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I. Radner equilibrium in Lévy models1 . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Mathematical setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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2.4.2 Chaos decomposition for Lévy processes . . . . . . . . . . . . . . . 55

1This chapter is the joint work with K. Larsen and is forthcoming in Mathematics and Financial Economics

iii



LIST OF FIGURES

Figure

1.1 Plot of impacts due to model incompleteness on rrep − r (left) and λ− λrep (right)
seen as a function of the correlation coefficient ρ. We consider the limiting economy
(I →∞) whereas the remaining parameters are given by (1.36) for the various risk
tolerance coefficients τ : τ = 1

2 (——–), τ = 1
3 (– – –), and τ = 1

4 (- - - -). . . . . 17

2.1 Plot of impacts due to model incompleteness on rrep − r (left) and λ− λrep (right)
seen as a function of the parameter ρ. We consider the limiting economy (I →∞)
whereas the remaining parameters are given by σD = .1I and (2.44) for the various
risk tolerance coefficients τ : τ = 1 (——–), τ = 1

2 (– – –), and τ = 1
3 (– · – ·). . . 52

iv



LIST OF TABLES

Table

1.1 Values of limI→∞ wIθ∗A, [r
rep − r], (λ− λrep) in the limiting economy (I →∞) for

various weights w and various risk tolerance parameters (τA, τB). The values are
based on the parameters σA = .2, σB = .1, σD = .2I, and Σij = 0 for i 6= j and
Σii = 1 for i, j = 0, 1, ..., I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Values of limI→∞ wIθ∗A, [r
rep − r], (λ− λrep) in the limiting economy (I →∞) for

various weights w and various risk tolerance parameters (τA, τB). The values are
based on the parameters σA = .2, σB = .1, σD = .1I, ρ = 1, and the remaining
parameters as in (2.44). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



INTRODUCTION

It is commonly known in the US market, and perhaps in the global market, that the historical
returns on equity have far exceeded the returns on government bonds. This large magnitude of
differential in returns–known as equity premium–cannot be accounted for by standard equilibrium
models as presented by Mehra and Prescott (1985) in [24], leading to the so called risk premium
puzzle. Since then, despite a large number of proposed resolutions which are generally based on
complete Brownian models, no single one has achieved general acceptance. Consequently, this
dissertation attempts to overcome such challenge by utilizing incomplete Lévy models. The main
feature is a positive impact due to the model’s incompleteness on the Sharpe ratio. This leads to a
subsequently positive impact on equity premium which captures some disparity between theoretical
and empirical equity premiums. More detailed discussion and a literature review are provided in
the introduction of Chapter I.

This dissertation is organized as follows. The first chapter investigates Lévy models in the sim-
plest, infinite time-horizon settings. Sufficient conditions on the Lévy measure are stated and the
closed-form equilibrium is solved using the Hamilton-Jacobi-Bellman (HJB) equation. A numer-
ical example illustrating the incompleteness impacts on the interest rate and the Sharpe ratio is
provided for the compound Poisson model with Gaussian jumps. The work in this chapter was in
collaboration with K. Larsen [21] and is forthcoming in Mathematics and Financial Economics.

Chapter II explores finite time-horizon Lévy models with a more relaxed assumption on the
Lévy measure. The closed-form equilibrium is derived using Fenchel’s conjugate as the main tool
for solving the investors’ maximization problem. The relaxed assumption on the Lévy measure
allows us to extend the equilibrium result to variance gamma models, whose numerical example is
provided therein. Finally, we discuss the lack of the minimal martingale measure in these incomplete
Lévy models.

vi



CHAPTER I

Radner equilibrium in Lévy models1

1.1 Introduction

We construct equilibrium models in which a finite number of heterogeneous ex-

ponential investors cannot fully trade their future income streams. We show that

the framework of continuous-time Lévy processes produces the Radner equilibrium

in closed-form (i.e., optimal strategies, interest rates, drifts, and volatility structures

are available in closed-form). In addition to allowing for more model flexibility, we

show that by going beyond models based on Brownian motions we can produce the

following empirically desirable feature: The class of pure jump Lévy models can si-

multaneously lower the equilibrium interest rate and increase the equilibrium Sharpe

ratio due to investors’ income streams being unspanned (i.e., due to model incom-

pleteness).

The first construction of an incomplete continuous-time model which allows for

an explicit description of the Radner equilibrium was given in [9]. As an applica-

tion of this model, [9] showed that model incompleteness can significantly lower the

equilibrium interest rate. However, the (instantaneous) Sharpe ratio is unaffected by

the model’s incompleteness.2 Beside being of mathematical interest, our motivation
1This chapter is the joint work with K. Larsen and is forthcoming in Mathematics and Financial Economics
2Theorem 4.1 in [10] shows that no model based on exponential utilities, continuous consumption, and a filtration

generated by Brownian motions can ever produce an incompleteness impact on the Sharpe ratio when this ratio is
measured instantaneously.

1
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behind extending the Brownian framework in [9] to the more general Lévy frame-

work is to produce simultaneously a negative impact on interest rate and a positive

impact on the Sharpe ratio while still maintaining a closed-form equilibrium model.

Our desire to construct an incomplete equilibrium model with these features is of

course due to Weil’s celebrated risk-free rate puzzle (see [33]) as well as Mehra and

Prescott’s equity premium puzzle (see [24]). These and other asset pricing puzzles

are also discussed in detail in the survey [6].

The literature on continuous-time Radner equilibrium theory in models where the

investors’ income streams are spanned (i.e., complete models) is comprehensive and

we refer to the recent references on endogenous completeness [1], [18], [16], and [20]

for more information. On the other hand, models with continuous-time trading and

unspanned income streams (i.e., incomplete models) are much less developed and

only in recent years has progress been made. The papers [35], [34], [8], and [19]

consider models with exponential utilities, no dividends (i.e., only financial assets),

and discrete-time consumption.3 These papers differ in how general the underlying

state-processes describing the investors’ discrete-time income streams can be: [35]

considers a Brownian motion and an independent indicator process. [34] and [8]

consider multiple Brownian motions ([8] also allow for processes with mean reversion)

whereas the recent paper [19] allows for a non-Markovian Brownian setting. The

current paper is more related to [9] and [10] who - in Brownian settings - consider

both financial and real assets in the case of exponential investors with continuous-

time consumption. Indeed, the current paper can be seen as a direct extension of [9]

to the setting of discontinuous Lévy processes.

3By restricting the investors to only consume at maturity, we obtain a model in which the economy’s interest
rate is undetermined. Furthermore, by only considering financial assets, we cannot determine the assets’ volatility
structures. Therefore, the interest rate and the volatility parameters are taken as exogenously specified model input
in such models.
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The paper is organized as follows: The next section exemplifies the underlying

setting in the Gaussian compound Poisson case. Section 1.3 describes the underly-

ing Lévy framework. Section 1.4 provides the solution to the individual investors’

problems. Section 1.5 contains our main result which provides the equilibrium price

processes in closed-form. Section 1.6 illustrates numerically the equilibrium impacts

due to income incompleteness in the specific model from Section 1.3. The last two

sections contain all the proofs.

1.2 Example

This section serves to introduce the basic ideas in a specific example. There are

I <∞ investors trading and consuming continuously over the infinite time-horizon.

Our framework takes as input (i.e., exogenously specified data) the exponential utility

investors’ time preferences δi > 0, risk tolerance coefficients τi > 0, income processes

Yi = (Yit)t≥0, and the stock’s dividend process D = (Dt)t≥0. On the other hand, our

framework’s output (i.e., endogenously determined data) are the economy’s equilib-

rium interest rate process r = (rt)t≥0 and stock price process S = (St)t≥0.4 As a

by-product, we also obtain all investors’ optimal consumption processes c∗i = (c∗it)t≥0,

their stock investment strategies θ∗i = (θ∗it)t≥0, and their money market account in-

vestment strategies θ
(0)∗
i = (θ

(0)∗
it )t≥0.

We start by specifying the input processes (D, Y1, ..., YI) in this section’s example

by means of the widely used compound Poisson process with Gaussian jumps.5 We

let N = (Nt)t≥0 be a Poisson process with intensity λ > 0 and we let (An)∞n=1 be a

sequence of RI+1-valued i.i.d. normals N (m,Σ) which are independent of N . Here

m denotes An’s mean vector and Σ is An’s variance-covariance matrix (both m and

4As usual, the price dynamics of the money account are given by dS
(0)
t = rtS

(0)
t dt with S

(0)
0 = 1.

5The geometric form of this Lévy process was first used in finance by Merton in his classical paper [25]. This
process is also the basis for Bates’ asset pricing model developed in [4].
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Σ are independent of n). We can then define the dividend and income processes as

follows: 

Dt

Y1t

...

YIt


=

Nt∑
n=1

An, t ≥ 0.(1.1)

The model specification (1.1) has finitely many jumps on all finite intervals. Fur-

thermore, all processes jump at the same time (whenever the Poisson process N

jumps) and the various jump sizes are jointly normally distributed. As we shall see

in Section 1.6.2, this model produces an incomplete equilibrium model as soon as

the jump sizes of the dividend process D are less than perfectly positively correlated

with the jump sizes of the incomes Yi for all i = 1, 2, ..., I.

Next, we consider the endogenously determined processes. Throughout the paper

we assume that the i’th investor, i = 1, ..., I, seeks a consumption process ci in

excess of the income process Yi and investment strategies (θ
(0)
i , θi) in the money

market account and the stock which maximize the expectation6

E
[∫ ∞

0

e−δitUi(cit + Yit)dt

]
, Ui(c) = −e−

c
τi , c ∈ R, i = 1, ..., I.(1.2)

Throughout this paper we will consider Radner’s notion of equilibrium:7

Definition I.1 (Radner). We call (S(0), S) an equilibrium if these price processes

clear the markets in the sense that for all (t, ω) ∈ [0,∞)× Ω we have

I∑
i=1

cit = Dt,
I∑
i=1

θit = 1,
I∑
i=1

θ
(0)
it = 0,(1.3)

where the processes (θi, θ
(0)
i , ci) maximize the expectation in (1.2) for i = 1, 2, ..., I.

6We will need to place various integrability restrictions on investor’s possible choices of (θi, θ
(0)
i , ci); see Definition

I.4 below.
7Radner’s equilibrium notion has a long history in financial economics and is also called security-spot market

equilibrium. We refer to Section 10 in the textbook [12] for more details.
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The first requirement in (1.3) ensures that the good’s market clears, the second

requirement ensures that the stock market is in net unit supply (real asset), and

the last requirement ensures that the money market account is in net zero supply

(financial asset).

Our main result (Theorem I.6 below) provides conditions under which a Radner

equilibrium exists. Furthermore, it provides both the equilibrium interest rate r

(turns out to be constant) and the equilibrium price process S in closed-form.

In general, it is impossible for a market with only two traded securities (here a

money market and a stock) to span all the income risks present in (1.1). Conse-

quently, the investors cannot share their income risks efficiently, which renders the

model incomplete. In the next sections we present the equilibrium theory for more

general Lévy processes; however, in Section 1.6 we return to this section’s compound

Poisson process example (1.1). We will illustrate that the model based on (1.1) can

simultaneously produce both a lower equilibrium interest rate and a higher equi-

librium Sharpe ratio for the stock when compared to a model in which the traded

securities span all income risks. In other words, despite the simplicity of both our

model’s utility functions and the dynamics (1.1), the model is rich enough to simul-

taneously resolve both the risk-free rate puzzle of [33] and the equity premium puzzle

of [24].

1.3 Mathematical setting

1.3.1 Underlying Lévy process

We let (Ω,F , (Ft)t≥0,P) denote the underlying filtered probability space. For some

underlying RI+1-dimensional pure jump Lévy process η we denote by N = N(dt, dz)

the random counting measure on [0,∞) × RI+1 associated with η’s jumps. The

corresponding compensated random measure is denoted Ñ(dt, dz) = N(dt, dz) −
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ν(dz)dt where ν is referred to as the Lévy measure on RI+1 associated with η’s

jumps, see, e.g., [2] and [30] for more details about these objects. We assume that

(Ft)t≥0 is the (right-continuous) filtration generated by η.

The following regularity assumption on the Lévy measure ν will be made through-

out the paper:

Assumption I.2. In addition to the usual properties

ν({0}) = 0,

∫
RI+1

(||z||2 ∧ 1)ν(dz) <∞,(1.4)

the Lévy measure ν satisfies the following three conditions:∫
||z||<1

|z(0)|ν(dz) <∞,(1.5) ∫
||z||≥1

eu
(0)z(0)+u(i)z(i)

ν(dz) <∞ for all u(0), u(i) ∈ R and i = 1, ..., I,(1.6)

ν(z(0) > 0) > 0 and ν(z(0) < 0) > 0.(1.7)

Assumption I.2 requires a few remarks: [9] consider the case of correlated Brow-

nian motions with drift which is why we focus exclusively on the pure jump case.

The requirement that (1.6) holds for all u(0) and u(i) in R can be relaxed to a certain

domain at the cost of more cumbersome notation (this can be seen from the proofs

in Section 1.8). Condition (1.5) is not implied by (1.4) because it requires that ν can

integrate z(0) instead of (z(0))2 on the unit ball and has a number of implications;

e.g., (1.5) ensures that the process

Jt =

∫ t

0

∫
||z||<1

z(0)N(ds, dz), t ≥ 0,(1.8)

is well-defined and is of finite variation.8 We note that J can still have infinite activity

on finite intervals. The last condition (1.7) can also be relaxed to only requiring that

a certain explicit function is onto (see function ϕi of Lemma I.7 in Section 1.7).
8The process J will be related to the stock’s dividend process D below.
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1.3.2 Exogenously specified model input

We consider a pure exchange economy in the sense that the money market account,

stock price, income, and dividend processes are all quoted in terms of the model’s

single consumption good. The i’th investor’s income rate process is modeled by

dYit = µidt+ σi

∫
RI+1

z(i)Ñ(dt, dz), Yi0 ∈ R,(1.9)

where µi ∈ R and σi > 0 are constants for i = 1, ..., I. The single stock’s dividend

rate process is modeled by

dDt = µDdt+ σD

∫
RI+1

z(0)Ñ(dt, dz), D0 ∈ R,(1.10)

where µD ∈ R and σD > 0 are constants. Because (1.8) is of finite variation, we see

that D is of finite variation too (Yi defined above by (1.9) might not be).

We note that the processes (1.9) and (1.10) are not independent; indeed, the

quadratic cross characteristics between D and Yi are given by9

d〈Yi, D〉t = σiσD

∫
RI+1

z(0)z(i)ν(dz)dt, t ≥ 0, i = 1, ..., I.

We can use (1.4) and (1.6) in Assumption I.2 together with Cauchy-Schwartz’s in-

equality to see that 〈Yi, D〉t is finitely valued for all t ≥ 0 and i = 1, ..., I.

1.3.3 Endogenously determined price dynamics

We will restrict the financial market to only consist of two traded securities (one

financial asset and one real asset). The financial asset is taken to be the zero net

supply money market account. Its price process will be shown to have the following

equilibrium dynamics

dS
(0)
t = S

(0)
t rdt, S

(0)
0 = 1, t ≥ 0,(1.11)

9The brackets 〈·, ·〉 are also called the conditional quadratic cross variation; see, e.g., Section III.5 in [27].
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where r > 0 is a constant. Because the interest rate r is constant, the money market

account is equivalent to zero-coupon bonds of all maturities.

The real asset is a stock paying out the dividends at rate D (see (1.10)). This

security is in unit net supply and we will show that its equilibrium price dynamics

are given by

dSt +Dtdt =
(
rSt + µ

)
dt+

σD
r

∫
RI+1

z(0)Ñ(dt, dz), t ≥ 0,(1.12)

where the excess rate of return µ ∈ R is a constant.

As discussed in the Introduction we are interested in how model incompleteness

impacts the interest rate r and the stock’s Sharpe ratio. The stock’s (instantaneous)

Sharpe ratio λ is defined as the constant

λ =
µ

σD
r

√∫
RI+1(z(0))2ν(dz)

.(1.13)

The Sharpe ratio (1.13) measures the stock’s return (cleaned for interest and dividend

components) relative to the standard deviation of its noise term. Sharpe ratios have

been widely studied and used in the literature and we refer to [11] for an application

of the Sharpe ratio (1.13) in a continuous-time jump diffusion setting.

We conclude this section with a lemma which we need in the proof section. Be-

cause our model is necessarily incomplete there are infinitely many martingale den-

sities (state-price densities).10 For our purpose the following particularly simple

martingale density suffices. We define Z = (Zt)t≥0 as the solution to the linear

equation

dZt = Zt−

∫
RI+1

ψ(z)Ñ(dt, dz), t ≥ 0, Z0 = 1.(1.14)

10The technical difficulties related to the existence of equivalent martingale measures on infinite time-horizons
already arise in Black-Scholes’ model; see, e.g., the textbook discussion in Section 6.N in [12]. The same technical
issues are also present in our jump setting which is why we prefer to use martingale densities.
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We refer to Section II.8 in [27] for the unique explicit solution of (1.14). In (1.14)

the deterministic and time independent integrand ψ is defined by

ψ(z) = e
f
(
− µr
σD

+
∫
RI+1 z̃

(0)ν(dz̃)
)
z(0)

− 1, z ∈ RI+1,(1.15)

where f is the inverse of the mapping

R 3 u(0) →
∫
RI+1

z(0)eu
(0)z(0)

ν(dz).(1.16)

Lemma I.3. Under Assumption I.2 there exists a unique solution Z = (Zt)t≥0 of

(1.14). This solution is a positive martingale. Furthermore, let (S(0), S) be given

by (1.11) and (1.12). Then the process StZt/S
(0)
t +

∫ t
0
DuZu/S

(0)
u du, t ≥ 0, is a

sigma-martingale.

1.4 Individual investors’ optimization problems

Throughout this section the price dynamics (1.11) and (1.12) are taken as input.

Given these price dynamics, the i’th investor is assumed to maximize exponential

utility of running consumption over the infinite time-horizon:

sup
(θi,ci)∈Ai

E
[∫ ∞

0

e−δitUi(cit + Yit)dt

]
.(1.17)

Here the exponential utility function Ui is defined by (1.2) andAi is the i’th investor’s

admissible set (see Definition I.4 below). Because S
(0)
0 = 1, the investor’s initial

wealth is given by Xi0 = θ
(0)
i0− + θi0−S0 where investor i’ths initial endowments are

θ
(0)
i0− units of the money market account and θi0− units of the stock. In (1.17) the

process ci denotes the consumption rate in excess of the income rate Yi, i.e., investor

i’ths cumulative consumption at time t ∈ [0,∞) is given by
∫ t

0
(ciu + Yiu)du. We

refer to [31] and [32] for more information about the optimal investment problem

(1.17) for exponential investors receiving partly unspanned income over the infinite

time-horizon in various Brownian settings.
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We next specify the admissible set of controls Ai. The i’th investor chooses

predictable processes θi = (θit)t≥0 and ci = (cit)t≥0 to generate the self-financing gain

dynamics

dXit =
(
rXit − cit + θitµ

)
dt+ θit

σD
r

∫
RI+1

z(0)Ñ(dt, dz), t ≥ 0, Xi0 ∈ R,

(1.18)

provided that the various integrals exist. As usual, the investor’s investment θ
(0)
i in

the money market account is implicitly specified by (1.18); see, e.g., Section 6.L in

[12]. To state the additional properties (θi, ci) will be required to satisfy in order to

be deemed admissible, we first note that Lemma I.7 in Section 1.7 ensures that the

function

R 3 u(0) →
∫
RI+1

z(0)eu
(0)z(0)+u(i)z(i)

ν(dz), u(i) ∈ R,(1.19)

has a well-defined continuous inverse f i
u(i)(·) with domain R. We can then define the

constants θ∗i ∈ R by (here we use (1.5))

θ∗i = − τi
σD

f i
− 1
τi
σi

(
−µr
σD

+

∫
RI+1

z(0)ν(dz)

)
.(1.20)

This allows us to define the function

Vi(x, y) = −1

r
e
− r
τi
x− 1

τi
y− 1

r
gi , x, y ∈ R,(1.21)

where we have defined the constants gi by

gi = δi − r +
1

τi
θ∗i rµ+

1

τi
µi

−
∫
RI+1

(
e
− 1
τi
θ∗i σDz

(0)− 1
τi
σiz

(i)

− 1 +
1

τi
θ∗i σDz

(0) +
1

τi
σiz

(i)
)
ν(dz).

(1.22)

As usual, infinite time-horizon problems require a transversality condition to hold

(see, e.g., Section 9.D in the textbook [12]). In our case, this condition takes the
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form

lim
t→∞

e−δitE[Vi(Xit, Yit)] = 0.(1.23)

We can then state the precise constraints on the investor’s choice of controls in

(1.17). The last requirement placed on (θi, ci) in the next definition is purely technical

and is needed in the verification part of the proof of Theorem I.5 given in Section

1.8.11

Definition I.4. A pair of predictable processes (θi, ci) is deemed admissible if (i)

the wealth dynamics (1.18) are well-defined, (ii) the expectation in (1.17) is finite,

(iii) the transversality condition (1.23) holds, and (iv) the stochastic integral

∫ t

0

∫
RI+1

(
Vi(Xis− + θis

σD
r
z(0), Yis− + σiz

(i))− Vi(Xis−, Yis−)
)
Ñ(ds, dz), t ≥ 0,

(1.24)

is well-defined and is a martingale. When (i)-(iv) hold we write (θi, ci) ∈ Ai.

♦

In terms of these objects, the following result provides the explicit solution to

(1.17); see Section 1.8 for the proof.

Theorem I.5. Let Assumption I.2 hold and let the price dynamics (1.11) and (1.12)

with r > 0 be given. Then the processes (θ∗i , c
∗
i ) ∈ Ai attain the supremum in (1.17)

where θ∗i is defined by (1.20) and

c∗it = rX∗it +
τigi
r
, t ≥ 0.(1.25)

In (1.25) the process X∗i denotes the gain process (1.18) produced by (θ∗i , c
∗
i ). Fur-

thermore, the resulting optimal expected utility is given by Vi(Xi0, Yi0) where Vi is

defined by (1.21).
11For continuous-time optimal control problems, martingale conditions are always needed to verify optimality (see,

e.g., Section V.15 in the textbook [29]).
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From this theorem we note that the marginal utilities

e−δitU ′i(c
∗
it + Yit), i = 1, ..., I,

are not in general proportional across investors. This is due to the fact that the

market (S(0), S) is insufficient for the investors to share all risks imbedded in their

various income streams (Yi)
I
i=1. In other words, because there are non-traded income

claims, the investors cannot share all income risks efficiently and this feature renders

the model incomplete.

1.5 Radner equilibrium

This section contains our main result which provides the Radner equilibrium in

closed-form. Our main existence result is Theorem I.6 below (the proof is in Section

1.8) which is stated in terms of the constants (r, µ) as well as the martingale Z =

(Zt)t≥0 from Lemma I.3. To define the constants, we start by defining the Sharpe

ratio λ ∈ R (constant) through the requirement

σD +
I∑
i=1

τif
i

− 1
τi
σi

(
−λ

√∫
RI+1

(z(0))2ν(dz) +

∫
RI+1

z(0)ν(dz)

)
= 0,(1.26)

where the inverse functions (f i)Ii=1 are defined by (1.19). Lemma I.7 in Section 1.7

ensures that (1.26) uniquely determines λ. Then we can define the constants

θ∗i = − τi
σD

f i
− 1
τi
σi

(
−λ

√∫
RI+1

(z(0))2ν(dz) +

∫
RI+1

z(0)ν(dz)

)
, i = 1, ..., I.(1.27)

In turn, this allows us to define the constant

r =
1

τΣ

{
µD +

I∑
i=1

τiδi +
I∑
i=1

µi

−
∫
RI+1

( I∑
i=1

τie
− 1
τi
θ∗i σDz

(0)− 1
τi
σiz

(i)

− τΣ + σDz
(0) +

I∑
i=1

σiz
(i)
)
ν(dz)

}
,

(1.28)
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where τΣ =
∑I

i=1 τi. We can then finally define the constant

µ =
λσD
r

√∫
RI+1

(z(0))2ν(dz).(1.29)

The next theorem is our main existence result.

Theorem I.6. Let Assumption I.2 hold, let
∑I

i=1 θ
(0)
i0− = 0,

∑I
i=1 θi0− = 1, define

(r, µ) by (1.28)-(1.29), and assume that r > 0. Then (S(0), S) with S(0) defined by

(1.11) and S defined by

St =
1

Zt

∫ ∞
t

e−r(s−t)E[ZsDs|Ft]ds, t ≥ 0,(1.30)

where the martingale density Z is defined by (1.14), constitute a Radner equilibrium

in the sense of Definition I.1.

We would like to mention that we can replace the exogenous process parame-

ters µD, σD, µi, σi, i = 1, ..., I, by deterministic functions of time and still perform

the equilibrium analysis provided that we replace the constant coefficients in the

dynamics (1.11) and (1.12) with time dependent functions.

1.6 Application

In this section we will compare the incomplete equilibrium of Theorem I.6 with

the corresponding complete equilibrium based on the representative agent. In the

second part of this section we specify the Lévy measure ν to be the compound Poisson

process with Gaussian jumps from Section 1.2. We illustrate numerically the impacts

on the resulting equilibrium parameters due to model incompleteness.

1.6.1 Representative agent’s equilibrium

It is well-known that when all investors have exponential utilities, then so does the

sup-convolution describing the representative agent’s preferences with risk tolerance
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coefficient τΣ =
∑I

i=1 τi and time preference parameter δΣ = 1
τΣ

∑I
i=1 τiδi; see, e.g.,

Section 5.26 in [17]. We therefore define the representative agent’s utility function

by

Urep(c) = −e−c/τΣ , c ∈ R.

The consumption-based capital asset pricing model developed in [5] (and extended

in [15] to certain incomplete models) is based on constructing price processes by

applying the first-order condition for optimality in the representative agent’s problem

through the proportionality requirement

e−δΣtU ′rep

(
Dt +

I∑
i=1

Yit

)
∝ e−r

reptZrep
t , t ≥ 0.(1.31)

Here rrep is the interest rate and Zrep is the model’s (unique) martingale density.

This model (i.e., rrep and Zrep) will serve as the basis for our comparison. Itô’s

lemma produces the following dynamics of the left-hand-side of (1.31)

de−δΣtU ′rep(Dt +
∑I

i=1 Yit)

e−δΣtU ′rep(Dt +
∑I

i=1 Yit)

= −δΣdt+

∫
RI+1

(
e
− 1
τΣ

(
σDz

(0)+
∑I
i=1 σiz

(i)
)
− 1
)
Ñ(dt, dz)− 1

τΣ

(
µD +

I∑
i=1

µi

)
dt

+

∫
RI+1

(
e
− 1
τΣ

(
σDz

(0)+
∑I
i=1 σiz

(i)
)
− 1 +

1

τΣ

(
σDz

(0) +
I∑
i=1

σiz
(i)
))
ν(dz)dt.

By matching coefficients with the right-hand-side of (1.31) we find

dZrep
t = Zrep

t−

∫
RI+1

ψrep(z)Ñ(dt, dz), ψrep(z) = e
− 1
τΣ

(
∑I
i=1 σiz

(i)+σDz
(0)) − 1,(1.32)

rrep = δΣ +
1

τΣ

(
µD +

I∑
i=1

µi

)
(1.33)

−
∫
RI+1

(
e
− 1
τΣ

(
σDz

(0)+
∑I
i=1 σiz

(i)
)
− 1 +

1

τΣ

(
σDz

(0) +
I∑
i=1

σiz
(i)
))
ν(dz).
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We find the parameters describing the stock dynamics by computing the dynamics

of (similar to (1.30))

Srep
t =

1

Zrep
t

∫ ∞
t

e−r
rep(s−t)E

[
Zrep
s Ds|Ft

]
ds, t ≥ 0.(1.34)

As in the proof of Theorem I.6 in Section 1.8, we find that the dynamics of (1.34)

are of the form (1.12) but with r = rrep and µ = µrep, where

µrep = − σD
rrep

∫
RI+1

ψrep(z)z(0)ν(dz),

with ψrep defined by (1.32). Finally, the Sharpe ratio based on the representative

agent is defined as:

λrep =
µrep

σD
rrep

√∫
RI+1(z(0))2ν(dz)

,(1.35)

which is the analogue of (1.13).

1.6.2 Incompleteness impacts in a numerical example

In this section we consider the Lévy measure corresponding to a compound Poisson

process with Gaussian jumps (i.i.d. zero-mean normals with covariance matrix Σ)

and a unit constant Poisson intensity. In other words, for a symmetric positive

definite matrix Σ with unit diagonal elements, we consider the Lévy measure

ν(dz) =
1√

(2π)I+1det(Σ)
e−

1
2
z′Σ−1zdz, z ∈ RI+1.

This measure satisfies Assumption I.2. Furthermore, the functions f i and f (the

inverse functions of 1.19 and 1.16) can be expressed via the Gaussian moment gen-

erating function e
1
2
h′Σh, h ∈ RI+1, and its derivatives.

Based on (1.28) and (1.33), we see that the incompleteness impact on the equi-

librium interest rate is given by

rrep − r =

∫
RI+1

( I∑
i=1

τi
τΣ

e
− 1
τi
θ∗i σDz

(0)− 1
τi
σiz

(i)

− e−
1
τΣ

(
σDz

(0)+
∑I
i=1 σiz

(i)
))
ν(dz).
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Jensen’s inequality and the clearing property
∑I

i=1 θ
∗
i = 1 (coming from (1.26) and

(1.27)) can be used to see that this difference is always non-negative (a similar obser-

vation is made in [9] and [10]). On the other hand, the impact on the instantaneous

Sharpe ratio due to model incompleteness, i.e., λ − λrep, can be either positive or

negative. Here λrep is defined by (1.35) and the (instantaneous) Sharpe ratio λ in the

incomplete equilibrium is defined by (1.13). The constant λ ∈ R is found implicitly

by solving

σD +
I∑
i=1

τif
i

− 1
τi
σi

(−λ) = 0.

This follows from (1.26) and the zero-mean and unit variance properties of the Lévy

measure ν.

To proceed with the numerics, we will use a flat correlation matrix in the sense

that Σij = ρ for i 6= j and Σii = 1 for i, j = 0, 1, ..., I where ρ ∈ [0, 1). The remaining

parameters used to generate Figure 1.1 below are12

σD = .2I, σi = .1, τi = τ, i = 1, ..., I.(1.36)

From Figure 1.1 we see that our model can simultaneously produce a positive

impact on the equilibrium (instantaneous) Sharpe ratio and a negative impact on

the equilibrium interest rate. As discussed in the Introduction, these effects are

empirically desirable because they are linked to the asset pricing puzzles in [33] and

[24]. We note that as ρ ↑ 1 the resulting model approaches the representative agent’s

complete model and both incompleteness impacts vanish.

Because all the investors in the model behind Figure 1.1 are homogeneous they

hold the same number of stocks and there are no differences across investors. We

would like to see how investor heterogeneity affects the equilibrium. The next table
12The dividend’s parameters are scaled up to the size of the economy, while the investors’ income parameters are

independent to the size as they represent individual characteristic of investors.
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Figure 1.1: Plot of impacts due to model incompleteness on rrep − r (left) and λ − λrep (right)
seen as a function of the correlation coefficient ρ. We consider the limiting economy
(I → ∞) whereas the remaining parameters are given by (1.36) for the various risk
tolerance coefficients τ : τ = 1

2 (——–), τ = 1
3 (– – –), and τ = 1

4 (- - - -).

illustrates investor heterogeneity effects on the equilibrium for the independent case

where Σij = 0 for i 6= j and Σii = 1 for i, j = 0, 1, ..., I. We split the population into

two homogeneous groups (A,B) and we let w ∈ [0, 1] denote the relative weight of

group A. The investors in group A all have the same high income volatility coefficient

σA = .2 whereas the investors in group in B all have the coefficient σB = .1. In Table

1.1 below we also report how the investors’ strategies vary between the two groups

(A,B) which is done as follows: For I ∈ N we have (see 1.3)

1 =
I∑
i=1

θ∗i = Iwθ∗A + I(1− w)θ∗B.

Table 1.1 reports limI→∞ Iwθ
∗
A which measures how big a fraction of the equity group

A collectively holds in equilibrium (in the limiting model I →∞).
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w (τA, τB)

( 1
2 ,

1
2 ) ( 1

2 ,
1
3 ) ( 1

3 ,
1
2 ) ( 1

3 ,
1
3 )

1.00 1 [.090], (.036) 1, [.090], (.036) 1, [.236], (.142) 1, [.236], (.142)

0.75 .740, [.073], (.029) .814, [.084], (.037) .639, [.159], (.082) .731, [.190], (.113)

0.50 .487, [.056], (.022) .593, [.077], (.037) .369, [.101], (.046) .475, [.145], (.085)

0.25 .240, [.039], (.015) .327, [.067], (.036) .162, [.057], (.024) .232, [.100], (.058)

0.00 0, [.022], (.009) 0, [.055], (.033) 0, [.022], (.009) 0, [.055], (.033)

Table 1.1: Values of limI→∞ wIθ∗A, [r
rep−r], (λ−λrep) in the limiting economy (I →∞) for various

weights w and various risk tolerance parameters (τA, τB). The values are based on the
parameters σA = .2, σB = .1, σD = .2I, and Σij = 0 for i 6= j and Σii = 1 for
i, j = 0, 1, ..., I.

By comparing Columns 2 and 3 in Table 1.1 we see that the incompleteness

effects on the interest rate and the Sharpe ratio are largest when the most risk

averse investors have the highest income uncertainty. A similar observation regarding

the interest rate is made in Table 1 in [9]. Compared to all Brownian models (see

Theorem 4.1 in [10]), our framework’s main new feature is that discontinuous Lévy

models can produce a significant impact on the Sharpe ratio while still being as

tractable as the arithmetic Brownian model developed in [9].

Finally, we note from Table 1.1 how the equilibrium equity distribution between

the two groups depends on the groups’ risk aversion coefficients. When the two

groups are equally sized (w = 0.5) and have the same risk aversion coefficients

(Columns 1 and 4 in Table 1.1), group B, who has the lowest income volatility,

holds slightly more equity than group A. However, by changing the risk aversion

coefficients we dramatically change the equilibrium equity distribution. Indeed, if

group B’s risk aversion is increased from 2 to 3, group A will hold close to 60% of

the economy’s equity even though group A has the highest income volatility (Column

2 in Table 1.1).
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1.7 An auxiliary lemma

Lemma I.7. Suppose Assumptions I.2 holds. Then the partial derivative

ϕi(u
(0), u(i)) =

∂

∂u(0)

∫
RI+1

(
eu

(0)z(0)+u(i)z(i) − 1
)
ν(dz), u(0), u(i) ∈ R,

is a well-defined function and satisfies the following properties:

1. The function ϕi has the representation

ϕi(u
(0), u(i)) =

∫
RI+1

z(0)eu
(0)z(0)+u(i)z(i)

ν(dz), u(0), u(i) ∈ R.(1.37)

2. The function ϕi is jointly continuous.

3. For fixed u(i) ∈ R, the function u(0) → ϕi(u
(0), u(i)) is strictly increasing and

onto R. Consequently, the inverse function f i
u(i)(·) exists and is continuous on

R.

Proof. For the first claim, we can use the bound

|ehz − 1|
|h|

≤ |z|e|z|, z(0) ∈ R, |h| ≤ 1.(1.38)

This bound is integrable by (1.5) and (1.6) of Assumption I.2. Therefore, the dom-

inated convergence theorem can be used to produce the representation (1.37). The

second claim follows similarly. The strict monotonicity property in the last claim

follows directly from (1.37). Finally, (1.7) ensures that the map ϕi(·, u(i)) is onto R.

♦

1.8 Proofs

Proof of Lemma I.3. The integrability property∫
RI+1

(
ψ(z)

)2
ν(dz) <∞,
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follows from the definition of ψ (see (1.15)), the bound (1.38), and the integrability

requirements in Assumption I.2. Furthermore, because ψ defined by (1.15) satisfies

ψ+1 > 0 we see from Theorem 37 in Section II.8 in [27] that there is a unique strictly

positive solution Z of (1.14). The martingale property of Z follows from Novikov’s

condition for Lévy processes (see Theorem 9 in [28]). The claimed sigma-martingale

property follows from Itô’s product rule applied to Z S
S(0) combined with the no drift

property

µr

σD
+

∫
RI+1

ψ(z)z(0)ν(dz) = 0.(1.39)

The latter condition (1.39) follows from the definition of ψ.

♦

Proof of Theorem I.5. Throughout this proof we let Vi be defined by (1.21) and we

let (θ∗i , c
∗
i ) be defined by (1.20) and (1.25). We split the proof into two steps:

Step 1: (Admissibility of θ∗i , c
∗
i ). By inserting (θ∗i , c

∗
i ) into (1.18) we produce the gain

dynamics

dX∗it =
(
θ∗i µ−

τigi
r

)
dt+ θ∗i

σD
r

∫
RI+1

z(0)Ñ(dt, dz), t ≥ 0.

To see that X∗it has all exponential moments we let a ∈ R be arbitrary. The integra-

bility conditions (1.4) and (1.6) ensure that∫
RI+1

(
eaz

(0) − 1− az(0)
)
ν(dz) <∞.(1.40)

Consequently, Itô’s lemma ensures that

e
a
∫ t
0

∫
RI+1 z

(0)Ñ(du,dz)−t
∫
RI+1

(
eaz

(0)−1−az(0)
)
ν(dz)
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is a nonnegative sigma-martingale. Furthermore, Ansel-Stricker’s Theorem ensures

that it is a supermartingale which combined with the deterministic property of (1.40)

produces

E
[
ea
∫ t
0

∫
RI+1 z

(0)Ñ(du,dz)
]
≤ e

t
∫
RI+1

(
eaz

(0)−1−az(0)
)
ν(dz)

<∞.(1.41)

In a similar fashion we can see that Yit has all exponential moments. This shows

that the expected utility of (θ∗i , c
∗
i ) is finite.

To see that the stochastic integral (1.24) is a martingale, it suffices to show the

square integrability property

E
[∫ t

0

Vi(X
∗
iu−, Yiu−)2

∫
RI+1

(
e
− θ
∗
i σD
τi

z(0)−σi
τi
z(i)

− 1
)2

ν(dz)du

]
<∞,

for all t ≥ 0. The integrand in the ν-integral does not depend on ω ∈ Ω. The

bound (1.38) combined with (1.4) and (1.6) ensures that this ν-integral is finite.

Furthermore, the first inequality in (1.41) shows that the functions

[0, t] 3 u→ E
[
ebX

∗
iu
]

and [0, t] 3 u→ E
[
eb
′Yiu
]
,

are bounded by exponential functions for all b, b′ ∈ R. Because such functions on

finite intervals are bounded, the square integrability property follows from Cauchy-

Schwartz’s inequality.

To verify the transversality condition (1.23) we use Itô’s lemma to compute the
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dynamics

dVi(X
∗
it, Yit) =

∫
RI+1

(
Vi(X

∗
it− + θ∗i

σD
r
z(0), Yit− + σiz

(i))− Vi(X∗it−, Yit−)
)
Ñ(dt, dz)

+ Vi(X
∗
it−, Yit−)

∫
RI+1

( 1

τi

(
θ∗i σDz

(0) + σiz
(i)
)

+ e
− θ
∗
i σD
τi

z(0)− 1
τi
σiz

(i)

− 1
)
ν(dz)dt

− Vi(X∗it−, Yit−)
( r
τi
µθ∗i − gi +

µi
τi

)
dt

=

∫
RI+1

(
Vi(X

∗
it− + θ∗i

σD
r
z(0), Yit− + σiz

(i))− Vi(X∗it−, Yit−)
)
Ñ(dt, dz)

+ Vi(X
∗
it−, Yit−)

(
δi − r

)
dt.

The just proven martingale property of the stochastic integral (1.24) produces

E[Vi(X
∗
it, Yit)] = Vi(Xi0, Yi0) +

∫ t

0

E[Vi(X
∗
iu, Yiu)](δi − r)du.

Therefore, because r > 0, we have

lim
t→∞

e−δitE[Vi(X
∗
it, Yit)] = lim

t→∞
e−δitVi(Xi0, Yi0)e(δi−r)t = 0.

Step 2 (Verification): Itô’s lemma produces the following dynamics for arbitrary

controls (θi, ci) ∈ Ai

d
(∫ t

0

e−δiuUi(ciu + Yiu)du+ e−δitVi(Xit, Yit)
)

= e−δit
{
Ui(cit + Yit)dt− δiVi(Xit, Yit)dt

+

∫
RI+1

(
Vi(Xit− + θit

σD
r
z(0), Yit− + σiz

(i))− Vi(Xit−, Yit−)
)
Ñ(dt, dz)

+ Vi(Xit−, Yit−)

∫
RI+1

( 1

τi

(
θitσDz

(0) + σiz
(i)
)

+ e
− θitσD

τi
z(0)− 1

τi
σiz

(i)

− 1
)
ν(dz)dt

− Vi(Xit−, Yit−)
r

τi
(rXit− − cit + µθit)dt− Vi(Xit−, Yit−)

µi
τi
dt
}
.

A direct calculation shows that the drift is maximized pointwise by the processes

(θ∗i , c
∗
i ) given by (1.20) and (1.25). Furthermore, the definition of gi ensures that this

maximal value is zero. Therefore, the martingale property of the integrals in (1.24)
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produces

E
[∫ t

0

e−δiuUi(ciu + Yiu)du+ e−δitVi(Xit, Yit)

]
≤ V (Xi0, Yi0)

= E
[∫ t

0

e−δiuUi(c
∗
iu + Yiu)du+ e−δitVi(X

∗
it, Yit)

]
.

We can then use the monotone convergence theorem to pass t → ∞ as well as the

transversality condition (1.23) to see

E
[∫ ∞

0

e−δiuUi(ciu + Yiu)du

]
≤ V (Xi0, Yi0) = E

[∫ ∞
0

e−δiuUi(c
∗
iu + Yiu)du

]
.

♦

Proof of Theorem I.6. Fix the time points 0 ≤ t ≤ s < ∞. Based on Lemma I.3

we can define the P-equivalent measure Qs on Fs by the Radon-Nikodym derivative

dQs
dP := Zs. Girsanov’s theorem and the definition of ψ (see 1.15) produce the Qs-

dynamics

dDu =
(
µD − µr

)
du+ σD

∫
RI+1

z(0)
(
N(du, dz)−

(
1 + ψ(z)

)
ν(dz)du

)
, u ∈ [0, s].

To ensure that the stochastic integral is a Qs-martingale it suffices to show∫
RI+1

(z(0))2
(
1 + ψ(z)

)
ν(dz) <∞.

This follows from ψ’s definition (1.15) and the integrability requirements in Assump-

tion I.2. Bayes’ rule then produces

E[ZsDs|Ft]
Zt

= EQs [Ds|Ft] = Dt + (µD − µr)(s− t).

This gives us the representation

St =

∫ ∞
t

e−r(s−t)
E[ZsDs|Ft]

Zt
ds =

Dt

r
+
µD − µr

r2
.(1.42)
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This representation and (1.10) produce the dynamics (1.12).

To see that the clearing conditions (1.3) hold, we first note that inserting µ defined

by (1.29) into (1.27) gives us (1.20); hence, θ∗i is optimal by Theorem I.5. Therefore,

we have

I∑
i=1

θ∗i = − 1

σD

I∑
i=1

τif
i

− 1
τi
σi

(
−µr
σD

+

∫
RI+1

z(0)ν(dz)

)
= 1,

where the last equality follows from inserting µ defined by (1.29) into (1.26). Clearing

for the money market account market is equivalent to St =
∑I

i=1X
∗
it. For t = 0 this

holds. By inserting the optimal consumption processes (1.25) into the gain dynamics

(1.18) and using the already established property
∑I

i=1 θ
∗
i = 1 we find

I∑
i=1

dX∗it =
(
µ−

I∑
i=1

τigi
r

)
dt+

σD
r

∫
RI+1

z(0)Ñ(dt, dz).

On the other hand, the representation (1.42) produces

dSt =
µD
r
dt+

σD
r

∫
RI+1

z(0)Ñ(dt, dz).

The claim therefore follows as soon as we establish

I∑
i=1

τigi = µr − µD.(1.43)

To see that this relationship holds we can insert the definition of gi (see (1.22)) and

use the definition of r (see (1.28)). This argument also produces clearing in the

good’s market because

I∑
i=1

c∗it =
I∑
i=1

(
rX∗it +

τigi
r

)
= rSt +

I∑
i=1

τigi
r

= Dt +
µD − µr

r
+

I∑
i=1

τigi
r

= Dt.

Here the third equality follows from the representation (1.42) and the last equality

comes from (1.43).

♦



CHAPTER II

Model extensions

In this chapter, we consider the finite time horizon version of the Lévy model

introduced in Chapter I. In these finite time horizon models, we relax the assump-

tion on the Lévy measure in order to extend our equilibrium result to more general

models, including the variance gamma model. The following sections are organized

as follows: first we re-state the new finite time horizon problem including the new

assumption, then we state and prove the new equilibrium results, and finally we

consider a variance gamma model and its numerical results. In addition, the discus-

sion about the lack of the minimal martingale measure is included at the end of this

chapter.

2.1 Finite time-horizon setting

2.1.1 Underlying Lévy process

Recall that η is the underlying RI+1-dimensional pure jump Lévy process which

generates the (right-continuous) filtration (Ft)t≥0. N = N(dt, dz) is the random

counting measure on [0,∞) × RI+1 and ν is the Lévy measure on RI+1 associated

with η’s jumps. We define the sets of exponentially integrable domain Di by

Di =
{

(u(0), u(i)) ∈ R2 :

∫
||z||≥1

eu
(0)z(0)+u(i)z(i)

ν(dz) <∞
}
, ∀i = 1, . . . , I.

25
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Below we state our relaxed assumption on the Lévy measure ν.

Assumption II.1. In addition to the usual properties (1.4) the Lévy measure ν

satisfies the following conditions:∫
||z||<1

|z(0)|ν(dz) <∞,(2.1)

Di is open, ∀i = 1, . . . , I,(2.2)

ν(z(0) > 0) > 0 and ν(z(0) < 0) > 0.(2.3)

This new assumption requires a few remarks and lemmas.

Remark II.2. While Conditions (1.5)-(2.1) and (1.7)-(2.3) are identical, Condition

(1.6) implies (2.2) with Di = R2, ∀i = 1, . . . , I.

Lemma II.3. Suppose Condition (2.2) in Assumption II.1 holds. Then for every

(u(0), u(i)) ∈ Di, there exist a ν|||z||≥1-integrable function h and an open neighborhood

U of (u(0), u(i)) such that

exz
(0)+yz(i) ≤ h(z), ∀z ∈ {||z|| ≥ 1},∀(x, y) ∈ U.(2.4)

Proof. Let (u(0), u(i)) ∈ Di. Since Di is open, we can find ε > 0 such that

[(u(0) − ε, u(0) + ε]× [u(i) − ε, u(i) + ε] ⊂ Di.

We define the dominating function h by

h(z) = e(u(0)+ε)z(0)+(u(i)+ε)z(i)

+ e(u(0)+ε)z(0)+(u(i)−ε)z(i)

+ e(u(0)−ε)z(0)+(u(i)+ε)z(i)

+ e(u(0)−ε)z(0)+(u(i)−ε)z(i)

.

Then h satisfies (2.4) with U = (u(0) − ε, u(0) + ε)× (u(i) − ε, u(i) + ε) and∫
||z||≥1

h(z)ν(dz) <∞.

♦
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Corollary II.4. Suppose Condition (2.2) in Assumption II.1 holds, then for every

compact subset K of Di, there exists a ν|||z||≥1-integrable function h such that

eu
(0)z(0)+u(i)z(i) ≤ h(z), ∀z ∈ {||z|| ≥ 1}, ∀(u(0), u(i)) ∈ K.

The following lemma is the analogue of Lemma I.7 under the relaxed Assumption

II.1.

Lemma II.5. Suppose Assumption II.1 holds. Then the partial derivative

ϕi(u
(0), u(i)) =

∂

∂x

∫
RI+1

(
exz

(0)+u(i)z(i) − 1
)
ν(dz)

∣∣∣∣
x=u(0)

, (u(0), u(i)) ∈ Di,

is well-defined and satisfies the following properties:

1. The function ϕi has the representation

ϕi(u
(0), u(i)) =

∫
RI+1

z(0)eu
(0)z(0)+u(i)z(i)

ν(dz), (u(0), u(i)) ∈ Di.

2. The function ϕi is jointly continuous on Di.

3. For fixed u(i), the function u(0) → ϕi(u
(0), u(i)) is strictly increasing and onto

R; hence, admits the continuous inverse function f i
u(i)(·) whose domain is the

entire space R.

4. The map (t, u(i))→ f i
u(i)(t) is jointly continuous.

Proof. The first property is a direct consequence of Lemma II.3. For the second

property, we use the bound

|ehz − 1|
|h|

≤ |z|(ehz + e−hz), z(0) ∈ R, |h| ≤ 1.(2.5)

The joint continuity follows from the bound (2.5) and the dominated convergence

theorem.
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Next, we proceed to prove the third property that the map u(0) → ϕi(u
(0), u(i)) is

onto R. Since ϕi is continuous in Di it suffices to show that inside Di the function

ϕi(·, u(i)) is unbounded from above and below. To prove this claim, we fix (u(0), u(i)) ∈

Di and let {
x ∈ R :

∫
||z||≥1

exz
(0)+u(i)z(i)

ν(dz) <∞
}

= (α, β),

for some −∞ ≤ α < β ≤ ∞. Here we know the above set is an open interval because

Di is convex and open. We then prove the lack of an upper bound in two following

separate cases.

Case 1: β =∞. We know from the first property that the function ϕi is finite inside

the set Di, i.e., ∫
RI+1

z(0)exz
(0)+u(i)z(i)

ν(dz) <∞, ∀x ∈ (α,∞).

Since u(0) → ϕi(u
(0), u(i)) is strictly increasing, we can use condition (2.3) to conclude

that ∫
RI+1

z(0)exz
(0)+u(i)z(i)

ν(dz)→∞, as x ↑ ∞.

Case 2: β < ∞. We take an increasing sequence (βn)n∈N such that βn ↑ β and

(βn, u
(i)) ∈ Di. We have the inequality∫

{||z||≥1}∩{z(0)≤1}
eβz

(0)+u(i)z(i)

ν(dz) ≤ eβ−βn
∫
{||z||≥1}∩{z(0)≤1}

eβnz
(0)+u(i)z(i)

ν(dz) <∞.

Because Di is open and (β, u(i)) is at the boundary of Di, we have (β, u(i)) /∈ Di.

This, together with the above inequality, implies∫
{||z||≥1}∩{z(0)>1}

eβz
(0)+u(i)z(i)

ν(dz) =∞.
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By the monotone convergence theorem, we deduce that

lim
n↑∞

∫
{||z||≥1}∩{z(0)>1}

z(0)eβnz
(0)+u(i)z(i)

ν(dz) ≥ lim
n↑∞

∫
{||z||≥1}∩{z(0)>1}

eβnz
(0)+u(i)z(i)

ν(dz)

=

∫
{||z||≥1}∩{z(0)>1}

eβz
(0)+u(i)z(i)

ν(dz)

=∞.

A similar argument shows that ϕi(·, u(i)) is unbounded from below in Di; therefore

the claim is proved.

Finally, we want to show the joint continuity of the map (t, u(i))→ f i
u(i)(t) in the

last property. We let (tn, u
(i)
n ) → (t, u(i)) as n ↑ ∞ and write u

(0)
n = f i

u
(i)
n

(tn) and

u(0) = f i
u(i)(t). We assume for the moment that

{
(u

(0)
n , uin), (u

(0)
n , ui)

}
n∈N is contained

in a compact subset of Di. We write

tn − t =
(
ϕi(u

(0)
n , u(i)

n )− ϕi(u(0)
n , u(i))

)
+
(
ϕi(u

(0)
n , u(i))− ϕi(u(0), u(i))

)
.(2.6)

By Corollary II.4 and the dominated convergence theorem, we have

∣∣ϕi(u(0)
n , u(i)

n )− ϕi(u(0)
n , u(i))

∣∣→ 0, as n ↑ ∞.

The left hand side of (2.6) converges to zero by initial assumption. Consequently,

we have

ϕi(u
(0)
n , u(i))→ ϕi(u(0), u(i)), as n ↑ ∞.

We deduce that u
(0)
n → u(0) using the continuity of f i

u(i)(·) (for a fixed u(i)) from the

third property.

To see that
{

(u
(0)
n , u

(i)
n ), (u

(0)
n , u(i))

}
n∈N is compactly contained in Di, we rely on

the strict monotonicity of f i
u(i) . We let δ > 0 and denote u

(0)
δ = f i

u(i)(t+ 2δ). By joint

continuity of ϕi, we can find ε > 0 such that

∣∣ϕi(x, y)− (t+ 2δ)
∣∣ < δ, for (x, y) ∈ (u

(0)
δ , u(i)) + (−ε, ε)× (−ε, ε).
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In particular,

t+ δ < ϕi(u
(0)
δ , y) < t+ 3δ, for y ∈ (u(i) − ε, u(i) + ε).

As u
(i)
n → u(i) and tn → t, we have, for some M ∈ N and any n ≥M ,

u(i) − ε < u(i)
n < u(i) + ε,(2.7)

tn < t+ δ.(2.8)

Applying strict monotonicity of f i
u

(i)
n

to (2.8), we have

u(0)
n < u

(0)
δ , for n ≥M.

Similarly, we can find a lower bound u
(0)
−δ ∈ R such that

u
(0)
−δ < u(0)

n < u
(0)
δ , for n ≥M.(2.9)

The compact containment follows immediately from (2.7) and (2.9). ♦

2.1.2 Economy

We assume that the economic activities happen continuously on a finite time

horizon [0, T ], T ∈ (0,∞). As usual the economy consists of I < ∞ investor-

consumers all having exponential utility of consumption, a single non-durable con-

sumption good, and two traded assets. The ith investor equipped with exponential

utility function

Ui(c) = e
− c
τi , τi > 0, c ∈ R,

receives random endowment over the time period [0, T ]. The endowment is specified

by the rate process (Yit)t∈[0,T ] which evolves as

dYit = µi(t)dt+

∫
RI+1

σi(t)z
(i)Ñ(dt, dz), Yi0 ∈ R.
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Here the functions µi(t) and σi(t) are deterministic and exogenously specified. The

two traded assets are the money market account and a risky asset. The money

market is in zero net supply and its equilibrium price is conjectured to have the

dynamics

dS
(0)
t = r(t)S

(0)
t dt, ∀t ∈ [0, T ], S

(0)
0 = 1,(2.10)

for some deterministic rate of return r(t). The risky asset is taken to be a unit net

supply stock which pays out continuous dividends at rate D. The dividend rate D

is exogenously specified by the dynamics

dDt = µD(t)dt+

∫
RI+1

σD(t)z(0)Ñ(dt, dz), ∀t ∈ [0, T ], D0 ∈ R,

which contain the deterministic (input) functions µD and σD. We will show that the

equilibrium price dynamics of the stock take the form

dSt +Dtdt = r(t)Stdt+ µ(t)dt+

∫
RI+1

σ(t)z(0)Ñ(dt, dz), ∀t ∈ [0, T ),(2.11)

ST− = ST = 0,(2.12)

for some deterministic functions µ and σ. The insertion of terminal condition (2.12)

guarantees no stock price jumps at the terminal time. Consequently, the gain process

is left-continuous at the terminal time; a result which is crucial in our equilibrium

verification. To sum up, (µD, σD, µi, σi) are the model’s exogenously specified input,

whereas the functions (r, µ, σ) are endogenously determined.

2.1.3 Assumptions on the market structure

In order to keep our model as simple as possible, we place several assumptions

on the prices of the traded assets, their dividends, and the investors’ endowments.

The first assumption is placed on the choice of input parameters in the dividend
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process and the investors’ endowment processes. These parameters are completely

exogenously specified.

Assumption II.6. The deterministic functions (µD, σD, µi, σi), i = 1, . . . , I, are

continuous and finitely valued on the interval [0, T ]. Furthermore, σD ≥ 0 on the

interval [0, T ].

The second assumption is placed on the prices of the traded assets which, on the

other hand, are endogenously determined. We need to verify that our candidate

equilibrium price processes satisfy this assumption. Before we state the assumption

we first define the price of zero coupon bonds, β(t, s), and the price of the annuity,

A(t), by

β(t, s) = e−
∫ s
t r(u)du, 0 ≤ t ≤ s ≤ T,

A(t) =

∫ T

t

β(t, u)du, 0 ≤ t ≤ T.

Assumption II.7. The functions (r, µ, σ) appearing in the price of the traded assets

are deterministic, continuous, and finitely valued on the interval [0, T ].

We remark that if Assumption II.7 is satisfied then there exists a constant r̄ such

that r(t) ≥ r̄ > −∞ for t ∈ [0, T ]. As a consequence, the price of annuity satisfies

the condition

lim
s↑T

∫ s

0

A(t)−1dt = +∞.(2.13)

There is a third and final assumption on the choice of functions (σD, σi). The

purpose of this assumption is to ensure sufficient integrability of our optimal in-

vestment strategies. Since the assumption is technical and requires the definition of

admissible strategies, we postpone the statement of this assumption to Section 2.2

(see Assumption II.16).
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2.1.4 Individual investor’s problem

Throughout this section the price dynamics (2.10) and (2.11) are given as input.

Each investor has to choose his investment and consumption rates for every time

t ∈ [0, T ]. The choice of investment of the ith investor is represented by the self-

financing predictable pair (θ
(0)
it , θit)t∈[0,T ], where θ

(0)
it and θt denote the number of

units invested in the money market account and the stock at time t respectively.

Initially, the ith investor starts with his endowments (θ
(0)
i0−, θi0−). The initial aggregate

holdings of money market account and stock satisfy

I∑
i=1

θ
(0)
i0− = 0,

I∑
i=1

θi0− = 1.

As before, we denote ci = (cit)t∈[0,T ] the rate of consumption in excess of the endow-

ment. Due to self-financing, the investor’s choice of investment-consumption strategy

can be identified with just the pair (θi, ci). The investor’s objective is to maximize

the expected utility of running consumption over [0, T ]:

sup
(θi,ci)∈Ai

E
[∫ T

0

e−δitUi(cit + Yit)dt

]
.(2.14)

We will specify the admissible set of controls Ai later in this section.

We next define the gain process and the state-price densities. The ith investor’s

gain process is defined by X
(ci,θi)
it = θ

(0)
it S

(0)
t + θitSt with initial value X

(ci,θi)
i0 =

θ
(0)
i0− + θi0−S0. By imposing the self-financing condition, the dynamics of the gain

process can be written as

dX
(ci,θi)
it =

(
r(t)X

(ci,θi)
it − cit + θitµ(t)

)
dt+

∫
RI+1

θitσ(t)z(0)Ñ(dt, dz), t ∈ [0, T ),

X
(ci,θi)
iT = X

(ci,θi)
iT− ,

where the terminal gain equals its left limit due to no terminal price jumps. We also

need some integrability requirements for the above process to be well-defined. These
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requirements are

∫ T

0

|cit|dt <∞,
∫ T

0

∫
RI+1

(θitσ(t)z(0))2ν(dz)dt <∞,
∫ T

0

|θitµ(t)|dt <∞,

(2.15)

P-a.s. We then define the state-price densities below.

Definition II.8. A cadlag, adapted process ξ = (ξt)t∈[0,T ] is said to be a state-price

density if it satisfies the following three properties:

(i) ξ0 = 1 and ξt is strictly positive for t ∈ [0, T ].

(ii) The process Zt = ξt

S
(0)
t

is a martingale.

(iii) The process
(
ξtX

(ci,θi)
it +

∫ t
0
ξscisds

)
t∈[0,T ]

is a σ-martingale for any (ci, θi) satis-

fying (2.15) and for i = 1, 2, . . . , I.

Note that for a state-price density ξt we call Zt = ξt

S
(0)
t

martingale density.

To derive the representation of the state-price densities we consider the processes

ξϑ whose dynamics are of the form

dξϑt = ξϑt−

{
− r(t)dt+

∫
RI+1

ϑt(z)Ñ(dt, dz)
}
, ξϑ0 = 1, t ∈ [0, T ],(2.16)

for some predictable integrand ϑt(z) = ϑt(z, ω). However, not every predictable

integrand ϑ gives rise to a state-price density. The three conditions on ϑ below are

sufficient for ξϑ to be a state-price density:

ϑt(z) > −1, ∀t ∈ [0, T ],(2.17)

E
[
e
∫ T
0

∫
RI+1 ϑt(z)

2ν(dz)dt
]
<∞,(2.18)

µ(t)

σ(t)
+

∫
RI+1

ϑt(z)z(0)ν(dz) = 0.(2.19)

In particular if ϑ satisfies the above conditions, then the state-price density has

the explicit exponential form stated in (2.22). The above conditions deserve a few
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remarks. Condition (2.17) guarantees the exponential form in (2.22) is well-defined.

Condition (2.18) is a Novikov-type condition that guarantees the martingality of

Zϑ; see Thm 9 in [28]. Lastly, condition (2.19) guarantees the σ-martingality of the

processes in (iii) of Definition II.8.

We would like to set up a non-trivial admissible set of investment-consumption

strategies that rules out the doubling-type strategies and makes it possible to per-

form verification. In the following setup, two additional restrictions on the possible

strategies are made. To state these restriction conditions we define the deterministic

function θ∗i by

θ∗i (t) = −τiA(t)

σ(t)
f i− 1

τi
σi(t)

(
− µ(t)

σ(t)
+

∫
RI+1

z(0)ν(dz)
)
,(2.20)

where function f i
u(i) is the inverse of the map

u(0) →
∫
RI+1

z(0)eu
(0)z(0)+u(i)z(i)

ν(dz)

as defined in 3. of Lemma II.5. Equivalently, there is an implicit form of θ∗i obtained

from the unique solution to the equation

µ(t)

σ(t)
+

∫
RI+1

z(0)
(
e
− 1
τi
A(t)−1θ∗i (t)σ(t)z(0)− 1

τi
σi(t)z

(i)

− 1
)
ν(dz) = 0.(2.21)

Lemma II.5 shows that θ∗i defined by (2.20) is continuous on [0, T ], hence, there is

no difference between writing θ∗i (t−) and θ∗i (t). We let

ϑ∗it(z) = e
− 1
τi
A(t)−1θ∗i (t)σ(t)z(0)− 1

τi
σi(t)z

(i)

− 1,

and we define the state-price density specific to the ith investor, ξ∗i , by

dξ∗it = ξ∗it−

{
− r(t)dt+

∫
RI+1

ϑ∗it(z)Ñ(dt, dz)
}
, ξ∗i0 = 1.
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Lemma II.13 in Section 2.1.5 shows that the state-price density specific to ith investor

has the explicit form

ξ∗it = exp

{
−
∫ t

0

r(s)ds+

∫ t

0

∫
RI+1

(
− 1

τi
A(s)−1θ∗i (s)σ(s)z(0) − 1

τi
σi(s)z

(i)
)
Ñ(ds, dz)

(2.22)

+

∫ t

0

∫
RI+1

(
− e−

1
τi
A(s)−1θ∗i (s)σ(s)z(0)− 1

τi
σi(s)z

(i)

+ 1
)
ν(dz)ds

+

∫ t

0

∫
RI+1

(
− 1

τi
A(s)−1θ∗i (s)σ(s)z(0) − 1

τi
σi(s)z

(i)
)
ν(dz)ds

}
.

We are now ready to state our choice of admissible sets.

Definition II.9. An investment-consumption strategy (ci, θi) said to be admissible

for the ith investor, and we write (ci, θi) ∈ Ai, if it satisfies the following three

conditions:

1. The integrability requirements in (2.15) are satisfied.

2. P
(
X

(ci,θi)
iT ≥ 0

)
= 1.

3. The σ-martingale
(
ξ∗itX

(ci,θi)
it +

∫ t
0
ξ∗iscisds

)
t∈[0,T ]

is a P-supermartingale.

In what follows, we state another assumption on both the endogenous and exoge-

nous functions (µ, σ, σi). This assumption requires that θ∗i implicitly obtained from

(µ, σ, σi) is sufficiently smooth and sufficiently integrable.

Assumption II.10. ∀i = 1, . . . , I, the map t 7→ A−1(t)θ∗i (t)σ(t) is continuous,

finitely valued on [0, T ], and

(
− 2

τi
A−1(t)θ∗i (t)σ(t),− 2

τi
σi(t)

)
∈ Di, ∀t ∈ [0, T ].

Once we find an equilibrium candidate (µ, σ), we will return to this assumption

and restate it in terms of the exogenous input (σD, σi) (see Assumption II.16). We

now conclude the section with the main optimization result.
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Theorem II.11. Under Assumptions II.1, II.6, II.7, and II.10, the optimal consumption-

investment strategy (ĉi, θ̂i) is deterministic and is given by

θ̂it = θ∗i (t),(2.23)

ĉit = A(t)−1X
(ĉi,θ̂i)
t + τiA(t)−1

∫ T

t

β(t, s)

∫ s

t

gi(u)duds,(2.24)

where gi is the continuous deterministic function defined by

gi(t) = δi − r(t) +
1

τi
θ∗i (t)A(t)−1µ(t) +

1

τi
µi(t)

(2.25)

−
∫
RI+1

(
e
− 1
τi
θ∗i (t)A(t)−1σ(t)z(0)− 1

τi
σi(t)z

(i)

− 1 +
1

τi
θ∗i (t)A(t)−1σ(t)z(0) +

1

τi
σi(t)z

(i)
)
ν(dz).

2.1.5 Auxiliary lemmas and proofs

Lemma II.12. Suppose that Assumption II.7 holds. Suppose m and c are two con-

tinuous deterministic functions which are finitely-valued on [0,T], then the solution

to SDE

dXt =
(

(r(t)− A(t)−1)Xt +m(t)
)
dt+

∫
RI+1

A(t)c(t)z(0)Ñ(dt, dz), X0 ∈ R,

exists and is unique on [0, T ). Furthermore, Xt → 0 a.s. as t ↑ T .

Proof. Let b(t) = r(t)− A(t)−1. Ito’s product rule for Lévy processes gives us that

Xt = e
∫ t
0 b(u)du

(
X0+

∫ t

0

e−
∫ s
0 b(u)dum(s)ds+

∫ t

0

∫
RI+1

e−
∫ s
0 b(u)duA(s)c(s)z(0)Ñ(ds, dz)

)
is the unique solution to the given SDE. To see the convergence as t ↑ T , we first

note that b(t) → −∞ as t ↑ T . We would like to justify the convergence to zero in

each term in the above equation. Condition (2.13) in Assumption II.7 provides the

convergence of the first term:

e
∫ t
0 b(u)duX0 → 0.
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The convergence of the second term follows from L’Hopital’s rule:

lim
t↑T

∫ t
0
e−

∫ s
0 b(u)dum(s)ds

e−
∫ t
0 b(u)du

= lim
t↑T

m(t)

−b(t)
= 0.

For the third term, we claim that the stochastic integral defined by

It =

∫ t

0

∫
RI+1

e−
∫ s
0 b(u)duA(s)c(s)z(0)Ñ(ds, dz)

is bounded in L2. We start by giving a bound to its quadratic variation:

E
([
I, I
]
t

)
=

∫ t

0

∫
RI+1

e−2
∫ s
0 b(u)duA(s)2c(s)2(z(0))2ν(dz)ds

≤ t
(

sup
s∈[0,T ]

e−2
∫ s
0 b(u)duA(s)2c(s)2

)∫
RI+1

||z||2ν(dz).

If we can show that

sup
s∈[0,T ]

e−2
∫ s
0 b(u)duA(s)2c(s)2 <∞,

then I becomes a martingale bounded in L2. Due to continuity of the functions A

and c, it suffices to show

lim
t↑T

e−2
∫ t
0 b(u)duA(t)2c(t)2 <∞.

Since ∂
∂t
A(t)−2 = −2A(t)−2b(t), we obtain the representation

A(t)−2 = A(0)−2e−2
∫ t
0 b(u)du.

Inserting this expression in the limit, we have

lim
t↑T

e−2
∫ t
0 b(u)duA(t)2c(t)2 = lim

t↑T
A(0)2c(t)2 = A(0)2c(T )2 <∞,

and the claim is proved. Now that {It}t<T is a martingale bounded in L2, we know

it converges almost surely to a finitely-valued random variable IT . Consequently,

e
∫ t
0 b(u)duIt → 0, as t ↑ T,

and the lemma is proved. ♦
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Lemma II.13. Suppose that Assumptions II.6, II.7, and II.10 hold. The state-price

density specific to the ith investor, ξ∗i , has the explicit solution as in (2.22). Moreover,

there exists p > 2 such that ξ∗i is bounded in Lp uniformly on [0, T ].

Proof. The explicit form of ξ∗it follows immediately from Ito’s formula. To prove the

latter part, we choose p > 2 such that
(
− p

τi
A(t)−1θ∗i (t)σ(t),− p

τi
σi(t)

)
∈ Di for

t ∈ [0, T ]. We define M = (Mt)t∈[0,T ] by

Mt =

∫ t

0

∫
RI+1

(
e
− p
τi
A(s)−1θ∗i (s)σ(s)z(0)− p

τi
σi(s)z

(i)

− 1
)
Ñ(ds, dz),

and define E(M) to be the Doleans exponential of M given by

E(M)t = exp

{∫ t

0

∫
RI+1

(
− p

τi
A(s)−1θ∗i (s)σ(s)z(0) − p

τi
σi(s)z

(i)
)
Ñ(ds, dz)

−
∫ t

0

∫
RI+1

(
e
− p
τi
A(s)−1θ∗i (s)σ(s)z(0)− p

τi
σi(s)z

(i)

− 1
)
ν(dz)ds

}
.

Since ∆M > −1, E(M) is a positive supermartingale and hence

E[E(M)t] ≤ 1, ∀t ∈ [0, T ].(2.26)

We then write

(
ξ∗it
)p

= E(M)t exp

{
− p

∫ t

0

r(s)ds+

∫ t

0

∫
RI+1

(
e
− p
τi
A(s)−1θ∗i (s)σ(s)z(0)− p

τi
σi(s)z

(i)

− 1
)
ν(dz)ds

(2.27)

+ p

∫ t

0

∫
RI+1

(
− e−

1
τi
A(s)−1θ∗i (s)σ(s)z(0)− 1

τi
σi(s)z

(i)

+ 1
)
ν(dz)ds

+

∫ t

0

∫
RI+1

(
− p

τi
A(s)−1θ∗i (s)σ(s)z(0) − p

τi
σi(s)z

(i)
)
ν(dz)ds

}
.

It follows that ξ∗i is bounded uniformly in Lp because of (2.26) and that the remaining

terms in (2.27) are deterministic and bounded. ♦

Lemma II.14. Suppose that Assumptions II.1, II.6, and II.10 hold. Let X̂i denote

the gain process corresponding to the optimal strategy (ĉi, θ̂i) defined in Theorem

II.11, then it is bounded in Lp uniformly for any p > 0.
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Proof. We begin by writing the dynamics of the optimal gain process as

dX̂it =
{

(r(t)− A(t)−1)X̂it + θ∗i (t)µ(t)− τiKi(t)
}
dt+

∫
RI+1

θ∗i (t)σ(t)z(0)Ñ(dt, dz),

where the deterministic function Ki is defined by

Ki(t) = A(t)−1

∫ T

t

β(t, s)

∫ s

t

gi(u)duds.

Using ∂
∂t
A(t)−1 = A(t)−2 − r(t)A(t)−1, we can write the dynamics of A−1X̂ as

dA(t)−1X̂it =
(
A(t)−1θ∗i (t)µ(t)− τiA(t)−1Ki(t)

)
dt+

∫
RI+1

A(t)−1θ∗i (t)σ(t)z(0)Ñ(dt, dz).

Under Assumption II.10 and that Di is open at zero, we can find ε > 0 such that

(
εA(t)−1θ∗i (t)σ(t), 0

)
,
(
− εA(t)−1θ∗i (t)σ(t), 0

)
∈ Di, ∀t ∈ [0, T ].

An argument similar to that in Lemma II.13 shows

sup
t∈[0,T )

E
[
eεA(t)−1X̂it

]
<∞, sup

t∈[0,T )

E
[
e−εA(t)−1X̂it

]
<∞.

We then use the inequality |x|p ≤ Cp(e
εx + e−εx), ∀x ∈ R for positive constant Cp to

see that

sup
t∈[0,T )

E
[∣∣A(t)−1X̂it

∣∣p] <∞.
Finally, due to continuity of the function A on [0, T ] and Fatou’s lemma, we have

sup
t∈[0,T ]

E
[∣∣X̂it

∣∣p] <∞.
♦

Corollary II.15. Under Assumptions II.6, II.7, and II.10, we have

sup
t∈[0,T ]

E
[(
ξ∗itX̂it

)2
]
<∞.
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Proof. The bound follows immediately from Lemmas II.13, II.14 and Holder’s in-

equality. ♦

Proof of Theorem II.11. We divide the proof into two steps.

Step 1: Admissibility conditions.

In this step we will verify three key ingredients needed for the next step. For

simplicity, we write X̂t = X
(ĉi,θ̂i)
t for (ĉi, θ̂i) defined in (2.23)-(2.24). The three key

ingredients are

(i) e−δitU ′i(ĉit + Yit) = αξ∗it, ∀t ∈ [0, T ], for some positive constant α > 0.

(ii) The stochastic process
(
ξ∗itX̂it +

∫ t
0
ξ∗isĉisds

)
t∈[0,T ]

is a martingale.

(iii) X̂iT = 0 a.s. P.

To prove claim (i), it suffices to show that the process Eit = e
− ĉit+Yit

τi satisfies the

same SDE as eδitξ∗it. Inserting the representation of ĉit from (2.24) and applying Ito’s

formula to Eit, we have

dEit = Eit−

{(
− 1

τi
A(t)−1θ∗i (t)µ(t)− 1

τi
µi(t) + gi(t)

+

∫
RI+1

(e
− 1
τi
A(t)−1θ∗i (t)σ(t)z(0)− 1

τi
σi(t)z

(i)

− 1 +
1

τi
A(t)−1θ∗i (t)σ(t)z(0) +

1

τi
σi(t)z

(i))ν(dz)
)
dt

+

∫
RI+1

(e
− 1
τi
A(t)−1θ∗t σ(t)z(0)− 1

τi
σi(t)z

(i)

− 1)Ñ(dt, dz)

}
= Eit−

{(
δi − r(t)

)
dt+

∫
RI+1

ϑ∗it(z)Ñ(dt, dz)
}
.

Hence, the claim (i) is proved.
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For claim (ii), applying Ito’s product rule to ξ∗itX̂it, we have

d(ξ∗itX̂it) + ξ∗itĉitdt = ξ∗it−

{(
µ(t)θ∗i (t) +

∫
RI+1

θ∗i (t)σ(t)ϑ∗it(z)z(0)ν(dz)
)
dt

+

∫
RI+1

(
X̂it−ϑ

∗
it(z) + θ∗i (t)σ(t)

(
ϑ∗it(z) + 1

)
z(0)
)
Ñ(dt, dz)

}
= ξ∗it−

∫
RI+1

(
X̂it−ϑ

∗
it(z) + θ∗i (t)σ(t)

(
ϑ∗it(z) + 1

)
z(0)
)
Ñ(dt, dz),

where we have used the state-price density condition (2.21) for ξ∗i to cancel the drift

term. We need to show that the remaining stochastic integral is a true martingale.

It suffices to show the following two conditions:

E
[ ∫ T

0

∫
RI+1

(
ξ∗it−X̂it−ϑ

∗
it(z)

)2
ν(dz)dt

]
<∞,

E
[ ∫ T

0

∫
RI+1

(
ξ∗it−θ

∗
i (t)σ(t)z(0)

(
ϑ∗it(z) + 1

))2

ν(dz)dt

]
<∞.

The first integrability condition is obtained from Corollary II.15 and the bound

E
[ ∫ T

0

∫
RI+1

(
ξ∗it−X̂it−ϑ

∗
it(z)

)2
ν(dz)dt

]
=

∫ T

0

E
(
ξ∗2it−X̂

2
it−
) ∫

RI+1

(
e
− 1
τi
A(t)−1θ∗i (t)σ(t)z(0)− 1

τi
σi(t)z

(i)

− 1
)2
ν(dz)dt

<∞.

The second integrability condition follows from Lemma II.13 in a similar fashion.

Claim (iii) follows directly from Lemma II.12 and the assumption that t →

A(t)−1θ∗i (t)σ(t) is continuous and finitely valued on the interval [0, T ].

Step 2: Verification step.
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We denote by Vi the Fenchel’s conjugate of Ui. We have

E
[ ∫ T

0

e−δitUi(cit + Yit)dt
]
≤ E

[ ∫ T

0

e−δitVi(αe
δitξ∗it)dt+

∫ T

0

αξ∗it(cit + Yit)dt
]

≤ E
[ ∫ T

0

e−δitVi(αe
δitξ∗it)dt+

∫ T

0

αξ∗it(cit + Yit)dt+ αξ∗iTXiT

]
≤ E

[ ∫ T

0

e−δitVi(αe
δitξ∗it)dt+

∫ T

0

αξ∗itYitdt+ αXi0

]
= E

[ ∫ T

0

e−δitVi(αe
δitξ∗it)dt+

∫ T

0

αξ∗it(ĉit + Yit)dt+ αξ∗iT X̂iT

]
= E

[ ∫ T

0

e−δitVi(αe
δitξ∗it)dt+

∫ T

0

αξ∗it(ĉit + Yit)dt
]

= E
[ ∫ T

0

e−δitUi(ĉit + Yit)dt
]
.

We note that the first inequality follows from Fenchel’s inequality, whereas the su-

permartingality of an admissible strategy gives the third inequality. Meanwhile, the

first equality holds because of (iii), the martingality of the optimal strategy is used

in the second, and the last equality follows from (i). ♦

2.2 Finite time-horizon equilibrium

In order for the economy to be in equilibrium, all markets must clear: The money

market account must be in zero net demand, while the stock must be in net unit

demand. Furthermore, since the consumption good is non-storable, the net excess

consumption must equal the dividends from the risky asset. We recall the full def-

inition of Radner equilibrium price processes (S(0), S) in Definition I.1 where now

the investor’s objective is (2.14) and the admissible sets are Ai defined in Definition

II.9. Our main goal is find deterministic functions (r, µ, σ) that induce equilibrium

prices (S(0), S). We will assume throughout this section that Assumptions II.1 and

II.6 hold.

Our main equilibrium result is developed from solving the following fixed point



44

problem:

I∑
i=1

τif
i
− 1
τi
σi(t)

(
− λ(t)

√∫
RI+1

(z(0))2ν(dz) +

∫
RI+1

z(0)ν(dz)
)

= −σD(t).(2.28)

Before deriving the equilibrium, let us first motivate why the above fixed point prob-

lem comes up naturally. Suppose that we find (r, µ, σ), a candidate for equilibrium

processes satisfying σ(t) = σD(t)A(t) for t ∈ [0, T ]. We recall from the previous

section that the optimal investment strategy for the ith investor can be written in

terms of (r, µ, σ) as in (2.20). We let the Sharpe ratio λ (deterministic function) be

given by

λ(t) =
µ(t)

σ(t)
√∫

RI+1(z(0))2ν(dz)
.(2.29)

In terms of λ, the ith investor’s optimal investment strategy can be written as

θ∗i (t) = − τi
σD(t)

f i− 1
τi
σi(t)

(
− λ(t)

√∫
RI+1

(z(0))2ν(dz) +

∫
RI+1

z(0)ν(dz)
)
, i = 1, . . . , I.

(2.30)

We see from (2.30) that the fixed point problem (2.28) is equivalent to the clearing

condition in the stock market.

We start over and redefine (λ, θ∗i ) according to their chronological order. Initially,

we are given (µD, σD, µi, σi) as input. We first define λ(t) to be the (unique) solution

to the fixed point problem (2.28) for t ∈ [0, T ] (See Assumption II.16 and Lemma

II.17 for sufficient conditions). Then, we define θ∗i (t) in terms of λ(t) from equation

(2.30). We let τΣ =
∑I

i=1 τi. Next, we state our last assumption on choice of input

parameters (σD, σi) that had been postponed in Section 2.1.4. The main purpose of

this assumption is to provide first a sufficient condition for the existence of solution

to (2.28), and second a sufficient integrability condition for verification.
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Assumption II.16. We assume that the following two conditions hold for (σD, σi):(
− 1

τΣ

σD(t),− 1

τi
σi(t)

)
∈ Di, ∀t ∈ [0, T ], ∀i = 1, . . . , I,(2.31) (

− 2

τi
θ∗i (t)σD(t),− 2

τi
σi(t)

)
∈ Di, ∀t ∈ [0, T ], ∀i = 1, . . . , I.(2.32)

Lemma II.17. Suppose (2.31) of Assumption II.16 holds. Then there exists a unique

solution λ(t) to equation (2.28) for t ∈ [0, T ].

Proof. By Assumption II.16, we have

τif
i
− 1
τi
σi(t)

(x) > − τi
τΣ

σD(t), as x ↑ ∞, ∀i = 1, . . . , I.

Summing over i ≤ I, we obtain

I∑
i=1

τif
i
− 1
τi
σi(t)

(x) > −σD, as x ↑ ∞.

We can show similarly that

I∑
i=1

τif
i
− 1
τi
σi(t)

(x) < −σD, as x ↓ −∞.

Because f i
u(i) is continuous and strictly monotone, we therefore conclude that equa-

tion (2.28) has a unique solution for λ(t), ∀t ∈ [0, T ]. ♦

Similar to the infinite time-horizon model, this model is incomplete and has in-

finitely many martingale measures. In addition, the minimal martingale measure

does not exist in this model (more detail is discussed in Section 2.4). In order to

properly state the equilibrium result, we will define a simple martingale measure

which is independent of individual investor’s parameters. We first define the deter-

ministic functions θ◦ and ϑ◦ by

θ◦(t) = f
(
− λ(t)

√∫
RI+1

(z(0))2ν(dz) +

∫
RI+1

z(0)ν(dz)
)
,

ϑ◦t (z) = eθ
◦(t)z(0) − 1,
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where f is the inverse of the map u(0) →
∫
RI+1 z

(0)eu
(0)z(0)

ν(dz). We define Zϑ◦ =

(Zϑ◦)t∈[0,T ] as the solution to the linear equation

dZϑ◦

t = Zϑ◦

t−

(∫
RI+1

ϑ◦t (z)Ñ(dt, dz)
)
, t ∈ [0, T ], Z◦0 = 1.

We will construct µ such that (2.29) holds. Then Zϑ◦ is a martingale density because

ϑ◦ satisfies conditions (2.17)-(2.19). We let Q◦ be the martingale measure generated

by the Radon-Nikodym derivative dQ◦
dP = Zϑ◦

T and write E◦ for the expectation under

Q◦.

We can now state our equilibrium result, which is an analogue of Theorem I.6.

Theorem II.18. In addition to Assumptions II.1 and II.6, we suppose that Assump-

tion II.16 holds. Assume that the initial aggregate holdings of money market account

and stock satisfy

I∑
i=1

θ
(0)
i0− = 0,

I∑
i=1

θi0− = 1.

We define λ implicitly through (2.28) and θ∗i by (2.30). Then the functions (r, µ, σ)

defined by

r(s) =
1

τΣ

{
µD(s) +

I∑
i=1

τiδi +
I∑
i=1

µi(s)(2.33)

−
∫
RI+1

( I∑
i=1

τie
− 1
τi
θ∗i (s)σD(s)z(0)− 1

τi
σi(s)z

(i)

− τΣ

)
ν(dz)

+

∫
RI+1

(
σD(s)z(0) +

I∑
i=1

σi(s)z
(i)
)
ν(dz)

}
,

σ(s) = A(s)σD(s),(2.34)

µ(s) = λ(s)σ(s)

√∫
RI+1

z(0)ν(dz),(2.35)

constitute equilibrium price processes (S(0), S) defined in (2.10)-(2.11). Furthermore,
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the stock price process satisfies

(2.36) St = E◦
[ ∫ T

t

β(t, u)Dudu
∣∣∣Ft], t ∈ [0, T ].

Proof. To prove the representation of S in the theorem, we instead define S as in

(2.36) and will show that its dynamics satisfies (2.11). We begin by computing the

dynamics of Zϑ◦D:

dZϑ◦

t Dt = Zϑ◦

t−

{(
µD(t) +

∫
RI+1

ϑ◦t (z)σD(t)z(0)ν(dz)
)
dt

+

∫
RI+1

{(
1 + ϑ◦t (z)

)
σD(t)z(0) +Dt−ϑ

◦
t (z)

}
Ñ(dt, dz)

}
= Zϑ◦

t−

{(
µD(t)− A(t)−1µ(t)

)
dt+

∫
RI+1

{(
1 + ϑ◦t (z)

)
σD(t)z(0) +Dt−ϑ

◦
t (z)

}
Ñ(dt, dz)

}
,

where have used the fact that ϑ◦ satisfies (2.21) in the second equality. Rewriting

the above dynamics as an integral and taking conditional expectation, we obtain

E◦
[
Du

∣∣Ft] =
E
[
Zϑ◦
u Du

∣∣Ft]
Zϑ◦
t

=
Zϑ◦
t Dt + E

[ ∫ u
t
Zϑ◦
s−
(
µD(s)− A(s)−1µ(s)

)
ds
∣∣∣Ft]

Zϑ◦
t

,(2.37)

for u > t. Since Zϑ◦ is a martingale, we have, for s > t,

E
[
Zϑ◦

s−
∣∣Ft] = E

[
Zϑ◦

s −∆Zs
∣∣Ft]

= Zϑ◦

t − E
[
E
[
∆Zϑ◦

s

∣∣Fs−]∣∣∣Ft]
= Zϑ◦

t .

Using the fact that µD(s) − A(s)−1σD(s) is deterministic, equation (2.37) can be

further simplified to

E◦
[
Du

∣∣Ft] = Dt +

∫ u

t

(
µD(s)− A(s)−1µ(s)

)
ds.
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It then follows from Fubini’s theorem that

St =

∫ T

t

β(t, u)E◦
[
Du

∣∣Ft]du
= A(t)Dt +

∫ T

t

β(t, u)

∫ u

t

(
µD(s)− A(s)−1µ(s)

)
dsdu.(2.38)

Computing the dynamics in (2.38), we see that the dynamics dSt match with (2.11)

with the terminal condition (2.12).

Next, we need to check the market clearing conditions. The stock market au-

tomatically clears due to the construction of λ and θ∗i . Provided the stock market

clears, the money market account clears if and only if

(2.39) St =
I∑
i=1

X̂it, ∀t ∈ [0, T ].

Initially, equation (2.39) holds at t = 0 because

I∑
i=1

X̂i0 =
I∑
i=1

(θ
(0)
i0−S

(0)
0 + θi0−S0) = S0.

It also holds at terminal time as ST = 0 and
∑I

i=1 X̂it → 0 as t ↑ T by Lemma II.12.

We claim that, prematurely, both St and
∑I

i=1 X̂it are the unique solution to the

SDE

dRt =
{

(r(t)− A(t)−1)Rt + µ(t)− A(t)−1

∫ T

t

β(t, u)

∫ u

t

I∑
i=1

τigi(s)dsdu
}
dt

+

∫
RI+1

σ(t)z(0)Ñ(dt, dz), t ∈ [0, T ), R0 = S0.(2.40)

It is clear from the optimal choice of consumption ĉit in (2.24) and Lemma II.12

that
∑I

i=1 X̂it satisfies the SDE (2.40). To see that the same holds for S, we write

dynamics of S as

dSt =
{

(r(t)− A(t)−1)St + µ(t) + A(t)−1St −Dt

}
dt+

∫
RI+1

σ(t)z(0)Ñ(dt, dz).
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Comparing the above dynamics with (2.40), we wish to have

(2.41) A(t)−1St −Dt = −A(t)−1

∫ T

t

β(t, u)

∫ u

t

N∑
i=1

τigi(s)dsdu.

By definition of gi and r in (2.25) and (2.33), we have

−
I∑
i=1

τigi(s) = µD(s)− A(s)−1µ(s).(2.42)

Equation (2.41) follows immediately from (2.42) and (2.38), therefore the claim is

proved and the money market account clears. It remains to show that the goods

market clears. To see this we write

I∑
i=1

ĉit = A(t)−1

I∑
i=1

X̂it + A(t)−1

∫ T

t

β(t, s)

∫ s

t

τigi(u)duds

= A(t)−1St + A(t)−1

∫ T

t

β(t, s)

∫ s

t

τigi(u)duds

= Dt,

where the third equality comes from (2.41). ♦

2.3 Variance gamma model

As an example we consider the Variance Gamma process as our underlying Lévy

process η; see [23]. The VG process suits our model because it is a well-known pure

jump process. Below we follow [3] for the construction of the multivariate VG process

through a linear transformation of independent one-dimensional VG processes.

We let Zi ∼ CGMY (Ci, Gi,Mi, 0) be independent VG processes characterized as

a special case of the CGMY process as the last parameter Yi = 0 [7]. In other words,

the Lévy measure νi of Zi is defined by

νi(dz)

dz
=

{ Ci exp(Giz)
−z , z < 0

Ci exp(−Miz)
z

, z > 0.
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Let α ∈ RI+1 with α0 = 1. We define the multivariate VG process η as

η = (η(0), η(1), . . . , η(I)) = (Z0 + α0ZI+1, . . . , ZI + αIZI+1).

According to Proposition 11.10 in [30], the Lévy measure ν of the multivariate process

η satisfies

ν(E) =
I∑
i=0

νi(Ei) + νI+1(E∆), ∀E ∈ B(RI+1 \ {0}),

where

Ei = {xi ∈ R : (0, 0, . . . , xi, . . . , 0) ∈ E},

E∆ = {s ∈ R : sα ∈ E}.

In particular, this Lévy measure ν have positive measure only on the z(i)-axes and

on the line {z ∈ RI+1 : z = sα}. We observe that ν fails to satisfy Condition (1.6)

in Assumption I.2. We will instead derive the exponentially integrable domains Di

and show that the conditions in Assumption II.1 are satisfied. Since∫
|z(i)|≥1

eu
(i)z(i)

νi(dz
(i)) = Ci

∫ ∞
1

e(u(i)−Mi)z
(i)

z(i)
+
e−(u(i)+Gi)z

(i)

z(i)
dz(i),

we have ∫
|z(i)|≥1

eu
(i)z(i)

νi(dz
(i)) <∞ ⇐⇒ u(i) ∈ (−Gi,Mi).(2.43)

It follows similarly as in (2.43) that
∫
||z||≥1

eu
(0)z(0)+u(i)z(i)

ν(dz) <∞ if and only if

(u(0), u(i)) ∈ (−G0,M0)× (−Gi,Mi) and α0u
(0) + αiu

(i) ∈ (−GI+1,MI+1).

Hence the domain Di is open and is given by

Di =
{

(u(0), u(i)) ∈ (−G0,M0)× (−Gi,Mi) : u(0) + αiu
(i) ∈ (−GI+1,MI+1)

}
.
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Next we proceed to derive the explicit form of function ϕi. We have

ϕi(u
(0), u(i)) =

∫
R
z(0)eu

(0)z(0)

ν0(dz(0)) +

∫
R
se(u(0)+αiu

(i))sνI+1(ds)

= C0

(
1

M0 − u(0)
− 1

G0 + u(0)

)
+ CI+1

(
1

MI+1 − (u(0) + αiu(i))
− 1

GI+1 + (u(0) + αiu(i))

)
.

Unlike ϕi, the function f i
u(i) can only be obtained implicitly through the inverse of the

ϕi(·, u(i)). As a result, we can only verify numerically the conditions in Assumption

II.16.

The remainder of this section is dedicated to numerical results from a VG model.

We consider the economy with a large number of identical exponential investors with

τi = τ for i = 1, . . . , I. We set the dividend volatility parameter σD = .1I. The Lévy

measure is constructed by iid one-dimensional VG processes

Zi ∼ CGMY (1, 2, 2, 0), α0 = 1, αi = ρ, for i = 2, . . . , I + 1.(2.44)

This particular parameter setting reflects an economy whose investors face the same

income uncertainty with ρ indicating degree of the shared income risk. Figure 2.1 be-

low shows the impacts due to the incompleteness in this model as ρ changes between

[−1, 1].

Next we show the effects of investor heterogeneity on the equilibrium for the case

where ρ = 1. As usual, we split the population into two homogeneous groups (A,B),

each containing investors with identical characteristic. Investors in group A bear

higher income risk through the increase in jump sizes as σA = .2, whereas in group

B, σB = .1. We let w ∈ [0, 1] denote the weight of group A against the whole

population. Table 2.1 below reports the impacts on fraction of equity, equilibrium

interest rate, and Sharpe ratio as the weight changes.
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Figure 2.1: Plot of impacts due to model incompleteness on rrep− r (left) and λ−λrep (right) seen
as a function of the parameter ρ. We consider the limiting economy (I →∞) whereas
the remaining parameters are given by σD = .1I and (2.44) for the various risk tolerance
coefficients τ : τ = 1 (——–), τ = 1

2 (– – –), and τ = 1
3 (– · – ·).

w (τA, τB)

( 1
2 ,

1
2 ) ( 1

2 ,
1
3 ) ( 1

3 ,
1
2 ) ( 1

3 ,
1
3 )

0.75 .648, [.052], (.104) .780, [.053], (.122) .474, [.120], (.200) .638, [.121], (.248)

0.50 .365, [.041], (.087) .544, [.045], (.122) .175, [.086], (.136) .352, [.094], (.202)

0.25 .149, [.027], (.071) .287, [.034], (.122) .031, [.049], (.090) .141, [.061], (.160)

Table 2.1: Values of limI→∞ wIθ∗A, [r
rep−r], (λ−λrep) in the limiting economy (I →∞) for various

weights w and various risk tolerance parameters (τA, τB). The values are based on the
parameters σA = .2, σB = .1, σD = .1I, ρ = 1, and the remaining parameters as in
(2.44).

2.4 Lack of the minimal martingale measure

This section is dedicated to the discussion of the (lack of) minimal martingale

measure in our jump model. The existence of the minimal martingale measure for

models with continuous stock prices is well studied by [13]. They established that

the minimal martingale measure exists under a square-integrable condition of its

martingale density. In our pure jump Lévy model, the stock price is not continuous.

Therefore, the result from [13] does not apply in our case. In fact, we will show that

the minimal martingale measure does not exist. We will proceed by proving that the

unique candidate minimal measure cannot be a martingale measure.
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We first introduce necessary notation to define the minimal martingale measure.

We let M2 be the set of all L2-martingales M such that supt≥0 E{M2
t } < ∞, and

M0 = 0 a.s. The space M2 endowed with the norm

||M || = E{M2
∞}

1
2

is a Hilbert space. Two martingales N,M ∈ M2 are said to be strongly orthogonal

if their product L = NM is a (uniformly integrable) martingale. Furthermore,

we can extend this definition of orthogonality to a pair of locally square-integrable

martingales M,N ∈ M2
loc in the natural way by stopping. We write A× to denote

the set of all elements of M2 strongly orthogonal to each element of A.

We now state the necessary assumption and define the minimal martingale mea-

sure. We let S̃ = S
S(0) be the discounted stock price, and assume that it admits a

semimartingale decomposition S̃ = S̃0 + M + A, for a local P-martingale M and

an adapted process A of finite variation. The following definition of the minimal

martingale measure is taken from [14].

Definition II.19 (Structure condition). S̃ satisfies the structure condition (SC) if

M is locally P-square-integrable and A has the form A =
∫
λd〈M〉 for a predictable

process λ such that the increasing process
∫
λ′λd〈M〉 is finitely valued.

Definition II.20 (Minimal martingale measure). Suppose S̃ satisfies (SC). A mar-

tingale measure P̂ with P-square-integrable density dP̂/dP is minimal if P̂ = P on F0

and if every local P-martingale L which is locally P-square-integrable and strongly

P-orthogonal to M is also a local P̂-martingale.

In our Lévy model, the discounted risky asset satisfies

dS̃t =
µ(t)−Dt

S
(0)
t

dt+
1

S
(0)
t

∫
RN+1

σ(t)z(0)Ñ(dt, dz).
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We see that S̃ admits a semimartingale decomposition with local martingale part

Mt =

∫ t

0

∫
RI+1

z(0)Ñ(ds, dz).

Here, the exclusion of the coefficient σ
S(0) > 0 does not affect the minimal martingale

because the coefficient is finitely valued and deterministic. In addition,

E
[
M2

t

]
≤ t

∫
RI+1

(z(0))2ν(dz) <∞;

hence, the model satisfies (SC).

We will give two different proofs of the non-existence of the minimal martingale

measure. One uses stable spaces of M2-martingales, and the other relies on the chaos

decomposition for Lévy processes (see [26] and [22]).

2.4.1 Minimal martingale density as an element of the stable subspace S(M)

In this section we suppose, by way of contradiction, that the minimal martingale

measure P̂ exists. We will derive a representation of its density and show that it

fails to be positive. The set S(M) is defined to be the smallest closed (under the

M2-norm) and stable subspace of M2 containing M . Using the finite time version of

Theorem 35 in [27], we have

S(M) =

{
H ·M : Ht = H(t, ω) is predictable and E

[ ∫ T

0

H2
sd[M,M ]s

]
<∞

}
.

(2.45)

We note that the predictable integrand H in (2.45) cannot depend on the jump size z.

On the other hand, it follows from the definition of the minimal martingale measure

of M that for any square-integrable martingale L ∈M2,

L ∈ {M}× =⇒ L is a P̂-martingale.
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Here we only test P̂-martingality of the genuinely square-integrable martingales as

oppose to all the locally square-integrable martingales. If we define Zmin = dP̂/dP ∈

M2 to be the density for the minimal martingale measure P̂, then LZmin is a (UI)

P-martingale for any L ∈ {M}×. In other words,

Zmin ∈ {M}××.

A direct consequence of Theorem 37 in [27] implies {M}×× = S(M); hence, by (2.45)

we can write Zmin as

Zmin
t =

∫ t

0

∫
RI+1

Hsz
(0)Ñ(ds, dz),

for some predictable integrand H independent of z. By comparing this to the state-

price density in (2.16), we see

ϑmint (z) =
Htz

(0)

Zmin
t−

.

Without further assumptions on the Lévy measure, condition (2.17) is violated.

Therefore, Zmin is not almost surely positive and is not (in general) a martingale

density.

2.4.2 Chaos decomposition for Lévy processes

In this section, we will introduce the chaos decomposition for Lévy process to

solve for the minimal martingale measure. Although the decomposition was first

used by [26], we will use its multivariate version which was extended by [22]. The

decomposition holds under the following condition on the Lévy measure: There exist

some ε, λ > 0 such that ∫
||z||≥ε

eλ||z||ν(dz) <∞.(2.46)
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We note that the above condition is automatically satisfied if we suppose that the

Assumption II.1 holds.

Next, we follow [22] for the construction of the chaos decomposition. For sim-

plicity, we will use the multi-index notation, for instance, we write η(p) instead of

η(p0,p1,...,pN ) for p = (p0, . . . , pN). We denote |p| = p0 + p1 + . . . pN and define an

ordering on NI+1 by

q ≺ p if

 |q| < |p|, or

|q| = |p| and (∃i,∀j < i, qj = pj and qi < pi).

We define the power jump monomial processes by

η
(p)
t =

∑
0<s≤t

(
∆η(0)

s

)p0
(
∆η(1)

s

)p1 · · ·
(
∆η(N)

s

)pN .
The compensated power jump processes are defined by

η̃
(p)
t = η

(p)
t − E

[
η

(p)
t

]
,

where

E
[
η

(p)
t

]
=

∫
RI+1

(
z(0)
)p0 · · ·

(
z(I)
)pIν(dz)t.

The compensated power jump processes are genuine martingales but they are not

orthogonal. In fact, the cross characteristics is

〈η̃(p), η̃(q)〉t =

∫
RI+1

zpzqν(dz)t,

which is non-zero when p 6= q. The following is the standard Gram-Schmidt process

to construct an orthogonal basis {H(p) : p ∈ NI+1}. We define

H(1,0,...,0) = η̃(1,0,...,0),

H(p) = η̃(p) +
∑
q≺p

c(p,q)η̃
(q), ∀p � (1, 0, · · · , 0),

where the constants c(p,q) are chosen so that 〈H(p), H(l)〉 = 0 for all l ≺ p. The chaos

decomposition theorem is stated below.
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Theorem II.21 (Predictable Representation Property). Under Condition (2.46),

every random variable F in L2(Ω,F) has a representation of the form

F = E [F ] +
∞∑
d=1

∑
|p|=d

∫ ∞
0

Φ(p)
s dH(p)

s ,

where Φ(p) is predictable function of (t, ω) and does not depend on the jump size z.

The chaos decomposition enables us to identify all the processes strongly orthog-

onal to M and in turn find their common martingale-preserving measure. To see this

we suppose Zmin
T ∈ L2 is the minimal martingale measure which decomposes into

Zmin
t = 1 +

∞∑
d=1

∑
|p|=d

∫ t

0

Φ(p)
s dH(p)

s , 0 ≤ t ≤ T,(2.47)

for some predictable processes Φ(p). On the other hand, the martingale part of

discounted stock price M is identified in the chaotic decomposition as

Mt = H
(1,0,...,0)
t .

We quickly note that for a process L ∈M2 to be a P̂-martingale, we must have that

L is strongly orthogonal to Zmin. We then solve for the predictable processes Φ(p) in

(2.47) by testing the strong orthogonality with different M -orthogonal martingales.

For instant, the process L
(p)
t defined by

L
(p)
t =

∫ t

0

Φ(p)
s dH(p)

s , p 6= (1, 0, . . . , 0),

due to the construction of the orthogonal basis {H(p) : p ∈ NI+1}, must satisfy

〈L(p),M〉t = 〈L(p), H(1,0,...,0)〉t = 0.

Then, by definition of the minimal martingale measure, we have

0 = 〈L(p),Mmin〉t = E
∫ t

0

(
Φ(p)
s

)2
d〈H〉s.
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Consequently, Φ(p) = 0, for p � (1, 0, . . . 0), and the minimal martingale density Zmin

satisfies

Zmin
t =

∫ t

0

Φ(1,0,...,0)
s dH(1,0,...,0)

s =

∫ t

0

∫
RI+1

Φ(1,0,...,0)
s z(0)dÑ(ds, dz).

Finally, we argue that the martingale Zmin above cannot be a martingale measure

as it fails to be strictly positive a.s. We see this as

ϑmint (z) =
Φ

(1,0,...,0)
t

Mmin
t−

z(0) ≯ −1,

especially when η’s jump on the z(0)-direction is unbounded. We conclude that the

minimal martingale measure does not exist as the only ‘minimal’ candidate may not

be a positive martingale measure.
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