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Abstract

In numerous real world applications, from sensor networks to computer vision to natural
text processing, one needs to reason about the system in question in the face of uncertainty. A
key problem in all those settings is to compute the probability distribution over the variables of
interest (the query) given the observed values of other random variables (the evidence). Prob-
abilistic graphical models (PGMs) have become the approach of choice for representing and
reasoning with high-dimensional probability distributions. However, for most models capable
of accurately representing real-life distributions, inference is fundamentally intractable. As a
result, optimally balancing the expressive power and inference complexity of the models, as
well as designing better approximate inference algorithms, remain important open problems
with potential to significantly improve the quality of answers to probabilistic queries.

This thesis contributes algorithms for learning and approximate inference in probabilistic
graphical models that improve on the state of the art by emphasizing the computational as-
pects of inference over the representational properties of the models. Our contributions fall
into two categories: learning accurate models where exact inference is tractable and speeding
up approximate inference by focusing computation on the query variables and only spending
as much effort on the remaining parts of the model as needed to answer the query accurately.

First, for a case when the set of evidence variables is not known in advance and a single
model is needed that can be used to answer any query well, we propose a polynomial time
algorithm for learning the structure of tractable graphical models with quality guarantees,
including PAC learnability and graceful degradation guarantees. Ours is the first efficient
algorithm to provide this type of guarantees. A key theoretical insight of our approach is a
tractable upper bound on the mutual information of arbitrarily large sets of random variables
that yields exponential speedups over the exact computation.

Second, for a setting where the set of evidence variables is known in advance, we pro-
pose an approach for learning tractable models that tailors the structure of the model for the
particular value of evidence that become known at test time. By avoiding a commitment to a
single tractable structure during learning, we are able to expand the representation power of
the model without sacrificing efficient exact inference and parameter learning. We provide a
general framework that allows one to leverage existing structure learning algorithms for dis-
covering high-quality evidence-specific structures. Empirically, we demonstrate state of the
art accuracy on real-life datasets and an order of magnitude speedup.

Finally, for applications where the intractable model structure is a given and approximate
inference is needed, we propose a principled way to speed up convergence of belief propa-
gation by focusing the computation on the query variables and away from the variables that
are of no direct interest to the user. We demonstrate significant speedups over the state of the
art on large-scale relational models. Unlike existing approaches, ours does not involve model
simplification, and thus has an advantage of converging to the fixed point of the full model.

More generally, we argue that the common approach of concentrating on the structure of
representation provided by PGMs, and only structuring the computation as representation al-
lows, is suboptimal because of the fundamental computational problems. It is the computation
that eventually yields answers to the queries, so directly focusing on structure of computation
is a natural direction for improving the quality of the answers. The results of this thesis are a
step towards adapting the structure of computation as a foundation of graphical models.
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Chapter 1

Introduction

Reasoning under uncertainty over high-dimensional structured spaces is a fundamental problem of ma-
chine learning with a multitude of applications. To optimally control air conditioning in a building, it is
necessary to infer the true distribution of the temperature throughout the building by only observing noisy
measurements of several sensors. For intelligent image retrieval, it is necessary to infer the identities and
locations of the objects in the images given the raw pixel brightness values, possibly corrupted by com-
pression. For accurate web search, one needs to infer the topics that any given webpage covers given the
text and the connectivity pattern of hyperlinks.

In all of the applications mentioned above, the state of the system can be modeled as a set of correlated
random variables X with joint distribution P (X). Moreover, a subset of variables E, which we will
call evidence can be typically observed at test time. The fundamental problem then is to compute the
conditional distribution of variables of interest Q, which we will call the query, given evidence:

P (Q | E) =
P (Q,E)

P (E)
. (1.1)

A major difficulty in computing the conditional distribution (1.1) arises from the fact that both query and
evidence may contain a very large number of variables. For example, a model of the Internet may have a
separate random variable for every webpage, and a model in computer vision may have a separate random
variable for every pixel of an image. The resulting random distributions have extremely high dimen-
sionality, making enumeration of the state space, and consequently the straightforward representation and
inference approaches, intractable.

Fortunately, probabilistic graphical models (PGMs, see Koller and Friedman (2009) for in-depth treat-
ment) have emerged as a powerful formalism for compactly representing high-dimensional distributions
and have been used successfully in a multitude of applications from computer vision (Li, 1995) to natural
language understanding (Blei et al., 2003) to modeling protein structure (Yanover et al., 2007) and many
others. Graphical models owe their success to two key features:

1. Intuitive interpretation. In graphical models, direct probabilistic dependencies between random
variables are encoded via edges of a graph, whereby the absence of an edge between two variables
means that those variables are conditionally independent given the rest of X. As a result, whenever
the problem domain can be described using local interactions (for example, for a model of the
Internet, by assuming only webpages that link to each other have directly dependent topics), such a
description is straightforward to map to a graphical model structure.
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2. Efficient inference algorithms. Although even the problem of approximate inference is provably
hard for the vast majority of compact PGMs (Cooper, 1990; Dagum and Luby, 1993), a variety
of approximate inference algorithms have been developed that often work well in practice (Pearl,
1988; Geman and Geman, 1984; Jordan et al., 1999). As a result, it is not necessary for practitioners
to become experts in probabilistic inference. Instead, usually once can simply pass the model
describing the problem domain to an off the shelf inference algorithm and obtain useful results.

While the approach of first, defining a PGM that captures all of the essential interactions of the prob-
lem domain in an easily interpretable way, and second, running a standard inference procedure to answer
probabilistic queries is undeniably convenient for the practitioners, often such an approach leads to sub-
optimal performance. In this thesis we identify two issues that often manifest themselves in practice.
First, too complex models are often chosen, which leads to excessive errors in inference results and high
computational cost of approximate inference. Second, standard inference algorithms lack a notion of the
importance of an unobserved variable to the end user, and have excessive computational cost in the pres-
ence of a large number of unobserved nuisance variables in the system. More generally, we claim the
following thesis statement:

By relaxing the requirement that a probabilistic graphical model structure closely re-
flects the interactions in the underlying application domain, and better exploiting the
information about query and evidence variables, it is possible to answer probabilistic
queries more accurately and efficiently than the state of the art approaches.

The main contributions of this thesis, discussed in more detail in section 1.2, are two novel approaches for
learning accurate tractable PGMs, and a novel inference approach that, by focusing computation on the
query variables at the expense of nuisance variables, significantly improves efficiency, especially test time
performance, without sacrificing the result accuracy. Before describing the contributions in more detail,
we review the issues with the typical way of applying PGMs that our approaches aim to resolve.

1.0.1 Tradeoffs in model design

The root of the model design problem lies in the need to trade off the accuracy that can be achieved by
using the model and the computational resources necessary to process the model. Somewhat counterin-
tuitively, the nature of the basic tradeoff is not simply “richer models are more accurate, but have higher
computational complexity”. Let us briefly review the impact of model complexity on both accuracy and
computational efficiency.

The eventual accuracy experienced by the end user of a graphical model is affected by two factors:
errors due to the simplified representation of the true distribution P (X) using a graphical model (repre-
sentation error) and the errors due to the approximate nature of the inference algorithms (inference error).
In general, simpler models with fewer direct dependencies yield larger representation errors, but more
accurate inference results. Complex models better reflect the properties of the problem domain and have
smaller representation error, but pose more difficult inference problems. The resulting tradeoff is show
schematically in Fig. 1.1.

Reaching the optimal tradeoff point in Fig. 1.1 is difficult in practice, because the two error sources possess
very different properties:

1. Representation error is straightforward to understand by thinking about causal dependencies in

2



model complexity

error
inference error

representation

error

typical complexity

choice in practice

optimal

complexity
total error

Figure 1.1: A qualitative illustration of a tradeoff between complexity of a probabilistic graphical model
and inference accuracy. Simpler models have low inference error, but do not approximate the true system
distribution very well. On the other hand, complex model can approximate a distribution of interest very
accurately, but high inference error does not allow one to realize this accuracy in practice. Often, overly
complex models are chosen in practice, because approximation error is easier to both understand and
affect for the practitioners.

the system or the strongest direct interactions. Moreover, representation error is also easy to af-
fect directly by adding edges to the model to capture more of the direct interactions between the
elements.

Consider Fig. 1.2, which shows the structure (i.e., direct dependencies) of two typical PGMs: for
labeling image segments with identities of the objects in the picture in Fig. 1.2a and for hypertext
classification in Fig. 1.2b. Both models have been constructed using straightforward pieces of
intuition: that adjacent segments tend to have correlated object identities for image segmentation
(a cow is often next to grass), and that webpages that link to each other tend to have correlated
topics (professors tend to link to webpages of their students). These simple pieces of intuition have
resulted in densely connected models, however, and it is counterintuitive that removing some of the
dependencies from the model can improve the model performance.

2. Inference, even approximate, is provably intractable in most graphical models. Therefore, inference
algorithms need to introduce approximations to achieve acceptable computational cost. The nature
of those approximations is specific to a concrete inference approach. As a result, inference error
is harder to understand and interpret, especially for a non-expert. Moreover, the limits in which
the inference error can be affected by adjusting parameters of an inference algorithm are also quite
narrow: the fundamental choices of the approximation are mostly made at the algorithm design
stage, not at parameter selection stage.

As a result, during the model design too much attention is often paid to optimizing the representation
error, as it is a more intuitive component of the total error: practitioners are reluctant to give up well-
understood benefits of a richer model for hard-to-characterize improvements in inference accuracy of a
simpler model.

The impact of model complexity on computational efficiency is more straightforward. The complexity of
exact inference grows extremely rapidly with the complexity of the model to the point of being infeasible
for most commonly used models, such as those in Fig. 1.2. Approximate inference is much more efficient.
However, for commonly used models even approximate inference is often not efficient enough. The main

3



(a) A graphical model for labeling image seg-
ments with the identities of corresponding ob-
jects. Every node corresponds to a random vari-
able. This picture is from Gould et al. (2008).

(b) The structure of a graphical model used by
Taskar et al. (2002) for hypertext documents
classification. Every node corresponds to a web-
page, every edge - to a hyperlink.

Figure 1.2: Connectivity patterns of typical graphical models. Both graphs above have a large number of
loops, making it necessary to use heuristic inference approaches without any quality guarantees.

problem with approximate inference is that not only does the cost of a single iteration grow with model
complexity, but also the number of iterations required for convergence grows. Moreover, while the cost
of single iteration grows in a predictable manner (linearly with the model size), the number of required
iterations can grow abruptly, and can be very different for two seemingly similar models. As a result,
existing approximate inference techniques are often too costly, especially during test time for applications
that are interactive or require near real-time results.

The issue of inference complexity is further exacerbated by the limits in theoretical understanding and
ability to predict the inference complexity given a model. Merely predicting whether belief propagation,
a popular approximate inference approach, will converge at all for a given model is a hard open problem,
with solutions only for special cases (Mooij and Kappen, 2007). The limits in understanding the total
computational cost of approximate inference lead practitioners to concentrating on the complexity of a
single iteration (notice the analogy with the two sources of approximation error discussed above). As a
result, the overall inference complexity is often underestimated.

In this thesis, we argue that by eliminating the requirement that the model be interpretable in terms of
the application domain, and instead learning simpler models that admit efficient exact inference, one can
not only obtain the same or better accuracy as the state of the art approaches involving approximate
inference, but also significantly reduce the computational requirements. We propose two novel approaches
for learning tractable model (chapters 2 and 3) and demonstrate their performance empirically on real-
world datasets.
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1.0.2 Inference in presence of nuisance variables

In general, the variables of the full model can be subdivided into three groups: query Q, evidence E and
nuisance N. At test time, the assignment to only E is known, and the user is interested in the conditional
distribution P (Q | E).However, the standard inference procedures (e.g., Pearl, 1988; Geman and Geman,
1984), only distinguish between known and unknown variables. As a result, not only does computing the
distribution of interest P (Q | E) involve implicit computation of P (Q,N | E), but also the conditionals
P (Q | E) and P (N | E) are computed with the same accuracy, thereby wasting computation on the
irrelevant information.

In chapter 4, we introduce an approximate inference approach that improves on the successful residual
belief propagation algorithm by focusing the computation on the query and only inferring the nuisance
conditional to the extent necessary for approximating the query conditional well. Unlike existing ap-
proaches, ours does not affect the accuracy of the inference results for the query at convergence, and as
we demonstrate empirically on large-scale real-life models, brings significant speedups over the state of
the art.

Although the three general topics of this thesis are quite distinct in terms of the technical approach, they all
share the focus on significantly improving the testing-time computational efficiency. Fast computations
during testing make it possible for a whole new class of applications that are either interactive or require
close to real time inference to benefit from the formalism of probabilistic graphical models and related
techniques. Note that the training time efficiency is not as crucial for many applications, because the model
can be trained in advance.

1.1 Probabilistic graphical models

To place the contributions of this thesis in context, here we review the formalism of probabilistic graphical
models, along with the key complexity results and their impact on the standard process of applying PGMs
in practice.

There are several different formulations of probabilistic graphical models, but they all share a key idea of
approximately representing a high-dimensional probability distribution as a product of low-dimensional
components:

P (X) =
1

Z

∏
ψα∈F

ψα(Xα), (1.2)

where1 the low-dimensional nonnegative components ψα are called factors of potentials and Z is the
normalization constant, also called a partition function. The set F of model factors induces a graphical
structure onX,whose properties determine the complexity of inference in the model. Generally, the graph
edges T link the variables of X that belong to the same factor ψα. Depending on the edges, there exist
directed and undirected graphical models:

1. Undirected graphical models. The most common instance of this class is the formalism of Markov
networks, where there is a node in the graph for every variable xi ∈ X, and an edge (i−j) ∈ T(F)
if and only if there exists a factor that depends both on xi and xj : ∃ψα ∈ F s.t. xi, xj ∈ Xα. An

1 Notation remark: throughout the document, we use small letters (x, y) to denote variables, capital letters (X,C) to denote
sets of variables, boldface (x,C) to denote assignments, and double-barred font (C,D) to denote sets of sets.
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advantage of Markov networks, besides their simplicity and versatility, is the fact that most of the
inference and learning complexity results are stated in terms of the Markov network graph structure,
making such models easier to analyze theoretically.

There are also alternative formalisms for undirected graphical models, which are somewhat more
specialized, but also have useful properties that Markov networks lack. We will introduce two such
formalisms, junction trees and factor graphs in the main body of this thesis, as required to describe
and analyze our learning and inference approaches.

2. Directed graphical models. The most common models of this class are Bayesian networks, where
there is a node for every variable of X and the directed edges are such that the resulting graph is
acyclic. Given a directed acyclic graph (DAG) over X, a Bayesian network defines a factorized
distribution as a product of conditionals:

P (X) =
∏
xi∈X

P (xi | Pa(xi)), (1.3)

where Pa(xi) is a set of parents of xi in the DAG defined by the directed edges T.

Observe that there are two key differences between the Bayesian network factorization (1.3) and the
general factorization (1.2). First, there is no normalization constant Z in (1.3) - implicitly, Z = 1.
Second, instead of arbitrary nonnegative factors ψα, Bayesian network factorization uses condi-
tional distributions. Efficient parameter learning via using conditional distributions as potentials,
along with the absence of a normalization constant, are attractive properties of Bayesian networks.
However, inference in general is no easier in Bayesian networks than in undirected models, and
keeping the graph with edges T acyclic may be problematic in some models, especially in relational
settings. As a result, neither directed nor undirected graphical model formulation can be said to be
uniformly better than the other.

All of the novel approaches described in this thesis operate with undirected graphical models. When nec-
essary to put our work in context, we will also discuss relevant existing results for directed models.

Because the factorized distributions (1.2) and (1.3) have fewer degrees of freedom (the number of indepen-
dent values of the factors) than the total number of assignments to X, it follows that not every distribution
P (X) can be represented exactly as a compact factorized model. To better understand the constraints that
the factorization (1.2) places on the set of distributions that can be represented exactly, it is useful to think
about the statistical dependencies encoded by the graphical model structure. For a Markov network with
variables X and edges T, denote MB(xi,T) = {xj | (i − j) ∈ T} the Markov blanket of xi. In other
words, the Markov blanket of a variable in a Markov network is simply the set of the immediate neighbors
of that variable in a graph. It follows that a variable is independent of all other variables given its Markov
blanket:
Theorem 1 (Hammersley and Clifford, 1971). For any distribution P (X) that factorizes as (1.2) with the
corresponding Markov network edges T, it holds that

∀xi ∈ X (xi ⊥ X \ (xi ∪MB(xi,T)) |MB(xi,T)) . (1.4)

Moreover, with some restrictions, the reverse also holds. Denote I(T) to be the set of conditional in-
dependence assertions (1.4) induced by the edges T. Analogously, for an arbitrary distribution P (X),
denote I(P ) to be the set of conditional independence assertions that hold for P (X). Then P (X) can be
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factorized according to the Markov network structure T whenever the graph structure does not introduce
additional independence assertions compared to P :
Theorem 2 (Hammersley and Clifford, 1971). For a positive distribution P (X) and a set of edges T
between the elements of X such that I(T) ⊆ I(P ), there exists a set of factors F such that P (X) =
1
Z

∏
ψα∈F ψα(Xα) and T(F) = T.

An analogous set of theorems connecting the form of factorization (1.3) with the set of conditional in-
dependence assertions for the factorized distribution P (X) also holds for the Bayesian networks, with
I(T) = ∪xi∈X(xi ⊥ NonDescendants(xi) | Pa(xi)).

Theorems 1 and 2 formalize the intuitive notion that edges in probabilistic graphical models encode direct
dependencies of the variables on each other, which is key to understanding the approximations that are
introduced by a given PGM structure T.

1.1.1 Key problems and complexity results

Having established the connection between the factorization (1.2) corresponding to a probabilistic graph-
ical model and the induced approximations in the form of conditional independence assertions, we now
review the basic problems that need to be solved in order to use a PGM in practice. A factorized distri-
bution (1.2) and the corresponding graphical model are only approximation tools, and the real-world data
D is not sampled from graphical models. Therefore, to successfully apply a PGM in a certain problem
domain, one needs to first identify a graphical model that approximates the underlying real-world distri-
bution accurately, and second, to be able to perform accurate inference in that model. In turn, identifying
an accurate graphical model is typically decomposed into structure learning, where one determines the
scopes Xα of the potentials ψα in (1.2), and parameter learning, where the actual values of factors ψα are
determined given the known scopes Xα. In this thesis, we restrict the attention to learning PGMs from the
fully observed data, where D is assumed to be a set of samples X from the true unknown distribution
PD(X), where the value of every xi ∈ X is known for every sample.

Next, we review the existing complexity results, discuss their implications for the typical workflow of
applying graphical models, and propose alternatives that eliminate some of the existing drawbacks.

Probabilistic inference

Inference is a fundamental problem in probabilistic graphical models that arises not only at test time,
but also often during parameter and structure learning. The basic operation of probabilistic inference is
marginalization:

P (Y ) =
∑

{xi1
,...,xim}∈X\Y

P (Y,xi1 , . . . ,xim),

where P (X) is a factorized distribution (1.2). It is assumed that the set of factors F is known, but the
value of the normalization constant Z is unknown. In general, even for compact models, not only is
exact inference NP-hard in general (Cooper, 1990), but even computing bounded approximations is NP-
hard (Dagum and Luby, 1993). However, there exists an exact inference algorithm, namely sum-product
(Shafer and Shenoy, 1990), with complexity exponential in the treewidth of the graph induced by the
model edges T(F). Treewidth (Robertson and Seymour, 1984) is the size of the largest clique in the
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triangulated graph defined by the edges T. It follows that for models with low treewidth exact inference
is tractable2.

The existence of an exact inference algorithm with complexity exponential only in graph treewidth does
not contradict the NP-hardness results for the general case, because even compact models with bounded-
degree graph can have large treewidth. For example, a 2D grid over variables X, where every variable is
directly connected to at most 4 others, has treewidth of

√
|X|, making exact inference in grid-structured

models intractable. In fact, most of the “naturally occurring” PGM structures have high treewidth.

Low-treewidth models are the most extensively studied class of tractable models, but there also other
classes, such as feature graphs (Gogate et al., 2010) and arithmetic circuits (Lowd and Domingos, 2008),
which allow for high treewidth and instead restrict the internal structure of the potentials ψα. To obtain
efficient exact inference, high-treewidth tractable models rely on exploiting context-specific independence
(Boutilier et al., 1996), whereby certain variable assignments X “disable” some of the dependencies for
the rest of the variables X \X that are in general present in the model. For example, in a car engine
diagnostic system, the variable “engine starts” is in general dependent on the variable “battery charge
level”, but if the variable “tank has gas” is false, then the engine will not start regardless of the battery
charge, making the two variables independent.

To summarize, even approximate inference in compact graphical models is intractable in general, unless
some extra properties, such as low treewidth or context-specific independence, hold for the factoriza-
tion (1.2). As a result, approximate inference algorithms with few guarantees on the result quality (Pearl,
1988; Geman and Geman, 1984; Jordan et al., 1999) are typically used in practice.

MAP inference

Often, the user is interested in inferring the most likely state of the system in question given the evidence.
This class of problems, called structured prediction problems, spans areas from optical character recogni-
tion (Kassel, 1995) to natural language processing (Taskar et al., 2004) to image segmentation (Ladicky
et al., 2009) and scene understanding in computer vision. In the context of probabilistic graphical models,
structured prediction problems give rise to the problem of maximum a posteriori (MAP) inference:

X∗ = arg max
X

P (X),

where P (X) is a factorized distribution (1.2). In general, similar to the marginalization problem, MAP
inference is NP-hard in general for compact PGMs (Shimony, 1994). Moreover, computing the MAP
assignment for a marginal P (Y ) for Y ⊂ X is NPPP-complete (Park, 2002). However, for important
special cases the MAP inference problem is tractable.

First, the graph structure T(F) of the graphical model for (1.2) can be exploited in a similar way to the
marginalization problem. Whenever exact marginalization is possible due to low treewidth of the graph
or context-specific independence, exact MAP assignment can be found using the max product algorithm
(essentially, dynamic programming), which replaces summations in the sum-product algorithm with max-
imizations (Pearl, 1988).

Second, for intractable PGMs, when (a) max-product algorithm converges and (b) a joint assignment
X∗ is found that is consistent with all the local max-marginals, the resulting X∗ can be shown to be a

2We will also say that a model is tractable if it admits tractable exact inference.
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strong local optimum (Weiss and Freeman, 2001a). The term strong here refers to the fact that any X ′

that differs from X∗ in only a few variable values (the number of the different variables depends on the
model) is guaranteed to have P (X ′) < P (X∗). Moreover, for convexified variations of max-product,
a joint assignment consistent with max-marginals at convergence can be shown to be globally optimal
(Wainwright et al., 2005). However, the max-product algorithm is not guaranteed to converge in general,
and in practice tends to have more brittle convergence properties than sum-product.

Finally, in the case of binary variables and submodular pairwise factors ψij(xi, xj) (which is an important
special case of PGMs, popular in e.g., computer vision), the MAP inference problem can be cast as a
graph cut problem (Kolmogorov and Zabih, 2004). As a result, the most probable assignment can be found
exactly and efficiently using any existing graph cut algorithm even for densely connected models (Boykov
and Kolmogorov, 2004). Importantly, the marginalization problem for such models remains intractable.
This mismatch in complexity of the two problems stems from the fact that computing the normalization
constant Z from (1.2) is only required for marginalization, but not for MAP inference. Still, even though
many models important in practice are covered by the exact graph cuts-based techniques, such approaches
are not universally applicable. Even restricting attention to pairwise interactions, many models do not
admit a graph cut MAP formulation.

We also notice that in practice one needs to choose carefully between MAP approaches and maximizing
one-dimensional marginals P (xi) of P (X), depending on the actual penalty function of the problem
domain. For example, in the OCR setting one can argue that it is better to measure accuracy by the
number of words that have been correctly decoded as opposed to the number of individual characters,
and therefore MAP decoding is the optimal answer. On the other hand, in image segmentation problems
(Shotton et al., 2006) the accuracy is typically measured by the total number of correctly labeled pixels,
not by how many full images have been labeled perfectly. In the applications where such Hamming
distance-like error measures are used, it is typically better to use the assignment that maximizes the one-
dimensional marginals P (xi), thereby returning to the marginalization problem.

Parameter learning

Given the model structure, it is desirable to find the parameters that result in the best approximation of the
true distribution PD(X) that generated the data D with the factorized distribution (1.2). With KL diver-
gence (Kullback and Leibler, 1951) as the measure of approximation quality, we need to minimize

KL(PD(X)||P ) =
∑
X

PD(X) log
PD(X)

P (X)
= −H(PD)−

∑
X

PD(X) logP (X),

where the first component is the entropy of the true distribution that does not depend on the model, and
the second component is the negative log-likelihood of the model. Because the true distribution PD(X)
cannot be observed directly, it is replaced with the empirical distribution PD (X) of the data, resulting in
the log-likelihood

LLH(P | D) =
∑
X

PD (X) logP (X) =
1

|D|
∑
X∈D

logP (X).

It follows that one needs to maximize log-likelihood of the model. Because of the finite number of
the datapoints, the empirical distribution PD (X) is only an approximation of the unknown underlying
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distribution from which the data is generated. Therefore, to prevent overfitting (i.e., learning the noise
in the data), a regularization term, which introduces a bias towards uniform potentials, is added to the
log-likelihood.

For Bayesian networks, maximizing the likelihood is achieved simply by plugging in the empirical condi-
tional probabilities PD (xi | Pa(xi)) , so the parameter learning problem is trivial. For undirected models,
however, there is no closed form expression for the optimal parameters. Moreover, even computing the
value of the likelihood itself requires inference in the model, which is typically intractable, as was dis-
cussed above. As we discuss in detail in chapter 3, if exact inference with the model is feasible, then
optimizing the log-likelihood is a convex optimization problem that can be solved very efficiently with
state of the art techniques such as L-BFGS (Liu and Nocedal, 1989), despite high dimensionality of the
parameters. Therefore, for low-treewidth and other tractable models efficient exact parameter learning is
possible. For some low-treewidth PGM formalisms, closed-form expressions for optimal parameters also
exist (c.f. chapter 2). There also exist closed-form expressions for approximately optimal parameters for
high-treewidth models (Abbeel et al., 2006), but the more dependencies not reflected by the PGM struc-
ture the true underlying distribution has, the worse is the approximation quality of such parametrization,
and in practice it is used rarely.

In general, for high-treewidth models there are few alternatives to optimizing log-likelihood, even though
computing the objective exactly is intractable. It follows that one needs to introduce approximations to
make the objective tractable. Two main types of approximations are possible. First, one can replace
the log-likelihood objective with a more tractable alternative, such as pseudolikelihood (Besag, 1974).
Pseudolikelihood is the sum of likelihoods of single variables conditioned on their respective Markov
blankets:

PLLH(P | D, w) =
∑
X∈D

∑
xi∈X

logP (xi |MB(xi),E, w), (1.5)

where MB(xi) denotes the values of all the variables of X that share a feature with xi. Second, one
can apply an approximate inference method to the model and use the results as if the inference was
exact. Pseudolikelihood objective is attractive because it is both tractable, and, for sufficiently expressive
models, in the large sample limit yields the same parameters as optimizing the log-likelihood (Gidas,
1988). However, the requirement of sufficient expressivity of the model is essential: it is required that
the model be able to represent the generating distribution PD exactly. Because graphical models used
in practice usually represent simplifications of the true underlying distribution, the requirement of the
sufficient expressive power of the model is often violated, invalidating the guarantee.

Using approximate, instead of exact, inference for computing the value and gradient of the log-likelihood
during parameter learning is problematic, because even approximate inference is NP-hard, and therefore
there are no guarantees on the accuracy of the computed objective, or on the quality of the resulting
parameters. Moreover, log-likelihood convexity may be violated with approximate inference, resulting in
convergence issues of the convex optimization techniques.

To summarize, just as with the problem of inference in probabilistic graphical models, with the problem
of parameter learning there exists a sharp contrast between tractable models, where efficient exact param-
eter learning is possible, and the general compact high-treewidth models, where one needs to resort to
approximations with little, if any, guarantees on the result quality.
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Structure learning

Learning the optimal structure of a factorized model (1.2) from finite data D has two conflicting objec-
tives. On the one hand, one needs to discover the direct dependencies that hold in the true distribution PD
to obtain a model that is expressive enough to approximate the true distribution well. On the other hand,
it is desirable to avoid spurious dependencies that exist in the empirical distribution PD (X) , but not in
the true generating distribution, because of the finite-sample noise. Spurious edges, and the corresponding
potentials introduced into the factorization (1.2), not only make the model more prone to overfitting during
the parameter learning stage, but also increase the computational complexity of inference in the model.
Maximizing the likelihood of the structure T favors including as many edges into the learned structure as
possible. In fact, a fully connected PGM can represent any distribution over X exactly, and therefore will
have the highest possible likelihood. Therefore, to prevent overfitting and overly complex models, one
needs to bias the learning process towards sparser models. There are two main methods of introducing
such a bias towards simplicity. First, one can explicitly restrict the space of models over which the likeli-
hood maximization is performed, for example, to low-treewidth models, or to graphs with a uniform bound
on the variable degree. Secondly, one can maximize over the space of all possible models, but introduce
a regularization term penalizing model complexity. In both cases, however, structure learning typically
contains intractable steps, and the approaches used in practice have few quality guarantees.

Learning optimal models over restricted space of structures is provably intractable for most settings. A
notable exception is the classical result of Chow and Liu (1968), which states that the most likely tree
structures can be learned efficiently in O(|X|2 log |X|) time. However, even extending the space of struc-
tures to polytrees (directed trees where variables are allowed to have more than one parent) makes learning
the most likely structure an NP-hard problem (Dasgupta, 1999). Learning most likely low-treewidth mod-
els is NP-complete (Karger and Srebro, 2001) for treewidth greater then 1, as is learning the structure of
general directed models (Chickering, 1996). However, graphical models with limited degree graphs can
be learned in the probably approximately correct (PAC) sense (Abbeel et al., 2006). Also, one can learn
in polynomial time low-treewidth structures which are within a constant factor of the log-likelihood of the
optimal structure (Karger and Srebro, 2001).

Explicitly regularizing the likelihood to favor simpler structures can in turn take two forms. First, one
can use a regularization term that penalizes the number of parameters in the model, such as BIC score
(Schwarz, 1978). Then, a local search is performed in the space of structures T to maximize the regularized
likelihood (e.g., Teyssier and Koller, 2005). Second, one can use sparsity-inducing prior for the model
parameters, such as an L1 penalty, and reduce the structure learning to (a) parameter learning in the full
model and (b) dropping the uniform factors from the model afterwards (e.g., Lee et al., 2006). Both
general approaches to structure regularization require inference to compute the objective. Therefore,
for high-treewidth models there are no guarantees on the quality of the resulting structure, because even
approximate inference is intractable. Notably, if inference were tractable, L1-regularized likelihood would
be possible to optimize exactly, because the corresponding optimization problem is convex. For local
search approaches, even with exact likelihood computation the resulting structure is only guaranteed to
be a local optimum in the space of possible structures. In practice, both structure learning techniques
based on local search, andL1-regularized parameter learning with approximate inference are quite popular
because of their moderate computational efficiency and good quality of the learned models in practice.
However, the fundamental limitations arising from intractability of inference lead to a lack of formal
quality guarantees.

To summarize, in most settings learning the optimal PGM structure is provably intractable. Moreover, the
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L1-regularized

parameter  learning

Data  D

High-treewidth structure T

High-treewidth probabilistic graphical model over X={Q,N,E}

High-treewidth
structure learning

Structure design
using

domain knowledge

Parameter learning
with approximate inference

Approximate inference:
instantiate E=E, marginalize out N

Query conditional P(Q|E)

(a) Typical approaches of applying probabilistic graphical models
involve high-treewidth structures. As a result, parameter learning
and inference are intractable and one needs to resort to algorithms
without quality guarantees. Different paths from top to bottom of
the diagram represent different complete approaches. For example,
learning the PGM parameters with a sparsity-inducing L1 regular-
ization can be replaced with a combination of separate structure
learning and parameter learning steps.

Data D

Low-treewidth structure T .

Low-treewidth PGM over X={Q,N,E}   .

Low-treewidth
structure learning

Parameter learning
with exact inference

Exact inference: instantiate E=E, 
marginalize out N

Query conditional P(Q|E)

(b) An alternative workflow
based on low-treewidth graphi-
cal models. Although the set of
available models is not as ex-
pressive as in the high-treewidth
case, parameter learning and
inference can be done exactly,
reducing the number of sources
of error to only one (structure
learning).

Figure 1.3: A comparison of standard high-treewidth graphical models workflows (a) and an analogous
process in the low-treewidth setting (b). Symbol ± denotes stages of computation where there are no
quality guarantees for the approaches that are used in practice. A check mark symbol X denotes the
stages where the computation can be performed exactly.

existing structure learning approaches that do posses quality guarantees in the finite sample case restrict the
model connectivity in advance (Chow and Liu, 1968; Karger and Srebro, 2001; Abbeel et al., 2006).

1.1.2 Typical use cases and directions for improvement

The overview of complexity of the different stages in working with high-treewidth probabilistic graphical
models is roughly summarized schematically in Fig. 1.3a. Typically, practitioners choose to use high
treewidth models, because of the following advantages:

1. Representational power. The set of compact high-treewidth models is more broad than that of
low-treewidth models. Therefore, high-treewidth models are likely to be able to approximate the
true underlying distribution of the system more accurately.

2. Computational benefits in structure learning. Maintaining low treewidth of the candidate struc-
tures during learning adds a significant burden either computationally, because even computing the
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treewidth of an arbitrary graph is NP-complete (Arnborg et al., 1987), or in terms of representation
and algorithm design, to guarantee that every candidate structure has low treewidth and does not
need explicit checking.

3. Straightforward use of domain knowledge. Sometimes, information about the direct dependen-
cies in the system in question is available. For example, in a plant monitoring scenario, the connec-
tivity of different subsystems of a plant is known, and it is highly desirable for the model structure
to reflect that information. In such cases, an expert may even design the structure of a model by
hand, according to the domain knowledge and without regard to the treewidth.

Also, high-treewidth structures arise naturally in relational models (Friedman et al., 1999; Richard-
son and Domingos, 2006; Taskar et al., 2002), where every edge corresponds to an instance of a
relation, such as friendship for social network modeling, and the connectivity of the model is then
determined by a social graph of the population in question.

4. Interpretability. Sometimes the structure of a PGM not only serves as an intermediate result of
computing the query conditional P (Q | E), but is of interest in its own right to the practitioner.
For example, the edges of a model learned from data may be used to select possible causal links
between different components of the system that need to be investigated (Friedman, 2004).

However, if computing the query conditional P (Q | E) is the only goal of applying a graphical model, as
is often the case, then some of the concerns above are irrelevant (interpretability and to some extent domain
knowledge issues). Moreover, as Fig. 1.3a indicates, even the advantages of high-treewidth models that
are directly related to the accuracy of answering the probabilistic query (representational power and extra
difficulties with learning low-treewidth models), are counterbalanced by intractability of the fundamental
problems on every step of the process and lack of quality guarantees for the involved algorithms.

Because the high-treewidth models are typically unable to realize the full potential of the representation
power due to inference difficulties, it is natural to attempt to achieve the same end results using simpler
models, where the decrease in the representative power is compensated for by the improvements in infer-
ence accuracy. This is exactly the approach we take in chapters 2 and 3 of this thesis. The key idea of
our alternative approach, shown schematically in Fig. 1.3b, is to restrict consideration to the models that
admit efficient exact inference. In particular, we restrict the models to have low treewidth. Let us review
the advantages of the low-treewidth workflow of Fig. 1.3b.

1. Exact computations on most of the steps of the pipeline. In contrast to Fig. 1.3a, in the low-
treewidth workflow of Fig. 1.3b the only source of approximation errors is the structure selection
stage. In this thesis, we argue that in many applications the advantages of the low-treewidth ap-
proach, namely exact inference and parameter learning, will compensate for the smaller expressive
power of the low-treewidth structures. In other words, we argue that while high-treewidth models
can potentially approximate the query conditional distribution more accurately than low-treewidth
models, the lack of algorithms to construct such an approximation and process it efficiently largely
prevents one from realizing that potential advantage.

2. Significantly higher test-time computational efficiency. Exact inference in low-treewidth graph-
ical models is much faster than approximate inference in high-treewidth models. Moreover, the
complexity of exact inference in low-treewidth models is highly predictable. As a result, low-
treewidth models are well-suited for applications that are sensitive to the response time. Because
the total complexity of approximate inference for high-treewidth models is often hard to predict
(e.g., Mooij and Kappen, 2007), high-treewidth are often inapplicable in latency-sensitive settings.
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Let us briefly illustrate some of the opportunities that models with low test-time latency open up. In
a web search setting, the user may wish to restrict the search to the webpages of a certain type, such
as homepages of university professors. A model exists that uses the link structure of the webpages to
improve the classification accuracy (Craven et al., 1998; Taskar et al., 2002) see also experimental
results in chapters 3 and 4 of this thesis). However, classifying every webpage in advance using
such a model on a full index of the internet stored by a search engine is problematic for two reasons.
First, the sheer scale of the web graph, with modern search engines having petabyte-sized web
indices (Peng and Dabek, 2010), makes inference extremely demanding computationally. Second,
search engines continuously change their web indices, with many popular pages being updated once
every several minutes (Peng and Dabek, 2010). As a result, the underlying model does not stay fixed
for a long enough time for the inference to finish. An alternative to pre-classifying every web page
in an index is to first retrieve the results without regard to the webpage type, and then, for the final
filtering, to use the model for type inference only on the much smaller subgraph corresponding to
those results. Such an on-demand approach is much less demanding computationally, but requires
the inference in the model to be guaranteed to run in a fraction of a second - otherwise the user will
have to wait too long for the search results.

In computer vision, applying graphical models to the problem of detecting objects in images yields
state of the art accuracy (Gould et al., 2008). However, for applications such as pedestrian detection
and terrain labeling for autonomous driving (Thrun et al., 2006; Enzweiler and Gavrila, 2011) it
is crucial to provide near-realtime results, which is beyond the capabilities of approaches using
approximate inference with high-treewidth models. In the experimental results of chapter 3, one
can see that traditional high-treewidth models take 1 second on average to perform inference. Our
approach building on low-treewidth models, on the other hand, takes only 0.02 seconds per image,
sufficient for real-time processing of video data, without sacrificing accuracy.

3. Lack of algorithm-specific adjustments. Approximate inference approaches for high-treewidth
models often involve algorithm-specific parameters that have to be adjusted for the algorithm to
work well on a given model. As result, the end user typically has to bear an additional burden of
configuring the approximate inference algorithm (setting the damping level for belief propagation
(Mooij and Kappen, 2005) or the umber of samples for Gibbs sampling (Geman and Geman, 1984)).
Because inference is typically required in the inner loop to compute model likelihood and gradient
during parameter learning, the tweaking of an approximate inference algorithm is required during
both training and testing. In contrast, exact inference in low-treewidth models does not require any
parameters. As a result, the only parameter the end-user needs to set with low-treewidth models is
the regularization constant during training (for example, using cross-validation).

In this thesis, we identify and explore two directions of improving the graphical model workflows of
Fig. 1.3, both for the case when the exact form of the model does not matter to the end user, and for the
case when a high-treewidth model is required because of domain-specific concerns:

1. For cases when the exact form of the model is not important to the practitioner, and the accuracy
and efficiency of computing the query conditional distribution P (Q | E) are the only criteria for
success, we argue that the low-treewidth approach of Fig. 1.3b is often a better alternative than the
high-treewidth approach of Fig. 1.3a. As the resulting accuracy of the low-treewidth is effectively
determined by the quality of a structure learned from data, we propose novel algorithms for effi-
ciently learning accurate low-treewidth models for both propositional and relational settings. We
demonstrate empirically that the resulting tractable models yield the same or better accuracy of the
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conditional query distribution P (Q | E) compared to the high-treewidth approaches.

2. For settings where a high-treewidth model is necessary, we propose an approach that allows one to
speed up marginalizing the nuisance unobserved variables N out of the conditional P (Q,N | E).
In many settings, it is often the case that only a small number of unobserved variables Q is of
interest to the user, but there is a large number of unobserved nuisance variables that have to be
marginalized out. For example, in an automated system for patient monitoring (Beinlich et al.,
1988), the only variable of direct interest may be whether the patient needs immediate attention of
the hospital staff. In a smart home setting (Pentney et al., 2006), the variable of interest may be
whether a certain room is likely to be occupied in the near future: to save energy, the smart home
would turn the air conditioning off in rooms that are not likely to be occupied soon.

Our approach exploits the observation that not every nuisance variable affects the query conditional
P (Q | E) to the same extent. It incrementally refines the estimate of the query conditional by
taking the strongest dependencies into account first, and only touches the nuisance variables to
the extent necessary for computing the query conditional. For example, in the extreme case that
(xi ⊥ Q | E), the nuisance variable xi would be ignored altogether. As a result, we demonstrate
significant speedups in the convergence of the estimate of the query conditional P (Q | E).

1.2 Thesis overview and contributions

Here, we outline the organization of the thesis and the main contributions.

Chapter 2. Here, we consider a problem of learning a low-treewidth probabilistic graphical model that
accurately approximates a given distribution P (X) given data D. We propose an novel polynomial time
algorithm with quality guaranteed for learning fixed-treewidth graphical models. More specifically, we
claim the following contributions:

1. A polynomial time algorithm for learning fixed-treewidth graphical models with PAC learnability
guarantees for distributions exactly representable with strongly connected maximal fixed-treewidth
graphical models, and graceful degradation guarantees for distributions that are only approximately
representable with fixed-treewidth graphical models.

2. A theoretical result that provides a polynomial time upper bound on conditional mutual information
of arbitrarily large sets of random variables, which not only forms a basis of our structure learning
algorithm, but can also be used by other constraint-based structure learning approaches.

3. A heuristic version of the algorithm mentioned above that forgoes the result quality guarantees of
the original version, but works much faster in practice.

4. Evaluation on real datasets showing that low-treewidth model have competitive approximation qual-
ity with high-treewidth models.

Chapter 2 is a significantly extended version of (Chechetka and Guestrin, 2007).

Chapter 3. In this chapter, we consider a problem of learning a low-treewidth probabilistic graphical
model that accurately approximates the query conditional P (Q | E). Compared to the setting of chapter 2,
here we have additional information about both the set of evidence variables E and its assignment at test
time E. This extra information lets us tailor the structure of low-treewidth models to a particular value
of the evidence variables at test time. We propose a novel algorithm for learning adaptive low-treewidth

15



conditional models with evidence-specific structure. The use of evidence-specific structure lets one expand
the expressive power of the model beyond the capabilities of any single tractable structure, and at the same
time retain the advantages of efficient exact inference and parameter learning. More specifically, we claim
the following contributions:

1. A novel way to exploit information about the values of variables which are observed at test time
to select the structure of discriminative probabilistic graphical models that is specific to the evi-
dence values at hand. The key advantage of our approach over existing work on learning tractable
evidence-specific models is the ability to guarantee low treewidth of the resulting models, and thus
tractability of exact inference, not only in a propositional, but also in a relational setting.

2. A general framework that allows one to leverage the existing work on learning the structure of
propositional tractable models and low-dimensional conditional density estimation to construct al-
gorithms for learning discriminative models with evidence-specific structure.

3. An extension of the general framework for learning discriminative models with evidence-specific
structure to the relational setting. Importantly, with our generalization, one can still use propo-
sitional algorithms for structure learning and low-dimensional conditional density estimation as
building blocks.

4. An empirical evaluation demonstrating that in the relational setting our approach has equal or better
accuracy than the state of the art algorithms for densely connected models, and at the same time is
much more efficient computationally.

Chapter 3 is an extended version of (Chechetka and Guestrin, 2010b).

Chapter 4. Here, we consider the problem of speeding up the convergence of a particular approximate
inference algorithm, residual belief propagation (Elidan et al., 2006), for the query conditional P (Q | E)
in the presence of a large number of nuisance variables. In belief propagation, a belief (current approx-
imation of a single-variable marginal) is maintained for every variable xi ∈ X, and beliefs are updated
iteratively depending on neighboring beliefs, according to local update rules. We analyze theoretically
the impact that any given nuisance variable has on the query beliefs, and propose a belief update sched-
ule that prioritizes updates according to their estimated eventual impact on the query, leading to faster
convergence. More specifically, we claim the following contributions:

1. A principled measure of importance of belief for an arbitrary variable xi with respect to a given
query, which can be computed efficiently and characterizes the magnitude of eventual change in
query beliefs per unit change of the belief for xi.

2. A general framework of importance-weighted residual belief propagation that allows one to signif-
icantly speed up convergence for query variables by focusing computation on the more important
beliefs. Unlike the previous approaches, ours does not involve any simplification of the original
graphical model, and thus does not change the eventual approximation result for P (Q | E).

3. An empirical evaluation demonstrating significant speedups for our approach compared to a state
of the art existing variant of belief propagation on real-life large-scale models.

Chapter 4 is an extended version of (Chechetka and Guestrin, 2010a).
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The scope of this thesis

This thesis does not attempt to propose a single unified approach to using probabilistic graphical models
that would be optimal for every setting. The variety of possible applications, with the corresponding
requirements and available resources, make it extremely difficult, if not impossible, to come up with such
a framework. Indeed, we present here both approaches that deliberately construct low-treewidth models,
aiming to exploit exact parameter learning and inference, and a family of approaches designed to speed
up inference in high-treewidth models. We argue that for each of the approaches, there are circumstances
where it makes sense to apply that particular algorithm.

Rather than aiming for a unifying framework, we attempt here to shed light on some of the inherent
tradeoffs of graphical models, which are often forgotten, be it because of the established habits in a
sub-community, the wide applicability of existing generic approaches, the desire to have an intuitive inter-
pretation of the model, or the lack of suitable alternatives. Our results demonstrate that if one is conscious
of (a) those tradeoffs, such as inference error versus representation power of a model, and (b) of the end
goals of applying the model, then one can design approaches that significantly improve performance over
the generic state of the art algorithms.
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Part I

Low-Treewidth Graphical Models
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Chapter 2

Learning Generative Low-Treewidth
Graphical Models with Quality
Guarantees

In this chapter, we address a fundamental problem of learning the structure of tractable (low-treewidth)
probabilistic graphical models that accurately approximate the distribution P (X). In this problem of gen-
erative structure learning, it is assumed that the evidence and query sets E and Q are not known during
learning. The lack of commitment to any given query-evidence split provides an important advantage:
from the definition of conditional probability (1.1), the same low-treewidth generative model can be used
to approximate a conditional distribution P (Q | E) for an arbitrary split of X into Q and E at test time
without re-learning.

The ability to decide on the particular way to split the variables into query and evidence is important in
many applications. For example, in sensor networks, which can be used to monitor environmental pa-
rameters for the purposes of climate research or air conditioning and lighting control in a smart building
(Mainwaring et al., 2002; Pottie and Kaiser, 2000), nodes often fail in an unpredictable manner and com-
munication errors lead to some of the sensor measurements being lost. To maintain an accurate estimate of
the state of the complete deployment area, one needs to recover the most likely values of the missing mea-
surements (query) conditioned on the measurements of the remaining nodes (evidence), which is makes
it a natural domain for applying probabilistic graphical models (Paskin and Guestrin, 2004). Because the
failures of the sensor nodes are impossible to predict in advance, it is important for the model to be able
to accommodate any possible query-evidence split at test time.

In system diagnosis applications, such as troubleshooting printer failures (Breese and Heckerman, 1996),
even though the set of variables that can in principle be measured directly is known in advance, the
measurements are costly in terms of time, user workload, or other resources. Therefore, a model of the
system needs to be able to handle an arbitrary set of evidence E and both infer the likely state of the
unknown variables, and, based on the known variables, to recommend the most useful further measure-
ments (Krause and Guestrin, 2005). Similarly to the sensor network setting, here it is infeasible to learn a
separate model for every possible combination of known and unknown variable sets, and a single accurate
model is needed.

Generative model learning is not always the optimal approach. When the evidence set E is known in
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advance, one can exploit this extra knowledge to learn a discriminative model that directly approximates
the conditional distribution P (Q | E) an is typically more accurate (c.f. chapter 3) of this thesis. However,
in chapter 3 we also show that a generative structure learning approach can be used as a building block for
discriminative learning. To summarize, an approach for learning high-quality low-treewidth models in the
generative setting is useful both directly in applications and as a basis for discriminative models.

Before proceeding to the algorithmic aspects of our structure learning approach, we review a PGM formal-
ism, namely junction trees, that is especially suited for representing low-treewidth models. This special
formalism is needed, because for general graphs the treewidth is intractable to even compute exactly
(Arnborg et al., 1987). Junction trees serve as a more restricted fundamental data structure of our ap-
proach. Next, we describe the main theoretical result (Lemma 16) that underlies the quality guarantees
of our approach, and the structure learning algorithm itself (Alg. 2.6) and its quality guarantees. Ours is
the first algorithm to be able to probably approximately correctly (PAC, Valiant, 1984) learn a subset of
low-treewidth distributions. Next, we describe the heuristics and efficiency improvements that are cru-
cial for making the baseline algorithm practical. Finally, we show empirically on real-life datasets that
our algorithm is able to learn models of better or equal quality than other low-treewidth approaches and
competitive with the high treewidth methods.

2.1 Junction trees: bounded treewidth graphical models

In this section, we review junction trees (for details, see Cowell et al. 2003) and discuss the quality of
approximation of distributions by junction trees. We review two alternative definitions of junction trees:
the more commonly used one of Jensen and Jensen (1994), and an alternative based on the definition
of Almond and Kong (1991). The representative power of the two definitions is the same, and mutual
conversion is simple. We argue that the latter is better suited for structure learning, because it is less
prone to the problem of having two different structures that represent the same family of distributions and
thus, from the perspective of distribution representation, are indistinguishable. In particular, for maximal
Almond-Kong junction trees, no two structures represent the same family of distributions.

2.1.1 Junction trees of Jensen and Jensen

Let C = {C1, . . . , Cm} be a collection of subsets of X . Elements of C are called cliques. Let T be a set
of edges connecting pairs of cliques such that (T,C) is a tree.
Definition 3. Tree (T,C) is a Jensen and Jensen junction tree if and only if it satisfies the running
intersection property (RIP): ∀Ci, Cj ∈ C and ∀Ck on the (unique) simple path between Ci and Cj , it
holds that (Ci ∩ Cj) ⊆ Ck.

For an edge (Ci − Cj) ∈ T, the set Sij ≡ Ci ∩ Cj is called the separator. The size of a largest clique in
a junction tree minus one is called the treewidth of that tree. For example, in a junction tree in Fig. 2.1a,
variable x1 is contained in both cliques C3 and C5, so it has to be contained in clique C2, because C2 is
on the unique simple path between C3 and C5. The largest clique in Fig. 2.1a has size 3, so the treewidth
of that junction tree is 2.

A distribution P (X) is representable using junction tree (T,C) if for every separator Sij , instantiat-
ing all variables of Sij renders the variables on different sides of Sij independent. Denote the fact that
A is independent of B given S by (A ⊥ B | S). Let CCj→Ci be cliques that can be reached from
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(a) Example of a Jensen and
Jensen junction tree. Rounded
rectangles are cliques, separa-
tors are marked on the edges.
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(b) A Jensen and Jensen junc-
tion tree inducing the same fac-
torization as that in Fig. 2.1a.
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(c) An Almond-Kong junction
tree inducing the same fac-
torization as junction trees in
Fig. 2.1a and 2.1b. Rounded
rectangles are cliques, regular
rectangles are separators.

Figure 2.1: Examples of junction trees.

Ci in (T,C) without using edge (Ci − Cj). In particular, Ci ∈ CCj→Ci and Cj 6∈ CCj→Ci . De-
note XCj→Ci to be the set of variables that are covered by CCj→Ci , but are not in the separator Sij :

XCj→Ci ≡
(⋃

C∈CCj→Ci
C
)
\ Sij .

For example, in Fig. 2.1a, S12 = {x1, x5}, X2→1 = {x4, x6}, X1→2 = {x2, x3, x7}.
Definition 4. P (X) factors according to junction tree (T,C) if and only if for every edge (Ci−Cj) ∈ T,
it holds that

(
XCj→Ci ⊥ XCi→Cj | Sij

)
.

Let us define a projection P(T,C) of an arbitrary distribution P (X) on a junction tree (T,C) as

P(T,C)(X) =

∏
C∈C P (C)∏

(Ci−Cj)∈T P (Sij)
. (2.1)

If P (X) factors according to (T,C), the projection P(T,C) is equal to P itself. The projection expression
(2.1) is the key element of the representation of probability distributions using junction trees: if two
junction trees have the same projection expression, then a distribution P (X) will factor according to one
of them if and only if it factors according to the other. Thus there would be no reason to prefer one of
those two structures to the other, a troubling ambiguity for structure learning. Unfortunately, for junction
trees of Jensen and Jensen this ambiguity is quite common: for every junction tree (T,C) that has at least
two edges associated with the same separator, there exists at least one other junction tree that has the same
projection expression as (T,C). For example, in Fig. 2.1a edges C1−C2 and C2−C5 are associated with
the same separator: {x1, x5}. The alternative junction tree in Fig. 2.1b has the same projection as that in
Fig. 2.1a, but a different graphical structure. To remedy such ambiguities, although not completely, we
turn to an alternative definition of junction trees given by Almond and Kong (1991).
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2.1.2 Almond-Kong junction trees

The main difference between the definition of Jensen and Jensen and that of Almond and Kong is that in
the latter the separators are first-class objects. Let C = {C1, . . . , Cm},S = {S1, . . . , Ss} be collections
of subsets of X . As before, Ci are called cliques, Sj – separators. Let (T,C,S) be a tree with edges T
and cliques and separators as nodes. Following Almond and Kong (1991), define
Definition 5. Tree (T,C,S) is an Almond-Kong junction tree with unique nodes (AKU junction tree) iff

1. Every edge in T connects a clique C ∈ C to a separator S ∈ S such that S ⊂ C.

2. The running intersection property is satisfied: ∀Ci, Cj ∈ C and ∀Ck, Sm on the (unique) simple
path between Ci and Cj , it holds that (Ci ∩ Cj) ⊆ Ck and (Ci ∩ Cj) ⊆ Sm.

3. No separator S ∈ S is a leaf in (T,C,S).

4. Every node of (T,C,S) corresponds to a unique subset1 of X .

Analogously to Def. 4, we can define what it means for a distribution P (X) to factor according to an
AKU junction tree:
Definition 6. P (X) factors according to an AKU junction tree (T,C, S) iff for every edge (C−S) ∈ T
connecting a clique C ∈ C and separator S ∈ S it holds that2 (XC→S ⊥ XS→C | S).

For a separator S from a junction tree (T,C, S), denote dS to be the degree of node S (that is, the number
of cliques that are neighbors of S in the graph). Similarly to the case of Jensen and Jensen junction trees,
we can define the projection P(T,C,S) of any distribution P (X) on (T,C,S) as

P(T,C,S)(X) =

∏
C∈C P (C)∏

S∈S P (S)dS−1
. (2.2)

Lemma 7. A distribution P (X) factors according to (T,C, S) if and only if P(T,C,S)(X) = P (X).

(The proofs of all the lemmas, propositions and theorems of this chapter are given in the Appendix A.2.)
Lemma 8. Let P((T,C,S)) to be the set of all distributions that factorize according to (T,C, S). Then for
any P (X), the projection P(T,C,S)(X) minimizes the KL divergence KL(P ||P ′) for P ′ ∈ P((T,C,S)) :

KL(P ||P(T,C,S)) = min
P ′∈P((T,C,S))

KL(P ||P ′)

We see that the properties of the two different formulations of junction trees are very similar, and indeed
the two definition are equivalent in the following sense:
Lemma 9. Whenever a Jensen and Jensen junction tree (T,C) exists, a AKU junction tree (T,C, S) with
the same treewidth as (T,C) and the same projection expression exists, and vice-versa.

1Although Almond and Kong (1991) did not have this uniqueness requirement, they have shown that for every junction tree
satisfying parts 1–3 of Def. 5, there exists an AKU junction tree with the same projection expression. Therefore, the uniqueness
requirement does not restrict expressive power.

2Notice that the independencies in Def. 6 are of the form “if we remove the variables of S from the graph, then the variables
of every resulting connected component XS→C are conditionally independent of all other variables given S” as opposed to a
weaker statement “all connected components are pairwise conditionally independent”. For example, in Fig. 2.1c it holds that
(x4, x6 ⊥ x2, x3, x7 | x1, x5), not just (x4, x6 ⊥ x3 | x1, x5) and (x4, x6 ⊥ x2, x7 | x1, x5).

In general, pairwise independence does not imply joint independence: for example, consider two independent uniformly
distributed binary variables {x1, x2} and x3 ≡ XOR(x1, x2). Then every two variables of the set {x1, x2, x3} are independent,
but (x1 6⊥ x2x3).
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The drawback of Jensen and Jensen junction trees is that multiple trees may correspond to the same
projection. Although different AKU junction trees, in general, may also have the same projection, we can
avoid the ambiguity by restricting ourselves to the subclass of maximal junction trees:
Definition 10. A junction tree (T,C,S) of treewidth k is called maximal iff every clique C ∈ C has size
|C| = k + 1, and every separator S ∈ S has size |S| = k.

Every maximal junction tree induces a unique projection:
Theorem 11. If two maximal AKU junction trees (T1,C1,S1) and (T2,C2,S2) of the same treewidth and
over the same variables X are different, then there exists a distribution P (X) that factors according to
(T1,C1, S1), but not to (T2,C2,S2).

In fact, one can show that if two maximal AKU junction trees are different, then almost all (in the measure-
theoretic sense) distributions that factor according to one of the junction trees do not factor according to
the other. This uniqueness property will be useful in the theoretical guarantees for our structure learn-
ing algorithms. Intuitively, we will estimate a set of properties of the distribution in question, and the
uniqueness property of Thm. 11 helps prove that those properties match a single structure, so there is
no danger of trying to construct a junction tree whose properties are a mix of properties of two different
structures.

2.1.3 Approximating distributions with junction trees

In practice, conditional independence is often too strong a notion: in real-life data the variables are rarely
exactly conditionally independent, especially when the conditioning set is small. However, often the
variables are almost conditionally independent (in other words, only weakly conditionally correlated)
and the probability distribution can be well approximated by a graphical model. It is desirable then to
extend the applicability and analysis of structure learning algorithms to such cases. A natural relaxation
of the notion of conditional independence is to require sets of variables to have low conditional mutual
information I(·, · | ·). Denote byH(A) the entropy ofA andH(A|S) ≡ H(AS)−H(S) the conditional
entropy of A given S. Then by definition

I (A,B | S) ≡ H(A | S)−H(A | BS) ≥ 0. (2.3)

Conditional mutual information is always nonnegative, and zero if an only if (A ⊥ B | S). Intuitively,
I (A,B | S) shows how much new information about A can one extract from B if S is already known.
Using the low mutual information requirement instead of conditional independence, it is straightforward
to relax the definition of a distribution factoring according to a JT:
Definition 12. (T,C,S) is an AKU ε-junction tree for P (X) iff for every edge (C −S) ∈ T connecting
a clique C and separator S it holds that I (XC→S , XS→C | S) ≤ ε.
Definition 13. If there exists an AKU ε-junction tree (T,C,S) of treewidth at most k for P (X), we will
say that P is k-JT ε-representable.

One can guarantee, in terms of Kullback-Leibler divergence, the quality of approximation of P by a
projection of P on its ε-junction tree:
Lemma 14. If (T,C,S) is an AKU ε-junction tree for P (X), then KL(P, P(T,C,S)) ≤ nε.

The bound of Lemma 14 means that if we have an AKU ε-junction tree for P (X), then instead of per-
forming inference on P , which is intractable in general, we can use P(T,C,S) that both approximates P
well and admits tractable exact inference.
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Algorithm 2.1: Naı̈ve approach to structure learning
Input: X , conditional mutual information oracle I (·, · | ·), treewidth k, threshold δ

1 L← ∅ // L is a set of “useful components”
2 for every S ⊂ X s.t. |S| = k do
3 for every Q ⊂ X-S do
4 if I (Q,X-QS | S) ≤ δ then
5 add (S,Q) to L

6 return FindConsistentTree(L)

In the remainder of the chapter, we will only consider AKU junction trees and drop the AKU prefix for
brevity.

2.2 Structure learning

In this chapter, we address the following problem: given data, such as multiple temperature readings from
sensors in a sensor network, we treat each datapoint as an instantiation X of the random variables X and
seek to find a good tractable approximation of P (X). Specifically, we aim to find a ε̂-junction tree of
treewidth k for P with ε̂ as small as possible. Note that the maximal treewidth k is considered to be a
constant and not a part of problem input. The complexity of our approach is exponential in k. In practice,
k � n.

The majority of existing approaches to structure learning belong to one of the two broad categories.3

Score-based methods (for example, Teyssier and Koller, 2005; Choi et al., 2005; Singh and Moore, 2005)
assign a measure of quality to every structure and try to find the structure with maximal quality. Usually the
quality measure is some form of regularized likelihood. Exact maximization of the score is NP-complete,
so, as a rule, these algorithms use local search over the structures and can only find a local optimum.
Constraint-based algorithms (for example, Spirtes et al., 2001; Narasimhan and Bilmes, 2004) use hy-
pothesis testing to enumerate the (approximate) conditional independencies of the underlying distribution.
Constraint-based approaches then try to find a structure consistent with those independencies. Because
the data is finite, the independencies recovered by hypothesis testing are usually different from the true
ones. Thus most of the constraint-based approaches only have quality guarantees in the limit of infinite
data. Also, most constraint-based algorithms need to test whether (A ⊥ B | S) is true for sets A,B, S
such that |A|+ |B|+ |S| = Θ(n). The tests used to decide conditional independence with fixed accuracy
have complexity exponential in |A| + |B| + |S|, so most constraint-based approaches have complexity
that is exponential in n. In contrast, our algorithm, which is also constraint-based, has polynomial in n
complexity, as well as quality guarantees for the finite data case.
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2.2.1 Constraint-based structure learning

Consider Alg. 2.1, a general naı̈ve constraint-based approach to learning junction trees of treewidth k. For
simplicity, let us start with a strict and unrealistic assumption: assume to have an oracle I (·, · | ·) that
can compute the mutual information I (A,B | S) exactly for any disjoint subsets A,B, S ⊂ X . In Sec-
tion 2.2.6, we will replace this unrealistic oracle with estimation of mutual information from data.

Because the value of ε for which an ε-junction tree for a given distribution P (X) exists is in general not
known, Alg. 2.1 takes a parameter δ ≥ 0 and aims to find a δ-junction tree. Recall that for a δ-junction
tree (T,C,S), for every separator S ∈ S and any clique C ∈ C that is directly connected to S it holds
that

I (XC→S , XS→C | S) ≤ δ. (2.4)

Using the oracle I and observing that XC→S , XS→C and S are mutually disjoint and cover all of X, one
could exhaustively evaluate for every possible pair of sets (S,Q) whether the necessary requirement (2.4)
holds, that is whether (S,Q) can play a role of a pair (S,XS→C) in some δ-junction tree (c.f. lines 3–4
of Alg. 2.1). Since we are only concerned with maximal junction trees of treewidth k, the size of S has
to be |S| = k (line 2). Every pair (S,Q) such that4 I(Q,X-QS | S) ≤ δ would be recorded into a list L
(line 5). Then every δ-junction tree for P (X) will be consistent with L in the following sense:
Definition 15. A junction tree (T,C,S) is consistent with a component list L if and only if for every
separator S ∈ S and clique C ∈ C such that S and C are connected: (S − C) ∈ T, it holds that
(S,XS→C) ∈ L.

Because L consists of pairs (S,Q) such that I (Q,X-QS | S) ≤ δ, any junction tree consistent with L is
by definition an δ-junction tree for P (X). Therefore, it is sufficient to set δ = ε and find a junction tree
consistent with the resulting L, which will then be an ε-junction tree for P .

Let us denote FindConsistentTree a procedure that takes L and outputs a junction tree consistent with L (or
a failure to find one). Such a procedure could be implemented, for example, using constraint satisfaction.
We provide a concrete form of FindConsistentTree in Section 2.2.4.

Unfortunately, using Alg. 2.1 directly is impractical because its complexity is exponential in the total
number of variables n. To make the approach outlined in Alg. 2.1 tractable, one needs to address the
following problems:

1. For every candidate separator S, there are 2n−k possible subsets Q ⊆ X-S . Thus, for every candi-
date separator S, Alg. 2.1 requiresO(2n) mutual information computations (lines 3–4). (Addressed
in Section 2.2.3).

2. Every call to the mutual information oracle on line 4 of Alg. 2.1 involves n variables. In general,
the best known way to compute mutual information with fixed accuracy takes time exponential in
the number of variables. (Addressed in Section 2.2.2).

3. A concrete efficient form of FindConsistentTree is needed. (Addressed in Section 2.2.4).

In the rest of this section, we address all of the above problems. Then, in Section 2.2.6, we replace the
exact I (·, · | ·) oracle with estimation of mutual information from data. Together, our solutions form a
polynomial-time structure learning algorithm with quality guarantees.

3This paragraph contains the minimal information necessary to put our work in context. We defer the detailed discussion of
the related work (Section 2.5) until after the presentation of our approach.

4Notation note: for any sets A,B,C we will denote A \ (B ∪ C) as A-BC to lighten the notation.
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A X-AY

I(A, X-AY | Y)=??

W ∩ A
W ∩ X-AY

Figure 2.2: Illustration to the statement of Lemma 16. To upper-bound the conditional mutual information
between arbitrarily large sets A and X-AY given Y, one only needs to compute the mutual information
between the fixed-sized subsets such as W ∩A and W ∩X-AY .

2.2.2 Global independence assertions from local tests

Testing for (approximate) conditional independence, which can be cast as estimating conditional mutual
information from data, is a crucial component of most constraint-based structure learning algorithms
(Narasimhan and Bilmes, 2004; Spirtes et al., 2001). Similarly to Alg. 2.1, constraint-based approaches
often need estimates of form I (A,B | S) for sets A, B and S of total size Θ(n). Unfortunately, the
best known way of computing mutual information, as well as estimating I from data with fixed accuracy,
has time and sample complexity exponential in |A| + |B| + |S|. Previous work has not addressed this
problem. In particular, the approach of Narasimhan and Bilmes (2004) has exponential complexity, in
general, because it needs to estimate I for sets of size Θ(n).

Fortunately, our first new result (Lemma 16) shows that it is possible to upper bound the conditional mu-
tual information of two arbitrarily large sets A,X-AY (see Fig. 2.2 for an illustration) given a small
set Y, by only computing conditional mutual information for fixed-sized subsets of the large sets in
question. For example, in Fig. 2.2 one wold only need to compute mutual information values of form
I (W ∩A,W ∩X-AY | Y ) for small setsW instead of computing I (A,X-AY | Y ) directly. The fact that
we only need to look at fixed-sized subsets reduces the complexity from exponential in |X| to polynomial.
The following lemma, stating the formal result, is not only the foundation of our structure learning ap-
proach, but is also applicable more broadly, to any setting where an upper bound on mutual information is
needed:
Lemma 16. Let P (X) be a k-JT ε-representable distribution. Let Y ⊂ X , A ⊂ X-Y . If

∀W ⊆ X-Y s.t. |W | ≤ k + 1, it holds that I(A ∩W,X-AY ∩W | Y ) ≤ δ,

then
I(A,X-AY | Y ) ≤ n(ε+ δ).

The tightness of the upper bound on the conditional mutual information depends, through the value of ε
for which P (X) is k-JT ε-representable, on how well the distribution P can be approximated by a junction
tree of treewidth k.However, it is important to notice that applying Lemma 16 does not require knowledge
of any ε-JT for P (X), and no relationship of the conditioning set Y and elements of an (unknown) ε-JT
for P (X) is needed. Moreover, the size of the set Y on which one conditions does not depend on the
treewidth k of the true ε-junction tree (T,C, S) for P (X).Although in the rest of the chapter we will apply
Lemma 16 to sets Y of size k in an attempt to recover the “true” structure, one just as well use this upper
bound for smaller or larger candidate separators Y in alternative approaches to structure learning.

We can use Lemma 16 to bound I(A,X-AY | Y ) from above using O
(
n
k+1

)
= O(nk+1) calls to the

mutual information oracle. Each call will involve at most |Y |+k+1 variables. For discrete variables with
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cardinality r, the total complexity is O
(
nk+1r|Y |+k+1

)
. In Alg. 2.1, candidate separators S play the role

of Y , so |Y | = k. Replacing the exact computation of I (A,X-AS | S) with the upper bound of Lemma 16,
we reduce the complexity of every call on line 4 from O (rn) , exponential in n, to O

(
nk+1r2k+1

)
,

polynomial in n.

One can use Lemma 16 not only to discover weak conditional dependencies, but also to bound the quality
of approximation of P (X) by a projection on any junction tree (T,C, S):
Corollary 17. If for every separator S and clique C of a junction tree (T,C,S) such that (S − C) ∈ T,
the conditions of Lemma 16 hold with Y = S and A = XS→C , then (T,C, S) is a n(ε+ δ)-junction tree
for P (X).

2.2.3 Partitioning algorithm for weak conditional independencies

Now that we have an efficient upper bound for conditional mutual information, let us turn to reducing
the number of calls to this bound in Alg. 2.1 from exponential (2n−k for every candidate separator S) to
polynomial. For every S, Alg. 2.1 finds all subsets Q ⊂ X-S such that

I (Q,X-QS | S) ≤ ε. (2.5)

For every S there may be, in general, exponentially many such subsets. For example, if every variable
x ∈ X-S is conditionally independent of all other variables, that is, (x ⊥ X-Sx | S), then every Q ⊂
X-S satisfies property (2.5). The fact that even enumerating all possible “good” subsets may require
exponential time suggests that it is necessary to relax the requirements of the problem to get a tractable
algorithm. We will use the following relaxation: instead of looking for all Q ⊂ X-S satisfying (2.5), look
for one partitioning QS of X-S such that

• Elements of QS do not intersect: ∀Qi, Qj ∈ QS s.t. i 6= j : Qi ∩Qj = ∅.

• QS covers all of X-S : ∪Q∈QSQ = X-S .

• ∀Q ∈ QS , it holds that I (Q,X-QS | S) ≤ ε̂, where ε̂ is some function of ε (the concrete form will
be provided shortly).

Narasimhan and Bilmes (2004) considered the same relaxation and presented a solution that relies on
the existence of an efficient approximation of oracle I (·, · | ·) (as opposed to an efficient upper bound
that we provide). Their key observation was that the function FS(Q) ≡ I (Q,X-QS | S) is symmetric
submodular: FS(A) = FS(X-SA) and FS(A) + FS(B) ≥ FS(A ∪ B) + FS(A ∩ B). A symmetric
submodular function of n arguments can be minimized using an algorithm by Queyranne (1998) at a cost
of O(n3) function evaluations. Starting with all variables X-S being in the same partition (QS = {X-S}),
Narasimhan and Bilmes (2004) combine Queyranne’s algorithm with divide-and-conquer approach to
iteratively refine QS . Unfortunately, their algorithm requires evaluations of mutual information for sets
of size Θ(n). The best known way to estimate mutual information with fixed accuracy has complexity
exponential in n (for example, see Höffgen, 1993). Therefore, algorithm of Narasimhan and Bilmes
(2004), in general, has complexity exponential in n.

“Low-Treewidth Conditional Independencies” partitioning algorithm

Our approach (Alg. 2.2), called LTCI for “Low-Treewidth Conditional Independencies”, in contrast to that
of Narasimhan and Bilmes (2004), has polynomial complexity, provided that the following two quantities
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Algorithm 2.2: LTCI: find Conditional Independencies in Low-Treewidth distributions
Input: X , candidate separator S, oracle I (·, · | ·), threshold δ, max set size q

1 QS ← ∪x∈X-S{x} // QS is a set of singletons
// In the loop below, choose sets W in the order of increasing size

2 for W ⊂ X-S s.t. |W | ≤ q AND @Q ∈ QS s.t. W ⊆ Q do
3 if minU⊂W I (U,W-U | S) > δ // Find min with Queyranne’s algorithm
4 then
5 merge all Qi ∈ QS , s.t. Qi ∩W 6= ∅

6 return QS

are O(1): size of separator S in question and the maximum size q of subsets of X-S that LTCI considers.
In our structure learning algorithm, which uses Alg. 2.2 as a subroutine, these requirements hold: |S| = k
and q = k + 2.

To gain intuition for LTCI, suppose there exists a ε-junction tree for P (X), such that S is a separator and
cliques C1, . . . , CdS are directly connected to S. Then the sets XS→C1 , . . . , XS→CdS partition X-S . For
example, in Fig. 2.3a, X-S is partitioned by XS→C1 , XS→C2 , XS→C3 . Consider a set W ⊆ X-S such that
W has variables from more than one set XS→Ci :

∃i : W ∩XS→Ci 6= ∅ and W ∩XCi→S 6= ∅.

By definition of an ε-junction tree, I (XS→Ci , XCi→S | S) ≤ ε. Therefore, by the monotonicity5 of
conditional mutual information, we have

I (W ∩XS→Ci ,W ∩XCi→S | S) ≤ ε. (2.6)

Notice that X-S = XS→Ci ∪XCi→S and W ⊆ X-S , so {W ∩XS→Ci ,W ∩XCi→S} is a partitioning of
W . Such partitioning is shown by a dashed line in Fig. 2.3a. It follows from (2.6) that

∃U ⊂W s.t. I(U,W-U |S) ≤ ε, namely U ≡W ∩XS→Ci . (2.7)

Note that Equation 2.7 is a necessary property of every W that includes variables from sets XS→Ci for
more than one clique Ci. Therefore a contrapositive of (2.7),

∀U ⊂W it holds that I(U,W-U |S) > ε, (2.8)

is a sufficient condition for W to be within a set XS→Ci for a single clique Ci.

To find the partitioning, Alg. 2.2 starts with every variable of X-S forming its own singleton partition
(line 1). Alg. 2.2 then checks for every subset W ⊆ X-S of size at most q whether condition (2.8) holds
(line 3). If yes, then all variables of W are assigned to the same partition. Being in the same partition is a
transitive relationship, so all partitions that have variables in W are merged (line 4).

An example trace of LTCI is depicted in Fig. 2.3b (for simplicity, the separator S is not shown). The
pairwise values of I (·, · | S) are on the left. The threshold in this example is δ = 0.35 and q = 2. First,
LTCI checks the edge x2 − x3. The mutual information is above the threshold, so x2 and x3 are merged.

5 Monotonicity of conditional mutual information: for every P (X), every non-intersecting A,B, S ⊂ X and every C ⊆
A,D ⊆ B it holds that I (C,D | S) ≤ I (A,B | S) .
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Figure 2.3

Then x1 − x3 is checked, the dependency strength is not high enough, so nothing happens. Finally, LTCI
checks x1− x2, the mutual information is again above threshold, so {x1} and {x2x3} are merged to form
a single connected component.

As Lemma 18 shows, the complexity of LTCI is exponential in k and q, but polynomial in n. Therefore,
for small k and q, LTCI is a tractable algorithm.
Lemma 18. The time complexity of LTCI with |S| = k is O

(
nq
(
q3JMI

k+q + n
))

, where JMI
k+q is the time

complexity of computing I (A,B | S) for |A|+ |B|+ |S| = k + q.

Partitioning quality guarantees

Suppose we call the partitioning algorithm for a separator S ∈ S of a true ε-junction tree (T,C, S) for
P (X). It is natural to require that the partitioning algorithm returns partitions that are as close as possible
to the true sets of variables XS→C on the same side of separator S. In this section, we will show that even
though LTCI, in general, may not find exactly the correct partitions, it finds a solution close to optimal.
Let QS be the result of calling LTCI for separator S ∈ S of an ε-junction tree (T,C, S). Then two types
of mistakes are possible in QS with respect to (T,C, S):

1. There are variables x, y that are on the different sides of S in (T,C,S):

x ∈ XS→Ci , y ∈ XS→Cj , i 6= j,

but x and y are in the same partition in QS . We will say that a partitioning algorithm is correct if
and only if it never makes a mistake of this type. Formally, we have
Definition 19. A partitioning algorithm A is called correct if and only if for every distribution
P (X) with an ε-junction tree (T,C, S), algorithm A called with S ∈ S and the value of threshold
set to δ = ε will output a set QS such that

∀Q ∈ QS it holds that ∃C ∈ C s.t. (S − C) ∈ T and Q ⊆ XS→C .
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Figure 2.4: Example result of running a correct (Def. 19) partitioning algorithm for separator S = {x1x5}
for the junction tree in Fig. 2.1c.

A correct algorithm, called with with δ = ε, is guaranteed to output a refinement of the “true”
partitioning

{
XS→C1 , . . . , XS→CdS

}
. For example (see Fig. 2.4), for separator S = {x1x5} of the

junction tree in Fig. 2.1c,

XS→C1 = x4x6, XS→C2 = x2x7, XS→C5 = x3.

Assume that the junction tree in Fig. 2.1c is an ε-JT for P (X). Then, for separator S, a possible
partitioning result of a correct algorithm with δ = ε would be

Qx1x5 = {{x4}, {x6}, {x2x7}, {x3}} .

2. The other type of error is the opposite of type 1: there are variables x, y that are on the same side of
S in (T,C, S): x, y ∈ XS→C , but the partitioning algorithm puts x and y in different partitions in
QS . Let us define the class of algorithms that guarantee a limited magnitude of such mistakes:
Definition 20. A partitioning algorithm A is called α-weak if and only if for every distribution
P (X) with an ε-junction tree (T,C, S) of treewidth k, algorithm A, when called with a candidate
separator S of size k, maximum subset size q ≥ k + 1, and the value of threshold δ, will output a
set QS such that

∀Q ∈ QS it holds that I (Q,X-QS | S) ≤ α(ε, δ).

Intuitively, an α-weak algorithm will not mistakenly put variables in different partitions, provided
that the dependence between those variables is strong enough.

It is desirable for a partitioning algorithm to be correct and α-weak for as small an α as possible, ideally
α = δ. For δ = ε and a separator S from the true ε-junction tree (T,C,S), by Def. 19, a correct algorithm
would always separate variables that are on different sides of S in (T,C, S). At the same time, provided
that there is no way to split the variables of XS→C into several weakly independent subsets (intuitively,
this requirement means that the conditional independencies of P (X) that are not reflected by (T,C,S)
are not very significant), a δ-weak algorithm with δ = ε will not separate the variables on the same
side of S. Therefore, a correct and δ-weak algorithm would recover the true graph-theoretic partitioning
QS = {XS→C1 , . . . , XS→CdS }. LTCI, which we use instead of lines 3–5 in Alg. 2.1, satisfies the first
requirement (correctness) and a relaxed version of the second (δ-weakness):
Lemma 21. For k-JT ε-representable distributions, LTCI, for q ≥ k + 1, is correct and n(ε+ kδ)-weak.

To summarize, we can use LTCI to efficiently find a partitioning QS for any candidate separator S. More-
over, if S is an actual separator of an ε-junction tree (T,C,S), the partitioning QS is guaranteed to be
similar to the graph-theoretical partitioning imposed by S on (T,C,S).
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2.2.4 Implementing FindConsistentTree using dynamic programming

After the exhaustive tests for low conditional mutual information on lines 3–5 of Alg. 2.1 are replaced
with LTCI (Alg. 2.2), a concrete form of FindConsistentTree procedure is the only remaining step needed
to make Alg. 2.1 practical. For this purpose, we adopt a dynamic programming approach of Arnborg et al.
(1987). Narasimhan and Bilmes (2004) used the same dynamic programming algorithm to construct a
junction tree, but did not address the additional complications that arise in the structure learning setting
as opposed to the original problem that Arnborg et al. (1987) solved. This difference will be discussed in
detail after we review the intuition for the dynamic programming approach.

Intuition

Consider a junction tree (T,C, S). Let S ∈ S be a separator, and C ∈ C be a clique directly connected
to S. Let CS→C ,SS→C be the set of cliques (including C itself) and separators reachable from C with-
out using edge (S − C), and TS→C the set of edges from T that connect cliques and separators from
CS→C ,SS→C . If (T,C, S) is an ε-junction tree for P (X), then (TS→C ,CS→C ,SS→C) is an ε-junction
tree for P (XS→C ∪ S). Moreover, the subtree (TS→C ,CS→C ,SS→C) consists of a clique C and several
sub-subtrees that are each connected to C via some separator other than S.

For example, in Fig. 2.1a the subtree over cliques C1, C2, C4, C5 can be decomposed into clique C2 and
two sub-subtrees: one including cliques {C1, C4} and one with clique C5. This recursive structure sug-
gests a dynamic programming approach: to check whether a component (S,Q) ∈ L can play a role of
(S,XS→C) in some junction tree, check if smaller already known subtrees, corresponding to subcompo-
nents (S′, Q′), can be put together to form a larger subtree that covers exactly the variables of (S,Q).
Formally, we require the following property defined in a recursive way:
Definition 22. (S,Q) is L-decomposable if and only if S∩Q = ∅ and either |Q| = 1 (base case) or there
exist

1. x ∈ Q (C ≡ S ∪ {x} would be the clique for which (S,Q) = (S,XS→C)).

2. D = ∪i{(Si, Qi)}, D ⊆ L. D is the set of subcomponents with associated subtrees that together
will form a subtree over (S,Q).

such that

1. ∀(Si, Qi) ∈ D, it holds that (Si, Qi) is L-decomposable: there is a subtree associated with each
(Si, Qi).

2.
⋃

(Si,Qi)∈D
Qi = Q \ {x} : the subtrees cover exactly the variables of (S ∪Q) \ C.

3. ∀(Si, Qi) ∈ D, it holds that Si ⊂ S ∪ {x} : each subcomponent can be connected directly to the
clique S ∪ x.

4. ∀(Si, Qi), (Sj , Qj) ∈ D, s.t. i 6= j, it holds that Qi ∩ Qj = ∅ : ensure the running intersection
property within the subtree over S ∪Q.

The set D is called a decomposition of (S,Q).

Note that any component (S,Q) with |Q| = 1 is trivially decomposable with D = ∅ and x = Q – such
components correspond to leaf cliques of a junction tree. The dynamic programming algorithm (Alg. 2.3)
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Algorithm 2.3: FindConsistentTreeDP (adapted from Arnborg et al. 1987)
Input: List L of components (S,Q)

1 for (S,Q) ∈ L in the order of increasing |Q| do
2 D(S,Q) = FindDecomposition((S,Q),L)

3 if ∃S s.t. for every Q ∈ QS it holds that D(S,Q) 6= ∅ OR |Q| = 1 then
// Recursively unroll the decompositions to get a junction tree

4 T = ∅,C = ∅,S = {S}
5 for every Q ∈ QS do
6 {C ′, (T′,C′,S′)} ← GetSubtree((S,Q))
7 C← C ∪ C′, S← S ∪ S′, T← T ∪ T′ ∪ (S′ − C ′)
8 return (T,C,S)

9 else return failure

checks for all (S,Q) ∈ L, in the order of increasing size of Q, whether (S,Q) is L-decomposable and
records the decomposition whenever it exists.

Suppose a separator S is found such that for every Q ∈ QS the pair (S,Q) is L-decomposable. Then
a junction tree consistent with L can be constructed by creating a separator node S and connecting the
subtrees corresponding to every (S,Q) ∈ L to S, which is exactly what Alg. 2.3 does on lines 4-8. To
guarantee the running intersection property in the result of Alg. 2.3, we need to make mild assumptions
on the contents of L (these assumptions will hold for our method of constructing L):
Lemma 23. Suppose the set L is such that

• For every (S,Q) ∈ L it holds that |S| = k.

• For every pair (S,Q′), (S,Q′′) ∈ L such that Q′ 6= Q′′ it holds that Q′ ∩Q′′ = ∅.

• For every candidate separator S it holds that ∪Q s.t. (S,Q)∈LQ = X-S .

Then Alg. 2.3 returns either a failure or an AKU junction tree of treewidth k over X consistent with L.

Observe that if QS is the result of calling LTCI for candidate separator S, then the list

L =
⋃

(S,Q) s.t. |S|=k,Q∈QS
{(Q,S)}

satisfies the conditions of Lemma 23. Indeed, given a separator S, one can verify that throughout the
execution of Alg. 2.2 it holds that the elements of QS are mutually exclusive and cover all ofX-S . Because
LTCI is only called for every separator S once, partitions Q corresponding to the same S remain mutually
exclusive in L.

Greedy construction of decompositions

Note that Alg. 2.3 depends on the ability to check whether (S,Q) is L-decomposable (line 2). Unfortu-
nately, this problem, in general, is provably hard. Suppose we fix the variable x in the notation of Def. 22.
We can form a set L′ ⊆ L of all pairs (S′, Q′) that can possibly participate in a decomposition of (S,Q)
with clique Sx by checking the necessary conditions:
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Algorithm 2.4: GetSubtree
Input: Decomposable component (S,Q)

1 x← Q \ ∪(S′,Q′)∈D(S,Q)Q
′

2 T = ∅,C = {Sx},S = ∅
3 for every (S′, Q′) ∈ D(S,Q) do
4 if S′ 6∈ S then
5 Add S′ to S, (Sx− S′) to T
6 {C ′, (T′,C′,S′)} ← GetSubtree((S′, Q′))
7 C← C ∪ C′, S← S ∪ S′, T← T ∪ T′ ∪ (S′ − C ′)
8 return {Sx, (T,C,S)}

Algorithm 2.5: FindDecompositionGreedy
Input: Pair (S,Q), list L of pairs (S′, Q′), already known decompositions D(S′, Q′)

1 L′ ← {(S′, Q′) ∈ L | D(S′, Q′) is already known}
2 if |Q| = 1 then
3 D(S,Q) = ∅, mark (S,Q) as L-decomposable
4 else
5 for x ∈ Q do
6 D(S,Q) = ∅
7 for (S′, Q′) ∈ L′ s.t. do

8 if S′ ⊂ Sx AND Q′ ⊆ Q \

(
x ∪

⋃
(S′′,Q′′)∈D(S,Q)

Q′′

)
then

9 add (S′, Q′) to D(S,Q)

10 if
⋃

(S′,Q′)∈D(S,Q)

Q′ = Q \ x then

11 mark (S,Q) as L-decomposable
12 D is a valid decomposition of (S,Q); return D(S,Q)

13 did not find a decomposition for (S,Q) in L; return failure

• (S′, Q′) is L-decomposable.

• S′ ⊂ S ∪ {x}.

• Q′ ⊆ Q \ {x}.

Denote Q′ ≡ ∪(S′,Q′)∈L′{Q′}. Then finding the decomposition of (S,Q) is equivalent to finding a subset
Q′′ ⊆ Q′ such that the elements of Q′′ do not intersect and cover all of Q-x. The latter problem is known
as exact cover and is, in general, NP-complete (Karp, 1972). However, by placing additional restrictions
on the structure of L, one can identify tractable subclasses of the problem. For example, Arnborg et al.
(1987) provide a method to check for decomposability in a restricted setting: their approach requires that
Q′ is such that

∀Q′1, Q′2 ∈ Q′ s.t. Q′1 ∩Q′2 6= ∅ it holds that Q′1 ⊆ Q′2 or Q′2 ⊆ Q′1. (2.9)
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Algorithm 2.6: Efficient approach to structure learning
Input: X , oracle I (·, · | ·), treewidth k, threshold δ, L = ∅

1 for S ⊂ X s.t. |S| = k do
2 for Q ∈ LTCI(X,S, I, δ, k + 2) do
3 L← L ∪ (S,Q)

4 return FindConsistentTreeDPGreedy(L)

Provided that property (2.9) holds, whenever a suitable Q′′ exists, it can always be constructed by taking
Q′ and removing all sets Q′i ∈ Q′ that have a superset Q′j ∈ Q′, Q′i ⊆ Qj . Because Arnborg et al. (1987)
used a graph-theoretical separation oracle with a fixed graph to find components (S,Q), they were able to
guarantee property (2.9).

Unfortunately, to use the separation oracle from Arnborg et al. (1987) one needs a partitioning oracle that
for every candidate separator S returns partitioning components (S,Q) consistent with the same one graph
shared across all possible S. Such an oracle would guarantee property (2.9). However, the separation
oracle based on conditional mutual information, which we use, may return partitionings not consistent
with any single graph for different separators and the property (2.9) does not necessarily hold. Therefore,
we need a more general method to find decompositions than Arnborg et al. (1987). The previous work on
learning limited-treewidth models has not addressed this problem. In particular, Narasimhan and Bilmes
(2004), in a setting similar to ours, rely on the method of Arnborg et al. (1987), which is not guaranteed
to work.

To keep complexity polynomial, we use a simple greedy approach (Alg. 2.5): given a candidate pair
(S,Q), for every x ∈ Q, starting with an empty candidate decomposition D, add (S′, Q′) ∈ L to D
if parts 1,3 and 4 of Def. 22 hold for (Si, Qi). If eventually Def. 22 holds, return the decomposition D,
otherwise return that no decomposition exists. We call the resulting procedure FindDecompositionGreedy,
and Alg. 2.3 with greedy decomposition check, correspondingly, FindConsistentTreeDPGreedy.
Lemma 24. For separator size k, time complexity of FindConsistentTreeDPGreedy is equal toO(nk+2k).

Combining Alg. 2.2 and FindConsistentTreeDPGreedy, we arrive at Alg. 2.6, a polynomial-time structure
learning algorithm. Overall complexity of Alg. 2.6 is dominated by Alg. 2.2:
Proposition 25. For separator size k, time complexity of Alg. 2.6 is O

(
n2k+2

(
k3JMI

2k+2 + n
))
.

2.2.5 Putting it together: quality guarantees for the case of infinite samples

In general, FindDecompositionGreedy may fail to find a decomposition even when one exists. For ex-
ample, suppose for a component (S,Q) and a fixed x there are 3 candidate subcomponents (S1, Q1),
(S2, Q2), (S3, Q3) ∈ L such that S1, S2, S3 ⊂ S ∪ {x} and

Q1 ∩Q2 = ∅, Q1 ∪Q2 = Q \ {x}, Q3 ∩Q1 6= ∅, Q3 ∩Q2 6= ∅.

The relationship between Q1, Q2 and Q3 is depicted in Fig. 2.5b. One can see that a decomposition
D(S,Q) = {(S1, Q1), (S2, Q2)} exists. However, suppose Alg. 2.5 first adds (S3, Q3) to the candidate
decomposition. Then neither (S1, Q1) nor (S2, Q2) can be added afterwards, so the existing decompo-
sition will be missed. Therefore, FindConsistentTreeDPGreedy may miss a consistent with L junction
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tree, and consequently fail to output a junction tree even if the distribution P (X) is k-JT ε-representable.
However, there is a class of distributions for which Alg. 2.6 is guaranteed to find a junction tree.

Intuitively, FindConsistentTreeDPGreedy will always find a junction tree if

1. L contains the component (S,XS→C) for every directly connected pair of S ∈ S and C ∈ C from
the “true” (T,C,S).

2. There are no components (S′, Q′) in L that can interfere with the “true” decomposition of XS→C
in the way that (S3, Q3) does in the above example.

Indeed, if both requirements hold, then the greedy decomposition check will succeed for every XS→C ,
and (T,C, S) will be found, or some other junction tree (T′,C′,S′) will be found before (T,C, S). In both
cases, Alg. 2.6 will return a junction tree. One way to ensure that the above properties hold is to require
(T,C, S) to be sufficiently strongly connected:
Definition 26. A junction tree (T,C,S) for P (X) is α-strongly connected if and only if for every S ∈ S,
C ∈ C it holds that

∀U ⊂ C-S it holds that I (U,C-SU | S) > α. (2.10)

Intuitively, in a strongly connected junction tree instantiating a separator S makes variables on the different
sides of S weakly dependent, but the variables within every clique remain strongly dependent: there is
no way to split any clique into two weakly dependent parts.6 Note that the clique C and separator S in
Def. 26 do not have to be directly connected in (T,C, S); property (2.10) has to hold for every pair of C
and S. Also, observe that Def. 26 is stronger than similar definition of strong connectivity by Narasimhan
and Bilmes (2004): instead of requiring high conditional mutual information within every clique (2.10),
Narasimhan and Bilmes (2004) only require high conditional mutual information within full connected
components XS→C . However, both for our structure learning approach and for that of Narasimhan and
Bilmes (2004), strong connectivity in the sense of Def. 26 is in fact needed to guarantee that a junction
tree will be found.

If there exists a maximal junction tree (T,C,S) for a distribution P (X) that both approximates P (X)
well and is, at the same time, sufficiently strongly connected, then LTCI is guaranteed to find the correct

6It is still possible for a subset of a clique to consist of two weakly dependent parts, this point is discussed in detail in
Section 2.2.5.

35



partitionings QS = {XS→C} for every separator S ∈ S, and Alg. 2.6 is guaranteed to find a good tractable
approximation for P (X):
Theorem 27. If there exists a maximal AKU ε-junction tree (T,C, S) of treewidth k for P (X) such that
(T,C, S) is (k + 2)ε-strongly connected, then Alg. 2.6, called with δ = ε, will output a n(k + 1)ε-JT for
P (X).

Notice that the combination of maximality and strong connectivity required by Theorem 27 places signifi-
cant restrictions on the space of learnable junction trees. Essentially, the conditions of Theorem 27 require
the order (number of variables involved) of probabilistic dependencies to be the same throughout the true
model. For example, the junction tree in Figure 2.1c is maximal, but a similar one in Figure 2.5a is not
(because clique C3 and separators {x2} and {x4} are non-maximal). Therefore, even when both JTs are
strongly connected, Theorem 27 only guarantees that a good approximation to the JT in Figure 2.1c will
be learned, but makes no guarantees about the JT in Fig. 2.5a. Extending the guarantees of Theorem 27 to
nonmaximal junction trees is an important direction for future work.

Even though the theoretical guarantees of Theorem 27 are limited to the maximal junction trees, in Sec-
tion 2.4.1 we demonstrate empirically that a variant of Alg. 2.6 can be successfully applied to learning a
wide range of non-maximal distributions. Our empirical results suggest the feasibility of generalizing our
theoretical guarantees beyond the case of maximal JTs.

Learning models of larger than optimal treewidth

Directly applying Theorem 27 to guarantee the success of Alg. 2.6 requires knowledge of the treewidth k
of the “true” ε-junction tree (T,C,S). However, in practice, the “true” treewidth of the distribution is usu-
ally unknown. On the other hand, it is known that for every m ≤ k, any distribution that factors according
to a (not necessary maximal) junction tree of treewidth m also factors according to some junction tree
of treewidth k. Moreover, it is straightforward to construct such a JT of treewidth k as follows. Denote
Cm ∈ C to be a clique of size m+ 1 in the original (T,C,S) of treewidth m. Choose an arbitrary subset
U ⊆ X-Cm such that |U | = k − m and add U to every clique and separator of (T,C, S). Denote the
resulting junction tree to be (T′,C′,S′). One can see that C′ contains the clique CmU of size k + 1 and
no cliques of size larger than k + 1, so the treewidth of (T′,C′,S′) is k. Let us show that (T′,C′,S′) is
also an ε-junction tree. Take any S′ ∈ S′ and C ′ ∈ C′ directly connected to S′. Denote S and C to be the
counterparts of S′ and C ′ in (T,C, S). It holds that

I
(
XS′→C′ , XC′→S′ | S′

)
≡ I (XS→C \ U-S , XC→S \ U-S | U-SS) ≤ I (XS→C , XC→S | S) = ε,

where the inequality follows from the chain rule (A.1) and monotonicity (A.3) of conditional mutual
information. Therefore, whenever (T,C, S) is an ε-JT, (T′,C′, S′) is also an ε-JT.

For example, in Figure 2.6, we show the results of increasing the treewidth of a junction tree from Fig 2.6a
using U = {c} (Fig 2.6b) and U = {c, d} (Fig 2.6c).

Given that “fattening” the model does not decrease the approximation quality, a natural approach to deal-
ing with unknown treewidth is to learn models with the highest treewidth that is feasible given the available
data and computational resources. Therefore, it is desirable to have a guarantee that Alg. 2.6, called with
treewidth parameter k, will find a high-quality structure whenever the true distribution factors according
to some strongly connected maximal junction tree (T,C,S) of treewidth m ≤ k. Unfortunately, a fatten-
ing of (T,C, S) is not necessarily strongly connected, even when (T,C, S) itself is (see Appendix A.1 for
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Figure 2.6: Increasing treewidth of junction trees while preserving approximation quality.

an example). Therefore, the guarantee of Theorem 27 does not apply to fattened JTs directly. However,
for the special case of (T,C,S) that can be fattened to treewidth k using all of the variables of several
leaf subtrees attached to the same separator as the extra variables set X, we provide such a learnability
guarantee:
Theorem 28. Suppose there exists a maximal AKU ε-junction tree (Tm,Cm, Sm) of treewidth m ≤ k for
P (X) such that

1. (Tm,Cm,Sm) is (k + 3)ε-strongly connected.

2. There exists a separator Sm∗ ∈ Sm and cliques Cm1 , . . . , C
m
j directly connected to Sm∗ such that∑j

i=1XSm∗→Cmi = (k −m).

Then Alg. 2.6, called with δ = ε and treewidth parameter k, will output a n(k + 1)ε-JT for P (X).

Note that the strong connectivity requirement in condition 1 of Theorem 28 depends on the treewidth k of
the model we are trying to learn, and not on the treewidth m of the “true” junction tree. Also observe that
the condition 2 of Theorem 28 is not vacuous. For example, the junction tree in Fig. 2.6a can be fattened
according to the requirements of Theorem 28 by one variable using separator Sm∗ = {a, b} and clique
Cm1 = C1, or by two variables using separator Sm∗ = {a, b} and cliques Cm1 = C1 and Cm2 = C3, but
not by three variables. However, for any maximal AKU junction tree, it is always possible to increase
the treewidth by one or two variables according to the requirements of Theorem 28. Therefore, as long
as the original JT is sufficiently strongly connected, learning a JT with treewidth higher by one or two
is safe in the sense of graceful degradation of guarantees: increasing treewidth by one results in relaxing
the quality guarantees on the result by nε. Moreover, depending on the structure of the true junction tree,
larger increases of treewidth are often possible.

Setting k = m in Theorem 28 yields a very similar statement to Theorem 27, because the requirement
of having cliques Cm1 , . . . , C

m
j such that

∑j
i=1XSm∗→Cmi = k −m is satisfied trivially by an empty set

of cliques. The only difference is in the required level of strong connectivity of the “true” junction tree:
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(k+ 2)ε for Theorem 27 versus (k+ 3)ε for Theorem 28. The extra ε of strong connectivity is necessary
for k > m.

To summarize, Theorem 28 provides a graceful quality degradation guarantee on the learned structures
with respect to the treewidth parameter of the algorithm and shows that it is often possible to learn high-
quality junction trees even when the treewidth of the “ground truth” structure is unknown. In particular, if
the target distribution P (X) factorizes exactly according to a thin junction tree, learning a higher treewidth
JT often leads to no result quality decrease at all7, because ε = 0. Although Theorem 28 does not extend
the learnability guarantees beyond the set of maximal junction trees, it does allow for learning the models
for distributions of different “true” treewidth values m using the same result treewidth k. In other words,
the requirement for all the dependencies within the same model to have the same order m is not relaxed,
but the order of dependencies across the different true models can be different.

Strong connectivity is a weaker property than a perfect map

The reader may find the definition of strongly connected junction tree similar to that of a perfect map
(P-map); the latter property is also often called faithfulness of a distribution to a structure (c.f., Spirtes
et al., 2001). Recall the P-map definition (generalized to use conditional mutual information):
Definition 29. A junction tree (T,C,S) is an α-perfect map for P (X) iff for every non-intersecting
A,B, S ⊂ X such that in (T,C,S) the set S does not separate A from B, it holds that I (A,B | S) > α.

Intuitively, this means that the distribution P (X) possesses only the (approximate) conditional indepen-
dencies that are encoded in its perfect map (T,C,S) and no others. It is easy to see that every α-perfect
map is alsoα-strongly connected by takingC,X, S from Def. 26 and setting in Def. 29A = U,B = C-SU .
Importantly, the reverse does not hold: α-P-map is a stronger property than α-strong connectivity. In par-
ticular, if (T,C, S) is a P-map, then property (2.10) holds not only for cliques C, but also for all subsets
of C down to pairwise dependencies.

In contrast, α-strong connectivity does not require anything of the lower-order dependencies within a
clique. In fact there may be none at all. For example, if the variables of a junction tree in Fig. 2.1c
are binary and the conditional distribution P (x1x2x7 | x4x5) is such that x7 = XOR(x1, x2) and x1

and x2 are independently uniformly distributed, then pairwise conditional mutual informations, such
as I (x1, x2 | x4x5) are all equal to 0, meaning exact conditional independence. At the same time,
I (x1, x2x7 | x4x5) = 1. Thus the clique C = (x1x2x7) and separator S = (x4x5) do not satisfy the
definition of an α-perfect map, for any α ≥ 0, but satisfy the definition of an α-strongly connected junc-
tion tree for 0 ≤ α < 1.

To summarize, the guarantees of Theorems 27 and 28 are more widely applicable than just the (quite nar-
row) class of distributions with perfect maps. This is in contrast to many other constraint-based algorithms,
such as that of Spirtes et al. (2001), that require the underlying distribution to have a P-map.

7Here, we assume perfect mutual information measurements and do not consider the question of sample complexity. Insuffi-
cient data can lead to worse overfitting with larger treewidth models, because of the larger number of required parameters. The
question of sample complexity is addressed in the next section.
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2.2.6 Sample complexity and PAC learnability guarantees

So far we have assumed that a mutual information oracle I (·, · | ·) exists for the distribution P (X) and
can be efficiently queried. In real life, however, one only has data (that is, samples from P (X)) to work
with. Fortunately, it is possible to estimate I (A,B | S) from data with accuracy ±∆ with probability
1 − γ, using number of samples and computation time polynomial in 1

∆ and log 1
γ (but exponential in

|A| + |B| + |S|). In this section, we will show that, using straightforward estimation of I (·, · | ·) from
data, our structure learning approach has polynomial sample complexity. To simplify discussion, we will
concentrate on the sample complexity in the setting of Theorem 27, that is, assume that the treewidth of
the “true” junction tree is known a priori. Similar guarantees can be extended to larger treewidth values
of Theorem 28 in a straightforward manner.

Recall from (2.3) that conditional mutual information can be expressed as a difference of entropies. The
following result can be then adapted directly for estimating I (·, · | ·):
Theorem 30. (Höffgen, 1993). For every ∆, γ > 0, the entropy of a probability distribution over m
discrete variables with domain size r can be estimated with accuracy ∆ with probability at least (1− γ)

using f(m, r,∆, γ) ≡ O
(
r2m

∆2 log2
(
rm

∆

)
log
(
rm

γ

))
samples from P and the same amount of time.

Notice that the complexity of this estimator is polynomial in 1
∆ and log 1

γ , but exponential in the number
of variables m. However, since our approach only needs estimates of I(A,B | S) for |A| + |B| + |S| ≤
m = 2k + 2, in our algorithm m is a constant. Therefore, employing the estimator from Thm. 30 keeps
the complexity of our approach polynomial.

Replacing the ideal exact estimator of I (·, · | ·) with a probabilistic one affects the performance guarantees
of our approach: it is now only possible to guarantee success with high probability 1 − γ. Also, it is
necessary to allow for possible inaccuracies of the estimate within ±∆ range. Taking these two factors
into account, after working out technical details we get a variant of Theorem 27:
Theorem 31. If there exists a maximal (k + 2)(ε + 2∆)-strongly connected AKU ε-junction tree of
treewidth k for P (X), then Alg. 2.6, called with δ = ε + ∆ and Î (·, · | ·) based on Thm. 30, using
u ≡ f(2k+ 2, r,∆, γ

n2k+2 ) samples and O(n2k+2(uk3 + n)) time, will find a (k+ 1)n(ε+ 2∆)-junction
tree for P (X) with probability at least (1− γ).

A particular implication of Thm. 31 is that if P (X) is exactly representable by a maximal junction tree
(T,C, S) of treewidth k (that is, if ε = 0), and (T,C,S) is strongly connected, it is possible to achieve
an arbitrarily good approximation with probability arbitrarily close to one, given the amount of time and
data polynomial in 1

∆ and log 1
γ . In other words, the class of strongly connected maximal junction trees is

probably approximately correctly (PAC) learnable:8

Corollary 32. If a maximal α-strongly connected AKU junction tree of treewidth k for P (X) with α > 0
exists, then for any β ∈ (0, αn2 k+1

k+2 ], Alg. 2.6, using threshold value δ = β
2(k+1)n2 ,

O
(
n4k2r4k+4

β2 log2 n2krk

β log nrk

γ

)
samples from P (X) and O

(
n2k+6k5r4k+4

β2 log2 n2krk

β log nrk

γ

)
compu-

tation time, will learn, with probability at least 1− γ, a junction tree (T′,C′,S′) such that
KL(P, P(T′,C′,S′)) ≤ β.

8A class P of distributions is PAC learnable if for any P ∈ P, δ > 0, γ > 0 there exists a learning algorithm that will output
P ′ : KL(P, P ′) < δ with probability 1− γ in time polynomial in 1

δ
and log 1

γ
.
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2.3 Scaling up

Our structure learning algorithm (Alg. 2.6) requires the value of threshold δ as part of the input. To get the
tightest possible quality guarantees on the resulting structure, we need to choose the smallest δ for which
Alg. 2.6 finds a junction tree. A priori, this value is not known, so we need a procedure to choose the
optimal δ.

A possible way to select δ is binary search. The only input necessary for binary search is the range in
which to search for the value δ. Because I (·, · | ·) ≥ 0, it is natural to select δ = 0 as the lower bound of
the range. The upper bound can also be chosen independently of the distribution P (X), by exploiting the
fact that for discrete random variables with domain size r, for any distribution P (X), variable x and set
S it holds that I (x,X-Sx | S) ≤ log r. Therefore, for every candidate separator S, LTCI with threshold
δ ≥ log r will output partitioning QS consisting only of singleton sets. Consequently, for any δ ≥ log r
Alg. 2.6 is guaranteed to find a junction tree (with all cliques connected to the same separator). Therefore,
we can restrict binary search to range δ ∈ [0, log r].

Unfortunately, one problem remains with threshold selection using binary search: there is no guarantee
that the smallest possible threshold, or the thresholds prescribed by Thm. 27 or Thm. 31, will be found.
The reason for it is that neither Thm. 27, nor Thm. 31 guarantee that a junction tree will be found for all
values of δ above a certain threshold. Instead, they only guarantee success for a certain single value of δ.
More generally, the success of Alg. 2.6 is not monotonic in δ. Therefore, Alg. 2.6 with threshold selection
using binary search can give arbitrary bad results even if sufficiently strongly connected junction tree
exists for the true distribution: the guarantees of Thm. 31 and Corollary 32 do not hold for Alg. 2.6 with
δ unknown a priori.

2.3.1 Finding the optimal threshold

Fortunately, it is possible to find the optimal value of δ efficiently. In this section, we will demonstrate
that although threshold δ can take any nonnegative real value, for every distribution P (X) it is sufficient
to only look at a polynomial number of different threshold values to obtain the full range of the outcomes
of structure learning.

Observe that there is only one place where δ is used: on line 3 of Alg. 2.2 that partitions X-S given a
candidate separator S. If for every candidate S the partitioning results Q-S are the same for two different
values of δ, then these two threshold values are indistinguishable from the point of view of the rest of the
Alg. 2.6. For the remainder of the chapter, we return to the assumption that an exact mutual information
oracle exists. It is straightforward to replace the idealistic exact oracle with the realistic estimator from
Thm. 30, and to extend theoretical results in the same way as Thm. 31 extends Thm. 27.

The partitioning results QS depend only on the outcomes of the comparisons between δ and
minU⊂W I (U,W-U | S) for all S of size k and W of size at most k + 2. Therefore, if we were to start
with δ = 0 and continuously increase δ, the only values at which the partitionings QS can possibly change
are exactly {

min
U⊂W

I (U,W-U | S) | S ⊂ X,W ⊆ X-S , |S| = k, |W | ≤ k + 2

}
. (2.11)

There are O
(

n
2k+2

)
= O(n2k+2) (a polynomial number) possible combinations of W and S. Therefore,

it is possible to first compute all the threshold values (2.11) at which the outcome of the partitioning
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Algorithm 2.7: Efficient structure learning with optimal threshold selection
Input: X , conditional mutual information oracle I (·, · | ·), treewidth k

1 W← ∅
2 for every S ⊂ X,W ⊂ X-S s.t. |S| = k, |W | ≤ k + 2 do
3 δ ← minU⊂W I (U,W-U | S)
4 add (δ;S) to W
5 for every S ⊂ X s.t. |S| = k do
6 QS ← {X-S}
7 for (δ;S) ∈W in the order of increasing δ do
8 QS ← LTCI(X,S, I, δ, k + 2)
9 (T,C, S)← FindConsistentTreeDPGreedy(∪SQS)

10 if (T,C,S) 6= failure then
11 return (T,C,S)

algorithm (Alg. 2.2) may change, and then to try every one of those values, in the increasing order, as
an input to Alg. 2.6. This approach is guaranteed to find the optimal threshold at the cost of a factor
of O(n2k+2) increase in computation time as compared to Alg. 2.6, so the overall time complexity will
remain polynomial.

Although the optimal threshold δ can be found in polynomial time, a major inefficiency remains in the
approach described above: for every value of δ, the outcome of the comparisons on line 3 of Alg. 2.2
changes for only one pair of X and S (excluding degenerate cases). However, re-running Alg. 2.6 for
every value of δ will lead to performing O(n2k+2) such comparisons, a major waste of computation time.
Fortunately, this problem is easy to fix: simply record QS between invocations of Alg. 2.6 for different
values of δ and only recompute those QS that may actually differ for the new and old values of δ. This
approach is summarized in Alg. 2.7. The complexity of Alg. 2.7 can be calculated as follows:

Stage Complexity
Compute, cache, sort all necessary mutual informations O(n2k+2(JMI

2k+2k
3 + k log n))

Do for every δ = minU⊂W I (U,W-U | S) O(n2k+2)

Recompute the corresponding QS using LTCI. O(nk+3)

Run GetConsistentTreeGreedy O(nk+2)

Total O
(
n2k+2JMI

2k+2k
3 + n3k+5

)
Summarizing the properties of Alg. 2.7, we get:
Lemma 33. Alg. 2.7 has time complexity O

(
n2k+2JMI

2k+2k
3 + n3k+5

)
. If there exists an AKU ε-junction

tree (T,C,S) for P (X) such that (T,C,S) is (k + 2)ε-strongly connected, then Alg. 2.7 will output a
ε̂-junction tree for P (X) with ε̂ ≤ n(k + 1)ε.

2.3.2 Redundant edges: only looking at dependencies that matter

The complexity of Alg. 2.7 can be improved even further. In this section, we will show that for the vast ma-
jority of the values of δ used by Alg. 2.7 the partitioning QS right before a call to LTCI on line 8 and right
after the call to LTCI will be the same. For such values of δ, one can skip calling FindConsistentTree,
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Figure 2.7: An example of evolution of partitioning QS .

because the input to FindConsistentTree will not have changed since the previous call. We will also
show how to identify such redundant values of δ efficiently, without having to call LTCI.

It will be useful for the remainder of this section to think of partitionsQ ∈ QS as of connected components
of a hypergraph over variables X-S with hyperedges WS . Every hyperedge W ∈ WS of the hypergraph
is annotated with its strength:

strengthS(W ) ≡ min
U⊂W

I (U,W-U | S) ≥ 0.

Let WS [δ] be the set of all hyperedges W ⊂ X with strength greater than δ and such that |W | ≤ q:

WS [δ] = {W |W ⊆ X-S , |W | ≤ q, strengthS(W ) > δ}. (2.12)

Observe that for every pair δ1, δ2 such that δ1 ≥ δ2 it holds that WS [δ1] ⊆WS [δ2]. In particular, for every
δ ≥ 0 it holds that WS [δ] ⊆ WS [0]. To simplify the discussion, we will assume for the remainder of
this section that no two hyperedges of nonzero strength (that is, no two edges from WS [0] have the same
strength). This uniqueness assumption, however, can be relaxed without affecting any of the results of this
section.

Let us set the initial value of δ to δ = 0 and consider the evolution of connected components QS of a graph
with nodes X-S and hyperedges WS [δ] as δ increases. As the threshold grows, the hyperedges with the
least strength disappear, potentially splitting a connected component Q ∈ QS into several smaller ones.
Fig. 2.7 shows an example of the evolution of QS for X-S = {x1x2x3} if only pairwise dependencies are
taken into account.

Observe in Fig. 2.7 that the removal of the hyperedge x1 − x3 did not affect the connected components.
We will call such hyperedges redundant. Analogously, when the removal of an edge (with edge removals
ordered by the increasing strength) changes the connected components QS for separator S, we will call
such edge non-redundant for that separator. For example, the edge x1−x2 in Fig. 2.7 is a non-redundant
edge. Denote NRDS to be the set of non-redundant edges for separator S.

Notice that there are at most |X-S | − 1 non-redundant edges: as δ increases, every removal of a non-
redundant edge increases the number of connected components in QS by at least one, and after all edges
are removed, QS consists of |X-S | singleton sets. Now, observe that typically a candidate separator S
does not partition the variables of X-S into several conditionally independent sets (in the extreme case,
for a distribution faithful to a given junction tree (T,C, S), only S ∈ S involve non-trivial conditional
independencies). Therefore, usually WS [0] contains O

(
n
k+2

)
= O(nk+2) hyperedges. Since there are

at most |X-S | = O(n) non-redundant edges, the vast majority of hyperedges from WS [0] typically are
redundant. In other words, when the threshold δ crosses the value δ = strengthS(W ) for some S and
W , then WS [δ] will necessarily change, but in most cases all connected components QS will remain the
same. Because the rest of the structure learning algorithm only depends on QS , we would like to identify
the non-redundant hyperedges and skip the runs of LTCI and dynamic programming if the partitionings
QS do not change.

42



Algorithm 2.8: Discover the non-redundant hyperedges
Input: X , mutual information oracle I (·, · | ·), separator S, max hyperedge size q

1 WS ← ∅
2 for every W ⊂ X-S s.t. |W | ≤ q AND strengthS(W ) > 0 do
3 add W to WS

// Below, strengthS(W ) is computed using oracle I (·, · | ·) and Queyranne’s algorithm
4 for every Y ∈WS s.t. strengthS(Y ) ≤ strengthS(W ), including Y = W, do
5 if Y is redundant w.r.t. S and WS as per Def. 34 then
6 remove Y from WS

7 return WS

Intuitively, an edge W is redundant whenever there exist stronger edges that connect all the variables of
W (and probably also some other variables). Formally, we have
Definition 34. A hyperedge W is redundant w.r.t. separator S and set of hyperedges W iff either
strengthS(W ) = 0 or there exists a set of hyperedges R(W | S,W) ≡ {W1, . . . ,Wm} ⊆ W, which we
call a redundant set for W w.r.t. S and W, s.t.

• W ⊆ ∪mi=1Wi,

• for every Wi ∈ R(W | S,W) it holds that strengthS(Wi) > strengthS(W ),

• All the nodes w ∈W belong to the same connected component of a graph with hyperedges R(W |
S,W).

We will mostly discuss redundancy w.r.t. S and W ≡WS [0]. To lighten notation, in the remainder of the
chapter we will only explicitly specify W if W 6≡WS [0].

Observe that redundancy is monotonic in the set W: for any W1,W2 s.t. W1 ⊆W2, it holds that

W is redundant w.r.t. S and W1 ⇒ W is redundant w.r.t. S and W2. (2.13)

Using the monotonicity of hyperedge redundancy, one can construct an algorithm (Alg. 2.8) to find all non-
redundant edges of size at most q for a particular separator S (denoted NS). Throughout its execution,
Alg. 2.8 maintains a set WS of candidate non-redundant edges. For every edge W not seen previously,
Alg. 2.8 tries to determine (a) whether knowing W helps one conclude that any of the edges in WS are
redundant and (b) whether W itself is redundant (lines 4–5). The redundancy check (line 5) is performed
only on edges with strength at most strengthS(W ) (line 4), including W itself. By definition, W cannot
be in a redundant set of any edge stronger than itself, so not checking stronger edges for redundancy
saves computation without affecting the result. One can prove that Alg. 2.8 returns exactly the set NS of
non-redundant hyperedges:
Lemma 35. Alg. 2.8 has time complexity O

(
nqq3JMI

q+k + nq+2q
)

(the first component is the complexity
of computing strengthS(·) of the hyperedges, the second—of checking Def. 34 on line 5). Alg. 2.8 outputs
WS ≡ NS , where NS id the set of non-redundant hyperedges for separator S.

Using Alg. 2.8, we can modify the algorithm that finds the optimal threshold (Alg. 2.7) to skip the attempts
to find partitioning QS using LTCI when it is known that only redundant edges disappear from WS . The
new algorithm (Alg. 2.9) is much more efficient:
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Algorithm 2.9: Efficient structure learning exploiting non-redundant hyperedges
Input: X , conditional mutual information oracle I (·, · | ·), treewidth k

1 N← ∅
2 for every S ⊂ X s.t. |S| = k do
3 NS ←Alg. 2.8(X , I , S, k + 2)
4 for every W ∈ NS , add (S;W ) to N
5 for every (S;W ) ∈ N in the order of increasing strengthS(W ) do

// strengthS(W ) is computed using I (·, · | ·) within Alg. 2.8 and cached
6 δ = strengthS(W )
7 recompute QS using hyperedges from NS with strength above δ
8 (T,C, S)← FindConsistentTreeDPGreedy(∪SQS)
9 if (T,C,S) 6= failure then

10 return (T,C,S)

Stage Complexity
For every candidate separator... O(nk)

Run Alg. 2.8 O(nk+2JMI
2k+2k

3 + knk+4)

For every non-redundant edge... O(nk+1)

Recompute QS O(n)

Run GetConsistentTreeGreedy O(nk+2)

Total O(n2k+2JMI
2k+2k

3 + kn2k+4)

Lemma 36. Alg. 2.9 has time complexityO
(
n2k+2JMI

2k+2k
3 + kn2k+4

)
. If there exists an AKU ε-junction

tree (T,C,S) for P (X) such that (T,C,S) is (k + 2)ε-strongly connected, then Alg. 2.9 will output a ε̂-
junction tree for P (X) with ε̂ ≤ n(k + 1)ε.

Comparing the complexity of Alg. 2.9 (Lemma 36) with that of Alg. 2.7 (Lemma 33), one can see that the
time complexity component related to mutual information computation , O

(
n2k+2JMI

2k+2k
3
)
, is the same

for both algorithms, but exploiting edge redundancy helps bring down the complexity of constructing the
actual structure by a factor of nk+1 : O(kn2k+4) for Alg. 2.9 versus O(n3k+5) for Alg. 2.7.

2.3.3 Lazy evaluation of mutual information

Let us now look at structure learning from slightly different perspective: what if we had a procedure
to make (educated) guesses (T,C, S) of the structure of a good junction tree. Then we could use the
following approach:

• Get a new guess (T,C,S).

• Use Corollary 17 to evaluate the quality of (T,C, S).

• If (T,C,S) is a high-quality structure (that is, an ε̂-junction tree for some small ε̂), stop and output
(T,C, S). Otherwise repeat.

The advantage of the above approach is that evaluating the quality of one junction tree using Corollary 17
is relatively cheap: (T,C, S) has |X| − k = O(n) separators. Using the complexity discussion of Sec-
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Algorithm 2.10: Structure learning with lazy evaluation of conditional mutual information
Input: X , conditional mutual information oracle I (·, · | ·), treewidth k

1 for every S ⊂ X s.t. |S| = k do
2 WS ←Alg. 2.8(X , I , S, 2)

3 N ≡ ∪S ∪W∈WS
(S;X) // When WS change, N is updated correspondingly

4 for every (S;W ) ∈ N in the order of increasing strengthS(X) do
5 δ = strengthS(W )
6 recompute QS using hyperedges from WS with strength above δ
7 (T,C, S)← FindConsistentTreeDPGreedy(∪SQS)
8 if (T,C,S) 6= failure then

// Note that CheckJTQuality routine below may modify WS and consequently N
9 if CheckJTQuality((T,C,S), {WS | S ∈ S}, k, δ) ≡ success then

10 return (T,C,S)

tion 2.2.2, observe that the complexity of evaluating one junction tree using Corollary 17 is thus

O(n)×O
(
nk+1JMI

2k+1

)
= O

(
nk+2JMI

2k+1

)
,

which is a factor of nk better than Alg. 2.9.

Of course, the performance of this “guess-evaluate-repeat” approach depends on how good the guessed
structures are, and what is the complexity of the guessing procedure. In this section, we show how to
modify Alg. 2.9 in the spirit of “guess-evaluate-repeat” approach. Although this modification has fewer
theoretical guarantees, it performed well in practice.

Observe that for many separators, namely those not included in the resulting junction tree, it is often an
overkill to find the exact set of non-redundant edges. Consider again the evolution of QS in Fig. 2.7.
Suppose S is not actually used in the resulting junction tree and Alg. 2.9 finds a JT with δ = 0.05. For
this value of threshold, it is sufficient to examine any pair of pairwise dependencies in X-S , for example
x1 − x2 and x1 − x3, even though x1 − x3 is a redundant edge, to conclude that QS consists of a single
connected component {x1x2x3}. Generalizing, we conjecture that for many candidate separators it may
be possible to only compute mutual information for low-order dependencies (pairwise, triplets, etc) and
to never need to compute mutual information for larger subsets.

Let us describe a heuristic that aims at exploiting this phenomenon. The key idea is to interleave parti-
tioning of sets X-S with dynamic programming. Observe that throughout its execution Alg. 2.8 maintains
a set of candidate non-redundant hyperedges WS . Therefore, we can interrupt Alg. 2.8 at any time and use
current WS instead of the true non-redundant hyperedges NRDS . Stopping early helps avoid evaluating
the strength of higher-order hyperedges. This idea is summarized in Alg. 2.10, where lines 1–7 correspond
to the “guess” phase and line 9 (Alg. 2.11) corresponds to the “evaluate” phase.

The problem with stopping Alg. 2.8 early, of course, is the risk of missing the high-order dependencies
and losing the guarantee that the connected components are weakly dependent (α-weakness in terms of
Lemma 21). To fix this problem, we need to check all the higher-order dependencies for the separators
that are involved in the junction tree that FindConsistentTree actually finds (see line 9 of Alg. 2.10 and
Alg. 2.11). If a higher-order dependency is discovered that involves more than one connected component
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Algorithm 2.11: CheckJTQuality—check for strong dependencies contradicting the JT structure;
modify candidate set of non-redundant hyperedges if needed.

Input: (T,C,S), candidate non-redundant edges WS for every S ∈ S, treewidth k, edge strength
threshold δ

1 for every S ∈ S do
2 for every W ⊂ X-S s.t. |W | ≤ k + 1 do
3 if strengthS(W ) > δ then
4 add W to WS , remove from WS the edges redundant w.r.t. S and WS

5 if QS has changed then
6 return failure

7 return success

Q1, . . . , Qm ∈ QS , the junction tree found is rejected (line 6 of Alg. 2.11) and the process repeats with
an updated set of candidate relevant hyperedges for QS (c.f. line 9 of Alg. 2.10). This after-the-fact check
ensures the a posteriori quality guarantee of the resulting structure:
Theorem 37. The worst case complexity of Alg. 2.10 is O

(
n2k+1JMI

2k+1k
3 + n3k+3

)
. Alg. 2.10 always

returns a junction tree (T,C, S). If δ∗ is the value of δ when Alg. 2.10 returns (T,C, S), then (T,C, S) is
an n(ε+ kδ∗)-junction tree for P (X).

Although there are no formal guarantees of complexity improvements for the lazy heuristic, we found it to
work quite well in practice. Moreover, because only a small number of dependencies is examined before
the calls to dynamic programming, Alg. 2.10 finds the first candidate junction trees very fast, making it an
almost any-time algorithm.

2.4 Experiments

To gain more insight about the behavior of our approach, we have coded a proof of concept implementation
of Algorithms 2.9 and 2.10 with slight modifications for efficiency and applied them to several synthetic
and real-life datasets.

2.4.1 Synthetic data

To compare the worst-case sample complexity bounds of Theorem 31 and Corollary 32 with the average-
case behavior, we have generated α-strongly connected junction trees of treewidth k = 2 with varying
strong connectivity α ∈ {0.002, 0.005, 0.01, 0.02, 0.05}, number of variables n ∈ 10 . . . 30, and variable
cardinalityR ∈ {2, 3, 4, 5}.We then applied Alg. 2.9 to recover the structure of the junction trees. Because
the true tractable models are known in this case, we are able to calculate exactly both the KL divergence
KL(P, P(T′,C′,S′)) from the true distribution to the projection on the learned structure (T′,C′, S′), and the
similarity of the true and learned structures in a purely graphical sense.

The random junction trees were generated as follows:

1. Start with a single clique C = {C} of size k + 1. Set degree(C)← 0.
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2. While X 6= ∪C∈CC do:

(a) randomly select a clique C ∈ C such that degree(C) < r = 5.

(b) select a variable x ∈ C uniformly at random, add separator S = C-x to S and edge (C − S)
to T.

(c) set degree(C)← degree(C) + 1.

(d) select any variable y ∈ X-∪C∈CC , add clique C ′ = Sy to C and edge (C ′ − S) to T.

(e) set degree(C ′)← 1.

The degree of every clique has been restricted in step 2a to be at most r = 5 to avoid the shallow star-like
junction trees, which are relatively easy to learn. For every combination of parameters, 10 different JTs
were generated. For every junction tree, we sampled sets of 100 . . . 200000 samples from the correspond-
ing distribution to be used as training data.

Impact of the number of variables and strong connectivity

In this section, we concentrate on the dependence of sample complexity on the strong connectivity α and
the number of variables n. First, we consider a purely graph-theoretical notion of quality of the learned
structures. We will say that the structure has been exactly recovered if and only if the result (T′,C′, S′) of
the structure learning algorithm is exactly the same as the ground truth junction tree (T,C,S) from which
the data has been sampled.

Observe that for every distributionP that factorizes exactly according to (T,C, S), the condition (T′,C′,S′) ≡
(T,C, S) is at least as strong as KL(P, P(T′,C′,S′)) ≤ β for every β ≥ 0. Therefore, the probability of
exactly recovering a structure is a lower bound on the probability of recovering a structure within β in
KL divergence of the optimum. Here, we validate the sample complexity bounds of Corollary 32 by
empirically demonstrating that the sample complexity of exactly recovering a structure is within those
bounds.

For distributions that factorize exactly according to an α-strongly connected junction tree, for fixed
variable cardinality R and treewidth k, Corollary 32 guarantees that, for any β ∈ (0, αn2 k+1

k+2 ], using

O
(
n4

β2 log2 n2

β log n
γ

)
samples, a junction tree (T′,C′,S′) such that KL(P, P(T′,C′,S′)) ≤ β will be found

with probability at least 1 − γ. Sample complexity of Corollary 32 is decreasing in KL upper bound
β. Therefore, the hardest case from the perspective of exactly recovering the ground truth structure is
achieved with the maximal β = αn2 k+1

k+2 , and the smallest number of samples O
(

1
α2 log2 1

α log n
γ

)
. For

a fixed failure probability γ, we get a required sample size s of

s = O

(
1

α2
log2 1

α
log n

)
. (2.14)

Denote

η′(s, α, n) =
sα2

log2 1
α log n

(2.15)

to be the effective sample size. The asymptotic dependence (2.14) leads to the conjecture that the effective
sample size η′(s, α, n) is the parameter that controls the success of Alg. 2.9. In other words, the conjecture
is that the probability of Alg. 2.9 successfully learns a high-quality junction tree depends on the parameters
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s, α, n only through the value of η′(s, α, n). In our experiments, however, we have found that a different
effective sample size function, namely

η(s, α, n) =
sα

log n
, (2.16)

describes the success probability much better than η′. Observe that η decreases slower than η′ when
α → 0 (linearly versus almost quadratically), which suggests that the average case sample complexity of
our approach is smaller than the worst-case bounds of Theorem 31 and Corollary 32 suggest.

In Fig. 2.8a and 2.8b, we plot, as a function of the effective sample size η, the empirical share of cases
where the structure of the ground truth junction trees was successfully exactly recovered. For every
combination of parameter settings, the share of successes is averaged over 10 random junction trees. One
can see that for a fixed variable cardinality R (R = 3 in Fig. 2.8a and R = 5 in Fig. 2.8b), the dependence
of share of exactly recovered structures on η for different variable numbers n and strong connectivity
values α is very similar. Such similarity suggests that η is the practically important effective sample size
in the average case.

So far in this section we have treated γ as the failure probability of discovering the ground truth structure.
However, Theorem 31 and Corollary 32 only make statements about discovering a structure within a cer-
tain KL divergence from the ground truth, and not necessarily the ground truth itself. We would like to
compare the behavior of KL(P, P(T′,C′,S′)), where (T′,C′,S′) is the junction tree learned by Alg. 2.9, as
a function of effective sample size for different parameter settings. To make a meaningful comparison, we
first need to scale the KL divergences for different parameter settings so that they are comparable. Observe
that Corollary 32 can be equivalently restated as “for any β′ ∈ (0, k+1

k+2 ], a junction tree (T′,C′, S′) such
that 1

αn2KL(P, P(T′,C′,S′)) ≤ β′ will be found with high probability, given enough samples and compu-
tation time”. In this alternative formulation, the range of β′ does not depend on the strong connectivity α
and number of variables n,which suggests that normalizing KL divergence by αn2 will provide a measure
of model quality that is directly comparable across different values of strong connectivity and number of
variables. Let us define

KLnorm(P, P(T′,C′,S′)) ≡
KL(P, P(T′,C′,S′))

αn2
.

In Fig. 2.8c and Fig. 2.8d we plot KLnorm(P, P(T′,C′,S′)) for variable cardinality R = 3 and R = 5
correspondingly. For each cardinality, we vary the strong connectivity of the original distribution and
the number of variables in the model. Notice that the values of the KLnorm cover approximately the
same range for different values of α and n, suggesting that scaling the absolute KL by 1

αn2 yields a
useful parameter-independent structure quality measure. One can see that the behavior of the KLnorm
as a function of the effective sample size η(s, α, n) is very similar for different combination of model
parameters, again suggesting that O(α−1 log n) is the average case sample complexity of our approach in
practice.

Impact of variable cardinality

Let us now consider the dependence of sample complexity on the variable cardinality. From Corollary 32,
assuming β = n2α, we have the required sample size s of

s = O

(
R4k+4

α2
log2 1

α
log

n

γ

)
,
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and, for a fixed failure probability γ, we get s = O
(
R4k+4

α2 log2 1
α log n

)
. Equivalently, we get

sα2

log2 1
α log n

= O(R4k+4)⇔ η′(α, n, s) = O(R4k+4), (2.17)

where η′(s, α, n) is the effective sample size defined in (2.15). In the previous section, we have discussed
that using η(α, n, s) = sα log−1 n provides a better way to control for the number of variables and sample
size. We thus conjecture that the average-case sample complexity for a fixed failure probability γ has the
form

log η(α, n, s) = θ logR+O(1).

Corollary 32 and Equation 2.17 show that θ ≤ 4k + 4.

For a given strong connectivity α and number of variables n, define s∗(α, n,R) to be the smallest number
of samples for which all 10 junction trees in our data generated with strong connectivity α, and n variables
of cardinality R each were learned successfully. To test our conjecture, for variable cardinalities 2, . . . , 5,
and different values of α (ranging from 0.002 to 0.05) and n (ranging from 10 to 30), we have computed the
average log η(α, n, s∗(α, n,R)), and plotted it against logR in Fig. 2.8e. One can see that for R = 3, 4, 5
the dependence can be characterized with a very high accuracy by a straight line with θ = 5.7. Observe
that θ = 5.7 < 12 = 4k+ 4, so the average case sample complexity is, as in the case of dependence on α
and n, grows slower than the worst-case bounds suggest.

Performance on non-maximal junction trees

The theoretical guarantees of our approach are only applicable to maximal junction trees, that is JTs where
every clique is of size k + 1 and every separator is of size k. In practice, however, most interesting dis-
tributions are described by non-maximal trees. Fortunately, nothing prevents one from running Alg. 2.9
or Alg. 2.10 even when the assumption of the ground truth JT being maximal is violated. In this section,
we investigate the empirical performance of Alg. 2.9 on nonmaximal junction trees. We have generated
random strongly connected JTs of treewidth 2 with strong connectivity α ∈ [0.002, 0.05], number of vari-
ables n ∈ 10 . . . 30 and variable cardinality R ranging from 2 to 5. For every combination of parameters
10 JTs were generated. The generation procedure was the same as described in Section 2.4.1, except that
on step 2b with probability 0.5 we select two variables x and y to be replaced instead of one. The resulting
separator C-xy then has size 1. Thus, in our nonmaximal junction trees half of the separators on average
were of size 1 instead of 2. All the cliques were of size 3.

To single out the effect that non-maximality of the true junction trees has on the results of Alg. 2.9, we
compared the results of learning the nonmaximal distributions with results for maximal JTs generated
with the same combination of (α, n,R). Unfortunately, the metrics used previously in this section (prob-
ability of successfully learning the true structure and KL divergence) are not directly applicable. Alg. 2.9
always returns maximal structures, so the probability of learning a non-maximal one is always 0. Because
nonmaximal JTs describe a distributions with fewer dependencies, and thus are easier to approximate, the
KL divergences from the ground truth have to be scaled to make the values for maximal JTs comparable
with those for nonmaximal JTs.

As a graph-theoretical quality measure of the learned structures, in this section we use the share of the
recovered pairwise edges of the ground truth structure. The set of pairwise edges for (T,C,S) is defined
as all pairs of variables that belong to the same clique: E(T,C, S) = {(x − y) | ∃C ∈ C s.t. x, y ∈ C}.
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For the ground truth junction tree (T,C,S) and a learned JT (T′,C′, S′) the share of the recovered pairwise
edges is thus

r((T′,C′,S′), (T,C, S)) =
|E(T′,C′,S′) ∩ E(T,C,S)|

|E(T,C,S)|
∈ [0, 1].

The attractive properties of r((T′,C′, S′), (T,C,S)) are as follows:

1. When (T′,C′,S′) and (T,C,S) are both maximal JTs of the same treewidth, then r((T′,C′,S′), (T,C, S)) =
1 if and only if (T′,C′,S′) and (T,C,S) are the same.

2. Whenever r((T′,C′, S′), (T,C,S)) = 1, for every distributionP that factorizes according to (T,C,S),
it holds that P(T′,C′,S′) = P, regardless of whether (T′,C′,S′) and (T,C,S) are maximal.

In Fig. 2.8f, for every combination of parameters α, n,R and sample size s, we have plotted the average
share of recovered pairwise edges by Alg. 2.9 for nonmaximal α-strongly connected JTs over n variables
of cardinality R using s samples (we will call this quantity rnonmax) versus the same quantity, but for
maximal JTs (which we will call rmax). Every point on the plot thus represents a fixed combination of
α, n,R, s. One can see that on average Alg. 2.9 recovers fewer true pairwise edges if the ground truth
distribution factors according to a nonmaximal JT, so the nonmaximality does have an adverse effect on
performance. On the other hand, that adverse effect is limited: rnonmax ∈ [rmax − 0.22, rmax + 0.09]
for all combinations of parameters.

To directly assess the quality of approximating the ground truth distribution, in Fig. 2.8g we plot the
averaged normalized KL distances

KLnorm-MF(P, P(T′,C′,S′)) ≡
KL(P, P(T′,C′,S′))

KL(P, Pmean field)
,

where Pmean field(X) =
∏
x∈X P (x) is the mean field approximation, which assumes that all the vari-

ables are independent. The normalization is necessary to make the KL divergences directly comparable
across different parameter values and both maximal and nonmaximal ground truth junction trees. As
in Fig. 2.8f, every point in the plot corresponds to a fixed combination of parameters α, n,R and sam-
ple size s. Similarly to Fig. 2.8f, in Fig. 2.8g one can see that the performance of Alg. 2.9 in terms of
approximation quality suffers from nonmaximality of the ground truth JTs, but the quality decrease is
limited: KLnorm-MF for nonmaximal junction trees is within [−0.14, 0.34] of that for maximal JTs for
all parameter combinations, and within [−0.07, 0.14] for 99% of all parameter combinations.

To summarize, even though the theoretical guarantees of Theorem 31 and Corollary 32 do not extend to
the case of non-maximal junction trees, we have demonstrated empirically that our approach can still be
successfully applied to such distribution, with only a moderate performance decrease as compared to the
case of maximal JTs.

2.4.2 Real-life data

Here, we test the performance of Alg. 2.10 the following three real-life datasets:

dataset variables number data type citation
TEMPERATURE 54 real-world Deshpande et al. (2004)

TRAFFIC 32 real-world Krause and Guestrin (2005)
ALARM 37 synthetic Beinlich et al. (1988)
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Notice we placed the ALARM data in the “real-life” datasets, even though the data has been sampled
from a known Bayesian network, because the ALARM network has not only graphical structure, but also
the parameter values that are very different from the typical randomly-generated graphical models such as
those of Section 2.4.1.

We compared the implementation of Alg. 2.10, which we call LPAC-JT (from Lazy PAC-learning of
Junction Trees) in this section, with the following baselines:

• Chow-Liu algorithm introduced by Chow and Liu (1968), an efficient algorithm that learns the
most likely trees (that is, junction trees of treewidth 1).

• Order-based search (OBS) by Teyssier and Koller (2005). For OBS, the maximum number of
parents in the Bayesian network was always set to the same value as junction tree treewidth for
LPAC-JT.

• Karger-Srebro algorithm (Karger and Srebro, 2001) with the same model treewidth as LPAC-JT.

• Elidan-Gould algorithm (Elidan and Gould, 2008) with the same model treewidth as LPAC-JT.

• Local search directly in the space of junction trees. This algorithm greedily applies the search step
that yields the highest increase in the training likelihood of the model among the candidate steps,
until a local optimum is found. The candidate steps were as follows:

Leaf relocation. Choose a leaf clique C, the separator S connected directly to C, and another
clique C ′ from the current junction tree.

− We are working with maximal junction trees, so |C-S | = 1. Denote C-S ≡ x.

− Remove C from the structure.

− Choose a subset S′ ⊂ C ′ of size k.

− Add a new separator S′ (unless such a separator already exists) and a new clique C ′′ ≡
S′ ∪ x to the junction tree.

− Connect S′ to C ′ and C ′′.

Variable propagation. Replace a connected subcomponent of the current junction tree of form
A1xy − S1x − A2xz (clique-separator-clique), with a subcomponent A1zy − S1z − A2xz,
provided that the running intersection property will hold in the resulting structure (RIP may
cease to hold in the context of a larger component of a junction tree, for example if we replace
A3xv − S2x−A1xy − S1x−A2xz with A3xv − S2x−A1zy − S1z −A2xz).

The starting points for the local search were all the star-shaped junction trees (the JTs with one
separator S of size k and every clique connected directly to S). There are

(
n
k

)
= O(nk) possible

separators S and therefore O(nk) star-shaped junction trees.

• LPAC-JT + Local search. This approach uses the same search steps as the local search described
above, but instead of using all star-shaped junction trees as starting points, it runs Alg. 2.10 and uses
the candidate junction trees constructed on line 7 of Alg. 2.10 as starting points for local search.

All experiments were run on a Pentium D 3.4 GHz. Because most of the algorithms have local nature, the
runtimes were capped to 10 hours to obtain the complete picture of the search behavior. The necessary
entropies were computed in advance.
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2.4.3 Structure quality comparison

In this section, we compare the quality, in terms of the log-likelihood on test data, of the structures learned
by the algorithms on different datasets.

ALARM. This discrete-valued data was sampled from a known ALARM Bayesian network (Beinlich
et al., 1988) intended for monitoring patients in intensive care. The treewidth of ALARM network is 4,
but, because of computational concerns, we learned models of treewidth 3 (at most 3 parents per variable
for OBS algorithm). Fig. 2.9a shows the per-point log-likelihood of learned models on test data depending
on the amount of training data.

We see that on small training datasets LPAC-JT finds models of similar quality to a basic hill-climbing
approach, but worse than the OBS and Elidan-Gould. For large enough datasets all variable-treewidth
algorithms achieve the maximal possible likelihood of the model. The superior performance of OBS and
Elidan-Gould algorithms in the small sample size regime persists for all the datasets and can be explained
by the fact that out of the methods being compared, OBS and Elidan-Gould, are the only one to use regular-
ization and favor sparser structures. All other variable-treewidth algorithms use unregularized likelihood
as a quality criterion. Moreover, LPAC-JT and local search operate in the space of maximal junction trees
and do not consider sparser structures at all. Chow-Liu algorithm uses a much more restricted model
space than other algorithms, which can also be thought of as a way of regularization. Such implicit regu-
larization leads to superior performance of Chow-Liu algorithm for small training set sizes. As the results
for large enough training sets show, none of the algorithms supporting arbitrary model treewidth values
suffer from insufficient expressive power of their respective model spaces. On the other hand, Chow-Liu
algorithm performs much worse, since it is limited to models with treewidth 1, which do not have enough
expressive power to capture all the dependencies of the distribution.

TEMPERATURE. This data consists of temperature readings from a network of 54 sensors taken over
the course of 2 months (Deshpande et al., 2004). The readings were averaged over a 2-minute window
and discretized into 4 bins. For this data, we learned models of treewidth 2. The sensors in the network
were arranged in a 8-shaped pattern, allowing for complex dependencies between the readings of different
sensors. The log-likelihoods of the learned models are shown in Fig. 2.9b.

One can see that on this data OBS outperforms junction tree-based methods, suggesting a difference in ex-
pressive power from using a larger model space (limited in-degree Bayesian networks). In turn, LPAC-JT,
Elidan-Gould algorithm and local search dominate Karger-Srebro algorithm, which operates with wind-
mills instead of general junction trees. Windmills are essentially junction trees of small diameter, so we
conjecture that the difference in the results is due to the difficulties of windmills in capturing long chains
of indirect dependencies. Chow-Liu algorithm, as expected, provides very good results on the smallest
training sets, but loses to other methods by a significant margin if there is enough data available.

TRAFFIC. This data, a part of a much larger dataset from Krause and Guestrin (2005), contains traffic
flow information measured every 5 minutes in 32 locations in San Francisco Bay area for 1 month. The
values were discretized into 4 bins and we learned models of treewidth 3. The resulting models log-
likelihoods are shown in Fig. 2.9c.

For traffic data, all non-regularized algorithms, including LPAC-JT, give results of essentially the same
quality. Moreover, given enough data, all algorithms except Chow-Liu achieve the same model likelihood,
suggesting that the difference in model spaces is not an issue for this dataset. Also, Chow-Liu algorithm
performs very well on traffic data, which means that most of the strong dependencies between the variables
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Figure 2.9: (a),(b),(c): comparison of log-likelihoods of learned models.
(d): an example structure learned by LPAC-JT (nodes denote variables, edges connect variables that be-
long to the same clique, solid gray edges belong to both true and learned models, thin dashed black—only
to the learned model, solid black—only to the true one).
(e): an example evolution of the test set likelihood of the best found model.
(f): an example evolution of the computable part of KL(empirical,model) and of the stopping threshold
of Alg. 2.10 for that component n2kδ (see the end of Section 2.4.4 for explanation).
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are pairwise and exact tree likelihood maximization by the Chow-Liu algorithm offsets the reduction in
the expressive power compared to the other algorithms. Elidan-Gould algorithm demonstrates that with
proper regularization it is possible to simultaneously match the performance of Chow-Liu for small sample
sizes and higher treewidth methods for larger sample sizes.

To summarize, we have shown that, given enough samples, LPAC-JT is competitive with other approaches,
achieving the maximum model likelihood for 2 out of the 3 datasets, which confirms the viability of our
approach.

2.4.4 Empirical properties overview

Besides the likelihood of the final structure, other properties of structure learning algorithms, such as
runtime or tendency to miss important edges in the learned model, are of large practical interest. In this
section, we briefly review some of these properties of LPAC-JT.

Comparison with the true model

It is important for the learning algorithms to include in the learned models all the the edges that are
necessary to explain the significant dependencies in the data and at the same time to not include spurious
edges. Such behavior is not only desirable from the model likelihood perspective, but also makes the
models easier to interpret.

To investigate the behavior of LPAC-JT, we compared the learned models for the ALARM dataset with the
known true graphical model (triangulated Bayesian network) from which the data was sampled. A typical
comparison is in Fig. 2.9d, where the edges that LPAC-JT missed are thick solid black and the spurious
edges (those added by LPAC-JT, but missing from the true model) are thinner dotted black. Observe that
LPAC-JT captured almost all of the true edges, missing only 3 of them. At the same time, our algorithm
introduced several spurious edges, because it always constructs a maximal junction tree and the true model
is not maximal. Spurious edges make the learned model more difficult to interpret, but do not hurt density
estimation on large datasets: given enough data, the learned models achieve the same test likelihood as the
true model. For small datasets, however, dense connectivity significantly increases overfitting (by making
the number of model parameters too large to be learned reliably). Thus, generalizing LPAC-JT to sparser,
non-maximal junction trees is a crucial future research step.

Runtime

Even though LPAC-JT never reached the stopping criterion within the allocated 10 hours for any of the
experimental runs, it typically found candidate models of very good likelihood very early on in the process.
In an example run shown in Fig. 2.9e (showing the test log-likelihood of the best structure found so far
versus time), the first candidate structure was found within 5 minutes. That first candidate structure
already had likelihood within 2% of the eventual result. The eventual result was found within 1 hour. The
following table shows that the run shown in Fig. 2.9e is a typical one for real-life datasets:

55



Dataset ALARM TEMPERATURE TRAFFIC
Mean time to first structure 1037 sec. 59 sec. 126 sec.

Mean LLH(final)−LLH(first)
|LLH(final)| −5.4× 10−2 3.3× 10−3 −1.9× 10−2

Mean time to final result 16721 sec. 630 sec. 3247 sec.

One can see that for real-life datasets the first structure was found, on average, in less than 15 minutes, and
achieved, on average, the test likelihood just 3.3% worse than the eventual result for TEMPERATURE
data and 1.9% better than the eventual result for TRAFFIC data. Similarly, on ALARM dataset, the first
structure was on average 5.4% better than the final result (although on this artificial data it took LPAC-
JT significantly longer to find a first structure). Therefore, we believe that in practice LPAC-JT can be
stopped much earlier than the current stopping criterion prescribes, almost without degradation in result
quality. Also the uniform stopping criterion (for every separator S from (T,C,S) and for every small
W ⊂ X-S it must hold that strengthS(W ) < δ) looks to be overly restrictive. A different criterion, better
relating to the model likelihood may improve the runtime and should be a focus of future work.

Theoretical guarantees

In addition to the log-likelihood of the candidate models that LPAC-JT finds, another important perfor-
mance indicator is the upper bound on KL divergence from the empirical distribution P̃ to its projec-
tion on a candidate junction tree, KL(P̃ , P̃(T,C,S)), that follows from Lemma 14 and Corollary 17. De-
note δ(T,C,S) to be the strength of the strongest conditional dependency not captured by the junction tree
(T,C,S) :

δ(T,C,S) ≡ max
S∈S,C∈C,X1∈XS→C ,X2∈XC→S ,|X1|+|X2|≤k+1

strengthS(X1 ∪X2)

Observe that Alg. 2.11 returns success iff δ(T,C,S) ≤ δ. For k-JT ε-representable distribution P̃ , from
Lemma 14 we have the upper bound

KL(P̃ , P̃(T,C,S)) ≤ n2ε+ n2kδ(T,C,S) (2.18)

Unfortunately, the upper bound (2.18) depends on an unknown parameter ε and thus cannot be evaluated
in the experiments. However, for any junction tree it is possible to evaluate the second component of upper
bound (2.18), namely n2kδ(T,C,S), that gives the value of (2.18) up to a distribution-dependent constant.
Observe that the stopping criterion of Alg. 2.10 can be equivalently stated as n2kδ(T,C,S) ≤ n2kδ.

As execution of Alg. 2.10 progresses, the stopping threshold n2kδ increases. Simultaneously, as more
candidate junction trees are discovered (c.f. line 7), the quantity n2kδ(T∗,S∗,C∗), computed for the best
candidate JT (T∗, S∗,C∗) discovered so far, decreases. Empirical rates of change of both quantities are
of interest: for example, if n2kδ(T∗,S∗,C∗) decreases quickly, one can conclude that Alg. 2.10 improves
significantly on the candidate junction trees throughout the execution.

An example evolution of n2kδ(T∗,S∗,C∗) (dashed line) and of the threshold n2kδ (solid line) over time for
one run on the TEMPERATURE data is shown in Fig. 2.9f. Similarly to the evolution of log-likelihood in
Fig. 2.9e, the upper bound component n2kδ(T∗,S∗,C∗) does not improve significantly after the first structure
is found very early in the process. Fig. 2.9f suggests that the the stopping threshold will eventually be
crossed mostly because of the threshold itself increasing, not because of improvements in the quality of
the results, which is another argument in favor of stopping LPAC-JT early.

56



Table 2.1: Representative examples of prior work.

class model guarantees(true P ) samples time representative reference
score all global any exp Singh and Moore (2005)
score tract./all local any poly†/exp† Della Pietra et al. (1997)
score comp. local any poly† Teyssier and Koller (2005)
score tract. const. factor any poly Karger and Srebro (2001)
score tract. local any poly† Bach and Jordan (2002)
score tract. local any poly† Lowd and Domingos (2008)
score tract. local any poly† Elidan and Gould (2008)
score tree global any O(n2) Chow and Liu (1968)

constr. comp. global(comp.) ∞ poly(tests) Spirtes et al. (2001)

constr. comp.
PAC(comp.)/

poly poly Abbeel et al. (2006)
graceful(positive)

constr. tract. PAC(k-JT) exp‡ exp‡ Narasimh., Bilmes (2004)
constr. tract. PAC(k-JT)/gracef.(ε-k-JT) poly poly this chapter

tract. (tractable) means that the result is guaranteed to be of limited treewidth.
comp. (compact)—limited connectivity of the graph, but not necessarily low treewidth.
Guarantees column shows whether the result is a local or global optimum, a constant factor approximation
of the optimum, whether there are PAC guarantees or graceful degradation guarantees in terms of KL
divergence. For guarantees that hold only for a restricted class of input distributions, the restriction is
given in parentheses.
In time complexity column, † superscript means per-iteration complexity of local search approaches,
poly — O(nO(k)),
exp‡ — exponential in general, but poly for special cases.
poly(tests) — polynomial complexity with an additional requirement of access to an exact conditional
independence oracle (such an oracle is impossible to construct using any finite number of samples).

2.5 Related work

To place our work in context, we first review the existing results on complexity of structure learning for
graphical models, restricting the discussion to the approaches that deal with fully observed data, that is
data where for every datapoint the value of every variable is known.

As we discussed in section 1.1.1, in most settings, learning the optimal (i.e., most likely) PGM struc-
ture is provably hard: NP-hard for polytrees (Dasgupta, 1999), NP-complete junction trees of treewidth
greater than 1 (Karger and Srebro, 2001) and general directed models with limited in-degree (Chickering,
1996). The exception to the negative results is the case of tree-structured models, which can be learned in
O(n2 log n) time (Chow and Liu, 1968). Also, approximately optimal structures can be learned in poly-
nomial time. For general limited-degree graphical models, PAC-learning is possible (Abbeel et al., 2006),
while for junction trees one can learn in polynomial time a structure within a fixed factor of log-likelihood
of the optimum (Karger and Srebro, 2001). In the remainder of this section, we discuss the existing struc-
ture learning algorithms and their relation to our approach. For a concise summary, we refer the reader to
Table 2.1.
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2.5.1 Constraint-based algorithms

As discussed in Section 2.2, our structure learning algorithm belongs to the class of constraint-based
approaches. Given the training data, constraint-based algorithms attempt to enumerate the conditional
independencies of the underlying distribution and then to construct a structure consistent with those inde-
pendencies. The exact formulation of a constraint-based algorithm is essentially determined by its way of
dealing with two fundamental problems:

1. Because of finite training data amount, the estimated independencies may differ from the true inde-
pendencies of the underlying distribution.

2. Constructing a structure consistent with a given set of independencies is not trivial.

Learning general compact models

Spirtes et al. (2001) assumed that a perfect conditional independence oracle exists and concentrated on ad-
dressing the problems of constructing a suitable structure of a Bayesian network. For distributions faithful
to a Bayesian network with at most k parents per variable, the algorithm of Spirtes et al. (2001), called
PC, is guaranteed to discover the minimal I-map9 for the distribution in question. PC has polynomial in
n complexity, requiring O(nk+1) independence tests that involve at most k + 2 variables each. Unfortu-
nately, the guarantees of Spirtes et al. (2001) only hold for perfect independence oracle (in other words, in
the limit of infinite samples). Also, the PC algorithm does not have graceful degradation guarantees when
a limited in-degree Bayesian network can only represent the true distribution approximately.

Closer to our theoretical guarantees is the work of Abbeel et al. (2006), who presented an algorithm
for learning factor graphs (a variant of Markov networks) with polynomial time and sample complexity.
Similar to our results, Abbeel et al. (2006) provided both a PAC-learnability result for the case when the
true distribution can be represented by a factor graph exactly, and graceful degradation guarantees (in KL
divergence) for distributions that can only be represented approximately by limited-size factor graphs. The
main difference between our theoretical guarantees and those of Abbeel et al. (2006) is that our approach
is guaranteed to return a limited-treewidth model that admits efficient exact inference, while the algorithm
of Abbeel et al. (2006) may return an intractable model.

Learning tractable models

Narasimhan and Bilmes (2004) introduced an algorithm that is guaranteed to return a limited-treewidth
junction tree and has a PAC learnability guarantee. However, their approach requires fixed-accuracy
estimates of conditional mutual information values I (A,B | C) for setsA andB of size Θ(n). Currently,
the best known methods for mutual information estimation have exponential in n complexity on such
queries. Therefore, the approach of Narasimhan and Bilmes (2004) has exponential complexity. Also,
Narasimhan and Bilmes (2004) do not provide graceful degradation guarantees for their algorithm for
distributions that are only approximately representable by limited-treewidth junction trees. In contrast, our
approach has polynomial complexity, and in addition to PAC learnability result has graceful degradation
guarantees.

9A minimal I-map is a graph (T, X) such that (a) every conditional independence encoded by (T, X) is present in the true
distribution and (b) every subgraph of (T, X) encodes some spurious conditional independence absent from the true distribution
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Although low-treewidth models are the most extensively studied class of tractable probabilistic graphical
models, there has also been progress in learning high-treewidth tractable models. Tractable inference in
high-treewidth models is possible in the presence of context-specific independence (CSI, Boutilier et al.,
1996), which imposes additional equality constraints on the values of the parameters, making it possible
to deal with groups of assignments simultaneously instead of individually. However, analogously to how
compactness does not guarantee tractability, not every PGM with compact potentials encoding context-
specific independence is tractable. To achieve tractability, the equality constraints for different potentials
have to act together to induce a specific inner structure of all the potentials.

As the standard notion of PGM structure does not take context-specific independence into account, to learn
tractable high-treewidth models it is more convenient to use PGM formalisms that explicitly represent CSI
via the structure, such as arithmetic circuits (Darwiche, 2003) or feature trees (Dechter and Mateescu,
2007; Gogate et al., 2010). Building upon Lemma 16 and Alg. 2.2 of this thesis, Gogate et al. (2010) have
shown that approximately optimal feature trees can be learned with similar quality guarantees to those we
provide for junction trees. A notable advantage of the approach of Gogate et al. (2010) over ours is that
by conditioning on binary features instead of all possible joint assignments of separators simultaneously,
as we do, their approach achieves better computational efficiency and, in practice, sample complexity.
Gogate et al. (2010) also described a greedy version of their approach, which does not have theoretical
guarantees, but works much faster in practice, and demonstrated high empirical performance of their
approach.

2.5.2 Score-based algorithms

Given the inherent difficulty of structure learning, many researchers resorted to variations of heuristic
search for high-likelihood structures. A large class of score-based structure learning algorithms (for ex-
ample, Bach and Jordan, 2002; Lee, Ganapathi, and Koller, 2006; Chickering and Meek, 2002; Teyssier
and Koller, 2005; Della Pietra, Della Pietra, and Lafferty, 1997) work by associating a score (usually, a
form of regularized likelihood) with every possible structure, and performing a hill-climbing search in
the space of structures. For certain classes of structures (limited-treewidth junction trees, Bayes nets with
limited in-degree), the structure score is decomposable, that is, can be represented as sum of components,
each of which only depends on a small subset of variables, and can be computed efficiently. When the
score is decomposable, local hill-climbing search can be quite efficient in practice (Teyssier and Koller,
2005; Deshpande et al., 2001; Malvestuto, 1991; Chickering and Meek, 2002). However, likelihood is not
decomposable for general undirected models: computing the likelihood requires inference in the model,
which is in general intractable even for compact models. Consequently, score-based algorithms for gen-
eral undirected models evaluate the scores of candidate structures only approximately (for example, Lee
et al., 2006; Della Pietra et al., 1997; Choi et al., 2005).

Learning general compact models

Most hill-climbing approaches work directly in the space of Bayesian networks or junction trees, but
search space design is an important research direction in score-based structure learning. A well-designed
search space lets one take larger and better informed local steps, which decreases the chances of getting
trapped in local optima. For example, Teyssier and Koller (2005), for learning Bayesian networks struc-
ture, instead of directly searching in the space of directed acyclic graphs with limited in-degree, perform
search in the space of topological orderings of variables induced by such graphs. Given an ordering of
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the variables, for every variable it is possible to exhaustively enumerate all of O(nk) candidate sets of
parents, evaluate their respective scores and pick the optimal set of parents. Because the log-likelihood
score of a Bayesian network decomposes into a sum of the scores of the network families (a family is
a variable and all of its parents), decisions about optimal parent sets for different variables can be made
independently. Therefore, the complexity of evaluating the score of one particular variable ordering is
O(n× nk) = O(nk+1), which is polynomial in the number of variables, but exponential in the in-degree.
Teyssier and Koller (2005) perform such exact maximization to score a concrete variable ordering and
find the best structure. Intuitively, using a globally optimal procedure as a subroutine decreases the de-
gree of “myopia” during the local search, leading to larger changes per step and better quality of those
changes.

Recently, L1 regularization of graphical model parameters has become a popular tool for learning the
structure of exponential family graphical models. L1 regularization tends to give sparse results, that is,
the optimal parameters have many components that are exactly zero. When a model has exactly one
parameter per edge, such as Ising model with binary variables, setting a parameter to zero corresponds
to removing the corresponding edge from the graph. Thus L1 regularization of parameters implicitly
imposes sparsity of the graphical model structure. As Wainwright et al. (2006) showed, for Ising models
with binary nodes, L1-regularized logistic regression provides a consistent estimator of the structure using
a polynomial number of samples. L1-regularized regression can also be used to restrict the search space of
any local search algorithm for structure learning (Lee et al., 2006). In practice, the choice of regularization
parameter is an important problem. Schmidt et al. (2007) showed that optimal model scores can be only
achieved for the regularization parameters that correspond to discontinuities of the regularization path and
proposed a way to efficiently find the approximate discontinuity locations. Restricting attention to the
parameters at the discontinuities of the regularization path is similar to the idea that we employ in this
chapter, namely to restrict the values of threshold δ to the set of the actual strengths of hyperedges.

Because of the local nature of score-based approaches, relatively few of them have performance guaran-
tees. For modest sized problems, it is possible to search the space of all structures exhaustively by reusing
computation (Singh and Moore, 2005). Provided that the underlying distribution has a perfect map, Chick-
ering and Meek (2002) have shown that in the infinite data limit a two pass greedy edge addition-removal
algorithm will recover the true structure. Unfortunately, infinite data assumes infinite computational cost,
so this guarantee, while interesting theoretically, is inapplicable in practice.

Learning tractable models

Approaches based on local search are also a popular choice for learning tractable structures. Here also
designing well-behaved search spaces and high-quality local step selection procedures is an important
research direction. For example, Meilă and Jordan (2001), aiming to learn the most likely mixtures of
trees, use EM algorithm to iteratively optimize the structure and parameters for every mixture component
and use Chow-Liu algorithm to find exactly optimal trees for every component of the mixture in the M step.
Again, as is the case with the work of Teyssier and Koller (2005), here, exact maximization by Chow-Liu
algorithm allows for larger search steps than local search directly in the space of structures.

To learn low-treewidth Bayesian networks, Elidan and Gould (2008) developed developed an algorithm
for discovering sets of edges that, when added all together to a given Bayesian network, increase the
treewidth of the network by at most 1. Moreover, Elidan and Gould (2008) also show that, given a fixed
ordering over the variables, a locally optimal edge set can be found efficiently, immediately leading to a
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greedy structure learning algorithm. Here, again, the building blocks of larger local search steps (adding
sets of edges instead of a single edge at a time), optimal decisions as subroutines and a higher-level search
space representation (topological orderings over variables) combine to yield an approach that works very
well in practice, as section 2.4.2 demonstrates. Theoretically, however, the approach of Elidan and Gould
(2008) is still a local search at its core, so only local quality guarantees are provided.

A number of approaches go beyond the local perspective and provide global approximation guarantees.
The algorithm of Chow and Liu (1968) is guaranteed to learn the most likely structure. Moreover, Das-
gupta (1999) showed that the same most likely tree also provides a constant-factor approximation of the
optimal solution to the polytree learning problem. More precisely, the Chow-Liu tree has likelihood at
most a factor (7

2 + 1
2
U
L ) worse than the optimal polytree, where U is the maximum entropy of a single

variable for the given distribution, and L is the minimum entropy of a single variable.

Close to our problem setting is the work of Karger and Srebro (2001). They consider a subclass of
junction trees, which they call windmills and use the difference in log-likelihoods of the learned model
and the model where all variables are independent as a quality criterion:

Quality(learned) = (LLH(learned)− LLH(all independent)). (2.19)

Karger and Srebro (2001) show that, using a linear programming relaxation and a special rounding
scheme, one can always find a windmill of treewidth k that achieves at least a constant fraction of the
quality of the MLE junction tree of treewidth k :

Quality(learned windmill of width k) ≥ 1

8kk!2
Quality(MLE junction tree of width k). (2.20)

The main difference of the theoretical guarantees of Karger and Srebro (2001) and our work is in their
behavior for k-JT representable distributions. As the amount of data grows, the approximation factor in
the guarantee of Karger and Srebro (2001) does not improve. Our algorithm, in contrast, according to
Thm. 31, will find a δ-junction tree with δ → 0 as the number of samples increases, so an arbitrary quality
of approximation can be achieved given enough data.

High-treewidth tractable models can also be learned via local search. Lowd and Domingos (2008) show
that for arithmetic circuits (Darwiche, 2003), inference complexity can be used directly as a regularization
term in a local search for the optimal structure, leading to an algorithm with good performance in practice,
but few global guarantees.

To summarize, score-based algorithms provide state of the art performance in practice, but many practical
approaches are based on local search and lack theoretical quality guarantees. Although our approach is
not a score-based one, it is possible to incorporate some ideas from the score-based methods into our
algorithm. In particular, it is possible to define a decomposable score over the sub-junction trees. Then,
in the greedy decomposition search (Alg. 2.5) one can prioritize the candidate subcomponents that are
being added to the decomposition on line 7 by their score (or score normalized by subcomponent size).
Although not a primary objective in our algorithm, such prioritization by the score may increase the score
(and thus likelihood) of the result.

2.5.3 Bayesian model averaging

Sometimes, instead of finding a single best fitting structure, one is interested in the probability of the
true structure having a particular structural feature, such as an edge between two variables or existence
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of a directed path from variable x to y. Computing the probabilities of such features is especially useful
when one aims to recover the underlying causal structure of the domain, for example, when studying gene
interaction. A point estimate, such as an MLE structure, would lead to many over-confident conclusions
about the domain interactions structure.

Approaches that place a prior probability on every possible structure and compute the posterior probability
of a given feature given the data form the class of Bayesian model averaging algorithms. For n variables,
there are 2(n2) undirected graphs and O

(
n!2(n2)C−n

)
directed acyclic graphs (for some constant C),

so exact Bayesian model averaging is in general intractable. Instead of trying to compute the posterior
exactly, the standard approach (Madigan and York, 1995) is to use Metropolis-Hastings sampling with a
proposal that locally modifies a structure by adding or removing an edge. One can also sample from the
space of topological orderings of the variables and compute the posterior given the ordering analytically
(Friedman and Koller, 2003) to get a faster mixing Markov chain. Using dynamic programming (Koivisto
and Sood, 2004), it is possible to compute the posterior probability of a given edge exactly using O(n2n)
time. One can also use the results of dynamic programming to guide the Metropolis Hastings sampling
(Eaton and Murphy, 2007).

Bayesian averaging algorithms have an attractive property of taking all possible structures into account
instead of concentrating on a single one, which is especially useful when the structure is not just a part
of distribution representation, but an object of the primary interest. Bayesian averaging approaches can
also be modified to perform density estimation. The main drawbacks of Bayesian averaging are high
computational complexity (for example, exact averaging algorithms have complexity exponential in the
number of variables) and the fact that Bayesian averaging does not result in a model that admits efficient
inference (essentially, Bayesian averaging itself is the inference procedure).

2.6 Discussion and future work

In this chapter, we have described three main contributions:

1. A theoretical result (Lemma 16) that allows one to bound conditional mutual information of arbi-
trarily large sets of random variables in polynomial time.

2. A polynomial time algorithm (Alg. 2.6 and Alg. 2.9) for learning fixed-treewidth junction trees with
PAC learnability guarantees for distributions exactly representable with strongly connected maximal
junction trees and graceful degradation guarantees for distributions approximately representable
with such junction trees.

3. A more practical development of algorithm Alg. 2.9, namely Alg. 2.10, which only considers higher-
order conditional dependencies that arise in candidate junction trees constructed based on low-
order dependencies. In practice such an approach significantly improves computational efficiency
by “pruning” a large share of high-order conditional dependencies, although the speedup is not
guaranteed theoretically and the result quality guarantees of Alg. 2.9 are lost with the lazy approach.

Here, we outline some of the directions for future work aimed at making the algorithms of this chapter
more practical. Broadly, we will focus on two goals: generalizing to junction trees with non-uniform
properties and designing computationally efficient heuristics.
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The algorithms presented in this chapter rely on two assumptions that are rather restrictive. First, all
the junction trees in question are assumed to be maximal, that is have uniform clique and separator size
throughout the structure. Second, the global conditional mutual information threshold δ used to partition
the variables X-S into weakly dependent components by LTCI enforces uniform dependence strength for
every candidate separator S.

2.6.1 Generalizing to junction trees with non-uniform clique size

Generalizing the approach of this chapter to deal with non-maximal junction trees, including structures
containing cliques and separators of different sizes will be useful in both small and large sample regimes:

• In the small-sample regime, it is important for the learning algorithm to be able to output non-
maximal structures to prevent overfitting in learning parameters. The more densely connected a
structure is, the more parameters it requires to be learned, and the more prone to overfitting it is.
As the experimental results of Section 2.4.2 demonstrate, when the training data is scarce, learning
sparser structures is crucial to achieve good approximations.

• In the large-sample regime, the parameters overfitting is not a factor, as can be seen from the
results of Section 2.4.2 for large sample sizes. Much more important is the issue of learnability
of non-maximal junction trees. Even learning a maximal fattening (in the sense of Section 2.2.5)
of a non-maximal strongly connected ground truth JT would yield a high-quality approximation
in the large sample limit. Current guarantees of Theorems 27 and 28, however, only extend to
maximal junction trees. Most real-life distributions have nonmaximal structure of dependencies, so
modifying our algorithms and analysis to guarantee the learnability of nonmaximal models would
drastically extend the applicability of the guarantees in applications.

Out of two major components of our approach, namely estimating the strength of conditional dependencies
via Lemma 16 and construction of junction trees based on dynamic programming, the former can be
used for non-maximal junction trees without any modifications. Because the size of the conditioning
set Y in Lemma 16 does not depend on the treewidth of a “true” ε-junction tree (T,C, S), one can use
Lemma 16 for candidate separators of arbitrary size, including separators of different sizes for the same
distribution.

Modifying the second component of our approach, namely dynamic programming-based structure con-
struction, to allow for simultaneous handling of cliques and separators of different sizes would be much
more challenging. Although it is rather straightforward to modify the FindDecompositionGreedy proce-
dure (Alg. 2.5) to try out the available non-maximal separators and cliques during the greedy construction
of a subtree over a component (S,Q), extending the learnability guarantees of Thm. 27 to non-maximal
junction trees is likely to be difficult. Recall that requiring the “true” ε-junction trees for the ground truth
distribution to be strongly connected made it possible to guarantee that components (S,Q) for differ-
ent separators would not interfere with each other during the greedy construction of a supercomponent
decomposition. When components with separators of different sizes are available for constructing a de-
composition, we have an additional potential source of interference: components (S1, Q1) and (S2, Q2)
where S1 ⊂ S2 and Q1 and Q2 overlap, which our theoretical results do not allow for. Possible ways to
address this issue:

• Show that if there exists a strongly connected non-maximal true junction tree, the greedy approach
will still succeed, i.e. the additional component interference is guaranteed not to happen.
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• Show that for strongly connected non-maximal junction trees (T,C, S) it is possible to filter out
the separators S′ that are supersets of the true separators S ∈ S before the candidate components
list L is formed, probably using independence testing or mutual information estimation to exclude
extraneous variables and find the minimal separators.

• Replace the greedy approach with a different technique based on exact cover algorithms, for exam-
ple from Knuth (2000), and identify assumptions under which the new approach will successfully
discover the necessary decompositions even with some inter-component interference.

Finally, when learning nonmaximal JTs in the small-sample regime, it is also important to bias the al-
gorithm towards sparser structures. For example, one can score the candidate components (S,Q) in
Alg. 2.3 by regularized likelihood computed using the decomposition D(S,Q) with a regularization term
depending on the number of parameters needed for D(S,Q). Trying higher-scoring components first in
the greedy decomposition construction would then bias the learning towards sparser junction trees.

2.6.2 Generalizing to junction trees with non-uniform dependence strengths

A robust method for learning non-maximal junction trees would also present a way, although a somewhat
crude one, to deal with non-uniform strength of dependencies throughout the model and retain the global
conditional dependence strength threshold δ. One would simply set δ high enough to recover correct
partitionings QS for separators S ∈ S such that I (XS→C , XC→S | S) is the largest. Although setting δ
high enough would lead to overly fine partitionings for other separators S′ ∈ S, it should be still possible
in principle to recover a subtree of smaller treewidth involving S′ and related variables. Essentially, with a
robust enough approach for constructing non-maximal junction trees one could trade off non-uniformity in
the strength of dependencies for non-uniformity in the clique and separator sizes. Moreover, after a good
non-maximal tree has been discovered, one could selectively merge some of the non-maximal cliques to
obtain better approximation quality.

A more straightforward possible approach to learn maximal junction trees with non-uniform dependence
strengths is based on the following observation: whenever there is a non-redundant hyperedge W such
that increasing the conditional mutual information threshold δ above strengthS(W ) splits a component
(S,Q) into (S,Q1) and (S,Q2), it means that it is possible, but not required for Q1 and Q2 to be on
different sides of S. Therefore, one can keep both the connected component (S,Q) and its smaller sub-
components (S,Q1) and (S,Q2) in the list L that is used as input for FindConsistentTreeDPGreedy. The
issue with this approach is that there is an exponential number of combinations of small subcomponents
into larger ones: suppose for a certain value of threshold δ the partitioning of X-S found by LTCI is
QS = {Q1, Q2, Q3}. Then, in addition to the elementary components (S,Q1), . . . , (S,Q3), all potential
merges, namely (S,Q1Q2), (S,Q1Q3) and (S,Q2Q3) are potentially useful. In addition to exponential
growth in the number of components per separator, including all possible merge results into L will in-
evitably violate property (2.9) that forms the basis of the learnability guarantees. It follows that some
compromise is needed between including al possible components for a given separator S and conditional
mutual information threshold δ and the approach of this chapter of only including the smallest possible
components.

One possible way to select components (S,Q) for consideration by FindConsistentTreeDPGreedy is to
use only the maximal connected components of hypergraps with edges W[δ′] for δ′ ∈ [0, δ] (c.f. Equa-
tion 2.12). For example, in the setting of Fig. 2.7, we would use components (S, x1), (S, x2x3), (S, x2)
and (S, x3), but not (S, x1x3), because {x1, x3} has never been the maximal connected component of a
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hypergraph with the strengths of hyperedges above certain threshold (even though {x1, x3} was a non-
maximal connected component for δ < 0.2). Restricting the attention to maximal connected components
of W[δ′] makes property (2.9) hold for components corresponding to the same separator. However, im-
portant open questions remain: (a) whether additional strong connectivity or other assumptions are needed
to ensure property (2.9) for components with different separators and (b) whether including such a subset
of potential components into consideration will result in more broad learnability guarantees.

2.6.3 Faster heuristics

Two factors contribute to relatively large runtimes of our approach compared to the state of the art: ex-
pensive separator scoring procedure and a large number of separators and corresponding partitionings that
need to be processed both before the structure construction can begin and in the process of constructing
candidate structures.

First, computing the quality of an element of the structure (in our case, a separator S and a partitioning
QS) requires estimating distributions P (SW ) with |S| + |W | = 2k + 2 to get a model of treewidth
k, while score-based methods such as those of Elidan and Gould (2008) or Teyssier and Koller (2005)
rely on scoring only cliques of candidate models and require estimating P (C) only for |C| = k + 1.
Because representing (an estimating) a probability distribution over m discrete variables with cardinality
r has time and space complexity of O(rm), our approach has a factor of rk+1 disadvantage in scoring
complexity.

Second, because score-based approaches do not attempt to learn the “true” structure and aim instead for a
high-quality local optimum, they are able to make certain choices at the start of a run that drastically prune
the space of structures that can be “seen” by the algorithm, and do not spend any resources evaluating
structures that are inconsistent with the initial choices. For example, a local search algorithm only needs
to look at structures that are reachable from the starting point via a series of hill-climbing local steps (the
search space may be the space of actual structures, or the space of topological orderings over variables
as in Teyssier and Koller (2005), but the general point stands). In contrast to such aggressive implicit
pruning, our approach has to spend at least some computation on every possible separator.

Of the two above issues, the latter (more local perspective and implicit pruning) is much easier to address:
as algorithms 2.10 and 2.11 demonstrate, it is straightforward to use Lemma 16 to evaluate the quality
of candidate structures regardless of the exact way of generating those candidates. Moreover, it is also
straightforward to make such quality evaluation incremental for structures that are only a local step away
from an already evaluated structure (i.e., only evaluate separators S and partitionings QS that have actually
changed as compared to the starting point). An alternative approach would be to explicitly restrict the set
of candidate separators, for example by using a greedy heuristic similar to Gogate et al. (2010) to find
the separators that are connected the strongest internally (i.e., all possible ways to split S result in subsets
with high mutual information).

Although there are no obvious ways to reduce the dimensionality of probability distributions P (SW )
needed to apply Lemma 16 it may be possible to show that under certain assumptions, for example,
similar to strong connectivity, it is sufficient to only look at pairwise conditional dependencies (i.e., have
W = 2 instead of k + 2) to recover high-quality partitionings QS . If one were to check only pairwise
conditional dependencies, the total dimensionality of distributions that need to be estimated would be only
k + 2. Correspondingly, the time complexity of evaluating any individual dependence strength would be
O(rk+2), which is only a factor of r slower than evaluating the likelihood of a single clique.
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Chapter 3

Learning Evidence-Specific Structures for
Rich Tractable CRFs

The flexibility of generative probabilistic graphical models in choosing the sets of evidence and query
variable at test time is a useful feature required by many applications. However, there is also a large num-
ber of problem domains, where the set E of the evidence variables is known in advance. For example,
in computer vision problems the colors and brightness levels of the pixels are always known, and the
higher-level semantic information about the scene, such as identities and locations of the objects in an
image, has to be inferred (Ladicky et al., 2009; Kumar and Hebert, 2005). In natural language process-
ing, the words and their order in the document are known, and information such as part of speech tags
for every word (Lafferty et al., 2001), a parse tree for a sentence (Taskar et al., 2004), or the topic of the
document (Craven et al., 1998) needs to be inferred.

In applications where the set of evidence variables E is fixed and does not change at test time, the flexibil-
ity of generative models in terms of handling arbitrary evidence sets at test time is not needed. Moreover,
generative learning is fundamentally unable to exploit the extra information about the identities of the
evidence variables. Instead, discriminative learning aims to find accurate models that directly represent
the conditional distribution P (Q | E). Although discriminative models tend to be more prone to over-
fitting, they typically provide better accuracy that generative models, if given enough training data (Ng
and Jordan, 2001). Discriminative PGMs have been very successful in practice (e.g., Ladicky et al., 2009;
Lafferty et al., 2001; Vail et al., 2007).

So far, learning probabilistic graphical models in a discriminative setting was approached mainly from
the perspective of parameter learning (Lafferty et al., 2001; Schmidt et al., 2008; Sutton and McCallum,
2007). Model structure has been typically assumed to be fixed, and the aspect of inference complexity in
the resulting models has been largely ignored. In this chapter, we propose a novel approach for learning
tractable discriminative models with evidence-specific structure.

The main difference of our approach from existing algorithms is in explicit dependence of the model struc-
ture on the particular assignment E of the evidence variables E. The extra flexibility of the dependence
of the low-treewidth structure on the evidence values E lets one improve the representative power of the
resulting model beyond what is possible with any fixed tractable structure. At the same time, our approach
retains the advantages of efficient exact inference at test time. As a result (c.f. section 3.6), tractable dis-
criminative models with evidence-specific structure achieve the same accuracy as high-treewidth models
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on real-life datasets, while being an order of magnitude faster at test time (and also at train time for some
settings).

Importantly, our approach directly builds on generative structure learning, making it straightforward to
adapt many of the existing or future generative structure learning algorithms for discriminative struc-
ture learning. Moreover, because our approach affects only one step in the graphical model workflow of
Fig. 1.3b, namely structure selection, it follows that existing algorithms for all the remaining steps of the
workflow can be used without any changes. For example, both evidence selection via L1 regularization
(Andrew and Gao, 2007; Vail and Veloso, 2008) and fast approximate discriminative parameter learning
by optimizing the pseudolikelihood (Besag, 1974) can be seamlessly integrated with our evidence-specific
model structures. Finally, as we will show in detail in this chapter, evidence-specific structure learning
relies on the same input data as the standard discriminative graphical models. As a result, our approach
is attractive from the point of view of a practitioner for two reasons. First, there is no loss of general-
ity: whenever a standard discriminative probabilistic graphical model is applicable, so are our models
with evidence-specific structures. Second, for any existing application-specific “pipeline” switching to
evidence-specific model structures is almost effortless: one only needs to replace the existing structure
learning component with our approach and retain the rest of the legacy workflow.

Before proceeding to the algorithmic aspects of our approach, we review the particular PGM formalism
used in this chapter, namely log-linear models, and the key differences between generative and discrimi-
native learning.

3.1 Log-linear models, generative and discriminative weights learning

As we have discussed in section 1.1.1, the problem of learning a probabilistic graphical model, which is
equivalent to selecting factors ψα to define a factorized distribution

P (X) =
1

Z

∏
α

ψα(Xα),

is typically decomposed into structure learning - selecting the scopes Xα of the factors, and parameters
learning - choosing the actual values of ψα given the structure. The motivation behind such a decomposi-
tion is three-fold:

1. Discrete versus continuous optimization. There are few good approaches for optimization prob-
lems that have both discrete (structure) and continuous (parameters) facets. One widely used excep-
tion is optimizing parameters with a sparsity-inducing regularization term such as L1 penalty (c.f.,
Schmidt et al., 2007). On the other hand, purely discrete and purely continuous optimization are
well-studied fields, with a wealth of existing techniques that can be transferred to the PGM setting.
For example, to avoid getting trapped in local minima when searching for an optimal structures,
Teyssier and Koller (2005) used tabu lists, which is a standard trick in the search literature and not
specific to graphical models. Moreover, in practice, learning the parameters given a fixed structure
is relatively easy. As a consequence, it is convenient to use parameter learning as a subroutine for
evaluating the quality of candidate PGM structures.

2. Computational complexity. In very high-dimensional settings (for example, when every variable
represents a pixel in a high-resolution image), many structure learning approaches are prohibitively
expensive, because there are too many candidate edges (O(|X|2)) to be considered, even without
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looking at higher-order cliques. Moreover, in relational settings (Friedman et al., 1999; Richardson
and Domingos, 2006; Taskar et al., 2002; Getoor and Taskar, 2007), where every variable rep-
resents a property of a unique object and an edge represents an instance of a relation that links
different properties, every variable only occurs once in a dataset, and traditional structure learning
is altogether impossible. At the same time, there is often domain knowledge or common sense
that make it possible to define a model structure that closely reflects the nature of the domain. For
example, webpages that are connected via a hyperlink are more likely to have related content than
the ones that are not, pixels that are next to each other are more likely to belong to the same object,
and so on. For such applications, restricting oneself to learning only the parameters of the model
and constructing the structure using domain knowledge is more useful in practice than attempting
to explore a huge space of possible structures.

3. Interpretability. This is a different aspect of relying on domain knowledge for defining a model
structure. Often, practitioners are not graphical model experts, but have extensive domain knowl-
edge about the structure of direct dependencies for the distribution in question. For example, in a
power plant monitoring scenario, one can deduce the possible direct dependencies from the infor-
mation on which systems or machines are directly connected to each other. In such applications,
practitioners need to continue to operate with the existing domain-specific notions and either are
unable to interpret the learned model or have little confidence in the output of a model that does not
reflect the known underlying processes of the system in question. In such cases it is also useful to
restrict the learning only to model parameters.

Weighted features and log-linear models

One can see from paragraphs 2 and 3 that it is often useful to be able to let the user guide the selection of
the model structure. However, instead of explicitly specifying the factor scopes Xα, it has proven much
more convenient to define the models structure via defining features fα : Xα → R and have the potential
ψα be an exponent of a weighted feature:

ψα(Xα) ≡ exp{wαfα(Xα)}. (3.1)

The weight wα determines the relative scale of the feature fα.

Defining the model structure via the choice of features is at least as expressive as via the choice of fac-
tor scopes: choosing the factor scope Xα is equivalent to introducing a separate feature f (Xα)

α (Xα) =

I(Xα = Xα), with its own separate weight w(Xα)
α , for every possible assignment Xα ofXα. Importantly,

the reverse does not hold: explicitly specifying the features introduces ways to make use of certain types
of domain knowledge that are impossible to express via just the factor scopes. Consider an example fea-
ture, expressing the intuition that nearby pixels in an image are more likely to belong to the same segment
if they have similar color:

f(xi, xj , colori, colorj , loci, locj) ≡ I(xi = xj ∧ |colori − colorj | < δcolor ∧ |loci − locj | < δloc). (3.2)

Feature (3.2) illustrates two important properties that are impossible to achieve by describing the model
structure only via factor scopes:

1. Parameters dimensionality and sample complexity. Feature (3.2) enforces additional constraints
on the values of the corresponding factor. In (3.2), the constraint being enforced is that the factor
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ψα can only have values 1 or ewα for all possible assignments to {xi, xj , colori, colorj , loci, locj}.
Restricting the set of values of a factor is not the only possible type of a constraint. For example
f(xi, xj) = |xi−xj |may take infinitely many different values for real xi and xj .What is important
is that the same weight wα is used for every assignment to Xα. Because the values of a feature are
fixed, and only feature weights need to be learned, significantly reducing the weights dimensionality
of a model dramatically reduces overfitting.

2. Inference efficiency. Feature (3.2) is zero for all assignments except for some special subset (pixels
that are close by both in color space and in physical location). Boutilier et al. (1996) have shown
that whenever it is known that the feature fα (and hence the corresponding factor ψα) has the same
value for a group of assignments to Xα, the efficiency of inference can be significantly improved by
dealing with that group of assignments as a single entity instead of iterating over every individual
assignment Xα.

Moreover, for features similar to (3.2), it often holds that the values of some of the variables are
observed at test time and in many instances fα = 0 for every assignment to the unknown part ofXα.
For example, in (3.2) the colors and locations of the pixels can be directly observed from the input
image. Whenever from the available information about the values of some of the variables in X
one can guarantee that fα = 0, it follows that the factor ψα can be dropped from the model without
affecting the distribution P (X), thereby simplifying the model structure and reducing inference
complexity. In the approach of this chapter, we will heavily rely on the possibility of dropping
constant features from the model to dramatically speed up inference without affecting the resulting
distribution.

The resulting class of factorized models with factors of form (3.1) is called the log-linear models (because
the function under the exponentiation is linear in feature weights wα):

P (X | w) =
1

Z(w)
exp

{∑
α

wαfα(Xα)

}
, (3.3)

where Z(w) is the normalization constant. The exponentiation in (3.1) and (3.3) brings about significant
computational and theoretical benefits. Here, we will only rely on some basic properties of log-linear
model and refer the reader to Wainwright and Jordan (2008) for thorough theoretical treatment.

Generative parameter learning

In the log-linear model (3.3), the features are assumed to be fixed by the user, and the parameter learning
problem is equivalent to learning optimal feature weights. There exist different notions of optimality,
leading to different optimization objectives. In the most basic case, when either the nature of the questions
about the distribution P (X) is not known in advance, or it is necessary to have a single model for many
different queries, one aims to optimize the quality of approximation of the empirical distribution of the
data D by the factorized model (3.3). The standard measure of approximation quality is log-likelihood,
leading to the objective

LLH(D | w) ≡
∑

X∈D
log

(
1

Z(w) exp

{∑
α
wαfα(Xα)

})
=

∑
X∈D

log

(∑
α
wαfα(Xα)− logZ(w)

)
.

(3.4)
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Maximizing the log-likelihood LLH(D | w) is equivalent to minimizing the KL divergence from the
empirical distribution PD(X) :

KL(PD (X)||P (X | w)) =
∑
X

PD(X) log
PD(X)

P (X | w)

= −H(PD)−
∑
X

PD(X) logP (X | w)

= −H(PD)− 1

|D|
LLH(D | w).

Observe that the entropy H(PD) of the of the empirical distribution does not depend on the model param-
eters w, so feature weights w can only affect KL divergence via changing the log-likelihood.

Log-likelihood (3.4) is an attractive optimization objective not only because of the direct connection to
the KL divergence from the empirical distribution, but also because of its very convenient computational
properties in the case of log-linear models. Namely, log-likelihood (3.4) is concave in w :
Definition 38 ((Boyd and Vandenberghe, 2004), Def. 3.1.1). A function F (w) is concave if dom F (the
set of points on which F is defined) is a convex set and for every w1,w2 ∈ dom F and θ ∈ [0, 1], it holds
that

F (θw1 + (1− θ)w2) ≥ θF (w1) + (1− θ)F (w2).

Fact 39 (e.g., (Getoor and Taskar, 2007)). Log-likelihood (3.4) is concave as a function of w.

An important property of concave functions is that any local maximum w∗ is also a global maximum (see
e.g. (Boyd and Vandenberghe, 2004) for the detailed discussion). Moreover, the log-likelihood (3.4) is
continuously differentiable:
Fact 40 (e.g., (Getoor and Taskar, 2007)). For the log-likelihood (3.4), it holds that

∂LLH(D | w)

∂wα
=
∑
X∈D

(
fα(Xα)− EP (Xα|w)[fα(Xα)]

)
. (3.5)

Maximizing a concave continuously differentiable objective (equivalently, minimizing a convex objec-
tive) is a well-studied problem that lies at the basis of convex optimization (Boyd and Vandenberghe,
2004). Many highly efficient algorithms, such as L-BFGS (Liu and Nocedal, 1989) or conjugate gradient
(Fletcher and Reeves, 1964) have been developed can reliably maximize a concave continuously differen-
tiable objective F (w) and require only the ability to compute the values of F (w) and the gradient∇F (w).
Moreover, state of the art convex optimization techniques converge in just a few iterations, and correspond-
ingly require only a few objective and gradient evaluations, even when the dimensionality of parameters
w is very high. Therefore, one can efficiently find the optimal optimal parameters w∗ maximizing (3.4)
by plugging (3.4) and the gradient (3.5) into an off-the-shelf convex optimization algorithm.

The only obstacle, but a very significant one, in directly applying standard convex optimization techniques
to learning the graphical model parameters w∗ that maximize the log-likelihood (3.4) is the need to com-
pute the expected feature values EP (Xα|w)[fα(Xα)] in the gradient expression (3.5). Computing expected
features requires inference in the graphical model corresponding to the factorized distribution (3.3) with
the structure induced by the features fα : the set of edges T is such that (i − j) ∈ T ⇔ ∃fα s.t. xi, xj ∈
Xα. As we have discussed in section 1.1.1, inference in graphical models is intractable in general, except
for special cases such as low-treewidth models. Therefore, in practice one needs to choose one of the two
options:
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1. Low treewidth, exact parameters. Restrict the set of features so that the resulting graphical model
has structure with low treewidth. As a result, inference in the graphical model (3.3) and computing
feature expectationsEP (Xα|w)[fα(Xα)], the log-likelihood gradient (3.5) and the log-likelihood (3.4)
itself can be done exactly. Consequently, convex optimization techniques can be used to efficiently
find optimal feature weights w∗.

2. High treewidth, approximate parameters. Keep a more expressive high-treewidth model and use ap-
proximate inference approaches such as belief propagation (Pearl, 1988) or Gibbs sampling (Geman
and Geman, 1984) to compute the log-likelihood (3.4) and gradient (3.5). Because the objective and
gradient can only be computed approximately, the optimization with respect to feature weights w
can also be only done approximately. Moreover, approximate computation will typically break the
concavity of the log-likelihood objective, and gradient-based optimization techniques would only
find a local optimum with respect to w.

In chapter 2, we have demonstrated that low-treewidth structures, despite their smaller expressive power,
can be competitive with high-treewidth model in overall approximation accuracy because of better pa-
rameter estimation and inference accuracy. In this chapter, we will develop a way to further improve the
expressive power of low-treewidth models, by adjusting the structure depending on the observed evidence,
without sacrificing the advantages of exact inference and parameter learning.

Discriminative parameter learning

The advantage of log-likelihood (3.4) as maximization objective for learning the optimal feature weights
w for a log-linear model (3.3) is that it provides a single model with a good approximation for answering
a wide range of queries about the distribution P (X). However, often one has a priori information about
the types of queries of interest that the factorized model (3.3) will be used to answer. When information
about test time queries is available, the wide applicability of a maximum likelihood model becomes not an
advantage, but a drawback. Intuitively, because (3.3) only approximates the true distribution, optimizing
the model to have good accuracy on irrelevant queries “consumes the approximation power” that could be
used to improve accuracy on the queries that are actually important for the end user.

Consider the kind of information about test time queries that is available particularly often: the knowledge
of which variables will have their values known at test time. Typically, the set of variable whose values can
be directly observed at test time is determined by the application and is the same from query to query. For
example, in computer vision problems the colors and brightness levels of individual pixels of the images
can be observed directly, while the variables encoding the characteristics about the objects present in the
scene need to be inferred using the graphical model. In automated medical diagnosis systems, variables
such as patient’s temperature and heart rate can be measured directly, while the most likely diagnosis needs
to be inferred. Importantly, the inverse problems, such as inferring the most likely image given the objects
in the scene, or the patient’s most likely temperature given the diagnosis are typically not relevant to the
end user (and even when they are relevant, usually a different model needs to be constructed, because
the same model cannot produce results of acceptable quality for both problems). Similar settings arise in
natural text processing (Lafferty et al., 2001), heart motion abnormality detection (Schmidt et al., 2007),
and other applications. To formalize this intuition, the random variables describing the application domain
can be partitioned into two sets:

1. The variables whose values can be measured directly at test time. We will call these variable the
evidence and denote E.
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2. The variables whose values are unknown at test time and need to be inferred given the evidence. We
will call these variable the query and denote X.

Given the partitioning of all the variables of the model into query X and evidence E, it follows that
one is interested in the conditional distribution P (X | E). To approximate the conditional distribution
P (X | E), it is possible to employ a generative approach: define a generative log-linear model for
P (X,E | w) as

P (X,E | w) =
1

Z(w)
exp

{∑
α

wαfα(Xα, Eα)

}
, (3.6)

learn the parameters w∗ my maximizing the log-likelihood

LLH(D | w) =
∑

(X,E)∈D

log

(∑
α

wαfα(Xα,Eα)− logZ(w)

)
. (3.7)

with gradient

∂LLH(D | w)

∂wα
=

∑
(X,E)∈D

(
fα(Xα,Eα)− EP (Xα,Eα|w)[fα(Xα, Eα)]

)
.

and use the conditional probability formula

P (X | E,w) ≡ P (X,E | w)

P (E | w)
=

P (X,E | w)∑
X P (X, E | w)

(3.8)

to compute the conditional distribution. However, as one can see from (3.8), such a generative approach
involves modeling the evidence prior P (E) as an intermediate step. A more direct way to approximate
the conditional distribution P (X | E) is to model it directly as

P (X | E,w) =
1

Z(E,w)
exp

{∑
α

wαfα(Xα, Eα)

}
, (3.9)

and learn the parameters that maximize the conditional log-likelihood

CLLH(D | w) =
∑

(X,E)∈D

logP (X | E, w) =
∑

(X,E)∈D

(∑
α

wαfα(Xα,Eα)− logZ(E, w)

)
.(3.10)

Conditional log-likelihood (3.10) has similar properties to the log-likelihood 3.4:
Fact 41 (e.g., (Getoor and Taskar, 2007)). Conditional log-likelihood (3.10), is concave in w. Moreover,

∂ logP (X | E, w)

∂wα‘
= fα(Xα,Eα)− EP (Xα|Eα,w) [fα(Xα,Eα)] , (3.11)

where EP denotes expectation with respect to a distribution P.

It follows that the same convex optimization techniques that can be used to optimize log-likelihood (3.4)
and (3.7) can be also used to efficiently optimize the conditional log-likelihood (3.10). Learning param-
eters by optimizing conditional log-likelihood is called discriminative learning (in contrast to generative
learning using (3.7) as an objective; see Ng and Jordan (2001) for a detailed comparison of the two ap-
proaches). The structured log-linear model (3.9) with parameters w learned by optimizing (3.10) is called
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a conditional random field (CRFs). Conditional random fields were introduced by Lafferty et al. (2001)
and have been successfully applied to domains from natural text processing (Lafferty et al., 2001) to
computer vision (Saxena et al., 2008) to activity recognition (Vail et al., 2007).

Although conditional random fields (3.9) and generative log-linear models (3.6) have very similar form,
modeling the conditional distribution P (X | E,w) directly leads to several key distinctions between the
two approaches:

1. Inference complexity. At test time, inference complexity of both approaches is determined by the
treewidth of the graph over variables X induced by the features fα. The same inference complexity
follows from the fact that in both generative and discriminative approaches the concrete assignment
E to evidence variables E is known and can be directly plugged into feature fα(Xα, Eα), resulting
in a log-linear model over X with features fEα (Xα) ≡ fα(Xα,Eα).

At training time, however, inference complexity of the two approaches is very different. Given a
fixed set of weights w, for a generative model it is sufficient to perform inference once to compute
the log-likelihood LLH(D | w) and its gradient, because neither the normalization constant Z(w)
in (3.6) nor the feature expectations EP (Xα,Eα|w)[fα(Xα, Eα)] in (3.1) depend on the data. In
contrast, conditional random fields require inference to be done for every datapoint (X,E) ∈
D, because both the normalization constant Z(E,w) in (3.9) and conditional feature expectations
EP (Xα|Eα,w) [fα(Xα,Eα)] in (3.11) depend on the particular values E of evidence. However, the
complexity of an individual inference problem is also different for generative models and CRFs:
generative models require inference in a PGM over variables (X,E), while CRFs only require
inference in a model over variables X, because the values of the evidence E are fixed.

To summarize, if exact inference is used during training, generative models require solving one
inference problem of per iteration, with complexity exponential in the treewidth of a graph over
(X,E) induced by the features fα(Xα, Eα). Conditional random fields, on the other hand require
solving |D| inference problems per iteration, but every problem only has complexity exponential in
the treewidth of a graph over X induced by the features fEα (Xα) ≡ fα(Xα,Eα).

2. Representational complexity. There are two key aspects related to the representation. First, given
the same set of features fα(Xα, Eα), a discriminative model will typically yield a better approxi-
mation of the conditional distribution P (X | E) than a generative one, because the discriminative
model does not have to adjust the weights to also approximate P (E) well. However, in the small
sample regime, as Ng and Jordan (2001) have discussed, a generative model may perform better
because of smaller sample complexity: although the asymptotic accuracy of the generative model
is worse, than for a discriminative one, a generative model reaches its optimal accuracy using fewer
samples.

The second important difference between the discriminative and generative approaches in terms
of representational power is closely connected with the training complexity of the two techniques.
Recall that training a generative model requires inference in a graphical model over (X,E) with
structure defined by features fα(Xα, Eα), while for a discriminative model, one only needs to
perform inference in a “projection” of a generative model on the unknown variables X via the
features fEα (Xα). It immediately follows that in a discriminative model one can use features that
depend on evidence E in an arbitrarily complex manner, in particular any feature fα may depend
on arbitrarily large number of evidence variables, and adding those features will not increase either
training or test complexity as long as the structure of direct dependencies between the variables
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of X does not change. In other words, discriminative models let one use much more expressive
features compared to the generative models, without any significant computational penalty. The
extra freedom in choosing features often greatly simplifies the feature design.

3. Types of supported variables. Closely related to the question of feature complexity is the question
of which kinds of variables can be handled in practice by a particular model formalism. Inference
approaches for graphical models, both exact and approximate, are typically formulated for the case
of finite discrete variables (e.g., Yedidia et al., 2000) or for real-valued variables with very restricted
types of potentials, such as Gaussians1 (Weiss and Freeman, 2001b). As a result, in a generative
setting, both query and evidence variables have to be discrete or Gaussian.

In a discriminative setting, however, because one needs to deal only with a concrete known assign-
ment E to the evidence variables E, and not with all possible assignments to E, it follows that
evidence variables E can be of any type, including countably infinite discrete variables, arbitrary
real-valued variables, etc. In fact, in a discriminative setting one can disregard completely the na-
ture of the evidence variables, and consider instead the feature values fEα (Xα) to be the ultimate
inputs to the model. As will be shown in this chapter, our evidence-specific discriminative struc-
ture learning approach also only takes into account the feature values fEα (Xα) corresponding to the
observed evidence assignments E. As a result, our approach can also handle arbitrary types of evi-
dence variables, including countably infinite and arbitrary real-valued evidence, in a straightforward
manner.

The discriminative setting shares the restrictions on the type of query variables X with the genera-
tive setting. Because in a discriminative setting inference in the model over the query variablesX is
required, it follows that the query variables in both generative and discriminative settings, including
our approach of models with evidence-specific structures, have to be finite discrete or Gaussian.

To summarize, above we have discussed how one can take advantage of the knowledge of the set of
variables E that are guaranteed to be known at test time to (a) improve the approximation quality for
the conditional distribution of interest P (X | E) and (b) loosen the restrictions on the possible types of
evidence variables E via discriminative parameter learning for log-linear models. There has also been
work on learning the model structure in a discriminative way (see, for example, (Schmidt et al., 2007)
and section 3.7 for more detailed discussion). However, existing structure learning approaches can only
learn a fixed CRF structure. In other words, the information about the identities of the evidence variables
E is taken into account during structure learning. In this chapter, we make a step further and propose an
approach that takes into account not only the identities of the evidence variables, but also their values E
to learn conditional random fields with tractable structures specific to the concrete evidence assignment
that occurs at test time.

In chapter 2, we have shown that fixed-structure low-treewidth models can yield approximation quality
competitive with high-treewidth models because the former admit exact inference and parameters learning.
By adopting evidence-specific CRF structures, we further increase the representational power of low-
treewidth models, without sacrificing the advantages of exact inference and optimal feature weights over
high-treewidth CRFs.

1There is also recent work on inference for real-valued variables in a more general setting (Song et al., 2011), but it is much
less widespread in practice.
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(a) The set of all features of
a model forms a high-treewidth
graph.
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(b) For E = E(1), features f45

and f56 are identically zero, re-
sulting in a tree-structured effec-
tive model.
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(c) For E = E(2), features f25

and f23 are identically zero, re-
sulting in an effective model that
is also tree-structured, but the tree
is different from that in Fig. (b).

Figure 3.1: An example of a high-treewidth conditional random fields with low-treewidth effective struc-
ture (c.f. Definition 42). Features that are identically zero given a particular evidence assignment are
marked with dashed lines.

3.2 Evidence-specific structure for conditional random fields

Given the set F of features fα(Xα, Eα) of a conditional random field (3.9), define the set T of edges of
the CRF as

T = {(i− j) | ∃fα ∈ F s.t. xi, xj ∈ Xα}. (3.12)

Observe that, given a particular evidence valueE, the set of edges T in the CRF formulation (3.9) actually
can be viewed as a supergraph of the conditional model over X. An edge (i − j) ∈ T can be “disabled”
in the following sense: if for E = E all the edge features involving (i− j) are identically zero regardless
of the values of xr and xs,

∀fα ∈ F s.t. xi, xj ∈ Xα and ∀Xα it holds that fα(Xα,E) = 0,

then ∑
fα∈F

wαfα(Xα,E) ≡
∑

fα∈F s.t. {xi,xj}6⊆Xα

wαfα(Xα,E),

and so for evidence value E, the model (3.9) with edges T is equivalent to (3.9) with (i − j) removed
from T. The following notion of effective CRF structure, captures the extra sparsity:
Definition 42. Given the CRF model (3.9) and evidence value E = E, the effective conditional model
features F(E = E) are those that are not identically zero:

F(E = E) ≡ {fα | fα ∈ F s.t. ∃Xα s.t. fα(Xα,E) 6= 0}

and the effective structure T(E = E) is the set of edges corresponding to the effective features:

T(E = E) ≡ T(F(E = E)) = {(i− j) | ∃fα ∈ F(E) s.t. xi, xj ∈ Xα} . (3.13)

Example. Consider the conditional random field with features shown in Fig. 3.1. To reduce clutter, we
do not show graphically the dependence on the features on the evidence. Suppose the model contains
pairwise features that together form a grid graph as shown in Fig. 3.1a. The treewidth of such a grid
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graph is 2: edges (x2 − x4) and (x2 − x6) yield an example triangulation with maximum clique size of
3. However, suppose that for E = E(1), features f45 and f56 are identically zero. Then those features
can be removed from the model, resulting in a structure in Fig. 3.1b. One can see that the effective
structure corresponding to evidence value E(1) is a tree and has treewidth of 1. Similarly, for E = E(2)

Fig. 3.1c also shows an effective structure that is a tree, but a different tree from Fig. 3.1b. Suppose the
training dataset D is such that for every datapoint (X,E) it holds that either E = E(1) or E = E(2).
Then the discriminative weights learning can be done with inference cost of |D| exp(O(1)) instead of
|D| exp(O(2)), where exp(O(1)) is the complexity of exact inference in tree-structured models (i.e., with
treewidth 1) and exp(O(2)) is the complexity of exact inference in a grid-structured model with treewidth
2. The same reasoning applies to exact inference complexity at test time.

In general, the notion of effective structure is important, because it is the treewidth of effective structure
that determines inference complexity given the particular evidence assignment E. In particular, if T(E)
has low treewidth for all valuesE ofE, then inference and parameter learning using the effective structure
are tractable, even if a priori structure T has high treewidth. Unfortunately, in practice the treewidth of
T(E) is usually not much smaller than the treewidth of T. Low-treewidth effective structures are rarely
used, because treewidth is a global property of the graph (even computing treewidth is NP-complete Arn-
borg et al. (1987)), while feature design is a local process. In fact, it is the ability to learn optimal weights
for a set of mutually correlated features without first understanding the inter-feature dependencies that
is the key advantage of conditional random fields over other probabilistic graphical model formulations.
Achieving low treewidth for the effective structures requires elaborate feature design, making model con-
struction very difficult. Instead, in this work, we separate construction of low-treewidth effective structures
from feature design and weight learning, to combine the advantages of exact inference and discriminative
weights learning, high expressive power of high-treewidth models, and local feature design.

Observe that the CRF definition (3.9) can be written equivalently as

P (X | E,w) =
1

Z(E,w)
exp

{∑
α

wα × (I(fα ∈ F(E)) · fα(Xα, E))

}
. (3.14)

Even though (3.9) and (3.14) are equivalent, in (3.14) the structure of the model is explicitly encoded
as multiplicative component of the features. In addition to the feature values f, the set of effective fea-
tures and the corresponding effective structure of the model are now controlled by the indicator functions
I(·). These indicator functions provide us with a way to control the treewidth of the effective structures
independently of the features.

Traditionally, it has been assumed that the effective feature set F(E) is defined implicitly as in Def. 42:
every feature that is not identically zero for the given evidence value E is included in the conditional
model. However, such an assumption is not the only one possible. Here, we propose to add another
level of “filtering” that, given the evidence assignment E, would remove some of the nonzero features
from F(E) so as to obtain a low-treewidth model. To achieve good approximation accuracy, such a filter
cannot be arbitrary. Intuitively, we will aim to find a low-treewidth “backbone” of the most important
features for evidence E and discard the rest.

More formally, we will assume that the effective feature set F(E) is determined by some algorithm that
takes the value of E and parameters u as input. Denote F(E, u) to be the resulting effective features.
Different approaches can be used to determine which features to retain in F(E, u), we will make the
notion of the feature selecting algorithm more concrete shortly. For now, let us leave the algorithm F(·, ·)
a parameter of the model:
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Figure 3.2: An example of ESS-CRF workflow (Alg. 3.2).

Definition 43. Given a set of query variables X, evidence variables E and feature selection algorithm
F(E, u) parametrized by parameters u and feature weightsw, a conditional random field with evidence-
specific structure (ESS-CRF) defines a conditional distribution P (X | E,w, u) as follows:

P (X | E,w, u) =
1

Z(E,w, u)
exp

∑
fα∈F

wα × (I(fα ∈ F(E, u)) · fα(Xα, E))

 . (3.15)

ESS-CRFs have an important advantage over the traditional parametrization: in (3.15) the parameters u
that determine the model structure are decoupled from the feature weights w. As a result, the problem of
structure learning (i.e., optimizing u) can be decoupled from feature selection (choosing f ) and feature
weights learning (optimizing w). Such a decoupling makes it much easier to guarantee that the effective
structure of the model has low treewidth by relegating all the necessary global computation to the feature
selection algorithm F(E, u). For any fixed choice of a feature selection algorithm F(·, ·) and structure
parameters u, as long as T(F(E, u)) is guaranteed to have low treewidth for any evidence value, learning
optimal feature weightsw∗ and inference at test time can be done exactly, because Fact 41 directly extends
to feature weights w in ESS-CRFs:
Observation 44. Conditional log-likelihood logP (X | E,w, u) of ESS-CRFs (3.15) is concave in w.
Also,

∂ logP (X | E, w, u)

∂wα
= I(fα ∈ F(E, u))

(
fα(Xα,E)− EP (Xα|E,w,u) [fα(Xα,E)]

)
. (3.16)

To summarize, instead of the standard CRF workflow (Alg. 3.1), we propose ESS-CRFs (Alg. 3.2). Key
to our proposal is the requirement that the feature selection algorithm F(E, u) always returns feature sets
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Algorithm 3.1: Standard CRF approach

1 Define features fα(Xα, E), implicitly defining the high-treewidth CRF structure T.
2 Optimize weights w to maximize conditional LLH (3.10) of the training data.

Use approximate inference to compute CLLH objective (3.10) and gradient (3.11).
3 foreach E in test data do
4 Use conditional model (3.9) to define the conditional distribution P (X | E, w).

Use approximate inference to compute the marginals or the most likely assignment to X.

Algorithm 3.2: CRF with evidence-specific structures approach

1 Define features fα(X,E).
Choose feature selection alg. F(E, u) that is guaranteed to return feature sets with low treewidth of
induced structures T(F(E, u)).

2 Define or learn from data parameters u for the feature selection algorithm F(·, ·).
3 Optimize weights w to maximize conditional LLH logP (X | E, u, w) of the training data.

Use exact inference to compute CLLH objective (3.10) and gradient (3.11).
4 foreach E in test data do
5 Use conditional model (3.15) to define the conditional distribution P (X | E, w, u).

Use exact inference to compute the marginals or the most likely assignment to X.

with low treewidth of induced structures T(F(E, u)). Then, in contrast with the standard approach that
has approximations (with little, if any, guarantees on the result quality) at every stage (lines 1,2,4), in our
ESS-CRF approach only feature selection (line 1) involves an approximation.

Next, we will describe a general framework that allows how a wide range of existing structure learn-
ing algorithms to be adapted in a straightforward manner to perform feature selection F(E, u). We will
demonstrate the general approach on a concrete example of Chow-Liu algorithm (Chow and Liu, 1968),
a simple yet efficient algorithm that is guaranteed to learn the most likely tree structure in the generative
case.

3.3 Learning tractable evidence-specific structures

Observe that selecting the most important features F(E, u) given the evidence is essentially a structure
learning problem. Although in Def. 42 the evidence-specific structure set F(E, u) is the primary object
and the evidence-specific structure T(E, u) is defined in terms of F(E, u), it is easy to reverse the causal-
ity. One can define the evidence-specific set of edges T(E, u) as the basis and obtain the corresponding
set of features as

F(T) ≡ {fα | fα ∈ F and ∀xi, xj ∈ Xα it holds that (i− j) ∈ T}. (3.17)

A straightforward link with the properties in Def. 42 follows:
Observation 45. For any set of features F over (X,E) and set of edges T over X, for functions F(T)
defined in (3.17) and T(F) defined in (3.13) it holds that

∀F ′ ⊆ F it holds that F ′ ⊆ F(T(F ′)). (3.18)
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Proof. From (3.13), we have

∀fα(Xα, E) ∈ F ′ ∀xi, xj ∈ Xα it holds that (i− j) ∈ T(F ′),

and therefore from (3.17) we have fα ∈ F(T). Also, it is not necessary for F ′ and F(T(F ′)) to be the
same: there may be fβ ∈ F \F ′ such that ∀xi, xj ∈ Xβ ∃fα ∈ F ′ s.t. xi, xj ∈ Xα. Then fβ ∈ F(T(F ′))
and F ′ ⊂ F(T(F ′)).�

From (3.17) and Observation (45), one can see that the problem of optimal evidence-specific feature selec-
tion F(E, u) can be formulated as a problem of learning the optimal evidence-specific structure T(E, u).
As we have discussed in section 2.5, learning high quality structures for probabilistic graphical models is
provably hard even in the generative case, that is, when E = ∅. It follows that (a) the evidence-specific
structure selection problem is also hard and (b) it therefore desirable to take advantage on the existing
research and state of the art structure learning approaches instead of designing specialized algorithms for
evidence-specific feature selection from scratch. Thus, we adopt selecting the evidence-specific structure
T(E, u) as the primary problem and will use (45) to select the corresponding features.

Fortunately, most algorithms for learning low-treewidth generative PGMs in the generative setting can be
adapted to the problem of learning evidence-specific structure T(E, u) in a quite straightforward manner.
Such an adaptation is possible because of a common property shared by most of the low-treewidth struc-
ture learning algorithms: the only information about the joint distribution P (X) these approaches rely on
is a set of marginal distributions P (Xγ) for small subsets Xγ of X, where small means the size of the
subsets is |Xγ | = O(k) for treewidth k. For example, the approach of chapter 2 of this thesis only requires
entropies for subsets of size |Xγ | ≤ 2k+2 to compute conditional mutual information values, Karger and
Srebro (2001) only require the entropies for candidate cliques with |Xγ | ≤ k + 1, approaches of Chow
and Liu (1968) and Shahaf et al. (2009) only require the pairwise and single-variable entropies.

The problem of approximating conditional distributions P (Xγ | E) for small |Xγ | is relatively easy in
the case of discrete variables, because the number of possible joint assignments Xγ to Xγ is also small
(r|Xγ | for variable cardinality r) and therefore one can treat Xγ as a single variable xγ with a state space
equal to a Cartesian product of state spaces of individual variables xi ∈ Xγ . Moreover, the problem of
conditional density estimation P (xγ | E) for a single variable Xγ is one of the fundamental problems in
machine learning, with a number of efficient high-quality solutions available (c.f., for example, Bishop,
2007; Härdle et al., 2004).

From the observations that (a) approaches for low-treewidth structure learning in the generative case rely
only on low-dimensional marginals P (Xγ) and (b) the problem of estimating conditional distributions
P (Xγ | E) is well-studied with a variety of high-quality approaches available, we arrive at a straight-
forward approach of evidence-specific structure learning. Namely, one first learns the conditional density
estimators P̂ (Xγ | E) for every small subset Xγ ⊂ X that may be considered by a structure learning al-
gorithm. Then, given a particular assignmentE of the evidence variablesE, one computes the conditional
density estimates P̂ (Xγ | E) and runs the generative structure learning algorithm with P̂ (Xγ | E) in place
of the marginal distributions P (Xγ). This general framework is summarized in Alg. 3.3 and 3.4.

Observe that for the purposes of constructing the low-dimensional conditional density estimators P̂ (Xγ |
E) in Alg. 3.3 and 3.4, the evidence E is only available via feature values Fγ(Xγ , E), where Fγ is the
subset of F that is “fully covered” by Xγ (c.f. lines 2, 4 and 5 of Alg. 3.3). The choice of only allowing
the low-dimensional estimators to use the features included in the full ESS-CRF (3.15) is motivated not
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Algorithm 3.3: Learning low-treewidth evidence-specific structures: training
Input: Training data Dtrain, low-treewidth structure learning algorithm AS ,
conditional density estimation algorithm AD, feature set F .

1 foreach Xγ that may be used by AS do
2 Fγ = {fα ∈ F | Xα ⊆ Xγ} // The subset of features relevant to Xγ

3 Fγ(·, E) = {fα(·, E) | fα ∈ Fγ}
4 Dγ = ∪(Xγ ,E)∈Dtrain(Xγ ,Fγ(·,E))

5 uγ ← parameters from training the estimator of P (Xγ | Fγ(·, E)) using AD on dataset Dγ
6 return conditional density parameters u = ∪γ{uγ}

Algorithm 3.4: Learning low-treewidth evidence-specific structures: test time
Input: Evidence assignment E, low-treewidth structure learning algorithm AS ,
conditional density estimation algorithm AD, conditional density parameters u.

1 foreach Xγ that may be used by AS do
2 P̂ (Xγ | E)← AD(Fγ(E), uγ) // P̂ (Xγ | E) is only a function of Xγ , because E is fixed

3 T← AS(P̂ (· | E)) // Use P̂ (Xγ | E) whenever AS needs a marginal P (Xγ)
4 return F(T) per the equation (3.17)

simply by the convenience concerns. Such a reuse of features also helps avoid including features with
poor predictive power in the full model (3.15). If the features Fγ do not contain enough information to
predict Xγ well, then typically

1. The entropy of the conditional distributionP (Xγ | Fγ(E)) is large, and correspondingly likelihood-
based clique scores for Xγ used by score-based structure learning approaches will be low.

2. FeaturesFγ are also not useful in predicting the full distribution P (X), because they can only affect
P (X) via variables Xγ .

Therefore, in situations when in principle the evidence E contains enough information to predict the
values of Xγ accurately, but features Fγ are not informative, using a local conditional density estimator
P̂ (Xγ | E) that uses a better set of features internally would lead to overestimation of the importance of
Fγ in the model (3.15). Correspondingly, only using Fγ for estimating P̂ (Xγ | E) eliminates this source
of error.

Example. The process of constructing evidence-specific conditional random fields during test time, sum-
marized in Alg. 3.2, and with Alg. 3.4 as a feature selection procedure, is illustrated in Fig. 3.2. Every
column corresponds to construction of an ESS-CRF instance for a certain assignmentE of evidence vari-
ables. In the top row, the dense structure of a log-linear model with all the weighted features F . Edge
thickness encodes the strength of local dependence induced by the individual features. In the middle row
are low-treewidth evidence-specific structures T(E, u) obtained on line 3 of Alg. 3.4. Finally, in the bot-
tom row are the resulting tractable evidence-specific models (3.15). One can see that the resulting models
are obtained by using the tractable structures T(E, u) as “masks” to choose the features F(T(E, u)) per
the equation (3.17). Notice that the thickness of the retained edges in the bottom row is the same as in the
top row, which illustrates the fact that the feature selection procedure, encoded with indicator functions
in (3.15), does not adjust the feature weights.
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3.3.1 Evidence-specific Chow-Liu algorithm

Here, we illustrate the general approach of evidence-specific feature selection in Alg. 3.3 and 3.4 with a
concrete example, where the conditional density estimation algorithm AD is logistic regression (see, e.g.,
Bishop (2007) and the structure learning algorithm AS is one of Chow and Liu (1968). As we discussed
in section 1.1.1, the problem of learning optimal structure for low-treewidth models is intractable for
most formulations, but the most likely trees (i.e., models of treewidth 1) can be learned efficiently using
Chow-Liu algorithm.

For a fixed set of edges T that defines a tree over variables X, it follows from Lemma 8 that out of
the distributions that factorize as P (X) ≡ 1

Z

∏
(i,j)∈T ψij(xi, xj), the one that maximizes the likelihood

(equivalently, minimizes the KL divergence from the empirical distribution PD(X)) is the projection of
PD(X) on T :

PT,D(X) =
∏
xi∈X

PD(xi)
∏

(i−j)∈T

PD(xi, xj)

PD(xi)PD(xj)
(3.19)

and the corresponding log-likelihood is

LLH(T | D) = |D|
∑
X

PD(X) log

 ∏
xi∈X

PD(xi)
∏

(i−j)∈T

PD(xi,xj)

PD(xi)PD(xj)


= |D|

−∑
xi∈X

HD(xi) +
∑

(i−j)∈T

(HD(xi) +HD(xj)−HD(xi, xj)

 (3.20)

= |D|

−∑
xi∈X

HD(xi) +
∑

(i−j)∈T

ID(xi, xj)

 ,

where ID(xi, xj) is the mutual information between xi and xj corresponding to the empirical distribu-
tion PD(X). One can see that the tree structure T only affects the model likelihood via the component∑

(i−j)∈T ID(xi, xj), and therefore to obtain the most likely structure, Chow-Liu algorithm finds the max-
imum spanning tree of a fully connected graph over X where an edge (i− j) has weight ID(xi, xj). Max-
imum spanning tree can be found in O(|X|2) using Prim’s algorithm, resulting in an efficient structure
learning algorithm.

Having fixed the low-treewidth structure learning algorithm AS in Alg. 3.3 and 3.4 to be the Chow-Liu
algorithm, we now only need to choose a concrete conditional density estimation approach AD. We use
logistic regression, where the conditional distribution P (xi, xj | E) is defined as

P̂ (xi, xj | E, uij) =
1

Z(E, uij)
exp

 ∑
fα∈Fij

uij,αfα(Xα, E)

 . (3.21)

Observe that the set of features Fij is a subset of the features F of the full ESS-CRF model (3.15) as
defined on line 2 of Alg. 3.3. Essentially, a logistic regression model is a small CRF over only two
variables. It follows that optimal weights u∗ij for the logistic regression conditional density estimator can
be found efficiently using the same standard convex optimization techniques, for example L-BFGS (Liu
and Nocedal, 1989), that are used for parameter learning in structured log-linear models.
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It is important to notice that the conditional density estimates P̂ (xi, xj | E, uij) obtained via logistic
regression (3.21) do not fully satisfy the assumptions behind the Chow-Liu algorithm. The problem is
that two pairwise conditional distributions P̂ (xi, xj | E, uij) and P̂ (xi, xk | E, uik) may not agree on the
single-variable conditional: in general it may be that∑

xj

P̂ (xi,xj | E, uij) 6=
∑
xk

P̂ (xi,xk | E, uik). (3.22)

When the pairwise conditionals disagree on the single variable conditionals as in (3.22), replacing the
marginal distributions in (3.19) with the corresponding approximate conditionals to get

P (X | E) ∝
∏
xi∈X

P̂ (xi | E, ui)
∏

(i−j)∈T

P̂ (xi, xj | E, uij)
P̂ (xi | E, ui)P̂ (xj | E, uj)

, (3.23)

we obtain an approximate distribution P (X | E) that in general does not agree with the approximations
P̂ (· | ·) :

P (xi, xj | E) 6= P̂ (xi, xj | E, uij).

It follows in such a case that the log-likelihood (3.20) for P (X | E) does not decompose into a sum of
mutual informations of local approximations P̂ (xi, xj | E, uij), and the tree T may only be approximately
optimal. We have found in practice, however, that even without compensating for such scoring errors,
evidence-specific Chow-Liu algorithm finds high-quality structures.

Other approaches for estimating local conditionals P̂ (xi, xj | E, uij), such as kernel density estimators
(Härdle et al., 2004), may be guaranteed (depending on the available features) to return conditionals
that agree on the single-variable marginals with each other. For such mutually consistent conditional
estimates the score (3.20) can be computed exactly from the pairwise density estimates and extracting the
maximum spanning tree from edges weighted by mutual information would return an optimal structure.
Here, we chose logistic regression as the low-dimensional conditional density estimator because of its low
complexity at the test time, compared to kernel-based approaches. The optimal choice of both the low-
dimensional conditional density estimation approach and the low-treewidth structure learning algorithm
would depend on the properties of the dataset in question and on the desired balance of accuracy versus
efficiency of the concrete application.

The full ESS-CRF approach with evidence-specific Chow-Liu algorithm for feature selection is summa-
rized in Alg. 3.5 (training) and Alg. 3.6 (testing). In section 3.6, we investigate the performance of
Alg. 3.5 and Alg. 3.6 empirically and demonstrate that such an instance of ESS-CRF is able to match the
approximation accuracy of high-treewidth models, while having much lower computational cost.

3.4 Relational CRFs with evidence-specific structure

Traditional (also called propositional) PGMs are not well suited for dealing with relational data, where
every variable is an entity of some type, and entities are related to each other via different types of links.
Usually, there are relatively few entity types and link types. For example, the webpages on the Internet
are linked via hyperlinks, and social networks link people via friendship relationships. Relational data
violates the i.i.d. data assumption of traditional PGMs, and huge dimensionality of relational datasets
preclude learning meaningful propositional models. Instead, several formulations of relational PGMs
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Algorithm 3.5: ESS-CRF with conditional Chow-Liu algorithm for feature selection: training
Input: Training data D, set of features F .

1 foreach xi, xj ∈ X do // Training the low-dimensional conditional density estimators

2 define P̂ (xi, xj | E, uij) = 1
Z(E,uij)

exp

{ ∑
fα∈Fij

uij,αfα(Xα, E)

}
// Equation (3.21)

3 u∗ij ← arg max
uij

∑
(X,E)∈D

log P̂ (xi,xj | E, uij) // Convex problem, optimize with L-BFGS

4 foreach (X,E) ∈ D do // Selecting evidence-specific structures for the training data
5 foreach xi, xj ∈ X do
6 vij ← I

P̂ (xi,xj |E,u∗ij)
(xi, xj)

7 T(E,u∗)← MaxSpanningTree(∪xi,xj∈X{vij})
8 F(E,u∗) = {fα | fα ∈ F ,∀xi, xj ∈ Xα it holds that (i− j) ∈ T(E,u∗)} // Eqn. (3.17)

// Below, use equation (3.15). Tractable inference, convex problem, optimize with L-BFGS

9 w∗ ← arg max
w

∑
(X,E)∈D

1
Z(E,w,u∗) exp

{ ∑
fα∈F(E,u∗)

wαfα(Xα,E)

}
10 return (w∗,u∗)

Algorithm 3.6: ESS-CRF with conditional Chow-Liu algorithm for feature selection: test time
Input: Evidence assignment E, set of features F , logistic regression parameters u,
ESS-CRF feature weights w.

1 foreach xi, xj ∈ X do
2 vij ← I

P̂ (xi,xj |E,uij)(xi, xj)

3 T(E,u)← MaxSpanningTree(∪xi,xj∈X{vij})
4 F(E,u) = {fα | fα ∈ F , ∀xi, xj ∈ Xα it holds that (i− j) ∈ T(E,u)} // Equation (3.17)

5 return P (X | E,w,u) = 1
Z(E,w,u) exp

{ ∑
fα∈F(E,u)

wαfα(Xα,E)

}

have been proposed (Friedman et al., 1999; Richardson and Domingos, 2006; Taskar et al., 2002; Getoor
and Taskar, 2007) to work with relational data, including relational CRFs. The key property of all these
formulations is that the model is defined using a few template potentials defined on the abstract level of
variable types and replicated as necessary for concrete entities.

More concretely, in relational CRFs every variable xi is assigned a type mi out of the setM of possible
types. A binary relation R ∈ R, corresponding to a specific type of link between two variables, specifies
the types of its input arguments, and a feature fR(·, E) with feature weight wR. We will say that variables
write Xα ∈ inst(R, X) and say that Xα forms a grounding or instance of a relation R if the types of Xα

match the input types specified byR. The conditional distribution P (X | E) is then generalized from the
propositional CRF (3.9) by copying the template potentials for every grounding of every relation:

P (X | E,R, w) =
1

Z(E,w)
exp

∑
R∈R

wR ·

 ∑
Xα∈inst(R,X)

fR(Xα, E)

 (3.24)
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Observe that the only meaningful difference of the relational CRF (3.24) from the propositional formu-
lation (3.9) is that the former shares the same parameters between different edges. In (3.24), parameter
sharing is emphasized by taking the feature weight wR outside of the sum of the features corresponding to
all the groundings ofR. By accounting for parameter sharing, it is straightforward to adapt our ESS-CRF
formulation to the relational setting. We define the relational ESS-CRF conditional distribution as

P (X | E,R, w, u) =
1

Z(E,w,u)
exp

∑
R∈R

wR ·

 ∑
Xα∈inst(R,X)

I(Xα ∈ F(T(E, u))) · fR(Xα, E)

 ,

(3.25)
where the set of edges T(E, u) encodes the evidence-specific structure over X and F(T(·, ·)) is the set of
grounded features matching the structure T as defined in (3.17). Given the structure learning algorithm
T(·, ·) that is guaranteed to return low-treewidth structures for the grounded model, one can learn optimal
feature weights w∗ and perform inference at test time exactly:
Observation 46. Relational ESS-CRF log-likelihood is concave with respect to w. Moreover,

∂ logP (X | E,R, w, u)

∂wR
=

=
∑

Xα∈inst(R,X)

I(Xα ∈ F(T(E, u))) ·
(
fR(Xα,E)− EP (·|E,R,w,u) [fR(Xα,E)]

)
. (3.26)

Consider the changes one needs to make to the evidence-specific feature selection approach of Alg. 3.3
and 3.4 to adapt them to a relational setting. Because the complexity of inference in model (3.25) and
computing the gradient (3.26) is determined by the the treewidth of the grounded model, the structure
learning algorithm AS and feature selection depending on the learned structure T per the equation (3.17)
can be done with no changes at all from the propositional case. In fact, the structure learning algorithm
AS does not even need to be aware of the relational nature of the model. The only component that does
need modifications for the relational case is the conditional density estimator P̂ (Xγ | E, u), because
propositional conditional density estimators cannot be directly trained on relational data.

3.4.1 Adapting low-dimensional conditional density estimation to the relational setting

Fortunately, one can adapt any propositional conditional density estimator P̂ (Xγ | E, u) to a relational
setting by (a) sharing the parameters between estimators for conditionals with the same variable types,
in the same manner as the relational CRFs (3.25) share feature weights between different groundings of
the same relation and (b) treating the values of every subset Xγ of X with appropriate variable types as
a separate datapoint for the purposes of training. In other words, we will create a set of representative
propositional estimators for every combination of variable types that may be required by the structure
learning algorithm. Then, the conditional distribution P̂ (Xγ | E, u) can be approximated using the
corresponding propositional estimator for the types of variables in Xγ .

Formally, let K(Xγ) denote the set of types of the ground variables Xγ ⊆ X in a relational model.
One can think of K as a relation with a trivial feature (identically equal to 0). Denote |K| to be the
number of variables specified by K and YK to be a set of representative variables of K. We require that
|YK | = |K| and the types of individual variables in YK match the variable types specify by |K|. One can
see that

inst(K, YK) = {YK}.

84



Denote yK,i,γ to be the variable from YK corresponding to xi ∈ Xγ . The mapping Xγ → YK : xi →
yK,i,γ is a isomorphism. For Xβ ⊆ Xγ and the corresponding set YK,β = {yK,i,γ | xi ∈ Xβ}, denote
also Xβ(YK,β) to be the function that for every variable xi ∈ Xβ sets the value xi = yK,i,γ . Finally, for
Xβ ∈ inst(R, Xγ) denote

fK,γ,β(Yβ, E) ≡ fK,γ,β(Xβ(YK,β), E). (3.27)

Using the notation establishing the connection between the variables X of the relational model and the
representative propositional variables Y, we can now formulate, in Alg. 3.7 and 3.8, the evidence-specific
feature selection approach for the relational setting, based on the propositional case of Alg. 3.3 and 3.4.
The are only differences of Alg. 3.7 and 3.8 from their respective propositional case counterparts:

1. Whenever an approximation of the low-dimensional conditional density distribution P̂ (Xγ | E) is
needed, the relational variables Xγ are mapped into the corresponding representative propositional
variables YK(γ), and correspondingly for the features (lines 7 of Alg. 3.7 and 3 of Alg. 3.8), the
conditional approximation is computed for YK(γ) using a propositional estimator, and then mapped
back to Xγ (lines 3-5 of Alg. 3.8).

2. Every possible grounding of a relation type K in X is treated as a separate datapoint during the
training of the propositional conditional density estimators (c.f. the construction of the proposi-
tional dataset D[K] on lines 6-9 of Alg. 3.7). Although the propositional conditional density esti-
mation approaches typically assume independent identically distributed training datapoints, and a
transformation of lines 6-9, applied to a relational dataset, will not in general result in independent
datapoints, we have found such a procedure to work well in practice. Notice that the datapoints cor-
responding to Xγ such that all the features involving Xγ are identically zero are not included into
the propositional training dataset to improve efficiency. In practice, there is often a large number
of such subsets Xγ , and not having to process the corresponding datapoints during the conditional
estimators learning brings substantial speedups.

Example. To illustrate the training of representative conditional density estimators on a relational
model, consider Fig. 3.3. In Fig. 3.3a is a grounding of a model with 5 variables X of two possible
types (x1, x2 of type a and x3, x4, x5 of type b). For simplicity, the evidence is not shown. Suppose
all three possible relations are present. Then the grounding would be a fully connected graph; edge
colors in Fig. 3.3a encode the relation types for which the edges represent groundings. For example,
relation aa has only one grounding Xγ = (x1, x2), while relation bb has 3 groundings.

For a structure learning approach that only works with pairs of variables, such as Chow-Liu algo-
rithm, or that of Shahaf et al. (2009), one needs to be able to estimate the conditional probability
P̂ (·, E) for any pair of variables fromX. Here, because the relations of the model are also pairwise,
we get a one to one correspondence of a relation to a representative conditional density estimator.
However, in general a single density estimator may involve several different relations. In Fig. 3.3b-
3.3d are shown the propositional datasets (without the corresponding feature values) that Alg. 3.7
would form on lines 6-9 to train the respective propositional estimators. Every row of the tables is a
separate datapoint. Notice that because the grounded model is assumed to be a part of the training
data, the concrete values of variables xi are known and can be plugged in to form the propositional
datapoints in Fig. 3.3b-3.3d.

As one can see from (3.25) and Algs. 3.7 and 3.8, an important property of the relational setting is that the
dimensionality of parameters (w, u) only depends on the number of relations that define the model, but
does not depend on the number of variables X or the number of grounded features fα. In the relational
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Algorithm 3.7: Learning low-treewidth evidence-specific structures, relational case: training
Input: Training data Dtrain, low-treewidth structure learning algorithm AS ,
conditional density estimation algorithm AD, relations set R.

1 K = ∅ // The set of all possible variable type combinations that AS may encounter
2 foreach Xγ ∈ Dtrain that may be used by AS do
3 K = K ∪ {K(Xγ)}
4 D = ∅ // Propositional datasets to train the representative conditional density estimators
5 foreachK ∈ K do
6 foreach Xγ ∈ inst(K, Xtrain) do
7 FK = ∪R∈R ∪Xβ∈inst(R,Xγ) {fK,γ,β(YK,β, E)} // fK,γ,β is defined in (3.27)
8 if ∃fK,γ,β,Y K,β s.t. fK,γ,β(Y K,β,E) 6= 0 then
9 D[K]← D[K] ∪ (YK(Xγ),FK(·,E))

10 uK ← parameters from training the estimator of P (YK | FK(·, E)) with AD on data D[K]

11 return conditional density parameters u = ∪K{uK}

Algorithm 3.8: Learning low-treewidth evidence-specific structures, relational case: test time
Input: Evidence assignment E, low-treewidth structure learning algorithm AS ,
conditional density estimation algorithm AD, conditional density parameters u, relations set R.

1 foreach Xγ that may be used by AS do
2 K ←K(Xγ)
3 FK = ∪R∈R ∪Xβ∈inst(R,Xγ) {fK,γ,β(YK,β, E)} // Same as on line 7 of Alg. 3.7

4 P̂ (YK | E)← AD(FK(E), uK) // Representative propositional estimator
5 P̂ (Xγ | E)← P̂ (YK(Xγ) | E) // Remap the conditional back to the grounding in question

6 T← AS(P̂ (· | E)) // Use P̂ (Xγ | E) whenever AS needs a marginal P (Xγ)
7 return F(T) per the equation (3.17)

setting, one only needs to learn O(|R|) parameters, regardless of the dataset size, for both structure selec-
tion and feature weights, as opposed to O(|X|2) parameters for the propositional case. Thus, relational
ESS-CRFs are typically much less prone to overfitting than propositional ones.

3.5 Alternative approaches for learning parameters of ESS-CRFs

Although optimizing the conditional log-likelihood of a model is a well-founded objective, it also has its
limitations, and in some settings alternative objectives may be more attractive. One important limitation
of the conditional log-likelihood is the computational cost (exponential in treewidth and thus infeasible
in high-treewidth models). The other issue is that many applications, such as natural text processing
(Lafferty et al., 2001), require models for predicting only the most probable assignment to the unknown
variables X given the evidence, and do not care about the density estimation outside of the mode of
the conditional distribution. Because conditional log-likelihood assigns equal importance to the model
accuracy in both high and low probability areas, optimizing log-likelihood results in suboptimal models
from the perspective of structured prediction (c.f. Taskar et al., 2003).
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x1 x2

x3

x4 x5

(a) A grounded model with all
possible pairwise relations.
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aa

yab,1,γ yab,2,γ
x1 x3

x1 x4
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x2 x3

x2 x4

x2 x5

(c) Relation K =
ab

ybb,1,γ ybb,2,γ
x3 x4

x3 x5

x5 x3

(d) Relation K =
bb

Figure 3.3: An example of converting a grounding of a relational model to propositional datasets for
training pairwise conditional estimators in Alg. 3.7. Variables x1 and x2 have type a, variables x3, x4 and
x5 - type b. In Fig. (b)-(d) are the propositional datasets (values of representative variables yK,i,γ) that
are formed by Alg. 3.7 to train a representative pairwise conditional density estimator for every possible
combination of variable types.

For standard log-linear models, the above limitations of conditional log-likelihood have been addressed
in the literature and alternative optimization objectives (and corresponding optimization techniques) have
been introduced. In this section, we discuss how those alternative objectives, namely pseudolikelihood
(Besag, 1974) for better computational efficiency and max-margin learning (Taskar et al., 2003) for struc-
tured prediction can be used in our framework of learning discriminative models with evidence-specific
structure.

3.5.1 Pseudolikelihood learning

Computing the conditional likelihood of a log-linear model (3.9) for P (X | E,w) requires summing
over all possible values of X (to obtain the normalization constant). For variables of cardinality r, the
resulting computational complexity is O

(
r|X|

)
for the naive computation or O

(
rtreewidth

)
for a struc-

tured model. As a result, it is infeasible to compute the conditional log-likelihood and its gradient exactly
for high-treewidth models. To improve computational efficiency, Besag (1974) have proposed pseudo-
likelihood (1.5) as an approximation to the exact conditional log-likelihood. There are guarantees on the
consistency of pseudolikelihood for parameter estimation for distributions that can be expressed exactly
as a log-linear model with given features (Gidas, 1988).

The intuition behind the computational efficiency of pseudolikelihood is that after conditioning on the
Markov blanket of a variable, it is not necessary to sum over all possible assignments to the Markov
blanket. It is sufficient to only consider the actual value of the Markov blanket variables observed in
the data. In fact, this is exactly the same trick that makes it possible for discriminative models to work
with features that involve arbitrarily complicated dependencies on the evidence (see the discussion in
Section 3.1).

For concreteness, consider the case of pairwise conditional density estimation. The goal here is to learn a
model P (xi, xj | E, uij). One can see in (1.5) that for any feature fij(xi, xj , E), for any fixed assignment
xi = k and xj = m that occurs in the training data, to compute the pseudolikelihood one only needs
to evaluate fij(k, ·) and fij(·,m). If every variable xi has cardinality r, the number of required edge
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feature evaluations is 2r − 1. On the other hand, both inference and belief propagation need to evaluate
fij for every possible assignment to xi, xj , in order to compute the normalization constant for the model.
The resulting number of required feature evaluations is r2. The resulting speedup of pseudolikelihood is
approximately 1

2r, which is very large for high-cardinality variables.

More generally, when every variable xi ∈ X has at most m neighbors, then for a log-linear model P (X |
E,w) from (3.9), pseudolikelihood requires O (|X|rm) time to compute. Compared to the O

(
rtreewidth

)
complexity of computing the log-likelihood, pseudolikelihood achieves an exponential speedup in terms
of the dependence on the variables cardinality r. Together with the fact that pseudolikelihood of a log-
linear model is concave in feature weights, the computational efficiency makes pseudolikelihood a very
attractive optimization objective for learning discriminative log-linear models.

Therefore, even for tree-structured models, using pseudolikelihood instead of the exact conditional log-
likelihood can result in significant speedups (proportional to the cardinality of variables xi ∈ X) in both
the structure learning phase (optimizing parameters u on line 5 of Alg. 3.3) and feature weights w learning
phase (line 3 of Alg. 3.2). Observe that it is possible to use exactly the same gradient-based optimization
approach, such as L-BFGS, for optimizing the pseudolikelihood as for optimizing the exact log-likelihood,
because pseudolikelihood is essentially a sum of single-variable likelihoods. We will denote the ESS-CRF
approach with pseudolikelihood optimization on line 3 of Alg. 3.2 and 5 of Alg. 3.3 as PseudoLLH ESS-
CRF.

3.5.2 Max-margin feature weights learning

In a large number of applications, such as webpage classification (Taskar et al., 2002), other natural
text processing problems (Lafferty et al., 2001), semantic labeling of image regions in computer vision
(Ladicky et al., 2009) and in other domains, discriminative probabilistic models are used for the problem
of structured prediction, where one aims to find the most probable assignment to the unknown vari-
ables:

X∗E = arg max
X

P (X | E). (3.28)

The term “structured” refers to the structure of the output space that can be captured, for example, by
the low-dimensional features of a log-linear model (3.9). In structured prediction problems, although
probabilistic interpretation of a model is often a useful tool, motivating concrete approaches to optimizing
model parameters, ultimately the quality of the model is measured by its prediction accuracy. In particular,
relational datasets that we used for experiments in this chapter give rise to structured prediction problems.
One can see that if the structured prediction (3.28) is the only goal of the particular application, then one
is not actually interested in accurate approximation of the conditional distribution P (X | E) for all values
of X. The only important property of the conditional model is the accuracy of the mode. It has long been
recognized, both for single-variable prediction problems (Vapnik, 1995; Crammer and Singer, 2002), and
for structured prediction using graphical models (Taskar et al., 2003), that conditional log-likelihood (3.9)
is often not the optimal objective for learning a model if prediction of the most likely assignment is the only
purpose. An objective that is more directly related to the prediction problem is the margin between the
score of the true answerX observed in the training data and the highest scoring incorrect answer:

margin(X,E, w) ≡ 1

‖w‖

∑
fα∈F

wαfα(Xα,E)− max
X′ 6=X

∑
fα∈F

wαfα(X′α,E)

 , (3.29)
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where normalization by ‖w‖ prevents changing the margin arbitrarily by simply scaling the feature
weights w. Intuitively, maximizing the objective (3.29), proposed by Cortes and Vapnik (1995), results in
a model that gives correct predictions in the most robust manner, measured in terms of the gap to the incor-
rect answers. One can see that maximizing the margin in the case of a structured model (3.29) is infeasible:
because the number of possible assignments to X is exponential in |X|, the maximum in (3.29) is taken
over exponentially many assignments, so even computing the objective is intractable. Fortunately, for a
slightly different notion of the margin exact optimization is tractable for low-treewidth models. In (Taskar
et al., 2003), a structured margin is introduced, which takes into account the magnitude of prediction error
(in terms of Hamming distance in this example, but more general notions of error are possible):

hamming-margin(X,E, w) ≡ 1

‖w‖
min

X′ 6=X

1∑
xi∈X

I(xi 6= x′i)

∑
fα∈F

wα
(
fα(Xα,E)− fα(X′α,E)

)
.

(3.30)
Intuitively, the structured margin (3.30) normalizes the robustness of a prediction (the margin (3.29))
by the scale of possible error in predicting X ′ instead if the true assignment X to make sure that the
prediction is more robust against significant errors. Moreover, the structured margin (3.30) also has
computational benefits. As Taskar et al. (2003) have shown, maximizing (3.30) can be formulated as
a polynomial-sized quadratic program that yields the exact optimum w∗ whenever the features F induce
a low-treewidth model T(F), and approximate optimum when T(F) have high treewidth. Moreover, a
message passing similar to belief propagation can be used to solve the QP efficiently. Taskar et al. (2003)
have demonstrated that max-margin learning of log-linear models yields better accuracy than conditional
random fields with the same features on a variety of problems.

As the approach of Taskar et al. (2003) is simply a different way to learn parameters of a log-linear model,
it can be plugged in directly on line 3 of the general evidence-specific approach in Alg. 3.2, replacing the
conditional log-likelihood optimization. Because the rest of Alg. 3.2 remains unchanged, the treewidth of
the model induced by the features T(F(E, u)) is guaranteed to be small, resulting in exact optimization
of the feature weights w. We will call such an approach ESS-M3N, after the original M3Ns (max-margin
Markov networks) of Taskar et al. (2003). The quadratic program required for optimizing the margin with
respect to w is solved by the CPLEX QP solver (IBM, 2010) in our implementation.

3.6 Experiments

We have tested the ESS-CRF approach on both propositional and relational data. With the large number of
parameters needed for the propositional case, namely O(|X|2), our approach is only practical for cases of
abundant data. So our experiments with propositional data serve only to prove the concept, verifying that
ESS-CRF can successfully learn a model better than a single tree baseline. In contrast to the propositional
settings, in the relational cases the relatively low parameter space dimensionality, namelyO(|R|2), almost
eliminates the overfitting problem. As a result, on relational datasets ESS-CRF is an attractive approach in
practice. Our experiments show that ESS-CRFs match the accuracy of the state of the art high-treewidth
discriminative models on several real-life relational datasets and at the same time ESS-CRFs are an order
of magnitude more efficient during testing.
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Dataset Variables Edges
WebKB Cornell 280 509
WebKB Texas 291 524
WebKB Washington 315 634
WebKB Wisconsin 454 1419
WebKB average 335 771
Segmentation (Gould et al., 2008), average per image 228 621
Segmentation (Mori et al., 2004), average per image 205 532

Table 3.1: Characteristics of the relational datasets.
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Figure 3.4: Test log-likelihood for TEMPERATURE dataset (left) and TRAFFIC dataset (right) depending
on the amount of training data.

3.6.1 Propositional models

Here, we compare ESS-CRFs with fixed tree CRFs, where the tree structure learned by the Chow-Liu
algorithm using P (X). We used TEMPERATURE sensor network data (Deshpande et al., 2004) and
San Francisco TRAFFIC data (Krause and Guestrin, 2005), discussed in more detail in section 2.4.2.
For both datasets, 5 variables were used as evidence E and the rest as unknowns X. We have found it
useful to regularize the conditional Chow-Liu (Alg. 3.6) by only choosing at test time from the edges
that have been selected often enough during training. In Fig. 3.4, we compare conditional log-likelihood
for ESS-CRFs and fixed tree CRF models with structures learned by the Chow-Liu algorithm. For the
ESS-CRF approach, we plot results for both regularized (“ESS-CRF + structure reg.”) and unregularized
(“ESS-CRF”) structures. One can see that in the limit of plentiful data ESS-CRF does indeed outperform
the fixed tree baseline. However, because the space of available models is much larger for ESS-CRF,
overfitting becomes an important issue and careful regularization is necessary.

3.6.2 Relational data: hypertext classification

Dataset description and experimental setting

This dataset, originally from Craven et al. (1998), contains the text and links structure of webpages from
the computer science departments of four major universities. The goal is to classify every webpage into
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Figure 3.5: WebKB results. Classification errors (left) and training times (right).

one of course, faculty, student, project, or other. We have used the post-processed version
of the data from Taskar et al. (2002). Here, every webpage is represented by a random variable xi in
the probabilistic graphical model. Webpage text is represented as a bag of words, that is, single-variable
features are indicator functions:

f
(j)
i (xi) = I(webpage i contains word j).

Link structure is represented with pairwise indicator features:

fij(xi, xj) = I(webpage i links to webpage j).

The number of variables and pairwise features for WebKB is shown in Table 3.1.

For every university, the links from its webpages outside the university website have been removed. As
a result, every university is represented by a separate connected component in the model. In particular,
such connectivity enables one to learn on the subset of the data corresponding to some universities and
test on the remaining ones, without mixing the training and testing data. Following the previous work,
we trained on 3 universities and tested on the remaining one, choosing the regularization parameters via
cross-validation. All the reported results are averaged over the four possible choices of the test set.

We compare our ESS-CRF and ESS-M3N approaches to the single-node SVM classifier, discriminative
relational Markov network (i.e., a CRF with loopy graph structure) that includes pairwise features for all
of the hyperlinks (Taskar et al., 2002), and a max-margin Markov network (Taskar et al., 2003). Observe
that all of the models except for the SVM use the same set of features, making the learning and inference
algorithms the only source of the differences.

Results

WebKB results are shown in Fig. 3.5. From the comparison of the prediction accuracy (left plot), one
can see that ESS-CRF provides the same accuracy as the loopy relational Markov network (RMN) with
discriminatively learned parameters. In other words, if one optimizes the conditional log-likelihood of
the model, then discarding some of the features to obtain a tree structure does not increase error for the
WebKB dataset. On the other hand, comparing the max-margin versions of the two approaches (ESS-
M3N versus the loopy M3N), one can see that ESS-M3N does not improve on ESS-CRF, unlike the loopy
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M3N, which produces a significant improvement. It is possible that the lack of improvement is due to
the fact that ESS-M3N is not a fully max-margin approach: while feature weights w are indeed learned
to maximize the prediction margin, the structure selection parameters u in ESS-M3Ns are still learned
to maximize conditional likelihood. Constructing a fully principled maximum margin counterpart for
ESS-CRFs remains an open problem.

The main advantage of ESS-CRF approach over loopy models is in the efficiency. In the right plot of
Fig. 3.5 we compare the parameter learning times of loopy models and their evidence-specific counter-
parts. The timings for RMNs and M3Ns here are from Getoor and Taskar (2007), who obtained their
timings on a 800MHz Pentium III CPU. To make the timings directly comparable, we used a 800MHz
Pentium M CPU, which has a similar architecture to Pentium III and the same frequency. One can see
from Fig. 3.5 that ESS-CRFs are an order of magnitude faster to train than loopy models, which use dis-
criminative parameter learning with approximate inference. At the same time, ESS-M3Ns take roughly
the same time to learn as the loopy counterparts, which is likely due to the fact the generic QP solver from
the CPLEX package is unable to recognize and exploit the tree structure of the constraints. At test time,
ESS-CRFs also produce an order of magnitude speedup over loopy models: constructing an evidence-
specific model and performing exact inference in it takes on average 0.17 seconds for both ESS-CRFs and
ESS-M3Ns versus 7 seconds for loopy models.

To summarize, on WebKB dataset ESS-CRFs produce an order of magnitude speedup over high-treewidth
discriminative models and yield the same prediction accuracy. On the other hand, the max-margin learning
of weights w in the ESS-M3N approach does not produce an accuracy improvement, unlike the max-
margin parameter learning in the high-treewidth case. Moreover, in order for the ESS-M3N approach to
achieve the same speedup as ESS-CRF over the high-treewidth models one will need to apply a weight
learning algorithm, such as sequential minimal optimization (Taskar et al., 2003) or subgradient descent
(Ratliff et al., 2007), which is more specialized than the generic CPLEX QP solver and are able to exploit
the tree structure of the model for efficient optimization.

3.6.3 Relational data: image segmentation

Dataset description and experimental setting

The problem of image segmentation, or, more precisely, of annotating every pixel of an image with the
class of the object that the pixel corresponds to, is one of the fundamental problems of computer vision.
One class of state of the art approaches to image segmentation treats the pixels or superpixels (Ren and
Malik, 2003) of the image as variables in a graphical model, Pairwise or higher-order features are then
used to encode the information about co-occurrence of different object classes, the preference for the label
boundaries to occur along the lines of sharp contrast, etc. In addition to pairwise features, single-variable
features are used to encode the local appearance information in the vicinity of the (super)pixel in question.
The resulting models are conditional random fields, where query variables X denote the assignment of
labels to pixels, and evidence E encodes the information about the image, such as brightness, color,
response to Gabor filters, and so forth. CRF-based approaches achieve state of the art accuracy on standard
benchmarks (Gould et al., 2008; Ladicky et al., 2009).

Here, we compare our ESS-CRF approach, and its PseudoLLH ESS-CRF modification, to a high-treewidth
CRF model from Gould et al. (2008) and a logistic regression baseline that considers every superpixel in
isolation. Because exact log-likelihood computation is infeasible for high-treewidth CRFs, following
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(a) An example input image for the segmentation
problem.

(b) An oversegmentation into superpixels.

(c) CRF connectivity defined by the superpixels,
picture taken from Gould et al. (2008).

(d) The resulting segmentation obtained using in-
ference on the CRF model. Blue color encodes
class cow, green - grass, greenish yellow - tree.

Figure 3.6: An illustration of the workflow for image segmentation and labeling using a probabilistic
graphical model.

Gould et al. (2008) we learned feature weights by optimizing pseudolikelihood. Both ESS-CRF and the
high-treewidth model use the same features, described in detail in (Gould et al., 2008) and extracted using
an implementation from the STAIR vision library (SVL, Gould et al., 2010). We notice that although
other approaches, such as (Ladicky et al., 2009), have demonstrated better accuracy than Gould et al.
(2008), much of that difference is due to improved design of the low-level features. Similarly to the
WebKB experiments, the value of the comparison here is in eliminating all of the sources of performance
differences except for the learning and inference algorithms.

The model construction, illustrated in Fig. 3.6, follows the approach of Gould et al. (2008). First, a source
image (Fig. 3.6a) is over-segmented into superpixels (Fig. 3.6b) using an approach such as (Mori et al.,
2004). Then, for every superpixel the values of raw single-variable features based on color and texture are
extracted (Barnard et al., 2003). The raw single-variable features of the training images are then used as
inputs for a set of one-against-all AdaBoost classifiers (Schapire and Singer, 1999). The outputs of those
classifiers form the effective single-variable features used in the graphical models and in the baseline
single-variable logistic regression classifier. For every pair of superpixels that share a boundary, pairwise
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features are introduced (Fig. 3.6c). In (Gould et al., 2008), a constant feature and the coordinates of
superpixels centroids were used as the pairwise features. We have also experimenting with the extending
single-variable features to the pairwise case: for every feature f (k)

i (xi), a set of corresponding pairwise
features is introduced:

f
(km)
ij (xi, xj) = I(xj = m) · f (k)

i (xi).

The resulting PGM is relational: all the edges in the model, and across the models corresponding to dif-
ferent images, share the feature weights, as do all variables for single-variable feature weights. A set of
densely labeled images is used for learning the weights. During training, every superpixel is assigned a
label corresponding to the majority vote of it member pixels. During testing, an unknown images is seg-
mented into superpixels, the features are extracted, the relational model is grounded on those superpixels,
and probabilistic inference is used to compute the most probable labels assignment for the superpixels.
Every pixel then gets a label of its container superpixels (Fig. 3.6d). The labeling accuracy is computed
on the level of individual pixels.

For the experiments, we use the MSRC dataset (Criminisi, 2004) with 591 images and 21 different object
classes. We used the train/test split of Shotton et al. (2006), training on the 276 training images and testing
on the remaining 315 (test and validation sets in Shotton et al., 2006). We used two alternative segmen-
tations of images into superpixels: the one provided by Gould et al. (2008) (segmentation A), and the
one resulting from running the implementation of Mori et al. (2004) on the source images (segmentation
B). Both for ESS-CRF approach and for high-treewidth models, regularization was chosen using 5-fold
cross-validation. Following the recommendations in (Gould et al., 2010), for pseudolikelihood training of
the high-treewidth models, we only regularized the edge parameters, but not single-variable parameters.
We have found that regularizing single-variable parameters decreases the quality of the pseudolikelihood
results for this dataset. For ESS-CRFs, the same global regularization was used for both edge and single-
variable parameters. All the experiments were run on a 2.7GHz Intel Core 2 Duo CPU.

Results

The results for the image segmentation problem are shown in Table 3.2 (accuracy information) and Ta-
ble 3.3 (timing information) and summarized in the plots of Fig. 3.7 (accuracy) and Fig. 3.8 (timings).
One can see that

1. ESS-CRFs provide essentially the same accuracy as the high-treewidth models.

2. ESS-CRFs and their pseudolikelihood modification are an order of magnitude faster than high-
treewidth models during testing.

3. ESS-CRFs are one to two orders of magnitude slower than pseudolikelihood-based high-treewidth
models during training.

4. PseudoLLH ESS-CRFs are more than an order of magnitude faster during training than the base-
line ESS-CRFs, while capturing 85% of the accuracy gain of ESS-CRFs relative to single-variable
models.

One can see that the performance and efficiency advantage of ESS-CRFs over high-treewidth models at
test time is the same here as for the hypertext classification problem. However, unlike the WebKB dataset,
the training time of ESS-CRFs here is much longer than of high-treewidth models. This difference has two
interrelated causes: larger variable cardinality in the image segmentation setting (21 versus 5 for WebKB)
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Pixelwise classification accuracy
Centroid edge features Centroids + single-var. features on edges

SUM-PROD MAX-PROD SUM-PROD MAX-PROD
Logistic regression segm. A 0.655
Loopy CRF segm. A 0.760 0.761 0.759 0.761
ESS-CRF segm. A 0.750 0.753 0.759 0.751
PseudoLLH ESS-CRF seg. A 0.743 0.742 0.734 0.736
Logistic regression segm. B 0.658
Loopy CRF segm. B 0.752 0.747 0.751 0.749
ESS-CRF segm. B 0.750 0.749 0.761 0.752
PseudoLLH ESS-CRF seg. B 0.739 0.739 0.737 0.736
Logistic regression average 0.657
Loopy CRF average 0.756 0.754 0.755 0.755
ESS-CRF average 0.750 0.751 0.760 0.752
PseudoLLH ESS-CRF avg. 0.741 0.741 0.736 0.746

Table 3.2: Pixelwise classification accuracy results, on the image segmentation problem, for the ESS-CRF
approach with parameters learned by optimizing conditional log-likelihood (ESS-CRF) and pseudolike-
lihood (PseudoLLH ESS-CRF), a high-treewidth CRF with parameters learned using pseudolikelihood,
and a logistic regression model that only uses the single-variable features.
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Figure 3.7: Image segmentation results: pixelwise classification accuracy for a high-treewidth CRF with
parameters learned using pseudolikelihood (Loopy), ESS-CRF approach with parameters learned by op-
timizing conditional log-likelihood (ESS) and ESS-CRF approach with parameters learned using pseudo-
likelihood (PLLH ESS). SUM and MAX denote sum-product and max-product inference correspondingly.
LR is logistic regression on single-node features.
The plots correspond to the numbers in Table. 3.2.
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Training time for 276 images, seconds
Centroid edge features Centroids + single-var. features on edges

SUM-PROD MAX-PROD SUM-PROD MAX-PROD
Logistic regression segm. A 21.3
Loopy CRF segm. A 249 256 801 800
ESS-CRF segm. A 1.36 · 104 1.36 · 104 2.28 · 104 2.84 · 104

PseudoLLH ESS-CRF seg. A 903 907 2.23 · 103 2.20 · 103

Logistic regression segm. B 17.9
Loopy CRF segm. B 318 267 799 1.04 · 103

ESS-CRF segm. B 1.24 · 104 1.24 · 104 2.51 · 104 2.51 · 104

PseudoLLH ESS-CRF seg. B 694 797 1.65 · 103 1.66 · 103

Logistic regression average 19.6
Loopy CRF average 284 262 800 920
ESS-CRF average 1.30 · 104 1.30 · 104 2.40 · 104 2.68 · 104

PseudoLLH ESS-CRF avg. 799 802 1.94 · 103 1.93 · 103

Total test inference time for 315 images, seconds
Centroid edge features Centroids + single-var. features on edges

SUM-PROD MAX-PROD SUM-PROD MAX-PROD
Logistic regression segm. A 0.15
Loopy CRF segm. A 397 126 390 132
ESS-CRF segm. A 6.1 6.1 12.7 12.7
PseudoLLH ESS-CRF seg. A 6.1 6.1 12.7 12.7
Logistic regression segm. B 0.11
Loopy CRF segm. B 243 107 276 95
ESS-CRF segm. B 5.5 5.5 10.8 10.8
PseudoLLH ESS-CRF seg. B 5.5 5.5 10.8 10.8
Logistic regression average 0.13
Loopy CRF average 320 116 333 113
ESS-CRF average 5.8 5.8 11.8 11.8
PseudoLLH ESS-CRF avg. 5.8 5.8 11.8 11.8

Table 3.3: Timing results, on the image segmentation problem, for the ESS-CRF approach, PseudoLLH
ESS-CRFs, a high-treewidth CRF with parameters learned using pseudolikelihood, and a logistic regres-
sion model that only uses the single-variable features.

and the choice of objective for learning the parameters (pseudolikelihood for image segmentation versus
conditional log-likelihood for WebKB).

As we discussed in Section 3.5.1, the advantage of pseudolikelihood in computational efficiency grows
with the cardinality of the query variables. Even for tree-structured models, pseudolikelihood has an
advantage of O(r) times over the exact conditional likelihood. This O(20) performance advantage (for
the variable cardinality of 21 in the dataset) is consistent with the training time difference between ESS-
CRFs and high-treewidth pseudolikelihood-based models in the image segmentation setting.
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(b) Inference time during testing.

Figure 3.8: Train and test times for the image segmentation problem for the same approaches as in Fig-
ure 3.7. The plots correspond to the numbers in Table. 3.3. Note that both plots in this figure use a
logarithmic scale.

The inference speedups at test time further confirm that, similar to the WebKB setting, learning the param-
eters for the image segmentation CRFs using belief propagation or other approximate inference techniques
would be an order of magnitude slower than ESS-CRFs training. In other words, ESS-CRFs are in the
middle of the training complexity spectrum between pseudolikelihood and approximate inference-based
techniques, with PseudoLLH ESS-CRFs being closer to standard pseudolikelihood-based models. The
fact that PseudoLLH ESS-CRFs take longer to train that pseudolikelihood-based models with fixed struc-
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ture can be explained by two factors. First, while fixed structure models only have to learn one set of
feature weights w, PseudoLLH ESS-CRFs need to learn both weights u that define the structure of the
models, and the standard feature weights w. In other words, one can say that PseudoLLH ESS-CRFs has
to learn twice. Second, when a relational dataset is converted to a set of propositional pairwise conditional
density estimation problems (c.f. Alg. 3.7, lines 6-9), there is duplication of single-variable features for
every relation instance that a variable participates in. Processing this duplicated data during learning also
requires extra computation and increases learning complexity.

Finally, we observe that, because computation of conditional log-likelihood and gradient for every dat-
apoint (image) is independent of the other datapoints, parameter learning is an embarrassingly parallel
problem (Foster, 1995) and therefore is trivial to speed up both using multicore CPUs or multiple ma-
chines. On the other hand, although parallelizing inference based on message passing has also been
successfully done (Gonzalez et al., 2009), the issues of cache consistency, locking and communications
between the multiple machines in a cluster settings are more severe for inference. It follows that ESS-
CRFs are an especially attractive approach in interactive and real-time systems, where test time latency is
important.

3.7 Related work

The two general cornerstones of our ESS-CRF approach, namely using models that become more sparse
when evidence is instantiated, and using multiple tractable models to avoid restrictions on the expressive
power inherent to low-treewidth models, have been discussed separately in the existing literature, albeit in
a significantly different concrete form.

Evidence-specific model simplification. Parametrizing a densely connected model in such a way that
certain evidence assignments “disable” some of the dependencies that hold for the model in general is the
key idea of context-specific independence (CSI, Boutilier et al., 1996). There, the equality constraints
on the values of the factors can be exploited to obtain significant inference speedups. Moreover, using
factors that possess context-specific independence properties can also be used as a means of regularization
(desJardins et al., 2005). However, as we discussed in section 2.5, until recently, context-specific has been
treated as a local property of the potentials. As a result, models exploiting CSI admit significant inference
speedups for some evidence assignments, but do not guarantee tractable exact inference for all evidence
assignments. More recently, the work of Lowd and Domingos (2008) and Gogate et al. (2010) provided
a way to exploit CSI to learn tractable high-treewidth models. In both (Lowd and Domingos, 2008) and
(Gogate et al., 2010), the tractability is achieved by almost completely discarding the traditional PGM
graph as an instrument of analyzing complexity and focusing on the much finer structure of inference
as an arithmetic expression. However, extending these approaches for tractable high-treewidth model
learning to relational settings remains an interesting challenge.

Multiple structures to improve expressive power. The standard way to combine multiple simple models
to represent a complex distribution is to use a mixture model (c.f., for example, McLachlan and Peel, 2000),
where the resulting distribution is a convex combination of the elementary distributions corresponding to
individual simple models:

P (X) ≡
∑

model∈M
P (X | model) · P (model).
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Mixture models are a popular approach in machine learning and statistics in general. In the context
of probabilistic graphical models, probabilistic mixtures have been used both on the “coarse” level of
combining multiple simple model structures (Thiesson et al., 1998), and on the low level of representing
low-dimensional marginal distributions during inference (Sudderth et al., 2003).

A very close in spirit to the approach of this chapter is the work of Meilă and Jordan (2001), who have
shown that in a generative setting one can efficiently compute marginals for a mixture of all possible trees
over the variables X, as long as (a) all the trees share the parameters of their respective common edges
and (b) the probability of any given tree in the model factorizes into a product of edge weights, which are
also shared across all trees. The sharing of edge parameters enabled Meilă and Jordan (2001) to avoid
explicitly enumerating and marginalizing over the superexponential in |X| number of all possible trees.
Instead, marginalization operations are reduced to computing determinants of |X| × |X| matrices, which
can be done in O(|X|3) time.

Our evidence-specific CRF approach and the work of Meilă and Jordan (2001) rely on the same key idea
of different structures that share edge parameters for their common elements. At the same time, there are
also important differences. Unlike our approach, which selects a single structure for a concrete evidence
assignment, the approach of Meilă and Jordan (2001) always maintains a mixture of all possible trees. On
the one hand, retaining all the possible structures makes the model more robust. On the other hand, our
approach of choosing a single tractable structure at test time makes it possible to perform not only exact
marginalization, but also exact MAP inference efficiently, while mixture models in general, including
those of Meilă and Jordan (2001), only support marginalization.

Moreover, the approach of Meilă and Jordan (2001) is restricted to the generative setting, because it
relies in an essential way on the parametrization of tree-structured distributions with single-variable and
edge marginals (c.f. the discussion in section 2.1 of this thesis and in particular Lemma 7 for the more
general case of junction trees) and the fact that all edge marginals agree on their respective single-variable
marginals. In a discriminative setting, such a parametrization is typically not available, and one has to run
sum-product algorithm on individual structures to compute marginals, rendering the approach of Meilă
and Jordan (2001) inapplicable. It remains an open problem whether the robust mixtures over all possible
trees of Meilă and Jordan (2001) can be adapted to the discriminative setting.

Importantly, the agreement constraints on edge potentials with respect to the single-variable marginals
are not necessary for traditional mixture models, where it is feasible to process every individual mixture
component separately. Whenever the number of mixture components is moderate, parameters of a mixture
of log-linear models (3.6) can be learned in a discriminative way either using a generalized expectation
maximization (EM) framework (Salojärvi et al., 2005) or by directly optimizing the conditional likelihood
(Gunawardana et al., 2005). The extra parametrization consistency is only required by the approach of
Meilă and Jordan (2001) in order to be able to process every edge just once during inference, instead of
processing that edge separately for every possible tree containing that edge.

Learning fixed structures in a discriminative setting. Because the discriminative setting, where one is
interested in the conditional distribution P (X | E), is a generalization of the generative setting, where one
is interested in P (X), the hardness results for the problem of structure learning discussed in section 2.5
carry over from the generative to the discriminative setting. It follows that learning an optimal structure in
the discriminative setting is intractable for most formulations. Moreover, often the features of the model
are designed using specific domain knowledge, and the model structure is not learned, but simply inferred
from the scopes of the features. Among the hand-designed structures, especially popular are chains and
skip-chains (e.g., Sutton and McCallum, 2004), as well as grid-like structures, because they both encode
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intuitive information on local temporal or spacial interactions and result in compact or even tractable, in
the case of chains, models.

As it is a more general problem, structure learning in the discriminative setting poses additional diffi-
culties compared to the generative setting. The main source of the extra difficulty is the fact that the
low-dimensional conditional distributions P (Xα | E) typically cannot be accurately approximated. In
the generative case, results such as Hoeffding’s inequality (Hoeffding, 1963) guarantee that the low-
dimensional marginal distributions P (Xα) can be estimated arbitrarily accurately using only a polynomial
in the inverse accuracy 1

∆ number of samples. As a consequence, low-dimensional sufficient statistics of
the true underlying distribution, such as entropy, can also be estimated with arbitrary accuracy using only
a moderate amount of data (c.f. Theorem 30 originally from Höffgen, 1993). It follows that in the gen-
erative case, structure learning algorithms are able to use low-dimensional empirical marginals P (Xα)
as substitutes for the true low-dimensional marginals P (Xα) and still retain the accuracy guarantees on
the likelihood of candidate models (for score-based approaches) and consistency of independence testing
(for constraint-based approaches). In the discriminative setting, however, to get equivalent quality guaran-
tees, one would needs to accurately approximate the low-dimensional conditionals P (Xα | E) for every
possible value of E, which is a much harder problem than approximating P (Xα), because the evidence
is high-dimensional. As a result, in addition to the problem of selecting a high-scoring model out of the
very rich space of possible structures, in the discriminative case there is also a problem of scoring the
structures accurately. As Bradley and Guestrin (2010) have shown, even in the infinite samples limit and
for the class of distributions P (X | E) corresponding to compact log-linear conditional models (3.9), no
linear combination of low-dimensional conditional entropies yields a model score that is guaranteed have
the structure of the true PGM that produced the distribution as the global maximum. As an immediate
corollary, Bradley and Guestrin (2010) have shown that even with the ability to find the globally optimal
structure given the clique scores, optimal CRF structure learning using only local clique scores based on
conditional entropies is impossible.

The impossibility result of Bradley and Guestrin (2010) means, in particular, that the approach of this
chapter of replacing the approximate low-dimensional marginals P (Xα) with low-dimensional condition-
als P (Xα | E = E) in a score-based structure learning algorithm is only a heuristic. However, both the
empirical of this chapter, and for a related local score-based approach (Shahaf et al., 2009) indicate that
such a heuristic often works well in practice.

As a result of the accuracy breakdowns in scoring the cliques locally, more popular in the discriminative
setting are structure learning approaches based on L1 regularization (e.g., Schmidt et al., 2008), because
that do not rely on the decomposable scores in the first place. Another approach is to iteratively add
features to the model, using the optimal parameters of the current structure to approximately evaluate
feature quality. After a feature has been added, the parameters can be re-learned to both calculate the
feature quality exactly and obtain a better basis for candidate feature evaluation for the next iteration
(Torralba et al., 2004). More generally, any structure learning approach that does use decomposable
model scores or local independence tests can be adapted to the discriminative setting in a straightforward
way, but at a price of increasing the structure scoring complexity by a factor of |D|, because inference
has to be performed separately for every datapoint to score a structure. In particular, local search in the
space of tractable structures with exact conditional likelihood scoring is possible, but evaluating candidate
moves is quite expensive, especially with a large number of datapoints.
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Compatibility with other approaches for learning discriminative graphical models.

Here, we briefly review some of the existing approaches related to learning discriminative PGMs that can
be used to complement our framework of learning models with evidence-specific structure. Unlike the
literature discussed above in this section, the following research results do not present an alternative to
our approach. Rather, those existing results address the steps in the general graphical models workflow of
Fig. 1.3 that our approach does not affect, such as parameters learning and feature selection. As we will
show, these complementary approaches can be readily combined with the ESS-CRF framework of this
chapter.

Learning discriminative parameters: conditional likelihood and maximum margin. The primary fo-
cus of this chapter was on learning discriminative log-linear models with tractable evidence-specific struc-
ture that maximize the conditional log-likelihood of the data (3.10). However, conditional log-likelihood
is by no means the only possible optimization objective for our ESS-CRF framework. Depending on the
end goal of applying the model and computational efficiency requirements, other objectives can be more
suitable. For example, in section 3.5 we have shown that both pseudolikelihood (for improved efficiency)
and classification margin (for structured prediction) can be adapted to our framework. In section 3.6.3, we
have empirically demonstrated the large computational benefits and relatively small accuracy penalty of
pseudolikelihood learning for evidence-specific models. Here, we review the related work on parameter
learning more broadly and discuss how it can be integrated in our approach.

Although optimizing conditional log-likelihood (c.f. section 3.1) and max-margin parameter learning
(c.f. section 3.5.2) are distinct objectives with different motivations, Zhu and Xing (2009) have shown
that both objectives are special cases of a general unified framework. Moreover, tractable PGM structure
yields similar benefits for learning with either objective. For conditional log-likelihood, exact inference
enables the exact computation of the convex objective and its gradient, leading to efficient application
of convex optimization techniques. For max-margin objective, as Taskar et al. (2003) have shown, a
polynomial-sized QP can be formulated for learning the feature weights of a tractable log-linear model.
Also, exact max-product algorithm can be used as an oracle of the most violated constraint for learning
the max-margin weights via constraint generation (Altun et al., 2003). Finally, for an unconstrained max-
margin optimization objective and the corresponding subgradient learning approach derived by Ratliff
et al. (2007), inferring exact MAP assignment for the current parameters is needed in the inner loop of
subgradient computation. It follows that learning optimal feature weights for tractable models is quite
straightforward. Also, for subgradient-based maximum margin parameters learning (Ratliff et al., 2007),
and for constraint generation max-margin approach (Altun et al., 2003), which only require inference to
find only the most probable assignment, but not expected feature values, exact MAP inference via graph
cuts can also be used for certain types of potentials (Kolmogorov and Zabih, 2004).

For high-treewidth models, where exact inference is infeasible, one can either use approximate inference
or modify the objective so as to make computation tractable. Using approximate inference techniques,
such as belief propagation (Pearl, 1988; Yedidia et al., 2000) or Gibbs sampling (Geman and Geman,
1984) often works well in practice, but leads to a loss of convergence guarantees, either because inference
inaccuracies directly affect the (sub)gradient computation, because max-product belief propagation is
not guaranteed to converge and thus detect a violated constraint even if there is one for the constraint
generation approach (Altun et al., 2003), or because the constraints in the quadratic program designed to
describe the marginal polytope only describe an outer polytope in the high-treewidth case (Taskar et al.,
2003).
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Feature selection. Although the ability to use correlated features without explicitly modeling their respec-
tive correlations is an important advantage of discriminative models (see the discussion in Section 3.1),
in the small-sample regime overfitting remains an issue. Especially problematic are cases where it is not
known in advance which features are actually informative for describing the dependence between the ev-
idence E and the query variables X. In such cases, practitioners often include all the features that may
possibly be useful into the model and rely on the discriminative learning framework to automatically
determine which features are relevant by assigning them large weights.

To reduce overfitting, one typically maximizes a regularized conditional likelihood:

w∗ = arg maxCLLH(D | w)− h(w),

where CLLH(D | w) is the conditional log-likelihood (3.10) and h(w) is the penalty term that biases
the weights towards a uniform distribution. A particularly popular penalty term is L2 penalty: h2(w) =
λ‖w‖22,where λ > 0 is the regularization constant. The main reason for the popularity ofL2 regularization
is the fact that it keeps the overall optimization objective (3.7) not only concave, but also continuously
differentiable. As a result, it is straightforward to optimize the regularized log-likelihood using one of the
many existing gradient-based approaches. The drawback of L2 regularization, however, is that it does not
induce sparsity: every feature fα typically gets a (small) nonzero weight wα 6= 0. Therefore, when a lot
of irrelevant features are included in the model, optimizing an L2-regularized conditional likelihood will
assign every irrelevant feature a nonzero weight, resulting in additional errors in estimating the conditional
distribution P (X | E,w) using the model (3.9).

One can see that even though in the limit of plentiful data discriminative learning with an L2 will reduce
the weights of irrelevant features to zero, in the finite sample case it is desirable to perform an extra step
of feature selection (Guyon and Elisseeff, 2003) to try and filter out the irrelevant features. The problem
of feature selection has received a significant amount of attention in the literature, and highly effective
approaches have been developed (Schmidt et al., 2007; Zhu et al., 2010; Liu and Zhang, 2009).

The primary basis of most of the existing feature selection methods in log-linear models is simply to
adopt L1 regularization instead of L2. Because the L1 norm has a singularity at 0, it induces sparse model
weights at optimum. Unfortunately, the very same property of the L1 norm, namely the singularity at
origin, also makes many of the standard continuous optimization techniques, such as L-BFGS (Liu and
Nocedal, 1989) or conjugate gradient (Fletcher and Reeves, 1964), inapplicable, because with L1 regular-
ization the overall objective ceases to be continuously differentiable. As a result, alternative optimization
approaches have been developed. Two main directions are (a) interleaving the search in feature space with
optimizing the parameters for only the subset of the currently selected features (Zhu et al., 2010; Perkins
et al., 2003) and (b) gradient-based methods that are robust to the discontinuities in the derivative of the
objective (Schmidt et al., 2007; Andrew and Gao, 2007). Consistency results in terms of selecting the
right set of features have also been obtained (Liu and Zhang, 2009).

Both grafting-style and direct gradient-based approaches for feature selection via optimization of an L1-
regularized log-likelihood can be directly combined with our framework of evidence-specific structures.
Consider the two instances where feature selection is needed in more detail:

• The process of learning evidence-specific structures (Alg. 3.3 and 3.4). One can see that, given the
low-treewidth propositional structure learning algorithm AS , learning evidence-specific structures
using Alg. 3.3 and 3.4 is reduced to the problem of low-dimensional density estimation (c.f. line 3
of Alg. 3.4). Moreover, all the sparse feature selection approaches discussed in this section are
conditional density estimation algorithms operating with log-linear models. As a result, any of the
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L1-regularized feature selection procedures (Zhu et al., 2010; Schmidt et al., 2007; Andrew and
Gao, 2007) can be used directly as algorithm AD in Alg 3.3 and 3.4.

Importantly, during evidence-specific structure learning (i.e., optimizing the parameters u), feature
selection is only done for the purposes of low-dimensional density estimation. At the time of con-
structing the actual structures by Alg. 3.4, after the propositional structure learning algorithm AS
finds a low-treewidth structure T over the query variables on line 3 of Alg. 3.4, the set of features
F(T) returned on line 4 of Alg. 3.4 includes all of the original features fα ∈ F that match the
structure T, including features that were assigned zero weight, uα = 0, by Alg. AD.

For example, suppose that for an edge xi−xj there are two candidate features, namely f (1)
ij (xi, xj , E)

and f (2)
ij (xi, xj , E), andL1-regularized density estimation of the conditional distribution P (xixj | E)

resulted in weights u(1)
ij = 0.7 and u(1)

ij = 0. Suppose further that for the evidence value E = E,

that edge xi−xj belongs to the evidence-specific structure: (i− j) ∈ T, where T ≡ AS(P̂ (· | E)).
Then Alg. 3.4 would return both f (1)

ij and f (2)
ij as a part of the low-dimensional set of candidate

features F(T). Such a behavior is due to the fact that Alg. 3.4 by construction is not aware of the
nature of the conditional density estimatorAD, and in particular the sparsity of the feature weights u
induced byAD,. The treatment of the conditional density estimatorAD, as a black box has two ad-
vantages. First, estimators of other forms than log-linear models can be plugged in without changing
the rest of the approach. Second, even for sparse log-linear models, the optimal subsets of features
F for estimating the low-dimensional conditionals P (Xα | E) and the structured (according to a
low-treewidth T(E)) high-dimensional conditionals P (X | E) can be different. Committing to
only the features selected for estimating the low-dimensional conditionals would yield suboptimal
accuracy when estimating the high-dimensional conditional P (X | E) .

• The process of learning the feature weights w (line 3 of Alg. 3.7). Here, we can again plug any of
the existing feature selection procedures (Zhu et al., 2010; Schmidt et al., 2007; Andrew and Gao,
2007) by exploiting two observations. First, existing approaches for optimizing the L1-regularized
log-likelihood also work in a high-dimensional setting, as long as the log-likelihood itself can be
computed exactly. Second, the candidate features F(T) induce a low-treewidth structure over the
variables X. Third, graph treewidth is monotonic in the set of edges, so dropping some of the
features from F(T) can only decrease the induced treewidth over X.. Finally, for any candidate
feature set F ′ ⊆ F that induces a low-treewidth graph over X the log-likelihood for the high-
dimensional conditional distribution (3.15) can be computed exactly.

One can see from the above examples that the modular structure of our approach (Alg. 3.3 and 3.4) enables
one to directly plug in many of the existing and future approaches for specific subproblems in the discrim-
inative graphical models workflow. This flexibility can be used to both construct novel approaches for
learning evidence-specific models and to convert existing application-specific instances of discriminative
PGM pipelines to the evidence-specific framework.

3.8 Discussion and future work

In this section, we have described the following main contributions:

1. A novel way to exploit information about the values of variables which are observed at test time to
select the structure of discriminative probabilistic graphical models that is specific to the evidence
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values at hand. The extra flexibility in the structure choice allows one to keep the benefits of efficient
exact inference and exact parameters learning, without suffering a penalty on the expressive power
arising from committing to a single tractable model. The key advantage of our approach over
existing work on context-specific independence is the ability to guarantee low treewidth of the
resulting models, and thus tractability of exact inference, not only in a propositional, but also in a
relational setting.

Moreover, our approach (a) relies on exactly the same input data as traditional graphical models
at both training and testing time, and (b) only affects the structure selection step of the general
graphical models workflow of Fig. 1.3. As a result, practitioners not only can adapt ESS-CRFs
for any setting where a standard CRF is currently used (i.e., there is no loss of generality with
respect to traditional PGMs), but also such an adaptation requires very little effort: one only needs
to replace the structure selection step of the full pipeline with our approach and retain all the other
steps without any changes. In particular, any feature selection and parameter learning approaches
can be used with our ESS models in a transparent manner.

2. A general framework that allows one to leverage the existing work on learning the structure of
propositional tractable models and low-dimensional conditional density estimation to construct al-
gorithms for learning discriminative models with evidence-specific structure.

3. An extension of the general framework for learning discriminative models with evidence-specific
structure to the relational setting. Importantly, with our generalization, one can still use propo-
sitional algorithms for structure learning and low-dimensional conditional density estimation as
building blocks. Structure learning in the propositional setting is much more extensively studied
compared to the relational setting. Therefore, keeping the ability to rely on propositional algorithms
significantly expands the range of existing approaches one can build upon.

4. An empirical evaluation demonstrating that in the relational setting our approach has equal or better
accuracy than the state of the art algorithms for densely connected models, and at the same time is
much more efficient computationally.

Here, we outline the possible directions for future work.

Experiments with more general thin junction trees. Our framework of Alg. 3.7 and 3.8 (for the rela-
tional setting) allows, in principle, a wide range of existing techniques for learning thin junction trees to
be used for evidence-specific structure selection. In particular, the approach of chapter 2 of this thesis,
and algorithms of Shahaf et al. (2009), Karger and Srebro (2001), Elidan and Gould (2008), and meth-
ods based on local search in the space of thin junction trees can all be plugged into Alg. 3.8 to yield a
concrete evidence-specific structure learning approach. In practice, however, one will have to make a
choice carefully, to achieve an optimal tradeoff of computational efficiency, expressive power, and sample
complexity.

In our experiments, we have used the Chow-Liu algorithm, which is one of the most efficient and robust
approaches, but only works with a class of models with rather limited expressive power. Potentially, using
thin junction trees with higher treewidth may bring better approximation accuracy because of their ability
to capture a richer set of dependencies. However, because the dimensionality of the parameters and the
space of possible structures grow quickly with the treewidth, careful regularization may be needed with
higher treewidth junction trees. The experiments of section 3.6.1 with the propositional data, where the
absence of parameter sharing between different edges leads to high dimensionality of parameters, illus-
trate that sample complexity of ESS-CRFs can be quite high in the absence of effective regularization. One
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possible regularization technique is to restrict the set of structure elements (such as junction tree cliques)
to those that were selected frequently enough during training - the approach we took in the experiments of
section 3.6.1. Another alternative is to bias towards the prior distribution P̂ (Xγ) the conditional density
estimates P̂ (Xγ | E, u) that are used to score cliques Xγ by the structure learning approach. Such a reg-
ularization of the conditional density estimates will implicitly regularize the evidence specific structures
by only selecting cliques Xγ absent from the generative model structure if their conditional distribution
given E is sufficiently different from the prior.

A theoretical analysis of the feature importance scores. Our procedure of evidence-specific feature
selection in Alg. 3.3 and 3.4, based on using existing algorithms for a generative setting and substitute
local conditional models P̂ (Xγ | E, uγ) for the marginals P (Xγ) needed by structure learning algorithms
is in general a heuristic. However, because of the connections to the generative structure learning, there is
a natural special case when our heuristic is optimal. Namely, when the local conditional models P̂ (Xγ |
E, uγ) are perfect, meaning that true conditional probabilities are recovered: P̂ (Xγ | E, uγ) = P (Xγ |
E), it follows that the optimal evidence-specific structure will be recovered (up to the quality guarantees
of the underlying structure learning algorithm).

However, with finite datasets and the need for regularization, the local models are typically imperfect.
Moreover, as we discussed in section 3.3.1, for the same evidence value E the local estimates P̂ (Xγ |
E, uγ) and P̂ (Xβ | E, uβ) may not agree on the conditional distributions P̂ (Xγ ∩Xγ | E), violating the
assumption that most structure learning algorithm for the generative case rely on and introducing another
source of suboptimality for evidence-specific structures. It is therefore desirable to both characterize the
difference between the log-likelihood of a structure T calculated using the local approximate conditionals
P̂ (Xγ | E, uγ) and the log-likelihood of a full discriminative model (3.15) with the same structure.

Evidence-specific max-margin models. As one can see from the experiments in section 3.6.2, adopting
the max-margin objective to learn the feature weights w instead of optimizing conditional log-likelihood
of the model (3.15) has not resulted in accuracy improvements for our evidence-specific approach. Such
behavior is in sharp contrast with the results of Taskar et al. (2003) and Zhu and Xing (2009) for high-
treewidth models with fixed structure, where weights learned by maximizing the margin resulted in sig-
nificantly better prediction accuracy than weights optimizing the conditional log-likelihood (i.e., the CRF
weights). The reason for such a discrepancy remains an open question that will have to be resolved in order
to realize the gains in computational efficiency of our evidence-specific approach compared to the high-
treewidth max-margin models without sacrificing accuracy. Here, we list some of the possible hypothesis
that need to be checked:

1. The representational power of evidence-specific models of treewidth 1, which were used in all
our experiments is inherently limited, and feature weights learned via maximizing conditional log-
likelihood achieve the optimal prediction accuracy of evidence-specific trees. If true, this hypothesis
implies that switching to junction trees with higher treewidth, by replacing Chow-Liu algorithm as
parameter AS of Alg. 3.3 and 3.4 by, for example, the approach of Shahaf et al. (2009) will lead
to larger improvements in accuracy for max-margin feature weights compared to feature weights
maximizing the conditional log-likelihood.

2. In addition to feature weights learning, the feature selection procedure (algorithmAS in the notation
of Alg.. 3.3 and 3.4) also needs to be adjusted to achieve the benefits of max-margin learning.
Currently, the general framework for evidence-specific feature selection of Alg. 3.3 and 3.4 adapts
structure learning algorithms that aim to maximize the likelihood of a structure in the generative
setting. By replacing the marginals P (Xγ) with approximate conditionals P̂ (Xγ | E), we arrive at
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approaches that aim to maximize the approximate conditional likelihood of a structure for E = E.

Observe that replacing the conditional likelihood with structured margin for feature weight learning
on line 3 of Alg. 3.2 does not affect the structure selection stage on line 2, which still tries to
maximize structure likelihood. It follows that in the ESS-CRF approach both structure selection
and weights learning aim to maximize the same objective (conditional likelihood), in the current
ESS-M3N approach the two stages aim to maximize different objectives. It is possible that such
a mismatch of objectives on different stages leads to a penalty on the resulting accuracy. If the
conflict of objectives is a problem, it should be possible to achieve higher accuracy with max-
margin weights learning with a better evidence-specific feature selection approach, even keeping
the space of evidence-specific structures to junction trees of treewidth 1 as in our experiments.

Unfortunately, to our knowledge, there are no approaches for learning the evidence-independent
structure of max-margin linear models that either rely on the low-dimensional conditionals P̂ (Xγ |
E) or guarantee low treewidth of the resulting structure. Therefore the general framework of
Alg. 3.3 and 3.4 that works for the conditional random fields cannot readily accommodate ex-
isting algorithm AS for learning the structure of the max-margin models for the lack of suitable
algorithm. The only approach we are aware of is L1 regularization of weights in the full max-
margin QP of Taskar et al. (2003), which lacks both local structure and treewidth guarantees that
our current evidence-specific framework needs. Therefore, a suitable approach for learning the
structure of max-margin linear models will need to be developed, probably using the generaliza-
tions of max-margin models by Zhu and Xing (2009), although they also focus on sparsity of the
resulting structures, but not treewidth.

An alternative, more heuristic, approach to structure selection for max-margin models would be to
retain as basic components the structure learning algorithms that aim to maximize the likelihood
of the generative structure, such as Chow-Liu algorithm, but change the junction tree clique score
to better relate to the max-margin objective of the full ESS-CRF model. For example, instead of
optimizing the parameters u of the local conditional density estimators P̂Xγ | E, uγ to maximize
the likelihood of the local models, one can aim to maximize the margin of the local models. More-
over, instead of clique likelihood or mutual information between clique variables, one can use the
margin of the locally optimal assignment X∗γ(E, u) = arg maxXγ P̂ (Xγ | E, uγ) as the clique
quality measure. Other choices of local scores and models are possible. Moreover, any theoretical
advances linking the clique scores computed via local models P̂ (Xγ | E, uγ) with the benefits of
having the clique Xγ in the full evidence-specific model (3.15) for the conditional log-likelihood
setting, will likely also yield insights into appropriate clique scores for the max-margin setting.

Generalizing to other classes of tractable models. The evidence-specific CRF approach of this chapter
relies in a substantial way on low-treewidth models to achieve efficient exact inference and parameter
learning. Low treewidth models are not the only model class where exact inference is tractable. In
some high-treewidth models exact inference can be also done efficiently by exploiting context-specific
independence (Boutilier et al., 1996) and determinism. Formulations of high-treewidth PGMs where
inference is tractable include AND/OR trees (Dechter and Mateescu, 2007), also known as feature trees
(Gogate et al., 2010), and arithmetic circuits (Lowd and Domingos, 2008). There exist approaches for
learning the structure of high-treewidth tractable models in the generative propositional setting: Gogate
et al. (2010) and Lowd and Domingos (2008) have shown that such models can be competitive with low-
treewidth models both in approximation accuracy and computational efficiency. It is therefore desirable
to extend our evidence-specific approach to support tractable high-treewidth models. However, such a
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generalization is not straightforward.

The key difference of tractable high-treewidth tractable models from thin junction trees is that high-
treewidth models exploit the fine-grained structure of values within a feature to achieve tractability. For
example, while in a thin junction tree a feature fγ(Xγ) can be an arbitrary function of Xγ , in a feature
tree fγ(Xγ) has to have a form

fγ(Xγ) = f (1)
γ (X(1)

γ )× · · · × f (m)
γ (X(m)

γ ) such that X(i)
γ ∩X(j)

γ = ∅. (3.31)

As a result, algorithms that learn high treewidth tractable structures, such as that of Gogate et al. (2010),
are able to work with features over large scopes Xγ in an efficient way by exploiting the within-feature
structure.

To guarantee exact tractable inference in a high-treewidth model, in addition to introducing the structure
within individual features such as (3.31), it is also necessary to place joint constraints on the structure
of different features. For instance, in feature trees (Gogate et al., 2010), the subfeatures f (i)

γ (X
(i)
γ ) of

all features fγ(Xγ) have to form a hierarchy such that any two features can only share the top several
subfeatures of a hierarchy:

∀fγ(Xγ), fβ(Xβ) it holds that ∃m s.t. Xγ ∩Xβ = ∪mi=1X
(i)
γ ) and f (i)

γ (X(i)
γ ) = f

(i)
β (X

(i)
β ) for i = 1,m.

In other words, once two features diverge going down the subfeature hierarchy, they cannot share any
lower-level subfeatures. As a result of the restrictions necessary to maintain tractability in high-treewidth
models, features over larger sets of variables Xγ may be needed to represent a given distribution. For
example, to represent in a generative setting a distribution that factorizes according to a junction tree of
treewidth k, a feature tree with features over up to k log |X| variables, i.e. a factor of log |X| larger than the
junction tree features, may be needed (Dechter and Mateescu, 2007). Even though efficient exact inference
is available with high-treewidth tractable models during both training and testing, learning a weight for
every high-dimensional composite feature, as ESS-CRF approach of this chapter does for the features of
low-treewidth models, is certain to result in overfitting, because the number of possible high-dimensional
features grows quickly with the feature size. A similar kind of problem arises with learning arithmetic
circuits (Lowd and Domingos, 2008), where the leaves of an arithmetic circuit tree are weighted, but
individual edges are the equivalent of elementary features.

There are several ways to reduce overfitting with high-treewidth evidence-specific models. First, one can
restrict the maximum size of composite features (3.31), which would automatically reduce the feature
space. Second, one can restrict the set of features that are considered at test time to only those features
that occurred often enough during training time, analogously to our approach in the experiments on propo-
sitional data in section 3.6.1. Such a restriction will also require modifications to the feature tree learning
algorithm (Gogate et al., 2010) to work in the restricted feature space. Finally, a more challenging, but po-
tentially promising, direction is to learn the weights of subfeatures f (i)

γ (X
(i)
γ ) and combine the component

weights to obtain the weight for the composite feature fγ(Xγ). Such an approach would automatically re-
duce overfitting of the evidence-specific approach to the level of low-treewidth ESS models, as long as the
scope size |X(i)

γ | of subfeatures f (i)
γ (X

(i)
γ ) is bounded. However, it remains an open question whether an

accurate decomposition of the optimal weight for fγ(Xγ) into subfeature weights exists in a discriminative
setting, and what form such a decomposition should take.
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Part II

Query-Specific Inference in
High-Treewidth Graphical Models
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Chapter 4

Query-Specific Belief Propagation

In part I of this thesis, we have argued that learning high-quality low-treewidth probabilistic graphical
models from data in both generative and discriminative settings is often preferable to working with high
treewidth models that require approximate inference. However, in some applications one cannot avoid
using a high-treewidth model.

One setting where a high-treewidth may have higher accuracy is when individual features of the model
are not very informative in isolation, but taken jointly, the connectivity pattern of the model may re-
veal more information. For example, in the WebKB hypertext classification model (c.f. section 3.6.2)
every hyperlink is represented with a simple binary feature, making every link equally important from the
perspective of the model. The ability of a high-treewidth model to extract additional information from
the connectivity pattern of equally important links is a possible, although not certain, explanation of the
accuracy advantage of high-treewidth max-margin Markov networks over our low-treewidth ESS-CRF
approach.

Another setting where high-treewidth models are preferable are those where the features simply encode
the precisely known laws of local interaction between the variables. For example, in a protein fold-
ing problem (Yanover and Weiss, 2002), the features simply encode the laws of physics describing the
electromagnetic interactions between atoms (in fact, for this problem no learning is necessary, and only
probabilistic inference at test time is required). In graphical models for electric circuit diagnosis (Borgelt
and Kruse, 2005), the model structure has to reflect the structure of the circuit in order for the results to
be interpretable.

In this chapter, we address the problem of probabilistic inference in high-treewidth graphical models,
which is useful for the cases when learning an alternative model with tractable structure is impossible or
undesirable. More specifically, we consider the setting where the user is only interested in a small number
of the unknown variables Q ∈ X and the rest of X are nuisance variables. Applications with a large
number of nuisance variables occur quite often. For example, in activity recognition in a smart home
(Pentney et al., 2006), to decide when to turn on the air conditioning, the system may be interested only
in the likely time for the person to arrive home. The exact action sequences leading to the person arriving
home then need to be marginalized out. For patient monitoring (Beinlich et al., 1988), the only query
variable may be whether the patient needs immediate attention of the medical staff, and all the possible
complications that require a nurse to intervene need to be marginalized out.

For the setting where a only relatively small set of variables of a PGM is of immediate interest to the
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user, we build on a state of the art residual belief propagation algorithm (RBP, Elidan et al., 2006) for
approximate inference. We introduce an approach that focuses the computation on the areas of the model
that have large influence on the query marginals. Our query-specific inference approach takes into ac-
count both the structure and parameters of the model to adjust the computation prioritization, resulting in
significantly faster convergence.

4.1 Factor Graphs and Belief Propagation

We briefly review a particular formalism of probabilistic graphical models, namely factor graphs (for
details, see Koller and Friedman, 2009), and loopy belief propagation, an approximate inference algo-
rithm.

Probabilistic graphical models represent factorized probability distributions, where the distributionP (X)
over a large set of random variables X is decomposed into a product of low-dimensional functions:

P (X) =
1

Z

∏
ψα∈F

ψα(Xα), (4.1)

where every Xα ⊆ X is a subset of X (typically, |Xα| � |X|), ψα ≥ 0 are factors and Z is the nor-
malization constant. A probabilistic graphical model is a combination of the factorized distribution (4.1)
and graphical structure induced by the factors ψα. Several alternative PGM formulations exist, depending
on the type of graphs being used. Here, we use factor graphs: given the factorized distribution (4.1),
the corresponding factor graph is a bipartite graph ({X,F},T) with one node for every factor ψα ∈ F
and every random variable xi ∈ X, and an undirected edge (α − i) for every pair of ψα and xi such that
xi ∈ Xα (see Fig. 4.1a for an example).

Probabilistic inference problem. The central problem of this chapter is, given the factor graph G and
query variables Q to find the marginal distribution P (Q). Unfortunately, this problem of probabilistic
inference is known to be #P-complete in the exact case and NP-hard in the approximate case (Roth, 1996).
In practice, approximate inference algorithms that allow for moderate computational complexity, such
as belief propagation (Pearl, 1988), Gibbs sampling (Geman and Geman, 1984) and variational infer-
ence (Wainwright and Jordan, 2008) are typically used. Because approximate inference is intractable in
the worst case, these algorithms typically lack meaningful guarantees on the results quality. However,
in practice approximate inference algorithms often produce quite accurate results, which makes these ap-
proaches very useful. One can see that approximate inference approaches can be improved in two different
directions: increasing the quality of the results at convergence (possibly at the expense of computational
complexity) and speeding up the convergence itself while keeping the end results the same. In this chap-
ter, we focus on the latter objective and address the problem of improving the convergence speed of belief
propagation.

Loopy belief propagation (LBP), first proposed by Pearl (1988), is an algorithm for approximate infer-
ence in factor graphs, which has been very successful in practice (McEliece et al., 1998; Yedidia et al.,
2003). Let Γα be the set of neighbors of node α in a factor graph. LBP is an iterative algorithm that
repeatedly updates the messages mα−i from factors ψα to their respective variables xi until convergence,
as follows:

m
(t+1)
α−i (xi) =

∑
Xα\i

ψα (Xα\i, xi
)
×

∏
j∈Γα\i

P̃(t) (xj)

m
(t)
α−j(xj)

 , (4.2)
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Figure 4.1: An example factor graph (a); A simple path π = (β1−i1−· · ·−βk−q) (solid black) in a factor
graph (b)-(e). Thick edges indicate messages that become functions of νβ1−i1 after the corresponding
number of LBP updates.

where P̃ (·) , called beliefs, are the estimates of single-variable marginals defined as

P̃ (xi) ∝
∏
α∈Γi

mα−i(xi). (4.3)

We will denote as m the vector of messages mα−i corresponding to all the edges (α − i) ∈ T. One can
interpretmα−i as an element ofmwith index (α−i). Loopy BP approximates the joint distribution P (X)
as a product of single-variable marginals: P̃ (X) ≡

∏
xi∈X P̃ (xi) .

LBP is guaranteed to find an accurate solution in some special cases: graphs without cycles (converges to
the exact marginals; see Weiss, 2000), graphs with a single cycle and Gaussian models (always converges
on single-cycle models, finds the true maximum a posteriori assignment whenever messages m converge;
see Weiss and Freeman, 2001b). For general factor graphs, however, there are no guarantees. Although
at least one fixed point m∗ for BP updates is guaranteed to exist for models with strictly positive factors
(Yedidia et al., 2005) the fixed point beliefs may be arbitrary far from the true marginals. Moreover, a
model may have multiple BP fixed points. Finally, the convergence to any fixed point is not guaranteed as
fixed points may be unstable (Mooij and Kappen, 2005).

Despite the theoretical limitations, LBP beliefs are often successfully used instead of true marginals in
applications (Yanover and Weiss, 2002). In this chapter, we assume that LBP converges and do not address
the question of quality of the resulting beliefs. Instead, we are concerned with speeding up the convergence
of LBP: our goal is to recover P̃ (Q) at a fixed point m∗ of LBP at the minimal computation cost. While
this is different from recovering the true query marginal P (Q), the fact that LBP fixed point beliefs
have adequate accuracy for many applications makes improving LBP efficiency an important problem by
itself. In the discussion, we will assume that the fixed point m∗ is unique, but nothing in the proposed
algorithms depends on the uniqueness of the fixed point - our approach is applicable in practice to arbitrary
models.

Log-space messages and updates. It is often more convenient to analyze the behavior of belief propaga-
tion if the messages are represented in the logarithmic space:

να−i ≡ logmα−i.
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Same as with the vector m of all messages, we will denote as ν the vector of logarithms of all messages.
Belief propagation updates (4.2) and single-variable belief computation (4.3) can be directly applied to
log-space messages ν as

ν
(t+1)
α−i (xi) = log

∑
Xα\i

ψα (Xα\i, xi
)

exp
∑

j∈Γα\i

(
Υ̃(t) (xj)− ν(t)

α−j(xj)
) , (4.4)

where Υ̃ (·) is the log-belief

Υ̃ (xi) ≡ log P̃ (xi) =
∑
α∈Γi

να−i(xi)− log
∑
xi

exp
∑
α∈Γi

να−i(xi). (4.5)

Residual belief propagation (RBP). An effective and popular technique for improving the computational
efficiency of belief propagation is updates scheduling. In the standard LBP, on every iteration all the
messages are recomputed and updated per the Equation 4.4. However, often many messages change very
little between two iterations. Updating such messages on every iteration wastes computation. To improve
efficiency, residual BP (Elidan et al., 2006) updates only one message per iteration, namely the one that
would have changed the most under LBP updates.

More concretely, RBP maintains two messages for every edge, a current message ν(t)
α−j and a new message,

which is the result of a BP update (4.4) given all the other current messages:

ν̂
(t)
α−i(xi) = log

∑
Xα\i

ψα (Xα\i, xi
)

exp
∑

j∈Γα\i

(
Υ̃(t) (xj)− ν(t)

α−j(xj)
) . (4.6)

The difference between the old and new messages is called the residual rα−i :

rα−i ≡ ‖ν̂(t)
α−i − ν

(t)
α−i‖. (4.7)

On iteration t + 1, RBP updates only the message with the largest residual. That is ν(t+1)
α−i = ν̂

(t)
α−i is set

for the edge (α − i) = arg max(α−i)∈T rα−i and the old message ν(t+1)
β−j = ν

(t)
β−j is kept for all the other

edges. After updating να−i, the new messages ν̂(t+1)
β−j only have to be recomputed if β ∈ Γi.

Intuitively, by always updating the message with the largest residual, RBP achieves larger change in beliefs
per unit computation and thus traces the trajectory towards the fixed point in the beliefs space faster than
the standard loopy BP. In this chapter, we add the notion of query to residual BP so as to concentrate the
computation on the parts of the model that are more important to the query and thereby further increase
computational efficiency.

4.2 Measuring Importance of Messages to the Query

In this section, we introduce the basic measure of edge importance with respect to a queryQ that quantifies
the connection between changes in the message for a given edge and the resulting future changes of belief
over Q. Edge importance forms the basis of our query-specific inference approach. For simplicity, we
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first develop the case where the query consists of exactly one variable: Q ≡ {xq}. Generalization to
multivariable queries is then presented in Section 4.2.2.

Let us consider a case when residual BP update scheduling fails. This example will both illustrate the need
for an edge importance measure and highlight the properties of the model that are useful for determining
edge importance. Consider the factor graph in Fig. 4.1a. Assume variable xq is the query and on iteration
t message residuals are such that rδ−s > rγ−j . Which of the two messages should be updated next?
Although νδ−s has a larger residual, updating it will only change the belief over the irrelevant variable xs
and will not affect any other messages or beliefs in the future. Updating νγ−j , on the other hand, would
entail recomputing ν̂(t)

α−q and may change the query belief P̃ (xq) on the next step. Thus, one should
prefer updating νγ−j over νδ−s. However, the standard BP algorithms have no notion of the query Q and
are unable to prioritize message updates by their importance to the convergence of P̃ (Q) : RBP will
update the irrelevant νδ−s. One can see that edge (γ − j) should receive a boost in priority compared to
edge (δ − s) based on the model structure and the respective location of those edges with respect to the
query variable xq. Moreover, to quantify the difference between different paths to the query in the PGM
graph, model parameters need to be taken into account as well.

One can see from the LBP updates (4.4) that a change in message να−i propagates through the graph with
consecutive LBP iterations: after one update, only the immediate neighbors of xi are affected, then their
respective neighbors and so on. For example, in Fig. 4.1a, a change in message νδ−r after one LBP update
will affect νγ−k and νγ−j , after the next update – να−q, νβ−q, νδ−r and νδ−s and so on. Notice that the
change in νδ−r will impact the beliefs P̃ (xq) via different paths, for example δ − r − γ − k − β − q and
δ − r − γ − j − α − q. Let us first quantify the importance of every such single path to the query belief
P̃ (xq) .

Consider a directed simple path π = (β1 → i1 → · · · → βk → q) from factor β1 to the query variable q
in the full factor graph G = ({X,F},T). Fix the messages ν−π corresponding to all the edges not in π.
Let us repeatedly apply LBP updates (4.4) to the messages corresponding to the edges in π. Then one can
see that νβ2−i2 is a function of νβ1−i1 , νβ3−i3 is a function of νβ2−i2 and so on. After k − 1 LBP updates,
νβk−q becomes a function of νβ1−i1 (see Fig. 4.1). Denote this function νβk−q = Fπ(νβ1−i1 , ν−π). The
sensitivity of νβk−q to changes in νβ1−i1 due to dependencies along path π is thus determined by the
following derivative (for notational convenience, denote ik ≡ q):

∂νβk−q
∂νβ1−i1

∣∣∣∣
π

≡ ∂Fπ
∂νβ1−i1

=

k−1∏
d=1

∂νβd+1−id+1

∂νβd−id
. (4.8)

By the mean value theorem, we can bound from above the change in νβk−q due to the change in νβ1−i1 ,
provided that all the messages not in π are fixed:∥∥∆νβk−q|π

∥∥ ≤ ‖∆νβ1−i1‖ · sup
ν−π

∥∥∥∥ ∂Fπ
∂νβ1−i1

∥∥∥∥
= ‖∆νβ1−i1‖ · sup

ν−π

∥∥∥∥∥
k−1∏
d=1

∂νβd+1−id+1

∂νβd−id

∥∥∥∥∥
≤ ‖∆νβ1−i1‖ ·

k−1∏
d=1

sup
ν−π

∥∥∥∥∂νβd+1−id+1

∂νβd−id

∥∥∥∥ . (4.9)

Observe that the upper bound on the derivative magnitude in the last inequality decomposes into a product
of local terms, each depending only on one factor (namely ψβd+1

for d-th component), which makes
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tractable computation possible. We adopt the decomposable upper bound in (4.9) as a measure of influence
of path π on the query variable:
Definition 47. The sensitivity strength of a directed path π = (β1 → i1 → · · · → q) is

sensitivity(π) =
k−1∏
d=1

sup
ν−π

∥∥∥∥∂νβd+1−id+1

∂νβd−id

∥∥∥∥ . (4.10)

Complexity of computing the suprema in (4.10) differs depending on the choice of norm ‖ ·‖. Fortunately,
Mooij and Kappen (2007) have shown that for a particular norm, namely the log-dynamic range

‖να−j‖ ≡
1

2

(
max
xj

να−j(xj)−min
xj

να−j(xj)

)
, (4.11)

the suprema in (4.10) can be computed in closed form:

sup
ν

∥∥∥∥∂να−i∂νβ−j

∥∥∥∥ = max
Xα\i,X

′
α\i,xi 6=x′i,xj 6=x′j

tanh

1

4
log

ψα
(
xi,xj ,Xα\ij

)
ψα

(
x′i,x

′
j ,X

′
α\i

)
ψα
(
x′i,xj ,Xα\i

)
ψα

(
xi,x′j ,X

′
α\i

)
 .

(4.12)
Here, we adopt the log-dynamic range norm (4.11) and use (4.12) to compute the suprema in (4.10).

For a given simple path π, from (4.9) it follows that, if the messages ν−π are kept constant and νβ1−i1
is changed by ∆, the message νβk−q will eventually change by at most ∆ × sensitivity(π). In loopy
models, however, there are typically infinitely many directed paths starting with β1 − i1 and ending in
q (taking paths with loops into account). Therefore, the effect of changing νβk−q on the P̃ (xq) will be
eventually transferred along many paths. As a basic notion of importance of any message να−i to the
query, we adopt the sensitivity of the single strongest directed path from an edge (α → i) to the query
q :
Definition 48. Given the query variable xq, the maximum sensitivity importance value of an edge
(α− i) is defined to be

max-sensitivity(α− i, q) ≡ max
π∈Π(α−i,q)

sensitivity(π),

where Π(α− i, q) is the set of all directed paths that start with (α→ i) and end in q.

One can think of the maximum sensitivity importance as a first-order approximation of influence of a
message on the query, discarding all of the smaller terms corresponding to paths with weaker dependen-
cies.

4.2.1 Efficiently Computing Edge Importance

Notice that computing the maximum sensitivity importance of an edge α − i involves a maximization
over all possible paths from xi to the query variable xq in the factor graph G = ({X,F},T). Clearly,
it is impossible to explicitly enumerate and maximize over all possible paths in all but the simplest (e.g.,
forest-structured) graphical models, because of the number of such paths is infinite in general. Fortunately,
it is possible to find a path with the largest sensitivity efficiently for the same reason it is possible to find
a shortest path between two nodes in a graph efficiently: path sensitivity is monotonic in the sense that
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Algorithm 4.1: Edge importance computation
Input: Factor graph ({X,F},T), query Q ∈ X.

1 L = ∅ is priority queue, ρα−i is edge priority

2 foreach (α− i) ∈ T do add (α− i) to L with priority ρα−i =

{
1, if i ∈ Q
0 otherwise

3 while L 6= ∅ do
4 denote (α− i) to be the top of L
5 set wα−i ← ρα−i, remove (α− i) from L
6 foreach j ∈ Γα \ i foreach β ∈ Γj \ α such that (β − j) ∈ L do
7 ρβ−j ← max

(
ρβ−j , ρα−i · supν

∥∥∥ ∂να−i∂νβ−j

∥∥∥)
8 update the position of (β − j) in L to match priority ρβ−j

9 return W = {wα−i | (α− i) ∈ T} - importance values for all the edges

for any path π′ that is a subpath of π it holds that sensitivity(π) < sensitivity(π′). The monotonicity
property follows directly from Definition 47 and the fact that from (4.12), for any factor ψα it holds
that supν

∥∥∥ ∂να−i∂νβ−j

∥∥∥ ∈ [0, 1). Therefore, directly analogous to Dijkstra’s shortest path algorithm (Dijkstra,
1959), which expands graph edges in the order of their shortest-path distance from the starting point, we
can construct an edge importance computation algorithm (Alg. 4.1) that expands edges in the order of
decreasing importance and computes the exact importance values for every edge efficiently.
Proposition 49. Alg. 4.1 computes the exact maximum sensitivity importance values of Def. 48 for every
edge α− i : on line 5 of Alg. 4.1 it holds that wα−i = max-sensitivity(α− i, q).

Proof sketch: By construction of edge priorities, at any time during execution of Alg. 4.1 for every edge
α − i there exists a path π = (α → i → · · · → q) such that ρα−i = sensitivity(π). Thus, the only
possible failure mode of Alg. 4.1 is to get wα−i < max-sensitivity(α − i, q). The proof that such a
failure is also impossible is by contradiction.

Denote T′ the set of edges for which Alg. 4.1 returns wα−i < max-sensitivity(α− i, q). Let α− i be the
edge from T′ with the largest true importance wα−i. Consider the moment when α− i reaches the top of
the priority queue L and is processed on line 4. The resulting importance weights wβ−j for all β − j still

in L can be no greater than wα−i because supν

∥∥∥ ∂να−i∂νβ−j

∥∥∥ < 1 and currently ρβ−j ≤ ρα−i ∀(β − j) ∈ L.
Therefore, all edges β − j with wβ−j ≥ wα−i have already been expanded by Alg. 4.1. Denote π∗ =
(α → i → γ → k · · · → q) to be the largest sensitivity path from α − i to q. Because sensitivity(γ →
k · · · → q) > sensitivity(π∗), it follows that wγ−k > wα−i and thus the edge γ − k has already been
expanded by Alg. 4.1 with ργ−k = max-sensitivity(γ−k, q). Therefore, the correct value ρα−i = wα−i
should have been set on line 7 of Alg. 4.1 during the expansion of γ − k, a contradiction.�
Proposition 50. Suppose every factor of the factor graph ({X,F},T) contains at most df variables and
every variable participates in at most dv factors. Then the complexity of Alg. 4.1 with priority queue
organized as Fibonacci heap is O(|T|(log |T|+ dfdv)).

Proof sketch: Priority queue L has size |T|, so extracting a highest priority element costs O(|T|) and
updating the priority of an edge costs amortized O(1) (c.f., for example, Cormen et al., 2001, we only
need to actually modify the queue if the priority increases). Every edge is expanded on lines 4-5 exactly
once, and edge expansion entails updating priorities of at most dfdv other edges.�
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Figure 4.2: A trace of Alg. 4.1 computing maximum sensitivity edge importance values for query variable
xq.
Figure (a): the upper bound (4.12) on the magnitude of the derivative of LBP updates (4.4). The upper
bound is the same in both directions for every factor.
Figures (b)-(h): the sequence of edges processed by Alg. 4.1.
Thick dashed line is the edge (α− i) taken from the top of priority queue on line 4. Thin dashed lines are
the edges (β−j) whose priorities are updated on line 7 as (α−i) is processed. Numbers in solid rectangles
denote the edge importance weights Wα−i that are already known to Alg. 4.1 after the respective number
of edges (α− i) have been taken off the top of the priority queue L and processed on lines 4-8. Numbers
without rectangles are the current priorities of edges in L.

Example: see Fig. 4.2 for an example trace of Alg. 4.1. Observe that it is possible for edges to have
zero importance even though those edges are connected to the query if the factor graph is treated as an
undirected graph (see edges touching variables e and d in Fig. 4.2). Zero importance reflects the fact that
changing the messages on those edges has no way to affect the query beliefs due to the directions in which
influence spreads and the fact that messages να−i and να−j do not influence each other directly. Variable
e, for example, becomes a “dead end” for its incoming message, stopping propagation of any changes in
that message to other parts of the model.
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4.2.2 Edge Importance for Multi-Variable Queries

Recall the interpretation of maximum sensitivity edge importance weight in Definition 48 for edge (α− i)
as the sensitivity of the single strongest path from (α−i) to the query variable xq. This intuition generalizes
immediately to multi-variable queries Q by maximizing over all paths to the query set instead of all paths
to one variable:
Definition 51. Given the set Q of query variables, the maximum sensitivity importance value of an
edge (α− i) is defined to be

max-sensitivity(α− i, Q) ≡ max
xq∈Q

max
π∈Π(α−i,q)

sensitivity(π). (4.13)

where Π(α− i, q) is the set of all directed paths that start with (α→ i) and end in q.

The advantage of the generalization of Def. 51 is the fact that the maximum sensitivity importance values
for multi-variable queries can be computed as efficiently as for single-variable queries. Indeed, the only
change needed to adapt Alg. 4.1 to multiple variable queries is to replace the condition i = q with xi ∈ Q
on line 2.
Proposition 52. Alg. 4.1 with the initial edge priorities on line 2 set to

ρα−i =

{
1, if xi ∈ Q
0 otherwise

computes the exact maximum sensitivity importance values of Def. 51 for every edge α − i : on line 5 of
Alg. 4.1 it holds that wα−i = max-sensitivity(α− i, Q).

The proof is almost identical to that of Prop. 49.

4.3 Query-Specific Residual Belief Propagation

In this section, we review the theoretical basis of residual belief propagation (RBP; Elidan et al., 2006),
a simple and successful technique for speeding up BP convergence, and show how edge importance
weights of Section 4.2 can be naturally integrated in RBP framework to yield a query-specific inference
approach.

4.3.1 Residual Belief Propagation

As Elidan et al. (2006) have shown, belief propagation convergence speed is significantly increased if the
message updates are prioritized by message residual. Their algorithm, called residual belief propagation
(RBP), maintains a priority queue over model edges, with current residuals (4.7) as priorities. On every
step, the edge (α − i) with the highest residual is pulled off the top of the queue, and BP update (4.4) is
applied for that edge. The residuals for neighbors of xi are then recomputed.

The residuals quantify the immediate effect of pending updates on the beliefs. Intuitively, prioritizing by
the residual lets RBP concentrate on the least converged and more difficult parts of the model. Formally,
the prioritization is justified for cases when belief propagation updates (4.4) yield a contraction mapping
by the following bound. Under max-norm on the log-message space,

‖ν‖∞ ≡ max
(α−i)∈T

‖να−i‖,
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Elidan et al. (2006) show that for any function g : ν → ν that is a contraction mapping with a fixed point
ν∗, meaning that ‖g(ν)− ν∗‖∞ ≤ α‖ν − ν∗‖∞ for some α < 1, it holds that

‖ν − ν∗‖∞ − ‖g(ν)− ν∗‖∞ ≥
1− α
1 + α

‖g(ν)− ν‖∞ .

In other words, for any contraction mapping g(·), an update ν ← g(ν) reduces the distance to the fixed
point by at least a fixed fraction of the residual. Therefore, in cases when belief propagation updates (4.4)
form a contraction mapping, residual belief propagation can be viewed as greedily minimizing the max-
norm distance to the fixed point ‖ν − ν∗‖∞ . Although BP updates do not always define a contraction
mapping (for some factor graphs, belief propagation may even have multiple fixed points), Mooij and
Kappen (2007) give sufficient conditions for BP updates to form a contraction mapping. Also, BP can be
a contraction mapping in the vicinity of a fixed point.

4.3.2 Edge Importance Weights and Query-Specific Inference

In contrast to the standard probabilistic inference setting, where every variable, and consequently every BP
message, is equally important, in the query-specific setting only the query marginal P̃ (Q) (equivalently,
the log-marginal Υ̃ (Q)) is important. Therefore, instead of the global distance to the fixed point ‖ν − ν∗‖
we would like to minimize an analogous norm that only takes query marginals into account. Given a
message vector ν, denote ν|Q to be ν with all entries zeroed out except for messages directly incoming to
the query:

ν|Q(α− i) =

{
να−i, xi ∈ Q
0 otherwise

Then we need to minimize the query-specific norm

‖ν − ν∗‖Q ≡ ‖ν|Q − ν∗|Q‖, (4.14)

The query-specific norm (4.14) ignores the messages corresponding to non-query variables. Therefore,
only updates to messages directly touching the query variables can immediately change the distance to
the fixed point ‖ν − ν∗‖Q. On the other hand, in the vast majority of settings it is impossible to arrive
at the fixed-point query belief by only applying updates directly impacting the query. The query belief
depends on beliefs of non-query variables, so it is necessary to also make non-query messages close to
the fixed point, even though (4.14) ignores those messages. It follows that it is impossible to minimize
the query-specific (QS) distance from the fixed point by greedily choosing updates that will change the
QS distance ‖ · ‖Q right away. Instead, one has to reason about the impact of a message update several
iterations in the future. For the case of single-variable queries, the analysis of Section 4.2 provides one
way to estimate the eventual impact of an arbitrary message update on the query: the estimate for message
να−i is simply wα−i · rα−i. It is then natural in the query-specific setting to replace the L∞ norm used by
residual belief propagation with weighted L∞ norm:

‖ν‖ ≡ max
α−i∈T

wα−i‖να−i‖. (4.15)

The resulting algorithm, which we call query-specific belief propagation (QSBP, Alg. 4.2) prioritizes mes-
sage updates in the order of their estimated eventual impact on the query marginals instead of immediate
impact on all the marginals as is the case for the standard RBP. Observe that the changes from RBP, high-
lighted in the algorithm text, are minimal, and it is easy to modify an existing implementation of RBP to
make it query-specific.
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Algorithm 4.2: Query-specific belief propagation. Red underlined font denotes differences from
RBP.

Input: Factor graph G = ({X,F},T), query Q ∈ X.
1 M is a priority queue
2 W ← Alg.4.1(G,Q) (find edge importance values)
3 foreach (α− i) ∈ T initialize the message να−i
4 foreach (α− i) ∈ T do
5 compute ν̂α−i, rα−i using (4.6,4.7)
6 add (α− i) to M with priority wα−i×rα−i
7 while not converged do
8 denote (α− i) to be the top of M
9 να−i ← ν̂α−i

10 set priority of (α− i) in M to 0
11 foreach β ∈ Γi \ α and j ∈ Γβ \ i do
12 recompute ν̂β−j and rβ−j using Eq. 4.6, 4.7
13 set priority of (β − j) in M to wβ−j×rβ−j

14 return P̃ (xq) for xq ∈ Q using Eq. 4.5

Example. To illustrate how QSBP focuses the computation on the most relevant to the query parts of the
model, we show in Fig. 4.4 how message update counts are distributed for the two algorithms after the
same running time on an image denoising problem. The model in question takes an four-level grayscale
image corrupted with Gaussian noise such as Fig. 4.4a, and tries to recover the clean image (see Fig. 4.4b
for an example result) by penalizing disagreement between the neighboring pixels. More specifically
(see Fig. 4.3 for the factor graph structure for the case of a 3 × 3 image), the model has two types of
variables: for every pixel i there a variable xi denoting the true color of the pixel that is unknown at
test time and needs to be inferred, and a variable yi that, conditioned on xi, is distributed normally with
P (yi | xi) = N (xi, 1). At test time, the value of yi is known. There are also two types of factors. First,
for every pixel there is a factor ψxiyi = Nxi,1(yi), encoding the probability of a noisy observation given
the true pixel brightness. Second, for every pair of pixels i, j that are neighbors on the grid there is an
agreement factor ψxixj = exp {−C · I(xi 6= xj)} that penalizes brightness discontinuities (I(·) here is
the indicator function, and C > 0 is a constant). The model thus attempts to enforce both consistency
between observations and true colors, and local smoothness of true colors.

We have selected three variables to be the queries, denoted by the red circles in Fig 4.4. One can see in
Fig. 4.4c that residual belief propagation, having no way to use the information about the query, concen-
trates most of the computation near the segment boundaries. Because pixels near the boundaries have the
most conflicting nearby evidence, it takes more BP updates for their beliefs to converge than for pixels in
the inner regions of segments, where the local evidence is mostly in agreement. Thus RBP successfully
concentrates the effort on the hardest parts of the model. However, Fig. 4.4c shows that many regions
with high update counts are far away from the query variables and thus have little influence on the query
beliefs. In contrast, Figures 4.4d-4.4g show that QSBP applies updates in a much more concentrated man-
ner, focusing on the regions of the model that have affect the query variables. Observe that within the
region of the model that affects the query, QSBP exhibits similar behavior to RBP, applying more updates
to the pixels near segment boundaries, which are the slowest to converge. At the same time, QSBP was
able to use updates more efficiently by ignoring hard, but irrelevant, regions.
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Figure 4.3: A graphical model for image denoising (here for a 3× 3 image).
yij are the observed noisy pixel values. xij are the unknown “true” pixel values, which are inferred using
belief propagation.

4.4 Anytime Query-Specific Residual BP

One attractive property of the standard belief propagation algorithms is the fact that they are almost any-
time. Both the standard loopy BP and residual BP have initialization complexity ofO(|T|) before applying
the first BP update (initializing the messages themselves costs O(1) per message, and a priority queue for
RBP using a Fibonacci heap can be initialized in O(|T|) time). After this lightweight message initial-
ization, one can stop either algorithm at any time and read off the current estimate of the query belief
according to (4.5). Although QSBP initialization stage is also quite efficient, it is nevertheless asymptoti-
cally more expensive than LBP and RBP: the initialization stage involves calling Alg. 4.1 with complexity
O(|T|(log |T| + dfdv)). In this section, we show how to postpone much of the QSBP initialization until
later stages of the inference process, and thus make QSBP anytime, by interleaving edge weighting and
inference. Further, in section 4.4.1 we will extend this technique of deferring initialization to also defer a
large part of the initialization of the baseline RBP (computing the initial values of new messages and the
residuals). As a result, even though query-specific belief propagation involves an extra overhead (com-
pared to RBP) of computing edge importance weights, the resulting algorithm with deferred initialization
has better anytime properties than the baseline RBP. Empirically (c.f., section 4.7) we have found that it
is the latter step of deferring RBP initialization that produces the most benefits in practice, because of the
different constants in Dijkstra’s algorithm complexity and RBP initialization complexity.

The key insight that allows one to postpone computing importance weights for many edges of the model
is that in the query-specific belief propagation (Alg. 4.2) the choice of the message to update on the next
step depends only on the top element (α− i) in the priority queue M (c.f. line 8) and does not depend on
the exact priorities of other edges. The only part that matters is that those other edges all have priorities
smaller than (α− i). Therefore, for any upper bound u(β − j) on the weighted residual,

u(β − j) ≥ wβ−j · rβ−j ,

as long as the exact weighted residual of (α− i) is greater than u(·) for all other edges, that is

rα−i · wα−i > u(β − j) ∀(β − j) 6= (α− i), (4.16)
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(a) Noisy observation (b) Denoised image (c) Residual BP updates
distribution

(d) QSBP updates,
Q = x1

(e) QSBP updates,
Q = x2

(f) QSBP updates,
Q = x3

(g) QSBP updates,
Q = {x1, x2, x3}

Figure 4.4: The noisy image in (a) is used as observations Yij for the model in Fig. 4.3. Belief propagation
is then used to infer the “true” values of every pixel; an example result of the inference is in (b).
Fig. (c) and bottom row: edge update densities for RBP and QSBP. Darker shade means larger number
of updates, lighter - smaller number, white means zero updates. The total number of updates and the
correspondence of updates number to the shade of gray are the same for every setting. Query variables
are centers of the red circles.

one can guarantee that Alg. 4.2 will update message να−i on the next step without computing the exact
weighted residuals for edges (β − j). Naturally, the upper bound u(·) has to be computationally cheap
(i.e., cheaper than actually computing the exact edge importance weights) to be useful. Fortunately, a key
invariant maintained by Alg. 4.1 immediately yields an upper bound at essentially no extra cost:
Invariant 53. Throughout the runtime of Alg. 4.1, for any edge (β − j) ∈ L it holds that

wβ−j ≤ pt(L), (4.17)

where pt(·) denotes the priority of the top element in a priority queue.

The proof follows directly from the proof of Prop. 49.

Observe that at any point in the runtime of Alg. 4.1, for every edge β− j ∈ T either the upper bound 4.17
applies, or the importance value wβ−j is already known exactly, because all of the edges of the model
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Algorithm 4.3: Anytime query-specific belief propagation
Input: Factor graph ({X,F},T), query set Q ∈ X.

1 L = ∅ is priority queue for computing edge importance, ρα−i is edge priority in L
2 M = ∅ is priority queue for prioritizing BP updates
3 K = ∅ is priority queue for edges with not yet known importance values
4 foreach (α− i) ∈ T initialize the message να−i
5 foreach (α− i) ∈ T do

6 add (α− i) to L with priority ρα−i =

{
1, xi ∈ Q
0, xi 6∈ Q

7 compute ν̂α−i, rα−i using (4.6,4.7), add (α− i) to K with priority rα−i
8 while not converged do
9 if M 6= ∅ AND [L 6= ∅ AND pt(M) > pt(L) · pt(K)] then

// Condition (4.16) holds. Edge (α− i) is guaranteed to have the largest weighted residual.
10 denote (α− i) to be the top of M
11 να−i ← ν̂α−i
12 set priority of (α− i) in M to 0
13 foreach β ∈ Γi \ α foreach j ∈ Γβ \ i do
14 recompute ν̂β−j and rβ−j using Eq. 4.6, 4.7
15 if (β − j) ∈M then
16 set priority of (β − j) in M to rβ−j · wβ−j
17 else
18 set priority of (β − j) in K to rβ−j

19 else
// Condition (4.16) does not hold. Need to tighten the weighted residual
// upper bounds or find an edge with a larger exact weighted residual.

20 denote (α− i) to be the top of L, remove (α− i) from L and K
21 set wα−i ← ρα−i, add (α− i) to M with priority wα−i · rα−i
22 foreach j ∈ Γα \ i foreach β ∈ Γj \ α such that (β − j) ∈ L do
23 ρβ−j ← max

(
ρβ−j , ρα−i · supν

∥∥∥ ∂να−i∂νβ−j

∥∥∥)
24 update the position of (β − j) in L to match priority ρβ−j

25 return P̃ (Q) using Eq. 4.5

G = ({X,F},T) are added by Alg. 4.1 to the priority queue L initially (line 2), and every edge (β − j)
is only removed from L when its importance value wβ−j is known exactly (line 5). Because the message
residuals rβ−j are always nonnegative, one can bound the weighted residual wβ−j · rβ−j from above by
replacing the exact importance value wβ−j with its upper bound from Invariant 53:

wβ−j · rβ−j ≤ u(β − j) ≡ rβ−j ·
{

pt(L), (β − j) ∈ L
wβ−j otherwise

. (4.18)

Incorporating condition (4.16) with weighted residual upper bound 4.18 into Alg. 4.2, we arrive at Alg. 4.3,
which we call the anytime query-specific belief propagation (AQSBP). Instead of computing all the edge
importance values in advance, Alg. 4.3 applies BP updates as soon as an edge with the highest exact known
weighted residual is guaranteed to have the highest exact overall weighted residual by (4.16). One can
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Figure 4.5: An example of a setting where anytime QSBP (Alg. 4.3) will compute exact importance
weights of all the edges with positive importance before applying the first BP update, resulting in the
same initialization time as the standard QSBP.
Fig. (a) shows the possible maximum sensitivity edge importance weights for query Q = {q}. Both
Alg. 4.1 (as a subroutine of QSBP) and AQSBP (on lines 20-24) process edges in the order of decreasing
importance weights, so the edge (γ−d) will be processed last out of edges with positive importance. At the
same time, Fig. (c) shows that (γ−d) has the highest weighted residual, and therefore will receive the first
BP update by both QSBP and AQSBP. Thus in this case AQSBP and QSBP have the same initialization
time.

show that such an interleaving of edge importance computation and BP updates yields identical inference
results to QSBP:
Proposition 54. Assuming the same message initialization and the same outcomes of breaking ties be-
tween edges of equal priority, the sequence of message updates performed by Alg. 4.3 is the same as for
QSBP.

Proof sketch. The proof is by induction. Induction base: after initialization, the message vectors νQSBP

and νAQSBP are the same. It follows that all the residuals are also the same: rQSBP = rAQSBP . Suppose
the sequence of first t updates was the same for QSBP and AQSBP. It follows that the messages ν(t) and
residuals r(t) are also the same after t steps. Therefore, arg maxwγ−kr

(QSBP )
γ−k = arg maxwγ−kr

(AQSBP )
γ−k .

QSBP will then choose the edge (α− i) = arg maxwγ−kr
(QSBP )
γ−k because the priority queue M is prior-

itized by the weighted residual. Because M in Alg. 4.3 is also prioritized by the exact weighted residual,
to show that AQSBP will choose the same edge (α− i), probably after computing edge importance values
wβ−j for some edges (β − j) on lines 20-21, it is sufficient to show that all the edges (γ − k) with the
same weighted residual as (α− i), will be in M whenever line 10 is reached next. Assume that (γ − k) is
such that

wγ−krγ−k = wα−irα−i and (γ − k) 6∈M on line 10.

It follows that

pt(L) · pt(K) ≥ pt(L) · rγ−k = u(γ − k) ≥ wγ−k · rγ−k ≥ pt(M),

which directly contradicts the fact that condition on line 9 of Alg. 4.3 has to be false for the line 10 to be
reached. Thus all edges (γ−k) with the highest weighted residual are in M. From the assumption that the
ties are broken with the same outcomes as in Alg. 4.2, int follows that (α− i) is chosen by Alg. 4.3 for the
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Figure 4.6: An example trace of anytime QSBP (Alg. 4.2) until the first BP update is applied
Top row: edge importance values (a), initial message residuals (b) and the resulting weighted residuals (c).
The edge with weighted residual 0.5 touching variable q has the largest weighted residual and should
receive the first BP update.
Bottom row: The sequence of edges whose exact importance weight are computed on lines 20-24 of
Alg. 4.3 until the first BP update is applied. Thick dashed line - the edge on top of the edge importance
priority queue L, the number without a rectangle is the priority ρ of that edge (i.e., pt(L)). Thin dashed
edges are those with the unweighted residuals equal to pt(K). Solid thick gray edges are those whose
weighted residual is not guaranteed to be smaller than pt(M).
After expanding 3 edges (d)-(f), all other edges are guaranteed to have weighted residual of at most
pt(L) · pt(K) = 0.4 · 0.9 = 0.36, so the edge with weighted residual 0.5 touching the variable q is known
to be the first one to receive a BP update on lines 10-18. Notice that AQSBP could not apply a BP update
to the edge with weighted residual 0.5 right after expanding it in (e) - only after one more edge (with
importance 0.6 and weighted residual 0.42) had been expanded in (f) was the condition on line 9 able to
guarantee that no other edge had a weighted residual above 0.5.
Here, AQSBP has significant advantage over QSBP in terms of initialization time.

next update. Given that during the first t steps both QSBP and AQSBP have applied the same sequence of
updates, we have shown that on step t+ 1 they will also update the same message, proving the induction
step. �

The guarantee of Prop. 54 entails that after any fixed number t of BP updates, for all the edges of the
factor graph G, AQSBP and QSBP will arrive at exactly the same BP messages (and consequently same
variable beliefs). Notice that the two inference results are guaranteed to be equal even in the presence of
multiple BP fixed points and regardless of the convergence properties of belief propagation onG. The only
difference of the anytime version is that typically much of the computation related to importance values of
many edges will be delayed until the exact importance values for those edges are actually needed. More
precisely, AQSBP starts to apply the first BP updates after only O(|T|) time (same as LBP and RBP) in
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the best case, as opposed to O(|T|(log |T|+ dfdv)) for QSBP:
Proposition 55. The complexity of AQSBP initialization (lines 4-7 of Alg. 4.3) is O(|T|).

Proof sketch. Follows directly from the fact that initializing a Fibonacci heap with |T| elements costs
O(|T|).�

Therefore, in the best case AQSBP arrives at intermediate results of the inference faster than QSBP. In
the worst case, however, AQSBP will have to compute exact importance values for all edges with positive
importance before applying even one BP update (see Fig. 4.5 for an example of such model). Therefore,
formally one can only guarantee that the anytime version will apply t-th update no later than the plain
QSBP, but not improve on QSBP by any amount. Nevertheless, the anytime version is useful in practice,
because (a) the edges are pulled from L and added to M in the order of decreasing importance weight
wα−i, so at any time M contains the edges with the highest importance and (b) in typical models the
degenerate case of extremely high residuals corresponding to edges with the lowest importance is almost
never realized. In particular, our experiments in Section 4.7 demonstrates that on real-life models Alg. 4.3
obtains intermediate results of reasonable quality significantly faster than Alg. 4.2.

Example: Fig. 4.6 shows an example trace of AQSBP. For a factor graph with 12 edges, in the example
of Fig. 4.6 AQSBP only needs to compute exact importance weights of 3 edges (Fig. 4.6d-4.6f) before
applying the first BP update. Observe that, like Alg. 4.1, AQSBP expands model edges in the order of
decreasing importance value without any regard for the current message residuals on those edges. As
a result, there are no guarantees on the ordering of expanded edges in terms of weighted residual: in
our example, the weighted residuals of the first 3 expanded edges are 0.2 (Fig. 4.6d), 0.5 (Fig. 4.6e) and
(Fig. 4.6f). Also, notice that even after AQSBP reaches the edge with the highest overall weighted residual
(Fig. 4.6e) and computes its exact importance, it may not be able to apply a BP update right away. Instead,
it may be necessary to compute exact importance weights for more edges (Fig. 4.6f) not to discover an
edge with a higher weighted residual, but to tighten the upper bound 4.18 on the weighted residuals of
the remaining edges. In Fig. 4.6e, the exact weighted residual of the just expanded edge is 0.5, but the
pt(L) = 0.6, corresponding to the importance of the edge touching variable b, and there are edges in the
model with residual 0.9, so pt(K) = 0.9. Thus, in Fig. 4.6e, from information available to AQSBP one
can only guarantee that the weighted residual of the remaining edges is pt(L) · pt(K) = 0.54 > 0.5. After
processing the edge touching b in Fig. 4.6f, pt(L) drops to 0.4 (corresponding to the edge touching a, so
at that stage AQSBP is able to guarantee that 0.5 is the largest weighted residual over all the edges of the
factor graph.

4.4.1 Pessimistic anytime query-specific belief propagation

One can see that while the any-time QSBP (Alg. 4.3) is typically able to start updating BP messages
before all the edge importance weights have been computed, initial residuals for all the edge have to be
computed before the first message update (c.f. line 7, which is executed for every edge before the message
updates start). In our experience, the time required to initialize all the messages and compute all the initial
residuals is comparable to the time required to compute edge importance weights, and often even exceeds
the edge weighting time. Therefore, it is desirable to also defer until later stages of the inference process
computing the initial residuals for those edges. In this section, we show how to postpone computation
of initial residuals for low-importance edges while keeping the message update sequence the same as for
baseline QSBP.

Observe in (4.18) that in the upper bound u(β− j) for the weighted residual wβ−j · rβ−j , we have used an
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upper bound on the edge importance weight wβ−j , but an exact value of the edge residual rβ−j .Moreover,
for edges β − j with not yet known exact importance weights (i.e. edges still in priority queue K rather
than in M in Alg. 4.3), the upper bound u(β − j) is the only thing that depends on the exact residual rβ−j
(the condition on line 9 is the only place where an element of K is read). Therefore, if one can come up
with an efficient upper bound rβ−j on the edge residual rβ−j , one could use rβ−j instead of the exact
residual to obtain an alternative upper bound up(β − j) on the weighted residual:

wβ−j · rβ−j ≤ up(β − j) ≡
{

pt(L) · rβ−j , (β − j) ∈ L
wβ−j · rβ−j otherwise

.

Fortunately, a suitable upper bound on the unweighted residual can be readily derived using the work
of Ihler et al. (2005). They have shown (see Theorem 8 and Corollary 9 in that paper) that for any two
message vectors ν(1) and ν(2), it holds that∥∥∥ν̂β−j (ν(1)

)
− ν̂β−j

(
ν(2)

)∥∥∥ ≤ ‖ψβ‖. (4.19)

Therefore, as soon as νβ−j has been updated at least once using (4.6), it holds that rβ−j ≤ ‖ψβ‖.

However, we cannot use ‖ψβ‖ in place of an upper bound rβ−j , because we need the upper bound to hold
even before νβ−j has been updated. Because the residual rβ−j before the first update to νβ−j depends
on the initial value of the message νβ−j , to obtain an upper bound that holds throughout the runtime
of the algorithm, we need to commit to certain way of initializing the messages. A natural approach is
to initialize all the messages νβ−j to uniform: ν = ~0. Uniform messages are especially convenient as
a starting point, because a uniform message does not need to be represented explicitly when it is used
to compute the new values of other BP messages, and therefore actual message initialization (memory
allocation and so on) can be deferred until the message has to be updated, not just read off.

Denote r(0)
β−j ≡ ‖ν̂β−j − 0β−j‖ to be the residual for edge (β − j) before the message νβ−j receives the

first update. Because 0β−j is not necessarily a possible outgoing message computed using (4.6) - that is,
there may not exist a vector of message values ν(0) such that 0β−j = ν̂β−j(ν

(0)), we cannot use (4.19)
directly and need to apply a triangle inequality:

r
(0)
β−j ≡ ‖ν̂β−j − 0β−j‖ = ‖ν̂β−j‖ ≤ ‖ν̂β−j(0)‖+ ‖ν̂β−j(ν)− ν̂β−j(0)‖ ≤ ‖ν̂β−j(0)‖+ ‖ψβ‖. (4.20)

It remains to bound ‖ν̂β−j(0)‖. Observe that for ν = ~0, every variable log-belief Υ̃ (xi) is also uniform
and the update (4.6) becomes

ν̂
(t)
α−i(xi | ~0) = C + log

∑
Xα\i

ψα
(
Xα\i, xi

)
,

where C is a constant. It follows that
‖ν̂β−j(0)‖ ≤ ‖ψβ‖. (4.21)

and finally plugging (4.21) into (4.20), we get

r
(0)
β−j ≡ ‖ν̂β−j‖ ≤ 2‖ψβ‖. (4.22)

Combining the upper bound (4.22) that holds before νβ−j is updated, and (4.19) that bounds the resid-
ual rβ−j after νβ−j is updated at least once, we obtain the final upper bound that holds throughout the
inference runtime:

rβ−j ≤ 2‖ψβ‖ ≡ rβ−j . (4.23)
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Algorithm 4.4: Pessimistic anytime query-specific belief propagation
Input: Factor graph ({X,F},T), query set Q ∈ X.

1 L = ∅ is priority queue for computing edge importance, ρα−i is edge priority in L
2 M = ∅ is priority queue for prioritizing BP updates
3 r = 2 maxψ∈F ‖ψ‖ is global unweighted residual upper bound

4 foreach (α− i) ∈ T do add (α− i) to L with priority ρα−i =

{
1, xi ∈ Q
0, xi 6∈ Q

5 while not converged do
6 if M 6= ∅ AND pt(M) > r · pt(L) then

// Condition (4.16) holds. Edge (α− i) is guaranteed to have the largest weighted residual.
7 denote (α− i) to be the top of M
8 compute ν̂α−i, set να−i ← ν̂α−i
9 set priority of (α− i) in M to 0

10 foreach β ∈ Γi \ α foreach j ∈ Γβ \ i such that (β − j) ∈M do
11 recompute ν̂β−j and rβ−j using Eq. 4.6, 4.7
12 set priority of (β − j) in M to rβ−j · wβ−j
13 else

// Condition (4.16) does not hold. Need to tighten the weighted residual
// upper bounds or find an edge with a larger exact weighted residual.

14 denote (α− i) to be the top of L, remove (α− i) from L
15 set wα−i ← ρα−i, add (α− i) to M with priority wα−i · rα−i
16 foreach j ∈ Γα \ i foreach β ∈ Γj \ α such that (β − j) ∈ L do
17 ρβ−j ← max

(
ρβ−j , ρα−i · supν

∥∥∥ ∂να−i∂νβ−j

∥∥∥)
18 update the position of (β − j) in L to match priority ρβ−j

19 return P̃ (Q) using Eq. 4.5

Now we can replace the computing the exact residuals for edges with not yet known importance values
in Alg. 4.3 (where those exact residuals are stored in the priority queue K with the upper bound rβ−j
from (4.23) to obtain Alg. 4.4. We will call Alg. 4.4 pessimistic anytime QSBP. “Pessimistic” here refers
to the use of the upper bound (4.23), which is not as tight as the exact maximal residual pt(K) used by
Alg. 4.3. Because of the looser upper bound on the residual of remaining edges, PQSBP may have to
carry the exact edge weights computation farther than AQSBP before the first message update. However,
the upper bound (4.23) has important advantages:

1. (4.23) is very cheap computationally: it only requires looking at every value of the factor once.

2. (4.23) does not depend on the actual message values ν. Therefore, it is sufficient to compute the
global upper bound on unweighted residuals only once (c.f. line 3 of Alg. 4.4) instead of updating
it every time a message is updated, as Alg. 4.3 does on line 18.

3. The messages νβ−j do not have to be initialized explicitly until their respective first updates (line 8
of Alg. 4.4), making it possible to start updating messages with high importance much faster than
Alg. 4.3, which needs to initialize all the messages and compute all the residuals before any message
updates can be performed.
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In our experience, the above advantages of pessimistic AQSBP outweigh the drawbacks of using a looser
upper bound for the residuals and typically make pessimistic AQSBP a better alternative than the baseline
AQSBP.

Similar to Alg. 4.3, we can also guarantee that pessimistic AQSBP will perform message updates in the
same order as the basic query-specific BP:
Proposition 56. Assuming the same message initialization and the same outcomes of breaking ties be-
tween edges of equal priority, the sequence of message updates performed by Alg. 4.4 is the same as for
QSBP.

Proof: Analogous to the proof of Prop. 54 and follows from the fact that rβ−j ≡ ‖ψβ‖ is a valid upper
bound on the residual.�

In practice, we have often found it useful to use a smaller estimate of the maximal edge residual rβ−j than
the upper bound rβ−j ≡ 2‖ψβ‖ to obtain faster initial updates. A scaled tighter version (not a proper upper
bound), such as rβ−j ′ ≡ 1

5‖ψβ‖, even though Prop. 56 does not hold for the resulting anytime inference
algorithm in general, typically resulted in much faster initial updates without noticeable degradation of
the results quality in the longer term.

4.5 Massively reusing computation via variable updates

Before presenting experimental results in the next section, here we address an issue that has little influence
on the theoretical analysis of belief propagation, but makes a huge difference in practice and is crucial for
obtaining state of the art performance. The issue is one of shared computation: for any two factors ψα
and ψβ that share a variable xi, the set of BP messages that directly depend on message να−i is almost
the same as the set of messages that directly depend on message νβ−i. Moreover, να−i and νβ−i do not
directly depend on each other. Therefore, right after updating να−i one should not immediately recompute
the messages directly dependent on να−i (as, for example, both standard residual belief propagation and
Alg. 4.2 do). Instead, one should right away also update νβ−i and other messages incoming to variable
xi, and only after that recompute the necessary messages. Such a batch message update would have only
marginally higher computation cost compared to updating a single message and immediately recomputing
the directly dependent variables, and would result in di messages becoming up-to-date instead of just one.
Therefore, the computation cost per updated message of the batch approach is lower by almost a factor of
di than the cost of the standard single-edge update.

Let us look at the issue of computation sharing more closely. Consider Alg. 4.2 and a fragment of a factor
graph in Fig. 4.7a. Suppose the edge (α − i) has the largest weighted residual in the full factor graph, so
Alg. 4.2 will update να−i (shown by the green solid arrow in Fig. 4.7a) next. From lines 9-13, one can see
that the update consists of two stages.

• The first stage (lines 9-10) only affects the the message να−i itself: the new value ν̂α−i is copied
over to replace the old value, and the residual rα−i is zeroed out. This stage is relatively cheap
computationally.

• The second stage (lines 11-13) affects multiple other messages: every new message ν̂γ−g that di-
rectly depends on να−i via (4.4) has to be recomputed, because να−i has just changed. Denote the

128



α

β

γ

ϕ

i

b

a

c
d

e

g

h
s

(a) A message να−i (solid
green) and messages that di-
rectly depend on να−i via
equation 4.4 and have to be
recomputed whenever να−i is
updated (red outline arrows).
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(b) A message νβ−i (solid
green) and messages that di-
rectly depend on νβ−i (red out-
line arrows). Notice that 4 out
of 6 such messages (from fac-
tors γ and ϕ) also depend on
να−i.
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(c) A batch update (Alg. 4.6)
of all messages incoming for
xi. First, the incoming mes-
sages (solid green) are updated
on line 2. Then, the out-
going messages (red outlines)
and the corresponding residu-
als are recomputed on line 4.

Figure 4.7: Edge BP updates (e.g., line 9-12 of Alg. 4.2), applied to different edges connected to the same
variable (να−i in Fig. (a) and νβ−i in (b)) have to recompute outgoing messages for sets of edges that have
many elements in common, which leads to inefficiencies.
Updating all of the edges connected to the same variable at once and only recomputing the outgoing mes-
sages afterwards (Alg. 4.6), illustrated in Fig. (c), eliminates redundant recomputations and significantly
improves efficiency: instead of recomputing 6 outgoing message per one updated incoming message (c.f.
Fig. (a) and (b)), Alg. 4.6 has to recompute only 2 outgoing messages per one updated incoming message
(c.f. Fig. (c)).

set of edges with messages directly affected by να−i to be Γα−i :

Γα−i ≡
⋃

β∈Γi\α

⋃
j∈Γβ\i

(β − j).

In the example of Fig. 4.7a the affected messages, denoted with red arrows, are on edges Γα−i =
{(β− c), (β− d), (γ− e), (γ− g), (ϕ−h), (ϕ− s)}. In general, the number of affected messages
depends on the connectivity pattern of the factor graph. If every variable has degree dv and every
factor involves df variables, then (dv − 1)(df − 1) messages need to be recomputed.

It is the second stage of an edge update that is responsible for the predominant share of computation
required by both query-specific BP (in the form of Alg. 4.2) and residual BP. Therefore, substantially
speeding up the second stage would result in almost equivalent overall speedup of the inference pro-
cess.

Key to speeding up the message updates is the structure of dependencies between messages related to the
same variable. Consider the messages that need to be recomputed after updating να−i (Fig. 4.7a) and after
updating νβ−i (Fig. 4.7b). We make two observations:

1. The messages να−i and νβ−i do not directly depend on each other (more precisely, ν̂α−i does not
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Algorithm 4.5: SequentialUpdateAllIncomingEdges
Input: Factor graph ({X,F},T), old messages ν, new messages ν̂, variable xi ∈ X

1 foreach α ∈ Γi do
2 να−i ← ν̂α−i
3 foreach β ∈ Γi \ α foreach j ∈ Γβ \ i do
4 recompute ν̂β−j ← ν̂β−j(ν) using (4.4)

Algorithm 4.6: BatchUpdateAllIncomingEdges
Input: Factor graph ({X,F},T), old messages ν, new messages ν̂, variable xi ∈ X

1 foreach α ∈ Γi do
2 να−i ← ν̂α−i

3 foreach β ∈ Γi foreach j ∈ Γβ \ i do
4 recompute ν̂β−j ← ν̂β−j(ν) using (4.4)

depend on νβ−i and ν̂β−i does not depend on να−i). Therefore, a sequence of two updates,

(να−i ← ν̂α−i) ⇒ (recompute ν̂ for Γα−i) ⇒
⇒ (νβ−i ← ν̂β−i) ⇒ (recompute ν̂ for Γβ−i) , (4.24)

will have the same result as

(να−i ← ν̂α−i) ⇒ (νβ−i ← ν̂β−i) ⇒ (recompute ν̂ for Γα−i ∪ Γβ−i) . (4.25)

2. The respective sets of messages Γα−i and Γβ−i that need to be recomputed after updating να−i
and νβ−i intersect to a large degree. In our example in Fig. 4.7, να−i and νβ−i each directly affect
6 other messages, and 4 of those directly affected messages are the same, corresponding to edges
Γα−i ∩ Γβ−i = {(γ − e), (γ − g), (ϕ− h), (ϕ− s)}. More generally, if every variable has degree
dv and every factor involves df variables, then for any two messages να−i and νβ−i incoming to the
same variable, it holds that

Γα−i = Γβ−i = (dv − 1)(df − 1), Γα−i ∩ Γβ−i = (dv − 2)(df − 1) (4.26)

and
Γα−i ∪ Γβ−i = dv(df − 1). (4.27)

Denote c to be the cost of computing one new message ν̂γ−j ∈ Γα−i ∪ Γβ−i. Then it follows from (4.26)
and (4.27) that the complexity of update sequence (4.24) is 2 ·c · (dv−1)(df −1), while the complexity of
update sequence (4.25) is c · dv(df − 1). In other words, update sequence (4.25) is more computationally
efficient than (4.24) by a factor of 2(1− 1

dv
). Moreover, once any two messages να−i and νβ−i incoming

for the same variable xi have been updated, extending the idea of batch update (4.25) to all of the other
messages νγ−i incoming for the same variable xi leads to no increase at all in the total complexity of the
cumulative update. Consider the procedure BatchUpdateAllIncomingEdges (Alg. 4.6), which updates all
the messages incoming for a given variable before recomputing the necessary new messages, and Sequen-
tialUpdateAllIncomingEdges (Alg. 4.5), which recomputes the necessary new messages after each edge
update. One can show that the two procedures have the same effect, but drastically different computation
costs:
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Proposition 57. Suppose that every variable in a factor graph ({X,F},T) has degree dv and every factor
involves df variables. Let c be the cost of recomputing a single new message ν̂β−j using (4.4). Then for
any variable xi it holds that

1. SequentialUpdateAllIncomingEdges(({X,F},T), ν, ν̂, xi) and
BatchUpdateAllIncomingEdges(({X,F},T), ν, ν̂, xi) have the same result, with να−i = ν̂α−i for
all α ∈ Γi and ν̂β−j becoming up to date per the equation 4.4 for all β ∈ Γi, j ∈ Γβ \ i.

2. Disregarding the costs of copying the new message values ν̂α−i to the old messages να−i, the time
complexity of SequentialUpdateAllIncomingEdges is cdv(dv − 1)(df − 1), while time complex-
ity of BatchUpdateAllIncomingEdges is cdv(df − 1). Therefore, BatchUpdateAllIncomingEdges
(Alg. 4.6) represents a factor of (dv−1) speedup over SequentialUpdateAllIncomingEdges (Alg. 4.5).

Proof.
Same result. None of the new messages ν̂α−i incoming for the variable xi is updated by either Alg. 4.5
or Alg. 4.6. Both algorithms set να−i to ν̂α−i for every message incoming for xi. Thus both old and new
messages incoming for xi are the same for both algorithms and equal to the values that ν̂α−i had before
the updates. Denote ν ′ to be the resulting values of the old messages.

As shown in (4.4), the values of the new messages ν̂ only depend directly on the values of the old messages
ν. Therefore, the values of any new message ν̂β−j only depend on the values of the old messages ν at the
moment when ν̂β−j was recomputed most recently. Alg. 4.6 only recomputes every ν̂β−j once, with
ν = ν ′. The fact that ν = ν ′ also holds for the result of after calling Alg. 4.5 follows from the fact that
every time Alg. 4.5 modifies an old message να−i, it immediately recomputes every ν̂β−j that depends
on να−i per the equation 4.4. Therefore, none of the messages ν̂β−j in the result of Alg. 4.5 relies on
“obsolete” values of any message να−i incoming for xi. Because eventually Alg. 4.5 sets ν = ν ′, it
follows that ν̂ = ν̂(ν ′).

Time complexity. For Alg. 4.5, line 3 is reached Γi = dv times. Each time, |Γi \ α| = dv − 1 factors are
processed, and for every factor |Γβ \ i| = df − 1 outgoing messages are recomputed on line 4. The total
complexity is thus cdv(dv − 1)(df − 1).

For Alg. 4.6, line 3 is reached once and the loop is over |Γi| = dv factors and |Γβ \ i| = df − 1 outgoing
messages for every factor, so the total complexity is cdv(df − 1).�

It is not uncommon, especially in large-scale relational models, for a variable to be involved in tens
of factors, so the (dv − 1) is very significant. It is therefore natural to replace the edge updates on
lines 9-13 of QSBP (Alg. 4.2), as well as the corresponding parts of Alg. 4.3 and Alg. 4.4 with BatchUp-
dateAllIncomingEdges. In other words, we transition from edge updates of Alg. 4.2 to variable updates
affecting all the edges directly connected to a variable in question. Observe that strictly speaking, such a
replacement breaks the behavior of always updating the edge with a highest weighted residual: whenever
an edge (α − i) is chosen for an update, edges (β − i) for all β ∈ Γi will be updated right away, even
though their respective residuals may be low. However, because those extra updates cost essentially noth-
ing in terms of computation, there is no downside to including them all in the batch update. In the worst
case, when all the incoming edges other than (α− i) have zero residual, the batch update would have the
same result and only slightly higher cost as the original single-edge update. In the typical case, however,
many of the edges (β − i) would have substantial residuals and would need to be updated later on in any
case, even if not immediately; batch update would make those updates almost for free, leading to total
speedups on the order of dv.
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4.5.1 Prioritization by cumulative variable residual

In the previous section, we have discussed how switching from the standard edge updates to variable
updates (i.e., updating all of the incoming messages for a variable, and only then recompute the new
outgoing messages) can lead to inference speedups proportional to the connectivity density of the factor
graph. However, we have not made any changes to the scheduling scheme, which means that updates
would still be scheduled in the order of single-edge residuals. Even though scheduling updates by the
largest edge residual is theoretically justified by the discussion of section 4.3.1 (adapted from Elidan
et al., 2006), we argue that such a schedule is not ideal for the following reasons:

1. The basic schedule element in RBP, Alg. 4.2 and related algorithms is an edge. The priority queue
M in Alg. 4.2 contains |T| elements. However, with the batch updates of Alg. 4.6, only |X| distinct
updates are possible, because the set of updated messages is determined by the instead of the edge.
It is desirable to eliminate the redundancy in the elements of M, thereby reducing the complexity of
a single update to M from O(log |T|) to O(log |X|).

2. The choice of a set of messages to update next (all messages incoming for a certain variable xi) is
made by looking only at one edge from that set, the one with the largest residual, and ignoring the
residuals of the remaining di − 1 edges, where di is the degree of xi in the factor graph.

3. Residual BP schedule (and query-specific BP schedule of Alg. 4.2 as a straightforward extension)
does not take update complexity into account. Elidan et al. (2006) arrive at the RBP schedule as a
greedy approach to minimizing the largest residual in as few updates as possible. In practice, one
needs to minimize the largest residual in the lowest amount of computation possible.

To address the above issues, we adopt a different scheduling heuristic, formed by the following choices,
each addressing the corresponding drawback above.

1. Use variables as prioritized elements of M, which reduces the size of M to |X|.

2. As priority for every variable xi, use total weighted residual of the incoming edges for xi :

total-residual(xi) =
∑
α∈Γi

wα−irα−i. (4.28)

3. To account for the update complexity, total weighted residual (4.28) for every variable xi is further
normalized by the complexity of the update (Alg. 4.6) for xi :

update-complexity-normalizer(xi) = |Γi| · |dom(xi)|+
∑
α∈Γi

(Γα − 1) · |dom(ψα)|, (4.29)

where |dom(xi)| is domain size (i.e., cardinality) of xi and |dom(ψα)| ≡
∏
i ∈ Γα|dom(xi)| is

the number of entries in the tabular representation of ψα. The first component of (4.29) reflects the
complexity of copying the new messages ν̂α−i to να−i, the second component - of recomputing the
outgoing messages ν̂α−j for all α ∈ Γi and j ∈ Γα \ i.

To summarize, our update prioritization heuristic assigns to every variable xi the following priority:

priority(xi) ≡
total-residual(xi)

update-complexity-normalizer(xi)
=

∑
α∈Γi

wα−irα−i

|Γi| · |dom(xi)|+
∑

α∈Γi
(Γα − 1) · |dom(ψα)|

,

(4.30)
which has a straightforward interpretation:
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Algorithm 4.7: QSBP-V: Query-specific belief propagation with variable updates
Input: Factor graph G = ({X,F},T), query Q ∈ X.

1 M is a priority queue
2 W ← Alg.4.1(G,Q) (find edge importance values)
3 foreach xi ∈ X set Ni ←

(
|Γi| · |dom(xi)|+

∑
α∈Γi

(Γα − 1) · |dom(ψα)|
)

// From (4.29)
4 foreach (α− i) ∈ T initialize the message να−i
5 foreach (α− i) ∈ T compute ν̂α−i, rα−i using (4.6,4.7)
6 foreach xi ∈ X add xi to M with priority µi = N−1

i

∑
α∈Γi

wα−i · rα−i
7 while not converged do
8 denote xi to be the top of M, set priority of xi in M to µi ← 0
9 foreach α ∈ Γi do να−i ← ν̂α−i

10 foreach α ∈ Γi and j ∈ Γα \ i do
// Account for changes in µj due to changing rα−j to avoid recomputing µj from scratch

11 µj ← µj −N−1
j wα−jrα−j // Subtract the contribution of the old residual

12 recompute ν̂α−j and rα−j using Eq. 4.6, 4.7
13 µj ← µj +N−1

j wα−jrα−j // Add the contribution of the new residual
14 set priority of xj in M to µj

15 return P̃ (xq) for xq ∈ Q using Eq. 4.5

Observation 58. Ordering the variable updates of Alg. 4.6 in the order of decreasing priority (4.30)
corresponds to the greedy minimization of the total weighted residual

∑
(α−i)∈Twα−irα−i with respect to

computation time under the assumption that all of the updates in Alg. 4.6 of the outgoing messages νβ−j
on line 4 leave the residuals rβ−j unchanged.

Combining the above prioritization with variable updates of Alg. 4.6, we arrive at Alg. 4.7, which we will
call query-specific belief propagation with variable updates (QSBP-V).

4.5.2 Anytime inference and variable weighting

Although the modifications required to obtain QSBP-V (Alg. 4.7) from the original QSBP (Alg. 4.2) are
quite simple, constructing anytime versions of QSBP-V in the spirit of Alg. 4.3 and Alg. 4.4 is not as
straightforward. While plugging in the variable updates of Alg. 4.6 in the anytime algorithms is simple,
modifying the scheduling scheme to use variables with priorities (4.30) is more complicated. The difficulty
arises from the fact that the priority (4.30) aggregates the weighted residual of multiple edges. Because the
upper bounds on the weighted residuals discussed in sections 4.4 and 4.4.1 are only valid for individual
edges, we need a way to aggregate the upper bounds to obtain an upper bound on the priority of the
corresponding variable. In this section, we first show that an obvious way to perform such an aggregation
lacks the necessary properties for the anytime inference, and propose an efficient alternative approximation
with quality guarantees.

In sections 4.4 and 4.4.1, we have discussed two possible upper bounds on the weighted residuals of edges
whose importance weights are not yet known:

u(α− i) = rα−i · pt(L) and u(α− i) = 2 max
ψ∈F
‖ψ‖ · pt(L), (4.31)
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where L is the priority queue containing candidate edge importance weights. A straightforward way to
incorporate the upper bounds (4.31) into the variable priority (4.30) is to simply replace the exact weighted
residuals wβ−jrβ−j with their respective upper bounds from (4.31) for edges whose exact importance
weights are not yet known:

priority-ub(xi) =

∑
α∈Γi,wα−i is known wα−irα−i +

∑
α∈Γi,wα−i is not known u(α− i)

|Γi| · |dom(xi)|+
∑

α∈Γi
(Γα − 1) · |dom(ψα)|

≥ priority(xi).

(4.32)
Unfortunately, the upper bound (4.32) has two serious drawbacks that render it unsuitable for the anytime
version of Alg. 4.7:

1. To preserve efficiency, both Alg. 4.3 and Alg. 4.4 exploit the following observation. First, the
condition (4.16), which guarantees that the edge (α− i) will be the next one updated by QSBP, can
be decomposed into two complimentary conditions:

wα−i · rα−i ≥ u(β − j) ∀(β − j) ∈ T⇔
wα−i·rα−i ≥ max

(β−j)∈T,wβ−j is known
wβ−j ·rβ−j AND wα−i·rα−i ≥ max

(β−j)∈T,wβ−j is not known
u(β−j).

Both of the conditions above can be checked efficiently: the first one is enforced using the priority
queue M, while for the second one we have

max
(β−j)∈T,wβ−j is not known

u(β − j) = pt(L) · max
(β−j)∈T,wβ−j is not known

raw-residual-ub(β − j), (4.33)

where raw-residual-ub(β − j), equal to either pt(K) in Alg. 4.3 or 2 maxψ∈F ‖ψ‖ in Alg. 4.4, is
the upper bound on unweighted edge residuals. The product decomposition is crucial to efficient
recomputation of the right-hand side of (4.33) after an edge (γ − k) is pulled off the top of priority
queue L by Dijkstra’s algorithm: it is sufficient to either remove (γ − k) from the raw residuals
priority queue K or even do nothing at all using the 2 maxψ∈F ‖ψ‖ upper bound.

In contrast to the upper bounds for single-edge weighted residual, the upper bound (4.32) on the
total weighted residual for a variable does not decompose into a product of an upper bound on edge
weights and an upper bound on raw residuals, because of the term

∑
α∈Γi,wα−i is known wα−irα−i that

does not depend on those single-edge upper bounds. As a result, every time Dijkstra’s algorithm
removes an edge (γ − k) off the top of the priority queue L, the upper bound (4.32) has to be
recomputed for every variable xi that has at least one incoming edge (γ − k) such that wγ−k is not
yet known exactly. Therefore, the overhead of updating (4.32) for every change of L is O(|X|),
which is significantly more expensive than both O(log |T|) for Alg. 4.3 and O(1) for Alg. 4.4.

2. The exact priority value (4.30) for variable xi can only be calculated after the importance weights
for all edges incoming for xi have been computed. In other words, it would be necessary to wait
until Dijkstra’s algorithm removes every edge (α − i), α ∈ Γi from the priority queue L before
updating the messages for xi. Because Dijkstra’s algorithm processes edges in the order of decreas-
ing importance weight, it follows that the earliest time at which the messages incoming for xi is
determined by the least important incoming edge - even when all the remaining edges have high im-
portance, a single low-importance edge would hold up the message updates, leading to more edges
being processed upfront by Dijkstra’s algorithm and compromising the anytime behavior.

Example: consider the setting in Fig. 4.8. Assume that xq is the only query variable, every factor is
such that the upper bound (4.12) on the partial message derivatives is 0.6, and every edge residual
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is 1 except for rα1−q = rα2−q = 0. Then the edges have maximum sensitivity importance values
shown in Fig. 4.8a and Alg. 4.1 will expand the edges on line 5 in the order shown in Fig. 4.8c.
Assume also for simplicity that the edge residuals are known exactly (i.e., the accuracy of an upper
bound on the edge residuals is not an issue). We are interested in the minimal number of edges
expanded by Alg. 4.1 that would allow one to unambiguously infer the variable which should be
updated next.

From Fig. 4.8b, one can see that the variables with the highest total weighted residual (4.28) are
xi1 and xi2 . Consider the evolution of the bounds on the total weighted residuals of xi1 and xi2 as
Alg. 4.1 expands the edges of the model on line 5. It holds that

wα3−i1 · rα3−i1 ≤ total-residual(xi1) = wα3−i1 · rα3−i1 + wα1−i1 · rα1−i1

≤ wα3−i1 · rα3−i1 + pt(L) · rα1−i1 ,

and analogously for xi2 . After Alg. 4.1 expands 4 edges, namely (α1 − xq), (α2 − xq), (α3 − xi1)
and (α4 − xi2), plugging in the concrete weights and residuals, we get total-residual(xq) = 0 and

total-residual(xi1) ∈ [0.6, 0.6 + pt(L)], total-residual(xi2) ∈ [0.6, 0.6 + pt(L)],

total-residual(xi3) ∈ [0.36, 0.36 + pt(L)], total-residual(xi4) ∈ [0.36, 0.36 + pt(L)],

and for all the remaining variables xi, because there are 2 incoming edges for every variable, we
have total-residual(xi) ∈ [0, 2 · pt(L)]. After 2 more edges, namely (α5−xi3) and (α6−xi4), have
been expanded by Alg. 4.1, it holds that pt(L) = 0.22 (edge (α7 − i5) is the next to be expanded),
so

total-residual(xi1) ∈ [0.6, 0.82], total-residual(xi2) ∈ [0.6, 0.82],

total-residual(xi3) ∈ [0.36, 0.58], total-residual(xi4) ∈ [0.36, 0.58],

and
total-residual(xi) ∈ [0, 0.44] for all i ∈ {i5, i6, i7}.

Therefore, after examining 6 edges of the model, one can already guarantee that either xi1 or xi2
has the highest total weighted residual (4.28). However, to find out which of xi1 or xi2 has higher
total weighted residual (in our case, make sure that they are the same), one needs to find the exact
edge importance weights for (α1 − i1) and (α2 − i2). Because (α1 − i1) and (α2 − i2) have the
lowest importance weights out of all the model edges, they will be expanded last. Indeed, even after
14 out of 16 edges have been expanded, we have pt(L) = 0.03 and

total-residual(xi1) ∈ [0.6, 0.63], total-residual(xi2) ∈ [0.6, 0.63],

which means that there is no new information about which of xi1 and xi2 has the largest total
weighted residual since edge number 4 (i.e., (α4 − i2)) has been examined. Only after expanding
(α2 − i2), edge 15 out of 16, we obtain

total-residual(xi1) ∈ [0.6, 0.63], total-residual(xi2) = 0.63 ⇒
⇒ total-residual(xi2) ≥ total-residual(xi1).

One can see that even if all the edge residuals are known exactly, and in the absence of pathological
cases of low-importance edges having very high residuals, it may be necessary to process almost all
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variables the exact weighted total variable resid-
uals (4.28) shown in Fig. (b).
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variables the exact weighted total variable resid-
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Figure 4.8: An example setting (Fig. (a)-(d)) where the need for Alg. 4.1 to expand low-importance edges
in order to compute the weighted total variable residuals (4.28) renders the anytime approach useless
regardless of the tightness of the upper bound on the unweighted residuals.
Fig. (e) and (f) show that weighting residuals by variable importance per the equation (4.35) restores the
anytime behavior.

of the edges of the model to compute the total weighted residual (4.28) of the variable with the high-
est residual. Such a property would lead to longer initialization stages of an anytime modification
and larger delay before the first edge updates are applied, compared to e.g. Alg. 4.3 and Alg. 4.4

Notice that there are two completely distinct issues, each of which may require expanding many
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low-priority edges of the model with Dijkstra’s algorithm:

(a) The need to know the exact importance of every incoming edge for variable xi before updating
xi. This problem would only affect an anytime modification of QSBP-V with (4.32) as an
upper bound on the variable priority. Algorithms 4.3 and 4.4 are not affected by this issue.

(b) The upper bounds on the raw residuals, pt(K) for Alg. 4.3 and 2 maxψ∈F ‖f‖ for Alg. 4.4
overestimate the actual residuals in the model (or, in case of Alg. 4.3, the edges with highest
raw residuals actually have low importance). This issue affects both the anytime modifications
of QSBP and would affect any anytime modification of QSBP-V to the same degree.

Fortunately, both of the problems discussed above can be addressed by only slightly changing the defini-
tion of priority for a given variable. Define the maximum sensitivity importance value for a variable as a
maximum over the incoming edges:
Definition 59. Given the set Q of query variables and a factor graph ({X,F},T), the maximum sensi-
tivity importance value of a variable xi is defined to be

max-sensitivity(i, Q) ≡ max
α∈Γi

max-sensitivity(α− i, Q) = max
α∈Γi

max
xq∈Q

max
π∈Π(α−i,q)

sensitivity(π),

(4.34)
where the second equality follows directly from Def. 51.

We further define the total residual weighted by variable importance, which will be used as variable
priority in the anytime modification of QSBP-V, and can also be used in QSBP-V itself:
Definition 60. Given a factor graph ({X,F},T), the set Q of query variables, and a vector r of message
residuals, define total residual weighted by variable importance for variable xi as

total-residual-vi(xi) = max-sensitivity(i, Q) ·
∑
α∈Γi

rα−i. (4.35)

Before discussing how using (4.35) as variable priorities solves the issues identified in this section with
anytime modifications, let us show that (4.35) is a close approximation of the total variable residual
weighted with individual edge weights (4.28). In other words, the choice of (4.35) is justified not only
by the computational convenience, but also by the approximation quality. The key observation here is the
following:
Proposition 61. For any factor graph ({X,F},T), set Q of query variables and variable xi, at most one
edge (α− i) ∈ T involving xi hasmax-sensitivity(α− i, Q) < max-sensitivity(i, Q). In other words,
all the edges involving xi except at most one have the same importance:

|{α | α ∈ Γi, max-sensitivity(α− i, Q) = max-sensitivity(i, Q)}| >= |Γi| − 1.

Proof. If xi ∈ Q, it follows that ∀α ∈ Γi, max-sensitivity(α − i, Q) = max-sensitivity(i, Q) = 1.
Therefore,

|{α | α ∈ Γi, max-sensitivity(α− i, Q) = max-sensitivity(i, Q)}| = |Γi| > |Γi| − 1.

Consider the case xi 6∈ Q. By Def. 59, there exists an edge (γ − i) ∈ T such that max-sensitivity(γ −
i, Q) = max-sensitivity(i, Q). From Def. 51 and Def. 48, it further follows that there exists a vari-
able xq ∈ Q and a path π = (γ − i − β1 − j1 − ...jm − βm+1 − q) such that sensitivity(π) =
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Algorithm 4.8: Variable importance computation
Input: Factor graph ({X,F},T), query Q ∈ X.

1 L = ∅ is priority queue, ρα−i is edge priority
2 foreach xi ∈ X do initialize wi = ∅

3 foreach (α− i) ∈ T do add (α− i) to L with priority ρα−i =

{
1, if i ∈ Q
0 otherwise

4 while L 6= ∅ do
5 denote (α− i) to be the top of L
6 if wi = ∅ then set wα−i ← ρα−i
7 remove (α− i) from L
8 foreach j ∈ Γα \ i foreach β ∈ Γj \ α such that (β − j) ∈ L do
9 ρβ−j ← max

(
ρβ−j , ρα−i · supν

∥∥∥ ∂να−i∂νβ−j

∥∥∥)
10 update the position of (β − j) in L to match priority ρβ−j

11 return W = {wi | xi ∈ X} - importance values for all the variables

max-sensitivity(i, Q). Consider any α ∈ Γi\β1 and a path π(α) = (α−i−β1−j1−...−jm−βm+1−q)
obtained by replacing γ with α in π. From (4.10) and (4.12) it follows that

sensitivity(π(α)) = sup
ν−π

∥∥∥∥∂νβ1−j1∂να−i

∥∥∥∥× · · · × sup
ν−π

∥∥∥∥∂νβm+1−q

∂νβm−jm

∥∥∥∥
= sup

ν−π

∥∥∥∥∂νβ1−j1∂νγ−i

∥∥∥∥× · · · × sup
ν−π

∥∥∥∥∂νβm+1−q

∂νβm−jm

∥∥∥∥ = sensitivity(π),

where the second equality holds because by (4.12)
∥∥∥∂νβ1−i1∂να−i

∥∥∥ does not depend on the factor ψα.

Finally, observe that

max-sensitivity(i, Q) = sensitivity(π) = sensitivity(π(α))

(Def. 51 and Def. 48) ≤ max-sensitivity(α− i, Q)

(Def. 59) ≤ max-sensitivity(i, Q),

so max-sensitivity(i, Q) = max-sensitivity(α− i, Q) for every α ∈ Γi \ β1.�

An approximation quality guarantee follows from Prop. 61 directly:
Corollary 62. For any vector of BP messages ν and corresponding new messages ν̂ and residuals r for a
factor graph ({X,F},T), it holds that

0 ≤ total-residual-vi(xi)− total-residual(xi) ≤ max-sensitivity(i, Q) ·max
α∈Γi

rα−i.

Adjusting the maximum sensitivity importance edge importance computation (Alg. 4.1) and QSBP-V
(Alg. 4.7) to work with variable importance values instead of edge importance values, we obtain corre-
spondingly Alg. 4.8 and Alg. 4.9 with similar properties:
Proposition 63. Alg. 4.8 computes the exact maximum sensitivity importance values of Def. 59 for every
variable xi : on line 11 of Alg. 4.8 it holds that wi = max-sensitivity(i, Q).
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Algorithm 4.9: QSBP-V: Query-specific belief propagation with variable updates
Input: Factor graph G = ({X,F},T), query Q ∈ X.

1 M is a priority queue
2 W ← Alg.4.8(G,Q) // Find variable importance values
3 foreach xi ∈ X set Ni ←

(
|Γi| · |dom(xi)|+

∑
α∈Γi

(Γα − 1) · |dom(ψα)|
)

// From (4.29)
4 foreach (α− i) ∈ T initialize the message να−i
5 foreach (α− i) ∈ T compute ν̂α−i, rα−i using (4.6,4.7)
6 foreach xi ∈ X add xi to M with priority µi = N−1

i wi
∑

α∈Γi
rα−i

7 while not converged do
8 denote xi to be the top of M, set priority of xi in M to 0, set µi ← 0
9 foreach α ∈ Γi do να−i ← ν̂α−i

10 foreach α ∈ Γi and j ∈ Γα \ i do
// Account for changes in µj due to changing rα−j to avoid recomputing µj from scratch

11 µj ← µj −N−1
j wjrα−j // Subtract the contribution of the old residual

12 recompute ν̂α−j and rα−j using Eq. 4.6, 4.7
13 µj ← µj +N−1

j wjrα−j // Add the contribution of the new residual
14 set priority of xj in M to µj

15 return P̃ (xq) for xq ∈ Q using Eq. 4.5

Proof. Analogous to the proof of a similar proposition for Alg. 4.1 (Prop. 49). From the proof Prop. 49,
whenever an edge (α − i) is pulled off the top of the priority queue L, it holds that the priority ρα−i is
equal to the maximum sensitivity importance value of (α− i).

Because Alg. 4.1 (and consequently Alg. 4.8) expand edges in the order of their decreasing maximum
sensitivity values, the first expanded edge (α− i) connected to xi will havemax-sensitivity(α− i, Q) =
max-sensitivity(i, Q). Therefore, setting wi = ρα−i on line 6 for the first expanded (α − i) connected
to xi makes wi equal to max-sensitivity(i, Q). Because the weights wi are not changed after the first
assignment on line 6, wi stays equal tomax-sensitivity(i, Q) until the end of the algorithm run.�
Proposition 64. Suppose every factor of the factor graph ({X,F},T) contains at most df variables and
every variable participates in at most dv factors. Then the complexity of Alg. 4.8 with priority queue
organized as Fibonacci heap is O(|T|(log |T|+ dfdv)).

Proof. Same as for Prop. 50.�

Although the changes between QSBP-V and Alg. 4.9, highlighted in Alg. 4.9 using red underlined font,
are minimal, elimination of edge-specific importance weights in Alg. 4.9 restores the multiplicative de-
composition of the priority of the variable into an variable importance and the total unweighted residual.
Such a multiplicative decomposition entails a decomposable upper bound on the priority of the yet unseen
variables analogous to the upper bound used in Alg. 4.4. The resulting anytime modification of Alg. 4.9,
shown in Alg. 4.10, is directly analogous to Alg. 4.4.

One can see that adopting the multiplicative upper decomposition for the upper bound on variable priority
(c.f. line 10 of Alg. 4.10) resolves the issue 1 with computational complexity discussed in the beginning
of this section. Observe that just as pulling an edge off the top of the importance values priority queue
L on line 15 of Alg. 4.4 leads to at most (dv − 1)(df − 1) updates to L on lines 16-18, pulling an edge
off the top of L on line 19 of Alg. 4.10 leads to at most (dv − 1)(df − 1) updates to L on lines 25-27.
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Algorithm 4.10: Pessimistic anytime query-specific belief propagation with variable updates
Input: Factor graph ({X,F},T), query set Q ∈ X.

1 L = ∅ is priority queue for computing variable importance, ρα−i is edge priority in L
2 M = ∅ is priority queue for prioritizing BP updates
3 foreach xi ∈ X do
4 Ni ←

(
|Γi| · |dom(xi)|+

∑
α∈Γi

(Γα − 1) · |dom(ψα)|
)

// From (4.29)
5 ri ← N−1

i ·
∑

α∈Γi
2 ‖ψα‖ // Total complexity-adjusted residual upper bound for xi

6 r = maxxi∈X ri // Global total complexity-adjusted residual upper bound for all variables
7 foreach xi ∈ X do initialize wi = ∅

8 foreach (α− i) ∈ T do add (α− i) to L with priority ρα−i =

{
1, if i ∈ Q
0 otherwise

9 while not converged do
10 if M 6= ∅ AND pt(M) > r · pt(L) then

// Variable xi is guaranteed to have the largest weighted residual
11 denote xi to be the top of M, set priority of xi in M to µi ← 0
12 foreach α ∈ Γi do να−i ← ν̂α−i
13 foreach α ∈ Γi foreach j ∈ Γα \ i s.t. wj 6= ∅ do
14 µj ← µj −N−1

j wjrα−j // Subtract the contribution of the old residual
15 recompute ν̂α−j and rα−j using Eq. 4.6, 4.7
16 µj ← µj +N−1

j wjrα−j // Add the contribution of the new residual
17 set priority of xj in M to µj

18 else
// Need to tighten the weighted residual upper bounds
// or find an variable with a larger exact weighted residual.

19 denote (α− i) to be the top of L
20 if wi = ∅ then
21 set wα−i ← ρα−i
22 foreach α ∈ Γi compute ν̂α−i and rα−i using Eq. 4.6, 4.7
23 add xi to M with priority N−1

i wi
∑

α∈Γi
rα−i

24 remove (α− i) from L
25 foreach j ∈ Γα \ i foreach β ∈ Γj \ α such that (β − j) ∈ L do
26 ρβ−j ← max

(
ρβ−j , ρα−i · supν

∥∥∥ ∂να−i∂νβ−j

∥∥∥)
27 update the position of (β − j) in L to match priority ρβ−j

28 return P̃ (Q) using Eq. 4.5

In other words, compared to a batch run of Dijkstra’s algorithm to compute all the maximum sensitivity
importance values in advance, neither Alg. 4.4 nor Alg. 4.10 have any extra overhead concerned with
maintaining an upper bound on the exact priority of the yet unseen edges or variables.

Moreover, issue 2 of having to explore low-priority edges is also resolved by adopting (4.10) as vari-
able priority. Because Dijkstra’s algorithm processes edges in the order of decreasing importance, it
follows that the first edge (α − i) processed on line 5 of Alg. 4.1 involving variable xi will have the
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same maximum sensitivity importance value as the variable xi itself: max-sensitivity(α − i, Q) =
max-sensitivity(i, Q). Therefore, instead of waiting for the last edge connected to xi to be processed
before computing the exact variable priority value for (4.30), with (4.35) it is sufficient to get the first such
edge:

Example: consider again the setting in Fig. 4.8. Comparing the total weighted residuals (4.28) using
maximum sensitivity importance weights for individual edges (Fig. 4.8b) and the total weighted residu-
als (4.35) using maximum sensitivity importance weights for variables (Fig. 4.8e), one can see that using
per-variable importance weights leads to larger absolute values of the total weighted residuals (although
in the case of Fig. 4.8 the relative ordering of the variables by the total weighted residual is the same in
both cases).

The key computational difference between the edge-weighted total residual (4.28) and variable-weighted
total residual (4.35) is illustrated by Fig. 4.8d and Fig. 4.8f, which show the respective number of edges
that need to be expanded by Alg. 4.1 to find the exact total residual for every variable. Notice that first, for
every variable variable-weighted total residual requires fewer edges to be expanded than edge-weighted
total residual, and second, that the difference is especially pronounced for the variables with the highest
residual: while computing the edge-weighted total residual (4.28) for xi1 and xi2 requires expanding 16
and 15 edges correspondingly, computing variable-weighted total residual (4.35) for the same variables re-
quires expanding only 3 and 4 edges, so the first BP update can be applied much earlier with prioritization
by variable-weighted total residuals (4.35) as compared to edge-weighted total residuals (4.28).

Finally, just as Alg. 4.2 and Alg. 4.4, it holds that Alg 4.9 and its anytime modification Alg 4.10 are
guaranteed to apply BP updates in the same order:
Proposition 65. Assuming that all the message are initialized to uniform values, ν = ~0, and the same
outcomes of breaking ties between variables of equal priority, the sequence of variable updates performed
by Alg. 4.10 is the same as for Alg. 4.9.

Proof. Follows directly from the upper bound on the weighted total residuals for variables xj with not yet
known weight wj = ∅ :

wj = ∅ ⇒ pt(L) ≥ max-sensitivity(j,Q) and r ≥ N−1
j

∑
β∈Γj

rβ−j ⇒

⇒ r · pt(L) ≥ N−1
j max-sensitivity(j,Q)

∑
β∈Γj

rβ−j .

Because right before a BP update on line 11 of Alg. 4.10 it holds that

r · pt(L) ≤ µi ≡ N−1
i max-sensitivity(i, Q)

∑
α∈Γi

rα−i,

for xi that has the highest priority µi in M, it follows that xi has a larger total weighted residual than any
variable xj with wj = ∅. Therefore, xi would be updated next even if all the variables xj were present in
M with priorities N−1

j max-sensitivity(j,Q)
∑

β∈Γj
rβ−j as in Alg. 4.9.�

4.6 Related Work

Query-specific inference algorithms introduced in this chapter involve three key ideas: focusing the com-
putation on the parts of the model relevant to the query, taking not only model structure, but also param-
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eters into account to quantify the relative importance of the model edges to the query, and finally using
the analysis of interdependence of messages based on the work of Mooij and Kappen (2007) as a concrete
way to tractably compute the edge importance without running the inference itself first. Here, we discuss
the existing literature touching these three topics.

We also discuss more broadly the existing work on estimating the intervals that are guaranteed to contain
of the fixed point BP beliefs of the full model. Those interval estimation approaches are more computa-
tionally demanding that our one-shot edge sensitivity estimates, but also have higher accuracy. Therefore,
if one can overcome the computational issues, employing those more accurate estimates to prioritize belief
propagation updates can further speed up the inference convergence.

4.6.1 Query-specific model simplification

For a factor graph ({X,F},T), the inference problem of computing marginal distributions of variables
P (x) can be hard for two primary reasons:

1. The model ({X,F},T) may have a lot of factors with high dynamic range, which tightly couple the
values of multiple variables. Because the “standard” belief propagation-based algorithms update the
messages one edge or variable at a time, it is easy for them to get stuck in a cycle oscillating between
several sharp modes of the marginal distribution. Most of the theoretical criteria that guarantee BP
convergence (c.f. Mooij and Kappen, 2007, and references therein) rely on the requirement that the
factors F do not induce dependencies that are too strong. It is important to notice that the model
({X,F},T) with strong dependencies between variables does not need to be very large for the
inference problem to be difficult.

2. The model ({X,F},T) is large, with many factors and variables. The issue of the sheer size of the
graphical model has become especially acute with the wide adoption of relational models (Friedman
et al., 1999; Richardson and Domingos, 2006; Taskar et al., 2002; Pentney et al., 2006). For the
large-scale model, even if the variable dependencies are relatively weak and belief propagation
converges after a moderate number of iterations, the cost of even a single BP iteration for every
message may be quite large.

In the former case it may not be possible to accurately approximate the query belief P (Q) without per-
forming inference for the full model, because every factor may significantly affect P (Q) via the strong
dependencies. In the latter case, however, intuitively one expects that parts of the model that are far away
from the query for some notion of distance in the factor graph ({X,F},T) have little effect on P (Q).
Therefore, one can simplify the inference problem by simply discarding the parts of the model that are far
away from the query.

Although the approach of completely removing parts of the model that are far away from the query and
performing inference in the simplified model instead of the full one has been successfully used in practice
previously (Wellman et al., 1992; Pentney et al., 2006, 2007). However, the existing work in this direction
has suffered from two significant problems, both of which have been addressed in our approach:

1. Query-specific submodel selection was usually done by breadth-first search in the factor graph
({X,F},T), including all the variables and potentials within a fixed radius from the query (Well-
man et al., 1992; Pentney et al., 2006). Such an approach only pays attention to the model structure
and completely ignores the parameters of the model, resulting in suboptimal simplified models.
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In (Pentney et al., 2007), the strength of dependencies is taken into account by pruning the variables
x that have low mutual information I(x,Q) with the query. However, such a solution is also prob-
lematic, because it requires estimating all the pairwise mutual information values either directly
from data, which may be difficult for relational models because of the lack of independent data-
points, or using inference in the full factor graph ({X,F},T), which goes back to a problem that
query-specific approaches aim to speed up in the first place.

2. Removing some factors and variables from the factor graph ({X,F},T) changes both the exact
distribution induced by the factorized model (4.1) and belief propagation fixed points P̃ ∗ (X) .
Moreover, removing parts of the model introduces a tradeoff of approximation quality with respect
to the full model and the error stemming from stopping BP before achieving convergence. Formally,
let P̃ ∗ (X) to be a BP fixed point for the full model ({X,F},T). Denote P̃ ∗reduced (X) to be the
fixed point of a simplified model and P̃reduced (X, τ) to be the belief obtained by running belief
propagation for time τ on the reduced model. The total error of the BP belief can be bounded from
above as

‖P̃ ∗ (X)− P̃reduced (X, τ) ‖ ≤ ‖P̃ ∗ (X)− P̃ ∗reduced (X) ‖+ ‖P̃ ∗reduced (X)− P̃reduced (X, τ) ‖,
(4.36)

where the first component is approximation error inherent to the reduced submodel and the second
component is the error resulting from the limited runtime τ of belief propagation, which may be not
sufficient for BP to achieve convergence on the simplified model.

Typically, the fewer elements we remove from ({X,F},T), the smaller the resulting changes in the
fixed points would be. Therefore, the first error component decreases as the size of the simplified
model grows. On the other hand, the larger the simplified model, the slower BP progress towards
the fixed point would be, so the second error component grows with the size of the simplified model.

Ideally, one wants to select the optimal size of the reduced submodel given the time budget τ. However,
without taking model parameters into account, it is hard to imagine a principled way to find a good tradeoff
point of the two error sources in (4.36) other than cross-validation, which is likely to be costly. The
problem becomes even harder when the time budget τ is not known in advance and a way to incrementally
grow the simplified model over time until it includes all of ({X,F},T) is needed.

One can see that our query-specific approach based on edge importance weights (4.13) addresses both
of the above issues. By taking into account the model parameters via the strength of message depenen-
cies (4.12), the computation is better focused on parts of the model that most affect the query. Moreover,
QSBP can be seen as adaptively growing the query-specific submodel over time in a principled way,
eventually converging to the fixed point of a full factor graph. The submodel-growing interpretation is
especially clear in the structure of anytime variants Alg. 4.4 and Alg. 4.10 of the basic QSBP, where
the edges and variables with exactly known importance weights can be interpreted as the current query-
specific submodel. Also, unlike previous approaches, one can guarantee that whenever QSBP converges,
the resulting query beliefs correspond to a BP fixed point for the full model.

4.6.2 Estimating the effects of model simplification

In the previous section, we have discussed the construction of query-specific submodels via breadth-first
search on the full factor graph ({X,F},T) - a computationally cheap approach that often works well in
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practice, but lacks the theoretical guarantees on the changes in the query marginal P (Q) introduced by re-
moving some parts of ({X,F},T). Here, we discuss the approaches that form the field of sensitivity anal-
ysis of probabilistic graphical models, which belong to the opposite extreme of the complexity-accuracy
tradeoff. Typically, these methods allow for accurate estimation of the effects of removing an edge from a
factor graph, but have high computational complexity.

A common property of the approaches for model simplification discussed here is the need, in order to
estimate the effect of removing an edge from a model, to perform inference (either exact or approximate)
in the initial graphical model or in its simplified version. For example, in (Kjaerulff, 1993) a junction tree
corresponding to the triangulated version of the PGM is first constructed, and then large cliques of the
junction tree are broken down into smaller ones by introducing additional independence assertions. The
choice of which independence assertions to introduce is guided purely by the local approximation error
minψα1 ,ψα2 D(ψα | ψα1 ·ψα2),whereXα is the clique to be broken down intoXα1 andXα2 , andD(·||·) is
an error measure such as KL divergence. Together with a union bound on the effect of a sequence of clique
simplifications in a model, Kjaerulff (1993) propose a simple greedy approach of removing the weakest
dependencies from the model. While such an approach works well for small models, the need to build a
junction tree of the triangulated model and operate with clique potentials of that junction tree makes the
it intractable for large-scale problems. In (van Engelen, 1997), a similar approach is proposed that works
directly with Bayesian networks and does not need to form a triangulated model as an intermediate step.
Unfortunately, the approach of van Engelen (1997) is restricted to directed graphical models (also known
as Bayesian networks) and is therefore inapplicable for the majority of large-scale relational PGMs, which
are undirected (c.f. Taskar et al., 2002; Richardson and Domingos, 2006). Moreover, the approach of van
Engelen (1997) does not have a notion of query and is thus only able to optimize approximation quality
of the full joint distribution P (X) instead of the query marginal P (Q).

A different line of work (Choi and Darwiche, 2008, 2006a, 2009, 2006b) focuses on the idea of (a) replac-
ing a pairwise factor ψij(xixj) with a pair of single-variable factors ψi(xi) and ψj(xj), (b) establishing
conditions on the values of the new factors ψi(xi) and ψj(xj) that would minimize the approximation
error and (c) using the optimality conditions in (b) as fixed point equations. For the case of replacing
every pairwise factor with single-variable factors (i.e., fully disconnecting the variables) in such a man-
ner, the fixed point equations yield exactly the belief propagation updates. Moreover, after recovering a
connected tractable submodel of ({X,F},T), such as a spanning tree, Choi and Darwiche (2006a) show
ways to heuristically estimate the overcounting of influence by BP updates due to loops in ({X,F},T).
As Choi and Darwiche (2006a) have shown experimentally, further recovering the edges with the “most
overcounting” significantly improves approximation quality of generalized belief propagation (interleaved
exact inference on the recovered part of the factor graph and BP updates for the edges that were not re-
covered). In (Choi and Darwiche, 2008), a query-specific heuristic was introduced to focus on recovering
the edges that have the largest impact on the query. The key differences of the approach of Choi and
Darwiche (2008) (and other related papers) and our query-specific inference algorithms is the compu-
tational complexity: although the heuristics of Choi and Darwiche (2008) may be more accurate than
ours, their computational complexity is much higher: while running belief propagation on the full model
({X,F},T) is the highest possible complexity procedure for our approach, Choi and Darwiche (2008)
need the results for the generalized belief propagation on the full model just to evaluate the importance
of different edges to the query. After some of the edges are recovered, another run of GBP for the full
model is needed to improve the approximation P̃ (Q) . Therefore, our query-specific inference approach
and that of Choi and Darwiche (2008) occupy non-overlapping intervals on the computational complexity
spectrum, and the choice between the two would be dictated by the amount of resources available for a
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given application.

4.6.3 Convergence analysis for belief propagation

Because belief propagation is not guaranteed to converge in general loopy models (Mooij and Kappen,
2005), an important problem is to predict, without running inference itself, whether BP will converge
given a particular model ({X,F},T). Similarly to the problem of optimal updates prioritization, conver-
gence analysis requires one to consider the long-term impact of the message updates. In fact, the upper
bound (4.12) on the immediate impact of an update on the neighbor messages was developed by Mooij
and Kappen (2007) exactly for the problem of convergence analysis.

As Mooij and Kappen (2007) have shown, synchronous BP is guaranteed to converge whenever the matrix
A of size |T| × |T| such that A(α−i),(β=j) =

∥∥∥ ∂να−i∂νβ−j

∥∥∥ has the spectral radius ρ(A) < 1. Moreover, Mooij
and Kappen (2007) have shown their spectral radius criterion to outperform similar in spirit convergence
conditions from the earlier literature, such as those of Tatikonda and Jordan (2002) and Georgii (1988). An
equivalent to guarantee of Mooij and Kappen (2007) based on the spectral radius of the edge matrix, but
restricted only to models with pairwise factors, was independently introduced by Ihler et al. (2005).

Both our notion of edge importance and the sufficient conditions for BP convergence from Mooij and
Kappen (2007) are based on the upper bound (4.12) and a worst-case analysis of the message interactions
in the model. As a result, the two approaches have many important properties in common. First, neither
approach requires iterative updates with uncertain convergence horizon (as would be the case if one had
to run belief propagation on the model first). As a result, both approaches are not only computationally
efficient, but also are predictable in terms of the required computation. Second, both approaches share
the drawback of somewhat crude results, which stems from the worst-case assumptions that (a) every
message update results in the largest possible changes for the neighbor messages and (b) the messages
themselves can be arbitrary. Additionally, our notion of maximum sensitivity edge importance only takes
into account one possible path of the influence flow in the model. As a result of these simplifications,
our edge importance values are only heuristic estimates, which can both over-estimate the edge influence
on the query (in a tree-like model) and underestimate edge importance in a densely connected model.
Similarly, the sufficient conditions for BP convergence of Mooij and Kappen (2007) are often too strict,
and fail to hold for many models where belief propagation is actually well-behaved. Moreover, for cases
when the conditions of Mooij and Kappen (2007) do not hold and convergence is not guaranteed, nothing
can be said about the possible errors of BP beliefs.

In the next section, we discuss how one can obtain more detailed information about the behavior of belief
propagation at the expense of larger computational cost.

4.6.4 Bounds on belief propagation beliefs

Instead of analyzing the model ({X,F},T) before running belief propagation, one can propagate the error
information on the BP beliefs during the process of belief propagation itself using upper bounds similar
to (4.12) on the sensitivity of the outgoing messages with respect to the incoming messages. Suppose at
some point during the inference process, for every factor graph edge (α − i) a multi-dimensional “box”
(i.e., a Cartesian product of intervals for every dimension) is known that is guaranteed to contain the
fixed point message ν∗α−i. Then (4.12) or a similar bound can be used to iteratively tighten the “boxes”
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with updates analogous to the standard BP updates (4.4). Fortunately, suitable initial boxes are easy
to obtain using, for example, the upper bound (4.19) or even vacuous boxes that contain all possible
messages.

Interval estimates of the fixed point BP messages can be used in two different ways. The first way is more
passive: one can simply replace the standard belief propagation messages να−i,which are essentially point
estimates of the fixed point messages, with the bounding boxes, and use “box propagation” updates instead
of (4.12) to iteratively tighten the box estimates. Importantly, this first group of approaches does not use
the information about bounds to prioritize updates. For example, Mooij and Kappen (2008) proposed
update rules such that the box estimates of the beliefs P̃ (xi) are guaranteed to contain both fixed point
BP beliefs P̃ ∗ (xi) and the true marginals P (xi). Ihler (2007) use bounds propagation to refine the upper
bounds on the difference between the fixed point beliefs and the true marginals.

The second group of approaches not only uses box propagation to obtain a posteriori error bounds on the
BP beliefs, but also relies on the error bounds to actively guide the prioritization of updates. For example,
in a lifted setting, de Salvo Braz et al. (2009) use error propagation analysis to reduce the size of the
lifted network by treating messages that are not exactly equal, but similar, as the same message. Finally,
in (Nath and Domingos, 2010) error propagation analysis is used to speed up inference by avoiding BP
updates that are guaranteed to have small eventual effect on the query marginals. In particular, Nath and
Domingos (2010) formulate conditions under which it is possible to ignore a BP update without affecting
the MAP assignment.

The latter group of approaches has a lot in common with our query-specific inference algorithms. Two
their main common properties are (a) using (4.12) and similar bounds to estimate the local effects of the
belief propagation updates, and (b) using the estimates of the update effects to guide the prioritization of
updates. However, there are also important differences between our approach and box propagation-based
approaches of de Salvo Braz et al. (2009) and Nath and Domingos (2010):

• First, our query-specific belief propagation only requiresO(|T|(log |T|+dfdv)) time to run Alg. 4.8
as a preprocessing step (c.f. Proposition 64), and constant time per update afterwards. Box propa-
gation approaches, however, being a generalization of belief propagation, are in general not guaran-
teed to converge. Therefore, our approach has an advantage in computational complexity over box
propagation algorithms.

• Second, while our notion of maximum sensitivity edge importance characterizes the strength of the
long-range dependencies between an arbitrary message and the query, box propagation updates only
describe the immediate dependencies between messages of the directly adjacent edges. As a result,
in a query-specific setting it is not immediately clear how to adapt box propagation to characterize
relative importance of message updates that are not directly adjacent to the query. In particular, both
de Salvo Braz et al. (2009) and Nath and Domingos (2010) use a rather crude approach of updating
all the messages where the box estimates have diameter larger than a fixed threshold.

• Finally, while maximum sensitivity edge importance measure of Def. 48 only estimates the eventual
impact of a message update on the query belief heuristically and without any quality guarantees, box
propagation-based approaches operate with actual upper and lower bounds on the BP messages. In
other words, box propagation algorithms provide much more reliable information about the eventual
inference errors than our approach.

One can see that neither query-specific inference of this chapter nor the existing box propagation-based
approaches dominates the alternative. Our edge importance measures based on path sensitivity are more
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efficient computationally and better suited to estimating long-term effects of a BP update, while box
propagation techniques are significantly more informative for the immediate effects of an update on the
neighboring messages. Therefore combining the advantages of the two to improve the quality of the
estimates of long-term effects of an arbitrary BP update on the query beliefs is an important open problem.
One possible direction towards such a unified approach is to develop a better measure of path strength to
replace the maximum sensitivity of Def. 48. The more accurate path strength measure would need to take
into account not only the largest possible sensitivity of local dependencies via the upper bound (4.12), but
also the possible ranges of BP messages along that path. Taking the possible messages ranges along the
path into account would make it possible to tighten the current upper bound on the update impact on the
query along the path, which in turn would improve update scheduling.

4.7 Experiments

In this section, we empirically demonstrate the performance of query-specific inference on real-life rela-
tional probabilistic graphical models.

4.7.1 Datasets and models

We have evaluated the query-specific belief propagation approach on a grounded Markov logic network
for the WebKB webpage classification problem and the high-treewidth CRFs for the image segmentation
problem (see sections 3.6.2 and 3.6.3 for the detailed description of the two models). We have also applied
our approach to a grounded Markov logic network describing the structure of an academic department,
which is described below.

UW-CSE academic department model

This Markov logic network model, introduced in (Richardson and Domingos, 2006) and extended in
(Singla and Domingos, 2005) describes the structure of a university department, and was successfully
applied to predicting a “professor A is a an advisor of student B” relation for the CSE department at the
University of Washington. UW-CSE MLN has 22 first-order predicates, 10 constant types and 94 hand-
coded formulas encoding domain-specific knowledge such as “a student typically has only one advisor”, or
“a student and his advisor are likely to be coauthors on a paper”. The data gathered for the CSE department
at UW spans students and faculty in five distinct areas (AI, graphics, programming languages, theory and
systems). The goal is to use the data from 4 areas to train a model, and then predict which faculty member
advises which student for the remaining one area. The value of every predicate of the MLN except for
AdvisedBy is observed at both train and test time, enabling discriminative weight learning. The resulting
factor graph sizes are shown in Table 4.1. Observe that the UW-CSE models are much more densely
connected than the WebKB and image segmentation models: UW-CSE models have about 50 factors per
variable versus 2-3 factors per variable for WebKB and image segmentation.
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Model Variables Factors Edges
UW-AI 4790 3.4 · 105 6.8 · 105

UW-GRAPHICS 6678 2.5 · 105 4.9 · 105

UW-SYSTEMS 7951 4.1 · 105 8.0 · 105

UW-THEORY 2527 1.3 · 105 2.6 · 105

Table 4.1: Factor graph sizes for UW-CSE Markov logic network.

4.7.2 Query selection, inference problems and error measures

The motivation for developing the query-specific algorithms described in this chapter was to improve
convergence speed of belief propagation, as opposed to approximation accuracy in the limit of plentiful
computation time. The question of choice between belief propagation and fundamentally different alter-
native inference methods such Gibbs sampling (Geman and Geman, 1984) or variational inference (Jordan
et al., 1999) is outside of the scope of this thesis. Here, we will assume that the set of approximations
entailed by choosing BP for inference leads to a satisfactory end result (such as classification accuracy) for
the models at hand and will only compare the inference approaches based on belief propagation. Such a
restriction makes it possible to evaluate convergence speedups independently of the approximation quality
of BP fixed points. Specifically, we will focus on the distance from the BP fixed point as the main quality
measure of the set of dingle-variable beliefs:

FPError(P̃ (X) , Q) ≡ 1

|Q|
∑
xq∈Q

KL(P̃ ∗ (xq) ||P̃ (xq)),

where P̃ (·) is the current set of beliefs and P̃ ∗ (·) is a belief propagation fixed point for the complete
factor graph ({X,F},T). We will also demonstrate the results for classification accuracy as the quality
measure in section 4.7.4.

Fixed point detection. The exact fixed point beliefs are unknown for our models. Instead, we use ap-
proximate fixed points found by running belief propagation until the total residuals (4.28) decrease below
10−10 for every variable. A residual threshold of 10−10 is a very strict convergence criterion in prac-
tice - noticeable changes in beliefs stop long before such low residuals are achieved, so one can be quite
confident that the resulting BP beliefs lie very close to an exact fixed point.

Multiple fixed points. We have found empirically that some of the models used in this section have
multiple BP fixed points: depending on the starting point or update schedule (in particular, different
queries lead to different update schedules for query-specific algorithms), belief propagation may converge
to different beliefs and messages with an extremely low residual. Because our initial assumption was that
BP approximation is an adequate one, we consider every BP fixed point to be equally good, and use the
distance to the closest fixed point as quality measure for the beliefs:

FPError(P̃ (X) , Q) ≡ min
i=1,...,k

1

|Q|
∑
xq∈Q

KL(P̃ ∗i (xq) ||P̃ (xq)), (4.37)

where P̃ ∗1 (X) , . . . , P̃ ∗k (X) are different BP fixed points. Observe that it is only possible to possible to
compute the nearest distance (4.37) to the closest known fixed point. Therefore, the values one gets in
practice form an upper bound on the nearest distance to the nearest existing fixed points, because there
may be other fixed points that remained undetected.
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Inference problems. To obtain a representative performance picture, instead of reporting the results of
running inference algorithm for one fixed query, we will report averages over sets of many queries (the
question of selecting interesting sets of queries will be discussed shortly). Let

Q = ∪i{Qi}, Qi ⊆ X∀i

be a set of queries. For every Qi ∈ Q, we run an inference algorithm in question with Q as a query.
For belief propagation-based algorithms, the belief P̃ (Q) is a function of time τ : P̃ (Q) = P̃ (Q, τ) .
It follows that the belief error (4.37) is also a function of time FPError(P̃ , Q) ≡ FPError(Q, τ). To
aggregate the information for multiple queries, we will focus on the evolution of average query belief
error with time, where the averaging is all queries from Q:

FPError(Q, τ) =
1∑

Q∈Q |Q|
∑
Q∈Q
|Q| · FPError(Q, τ). (4.38)

The key thing to notice about the average error (4.38) is that it only includes the error component FPError(Q, τ)
for the run of the inference algorithm with Q as query and disregards the belief errors for Q for all the
other runs.

We will use the following query sets Q in our evaluation:

1. All possible single-variable queries: Q = ∪xi∈X{xi}.

2. A set of multivariable queries that together cover all the variables X. Here, we split X into non-
intersecting subsets of the same size k. In our experiments, k = 30. The performance of query-
specific inference depends on the way of grouping the variables into query sets. In general, perfor-
mance is better when all the query variables are close to each other in the factor graph and worse
if the query variables are spread out: when there are multiple queries far away from each other,
the algorithm is unable to narrowly focus the computation, because different query variables are
affected by different parts of the factor graph. We have used the following partitioning approaches:

• For WebKB, the query sets were constructed using breadth-first search. This is the easiest
multivariable query setting.

• For image segmentation models, we subdivided every image into a uniform 3 × 3 grid, and
grouped the variables corresponding to the superpixels from the same grid cell into the same
query set, resulting in 9 query sets per image. Here, the query set size is somewhat smaller
than 30 and depends on the number of superpixels in every grid cell.

• For UW-CSE dataset, we grouped query variables by the full name of the corresponding
grounding of a first-order predicate. This is the hardest multiquery setting, as the variables
are spread out through the graph.

3. Single-variable queries that are the “hardest” for the non-query-specific residual BP. After running
the standard residual belief to convergence, one can identify in the hindsight which variables took
the longest time to compute fixed point beliefs for. There are different ways to define how hard a
query is, we used two approaches. Denote τ∗ to be the time it takes residual belief propagation to
converge. Define the total RBP error of a variable to be:

FPTotalError(Q) =

∫ τ∗

τ=0
FPError(Q, τ)dτ, (4.39)
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Model Effective damping level
WebKB 0.1

Segmentation 0.1
UW-CSE 0.5

Table 4.2: Message damping levels used for the respective models in the experiments. These are the
smallest possible damping levels for which belief propagation converged for every update schedule.

where FPError(Q, τ) is computed for RBP beliefs. One can see that (4.39) considers to be hard
not only query variables where the beliefs take a long time to converge, but also the variables where
the belief converge relatively fast, but the instantaneous error values are high initially. The latter
situation (relatively quick convergence with briefly spiking error in the beginning) occurs quite
often when the immediate neighborhood of a variable xi in the factor graph ({X,F},T) induces
a significantly different belief P̃ (xi) from the full factor graph ({X,F},T). As will be shown in
section 4.7.4, such a conflict of local subgraph of xi and the full ({X,F},T) occurs quite often for
the UW-CSE model. To filter out the error spikes during the initial stage of the inference, we also
adopt a more robust measure of total belief error:

FPTotalMinError(Q) =

∫ τ∗

τ=0

(
min
τ ′∈[0,τ ]

FPError(Q, τ ′)
)
dτ. (4.40)

One can see that the total measure (4.40), unlike (4.39), disregards the temporary increases in the
instantaneous error FPError(Q, τ ′). Effectively, (4.40) uses the smallest distance from the fixed
point achieved in the hindsight within the first τ time units as the instantaneous error measure.

For our experiments, for every factor graph we first filtered out the variables x ∈ X with fixed
point entropy HP̃ ∗(x) < 0.1, and from the remaining variables selected 30 query variables with
the largest total errors (4.39) and (4.40). We will denote the corresponding query sets as Qtotal and
Qtotal-min. Low fixed point entropy HP̃ ∗(x) corresponds to having almost all of the probability
mass of P̃ ∗ (x) to be on the single value of x. We filter out such variables from the set of candi-
date queries for two reasons. First, a sharply peaked fixed point belief is likely to be an artifact of
belief propagation, which is known in loopy models to produce more concentrated beliefs P̃ ∗ (x)
compared to the true marginals P (x). Second, for problems such as classification, one can be quite
confident in the maximum probability assignment arg maxx P̃

∗ (x) even with relatively large KL
divergence KL(P̃ ∗ (x) ||P̃ (x)). In other words, for variables with low fixed point entropy, a dis-
proportionately large share of the error (4.37) comes from the question “how sharply peaked is the
fixed point?” as opposed to “what does the fixed point roughly look like?”. We argue that the latter
question is typically more important in practice, and therefore concentrate on queries with relatively
large fixed point entropies.

Choosing parameters

In practice, to achieve convergence of belief propagation one needs to damp message updates. For an old
message mα−i and a new message m̂α−i, instead of simply replacing the old value with the new one, an
affine combination of the two is used:

mα−i ← d ·mα−i + (1− d) · m̂α−i. (4.41)
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The parameter d ∈ (0, 1) is called damping (c.f., Mooij and Kappen, 2005; Elidan et al., 2006; Heskes,
2002). Typically, smaller damping values lead to faster, but more brittle convergence: depending on the
model ({X,F},T) the messages either converge quickly, or enter an oscillation and do not converge at all.
Correspondingly, larger damping values lead to slower, but more robust convergence. In our experiments,
we used for every model the smallest damping value for which BP messages converged for every update
schedule. The differences in update schedules for the same model stem from various factors:

1. The choice between edge updates of Alg. 4.5 versus variable updates of Alg. 4.6.

2. Different prioritization criteria: scheduling by maximum edge residual max(α−i)∈T rα−i, total vari-
able residual (4.28) and total variable residual normalized by the update complexity (4.30).

3. Different variable importance weights induced by different queries.

The resulting damping values are shown in Table 4.2.

4.7.3 Validating non-query-specific heuristics

Before proceeding to the results of query-specific inference, we need to establish the baselines to compare
against. As we have discussed in section 4.7.2, we will regard BP fixed points as the ground truth and
will therefore concentrate only on belief propagation-based baselines. Moreover, we will also exclude ap-
proaches that perform query-specific model simplification, such as those of Pentney et al. (2006), because
simplifying a model almost always changes the fixed points of the query beliefs. Because we consider
computing a BP fixed point to be the ultimate goal of the inference, results on the simplified models
cannot be directly compared with the results on the full model. However, even within the framework of
belief propagation on the full model ({X,F},T), there exists a wide variety of baselines corresponding
to different update prioritization schemes. In this section, we will validate three heuristics for improving
the performance of the standard residual belief propagation of Elidan et al. (2006) that were discussed in
this chapter:

1. Replacing single-edge message updates of Alg. 4.5 with batch message updates of Alg. 4.6 for all
the edges connected to the same variable.

2. Instead of prioritizing the updates by the maximum edge residual, with the priority corresponding
to xi equal to µi = maxα∈Γi rα−i, use the total residual (4.28) of all the edges connected to xi.

3. Finally, normalize the total variable residual (4.28) by the update complexity (4.29). As a result,
prioritize the updates by the normalized residual (4.30).

We will start with the standard RBP of Elidan et al. (2006), which corresponds to Alg. 4.2 with uniform
edge importance weights, and show that sequentially enabling every heuristic in the order they are listed
above results in an inference speedup. As a result, we will demonstrate that residual belief propagation
with batch variable updates and prioritization by total variable residual normalized by update complexity
is the best performing baseline against which to compare our query-specific approaches.

For all the experiments in this section, we will plot the evolution over time of the KL divergence of single-
variable beliefs from the BP fixed point, averaged over all the model variables X. Equivalently, we look
at fixed point error (4.37) for Q = X.
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(c) UW-AI factor graph
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(d) UW-GRAPHICS factor graph
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(e) UW-SYSTEMS factor graph
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Figure 4.9: Comparison of belief propagation convergence speed for edge updates of Alg. 4.5 (dashed
blue lines) and batch variable updates of Alg. 4.6 (solid black lines). Plotted is the average single-variable
belief error of belief propagation (averaged over all factor graph variables X) versus time. Batch variable
updates yield dramatically faster convergence for the densely connected UW-CSE models. The effect
on the sparsely connected models is either less pronounced (SEGMENTATION) or slightly detrimental
(WebKB).

Batch incoming messages updates

For the densely connected UW-CSE models, by far the largest speedup compared to the standard residual
belief propagation is obtained by replacing the edge updates of Alg. 4.5 with the batch variable updates of
Alg. 4.6. The dependence of average belief error on the runtime of the algorithm is shown in Fig. 4.9. As
we have discussed in section 4.5, batch variables updates are on the order of dv times more efficient than
single edge updates, where dv is the number of edges per variable in the model. One can see from Ta-
bles 3.1 and 4.1 that the factor graphs used in these experiments have very different connectivity densities:
from 4-6 edges per variable for WebKB and image segmentation to 102 edges per variable for UW-CSE.
The results in Fig. 4.9 confirm the dependence of the speedup of the inference convergence on the model
connectivity: for sparsely connected models, speedups are either moderate (segmentation) or nonexistent
(WebKB). Still, the speedup penalty for WebKB is much smaller than the advantages of variable updates
for other models, justifying the choice of variable updates.

Prioritization by total residual of incoming edges

Having switched to a more efficient update scheme, we turn to improving the prioritization heuristic.
Here, we compare prioritization by the maximum edge residual µi = maxα∈Γi rα−i, with the total resid-
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(b) WebKB factor graphs
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(c) UW-AI factor graph
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Figure 4.10: Comparison of belief propagation convergence speed for update prioritization by maximum
edge residual (solid black lines) and by total variable residual (dashed red lines).

ual (4.28) of all the edges connected to the variable xi. The dependence of belief errors on time is shown
in Fig. 4.10. One can see that prioritization by the total residual (4.28) again yields faster convergence
for the densely connected models, although sometimes with higher errors in the initial stages of the in-
ference (Fig. 4.10d and 4.10e). For sparsely connected models, there is no difference between the two
prioritization schemes.

Normalizing by update complexity

Finally, we investigate the impact of normalizing the update priorities by the total update complexity. In
Fig. 4.11, we plot the average beliefs error versus time for the prioritization by the total residual (4.28) and
total residual (4.29) normalized by the update complexity. One can see that taking update complexity into
account does not always lead to faster convergence. Still, normalizing by update complexity dominates
the unnormalized total residual for 3 models out of 6 (WebKB, UW-GRAPHICS, UW-SYSTEMS), leads
to slower convergence for UW-THEORY, makes no difference for UW-AI and image segmentation. On
average over the datasets in question, batch variable updates prioritized by the total residual divided by
update complexity (4.29) form the best non-query-specific RBP baseline, and we will use the complexity
normalization (4.29) in the remaining experiments.
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(b) WebKB factor graphs
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(c) UW-AI factor graph
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(d) UW-GRAPHICS factor graph
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(e) UW-SYSTEMS factor graph
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Figure 4.11: Comparison of belief propagation convergence speed for update prioritization by total vari-
able residual (Eq. 4.28, dashed red lines) versus the total residual normalized by the update complexity
(Eq. 4.30, solid green lines).

4.7.4 Results

Here, we evaluate the convergence speed of the inference algorithms for two error metrics: average KL
distance from the fixed point (4.38) and its analogous counterpart for the accuracy:

FPRelativeAccuracy(Q, τ) =
1∑

Q∈Q |Q|
∑
Q∈Q

min
i=1,...,k

1

|Q|
∑
xq∈Q

I(arg max P̃ ∗i (xq) = arg max P̃ (xq)).

(4.42)
One can see that FPRelativeAccuracy(·) is the measure of prediction accuracy of current beliefs P̃ (xq)
under the assumption that the prediction corresponding to maximizing the fixed-point beliefs P̃ ∗i (xq) com-
prise the ground truth of the labeling. Just like FPError(·), the relative accuracy FPRelativeAccuracy(·)
lets one sidestep the question of the quality of the BP fixed points during the evaluation and concentrate on
the convergence speed. We compare the results for the query-independent RBP-V and our query-specific
approaches QSBP-V and pessimistic anytime QSBP-V. In the remaining of this section, all mentions of
the anytime QSBP refer to the pessimistic version (Alg. 4.10).

KL divergence

Consider the evolution over time of the KL distance of query belief from the BP fixed points averaged
over all possible single-variable queries, and also for one partitioning of all variables into multivariable
queries of size 30. The corresponding plots are in Fig. 4.12. We make the following observations:
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• In the setting of single-variable queries, our query-specific algorithms converge significantly faster
than the baseline residual belief propagation throughout the spectrum of the models.

• Also, in the setting of single-variable queries, the anytime modifications of query-specific algo-
rithms outperform the baseline versions with upfront initialization of the full set of messages and
edge importance computation.

• In the multivariable query setting, the anytime approach either outperforms the baseline QSBP (on
the easy WebKB and image segmentation problems) or provide the same performance (UW-CSE,
except for the GRAPHICS dataset).

• In all settings except for one (AQSBP on UW-GRAPHICS) every query-specific approach con-
verges faster than the baseline RBP-V.

• Query-specific inference yields speedups compared to the baseline residual BP not only in the set-
tings where the factors near the query induce a query belief that is largely consistent with the BP
fixed point on the full graph (WebKB, segmentation), but also when local potentials induce dramat-
ically different beliefs from the fixed point. In figures 4.12c-4.12f, one can see that the query beliefs
initially move away from the fixed point, indicating that the potentials closest to the query induce a
significantly different belief from the full factor graph. However, over the full duration of inference,
the query-specific approach converges to the fixed point faster even in the presence of conflicting
potentials.

• When the queries are close by in the graph (WebKB, SEGMENTATION), the performance of query-
specific inference is almost identical for multiple queries and a single query variable. In other
words, by including a single variable into the query, one gets the results for the variables close by
“for free”. On the other hand, when the queries are more spread out through the graph (UW-CSE),
the performance degradation in the multivariable query setting compared to a single-query setting
can be substantial.

• The initialization times of QSBP and RBP-V (corresponding to the initial horizontal parts of the
plots, where the messages are initialized, residuals are computed and beliefs are uniform) are almost
the same, so running the Dijkstra’s algorithm on the factor graph is not a significant overhead.

• It follows that the performance gains of the anytime QSBP compared to the baseline QSBP with up-
front initialization result from deferring the computation of the new BP messages and their residuals
for the far away parts of the factor graph.

One can conclude that first, for moderate-sized query sets the query-specific inference approach of this
chapter provides a clear advantage over the standard residual belief propagation in terms of convergence
speed. Second, the anytime modifications of Alg. 4.10 should be always used in practice, because, with
very rare exceptions, the anytime algorithm will match, and often significantly exceed, the performance
of the baseline QSBP.

Difficult queries. In addition to the average case, we investigated the behavior of query-specific infer-
ence on variables that are especially problematic for the baseline residual BP. We have selected 30 vari-
ables for every grounding of the UW-CSE models with the largest values of cumulative inference errors
FPTotalMinError(·)and FPTotalError(·) (c.f. equations (4.40) and (4.39)). The corresponding results for
average KL divergence from the fixed points are in Fig. 4.13 and Fig. 4.14. One can see that, same as with
the average case, for single-variable queries, our query-specific algorithms provide significant speedups
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(c) UW-CSE model, AI area
dataset.
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(d) UW-CSE model, graphics area
dataset.
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(e) UW-CSE model, systems area
dataset.
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(f) UW-CSE model, theory area
dataset.

Figure 4.12: Average per-variable KL divergence of BP beliefs from the fixed points over all the variables
X of the respective models.

over the baseline residual BP, and also anytime QSBP perform as good as or better than the baseline
QSBP.

However, there are also important differences in the behavior of errors over time that illustrate the differ-
ent sources of difficulties in arriving at a fixed point of belief propagation and show how the effectiveness
of QSBP may vary. From Fig. 4.13, one can see that the hardest queries in terms of the error measure
FPTotalMinError (Eq. 4.40), are those that residual BP touches only late in the inference process, which
is indicated by the long initial time when the beliefs do not change for RBP in Fig. 4.13. In other words,
the absolute residual values for those variables are typically smaller than for other variables in the factor
graph. Query-specific prioritization of updates for such queries yields robust convergence speedups, both
in single query and in the multiquery settings. However, observe that with the query-specific inference
approaches, the query beliefs initially move away from the fixed point, which is indicated by the upward
spikes in the plot. At the same time, there are no upward spikes in the KL divergence plot for the base-
line RBP. It follows that arriving at the BP fixed points for the query variables depends substantially on
computing accurate beliefs for other, non-query variables, and simply restricting the consideration to the
parts of the model closest to the queries will not produce the same beliefs. The soft prioritization of our
query-specific approach is essential for achieving the correct beliefs.
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(c) UW-SYSTEMS
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Figure 4.13: Average per-variable KL divergence of BP beliefs from the fixed point over the 30 hard
queries – variables with the largest hindsight error FPTotalMinError (Eq. 4.40) for residual BP.

Next, we consider the difficult queries as measured by the largest error measure FPTotalError (Eq. 4.39),
which, unlike Eq. 4.40 does not take into account how close the query beliefs were to the fixed point in
the past. One can see that the evolution of KL divergence from the fixed point of such queries, shown in
Fig. 4.14, is very different from the queries with the largest cumulative error (4.40), which are discussed
above and shown in Fig. 4.13. As Fig. 4.14 shows, the queries with large error measure (4.39) are difficult
not because RBP spends computation resources on other areas of the factor graphs with larger residuals
(the first BP updates are applied to these queries right after the initialization of messages), but because
the part of the factor graph closest to the query induces drastically different query beliefs than the full
factor graph. This phenomenon is illustrated in Fig. 4.14 by the sharp increase in the KL distance from the
fixed point resulting from the initial BP updates. Moreover, the quality of beliefs for these query variables
depends substantially on the convergence of non-query beliefs for a large portion of the full model. This
dependence is indicated in Fig. 4.14 in three ways:

• In the non-query-specific case, the query error decreases relatively slowly.

• The anytime version of query-specific belief propagation (Alg. 4.10) has the same performance as
the non-anytime QSBP (Alg. 4.9), which means that the upper bound (4.18) on the importance of
the edges with not yet known exact importance weight is unable to guarantee that the parts of the
factor graph away from the query have small enough impact on the query belief.

• In the multi-query setting, QSBP convergence speed is the same as the baseline RBP-V, which
means that in order to compute accurate beliefs for the 30 query variables, one also needs to compute
accurate beliefs for almost the remaining variables in the model.
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(c) UW-SYSTEMS
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Figure 4.14: Average per-variable KL divergence of BP beliefs from the fixed point over the 30 hard
queries – variables with the largest hindsight error FPTotalError (Eq. 4.39) for residual BP. Plots for the
anytime modifications are not shown, because they are the same as for the non-anytime versions.

Because, for this particular choice of query variables, query beliefs substantially depend on a large share
of the full factor graph, performance degradation of the multivariable query setting compared to the single
variable query setting is more pronounced, with 30-variable queries yielding the same convergence speed
as the baseline RBP-V. However, in the single-query setting query-specific belief propagation provides
much faster convergence compared to RBP even in the presence of long-range dependencies.

Classification accuracy

To investigate the performance of query-specific inference for structured prediction, in this section we
consider the dependence of the relative classification accuracy (in other words, the share of variables
where the modes of BP beliefs match the modes of the fixed point beliefs, c.f. equation 4.42) on time.
The results, plotted in Fig. 4.15, show the relative classification accuracy averaged over all single-variable
queries and the same multi-variable queries as the KL divergence results of Fig. 4.12.

The problem of finding the modes of the fixed point beliefs is somewhat easier than the problem of approx-
imating the beliefs themselves well, because it is sufficient for the belief to be in a certain neighborhood
of the fixed point to have the same mode. The results of Fig. 4.15, while generally matching the results for
KL divergence in Fig. 4.12, confirm this reduced problem difficulty. For “easy” models (WebKB, segmen-
tation), where nearby factors mostly determine the fixed point beliefs, the relative accuracy behaves the
same as the KL divergence. For the more difficult UW-CSE model, however, the relative accuracy evolves
in a much “better behaved” way, with monotonic convergence both for the baseline RBP-V and for the
query-specific inference. Moreover, for UW-CSE models, the advantage of query-specific inference over
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Figure 4.15: Average prediction accuracy relative to the BP fixed points of the respective models.

the standard residual BP is more pronounced in terms of relative accuracy than in terms of KL divergence
from the fixed points.

The difference in convergence speeds for UW-CSE is explained by the following: while the magnitude of
impact of any single variable on the average accuracy (4.42) is at most 1∑

Q∈Q|Q| , a sharply peaked belief
with an incorrect mode can in principle have an arbitrary large impact on the average KL divergence
from the fixed point (4.42). Moreover, as Fig. 4.39 shows, there are variables in the UW-CSE MLNs that
have sharply peaked BP beliefs with wrong mode during the course of inference, resulting in large KL
divergence values from the fixed point, on the order of 10. Such variables have a disproportionately large
effect on the average KL divergence compared to the “well-behaved” variables that remain near the BP
fixed points. For the average accuracy, however, the effect of such hard queries is limited, because the
single-variable accuracy is bounded to be between 0 and 1. Therefore, the average accuracy as the quality
measure simply places less importance on the few difficult queries compared to the KL divergence.

To summarize, in terms of both average KL divergence from the fixed point beliefs and the relative accu-
racy with respect to fixed point beliefs, our query-specific inference approach provides significantly faster
convergence in both single-query and multiquery settings compared to residual belief propagation. More-
over, the anytime QSBP (Alg. 4.10) yields as good or better performance compared to the baseline QSBP
(Alg. 4.9) throughout the spectrum of the models we have experimented with, indicating that the anytime
QSBP approach is the optimal choice in practice for the problem of query-specific inference.

4.8 Discussion and future work

In this chapter we have developed the following main contribution:
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1. A general framework of importance-weighted residual belief propagation (query-specific BP, Alg. 4.2
and its more much efficient modification, Alg. 4.9) that allows one to significantly speed up conver-
gence for query variables by focusing computation appropriately. Importantly, unlike the previous
approaches, ours does not involve any simplification of the model ({X,F},T), and thus does not
change either the true distribution induced by ({X,F},T) or the set of BP fixed point.

2. A principled measure of edge message importance (4.13) and variable belief importance (4.34) with
respect to a given query that can be computed efficiently and yield significant convergence speedups
for the query beliefs in practice.

3. Anytime modification of query-specific belief propagation (algorithms 4.3, 4.4 and 4.10) that allows
one to postpone examining parts of the full model ({X,F},T) that have little influence on the
query until later stages of the inference process, leading to additional convergence speedups for the
query beliefs compared to the standard query-specific BP. Importantly, despite deferring some of
the initialization and edge weighting until after some BP updates are done, the order in which the
updates are applied is guaranteed to be the same as for QSBP with full initialization. It follows that
the anytime modifications do not change the inference results.

Next, we describe some of the directions for future future work, which fall into three broad categories:
further improving the performance of belief propagation in the query-specific setting, adapting the ideas
of this chapter to the non-query-specific setting (in other words, having all of the unknown variables X
to be the query), and finally applying similar ideas to speed up inference techniques other than belief
propagation.

4.8.1 Further improvements in the query-specific setting

Lifted inference and weighting. Most of the large scale probabilistic graphical models are groundings
of relational models, where variables represent certain types of entities or properties, and factors represent
relations between classes of entities. Because the factors model the interactions on the level of types
of variables, as opposed to concrete variables (also called ground atoms), the same factor parameters
are replicated multiple times throughout the model. For example, in the image labeling model, often a
contrast-dependent factor encoding the smoothness of labels for neighboring pixels is used: ψxy(xi, xj) =
exp{u · ‖colori− colorj)‖}. The weight u is learned on the level of a relation (“neighbor pixels with the
same color tend to correspond to the same object”), and then copied throughout the model as necessary.
The same approach is taken by the Markov logic networks (Richardson and Domingos, 2006) and other
relational model formalisms.

Large-scale replication of only a small number of distinct potential introduces a lot of symmetries into
the grounded model. One consequence of those symmetries is that BP messages for many edges may be
the same: if the factors are the same (because they are just copies of the same factor and link variables
of the same type) and the incoming messages are the same, then the outgoing message will also be the
same. Although typically such symmetries would be imperfect, because of different evidence for different
ground atoms, for many models exploiting the remaining symmetries may dramatically speed up infer-
ence. Inference algorithms that aim exploit symmetries by working on the level of types of variables,
without grounding the model, are called lifted. For Markov logic networks, Singla and Domingos (2008)
developed a lifted version of belief propagation and demonstrated significant speedups over the standard
BP on a grounded model.
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In a query-specific setting, it is desirable to combine the speedups of lifted BP with speedups of the query-
specific BP described in this chapter. A corresponding extensions looks to be straightforward, exploiting
the organization of lifted BP algorithm. Lifted BP processes in two stages: first, the progress of BP is
emulated to trace the effects of the evidence and find out which edges are guaranteed to have the same BP
messages (initially, all the edges of the same kind are assumed to have the same message, as the effects
of evidence propagate, sets of edges that may have different messages are split up as necessary). The
result of the first stage is a lifted network: a factor graph where every edge represents a group of edges
of the grounded model that are guaranteed to have the same BP message on every iteration. The second
stage of lifted BP simply runs belief propagation, with somewhat modified update equations to account
for effects of multiple copies of the same message, on the lifted network. It is the second stage of lifted
BP that should be possible to speed up using edge importance weighting similar to the approach of this
chapter.

The resulting query-specific lifted BP would first build the lifted network (on this step the information
about the query should not be introduce to preserve the symmetries as much as possible). The second step
would be to identify the variables of the lifted network corresponding to the query and run the importance
weighting algorithm like Alg. 4.1. Finally, the third stage would be to run residual BP with importance-
weighted residuals on the lifted network to compute the marginals of interest. The only challenge of
such an approach lies on the second step and does not look like a significant bottleneck. One would have
to adjust the derivative upper bound (4.12) to correspond to the lifted BP message updates so that the
importance weights correspond to the structure and magnitude of BP message dependencies in the lifted
network.

Larger update units and parallelization. As we have discussed in section 4.5 of this chapter, and
demonstrated empirically in section 4.7, replacing single-edge message updates (Alg. 4.5) used in QSBP
(Alg. 4.2) with batch updates of all messages connected to a certain variable (Alg. 4.6) leads to dramatic
speedups of inference. Moreover, prioritizing the variable updates by the total residual (4.35) of incoming
messages instead of the maximal single-edge residual improves performance even further.

The batch approach to message updates is not new to this work. In fact, updating all incoming messages
for a single variable is a special case of a more general approach - performing exact inference for a sub-
tree of the full factor graph ({X,F},T) given the current values of all the messages not in that subtree.
Prior research has exploited different advantages of exact inference on subtrees over single-edge updates.
Tree-reweighted belief propagation (Wainwright et al., 2003) uses exact inference on subtrees as a means
of making larger and “more informed” steps to the BP fixed point, because an update to a tree brings
residuals for all the message of the tree to zero simultaneously. Residual splash BP of Gonzalez et al.
(2009), aiming to perform multiple BP updates simultaneously to take advantage of multiprocessor sys-
tems, adopts subtree updates as a way to reduce the contention for the global update priority queue and
the corresponding locking overhead. Because a subtree update, which Gonzalez et al. (2009) call a splash,
requires more computation in absolute terms than updating a single edge1, every processor spends more
time actually performing BP updates and less time waiting for a lock on the priority queue compared to a
naı̈ve parallelization of residual BP.

Although both tree-reweighted BP (Wainwright et al., 2003) and residual splash BP (Gonzalez et al.,
2009) have demonstrated significant speedups over standard belief propagation, the questions of con-
structing good subtrees (for tree-reweighted BP) and choosing which subtree to update next (for both

1It is important to distinguish here the absolute complexity of an update, which is roughly linear in the tree size, from
complexity per updated edge, which is roughly constant regardless of the tree size.
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tree-reweighted BP and residual splash BP) are approached in a rather ad hoc manner. Wainwright et al.
(2003) only require that every edge of the model is updated frequently enough. Gonzalez et al. (2009)
use a reasonable heuristic for constructing the subtrees (greedily grow a tree choosing variables with the
largest residual), but prioritize the subtrees only by the total residual of the root variable. Such a pri-
oritization scheme (a) leads to redundancies in the elements of the update priority queue, because the
subtrees grown from two adjacent root variables would have a lot of common elements, and (b) ignores
the residuals of the elements of subtree beyond the root, leading to suboptimal accuracy of the priority
score. Therefore, we conjecture that there is potential for improving the performance of residual splash
BP (and tree-reweighted BP, since TRBP can be seen as a special case of residual splash BP) by (a) us-
ing importance-weighted edge residuals in the query-specific setting instead of currently used unweighted
edge residuals, (b) explicitly scheduling the subtrees to be updated as opposed to root variables, which
would allow to better estimate the update impact (c.f. max-edge score max(α−i)∈Twα−irα−i versus total
variable residual score (4.35)) and eliminate the redundancies in the updates priority queue.

Using the query-specific edge importance weights in the residual splash BP is straightforward for the se-
quential implementation of Dijkstra’s algorithm. Moreover, any advances in exploiting parallelism for
Dijkstra’s algorithm or any other shortest-path algorithms can be immediately adopted for speeding up the
computation of the edge importance weights. The issue of directly scheduling subtree updates (instead of
variables that act as roots of dynamically grown subtrees) is a more complicated one. On the one hand,
ignoring edge residuals beyond the subtree root leads to a relatively non-informative priority heuristic.
On the other hand, greedily growing a subtree by adding the neighbor variables with the largest residual
makes it possible to choose from a very large number of possible subtrees without explicitly representing
all the possibilities. The residual-driven approach to subtree construction is an important factor to residual
splash BP performance, especially in the late stages of inference, when most of the edges have low resid-
ual and it is important to prune the update subtrees to avoid wasting computation on low-residual edges.
On the opposite end of the tradeoff between the amount of information available for prioritizing updates
and flexibility in constructing the shape of best BP update for the current values of the messages would
be an approach where a set of “representative” subtrees that would cover all of the edges of the model is
selected a priori. Ideally, every edge would be covered by only a few of the representative subtrees, so that
changing the residual of an edge would lead to re-prioritization of only a small number of updates. Such
an approach is likely to work well in the initial stages of the inference, when most edges have significant
residuals, but is likely to be wasteful in the later stages, when it is important to concentrate computation
on the small number of high-residual edges. Therefore, one needs a compromise solution to combine the
advantages of the two approaches. For example, one can use low-depth subtrees as representative up-
dates and dynamically grow those subtrees further by adding high-residual neighbor variables at runtime.
Another option is to use large representative subtrees, but dynamically prune the low-residual elements
at runtime and only update the high-residual forests. It remains to be seen what the optimal solution
is.

4.8.2 Dealing with non-query-specific inference

The approach of this chapter is built on the idea of estimating the eventual effect of BP updates on the
query more accurately than existing techniques do, and to use those more accurate estimates to better
prioritize computation. In particular, we have concentrated on exploiting the information about the query
to improve the accuracy of update effect estimates. However, the idea of better predicting the effects
of a BP update can be applied more generally. Here, we discuss some directions of improving updates
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prioritization in a non-query-specific setting.

Non-QS edge importance.

Maximum sensitivity edge importance value (4.13) is one possible approximate answer to the question
“if the message for this edge is changed by a fixed amount, how much will the query beliefs eventually
change?”. In principle, one can cast the regular probabilistic inference problem where the query is not
specified as a query-specific problem with every variable being in the query, Q = X. However, weighting
the edge residuals by their maximum sensitivity importance value would not bring any advantages in
such a setting. By definition 51, when Q = X it holds that every edge of the model has the same
importance of 1, so query-specific BP degenerates into standard residual BP. More generally, because
of the maximization over the query variables in (4.13), maximum sensitivity importance value is better
suited for relatively small query sets. As one could see in section 4.7, the performance advantage of QSBP
over residual belief propagation decreases as the query set size grows. Therefore, in a non-query-specific
setting a different approach to edge weighting is needed.

A natural alternative to the maximum sensitivity importance value of an edge (4.13) is, instead of maxi-
mizing over the query variables, to use the total sensitivity with respect to all of the other variables of the
model:

total-max-sensitivity(α− i,X \ xi) ≡
∑
xq∈Q

max
π∈Π(α−i,q)

sensitivity(π).

Unfortunately, actually computing such a score is impractical, because it requires running Dijkstra’s al-
gorithm (more precisely, Alg. 4.1) |X| times, once for every variable. Therefore, more tractable approxi-
mations are necessary. One way to improve tractability, similar to the idea behind anytime modifications
such as Alg. 4.3, is instead of running Alg. 4.1) to completion for every variable xq ∈ X, to stop as soon
as the upper bound pt(L) on the sensitivity of the remaining edges with respect to xq is low enough.

Learning the effects of updates.

Although the upper bound (4.12) on the partial derivative of BP messages outgoing for a certain factor
ψα with respect to the incoming messages typically provides a good indication of the strength of local
dependencies, for models where the factors have extremely high dynamic ranges, such as protein side-
chain prediction models (Yanover et al., 2007), the upper bound is “saturated” and takes values very close
to 1. As a result, the sensitivity of every simple path in those models is also very close to 1. It follows that
neither the query-specific approach of this chapter, nor the non-query-specific edge weighting proposed
in the previous section would have any advantage over the standard residual BP, because the sensitivities
of every edge with respect to every variable will be almost the same (close to 1).

One possible way to address the issue of saturation of the upper bound (4.12) is to attempt to learn the
effects of the BP updates during the course of the inference process itself. Because the choice of the next
update depends on the estimate of the magnitude of the eventual effects of that update, learning update
effects essentially casts inference as a reinforcement learning problem (Kaelbling et al., 1996), where the
set of actions is the set of available updates (for example, a set of all variables X for batch updates of
Alg. 4.9), and the reward is, for example, the negative total residual of all the edges.

The main potential advantage of the reinforcement learning formulation is the more detailed information
that can potentially be exploited. Because the actual residual changes and update effects can be observed
during the initial stages of the inference, one does not have to resort to upper bounds such as (4.12) and
instead attempt to better capture the average-case behavior of updates propagation, which is often a more
useful estimate. Moreover, eliminating the reliance on (4.12) also lets one use more detailed information
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about the state of the system, compared to just the residuals in L∞ norm in log-messages space. Recall
that the choice of the norm for the residual is largely dictated by the fact that for other choices of norms
there are no known closed-form expressions like (4.12) for the upper bounds on the magnitude of partial
derivatives of messages. For example, if the upper bound such as (4.12) is not needed, nothing prevents
one from using features such as element-wise differences between new messages ν̂α−i and old messages
να−i to describe the state of the system.

The main potential problem of a reinforcement learning approach to updates prioritization is computa-
tional complexity. Because residual BP updates are quite cheap computationally, any approach to updates
prioritization can only be successful if its complexity is relatively low. Otherwise the standard RBP will
have faster convergence simply via much higher throughput in terms of updates compared to a compli-
cated “smart” prioritization technique. Therefore, controlling the complexity of the reinforcement learning
technique, via selecting appropriate features to describe the state of the system, tractable value functions
and learning rules, will be crucial to the overall performance on the inference.

4.8.3 Beyond belief propagation

A more open-ended direction of future work is adapting the ideas of this chapter to other inference ap-
proaches. In particular, Gibbs sampling (Geman and Geman, 1984) is in many ways similar to belief
propagation:

1. Local computation dependencies. While belief propagation iteratively recomputes messages that
only depend on neighbor messages in the factor graph ({X,F},T), Gibbs sampling iteratively
updates the assignments to individual variables xi ∈ X by sampling from a conditional distribution
P (xi |XΓi) of xi given the current assignmentXΓi to the neighbor variables of xi.

2. Large variety of valid schedules. As Geman and Geman (1984) have shown, under reasonable as-
sumptions on the factor graph ({X,F},T), for any sequence in which the individual variables are
sampled, as long as every variable is sampled infinitely often, it holds that the resulting distribution
over X converges to the true distribution P({X,F},T)(X) defined by the factor graph ({X,F},T).
Similar to belief propagation, although practitioners typically use round-robin update schedules
because of their simplicity, smart update prioritization has potential to significantly speed up con-
vergence of Gibbs sampling for many models.

The key difference between the requirements to a belief propagation schedule and a Gibbs sampler sched-
ule is that unlike BP schedule, a Gibbs sampler schedule cannot depend on the outcomes of the samples.
A “residual Gibbs sampler” in general may converge to a wrong distribution (Gonzalez et al., 2011).
However, even with the sampling schedule independent of the system state, there are still possibilities
for focusing computation better. In a query-specific setting, one can adjust the frequency of sampling
different variables according to those variables importance to the query, relying, for example, on variable
importance weights similar to (4.34).

In fact, once we allow for the requirement that the Gibbs sampling schedule be independent of the actual
sampling outcomes, most of the ideas discussed both in the main body of this chapter and in the future
work section in the context of belief propagation can be also applied to the Gibbs sampling:

• Larger update units. Similar to the advantages of exact inference on model subtrees in belief
propagation, the advantages of block updates in Gibbs sampling have been long recognized (Jensen
et al., 1995; Barbu and Zhu, 2005). With block updates, groups of variables are sampled from their
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joint conditional distribution given their Markov blanket, which significantly speeds up mixing in
the presence of highly correlated variables. Sampling from the joint distribution P (Y |X \ Y ) can
be done at the same cost as exact inference in the submodel of ({X,F},T) restricted to the variables
of Y. Therefore, ideal Gibbs update blocks have low treewidth to achieve tractability and high intra-
block dependencies to obtain a benefit from the sampling variables jointly instead of separately.
These requirements are the same as for BP update subtrees discussed in section 4.8.1. Therefore, the
advances in designing high-quality update subtrees for residual BP can be also applied to designing
update blocks for Gibbs sampling.

• Variable importance in the non-query-specific setting. Estimating the share of a model that is
substantially affected by changes to an assignment of a given variable xi, similarly to an approach
proposed in the first half of section 4.8.2, can be also used to adjust the resampling frequency of xi.

• Adjusting for update complexity. The same argument as in section 4.5.1 advocating, with other
factors being equal, updating more frequently the parts of the model where updates are cheaper
computationally applies to Gibbs sampling as well.

The main challenge in adapting the formalisms based on belief propagation to be used in Gibbs sampling
would be to replace the dependence between messages as a basis of the formalism with a more direct
measure of dependence between assignments to different variables or between their respective conditional
distributions given the Markov blankets. For example, mutual information between two neighbor variables
xi and xj given the assignment to the rest of the variablesX\{xi, xj} is one such possible measure.
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Chapter 5

Conclusions

In this thesis, we aimed to improve, in terms of both accuracy and efficiency, the quality of reasoning under
uncertainty that can be achieved using the formalism of probabilistic graphical models. We explored two
general directions: (a) learning accurate models that admit efficient exact inference, whereby the decrease
in representation power compared to the common high-treewidth model is compensated for by the better
inference accuracy, and (b) focusing the computation on the parts of the model relevant to the query.
Our main contributions are a novel approach for learning low-treewidth models with quality guarantees
in the generative setting, learning a novel class of tractable models with evidence-specific structure in
the discriminative setting, and a principled approach to prioritize computation during inference so as to
significantly speed up the computation of query marginals. Although quite different technically, all three
main contribution share the property of significantly improving test-time computational efficiency, which
makes it possible for new application areas that are sensitive to inference latency to benefit from the PGM
formalism and techniques.

In terms of the schematic illustration of Fig. 1.1, our solutions make progress towards the optimum from
both ends of the complexity spectrum. From the “simple models” end, we have achieved the accuracy of
state of the art high-treewidth models with much more computationally efficient low-treewidth models.
From the “complex models” end, we have reduced the effective inference complexity of the rich models
with query-specific prioritization. Both general types of approaches can be developed further; we have
outlined in the respective chapters some of the possible directions of improving the accuracy of tractable
models and transferring the ideas of the query-specific inference into a more widely applicable setting
with no nuisance variables.

We believe that speeding up approximate inference in high-treewidth model by improving the prioriti-
zation of computations is more likely to provide significant benefits for applications in the short term,
because of the abundance of the existing high-treewidth models. In the longer term, however, we be-
lieve that high-accuracy tractable models (or “almost tractable” with few loops) provide a more promising
avenue for development. Besides the guaranteed inference accuracy, a key advantage of tractable graph-
ical models is the possibility to adjust complexity in a controlled manner by increasing the treewidth. In
high-treewidth models, such an adjustment is complicated by the lack of guarantees on the convergence
of iterative algorithms.

More generally, until recently, the research focus and the source of much of the success of probabilis-
tic graphical models in practice was exploiting compact representation of probability distributions with
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general-purpose approximate inference algorithms designed to handle an arbitrary compact structure. We
believe that the next significant step in probabilistic improving graphical models can come from shifting
the focus from the structure of representation to the structure of computation necessary for inference. This
thesis presents one step towards fully exploiting the computational structure of probabilistic graphical
models for efficient and accurate reasoning with high-dimensional distributions.
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Appendix A

Proofs for chapter 2

A.1 Example: increasing treewidth does not preserve strong connectiv-
ity

Here, we present an example of how the “fattening” procedure of Section 2.2.5, applied to a ε-strongly
connected junction tree may result in a 0-strongly connected JT. It follows that the “fattening” may de-
crease the strong connectivity of a structure by an arbitrary large amount. Consider a junction tree with
the cliques abc − bcd − cde − def. Suppose we have added variable a to every clique of the JT to ob-
tain abcd − acde − adef. Let us construct the distribution parameters such that the original clique is
ε-strongly connected for some ε > 0, but I (b, c | ade) = 0 and thus the fattened structure is not strongly
connected.

Let variable a have cardinality 4 and the remaining variables have cardinality 2. Let the marginal P (abc)
be as follows:

P (a) = Uniform(a), P (b|ac) = P (b|a), P (c|ab) = P (c|a)

and the conditional probabilities are

a b P(b — a)
0 0 1
0 1 0
1 0 1
1 1 0
2 0 0
2 1 1
3 0 0
3 1 1

a c P(c — a)
0 0 1
0 1 0
1 0 0
1 1 1
2 0 1
2 1 0
3 0 0
3 1 1

Let the conditional probability P (d | bc) be a mixture of a deterministic distribution setting d = (b + c)
mod 2 and a uniform distribution, with both components having probability 0.5:

P (d | bc) =

{
0.75, d = (b+ c) mod 2,
0.25, d = (b+ c) mod 2,
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Define the probabilities of e and f similarly:

P (e | cd) =

{
0.75, e = (c+ d) mod 2,
0.25, e = (c+ d) mod 2,

and P (f | de) =

{
0.75, f = (d+ e) mod 2,
0.25, f = (d+ e) mod 2,

One can see that knowing a fully determines the values of b and c. Therefore, I (b, c | aX) = 0 for any
set X. In particular, I (b, c | ade) = 0 and thus the fattened structure is not strongly connected. On the
other hand, one can check that the original junction tree with the parameters defined above is ε-strongly
connected for ε ≈ 0.143 (using logarithms with base 2). We have therefore shown that increasing the
treewidth by even one variable can shift the strong connectivity arbitrarily close to zero.

A.2 Proofs

To prove our results, we will rely on the following useful properties of conditional mutual information:
for disjoint sets A,B,C,D and every probability distribution P (ABCD) the following holds:

• Chain rule:
I(A,BC | D) = I(A,B | D) + I(A,C | BD). (A.1)

• Nonnegativity:
I(A,B | D) ≥ 0. (A.2)

• Monotonicity: for every A′ ⊆ A,B′ ⊆ B it holds that

I(A′, B′ | D) ≤ I(A,B | D). (A.3)

Also, monotonicity holds for conditional independence: for every A′ ⊆ A,B′ ⊆ B it holds that
(A ⊥ B | D)⇒ (A′ ⊥ B′ | D).

Proof of Lemma 7 (page 22). Factorization⇒ projection. The proof is by induction.

Base case: the junction tree (T,C, S) is a single clique: T = ∅,S = ∅,C = {C}. Then X = C and the
lemma statement is true: P (X) = P (C).

Induction step: For a junction tree (T,C,S), consider a separator S ∈ S. Let C1, . . . , CdS be the
cliques connected directly to S. Consider a junction tree (TS→Ci , CS→Ci , SS→Ci) that is a restriction
of (T,C, S) to cliques and separators reachable from Ci without using the edge (Ci − S). It holds that
(TS→Ci ,CS→Ci , SS→Ci) covers exactly the variables SXS→Ci . There are dS such trees for separator S.
From the monotonicity of conditional independence, P (SXS→Ci) factors over (TS→Ci ,CS→Ci ,SS→Ci).
The induction assumption is that the distribution P (SXS→Ci) is equal to its projection on
(TS→Ci ,CS→Ci ,SS→Ci) :

P (SXS→Ci) =

∏
C′∈CS→Ci

P (C ′)∏
S′∈SS→Ci

P (S′)d
S→Ci
S′ −1

=

∏
C′∈CS→Ci

P (C ′)∏
S′∈SS→Ci

P (S′)dS′−1
, (A.4)

where dS→CiS′ is the degree of S′ in (TS→Ci ,CS→Ci , SS→Ci) and dS′ is the degree of S′ in (T,C, S).

Because all the edges from T incident to S′ 6= S are retained in T′, it holds that dS→CiS′ = dS′ .

169



Let us now prove the induction step. Observe that XCi→S ≡ ∪j=1...dS ,j 6=iXS→Cj . From the definition of
factorization, for every i = 1 . . . (dS − 1), it holds that

(XS→Ci ⊥ XCi→S | S) ⇔ (XS→Ci ⊥ ∪j=1...dS ,j 6=iXS→Cj | S)

⇒ (XS→Ci ⊥ ∪j=(i+1)...dSXS→Cj | S), (A.5)

Let us adopt the convention that fraction 0
0 = 0, instead of being undefined. Then, using the conditional

independencies (XS→Ci ⊥ XCi→S | S), we can write the probability P (X) as

P (X) = P (XS→C1 | SX-SXS→C1
)P (X-SXS→C1

| S)P (S){
observe that X-SXS→C1

= ∪j=2...dSXS→Cj

}
= P

(
XS→C1 | S ∪

(
∪j=2...dSXS→Cj

))
P (∪j=2...dSXS→Cj | S)P (S){

from (A.5) it holds that P
(
XS→C1 | S ∪

(
∪j=2...dSXS→Cj

))
= P (XS→C1 |S)

}
= P (XS→C1 |S)P (∪j=2..dSXS→Cj |S)P (S){

from (A.5), P (∪j=i..dSXS→Cj |S) = P (XS→Ci |S)P (∪j=(i+1)..dSXS→Cj |S)
}

= P (S)

dS∏
i=1

P (XS→Ci | S) = P (S)

dS∏
i=1

P (SXS→Ci)

P (S)
=

∏dS
i=1 P (SXS→Ci)

P (S)dS−1
(A.6)

Plugging the projections for every P (SXS→Ci) from the induction assumption (A.4) into (A.6), we get

P (X) =

∏
C∈C P (C)∏

S∈S P (S)dS−1

and thus prove the induction step.

Projection⇒ factorization. From the definition of conditional independence, (A ⊥ B | S) ⇔ P (AB |
S) = P (A | S)P (B | S), it follows that

(A ⊥ B | S)⇔ ∃ψAS(A,S), ψBS(B,S) s.t. P (A,B, S) = ψAS(A,S)ψBS(B,S).

For any pair of a clique C and separator S directly connected to C, set

ψS→C(S,XS→C) =

∏
C′∈CS→C P (C ′)∏

S′∈SS→C P (S′)dS′−1
, ψC→S(S,XC→S) =

∏
C′∈CC→S P (C ′)∏

S′∈SC→S P (S′)dS′−1

to get the required decomposition of P (X) into two factors.

Proof of Lemma 8 (page 22). From Lemma 7, it follows that any P ′ ∈ P(T,C, S) can be written down as

P ′(X) =

∏
C∈C P

′(C)∏
S∈S P

′(S)dS−1
.
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Write down the KL divergence from P (X) to an arbitrary P ′(X) ∈ P(T,C,S) :

KL(P ||P ′) =
∑
X

P (X) log
P (X)

P ′(X)

=
∑
X

P (X) log

(
P (X) ·

∏
S∈S P

′(S)dS−1∏
C∈C P

′(C)

)

=
∑
X

P (X) log

(
P (X) ·

∏
S∈S P (S)dS−1∏
C∈C P (C)

·
∏
C∈C P (C)∏

S∈S P (S)dS−1
·
∏
S∈S P

′(S)dS−1∏
C∈C P

′(C)

)

= KL(P ||P(T,C,S)) +
∑
X

P (X) log

( ∏
C∈C P (C)∏

S∈S P (S)dS−1
·
∏
S∈S P

′(S)dS−1∏
C∈C P

′(C)

)

= KL(P ||P(T,C,S)) +
∑
C∈C

∑
C

P (C) log
P (C)

P ′(C)
−
∑
S∈S

(dS − 1)P (S) log
P (S)

P ′(S)

= KL(P ||P(T,C,S)) +KL(P(T,C,S)||P ′).

Observe that only the second component of the end expression depends on P ′. From the fact that KL
divergence is nonnegative and zero only if the two distributions are the same, we find that KL(P ||P ′) is
minimized for P ′ = P(T,C,S).

Proof of Lemma 9 (page 22). First, let us prove that whenever an AKU junction tree (T,C,S) exists, an
equivalent Jensen and Jensen junction tree (T′,C′) exists. The proof is by explicit construction. Set
C′ ≡ C. For every separator S ∈ S of (T,C, S), let CiS,1 , . . . , CiS,dS be the set of cliques that are
connected directly to S. Add to T′ the following dS − 1 edges:

(CiS,1 − CiS,2), . . . , (CiS,dS−1
− CiS,dS ). (A.7)

We need to prove that (T′,C) is a tree, the running intersection property holds, and (T′,C) has the same
projection expression as (T,C, S).

• (T′,C) is a tree. It is known (Diestel, 2005) that a graph with n vertices is a tree iff it is connected
and has n− 1 edges.

(T′,C) is connected: to obtain a path from C1 to C2, take a path from C1 to C2 in (T,C,S) and
replace every segment CiS,k − S − CiS,m (the indexing here is the same as in construction of the
edges in Equation A.7) with CiS,k − CiS,k+1

− · · · − CiS,m−1 − CiS,m .

By construction, (T′,C) contains
|T′| =

∑
S∈S

(dS − 1)

edges. Because in (T,C,S) every edge involves exactly one separator, it holds that
∑

S∈S dS = |T|.
Moreover, (T,C,S) is a tree with C ∪ S as vertices, so |T| = |S|+ |C| − 1, and therefore

|T′| =
∑
S∈S

(dS − 1) = |S|+ |C| − 1− |S| = |C| − 1 = |C′| − 1

so (T′,C) is indeed a tree.
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Algorithm A.1: Auxiliary transformation for an Jensen and Jensen junction tree before construction
of an equivalent AKU junction tree

Input: Jensen and Jensen junction tree (T′,C)
1 set T′′ ≡ T′
2 while ∃ a simple path in (T′′,C) of the form C1 − C2 − C3 − · · · − Cm−1 − Cm s.t.

(C1 ∩ C2) = (Cm−1 ∩ Cm) = S and C2 ∩ C3 6= S do
3 remove (C1 − C2) from T′′, add (C1 − Cm) to T′′

4 return (T′′,C)

Algorithm A.2: Transformation from an Jensen and Jensen junction to an equivalent AKU junction
tree

Input: (T′′,C) = Alg. A.1(T′,C) for a Jensen and Jensen junction tree (T′,C)
1 T = ∅, S = ∅
2 for all maximal connected subsets CiS,1 , . . . , CiS,m ∈ C s.t. ∃S s.t. for every edge (CiS,j − CiS,q)

between them in T′′ it holds that CiS,j ∩ CiS,q = S do
3 add S to S
4 add (S − CiS,1), . . . , (S − CiS,m) to T
5 return (T,C, S)

• RIP holds in (T′,C). For any two cliques C1 and C2, consider the simple path from C1 to C2

in (T,C,S) and replace every segment CiS,k − S − CiS,m (the indexing here is the same as in
Equation A.7) with CiS,k − CiS,k+1

− · · · − CiS,m−1 − CiS,m . By RIP in (T,C,S), every S on that
path contains C1 ∩ C2. Also, by Def. 5, we have

CiS,k , CiS,k+1
, . . . CiS,m−1 , CiS,m ⊃ S ⊇ (C1 ∩ C2) .

Thus every clique on a path between C1 and C2 in (T′,C) contains C1 ∩C2, so every clique on the
simple path also has to contain C1 ∩ C2. Therefore, RIP holds in (T′,C).

• Same projection. Write down the projection expression for (T′,C) :

P(T′,C)(X) =

∏
C∈C P (C)∏

(Ci−Cj)∈T′ P (Ci ∩ Cj)

Observe that every separator S ∈ S by construction has produced dS −1 edges (CiS,1 −CiS,2), . . . ,
(CiS,m−1 − CiS,dS ) in T′ such that CiS,k−1

∩ CiS,k = S. Therefore,∏
(Ci−Cj)∈T′

P (Ci ∩ Cj) =
∏
S∈S

P (S)dS−1

and

P(T′,C)(X) =

∏
C∈C P (C)∏

(Ci−Cj)∈T′ P (Ci ∩ Cj)
=

∏
C∈C P (C)∏

S∈S P (S)dS−1
= P(T,C,S)(X).

Now let us show that for every Jensen and Jensen junction tree (T′,C) there exists an equivalent AKU
junction tree (T,C,S). First, apply Alg. A.1 to (T′,C). Alg. A.1, while preserving the projection expres-
sion of (T′,C), will change the edges of (T′,C) so that edges associated with the same separator S are
next to each other in the resulting junction tree, denoted (T′′,C).
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As the second step, we can simply replace every subtree of (T′′,C) associated with separator S with a
star-shaped tree with one separator node S and the corresponding cliques connected directly to S, which
is exactly what Alg. A.2 does. We claim that (T,C,S), the result of Alg. A.2, is then an AKU junction
tree equivalent to (T′,C). The proof consists of two parts: first, prove that (T′′,C) is a junction tree with
the same projection expression as (T′,C), second that (T,C,S) is an AKU junction tree with the same
projection as (T′′,C).

• (T′′,C) is a junction tree with the same projection expression as (T′,C).

(T′′,C) is a tree. The edge replacements on line 3 of Alg. A.1 preserve connectivity of the
graph and the number of edges it has, so (T′′,C) is a connected graph with |C| − 1 edges and
thus a tree (Diestel, 2005).

(T′′,C) RIP and projection. Let C to be a set of cliques of a junction tree. Consider a fully
connected graph over C, called junction graph, and assign a weight to every edge Ci − Cj
of the junction graph equal to |Ci ∩ Cj |. It is known (Jensen and Jensen, 1994) that every
maximum spanning tree of a junction graph is a junction tree, and all junction trees over C
have the same set of separators, (taking into account node multiplicity). All junction trees with
the same set of cliques and the multiset of separators have the same projection. Therefore,
if we show that the edge replacements on line 3 of Alg. A.1 do not change the multiset of
separators, it will follow that (a) the weight of the spanning tree (T′,C) is preserved and
every intermediate spanning tree in Alg. A.1 is a junction tree and (b) every intermediate
spanning tree in Alg. A.1, including the end result (T′′,C), has the same projection expression
as (T′,C).

For every edge replacement on line 3 of Alg. A.1, it holds that

(C1 ∩ Cm) ⊆ (C1 ∩ C2) = S from the RIP,

but also
C1 ⊃ (C1 ∩ C2) = S, and Cm ⊃ (Cm−1 ∩ Cm) = S

so
(C1 ∩ Cm) ⊇ S ⇒ (C1 ∩ Cm) = S = (C1 ∩ C2)

and the new edge (C1 − Cm) is associated with the same separator as the old one (C1 − C2).
Thus the edge replacement on line 3 does not change the multiset of separators, so every
intermediate graph in the Alg. A.1 is a junction tree with the same projection expression as the
initial JT (T′,C).

• (T,C, S) is an AKU junction tree with the same projection as (T′′,C).

The nodes in (T,C, S) correspond to unique sets. The cliques are already unique. For
the separators, observe that for every S ∈ S there is only one maximal connected subset
CiS,1 , . . . , CiS,m ∈ C s.t. for every edge (CiS,j − CiS,q) between CiS,1 , . . . , CiS,m in T′′ it
holds that CiS,j ∩CiS,q = S. Otherwise the termination condition on line 2 of Alg. A.1 would
not hold and (T′′,C) would not be the result of Alg. A.1. Thus every distinct set S is only
added to S once.

(T,C, S) is a tree. (T,C,S) is connected: for every path C1 − C2 − · · · − Cm in (T′′,C),
there exists a corresponding path C1 − S12 − C2 − · · · − Cm in (T,C,S).
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Let us show that |T| = |C|+ |S| − 1. Consider for some S ∈ S the maximal connected subset
CiS,1 , . . . , CiS,m ∈ C s.t. for every edge (CiS,j−CiS,q) betweenCiS,1 , . . . , CiS,m in T′′ it holds
that CiS,j ∩ CiS,q = S. For this set of cliques, Alg. A.2 adds m edges and one separator to T
and S. At the same time, in (T′′,C) there is a subtree with m− 1 edges over CiS,1 , . . . , CiS,m .
Thus the total number of edges is∑

sets CiS,1 ,...,CiS,m as in Alg. A.2
m =

∑
sets CiS,1 ,...,CiS,m as in Alg. A.2

(m− 1)

+
∑

sets CiS,1 ,...,CiS,m as in Alg. A.2
1

= |T′′|+ |S| = |C| − 1 + |S|

so (T,C,S) is a tree.

RIP. For every pair of cliques C1, C2 ∈ C, consider the simple path between C1 and C2 in
(T′′,C): C1 −C2 − · · · −Cm−1 −Cm It corresponds, to a path Π ≡ C1 − S12 −C2 − · · · −
Cm−1−Sm−1,m−Cm in (T,C,S). Π is not necessarily simple. Since RIP holds for (T′′,C),
it also holds for path Π. A simple path in (T,C,S) is a subpath of Π, so the RIP holds for the
simple path as well.

(T,C, S) has same projection as (T′′,C). The sets of cliques are the same. Also, for every
separator S from (T′′,C), if the CiS,1 , . . . , CiS,m ∈ C is the maximal connected subset s.t. for
every edge (CiS,j − CiS,q) between them in T′′ it holds that CiS,j ∩ CiS,q = S, then there are
exactlym−1 edges in T′′ that are associated with separator S. Alg. A.2 adds a separator node
S of degree m to (T,C,S), so in both (T′′,C) and (T,C, S) it holds that P (S) has degree
m− 1 in the denominator of the projection expression.

Proof of Theorem 11 (page 23). First, let us prove that whenever two AKU junction trees, (T1,C1, S1)
and (T2,C2,S2), have the same set of cliques, C1 = C2 = C, it follows that the two junction trees are
exactly the same: S1 = S2 and T1 = T2. Suppose that C1 = C2 = C. From Lemma 9, there exist Jensen
and Jensen junction trees (T′1,C) and (T′2,C) with the same projection expressions as, correspondingly,
(T1,C,S1) and (T2,C,S2). From Jensen and Jensen (1994), we know that the projection expression of
a Jensen and Jensen JT is completely determined by the set of cliques of that JT, so (T′1,C) and (T′2,C)
have the same projection expression. Therefore,

• (T1,C,S1) and (T2,C, S2) have the same projection expression.

• (T1,C,S1) and (T2,C, S2) have the same set of separators and their cardinalities.

To prove that (T1,C,S1) and (T2,C,S2) are the same, we now only need to prove

C1 = C2 = C and S1 = S2 ⇒ T1 = T2.

Consider a path C ′ − S − C ′′ from (T1,C, S) and a simple path between C ′ and C ′′ in (T2,C,S). From
RIP, we have S ⊆ C ′ ∩ C ′′. Since C ′ 6= C ′′, |C ′| = |C ′′| = k + 1, S ⊇ C ′ ∩ C ′′ and |S| = k, it
holds that S = C ′ ∩ C ′′. Every separator S′ between C ′ and C ′′ in (T2,C,S), by RIP, has to contain
C ′ ∩ C ′′ = S. But |S′| = |S| = k, so S′ = S is the only separator that may exist in the path between
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C ′ and C ′′. Therefore, the path C ′ − S − C ′′ is also present in (T2,C, S). Repeating the above reasoning
for every pair of neighboring cliques, we get T1 ⊆ T2 and symmetrically T2 ⊆ T1, so T1 = T2 and
(T1,C1,S1) = (T2,C2, S2).

We have proved that whenever two AKU junction trees, (T1,C1,S1) and (T2,C2, S2), have the same
set of cliques, the two junction trees are exactly the same. Therefore, whenever two AKU junction trees
(T1,C1,S1) and (T2,C2, S2) are different, it follows that C1 6= C2.We now only need to prove that when-
ever C1 6= C2, there exists a distribution that factors according to (T1,C1, S1), but not to (T2,C2,S2).
Take a clique C ∈ C1 \C2. Without loss of generality, assume that all of the variables in C have domains
of cardinality r with values 0, . . . , r − 1, such that r is even. Take the distribution

P1(X) = Uniform(X-C)PC1 (C),

where PC1 (C) assigns zero probability to all assignments C such that
∑

x∈C x is odd and uniform prob-
ability to all assignments C such that

∑
x∈C x is even:

PC1 (C) =
2

rC
1{

∑
x∈C x is even}.

We will show that P1(X) factors according to (T1,C1,S1), but not to (T2,C2,S2). Because every variable
y ∈ C has the same number of even and odd values, for any assignment C-y it holds that

P1(C-y) =
∑
y

PC1 (C-y = C-y, y = y) =
2

r|C|

∑
y

1{y+
∑
x∈C-y x is even} =

2

r|C|
· r

2
=

1

r|C|−1

which does not depend on the value ofC-y, soP1(C-y) = Uniform(C-y). Similarly, P1(X-y) = Uniform(X-y)
and the P1(X) can be written as

P1(X) =
P1(C)

∏
C′∈C1\C Uniform(C ′)∏

S∈S1 Uniform(S)dS−1
.

Observe that no clique or separator of (T2,C2,S2) contains C. Therefore, for every clique C ′′ ∈ C2 it
holds that P1(C ′′) = Uniform(C ′′) and similarly for separators. Therefore, the projection of P1(X) on
(T2,C2,S2) is

P1,(T2,C2,S2)(X) =

∏
C′′∈C2

P1(C ′′)∏
S∈S1 P1(S)dS−1

=

∏
C′′∈C2

Uniform(C ′′)∏
S∈S1 Uniform(S)dS−1

= Uniform(X) 6= P1(X),

qed.

For some of the remaining proofs, for a junction tree (T,C, S) and a leaf clique C ∈ C let us denote
(T-C ,C-C ,S-C) to be (T,C, S) with leaf clique C removed. Formally, we have
Definition 66. Let (T,C, S) be a junction tree, andC ∈ C be a leaf clique of (T,C,S). Define (T-C ,C-C ,S-C)
to be the following modification of (T,C, S):

• Remove C from C and edge S − C from T.

• If S becomes a leaf, remove S from S, and the edge involving S from T.

The convenient property of (T-C ,C-C ,S-C) is that, because of monotonicity of conditional mutual infor-
mation, whenever (T,C, S) is an ε-junction tree, (T-C ,C-C ,S-C) is also an ε-JT:
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Lemma 67. If (T,C, S) is an ε-junction tree for P (X), and C ∈ C is a leaf clique of (T,C,S) connected
to a separator S ∈ S, then (T-C ,C-C ,S-C) is an ε-junction tree for P (X-(C\S)).

Proof. First, observe that (T-C ,C-C ,S-C) involves exactly the variables X-(C\S) :

• Every variable x 6∈ C is contained in some C ′ ∈ C-C , so x is involved in (T-C ,C-C , S-C).

• From RIP, no variable y ∈ C-S occurs in any clique C ′ ∈ C-C , because for every C ′ the simple path
between C and C ′ includes S. Thus (T-C ,C-C , S-C) does not involve any variables from C-S .

• Finally, every variable z ∈ S also occurs in some clique C ′ ∈ C-C , because, from Def. 5, S in
(T,C, S) was connected to at least one clique C ′ 6= C, and S ⊂ C ′.

Every simple path from (T,C,S) that does not involve C is also a simple path in (T-C ,C-C , S-C). More-
over, because C is a leaf clique, only simple paths that have C as one of the endpoints involve C.
Therefore, (T-C ,C-C ,S-C) is connected (and thus a tree). Every simple path from (T-C ,C-C , S-C) is
also a simple path in (T,C,S), so the running intersection property holds in (T-C ,C-C ,S-C). Therefore,
(T-C ,C-C , S-C) is a junction tree.

By analogy with XS→C , define X ′S′→C′ to be the variables other than S′ that are reachable from C ′ in
(T-C ,C-C , S-C) without using the edge S′−C ′. Every path in (T-C ,C-C , S-C) is also present in (T,C, S),
so X ′S′→C′ ⊆ XS′→C′ Therefore, from monotonicity of conditional mutual information,

I
(
X ′S′→C′ , X

′
C′→S′ | S′

)
≤ I

(
XS′→C′ , XC′→S′ | S′

)
≤ ε,

so (T-C ,C-C ,S-C) is indeed an ε-junction tree.

Proof of Lemma 14 (page 23). Write down the divergence between a distribution P (X) and its projection
on the junction tree (T,C, S). Using the projection expression from (2.2), we get

KL
(
P, P(T,C,S)

)
≡
∑
X

P (X) log
P (X)

P(T,C,S)(X)

=
∑
X

P (X) logP (X)−
∑
X

P (X) log

∏
C∈C P (C)∏

S∈S P (S)dS−1

= −H(X)−
∑
X

P (X)

(∑
C∈C

logP (C)− (dS − 1)
∑
S∈S

logP (S)

)
{

observe that
∑

X-C P (X) =
∑

X-C P (CX-C) = P (C)
}

= −H(X)−
∑
C∈C

∑
C

P (C) logP (C) +
∑
S∈S

(dS − 1)
∑
S

P (S) logP (S)

= −H(X) +
∑
C∈C

H(C)−
∑
S∈S

(dS − 1)H(S) (A.8)

The remainder of the proof is by induction. Consider a leaf clique C ′ (there is always a leaf clique in a
junction tree).
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Base case: C ′ is the only clique in (T,C,S). Then C ′ = X and from (A.8) we have

KL
(
P, P(T,C,S)

)
= −H(X) +H(C ′) = −H(X) +H(X) = 0 ≤ nε.

Induction step: C ′ is not the only clique. Then there is exactly one separator S′ directly connected to C ′:
C ′ − S′ ∈ T. We have

KL
(
P, P(T,C,S)

)
= −H(X) +

∑
C∈C

H(C)−
∑
S∈S

(dS − 1)H(S)

= −H(X) +H(C ′)−H(S′) +H(T-C′ ,C-C′ , S-C′)

where
H(T-C′ ,C-C′ , S-C′) =

∑
C∈C\C′

H(C)− (dS′ − 2)H(S′)−
∑

S∈S\S′
(dS − 1)H(S).

Let us get back to KL
(
P, P(T,C,S)

)
. Denote B ≡ C ′-S′ . Then we have (using underlines to mark terms

that either cancel out or are transformed at the next step)

KL
(
P, P(T,C,S)

)
= −H(X) +H(C ′)−H(S) +H(T-C′ ,C-C′ ,S-C′)

= −H(X-BS′ | BS′)−H(S′) +H(T-C′ ,C-C′ ,S-C′)

= −H(X-BS′ | BS′) +H(X-BS′ | S′)
−H(X-BS′ | S′)−H(S′) +H(T-C′ ,C-C′ ,S-C′)

= I
(
X-BS′ , B|S′

)
−H(X-BS′ | S′)−H(S′) +H(T-C′ ,C-C′ ,S-C′)

{ B ≡ XS′→C′ , X-BS′ ≡ XC′→S′ ,

(T,C,S) is an ε-JT⇒ I
(
X-BS′ , B|S′

)
≤ ε}

≤ ε−H(X-BS′ | S′)−H(S′) +H(T-C′ ,C-C′ , S-C′)

{H(X-BS′ | S′) +H(S′) = H(X-B)}
≤ ε−H(X-B) +H(T-C′ ,C-C′ , S-C′). (A.9)

Now notice thatH(T-C′ ,C-C′ , S-C′) is exactly the entropy of a projection ofP (X-B) on (T-C′ ,C-C′ ,S-C′).
Therefore,

−H(X-B) +H(T-C′ ,C-C′ ,S-C′) = KL
(
P (X-B), P(T-C′ ,C-C′ ,S-C′ )(X-B)

)
By Lemma 67, (T-C′ ,C-C′ , S-C′) is an ε-junction tree. Therefore, from induction assumption,

KL
(
P (X-B), P(T-C′ ,C-C′ ,S-C′ )(X-B)

)
≤ |X-B| · ε,

and plugging it into (A.9) concludes the proof of the induction step.

Proof of Lemma 16 (page 23). We will prove slightly more general statement, allowing the distribution P
to be in certain cases approximately representable by a junction tree of treewidth higher than k:

Lemma 68. Let P (X) be a probability distribution. Let A,B, Y be a partitioning of X . Suppose there
exists an ε-junction tree (T∗,C∗, S∗) for P (X) s.t. for every C∗ ∈ C∗ it holds that |C∗ ∩ AB| ≤ k + 1.
If ∀W ⊆ AB s.t. |W | ≤ k + 1 it holds that

I(A ∩W,B ∩W | Y ) ≤ δ,

then
I(A,B | Y ) ≤ |AB|(ε+ δ).
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(a) Illustration of notation in the proof of Lemma 16.

QA−

Q

*A*AA−

U

B

Z

W

(b) Illustration of notation
in the proof of Lemma 69.

Figure A.1: Illustration of notation in the proofs of Lemma 16 and Lemma 69.

Note that in this formulation a clique C∗ of a junction tree (T∗,C∗, S∗) may have size greater than k + 1,
up to k + 1 + |Y |.

First, let us construct a new junction tree (T,C,S) from (T∗,C∗, S∗) by adding all variables of Y to every
separator S∗ ∈ S∗ and clique C∗ ∈ C∗. Let us show that (T,C, S) is also an ε-junction tree. Consider any
neighboring pair of a separator S∗ and clique C∗ from (T∗,C∗,S∗). By definition of an ε-junction tree,

I (XC∗→S∗ , XS∗→C∗ | S∗) ≤ ε.

We need to show for the corresponding pair S,C from (T,C,S) that I (XC→S , XS→C | S) ≤ ε. Denote

Y1 ≡ XC∗→S∗ ∩ Y, Y2 ≡ XS∗→C∗ ∩ Y.

By construction of (T,C,S), Y1Y2 was added to S, so that Y ⊆ S. Because XS→C and XC→S do not
include the variables of S, adding variables to a separator S leads to removing those variables from the
sets XS∗→C∗ . Therefore, it holds that

XC→S = XC∗→S∗ \ Y1, XS→C = XS∗→C∗ \ Y2, S = S∗ ∪ Y1 ∪ Y2.

Using the chain rule, we have

I (XC→S , XS→C | S) = I (XC→S , XS→C | S∗Y1Y2)

= I (XC→SY1, XS→C | S∗Y2)− I (Y1, XS→C | S∗Y2)

= I (XC→SY1, XS→CY2 | S∗)− I (Y1, XS→C | S∗Y2)

−I (Y2, XC→SY1 | S∗)
≤ I (XC→SY1, XS→CY2 | S∗) ≡ I (XC∗→S∗ , XS∗→C∗ | S∗) ≤ ε,

so (T,C, S) is indeed an ε-junction tree.

Also, since we only added variables from Y to cliques and separators of (T∗,C∗, S∗), it still holds for
(T,C,S) that |C ∩AB| ≤ k + 1 for every C ∈ C.

Now let us prove the main statement of the lemma. The proof is by induction.

Base case. (T,C, S) contains only one clique, so C = ABY. Taking W ≡ AB, we have

I(A ∩AB,B ∩AB | Y ) ≤ δ ⇔ I(A,B | Y ) ≤ δ ⇒ I(A,B | Y ) ≤ |AB|(ε+ δ)

(the last transition is valid, because |AB| ≥ 2), so the theorem statement is true.
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Induction step. Suppose (T,C, S) contains more than one clique. Consider a leaf clique C ∈ C that is
connected to only one separator S. If a tree is not empty, a leaf clique always exists. Define (see Fig. A.1a
for illustration)

G ≡ C-S ∩A, H ≡ S ∩A, M ≡ A-GH ≡ XC→S ∩A

K ≡ C-S ∩B, L ≡ S ∩B, N ≡ B-KL ≡ XC→S ∩B.

On a high level, the proof shows the following three facts:

• (T-C ,C-C , S-C) satisfies lemma conditions, so I (A-G, B-K | Y ) ≤ |A-GB-K |(ε + δ) by induction
assumption.

• The following upper bound holds:

I (A,B | Y ) ≤ I (A-G, B-K | Y ) + I (A-G,K | Y B-K) + I (B,G | Y A-G) .

• The last two terms in the above upper bound can in turn be bounded from above by ε+ δ.

Let us show that A-G, B-K and Y satisfy the conditions of this lemma. Observe that A-GB-KY = X-C\S .
Take (T-C ,C-C , S-C), which is an ε-junction tree for P (X-C\S) by Lemma 67. Because A-GB-K ⊂ AB
and C-C ⊂ C, for every C ′ ∈ C-C it holds that

|A-GB-K ∩ C ′| ≤ |AB ∩ C ′| ≤ k + 1.

Also, for every W ⊂ A-GB-K such that |W | ≤ k + 1 it holds that W ∩ A-G = W ∩ A and W ∩ B-K =
W ∩B, so

I (W ∩A-G,W ∩B-K | Y ) = I (W ∩A,W ∩B | Y ) ≤ δ.

Therefore, the conditions of this lemma hold for A-G, B-K and Y and by induction assumption it holds
that

I (HM,LN | Y ) ≡ I (A-G, B-K | Y ) ≤ |A-GB-K |(ε+ δ).

Let us proceed to proving the induction step. Without loss of generality, assume that both G and K are
not empty. Using the chain rule, we have

I(A,B | Y ) = I(GHM,KLN | Y )

= I(HM,KLN | Y ) + I(G,KLN | Y HM)

= I(HM,LN | Y ) + I(HM,K | Y LN) + I(G,KLN | Y HM)

≤ (|AB| − |GK|)(ε+ δ) + I(HM,K | Y LN) + I(G,KLN | Y HM) (A.10)

Unroll the last term using the chain rule:

I(G,KLN | Y HM) = I(G,MKLN | Y H)− I(G,M | Y H)

I(G,MKLN | Y H) = I(G,MN | KLYH) + I(G,KL | Y H)

I(G,KL | Y H) = I(GH,KL | Y )− I(H,KL | Y )

I(G,MN | KLYH) = I(GK,MN | LY H)− I(K,MN | LY H)

⇓
I(G,KLN | Y HM) = I(GK,MN | LY H)− I(K,MN | LY H) +

+I(GH,KL | Y )− I(H,KL | Y )− I(G,M | Y H). (A.11)

179



Plugging the following mapping: (G,K,L,H,N,M)→ (K, ∅, H, L,M,N) into (A.11), we get

I(HM,K | Y LN) = I(H,KL | Y )− I(H,L | Y ) + I(MN,K | HY L)− I(N,K | Y L) (A.12)

and plugging (A.11) and (A.12) back into (A.10) (again, underscores indicate terms that will be trans-
formed on the current step of the derivation):

I(A,B | Y ) ≤ (|AB| − |GK|)(ε+ δ) + I(HM,K | Y LN) + I(G,KLN | Y HM)
= (|AB| − |GK|)(ε+ δ)

+I(H,KL | Y )− I(H,L | Y )+I(MN,K | HY L)− I(N,K | Y L)

+I(GK,MN | LY H)−I(K,MN | LY H)+

+I(GH,KL | Y )−I(H,KL | Y )− I(G,M | Y H)

= (|AB| − |GK|)(ε+ δ) + I(GK,MN | LY H) + I(GH,KL | Y )
−I(H,L | Y )− I(N,K | Y L)− I(G,M | Y H)

≤ (|AB| − |GK|)(ε+ δ) + I(GK,MN | LY H) + I(GH,KL | Y )
{note that GH = A ∩ C,KL = B ∩ C, so |GHKL| ≤ k + 1}

≤ (|AB| − |GK|)(ε+ δ) + I(GK,MN | LY H) + δ
{note that Y LH = S, GK = XS→C , MN = XC→S}

≤ (|AB| − |GK|)(ε+ δ) + ε+ δ
{note that |GK| ≥ 1}

≤ |AB|(ε+ δ),

qed.

Proof of Corollary 17 (page 27). Because XC→S , XS→C and S partition the set X , from Lemma 16, for
every separator S it holds that

I (XS→C , XC→S | S) ≤ n(ε+ δ),

so by definition (T,C, S) is an n(ε+ δ)-junction tree for P (X).

Proof of Lemma 18 (page 29). The algorithm cycles through all subsets W ⊂ X of size at most q on
line 2. This results in

∑q
i=2

(
n
i

)
= O (nq) iterations. For each iteration, it runs Queyranne’s algorithm to

find
min
U
I (U,W-U | S) .

Queyranne’s algorithm takes O
(
|W |3

)
= O

(
q3
)

mutual information oracle calls to find this minimum.

Thus the time spent on it for every subset W is O
(
q3JMI
|W |+|S|

)
= O

(
q3JMI

k+q

)
. Finally, for every W ,

finding the matching components Q ∈ QS , Q ∩ W 6= ∅ and merging them takes at most O(n) time.
Therefore, the total complexity is O

(
nq
(
q3JMI

k+q + n
))

.

To prove Lemma 21, we need the following auxiliary result:
Lemma 69. Suppose sets A,B, S are such that |A| = m, B ⊂ A, S ∩ A = ∅. If for every W ⊆ A s.t.
W ∩B 6= ∅ and W ∩A-B 6= ∅ it holds that

min
U⊂W

I (U,W-U | S) ≤ δ, (A.13)

then it holds that
I (B,A-B | S) ≤ (m− 1)δ.
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Proof. The proof is by induction.

Base case: m = 2 trivially holds.

Induction step. Suppose the lemma statement holds for all sizes of A up to m. Let us show that it has to
hold for m+ 1 as well.

Denote
A∗ ≡ arg min

U⊂A
I (U,A-U | S)

Notice that it is possible to have A∗ ⊆ B or A∗ ∩ B = ∅. Denote also (this notation is illustrated in
Fig. A.1b)

D ≡ A∗ ∩B, F ≡ A∗ ∩A-B, G ≡ A-A∗ ∩B, Z ≡ A-A∗ ∩A-B.

Because A∗ ⊂ A, it holds that |DF | = |A∗| ≤ m and |GZ| = |A-A∗ | ≤ m, so by induction hypothesis
we get

I (D,F | S) ≤ (|A∗| − 1)δ and I (G,Z | S) ≤ (|A-A∗ | − 1)δ = (m− |A∗|)δ

and also from (A.13)
I (DF,GZ | S) ≤ δ.

Observe that some of the sets D,F,G,Z may be empty, in which case the corresponding mutual informa-
tion is 0: for example, ifD = ∅, then I (D,F | S) = 0. The above three inequalities still hold for the case
of some of D,F,G,Z being empty, and the remainder of the proof goes through as well. Let us show that

I (D,F | S) + I (G,Z | S) + I (DF,GZ | S) ≥ I (DG,FZ | S)

Write down the difference in terms of entropies:

I (D,F | S) + I (G,Z | S) + I (DF,GZ | S)− I (DG,FZ | S)

= H(D | S)−H(D | FS) +H(G | S)−H(G | ZS)

+H(DF | S)−H(DF | GZS)−H(DG | S) +H(DG | FZS)

{note that H(DF | S)−H(D | FS) = H(F | S)}
= H(D | S) +H(F | S) +H(G | S)−H(G | ZS)

−H(DF | GZS)−H(DG | S) +H(DG | FZS)

{note that H(DF | GZS) +H(G | ZS) = H(DFG | ZS)}
= H(D | S) +H(F | S) +H(G | S)−H(DFG | ZS)−H(DG | S)+H(DG | FZS)

{note that H(DFG | ZS)−H(DG | FZS) = H(F | ZS)}
= H(D | S) +H(F | S)+H(G | S)−H(F | ZS)−H(DG | S)

= H(D | S) +H(F | S)−H(D|GS)−H(F | ZS)

= I(D,G | S) + I(F,Z | S) ≥ 0

Therefore,

I (DG,FZ | S) ≤ I (D,F | S) + I (G,Z | S) + I (DF,GZ | S)

≤ (|A∗| − 1)δ + (m− |A∗|)δ + δ

= mδ = ((m+ 1)− 1)δ.

But I (DG,FZ | S) ≡ I (A,A-B | S) so the induction step is proved.
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Proof of Lemma 21 (page 30). Denote (T,C,S) the “true” ε-junction tree for P (X) and consider a sepa-
rator S inseps. The proof of correctness is by induction.

Base case. Initially, each variable x ∈ X-S forms its own partition Q ≡ {x}, so property

∃C ∈ C s.t. (S − C) ∈ T and Q ⊆ XS→C (A.14)

holds. That is, the initial partitioning placing every variable in its own partition is correct. We will now
prove that correctness is maintained throughout the execution of Alg. 2.2.

Induction step. Suppose (A.14) holds just before a subset W is tested on line 3 of Alg. 2.2. If W lies
within XS→C for some C, then by the induction assumption for every Q ∈ QS such that Q ∩W 6= ∅ it
holds that Q ⊆ XS→C . Therefore,

D ≡

 ⋃
Q∈QS s.t. Q∩X 6=∅

Q

 ⊆ XS→C .

This means that property (A.14) can only be violated after processing W if W intersects both XS→C and
XC→S . In this case, from the definition of an ε-junction tree I (XS→C , XC→S | S) ≤ ε, and therefore

ε ≥ I (XS→C , XC→S |S)

{monotonicity of conditional mutual information}
ε ≥ I (W ∩XS→C ,W ∩XC→S | S)

ε ≥ min
U⊂W

I (U,W-U | S)

{δ = ε}
δ ≥ min

U⊂W
I (U,W-U | S) ,

which means Alg. 2.2 skips line 4 for W and the partitioning QS does not change upon processing W.
Therefore, (A.14) holds right after W is processed. By induction, (A.14) holds throughout the runtime of
Alg. 2.2 and in the end result.

Let us now prove n(ε + kδ)-weakness. Consider the final partitioning QS and take an arbitrary set
Q ∈ QS .Because QS is the final result, we know thatQwas not merged with any other subsetQ′ ⊂ X-QS ,
which means that for every W ⊂ X-S s.t. |W | ≤ k+ 1, W ∩Q 6= ∅ and W ∩X-QS 6= ∅ the condition on
line 3 was false, meaning

min
U⊂W

I (U,W-U | S) ≤ δ.

By Lemma 69, it follows that I (W ∩Q,W ∩X-QS | S) ≤ kδ and we can apply Lemma 16 to obtain
n(ε+ kδ)-weakness directly.

Proof of Lemma 23 (page 32). Let us show by induction that, under the lemma conditions, each call to
GetSubtree(S,Q) returns an AKU junction tree (T,C, S) over variables S ∪Q, and a clique C ∈ C.

Base case. |Q| = 1 and D(Q,S) = ∅. Then on line 1 Alg. 2.4 sets x = Q and returns a junction tree
consisting of a single clique SQ, and also returns the same SQ as a clique C.

Induction step. We need to prove the following properties of (T,C,S) on line 8 of Alg. 2.4:
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1. (T,C, S) involves exactly the variables S ∪ Q. By induction assumption, for every (S′, Q′) ∈
D(S,Q) it holds that GetSubtree on line 6 of Alg. 2.4 returns (T′,C′,S′) that involves exactly the
variables S′ ∪Q′.

By construction on line 7 of Alg. 2.4, (T,C,S) includes all the cliques and separators of the results
(T′,C′, S′) of Alg. 2.4 for every (S′, Q′) ∈ D(S,Q). The only other vertices Alg. 2.4 adds to
(T,C, S) are the clique Sx on line 2 and S′ for every (S′, Q′) ∈ D(S,Q) on line 5. Therefore, the
result involves exactly the variables(
∪(S′,Q′)∈D(S,Q)(S

′ ∪Q′)
)
∪ Sx =

{
by Def. 22, S′ ⊂ Sx

}
=
(
∪(S′,Q′)∈D(S,Q)Q

′) ∪ Sx
=

{
by Def. 22, ∪(S′,Q′)∈D(S,Q) Q

′ = Q-x
}

= QS. (A.15)

2. There are no duplicate nodes, that is no two cliques C ′, C ′′ ∈ C contain exactly the same variables,
and similarly for the separators. The proof is again by induction.

WLOG, suppose D(S,Q) = {(S′, Q′), (S′′, Q′′)}.Denote the subtrees (C ′, (T′,C′,S′)) = Alg. 2.4(S′, Q′)
and (C ′′, (T′′,C′′,S′′)) = Alg. 2.4(S′′, Q′′). By induction assumption, the nodes in the subtrees are
unique within the respective subtree. By construction, Alg. 2.4 will return a graph (T,C,S) with
S = S′ ∪ S′′ ∪ {S′} ∪ {S′′} and C = C′ ∪ C′′ ∪ {Sx}. Since all the separators are of size k and
cliques of size k+1, we have S∩C = ∅. Therefore, the only three ways to get a duplicate separator
is to have S′ ∈ S′, S′′ ∈ S′, or S′ ∩ S′′ 6= ∅. Analogously, the only two ways to get a duplicate
clique is to have Sx ∈ C′ or C′ ∩C′′ = ∅. Let us show that none of these five situations is possible.

• S′ ∈ S′.Alg. 2.4 only adds separators that are present in the components of the decomposition.
Therefore, S′ ∈ S′ would mean that separator S′ was added to the subtree of (S′, Q′) at some
level of recursion, which implies that there exists (S′, Q′′′) ∈ L such thatQ′′′ ⊂ Q′, |Q′′′| > 0.
However, conditions of the lemma state that such (S′, Q′′′) does not exist in L, a contradiction.

• S′′ ∈ S′. We have just shown that S′ 6∈ S′, the only remaining option is S′′ 6= S′, S′′ ∈ S′.
From (A.15), we know that ∪S′′′∈S′S′′′ ⊆ S′Q′. Also, from Def. 22 we have

S′′ ⊂ Sx, Sx ∩Q′ = ∅ ⇒ S′′ ∩Q′ = ∅ ⇒ S′′ ⊆ S′.

We assumed S′′ 6= S′, so S′′ ⊂ S′, but from conditions of the lemma it holds that |S′′| =
|S′| = k, a contradiction.

• S′ ∩ S′′ 6= ∅ or C′ ∩ C′′ = ∅. From (A.15), we know that the subtrees are exactly over the
variables of (S′, Q′) and (S′′, Q′′) correspondingly. Let us look at the common variables of
the two subtrees:

(S′ ∪Q′) ∩ (S′′ ∪Q′′) = (S′ ∩ S′′) ∪ (S′ ∩Q′′) ∪ (S′′ ∩Q′) ∪ (Q′ ∩Q′′)
{Q′ ∩Q′′ = ∅ by Def. 22}

= (S′ ∩ S′′) ∪ (S′ ∩Q′′) ∪ (S′′ ∩Q′)
{S′ ⊂ Sx,Q′′ ∩ Sx = ∅ by Def. 22}

= S′ ∩ S′′

From conditions of the lemma, |S′| = |S′′| = k, and all the cliques in C′ and C′′ are of
form S′′′y for some (S′′′, Q′′′) ∈ L, so all the subtree cliques are of size k + 1. Because
|S′ ∩ S′′| ≤ k, a common clique is impossible, and the only possible common separator is S′,
provided S′ = S′′. However, we have already shown that S′ cannot be contained in S′.
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• Sx ∈ C′. From (A.15), we know that (T′,C′,S′) involves exactly the variables S′ ∪Q′. From
Def. 22 it holds that Q′ ∩ Sx = ∅ and S′ ⊂ Sx, so Sx 6⊆ S′ ∪ Q′, a contradiction with the
assumption Sx ∈ C′ ⇒ Sx ⊆ S′ ∪Q′.

We have shown that all the options for a duplicate node to appear are impossible, so the nodes of
(T,C, S) are unique.

3. (T,C, S) is a tree. A graph is a tree iff it is connected and has one more node than it has edges. The
number of edges in (T,C, S) is (all line numbers refer to Alg. 2.4)

Edges of components obtained on line 6.
∑

(S′,Q′)∈D(S,Q) (|C′|+ |S′| − 1)

Edges of form S′ − C ′ (line 7) |D| (one for every (S′, Q′) ∈ D(S,Q))
Edges of form Sx− S′ (line 5) m (number of unique S′ in D(S,Q))

The total number of edges T is thus

|T| =
∑

(S′,Q′)∈D(S,Q)

(
|C′|+ |S′| − 1

)
+ |D|+m =

∑
(S′,Q′)∈D(S,Q)

(
|C′|+ |S′|

)
+m

Let us now count the nodes of (T,C,S):

Nodes of components obtained on line 6.
∑

(S′,Q′)∈D(S,Q) (|C′|+ |S′|)
Nodes S′ (line 5) m

Node Sx (line 2) 1

Therefore,
|S|+ |C| =

∑
(S′,Q′)∈D(S,Q)

(
|C′|+ |S′|

)
+m+ 1 = |T|+ 1.

Finally, (T,C,S) is connected:, the subcomponents (T′,C′,S′) are connected by induction assump-
tion, and any two subcomponents (T′,C′,S′) and (T′′,C′′,S′′) are connected via edges S′−Sx−S′′.
Therefore, (T,C, S) is a tree.

4. Running intersection property holds.

It is sufficient to show for every S∗, C1, C2 s.t. (S∗ − C1) ∈ T and (S∗ − C2) ∈ T that

XS∗→C1 ∩XS∗→C2 = ∅. (A.16)

The induction assumption is that RIP holds for the subtrees (T′,C′,S′) and (T′′,C′′,S′′) for (S′, Q′),
(S′′, Q′′) ∈ D(S,Q). Then three cases are possible:

• C1 = C ′, C2 = C ′′, S′ = S′′ = S∗. Because (T′,C′,S′) involves exactly the variables S′Q′,
we have

XS∗→C1 =
(
S′Q′

)
\ S′ = Q′

and analogously XS∗→C2 = Q′′. From Def. 22, it holds that

Q′ ∩Q′′ = ∅ ⇒ XS′→C′ ∩XS′′→C′′ = ∅.

• C1 = C ′, C2 = Sx, S∗ = S′. In this case,

XS∗→C2 =
(
Sx ∪ ∪(S′′′,Q′′′)∈D(S,Q) s.t. S′′′ 6=S′

(
S′′′ ∪Q′′′

))
\ S′

From Def. 22, it holds that S′′′ ⊂ Sx and Sx ∩ Q′ = ∅. Also, it holds that Q′′′ ∩ Q′ = ∅, so
XS′→C′′ ∩Q′ = ∅. Because XS′→C′ = Q′, it holds that XS′→C′ ∩XS′→C′′ = ∅.
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• C1, C2 ∈ C′, S∗ ∈ S′, S∗ 6= S′. In other words, we need to show that adding tree compo-
nents on a higher level of recursion does not invalidate RIP for separators already added on
lower levels of recursion. Suppose the new clique Sx is on the same side of S∗ as C1. Then
X

(T,C,S)
S∗→C2

= X
(T′,C′,S′)
S∗→C2

⊂ ((S′Q′) \ S∗) and

X
(T,C,S)
S∗→C1

= X
(T′,C′,S′)
S∗→C1

∪

Sx ∪ ⋃
(S′′′,Q′′′)∈D(S,Q)\(S′,Q′)

(
S′′′ ∪Q′′′

) \ S∗.
Again, from Def. 22, S′′′ ⊂ Sx, so removing S′′′ from the above expression does not change
the result and we can rewrite it as

X
(T,C,S)
S∗→C1

= X
(T′,C′,S′)
S∗→C1

∪

S′ ∪ (Sx \ S′) ∪
⋃

(S′′′,Q′′′)∈D(S,Q)\(S′,Q′)

Q′′′

 \ S∗.
Observe that S′ \ S∗ was already in X(T′,C′,S′)

S∗→C1
, so adding S′ \ S∗ does not change anything.

Also, Q′ ⊂ Q-x and Q∩S = ∅, so (Sx \S′)∩ (S′Q′) = ∅. Finally, Q′′′ ⊂ Q-x, Q
′′′ ∩Q′ = ∅

and S′ ⊂ Sx, so Q′′′ ∩ (S′Q′) = ∅. We have shown that the variables added to XS∗→C1 on
the current step are absent from S′Q′ ⊃ XS∗→C2 , so the RIP w.r.t. separator S∗ is preserved.

The proof of the main statement of the lemma is obtained by taking int account that each call to GetSubtree(S,Q)
returns an AKU junction tree (T,C,S) over variables S ∪ Q and applying the same reasoning as in the
proof that Alg. 2.4 returns a junction tree to lines 4–8 of Alg. 2.3.

Proof of Lemma 24 (page 34). First, consider the complexity of FindDecompositionGreedy (Alg. 2.5).
Line 5 cycles through |Q| different values of variable x. For every x, there are

(
k+1
k

)
= k + 1 separators

S′ s.t. S′ ⊆ Sx. For every such S′, it takes O(n) time to check for all components (S′, Q′) whether they
satisfy the condition on line 8, and add them to the decomposition D(S,Q) if they do. Thus the complexity
of FindDecompositionGreedy is O(|Q|(k + 1)n) = O(|Q|nk).

Consider now the complexity of FindConsistentTreeDPGreedy (Alg. 2.3). There are
(
n
k

)
separators

and for each separator S, the components (S,Q) involve exactly n− k variables:∑
Q:(S,Q)∈L

|Q| = n− k.

Therefore, for every S, line 2 takes time∑
Q:(S,Q)∈L

O(|Q|nk) = O(n2k).

Therefore, the loop on lines 1–2 takes time O(nk × n2k) = O(nk+2k).

For every S, the check of line 3 can be done in O(n) time (since there are at most n− k sets Q ∈ QS),
so the total complexity of line 3 is O(nk+1).

The recursive unrolling of the junction tree on lines 4–8 takesO(n) time because it involves n components
(S′, Q′).

Therefore, the total complexity of Alg. 2.3 is dominated by the loop on lines 1–2 and is equal toO(nk+2k).
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Proof of Proposition 25 (page 34). Alg. 2.6 runs LTCI (Alg. 2.2) for every candidate separator S of size
k, for a total of O(nk) invocations. The complexity of every LTCI invocation, from Lemma 18 is

O
(
nq
(
q3JMI

k+q + n
))
.

In Alg. 2.6, q = k + 2, therefore

O
(
nq
(
q3JMI

k+q + n
))

= O
(
nk+2

(
(k + 2)3JMI

2k+2 + n
))

= O
(
nk+2

(
k3JMI

2k+2 + n
))
.

Since there areO(nk) invocations, the total time complexity of lines 1–3 of Alg. 2.6 isO
(
n2k+2

(
k3JMI

2k+2 + n
))
.

The complexity of the following dynamic programming is O(nk+2k), so the total complexity is

O
(
n2k+2

(
k3JMI

2k+2 + n
))

+O(nk+2k) = O
(
n2k+2

(
k3JMI

2k+2 + n
))
.

Let us now prove two lemmas that will be useful in the proof of Thm. 27.
Lemma 70. For non-intersecting sets A,B, S, Y,W, and for every probability distribution P (ABSYW )
it holds that

I (A,BY | SW ) + I (AB,W | SY ) ≥ I (A,B | SY )

Proof. Write down the difference:

I (A,BY | SW ) + I (AB,W | SY )− I (A,B | SY )

= H(ASW )−H(SW )−H(ABSWY ) +H(BSWY ) +

+H(ABSY )−H(SY )−H(ABSWY ) +H(SWY )−
−H(ASY ) +H(SY ) +H(ABSY )−H(BSY )

= H(ASW )−H(SW )−H(ABSWY ) +H(BSWY ) +H(ABSY )

−H(ABSWY ) +H(SWY )−H(ASY ) +H(ABSY )−H(BSY )

{entropy is submodular, so H(ASW ) +H(SWY ) ≥ H(ASWY ) +H(SW )}
≥ H(ASWY ) +H(SW )−H(SW )−H(ABSWY ) +H(BSWY )

+H(ABSY )−H(ABSWY )−H(ASY ) +H(ABSY )−H(BSY )

{entropy is submodular, so H(ASWY ) +H(ABSY ) ≥ H(ABSWY ) +H(ASY )}
≥ H(ABSWY ) +H(ASY )−H(ABSWY ) +H(BSWY )

−H(ABSWY )−H(ASY ) +H(ABSY )−H(BSY )

= H(BSWY )−H(ABSWY ) +H(ABSY )−H(BSY ) = I(A,W | BSY ) ≥ 0.

Lemma 71. Let (T,C,S) be a maximal AKU junction tree. For every separator S ∈ S and clique C ∈ C
such that (S − C) ∈ T, and every set Q ⊂ X such that

XS→C ∩Q 6= ∅ and XS→C 6⊆ Q

there exists a clique C ′ ∈ CS→C such that

C ′-S ∩Q 6= ∅ and C ′-S 6⊆ Q. (A.17)
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Proof. Consider (TS→C ,CS→C ,SS→C), the restriction of (T,C,S) to XS→C (notice that S 6∈ SS→C). It
is straightforward to check that (TS→C ,CS→C ,SS→C) is a junction tree over XS→C .

The proof is by contradiction. Assume that for every clique C ′ ∈ CS→C it holds that

either (a) C ′-S ⊆ Q or (b) C ′-S ⊆ X-Q. (A.18)

Because XS→C , by conditions of the lemma, contains both variables from Q and from X-Q, it holds that
cliques of both type (a) and type (b) are present in (TS→C ,CS→C ,SS→C).Because (TS→C ,CS→C ,SS→C)
is connected, there has to be a pair of cliques C1, C2 ∈ CS→C that share a separator S12 and such that
C1

-S ⊆ Q and C2
-S ∩Q = ∅. For maximal AKU junction trees it holds that C1∩C2 = S12 and therefore

S12 \ S = (C1 ∩ C2) \ S = C1
-S ∩ C2

-S ⊆ Q ∩X-Q = ∅

But because (T,C,S) is maximal, |S12| = |S| = k, so it holds that S12 = S, a contradiction with the fact
S 6∈ SS→C . Therefore, the assumption that for every clique C ′ ∈ CS→C either C ′-S ⊆ Q or C ′-S ⊆ X-Q
is incorrect, which proves the statement of the lemma.

Proof of Theorem 27 (page 36). Although Theorem 27 is (almost) a special case of Theorem 28 and has
a similar proof, we present the proof of Theorem 27 separately, because dealing with several technical
issues can be avoided here and the general idea behind the result is better exposed.

From the n(ε + kδ)-weakness property of Lemma 21, setting δ = ε, we get that for every component
(S,Q) ∈ L it holds that

I (Q,X-QS | S) ≤ n(k + 1)ε.

Therefore, if Alg. 2.6 returns a junction tree, it will be a n(k + 1)ε-junction tree.

Let (T,C, S) be the junction tree that satisfies the assumptions of Thm. 27. To show that Alg. 2.6 is
guaranteed to return a tree, it is sufficient to show that for every pair of a separator S ∈ S and clique
C ∈ C that are directly connected in (T,C, S) it holds that

1. LTCI puts (S,XS→C) in L, and

2. FindDecompositionGreedy will find a decomposition for (S,XS→C).

Let us prove part 1. (T,C,S) is an ε-junction tree, so from the correctness property of Lemma 21, we
get that for every Q s.t. (S,Q) ∈ L there exists a clique C ′ ∈ C such that Q ⊆ XS→C′ . Without loss of
generality, assume that C ′ = C. The rest of the proof is by contradiction. Suppose Q 6= XS→C . From
Lemma 71, there exists C ′′ ∈ CS→C such that

C ′′-S ∩Q 6= ∅ and C ′′-S ∩X-Q 6= ∅. (A.19)

However, (k + 2)ε-strong connectivity of (T,C,S) tells us that

min
U⊂C′′-S

I
(
U,C ′′-SU | S

)
> (k + 2)ε ≥ ε,

so Alg. 2.2 had to merge all variables of C ′′-S into a single component, and thus

either C ′′-S ⊆ Q or C ′′-S ⊆ X-Q,

a contradiction with (A.19). Thus Q = XS→C .
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Now let us prove part 2 of the sufficient conditions. The proof is by induction on the size |Q| of com-
ponents (S,Q). Consider separators S1, S2 ∈ S and cliques C1, C2 ∈ C from (T,C) such that the edges
S1 − C1 − S2 − C2 are in T. Notice that

XS1→C1 ⊃ XS2→C2 ⇒ |XS1→C1 | > |XS2→C2 |.

Induction base. If C2 is a leaf clique, then |XS2→C2 | = 1 and the empty decomposition is trivially found.
The induction base is thus proved.

Induction step. Suppose a decomposition for (S2, XS2→C2) has been found. WhenFindDecompositionGreedy
(Alg. 2.5) checks for a decomposition of (S1, XS1→C1), it will iterate through all variables x of XS1→C1

(see line 5). Therefore, at some point it will try x = C1 \ S1 and form a corresponding candidate clique
S1 ∪ x = C1. In the corresponding inner loop (lines 7–9), FindDecompositionGreedy will iterate
through the components (S′, Q′) “compatible” with clique C1 that can be added to the decomposition
of (S1, XS1→C1). Component (S2, XS2→C2) is one such component that is also present in the “true”
decomposition. To prove the induction step, it is sufficient to show that one of the following happens:

• FindDecompositionGreedy adds (S2, XS2→C2) to D(S1, XS1→C1), or

• D(S1, XS1→C1) already contains another component (S′, Q′) such thatXS2→C2 ⊆ Q′. Intuitively, it
means that all the variables of XS2→C2 are already covered in the decomposition, so the component
(S2, XS2→C2) is not needed.

Suppose Alg. 2.5 does not add (S2, XS2→C2) to D(S1, XS1→C1). This means that (S2, XS2→C2) fails the
condition on line 8. Since S2 ⊂ C1, this means that

XS2→C2 6⊆ XS1→C1 \

x ∪ ⋃
(S′,Q′)∈D(XS1→C1

)

Q′

 ,

and consequently that

∃(S′, Q′) ∈ D(XS1→C1) such that Q′ ∩XS2→C2 6= ∅.

We will now show that XS2→C2 ⊆ Q′. Suppose this is not the case. Then from Lemma 71, there exists a
clique C ′ ∈ CS2→C2 such that

A ≡
(
C ′-S2 ∩Q′

)
6= ∅ and B ≡

(
C ′-S2 ∩X-Q′

)
6= ∅ (A.20)

Using the fact that |C1| = k + 1, |S1| = |S2| = |S′| = k and S1, S2, S
′ ⊂ C1, denote

S1 = Syz, S2 = Sxy, S′ = Sxz.

A and B are in different components of the partitioning QS′ for separator S′. Without loss of generality,
assume that A and y are in different components for separator S′ (otherwise B and y are in different
components). From Lemma 70, we have

I (A,By | Sxz) ≥ I (A,B | Sxy)− I (AB, z | Sxy)

> (k + 2)ε− I (AB, z | Sxy)

{S2 = Sxy separates z and AB in (T,C,S),

and (T,C,S) is an ε-JT}
≥ (k + 2)ε− ε = (k + 1)ε (A.21)
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But Alg. 2.2 did not put A and By in the same partition. Because |ABy| ≤ k+ 2 and Alg. 2.2 was called
with max-set parameter q = k + 2 and δ = ε, from Lemma 69 we get

I (A,By | Sxz) ≤ (k + 1)ε,

a contradiction. Analogously, B and y cannot be in different components, so ABy ⊆ Q′, which contra-
dicts with B ⊆ X-Q′ that follows from the initial assumption that XS2→C2 6⊆ Q′.

We have proved that when FindDecompositionGreedy tries to add a true component (S2, XS2→C2)
to the decomposition of (S1, XS1→C1), either it succeeds, or all the variables from XS1→C1 are already
covered by another component. Therefore, eventually all variables of XS1→C1 \ x will be covered, and
a decomposition of (S1, XS1→C1) will thus be found. This holds for every separator from (T,C,S), so a
junction tree will eventually be found

Proof of Theorem 28 (page 37). We will first show that whenever Alg. 2.6 returns a junction tree, it will
be a n(k + 1)ε-junction tree. Then we will show that Alg. 2.6 is guaranteed to return a junction tree.

First, starting with the given “true” maximal ε-junction tree (Tm,Cm, Sm) of treewidth m, let us con-
struct a “fattened” maximal ε-junction tree (Tk,Ck, Sk) of treewidth k. Take the separator Sm∗ and
cliques Cm1 , . . . , C

m
j directly connected to Sm∗ such that

∑j
i=1 |XSm∗→Cmi | = k − m. Denote A =

∪ji=1XSm∗→Cmi . The new junction tree (Tk,Ck,Sk) is obtained by addingA to every clique and separator
of (Tm,Cm, Sm) and removing the cliques CmSm∗→Cmi for i = 1, . . . , j and corresponding separators:

Ck =
{
CmA | Cm ∈ Cm \ ∪ji=1C

m
Sm∗→Cmi

}
,

Sk =
{
SmA | Sm ∈ Sm \ ∪ji=1S

m
Sm∗→Cmi

}
,

Tk =
{

(SmA− CmA) | (Sm − Cm) ∈ Tm, Cm 6∈ ∪ji=1C
m
Sm∗→Cmi

}
.

For a clique Cm or separator Sm from (Tm,Cm, Sm), we will denote Ck and Sk their corresponding
counterpart in (Tk,Ck, Sk). For every edge (Sk − Ck) ∈ Tk, we have

I
(
XSk→Ck , XCk→Sk | Sk

)
= I (XSm→Cm \A,XCm→Sm \A | SmA)

≤ I (XSm→Cm , XCm→Sm | Sm) (by the chain rule)

≤ ε (since (Tm,Cm,Sm) is an ε-junction tree).

Therefore, (Tk,Ck, Sk) is an ε-junction tree. From the n(ε+kδ)-weakness property of Lemma 21, setting
δ = ε, we get that for every component (S,Q) ∈ L it holds that

I (Q,X-QS | S) ≤ n(k + 1)ε.

Therefore, if Alg. 2.6 returns a junction tree, it will be a n(k + 1)ε-junction tree.

Let us now show that Alg. 2.6 is guaranteed to find a junction tree. Let
−→
T k be the edges of Tk directed

away from Sk∗. It is then sufficient to show for every (Sk → Ck) ∈
−→
T k that

1. LTCI puts (Sk, XSk→Ck) in L, and

2. FindDecompositionGreedy will find a decomposition for (Sk, XSk→Ck).
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Notice that, unlike the proof of Theorem 27, here we are only concerned with discovering and decompos-
ing components XSk→Ck such that Ck and the separator Sk∗ are on the different sides of separator Sk.
In other words, here we will show properties 1 and 2 only for the case when the junction tree edges are
oriented away from one specific separator, namely Sk∗, whereas the proof of Theorem 27 shows that for
k = m, 1 and 2 hold for every Sk ∈ Sk in the role of Sk∗.

Let us prove part 1. For any fixed (Sk → Ck) ∈
−→
T k, consider a component (Sk, Q) ∈ L such that

Q ∩XSk→Ck 6= ∅. We need to show that Q = XSk→Ck .

From the correctness property of Lemma 21 applied to the “fattened” ε-junction tree (Tk,Ck,Sk), it
follows that Q ⊆ XSk→Ck .

Suppose Q 6= XSk→Ck , then from Lemma 71, there exists Ck
′′ ∈ CSk→Ck such that

Ck
′′

-Sk ∩Q 6= ∅ and Ck
′′

-Sk ∩X-Q 6= ∅.

We have

min
U⊂Ck′′ -Sk

I
(
U,Ck

′′
-SkU | Sk

)
≡ min

U⊂(Cm′′A)-SmA
I
(
U, (Cm

′′
A)-SmAU | S

mA
)

= min
U⊂Cm′′ -Sm

I
(
U,Cm

′′
-SmU | SmA

)
= min

U⊂Cm′′ -Sm

(
I
(
U,ACm

′′
-SmU | Sm

)
− I (A,U | Sm)

)
{apply monotonicity of I (·, · | ·)}

≥ min
U⊂Cm′′ -Sm

(
I
(
U,Cm

′′
-SmU | Sm

)
− I (A,U | Sm)

)
{(Tm,Cm, Sm) is (k + 3)ε-strongly connected}

≥ min
U⊂Cm′′ -Sm

((k + 3)ε− I (A,U | Sm))

{Sm separates U and A in an ε-JT (Tm,Cm,Sm)}
≥ (k + 3)ε− ε = (k + 2)ε > ε = δ.

Therefore, contrary to our assumption, all the variables of Ck
′′

-Sk will be placed into the same component
(Sk, Q′). For any fixed separator Sk, every variable belongs to exactly one component, so Q = Q′ =
XSk→Ck and thus (Sk, XSk→Ck) ∈ L.

Let us now prove part 2. The proof by induction on the component size is analogous to that of Theo-
rem 27. The key fact we we need to show is that for every tuple (Ska , C

k
a , S

k
b , C

k
b ) such that (Ska → Cka →

Skb → Ckb ) ∈
−→
T k, after Alg. 2.5 selects x = Cka \ Ska on line 5, Alg. 2.5 will include into the candi-

date decomposition D(Ska , XSka→Cka ) either (Skb , XSkb→C
k
b
) or some other component (Sk

′
, Qk

′
) such that

Qk
′ ⊇ XSkb→C

k
b
.

The only way for Alg. 2.5 to not add (Skb , XSkb→C
k
b
) to D(Ska , XSka→Cka ) is for (Skb , XSkb→C

k
b
) to fail the

condition on line 8, which will entail that there exists (Sk
′
, Qk

′
) ∈ D(Ska , XSka→Cka ) such that Qk

′ ∩
XSkb→C

k
b
6= ∅. Suppose XSkb→C

k
b
6⊆ Q′, then from Lemma 71, there exists a clique Ck

′ ∈ CSkb→Ckb such
that

F k ≡
(
Ck
′

-Skb
∩Qk′

)
6= ∅ and Bk ≡

(
Ck
′

-Skb
∩X-Qk′

)
6= ∅

190



Because Ck
′

= Cm
′
A and Skb = Smb A, it holds that Ck

′
-Skb

= Cm
′
-Smb and thus F k and Bk partition

Cm
′
-Smb :

Fm ≡
(
Cm

′
-Smb ∩Q

k′
)

= F k and Bm ≡
(
Cm

′
-Smb ∩X-Qk′

)
= Bk.

Denote F k = Fm = F,Bk = Bm = B. Using the fact that |Cka | = k + 1, |Ska | = |Skb | = |Sk
′ | = k and

Ska , S
k
b , S

k′ ⊂ Cka , denote
Ska = Skyz, Skb = Skxy, Sk

′
= Skxz.

A andB are in different components of the partitioning QSk′ for separator Sk
′
. Without loss of generality,

assume that A and y are in different components for Sk
′
. From Lemma 70, we have

I
(
F,By | Skxz

)
≥ I

(
F,B | Skxy

)
− I

(
FB, z | Skxy

)
= I (F,B | Smb A)− I (FB, z | Smb A)

≥ I (F,B | Smb A)− I (FB, zA | Smb )

{Smb separates zA and FB in an ε-JT (Tm,Cm, Sm)

≥ I (F,B | Smb A)− ε
= I (F,BA | Smb )− I (F,A | Smb )− ε
{Smb separates A and F in an ε-JT (Tm,Cm, Sm)

≥ I (F,B | Smb )− 2ε = I
(
F,Cm

′
-FSmb | S

m
b

)
− 2ε

{(Tm,Cm,Sm) is (k + 3)ε-strongly connected}
> (k + 3)ε− 2ε = (k + 1)ε

But Alg. 2.2 did not put F and By in the same partition. Because |FBy| ≤ k+ 2 and Alg. 2.2 was called
with max-set parameter q = k + 2 and δ = ε, from Lemma 69 we get

I (F,By | Sxz) ≤ (k + 1)ε,

a contradiction. Analogously, B and y cannot be in different components, so FBy ⊆ Q′, which contra-
dicts with B ⊆ X-Q′ that follows from the initial assumption that XSb→Cb 6⊆ Q′.

Proof of Theorem 31 (page 39). Let us compute every mutual information estimate with the accuracy ∆
with probability 1 − γ

O(n2k+2)
using the technique of Höffgen (1993). We will prove that in this case the

theorem statement holds.

The time complexity follows directly from Proposition 25 and the fact that from Thm. 30 the individual
mutual information computation complexity is

JMI
2k+2 = f(2k + 2, r, δ,

γ

n2k+2
).

We now need to show the sample complexity and result quality. Observe that Alg. 2.6 makes a total of
O(n2k+2) conditional mutual information computations. From Thm. 30, every such computation is within
±∆ of the true value with probability 1 − γ

O(n2k+2)
. By union bound, all of these mutual information

estimates will be within ±∆ of their true values simultaneously with probability at least 1− γ.

For the rest of the proof, we can concentrate on the favorable case of all estimates being ∆-accurate,
because the alternative has probability less than γ. Let us prove that Alg. 2.6 will return an n(k + 1)(ε+
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2∆)-junction tree. The proof is essentially the same as that of Thm. 27. We will only highlight the
necessary differences.

Denote the value of the estimates of I (·, · | ·) from data to be Î (·, · | ·). Then

Î (A,B | C) ≤ δ ⇒ I (A,B | C) ≤ δ + ∆ (A.22)

I (A,B | C) ≤ ε⇒ Î (A,B | C) ≤ ε+ ∆ = δ (A.23)

From (A.22), replacing exact conditional mutual information computations with estimates from data re-
sults in replacing the n(ε+ kδ)-weakness of LTCI with n(ε+ k(δ + ∆))-weakness. Since δ = ε+ ∆, it
holds that

n(ε+ k(δ + ∆)) = n(ε+ k(ε+ 2∆)) ≤ n(k + 1)(ε+ 2∆),

so any returned junction tree will be a n(k + 1)(ε+ 2∆)-junction tree.

Because of (A.23), LTCI will not mistakenly merge variables on the different sides of any true separator
(that is, the partitioning will be correct). On the other hand, from strong connectivity, for every clique
C ′′ ∈ CS→C it holds that

min
U⊂C′′-S

I
(
U,C ′′-SU | S

)
> (k + 2)(ε+ 2∆)

⇓
min

U⊂C′′-S
Î
(
U,C ′′-SU | S

)
> (k + 2)(ε+ 2∆)−∆ > (ε+ ∆) = δ

so all of the variables of C ′′-S will be assigned to the same set Q in the partitioning QS corresponding
to the separator S. Therefore, by the same reasoning as in the proof of Thm. 27, every “true” component
(S,XS→C) will be in L.

Finally, to show that a decomposition will be found for every (S,XS→C), we need to modify the part of
the reasoning in the proof of Thm. 27 starting with Eqn. A.21

I (A,By | Sxz) ≥ I (A,B | Sxy)− I (AB, z | Sxy)

> (k + 2)(ε+ 2∆)− I (AB, z | Sxy)

≥ (k + 2)(ε+ 2∆)− ε > (k + 1)(ε+ 2∆)

But LTCI did not put A and By in the same partition. This means that for every W ⊆ ABy that intersects
both A and By it holds that

min
U⊂W

Î (U,W-U | Sxz) ≤ ε+ ∆⇒ min
U⊂W

I (U,W-U | Sxz) ≤ ε+ 2∆

so applying Lemma 69 with δ = ε+ 2∆ we get

I (A,By | Sxz) ≤ (k + 1)(ε+ 2∆),

the same contradiction as in the proof of Thm. 27. The rest of the proof of Thm. 27 goes without change
to yield the result of this theorem.
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Proof of Corollary 32 (page 39). Select ∆ = β
2(k+1)n2 . Since 2(k + 2)∆ = β(k+2)

n2(k+1)
≤ α, an α-strongly

connected junction tree is also 2(k + 2)∆-strongly connected, so from Thm. 31 the number of samples
sufficient for Alg. 2.6 to learn a 2(k + 1)n∆-junction tree with probability at least 1− γ is

f
(

2k + 2, r,∆,
γ

n2k+2

)
= f

(
2k + 2, r,

β

2(k + 1)n2
,

γ

n2k+2

)
= O

(
r4k+4 4(k + 1)2n4

β2
log2 r

2k+22(k + 1)n2

β
log

r2k+2n2k+2

γ

)
= O

(
n4k2r4k+4

β2
log2 n

2krk

β
log

nrk

γ

)
and the time complexity is

O
(
n2k+2

(
f
(

2k + 2, r,∆,
γ

n2k+2

)
k3 + n

))
=

O

(
n2k+2

(
n4k2r4k+4

β2

(
log2 n

2krk

β
log

nrk

γ

)
k3 + n

))
=

O

(
n2k+6k5r4k+4

β2
log2 n

2krk

β
log

nrk

γ

)
.

Denote (T′,C′, S′) the resulting 2(k + 1)n∆-junction tree. Because 2(k + 1)n∆ ≤ β
n , it holds that

(T′,C′,S′) is also a β
n -junction tree. From Lemma 14, it holds that KL

(
P, P(T′,C′,S′)

)
≤ β.

Proof of Lemma 33 (page 41). The time complexity is detailed in the table right before the lemma state-
ment in the text. Let us show that Alg. 2.7 will return an ε̂-junction tree with ε̂ ≤ n(k+ 1)ε. Observe that
every time the line 9 is reached, for every S it holds that QS is exactly the same as LTCI(S, I, δ, k + 2)
would find, because the only values of δ′ at which QS may possibly change are exactly those for which
(δ′;S) ∈ A, and for every such δ′ ≤ δ the corresponding QS has been recomputed by Alg. 2.7. The only
difficulty that can arise concerns “degenerate” values:

(δ;S′), (δ;S′′) ∈ A, S′ 6= S′′.

In this case, QS for every S will become the same as LTCI(S, I, δ, k + 2) would compute from scratch
after Alg. 2.7 processes the last pair (δ;S′′) containing the “degenerate” value δ.

Consider
δ∗ = max

(δ;S)∈W s.t. δ≤ε
δ. (A.24)

By construction of A on lines 2–4 of Alg. 2.7, for every W ⊂ X-S s.t. |W | ≤ k + 2 it holds that

min
U⊂W

I (U,W-U | S) > δ∗ ⇔ min
U⊂W

I (U,W-U | S) > ε.

Therefore, if Alg. 2.7 gradually increases the value δ and reaches δ∗, the outcomes of all mutual informa-
tion comparisons on line 3 will be the same as for δ = ε. From Thm. 27, the FindConsistentTreeDPGreedy
will find a n(k + 1)ε-junction tree in this case.

The only other option is that δ does not reach the value of δ∗. It can only happen if FindConsistent-
TreeDPGreedy will find a junction tree before δ reaches δ∗, that is for some δ < δ∗. In that case, from the
n(ε+kδ)-weakness property of Lemma 21, we have (again using the fact that δ ≤ ε from Equation A.24)

ε̂ = n(ε+ kδ) ≤ n(ε+ kδ∗) ≤ n(k + 1)ε.
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We have shown that in both cases an ε̂-junction tree will be found, with ε̂ ≤ n(k + 1)ε.

Proof of Lemma 35 (page 43). Time complexity. On line 2, Alg. 2.8 iterates through all subsetsW of size
at most q. There are O(nq) such subsets. For every W , strengthS(W ) is computed, taking O(q3JMI

q+k)
time. As will be shown shortly, at any time there are at most |X-S | hyperedges in WS . Note also that
every hyperedge W ∈ WS has size at most q. Thus checking any edge for redundancy w.r.t. S and WS

(using depth-first search) takes O(q|X-S |) = O(qn) time. The total complexity of Alg. 2.8 is thus

O
(
nq
(
q3JMI

q+k + qn2
))
.

Let us show that at every point in time in the execution of Alg. 2.8 WS contains at most |X-S | elements.
Observe that right before an edge W is added on line 3, none of the hyperedges W ∈ WS are redundant
w.r.t. S and WS . Thus, if we were to start with a graph over nodes X-S and no edges, and enable the
hyperedges from WS one by one, every edge would reduce the number of connected components by at
least one. The graph with no edges contains |X-S | connected components, each consisting of a single
variable. Because there cannot be less than one, WS can contain at most |X-S | − 1 hyperedges. One more
hyperedge is then added on line 3.

Alg. 2.8 returns exactly the set of non-redundant edges. Observe that at any time throughout the
execution of Alg. 2.8 it holds that WS ⊆ WS [0], because Alg. 2.8 only considers hyperedges W of size
at most q and only adds edges with nonzero strength to WS .

Suppose U is a non-redundant hyperedge w.r.t. S and WS [0]. Then strengthS(U) > 0 and at some point
W = U will be added to WS on line 3. Because WS ⊆WS [0], from monotonicity (2.13) it follows that U
is not redundant w.r.t. S and WS . Therefore, U will be retained throughout the remainder of the execution
of Alg. 2.8, so all the non-redundant hyperedges will be included in the result.

Suppose now W is redundant w.r.t. S and WS [0]. Let R(W | S,WS [0]) = {W1, . . . ,Wm} to be a
redundant set of hyperedges from Def. 34 (there may be many different redundant sets for W, we can
choose one of them randomly). Let us construct a set R(W | S,WS [0]) as follows:

• Initialize R(W | S,WS [0]) = R(W | S,WS [0]).

• While there is a redundant edge W ′ in R(W | S,WS [0]), replace W ′ with its redundant set R(W |
S,WS [0]).

Observe that the end result of such an iterative process R(W | S,WS [0]) consists only of non-redundant
edges: R(W | S,WS [0]) ⊆ NS , because any redundant edge will be eventually selected for replacement
with its redundant set and thus will be absent from the eventual result. Also, because a redundant set of
a hyperedge W ′ keeps the variables of W ′ connected, R(W | S,WS [0]) remains a redundant set for W
throughout the iterative replacements.

We have already shown that the result WS found by Alg. 2.8 includes all the non-redundant edges. It
follows that at the last iteration of the loop of line 2, after the hyperedge W has been added to WS , it
holds that all non-redundant edges are in WS . Therefore, for any redundant hyperedge W that is still
in WS it holds that R(W | S,WS [0]) ⊂ WS throughout the redundancy checks on lines 4–6, so W
will be found to be redundant w.r.t. S and WS and eliminated. Thus, none of the redundant edges will
survive.

Proof of Lemma 36 (page 44). The time complexity is detailed in the table right before the lemma state-
ment in the text.
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The proof of result quality is the same as in Lemma 33, except that the value δ = δ∗ with

δ∗ = max
(S;W )∈W s.t. strengthS(W )≤ε

strengthS(W )

will lead not to the same outcomes of conditional mutual information comparisons by LTCI(S, I, δ, k+2)
and LTCI(S, I, ε, k + 2) for every candidate separator S, but to the same partitionings QS .

Proof of Theorem 37 (page 46). Time complexity. Observe that throughout the execution of Alg. 2.10
and Alg. 2.11 every WS consists of hyperedges not redundant w.r.t. S and WS , and at most one other
hyperedge, right after it was added on line 4 of Alg. 2.11. From the proof of Lemma 35, we know that it
follows that |WS | ≤ |X-S | and the modification of adding a new hyperedge to WS and clearing out the
redundant w.r.t. S and WS hyperedges has time complexity O

(
JMI

2k+1k
3 + n2k

)
.

Let us now show that for every pair of separator S and hyperedge W it is sufficient to check W on line 3
of Alg. 2.11 and attempt to insert W into WS only once throughout the execution of Alg. 2.10. Let us
enumerate the possible outcomes of the first attempt to insert W into WS on lines line 3–4 of Alg. 2.11:

• strengthS(W ) ≤ δ. In this case, W is not added to WS . Because it holds that

δ = min
S

min
Y ∈WS

strengthS(Y ),

and only hyperedges with strengths greater than δ can be added to WS on line 4 of Alg. 2.11, it
holds that δ monotonically increases throughout the execution of Alg. 2.10. Therefore, for the rest
of the runtime of Alg. 2.10 it will hold that strengthS(W ) ≤ δ and W will never be added to WS

and there is no need to check the pair S,W more than once.

• strengthS(W ) > δ, but W is redundant w.r.t. S and WS . In other words, WS is a redundant set for
W. Observe that Alg. 2.11 removes any hyperedge Y from WS only when WS is a redundant set
for Y. As discussed in the proof of Lemma 35, such removals preserve the property of WS being a
redundant set for W. Therefore, W will be redundant w.r.t. S and WS throughout the remainder of
the runtime of Alg. 2.10 and does not need to be checked twice.

• strengthS(W ) > δ, X is not redundant w.r.t. S and WS , so it is added to WS and retained during
the removal of redundant edges on line 4 of Alg. 2.11. Consider the result of checking the pair S,W
again later on in the execution of Alg. 2.10. Three outcomes may happen: either strengthS(W ) ≤
δ, or W would still be in WS , or W would be replaced by some its redundant set in WS . In any of
the three outcomes W will not be added to WS , so again there is no need to check the pair S,W
again.

The enumeration above of the outcomes of the first attempt to insert W into WS is exhaustive and shows
that every pair S,W has to be checked at most once. Although not reflected in the pseudocode of Alg. 2.10
and Alg. 2.11, it is straightforward to exclude the already tested pairs S,W from being tested again
on line 3 of Alg. 2.11 (for example, by picking the next hyperedge to be tested in some fixed order
and recording the last tested hyperedge for every candidate separator S). With such a modification, the
complexity of Alg. 2.10 due to maintaining and modifying the sets WS is

O
(
n2k+1

(
JMI

2k+1k
3 + n2k

))
.

In addition to modifying WS , Alg. 2.10 also runs FindConsistentDPGreedy on the current partition-
ings QS . One run of FindConsistentDPGreedy takes O(nk+2) time. FindConsistentDPGreedy is run at
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most as many times as there are pairs (S;W ), because, as we have just shown, every W is added to WS

at most once. Thus the dynamic programming takes at most

O(n2k+1 × nk+1) = O(n3k+3)

time, and the total time complexity of Alg. 2.10 is

O
(
n2k+1JMI

2k+1k
3 + kn2k+3 + n3k+3

)
= O

(
n2k+1JMI

2k+1k
3 + n3k+3

)
.

Alg. 2.10 always returns a junction tree. Every time FindConsistentDPGreedy is run, a hyperedge W
is removed from some WS and is never inserted back. Unless the algorithm returns a junction tree earlier,
at some point the strongest possible hyperedge,

W ∗ arg max
S,W

strengthS(W )

will be removed and δ will be set to strengthS(W∗). At this point all WS will be empty and no hyperedge
will be possible to add to WS . Every QS will then consist of singleton sets, and FindConsistentDPGreedy
will find a junction tree with some separator connected to all the cliques.

The returned junction tree is a n(ε+ kδ∗)-junction tree. If Alg. 2.10 returns a junction tree (T,C, S),
Alg. 2.11 ensures that for every S ∈ S every set W ⊆ X-S such that ∃Q ∈ QS with W ∩ Q 6=
∅,W ∩X-SQ 6= ∅ has strength at most δ∗. Indeed, if there was suchW with strength more than δ, it would
be added to WS on line 4 of Alg. 2.11. Moreover, W would not be eliminated by the subsequent redun-
dancy check because it involves variables of Q and some other connected component of the graph with
hyperedges WS . Consequently QS would change, Alg. 2.11 would return failure and Alg. 2.10 would
not return (T,C,S), a contradiction. Therefore, from Corollary 17, (T,C,S) is a n(ε + kδ∗)-junction
tree.
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