in 

Appendix C).  We therefore examined the effectiveness of W3P scaling procedures. 

Fig 2.7 shows the W3P fit for Specimen 1, plotted in linearized form as in Eq. 2.8(b).  Values of 

𝜎𝑢=2.18 GPa and 𝑚=3.05 were found, in good agreement with the values reported of 𝜎𝑢=2.08 

GPa and 𝑚=3.03 in ref. [19], where N=233 tensile bars were tested.  The scale parameter value 

𝜎𝑜=3.4 GPa•μm
2/3.05 

was estimated from Eq. (2.7) (as seen in Table 2.2, 𝜎𝜃1=0.52 GPa, while the 

area for Specimen 1 is 𝐴=2×70 μm × 2.25 m).  The scale parameter was used with the stress 

distribution along the notch radius and Eq. (2.10) to estimate the stress distribution and the 

equivalent length (Leff) for Specimens 2-4.  Values are listed in the Leff column of Table 2.2.  Leff 

was determined iteratively, using Eq. (2.12).  As seen in Fig. 2.8, Specimen 1 predicts the 

strength distribution of Specimen 2 well, but it does a poor job at predicting the distribution for 

Specimens 3 and 4.  If we are only interested in estimating the characteristic strength (𝜎𝜃+𝜎𝑢), 

then the maximum difference between the experiment and prediction is 7%.  While this is in on 

par with the value of 9% that reported in [16], the overall fit is unsatisfactory. 
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Fig. 2.7. Determination of the three Weibull parameters from Specimen 1 using the maximum 

likelihood method. The solid red line indicates the MLE fit. The dashed black lines represent the 

95% confidence interval. 

 

Fig. 2.8. Prediction (solid curves) of the strength distribution compared to the experimental 

results based on Analysis Method 1. Low values of Q result for Specimens 3 and 4. 
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The goodness of fit, 𝑄, was calculated to assess the quality of the fits quantitatively.  

Accordingly, 

𝑄 = 1 −
∑ (𝜎𝑗 − 𝜎�̂�)

2
 𝑁

𝑗=1

∑ (𝜎𝑗 − 𝜎)
2𝑁

𝑗=1  
   ,                                                                            (2.16) 

where 𝜎𝑗 and 𝜎�̂� are the strength and the predicted strength of the j
th

 sample of a given specimen, 

respectively, and 𝜎 is the mean strength.  A good fit is indicated by 0.95<𝑄 <1 [78].  It is seen in 

Table 2.2 that 𝑄> 0.95 for Specimen 1, but is near or below 0 for Specimens 3 and 4. 

The results for Analysis 1 are summarized in Table 2.2, which includes columns for Leff, the 

compliance calibration factor (𝑐𝑓, tensile bars) and the stress displacement ratio (𝑠𝑑𝑟, DEN 

specimens). The characteristic strengths 𝜎𝜃 + 𝜎𝑢 are also listed. 

Table 2.2:  Analysis 1 - using only Specimen 1 to make scaling predictions with W3P 𝜎𝑢 =
2.18 GPa, 𝜎𝑜 = 3.4 GPa • μm2/3.05 and   𝑚 = 3.05 

 

Specimen 

(𝑁) 

𝜎𝑢 

(GPa) 

𝜎𝜃+𝜎𝑢 

(GPa) 

𝑐𝑓 

or 𝑠𝑑𝑟* 

Leff (m) % diff in 𝜎𝜃+𝜎𝑢 

(exp. vs. pred) 

𝑄 

1 (43) 2.18 2.69 0.83 140  0.99 

2 (45) 2.18 3.19 0.33 14 2.5 0.73 

3 (75) 2.18 3.81 0.012* 6.5 6.9 0.03 

4 (74) 2.18 4.19 0.017* 2.9 5.1 -0.2 

 

2.4-3 Analysis 2 -- Strength prediction based on Specimens 1 and 2 

One possible reason that Specimen 1 does not predict the strength of Specimens 3 and 4 well is 

that the polysilicon etch may behave differently in the notch regions than in sidewalls.  However, 

visual SEM examination revealed no clear differences, as seen in Fig. 2.5.  Also, even when 

large roughness changes are measured, only relatively small average strength changes are seen 
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(≈0.02 GPa per nm of root mean square (rms) roughness from both refs. [67] and [79]).  Given 

the small change in roughness here (likely less than a few nm rms), it is unlikely that the strength 

change is due to roughness changes. 

A more likely explanation relates to the observation that Specimen 1’s strength does not exceed 

3 GPa, while Specimen 4′s strength extends to 5 GPa.  Hence, the Analysis 1 prediction assumes 

that the Weibull parameters apply far above the strength region from which they were extracted.  

Even if 𝑁=1,000 data points were taken for Specimen 1, it can be shown from the Weibull fit 

that the strongest would be only ≈3.1 GPa with 𝑃=0.9995.  However, Specimen 2 strength 

extends to 3.8 GPa.  Perhaps by combining the data from these specimens and optimizing the 

parameter fit across both specimens, better 𝜎𝑢 and 𝑚 values can be obtained for strength 

predictions.  This idea is related to the work of. Danzer et al. [72], who recommended testing 

≈30 samples of many different sizes in order to detect multimodal flaw populations.  In the 

present data set, Specimens 1 (𝜎𝑢=2.18 GPa and 𝑚=3.05) and 2 (𝜎𝑢=2.47 GPa and 𝑚=2.46) are 

each reasonably well described by W3P with a single value of 𝑚, implying a unimodal flaw 

distribution.  The differences in the 𝜎𝑢 and 𝑚 values can be attributed to the high sensitivity of 

these parameters when 𝑁 is small. 

It can be further rationalized that 𝜎𝑢 and 𝑚  are the same for Specimens 1 and 2.  Both are 

uniformly stressed tensile bars, so 𝜎𝑢 should be equivalent.  From 2.55 to 2.96 GPa the strength 

data overlap for Specimens 1 and 2 (as can be seen by drawing vertical lines at these values in 

Fig. 2.6), indicating that much of the same flaw population is sampled.  For Specimens 1 and 2, 

this represents probabilities from 0.36<𝑃1<1 and 0<𝑃2<0.36 (where the 𝑃 subscript refers to the 

specimen), respectively (as can be seen by drawing horizontal lines intersecting the vertical lines 
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for the respective specimen).  The strength overlap is hence over 36% of the 𝑃2 range, and both 

populations appear to be unimodal.  The procedure to determine the best combined fit for  𝜎𝑢 and 

𝑚  to Specimens 1 and 2 was as follows.  First, a value of 𝜎𝑢 was chosen.  Then, a least squares 

fit was performed for each specimen according to Eq. 2.8(b).  This process was repeated for 

different values of 𝜎𝑢 until a value was found in which 𝑚 was the same for Specimens 1 and 2.  

As shown in Fig. 2.9, the fits are qualitatively good for both specimens. The resulting parameters 

are 𝜎𝑢 =1.95 GPa, 𝜎𝑜=2.47 GPa•𝜇m
2/4.8

, and  𝑚=4.83. 

Kolmogorov–Smirnov (KS) test [80], [81]  and Cramer-von Mises (CvM) [82] goodness of fit 

test leads to values of 0.35 and 0.29 from KS and 0.38 and 0.23 from CvM for specimens 1 and 2 

respectively, which indicate that the null hypothesis that the assumed fit to the experimental data 

cannot be rejected at the 5% significance level 

 

Fig. 2.9. Determination of Weibull parameters based on Specimens 1 and 2. 
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Fig. 2.10. Fitting Specimens 1 and 2 then predicting Specimen 3 and 4 probability distribution 

functions (solid lines) without accounting for change in threshold strength. 

 

The probability curve prediction for Specimens 3 and 4 was now improved, as seen in Fig. 2.10. 

The values of 𝑄=0.97, 0.96, 0.53 and -0.16 were found for Specimens 1-4, respectively.  This 

remains unsatisfactory.  The underlying reason is that the concept of strength in a non-uniform 

stress field requires more detailed consideration.  There is a stress gradient across the width of 

the DEN specimens.  A general theoretical formulation of the effects of stress gradient on 

strength and Weibull analysis has been presented by other authors [83]–[85].  With an assumed 

distribution of flaw sizes and orientations, it is found that in the presence of a stress gradient the 

failure probability is lower than for the case of constant stress.  Here, we provide a simple 

analysis by calculating the effect stress gradient effect on 𝜎𝑢 and compare it with the data.  Let us 

associate the largest effective critical flaw length, 𝑎𝑐, with 𝜎𝑢 from Specimens 1 and 2, and 

estimate its length by linear elastic fracture mechanics.  Accordingly, 
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𝑎𝑐 =
1

𝜋
(

𝐾𝐼𝑐

1.122𝜎𝑢
)

2

              ,                                                 (2.17) 

where 𝐾𝐼𝑐 = 1.2 MPa•√𝑚 is the critical stress intensity factor for polysilicon [60].  Based on Eq. 

(2.17) the largest effective critical flaw length that the microfabrication process produces is 

𝑎𝑐=96 nm. 

 
Fig. 2.11. Schematic view of local stress distribution in uniform and notched samples 

 

 

The maximum flaw size should be the same for the DEN specimens but the stress decreases 

across the notch width as seen in Fig. 2.11.  Therefore, 𝜎𝑢 depends on geometrical details for 

Specimens 3 and 4.  To determine 𝜎𝑢, the stress along the notch root was extracted by FEA.  

Assuming that the maximum flaw is present at the notch root, an iterative method was performed 

to estimate the threshold strength utilizing a weight function[86], [87].  The stress intensity factor 

can be expressed as 
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𝐾𝐼 = ∫ ℎ(𝑥, 𝑎)𝜎(𝑥)𝑑𝑥           ,                                                                                    (2.18)

𝑎

0

 

where ℎ(𝑥, 𝑎) is the weight function. The weight function is determined from a reference stress 

intensity factor.  For an edge crack, it is [86], [87] 

ℎ(𝑥, 𝑎) =
2

√(𝜋𝑎 [1 − (
𝑥
𝑎)

2

])

[1.3 − 0.3 (
𝑥

𝑎
)

5
4

]     .                                             (2.19) 

Glinka and Shen also fit the weight function to a simpler form which can be expressed as [87] 

ℎ(𝑥, 𝑎) =
2

√2𝜋(𝑎 − 𝑥)
[1 + 0.5693 (1 −

𝑥

𝑎
) + 0.279375 (1 −

𝑥

𝑎
)

2

]    .     (2.20) 

Using numerical integration, the threshold strength values were 𝜎𝑢=2.17, and 2.30 GPa for 

Specimens 3 and 4, respectively, as indicated in Table 2.3.  The Weibull modulus 𝑚=4.83 is 

taken to be the same for all specimens.  The probability fits are seen in Fig. 2.12.  The 𝑄 values 

are now 0.97, 0.96, 0.99 and 0.96, hence all are good fits.  The 𝐿𝑒𝑓𝑓 values in Table 2.3 for 

Specimens 3 and 4 are smaller than those in Table 2.3. This reflects the larger 𝜎𝑢 values for those 

specimens. 
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Fig. 2.12. Curve fitting of all strength data with Analysis Method 2 assuming a single value for 

m from Specimens 1 and 2, and bycalculating values of ru due to the stress gradient in 

Specimens 3and 4. 

 

Table 2.3  Analysis 2 - using Specimens 1 and 2 to make scaling predictions 𝜎𝑢 = 1.95 GPa,
𝜎𝑜 = 2.47  GPa. μm2/4.8 and  𝑚 = 4.83 

Specimen 

(n, # tested) 

𝜎𝑢 
(GPa) 

𝜎𝜃 + 𝜎𝑢 

(GPa) 

cf / 

sdr* 

Leff 

(m) 

% diff in 𝜎𝜃+𝜎𝑢 

(exp. vs. pred) 
𝑄 

1 (43) 1.95 2.69 0.83 140  0.97 

2 (45) 1.95 3.19 0.33 14  0.96 

3 (75) 2.17 3.81 0.012* 2.5 0.78 0.99 

4 (74) 2.30 4.19 0.017* 1.4 0.83 0.96 

 

While encouraging, further work is needed to understand the nature of the good agreement in 

Fig. 2.12 in detail.  In particular, a power law function for the frequency distribution density of 

effective crack lengths g(𝑎) does not necessarily predict a Weibull PDF in the presence of a 
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stress gradient, at least for the W2P case [83].  The good agreement in Fig. 2.12 also depends on 

assigning 𝐾𝐼𝑐=1.2 MPa•√𝑚, a value that is at the upper range of careful measurements [60].  

This choice can be justified in part because the flaws are due to sidewall grooves that are not 

through-cracks, but are more elliptical in nature.  Also, the grooves are usually not aligned 

perpendicular to the load axis. Both of these considerations would reduce 𝐾, or effectively 

increase 𝐾𝐼𝑐.  Finally, the native oxide on the surface may also increase the effective 𝐾𝐼𝑐 value 

[88]. 

2.5  Analysis of Specimen 5 

An even smaller Specimen 5 with a notch length of 4 μm and notch radius of 0.5 μm was also 

fabricated and tested. The experimental results (Appendix D, Fig D1) showed that the strength of 

Specimen 5 is similar to Specimen 4. Apparently there is an upper limit to the strength 

distribution and a high density of some small flaw size exists.  Hence it appears that testing even 

smaller specimens will not increase the strength and will yield the same stress distribution. The 

Weibull distribution predicts an increase in strength as size decreases, but as shown in Section 

2.2, this depends on a power law function for the flaw size distribution g(𝑎)~𝑎−𝑛.  From this 

data it can be hypothesized that a new type of flaw has been introduced for small 𝑎 with a higher 

density than that predicted by the power law function. 

Another hypothesis is that an insufficient number of Sp 4 and Sp 5 specimens were tested to see 

the size effect. This hypothesis motivated the development of new Monte Carlo simulation to 

assess the effect of number of specimens on the strength distribution (Appendix J).   
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2.6-Summary and Conclusions 

A new in-situ test platform has been developed to investigate the strength size effects in 

polysilicon.  Compared to our previous platform [73], [74], it enables good alignment for all 

specimen sizes.  A tradeoff is that residual stress is induced in the specimens.  It was shown how 

the residual stress can be evaluated.  It was also shown that with two different tensile specimens 

(here Specimens 1 and 2), the effective linewidth loss can be determined. 

A W2P fit to Specimen 1 (the largest) predicted the characteristic strength of Specimens 2-4 

unsatisfactorily.  Two analyses were conducted to assess the ability of the W3P fits to predict 

strength size effects.  In Analysis 1 using only Specimen 1, predictions remained unsatisfactory, 

as can be seen in Fig. 8 and by the goodness of fit values in Table 2.2 for DEN Specimens 3 and 

4.  This was attributed to the observation that the overlap in strength range of Specimen 1 with 

Specimens 3 and 4 is small.  In Analysis 2, using both Specimens 1 and 2, the predictions 

improved, but were still unsatisfactory especially for Specimen 4, as seen in Fig. 2.10.  With the 

recognition of a specimen-dependent 𝜎𝑢 due to stress gradient in the DEN specimens, a good 

prediction of Specimens 3 and 4 was obtained, as seen in Fig. 2.12. 
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Chapter 3: In-situ platform for isothermal testing of thin 

film mechanical properties using thermal actuators 
 

In Chapter 2, a specimen with a direct mechanical connection to the substrate was designed, 

analyzed and tested.  Because the mechanical properties of ceramics such as polysilicon are only 

weakly dependent on temperature, and because near perfect alignment could be achieved with 

that design, the platform enabled good strength measurements.  However, the melting 

temperature of Al is 𝑇𝑚=933 K, much lower than silicon (𝑇𝑚=1687 K). The Peierls barrier is also 

much lower in FCC metals than in covalently bonded silicon.  Therefore, Al mechanical 

properties such as strength are much more likely to be sensitive to temperature than is silicon.  

However, chevron actuators remain attractive because of the high force they generate.  

Therefore, we explored different methods to reduce the heat flow from the thermal actuator to 

the specimen.   

Hence, in this chapter a new in-situ tensile test platform has been developed to study the 

mechanical properties of thin film metal specimens. The fully on-chip test platform loads a 

specimen using a thermal actuator. Thermal actuators conveniently provide high forces and 

excellent alignment, but generate large heat that can flow to specimens and raise their 

temperature. In the new design, heat flow to the specimen is negligible. This attribute was 

achieved by introducing a thermal resistor that limits heat flow to the specimen and a heat sink 

that shunts remaining heat. Residual stress in the specimen was eliminated by including newly 

designed pre-inserted microgrippers.  An error analysis indicates that Young’s modulus can be 

evaluated with ±21% accuracy, while strength accuracy is ±5% (both one standard deviation). 

The test platform was used to study strength-related mechanical properties of Al-0.5 wt% Cu 
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micro tensile bars with two different thicknesses. Initial tests indicate that 0.63-𝜇m thick tensile 

bars exhibit higher strength, a larger strain hardening coefficient and less elongation than 1.03-

𝜇m thick tensile bars. Transmission electron microscopy indicated that the lower ductility was 

due to plastic strain localization. 

3.1 Introduction 

Chevron TAs have emerged as robust and reliable on-chip actuators for applying large force and 

displacement. A current is applied through V shaped beams, resulting in Joule heating and 

expansion of the beams. This leads to rectilinear movement of the connected parts. The 

disadvantage of this technique is the large heat flow and high temperatures that the specimen 

may experience during testing, which can considerably alter the mechanical properties of some 

materials. This inherit problem with TAs limits their applicability to materials with properties 

that have a strong temperature dependence. 

Several authors have tried to resolve the temperature issue for TAs. It was suggested to use a low 

thermal conductivity dielectric spacer, where a cut is made at required isolation points and a 

dielectric spacer is then deposited [45]. However, this approach requires additional fabrication 

steps and provides only limited thermal isolation. Others have used heat sink beams that emanate 

from the shuttle and are connected to the substrate [52]. The beam heat sinks should be short for 

effective heat dissipation. The disadvantage of this design is the small displacement range and 

the high force loss due to the fixed-fixed beams. Abbas et al. [89] used a test system consisting 

of a triple cascade of TAs capable of providing tens of mN force and tens of microns 

displacement while keeping temperature gradient low. The temperature difference across the 

sample was in the range of ∆𝑇 = 30 ºC. However, their test system occupies a relatively large 
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area (more than 2000 μm × 2000 μm), which make it less practical for testing large numbers of 

specimens in a given area. 

Another problem that often arises for these testing techniques is the stress induced in the 

specimens, either because the specimen is connected to the substrate on both sides [43] or 

because the specimen is co-fabricated with the TA, which can induce large post-release stresses 

in the specimen [22]. This in turn can cause plastic deformation after releasing the chip. 

In this work, a new in-situ test platform has been developed that provides (i) a small temperature 

difference across the specimen (<4 ºC), (ii) a relatively large actuation force and displacement (2 

to 8 mN and 10 to 20 µm, respectively), (iii) actuator self-alignment, and (iv) fully stress-

relieved specimens before loading. To devise this fully on-chip test platform, extensive 

considerations of thermal and structural issues have been tackled. A thermal resistor (TR)/heat 

sink combination was introduced to minimize the temperature gradient across the specimen. The 

thermal resistor minimizes heat flow, and a heat sink subsequently shunts virtually all the 

remaining heat away from the specimen. Moreover, the test platform eliminates the residual 

stress problem in the specimens by using pre-inserted microgrippers. Detailed information 

regarding the design, fabrication and validation of the test platform is included in the following 

sections. 

Also, another test platform was developed where the specimen is connected directly to the TA, 

but due to the high residual stress induced to the specimen after release, this test platform was 

not pursued in this thesis. This test platform is shown in Appendix E 
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3.2 Test platform design considerations 

The test platform was designed in the Sandia SUMMiT V
TM

 microfabrication process [90]. The 

process consists of five polysilicon layers of which four are freestanding polycrystalline silicon 

(polysilicon) mechanical layers. The layers are denoted Poly0 to Poly4, where Poly0 is used for 

electrical interconnection and substrate attachment while Poly1-Poly4 are free standing 

mechanical layers. The Poly1 and Poly2 layers are usually connected to each other. Therefore, in 

practice the mechanical layers consist of three polysilicon layers, which are Poly12, Poly3 and 

Poly4. These layers are connected by sacrificial oxide (SO) cuts. The process contains the option 

of depositing Al-0.5% Cu metal on top of the Poly4 layer, thereby directly mounting the thin 

film to the test platform.  (The Al-0.5% Cu film will be referred to as an Al film hereafter 

because the low Cu concentration does not play an important role in the film’s mechanical 

properties [91]). The platform was also fabricated using the SUMMiT V
TM

 process. However, 

special processing was done to span the Al film across two Poly4 regions. Namely, a fifth layer 

of sacrificial oxide (SO5) was deposited on top of Poly4. Then, the SO5 layer was polished back 

until it was at the same height as the Poly4. The Al film was directly deposited on top of this so 

that there was no vertical step from the polysilicon to the oxide. This sequence is described in 

more detail in ref. [91]. The samples were subsequently released [92] and rendered free standing 

by critical point drying. 

The test platform as shown in Fig. 3.1 consists of a TA connected to a load cell that contains 

displacement and force gages. The load cell is connected to a thermal resistor, which is a long 

thin beam. The thermal resistor is made from one layer of polysilicon to increase its resistance to 

heat flow while promoting heat flow to the substrate. The thermal resistor is connected to a pre-
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inserted microgripper, which allows the metal thin film to be freestanding while fully relieving 

its residual stress. One part of the gripping mechanism is connected to the thermal resistor while 

the other part is connected to the thin film, which is in turn connected to the substrate through an 

anchor pad. Table 3.1 summarizes the design parameters, which are discussed in detail next. 

 

Fig 3.1 SEM image of the test platform 
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Table 3.1  Test Platform Design Parameters 

Design Component Parameter Design Value 

Thermal Actuator Leg length 550 μm 

 Offset angle 5° 

 *Polysilicon layers Poly 12, 3, 4 

 Leg cross-sectional area (each) 75 μm
2
 

Load Cell Spring length, 𝐿𝐿𝐶 90 μm 

 Spring width, 𝑤𝐿𝐶 5 μm 

 Spring thickness,  𝑡𝐿𝐶 7 μm 

 Stiffness, 𝑘𝐿𝐶 1148 μN/μm 

 Polysilicon layers Poly 12, 3 & 4 

Thermal Resistor/heat sink Length of thermal resistor 200 µm 

 Area of thermal resistor 11.25 µm
2
 

 Thermal resistor resistance, 𝑅𝑇𝑅 63100 K/W 

 Heat sink resistance, 𝑅𝐻𝑆 6400 K/W 

 Tensile specimen, 𝑅𝑇𝑆 277300 K/W 

Tensile specimen Length, 𝐿𝑇𝑆 50, 70, 200 µm 

 **Width, 𝑤𝑇𝑆 5 µm 

 **Thickness, 𝑡𝑇𝑆 0.7 µm 

*The TA legs are connected by SacOx3 and SacOx 4 cuts 

** Experimental values were 𝑤𝑇𝑆 =4.4 µm, and 𝑡𝑇𝑆 =0.63 µm, 1.03 µm 

 

3.2-1 Thermal actuator 

The two major parameters considered in the design of the thermal actuator (TA) were (i) the 

force output and (ii) the maximum displacement. The force output should be large enough to 

probe the thin film strength, while the maximum displacement should be large enough to map the 

full plastic strain response of thin film. Optimization of the TA dimensions was carried out using 

a previously-developed MATLAB-ANSYS coupled model, which has been described in detail 

[93]. Briefly, the model consists of two solvers: electro-thermal analysis performed in MATLAB 

and thermal-structural analysis performed in ANSYS. A MATLAB finite difference formulation 

is used to determine the TA leg temperature profile, and the data is imported into ANSYS for 

finite element solution of the structural force and displacement. In-plane buckling of the TA legs 
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due to eccentric compressive load, which decreases the force output, is also included in the 

model. 

The final TA design consists of six leg pairs. Each leg has a length of 550 𝜇m and makes an 

angle of 5° from the horizontal. Bulk nanograined aluminum tensile bars with 30% elongation 

before fracture have been reported [94], while thin film aluminum tensile bars exhibited up to 

4% [20] and even 30% elongation when a large number of samples were tested [21]. The TA was 

conservatively designed to provide 30% elongation for 50 𝜇m long tensile bars of 5 𝜇m width. 

The corresponding leg temperature was 600 ºC at an applied voltage of 11.5 V. Fig. 3.2(a) shows 

the force-displacement curve for the TA at different voltages. The load line for a 50-𝜇m long 

tensile specimen is also displayed (this line includes the stiffness of the load spring). The tensile 

specimen is assumed to have a width of 5 μm and thickness of 0.7 μm. Two load lines for the 50-

μm long tensile specimen are shown. The horizontal load line corresponds to yield at 200 MPa 

with perfect plasticity. This was taken to be our baseline design. The second load line shown 

corresponds to brittle fracture, as has been observed in 200 and 50 nm thick Al films [49], [95] . 

The actuator is capable of producing a displacement of up to 18 𝜇m and maximum force of about 

9000 μN, which was believed to be sufficient to fracture the tensile specimens. Fig. 2(b) 

indicates the maximum leg and shuttle temperature at each voltage. The shuttle temperature can 

reach about 250 ºC, and therefore heat can leak to the specimen. This issue will be addressed in 

Section 3.2-3. The TA design parameter values are summarized in Table 3.1. 
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(a)                                                               (b) 

Fig. 3.2 (a) Calculated TA force-displacement curves (solid lines) with elastic and elastic-plastic 

load lines (dashed)  (b) calculated temperature of legs and central shuttle versus TA voltage 

 

3.2-2 Load cell 

The load cell, as shown in Fig. 3.3, consists of a load spring (comprised of four fixed-guided 

beams) and two displacement gages. One gage is connected to the crosshead through the thermal 

resistor, and measures the combined displacement of the tensile specimen and components in 

series with it. Determination of the specimen displacement is detailed in Section 3.3-2. The other 

gage spans the load spring; force 𝐹 is determined by multiplying its reading by the calculated 

load spring constant. To eliminate the effect of sample drift, each grating is referenced to a 

grating connected to the substrate, as seen on the far left and far right side of the gage structure. 
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Fig. 3.3 Load cell including displacement and force gages. 

 

The important consideration in designing the load spring is to make it sufficiently compliant for 

good force resolution, but stiff enough that high force is still transferred to the tensile specimen. 

The tensile specimen elastic stiffness is 𝑘𝑇𝑆=𝐸𝑇𝑆𝐴𝑇𝑆/𝐿𝑇𝑆, where 𝐸𝑇𝑆, 𝐴𝑇𝑆 and 𝐿𝑇𝑆 are the tensile 

specimen Young’s modulus, cross sectional area and length, respectively. Assuming 𝐸=70 GPa, 

𝐴𝑇𝑆=5•0.7 𝜇m
2
, and 𝐿𝑇𝑆=50 𝜇m, 𝑘𝑇𝑆=4900 𝜇N/𝜇m. The load cell was chosen to have a smaller 

stiffness of 𝑘𝐿𝐶=1148 𝜇N/𝜇m, as shown in Table 3.1. This choice was made in order to obtain 

good force resolution in the elastic regime of the specimen, while still being able to gain 

information over a significant portion of the plastic strain range. 
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3.2-3 Thermal resistor and heat sink configuration 

Mechanical properties of metals, such as yield stress, residual stress, creep, and fatigue, depend 

strongly on temperature. Therefore, attaining a nearly isothermal specimen test is critical. The 

end of the tensile specimen connected to the substrate will be at ambient temperature. Hence, the 

other end should be as close to ambient temperature as possible. Some of the heat generated in 

the TA will transfer through the surrounding gaseous air medium to the substrate so that it does 

not reach the specimen. However, the thermal conductivity of air is approximately three decades 

lower than the thermal conductivity of polysilicon, as shown in Fig. 3.4. Therefore the 

polysilicon acts nearly as a perfect conductor and appreciable heat may reach the specimen. To 

minimize this effect, we designed a thermal resistor that connects between the load cell and the 

grippers. The relatively long thin thermal resistor beam, made from a single layer of polysilicon, 

minimizes heat flow and increases heat escape through the surrounding air to the substrate. We 

attached a large heat sink to the crosshead to shunt the remaining heat to the substrate. Fig. 3.5 

shows a simplified thermal resistor circuit, where the subscripts TR, HS and TS and AMB stand 

for thermal resistor, heat sink, tensile specimen and ambient respectively. 𝑅𝐴𝑀𝐵 represents the 

important lumped thermal resistance from 𝑅𝑇𝑅 through the ambient to the substrate. The 

temperatures 𝑇1 and 𝑇2 are that of the TA shuttle and the specimen crosshead, respectively. 
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Fig. 3.4 Thermal conductivity versus temperature for different materials 

 

 

 

 

  
 

Fig. 3.5 Simplified thermal circuit of thermal resistance, heat sink, tensile specimen 

configuration. R
TR

 - thermal resistor resistance, R
HS

 - heat sink resistance, R
TS

 - tensile specimen 

resistance, 𝑅𝐴𝑀𝐵 - lumped resistance thru the ambient. 

 

𝑅𝐴𝑀𝐵  
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From Fourier’s Law for one-dimensional thermal conduction, the thermal resistance can be 

expressed as 

𝑅 =
𝑙

𝜅𝐴
    ,                                                  (3.1) 

where 𝑙 is length, 𝜅 is thermal conductivity and 𝐴 is the cross-sectional area. 

Estimates for the thermal resistances are 𝑅𝑇𝑅=63100 K/W, 𝑅𝐻𝑆=6400 K/W, and 𝑅𝑇𝑆=277300 

K/W, as also listed in Table 3.1. The resistor 𝑅𝐻𝑆 can be made arbitrarily low by making its area 

large. A small gap of 2 μm between the heat sink and substrate, as defined by the SO1 layer 

thickness in the SUMMiT V
TM

 process, minimizes 𝑅𝐻𝑆 (note that the gap now acts as the length 

in equation (3.1)). With an area of 12,000 𝜇m
2
, 𝑅𝐻𝑆 is just 2.3% of 𝑅𝑇𝑆, and therefore the major 

portion of the heat flow is through the heat sink rather than the tensile specimen. Assuming that 

the substrate is at 25 °C and 𝑇1=250 °C (the maximum possible with 11 V applied to the TA), a 

first order calculation ignoring 𝑅𝐴𝑀𝐵 shows that 𝑇2, which is located at the tensile specimen 

cross-head, is 21 °C higher than the surrounding temperature. 

One approach to reduce 𝑇2 further would be to conduct the testing in He, which will decrease 

𝑅𝐴𝑀𝐵 and hence increase heat loss to the substrate before it reaches the crosshead. As seen it 

Fig.3.4, 𝜅𝐻𝑒 is approximately 10 times higher than 𝜅𝑎𝑖𝑟. However, even in air, the above first 

order result significantly overestimates 𝑇2 because it neglects 𝑅𝐴𝑀𝐵. To get an accurate estimate 

of 𝑇2, a three-dimensional multi-physics model of the test platform was developed in ANSYS. A 

voltage is applied across the TA legs in the model and temperature results are extracted. The 

model is detailed in Appendix F. With 𝑇1=250 °C (corresponding to TA voltage of 11 V), the 

temperature difference along the tensile specimen is determined from the model is 4 °C, thus 
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approaching an isothermal test condition. In fact, the temperature difference across the tensile 

specimen is likely even smaller because the microgrippers provide an extra thermal resistance in 

the form of contact resistance, which contributes an extra resistance in series with the thermal 

resistor 𝑅𝑇𝑅 (Fig. 3.5). Its value is not well known and was not included in the finite element 

model. As will be seen below, the TA voltage was well below 11 V in the experiments, which 

further reduced the temperature difference along the sample. 

3.2-4 Pre-inserted microgrippers 

The grippers, as shown in Fig. 3.6, consist of two components: (i) load-carrying grippers and 

(ii) constraining grippers. As seen in Fig. 3.6(a), there are three load-carrying grippers and two 

constraining grippers. Each is made from three polysilicon layers that are connected through 

sacrificial oxide layer cuts, as indicated in the cross-section schematic of Fig. 3.6(b) marked as 

AA. One end is connected to the thermal resistor while the other is connected to the crosshead. 

The load-carrying grippers initially are freestanding. As actuator displacement increases to ~1 

𝜇m, they make contact and apply tensile load. 

The constraining grippers are also seen in Fig. 3.6(a). The fabrication process may induce 

residual stress gradients in the metal thin film, which will cause the film to bend up or down after 

release. If the bending were severe, then the load-carrying grippers would not engage. Therefore, 

the constraining gripper part connected to the crosshead surrounds the part connected to the 

thermal resistor, as indicated in the cross-section schematic of Fig. 3.6(b) marked as BB. The 

constraining grippers also inhibit slippage and optimize engagement of the load-carrying 

grippers during testing. 



66 
 

 

(a)                                                                  (b) 

Fig. 3.6 The microgrippers (a) an SEM tilt view shows the load -carrying grippers and out-of-

plane constraint grippers (b) gripper schematic cross-sections 

 

3.3 Experimental 

3.3-1 Thin film tensile specimens tested 

To assess the effectiveness of the new test platform, we tested several Al thin film tensile bars 

with variations in length 𝐿𝑇𝑆 and thickness 𝑡𝑇𝑆. The design width of the samples was 7 𝜇m, but 

after wet etch their width was 𝑤𝑇𝑆=4.4 μm. The lengths were 𝐿𝑇𝑆=50, 70 and 200 μm. The 

standard aluminum film thickness in the SUMMiT V is 0.7 μm and a thicker film of 1.1 μm was 

also processed. The films were sputter-deposited at 175 ºC for 42 and 66 s to attain the two film 

thicknesses, and after etch the photoresist was removed by plasma ashing at 250 °C for ~3 min. 

The thickness values of 0.63 μm and 1.03 μm include 0.07 μm removed by the sacrificial oxide 
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release etch [92]. These thicknesses were measured by running a profilometer over the end of 

freestanding cantilevers that were pressed down to the substrate by its normal force, and the 

estimated thickness uncertainty is ±0.03 μm (one standard deviation). Fig. 3.7 shows an 𝐿𝑇𝑆=70 

μm specimen with 𝑡𝑇𝑆=1.03 μm. As measured by the ASTM standard [96] , the grain sizes were 

3.6 μm and 4.8 μm for the 𝑡𝑇𝑆=0.63 and 1.03 μm films, respectively. From electron-backscatter 

diffraction (EBSD) measurements using a FEI Quanta 600 scanning electron microscope and 

Oxford Instruments EBSD system, Al films were predominantly oriented with the <111> 

direction aligned normal to the substrate and randomly along the loading direction. 

 

Fig. 3.7 70 μm long tensile specimen 

 

3.3-2 Mechanical Testing 

The experimentation was performed in laboratory air at 25 ºC on an optometric probe station 

equipped with a long-working distance interferometer [97]. The entire test set up rests on a 

Minus-K 250 BM-1 vibration isolation base. Automated measurement scripts were written using 

MEMScript software developed at Sandia National Labs, which utilizes the image processing 
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algorithms within National Instruments′ Vision Acquisition application. Voltage was applied 

across the TA in steps of 0.02 V using Signatone SE-T probes. The grippers engaged, and force 

and displacement were optically monitored in load cell gages using a 50 X objective lens 

(NA=0.55). The load spring gage displacements were calculated by detecting the phase 

difference between reference and object gratings in real time. Given that TA displacement is not 

linear with voltage, the strain rate was not controlled. However, the average strain rate was on 

the order of 2•10
-4

/s. In-plane displacement change resolution was ± 7 nm (one sigma), yielding 

a force resolution of approximately ±8 μN (one sigma). 

3.3-3 Data Analysis 

The displacement data 𝛿𝑇 collected at the load spring is the sum of contributions due to (i) the 

tensile bar gauge section and (ii) the complementary components, which are comprised of the 

thermal resistor, the grippers and the fillet regions. They form a combined spring system. A 

graphical approach was applied to estimate 𝐸𝑇𝑆 and the displacement of the tensile specimen 

gauge section. The combined system can be modeled as two springs in series with a total 

stiffness 𝑘𝑇. Thus, 

1

𝑘𝑇
=

1

𝑘𝑐
+

1

𝑘𝑇𝑆
                                                                           (3.2) 

where 𝑘𝑇𝑆 is the stiffness of tensile specimen. The stiffness of the complementary components 

𝑘𝑐 is assumed to be the same in each design. The stiffness of the tensile specimen in the elastic 

region can be expressed as 

𝑘𝑇𝑆 = 𝐸𝑇𝑆

𝐴𝑇𝑆

𝐿𝑇𝑆
                                                                               (3.3) 
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Substituting equation (3.3) into (3.2) 

1

𝑘𝑇
=

1

𝑘𝑐
+

1

𝐸𝑇𝑆𝐴𝑇𝑆
 𝐿𝑇𝑆                                                                       (3.4) 

To determine 𝐸𝑇𝑆 and 𝑘𝑐, a plot of 1/𝑘𝑇 versus 𝐿𝑇𝑆 is constructed. Then, a linear curve fit is 

performed where the slope of the fitted line is (1/𝐸𝑇𝑆𝐴𝑇𝑆) and the 𝑦-intercept is 1/𝑘𝑐. Then, the 

tensile specimen displacement can be obtained as 

𝛿𝑇𝑆 = 𝛿𝑇 −
𝐹

𝑘𝑐
     ,                                                                                       (3.5) 

where 𝛿𝑇𝑆 is the specimen displacement and 𝐹=𝑘𝐿𝐶𝛿𝑇. We observe that 𝑘𝑇𝑆 changes due to 

plastic strain, but 𝑘𝑐 does not. Therefore, equation (3.4) is used in the elastic realm of the tensile 

specimen to determine 𝐸𝑇𝑆 and 𝑘𝑐. Then equation (3.5) is used for the elastic and plastic zones to 

determine 𝛿𝑇𝑆 where 𝐹/𝑘𝑐=𝛿𝑐 is the displacement of the complementary components. 

3.3-4 Tranmission electron microscopy 

After mechanical testing, some samples were lifted out directly from the test platform using the 

focused ion beam (FIB) technique [98]. A FEI Nova Nanolab FIB was used to ion mill the 

specimens free from the platform.  A 20 keV Ga
+
 ion beam was used for imaging and milling the 

specimen without any ion beam exposure to the tensile bar or fracture region.  The samples were 

extracted using an Omnioprobe Nanomanipulator inside the FIB and mounted on to conventional 

copper grids.  They were imaged in an FEI Tecnai F20 transmission electron microscope (TEM) 

at 200 keV. Two imaging modes were utilized: convention bright-field (BF) TEM imaging and 

scanning TEM (STEM) using a high angle annular dark field (HAADF) detector for dark-field 

imaging.  Both BF-TEM and STEM-HAADF imaging modes allow direct observation of 
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dislocations in the metal layers.  All TEM images were recorded in regions free of any ion 

milling and associated damage. 

3.4 Results and Discussion 

Preliminary tension tests were performed on samples with lengths of 𝐿𝑇𝑆=50, 70 and 200 𝜇m for 

Al-0.5 wt. % Cu films with 𝑡𝑇𝑆=0.63 and 1.03 μm. Force and displacement were recorded during 

the test. The engineering stress and strain were determined from the simple relations 𝜎 = 𝐹/𝐴𝑇𝑆 

and 휀 = 𝛿𝑇𝑆/𝐿𝑇𝑆 where 𝜎 and 휀 are the engineering strain, respectively. Table 3.2 summarizes 

the test results, which are described next. The total stiffnesses 𝑘𝑇 of the three tensile specimens 

were determined by fitting the linear part of the load spring force-displacement curve. Then the 

inverses of the stiffness values were plotted versus 𝐿𝑇𝑆, as shown in Fig. 3.8. The slope of the 

curve fit was used to determine 𝐸 = 85 and 89 GPa for the 0.63 and 1.03 μm thick tensile 

specimens respectively. Extrapolating the lines to a length 𝐿=0, the average of intercept value is 

1/𝑘𝑐=5.7•10
-5 𝜇m/𝜇N, or 𝑘𝑐=1.75•10

4
 𝜇N/𝜇m. 

Stress-strain curves were extracted directly from the 𝐹 versus 𝛿𝑇𝑆 data and are shown in Fig. 3.9 

for the 𝐿𝑇𝑆=200, 70 and 50 μm specimens. The maximum voltages applied to the 0.63 and 1.03 

𝜇m thick samples were 3.2 and 5 V, respectively. From these voltages, maximum shuttle 

temperatures of 68 °C and 114 ºC are calculated. Given the thermal resistor/shunt design, the 

temperature gradient is expected to be 2 °C and 3 ºC for these tests, respectively. Curvature can 

be noted at small strains in some of the 𝜎 versus 휀 data. This is believed to be due to a gradual 

gripper engagement process. The same curvature was of course also seen in the force 

displacement curves that were used to estimate the 𝐸𝑇𝑆 values reported above. Therefore, the 𝑘𝑇 
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values were estimated only once the data was linear, corresponding to full engagement of the 

grippers. 

 

Fig. 3.8  The inverse of stiffness vs. specimen length for different tensile bars 

 

Table 3.2 Summary of test results 

Property or Attribute 𝑡=0.63 𝜇m 𝑡=1.03 𝜇m 

𝐸𝑇𝑆 (GPa) 85±15.6 89±15.6 

𝜎𝑦 (MPa) (𝐿=200, 70, 50 μm) 225, 305, 358 153, 215, 230 

휀𝑓 (%) (𝐿=200, 70, 50 μm) 1.35, 1.3, 1.4 1.9, 1.5, 4.6 

𝑛 0.46 0.27 

Max Δ𝑇 2 ºC 3 °C 

Max bending/tensile stress ratio ≲1.5 % ≲1.5 % 

 

The expected value for 𝐸𝑇𝑆 is 74.4 GPa [91]. A detailed error analysis of 𝜎, 𝜖 and 𝐸𝑇𝑆 is reported 

in Appendix G. The uncertainty in 𝐸𝑇𝑆 of ±15.6 GPa (one standard deviation) is attributed 
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mainly to the uncertainties in 𝛿𝑇 and 𝑡𝑇𝑆 (as reported in Table G1). The error due to 𝛿𝑇  

dominates at low strain (up to 0.08%), while the error due to uncertainty 𝑡𝑇𝑆 dominates in the 

strain range 휀 = 0.08-0.3%. Figs. G1 and G2 in Appendix G reveal these trends. The uncertainty 

in 𝐸𝑇𝑆=±15.6 GPa is due to the combination of the uncertainties detailed in Appendix G and the 

steep slope in the linear region of the stress-strain curve. 

With respect to plastic deformation, it should be noted that the 𝐿𝑇𝑆=200 𝜇m, 𝑡𝑇𝑆=0.63 μm tensile 

bar in Fig. 3.9a exhibits an apparent strong strain softening characteristic. That is, there is a large 

drop in the load just beyond 𝜎𝑦. This is due to an instability in the load frame. That is, the load 

cell stores significant strain energy that will be released if the tensile bar cannot sustain the force 

that it exerts. The load frame is neither fixed load nor fixed grip. A fixed grip system would 

likely exhibit a less severe softening. 

 

(a)                                                            (b) 

Fig. 3.9 Stress versus strain curves up to fracture (dashed lines indicate instability-induced 

displacements).  Data are offset by a strain of 0.1% to make each curve distinguishable 
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The yield stress 𝜎𝑦 is taken as the value of strength that deviates from linearity by three times the 

noise in the measurement (this will give a significantly lower estimate than the typical 0.2% 

offset, but is used because most microscale applications will not tolerate plastic deformation). 

For the 𝑡𝑇𝑆=0.63 μm thick specimens, the values of 𝜎𝑦 are 225, 305 and 358 MPa for 𝐿𝑇𝑆=200, 

70 and 50 𝜇m tensile bars, respectively. For the 1.03 μm thick specimens, the values of 𝜎𝑦 are 

153, 215 and 230 MPa for 𝐿𝑇𝑆=200, 70 and 50 𝜇m tensile bars, respectively. As shown in 

Appendix B, the error in the 𝜎𝑦 values is not more than 5%. Therefore, the differences are 

significant. It is apparent that shorter 𝐿𝑇𝑆 and lesser 𝑡𝑇𝑆 both increase 𝜎𝑦. 

For 𝑡𝑇𝑆=0.63 μm, the elongation was 휀𝑓=1.35% (𝐿𝑇𝑆=200 μm), 휀𝑓=1.3% (𝐿𝑇𝑆=70 𝜇m), and 

휀𝑓=1.4% (𝐿𝑇𝑆=50 𝜇m). For the 𝑡𝑇𝑆=1.03 μm, 휀𝑓=1.9% (𝐿𝑇𝑆=200 μm), 휀𝑓=1.5% (𝐿𝑇𝑆=70 𝜇m), 

and 휀𝑓=4.6% (𝐿𝑇𝑆=50 𝜇m). The 𝑡𝑇𝑆=0.63 μm specimens exhibit significant strain hardening, 

with a strain hardening exponent 𝑛=0.46 for 𝜎>𝜎𝑦 while the 𝑡𝑇𝑆=1.03 μm specimens exhibit less 

strain hardening with 𝑛=0.27 for 𝜎>𝜎𝑦 up to the plastic instability. 

One important test artifact relates to the magnitude of the bending moment applied to the tensile 

specimens. Their placement on top of the polysilicon layers will lead to some off-axis loading. 

To quantify this effect, the out-of-plane deflection curves of tensile specimens were measured at 

different TA voltages using phase-shifting interferometery. Fig. 3.10 shows the out-of plane 

displacement of the 70-μm long tensile specimen at different voltages. At 0 V, the constraining 

grippers act to reduce the out-of-plane deflection and prevent disengagement. Then, the tensile 

specimen curves upward by about 0.5 μm. As the voltage is increased, the tensile specimen starts 

to bend downward to about -0.5 μm at 3 V. The maximum curvature occurs at 𝑥≈100 𝜇m. There, 

the bending to axial stress ratio is found to be 0.015, a relatively small value. 
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Fig. 3.10 Out-of-plane deflection versus TA voltage for 𝐿𝑇𝑆 = 70 𝜇𝑚 sample. 

 

High 𝜎𝑦 and low 휀𝑓 in free-standing aluminum thin specimens at room temperature were also 

observed by Lee et al. [20], Haque et al. [95], and Espinosa et al. [49]. Lee et al. [20] studied 2-

μm thick sputtered Al specimens (500-μm long and 50-μm wide) at different annealing 

temperatures and found that 𝜎𝑦 decreased from 125 MPa for as-deposited specimens (𝑑=1.1 𝜇m) 

to 92 MPa for specimens annealed at 450 °C (𝑑=2.3 𝜇m). In contrast, 휀𝑓 increased from 0.7% for 

as-deposited specimens to about 4% for specimens annealed at 450 °C. Strain softening 

immediately after yield was observed except for the specimen annealed at 450 °C, which 

experienced strain hardening to a small degree. They attributed the greater elongation and 

softening in the larger grained films to a local grain thinning effect, in which dislocations in the 

grain centers were more likely to intersect the free surface than the grain boundaries. 
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Espinosa et al. [49] tested evaporated aluminum specimens with widths of 5, 10 and 20 μm and 

thicknesses of 0.2 and 1 μm. No clear strength size effect was observed with respect to specimen 

width, but a significant size effect occurred with thickness. They measured 𝜎𝑦≈375 MPa and 

휀𝑓≈0.4% for 0.2 μm thick specimens and 𝜎𝑦≈150 MPa for 1 μm thick specimens and 휀𝑓 of 2.5%-

7%. They defined 𝜎𝑦 as the value of stress when the slope deviates from linearity. 

While the above comparisons are of interest, single values of strength and ductility may not exist 

at this scale because of a strong dependence on individual grains. That is, in bulk specimens, 

weak grains may yield first, but surrounding grains of different orientation will prevent strain 

softening. Indeed, for thin film samples tested in HF acid (i.e., no native oxide was present), a 

Weibull-like distribution of ductility has been observed [21]. Quantifying the strength range for 

different length and thickness specimens in air is an important topic for future work. 

To gain initial insight into our 휀𝑓 values, we conducted transmission electron microscopy (TEM) 

of the samples strained to fracture in order to investigate the difference in how strain was 

accommodated. The 𝐿𝑇𝑆=50 μm/𝑡𝑇𝑆=1.03 μm with large (휀𝑓=4.6%) and the 𝐿𝑇𝑆=50 μm/𝑡𝑇𝑆=0.63 

μm with small (휀𝑓=1.4%) ductility from Fig. 3.9 were directly lifted out using FIB. Three regions 

were identified according to their proximity to the fracture zone. As shown in Fig. 3.11, Region 1 

is in the immediate vicinity of the fracture zone, Region 2 is about 10 μm away, while Region 3 

is about 17 μm away. 
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Fig. 3.11 TEM composite image shows the regions of study 

 

BF-TEM and STEM-HAADF analysis was utilized to image the microstructure and investigate 

dislocation distribution.  For the 0.63 μm tensile bar, we observe a large dislocation density in 

Region 1 (~100 × 108 cm−2). The dislocation density diminishes significantly in Regions 2 and 

3 (~10 × 108 cm−2), as shown in Fig. 3.12. This indicates that local plasticity is responsible for 

the limited ductility. In contrast, the dislocation density is high in Regions 1, 2 and 3 of the 1.03 

μm tensile specimen as shown in Fig. 3.13 (dislocation density was > 140 × 108 cm−2 in 

Region 1 and ~40 × 108 cm−2 in Regions 2 and 3). This indicates that the plastic deformation 

occurs more uniformly throughout the tensile specimen, which therefore increases the 

elongation. 
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Fig. 3.12 TEM images for 𝐿𝑇𝑆=50 μm, 𝑡𝑇𝑆=0.63 μm. (a) Region 1, (b) Region 2 and  

(c) Region 3. 

 

 

Fig. 3.13 TEM images for 𝐿𝑇𝑆=50 μm, 𝑡𝑇𝑆=1.03 μm. (a) Region 1, (b) Region 2 and  

(c) Region 3. 

 

In related work, Colombier et al. [21] observe a wide range of elongation to failure in thin Al 

films, and attribute this to local stress concentrations such as grain boundary grooves, or a cluster 

of grains with weak orientations. Our films do not realize the Considère criterion for 

imperfection-free necking (휀𝑓=𝑛). Colombier [21] found that for films lacking a native oxide the 

criterion is met only for the strongest and shortest specimens, indicating that weak grains limit 휀𝑓 

for most samples. Here, only a few grains span the 4.4 𝜇m tensile bar width. The fracture angle 

is 51º from the loading direction Fig. 3.11, close to 54.7º as expected from the plane strain 
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condition [99], [100]. At that angle, only two grains span the fracture region in Fig. 3.11. 

Surrounding grains are not available to take up the applied stress.  Therefore we surmise that 

weak grains also limit the elongation of our native oxide coated-films. 

3.5-Summary and conclusions 

A new on-chip test platform has been designed, fabricated, analyzed and used to test mechanical 

properties of metal thin films. The on-chip test platform features good alignment of the thermal 

actuator to the specimen, a nearly isothermal specimen temperature and full relief of residual 

stress through the implementation of pre-inserted microgrippers. The design provides ample 

force (up to 8 mN) and large displacement (up to 18 μm) to test the full stress-strain curve of 

microscale specimens. 

The test platform was used to study Al thin film specimens with two different thicknesses (0.63 

and 1.03 μm) and three different lengths (200, 70 and 50 𝜇m). A detailed analysis (Appendix G) 

indicates that 𝐸 can be evaluated with an accuracy of ±21%, and 𝜎𝑦 with a better accuracy of 

±5% (one sigma). The thinner tensile bars exhibited high strength, a high strain hardening 

coefficient and low ductility compared to the thicker specimens. However even in the thicker 

specimens, 휀𝑓 did not exceed 5%. This is much lower than bulk values, but in good qualitative 

agreement with several other thin film studies. TEM indicated that a specimen with low ductility 

experienced local plastic deformation, while a specimen with higher ductility exhibited more 

uniform plastic deformation throughout the sample. 

Our main purpose in this chapter has been to demonstrate a new test platform and evaluate its 

potential for studying freestanding metal thin film mechanical properties. The design is amenable 
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to in-situ testing of thin film fatigue, creep and strength size effects. Testing can also be done in-

situ inside an environmental chamber [101] while controlling environmental factors such as 

temperature or ambient. 
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Chapter 4: Statistical Investigation of Size Effect of Yield 

Stress and Elongation for Free-standing Polycrystalline Al-

0.5% Cu Thin Film 

The effect of size on yield stress and elongation for Al-0.5% Cu thin films is investigated 

experimentally. The controlled dimensions for the specimens are thickness (1.03 and 0.63 µm) 

and length (200, 70 and 50 µm). Thinner and shorter specimens exhibit a larger average yield 

stress but also a much larger scatter in yield stress. Specimens of larger thickness and shorter 

length have a larger average elongation but similarly a larger scatter in elongation. The increase 

in average yield stress with decreasing thickness is linked to the decrease in dislocation length, 

hence, the increase in yield stress required to bow dislocation. The decreases in average yield 

stress with length may be attributed to the higher probability of having weaker grain.  

4.1 Introduction 

Metal films exhibit a considerable increase in their yield stress as their thickness decreases [20], 

[49], [95], [102]–[107].  However, they also display more brittle behavior and a lesser elongation 

to failure. The size effects in polycrystalline metal thin films have been investigated by many 

methods including stress-temperature curves [108], [109], bulge [110], [111], uniaxial tension of 

thin film on a deformable substrate [104], [107], [112] or uniaxial tension of a free-standing thin 

films [20], [43], [49], [95], [102], [103], [105], [106]. 

Although wafer curvature, bulge test and uniaxial tension of thin film on wafer substrate provide 

important information about the strength size effect, some drawbacks that limit their applicability 

to inferring information on the strength of free standing films, which are of interest in MEMS 

applications. For instance, wafer curvature requires thermal cyclic loading which can alter the 

mechanical properties of thin film by increasing the grain size.  It also uses a whole wafer which 
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may not reflect the strength of a structure with small width and length.  Uniaxial tension testing 

of a thin film on a deformable substrate leads to delay of onset of necking and increase ductility 

due to the present of the substrate [113].  

Recognizing such limitations, researchers have performed testing on free standing thin films.  

Espinosa et al. [49] studied the strength size effect with respect to thickness and width for free-

standing aluminum specimens. Their aluminum thin films had thicknesses of 0.2 and 1 μm and 

widths of 5, 10 and 20 μm.  No size effect was observed with respect to width, however the thin 

films fractured at different elongations. A large size effect was found with respect to thickness 

where the 0.2 μm thick specimen fractured in a brittle manner at larger stress and lower 

elongation. The thin films deformed uniformly until fracture and no necking was observed. 

Haque et al. [95] tested aluminum specimens with a thickness of 50, 100, 150 and 480 nm and 

grain sizes of 22, 50, 65 and 212 nm respectively. The 100 nm thick specimen fractured in a 

brittle manner while the 50 nm thick specimen behaved in a nonlinear elastic way with limited 

plastic deformation.  Also, the strength size effect with respect to length was studied in single 

crystal copper [114].   

In most of the previous work, only a limited number of tests were performed at each size (only 

one specimen was reported at each thickness in most cases).  This is important to note because 

even though average stress increases, scatter in strength tends to increase as structures decrease 

in size.   

One of the few works where the scatter in strength is reported is the work by Yu et al. [107]. 

They studied thin copper films on a Kapton substrate. The copper thin films had thicknesses 

between 0.1 and 3 μm. They indeed found that while the average yield stress increases as the 
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thickness decreases, the scatter in yield stress also increases. For instance, the yield stress for 1 

μm thick specimens were scattered roughly between 400 and 500 MPa, but the yield stress for 

0.2 μm thick specimens was scattered between 500 and 900 MPa. 

Coulombier et al. [21] studied the scatter in ductility for aluminum thin films where the ductility 

is the strain at which necking starts. They found that shorter specimens have larger ductility than 

longer specimens. No information on the scatter of yield stress is reported in their paper due to 

the nature of their experimental setup [53], which limits their measurement to only one stress and 

strain value per specimen.  The scatter in yield stress has been recognized in single crystal 

micropillar compression [115]–[117]. 

In this work, the scatter in yield stress and elongation for the aluminum specimens is quantified. 

The elongation is defined here as the strain at which failure occurs. In measurements, voltage 

was applied across the TA legs in steps of 0.01 V, inducing expansion and resulting in shuttle 

displacement. The grippers engage, and force along with displacement were optically monitored 

in load cell gages using a 50 X objective lens and transferred to engineering stress and strain by 

using the cross sectional area and length of the specimen. 

4.2 Statistical Strength and Elongation Results 

As indicated in the first two columns of Table 4.1, six different tensile specimens were tested. 

The tensile specimens have lengths 𝐿 of 50, 70 and 200 μm. The nominal design thicknesses 

were 0.7 and 1.1 μm but the actual thicknesses were somewhat less because the release process, 

which removes the sacrificial oxide film, etches the Al film to a small degree [92]. The actual 

thicknesses were measured by profilometery to be 𝑡=0.63 and 𝑡=1.03 μm. Similarly, the width of 

the specimens was measured by SEM to be 𝑤 =4.4 μm. As measured by ASTM standard E112 
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[96], the grain sizes were 𝑑=3.6 μm and 𝑑=4.8 μm for the 𝑡=0.63 and 𝑡=1.03 μm films, 

respectively. 

A number 𝑁=9 specimens of each size were tested, making for a total of 54. Fig. 4.1 shows an 

example stress vs. strain curves that were obtained.  The stress vs. strain curves for all specimens 

is included in Appendix H. In general, the 𝑡=0.63 μm specimens strain hardened, as seen in Fig. 

4.1a. In a few cases (4 of 27), they exhibited strain softening. The 𝑡=1.03 μm specimens strain 

hardenend and then transitioned to relatively constant stress condition until fracture as shown in 

Fig. 4.1b for L=200 μm, or they transitioned to a strain softening regime as shown in Fig. 4.1b 

for L=50 and 70 μm. 

 

                                             (a)                                                                 (b) 

Fig 4.1 Stress versus strain curves up to fracture for some of the thin films, (a) t =0.63 μm, (b) 

t=1.03 μm. Data are offset to make each curve distinguishable 

 

As seen in Fig. 4.1a, the 𝑡=0.63 μm specimens tended to fracture at a small strain of less than 

2%.  The stress at 0.2% strain is well beyond the elastic proportional limit. For this reason, we 

adapted a definition for yield stress, 𝜎𝑦, that is comparable to that used by Espinosa [49]. Here, a 
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linear fit to the elastic region of the stress vs strain curve and the yield stress was defined as the 

stress at which the stress vs strain curve deviated from linearity by three times the noise (± 20 

nm) in the measurements.  Table 4.1 summarizes the results. 

Table 4.1: Summary of Specimens and Results 

𝑡 
(µm) 

𝐿 
(µm) 

𝑁 yield stress (𝜎𝑦) 

range (MPa) 

Average yield 

stress 𝜎𝑦̅̅ ̅ (MPa) 

Elongation 

(휀𝑓) range (%) 

Avg. elongation 

(휀�̅�) (%) 

0.63 

200 9 165-234.5 198.8±22.96 0.67-1.57 0.98±0.3 

70 9 219.7-360 296.6±41.51 0.83-3.13 1.38±0.69 

50 9 230-358 294±37.45 0.99-4.82 1.98±1.46 

1.03 

200 9 138-164 151.7±7.61 0.84-3.09 1.62±0.68 

70 9 191.7-229 216.6±11.77 1.5-7.4 4.6±2.08 

50 9 185.1-230 211.4±15.79 1.4-10.3 4.7±3.03 

 

We now explore the effect of geometry on yield stress 𝜎𝑦 and elongation 휀𝑓. Fig. 4.2a shows 𝜎𝑦 

plotted against 𝑡. Note that the filled markers are for 𝑡=0.63 µm, while the unfilled markers are 

for 𝑡=1.03 µm. For the same 𝑡, the data is slightly offset so that the different 𝐿 values can be 

distinguished.  The 𝑡=0.63 μm specimens show a higher average yield stress 𝜎𝑦̅̅ ̅ and a larger 

scatter in 𝜎𝑦 than the 𝑡=1.03 μm specimens. 

Fig. 4.2b shows 𝜎𝑦 plotted against 𝐿.  Here for the same 𝐿, the data is slightly offset so that the 

different 𝑡 values can be distinguished.  The 𝐿=200 μm specimens show smaller 𝜎𝑦̅̅ ̅ and lesser 

scatter in 𝜎𝑦 while the 𝐿=70 and 50 μm specimens display larger 𝜎𝑦̅̅ ̅ but greater scatter.  The 

shaded bands indicated the range for the 𝑡=0.63 μm and 𝑡=1.03 μm specmens, respectively. 



85 
 

 

                                             (a)                                                                 (b) 

Fig. 4.2 Yield stress (𝜎𝑦) size effect in (a) thickness 𝑡 and (b) length 𝐿.  The data are slightly 

offset to distinguish the different thicknesses and lengths. (filled markers are 𝑡=0.63 μm 

specimens while unfilled markers indicate 𝑡=1.03 μm) 

 

In both Figs. 4.2a and 4.2b, the scatter in 𝜎𝑦 for the 𝐿=50 and 70 μm specimens is comparable; 

this can be attributed to the comparable size between both specimens.  

As is evident from both Figs. 4.2a and 4.2b, the strength increases for the thinner samples but the 

range of the data also becomes larger.  The ratio of the standard deviation in yield strength to the 

average yield strength is 0.06 for 1 µm thick samples, and more than doubles to 0.13 for 0.6 µm 

thick samples.  This is true for all three specimen lengths, as shown in Fig. 4.3. 
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Fig 4.3 the ratio of standard deviation to average of yield stress vs. thickness 

 

It can be noted that the elongation can be greatly increased by placing the film on a strain 

hardening polymeric substrate [113].  This will greatly increase film ductility by homogenizing 

the strain.  The data here accurately reflect 𝜎𝑦 and give the actual elongation for a freestanding 

film.  Figs. 4.4a and 4.4b show the elongation 휀𝑓 of the freestanding specimens as a function of 𝑡 

and 𝐿, respectively. The average elongation 휀�̅� increases as the thickness of the specimen 

increases and the scatter of the elongation increases as well. The 𝐿=50 μm specimens have larger 

휀�̅� and larger scatter followed by the 𝐿=70 μm long specimens. The average elongation is 

summarized in Table 4.1.   
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                                             (a)                                                                 (b) 

Fig. 4.4 Elongation size effect in (a) thickness (b) length.  The data are slightly offset to 

distinguish the different lengths or thickness. (filled markers are 𝑡=0.63 μm specimens while 

unfilled markers indicate 𝑡=1.03 μm) 

 

The film resolved shear stress may exert force on threading dislocations, leaving an edge 

dislocation trail at the substrate/film and/or oxide/film interface (Fig. 24 of ref. [118]).  If the 

work done by the film per unit area is equal or greater than the energies of the dislocations that 

deposit at the interface, the film strength prediction is  

𝜎𝑦 =
𝑠𝑖𝑛𝜙

𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜆
 

𝑏

𝜋(1 − 𝜈)𝑡
[

𝜇𝑓𝜇𝑜

𝜇𝑓 + 𝜇𝑜
 ln (

𝛽𝑜𝑡𝑜

𝑏
)]   .                 (4.1) 

Here 𝑠𝑖𝑛𝜙/𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜆=3.464 for a <111>-oriented fcc film. For the Al film, the Burgers vector 

𝑏=0.286 nm, the Poisson’s ratio 𝜈=0.31, and the shear modulus 𝜇𝑓=24.8 GPa.  The oxide shear 

modulus 𝜇𝑜=178.9 GPa, its thickness is taken to be 𝑡𝑜=5 nm, and the constant 𝛽𝑜=17.5.  With 

these values, Eq. 4.01 reduces to 𝜎𝑦=57 MPa•µm/𝑡.   

Venkatraman and Bravman [34] studied strength versus temperature of sputtered Al-0.5% Cu 

films similar to those in this study using a wafer curvature technique. The film was constrained 
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by a silicon substrate and an anodic oxide alumina film.  Their data indicated that yield stress 

depends on thickness and grain size according to 

𝜎𝑦 =
𝑚𝑡ℎ𝑖𝑐𝑘

𝑡
+

𝑚𝐻𝑃

√𝑑
                                             (4.2) 

Extrapolating their data to 25 ºC, 𝑚𝑡ℎ𝑖𝑐𝑘=95 MPa•m.  This experimental value is larger roughly 

by a factor of two than the value predicted by Nix’s theory (a version of Eq. (4.1) that accounts 

for the different substrate modulus)  The parameter 𝑚𝐻𝑃=115 MPa√μm reflects Hall-Petch 

hardening, and is added to account for grain size effects  For a grain size/thickness combinations 

of (𝑑≈3.6 m/𝑡=0.63 μm) and (𝑑 ≈ 4.8 μm/𝑡 =1.03 μm), this results in predictions of 𝜎𝑦=211 

and 145 MPa, respectively for the current specimens.  The predicted trend is plotted in Fig.4.2a 

as a dashed line (the 𝑑 dependence accounts for only a 6 MPa difference and hence the trend is 

displayed as a single line). The trend is plotted as horizontal dashed line in Fig. 4.2b because 

there is no functional dependence on 𝐿.  Note that for the shorter values of 𝐿=50 and 70 μm, 𝜎𝑦 

is strongly underpredicted, while the range in 𝜎𝑦 is nearly as large as the value predicted in Eq. 

(4.1). 

The agreement between the Eq. (4.2) predictions and the 𝜎𝑦̅̅ ̅ results from the 𝐿=200 μm 

specimens are remarkably good.  This attests to the likelihood that the Al film has developed a 

scale in the present samples which provides an excellent barrier to dislocation motion at the top 

and bottom of the film.  However, there clearly are other important mechanisms that must be 

involved in order to explain the 𝜎𝑦 dependence on 𝐿 as well as the scatter in 𝜎𝑦.  It should be 

noted, however, that specimen thinning  [20], as discussed in the Chapter 1, is not a likely 

mechanism here. If it were, the very good agreement in strength between Eq. (4.2) and the 𝐿=200 

µm data would not be expected.    
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The 0.63 μm thick specimens tend to exhibit strain hardening until an abrupt fracture event, 

while the 1.03 μm thick specimens show either a small amount of strain hardening followed by 

constant stress until fracture or strain softening. The reason behind strain softening was 

investigated by interrupting some experiments when the strain softening started. Fig.4.5 shows 

two specimens that showed strain softening. As we can see, necking and slip has occurred in 

these specimens and the cross sectional area has decreased. The necking and slip happens 

abruptly, which leads to a burst in strain. The apparent strain softening is attributed to the use of 

the original cross sectional area to calculate stress rather than using the area after necking. 

After the first slip occurs, the materials show strain hardening again until the next slip incidence 

where a new burst in strain and another drop in stress takes place. Usually, the subsequent slip 

incidents have less strain burst than the first one. This process continues until fracture happens 

and a serrated region is observed in some of the stress-strain curves. In some cases the slip 

happens very quickly and the whole specimen fractures immediately as soon as necking starts. 

Usually the slip happens at an angle between 25
o
-50

o
 with respect to the cross-sectional area 

plane. 
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                                             (a)                                                                 (b) 

Fig. 4.5 Two interrupted experiments where specimens show strain softening (a) 0.63 μm 

thickness (b) 1.03 μm specimen. The specimens show necking which correlates with the strain 

softening. 

 

Fig. 4.6 shows some specimens that experience strain hardening until fracture. The specimens 

either fracture in no specific pattern which might be an indication of a complex fracture process, 

or sometimes a fracture with an angle with respect to the plane of cross-sectional area which is 

an indication of the occurrence of slip but the specimen fractures immediately as the slip start. 

                  

Fig. 4.6 Fracture region for some specimens (𝑡 =0.63 μm) that show strain hardening till fracture 

 

In general, the size effect in yield stress should be a function of grain size, specimen thickness 

and specimen length and can be expressed as 
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𝜎𝑦 = 𝜎𝑜 + 𝑘1𝑑−𝑛 + 𝑘2𝑡−𝑚 + 𝑘3𝐿−𝑝                                           (4.3) 

The first two terms are the well-known Hall-Petch equation. The exponent 𝑛 commonly has the 

value 0.5. The determination of the exponents and the constants require a large number of 

experiments at different grain sizes, thicknesses and lengths. 

There are two mechanisms that could be linked to the observed strength size effect in thickness 

and length. The yield stress size effect in thickness can be attributed to the increase in stress 

required to bow smaller dislocations. The 𝑡=0.63 μm is smaller in thickness, thus the Frank-Read 

source is expected to be smaller and a larger stress is required to activate this source. The other 

mechanism which is connected to the length is the grain orientation. The 200 μm long specimens 

have a larger number of grains, therefore, they have a larger probability of having a weaker 

grain. 

4.3 Summary 

The stress and elongation of thin polycrystalline aluminum thin films shows scatter and the 

scatter increase as the length and thickness of thin films decreases. The thinner and shorter 

specimens show larger average stress and larger average elongation. The size effect and scatter 

in yield stress can be linked to the smaller size of dislocations in the t=0.63μm specimens and to 

the larger probability of having weaker grain for the long specimens. 
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Chapter 5: Conclusions and Future Work 

 

5.1 Summary and Conclusions 

An existing test platform was evaluated for the use in strength size effect study of polysilicon. A 

misalignment issue was discovered where the test platform experience small lateral displacement 

and small rotation. This misalignment issue is attributed to the asynchronous engagement of the 

grippers where one side of the grippers engages before the other side. The non-simultaneous 

engagement issue is not severe for the longer tensile bars, but it introduces large error for the 

smaller ones. Therefore, a new test platform with excellent in-plane sample alignment for all 

specimen sizes was developed for polysilicon testing. 

With this platform, a size range of a factor of 100 has been modeled, designed, fabricated and 

tested. Test results show increase in polysilicon strength as the specimen size decrease. The 

average strength has increased from 2.7 to 4.2 GPa. 

The prediction of strength size effects based on strength data from only the large tensile bar does 

not work very well and the strength of two different size tensile bars is required for better 

estimation of Weibull parameters. In addition to estimating Weibull parameters from two 

specimens we need to account for the change in threshold strength due to non-uniform stress 

distribution along the notch ligament. The threshold strength is an estimate of the largest crack 

size, and we showed that for notched tensile bars, it is not a constant because for the same size 

flaw, the apparent strength depends on the stress distribution across the crack face. 
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A new test platform for in-situ on-chip testing of aluminum with excellent alignment and load 

resolution has been designed. The test platform incorporated high force, large displacement 

range thermal actuators and pre inserted microgrippers to relieve residual stress in the aluminum 

specimens.  

A combination of thermal resistor and heat sink is adapted to shunt heat to the substrate. Using 

finite element method, the temperature gradient along aluminum tensile bars is found to be less 

than 3 ºC in air. Young’s modulus and stress are determined by performing error analysis to be 

within 21% and 5% accuracy respectively. 

The test platform was used to investigate the yield stress and elongation size effect in aluminum. 

Aluminum thin film structures over a size range of 6.5 increase in average yield strength from 

140 MPa to 300 MPa. Unlike macroscale specimens, these samples also exhibit significant 

scatter in strength.  The ratio of the standard deviation in yield strength to the average yield 

strength is 0.06 for 1 µm thick samples, and more than doubles to 0.13 for 0.6 µm thick samples. 

 

5.2 Future Work   

The future work can be divided into experimental and analytical. 

For the experimental part, the aluminum test platform can be used to study different specimens 

with different sizes and investigate the effect of length, thickness and grain size on the yield 

stress. Also, the test platform can be used to investigate creep in thin films by applying uniform 

fixed load on the specimen which was not done before, a sample creep experiment is shown in 

Appendix I. Other interesting experiments is fatigue loading where the specimen is loaded in 
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tension then the load is removed and by repeating this cyclic load we can obtain important 

information on the fatigue of thin  

For the analytical part, the Monte Carlo simulation needs to be improved for accurate prediction 

of strength for notched specimens. Other distributions for the RVEs such as log-normal might be 

used to investigate the accuracy of prediction; also, other functions for the flaws distribution can 

be investigated to figure out what is the best combination of RVEs and flaws distribution. 

The size effect in aluminum can be investigated by discrete dislocation dynamic or Monte Carlo 

simulation to come up with model that predict the scatter in the yield stress and the yield stress 

size effect.  
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Appendix A: Hazra’s test platform [54] 
 

As shown in Fig. A1, Hazra’s design (the gripping design) consists of a freestanding tensile bar 

connected to the substrate at one end and with a freestanding block attached to female grippers at 

the other end.  Male grippers, which are initially not in contact with the female grippers, are 

connected to a chevron thermal actuator through the shuttle.  An increasing difference in 

potential is applied through the thermal actuator legs, causing them to heat and inducing a linear 

movement (through thermal expansion) to the male grippers.  After applying enough voltage, the 

grippers become completely inserted. Now the voltage is reduced and the grippers engage.  The 

loading of the tensile bar occurs by reducing the voltage until fracture.  The tensile bar 

displacement is monitored using the gauges on either side of the crosshead by detecting the 

relative phase of reference and object gratings.  The displacements are transformed into stresses 

and strains by using a linear finite element model of the test structure. 

 

(a)                                                                (b) 

Fig A1 Hazra’s design (a) schematic view (b) SEM of fabricated structure (Hazra 2010) 

 

 

Right gauge 

Left gauge 
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We had originally intended to use the gripping design for our work, so several tests were 

performed using this design. However, a misalignment issue was discovered during our tests. 

This issue was critical for the smaller scale tensile bars tested in this project. As seen in Fig. A2, 

displacement gauges are attached on both sides of the test structure.  A series of tests were 

performed and the axial displacement was measured at each displacement gauge three times.  

When the results from the two gauges were compared, it was found that one of the gauges 

always had larger displacements than the other gauge, as seen in Fig. A2.  Although Fig. A2 

gives results for one of the worst cases, it represents a significant problem, as explained below. 

 

 

Fig. A2 The axial displacement recorded at both displacement gauges for the same test structure 

(tests were performed without breaking tensile bar) Note that for the same voltage, the 

displacement is larger for the right gauge than the left gage. 

 

Upon cooling, gripper engagement does not happen simultaneously and almost always one side 

engages before the other. The cross-head displacement and lateral displacement and rotation 

were monitored as shown in Fig A3. We determined that the cross-head experiences rotation and 

some lateral displacement upon loading as shown in Fig A4. Consequently, the gauge on the side 

where the grippers engage first, records larger axial displacements. 
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Fig. A3 The cross-head displacement is monitored to quantify misalignment 

 

 

 

Fig A4 Lateral displacement and rotation of cross-head during loading 

 

 

Although the rotation of the cross-head is small, it is amplified at the displacement gages by 

amount of 𝐿휃, where 𝐿 is the distance between the grippers and the displacement gage which is 

around 150 𝜇m, and 휃 is the rotation angle. This can give rise to a discrepancy of 30 nm, 

depending on whether the measurement is made on the left or right side of the crosshead.  When 

the tensile bar is short (e.g., 𝐿=7 µm), this translates into a strength error of up to 0.23 GPa, well 

beyond the acceptable range. Also, we have  
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Appendix B : Displacement results 
 

In this appendix, the displacement values at fracture are given for all the specimens tested in 

Chapter 2. 

Displacement Results for Sp 1 (nm) 

1198.7 1202.6 1219.5 1235.9 1245.8 1252.2 1252.3 

1261.18 1264.2 1267.48 1285.3 1287.5 1298.6 1299.68 

1305.5 1309.2 1311.68 1143.4 1144.1 1327.9 1161 

1168.7 1342.5 1353.2 1188.5 1376.4 1209.3 1387.2 

1224.6 1226.1 1227.8 1229.7 1234.2 1238.5 1240.6 

1439 1278.6 1283.4 1286.4 1310.8 1313.5 1331.1 

1347 

      
 

Displacement Results for Sp 2 (nm) 

327.45 343.2 285.04 351.2 358 361 361.1 

361.7 361.85 362.8 363.833 366.4 366.43 369 

370.83 371.19 375.5 376 317.78 318.77 385.6 

324.13 324.77 391 397.3 336.54 402.9 340.33 

343.92 409.4 346.8208 349.73 352.6 417.63 418.5 

418.6 367.84 436.4 373.2 375.28 376.11 376.25 

440.8 443.6 384 389.33 455.7 417.21 

 
 

Displacement Results for Sp 3 (nm) 

223.54 233.1 238.2 189.26 242.5 203.68 210.2 

264.65 264.9 265.3 269.38 272.2 272.8 220.62 

276.64 226.98 226.99 280.14 228 283.4 287.3 

235.91 289.8 291.44 292.24 293 293.44 294.2 

242.1 242.42 294.84 245.33 297.7 298.61 246.6 

299.9 300.6 248.48 301.5 302.04 302.14 250.24 

251.16 304.01 304.54 253.91 306.5 254.64 255.22 

308.3 309.35 310.8 260.1 260.25 313 261.41 

314.2 265.02 267.47 269.2 269.22 270.11 271.51 

272 272.2 275 275.65 275.83 331 281.54 

289.6 291.65 292.51 295.6 314.87 
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Displacement Results for Sp 4 (nm) 

147.52 193.9 194.3 195.1 196.5 154.96 158.65 

207.1 207.5 162.14 208.82 169.6 216.7 218.1 

218.5 172.24 220.1 220.15 174.51 174.85 224.8 

178.92 225.36 180.15 226.7 226.7 227.55 181.77 

182.54 229.5 184 231.95 232.56 233 233.1 

187.57 188.18 189 235.7 189.38 236.5 190.74 

190.83 190.92 191.75 191.96 239.565 195.15 241.8 

199.7 246.51 200.6 200.95 201.5 248.2 202.5 

250.365 204.13 251.3 252.565 206.3 208.22 208.34 

256.76 257.5 257.8 217.11 265 219.33 227.57 

230.95 231.3 231.6 250.72 

   
 

Displacement Results for Sp 5 (nm) 

98.03 110.6 163.1 164.2 166.4 167.3 121.77 

122.21 168.75 122.66 170.54 172.4 173.5 173.5 

174.11 175.4 175.5 129.8 177.1 177.51 134.15 

181.2 134.91 136.13 182.7 137.13 137.71 184.9 

184.9 187.94 188.6 190.3 145.89 146.23 194.2 

194.6 148.31 196.3 197.72 199 200.1 154 

154.34 204.1 204.3 205.3 159.41 206.1 207.8 

161.43 210.1 175.41 177.44 
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Appendix C: Weibull 2 parameter prediction 
 

Fig. C1 shows the W2P and W3P fits using the maximum likelihood method for Specimens 1-4 

from Chapter 2. Tables B1 and B2 give the best fit Weibull parameters for W2P and W3P, 

respectively.  Figure C2 shows that using the W2P fit of Sp1, the prediction of Sp2, Sp3 and Sp4 

is relatively poor. 

 

Fig. C1.  (a) Best W2P fits to each specimen.  (b) Best W3P fits to each specimen by Maximum 

likelihood method. 

 

Table B1 W2P parameters for each specimen 

 Specimen 𝑁 𝑚 𝜎𝜃 (GPa)  

 1 43 17.3 2.71  

 2 45 11.9 3.23  

 3 75 12.2 3.86  

 4 74 11.1 4.28  

 

Table B2 W3P parameters for each specimen 

Specimen 𝑁 𝑚 𝜎𝑢 (GPa) 𝜎𝜃 (GPa) 𝜎𝑢+𝜎𝜃 (GPa) 

1 43 3.05 2.18 0.50 2.68 

2 45 2.46 2.47 0.71 3.18 

3 75 12.2 2.10 1.74 3.84 

4 74 11.1 3.15 1.07 4.20 

(b) W3P fit 
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Fig. C2.  W2P Strength prediction of  Specimens 2-4 using Specimen 1 data. 
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Appendix D: Specimen 5 experimental Results 
 

Specimen 5 shows strength that is comparable to Specimen 4.  

 

Fig. D1 Strength distribution for all specimens 
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Appendix E:Elastically connected design for the Al test 

platform 
 

The elastically connected design as shown in Fig. E1 has the specimen connected directly with 

the test platform. This design induces a large residual stress as shown in Fig. E2. The residual 

stress is measured to be around 100 MPa. The out of plane deflection is measured by 

interferometry as shown in Fig E3. The out of plane deflection agrees very well with a multi-

physics model that was developed in ANSYS to study the structural response as shown in 

Fig.E3(a). The ANSYS model is shown in Fig E.4.  

 
Fig. E1 SEM image of the elastically connected design 

 

 
Fig. E2 Stress vs. strain curve for one of the specimens from the elastically connected design. 

Our measurement start from around 100 MPa due to large residual stress 
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(a)                                                              (b) 

Fig. E3 Out of plane displacement for the specimen and thermal resistor at (a) 0V compared to 

ANSYS results (b) at different voltages 

 

 

Fig. E4 3D-ANSYS multi-physics model to the test platform 
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Appendix F: Finite element analysis of temperature of the 

aluminum test platform 
 

A 3-D multi-physics (electrical-thermal) finite element model was developed in ANSYS to 

assess the temperature across the tensile specimen. In this section, we describe the finite element 

model and the properties that used in the model. Because the contact resistance is not well 

known, the microgrippers were simply modeled as solid elements. As explained in the main 

body, the temperature at the cross-head is expected to be somewhat lower than the one found 

here. The solid model for the test platform, as shown in Fig. F1, consists of the tensile specimen 

made from aluminum, while the rest of test platform is made from polysilicon. A voltage 

difference is applied between the thermal actuator legs. The applied voltage difference through 

the TA legs leads to Joule heating and expansion of the legs. Two important properties are 

needed for the polysilicon, which are the electrical resistivity and heat conductivity as a function 

of temperature. 

The polysilicon change in resistivity with temperature can be expressed as [119], [120] 

𝜌 = 2.9713𝑋10−2𝑇 + 20.858             𝑇 < 300 °𝐶      (F1a) 

𝜌 = 6.16𝑋10−5𝑇2 − 7.2473𝑋10−3𝑇 + 26.402            300 °𝐶 < 𝑇 < 700 °𝐶  (F1b) 

𝜌 = 8.624𝑋10−2𝑇 − 8.8551                         𝑇 > 700 °𝐶     (F1c) 

where 𝜌 is resistivity in Ω•μm unit and 𝑇 is temperature in Celsius. 

The change in thermal conductivity with temperature for polysilicon is shown in Fig. 4 and can 

be expressed as [93] 
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𝜅𝑝 =
1

−2.2𝑋10−11𝑇3+9𝑋10−8𝑇2−1𝑋10−5𝑇+0.014
     ,     (F2) 

where 𝜅𝑝: is thermal conductivity of polysilicon in W/(m.K). 

 

Fig. F5 Test platform modeled in ANSYS 

 

Heat conduction to the substrate is included in the model by introducing an air rectangular 

volume surrounding the test platform. All sides of the air cube assumed to be insulated except 

the one that contacts the substrate, which shares the substrate temperature. The air volume is 

made large enough that any increase in the air volume has no effect on the temperature 

distribution results. 

Two different solid elements were used in the model, Solid227 for polysilicon and Solid90 for 

aluminum, substrate and air. The Solid227 is a 3D element used in multi-physics analysis that 

has the capability of modeling the Joule heating in polysilicon, Solid90 element is used for 3D 

transient or steady-state thermal analysis and was used in our finite element analysis to model 

heat transfer to the substrate. The total number of elements used in the model was 195063 
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elements distributed as 24686 element for polysilicon, 1482 element for aluminum, 38224 

element for substrate and 130671 element for air. 

A fixed temperature boundary condition of 25 ºC was applied to the substrate.  A voltage of 11 V 

is applied across the TA legs and the cross-head temperature is extracted from the model and was 

found as 29 
o
C, which is 4 

o
C greater than the substrate temperature. However, the specimens 

fracture at much lower voltage (3 V - 5 V). Therefore, the cross-head temperature is found to be 

in the range between 27- 28 °C. (2 -3 °C greater than the substrate temperature). 
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Appendix-G: Uncertainty analysis for stress 𝝈, strain 𝜺 and 

modulus of elasticity 𝑬 
 

The error in 𝜎, 휀 and 𝐸 comes from two main sources. These are the uncertainty in the load cell 

and tensile specimen dimensions and the uncertainty in the measured displacement values. The 

error estimate is carried out utilizing the partial derivative definition for the variance. For a given 

function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), let us assume that 𝑥1,  𝑥2, … 𝑥𝑛 are random independent variables with 

variances 𝑉1, 𝑉2, …, 𝑉𝑛 respectively. (The standard deviation is related to the variance as 

𝑆𝑖 = √𝑉𝑖). The variance of 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) can be expressed as [121] 

𝑉𝑓 = (
𝜕𝑓

𝜕𝑥1
)

2

𝑉1 + (
𝜕𝑓

𝜕𝑥2
)

2

𝑉2 + ⋯ +  (
𝜕𝑓

𝜕𝑥𝑛
)

2

𝑉𝑛       .   (G1) 

Equation (B1) can be written in compact form as 

𝑆𝑓 = √∑ (
𝜕𝑓

𝜕𝑥𝑗
)

2

𝑆𝑗
2

𝑖

𝑗=1

          ,                                                    (G2) 

where 𝑆𝑓 is the standard deviation of the function 𝑓 and 𝑆𝑗 is the standard deviation of the 

variable 𝑗.. 

Uncertainty in Stress 

The engineering stress can be calculated as 

𝜎 =
𝐹

𝐴
=

𝑘𝐿𝐶𝛿𝐿𝐶

𝑤𝑇𝑆𝑡𝑇𝑆
    ,                                                                     (G3) 

where 𝑘𝐿𝐶 is the stiffness of the load cell spring, 𝛿𝐿𝐶 is the displacement of the load cell, 𝑤𝑇𝑆 is 

the width of the tensile specimen, 𝑡𝑇𝑆 is the thickness of tensile specimen. Equation G3 can be 

rewritten by substitution for the spring’s stiffness 
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𝜎 =
𝐸𝐿𝐶𝑡𝐿𝐶𝑤𝐿𝐶

3 𝛿𝐿𝐶

𝑤𝑇𝑆𝑡𝑇𝑆𝑙𝐿𝐶
3    ,                                                                 (G4) 

where 𝐸𝐿𝐶 is the modulus of elasticity of the spring material (polysilicon), 𝑡𝐿𝐶 is spring 

thickness, 𝑤𝐿𝐶 is spring width and 𝑙𝐿𝐶 is spring length. The variance of stress can be calculated 

as 

𝑉𝜎 = (
𝜕𝜎

𝜕𝐸𝐿𝐶
)

2

𝑉𝐸𝐿𝐶
+ (

𝜕𝜎

𝜕𝑡𝐿𝐶
)

2

𝑉𝑡𝐿𝐶
+ (

𝜕𝜎

𝜕𝑤𝐿𝐶
)

2

𝑉𝑊𝐿𝐶
+ (

𝜕𝜎

𝜕𝛿𝐿𝐶
)

2

𝑉𝛿𝐿𝐶
+ (

𝜕𝜎

𝜕𝑤𝑇𝑆
)

2

𝑉𝑊𝑇𝑆

+ (
𝜕𝜎

𝜕𝑡𝑇𝑆
)

2

𝑉𝑡𝑇𝑆
+ (

𝜕𝜎

𝜕𝑙𝐿𝐶
)

2

𝑉𝑙𝐿𝐶
        ,                  (G5) 

where 

𝜕𝜎

𝜕𝐸𝐿𝐶
=

𝑡𝑝𝑤𝐿𝐶
3 𝛿𝐿𝐶

𝑤𝑇𝑆𝑡𝑇𝑆𝑙𝐿𝐶
3     , 

𝜕𝜎

𝜕𝑡𝐿𝐶
=

𝐸𝐿𝐶𝑤𝐿𝐶
3 𝛿𝐿𝐶

𝑤𝑇𝑆𝑡𝑇𝑆𝑙𝐿𝐶
3    , 

𝜕𝜎

𝜕𝑤𝐿𝐶
=

3𝐸𝐿𝐶𝑡𝐿𝐶 𝑤𝐿𝐶
2 𝛿𝐿𝐶

𝑤𝑇𝑆𝑡𝑇𝑆𝑙𝐿𝐶
3    ,   

𝜕𝜎

𝜕𝛿𝐿𝐶
=

𝐸𝐿𝐶𝑡𝐿𝐶𝑤𝐿𝐶
3

𝑤𝑇𝑆𝑡𝑇𝑆𝑙𝐿𝐶
3    , 

𝜕𝜎

𝜕𝑤𝑇𝑆
= −

𝐸𝐿𝐶𝑡𝐿𝐶𝑊𝐿𝐶
3 𝛿𝐿𝐶

𝑊𝑇𝑆
2 𝑡𝑇𝑆𝑙𝐿𝐶

3    , 
𝜕𝜎

𝜕𝑡𝑇𝑆
= −

𝐸𝐿𝐶𝑡𝐿𝐶𝑤𝐿𝐶
3 𝛿𝐿𝐶

𝑤𝑇𝑆𝑡𝑇𝑆
2 𝑙𝐿𝐶

3   , and 
𝜕𝜎

𝜕𝑙𝐿𝐶
= −

3𝐸𝐿𝐶𝑡𝐿𝐶𝑤𝐿𝐶
3 𝛿𝐿𝐶

𝑤𝑇𝑆𝑡𝑇𝑆𝑙𝐿𝐶
4  .   (G6) 

The design (nominal) values are used to estimate the partial derivative values, and are listed in 

Table G1.  The estimated standard deviation values are also listed and are described next. 

Table G1. Values of parameters used to estimate uncertainty in stress 

Parameter Value Standard deviation Units 

𝐸𝐿𝐶 164000 3200 MPa 

𝑡𝐿𝐶 7 0.0124 μm 

𝑤𝐿𝐶 9 0.05 μm 

𝑙𝐿𝐶 90 0.05 μm 

𝑤𝑇𝑆 4.4 0.05 μm 

𝑡𝑇𝑆 0.63 0.03 μm 

𝛿𝐿𝐶 Variable 0.007 μm 

 

The test platform is made from polysilicon with 𝐸𝐿𝐶=164000 MPa and standard deviation 3200 

MPa [9]. The total load spring thickness is from the combined Poly1, 2, 3 and 4 layers.  The 
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standard deviation for the polysilicon layers can be obtained from SUMMiT V design manual 

[122]. The standard deviation in thickness is 2.3 nm for Poly1, 3.4 nm for Poly2, 9.9 nm for 

Poly3 and 6.3 nm for Poly4. Therefore, the standard deviation in thickness is 0.0124 μm. The 

standard deviation of the width and length of load springs is 0.05 μm. The deflection 

measurement 𝛿𝐿𝐶 is within ± 20 nm accuracy (3 sigma), thus, the standard deviation is 7 nm. The 

standard deviations for the thickness and width of the tensile specimen are estimated to be 0.03 

and 0.05 μm respectively. 

Table B2. The contribution of each parameter to the stress variance 

Partial 

derivative 

Value Units Contribution to 

stress variance 

(squared and 

multiplied by 𝑉𝑖) 

𝜕𝜎/𝜕𝐸𝐿𝐶 0.0025𝛿𝐿𝐶  -- 65.3𝛿𝐿𝐶
2  

𝜕𝜎/𝜕𝑡𝐿𝐶 59.16𝛿𝐿𝐶  MPa/μm 0.538 𝛿𝐿𝐶
2  

𝜕𝜎/𝜕𝑤𝐿𝐶 138.05𝛿𝐿𝐶 MPa/μm 47.64 𝛿𝐿𝐶
2  

𝜕𝜎/𝜕𝛿𝐿𝐶 414.14 MPa/μm 8.4 

𝜕𝜎/𝜕𝑤𝑇𝑆 −94.12𝛿𝐿𝐶 MPa/μm 22.148 𝛿𝐿𝐶
2  

𝜕𝜎/𝜕𝑡𝑇𝑆 −657.36𝛿𝐿𝐶  MPa/μm 388.919 𝛿𝐿𝐶
2  

𝜕𝜎/𝜕𝑙𝐿𝐶 −13.8𝛿𝐿𝐶 MPa/μm 0.476 𝛿𝐿𝐶
2  

 

The nominal values were substituted in equations G6 and a summary of their respective 

contributions is listed in Table G2.  Note that many of the partials in equations (G6) depend on 

𝛿𝐿𝐶. Therefore, in general, the error will vary with displacement or strain. Substituting back into 

equation (G5), the variance of stress can be obtained as function of spring deflection 𝛿𝐿𝐶, which 

can be related to the nominal value of the stress by the equation (G4). The uncertainty in stress is 

the standard deviation of stress (𝜎 ± 𝑆𝜎) and the error is the standard deviation divided by the 

nominal value (error =𝑆𝜎/𝜎). At low stress values (near zero), the uncertainty in stress is 

dominated by uncertainty in 𝛿𝐿𝐶 and the error approaches infinity. As seen in Fig. G1, the 
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contribution of measurement uncertainty falls as the load cell deflection 𝛿𝐿𝐶 increases and the 

uncertainty in the tensile specimen thickness becomes the major source of error. The 

contributions of 𝑡𝐿𝐶, and 𝑙𝐿𝐶 to the error are small. Table G2 shows the contribution of all 

parameters as function of load spring deflections, while Fig. G1 shows the contribution of load 

spring width, deflection, Young’s modulus and the tensile specimen width and thickness to the 

total stress uncertainty at different stress levels. 

 
Fig. G1 Contributions of (i) load cell width, deflection and Young’s modulus and (ii) tensile 

specimen width and thickness to the total uncertainty in stress 

 

An important parameter is how the error changes with increased stress. Fig. G2 shows the 

change in total error as function of load cell deflection. The total error decreases with increasing 

stress until it flattens out at 5% error at 100 MPa.  Therefore, 𝜎𝑦 is expected to be accurate within 

5% error. 
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Fig G2 Contributions to total error in stress as function of load cell deflection 

 

Uncertainty in Strain 

Strain can be expressed as 

휀 =
𝛿𝑇𝑆

𝐿𝑇𝑆
   ,        (G6) 

where 𝛿𝑇𝑆 is the deflection of the tensile specimen and 𝐿𝑇𝑆 is the length of the tensile specimen. 

The deflection measurement has standard deviation of 7 nm. Assuming a uniform etching to the 

tensile specimen, then the gauge length of tensile specimen remains the same and the only 

change happens to the tensile specimen is the increase in fillet radius, therefore, the standard 

deviation in the length of tensile specimens can be assumed to be zero. Thus, the strain variance 

can be expressed as 

𝑉 = (
𝜕휀

𝜕𝛿𝑇𝑆
)

2

𝑉𝛿𝑇𝑆
    ,              (G7) 

where 
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𝜕휀

𝜕𝛿𝑇𝑆
=

1

𝐿𝑇𝑆
   . 

Substituting the nominal value of the length (𝐿𝑇𝑆 = 50 μm) in equation (G7) results in a variance 

of 1.96•10
-8

 or standard deviation of 𝑆𝐸 = 0.00014, therefore the error in strain (𝑆 /휀) is 

expected to be large at low values of strain and the error diminishes towards zero as the strain 

increases. For example at 휀 =0.01 (1%), the strain error is already < 2%. 

Uncertainty in Young’s modulus 

In a similar manner, Young’s modulus of tensile specimen and the variance of Young’s modulus 

can be expressed as 

𝐸 =
𝜎

휀
                                                  (G8) 

𝑉𝐸 = (
1

휀
)

2

𝑉𝜎 + (−
𝜎

휀2
)

2

𝑉                           (G9) 

In a previous study, Young’s modulus was found to be 74.4 GPa [91]. Therefore, the nominal 

stress values and nominal strain values that produce Young’s modulus of 74.4 GPa was 

substituted in equation (B9). Fig. G3 shows the uncertainty in Young’s modulus as function in 

percentage of strain. 

The linear part of the stress-strain curve spans over a range of ~0.003 as shown in Fig. 9. The 

Young’s modulus was estimated within the strain region 휀 = 0.0002 − 0.003. If strain values 

less than 0.0002 included in the determination of Young’s modulus, then the error approaches 

infinity and unreliable result is obtained. 

The average uncertainty in Young’s modulus can be calculated as 
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𝑆𝐸
̅̅ ̅ = √

∫ 𝑆𝐸
2𝑑휀2

1

(휀2 − 휀1)
           (B10) 

Numerical integration of equation (B10) was performed where the variables of integration are 

taken from Fig. B3 over the strain range 휀 = 0.02-0.3% and the uncertainty in Young’s modulus 

was found to be 𝑆𝐸
̅̅ ̅ = 15.6 GPa. 

 

Fig G3 Uncertainty in Young’s modulus  as function of strain percentage 
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Appendix H: Stress vs strain curves for different specimens 
 

Fig H-1 Stress –strain curves for 𝒕 = 𝟎. 𝟔𝟑 𝝁𝒎 specimens 
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Fig H-2 Stress –strain curves for 𝒕 = 𝟏. 𝟎𝟑 𝝁𝒎 specimens 
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Appendix I: Preliminary Creep Experiments 
 

Preliminary creep tests were perform on the probe station. Fig. I1 shows the aluminum tensile 

bar displacement and the force displacement recorded at the load cell. The experiment was 

performed in air at 157 
o
C. The high noise observed in the measurement may be associated to the 

air convection current generated by the large heat. For better results, the specimens should be 

tested on vacuum chamber like the one that used in  [101], [123] 

 

Fig I1 Creep experiment at 157 
o
C 
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Appendix J: Monte Carlo Simulation 
 

In this Appendix, we are going to attempt to demonstrate  an approach for describing and 

predicting the strength of brittle materials. The approach is based on the idea of the weakest link 

that Weibull has developed; however, we will go in a different direction. Weibull assumed that 

failure can happen anywhere along the surface area but in fact that is not completely true. In 

reality, failure can only happen at the locations where we have severe flaws. Therefore, instead 

of using a chain with an infinite number of links (infinite number of flaws), we should use a 

chain with specific number of links (or links with finite volumes) and each link contains only one 

flaw that could cause the failure of the whole structure. 

Thus, a Monte Carlo approach has been developed for the treatment of strength distribution of 

brittle materials. The approach relies on generating random representative volume elements 

(RVEs) and assigns a flaw size to each element. The relation between flaw size and (RVEs) is 

assumed to be described by a power law function. Linear fracture mechanics treatment was 

utilized to develop our Monte Carlo scheme. The Monte Carlo approach then used to fit Sp 1 (the 

70 μm long) experimental data and the curve fit was used to predict specimen size effect. Finally, 

the effect of the number of specimens on the accuracy of strength distribution is discussed. A 

small number of specimens gives a poor representation of strength distribution of brittle 

materials and a large number of specimens should be tested to get reliable and accurate results. 

The Monte Carlo simulation can easily be used to predict the minimum number of specimens 

that should be tested to obtain a reliable and accurate strength distribution curve. 

There are some unconventional approaches that were used to study the strength distribution of 

brittle materials such as the fuse network model [124], [125] where a network of electrical 
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resistances are considered to be analogous to a mechanical structure with flaw. This approach 

has yet to be validated experimentally. Another approach which surprisingly is not more widely 

used in spite of its simplicity and widespread applicability is the Monte Carlo simulation.   

The Monte Carlo simulation has been used to hypothesize a deviation from the Weibull 

distribution for a small number of samples by generating virtual strength data from a pre-

assumed Weibull function [72].  Another interesting use of the Monte Carlo simulation to study 

brittle materials size effect was reported by Nurhuda et al. [126]. They assumed a Poisson 

distribution of flaw sizes in glass plates under uniform pressure and tested the effect of the flaw 

size using four different distributions (uniform, normal, log-normal and Weibull distributions). 

They found that the log-normal produced a better curve fit to their experimental data. 

Yankelevsky [127] used a similar approach and shows that the fracture location can be predicted 

as well. 

In the next sections, we will explain in detail our new Monte Carlo simulation that can be used 

for any brittle material; then we will utilize it for our specific case in predicting size effect of 

polysilicon. 

J.1 Model Derivation for Uniform Specimens 

Let us assume a uniform tensile bar with length L and cross sectional area A is experiencing a 

uniform tensile stress as is shown in Fig. J.1 (a). The tensile bar can be divided into a chain of 

small RVEs as shown in Fig. J.1 (b). Each RVE has a length 𝑙𝑖 and cross sectional area A. The 

RVE notion was introduced by Bazant et al. [128], [129] and it can be defined as the smallest 

volume element whose failure will lead to the failure of the whole structure. The representative 

volume element is analogous to the chain link in the Weibull theory. We will assume that the 
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RVEs volumes are not constant and the volume of each RVE depends on the flaw size. Small 

RVEs have small size flaws and big RVEs have large size flaws.  

For a uniform tensile bar with 𝑁 number of RVEs and each RVE has length of  𝑙, the total length 

can be expressed as  

𝐿 = ∑ 𝑙𝑖

𝑁

𝑖=1

                                                                                                                ( J. 1) 

 

                               (a)                             (b)                                 (c) 

Fig. J.1 The construction of RVEs (a) Uniform tensile bar loading (b) Representative volume 

elements (RVEs)  (c) The choice of the length of RVEs (𝑙𝑖) 

 

Each RVE will be assumed to have the same number of grains and the length of the RVE ( 𝑙𝑖 ) is 

the average grains diameters (𝑙𝑖~𝑂(𝑑)) as shown in Fig J.1c. Thus, if the grain size has a certain 

𝑳,  𝑨 

𝝈 

RVE
s 

𝑵 
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probability distribution 𝑓(𝜓), whether this distribution is discrete or continuous, the length of the 

RVE is expected to follow the Gaussian distribution based on the Central Limit Theorem.  

The length of the RVE, (𝑙𝑖) does not go to zero and does not go to infinity, the length is rather 

confined between two limits 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥. This limit is related to the limit of the grain diameter 

as  𝑙𝑚𝑖𝑛 ~ 𝑑𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 ~ 𝑑𝑚𝑎𝑥. Therefore, the distribution of 𝑙𝑖 can be expressed as 

𝑓(𝑙) =
1

𝜆√2𝜋
𝐸𝑥𝑝 (−

(𝑙 − 𝑙𝑜)2

2𝜆2
)           𝑙𝑚𝑖𝑛 ≤ 𝑙 ≤ 𝑙𝑚𝑎𝑥          (J. 2) 

The fracture of brittle materials is caused by crack like flaws. Therefore, we can assume that 

each RVE contains flaw in a form of a crack. These cracks have different sizes and different 

orientations as shown in Fig J.2. The orientation of the crack can take any value from −𝜋/2 ≤

휃 ≤  𝜋/2. But from symmetry (crack oriented at angle 휃 is similar to crack oriented at angle – 휃 

), the orientations of crack can be assumed to be from 0 to 𝜋/2 and all orientations are equally 

likely, thus the probability density function for the orientation can be expressed as 

𝑓(휃) =
2

𝜋
                                            0 ≤ 휃 ≤ 𝜋/2                             (J. 3) 
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Fig J.2 Crack orientation in RVE 

 

The stress on the crack face can be resolved to two components, a perpendicular component 

which has the value of 𝜎 cos (휃) and a parallel component which has the value 𝜎 sin (휃). The 

perpendicular component of stress is the load that causes fracture while the parallel component 

has no role in fracture. From linear fracture mechanics (LFM), failure happens when the stress 

intensity factor of a certain crack length reaches a critical value 𝐾𝐼𝑐 [130]. Thus, 

𝐾𝐼𝑐 = 𝑌𝜎cos (휃)√𝜋𝑎                                                                                      (J. 4) 

Where, 𝑌 is the shape factor which depend on the crack shape 

 𝑌 = 1 for long interior crack,  𝑌 = 1.122 for surface crack,  𝑌 = 0.713 for penny shaped crack 

Each RVE has a specific flaw size. The change in crack size with the length of the RVE is not 

known. But, we have already assumed that larger RVEs have larger crack size, while smaller 

RVEs have smaller crack size. Therefore, the crack size distribution should be a monotonic 

𝜽 

𝝈 

𝝈 𝐜𝐨𝐬(𝜽) 
𝝈 𝐬𝐢𝐧(𝜽) 
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increasing function with respect to the RVE length. For simplicity, we will assume the 

distribution of flaw size to be a power law function which can be expressed as 

𝑎 = 𝑐 (
𝑙

𝑙𝑜
)

𝑚

                                                                                       ( J. 5) 

Where 𝑙𝑜 is the mean length of the RVEs and 𝑐 is the crack length of the mean RVE. 

Substituting equation (J.5) into (J.4) and rearranging the parameters we get a simple equation 

that relates the strength to the length of RVE. 

𝜎 cos (휃) =
𝐺

𝑙𝑛
                                                                                     (J. 6) 

Where 𝐺 and 𝑛 are constants, have the values of 𝐺 =
𝐾𝐼𝑐

𝑌√𝜋𝑐/𝑙𝑜
  and  𝑛 = 𝑚/2  

For the average length of the RVE 𝑙𝑜, the fracture strength is 𝜎𝑜. Thus, equation (J.6) can be 

expressed in a simple form as 

𝜎 cos (휃)

𝜎𝑜
= (

𝑙𝑜

𝑙
)

𝑛

                                                                                       (J. 7) 

Equation (J.7) describes how the strength changes with the length of the RVEs. For simplicity 

we will assume all cracks are perpendicular to the loading direction which represents the most 

severe case. Thus, 휃 = 0 and equation J.7 can be rewritten as 

𝜎 

𝜎𝑜
= (

𝑙𝑜

𝑙
)

𝑛

                                                                                       (J. 8) 

Based on Equations (J.1),  and (J.8) combined with the suggested normal distribution for the 𝑙𝑖 

and the uniform distribution for 휃 , we can establish a Monte Carlo approach that enables us to 

numerically fit the strength distribution data and determine the material constants 𝜎𝑜 , 𝑐  and 𝑛. 
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Knowing these constants at a certain length scale we can use these values to determine the 

strength distribution at other length scales (these are material constants and do not depend on 

size). To determine these materials constants, we have to perform what we call, “computer 

experiments”. The computer experiments rely on generating a virtual tensile bar by generating 

random RVEs sampled from the Gaussian distribution until we populate the whole length of the 

tensile bar. We then break the virtual tensile bar by identifying the weakest RVE and the 

corresponding strength can be identified. The approach can be summarized in the following steps 

1) Values for the material constants 𝜎𝑜 and 𝑛 are assumed. 𝜎𝑜: is the reference value of 

strength at reference length of  𝑙𝑜. In our calculations we chose the reference strength to 

be at the mean RVE length. 

2) RVEs are randomly generated (random values are taken from the Gaussian distribution) 

with length of the order of grains size until the total length of the tensile bar is generated. 

(The maximum and minimum grain size should be known from the fabrication process; 

therefore, we generate random volumes with length 𝑙𝑖 until the summation of all lengths 

equal to the required length. Eq. J.1) 

3) A random value for the orientation of the crack is taken from the uniform distribution 

(Eq. J.3) 

4) The weakest RVE then identified (the largest volume) and the strength value is calculated 

by equation (J.8) 

5)  Randomly generate another tensile bar and test it by repeating steps 2 to 4 

6) This process is repeated until we get a sufficient strength statistical data 

7) The strength data is sorted in ascending order and the rank probability for each value is 

calculated by the equation 
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𝑃𝑖 =
𝑖 − 0.5

𝑛
                         (J. 9) 

8) Strength vs. probability plot is constructed and the curve from the Monte Carlo 

simulation is compared with the actual test results obtained from lab tests. (Basically, a 

numerical curve fitting is performed where the results from the Monte Carlo simulation 

are fitted to an actual test results from the lab)  

9) If the Monte Carlo simulation results does not fit the data, different values for 𝜎𝑜 and 𝑛 

are chosen and steps 2-8 are repeated until the Monte Carlo simulation fit the actual 

experimental data. 

Fig J.3 summarizes the Monte Carlo simulation steps 

 

Fig J.3 Monte Carlo Approach 

 

Inputs  

 𝝈𝒐,  𝐧,  𝒍𝒐 

RVEs 

Randomly construct TBs and break them 

MC fits 
test 

Yes 

Finish 

No 
Change 𝝈𝒐 and, 

or 𝒏 
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The constants 𝜎𝑜 and 𝑛 that are established from the above steps do not depend on size. 

Therefore, to study size effect we use the same materials constants at the required size scale. 

Basically, we populate a tensile bar at the required size scale, use the materials constants with 

equation (J.8) to estimate strength value, and repeat the process until we gather sufficient 

strength data, then we construct the strength probability curve. 

The above approach was used to fit our experimental data and estimate the material constants for 

Specimen 1 (70 𝜇𝑚 tensile bars). We have used 1000 virtual tensile bars for the numerical curve 

fit. The materials constants were used to predict the strength distribution for Specimen 2 ( 7 

𝜇𝑚 tensile bars).  

The grain sizes for the SUMMiT IV process are in the range of 0.2-0.6 𝜇𝑚, with average grain 

size of 0.4 𝜇𝑚 [17]. A Gaussian distribution was constructed for 𝑙𝑖 between 0.2-0.6. Then the 

computer experimentation steps were performed on Specimen 1 until a satisfactory agreement 

was established between computer results and actual test data as shown in Fig. J.4. The material 

constants were 𝑙𝑜 = 0.4 μm, 𝜎𝑜 = 4.7 GPa  and  𝑛 = 1.85. These materials constants were used 

to predict the strength distribution for Specimen 2 and the prediction agrees very well with the 

actual experimental results as shown in Fig. J.5.   
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Fig. J.4 Fitting specimen 1 experimental results with 1000 data points from MC simulation 

 

Fig J.5 Predicting Specimens 2 strength distribution by 1000 data points from MC simulation 
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J.2 Model Derivation for DEN Specimens 

Similarly, to derive our approach for DEN specimens, the notched region is divided to RVEs  as 

shown in Fig J.6. For simplicity, we will assume that the crack flaws are located on the sidewall 

area and the cracks are perpendicular to the loading direction. Therefore, the stress decreases 

rapidly along the crack faces and if the crack faces are small compared to the width, then the 

stress can be assumed to decrease linearly along the crack face as shown in Fig J.4 b. This 

linearity can be quantified by finite element analysis. 

 
 

                                          (a)                                              (b) 

Fig. J.6 DEN specimens (a) RVE   (b) LFM modeling to the problem 

 

 The fracture happens when the stress intensity factor reaches a critical value and from LFM, the 

stress intensity factor can be expressed as [130]  

𝐾𝐼𝑐 = 1.122𝜎𝑎√𝜋𝑎 + 0.439(𝜎𝑛 − 𝜎𝑎)√𝜋𝑎                                     (J. 10) 

Or in other form 

𝐾𝐼𝑐 = 1.122𝜎𝑎√𝜋𝑎 + 0.439(𝜎𝑛 − 𝜎𝑎)√𝜋𝑎 

 

Fracture 
region 
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𝐾𝐼𝑐 = 𝜎𝑛 (0.439 + 0.683
𝜎𝑎

𝜎𝑛
) √𝜋𝑎                                                       (J. 11) 

Where 𝜎𝑎 is the uniform part of the stress and 𝜎𝑛 is the total stress at the notch root 

The ratio 𝜎𝑎/𝜎𝑛 across the crack length can be obtained from linear finite element and it can be 

shown that it behaves linearly and expressed as 

𝜎𝑎

𝜎𝑛
= 1 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑎                                                                                               (J. 12) 

Substituting back into equation (J.11) we get 

𝐾𝐼𝑐 = 𝜎𝑛(1.122 + 0.683 ∗ 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑎)√𝜋𝑎                                     (J. 13) 

The DEN specimens fail at the same stress intensity factor as the uniform ones. Thus from 

equations (J.4) and (J.13), the fracture stress for DEN specimens can be estimated from the 

fracture stress of uniform specimens as 

 

𝜎𝑛 =
1.122𝜎

1.122 + 0.683 ∗ 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑐 ∗ (𝑙/𝑙𝑜)2𝑛
                                                      (J. 14) 

Equation (J.14) in conjunction with the knowing materials constants and the random Gaussian 

distribution for 𝑙𝑖 are the basis of our strength prediction approach for DEN specimens. The steps 

for predicting strength distribution for DEN specimens can be summarized as 

1) RVEs for DEN specimens are constructed from the Gaussian distribution 

2) Equation (J.8) is used to determine 𝜎  

3) Equation (J.14) is used to determine the stress at the notch root  

4)  Repeat steps 1-3 until sufficient statistics data is gathered  

These steps were used to predict the strength distribution for specimens 3-5 as shown in Fig J.6 
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The Monte Carlo approach seems to do a relatively good job at predicting the strength of DEN 

specimens, especially specimen 5. However, Weibull function does a better job at predicting 

strength for specimens 4 and 5. The inaccuracy of Monte Carlo approach can be related to many 

factors such as the assumption of power law distribution to the flaws which might not hold true 

at small scale specimens. 

 

                                        (a)                                                                   (b) 

 

                                       (c) 

Fig J.6 strength distribution prediction for DEN specimens. (a) Specimen 3 (b) Specimens 4 (c) 

Specimen 5. The prediction is based on 1000 data points from MC 
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J.3 Specimens Number Effect and the Convergence to Unique Curve 

 The stochastic nature of the fracture in brittle materials requires a large number of tests to get a 

reliable strength distribution. In this section we will address one of the most important issues that 

can only be explained and tackled by the Monte Carlo simulation; that being, the number of 

specimens that should be tested in the physical experiments in the lab.  

The power of the Monte Carlo approach lies on the ability to determine the number of minimum 

physical experiments needed to be performed to get a unique strength curve. By a, "unique 

curve," we mean a curve that does not change even if more specimens were tested. To help 

clarify this concept we will study the effect of the number of specimens on the strength 

distribution of a hypothetical tensile bar with length 20 𝜇𝑚 and has material constants of 

 𝜎𝑜 = 3.9 𝐺𝑃𝑎, 𝑛 = 1.82  

Fig. J.7 (a) shows the results of three different tests of ten virtual specimens from the Monte 

Carlo simulation. We noticed that there is a big difference between the three curves even though 

the three curves were generated by using the same material constants; and if the strength data 

was fitted with Weibull function, different Weibull parameters would be obtained for each curve. 

Also, the strength distribution is not unique i.e. if we run our Monte Carlo scheme multiple 

times, we would get different results each time.  

Therefore, we can say that using a small number of specimens raises the question of whether the 

strength distribution is a good representation of the size we are studying or not. Thus, if three 

different investigators performed physical experimental tests on ten specimens with the same 
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size and from the same material and fabrication process, their strength distribution results most 

likely would not be the same, even though they are testing the same material. 

The strength distribution starts to converge to a specific shape and will have less variability as 

the number of specimens increase. Fig J.7 (b) shows the Monte Carlo simulation of three 

different tests of thirty virtual specimens. The strength distribution has less variability between 

the three runs, but the difference between the three experiments is still significant especially at 

the low tail region of the plot. Fitting the strength data with Weibull distribution would give a 

better estimate to the Weibull parameters except for the value of the threshold strength where the 

variability in strength at the lower tail is still significant. The strength distribution in this case is 

still not unique considering that when the Monte Carlo scheme is tested multiple times we get a 

different strength distribution each time. Therefore, once again, if there are three independent 

investigators and if they performed real physical tests on thirty specimens, each one would most 

likely have slightly different strength distribution results. 

Fig J.7 (c) shows the strength distribution results of 350 virtual specimens at three different runs 

to our Monte Carlo scheme. It’s clear that the three runs almost lie on the top of each other. Here 

the strength data converges to a unique curve. Even if we were to run the Monte Carlo simulation 

many more times, the curves would look almost the same. Therefore, we can say that 350 tests 

should be sufficient to represent the strength of the tensile bar accurately. 



134 
 

 

                                          (a)                                                                        (b) 

 

                                        (c) 

Fig J.7 Monte Carlo simulation of hypothetical specimens with length of 20𝜇𝑚 (a) 10 virtual 

specimens (b) 30 virtual specimen (c) 350 virtual specimen. 

 

The big advantage to performing  a large number of tests is that the low probability tail is 

characterized and determined more accurately. The low probability tail is important in the design 

because it is the region where the strength values are the smallest. Fig. J.7 (a, b, c) shows how 

the low probability tail is well characterized as the number of specimens increase. We have 

noticed that in increasing the number of specimens greater than 350 will not change the stress 
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distribution in general, but it might have some effects on slightly extending the low probability 

tail to smaller strength values. 

The Monte Carlo simulation is a simple and cheap approach that can be used to figure out the 

smallest number of specimens needed to be physically tested in the lab. The simulation can be 

run multiple times as the number of specimens is increased each time until the strength curve 

does not change anymore, or it might be used as an approach to estimate uncertainty in the 

strength distribution.  
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Appendix H Analytical Solution for Off Axis Loading of 

Tensile Bar 

 

In this section, we will discuss a tensile bar under off-axis loading which induce a bending 

moment. This case is similar to the case of the thin aluminum layer deposited on the top of the 

poly4 layer. The tensile bar is assumed to be under a moment and axially loaded. For axially 

loaded beam the vertical deflection governing equation is 

𝐸𝐼
𝑑4𝑦

𝑑𝑥4
− 𝑃

𝑑2𝑦

𝑑𝑥2
= 0 

The general solution of this equation is 

𝑦 = 𝐶1 + 𝐶2𝑥 + 𝐶3 ∗ 𝐸𝑥𝑝(−휂𝑥) + 𝐶4 ∗ 𝐸𝑥𝑝(휂𝑥) 

Where   휂2 = 𝑃/𝐸𝐼 

The constants values are determined from the appropriate boundary. The constants are 

determined for two different boundary conditions, displacement controlled load and force 

controlled load. 

H.1 Displacement controlled load 

The boundary conditions are 

𝑥 = 0, 𝑦 = 0         𝑥 = 0, 𝑑𝑦/𝑑𝑥 = 0                 𝑥 = 𝐿, 𝑦 = 𝛿        𝑥 = 𝐿,   𝑑𝑦/𝑑𝑥 = 0 

Applying the above boundary conditions we will get 4 equations in 4 unknowns and these 

equations where solved for the unknown constants as 

𝐶1 = − (
𝑅1 + 𝑅2

𝑅1
)

𝛿

휁
 

𝐶2 = 휂 (
𝑅2 − 𝑅1

𝑅1
)

𝛿

휁
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𝐶3 =
𝑅2

𝑅1
(

𝛿

휁
) 

𝐶4 =
𝛿

휁
 

Where 

𝑅1 = 1 − 𝐸𝑥𝑝(−휂𝐿) 

𝑅2 = 1 − 𝐸𝑥𝑝(휂𝐿) 

휁 = 휂 (
𝑅2 − 𝑅1

𝑅1
) 𝐿 − 2 (

𝑅2 + 𝑅1

𝑅1
) 

The solution of the deflection was solved for different values of axial deflections and Fig.H1 

shows the results. 

 

Fig. H1 Tensile bar deflection at different specified axial displacement 

The distribution of the moment can be determined from the relation 

𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= 𝑀𝑜𝑚𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

The moment diagram was plotted for different cases as shown in Figs.H1-3 
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As the axial deflection increases the moment in the middle region of TB goes to zero 

 

Fig. H2 Bending moment at d=0.001 um 

 

Fig. H3 Bending moment at d=1 um 
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Force controlled load 

For force controlled load, the boundary conditions are 

𝑥 = 0, 𝑦 = 0       

𝑥 = 0, 𝑑𝑦/𝑑𝑥 = 0       

𝑥 = 𝐿, 𝑑3𝑦/𝑑𝑥3 − 휂𝑑𝑦/𝑑𝑥 = 0    (𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 𝑖𝑠 𝑧𝑒𝑟𝑜)    

 𝑥 = 𝐿,       𝐸𝐼𝑑2𝑦/𝑑𝑥2 = 𝑀    (𝑇ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 ℎ𝑒𝑎𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛) 

Applying the above boundary conditions we will get 

𝐶1 =
−2𝑀

𝑃(𝐸𝑥𝑝(−휂𝐿) + 𝐸𝑥𝑝(휂𝐿))
 

𝐶2 = 0 

𝐶3 =
𝑀

𝑃(𝐸𝑥𝑝(−휂𝐿) + 𝐸𝑥𝑝(휂𝐿))
 

 

𝐶4 =
𝑀

𝑃(𝐸𝑥𝑝(−휂𝐿) + 𝐸𝑥𝑝(휂𝐿))
 

ANSYS finite element model was created for the tensile bar to compare analytical to finite 

element results. Different eccentric force was applied in the finite element model and different 

beam lengths have been tested. The deflection and moment distribution along the tensile bar was 

extracted from the finite element model and compared with the analytical solution. Both 

solutions agree very well as shown in Fig.8. 
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Fig. H4 deflection and moment diagram at P=0.1 mN for 70 um TB 

 

The solution suggested that, the bending moment is small at the region of the tensile bar that 

connected to the substrate and reaches its highest value at the cross-head section. This implied 

that most of gauge section of the tensile bar is under axial stress. Therefore, the fillet region 

should be designed such that the stresses in this region less than the stresses at the gauge section 

of the tensile bar to ensure that failure only happen at the gauge section.  
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