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Abstract

The goal of this dissertation is to develop computational models for robots to detect and
sustain the spatial patterns of behavior that naturally emerge during free-standing group con-
versations with people. These capabilities have often been overlooked by the Human-Robot
Interaction (HRI) community, but they are essential for robots to appropriately interact with
and around people in many human environments.

In this work, we first develop a robotic platform for studying human-robot interactions,
and contribute new experimental protocols to investigate group conversations with robots. The
studies that we conducted with these protocols examine various aspects of these interactions,
and experimentally validate the idea that people tend to establish spatial formations typical
of human conversations with robots. These formations emerge as the members of the interac-
tion cooperate to sustain a single focus of attention. They maximize their opportunities for
monitoring one another’s mutual perceptions during conversations.

Second, we introduce a general framework to track the lower-body orientation of free-
standing people in human environments and to detect their conversational groups based on
their spatial behavior. This framework takes advantage of the mutual dependency between
the two problems. Lower-body orientation is a key descriptor of spatial behavior and, thus,
can help detect group conversations. Meanwhile, knowing the location of group conversations
can help estimate people’s lower-body orientation, because these interactions often bias human
spatial behavior. We evaluate this framework in a public computer vision benchmark for group
detection, and show how it can be used to estimate the members of a robot’s group conversation
in real-time.

Third, we study how robots should orient with respect to a group conversation to cooperate
to sustain the spatial arrangements typical of these interactions. To this end, we conduct
an experiment to study the effects of varied orientation and gaze behaviors for robots during
social conversations. Our results reinforce the importance of communicative motion behavior
for robots, and suggest that their body and gaze behaviors should be designed and controlled
jointly, rather than independently of each other. We then show in simulation that it is possible to
use reinforcement learning techniques to generate socially appropriate orientation behavior for
robots during group conversations. These techniques reduce the amount of engineering required
to enable robots to sustain spatial formations typical of conversations while communicating
attentiveness to the focus of attention of the interaction.

Overall, our efforts show that reasoning about spatial patterns of behavior is useful for
robots. This reasoning can help with perception tasks as well as generating appropriate robot
behavior during social group conversations.





Acknowledgements

This work would not have been possible without the support of the Walt Disney Corporation,
the Robotics Institute, and the help of many collaborators and colleagues. I would like to thank
each of the people listed below for ...

Aaron Steinfeld
} ... the freedom to pursue many interesting research topics, your guidance, and

your unconditional support. Thank you also for your words of encouragement
and your help when it was needed the most. I am very lucky to have been
advised by both of you.

Scott Hudson

Jodi Forlizzi
}

... the time that you dedicated to the Furniture Robot project. Your advice
and help was essential to the completion of this dissertation.Liz Carter

Peter Carr ... your patience as we worked together on many research ideas. I learned a
great deal about research and engineering thanks to you.

Kris Kitani
}

... being part of my thesis committee. Your input on this work shaped the
way that I think about many research problems today.Brian Scassellati

Braden McDorman
}

... helping with our human-robot interaction experiments in so many different
ways.Jo Ana Vaz

Jill Lehman ... your advice on research and academic life. Thanks also for organizing the
Summer Games event where we tested the robot for the first time.

Emma Brunskill
}

... all your feedback on using Reinforcement Learning to enable Human-Robot
Interaction.Christoph Dann

Arun Venkatraman
}

... taking the time to teach me about Machine Learning and brainstorming so
many interesting research ideas. You were an invaluable source of experience.Hoang Le

Yisong Yue
Eric Brockmeyer

}
... teaching me a whole lot about rapid fabrication, 3D modeling, and design.
Your help was essential to build many parts of the robot.Alex Alspach

Matt Glisson
}

... all the hard work that you put into making the furniture robot what it is
today. I also learned a lot about how to present my work from you.Mo Mahler

Katsu Yamane ... kindly letting me use your lab space for developing robot capabilities and
running user experiments.

Alanson Sample ... your continued support over the past years, as well as your advice on
research and life beyond academics.

Jessica Hodgins ... opening the doors of Disney Research Pittsburgh to me. The furniture
robot and this dissertation would not exist without your support throughout
my whole Ph.D.

Being part of the Disney Research family was one of the best experiences of my graduate
student life. Thanks to everyone who made Disney Research Pittsburgh such a special place,
especially the Princess and IT Teams.

Last but not least, I extend my thanks to my friends and family. I would not have finished
without your encouragement and support.





Contents

1 Introduction 1

1.1 Outline of Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7

2.1 A Social Psychology Perspective on Human Gatherings . . . . . . . . . . . . . . 7
2.2 Spatial Patterns of Human Behavior During Conversations . . . . . . . . . . . . 8

3 Related Work 9

3.1 Proxemics & Spatial Formations in Human-Robot Interactions . . . . . . . . . . 9
3.2 Detecting Interactions: Computational Models of F-formations . . . . . . . . . . 11

4 The Furniture Robot 15

4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Examining Spatial Behavior during Group Conversations 21

5.1 A Case Study of Child-Robot Interaction: Effects of a Sidekick . . . . . . . . . . 21
5.2 Group Interactions in a Social Role-Playing Game . . . . . . . . . . . . . . . . . 33
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Detecting Group Conversations by Reasoning About Spatial Behavior 43

6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Parallel Group Detection & Lower-Body Orientation Tracking . . . . . . . . . . . 45
6.4 Evaluation on the Cocktail Party Dataset . . . . . . . . . . . . . . . . . . . . . . 49

7 Understanding the Effects of Body Orientation and Gaze 59

7.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Orientation And Gaze Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



VI

8 Learning to Control Robot Orientation During Conversations 75

8.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2 Group Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.3 State Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9 Conclusion 89

9.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.2 Limitations and Opportunities for Future Research . . . . . . . . . . . . . . . . . 90

Appendices 93

A Chester’s Gaze Calibration 95

B Optimizing the Stride of the O-Space Proposals 97

C Tracking with Ultra Wide-Band Wireless Sensors 101

Bibliography 103



List of Figures

1.1 Group conversations with and without a robot . . . . . . . . . . . . . . . . . . . 1
1.2 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Types of human gatherings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Spatial arrangements typical of F-formations . . . . . . . . . . . . . . . . . . . . 8

4.1 A few early designs of the robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Renderings of Chester’s main hardware components . . . . . . . . . . . . . . . . 16
4.3 Photo of the finished platform and rendering of the components inside of its lamp 17
4.4 Close up photos of Chester’s face . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Initial part of a graph for a scripted interaction with Chester . . . . . . . . . . . 19

5.1 Sketch of the environment where the experiment happened . . . . . . . . . . . . 23
5.2 Top view of the scene during three different sessions of the experiment . . . . . . 25
5.3 Frame of reference with respect to the robot . . . . . . . . . . . . . . . . . . . . . 26
5.4 Polar plots of the position of the participants with respect to the robot . . . . . . 27
5.5 Histogram of the distances with respect to the robot in logarithmic scale . . . . . 28
5.6 Typical situation in which the participants got distracted with their pictures . . 32
5.7 Example session from the pilots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.8 Participants playing Mafia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.9 Many people did not notice that Chester was a robot before the interaction . . . 39

6.1 Typical steps involved in detecting F-formations . . . . . . . . . . . . . . . . . . 44
6.2 Schematic representation of our group detection framework. . . . . . . . . . . . . 45
6.3 Bayes network that characterizes the proposed particle filters . . . . . . . . . . . 48
6.4 Images from the Cocktail Party dataset [155]. . . . . . . . . . . . . . . . . . . . . 49
6.5 Example o-space proposals for 5 orientations . . . . . . . . . . . . . . . . . . . . 50
6.6 O-space proposals for a frame of the Cocktail Party dataset . . . . . . . . . . . . 51
6.7 Bayes network that characterizes the particle filters we implemented . . . . . . . 51
6.8 Geometric relations in the motion model. . . . . . . . . . . . . . . . . . . . . . . 53
6.9 Angular difference with respect to the lower body annotations. . . . . . . . . . . 54
6.10 Qualitative results for GrupO on the Cocktail Party dataset . . . . . . . . . . . 56

7.1 Strategies to orient a robot with respect to the members of its group conversation 59
7.2 HRI experiment where we tested orientation and gaze behaviors . . . . . . . . . . 60
7.3 Geometric relations for the AO behavior . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 System used to control the body orientation and gaze of the robot . . . . . . . . 64
7.5 Outputs of our perception system . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.6 Chester’s eye fixations in the 20 sessions of the experiment. . . . . . . . . . . . . 69



VIII

7.7 Ratings for how much the participants felt that Chester looked at them . . . . . 70
7.8 Ratings for how natural the robot’s motion looked like . . . . . . . . . . . . . . . 70
7.9 Distance to Chester during the last minute of brainstorming . . . . . . . . . . . . 72

8.1 Simulated group conversation between a robot and four people . . . . . . . . . . 75
8.2 Primary gaze rays used to compute the point of maximum social saliency . . . . 79
8.3 Proportion of speakers towards whom the agents failed to orient . . . . . . . . . 83
8.4 Proportion of steps in which the agents received a reward with a bonus . . . . . 83
8.5 Average cumulative reward for σ = 0.0 . . . . . . . . . . . . . . . . . . . . . . . . 84
8.6 Proportion of steps with bonus by detection probabilities . . . . . . . . . . . . . 85
8.7 Angular offset between the robot’s direction and the direction towards the speaker 86
8.8 Comparison of pre-trained agents and agents that learned from scratch . . . . . . 87

A.1 Gaze calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.1 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.2 Cap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.3 Tracking of a baseball cap with two UWB tags . . . . . . . . . . . . . . . . . . . 102



List of Tables

3.1 Related work on detecting situated social interactions by sensing modality . . . . 12

5.1 Spatial zones found for Chester . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Versions of the Mafia game that were tested in each pilot session . . . . . . . . . 35
5.3 Post-condition ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Group detection results using the F-formation detection approach of [156] . . . . 55
6.2 Group detection results with Alg. 6.3.1. . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Interaction classification results at an individual level . . . . . . . . . . . . . . . . 57

7.1 Participant characteristics per condition . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Ratings for the factors resulting from factor analysis. . . . . . . . . . . . . . . . . 71





Chapter 1

Introduction

The success of many robots in unstructured, human environments hinges on their ability to
appropriately interact with and around people [42; 127]. Appropriate interactions are especially
important for mobile platforms for professional or domestic use. These robots are becoming
very popular and their sales are expected to increase in the period of 2016-2019 [132]. This
increase follows a generalized trend across the robotics market, where many more robots are
manufactured and sold year after year.

Generating socially appropriate robot behavior often requires the ability to detect on-going
conversations and their members in human environments. For example, consider Figure 1.1a
in which two people talk to each other. Even though the robot is not part of the interaction,
it is important for it to know that the conversation is happening to avoid interrupting inap-
propriately, e.g., by navigating across the members of the group. Now consider Figure 1.1b,
where the robot is engaged in a conversation with four other participants. If the robot was able
to detect the members of its group, then it could acknowledge when other people joined the
interaction, as we normally do in human-human social encounters. The robot could also adjust
to people leaving its conversation and potentially react to try to re-engage them.

(a) (b)

Figure 1.1: Group conversations with and without a robot. In (a), two people (outlined in white)
converse with one another. The robot (dashed yellow box) is not part of their interaction. In
(b), everybody is part of a conversation.

The problem of detecting social conversations and their members has often been over-
looked by the Human-Robot Interaction (HRI) community. Many methods have been proposed
for important, related problems, including enabling robots to take part in turn-taking pro-
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cesses during conversations [117; 182], estimating users’ engagement and willingness to interact
[31; 49; 101; 105; 122; 145; 177], and detecting groups of people that move together in human
environments [106; 110]. However, these methods do not address detecting conversations specif-
ically. One reason for this gap is the heavy focus of the community on studying one-on-one
human-robot interactions. In these contexts, researchers often assume that the user of interest
can only – and is always – interacting with the robot. This simplification has often made the
research community ignore the problem of detecting on-going conversations.

This dissertation suggests to embrace dynamic group conversations in HRI.
Understanding these type of interactions is essential to enable robots to interact in complex
human environments. With this objective in mind, we work towards enabling robots to reason
about human spatial behavior typical of group conversations. This ability provides a path for
detecting these types of interactions as well as enabling robots to adapt to changes in their
social context. More specifically,

the goal of this dissertation is to develop computational models for robots to detect
and sustain the spatial patterns of human behavior that naturally emerge during
free-standing group conversations.

Even though human spatial behavior is malleable during conversations, it possesses a partic-
ular structure that often makes conversations between free-standing people distinctive from
other nearby social activities. The structure arises for two main reasons. First, human spatial
behavior can effectively convey social expectations and intentions [87]. Second, conversations
have an intrinsic communicative purpose that heavily influences the way that people stand with
respect to one another during these interactions. Erving Goffman [58] defined conversations
as a jointly focused encounter where the participants gather together and openly cooperate to
sustain a single focus of attention. This cooperation can be observed in human verbal behav-
ior, e.g., through turn-taking, but also in non-verbal behavior. During conversations, people
position and orient themselves to maximize their opportunity to monitor one another’s mutual
perceptions. The result are spatial organizations where an “eye-to-eye ecological huddle” tends
to be maintained [86].

Our efforts build upon prior work on surveillance and automated human behavior
analysis from the fields of computer vision and multi-modal interaction. Researchers from
these areas proposed the first computational models of human spatial behavior typical of group
conversations [40; 54; 74]. They also showed that it is possible to detect conversations by
reasoning about this type of human behavior. We validate these ideas in the context of HRI
with a new mobile robot that we built as part of this dissertation. Furthermore, we propose a
novel framework to detect group conversations between free-standing people and robots. Our
main insight is that we can exploit the mutual dependency between two problems for this task.
These problems are:

1. detecting group conversations by reasoning about human spatial behavior; and

2. tracking people’s lower-body orientation in a scene.

The second problem is very important for the first one because lower-body orientation is a key
descriptor of human spatial behavior. But group conversations often bias the spatial behavior
of nearby people as well, because conversations are natural social attractors. This means that
the location of these interactions can serve as a strong prior for tracking people’s lower-body
orientation.
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Several challenges arise upon studying group conversations in HRI. From a sensing
perspective, the more people are around a robot, the more noisy and incomplete sensor data
tends to be. In this work, we deal with measurement uncertainty by designing the core elements
of our framework for detecting group conversations based on probabilistic methods.

From an experimental perspective, the more people interact with one another, the more
dynamic human behavior tends to be. This variability can lead to confounds and unreliable
estimates on the effects of behavioral manipulations. For example, in dyadic interactions it is
important that both parties are involved in the conversation, or the interaction ends. But in
bigger group conversations, people can often leave or join the interaction dynamically. This
added flexibility can often induce a bystander effect in HRI studies, where people become by-
standers or spectators of human-robot interactions, instead of being active participants.1 This
effect can then make it difficult to systematically study human conversations with robots and
related phenomena, because it can induce participants to disregard interactions during exper-
iments. Our key methodological insight to reduce the bystander effect in this work was to
design experimental protocols that assigned active roles to the participants. These protocols
induced people to take part in activities that involve social human-robot interactions, with-
out specifically telling them how to behave – which is essential to observe naturalistic social
phenomena during controlled HRI experiments. These protocols can be used to further study
various aspects of group conversations beyond the scope of this dissertation.

Reasoning about spatial behavior during conversations raises another important computa-
tional challenge because this behavior is inter-dependent. Not only do people’s poses affect one
another, but also robots can influence human spatial behavior and vice-versa. Naively taking
into consideration all these different interactions can easily become prohibitively expensive for
HRI applications. To address this problem, the framework that we proposed to detect group
interactions assumes that people and robots are equal from a social perspective. This leads to
a unified viewpoint on spatial behavior that facilitates reasoning about how the motion and
pose of social actors relate to one another. We demonstrate this perspective during a user
experiment where it was essential for a robot to detect the members of its group conversation
in real-time.

We limit the scope of this dissertation to studying spatial behavior typical of group con-
versations were people are standing and quasi-static, as it often happens during social encounters
in public, open spaces. In our HRI experiments, people rarely move during conversations unless
there is a good reason for it (e.g., because their current activity requires it, or they engage in
other interactions or tasks). Detecting conversations in many other circumstances and through
other communication modalities, e.g., speech [45], gaze [85], gestures [171], and posture [39], is
an important task that is closely related to our work [27; 46; 70; 108; 137]. However, studying
these interactions and other modalities of communication is out of the scope of this dissertation.
We discuss future avenues of research in this direction at the end of this dissertation.

1 To better illustrate the bystander effect, think about a conversation between a robot a multiple people. If
the robot addresses the whole group, then any participant can reply. Those who are shy or not very motivated
to converse with the robot then have a good excuse to stay quiet and become simple spectators or bystanders.
Why should they be active participants? After all, other people can take the lead of the conversation.
We associate the bystander effect with social loafing, a phenomena characterized by a reduction in individual

effort when people are in groups [68]. One cause for this phenomena is the diffusion of responsibility amongst
the members of a group. People in groups may also perceive a reduced sense of being evaluated as an individual,
or no direct link between their personal efforts and success in a task. Moreover, social loafing may occur when
the value of a goal is contingent on the members of a group.
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1.1 Outline of Approach
STUDY HUMAN BEHAVIOR & 

HUMAN-ROBOT INTERACTIONS
DEVELOP ROBOT

CAPABILITIES

EVALUATE NEW 
CAPABILITIES

Figure 1.2: Research methodology

We use an iterative research methodology, as de-
picted in Figure 1.2, to study social group conversa-
tions, develop new robot capabilities, and evaluate
the effectiveness of the proposed approaches for HRI.
This methodology also drives the organization of the
rest of this document.

(Chapter 2 & 3) Background & Related Work. We start by reviewing relevant
background from social psychology, including foundational work on human-human conversations
and spatial patterns of human behavior. We then describe related work within HRI and survey
computational models for detecting group conversations, especially methods that reason about
spatial formations typical of these interactions. These prior efforts informed the development
of new robot capabilities in this work.

(Chapter 4) The Furniture Robot Chester and Its Companion Blink. To study
human-robot interactions, we designed and built a flexible robotic platform in collaboration
with Disney Research. The particular design of the robot was driven by the need to control
human expectations for robot characteristics, which is important to avoid issues like the uncanny
valley [123]. One of the unique features of the robot is the fact that it can operate as one or two
characters simultaneously, depending on the needs of a particular interaction. In this work, we
used this platform to conduct three different user experiments, like the one depicted in Figure
1.1. The results from these efforts reinforced prior findings within HRI that suggest that the
anthropomorphization of household objects can produce positive engagement effects in users
[134; 215]. An overview of the protocols that we devised for these experiments was presented
in the Robots In Groups and Teams Workshop at CSCW 2017 [198],

“Methods for Studying Group Interactions in HRI,” M. Vázquez, E. J. Carter, J. Forlizzi, S. E.
Hudson, and A. Steinfeld. In Robots In Groups and Teams, CSCW, 2017.

(Chapter 5) Examining Spatial Behavior During Group Conversations. We
used our first two user experiments to validate the idea that people tend to establish spatial
formations typical of human group conversations with social robots. The first experiment was
a field trial, in which we tested our custom robotic platform with groups of children. As part of
this effort, we studied various user engagement cues, like spatial behavior, and the effects of a
sidekick character in HRI. This experiment was published in the 2014 ACM/IEEE International
Conference on Human-Robot Interaction [194],

“Spatial and Other Social Engagement Cues in a Child-robot Interaction: Effects of a Sidekick,”
M. Vázquez, A. Steinfeld, S. E. Hudson, and J. Forlizzi. In HRI, 2014.

Because the bystander effect emerged during this experiment, we designed another more
controlled protocol to further study social conversations and spatial behavior. This new protocol
induced the participants to actively interact with our robot by involving them in a social role-
playing game. This game provided an opportunity to study how different roles for the robot
could affect human spatial behavior and its interaction with groups of adults. Furthermore, this
study served to collect sensor data from which we could start exploring how to enable robots
to detect group conversations and their members. A short summary of this work appeared in
the 10th Annual ACM/IEEE International Conference on Human-Robot Interaction [195],

“Social Group Interactions in a Role-Playing Game,” M. Vázquez, E. J. Carter, J. A. Vaz, J.
Forlizzi, A. Steinfeld, and S. E. Hudson. In HRI (Ext. Abstracts), 2015.

https://sites.coecis.cornell.edu/hri/files/2017/01/Vazquez-et-al.-1ch0e5e.pdf
http://doi.acm.org/10.1145/2559636.2559684
http://doi.acm.org/10.1145/2701973.2702039
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(Chapter 6) Detecting Conversations by Reasoning About Spatial Behavior.
Based on our experience conducting the previous experiments, we designed a probabilistic
framework to detect group conversations between free-standing people and robots. The core of
this framework is an alternating optimization approach that leverages the mutual dependency
between two tasks: detecting group conversations based on spatial behavior, and tracking the
lower-body orientation of people in a scene. We evaluated this approach in a established dataset
from computer vision that is often used to compare methods to detect group conversations
between free-standing people[155]. Our results suggest that the proposed framework can help
better detect non-interacting people in social environments, like bystanders, without sacrificing
group detection performance. This group detection framework was first published in the 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems [196],

“Parallel Detection of Conversational Groups of Free-Standing People and Tracking of their
Lower-Body Orientation,” M. Vázquez, A. Steinfeld, and S. E. Hudson. In IROS, 2015.

(Chapter 7) On the Effects of Body Orientation & Gaze. With the proposed
group detection framework, we then conducted another user experiment on the effects of varied
orientation and gaze behaviors for robots during social conversations. This effort provides a con-
crete example on how our group detection approach can be implemented for HRI applications,
and demonstrates that it can enable the execution of autonomous robot behaviors.

For this third user experiment, we designed another experimental protocol to implicitly
induce participants to take part in human-robot interactions. In this case, people were involved
in a brainstorming session to solve a problem with a robot. In contrast to the social role-playing
game that we used in an experiment before, the brainstorming activity was less controlled and
adversarial. It also did not require teaching very specific instructions to the participants.

The results from the brainstorming experiment reinforced the importance of communicative
motion in HRI [44; 152; 178]. In addition, they showed that a robot’s gaze can influence users’
perception of its motion during conversations. But its motion can also influence the perception
of its gaze. This mutual dependency suggests that robot gaze and body motion must be designed
and controlled jointly, rather than independently of each other. We published these findings in
the 2017 ACM/IEEE International Conference on Human-Robot Interaction [199],

“Towards Robot Autonomy in Group Conversations: Understanding the Effects of Body Orien-
tation and Gaze,” M. Vázquez, E. J. Carter, B. McDorman, J. Forlizzi, A. Steinfeld, and S. E.
Hudson. In HRI, 2015.

(Chapter 8) Learning to Control Robot Orientation During Conversations.
The success of the orientation behaviors that we studied in our last experiment motivated us to
explore reinforcement learning techniques to generate socially appropriate orientation behaviors
for robots during multi-party conversations. This exploration aimed to reduce the amount of
engineering required to enable appropriate spatial behavior with noisy multi-modal sensor data.
Our results from tests in a simulated environment suggested that a new state representation
that we designed for this problem can be used to find good control policies for mobile robots.
Moreover, these policies have the potential to generalize across conversations with different
numbers of people. This work was published in the 25th IEEE International Symposium on
Robot and Human Interactive Communication [197],

“Maintaining Awareness of the Focus of Attention of a Conversation: A Robot-Centric Reinforce-
ment Learning Approach,” M. Vázquez, A. Steinfeld, and S. E. Hudson. In RO-MAN, 2016.

(Chapter 9) Conclusion. We conclude this dissertation with a brief summary of our
contributions and a discussion of future research directions.

https://doi.org/10.1109/IROS.2015.7353792
https://doi.org/10.1109/IROS.2015.7353792
http://doi.acm.org/10.1145/2909824.3020207
http://doi.acm.org/10.1145/2909824.3020207
https://doi.org/10.1109/ROMAN.2016.7745088
https://doi.org/10.1109/ROMAN.2016.7745088




Chapter 2

Background

This chapter reviews relevant background from social psychology. This foundation on human
gatherings and spatial patterns of human behavior drives the design of computational models
of spatial formations typical of group conversations, as later described in Chapters 3 and 6.
This background was also essential for our effort to develop appropriate behaviors for robots
during group conversations.

2.1 A Social Psychology Perspective on Human Gatherings

Goffman [58] described gatherings as a set of individuals who are in one another’s immediate
presence. Gatherings can be of two types, as illustrated in Fig. 2.1. Unfocused gatherings are
associated with the management of mere co-presence, e.g., pedestrians on a street, strangers
waiting at a bus stop, etc. Focused gatherings are instead characterized by people coming
together to sustain a single focus of attention.

GATHERINGS

FOCUSED
JOINT FOCUS

COMMON FOCUS

UNFOCUSED

Figure 2.1: Types of human gatherings [58; 86]. Conversations, in particular, fall within the
class of jointly focused gatherings.

If there is a joint responsibility between the people in a gathering to cooperate to sustain
a focus of attention, then the interaction is said to be a jointly focused gathering [86]. This
category includes conversations, tennis games, dancing couples, pairs of workers co-operating
to solve a task which requires sustained attention, psychotherapy sessions, etc. Other focused
encounters where there is no shared cooperation are known as common focused gatherings.
Typical examples include a platoon on a parade, pupils paying attention to what a teacher says
in a classroom, or a guided museum tour.

Some information is given voluntarily during gatherings, such as the content of what people
say, while other information is given off whether the interactants choose to provide it or not.
As explained by Kendon [86], the latter is an inevitable and unavoidable product of people’s
presence and of their actions. For example, people might provide additional information through
their manner of talk, accent, gaze, or their body posture. The ecological arrangements that
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emerge during conversations are also very informative, as further discussed in the next Section.
While these aspects may seem unimportant in comparison to the information that is given
voluntarily, they play a crucial role in structuring interactions.

2.2 Spatial Patterns of Human Behavior During Conversations

Situated human conversations are the most common type of jointly focused gatherings. The
members of these interactions converse in one another’s immediate presence and cooperatively
sustain their focus of cognitive and visual attention. They pursue a common line of concern,
where the topic is jointly created and sustained. When a participant has the turn to speak but
(s)he doesn’t or can’t, conversations often end.

During conversations among free-standing people, the participants position and orient them-
selves such that they have equal, direct, and exclusive access to the space between them. People
maneuver in relation to one another to create a sort of “no-man’s land”, and maintain a sepa-
rate world from their surrounding [86]. The result is a distinct spatial organization, typically
known as a face formation or F-formation within social psychology [87]. This organization
maximizes the opportunity of the interactants to monitor one another during conversations and
maintains their group as a spatially distinct unit from other nearby interactions.1

F-formations begin when the members of a group position themselves such that their trans-
actional segments intersect (as in Fig. 2.2a). These segments extend in front of each person
and encompass the physical space that they are using for their current activity. Transactional
segments are the space into which they look and speak, or into which they reach to handle
objects. People will work to maintain their transactional segment free of intrusions for as long
as they are engaged in an activity that requires it.

The physical area where the transactional segments of the members of a conversation in-
tersect is known as the o-space of the corresponding F-formation [87]. The o-space of dyads
standing in a face-to-face arrangement is in-between the participants (as in Fig. 2.2a). During
side-by-side or “L” arrangements, the o-space tends to be in front of the members of the conver-
sation (Fig. 2.2b and 2.2c). Bigger groups tend to form semi-circular or circular arrangements
with their o-space towards the center of the circle (Fig. 2.2d and 2.2e).

A transition from a conversation into another type of interaction, or vice-versa, is often
visible in the spatial organization of the participants. For example, F-formations often trans-
form into a less uniform spatial arrangement when a conversation shifts into a common focus
encounter [87; 113]. When the focus of attention becomes a particular person, a separation
between this interactant and the rest of the group is often observed due to a difference in social
status or role. When no particular spatial arrangement is observed in common focus encounters,
the group is said to be organized in a cluster.

1Interestingly, similar spatial organizations have been observed in cases where people are seated in an open
space and can adjust the position their chairs to hold conversations with one another [19].

(a) (b) (c) (d) (e)

TRANSACTIONAL
SEGMENT

Figure 2.2: Spatial arrangements typical of F-formations. Dashed areas represent o-spaces.



Chapter 3

Related Work

This chapter first reviews related work within the field of Human-Robot Interaction, espe-
cially on the social use of space. Then, it describes prior efforts to detect human interactions
and to model F-formations computationally. Our efforts build upon this related work.

3.1 Proxemics & Spatial Formations in Human-Robot Interactions

Significant prior research has focused on proxemics or the study of how we, hu-
mans, use and perceive space [60]. Many factors can influence human proxemics, including
social norms, peoples’ familiarity with one another, and to what degree people are interacting
[14]. Environmental conditions, such as lighting [2], can alter proxemics as well. In the partic-
ular case of HRI, the study of proxemics has become increasingly important as robots become
more and more capable of interacting in public settings [47; 78; 97; 160; 183; 189]. Several fac-
tors can influence the level of comfort that people have with robots and, thus, the distance that
they like to maintain from them. For example, these factors include a robot’s voice and height,
the direction from which a robot approaches users, mutual gaze, users’ previous experience with
robots and pets, gender, age, and personality [125; 179; 205; 206; 207; 208].

Proxemics has been a key factor in social robot navigation [96]. Various ap-
proaches have been designed to incorporate social conventions into the way that robots move
within human environments. One approach to achieve this goal is to model social conven-
tions as social forces that steer a robot as it navigates nearby people [51; 114]. Another ap-
proach is to model social conventions as cost functions (or potential fields) in navigation plans
[89; 109; 126; 147; 154; 176; 188]. In particular, [147] not only incorporated costs into their plan-
ning algorithm to avoid violating personal space, but also added costs to avoid crossing o-spaces
corresponding to group conversations. Besides, other work has developed custom strategies for
specific scenarios, such as cases where robots give museum tours [28; 219] or stand in line [130].

Other efforts have focused specifically on enabling robots to appropriately handle proxemics
upon initiating interactions with users [11; 82; 150; 153; 157]. For example, Althaus et al. [11]
adjusted a robot’s speed and orientation to make it face towards the middle of the group of
people that it was going to interact with. Kato et al. [82] instead proposed that robots should
mimic service staff in a mall to decide whether or not they should start an interaction with
people. That is, robots should try to initiate interactions only if users exhibit an analogous
intention. To implement this behavior, the authors created a classifier to estimate whether
people intended to interact with a robot based on their motion trajectories. The output of this
classifier was then used to decide if a robot should proactively approach nearby people, only
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turn its body towards users to signal that it was available to start an interaction, or wait idly
without worrying about interacting with anybody.

Proxemics has also been used to estimate users’ engagement levels with robots
[119; 121; 122; 124; 153; 159]. For example, Michalowski et al. [122] proposed a categorical
model of engagement, based on the distance that users kept from a robot and their head pose.
Satake et al. [153] instead relied on users’ motion trajectory to decide if they were engaged with
a robot and accepted interacting with it. Moreover, Mead and Matarić [119; 121] leveraged
psychophysical factors that provide a functional sensory explanation to proxemic behavior for
detecting the initiation and termination of dyadic and triadic interactions. Inspired by these
prior efforts, we also use proxemics in this dissertation as a cue for social engagement.

F-formations have been observed in HRI, specially during dyadic social interactions.
For example, Huettenrauch et al. [72] observed that people tend to sustain face-to-face, side-by-
side of L-shaped arrangements with a social robot during conversations. Furthermore, Kuzuoka
et al. [98] provided evidence that suggests that robots can induce subtle reconfigurations of F-
formations by rotating their body. The same result can hardly be achieved by just rotating the
head of a robot, which instead induces changes in attention.

To the best of our knowledge, Yousuf et al. [219] proposed the first approach to automatically
recognize a specific spatial formation within HRI. Their rule-based method was designed for
a robot that explained artworks to two people in a simulated museum within a laboratory
environment. If the users did not establish the desired spatial formation with the robot, then it
explicitly asked them to “move closer” or “back a little” to better match the target formation.

In agreement with the social psychology background presented in Chapter 2, Karreman
et al. [81] posed that the typical social encounters that people have with museum guide robots
are common focused gatherings. This implies that the spatial arrangements that often emerge
with these robots are not F-formations, but less uniform spatial organizations. Interestingly, an
experiment by these authors suggests that people tend to stand farther away from a museum
guide robot that faces them when it explains an exhibit, than from a robot that faces the
artwork. However, people more easily loose interest in the latter robot than the former one.

These results regarding F-formations are important because they suggest that people not
only assign the idea of transactional segments to other people, but also to social robots. Moti-
vated by this observation, we conduct additional HRI experiments as part of this dissertation
to validate the idea that people establish spatial arrangements typical of human conversations
with robots. Our efforts focus on studying group conversations that have 3 to 5 participants
most of the time, instead of dyadic interactions like prior work.

Generating appropriate spatial organizations in HRI is important as well.
Shi et al. [157] used a rule-based system to enable a service robot to appropriately start an
interaction and position itself with respect to a user. The rules chosen for this task were inspired
by results from a study on how a human clerk may greet a customer in a store. Alternatively,
social stimuli can also be used to generate appropriate spatial configurations during dyadic
interactions [118; 120]. This effort led to a controller that optimizes the pose of a robot relative
to a user, subject to maximizing the robot’s expectation of hearing the user and seeing his or
her body gestures. As an extension, the robot can adjust its speech output levels and gestures
based on how well it believes that the user can receive these social signals.

Our work on enabling robots to cooperate to sustain spatial arrangements typical of conver-
sations is related to these prior efforts. The specific focus of our work, though, is on generating
appropriate spatial behavior for group conversations with two or more participants. We leverage
social group phenomena for robot control instead of individual stimuli.
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3.2 Detecting Interactions: Computational Models of F-formations

The problem of detecting situated human interactions using proxemics has been of interest
in various disciplines, including:

Computer Vision: [5; 10; 32; 33; 35; 36; 40; 48; 56; 100; 135;
136; 144; 155; 156; 187; 193; 220; 222]

Human-Computer Interaction: [27; 37; 46; 54; 59; 74; 75; 112]
Signal Proc. & Sensor Fusion: [50; 106; 115]

Systems Engineering: [20; 133]
Natural Language Processing: [213]

Robotics: [110]

Different fields tend to prefer different sensing modalities for the task of identifying group
interactions, as shown in Table 3.1. Useful modalities include cameras, microphones, wireless
devices, optical tracking systems, accelerometers and lidars.

The methods listed in Table 3.1 also differ by the particular aspects of human interactions
that they leverage for the detection task. Some methods were designed to find situated inter-
actions by estimating shared attention, turn-taking patterns or coordinated gestures. Other
methods focused on analyzing human motion trajectories, or the relative distance (and orienta-
tion) between people in a particular instant of time. Finally, some methods focused specifically
on detecting conversations by identifying F-formations.1 The next paragraphs provide more
information on the latter approaches because they are the closest efforts to our work on en-
abling robots to detect group conversations. Developing methods that can jointly reason about
multiple interacting cues, such as those listed in Table 3.1, is left for future work.

Most approaches to detect F-formations are model-based. They implicitly model
the properties of F-formations, e.g., in an affinity matrix that can be used for graph clustering
[74], or explicitly encode the transactional segments of people in scene in order to detect o-
spaces [40; 54; 112; 144; 155; 156]. The latter methods in particular assume that there is a
one-to-one mapping between o-spaces and F-formations, and between F-formations and group
conversations. Thus, wherever an o-space is found, a conversation is also said to be detected.
We continue the tradition of using model-based approaches to detect F-formation in this work
because of the lack of big datasets for this task, especially within HRI. Different to most prior
work in this area, though, we opt for computing soft group assignments for people in a scene.
As shown by Chang et al. [32], soft assignments can help overcome measurement uncertainty
when reasoning about human spatial behavior.

Lower-body orientation is a key descriptor of F-formations. All the prior ef-
forts on detecting F-formations observed that knowing the lower-body orientation of people
in a scene can help differentiate between these organizations (due to conversations) and other
spatial arrangements that emerge in close proximity. In many cases were estimating people’s
lower-body orientation is difficult, e.g., from a top-view of a scene, it is better to approximate
this orientation than to ignore it when reasoning about spatial behavior. For example, body
orientations can be approximated by head orientations, as in [40; 155; 156].

1The line between methods that aim to detect shared attention and those that aim to identify F-formations
is often blurry. Various prior efforts, e.g., [5; 10; 193], were inspired by Kendon’s F-formation system [87] but
ended up modeling visual attention to detect interactions. For consistency, Table 3.1 categorizes these methods
within the “Shared attention” group.
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Table 3.1: Categorization of related work on detecting situated social interactions. All the
methods rely on proxemics, but they focus on different aspects of human interactions: shared
attention, motion trajectories, turn-taking and coordinated gestures, proximity, spatial ar-
rangements, and F-formations. The sensing modalities identified for each paper correspond
to: color or depth cameras in the environment (Env. Cam.); wearable cameras (Wea. Cam.);
microphones (Mics.), wireless communication devices (Wireless) such as BlueTooth devices,
radio-frequency identification (RFID) systems, or infrared receivers and transmitters; or other
modalities (Other) such as optical tracking systems, accelerometers, and lidars. The mark-
ers next to the references indicate to the area of the publication venue: computer vision (*),
human-computer interaction (†), natural language processing (††), robotics (‡), signal processing
& sensor fusion (‡‡), and systems engineering (∗∗).

Env. Cam. Wea. Cam. Mics. Wireless Other
Shared attention
Fathi et al., 2012 [48] * X
Park et al., 2012 [136] * X
Bazzani et al., 2013 [20] ∗∗ X
Leach et al., 2014 [100] * X
Vascon et al., 2014 [193] * X
Alletto et al., 2014 [10] * X
Park and Shi, 2015 [135] * X
Aghaei et al., 2016 [5] * X
Turn-taking or coordinated gestures during conversations
Choudhury and Pentland, 2002 [37] † X X
Brdiczka et al., 2005 [27] † X
Wyatt et al., 2007 [213] †† X
Hung et al., 2014 [75] † X
Motion trajectories
Ge et al., 2009 [56] * X
Choi et al., 2009 [35] * X
Chang et al., 2011 [32] * X
Luber and Arras, 2013 [110] ‡ X X
Linder and Arras, 2014 [106] ‡‡ X
Feng and Bhanu, 2015 [50] ‡‡ X
Proximity (relative distance information)
Eagle and Pentland, 2006 [46] † X
Yu et al., 2009 [220] * X
Zen et al., 2010 [222] * X
Group spatial arrangements (distance + orientation information)
Olguín et al., 2009 [133] ∗∗ X
Groh et al., 2010 [59] † X
Chen et al., 2011 [33] * X X
Matic et al., 2012 [115] ‡‡ X X
Tran et al., 2013 [187] * X
Choi et al., 2014 [36] * X
F-formations specifically (as defined by Kendon [87])
Cristani et al., 2011 [40] * X
Hung and Kröse, 2011 [74] † X
Marquardt et al., 2012 [112] † X
Gan et al., 2013 [54] † X
Setti et al., 2013 [155] * X
Setti et al., 2014 [156] * X
Ricci et al., 2015 [144] * X
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Our insight is that F-formations can also be leveraged to estimate lower-
body orientation because the underlying interactions that induced the F-formations have a
tendency to bias the spatial behavior of nearby people. Based on this observation, we designed
a group detection framework that takes advantage of the mutual dependency between the
problems of (1) detecting conversations by reasoning about spatial behavior, and (2) tracking
people’s lower-body orientation in a scene. Chapter 6 introduces this framework in detail.
Interestingly, Ricci et al. [144] proposed to jointly estimate people’s head, body orientation and
F-formations to detect social conversations. While this work and the present dissertation were
developed independently of each other and they are aimed at different applications, they both
reinforce the idea that contextual information, like knowledge about social interactions, can aid
in the problem of estimating human pose. A similar hypothesis was explored by Yang et al.
[216] on the task of classifying different types of dyadic interactions or touch codes.





Chapter 4

The Furniture Robot

As part of this dissertation, we contributed to the design, fabrication and software set up of
a flexible robotic platform for human-robot interaction. Mathew Glisson, Braden McDorman,
Moshe Mahler, Scott Hudson, Aaron Steinfeld, Jodi Forlizzi, Brian Mizrahi, and Jessica Hodgins
also contributed to various aspects of this effort. We thank Adam Stambler and Ken Bolden
for providing their voice for the robot.

4.1 Design

We aimed to control human expectations for robot characteristics through
the form of the robot. As argued by prior work [138], controlling expectations is important
because it can potentially make users more adaptable to systems [140]. If users expect a system
to have capabilities that it does not really possess, they may also feel frustrated [209]. Moreover,
certain expectations can potentially lead to the problem of the uncanny valley [123].

We chose to build a robotic character that looked like a piece of furniture
because we expected users to have limited expectations for this class of objects. Inspired by
Disney’s Beauty and the Beast movie,1 we considered various furniture pieces that the robot
could look like, including a chest of drawers, a table (as in Fig. 4.1a), and a chiffonier (Fig.
4.1b). We ended up choosing the latter model for our robot, based on its friendly appearance,
some fabrication constraints, and safety considerations. We named this furniture robot Chester.

1http://www.imdb.com/title/tt0101414/

(a) (b) (c)

Figure 4.1: A few early designs of the robot: table model (a), and chiffonier (b, c). Figure (b)
is an early sketch of the final robot design, while (c) is our first complete CAD model.

http://www.imdb.com/title/tt0101414/
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Once we had chosen a general look for the robot, we carried out further refinements of the
model using Computer-Aided Design (CAD) software, as seen in Fig. 4.1c (early model) and
Fig. 4.2 (final model). This iterative design process allowed us to reason about the placement
of sensors in the interior of the robot, and other important details with respect to how well the
design could work for both children and adults. For example, we designed the face of Chester
to be simple and appealing. We made the robot’s eyes especially big, because this associates
them with the look of babies [61]. To facilitate bringing the character to life, we also designed
the interior of the robot such that it could host a projector. This projector served to easily
animate the robot’s eyes and mouth, following animation principles [181] that can facilitate
human-robot communication [180; 190].

The whole body of Chester was designed to rest on top of a Pioneer 3-DX robot, by Adept
MobileRobots, as depicted in the right image of Fig. 4.2. This particular set up made it easy
to control Chester’s movement in indoor environments because we could rely on off-the-shelf
motion controllers by Adept for this task. One important consideration due to this set up,
though, is that it makes our platform a differential-drive robot. It can rotate in place like
people do, but it cannot move sideways.

Chester also comes with two actuated drawers, which allow the robot to give (and receive)
objects to (from) users. The simulated middle drawer in its front serves to hide a LMS100 laser
measurement system by SICK Sensor Intelligence. This lidar can measure distances to nearby
objects through a small gap in the front and the sides of the robot’s casing.

ACTUATED
DRAWERS

PIONEER 3-DX

BACK-PROJECTED
FACE FEATURES

LASER MEASUREMENT SYSTEM

Figure 4.2: Renderings of Chester’s main hardware components

The robot can operate as one or two characters simultaneously depending on
the needs of a particular interaction. This is a unique characteristic of our platform, which we
leveraged to study the effects of a sidekick character in HRI (Sec. 5.1).

The second character on the platform is Blink, the lamp on the top of Chester (Fig. 4.3a).
The lamp physically holds a number of hidden components. For example, a speaker is inside
of the shade for Blink to communicate verbally through non-linguistic utterances. Blink does
not have a visible mouth like Chester, but it does have back-projected eyes that can express
various emotions, like surprise and anger. A hidden pico projector is used to render the eyes,
as depicted in Figure 4.3b. The base of the lamp also holds a hidden Xtion PRO LIVE RGB-D
sensor by Asus. The position of this sensor provides a wide vertical field of view for its RGB
and depth cameras, thus allowing the robot to sense short and tall people in front of it.

http://www.mobilerobots.com/researchRobots/PioneerP3DX.aspx
http://www.mobilerobots.com/researchRobots/PioneerP3DX.aspx
https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/
https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/
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(a) Blink and Chester

SPEAKER
PROJECTOR

BASE WITH
RGB-D SENSOR

SHADE

(b) Lamp hardware

Figure 4.3: The left image shows a photograph of the finished platform (with Blink enabled)
in proportion to 5 year old kids. The right image shows a rendering of the main hardware
components inside of its lamp.

4.2 Fabrication

The whole casing of the furniture robot was fabricated at Disney Research Pittsburgh using
rapid prototyping techniques. For example, the panels that cover the robot were made of foam-
core or layers of acrylic. Foam-core was used in places were we expected users to make little
contact with the robot, and was particularly advantageous to reduce the weight of the platform.
The layers of acrylic were placed in the top of Chester, where the lamp needed to be supported,
as well as in the edges of the front and back faces of the robot. We tried to make these edges
as robust as possible, since we worried that the robot could hit nearby objects while developing
and testing software. We attached veneer to the foam-core and acrylic panels to make the robot
look as if it were made of real wood.

The eyes of Chester were 3D printed, and the mouth was made of clear acrylic. In both
cases, we placed a piece of professional back-projection fabric behind them, so that we could
use a small-size projector to illuminate them and render custom-made facial expressions.

Similarly, the rigid parts of the lamp were made of laser-cut acrylic. The lamp’s shade used
white back-projection fabric, which worked welld for rendering the eyes of Blink even in well lit
indoor environments.

4.3 Software Implementation

Our robotic platform contains two computers: one inside of the Pioneer base, and a laptop
inside of Chester’s wood casing. The first computer is a Versalogic Mamba EBX-37 industrial
grade computer with a Dual-Core 2.26 GHz processor. This computer is dedicated to rendering
Blink’s face and to execute navigation-related tasks. For example, these tasks include interfacing
with the Pioneer driver that makes the wheels of the robot move, and gathering measurements
from the lidar in the robot for robot localization. The second computer is a EON11-S gaming
laptop by Origin with an Intel Core i7 - 3610QM processor. This laptop is used to render the
face of Chester and for other perception tasks. The various processes that run in these two
machines communicate between them using the Robot Operating System (ROS) [141].

http://robots.mobilerobots.com/wiki/Versalogic_Mamba_EBX-37_Onboard_Computer
https://www.originpc.com/
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4.3.1 Facial Animations

We built custom face controllers for Chester and Blink using OpenFrameworks,2 an open-
source library for creative coding. These controllers are in charge of rendering facial expressions,
typically composed of a sequence of animations, and (optionally) playing pre-recorded audio
clips. Facial expressions can modify the position of the eyes and the eyelids of the characters,
the size of their pupils, and the mouth of Chester. Figure 4.4c shows a few illustrative facial
expressions. To enable Chester to look at arbitrary 3D locations in the world, we also imple-
mented a calibration procedure to learn a mapping from these locations to 2D pupil positions
within the character’s eyes. Appendix A describes this procedure in detail.

(a) (b) (c)

Figure 4.4: Close up photos of Chester’s face. The robot has its mouth closed and is looking
towards its right side in (a), has its mouth half-opened and is looking in front of it in (b), and
has its mouth opened and is squinting in (c).

The mouth of Chester can be opened or closed, and is animated independently of the eyes.
To generate the corresponding animations, we first recorded Chester’s utterances and processed
the audio files to compute the amplitude of their sound waves. This feature sets how open the
mouth should be: the louder the sound, the wider the mouth is opened.

4.3.2 Motion Control & Sensing

In general, we use a combination of custom software and pre-existing ROS packages to
control the robot and enable it to sense its environment. For example, the drawers of the robot
are operated by an Arduino board.3 This board runs a custom program that senses the state
of the drawers using infrared distance sensors, and that handles requests for opening or closing
the compartments at a constant velocity.

To manually teleoperate the robot, we have implemented a variety of custom interfaces in
ROS that send motion commands to the Pioneer base, and a safety mechanism to override these
commands if the lidar in the robot senses obstacles in close proximity. For robot localization,
we often build a map of the environment and use open-source algorithms to estimate the pose of
the robot as it moves around.4 For autonomous robot motion, we also rely on ROS’s navigation
pipeline with layered cost-maps [109].

The furniture robot has a hidden microphone inside of its lamp. Due to the focus of
this dissertation, we have not developed custom sensing modules for automatically processing
audio data. However, our platform could potentially be used for research on natural language
processing.

2http://www.openframeworks.cc
3http://www.arduino.cc
4In particular, we often use GMapping (http://wiki.ros.org/gmapping) and ROS’s open-source Adaptive

MonteCarlo Localization package (http://wiki.ros.org/amcl) for these tasks.

http://www.openframeworks.cc
http://www.arduino.cc
http://wiki.ros.org/gmapping
http://wiki.ros.org/amcl
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4.3.3 Other Implementation Details

For cases in which the characters carry out heavily scripted interactions with users, we
created a program that handles requests for utterances and face animations, according to the
current state of an interaction. This program forwards valid requests to the face controllers
(as described in Sec. 4.3.1), and reasons about what the characters can do next based on a
directed graph that encodes the script. This graph has a unique source node (with no other
nodes pointing to it) that contains information about the state in which our robotic platform
should be in right before the particular interaction of interest starts. The rest of the nodes of the
graph correspond to communicative actions that the characters can take, such as utterances or
facial expressions. An illustrative example of the graph for an scripted interaction is presented
in Fig. 4.5.

GREETING
HAVE YOU 

LIKED BEING 
HERE?

HMM.. YOU ARE 
VERY QUIET

GREAT!

THAT IS MEAN!

WELL, I GOT 
SOMETHING FOR 

YOU
. . .

Figure 4.5: Initial part of a graph for a scripted interaction with Chester. In this case, each
node had an associated facial expression (not displayed in this image).

Users are often unpredictable. Thus, it is possible that pre-defined scripts (like the one
depicted in Fig. 4.5) do not encode all the possible states of a social encounter. To prevent
interactions from breaking in these cases, we designed a set of fallback actions for the characters.
These fallback actions can be requested at any given point of an interaction, e.g., to express
that Chester did not understood what a user said, or briefly answer unexpected questions from
the interactants.

4.4 Limitations

Our furniture robot platform is not fully autonomous. Even though we have developed
various autonomous capabilities for our robot based on the particular needs and focus of this
dissertation, there are many others that are lacking. For example, we rely on pre-recorded
utterances supervised by an operator for generating robot dialog. While this approach can
make it easy for Chester to communicate with users, it limits the kind of conversations that it
can have, and slows down its response time. For example, this delay can vary from half a second
to a few seconds, based on the time that the robot operator takes to choose an appropriate
response during a conversation.

While Chester’s mobile base was a practical choice for its design, it limits the motion of the
robot because it is a differential drive platform and cannot move sideways. This constraint can
prevent the generation of human-like motion trajectories for Chester and, without care, can
easily lead to unnatural and counter-intuitive robot motion.





Chapter 5

Examining Spatial Behavior during
Group Conversations

This chapter presents two experiments that we conducted to validate the idea that peo-
ple establish group formations typical of human conversations with robots, and to investigate
various aspects of multi-party human-robot interactions. The protocols that we designed for
these experiments were approved by our Institutional Review Board, and were presented at the
CSCW 2017 Robots In Groups and Teams Workshop [198].

The first experiment was a field trial with groups of children. In this case, we studied
various social engagement cues, like spatial behavior, and the effects of a co-located sidekick
character in HRI. A publication about this work appeared in the 2014 ACM/IEEE International
Conference on Human-Robot Interaction [194].

In the second experiment, we studied human-robot interactions with groups of adults in the
context of a social role-playing game. This setting allowed us to explore two interesting scenar-
ios: having the robot interact with groups of participants as a player of the game; and having
it moderate the activity. In the former case, the robot had the same role as the participants.
In the latter, the robot acted as a leader and was more in control of the group. A short paper
about this second experiment was published in the 2015 ACM/IEEE International Conference
on Human-Robot Interaction [195].

5.1 A Case Study of Child-Robot Interaction: Effects of a Sidekick

This first exploratory study had two objectives: (1) investigate the effect of a sidekick
character in HRI, and (2) study spatial behavior and other social engagement cues during
group interactions with our platform. A sidekick is a character that is closely associated with
another primary character, and regarded as a subordinate or partner. Sidekicks are popular
in various forms of narrative, where they are often used as comic relief or to introduce an
accessible character to increase audience engagement [76; 170; 225]. Likewise, sidekicks can act
as a vehicle for raising an obvious concern to the primary character from the audience. For
example, a sidekick may yell, “Look out!” to the hero when a villain appears on screen.

In this experiment, we made Chester the main character and Blink its sidekick. We predicted
that the addition of Blink as a sidekick would lead children to be more engaged in the interaction
and treat Chester in a more sociable manner. We also thought that Blink could help mitigate
apprehension and fear in cases where children felt uncomfortable with Chester, e.g., due to its
physical appearance and rigid motion.
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5.1.1 Related Work

This section briefly describes work that is related to various aspects of our sidekick experi-
ment, and that was not previously mentioned in Sections 2.1, 2.2 and 3.1.

Watching two robots interact can facilitate HRI along a number of dimen-
sions. For example, Kanda et al. [79] provided evidence that suggests that people can better
understand robot utterances when observing two robots interact with each other and with their
environment. Shiomi et al. [158] noticed a similar effect in a museum exhibition, where the
interaction between two robots attracted people’s attention, and helped convey information.

Hayashi et al. [64] highlighted the potential of a pair of robots as a passive-social medium to
communicate information in the context of Japanese Manzai. A follow up work tested robots as
a non-interactive communication medium in a Japanese railway station [63]. In this case, the
people that observed the two robots interact with each other paid more attention to the content
of their dialogues than those who observed one or both robots (with limited interactivity) try
to convey the same information directly.

A few prior efforts have explored the idea of companion or subordinate
characters in HRI. For instance, the interface of the ProVAR system [191; 204] for assistive
manipulation was based on two built-in characters that enhanced user’s interaction by leverag-
ing social behavior. One of these characters, Pinocchio, was a down-to-earth robot arm that
physically helped with manipulation tasks. Pinocchio was able to communicate fully with the
other character, but could only provide physical gestures and audible tones to the user. This
other character, Jiminey, played the role of a helpful consultant embedded in the graphical user
interface of ProVAR. This character worked as a complementary communication channel for
Pinocchio, and provided support during difficulties with the system, e.g., by providing advice
to the user, and actively mitigating frustration. Jiminey often blamed Pinocchio’s limitations
for the problems that arose while ProVAR was in use. Another example are some of the ani-
matronic figures developed by Walt Disney Imagineering, e.g., [69]. Our efforts are inspired by
these prior works.

Several factors can affect children’s personal space. In psychology, Bailey
et al. [16] provided support for the notion that personal space behavior of fifth and sixth
graders can be manipulated via the principles of modeling. Children tended to stay close or
far from an object person as a function of a confederate’s behavior. In HRI, Yamaji et al. [215]
examined spatial aspects of the interactions between children and Sociable Trash Box (STB)
robots, which are mobile, expressive furniture. These authors found that proxemic distances
differed depending on how the robots were behaving. When the robotic trash boxes were
moving individually, children exploited two spaces to interact with them: “personal-social” and
“public” – in reference to Hall’s spatial zones [60]. However, when the robots interacted in
groups, as swarms, the authors noted three kind of spaces (“personal”, “social”, and “public”).
Our efforts complement this line of work by studying whether co-location, such as in the case
of Chester and Blink, impacts proxemics.

Different cues can be used to estimate user engagement with robots, including
gaze, head pose, turn-taking, human-robot kinesics, and spatial information [22; 122; 145; 148].
The latter is particularly popular for social human-robot interaction analyses, as discussed in
Section 3.1, because spatial information can easily be compared with Hall’s seminal work on
proxemics [60].
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5.1.2 Method

We conducted the experiment as a field trial during the 2013 Summer Games event at Disney
Research Pittsburgh. In this event, groups of children came to the laboratory to interact with
different kinds of characters and participate in a collection of activities. For our experiment, we
used a Wizard of Oz arrangement [84] as an attempt to identify appropriate robot behaviors
en route to implementing autonomy during group interactions [169].

Participants experienced one of two conditions: without sidekick (C), or with sidekick (S).
Only Chester was active in the control (C) case, while both Chester and Blink (the sidekick)
interacted with the participants in (S). The interactions were scripted and designed to be as
similar as possible.

5.1.2.1 Participants

Twenty groups of 3 or 4 children interacted with Chester and Blink, for a total of 74
participants. Children were 4 to 10 years old, were accompanied by at least one adult, and
some were siblings. Adults were allowed to observe upon request, but were asked to avoid
interrupting the activities of the Summer Games event. This included trying to stay as far back
as possible from the place where our experiment happened (Figure 5.1).

Ten groups (37 children) experienced the (C) condition, while ten other groups (37 children)
experienced the (S) condition. The average age for each group was 6.8 and 6.9 years old, with
standard deviations of 2.1 and 2.1, respectively. Ages were split into three categories: A1 for
4-5 years old, A2 for 6-8 years old, and A3 for 9-10 years old. The number of participants per
condition and age group was roughly similar. We had 12, 16, and 9 children in the A1, A2 and
A3 categories for the control condition (C), and 12, 14, and 11 for (S).

Even though we tried to balance for gender, the proportion of boys with respect to girls was
greater in (S) than in (C). We had 23 boys in the with sidekick condition (62% of that group),
but only 18 boys in the without sidekick condition (49%).

Some kids expected to see a robot because the Summer Games’ recruitment flier said that
“we study how children (...) interact with toy, animated, and robotic characters”. However,
children were unaware of the appearances of our robotic characters prior to the study. Both
Chester and Blink were kept out of public sight until they interacted with the participants.






Figure 5.1: Sketch of the environment where the experiment happened. The wizard was seated
at the end of the table (1). Chester was at (2) when children started to approach from the
conference room at the end of the hall (3). Parents were asked to remain near (3).
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5.1.2.2 Procedure

Children first participated in a virtual “mix and match” game during the Summer Games
event, where they picked apparel and accessories to change a character’s look. Kids were able
to take a picture of the character whenever they wanted and, at the end of the game, each
got to pick their favorite image. The pictures that were selected by the participants were then
printed and stored inside of Chester’s drawers without the kids knowledge. Chester’s mission
was to give these pictures to the participants during our experiment.

The physical space where the interaction occurred is depicted in Figure 5.1. The robot
operator, or wizard, was in the same room as the participants due to safety concerns, because
this was our first experiment with the platform. She pretended to be working with a laptop at
a table nearby ((1) mark in Fig. 5.1) for about 1 hour before the interaction. This allowed the
participants to familiarize themselves with her presence.

An experimenter brought the kids into a conference room prior to the interaction ((3) mark
in Fig. 5.1). Subsequently, the robot was secretly positioned against the wall in the dining
area ((2) mark). The experimenter in the conference room then brought the children out and
down the hall, with the premise of getting their pictures. The wizard started controlling the
characters at this point, using a PlayStation 3 game-pad to surreptitiously command Chester’s
motions, open and close its drawers, and activate pre-recorded utterances and associated facial
expressions for both characters. No participant discovered that the wizard was controlling the
robots with the game-pad under the table.

The interaction followed various Phases in the (S) condition:

a) Acknowledgment. The participants were acknowledged. Blink and Chester looked to-
wards the end of the hall, and realized that the children were coming. As participants
approached, Chester and Blink verbally indicated that they were checking if they had the
children’s photos.

b) Greeting. Chester greeted the participants, and introduced Blink.

c) How are you? Chester asked the participants how they were doing and if they liked being
at Disney’s research facility.

d) Remember. Chester asked the children if they remembered the pictures they took during
the earlier game. Chester told them that the photos were in its drawers.

e) Stuck. Participants experienced the rising action part of the story: Chester realized its
drawers were “stuck” and, after conferring with Blink, said that they may need oil.

f) Bump. Chester thought aloud that bumping into a wall might fix the problem, but Blink
dissuaded Chester from doing so to prevent him from damaging the wall.

g) Spin. Chester asked the participants to step back and spun around in an attempt to
unstick the drawers, but it was unsuccessful.

h) Shaking. Chester shook, following Blink’s advice, and finally got the drawers unstuck.

i) Opened drawers. Chester told the participants to “come grab your pictures”. The partic-
ipants then grabbed their pictures or, if they did not want to, the experimenter grabbed
them and gave them to the children.

j) Visit again? Chester asked the participants if they liked the pictures, if they would come
to visit again, and if they had to leave.

k) Goodbye. Chester and Blink said goodbye to the children, retreated to a safe location,
and closed their eyes.
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After the end of the interaction, the experimenter offered the participants stickers of Chester
and of the characters from the earlier mix and match game for them to take home if they
wanted. Finally, children were brought back to the conference room where they were before the
experiment, or to another Summer Games activity.

The interaction in the control (C) condition was similar to the interaction in the (S) condi-
tion, except that the lamp on top of Chester was not a character, but just a lamp. Blink’s eyes
were not visible in (C), and it did not emit any sounds. Because Blink was not there to help,
the script was modified such that Chester realized that bumping into a wall was a bad idea by
itself. Also, it occurred to Chester (not to Blink) that shaking may unstick the drawers.

The wizard had three special buttons in the controller that scheduled animations to help
continue with the flow of the script in case of potential deviations. When one of the buttons was
pressed by the wizard, Chester said “No! No! Let me do it myself” in response to situations in
which children wanted to open the drawers with their hands. The other two buttons activated
animations for “Ouch!” with a sad face and “Don’t poke me” with an angry face. These were
prepared to prevent very outgoing kids from touching the robot in dangerous ways, e.g., by
leaning on its top, or sticking fingers near its lidar.

In general, participants were free to approach our robots as desired during the experiment.
The experimenter that brought the kids from the conference room stopped approaching our
robots about 4 meters away to reduce potential bias on the children’s proxemic behavior.

5.1.2.3 Data collection and coding

The participants were equipped with a wireless microphone, attached to their clothes, for
the duration of their participation in the Summer Games, and were recorded throughout the
whole interaction. Video was captured from the Xtion Pro Live sensor inside of Blink’s base, a
Kinect sensor mounted on the ceiling of the dining area, and a standard camcorder positioned
on a tripod in the back of the room (next to the sofa in the right side of Figure 5.1).

Two professionals transcribed with ELAN [167] when the participants spoke, touched the
robot, turned their head away from it, or laughed. At the beginning of the process, the tran-
scriptions were evaluated twice for procedural errors. At the end, inter-coder reliability was
computed for 16 participants (22%) that were transcribed by both people. Cronbach’s alpha
was 0.90 for number of utterances directed at the characters. Cohen’s kappa was 0.87 and 0.93
for touching and head turning, respectively. Coders differed only by 1 annotation for laughing.

One transcriber annotated when the participants sat on the ground. She also marked down
the participants’ and the robot’s locations in the video from the Kinect on the ceiling, as shown
in Fig. 5.2. These locations were then converted to 3D coordinates using depth data, and

Figure 5.2: Top view of the scene during three different sessions of the experiment.
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projected into the ground plane for 2D spatial analysis. To confirm precision, we computed the
distance between Chester’s top-front corners (in the ground plane) and compared it with the
real width of the robot. The average difference was 2.3cm (SD = 2.3cm).

When a participant was not visible from the top-view video stream, then his or her position
in the scene was transcribed using the camcorder video that was captured from the back of the
room. These locations were mapped to the top view using a homography on the ground plane
[62], and used for the spatial analysis presented in the following section.

5.1.3 Results

Our analysis focused on the interactions that happened from the beginning of the experiment
up to when Chester gave the pictures to the participants. We did not analyze most sessions
beyond this point because a significant number of children got distracted by the photos. Kids
typically forgot which pictures they requested and became preoccupied with finding their own.1

5.1.3.1 Proxemics

0°

Figure 5.3: Frame of
reference with respect
to the robot

To analyze proxemics, we first mapped the 3D positions of the
participants from the top view of the scene to the ground plane. These
positions were then transformed from the global frame of reference on
the ground to a frame of reference originating from the middle of the
front of Chester, as depicted in Figure 5.3.

We plotted the distances computed with respect to the robot per
interaction phase, since we expected participants’ proxemic behavior
to change based on activity (Figure 5.4). We considered the first
9 phases of the experiment, up to when the robot handed out the
pictures to the participants. The boundaries between these phases
was set based on the robot’s utterances. For example, the Greeting
phase started when the robot said “Hello”.

Angular data showed that the participants tended to interact with the robot by standing in
front of its face, not to its side, nor behind it. The angular range [0, 180] contained 99.7% of
all the angles computed for the participants with respect to the front of the robot, excluding
when Chester spun. The distribution of these angles followed a bell curve, with the maximum,
central peak near 90 (i.e., face on).

We inspected the distribution of distances between the participants and the robot(s), and
noticed that the first two phases of the interaction (Fig. 5.4a and 5.4b) were more chaotic and
did not provide as much insight on proxemic behavior as the rest. Further inspection of the
data revealed that many children did not realize that Chester was talking during this time, or
were still approaching it. Thus, we excluded this data from further analysis, and focused on
the phases (c-i).

We found that three normal distributions closely fit the participant distances in logarithmic
scale during the time between when Chester said “How are you?” until the pictures were
distributed. We converted the distances from meters to log scale in order to reduce the bias of
close encounters, as in [192]. We used f(x) = log(x+1) to transform the data, and then followed
a standard Expectation Maximization procedure to fit a mixture of Gaussian distributions to
the transformed distances (Fig. 5.5). The means and variances of the Gaussians in log scale
were µ1 = 0.48, σ1 = 0.11, µ2 = 0.94, σ2 = 0.23, µ3 = 1.71, σ3 = 0.11.

1Experience with the mix and match game did not suggest that children cared about which pictures were theirs,
but it mattered in our study. For similar protocols, we recommend giving the same object to all participants.
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(g) Spin
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(h) Shaking
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(i) Opened drawers

Figure 5.4: Polar plots of the position (in meters) of the participants with respect to the robot.
Data is grouped by interaction phase, with the frame of reference set with respect to the front
face of Chester (Fig. 5.3). The (lighter) gray marks indicate the position of the participants in
the (C) condition, and the (darker) purple marks indicate the position in (S).
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Figure 5.5: Histogram of the distances with respect to the robot in logarithmic scale. The red
line shows the approximation found by fitting a mixture of Gaussians.

Table 5.1 shows the spatial zones obtained after converting the classification boundaries
of the mixture of Gaussians back to meters. The first spatial zone, from 0.1 to 1.1 meters,
encompasses Hall’s intimate and personal spaces [60]. This ranges from 0.15 to 1.2 meters, in
principle, though variations may typically occur due to culture and activity type. The second
zone we found for Chester ranged from 1.1 to 3.3 meters, and was similar to Hall’s social space
(1.2 to 3.7 meters). Finally, our third zone extended beyond 3.3 meters. We believe this is
similar to Hall’s public space, which starts at 3.6 meters. Interestingly, the boundary between
our zones 1 and 2 was close to the boundary between the distance clusters that emerged for
STBs as they moved towards children in [215].

We computed the proportion of time spent in each of Chester’s spatial zones, based on
participant and interaction phase group. Phase group distance distributions showed similarity
within logical activity sequences. Phase group P1 included “How are you?”, “Remember”,
“Stuck” and “Bump” (before the participants were asked to step back). Phase group P2 included
“Spin” and “Shaking”, while P3 was just “Opened drawers”.

A regression with Condition (S, C), Age Group (A1: 4-5 years old, A2: 6-8, A3: 9-10),
spatial Zone (1, 2, or 3), and Phase Group (P1, P2, P3) showed significant differences for
Zone on proportion of zone occupancy, F [2, 663] = 54.71 (p < 0.001). Occupancy occurred
significantly more in Zone 1 (M = 0.49, SE = 0.03) than in the other Zones. Likewise,
occupancy was significantly larger in Zone 2 (M = 0.36, SE = 0.03) than in Zone 3 (M = 0.14,
SE = 0.02). The interaction between Zone and Age Group was also significant, with F [4, 661] =
12.81, p < 0.001. A Tukey HSD post-hoc revealed that younger participants (A1,A2) spent
significantly more time in Zone 1, while older participants (A3) spent more time in Zone 2,
compared to the rest. Finally, the interaction between Phase Group and Zone was significant
as well, F [4, 661] = 29.16, p < 0.001. Phase Group 1 had significantly more occupancy in

Table 5.1: Spatial zones found for Chester, corresponding social distances by Hall [60], and
distance clusters found for the Sociable Trash Boxes (STBs) that moved towards children [215].

Zone Range (m) Hall STB
Zone 1 0.1 - 1.1 Intimate, Personal Cluster 1
Zone 2 1.1 - 3.3 Social Cluster 2
Zone 3 3.3 or more Public Cluster 2
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Zones 1 and 2, than in Zone 3. As instructed by the robot, the majority of the participants
then moved to Zone 2 in Phase Group 2 (when the robot spun around and shook) and moved
back to Zone 1 in Phase Group 3 (when the pictures were given to them). Condition was not
significant, nor any interactions with Condition.

5.1.3.2 Reactive Behavior

We computed how far the participants moved away from Chester when he said “step back”,
right before spinning around. The average distance participants moved back per Condition
was M = 2.67 meters (SE = 0.36) for (C), and M = 3.41 meters (SE = 0.47) for (S).
Further inspection of the data showed that the distribution of these distances in the without
sidekick or control condition looked unimodal and skewed towards small distances. However,
the distribution in the with sidekick condition looked bimodal with a gap close to 4 meters. A
logistic regression on whether participants stepped back more than 4 meters with Condition and
Age Group as main effects showed significant differences for Condition only, χ2(1, 74) = 8.18,
p = 0.004. The proportion of participants that stepped back more than 4 meters was 13.5% in
(C), and 38% in (S). The interaction between Condition and Age Group was not significant.

5.1.3.3 Group arrangements

We measured the spread of spatial arrangements during the interaction based on (i) the
angle spanned by children in front of the robot, and (ii) the average and (iii) the standard
deviation of the distances between the participants per frame (1Hz). We grouped the data by
Phase Group, once again, based on the distance distribution of the interaction phases.

A REstricted or REsidual Maximum Likelihood (REML) analysis [139; 172] on the above
measures per frame with Condition (C or S) and Phase Group (P1, P2, or P3) as main ef-
fects, and participants’ Group as Random effect, provided significant results for Phase Group,
F [2, 2667] = 406.67 (p < 0.001). A post-hoc test for angle span based on Phase Group showed
that the span was significantly higher when participants grabbed their pictures (P3), which is
logical since they tended to group around the robot when reaching into the drawers. Average
angle span was also significantly reduced when the robot spun and shook (from P1 to P2). This
was expected since Chester said “step back” right before spinning.

The interaction results for Condition and Phase Group on the average and standard devia-
tion of interpersonal distance were interesting. Both of these interactions were significant, with
F [2, 2667] = 13.18 (p < 0.001) and F [2, 2667] = 6.8 (p = 0.001), respectively. However, the
average interpersonal distances showed no functional differences, as they were small enough to
be attributable to possible measurement error.

A Tukey HSD post-hoc test for the standard deviation of interpersonal distances revealed
that the participants in (C) varied their interpersonal distances significantly more in P1 (M =
0.39, SE = 0.02) and P2 (M = 0.38, SE = 0.02), compared to P3 (M = 0.25, SE = 0.01).
The latter difference was not observed for (S), with M = 0.28, M = 0.27 and M = 0.24 for
P1, P2, P3, respectively, and with standard errors below 0.01. This tells us that the spatial
arrangement of participants in the Sidekick condition tended to be more uniformly spread (i.e.,
with similar distances between participants) compared to the Control condition. Even when
the participants stood apart from the robot during P2, the standard deviation of interpersonal
distances did not significantly change in (S).

We saw some evidence of F-formations [87], especially with older participants. However,
children’s position variability and impulse control made labeling difficult. At times, spatial
arrangements seemed to be based on other factors than the conversation with the robot. This
is not surprising given the age range of our participants. Children frequently adopt postures
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and positions not used by adults, and the lack of an authority figure during the experience may
have increased the amount of impulsive body motions. We also investigated several methods for
quantifiably classifying participants into formation types described in the F-formation literature.
None of these approaches proved tractable due to challenges with edge conditions, but we feel
such approaches are worth exploring further and may be easier with adult participants.

Children often exhibit hiding behavior and defensive positioning when encountering new
things, so we examined how often a participant was occluded by a fellow participant for Condi-
tion and Phase Group. This analysis was inconclusive and there were no significant differences.

5.1.3.4 Physical contact

We did not find significant differences on how much participants touched the robot between
Conditions, but there were differences between Age Groups. We found that the proportion
of participants who grabbed pictures from Chester’s drawers significantly increased with age,
χ2(2, 74) = 7.47 (p = 0.02). In particular, 62%, 77% and 95% of A1, A2 and A3 grabbed
pictures. Interestingly, very different proportions were found for touching Chester’s face, above
the drawers, by Age Group, χ2(2, 74) = 10.50 (p < 0.01). No participant in A3 touched
Chester’s face, while 17% and 30% of A1 and A2 did. Further inspection of when participants
first touched the robot using interaction phase as ordinal data (1 to 9) showed the first touch
for A3 (M = 8.6) happened significantly later than the first touch for A1 (M = 7.06) and A2
(M = 7.08), χ2(2, 60) = 6.38 (p = 0.04). Participants in A1 and A2 appeared to be more
exploratory and less inhibited than their older peers (A3).

5.1.3.5 Focus of Attention

As mentioned earlier, we annotated when the participants oriented their head away from
the characters. These annotations were labeled as “Participant”, “Experimenter”, or “Other”
based on the target that they focused their attention on. In general, participants did not turn
their heads away for long: 11% of the turn away annotations ended in less than 1 second, 74%
ended in less than 5 seconds, and 14% lasted for longer.

A regression on the length of the turn aways (in seconds) with distraction Target, Condition,
Age Group, and interaction Phase Group provided significant differences. As expected, partic-
ipants were looking away from the robot for significantly longer time during phase group P3,
F [2, 619] = 12.29 (p < 0.001). The post-hoc test on the interaction between Phase Group and
distraction Target showed that the participants turned away their heads towards some “other”
target for a significantly longer time during P3, F [4, 617] = 5.48 (p < 0.001). This was not
surprising because many participants were curious about others’ pictures and, sometimes, there
were arguments about which pictures belonged to whom. Moreover, the interaction between
Phase Group and Age Group revealed that the participants of age 6-8 (A2) turned their heads
away from the robot significantly more time in P3 than in P1 and P2, F [4, 617] = 2.7 (p = 0.03).
The latter difference was not significant for participants in A1 and A3. Finally, there was an in-
teraction between distraction Target and Condition, F [2, 619] = 3.13 (p = 0.044). A Student’s t
post-hoc test showed that, on average, the participants in the (C) condition turned their heads
towards the experimenter for significantly shorter periods of time (M = 1.7, SE = 0.2) than
the participants in the (S) condition (M = 3.4, SE = 0.8).

5.1.3.6 Audio analyses

We used audio transcriptions to count participants’ utterances and laughter, and performed
logistic regressions with Condition and Age Group as main effects on these metrics. The number
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of participants with at least one utterance directed to the characters was significantly different
for Age Group (χ2(2, 74) = 7.02, p = 0.03). Only 75% of the children in the youngest age group
(A1) spoke to the robot, while 97% and 85% of A2 and A3 did. The interaction between Age
Group and Condition was also significant (χ2(2, 74) = 7.01, p = 0.03). The participants in the
age group A1 made fewer utterances to the characters when the sidekick was present (M = 0.67
versus M = 0.83), while those in A3 talked more (M = 1.0 versus M = 0.67).

We also found that the number of participants that laughed at least once was significantly
greater in (S) than in (C) (χ2(1, 74) = 4.98, p = 0.03). The average percentage of participants
that laughed was 46% (SE = 0.08) and 22% (SE = 0.06), respectively.

5.1.3.7 Other Findings

About 19% of the participants sat on the ground near Chester while interacting (N = 7
for each condition). These children tended to stay on the ground for long periods (M = 74.3
seconds, SE = 11.4), suggesting that they felt comfortable in close proximity with the robot.

Additional analysis of the participants’ utterances revealed interest in the sidekick. For
example, one participant said the following when Chester was about to turn: “I feel bad for the
lamp. I hope you are going to be OK”. After the experiment, another children told Chester:
“Oh, by the way, your friend (Blink) kind of sounds like R2-D2”. While this data is sparse, it
reinforces earlier findings showing greater engagement when the sidekick was present.

5.1.4 Discussion

The sidekick had effects on the interaction. While we found that our co-located
sidekick did not alter proximity, it seemed to increase attention to spoken elements of the
interaction. Differences were found in verbal utterances, laughter, visual attention, and reactive
behavior. For example, more participants moved way back in (S) than in (C) when Chester
said “step back”. Blink clearly had a positive entertainment effect, resulting in twice as many
participants laughing at least once during the experiment session. The sidekick relationship
in the literature and in entertainment media often creates comic relief. Our evidence suggests
that this effect can be translated to HRI, even when the robots are co-located.

There were no differences for spatial behavior between conditions. Our data
supported three spatial zones with respect to the front of Chester, reinforcing earlier findings
on proxemics with the Sociable Trash Boxes [215]. We relied on radial distance measurements
for our spatial categorization because participants rarely stood on the sides or the back of the
furniture robot. However, we expect these spatial zones to change as people approach the
platform from directions other than its front [65]. In these situations, we suggest measuring
distances with respect to the closest point on the casing of the robot, instead of with respect
to its front face [192]. While it was difficult to systematically label F-formations due to chil-
dren’s position variability and impulse control, we observed these types of spatial organizations
naturally emerge during the interactions with our robot.

Our work has design implications. An early design goal was to create a robot and ex-
perience that was friendly and interesting to children. In this regard, our results show excellent
engagement in general. The participants routinely entered Hall’s Intimate and Personal zones
[60], positioned themselves square with Chester, and spoke to and laughed at the characters.
While some children maintained a healthy distance from the robots, the overall appearance and
behavior of Chester and Blink were positive. These findings reinforce the STB results showing
furniture to be a good robot design for children [215]. We are also able to generalize Osawa
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et al.’s [134] findings that the anthropomorphization of household objects can produce positive
engagement effects.

The experiment was limited in several ways. For example, our characters some-
times fell short in responding adequately to children due to their limited verbal abilities. The
beginning and the end of the interaction were often chaotic, because the participants were not
expecting to interact with the robot and frequently got distracted with their pictures, as shown
in Fig. 5.6. This limited our spatial analysis, and reduced user engagement at times. Also,
results were obtained with a co-located sidekick, and further testing is needed to confirm our
findings in other settings.

(a) (b) (c)

(d) (e) (f)

Figure 5.6: Sequence of frames from a session of the experiment. These frames illustrate
a typical situation where the participants got distracted with their pictures after the robot
opened its drawers. Figure (a) shows the time when the participants grabbed their pictures
from Chester. One of the kids then approached the experimenter looking for some help to unroll
the picture that he had gotten from the robot (b). This participant then started a conversation
to check another girl’s picture, while the experimenter tried to help the child with yellow shirt
unroll his gift (c). An instant later, the participant with white shirt asked the experimenter
for help (d), effectively excluding the robot from their interaction. Once the experimenter had
left, the child with a yellow shirt repositioned spatially, and continued the conversation with
Chester and Blink (e). Finally, the participant with the white shirt walked away, leaving the
robot in a dyadic interaction (f).
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5.2 Group Interactions in a Social Role-Playing Game

We performed another Wizard of Oz experiment [84] to continue studying spatial behavior
in the context of HRI. In contrast to our prior work, though, our focus here was on studying
group interactions between a robot and adults in a more structured scenario. The motivation
for these changes was twofold. First, we wanted to study conversations in HRI with a different
group of participants that were not as impulsive as children. Second, we wanted to prevent the
participants from getting distracted or becoming passive spectators of human-robot interactions
during the experiment. We achieved this goal by assigning active roles to the participants by
means of the experimental protocol.

In this second experiment, small groups of adults played an established social game, “Mafia”,
with our furniture robot. In this semi-structured activity, the players were secretly assigned
to teams (villagers or mafia) and were involved in group discussions. The villagers sought to
identify the mafia before they were all killed in the game, while the mafia hid his/her identity.

An advantage of this role-playing game scenario is that it let us study two perspectives of
the interaction: with the robot as a player, or as the moderator of the game. We expected the
interaction with the robot to change based on its role, because being a member of the same
social category can potentially increase group identity [95].

Before explaining in detail this second experiment, this section describes related work on
the use of games for studying human interactions, especially in the context of HRI. Then, it
documents a set of pilot sessions that we ran with small groups of people to test the Mafia game
as a viable scenario for this experiment. Our methodology, findings, and conclusions from this
effort are presented thereafter.

5.2.1 Related Work on Studying Human-Robot Interactions in Gaming Contexts

Games are advantageous for studying HRI for several reasons. First, games
take into account existing social practices, and can generate new ones. This makes games a
good scenario for unexplored human-robot interactions [214]. Second, games are restricted to
a particular domain and, thus, can be very practical for research. Third, games are often fun
and engaging. This makes them interesting to participants. It is important, though, to tailor
games to reflect on the HRI experience. As expressed by Xin and Sharlin [214], “game rules
can and should be altered in order to allow the robots and the human to interact in a manner
that will inform on the HRI design question”. We follow this principle in our own work.

Games are commonly used as a platform for Robotics and HRI research. For
example, the well-known RoboCup competition is focused on enabling robots to play soccer
[91]. The main goal of RoboCup is to develop a team of humanoid robots that can play soccer
against the best human team by 2050. Several of the technologies that have been developed for
RoboCup have been used in other domains, like search and rescue. In a related effort, Argall
et al. [13] explored human-robot coordination within “Segway Soccer”, a research domain built
upon RoboCup robot soccer.

Two other games that have been used for HRI research are “Mastermind” and “Rock-Paper-
Scissors”. The former game was used by Bartneck et al. [17] to investigate if humans are more
hesitant to switch off an intelligent robot compared to a less intelligent machine. The latter
game was used by Short et al. [161] to examine the degree to which variations in robot behavior
resulted in attributions of mental state and intentionality. In this experiment, the participants
played the game with a humanoid robot which, in some cases, made ambiguous errors that
could be interpreted as malfunctioning or cheating. A follow-up work used the same scenario
to investigate adversarial cheating [107].
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Leite et al. [104] studied how children perceive and interact with an empathetic social robot
in the context of “Chess”. Their results suggested that empathic robot behaviors can impact
positively children’s perception of a robotic character. A long-term evaluation of an empathetic
robot model in this scenario suggested that, in general, children can feel supported by the robot
and by their peers to a similar extent while playing the game [103].

In addition, games have been used to study turn-taking with interactive characters. For
example, Lehman [102] describes an experience with a mix-and-match game to study children’s
communicative behavior. More recently, Al Moubayed and Lehman [6] designed a collaborative
game to further study turn-taking, user engagement, and addressee identification in HRI.

The success of prior efforts investigating human interactions with the Mafia
game inspired us to use this activity to study HRI. For example, Mafia was used by Park et al.
[137] to collect data on human primary gaze behavior. In addition, Batcheller et al. [18] studied
the effects of physical presence on Mafia. In one condition of their experiment, the participants
played collocated; in the other, they played over video. The results from this experiment suggest
that people can have similar levels of satisfaction, fun, and frustration playing over video in
comparison to the collocated scenario.

Finally, Hung and Chittaranjan [73] used a popular version of Mafia, called Werewolf, to
create an audio-visual corpus for social signal processing. The video feed and audio recordings
that were captured during these games were then used to study human deception [143]. On a
related note, Zhou et al. [223] tested an online version of Mafia to study how well people could
detect deception.

5.2.2 Piloting the Game

Before we decided the full details of our experimental protocol, we piloted various versions
of Mafia with small groups of people and without the robot participating in the activity. The
robot just served a piece of furniture for the pilot. This experience helped us tune the game
and adapt it our time constraints.

In total, we ran 3 pilot tests with 4 people each. Eight of the participants were female,
and four were male. Their average age was 37.67 years old (SE = 4.76), and all except for two
participants were born in the U.S. (one was born in Bosnia, another one was from Korea). All
of the participants were fluent in English, and one of them was deaf. The latter was able to
communicate effectively with a hearing aid. Only two participants were acquainted by having
participated in another experiment together prior to our pilot; the rest were complete strangers.

The experimenter moderated two games per pilot session. Each of these games followed a
specific set of rules:

Version 1 . Conventional Mafia game with no special roles. In order to assign the roles of
mafia or villager, the participants picked playing cards from the top of Chester, who acted as
a non-interactive piece of furniture for the purposes of the pilot. The game had 3 villagers and
1 mafia player. This information was not revealed to the participants.
The experimenter moderated the game starting with the night phase. In this phase, the mafia
player secretly indicated a villager to “kill”. Next, the day phase started, and the moderator
revealed who was killed during the night. This person stepped back from the group and stayed
quiet as if he/she were dead for the rest of the game. The remaining players then discussed
who they thought was part of the mafia, and subsequently convicted a player upon agreement.
The convicted player then left the game like the person that was killed by the mafia previously.
This sequence of night and day phases continued until the mafia player was identified (villagers
won) or only two players remained in the game (mafia won).
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Version 2 . Same as version 1 with a special (secret) role: one of the villagers was a “doctor”.
During the night, this person got the chance to save a player from the mafia.
Version 3 . Same as version 2, but without reducing the number of participants during the
day phase. Once the participants agreed upon a player who they thought was part of the mafia,
the moderator acted as “police officer” and checked the role of the accused player. If this person
was not part of the mafia, he or she stayed in the game. Otherwise, the game ended as the
villagers correctly identified the only member of the mafia that they were playing with.

At the beginning of each game, the rules were briefly explained to the participants. After-
wards, we solicited their opinion about the particular version of the game that they had just
played. At the very end of the session, we also asked them to rank the different versions of the
Mafia game that they experienced. Figure 5.7 shows illustrative images from a pilot session.

(a) (b) (c)

Figure 5.7: Example session from the pilots. To secretly assign roles to the participants, the
experimenter placed role cards face-down on top of the robot (a). People then chose one of
these cards to get a team (villagers or mafia) and a specific role in the game, depending on
the version that participants were playing. The experimenter then moderated the activity (b).
When the participants discussed who was part of the mafia, the experimenter stepped out of
the group (c). The robot was not interactive in the pilots; it just served as furniture.

Table 5.2 presents the versions of Mafia that were played per session of the pilot. The
numbers inside the parenthesis indicate the duration of the day phase in minutes, which was
chosen based on the feedback from the participants. First we tried 5 min – which was perceived
as very long – and then 3 minutes. Finally, we tried reducing the time from 3 minutes to 2 in
the last pilot. The participants responded positively to this change.

Table 5.2: Versions of the Mafia game that were tested in each pilot session. The numbers in
between parenthesis indicate the duration of the day phases in each case.

Pilot Session Game 1 Game 2
1 Version 1 (5 min) Version 2 (3 min)
2 Version 1 (3 min) Version 2 (3 min)
3 Version 2 (3 min) Version 3 (2 min)

The overall feedback that we got from the pilot sessions was positive. The participants did
not seem to feel uncomfortable playing Mafia with strangers, liked the social dynamics of the
game, and most expressed that they would like to play again. We did notice, though, that most
of the participants did not seem to know what to say to each other or how to figure out who was
part of the mafia at the beginning of the first day phase. We tried improving the presentation
of the instructions of the game in the real experiment to reduce this effect.
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In terms of rankings, the second version of the game was the favorite among the first two
pilot sessions (5 vs. 1 votes, excluding two people who reported picking their favorite version
based on whether they were killed by the mafia). In the third pilot session, the version 3
of Mafia was preferred by 3 out of 4 participants. Their reasons included the way that the
interaction went along and the new role of the moderator during the day phases.

5.2.3 Method

We designed the protocol for the experiment under a Wizard of Oz arrangement based on
our experience from the pilots.

5.2.3.1 Procedure

Before beginning the experiment, the wizard hid in a room next to our laboratory and
positioned the robot with its eyes closed within the environment where the interaction happened.
When the participants entered this environment, they were given colored badges. These badges
were used to identify the participants during the game, and to facilitate addressee identification
when the robot communicated with them.

The participants began the experiment by completing a demographics survey, and watching
an instructional video about the Mafia game.2 The experimenter then woke up Chester and
introduced it to the group. Subsequently, the participants played Mafia twice with the robot.3
Each of these games was a different experimental condition:

(G1) In the first game, the experimenter moderated the activity, while the rest of the partici-
pants played with Chester. The rules of this game followed version 2 of the pilot, as described
in Sec. 5.2.2. The roles were secretly and randomly assigned using cards (Fig. 5.8A), but
the game was rigged such that Chester was always a villager. This allowed the interaction to
continue even when the robot was erroneously convicted.
(G2) The second game was similar to (G1) but Chester served as the moderator. This reduced
the number of players by one because the experimenter that ran (G1) did not participate in
(G2). In this condition, Chester also played a “cop” who investigated the role of the accused
players and revealed it at the end of the day phases (Fig. 5.8C). Unlike in (G1), accused
villagers kept playing in (G2), as in the third version of Mafia that we tested in the pilot.

2The video was a modified version of “How to Play Mafia” (www.youtube.com/watch?v=75BMDrtpVtA). It
explained how to play the second version of the game that we tested in the pilot.

3In general, we limited the day phases to 1.5 min maximum in both games.

A B C

Figure 5.8: Participants playing Mafia. (A) Players took a role card from Chester. (B) Chester
played a game. (C) Chester moderated a game and checked the roles of the accused players.

https://www.youtube.com/watch?v=75BMDrtpVtA
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We did not balance the condition order because we wanted to use Chester as a player who
could break the ice in the first day phase without biasing participants’ proxemic behavior.
Because we feared proxemic bias due to the moderator of (G1) as well, she stepped away from
the group of players when the game could continue without her (e.g., during discussions).

After each game, the participants completed a post-condition survey where they rated a few
7-point Likert scale items about the interaction (details about this survey are provided in the
Results section). At the end of the experiment, people answered a final survey that queried their
opinion about Chester’s performance in the Mafia game and their overall experience. Lastly,
we debriefed the participants about the presence of the wizard, and our interest in studying
human spatial behavior in HRI.

5.2.3.2 Participants

Participants had at least 18 years of age and were recruited through a local participation
pool. English was their native language.

Ten groups of four adults played Mafia with our robot. In total, 22 women and 18 men
participated in the experiment, and their average age was 28.4 years old (SE = 2.1). Three
sessions had balanced gender, three had 3 men, three had 3 women, and one was all women.
All participants except for one were born in the United States.

In general, most participants did not know each other before the experiment. Only two
people in two different sessions acknowledged knowing each other. Another person reported
knowing one more participant in his session but did not say who. Most participants reported
on a 7-point Likert scale using a computer daily (M = 6.9, SE = 0.08) and were not very
familiar with robots (M = 3.05, SE = 0.24).

5.2.4 Results

We analyzed the Mafia games, participant’s perception of the robot, and their spatial be-
havior. The sensor data that was collected during the study helped inform our approach to
enable robots to detect conversations by reasoning about spatial behavior (Chapter 6).

5.2.4.1 Gameplay

Both games lasted a few minutes on average (G1: M=295 secs, SE=36; G2: M=256 secs,
SE=16). Chester was killed on the first night by one participant and on the second night
by another. Moreover, the robot was typically convicted early in error. In particular, he
was convicted 5 times at the end of the first day and twice at the end of the second day.
One possible explanation was that Chester started accusing players to break the ice, thereby
generating suspicion. Another reason could be that the participants thought that it was easier
to attribute blame to the robot than to another player in the game.

Overall, villagers won 3 times in G1 and 6 times in G2. It was easier to identify the mafia
in G2 with fewer players and without incorrect convictions.

5.2.4.2 Post-Condition Survey

As shown in Table 5.3, the participants enjoyed Mafia in general. The ratings for “(b)
Chester made the game fun” further suggest that the robot had a positive entertainment effect.

We conducted REML analyses on all post-condition items (a)-(d), (f) & (g) that queried
perceptions of the robot or the interaction. For these analyses, we used Game (G1/G2), Par-
ticipant Team (villager/mafia), Won (1/0 if the player got to the final phase and his/her team
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Table 5.3: Post-condition ratings. Both conditions were used to compute the results.

Statement Avg. Rating Std. Err.
a) I enjoyed this game of Mafia 5.36 0.14
b) Chester made the game fun 5.74 0.14
c) The interaction was enjoyable 5.80 0.12
d) I would have preferred to be part of the other team 3.63 0.20
e) I cared about winning the game 3.88 0.22
f) I would have liked to play longer 4.56 0.18
g) I liked the social dynamics of the game 5.13 0.13

won/lost), and Cared About Winning (1/0 if the response to (e) was above/below 4) as main
effects, and Participant ID as a random effect nested within Session. We found significant dif-
ferences for (f) in terms of Cared About Winning (F[1, 78] = 5.11, p = 0.028). As expected, a
post-hoc t-test showed that the participants who cared about winning were more interested in
playing for longer (N = 35, M = 4.8, SE = 0.26) relative to the rest (N = 45, M = 4.38, SE
= 0.24). There was also a trend for higher (c) ratings when the players cared about winning
(F[1,78] = 3.2, p = 0.08).

5.2.4.3 Spatial Behavior

For proxemics, we annotated the positions of the players at 1Hz using laser measurements
from the robot. The participants were 1.8m from Chester on average (SE = 0.003) during the
phases of the games, which is within the typical range for human social interactions [60].

We further analyzed the average distances between the participants and the robot during
the day phases of the games, when the robot actively interacted in both conditions. A Least
Squares regression for Distance Type (to the robot or inter-participant) and Game showed
a significant statistical differences for Distance Type (F[1,38]=12.25, p < 0.01). A post-hoc
Student’s t-test showed that the average inter-participant distance computed for the day phases
(N=20, M=1.46m, SE=0.07) was significantly smaller than the average distance between the
participants and the robot (N=20, M=1.76m, SE=0.05). Moreover, we noticed that the average
distance to the robot increased proportionally from G1 to G2 (N=10, M=1.69m, SE=0.06 vs.
N=10, M=1.82m, SE=0.07), but this difference lacked functional meaning. While we suspect
that Chester’s role could have slightly induced this variation in proxemics, it was small and
may be influenced by the lack of counterbalancing.

We observed F-formations [87] during Mafia, as in Figure 5.8B and 5.8C. Circular arrange-
ments often emerged when the games started and were sustained for most of the interaction.
When the robot stepped out of the group in G1, we often observed spatial re-configurations
(e.g., the players closer to Chester changed their orientation to subtly exclude the robot). Face
to face spatial arrangements were sometimes initiated by the robot, e.g., when it accused players
(G1) or announced deaths (G2).

5.2.4.4 Functional vs. Social

Until introduced by the experimenter, Chester was silent with closed eyes and many people
did not notice that it was a robot (Fig. 5.9). Before Chester spoke, 6 participants stood close
to its face with their backs to it (significantly blocking some of its sensors), 2 participants used
it as a table for writing, and 2 other participants did both. These behaviors were not observed
again after Chester was introduced, suggesting different use models based on user’s perceptions.
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(a) Demographics Survey (b) Instructional Video

Figure 5.9: Many people did not notice that Chester was a robot before the interaction started.
Some participants used Chester as a table when filling the demographics survey at the beginning
of the experiment (a). Others stood close with their back to it while they were watching the
instructional video about Mafia (b). The left images in each case show a top view of the scene.
The right images were captured from the camera inside the lamp of the robot.

5.2.4.5 Chester’s role

We asked the participants which role they preferred for the robot. Twenty-three participants
(57.5%) selected moderator, sixteen (40%) selected player and one said that it was equal. Several
factors supported their preferences, including interaction time with Chester (the longer they
could interact with the robot the better), entertainment (how funny and engaging it was), role
skills (e.g., “good at organizing the group” as moderator), how mechanical Chester seemed (e.g.,
“more machine-like as moderator”), its value to the game (e.g., “helped (as player) because not
all participants were very vocal”), social inclusion (G1 “makes Chester more part of the human
crowd”), perceived intelligence, and trust.

5.2.5 Discussion

The spatial behavior of the participants around the robot suggests that they
treated it as a social agent once it was introduced to the group. The bigger separation
that we observed between the robot and the participants in comparison to inter-participant
distances could be attributed to the fact that Chester is different – it is a robot, not a person.
This fact may have made the participants more cautious around it, or made them perceive
the social status of the robot as significantly different than that of the rest of the group. An
alternative explanation is that Chester’s face is planar. This form makes it difficult to observe
the robot’s eyes and facial expressions from its sides and, thus, encourages frontal interactions.

Most of our results did not suggest significant differences between the games (G1 and G2).
Part of the problem could have been the lack of counter-balancing, and small sample size.
Nonetheless, we believe that the experiment was useful for exploring group interactions with
robots, and collecting data from which to start developing a method to reason about spatial
patterns of behavior (Chapter 6). Different to the previous experiment, all participants in
this case were adults, and had already learned the social conventions that typically guide our
behavior in public settings. Nobody in this case violated Chester’s personal space once it was
introduced to the group, nor the space of the other participants.

We observed an increased separation between the participants and Chester during the second
game of Mafia, in comparison to the first. Unfortunately, this difference was small enough, that
we were unable to discern a meaning. We do believe, though, that a robot’s role in a group
can potentially be reflected in the way people stand with respect to it. Moreover, it may be
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possible to accentuate this role by manipulating its distance to users, because group leaders
often separate themselves slightly from the rest of the members of a social interaction [87; 113].

Our experience with Chester suggests that people may have conflicting use
models for furniture robots. On the one hand, they may want to use them as objects,
for utilitarian purposes. After all, they are a piece of furniture. On the other, they may assign
human-like attributes to these machines, or treat them as pets, as they move around or behave
socially. These attributions can then restrict their typical use. As noted by Sirkin et al. [165],
this is a case of mixed metaphors. It is possible that robotic furniture will become its own genre
in the future, making it easier for users to make sense of the actions executed by this class of
robots.

The Mafia game is an interesting scenario to further investigate group
interactions with robots. As we saw in our experiment, the game is engaging and enter-
taining for participants. It also provides opportunities to explore new aspects of HRI, such as
the effect of the role of a robot within a group. Because the interaction is always bounded by
the rules, Mafia is a practical choice to implement and design robot behaviors for. This does
not mean, though, that Mafia is inflexible. Rules are often added to the game and modified.
This feature provides significant leeway for tailoring the game towards specific aspects of a
research agenda. In our opinion, the only big drawback of Mafia for studying HRI is that the
participants need to understand the rules of the game well to play at their fullest potential.
Thus, time must be spent in explaining and clarifying the instructions to the players.

The experiment was not without limitations. As in the previous study, our robot
had limited verbal capabilities because its dialog was scripted. This constrained the set of
responses that it could provide as a player in Mafia, and made it look repetitive at times.

When the robot’s face had no animation scheduled,4 we biased the gaze of the robot towards
human faces. If there were more than one face in the view of the RGB-D camera inside of
Chester’s lamp, the robot looked towards the face that was closer to the middle of the image.
As a result, the wizard had to orient the robot towards the person that it was addressing. In a
few opportunities, though, this approach generated confusing gaze behaviors because of missed
face detections and limitations with the speed of the robot as people moved around it.

5.3 Summary

This chapter presented two experiments that we conducted with our robotic platform to
study spatial behavior and group interactions in two scenarios. In the first experiment, we
used both Chester and Blink to study various social engagement cues and examine the effects
of a sidekick character in a child-robot interaction. Our results suggested that the addition
of a co-located sidekick has potential to increase user engagement, without altering proxemic
behavior. In particular, children interacted with our robot from three spatial zones, which were
typically occupied based on their activity. We also observed some evidence of F-formations
during the experiment, but it was hard to annotate them because the young participants often
did not cooperate to sustain their spatial arrangements. Rather, their spatial behavior was
substantially variable and seemed impulsive at times. In addition, our findings reinforce the
idea that furniture is a good robot design for children.

The limitations of our platform with respect to handling the natural dynamics of free stand-
ing conversations became especially evident during the first experiment. In this case, our robot
failed to react to cases in which the group of children with whom it was interacting became

4See Chapter 4 for a detailed description of how the robot operates.
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engaged with something else. The robot did not have any mechanism to detect these situa-
tions, nor effective strategies to regain children’s attention. This limitation motivated us to
work towards enabling robots to automatically detect nearby conversational groups.

In our second experiment, we used Chester to examine group interactions in the context of a
social, role-playing game. The participants of this experiment interacted with the robot as one
more player of the game and as the moderator of the activity. In both cases, we noted that the
average inter-participant distance during the day phases of the games tended to be smaller than
the average distance between the participants and the robot. Various reasons could potentially
explain this result, such as the fact that Chester is a robot and its social status could have been
perceived differently than that of the participants. We also noticed during the experiment that
the separation between the participants and the robot was higher when it was moderating the
game than when it was a player. Even though this difference was small and could have been
influenced by the lack of counterbalancing, we suspect that Chester’s role could have induced
this result. In fact, some of the participants expressed preferring the robot as a player rather
than as a moderator because being a player made it feel more part of their group. Other factors
that influenced their preferences for Chester’s role included interaction time, its value to the
game, trust, and how skilled the robot seemed under each condition.

The second experiment was interesting from a design perspective. First, it provided evidence
that suggests that people may have conflicting use models for furniture robots. Even though
they may want to use them as objects for utilitarian purposes, they may assign human-like
attributes to them that restrict their typical use as furniture. Second, the feedback from the
second experiment was very positive overall, suggesting that social, role-playing games can be
a good scenario for further investigating multi-party human-robot interactions.

Overall, we observed F-formations emerged during group interactions with
our furniture robot. This validation is important because it sets the foundations for using human
spatial behavior as a mechanism to detect social group conversations in HRI and improve robot
perception. The next chapter describes our efforts in this direction.





Chapter 6

Detecting Group Conversations by
Reasoning About Spatial Behavior

This chapter describes our efforts towards enabling robots to detect free-standing group
conversations and their members. This ability is essential for these machines to adapt to the
natural dynamics of social interactions and appropriately operate in human environments.

Different types of information can be used to detect group conversations, as discussed in
Section 3.2. For example, one can rely on speech cues to detect small group configurations
[27] based on synchronized turn-taking processes. Another approach – which we follow in
this dissertation – is to reason about spatial patterns of behavior that emerge during free-
standing conversations [40; 54; 74; 155; 156; 218]. These methods can be applied in loud, public
environments, and can be used to detect interactions in close proximity or from afar. The latter
ability in particular can help identify opportunities to start new interactions and appropriately
navigate in social human environments.

Here, we introduce an alternating optimization procedure to leverage the dependency be-
tween two problems to detect group conversations. One problem is estimating the lower-body
orientation of people in a scene; the other is detecting F-formations. Our efforts build upon
prior work on reasoning about human spatial behavior and on our experience studying group
conversations in HRI (Chapter 5). The proposed approach was first published in IROS’15 [196].

6.1 Problem Statement

As in prior work [40; 54; 74; 155; 156], we frame of the problem of detecting conversational
groups in a scene as a clustering problem with an unknown number of clusters. More specifically,
at any time t, our goal is to estimate a set of conversational groups Gt = {G1, G2, . . .} by
reasoning about F-formations in a scene. We model each group as a set G that holds the
numeric identifiers of its members. For example, if the first group has three members, then
G1 = {a, b, c}, where a, b, c ∈ N are the identifiers of the interactants.

In general, we assume that the 2D position of the people of interest is given (e.g., as output
by a person tracker), and that we can measure people’s lower-body orientations (yaw angle) to
some degree. In ideal circumstances, we can directly observe this orientation and use it to model
people’s transactional segments and find F-formations in a scene. In other circumstances, we
may only have access to related observations, like measurements of peoples’ head orientations.

Note that the above problem formulation is agnostic to particular sensing modalities. This
is important for human-robot interaction applications where robots might be able to gather
information about their environments with cameras, lidars, and various other sensors.
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6.2 Prior Work

Chapters 2 and 3 of this dissertation present important background on human conversations
and related work on detecting social interactions. For completeness, this section describes in
more detail some important aspects of prior work on modeling and detecting F-formations.

Most existing methods to detect F-formations focus on finding o-spaces in a scene. Figure
6.1 describes their typical processing pipeline.

ENCODE INDIVIDUAL 
TRANSACTIONAL 

SEGMENS

DETECT 
CONVERSATIONS BY 
FINDING O-SPACES

ESTIMATE THEIR 
ORIENTATION

DETECT PEOPLE 
IN A SCENE

Figure 6.1: The solid arrows connect the typical steps involved in detecting F-formations
and their corresponding conversations. In this work, we expand this model by leveraging
F-formations to improve lower-body orientation tracking (dashed arrow).

For example, Cristani et al. [40] encoded the transactional segment of a given person i with
the proposal oi = [xi + d cos(θi), yi + d sin(θi)]T corresponding to the likely location of his or
her o-space center, where [xi, yi]T is the position of the person, θi is her or her orientation, and
d is a model parameter that controls how far away the center of the o-space is from the person’s
body. To find F-formations, the authors then devised a Hough voting scheme to find the places
in a scene where the proposals from different people intersect one another. The F-formation
detection approach that we propose in this dissertation is inspired by this prior work. However,
instead of computing hard group assignments as in [40], we focus on computing soft assignments
to help overcome measurement uncertainty [32].

By definition, transactional segments are directed by people’s lower-body orientation [87].
However, most prior methods to detect F-formations use people’s head orientations or an es-
timate of their focus of attention to encode these segments [40; 74; 155; 156]. The reason is
twofold: head orientations and the direction of people’s focus of attention approximate lower-
body orientation, and the former orientations are easier to estimate automatically than the
latter.1 This approximation, though, makes prior F-formation detection methods prone to
errors due to the inherent variability of people’s attention span. To compensate for this vari-
ability, prior F-formation detection methods have often become very inclusive. They tend to
group people together more often than they should. We discuss this problem further in the
evaluation section of the present chapter.

A key insight of our work on detecting group conversations, is that we can leverage informa-
tion about where these interactions are happening to better track the lower-body orientation
of people in a scene. Not only people’s orientation is important for detecting F-formations, as
emphasized by prior work, but F-formations can also help estimate people’s orientation. This
idea is illustrated by the dashed arrow in Fig. 6.1.

1Two important exceptions are [218] and [54]. In the case of [218], a laser scanner was used to measure users’
upper-body orientation with respect to a robot and detect triadic F-formations. This approach required direct
view of human chests from the sensor, limiting generalization to other situations. In [54], body skeletons from
multiple Kinect RGB-D cameras were used to detect F-formations. However, orientation measurements needed
manual correction when frontal and backward skeletons were mislabeled. This situation could be improved by
tracking orientations based on body measurements and contextual data, as proposed in this work.
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6.3 Parallel Group Detection & Lower-Body Orientation Tracking

In this work, we propose a general framework to detect free-standing conversational groups
and to track the lower body orientation of people in a scene. A schematic representation of the
framework is presented in Fig. 6.2.

GrupO

World Model
(other static foci of attention)

Detect Groups / F-formations
(membership + o-space centers)

Track Lower-Body Orientations
(for each person independently)

Detect People 
(location)

Track People 
(location + velocity)

Estimate Orientation(s)
(lower-body, head, etc.)

+

Most Likely
Groups

Most Likely
Lower-Body
Orientations

Figure 6.2: Schematic representation of our group detection framework. We propose to detect
free-standing conversational groups and to track lower-body orientations in parallel.

At the core of the framework is an alternating optimization procedure that we named
GrupO, for Group detection and Orientation tracking. At any given time, GrupO performs
these two tasks to compute the most-likely group configuration Gt in a scene and the lower-
body orientation of each person of interest (outputs in Fig. 6.2). First, GrupO estimates likely
conversations by finding F-formations. These spatial organizations are detected by looking for
o-spaces, based on the last positions and likely lower-body orientations that were estimated for
the people in the scene. Then, the location of the o-spaces that were found and the probability
of people belonging to them are used to update a lower-body orientation tracker per person.
Each of these trackers considers not only group information, but also knowledge about nearby
foci of attention in the scene to overcome noisy orientation measurements.

The next sections describe the group detection method and the orientation tracker that
we propose to use for GrupO. Particular implementation details and experimental results are
presented afterwards in Section 6.4.

6.3.1 Model-Based F-formation Detection

We propose a new method for detecting F-formations and their members with GrupO. This
method was inspired by the Hough voting scheme of [40] and, different to prior work, reasons
about nonparametric lower-body orientation distributions. Reasoning about these distributions
can facilitate coping with situations of high uncertainty with respect to the orientation of people
in a scene. Moreover, the proposed F-formation detection approach computes soft o-space
assignments, which can help lower-body orientation trackers recover from group detection errors
in GrupO. Another difference between the proposed approach and the Hough voting scheme
of [40] is that the proposed algorithm operates in a continuous space. This makes our method
faster and more accurate than earlier voting approaches.
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Our F-formation detection approach is detailed in Algorithm 6.3.1. This algorithm has four
main steps:

1) Generating proposals for the location of the o-spaces in the scene. For each
person i ∈ [1, P ], we first generate N proposals for their o-space centers based on their position
pi and their nonparametric lower-body orientation distribution Φi = {φi[j] ∈ [0, 2π] | 1 ≤ j ≤
N}. The proposals are modeled as normal distributions N (µij ,Σi

j), one per sample j in Φi,

µij = pi +R

[
d
0

]
, Σi

j = R

[
(σx)ij 0

0 (σy)ij

]
RT , and R =

[
cos(φi[j]) − sin(φi[j])
sin(φi[j]) cos(φi[j])

]
(6.1)

where d, the stride of the model, represents the expected separation between the o-space of the
person and his or her body. The vector pi corresponds to the position of the person i, and
(σx)ij and (σy)ij are parameters that control the shape of the Gaussian. An example of possible
values for these parameters is later provided in Section 6.4.2

2) Finding o-space centers. To find likely o-space centers in a scene, we combine every-
body’s proposals into a Gaussian mixture: p(x) = (1/NP )

∑P
i=1

∑N
j=1N (x;µij ,Σi

j) where µij
and Σi

j come from equation (6.1). We consider the local maxima of this mixture as likely
o-space centers in the scene given people’s spatial configuration.
To find the maxima, we use the iterative fixed-point algorithm of [29], starting from the means
of the components. The function fixedPointLoop in line 11 of Alg. 6.3.1 corresponds to the
“fixed point iteration loop” of [29] (see their Fig. 3 for more details). As in the latter work,
we decide in line 12 whether a sample point x reached a local maxima based on the Hessian of
the mixture distribution at that point. In general, it is possible that finding all the maxima of
the mixture requires exhaustive search. In our experience, though, starting to search from the
means provides good results in practice with a reduced computational load.
We finally group the modes that are within τ meters from each other (line 14 of Alg. 6.3.1), and
keep track of which component converged to which mode in the process. When this grouping
happens, we set the mode with highest mixture probability as the most-likely o-space center in
its vicinity. In this manner, the parameter τ helps in coping with noise in human motion, as
well as in our estimates of people’s lower-body orientation.

3) Computing soft group assignments. Once the likely o-space centers are found, we count
for each person how many of their mixture components converged per center, and compute their
soft group assignment scores by normalizing this count (line 41 of Alg. 6.3.1). Note that this
count only considers the o-space centers that are directly visible for people (line 35). We perform
this visibility check by modeling individuals as circles with a fixed radius of 0.2m. We then
use ray-casting to compute if any person occludes a likely o-space center for anybody else. The
resulting soft group assignment scores are passed to the orientation tracker of the corresponding
person in GrupO.

4) Computing hard group assignments. To obtain hard group assignments, we proceed
in a greedy fashion and pick the likely o-space center with the highest score per person as his
or her most probable o-space. A group is then set to be found whenever a likely o-space center
has the highest score for two or more people (line 53 of Alg. 6.3.1).

2This model for o-space proposals is similar to those used in [40; 155; 156]. The difference with prior work,
though, is that because we do not use a single (most-likely) orientation per individual, we generate more than
one o-space proposal per person. The number of proposals that we generate per person depends on the number
of samples in their nonparametric orientation distribution.
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Algorithm 6.3.1: Detect F-formations by mode-finding
Input: Position pi and nonparametric lower-body orientation distribution Φi =

{
φi[1], . . . , φi[N ]

}
of every

person i in the scene (1 ≤ i ≤ P )
Output: Set G of most-likely groups and corresponding o-space center, list M of all the likely o-space centers in

the scene, and lists Si of o-space assignment scores for every person i
1 X = ∅ // set of mixture components
2 w = 1/PN // components’ weight
3 for i = 1 to P do
4 for j = 1 to N do
5 (µi

j ,Σ
i
j) = ospaceProposal(pi, φi[j])

6 X = X ∪ {(µi
j ,Σ

i
j , w)}

7 end
8 end
9 M = [ ] // modes (likely o-space centers)

10 for (µi
j ,Σ

i
j , w

i
j) in X do

11 x = fixedPointLoop(µi
j ,X ) // hill climb from the mean [29]

12 if x is local maxima then
13 (idx, dist) = closestMode(x,M)
14 if dist < τ then // group modes?
15 if p(M[idx];X ) < p(x;X ) then

// x has higher probability
16 M[idx] = x
17 end
18 k = idx

19 else // add new mode
20 add x to M
21 k = |M|
22 end
23 mode_idxi

j = k // bookkeeping
24 end
25 end

// compute soft assignment scores
26 for i = 1 to P do
27 Si = [ ]
28 for k = 1 to |M| do // initialization
29 ni

k = 0
30 add 0 to Si

31 end
32 for j = 1 to N do
33 if isset(mode_idxi

j) then // reached local maxima
34 k = mode_idxi

j

35 if visible(M[k],pi) then
36 ni

k = ni
k + 1

37 end
38 end
39 end
40 if

∑
k
ni

k > 0 then // normalize assignment scores
41 for k = 1 to |M| do Si[k] = ni

k/
∑

k
ni

k end
42 end
43 end

// greedy hard group assignment
44 G = ∅
45 for k = 1 to |M| do
46 G = ∅
47 for i = 1 to P do // get the most-likely o-space
48 idx = arg maxm Si[m]
49 if Si[idx] > 0 and k == idx then
50 G = G ∪ {i}
51 end
52 end
53 if |G| ≥ 2 then // found group / F-formation
54 G = G ∪ {(G,M[k])}
55 end
56 end
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In general, our group detection approach assumes that we are dealing with open, public
spaces, and that the configuration of this space does not generate occlusions that prevent people
from interacting with one another. However, if there were walls or other static, big objects that
could prevent interactions from happening in a given environment, our method could reason
about them as it dealt with people occluding o-spaces (line 35 of Alg. 6.3.1). For example, we
could run additional verification steps to check that o-space centers are not occluded by a wall
or other big physical elements. As discussed in [118], reasoning about these occlusions can be
crucial in complex environments.

6.3.2 Tracking Lower Body Orientations

When we track lower body orientations, we assume that people are standing at all times,
as it happens during free-standing conversations. In addition, we assume that we are given
the location of group conversations (encoded by the location of their o-space centers) and the
likelihood of people belonging to these interactions (group assignment scores), e.g., as output
by the group detection algorithm of Sec. 6.3.1. We also assume that people’s position and some
measurement indicative of their true body orientation are provided. This measurement can be
a noisy observation of their lower body orientation or of their head pose.

We track body orientations using particle filters,3 which can keep track of multi-
modal orientation distributions. The latter property is advantageous for GrupO because it
reduces the chances of getting stuck in local solutions. Furthermore, we propose to use one
particle filter per person. This approach renders the orientation estimations of the people in a
scene independent of each other, given measurements of their pose, and contextual information
like the likelihood that they belong to nearby conversations.

In general, particle filters approximate posterior distributions with a finite number of sam-
ples Xt =

{
x[1], . . . , x[N ]

}
, each of which is a concrete instantiation of the hidden state X

tracked by the filter at time t. In GrupO, this state at least includes the lower-body ori-
entation φ of a person. It could potentially also include other body features, such as head
orientation.

The specific evolution of states, controls and observations of the filters is left open to partic-
ular implementations because they depend on the state variables and available measurements
(examples are provided in Section 6.4 and Chapter 7). In general, though, we expect these
filters to evolve like the following Bayes network:

Xt-1 Xt

Ut-1 Ut

Z t-1 Z tCt-1 Ct

Xt+1

Ut+1

Z t+1Ct-1

Figure 6.3: Bayes network that characterizes the evolution of the controls (U), the observations
(C and Z) and the state (X) of the particle filters.

where C represents contextual observations (including group information and known foci of
attention in the environment) and Z are orientation measurements (e.g., sensed head or body
orientations). For control (U), one could use people’s instantaneous velocity to predict how
their lower-body orientation might change as they move, e.g., similar to [53].

3A friendly introduction to particle filters can be found in [184].
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The belief bel(Xt) for the network representing the evolution of the particle filter can be
factored as:

bel(Xt) = p(Xt|U1:t, Z1:t, C1:t) = η p(Zt|Xt)p(Ct|Xt)
∫
p(Xt|Xt−1, Ut)bel(Xt−1)dXt−1 (6.2)

where η is a normalization term, p(Xt|Xt−1, Ut) is the state transition probability, and the
product

(
p(Zt|Xt)p(Ct|Xt)

)
corresponds to the importance factor of the particles. The next

section provides a specific example on how this type of particle filter can be implemented.

6.4 Evaluation on the Cocktail Party Dataset

This section presents an evaluation of GrupO on a standard computer vision benchmark
for group detection. First, we describe the dataset that we used for this evaluation. Then, we
provide implementation details to illustrate how the group detection approach (Sec. 6.3.1) and
the particle filters that we proposed for GrupO (Sec. 6.3.2) can be adapted to the dataset of
interest. Finally, we describe our evaluation criteria, present the results, and briefly discuss our
findings.

6.4.1 Dataset

We evaluate GrupO on the “Cocktail Party” dataset [155]. This public dataset is often
used to compare F-formation detection approaches within the field of Computer Vision.

The dataset consists of a sequence of more than 24000 images (recorded at 15Hz). The
images show six people interact in an instrumented room, as shown in Fig. 6.4. For each frame,
the dataset provides the location of each person and their head orientation, as computed by a
custom person tracker. Furthermore, group annotations by an expert are given roughly every
5 seconds, for a total of 320 frames.

Figure 6.4: Images from the Cocktail Party dataset [155].

We collected annotations of the lower body orientation of the people captured in the dataset
to complement the original ground truth. This data was gathered specifically for the 320 images
that had group annotations. We used a custom interface similar to the one that was used in
[111] to collect body orientations.

6.4.2 Implementation Details

We implemented GrupO to take advantage of the measurements provided in the Cocktail
Party dataset. These measurements are the position (pi, 1 ≤ i ≤ P ) of the people in the scene
and their head orientation (θi). We further integrated the positions of people to estimate their
instantaneous linear velocities (vi).
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6.4.2.1 Detecting Groups

We used the method described in Sec. 6.3.1 to identify F-formations and detect conversa-
tional groups. Based on a small validation set, we used τ = 0.75 in Alg. 6.3.1 and implemented
the o-space proposals of eq. (6.1) with the following stride for any given person i:

d = base_stride+ f(abs(d1Tvi)) (6.3)

where base_stride is the expected distance between the person and his or her o-space center
when s(he) is conversing and standing still. Based on [40], we used base_stride = 0.7 in this
evaluation.4 The function f(x) = 2σ(x) − 1, with σ(x) = 1/(1 + exp(−x)), adjusts the stride
of based on the person’s instantaneous velocity vi and the direction d1 = [cos(φi) sin(φi)]T
of his or her body orientation φi. When the person moves forwards or backwards, his or her
o-space moves further away up to 1 meter. When (s)he walks sideways, the o-space moves little
because abs(d1Tvi) approaches zero in these cases. Also, d = base_stride for someone who is
not moving.

For the covariance Σi
j of the o-space proposals in eq. (6.1), we set

(σx)ij = (base_stride/s)2 + f
(1

2abs(d1Tvi)
)

(6.4)

(σy)ij = λ(base_stride/s)2 (6.5)

with λ = 0.25. For the function f and the base_stride, we used the same definitions as in eq.
(6.3). We often set s to a value between 1 and 2.25 (more information about the influence of s
is provided in Sec. 6.4.4.3). Figure 6.5 illustrates the flexibility of this o-space proposal model,
and Figure 6.6 shows example group detections in the Cocktail Party dataset.

λ  = 0.50 λ  = 1.00 λ  = 2.50

λ  = 0.50 λ  = 1.00 λ  = 2.50

λ  = 0.50 λ  = 1.00 λ  = 2.50

Figure 6.5: Example o-space proposals for 5 orientations at 0,±0.25,±0.5 radians from the
direction of the lower body of an individual. The person’s velocity (indicated by an arrow)
was zero for the first row, was aligned with the lower-body direction in the second one, and
was perpendicular to it in the third. The black dots represent the means of the Gaussian
distributions of eq. (6.1) and the ellipses represent their covariances at 99% confidence. The
column show how the proposals vary based on λ in eq. (6.5).

4Appendix B describes an optimization approach that can be used to validate this baseline stride.
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(a) Spatial configuration (b) Contour plot

Figure 6.6: O-space proposals for a frame of the Cocktail Party dataset. Left: Means µ of each
person’s o-space proposals (small black dots) and groups (by color) found in this scene by Alg.
6.3.1. Right: Mixture distribution of o-space proposals. The modes (in yellow and brown) were
found for τ = 0.75m (line 14 of Alg. 6.3.1). Yellow modes were the most likely o-space centers
for at least one person.

6.4.2.2 Tracking Orientations

We implemented the orientation trackers used in this evaluation based on the following
observations: (1) people tend to orient their lower body towards other people or objects of
interest while standing still, (2) people often orient their head in the same direction as their
lower body, (3) people can turn their heads (temporarily) to attend to visible targets in the
scene other than their main focus of attention, and (4) people tend to orient their lower body
towards their direction of motion while walking.

Consider a person i in a scene at any time t. We estimated a probability distribution for his
or her lower body orientation φit using the dynamic Bayesian Network of Fig. 6.7. This inference
used estimates of the person’s velocity vi, position pi, and head orientation θi. Moreover, it
used contextual information Ci, which included:

– the position pj of the other people in the scene (j 6= i) ;
– a set O with the locations of the nearby objects that people my interact with;5 and
– the o-space centers M and corresponding assignment scores Si[k], for 1 ≤ k ≤ |M|, as

output by the group detection algorithm of GrupO.

ɸi
t-1 ɸi

t

vi
t-1 vi

t

! it-1 ! itCi
t-1 Ci

t

pi
t-1 pi

t

ɸi
t+1

vi
t+1

! it+1Ci
t+1

pi
t+1

Figure 6.7: Bayes network that characterizes the evolution of the lower body orientation φi of
a person i, based on his or her position pi, linear velocity vi, head orientation measurement θi,
and contextual information Ci.

5For the Cocktail Party dataset, O was composed of two points that represented the table in the room where
the interaction happened (this table can be seen in Fig. 6.4).
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As in Sec. 6.3.2, we formulated the belief bel(φit) at time t recursively:

bel(φt) = p(φt|v1:t, θ1:t, C1:t,p1:t) = η p(θt|φt, Ct,pt)p(Ct|φt,pt)
∫
p(φt|φt−1,vt)bel(φt−1)dφt−1 (6.6)

where we have dropped momentarily the superscript i for simplicity. In this factorization, η
is a normalization term, p(θt|φt, Ct,pt) is the head measurement probability, p(Ct|φt,pt) is the
context probability, and p(φt|φt−1, vt) is the state transition probability. As suggested in Sec.
6.3.2, we used a particle filter to approximate the posterior bel(φt) with a finite number of
samples Φt =

{
φt[1], . . . , φt[N ]

}
, which we initialized from a uniform von Mises distribution

VM(0, 0).6 We followed a standard particle filter algorithm, as presented in Algorithm 6.4.1,
to update the belief bel(φit). In practice, we used low variance sampling [184] for the last step
of the algorithm (lines 7-10).

Algorithm 6.4.1: Particle filter for lower-body orientation
Input: Samples Φt−1, velocity vt, context Ct, and head orientation measurement θt

Output: Samples Φt

1 Φ̄t = Φt = [ ]
2 for j = 1 to N do
3 sample φt[j] ∼ p(φt|φt−1[j],vt)
4 wt[j] = p(θt |φt[j], Ct,pt) p(Ct |φt[j],pt)
5 add (φt[j], wt[j]) to Φ̄t

6 end
7 for j = 1 to N do
8 draw k with probability ∝ wt[j]
9 add φt[k] from Φ̄t to Φt

10 end

The following paragraphs detail the motion and measurement models used for our evaluation
of GrupO on the Cocktail Party dataset:

Motion Model. For a given person i, we propagated his or her lower-body orientation φi

from time t− 1 to t as follows:

φit = φit−1 + ω(vit, φit−1)∆T + q (6.7)

The angular velocity function ω(vt, φt−1) in eq. (6.7) controls the rate of rotation of the lower
body, ∆T is the time difference from t − 1 to t, and q ∼ N (0, r) is a small perturbation. In
particular, the function ω makes the body rotate towards the direction of motion of the person:

ω(vit, φit−1) = sign(d2Td3)
[ α

∆T
]
m(vit, α) (6.8)

where,
α = arccos(d1Td3)

d1 = [cos(φit−1) sin(φit−1)]T

d2 = [− sin(φit−1) cos(φit−1)]T

d3 = vit/‖vit‖
m(vit, α) = 2σ(h(α)‖vit‖)− 1 (6.9)

6We use von Mises distributions (VM) for tracking the lower body orientations because they naturally model
angular distributions [52]. In particular, VM(a;µ, κ) = exp (κ cos(a− µ))/2πI0(κ), with I0(·) the modified Bessel
function of order zero. The parameters µ and κ are analogous to the mean and the inverse of the variance in the
normal distribution. When κ = 0, the von Mises distribution becomes uniform.
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The variable α is the (unsigned) angular difference between the previous lower body orientation
φit−1 (d1) and the current direction of motion on the ground plane (d3). The sign(d2Td3)
component of (6.8) provides the direction of rotation of the lower body as the person walks.
The geometric relations between d1, d2 and d3 are illustrated in Figure 6.8.

d1

d3

d2

arccos(         )

vi

d1 d3T

Figure 6.8: Geometric relations in the motion model.

As the linear velocity of the person opposes the direction of his or her lower body, ω becomes
small in order to prevent sudden body rotations of 180◦.

Context Model. We defined the probability of the context Cit as a mixture:

p(Cit |φit,pit) =wgroup pgroup(Cit |φit,pit) + weng peng(Cit |φit,pit)+ (6.10)
(1− (wgroup + weng))VM(0;φit, 0)

with the sum (wgroup + weng) of the non-negative weights in [0, 1].
The first component,

pgroup(Cit |φit,pit) =
|Mt|∑
k=1
Sit [k]VM(βk;φit, κgroup) +

(
1−

|M|∑
k=1
Sit [k]

)
VM(0;φit, 0) (6.11)

corresponded to the probability of the person belonging to an o-space given his or her spatial
configuration. The angle βk in eq. (6.11) was the direction of the vectorM[k]−pit towards the
o-space center k. The spread κgroup controlled shape of these von Mises distributions.
The second component was another mixture probability,

peng(Cit |φit,pit) =
V∑
v=1

ev VM(βv;φit, κeng) (6.12)

which represented the likelihood of user engagement with another individual or object v within
a field of view of 180◦. Here, the angle βv represented the direction towards this other individual
or object of interest from the position of person i.
Finally, the last component VM(0;φit, 0) in eq. (6.10) was a uniform distribution that repre-
sented the likelihood of failing to explain the context of the person with his or her orientation.

Head Measurement Model. Similar to the context model, we defined the head measurement
model as a mixture of probabilities:

p(θit|φit, Cit ,pit) = wfront pfront(θit|φit) + wfocus pfocus(θit|φit, Cit ,pit)+ (6.13)
(1− wfront − wfocus)VM(θt; 0, 0)

where the sum of the non-negative weights is also in [0, 1]. The first component of the mixture
accounted for frontal headings,

pfront = VM(θit;φit, κfront) (6.14)
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The second component,

pfocus(θit|φit, Cit ,pit) ∝ max
v=1...V

{
VM(θit;βv, κfocus)

}
(6.15)

was proportional to the maximum likelihood of orienting the head towards a (non-occluded)
person, object of interest, or most likely o-space center within a 180 deg field of view in front
of person i. The third component accounted for unexplained head orientation measurements.

6.4.3 Group Detection Criteria

We adopted the two criteria in [40; 155; 156] for analyzing group detection results versus
ground truth annotations. One criteria considered a group to be detected if at least d(2/3)|G|e
of its members were identified and no more than 1 − d(2/3)|G|e of false subjects were found,
where |G| is the cardinality of the group. The other criteria considered a group to be detected
if all its members were identified correctly and no false members were found. Precision, recall
and F1 scores were computed using these criteria, summing true positives, false positives, and
false negatives over all the frames with group annotations.

6.4.4 Results

We compared the performance of the proposed F-formation and tracking algorithms against
the state-of-the-art approach of [156]. We used their open-source implementation7 to generate
the results for their method in this evaluation.

As part of this evaluation, we study the performance of the proposed group detection
method (Alg. 6.3.1) with head measurements and lower body annotations directly (i.e., without
GrupO). To compute these results, we generated an artificial (non-parametric) orientation dis-
tribution Φ with N = 30 samples. This distribution was generated by sampling N (φ, q), where
the mean φ corresponded to the head measurement or true body orientation of the person. The
variance q was a small number that controlled the spread of the samples. In particular, we used
q = 0.07 when we evaluated the performance of the algorithm with ground truth annotations,
and q = 0.13 when we used head measurements directly.

6.4.4.1 Orientation Estimation

0
50

100
150
200
250
300
350

Head
GRUPO

C
ou

nt

Degrees
0 57 114 172

Figure 6.9: Angular difference with re-
spect to the lower body annotations.

To verify that GrupO was working, we analyzed
the most-likely lower body orientations that it was
estimating for every person in the scene. We com-
pared these values against the head measurements
that were provided as part of the Cocktail Party
dataset, and the lower body orientation annotations
that we collected for 320 frames. For this test, we
ran GrupO with Alg. 6.3.1 and set s = 2 in eq. (6.5)
and (6.4), which we found to work well in practice
(as later discussed in Sec. 6.4.4.3).

As expected, GrupO tended to better approxi-
mate ground truth lower body orientations than the
head orientation measurements. Figure 6.9 shows
superimposed histograms of the absolute angular dif-
ference between lower body orientation annotations

7http://profs.sci.univr.it/∼cristanm/ssp/

http://profs.sci.univr.it/~cristanm/ssp/
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and head measurements, and between the annotations and the estimated lower body directions
on a typical run of GrupO. On average, the head measurements were 0.59 radians (∼ 34◦) off
from the body annotations (SE=0.013). Using GrupO, the estimated lower body orientations
were 0.38 radians (∼ 22◦) on average from the annotations (SE=0.008).

6.4.4.2 Detecting Groups with Graph Cuts [156]

We ran GrupO with the group detection method of [156], which iteratively applies graph-
cuts to find F-formations and cluster together the people in a scene. Because the method of
[156] only provides hard group assignments, we set the soft o-space scores used by our particle
filters to binary {0, 1} values depending on the detected groups.

Table 6.1 shows the best results obtained with [156]. Our exploration of the MDL param-
eter that controls the behavior of graph-cuts within this approach is documented in [196]. In
summary, we found that no single MDL parameter worked best for all input orientations. In
fact, the more noise, the higher the MDL should be. But there is a trade-off: the higher MDL,
the more inclusive the graph-cuts approach becomes. In other words, high MDL values induce
graph-cuts to group people together more often than not.

Table 6.1: Group detection results using the graph-cuts F-formation detection approach of
[156]. Results for GrupO were averaged over 5 runs (std. errors were equal or less than 0.005).

Criteria Orientation MDL Precision Recall F1
Lower-Body Annotations 14000 0.84 0.84 0.84

Head Measurements 30000 0.82 0.81 0.82d(2/3)|G|e
GrupO 14000 0.82 0.80 0.81

Lower-Body Annotations 14000 0.69 0.68 0.69
Head Measurements 30000 0.62 0.61 0.61|G|

GrupO 14000 0.61 0.60 0.61

Not surprisingly, the graph-cuts approach of [156] works best with lower body ground truth
annotations. Our intuition as to why GrupO with graph-cuts does not improve the results
over using head measurements directly is that the approach of [156] only outputs hard group
assignments. These groups often include false members, and these errors can easily propagate
within GrupO.

6.4.4.3 Detecting Groups with Algorithm 6.3.1

Table 6.2 provides the precision, recall and F1 scores for the F-formation detection method
proposed in Algorithm 6.3.1. Each row shows the best parameter s for eq. (6.5) and (6.4). In
general, the smaller s, the more spread the o-space proposal distributions were.

We found that Algorithm 6.3.1 was as powerful as the graph cuts approach of [156] when
we used lower body annotations to orient the transactional segments of the people in the scene.
The results for using head measurements directly were slightly lower in this case, but GrupO
tended to perform slightly better under the full group detection criteria. Figure 6.10 shows a
few illustrative group detection results for GrupO with Algorithm 6.3.1.
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Table 6.2: Group detection results using Alg. 6.3.1. The parameter s corresponds to eq. (6.5)
and (6.4). Results were averaged over 5 runs (std. errors were equal to or less than 0.003).

Criteria Orientation s Param Precision Recall F1
Lober-Body Annotations 2 0.86 0.83 0.85

Head Measurements 1.25 0.81 0.80 0.81d(2/3)|G|e
GrupO 2 0.82 0.80 0.81

Lower-Body Annotations 2 0.71 0.69 0.70
Head Measurements 1.25 0.60 0.59 0.60|G|

GrupO 2 0.65 0.63 0.64
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Figure 6.10: Qualitative results for GrupO on the Cocktail Party dataset. The first column
shows ground truth groups (by color) and lower body orientations. The second one shows group
detections using head measurements. The third uses estimated lower body orientations.

6.4.4.4 Individual Interaction Detection

We examined how well the F-formation detection method by Setti et al. [156] could infer
if people were interacting or not versus GrupO. Table 6.3 shows the results from this binary
classification task, where accuracy is (TP +TN)/(TP +FP +TN+FN), the true positive rate
is TP/(TP + FN) and the true negative rate is TN/(TN + FP ), with TP the number of true
positives, TN the true negatives, FP the false positives, and FN the false negatives. While
GrupO and the method of [156] have similar accuracy at the individual level, GrupO is able
to double the true negative rate of [156], without any additional computer vision processing.



57 DETECTING GROUP CONVERSATIONS BY REASONING ABOUT SPATIAL BEHAVIOR

Table 6.3: Interaction classification results at an individual level. We used MDL= 30000 for
[156] and s = 2 (eq. (6.5) and (6.4)) for Alg. 6.3.1. GrupO results were averaged over 5 runs.

Metric GC (Head) [156] GrupO
True Positives 1739 1707.4 (SE = 2.0)
False Positives 140 97.4 (SE = 1.1)
True Negatives 39 81.6 (SE = 1.1)
False Negatives 2 33.6 (SE = 2.0)

Accuracy 0.93 0.93 (SE < 0.01)
True Pos. Rate 1.00 0.98 (SE < 0.01)
True Neg. Rate 0.22 0.46 (SE < 0.01)

6.4.5 Discussion

Our results on the Cocktail Party dataset suggest that GrupO can help better detect
non-interacting people, without sacrificing group detection performance. This is particularly
important for social robots in human environments. For instance, detecting nearby bystanders
effectively can help robots adapt to changes in the members of their conversations. Moreover,
detecting bystanders can provide opportunities to start new social interactions.

In general, any F-formation detector and lower-body orientation tracker can potentially be
used with our group detection framework. However, our experiments suggest that GrupO
works better with soft clustering methods than with traditional approaches that compute hard
group assignments. Furthermore, we believe that it is beneficial to reason about non-parametric
orientation distributions in GrupO. Avoiding committing to the most-likely set of groups and
the most-likely lower body orientations for the people in a scene can reduce the chances of
propagating errors through the proposed alternating optimization procedure.





Chapter 7

Understanding the Effects of Body
Orientation and Gaze

In the first two experiments presented in Chapter 5, the orientation of the robot was manu-
ally controlled by a wizard during the whole interaction. Moving forward, we wanted to examine
the possibility of controlling the orientation of the robot automatically during a group conversa-
tion with multiple people. How should robots cooperate to sustain F-formations while engaged
in a conversation? One strategy is to mimic human behavior. Robots can orient their body
towards the middle of their group, as illustrated in Fig. 7.1a. This approach was previously
proposed by Althaus and colleagues [11] and was associated with more positive perceptions of
the behavior of a telepresence robot [203]. However, this strategy is not the only reasonable one
for mobile, low degree-of-freedom (DoF) robots. For robots with a fixed head, such as Chester,
FROG [47], SPENCER [189], or any of the the CoBots [200], it may be better to orient towards
the focus of attention of the conversation, e.g., the speaker, as illustrated in Fig. 7.1b. This
behavior could help establish common ground [88; 168], convey attentiveness to the interaction,
and make users perceive robots as more active or responsive.

To further our understanding of robot positioning during group conversations, we conducted
another experiment where our mobile robot interacted with small groups of people. In this
case, we manipulated the orientation of the robot during conversations, but also its gaze. Even
though our robot has a fixed head, the direction of its eyes can still communicate mental states
and attention [3; 14]. Thus, we expected gaze to affect the perception of the orientation of the
robot.

We designed a new protocol for this experiment to continue studying spatial behavior in
HRI and avoid the bystander effect that we observed in our first study (Sec. 5.1). In the new

...

robot

(a)

...

robot

(b)

Figure 7.1: Strategies to orient a robot with respect to the members of its group conversation.
In (a), the robot orients towards the center of the group. In (b), it orients towards the speaker.
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Figure 7.2: HRI experiment where we tested orientation and gaze behaviors for our robot.

protocol, the robot asked the participants to help it solve a problem in a brainstorming session
in the laboratory (Fig. 7.2). Even though this experiment was not conducted in a public setting,
our design made the interaction naturalistic. Participants were free to move in the environment
as desired and, periodically, were induced to leave the robot’s conversational group to document
their ideas. This dynamic created a variety of group formations on a frequent basis, thereby
generating numerous instances for studying multi-party interactions. For example, groups with
one to four people emerged during our experiment as a result of the flow of the activity. In
addition, the proposed brainstorming protocol did not require us to provide the participants
with specific instructions on their roles. This property can increase interaction time during
experiments in contrast to the prior role-playing game protocol described in Section 5.2.

The body and gaze behaviors that we tested for our robot were controlled automatically by
a multi-modal perception system during most of the the brainstorming activity. This system
relied on several off-the-shelf sensors and data fusion techniques to (1) track the users and the
robot, (2) detect conversational groups by reasoning about spatial behavior, and (3) detect
the current speaker in the environment. Although the core components of this system were
developed previously, their integration is valuable. First, it allowed us to run parts of the
experiment in an automated fashion. Second, it allowed us to collect a corpus of human spatial
behavior with and around our robot, which helped us validate further the idea that people tend
to establish spatial arrangements typical of human conversations with robots. This system and
the experiment were published in HRI’17 [199].

The next section presents prior work that was not mentioned previously in this dissertation.
Then, we describe in detail the behaviors that we evaluated during our experiment and the
multi-modal perception system that we used to control them. The sections that follow present
our experiment methodology and results. Finally, this chapter concludes with a brief discussion
of our findings, their implications, and the limitations of this work.

7.1 Prior Work

Important background on spatial behavior typical of group conversations was previously
presented in Chapter 2. Also, Chapter 3 described relevant prior work in HRI on proxemics.
Here, we focus on describing other important prior efforts on robot orientation, social gaze,
users’ sense of groupness in HRI, and multi-modal perception.

The middle orientation behavior that we study in this work was proposed
earlier for social navigation [11]. Karreman and colleagues [81] implemented this be-
havior on a museum guide robot that gave short tours to visitors. Turning the robot towards
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visitors led to increased interest in the platform in contrast to turning towards points of interest,
like art pieces. There is also evidence that suggests that orienting a telepresence robot towards
the center of a group makes people comfortable [203].

There is significant work in social eye gaze for human-computer and human-
robot interaction [3; 151]. Related to our work, Garau et al. [55] found that synchronizing
an avatar’s head and eye animations with turn-taking patterns could improve its communication
with humans in comparison to a random gaze behavior in which its head and eye animations
were unrelated to conversational flow. Other efforts have also used random gaze behaviors
as baselines to study robot gaze, as in our experiment. For example, Yoshikawa et al. [217]
compared a random gaze behavior versus three other gaze behaviors on a Robovie-R2 platform.
Their experiment suggests that responsive robot gaze, e.g., gaze that communicates shared
attention, induces stronger feelings of users being looked at, in comparison to non-responsive
gaze. In addition, Skantze et al. [166] studied a random gaze behavior versus a human-inspired
gaze behavior on a Furhat robot. This robot has back-projected eyes like the platform that we
used in this work.

Other research has focused on analyzing gaze duration and frequency. For example, prior
work [4] suggests that short, frequent fixations by a robot can give an observer stronger feelings
of being looked at versus longer, less frequent stares. Also, a robot that looks towards users
often may be perceived as more extroverted than one that looks more towards the task space
[12]. Note that gaze can also influence people’s roles in a conversation with a robot [90; 129]
and their attitudes towards these machines [80]. Some gaze behaviors may work better than
others, depending on the type of conversation [34].

Several efforts within HRI have investigated how much people perceive them-
selves as part of a group [66; 116; 129; 142]. Similar to prior work, we follow the approach
of Mutlu et al. [129] to measure interpersonal closeness to our robot with the “Inclusion of
Other in Self" (IOS) scale [15]. We use the survey by Williams et al. [212] to measure feelings
of groupness and ostracism.

Our perception system was inspired by prior work in multi-modal sensing
[23; 24; 83; 99; 131; 162; 163; 186] and is an alternative to other approaches meant to enable HRI
in controlled settings. In particular, our system estimates users’ positions and body orientations
by fusing ultra wide-band tracking information and skeleton data output by a Kinect sensor.
Even though prior work used ultra wide-band localization systems to track people [21; 57] or
the Kinect to enable interactions [7; 71; 121; 221], we are the first to fuse these types of data
for HRI to the best of our knowledge. The fusion offers key advantages: operation beyond the
Kinect’s range, better occlusion handling, and simple user identification.

Our perception system also builds on advances in localization [184] and human spatial
analysis [40; 87; 196]. While recent efforts to detect social interactions based on spatial behavior
have focused on analyzing users only [77; 106; 110], we opt to jointly reason about the users’
and our robot’s spatial configurations under a unified perspective.

7.2 Orientation And Gaze Behaviors

We studied two orientation and two gaze behaviors during group conversations with our
furniture robot Chester. As detailed in Chapter 4, this robot has a differential drive base, a
fixed face, and back-projected eyes. Even though the robot’s design led to specific decisions for
the orientation and gaze behaviors, they can be easily adapted to other mobile platforms with
expressive eyes. We detail our implementation to facilitate future explorations in this direction.
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For the following explanations, assume that the robot has started a conversation and that
we know its position r = [rx ry]T and orientation ρ (yaw angle) on the ground. Assume that
we also know the position pi, the lower body orientation, and the velocity of any person i near
the robot, so that we can detect its conversational group by reasoning about F-formations (e.g.,
using the methods described in Chapter 6). Finally, assume that we know who is speaking in
the robot’s conversation. Data collection methods are later described in Sec. 7.2.3.

7.2.1 Body Orientation Behaviors

For any member i in the robot’s conversation, let ui = [uix uiy]T = pi − r be the direction
from the robot to this person, and γi = atan2(uiy, uix) the corresponding angle. We used this
angle to orient the robot as described below.

7.2.1.1 Middle Orientation Behavior (MO)

The robot oriented towards the middle of its conversational groupG using themean direction
θ̄ of all γi [52]:

θ̄ = atan2
(∑
i∈G

sin(γi),
∑
i∈G

cos(γi)
)

(7.1)

7.2.1.2 Attentive Orientation Behavior (AO)

If the robot was speaking, it biased its orientation towards its addressee; otherwise, it
biased its orientation towards the current speaker in its conversational group. Let γi be the
orientation towards the speaker or the addressee, and θ̄ be the middle orientation in the group,
as in eq. (7.1). At any given time, the orientation ρ̂ of the robot was set as follows:

ρ̂ =


θ̄ − τ if minAngDiff(γi, θ̄) < −τ
θ̄ + τ if minAngDiff(γi, θ̄) > τ

γi otherwise
(7.2)

where minAngDiff returns the signed minimum difference between two angles, and τ is a pa-
rameter that controls how much the robot rotates away from the middle orientation θ̄ (Fig.
7.3). In particular, we set τ = 60◦ for our robot so that it would not turn its back to group
members to its side.

If the robot was not addressing anyone and nobody had spoken for 10 sec. or more, the
platform’s orientation was set towards the middle direction as in the MO behavior. This also
happened when the robot conversed with a single user, given that ρ̂ in eq. (7.2) became θ̄.
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)τ
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direction
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ρ̂(cos(  ), sin(  ))ρ̂
direction of

Figure 7.3: Geometric relations for the AO behavior. The ∧ mark denotes the robot’s front.
The mean direction corresponds to eq. (7.1) and ρ̂, τ to eq. (7.2).
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7.2.2 Gaze Behaviors

We tested simple gaze behaviors to complement the effects of our orientation manipula-
tion. These behaviors serve as a baseline for future investigations on the relationship between
body motion and complex gaze patterns, e.g., involving discourse structure or fixations on the
environment [30; 128].

As described in Chapter 4 and Appendix A, we calibrated the gaze of the robot using a
projective mapping from 3D world coordinates to 2D pupil positions. We used the mapping for
both pupils of the robot, making their lines of sight parallel. While this constraint prevented
vergence eye movements, it worked well in practice because the robot’s eyes look cartoonish
and have a slight curvature. This design makes users forgiving of gaze patterns that do not
fully mimic human gaze and induces the Mona Lisa gaze effect [8]: users perceive mutual gaze
more often than intended.

7.2.2.1 Random Gaze Behavior (RG)

The robot executed several pre-defined eye animations that helped communicate ideas while
it spoke. For example, referential gaze was used at times with verbal utterances to convey
spatial information. When no pre-defined animation was scheduled for the eyes, they blinked
occasionally or their pupils moved randomly at small intervals.

Our specific implementation of eye blinks was inspired by human blinking activity [43]. The
duration of inter-blink intervals followed a normal distribution N (5.2, 32) in seconds.

Gaze shifts were scheduled by sampling time intervals in seconds from the uniform distri-
bution Unif(1.8, 3). When the timer triggered and no blink was set to occur, the pupils moved
a small amount horizontally dx = eye_width ∗ ε1 and vertically dy = eye_height ∗ ε2, based
on the size of the eyes. The values ε1 and ε2 were sampled uniformly in a small interval. Any
displacement (dx, dy) that rendered the pupils outside the limits of the eyes was considered
invalid and was re-computed by sampling new values. Furthermore, we prevented Chester from
fixating significantly downwards, towards the ground, so that it would not look introverted.

7.2.2.2 Attentive Gaze Behavior (AG)

The robot used the same blinking pattern and pre-defined eye animations as in RG. When
no animation was scheduled, the robot attempted to establish mutual gaze with the person
who was the focus of attention. That is, the person that the robot addressed in particular, the
current speaker if the robot was quiet, or anybody who moved with a speed of at least 0.5 m/s
in the group when everybody was silent.

Once the robot gazed towards someone, gaze shifts were sampled as often as in RG but were
biased towards the head of the focus of attention. If q is the 3D position of the head of this
person, then the new, biased positions for the pupils were set as:

1 (x,y) = lookAt(q) // pupils position towards q
2 r ∼ Unif(0, 1)
3 if r < 0.2 then // add noise 20% of the time
4 x = x+ eye_width ∗ α1 with α1 ∼ N (0, σ2)
5 y = y + eye_height ∗ α2 with α2 ∼ N (0, σ2)

where lookAt returned the 2D location of the pupils that made the robot look towards the
desired direction, and σ controlled the amount of variation in gaze shifts. After 10 seconds of
silence and no significant motion in the group, gaze shifts continued without the bias as in RG.
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7.2.3 Multi-Modal Perception System

We implemented a real-time system to control the robot’s orientation and gaze based on
human behavior, as well as to collect data during the experiment. The system required in-
strumenting the environment with ultra wide-band (UWB) localization beacons1 and a Kinect
sensor. Each participant wore an instrumented baseball cap with two UWB beacons for tracking
and identification (Fig. 7.2). The robot also wore a cap to make it look like the participants.

7.2.3.1 System Components

Figure 7.4 shows the main components of the system. Grey boxes denote modules that ran
on the robot; the rest executed on external computers. The boxes with thicker edges correspond
to modules that were in charge of the manipulated behaviors. Note that the robot’s speech was
controlled by a hidden operator, as detailed in Sec. 7.3.1.

The system processed data as follows. First, the position of the UWB beacons carried by the
participants was smoothed with a Kalman filter (“Filter” module in Fig. 7.4). The smoothed
values were then aggregated to estimate the position and orientation of each hat (“Hat Pose”
module) and fused with the skeleton output of a Kinect (“User Tracker” module). This fusion
step output estimates of the position and orientation of each participant, taking advantage of
both sensing modalities. The Kinect reduced localization error, which ranged up to 30 cm on
average for the hats. The UWB data provided continuous tracking information throughout the
environment as well as participants’ identities.

While users were localized, the “Robot Localization” module estimated Chester’s pose using
an on-board laser scanner and a map of the environment [184]. The “Aggregator” program then
combined all this information and passed it to the “Group Detector” and “Speaker Detector”
modules. The former module reasoned about conversational groups based on F-formations, as
in Chapter 6 and illustrated in Fig. 7.5. The latter module was in charge of identifying the
current speaker based on the interactants’ positions, sound detections (output by “K2 Audio”),
and information from Chester’s dialog engine (“Mouth Animation” module). If Chester’s mouth
was moving, the robot was identified as the current speaker. Otherwise, the speaker was the
person closest to the Kinect’s audio beam (within 1 m) or nobody when no sound was localized.

1We used DWUSB sensors by Ciholas, Inc. Appendix C describes these wireless sensors in detail.
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Figure 7.4: System used to control the body orientation and gaze of the robot. “UWB” stands
for ultra wide-band and “K2” stands for Kinect for Windows SDK 2.0.
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Figure 7.5: Experiment (left) and outputs of our perception system (right). A Kinect sensor in
the left corner of the room output skeleton data (shown in black near the participants). Colored
markers denote participants’ pose as output by the “User Tracker” module. The black lines on
the ground connect the estimated members of the robot’s conversational group.

Finally, the locations of the participants, the conversational groups, and the identity of the
speaker were sent to the “Orientation Control” and “Gaze Control” modules. These programs
output motion and gaze commands for the robot.

7.2.3.2 Limitations

Our system is a practical contribution of this work because it can enable human-robot
interactions with little human intervention. However, it does not solve all perception problems
in HRI, e.g., because it requires fixed instrumentation and this may be impossible or undesirable
in some cases.

Two types of errors due to shortcomings of the underlying technologies were the main
factors that influenced the system’s performance. First, tracking errors were common at the
edges of the room due to the Kinect’s limited range and field of view as well as a noticeable
bias that affected UWB localization in these regions. As discussed in Sec. 7.3.6, these errors
rarely affected group detection and the robot’s orientation during the experiment because the
participants were usually in the middle of the space. Second, sound localization errors were
typically caused by simultaneous speech. These events were also infrequent in our experiment
as the interactants respected turn-taking.

7.3 Method

7.3.1 Study Design and Setup

We designed a 2× 2 between-subjects experiment to test orientation (middle vs. attentive)
and gaze (random vs. attentive) behaviors. The experiment followed a Wizard with Oz arrange-
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ment [169] in which the manipulated behaviors were autonomous, but the sequencing of events
within the study and the robot’s speech were managed by a hidden operator or “wizard”. In a
few instances, the wizard also re-configured the robot spatially with respect to the participants,
as detailed in Sec. 7.3.6. The experiment was approved by our Institutional Review Board.

During the experiment, the robot led a brainstorming session with a small group of partic-
ipants. Each session was performed under one of four conditions:

MO+RG condition. The robot oriented towards the middle of its conversational group and
randomized its gaze.
AO+RG condition. The robot biased its orientation towards the focus of attention and ran-
domized its gaze.
MO+AG condition. The robot oriented towards the middle and tried to establish mutual
gaze with the person who was the focus of attention.
AO+AG condition. The robot biased its orientation and gaze towards the focus of attention.

Given these conditions, we hypothesized that:

H1. The gaze behaviors would affect the perception of the robot’s motion, with AG increasing
perceived naturalness.
H2. For the AO behavior, participants would find the robot more attentive and responsive than
MO.
H3. The AO behavior would make the participants feel like the robot was more of a part of
their group than MO.
H4. The AO+AG condition would lead to reduced feelings of ostracism or increased feelings of
inclusion compared to MO+RG.

The experiment was conducted in a room with a free space of 4.4× 4.4 meters (Fig. 7.2). A
table was placed adjacent to a wall for the participants to write down the brainstormed ideas
on slips of paper. These slips then had to be deposited in different boxes in the room, according
to the author.

The room was equipped with a UWB sensor network, a Kinect v2 sensor and four RGB
cameras near the ceiling. The UWB sensors and the Kinect were used to localize the partici-
pants, identify them, and detect speakers, as described in Sec. 7.2.3. The cameras recorded the
interaction from multiple views and allowed the wizard to monitor the experiment remotely.

7.3.2 Participants

We recruited 20 groups (5 per condition) of 3 or 4 people using a participant pool, word of
mouth, and fliers. The participants were at least 18 years of age, fluent in English, and had
grown up in the U.S. The last restriction was imposed to reduce the effects of cultural biases
in spatial behavior.

Table 7.1 shows details of the 69 participants that interacted with our robot. In general,
most participants were university students, and their average age was 24.8 years old (SE = 1.0).
In 7 sessions, two or more participants knew each other.

Before the interaction, the participants indicated how often they used a computer and their
familiarity with robots on a 7 point Likert responding format (1 being lowest). Most participants
used computers daily (M = 6.97, SE = 0.02) but were not very familiar with robots (M = 3.38,
SE = 0.20).
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Table 7.1: Participant characteristics per condition. “G”, “F”, “M”, and “P” are used to
abbreviate groups, female, male, and participants, respectively.

Condition #G #F #M #P Age (Std Err)
MO+RG 5 8 10 18 22.2 (0.8)
MO+AG 5 9 9 18 23.5 (0.8)
AO+RG 5 11 5 16 24.4 (1.3)
AO+AG 5 9 8 17 29.3 (3.6)

7.3.3 Procedure

First, an experimenter gave a colored badge to each participant for identification purposes
and administered a demographics survey. She then asked the participants to wear instrumented
baseball caps with UWB beacons, and explained that each person had a box in the room with
their same color identifier. The experimenter introduced the robot, gave it an instrumented
cap to make it look like the participants, and stepped away. The robot opened its eyes, and
started a semi-scripted conversation with three phases:

1. Introduction. Chester presented itself to the group. The robot explained that the laboratory
wanted to retire him, but people might keep him around if they found him useful. Chester
encouraged the participants to think of how it could help in the lab, and explained its sensors
and capabilities. To facilitate brainstorming, the robot provided a first idea: it could deliver
souvenirs to lab visitors, as it had done it in the past. Chester then opened the floor to new
ideas.

2. Brainstorming. The robot encouraged the group to brainstorm tasks that it could do in the
lab for 6 min. Chester replied favorably to useful ideas and requested that authors write them
on a slip of paper and deposit the slip in their corresponding box. The robot also asked for
more details or discouraged unrealistic and complicated tasks. When people ran out of ideas,
Chester provided more suggestions.

3. Closing. Chester asked a participant to count the ideas in the boxes and to write the color
of the box on each slip to help keep track of them. Meanwhile, the robot asked other people
about their favorite ideas and gave his opinion. Chester thanked everybody for helping and
finally good-bye to the group.

Finally, the experimenter adminstered a post-test survey, paid the participants, and de-
briefed them about the wizard. During debriefing, the experimenter also explained that the
requests to deposit paper slips on boxes were an excuse to induce people to leave the robot’s
conversation and re-enter in natural ways. These requests were motivated by our prior experi-
ence, where we found that we had little chance of observing varied spatial behaviors without a
task like this one.

7.3.4 Dependent Measures

We considered subjective and objective measures. The post-test survey asked people about
their impressions of:

– the robot’s motion and gaze;
– closeness to the robot using the IOS scale [15];
– the robot’s and the participants’ feelings of belongingness and ostracism in the brainstorming
group [212];
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– Chester with respect to a set of attributes, e.g., perceived intelligence, responsiveness, and
entertainment value;

– Chester’s ability to lead the brainstorming session and whether it should be decommissioned
or not; and

– any unusual behavior for the robot [161].

Objective measures included the distance that the participants kept from the robot, the partici-
pants’ membership in the robot’s conversational group, and the number of paper slips collected
during the brainstorming activity.

7.3.5 Pilot Sessions

Before starting the experiment, we recruited 35 people to conduct two types of pilot sessions.
First, we ran 3 human-only sessions to evaluate the dynamics of the brainstorming activity and
collect example tasks for the robot. Second, we ran 8 human-robot pilot sessions to test the
Chester’s dialog and the manipulated behaviors. During these sessions, we also simplified
the wizard’s teleoperation interface and the protocol of the experiment to avoid confusing
procedures.

We considered studying a random orientation behavior for our robot as a baseline. However,
the pilot sessions quickly showed that people are highly sensitive to inappropriate or unexpected
orientations. These motions often halted interactions because people did not know how to
interpret them.

7.3.6 Confirmation of Autonomy and Behaviors

The robot moved autonomously for most of the interaction as defined by the experimental
condition. The exceptions were (1) when the robot started conversing, (2) when it said good-bye,
and (3) during a handful of situations due to technical difficulties. In the first case, the wizard
reconfigured the robot to show that it could move and tacitly induce an F-formation. In the
second, the wizard moved Chester away to end the interaction. In the third, the wizard corrected
for slight undesired changes in the robot’s orientation, e.g., because of people-tracking failures
in our perception system. During the brainstorming phase – the main part of the experiment –
sporadic reconfigurations of this sort happened in 16 sessions out of 20. In these sessions, total
teleoperation time while brainstorming was 9.37 sec on average (SE = 2.04), which represented
only 2.4% of the duration of this phase (M = 383.53 sec, SE = 5.43, N = 16). REstricted
or REsidual Maximum Likelihood (REML) analyses [139; 172] on the number of teleoperation
events and teleoperation time while brainstorming showed no significant differences for the
effects of Orientation (Attentive, Middle) and Gaze (Attentive, Random).

To confirm that the robot oriented as expected during the brainstorming phase, two coders
annotated the members of the robot’s conversation.2 Using this ground truth and the logs from
our perception system, we then computed the ideal middle orientation of the robot at 1 Hz. As
expected, the absolute angular difference between the robot’s orientation and this ideal middle
direction was smaller for MO (M = 7.04◦, SE = 0.12, N = 3686) than for AO (M = 14.33◦,
SE = 0.27, N = 3644). Note that these differences were induced in part by the robot’s motion
planner and a small bias in the robot’s orientation towards the table in the room. The planner
prevented Chester from jittering by ignoring turns of 5◦ or less. The bias (1.63◦ on average) was
generated by occasional user tracking errors that made Chester believe that some people were

2Inter-coder reliability was computed for 4 sessions (20%). Two annotations were misaligned; Cohen’s kappa
for the other 75 annotations was 1.0, indicating perfect reliability.
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still conversing with it when they left to write paper slips. Interestingly, the motion induced by
these errors was interpreted as though Chester was checking that participants were following
its instructions.

We transcribed when people spoke in the robot’s group and its specific addressees in 2
sessions per condition. We then used the data to check when Chester adjusted its orientation
towards these people. As expected, the robot turned more towards these foci of attention with
AO (47% of 280 annotated events) than with MO (25% of 319). The robot did not move in
many cases because the target was within 5◦ of its orientation (22% of the events for AO; 21%
for MO).

We also inspected Chester’s eye fixations during the experiment to confirm that the gaze
behaviors worked as expected. As can be seen in Fig. 7.6, the positions of the pupils were less
concentrated for RG than for AG because the robot tried to establish mutual gaze with the
focus of attention in the latter case. Also, the robot had a tendency to look forward because
several of our pre-defined eye animations positioned the pupils towards the middle of the eyes.

Random Gaze Attentive Gaze

Figure 7.6: Chester’s eye fixations in the 20 sessions of the experiment.

7.4 Results

We first analyse survey results and the spatial behavior of the participants around our robot.
Then, we discuss the implications of our findings in terms of our hypotheses.

7.4.1 Survey Results

We ran REML analyses to evaluate survey responses. Unless noted, analyses used Partici-
pant as a random effect nested by Session, and Orientation (Attentive, Middle), Gaze (Attentive,
Random), and Gender as main effects. Student’s t-tests and Tukey HSD tests (with significance
thresholds of p < 0.05) were used for post-hoc analyses of two sample and multiple pair-wise
comparisons, respectively. Ratings were on 7-point Likert responding formats and responses
were grouped only when Cronbach’s alpha was above the nominal 0.7 threshold.

Robot’s gaze. In general, Chester’s gaze looked natural to the participants (M = 4.93, SE
= 0.16). They did not feel like Chester was staring at them (M = 2.91, SE = 0.17) nor avoiding
looking at them (M = 2.01, SE = 0.12). These results had no significant main effects.
The robot’s orientation led to significant differences on how much the participants felt that

Chester looked at them (F[1, 68] = 7.47, p < 0.01). As shown in Fig. 7.7, the AO behavior
(M = 4.72, SE = 0.18) had significantly higher ratings than the MO behavior (M = 4.11, SE
= 0.15) in this respect. The fact that the results were not significantly different for Gaze may
be explained by the Mona Lisa gaze effect and the tendency of the robot to look forward.
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Figure 7.7: Ratings for how much the participants felt that Chester looked at them during the
experiment. (**) denotes p < 0.01.

Robot’s motion. Gaze had a significant effect on users’ ratings for “Chester’s motion looked
natural during the interaction” (F[1, 68] = 4.08, p = 0.05). As shown in Figure 7.8, the
Attentive Gaze behavior elicited significantly higher agreement with the statement relative to
the Random Gaze behavior (M = 4.71, SE = 0.28 vs. M = 4.00, SE = 0.23). No significant
differences were found for “Chester’s motion was distracting” (M = 2.03, SE = 0.13), “I felt
confident that the robot was not going to hit me” (M = 6.42, SE = 0.18), nor “Chester’s motion
made me anxious” (M = 1.57, SE = 0.12).
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Figure 7.8: Ratings for how natural the robot’s motion looked like during the experiment based
on its gaze behavior. (*) denotes p < 0.05.

Robot’s attentiveness. Participants rated how much they thought that Chester paid atten-
tion to what they said (M = 5.33, SE = 0.16) and to what the other participants said (M
= 5.48, SE = 0.14). A REML analysis with Participant as random effect nested by Session,
and Orientation, Gaze, Gender, and Speaker (Me, Others) as main effects showed significant
differences for the interaction between Orientation and Gender only (F[3, 66] = 4.94, p = 0.03).
The post-hoc test then showed no significant pair-wise differences, but the tendency was inter-
esting: male participants thought that the robot paid more attention with AO than with MO
(M = 5.73, SE = 0.20 vs. M = 4.92, SE = 0.25).

Inclusion and ostracism: IOS scale [15] ratings indicated that the participants did not feel
close to Chester (M = 2.57, SE = 0.14). However, they thought that both they (M = 5.03, SE
= 0.17) and the robot (M = 5.33, SE = 0.19) belonged to the brainstorming group.
We found low perceptions of being ignored or excluded by the robot (M = 1.57, SE = 0.12)

or by the other participants (M = 1.42, SE = 0.09). REML analyses for these results resulted
in no significant differences, but Orientation was close for the former (p = 0.06). The trend
suggested that MO could lead to higher feelings of ostracism from the robot than AO (M = 1.77,
SE = 0.17 vs. M = 1.33, SE = 0.14).
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Other perceptions of the robot. The participants generally thought that Chester was a
good leader for the brainstorming activity (M = 5.00, SE = 0.17) and had significantly different
impressions of how much the robot and the other participants liked them (F[1, 68] = 4.98, p
= 0.03). In particular, the participants thought that the robot liked them significantly more
than did the other people in the experiment (M = 5.16, SE = 0.14 vs. M = 4.93, SE = 0.13).

Chester was not perceived as anti-social (M = 1.58, SE = 0.09). The only trend in this
respect (p = 0.06) suggested that RG could make the robot look more anti-social than AG (M
= 1.76, SE = 0.16 vs. M = 1.4, SE = 0.09).

Table 7.2 shows a factor analysis on a series of additional attributes for the robot. Factor I
was associated with interactivity, Factor II with competence, and Factor III with entertainment.
These factors explained 18.3%, 26.4%, and 20.3% of the variance, respectively. Their ratings
were positive in general, with no significant main effects of condition.

Table 7.2: Ratings for the factors resulting from factor analysis. Machine-like was reversed (R)
for the analysis and for computing Chronbach’s alpha.

Attribute Mean (SE) Cronbach’s α Factor
Responsive
Interactive 5.33 (0.11) 0.786 I (Interactivity)

Useful
Knowledgeable

Intelligent
Competent

4.62 (0.13) 0.791 II (Competence)

Entertaining
Funny 5.47 (0.15) 0.846 III (Entertainment)

Lifelike 4.14 (0.18)
Machine-like (R) 4.20 (0.15) 0.623 -

Only 8 participants of 69 indicated that Chester should be decommissioned in the post-
survey. Their responses were typically associated with the robot’s usefulness (e.g., “I can’t see
a practical use for it, but the robot was entertaining”).

Interaction: In general, the interaction with Chester was enjoyable (M = 5.45, SE = 0.14).
Desire to brainstorm for longer was correlated with the number of paper slips written per
session (r(67) = 0.48, p< 0.01), which tended to be just a few, or ten or more. This result
motivated a REML analysis on the ratings for wanting to brainstorm for longer with Slip
Count (1 if ten or more slips, 0 otherwise), Orientation, Gaze, and Gender as main effects,
and Participant as random effect within Session. Not surprisingly, Slip Count had a significant
effect (F[1, 68] = 15.09, p< 0.01). Ratings in sessions with many slips were significantly higher
than the rest (M = 4.65, SE = 0.28 vs. M = 3.00, SE = 0.24). Also, the interaction between
Gender and Slip Count was significant (F[3, 66] = 6.78, p= 0.01). Male participants wanted to
brainstorm significantly more when there were at least ten slips (M = 5.27, SE = 0.37) than in
other cases (M = 2.53, SE = 0.30). Female ratings were more uniform and neutral.

Note that the robot did not use a balancing criteria to ask people for ideas during the
brainstorming activity. A REML analysis on the number of ideas proposed by the participants
did not result in any significant differences for the main effects of Orientation, Gaze, and Gender,
suggesting that this aspect of the protocol did not generate a confound. Moreover, all but one of
the 69 participants proposed ideas. The only person that stayed quiet during the brainstorming
phase took part in the activity towards the end, when the robot asked him to count the number
of slips in the boxes.
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7.4.2 Human Spatial Behavior

We analyzed proxemics during the brainstorming phase, when the participants often moved
to write their ideas. For the analyses, we used the spatial information output by our perception
system (sampled at 1Hz) and the group membership annotations described in Section 7.3.6.

When the participants conversed with the robot in the brainstorming phase, their average
separation from Chester was typical of social encounters (M = 2.15m, SE = 0.04, N = 69) [60].
Because people often adjusted their position as they became familiar with the robot and the
activity, we decided to further analyze proxemics during the last minute of the brainstorming
part of the experiment. We performed a REML analysis on the distance between the robot and
the participants during this period, considering Orientation, Gaze, and Gender as main effects
and Participant as random effect nested by Session. Gaze was significant (F[1, 68] = 5.67,
p = 0.02): participants stood significantly farther away from the robot with RG (M = 2.29,
SE=0.05) than with AG (M = 2.09, SE = 0.06). The interaction between Gaze and Orientation
was also significant (F[3, 66] = 4.27, p = 0.04). The members of the robot’s group were
significantly farther away from it with MO+RG than with MO+AG (M = 2.40, SE=0.07 vs.
M = 2.03, SE=0.10), as shown in Fig. 7.9.
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Figure 7.9: Distance to Chester during the last minute of brainstorming. (**) denotes p < 0.01.

Throughout the experiment, we observed qualitatively circular or side by side spatial ar-
rangements. In a few cases in which the robot engaged in a dyadic interaction and it was not
oriented as expected, participants proactively changed their positions to stand in front of it.
These efforts to establish appropriate spatial arrangements suggest that people may be willing
to collaborate with robots to establish F-formations and adapt to unforeseen circumstances.

7.4.3 Hypotheses Support and Implications

Attentive Gaze made the participants think that Chester’s motion looked more natural in
comparison to Random Gaze. This result supported our first hypothesis (H1) and is related
to prior findings on the influence of gaze on the perception of a robot’s head motion [108].
Furthermore, the orientation behaviors also affected the perception of the robot’s gaze. With
Attentive Orientation, the participants perceived that the robot looked at them more. These
outcomes suggest that robot gaze and body motion should be designed and controlled jointly,
rather than independently of each other.

We expected the Attentive Orientation behavior to make the robot seem more attentive and
responsive than the Middle Orientation behavior (H2). While we did not find that the robot’s
orientation altered how responsive it looked, participants thought that the robot gazed at them
more with AO than with MO, as mentioned before. There was also a trend that suggested that
male participants thought that the robot paid more attention to what people said with AO.
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Opinions on how close the participants felt to the robot and whether they perceived it as
part of their group were not significantly affected by the orientation behaviors, as hypothesized
in H3. Interestingly, the distance between the participants and the robot varied significantly
with MO based on the robot’s gaze, but did not vary as much with AO. This finding might
indicate more subtle effects of the manipulation than can be gleaned from questionnaires. Also,
the lack of support opens up possibilities for developing more complex orientation behaviors
and fulfilling other non-social tasks during multi-party interactions. Given that both MO and
AO were acceptable and did not affect the perception that the robot was part of the group,
both behaviors could be used by robots depending on other factors besides the interaction. For
example, robots could switch between MO and AO to improve visual sensor coverage in order
to reduce uncertainty about the environment.

In terms of H4, the AO+AG condition did not reduce feelings of ostracism or increase
feelings of inclusion relative to MO+RG. Nonetheless, a trend suggested that MO could lead to
higher feelings of ostracism than AO. This finding should be explored further in future research.

Finally, we learned from the pilots that people are sensitive to inappropriate or unexpected
robot orientations. If users do not understand why a robot moves, interactions can easily be
disrupted. This outcome is related to prior work on communicative robot motion [44; 152; 178].

7.5 Discussion

Overall, our experiment showed that reasoning about spatial behavior is not only
important for robots to understand who is part of their conversation, but is also essential for
them to co-operate to sustain the spatial arrangements that are typical of these interactions.

Robot gaze and orientation can affect users’ perception of these behaviors.
The gaze of the robot affected the participants’ perception of its motion and its motion affected
the perception of its gaze. This dependency implies that robots should reason about and control
their gaze and body motion jointly. Furthermore, some trends suggested that the Attentive
Orientation behavior could be preferred over the Middle Orientation behavior (e.g., AO could
make the robot look more attentive and less anti-social). However, these behaviors led to similar
feelings of inclusion and belonging to the group, suggesting that both AO and MO could be
used as primitives for more complex orientation behaviors.

The brainstorming protocol could be used to study other aspects of HRI.
The perception of the brainstorming activity used in the experiment was positive. The protocol
successfully created opportunities for changes in conversation group size, which allowed us to
study the behaviors under consideration in different social contexts. In the future, this protocol
could be used to study turn-taking patterns and collaboration in HRI. Similar to social games
[195], brainstorming activities are customizable (e.g., the topic of the conversation can be easily
adapted) and can be conducted with groups of strangers. In contrast, brainstorming sessions
are less adversarial and do not require teaching very specific instructions.

The experiment described in this chapter was limited in several ways. First,
Chester’s dialog was scripted and, thus, it could not respond appropriately in all circumstances.
Second, the physical appearance and capabilities of our robot could have influenced our results,
and biased some aspects of the design of the behaviors under consideration. For example, the
differential drive base of the robot constrained the complexity of its spatial behavior and, in
turn, this could have affected the perception of its motion. Third, the perception system that
we implemented required fixed instrumentation. While this system enabled autonomous robot
behaviors, we are now interested in shifting towards on-board computation such that robots
can reason about social contexts and interact more casually.





Chapter 8

Learning to Control Robot Orientation
During Conversations

As we saw in Chapter 7, it is important for robots to co-operate to sustain F-formations.
We achieved this cooperation in the previous experiment by relying (1) on external sensing
mechanism, and (2) on hand-crafted rules for the robot to orient one way or another. While
this approach allowed us to systematically investigate the effects of robot orientation and gaze
in the study, it can hardly scale to real-world interactions. This scaling problem also affects
other tele-operation approaches [81; 203] or rule-based methods [219] to control robot motion.

Inspired by the prior success of Reinforcement Learning (RL) in a wide array of robotics
tasks [93], this chapter explores RL techniques to find good policies to control the orientation of
a robot during simulated group conversations. In this work, we suppose to be the case that the
robot can identify its conversational group (e.g., using the framework introduced in Chapter
6), and focus our efforts on the problem of learning good orientation policies. In general, we
assume that the correct behavior for the robot is to turn towards the speaker of its conversation.
As we discussed in the previous Chapter, this type of behavior can help convey attentiveness to
this person and maintain awareness of the focus of attention of the interaction. Different from
our prior experiment, though, the robot is not in an instrumented environment in this case. It
must learn to orient towards the speaker of the conversation using its on-board sensors only.

We approach the problem of controlling the orientation of a robot during group conversations
using the Oz of Wizard methodology [169]. Our efforts are focused on evaluating RL approaches
in simulated group conversations (Fig. 8.1) as a precursor to future work with real users.
The simulation offers the opportunity to systematically study the effect of sensing noise on
the performance of the robot as well as the generalization of learned policies to other group

ROBOT

SPEAKER ADDRESSEE

O-SPACE

Figure 8.1: Simulated group conversation between a robot and four people. The red and green
circles on top of the agents identify the speaker and the addressee, respectively. The big gray
circle represents the o-space of the group’s F-formation.
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interactions. This is a first step towards reducing the amount of engineering required to generate
appropriate spatial behavior for robots during situated conversations with users.

Our main contribution in this work is a robot-centric state representation for the RL task
that is agnostic to the number of people in the conversation. This means that the same repre-
sentation can be used to control the orientation of a robot while it interacts with 2, 3, 4 or more
people. Moreover, the policies learned with this state representation can potentially generalize
across these different scenarios. This work was first published in RO-MAN’16 [197].

The rest of this chapter is organized as follows. The next section describes our general
approach to control the orientation of a robot with Reinforcement Learning. Section 8.2 intro-
duces our simulated environment and details the interaction dynamics and sensing mechanisms
that we modeled for this work. Section 8.3 and 8.4 then describe our empirical evaluation and
results. Finally, Section 8.5 discusses our results and future research directions.

8.1 General Approach

We model our motion control problem as a sequential decision-making process. At any time-
step t, the robot (or agent) receives some representation of the environment state st and executes
an action at. Executing this action triggers a transition to a following state, represented by
st+1, and results in an immediate reward rt+1. The goal of the robot is to choose actions that
maximize the discounted total reward that it receives while it interacts with the world. That
is, maximize

∑∞
t=0 λ

trt+1 with λ ∈ [0, 1] a discount rate.
Out of the many RL techniques that exist, we focus on evaluating popular online approaches

that estimate an action-value function Q(s, a) to try to find solutions to the motion control
problem. The action-value function,

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkrt+1+k|st = s, at = a

]

is an estimate of how good it is to choose action a in a given state s and then follow policy π.
Readers interested in more details about this function are encouraged to refer to [174].

Online RL approaches are advantageous for our task because they improve as the robot
interacts with people and they can adapt quickly to specific interaction dynamics. The latter
property is particularly advantageous when social contexts change, e.g., when some of the
members of a conversation leave or others join the interaction.

8.2 Group Simulation

We developed a simulated environment to test control policies for a robot. The simulation
was inspired by models from social psychology that explain human spatial behavior during free-
standing group conversations [58; 87]. These models were previously introduced in Chapter 2.

Our simulation modeled a free-standing group conversation with an established F-formation,
as shown in Figure 8.1. To start, the simulation placed the interactants in a circular arrangement
and randomly chose the first speaker and his or her addressee(s). The addressee(s) were either
one person or the whole the group. Then, the simulation repeatedly executed its main loop, as
detailed in Alg. 8.2.1. The set of actions that the agent could execute at the beginning of this
loop (line 3 of Alg. 8.2.1) were angular velocity commands that changed the orientation of the
robot with respect to the group. The state representation provided to the agent at the end of
the loop (line 11) is later described in Sec. 8.3.
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Algorithm 8.2.1: Main loop of our simulation
1 while the simulation is running do
2 Update the simulated clock
3 Receive the last action that was taken by the RL agent
4 Update the simulated robot with the last action taken
5 if the previous speaker finished talking then
6 Choose a new speaker and addressee
7 Set desired head orientation for the speaker
8 Set desired head orientation for the listeners
9 Update the states of all the people in the conversation

10 Compute the reward r for the robot
11 Update the robot’s internal representation s of the state of the conversation
12 Provide r and s to the RL agent so that it can choose a new action for the robot

The simulated speakers turned their heads towards their addressee or towards the center of
the o-space if they spoke to the whole group. The other people in the conversation turned their
heads towards the speaker, as described in the next section. In general, heads rotated at a fixed
angular velocity towards their respective target, typically during multiple simulation steps.

For this work, we never allowed the robot to take a turn to speak. As a result, it had to
adapt to the flow of the conversation set by the rest of the group.

8.2.1 Main Simulation Parameters

The main parameters that controlled the spatial arrangement of the group and the dynamics
of the interaction were:

Number of interactants: The number of people in the conversation, including the robot.
O-space center: The location of the center of the o-space in the world-coordinate frame of
the simulation.
Stride: The expected distance between the center of the o-space and the interactants.
Time step: The time elapsed between simulation updates.
Robot actions: List of angular velocity commands that could be executed by the robot. In
particular, we used the set [−15.0,−7.5, 0.0, 7.5, 15.0] (in deg/sec) for this work.
Speaking time distribution: Normal distribution that modeled how long a person typically
spoke for. In general, we used N (5.0, 2.0), but prevented sampled values from being smaller
than 0.5 secs to avoid very short speaking times.1

Look-at noise: When a person i in the simulation looked at the speaker, his or her head was
set towards the angle βi:

βi = arctan(dy/dx) + εi with εi ∼ N (0, σ2
i ) (8.1)

where d = [dx dy]T denotes the direction towards the speaker from person i. The noise term
εi in eq. (8.1) controlled how accurately the person looked at the speaker, depending on the
standard deviation σi. Note that when σi made the head turn more than 90 degrees from the
front of the person, we clamped βi to prevent the head from turning backwards.

1We acknowledge that this model is a crude approximation of real group conversations because people often
speak for significantly longer than 5 secs. We opted for short speaking times, though, because longer speeches
simplify the control problem by reducing the number of speakers in any given interaction.
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8.2.2 Robot Perception

We modeled the robot as a platform with a small number of degrees of freedom, similar
to Chester, the CoBots [200] or FROG [47]. The robot had a camera and a microphone array
fixed to the front of its body. The camera could be used to detect the position of people, as well
as their head and body orientations. The microphone array provided the angular directions
toward nearby speakers from the robot’s perspective.

The sensors had configurable fields of view. People within these fields of view could be
sensed with some probability; those outside were not detected at all. The specific values that
we used for these parameters are provided in Sec. 8.4.3.

8.2.3 Reward

In this work, we assumed that the correct behavior for the robot was to turn towards the
speaker. Consequently, the reward rt+1 that the environment provided to the robot for taking
an action at was:

rt+1 = exp(−ϕ2) + b (8.2)

with b =
{

1 if abs(ϕ) <= τ and at == 0.0
0 otherwise

The angle ϕ ∈ [−π, π] was the difference between the orientation of the robot and the angle
representing the direction towards the speaker from the robot’s position. The bonus b was given
to reward zero angular velocity commands when the difference ϕ was small. In general, we used
10 degrees for τ to prevent oscillatory motions.

8.2.4 Limitations

Even though the simulation was useful to explore Reinforcement Learning techniques for
motion control, it is by no means a perfect model of the real world. Our simulation did not
capture all the complexity and variability of human behavior during group conversations nor
sensing noise. Nonetheless, our efforts are an important first step towards testing RL techniques
for the problem under consideration. The policies learned from our simulation can be considered
as prior knowledge for learning better behaviors with real users. Furthermore, the simulation
allowed us to explore the sensitivity of several methods to particular types of noise, something
that is hard to accomplish during human-robot interaction experiments [169].

8.3 State Representation

Our key contribution in this work is a state representation that is well suited to solve our
motion control problem with RL techniques. This representation was composed of six features:

f1. Continuous feature in [−π, π] representing the rotation that the robot needed to execute to
direct its body towards the speaker. This value is the same as ϕ in eq. (8.2) if the speaker
was within the field of view of the robot’s microphone array and the sensor detected the audio
signal coming from this person. Otherwise, f1 was set to zero by convention.

f2. Binary feature indicating if f1 is valid or not. This feature was zero when no audio signal
was detected by the microphone array; otherwise, f2 was one.
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f3. Continuous feature in [−π, π] representing the rotation that the robot needed to execute to
direct its body towards the location of maximum social saliency induced by the visible people
in its group. Social saliency encoded gaze concurrences and was estimated using the primary
gaze rays of the people detected by the robot’s camera, as described in [136] and illustrated in
Fig. 8.2. When multiple locations were socially salient and had equal contribution from the
primary gaze rays of the visible people, ties were broken randomly and only one location was
used to compute f3. When a single person was detected by the camera and no gaze concurrence
could be computed, we uniformly sampled possible social saliency locations along the primary
gaze ray of this person and used their average for f3. If nobody was visible, then f3 was set to
zero by convention.

(a) (b)

Figure 8.2: Example of the primary gaze rays (l1 and l2) used to compute the point of maximum
social saliency (a) and the resulting feature f3 of our state representation (b). The point of
maximum social saliency is marked with a cross (×) and surrounded by a light-colored circle.
The primary gaze rays were estimated only for persons 1 and 2, who were visible through the
robot’s cameras, using their position (p) and head direction (v).

f4. Binary feature indicating if f3 is valid. This feature was zero when social saliency could not
be computed because nobody was detected through the robot’s camera. Otherwise, f4 was set
to one.

f5. Continuous feature in [−π, π] representing the rotation that the robot needed to execute to
orient its body towards the center of the o-space of its conversational group. We computed an
estimate c of the true o-space location using an exponential moving average of center proposals:

c = (1.0− n ∗ a)c + a
n∑
i=1

pi + d ∗ ui︸ ︷︷ ︸
center proposal

(8.3)

where n was the total number of people visible through the robot’s camera, a was a small
number that controlled the contribution of every proposal under the constraint n ∗ a ∈ [0, 1],
d was an expected value for the stride of the o-space, pi was the position of the i-th person
that was visible, and ui was a unitary vector pointed in the same direction as the front of the
body of person i. The model used to generate o-space center proposals (p + d ∗u) was inspired
by prior work [40; 155; 156; 196] and was used to initialize c with the proposal corresponding
to the first person detected by the robot when the simulation started. Before any person was
detected, f5 was zero by convention.

f6. Binary feature indicating if f5 is valid. If no o-space center had been estimated, then f6
was zero. Otherwise, f6 was one.
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8.3.1 Properties

Our state representation is agnostic to the size of the group. This means that the same
features can be used to describe conversations with a few people or with more interactants.

Because the features are computed from the perspective of the robot, their descriptive power
depends on the performance of the robot’s sensors. For example, the more people are detected
at any given time, the more the estimate of the o-space center converges to the true value. The
more people are detected, the closer the point of maximum social saliency is to the place where
most gaze directions converge. This place is typically the location of the speaker.

8.4 Evaluation

We performed a series of experiments to evaluate several RL agents in our simulated en-
vironment. Our goal was not to prove the superiority of one method, but rather to evaluate
empirically what kind of approach may be better suited for our particular task and whether the
proposed state representation generalized as expected. More precisely, our experiments focused
on addressing:

1. whether a robot could quickly learn reasonable policies for the orientation task in our
simulated environment;
2. how the performance of the RL agents under consideration degraded with noisy measure-

ments;
3. how their performance could be affected by atypical human behavior; and
4. whether learned policies could generalize to conversations with more or fewer interactants.

To address the first goal above, we studied the amount of reward that several agents received
as a function of time, as well as how quickly their performance saturated. This test included
agents that estimated action values for discrete versions of the state space or that approximated
them using linear regression. For the second and third goals, we studied how measurement noise
and variability in human motion affected the performance of the agents that, on average, learned
good policies faster. For the last goal, we tested policies that were learned from interacting
with 4 people in other group conversations.

8.4.1 Agents

We considered several agents for our evaluation. In particular, we decided to test model-
based RL methods because they tend to be more sample efficient than model-free approaches
when good transition and reward models can be learned quickly. These methods included
TEXPLORE [67], which was designed for the robotics domain, and DYNA-2 [164], which can
leverage prior experience while learning. Because the latter architecture uses Sarsa [174] to
estimate the action-value function Q, then we also decided to test Sarsa by itself as a model-
free method. Brief descriptions of the specific versions of the agents that we considered in our
evaluation are provided below for completeness.

Sarsa(λ): Baseline on-policy learning agent [174]. This implementation discretizes the contin-
uous features of the state space (Sec. 8.3) and estimates the action-value function Q using a
tabular representation. With any new tuple (st, at, rt, st+1, at+1),

Qt+1(s, a) = Qt(s, a) + αδtet for all (s, a) (8.4)
with δt = rt+1 + γQt(st+1, at+1)−Qt(st, at)
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where α is the learning rate, γ is the discount factor, and et is the (accumulating) eligibility
trace [175]:

et =
{
γλet−1 + 1 for (st, at)
γλet−1 for all other state-action pairs

(8.5)

which represents the credit assigned to state-action pairs for subsequent errors in evaluation.
For action selection, this agent uses the common ε-greedy policy, which chooses the best actions
arg maxaQ(s, a) with a probability of 1− ε. Otherwise, it selects a random action.

Sarsa(λ) with tile coding and adaptive learning rate: Sarsa agent with linear function
approximation [146]:

Q(s, a) = φ(s, a)T θ (8.6)
where φ is a function that transforms the state-action pair to a large binary vector with tile
coding [173] and θ is a collection of weights. The weights get updated by the rule θt+1 = θt +
αδtet, with the eligibility traces being et = γλet−1+φ(st, at) and α being updated automatically
according to [41]. This agent also uses an ε-greedy policy.

DYNA-2: RL architecture that combines sample-base learning with sample-based planning
[164], as described in Algorithm 8.4.1. The agent has two “memories” that encapsulate all
of the features and parameters used to estimate the value function. The permanent memory
(φ, θ) is updated from real-world experiences and is used to compute the best overall estimate of
the action-value function Q(s, a) = φ(s, a)T θ (“learn” procedure of Alg. 8.4.1). The transient
memory (φ̄, θ̄) is updated during simulations to track a local correction to the permanent
memory (“search” procedure). This update is achieved with the combined action-value function
Q̄(s, a) = φ(s, a)T θ + φ̄(s, a)T θ̄.

Algorithm 8.4.1: Main steps of DYNA-2
1 Procedure learn ( st, at, rt, s′t+1 )
2 Store (st,at,rt,st+1) to update dynamics model
3 Run search (st+1) and pick next action at+1 = π(s, Q̄)

// update permanent memory (Sarsa)
4 θt+1 = θt + α[rt + γQ(st+1, at+1)−Q(st, at)]et

5 return (at+1)
6 Procedure search ( s )
7 for k = 1 to num_rollouts do
8 Initialize ē0 = 0 and s0 = s
9 Pick action a0 = π̄(s0, Q̄)

10 for t = 1 to max_steps do
11 (st+1, rt) = queryDynamicsModel(st, at)
12 Pick next action at+1 = π̄(st+1, Q̄)

// update transient memory
13 θ̄t+1 = θ̄t + ᾱ[rt + γQ̄(st+1, at+1)− Q̄(st, at)]ēt

The main difference between Alg. 8.4.1 and its description by Silver et al. [164] is that we
apply DYNA-2 to a non-episodic scenario with discounted returns (γ < 1). Moreover, we
use Sarsa(λ) with tile coding and an adaptive learning rate to estimate θ and θ̄. For the
transition and reward models, we use regression forests, as described in the next paragraphs for
TEXPLORE. Whenever enough samples are collected to learn a new model, we clear DYNA’s
transient memory so that it quickly adapts to the new dynamics.
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TEXPLORE: Model-based architecture that uses sample-based planning [67]. In particular,
this architecture uses a regression forest to estimate the transition and reward functions from
real experience. Every time a query is made for planning, a random tree from the forest is
chosen to make the prediction. This tree can be considered as one possible hypothesis of the
true model of the domain. For planning, this architecture uses the UCT(λ) algorithm with
discretized states-action spaces. Sample actions are selectively chosen using Upper Confidence
Bounds [94].
In contrast with the original description of TEXPLORE [67], our implementation does not
generalize action-values across depths in the search tree nor runs the act, plan, and model
threads in parallel. The first modification was made because generalizing values resulted in
poor performance in our particular domain. The second change simplified our implementation.
Even though speed is important for robotics applications, such as ours, it was not a crucial
factor for the present work.

8.4.2 Other Implementation Details

We used RL-Glue2 as the interface between our simulated environment and the agents un-
der consideration. For the Sarsa(λ) agent with tile coding, we used PyRL’s implementation.3
For the rest, we used our own implementation in Python, as described in the previous section.
Moreover, we used the same model approximator for Dyna-2 and TEXPLORE. The approxi-
mator was a collection of independent regression forests for each of the dimensions of the state
space and for the reward function, as proposed by Hester [67]. Our code extended the func-
tionalities of the regression forest model of the Scikit Learn library4 with an option to query
the prediction of a randomly-chosen tree in the forest.

8.4.3 Results

Unless otherwise noted, the results presented in this section are averages over 10 runs of
18000 steps (equivalent to 1 hour of interaction time) and actions were executed every 0.2
seconds. We set the field of view and detection probability of the microphone array on the
robot to 100 degrees and 0.9, respectively. For the camera, we used 80 degrees and 0.75. These
values were set based on our prior experience with off-the-shelf sensors of this kind.

The simulations had a total of 5 interactants (including the robot) which were arranged in
a circular formation with a stride of 1.25 meters, as illustrated in Fig. 8.1. In general, future
rewards were discounted with γ = 0.7.

Whenever the state space was discretized by an agent, we used 24 bins for each of the
continuous angular features. For Sarsa(λ) and the ε-greedy policies, we set λ = 0.4 and ε = 0.1,
respectively. For the discrete Sarsa agent, α = 0.7; for the continuous version, we used 64 tiles
to approximate the Q function. In the case of DYNA-2 and TEXPLORE, we used regression
forests with 15 trees to estimate a model of the dynamics. This model was updated every 300
samples (i.e., once a minute). For sample-based planning, we used 16 rollouts with 3 look-ahead
actions. These parameters provided good results in our simulated environment.

8.4.4 Learning to Orient

First, we studied how quickly the RL agents under consideration learned to orient towards
the speaker. We considered the same look-at noise distribution N (0, σ2) in eq. (8.1) for all the

2http://glue.rl-community.org
3https://github.com/amarack/python-rl
4http://scikit-learn.org

http://glue.rl-community.org
https://github.com/amarack/python-rl
http://scikit-learn.org
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people in the simulation, where σ was set to 0.0, 0.3, 0.6, 0.9, or 1.2 radians (which is equivalent
to 0.0, 17.2, 34.3, 51.5, and 68.8 degrees). In the particular case where σ = 0.0, no noise was
added to the head orientations.

In general, all the agents converged to good policies within 1000 to 2000 steps (i.e., within
3.3 to 6.6 minutes) except for the baseline version of Sarsa with a tabular Q representation.
The poor performance of this version of Sarsa with respect to the other agents can also be
observed in Figure 8.3. This plot shows the number of speakers towards whom the robot failed
to orient with an angular velocity of 0.0 rad/sec and with abs(ϕ) in eq. (8.2) less than 10 deg.
These can be considered speakers the the robot failed to acknowledge properly. The fact that
all the agents but the baseline version of Sarsa found good policies suggests that approximating
the Q function is beneficial for our task. The approximation can help generalize action-value
estimates across states.
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Figure 8.3: Proportion of speakers towards whom the agents failed to orient as a function of the
look-at noise (lower is better). “Disc. Sarsa” is the discrete version of Sarsa(λ) with tabular Q;
“Cont. Sarsa” is the continuous version with tile coding. Error bars represent standard errors.

Figure 8.4 shows the proportion of steps in which the agents achieved good behavior and
received a bonus b = 1.0 as part of their reward (see eq. (8.2)). In general, model-based agents
performed the best in terms of orienting properly towards the speakers. This result reinforces
the idea that random forests are sample efficient when it comes to estimating dynamics models
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[67]. Furthermore, Fig. 8.4 shows that the more people look away from the speaker, the worse
the agents tend to perform. This reduction in performance happens because higher σ values
lead to fewer gaze concurrences, which is precisely what social saliency tries to estimate. One
option to counter-act this effect is to estimate σ for every person during the conversation and
incorporate this information into the estimate of social saliency (see Section 3.2 of [136]).

Figure 8.5 shows the cumulative reward that the agents obtained during the 18000 steps
of interaction time. TEXPLORE clearly outperformed the other agents in this respect, likely
because of its better policy in comparison to ε-greedy.
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Figure 8.5: Average cumulative reward for σ = 0.0. The shaded areas around the curves repre-
sent the standard error. Similar trends were obtained for the other look-at noise distributions.

8.4.5 Sensitivity to the Detection Probabilities

Because multiple factors can affect robot perception, such as background audio or illumi-
nation, we decided to further investigate how different detection probabilities for the robot’s
sensors affected its performance. In particular, we focused on evaluating DYNA-2 and TEX-
PLORE in this experiment, given that they performed the best previously.

We evaluated two detection probabilities for the microphone array (0.75 and 0.90) and three
for the camera (0.60, 0.75 and 0.90). As before, this experiment was repeated 10 times per agent
until it completed 18000 steps. We used N (0, 0.62) for the look-at noise distribution.

Figure 8.6 shows the proportion of steps in which the robot received a positive reward with
the different detection probabilities. The results did not vary much with lower detection proba-
bilities for the camera, but were affected by the detection probability of the microphone array:
the lower the probability, the fewer times the robot received a positive bonus. These findings
are encouraging for future tests in real human-robot interactions because audio detection us-
ing microphone arrays tends to be more reliable than people detection with computer vision
approaches. It is worth noting, though, that the wide field of view of the microphone array
that we modeled for the robot and the lack of false positive detections likely influenced these
outcomes.

8.4.6 Individual Behaviors

So far, we have considered situations in which the people in the conversation are all affected
by the same look-at noise distribution and do not move. Of course, this not realistic. People
often exhibit individual behaviors that differentiate them from others. To study these types of
situations, we investigated the performance of DYNA-2 and TEXPLORE when one person was
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Figure 8.6: Proportion of steps (out of 18000) in which the agents received a positive bonus as
part of their reward. The left/right plots shows the results when the detection probability of
the microphone array was 0.75/0.90.

affected by more look-at noise than the other people and when people slightly adjusted their
position with respect to the rest of the group.

8.4.6.1 Non-Uniform Look-At Noise

For this test, we set the look-at noise distribution of one person to N (0, 1.22) and the rest
to N (0, 0.62). Because there were four people in the simulation, we tested all four combinations
with one outlier.

We found that the outlier look-at noise distribution did not affect the performance of the
agents; the results were similar to those obtained for the experiment of Sec. 8.4.4. In particular,
the proportions of steps in which the robot received a bonus reward were 0.58 (STE < 0.01), 0.58
(STE < 0.01), 0.59 (STE = 0.01) and 0.59 (STE = 0.01) with DYNA-2. With TEXPLORE,
the proportions were 0.72 (STE = 0.01), 0.73 (STE < 0.01), 0.73 (STE < 0.01), and 0.73 (STE
= 0.01). This result is not surprising given that the agents relied more on audio detections
than visual information, as discussed in Sec. 8.4.5.

8.4.6.2 Changes in Location

We modified our simulation to induce small re-configurations of the people in the conversa-
tion. Every time a new speaker was selected, as described in Sec. 8.2, we flipped a coin with a
success probability pt for every other person in the conversation. If the outcome of a flip was a
success, we set a desired new position p′i for the corresponding person i and updated his or her
position towards this location at a constant velocity. In particular,

p′i =
{

pi + ti if ‖pi − pinii ‖ < 0.5 meters
pinii otherwise

(8.7)

with pinii the initial location of person i at the beginning of the simulation, pi their previous
location, and ti a translation drawn from a 2D normal distribution with mean 0 and covariance
[0.01 0.0; 0.0 0.01]. In this manner, equation (8.7) induced controlled re-configurations of the
spatial arrangement while preventing dissolving the group’s F-formation.

For the test with translational motion, we considered four success probabilities pt (0.1, 0.2,
0.3, and 0.4). In general, we used a constant look-at noise distribution of N (0, 0.62) and set the
detection probabilities of the microphone array and the camera to 0.9 and 0.75, respectively.
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Even though DYNA-2 and TEXPLORE learned good policies with translational motion, we
found that this motion slightly reduced the learning speed of DYNA-2 in comparison to using
pt = 0.0 (as in Sec. 8.4.4). This outcome is illustrated in Figure 8.7. Each of the plots of this
figure show the absolute angular difference between the robot and the direction towards the
speaker from its location (abs(ϕ) in eq. (8.2)). The baseline DYNA-2 (without translational
motion) converged to an absolute offset of about 0.2 radians (11.5◦) after 12000 steps, whereas
DYNA-2 took longer to converge with pt > 0.0. TEXPLORE seemed to perform slightly better
with translational motions, likely because its policy was better suited for our problem.

pt = 0.10
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 1000 2000 3000 4000 5000

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 1000 2000 3000 4000 5000

A
bs

ou
le

 a
ng

ul
ar

 o
ffs

et

DYNA-2 TEXPLORE DYNA-2 (baseline) TEXPLORE (baseline)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 1000 2000 3000 4000 5000

Steps

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 1000 2000 3000 4000 5000

Steps

pt = 0.20

pt = 0.30 pt = 0.40

A
bs

ou
le

 a
ng

ul
ar

 o
ffs

et

Figure 8.7: Absolute angular offset (in radians) between the robot’s direction and the direction
towards the speaker. Results were averaged over windows of 600 contiguous steps and over
10 runs. The shaded areas behind the DYNA-2 and TEXPLORE lines represent std. errors.
Baseline results correspond to pt = 0.0, i.e., no translational motion.

8.4.7 Generalization To Other Group Sizes

Finally, we decided to test how well pre-trained agents performed in other conversations
with different numbers of people. For this test, we exposed the DYNA-2 and the TEXPLORE
agents that were trained with 4 people for the experiment of Sec. 8.4.4 to interactions with 2,
3, 5 and 6 people. For interactions with less than 4 people, we used a stride of 1.25 meters,
as in the other experiments. When more people conversed with the robot, we increased the
stride to 1.5 meters to accommodate the extra participants. For this experiment, we also let
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the agents adjust their Q value estimates in an online fashion. Each run lasted a total of 3000
steps (10 minutes of interaction time).

Figure 8.8 shows the average number of steps for which the agents received a bonus reward
in the new environment. As expected, the agents that were pre-trained outperformed agents
that started to learn from scratch. This result suggests that the proposed state representation
can generalize knowledge across social contexts.
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8.5 Discussion

We explored Reinforcement Learning methods to control the orientation of a robot during
simulated multi-party conversations. Our main assumption throughout this work was that the
robot should turn towards the speaker to convey attentiveness to this person and maintain
awareness of the focus of attention.

The proposed state representation for the RL task encodes the likely di-
rection of the speaker from the perspective of the robot, as captured by a camera and a
microphone array on the platform. This representation is agnostic to the number of people in
the conversation and, thus, can be used to generalize learned behaviors across social contexts.

Our findings suggest that RL has potential to succeed in motion control
tasks during social conversations. In comparison to manually designing a policy to
control the orientation of a robot, RL methods tend to scale more easily as the dimensionality
of the state space increases. That is, RL methods can more easily incorporate additional aspects
of the interaction in the decision making process. As we move forward towards controlling a
real platform, this increase in dimensionality will likely be necessary to deal with the added
complexity of real interactions. For example, we expect that using the detection probability of
the microphone array in the state representation, rather than using a binary feature for whether
or not a detection was successful, would lead to more robust policies. Similarly, incorporating
a score for how many people gaze towards the point of maximum social saliency would help
identify important social saliency locations from minor foci of attention. Of course, we pay a
price for this flexibility: the more complex the state is, the more data RL methods need to
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learn from. It might be possible, though, to leverage simulations to reduce the amount of data
needed to learn good policies in practice, e.g., as in [185; 224].

Our work was limited by our simulated environment and sensors. The envi-
ronment was inspired by models from social psychology that describe spatial behavior during
group interactions, but did not fully capture all the complexity of real world conversations nor
sensing noise. For example, only one person spoke at a time in the simulation, even though
people sometimes speak simultaneously during conversations. Furthermore, the sensors that we
simulated either detected people correctly or didn’t detect them at all. Real sensors, however,
typically provide detection scores and suffer from false positive detections.



Chapter 9

Conclusion

This dissertation presented our first steps toward a research agenda where we aim to make
robot perception cognizant of social behavior for HRI. Providing robots with mechanisms to
perceive and reason about social group phenomena, like spatial behavior, is essential for them
to appropriately interact with and around multiple of people in dynamic social contexts.

In particular, we focused on enabling robots to reason about spatial patterns of human
behavior typical of social conversations. The main take-home messages of this dissertation are:

1. F-formations naturally emerge in HRI. Prior work had shown that this happens
in dyadic interactions [72; 98]. We validated this idea further in the context of small group
conversations. This validation is important because it sets the foundations for using spatial
behavior as a mechanism to improve robot perception.

2. Reasoning about F-formations is useful for robots. First, it can help with
perception tasks, such as tracking the lower-body orientation of nearby people. Second, it can
enable robots to detect group conversations, and to cooperate to sustain them.

9.1 Summary of Contributions

This dissertation has several contributions:

– The Furniture Robot Platform. We built a new platform for social HRI research
(Chapter 4). This platform was designed to interact with both children and adults, and
is flexible in that it can operate as one or two characters simultaneously. The author con-
tributed to designing and building parts of the robot, as well as setting up and integrating
most software components.

– Methods for Studying Group Conversations with Robots. We designed new pro-
tocols for studying group interactions with robots (Section 5.1, Section 5.2 & Chapter 7).
These protocols can be used to further study various aspects of group conversations in HRI,
including spatial behavior, turn-taking patterns, social influence, and collaboration.

– Further our Understanding of Group Conversations with Robots. With the
proposed new protocols, we performed a series of experiments to study various aspects
of group interactions with robot(s), including spatial patterns of behavior that naturally
emerge during conversations. These efforts informed the design of the perception and
control algorithms that we proposed for these encounters in Chapters 6, 7 and 8.
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– Framework for Group Detection: We proposed a general framework for detecting
conversational groups by reasoning about spatial behavior. This framework takes advan-
tage of the mutual dependency between two tasks: detecting F-formations, and tracking
the lower-body orientation of people in a scene (Section 6.3). As part of this work, we pro-
posed a model-based approach to detect F-formations and estimate soft group assignment
probabilities (Sec. 6.3.1). Also, we designed a particle filter for lower-body orientation
tracking (Sec. 6.3.2). We evaluated the proposed framework on a standard benchmark
from computer vision for group detection (Sec. 6.4) and showed that it can operate in
real-time for HRI (Chapter 7).

– Methods for Robots to Cooperate To Sustain Spatial Arrangements: We studied
two orientation behaviors for robots to sustain spatial arrangements typical of group con-
versations (Chapter 7). Furthermore, we explored Reinforcement Learning techniques to
facilitate generating appropriate spatial behavior for robots during these social encounters
(Chapter 8).

9.2 Limitations and Opportunities for Future Research

While our work showed the benefits of enabling robots to reason about F-formations, it is
by no means without limitations. The next sections discuss several of these limitations and
describe corresponding opportunities for future research.

9.2.1 Data-Driven Approaches for Spatial Reasoning

So far, our efforts have focused on building model-based approaches to enable robots to
reason about human spatial behavior typical of group conversations. While these efforts were an
important first step towards understanding F-formations in HRI, the models that we proposed
to detect these spatial organizations are limited to conversations in open environments, where
F-formations are often very regular. But conversations happen in a variety of other conditions
and people’s spatial behavior is malleable enough to adapt to these situations. For example,
people often adapt to crowded environments by interacting closer to one another as needed.
Likewise, people’s spatial behavior typically changes when they are inside of an elevator because
the space is tight or narrow.

Moving forward, it would be interesting to explore data-driven approaches to enable robots
to reason about human spatial behavior. For this task, one could build upon recent advance-
ments in computer vision for markerless motion capture [210] and motion prediction [9]. Pro-
vided that one can collect sufficient data to learn from, data-driven approaches have the po-
tential to be more scalable than model-based methods. They could be used to more efficiently
represent the inherent malleability of F-formations across social contexts, and to account for dif-
ferences in spatial behavior due to particular robot designs. Morevoer, data-driven approaches
may lead to measurable properties for these spatial organizations. This quantitative informa-
tion could then complement the original, qualitative models of F-formation that were proposed
within social psychology, e.g., by Kendon [87]. Ultimately, these efforts could help us better
understand human conversations.

9.2.2 Robot Localization in Crowded Environments

In this dissertation, we assumed that our robot could localize during conversations with
small groups of people. In our laboratory experiments, we leveraged the lidar in our robot and
advances in robot localization and mapping to accomplish this task [184]. Nonetheless, using
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a lidar for localization with these methods may not always work in crowded environments. In
these situations, people will likely occlude the sensor and prevent the robot from perceiving its
surrounding.

Robot localization in crowded environments might be enabled by other kinds of sensing
modalities, like wireless localization systems, in combination with recent machine learning tech-
niques for sequential prediction and filtering [201; 202]. To explore this possibility, we have been
conducting a series of tests with the ultra-wideband (UWB) localization system that we tried
for the last user experiment described in this dissertation (Chapter 7). Our initial results sug-
gest that the Predictive State Inference Machine filter proposed by Venkatraman et al. [202]
can help better fuse UWB localization information with odometry measurements in comparison
to using an Extended Kalman Filter [1] for this task. Future work should explore the problem
of robot localization in crowded environments further to unlock human-robot interactions in
busy human gatherings.

9.2.3 Interactive Perception

Even though we designed our experiments to be naturalistic, they were conducted in con-
trolled laboratory spaces that were not as complex as unstructured human environments. From
a perception point of view, this increase in complexity can often make it more difficult – some-
times impossible – for robots to fully perceive their surroundings and the social signals provided
by their interactants. The result is an inevitable increase in perception uncertainty that can
lead to inappropriate or undesired robot behaviors.

One approach to deal with perception uncertainty in more complex settings is designing
perception systems that can leverage the interactive capabilities of robots. For example, imagine
being at a loud party. When someone talks to us and we can’t hear what the person says, we
often move closer to the person and ask to repeat again what s(he) said. Why can’t robots do
the same and take advantage of their social environments to solve difficult perception problems?

A few methods have been proposed recently to enable robots to ask for help with spatially
situated tasks [149] and manipulation tasks [92], or to ask for clarifications of user commands
[211]. Building on these approaches, future research efforts should aim at generalizing these
ideas to incorporate interactive perception mechanisms on all sort of perception tasks for HRI,
specially those that are necessary during multi-party interactions. We expect these efforts to
lead to adaptable and robust robot behavior in unstructured environments.
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Appendix A

Chester’s Gaze Calibration

In order to make the eyes of Chester gaze towards an arbitrary (X,Y, Z) position in the
world, we estimated a mapping from 3D world coordinates to 2D (x, y) pupil positions within
the eyes. For this task, we constrained the line of sight of the two eyes of the characters to
be parallel. This means, that the two pupils are always in the same position relative to their
corresponding eye, and that we only need to learn one mapping for both of them. While this
assumption is not very realistic – our robot is unable to reproduce vergence – it worked well
in practice. One reason is that the eyes of the characters have a cartoonish look, which makes
users forgiving to gaze patterns that do not fully match the properties of our physical world.
Another reason is that the eyes of our characters are (almost) planar and, thus, suffer from
the Mona Lisa gaze effect [8]. That is, users feel like the characters establish mutual gaze with
them, more often than not.

(X,Y,Z)

MIDDLE EYE

IMAGE PLANE

(x,y)

Figure A.1: Gaze calibration

Because the two pupils move together, we computed
their mappings from 3D world coordinates to local 2D
pupil positions using a simulated, third eye that was
centered in-between the real pupils. As illustrated in
Figure A.1, the position (x, y) of the pupil in this third
“middle eye” passes through a ray that connects the
center of projection of the eye and an observed (X,Y, Z)
point in the world. Mathematically, this projection
mapping [225] can be formulated as:

x′y′
w′

 =

fx 0 0
0 fy 0
0 0 1

XY
Z

 =⇒ x = x′/w′ = fxX/Z
y = y′/w′ = fyY/Z

We estimated the intrinsic parameters fx and fy of this model by solving over-determined
systems with multiple (X,Y, Z) − (x, y) correspondences. To obtain the correspondences, we
asked a person to stand in various places towards the front of the robot (as illustrated in Fig.
A.1). As the person moved from place to place, we ran an off-the-shelf face detector on the
RGB-D stream from the sensor inside the robot’s lamp to gather the (X,Y, Z) position of her
head. Meanwhile, we asked the person to control the gaze of the robot using a wireless game-
pad. The person moved the eyes in each case until the robot established mutual gaze with her,
effectively providing (x, y).

Once this 3D→ 2D mapping was estimated, we constrained the resulting (x, y) pupil posi-
tions to reasonable limits within the scleras of the eyes. This prevented the pupils from going
outside the visible regions of the eyes.





Appendix B

Optimizing the Stride of the
O-Space Proposals

Equation (6.1) introduced a parametric o-space proposal model, similar to the one used in
[40; 155; 156]. This model served to estimate the center of the o-spaces generated by social
conversations in a scene, given people’s position and lower-body orientation. Here, we present
an optimization approach that can be used to fit the stride of this o-space proposal model using
a dataset of conversational groups, like the Cocktail Party dataset [155].

For completeness, let us first re-introduce the o-space proposal model. Without loss of
generality, consider a particular person i in a social environment, and let the position and
lower-body orientation of this person be pi ∈ R2 and θi ∈ [0, 2π], respectively. If this person is
standing still and conversing with other people, his or her o-space will likely be centered at:

oi = pi + d

[
cos(θi)
sin(θi)

]
(B.1)

where d is known as the stride of this parametric model. The stride represents the expected
distance between the person and his or her o-space center.

What stride should we use for the proposals?

Assume that you have access to a dataset of conversational groups G, where each group
g ∈ G has Pg participants. In addition, assume that this dataset provides accurate pose
information, i.e., the position p and orientation θ of every person in the groups is well known.
Then, we pose that a good stride d for the o-space proposals in eq. (B.1) is the distance that
induces the proposals to be as close as possible to the average ōg = 1

Pg

∑Pg

j=1 oj in their group.
Note that this average proposal has been used by prior work to model the true location of
o-spaces in a scene [156].

The above objective can be formalized as,

arg min
d

L(d), with L(d) =
G∑
g=1

Pg∑
i=1

∥∥∥ōg − oi
∥∥∥2

and d ∈ (0,∞) (B.2)

This is a convex problem (see the next section of this Appendix for the proof). Any local
minimum must be a global minimum.
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To solve for the best stride, let us first simplify the loss function L(d) in eq. (B.2):

L(d) =
G∑

g=1

Pg∑
i=1

∥∥∥ōg − oi

∥∥∥2
=

G∑
g=1

Pg∑
i=1

∥∥∥ 1
Pg

Pg∑
j=1

(
pj + d

[
cos(θj)
sin(θj)

])
−
(
pi + d

[
cos(θi)
sin(θi)

])∥∥∥2

=
G∑

g=1

Pg∑
i=1

∥∥∥(( 1
Pg

Pg∑
j=1

pj

)
− pi

)
︸ ︷︷ ︸

ag
i

+d
(( 1
Pg

Pg∑
j=1

[
cos(θj)
sin(θj)

])
−
[
cos(θi)
sin(θi)

])
︸ ︷︷ ︸

bg
i

∥∥∥2

=
G∑

g=1

Pg∑
i=1

∥∥∥ag
i + dbg

i

∥∥∥2
(B.3)

Then, we can find the minimum of L by differentiating with respect to d,

∂L(d)
∂d

=
G∑

g=1

Pg∑
i=1

(bg
i )T
(
ag

i + dbg
i

)
+
(
ag

i + dbg
i

)T

bg
i

=
G∑

g=1

Pg∑
i=1

2
(

(bg
i )T ag

i + d (bg
i )T bg

i

)

and making the derivative equal to zero,

G∑
g=1

Pg∑
i=1

(bg
i )T ag

i + d

G∑
g=1

Pg∑
i=1

(bg
i )T bg

i = 0

The optimal stride then becomes:

d = −
∑G
g=1

∑Pg

i=1 (bgi )Tagi∑G
g=1

∑Pg

i=1 (bgi )Tbgi
(B.4)

which can be computed analytically using a dataset of group conversations with annotated
interactions and pose information. For example, in the case of the Cocktail Party dataset,
this optimization approach resulted in a stride of 0.72 meters using the ground truth body
orientation annotations that we collected for this dataset.

Proof of convexity

To prove that the minimization problem of eq. (B.2) is convex [26], we need to show that
the domain of the problem is convex (Lemma 1) and that the function L(d) is convex as well
(Lemma 2).

Lemma 1. The set (0,∞) is a convex set.

Proof. Let λ ∈ [0, 1] and x1, x2 ∈ (0,∞). We need to show that λx1 + (1 − λ)x2 is also in
(0,∞).

The derivation is the same as for any other open interval in R [26]. First, assume that
x1 ≤ x2 without loss of generality. Then, λx1 + (1 − λ)x2 ≥ λx1 + (1 − λ)x1 = x1. Similarly,
λx1 +(1−λ)x2 ≤ λx2 +(1−λ)x2 = x2. Thus, the convex combination λx1 +(1−λ)x2 ∈ [x1, x2]
and because x1 and x2 are in (0,∞), then λx1 + (1− λ)x2 ∈ (0,∞) as well.
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Lemma 2. The function L(d) in eq. (B.2) is convex.

Proof. The sum of convex functions in a common convex domain is also convex [26]. Thus,
to show that the function L(d) in eq. (B.2) is convex, it suffices to show that all the terms
‖agi + sbgi ‖2 that are summed together in its simplified form in eq. (B.3) are indeed convex.

Without loss of generality, let e(d) = ‖agi +dbgi ‖2 be the term in eq. (B.3) that corresponds
to any group g ∈ G and individual i ∈ Pg. We can express e(d) as the composition of two
functions (f ◦ g)(s), where g(x) = ‖agi + xbgi ‖ and f(x) = x2. We can now prove that e is
convex by showing that g and f are convex and that f is non-decreasing in the range of g,
because any such composition of convex functions is convex as well (see [26], Sec. 3.2.4).

First we prove that g is convex by showing that g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y)
for any λ ∈ [0, 1] and x, y ∈ (0,∞). In the proof below, we use two key properties of the `2
norm: homogeneity (‖kv‖ = |k|‖v‖ for any scalar k and vector v), and the triangle inequality
(‖v + u‖ ≤ ‖v‖+ ‖u‖ for v,u ∈ R2) [25].

λg(x) + (1− λ)g(y) = λ‖agi + xbgi ‖+ (1− λ)‖agi + ybgi ‖
= ‖λ(agi + xbgi )‖+ ‖(1− λ)(agi + ybgi )‖
≥ ‖λ(agi + xbgi ) + (1− λ)(agi + ybgi )‖
= ‖agi + (λx+ (1− λ)y)bgi ‖
= g(λx+ (1− λ)y)

The function f(x) = x2 is non-decreasing because f ′(x) = 2x ≥ 0 for all x in the range [0,∞)
of g. The function f(x) is also convex because f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for
λ ∈ [0, 1] and x, y ∈ [0,∞):

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
⇐⇒ (λx+ (1− λ)y)2 ≤ λx2 + (1− λ)y2

⇐⇒ λ2x2 + 2λ(1− λ)xy + (1− λ)2y2 ≤ λx2 + (1− λ)y2

⇐⇒ 0 ≤ (1− λ)λx2 + (1− (1− λ))(1− λ)y2 − 2λ(1− λ)xy
⇐⇒ 0 ≤ (1− λ)λx2 + λ(1− λ)y2 − 2λ(1− λ)xy
⇐⇒ 0 ≤ (1− λ)λ(x− y)2

The last inequality 0 ≤ (1− λ)λ(x− y)2 is true because (1− λ), λ, and (x− y)2 are all greater
or equal to zero.





Appendix C

Tracking with Ultra Wide-Band
Wireless Sensors

Figure C.1: Sensor

We used Ciholas’ Ultra Wide-Band (UWB) sensors [38] to track par-
ticipants in our third user experiment (Chapter 7). These wireless sen-
sors come in a compact, lightweight format and incorporate DecaWave’s
DW1000 transceiver chip for real-time localization (Fig. C.1).

To use these sensors, we set up a set of them as anchors in the environ-
ment. These anchors were used for localizing another set of UWB sensors,
known as tags, with respect to a global coordinate frame. Localization was
performed using multilateration techniques implemented by Ciholas, Inc.

Calibrating UWB Position Measurements

The raw position measurements output by Ciholas’ software suffered from near field effects
at close range. These effects became apparent as a constant, but spatially-varying bias in UWB
position measurements.

We used machine learning to compensate for this bias and get more accurate 2D position
information from the UWB tags. To that end, we built a dataset D = {(zi,xi) | 1 ≤ i ≤ N}
of 2D UWB position measurements z and corresponding ground truth values x. We modeled
the spatially-varying bias as a deterministic function f : R2 → R2, such that x = z + f(z).
While this function could be learned with any (non-linear) supervised learning technique, we
used two Gaussian Processes (GPs) in this work (one per dimension of the 2D UWB position
measurements). GPs were a practical choice for this task because they allowed us to compute
smooth biases with a small set of manual measurements.

Tracking Instrumented Caps

UWB SENSOR

UWB SENSORBATTERY PACKS

Figure C.2: Cap

To track people in our laboratory, we instrumented
baseball caps with two UWB tags each (Fig. C.2).
The 3D measurements provided by Cihola’s software
for each of these tags were then filtered with a Kalman
filter. The hidden state xt of the filter for a wireless tag
was xt = [xt yt zt ẋt ẏt żt]T , where (x, y, z)t denoted
the true position of the tag being tracked at time t, and
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(ẋ, ẏ, ż)t was its instantaneous velocity. This 6D state evolved under a constant velocity model
as follows:

xt+1 =

1 0 0 ∆T 0 0
0 1 0 0 ∆T 0
0 0 1 0 0 ∆T

xt + wt (C.1)

where wt ∼ N (0, Q) was the process noise, and ∆T corresponded to the time elapsed between
updates of the filter. The observation model of the filter was:

zt =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

xt + vt (C.2)

where zt was the position measurement of the UWB tag at time t, as output by Ciholas’ system.
The vector vt ∼ N (0, R) was the observation noise. We tuned the parameters of this filter based
on experimental observations.

Once the positions of the UWB tags on a baseball cap were filtered, we converted their 3D
location to 2D by projecting the tags’ estimated position (x, y, z) on the ground, i.e., making
their vertical coordinate z = 0. We disregarded vertical measurements because they were
significantly noisy.

We finally removed the bias that was described in the previous section from the tags’ 2D
positions, and combined the estimated locations of the two tags on a cap. Let [x1 y1]T and
[x2 y2]T be the 2D positions of the left and right tags on a given cap after projecting on the
ground and compensating for the spatially-varying bias. The cap’s position was set to the
average p = 0.5 ∗

∑2
i=1[xi yi]T , as depicted in Figure C.3 (yellow circle). The orientation of the

cap was computed as the yaw angle θ = arctan2(y2 − y1, x2 − x1).

Figure C.3: Tracking of a baseball cap with two UWB tags. The green spheres indicate the
filtered 3D positions of the two tags on the person’s cap. Because the vertical estimates of
the tags were very noisy, we projected their 3D position on the ground plane and processed
their 2D location only. The center of the red circle corresponds to the average 2D position of
the tags after being projected. The center of the yellow circle was computed like the center
for the red one, but the projected 2D positions of the tags was pre-processed to remove the
spatially-varying bias that we computed for the room.

Even though we tried tracking people’s lower-body orientation with the UWB sensors as well,
we found that heavy occlusions generated more noise than we could handle in this case. Ciholas’
software is evolving, though. It might be possible to use these sensors to track additional body
features in the future.
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