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Abstract

We study stress correlations and elastic response in large-scale computer

simulations of particle packings near jamming. We show that there are char-

acteristic lengths in both the stresses and elastic response that diverge in

similar ways as the confining pressure approaches zero from above. For the

case of the stress field, we show that the power spectrum of the hydrostatic

pressure and shear stress agrees with a field-theoretic framework proposed

by Henkes and Chakraborty [15] at short to intermediate wavelengths (where

the power is flat in Fourier space), but contains significant excess power at

wavelengths larger than about 50 to 100 particle diameters, with the specific

crossover point going to larger wavelength at decreasing pressure, consistent

with a divergence at p = 0. These stress correlations were missed in previous

studies by other groups due to limited system size. For the case of the elastic

response, we probe the system in three ways: i) point forcing, ii) constrained

homogeneous deformation where the system is driven with no-slip boundary

conditions, and iii) free periodic homogeneous deformation. For the point

force, we see distinct characteristic lengths for longitudinal and transverse

modes each of which diverges in a di↵erent way with decreasing pressure with

⇠
T

⇠ p�1/4 and ⇠
L

⇠ p�0.4 respectively. For the constrained homogeneous

deformation we see a scaling of the local shear modulus with the size of the

probing region consistent with ⇠ ⇠ p�1/2 similar to the ⇠
L

⇠ p�0.4 observed in

the longitudinal component of the point response and in perfect agreement

with the rigidity length discussed in recently proposed scenarios for jam-

ming. Finally, we show that the transverse and longitudinal contributions to

iv



the strain field in response to unconstrained deformation (either volumetric

or shear) have markedly di↵erent behavior. The transverse contribution is

surprisingly invariant with respect to p with localized shear transformations

dominating the response down to surprisingly small pressures. The longi-

tudinal contribution develops a feature at small wavelength that intensifies

with decreasing p but does not show any appreciable change in length. We

interpret this pressure-invariant length as the characteristic shear zone size.
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Chapter 1

Introduction

Metallic glasses, foams, micro gels, emulsions, colloids, granular materials,

and other so-called “soft” materials all have a common property: they are

by nature discrete and disordered. Despite lacking any underlying crystalline

order, densely packed amorphous systems behave like elastic solids at su�-

ciently small strains. The term dense means that each particle is in contact

with several of its neighbors, and it is often related to a global confining

pressure that keeps the particles in contact with each other. In repulsive

systems such as emulsions, micro gel suspensions, and granular media, by re-

leasing the confining pressure, these materials can be made to yield through

applying a very small stress. The situation in which particles reconfigure

themselves in such a way that the whole system start to resist against finite

stress is called the jamming transition [24]. A similar scenario applies to

glasses where temperature, instead, controls rigidity of the packing. As one

might imagine, elastic properties depend on the distance to jamming, which

is set by the external pressure. Measurement of disordered packings through
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experiments and numerical simulations have found an elastic shear modulus

that vanished as the volume fraction of particles � reached a critical value �
c

[1, 34, 19, 36]. This scenario has been related to an abundance of low-energy

floppy modes in weakly compressed packings near jamming [52, 53].

When it comes to describing the elastic linear response of jammed ma-

terials such as foams, emulsions or granular media, use of linear isotropic

homogeneous elasticity theory appears very tempting. One would only need

to obtain bulk elastic constants, from either simulations or experiments, and

use them as an input in continuum modeling. Such a description implies these

materials to be homogeneous and isotropic at a su�ciently large macroscopic

size – which is reasonable as long as one is interested in capturing bulk prop-

erties. One of the central purposes of this thesis is to quantify limits of

applicability of such continuous homogenized approaches. It has been sug-

gested that packings can be essentially treated as an uniform elastic medium

beyond a length that diverges at rigidity transition [52, 10, 11]. However,

there is still a debate about the precise form of such a divergence. The present

work should provide a framework for measuring this length and quantifying

its divergence near the transition point.

Solid-like features observed in dense amorphous systems are in first place

due to particle-level contact forces which cannot be neglected in the study of

their mechanical response. Photo elastic experiments [6, 16] and numerical

simulations [30, 39] revealed that internal stresses are transmitted in a quite

inhomogeneous manner. The observed spatial variations in the quenched

stress structure are a direct signature of inherent disorder. A statistical

description is necessary on the microscopic level to quantify these fluctuations

2



[8, 47]. There has been a great deal of work on the statistics of contact forces

with relatively little emphasis on their organization in space [25, 38]. Our

study of stress correlations should shed more light on this rather incomplete

subject in the literature.

In this work, we use discrete particle simulations to study large particle

packings. Soft particles are modeled as two dimensional disks with a finite

radius in our simulations. To avoid crystallization, large scale packings are

made bidisperse [40]. Once the contact law is defined between disks, packings

are generated using conjugate gradient at a prescribed area fraction. This is

a commonly used model and preparation protocol [40] and should apply to

various types of soft matters. Therefore, results should be applicable to micro

gels, emulsions, and granular materials where frictional forces are negligible.

We work on a particle level taking into account the local stress field in

static configurations. In a static packing, we associate each contact with a

repulsive force, resulting in a force network with interesting spatial patterns

of large forces. In Chapter 2, their spatial properties will be reviewed, and

a novel description of stress correlations, based on the present anisotropy

and heterogeneity, will be introduced. Chapter 3 will discuss the nature

of linear elastic response of static disordered solids with various mechanical

perturbations.

3



Chapter 2

Quenched Stresses
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2.1 Introduction

Static amorphous solids form force networks in response to an external ap-

plied stress. The spatial structure of inter-particle contacts and associated

mechanical forces, which form the force network in a disordered medium, has

a direct impact on its mechanical response [31, 17]. An unusual feature of

force patterns in these amorphous materials is presence of force chains, as

demonstrated by means of photo elastic experiments [6, 25, 16, 12] and nu-

merical simulations [43, 32, 41]. These studies give clear evidence that these

geometrically complex structures support most of the internal stresses in the

medium and make the distribution of contact forces extremely heterogeneous

in space.

Despite their obvious appearance, the characterization of force chains has

remained rather incomplete. There is a general agreement that the stress dis-

tribution decays above the mean in a non Gaussian fashion [25, 38]. Below

the mean force, there is an abundance of small force values and the distri-

bution exhibits a plateau. Another statistical quantity is the two-point force

correlations [38, 28, 45] which doesn’t contain any direct information about

how stresses are organized in space. In [30], spatial correlations between

the averaged contact forces were measured experimentally in a quasi static

manner. This study demonstrated that force correlations depend sensitively

on the packing preparation; while packings show short ranged correlations

under isotropic compression, in sheared systems the force correlations decay

slowly in the compressive directions [26]. Other approaches have focused on

topological characterizations [41, 2, 18] and statistics of spatially averaged

5



forces [39].

Henkes and Chalkraborty (HC) [14, 15, 27] established constitutive rela-

tions for various stress components within a statistical mechanics framework.

HC found a single characteristic size by performing numerical simulations and

found it to be on the order of a few particle diameters in isotropically com-

pressed samples. Beyond this length the stresses were found to be essentially

uncorrelated. Our study of stress fluctuations agree with their field theory at

small samples but contains significant deviation at large sizes. These stress

correlations were missed in previous studies by other groups due to limited

system size. Furthermore, emergence of spatial correlations in these studies

was connected to the boundary stresses at a global length. In the absence

of this boundary induced anisotropy, the extent of correlations have been

shown to be rather localized [30, 15].

However, even in an isotropically prepared sample with a globally hy-

drostatic stress state, internal stresses look highly anisotropic at small scales

(see Fig. 2.4). This local anisotropy appears due to strongly correlated forces

along the direction of chains and vanishes globally when stress reaches its hy-

drostatic state. This observation allows us to define an important crossover

length quantifying the size of force networks. The naive intuition is that the

force chains should make the stress very anisotropic in local regions, and once

one looks beyond a typical chain size, the stress anisotropy would decay very

fast. A systematic measure of stress anisotropy at di↵erent scales can be

utilized to measure stress correlations and at best identifies a characteristic

size which is sensitive to jamming.

The remainder of this chapter is organized as follows: Section 2.3 will

6



briefly outline our model and also the numerical algorithm used to prepare

static packings. In Section 2.4, standard stress correlations will be discussed.

A modified correlation function will be introduced in order to take into ac-

count the inherent local anisotropy in stresses. Next, in Section 2.5, we

will study fluctuations and anisotropy in the stress filed defined at various

coarse-graining scales. These measurements will provide a natural defini-

tion for growing correlation lengths near the transition point. Finally, in

Section 2.6, we will provide a discussion of our results.

7



2.2 Notation

We use the convention that Latin letters refer to particle indices. The Carte-

sian components of vectors and tensors are denoted by Greek indices. Bold

types refer to vectors. As an example, u
i

denotes a vector defined on the i-th

particle whose Cartesian components are u
i↵

.

8



2.3 Models And Simulation Protocols

We perform discrete element method [4] simulations of frictionless granular

packings in a periodic, two-dimensional cell subject to an isotropic pressure.

The packings consist of N particles and a well studied binary mixture [40]:

N
A

/N
B

= 1, d
A

/d
B

= 1.4, d is the diameter of the species. The position of the

i-th particle is described by r
i

. The particles interact via a pairwise, repulsive,

central potential U(r
ij

) = 1

2

k
ij

�2
ij

for �
ij

> 0 and zero otherwise where k
ij

is

the spring constant, �
ij

is the overlap between the particles, �
ij

= d
ij

� r
ij

,

where d
ij

= 1

2

(d
i

+ d
j

), r
ij

is the distance between the particles. U can be

alternatively defined as U(s
ij

) = 1

2

✏̄s2
ij

where ✏̄ = k
ij

d2
ij

is the energy scale,

and s
ij

= �

ij

d

ij

is the dimensionless overlap. We assume that all the bonds

have the same ✏̄ value, so the spring constant k
ij

may vary (since d
ij

is not

constant). All results are reported in units of ✏̄ and d
B

.

The packings were prepared via a quench from a random initial state

at fixed area fraction � = ⇡

4

L�2

P
N

i=1

d2
i

, where L is the size of the simula-

tion box. The dimensionless � is defined as the ratio between the particles’

area and the total available area. We perform energy minimization in the

LAMMPS software package [42] with the implemented conjugate gradient

method. The simulations were run until the force tolerance criterion was

met.

Due to bidispersity the resulting relaxed structures created by molecular

dynamics simulations are disordered, i.e, there is no long range crystalline

order. These packings exhibit qualitatively di↵erent force patterns as the

packing fraction � is varied. For each set of packing fractions, we used

9



(a) � = 0.85 (b) � = 0.925

Figure 2.1: Force networks for � = 0.85 and 0.925 at L = 320 for a small win-
dow (40 ⇥ 40): The contact forces form strongly heterogeneous and
anisotropic network at � = 0.85 in (a), and in (b), the network be-
comes more uniform in space for � = 0.925.

64 independently constructed, periodic packings with the fixed system size

L = 320. We first considered packings at two di↵erent values of �. The

lower packing fraction studied, � = 0.85, leads to strongly disordered force

networks with clearly visible force chains as in Fig. 2.1(a), while as the pack-

ing fraction is increased to � = 0.925, the force network becomes increasingly

uniform in appearance, as shown in Fig. 2.1(b).

As usual, for a system of particles with pair-wise central forces, we define

the static virial (stress density) for the i-th particle via the Irving-Kirkwood

expression [29], S
↵�

(r
i

) = 1

2

P
j

f ij

↵

(r
i�

� r
j�

). Here, f ij

↵

is the repulsive force

vector pointing from i to j. To obtain the volumes (areas in two dimensions)

occupied by each particle, the space is decomposed into cells by constructing

the Voronoi diagram (see Fig. 2.2 ).

10
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Figure 2.2: Voronoi diagram of a random set of points.

We obtain �
↵�

(r
i

) = S
↵�

(r
i

)/A(r
i

) where A(r
i

) is the area of Voronoi

cell corresponding to the i-th particle. We, then, interpolate the discrete

stress field �
↵�

(r
i

) onto a fine 1 grid of size
p
N

g

⇥
p
N

g

. The discrete

pressure field is defined as p(r
i

) = 1

2

[�
xx

(r
i

) + �
yy

(r
i

)]. The spatial average

of p(r
i

) is hpi = N�1

g

P
i

p(r
i

) and the fluctuating part of p(r
i

) is denoted by

�p(r
i

) = p(r
i

) � hpi. Table 2.1 lists the average pressure values at various

�. While the average shear stress vanishes, the local values �
xy

(r
i

) are non

zero. The mean squared averages are expressed as h�p2i = N�1

g

P
i

�p2(r
i

)

and h�2

xy

i = N�1

g

P
i

�2

xy

(r
i

). In Fig. 2.3, h�p2i and h�2

xy

i are plotted against

hpi. The relative fluctuations, with respect to hpi, are also shown in the inset.

Note that (relative) fluctuations become stronger as hpi is decreased toward

jamming transition and then they saturate when hpi approaches zero. This

is in agreement with the systems with a lower � being more heterogeneous.

p(r
i

) and �
xy

(r
i

) are shown in Fig. 2.4 . p(r
i

) looks more anisotropic and

heterogeneous at � = 0.85 than it does at � = 0.925. �
xy

(r
i

), however, does

not seem as sensitive to �; both packing fractions contain maximum shear

planes along the diagonals. We will discuss the observed heterogeneities and

1The grid spacing is d
B

/3 and we ensure that Voronoi cells contain at least one grid
point.
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Table 2.1: Measured average pressure hpi at various packing fractions �.

� hpi
0.85 2.1 ⇥ 10�3

0.855 3.6 ⇥ 10�3

0.86 5.1 ⇥ 10�3

0.865 6.7 ⇥ 10�3

0.87 8.4 ⇥ 10�3

0.875 1.0 ⇥ 10�2

0.88 1.2 ⇥ 10�2

0.89 1.6 ⇥ 10�2

0.9 1.9 ⇥ 10�2

0.925 2.9 ⇥ 10�2

0.95 4.0 ⇥ 10�2

0.975 5.1 ⇥ 10�2

1.0 6.3 ⇥ 10�2

anisotropy of the stress structure in the following sections.
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Figure 2.3: Mean square of the fluctuating local pressure h�p2i and shear stress
h�2

xy

i versus hpi. The inset is the same as the main plot but scaled
by hpi2.
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(a) p(r
i

) for � = 0.85 (b) p(r
i

) for � = 0.925

(c) �
xy

(r
i

) for � = 0.85 (d) �
xy(ri) for � = 0.925

Figure 2.4: Snapshots of the real space local pressure and shear stress fields.
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2.4 Stress Correlations

The most complete previous study on the structure of stress correlations in

particle packings is the work by Henkes and Chakraborty (HC) [15]. They

studied a field theory in two dimensions based on the Airy stress function and

wrote down, to lowest non-trivial order, the most generic action consistent

with the symmetries of globally isotropic loading. Any stress field derived

from the Airy stress function automatically satisfies force balance, so force

balance is enforced in their theory by construction. In their theory, to lowest

order in q, the second order correlations in p had the form: s
p

(q) ⇠ [1 +

(⇠q)2]�1 where ⇠ had dimension of length. Correlations in �
xy

were found to

be anisotropic and scaled as s
p

(q) ⇠ q�4q2
x

q2
y

[1 + (⇠q)2]�1.

Our data for pressure and shear stress correlations are not inconsistent

with theirs over the range of lengths they studied (L ⇡ 30). However, sur-

prisingly, we observe a departure from HC prediction that occurs at a wave-

length longer than the longest wavelength reported by them. Additionally,

they found that local correlations in the shear stress had an r�2 decay in real

space. We suspect this to be closely related to the r�2 decay we observe in

the modified pressure correlation functions (discussed below). The pressure

correlations in real space (also discussed below), in contrast, dont agree with

their proposed form of r�1/2e�r

2
. We suspect this is due to the excess power

we find at long wavelength

In this section, we examine the stress correlations in both Fourier space

and real space and study its sensitivity to the jamming transition.
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2.4.1 Correlations In Fourier Space

To obtain the data, we take the two-dimensional discrete Fourier transform

of �p(r
i

) and �
xy

(r
i

). We discuss the pressure fluctuations first. In Fourier

space, we obtain

�p(q) =
X

j

�p(r
j

) e�iq.r

j , (2.1)

with q = 2⇡L�1(nx̂ + mŷ) where m and n are integers and x̂ and ŷ are

unit vectors along the x and y axes. We then calculate the two dimensional

structure factor s
p

(q) on a two dimensional grid

s
p

(q) =
1

N
g

|�p(q)|2

h�p2i , (2.2)

where s
p

(q) is defined as the power spectrum of local pressure field normalized

by its mean square fluctuations.

We, now, will consider the isotropic contributions of s
p

(q). The results

were averaged over evenly spaced intervals in log(q) where q = 2⇡L�1(m2 +

n2)1/2 is the wave number. Note that this process automatically averages

over angles, so it produces only the isotropic contribution s
p

(q). With L =

320 particle diameters, we can investigate the range of (2⇡)�1q from L�1 to

(
p
2L)�1

p
N

g

2. The angle-averaged correlations s
p

(q) measured for di↵erent

packing fractions � is shown in Fig. 2.5. The sudden drop, about one order

of magnitude, at high q values and flat spectrum at intermediate q, which

extends further out to low-q values, are in agreement with HC theory. But,

the curves start to go up very rapidly (about one order of magnitude) at a

2n (or m) ranges from �
p
N

g

/2 to
p
N

g

/2.
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Figure 2.5: Scaling of the isotropic pressure correlation function s
p

(q) for various
�.

rather long wavelength that is not predicted in their theory. We suspect that

HC were not able to detect this feature in their numerical simulations due

to small system size. Furthermore, we note that this length-scale is in rough

agreement for the characteristic length-scale observed in the elastic response

of structural glasses reported by Tanguy and co-workers [23, 21, 22, 48]. The

flat region in loose packings extend to a lower q than it does in denser systems

which implies a grown length in real space. However, it is di�cult to quantify

this phi-dependent crossover by simply examining the power spectrum. We

will discuss a related, alternative, point of view below when we study the

variance of the coarse-grained pressure field.

Similarly, the shear structure factor in Fourier space is presented as

s
xy

(q) =
1

N
g

|�
xy

(q)|2

h�2

xy

i , (2.3)

where �
xy

(q) =
P

j

�
xy

(r
j

) e�iq.r

j . Figure 2.6 shows the angular structure of

the shear correlations for � = 0.85 and � = 0.925. We remind the readers
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(a) s
xy

(q) at � = 0.85 (b) s
xy

(q) at � = 0.925

Figure 2.6: Maps of s
xy

(q) using a decimal log scale.

that maximum local shear planes are along the diagonals where the shear

correlations are strong [see the real space picture in Fig. 2.4(c) and (d)]. It

should be noted that the statistical average shows a cos(4✓) symmetry. The

shear stress power spectrum also shows the same deviations and excess power

at low q as did the pressure power spectrum.

2.4.2 Real Space Correlation Functions

HC predicted the real-space pressure correlation functions from the form

of their Fourier-space correlation functions which had the form r�1/2e�r

2
.

They concluded that local pressure has short range correlations which fall

o↵ beyond a scale set by ⇠. Our data, however, does not show a simple

scaling behavior, particularly at longer wavelengths, which prevents us from

doing a similar analytical calculation. Instead, we compute the real space

correlations by performing an inverse discrete Fourier transform on the two
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Figure 2.7: Scaling of the real space isotropic pressure correlation function G
p

(r)
for various � on lin-log scale. The inset plots G

p

(r) on a logarithmic
logarithmic scale.

dimensional q grid

G
p

(r
j

) =
h�p(r

j

)�p(0)i
h�p2i

=
1

N
g

X

q

s
p

(q) eiq.rj . (2.4)

We, now, consider isotropic contributions of G
p

(r
i

). The results were

averaged over evenly spaced intervals in log(r) where r is the distance that

ranges from 0 to L/
p
2. The angle-averaged correlations G

p

(r) measured

for di↵erent � is shown in Fig. 2.7. The shapes of these curves are not so

simple to interpret and di↵er dramatically with varying �. It looks that the

pressure fluctuations have short range correlations that fall o↵ by about two

orders of magnitude beyond about two particle diameter (see the inset). But

then they form a shoulder and decay slower past this point and finally cross

through zero at r ⇡ 100.

Real space correlations in the local shear stress are, however, anisotropic
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Figure 2.8: Scaling of the real space shear stress correlation G
xy

(r) at ✓ = 0
(left) and ✓ = ⇡/4 (right) for various �. The dashed line on the right
panel illustrates r�2 decay.

and admit long range power law correlations r�2 along the diagonal regardless

of �(see Fig. 2.8 right). Along the axes, however, we see negative correlations

as shown in Fig. 2.8 left. We present our modified version of correlation

functions in the next section which has a similar angular and r dependence.

2.4.3 Modified Correlation Functions

We focus on a modified real-space correlations that determines correlations

along locally determined principal stress directions (see Appendix A.1). This

function Gmod(r) gives a quantitative measurement of the average e↵ect of

force chains of length r in the packing. A positive value at distance r indicates

that the two particles are connected by a chain of contacting particles and

the force is being transmitted through the chain from one particle to the

other. Negative values of the correlation correspond to situations where two

particles at distance r tend to be aligned along their minor stress axes.

The calculated correlation functions Gmod

n

(r) along major stress direction
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Figure 2.9: Spatial pressure correlations Gmod

n

(r) along the major stress direction
n (left) and Gmod

t

(r) along the minor stress direction t for various
�. Note that the sign of Gmod

t

(r) is exclusively negative. The inset
shows the correlation function on a linear logarithmic scale. The line
illustrates the power law decay of r�2.

n and Gmod

t

(r) along minor stress axis t are plotted in Fig. 2.9 for various

�. The anisotropic version of the correlation function shows a clear power

law behavior r�2 up to r ⇡ 20 regardless of the distance from the jamming

transition and with positive Gmod

n

(r) and negative Gmod

t

(r). We suspect this

to be closely related to HC’s results on the shear stress correlations; they

found that local correlations in the shear stress had an r�2 decay in real

space. Moreover, they showed that the real-space shear correlation function

had an angular dependence with negative and positive correlations. We do

not go out any further in r because at r ⇡ 20, the signal strength is below

the noise floor for the amount of statistics we were able to obtain.

We have measured the stress correlations both in real and Fourier space

and found them to have surprisingly little dependence on the distance to

the jamming. Our next stress analysis is rather di↵erent and deserve some

discussion here. If one has access to the power spectrum of the pressure field,
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one may compute the strength of the fluctuations in the coarse-grained field

by simple application of the convolution theorem. By varying the coarse-

graining size, one would have a better insight about the scaling of these

fluctuations with size.
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2.5 Coarse-grained Stress

In this section we study the statistical properties of the stress field as a

function of coarse-graining size. We will demonstrate a characteristic change

in the nature of the fluctuations at large coarse-graining size and find the

crossover in the statistics to depend on the distance to jamming.

We also study the average magnitude of the coarse-grained deviatoric

shear stress. Even in an isotropically prepared sample with a globally hy-

drostatic stress state, the deviatoric magnitude is large at small scales. This

local anisotropy appears due to strongly correlated forces along the direction

of chains and vanishes globally when stress reaches its hydrostatic state. This

observations allows us to identify an important length quantifying the size of

force networks. The observation of the kink in both the pressure fluctuations

and the deviatoric magnitude signify to us that this length scale is a rather

robust feature.

2.5.1 Fluctuations In Coarse-grained Pressure

Let us denote the coarse-grained stress field as ⌃
↵�

(r
i

, R) where R is the

coarse-graining scale. We assume that our coarse-graining procedure is such

that the spatial average of the coarse-grained field do not depend on R and

remains unchanged. The coarse-grained pressure field P (r
i

, R) is defined as

half the trace of ⌃
↵�

(r
i

, R) with the fluctuating part denoted by �P (r
i

, R).

We assume that our coarse-graining procedure is such that the spatial average

of the coarse-grained field do not depend on R and remains unchanged. This

leads to N�1

g

P
i

P (r
i

, R) = hpi. The strength of fluctuations at various R is

23



(a) R = 2.0 (b) R = 4.0

Figure 2.10: Snapshots of real space coarse-grained pressure field P (r
i

, R) at
� = 0.85.

quantified by h�P 2i
R

= N�1

g

P
i

�P 2(r
i

, R).

Figure 2.10 shows P (r
i

, R) for various R at � = 0.85. It is clear that

the inhomogeneities associated with the coarse-grained pressures are more

pronounced at small R values. As R is increased, P (r
i

, R) become more

uniform and isotropic in space. Chain-like structures are apparent at finest

R but they start to disappear at larger R.

In Fig. 2.11 left, we plot R2h�P 2i/hpi2 versus R for various �. In the in-

sets, we present h�P 2i/hpi2 versus R. The scaled fluctuations R2h�P 2i/hpi2

increase monotonically as � ranges from 0.925 to 0.85 at any particular

coarse-graining length-scale. The primary trend in the data is to follow

approximately the R�2 scaling at small R expected from counting statistics,

however, the dramatic departures from R�2 at large R show a pronounced

� dependence. For all �, there is a relatively sharp crossover from a small
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Figure 2.11: R2h�P 2i/hpi2 versus R (left) and R2h�P 2i/hpi2 scaled by A2

p

versus

hpi1/4R (right) at various �. The insets show h�P 2i/hpi2 versus R
(left) and the scale parameter A2

p

versus hpi (right).

R regime to a large R regime where h�P 2i/hpi2 decay much more slowly

than the counting argument would indicate. We denote the length at which

the crossover occurs by ⇠
p

. This length in rough agreement with the visual

impression of the chains observed in Fig. 2.1, with the systems closer to

jamming crossing over at larger ⇠
p

.

In Fig. 2.11 right, we show that the data can be made to collapse for

various � when plotting R2(h�P 2i/hpi2)/A2

p

versus hpi1/4R. Here A2

p

is a scale

parameter which is chosen by hand to obtain a good collapse. In the insets,

we plot A2

p

which is normalized to its value at � = 0.85. The ⇠
p

⇠ hpi�1/4

scaling is consistent with a divergence at �
c

.

2.5.2 Anisotropy In Coarse-grained Stress

The deviatoric magnitude of the coarse-grained stress field ⌃
↵�

(r
i

, R) is de-

fined as

⌧ 2(r
i

, R) =
1

4
(⌃

xx

� ⌃
yy

)2 + ⌃2

xy

. (2.5)
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Figure 2.12: Rh"
s

i versus R (left) and Rh"
s

i scaled by A
s

versus hpi1/4R at vari-
ous �. The insets show h"

s

i versus R (left) and the scale parameter
A

s

versus hpi (right).

Intuitively, if a given region contains a single dominant force chain, the

direction of the eigenvector of ⌃
↵�

(r
i

, R) with larger eigenvalue should point

along it, while a region containing multiple force chains oriented along vari-

ous directions or no force chain at all should have a hydrostatic stress with

⌧(r
i

, R) ⇡ 0. We let "
s

(r
i

, R)
.
= ⌧(r

i

, R)/hpi characterize the degree of

anisotropy in the coarse-grained tensor stress tensor and denote its spatial

average by h"
s

i.

In Fig. 2.12 left, we plot Rh"
s

i versus R for various �. There is no

qualitative shape di↵erence visible between these curves and R2h�P 2i/hpi2

already discussed in the previous section. Additionally, in Fig. 2.12 right,

we show that the data can be also made to collapse for Rh"
s

i versus hpi1/4R

with the scale parameter A
s

. The crossover length ⇠
s

scales as hpi�1/4, similar

to ⇠
p

, and quantifies the average extent of force chains in the system. This

length approaches the size of the system at the transition and diverges in the

thermodynamic limit.
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Figure 2.13: Illustration of the system size e↵ect in Rh"
s

i versus R for L =
320, 480, and 640 at � = 0.85 (left) and � = 0.88 (right).

It should be noted that we obtain similar values for the scale parameters

in systems which are larger than the L = 320 one shown here emphasizing

that system size plays no role in the crossover behavior for the range of �

studied (see Fig. 2.13). However, at � = 0.85, our estimates for ⇠
s

do become

sensitive to L for L < 320. This dictates our rather large choice for L.
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2.6 Discussion And Summary

In this chapter, we have used several numerical methods to analyze stress

correlations of particle packings in view of extracting a characteristic size.

We have shown that there are characteristic lengths in the stress field that

diverge in similar ways as the confining pressure approaches zero from above

the transition point. In a first step, the power spectrum of the local pressure

and shear stress agree with a field-theoretic framework proposed by HC at

short to intermediate wavelengths (where the power is flat in Fourier space),

but contain significant excess power at wavelengths larger than about 50

to 100 particle diameters, with the specific crossover point going to larger

wave length at decreasing pressure, consistent with a divergence at p = 0.

We suspect that these stress correlations were missed in previous studies by

other groups due to limited system size [49].

Then, a modified version of the correlation function was defined to ac-

count for the inherent anisotropy in internal stresses. This approach was able

to detect a di↵erent type of correlations which ranged over a long distance

and decays as r�2. The observed behavior was in close agreement with the

power law decay of shear stress correlations in real space proposed by HC.

Next, spatial fluctuations in coarse-grained stress were extracted at dif-

ferent coarse-graining levels and found to decay slower than expected from

theory for uncorrelated samples. We have also examined anisotropy in the

coarse-grained stress, "
s

. When forces were replaced by randomly distributed

forces, "
s

of these data decayed in close agreement with the expectations

from the central limit theorem, whereas anisotropy in the real data showed
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a strikingly di↵erent trend. We found a clear transition, marked by a special

coarse-graining size, from the expected uncorrelated behavior to a fully cor-

related one which was a signature of the stress structure. Both measurements

exhibited clear characteristic length-scales ⇠
s

and ⇠
p

which scaled as hpi�1/4

and ,therefore, were consistent with a divergence at �
c

. To our knowledge,

in isotropically compressed samples, no metric measurement of force chains

had led to correlation lengths longer than a few particle diameters – largely

independent of the distance to the jamming transition.
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Chapter 3

Elastic Response

30



3.1 Introduction

For many years now, it has been known that packings of elastically de-

formable particles, confined by a compressive external hydrostatic pressure,

exhibit an anomalous elastic response near the limit of zero confining pres-

sure, p [10, 11]. Mason and Weitz first observed this experimentally in

sheared emulsions where the low frequency linear elastic storage modulus

showed a sharp transition by many orders of magnitude as the volume frac-

tion of the particles, �, crossed the nominal random-close-packing volume

fraction, �
c

[35]. This result generated many theoretical, numerical, and

experimental studies over the next decade (for a review, see reference [51]).

A seminal numerical study by O’Hern et al. [40] showed that in a sim-

ple, frictionless disc/sphere packing model, the shear modulus vanished al-

gebraically as � went to its critical value, �
c

, while the compression modulus

remained finite. Several later works related this anomalous vanishing of the

shear modulus to an excess of low energy, “floppy”, eigenmodes below an

energy scale, !2

⇤, that vanished as � ! �
c

[52, 53]. However, the relationship

between the energy scale at which these excess modes appear and various

lengthscales associated with them has remained more subtle.

Much of the early work connecting the vanishing of !⇤ to the emergence of

diverging characteristic lengths neglected the role of quenched stresses in the

contact network [13, 44, 9]. Within this stress-free context, it was generally

agreed upon that there was one length scale associated with rigidity, l⇤ [13],

and another length associated with the structure of the eigenmodes at the !2

⇤

energy scale, l
T

. In particular, Xu et al. [54] showed that there was a change
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in eigenmode character at the anomaly in the density of states. Silbert et

al. [46] did include the e↵ects of quenched stresses and attempted to spa-

tially decompose these low energy modes at a given energy level – in the low

anomalous regime or in the higher energy Debye regime – into longitudinal

and transverse waves. They were able to show that the transverse power at

the transition frequency, !⇤, peaked at a wave-vector with a length-scale, ⇠
T

that grew roughly as ���1/4. They argued that an analogous measurement

for the longitudinal power would show a ⇠
L

that would scale in the same way

with �� as !�1

⇤ but were unable to demonstrate this numerically.

More recently, Lerner and co-workers [7] have shown, in a repulsive soft-

disc system that the elastic response to a point perturbation is governed by

l
T

. This result seemingly contradicted earlier work by Ellenrboek and co-

workers [9] who showed that the point response (also in models including

the e↵ect of the quenched forces) is controlled by l⇤ rather than l
T

. One

of the central results of the present work reconciles these two viewpoints.

We show that the longitudinal contribution to the point response is much

more sensitive to pressure with an associated length ⇠
L

⇠ p�0.4 (close to the

l⇤ ⇠ p�1/2 result), and the transverse contribution is much less sensitive to

pressure with ⇠
T

⇠ p�1/4 (completely analogous to l
T

scaling). However, the

overall point response is predominantly transverse at jamming (the ratio of

shear to compression modulus goes to zero at jamming), so in analyses that

do not carefully separate longitudinal from transverse, the dominant e↵ect

will come from ⇠
T

and one would observe a length growing like p�1/4.

We also probe the local elastic modulus by imposing homogeneous shear

using no slip boundary conditions with boxes of various size, R. The rigid
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constraints imposed at the walls squelch non-a�ne relaxations and raise the

value of shear modulus beyond its fully relaxed value. We find that the

constrained shear modulus recedes to its limit as µ(R)/µ1 � 1 ⇠ p�1/2R�1.

This is consistent with l⇤ governing the shear modulus in finite regions driven

with no-slip boundary conditions. Physically this means that the size of the

sample one needs to obtain a well-converged measure of the true relaxed

shear modulus diverges at jamming.

Finally, we study the unconstrained response to global, homogeneous

strain (both volumetric and shear). The power spectrum of the response

is roughly consistent with previous reports on Lennard-Jones [33, 23] where

one observed u2(q) ⇠ q�2 but with important details not observed before and

some interesting sensitivity to jamming. In particular we show that, under

imposed shear, both transverse and longitudinal power have an anisotropic

form resulting from a few strong displacement quadrupoles. Under imposed

dilation/compression, the transverse and isotropic power are anisotropic on

average, but, like the shear response, are dominated by a few strong local-

ized displacement quadrupoles. As p ! 0, very surprisingly, the transverse

power spectrum remains largely unchanged. The longitudinal power spec-

trum, on the other hand, for both applied shear and applied dilation, shows

a pronounced p sensitivity. It develops a characteristic feature at short wave-

length that intensifies as p ! 0. The coherent shear zones, still visible in the

transverse field near p = 0, become essentially incoherent zones of local dila-

tion/expansion in the longitudinal piece with a characteristic size of roughly

5 particle diameters with no coherent organization of the dilatancy field as

at higher p.

33



The rest of this chapter is organized as follows. In Section 3.2, we discuss

the point response. Section 3.3 discusses the response to homogeneous de-

formation with no slip boundary conditions, and recalls how one computes

the elastic moduli using linear response theory. In Section 3.4, we describe

the response to homogeneous deformation of the full system with periodic

boundary conditions.
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3.2 Point Response

We start here by studying the general aspects of linear point response (Green’s

function) in amorphous systems. Our primary assumption here is that,

macroscopically, these systems have well defined average isotropic elastic

modulus tensor, where it can be described by only two elastic moduli, the

bulk modulus K and the shear modulus µ. The Fourier transform of the

elastic Green’s function of the system scales as q�2. Since the system is dis-

ordered and heterogeneous; i) the response to a point load will not precisely

follow the homogeneous continuum solution, and ii) each particular choice of

particle to exert the force will result in a slightly di↵erent response function.

However, on average, and at long lengths, we expect continuum homoge-

neous elasticity to provide a good description. The question here is how the

fluctuations away from the continuum description die away at long lengths

and how this depends on proximity to jamming.

It should be mentioned that the elastic Green’s function in real space

will depend on the system size L and exhibit a logarithmic divergence in two

dimensions, i.e. hu.ui ⇠ log(L) [5, 7]. Our data (not shown here) confirms

that the real ensemble averaged Green’s function quickly converges to a well

defined value as the distance from the local perturbation becomes much larger

than the typical particle size.

The initial configurations and their preparation are similar to those de-

scribed in Section 2.3. The interaction potential of the system depends on

the positions of the particles r
i

and may be written as a function of the

full set of distances r
ij

between pairs of interacting particles U =
P

ij

U(r
ij

)
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where the index ij runs over all pairs of particles.

3.2.1 Harmonic Approximation

Perturbing the energy about small displacements u
i↵

from their original po-

sitions r
i↵

reads

U ⇡ U
0

+ F̊
i↵

u
i↵

+
1

2
u
i↵

H
i↵j�

u
j�

, (3.1)

where u
i↵

is the displacement, H
i↵j�

= @2U/@r
i↵

@r
j�

|
u

i↵

!0

is the Hessian

and F̊
i↵

= @U/@u
i↵

|
u

i↵

!0

. An equation of motion for the displacements is

specified by the condition that the system remains at mechanical equilibrium

in response to an external force F ext

i↵

, that is @U/@r
i↵

= F ext

i↵

. Di↵erentiating

(3.1) with respect to r
i↵

leads to

H
i↵j�

u
j�

= F ext

i↵

� F̊
i↵

. (3.2)

We solve numerically the linear response equation in Eq. (3.2) for the dis-

placements u
i↵

of all particles using the sparse matrix routines in the SciPy

library. This approach directly utilizes the Hessian matrix of the system to

derive the elastic displacement field. For periodic systems, this solution is

defined up to rigid translations–but conventionally the solution with no trans-

lational component is chosen– since the Hessian is translationally invariant.

The elements of the Hessian matrix are evaluated using the analytical form

for pair potentials as in [20]. Once the Hessian matrix is assembled, we check

its positive definiteness.

In order to apply the point force, a particle is chosen at random and
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its center defines the origin of the system. In order to maintain mechanical

stability, a compensation force of F
y

= F/N is applied on all particles so

that
P

i

F ext

iy

= 0 [22]. Here F is the magnitude of the external force and N

is the total number of particles. A typical example for the field u
i↵

is shown

in Fig. 3.1(a).

3.2.2 Continuum Solution

We have assumed that the medium is homogeneous, isotropic, and linearly

elastic, so that the elastic properties of the system are fully described by the

bulk modulus K and shear modulus µ. See Appendix B.3 for more details on

how the exact continuum solution for a point response can be derived. Figure

3.1(b) illustrates a typical continuum solution in real space. In Fourier space,

we obtain

ucont

L

(q) =
F sin(✓)

(K + µ)q2 V
,

ucont

T

(q) =
F cos(✓)

µq2 V
. (3.3)

Here, ucont

L

(q) and ucont

T

(q) are the longitudinal and transverse amplitudes of

the displacements, F is the applied force magnitude, ✓ is the angle of the

force vector with respect to the x axis, and V is the volume (area in two

dimensions).
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Figure 3.1: Arrows represent the displacements in response to a point force.

3.2.3 Displacement Field Decomposition

We present the actual point response by its Fourier longitudinal and trans-

verse amplitudes, u
L

(q) and u
T

(q), where q is the wave vector. To obtain

the data, we interpolate the discrete displacements u
i↵

on a regular fine grid

of size
p
N

g

⇥
p
N

g

and then take the two-dimensional discrete Fourier trans-

form of the interpolated field u
↵

(r
j

)

u
L

(q) =
X

j

u
↵

(r
j

)n
↵

eiq.rj ,

u
T

(q) =
X

j

u
↵

(r
j

)n?
↵

eiq.rj . (3.4)

Here n
↵

= q
↵

/q is the unit vector along q and u
L

(q) and u
T

(q) denote the

longitudinal and transverse displacement amplitude.

We then calculate the two-dimensional structure factors s
L

(q) and s
T

(q)
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on the two-dimensional q space averaged over position and members in the

ensemble

s
L

(q) =
1

N
g

|u
L

(q)|2

hu.ui ,

s
T

(q) =
1

N
g

|u
T

(q)|2

hu.ui , (3.5)

where hu.ui = N�1

g

P
i

u(r
i

).u(r
i

) is the mean squared displacements 1. It

must be noted that we average over square amplitudes and this means that

the phase information is not contained in s
L

(q) and s
T

(q). Hence, the aver-

age Green’s function cannot be reconstructed from s
L

(q) and s
T

(q).

Figure 3.2 displays the ensemble averaged structure factors s
L

(q) and

s
T

(q) (rescaled by q�4) for � = 0.85 and � = 0.925. The structure factors

s
L

(q) and s
T

(q) rescaled by q�4 measured along ✓ = 0 and ✓ = ⇡/2 are shown

in Figs. 3.3 and 3.4 for � = 0.85 (left) and � = 0.925 (right). The averages

were calculated by binning according to log q along q
x

and q
y

on the two-

dimensional q grid. The dashed lines in the plots represent the continuum

predictions q4scont
L

(q) and q4scont
T

(q) which can be derived from Eq. (3.3) 2.

There are several important observations to make about these plots.

First, note that ucont

L

(q) is precisely zero at ✓ = 0, as the applied force con-

tains zero longitudinal power along that direction –f
L

(q
x

, q
y

= 0) = 0. This

is also true for ucont

T

(q) at ✓ = ⇡/2. Surprisingly, longitudinal power along

✓ = 0 and transverse power along ✓ = ⇡/2 are present (circles in Fig. 3.3 and

1Using the Parseval’s theorem, we obtain hu.ui = N�2

g

P
q |u

L

(q)|2 + |u
T

(q)|2.
2Note that hucont.uconti ! 1 in two dimensions and thus is evaluated on a regular

grid of size
p
N

g

⇥
p
N

g

.
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(a) q4s
L

(q) at � = 0.85 (b) q4s
L

(q) at � = 0.925

(c) q4s
T

(q) at � = 0.85 (d) q4s
T

(q) at � = 0.925

Figure 3.2: Maps of q4s
L

(q) and q4s
T

(q) using a decimal log scale plotted for
� = 0.85 and � = 0.925. Note that the power must be invariant
under ✓ ! �✓.
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Figure 3.3: q4s
L

(q) for cuts along the axis at ✓ = 0 and ✓ = ⇡/2 at � = 0.85
(left) and � = 0.925 (right) compared with the continuum solution
(dashed lines).

squares in the Fig. 3.4).

Now let us compare s
L

(q) at ✓ = ⇡/2 and s
T

(q) at ✓ = 0 to their contin-

uum expressions. At low q (long wave length), the actual response compares

well with the continuum solution (dashed curves) – with both showing q�4

behavior for small wave numbers. For large wave numbers, however, the pre-

dictions become bad. The validity range of linear elasticity extends out to a

larger q (smaller wave length) at � = 0.925 (right) than � = 0.85 (left) for

both longitudinal and transverse structure factors. In other words, elasticity

is only valid at very long wave length limit near jamming.

For simplicity, we compute the angle independent structure factors s
L

(q)

and s
T

(q) as the following: log s
L

(q) = hlog s
L

(q)i
✓

and log s
T

(q) = hlog s
T

(q)i
✓

where hi
✓

denotes averages over ✓. We define the scaled structure factors as

S
L

(q) =
s
L

(q)

scont
L

(q)
,

S
T

(q) =
s
T

(q)

scont
T

(q)
, (3.6)
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Figure 3.4: q4s
T

(q) for cuts along the axis at ✓ = 0 and ✓ = ⇡/2 at � = 0.85
(left) and � = 0.925 (right) compared with the continuum solution
(dashed lines).

for q 6= 0. Here scont
L

(q) and scont
T

(q) are the isotropic continuum predictions

3.

The angle-averaged scaled structure factors S
L

(q) and S
T

(q) measured for

di↵erent � are shown in Fig. 3.5. Qualitatively similar behavior is found for

S
L

(q) and S
T

(q) at various packing fractions: they start at very high values

for large q, go down as q decreases, and finally asymptote to unity as q ! 0 –

which implies that elasticity works perfectly in that limit. This q-dependent

form is more pronounced in the longitudinal mode than it is in the transverse

mode. We find that the crossover to the linear elastic behavior at low q is

strongly controlled by the distance to jamming –set by �. It should be also

noted that S
T

(q) does not look as sensitive to jamming as S
L

(q) does.

In Fig. 3.6, we show that the data can be made to collapse for various �

when plotting S
L

(q) versus hpi�0.4q/2⇡ and S
T

(q) versus hpi�1/4q/2⇡. Here

3We did an isotropic averaging in log space, i.e. log |ucont

T

(q)|2 = 1

⇡

R
⇡

0

log|ucont

T

(q, ✓)|2d✓
which leads to |ucont

T

(q)|2 = F 2/4µ2q4V 2. Note that log |ucont

T

(q, ✓)|2 is not finite at
✓ = ⇡/2 but the integral is bounded.

42



10-3 10-2 10-1
q/2π

100

101

102

103

S L
(q
)

0.85
0.855
0.865
0.88
0.9
0.925

10-3 10-2 10-1
q/2π

100

101

102

103

S T
(q
)

φ

Figure 3.5: S
L

(q) versus q/2⇡ (left) and S
T

(q) versus q/2⇡ (right) for di↵erent
�.

the crossover length scale between elastic and non-elastic regimes – say ⇠
L

and ⇠
T

for the longitudinal and transverse modes – are proportional to ⇠
L

/

hpi�0.4 and ⇠
T

/ hpi�1/4. These scalings are consistent with divergence at

jamming transition.

Let us summarize this section: study of the elastic Green’s function in

q-space exhibits a crossover, denoted by length ⇠, to the classical elasticity

solution in small wave numbers. ⇠ diverges at jamming in the form of a power

law with di↵erent exponents for the longitudinal and transverse modes; ⇠
L

has

a larger exponent than ⇠
T

does (in an absolute sense) meaning that jamming

is more pronounced in longitudinal motion. The transverse displacements,

however, become infinitely large near jamming, as µ ! 0 and K remains

finite 4. It is evident from Eq. (3.3) that K/µ sets the ratio between the

transverse and longitudinal components. Despite this, it is S
L

(q) that is

more sensitive to jamming.

4We discuss the scalings of µ and K with hpi in Section 3.3
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Figure 3.6: S
L

(q) versus hpi�0.4q/2⇡ (left) and S
T

(q) versus hpi�1/4q/2⇡ (right)
for di↵erent �.
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3.3 Local Elasticity

The presence of disorder in an amorphous matter gives rise to strong fluctu-

ations in the local elastic constants particularly at small scales. As discussed

in Section 3.2, linear isotropic homogeneous elasticity assumes that these

heterogeneities are negligible. In fact, the severe non-continuum behavior

observed in the point response – which is intensified near jamming – is due

to the inherent spatial non-homogeneities in the structure of elastic moduli.

This gives us at least one important reason to study local elastic properties of

amorphous structures as in [55]. Tsamados et al. [50] attempted to associate

a characteristic scale to the elastic heterogeneities by measuring the local

elastic properties at di↵erent coarse-graining sizes. They found a character-

istic length of five interatomic distances, but a systematic study of modulus

fluctuations with respect to proximity to jamming was lacking in their work.

A similar study has been performed in [37] to measure spatial distributions

of the local moduli in glasses without identifying any interesting size.

As opposed to the previous studies, in this work, our focus will be based

on the scale dependence of average shear modulus and not the spatial fluc-

tuations. We use a systematic coarse-graining approach and monitor the

convergence of shear modulus value toward its bulk limit. The scale de-

pendence of the local shear modulus is quantified by applying homogeneous

shear strain using no slip boundary conditions with boxes of various size,

R. The applied constraints at the boundaries prevent non-a�ne relaxations

which result in the increased shear modulus beyond its fully relaxed value.

Response to the elastic wave perturbation is also studied in order to measure
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the average elastic constant and characterize its potential dependence on the

incident wave.

3.3.1 Constrained Homogeneous Shear

The local elastic constants are usually interpreted to have the same meaning

as the bulk quantity, typically defined in the context of continuum mechanics.

The local elasticity tensor relates the changes in the local stress tensor to an

applied uniform strain in an elastic material. The local Born shear modulus

µ
Born

(r
i

) may be computed by carrying out a summation over all pairs of

interacting particles j with particle i [as in Eq. (B.2)]. The bulk Born shear

modulus µ
Born

– derived in Appendix B.1 – is simply the spatial average of

µ
Born

(r
i

), i.e. µ
Born

= hµ
Born

(r
i

)i. In order to define the net local shear

modulus locally in a sub-region ⌦ 2 V , Eq. (3.11) may be solved with all

exterior particles held fixed, i.e. �u
i↵

= 0, and the local moduli then can be

defined. The main assumption is that while the interior particles can move

nona�nely, the exterior particles act as fixed, rigid boundaries.

Now let us simply divide the simulation cell into squares of varying length

R and follow the above procedure for each box to find a coarse-grained

shear modulus µ(r
i

, R). The local correction shear modulus is defined as

µ
c

(r
i

, R) = µ
Born

(r
i

)�µ(r
i

, R) and its spatial average is µ
c

(R) = hµ
c

(r
i

, R)i.

We plot µ(R) – which is a spatial average µ(R) = hµ(r
i

, R)i – against

R in Fig. 3.7 left exhibiting significant size dependence. At the shortest

length-scales R ⌧ L, where no inhomogeneous correction is allowed because

most of the particles lie on the perimeter and move a�nely, µ
c

(R) ⇡ 0 or
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Figure 3.7: Shear modulus µ(R) plotted against R at di↵erent � (left) and Scal-
ing of µ

Born

and µ with hpi (right). The dashed lines (left) illustrate
the asymptotic behavior at small R [µ(R) ! µ

Born

] and large R
[µ(R) ! µ].

µ(R) ⇡ µ
Born

. In fact, for small squares the contribution of particles at

and near the surface becomes more dominant. At longer length-scales, µ(R)

decreases monotonically toward the true global value for these periodic sys-

tems, µ = µ(R ! 1), as increasingly longer wavelength inhomogeneous

corrections are allowed to µ(R) and the contribution of the bulk particles

increases compared to the Born term µ
Born

which is scale independent.

Figure 3.7 right illustrates the pressure dependence of µ
Born

and µ. Near

jamming, µ decreases toward zero, as the contribution of the correction term

µ
c

= µ
c

(R ! 1) grows relative to the Born term µ
Born

which does not look

so sensitive to hpi.

From the assumption that particles move only a�nely on the perimeter of

the box, one can estimate that µ
c

(R) / N
Bulk

/N where N is the total number

of particles in a square of length R and N
Bulk

is the number of particles in the

bulk. The number of particles on the perimeter, which we denote by N
Perim

,

is proportional to R. Now N
Bulk

= N � N
Perim

and we have that N / R2.
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Figure 3.8: µ(R)/µ � 1 plotted against hpi1/2R at di↵erent �. In the inset,
µ(R)/µ � 1 versus R is shown. The dashed line shows R�1.

Hence µ
c

(R) = µ
c

(1� ⇠/R) where ⇠ has dimension of length and determines

how quickly µ
c

(R) should reach its asymptote µ
c

. Upon using this relation,

we obtain the following formula for µ(R) with an explicit dependence on R

(and of course hpi)

µ(R) = µ+ µ
c

⇠

R
. (3.7)

Now, ⇠µ
c

/µ is a characteristic length which is the R above which one

almost recovers the true global modulus; namely µ(R > µ

c

µ

⇠) ⇡ µ. Evidently(

see Fig. 3.7 left ) this special size scales with hpi. In Fig. 3.8, we show that

the data can be made to collapse (at large R!) for various � when plotting

µ(R)/µ � 1 versus hpi 1
2R. The theory seems to capture the fact that R�1

regime is clearly reached at large values of R (see the tails in the inset).

However, at low R (say R < 10) the discrepancy can be due to the fact that

µ(R) ⇡ µ
Born

. Physically speaking, the sample size R needed to converge

to the fully relaxed shear modulus diverges as hpi�1/2 which is close to the

⇠
L

⇠ hpi�0.4 result discussed in Section 3.2.
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3.3.2 Elastic Wave Response

Response to plane wave forcing with a varying wavelength is used to quantify

the scale dependence in the shear modulus. We perturb the system with an

external force vector F ext

i↵

= F 
i↵

in the form of an ordinary unit transverse

plane wave where  
j↵

= n?
↵

eiq
0
.r

j/
p
N . Here q0 is the wave vector with

wave number q0 and n? = q0?/q0 is the unit polarization vector. We solve

H
i↵j�

u
j�

= F 
i↵

to find the response. The a�ne displacements is denoted

by X
a↵

 
i↵

where X
a↵

represents their magnitude. Given u
i↵

= �u
i↵

+X
a↵

 
i↵

and upon replacing it in the linear response equation, we obtain

H
i↵j�

�u
j�

= F ext

i↵

� X
a↵

H
i↵j�

 
j�

. (3.8)

The a�ne displacement magnitude X
a↵

in response to the perturbing force

may be obtained by solving Eq. (3.8) using �u
i↵

= 0

X
a↵

= F/( 
i↵

H
i↵j�

 
j�

). (3.9)

Typical snapshots of the force field F ext

i↵

and nona�ne displacements �u
i↵

calculated from Eq. (3.8) are depicted in Fig. 3.9.

We turn now to the calculation of the elastic coe�cient µ using the elastic

wave response. See Appendix B.2 where we obtain a relation between the

energy change �U and the elastic constant. We find

µ(q0) = hpi + F 2[�U(q0) q02V/N ]�1. (3.10)

The change in energy of the a�ne state is given by �U
a↵

= 1

2

X2

a↵

 
i↵

H
i↵j�

 
j�

.
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Figure 3.9: The force field F ext

i↵

with a plane wave structure (a) and the corre-
sponding response u

i↵

(b).

Inserting Eq. (3.9) leads to �U
a↵

= 1

2

F 2/( 
i↵

H
i↵j�

 
j�

), while the energy

change of the final state is given by �U = 1

2

F 2( 
i↵

H�1

i↵j�

 
j�

). We have

�U = �U
a↵

when and only when  
i↵

is along an eigenvector of H
i↵j�

.

Our results for the shear moduli µ(�) as a function of the wavelength of

the applied elastic wave � = 2⇡/q0 are collected in Fig. 3.10 left. It looks

like there is not so much scale dependence, as µ(�) hits the plateau at rather

small � – which is insensitive to jamming. In in Fig. 3.10 right, the quantity

1 � µ(�)/µ decays almost as ��2 with a pre-factor that is independent of �

(see the rescaled data by ��2 in the inset). This scaling behavior is simply

what would be seen for a phonon dispersion at high q values.

We close this section by concluding that the wave method will not reveal

any interesting characteristic length. The non-a�ne corrections to the a�ne

displacements reduce µ
a↵

(�) 5 to µ(�) but not in an interesting fashion!

5Upon replacing U with U
a↵

in Eq. (3.10), we obtain an expression for µ
a↵

(�).
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Figure 3.10: Dependence of the shear modulus µ(�) (left) and the relative error
on the shear modulus 1 � µ(�)/µ (right) on the wavelength � =
2⇡/q0 for various �. The inset is the same as the main plot but
rescaled by �2. The dashed lines represent µ.

µ
a↵

(�) di↵ers from µ(�) only by a scale factor (not shown here). The weak

� dependence is simply due to the dispersion e↵ect which manifest itself at

small � values 6. However, in the box method these corrections exhibit a

strong scale dependence, as particles are pinned on the boundary while the

wave method does not pin any particles.

6Assuming that the eigenmodes of the Hessian can be approximated as plane waves
and the associated eigenvalues scale as sin2q, we obtain �U / 1/sin2q. Using Eq. (B.9),
we have µ / sin2q/q2. In the long wave-length limit, i.e. q ! 0, µ reaches a plateau, and
for a large q, i.e. sin2q ! 1, µ / q�2.
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3.4 Response To a Bulk Deformation

Existence of nona�ne linear displacements of amorphous packings subject to

a macroscopic uniform strain is a direct consequence of disorder, which itself

leads to spatial fluctuations in elastic properties. In the Fourier decomposi-

tion of their nona�ne displacement field, Leonforte et al. [21, 23] observed

that the longitudinal and transverse powers are proportional to q�2 with no

indication of any special wave number. One important question is that to

what extent the observed behavior in Green’s function, discussed in previous

section, carries over to this form of driving. In this section, we investigate

the nona�ne displacement field using a unconstrained homogeneous strain

applied to a periodic cell. We focus on two modes of global deformation here

which are isotropic compression and pure shear.

3.4.1 Nona�ne Response

Macroscopic deformations of the sample are performed by changing the shape

of the periodic box via the deformation gradient tensor F
↵�

. Changes in F
↵�

correspond to a�ne transformations of all the particles following the cell

shape. At zero temperature, an infinitesimal deformation of the system is

often performed in two steps. First, starting from a local minimum, the

particle coordinates a�nity follow the change of the cell coordinate. The

real space position of particle i is thus mapped from r
i↵

to F
↵�

r
i�

. Second

the particles are allowed to relax to the nearest equilibrium position r
i↵

, with

F
↵�

being fixed. The nona�ne part of the deformation is then characterized

by �u
i↵

= u
i↵

� ua↵

i↵

where ua↵

i↵

= (F
↵�

� �
↵�

)r
i�

.

52



For now, let us move on to how we may derive these nona�ne fields in

response to some prescribed mode of deformation parametrized by F
↵�

. The

equation of motion for �u
i↵

is obtained by solving [20]

H
i↵j�

�u
j�

⌘
��

= ⌅��

i↵

, (3.11)

where ⌘
↵�

= (F
�↵

F
��

� �
↵�

)/2 is the Lagrangian strain tensor and ⌅��

i↵

=

�@2U/@r
i↵

@⌘
��

|
⌘

��

!0

is the field of forces which results from an a�ne defor-

mation of all the particles. The above equation shows that �u
i↵

is just the

linear response to these extra forces under deformation along ⌘
↵�

.

For a given relaxed configuration, ⌅��

i↵

is first computed, and we, then,

solve for �u
i↵

numerically using the sparse matrix routines in the SciPy li-

brary. We have checked that this procedure gives agreement with the less

precise procedure of applying a small finite deformation and performing a

subsequent energy minimization in LAMMPS. Examples for the field �u
i↵

in

isotropic compression ⌘
↵�

= ✏�
↵�

and pure shear ⌘
↵�

= ✏(�
↵x

�
�x

� �
↵y

�
�y

)

are shown in Figs. 3.11 and 3.12 for � = 0.85 and � = 0.925. Here ✏ is

an infinitesimal strain. The spatial structure of these displacements will be

discussed below.

3.4.2 Nona�ne Displacements Decomposition

Here we discuss the Fourier longitudinal and transverse structure factors,

s
L

(q) and s
T

(q) of nona�ne displacement field in response to compression

and shear as we did for the point response in Section 3.2.3. The nona�ne

displacements, computed from Eq. (3.11), are interpolated on a fine grid and
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Figure 3.11: �u
i↵

field in isotropic compression (a) and pure shear (b) for � =
0.85.
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Figure 3.12: �u
i↵

field in isotropic compression (a) and pure shear (b) for � =
0.925.
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DFT is performed subsequently.

From a continuum perspective, the nona�ne elastic response may be ex-

pressed as that of an isotropic homogeneous linear elastic medium perturbed

by local force dipoles with varying magnitudes and angles [33]. Now let us

assume that these dipoles can be expressed as q in an average sense. We

showed in Section 3.2 that the average elastic Green’s function scales as q�2

in long wave length limit for an amorphous system. Thus, given that the re-

sponse is described as the product between the Green’s function and applied

force, we obtain the q�1 scaling, for the amplitude, which is expected to be

valid at small q values.

In Fig. 3.13, the ensemble averaged structure factors are rescaled by q�2

at � = 0.85. We display sc
L

(q) and sc
T

(q) computed in compression (left)

and ss
L

(q) and ss
T

(q) in shear (right). Our first observation is that sc
L

(q) and

sc
T

(q) are not so sensitive to ✓. ss
L

(q) and ss
T

(q), however, are strongly angle

dependent especially at low q values.

Looking at the real space correlations gives us a better insight toward the

observed anisotropy in ss
L

(q) and ss
T

(q). The real space volumetric strain

field �(r
j

) = r.u and vorticity field !(r
j

) = r ⇥ u can be obtained by

taking an inverse discrete Fourier transform of u
L

(q) and u
T

(q)

�(r
j

) =
1

N
g

X

q

u
L

(q)eiq.rj ,

!(r
j

) =
1

N
g

X

q

u
T

(q)eiq.rj . (3.12)

We also check that finite di↵erence in real space gives identical results except
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(a) q2sc
L

(q) (b) q2ss
L

(q)

(c) q2sc
T

(q) (d) q2ss
T

(q)

Figure 3.13: Maps of longitudinal (top) and transverse (bottom) structure fac-
tors in compression (left) and shear (right) plotted for � = 0.85
using a decimal log scale.
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at tiny q.

Figure 3.14 shows �
c

(r
i

) and !
c

(r
i

) (subscript c denotes compression)

at left and �
s

(r
i

) and !
s

(r
i

) (subscript s denotes shear) at right for a single

realization at � = 0.85. Long range, highly anisotropic spatial correlations

are evident for !
s

(r
i

) in Fig. 3.16(d) which localizes at roughly macroscopic

maximum global shear planes along the diagonals. We also observe these

features for �
s

(r
i

) in Fig. 3.16(b) but to a lesser degree. �
c

(r
i

) and !
c

(r
i

)

have no directional preference, as seen in Fig. 3.16(a) and (c).

Figures 3.20 and 3.16 are the same as Figs. 3.13 and 3.14 but generated for

� = 0.925. One di↵erence in Fourier space pictures is the fact that q2sc
L

(q)

in Fig. 3.20(a) is almost flat, and that di↵ers from what we see in the loose

packing in Fig. 3.13(a).

To quantify these correlations in compression, we calculate the angle

dependent structure factors sc
L

(q) and sc
T

(q) as the following: log sc
L

(q) =

hlog sc
L

(q)i
✓

and log sc
T

(q) = hlog sc
T

(q)i
✓

where hi
✓

denotes averages over

✓. These quantities are plotted in Fig. 3.17 for various �. We make several

important points here. First, sc
L

(q) shown in Fig. 3.17(a) looks much more

sensitive to jamming than sc
T

(q) does in Fig. 3.17(b), which is consistent with

the Green’s function behavior discussed in Section 3.2. Secondly, the low-q

values of sc
T

(q) almost decay as q�2 [the plateau of q2sc
T

(q) in Fig. 3.17(b)],

while the tail of q2sc
T

(q) for high-q values indicates a faster decay than q�2.

Far away from the jamming transition, sc
L

(q) almost follows q�2 scaling [the

brown downward triangles in Fig. 3.17(a)]. As we approach jamming, how-

ever, we observe large deviations from the q�2 behavior at intermediate q

where the decay gets very slow, which is in agreement with non-continuum
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Figure 3.14: Real space images of �(r
i

) (top) and !(r
i

) (bottom) generated for
compression and shear at � = 0.85.
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(a) q2sc
L

(q) (b) q2ss
L

(q)

(c) q2sc
T

(q) (d) q2ss
T

(q)

Figure 3.15: Maps of longitudinal (top) and transverse (bottom) structure fac-
tors in compression (left) and shear (right) plotted for � = 0.925
using a decimal log scale.
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Figure 3.16: Real space images of �(r
i

) (top) and !(r
i

) (bottom) generated for
compression and shear at � = 0.925.
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Figure 3.17: q2sc
L

(q) versus q/2⇡ (a) and q2sc
T

(q) versus q/2⇡ (b) for di↵erent �
in compression. In the insets, sc

L

(q) and sc
T

(q) are plotted against
q/2⇡.

behavior observed in Section 3.2.

We now quantify the anisotropic shear correlations. The structure factors

ss
L

(q) and ss
T

(q) measured along ✓ = 0 –the axis– and ✓ = ⇡/4 –the diagonal–

at � = 0.85 are shown in Fig. 3.18. It should be noted that these values were

calculated by binning according to log q along these two directions. Both

ss
L

(q) and ss
T

(q) show anisotropy at low-q values – long wavelength – due to

an anisotropic deformation at boundaries. In contrast, large wave numbers
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Figure 3.18: q2ss
L

(q) (left) and q2ss
T

(q) for cuts along the axis at ✓ = 0 and
✓ = ⇡/4 at � = 0.85. The insets plot ss

L

(q) and ss
T

(q).

are not so sensitive to bulk deformation and ss
L

(q) and ss
T

(q) become nearly

angle-independent. Nature of low-q anisotropy is di↵erent for ss
L

(q) and

ss
T

(q). At ✓ = ⇡/4, ss
T

(q) is largest, while ss
L

(q) is smallest. Along the axis,

the trend is opposite; namely ss
T

(q) is smallest and ss
L

(q) is largest.

Figure 3.19 plots the same data as above but for � = 0.925. The data

qualitatively agrees with that of � = 0.925 except that q2ss
L

(q) becomes

nearly independent of q.

The angle-averaged structure factors ss
L

(q) and ss
T

(q) measured for dif-

ferent � are shown in Fig. 3.20, which compare well with those measured in

compression as in Fig. 3.13.

We conclude that the basic picture of force dipoles acting in an uncorre-

lated way on a homogeneous elastic sheet holds. However, there are impor-

tant departures from this picture.While the longitudinal mode is sensitive

to distance from point J , the transverse component is almost insensitive.

Mode of applied deformation at boundaries can largely impact vorticity and

volumetric strain at large wavelengths. In pure shear, we observed enhanced
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Figure 3.19: q2ss
L

(q) (left) and q2ss
T

(q) for cuts along the axis at ✓ = 0 and
✓ = ⇡/4 at � = 0.925. The insets plot ss

L

(q) and ss
T

(q).

vorticity power along the diagonal. Also, volumetric strain shows this prop-

erty along the axes.
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Figure 3.20: q2ss
L

(q) versus q/2⇡ (a) and q2ss
T

(q) versus q/2⇡ (b) for di↵erent �
in shear. In the insets, ss

L

(q) and ss
T

(q) are plotted against q/2⇡.
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3.5 Discussion And Summary

In this chapter, we have studied numerically the linear elastic mechanical

response of disc packings near jamming. The packings are subjected to both

homogeneous strain and point forcing. We have also discussed the response of

small subsystems to homogeneous strain subject to rigid, no slip boundaries.

In the case of the point-like external force, while the continuum approach

produces a simple scaling behavior for the Fourier components, the actual

Green’s function displays a strikingly di↵erent behavior; at small wavelengths

the response shows a clear departure from the expectations the extent of

which increases near jamming. The observed behavior identifies a crossover

length whose location depends on the proximity to jamming.

For constrained homogeneous shear, we also identify a characteristic length

associated with the size dependent average shear modulus. This length de-

termines how quickly one recovers the underlying global shear constant for an

unconstrained sample. We have shown that both lengths scale as an inverse

power of the applied, global hydrostatic pressure, p.

Our results indicate that, in all cases, although the transverse component

of the response is dominant, the longitudinal component shows much more

sensitivity to the jamming transition. For the response to unconstrained

homogeneous strain, we are unable to identify any simple scaling with p.

However, surprisingly, we find agreement between the response to shear and

compression: in both cases it is the longitudinal contribution that is sensitive

to proximity to jamming. The physical picture that emerges is that zones of

strong local shearing, which are present in the transverse response at all p
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for both imposed shear and compression/dilation, can organize the dilatancy

field at large length scales for large p, but are unable to do so at low p near

jamming.
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Chapter 4

Summary And Conclusions

The starting point of this thesis is a very simple question: in static parti-

cle packings, there are inherent spatial fluctuations and correlations in the

quenched stress structure and local elastic properties; how far could the me-

chanical response of these particle assemblies be described simply by assum-

ing that they are uniform in space? This is the essence of linear isotropic

homogeneous elasticity.

To address this question, we began by studying local stress fluctuations;

at first glance, the two-point force correlation function might seem su�cient

to capture the interesting features of stress fluctuations. A careful investiga-

tion of this function in isotropically compressed packings led to correlation

lengths of a few particles which are almost insensitive to jamming [30, 26].

The work of Henkes and Chakraborty(HC) [14, 15, 27] established a theo-

retical framework for describing the power spectrum of the stress field. If

one has access to such a description, one may compute the strength of stress

fluctuations in the coarse-grained field. Based on this strategy, in Chapter 2,
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we provided a novel description of stress chains which is able to capture most

of their interesting properties. We also found that the deviatoric magnitude

of the coarse-grained field shows some remarkable features which are surpris-

ingly close to those of the stress fluctuations. While our approach based on

stress fluctuations is closely related to the HC’s theory, its immediate relation

to the stress anisotropy method remains subtle. The way we have analyzed

our data here could lead to development of a new tool for the study of force

chains, a problem so far tackled mostly by standard correlation functions. In

principle, it should be straightforward to analyze stress fields obtained from

experiments in much the same way.

With the clear emergence of strong inhomogeneities, linear elasticity looks

too simplistic to describe the mechanical response in particle packings; its

robustness and e↵ectiveness must be discussed from the jamming transition

perspective. In Chapter 3, we found length scales associated with the point

response below which continuum approaches fail. The scaling laws proposed

for these lengths at vanishing pressure display a form of critical behavior

shown by several other studies [9, 7, 46].

There is still one big open question that should be kept in mind: what

is the role of local quenched stresses in the linear elastic response of particle

assemblies? Our results, altogether, suggest that stress correlations and local

elastic properties of these systems share many common features. However,

an important aspect which is still unclear is to what extent they can be

predicted from one another.
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Stress Correlations
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Figure A.1: Illustration of the principal stress axes (n
↵

and t
↵

) for an arbitrary
particle.

A.1 Anisotropic Correlation Function

As discussed in the text, the force network exhibits strong local anisotropy

down to a few particle size scale, even under uniform compression. More

insight about the force structure can be gained by studying a modified corre-

lation function that determines correlations along locally determined princi-

pal stress directions. The new anisotropic analysis only incorporates pairs of

particles that lie within the illustrated boxes in Fig. A.1. For each particle,

these boxes are aligned with principal stress directions that are determined

from the virial stress tensor. In that case, the anisotropic correlation function

is defined as

Gmod(R) =
hp

o

p
r

i � hp
o

ihp
r

i
�
p

o

�
p

r

, (A.1)

where “o” is the particle at the origin and “r” is the remote particle and

hp
o

p
r

i = 1

M

NX

i=1

NX

j=1

�(Rn
i↵

� r
ij↵

)p
i

p
j

, (A.2)
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� r
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, and

M =
NX

i=1

NX

j=1

�(Rn
i↵

� r
ij↵

). (A.7)

Here, n
i↵

is a unit vector along the major principal stress axis, which is

computed from the virial of particle i, pointing from particle i to j. Note

that in the conventional correlation function pair ij is treated the same as

pair ji, whereas the anisotropic case considers both the separation and the

direction. Pairs do not come symmetricaly in this modified calculation: if

particle j lies along n
i↵

, particle i does not necessarily lie along n
j↵

. In

general n
i↵

6= n
j↵

. Consequently, hp
o

i 6= hp
r

i and �
p

o

6= �
p

r

. A similar

correlation function may be computed for the minor principal stress axis.
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B.1 Bulk Elastic Constants

Let us now derive microscopic equations for the stress and elastic constants,

quantities typically defined from continuum mechanics. Because of the non-

a�ne displacements, the strain-energy density is now a function of �u
i↵

too.

Using Eqs. (3.1) and (3.11) we have

(U � U
0

)/V ⇡ �̊
↵�

⌘
↵�

+
1

2
⌘
↵�

C
↵���

⌘
��

, (B.1)

where C
↵���

= CBorn

↵���

� 1

V

⌅
i�↵�

H�1

i�j⌧

⌅
j⌧��

and �̊
↵�

= 1

V

@U/@⌘
↵�

. The Born

approximation CBorn

↵���

for the second derivative of the energy with respect to

⌘
↵�

corresponds to strictly a�ne displacements of the particles. The con-

traction of the inverse of the Hessian on components of ⌅
i↵��

provide the

correction terms. Since H�1

i↵j�

is positive definite, the correction terms are

positive: That is, non-a�ne displacements reduce the second order derivative

of the energy from its Born form (C
↵���

 CBorn

↵���

when ↵� = ��).

In a system with pair-wise interactions potential, the Born estimates may

be computed by carrying out a simple summation over all pairs of interacting

particles (see [20])

CBorn
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ij
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ij

U 00(r
ij

) � U 0(r
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, (B.2)

where we have introduced the normalized vector between pairs of particles

n↵

ij

= r↵
ij

/r
ij

. And for the fields ⌅
i↵��

, the derived expression is

⌅
i↵��

= �
X

j

(r
ij

U 00(r
ij

) � U 0(r
ij

))n↵

ij
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ij

n�

ij

. (B.3)
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Now we are ready to calculate C
↵���

from numerical samples. Since we are

dealing with large system sizes, we can expect that the elasticity tensor is al-

most isotropic and it has a form very close to CL
↵���

(see Appendix B.3). The

two modes of deformation that we need to use here are isotropic compression

⌘
↵�

= ✏�
↵�

and pure shear ⌘
↵�

= ✏(�
↵x

�
�x

��
↵y

�
�y

) where ✏ is an infinitesimal

strain. Given these modes of deformation, we are able to make a direct mea-

surements ofK = 1

4

(C
xxxx

+C
yyyy

+2C
xxyy

) and µ = 1

4

(C
xxxx

+C
yyyy

�2C
xxyy

).
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B.2 Plane Wave Procedure

The expansion of the energy in terms of ⌘
↵,�

is written

(U � U
0

) ⇡
Z

(̊�
↵�

⌘
↵�

+
1

2
⌘
↵�

C
↵���

⌘
��

)dV, (B.4)

where 2⌘
↵�

= @
�

u
↵

+ @
↵

u
�

+ @
↵

u
�

@
�

u
�

. Inserting the Fourier expansion

of Eq. (B.12) into the above equation reads and using C
↵���

= CL
↵���

and

�̊
↵�

= �p�
↵�

, we obtain

(U � U
0

)/V ⇡ K
X

q

q2|u
L

(q)|2

+ (µ � p)
X

q

q2(|u
L

(q)|2 + |u
T

(q)|2). (B.5)

Now let us derive u
L

(q) and u
T

(q) for a transverse plane wave perturba-

tion (with wave vector q0) and substitute in the above equation. We have

f
L

(x) = 0,

f
T

(x) =
Fp
N

X

j

�(x � x
j

)eiq
0
.x

j , (B.6)

Hence,

f
L

(q) = 0,

f
T

(q) =
F

V

p
N�

q,q

0 . (B.7)
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where �
q,q

0 is a Kronecker delta. Using Eq. (B.14) leads us to

u
L

(q) = 0,

u
T

(q) =
F

V

p
N�

q,q

0/µq2, (B.8)

And by inserting them in Eq. (B.5), the energy can be expressed as

U � U
0

⇡ F 2[(µ � hpi)q02V/N ]�1, (B.9)

where the entire term in the parenthesis has unit of sti↵ness. We may now

calculate U � U
0

from Section 3.3.2 as the elastic energy of an atomistic

system and use it to obtain µ.
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B.3 Linear Isotropic Elasticity

The continuum solution u
↵

(x) is obtained from the equations of motion in

terms of the C
↵���

given by [3]

(C
↵���

+ �̊
��

�
↵�

)@
�

@
�

u
�

= �f
↵

, (B.10)

with f
↵

being the external body force. We assume that the continuum

medium is homogeneous, isotropic, and linearly elastic. The elastic prop-

erties of the medium are fully described by the Lamé constants � and µ, i.e.

CL
↵���

= ��
↵�

�
��

+ µ(�
↵�

�
��

+ �
↵�

�
��

). Let us also assume that a uniform

isotropic initial stress in the reference state is defined by �̊
↵�

= �p�
↵�

where

p is the pressure. Substituting those expressions into Eq. (B.10) yields

(µ � p) u
↵,��

+K @
�

@
↵

u
�

= �f
↵

, (B.11)

where K = �+ µ (in 2D) is the bulk modulus. For a square packing of size

L with periodic boundaries along x and y, Eq. (B.11) can be solved in terms

of a Fourier series

u
↵

(x) =
X

q

u
↵

(q) eiq.x. (B.12)

Inserting the expansions into Eq. (B.11), û
↵

(q) is most simply displayed as

[(µ � p)�
↵�

+Kn
↵

n
�

] u
�

(q) =
1

q2
f
↵

(q), (B.13)

where q2 = q
↵

q
↵

, n
↵

= q
↵

/q, and f
↵

(q) = 1

V

R
f
↵

(x) e�iq.xdV .

Given that the longitudinal and transverse waves are the eigenmodes of
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the Lame-Navier operator – the second order tensor in brackets in Eq. (B.13)–

, the longitudinal and transverse components of u
↵

(q) are

ucont

L

(q) =
f
L

(q)

(K + µ)q2
,

ucont

T

(q) =
f
T

(q)

µq2
, (B.14)

where f
L

(q) and f
T

(q) are the longitudinal and transverse components of

f
↵

(q), i.e. f
↵

(q) = f
L

(q)n
↵

+ f
T

(q)n?
↵

. For a vertical point force of the form

f(x) = �F �(x)ŷ, the longitudinal and transverse components become

f
L

(q) =
F

V
sin(✓),

f
T

(q) =
F

V
cos(✓), (B.15)

where �(x) is a delta function, ŷ is a unit cartesian vector along y, F is the

force magnitude, and ✓ is the angle of q.

Inserting Eq. (B.15) in Eq. (B.14) yields

ucont

L

(q) =
F sin(✓)

(K + µ)q2 V
,

ucont

T

(q) =
F cos(✓)

µq2 V
. (B.16)

See Appendix B.1 where we derive an expression for K and µ.
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