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Abstract

This thesis is concerned with the study of random graphs and random
algorithms. There are three overarching themes. One theme is sparse
random graphs, i.e. random graphs in which the average degree is bounded
with high probability. A second theme is that of finding spanning subsets
such as spanning trees, perfect matchings and Hamilton cycles. A third
theme is solving optimization problems on graphs with random edge costs.
The research contributions of the thesis are separated into five chapters.
The topics of the chapters are similar but separate, and can be read in any
order. Each chapter fits at least one of the themes, while each theme fails
to feature in at least one chapter.

In Chapter 2 we consider random k-out subgraphs Gk of general graphs
G with minimum degree δ(G) ≥ m for some m that tends to infinity
with the size of G. We show that if k ≥ 2 then Gk is k-connected with
high probability. For a fixed ε > 0 we show that if k is large enough
then Gk contains a cycle of length (1− ε)m with high probability. When
m ≥ (1/2+ε)n we strengthen this to showing that Gk contains a Hamilton
cycle with high probability.

In Chapter 3 we analyze the random walk cuckoo hashing algorithm for
finding L-saturating matchings in a random bipartite graph on vertex set
L ∪R. It is shown that the algorithm has expected insertion time O(1).

In Chapter 4 we introduce a variation on the Barabási-Albert preferential
attachment graph in which edges are removed in an on-line fashion. The
asymptotic behaviour of the degree sequence is determined, as well as
conditions for the existence of a giant component.

In Chapter 5 we consider the following optimization problem. Let G =
Gn,p or G = Gn,n,p, and after generating G assign random costs to each
edge, independently exponentially distributed with mean 1. We show that
the expected minimum-cost perfect matching converges to π2/(12p) for
G = Gn,p and π2/(6p) for G = Gn,n,p when np� log2 n. This generalizes
a well-known result for the case p = 1.

Finally, in Chapter 6 we consider the complete graph Kn in which each
edge is independently assigned a uniform [0, 1] cost. We exactly determine
the expected minimum total cost of two edge-disjoint spanning trees, and
show that the minimum total cost of k edge-disjoint spanning trees is
proportional to k2 for large k.
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Chapter 1

Introduction

Complex networks are found in many areas of modern life. Devices connected to the internet form
a massive network spanning the entire globe, while roads, electrical grids and airline travel form
other infrastructural networks which humans depend on. More abstractly, human interaction and
relations can be seen as enormous complex networks, to which the term “social network” refers.
These networks are typically too large and complex to study directly, and we turn to mathematical
models which imitate the behavior of real-world networks. A mathematical description which
approximates the real network simplifies calculations, and may help in understanding how a network
obtained its shape. Real-world networks are often formed by interactions between its members
which can be viewed as random, and random graphs provide a tool with which networks are
modelled.

A random graph is a graph which is chosen randomly from some large class G of graphs according to
some distribution specified by the random graph model used. In random graph theory, we answer
the question “what are the properties of a typical member of G?”, as opposed to the more classical
mathematical question “what are the properties shared by every member of G?”. Rather than
pure enumeration, we are interested in using probabilistic tools and asymptotic approximations to
estimate the proportion of G which has a certain property.

Random graphs have applications outside of modelling real-world networks. Graph theoretic al-
gorithms in theoretical computer science are plentiful, and random graph problems arise with the
use of modern randomized algorithms. In other areas of combinatorics, some random graphs have
properties which are difficult to construct “by hand”. Some of the early applications of probabilis-
tic ideas in graph theory appeared in Ramsey Theory, e.g. Szele [85] who showed the existence
of tournaments on n vertices with n!21−n Hamilton cycles and Erdős [24] who showed that the
diagonal Ramsey number R(k) is greater than 2k/2.

The study of random graphs was initiated by Erdős and Rényi [25], and independently by Gilbert
[54], in the late 1950’s. The former introduced the graph Gn,m, a graph chosen uniformly at random
from all simple graphs on n vertices containing exactly m edges, while Gilbert considered the closely
related graph Gn,p, a graph on n vertices in which each possible edge is included with probability
p ∈ (0, 1). The models Gn,m and Gn,p are now known as the Erdős-Rényi or Erdős-Rényi-Gilbert
graph, and has been studied extensively since its introduction, most notably by Erdős and Rényi
[26], [27], [28], [29]. The field was later dominated by Béla Bollobás, and his 1985 book [12] would
help solidify the field as a branch of mathematics and attract new researchers to the field.

1
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1.1 Preliminaries

The theory of random graphs lies at the intersection of graph theory and probability theory. While
the reader is expected to have some familiarity with these branches of mathematics we now briefly
introduce the subjects, establishing conventions and notation used throughout the thesis.

1.1.1 Graph theory

We define an graph G as a pair of sets (V,E) where V is the vertex set and E ⊆ V × V is the edge
set. The graph may be undirected in which order is ignored, and we write {u, v} for the edge (u, v)
and (v, u), or directed. In an undirected graph we view (u, v) and (v, u) as one edge. Throughout
this thesis, the sets V,E will be assumed to be finite. We allow E to be a multiset, i.e. we allow
it to contain more than one copy of the same edge (parallel edges). If E contains no parallel edges
and no edge of the form (v, v) (a self-loop), we say that G is simple. In most applications we are
only interested in simple graphs. We write e(G) = |E(G)| and v(G) = |V (G)| for the number of
edges and vertices in G, respectively.

In an undirected graph we say that u, v ∈ V are adjacent or neighbors if {u, v} ∈ E, in which case we
write u ∼ v. The neighborhood of v ∈ V is the set N(v) = {u ∈ V : {u, v} ∈ E}, and the degree of v,
denoted d(v) or deg v, is the size of N(v). In a directed graph we let N+(v) = {u ∈ V : (v, u) ∈ E}
denote the out-neighborhood of v, and d+(v) = |N+(v)| is the out-degree of v. The in-neighborhood
N−(v) and in-degree d−(v) of v are defined similarly.

A path in an undirected graph is a sequence of distinct vertices v0, v1, . . . , vk where ei = {vi−1, vi} ∈
E for i = 1, . . . , k. Where convenient we may also view the path as the edge sequence e1, . . . , ek. A
cycle is a path v0, v1, . . . , vk along with the edge {vk, v0}. In a directed graph we require orientations
to be consistent; we require (vi−1, vi) ∈ E for i = 1, . . . , k in paths and cycles, and (vk, v0) ∈ E in
cycles. A walk is a path in which repetitions of vertices and edges are allowed. A Hamilton cycle
is a cycle which covers all vertices of the graph.

Given a graph G = (V,E) we say that H is a subgraph of G, denoted H ⊆ G, if H = (V,E′)
where E′ ⊆ E. Note in particular that H is defined on the same vertex set as G. Given W ⊆ V ,
the induced subgraph of G on W , denoted G[W ], is the graph on vertex set W whose edge set is
{(u, v) ∈ E : u, v ∈W}.

We define a tree as a connected graph which contains no cycles. A tree may be viewed as a minimal
connected graph, in the sense that removing any edge disconnects the graph. A forest is a graph
with no cycles, i.e. a collection of disjoint trees. Given a graph G, a spanning tree of G is a subgraph
of G which is a tree on all vertices of G.

A matching is a set of edges M such that each vertex is incident to at most one edge of M , or in
other words no two edges of M meet at any vertex. A perfect matching in a graph G = (V,E) is a
matching M ⊆ E which is incident to each vertex exactly once.

1.1.2 Discrete probability theory

The random graphs considered in this thesis are of large finite size. We now set up the necessary
probabilistic and asymptotic notation required to study random graphs.
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We are typically concerned with the asymptotic behaviour of a sequence {Gn : n ∈ N} of random
graphs as n tends to infinity. To be precise, let G1,G2, . . . be an infinite sequence of finite collections
of finite graphs. The size of a typical element in Gn should increase with n; in many cases all graphs
in Gn have exactly n vertices, but this is not always the case (e.g. Chapter 4). Let Gn be a random
member of Gn chosen according to some distribution specified by a model, typically with one or
more real numbers as parameters. Define a property to be a collection P = {Pn ⊆ Gn : n ∈ N}. We
say that the random sequence {Gn : n ∈ N} has property P with high probability (w.h.p.) if

lim
n→∞

Pr {Gn ∈ Pn} = 1.

The sequence {Gn : n ∈ N} is typically understood to be implicit, and we say that Gn has property
P with high probability.

As statements are made about the asymptotic behaviour of graphs, asymptotic notation is fre-
quently used. For functions f(n) and g(n) 6= 0 we write f(n) = O(g(n)), f(n) = o(g(n)) if there
exists a constant C > 0 such that

lim
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ ≤ C, lim
n→∞

f(n)

g(n)
= 0,

respectively. Define f(n) = Ω(g(n)), f(n) = ω(g(n)) if f(n) 6= 0 and g(n) = O(f(n)) and g(n) =
o(f(n)) respectively. At some points we prefer to write f(n) � g(n) for f(n) = o(g(n)) and
f(n)� g(n) for f(n) = ω(g(n)).

Unless a probability distribution is specified, the phrase “a random x ∈ X” should be interpreted
as a member x of the (finite) set X chosen uniformly at random from X.

1.1.3 Random graph models

We now define three well-known models of random graphs which will be referenced in the thesis.
The most well-known graph is the Erdős-Rényi graph Gn,p (introduced by Gilbert [54]), the random
graph obtained by deleting each edge of Kn independently with probability 1 − p. Here p = p(n)
typically depends on n. Let Gn,m be the class of graphs on n vertices with m = m(n) edges and
define Gn,m as a uniformly random member of Gn,m. The graph Gn,m is closely related to Gn,p via
the following identity:

∀G ∈ Gn,m : Pr {Gn,p = G | e(Gn,p) = m} = Pr {Gn,m = G}.

For a fixed positive integer k we define the k-out random graph Kn(k−out) on n vertices as follows.
Each vertex v chooses a set Nv of k vertices uniformly at random, with or without replacement, and
Kn(k−out) includes the edge e = {v, w} if and only if v ∈ Nw or w ∈ Nv. A bipartite version of this
graph was first considered by Walkup [89]. The k-out graph achieves strong connectivity properties
such as being k-connected [31] and containing spanning subgraphs such as perfect matchings and
Hamilton cycles with only O(n) edges (e.g. [10], [43]), while Gn,p requires Ω(n log n) edges to
achieve the same properties.

One class of random graphs which have gained popularity in recent years are preferential attachment
graphs. For a fixed m ≥ 1 we will consider the following definition of such a graph, first rigorously
defined in [7]. Given a graph Gt, we define Gt+1 by adding a single vertex along with m edges.
The m edges are attached to vertices in Gt with probabilities proportional to the degrees of the
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vertices. Starting at some fixed graph G0, this defines a sequence G0, G1, . . . , and we consider some
Gn where n� v(G0). Preferential attachment graphs were proposed by Barabási and Albert [2] as
a way of modelling real-world networks, as such networks frequently have a degree sequence which
follows a power law.

All random graphs considered in this thesis are related to the above three models, while models
such as the geometric graph, random regular graphs and infinite graphs such as the Zn lattice are
not considered.

1.2 History and contributions

In this thesis we present five separate contributions to the fields of random graphs and random
algorithms.

1.2.1 Long cycles in k-out subgraphs of large graphs

Traditionally, most results on (finite) random graphs are based on studying properties of random
subgraphs of Kn or Kn,n. Recently however, Krivelevich, Lee and Sudakov [65] considered Erdős-
Rényi subgraphs of some more general graph G. They define Gp by deleting any edge of G with
probability 1−p, independently. Their main result is that if G has minimum degree δ(G) ≥ m and
p� 1/m then Gp contains a cycle of length (1− om(1))m with probability 1− om(1). Riordan [81]
gave a simpler proof of this result.

In [40] we consider k-out subgraphs of some arbitrary graph G on n vertices, assuming δ(G) ≥ m
for some m = m(n) that tends to infinity with n. Define Gk, the k-out subgraph of G, to be the
random graph given by each vertex protecting k of its incident edges uniformly at random, and
removing any unprotected edge. We show that there exists a kε such that if k ≥ kε, the k-out
random subgraph of G has a cycle of length at least (1− ε)m with high probability.

When m ≥ (1/2 + ε)n for some constant ε > 0, we also prove that k-out subgraphs of G are
k-connected with high probability for any k ≥ 2, and show that there exists a kε such that k ≥ kε
implies that the k-out subgraph of G contains a Hamilton cycle with high probability. This is
inspired by a result from Bohman and Frieze [10], who showed that if k ≥ 3 is enough for k-out
subgraphs of Kn to contain a Hamilton cycle with high probability, and by Krivelevich, Lee and
Sudakov [66] who showed that there exists a C > 0 such that if δ(G) ≥ n/2 and p ≥ Cn−1 log n
then Gp is Hamiltonian with high probability.

In Chapter 2 we present [40] in full.

1.2.2 Random walk cuckoo hashing

Suppose G = (L + R,E) is a bipartite graph which contains a matching of L = {v1, . . . , vn} into
R = {w1, . . . , wm}, m ≥ n. Define a sequence of random induced subgraphs of G as follows. Let
∅ = L0 ⊆ L1 ⊆ · · · ⊆ Ln = L be some sequence with |Lk \ Lk−1| = 1 for all k > 0 and define
Gk = G[Lk∪R] for k = 0, 1, . . . , n. Let vk be the unique element of Lk \Lk−1 for all k. We consider
the problem of building and maintaining a matching on-line. Presented with G1, G2, . . . , Gn in
order with no knowledge of G, the aim is to maintain a matching Mk of Lk into R as k increases
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from 1 to n. We obtain Mk from Mk−1 via augmenting paths from vk to some vertex in R which
is not incident to Mk−1. We wish to bound the total length of augmenting paths in this process.
Chaudhuri, Daskalakis, Kleinberg, Lin [17] considered the case |L| = |R| = n, and showed that if
the vertices of L arrive in a random order then the total length of augmenting paths needed to
building a perfect matching, if the shortest possible augmenting path is used at each stage, is at
most n log n + O(n). The problem has also been discussed by Bosek, Leniowski, Sankowski and
Zych [15] and Gupta, Kumar and Sten [56].

In [41] (Chapter 3) we consider the problem on a random graph with n = (1 − ε)m where the
neighborhood of each v ∈ L is a random set of d vertices in R for some constant d, and where
augmenting paths are found via random walks. This corresponds to cuckoo hashing, introduced
by Pagh and Rodler [77]. We show that if d � 1/ε, the expected length of an augmenting path
from Mk−1 to Mk is O(1), for all k. This is the first result with constant expected insertion time,
and improves on bounds by Frieze, Melsted and Mitzenmacher [50], Fountoulakis, Panagiotou and
Steger [37], Fotakis, Pagh, Sanders and Spirakis [35]. The size of d required for a matching to exist
is d� log(1/ε) ([49], [36]), so there is some room for improvement.

1.2.3 A preferential attachment graph with oldest-edge deletion

The preferential attachment graph, introduced by Albert and Barabási [2], is a popular random
graph model for modelling real-world networks whose degree sequence follows a power law. In other
words, the proportion of vertices having degree k is proportional to k−η for some constant η. A
large number of real-world networks including the World Wide Web [30] follow a power law. A
long list of real-world networks exhibiting power law behaviour can be found in [7].

Chapter 4 covers [60]. Here we consider a variation of the Barabási-Albert model with fixed
parameters m ∈ N and 1/2 < p < 1. A random graph Gn is generated in an on-line manner
starting with some small graph Gt0 . With probability p a vertex is added along with m edges,
each of whose endpoint is randomly chosen with probability proportional to vertex degrees. With
probability 1− p we locate the oldest vertex still holding its original m edges, and remove those m
edges from the graph. We find a p0 ≈ 0.83 such that if p > p0, the resulting graph Gn has a degree
sequence that follows a power law, while if p < p0 the degree sequence has an exponential tail. We
also show that the graph has a unique giant component with high probability if and only if m ≥ 2.

While this variation of the preferential attachment model has not been studied before, other prefer-
ential attachment models with vertex and edge deletion have previously been considered by Bollobás
and Riordan [13], Cooper, Frieze and Vera [20], Flaxman, Frieze and Vera [33]. Chung and Lu [18]
considered a general growth-deletion model for random power law graphs.

1.2.4 Minimum-cost matchings in a random graph with random costs

The final two chapters deal with optimization problems on some graph Gn, in which each edge e
is assigned a cost c(e), here random, independent and identically distributed for all e. For a class
Hn of subgraphs of Gn we define a random variable

Zn = min

{∑
e∈H

c(e) : H ∈ Hn

}
,
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and we are interested in the limiting behaviour of Zn as n → ∞. Most often c(e) is uniform [0, 1]
distributed and Gn = Kn or Gn = Kn,n. The most studied instances of this problems are (i)
spanning trees in Kn, see Frieze [42], (ii) paths in Kn, see Janson [59] (iii) perfect matchings in
Kn,n (see below) and (iv) Hamilton cycles, see Karp [61], Frieze [44] and Wästlund [93].

In [38] (Chapter 5) we consider perfect matchings in a bipartite graph G where costs are indepen-
dently exponentially distributed with mean 1. The case G = Kn,n has been extensively studied.
Walkup [88] and Karp [62] bounded E [Zn] before Aldous [3], [4] proved that E [Zn] → ζ(2) =∑

k≥1 k
−2 as n→∞. Parisi [78] conjectured that E [Zn] =

∑n
k=1 k

−2 exactly, and this was proved
independently by Linusson and Wästlund [68] and by Nair, Prabhakar and Sharma [74]. An elegant
proof was given by Wästlund [90], [92], who also extended the proof idea to Kn [91].

In [38] we extend the proof idea of Wästlund, replacing Kn,n by the bipartite Erdős-Rényi graph
Gn,n,p. Generating G = Gn,n,p first and then assigning random costs, we show that with high
probability G is such that E [Zn | Gn,n,p = G] = p−1ζ(2) + o(p−1) as n→∞ when p� n−1 log2 n.
For Gn,p we similarly show that the expected minimum-cost perfect matching has cost p−1ζ(2)/2+
o(p−1) when p� n−1 log2 n.

1.2.5 Minimum-cost disjoint spanning trees in the complete graph with random
costs

Our final contribution also falls into the category of optimization problems defined above. It
is motivated by the minimum-cost spanning tree problem in Kn with uniform [0, 1] edge costs,
for which Frieze [42] showed that E [Zn] → ζ(3) =

∑
k≥1 k

−3 as n → ∞. Generalizations and
refinements of this have been given by Steele [83], Frieze and McDiarmid [48], Janson [58], Penrose
[79], Beveridge, Frieze and McDiarmid [9], Frieze, Ruszinko and Thoma [51] and Cooper, Frieze,
Ince, Janson and Spencer [19]

In Chapter 6 we are interested in generalizing this to the problem of finding a minimum-weight basis
in an element weighted matroid. In the language of matroids, a minimum-cost spanning tree is a
minimum-weight basis in the cycle matroid with uniform [0, 1] weights. Kordecki and Lyczkowska-
Hanćkowiak [64] have shown a general result for this optimization problem on general matroids,
but the formulae obtained are somewhat difficult to penetrate. In [39], which Chapter 6 covers,
we consider the union of k cycle matroids, for which a basis is given by k edge disjoint spanning
trees. For large k we show that the weight of the minimum-cost basis is proportional to k2, and for
k = 2 we show that the expected minimum converges to an integral which approximately evaluates
to 4.17.

1.3 Future considerations

As mentioned above, while our result on the cuckoo hashing algorithm [41] brings the expected
insertion time down to a constant, it does require d � 1/ε, which is above the requirement d �
log(1/ε) by a significant margin. More research should be focused on bringing the value of d down.

The preferential attachment graph with oldest-edge deletion has not been studied outside of [60],
and many questions remain. Natural properties to investigate are the maximum degree of the
graph, the exact size and diameter of the giant component, and connectivity properties. It is also
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natural to ask what happens when the parameter p is close to the power-law threshold p0 ≈ 0.83,
as [60] does not address this. A closely variation on the preferential attachment graph is given by
removing the oldest vertex in the graph with probability 1 − p, rather than removing the oldest
edges. We expect this variation to have properties similar to those of the edge-deletion model.

The generalization from Kn,n to Gn,n,p in [38] was made in the aim of generalizing from Kn,n to
general d-regular graphs. We conjecture that the minimum-cost perfect matching in a d-regular
graph is nd−1ζ(2) + o(nd−1), likely with some lower bound on d. The calculation of the minimum
cost of two disjoint spanning trees in [39] was done in the hope of generalizing the elegant formulae
available for spanning subsets such as spanning trees and perfect matchings. The formula obtained
for k = 2 spanning trees is somewhat complicated, and it might be difficult to find a useful formula
for general k. Nevertheless, one direction of future research in random optimization problems is
toward simple formulae for general minimum-cost matroids.





Chapter 2

Long cycles in k-out subgraphs of
large graphs

This chapter corresponds to [40].

Abstract

We consider random subgraphs of a fixed graphG = (V,E) with large mini-
mum degree. We fix a positive integer k and letGk be the random subgraph
where each v ∈ V independently chooses k random neighbors, making kn
edges in all. When the minimum degree δ(G) ≥ (1

2 + ε)n, n = |V | then Gk
is k-connected w.h.p. for k = O(1); Hamiltonian for k sufficiently large.
When δ(G) ≥ m, then Gk has a cycle of length (1 − ε)m for k ≥ kε. By
w.h.p. we mean that the probability of non-occurrence can be bounded by
a function φ(n) (or φ(m)) where limn→∞ φ(n) = 0.

2.1 Introduction

The study of random graphs since the seminal paper of Erdős and Rényi [26] has by and large been
restricted to analysing random subgraphs of the complete graph. This is not of course completely
true. There has been a lot of research on random subgraphs of the hypercube and grids (perco-
lation). There has been less research on random subgraphs of arbitrary graphs G, perhaps with
some simple properties.

In this vain, the recent result of Krivelevich, Lee and Sudakov [66] brings a refreshing new dimension.
They start with an arbitrary graph G which they assume has minimum degree at least k. For
0 ≤ p ≤ 1 we let Gp be the random subgraph of G obtained by independently keeping each edge of
G with probability p. Their main result is that if p = ω/k then Gp has a cycle of length (1−ok(1))k
with probability 1 − ok(1). Here ok(1) is a function of k that tends to zero as k → ∞. Riordan
[81] gave a much simpler proof of this result. Krivelevich and Samotij [67] proved the existence
of long cycles for the case where p ≥ 1+ε

k and G is H-free for some fixed set of graphs H. Frieze
and Krivelevich [47] showed that Gp is non-planar with probability 1 − ok(1) when p ≥ 1+ε

k and
G has minimum degree at least k. In related works, Krivelevich, Lee and Sudakov [65] considered

9
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a random subgraph of a “Dirac Graph” i.e. a graph with n vertices and minimum degree at least
n/2. They showed that if p ≥ C logn

n for suffficently large n then Gp is Hamiltonian with probability
1− on(1).

The results cited above can be considered to be generalisations of classical results on the random
graph Gn,p, which in the above notation would be (Kn)p. In this paper we will consider generalising
another model of a random graph that we will call Kn(k − out). This has vertex set V = [n] =
{1, 2, . . . , n} and each v ∈ V independently chooses k random vertices as neighbors. Thus this
graph has kn edges and average degree 2k. This model in a bipartite form where the two parts of
the partition restricted their choices to the opposing half was first considered by Walkup [89] in
the context of perfect matchings. He showed that k ≥ 2 was sufficient for bipartite Kn,n(k − out)
to contain a perfect matching. Matchings in Kn(k − out) were considered by Shamir and Upfal
[82] who showed that Kn(5− out) has a perfect matching w.h.p., i.e. with probability 1− o(1) as
n → ∞. Later, Frieze [43] showed that Kn(2 − out) has a perfect matching w.h.p. Fenner and
Frieze [31] had earlier shown that Kn(k−out) is k-connected w.h.p. for k ≥ 2. After several weaker
results, Bohman and Frieze [10] proved that Kn(3− out) is Hamiltonian w.h.p. To generalise these
results and replace Kn by an arbitrary graph G we will define G(k − out) as follows: We have
a fixed graph G = (V,E) and each v ∈ V independently chooses k random neighbors, from its
neighbors in G. It will be convenient to assume that each v makes its choices with replacement. To
avoid cumbersome notation, we will from now on assume that G has n vertices and we will refer
to G(k − out) as Gk. We implicitly consider G to be one of a sequence of larger and larger graphs
with n → ∞. We will say that events occur w.h.p. if their probability of non-occurrence can be
bounded by a function that tends to zero as n→∞.

For a vertex v ∈ V we let dG(v) denotes its degree in G. Then we let δ(G) = minv∈V dG(v). We
will first consider what we call Strong Dirac Graphs (SDG) viz graphs with δ(G) ≥

(
1
2 + ε

)
n where

ε is an arbitrary positive constant.

Theorem 2.1. Suppose that G is an SDG. Suppose that the k neighbors of each vertex are chosen
without replacement. Then w.h.p. Gk is k-connected for 2 ≤ k = o(log1/2 n).

If the k neighbors of each vertex are chosen with replacement then there is a probability, bounded
above by 1− e−k2

that Gk will have minimum degree k − 1, in which case we can only claim that
Gk will be (k − 1)-connected.

Theorem 2.2. Suppose that G is an SDG. Then w.h.p. there exists a constant kε such that if
k ≥ kε then Gk is Hamiltonian.

We get essentially the same result if the k neighbors of each vertex are chosen with replacement.

Note that we need ε > 0 in order to prove these results. Consider for example the case where G
consists of two copies of Kn/2 plus a perfect matching M between the copies. In this case there is

a probability greater than or equal to
(
1− 2k

n

)n/2 ∼ e−k that no edge of M will occur in Gk.

We note the following easy corollary of Theorem 2.2.

Corollary 2.1. Let kε be as in Theorem 2.2. Suppose that G is an SDG and we give each edge of G
a random independent uniform [0, 1] edge weight. Let Z denote the length of the shortest travelling

salesperson tour of G. Then E [(]Z) ≤ 2(kε+1)
1+2ε .
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We will next turn to graphs with large minimum degree, but not necessarily SDG’s. Our proofs
use Depth First Search (DFS). The idea of using DFS comes from Krivelevich, Lee and Sudakov
[66].

Theorem 2.3. Suppose that G has minimum degree m where m → ∞ with n. For every ε > 0
there exists a constant kε such that if k ≥ kε then w.h.p. Gk contains a path of length (1− ε)m.

Using this theorem as a basis, we strengthen it and prove the existence of long cycles.

Theorem 2.4. Suppose that G has minimum degree m where m → ∞ with n. For every ε > 0
there exists a constant kε such that if k ≥ kε then w.h.p. Gk contains a cycle of length (1− ε)m.

We finally note that in a recent paper, Frieze, Goyal, Rademacher and Vempala [45] have shown
that Gk is useful in the construction of sparse subgraphs with expansion properties that mirror
those of the host graph G.

2.2 Connectivity: Proof of Theorem 2.1

In this section we will assume that each vertex makes its choices without replacement. Let G =
(V,E) be an SDG. Let c = 1/(8e). We need the following lemma.

Lemma 2.1. Let G be an SDG and let C = 48/ε. Then w.h.p. there exists a set L ⊆ V , where
|L| ≤ C log n, such that each pair of vertices u, v ∈ V \ L have at least 12 log n common neighbors
in L.

Proof. Define Lp ⊆ V by including each v ∈ V in Lp with probability p = C log n/2n. Since
δ(G) ≥ (1/2 + ε)n, each pair of vertices in G has at least 2εn common neighbors in G. Hence, the
number of common neighbors in Lp for any pair of vertices in V \ Lp is bounded from below by a
Bin(2εn, p) random variable.

Pr {∃u, v ∈ V \ Lp with less than 12 log n common neighbors in L}
≤ n2Pr {Bin(2εn, p) ≤ 12 log n}
= n2Pr {Bin(2εn, p) ≤ εnp}
≤ n2e−εnp/8

= o(1).

The expected size of Lp is 1
2C log n and so the Chernoff bounds imply that w.h.p. |Lp| ≤ C log n.

Thus there exists a set L, |L| ≤ C log n, with the desired property.

Let L be a set as provided by the previous lemma, and let G′k denote the subgraph of Gk induced
by V \ L.

Lemma 2.2. Let c = 1/(8e). If k ≥ 2 then w.h.p. all components of G′k are of size at least cn.
Furthermore, removing any set of k − 1 vertices from G′k produces a graph consisting entirely of
components of size at least cn, and isolated vertices.
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Proof. We first show that w.h.p. G′k contains no isolated vertex. The probability of G′k containing
an isolated vertex is bounded by

Pr {∃v ∈ V \ L which chooses neighbors in L only} ≤ n

[
C log n

1
2n

]k
= o(1),

where L and C are as in Lemma 2.1.

We now consider the existence of small non-trivial components S after the removal of at most k−1
vertices A. Then,

Pr {∃S,A, 2 ≤ |S| ≤ cn, |A| = k − 1, such that S only chooses neighbors in S ∪ L ∪A}

≤
cn∑
l=2

∑
|S|=l

∑
|A|=k−1

[
l + k − 2 + C log n(

1
2 + ε

)
n

]lk

≤
cn∑
l=2

(
n

l

)(
n− l
k − 1

)[
l + C log n

1
2n

]lk

≤
cn∑
l=2

(ne
l

)l
nk−1

[
l + C log n

1
2n

]lk

= 2ke
cn∑
l=2

[
2ke(l + C log n)k

nk−1l

]l−1
(l + C log n)k

l
.

Now when 2 ≤ l ≤ log2 n we have

2ke(l + C log n)k ≤ log3k n and
(l + C log n)k

l
≤ log3k n.

And when log2 n ≤ l ≤ cn we have

2ke(l + C log n)k ≤ (2 + o(1))kelk and
(l + C log n)k

l
= (1 + o(1))lk−1,

which implies that

[
2ke(l + C log n)k

nk−1l

]l−1
(l + C log n)k

l
≤ ((2 + o(1))ke)l−1ll(k−1)

n(k−1)(l−1)
≤

((2 + o(1))ke)l−1cl(k−1)nk−1 = ((2 + o(1))ke)l−1cl(k−1),

since nk−1 = (n(k−1)/(l−1))l−1 = (1 + o(1))l−1.

Continuing, we get a bound of

2ke

log2 n∑
l=2

(
log6k n

nk−1

)l−1

+
cn∑

l=log2 n

((2 + o(1))keck−1)l−1

 = o(1).
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This proves that w.h.p. G′k consists of r ≤ 1/c components J1, J2, ..., Jr and that removing any
k − 1 vertices will only leave isolated vertices and components of size at least cn.

Lemma 2.3. W.h.p., for any i 6= j, there exist k vertex-disjoint paths (of length 2) from Ji to Jj
in Gk.

Proof. Let X be the number of vertices in L which pick at least one neighbor in J1 and at least
one in J2. Furthermore, let Xuvw be the indicator variable for w ∈ L picking u ∈ J1 and v ∈ J2 as
its neighbors. Note that these variables are independent of G′k. Let c = 1/(8e) as in Lemma 2.2
and let C = 24/ε as in Lemma 2.1. For w ∈ L we let

Xw =
∑

(u,v)∈J1×J2

w∈NG(J1)∩NG(J2)

Xuvw.

These are independent random variables with values in {0, 1, . . . , k} and X =
∑

w∈LXw. Then,

E [X] =
∑
u∈J1

∑
v∈J2

∑
w∈L

w∈N(J1)∩N(J2)

E [Xuvw]

=
∑
u∈J1

∑
v∈J2

∑
w∈L

w∈N(J1)∩N(J2)

(dG(w)
k−2

)(dG(w)
k

)
≥

∑
u∈J1

∑
v∈J2

∑
w∈L

w∈N(J1)∩N(J2)

1

n2

≥ 24(cn)2 log n

n2

= 24c2 log n.

We apply the following inequality, Theorem 1 of Hoeffding [57]: Let Z1, Z2, . . . , ZM be independent
and satisfy 0 ≤ Zi ≤ 1 for i = 1, 2, . . . ,M . If Z = Z1 + Z2 + · · ·+ ZM then for all t ≥ 0,

Pr {|Z −E [Z] | ≥ t} ≤ e−2t2/M . (2.1)

Putting Zw = Xw/k for w ∈ L and Z = X/k and applying (2.1), we get

Pr {X ≤ k} = Pr {Z ≤ 1} ≤ Pr

{
Z ≤ E [Z]

2

}
≤ exp

{
−(E [Z])2

2|L|

}
= exp

{
−(E [X])2

2k2|L|

}
= o(1). (2.2)

Now for w1 6= w2 ∈ L let E(w1, w2) be the event that w1, w2 make a common choice. Then

Pr {∃w1, w2 : E(w1, w2)} = O

(
k2 log2 n

n

)
= o(1). (2.3)

To see this, observe that for a fixed w1, w2 and a choice of w2, the probability this choice is also
one of w1’s is at most k

n/2 . Now multiply by the number k of choices for w2. Finally multiply by

|L|2 to account for the number of possible pairs w1, w2.
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Equations (2.2) and (2.3) together show that w.h.p., there are k node-disjoint paths from J1 to J2.
Since the number of linear size components is bounded by a constant, this is true for all pairs Ji, Jj
w.h.p.

We can complete the proof of Theorem 2.1. Suppose we remove l vertices from L and k−1−l vertices
from the remainder of G. We know from Lemma 2.1 that V \L induces components C1, C2, . . . , Cr
of size at least cn. There cannot be any isolated vertices in V \ L as Gk has minimum degree at
least k. Recall that each vertex makes k choices without replacement. Lemmas 2.1, 2.2 and 2.3
imply that r = 1 and that every vertex in L is adjacent to C1. 2

2.3 Hamilton cycles: Proof of Theorem 2.2

Let G be a graph with δ(G) ≥ (1/2 + ε)n, and let k be a positive integer.

Let D(k, n) = {D1, D2, ..., DM} be the M =
∏
v∈V

(dG(v)
k

)
≤
(
n−1
k

)n
directed graphs obtained by

letting each vertex x of G choose k G-neighbors y1, ..., yk, and including in Di the k arcs (x, yi).
Define ~Ni(x) = {y1, ..., yk} and for S ⊆ V let ~Ni(S) =

⋃
x∈S

~Ni(x) \ S. For a digraph D we let
G(D) denote the graph obtained from D by ignoring orientation and coalescing multiple edges, if
necessary. We let Γi = G(Di) for i = 1, 2, . . . ,M . Let G(k, n) = {Γ1,Γ2, ...,ΓM} be the set of k-out
graphs on G. Below, when we say that Di is Hamiltonian we actually mean that Γi is Hamiltonian.
(It will occasionally enable more succint statements).

For each Di, let Di1, Di2, ..., Diκ be the κ = kn different edge-colorings of Di in which each vertex
has k−1 outgoing green edges and one outgoing blue edge. Define Γij to be the colored (multi)graph
obtained by ignoring the orientation of edges in Dij . Let Γgij be the subgraph induced by green
edges.

~N(S) refers to ~Ni(S) when i is chosen uniformly from [M ], as it will be for Gk.

Lemma 2.4. Let k ≥ 5. There exists an α > 0 such that the following holds w.h.p.: for any set
S ⊆ V of size |S| ≤ αn, | ~N(S)| ≥ 3|S|.

Proof. The claim fails if there exists an S with |S| ≤ αn such that there exists a T , |T | = 3|S| − 1
such that ~N(S) ⊆ T . The probability of this is bounded from above by

αn∑
l=1

(
n

l

)(
n− l
3l − 1

)∏
v∈S

[(
4l − 2

k

)/(
dG(v)

k

)]

≤
αn∑
l=1

(ne
l

)l ( ne

3l − 1

)3l−1 [ 4le

n/2

]kl

≤
αn∑
l=1

[
e4(8e)k

(
l

n

)k−4
]l

= o(1),

for α = 2−16e−9.
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We say that a digraph Di expands if | ~Ni(S)| ≥ 3|S| whenever |S| ≤ αn, α = 2−16e−9. Since almost
allDi expand, we need only prove that an expandingDi almost always gives rise to a Hamiltonian Γi.
Write D′(k, n) for the set of expanding digraphs in D(k, n) and let G′(k, n) = {Γi : Di ∈ D′(k, n)}.

Let H be any graph, and suppose P = (v1, ..., vk) is a longest path in H. If t 6= 1, k − 1 and
{vk, vt} ∈ E(H), then P ′ = (v1, ..., vt, vk, vk−1, ..., vt+1) is also a longest path of H. Repeating this
rotation for P and all paths created in the process, keeping the endpoint v1 fixed, we obtain a set
EP (v1) of other endpoints.

For S ⊆ V (H) we let NH(S) = {w /∈ S : ∃v ∈ S s.t. vw ∈ E(H)}.

Lemma 2.5 (Pósa). For any endpoint x of any longest path in any graph H, |NH(EP (x))| ≤
2|EP (x)| − 1.

We say that an undirected graph expands if |NH(S)| ≥ 2|S| whenever |S| ≤ αn, assuming |V (H)| =
n. Note that the definition of expanding slightly differs from the digraph case.

Lemma 2.6. Consider a green subgraph Γgij. W.h.p., there exists an α > 0 such that for every
longest path P in Γgij and endpoint x of P , |EP (x)| > αn.

Proof. Let H = Γgij . We argue that if Di expands then so does H. If | ~Ni(S)| ≥ 3|S|, then
|NH(S)| ≥ 2|S|, since each vertex of S picks at most one blue edge outside of S. Thus H expands.
In particular, Lemma 2.4 implies that if |S| ≤ αn, then | ~N(S)| ≥ 3|S| and hence |NH(S)| ≥ 2|S|.
By Lemma 2.5, this implies that |EP (x)| > αn for any longest path P and endpoint x.

Define aij to be 1 if G(Γi,j) is connected and Γgij contains a longest path of Γij , 1 ≤ i ≤ M1 (i.e.
Γij is not Hamiltonian), and 0 otherwise.

Let M1 be the number of expanding digraphs Di among D1, ..., DM for which G(Di) is connected
and Γi is not Hamiltonian. We aim to show that M1/M → 0 as n tends to infinity. W.l.o.g. suppose
N (k, n) = {D1, ..., DM1} are the connected expanding digraphs which are not Hamiltonian.

Lemma 2.7. For 1 ≤ i ≤M1, we have
∑κ

j=1 aij ≥ (k − 1)n.

Proof. Fix 1 ≤ i ≤M1 and a longest path Pi of Γi. Uniformly picking one of Di1, ..., Diκ, we have

Pr {aij = 1} ≥ Pr
{
E(Pi) ⊆ E(Γgij)

}
≥

(
1− 1

k

)|E(Pi)|

≥
(

1− 1

k

)n
The lemma follows from the fact that there are kn colorings of Di.

Let ∆ ∈ D(k−1, n) be expanding and non-Hamiltonian and for the purposes of exposition consider
its edges to be colored green. Let D ∈ D(k, n) be the random digraph obtained by letting each
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vertex of ∆ randomly choose another edge, which will be colored blue. Let B∆ be the event (in
the probability space of randomly chosen blue edges to be added to ∆):

D has an edge between the endpoints of a longest path of G(∆), or

D has an edge from an endpoint of a longest path of ∆ to the complement of the path.

Note that the occurrence of B∆ implies that the corresponding aij = 0. If aij = 1 then the
connectivity of Γij imlies that G(D) has a longer path than G(∆). Let B∆ be the complement of
B∆ and for Hamiltionian ∆ let B∆ = ∅.

Let N∆ be the number of i, j such that Γgij = ∆. We have∑
i,j:Γgij=∆

aij = N∆Pr {B∆}

The number of non-Hamiltonian graphs is bounded by

M1 ≤
M∑
i=1

κ∑
j=1

aij
(k − 1)n

≤
∑

∆N∆Pr {B∆}
(k − 1)n

≤ Mkn max∆ Pr {B∆}
(k − 1)n

= M
max∆ Pr {B∆}

(1− 1/k)n

Fix a ∆ ∈ N (k − 1, n) and a longest path P∆ of G(∆). Let EP be the set of vertices which are
endpoints of a longest path of G(∆) that is obtainable from P∆ by rotations. For x ∈ EP , say x
is of Type I if x has at least εn/2 neighbors outside P∆, and Type II otherwise. Let E1 be the set
of Type I endpoints, and E2 the set of Type II endpoints.

Partition the set of expanding green graphs by

D′(k − 1, n) = H(k − 1, n) ∪N1(k − 1, n) ∪N2(k − 1, n)

where H(k− 1, n) is the set of Hamiltonian graphs, N1(k− 1, n) the set of non-Hamiltonian graphs
with |E1| ≥ αn/2 and N2(k − 1, n) the set of non-Hamiltonian graphs with |E1| < αn/2. Here
α > 0 is provided by Lemma 2.6.

Lemma 2.8. For ∆ ∈ N1(k − 1, n), Pr {B∆} ≤ e−εαn/4.

Proof. Let each x ∈ E1 choose a neighbor y(x). The event B∆ is included in the event {∀x ∈ E1 :
y(x) ∈ P∆}. We have

Pr {B∆} ≤ Pr {∀x ∈ E1 : y(x) ∈ P∆}

=
∏
x∈E1

dP∆
(x)

dG(x)

≤
(

1− ε

2

)αn/2
where dP∆

(x) denotes the number of neighbors of x inside P∆.
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Lemma 2.9. For ∆ ∈ N2(k − 1, n), Pr {B∆} ≤ e−εα
2n/129.

Proof. Let X ⊆ E2 be a set of αn/4 Type II endpoints. X exists because |EP | ≥ αn and at most
αn/2 vertices in EP are of type I. For each x ∈ X, let Px be a path obtained from P∆ by rotations
that has x as an endpoint. Let A(x) be the set of Type II vertices y /∈ X such that a path from x
to y in ∆ can be obtained from Px by a sequence of rotations with x fixed. By Lemma 2.6 we have
|A(x)| ≥ αn/4 for each x, since A(x) = EP (x) \ (E1 ∪X).

Let Px,y be a path with endpoints x ∈ X, y ∈ A(x) obtained from Px by rotations with x fixed, and
label the vertices on Px,y by x = z0, z1, ..., zl = y. Suppose y chooses some zi on the path with its
blue edge. If {zi+1, x} ∈ E(G), let By(x) = {zi+1}. Write v(y) for zi+1. If {zi+1, x} /∈ E(G), or if
y chooses a vertex outside P , let By(x) = ∅.

x zi zi+1 y

Figure 2.1: Suppose y chooses zi. The vertex zi+1 is included in B(x) if and only if {x, zi+1} ∈ E(G).

There will be at least 2
(

1
2 + ε

2

)
n− n = εn choices for i for which {x, zi+1} ∈ E(G). Let Yx be the

number of y ∈ A(x) such that By(x) is nonempty. This variable is bounded stochastically from
below by a binomial Bin(αn/4, ε) variable, and by a Chernoff bound we have that

Pr
{
∃x : Yx ≤

εαn

8

}
≤ n exp

{
−εαn

32

}
Define B(x) =

⋃
y∈A(x)By(x). If x chooses a vertex in B(x) then B∆ occurs. Conditional on

Yx ≥ εαn/8 for all x ∈ X, let y1, y2, ..., yr be r = εαn/8 vertices whose choice produces a nonempty
By(x). Let Zx = |B(x)|, and for i = 1, ..., r define Zi to be 1 if v(yi) is distinct from v(y1), ..., v(yi−1)
and 0 otherwise. We have Zx =

∑r
i=1 Zi, and each Zi is bounded from below by a Bernoulli variable

with parameter 1 − α/8. To see this, note that yi has at least εn choices resulting in a nonempty
Byi(x) since x and yi are of Type II, so

Pr {∃j < i : v(yj) = v(yi)} ≤
i− 1

εn
≤ εαn/8

εn
=
α

8

Since α/8 < 1/2, Zx is bounded stochastically from below by a binomial Bin(εαn/8, 1/2) variable,
and so

Pr
{
∃x : Zx <

εαn

32

}
≤ n exp

{
−εαn

128

}
Each x for which Zx ≥ εαn/32 will choose a vertex in B(x) with probability

|B(x)|
dG(x)

≥ εαn/32

n
=
εα

32

Hence we have

Pr {B∆} ≤
(

1− εα

32

)αn/4
+ n exp

{
−εαn

32

}
+ n exp

{
−εαn

128

}
≤ e−εα2n/129.
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We can now complete the proof of Theorem 2.2. From Lemmas 2.8 and 2.9 we have

Pr {B∆} ≤ max
{
e−εαn/4, e−εα

2n/129
}
.

Going back to (2.4) with k = C/ε we have

Pr {Gk is non-Hamiltonian} = o(1) +
M1

M

≤ o(1) +
max∆ Pr {B∆}

(1− 1/k)n

= o(1) +

[
e−εα

2/129

1− ε/C

]n
≤ o(1) + exp

{
−ε
(
α2

129
− 2

C

)
n

}
= o(1),

for C = 259/α2. 2

We can now prove Corollary 2.1. We follow an argument based on Walkup [88]. If Xe is the length
of edge e = uv of G then we can write Xe = min {Yuv, Yvu} where Yuv, Yvu are independent copies
of the random variable Y where Pr {Y ≥ y} = (1 − y)1/2. The density of Y is close to y/2 for y
close to zero. Now consider Gkε where the choices {v1, v2, . . . , vkε} of vertex u are the kε edges
of lowest weight Yuv among uv ∈ E(G). Now consider the total weight of the Hamilton cycle H
posited by Theorem 2.2. The expected weight of an edge of H is at most 2 × kε+1

2( 1
2

+ε)n
and the

corollary follows.

2.4 Long Paths: Proof of Theorem 2.3

Let Dk denote the directed graph with out-degree k defined by the vertex choices. Consider a
Depth First Search (DFS) of Dk where we construct Dk as we go. At all times we keep a stack U of
vertices which have been visited, but for which we have chosen fewer than k out-edges. T denotes
the set of vertices that have not been visited by DFS. Each step of the algorithm begins with the
top vertex u of U choosing one new out-edge. If the other end of the edge v lies in T (we call this
a hit), we move v from T to the top of U .

When DFS returns to v ∈ U and at this time v has chosen all of its k out-edges, we move v from
U to S. In this way we partition V into

S - Vertices that have chosen all k of its out-edges.

U - Vertices that have been visited but have chosen fewer than k edges.

T - Unvisited vertices.

Key facts: Let h denote the number of hits at any time and let κ denote the number of times we
have re-started the search i.e. selected a vertex in T after the stack S empties.

P1 |S ∪ U | increases by 1 for each hit, so |S ∪ U | ≥ h.
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P2 More specifically, |S ∪ U | = h+ κ− 1.

P3 At all times S ∪ U contains a path which contains all of U .

The goal will be to prove that |U | ≥ (1 − 2ε)m at some point of the search, where ε is some
arbitrarily small positive constant.

Lemma 2.10. After εkm steps, i.e. after εkm edges have been chosen in total, the number of hits
h ≥ (1− ε)m w.h.p.

Proof. Since δ(Gk) ≥ k, each tree component of Gk has at least k vertices, and at least k2 edges
must be chosen in order to complete the search of the component. Hence, after εkm edges have been
chosen, at most εkm/k2 ≤ εm/2 tree components have been found. This means that if h ≤ (1−ε)m
after εkm edges have been sent out, then P2 implies that |S ∪ U | ≤ (1− ε/2)m.

So if h ≤ (1− ε)m each edge chosen by the top vertex u has probability at least d(u)−|S∪U |
d(u) ≥ ε/2

of making a hit. Hence,

Pr {h ≤ (1− ε)m after εkm steps} ≤ Pr {Bin(εkm, ε/2) ≤ (1− ε)m} = o(1),

for k ≥ 2/ε2, by the Chernoff bounds.

We can now complete the proof of Theorem 2.3. By Lemma 2.10, after εkm edges have been chosen
we have |S ∪ U | ≥ (1− ε)m w.h.p. For a vertex to be included in S, it must have chosen all of its
edges. Hence, |S| ≤ εkm/k = εm, and we have |U | ≥ (1− 2ε)m. Finally observe that U is the set
of vertices of a path of Gk. 2

2.5 Long Cycles: Proof of Theorem 2.4

Suppose now that we consider G4k = LRk ∪DRk ∪ LBk ∪DBk where each for each vertex v and
for each c ∈ {“light red”, “dark red”, “light blue”,“dark blue”} the vertex v makes k choices of
neighbor Nc(v), distinct from any previous choices for this vertex. The edges {v, w} , w ∈ Nc(v) are
given the color c. Let LRk, DRk, LBk, DBk respectively be the graphs induced by the differently
colored edges. We have by Theorem 2.3 that w.h.p. there is a path P of length at least (1 − ε)m
in the light red graph LRk. At this point we start using a modification of DFS (denoted by ∆ΦΣ)
and the differently colored choices to create a cycle.

We divide the steps into epochs T0, T00, T01, . . ., indexed by binary strings. We stop the search
immediately if there is a high chance of finding a cycle of length at least (1− 20ε)m. If executed,
epoch Tιιι, ιιι = 0∗∗∗ will extend the exploration tree by at least (1−5ε)m vertices, unless an unlikely
failure occurs. Theorem 2.3 provides T0. In the remainder, we will assume ιιι 6= 0.

Epoch Tιιι will use light red colors if ιιι has odd length and ends in a 0, dark red if ιιι has even length
and ends in a 0, light blue if ιιι has odd length and ends in a 1, and dark blue if ιιι has even length
and ends in a 1. Epochs Tιιι0 and Tιιι1 (where ιιιj denotes the string obtained by appending j to the
end of ιιι) both start where Tιιι ends, and this coloring ensures that every vertex discovered in an
epoch will initially have no adjacent edges in the color of the epoch.

During epoch Tιιι we maintain a stack of vertices Sιιι. When discovered, a vertex is placed in one
of the three sets Aιιι, Bιιι, Cιιι, and simultaneously placed in Sιιι if it is placed in Aιιι. Once placed, the
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vertex remains in its designated set even if it is removed from Sιιι. Let dT (v, w) be the length of the
unique path in the exploration tree T from v to w. We designate the set for v as follows.

Aιιι - v has less than (1− 2ε)d(v) G-neighbors in T .

Bιιι - v has at least (1 − 2ε)d(v) G-neighbors in T , but less than εd(v) G-neighbors w such that
dT (v, w) ≥ (1− 19ε)m.

Cιιι - v has at least (1 − 2ε)d(v) G-neighbors in T , and at least εd(v) G-neighbors w such that
dT (v, w) ≥ (1− 19ε)m.

At the initiation of epoch Tιιι, a previous epoch will provide a set T 0
ιιι of 3εm vertices, as described

below. Starting with Aιιι = Bιιι = Cιιι = ∅, each vertex of T 0
ιιι is placed in Aιιι, Bιιι or Cιιι according to

the rules above. Let Sιιι = Aιιι, ordered with the latest discovered vertex on top.

If at any point during Tιιι we have |Bιιι| = εm or |Cιιι| = εm, we immediately interrupt ∆ΦΣ and use
the vertices of Bιιι or Cιιι to find a cycle, as described below.

An epoch Tιιι consists of up to εkm steps, and each step begins with a v ∈ Aιιι at the top of the stack
Sιιι. This vertex is called active. If v has chosen k neighbors, remove v from the stack and perform
the next step. Otherwise, let v randomly pick one neighbor w from NG(v). If w /∈ T , then w is
assigned to Aιιι, Bιιι or Cιιι as described above. If w ∈ Aιιι, perform the next step with w at the top of
Sιιι. If w ∈ Bιιι ∪Cιιι perform the next step with the same v. If w ∈ T , perform the next step without
placing w in Sιιι.

The exploration tree T is built by adding to it any vertex found during ∆ΦΣ, along with the edge
used to discover the vertex.

Note that unless |Bιιι| = εm or |Cιιι| = εm, we initially have |Aιιι| ≥ εm, guaranteeing that εkm steps
may be executed. Epoch Tιιι succeeds and is ended (possibly after fewer than εkm steps) if at some
point we have |Aιιι| = (1−2ε)m. If all εkm steps are executed and |Aιιι| < (1−2ε)m, the epoch fails.

Lemma 2.11. Epoch Tιιι succeeds with probability at least 1−e−ε2m/8, unless |Bιιι| = εm or |Cιιι| = εm
is reached.

Proof. An epoch fails if less than (1 − 3ε)m steps result in the active vertex choosing a neighbor
outside T . Since the active vertex is always in Aιιι, we have

Pr {Tιιι finishes with |Aιιι| < (1− 2ε)m} ≤ Pr {Bin(εkm, 2ε) < (1− 3ε)m} ≤ e−ε2m/8

for k ≥ 1/2ε2, by Hoeffding’s inequality. This proves the lemma.

Ignoring the colors of the edges, an epoch produces a tree which is a subtree of T . Let Pιιι be the
longest path of vertices in Aιιι, and let Rιιι be the set of vertices discovered during Tιιι which are not
in Pιιι. If the epoch succeeds, Pιιι has length at least (1− 6ε)m, and at most 3εm vertices discovered
during Tιιι are not on the path. Indeed, a vertex of Aιιι is outside Pιιι if and only if it has chosen all
its k neighbors. Thus, the number of vertices not on the path is bounded by

|Rιιι| ≤
εkm

k
+ |Bιιι|+ |Cιιι| < 3εm.

If the epoch fails, the path Pιιι may be shorter, but |Rιιι| is still bounded by 3εm.
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If Tιιι succeeds, the epochs Tιιι0 and Tιιι1 will be initiated at the end of Tιιι, by letting T 0
ιιι0 and T 0

ιιι1 be the
last 3εm vertices discovered during Tιιι. If Tιιι fails, Tιιι0 and Tιιι1 will not be initiated. The exploration
tree T will resemble an unbalanced binary tree, in which each successful epoch gives rise to up to
two new epochs. Epochs are ordered and Tιιι1 is initiated before Tιιι2 if and only if ιιι1 < ιιι2. Here let
ιιιi = xyxyxyi, i = 1, 2 where xxx is the longest common substring of ιιι1, ιιι2. We will have ιιι1 < ιιι2 if either y1y1y1

is the empty string or if y1y1y1 starts with 0 and y2y2y2 starts with 1.

Lemma 2.12. W.h.p., ∆ΦΣ will discover an epoch Tιιι having |Bιιι| = εm or |Cιιι| = εm.

Proof. Suppose that no epoch ends with |Bιιι| = εm or |Cιιι| = εm. Under this assumption, each
successful epoch Tιιι gives rise to X ′ιιι new epochs. By Lemma 2.11, X ′ιιι can be stochastically bounded
from below by Xιιι, where for some c > 0, Xιιι = 0 with probability e−2cm, Xιιι = 1 with probability
2e−cm(1 − e−cm) and Xιιι = 2 with probability (1 − e−cm)2. The number of successful epochs is
then bounded from below by the total number of offspring in a Galton-Watson branching process
with offspring distribution described by Xιιι. The offspring distribution for this lower bound has
generating function

Gm(s) = e−2cm + 2se−cm(1− e−cm) + s2(1− e−cm)2.

Let sm be the smallest fixed point Gm(sm) = sm. We have, with ξ = e−cm,

sm =
1− 2ξ(1− ξ)− [(1− 2ξ(1− ξ))2 − 4(1− ξ)2ξ2]1/2

2(1− ξ)2
→ 0, as m→∞.

Hence, the probability that the branching process never expires is at least 1− sm, which tends to
1.

The number of epochs is bounded by a finite number. Hence, the branching process cannot be
infinite. This contradiction finishes the proof.

We may now finish the proof of the theorem. Condition first on ∆ΦΣ being stopped by an epoch
Tιιι having |Cιιι| = εm. In this case, let each v ∈ Cιιι choose k neighbors using edges with the epoch’s
color. Each choice has probability at least ε of finding a cycle of length at least (1 − 19ε)m, by
choosing a neighbor w such that dT (v, w) ≥ (1 − 19ε)m. The probability of not finding a cycle of
length at least (1− 19ε)m is bounded by

(1− ε)εkm → 0.

Now condition on ∆ΦΣ being stopped by an epoch Tιιι having |Bιιι| = εm. Note that we must
have ιιι = ιιι′1 for some ιιι′. Indeed, if ιιι = ι′ι′ι′0, then any v discovered in ιιι must have at least 11εd(v)
G-neighbors at distance at least (1− 19ε)m, at its time of discovery. If not, and v /∈ Aιιι then it has
at most 2εd(v) G-neighbors outside T , at most 3εd(v) + 3εd(v) G-neighbors in Rιιι ∪Rιιι′ . There are
at most (1− 19ε)d(v) G-neighbors in T \ (Rιιι ∪Rιιι′) at distance less than (1− 19ε)d(v) and so there
are at least 11εd(v) G-neighbors in T at distance at least (1− 19ε)d(v) from v, which implies that
v ∈ Cιιι, contradiction.

Since the epoch produces a tree with at most m vertices, using the pigeonhole principle we can
choose a W ⊆ Bιιι such that |W | = ε2m and dT (v, w) ≤ εm for any v, w ∈W .

Note also that d(v) ≤ 2m for any v ∈ Bιιι. This can be seen as follows: For any v ∈ W let ρv ∈ T 0
ιιι

be the vertex which minimizes dT (v, ρv). Note that we may have ρv = v. There are at most |Q|
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G-neighbors of v on the path Q from v to ρv. Then note that there are at most 2((1−19ε)m−|Q|)
G-neighbors of v on T \ (Q ∪ Rιιι ∪ Rιιι′ ∪ Rιιι′0) that are within (1 − 19ε)m of v. Here the factor 2
comes from counting G-neighbors in Tιιι and Ti′i′i′0. So the maximum number of w ∈ NG(v) ∩ T such
that dT (v, w) ≤ (1− 19ε)m is bounded by

|Q|+ 2((1− 19ε)m− |Q|) + |Rιιι|+ |Rιιι′ |+ |Rιιι′0| ≤ (2− 29ε)m (2.5)

Equation (2.5) then implies that d(v) ≤ (2− 29ε)m+ 3εd(v).

Define an ordering on T by saying that t1 ≤ t2 if t1 was discovered before t2 during ∆ΦΣ, or if
t1 = t2. If S ⊆ T ′, and t ≤ s for all s ∈ S, write t ≤ S. Similarly define ≥, > and <.

v
u

u1

v1

v2
u2

u3

v3

S0
i

ρu = ρv

Figure 2.2: Example depiction of cycle found when |Bιιι| = εm.

Let each v ∈ W choose k neighbors in the color of epoch Tιιι. We say that v is good if it chooses
v1, v2 ∈ Pιιι′ and v3 ∈ Pιιι′0 such that

dT (v1, v2) + dT (v3, T
0
ιιι ) + dT (ρv, v) ≥ (1− 17ε)m

where dT (v3, S) = mins∈S dT (v3, s). For each v ∈ W define n0(v) = |NG(v) ∩ Pιιι \ T 0
ιιι |, n1(v) =

|NG(v) ∩ Pιιι′ \ T 0
ιιι | and n2(v) = |NG(v) ∩ Pιιι′0 \ T 0

ιιι |. Since v ∈ Bιιι we have

n0(v) + n1(v) + n2(v) = |(NG(v) ∩ T ) \ (Rιιι′ ∪Rιιι′0 ∪Rιιι ∪ T 0
ιιι )| ≥ (1− 14ε)m.
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Since the n0(v)+n1(v) vertices of NG(v)∪Pιιι∪Pιιι′ \T 0
ιιι are on a path, we must have n0(v)+n1(v) ≤

(1− 16ε)m, otherwise v has 2εm ≥ εd(v) neighbors at distance at least (1− 18ε)m, contradicting
v ∈ Bιιι. This implies n2(v) ≥ 2εm. Similarly, n1(v) ≥ 2εm.

Fix a vertex v ∈ W and define V1, V2 ⊆ (NG(v) ∩ Pιιι′) \ T 0
ιιι and V3 ⊆ (NG(v) ∩ Pιιι′0) \ T 0

ιιι , |V1| =
|V2| = |V3| = εm as follows. V1 is the set of the first εm vertices of NG(v) ∩ Pιιι′ discovered during
∆ΦΣ. V2 is the set of the last εm vertices of NG(v)∩Pιιι′ discovered before any vertex of T 0

ιιι . Lastly,
V3 consists of the εm last vertices discovered in NG(v)∩Pιιι′0. Since n1(v) ≥ 2εm and n2(v) ≥ 2εm,
the sets V1, V2, V3 exist and are disjoint.

Since d(v) ≤ 2m, the probability that v chooses v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3 is at least (ε/2)3. If
this happens, we have

dT (v1, v2) + dT (v3, T
0
ιιι ) + dT (ρv, v) ≥ n1(v)− 2εm+ n2(v)− εm+ n3(v) ≥ (1− 17ε)m.

In other words, v ∈ W is good with probability at least (ε/2)3. Since |W | = ε2m, w.h.p. there
exist two good vertices u, v ∈ W . By choice of W we have dT (ρu, u) ≥ dT (ρv, v) − 2εm. Suppose
u and v pick u1 ≤ u2 ≤ u3 and v1 ≤ v2 ≤ v3. We have dT (v1, v2) ≤ dT (u1, v2) + |V1|. The cycle
(u, u1, ..., v2, v, v3, ..., ρu, ..., u) has length

1 + dT (u1, v2) + 1 + 1 + dT (v3, ρu) + dT (ρu, u)

≥ dT (v1, v2) + dT (v3, T
0
ιιι ) + dT (ρv, v)− 3εm

≥ (1− 20ε)m.





Chapter 3

Random walk cuckoo hashing

This chapter corresponds to [41].

Abstract

Cuckoo Hashing is a hashing scheme invented by Pagh and Rodler [77].
It uses d ≥ 2 distinct hash functions to insert items into the hash table.
It has been an open question for some time as to the expected time for
Random Walk Insertion to add items. We show that if the number of hash
functions d = O(1) is sufficiently large, then the expected insertion time
is O(1) per item.

3.1 Introduction

Our motivation for this paper comes from Cuckoo Hashing (Pagh and Rodler [77]). Briefly each
one of n items x ∈ L has d possible locations h1(x), h2(x), . . . , hd(x) ∈ R, where d is typically a
small constant and the hi are hash functions, typically assumed to behave as independent fully
random hash functions. (See [71] for some justification of this assumption.)

We assume each location can hold only one item. Items are inserted consecutively and when an
item x is inserted into the table, it can be placed immediately if one of its d locations is currently
empty. If not, one of the items in its d locations must be displaced and moved to another of its
d choices to make room for x. This item in turn may need to displace another item out of one of
its d locations. Inserting an item may require a sequence of moves, each maintaining the invariant
that each item remains in one of its d potential locations, until no further evictions are needed.

We now give the formal description of the mathematical model that we use. We are given two
disjoint sets L = {v1, v2, . . . , vn} , R = {w1, w2, . . . , wm}. Each v ∈ L independently chooses a set
N(v) of d ≥ 2 uniformly random neighbors in R. We assume for simplicity that this selection is
done with replacement. This provides us with the bipartite cuckoo graph Γ. Cuckoo Hashing can
be thought of as a simple algorithm for finding a matching M of L into R in Γ. In the context of
hashing, if {x, y} is an edge of M then y ∈ R is a hash value of x ∈ L.

Cuckoo Hashing constructs M by defining a sequence of matchings M1,M2, . . . ,Mn, where Mk is
a matching of Lk = {v1, v2, . . . , vk} into R. We let Γk denote the subgraph of Γ induced by Lk ∪R.

25
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We let Rk denote the vertices of R that are covered by Mk and define the function φk : Lk → Rk
by asserting that Mk = {{v, φk(v)} : v ∈ Lk}. We obtain Mk from Mk−1 by finding an augmenting
path Pk in Γk from vk to a vertex in R̄k−1 = R \Rk−1.

This augmenting path Pk is obtained by a random walk. To begin we obtain M1 by letting φ1(v1)
be a uniformly random member of N(v1), the neighbors of v1. Having defined Mk we proceed as
follows: Steps 1 – 4 constitute round k.

Algorithm insert:

Step 1 x← vk; M ←Mk−1;

Step 2 If Sk(x) = N(x) ∩ R̄k−1 6= ∅ then choose y uniformly at random from Sk(x) and let
Mk = M ∪ {{x, y}}, else

Step 3 Choose y uniformly at random from N(x);

Step 4 M ←M ∪ {{x, y}} \
{
y, φ−1

k−1(y)
}

; x← φ−1
k−1(y); goto Step 2.

This algorithm was first discussed in the conference version of [35]. Our interest here is in the
expected time for insert to complete a round. Our results depend on d being large. In this case
we will improve on the bounds on insertion time given in Frieze, Melsted and Mitzenmacher [50],
Fountoulakis, Panagiotou and Steger [37], Fotakis, Pagh, Sanders and Spirakis [35]. The paper [35]
studied the efficiency of insertion via Breadth First Search and also carried out some experiments
with the random walk approach. The papers [50] and [37] considered insertion by random walk and
proved that the expected time to complete a round can be bounded by log2+od(1) n, where od(1)
tends to zero as d→∞. The paper [37] improved on the space requirements in [50]. They showed
that given ε, their bounds hold for any d large enough to give the existence of a matching w.h.p.
Mitzenmacher [70] gives a survey on Cuckoo Hashing and Problem 1 of the survey asks for the
expected insertion time.

Frieze and Melsted [49], Fountoulakis and Panagiotou [36] give information on the relative sizes of
L,R needed for there to exist a matching of L into R w.h.p.

We will prove the following theorem: it shows that the expected insertion time is O(1), but only
for a large value of d. The theorem focusses on the more interesting case where the load factor n/m
is close to one. When the load factor is small enough i.e. when nd ≤ (1− ε)m the components of
Γ will be bounded in expectation and so it is straightforward to show an O(1) expected insertion
time.

Theorem 3.1. Suppose that n = (1−ε)m where ε is a fixed positive constant, assumed to be small.
Let 0 < θ < 1 also be a fixed positive constant and let

γ = 5(1− ε)d/2. (3.1)

If d2γ ≤ (1− θ)(d− 1) then w.h.p. the structure of Γ is such that over the random choices in Steps
2,3,

E [|Pk|] ≤ 1 +
2

θ
for k = 1, 2, . . . , n. (3.2)

Here |Pk| is the length (number of edges) of Pk.



3.2. PROOF OF THEOREM 3.1 27

When d is large the value of θ in (3.2) is close to dε/2. It can be seen from the proof that as

ε → 0, the value of d needed is of the order
(

log 1/ε
ε

)
. This is larger than the value O(log(1/ε))

needed for there to be a perfect matching from L to R and finding an O(1) bound on the expected
insertion time for small d remains as an open problem. We note that the BFS algorithm of [35],
which requires Ω(nδ) space for constant δ > 0, has an expected insertion time of dΩ(log 1/ε).

The problem here bears some relation to the On-line bipartite matching problem discussed for
example in Chaudhuri, Daskalakis, Kleinberg and Lin [17], Bosek, Leniowski, Sankowski and Zych
[15] and Gupta, Kumar and Stein [56]. In these papers the bipartite graph is arbitrary and has
a perfect matching and vertices on one side A of the bipartition arrive in some order, along with
their choice of neighbors in the other side B. As each new member of A arrives, a current matching
is updated via an augmenting path. The aim is to keep the sum of the lengths of the augmenting
paths needed to be as small as possible. It is shown, among other things, in [17] that this sum can
be bounded by O(n log n) in expectation and w.h.p. This requires finding a shortest augmenting
path each time. Our result differs in that our graph is random and |A| = (1 − ε)|B| and we only
require a matching of A into B. On the other hand we obtain a sum of lengths of augmenting paths
of order O(n) in expectation via a random choice of path.

3.2 Proof of Theorem 3.1

3.2.1 Outline of the main ideas

Let

Bk =
{
v ∈ Lk : N(v) ∩ R̄k−1 = ∅

}
.

If x /∈ Bk in Step 2 of insert then we will have found Pk.

Let P = (x1, ξ1, x2, ξ2, . . . , x`) be a path in Γ, where x1, x2, . . . , x` ∈ Lk−1 and ξ1, ξ2, . . . , ξ`−1 ∈
Rk−1. We say that P is interesting if x1, x2, . . . , x` ∈ Bk. We note that if the path Pk = (x1 =
vn, ξ1, x2, ξ2, . . . , x`, ξ`, x`+1, ξ`+1) then Qk = (x1, ξ1, x2, ξ2, . . . , x`) is interesting. Indeed, we must
have xi ∈ Bk, 1 ≤ i ≤ `, else insert would have chosen ξi ∈ R̄k−1 ⊆ R̄xi and completed the round.

Our strategy is simple. We show that w.h.p. there are relatively few long interesting paths and
because our algorithm (usually) chooses a path at random, it is unlikely to be long and interesting.
One caveat to this approach is that while all augmenting paths yield interesting sub-paths, the
reverse is not the case. In which case, it would be better to estimate the number of possible long
augmenting paths. The problem with this approach is that we then need to control the distribution
of the matching Mk. This has been the difficulty up to now and we have avoided the problem by
focussing on interesting paths. Of course, there is a cost in that d is larger than one would like,
but it is at least independent of n.

To bound the number of interesting paths, we bound |Bk| and use this to bound the number of
paths.
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3.2.2 Detailed proof

Fix 1 ≤ k ≤ n. We observe that if Rk−1 = {y1, y2, . . . , yk−1} then

yk is chosen uniformly from R̄k−1 (3.3)

and is independent of the graph Γk−1 induced by Lk−1 ∪ Rk−1. This is because we can expose Γ
along with the algorithm. When we start the construction of Mk we expose the neighbors of vk one
by one. In this way we either determine that Sk(vk) = ∅ or we expose a uniformly random member
of Sk(vk) without revealing any more of N(vk). In general, in Step 2, we have either exposed all the
neighbors of x and these will necessarily be in Rk−1. Or, we can proceed to expose the unexposed
neighbors of x until either (i) we determine that Sk(x) = ∅ and we choose a uniformly random
member of N(x) or (ii) we find a neighbor of x that is a uniformly random member of R̄k−1. Thus

Rk−1 is a uniformly random subset of R.

We need to show that Bk is small. It is clear that v1 /∈ B1 i.e. B1 = ∅ and so we deal next with
2 ≤ k ≤ d− 2. If vk ∈ Bk then vk must choose some vertex in R three times. But,

Pr(∃2 ≤ k ≤ d− 2, w ∈ R : vk chooses w three times) ≤ (d− 2)m×m−3 = o(1).

This implies that w.h.p. Bk = ∅ for 2 ≤ k ≤ d − 2. We deal next with d − 1 ≤ k ≤ n9/10. Since
N(vk) is uniformly random, we see that

Pr(∃k ≤ n9/10 : vk ∈ Bk) ≤ n1−d/10 = o(1) for d > 10.

Assume from now on that n9/10 ≤ k ≤ n− 1. Let νk,` denote the number of interesting paths with
2`− 1 vertices. Let θ, γ > 0 be as in the statement of Theorem 3.1.

Lemma 3.1. Given A0 and d sufficiently large,

Pr
(
∃2 ≤ ` ≤ A0 log log n : νk,` ≥ (1 + θ)kγ(d2γ)`−1

)
= o(n−2). (3.4)

The bound o(n−2) is sufficient to deal with the insertion of n items.

Before proving the lemma, we show how it can be used to prove Theorem 3.1. We will need the
following claims:

Claim 3.1. Let ∆ denote the maximum degree in Γ. Then for any t ≥ log n we have Pr(∆ ≥ t) ≤
e−t.

Proof of Claim: If v ∈ L then its degree deg(v) = d. Now consider w ∈ R. Then for t ≥ log n,

Pr(∃w ∈ R : deg(w) ≥ t) ≤ m
(
dn

t

)
1

mt
≤ m

(
de

t

)t
≤ e−t.

End of proof of Claim

We will make use of the following simple modifcation of the Azuma-Hoeffding inequality.
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Lemma 3.2. Let Z = Z(X1, X2, . . . , XM ) ≥ 0 where X1, X2, . . . , XM are independent random
variables. Let E = E(X1, X2, . . . , XM ) be an event. Suppose that if E occurs, then changing a single
Xi can only change Z by at most A1. Then, for any t > A0Pr(Ē) we have

Pr(Z ≥ E [Z] + t) ≤ exp

{
− t2

2MA2
1

}
+ Pr(Ē).

Proof. We have

Pr(Z ≥ E [Z] + t) = Pr(Z1E ≥ E [Z] + t) + Pr(Z1Ē ≥ E [Z] + t)

≤ Pr(Z1E ≥ E [Z1E ] + u) + Pr(Ē) (3.5)

where

u = E [Z]−E [Z1E ] + t ≥ t. (3.6)

Applying the Azuma-Hoeffding inequality (more precisely, the special case referred to as McDi-
armid’s inequality) we get

Pr(Z1E ≥ E [Z1E ] + u) ≤ exp

{
− u2

2MA2
1

}
. (3.7)

The lemma follows after using (3.6) and (3.7) in (3.5).

Claim 3.2. With probability 1 − o(n−2), Γ contains at most n1/2+o(1) cycles of length at most
Λ = (log log n)2.

Proof of Claim: The expected number of cycles of length at most 2` = Λ is bounded by

∑̀
s=2

(
n

s

)(
m

s

)
(s!)2

(
d

m

)2s

≤
∑̀
s=2

d2s = no(1).

Let C denote the number of cycles of length at most Λ. We apply Lemma 3.2 to C with M = dn,
E =

{
∆ ≤ λ = (log n)2

}
and A1 = λΛ and t = n1/2A0 log n = n1/2+o(1). We use Claim 3.1 to bound

Pr(Ē).
End of proof of Claim

These two claims imply the following:

With probability 1− o(n−2) there are at most n1/2+o(1)(3 log n)2` = n1/2+o(1) vertices within

distance at most 2A0 log log n of a cycle of length at most Λ = (log log n)2. (3.8)

Now let pk,` denote the probability that insert requires at least ` steps to insert vk.

We finish the proof of the theorem by showing that

E [|Pk|] = 1 + 2
∞∑
`=2

pk,` ≤ 1 +
2

θ
. (3.9)

We observe that if vk has no neighbor in R̄k−1 and has no neighbor in a cycle of length at most Λ
then for some ` ≤ A0 log log n, the first 2` − 1 vertices of Pn follow an interesting path. Hence, if
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d2γ ≤ (1− θ)(d− 1) then

A0 log logn∑
`=2

pk,` ≤ O(n−1/2+o(1)) +

A0 log logn∑
`=2

νk,`
k(d− 1)`

≤ O(n−1/2+o(1)) +

A0 log logn∑
`=2

kγ(d2γ)`−1

k(d− 1)`

≤ o(1) + (1 + θ)

∞∑
`=2

(1− θ)`−1 = o(1) +
1− θ2

θ
. (3.10)

Explanation of (3.10): Following (3.8), we find that the probability vk is within 2A0 log logn of a
cycle of length at most Λ is bounded by n−1/2+o(1). The O(n−1/2+o(1)) term accounts for this and
also absorbs the error probability in (3.4). Failing this, we have divided the number of interesting
paths of length 2`− 1 by the number of equally likely walks k(d− 1)` that insert could take. To
obtain k(d− 1)` we argue as follows. We carry out the following thought experiment. We run our
walk for ` steps regardless. If we manage to choose y ∈ R̄k−1 then instead of stopping, we move
to vk and continue. In this way there will in fact be k(d− 1)` equally likely walks. In our thought
experiment we choose one of these walks at random, whereas in the execution of the algorithm we
only proceed as far the first time we reach R̄k−1. Finally, for the algorithm to take at least ` steps,
it must choose an interesting path of length at least 2`− 1.

Note next that

pk,A0 log logn ≤ O(n−1/2+o(1)) + 3−A0 log logn.

It follows that
(logn)A0∑

`=A0 log logn

pk,` ≤
(logn)A0∑

`=A0 log logn

pk,A0 log logn = o(1). (3.11)

We will use the result of [50]: We phrase Claim 10 of that paper in our current terminology.

Claim 3.3. There exists a constant a > 0 such that for any v ∈ Lk−1, the expected time for insert
to reach R̄k−1 is O((log k)a).

It follows from Claim 3.3 that for any integer ρ ≥ 1,

Pr(|Pk| ≥ ρ(log k)2a) ≤ 1

(log k)ρa
. (3.12)

Indeed, we just apply the Markov inequality every (log k)2a steps to bound |Pk| by a geometric
random variable.

It follows from (3.12) that

∑
`≥3(log k)2a

pk,` ≤
∞∑
ρ=3

∑
`/(log k)2a∈[ρ,ρ+1]

pk,` ≤
∞∑
ρ=3

1

(log k)ρa−2a
= o(1). (3.13)

Theorem 3.1 now follows from (3.9), (3.10), (3.11) and (3.13), if we take A0 > 2a.
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3.2.3 Proof of Lemma 3.1

We apply Lemma 3.2 to νk,` to argue that

Pr(νk,` ≥ E [νk,`] + n3/4) ≤ 2e−(logn)2
. (3.14)

We let M = kd, E =
{

∆ ≤ λ = (log n)2
}

as before, A1 = λ2` and t = n3/4. We use Claim 3.1 to
bound Pr(Ē). The bound on A1 follows from the fact that an edge can be in at most ∆2` interesting
paths.

It follows from (3.14) that to finish the proof, all we need to show is that if θ > 0 is an arbitrary
positive constant

E [νk,`] ≤ (1 + θ)kγ(d2γ)`−1, (3.15)

where γ is as in (3.1).

Claim 3.4. Let
Bk = {|Bk| ≥ kγ} .

Then
Pr(Bk) = O(e−Ω(n1/2)).

Proof of Claim:
Let Bk,1 denote the set of vertices vi ∈ Lk such that round i exposes at least d/2 edges incident
with vi. Then

Pr(vi ∈ Bk,1) ≤ (1− ε)d/2.

It then follows from the Chernoff bounds that

Pr
(
|Bk,1| ≥ 2k(1− ε)d/2

)
= O(e−Ω(n1/2)). (3.16)

Next let

Bk,2 = {s ≤ k : round s does not end immediately in Step 2 with x = vs.}

Then, Pr(s ∈ Bk,2) =
(
s−1
m

)d
and this holds for each value of s independently and so

E [|Bk,2|] ≤
k∑
s=1

(
s− 1

m

)d
≤ kd+1

(d+ 1)md
.

Now |Bk,2| is the sum of independent {0, 1} random variables and so Hoeffding’s theorem [57]
implies that for a constant θ > 0,

Pr(|Bk,2| ≥ (1 + θ)
kd+1

(d+ 1)md
= O(e−ε1k) for some constant ε1 = ε1(d, ε, θ) > 0. (3.17)

Now if Bk,3 = {s ∈ Bk : ∃` ≤ k, ` 6= s s.t. round ` ends with x = vs} then |Bk,3| ≤ |Bk,2|. Define
Bk,4 = Bk \ (Bk,1 ∪ Bk,2 ∪ Bk,3). Let t > s be the first time that vs is re-visited by insert or let
t = k if vs is not re-visited. Then s ∈ Bk,4 only if in round t, at least d/2 unexposed edges incident
to s are found to be in Rt−1. It follows that

E(|Bk,4|) ≤ k(1− ε)d/2.
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Since membership of s in Bk,4 is determined by the random choices of vs, |Bk,4| is the sum of
independent random variables and so

Pr
(
|Bk,4| ≥ 2k(1− ε)d/2

)
= O(e−Ω(n1/2)). (3.18)

The claim follows from (3.16), (3.17) and (3.18).
End of proof of Claim

Given Claim 3.4, we have

E [νk,`] = E [νk,` | ¬Bk] Pr(¬Bk) + E [νk,` | Bk] Pr(Bk)

≤ k`γ`k`−1 ·
(

(1 + o(1))
d

k

)2`−2

+O(k2`−1 · e−Ω(n1/4)), (3.19)

≤ (1 + o(1))kγ(d2γ)`−1 + o(1).

This proves (3.15).

Explanation of (3.19): We can choose the vertex sequence σ = (x1, ξ1, . . . , ξ`−1, x`) of an inter-
esting path P in at most |Bk|`k`−1 ways, and we apply Claim 3.4. Having chosen σ we see that
((1+o(1))d/k)2`−2 bounds the probability that the edges of P exist. To see this, condition on R̄k−1

and the random choices for vertices not on P . In particular, we can fix Rk−1 = {y1, y2, . . . , yk−1}
from the beginning and this simply constrains the sequence of choices y1, y2, . . . , yk−1 to be a uni-
formly random permutation of Rk−1. LetMk be the property that Γ has a matching from Lk to R.
It is known that Pr(Mk) = 1− O(n4−d). This will also be true conditional on the value of R̄k−1.
This follows by symmetry. The conditional spaces will be isomorphic to each other. So for large d,
we can assume that our conditioning is such that with probability 1−O(1/n3) the edge choices by
x1, x2, . . . , x` are such that Γk has property Mk with probability 1 − O(n7−d). Recall from (3.3)
that the disposition of the edges of Γk−1 is independent of R̄k−1. Now each edge adjacent to a
given x ∈ σ ∩Lk is a uniform choice over those edges consistent with x being in Bk. But there will
be at least k − 1 such choices for such an x viz. the vertices of Rk−1. Thus

Pr(P exists | Mk) ≤
Pr(P exists)

Pr(Mk)
≤ (1 + o(1))

(
d

k

)2`−2

.

Note that Pr(M̄k) is only inflated by at most 1
(1−ε)d` = o(no(1)) if we condition on x1, x2, . . . , x`

making their choices in R̄k−1. This has to be compared with the unconditional probability of
O(n7−d).

This completes the proof of Theorem 3.1. 2

Remark 3.1. Along with an upper bound, we can prove a simple lower bound:

E [|Pk|] ≥
2

1− (1− ε)d
.

This follows from the fact that Step 2 of insert ends the procedure with probability 1− (1− ε)|Sk(x)|

and |Sk(x)| ≤ d.
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3.3 Final Remarks

There is plenty of room for improvement in the bounds on d in Theorem 3.1. It would be most
interesting to prove an O(1) bound on the expected insertion time for small d, e.g. d = 3, 4, 5. This
no doubt requires an understanding of the evolution of the matching M .

Acknowledgement: We thank Wesley Pegden and the reviewers for their comments.





Chapter 4

Preferential attachment with edge
deletion

This chapter corresponds to [60].

Abstract

We consider a variation on the Barabási-Albert random graph process with
fixed parameters m ∈ N and 1/2 < p < 1. With probability p a vertex is
added along withm edges, randomly chosen proportional to vertex degrees.
With probability 1− p, the oldest vertex still holding its original m edges
loses those edges. It is shown that the degree of any vertex either is zero or
follows a geometric distribution. If p is above a certain threshold, this leads
to a power law for the degree sequence, while a smaller p gives exponential
tails. It is also shown that the graph contains a unique giant component
with high probability if and only if m ≥ 2.

4.1 Introduction

In recent years, considerable attention has been paid toward real-world networks such as the World
Wide Web (e.g. [30]) and social networks such as Facebook [87] and Twitter [73]. Many but not
all of these networks exhibit a so-called power law, and are sometimes referred to as scale free,
meaning that the number of elements of degree k is asymptotically k−η for some constant η > 0.
In [7] it is shown that the social network of scientific collaborations is scale free. For a number of
real-world scale free networks see [7].

As a means of describing such networks with a random graph, Barabási and Albert [2] introduced
a class of models, commonly called preferential attachment graphs, and argued that its degree dis-
tribution has a tail that decreases polynomially, a claim that was subsequently proved by Bollobás,
Riordan, Spencer and Tusnády [14]. This is in contrast to many well-known random graph models
such as the Erdős-Rényi model where the degree distribution has an exponential tail. While the
Barabási-Albert model in its basic form falls short as a description of the World Wide Web [1], the
model has become popular for modelling scale free networks.

35
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The base principle of preferential attachment graphs is the following: vertices are added sequentially
to the graph, along with edges that attach themselves to previously existing vertices with probability
proportional to their degree. This principle is susceptible to many variations, and can be combined
with other random graph models. See for example Flaxman, Frieze and Vera [32], [34], who
introduced a random graph model combining aspects of preferential attachment graphs and random
geometric graphs.

Real-world networks will encounter both growth and deletion of vertices and edges. Bollobás and
Riordan [13] considered the effect of deleting vertices from the graph after it has been generated.
Cooper, Frieze and Vera considered random vertex deletion [20], and Flaxman, Frieze and Vera
considered adversarial vertex deletion [33], where vertices are deleted while the graph is generated.
Chung and Lu [18] considered a general growth-deletion model for random power law graphs.

In this paper, we consider a preferential attachment model in which the oldest edges are regularly
removed while the graph is generated. There are two fixed parameters, an integer m ≥ 1 and a
real number 1/2 < p < 1. As the graph is generated, with probability p we add a vertex along
with m edges to random endpoints proportional to their degree. Choices are made with or without
replacement. The vertices are ordered by time of insertion, and with probability 1 − p we remove
all edges that were added along with a vertex, where the vertex is the oldest for which this has not
already been done. This is a new variation of the preferential attachment model, and the focus on
the paper is to find the degree sequence of this graph. The proof method also leads to a partial
result on the existence of a giant component.

In Theorem 4.2 we find the degree sequence of the graph, and show that it exhibits a phase transition
at p = p0 ≈ 0.83, independently of m. If p > p0 then the degree sequence follows a power law, while
p < p0 gives exponential tails. A real-world example of this behaviour is given by family names; in
[72] it is shown that the frequency of family names in Japan follow a power law, while [63] shows
that family names in Korea decay exponentially.

We prove three theorems. The first deals with the degree distribution of any fixed vertex, show
that it is the sum of m independent variables that are either zero or geometrically distributed. We
let Gn denote the nth member of the graph sequence described above. The notation given here is
imprecise at this point, but the theorems will be restated with precise notation below.

Let D be the event that at some point of the graph process, the graph contains no edges. The
probability of D is addressed in Lemma 4.1, and we will be conditioning on D not occurring. At
this point we remark that if the process starts with a graph with ωH edges where ωH = ωH(n)→∞
as n→∞, then Pr {D} = o(1). Note that the ω in the following theorem is different from ωH .

Theorem 4.1. Suppose ω = o(log n) tends to infinity with n. Let d(n, v) denote the degree of
vertex v in Gn. Conditioning on D, there exist functions p(n, v), q(n, v)) ∈ [0, 1] and a constant
0 < c < 1/2 such that d(n, v) is distributed as the sum d1(n, v) + d2(n, v) + · · · + dm(n, v) of
independent random variables with

Pr {di(n, v) = k} =

{
1− q(n, v) +O(n−c), k = 0,
q(n, v)p(n, v)(1− p(n, v))k−1 +O(n−c), k > 0,

for i = 1, . . . ,m, for all v ≥ n/ω.

We do not address the degrees of vertices v < n/ω. In particular, we present no bounds for the
maximum degree of Gn. We have instead focused on finding the degree sequence and connected
components of Gn.
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The second theorem translates the degree distribution into a degree sequence for Gn. It shows that
the graph follows a power law if and only if p is above a certain threshold.

Theorem 4.2. Let p0 ≈ 0.83113 be the unique solution in (1/2, 1) to p/(4p − 2) = ln(p/(1 − p)).
Let Xk(n) denote the number of vertices of degree k in Gn. Conditioning on D, there exists a
sequence {xk : k ≥ 0} such that

(i) if α < 1 then xk = αk(1+ok(1)) and if α > 1 then there exist constants a, b > 0 such that
xk = ak−η−1 +Ok(k

−η−2 logb k), where η = η(p) > 2 is defined for p > p0, and

(ii) for any fixed k ≥ 0, Xk(n) = xkn(1 + on(1)) with high probability1.

The third theorem shows that Gn has a giant component if and only if m ≥ 2. This is in contrast
to the classical Barabási-Albert model which is trivially connected. Let B(n) = λ lnn when p < p0

and B(n) = λn1/η lnn when p > p0 for some constants λ > 0, η > 2, explicitly defined later. Note
that when p > p0 and m is large, Theorem 4.3 states that the number of vertices which are not in
the largest component is Om(cmn) for some 0 < c < 1, since the total number of vertices in Gn will
be shown to be pn(1 + on(1)) whp.

Theorem 4.3. Condition on D.

(i) If m = 1, the largest component of Gn has size O(∆ log n) with high probability, where ∆ is
the maximum degree of Gn.

(ii) If m ≥ 2, there exists a constant ξ > 0 such that with high probability the number of isolated
vertices is ξpn, the largest component contains at least (1 − ξ)(1 − (13/14)m−1)pn vertices,
and all other components have size O(log n). If p > p0 then ξ = Om(cm) for some 0 < c < 1.

4.1.1 Proof outline

The paper is laid out as follows. In Section 4.2 we define the graph process precisely and define
constants and functions that are central to the main results. Section 4.3 is devoted to Crump-
Mode-Jagers processes, which will be the central tool in studying the graph process. Sections 4.4,
4.5 and 4.6 are devoted to proving Theorem 4.1, 4.2 and 4.3 respectively.

We will now outline the proof of Theorem 4.1. Theorem 4.2 is an elementary consequence of
Theorem 4.1, and the proof of Theorem 4.3 is heavily based on the method used to prove Theorem
4.1.

In Section 4.2.1 we will define a master graph Γ which contains Gt for all t. We will mainly be
proving results for Γ and show how they transfer to Gn, but for this informal outline we will avoid
the somewhat technical definition of Γ and show the idea behind the proofs.

We begin by describing the Crump-Mode-Jagers process (or CMJ process). The name Crump-
Mode-Jagers applies to a more general class than what is considered here, but we will mainly be
talking about the special case described as follows. Fix a constant α > 0 and consider a Poisson
process P0 with rate α on [0, 1). Suppose P0 has arrivals at time τ01 < τ02 < · · · < τ0k. The jth
arrival gives rise to a Poisson process P0j on [τ0j , τ0j + 1), j = 1, . . . , k, independent of all other

1We say that a sequence of events En occur with high probability (whp) if Pr {En} → 1 as n→∞
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Poisson processes. In general, let s = 0 . . . be a string of integers starting with 0 and suppose
Ps is a Poisson process on [τs, τs + 1). Then the jth arrival in Ps, at time τsj , gives rise to a
Poisson process Psj on [τsj , τsj + 1). Here sj should be interpreted as appending j to the end of
the string s. Let d(τ) be the number of processes alive at time τ , i.e. the number of processes
Ps with τs ∈ (τ − 1, τ ]. Lemma 4.3 will show that for fixed τ , d(τ) is either zero or geometrically
distributed.

We will now explain how the degree of a vertex in the graph process relates to a CMJ process.
Firstly, note that choosing a random vertex with probability proportional to degrees is equivalent
to choosing an edge e uniformly at random, and choosing one of the two endpoints of e uniformly at
random. We will refer to this as choosing a half-edge (e, `) where ` ∈ {1, 2}. If e = {v, w} is added
along with vertex v, we say that choosing (e, 1) corresponds to choosing w via e, and choosing (e, 2)
corresponds to choosing v via e. This is described in detail in Section 4.2.

For the purpose of demonstration consider the case m = 1, i.e. the case in which exactly one
edge is added along with any vertex added to the graph. It will follow from Lemma 4.1 that if
a vertex v0 is added along with an edge e0 at time t0 then with high probability e0 is removed
at time γt0 + o(t), where γ = p/(1 − p). Note that the degree of v0 may still be non-zero after
the removal of e0. If the degree of v0 is to increase from its initial value 1, then there must
exist a time T01 with t0 < T01 < γt0 + o(t0) at which a vertex v01 is added along with edge e01,
where e01 is randomly assigned to (e0, 2). The time T01 is random and we will see (equation (4.1))
that logγ(T01/t0) ∈ (0, 1 + o(1)) is approximately exponentially distributed with rate α = α(p).
Furthermore, if T01 < T02 < · · · < T0k denote the times at which a vertex is added that chooses
v0 via e0, then the sequence (logγ(T0i/t0)) can be approximated by a Poisson process with rate
α on the interval (0, 1). Let e01 denote the edge that is added at time T01 and chooses (e0, 2)
(if such an edge exists). Then the degree of v0 may increase by some edge e011 added at time
T011 with T01 < T011 < γT01 + o(T01) choosing (e01, 1), i.e. choosing v0 via e01. As above, the
sequence of times T011, T012, . . . , T01` at which a vertex is added that chooses v0 via e01 are such
that (logγ(T01i/T01)) approximately follows a Poisson process on (logγ T01, 1 + logγ T01). Repeating
the argument, any edge incident to v0 gives rise to a Poisson process, and as long as the degree
of v0 is not too large the processes are “almost independent”. Under the time transformation
τ(t) = logγ(t/t0), the times at which the degree of v0 increases or decreases can be approximated
by the times at which d(τ) increases or decreases in a CMJ process with rate α. This approximation
is made precise in the proof of Theorem 4.1, and shows that the degree of a vertex is either zero or
approximately geometrically distributed.

Now supposem > 1. Then each of them edges added along with v gives rise to a CMJ process by the
argument above, and the processes are “almost independent”. The degree of v will be approximated
by a sum of m independent random variables that are each either zero or geometrically distributed.

4.2 The model

Fix m ∈ N and 1/2 < p < 1. Let Gm be the class of undirected graphs on [νG] = {1, . . . , νG} for
some integer νG such that if edges are oriented from larger integers to smaller, there exists some
integer 1G with m < 1G ≤ νG such that a vertex v has out-degree m if v ≥ 1G and out-degree zero
if v < 1G. All graphs we deal with will be in Gm. In some places it will be convenient to think of
graphs as being directed, in which case we always refer to the orientation from larger to smaller
integers. We will allow parallel edges but no self-loops.
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Our graph G will be defined by G = Gn for some graph sequence (Gt) and some n that grows to
infinity. Each Gt will be in Gm, and we write 1t = 1Gt , νt = νGt . Given Gt, we randomly generate
Gt+1 as follows. With probability 1−p, remove all m edges oriented out of 1t, so that 1t+1 = 1t+1.
Note that edges oriented into 1t remain in Gt+1. With probability p, add vertex νt+1 = νt+1 along
with m edges to distinct vertices, where vertices are picked with probability proportional to their
degree with replacement. In other words, if d(t, v) denotes the degree of vertex v in Gt, then νt+1

is added along with edges (νt+1, vi) where v1, . . . , vm are independent with

Pr {vi = v} =
d(t− 1, v)

e(Gt−1)

where e(Gt−1) denotes the number of edges in Gt−1. Rather than using the terminology of νt+1

choosing v1, . . . , vm, we will say that the m edges e1, . . . , em added at time t+ 1 choose v1, . . . , vm
respectively. Let d+(t, v), d−(t, v) denote the out- and in-degree of v in Gt in the natural orientation.
Write d(t, v) = 0 if v /∈ Gt. The issue of the empty graph appearing in the process is addressed
shortly.

We will assume that the graph process starts with some graph H ∈ Gm on ν = o(n1/2) vertices, and
we label this graph Gt0 where t0 = 1H + νH in order to maintain the identity 1t + νt = t for every
Gt, t0 ≤ t ≤ n. Let σ ∈ {0, 1}n−t0 be such that σ(u) is the indicator for if a vertex and m edges are
added at time u+ t0, or if m edges are removed at time u+ t0. Then νt = νH +

∑t
u=t0+1 σ(u) for

all t > t0, and 1t = t− νt. The entries σ(u) are independent and σ(u) = 1 with probability p. Say
that σ is feasible if it is such that νt > 1t for all t > t0, noting that {σ is feasible} = D with D as in
Section 4.1. For a function ω = ω(n) such that ω →∞ as n→∞, We say that σ is ω-concentrated
if |νt − pt| ≤ t1/2 ln t for all t ≥ n/ω. Note that if σ is ω-concentrated then |1t − (1− p)t| ≤ t1/2 ln t
and |e(Gt) −m(2p − 1)t| ≤ mt1/2 ln t for all t ≥ n/ω. Furthermore, if an edge e is added at time
t ≥ n/ω then it is removed at time pt/(1− p) +O(t1/2 ln t).

Lemma 4.1. Let ω = ω(n) → ∞ with n. If the graph process is initiated at H ∈ Gm on νH ≤
ω−1n1/2 vertices and νH − 1H = N , then σ is feasible with probability 1 − O(cN ), i.e. Pr {D} =
O(cN ), for some constant c ∈ (0, 1). Furthermore, σ is ω-concentrated with probability 1−O(n−C)
for any C > 0.

Proof. Recall that σ(t) = 1 with probability p and σ(t) = 0 otherwise. The difference νt − 1t is a
random walk, and the fact that νt ≥ 1t for all t ≥ t0 with probability 1−O(cN ) for some c ∈ (0, 1)
is well known (see e.g. [55, Section 5.3]).

Suppose t ≥ n/ω. Then t − t0 ≥ n/2ω and by Hoeffding’s inequality [57], since pt0 − νH =
o((n/ω)1/2) = o(t1/2 ln t),

Pr
{
νt − pt > t1/2 ln t

}
= Pr

{(
t∑

u=t0+1

σ(u)

)
− p(t− t0) > pt0 − νH + t1/2 ln t

}
= e−Ω(ln2 t)

Summing over t = n/ω, . . . , n shows that νt ≤ pt + t1/2 ln t for all t ≥ n/ω whp, and similarly
νt ≥ pt− t1/2 ln t for all t ≥ n/ω whp.

4.2.1 The master graph

The above description of Gt is limited in that it forces one to generate the graph on-line, i.e. vertices
need to make their random choices in a fixed order. Conditioning on σ we can define an off-line
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graph Γ which contains Gt for all t. This graph enables us to generate small portions of the graph
without revealing a large part of the probability space.

Fixing a feasible σ we define a master graph Γ = Γσn(H) which has Gt as a subgraph (in the sense
that Gt can be obtained from Γ by removing edges and possibly vertices) for all t0 ≤ t ≤ n. There
are two key observations that allow the construction. Firstly, if σ is fixed, then νt = νH+

∑t−t0
u=1 σ(u)

is known for all t0 ≤ t ≤ n. This means that 1t = t−νt is known, and we know that the m(νt−1t+1)
edges in Gt are those added along with 1t, 1t + 1, . . . , νt, for all t0 ≤ t ≤ n. Secondly, suppose a
vertex v is added along with edges e1, . . . , em at time t > t0. Rather than using the terminology
of v choosing m vertices v1, . . . , vm ∈ Gt−1 with probability proportional to their degrees, we will
adopt the terminology of the edges ei independently choosing edges fi ∈ Gt−1 uniformly at random,
then choosing one of the two endpoints of fi uniformly at random. To make this formal, let Eσe be
the edges that are in the graph when the edge e is added, noting that if e is added at time t then
Eσe = {m(1t−1 − 1) + 1, . . . ,mνt−1} with 1t−1, νt−1 determined by σ. Then each ei independently
chooses an fi ∈ Eσei uniformly at random, along with ji ∈ [2] chosen uniformly at random. If
fi = {u, u′} with u′ < u, then ei choosing (fi, 1) means ei chooses u′, and (fi, 2) means choosing u.
We say that fi chooses u (or u′) via fi. We call a pair (e, j) with j ∈ [2] a half-edge.

Suppose the graph process is initiated with some graph Gt0 = H ∈ Gm on [νH ] with 1H + νH = t0.
We will introduce an integer labelling L(e) for the edges e in Γ. The L will be dropped from
calculations and we write e1 ≥ e2 to mean L(e1) ≥ L(e2) and f(e) = f(L(e)) whenever f is a
function on the integers. The labelling is defined by labelling the m edges along with v > νH by
m(v− 1) + 1,m(v− 1) + 2, . . . ,mv. The edges in the initial graph H can be oriented in such a way
that vertices 1, . . . , 1H − 1 have out-degree zero, and 1H , . . . , νH have out-degree m. We can then
label the edges in H by m(1H − 1) + 1, . . . ,mνH in such a way that 1H ≤ v ≤ νH is incident with
edges m(v − 1) + 1, . . . ,mv. Note that under this labelling, every edge e is incident with vertex
de/me while its other endpoint v(e) will satisfy v(e) < de/me.

Definition of Γ: Fix a feasible σ and a graph H ∈ Gm. We define Γ = Γσn(H) as follows. The
vertex set is [νn] where νn = νH +

∑n−t0
i=1 σ(i). The graph Γ contains H as an induced subgraph on

[νH ]. Every edge e > mνH is associated with a set Ω(e) = Eσe × [2], and makes a random choice
φ(e) = (f(e), j(e)) ∈ Ω(e) uniformly at random, independent of all other edges. One endpoint
of e is de/me (the fixed endpoint) and one is v(e) (the random endpoint). If j(e) = 2 then
v(e) = df(e)/me. If j(e) = 1 then v(e) = v(f(e)).

Note the recursion in defining the random endpoint v(e) of an edge e. If j(e) = 1 and j(f(e)) = 1
then v(e) = v(f(e)) = v(f(f(e))), and so on until either j(f (k)(e)) = 2 for some k, or f (k)(e) ≤ mνH
for some k, in which case v(e) = v(f (k)(e)) is determined byH. Here f (k) denotes k-fold composition
of f .

We will generate Γ carefully by keeping a close eye on the sets Ω(e). Let Γ0 be the graph in which
no randomness has been revealed; in Γ0 only the edges in H are known, all other edges are free,
and all sets Ω(e) = Ω0(e) = Eσe × [2]. For sets A ⊆ {mνH + 1,mνH + 2, . . . ,mνn} of free edges and
R ⊆ {m(1H − 1) + 1,m(1H − 1) + 2, . . . ,mνn}× [2] of half-edges, define a class G(A,R) of partially
generated graphs as follows. We say that Γ̃ ∈ G(A,R) if (i) for e > mνH , φ(e) is known if and only
if e ∈ A, and (ii) for all e /∈ A we have Ω(e) ⊇ Ω0(e) \R. In other words, if (f, j) ∈ R then for each
e with (f, j) ∈ Ω0(e), we may have determined that φ(e) 6= (f, j).

Given a partially generated Γ̃ ∈ G(A,R), we define two operations that reveal more information
about Γ. We say that we assign e /∈ A when we choose φ(e) uniformly at random from Ω̃(e) =
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Ω0(e) \ R. For any (f, j) we can reveal (f, j) to find the φ−1({f, j}) \ A of edges e /∈ A, free in
Γ̃, that choose (f, j). We reveal (f, j) as follows. For every edge e /∈ A with (f, j) ∈ Ω̃(e), set
φ(e) = (f, j) with probability 1/|Ω̃(e)|, and otherwise remove (f, j) from Ω̃(e).

Starting with Γ0 ∈ G(∅, ∅) (this class contains only one graph), we can generate Γ by a sequence of
assigns and reveals. Given Γi ∈ G(Ai, Ri), we can assign e /∈ Ai to form Γi+1 ∈ G(Ai∪{e}, Ri), and
we set Ai+1 = Ai ∪ {e} and Ri+1 = Ri. If (f, j) /∈ Ri is revealed and e1, . . . , ek are the edges that
choose (f, j), we get Γi+1 ∈ G(Ai∪{e1, e2, . . . , ek}, Ri∪{(f, j)}), and we set Ai+1 = Ai∪{e1, . . . , ek}
and Ri+1 = Ri ∪ {(f, j)}. We get a sequence Γ0,Γ1, . . . where Γi ∈ G(Ai, Ri) and Ai ⊆ Ai+1 and
Ri ⊆ Ri+1 for all i.

Note that in a partially generated graph, if φ(e) = (f(e), 1) where f(e) is free, then we know that
v(e) = v(f(e)), but v(f(e)) is not yet determined. We say that e is committed to f(e). This can be
pictured by gluing the free end of e to the free end of f(e). At a later stage when f(e) is attached
to the its random endpoint v(f(e)), the edge e will follow and be attached to the same vertex.

We will condition on σ being ω-concentrated for some ω in the proofs to follow. In Γ, this translates
to each e with e ≥ mn/ω having Eσe = {e/γ+O(n1/2 lnn), . . . ,m(de/me−1)}, where γ = p/(1−p).
Note in particular that |Eσe | = e(1 − 1/γ) + O(n1/2 lnn). Note also that for any edge e ≥ mn/ω,
the largest f for which e ∈ Eσf is f = γe+O(n1/2 lnn).

4.2.2 Constants and functions

In this section we collect constants and functions that will be used throughout the remaining
sections. Fixing p and m, we define

µ = m(2p− 1), γ =
p

1− p
, α =

pm

2µ
ln γ =

p

4p− 2
ln γ.

The constant α will play a central role in what follows. We note that it is independent of m, and
viewed as a function of p ∈ (1/2, 1) it is continuously increasing and takes values in (1/2,∞). Let
p0 ≈ 0.83113 be the unique p for which α = 1. When α 6= 1 define ζ as the unique solution in
R \ {1} to

ζeα(1−ζ) = 1.

Also let η = − ln γ/ ln ζ if α > 1. If α < 1 then η is undefined.

Define a sequence ak by a0 = 1 and

ak =

(
−e

α

α

)(
a0

(k − 1)!
+

a1

(k − 2)!
+ · · ·+ ak−1

)
=

(
−e

α

α

) k−1∑
j=0

aj
(k − j − 1)!

, k ≥ 1.

For k ≥ 0 define functions Qk : [k, k + 1)→ [0, 1] by

Qk(τ) =

k∑
j=0

aj
(k − j)!

(τ − k)k−j ,

and for τ ≥ 0 let Q(τ) = Qbτc(τ). We note that Q(τ) is discontinuous at integer points k with

Q(k) = ak and Q(k−) = −αe−αak
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where Q(k−) denotes the limit of Q(τ) as τ → k from below. Define

q(τ) = 1, 0 ≤ τ < 1, q(τ) = 1 +
Q(τ − 1)

αQ(τ)
, τ ≥ 1.

Finally, define

p(τ) = exp

{
−α

∫ τ

0
q(x)dx

}
.

For τ < 0 we define Q(τ) = q(τ) = p(τ) = 0.

In Section 4.6 we will need explicit formulae for q(τ) for 0 ≤ τ ≤ 3. We have a0 = 1, a1 = −eα/α
and a0 = e2α/α2 − eα/α, so if 0 ≤ τ < 1 then Q(τ) = 1, Q(τ + 1) = τ − eα/α and Q(τ + 2) =
1
2τ

2 − α−1eατ + e2α/α2 − eα/α, and

q(τ) = 1, q(τ + 1) = 1− 1

eα − ατ
, q(τ + 2) = 1− eα − ατ

e2α − (τ + 1)αeα + 1
2α

2τ2
, 0 ≤ τ < 1.

The following lemma collects properties of the constants and functions presented here. Its proof is
postponed to Section 4.7.

Lemma 4.2. (i) If α > 1 then ζ < α−1 and if α < 1 then ζ > 1− α−1 + α−2 > α−1.

(ii) If α > 1 then η > 2.

(iii) The functions p(τ), q(τ) are decreasing and take values in [0, 1].

(iv) For any non-integer τ > 0,

Q′(τ) = Q(τ − 1) and q(τ) =
1

α

(Q(τ)eατ )′

Q(τ)eατ
.

(v) If α < 1 then there exist constants λ1, λ2 > 0 where λ1 < α such that for all τ ≥ 0,

p(τ) = 1− α+
λ1

ζτ
+O(ζ−2τ ) and q(τ) =

λ2

ζτ
+O(ζ−2τ ).

(vi) If α > 1 then there exist constants λ3, λ4 > 0 and a constant C > 0 such that for all τ ≥ 0,

λ3ζ
τ ≤ p(τ) ≤ λ3ζ

τ + Cζ2τ and q(τ) = 1− ζ + λ4ζ
τ +O(ζ2τ ).

The proof of Lemma 4.2 is postponed to Section 4.7.

4.3 A Poisson branching process

We now define a process C, called a Crump-Mode-Jagers (or CMJ) process. The name Crump-
Mode-Jagers applies to a more general class than what is considered here, but we will mainly be
talking about the special case described as follows. Fix a constant α > 0 and consider a Poisson
process P0 on [0, 1). Suppose P0 has arrivals at time τ01 < τ02 < · · · < τ0k. The jth arrival gives rise
to a Poisson process P0j on [τ0j , τ0j + 1), j = 1, . . . , k, independent of all other Poisson processes.
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In general, let s = 0 ∗ ∗∗ be a string of integers and suppose Ps is a Poisson process on [τs, τs + 1).
Then the jth arrival in Ps, at time τsj , gives rise to a Poisson process Psj on [τsj , τsj + 1). Here
sj should be interpreted as appending j to the end of the string s. Let d(τ) be the number of
processes alive at time τ , i.e. the number of processes Ps with τs ∈ (τ − 1, τ ], and define b(τ) to be
the number of processes born before τ , i.e. the number of s for which τs ≤ τ .

For a random variable X and p, q ∈ [0, 1], say that X ∼ G(p, q) if

Pr {X = k} =

{
1− q, k = 0,
qp(1− p)k−1, k ≥ 1.

Lemma 4.3. For all τ ≥ 0, d(τ) ∼ G(p(τ), q(τ)).

The proofs of Lemmas 4.3 and 4.4 are postponed to Section 4.8.

Lemma 4.4. There exists a constant λ > 0 such that for 0 ≤ τ ≤ logγ n, as n→∞

(i) if α < 1,

Pr {b(τ) > λ lnn} = o

(
1

n

)
.

(ii) if α > 1,

Pr
{
b(τ) > λn1/η lnn

}
= o

(
1

n

)
where η = − ln γ/ ln ζ > 2.

(iii) If α 6= 1 then d(τ) ≥ bb(τ)/(λ log2
γ n)c for all 0 ≤ τ ≤ logγ n with probability 1− o(n−1).

Let λ > 0 be as provided by Lemma 4.4 and define

B(n) =

{
λ lnn, α < 1,

λn1/η lnn, α > 1.

Given a time τ > 0 we can calculate b(τ), d(τ) by the following algorithm, based on the breadth-
first-search algorithm. Here S, S′ are sets of integer strings. The numbers i, j count the number of
times E ,L have been called, respectively.

0. Let S = {0}, S′ = {0} and τ0 = 0.

1. If S′ is empty, stop and output S and T = {τs : s ∈ S}. Otherwise choose the smallest s ∈ S′
(ordered lexicographically) and remove it from S′. Let Ls = 1 be the lifetime of process Ps.

2. Let Xs1, Xs2, . . . , Xs(k+1) be independent Exp(α) variables where k ≥ 0 is the smallest integer
for which Xs1 + · · ·+Xs(k+1) > Ls. If k ≥ 1, set

τs1 = τs +Xs1,

τs2 = τs +Xs1 +Xs2,

...

τsk = τs +Xs1 +Xs2 + · · ·+Xsk.

Add s1, s2, . . . , sk to S and S′.
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4.4 The degree distribution

This section is devoted to proving the following theorem. Suppose the graph process starts at
H = Gt0 where t0 = o(n1/2). As in Section 4.2, let D denote the event that 1t > νt for some t ≥ t0.

Let Gm(p, q) denote the distribution of X = X1 +X2 + · · ·+Xm where X1, . . . , Xm are independent
G(p, q) distributed variables. Let gm(k; p, q) denote the probability mass function of X. Note that
we define d(n, v) = 0 if v is not in Gn. The functions p(τ), q(τ) are defined in Section 4.2.2.

Theorem 4.1. Let ω = o(log n) be such that t0 ≤ n1/2/ω and ω → ∞ as n → ∞. Let v ≥ n/ω,
δ = n−1/2 lnn, and τ = logγ(pn/v). There exists a function q̃(τ) ∈ [0, 1] with q̃(τ) = q(τ) for all
τ /∈ (−δ, δ) ∪ (1− δ, 1 + δ), such that the degree d(n, v) of v satisfies

Pr
{
d(n, v) = k | D

}
= gm(k; p(τ), q̃(τ)) +O(B(n)n−1/2 ln2 n), k ≥ 0.

In Section 4.1.1, the idea behind this proof is outlined in the notation of the process Gt. The full
proof presented here is based on the master graph Γ and will be rather technical, but the idea is
the same. Condition on a feasible and ω-concentrated σ ∈ {0, 1}n−t0 , see Lemma 4.1. We will be
considering the master graph Γ = Γσn(H) defined in Section 4.2.1. Let En be the set of edges in
Γ with at least one endpoint in {1n, . . . , νn}, so that Gn is obtained from Γ by removing all edges
not in En.

Consider the graph Γ0 ∈ G(∅, ∅) in which all edges e > mνH are free. Fix a vertex v > n/ω, and
let e` = m(v − 1) + `, ` = 1, . . . ,m denote the m edges adjacent to v. Suppose an edge e > mv is
adjacent to v in Γ. Then e must choose φ(e) = (f, j) for some edge f which is also adjacent to v.
Here j must be 2 if f ∈ {e1, . . . , em} and 1 otherwise. In words, for an edge to be adjacent to v in
Γ but not in Γ0, it must choose the appropriate endpoint of some other edge that is adjacent to v
in Γ.

We will now make this idea more precise. Consider a partially generated graph Γ̃ ∈ G(A,R) for some
sets A,R. For (e0, j0) /∈ R, we define an operation called exposing (e0, j0), as a sequence of reveals (as
defined in Section 4.2.1). Let Q0 = {(e0, j0)}. For i ≥ 1 define Qi = {(e, 1) : e /∈ A, φ(e) ∈ Qi−1}.
Consider the following algorithm for finding the edges in ∪i≥0Qi. The parts labelled Setup are
not essential to the running of the algorithm, but are included to emphasize the similarity to the
algorithm in Section 4.3, to which it will later be compared.

The algorithm takes as input sets A,R, a partially generated Γ̃ ∈ G(A,R) and a half-edge (e0, j0) /∈
R.

0. Let S = {0}, S′ = {0}. Let Q = {(e0, j0)}.

1. If S′ is empty, stop and output S and Q. Otherwise, let s be the smallest member of S′ (in
the lexicographical order) and remove s from S′.

Setup: Let L′s = logγ(f/es) where f is the largest edge with es ∈ Eσf .

2. Reveal (es, js) to find φ−1({es, js}) \ A. Label the edges in φ−1({es, js}) \ A by es1 < es2 <
· · · < esk (where si denotes string concatenation). Add (es1, 1), . . . , (esk, 1) to Q, and add
s1, s2, . . . , sk to S and S′.

The partially generated graph is now in G(A ∪ {es1, . . . , esk}, R ∪ {(es, js)}). Set A ← A ∪
{es1, . . . , esk} and R← R ∪ {(es, js)}. Go to step 1.
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Vn

Figure 4.1: One outcome of the expose algorithm for m = 2. Here v has degree 9 in Γ and degree
4 in Gn. All edges in the figure are adjacent to v, but are drawn to indicate which half-edge was
chosen, e.g. φ(e221) = (e22, 1). Free edges are drawn as arrows.

Setup: Let X ′s1 = logγ(es1/es) and X ′s` = logγ(es`/es(`−1)) for ` = 1, 2, . . . , k. Set X ′s(k+1) =
∞ and es(k+1) =∞.

With input (e0, j0) and Γ̃ ∈ G(A,R), let E((e0, j0), Γ̃) be the set of edges e ∈ En (i.e. edges in Gn)
such that e = es for some s ∈ S.

Lemma 4.5. Let ω = o(log n) tend to infinity with n. Suppose either α < 1 and 0 < ε < 1/2, or
α > 1 and 0 < ε < 1/2 − 1/η. Let Γ̃ ∈ G(A,R) where |A|, |R| = O(n1/2+ε logk n) for some k ≥ 1.
Let (e0, j0) /∈ R satisfy e0 ≥ mn/ω, and let τ = logγ(pmn/e0). There exists a δ = O(n−1/2 lnn)
and a function q̃(τ) ∈ [0, 1] such that

Pr
{
|E((e0, j0), Γ̃)| = k

}
=

{
1− q̃(τ) +O(B(n)n−1/2+ε ln2 n), k = 0

q̃(τ)p(τ)(1− p(τ))k−1 +O(B(n)n−1/2+ε ln2 n), k ≥ 1.

where q̃(τ) = q(τ) for all τ /∈ (−δ, δ) ∪ (1− δ, 1 + δ).

Before proving the lemma, we show how it is used to finish the proof of Theorem 4.1. Consider the
graph Γ0 ∈ G(∅, ∅) in which no assignments or reveals have been made. We expose (e1, 2) to find
that |E((e1, 2),Γ0)| is asymptotically G(p(τ), q̃(τ)) distributed. Exposing (e1, 2) gives a partially
generated graph Γ1 ∈ G(A1, R1) where A1 is the set of edges assigned while exposing (e1, 2) and R1

consists of (e1, 2) and (e, 1) for all e ∈ A1. By Lemma 4.4 we have |A1|, |R1| = O(B(n)) = o(n1/2)
whp. Apply Lemma 4.5 to Γ1 to find that |E((e2, 2),Γ1)| is asymptotically G(p(τ), q̃(τ)) distributed,
and consider Γ2 ∈ G(A2, R2), where A2 \A1 and R2 \R1 consist of the edges assigned and revealed
when exposing (e2, 2). Repeating this m times keeps the sets Ai, Ri of size o(n1/2), and we find
that |E((ei, 2),Γi−1)| is asymptotically G(p(τ), q̃(τ)) distributed for i = 1, 2, . . . ,m. Then

d(n, v) =

m∑
i=1

|E((ei, 2),Γi−1)|
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and the theorem follows.

The above assumes that each vertex makes its m random choices with replacement. In the process
of determining d(n, v), O(B(n)) edges are revealed. The probability for any edge e to be adjacent
to v is O(B(n)/n), and it follows that the probability that two edges e1, e2 with de1/me = de2/me
are adjacent to v is O(B(n)2/n) = o(B(n)n−1/2). This shows that d(n, v) has the same asymptotic
distribution when choices are made with or without replacement.

4.4.1 Proof of Lemma 4.5

For i ≥ 1 write X ′si = logγ(esi/es(i−1)), where we say es0 = es. We will show that the collection
{X ′s : s ∈ S} can be coupled to a collection {Xs : s ∈ S} of independent Exp(α) variables in such
a way that X ′s = Xs +O(n−1/2+ε lnn) for all s with high probability. The lemma will then follow
from arguing that a CMJ process on [0, τ ] with τ ≤ logγ n is robust with high probability, in the

sense that changing interarrival times by O(n−1/2+ε lnn) does not change the value of d(τ).

The set of edges e with e0 ∈ Eσe is {e0 + i, e0 + i+ 1, . . . , e′0} for some i ∈ [m] and some e′0. Since
σ is ω-concentrated, there exists a constant C > 0 such that for all edges e ≥ mn/ω, the largest
edge that may choose e is e′ where e(γ − Cn−1/2 ln2 n) < e′ < e(γ + Cn−1/2 ln2 n). Fix such a C
and let δ1 = Cn−1/2 ln2 n, and let δ = O(n−1/2 ln2 n) be such that 1 − δ < logγ(γ + δ1) < 1 + δ.
Let τ = logγ(pmn/e0). If τ ≤ −δ then e0 /∈ Γ, if δ ≤ τ ≤ 1 − δ then e0 ∈ En, and if τ ≥ 1 + δ
then e0 ∈ Γ but e0 /∈ En. We will be assuming that τ /∈ (−δ, δ) ∪ (1− δ, 1 + δ), and leave the cases
τ ∈ (−δ, δ) and τ ∈ (1− δ, 1 + δ) until the end of the proof.

Now, consider the first edge e01 that chooses (e0, j0), taken to be ∞ if no edge chooses (e0, j0).
Since σ is ω-concentrated and |R| = O(n1/2+ε logk n) for some k ≥ 1, we have |Ω̃(e)| = 2µe/pm +
O(n1/2 lnn)− O(n1/2+ε logk n) = 2µe/pm+ O(n1/2+ε logk n) for all e > mn/ω. Since e0 > mn/ω,
if (e0, j0) ∈ Ω̃(e) then

Pr {e chooses (e0, j0)} =
pm

2µe
+O(n−3/2+ε lnk n),

independently of the random choice of all other edges. Let i ∈ [m] be the smallest number for
which e0 ∈ Eσe0+i, and suppose y > 1 is such that e0 ∈ Eσbye0c. Then if x = logγ y,

Pr {e01 > ye0} =

bye0c∏
e=e0+i
e/∈A

(
1− pm

2µe
+O(n−3/2+ε lnk n)

)

= exp

−
pm

2µ

bye0c∑
e=e0+i
e/∈A

(
1

e
+O(n−3/2+ε lnk n)

)
= exp

{
−αx

(
1 +O

(
|A|
n

+ n−1/2+ε lnk n

))}
= exp

{
−αx

(
1 +O(n−1/2+ε lnk n)

)}
. (4.1)

This suggests that X ′01 = logγ(e01/e0) is approximately exponentially distributed, in the range of
y for which e0 ∈ Eσbye0c. We will couple X ′01 to an exponentially distributed random variable, and
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the coupling technique will depend on whether or not e0 ∈ En. Define τ = logγ(pmn/e0). As noted
above, τ > 1 + δ implies e0 ∈ Γ and e0 /∈ En, while δ < τ < 1− δ implies e0 ∈ En.

Case 1, e0 /∈ En.
Suppose τ > 1 + δ, so that e0 /∈ En under our choice of σ. By choice of δ1, there exists a
y ∈ (γ − δ1, γ + δ1) such that ye0 is the largest edge for which e0 ∈ Eσye0 . Applying (4.1) with this

y, we have Pr {e01 =∞} = exp
{
−α(1 +O(n−1/2 lnk n))

}
, since logγ(γ + δ) = 1 + O(n−1/2 ln2 n).

For L > 0 we define a distribution Exp(α,L) by saying that X ∼ Exp(α,L) if Pr {X > x} = e−αx

for 0 < x < L and Pr {X =∞} = e−αL. We will couple X ′01 to an Exp(α, 1) variable, as described
below.

Condition on e01 and consider e02, the second edge that chooses e0. Repeating (4.1) shows that
Pr {e02 > ye01} = exp{−αx(1 +O(n−1/2+ε lnk n))} where x = logγ y, for all y such that e0 ∈ Eσye01

.

The largest such y is γe0/e01 +O(n−1/2 ln2 n), and

logγ

(
γe0

e01
+O(n−1/2 ln2 n)

)
= 1−X ′01 +O(n−1/2 ln2 n).

We will couple X ′02 to an Exp(α, 1−X ′01) variable. In general, X ′0i will be coupled to an Exp(α, 1−
X ′01 − · · · −X ′0(i−1)) variable, conditioning on X ′01, . . . , X

′
0(i−1).

Case 2, e0 ∈ En.
In the case δ < τ < 1− δ, where e0 ∈ En, we instead couple X ′01 to an Exp(α, τ) variable, since the
largest edge that may choose (e0, j0) is mνn = pmn+O(n−1/2 lnn), the largest edge in Γ. We will
couple X ′0i to an Exp(α, τ −X ′01 − · · · −X ′0(i−1)) variable.

Coupling the variables: Let τ ′ = min{1, τ}. In terms of Exp(α,L) variables, we can define a
Poisson process on [0, τ ′] as follows. Let X01 ∼ Exp(α, τ ′). Conditioning on X01 = x01 < 1 we
define X02 ∼ Exp(α, τ ′ − x01). In general let X0i ∼ Exp(α, τ ′ − x01 − · · · − x0(i−1)) until X0k =∞.
Then X01, . . . , X0(k−1) are the interarrival times for a Poisson process of rate α on [0, 1].

We will now describe the coupling explicitly. Let U01, U02, . . . be a sequence of independent uniform
[0, 1] variables. The variable X01 ∼ Exp(α, 1) is given by

X01 =

{
−α−1 lnU01, e−α < U01 < 1,
∞, 0 < U01 < e−α.

and for i ≥ 1, conditioning on X01 = x01, . . . , X0i = x0i where x01 + · · ·+ x0i < 1,

X0(i+1) =

{
−α−1 lnU0(i+1), e−α(1−x01−···−x0i) < U0(i+1) < 1,

∞, 0 < U0(i+1) < e−α(1−x01−···−x0i).

Define X ′01 = min{logγ y : Pr {e01 > ye0} ≤ U01}, taken to be ∞ if the set is empty. Recall that

δ1 = O(n−1/2 ln2 n) is such that 1− δ1 < logγ(γ + δ) < 1 + δ1. Then by (4.1) and the choice of δ,

if U01 > e−α(1−δ1) then X ′01 =
−1

α+O(n−1/2+ε lnk n)
lnU01 = X01 +O(n−1/2+ε lnk n),

and if U01 < exp{−α(1 + δ1)} then X ′01 = ∞. Say that this coupling of X01, X
′
01 is good if either

X01, X
′
01 are both infinite, or X ′01 = X01 + O(n−1/2+ε lnk n), and bad otherwise. The above shows

that

Pr {the coupling of X01, X
′
01 is bad} = Pr

{
e−α(1+δ1) < U01 < e−α(1−δ1)

}
= O(n−1/2 ln2 n).
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Suppose i > 1 and condition on the couplings of X0j , X
′
0j being good with X0j , X

′
0j < ∞ for all

1 ≤ j < i. Define X ′0i = min
{

logγ y : Pr
{
e0i > ye0(i−1)

∣∣∣X ′01, . . . , X
′
0(i−1)

}
≤ U0i

}
. We repeat the

above argument to show that the coupling of X ′0i, X0i, conditioning on previous couplings, is bad
with probability O(n−1/2 ln2 n).

Let C0 be the event that the coupling of the X0i making up the Poisson process P0 is good for
all i. Since the process has O(log n) arrivals with probability 1 − o(n−1), we have Pr {C0} =
1 − O(n−1/2+ε ln3 n). After revealing e0, the partially generated graph Γ̃ is in G(A′, R′), where
|A′ \A| = O(log n) whp and |R′ \R| = 1. Thus, the coupling argument can be applied to O(n1/2+ε)
Poisson processes with |A|, |R| = O(n1/2+ε lnk n) being maintained.

Let S′(t) be the state of the set S′ after Step 2 of the algorithm has been executed t times, and let
S′c(t) be the corresponding set in the CMJ generating algorithm of Section 4.3. We just showed that
S′(1) = S′c(1) with probability 1− O(n−1/2+ε ln2 n). For any process Ps that appears, we apply a
coupling using the technique above, and we have S′(t) = S′c(t) for all 1 ≤ t < B(n) with probability
1 − O(B(n)n−1/2+ε ln2 n) = 1 − o(1). We also have S′c(B(n)) = ∅ with probability 1 − o(n−1), by
Lemma 4.4, so

Pr
{
S′(t) 6= S′c(t) for some t ≥ 1

}
= o(1).

Condition on the two algorithms producing the same set S of strings. For s = 0s1 . . . sj ∈ S we
have

τs =

s1∑
i=1

X0i +

s2∑
i=1

X0s1i + · · ·+
sj∑
i=1

X0s1...sj−1i,

and the same identity holds with τs, Xr replaced by τ ′s, X
′
r. If s = 0s1 . . . sj let |s| = j be the

generation of s. With probability 1 − o(n−1), each Poisson process has O(log n) arrivals, so each
si = O(log n). Thus τs is a sum of O(|s| log n) variables Xr, and if all couplings are good then
τ ′s = τs +O(|s|n−1/2 lnk+1 n) for all s ∈ S. We need to bound |s|.

Claim: Consider a CMJ process with rate α > 0 and lifetime 1. Let 0 ≤ τ ≤ logγ n and

S(τ) = max{|s| : τs ≤ τ}. Then Pr
{
S(τ) > log2

γ n
}

= o(n−1).

Proof of claim: Let Pk(τ) denote the number of processes Ps with |s| = k and τs < τ . Condition
on P0 having arrivals at time x1, . . . , x`. Then C can be seen as P0 together with ` independent
CMJ processes C1, . . . , C` on [x1, τ ], . . . , [x`, τ ] respectively. Then

Pk(τ) =
∑̀
j=1

P jk−1(τ − xj)

where P jk−1(τ −xj) counts the number of (k−1)th generation processes started before τ −xj in Cj .
Let U denote a uniform [0, 1] random variable. Removing the conditioning and taking expectations,
we have

E [Pk(τ)] =
∑
`≥0

e−αα`

`!

∑̀
j=1

E
[
P jk−1(τ − U)

]
= E [Pk−1(τ − U)]

∑
`≥1

e−αα`

(`− 1)!
= αE [Pk−1(τ − U)] .

Here we use the fact that if we condition on a Poisson process on [0, 1] having ` arrivals, the arrival
times are independently uniformly distributed. Note that Pk(τ) = 0 for all τ < 0.
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We show by induction over k that Pk(τ) ≤ (ατ)k/k! for all integers k ≥ 0 and all τ ≥ 0. For the
base case we have P0(τ) = 1 for τ ≥ 0. If Pk(τ) ≤ (ατ)k/k! for all τ ≥ 0 then if τ ≥ 0,

E [Pk+1(τ − U)] = αE [E [Pk(τ − U) | U ]]

≤ αE

[
αk(τ − U)k

k!

]
=

αk+1

(k + 1)!
(τk+1 −max{0, τ − 1}k+1) ≤ (ατ)k+1

(k + 1)!
,

where we use the fact that Pk(τ) = 0 for τ < 0, and the induction is complete.

Let k = log2
γ n. Then by Markov’s inequality and the bound k! ≥ (k/e)k,

Pr {∃s : τs < τ and |s| = k} ≤ E [Pk(τ)] ≤
(eατ
k

)k
≤
(

eα

logγ n

)logγ n

= O(n−C)

for any C > 0. Since Pk′(τ) ≤ Pk(τ) for any k′ ≥ k, the claim follows.
End of proof of claim.

We have shown that with high probability, the graph algorithm produces a set S and a set {τ ′s : s ∈
S} that matches the set {τs : s ∈ S} of a CMJ process in the sense that τ ′s = τs+O(n−1/2+ε lnk+3 n)
for all s. Since d(τ) counts the number of τs in the interval (τ − 1, τ), we can finish the proof by
arguing that

{s ∈ S : τ − 1 < τs < τ} = {s ∈ S : es ∈ En}. (4.2)

Since σ is ω-concentrated, every edge e ∈ En satisfies logγ(e/e0) ∈ (τ − 1 − O(n−1/2 lnn), τ +

O(n−1/2 lnn)) where τ = logγ(pmn/e0). Condition on τ ′s = τs + O(n−1/2+ε lnk+3 n) for all s ∈ S.

If (4.2) is false, there must exist some s ∈ S such that either τs = τ − 1 + O(n−1/2+ε lnk+3 n) or
τs = τ +O(n−1/2+ε lnk+3 n). The probability of this is O(B(n)n−1/2 lnk+3 n), since a CMJ process
with at most B(n) active processes locally behaves like a Poisson process with rate at most αB(n).
This finishes the proof of the lemma for τ /∈ (−δ, δ) ∪ (1− δ, 1 + δ).

If τ ∈ (−δ, δ)∪ (1− δ, 1 + δ), then (4.2) is false with some significant probability, since one set may
contain s = 0 while the other one does not. The function q̃(τ) accounts for this event.

4.5 The degree sequence

For k ≥ 0 let Xk(n) denote the number of vertices of degree k in Gn. In this section we prove the
following. Recall η = − ln γ/ ln ζ > 2, defined when α > 1, see Section 4.2.2. Recall that D denotes
the event that at some point, the graph process contains no edges. The probability of D depends
on the initial graph H = Gt0 , see Lemma 4.1.

Theorem 4.2. Condition on D. There exists a sequence {xk : k ≥ 0} such that

(i) if α < 1 then xk = αk(1+ok(1)) and if α > 1 then there exist constants a, b > 0 such that
xk = ak−η−1 +Ok(k

−η−2 logb k), and

(ii) for any fixed k ≥ 0, Xk(n) = xkn(1 + on(1)) with high probability as n→∞.

Proof. Fix k ≥ 0. We begin by showing that Xk(n) = (1 + on(1))E [Xk(n)] whp. We will use
Azuma’s inequality in the general exposure martingale setting in [5, Section 7.4]. To do this,
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fix a feasible σ and consider the master graph Γ = Γσn(H) for a fixed starting graph H (see
Section 4.2). Let Γ0 be the unexplored graph, as defined in Section 4.2.1, and define a sequence
Γ1,Γ2, . . . ,ΓM = Γ of partially generated graphs. Here Γi is obtained from Γi−1 by letting edge
mνH + i make its random choice. Consider the edge exposure martingale Y σ

i = E [Xk(n) | Γi]. If
En denotes the edge set of Gn, then Xk(n) is given as a function of Γ by counting the number
of vertices which are incident to exactly k edges of En. This martingale satisfies the Lipschitz
inequality |Y σ

i − Y σ
i−1| ≤ 3, since the degrees of at most 3 vertices are affected by changing the

choice of one edge (see e.g. Theorem 7.4.1 of [5]). By Azuma’s inequality, conditioning on σ we

have |Xk(n)− E [Xk(n)] | < n1/2 lnn with probability 1− e−Ω(ln2 n), noting that M = m(νn − νH)
is of order n. We will show that E [Xk(n)] /n has essentially the same limit for all feasible and
ω-concentrated σ, setting ω = log log n, and the result will follow since σ is ω-concentrated with
probability 1 − o(n−1) (Lemma 4.1) and Xk(n) ≤ n. Fix a feasible and ω-concentrated σ for the
remainder of the proof.

Recall that Gm(p, q) denotes the distribution of the sum of m independent G(p, q) variables. If
X ∼ Gm(p, q) and k ≥ m then

Pr {X = k} =

m∑
`=1

(
m

`

) ∑
k1+···+k`=k
k1,...,k`>0

(1− q)m−`
∏̀
i=1

qp(1− p)ki−1

=

m∑
`=1

(
m

`

)(
k − 1

`− 1

)
(1− q)m−`q`p`(1− p)k−`. (4.3)

Here ` represents the number of nonzero terms in the sum X = X1 + · · · + Xm, and
(
k−1
`−1

)
is the

number of ways to write k as a sum of ` positive integers. By linearity of expectation,

E [Xk(n)] =

n∑
v=1

Pr {d(n, v) = k}.

Let ω = log log n. By Theorem 4.1 we have

n∑
v=1

Pr {d(n, v) = k} = O
(n
ω

)
+

n∑
v=n/ω

(
Pr {Gm(p(τ), q̃(τ)) = k}+O

(
B(n) ln3 n

n1/2

))
.

Summing the O(n−1/2B(n) ln3 n) terms gives a cumulative error of O(n1/2B(n) ln3 n) = o(n), since
either B(n) = O(log n) or B(n) = O(n1/η lnn) (see Section 4.3) and η > 2 (see Lemma 4.2 (ii)).
So if k ≥ m and τv = logγ(pn/v), by (4.3),

E [Xk(n)] = O
(n
ω

)
+

n∑
v=n/ω

m∑
`=1

(
m

`

)(
k − 1

`− 1

)
(1− q̃(τv))m−`q̃(τv)`p(τv)`(1− p(τv))k−`, (4.4)

where q̃(τ) ∈ (0, 1) and q̃(τ) = q(τ) outside (−δ, δ) ∪ (1− δ, 1 + δ) for some δ = O(n−1/2 lnn). For
n/ω ≤ v ≤ n we have logγ p ≤ τv ≤ logγ(pω) (note that logγ p < 0), and for any τ in the interval,
the number of v for which τ ≤ τv ≤ τ + ε is pnε ln(γ)γ−τ +O(ε2). Viewing the sum as a Riemann
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sum, we have

lim
n→∞

1

n

n∑
v=n/ω

(1− q̃(τv))m−`q̃(τv)`p(τv)`(1− p(τv))k−`

=p ln γ

∫ ∞
logγ p

(1− q̃(τ))m−`q̃(τ)`p(τ)`(1− p(τ))k−`

γτ
dτ

=O(n−1/2 lnn) + p ln γ

∫ ∞
0

(1− q(τ))m−`q(τ)`p(τ)`(1− p(τ))k−`

γτ
dτ. (4.5)

The last identity comes from (i) the fact that q̃(τ) = q(τ) outside a set of total length O(n−1/2 lnn),
(ii) the fact that the integral converges since the integrand is dominated by γ−τ where γ > 1, and
(iii) the fact that q(τ) = 0 for τ < 0.

Plugging (4.5) into (4.4) we have

lim
n→∞

E [Xk(n)]

n
= p ln γ

m∑
`=1

(
m

`

)(
k − 1

`− 1

)∫ ∞
0

(1− q(τ))m−`q(τ)`p(τ)`(1− p(τ))k−`

γτ
dτ. (4.6)

Let

f`(τ) =
(1− q(τ))m−`q(τ)`p(τ)`(1− p(τ))k−`

γτ
.

Our aim is to calculate
∫∞

0 f`(τ)dτ .

Case 1: α > 1.
By Lemma 4.2 (vi) we have p(τ) ≥ λ3ζ

τ for all τ ≥ 0, where λ3 > 0. Let ψ(k) = − logζ((k −
`)/(C ln k)) for some constant C > 0, noting that ψ(k)→∞ when k →∞. Making C large enough,∫ ψ(k)

0
f`(τ) ≤ ψ(k)(1− λ3ζ

ψ(k))k−` ≤ ψ(k)e−λ3C ln k = O(k−η−2). (4.7)

Here we used the fact that f`(τ) ≤ (1− p(τ))k−`.

Again by Lemma 4.2 (vi) we have p(τ) = λ3ζ
τ + O(ζ2τ ) and q(τ) = 1 − ζ + O(ζτ ). Suppose

τ ≥ ψ(k). Then kζ2τ = ok(1) and

f`(τ) =
ζm−`(1− ζ)`(λ3ζ

τ )`(1− λ3ζ
τ )k−`

γτ
(
1 +O(mζτ ) +Ok(kζ

2τ )
)
.

Indeed, each of the m factors involving q(τ) contributes an error factor of 1 + O(ζτ ) and each of
the k factors involving p(τ) contributes an error factor of 1 + O(ζ2τ ). We have mζτ = O(ln k/k)
and kζ2τ = O(ln2 k/k), so

f`(τ) =
ζτ`(1− λ3ζ

τ )k−`

γτ

(
λ`3ζ

m−`(1− ζ)` +O

(
ln2 k

k

))
. (4.8)

Note that λ3, ζ,m and ` are independent of k and τ .

Claim: If α > 1 there exists a constant c` such that∫ ∞
ψ(k)

ζτ`(1− λ3ζ
τ )k−`

γτ
= c`k

−η−` +O(k−η−`−1).
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It will follow from the claim and (4.8) that for some constant c′`,∫ ∞
ψ(k)

f`(τ)dτ = c′`k
−η−`

(
1 +O

(
ln2 k

k

))
. (4.9)

Proof of claim: We make the integral substitution u = λ3ζ
τ , noting that τ = logζ(u/λ3) so

(recalling that η = − ln γ/ ln ζ, see Section 4.2.2)

γ−τ = exp

{
− ln γ

ln(u/λ3)

ln ζ

}
=

(
u

λ3

)η
.

This implies that the integral equals (up to a multiplicative constant)∫ Cλ3 ln k
k−`

0
uη+`−1(1− u)k−`du =

∫ 1

0
uη+`−1(1− u)k−`du−

∫ 1

Cλ3 ln k
k−`

uη+`−1(1− u)k−`du

= B(η + `, k − `+ 1) +O
(
k−Cλ3

)
where B(x, y) =

∫ 1
0 u

x−1(1 − u)y−1du denotes the Beta function. Here the O(k−Cλ3) term comes

from bounding uη+`−1 ≤ 1 and 1−u ≤ e−Cλ3 ln k/(k−`). Taking C to be large enough makes the error
O(k−η−m−1) (recall that ` ≤ m). As k →∞, Stirling’s formula provides an asymptotic expression
for B(η, k + 1):

B(η + `, k − `+ 1) = Γ(η + `)k−η−` +O(k−η−`−1),

where Γ denotes the Gamma function. End of proof of claim.

We finish the proof for α > 1 by noting that by Stirling’s formula, for some constant s`(
k − 1

`− 1

)
= s`k

`−1 +O(k`−2) (4.10)

Plugging (4.7), (4.9) and (4.10) into (4.6) shows that

E [Xk(n)]

n
→ p ln γ

m∑
`=1

(
m

`

)(
k − 1

`− 1

)∫ ∞
0

f`(τ)dt

= p ln γ

m∑
`=1

(
m

`

)
(s`k

`−1 +O(k`−2))(c′`k
−η−` +O(k−η−`−1 ln2 k))

=

(
p ln γ

m∑
`=1

(
m

`

)
s`c
′
`

)
k−η−1 +O(k−η−2 lnη+m+3 k).

Here the expression in brackets depends only on p,m, and this is the constant a in the statement
of the theorem.

Case 2: α < 1.
In this case we need not be as careful. By Lemma 4.2 (v) we have 1− p(τ) = α− λ1/ζ

τ +O(ζ2τ )
where 0 < λ1 < α and ζ > 1, so we can write

f`(τ) = αk−`
(1− q(τ))m−`q(τ)`p(τ)`

(
1−p(τ)
α

)k−`
γτ
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and the calculation of α−(k−`) ∫∞
0 f`(τ)dτ proceeds much like the α > 1 case. We find that∫ ∞

0
f`(τ)dτ = αk−`O(kC) = αk(1+ok(1))

for some constant C > 0. Summing over ` = 1, . . . ,m does not affect this expression.

4.6 The largest component

This section deals with connectivity properties of Gn. Note that Gn is disconnected whp since
one can show that the number of isolated vertices is Ω(n) whp. It is also the case that the set of
non-isolated vertices is disconnected whp, since the probability that a vertex v shares a component
only with its m older neighbors is a nonzero constant, as can be seen by methods similar to those
used in the proof of Lemma 4.6 below.

In the following theorem, the size of a component refers to the number of vertices in the component.
Recall that B(n) = λ lnn if α < 1 and B(n) = λn1/η lnn if α > 1, for a constant λ > 0. Recall also
that D denotes the event that the graph process contains zero edges at some point (see Lemma
4.1).

Note that the number of vertices in Gn is pn + O(n1/2 lnn) whp, so when m ≥ 2 and α > 1,
Theorem 4.3 states that whp the number of vertices outside the giant component is Om(cmn) for
some 0 < c < 1.

Theorem 4.3. Condition on D.

(i) There exists a ξ = ξ(m, p) ∈ (0, p) such that the number of isolated vertices in Gn is ξn(1 +
on(1)) whp. If α > 1 then ξ = Om(cm) for some 0 < c < 1.

(ii) If m = 1, all components in Gn have size O(∆ log n) whp, where ∆ denotes the maximum
degree of Gn.

(iii) If m ≥ 2, whp there exists a component containing at least p(1− ξ)(1− (13/14)m−1)n vertices
while all other components have size O(log n).

The remainder of the section is devoted to the proof of this theorem. Let ω = log log n. We fix a
feasible and ω-concentrated σ, see Lemma 4.1. We also fix ε > 0 with 1/2− ε > 1/η if α > 1 and
ε < 1/2 if α < 1.

We first prove (i). The existence of ξ is provided by Theorem 4.2 (ii), so we need only prove that
ξ = Om(cm) for some 0 < c < 1 when α > 1. Fix a vertex v ≥ n/ω. By Theorem 4.1 the probability
for v to be isolated is (1− q(τ))m for some τ . By Lemma 4.2 (vi), α > 1 implies 1− q(τ) ≤ ζ < 1
for all τ , so the probability of being isolated is at most ζm. By linearity of expectation we expect at
most ζmpn+O(n/ω) vertices to be isolated, accounting for the n/ω vertices for which Theorem 4.1
does not apply. Theorem 4.2 shows that the number of vertices of degree zero is within O(n1/2 lnn)
of its mean with high probability, so the number of isolated vertices is at most 2pζmn whp. This
finishes part (i), and the remainder of the section is devoted to proving (ii), (iii).

The proof will rely heavily on the master graph Γ defined in Section 4.2.1. We will define an algo-
rithm that searches for a large connected edge set in Γ, which remains connected when restricting
to the edge set En of Gn.
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Orient each edge {u, v} in Γ from larger to smaller, i.e. v → u if v > u. Then d+(v) = m for all
v ≥ 1H and d+(v) = 0 for v < 1H . When m = 1, this implies that Γ is a forest in which each tree
is rooted in {1, . . . , 1H − 1}, and any edge is oriented towards the root in its tree. Restricting to
En breaks the trees into smaller trees. Let v ∈ Vn. Then there exists a unique vertex u /∈ Vn that
is reachable from v via directed edges in En. The connected component of v is Tu, where Tu is the
tree rooted at u of vertices which can reach u via a directed path. This shows that the connected
components in Gn are {Tu : u /∈ Vn} when m = 1.

We now show that |Tu| = O(d(n, u) log n) for all u whp. Let u /∈ Vn and let v1, . . . , vk be the
neighbors of u in Vn, and let ei be the unique edge oriented out of vi for i = 1, . . . , k. Expose
(e1, 2), . . . , (ek, 2). For any edge e found, we expose (e, 1) and (e, 2). Repeating the coupling
argument of Lemma 4.5 one can show that the of descendants of e1 can modelled by a CMJ process
of rate 2α. The number of descendants of e1 is geometrically distributed with rate e−2ατ1 for
τ1 = logγ(pmn/e1) ≤ 1 + O(n−1/2 lnn). With high probability each ei has O(log n) descendants,
and it follows that whp |Tu| = O(d(n, u) log n) for all u /∈ Vn. In particular, the largest component
has size O(∆ log n) where ∆ denotes the maximum degree of Gn. In this paper we make no attempt
to bound ∆.

Let m ≥ 2 for the remainder of the section. We now loosely describe the intuition that will help us
prove the theorem. Suppose e1, . . . , em are the m edges oriented out of v ∈ Vn in Gn. We imagine
splitting v into m smaller vertices v1, . . . , vm with d+(vi) = 1 for each i. In Section 4.4 we saw that
each edge e directed into v can be traced back to a unique ei, in that e either directly chooses (ei, 2)
or chooses (e′, 1) for some e′ that chooses (ei, 2), and so on. If e can be traced back to ei, we make
it point to vi. Let G′n be the graph in which all vertices in Vn are split into m parts in this fashion.
In G′n vertices have out-degree 0 or 1, and we can define trees Tu as above for u /∈ Vn. Then each
v ∈ Vn is associated with m trees, namely the m connected components of v1, . . . , vm in G′n.

We now make this precise. Let u /∈ Vn. In Section 4.4 we saw how to find the neighbors of u in Vn
by exposing (e1, 2), . . . , (em, 2) for the m edges e1, . . . , em oriented out of u in Γ. We start building
Tu by letting u be the root, and the children of u each vertex v ∈ Vn that is adjacent to u. For such
a v, let ev be an edge that was found when exposing (e1, 2), . . . , (em, 2). Expose (ev, 2) to find all
neighbors of v that can be traced back to the edge ev. The children of v in Tu will be all neighbors
of v that are incident to some edge that can be traced back to the edge ev. Repeat this for all
v ∈ Vn in Tu. Note that Tu may not be a tree, since two edges adjacent to the same vertex may be
found when exposing edges.

With this definition, we can partition the edges of Gn into {Tu : u /∈ Vn}. In particular, for each
e ∈ En there is a unique vertex u /∈ Vn such that e ∈ Tu. Write Te = Tu. The idea behind the
algorithm described in detail below is to do a “breadth-first search on the Tu”. Starting with a free
edge x0 ∈ En, we determine (part of) Tx0 . For any edge f ∈ Tx0 , we expect the other m− 1 edges
oriented out of the same vertex as f to be free. These m − 1 edges provide the starting point for
m− 1 future rounds of the algorithms, and in each round a new Tu is determined.

For a vertex v0 let CΓ(v0), CG(v0) be the set of edges in the connected component of v0 in Γ, G,
respectively. Starting with a vertex v0 and the graph Γ0 ∈ G(∅, ∅), we use the following algorithm
to find a set C(v0) ⊆ CG(v0). An explanation of the algorithm follows immediately after its
description. See Figure 4.2 for an example outcome of one round of the algorithm.

0. If v0 ∈ Vn let C = X = {m(v0 − 1) + 1, . . . ,mv0}, and A = R = ∅. If v0 /∈ Vn, set
C = X = A = R = ∅ and Q(x0) = {(m(v0 − 1) + 1, 2), . . . , (mv0, 2)} and go to step 3.
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1. If X = ∅, stop. If X 6= ∅ choose an edge x0 ∈ X and remove it from X. Set Q(x0) =
{(x0, 1), (x0, 2)}, X1(x0) = ∅ and Y1(x0) = ∅.

2. Choose (x1, j1) ∈ Ω(x0) \R uniformly at random.

(2.1.) If x1 ∈ A, do nothing.

(2.2.) If x1 ∈ En, add D(x1) to X1(x0).

(2.3.) If x1 /∈ En and j1 = 2, add (x1, 2) to H.

(2.4.) If x1 /∈ En and j1 = 1, choose (x2, j2) ∈ Ω̃(x1) uniformly at random. Repeat until one
of the following holds:

(2.4.1.) j1 = j2 = · · · = jk−1 = 1 and jk = 2. Add (x1, 1), . . . , (xk−1, 1) and (x′k, 2) for
all x′k ∈ D(xk) to Q(x0). Set Ω(xi) = ∅ for i = 1, 2, . . . , k − 1.

(2.4.2.) j1 = j2 = · · · = jk−1 = 1 and xk < mνH . Let v be the vertex (in H) corre-
sponding to (xk, jk). Add (x1, 1), . . . , (xk−1, 1) to Q(x0), along with (x′, j′) for
all edges x′ incident to v in H, for the proper choice of j′.

Add x0, x1, . . . , xk−1 to A.

3. While Q(x0) is nonempty, repeat the following.

(3.1.) Pick (h, j) ∈ Q(x0) and remove it from Q(x0). Let Y ′ = {(h, j)}. Add h to Y1(x0).
While Y ′ 6= ∅ repeat the following:

(3.1.1) Choose (y, i) ∈ Y ′ and remove it from Y ′. For each e /∈ X ∪ A with (y, i) ∈ Ω(e),
query whether e chooses (y, i), i.e. set φ(e) = (y, i) with probability 1/|Ω(e)| and
remove (y, i) from Ω(e) otherwise. If e chooses (y, i) then add (e, 1) to Y ′ and
Y1(x0), and add all edges f 6= e with df/me = de/me to X1(x0) and X. If e ∈ En
then also add (e, 2) to Y ′ and Y1(x0).

4. Set C ← C ∪X1(x0) ∪ (Y1(x0) ∩ En). Go to step 1.

Explanation of algorithm: We call steps 1–4 a round of the algorithm. At the beginning of
each round, we choose some free edge x0 ∈ En that has been determined to be in C ⊆ CG(e0).
The objective of the round is to build the set Tx0 in order to find free edges X1(x0) which share a
component with x0. See Figure 4.2 for a typical outcome of a round in which x1 /∈ En. Note that
part of Tx0 may have been found in a past round.

Step 0 is a preliminary step; if v0 ∈ Vn then we feed the m free edges adjacent to v0 into X, and
if v0 /∈ Vn then we find Tv0 in step 3 and feed any free edges adjacent to Tv0 into X in step 4. We
call this round 0.

The edge x0 makes a random choice (x1, j1). If x1 ∈ En then Tx0 = Tx1 and we cut the search short
and find all of Tx0 in a future round. The reason for this is mainly to make calculations easier in
Lemma 4.6. In the current round we will find the part of Tx0 that can be traced back to x0.

The edge x0 has a fixed endpoint dx0/me and a random endpoint v(x0). If x1 /∈ En then v(x0) /∈ Vn,
and we will have Tx0 = Tv(x0). In step 2 we determine v(x0). We assign x0 to (x1, j1), and if j1 = 1
we assign x1 to (x2, j2), and so on until one of two things happen. If j1 = j2 = · · · = jk−1 = 1
and jk = 2 for some k then v(x0) = dxk/me. If j1 = · · · = jk = 1 and xk ≤ mνH , then
v(x0) = v(x1) = · · · = v(xk), noting that v(xk) is not random when xk ≤ mνH .
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v(x0)

x0

x1

Vny1

y2

y3

y4 y5

e z4 z2 z3 z5x2

x′
2

Figure 4.2: A typical round of the algorithm when m = 2 and x1 /∈ En. Free edges are denoted
by arrows, and e is an edge with de/me = dx0/me found in a previous round which may or
may not be free. In this example, Y1(x0) = {y1, y2, y3, y4, y5} and X1(x0) = {z2, z3, z4, z5}. Note
that each member of Y1(x0) ∩ En = {y2, y3, y4, y5} contributes exactly (m − 1) free edge(s) to
X1(x0). Edges y2, y3, y4, y5, z2, z3, z4, z5 are added to C, which already contains x0 and e. Half-
edges (x0, 1), (x0, 2), (x1, 1), (x2, 2), (x′2, 2), (y1, i), (y2, i), (y3, i), (y4, i), (y5, i), i = 1, 2, are added to
R, and edges x0, x1, y1, y2, y3, y4, y5 to A. Edges x0, y2, y3, y4, y5 are in Tx0 . Note that Tx0 may
contain more edges, not pictured, if some edge randomly chose (x0, 1) in a previous round.

At the start of any round, we have sets A,R,X and a partially generated graph Γ̃ ∈ G(A,R) such
that if e ∈ A then (e, 1) ∈ Ω(x) only if x ∈ X. For this reason, it is not possible that xj ∈ A for
any j ≥ 2, since we only consider j ≥ 2 when x1 /∈ En, so x1 /∈ X.

Assuming v(x0) was found, in step 3 we find Tx0 using a modification of the expose algorithm in
Section 4.4, noting that part of the tree has already been built. We do this by exposing (i) (e, 2)
for the m free edges e adjacent to v(x0), (ii) (e, 1) for all edges determined to be in Tx0 , and (iii)
(e, 2) for the edges in Tx0 that are in En. We take care not to include edges in X, and in particular
if one edge e is determined to be in X then we immediately place the other m− 1 edges adjacent
to de/me in X. These rules are included to avoid X decreasing in size.

Entering step 4 we have a set Y1(x0) of non-free edges that are in Tx0 and a set X1(x0) of free edges
whose fixed endpoint is also the fixed endpoint of some edge in Y1(x0) ∩ En. If x1 ∈ En we have
|X1(x0)| = m+ (m− 1)|Y1(x0) ∩ En|, and if x1 /∈ En then |X1(x0)| = (m− 1)|Y1(x0) ∩ En|.
End of explanation.

If the algorithm terminates, i.e. X = ∅ at some point, then C = CG(v0). By estimating the round
T at which the algorithm terminates, we can estimate the size of CG(e0) via Lemma 4.7 (ii) below.
Let Ec = {e : e > mn/ω} be the set of edges for which Lemma 4.5 applies. In Lemma 4.6 we
estimate T by showing that if R ∩Ec (taken to mean {e ∈ Ec : (e, 1) ∈ R or (e, 2) ∈ R}) is not too
large then {|Xt| : t ≥ 0} is bounded below by a random walk with positive drift.

Lemma 4.6. Suppose m ≥ 2 and let Z be a random variable taking values in {0, 1, 2} with
Pr {Z = 0} = 0.26 and Pr {Z = 1} = 0.46. Suppose a round starts at x0 ∈ X and with |R ∩ Ec| ≤
n1/2+ε log3

γ n. Then |X1(x0)| is stochastically bounded below by Z.
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The following lemma shows that if R ∩Ec is too large for the bounds in Lemma 4.6 to apply, then
we have found a large component.

Lemma 4.7. Let Ct, Rt, Xt denote the states of C,R,X after t rounds of the algorithm.

(i) There exists a constant λ > 0 such that |Rt| ≤ λ|Ct| log3
γ n for all t with probability 1−o(n−1).

(ii) For all t, 1
2 |Ct| ≤ |Xt|+ t ≤ |Ct|.

The proofs of Lemmas 4.6 and 4.7 are postponed to the end of this section. Suppose the algorithm
is run starting at some vertex v0. If at some point |R ∩ Ec| ≥ n1/2+ε log3

γ n then we conclude that

|CG(v0)| ≥ λ−1n1/2+ε, and say that the component (and every edge and vertex in it) is large. If
the algorithm terminates with |X| = 0 then we say that the component is small.

As long as |R∩Ec| < n1/2+ε log3
γ n we will bound |Xt| below by a random walk |X0|+

∑t
i=1(Zi−1)

where the Zi are independent copies of Z as defined in Lemma 4.6. Here X0 is the state of X after
round 0, and we have |X0| = m if v0 ∈ Vn, |X0| = 0 if v0 /∈ Vn is isolated in Gn, and |X0| ≥ m− 1
if v0 /∈ Vn is non-isolated in Gn.

The rest of the proof follows from four separate claims.

Claim 1: Small components have size O(log n). Let Xt, Rt denote the states of the sets
X,R after t rounds of the algorithm, i.e. when steps 1–4 have been executed t times. Let T
denote the minimum t > 0 for which Xt = ∅. We have |CG(e0)| = |CT |, so by Lemma 4.7
(ii), 1

2 |CG(e0)| ≤ T ≤ |CG(e0)| with probability 1 − o(n−1). We bound the probability that

c log n ≤ T ≤ n1/2+ε for some c > 0 to be chosen.

Suppose t < T . Since |Xt+1| ≥ |Xt| − 1 for all t, we must have 0 = |XT | ≥ |Xt| − (T − t), so
T ≥ |Xt|+ t. Conditioning on Lemma 4.7, T ≤ n1/2+ε implies that for all t < T ,

|Rt| ≤ 2λ(|Xt|+ t) log3
γ n ≤ 2λn1/2+ε log3

γ n,

so

Pr
{
c log n ≤ T ≤ n1/2+ε

}
≤ Pr

{
c log n ≤ T ≤ n1/2+ε

∣∣∣|Rt| ≤ 2λn1/2+ε log3
γ n for t ≤ T

}
.

Conditioning on |Rt| ≤ 2λn1/2+ε log3
γ n, Lemma 4.6 applies. We couple |Xt|−|Xt−1| to independent

copies Zt − 1 of Z − 1, so if |X0| denotes the size of X after round 0,

|Xt| = |X0|+
t∑
i=1

(|Xi| − |Xi−1|) ≥ m− 1 +
t∑
i=1

(Zi − 1).

Here |X0| ≥ m− 1 whenever T > 0.

The process Wt = m − 1 +
∑t

i=1(Zi − 1) is a random walk with Wt − Wt−1 ∈ {−1, 0, 1} and
E [Wt −Wt−1] = E [Zt − 1] = 0.02. Choosing c > 0 large enough, Hoeffding’s inequality [57] shows
that

Pr {∃t ≥ c log n : Wt = 0} ≤
∑

t≥c logn

Pr {Z1 + · · ·+ Zt < 1.01t} = o(n−1),

and since |Xt| ≥Wt, it follows that with probability 1−o(n−1) the algorithm either terminates after
at most c log n steps, or T ≥ n1/2+ε, in which case the component is large. Since 1

2 |CG(e0)| ≤ T ≤
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|CG(e0)| with probability 1− o(n−1), and the number of components is O(n), all small components
have size at most c log n with high probability.

Claim 2: The probability for a non-isolated v0 to be in a small component is at most
(13/14)m. Recall that in a small component, |Xt| ≥ Wt for a random walk Wt as above. Since
W0 ≥ m− 1, we have

Pr {∃t ≤ c log n : |Xt| = 0} ≤ Pr {∃t : Wt = 0} =

(
0.26

0.28

)m−1

=

(
13

14

)m−1

,

see e.g. [55, Exercise 5.3.1].

Claim 3: All large vertices are in the same connected component. Suppose v is a large
edge and let Xv, Rv be the states of X,R at the point that |R| hits n1/2+ε log3

γ n when the algorithm

is run starting at v. Then the above shows that |Xv| ≥ cn1/2+ε whp for some c > 0. Similarly, if w
is a large vertex then |Xw| ≥ cn1/2+ε. Assign all edges in Xv ∪Xw. For every pair e ∈ Xv, f ∈ Xw,
either e ∈ Eσf or f ∈ Eσe , since edges in X are required to be in the edge set En of Gn. In particular,
either half the edges e ∈ Xv have half of Xw in Eσe , or half the edges f ∈ Xw have half of Xv in Eσf .
In the former case, the probability that no edge e ∈ Xv chooses any f ∈ Xw is bounded above by(

1− Ω(n1/2+ε)

n

)Ω(n1/2+ε)

= exp
{
−Ω(n2ε)

}
and in the other case, the same bound holds. So with high probability, any two large edges belong
to the same component. In other words, there is a unique large component.

Claim 4: The large component contains Ω(n) vertices. The number of vertices in Gn is
pn+O(n1/2 lnn) since σ is ω-concentrated. By part (i) of Theorem 4.3, the number of non-isolated
vertices is(1− ξ)n+O(n1/2 lnn) whp for some ξ > 0. By linearity of expectation and Claim 2, the
number S of small, non-isolated vertices in Gn satisfies

E [S] ≤ (1− ξ)
(

13

14

)m−1

n+O(n1/2 lnn).

We note that E [S] = Ω(n): when the algorithm starts with X = {x1, . . . , xm}, the m free edges
adjacent to some v0 ∈ Vn, the probability that X1(xi) = ∅ for i = 1, 2, . . . ,m is bounded away from
0.

Write S =
∑

v∈V Sv where Sv is the indicator variable for v being small. Then E [S(S − 1)] =∑
u6=v E [SuSv]. Fix u 6= v. Suppose we run the process starting at v and find that the component

is small. In the process of determining that the component is small, we assign some edges Av and
expose some half-edges Rv, where |Av| = O(log n) and |Rv| = O(log2 n). The probability that u
is in the component is O(log2 n/n). If u is not in the component, the algorithm is run starting at
u on the partially generated Γ̃ ∈ G(Av, Rv). In the statement of the algorithm we assumed that
it is run on Γ0 ∈ G(∅, ∅), but it can be easily modified to accommodate for Γ̃ ∈ G(Av, Rv), and it
will follow that E [Su | Sv = 1] = E [Su] (1 + o(1)). Hence E [SuSv] = E [Su] E [Sv] (1 + o(1)), and
Chebyshev’s inequality shows that S = E [S] + o(n). Since E [S] = Ω(n), this shows that with high
probability,

S = E [S] + o(n) ≤ (1− ξ)
(

13

14

)m−1

n+ o(n).

The theorem follows.
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4.6.1 Proof of Lemma 4.6

We first note that Pr {x1 ∈ A} = o(1), since if x ∈ A then (x, 1) ∈ R, and |R| = o(n). If x1 ∈ En\A
then D(x1) ⊆ X1(x0) so |X1(x0)| ≥ m ≥ 2. If x1 /∈ En we have |X1(x0)| = (m − 1)|Y1(x0) ∩ En|.
The lemma will follow from showing that for all m ≥ 2,

Pr {|Y1(x0) ∩ En| = 0 and x1 /∈ En} ≤ 0.255

and for m = 2,
Pr {|Y1(x0) ∩ En| = 1 and x1 /∈ En} ≤ 0.455.

Throughout this proof we take a ≈ b to mean that a = b+ on(1). Let (x1, j1) be the random choice
of x0. We first note that if τ0 = logγ(pmn/x0) ∈ [0, 1] and τ1 = logγ(pmn/x1) then for y ∈ [0, 1],

Pr {τ1 − τ0 ≤ y} ≈
ln γ

1− 1/γ

∫ y

0
γ−xdx. (4.11)

Indeed, (x1, j1) is a uniformly random member of Ω̃(x0) = (Eσx0
× [2]) \ R, and since σ is ω-

concentrated we have Eσx0
= {x0/γ+O(n−1/2 lnn), . . . , x0−i} for some i ∈ [m]. Since |R| = o(|Eσx0

|)
and Ω̃(x0) ⊇ (Eσx0

× [2]) \ R, we can view x1 as essentially being a uniform member of Eσx0
. Then

τ1 − τ0 = logγ(x0/x1) is exponentially distributed, truncated to [0, 1] as in (4.11). In particular,

since x1 /∈ En when τ1 > 1 + δ for some δ = O(n−1/2 lnn).

Pr {x1 /∈ En} ≈
ln γ

1− 1/γ

∫ 1

1−τ0
γ−xdx =

γτ0 − 1

γ − 1
≤ τ0. (4.12)

Claim A: Let m ≥ 2 and x0 ∈ En. Then Pr {|Y1(x0) ∩ En| = 0 and x1 /∈ En} < 0.255.

Proof of claim A: Let m ≥ 2 and fix an edge x0 ∈ En. Suppose x1 /∈ En. In step 2 of the
algorithm we then find a chain of edges x1, x2, . . . , xK for some random K. Since |R| = o(n3/4)
and |Ω(xi)| = Ω(n/ω) for all xi ≥ mn/ω, we have Pr {ji = 1} = 1/2 + o(n−1/4) for all i, and K
is approximately geometric with mean 2. In particular, since logγ(xi/xi−1) ≤ 1 + o(1) for all i we
have xK ≥ mn/ω with probability 1− on(1). Condition on this.

We will consider two subsets of Y1(x0). Let R(x0) be the edges found when exposing (x0, 1) and
(x0, 2), and let L(x0) be the set of edges in En found by exposing (x1, 1), (x2, 1), . . . , (xK−1, 1) and
(x′K , 2) for all x′K ∈ D(xK). Then

Pr {|X1(x0) = 0|} = Pr {|R(x0)| = |L(x0)| = 0},

and we now argue that |R(x0)|, |L(x0)| are essentially independent. We find R(x0) by exposing
(x0, 1) and (x0, 2). By Lemma 4.5, the number of edges found is asymptotically geometric, and in
particular is O(log n) whp. Initially |Ω(e)| is of order n for all e > x0, so exposing O(log n) edges
only shrinks Ω(e) to Ω̃(e) of size |Ω̃(e)| = |Ω(e)|(1 − o(1)). When |L(x0)| is calculated, starting
with Ω̃(e) instead of Ω(e) for e > x0 makes an insignificant difference to the result, and we have

Pr {|R(x0)| = j1 and |L(x0)| = j2} ≈ Pr {|R(x0) = j1}Pr {|L(x0)| = j2}.

Let τ0 = logγ(pmn/x0). Since σ is ω-concentrated we have τ0 ∈ (−δ, 1+δ) for some δ = O(n1/2 lnn),
see Lemma 4.1. Assume for now that τ0 ∈ [0, 1]. Let E(x0, i) denote the set of edges in En found
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by exposing (x0, i). By Lemma 4.5, |E(x0, i)| is asymptotically geometrically distributed (nonzero
since x0 ∈ En) with rate e−ατ0 for i = 1, 2 so

Pr {|R(x0)| = j} ≈
{
e−2ατ0 , j = 0,
2e−2ατ0(1− e−ατ0), j = 1.

(4.13)

Now consider the chain x0 > x1 > · · · > xK where xi−1 chooses (xi, 1) for 1 ≤ i ≤ K − 1 and xK−1

chooses (xK , 2). If K = 1 and x1 /∈ En, then Pr {|L(x0)| = 0} ≈ (1 − q(τ1))m ≤ (1 − q(τ1))2 by
Lemma 4.5, where τ1 − τ0 can be approximated by a truncated exponential as above, so

Pr {|L(x0)| = 0, K = 1 and x1 /∈ En} ≤
1

2

ln γ

1− 1/γ

∫ 1

1−τ0

(1− q(τ0 + x))2

γx
dx.

In Claim C we show that for all α > 1/2 and τ0 ∈ [0, 1],

1

2

ln γ

1− 1/γ

∫ 1

1−τ0

(1− q(τ0 + x))2

γx
dx ≤ τ0

2e− e1/2
.

If K > 1, then L(x0) = ∅ only if E(x1, j1) = E(x2, j2) = ∅. If τi = logγ(pmn/xi) denotes the age
of xi then the probability of E(xi, ji) being empty is 1 − q(τi) ≤ 1 − q(τ0 + i) for i = 1, 2. Here
we used the fact that q(τ) is decreasing, see Lemma 4.2 (iii). Since Pr {K ≥ 2} = 1/2, we have by
(4.12),

Pr {|L(x0)| = 0, K ≥ 2 and x1 /∈ En} ≤
τ0

2
(1− q(τ0 + 1))(1− q(τ0 + 2)).

The function q(τ) is defined in Section 4.2.2, and we have

(1− q(τ0 + 1))(1− q(τ0 + 2)) =
1

eα − ατ0

eα − ατ0

e2α − (τ0 + 1)αeα + 1
2α

2τ2
0

.

We show in Claim C that this is at most 1/(e− e1/2 + 1/8). So

Pr {|Y1(x0) ∩ En| = 0 and x1 /∈ En}

≤e−2ατ0

(
1

2

ln γ

1− 1/γ

∫ 1

1−τ0

(1− q(τ0 + x))2

γx
dx+

1

2
(1− q(τ0 + 1))(1− q(τ0 + 2))

)
≤τ0e

−2ατ0

(
1

2e− e1/2
+

1

2(e− e1/2 + 1
8)

)
.

Let L0 denote the expression in brackets, and note that L0 < 0.69. We have τ0e
−2ατ0 ≤ e−1 for

α > 1/2 and τ0 ∈ [0, 1], so

Pr {|Y1(x0) ∩ En| = 0 and x1 /∈ En} < e−1 · 0.69 < 0.255.

End of proof of claim A.

Claim B: Let m = 2 and x0 ∈ E. Then Pr {|Y1(x0) ∩ En| = 1 and x1 /∈ En} < 0.455.

Proof of claim B: We note that while L(x0) and R(x0) do not necessarily partition Y1(x0)∩En,
it is the case that

Pr {|Y1(x0) ∩ En| = 1} ≤ Pr {|L(x0)| = 1, |R(x0)| = 0}+ Pr {|L(x0)| = 0, |R(x0)| = 1}
≈ Pr {|L(x0)| = 1}Pr {|R(x0)| = 0}+ Pr {|L(x0)| = 0}Pr {|R(x0)| = 1}.
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We calculated the probability that |R(x0)| = 0, 1 in (4.13). For the probability that |L(x0)| = 1,
let xK+1 denote the edge added along with xK (so |xK+1 − xK | = 1). Let τi = logγ(pmn/xi) for
i = 0, 1, . . . ,K + 1. Then

Pr {|L(x0)| = 1 | x1 /∈ En} ≤
∑
k≥1

Pr {K = k}
k+1∑
i=1

q(τi)p(τi)
∏

1≤j≤k+1
j 6=i

(1− q(τj))

where i denotes the edge whose exposure contributes to L(x0). We use the bound 1 − q(τ1) ≤
1−q(τ0 +1) whenever 1−q(τ1) is involved in the product (i.e. when i > 1), and bound p(τi)q(τi) ≤
p(1)q(1) for all i ≥ 1 (which follows from p(τ), q(τ) being decreasing, see Lemma 4.2 (iii)) to get

Pr {|L(x0)| = 1 | x1 /∈ En} ≤
∑
k≥1

1

2k
p(1)q(1) (1 + k(1− q(τ0 + 1)))

= e−α(1− e−α)

(
1 +

2

eα − ατ0

)
≤ 1

4

(
1 +

2

e1/2 − 1/2

)
.

This bound holds for all α > 1/2, τ0 ∈ [0, 1]. Let L1 = 1/4 + 1/(2e1/2 − 1).

We now bound

Pr {|Y1(x0) ∩ En| = 1 and x1 /∈ En} ≤Pr {|R(x0)| = 0}Pr {|L(x0)| = 1 | x1 /∈ En}Pr {x1 /∈ En}
+ Pr {|R(x0)| = 1}Pr {|L(x0)| = 0 and x1 /∈ En}
≤τ0e

−2ατ0L1 + 2τ0e
−2ατ0(1− e−ατ0)L0

≤1

e
L1 +

1

αe
(1− e−α)L0,

where we used the fact that τ0e
−2ατ0 viewed as a function of τ0 has a global maximum at τ0 = 1/2α,

so τ0e
−2ατ0 ≤ 1/(2αe) ≤ 1/e, and we also used 1 − e−ατ0 ≤ 1 − e−α. Finally, (1 − e−α)/(αe) is

decreasing in α, so

Pr {|Y1(x0) ∩ En| = 1 and x1 /∈ En} ≤
L1

e
+

2

e
(1− e−1/2)L0 < 0.455

End of proof of claim B.

Claim C: The following two inequalities hold for all α > 1/2 and τ0 ∈ [0, 1]:

(1− q(τ0 + 1))(1− q(τ0 + 2)) ≤ 1

e− e1/2 + 1/8
, (4.14)

and
ln γ

2− 2/γ

∫ 1

1−τ0

(1− q(τ0 + x))2

γx
dx ≤ τ0

2e− e1/2
. (4.15)

Proof of claim C: To emphasize the dependence on α we briefly write q(α, τ) = q(τ). For
τ0 ∈ [0, 1] we have

q(α, τ0 + 1) =
1

eα − ατ0
, q(α, τ0 + 2) =

eα − ατ0

e2α − (τ0 + 1)αeα + 1
2α

2τ2
0

.
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Suppose α1 > α2 and let C1 be a CMJ process with rate α1. Mark any arrival red with probability
α2/α1, and consider the CMJ process Cr on the red arrivals. This will have rate α2, and if Cr
is active at time τ0 then so is C. This implies q(α1, τ) ≥ q(α2, τ) for all τ , since q(α, τ) is the
probability that a CMJ process of rate α is active at time τ . So for any α > 1/2, τ0 ∈ [0, 1],

1− q(α, τ0 + 1) ≤ 1− q
(

1

2
, τ0 + 1

)
=

1

e1/2 − τ0/2
(4.16)

and

1− q(α, τ0 + 2) ≤ 1− q
(

1

2
, τ0 + 2

)
=

e1/2 − τ0/2

e− τ0+1
2 e1/2 + τ2

0 /8
. (4.17)

Consider multiplying (4.16) and (4.17). It is easy to confirm that e− τ0+1
2 e1/2 + τ2

0 /8 is decreasing
for τ0 ∈ [0, 1], and (4.14) follows.

Now consider (4.15). First note that α = p
4p−2 ln γ = 1

2−2/γ ln γ. We have

ln γ

2− 2/γ

∫ 1

1−τ0

(1− q(τ0 + x))2

γx
dx =

∫ 1

1−τ0

α

γx(eα − α(x+ τ0 − 1))2
dx =

∫ τ0

0

α

γx+1−τ0(eα − αx)2
dx.

Fix τ0 and let f(α, x) = α/(γx+1−τ0(eα − αx)2) for 0 < x < τ0. We will show that f(α, x) ≤
limα→1/2 f(α, x) for α > 1/2 by showing that f(α, x) is decreasing in α. To calculate the derivative

of γ−(x+1−τ0) with respect to α, we note that since α = 1
2−2/γ ln γ,

dγ

dα
=

(2γ − 2)2

2γ − 2− 2 ln γ
=

2γ − 2

1− 1
γ−1 ln γ

=
2γ − 2

1− 2α/γ
.

Since ln γ < γ − 1 we have 1 < 2α = ln γ/(1− 1/γ) < γ, so

dγ

dα
= 2γ

γ − 1

γ − 2α
> 2γ.

In particular,

d

dα
γ−(x+1−τ0) = −(x+ 1− τ0)γ−(x+1−τ0) 1

γ

dγ

dα
< −2(x+ 1− τ0)γ−(x+1−τ0).

Now for 0 ≤ x ≤ τ0 ≤ 1 and α > 1/2, since eα > 1/2 + αx we have

∂f

∂α
=

1

γx+1−τ0(eα − αx)2
+

α

(eα − αx)2

(
d

dα
γ−(x−τ0+1)

)
− 2α(eα − x)

γx−τ0+1(eα − αx)3

<
1

γx+1−τ0(eα − αx)2
− 2(x+ 1− τ0)α

γx+1−τ0(eα − αx)2
− 2α(eα − x)

γx−τ0+1(eα − αx)3

=
1

γx+1−τ0(eα − αx)3
(eα − αx− 2(x+ 1− τ0)α(eα − αx)− 2α(eα − x))

<
1

γx+1−τ0(eα − αx)3
(eα − αx− 2xα(eα − αx)− 2α(eα − x))

=
1

γx+1−τ0(eα − αx)3
(eα(1− 2α)− 2αx(eα − αx− 1/2))

< 0.
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Noting that γ → 1 as α→ 1/2, this implies∫ τ0

0

α

γx+1−τ0(eα − αx)2
dx <

∫ τ0

0

1/2

(e1/2 − x/2)2
=

1

e1/2 − τ0/2
− 1

e1/2
=

τ0

2e1/2(e1/2 − τ0/2)
.

Then (4.15) follows from e1/2 − τ0/2 ≥ e1/2 − 1/2.
End of proof of claim C.

4.6.2 Proof of Lemma 4.7

Recall Lemma 4.7:

Lemma 4.7. Let Ct, Rt, Xt denote the states of C,R,X after t rounds of the algorithm.

(i) There exists a constant λ > 0 such that |Rt| ≤ λ|Ct| log3
γ n for all t with probability 1−o(n−1).

(ii) For all t, 1
2 |Ct| ≤ |Xt|+ t ≤ |Ct|.

Proof of (i). The key observation is that by Lemma 4.4 (iii) and Lemma 4.5, if e > mn/ω
and we expose (e, j) then there exists a λ > 0 such that |E(e, j)∩En| ≥ b|E(e, j)|/(λ log2

γ n)c with
probability 1−o(n−1) . Here E(e, j) denotes the set of edges found when exposing (e, j). Condition
on this being the case for all O(n) half-edges exposed over the course of the algorithm. To avoid
rounding, we note that if |E(e, j) ∩En| = 0 then |E(e, j)| ≤ λ log2

γ n and if |E(e, j) ∩En| > 0 then

|E(e, j)| ≤ 2λ|E(e, j) ∩ En| log2
γ n.

The above holds if e > mn/ω. If e ≤ mn/ω and (e, j) ∈ Q(x), Lemma 4.5 does not apply to
exposing (e, j). In this case, reveal (e, j), i.e. find all f such that φ(f) = (e, j). Note that

E(e, j) = {(e, j)} ∪
⋃

(f,1):f∈φ−1(e,j)

E(f, 1).

Remove (e, j) from Q(x) and replace it by (f, 1) for all f ∈ φ−1(e, j). Repeat this until all (e, j) ∈
Q(x) have e > mn/ω. Let Q′(x) be the end result of this process.

Recall that Ec is the set of edges e with e > mn/ω. We have

|Rt ∩ Ec| ≤
t∑
i=1

2|Y1(xi) ∩ Ec|, |Ct| ≥
t∑
i=1

|Y1(xi) ∩ En|

and in round i,

|Y1(xi) ∩ Ec| =
∑

(e,j)∈Q′(xi)

|E(e, j)|, |Y1(xi) ∩ En| =
∑

(e,j)∈Q′(xi)

|E(e, j) ∩ En|.

Letting (e1, j1), . . . , (es, js) ∈ ∪iQ′(xi) be the half-edges exposed in the first t rounds of the algo-
rithm, we then have

|Rt ∩ Ec| ≤ 2
s∑
i=1

|E(ei, ji)|, |Ct| ≥
s∑
i=1

|E(ei, ji) ∩ En|.
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Let Ii be the indicator variable for |E(ei, ji)∩En| > 0, and let I = I1 + · · ·+Is. Then by the above,

|Rt ∩ Ec| ≤ 2(s− I)λ log2
γ n+ 2λ log2

γ n
∑
i:Ii=1

|E(ei, ji) ∩ En| = 2(s− I)λ log2
γ n+ 2λ|Ct| log2

γ n,

and we will show that s ≤ I log n ≤ |Ct| log n.

Every edge exposed in the process is in Ec, so the probability that Ii = 1 is, by Lemma 4.5, q(τi)
where τi = logγ(pmn/ei). For all i, τi ≤ logγ ω, and q(τ) is decreasing by Lemma 4.2 (iii), so

Ii = 1 with probability at least q(logγ ω) ≥ λ2ζ
− logγ ω where λ2 > 0, see Lemma 4.2. Let c > 0

be such that q(τi) ≥ ω−c for all i. Then I can be bounded below by a binomial random variable
J ∼ Bin(s, ω−c). Suppose s > 4ω2c log n. Then Hoeffding’s inequality [57] implies

Pr
{
I < sω−c

}
≤ Pr

{
J < sω−c

}
≤ exp

{
−2

(
ω−c

2

)2

s

}
≤ n−2.

Since |Ct| ≥ I, This shows that with high probability, if s > 4ω2c log n then s ≤ Iωc ≤ |Ct|ωc and

|Rt ∩ Ec| ≤ 2(s− I)λ log2
γ n+ 2λ|Ct| log2

γ n ≤ 3λ|Ct|ωc log2
γ n.

If s ≤ 4ω2c log n then |Ct| ≥ 0 implies

|Rt ∩ Ec| ≤ 4λω2c log3
γ n ≤ 4λω2c(|Ct|+ 1) log3

γ n,

and since ω2c = (log log n)2c ≤ logγ n for n large enough, this finishes the proof of (i).

Proof of (ii). In each round we have |X1(x)| = m + (m − 1)|Y1(x) ∩ En| if x1 ∈ En and
|X1(x)| = (m− 1)|Y1(x)∩En| if x1 /∈ En. In particular, |Y1(x)∩En| ≤ |X1(x)|/(m− 1) ≤ |X1(x)|.
If xi denotes the starting edge of round i then

|Ct| = m+
t∑
i=1

|X1(xi)|+ |Y1(xi) ∩ En|, |Xt| = m+
t∑
i=1

|X1(xi)| − 1,

so

|Ct| − |Xt| − t =

t∑
i=1

|Y1(xi) ∩ En| ≤
t∑
i=1

|X1(xi)| = |Xt|+ t.

It follows immediately that 1
2 |Ct| ≤ |Xt|+ t ≤ |Ct|.

4.7 Proof of Lemma 4.2

In this section we prove Lemma 4.2, in which we collect useful properties of the central constants
and functions defined in Section 4.2.2. We will restate the definitions here to make this section
self-contained. Firstly, the integer m ≥ 1 and the real number 1/2 < p < 1 are the parameters for
the graph process, and we define

µ = m(2p− 1), γ =
p

1− p
, α =

pm

2µ
ln γ =

p

4p− 2
ln γ.

We let p0 ≈ 0.83113 be the unique p for which α = 1, and when α 6= 1 we define ζ as the unique
solution in R \ {1} to

ζeα(1−ζ) = 1. (4.18)
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If α > 1 define η = − ln γ/ ln ζ. If α < 1 then η is undefined.

We define a sequence ak by a0 = 1 and

ak =

(
−e

α

α

) k−1∑
j=0

aj
(k − j − 1)!

, k ≥ 1. (4.19)

For k ≥ 0 define functions Qk : [k, k + 1)→ [0, 1] by

Qk(τ) =
k∑
j=0

aj
(k − j)!

(τ − k)k−j ,

and for τ ≥ 0 we let Q(τ) = Qbτc(τ). We note that Q(τ) is discontinuous at integer points k with

Q(k) = ak and Q(k−) = −αe−αak (4.20)

where Q(k−) denotes the limit of Q(τ) as τ → k from below. Define

q(τ) = 1, 0 ≤ τ < 1, q(τ) = 1 +
Q(τ − 1)

αQ(τ)
, τ ≥ 1.

Finally, define

p(τ) = exp

{
−α

∫ τ

0
q(x)dx

}
.

For τ < 0 we define Q(τ) = q(τ) = p(τ) = 0.

Lemma 4.2. (i) If α > 1 then ζ < α−1 and if α < 1 then ζ > 1− α−1 + α−2 > α−1.

(ii) If α > 1 then η > 2.

(iii) The functions p(τ), q(τ) are decreasing and take values in [0, 1].

(iv) For any non-integer τ > 0,

Q′(τ) = Q(τ − 1) and q(τ) =
1

α

(Q(τ)eατ )′

Q(τ)eατ
.

(v) If α < 1 then there exist constants λ1, λ2 > 0 where λ1 < α such that for all τ ≥ 0,

p(τ) = 1− α+
λ1

ζτ
+O(ζ−2τ ) and q(τ) =

λ2

ζτ
+O(ζ−2τ ).

(vi) If α > 1 then there exist constants λ3, λ4 > 0 and a constant C > 0 such that for all τ ≥ 0,

λ3ζ
τ ≤ p(τ) ≤ λ3ζ

τ + Cζ2τ and q(τ) = 1− ζ + λ4ζ
τ +O(ζ2τ ).

Proof. Proof of (i). Let α 6= 1. The function x 7→ xeα(1−x) is strictly increasing for x < α−1

and strictly decreasing for x > α−1, and its global maximum at x = α−1 is α−1eα−1 > 1. The
two solutions x1, x2 of xeα(1−x) = 1 must satisfy x1 < α−1 < x2, and ζ < α−1 for α > 1 follows
from the fact that ζ is the solution which is not 1. When α < 1, it is straightforward to plug in
x = 1− α−1 + α−2 and confirm that xeα(1−x) > 1, which shows that ζ > 1− α−1 + α−2 > α−1.
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Proof of (ii). Let α > 1, so p > p0 ≈ 0.83. To see that η > 2, we first note that the definition of
α givesln γ = α(4− 2/p) and the definition of ζ gives ln ζ = −α(1− ζ), so

η = − ln γ

ln ζ
=

4− 2
p

1− ζ
> 1

since 4 − 2
p > 1 for p > p0 ≈ 0.83 and 1 − ζ < 1 − α−1 < 1 by (i). Now, (4 − 2/p)/(1 − ζ) > 2 is

equivalent to ζ + 1− 1/p > 0, and η > 1 and γ > 1 implies

ζ + 1− 1

p
= γln ζ/ ln γ − 1− p

p
= γ−1/η − γ−1 > 0.

Proof of (iii). Lemma 4.3 shows that q(τ) = Pr {X > τ} for a random variable X, namely
X = min{x > 0 : d(x) = 0} in the notation of Lemma 4.3, and (iii) follows immediately.

Proof of (iv). Suppose k ≥ 1 is an integer such that k < τ < k + 1. Then (iv) follows from the
fact that

Q′(τ) =
d

dτ

k∑
j=0

aj
(k − j)!

(τ − k)k−j =

k−1∑
j=0

aj
(k − j − 1)!

(τ − k)k−j−1 = Q(τ − 1).

The case τ < 1 follows from the fact that Q(x) = 0 for all x < 0.

Proof of (v), (vi). We now need to look closer at the sequence {ak}. Let A(z) denote its
generating function. From (4.19) we have

A(z) = 1 +
∑
k≥0

zk
(
−e

α

α

) k−1∑
j=0

aj
(k − j − 1)!

= 1− eα

α

∞∑
j=0

ajz
j+1

∞∑
k=j+1

zk−j−1

(k − j − 1)!

= 1− eα

α
zezA(z)

so A(z) = 1/(1 + α−1zeα+z). The sequence bk = (−α)kak then has generating function

B(z) = A(−αz) =
1

1− zeα(1−z) .

This has simple poles at z = 1 and z = ζ, with residues 1/(α − 1) and ζ/(αζ − 1) respectively.
Then

B(z) =
1

1− zeα(1−z) −
1

(1− α)(1− z)
− ζ

(1− αζ)(ζ − z)

is analytic. Writing β = (1−αζ)−1, the power series representation of B(z) is bk−1/(1−α)−β/ζk.
Since B(z) is analytic, Cauchy’s integral formula shows that for any ε > 0,

bk =
1

1− α
+
β

ζk
+Ok(ε

k).

In the remainder of the proof, fix 0 < ε < ζ−1.

Using (iv) and (4.20) we have, for any integer k ≥ 0,

p(k) = exp

{
−α

∫ k

0
q(x)dx

}
=

k∏
j=1

Q(j − 1)eα(j−1)

Q(j−)eαj
=

1

(−α)kak
=

1

bk
.
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and q(k) = 1 +Q(k − 1)/(αQ(k)) = 1− bk−1/bk. If α < 1 then ζ > 1 so for integers k,

q(k)ζk = ζk
(

1− bk−1

bk

)
=
ζkbk − ζkbk−1

bk
=
β − ζβ +O(ζ−k)

1
1−α +O(ζ−k)

= β(1− α)(1− ζ) +O(ζ−k)

and we set λ2 = β(1− α)(1− ζ) = (1− α)(ζ − 1)/(αζ − 1). Recall that p(k) = 1/bk. By Taylor’s
theorem we have 1/(a+ bx) = a−1 − ba−2x+O(x2) for any constants a, b 6= 0, so with x = ζ−k

(p(k)− (1− α))ζk =

(
1

1
1−α + β

ζk
+O(εk)

− (1− α)

)
ζk = −β(1− α)2 +O(ζ−k)

and we set λ1 = −β(1−α)2 = (1−α)2/(αζ−1). Here ζ > 1−α−1 +α−2 (from (i)) implies λ1 < α.

Suppose α > 1. Then 0 < ζ < α−1 and

q(k)− (1− ζ)

ζk
=
ζbk − bk−1

ζkbk
=

ζ−1
1−α +O(εk−1)

β +O(ζk)
=

(1− ζ)(1− αζ)

α− 1
+O(ζk)

and we set λ4 = (1− ζ)(1− αζ)/(α− 1). From the definition (4.18) of ζ we have

p(τ)

ζτ
= exp

{
−α

∫ τ

0
q(x)dx− τ ln ζ

}
= exp

{
−α

∫ τ

0
(q(x)− (1− ζ))dx

}
and since q(τ) decreases toward 1− ζ at an exponential rate, the integral converges as τ →∞ and
p(τ)ζ−τ is decreasing. Again considering integer values k, we have

p(k)

ζk
=

1

bkζk
=

1

β +O(ζk)
= 1− αζ +O(ζk)

and we set λ3 = 1− αζ.

The above shows the asymptotic behaviour of p(τ), q(τ) for integer values of τ . Since both functions
are monotone, the same asymptotics apply to non-integer values of τ . From (i) it follows that
λ1, λ2, λ3, λ4 all are positive.

4.8 Proof of Lemmas 4.3, 4.4

Recall Lemma 4.3.

Lemma 4.3. For all τ ≥ 0, d(τ) ∼ G(p(τ), q(τ)).

Proof of Lemma 4.3. The process is a Crump-Mode-Jagers process, a class of processes which were
studied in general in companion papers [21], [22]. Define

F (s, τ) =
∑
k≥0

Pr {d(τ) = k}sk.

In [22] it is shown that the probability generating function satisfies

F (s, τ) = s exp

{
α

∫ τ

0
(F (s, u)− 1) du

}
, 0 ≤ τ < 1 (4.21)

F (s, τ) = exp

{
α

∫ τ

τ−1
(F (s, u)− 1) du

}
, τ > 1. (4.22)
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We will show that F (s, τ) = F̃ (s, τ) where

F̃ (s, τ) = 1− q(τ) +
p(τ)q(τ)s

1− s(1− p(τ))
= 1 +

q(τ)(s− 1)

1− s(1− p(τ))

with p(τ), q(τ) defined in Section 4.2.2. This is the probability generating function of G(p(τ), q(τ)).

Firstly, when 0 ≤ τ < 1 we plug q(τ) = 1, p(τ) = e−ατ into (4.21), and via the integral substitution
w = eαu,

s exp

{
α

∫ τ

0

(
1 +

s− 1

1− s(1− e−αu)
− 1

)
du

}
= s exp

{
α

∫ τ

0

(s− 1)eαu

s+ (1− s)eαu
du

}
= s exp

{∫ eατ

1

s− 1

s+ w(1− s)
dw

}
= s exp {− ln(s− (s− 1)eατ )}

=
se−ατ

1− s(1− e−ατ )

confirming that F̃ (s, τ) satisfies (4.21).

For τ > 1 we have

exp

{
α

∫ τ

τ−1
(F̃ (s, u)− 1) du

}
= exp

{
α

∫ τ

τ−1

q(u)(s− 1)

1− s+ sp(u)

}
du

and since p(u) = exp
{
−α

∫ u
0 q(x)dx

}
, the substitution v(u) = ln p(u) with dv/du = −αq(u) yields

α

∫ τ

τ−1

q(u)(s− 1)

1− s+ sp(u)
du =

∫ v(τ)

v(τ−1)

1− s
1− s+ sev

dv

=

∫ v(τ)

v(τ−1)

(
1− sev

1− s+ sev

)
dv

and substituting w = ev gives, as above,∫ v(τ)

v(τ−1)

(
1− sev

1− s+ sev

)
dv = v(τ)− v(τ − 1) +

∫ ev(τ)

ev(τ−1)

s

1− s+ sw
dw

= v(τ)− v(τ − 1) + ln

(
1− s+ sev(τ−1)

1− s+ sev(τ)

)
.

So since v(u) = ln p(u),

exp

{
α

∫ τ

τ−1
(F̃ (s, u)− 1) du

}
=

p(τ)

p(τ − 1)

1− s+ sp(τ − 1)

1− s+ sp(τ)
. (4.23)

We have 1− q(τ) = p(τ)/p(τ − 1) (see (4.25)), so

p(τ)

p(τ − 1)

1− s+ sp(τ − 1)

1− s+ sp(τ)
=

(1− s)(1− q(τ)) + sp(τ)

1− s+ sp(τ)
= 1 +

q(τ)(s− 1)

1− s+ sp(τ)
= F̃ (s, τ). (4.24)

Now (4.23) and (4.24) imply that F̃ (s, τ) satisfies (4.22).
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To see that 1− q(τ) = p(τ)/p(τ − 1), recall from (4.20) that Q(k)/Q(k−) = −1/(αeα) for integers
k, and from Lemma 4.2 (iv) we have q(τ) = α−1(Q(τ)eατ )′/(Q(τ)eατ ) for non-integer values of τ .
So the integral of q(τ) is α−1 ln(Q(τ)eατ ), and

p(τ)

p(τ − 1)
= exp

{
−α

∫ τ

τ−1
q(x)dx

}
= exp

{
−α

∫ bτc
τ−1

q(x)dx

}
exp

{
−α

∫ τ

bτc
q(x)dx

}

=
Q(τ − 1)eα(τ−1)

Q(bτc−)eαbτc
Q(bτc)eαbτc

Q(τ)eατ

=
−Q(τ − 1)

αQ(τ)

= 1− q(τ). (4.25)

The last equality comes form the definition of q(τ).

Recall Lemma 4.4.

Lemma 4.4. There exists a constant λ > 0 such that for 0 ≤ τ ≤ logγ n, as n→∞

(i) if α < 1,

Pr {b(τ) > λ lnn} = o

(
1

n

)
.

(ii) if α > 1,

Pr
{
b(τ) > λn1/η lnn

}
= o

(
1

n

)
where η = − ln γ/ ln ζ > 2.

(iii) If α 6= 1 then d(τ) ≥ bb(τ)/(λ log2
γ n)c for all 0 ≤ τ ≤ logγ n with probability 1− o(n−1).

Proof of Lemma 4.4. Each Poisson process has lifetime exactly 1, so

bτc∑
k=0

d(k) ≤ b(τ) ≤
dτe∑
k=0

d(k)

and in particular,

b(τ) ≤ dτe max
0≤k≤dτe

d(k). (4.26)

From Lemma 4.3 we have

Pr {d(τ) > `} = q(τ)(1− p(τ))`.

For α < 1, Lemma 4.2 (i), (v) imply that 1− p(τ) ≤ α, so

Pr

{
max

0≤k≤dτe
d(k) > −2 logα n

}
≤ dτeα−2 logα n = o(n−1).
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For α > 1, Lemma 4.2 (i), (vi) imply

Pr

{
max

0≤k≤dτe
d(k) > λn1/η lnn

}
≤ dτe(1− λ3ζ

dτe)λn
1/η lnn ≤ dτe exp

{
−λλ3ζ

dτen1/η lnn
}

and since τ ≤ logγ n and ζ logγ nn1/η = 1, this is o(n−1) for λ large enough.

Assertion (iii) follows from (i) for α < 1. Suppose α > 1. The claim will follow from showing that
we can choose A,B > 0 so that if τ ≤ logγ n,

Pr
{
∃x ∈ [0, τ ] : d(x) ≥ A logγ n and d(τ) ≤ d(x)/B

}
= o(n−1). (4.27)

Indeed, suppose b(τ) ≥ A(logγ n)2. Then by (4.26) there exists some x < τ for which d(x) ≥
b(τ)/τ ≥ A logγ n. It will follow from (4.27) that d(τ) ≥ b(τ)/(Bτ) ≥ AB−1b(τ)/ logγ n with

probability 1− o(n−1). If b(τ) < A(logγ n)2 we choose λ > A so that d(τ) ≥ 0 = bb(τ)/(C log2
γ n)c.

If x′ < τ is such that d(x′) ≥ A logγ n Poisson processes are active, then either (i) at least d(x′)/2
of the processes are still active at time x′+ 1/2, or (ii) at least d(x′)/2 of the processes were active
at time x′−1/2. In either case, there exists an x < τ such that d(x) ≥ A

2 logγ n and at least d(x)/2
processes are active at time x+ 1/2. If x ≥ τ − 1/2 then d(τ) ≥ d(x)/2, so suppose x < τ − 1/2.

Suppose Pi is a process which is active at times x and x + 1/2. The probability that Pi has at
least one arrival in (x, x + 1/2) is 1 − e−α/2. Suppose Pi has an arrival at time xi ∈ (x, x + 1/2).
Then the process starting at time xi can be seen as the initial process of a CMJ process Ci on
[xi, τ ]. Since α > 1, the probability that Ci is active at time τ is q(τ − xi) ≥ 1− ζ (see Lemma 4.2
(iii) and (vi)). In other words, if Xi is the indicator variable for Pi having an active descendant at
time τ , then Pr {Xi = 1} ≥ (1− e−α/2)(1− ζ). This is true independently for the d(x)/2 processes
P1, . . . ,Pd(x)/2 active at time x and x+ 1/2, and we have d(τ) ≥ X1 + · · ·+Xd(x)/2. Choosing A,B
large enough, Hoeffding’s inequality [57] shows that d(τ) ≥ d(x)/B with probability 1 − o(n−1).
This finishes the proof.

4.9 Concluding remarks

The main computational task in improving the results of this paper is in estimating integral involv-
ing p(τ), q(τ) and γ−τ . To find the exact number of vertices of degree k for k = O(1), one needs
to calculate integrals involving terms of the form γ−τq(τ)p(τ)(1 − p(τ))k−1, and this is difficult
to do in any generality. Integrals involving p(τ), q(τ) and γ−τ also appear when looking for small
components, which prevented us from finding the exact size of the giant component.



Chapter 5

Minimum matching in a random
graph with random costs

This chapter corresponds to [38].

Abstract

Let Gn,p be the standard Erdős-Rényi-Gilbert random graph and let Gn,n,p
be the random bipartite graph on n + n vertices, where each e ∈ [n]2

appears as an edge independently with probability p. For a graph G =
(V,E), suppose that each edge e ∈ E is given an independent exponential
rate one cost Xe. Let C(G) denote the random variable equal to the length
of the minimum cost perfect matching if G contains at least one perfect
matching and let C(G) = 0 otherwise. Let µ(G) = E [C(G)]. We show that

if np� log2 n and G = Gn,n,p then w.h.p. µ(G) ≈ π2

6p . This generalises the
well-known result for the case G = Kn,n, where p = 1. We also show that

if G = Gn,p then µ(Gn,p) ≈ π2

12p w.h.p. along with concentration results
for both types of random graph.

5.1 Introduction

There are many results concerning the optimal value of combinatorial optimization problems with
random costs. Sometimes the costs are associated with n points generated uniformly at random in
the unit square [0, 1]2. In which case the most celebrated result is due to Beardwood, Halton and
Hammersley [8] who showed that the minimum length of a tour through the points a.s. grew as
βn1/2 for some still unknown β. For more on this and related topics see Steele [84].

The optimisation problem in [8] is defined by the distances between the points. So, it is defined
by a random matrix where the entries are highly correlated. There have been many examples
considered where the matrix of costs contains independent entries. Aside from the Travelling
Salesperson Problem, the most studied problems in combinatorial optimization are perhaps, the
shortest path problem; the minimum spanning tree problem and the matching problem. As a first
example, consider the shortest path problem in the complete graph Kn where the edge lengths

71
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are independent exponential random variables with rate 1. We denote the exponential random
variable with rate λ by E(λ). Thus Pr(E(λ) ≥ x) = e−λx for x ∈ R. Janson [59] proved (among
other things) that if Xi,j denotes the shortest distance between vertices i, j in this model then
E [X1,2] = Hn

n where Hn =
∑n

i=1
1
i .

As far as the spanning tree problem is concerned, the first relevant result is due to Frieze [42]. He
showed that if the edges of the complete graph are given independent uniform [0, 1] edge weights,
then the (random) minimum length of a spanning tree Ln satisfies E [Ln] → ζ(3) =

∑∞
k=1

1
k3 as

n→∞. Further results on this question can be found in Steele [83], Janson [58], Beveridge, Frieze
and McDiarmid [9], Frieze, Ruszinko and Thoma [52] and Cooper, Frieze, Ince, Janson and Spencer
[19].

In the case of matchings, the nicest results concern the the minimum cost of a matching in a
randomly edge-weighted copy of the complete bipartite graph Kn,n. If Cn denotes the (random)
minimum cost of a perfect matching when edges are given independent exponential E(1) random
variables then the story begins with Walkup [88] who proved that E [Cn] ≤ 3. Later Karp [62]
proved that E [Cn] ≤ 2. Aldous [3, 4] proved that limn→∞E [Cn] = ζ(2) =

∑∞
k=1

1
k2 . Parisi

[78] conjectured that in fact E [Cn] =
∑n

k=1
1
k2 . This was proved independently by Linusson and

Wästlund [68] and by Nair, Prabhakar and Sharma [74]. A short elegant proof was given by
Wästlund [90, 92].

In this paper we replace the complete graphs Kn,n and Kn by random graphs. More precisely
each graph G gives rise to a probability space ΩG =

∏
e∈GXe where for each e ∈ E(G) we have

Pr(Xe ≥ x) = e−x for x ≥ 0 i.e. each edge has an independent exponential mean one cost. For
each X ∈ ΩG we let GX denote the corresponding edge-weighted graph. The random variable
C(G,X) is equal to the length of the minimum cost perfect matching in GX, if G contains at least
one perfect matching and is equal to zero otherwise. Let µ(G) = EX[C(G,X)].

Let Gn,n,p be the random bipartite graph on n+n vertices, where each e ∈ [n]2 appears as an edge
independently with probability p. The next theorem deals with the random variable µ(Gn,n,p).

Theorem 5.1. If d = np = ω(n) log2 n where ω(x)→∞ with x, then E [µ(Gn,n,p)] ≈ π2

6p .

To be clear, the expectation in the theorem is taken over random G = Gn,n,p and random X.

In addition we will in fact show that µ(Gn,n,p) will be highly concentrated around π2

6p . In this case
the probability is over the graph G alone. Here µ(G) is a function of G alone.

Here An ≈ Bn iff An = (1 + o(1))Bn as n → ∞ and the event En occurs with high probability
(w.h.p.) if Pr(En) = 1− o(1) as n→∞.

In the case of Gn,p we prove

Theorem 5.2. If d = np = ω(n) log2 n where ω(x)→∞ with x, then E [µ(Gn,p)] ≈ π2

12p .

Applying results of Talagrand [86] we can prove the following concentration result.

Theorem 5.3. Let ε > 0 be fixed, then

Pr

(∣∣∣∣µ(Gn,n,p)−
π2

6p

∣∣∣∣ ≥ ε

p

)
≤ n−K , Pr

(∣∣∣∣µ(Gn,p)−
π2

12p

∣∣∣∣ ≥ ε

p

)
≤ n−K

for any constant K > 0 and n large enough.
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In this theorem the probabilities are with respect to random Gn,n,p or Gn,p alone.

In the paper [9] on the minimum spanning tree problem, the complete graph was replaced by a
d-regular graph G. Under some mild expansion assumptions, it was shown that if d→∞ then ζ(3)
can be replaced asymptotically by nζ(3)/d.

Now consider a d-regular bipartite graph G on 2n vertices. Here d = d(n) → ∞ as n → ∞. Each
edge e is assigned a cost w(e), each independently chosen according to the exponential distribution
E(1). Denote the total cost of the minimum-cost perfect matching by C(G).

We conjecture the following (under some possibly mild restrictions):

Conjecture 5.1. Suppose d = d(n)→∞ as n→∞. For any n-vertex, d-regular bipartite G,

µ(G) ≈ n

d

π2

6
.

In this paper we prove the conjecture for random graphs and random bipartite graphs.

5.2 Proof of Theorem 5.1

We find that the proofs in [90], [92] can be adapted to our current situation. Suppose that the
vertices of G = Gn,n,p are denoted A = {ai, i ∈ [n]} and B = {bj , j ∈ [n]}. We will use the notation
(a, b) for edges of G, where a ∈ A and b ∈ B. Let C(n, r) denote the cost of the minimum cost
matching

Mr = {(ai, φr(ai)) : i = 1, 2, . . . , r} of Ar = {a1, a2, . . . , ar} into B.

We will prove that w.h.p.

E [C(n, r)− C(n, r − 1)] ≈ 1

p

r−1∑
i=0

1

r(n− i)
.

for r = 1, 2, . . . , n−m where

m =
n

ω1/2 log n
.

Using this we argue that w.h.p.

E [C(G)] = E [C(n, n)] = E [C(n, n)− C(n, n−m+ 1)] +
1 + o(1)

p

n−m∑
r=1

r−1∑
i=0

1

r(n− i)
. (5.1)

We will then show that

n−m∑
r=1

r−1∑
i=0

1

r(n− i)
≈
∞∑
k=1

1

k2
=
π2

6
. (5.2)

E [C(n, n)− C(n, n−m+ 1)] = o(p−1) w.h.p. (5.3)

Theorem 5.1 follows from these two statements.
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5.2.1 Outline of the proof

We first argue (Lemma 5.1) that w.h.p. vertices v ∈ Ar have aproximately (n − r)p neighbors in
B \ Br, where Br = φr(Ar). Then comes the beautiful idea of adding a vertex bn+1 and joining
it to every vertex in A by an edge of cost E(λ). The heart of the proof is in Lemma 5.2 that
relates E [C(n, r)− C(n, r − 1)] in a precise way to the probability that bn+1 is covered by M∗r , the
minimum cost matching of Ar into B∗ = B ∪ {bn+1}. The proof now focuses on estimating this
probability P (n, r). If r is not too close to n then this probability can be estimated (see (5.6)) by
careful conditioning and the use of properties of the exponential distribution. From thereon, it is a
matter of analysing the consequences of the estimate for E [C(n, r)− C(n, r − 1)] in (5.7). The final
part of the proof involves showing (Lemma 5.5) that E [C(n, n)− C(n−m+ 1)] is insignificant.
This essentially boils down to showing that w.h.p. no edge in the minimum cost matching has cost
more than O(log n/(np)).

5.2.2 Proof details

We use the Chernoff bounds to bound degrees. For reference we use the following: Let B(n, p)
denote the binomial random variable with parameters n, p. Then for 0 ≤ ε ≤ 1 and α > 0,

Pr(B(n, p) ≤ (1− ε)np) ≤ e−ε2np/2. (5.4)

Pr(B(n, p) ≤ (1 + ε)np) ≤ e−ε2np/3. (5.5)

Pr(B(n, p) ≥ αnp) ≤
( e
α

)αnp
.

For v ∈ A let dr(v) = | {w ∈ B \Br : (v, w) ∈ E(G)} |. Then we have the following lemma:

Lemma 5.1.

|dr(v)− (n− r)p| ≤ ω−1/5(n− r)p w.h.p. for v ∈ A, 0 ≤ r ≤ n−m.

Proof. For the purposes of this lemma, we construct GX by generating, for i = 1, 2, . . . , n, the edges
incident with ai, along with their costs. Note that we can now determine the function φr and hence
Br, as soon as we have dealt with a1, a2, . . . , ar. At this point we have not exposed any of the edges
of Gn,n,p incident with A \ Ar. We condition on the set Br. It follows then that dr(v), v /∈ Ar is
distributed as B(n− r, p). Applying the Chernoff bounds (5.4), (5.5) with ε = ω−1/5 we obtain

Pr(∃v : |dr(v)− (n− r)p| ≥ ω−1/5(n− r)p) ≤ 2ne−ω
−2/5(n−r)p/3

≤ 2n1−ω1/10/3.

We can now use the ideas of [90], [92]. We add a special vertex bn+1 to B, with edges to all n
vertices of A. Each edge adjacent to bn+1 is assigned an E(λ) cost independently, λ > 0. We now
consider Mr to be a minimum cost matching of Ar into B∗ = B∪{bn+1}. We denote this matching
by M∗r and we let B∗r denote the corresponding set of vertices of B∗ that are covered by M∗r .

Define P (n, r) as the normalized probability that bn+1 participates in M∗r , i.e.

P (n, r) = lim
λ→0

1

λ
Pr(bn+1 ∈ B∗r ).
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Its importance lies in the following lemma:

Lemma 5.2.

E [C(n, r)− C(n, r − 1)] =
1

r
P (n, r).

Proof. For the argument that follows, we need to argue that the vertices B̂ of B covered by the
cheapest (Ar \ {ai})-assignment are a subset of Br. Using the symmetry of the problem, we argue
instead that Br−1 ⊆ Br with probability one. So, consider the symmetric differenceD = Mr−1⊕Mr.
In general, it consists of a collection of alternating paths and cycles from Ar to B. The cost of
a path/cycle is the difference between the cost of its Mr-edges and its Mr−1-edges. Now with
probability one these will be non-zero. If a cycle has positive cost then it means that Mr can be
improved by reversing the inclusion of edges in the cycle and if the cost is negative then Mr−1 can be
improved. Hence with probability one there are no cycles in D. An alternating path from aj , j 6= r
to B \Br−1 leads to the same conclusion about the optimality of Mr−1,Mr. Thus with probability
one, D consists of an augmenting path from ar to B \Br−1 and this implies that Br−1 ⊆ Br.

Let X = C(n, r) and let Y = C(n, r−1). Fix i ∈ [r] and let w be the cost of the edge (ai, bn+1), and
let I denote the indicator variable for the event that the cost of the cheapest Ar-assignment that
contains this edge is smaller than the cost of the cheapest Ar-assignment that does not use bn+1.
In other words, I is the indicator variable for the event {Ŷ + w < X}, where Ŷ is the minimum
cost of a matching from Ar \ {ai} to B. This uses the fact that B̂ ⊆ Br by assuming that after
deleting the edge (ai, bn+1) from Mr we have a matching from Ar \ {ai} to B̂ of cost Ŷ . Note that
by symmetry Y and Ŷ have the same distribution. For this symmetry argument to be valid, we
need to be dealing with the probability space of G and X.

If (ai, bn+1) ∈ M∗r then w < X − Ŷ . Conversely, if w < X − Ŷ and no other edge from bn+1 has
cost smaller than X − Ŷ , then (ai, bn+1) ∈ M∗r , and when λ → 0, the probability that there are
two distinct edges from bn+1 of cost smaller than X − Ŷ is of order O(λ2). Indeed, let F denote
the existence of two distinct edges from bn+1 of cost smaller than X and let Fi,j denote the event
that (ai, bn+1) and (aj , bn+1) both have cost smaller than X. Then by symmetry,

Pr(F) ≤ n2EX [Pr(F1,2 | X)] = n2E[(1− e−λX)2] ≤ n2E[X2]λ2,

and since E
[
X2
]

is finite and independent of λ, this is O(λ2).

Since w is E(λ) distributed, as λ→ 0 we have,

E [X − Y ] = E
[
X − Ŷ

]
=

d

dλ
E [I]

∣∣∣∣
λ=0

= lim
λ→0

1

λ
Pr(w < X − Ŷ ) =

1

r
P (n, r).

The factor 1/r comes from each i ∈ [r] being equally likely to be incident to the matching edge
containing bn+1, if it exists.

We now proceed to estimate P (n, r).

Lemma 5.3. Suppose r < n−m. Then

Pr(bn+1 ∈ B∗r | bn+1 /∈ B∗r−1) =
λ

p(n− r + 1)(1 + εr,n) + λ
(5.6)

where |εr,n| ≤ ω−1/5.
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Proof. Assume that bn+1 /∈ B∗r−1. M∗r is obtained from M∗r−1 by finding an augmenting path P =
(ar, . . . , aσ, bτ ) from ar to B∗ \B∗r−1 of minimum additional cost. Let α = W (σ, τ) denote the cost
of (aσ, bτ ). We condition on (i) σ, (ii) the lengths of all edges other than (aσ, bj), bj ∈ B∗ \B∗r−1 and
(iii) min

{
W (σ, j) : bj ∈ B∗ \B∗r−1

}
= α. With this conditioning Mr−1 = M∗r−1 will be fixed and

so will P ′ = (ar, . . . , aσ). We can now use the following fact: Let X1, X2, . . . , XM be independent
exponential random variables of rates α1, α2, . . . , αM . Then the probability that Xi is the smallest
of them is αi/(α1 + α2 + · · · + αM ). Furthermore, the probability stays the same if we condition
on the value of min {X1, X2, . . . , XM}. Thus

Pr(bn+1 ∈ B∗r | bn+1 /∈ B∗r−1) =
λ

dr−1(aσ) + λ
.

Corollary 5.1. If r ≤ n−m then

P (n, r) =
1

p

(
1

n
+

1

n− 1
+ · · ·+ 1

n− r + 1

)
(1 + εr,n) (5.7)

where |εr,n| ≤ ω−1/5.

Proof. Let ν(j) = p(n− j)(1 + εj,n), |εj,n| ≤ ω−1/5. Then

Pr(bn+1 ∈ B∗r ) = 1− ν(0)

ν(0) + λ
· ν(1)

ν(1) + λ
· · · ν(r − 1)

ν(r − 1) + λ

= 1−
(

1 +
λ

ν(0)

)−1

· · ·
(

1 +
λ

ν(r − 1)

)−1

=

(
1

ν(0)
+

1

ν(1)
+ · · ·+ 1

ν(r − 1)

)
λ+O(λ2)

=
1

p

(
1

n(1 + ε0,n)
+

1

(n− 1)(1 + ε1,n)
+ · · ·+ 1

(n− r + 1)(1 + εr−1,n)

)
λ+O(λ2)

and each error factor satisfies |1− 1/(1 + εj,n)| ≤ ω−1/5. Letting λ→ 0 gives the lemma.

Lemma 5.4. If r ≤ n−m then

E [C(n, r)− C(n, r − 1)] =
1 + o(1)

rp

r−1∑
i=0

1

n− i
.

Proof. This follows from Lemma 5.2 and Corollary 5.1.

This confirms (5.1) and we turn to (5.2). We use the following expression from Young [95].

n∑
i=1

1

i
= log n+ γ +

1

2n
+O(n−2), where γ is Euler’s constant. (5.8)
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Let m1 = ω1/4m. Observe first that

m1∑
i=0

1

n− i

n−m∑
r=i+1

1

r
≤ O

(
log n

n1/4

)
+

m1∑
i=n3/4

1

n− i

n−m∑
r=i+1

1

r

≤ o(1) +
1

n−m1

m1∑
i=n3/4

(
log
(n
i

)
+

1

2(n−m)
+O(n−3/2)

)

≤ o(1) +
2

n
log

(
nm1

m1!

)
≤ o(1) +

2m1

n
log

(
ne

m1

)
= o(1).

Then,

n−m∑
r=1

r−1∑
i=0

1

r(n− i)
=

n−m−1∑
i=0

1

n− i

n−m∑
r=i+1

1

r
,

=
n−m−1∑
i=m1

1

n− i

n−m∑
r=i+1

1

r
+ o(1),

=
n−m−1∑
i=m1

1

n− i

(
log

(
n−m
i

)
+

1

2(n−m)
− 1

2i
+O(i−2)

)
+ o(1),

=

n−m−1∑
i=m1

1

n− i
log

(
n−m
i

)
+ o(1),

=

n−m1∑
j=m+1

1

j
log

(
n−m
n− j

)
+ o(1), (5.9)

=

∫ n−m1

x=m+1

1

x
log

(
n−m
n− x

)
dx+ o(1).

We can replace the sum in (5.9) by an integral because the sequence of summands is unimodal and
the terms are all o(1).

Continuing, we have ∫ n−m1

x=m+1

1

x
log

(
n−m
n− x

)
dx

= −
∫ n−m1

x=m+1

1

x
log

(
1− x−m

n−m

)
dx

=
∞∑
k=1

∫ n−m1

x=m+1

1

x

(x−m)k

k(n−m)k
dx

=

∞∑
k=1

∫ n−m−m1

y=1

1

y +m

yk

k(n−m)k
dy. (5.10)
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Observe next that for every k ≥ 1∫ n−m−m1

y=1

1

y +m

yk

k(n−m)k
dy ≤

∫ n−m−m1

y=1

yk−1

k(n−m)k
dy ≤ 1

k2
.

So,

0 ≤
∞∑

k=logn

∫ n−m1

x=m+1

1

x

(x−m)k

k(n−m)k
dx ≤

∞∑
k=logn

1

k2
= o(1). (5.11)

If 1 ≤ k ≤ log n then we write∫ n−m−m1

y=1

1

y +m

yk

k(n−m)k
dy =

∫ n−m−m1

y=1

(y +m)k−1

k(n−m)k
dy +

∫ n−m−m1

y=1

yk − (y +m)k

(y +m)k(n−m)k
dy.

Now ∫ n−m−m1

y=1

(y +m)k−1

k(n−m)k
dy =

1

k2

(n−m1)k − (m+ 1)k

(n−m)k
=

1

k2
+O

(
1

kω1/4 log n

)
. (5.12)

If k = 1 then our choice of m implies that∫ n−m−m1

y=1

(y +m)k − yk

(y +m)k(n−m)k
dy ≤ m log(n−m1)

n−m
= o(1).

And if 2 ≤ k ≤ log n then∫ n−m−m1

y=1

(y +m)k − yk

(y +m)k(n−m)k
dy =

k∑
l=1

∫ n−m−m1

y=1

(
k

l

)
yk−lml

(y +m)k(n−m)k
dy

≤
k∑
l=1

∫ n−m−m1

y=0

(
k

l

)
yk−l−1ml

k(n−m)k
dy

=
k∑
l=1

(
k

l

)
ml(n−m−m1)k−l

k(k − l)(n−m)k
(5.13)

= O

(
km

k(k − 1)n

)
= O

(
1

kω1/2 log n

)
. (5.14)

To go from (5.13) to (5.14) we argue that if the summand in (5.13) is denoted by ul then ul+1/ul =
O(1/ω1/2) for 1 ≤ l ≤ log n. Hence the sum is O(u1).

It follows that

0 ≤
logn∑
k=1

∫ n−m−m1

y=1

(y +m)k − yk

(y +m)k(n−m)k
dy = o(1) +O

(
logn∑
k=2

1

kω1/2 log n

)
= o(1). (5.15)

Equation (5.2) now follows from (5.10), (5.11), (5.12) and (5.15).

Turning to (5.3) we prove the following lemma:

Lemma 5.5. If r ≥ n−m then 0 ≤ C(n, r + 1)− C(n, r) = O
(

logn
np

)
.

This will prove that

0 ≤ E [C(n, n)− C(n−m+ 1)] = O

(
m log n

np

)
= O

(
n

ω1/2np

)
= o

(
1

p

)
and complete the proof of (5.3) and hence Theorem 5.1.
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5.2.3 Proof of Lemma 5.5

Let w(e) denote the weight of edge e in G. Let Vr = Ar+1 ∪ B and let Gr be the subgraph
of G induced by Vr. For a vertex a ∈ Ar+1 order the neighbors u1, u2, . . . , of a in B so that
w(a, ui) ≤ w(a, ui+1). Similarly, if b ∈ B order the neighbors u1, u2, . . . , of b in Ar+1 so that
w(ui, b) ≤ w(ui+1, b). For v ∈ Vr, define the k-neighborhood Nk(v) = {u1, u2, . . . , uk}. This is
defined independently from any matchings between A and B.

Let the k-neighborhood of a set be the union of the k-neighborhoods of its vertices. In particular,
for S ⊆ Ar+1, T ⊆ B,

Nk(S) = {b ∈ B : ∃a ∈ S : y ∈ Nk(a)},
Nk(T ) = {a ∈ Ar+1 : ∃b ∈ T : a ∈ Nk(b)}.

Given a function φr defining a matching M of Ar into B, we define the following digraph: let
~Γr = (Vr, ~X) where ~X is an orientation of

X =

{{a, b} ∈ G : a ∈ Ar+1, b ∈ N40(a)}∪{{a, b} ∈ G : b ∈ B, a ∈ N40(b)}∪{(φr(ai), ai) : i = 1, 2, . . . , r} .

An edge e ∈ M is oriented from B to A and has weight −w(e). The remaining edges are oriented
from A to B and have weight equal to their weight in G.

The arcs of directed paths in ~Γr are alternately forwards A → B and backwards B → A and so
they correspond to alternating paths with respect to the matching M . It helps to know (Lemma
5.6, next) that given a ∈ Ar+1, b ∈ B we can find an alternating path from a to b with O(log n)
edges. The ab-diameter will be the maximum over a ∈ Ar+1, b ∈ B of the length of a shortest
alternating path from a to b.

Lemma 5.6. W.h.p., for every φr, the (unweighted) ab-diameter of ~Γr is at most k0 = d3 log4 ne.

Proof. For S ⊆ Ar+1, T ⊆ B, let

Λ(S) = {b ∈ B : ∃a ∈ S such that (a, b) ∈ ~X},
Λ(T ) = {a ∈ Ar+1 : ∃b ∈ T such that (a, b) ∈ ~X}.

We first prove an expansion property: that w.h.p., for all S ⊆ Ar+1 with |S| ≤ dn/5e, |Λ(S)| ≥ 4|S|.
(Note that Λ(S),Λ(T ) are defined by edges oriented from A to B and so do not depend on φr.)

Pr(∃S : |S| ≤ dn/5e, |Λ(S)| < 4|S|) ≤ o(1) +

dn/5e∑
s=1

(
r + 1

s

)(
n

4s

)((4s
40

)(
n
40

))s

≤
dn/5e∑
s=1

(ne
s

)s (ne
4s

)4s
(

4s

n

)40s

=

dn/5e∑
s=1

(
e5436s35

n35

)s
= o(1).
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Explanation: The o(1) term accounts for the probability that each vertex has at least 40 neighbors
in ~Γr. Condition on this. Over all possible ways of choosing s vertices and 4s “targets”, we take the
probability that for each of the s vertices, all 40 out-edges fall among the 4s out of the n possibilities.

Similarly, w.h.p., for all T ⊆ B with |T | ≤ dn/5e, |Λ(T )| ≥ 4|T |. Thus by the union bound, w.h.p.
both these events hold. In the remainder of this proof we assume that we are in this “good” case,
in which all small sets S and T have large vertex expansion.

Now, choose an arbitrary a ∈ Ar+1, and define S0, S1, S2, . . . as the endpoints of all alternating
paths starting from a and of lengths 0, 2, 4, . . . . That is,

S0 = {a} and Si = φ−1
r (Λ(Si−1)).

Since we are in the good case, |Si| ≥ 4|Si−1| provided |Si−1| ≤ n/5, and so there exists a smallest
index iS such that |SiS−1| > n/5, and iS − 1 ≤ log4(n/5) ≤ log4 n− 1. Arbitrarily discard vertices
from SiS−1 to create a smaller set S′iS−1 with |S′iS−1| = dn/5e, so that S′iS = Λ(S′iS−1) has cardinality
|S′iS | ≥ 4|S′iS−1| ≥ 4n/5.

Similarly, for an arbitrary b ∈ B, define T0, T1, . . . , by

T0 = {b} and Ti = φr(Λ(Ti−1)).

Again, we will find an index iT ≤ log4 n whose modified set has cardinality |T ′iT | ≥ 4n/5.

With both |S′iS | and |T ′iT | larger than n/2, there must be some a′ ∈ S′iS for which b′ = φr(a
′) ∈ T ′iT .

This establishes the existence of an alternating walk and hence (removing any cycles) an alternating
path of length at most 2(iS + iT ) + 1 ≤ 2 log4 n from a to b in ~Γr.

We will need the following lemma,

Lemma 5.7. Suppose that k1 + k2 + · · · + kM ≤ a logN , and X1, X2, . . . , XM are independent
random variables with Xi distributed as the kith minimum of N independent exponential rate one
random variables. If µ > 1 then

Pr

(
X1 + · · ·+XM ≥

µa logN

N − a logN

)
≤ Na(1+log µ−µ).

Proof. Let Y1, Y2, . . . , YN be independent exponentials with mean one and let Y(k) denote the kth
smallest of these variables, where we assume that k = O(logN). We therefore have Xi = Y(ki).
The density function fk(x) of Y(k) is

fk(x) =

(
N

k

)
k(1− e−x)k−1e−x(N−k+1)

and hence the ith moment of Y(k) is given by

E
[
Y i

(k)

]
=

∫ ∞
0

(
N

k

)
kxi(1− e−x)k−1e−x(N−k+1)dx

≤
∫ ∞

0

(
N

k

)
kxi+k−1e−x(N−k+1)dx

=

(
N

k

)
k

(i+ k − 1)!

(N − k + 1)i+k

≤
(

1 +O

(
k2

N

))
k(k + 1) · · · (i+ k − 1)

(N − k + 1)i
.
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Thus, if 0 ≤ t < N − k + 1,

E
[
etY(k)

]
≤
(

1 +O

(
k2

N

)) ∞∑
i=0

(
t

N − k + 1

)i(k + i− 1

i

)

=

(
1 +O

(
k2

N

))(
1− t

N − k + 1

)−k
.

If Z = X1 +X2 + · · ·+XM then if 0 ≤ t < N − a logN ,

E
[
etZ
]

=
M∏
i=1

E
[
etXi

]
≤
(

1− t

N − a logN

)−a logN

.

It follows by the Markov inequality that

Pr

(
Z ≥ µa logN

N − a logN

)
≤
(

1− t

N − a logN

)−a logN

exp

{
− tµa logN

N − a logN

}
.

We put t = (N − a logN)(1− 1/µ) to minimise the above expression, giving

Pr

(
Z ≥ µa logN

N − a logN

)
≤ (µe1−µ)a logN .

Lemma 5.8. W.h.p., for all φr, the weighted ab-diameter of ~Γr is at most c1
logn
np for some absolute

contant c1 > 0.

Proof. Let

Z1 = max

{
k∑
i=0

w(xi, yi)−
k−1∑
i=0

w(yi, xi+1)

}
,

where the maximum is over sequences x0, y0, x1, . . . , xk, yk where (xi, yi) is one of the 40 shortest
arcs leaving xi for i = 0, 1, . . . , k ≤ k0 = d3 log4 ne, and (yi, xi+1) is a backwards matching edge.

We compute an upper bound on the probability that Z1 is large. For any η > 0 we have

Pr

(
Z1 ≥ η

log n

np

)
≤ o(n−4) +

k0∑
k=0

((r + 1)n)k+1

(
1 + o(1)

n

)k+1

× pk−1×

∫ ∞
y=0

 1

(k − 1)!

(
y log n

np

)k−1 ∑
ρ0+ρ1+···+ρk≤40(k+1)

q(ρ0, ρ1, . . . , ρk; η + y)

 dy
where

q(ρ0, ρ1, . . . , ρk; η) = Pr

(
X0 +X1 + · · ·+Xk ≥ η

log n

np

)
,

X0, X1, . . . , Xk are independent and Xj is distributed as the ρjth minimum of r independent ex-

ponential random variables. (When k = 0 there is no term 1
(k−1)!

(
y logn
n

)k−1
).

Explanation: The o(n−4) term is for the probability that there is a vertex in Vr that has fewer
than (1 − o(1))np neighbors in Vr. We have at most ((r + 1)n)k+1 choices for the sequence
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x0, y0, x1, . . . , xk, yk. The term 1
(k−1)!

(
y logn
np

)k−1
dy bounds the probability that the sum of k in-

dependent exponentials, w(y0, x1) + · · · + w(yk−1, xk), is in logn
np [y, y + dy]. (The density function

for the sum of k independent exponentials is xk−1e−x
(k−1)! .) We integrate over y.

(1+o(1))p
np is the probability that (xi, yi) is and edge of G and is the ρith shortest edge leaving xi, and

these events are independent for 0 ≤ i ≤ k. The factor pk−1 is the probability that the B to A edges
of the path exist. The final summation bounds the probability that the associated edge lengths sum
to at least (η+y) logn

np .

It follows from Lemma 5.7 with a ≤ 3, N = (1 + o(1))np, µ = (η+ y)/a that if η is sufficiently large
then, for all y ≥ 0,

q(ρ1, . . . , ρk; η + y) ≤ (np)−(η+y) logn/(2 lognp) = n−(η+y)/2.

Since the number of choices for ρ0, ρ1, . . . , ρk is at most
(

41k+40
k+1

)
(the number of positive integral

solutions to a0 + a1 + . . .+ ak+1 ≤ 40(k + 1)) we have

Pr

(
Z1 ≥ η

log n

np

)
≤ o(n−4) + 2n2−η/2

k0∑
k=0

(log n)k−1

(k − 1)!

(
41k + 40

k + 1

)∫ ∞
y=0

yk−1n−y/2dy

≤ o(n−4) + 2n2−η/2
k0∑
k=0

(log n)k−1

(k − 1)!
241k+40

(
2

log n

)k−2 ∫ ∞
z=0

zk−1e−zdz

= o(n−4) + 239n2−η/2 log n

k0∑
k=0

242k

= o(n−4),

for η sufficiently large.

Lemma 5.8 shows that with probability 1 − o(n−4) in going from Mr to Mr+1 we can find an
augmenting path of weight at most c1 logn

np . This completes the proof of Lemma 5.5 and Theorem
5.1. (Note that to go from w.h.p. to expectation we use the fact that w.h.p. w(e) = O(log n) for
all e ∈ A×B,) 2

Notice also that in the proof of Lemmas 5.6 and 5.8 we can certainly make the failure probability
less than n−K for any constant K > 0.

5.3 Proof of Theorem 5.2

Just as the proof method for Kn,n in [90], [92] can be modified to apply to Gn,n,p, the proof for Kn

in [91] can be modified to apply to Gn,p.

5.3.1 Outline of the proof

This has many similarities with the proof of Theorem 5.1. The differences are subtle. The first is
to let M∗r be the minimum cost matching of size r after adding a special vertex vn+1. We do this,
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because there is no natural way to choose a set of vertices of size n/2 − o(n) that we can be sure
contains no edge of the minimum cost matching. It is again important (Lemma 5.9) to estimate
the probability that vn+1 ∈M∗r . (This will be our short-hand for vn+1 lies in an edge of M∗r .) The
approach is similar to that for Theorem 5.1, except that we now need to prove separate lower and
upper bounds for this probability P (n, r).

5.3.2 Proof details

Consider G = Gn,p, and denote the vertex set by V = {v1, v2, . . . , vn}. We will now use the notation
{a, b} for the edges of G. Add a special vertex vn+1 with E(λ)-cost edges to all vertices of V , and
let G∗ be the extended graph on V ∗ = V ∪ {vn+1}. Say that v1, . . . , vn are ordinary. Let M∗r be
the minimum cost r-matching (one of size r) in G∗, unique with probability one. (Note the change
in definition.) Define P (n, r) as the normalized probability that vn+1 ∈M∗r , i.e.

P (n, r) = lim
λ→0

1

λ
Pr(vn+1 ∈M∗r )

Let C(n, r) denote the cost of the cheapest r-assignment of G. To estimate C(n, r), we will again
need to estimate P (n, r), by the following lemma.

Lemma 5.9.

E [C(n, r)− C(n− 1, r − 1)] =
1

n
P (n, r)

Proof. Let X = C(n, r) and Y = C(n − 1, r − 1). Fix i ∈ [n] and let w be the cost of the edge
(vi, vn+1), and let I denote the indicator variable for the event that the cost of the cheapest r-
assignment that contains this edge is smaller than the cost of the cheapest r-assignment that does
not use vn+1. The rest of the proof is identical to the proof of Lemma 5.2, except that there are
now n choices for i as opposed to r in the previous lemma.

In this case, unlike the bipartite case, we are unable to directly find an asymptotic expression for
P (n, r), as we did in Lemma 5.3 and Corollary 5.1. Here we will have to turn to bounding P (n, r)
from below and above.

5.3.3 A lower bound for P (n, r)

We will consider an algorithm that finds a set As ⊆ V ∗ which contains the set Bs of vertices
participating in M∗r , s = |As| ≥ |Bs| = 2r. Call As the set of exposed vertices.

Initially let As = Bs = ∅ and r = s = 0. At stage s of the algorithm we condition on

As, Bs and the existence and cost of all edges within As.
In particular, we condition on r and the minimum r-matching M∗r .

Given a minimum matching M∗r , we decide how to build a proposed (r+1)-matching by comparing
the following numbers and picking the smallest.

(a) za equals the cost of the cheapest edge between a pair of unexposed vertices.
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(b) zb = min{c1(v) : v ∈ As \ Bs}, where c1(v) is the cost of the cheapest edge between v and a
vertex τ1(v) /∈ As.

(c) zc = min{c1(v) + c1(u) + δ(u, v) : u, v ∈ Bs} where δ(u, v) denotes the cost of the cheapest
alternating path from u to v with internal vertices in Bs, with the cost of edges in M∗r taken
as the negative of the actual value.

Let

zmin = min {za, zb, zc} .

If zmin = za then we reveal the edge {v, w} and add it to M∗r to form M∗r+1. Once v, w have been
determined, they are added to As and Bs, and we move to the next stage of the algorithm, updating
s← s+ 2, r ← r + 1.

If zmin = zb then let v ∈ As \ Bs be the vertex with the cheapest c1(v). We reveal w = τ1(v) and
add w to As and to Bs while adding v to Bs. Now M∗r+1 = M∗r ∪ {v, w}. We move to the next
stage of the algorithm, updating s← s+ 1, r ← r + 1.

If zmin = zc then reveal w1 = τ1(u), w2 = τ1(v). If w1 = w2, we say that we have a collision. In this
case, the vertex w1 is added to As (but not Bs), and we move to the next stage with s ← s + 1.
If there is no collision, we update M∗r by the augmenting path w1, u, . . . , v, w2 to form M∗r+1. We
add w1, w2 to As and Bs, and move on to the next stage with s← s+ 2 and r ← r + 1.

It follows that As \Bs consists of unmatched vertices that have been the subject of a collision.

It will be helpful to define As for all s, so in the cases where two vertices are added to As, we add
them sequentially with a coin toss to decide the order.

The possibility of a collision is the reason that not all vertices of As participate in M∗r . However,
the probability of a collision at vn+1 is O(λ2), and as λ → 0 this is negligible. In other words, as
λ→ 0,

Pr(vn+1 ∈M∗r ) = Pr(vn+1 ∈ B2r) = Pr(vn+1 ∈ A2r)−O(λ2)

and we will bound Pr(vn+1 ∈ A2r) from below.

Lemma 5.10. Conditioning on vn+1 /∈ As, As is a random s-subset of V .

Proof. Trivial for s = 0. Suppose As−1 is a random (s− 1)-subset of V . Define Ns(v) = {w /∈ As :
(v, w) ∈ E}. In stage s, if we condition on ds(v) = |Ns(v)|, then under this conditioning Ns(v)
is a random ds(v)-subset of V \ As. This is because the constructon of As does not require the
edges from As to V \As to be exposed. So, if As \As−1 = {w} where w is added due to being the
cheapest unexposed neighbor of an exposed v, then w is a random element of Ns(v) and hence a
random element of V \As.

If we are in case (a), i.e. M∗r+1 is formed by adding an edge between two ordinary unexposed
vertices v, w, then since we only condition on the size of the set {(v, w) : v, w /∈ As}, all pairs
v, w ∈ V \ As are equally likely, and after a coin toss this can be seen as adding two random
elements sequentially. We conclude that As is a random s-subset of V .

Recall that m = n/(ω1/2 log n).
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Corollary 5.2. W.h.p., for all 0 ≤ s ≤ n−m and all v ∈ V ,

|ds(v)− (n− s)p| ≤ ω−1/5(n− s)p.

Proof. This follows from the Chernoff bounds as in Lemma 5.1.

We now bound the probability that As \As−1 = {vn+1} from below. There are a few different ways
this may happen.

We now have to address some cost conditioning issues. Suppose that we have just completed an
iteration. First consider the edges between vertices not in As. For such an edge e, all we know is
w(e) ≥ η where η = zmin of the just completed iteration. So the conditional cost of such an edge
can be expressed as η+E(1) or η+E(λ) in the case where e is incident with vn+1. The exponentials
are independent. We only need to compare the exponential parts of each edge cost here to decide
the probability that an edge incident with vn+1 is chosen.

We can now consider case (a). Suppose that an edge {u, v} between unexposed vertices is added
to As−1. By Corollary 5.2, there are at most p

(
n−s+1

2

)
(1 + ω−1/5) ordinary such edges. There are

n − s edges between vn+1 and V \ As, each at rate λ. As λ → 0, the probability that one of the
endpoints of the edge chosen in case (a) is vn+1 is therefore at least

λ(n− s)
λ(n− s) + p

(
n−s+1

2

)
(1 + ω−1/5)

≥ 1

p

2λ

n− s
(1− ω−1/5) +O(λ2)

We toss a fair coin to decide which vertex in the edge {u, v} goes in As. Hence the probability that
As \As−1 = {vn+1} in case (a) is at least

1

p

λ

n− s
(1− ω−1/5) +O(λ2).

We may also have As \As−1 = {vn+1} if case (a) occurs at stage s− 2 and vn+1 loses the coin toss,
in which case the probability is at least

1

p

λ

n− s+ 1
(1− ω−1/5) +O(λ2).

Now consider case (b). Here only one vertex is added to As−1, the cheapest unexposed neighbor w
of some v ∈ As−1 \Bs−1. The cost conditioning here is the same as for case (a), i.e. that the cost
of an edge is η + E(1) or η + E(λ). By Corollary 5.2, this v has at most p(n − s + 1)(1 + ω−1/5)
ordinary unexposed neighbors, so the probability that w = vn+1 is at least

λ

p(n− s+ 1)(1 + ω−1/5) + λ
=

1

p

λ

n− s+ 1
(1− ω−1/5) +O(λ2).

Finally, consider case (c). To handle the cost conditioning, we condition on the values c1(v) for
v ∈ Bs. By well-known properties of independent exponential variables, the minimum is located
with probability proportional to the rates of the corresponding exponential variables. A collision at
vn+1 has probability O(λ2), so assume we are in the case of two distinct unexposed vertices w1, w2.
Suppose that w1 is revealed first. Exactly as in (b), the probability that w1 = vn+1 is at least

1

p

λ

n− s+ 1
(1− ω−1/5) +O(λ2).
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If w1 6= vn+1, the probability that w2 = vn+1 (i.e. As+1 \As = {vn+1}) is at least

1

p

λ

n− s
(1− ω−1/5) +O(λ2),

so by considering the possibility that vn+1 is the second vertex added from As−2, we again have
probability at least

1

p

λ

n− s+ 1
(1− ω−1/5) +O(λ2).

We conclude that no matter which case occurs, the probability is at least

1

p

λ

n− s+ 1
(1− ω−1/5) +O(λ2).

So

P (n, r) ≥ lim
λ→0

1

λ

2r∑
s=1

Pr(As \As−1 = {vn+1}) ≥
1− ω−1/5

p

2r∑
s=1

1

n− s+ 1
. (5.16)

Write

L(n, r) =
2r∑
s=1

1

n− s+ 1
.

5.3.4 An upper bound for P (n, r)

We now alter the algorithm above in such a way that A2r = B2r. We do not consider As for odd s
here. At a stage with s = 2r, we condition on

As, and the appearance and cost of all edges within As.

In particular, we condition on r and the minimum r-matching M∗r .

A set Cs ⊆ As, where each v ∈ Cs has been involved in a collision.

The cost c1(v), v ∈ Cs of the cheapest edge from v to a vertex not in As.

This changes how we calculate a candidate for M∗r+1. We now take the minimum of

(a) za equals the cost of the cheapest edge between unexposed vertices.

(b) zb = min{c1(u) + c1(v) + δ(u, v) : u, v ∈ As, |{u, v} ∩ Cs| ≤ 1}, where c1 and δ are as defined
in Section 5.3.3.

(c) zc = min{c1(u) + c2(v) + δ(u, v) : u, v ∈ Cs, τ1(u) = τ1(v)}, where τ1 is defined in Section
5.3.3 and c2(v) is the cost of the second cheapest edge between v and a vertex τ2(v) /∈ As.

Let
zmin = min {za, zb, zc} .

If zmin = za then we reveal the edge {v, w} and add it to M∗r to form M∗r+1. Once v, w have
been determined, they are added to As and we move to the next stage of the algorithm, updating
s← s+ 2.
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If zmin = zb then reveal w1 = τ1(u), w2 = τ1(v). If w1 = w2 then we add u, v to Cs and go to
the next stage of the algorithm without changing s. (The probability that τ1(u) = τ1(v) = vn+1 is
O(λ2), and we can safely ignore this as λ→ 0). If at some later stage w1 is added to As and u say
is still in Cs then we remove u from Cs. If w1 6= w2 then we update M∗r by the augmenting path
w1, u, . . . , v, w2 to form M∗r+1. We add w1, w2 to As, and move on to the next stage with s← s+ 2.

If zmin = zc then we update M∗r by the augmenting path w1 = τ1(u), u, . . . , v, w2 = τ2(v) to form
M∗r+1. We add w1, w2 to As, and move on to the next stage with s← s+ 2.

Eventually we will construct M∗r+1 since case (b) with τ1(u) = τ1(v) can happen at most s times
before Cs = As.

The cost conditioning is the same as we had for computing the lower bound in Section 5.3.3, except
for the need to deal with c2(v), v ∈ Cs. For this we condition on c2(v) and argue that the probability
τ2(v) = x is proportional to the exponential rate for the edge (v, x). At this point we know that
τ1(v) 6= vn+1, since we are assuming λ is so small that this possibility can be ignored. So, in this
case, we can only add vn+1 as τ2(v) for some v ∈ Cs.

To analyze this algorithm we again need to show that A2r is a uniformly random subset of V .

Lemma 5.11. Conditioning on vn+1 /∈ A2r, A2r is a random 2r-subset of V .

Proof. Let D denote the n×n matrix of edge costs, where D(i, j) = w(vi, vj) and D(i, j) =∞ if edge
(vi, vj) does not exist in G. For a permutation π of V let Dπ be defined by Dπ(i, j) = D(π(i), π(j)).
Let X,Y be two distinct 2r-subsets of V and let π be any permutation of V that takes X into Y .
Then we have

Pr(A2r(D) = X) = Pr(A2r(Dπ) = π(X)) = Pr(A2r(Dπ) = Y ) = Pr(A2r(D) = Y ),

where the last equality follows from the fact that D and Dπ have the same distribution. This shows
that A2r is a random 2r-subset of V .

Let d2r(v) = |{w /∈ A2r : (v, w) ∈ E}|.

Corollary 5.3. W.h.p., for all 0 ≤ r ≤ (n−m)/2 and all v ∈ V ,

|d2r(v)− p(n− 2r)| ≤ ω−1/5p(n− 2r).

Proof. The proof is again via Chernoff bounds, see Lemma 5.1.

We bound the probability that vn+1 ∈ A2r \A2r−2 from above. Suppose we are at a stage where a
collisionless candidate for M∗r has been found.

In case (a), as in the previous section the probability that vn+1 is one of the two unexposed vertices
is at most

λ(n− 2r + 2)

λ(n− 2r + 2) + p
(
n−2r+2

2

)
(1− ω−1/5)

=
1

p

2λ

n− 2r + 1
(1 + ω−1/5) +O(λ2)

Now suppose we are in case (b) with u, v /∈ C2r−2. If no collision occurs, the probability that one
of τ1(u), τ1(v) is vn+1 is at most

λ

λ+ ds(u)
+

λ

λ+ ds(v)− 1
≤ 1

p

2λ

n− 2r + 1
(1 + ω−1/5) +O(λ2)
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Finally, if we find M∗r+1 by alternating paths where one exposed vertex uses its second-cheapest edge
to an unexposed vertex, the probability of that vertex being vn+1 is even smaller at λ/(n− 2r+ 1).
So,

P (n, r) = lim
λ→0

r∑
s=1

Pr(vn+1 ∈ A2s \A2s−2) ≤ 2(1 + ω−1/5)

p

r∑
s=1

1

n− 2s+ 1

Write

U(n, r) =
r∑
s=1

2

n− 2s+ 1
.

5.3.5 Calculating E [C(Gn,p)]

From Lemma 5.9 and (5.16) we have

E [C(n, (n−m)/2)]

=

(n−m)/2∑
r=1

1

n− r + 1
P (n− r + 1, (n−m)/2− r + 1)

≥ 1 + o(1)

p

(n−m)/2∑
r=1

1

n− r + 1
L(n− r + 1, (n−m)/2− r + 1)

=
1 + o(1)

p

(n−m)/2∑
r=1

1

n− r + 1

n−m−2r+2∑
s=1

1

(n− r + 1)− s+ 1

=
1 + o(1)

p

(n−m)/2∑
r=1

1

n− r + 1

(
log

(
n− r + 1

m+ r

)
+

1

2(n− r)
− 1

2(m+ r)
+O(m−2)

)
, (5.17)

by (5.8).

The correction terms are easily taken care of. First we have

∣∣∣∣∣∣
(n−m)/2∑
r=1

1

n− r + 1

(
1

2(n− r)
− 1

2(m+ r)
+O(m−2)

)∣∣∣∣∣∣
=O

 1

m

(n−m)/2∑
r=1

1

n− r + 1


=O

(
n−m
mn

)
=o(1).

Now we want to replace the (m+ r) term in the logarithm in the RHS of (5.17) by r. For this we
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let m1 = n/(ω1/4 log n) = mω1/4. Then

∣∣∣∣∣∣
(n−m)/2∑
r=1

1

n− r + 1
log

(
r

m+ r

)∣∣∣∣∣∣
=

m1−1∑
r=1

1

n− r + 1
log
(

1 +
m

r

)
+

(n−m)/2∑
r=m1

1

n− r + 1
log
(

1 +
m

r

)

≤ logm

m1−1∑
r=1

1

n− r + 1
+ log

(
1 +

m

m1

) (n−m)/2∑
r=m1

1

n− r + 1

≤ log n
m1

n−m1
+

m

m1

(n−m)/2

n/2

=o(1).

So, using (5.17) we have

p×E [C(n, (n−m)/2)] =o(1) +

(n−m)/2∑
r=1

1

n− r + 1
log

(
n− r
r

)

=o(1) +

∫ 1/2

0

1

1− α
log

(
1− α
α

)
dα.

Substituting y = log(1/α− 1) we have

∫ 1/2

0

1

1− α
log

(
1− α
α

)
dα =

∫ ∞
0

y

ey + 1
dy

=

∫ ∞
0

ye−y

1 + e−y
dy

=
∞∑
j=0

∫ ∞
0

ye−y(−e−y)jdy

=
∞∑
j=1

(−1)j+1 1

j2

=
1

2

∞∑
k=1

1

k2

=
π2

12
.

This proves a lower bound for E [C(n, (n−m)/2)]. It also shows that

(n−m)/2∑
r=1

1

n− r + 1
L(n− r + 1, (n−m)/2− r + 1) = (1 + o(1))

π2

12
. (5.18)
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For an upper bound, note that for r ≤ (n−m)/2,

U(n, r)− L(n, r) =
r∑
s=1

(
1

n− 2s+ 1
− 1

n− 2s+ 2

)

=
r∑
s=1

1

(n− 2s+ 1)(n− 2s+ 2)

= O

(
r

(n− 2r)2

)
So,

E [C(n, (n−m)/2)]

≤ 1 + o(1)

p

(n−m)/2∑
r=1

1

n− r + 1
U(n− r + 1, (n−m)/2− r + 1)

=
1 + o(1)

p

(n−m)/2∑
r=1

1

n− r + 1

(
L(n− r + 1, (n−m)/2− r + 1) +O

(
r

(n− 2r)2

))

=
1 + o(1)

p

o(1) +

(n−m)/2∑
r=1

1

n− r + 1
(L(n− r + 1, (n−m)/2− r + 1))

 (5.19)

=
π2

12p
(1 + o(1)). (5.20)

To get from (5.19) to (5.20) we use (5.18).

We show that for n even, E [C(n, n/2)− C(n, (n−m)/2)] = o(1/p) to conclude that

E [C(Gn,p)] = E [C(n, n/2)− C(n, (n−m)/2)] + E [C(n, (n−m)/2)] =
π2

12p
(1 + o(1)).

As above, this will follow from the following lemma.

Lemma 5.12. Suppose n is even. If (n −m)/2 ≤ r ≤ n/2 then 0 ≤ E [C(n, r + 1)− C(n, r)] =

O
(

logn
np

)
.

5.3.6 Proof of Lemma 5.12

This section will replace Section 5.2.3. Let M = {v, φ(v), v ∈ [n]} , φ2
r(v) = v for all v ∈ [n] be

an arbitrary perfect matching of Gn,p. We let ~M = {(u, v) : v = φr(u)} consist of two oppositely
oriented copies of each edge of M . We then randomly orient the edges of Gn,p that are not in M

and then add ~M to obtain the digraph ~G = ~Gn,p. In the case of Gn,n,p we only needed to orient
e ∈M from B to A. Here we need an oriented copy of e ∈M in both directions because if e, f ∈M ,
we cannot guarantee that an alternating path will traverse e and f consistently with a single given
orientation. Because np = ω log2 n we have that w.h.p. the minimum in- or out-degree in ~Gn,p is
at least ω log2(n)/3. Let D be the event that all in- and out-degrees are at least this large. Let the
alternating diameter of ~G be the maximum over pairs of vertices u 6= v of the minimum length of
an odd length alternating path w.r.t. M between u and v where (i) the edges are oriented along the



5.3. PROOF OF THEOREM 5.2 91

path in the direction u to v, (ii) the first and last edges are not in M . Given this orientation, we
define ~Γr to be the subdigraph of ~G consisting of the r cheapest non- ~M out-edges from each vertex
together with ~M . Once we can show that the alternating diameter of ~Γ20 is at most d3 log3 ne, the
proof follows the proof of Lemma 5.8 more or less exactly.

Lemma 5.13. W.h.p., the alternating diameter of ~Γ20 is at most k0 = d3 log3 ne.

Proof. We first consider the relatively simple case where np ≥ n1/3 log n. Let N+(u) be the set of
out-neighbors of u in ~G and let N−(v) be the set of in-neighbors of v in ~G. If there is an edge of ~M
from N+(u) to N−(v) then this creates an alternating path of length three. Otherwise, let N++(u)
be the other endpoints of the matching edges incident with N+(u) and define N−−(v) analogously.
Note that now we have N++(u) ∩N−−(v) = ∅ and given D, the conditional probability that there
is no edge from N++(u) to N−−(v) in ~G is at most (1 + o(1))(1− p)(np/3)2 ≤ e−(logn)3/10 = o(n−2).
Thus in this case there will w.h.p. be an alternating path of length five between any pair of vertices
u, v ∈ V .

Now assume that np < n1/3 log n. For S ⊆ V , N+
20(S) =

{
w /∈ S : ∃v ∈ S, (v, w) ∈ E(~Γ20

}
) is the

set of out-neighbors of S in ~Γ20 and N−20(S) is similarly defined.

Imitating Lemma 5.6, we prove an expansion property for ~Γ20: The o(1) term in the first inequality
accounts for conditioning on the event D.

Pr(∃S : |S| ≤ n2/3, |N+
20(S)| < 10|S|) ≤ o(1) +

n2/3∑
s=1

(
n

s

)(
n− s
10s

)((11s
20

)(
n
20

) )s

≤
n2/3∑
s=1

(ne
s

)s ( ne
10s

)10s
(

11s

n

)20s

=
n2/3∑
s=1

(
e111120s9

1010n9

)s
= o(1). (5.21)

Fix an arbitrary pair of vertices a, b. Define Si, i = 0, 1, . . . to be the set of vertices v such that
there exists an alternating path of length 2i in ~Γ20 from a to v. We let S0 = {a} and given Si we
let S′i = N+(Si) \ {b} and S′′i = {w 6= b : ∃ {v, w} ∈M : v ∈ S′i}. We now argue that (5.21) implies
that w.h.p. |S′′i | ≥ 3|Si|, so long as |Si| = o(n7/12). Indeed, It follows from (5.21) that Si has
at least 9|Si| out-neighbors T via a non-M edge. Now consider the edges of M incident with T .
At most |Si| of these have one endpoint in Si and one endpoint in T . At most |T |/2 have both
endpoints in T . Thus at least |T | − |T |/2− |Si| > 3|Si| of these edges have one endpoint in T and
one endpoint not in Si ∪ T .

We can therefore take Si+1 to be a subset of S′′i of size 3|Si|. So w.h.p. there exists an ia ≤ log3 n
such that |Sia | ∈ [n13/24, 3n13/24].

Repeat the procedure with vertex b, letting Tj , j = 0, 1, . . . be the set of vertices v such that there

exists an alternating path of length 2i in ~Γ20 from v to b. Then let T ′j+1 = N−(Tj) etc. By the

same argument, there exists an jb ≤ log3 n such that Tjb is of size in [n13/24, 3n13/24]. Finally, the

probability that there is no Sia → Tjb edge is at most (1 − p)n13/12
= o(n−2). This completes the

proof of Lemma 5.13.
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The remainder of the proof of Lemma 5.12 is now exactly as in Section 5.2.3. This concludes the
proof of Theorem 5.2.

5.4 Proof of Theorem 5.3

The proof of Lemma 5.8 allows us to claim that for any constant K > 0, with probability 1−O(n−K)
the maximum length of an edge in the minimum cost perfect matching of G = Gn,n,p or G = Gn,p
is at most ξ = c2

logn
np for some constant c2 = c2(K) > 0. We now closely follow the ideas in

Talagrand’s proof [86] of concentration for the assignment problem. We let ŵ(e) = min {w(e), ξ}
and let Ĉ(G) be the assignment cost using ŵ in place of w. We observe that

Pr(Ĉ(G) 6= C(G)) = O(n−K) (5.22)

and so it is enough to prove concentration of Ĉ(G).

For this we use the following result of Talagrand [86]: consider a family F of N -tuples α = (αi)i≤N
of non-negative real numbers. Let

Z = min
α∈F

∑
i≤N

αiXi

where X1, X2, . . . , XN are an independent sequence of random variables taking values in [0, 1].

Let σ = maxα∈F ||α||2. Then if M is the median of Z and u > 0, we have

Pr(|Z −M | ≥ u) ≤ 4 exp

{
− u2

4σ2

}
. (5.23)

We apply (5.23) with N = n2 and Xe = ŵ(e)/ξ. For F we take the n! {0, 1} vectors corresponding
to perfect matchings and scale them by ξ. In this way,

∑
e αeXe will be the weight of a perfect

matching. In this case we have σ2 ≤ nξ2. Applying (5.23) we obtain

Pr

(
|Ĉ(G)− M̂ | ≥ ε

p

)
≤ 4 exp

{
− ε2

4p2
· 1

nξ2

}
= exp

{
− ε2n

(c2 log n)2

}
,

where M̂ is the median of Ĉ(G).

It then follows from (5.22) that

Pr

(
|C(G)− M̂ | ≥ ε

p

)
= O(n−K). (5.24)

Now
µ(G) ≤ M̂ +

ε

p
+O(n−(K−2)) (5.25)

after using (5.24) and E
[∑

vi,vj∈E(G)w(vi, vj)
]
≤ n2.

In addition

µ(G) ≥
(
M̂ − ε

p

)(
1−O(n−K)

)
. (5.26)

Theorem 5.3 follows easily from (5.22), (5.25) and (5.26).
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5.5 Final remarks

We have generalised the result of [4] to the random bipartite graph Gn,n,p and the result of [91] to
the random graph Gn,p. It would be of some interest to extend the result in some way to random
regular graphs. In the absence of proving Conjecture 5.1 we could maybe extend the results of [4],
[91] to some special class of special graphs e.g. to the hypercube.





Chapter 6

Minimum cost of two spanning trees

This chapter corresponds to [39].

Abstract

Assume that the edges of the complete graph Kn are given independent
uniform [0, 1] edges weights. We consider the expected minimum total
weight µk of k ≥ 2 edge disjoint spanning trees. When k is large we show
that µk ≈ k2. Most of the paper is concerned with the case k = 2. We show
that µ2 tends to an explicitly defined constant and that µ2 ≈ 4.1704288 . . ..

6.1 Introduction

This paper can be considered to be a contribution to the following general problem. We are given
a combinatorial optimization problem where the weights of variables are random. What can be
said about the random variable equal to the minimum objective value in this model. The most
studied examples of this problem are those of (i) Minimum Spanning Trees e.g. Frieze [42], (ii)
Shortest Paths e.g. Janson [59], (iii) Minimum Cost Assignment e.g. Aldous [3], [4], Linusson
and Wästlund [68] and Nair, Prabhakar and Sharma [74], Wästlund [92] and (iv) the Travelling
Salesperson Problem e.g. Karp [61], Frieze [44] and Wästlund [93].

The minimum spanning tree problem is a special case of the problem of finding a minimum weight
basis in an element weighted matroid. Extending the result of [42] has proved to be difficult for
other matroids. We are aware of a general result due to Kordecki and Lyczkowska-Hanćkowiak
[64] that expresses the expected minimum value of an integral using the Tutte Polynomial. The
formulae obtained, although exact, are somewhat difficult to penetrate. In this paper we consider
the union of k cycle matroids. We have a fairly simple analysis for k → ∞ and a rather difficult
analysis for k = 2.

Given a connected simple graphG = (V,E) with edge lengths x = (xe : e ∈ E) and a positive integer
k, let mstk(G,x) denote the minimum length of k edge disjoint spanning trees of G. (mstk(G) =∞
if such trees do not exist.) When X = (Xe : e ∈ E) is a family of independent random variables, each
uniformly distributed on the interval [0, 1], denote the expected value E [mstk(G,X)] by mstk(G).

As previously mentioned, the case k = 1 has been the subject of some attention. When G is the

95
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complete graph Kn, Frieze [42] proved that

lim
n→∞

mst1(Kn) = ζ(3) =

∞∑
k=1

1

k3
.

Generalisations and refinements of this result were subsequently given in Steele [83], Frieze and
McDiarmid [48], Janson [58], Penrose [79], Beveridge, Frieze and McDiarmid [9], Frieze, Ruszinko
and Thoma [51] and most recently in Cooper, Frieze, Ince, Janson and Spencer [19].

In this paper we discuss the case k ≥ 2 when G = Kn and define

µ∗k = lim inf
n→∞

mstk(Kn) and µ∗∗k = lim sup
n→∞

mstk(Kn).

Conjecture: µ∗k = µ∗∗k i.e. limn→∞mstk(Kn) exists.

Theorem 6.1.

(a)

lim
k→∞

µ∗k
k2

= lim
k→∞

µ∗∗k
k2

= 1.

(b) With fk and c′2 ≈ 3.59 and λ′2 ≈ 2.688 as defined in (6.1), (6.5), (6.9),

µ2

= 2c′2 −
(c′2)2

4
+

∫ ∞
λ=λ′2

(
2− λeλ

2f2(λ)
+
λf2(λ)

2eλ
− 2

f3(λ)

eλ

)(
eλ

f2(λ)
+

λeλ

f2(λ)
− λeλf1(λ)

f2(λ)2

)
dλ

= 4.17042881 . . .

There appears to be no clear connetion between µ2 and the ζ function.

Note also, in connection with Theorem 6.1(a), that if n is even and k = (n − 1)/2 and we take a

partition of the edge set of Kn into spanning trees then w.h.p. µk ≈ n2

4 ≈ k
2.

Before proceeding to the proof of Theorems 6.1 we note some properties of the κ-core of a random
graph.

6.2 The κ-core

The functions

fi(λ) =

∞∑
j=i

λj

j!
, i = 0, 1, 2, . . . , (6.1)

figure prominently in our calculations. We let

gi(λ) =
λf2−i(λ)

f3−i(λ)
, i = 0, 1, 2.

Properties of these functions are derived in Section 6.8.
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The κ-core Cκ(G) of a graph G is the largest set of vertices that induces a graph Hκ such that the
minimum degree δ(Hκ) ≥ κ. Pittel, Spencer and Wormald [80] proved that there exist constants,
cκ, κ ≥ 3 such that if p = c/n and c < cκ then w.h.p. Gn,p has no κ-core and that if c > cκ then
w.h.p. Gn,p has a κ-core of linear size. We list some facts about these cores that we will need in
what follows.

Given λ let Po(λ) be the Poisson random variable with mean λ and let

πr(λ) = Pr {Po(λ) ≥ r} = e−λfr(λ).

Then

cκ = inf

(
λ

πκ−1(λ)
: λ > 0

)
.

When c > cκ define λκ(c) by

λκ(c) is the larger of the two roots to the equation c =
λ

πκ−1(λ)
=

λeλ

fκ−1(λ)
. (6.2)

Then whp1 with λ = λκ(c) we have that

Cκ(Gn,p) has ≈ πκ(λ)n =
fκ(λ)

eλ
n vertices and ≈ λ2

2c
n =

λfκ−1(λ)

2eλ
n edges. (6.3)

Furthermore, when κ is large,

cκ = κ+ (κ log κ)1/2 +O(log κ). (6.4)

 Luczak [69] proved that Cκ is κ-connected whp when κ ≥ 3.

Next let c′κ be the threshold for the (κ + 1)-core having average degree 2κ. Here, see (6.2) and
(6.3),

c′κ =
λeλ

fκ(λ)
where

λfk(λ)

fk+1(λ)
= 2κ. (6.5)

We have c2 ≈ 3.35 and c′2 ≈ 3.59.

6.3 Proof of Theorem 6.1(a): Large k.

We will prove Part (a) of Theorem 6.1 in this section. It is relatively straightforward. Part (b) is
more involved and occupies Section 6.4.

In this section we assume that k = O(1) and large. Let Zk denote the sum of the k(n− 1) shortest
edge lengths in Kn. We have that for n� k,

mstk(Kn) ≥ E [Zk] =

k(n−1)∑
`=1

`(
n
2

)
+ 1

=
k(n− 1)(k(n− 1) + 1)

n(n− 1) + 2
∈ [k2(1− n−1), k2]. (6.6)

This gives us the lower bound in Theorem 6.1(a).

1For the purposes of this paper, a sequence of events En will be said to occur with high probability whp if
Pr {En} = 1− o(n−1)
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For the upper bound let k0 = k+k2/3 and consider the random graph H generated by the k0(n−1)
cheapest edges of Kn. The expected total edge weight EH of H is at most k2

0, see (6.6).

H is distributed as Gn,k0n. This is sufficiently close in distribution to Gn,p, p = 2k0/n that we can
apply the results of Section 6.2 without further comment. It follows from (6.4) that c2k < 2k0.
Putting λ0 = λ2k(2k0) we see from (6.3) that w.h.p. H has a 2k-core C2k with ∼ nPr {Po(λ0) ≥ 2k}
vertices. It follows from (6.2) that λ0 = 2k0π2k−1(2k0) ≤ 2k0 and since π2k−1(λ) increases with λ

and π2k−1(2k + k2/3) = Pr
{

Po(2k + k2/3) ≥ 2k − 1
}
≥ 1 − e−c1k1/3

for some constant c1 > 0 we

see that 2k+k2/3

π2k−1(2k+k2/3)
≤ 2k0 and so λ0 ≥ 2k + k2/3.

A theorem of Nash-Williams [75] states that a 2k-edge connected graph contains k edge-disjoint
spanning trees. Applying the result of  Luczak [69] we see that whp C2k contains k edge disjoint
spanning trees T1, T2, . . . , Tk. It remains to argue that we can cheaply augment these trees to
spanning trees of Kn. Since |C2k| ∼ nPr {Po(λ) ≥ 2k} whp, we see that whp D2k = [n] \ C2k

satisfies |D2k| ≤ 2ne−c1k
1/3

.

For each v ∈ D2k we let Sv be the k shortest edges from v to C2k. We can then add v as a leaf to
each of the trees T1, T2, . . . , Tk by using one of these edges. What is the total weight of the edges
Yv, v ∈ D2k? We can bound this probabilistically by using the following lemma from Frieze and
Grimmett [46]:

Lemma 6.1. Suppose that k1 + k2 + · · · + kM ≤ a, and Y1, Y2, . . . , YM are independent random
variables with Yi distributed as the kith minimum of N independent uniform [0,1] random variables.
If µ > 1 then

Pr

{
Y1 + · · ·+ YM ≥

µa

N + 1

}
≤ ea(1+lnµ−µ).

Let ε = 2e−c1k
1/3

and µ = 10 ln 1/ε and let M = kεn, N = (1 − ε)n, a = k(k+1)
2 εn. Let B be the

event that there exists a set S of size εn such that the sum of the k shortest edges from each v ∈ S
to [n] \ S exceeds µa/(N + 1). Applying Lemma 6.1 we see that

Pr {B} ≤
(
n

εn

)
exp {k(k + 1)εn(1 + lnµ− µ)/2} ≤

(e
ε
· e−µk2/3

)εn
= o(n−1).

It follows that

mstk(Kn) ≤ o(1) + k2
0 +

µa

N + 1
≤ k2 + 3k5/3.

The o(1) term is a bound kn× o(n−1), to account for the cases that occur with probability o(n−1).

Combining this with (6.6) we see that

k2 ≤ µk ≤ k2 + 3k5/3

which proves Theorem 6.1(a).

6.4 Proof of Theorem 6.1(b): k = 2.

For this case we use the fact that for any graph G = (V,E), the collection of subsets I ⊆ E that
can be partitioned into two edge disjoint forests form the independent sets in a matroid. This being
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the matroid which is the union of two copies of the cycle matroid of G. See for example Oxley [76]
or Welsh [94]. Let r2 denote the rank function of this matroid, when G = Kn. If G is a sub-graph
of Kn then r2(G) is the rank of its edge-set.

We will follow the proof method in [6], [9] and [58]. Let F denote the random set of edges in the
minimum weight pair of edge disjoint spanning trees. For any 0 ≤ p ≤ 1 let Gp denote the graph
induced by the edges e of Kn which satisfy Xe ≤ p. Note that Gp is distributed as Gn,p.

For any 0 ≤ p ≤ 1,
∑

e∈F 1(Xe>p) is the number of edges of F which are not in Gp, which equals
2n− 2− r2(Gp). So,

mst2(Kn,X) =
∑
e∈F

Xe =
∑
e∈F

∫ 1

p=0
1(Xe>p)dp =

∫ 1

p=0

∑
e∈F

1(Xe>p)dp.

Hence, on taking expectations we obtain

mst2(Kn) =

∫ 1

p=0
(2n− 2−E [r2(Gp)])dp. (6.7)

It remains to estimate E [r2(Gp)]. The main contribution to the integral in (6.7) comes from p = c/n
where c is constant. Estimating E [r2(Gp)] is easy enough for sufficiently small c, but it becomes
more difficult for c > c′2, see (6.5). When p = c

n for c > ck we will need to be able to estimate
E [rk(Ck+1(Gn,p))]. We give partial results for k ≥ 3 and complete results for k = 2. We begin
with a simple observation.

Lemma 6.2. Let Ck+1 = Ck+1(G) denote the graph induced by the (k+ 1)-core of graph G (it may
be an empty sub-graph). Let Ek(G) denote the set of edges that are not contained in Ck+1. Then

rk(G) = |Ek(G)|+ rk(Ck+1).

Proof. By induction on |V (G)|. Trivial if |V (G)| = 1 and so assume that |V (G)| > 1. If δ(G) ≥ k+1
then G = Ck+1 and there is nothing to prove. Otherwise, G contains a vertex v of degree dG(v) ≤ k.
Now G− v has the same (k+ 1)-core as G. If F1, ..., Fk are edge disjoint forests such that rk(G) =
|F1|+ ...+ |Fk| then by removing v we see, inductively, that |Ek(G− v)|+ rk(Ck+1) = rk(G− v) ≥
|F1| + ... + |Fk| − dG(v) = rk(G) − dG(v). On the other hand G − v contains k forests F ′1, ..., F

′
k

such that rk(G− v) = |F ′1|+ ...+ |F ′k| = |Ek(G− v)|+ rk(Ck+1). We can then add v as a vertex of
degree one to dG(v) of the forests F ′1, ..., F

′
k, implying that rk(G) ≥ dG(v) + |Ek(G−v)|+ rk(Ck+1).

Thus, rk(G) = dG(v) + |Ek(G− v)|+ rk(Ck+1) = |Ek(G)|+ rk(Ck+1).

Lemma 6.3. Let k ≥ 2. If ck < c < c′k, then w.h.p.

|E(Gn,c/n)| − o(n) ≤ rk(Gn,c/n) = |E(Gn,c/n)|.

Proof. We will show that when c < c′k we can find k disjoint forests F1, F2, . . . , Fk contained in
Ck+1 such that

|E(Ck+1)| −
k∑
i=1

|E(Fi)| = o(n). (6.8)
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This implies that rk(Ck+1) ≥ |E(Ck+1)| − o(n) and because rk(Ck+1) ≤ |E(Ck+1)| the lemma
follows from this and Lemma 6.2.

Gao, Pérez-Giménez and Sato [53] show that when c < c′k, no subgraph of Gn,p has average degree
more than 2k, w.h.p. Fix ε > 0. Cain, Sanders and Wormald [16] proved that if the average degree
of the (k+1)-core is at most 2k−ε, then w.h.p. the edges of Gn,p can be oriented so that no vertex
has indegree more than k. It is clear from (6.3) that the edge density of the (k + 1)-core increases
smoothly w.h.p. and so we can apply the result of [16] for some value of ε.

It then follows that the edges of Gn,p can be partitioned into k sets Φ1,Φ2, . . . ,Φk where each
subgraph Hi = ([n],Φi) can be oriented so that each vertex has indegree at most one. We call
such a graph a Partial Functional Digraph or PFD. Each component of a PFD is either a tree or
contains exactly one cycle. We obtain F1, F2, . . . , Fk by removing one edge from each such cycle.
We must show that w.h.p. we remove o(n) vertices in total. Observe that if Z denotes the number
of edges of Gn,p that are on cycles of length at most ω0 = 1

3 logc n then

E [Z] ≤
ω0∑
`=3

`!

(
n

`

)
`p` ≤ ω0c

ω0 ≤ n1/2.

The Markov inequality implies that Z ≤ n2/3 w.h.p. The number of edges removed from the larger
cycles to create F1, F2, . . . , Fk can be bounded by kn/ω0 = o(n) and this proves (6.8) and the
lemma.

Lemma 6.4. If c > c′2, then w.h.p. the 3-core of Gn,c/n contains two edge-disjoint forests of total
size 2|V (C3)| − o(n). In particular, r2(C3(Gn,c/n)) = 2|V (C3)| − o(n).

The proof of Lemma 6.4 is postponed to Section 6.6. We can now prove Theorem 6.1 (b).

6.5 Proof of Theorem 6.1 (b).

As noted in (6.7),

mst2(Kn) =

∫ 1

p=0
(2n− 2−E [r2(Gp)])dp.

After changing variables to x = pn,

mst2(Kn) =

∫ n

x=0
(2− 2n−1 − n−1E

[
r2(Gx/n)

]
)dx

By Lemmas 6.2 and 6.3, for x < c′2 we have E
[
r2(Gx/n)

]
= |E(Gx/n)| − o(n) = xn/2 − o(n).

By Lemma 6.4, for x > c′2 we have E
[
r2(C3(Gx/n))

]
= 2|V (C3)| − o(n). So by Lemma 6.2

r2(Gx/n) = |E(Gx/n)| − |E(C3)|+ 2|V (C3)| − o(n), and

µ2 =

∫ c′2

x=0

(
2− x

2

)
dx+

∫ n

x=c′2

(
2− 1

n

(xn
2
− |E(C3(Gx/n)) + 2|V (C3(Gx/n))|

))
dx+ o(1)

We have from (6.3) that for p = x/n we have

1

n
|V (C3)| =

f3(λ)

eλ
+ o(1)

1

n
|E(C3)| =

λf2(λ)

2eλ
+ o(1)
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where λ is the largest solution to λeλ/f2(λ) = x. So

µ2 = lim
n→∞

mst2(Kn) =

∫ c′2

x=0

(
2− x

2

)
dx+

∫ ∞
x=c′2

(
2− x

2
+
λf2(λ)

2eλ
− 2

f3(λ)

eλ

)
dx

To calculate this, note that
dx

dλ
=

eλ

f2(λ)
+

λeλ

f2(λ)
− λeλf1(λ)

f2(λ)2

so ∫ ∞
x=c′2

(
2− x

2
+
λf2(λ)

2eλ
− 2

f3(λ)

eλ

)
dx

=

∫ ∞
λ′2

(
2− λeλ

2f2(λ)
+
λf2(λ)

2eλ
− 2

f3(λ)

eλ

)(
eλ

f2(λ)
+

λeλ

f2(λ)
− λeλf1(λ)

f2(λ)2

)
dλ

where, see (6.5),
λ′2 = g−1

0 (4) ≈ 2.688 (6.9)

is the unique solution to λf2(λ)/f3(λ) = 4, see Section 6.8. Attempts to transform this into an
explicit integral with explicit bounds have been unsuccesful. Numerical calculations give

µ2 ≈ 4.1704288 . . .

The Inverse Symbolic Calculator (https://isc.carma.newcastle.edu.au/) has yielded no symbolic
representation of this number. An apparent connection to the ζ function lies in its representation
as

ζ(x) =
1

Γ(x)

∫ ∞
λ=0

λx−1

eλ − 1
dλ

which is somewhat similar to terms of the form∫ ∞
λ=λ′2

poly(λ)

eλ − 1− λ
dλ

appearing in µ2, but no real connection has been found.

6.6 Proof of Lemma 6.4.

6.6.1 More on the 3-core.

Suppose now that c > c′3 and that the 3-core C3 of Gn,p has N = Ω(n) vertices and M edges. It will
be distributed as a random graph uniformly chosen from the set of graphs with vertex set [N ] and
M edges and minimum degree at least three. This is an easy well known observation and follows
from the fact that each such graph H can be extended in the same number of ways to a graph G
with vertex set [n] and m edges and such that H is the 3-core of G. We will for convenience now
assume that V (C3) = [N ].

The degree sequence d(v), v ∈ [N ] can be generated as follows: We independently choose for each
v ∈ V (C3) a truncated Poisson random variable with parameter λ satisfying g0(λ) = 2M/N ,
conditioned on d(v) ≥ 3. So for v ∈ [N ],

Pr {d(v) = k} =
λk

k!f3(λ)
, k = 3, 4, 5, . . . , λ = g−1

0

(
2M

N

)
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Properties of the functions fi, gi are derived in Section 6.8. In particular, the gi are strictly increas-
ing by Lemma 6.7, so g−1

0 is well defined.

These independent variables are further conditioned so that the event

D =

∑
v∈[N ]

d(v) = 2M

 (6.10)

occurs. Now λ has been chosen so that E [d(v)] = 2M/N and then the local central limit theorem
implies that Pr {D} = Ω(1/N1/2), see for example Durrett [23]. It follows that

Pr {E | D} ≤ O(n1/2)Pr {E}, (6.11)

for any event E that depends on the degree sequence of C3.

In what follows we use the configuration model of Bollobás [11] to analyse C3 after we have fixed
its degree sequence. Thus, for each vertex v we define a set Wv of points such that |Wv| = d(v),
and write W =

⋃
vWv. A random configuration F is generated by selecting a random partition of

W into M pairs. A pair {x, y} ∈ F with x ∈ Wu, y ∈ Wv yields an edge {u, v} of the associated
(multi-)graph ΓF .

The key properties of F that we need are (i) conditional on F having no loops or multiple edges,
it is equally likely to be any simple graph with the given degree sequence and (ii) for the degree
sequences of interest, the probability that ΓF is simple will be bounded away from zero. This is
because the degree sequence in (6.11) has exponential tails. Thus we only need to show that ΓF
has certain properties w.h.p.

6.6.2 Setting up the main calculation.

Suppose now that p = c/n where c > c′2. We will show that w.h.p., for any fixed ε > 0,

i(S) = |{e ∈ E(C3) : e ∩ S 6= ∅}| ≥ (2− ε)|S| for all S ⊆ [N ]. (6.12)

Proving this is the main computational task of the paper. In principle, it is just an application of
the first moment method. We compute the expected number of S that violate (6.12) and show that
tis expectation tends to zero. On the other hand, a moments glance at the expression f(w) below
shows that this is unlikely to be easy and it takes more than half of the paper to verify (6.12).

It follows from (6.12) that

E(C3) can be oriented so that at least (1− ε)N vertices have indegree at least two. (6.13)

To see this consider the following network flow problem. We have a source s and a sink t plus
a vertex for each v ∈ [N ] and a vertex for each edge e ∈ E(C3). The directed edges are (i)
(s, v), v ∈ [N ] of capacity two; (ii) (u, e), where u ∈ e of infinite capacity; (iii) (e, t), e ∈ E(C3) of
capacity one. A s − t flow decomposes into paths s, u, e, t corresponding to orienting the edge e
into u. A flow thus corresponds to an orientation of E(C3). The condition (6.12) implies that the
minimum cut in the network has capacity at least (2 − ε)N . This implies that there is a flow of
value at least (2− ε)N and then the orientation claimed in (6.13) exists.

Thus w.h.p. C3 contains two edge-disjoint PFD’s, each containing (1 − ε)N edges. Arguing as
in the proof of Lemma 6.3, we see that we can w.h.p. remove o(N) edges from the cycles of



6.6. PROOF OF LEMMA 6.4. 103

these PFD’s and obtain forests. Thus w.h.p. C3 contains two edge-disjoint forests of total size
at least 2(1 − ε)N − o(N). This implies that E

[
r2(C3(Gn,c/n))

]
≥ 2(1 − ε)N − o(N) and since

N = Ω(n), we can have E
[
r2(C3(Gn,c/n))

]
= 2(1− ε)N − o(n). Because ε is arbitrary, this implies

r2(C3(Gn,c/n)) = 2N − o(N) whenever c > c′2.

6.6.3 Proof of (6.12): Small S.

It will be fairly easy to show that (6.13) holds w.h.p. for all S| ≤ s0 where

s0 =

(
3(1 + ε)

e2+εc

)1/ε

n.

We claim that w.h.p.
|S| ≤ s0 implies e(S) < (1 + ε)|S| in Gn,p. (6.14)

Here e(S) = | {e ∈ E(Gn,p) : e ⊆ S} |.

Indeed,

Pr {∃S violating (6.14)} ≤
s0∑
s=4

(
n

s

)( (
s
2

)
(1 + ε)s

)
p(1+ε)s ≤

s0∑
s=4

(ne
s

)s( sec

2(1 + ε)n

)(1+ε)s

=

s0∑
s=4

(( s
n

)ε e2+εc

2(1 + ε)

)s
= o(1).

For sets A,B of vertices and v ∈ A we will let dB(v) denote the number of neighbors of v in B. We
then let dB(A) =

∑
v∈A dB(v). We will drop the subscript B when B = [N ].

Suppose then that (6.14) holds and that |S| ≤ s0 and i(S) ≤ (2 − ε)|S|. Then if S̄ = [N ] \ S, we
have

e(S) + dS̄(S) ≤ (2− ε)|S| and d(S) = 2e(S) + dS̄(S) ≥ 3|S|

which implies that e(S) ≥ (1 + ε)|S|, contradiction.

6.6.4 Proof of (6.12): Large S.

Suppose now that C3 contains an S such that i(S) < (2 − ε)|S|. Let such sets be bad. Let S be
a minimal bad set, and write T = [N ] \ S. For any v ∈ S, we have i(S \ v) ≥ (2 − ε)|S \ v| while
i(S) < (2− ε)|S|. This implies dT (v) = i(S)− i(S \ v) < 2.

We will start with a minimal bad set and then carefully add more vertices. Consider a set S such
that i(S) < 2|S| and dT (v) ≤ 2 for all v ∈ S. If there is a w ∈ T such that dT (w) ≤ 2, let
S′ = S ∪ {w}. We have i(S′) ≤ i(S) + 2 < 2|S′|. This means we may add vertices to S in this
fashion to aquire a partition [N ] = S∪T where dT (v) ≤ 2 for all v ∈ S and dT (v) ≥ 3 for all v ∈ T .
We further partition S = S0 ∪ S1 ∪ S2 so that dT (v) = i if and only if v ∈ Si. Denote the size of
any set by its lower case equivalent, e.g. |S0| = s0.

We now start to use the configuration model. Partition each point set into Wv = WS
v ∪W T

v , where
a point is in WS

v if and only if it is matched to a point in ∪u∈SWu. The sizes of WS
v ,W

T
v uniquely

determine w = (s0, s1, s2, D0, D1, D2, D3, t,M). Here Di = dS(Si), i = 0, 1, 2 and D3 = dT (T ).
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Estimating the probability of w.

We have Di ≥ (3 − i)si for i = 0, 1, 2 and D3 ≥ 3t. Define degree sequences (d1
i , . . . , d

si
i ) for

Si, i = 0, 1, 2 and (d1
3, . . . , d

t
3) for T . Furthermore, let d̂j1 = dj1 − 1, d̂j2 = dj2 − 2 and d̂j3 ≥ 0 be the

S-degrees of vertices in S1, S2, T , respectively.

Dealing with S0:
Ignoring for the moment, that we must condition on the event D (see (6.10)), the probability that
S0 has degree sequence (d1

0, . . . , d
s0
0 ), di0 ≥ 3 for all i, is given by

s0∏
i=1

λd
i
0

di0!f3(λ)

where λ is the solution to

g0(λ) =
2M

N
.

Hence, letting [xD]f(x) denote the coefficient of xD in the power series f(x), the probability
π0(S0, D0) that d(S0) = D0 is bounded by

π0(S0, D0) ≤
∑

d10+···+ds00 =D0

di0≥3

s0∏
i=1

λd
i
0

di0!f3(λ)
=

λD0

f3(λ)s0

∑
d10+···+ds00 =D0

di0≥3

s0∏
i=1

1

di0!

=
λD0

f3(λ)s0
[xD0 ]

∑
d0≥3

xd0

d0!

s0

=
λD0

f3(λ)s0
[xD0 ]f3(x)s0

≤ λD0

f3(λ)s0
f3(λ0)s0

λD0
0

for all λ0. Here we use the fact that for any function f and any y > 0, [xD0 ]f(x) ≤ f(y)/yD0 . To
minimise (6.15) we choose λ0 to be the unique solution to

g0(λ0) =
D0

s0
. (6.16)

If D0 = 3s0 then λ0 = 0 by Lemma 6.6, Section 6.8. In this case, since f3(λ0) =
λ3

0(1+O(λ0))
6 , we

have

π0(S0, D0) ≤
(

λ3

6f3(λ)

)s0
, when D0 = 3s0. (6.17)

Dealing with S1:
For each v ∈ S1, we have Wv = WS

v ∪W T
v where |W T

v | = 1. Hence, the probability π1(S1, D1) that
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d(S1) = D1 + s1 is bounded by

π1(S1, D1) ≤
∑

d̂11+···+d̂s11 =D1

d̂i1≥2

s1∏
i=1

(
d̂i1 + 1

1

)
λd̂

i
1+1

(d̂i1 + 1)!f3(λ)
=

λD1+s1

f3(λ)s1

∑
d̂11+···+d̂s11 =D1

d̂i1≥2

s1∏
i=1

1

d̂i1!

=
λD1+s1

f3(λ)s1
[xD1 ]f2(x)s1

≤ λD1+s1

f3(λ)s1
f2(λ1)s1

λD1
1

.

We choose λ1 to satisfy the equation

g1(λ1) =
D1

s1
. (6.19)

Similarly to what happens in (6.17) we have λ1 = 0 when D1 = 2s1 and we have f2(λ1) =
λ2

1(1+O(λ1)
2

and then we have

π1(S1, D1) ≤
(

λ3

2f3(λ)

)s1
, when D1 = 2s1. (6.20)

Dealing with S2:
For v ∈ S2, we choose 2 points from Wv to be in W T

v , so the probability π2(S2, D2) that d(S2) =
D2 + 2s2 is bounded by

π2(S2, D2) ≤
∑

d̂12+···+d̂s22 =D2

d̂i2≥1

s2∏
i=1

(
d̂i2 + 2

2

)
λd̂

i
2+1

(d̂i2 + 2)!f3(λ)
≤ λD2+2s2

f3(λ)s2
f1(λ2)s2

λD2
2

2−s2 (6.21)

where we choose λ2 to satisfy the equation

g2(λ2) =
D2

s2
. (6.22)

Similarly to what happens in (6.17) we have λ2 = 0 when D2 = s2 and we have f1(λ2) = λ2(1 +
O(λ2)) and then we have

π2(S2, D2) ≤
(

λ3

2f3(λ)

)s2
, when D2 = s2. (6.23)

Dealing with T :

Finally, the degree of vertex i in T can be written as di3 = d̂i3 + d
i
3 where d̂i3 ≥ 0 is the S-degree

and d
i
3 ≥ 3 is the T -degree. Here, with t = |T |, we have

t∑
i=1

d̂i3 = dS(T ) = s1 + 2s2
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by the definition of S0, S1, S2. So the probability π3(T,D3) that dT (T ) = D3, given s1, s2 can be
bounded by

π3(T,D3) ≤
∑

d̂1
3+···+d̂t3=s1+2s2

d̂i3≥0

∑
d

1
3+···+dt3=D3

d
i
3≥3

t∏
i=1

(
d̂i3 + d

i
3

d̂i3

)
λd̂

i
3+d

i
3

(d̂i3 + d
i
3)!f3(λ)

=
λD3+s1+2s2

f3(λ)t

∑
d̂1

3+···+d̂t3=s1+2s2

d̂i3≥0

∑
d

1
3+···+dt3=D3

d
i
3≥3

t∏
i=1

1

d̂i3!d
i
3!

=
λD3+s1+2s2

f3(λ)t
(
[xD3 ]f3(x)t

) (
[xs1+2s2 ]ex

)
≤ λD3+s1+2s2

f3(λ)t
f3(λ3)t

λD3
3

ts1+2s2

(s1 + 2s2)!
, (6.24)

where we choose λ3 to satisfy the equation

g0(λ3) =
D3

t
. (6.25)

Similarly to what happens in (6.17) we have λ3 = 0 when D3 = 3t and we have f3(λ3) =
λ3

3(1+O(λ1))
6

and then we have

π3(T,D3) ≤ λD3+s1+2s2

(6f3(λ))t
ts1+2s2

(s1 + 2s2)!
, when D3 = 3t.

Putting the bounds together.

For a fixed w = (s0, s1, s2, D0, D1, D2, D3, t,M), there are
(

t+s
s0,s1,s2,t

)
choices for S0, S1, S2, T . Having

chosen these sets we partition the Wv, v ∈ S into WS
v ∪W T

v . Note that our expressions (6.15),
(6.18), (6.21), (6.24) account for these choices. Given the partitions of the Wv’s, there are (D0 +
D1 +D2)!!D3!!(s1 +2s2)! configurations, where (2s)!! = (2s−1)×(2s−3)×· · ·×3×1 is the number
of ways of partitioning a set of size 2s into s pairs. Here (D0 + D1 + D2)!! is the number of ways
of pairing up

⋃
v∈SW

S
v , D3!! is the number of ways of pairing up

⋃
v∈T W

T
v and (s1 + 2s2)! is the

number of ways of pairing points associated with S to points associated with T . Each configuration
has probability 1/(2M)!!. So, the total probability of all configurations whose vertex partition and
degrees are described by w can be bounded by(

t+ s

s0, s1, s2, t

)
λD0

f3(λ)s0
f3(λ0)s0

λD0
0

λD1+s1

f3(λ)s1
f2(λ1)s1

λD1
1

λD2+2s2

f3(λ)s2
f1(λ2)s2

λD2
2

2−s2

× λD3+s1+2s2

f3(λ)t
f3(λ3)t

λD3
3

ts1+2s2

(s1 + 2s2)!

(D0 +D1 +D2)!!D3!!(s1 + 2s2)!

(2M)!!

=

(
t+ s

s0, s1, s2, t

)
λ2M

f3(λ)N
f3(λ0)s0

λD0
0

f2(λ1)s1

λD1
1

f1(λ2)s2

λD2
2

2−s2
f3(λ3)t

λD3
3

ts1+2s2

(s1 + 2s2)!

× (D0 +D1 +D2)!!D3!!(s1 + 2s2)!

(2M)!!
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Write Di = ∆is, |Si| = σis, t = τs, M = µs and N = νs. We have k!! ∼
√

2(k/e)k/2 as k →∞ by
Stirling’s formula, so the expression above, modulo an eo(s) factor, can be written as

f(w)s =

(
(τ + 1)τ+1

σσ0
0 σσ1

1 (1− σ0 − σ1)1−σ0−σ1τ τ
λ2µ

f3(λ)ν
f3(λ0)σ0

λ∆0
0

f2(λ1)σ1

λ∆1
1

f1(λ2)σ2

λ∆2
2

f3(λ3)τ

λ∆3
3

(τe)σ1+2σ2

2σ2

(∆0 + ∆1 + ∆2)(∆0+∆1+∆2)/2∆
∆3/2
3

(2µ)µ

)s

We note that

σ2 = 1− σ0 − σ1,

∆3 = 2µ−∆0 −∆1 −∆2 − 2σ1 − 4σ2

= 2µ− 4−∆0 −∆1 −∆2 + 4σ0 + 2σ1 (6.26)

ν = 1 + τ.

Hence σ2,∆3, ν may be eliminated, and we can consider w to be (σ0, σ1,∆0,∆1,∆2, τ, µ). When
convenient, ∆3 may be used to denote 2µ− 4−∆0 −∆1 −∆2 + 4σ0 + 2σ1. Define the constraint
set F to be all w satisfying

∆0 ≥ 3σ0,∆1 ≥ 2σ1,∆2 ≥ 1− σ0 − σ1,∆3 ≥ 3τ. (6.27a)

∆0 + ∆1 + ∆2

2
+ σ1 + 2(1− σ0 − σ1) < 2− ε since i(S) < (2− ε)|S|, see (6.12).(6.27b)

σ0, σ1 ≥ 0, σ0 + σ1 ≤ 1.

0 ≤ τ ≤ (1− ε)/ε since |S| ≥ εN.
µ ≥ (2 + ε)(1 + τ) since M ≥ (2 + ε)N .

σ0 < 1, otherwise C3 is not connected. (6.27c)

Here ε is a sufficiently small positive constant such that (i) we can exclude the case of small S, (ii)
satisfy condition (6.12) and (iii) have M ≥ (2 + ε)N since c > c′2.

For a given s, there are O(poly(s)) choices of w ∈ F , and the probability that the randomly chosen
configuration corresponds to a w ∈ F can be bounded by∑

s≥εN

∑
w

O(poly(s))f(w)s ≤
∑
s

(eo(1) max
F

f(w))s ≤ N(eo(1) max
F

f(w))εN . (6.28)

As N → ∞, it remains to show that f(w) ≤ 1 − δ for all w ∈ F , for some δ = δ(ε) > 0. At
this point we remind the reader that we have so far ignored conditioning on the event D defined
in (6.10). Inequality (6.11) implies that it is sufficient to inflate the RHS of (6.28) by O(n1/2) to
obtain our result.

So, let

f(∆0,∆1,∆2, σ0, σ1, τ, µ) =

(τ + 1)τ+1

σσ0
0 σσ1

1 (1− σ0 − σ1)1−σ0−σ1τ τ
λ2µ

f3(λ)τ+1

f3(λ0)σ0

λ∆0
0

f2(λ1)σ1

λ∆1
1

f1(λ2)1−σ0−σ1

λ∆2
2

f3(λ3)τ

λ∆3
3

× (eτ)2−2σ0−σ1

21−σ0−σ1

(∆0 + ∆1 + ∆2)(∆0+∆1+∆2)/2∆
∆3/2
3

(2µ)µ
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We complete the proof of Theorem 6.1(b) by showing that

f(w) ≤ exp

{
−ε

2

3

}
for all w ∈ F .

Eliminating µ

We begin by showing that it is enough to consider µ = (2+ε)(1+τ). We collect all terms involving
µ, including ∆3, λ and λ3 whose values are determined in part by µ. It is enough to consider the
logarithm of f . We have

∂ log f

∂µ
= 2 log λ+

∂λ

∂µ

(
2µ

λ
− ν f2(λ)

f3(λ)

)
+
∂λ3

∂µ

(
τ
f2(λ3)

f3(λ3)
− ∆3

λ3

)
− 2 log λ3 + log ∆3 + 1− log 2µ− 1

by definition of λ, λ3, we have

2µ

λ
− ν f2(λ)

f3(λ)
= 0 and

∆3

λ3
− τ f2(λ3)

f3(λ3)
= 0,

and so
∂ log f

∂µ
= 2 log

(
λ

λ3

)
+ log

(
∆3

2µ

)
We have ∆3 ≤ 2µ and furthermore, λ ≤ λ3 since g0 is an increasing function. Indeed, writing
ι = i(S)/s ≤ 2, we have ∆3 + 2ι = 2µ ≥ 4(τ + 1), so

g0(λ3)− g0(λ) =
∆3

τ
− 2µ

ν
=

2µ− 2ι

τ
− 2µ

τ + 1
=

2µ− 2ι(τ + 1)

τ(τ + 1)
≥ 4− 2ι

τ
≥ 0.

This shows that log f is decreasing with respect to µ, and in discussing the maximum value of f
for µ ≥ (2 + ε)(1 + τ) we may assume that µ = (2 + ε)(1 + τ).

We now argue that to show that f ≤ exp{−ε2/3} when µ = (2 + ε)(1 + τ), it is enough to show
that f ≤ 1 when µ = 2(1 + τ). Let 2(1 + τ) < µ < (2 + ε)(1 + τ). Then by (6.26) and (6.27a)

∆3 = 2µ− 4−∆0 −∆1 −∆2 + 4σ0 + 2σ1

≤ 2µ− 4− 3σ0 − 2σ1 − (1− σ0 − σ1) + 4σ0 + 2σ1

= 2µ− 5 + 2σ0 + σ1

≤ 2µ− 2

and since τ ≤ 1/ε− 1, µ ≤ (2 + ε)(1 + τ) implies µ ≤ 2/ε+ 1 < 3/ε. So,

∂ log f

∂µ
≤ 2 log

(
λ

λ3

)
+ log

(
2µ− 2

2µ

)
≤ log

(
1− ε

3

)
So, fixing w′ = (σ0, σ1,∆0,∆1,∆2, τ), let µ = 2(1 + τ) and µ′ = (2 + ε)(1 + τ). If f(w′, µ) ≤ 1,
then

log f(w′, µ′) ≤ log f(w′, µ) + ε(1 + τ) log
(

1− ε

3

)
≤ −ε

2

3
.
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This shows that it is enough to prove that f(w) ≤ 1 for w ∈ F ′, defined by

∆0 ≥ 3σ0,∆1 ≥ 2σ1,∆2 ≥ 1− σ0 − σ1,∆3 ≥ 3τ (6.29a)

∆0 + ∆1 + ∆2 ≤ 4σ0 + 2σ1 (6.29b)

σ0, σ1 ≥ 0, σ0 + σ1 ≤ 1

0 ≤ τ <∞
µ = 2(1 + τ).

We have relaxed equation (6.27b) to give (6.29b) in order to simplify later calculations. In F ′, λ is
defined by

g0(λ) =
2µ

ν
=

4(1 + τ)

1 + τ
= 4,

so in the remainder of the proof

λ = g−1
0 (4) ≈ 2.688 is fixed.

It will be convenient at times to write ∆ = ∆0+∆1+∆2. We observe that 3σ0+2σ1+(1−σ0−σ1) =
2σ0 + σ1 + 1, so by (6.29a), (6.29b),

2σ0 + σ1 + 1 ≤ ∆ ≤ 4σ0 + 2σ1. (6.30)

Note also that µ = 2(1 + τ) implies

∆3 = 2µ− 4−∆0 −∆1 −∆2 + 4σ0 + 2σ1 = 4τ + 4σ0 + 2σ1 −∆. (6.31)

The quantity 2σ0 + σ1 will appear frequently. We note that (6.30) and σ0 + σ1 ≤ 1 imply

1 ≤ 2σ0 + σ1 ≤ 2.

Eliminating τ

We now turn to choosing the optimal τ . With µ = 2(1 + τ),

f(σ0, σ1,∆0,∆1,∆2, τ) =
(τ + 1)τ+1

σσ0
0 σσ1

1 (1− σ0 − σ1)1−σ0−σ1τ τ

(
λ4

f3(λ)

)τ+1
f3(λ0)σ0

λ∆0
0

f2(λ1)σ1

λ∆1
1

×f1(λ2)1−σ0−σ1

λ∆2
2

f3(λ3)τ

λ∆3
3

(eτ)2−2σ0−σ1

21−σ0−σ1
× ∆∆/2∆

∆3/2
3

(4 + 4τ)2+2τ
.

Here λ0 = λ0(∆0, σ0), λ1 = λ1(∆1, σ1), λ2 = λ2(∆2, σ0, σ1), λ3 = λ3(σ0, σ1,∆0,∆1,∆2, τ) as defined
in (6.16), (6.19), (6.22), (6.25). Since τf2(λ3)/f3(λ3)−∆3/λ3 = 0 by the definition of λ3, the partial
derivative of log f with respect to τ is given by

∂

∂τ
log f(σ0, σ1,∆0,∆1,∆2, τ) = log(τ + 1) + 1− log τ − 1 + log

(
λ4

f3(λ)

)
+
∂λ3

∂τ

(
τ
f2(λ3)

f3(λ3)
− ∆3

λ3

)
+ log(f3(λ3))− 4 log λ3

+
2− 2σ0 − σ1

τ
+ 2 (1 + log ∆3)− 2 log(4 + 4τ)− 2

= log(τ + 1)− log τ + log

(
λ4

λ4
3

f3(λ3)

f3(λ)

)
+

2− 2σ0 − σ1

τ

+2 log ∆3 − 2 log(4 + 4τ)
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This is positive for τ close to zero. This is clear as long as 2σ0 + σ1 < 2. But if 2σ0 + σ1 = 2 then
σ0 + σ1 ≤ 1 implies that σ0 = 1, σ1 = 0. But then if τ > 0 we have that C3 is not connected and
that if τ = 0, S = [N ] which violates (6.27c). On the other hand, ∂

∂τ log f vanishes if

2− 2σ0 − σ1 − τ
[
log

(
1 +

1

τ

)
− 2 log

(
∆3

4τ

)
− log

(
λ4f3(λ3)

λ4
3f3(λ)

)]
= 0. (6.33)

So any local maximum of f must satisfy this equation. If no solution exists, then it is optimal to
let τ →∞. We will see below how to choose τ to guarantee maximality. For now, we only assume
τ satisfies (6.33).

Eliminating ∆0,∆1,∆2.

We now eliminate ∆0,∆1,∆2. Fix σ0, σ1. For ∆i > (3− i)σi such that ∆0 + ∆1 + ∆2 < 4σ0 + 2σ1,

∂

∂∆i
log f =

∂λi
∂∆i

(
σi
f2−i(λi)

f3−i(λi)
− ∆i

λi

)
− log λi + log λ3

+
∂

∂τ
log f

∂τ

∂∆i
+

1

2
log ∆ +

1

2
− 1

2
log ∆3 −

1

2

= − log λi + log

(
λ3

√
∆

∆3

)
,

since gi(λi) = ∆i/σi by definition of λi, and the term ∂
∂τ log f ∂τ/∂∆i vanishes because (6.33) is

assumed to hold. We note that λi > 0 when ∆i > (3− i)σi (Section 6.8), allowing division by λi.

As ∆i tends to its lower bound (3 − i)σi, we have log λi → −∞ while the other terms remain
bounded, so the derivative is positive at the lower bound of ∆i. Any stationary point must satisfy
λ0 = λ1 = λ2 = λ3

√
∆/∆3 =: λ̂. This can only happen if

σ0g0(λ̂) + σ1g1(λ̂) + (1− σ0 − σ1)g2(λ̂) = σ0
∆0

σ0
+ σ1

∆1

σ1
+ (1− σ0 − σ1)

∆2

1− σ0 − σ1
= ∆.

So we choose λ̂, ∆, τ to solve the system of equations

λ̂ = λ3

√
∆

∆3

∆ = σ0g0(λ̂) + σ1g1(λ̂) + (1− σ0 − σ1)g2(λ̂)

2− 2σ0 − σ1 = τ

[
log

(
1 +

1

τ

)
− 2 log

(
∆3

4τ

)
− log

(
λ4f3(λ3)

λ4
3f3(λ)

)]
In Section 6.7 we show that this system has no solution such that 2σ0 +σ1 +1 ≤ ∆ ≤ 4σ0 +2σ1 (see
(6.30)). This means that no stationary point exists, and log f is increasing in each of ∆0,∆1,∆2.
In particular, it is optimal to set

∆0 + ∆1 + ∆2 = 4σ0 + 2σ1 which implies that ∆3 = 4τ , see (6.31). (6.36)

This eliminates one degree of freedom. We now set

∆2 = 4σ0 + 2σ1 −∆0 −∆1.
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Then for ∆0,∆1, we have

∂

∂∆i
log f = − log λi + log λ2, i = 0, 1.

To see this note that (6.34) has to be modified via the addition of ∂
∂∆2

log f × ∂∆2
∂∆i

, for i = 0, 1.

So it is optimal to let λ0 = λ1 = λ2 = λ, defined by

σ0g0(λ) + σ1g1(λ) + (1− σ0 − σ1)g2(λ) = 4σ0 + 2σ1 (6.37)

This has a unique solution λ ≥ 0 whenever 2σ0 + σ1 ≥ 1, since for fixed σ0, σ1, the left-hand
side is a convex combination of increasing functions, by Lemma 6.7, Section 6.8. This defines
∆i = ∆i(σ0, σ1) by

∆0 = g0(λ)σ0, ∆1 = g1(λ)σ1, ∆2 = g2(λ)(1− σ0 − σ1) (6.38)

We note at this point that λ ≤ λ. Indeed, by (6.36) and (6.27a),

∆0 = 4σ0 + 2σ1 −∆1 −∆2 ≤ 4σ0 + 2σ1 − 2σ1 − (1− σ0 − σ1) ≤ 4σ0,

so

g0(λ) =
∆0

σ0
≤ 4 = g0(λ) (6.39)

implying that λ ≤ λ, since g0 is increasing.

This choice (6.38) of ∆0,∆1,∆2 simplifies f significantly. With ∆ = 4σ0 + 2σ1 we have ∆3 = 4τ ,
see (6.36), and so

λ3 = g−1
0

(
4τ

τ

)
= λ (6.40)

is fixed. In particular, the relation (6.33) for τ simplifies to

2− 2σ0 − σ1 = τ log

(
1 +

1

τ

)
(6.41)

Let φ(τ) = τ log(1 + 1/τ). Then φ′′(τ) = −τ−1(τ + 1)−2, so φ is concave and then limτ→0 φ(τ) = 0,
limτ→∞ φ(τ) = 1 implies that φ is strictly increasing and takes values in [0, 1) for τ ≥ 0. This
means that (6.41) has a unique solution if and only if 2σ0 + σ1 > 1. When 2σ0 + σ1 = 1, f is
increasing with respect to τ , and we treat this case now.

If 2σ0 + σ1 = 1, then (6.30) implies that ∆ = 2. Furthermore, ∆3 = 4τ (see (6.31)) and λ3 = λ
(see (6.40)) and gi(0) = 3− i implies that

σ0g0(0) + σ1g1(0) + (1− σ0 − σ1)g2(0) = 2σ0 + σ1 + 1 = 4σ0 + 2σ1,

so λ = 0 is the unique solution to (6.37). Then since ∆i/σi = gi(0) = 3 − i (Lemma 6.6, Section
6.8), we have ∆i = (3− i)σi, i = 0, 1, 2, and as in (6.17), (6.20), (6.23),

f3(λ)σ0f2(λ)σ1f1(λ)1−σ0−σ1

λ
∆

=

(
f3(λ)

λ
3

)σ0 (
f2(λ)

λ
2

)σ1 (
f1(λ)

λ

)1−σ0−σ1

=
1

6σ0

1

2σ1
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so when 2σ0 + σ1 = 1, (6.32) becomes

f(σ0, σ1, τ) =
(τ + 1)τ+1

σσ0
0 σσ1

1 (1− σ0 − σ1)1−σ0−σ1τ τ
λ4

f3(λ)

1

6σ0

1

2σ1

eτ

21−σ0−σ1

22/2(4τ)2τ

(4 + 4τ)2+2τ
.

In this computation we also used the fact that λ = λ3 (see (6.40)) and ∆3 = 4τ (see (6.31)) to find
that (

λ4

f3(λ)

)τ+1
f3(λ3)τ

λ∆3
3

=
λ4

f3(λ)
.

Here λ4/f3(λ) ≈ 7.05 is fixed. We show in Section 6.7 that in this case, the partial derivative in τ
is positive for all τ , so we let τ →∞. Substituting σ1 = 1− 2σ0 we are reduced to

f(σ0) = lim
τ→∞

(τ + 1)τ+1

σσ0
0 (1− 2σ0)(1−2σ0)σσ0

0 τ τ
λ4

f3(λ)

1

6σ0

1

21−2σ0

eτ

2σ0

2(4τ)2τ

(4 + 4τ)2+2τ

=
λ4

16f3(λ)

1

σ2σ0
0 (1− 2σ0)1−2σ03σ0

This has the stationary point σ0 = 2 −
√

3, and f(2 −
√

3) ≈ 0.95. We also have f(0) ≈ 0.44 and
f(1/2) ≈ 0.51 at the lower and upper bounds for σ0.

Dealing with σ0, σ1

With this, we have reduced our analysis to the variables σ0, σ1 in the domain

E = {(σ0, σ1) : σ0, σ1 ≥ 0, σ0 + σ1 ≤ 1, 2σ0 + σ1 ≥ 1}.

We just showed that f ≤ 1 in

E0 = {(σ0, σ1) ∈ E : 2σ0 + σ1 = 1}.

Further define

E1 = {(σ0, σ1) ∈ E : 0.01 ≤ σ1 ≤ 0.99},
E2 = {(σ0, σ1) ∈ E : 0 ≤ σ1 < 0.01},
E3 = {(σ0, σ1) ∈ E : 0.99 < σ1 ≤ 1}.

We will show that f ≤ 1 in each of these sets, whose union covers E.

From this point on, let ∂i = ∂
∂σi
, i = 0, 1. As noted above, ∆ = 4σ0 + 2σ1 simplifies f . Specifically,

if 2σ0 + σ1 > 1 then (6.32) becomes, after using (6.36) and (6.40),

f(σ0, σ1) =
(τ + 1)τ+1

σσ0
0 σσ1

1 (1− σ0 − σ1)1−σ0−σ1τ τ
λ4

f3(λ)

f3(λ)σ0f2(λ)σ1f1(λ)1−σ0−σ1

λ
4σ0+2σ1

×(eτ)2−2σ0−σ1

21−σ0−σ1

(4σ0 + 2σ1)2σ0+σ1(4τ)2τ

(4 + 4τ)2+2τ
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In (6.41), (6.37) respectively, τ and λ are given as functions of σ0, σ1. Recall that λ = g−1
0 (4) is

constant. So

∂0 log f(σ0, σ1) =

− log σ0 − 1 + log(1− σ0 − σ1) + 1 + log f3(λ)− log f1(λ)

− 4 log λ− 2 log(eτ) + log 2 + 2 log(4σ0 + 2σ1) + 2

+
∂λ

∂σ0

(
σ0
f2(λ)

f3(λ)
+ σ1

f1(λ)

f2(λ)
+ (1− σ0 − σ1)

f0(λ)

f1(λ)
− 4σ0 + 2σ1

λ

)
+

∂τ

∂σ0

(
log(τ + 1) + 1− log τ − 1 +

2− 2σ0 − σ1

τ
+ 2 log 4τ + 2− 2 log(4 + 4τ)− 2

)
= log

(
1− σ0 − σ1

σ0

)
+ log

(
f3(λ)

λ
4
f1(λ)

)
− 2 log τ + log 2 + 2 log(4σ0 + 2σ1) (6.43)

where, as expected, the terms involving ∂0τ and ∂0λ vanish since τ, λ were chosen to maximize
log f . (See (6.41) and (6.37) respectively).

Similarly,

∂1 log f(σ0, σ1) =

− log σ1 − 1 + log(1− σ0 − σ1) + 1 + log f2(λ)− log f1(λ)

− 2 log λ− log(eτ) + log 2 + log(4σ0 + 2σ1) + 1

+
∂λ

∂σ1

(
σ0
f2(λ)

f3(λ)
+ σ1

f1(λ)

f2(λ)
+ (1− σ0 − σ1)

f0(λ)

f1(λ)
− 4σ0 + 2σ1

λ

)
+

∂τ

∂σ1

(
log(τ + 1) + 1− log τ − 1 +

2− 2σ0 − σ1

τ
+ 2 log 4τ + 2− 2 log(4 + 4τ)− 2

)
= log

(
1− σ0 − σ1

σ1

)
+ log

(
f2(λ)

λ
2
f1(λ)

)
− log τ + log 2 + log(4σ0 + 2σ1). (6.44)

Any stationary point must satisfy

(∂0 − 2∂1) log f = log

(
σ2

1

σ0(1− σ0 − σ1)

)
+ log

(
f1(λ)f3(λ)

f2(λ)2

)
− log 2 = 0. (6.45)

Now we show in Lemma 6.8, Section 6.8 that

1 ≤ f2(λ)2

f1(λ)f3(λ)
≤ 2.

This means from (6.45) that if (∂0 − 2∂1) log f = 0 then

2 ≤ σ2
1

σ0(1− σ0 − σ1)
≤ 4.

In particular, the lower bound implies σ0 ≥ (1 − σ1)/2 +
√

1− 2σ1 − σ2
1/2 and the upper bound

implies σ1 ≤ −2σ0 +
√

4σ0 − 4σ2
0. The latter bound is used only to conclude that σ1 < 1/2, by

noting that −2σ0 +
√

4σ0 − 4σ2
0 ≤ (51/2 − 1)/3 < 1/2 for 0 ≤ σ0 ≤ 1. In conclusion,

(∂0 − 2∂1) log f = 0 =⇒
{
σ0 ≥ (1− σ1)/2 +

√
1− 2σ1 − σ2

1/2.
σ1 < 1/2.

(6.46)
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Case One. E1 = {(σ0, σ1) ∈ E : 0.01 ≤ σ1 ≤ 0.99}

When σ0 < 0.99, we need a lower bound for λτ . We first note that gi(λ) ≤ 3− i+ λ (Lemma 6.6,
Section 6.8) implies

4σ0 + 2σ1 = σ0g0(λ) + σ1g1(λ) + (1− σ0 − σ1)g2(λ) ≤ 2σ0 + σ1 + 1 + λ

so
λ ≥ 2σ0 + σ1 − 1 = 1− τ log(1 + 1/τ).

Here we have used (6.41).

For τ , note that σ0 < 0.99 and σ0 + σ1 ≤ 1 implies τ log(1 + 1/τ) = 2− 2σ0 − σ1 ≥ 1− σ0 > 0.01.
The function τ log(1 + 1/τ) is increasing in τ by the discussion after (6.41). This implies

τ > 10−3, (6.47)

since 0.001 log(1001) < 0.01.

If τ ≤ 1.1,
λ ≥ 1− 1.1 log 2 > 0.1.

So, if τ ≤ 1.1,
λτ ≥ 10−4.

If 1.1 < τ then we use log(1 + x) ≤ x− x2/2 + x3/3 for |x| ≤ 1 to write

λτ ≥ τ − τ2 log(1 + 1/τ) ≥ 1

2
− 1

3τ
≥ 1

6
.

So, in E1, we have
λτ ≥ 10−4. (6.48)

By definition of E1, σ0 ≥ 0.01 and σ1 ≥ 0.01. By (6.39), 0 ≤ λ ≤ λ. This implies f3(λ)/λ
2
f1(λ) ≤

1/6 and f2(λ)/λf1(λ) ≤ 1/3 (Lemma 6.8, Section 6.8). So after rewriting (6.43) slightly,

∂0 log f(σ0, σ1) = log

(
1− σ0 − σ1

σ0

)
+ log

(
f3(λ)

λ
2
f1(λ)

)
− 2 log λτ + log 2 + 2 log(4σ0 + 2σ1)

≤ log
1

0.01
+ log

1

6
− 2 log 10−4 + log 2 + 2 log 4

≤ 25.

Similarly, (6.44) is bounded by

∂1 log f(σ0, σ1) ≤ log
1

0.01
+ log

1

3
− log 10−4 + log 2 + log 4 ≤ 15.

We now show numerically that log f ≤ 0 in E1.

Numerics of Case One:
Since ∂i log f is only bounded from above, i = 0, 1, this requires some care at the lower bounds of
σ0, σ1, given by σ0 ≥ (1−σ1)/2 and σ1 ≥ 0.01. Note that if σ0 = (1−σ1)/2, then (σ0, σ1) ∈ E0 and
it was shown above that log f(σ0, σ1) ≤ log 0.95 ≤ −0.01. Define a finite grid P ⊆ E1 such that for
any (σ0, σ1) ∈ E1, there exists (σ0, σ1) ∈ P ∪E0 where 0 ≤ σ0 − σ0 ≤ δ and 0 ≤ σ1 − σ1 ≤ δ. Here
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δ = 1/4000. Numerical calculations will show that log f(σ0, σ1) ≤ −0.01 for all (σ0, σ1) ∈ P . This
implies that for all σ0, σ1 ∈ E1,

log f(σ0, σ1) ≤ max
σ0,σ1∈P∪E0

log f(σ0, σ1) + 25δ + 15δ ≤ −0.01 + 40δ ≤ 0.

When calculating log f(σ0, σ1), approximations λnum, τnum of λ(σ0, σ1), τ(σ0, σ1) must be calcu-
lated with sufficient precision. By definition of λ, ∂ log f/∂λ = 0, while∣∣∣∣∂2 log f

∂λ
2

∣∣∣∣
=

∣∣∣∣σ0

(
f1(λ)

f3(λ)
− f2(λ)2

f3(λ)2

)
+ σ1

(
f0(λ)

f2(λ)
− f1(λ)2

f2(λ)2

)
+ (1− σ0 − σ1)

(
f0(λ)

f1(λ)
− f0(λ)2

f1(λ)2

)
+

4σ0 + 2σ1

λ
2

∣∣∣∣
=

1

λ
2

∣∣∣∣σ0

(
λ

2 f1(λ)

f3(λ)
− λ

2
f2(λ)2

f3(λ)2

)
+ σ1

(
λ

2 f0(λ)

f2(λ)
− λ

2
f1(λ)2

f2(λ)2

)

+ (1− σ0 − σ1)

(
λ

2 f0(λ)

f1(λ)
− λ

2
f0(λ)2

f1(λ)2

)
+ σ0g0(λ) + σ1g1(λ) + (1− σ0 − σ1)g2(λ)

∣∣∣∣
=

1

λ
2 |σ0g0(λ)(g1(λ)− g0(λ) + 1) + σ1g1(λ)(g2(λ)− g1(λ) + 1)

+ (1− σ0 − σ1)g2(λ)(λ− g2(λ) + 1)|

≤ 9

λ
2 |σ0g0(λ) + σ1g1(λ) + (1− σ0 − σ1)g2(λ)|

=
9

λ
2 |4σ0 + 2σ − 1|, by (6.37)

≤ 36

λ
2 .

Here we use the fact that gi(λ) ≤ 4 for 0 ≤ λ ≤ λ, i = 0, 1, 2 to conclude that |g1 − g0 + 1|, |g2 −
g1 + 1|, |λ− g2 + 1| ≤ 9, and the final step uses 4σ0 + 2σ1 ≤ 4. So the error contributed by λnum is

| log f(σ0, σ1;λnum)− log f(σ0, σ1;λ)| ≤ (λnum − λ)2 36

λ
2

and to achieve a numerical error of at most 10−4, we require that |λnum/λ− 1| ≤ 10−2/6.

Similarly by definition of τ , ∂ log f/∂τ = 0, while∣∣∣∣∂2 log f

∂τ2

∣∣∣∣ =

∣∣∣∣ 1

τ(τ + 1)

∣∣∣∣ ≤ 103, by (6.47).

Thus to achieve a numerical error of at most 10−4, it suffices to have |τnum/τ − 1| ≤ 10−2.

With the above precision, it is found that over all (σ0, σ1) ∈ P ∪ E0, log f(σ0, σ1) ≤ −0.0105
numerically. With an error tolerance of 10−4, this shows that log f(σ0, σ1) ≤ −0.01.

Case Two. E2 = {(σ0, σ1) ∈ E : 0 ≤ σ1 < 0.01}
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We divide E2 into three subregions,

E2,1 = {(σ0, σ1) ∈ E2 : σ1 = 0},
E2,2 = {(σ0, σ1) ∈ E2 : σ0 + σ1 = 1},
E2,3 = E2 \ (E2,1 ∪ E2,2).

We begin by considering the point (σ0, σ1) = (1, 0). Here 4σ0 + 2σ1 = 4, and from (6.37) λ is
defined by g0(λ) = 4. So λ = g−1

0 (4) = λ. We also have 2− 2σ0 − σ1 = 0, and from the definition
(6.41) of τ we have τ = 0. Plugging this into the definition of f (6.42) gives f(1, 0) = 1.

Sub-Case 2.1a:
Now consider E2,1, where σ1 = 0. Here σ0 ≥ 1/2, from the definition of E and

∂0 log f(σ0, 0) = log

(
1− σ0

σ0

)
+ log

(
f3(λ)

λ
2
f1(λ)

)
− 2 log λτ + log 2 + 2 log(4σ0)

Within E2,1, we consider two cases. First suppose σ0 ≤ 0.99. As noted in (6.48), σ0 ≤ 0.99 implies
λτ ≥ 10−4. Applying the same bounds as in (6.49),

∂0 log f(σ0, 0) ≤ log
1

6
− 2 log 10−4 + log 2 + 2 log 4 ≤ 21

and we show numerically that f ≤ 1. The umerical calculations for this case now follow the same
outline as above. The precision requirements given there will suffice in this case.

Sub-Case 2.1b:
Now suppose σ0 ≥ 0.99, still assuming σ1 = 0. Here λ ≤ λ (see (6.39)) implies f3(λ)/λ

4
f1(λ) ≥ 0.01

by Lemma 6.8, Section 6.8. We have τ log(1 + 1/τ) = 2 − 2σ0 − σ1 = 2 − 2σ0 ≤ 0.02 and since
τ log(1+1/τ) is increasing (see (6.41)), it follows from a numerical calculation that τ ≤ 0.004. This
implies

1− σ0

τ2
=

log
(
1 + 1

τ

)
2τ

≥ 125 log 250

and

∂0 log f(σ0, 0) = log

(
1− σ0

σ0

)
+ log

(
f3(λ)

λ
4
f1(λ)

)
− 2 log τ + log 2 + 4 log(4σ0)

= log

(
1− σ0

τ2

)
− log σ0 + log

(
f3(λ)

λ
4
f1(λ)

)
+ log 2 + 4 log(4σ0)

≥ log(125 log 250) + log 0.01 + log 2 + 2 log 3.96 > 0

which implies f(σ0, 0) < f(1, 0) = 1 for σ0 ≥ 0.99.

Sub-Case 2.2:
Now consider E2,2, i.e. suppose σ0 + σ1 = 1 and σ1 < 0.01. Then

∂0 log f(σ0, 1− σ0) = log

(
1− σ0

σ0

)
+ log

(
f3(λ)

λ
2
f2(λ)

)
− log τ + log(2 + 2σ0) (6.50)

By Lemma 6.8, Section 6.8, λ ≤ λ implies

f3(λ)

λ
2
f2(λ)

> 0.09.
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As σ1 = 1 − σ0, τ is defined by τ log(1 + 1/τ) = 2 − 2σ0 − σ1 = σ1. So τ log(1 + 1/τ) ≤ 0.01,
implying τ ≤ 0.003 since τ log(1 + 1/τ) is increasing, and

1− σ0

τ
=
σ1

τ
= log

(
1 +

1

τ

)
> log 333.

So,

∂0 log f(σ0, 1− σ0) = log

(
1− σ0

τ

)
+ log

(
f3(λ)

λ
2
f2(λ)

)
− log σ0 + log(2 + 2σ0)

≥ log log 333 + log 0.09 + log 3.98

> 0

and for all 0.99 ≤ σ0 < 1, f(σ0, 1− σ0) < f(1, 0) = 1.

Sub-Case 2.3:
Now consider E2,3, i.e. suppose 0 < σ1 < 1−σ0 and σ1 < 0.01. We show that the gradient ∇ log f 6=
0. Assume (∂0 − 2∂1) log f = 0. By (6.46) we must have σ0 ≥ (1 − σ1)/2 +

√
1− 2σ1 − σ2

1/2.
Since σ1 ≤ 0.01, we can replace this by the weaker bound σ0 ≥ 1 − 1.1σ1. We trivially have
1− σ0 ≥ (2− 2σ0 − σ1)/2, so

σ1

τ
≥ 1

1.1

1− σ0

τ
≥ 1

2.2

2− 2σ0 − σ1

τ
=

1

2.2
log

(
1 +

1

τ

)
Since τ log(1 + 1/τ) = 2− 2σ0 − σ1 ≤ 1.2σ1 ≤ 0.012, we have τ < 0.002. So σ1/τ ≥ log(500)/2.2.

This allows us to show that if (∂0 − 2∂1) log f = 0 and σ1 ≤ 0.01, then (∂0 − ∂1) log f 6= 0. Noting
that 4σ0 + 2σ1 ≥ 4(1− 1.1σ1) + 2σ1 ≥ 3.976,

(∂0 − ∂1) log f = log
(σ1

τ

)
+ log

(
f3(λ)

λ
2
f2(λ)

)
− log σ0 + log(4σ0 + 2σ1)

≥ log(log(500)/2.2) + log 0.09 + log 3.976

= 1.038445...− 2.407945...+ 1.380276...

> 0

This shows that ∇ log f 6= 0 in E2,3. The boundary of E2,3 is contained in E0 ∪ E2,1 ∪ E2,2 ∪ E1.
Since f ≤ 1 on the boundary of E2,3 and ∇ log f 6= 0 in E2,3, it follows that f ≤ 1 in E2,3.

Case Three: E3 = {(σ0, σ1) ∈ E : 0.99 < σ1 ≤ 1}.

Further divide E3 into

E3,1 = {(σ0, σ1) ∈ E3 : σ0 + σ1 = 1},
E3,2 = E3 \ E3,1.

Sub-Case 3.1:
Consider E3,1, i.e. suppose σ0 + σ1 = 1 and σ0 < 0.01. Then we write, see (6.50),

∂0 log f(σ0, 1− σ0) = log

(
1− σ0

σ0

)
+ log

(
1

g0(λ)

)
− log λτ + log(2 + 2σ0)
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To show that this is positive, we bound λτ from above. From (6.53) (Section 6.7) with ∆ = 4σ0+2σ1

we have τ ≤ 1/(4σ0 + 2σ1 − 2). For λ, we use the bound derived in Section 6.7 (6.54). Note that
if ∆ = 4σ0 + 2σ1 then L2 = λ in (6.54). So,

λ ≤ 12(4σ0 + 2σ1 − 2σ0 − σ1 − 1)

6− 3σ0 − 2σ1
≤ 12(2σ0 + σ1 − 1) ≤ 12.

These two bounds together imply λτ ≤ 6. For all 0 ≤ λ ≤ λ we have 3 ≤ g0(λ) ≤ 4 since
3 ≤ ∆0/σ0 ≤ 4 (see the discussion before (6.39)).

We conclude that

∂0 log f(σ0, 1− σ0) ≥ log
0.99

0.01
+ log

1

4
− log 6 + log 2 > 0

This implies that for all (σ0, σ1) ∈ E3,1, f(σ0, σ1) ≤ f(0.01, 0.99) ≤ 1, since (0.01, 0.99) ∈ E1.

Sub-Case 3.2:
Now consider E3,2. As noted in (6.46), any stationary point of log f must satisfy σ1 < 1/2, so E3,2

contains no stationary point. The boundary of E3,2 is contained in E0 ∪E1 ∪E3,1, and it has been
shown that f ≤ 1 in each of E0, E1, E3,1. It follows that f ≤ 1 in E3,2.

This completes the proof of Lemma 6.4 and Theorem 6.1.

6.7 Appendix A

This section is concerned with showing that the system of equations (6.35) under certain conditions
has no solution. Throughout the section, assume τ satisfies (6.33): Recall that ∆3 = 4τ + 4σ0 +
2σ1 −∆,

τ

(
log

(
1 +

1

τ

)
− 2 log

(
4τ + 4σ0 + 2σ1 −∆

4τ

)
− log

(
λ4

λ4
3

f3(λ3)

f3(λ)

))
= 2− 2σ0 − σ1. (6.51)

Here λ = g−1
0 (4) ≈ 2.688 is fixed.

Define for 2σ0 + σ1 + 1 ≤ ∆ ≤ 4σ0 + 2σ1

L1(σ0, σ1,∆, τ) = λ3

√
∆

4τ + 4σ0 + 2σ1 −∆

and define L2(σ0, σ1,∆) as the unique solution to G(σ0, σ1, L2(σ0, σ1,∆)) = ∆, where G is defined
by

G(σ0, σ1, x) = σ0g0(x) + σ1g1(x) + (1− σ0 − σ1)g2(x). (6.52)

This is well defined because each gi is strictly increasing, and for fixed σ0, σ1 we have G(σ0, σ1, 0) =
2σ0 + σ1 + 1 ≤ ∆ and limx→∞G(σ0, σ1, x) =∞ (see Section 6.8). Define

R =
{

(σ0, σ1,∆, τ) ∈ R4
+ : σ0 + σ1 ≤ 1; 2σ0 + σ1 ≥ 1; 2σ0 + σ1 + 1 ≤ ∆ ≤ 4σ0 + 2σ1; (6.51) holds.

}
We prove that the system (6.35) is inconsistent by proving

Lemma 6.5. Let (σ0, σ1,∆, τ) ∈ R. Then L1(σ0, σ1,∆, τ) > L2(σ0, σ1,∆)



6.7. APPENDIX A 119

Proof. Define L(σ0, σ1,∆, τ) = L1(σ0, σ1,∆, τ)− L2(σ0, σ1,∆). We will bound |∇L| in R in order
to show numerically that L ≥ 0. However, ∇L is unbounded for ∆ close to 4 and 2σ0 + σ1 close to
1. For this reason, define

R1 = {(σ0, σ1,∆, τ) ∈ R : ∆ ≥ 3.6},
R2 = {(σ0, σ1,∆, τ) ∈ R : 2σ0 + σ1 ≤ 1.1},
R3 = R \ (R1 ∪R2).

Analytical proofs will be provided for R1, R2, and a numerical calculation will have to suffice for
R3.

First note that for any σ0, σ1 we have L2(σ0, σ1, 2σ0 +σ1 +1) = 0, since G(σ0, σ1, 0) = 2σ0 +σ1 +1,
see (6.52). Here we use the fact that gi(0) = 3 − i, i = 0, 1, 2 by Lemma 6.6, Section 6.8. This
implies that L1(σ0, σ1, 2σ0 +σ1 + 1, τ) ≥ 0 = L2(σ0, σ1, 2σ0 +σ1 + 1), and we may therefore assume
∆ > 2σ0 + σ1 + 1.

We proceed by finding an upper bound for τ , given that it satisfies (6.51). Fix σ0, σ1,∆ and define

r(ζ) = ζ

(
log

(
1 +

1

ζ

)
− 2 log

(
4τ + 4σ0 + 2σ1 −∆

4τ

)
− log

(
λ4

λ4
3

f3(λ3)

f3(λ)

))
We first derive a lower bound r1(ζ) ≤ r(ζ).

For x ≥ 0 we have x− x2/2 ≤ log(1 + x) ≤ x. This implies, that for all ζ,

2ζ log

(
1 +

4σ0 + 2σ1 −∆

4ζ

)
≤ 2ζ

4σ0 + 2σ1 −∆

4ζ
=

4σ0 + 2σ1 −∆

2

Let h(x) = log f3(x) − 4 log x. Then h′(x) = f2(x)/f3(x) − 4/x, and we note that h′(λ) = 0, by
definition of λ. The second derivative is h′′(x) = f1(x)/f3(x)− f2(x)2/f3(x)2 + 4/x2. Substituting
f1(x) = f3(x) + x+ x2/2 and f2(x) = f3(x) + x2/2, for all x ≥ λ

h′′(x) =
4

x2
+ 1 +

x+ x2/2

f3(x)
− 1− x2

f3(x)
− x4

4f3(x)2

=
4

x2
− x2 − 2x

2f3(x)
− x4

4f3(x)2

Since x ≥ λ > 2 we have x2 − 2x > 0, and f3(x) < ex implies

h′′(x) =
4

x2
− x2 − 2x

2f3(x)
− x4

4f3(x)2

≤ 4

x2
− x2 − 2x

2ex

≤ 4

x2
+

2x

2ex

≤ 4

x2
+ x1−λ

Here we use the fact that ex ≥ xλ for x ≥ λ, since λ < e. Since 4x−2 + x1−λ is decreasing, we have
h′′(x) ≤ 4λ−2 + λ1−λ < 3/4 for all x ≥ λ.
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By Taylor’s theorem, for some x ∈ [λ, λ3]

log

(
λ4

λ4
3

f3(λ3)

f3(λ)

)
= h(λ3)− h(λ)

= h(λ) + h′(λ)(λ3 − λ) +
1

2
h′′(x)(λ3 − λ)2 − h(λ)

≤ 3

8
(λ3 − λ)2

Another application of Taylor’s theorem lets us bound

λ3 − λ = g−1
0

(
4 +

4σ0 + 2σ1 −∆

τ

)
− g−1

0 (4).

By Lemma 6.7, Section 6.8, we have g′0(x) ≥ g′0(λ) ≥ 1/2 for x ≥ λ, so dg−1
0 (y)/dy ≤ 2 for y ≥ 4,

and for some y ≥ 4

λ3 = λ+
dg−1

0 (y)

dy

(
4σ0 + 2σ1 −∆

τ

)
≤ λ+ 2

4σ0 + 2σ1 −∆

τ

and so

log

(
λ4

λ4
3

f3(λ3)

f3(λ)

)
≤ 3

8
(λ3 − λ)2 ≤ 3

2

(
4σ0 + 2σ1 −∆

τ

)2

Define τ1 as the unique solution ζ to

2− 2σ0 − σ1 = r1(ζ)

where

r1(ζ) = ζ

(
log

(
1 +

1

ζ

)
− 4σ0 + 2σ1 −∆

2ζ
− 3

2

(
4σ0 + 2σ1 −∆

ζ

)2
)
.

Then r1(ζ) ≤ r(ζ), and r1(ζ) is strictly increasing. So, since r1(τ1) = r(τ) = 2−2σ0−σ1, it follows
that τ ≤ τ1.

Case of R1:
Now fix (σ0, σ1,∆, τ) ∈ R1, i.e. suppose ∆ ≥ 3.6. Then

r1

(
3

4

)
=

3

4
log

(
1 +

4

3

)
− 4σ0 + 2σ1 −∆

2
− 2(4σ0 + 2σ1 −∆)2

=
3

4
log

7

3
− 2σ0 − σ1 +

∆

2
− 2(4σ0 + 2σ1 −∆)2

≥ 3

4
log

7

3
− 2σ0 − σ1 +

3.6

2
− 2(4− 3.6)2

> 2− 2σ0 − σ1

We have limζ→0 r1(ζ) ≤ 0, and r1 is continous and increasing, so τ ≤ τ1 < 3/4. Since ∆ ≥ 3.6 and
2σ0 + σ1 ≤ 2,

∆− (4τ + 4σ0 + 2σ1 −∆) ≥ 2∆− 3− 4σ0 − 2σ1 ≥ 7.2− 7 > 0

This implies that

L1(σ0, σ1,∆) = λ3

√
∆

4τ + 4σ0 + 2σ1 −∆
> λ3
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Note that
G(σ0, σ1, λ) ≥ G(σ0, σ1, λ) = 4σ0 + 2σ1 ≥ ∆

implies that
L2(σ0, σ1,∆) ≤ λ = g−1

0 (4).

Also note that by (6.25) and (6.31) we have

λ3 = g−1
0

(
∆3

τ

)
= g−1

0

(
4 +

4σ0 + 2σ1 −∆

τ

)
≥ g−1

0 (4) = λ,

since g−1
0 is increasing (Lemma 6.7, Section 6.8). So

L1(σ0, σ1,∆, τ) > λ3 ≥ λ ≥ L2(σ0, σ1,∆)

for (σ0, σ1,∆, τ) ∈ R1.

Case of R2, R3:
For R2, R3 we will need a new bound on τ . Since x− x2/2 ≤ log(1 + x) for all x ≥ 0,

r1(ζ) ≥ r2(ζ) = ζ

(
1

ζ
− 1

2ζ2
− 4σ0 + 2σ1 −∆

2ζ
− 3

2

(
4σ0 + 2σ1 −∆

ζ

)2
)
.

Let τ2 be defined by r2(τ2) = 2− 2σ0 − σ1, which can be solved for τ2;

τ2 =
1 + 3(4σ0 + 2σ1 −∆)2

∆− 2
.

It follows from r(τ) ≥ r2(τ) and the fact that r2 is increasing that

τ ≤ 1 + 3(4σ0 + 2σ1 −∆)2

∆− 2
. (6.53)

An upper bound for L2(σ0, σ1,∆) will follow from bounding the partial derivative of G(σ0, σ1, x)
with respect to x. We have g′0 ≥ 1/4, g′1 ≥ 1/3 and g′2 ≥ 1/2 by Lemma 6.7 (Section 6.8), so

∂

∂x
G(σ0, σ1, x) = σ0g

′
0(x) + σ1g

′
1(x) + (1− σ0 − σ1)g′2(x)

≥ σ0

4
+
σ1

3
+

1− σ0 − σ1

2

=
6− 3σ0 − 2σ1

12

and G(σ0, σ1, 0) = 2σ0 + σ1 + 1 implies

∆ = G(σ0, σ1, L2(∆))

≥ G(σ0, σ1, 0) + min
x

∂

∂x
G(σ0, σ1, x)L2(∆)

≥ 2σ0 + σ1 + 1 +
6− 3σ0 − 2σ1

12
L2(∆)

So

L2(∆) ≤ 12(∆− 2σ0 − σ1 − 1)

6− 3σ0 − 2σ1
. (6.54)
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So, to show L1(σ0, σ1,∆, τ) ≥ L2(σ0, σ1,∆), it is enough to show that

λ3

√
∆

4τ + 4σ0 + 2σ1 −∆
>

12(∆− 2σ0 − σ1 − 1)

6− 3σ0 − 2σ1

Solving for τ , this is equivalent to showing

τ < ∆

[
λ3(6− 3σ0 − 2σ1)

24(∆− 2σ0 − σ1 − 1)

]2

− 4σ0 + 2σ1 −∆

4

and by (6.53), and λ3 ≥ λ, it is enough to show

1 + 3(4σ0 + 2σ1 −∆)2

∆− 2
< ∆

[
λ(6− 3σ0 − 2σ1)

24(∆− 2σ0 − σ1 − 1)

]2

− (4σ0 + 2σ1 −∆)

4
(6.55)

for (σ0, σ1,∆, τ) ∈ R2 ∪R3.

Case of R2:
Consider R2, i.e. suppose 2σ0 + σ1 ≤ 1.1. Then 4σ0 + 2σ1 − ∆ ≤ 2σ0 + σ1 − 1 ≤ 0.1 since
∆ ≥ 2σ0 + σ1 + 1. This implies

1 + 3(4σ0 + 2σ1 −∆)2

∆− 2
≤ 1.03

∆− 2

Furthermore, 6−3σ0−2σ1 ≥ 4.9−σ0−σ1 ≥ 3.9, while 2σ0+σ1 ≥ 1 implies ∆−2σ0−σ1−1 ≤ ∆−2.
We have λ3 ≥ λ = g−1

0 (4) > 2.5. So it holds that

∆

[
λ3(6− 3σ0 − 2σ1)

24(∆− 2σ0 − σ1 − 1)

]2

− (4σ0 + 2σ1 −∆)

4
> ∆

[
2.5× 3.9

24(∆− 2)

]2

− 0.025

and it is enough to show that

1.03

∆− 2
≤ ∆

[
2.5× 3.9

24(∆− 2)

]2

− 0.025

We have ∆ ≥ 2σ0 + σ1 + 1 > 2, so multipling both sides by ∆ − 2 > 0, this amounts to solv-
ing a second-degree polynomial inequality. Numerically, the zeros of the resulting second-degree
polynomial are ∆ ≈ −33 and ∆ ≈ 2.37. The inequality holds at ∆ = 2.3, and so it holds for all
2 < ∆ ≤ 2.37. In particular, it holds for 2σ0 + σ1 + 1 < ∆ ≤ 4σ0 + 2σ1 when 1 ≤ 2σ0 + σ1 ≤ 1.1.

Case of R3:
Lastly, consider R3. Here more extensive numerical methods will be used, and we begin by reducing
the analysis from three variables to two. Divide R3 into four subregions,

R3,1 = {(σ0, σ1,∆) ∈ R3 : 1/2 ≤ σ1 ≤ 1},
R3,2 = {(σ0, σ1,∆) ∈ R3 : 1/4 ≤ σ1 < 1/2},
R3,3 = {(σ0, σ1,∆) ∈ R3 : 1/8 ≤ σ1 < 1/4},
R3,4 = {(σ0, σ1,∆) ∈ R3 : 0 ≤ σ1 < 1/8}.

Define

u1 = 5.5, u2 = 5.75, u3 = 5.875, u4 = 5.9375.
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Then

6− 3σ0 − 2σ1 =
(

6− σ1

2

)
− 3σ0 −

3σ1

2
≥ ui −

3(2σ0 + σ1)

2

in R3,i, i = 1, 2, 3, 4.

Fixing i, (6.55) will hold in R3,i if we can show that

1 + 3(4σ0 + 2σ1 −∆)2

∆− 2
≤ ∆

[
λ(ui − 3(2σ0 + σ1)/2)

24(∆− 2σ0 − σ1 − 1)

]2

− (4σ0 + 2σ1 −∆)

4
(6.56)

Note that σ0, σ1 only appear as Σ = 2σ0 + σ1 in (6.56). For this reason we clear denominators in
(6.56) and define for i = 1, 2, 3, 4,

ϕi(Σ,∆) = λ2∆(∆− 2)(ui − 3Σ/2)2 − 144(∆− 2)(∆− Σ− 1)2(2Σ−∆)

−576(∆− Σ− 1)2 − 1728(∆− Σ− 1)2(2Σ−∆)2.

In which case, (6.56) is equivalent to ϕ(Σ,∆) ≥ 0.

In R3,1 we have 1.1 ≤ Σ ≤ 1.5 since 2σ0 + σ1 ≥ 1.1 is assumed, and σ1 ≥ 1/2 and σ0 + σ1 ≤ 1
imply 2σ0 + σ1 ≤ 2− σ1 ≤ 1.5. For this reason define

R̃3,1 = {(Σ,∆) : 1.1 ≤ Σ ≤ 1.5,Σ + 1 ≤ ∆ ≤ 2Σ}

R̃3,2 = {(Σ,∆) : 1.5 ≤ Σ ≤ 1.75,Σ + 1 ≤ ∆ ≤ 2Σ},

R̃3,3 = {(Σ,∆) : 1.75 ≤ Σ ≤ 1.875,Σ + 1 ≤ ∆ ≤ min{2Σ, 3.6}},

R̃3,4 = {(Σ,∆) : 1.875 ≤ Σ ≤ 2,Σ + 1 ≤ ∆ ≤ min{2Σ, 3.6}}.

Here Σ + 1 ≤ ∆ ≤ 2Σ is (6.30).

Equation (6.56) will follow from showing that ϕi(Σ,∆) ≥ 0 in R̃3,i, i = 1, 2, 3, 4.

The ϕi are degree four polynomials, and bounds on |∇ϕi| are found by applying the triangle
inequality to the partial derivatives of ϕi. The same bound will be applied to ∇ϕi for all i. using,

2 ≤ Σ + 1 ≤ ∆ ≤ 2Σ ≤ 4, ui ≤ 6, λ < 3

from which we obtain

ui −
3Σ

2
≤ 9

2
, −1 ≤ 3Σ− 2∆ + 1 ≤ 1,−2 ≤ 4Σ− 3∆ + 2 ≤ 1,

(∆− Σ− 1)(2Σ−∆) ≤ (Σ− 1)2

4
≤ 1

4
.

we have ∣∣∣∣∂ϕi∂Σ

∣∣∣∣ = | − 3λ2∆(∆− 2)(ui − 3Σ/2) + 288(∆− 2)(∆− Σ− 1)(2Σ−∆)

−288(∆− 2)(∆− Σ− 1)2 + 1152(∆− Σ− 1)

+3456(∆− Σ− 1)(2Σ−∆)2 − 6912(∆− Σ− 1)2(2Σ−∆)|
≤ 3λ2∆(∆− 2)(ui − 3Σ/2) + 288(∆− 2)(∆− Σ− 1)|3Σ− 2∆ + 1|

+1152(∆− Σ− 1) + 3456(∆− Σ− 1)(2Σ−∆)|4Σ− 3∆ + 2|
≤ 27 · 4 · 2 · 9/2 + 288 · 2 · 2 · 1 + 1152 · 2 + 3456 · 3/4 · 2
= 9612
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For ∆,∣∣∣∣∂ϕi∂∆

∣∣∣∣ = |λ2∆(ui − 3Σ/2)2 + λ2(∆− 2)(ui − 3Σ/2)2 − 144(∆− Σ− 1)2(2Σ−∆)

−288(∆− 2)(∆− Σ− 1)(2Σ−∆) + 144(∆− 2)(∆− Σ− 1)2

−1152(∆− Σ− 1)− 3456(∆− Σ− 1)(2Σ−∆)2 + 3456(∆− Σ− 1)2(2Σ−∆)|
≤ λ2(2∆− 2)(ui − 3Σ/2)2 + 144(∆− Σ− 1)2(2Σ−∆) + 288(∆− 2)(∆− Σ− 1)(2Σ−∆)

+144(∆− 2)(∆− Σ− 1)2 + 1152(∆− Σ− 1) + 3456(∆− Σ− 1)(2Σ−∆)|2∆− 3Σ− 1|
≤ 9 · 6 · (9/2)2 + 144 · 22 · 1 + 288 · 2 · 2 · 1 + 144 · 2 · 22 + 1152 · 2 + 3456 · 3/4 · 1
= 8383.5

so |∇ϕi| ≤ 12755 for i = 1, 2, 3, 4.

For each i, a grid Pi ⊆ R̃3,i of 4 · 106 points is generated such that for each x ∈ R̃3,i, there exists an
x0 ∈ Pi for which |x− x0| ≤ 0.001. On this grid, ϕi is calculated numerically, and it is found that

min
x0∈Pi

ϕi(x0) =


22.49, i = 1
25.50, i = 2
27.08, i = 3
19.04, i = 4

So for any i and any x ∈ R̃3,i, there exists an x0 such that |ϕi(x) − ϕi(x0)| ≤ |∇ϕi||x − x0| ≤
12755 · 0.001 < 13, which implies ϕi(x) > ϕi(x0)− 13 > 0. This proves (6.55) for σ0, σ1,∆ ∈ R3.

6.8 Appendix B

This section is concerned with the functions

f0(x) = ex and fk(x) = ex −
k−1∑
j=0

xj

j!
, x ≥ 0, k = 1, 2, 3,

and the related functions

g0(x) =
xf2(x)

f3(x)
, g1(x) =

xf1(x)

f2(x)
, g2(x) =

xf0(x)

f1(x)
.

Since fk(0) = 0 for k ≥ 1, we define gi(0) = limx→0 gi(x) = 3− i. Note that

d

dx
fk(x) = fk−1(x), k ≥ 1

Lemma 6.6. For all x ≥ 0 and i = 0, 1, 2,

x < gi(x) ≤ 3− i+ x

with equality in the upper bound if and only if x = 0.
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Proof. Fix i. By definition, gi(0) = 3− i. For x > 0 consider

gi(x)− x =
xf2−i(x)

f3−i(x)
− x =

x(f2−i(x)− f3−i(x))

f3−i(x)
=

x3−i

(2− i)!f3−i(x)
.

Since f3−i(x) > 0 we have gi(x)− x > 0. Now

(3− i)(2− i)!f3−i(x)− x3−i = (3− i)!
∑
k≥3−i

xk

k!
− x3−i = (3− i)!

∑
k≥4−i

xk

k!
> 0

for x > 0, implying gi(x)− x < 3− i.

Lemma 6.7. The functions g0, g1, g2 are convex, and g′i(x) ≥ 1/(4− i) for x ≥ 0, i = 0, 1, 2.

Proof. Consider g0. Since f2(x) = f3(x) + x2/2, g0 can be written as

g0(x) =
xf2(x)

f3(x)
= x+

x3

2f3(x)

Let q(x) = f3(x)/x3 =
∑

j≥0 x
j/(j + 3)!. Then g0(x) = x+ 1/2q(x), and

g′0(x) = 1− q′(x)

2q(x)2
, g′′0(x) =

2q′(x)2 − q(x)q′′(x)

2q(x)3

and we show that 2q′(x)2 − q(x)q′′(x) ≥ 0. We have q′(x) =
∑

j≥0(j + 1)xj/(j + 4)! and q′′(x) =∑
j≥0(j + 1)(j + 2)xj/(j + 5)!, so the jth Taylor coefficient of 2q′(x)2 − q(x)q′′(x) is given by

[xj ][2q′(x)2 − q(x)q′′(x)] =
∑

j1,j2≥0

j1+j2=j

2
(j1 + 1)

(j1 + 4)!

(j2 + 1)

(j2 + 4)!
− 1

(j1 + 3)!

(j2 + 1)(j2 + 2)

(j2 + 5)!

=
∑
j1,j2

2(j1 + 1)(j2 + 1)(j2 + 5)− (j1 + 4)(j2 + 1)(j2 + 2)

(j1 + 4)!(j2 + 5)!

=
∑
j1,j2

(j2 + 1)(2(j1 + 1)(j2 + 5)− (j1 + 4)(j2 + 2))

(j1 + 4)!(j2 + 5)!

=
∑
j1,j2

(j2 + 1)(j1j2 + 8j1 − 2j2 + 2)

(j1 + 4)!(j2 + 5)!

It is seen that this is positive for j = 0, 1, 2. Let Q(j1, j2) denote the summand. If j ≥ 3 then since
Q(j1, j2) ≥ 0 whenever j1 ≥ 2.∑
j1,j2≥0

j1+j2=j

Q(j1, j2) ≥ Q

(⌊
j

2

⌋
,

⌈
j

2

⌉)
+Q(0, j) +Q(1, j − 1)

=
(bj/2c+ 1) (dj/2ebj/2c+ 8dj/2e − 2bj/2c+ 2)

(dj/2e+ 4)!(bj/2c+ 5)!
− 2(j2 − 1)

24(j + 5)!
− j2 − 11j

120(j + 4)!

≥ j3

8(dj/2e+ 4)!(bj/2c+ 5)!
− j2

12(j + 5)!
− j2 − 11j

120(j + 4)!

=
j3

8(dj/2e+ 4)!(bj/2c+ 5)!
− 10j2 + (j2 − 11j)(j + 5)

120(j + 5)!

≥ j3

8

(
1

(dj/2e+ 4)!(bj/2c+ 5)!
− 1

15(j + 5)!

)
.
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(To get the final inequality, consider j ≤ 11 and j > 11 seperately).

It remains to show that aj = (dj/2e+ 4)!(bj/2c+ 5)! is smaller than bj = 15(j + 5)! for j ≥ 3. For
j = 3, a3 = 6! · 6! < 15 · 8! = b3. For the induction step, aj+1/aj ≤ j/2 + 6 while bj+1/bj = j+ 6, so
a3 < b3 implies aj < bj for all j ≥ 3. So 2q′(x)2 − q(x)q′′(x) ≥ 0, and it follows that g0 is convex.
Similar arguments show that g1, g2 are convex.

For i = 0, 1,

g′i(x) =
f2−i(x)

f3−i(x)
+
xf1−i(x)

f3−i(x)
− xf2−i(x)2

f3−i(x)2

=
f2−i(x)f3−i(x) + xf1−i(x)f3−i(x)− xf3−i(x)2

f3−i(x)2
.

Now

f2−i(x)f3−i(x) + xf1−i(x)f3−i(x)− xf3−i(x)2 =

x6−2i

(
1

(2− i)!(4− i)!
+

1

(3− i)!2
+

1

(1− i)!(4− i)!
+

1

(2− i)!(3− i)!
− 2

(2− i)!(3− i)!
+O(x)

)
= x6−2i

(
1

(3− i)!(4− i)!
+O(x)

)
.

And

f3−i(x)2 = x6−2i

(
1

(3− i)!2
+O(x)

)
.

So, for i = 0, 1 we have

g′i(x) =
1

4− i
+O(x).

For i = 2 we have

g′2(x) =
ex

f1(x)
+

xex

f1(x)
− xe2x

f1(x)2
= ex

(
f1(x)(1 + x)− xex

f1(x)2

)
= ex

(
x2

2 +O(x3)

x2 +O(x3)

)
=

1

2
+O(x).

And by the convexity of gi we have g′i(x) ≥ 1/(4− i) for all x ≥ 0.

Lemma 6.7 allows us to define inverses g−1
i , i = 0, 1, 2.

Lemma 6.8. For 0 ≤ x ≤ λ = g−1
0 (4), the following inequalities hold.

(i) 1 ≤ f2(x)2

f1(x)f3(x)
≤ 2

(ii) 0.09 <
f3(x)

x2f1(x)
≤ 1

6

(iii)
f2(x)

xf1(x)
≤ 1

3

(iv) 0.01 <
f3(x)

x4f1(x)

(v) 0.09 <
f3(x)

x2f2(x)
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Proof. For the lower bound, let x > 0 and consider the equation f2(x)2 = f1(x)f3(x). By definition
of fi, this equation can be written as

(ex − 1− x)2 = (ex − 1)

(
ex − 1− x− x2

2

)
Expanding and reordering terms, we have

ex
(
x+

x2

2

)
= x+

x2

2

which clearly has no positive solution. Since f2(0)2/f1(0)f3(0) = 3/2 > 1, this implies that
f2(x)2/f1(x)f3(x) > 1 for all x ≥ 0.

For the upper bound we consider the equation f2(x)2 = 2f1(x)f3(x). This simplifies to

(ex − 1)2 = x2ex or ex = 1 + xex/2

which has no positive solution.

Since g0, g1 are increasing by Lemma 6.7 and positive, the expressions in (ii) – (v) are all decreasing;

f3(x)

x2f1(x)
=

1

g0(x)g1(x)
,

f2(x)

xf1(x)
=

1

g1(x)
,

f3(x)

x4f1(x)
=

1

x2g0(x)g1(x)
,

f3(x)

x2f2(x)
=

1

xg0(x)

The upper bounds are obtained by noting that gi(0) = 3− i by Lemma 6.6, while the lower bounds
are obtained numerically by letting x = 2.688 > λ.
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