
Reasoning about Stateful Network Behaviors

Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Seyed K. Fayaz
B.S., Computer Engineering, Tehran Polytechnic
M.S., Computer Science, Stony Brook University

Carnegie Mellon University
Pittsburgh, PA 15213

December 2016

Reasoning about Stateful Network Behaviors

Copyright © 2016 by
Seyed K. Fayaz

All Rights Reserved

Acknowledgments
I would like to thank everyone who helped me have a great Ph.D. journey. First, I want

to thank my family who wholeheartedly supported my choice of getting a Ph.D. degree.

Second, I am indebted to my Ph.D. advisor Vyas Sekar for believing in me and giving me

the freedom and support to work on exciting research problems. Third, I would like to

thank the wonderful students around me who helped me master the technical and personal

skills that I needed to succeed. In particular, I enjoyed working with Yoshiaki Tobioka and

Tianlong Yu, who in addition to being great hackers, are incredible individuals.

Besides the folks I frequently interacted with, there are many people who helped me

grow along the way. I was fortunate to work with and learn from some of the brightest

minds in the fields of networking, systems, and security: Michael Bailey, Teemu Kopo-

nen, Bruce Maggs, Ratul Mahajan, Jeff Mogul, Mike Reiter, Srini Seshan, Scott Shenker,

George Varghese, and Minlan Yu. I found Tuesday systems seminars at the CS department

of CMU well-run and extremely useful owing to the bright students and faculty who at-

tended and provided the presenters with actionable feedback. This fabulous group includes

Dave Andersen, Junchen Jiang, Serhat Kiyak, Hyeontaek Lim, Matt Mukerjee, David Nay-

lor, Wolf Richter, Srini Seshan, Peter Steenkiste, Yuchen Wu, and Dong Zhou.

Some of my best learning experiences were at the times when I was pushed outside my

comfort zone. First, my internship at Microsoft under the mentorship of Ratul Mahajan and

George Varghese was a fun and sobering experience. In particular, Ratul taught me how

to effectively communicate with network operators. My meetings with brilliant Microsoft

Azure engineers opened a whole new window into my perception of real-world problems

and solutions. Second, as part of my work on network verification, Sagar Chaki and Todd

Millstein helped me learn quite a bit on formal methods and program analysis.

As a Ph.D. student, I spent most of my time at CMU CyLab. I would like to thank David

Brumley and Virgil Gligor for doing a phenomenal job in turning CyLab into a remarkable

cybersecurity research center. I also want to thank Toni Fox who worked diligently to make

sure I had a meeting room whenever I needed one. My Ph.D. was financially supported by

the NSF, a VMware Graduate Fellowship, and the CMU Bertucci Fellowship.

Abstract
Network operators must ensure their networks meet intended traversal policies (e.g., host A
can talk to host B, or inbound traffic to host C goes through a firewall and then a NAT). Vio-
lations of the policies may result in revenue loss, reputation damage, and security breaches.
Today checking whether the intended policies are enforced correctly is stymied by two
fundamental sources of complexity: the diversity and stateful nature of the behaviors of
real networks. First, we need to account for vast diversity in both the control plane (e.g.,
different routing protocols and their interactions) and the data plane (e.g., routers, firewalls,
and proxies) of the network. Second, we need to reason about a very large space of stateful
behaviors in both the control plane (e.g., the current state being characterized by the route
advertisements the routers have seen so far) and the data plane (e.g., a firewall’s current
state with respect to a TCP session). Prior work on checking network policies is limited to
a particular state of the network. Any attempt to reason about the behavior of the network
across its state space is hindered by two fundamental challenges: (i) capturing the diversity
of the control and data planes, and (ii) exploring the state space of the control and data
planes in a scalable manner.

This thesis argues for the feasibility of checking the correctness of realistic network
policies by addressing the above challenges via two key insights. First, to combat the
challenge of diversity, we design unifying abstractions that glue together different routing
protocols in the control plane and diverse network appliances (e.g., firewalls, proxies) in the
data plane. Second, to explore the state space of the network in a scalable manner, we build
tractable models of the control and data planes (e.g., by decomposing logically independent
tasks) and design domain-specific optimizations (e.g., by narrowing down the scope of
search given the intended policies). Taken together, these two ideas enable systematic
reasoning about the correctness of stateful data and control planes. We show the utility and
performance of these techniques across a range of realistic settings.

Contents

1 Introduction 1

1.1 Current approach . 2

1.1.1 Background . 2

1.1.2 Related work . 3

1.2 Thesis approach and contributions . 7

1.2.1 Vision . 7

1.2.2 Challenges . 8

1.2.3 Contributions . 9

1.3 Outline . 11

2 Reasoning about stateful data planes using BUZZ 13

2.1 Motivation . 15

2.2 Related work . 18

2.3 System design . 19

2.3.1 Overview . 19

2.3.2 Problem formulation . 21

2.3.3 Intuition behind model and test traffic 21

2.3.4 Formal framework . 22

2.3.5 Data plane model instantiation . 26

2.3.6 Test traffic generation . 31

2.3.7 Implementation . 38

2.4 Evaluation . 40

2.4.1 BUZZ end-to-end use cases . 41

2.4.2 Scalability . 44

2.4.3 Effect of BUZZ design choices . 45

2.5 Summary . 46

3 Exposing hidden traffic context using FlowTags 49

3.1 Motivation . 51

3.2 Related work . 53

3.3 System design . 56

3.3.1 FlowTags overview . 56

3.3.2 Architecture and interfaces . 58

3.3.3 FlowTags APIs and operation . 59

3.3.4 FlowTags controller . 61

3.3.5 Encoding tags in headers . 62

3.3.6 FlowTags-enhanced middleboxes 65

3.3.7 Implementation . 68

3.4 Evaluation . 68

3.5 Case study: FlowTags as an enabler for flexible and elastic DDoS defense . 71

3.5.1 System design . 76

3.5.2 Scalable network orchestration using FlowTags 78

3.6 Summary . 83

4 Reasoning about stateful control planes using ERA 85

4.1 Motivation . 88

4.2 Related work . 90

4.3 System design . 91

4.3.1 ERA Overview . 91

4.3.2 Modeling the control plane . 95

4.3.3 Exploring the control plane model 101

4.3.4 Going beyond reachability . 105

4.3.5 Implementation . 106

4.4 Evaluation . 107

4.4.1 Finding reachability bugs with ERA 108

4.4.2 Scalability of ERA . 115

4.5 Summary . 116

5 Conclusions and future work 117

Bibliography 121

List of Figures

1-1 Network operators enforce reachability and context-dependent policies.

Our goal is to enable them to determine whether they have done so cor-

rectly. 2

2-1 Is firewall allowing solicited and blocking unsolicited traffic? 16

2-2 Are both cache hit/miss traffic monitored? 16

2-3 Is suspicious traffic sent to heavy IPS? . 17

2-4 Does the scale-out mechanism honor the stateful semantics of migration? . 17

2-5 High-level workflow of BUZZ. 20

2-6 CDPGs for the examples in Figures 3-3 and 3-4. Rectangles with solid

lines denote “Ingress” nodes and with dotted lines denote “Egress” nodes.

Circles denote logical middlebox functions. Each edge is annotated with a

{Class};Context denoting the traffic class and the processing context(s).

All traffic is initialized with a null/“-” context. 23

2-7 Two example FSM models of L-IPS of Figure 2-3 assuming a world with 2

hosts and 20 flows. The states corresponding to alarm (i.e., at least 10 bad

connection attempts) are highlighted in red. 25

2-8 Translating abstract test traffic into test traffic injection scripts. 36

2-9 Pseudocode for abstract test traffic generation for change management poli-

cies. 38

2-11 Graphical interface to input policies (e.g., multistage-triggers policy in Fig-

ure 2-3). 39

2-10 Text-based interface to input policies (e.g., multistage-triggers policy in

Figure 2-3). 39

2-12 Pseudocode for BUZZ test resolution. 40

2-13 Test generation latency of BUZZ. 44

2-14 BDUs vs. packets for various request sizes. 45

2-15 Improvements due to SE optimizations. 46

3-1 Applying the blocking policy is challenging, as the NAT hides the true

packet sources. 52

3-2 Middlebox modifications make it difficult to consistently correlate network

logs for diagnosis. 52

3-3 𝑆2 cannot decide if an incoming packet should be sent to the heavy IPS or

the server. 53

3-4 Lack of visibility into the middlebox context (i.e., cache hit/miss in this

example) makes policy enforcement challenging. 53

3-5 Figure 3-1 augmented to illustrate how tags can solve the attribution problem. 57

3-6 Interfaces between different components in the FlowTags architecture. . . . 58

3-7 Packet processing walkthrough for tag generation with the FlowTags APIs. 60

3-8 Packet processing walkthrough for tag consumption with the FlowTags

APIs . 60

3-9 We choose a hybrid design where the “consumption” side uses the packet

rewriting and the “generation” uses the module modification option. 66

3-10 Breakdown of flow processing time in different topologies (annotated with

#nodes). 70

3-11 DDoS defense routing efficiency enabled by SDN and NFV. 74

3-12 Bohatei system overview and workflow. Scalable orchestration is enabled

by FlowTags in-data plane tag-based traffic forwarding. 75

3-13 A sample defense against UDP flood. 76

3-14 Context-dependent forwarding using tags. 80

3-15 Different load balancer design points. 81

3-16 Bohatei control plane scalability. 82

3-17 Number of switch forwarding rules in Bohatei vs. today’s flow-based for-

warding. 83

4-1 Reachability behavior of a network (e.g., A can talk to B) is determined by

its data plane, which, in turn, is the current incarnation of the control plane. 86

4-2 A bug triggered by maintenance. 88

4-3 A bug triggered by a BGP announcement. 89

4-4 A bug triggered by link failure. 90

4-5 High-level vision of ERA. 92

4-6 X-to-Y reachability depends on routers configurations and the environment. 93

4-7 route as the model of control plane I/O. 95

4-8 High-level router model processing boolean representation of input routes. . 97

4-9 Route control plane visibility function. 99

4-10 Example router model as a BDD. Dashed and solid lines represent the val-

ues 0 and 1 of the corresponding binary variable, respectively. 100

4-11 Computing 𝐴 to 𝐵 reachability. 101

4-12 Computing 𝐴-to-𝐵 reachability. 104

4-13 Visualization of predicates X, Y, and Z in terms of members of equivalence

classes 𝑎1, . . . , 𝑎7. 105

4-14 Fast ∪ and ∩ of two sets of integers. 105

4-15 Pseudocode for checking waypointing for A-to-B traffic. 107

4-16 Finding known bugs in synthetic scenarios. 109

4-17 Finding known bugs in synthetic scenarios using the red-blue teams exercise.111

4-18 New bugs in a synthetic scenario involving hybrid (i.e., SDN-traditional)

networks. 112

4-19 𝑅1 leaks the service prefix. 113

4-20 A schematic of the analyzed CampusNet. 114

List of Tables

1.1 Taxonomy of prior and our work on reasoning about a network. 4

2.1 Example red-blue team scenarios. 43

3.1 Analyzing strawman solutions vs. the motivating examples. 54

3.2 Summary of the middleboxes we have added FlowTags support to with the

number of lines of code and the main modules to be updated. We use a

common library (≈ 250 lines) that implements routines for communicating

to the controller. 67

3.3 Time to run HANDLE_FT_GENERATE_QRY. 69

3.4 Reduction in TCP throughput with FlowTags relative to a pure SDN network. 70

3.5 Effect of spatial and temporal reuse of tags. 71

4.1 Effect of our optimizations. 115

Chapter 1

Introduction

Network operators constantly strive to meet critical policy goals to ensure that networks

are secure, provide high performance and availability, and meet external compliance re-

quirements. To this end, they have to carefully configure routers and deploy and manage

a wide range of network appliances or middleboxes. These middleboxes include WAN

optimizers, proxies, intrusion detection and prevention systems, network- and application-

level firewalls, and application-specific gateways [60]. For instance, the intended policy

may mandate that HTTP traffic goes through a stateful firewall, intrusion detection system,

and a web proxy [118, 136]. Policy violations could result in network outage, significant

degradation in the network’s performance, or serious security lapses.

Today ensuring that the network correctly implements a given policy is a primarily

manual and error-prone task. For instance, a recent operator survey found that 35% of

networks generate more than 100 problem tickets per month and one-fourth of these take

multiple engineer-hours to resolve [55]. Checking even simple reachability (e.g., can A

talk to B) policies is already hard. Recent advances such as software-defined networking

(SDN) [98, 141] and network functions virtualization (NFV) [83] enable new capabilities

to implement more sophisticated context-dependent policies (e.g., packets marked as sus-

picious may be subject on-demand to deeper inspection) [30,61,63,69,95,160]. These new

paradigms also introduce additional sources of complexity (e.g., elastically scaling virtual

network functions depending on the load [103, 153]) and also introduce new sources of

error (e.g., problems traditionally associated with software implementations) [129].

1

In the rest of this section, first, we give an overview of the current approach to checking

the correctness of networking policies (§1.1). We then discuss the challenges of providing

the operators with the proper tools and techniques to check their intended policies as well

as our contributions in addressing these challenges (§1.2). We outline the rest of the thesis

in §1.3.

1.1 Current approach
As we will discuss in this sub-section, today network operators do not have proper tools

and techniques to check the correctness of their intended policies.

1.1.1 Background

Before reviewing the related work on checking network policies, it is useful to take a step

back and take a look at what a realistic network is expected to do (see Figure 1-1).

Routers	

Example:	
Host1	to	Host2	traffic:		
(i)	Go	through	L-IPS		
(ii)	If	L-IPS	alarms,	go	through	H-IPS	

Reachability	
policies	

R1	

R2	

R3	

R4	

L-IPS	 H-IPS	

Host1	 Host2	

Big	picture	

Can	we	check	whether	network	policies	are	
enforced	correctly?		

Example:	
R2	can	talk	to	R3	

Context-dependent	
policies	

middlebox	
config.	

router	
config.	

Middleboxes	

1

Network	
operator	

Figure 1-1: Network operators enforce reachability and context-dependent policies.
Our goal is to enable them to determine whether they have done so correctly.

Enforcing reachability policies in the control plane: To enforce who can/cannot talk to

whom in the network, the operator needs to configure the behavior of the network control

plane. This is done by configuring individual routers with respect to routing protocols (e.g.,

BGP, OSPF, RIP). The goal here is to ensure certain end-points can or cannot talk to each

other based on the organizational policies (e.g., the departments of a campus network can

talk to each other, or traffic from the finance department in an enterprise network cannot

reach the R&D department).

2

Enforcing context-dependent policies in the data plane: Over time networks have been

expected to provide more than mere connectivity. Specifically, operators need to ensure

their networks meet certain security and performance goals. To this end, operators exten-

sively use specialized network appliances, known as middleboxes [167]. Firewalls, proxies,

and intrusion detection/prevention systems (IDS/IPS) are just a few examples of middle-

boxes. Together with routers’ forwarding tables, middleboxes form the network data plane,

which is where the actual packets are processed.

We refer to policies that mandate a certain traversal of middleboxes as context-

dependent policies. (These policies are also known as service chaining policies [118,136].)

Context here refers to the processing context of traffic on middleboxes that is maintained as

a state on the middlebox (e.g., “TCP connection established”). For example, the network

operator may need to enforce the following policy: if traffic triggers an alarm on a light-

weight IPS, then traffic should be sent to a heavy-weight IPS. In this example, “alarm” on

the light IPS is context that is associated with a corresponding state on the light-weight IPS

(e.g., the count of suspicious connections seen).

To see what is missing today in terms of reasoning about the behavior of the network,

in the following sub-section, we will review representative related work.

1.1.2 Related work

Enforcing reachability and context-dependent policies has received significant attention.

This involves efforts on policy enforcement using new networking paradigms such as SDN

(e.g., SIMPLE [158], Slick [69], OpenNF [105], E2 [153], PGA [157], Kinetic [30])

and synthesizing correct-by-construction networks (e..g, Frenetic [101], Vericon [70],

NetKat [67], Pyretic [144], Propane [73]).

Checking whether the intended policies are enforced correctly in the actual network has

recently been an active area of research. The reason for this resurgent interest is the fact

that if the intended policies are not enforced correctly, the outcome can be severe for the

affected organizations in terms of lost revenue (e.g., service outage [22]), security breaches,

and lost reputation (e.g., [46]).

A taxonomy for related work: Here we present a taxonomy to help organize the related

3

work and put our contributions in perspective. To check the correctness of the network,

namely, to see whether the network behavior is compliant with the intended reachability

and context-dependent, we naturally need to reason about the control and data planes, re-

spectively. At a very high level, reasoning about any system requires two ingredients: A

model of the system, and a mechanism to explore the model to see whether the behavior is

compliant with the intended policy. Therefore, to reason about a network, we need a model

of the network’s control and data planes as well as mechanisms to explore these models.

Here we briefly discuss the related work on checking network policies using our taxon-

omy (see a summary in Table 1.1). As we will discuss shortly, prior work critically lacks

the ability to model and explore the behavior of realistic networks, which involves stateful

behaviors.

Stateful modeling State space exploration

Prior work on control plane analysis [97, 99] No No

Our work on control plane analysis (§4) Yes Yes

Prior work on data plane analysis [124, 125, 137] No No

Our work on data plane analysis (§2 and §3) Yes Yes

Table 1.1: Taxonomy of prior and our work on reasoning about a network.

Checking the control plane: To classify the prior work on reasoning about the control

plane and understand its shortcoming, it is useful to first define what the network control

plane is. The control plane maps the routers configuration and route advertisements sent to

routers to the forwarding table (FIB or forwarding information base):

ControlPlane : (Config × Adv)→ FIB

The FIB, in turn, will determine the behavior of the router with respect to forwarding

individual packets. Let 𝜑 denote a predicate that captures the intended reachability policy

(e.g., host A can talk to host B). In other words, if 𝜑(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃 𝑙𝑎𝑛𝑒) is true, the network

is correct with respect to the reachability property.

Given this definition of the control plane, we can think of the state of a router’s control

plane as the set of route advertisements seen so far. Receiving any new route advertisement

4

can result in a state transition in the control plane.

To make sure a reachability policy is enforced correctly, the operator needs to check

whether it is enforced correctly not only in the current FIB, but also in FIBs that may

emerge due to interaction of the routers by sending/receiving route advertisements. As we

will discuss in §4, many network outages occur due to latent routing bugs. These are bugs

due to router misconfiguration that might be currently inactive and will be triggered only

upon receiving a particular route advertisement. To see whether router configuration files

involve any latent bugs, we need the ability to systematically explore the state space of the

control plane.

There are three classes of prior work on checking the control plane, all of which fall

short of finding latent bugs:

1. Control plane testers: Batfish [99] takes as input a configuration 𝑐 and a fixed set

of route advertisements 𝑎𝑑𝑣 and then searches for counterexamples to the formula

ControlPlane(𝑐𝑜𝑛𝑓𝑖𝑔, 𝑎𝑑𝑣) to see if there are any violating route advertisements. Be-

cause it uses a particular set of route advertisements as input, Batfish cannot identify

latent bugs except by exhaustively enumerating different route advertisements, which is

intractable.

2. Configuration bug pattern detectors: Tools like rcc [97] and ConfigAssure [149] model

each bug pattern as a predicate on configurations 𝜙 : Config→ Boolean. rcc then simply

computes 𝜙(𝑐𝑜𝑛𝑓𝑖𝑔) for each such bug pattern on a given network configuration 𝑐𝑜𝑛𝑓𝑖𝑔.

This approach can identify some latent bugs but cannot guarantee that desired invariants

will never be violated. Further, it cannot relate an identified bug to actual forwarding

errors or identify route advertisements that trigger such errors.

3. Protocol-specific tools: There has been recent work on analyzing the control plane with

respect to various route advertisements (as opposed to just one particular fixed set of

route advertisements). However, it suffers from critical limitations. Some tools focus

on a single routing protocol (e.g., BGP for Bagpipe [175]) or a limited set of routing

protocol features (e.g., ARC [104]). They can thus not capture the behavior of the control

plane that often uses multiple routing protocols and sophisticated features such as route

5

redistribution and route aggregation that are sources of many real-world bugs [106, 131,

140].

As we will discuss in §4, even one “bad” route advertisement sent to a router can cause

a policy violation. This means what we really need is go beyond the prior work and create

a fourth category, which we call control plane checkers, that expressively models stateful

behaviors of the control plane and systematically explores the state space to identifies route

advertisements that cause a policy violation (see rows 2 and 3 of Table 1.1).

While not directly related to reasoning about the control plane, there is another body of

work that is worth mentioning here. Correct-by-design approaches like metarouting [110]

and glue logic [133] provide a framework for defining new control planes such that con-

figurations expressed in the framework meet specific properties (e.g., convergence). These

properties hold over all possible route advertisements. Unfortunately, these approaches do

not address practically desirable correctness properties (e.g., the absence of blackholes),

and potentially unsafe but common protocols (e.g., BGP) and real-world router behaviors

(e.g., route aggregation) do not fit within these frameworks.

Checking the data plane: Prior work on checking the data plane can be categorized into

1. Static verification, which uses network configuration files to check whether the network

behavior complies with the intended policies assuming the data plane behaves correctly

(e.g., HSA [124], Veriflow [125], and NOD [137].

2. Active testing, on the other hand, checks the behavior of the data plane by injecting test

traffic into the network [184].

The key limitation of existing work, in both of the above categories, is that it assumes

there are no middleboxes in the data plane. This assumption is widely in contradiction to

the widespread use of middleboxes in real networks. For example, a recent survey shows

that the number of middleboxes in a network can be on the order of the number of routers

in the same network [167]. As we will see in § 2, unlike routers, middleboxes make

checking the data plane difficult due to their stateful behaviors (e.g., TCP connection states

on a stateful firewall).

6

How about verifying middleboxes’ code? It is also worth mentioning that there has been

work on verifying implementation code of middleboxes. Specifically, the work in [89] fo-

cuses on finding Click [127] code faults (e.g., crash) as opposed to verifying traffic process-

ing policies (e.g., reachability). NICE combines model checking and symbolic execution

to find bugs in control plane software [80]. While useful, this approach has two limitations.

First, existing work has made strong assumptions about the size, language, and the struc-

ture of the data plane code. Second, even if the data plane code is correct, the data plane

may still misbehave due to mis-configuration or “on-the-wire” problems (e.g., a link going

down). Therefore, we favor the ability to check the behavior of the data plane with respect

to processing actual traffic

Given the status of prior work on checking the data plane, what is critically missing is

an approach that captures stateful behaviors of middleboxes and explores the corresponding

state space to identify policy violations (see the last two rows of Table 1.1).

Our goal in the context of prior work: A Table 1.1 summarizes, our goal is to bridge the

bap between the ability of current approaches to reasoning about the network on the one

hand and the stateful natures of realistic networks on the other hand. This requires us to be

able to (i) model stateful behaviors of the network (in both control and data planes), and

(ii) systematically explore the state space of the control and data planes.

1.2 Thesis approach and contributions
Next we present our vision, discuss the challenges in realizing it, and outline our contribu-

tions.

1.2.1 Vision

The goal of this thesis is to enable network operators to proactively check the correctness

of their intended reachability and context-dependent policies. We assume the operator has

implemented her intended reachability and context-dependent policies via configuring the

routers and middleboxes. Note that we are agnostic to how she has configured the network

(i.e., manually or automatically). Our goal is to check whether the intended policies are

enforced correctly.

7

Checking the control plane: Since the reachability behavior of a network is a manifes-

tation of its control plane behavior, we argue that to check the reachability policies of a

network, we need to reason about its control plane. This is in contrast to prior techniques

that are too narrow in their reasoning (i.e., they reason only about a specific manifestation

of the control plane [124,137]). Our goes here is to check whether the intended reachability

policies will be satisfied given the router’s configuration files through static checking. Our

system provides the operator with the result of the verification, which is either success or

failure. In the latter case, the system also provides a counter-example (i.e., an environment

that results in a policy violation).

Checking the data plane: Context-dependent are realized by the stateful behaviors of

middleboxes. While both approaches of static checking and active testing (see §1.1.2) are

potentially useful, we focus on active testing for two reasons. First, data plane is where

the actual traffic is processed; therefore, active testing of the data plane provides practical

assurances as to whether things are working correctly on-the-wire. Second, dynamic ac-

tions of middleboxes (e.g., traffic modification, terminating/re-establishing sessions) make

is hard to reason about the behavior of the data plane with a purely static approach (we will

elaborate on such behaviors in § 3). As it is a typical practice in testing any system, our

vision of testing the data plane is realized in the broad framework of model-based testing

(MBT) [172]. In particular, we aim to generate test traffic that triggers policy-related states

of the model of the data plane. When this traffic is injected into the actual network, we can

check the correctness of its behavior via comparing it to the intended context-dependent

policies.

1.2.2 Challenges

Realizing our vision is hindered by three key challenges:

∙Scalability: Reasoning about any system (in our case the network’s data and control

planes) requires exploring the possible behaviors of the system with respect to the in-

tended properties. To make the exploration more tractable, prior work on checking net-

work policies has made simplifying assumptions to shrink the space of possible behav-

iors. Specifically, this is done by assuming a fixed set of route advertisements in the

8

control plane and assuming the lack of middleboxes in the data plane (see §1.1.2). Re-

alizing our vision mandates relaxing these assumptions, which immediately leads to the

challenge of scalability in exploring the network’s behaviors. This is due to the notion of

state in that we need to reason about a very large space of stateful network behaviors in

both the control plane (e.g., the routing information the routers have obtained so far) and

the data plane (e.g., a firewall’s state with respect to a TCP session).

∙Diversity: Real networks are diverse systems on two fronts. First, the control plane

behavior is determined by a diverse set of routing protocols (e.g., BGP, RIP, OSPF) as

well as interactions across individual protocols (e.g., route redistribution [133]). This

is in contrast to the prior work that is protocol-specific [97]. Second, the data plane

behavior is determined by various types of middleboxes that are very different in nature

(e.g., a firewall vs. an IPS vs. a proxy). Prior work, in contrast, has only considered

homogeneous data planes composed of routers/switches [124, 125].

∙Hidden context: Even after addressing the scalability and diversity challenges, active

testing of the data plane requires a binding between test traffic and its processing context

(e.g,. cache hit/miss at a proxy, alarm/OK at an IPS) throughout the network. This,

however, is challenging in the presence of middleboxes. Not only do not middleboxes

make the processing context available, but also they modify opaquely modify traffic that

makes it hard to determine the true source of the traffic. For instance, NATs and load

balancers dynamically rewrite packet headers.

1.2.3 Contributions

This thesis argues that it is possible to enable network operators to proactively check the

correctness of their intended policies by addressing the above challenges. First, to combat

the challenge of diversity, we design unifying data abstractions that glue together different

routing protocols in the control plane and diverse elements in the data plane. Second, to

explore the state space of the network in a scalable manner, we build tractable models of

the control and data planes (e.g., by decomposing logically independent tasks) and design

domain-specific optimizations (e.g., by narrowing down the scope of search given the in-

tended policies). Taken together, these two ideas enable systematic reasoning about the

9

correctness of stateful data and control planes. Further, we design an SDN-based network

architecture to make the otherwise hidden context available via tagging traffic by middle-

boxes.

Since a network is composed of data and control planes, we tackle the challenges

from §1.2.2 separately with respect to these planes. The specific contributions of this thesis

are as follows:

• Active testing of context-dependent policies in the data plane: We address key

expressiveness and scalability challenges of checking the data plane, we develop a

principled testing framework called BUZZ [96]. We model a middlebox in a scalable-

yet-expressive manner, we represent is as an ensemble of FSMs rather than a mono-

lithic FSM. Further, to enable composing models of various middleboxes and model

the entire data plane, we design a unifying traffic data unit that represents a sequence

of packets. To generate test traffic given a model of the data plane, we develop an

optimized symbolic execution (SE)-based workflow. We engineer domain-specific

optimizations (e.g., reducing the number and scope of symbolic variables) to im-

prove scalability. We develop custom translation mechanisms to convert the output

of this step into concrete test traffic (§2);

• Preserving the test traffic context via middlebox-assisted tagging: To realize the

above active testing framework, we address the challenge of hidden contexts by de-

signing and building FlowTags [92]. FlowTags is an SDN-based network architecture

that enables the middleboxes to embed the otherwise hidden context in their outgoing

packets, which in turn, will be used by the next switches and middleboxes. The SDN

controller orchestrates the network-wide tagging operations of the middleboxes. We

show the feasibility of FlowTags in terms of minimal modifications we need to make

to existing middleboxes to make them FlowTags-compliant as well as negligible per-

formance overhead such modifications entail (§3);

• Checking reachability policies via control plane analysis: To address the key ex-

pressiveness and scalability challenges of checking the control plane, we have de-

signed and built a tool, called ERA [94], to analyze the behavior of the control plane.

10

To build the tool, we have taken three key steps. First, we have designed a unifying

and compact bit-vector model for the input/output (I/O) unit of the control plane that

captures messages sent by the “environment” of a router (e.g., neighboring routers).

Second, we have modeled the processing logic of the control plane as a fast pipeline

of boolean operators. Finally, we have designed an algorithm to quickly find reacha-

bility between any two given router ports. To make this process fast and scalable, we

have employed a range of techniques including the Karnaugh map, using equivalence

classes of routes, and taking advantage of Intel AVX2 instruction set for computation

of set intersection/union (§4).

We have also made BUZZ and ERA available as open source for the broader use of the

research community [1, 2].

1.3 Outline
In §2, we present BUZZ, which is a test traffic generation system that enables the use of

model-based testing (MBT) in the specific domain of testing stateful data planes. Note that

BUZZ is built based on the assumption that the traffic context (e.g., a connection being

suspicious) is preserved in the network, which is not true in the presence of different types

of middleboxes that modify traffic (e.g., NATs, proxy). Therefore, taking advantage of

SDN as a new opportunity, in §3 we present our architectural solution, called FlowTags, to

make hidden context available by encoding it as tags inside packets. Then in §4, we present

ERA, a tool for finding latent configuration bugs via control plane analysis. Finally, we

present concluding remarks and outline directions for future work in §5.

11

12

Chapter 2

Reasoning about stateful data planes

using BUZZ

Network operators extensively use specialized network appliances or middleboxes in en-

terprise networks to enhance the security and performance of their networks. Examples

of middleboxes include firewalls, proxies, NATS, intrusion detection/prevention systems,

to name a few. Middleboxes are highly popular today so that the number of middleboxes

deployed in a typical enterprise network is comparable to the number of traditional router-

s/switches in the same network [167].

While an integral part of modern network infrastructures, middleboxes1 have complex

stateful behaviors. This means the packet processing behavior of the middleboxes, in ad-

dition to the input packet, depends on the current state of the middlebox. For example, a

TCP-level firewall may take different actions on a given input packet (e.g., drop or allow)

depending on the current state of the connection with which the packet is associated. At a

high level, such stateful behaviors make reasoning about middleboxes challenging, as we

need to explore a state space.

To be more specific, checking a context-dependent policy in a stateful network involves

ensuring whether traffic goes through the intended sequence of NFs; e.g., if an intrusion

1In the rest of the thesis, we use the terms middlebox and stateful network function (NF) interchangeably.

In general, an NF may be a switch/router or a middlebox (e.g., firewalls, load balancers, intrusion prevention

systems, or proxies). It may be realized by a physical appliance or a virtual machine (VM).

13

detection system (IDS) flags host X for generating too many connections (i.e., if traffic con-

text is “alarm”), then reroute subsequent flows to a deep packet inspection (DPI) filter [63].

Such rich policies and stateful data planes are quite common (e.g., the number of stateful

NFs in a network may be comparable to the number of routers [167]).

As we saw in chapter §1, today we do not have a systematic way to check whether

a stateful data plane correctly implements intended context-dependent policies. Existing

approaches [99, 124, 125, 137, 184] face fundamental expressiveness and scalability chal-

lenges in this regard. First, current abstractions cannot capture stateful behaviors (e.g., how

many connections host X has tried to establish) or express context-dependent policies (e.g.,

on-demand deep inspection). Second, trying to reason about stateful behaviors results in

state-space explosion; e.g., a naive application of formal verification tools takes > 20 hours

even for a small network with 4-5 nodes (see §2.4).

In this chapter, we present BUZZ [96], a framework for testing context-dependent poli-

cies in stateful data planes. BUZZ takes in intended policies from the operator, and by

exploring a model of the data plane, it finds abstract test traffic (i.e., an input that triggers

policy-relevant states of a model of the data plane). It then translates the abstract test traffic

into concrete test traffic and injects it into the actual data plane. Finally, it reports whether

the observed behavior complies with the policies. As an active testing framework, BUZZ

provides concrete assurances about the behavior “on-the-wire” and can help operators lo-

calize sources of violations [184] (§2.3).

In designing BUZZ, we make two key contributions:

∙Expressive-yet-scalable data plane models (§2.3.5): We introduce a novel abstraction

for network traffic called a BUZZ Data Unit (BDU). BDUs extend the notion of located

packets (a located is a packet along with the router port at which it is currently located)

from prior work [124] in three key ways: (1) it enables composition of diverse NFs

spanning multiple protocol layers; (2) it simplifies models of NFs operating above L3

by aggregating a sequence of packets; and (3) it explicitly encodes traffic processing his-

tory to expose policy-relevant contexts. Second, we model individual NFs as FSMs that

process BDUs and explicitly embed the relevant contexts into BDUs. A network then is

simply a composition of individual NF models. To build tractable models, we decou-

14

ple logically independent tasks (e.g., client-side vs. server-side connections) or units of

traffic (e.g., distinct TCP connections) within each NF to create an ensemble of FSMs

representation rather than a monolithic FSM.

∙Scalable test traffic generation (§2.3.6): To generate abstract test traffic to explore

the behaviors of the data plane model, we develop an optimized symbolic execution

(SE)-based workflow. To combat the challenge of state space explosion [77, 79], we

engineer domain-specific optimizations (e.g., reducing the number and scope of symbolic

variables). We also develop custom translation mechanisms to convert the output of this

step into concrete test traffic.

We have implemented BUZZ as an application over OpenDaylight [37]. BUZZ

provides both text-based and graphical interfaces for operators to input policies and receive

test results through an automated workflow. We have written a library of models for several

canonical NFs and implemented our SE optimizations using KLEE [78]. We have also

developed simple monitoring and test resolution mechanisms (§2.3.6). BUZZ is open-

source, and our code, models, and examples can be found at [1].

Our evaluation (§2.4) on a real testbed shows that BUZZ: (1) effectively helps detect

both new and known policy violations within tens of seconds; (2) tests hundreds of policies

in networks with hundreds of switches and stateful NFs within two minutes; (3) dramati-

cally improves test scalability, providing nearly five orders of magnitude reduction in time

for test traffic generation relative to strawman solutions (e.g., model checking).

2.1 Motivation
In this section, we use a few illustrative examples to discuss why it is challenging to check

the correctness of context-dependent policies in stateful data planes.

Stateful firewalling: Today most firewalls capture TCP semantics. A common usage is

reflexive ACLs [15] as shown in Figure 2-1, where incoming traffic is allowed depending

on its context. In particular, the context-dependent policy here specifies that only traffic

belonging to a TCP connection initiated by a host inside the department (i.e., if traffic

context is “solicited”) be allowed.

Prior work in network verification models each NF as a “transfer” function

15

S1#

Is#firewall#allowing#solicited#and#
blocking#unsolicited#Internet#traffic?#

Internet#
Department#

Stateful#
FW#

Intended&Policy&

traffic#from#Internet#
to#Department# Stateful#

FW# Allow#
unsolicited#T

CP#

solicited#TCP#
#Actual&Network&

Block#

Figure 2-1: Is firewall allowing solicited and blocking unsolicited traffic?

T (hdr , 𝑝𝑜𝑟𝑡) whose input/output is a located packet (i.e., a ℎ𝑒𝑎𝑑𝑒𝑟, 𝑝𝑜𝑟𝑡 tuple) (e.g., [124,

125, 144]). Unfortunately, even the simple policy of Figure 2-1 cannot be captured by this

stateless transfer function. In particular, it does not capture the policy-relevant state of the

firewall (e.g., SYN_SENT) for a given connection.

Context-dependent traffic monitoring: In Figure 2-2, the operator uses a proxy to im-

prove web performance. She also wants to restrict web access; i.e., 𝐻2 (a host in the

department) cannot have access to XYZ.com. Here the context-dependent policy specifies

that both cache hits/misses for 𝐻2 should be monitored. As noted elsewhere [92], there

could be subtle policy violations where cached responses evade the monitor because (1)

the proxy hides traffic provenance (i.e., true origin), and (2) the proxy’s response (i.e., hit

vs. miss) depends on the hidden policy-relevant state (i.e., the current cache contents).

Internet&Department&
S1&

Mon&

S2&

Proxy&

Are&both&hit/miss&traffic&monitored&correctly?&

Intended&Policy&

web&traffic&from&
Department& proxy&

Block&
Allow&

XYZ.com&
hit/miss&

otherwise&
&Actual&Network&

Mon&
from&H2&

Figure 2-2: Are both cache hit/miss traffic monitored?

While there are mechanisms to fix this (e.g., [92]), operators need tools to check

whether such mechanisms are implemented correctly. Again, a stateless transfer func-

tion [124, 125, 137] is insufficient, as it does not capture the state of the proxy.

Multi-stage triggers: Figure 2-3 uses a light-weight intrusion prevention system (L-IPS)

for all traffic, and only subjects suspicious hosts (i.e., flagged by the L-IPS due to gener-

ating too many scans) to the expensive heavy-weight IPS (H-IPS) for payload signature

matching. Such context-dependent multi-stage detection can minimize latency and reduce

H-IPS load [95].

Again, we cannot check if such multi-stage policies are enforced correctly using ex-

16

S1# S2#

L&IPS# H&IPS#

Internet#

Are#suspicious#traffic#sent#to#heavy#IPS?#

Department#

Intended&Policy&

traffic#from#
Department#

Block#

Allow#

bad#conn.##
aEempts#>=#10#

otherwise#
#

Actual&Network&

Heavy#IPS#

bad#signature#
found#

Light#IPS#

Figure 2-3: Is suspicious traffic sent to heavy IPS?

S1#

Is#Bro2#processing#flow#H1
#to#H2#exactly#the#

same#as#if#no#scale;out#happens?#

IPS1#

Intended&Policy&

traffic#from#
H1#to#H2#

IPS1#
!conn#establish

ed#

conn#established#

Actual&Network&

Block#data#

Allow#data#

IPS2#
!conn#established#

conn#established#

Block#data#

Allow#data#

H2#H1#

IPS2#

scaled'out+
instance+

state+
migra1on+

Figure 2-4: Does the scale-out mechanism honor the stateful semantics of migration?

isting mechanisms [99, 124, 125, 184] because they capture neither policy context (e.g.,

alarm/not alarm) nor data plane state (e.g., the count of bad connection attempts on L-IPS).

This example also demonstrates that just capturing packet headers (e.g., [124, 125, 137]) is

not sufficient, as the behavior of the H-IPS may depend on packet contents.

Dynamic NF deployments: NFV creates new opportunities for elastic scaling of

NFs [83]. However, ensuring the correctness of policies in the presence of elastic scal-

ing is not easy. For example, in Figure 2-4, suppose 𝐼𝑃𝑆1 observes flow 𝑓1 established

between the two hosts; later 𝑓1 is migrated to the newly launched 𝐼𝑃𝑆2 for better load

balancing [161]. Due to the stateful semantics of the IPS, 𝐼𝑃𝑆2 needs to know that 𝑓1 has

already established a TCP connection; otherwise, 𝐼𝑃𝑆2 may incorrectly block this flow.

While recent efforts enable state migration [105,161], we need ways to check whether they

do so correctly.

Similarly, in dynamic NF failure recovery [83], if the main NF fails, the backup NF

needs to be activated with the correct state so that traffic is uninterrupted (e.g., see [166]).

Again, we lack the ability to check whether such mechanisms work as intended.

17

2.2 Related work

Network verification: There is a rich literature on checking reachability [90, 99, 123,

124, 137, 139, 177, 182]. The work closest to BUZZ is ATPG [184]. As discussed in the

motivating example in §2.1, these approaches do not capture the stateful behaviors and

context-dependent policies.

Code verification: The work in [89] focuses on finding Click [127] code faults (e.g.,

crash) as opposed to verifying traffic processing policies (e.g., reachability). NICE com-

bines model checking and SE to find bugs in control plane software [80]. BUZZ is com-

plementary to these efforts.

Modeling stateful networks: Joseph and Stoica formalized middlebox forwarding be-

haviors but do not model stateful behaviors [120]. The only work that also models

stateful behaviors are FlowTest [93], Symnet [170], and the work by Panda et al [154].

FlowTest’s [93] high-level models are not composable and the AI planning approaches

do not scale beyond 4-5 node networks. Symnet [170] uses models written in Haskell to

capture NAT semantics similar to our example; based on published work we do not have

details on their models, verification procedures, or scalability. The work by Panda et al.

is different from BUZZ in terms of both goals (only reachability policies) and techniques

(static checking) [154].

Policy enforcement: There are several frameworks to facilitate policy enforcement [30,

92, 105, 153, 157, 158]. There are also efforts to generate correct-by-construction SDN

programs [67, 70, 101]. Our work is complementary, as it checks whether the intended

behavior manifests correctly in the actual data plane.

Simulation and shadow configurations: Simulation [34], emulation [18,32], and shadow

configurations [65] are common methods to model/test networks. BUZZ is orthogonal in

that it focuses on generating test traffic. While our current focus is on active testing, BUZZ

applies to these platforms as well. We also posit that our techniques can be used to validate

these efforts.

18

2.3 System design

2.3.1 Overview

Our goal is to enable network operators to check at human-interactive timescales whether

their context-dependent policies are realized in stateful data planes. Next, we present a

high-level view of BUZZ to meet this goal and summarize key challenges in realizing it.

To put our work in perspective, we note that there are two complementary approaches:

(1) Static verification uses network configuration files to check whether the network be-

havior complies with the intended policies assuming the data plane behaves correctly (e.g.,

HSA [124], Veriflow [125], NOD [137], Batfish [99]); (2) Active testing, on the other hand,

checks the behavior of the data plane by injecting test traffic into the network [184]. While

both are useful, we adopt an active testing approach for two reasons. First, it provides prac-

tical assurances that things are actually working correctly “on-the-wire”. Second, network

behaviors in certain scenarios such as dynamic NF deployment (Figure 2-4) are hard to

capture with a purely static approach.

Due to context-dependent policies and complex stateful behaviors, naive attempts to

generate test traffic, either manually or via fuzzing [107,142], are ineffective. For example,

in Figure 2-3, in order to trigger the policy context “L-IPS alarm” and check if traffic will

actually go to H-IPS, we need to carefully craft a sequence of packets that drive the count

of bad connections on L-IPS to ≥ 10; achieving this via randomly generated packets is

unlikely. Our goal is to automate this process.

To bridge the gap between policies and the actual data plane, we adopt model-based

testing (MBT) [172], which is useful when the blackbox behavior of a system needs to be

actively tested. The high-level idea is to (1) use a model (or specification) of the system

under test and a search mechanism to systematically find test inputs that trigger certain

behaviors of the model, and then (2) compare the behavior of the system under test to the

behavior of the model for each input [172].

Figure 2-5 shows the high-level workflow of BUZZ:

1. Model Instantiation: BUZZ instantiates a model of the data plane using the intended

19

Context-dependent	
policies	

monitoring	
logs	

Operator	
test	

results	

	
	
	
	
	stateful	data	plane	

test	traffic	
injec7on	

FW	 Proxy	IPS	

2.	Test	traffic	
genera7on	

Library	of	data	
plane	elements	

models	

3.	Test	
resolu7on	

Data	plane	model		
Instan7a7on	

Figure 2-5: High-level workflow of BUZZ.

policies (the only input by the operator) and a library of NF models;

2. Test Traffic Generation: BUZZ generates abstract test traffic to trigger policy-relevant

behaviors of the data plane model. BUZZ then translates it into concrete test traffic,

which is then injected into the actual data plane;

3. Test Resolution: BUZZ monitors the actual data plane and compares the observed behav-

ior to the intended policies. The result (i.e., success/violation) is reported to the operator.

There are two challenges in realizing this workflow:

∙Expressive-yet-scalable data plane models: To see why this is challenging, let us con-

sider some seemingly natural candidates. A natural starting point would be the trans-

fer function abstraction [124, 144]; however, it is not expressive, as it offers no stateful

semantics and no binding to the relevant context. On the other hand, using an NF ’s

implementation code as its model is not tractable (e.g., Squid [49] has ≥ 200K lines of

code) and may suffer from other practical limitations (e.g., code may not be available, or

implementation bugs may affect test traffic).

∙ Scalable test traffic generation: Exploring data plane’s behaviors is challenging even for

simple reachability policies in stateless data planes [184]. Our setting is worse, as reason-

ing about stateful behaviors requires addressing the challenge of state-space explosion.

Off-the-shelf mechanisms (e.g., model checking) struggle beyond a few hundred lines of

code (see §2.3.6 and §2.4).

We address these two challenges in §2.3.5 and §2.3.6, respectively. Before doing so, in

the next section (§2.3.2), we first formalize our problem to shed light on the key require-

20

Listing 2.1: An abstract stateful NF.
1 //Input: packet inPkt on port inPort
2 ⟨outPkt,state⟩ ← process(inPkt,state)
3 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ← stateToContextMap(state)
4 𝑜𝑢𝑡𝑃𝑜𝑟𝑡 ← applyPolicy(outPkt,𝑐𝑜𝑛𝑡𝑒𝑥𝑡)
5 dispatch(outPkt,𝑜𝑢𝑡𝑃𝑜𝑟𝑡)

ments of modeling the data plane and generating test traffic.

2.3.2 Problem formulation

In this section, we formalize our model-based testing framework to see what a data plane

model should capture and what test traffic needs to do. These inform our approach to

modeling (§2.3.5) and test traffic generation (§2.3.6).

2.3.3 Intuition behind model and test traffic

What should the data plane model capture: First, we give the intuition behind what

an NF model needs to capture. As we saw in §2.1, data planes are stateful (e.g., the bad

connection attempts count in Figure 2-3). However, being stateful is not sufficient for a data

plane model to be expressive. Specifically, to test context-dependent policies, the model

needs to explicitly map each state to a context. For example, if we want to trigger an alarm

on L-IPS in Figure 2-3 (e.g., to check if the traffic will actually go to H-IPS), we need to

capture the mapping from the bad connection attempts count (e.g., ≥ 10 or < 10) to the

context (e.g., alarm or not alarm).

To understand what an NF model should capture, we consider the abstract NF

shown in Listing 2.1 that shows the NF model as running three logical steps: (1)

It processes an input packet and updates some relevant state (e.g., an IPS updating

bad_conn_attempts_count) (Line 2); (2) It extracts the relevant context for the pro-

cessed packet (e.g., alarm on an IPS based on bad_conn_attempts_count) (Line 3);

(3) It applies the corresponding policy (e.g., drop, forward) via function 𝑎𝑝𝑝𝑙𝑦𝑃𝑜𝑙𝑖𝑐𝑦(.)

and then dispatches the packet to the policy-mandated port (Lines 4-5).

What should test traffic do? At a high level, test traffic for a given policy needs to drive

the data plane to a state corresponding to the context. In Listing 2.1, this means we need to

find a sequence of packets that drives the NF to a state (Line 2) that maps to the intended

21

context (Line 3). If the NF is policy-compliant, the traffic at this point will be sent to a

policy-mandated port (Lines 4-5). For example, to exercise the context of “L-IPS alarm”

in Figure 2-3, test traffic needs to make bad_conn_attempts_count to exceed 10; then,

we check whether traffic at this point actually goes to H-IPS.

2.3.4 Formal framework

Having seen the intuition behind state, context, and test traffic, we formalize these to inform

our design.

Context-dependent policies: Before formally defining context-dependent policies, it is

useful to intuitively see what they are used for. Most prior work on middlebox policy

focuses on a static policy graph that maps a given traffic class (e.g., as defined by network

locations and flow header fields) to a chain of middleboxes [103,121,158]. For instance, the

administrator may specify that all outgoing web traffic from location A to location B must

go through a firewall, an IDS, and a proxy in order. However, this static abstraction [103,

121, 158] fails to explicitly capture the origin and processing context of traffic. Thus, we

proposes the context-dependent policy graph (or 𝐶𝐷𝑃𝐺) abstraction to specify intended

policies.

A CDPG is a directed graph with two types of nodes: (1) In and Out nodes, and

(2) logical middlebox nodes. In and Out nodes represent network ingresses and egresses

(including “drop” nodes). Each logical middlebox represents a type of middlebox function,

such as “firewall.” (For clarity, we restrict our discussion to “atomic” middlebox functions;

i.e., a multi-function box will be represented using multiple nodes.) Each logical middlebox

node is given a configuration that governs its processing behavior for each traffic class (e.g.,

firewall rulesets or IDS signatures). As discussed earlier, administrators specify middlebox

configurations in terms of the unmodified traffic entering the CDPG without worrying about

intermediate transformations.

Each edge in the CDPG is annotated with the condition m → m ′ under which a packet

needs to be steered from node m to node m ′. This condition is defined in terms of (1) the

traffic class, and (2) the processing context of node m, if applicable. Figure 2-6 shows two

DPG snippets:

22

Light&
IPS&

Heavy&
IPS&

{*};&&OK&

Drop&
{*};&Alarm&

User&Traffic&

Server&

{*};&&OK&

{*};&&A& {*};&Alarm&

(a) Dynamic policy routing

Proxy	 Mon	

Internet	

{H2};		Blocked	

H1	

H2	

{H1};	-	

{H2};	-	

{H2};	Hit	
{H2};	Miss	

	{H2};	<A
llowed,

Miss>	
{H1};	Miss	

{H2};	<Allowed,Hit>	 Drop	

{H1};	Hit	

(b) Middlebox context

Figure 2-6: CDPGs for the examples in Figures 3-3 and 3-4. Rectangles with solid
lines denote “Ingress” nodes and with dotted lines denote “Egress” nodes. Circles
denote logical middlebox functions. Each edge is annotated with a {Class};Context
denoting the traffic class and the processing context(s). All traffic is initialized with a
null/“-” context.

∙Let us revisit the example in Figure 2-3. In Figure 2-6a, we want all traffic to be first

processed by the light IPS. If the light IPS flags a packet as suspicious, then this should

be sent to the heavy IPS. In the case, the edge connecting the light IPS to the heavy IPS

is labeled as “*, Alarm”; * denotes the class (any traffic in this case) and Alarm provides

the relevant processing history from the light IPS.

∙Next, we revisit the example in Figure 2-2. For the two hosts 𝐻1 and 𝐻2 in Figure 2-

6b, we want to use the monitoring device to apply an ACL on host 𝐻2’s web requests.

For correct policy enforcement, the ACL must be applied to both cached and uncached

responses. Thus, both “𝐻2, Hit" and “𝐻2, Miss" need to be on the Proxy-to-ACL edge.

(For ease of visualization, we do not show the policies applied to the responses coming

from the Internet.)

Next we formally define a context-dependent policy. Let 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑘𝑡NF 𝑖
denote the pro-

cessing context corresponding to packet 𝑝𝑘𝑡 at NF 𝑖 (Line 3 of Listing 2.1). Then,

the context sequence of the packet is the sequence of contexts along the NFs it

has traversed; i.e., if 𝑝𝑘𝑡 has traversed NF 1, . . . , NF 𝑖, its context sequence is

ContextSeq𝑝𝑘𝑡 = ⟨𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑘𝑡NF1
, . . . , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑘𝑡NF 𝑖

⟩.

Context-dependent policies are expressed as a set of rules of the form:

23

Policy : TrafficSpec × ContextSeq ↦→ PortSeq

Here, TrafficSpec is a predicate on the IP 5-tuple (e.g., source IP and transport pro-

tocol), ContextSeq is a context sequence, and PortSeq is a sequence of network ports

Ports (interfaces).2 For example, in Figure 2-3, the policy that mandates “if traffic triggers

an alarm on L-IPS, it must be sent to H-IPS” is specified as:

⟨srcIP=Dept⟩, ⟨alarm𝐿−𝐼𝑃𝑆⟩ ↦→

⟨L−IPS → S1, S1 → S2, S2 → H−IPS ⟩

(Policies for dynamic NF deployments, such as Figure 2-4, are defined slightly

differently—see §2.3.6.)

Stateful data planes: Contexts are convenient “shorthands” to define policies. In reality,

however, the data plane operates in terms of the related but (possibly) lower-level notion of

state.

As we saw in Listing 2.1, a stateful NF takes an input packet on one of its ports, pro-

cesses it, goes to a new state, and outputs a packet on one of its ports. A stateful NF can be

naturally expressed as a finite-state machine (FSM) of the form NF 𝑖 = (𝑆𝑖, I𝑖,Ports 𝑖, 𝑇𝑖),

where 𝑆𝑖 is the set of NF 𝑖 states, I𝑖 is the initial state of NF 𝑖, Ports 𝑖 is the set of ports of

NF 𝑖 (where Ports 𝑖 ∈ Ports), and 𝑇𝑖 : Pkts × Ports 𝑖 × 𝑆𝑖 ↦→ Pkts × Ports 𝑖 × 𝑆𝑖 is the

stateful (as opposed to stateless, e.g., [124]) transfer function of NF 𝑖. We model intended

packet drops as sending packets to a virtual “drop port” on the NF . To model the entire

data plane, the topology function 𝜏 : Ports ↦→ Ports captures the physical interconnection

of NFs . Finally, we define the state of the data plane, 𝑆𝐷𝑃 , as the conjunction of the states

of its individual NFs .
2Without loss of generality, we assume policies are in terms of physical NF instances as opposed to

logical types of NFs . This is more precise because the semantics of stateful NFs (e.g., NATs) requires that

both directions of a flow pass the same NF instance.

24

There are many levels of abstraction to write such an FSM on, from low-level code

variables to high-level logical states (e.g., proxy cache state). Irrespective of this granular-

ity, to be expressive for testing the model needs to provide a mapping from the states to the

corresponding traffic specification and context:

stateToContextMapi : 2
Si ↦→ TrafficSpec × Ci

where Ci denotes the set of all contexts of NF i .

To illustrate this, let us revisit Figure 2-3. Figure 2-7 shows two possible ways of

modeling L-IPS as an FSM. In both Figures 2-7a and 2-7b, each of the red states maps to

⟨srcIP=Dept⟩, ⟨alarm𝐿−𝐼𝑃𝑆⟩—these mappings make the models expressive. (In §2.3.5,

we will discuss other requirements of an FSM-based NF model in addition to expressive-

ness.) coun%ng'IPS'per'host'modeling'

1'

<0,$0>$
<1,0>$ <0,1>$

<10,0>$

…
$

<10,1>$ <11,0>$…
$

<0,10>$
<0,10>$ <0,11>$

…
$

…
$

ini#al&state&

(a) Each state is of the form
⟨𝑏𝑎𝑑𝐴𝑡𝑡𝑚𝑝𝐶𝑛𝑡𝐻1 , 𝑏𝑎𝑑𝐴𝑡𝑡𝑚𝑝𝐶𝑛𝑡𝐻2⟩

coun%ng'IPS'per'flow'modeling'

1'

<OK,OK,…,OK>'

…
'

<BAD,OK,…,OK>' <OK,OK,…,BAD>'…
'

<BAD,BAD,…,OK>' <BAD,'…,BAD,OK>'…
'

…
'

ini#al&state&

(b) Each state is of the form
⟨𝑐𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑢𝑠𝑓1 , . . . , 𝑐𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑢𝑠𝑓20⟩

Figure 2-7: Two example FSM models of L-IPS of Figure 2-3 assuming a world with 2
hosts and 20 flows. The states corresponding to alarm (i.e., at least 10 bad connection
attempts) are highlighted in red.

Test traffic: Test traffic needs to trigger the policy context by driving the data plane

to a state that corresponds the context (e.g., a red state in Figure 2-7). Thus, 𝑡𝑟𝑎𝑐𝑒 =

⟨𝑝𝑘𝑡1, . . . , 𝑝𝑘𝑡𝑚, . . . , 𝑝𝑘𝑡𝑟⟩ is a test trace for 𝑖𝑛𝑡𝑒𝑛𝑡 : trafficSpec × contextSeq ↦→ portSeq

iff:

1. Each packet 𝑝𝑘𝑡 ∈ 𝑡𝑟𝑎𝑐𝑒 satisfies trafficSpec, and

2. 𝑆𝐷𝑃 does not correspond to contextSeq after injection of each of packets

⟨𝑝𝑘𝑡1, . . . , 𝑝𝑘𝑡𝑚−1⟩, and

3. 𝑆𝐷𝑃 corresponds to contextSeq after injection and processing each of packets

⟨𝑝𝑘𝑡𝑚, . . . , 𝑝𝑘𝑡𝑟⟩.

25

After 𝑡𝑟𝑎𝑐𝑒 is injected into the actual data plane, test resolution involves checking

whether packets ⟨𝑝𝑘𝑡𝑚, . . . , 𝑝𝑘𝑡𝑟⟩ actually traverse ports portSeq .

Takeaways: This framework suggests two key design implications: (1) While an FSM

is a natural starting point to model a stateful NF , an expressive model should bridge the

gap between its states and policy-mandated traffic specification and context (§2.3.5); and

(2) Test traffic should satisfy the traffic specification and drive the data plane to a state that

corresponds to the policy context (§2.3.6).

2.3.5 Data plane model instantiation

In this section, we discuss how to instantiate a model of the data plane. Recall from §2.3

that this stage takes as input a library of NF models and the policy. The challenge in build-

ing such a library is to model each type of NF (e.g., stateful firewall, web proxy) such

that these models are (1) composable, despite diverse types of NFs operating at different

network layers; (2) expressive, despite stateful behaviors and hidden context; and (3) scal-

able to explore. After presenting our high-level approach, we introduce a new abstract

data unit for modeling input-output of NFs and describe how we create scalable NF mod-

els via an ensemble-of-FSMs representation. Finally, we describe how we construct the

network-wide model composing individual models of NFs .

High-level idea: A natural starting point to model an NF that is composable is the transfer

function from prior work [124, 144]. Each NF is modeled as: 𝑙𝑝 ← T (𝑙𝑝). Here, the

input/output is a located packet 𝑙𝑝 = (𝑝𝑘𝑡, 𝑝𝑜𝑟𝑡), an IP packet (header) along with its

location in the network. However, as we saw in §2.1, this is not expressive on several

fronts w.r.t. state and context. To see how we can make it expressive, let us revisit our

abstract NF from Listing 2.1 and contrast it with the transfer function. This highlights two

key missing elements: (1) there is no notion of state, and (2) the located packet has no

binding to the relevant context.

Our formalism from §2.3.2 suggests two extensions: (1) Instead of the (stateless) trans-

fer function, we need to move to an FSM-like abstraction that captures state and the state-

to-context mappings; and (2) We need some way to logically bind a packet to its relevant

context. To this end, we extend the located packet abstraction so that it carries the relevant

26

Listing 2.2: BDU is the I/O unit of an
NF model.

1 struct BDU{
2 // IP fields
3 int srcIP, dstIP, proto;
4 // transport
5 int srcPort, dstPort;
6 // TCP specific
7 int tcpSYN, tcpACK, tcpFIN, tcpRST;
8 // HTTP specific
9 int httpGetObj, httpRespObj;

10 // BUZZ-specific
11 int dropped, networkPort, BDUid;
12 // Each NF updates traffic context
13 int c-Tag[C_TAG_MAX]; //context tags
14 int p-Tag; //provenance tag
15 ...};

context history as it traverses the data plane model. Then, we can consider an NF as an

FSM that processes this extended located packet and explicitly includes the policy-relevant

context in the outgoing packet. In a nutshell, this summarizes our basic insight to create an

expressive model.

Next, we discuss how we translate this insight into a concrete realization. We also

address the scalability requirement of NF models, as a naive FSM model will have too

many states to explore.

The BUZZ Data Unit (BDU): We start by presenting our approach to modeling the ex-

tended located packet idea described above and explain how it enables composability, ex-

pressiveness, and scalability. Concretely, a BDU is a struct as shown in Listing 2.2 that

extends a located packet [124, 144] in three key ways:

1. Multi-layer abstraction with IP as the common denominator: Unlike a located packet, a

BDU can explicitly encode higher-layer semantics (e.g., HTTP GET or responses). The

key to achieving model composability while enabling higher-layer semantics is simple.

Borrowing from the design of IP, we pick the network layer as the narrow waist across

diverse NFs . Each NF model processes only relevant fields of an input BDU (e.g., an

L2 switch ignores HTTP fields).

2. Tag fields for context and provenance: First, to ensure a BDU carries its context as it

goes through the network, we introduce the context tag, or c-Tag, field, which explic-

itly binds the BDU to its context (e.g., 1 bit for cache hit/miss, 1 bit for alarm/no-alarm).

27

When the NF model receives an input BDU, it generates an output BDU with the up-

dated c-Tag (e.g., a proxy may set the cache hit bit). Second, a BDU preserves its

provenance via its p-Tag field. This field encodes the BDU’s original 5-tuple indicat-

ing its TrafficSpec. This binding is needed because certain NFs (e.g., NATs, proxies)

rewrite the original IP 5-tuple of a BDU. We ensure the provenance field p-Tag is left

unchanged by NF models the BDU traverses.

3. Aggregation for scalability: Each BDU can represent a sequence of packets associated

with higher-layer NF operations. This aggregation helps shrink the search space for

finding test traffic (§2.3.6). For example, all packets of an HTTP reply are captured by

a single BDU with the httpRespObj field indicating the retrieved object id; a proxy’s

state (e.g., cache contents) gets updated after receiving this BDU.

To design a BDU struct in practice, we need to identify the protocols that affect any

context mentioned in the policies. The struct’s fields are simply the union of the policy-

related headers of these protocols. For example, if our policy involves a stateful firewall,

then TCP SYN and ACK should be part of the fields, as these are the fields that denote

connection establishment semantics. Since each NF model processes only relevant fields

of an incoming BDU, our BDU abstraction is future-proof. For example, if we later need to

add an ICMP field to the BDU of Listing 2.2, existing NF models will remain unchanged,

as they simply ignore this new field.

Ensemble of FSMs representation: While there are many ways to expressively model a

stateful NF , not all models may be scalable. To see why, consider modeling the state-space

as the concatenation of state variables we have identified (e.g., in a proxy this concatenation

may have three variables: per-host and per-server connection states and per-object cache

state). Taking this approach means with 𝑣𝑎𝑟 variables each with 𝑣𝑎𝑙 possible values, such

a monolithic FSM has 𝑣𝑎𝑙𝑣𝑎𝑟 states (i.e., an exponential growth with the number of values).

While it may be tempting to reduce the state space by moving to a layer-specific abstraction

(e.g., a proxy model that ignores TCP and purely works at the HTTP layer), this is not

viable, as the models of diverse NFs will not be composable.

To build a scalable FSM without compromising composability, we borrow insights from

28

the design of actual NFs . NF programs in practice are not monolithic; rather, they inde-

pendently track “active” connections, and different functional components of an NF are

segmented; e.g., client- vs. server-side handling in a proxy are separate. This naturally

suggests two opportunities:

1. Decoupling independent traffic units: Consider a stateful firewall. If modeled as a mono-

lithic FSM, each state of the model involves states of individual connections. While this

is expressive, it is not scalable as the number of connections grow. By decoupling per-

connection states, we model the NF as an ensemble of FSMs. In general, this insight

cuts the number of states from |𝑠𝑡𝑎𝑡𝑒||𝑐𝑜𝑛𝑛| to |𝑐𝑜𝑛𝑛| × |𝑠𝑡𝑎𝑡𝑒|, where |𝑐𝑜𝑛𝑛| and |𝑠𝑡𝑎𝑡𝑒|

denote the number of connections and states per connection, respectively.

2. Decoupling independent tasks: To illustrate this, consider a proxy. The

code of a real proxy (e.g., Squid [49]) typically has three logical modules

in charge of managing client-side and server-side connections and the cache.

We decouple such logically independent tasks in the model so that instead of

a monolithic FSM model with each state being of the “cross-product” form

⟨client_TCP_state, server_TCP_state, cache_content⟩, we use an ensemble of three

smaller FSMs, i.e., ⟨client_TCP_state⟩, ⟨server_TCP_state⟩, and ⟨cache_content⟩.

In general, if an NF has |𝑇 | independent tasks with task 𝑖 having 𝑆𝑖 states, this idea cuts

the number of states from
∏︀|𝑇 |

𝑖=1 |𝑆𝑖| to
∑︀|𝑇 |

𝑖=1 |𝑆𝑖|.

Putting it together: Taken together, our BDU abstraction as the traffic I/O unit and FSM

ensembles as NF models satisfy the three modeling requirements of composability, ex-

pressiveness, and scalability. As an illustration, Listing 2.3 shows a code snippet of a

proxy model focusing on the actions when a client requests a non-cached HTTP object and

while the proxy has not established a TCP connection with the server. Each NF instance

is identified by a unique id that allows us to index into the relevant variables. Since the

traffic I/O of the model (Line 1) is a BDU, the model is composable with other NF mod-

els. Second, instead of a monolithic FSM, it is partitioned into these three dimensions (i.e.,

client-, server-side connections and cache) making the model scalable. The state variables

of different proxy instances are naturally partitioned per NF instance (not shown) and

29

Listing 2.3: Proxy as an ensemble of FSMs.
1 BDU Proxy(NFId id, BDU inBDU){
2 ...
3 if ((frmClnt(inBDU)) && (isHttpRq(inBDU))){
4 if (!cached(id, inBDU)){
5 if(srvConnEstablished(id, inBDU))
6 outBDU=rqstFrmSrv(id, outBDU);
7 else
8 outBDU=tcpSYNtoSrv(id, inBDU); }}
9 //set c-Tags based on context (e.g., hit/miss)

10 outBDU.c-Tags = ...
11 ...
12 return outBDU;}

help track the relevant NF states, and are updated by the NF -specific functions such as

srvConnEstablished. The choice of passing ids and modeling state in per-id global

variables is not fundamental but an artifact of using C/KLEE. If the input inBDU is an

HTTP request (Line 3) and the requested object is not cached (Line 4), the proxy checks

the status of the server TCP connection. If it has already been established (Line 5), the

output BDU is an HTTP request (Line 6). Otherwise, the proxy initiates a TCP connection

with the server (Line 8). Finally, note that the proxy updates c-Tags of the output BDU

before sending it out.

Composing the data plane model: Next we discuss how to instantiate a model of the

data plane given the models of individual NFs . Listing 2.4 illustrates this for the network

of Figure 2-2. BUZZ uses the policy to automatically concretize the relevant model param-

eters (e.g., lines 3–4 specify which content/host to watch). Lines 8–10 model the stateless

switch, where we model a switch as a static data store lookup [124]. Note that a BDU cap-

tures its current location in the network via its networkPort field, which gets updated as

it traverses the network. Function lookUp() takes an input BDU, looks up its forwarding

table, and creates a new outBDU with its port value set based on the forwarding table.

Similar to prior work [124, 184], our network model processes one-packet-per-NF at a

time, without modeling (a) batching or queuing inside the network, (b) parallel processing

inside NFs , or (c) simultaneous processing of different packets across NFs . As a result,

the data plane model is a simple loop (Line 26); in each iteration, a BDU is processed

(Line 27) in two steps: (1) it is forwarded to the other end of the current link (Line 28), (2)

it is then passed as an argument to the NF connected at this end (e.g., a switch or firewall)

30

Listing 2.4: Data plane pseudocode for Figure 2-2.
1 // Symbolic BDUs to be instantiated (see §2.3.6).
2 BDU A[20];
3 int objToWatch = XYZ.com;
4 int hostToWatch = H2;
5 // Global state variables
6 bool Cache[2][100]; // 2 proxies, 100 objects
7 // Model of a switch
8 BDU Switch(NFId id, BDU inBDU){
9 outBDU=lookUp(id, inBDU);

10 return outBDU;}
11 // Model of a monitoring NF
12 BDU Mon(NFId id, BDU inBDU){
13 ...
14 outBDU = inBDU;
15 if (isHttp(id, inBDU)){
16 takeMonAction(id, inBDU);/* if inBDU
17 contains objToWatch destined to
18 hostToWatch, set outBDU.dropped to 1.*/}
19 ...
20 return outBDU;}
21 // Model of a proxy NF; See Listing 2.3
22 BDU Proxy(NFId id, BDU inBDU){...}
23 main(){
24 // Model of the data plane
25 initializeProvenanceTags(A[]);
26 for each injected A[i]
27 while (!DONE(A[i])){
28 Forward A[i] on current link;{
29 A[i] = Next_NF(A[i]);{
30 assert(
31 (!(A[i].p-Tag==hostId[H2]))
32 ||(!(A[i].c-Tags[cacheContext]==objToWatch));
33 }}}}

(Line 29). The output BDU is then processed in the next iteration. The loop is executed

until the BDU is “DONE”; i.e., it either reaches its destination or is dropped by an NF .

(NFs may be time-triggered (e.g., TCP time-out), so we capture time using a BDU field.

These “time BDUs” are injected by the network model periodically to update time-related

states.) Based on the policy, wee identify the Next_NF in line 29. (As an optimization, our

implementation pre-populates switches’ lookup() and Next_NF() based on shortest-

path routing between policy-relevant NFs .) The role of the assert statement will become

clear in §2.3.6, where we discuss test traffic generation.

2.3.6 Test traffic generation

In this section, we discuss how to generate test traffic given the policies and the data plane

model. First, we highlight why we choose symbolic execution (SE) as a starting mechanism

to explore the data plane model. Then we present our domain-specific optimizations to

31

scale SE to generate abstract test traffic consisting of BDUs. Then, we show how to convert

this abstract test traffic into concrete test traffic. Finally, we present an extension to test

dynamic NF scenarios.

Why symbolic execution (SE)?: For BUZZ to be usable by operators at human interactive

timescales, it should generate test traffic within seconds to a few minutes even for large

networks. This is challenging on two fronts:

∙Traffic space explosion: Unlike prior work where an IP packet header is an independent

unit of test (hence mandating a search only over the header space [123, 125, 184, 185]),

we need to search over a very large traffic space of all possible sequences of traffic units.

While BDUs, as compared to IP packets, improve scalability via aggregation (§2.3.5),

we still have to search over the space of possible BDU value assignments.

∙State space explosion: Even though using the FSM ensembles abstraction significantly

reduces the number of states, it does not address state space explosion due to composition

of NFs; e.g., if the models of NF 1 and NF 2 can reach 𝐾1 and 𝐾2 states, respectively,

their composition will have 𝐾1 ×𝐾2 states.

Unfortunately, several canonical search solutions (e.g., model checking [13,85] and AI

planning tools [20]) do not scale beyond 5-10 stateful NFs; e.g., model checking took 25

hours for policy involving only two contexts.

As the first measure to address the search scalability challenge, we choose symbolic

execution (SE), which is a well-known approach to tackle state-space explosion [77]. At

a high level, an SE engine explores possible behaviors of a program (in our case, the data

plane model) by assigning different values to its symbolic variables [79]. In our implemen-

tation, we use KLEE [78], a popular SE engine.

Generating abstract test traffic: BUZZ employs SE as follows. For each

𝑖𝑛𝑡𝑒𝑛𝑡 : trafficSpec × contextSeq ↦→ portSeq , we constrain the symbolic BDUs to sat-

isfy the TrafficSpec. Then, to drive the SE engine to generate test traffic that satis-

fies contextSeq = ⟨𝑐𝑜𝑛𝑡𝑒𝑥𝑡NF1 , . . . , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡NFN
⟩, we introduce the logical negation of

contextSeq as an assertion in the network model code. In practice, if contextSeq involves

contexts of N NFs 𝑐𝑜𝑛𝑡𝑒𝑥𝑡1, . . . , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡N , BUZZ instruments the network model with

32

Listing 2.5: Assertion pseudocode for Figure 2-
3 to trigger alarms at both IPSes.

1 // Global state variables
2 int L_IPS_Alarm[noOfHosts];//alarm per host
3 int H_IPS_Alarm[noOfHosts];//alarm per host
4 ...
5 //A[] is an array of symbolic BDUs
6 ...
7 assert((!(A[i].c-Tags[L_IPS_Alarm]==1)) ||
8 (!(A[i].c-Tags[H_IPS_Alarm]==1)));

an assertion of the form ¬(𝑐𝑜𝑛𝑡𝑒𝑥𝑡1 ∧ · · · ∧ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡N), where each term is expressed in

terms of BDUs’ c-Tag sub-fields. The assertion guides the SE engine toward finding a

“violation” of the assertion by assigning concrete values to symbolic BDUs.3 In effect, SE

generates abstract test traffic by concretizing a sequence of symbolic BDUs. The abstract

test traffic will be then translated into concrete test traffic, which in turn, will be injected

into the actual data plane. The injected concrete test traffic must traverse the sequence of

ports specified in portSeq ; otherwise, the actual data plane violates 𝑖𝑛𝑡𝑒𝑛𝑡.

To illustrate this, let us revisit Listing 2.4, where we want a test trace to check cached

responses from the proxy to host 𝐻2. Lines 30-32 show the assertion to get a sequence of

𝑖 BDUs that change the state of the data plane such that the 𝑖th BDU in the abstract traffic

trace: (1) is from host 𝐻2 (Line 31), and (2) corresponds to a cached response (Line 32).

For example, the SE engine may generate 6 BDUs: three BDUs between a host other than

𝐻2 in the 𝐷𝑒𝑝𝑡 and the proxy to establish a TCP connection (the 3-way handshake) where

the third BDU has httpGetObj = httpObjId (this effectively makes the proxy cache

the object), followed by another 3 BDUs, this time from 𝐻2 with the field httpGetObj

set to httpObjId to induce a cached response. Similarly, Listing 2.5 shows an assertion

in Lines 7-8 to trigger alarms at both L-IPS and H-IPS of the example from Figure 2-3.

While SE is significantly faster than other candidates, it is not sufficient for interactive

use. Even after a broad sweep of configuration parameters to customize KLEE, it took

several hours for a small network (§2.4). To scale to large topologies, we implement two

optimizations:

3Note that an assertion of the form ¬(A1 ∧ · · · ∧An), or equivalently (¬A1 ∨ · · · ∨ ¬An), is violated

only if each term 𝐴𝑖 is evaluated to true.

33

∙Minimizing number of symbolic variables: Making an entire BDU structure (List-

ing 2.2) symbolic forces KLEE to find values for every field. Instead, BUZZ identifies

the policy-related subset of BDU fields and only makes these symbolic and concretizes

the rest. For instance; when BUZZ is testing a data plane with a stateful firewall but no

proxies, it makes the HTTP-relevant fields concrete (i.e., non-symbolic) by assigning a

don’t care value * (represented by -1 in our implementation) to them.

∙Scoping values of symbolic variables: The trafficSpec scopes the range of values a

BDU may take. BUZZ further narrows this range using the policy and protocols seman-

tics. For example, even though the tcpSYN field is an integer, BUZZ constrain it to be

either 0 or 1.

Test coverage: Ideally, test traffic should cover the space of all possible traffic, including

(1) packet traces of all possible lengths (in terms of number of packets in the trace), and (2)

enumerating all possible values of the fields of each packet. However, this is impractical

with respect to both test traffic generation and injection overheads. That is why even in

case of simple reachability policies and stateless data planes in prior work [184], only

one sample packet out of an equivalence class of packets (i.e., the set of all packets that

experience the same forwarding behavior) is selected as the test packet. Similarly, we

define our test coverage goal as obtaining one test trace to exercise each policy. In §2.4,

we will show that BUZZ (1) successfully satisfies this goal, and (2) can be used to satisfy

alternative coverage goals.

Generating concrete test traffic: The output of the SE step is a sequence of BDUs

BDUSeqSE . Since BDUs are abstract, we cannot directly inject them into the actual data

plane. Moreover, we cannot simply do a one-to-one translation between BDUs and raw

packets and do a trace replay [10,184] because we need to honor session semantics (e.g., for

TCP or FTP) of the policies—several parameters of such sessions (e.g., TCP seq. numbers)

are outside of our control and are chosen by the OS of the end hosts at run time.

To this end, we translate abstract test traffic into test traffic injection scripts that are

run on end hosts to inject concrete test traffic. The translation algorithm uses a library of

traffic injection commands that maps a known BDUSeq l into a script. For example, if a

BDUSeq consists of 3 BDUs for TCP connection establishment and a web request, we map

34

this into a wget with the required parameters (e.g., server IP and object URL). In the most

basic case, the script will be an IP packet. Using our domain knowledge, we populated this

library with commands (e.g., getHTTP(.), sendIPPacket(.)) that support IP, TCP,

UDP, FTP, and HTTP.

For completeness, its pseudocode is presented in Figure 2-8. Here we give the intuition

behind our translation algorithm. We partition the BDUSeqSE based on srcIP-dstIP pairs

(i.e., communication end-points) of BDUs; i.e., BDUSeqSE =
⋃︀

l BDUSeq l . Then for each

partition BDUSeq l , we do a longest-specific match (i.e., match on a protocol at the highest

possible layer of the network stack) in our test script library, retrieve the corresponding

command for each subsequence, and then concatenate these commands to form a traffic

injection script.

Figure 2-8 shows the pseudocode for the translation mechanism.

35

1 � Inputs:

2 #1: a sequence of BDUs from Symbolic Execution

BDUseqSE = ⟨𝐵𝐷𝑈𝑛 : 𝑛 = 1, 2, ..., 𝑁⟩, each 𝐵𝐷𝑈𝑛 has an abstract 𝑝𝑟𝑒𝑑𝑑

3 #2: a cmd-BDUs library 𝑐𝑚𝑑𝑙𝑖𝑏 = {⟨𝑐𝑚𝑑1,Seqcmd
1⟩,

⟨𝑐𝑚𝑑2,Seqcmd
2⟩, ..., ⟨𝑐𝑚𝑑𝑀 ,Seqcmd

𝑀 ⟩}

4 #3: a set of end-hosts 𝐻 = {𝐻𝑘 : 𝑘 = 1, 2, ...,𝐾} to execute commands

5 � Outputs:

6 #1: a number of scripts 𝑆 = {𝑠𝑐𝑟𝑖𝑝𝑡𝐻1 · · · 𝑠𝑐𝑟𝑖𝑝𝑡𝐻𝐾 } to

be executed on end-hosts {𝐻𝑘 : 𝑘 = 1, 2, ...,𝐾},

where 𝑠𝑐𝑟𝑖𝑝𝑡𝐻𝑘 is a sequence of ⟨· · · 𝑐𝑚𝑑
𝐻𝑘
𝑖 · · · ⟩, such that

⟨· · ·Seqcmd𝐻1
𝑖 · · · ⟩ is equivalent to BDUseqSE

7 � Sort cmd-BDUs library from cmds with most BDUs to least BDUs

8 𝑐𝑚𝑑𝑙𝑖𝑏 = 𝑆𝑜𝑟𝑡(𝑐𝑚𝑑𝑙𝑖𝑏)

9 � Decompose BDUseqSE sequence into subsequences

BDUsubseqSE of BDUs with same predicate 𝑝𝑟𝑒𝑑

10 {BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑
: 𝑑 = 1, 2, ..., 𝐷} = 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒(BDUseqSE)

11 for each BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑
in {BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑

: 𝑑 = 1, 2, ..., 𝐷}

12 � Instantiate a 𝑠𝑐𝑟𝑖𝑝𝑡𝑝𝑟𝑒𝑑𝑑 to store 𝑐𝑚𝑑 for BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑

13 𝑠𝑐𝑟𝑖𝑝𝑡𝑝𝑟𝑒𝑑𝑑 ← 𝑒𝑚𝑝𝑡𝑦

14 � Match the BDUs in BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑
with 𝑐𝑚𝑑𝑠 in 𝑐𝑚𝑑𝑙𝑖𝑏

15 for each 𝑐𝑚𝑑𝑚 in 𝑐𝑚𝑑𝑙𝑖𝑏

16 for 𝐵𝐷𝑈𝑛 in BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑

17 � if Seqcmd
𝑚 equals to a BDU substring of BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑

started at 𝐵𝐷𝑈𝑛

18 if 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑
, 𝐵𝐷𝑈𝑛, 𝑙𝑒𝑛(Seqcmd

𝑚)) == Seqcmd
𝑚

19 � add the matched 𝑐𝑚𝑑𝑚 and the first matched 𝐵𝐷𝑈 ’s index 𝑛

to 𝑠𝑐𝑟𝑖𝑝𝑡𝑝𝑟𝑒𝑑𝑑

20 𝑠𝑐𝑟𝑖𝑝𝑡𝑝𝑟𝑒𝑑𝑑 .𝑎𝑑𝑑(𝑐𝑚𝑑𝑛𝑚)

21 � mark all BDUs in 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑
, 𝐵𝐷𝑈𝑛,

𝑙𝑒𝑛(Seqcmd
𝑚))

22 𝑀𝑎𝑟𝑘(𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑
, 𝐵𝐷𝑈𝑛, 𝑙𝑒𝑛(Seqcmd

𝑚)))

23 � remove all marked BDUs from BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑

24 𝑅𝑒𝑚𝑜𝑣𝑒𝑀𝑎𝑟𝑘𝑒𝑑(BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑
)

25 if all BDUs in BDUsubseqSE 𝑝𝑟𝑒𝑑𝑑
are marked, then break

26 � Sort every 𝑐𝑚𝑑𝑛𝑚 in 𝑠𝑐𝑟𝑖𝑝𝑡𝑝𝑟𝑒𝑑𝑑 by its first matched 𝐵𝐷𝑈 ’s index 𝑛

27 𝑠𝑐𝑟𝑖𝑝𝑡𝑝𝑟𝑒𝑑𝑑 = 𝑆𝑜𝑟𝑡(𝑠𝑐𝑟𝑖𝑝𝑡𝑝𝑟𝑒𝑑𝑑)

28 � Map abstract 𝑝𝑟𝑒𝑑𝑑 to real test host 𝐻𝑝𝑟𝑒𝑑𝑑 and assign script to host

29 𝑠𝑐𝑟𝑖𝑝𝑡𝐻𝑝𝑟𝑒𝑑𝑑
= 𝑠𝑐𝑟𝑖𝑝𝑡𝑝𝑟𝑒𝑑𝑑

Figure 2-8: Translating abstract test traffic into test traffic injection scripts.

Testing dynamic NF deployments: Next we describe the extensions needed to handle

dynamic NF deployment scenarios. Intuitively, the goal in these scenarios is to ensure

36

the change is transparent with respect to stateful semantics of traffic. To be concrete, let

Policybefore and Policyafter denote the policies that the operator intends to enforce before

and after the “change” occurs, where the change is captured by changeCond (e.g., an NF ’s

scale-out, or failure). We define the correct enforcement of a dynamic NF deployment

policy as follows: For each data plane state s ∈ 𝑆𝐷𝑃 , if changeCond is triggered while the

data plane is in s , then Policyafter is enforced correctly.

In Figure 2-4, Policybefore is the top part of the policy graph (i.e., involving 𝐼𝑃𝑆1),

Policyafter is the bottom part of the policy graph (i.e., involving 𝐼𝑃𝑆2), and changeCond

is 𝐼𝑃𝑆1’s scale-out. Irrespective of the state in which 𝐼𝑃𝑆1 scales out, 𝐼𝑃𝑆2 must start

processing traffic with the same state at which 𝐼𝑃𝑆1 has scaled out.

Abstract test traffic generation for dynamic NF deployment scenarios is slightly differ-

ent from what we described in §2.3.6. At a high-level, for every data plane state s ∈ 𝑆𝐷𝑃 ,

BUZZ (1) generates test traffic to drive the data plane to s , (2) triggers changeCond (e.g.,

by scaling-out an NF), and (3) test if the data plane is compliant with Policyafter . For

completeness, we describe the full procedure in Figure 2-9.

37

1 � Inputs:

2 #1: Policy1:𝑝𝑟𝑒𝑑1(5−𝑡𝑢𝑝𝑙𝑒)×C1 ↦→Ports1 before migrate/rollback

3 #2: Policy2:𝑝𝑟𝑒𝑑2(5−𝑡𝑢𝑝𝑙𝑒)×C2 ↦→Ports2 after migrate/rollback

4 � Outputs:

5 #1: a sequence of BDUseqSE = ⟨𝐵𝐷𝑈𝑛 : 𝑛 = 1, 2, ..., 𝑁⟩ with two substrings,

6 BDUseqSE 𝑏𝑒𝑓𝑜𝑟𝑒 and BDUseqSE𝑎𝑓𝑡𝑒𝑟 , which should satisfy:

7 BDUseqSE 𝑏𝑒𝑓𝑜𝑟𝑒 exploits all possible context 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 in C1 before

migration/rollback happens.

8 BDUseqSE𝑎𝑓𝑡𝑒𝑟 test all possible 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 in C2 after the migration/rollback.

9 � Init BDU sequence

10 BDUseqSE = ⟨𝐵𝐷𝑈𝑛 : 𝑛 = 1, 2, ..., 𝑁⟩

11 � note the values in 𝐵𝐷𝑈𝑛 for calculation by Symbolic Execution

12 𝑚𝑎𝑘𝑒𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝐵𝐷𝑈𝑛)

13 � exploits all possible 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 in C1

14 � 𝐵𝐷𝑈𝑠 processed sequentially by Policy1

15 for each 𝐵𝐷𝑈𝑖 in BDUseqSE

16 if 𝐵𝐷𝑈𝑖 is in BDUseqSE 𝑏𝑒𝑓𝑜𝑟𝑒

17 � process 𝐵𝐷𝑈𝑖 by Policy1 and update C1

18 C1 = Policy1(𝑝𝑟𝑒𝑑1(𝐵𝐷𝑈𝑖),C1,Ports1)

19 � do migrate/rollback and change service chain from Policy1 to Policy2

20 � map ports

21 Ports2 = 𝑔(Ports1)

22 � migrate/rollback context

23 C2 = C1

24 � test all possible 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 in C2

25 � 𝐵𝐷𝑈𝑠 processed sequentially by Policy2

26 for each 𝐵𝐷𝑈𝑗 in BDUseqSE

27 if 𝐵𝐷𝑈𝑗 is in BDUseqSE𝑎𝑓𝑡𝑒𝑟

28 � process 𝐵𝐷𝑈𝑖 by Policy2 and update C2

29 C2 = Policy2(𝑝𝑟𝑒𝑑2(𝐵𝐷𝑈𝑖),C2,Ports2)

30 � generate 𝐵𝐷𝑈 sequence with values assigned by Symbolic Execution

31 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑜𝑢𝑡𝑝𝑢𝑡 = ⟨𝐵𝐷𝑈𝑛 : 𝑛 = 1, 2, ..., 𝑁⟩

Figure 2-9: Pseudocode for abstract test traffic generation for change management
policies.

2.3.7 Implementation

BUZZ comprises ≈ 10,000 lines of code, including NF models, code for test traffic gener-

ation, test resolution, extensions to KLEE, and the operator interfaces. The entire workflow

of BUZZ is implemented atop OpenDayLight [37]. The source code is available at [1].

38

9/16/2015 Cy3 Import Demo

file:///Users/tianlongyu/Documents/Projects/PSIBuzz/Pipeline/BuzzGui/index.html 1/1

Nested Mode Click Mode

In_L_H_IPS2.jsChoose File

#Traffic

10.1.0.1 10.2.0.1

#Enforcement

LightIPS_1 bad_conn>=10 HeavyIPS_1

LightIPS_1 !(bad_conn>=10) Allow

HeavyIPS_1 bad_signature Block

HeavyIPS_1 !bad_signature Allow

#Customize

LightIPS_1:Threshold=10

Figure 2-11: Graphical interface to input policies (e.g., multistage-triggers policy in
Figure 2-3).

Operator interface: Operators can enter policies using either a text-based or a graphical

interface (example screenshots are shown in Figures 2-10 and 2-11). BUZZ then performs a

set of sanity checks on the policies and warns the operator of any mistakes (e.g., an overlap

between TrafficSpec of two policies). This I/O is the only effort that BUZZ needs from

the operator. Once policies are entered, the workflow of BUZZ (Figure 2-5) is entirely

automated.
9/15/2015 Cy3 Import Demo

file:///Users/tianlongyu/Documents/Projects/PSIBuzz/Pipeline/BuzzGui/index.html 1/1

Nested Mode Click Mode

In_L_H_IPS.jsChoose File

#Traffic

10.1.0.1 10.2.0.1

#Enforcement

LightIPS_1 bad_conn>=Threshold HeavyIPS_1

LightIPS_1 !(bad_conn>=Threshold) Allow

HeavyIPS_1 bad_signature Block

HeavyIPS_1 !bad_signature Allow

#Customize

LightIPS_1:Threshold=10

Figure 2-10: Text-based interface to input policies (e.g., multistage-triggers policy in
Figure 2-3).

NF models: We have written C models for switches, ACL devices, stateful firewalls,

NATs, L4 load balancers, HTTP and FTP proxies, passive monitoring, and simple intru-

sion prevention systems (e.g., counting failed connection attempts and matching payload

signatures). Our models are between 10 (for a switch) to 100 lines (for a proxy cache) of

C code. We reuse common templates across NFs; e.g., TCP connection sequence used in

both the firewall and proxy models. Note that modeling NFs is a one-time offline task and

can be augmented with community efforts [33]. We validated models by inspecting call

graphs visualization [29, 56] on extensive manually generated input traffic to ensure the

models are correct.

Test traffic generation and injection: We use KLEE with the optimizations discussed

in §2.3.6 to generate BDU-level test traffic (i.e., abstract test traffic), and then translate it to

test scripts that run at the injection points.

39

Test traffic monitoring and test resolution: We use offline monitoring via tcpdump

(with suitable filters). BUZZ uses the monitoring logs to determine the test result. For

completeness, we have provided the monitoring and test resolution pseudocode in Figure 2-

12. Here we give the intuition behind this process. From the input policy, BUZZ inspects

the monitoring logs to check whether traffic has traversed the policy-mandated ports. If so,

the test concludes with success. Otherwise, a policy violation along with the first violating

port on which traffic appeared is declared.

1 � Inputs:

2 #1: packet traces 𝑝𝑘𝑡𝑡𝑟𝑎𝑐𝑒𝑝𝑜𝑟𝑡𝑖 dumped at each 𝑝𝑜𝑟𝑡𝑖 in Ports

3 #2: policy Policy:𝑝𝑟𝑒𝑑(5−𝑡𝑢𝑝𝑙𝑒)×C ↦→Ports , where C includes all possible

contexts

4 � Outputs:

5 #1: The resolution result of each context 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 in C in terms of pass/fail

6 #2: The port of the NF that causes the failure

7 � perform resolution scheme for each context 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 in C

8 for each 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 in C

9 � 𝑇𝑟𝑎𝑐𝑒 = ⟨𝑝𝑘𝑡𝑚, . . . , 𝑝𝑘𝑡𝑟⟩ is the test packets for this context

10 for testpkt in ⟨𝑝𝑘𝑡𝑚, . . . , 𝑝𝑘𝑡𝑟⟩

11 � calculate the logically correct ports 𝑡𝑒𝑠𝑡𝑝𝑘𝑡 should reach

12 Ports𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑡𝑒𝑠𝑡𝑝𝑘𝑡 = Policy(𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡𝑝𝑘𝑡)), 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖)

13 � find the real ports 𝑡𝑒𝑠𝑡𝑝𝑘𝑡 has reached

14 Ports𝑟𝑒𝑎𝑙𝑖𝑡𝑦𝑡𝑒𝑠𝑡𝑝𝑘𝑡 = search 𝑡𝑒𝑠𝑡𝑝𝑘𝑡 in each 𝑝𝑘𝑡𝑡𝑟𝑎𝑐𝑒𝑝𝑜𝑟𝑡𝑖

15 if Ports𝑟𝑒𝑎𝑙𝑖𝑡𝑦𝑡𝑒𝑠𝑡𝑝𝑘𝑡 == Ports𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑡𝑒𝑠𝑡𝑝𝑘𝑡

16 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 test pass

17 else

18 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 test fail

19 � Compare the 𝑝𝑜𝑟𝑡 of Ports𝑟𝑒𝑎𝑙𝑖𝑡𝑦𝑡𝑒𝑠𝑡𝑝𝑘𝑡 and Ports𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑡𝑒𝑠𝑡𝑝𝑘𝑡 and find the first

different port, which is the NF that causes the failure.

20 𝐹𝑎𝑖𝑙𝑒𝑑𝑁𝐹𝑃𝑜𝑟𝑡 = 𝐹𝑖𝑟𝑠𝑡𝐷𝑖𝑓𝑓𝑃𝑜𝑟𝑡(Ports𝑟𝑒𝑎𝑙𝑖𝑡𝑦𝑡𝑒𝑠𝑡𝑝𝑘𝑡,Ports
𝑙𝑜𝑔𝑖𝑐𝑎𝑙
𝑡𝑒𝑠𝑡𝑝𝑘𝑡)

21 mark 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 as tested

Figure 2-12: Pseudocode for BUZZ test resolution.

2.4 Evaluation
In this section, we show that:

1. BUZZ can help detect a broad spectrum of both new and known policy violations

40

(§2.4.1);

2. BUZZ works in close-to-interactive time scales (i.e., within two minutes) even for large

topologies with 100s of switches and stateful NFs (§2.4.2); and

3. BUZZ’s design is critical for its scalability (§2.4.3).

Testbed and topologies: We use a testbed of 13 server-grade machines (20-core 2.8GHz

servers with 128GB RAM) connected via direct 1GbE links and a 10GbE Pica8 OpenFlow

switch. On each server, with KVM installed, we run injectors and software NFs as separate

VMs, connected via Open vSwitch. The specific stateful NFs are iptables [26] as a

NAT and a stateful firewall, Squid [49] as a proxy, Snort [48] and Bro [156] as IPS/IDS,

Balance [8], and PRADS [41].

In addition to the example scenarios from §2.1, we use 8 randomly selected recent

topologies from the Internet Topology Zoo [53] with 6–196 nodes. We also use two larger

topologies (400 and 600 nodes) by extending these topologies. These serve as switch-level

topologies; we extend them with different NFs to enforce policies. For the scalability

experiments, we augment each switch-level topology with stateful NFs (§2.4.2) by con-

necting each stateful NF to a randomly selected switch. As a concrete policy enforcement

scheme, we used prior work to handle dynamic middleboxes [92]. (We reiterate designing

this scheme is not the goal of BUZZ; we simply needed some concrete solution.)

2.4.1 BUZZ end-to-end use cases

First, we demonstrate the effectiveness of BUZZ in finding both new and known policy

violations.

Finding new violations: Using BUZZ, we uncovered several policy violations in recent

systems, a few of which we present here:

∙Violations due to reactive control in Kinetic [30]: We set up a simple policy composed

of an IDS followed by a Kinetic dynamic firewall. By generating malicious traffic, BUZZ

found that the first few malicious packets are wrongly let through. The root cause of this

violation is the delay between (1) the IDS’s detection of malicious traffic and sending

an “infected” event to the controller, and (2) the controller’s reconfiguration of the data

41

plane to block malicious traffic.

∙ Incorrect state migration using OpenNF [105]: We used the OpenNF-enhanced

PRADS [41, 105] to enforce the following policy: if a host spawns more than Thresh

TCP connections, its traffic should be sent to a rate limiter. BUZZ revealed a violation

due to the incorrect state migration when we elastically scale a PRADS instance. Specif-

ically, BUZZ made a host establish 𝑛1 and 𝑛2 sessions with a server before and after

migration, respectively, such that: 𝑛1, 𝑛2<Thresh, but 𝑛1+𝑛2>Thresh. BUZZ then

found that traffic did not go to the rate limiter. This is because OpenNF does not migrate

the session count (i.e., 𝑛1) from 𝑃𝑅𝐴𝐷𝑆1 to 𝑃𝑅𝐴𝐷𝑆2.

∙Faulty policy composition using PGA [157]: We used PGA4 to compose two policies

on traffic from 𝐻1 to 𝐻2: it should pass a load balancer and a stateful firewall (policy1),

and if it is found suspicious, it then should go to an IPS (policy2). After enforcing the

composition of the two policies, BUZZ found that the test traffic exercising policy1 did

not go through the firewall. This is because the SDN switch rules corresponding to

policy1 took precedence over the switch rules for policy2 , rendering policy2 ineffective.

∙ Incorrect tagging using FlowTags [92]: BUZZ helped us identify a bug in our Flow-

Tags implementation in OpenDaylight [37]. In the scenario of Figure 2-2 from §2.1, the

controller code in charge of decoding tags (e.g., to distinguish hosts behind the proxy)

would assign the same tag value to traffic from different hosts. Our test traffic showed

that the proxy’s cache hit replies bypass the monitoring device. BUZZ’s traffic trace in-

dicated that the tag values of cache miss/hit are identical; this gave us a hint as to focus

on the controller code in charge of configuring the tagging behavior of the proxy.

Finding known violations: We used a “red team–blue team” exercise, to evaluate the

utility of BUZZ in finding known policy violations. In each scenario, the red team (Student

1) secretly picks one of the policies (at random) from the set of policies that is known

to both teams, and creates a failure that causes the network to violate this intent; e.g.,

misconfiguring L-IPS count threshold. The blue team (Student 2) uses BUZZ to identify a

violation and localize the source of the policy violation.

4We used our implementation of PGA, as its code was unavailable.

42

“Red Team” scenario BUZZ test trace Violating NF
Cascaded NATs using Click
IPRewriter [127] ; 𝑁𝐴𝑇2 in-
correctly rewrites srcIP trig-
gering “assertion failure” on
𝑁𝐴𝑇1 [88]

𝐻1 attempts to access to the
server

𝑁𝐴𝑇2

Multi-stage triggers (Fig. 2-3);
L-IPS miscounts by summing
three hosts

𝐻1 makes 9 scan attempts
followed by 9 scans by 𝐻2

L-IPS

Conn. limit.; Login counter re-
sets

𝐻1 makes 3 continuous log
in attempts with a wrong
password

Login counter

Conn. limit.; 𝑆1 missing
switch forwarding rules from
AuthServer to the protected
server

𝐻2 makes a log in attempt
with the correct password

𝑆1

Conflicting firewall rules: Rule
1, if internal connect to exter-
nal IP, allow IP to access any
internal port; Rule 2, block ex-
ternal access to internal port
443

A TCP connection from in-
ternal 𝐶1 to external 𝑆1 fol-
lowed by an access from 𝑆1

to 𝐶1 : 𝑝𝑜𝑟𝑡443

Firewall

Asymmetric routing; Client-
to-server TCP traffic goes
through Bro, but the response
bypasses Bro. Since Bro does
not see the SYN_ACK packet,
it (mistakenly) blocks the
connection.

a TCP connection followed
by TCP data packets

switch close to
destination

Table 2.1: Example red-blue team scenarios.

Table 2.1 highlights the results for a subset of these scenarios and the specific traces

that BUZZ generated. Three of the scenarios use the motivating examples from §2.1. In the

Conn. limit. scenario, two hosts are connected to a server through an authentication server

to prevent brute-force password guessing attacks. The authentication server is expected to

halt a host’s access after 3 consecutive failed log in attempts. Finally, in the asymmetric

routing scenario, upstream and downstream traffic traverse different paths [130]. In all

scenarios, the blue-team successfully localized the failure (i.e., which NF or link is the

root cause) within 10 seconds.

It is useful at this time to reiterate that these types of violations could not be exposed

43

by existing debugging tools such as ATPG [184], ping, or traceroute, as they do not capture

violations w.r.t. stateful/context-dependent aspects. We also tried using fuzzing to generate

test traffic, using both Scapy [47] and a custom fuzzer. Across all scenarios, fuzzing did

not find any test trace within 48 hours. This is because we need targeted search to trigger

specific data plane states, which fuzzing is not suited for.

2.4.2 Scalability

Recall that we envision operators using BUZZ in an interactive fashion; i.e., the time for

test generation should be within 1-2 minutes even for large networks with hundreds of

switches and stateful NFs .

We evaluate how BUZZ scales with topology size and policy complexity. We define

policy complexity as the number of stateful NFs whose contexts appear in the policy. We

consider a baseline policy that has 3 stateful NFs (a NAT, followed by a proxy, followed

by a stateful firewall). The firewall is expected to block access from a fixed subset of origin

hosts to certain web content. To create more complex policies, we linearly “chain” together

repetitions of the baseline policy.

1
10

100
1,000

1e+04
1e+05

 0 100 200 300 400 500 600

T
es

t
tr

af
fi

c
g

en
.

la
te

n
cy

 (
s)

Topology size (# of switches)

BUZZ, pol. complexity of 10% of topo. size
BUZZ, pol. complexity of 3
BUZZ, pol. complexity of 9

Model checking, pol. complexity of 3

Figure 2-13: Test generation latency of BUZZ.

Figure 2-13 shows the average test traffic generation latency for various topology sizes

and policy complexities. There are two takeaways. First, BUZZ generates test traffic in

human-interactive time scales; even in the largest topology with 600 switches and the most

complex policy it takes only 113 seconds. Second, BUZZ’s test traffic generation latency

only depends on the policy complexity: if we increase the topology size without increase

the policy complexity, this will not add to the test traffic generation latency. This is ex-

pected, as test traffic generation involves a search over the data plane state space, which

44

naturally is a function of stateful NFs .

To put the traffic generation latency of BUZZ in perspective, Figure 2-13 also shows the

traffic generation latency of a strawman solution of using the model checker CMBC [13].

Even on a small 9-node topology (6 switches and 3 stateful NFs), it took 25 hours; i.e., on

a 90× larger topology, BUZZ is at least five orders of faster.

Test coverage: We have evaluated the test coverage of BUZZ, and here, we discuss the

three takeaways. First, across all scenarios we have discussed in this section, we explicitly

enumerated all contexts, and observed that BUZZ provided full coverage with respect to

the coverage goal of generating one test case to trigger each context. Second, we extended

BUZZ to satisfy an alternative coverage goal of generating > 1 test trace per context. We

enabled this through an iterative test generation process, where in each iteration, we obtain

a new test case by using assertions such that a previously generated test case will not be

generated again. Finally, while, in general, using multiple test cases per context may reveal

new violations, in our experiments, we did not find new violations by doing so.

2.4.3 Effect of BUZZ design choices

Next, we do a component-wise analysis to demonstrate the effect of our key design choices

and optimizations.

1

10

100

1,000

e+4

e+5

e+6

T
es

t
tr

af
fi

c
g

en
.

la
te

n
cy

 (
s)

 10KB 100KB 1MB 10MB
 file size

BUZZ
Model I/O = packet

Figure 2-14: BDUs vs. packets for various request sizes.

BDUs vs. packets: To see how aggregating a sequence of packets as a BDU helps with

scalability, we use BUZZ to generate test traffic to test the proxy-monitor policy (Figure 2-

2), first in terms of BDUs and then in terms of raw MTU-sized packets, on varying sizes

of files to retrieve from the web. Figure 2-14 shows that on the topology with 600 switches

45

and 300 stateful NFs , in case of packet-level test traffic generation, test traffic generation

latency increases linearly with the file size. On the other hand, since the number of test

packets is dominated by the number of object retrieval packets, aggregating all file retrieval

packets as one BDU significantly cuts the latency. (The results, not shown, are consistent

across topologies as well as using FTP instead of HTTP.)

(2) scoping the values yields a further > 9× reduction.

1

10

100

1,000

e+4

e+5

6 52 92 196 400 600

T
es

t
tr

af
fi

c
g

en
.

la
te

n
cy

 (
s)

Topology size (# of switches)

BUZZ
Min # of sym. vars.

No optimizations, smallest topology

Figure 2-15: Improvements due to SE optimizations.

Impact of SE optimizations: We examine the effect of the SE-specific optimizations

(§2.3.6) in Figure 2-15. To put these numbers in context, using KLEE without the optimiza-

tions on a network of six switches and a policy chain with three stateful NFs takes ≥ 19

hours. We see that (1) minimizing the number of symbolic variables cuts the test generation

latency by three orders of magnitude, and

2.5 Summary
BUZZ tackles a key missing piece in network verification—checking context-dependent

policies in stateful data planes introduces fundamental expressiveness and scalability chal-

lenges. We make two key contributions to address these challenges: (1) Developing expres-

sive and scalable network models; and (2) An optimized application of symbolic execution

to tackle state-space explosion. We demonstrate that BUZZ is scalable and it can help

diagnose policy violations.

We see the following as natural directions for future work:

Model synthesis: BUZZ uses hand-generated models of NFs . A natural direction for

future work is to use program analysis to automatically synthesize NF models from mid-

46

dlebox code (e.g., [84]) or logs (e.g., [74]).

Soundness vs. completeness: We found BUZZ to be empirically sound (i.e., every bug

it found was a real bug) For “infinite-state” systems, it is not possible to simultaneously

achieve both guarantees [116]. BUZZ’s design favors soundness (i.e., if we report a vio-

lation, then the data plane actually has that behavior) over completeness (i.e., if we do not

find a violation, then there are no bugs). In our setting, this is a worthwhile trade-off as we

can repeat tests for greater coverage [116, 184].

New use cases: Looking forward, we believe BUZZ can be extended to systematically

check interoperability of new protocols with middleboxes [114]. As preliminary evidence,

we were able to replicate a known problem with a middlebox-cooperative TCP extension

called HICCUPS [86], where the protocol fails in the presence of middleboxes that modify

certain headers or if there are multiple middleboxes on the path.

47

48

Chapter 3

Exposing hidden traffic context using

FlowTags

As we discussed in the beginning of §2, many network management goals (e.g., high per-

formance and security) are implemented using custom middleboxes, such as firewalls,

NATs, proxies, intrusion detection and prevention systems, and application-level gate-

ways [165, 167]. In this section we present our solution to the challenge of “hidden pro-

cessing context” (see 1.2.2), which is introduced by middleboxes and hinders reasoning

about the network behavior.

As we saw in §2, a necessary part of a test traffic generating system is to capture traf-

fic processing context (§2.3.5). Unfortunately, processing context is typically hidden in

realistic deployments due to the actions of middleboxes (e.g., firewalls, NATS, and prox-

ies) that modify traffic. In this chapter, we present FlowTags [92], which is our solution

to the challenge of hidden middlebox context. Middleboxes such as NATs, proxies, and

load balancers, hide the true context of traffic as part of their inherent operations. This is a

stumbling block to testing context-dependent policies because in order to test and diagnose

network data planes, we need the ability to determine the true origin and processing context

of test traffic at any point in the network.

In particular, to be able to reason about a stateful data plane as we presented in the

preview section, we need two types of information to be associated with each packet at any

location in the network:

49

1. ORIGINBINDING: There should be an explicit binding between a packet and its “origin”

(i.e., the network entity that has originally created the packet);

2. CONTEXTBINDING: There should be an explicit binding between a packet and its

processing context with respect to the middleboxes the packet has gone through (e.g.,

“alarm” at an IPS, “connection established” at a firewall);

For instance, NATs and load balancers dynamically rewrite packet headers, thus vio-

lating ORIGINBINDING. Similarly, dynamic middlebox actions, such as responses served

from a proxy’s cache, may violate CONTEXTBINDING. (We elaborate on these examples

in §3.1.)

To address the problem of hidden context, at a high level, we observe the central visi-

bility into the traffic processing behavior of the network in Software-Defined Networking

(SDN) as an opportunity. Specifically, we have designed FlowTags, an SDN-based network

architecture, to systematically preserve traffic provenance in the presence of middlebox ac-

tions. We take a pragmatic stance that we should attempt to integrate middleboxes into

SDN as “cleanly” as possible. Thus, our focus here is to systematically revive the ORIG-

INBINDING and CONTEXTBINDING, even in the presence of dynamic middlebox actions.

We identify flow tracking as the key to policy enforcement. (We use the term “flow” in

a general sense, not necessarily to refer to IP 5-tuple.) That is, we need to reliably asso-

ciate additional contextual information with a traffic flow as it traverses the network, even

if packet headers and contents are modified. For instance, this helps determine the packet’s

true endpoints rather than rewritten versions (e.g., as with load balancers), or provide hints

about the packet’s provenance (e.g., a cached response).

Based on this insight, we extend the SDN paradigm with the FlowTags architecture.

Because middleboxes are in the best (and possibly the only) position to provide the rele-

vant contextual information, FlowTags envisions simple extensions to middleboxes to add

tags, carried in packet headers. SDN switches use the tags as part of their flow matching

logic for their forwarding operations. Downstream middleboxes use the tags as part of their

packet processing workflows. We retain existing SDN switch interfaces and explicitly de-

couple middleboxes and switches, allowing the respective vendors to be able to innovate

50

independently.

Deploying FlowTags thus has two prerequisites: (P1) adequate header bits with SDN

switch support to match on tags and (P2) extensions to middlebox software. We argue

that (P1) is possible in IPv4; quite straightforward in IPv6; and will become easier with

recent OpenFlow standards that allow flexible matching [38] and new switch hardware

roadmaps [75]. As we show in §3.3.6, while identifying where in the middlebox code-

base to modify to add support for FlowTags is hard, (P2) requires minor code changes to

middlebox software.

Contributions and roadmap: Our specific contributions in this chapter are:

∙We describe controller–middlebox interfaces to configure tagging capabilities (§3.3.3)

and design new controller policy abstractions and rule generation mechanisms to sys-

tematically configure the tagging logic (§3.3.4).

∙We show that it is possible to extend five software middleboxes to support FlowTags, each

requiring less than 75 lines of custom code in addition to a common 250-line library. (To

put these numbers in context, the middleboxes we have modified have between 2K to

over 300K lines of code.) (§3.3.6).

∙We show that FlowTags adds little overhead over SDN mechanisms and that the con-

troller is scalable (§3.4).

∙We present a use case of FlowTags in enabling scalable and elastic DDoS defense via

in-data plane tagging (§3.5).

3.1 Motivation
As we saw in the previous chapter, testing context-dependent policies in a stateful data

plane requires visibility into traffic processing context. To see why this is a challenge in

practice, we present a few examples that highlight how middlebox actions violate making

it difficult to enforce and reason about network-wide policies. We also discuss why some

seemingly natural strawman solutions fail to address our requirements.

Attribution problems: Figure 3-1 shows two middleboxes: a NAT that translates private

IPs to public IPs and a firewall configured to block hosts 𝐻1 and 𝐻3 from accessing specific

51

public IPs. Ideally, we want administrators to configure firewall policies in terms of the

original source IPs. Unfortunately, we do not know the private-public IP mappings that the

NAT chooses dynamically; i.e., the ORIGINBINDING tenet is violated. If only traffic from

𝐻1 and 𝐻3 should be directed to the firewall and the rest are allowed to pass through, an

SDN controller cannot install the correct forwarding rules at switches 𝑆1/𝑆2 because the

NAT change the packet headers; i.e., CONTEXTBINDING no longer holds.

S1# S2#

FW#NAT#

Internet#

NSDI%–%Mo)va)on%1%of%3%Smaller%

H3#

H1#

Goal:#Block#the#web#access#of#H1#and#H3.#

H2#

Figure 3-1: Applying the blocking policy is challenging, as the NAT hides the true
packet sources.

Network diagnosis: In Figure 3-2, suppose the users of hosts 𝐻1 and 𝐻3 complain about

high network latency. In order to debug and resolve this problem (e.g., determine if the

middleboxes need to be scaled up [103]), the network administrator may use a combination

of host-level (e.g., XTrace [100]) and network-level (e.g., [45]) logs to break down the delay

for each request into per-segment components as shown. Because ORIGINBINDING does

not hold, it is difficult to correlated the logs to track flows [159, 176].

S1#

NAT#

S2#

LB#

Server1#

Server2#

Beyond#2#of#2#small#

H4#

H1#

t1# t2#

Ques%on:#Why#are#certain#flows#ge@ng#high#delay?#

H2#
H3#

Experiencing*
high*delay#

Figure 3-2: Middlebox modifications make it difficult to consistently correlate net-
work logs for diagnosis.

Data-dependent policies: In Figure 3-3, the light IPS checks simple features (e.g., head-

ers) and we want to route suspicious packets to the heavy IPS, which runs deeper analysis

to determine if the packet is malicious. Such a triggered architecture is quite common; e.g.,

rerouting suspicious packets to dedicated packet scrubbers [42]. The problem here is that

52

ensuring CONTEXTBINDING depends on the processing history; i.e., did the light IPS flag

a packet as suspicious? However, each switch and middlebox can only make processing or

forwarding decisions on a link-local view.

S1# S2#Hn#

H1#
Light#
IPS#

NSDI%&%Mo)va)on%2%of%3%small%

…
#

Server#

Policy:#Process#all#traffic#by#light#IPS#and#
only#suspicious#traffic#by#heavy#IPS.#

Heavy#
IPS#

Figure 3-3: 𝑆2 cannot decide if an incoming packet should be sent to the heavy IPS or
the server.

Policy violations due to middlebox actions: Figure 3-4 shows a proxy used in con-

junction with an access control device (ACL). Suppose we want to block 𝐻2’s access

to xyz.com. However, that 𝐻2 may bypass the policy by accessing cached versions of

xyz.com, thus evading the ACL. The problem, therefore, is that middlebox actions may

violate CONTEXTBINDING by introducing unforeseen paths. In this case, we may need to

explicitly route the cached responses to the ACL device as well.

Rate%Limi)ng%Example%Small%

S1% S2%

Proxy%

Internet%

H2%

H1%
ACL%

Goal:%Block%H2’s%access%to%xyz.com.%

Figure 3-4: Lack of visibility into the middlebox context (i.e., cache hit/miss in this
example) makes policy enforcement challenging.

3.2 Related work
Next, we highlight why some seemingly natural strawman solutions fail to address the

above problems. Due to space constraints, we discuss only a few salient candidates and

summarize their effectiveness in the previously presented examples in Table 3.1.

Placement constraints: One way to ensure ORIGINBINDING/CONTEXTBINDING is to

“hardwire” the policy into the topology. In Figure 3-1, we could place the firewall before

53

Strawman
solution

Attribution
(Figure 3-1)

Diagnosis
(Figure 3-2)

Data-dependent
policy (Figure 3-3)

Policy violations
(Figure 3-4)

Placement Yes, if we alter
policy chains

No If both IPSes are on
𝑆1 & Light IPS has 2
ports

Yes

Tunneling
(e.g, [117, 121])

No No Need IPS support No

Consolidation
(e.g., [164])

Not with separate
modules

No Maybe, if shim is aware

Correlation
(e.g., [158])

Not accurate and high overhead

Table 3.1: Analyzing strawman solutions vs. the motivating examples.

the NAT. Similarly, for Figure 3-3 we could connect the light IPS and the heavy IPS to 𝑆1

and configure the light IPS to emit legitimate/suspicious packets on different output ports.

𝑆1 can then use the incoming port to determine if the packet should be sent to the heavy

IPS. This coupling between policy and topology, however, violates the SDN philosophy of

decoupling the control logic from the data plane. Furthermore, this restricts flexibility to

reroute under failures, load balance across middleboxes, or customize policies for different

workloads [159].

Tunneling: Another option to ensure CONTEXTBINDING is to set up tunneling rules, for

example, using MPLS or virtual circuit identifiers (VCI). For instance, we could tunnel

packets from the “suspicious” output of the light IPS to the heavy IPS. (Note that this addi-

tionally requires middleboxes to support tunnels.) Such topology/tunneling solutions may

work for simple examples but they quickly break for more complex policies; e.g., if there

are more outputs from the light IPS. Note, that even by combining placement+tunneling,

we cannot solve the diagnosis problem in Figure 3-2, as it does not provide ORIGINBIND-

ING.

Middlebox consolidation: At first glance, it may seem that we can ensure CON-

TEXTBINDING by running all middlebox functions on a consolidated platform [68, 164].

While consolidation provides other benefits (e.g., reduced hardware costs), it has several

limitations. First, this requires a significant network infrastructure change. Second, this

merely shifts the burden of CONTEXTBINDING to the internal routing “shim” that routes

packets between the modules. Finally, if the individual modules are provided by different

vendors, diagnosis and attribution is hard, as this shim cannot ensure ORIGINBINDING.

54

Flow correlation: Prior work attempts to heuristically correlate the payloads of the traffic

entering and leaving middleboxes to correlate flows [158]. However, this approach can too

often result in missed/false matches to be useful for security applications [158]. Also, such

“reverse engineering” approaches fundamentally lack ground truth. Finally, this process

has high overhead, as multiple packets per flow need to be processed at the controller in a

stateful manner (e.g., when reassembling packet payloads).

As Table 3.1 shows, none of these strawman solutions can address all of the motivating

scenarios. In some sense, each approach partially addresses some symptoms of the viola-

tions of ORIGINBINDING and CONTEXTBINDING, but does not address the cause of the

problem. Thus, despite the complexity they entail in terms of topology hacks, routing, and

middlebox and controller upgrades, they have limited applicability and have fundamental

correctness limitations.

Beyond the above strawman solutions, for completeness, we also discuss focus on other

classes of related work.

Middlebox policy routing: Prior work focuses on orthogonal aspects such as middlebox

load balancing (e.g., [135, 158]) or compact data plane strategies (e.g,. [91]). While these

are candidates for translating the 𝐶𝐷𝑃𝐺 to a 𝐶𝐷𝑃𝐺𝐼𝑚𝑝𝑙 (§3.3.4), they do not provide

reliable mechanisms to address dynamic middlebox actions.

Middlebox-SDN integration: OpenNF [105] focuses on exposing the internal state (e.g.,

cache contents and connection state) of middleboxes to enable (virtual) middlebox migra-

tion and recovery. This requires significantly more instrumentation and vendor support

compared to FlowTags, which only requires externally relevant mappings. Stratos [103]

and Slick [69] focus on using SDN to dynamically instantiate new middlebox modules in

response to workload changes. The functionality these provide is orthogonal to FlowTags.

Tag-based solutions: Tagging is widely used to implement Layer2/3 functions, such as

MPLS labels or virtual circuit identifiers (VCI). In the SDN context, tags have been used to

avoid loops [158], reduce FlowTable sizes [91], or provide virtualized network views [145].

Tags in FlowTags capture higher-layer semantics to address ORIGINBINDING and CON-

TEXTBINDING. Unlike these Layer2/3 mechanisms where switches are generators and

consumers of tags, FlowTags middleboxes generate and consume tags and switches are

55

consumers.

Tracing and provenance: The idea of flow tracking has parallels in the systems (e.g., trac-

ing [100]), databases (e.g., provenance [186]), and security (e.g., taint tracking [147, 152])

literature. Our specific contribution is to use flow tracking for integrating middleboxes in

SDN-capable networks.

3.3 System design

3.3.1 FlowTags overview

As we saw in the previous section, violating the ORIGINBINDING and CONTEXTBINDING

tenets makes it difficult to correctly implement several network management tasks. To

address this problem, we propose the FlowTags architecture. In this section, we highlight

the main intuition behind FlowTags, and then we show how FlowTags extends the SDN

paradigm.

FlowTags takes a first-principles approach to ensure that ORIGINBINDING and CON-

TEXTBINDING hold even in the presence of middlebox actions. Since the middleboxes

are in the best (and sometimes the only) position to provide the relevant context (e.g., a

proxy’s cache hit/miss state or a NAT’s public-private IP mappings), we argue that middle-

boxes need to be extended in order to be integrated into SDN frameworks.

Conceptually, middleboxes add tags to outgoing packets. These tags provide the miss-

ing bindings to ensure ORIGINBINDING and the necessary processing context to ensure

CONTEXTBINDING. The tags are then used in the data plane configuration of OpenFlow

switches and other downstream middleboxes.

To explain this high-level idea, let us revisit the example in Figure 3-1 and extend it

with the relevant tags and actions as shown in Figure 3-5. We have three hosts 𝐻1 −𝐻3 in

an RFC1918 private address space; the administrator wants to block the Internet access for

𝐻1, 𝐻3, and allow 𝐻2’s packets to pass through without going to the firewall. The controller

(not shown) configures the NAT to associate outgoing packets from 𝐻1, 𝐻2, and 𝐻3 with

the tags 1, 2, and 3, respectively, and adds these to pre-specified header fields. (See §3.3.5).

The controller configures the firewall so that it can decode the tags to map the observed

56

S1# S2#

FW#NAT#

Internet#

Walk%through,example,(Mo3va3on,1,of,3),–,compacted,

H1#
192.168.1.1#

H2#
192.168.1.2#

H3#
192.168.1.3#

SrcIP, Tag,
192.168.1.1# 1#
192.168.1.2# 2#
192.168.1.3# 3#

Tag, OrigSrcIP,
1# 192.168.1.1#
3# 192.168.1.3#

Block#192.168.1.1	

Block#192.168.1.3#

NAT$Generate$Tags$ FW$Consume$Tags$
FW$Config$

Tag, Forward,
1,3# FW#
2# Internet#

S2$$FlowTable$

Figure 3-5: Figure 3-1 augmented to illustrate how tags can solve the attribution prob-
lem.

IP addresses (i.e., in “public” address space using RFC1918 terminology) to the original

hosts, thus meeting the ORIGINBINDING requirement. Similarly, the controller configures

the switches to allow packets with tag 2 to pass through without going to the firewall, thus

meeting the CONTEXTBINDING requirement. As an added benefit, the administrator can

configure firewall rules w.r.t. the original host IP addresses, without needing to worry about

the NAT-induced modifications.

This example highlights three key aspects of the FlowTags approach. First, middle-

boxes (e.g., the NAT) are generators of tags (as instructed by the controller). The packet-

processing actions of a FlowTags-enhanced middlebox will now entail adding the relevant

tags into the packet header. This is crucial for both ORIGINBINDING and CONTEXTBIND-

ING, depending on the middlebox. Second, other middleboxes (e.g., the firewall) are con-

sumers of tags, and their processing actions need to decode the tags. This is necessary for

ORIGINBINDING. Third, SDN-capable switches in the network use the tags as part of their

forwarding actions, in order to route packets according to their intended policy, ensuring

CONTEXTBINDING holds. In this simple example, the middlebox exclusively generate/-

consume tags. In general, however, a given middlebox will both consume and generate

tags.

Note that the FlowTags semantics apply in the context of a single administrative do-

main. In the simple case, we set tag bits to NULL on packets exiting the domain.1 This

1More generally, if we have a domain hierarchy (e.g., “CS dept” and “Physics dept” and “Univ” at higher

level), each sub-domain’s egress can rewrite the tag to only capture higher-level semantics (e.g, “CS” rather

57

Control'Apps'
e.g.,'steering,'verifica4on'

Control'Apps'
e.g.,'steering,'verifica4on'

FlowTags'Architecture'Smaller''

Network'OS''

'
'
'

Control'

Data'

SDN''
Switches'

FlowTable'
'
'
'

FlowTags'
Enhanced'

Middleboxes'

FlowTags'
Tables'

Control'Apps'
e.g.,'steering,'verifica4on'

Admin'

Mbox'
Config'

Policy'
DPG'(5.1)'

FlowTags''
APIs'

Exis4ng'APIs'
e.g.,'OpenFlow'

Legacy'
interface'
New'

interface'

Figure 3-6: Interfaces between different components in the FlowTags architecture.

alleviates concerns that the tag bits may accidentally leak proprietary topology or policy

information. When packets arrive on the external interface, the gateway sets the tag bits

to the appropriate value (e.g., to ensure stateful middlebox traversal) before forwarding the

packet inside the domain.

3.3.2 Architecture and interfaces

Given this high-level intuition, next we describe the interfaces between the controller, mid-

dleboxes, switches, and the network administrator in a FlowTags-enhanced SDN architec-

ture.

Current SDN standards (e.g., OpenFlow [141]) define the APIs between the controller

and switches. As shown in Figure 4-5, FlowTags extends today’s SDN approach along

three key dimensions:

1. FlowTags APIs between the controller and FlowTags-enhanced middleboxes to pro-

grammatically configure the tag generation and consumption logic (§3.3.3).

2. FlowTags control modules that configure the tagging-related generation/consump-

tion behavior of the middleboxes and tag-related forwarding actions of SDN switches

(§3.3.4).

3. FlowTags-enhanced middleboxes consume an incoming packet’s tags when processing

the packet and generate new tags based on the context (§3.3.6).

than “CS host A”), without revealing internal details.

58

FlowTags requires neither new capabilities from SDN switches, nor any direct interac-

tions between middleboxes and switches. Switches continue to use traditional SDN APIs

such as OpenFlow. The only interaction between switches and middleboxes is indirect, via

tags embedded inside the packet headers. We take this approach for two reasons: (1) to

allow switch and middlebox designs and their APIs to innovate independently; and (2) to

retain compatibility with existing SDN standards (e.g., OpenFlow). Embedding tags in the

headers avoids the need for each switch and middlebox to communicate with the controller

on every packet when making their forwarding and processing decisions.

We retain existing configuration interfaces for customizing middlebox actions; e.g.,

vendor-specific languages or APIs to configure firewall/IDS rules. The advantage of Flow-

Tags is that administrators can configure these rules without having to worry about the

impact of intermediate middleboxes. For example, FlowTags allows the operator to specify

firewall rules with respect to the original source IPs in the first scenario of §3.1. This pro-

vides a cleaner mechanism, as the administrator does not have to reason about the space of

possible header values a middlebox may observe.2

3.3.3 FlowTags APIs and operation

Next, we walk through how a packet is processed in a FlowTags-enhanced network, and

describe the main FlowTags APIs. For ease of presentation, we assume each middlebox is

connected to the rest of the network via a switch. (FlowTags, as is, works in a topology that

middleboxes are chained together.) We restrict our description of FlowTags to a reactive

controller that responds to incoming packets.

In the interest of brevity, we only discuss the APIs pertaining to packet processing.

Analogous to the OpenFlow configuration APIs, we envision functions to obtain and set

FlowTags capabilities in middleboxes; e.g., which fields in the header are used to encode

the tag values (§3.3.5).

In general, the same middlebox can be both a generator and the consumer of the tags.

For clarity for describing our APIs, we focus on these two roles separately starting with

2Going forward, we want to configure the middlebox rules to ensure the HIGHLEVELNAMES as well [81].

59

OpenFlow-capable	Switch	 FlowTags-capable	Middlebox	

FlowTags-capable	Controller	

1.	Data	Packet	
2.	Packet-In	Message	
3.	Modify	Flow	Entry	Message	
4.	Data	Packet	
5.	Tag	ConsumpDon	Query	
6.	Tag	ConsumpDon	Response	

tag	gen.	
response	

Data	Packet	 FlowTags	API	 OpenFlow	API	

camera	ready	Tag	GeneraDon	small	

data	
packet	

packet-in	 modify	flow	
entry	

tag	gen.	
query	

Figure 3-7: Packet processing walkthrough for tag generation with the FlowTags
APIs.

OpenFlow-capable	Switch	 FlowTags-capable	Middlebox	

FlowTags-capable	Controller	

1.	Data	Packet	
2.	Packet-In	Message	
3.	Modify	Flow	Entry	Message	
4.	Data	Packet	
5.	Tag	ConsumpDon	Query	
6.	Tag	ConsumpDon	Response	

tag	consumpDon	
response	

Data	Packet	 FlowTags	API	 OpenFlow	API	

camera	ready	Tag	ConsumpDon	small	

data	
packet	

packet-in	 modify	flow	
entry	

tag	
consumpDon	

query	

Figure 3-8: Packet processing walkthrough for tag consumption with the FlowTags
APIs

generation, assuming that a packet starts with a NULL tag before it reaches any middlebox.

Middlebox tag generation, Figure 3-7: Before the middlebox outputs a processed (and

possibly modified) packet, it sends the FT_GENERATE_QRY message to the controller

requesting a tag value to be added to the packet (Step 1). As part of this query the middlebox

provides the relevant packet processing context; e.g., a proxy tells the controller if this is

a cached response or an IPS provides the processing verdict. The controller provides a tag

value via the FT_GENERATE_RSP response (Step 2). (We defer tag semantics to the next

section.)

Middlebox tag consumption, Figure 3-8: When a middlebox receives a tag-carrying

packet, it needs to “decode” this tag; e.g., an IDS needs the original IP 5-tuple for

scan detection. The middlebox sends the FT_CONSUME_QRY message (Step 5) to

the controller, which provides the necessary decoding rule for mapping the tag via the

FT_CONSUME_RSP message (Step 6).

Switch actions: In Figure 3-7, when the switch receives a packet from the middlebox with

a tag (Step 3), it queries the controller with the OFPT_PACKET_IN message (Step 4), and

the controller provides a new flow table entry (Step 5). This determines the forwarding

action; e.g., whether this packet should be routed toward the heavy IPS in Figure 3-3.

Similarly, when the switch receives a packet in Figure 3-8 (Step 1), it requests a forwarding

entry and the controller uses the tag to decide if this packet needs to be forwarded to the

60

middlebox.

Most types of middleboxes operate at a IP flow or session granularity and their dy-

namic modifications typically use a consistent header mapping for all packets in the same

flow. Thus, analogous to OpenFlow, we need to run the FT_CONSUME_QRY and the

FT_GENERATE_QRY only once per flow at a middlebox. The middlebox stores the per-

flow tag rules locally and subsequent packets in the same flow can reuse the cached tag

rules.

3.3.4 FlowTags controller

Here we discuss how a FlowTags-enhanced SDN controller can assign tags and tags-related

“rules” to middleboxes and switches. We begin with a policy abstraction that informs the

semantics that tags need to express. Then, we discuss techniques to translate this solution

into practical encodings. Finally, we outline the controller’s implementation.

From CDPG to Tag Semantics: The input to the FlowTags controller is the context-

dependentpolicy that the administrator wants to enforce w.r.t. middlebox actions (Figure 4-

5) as a context-dependent policy graph (or 𝐶𝐷𝑃𝐺) from §2.3.4. We assume that the ad-

ministrator creates the CDPG based on domain knowledge. The CDPG representation helps

us reason about the semantics we need to capture via tags to ensure ORIGINBINDING and

CONTEXTBINDING.

Restoring ORIGINBINDING: We can ensure ORIGINBINDING if we are always able to

map a packet to its original IP 5-tuple OrigHdr as it traverses a CDPG. Note that having

OrigHdr is a sufficient condition for ORIGINBINDING; i.e., given the OrigHdr any down-

stream middlebox or switch can conceptually implement the action intended by a CDPG.

In some cases such as per-flow diagnosis (Figure 3-2), mapping a packet to the OrigHdr

is necessary. In other examples, a coarser identifier may be enough; e.g., just srcIP in

Figure 3-1.

Restoring CONTEXTBINDING: To ensure CONTEXTBINDING, we essentially need to

capture the edge condition m → m ′. Recall that this condition depends on (1) the traffic

class and (2) the middlebox context from logical middlebox m (and possibly previous log-

ical middleboxes) denoted by NC . Given that the OrigHdr for ORIGINBINDING provides

61

the necessary context to determine the traffic class, the only additional required information

the middlebox context in m → m ′.

Conceptually, and assuming no constraints on the tag identifier space, we can think of

the controller assigning a globally unique tag 𝑇 to each “located packet”; i.e., a packet

along with the edge on the CDPG [162]. The controller maps the tag of each located

packet to the information necessary for ORIGINBINDING and CONTEXTBINDING: 𝑇 →

⟨OrigHdr ,NC ⟩. Here, the OrigHdr represents the original IP 5-tuple of this located packet

when it first enters the network (i.e., before any middlebox modifications) and NC captures

the processing context of this located packet.

In the context of tag consumption from §3.3.3, FT_CONSUME_QRY and

FT_CONSUME_RSP essentially “dereference” tag 𝑇 to obtain the OrigHdr . The middle-

box can apply its processing logic based on the OrigHdr ; i.e., satisfying ORIGINBINDING.

For tag generation at logical middlebox m, FT_GENERATE_QRY provides as input to

the controller: (1) the necessary middlebox context to determine which NC will apply, and

(2) the tag 𝑇 of the incoming packet that triggered this new packet to be generated. The

controller creates a new tag 𝑇 ′ entry for this new located packet and populates the entry

𝑇 ′ → ⟨OrigHdr ′,NC ⟩ for this new tag as follows. First, it uses OrigHdr (i.e., for the

input tag 𝑇) to determine the value OrigHdr ′ for 𝑇 ′. In many cases (e.g., NAT), this is a

simple copy. In some cases (e.g., proxy response), the association has to reverse the src/dst

mappings in OrigHdr . Second, it associates the new tag 𝑇 ′ with the new NC provided by

the middlebox. The controller instructs the middlebox via FT_GENERATE_RSP to add 𝑇 ′

to the packet header. Because 𝑇 ′ is mapped to NC , it helps enforce CONTEXTBINDING.

To summarize, the DPG captures the necessary semantics to successfully restore ORIG-

INBINDING and CONTEXTBINDING.

3.3.5 Encoding tags in headers

In practice, we need to embed the tag value in a finite number of packet-header bits. IPv6

has a 20-bit Flow Label field, which seems ideal for this use (thus answering the question

“how should we use the flow-label field?” [66]). For our current IPv4 prototype and testbed,

we used the 6-bit DS field (part of the 8-bit ToS), which sufficed for our scenarios. To

62

deploy FlowTags on large-scale IPv4 networks, we would need to borrow bits from fields

that are not otherwise used. For example, if VLANs are not used, we can use the 12-bit

VLAN Identifier field. Or, if all traffic sets the DF (Don’t Fragment) IP Flag, which is

typical because of Path MTU Discovery, the 16-bit IP_ID field is available.3

Next, we discuss how to use these bits as efficiently as possible; §3.4 reports on some

analysis of how many bits might be needed in practice.

As discussed earlier, tags restore ORIGINBINDING and CONTEXTBINDING. Concep-

tually, we need to be able to distinguish every located packet—i.e., the combination of

all flows and all possible paths in the DPG. Thus, a simple upper bound on the number

of bits in each packet to distinguish between |Flows| flows and |DPGPaths| processing

paths is: log2 |Flows|+ log2 |DPGPaths|, where Flows is the set of IP flows (for ORIGIN-

BINDING), and DPGPaths is the set of possible paths a packet could traverse in DPG (for

CONTEXTBINDING). However, this grows log-linearly in the number of flows over time

and the number of paths (which could be exponential w.r.t. the graph size). This motivates

optimizations to reduce the number of header bits necessary:

∙Coarser tags: For many middlebox management tasks, it may suffice to use a tag to

identify the logical traffic class (e.g., “CS Dept User”) and the local middlebox context

(e.g., 1 bit for cache hit or miss or 1 bit for “suspicious”), rather than individual IP flows.

∙Temporal reuse: We reuse the tag assigned to a flow after the flow expires; we detect

expiration via explicit flow termination, or via timeouts [141]. The controller tracks

active tags and finds an unused value for a new tag.

∙Spatial reuse: To address ORIGINBINDING, we only need to ensure that the new tag

does not conflict with tags already assigned to currently active flows at the middle-

box to which this packet is destined. For CONTEXTBINDING, we only need: (1) cap-

ture the most recent edge on the CDPG rather than the entire path (i.e., reducing from

|DPGPaths| to the node degree); and (2) ensure that the switches on the path have no

ambiguity in the forwarding decision w.r.t. other active flows.

Putting it Together: Our design is a reactive controller that responds to
3IP_ID isn’t part of the current OpenFlow spec; but it can be supported with support for flexible match

options [38, 75].

63

OFPT_PACKET_IN, FT_CONSUME_QRY, and FT_GENERATE_QRY events from the

switches and the middleboxes.

Initialization: Given an input CDPG, we generate a data plane realization 𝐶𝐷𝑃𝐺𝐼𝑚𝑝𝑙;

i.e., for each logical middlebox m we need to identify candidate physical middlebox in-

stances and for each edge in CDPG we find a switch-level path between corresponding

physical middleboxes. This translation should also take into account considerations such

as load balancing across middleboxes and resource constraints (e.g., switch TCAM, link

capacity). While FlowTags is agnostic to the specific realization, we currently use SIM-

PLE [158], mostly because of our familiarity with the system. (This procedure only needs

to run when the 𝐶𝐷𝑃𝐺 itself changes or in case of network topology change, not per flow

arrival.)

Middlebox event handlers: For each physical middlebox instance PM i , the controller

maintains two FlowTags tables: CtrlInTagsTable i and the CtrlOutTagsTable i . The

CtrlInTagsTable i maintains the tags corresponding to all active flows incoming into this

middlebox and maintains a table of entries {𝑇 → OrigHdr}. The CtrlOutTagsTable i

tracks the tags that need to be assigned to outgoing flows and maintains a table of entries

{⟨𝑇,NC ⟩ → 𝑇 ′}, where 𝑇 is the tag for the incoming packet, NC captures the relevant

middlebox context for this flow (e.g., cache hit/miss), and 𝑇 ′ is the output tag to be added.

At bootstrap time, these structures are initialized to be empty.

The HANDLE_FT_CONSUME_QRY looks up the entry for tag 𝑇 in the

CtrlInTagsTable i and sends the mapping to PM i . As we will see in the next section,

middleboxes keep these entries in a FlowTable-like structure to avoid lookups for subse-

quent packets. The HANDLE_FT_GENERATE_QRY is slightly more involved, as it needs

the relevant middlebox context NC . Given this context, the 𝐶𝐷𝑃𝐺, and the 𝐶𝐷𝑃𝐺𝐼𝑚𝑝𝑙,

the controller identifies the next hop physical middlebox PM i ′ for this packet. It also de-

termines a non-conflicting 𝑇 ′ using the logic from §3.3.5.

Switch and flow expiry handlers: The handlers for OFPT_PACKET_IN are similar

to traditional OpenFlow handlers; the only exception is that we use the incoming tag to

determine the forwarding entry. When a flow expires, we trace the path this flow took and,

for each PM i , delete the entries in CtrlInTagsTable i and CtrlOutTagsTable i , so that these

64

tags can be repurposed.

3.3.6 FlowTags-enhanced middleboxes

As discussed in the previous sections, FlowTags requires middlebox support. We begin by

discussing two candidate design choices for extending a middlebox to support FlowTags.

Then, we describe the conceptual operation of a FlowTags-enhanced middlebox. We con-

clude this section by summarizing our experiences in extending five software middleboxes.

Extending Middleboxes: We consider two possible ways to extend middlebox software

to support FlowTags:

∙Module modification: The first option is to modify specific internal functions of the

middlebox to consume and generate the tags. For instance, consider an IDS with the

scan detection module. Module modification entails patching this scan detection logic

with hooks to translate the incoming packet headers+tag to the OrigHdr and to rewrite

the scan detection logic to use OrigHdr . Similarly, for generation, we modify the output

modules to provide the relevant context as part of the FT_GENERATE_QRY.

∙Packet rewriting: A second option is to add a lightweight shim module that interposes

on the incoming and outgoing packets to rewrite the packet headers. For consumption,

this means we modify the packet headers so that the middlebox only sees a packet with

the true OrigHdr . For generation, this means that the middlebox proceeds as-is and then

the shim adds the tag before the packet is sent out.

In both cases, the administrator sets up the middlebox configuration (e.g., IDS rules)

as if there were no packet modifications induced by the upstream middleboxes because

FlowTags preserves the binding between the packet’s modified header and the OrigHdr .

For consumption, we prefer packet rewriting because it generalizes to the case where

each middlebox has multiple “consumer” modules; e.g., an IDS may apply scan detection

and signature-based rules. For generation, however, packet rewriting may not be sufficient,

as the shim may not have the necessary visibility into the middlebox context; e.g., in the

proxy cache hit/miss case. Thus, we use module modification in this case.

End-to-end view: Figure 3-9 shows a simplified view of a FlowTags-enhanced middlebox.

In general, consumption precedes generation. The reason is that the packet’s current tag

65

Consumption Processing Generation
MBInTagsTable:-
Tag-!-OrigHdr-

MBOutTagsTable:-
<Tag,Context>-!-NewTag-

Process packet

Rewrite Pkt
with OrigHdr

N

Y

FT_CONSUME_QRY

Match in
InTagsTable?

Dropped?

Y

Match in
OutTagsTable?

FT_GENERATE_QRY

Add new Tag

N

Y

Send
packet

Receive
packet

Conf-w.r.t--
OrigHdrs-

N
Wait-

Wait-

Figure 3-9: We choose a hybrid design where the “consumption” side uses the packet
rewriting and the “generation” uses the module modification option.

can affect the specific middlebox code paths, and thus impacts the eventual outgoing tags.

Mirroring the controller’s CtrlInTagsTable i and CtrlOutTagsTable i , each physical

middlebox i maintains the tag rules in the MBInTagsTable i and MBOutTagsTable i .

When a packet arrives, it first checks if the tag value in the packet already matches an ex-

isting tag-mapping rule in MBInTagsTable i . If there is a match, we rewrite packet headers

(see above) so that the processing modules act as if they were operating on OrigHdr . If

there is a MBInTagsTable i miss, the middlebox sends a FT_CONSUME_QRY, buffers the

packet locally, and waits for the controller’s response.

Note that the tags are logically propagated through the processing contexts (not shown

for clarity). For example, most middleboxes follow a connection-oriented model with a

data structure maintaining per-flow or per-connection state; we augment this structure to

propagate the tag value. Thus, we can causally relate an outgoing packet (e.g., a NAT-ed

packet or a proxy cached response) to an incoming packet.

When a specific middlebox function or module is about to send a packet forward, it

checks the MBOutTagsTable i to add the outgoing tag value. If there is a miss then it

sends the FT_GENERATE_QRY, providing the necessary module-specific context and the

tag (from the connection data structure) for the incoming packet that caused this outgoing

packet to be generated.

Experiences in extending middleboxes: Given this high-level view, next we describe

our experiences in modifying five software middleboxes that span a broad spectrum of

management functions. (Our choice was admittedly constrained by the availability of the

middlebox source code.) Table 3.2 summarizes the middleboxes and the modifications

66

Name, Role Modified, Total
LOC

Key Modules Data Structures

Squid [49], Proxy 75, 216K Client and Server Side Connection,
Forward, Cache Lookup

Request Table

Snort [48], IDS/IPS 45, 336K Decode, Detect, Encode Verdict
Balance [8], Load
Balancer

60, 2K Client and Server Connections n/a

PRADS [41], Monitoring 25, 15K Decode n/a
iptables [26], NAT 55, 42K PREROUTING, POSTROUTING Conn Map

Table 3.2: Summary of the middleboxes we have added FlowTags support to with
the number of lines of code and the main modules to be updated. We use a common
library (≈ 250 lines) that implements routines for communicating to the controller.

necessary.

Our current approach to extend middleboxes is semi-manual and involved a combina-

tion of call graph analysis [29, 56] and traffic injection and logging techniques [10, 23, 25,

51]. Based on these heuristics, we identify the suitable “chokepoints" to add the Flow-

Tags logic. Developing techniques to automatically extend middleboxes is an interesting

direction for future work.

∙Squid: Squid [49] is a popular proxy/cache. We modified the functions in charge of

communicating with the client, remote server, and those handling cache lookup. We

used the packet modification shim for incoming packets and apply module modification

to handle the possible packet output cases based on cache hit and miss events.

∙Snort: Snort [48] is an IDS/IPS that provides many functions—logging, packet inspec-

tion, packet filtering, and scan detection. Similar to Squid, we applied the packet rewrit-

ing step for tag consumption and module modification for tag generation as follows.

When a packet is processed and a “verdict” (e.g., OK vs. alarm) is issued, the tag value

is generated based on the type of the event (e.g., outcome of a matched alert rule).

∙Balance: Balance [8] is a TCP-level load balancer that distributes incoming TCP connec-

tions over a given a set of destinations (i.e., servers). In this case, we simply read/write

the tag bits in the header fields.

∙PRADS: PRADS [41] is passive monitor that gathers traffic information and infers what

hosts and services exist in the network. Since this is a passive device, we only need the

packet rewriting step to restore the (modified) packet’s OrigHdr .

∙NAT via iptables: We have registered appropriate tagging functions with iptables [26]

67

hook points while configured as a source NAT such that it maintains 5-tuple visibility

via tagging. We added hooks for tag consumption and tag generation into the PRE-

ROUTING and the POSTROUTING chains, which are, respectively, the input and output

checkpoints.

3.3.7 Implementation

We implement the FlowTags controller as a POX module [40]. The CtrlInTagsTable i and

CtrlOutTagsTable i are implemented as hash-maps. For memory efficiency and fast look

up of available tags, we maintain an auxiliary bitvector of the active tags for each middlebox

and switch interface; e.g., if we have 16-bit tags, we maintain a 216 bit vector and choose the

first available bit, using a log-time algorithm [71]. We also implement simple optimizations

to precompute shortest paths for every pair of physical middleboxes.

3.4 Evaluation
We address the following questions regarding the performance and scalability of FlowTags:

∙Q1: What overhead does supporting FlowTags add to middlebox processing?

∙Q2: Is the FlowTags controller fast and scalable?

∙Q3: What is the overhead over traditional SDN in a FlowTags-enhanced network?

∙Q4: How many tag bits do we need in practice?

Setup: For the microbenchmarks (Q1 and Q2), we run each middlebox and POX controller

in isolation on a single core in a 32-core 2.6 Ghz Xeon server with 64 GB RAM. For the

end-to-end experiments (Q3), we use Mininet [32] on the same server configured to use

24 cores and 32 GB RAM to model the network switches and hosts. We augment Mininet

with middleboxes running as external virtual appliances. Each middlebox runs as a VM

configured with 2GB memory on one CPU core. (The number of middlebox instances

is limited to 28 due to the maximum number of PCI interfaces that can be plugged-in

using KVM [31]). We emulate the example topologies from §3.1 and larger PoP-level ISP

topologies from RocketFuel [169]. Our default DPG has an average path length of 3.

Q1 Middlebox overhead: We configure each middlebox to run with the default configu-

ration. We vary the offered load (up to 100 Mbps) and measure the per-packet processing

68

Topology
(#nodes)

Baseline
(ms)

Optimized
(ms)

Abilene (11) 0.037 0.024
Geant (22) 0.066 0.025
Telstra (44) 0.137 0.026
Sprint (52) 0.161 0.027
Verizon (70) 0.212 0.028
ATT (115) 0.325 0.028

Table 3.3: Time to run HANDLE_FT_GENERATE_QRY.

latency. Overall, the overhead was low (<1%) and independent of the offered load (not

shown). We also analyzed the additional memory and CPU usage using atop and it was

< 0.5% across all experiments (not shown).

Q2 Controller scalability: Table 3.3 shows the running time for the

HANDLE_FT_GENERATE_QRY. (This is the most complex FlowTags processing

step; other functions take negligible time.) The time is linear as a function of topology

size with the baseline algorithms but almost constant with the optimization to pre-compute

reachability information. This implies that a single-thread POX controller can handle
1

0.028ms
≈ 35𝐾 middlebox queries per second (more than three times larger than the peak

number of flows per second reported in [81]).

We also varied the DPG complexity along three axes: number of nodes, node degrees,

and distance between adjacent DPG nodes in terms of number of switches. With route

precomputation, the controller processing time is independent of the DPG complexity (not

shown).

Q3 End-to-end overhead: Figure 3-10 shows the breakdown of different components of

the flow setup time in a FlowTags-enhanced network (i.e., mirroring the steps in Figure 3-

7) for different Rocketfuel topologies. Since our goal is to compare the FlowTags vs. SDN

operations, we do not show round-trip times to the controller here, as it is deployment-

specific [112]. (FlowTags adds 1 more RTT per-middlebox, but this can be avoided by

pre-fetching rules for the switches and middleboxes.) Since the values are close to the

average, we do not show error bars. We can see that the FlowTags operations add negligible

overhead. In fact, the middlebox tag processing is so small that it might be hard to see in

the figure.

We also measure the reduction in TCP throughput a flow experiences in a FlowTags-

69

Figure 3-10: Breakdown of flow processing time in different topologies (annotated
with #nodes).

Flow size (pkts) Reduction in throughput %
1ms
RTT

10ms RTT 20ms RTT

2 12 16.2 22.7
8 2.1 2.8 3.8
32 1.6 2.3 3.0
64 1.5 2.1 2.9

Table 3.4: Reduction in TCP throughput with FlowTags relative to a pure SDN net-
work.

enhanced network compared to a traditional SDN network with middleboxes (but without

FlowTags). We vary two parameters: (1) controller RTT and (2) the number of packets

per flow. As we can see in Table 3.4, except for very small flows (2 pkts), the throughput

reduction is <4%.

Q4 Number of tag bits: To analyze the benefits of the spatial and temporal reuse, we

consider the worst-case where we want to diagnose each IP flow. We use packet traces from

CAIDA (Chicago and San Jose traces, 2013 [12]) and a flow-level enterprise trace [57]. We

simulate the traces across the RocketFuel topologies, using a gravity model to map flows

to ingress/egress nodes [169].

Table 3.5 shows the number of bits necessary with different reuse strategies on the

AT&T topology.4 The results are similar across other topologies (not shown). We see that

temporal reuse offers the most reduction. Spatial reuse helps only a little; this is because

with gravity model workload, there is typically a “hotspot” with many concurrent flows.

4Even though the #flows is different across traces, the #bits is identical, as the values of ceil of log2 of the

#flows is the same.

70

Configuration Number of bits
(spatial, temporal) CAIDA trace Enterprise trace
No spatial; 30 sec 22 22
Spatial; 30 sec 20 20
Spatial; 10 sec 18 18
Spatial; 5 sec 17 17
Spatial; 1 sec 14 14

Table 3.5: Effect of spatial and temporal reuse of tags.

To put this in the context of §3.3.5, using the <Spatial, 1 sec> configuration, tags can fit in

the IPv6 FlowLabel, and would fit in the IPv4 IP_ID field.

3.5 Case study: FlowTags as an enabler for flexible and

elastic DDoS defense
While in the context of this thesis FlowTags is used to expose hidden traffic processing

context to enable testing context-dependent policies, the ability to explicitly capture con-

text turns out to be an enabler for building more flexible policy enforcement frameworks.

To demonstrate this, here we briefly present how we have employed FlowTags to build a

flexible and elastic DDoS defense system called Bohatei [95]. (In addition to Bohatei, we

have also used FlowTags to build a scalable enterprise network security framework called

PSI [181].)

In spite of extensive industrial and academic efforts (e.g., [4, 143, 146]), distributed

denial-of-service (DDoS) attacks continue to plague the Internet. Over the last few years,

we have observed a dramatic escalation in the number, scale, and diversity of DDoS attacks.

For instance, recent estimates suggest that over 20,000 DDoS attacks occur per day [151],

with peak volumes of 0.5 Tbps [35,87]. At the same time, new vectors [122,171] and varia-

tions of known attacks [163] are constantly emerging. The damage that these DDoS attacks

cause to organizations is well-known and include both monetary losses (e.g., $40,000 per

hour [24]) and loss of customer trust.

DDoS defense today is implemented using expensive and proprietary hardware appli-

ances (deployed in-house or in the cloud [16, 42]) that are fixed in terms of placement,

functionality, and capacity. First, they are typically deployed at fixed network aggregation

points (e.g., a peering edge link of an ISP). Second, they provide fixed functionality with

71

respect to the types of DDoS attacks they can handle. Third, they have a fixed capacity

with respect to the maximum volume of traffic they can process. This fixed nature of to-

day’s approach leaves network operators with two unpleasant options: (1) to overprovision

by deploying defense appliances that can handle a high (but pre-defined) volume of every

known attack type at each of the aggregation points, or (2) to deploy a smaller number

of defense appliances at a central location (e.g., a scrubbing center) and reroute traffic to

this location. While option (2) might be more cost-effective, it raises two other challenges.

First, operators run the risk of underprovisioning. Second, traffic needs to be explicitly

routed through a fixed central location, which introduces additional traffic latency and re-

quires complex routing hacks (e.g., [173]). Either way, handling larger volumes or new

types of attacks typically mandates purchasing and deploying new hardware appliances.

Ideally, a DDoS defense architecture should provide the flexibility to seamlessly place

defense mechanisms where they are needed and the elasticity to launch defenses as needed

depending on the type and scale of the attack. We observe that similar problems in

other areas of network management have been tackled by taking advantage of two new

paradigms: software-defined networking (SDN) [108, 141] and network functions virtual-

ization (NFV) [150]. SDN simplifies routing by decoupling the control plane (i.e., routing

policy) from the data plane (i.e., switches). In parallel, the use of virtualized network func-

tions via NFV reduces cost and enables elastic scaling and reduced time-to-deploy akin

to cloud computing [150]. These potential benefits have led major industry players (e.g.,

Verizon, AT&T) to embrace SDN and NFV [5, 7, 36, 58].5

Next, we briefly highlight new opportunities that SDN and NFV can enable for DDoS

defense.

Lower capital costs: Current DDoS defense is based on specialized hardware appliances

(e.g., [4, 44]). Network operators either deploy them on-premises, or outsource DDoS

defense to a remote packet scrubbing site (e.g., [16]). In either case, DDoS defense is

expensive. For instance, based on public estimates from the General Services Administra-

tion (GSA) Schedule, a 10 Gbps DDoS defense appliance costs ≈$128,000 [21]. To put

5To quote the SEVP of AT&T: “To say that we are both feet in [on SDN] would be an understatement.

We are literally all in [5].”

72

this in context, a commodity server with a 10 Gbps Network Interface Card (NIC) costs

about $3,000 [17]. This suggests roughly 1-2 orders of magnitude potential reduction in

capital expenses (ignoring software and development costs) by moving from specialized

appliances to commodity hardware.6

Time to market: As new and larger attacks emerge, enterprises today need to frequently

purchase more capable hardware appliances and integrate them into the network infras-

tructure. This is an expensive and tedious process [150]. In contrast, launching a VM

customized for a new type of attack, or launching more VMs to handle larger-scale attacks,

is trivial using SDN and NFV.

Elasticity with respect to attack volume: Today, DDoS defense appliances deployed

at network chokepoints need to be provisioned to handle a predefined maximum attack

volume. As an illustrative example, consider an enterprise network where a DDoS scrubber

appliance is deployed at each ingress point. Suppose the projected resource footprint (i.e.,

defense resource usage over time) to defend against a SYN flood attack at times 𝑡1, 𝑡2,

and 𝑡3 is 40, 80, and 10 Gbps, respectively.7 The total resource footprint over this entire

time period is 3 × 𝑚𝑎𝑥{40, 80, 10} = 240 Gbps, as we need to provision for the worst

case. However, if we could elastically scale the defense capacity, we would only introduce

a resource footprint of 40 + 80 + 10 = 130 Gbps—a 45% reduction in defense resource

footprint. This reduced hardware footprint can yield energy savings and allow ISPs to

repurpose the hardware for other services.

Flexibility with respect to attack types: Building on the above example, suppose in

addition to the SYN flood attack, the projected resource footprint for a DNS amplification

attack in time intervals 𝑡1, 𝑡2, and 𝑡3 is 20, 40, and 80 Gbps, respectively. Launching only

the required types of defense VMs as opposed to using monolithic appliances (which handle

both attacks), drops the hardware footprint by 40%; i.e., from 3 × (𝑚𝑎𝑥{40, 80, 10} +

𝑚𝑎𝑥{20, 40, 80}) = 480 to 270.

Flexibility with respect to vendors: Today, network operators are locked-in to the defense

6Operational expenses are harder to compare due to the lack of publicly available data.
7For brevity, we use the traffic volume as a proxy for the memory consumption and CPU cycles required

to handle the traffic.

73

A" C"

B"

DDoS"defense"
appliance"

traffic&inefficiency&

flow1"

flow2"

traffic"footprint"given"
hardware"appliance=3"hops"

traffic"footprint"given""
elas>c"scaling=2"hops"

A" C"

B"

VM"
VM"
VM"

VM"
VM"
VM"

flow1"

flow2"

Figure 3-11: DDoS defense routing efficiency enabled by SDN and NFV.

capabilities offered by specific vendors. In contrast, with SDN and NFV, they can launch

appropriate best-of-breed defenses. For example, suppose vendor 1 is better for SYN flood

defense, but vendor 2 is better for DNS flood defense. The physical constraints today

may force an ISP to pick only one hardware appliance. With SDN/NFV we can avoid the

undesirable situation of picking only one vendor and rather have a deployment with both

types of VMs each for a certain type of attack. Looking even further, we also envision that

network operators can mix and match capabilities from different vendors; e.g., if vendor 1

has better detection capabilities but vendor 2’s blocking algorithm is more effective, then

we can flexibly combine these two to create a more powerful defense platform.

Simplified and efficient routing: Network operators today need to employ complex rout-

ing hacks (e.g., [173]) to steer traffic through a fixed-location DDoS hardware appliance

(deployed either on-premises or in a remote site). As Figure 3-11 illustrates, this causes

additional latency. Consider two end-to-end flows 𝑓𝑙𝑜𝑤1 and 𝑓𝑙𝑜𝑤2. Way-pointing 𝑓𝑙𝑜𝑤2

through the appliance (the left hand side of the figure) makes the total path lengths 3 hops.

But if we could launch VMs where they are needed (the right hand side of the figure), we

could drop the total path lengths to 2 hops—a 33% decrease in traffic footprint. Using NFV

we can launch defense VMs on the closest location to where they are currently needed, and

using SDN we can flexibly route traffic through them.

In summary, we observe new opportunities to build a flexible and elastic DDoS defense

mechanism via SDN/NFV. In the next section, we highlight the challenges in realizing

these benefits.

Deployment scenario: For concreteness, we focus on an ISP-centric deployment model,

where an ISP offers DDoS-defense-as-a-service to its customers. Note that several ISPs

already have such commercial offerings (e.g., [6]). We envision different monetization

74

Strategy		

legit.	traffic
�

traffic	path	
set	up	

ISP�

a0ack
	traffic�

DC2�DC1�

customer	

defense	policy	library	

Resource	manager	

es,ma,on	of	volume	
of	suspicious	traffic	
of	each	a4ack	type	
at	each	ingress	

OrchestraBon	

quan,ty	and	
loca,on	of	VMs	

VM	
VM	
VM	

suspicious	
traffic	

specificaBon	 <A1,	Defense	Graph1>	
…	

<An,	Defense	Graphn>	

legit.	traffic	

VM	
VM	
VM	

Bohatei	global	
SDN	controller	
Bohatei	local		
SDN	controller	

Figure 3-12: Bohatei system overview and workflow. Scalable orchestration is enabled
by FlowTags in-data plane tag-based traffic forwarding.

avenues. For example, an ISP can offer a value-added security service to its customers

that can replace the customers’ in-house DDoS defense hardware. Alternatively, the ISP

can allow its customers to use Bohatei as a cloudbursting option when the attack exceeds

the customers’ on-premise hardware. While we describe our work in an ISP setting, our

ideas are general and can be applied to other deployment models; e.g., CDN-based DDoS

defense or deployments inside cloud providers [42].

In addition to traditional backbone routers and interconnecting links, we envision the

ISP has deployed multiple datacenters as shown in Figure 3-12. Note that this is not a new

requirement; ISPs already have several in-network datacenters and are planning additional

rollouts in the near future [36, 58]. Each datacenter has commodity hardware servers and

can run standard virtualized network functions [155].

Threat model: We focus on a general DDoS threat against the victim, who is a customer

of the ISP. The adversary’s aim is to exhaust the network bandwidth of the victim. The

adversary can flexibly choose from a set of candidate attacks AttackSet = {Aa}a . As a

concrete starting point, we consider the following types of DDoS attacks: TCP SYN flood,

UDP flood, DNS amplification, and elephant flow. We assume the adversary controls a

large number of bots, but the total budget in terms of the maximum volume of attack traffic

it can launch at any given time is fixed. Given the budget, the adversary has a complete

control over the choice of (1) type and mix of attacks from the AttackSet (e.g., 60% SYN

75

check%UDP%%
count%of%src%

forward%to%
customer!

log%

rate%limit%

tag!==!a&ack!traffic&

Figure 3-13: A sample defense against UDP flood.

and 40% DNS) and (2) the set of ISP ingress locations at which the attack traffic enters

the ISP. For instance, a simple adversary may launch a single fixed attack Aa arriving at a

single ingress, while an advanced adversary may choose a mix of various attack types and

multiple ingresses. For clarity, we restrict our presentation to focus on a single customer

noting that it is straightforward to extend our design to support multiple customers.

Defenses: We assume the ISP has a pre-defined library of defenses specifying a defense

strategy for each attack type. For each attack type Aa , the defense strategy is specified

as a directed acyclic graph DAGa representing a typical multi-stage attack analysis and

mitigation procedure. Each node of the graph represents a logical module and the edges

are tagged with the result of the previous nodes processing (e.g., “benign” or “attack” or

“analyze further”). Each logical node will be realized by one (or more) virtual appliance(s)

depending on the attack volume. Figure 3-13 shows an example strategy graph with 4

modules used for defending against a UDP flood attack. Here, the first module tracks the

number of UDP packets each source sends and performs a simple threshold-based check to

decide whether the source needs to be let through or throttled.

Our goal here is not to develop new defense algorithms but to develop the system or-

chestration capabilities to enable flexible and elastic defense. As such, we assume the

DAGs have been provided by domain experts, DDoS defense vendors, or by consulting

best practices.

3.5.1 System design

The workflow of Bohatei has four steps (see Figure 3-12):

1. Attack detection: We assume the ISP uses some out-of-band anomaly detection tech-

nique to flag whether a customer is under a DDoS attack [72]. The design of this

detection algorithm is outside the scope of Bohatei. The detection algorithm gives a

76

coarse-grained specification of the suspicious traffic, indicating the customer under at-

tack and some coarse identifications of the type and sources of the attack; e.g., “srcpre-

fix=*,dstprefix=cust,type=SYN”.

2. Attack estimation: Once suspicious traffic is detected, the strategy module estimates the

volume of suspicious traffic of each attack type arriving at each ingress.

3. Resource management: The resource manager then uses these estimates as well as the

library of defenses to determine the type, number, and the location of defense VMs that

need to be instantiated. The goal of the resource manager is to efficiently assign available

network resources to the defense while minimizing user-perceived latency and network

congestion.

4. Network orchestration: Finally, the network orchestration module sets up the required

network forwarding rules to steer suspicious traffic to the defense VMs as mandated by

the resource manager.

Given this workflow, we highlight the three challenges we need to address to realize

our vision:

C1. Responsive resource management: We need an efficient way of assigning the ISP’s

available compute and network resources to DDoS defense. Specifically, we need to decide

how many VMs of each type to run on each server of each datacenter location so that attack

traffic is handled properly while minimizing the latency experienced by legitimate traffic.

Doing so in a responsive manner (e.g., within tens of seconds), however, is challenging.

Specifically, this entails solving a large NP-hard optimization problem, which can take

several hours to solve even with state-of-the-art solvers.

C2. Scalable network orchestration: The canonical view in SDN is to set up switch for-

warding rules in a per-flow and reactive manner [141]. That is, every time a switch receives

a flow for which it does not have a forwarding entry, the switch queries the SDN controller

to get the forwarding rule. Unfortunately, this per-flow and reactive paradigm is fundamen-

tally unsuitable for DDoS defense. First, an adversary can easily saturate the control plane

bandwidth as well as the controller compute resources [168]. Second, installing per-flow

rules on the switches will quickly exhaust the limited rule space (≈4K TCAM rules). Note

77

that unlike traffic engineering applications of SDN [115], coarse-grained IP prefix-based

forwarding policies would not suffice in the context of DDoS defense, as we cannot predict

the IP prefixes of future attack traffic.

C3. Dynamic adversaries: Consider a dynamic adversary who can rapidly change the

attack mix (i.e., attack type, volume, and ingress point). This behavior can make the ISP

choose between two undesirable choices: (1) wasting compute resources by overprovision-

ing for attack scenarios that may not ever arrive, (2) not instantiating the required defenses

(to save resources), which will let attack traffic reach the customer.

Here we only highlight our key idea to address C2, as the solution to that is directly

enabled by FlowTags (to see the ideas to address the other challenges, refer to [95]).

3.5.2 Scalable network orchestration using FlowTags

To address C2, we design a scalable orchestration mechanism using two key ideas. First,

switch forwarding rules are based on per-VM tags rather than per-flow to dramatically

reduce the size of the forwarding tables. Second, we proactively configure the switches to

eliminate frequent interactions between the switches and the control plane [141].

Given the outputs of the resource manager module (i.e., assignment of datacenters to

incoming suspicious traffic and assignment of servers to defense VMs), the role of the

network orchestration module is to configure the network to implement these decisions.

This includes setting up forwarding rules in the ISP backbone and inside the datacenters.

The main requirement is scalability in the presence of attack traffic. In this section, we

present our tag-based and proactive forwarding approach to address the limitations of the

per-flow and reactive SDN approach.

The canonical SDN view of setting up switch forwarding rules in a per-flow and reactive

manner is not suitable in the presence of DDoS attacks. Furthermore, there are practical

scalability and deployability concerns with using SDN in ISP backbones [54, 82]. There

are two main ideas in our approach to address these limitations:

∙Following the hierarchical decomposition in resource management, we also decompose

the network orchestration problem into two-sub-problems: (1) Wide-area routing to get

traffic to datacenters, and (2) Intra-datacenter routing to get traffic to the right VM in-

78

stances. This decomposition allows us to use different network-layer techniques; e.g.,

SDN is more suitable inside the datacenter while traditional MPLS-style routing is better

suited for wide-area routing.

∙ Instead of the controller reacting to each flow arrival, we proactively install forwarding

rules before traffic arrives. Since we do not know the specific IP-level suspicious flows

that will arrive in the future, we use logical tag-based forwarding rules with per-VM tags

instead of per-flow rules.

Wide-area orchestration: The Bohatei global controller sets up forwarding rules on back-

bone routers so that traffic detected as suspicious is steered from edge PoPs to datacenters

(the specific type and amount of traffic to transfer from each edge PoP to each datacenter

is determined by a resource management algorithm that we do not discuss here— see [95]

for details).

To avoid a forklift upgrade of the ISP backbone and enable an immediate adoption

of Bohatei, we use traditional tunneling mechanisms in the backbone (e.g., MPLS or IP

tunneling). We proactively set up static tunnels from each edge PoP to each datacenter.

Once the global controller has solved the DSP problem, the controller configures backbone

routers to split the traffic according to the fe,a,d values. While our design is not tied to

any specific tunneling scheme, the widespread use of MPLS and IP tunneling make them

natural candidates [115].

Intra-datacenter orchestration: Inside each datacenter, the traffic needs to be steered

through the intended sequence of VMs. There are two main considerations here:

1. The next VM a packet needs to be sent to depends on the context of the current VM. For

example, the node check UDP count of src in the graph shown in Figure 3-13 may send

traffic to either forward to customer or log depending on its analysis outcome.

2. With elastic scaling, we may instantiate several physical VMs for each logical node

depending on the demand. Conceptually, we need a “load balancer” at every level of

our annotated graph to distribute traffic across different VM instances of a given logical

node.

Note that we can trivially address both requirements using a per-flow and reactive so-

79

A1,1�

R1,1�

A2,1�

SW#Forwarding#Table�
Flow� outPort�
Flow1� Port-2�
Flow2� Port-2�
…�
Flow1000� Port-3�

SW�

Flow1�
Flow2�

Flow1000�

…
�

Tag� outPort�
1� Port-2�
2� Port-3�

SW#Forwarding#Table#VM#A1,1#Tag#Table�
Context� Tag�
Benign� 1�
A8ack� 2�

without#tagging# using#tagging#

port-1�

Figure 3-14: Context-dependent forwarding using tags.

lution. Specifically, a local controller can track a packet as it traverses the physical graph,

obtain the relevant context information from each VM, and determine the next VM to route

the traffic to. However, this approach is clearly not scalable and can introduce avenues

for new attacks. The challenge here is to meet these requirements without incurring the

overhead of this per-flow and reactive approach.

Encoding processing context: Instead of having the controller track the context, our high-

level idea is to encode the necessary context as tags inside packet headers [92]. Consider

the example shown in Figure 3-14 composed of VMs 𝐴1,1, 𝐴2,1, and 𝑅1,1. 𝐴1,1 encodes the

processing context of outgoing traffic as tag values embedded in its outgoing packets (i.e.,

tag values 1 and 2 denote benign and attack traffic, respectively). The switch then uses this

tag value to forward each packet to the correct next VM.

Tag-based forwarding addresses the control channel bottleneck and switch rule explo-

sion. First, the tag generation and tag-based forwarding behavior of each VM and switch is

configured proactively once the local controller has solved the SSP. We proactively assign

a tag for each VM and populate forwarding rules before flows arrive; e.g., in Figure 3-14,

the tag table of 𝐴1,1 and the forwarding table of the router have been already populated as

shown. Second, this reduces router forwarding rules as illustrated in Figure 3-14. Without

tagging, there will be one rule for each of the 1000 flows. Using tag-based forwarding, we

achieve the same forwarding behavior using only two forwarding rules.

Scale-out load balancing: One could interconnect VMs of the same physical graph as

shown in Figure 3-15a using a dedicated load balancer (load balancer). However, such a

load balancer may itself become a bottleneck, as it is on the path of every packet from any

80

A1,1�

R1,1�

R1,2�

R1,3�

LB�
A1,2�

(a) A naive load balancer
design.

A2,1�

R1,1�

R1,2�

port*3�

Tag�outPort�
1� Port*2�
2� Port*3�
3� Port*4�

Context� Tag�
Benign� 1�
A3ack� {2,*3}�

VM*A1,2*Tag*Table�
SW*Forwarding*Table�

Context�Tag�
Benign� 1�
A3ack� {2,3}�

VM*A1,1*Tag*Table�

SW�

LB1,1�A1,1*

LB1,2�A1,2*

(b) A distributed load balancer design.

Figure 3-15: Different load balancer design points.

VM in the set {𝐴1,1, 𝐴1,2} to any VM in the set {𝑅1,1, 𝑅1,2, , 𝑅1,3}. To circumvent this

problem, we implement the distribution strategy inside each VM so that the load balancer

capability scales proportional to the current number of VMs. Consider the example shown

in Figure 3-15b where due to an increase in attack traffic volume we have added one more

VM of type 𝐴1 (denoted by 𝐴1,2) and one more VM of type 𝑅1 (denoted by 𝑅1,2). To

load balance traffic between the two VMs of type 𝑅1, the load balancer of 𝐴1 VMs (shown

as 𝐿𝐵1,1 and 𝐿𝐵1,2 in the figure) pick a tag value from a tag pool (shown by {2,3} in

the figure) based on the processing context of the outgoing packet and the intended load

balancing scheme (e.g., uniformly at random to distribute load equally). Note that this tag

pool is pre-populated by the local controller (given the defense library and the output of the

resource manager module). This scheme, thus, satisfies the load balancing requirement in

a scalable manner.

Other issues: There are two remaining practical issues:

∙Number of tag bits: We give a simple upper bound on the required number of bits to

encode tags. First, to support context-dependent forwarding out of a VM with 𝑘 relevant

contexts, we need 𝑘 distinct tag values. Second. to support load balancing among 𝑙 VMs

of the same logical type, each VM needs to be populated with a tag pool including 𝑙

tags. Thus, at each VM we need at most 𝑘 × 𝑙 distinct tag values. Therefore, an upper

bound on the total number of unique tag values is 𝑘𝑚𝑎𝑥 × 𝑙𝑚𝑎𝑥 ×
∑︀
a

| V annotated
a |,

where 𝑘𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥 are the maximum number of contexts and VMs of the same type

in a graph, and V annotated
a is the set of vertices of annotated graph for attack type a. To

81

0
100
200
300
400
500
600

 0 50 100 150 200

S
w

itc
h

pe
r-

flo
w

se
t-u

p
la

te
nc

y
(m

s)

Number of attack flows per second (∗1000)

Bohatei
Reactive control

Figure 3-16: Bohatei control plane scalability.

make this concrete, in our experiments (described in [95]) the maximum value required

tags was 800, that can be encoded in ⌈𝑙𝑜𝑔2(800)⌉ = 10 bits. In practice, this tag space

requirement of Bohatei can be easily satisfied given that datacenter grade networking

platforms already have extensible header fields [128].

∙Bidirectional processing: Some logical modules may have bidirectional semantics. For

example, in case of a DNS amplification attack, request and response traffic must be

processed by the same VM. (In other cases, such as the UDP flood attack, bidirectionality

is not required.). To enforce bidirectionality, ISP edge switches use tag values of outgoing

traffic so that when the corresponding incoming traffic comes back, edge switches sends

it to the datacenter within which the VM that processed the outgoing traffic is located.

Within the datacenter, using this tag value, the traffic is steered to the VM.

Next we evaluate Bohatei to show the scalability benefit of using FlowTags as the or-

chestration mechanism (to see details of the evaluation set up and more results, please refer

to [95]).

Control plane responsiveness: Figure 3-16 shows the per-flow setup latency comparing

Bohatei to the SDN per-flow and reactive paradigm as the number of attack flows in a DNS

amplification attack increases. (The results are consistent for other types of attacks and are

not shown for brevity.) In both cases, we have a dedicated machine for the controller with 8

2.8GHz cores and 64 GB RAM. To put the number of flows in context, 200K flows roughly

corresponds to a 1 Gbps attack. Note that a typical upper bound for switch flow set-up

time is on the order of a few milliseconds [180]. We see that Bohatei incurs zero rule setup

latency, while the reactive approach deteriorates rapidly as the attack volume increases.

Number of forwarding rules: Figure 3-17 shows the maximum number of rules required

82

10
1,000

100,000
10e+06

100 200 300 400 500M
ax

 re
qu

ire
d

nu
m

be
r

of
 ru

le
s

on
 a

 s
w

itc
h

Attack traffic volume (Gbps)

Bohatei
per-flow rules

Figure 3-17: Number of switch forwarding rules in Bohatei vs. today’s flow-based
forwarding.

on a switch across different topologies for the SYN flood attack. Using today’s flow-based

forwarding, each new flow will require a rule. Using tag-based forwarding, the number of

rules depends on the number of VM instances, which reduces the switch rule space by four

orders of magnitude. For other attack types, we observed consistent results (not shown).

To put this in context, the typical capacity of an SDN switch is 3K-4K rules (shared across

various network management tasks). This means that per-flow rules will not suffice for

attacks beyond 10Gbps. In contrast, Bohatei can handle hundreds of Gbps of attack traffic;

e.g., a 1 Tbps attack will require < 1K rules on a switch.

Benefit of scale-out load balancing: We measured the resources that would be consumed

by a dedicated load balancing solution. Across different types of attacks with a fixed rate

of 10Gbps, we observed that a dedicated load balancer design requires between 220–300

VMs for load balancing alone. By delegating the load balancing task to the VMs, our

design obviates the need for these extra load balancers (not shown).

3.6 Summary
The dynamic, traffic-dependent, and hidden actions of middleboxes make it hard to system-

atically reason about network policies. We are not alone in recognizing the significance of

this problem—others, including the recent IETF network service chaining working group,

mirror several of our concerns [119, 138, 159].

The key insight in FlowTags is that the crux of these problems lies in the fact that

middlebox actions hide the true source as well as the processing context of packets as

they traverse the network. We argue that middleboxes are in the best (and possibly the

83

only) vantage point to restore these tenets, and make a case for extending middleboxes

to provide the necessary context via tags embedded inside packet headers. We design

new SDN APIs and controller modules to configure this tag-related behavior. We showed

a scalable proof-of-concept controller and the viability of adding FlowTags support with

minimal changes to five canonical middleboxes. We also demonstrated that the overhead

of FlowTags is comparable to traditional SDN mechanisms. We further demonstrated the

utility of FlowTags in enabling scalable policy enforcement in the specific use case of

DDoS defense.

We believe that there are three natural directions of future work: first, automating DPG

generation via model refinement techniques (e.g., [84]); second, automating middlebox

extension using appropriate programming languages techniques [64]; finally, performing

holistic testing of the network while accounting for switches and middleboxes. (We will

discuss more directions for future work in 5.)

84

Chapter 4

Reasoning about stateful control planes

using ERA

As we saw in §1.1.1 a network is composed of the data and control planes. After discussing

our approach to reasoning about the correctness of stateful data planes in the previous

chapters, in this chapter, we present our solution for checking the correctness of the network

control plane.

The network control plane is in charge of IP routing. Routing involves exchange of

routing messages (known as route advertisements or announcements) between routers. Ev-

ery router maintains a data structure known as the Forwarding Information Base of (FIB)

which instructs the router how to forward incoming packets. The router may update its

FIB upon receiving a route advertisement from a neighboring router (e.g., to incorporate a

better route to a destination IP prefix).

Since a FIB is a dynamically changing data structure, to make sure a reachability policy

is enforced correctly, the operator needs to check whether it is enforced correctly not only

in the current FIB, but also in the FIBs that may emerge due to interaction of the routers by

sending/receiving route advertisements. Many network outages occur due to latent routing

bugs. These are bugs due to router misconfiguration that might be currently inactive and

will be triggered only upon receiving a particular route advertisement. We have seen several

recent high-profile routing misconfigurations wreak havoc on the security and performance

of critical network services [46,59]. Going back in history, routing misconfigurations have

85

created global convergence and reachability issues (e.g., [3, 22]). To see whether router

configuration files involve any latent bugs, we need the ability to systematically explore

the state space of the control plane.

Put another way, reasoning about the control plane is hard, as a real network is in a

perpetual churn: route advertisements arrive, links fail, and routers need to be taken offline

for maintenance. Nonetheless, an operator needs assurances on the network behaviors

because a policy violation may be latent and occur only in a certain future incarnation or

state of the control plane (e.g., a specific route advertisement from a peering network may

cause disconnection between 𝐴 and 𝐵 [19,46]). Unfortunately, today operators do not have

proper tools for efficient reasoning about the network in different environments.

	
	
	
	
	

data	plane	at)me	t	
A	 B	

data	plane	at)me	t+1	
data	plane	at)me	t+2	

…
	

Network	
control	plane	

…
	

Environment	at)me	t	
Routers		

configura)on	files	

Environment	at)me	t+1	
Environment	at)me	t+2	

Figure 4-1: Reachability behavior of a network (e.g., A can talk to B) is determined
by its data plane, which, in turn, is the current incarnation of the control plane.

To highlight this challenge, it is useful to consider prior work on network verification.

A network is composed of a control plane, which configures the behavior of the data plane,

which in turn, is in charge of forwarding actual packets (see Figure 4-1). The control plane,

therefore, can be thought of as a program that takes configuration files and the current

network environment (i.e., route advertisements) and generates a data plane. The data

plane is conceptually a program that takes a packet and its location (i.e., a router port) as

input and outputs a packet at a different location. As a result, if we rest our analysis on the

data plane (e.g., Veriflow [125], HSA [124], NOD [137]) and verify its behavior over its

inputs (i.e., packets), we are inherently able to reason about only the current incarnation of

the control plane (i.e., the current data plane), and cannot say anything about the network

behavior under a different environment.

86

While there is prior work on bug-finding and verification for the control plane, it suffers

from critical limitations. Some tools focus on a single routing protocol (e.g., BGP for

Bagpipe [175] and rcc [97]) or a limited set of routing protocol features (e.g., ARC [104]).

They can thus not capture the behavior of the entire control plane that often uses multiple

routing protocols and sophisticated features [106,131,140]. On the other hand, Batfish [99]

analyzes the entire control plane in the context of a given environment, but it does so by

simulating the behavior of individual routing protocols to compute the resulting data plane.

This simulation is expensive (see §4.4.2), which makes it prohibitive to iteratively use

Batfish to analyze the impact of many environments.

What is critically missing today is the ability to efficiently find network reachability

bugs across multiple possible environments. (§4.1 motivates this need using real-world

examples.) Doing so requires reasoning about network reachability directly at the control

plane level, without explicitly computing the data plane that manifests in each environment.

Such reasoning is challenging due to the complexity of the control plane, which involves

various routing protocols (e.g., BGP, OSPF, RIP) each with its own intricacies (e.g., select-

ing best route to a destination prefix is different for BGP and OSPF) and cross-protocol

interactions (e.g., route redistribution [132]).

We address these challenges in a tool called ERA (Efficient Reachability Analysis) by

employing several synergistic ideas [94]. First, we design a unified control plane model

that succinctly captures the key behaviors of various routing protocols. In this model,

a router is viewed as a function that accepts a route announcement as input and pro-

duces a set of route announcements for its neighbors. Second, we use binary decision

diagrams (BDDs) [126] to compactly represent the route announcements that constitute a

user-specified environment. Third, we shrink the BDD representation of route announce-

ments by identifying equivalence classes of announcements that are treated identically by

the given network [178]. Each equivalence class is given an integer index, and the reach-

ability analysis is transformed to arithmetic operations directly on sets of these indices.

Consequently, we take advantage of vectorized instruction sets on commodity CPUs for

fast computation of these set operations (§4.3.3).

ERA can be used to identify bugs in reachability policies of the form “𝐴 can talk to 𝐵”

87

as well as a wide range of common policies that are expressible in terms of reachability

relationships, such as valley-free routing and blackhole-freeness (§4.3.4). Our implemen-

tation of ERA is available as an open source and extensible toolkit to which new kinds of

analysis can be added (§4.3.5).

We evaluate the utility of ERA in a range of real and synthetic scenarios (§4.4.1).

Across all scenarios, it successfully finds both new and known reachability violations,

which were otherwise hard to find using the state of the art techniques. We also evalu-

ate the scalability of ERA and find that it can handle a network with over 1,600 routers in 6

seconds. Our evaluations show that our control plane modeling and exploration techniques

yield significant speedup.

4.1 Motivation
We motivate reasoning about multiple network incarnations using real reachability bugs

encountered in a large cloud provider’s network. These bugs were latent and manifested

only under certain environments.

Maintenance-triggered: Some bugs stem from unexpected interactions of different rout-

ing protocols and configuration directives. In this example (Figure 4-2), the interactions are

between static routing and BGP. For redundancy, the operator’s goal was to have two paths

between the DCN (datacenter network) and the WAN (wide area network), one through 𝑅1

and the other through 𝑅2. One day, the operator decided to temporarily bring down 𝑅2 for

maintenance, which she thought was safe because of the assumed redundancy. However,

as soon as 𝑅2 was brought down, the entire DCN was disconnected from the WAN (and

the rest of the Internet).
kawaguchi

1	

Mgmt.	
Net.	

M

R1	

1.2.3.4

R2	

W	
WAN	 0.0.0.0/0
Datacenter	

DCN	

Figure 4-2: A bug triggered by maintenance.

Manual investigation revealed that 𝑅1 contained a static default route

88

ip route 0.0.0.0/0 1.2.3.4 (here 1.2.3.4 is the next-hop of the static

route, which is the address of the management network). Static routes to a prefix supersede

dynamic routes [14, 28]. Thus 𝑅1 preferred the static route over the default BGP route

advertised by the WAN (shown in red). Since static routes are typically not propagated to

neighbors, 𝑅1 did not advertise the default route to the DCN. Thus, the DCN was entirely

dependent on 𝑅2 for external connectivity.

The bug in 𝑅1’s configuration was that the operator had forgotten to type keywords

to indicate that the static route belonged to the management network, not data network.

(These keywords were present in 𝑅2’s configuration.) The bug was latent as long as 𝑅2

was up, but was triggered when 𝑅2 was brought down.

Announcement-triggered: In Figure 4-3, 𝐷𝐶𝐴 had several services hosted inside the

subprefixes of 10.10.0.0/16. Instead of announcing the individual subprefixes, 𝑅1 was

announcing this aggregate prefix. 𝐷𝐶𝐵 could reach the services inside 𝐷𝐶𝐴 through the

WAN. As soon as a new service with prefix 10.10.1.160/28 was launched inside 𝐷𝐶𝐴, all

other services inside the /16 prefix became unreachable from 𝐷𝐶𝐵.

bug_0500

1	

WAN	
10.10.1.160/28Datacenter	

DCA	 DCB	

R1	 R2	

W	

Figure 4-3: A bug triggered by a BGP announcement.

Investigation revealed two latent configuration bugs that combined to create this outage:

(1) 𝑅1 was not configured to filter 10.10.1.160/28 in its announcements to the WAN; and (2)

𝑅2 was configured with an aggregate route to 10.10.0.0/16 with 𝐷𝐶𝐵 as the next hop. The

result of the first bug was that the /28 announcement reached 𝑅2 through the WAN. Then,

as a result of the second bug, the /16 aggregate route was activated at 𝑅2. This aggregate

route, as a local route to router 𝑅2, took precedence over the /16 being announced through

the WAN. When the aggregate route was activated, 𝑅2 started dropping all traffic to the

/16 except for traffic to the /28. These drops are due to the sinkhole semantics of route

aggregation— the aggregating router drops packets for subprefixes for which it does not

89

have an active route to prevent routing loops [134].1 Proper connectivity existed prior to

the /28 announcement because the /16 announcement from the WAN did not activate the

aggregate route at 𝑅2.

Failure-triggered: In Figure 4-4, 𝑅1 and 𝑅2 were configured to announce prefix

10.10.0.0/16 that aggregated the subprefixes announced by leaf routers (𝐴1, 𝐴2, 𝐴3). Af-

ter link 𝐴2—𝐵2 failed, WAN traffic destined to 𝐴2’s prefix (10.10.2.0/24) started getting

blackholed (i.e., dropped) at 𝑅1 even though 𝐴2 had connectivity via 𝐵3 and 𝑅2.

Figure 4-4: A bug triggered by link failure.

This blackhole was created because 𝑅1 continued to make the aggregate announcement

after the failure of link 𝐴2–𝐵2, as it was still hearing announcements for the other two

subprefixes corresponding to 𝐴1 and 𝐴3 (aggregate routes are announced as long as there

is at least one subprefix present). As a result, the WAN sent (some) traffic for 10.10.2.0/24

toward 𝑅1. But 𝑅1 dropped those packets per the sinkhole semantics (see above).

4.2 Related work
We saw the prior work on checking the behavior or the network data plane in §2.2. Check-

ing the data plane alone has the fundamental limitation that a network is in a constant churn,

which manifests itself as different data planes. For example, a single route advertisement

can dramatically change the network behavior (e.g., see [46]). Moving from the data plane

to the control plane potentially enables more powerful analysis, as the former is generated

by the latter.
1For instance, if W announced the default route to R2, R2 would forward traffic for 10.10.2.2 to W, which

may then forward them to R2 (because R2 announces the aggregate /16 to W), and so on.

90

Prior work is limited due to supporting only a single routing protocol (e.g., BGP in

Bagpipe [175] and rcc [97]) or a limited set of routing protocol features (e.g., ARC [104]).

Batfish [99] can reason about the entire control plane but its analysis is expensive because

it simulates the individual steps of each routing protocol. In contrast, ERA enables fast

exploration using a succinct encoding of control plane behavior.

Metarouting [110], glue logic [133], and Propane [73] aim to build a correct-by-design

control plane. While worthwhile in the long term, these efforts cannot reason about existing

networks.

To summarize, what is critically missing today is the ability to efficiently explore the

control plane involving various routing protocols. We illustrate this need below.

4.3 System design
In this section, after presenting our high-level approach and the challenges in realizing it,

we present our solution ERA, which is a control plane analysis tool to find latent reacha-

bility bugs due to router mis-configuration.

4.3.1 ERA Overview

Our target is a (datacenter, enterprise, or ISP) network of a realistic size (e.g., a few to

hundreds of routers). As shown in Figure 4-5, our user is a network operator responsible

for configuring routers. The operator has a set of intended reachability policies of the

form “Router port 𝐴 can talk to router port 𝐵” (as we will discuss in §4.3.4, several other

practical policies are derivatives of “𝐴 can talk to 𝐵”). ERA allows operators to input

their assumptions on what the network’s environment will send (e.g., based on relationship

with peers/providers). It then analyzes the network’s behavior under these assumptions and

checks whether the behavior satisfies the intended reachability policies. This process can

then be iterated with other environmental assumptions, in order to cover a range of possible

environments.

91

router	
configura,ons	

analysis	results	
(success	or	viola0on)	

Operator	
environment	
assump,ons	

control	plane	
model	

model	
explora,on	

ERA	

reachability	
policies	

network	
topology	

Figure 4-5: High-level vision of ERA.

Here we give the intuition behind our approach to control plane analysis.

Relationship between data and control planes: The data plane takes as input a

packet on a router port and moves the (possibly modified) packet to another port (on

the same or a neighboring router). Thus, we can think of the data plane as a func-

tion of the form DP : (pkt , port)→ (pkt , port). The data plane itself is generated by

the control plane function given routers’ configuration files, the network topology (i.e.,

which router ports are inter-connected), and the current environment (which captures

the route advertisements sent to the network by the “outside world”) of the network:

CP : (env ,Topo,Configs)→ DP(.).

Reachability policies via control plane analysis: Since packets are forwarded by the

data plane, it is natural to think of an intended reachability policy 𝜑𝐴→𝐵 as a predicate that

indicates whether a given packet should be able to reach from router port 𝐴 to router port

𝐵. We say data plane 𝐷𝑃 is policy-compliant if 𝜑A→B(pkt ,DP) evaluates to true for all

𝐴-to-𝐵 packets.

A seemingly natural approach for finding latent bugs is to produce the data plane as-

sociated with a given environment and then check reachability on that data plane [99].

However, this approach makes it prohibitively expensive to iteratively check multiple en-

vironments (§4.4.2). This is because for each possible environment (of which there are

many), to compute the resulting data plane, we need to account for all low-level message

passings and nuances of routing protocols. Instead, we want to be able to reason about the

network directly at the level of the control plane and without explicitly computing the data

plane.

92

e2e routers ports

1	

R1	1	 2	
3	

R2	4	 5	

R3	6	 7	

X	 Y	R4	9	
8	

10	

Network	 Environment	

route	
adver1sement	

Figure 4-6: X-to-Y reachability depends on routers configurations and the environ-
ment.

To this end, our insight is as follows. Rather than producing the data plane that results

from a given environment, we can analyze the control plane under that environment to

determine 𝑖) the routes that each router in the network learns via its neighbors (e.g., a BGP

advertisement) or its configuration file (e.g., static routes); and 𝑖𝑖) the best route when

multiple routes to the same prefix are learned. We can then use this information to directly

check reachability.

An illustrative example: To visualize what it means to reason about reachability using

control plane analysis, consider the example shown in Figure 4-6. Here we want to see what

traffic reaches from port 𝑋 to port 𝑌 so that we can check whether it is policy-compliant.

From the figure we can see that to find the above traffic, we can try to find the routes that

traverse the opposite direction on each of the two paths. Let T i→j
Router(route) show the output

of the configured router 𝑅𝑜𝑢𝑡𝑒𝑟 on its port 𝑗 given the input 𝑟𝑜𝑢𝑡𝑒 on its port 𝑖. (Intuitively,

𝑟𝑜𝑢𝑡𝑒 can be thought of as an abstraction for a route advertisement. The following section

will elaborate on this abstraction.) If we knew 𝑇 (.), the answer would be:

T 2→1
R1

(T 5→4
R2

(T 10→8
R4

(env))) ∪ T 3→1
R1

(T 7→6
R3

(T 10→9
R4

(env))). The argument 𝑒𝑛𝑣 here represents

the assumptions that the user makes about the environment.

Challenges: Control plane-based reachability analysis requires us to address two key

challenges:

∙An expressive and tractable control plane model: To be expressive, this model needs

to capture key behaviors of diverse protocols (e.g., BGP, OSPF route advertisements).

A naive model (e.g., capturing protocol-specific behaviors verbatim), while expressive,

is impractical because it will be too complex to explore. On the other extreme, a very

high-level model (e.g., ignoring protocol-specific behaviors altogether) may be tractable

to explore, but not expressive (e.g., BGP and OSPF have different ways of preferring

routes).

93

∙Scalable control plane exploration: Once we have a control plane model, we need

the ability to efficiently explore the model with respect to the environment, in order to

identify violations of intended reachability policies.

We tackle these challenges in §4.3.2 and §4.3.3, respectively.

Scope and Limitations: ERA’s analysis requires the user to provide assumptions on

the environment (or defaults to assuming that the environment makes all possible route

announcements). If these assumptions are incorrect or overly permissive, then ERA can

produce false positives, identifying purported errors that in fact will never arise in practice;

e.g., a reputable ISP is not likely to hijack its peer’s traffic. ERA is designed to have no

other source of false positives (i.e., its control plane model is accurate). Though we have

not formally proven this yet, empirically speaking, all the bugs that ERA has identified

were real bugs.

ERA also has several sources of false negatives. First, ERA will only find bugs un-

der environments specified as inputs and cannot guarantee the absence of bugs under all

environments (unless exhaustively iterated on all possible environments). Second, cer-

tain classes of errors cannot be found by ERA by design. Specifically, ERA assumes that

routing will converge and only analyzes this convergent state, which is key to efficient ex-

ploration of the control plane. Therefore, convergence errors as well as reachability errors

in transient states of the network will not be found (e.g., [109, 111]).

Finally, while ERA supports most of the common configuration directives, our current

implementation does not support certain directives such as regular expressions in routing

filters. Keeping up with configuration directives is a software engineering challenge due

to their large and growing universe. Such limitations, however, are not fundamental to the

design of ERA (unlike ARC [104], where the design itself cannot handle certain routing

features).

As we will see in §4.4, ERA can find a large class of real-world bugs despite these

limitations.

94

4.3.2 Modeling the control plane

We now describe our model for the network control plane. It 𝑖) captures all routing proto-

cols using a common abstraction; 𝑖𝑖) is expressive with respect to routing behaviors of in-

dividual protocols; and 𝑖𝑖𝑖) lends itself to scalable exploration. At a high level, we identify

key behaviors of the control plane (e.g., route selection, route aggregation) and compactly

encode them using binary decision diagrams (BDDs) [126].

Since the network control plane is a composition of the control planes of individual

routers, we break down the problem of modeling the network control plane into modeling

(i) the I/O unit of a router’s control plane, and (ii) the processing logic of a router’s control

plane.

Route as the Model of Control Plane I/O: A naive way of modeling the I/O unit of the

control plane of a router is to use the actual specification of route advertisements of different

routing protocols, including their low-level details (e.g., keep-alive messages, sequence

numbers [9, 39]). While expressive, such an I/O unit makes the control plane model too

cumbersome. Conversely, if we completely ignore differences across protocols to simplify

our I/O unit model, such a model may not be expressive; e.g., it cannot capture the fact

that if a router learns two routes to the same destination prefix from two different routing

protocols, the one offered by the protocol that has a smaller administrative distance (AD)

will be selected [14, 28]. (We will see an example bug scenario due to this effect in §4.4.1,

Figure 4-18b.)

route data structure

1	

Administra,ve	
distance	(4	bits)	

Protocol	
a7ributes	(87	bits)	

Dst	IP	
(32	bits)	

Dst	mask		
(5	bits)	

Figure 4-7: route as the model of control plane I/O.

To strike a balance between expressiveness and tractability, we introduce the notion of

an abstract route as a succinct yet expressive I/O unit for the control plane model. Con-

ceptually, a route mimics a route advertisement. It is a succinct bit-vector conveying key

information in route advertisements that affects routing decisions of a router (see Figure 4-

7). While not fundamental to our design, we have chosen a 128-bit vector to encode a route

to enable fast CPU operations as we will discuss in §4.4.2. To accommodate diverse routing

95

protocols, a route unifies key attributes of various protocols that affect a router’s behaviors

(i.e., administrative distance and protocol-specific route attributes).2 To improve scalabil-

ity, a route abstracts away the low-level nuances of actual protocols (e.g., seq. numbers,

acknowledgements).

The fields of our route abstraction are:

∙Destination IP and mask: Together, they represent the destination prefix that the route ad-

vertises. To make a route compact, we store the mask in 5 bits (instead of its naive storage

in 32 bits). To make this concrete, let dstIP and dstMask denote a 32-bit destination IP

address and our 5-bit encoding of the destination mask. To compute the destination prefix

that the destination IP and mask represent, we first transform the mask to its customary

32-bit representation (e.g., 255.255.0.0), and then AND it with the IP address:

dstPrefix ← dstIP&((2 32 − 1) << (32 − dstMask))

where <<denotes the shift left operator.

∙Administrative distance (AD): This is a numerical representation of the routing protocol

(e.g., BGP, OSPF) of the route such that 𝐴𝐷𝐴 < 𝐴𝐷𝐵 denotes routing protocol 𝐴 is

preferred to protocol 𝐵.

∙Protocol attributes: This captures protocol-specific attributes of the routing protocol rep-

resented by 𝐴𝐷. For example, if the value of 𝐴𝐷 corresponds to BGP, the protocol

attributes field encodes the BGP attributes (i.e., weight, local preference). To enable fast

implementation of route selection in our router model (that we will discuss next), we

carefully encode the attributes so that preferring a route between two routes route1 and

route2 simply becomes a matter of choosing the smaller of two bit-vectors AD1 .attrs1

and AD2 .attrs2 when interpreted as unsigned integers (the symbol . denotes concate-

nation of the AD and protocol attributes fields of a route). For example, since route

selection in BGP involves checking a prioritized list of BGP attributes (e.g., first check-

ing the weight, then local preference, etc.) [11], for a BGP route, the highest order bits

of the protocol attributes field of the route encode the complement of the BGP weight

attribute, followed by the complement of the local preference, and so forth. Note that

2Since our route model resembles routing messages in distance-vector protocols, we accommodate link

state protocols (e.g., OSPF) by letting the attributes refer to the routes output by the Dijkstra algorithm.

96

the designated 87 bits for succinctly capturing protocol attributes have been sufficient

in a range of realistic scenarios we have considered (§4.4), but there might be scenarios

where more bits are needed to encode many distinct attributes.

Control plane as a visibility function: Given the I/O unit of the control plane, next

we need to model the processing logic that a router applies to input routes. Intuitively

the router model is a function that given a route as its input, computes the corresponding

output route(s). We identify 5 key operations of the router control plane: (i) Input filtering,

which modifies/drops incoming route advertisements to the router; (ii) Route redistribution,

which is necessary to capture cross-protocol interactions [131,133]; (iii) Route aggregation,

which is a common mechanism to shrink forwarding tables, yet its improper use can lead to

reachability violations [134]; (iv) Route selection, which is in charge of selecting the best

route to a given destination prefix; and (v) Output filtering, which modifies/drops outgoing

route advertisements.

AND	with	
supported	protocols	

Vin	
Apply	input	filters	

OR	with	routes	
originated	by	router	

OR	with	
redistributed	routes	

Apply	output	filters	
Select	best	route	
per	dst	prefix	

AND	with	NEG.	
of	sta9c	routes	

OR	with		
aggregate	routes	

Vout	

1	 2	 3	

4	5	6	

7	 8	

Figure 4-8: High-level router model processing boolean representation of input
routes.

Unfortunately, reasoning about the control plane one routing announcement at a time is

not scalable. Instead, we lift our router model to work simultaneously on a set of route an-

nouncements. We refer to our router model as the visibility function because it captures how

the router control plane processes the routing information made visible (i.e., given as input)

to it. The input to the router visibility function, 𝑉 𝑖𝑛, is the set of input routes sent by its

neighbors and configured static routes; and its output, 𝑉 𝑜𝑢𝑡, is the set of corresponding out-

put routes that are sent downstream by the router. The notation V out
Router = TRouter(V

in
Router)

denotes the control plane visibility function of Router .

For fast exploration, we use BDDs to symbolically encode the set of I/O routes in a

router model. A BDD is a compressed representation of a boolean function that enables

fast implementation of operations such as conjunction, disjunction, and negation [126].

97

Our BDD encoding enables fast router operations by transforming operations on sets to

quick operations on BDDs. For example, taking the complement of a set simply requires

flipping the true/false leaves of the corresponding BDD.

Figure 4-8 shows the high-level procedure for processing a boolean representation of

sets of routes. The steps to turn 𝑉 𝑖𝑛 into 𝑉 𝑜𝑢𝑡 are as follows:

1. Supported protocols: First, the routing protocols present in the configuration file are

accounted for.

2. Input filtering: Then, the input filters are applied.

3. Originated routes: In addition to the input route, there are routes that directly stem from

the configuration files, which are conceptually ORed with the input.

4. Route redistribution: A route redistribution command propagates routing information

from a routing protocol (e.g., BGP) into another protocol (e.g., OSPF).

5. Route aggregation: If the router receives any input route that is more specific than any

configured aggregate route, the aggregate route gets activated.

6. Static routes: A static route is a route locally known to the router (i.e., not shared with its

neighbors). Further, by default, static routes take precedence over dynamic routes (e.g.,

OSPF, BGP, RIP, IS-IS) due to having a lower 𝐴𝐷 value. This behavior is captured by

ANDing the negation of static routes with all other routes.

7. Route selection: Selecting the best of multiple routes to a destination prefix works as

follows: (i) if the routes belong to different routing protocols, the one with the lowest

𝐴𝐷 value is selected, (ii) if the routes belong to the same routing protocol, the protocol-

specific attributes determine the winner.

8. Output filtering: The router applies its output filters.

For completeness, the pseudocode for this process in Figure 4-9. The pseudocode

shows the details of the above router control plane model. The pseudocode describes how a

configured router turns the boolean representation of its input routes to output routes. Note

that we account for per-port (i.e., router interface) behaviors because, in general, a router

can have distinct routing behaviors configured on its different ports.)

98

1 � Inputs: (1) Configuration information pertaining to router output port Routerport including: static routes 𝑠𝑟[.],

route redistribution rr [.], route aggregation ra[.], supported routing protocols proto[.], input filters if [.],

output filters of [.] (2) Input to the router is a boolean function in DNF form: V in = X in
1 ∨ · · · ∨X in

N

2 � Output: Boolean representation of 𝑅𝑜𝑢𝑡𝑒𝑟𝑝𝑜𝑟𝑡 in DNF

3 � Route bit vector from Figure 4-7, denoted by 𝑋 , is concatenation of 3 fields: X = Xprefix .Xproto .Xattr

4 V out = V out ∧ {
⋁︀

i Xproto[i]}� Applying supported routing protocols

5 � Applying input filters

6 for i = 1 to size(if [.])

7 for each disjunctive term of 𝑉 𝑜𝑢𝑡, denoted by V out
j

8 if V out
j matches if [i].condition

9 apply action if [i].action

10 V out = V out ∨V local � Accounting for routes that Router originates, denoted by V local

11 for i = 1 to size(rr [.])� Applying route redistribution

12 for each disjunctive term of 𝑉 𝑜𝑢𝑡, denoted by V out
j

13 if V out
j .Xproto == rr [i].fromProto

14 newTerm = V out
j

15 newTerm.Xproto = rr [i].toProto

16 newTerm.Xattr = defaultAttr [proto]

17 V out = V out ∨ newTerm

18 for i = 1 to size(ra[.])� Applying route aggregation

19 newTerm.Xprefix = ra[i].prefix

20 newTerm.Xproto = ra[i].proto

21 newTerm.Xattr = defaultAttr [proto]

22 V out = V out ∨ newTerm

23 for i = 1 to size(sr [.])� Applying static routes

24 for each disjunctive term of V out , denoted by V out
j

25 if AD(V out
j .Xproto) > AD(static)

26 V out
j = V out

j ∧ (sr [i].prefix)

27 for each prefix prfx present in V out � Applying route selection

28 precedence = +∞

29 for each disjunctive term of V out , denoted by V out
j

30 if (V out
j .prefix == prfx)&&(V out

j .AD .attr < precedence)

31 precedence = V out
j .AD .attr � Finding best route

32 for each disjunctive term of V out , denoted by V out
j

33 if (V out
j .prefix == prfx)&&(V out

j .AD .attr > precedence)

34 Eliminate V out
j from V out � Eliminating others

35 V out
j = V out

j ∨ prfx .precedence

36 for i = 1 to size(of [.])� Applying output filters

37 for each disjunctive term of 𝑉 𝑜𝑢𝑡, denoted by V out
j

38 if V out
j matches of [i].condition

39 apply action of [i].action

40 return 𝑉 𝑜𝑢𝑡

Figure 4-9: Route control plane visibility function.

99

router as a BDD – step 0 of 3

1	

F	 T	

X1	

(a) RIP.

router as a BDD – step 1 of 3

1	

F	 T	

X3	

X2	

X1	

(b) Static route.

router as a BDD – step 3 of 3

1	F	 T	

X0	

X1	

X3	
X2	

X1	

F	 T	

X0	

(c) Output filter.

Figure 4-10: Example router model as a BDD. Dashed and solid lines represent the
values 0 and 1 of the corresponding binary variable, respectively.

An illustrative example: We illustrate the procedure of Figure 4-8 using a small example.

For ease of presentation, a route here has only 4 bits 𝑥3𝑥2𝑥1𝑥0, with two bits 𝑥3𝑥2 repre-

senting IP prefix, the bit 𝑥1 representing 𝐴𝐷, and the bit 𝑥0 representing protocol attributes.

A bar over a binary variable denotes its negation. In this example, the network operator as-

sumes the router accepts all routes as input, which is captured by setting V in = 1 (i.e.,

𝑡𝑟𝑢𝑒).

Suppose a router is configured with a static route and RIP, with 𝐴𝐷 values of 0 and 1,

respectively. Figure 4-10 shows the BDD representation of the router that has the following

four (simplified) configuration commands:

∙ RIP, denoting the presence of RIP on the router, is captured by 1∧ 𝑥1 = 𝑥1, as shown in

Figure 4-10a.

∙ static 10/2: Since this static route overrides the RIP routes with the same prefix, the

resulting predicate is (x3x2)x1=x3x1 ∨ x2x1 . This is shown in Figure 4-10b.

∙ output filter: if RIP attribute is 0, make it 1: The effect of the fil-

ter is to replace all occurrences of 𝑥1 by x1x0 . The resulting predicate is x3x1x0 ∨ x2x1x0 .

This is captured in Figure 4-10c.

Intuitively, the output V out = x3x1x0 ∨ x2x1x0 , simplified to

V out = (x3 ∨ x2) ∧ x1x0 , represents the fact that given 𝑒𝑣𝑒𝑟𝑦 environment as the in-

put, the router outputs RIP (noted by x1) with attribute 1 (noted by x0) and the dest. prefix

can be 00, 01, or 11 (noted by x3 ∨ x2).

In the following section, we will discuss how to reason about the reachability behaviors

of the network by exploring the router model we developed in this section.

100

A to B reachability: steps 1 and 2

1	

Ri	

3	

R3	

R2	

A	

Network	
Environment	

R1	

R4	
R5	

B	RA	 RB	

env1	 env2	

env3	

Ri+1	…	 …	

P	
Rj	

…	

Figure 4-11: Computing 𝐴 to 𝐵 reachability.

4.3.3 Exploring the control plane model

Our reachability analysis is based on an exploration of the control plane model above. We

first describe this exploration, and then describe how we leverage our BDD-based encoding

to devise a set of scalable exploration mechanisms that use (i) the Karnaugh map, (ii)

equivalence classes, and (iii) vectorized CPU instructions.

Exploration method: We present our approach to finding traffic reachable from port 𝐴

to port 𝐵 using a representative example. Consider the scenario shown in Figure 4-11.

The red path is an 𝐴-to-𝐵 path involving routers RA, . . . ,Ri ,Ri+1 , . . . ,RB . For ease of

presentation, in this example, there is only one path from 𝐴 to 𝐵.

To see the effect of the environment, consider router Ri , which has three paths to router

ports that face the outside world (namely, outside facing ports of routers 𝑅1, 𝑅3, and 𝑅5).

Unless the operator makes a more specific assumption on an environment input (i.e., what

route advertisements the outside world will send to the network), ERA starts analysis using

the boolean value 𝑡𝑟𝑢𝑒 (represented by a BDD with only one leaf with the value 𝑡𝑟𝑢𝑒),

which represents the fact that every possible route are provided by the environment. On

the other hand, if the operator is able to make a more scoped assumption about the envi-

ronment (e.g., based on expected routes from a neighbor), the starting environment will

reflect the assumption. Such assumptions can be encoded as a BDD that explicitly includes

the relevant variables on the assumed prefix, administrative distance, or attributes values of

incoming routes from the environment.

Computing traffic reachable from 𝐴 to 𝐵 involves the following steps:

1. Applying the effect of the environment: Every router on a 𝐴-to-𝐵 path that has a topology

path to the environment, is affected by it. For router Ri in our examples, it means Ri

101

receives the environment input 𝐸𝑖𝑛
𝑖 , where

𝐸𝑖𝑛
𝑖 = 𝑇1(𝑒𝑛𝑣1) ∨ 𝑇2(𝑇3(𝑒𝑛𝑣2)) ∨ 𝑇4(𝑇5(𝑒𝑛𝑣3))

2. Computing routes reachable from 𝐵 to 𝐴: As we saw in §4.3.1, the key to computing

traffic prefixes that reach from 𝐴 to 𝐵 using control plane analysis is to compute what

route prefixes are made visible from 𝐵 back to 𝐴. Let 𝑎𝑠𝑠𝑢𝑚𝑒𝑑𝐵 show the input the

operator assumes about what port 𝐵 receives from the environment. For the red path,

this is captured by

𝑟𝑒𝑎𝑐ℎ𝐴 𝐵 = 𝑇𝐴(𝐸
𝑖𝑛
𝐴 ∨ . . . (𝑇𝑖+1(𝐸

𝑖𝑛
𝑖+1 ∨ . . . 𝑇𝑁 (𝐸𝑖𝑛

𝐵 ∨ 𝑎𝑠𝑠𝑢𝑚𝑒𝑑𝐵) . . .)))

3. Extracting prefixes reachable from 𝐴 to 𝐵: Since we are interested in route prefixes

reachable from 𝐵 to 𝐴, we eliminate binary variables in the route fields that do not

correspond to prefix (i.e., AD and protocol attributes) in all boolean terms of reachA B .

4. Accounting for on-path static routes: In addition to the routes that reach from 𝐵 to 𝐴,

which cause traffic to reach from 𝐴 to 𝐵, there is potentially other traffic that can reach

from 𝐴 to 𝐵 due to static routes configured on on-path routers. This is because while a

router does not advertise its static routes, activated static routes end up in its forwarding

table. We account for such prefixes and OR them with the answer from step 3.

5. Applying ACL rules affecting 𝐴-to-𝐵 traffic: While a router configuration file primarily

includes directives to configure the router control plane, it may include access control

lists (ACLs) that restrict the actual traffic that can pass through the data plane of the

router. We, therefore, account for ACLs by taking the result of step 4 and applying the

ACLs of the on-path routers.

Once traffic prefixes reachable from 𝐴 to 𝐵 are computed, the network is policy-

compliant if the prefixes are equal to 𝜑𝐴→𝐵 from §4.3.1. If 𝜑 is violated, ERA applies

the Karnaugh map [113] to the DNF representation of the violating routes to provide the

human operator with fewer distinct items to investigate; e.g., instead of reporting distinct

102

prefixes 10.20.0.0/17 and 10.20.128.0/17 as violations, ERA summarizes and outputs them

as 10.20.0.0/16.

The process above finds policy violations in the context of a single set of environmen-

tal assumptions. The user can iterate multiple times with different assumptions in order

to expose more errors. Conceptually, each iteration of ERA over a BDD input analyzes a

set of concrete environments for which the network has an identical behavior. The anal-

ysis implicitly identifies this set during exploration, by accumulating constraints from the

visibility function of each router in the network. Thus, the number of iterations needed

for exhaustive exploration using ERA is far less than those needed with data plane based

analysis tools such as Batfish.

For completeness, the pseudocode presented in Figure 4-12 shows how ERA computes

traffic prefixes reachable from 𝐴 to 𝐵 considering all 𝐴-to-𝐵 paths.

Scalability Optimizations: To build an interactive tool for network operators, we want

ERA to be able to compute 𝐴− 𝑡𝑜− 𝐵 reachability in no more than a few seconds. Even

with the tractable control plane model that we developed in §4.3.2, a naive implementation

of the exploration mechanism fails to satisfy our goal. This is because of the very large

range of possible environments. Here we present three techniques to scale control plane

exploration.

Minimizing collection of routes with the K-map: As a first step, to minimize the binary

representation of the router I/O, we apply the Karnaugh map (K-map), which is a common

technique in circuit design [113].

Finding equivalence classes: Performing computations (e.g., conjunction and disjunc-

tion) on boolean representation of a real control plane is cumbersome. For example, the

same or similar destination prefixes may appear on multiple routers. As such, if we encode

prefixes naively, this may slow down control plane exploration.

Given this observation, before performing reachability analysis, ERA gets rid of re-

dundant data by finding equivalence classes of routes which are treated identically by the

network, using which the data can be rebuilt [178]. The advantage of doing so is that now

performing disjunction and conjunction on boolean terms boils down to doing union and

intersection on sets of integers (known as atomic predicates [178]). These integers are the

103

1 � Inputs: (1) router-level topology of network
(2) Set of router ports facing environment 𝐸𝑛𝑣
(3) routers configurations

2 � Output: Prefix(es) of traffic reaching from router port 𝐴 to router
port 𝐵

3 Parse router configurations into boolean functions (using Figure 4-9)
4 Initialize assumede on port 𝑒 (by default, 𝑡𝑟𝑢𝑒)
5 initialize assumedB on port B (by default, 𝑡𝑟𝑢𝑒)

6 � Accounting for effect of environment on routers on an 𝐴-to-𝐵
path

7 for each router 𝑟𝑜𝑢𝑡𝑒𝑟𝑖 on an A− to − B path
8 for each environment-facing port 𝑒 ∈ 𝐸𝑛𝑣
9 for each path 𝑝 from port 𝑒 to 𝑟𝑜𝑢𝑡𝑒𝑟𝑖

10 � 𝑟𝑜𝑢𝑡𝑒𝑟𝑗 is the 𝑗th router on 𝑒 𝑖,
where 1 ≤ j ≤ M (j)

11 E in
e→i,p = E in

e→i,p ∨ TM (j)(. . . (T1 (assumede)) . . .)

12 E in
e→i = E in

e→i ∨V in
e→i,p

13 E in
i = E in

i ∨ E in
e→i

14 � Compute per-path reachability
15 Find all paths from 𝐵 to 𝐴 in 𝐺:

PathB A = {path1
B A, . . . , path

N
B A}

16 � 𝑟𝑜𝑢𝑡𝑒𝑟𝑗𝑖 is the 𝑗th router on 𝑝𝑎𝑡ℎ𝑖
𝐵 𝐴,

where 1 ≤ j ≤ M (j)

17 reachability
pathi

B A
B A =

TM (j)(. . . (T2 (E in
2 ∨ (T1 (E in

1 ∨ assumedB))))

18 Eliminate binary variables in reachabilityA B except those
corresponding to Xprefix

19 � Accounting for static routes
20 staticA B =

⋁︀
i
(
⋀︀
k
(StaticPrefixRouterki

))

21 reachabilityA B = reachabilityA B ∨ staticA B

22 � Accounting for on-path ACLs. 𝑅𝑜𝑢𝑡𝑒𝑟𝑘𝑖 is the 𝑘th router on
𝑝𝑎𝑡ℎ𝑖

𝐴 𝐵

23 reachability
pathi

B A
B A =

reachability
pathi

B A
B A ∧ (

⋁︀
k

ACLsRouterki
)

24 � Compute all paths reachability

25 reachabilityA B =
⋁︀
i
reachability

pathi
B A

A B

26 return reachabilityA B

Figure 4-12: Computing 𝐴-to-𝐵 reachability.
indices of the equivalence classes. We illustrate this technique using an example. Suppose

we need to compute the conjunction of the boolean terms 𝑋 , 𝑌 , and 𝑍 (e.g., representing

three routes). Instead of naively computing the conjunction on the raw boolean form of

these terms, we do the following:

1. Express each term in terms of equivalence classes as depicted in Figure 4-13; e.g., 𝑋 =

𝑎2 ∨ 𝑎5 ∨ 𝑎6 ∨ 𝑎7.

104

a4	

a5	 a6	a7	
a1	

a2	

a3	
Y	 Z	

X	

Figure 4-13: Visualization of predicates X, Y, and Z in terms of members of equiva-
lence classes 𝑎1, . . . , 𝑎7.

2. Represent each term using the indices of members of equivalence classes, e.g., 𝑋 is the

union of members 2, 5, 6, and 7. (This way, irrespective of how bulky the raw form of

term 𝑎𝑖 might be, it is represented by integer value 𝑖.)

3. To compute 𝑋 ∧ 𝑌 ∧ 𝑍, intersect the sets of their corresponding indices: {1, 5, 6, 7} ∩

{1, 4, 5, 7} ∩ {3, 4, 6, 7} = {7}, which indicates the answer to 𝑋 ∧ 𝑌 ∧ 𝑍 is 𝑎7.

Implementing fast set operations: As we saw above, using equivalence classes, reacha-

bility analysis involves computing union and intersection of sets of integers. We leverage

vectorized instructions on recent processors to perform fast set union and intersection of

two sets of integers (i.e., the indices of the equivalence classes). The intuition is simple:

if a set of integers is represented as a bit vector where each bit represents the presence/ab-

sence of the corresponding value, then the union (intersection) of two sets of integers is the

bit-wise OR (AND) of the two bit vectors.

{0,1,4}		 1	 0	 0	 1 1	

{1,3}	 0	 1	 0	 1	 0	
OR	 1	 1	 0	 1	 1	 {0,1,3,4}	∪	

(a) Set union using OR.

1	 0	 0	 1 1	

0	 1	 0	 1	 0	
AND	 0	 0	 0	 1	 0	 {1}		

{0,1,4}		

{1,3}	
∩	

(b) Set intersection using AND.

Figure 4-14: Fast ∪ and ∩ of two sets of integers.

Figure 4-14 shows this approach using an example. In our implementation, we use

instructions on 256-bit vectors in our Intel AVX2 implementation [52].

4.3.4 Going beyond reachability

Building on basic 𝐴-to-𝐵 reachability, ERA can be used to check a wider range of policies.

In §4.4, we will discuss scenarios involving these policies.

Valley-free routing: Operators often want to implement “valley-free” routing [102],

105

which means that traffic from a neighboring peer or provider must not reach another such

neighbor. This condition is a form of reachability policy that ERA can easily check.

Equivalence of two routers: Operators often use multiple routers to provide identical con-

nectivity for fault tolerance. Checking if they are identically configured (e.g., using config-

uration syntax) is hard because the routers may be from different vendors and many aspects

of the configuration (e.g., interface IP addresses) can legitimately differ across routers of

even the same vendor. To check semantic equivalence of two routers’ policies, we use the

following property of BDDs: if two boolean functions defined over 𝑛 boolean variables are

equivalent (i.e., they generate the same output for the same input), their Reduced Ordered

BDDs (ROBDDs) are identical [76]. In our implementation, we check the equality of the

adjacency matrix representations of the BDDs of the two functions, which takes O(n2). In

contrast, a brute force method will take O(2 n).

Blackhole-freeness: A blackhole is a situation where a router unintentionally drops

traffic. The blackholed traffic from 𝐴 to 𝐵 is the complement of the reachable traffic:

blackholeA B = reachabilityA B . Note that computing blackholes by ERA having com-

puted reachability takes 𝑂(1), as the negation of a BDD is the same BDD with its two

leaves (corresponding to true and false) flipped.

Waypointing: Operators may want traffic from 𝐴 to 𝐵 to go through an intended sequence

of routers (e.g., to enforce advanced service chaining policies [62,136]). ERA checks way-

pointing by explicitly checking whether traffic reachable from 𝐴 to 𝐵 goes through the

intended routers. The pseudocode in Figure 4-15 shows how FlowTags checks a waypoint-

ing policy.

Loop-freeness: ERA can find permanent forwarding loops (e.g., created by static or aggre-

gate routes—see Figure4-16c in §4.4.1) by checking whether the same router port appears

twice in the reachability result.

4.3.5 Implementation

Our implementation of ERA [2] supports several configuration languages (e.g., Cisco IOS,

JunOS, Arista). It uses Batfish’s configuration parser, which normalizes a vendor-specific

configurations to vendor-agnostic format. ERA, then, uses this vendor-agnostic format as

106

1 � Inputs: (1) router-level topology of network 𝐺 = (𝑉,𝐸)
(2) routers configurations
(3) Intended way-pointing path from router port 𝐴 to router port 𝐵

2 � Output: Whether the way-pointing policy is enforced correctly

3 Compute all paths from 𝐵 to 𝐴 in 𝐺: PathA B = {path1 , . . . , pathN }
� Note that the intended way-pointing path path* ∈ 𝑃𝑎𝑡ℎ𝐴 𝐵

4 Parse router configurations into boolean functions (using Figure 4-12)
5 Compute atomic predicates of routers present in PathA B (using Figure 4-12)

denoted by APA B = {AP(Router1), . . . ,AP(RouterM)}
6 � Compute per-path reachability by computing intersections (using Figure 4-14)
7 ViolatingPaths = ∅� Initializing the result
8 for i=1 to N
9 if (pathi ̸= path*)&&(reachabilitypathi

A B ̸= ∅)
10 ViolatingPaths = ViolatingPaths ∪ pathi
11 � Checking whether all traffic from 𝐴 to 𝐵 only goes through the intended path
12 if (ViolatingPaths == ∅)&&(reachabilitypath*

A B == reachabilityA B)
13 return 𝑡𝑟𝑢𝑒
14 else
15 return ViolatingPaths

Figure 4-15: Pseudocode for checking waypointing for A-to-B traffic.
input. We implement the control plane model, the K-map, and atomic predicates in Java.

To operate on BDDs, we use the JDD library [27]. We implement our fast set intersection

and union algorithms in C using Intel AVX2, which expands traditional integer instructions

to 256 bits [52].

A natural question might be how much effort it takes to add support for various routing

protocols to ERA. In our experience, this effort is minimal. It took two of the authors a

few hours to model the common routing protocols because of two reasons. First, there are

fewer than 10 common routing protocols (e.g., BGP, OSPF, RIP, IS-IS). Second, for each

protocol, the key insight for creating the model is to know how the protocol prefers a route

over another in the steady state, which is concisely defined in protocol specifications.

4.4 Evaluation
In this section, we evaluate ERA and find that:

∙ It can help find both known and new reachability violations (§4.4.1);

∙ It can scale to large networks (e.g., it can analyze a network with over 1,600 routes in 6

seconds), and our design choices are key to its scalability (§4.4.2).

107

4.4.1 Finding reachability bugs with ERA

First we show the utility of ERA in finding reachability violations in scenarios involving

known bugs as well as new bugs across both real and synthetic scenarios. These scenarios

illustrate violations that are latent and get triggered only in certain environments (i.e., a cer-

tain router advertisement sent to the network by the routers located int the outside world).

Even for scenarios involving only a small number of routers, existing network verification

techniques lack the ability to find latent bugs (§4.2), and trying to extend these tools to enu-

merate different environments poses a serious scalability challenge (e.g., we will quantify

this for Batfish, a recent network verification tool, in §4.4.2). Further, as we will discuss

in §4.4.2, ERA scales to large networks (e.g., over 1,600 routers).

All experiments below were done under the assumption that the environment sends all

possible route announcements, i.e. the BDD of each environmental input is simply the

predicate true. Though this environmental assumption is not guaranteed to cover all possi-

ble environments, in practice it is effective at rooting out latent bugs due to its “maximal”

nature, as we show below. This points out an important advantage of ERA over Batfish [99].

While both tools require an environment as input, Batfish’s low-level simulation of rout-

ing protocols makes it prohibitively expensive to run with such a maximal environment,

so in practice Batfish users must craft specific environments that are suspected to cause

problems.

Finding Known Bugs in Synthetic Scenarios

∙Violation of waypointing due to route redistribution: In this scenario borrowed

from [132] and shown in Figure 4-16a, the customer wants to waypoint its traffic through

X − A− C and use X − B − C as the backup path. However, static routes configured

on routers 𝐴 and 𝐵 are redistributed into BGP, and the ISP advertises them into the rest

of the Internet. As a result, B − X acts as a primary link. (One way to prevent this would

be for the customer to adjust the default AD values of BGP and static routes on 𝐵.)

∙Blackhole due to route aggregation: In this scenario borrowed from [134] and shown

in Figure 4-16b, both routers 𝐵 and 𝐶 are configured to announce aggregate route

10.1.2.0/23 to router 𝐴. After the marked interface of 𝐵 fails, 𝐵 continues to announce

108

Ex 2: Back-up link ac0va0on due to route redist.

1	

C	

A	 B	

X	

BGP	

	

1.	We	want	A-X	and	B-X	to	be	the	primary	and	backup	links,	respec@vely.	

ISP	
Customer		
network	

2.	At	!me	t1:	On	A	and	B,	sta@c	routes	are	redistributed	into	BGP,	so	that	the	ISP	
can	adver@se	them	to	the	rest	of	the	 Internet.	B-X	acts	as	a	primary	 link	since	
we	forgot	to	adjust	the	default	AD	values	of	BGP	and	sta@c	routes	on	B.	
	

Example	by	Franck	Le	et	al.,	CoNext’08	

3.	At	!me	t2:	The	admin	fixes	the	problem	by	withdrawing	the	sta@c	route	on	B	
(or	by	overwri@ng	the	default	AD	value	of	sta@c	routes	to	fix	the	problem	is	fixed).	

(a) Violation of waypointing [132].

Ex. 3: Blackhole due to route aggrega4on

1	

A	

B	 C	

10.1.2.0/24

10.1.3.0/24

1.  Both	B	and	C	are	configured	to	announce	aggregate	route	10.1.2.0/23	to	A.	

Example	by	Franck	Le	et	al.,	CoNext’11	

2.	One	of	B’s	interfaces	fails,	but	B	conHnues	to	announce	the	aggregate	route.	

3.	A	may	send	packet’s	desHned	to	10.1.2.0/24	to	B,	which	B	will	drop.		
Query:	Is	there	any	negaHve	route	such	that:	

	NOT(route)	∈	TBàneighbor	(route)	

(b) Blackhole [134].

Ex. 4: Permanent loop due to route aggrega4on

1	

X	

Y	

1.	ISP	adver.ses	the	default	route	to	enterprise	network.		

0.0.0.0/0

Example	by	Franck	Le	et	al.,	CoNext’11	

ISP	

Enterprise	
Network	

3.	Enterprise	network,	however,	adver.ses	the	aggregate	route	128.2.0.0/16	to	ISP.		

10.2.0.0/16

2.	Enterprise	network	has	next	hops	only	for	128.2.1.0/24 and 128.2.2.0/24.		

4.	 ISP	will	 send	 traffic	with	 des.na.on	128.3.0.0/24 to	 enterprise	 network.	 The	
traffic	will	trap	in	a	loop.		

Query:	Is	there	any	nega.ve	route	route	such	that:	
		RIBY	is	a	strict	subset	of	TYàneighbor	(route)	

	

10.2.1.0/24

10.2.2.0/24

(c) Permanent loop [134].

Figure 4-16: Finding known bugs in synthetic scenarios.

the aggregate route, which causes 𝐴 to send packets destined to 10.1.2.0/24 to 𝐵. 𝐵 will

drop this traffic, as the its link to the 10.1.2.0/24 subnetwork is down.

∙Permanent loop due to route aggregation: In this scenario borrowed from [134] and

shown in Figure 4-16c, the ISP router 𝑋 advertises the default route 0.0.0.0/0 to router

𝑌 . Even though 𝑌 has connectivity to only 10.2.1.0/24 and 10.2.2.0/24, it has been con-

figured to advertise to the ISP the aggregate route for the entire 10.2.0.0/16 prefix. Now

since 10.3.0.0/24 is as sub-prefix of 10.2.0.0/16, the ISP may send traffic to destination

prefix 10.3.0.0/24 to 𝑌 . Consequently, since 𝑌 does not know how to reach 10.3.0.0/24,

this traffic will match its default route entry and be bounced back to the ISP. This traffic,

therefore, will trap in a permanent loop between 𝑋 and 𝑌 .

To further evaluate the effectiveness of ERA, we did a red team-blue team exercise. In

each scenario, the red team introduced misconfigurations that cause a reachability violation

unbeknownst to the blue team. Then the blue team uses ERA to check whether the intended

policy is violated. Across all scenarios, the blue team successfully found the violation. Here

is a summary of the scenarios:

∙Violation of waypointing: In Figure 4-17a, the intended policy is to ensure traffic orig-

inating from network E destined to network C goes through path E − B − C (so that it

109

is scrubbed by the firewall). However, this policy is violated because router 𝐸 receives

the prefix of network 𝐶 from both routers 𝐵 and 𝐷, which means 𝑁𝑒𝑡𝐸 → 𝑁𝑒𝑡𝐶 traffic

may go through path E − D − C skipping the firewall. The root cause of the problem

was the fact that none of routers 𝐶, 𝐷, or 𝐸 filtered the route advertisement for the

10.1.1.0/24 prefix on the E − D − C path.

∙Violation of valley-free routing: In Figure 4-17b, 𝐵 and 𝐸 are providers for 𝐶, which

in turn, is a provider for 𝐷. A missing export filter on 𝐶 caused 𝐶 to advertise the prefix

for 𝑁𝑒𝑡𝐸 to 𝐵. This is a violation of the valley-free routing property, specifically, due to

customer 𝐶 providing connectivity between two of its providers, namely, 𝐵 and 𝐸.

∙Violation of intended isolation: In Figure 4-17c, we want the traffic from segments

{A,B} (running BGP) and {C ,D} (running OSPF) to remain isolated from each other.

However, this policy is violated due to a misconfiguration on 𝐶 whereby OSPF is redis-

tributed into BGP, that will allow traffic from {A,B} to reach {C ,D}.

∙Misconfigured backup path: In Figure 4-17d, the client has two /16 networks connected

to 𝐴 and intends to maintain two paths to the provider to ensure reachability in case of

failure on one of them. This policy is violated because of an incorrect filter configured

on 𝐵 that drops the advertisement for the 10.20.0.0/16 network. As a result, if path

D − C − A fails, the 10.20.0.0/16 network will be unreachable from the provider.

110

B	

E	C	

D	

BGP	

BGP	

BGP	

BGP	

	WAY	POINTING	

Network	Operator	wants	the	direc=on	to	be	C-B-E	
D	was	misconfigured	and	didn’t	filter	BGP	traffic	to	go	to	
10.1.1.0/24	
It	resulted	in	traffic	going	from	both	direc=ons	

Net	C	 Net	E	FW	
10.1.1.0/24	

(a) Violation of waypointing via 𝐵.

C	

B	 E	

D	

Net	D,	Net	E	

Net	D	

Net	E	

Net	B	 Net	E	

Valley	Free	

1.  B,E	are	providers	to	C.	C	is	provider	to	D	
2.  BGP	is	configured	in	all	routers	
3.	D	is	adverAsed	to	E	through	C	
4.	C	is	misconfigured	and	adverAses	E	to	B	instead	of	just	D.		
5.	Violates	valley	free	property		

Net	D	

Net	B	

Net	D	

(b) Not valley-free.

B	

A	 D	

C	

Isola+on	

10.10.10.0/24	

10.10.20.0/24	 10.10.30.0/24	

10.10.40.0/24	
BGP	

BGP	

OSPF	

Redistribute		
OSPF	into	BGP	

A,B	are	part	of	a	network	which	uses	only	BGP.	
C,D	are	part	of	a	network	which	uses	only	OSPF.	
D	was	misconfigured	to	redistribute	OSPF	to	BGP	
This	resulted	in	the	C,D	communica+ng	which	violated	isola+on	property	

OSPF	

(c) Violation of isolation between {A,B} and

{C ,D}.

C	

B	

D	

Prefix	list	Errors/Basic	
Reachability	

10.10.0.0/16	

10.20.0.0/16	

10.10.0.0/16	

Goal		-	A	(consumer)	needs	to	reach	P(provider)	
D,B,C	run	BGP	
C	has	a	prefix	list	to	let	through	2	routes	for	bgp	
B	was	misconfigured	to	let	only	1	route	through	for	bgp	
No	one	noLces	because	A	can	sLll	reach	P	through	C-D	
But	if	C	or	C-D	falls	then	we	lose	connecLvity	to	2.2.0.0/16	
due	to	the	bug	

Provider	

A	

10.10.0.0/16	
10.20.0.0/16	

Client	

(d) Misconfigured backup path

D − B −A.

Figure 4-17: Finding known bugs in synthetic scenarios using the red-blue teams ex-
ercise.

Finding New Bugs in Synthetic Scenarios

Finding reachability bugs in hybrid networks: Operators may prefer to opt for a hybrid

network, which involves deploying SDN alongside traditional network routing infrastruc-

ture for scalability and fault tolerance [174]. Next we show how ERA can find policy

violations arising in such hybrid deployments.

Fibbing [174] is a recent method to allow an operator to use an SDN controller to flex-

ibly enforce way-pointing policies in a network running vanilla OSPF. The key primitive

is “fibbing” whereby the SDN controller pretends to be a neighboring router and makes

fake route advertisements with carefully crafted costs. For example, consider the network

of Figure 4-18a, where links are annotated with their OSPF weights. If we run OSPF,

both source to destination flows will take the cheaper path R1 − R2 − R4 − R5 . Now,

for load balancing purposes, the operator wants to make S1 → D1 traffic take the path

R1 − R2 − R3 − R5 without fiddling with OSPF wights. Fibbing will let her accomplish

this by using a fake router 𝐹 that claims to be able to reach 𝐷1 at a cost of 2. As a result,

now 𝑅2 will start sending traffic destined to 𝐷1 through 𝐹 , as the new cost 1+2=3 is better

111

than the cost 2+2=4 of going through 𝑅4.

A hybrid network is particularly error-prone due to intricate interactions between SDN

and traditional protocols. To show the utility of ERA in reasoning about such networks, we

describe two scenarios:Fibbing bug due to aggrega.on on R2

1	

R2	

R3	

R4	

R5	

D1	

D2	

S1	

S2	

R1	

5	 5	

2	2	

3	 F 2	
1	

(a) Route aggregation on 𝑅2.

Fibbing bug due to bgp bea.ng ospf on R1

1	

R1	

R2	

R3	

R4	

OSPF	

S	

5	 3	

1	2	
D	

R5	

F 1	
1	

OSPF	

BGP	

BGP	BGP	

OSPF	OSPF	

(b) Cross-protocol effects.

Figure 4-18: New bugs in a synthetic scenario involving hybrid (i.e., SDN-traditional)
networks.

∙ Interaction between fibbing and aggregate routes: In Figure 4-18a, the goal is to use

fibbing to enforce the waypointing denoted by green and orange paths. We used ERA to

find a violation of this policy. The root cause was an aggregate route configured on 𝑅2

to destination prefix 𝐷1 ∪𝐷2 pointing to 𝑅4 as its next hop. As a result, both S1 → D1

and S2 → D2 traversed the orange path, which violated the policy.

∙Cross-protocol effects: In Figure 4-18b, the goal is to use fibbing to waypoint traffic to

𝐷 through R1 − R2 − R4 . We used ERA to find a violation of this in a red team-blue

team exercise. Each router in the figure is annotated with the routing protocol(s) it runs.

Router 𝑅4 had a static route to 𝐷 that is redistributed into BGP and OSPF. As a result,

router 𝑅1 received route advertisements for 𝐷 from both OSPF (from 𝑅2 and 𝑅3) and

BGP (from 𝑅5). Now since BGP, by default, has a lower 𝐴𝐷 value than OSPF, 𝑅1 chose

the advertisement offered by 𝑅5! Therefore, fibbing here fails to enforce the waypointing

policy.

Fibbing is proven to be correct [174], but only if the network merely runs OSPF. The

takeaway from the above scenarios is that for hybrid networks to be practical, we need to

account for realistic router configurations (e.g., route aggregation by 𝑅2 in Figure 4-18a)

and cross-protocol interactions (e.g., BGP/OSPF in Figure 4-18b).

112

Note that finding arbitrary SDN bugs is beyond the scope of ERA. ERA handles SDN

only if its behavior can be abstracted in our control plane model, in a manner similar to

what we do for conventional routing protocols.

Finding Known Bugs in Real Scenarios

Bugs reported in a cloud provider: The motivating scenarios we saw in §4.1 are based

on bugs in a production network that we successfully reproduced using ERA.

Finding BGP route leaks: Roughly speaking, a route leak scenario involves: (i) a router

incorrectly advertising the destination prefix of a service, and (ii) another router incorrectly

accepting it. The combination of these results in absorbing traffic destined to the service

on the wrong path, which can cause high-impact disruptions. Route leak is not a new

problem (e.g., see AS 7007 incident [3]), but continues to plague the Internet to date (e.g.,

Google [19] and Amazon AWS [46] outages in 2015). To demonstrate the utility of ERA

in proactive finding of route leak-prone configurations, we use a representative scenario

shown in Figure 4-19. The intended path from the client to the service is through 𝑅2; how-

ever, the client’s traffic ends up taking the wrong path C → R1 because (i) 𝑅1 incorrectly

advertises the service prefix, and (ii) 𝐶 prefers the route advertisement made by 𝑅1 over

the one made by 𝑅2. ERA can proactively find route leaks, as a route leak is essentially

a violation of waypointing. In this example, the traffic from client to server needs to be

exclusively waypointed through R2 . We have synthesized a few route leak scenarios and

used ERA to successfully find violations.

Route leak

1	

C	

R1	

R2	
10.20.0.0/16

S	Client	 Service	

Figure 4-19: 𝑅1 leaks the service prefix.

113

Finding New Bugs in Real Scenarios

Next we show the utility of ERA in finding new bugs in a campus (CampusNet) and a large

cloud (CloudNet).
Simplified	view	of	CMU	Network	

Core1	 Core	2	

ISP1	 ISP2	 ISP3	

Departments	

1	

•  (Assumed)	policy	1:	Core0	and	Core255	are	meant	to	be	
“equivalent”	in	that	if	one	of	them	fails,	the	reachability	across	
netowrk	remains	unchanged.	

•  (Assumed)	policy	2:	POD-I-CYH	and	POD-I-NH	are	meant	to	be	
“equivalent”	in	that	they	implement	the	same	peering	policies	with	
the	ISPs.	

Pod1	 Pod2	

Figure 4-20: A schematic of the analyzed CampusNet.

Finding new bugs in CampusNet: Figure 4-20 shows a simplified topology of the core of

a large campus network, with a global footprint and over 10K users. The two core routers

are in charge of interconnecting the three ISPs and the departments. There are two intended

policies involving these four routers, both of which are violated:

∙Equivalence of core routers: 𝐶𝑜𝑟𝑒2 is meant to be 𝐶𝑜𝑟𝑒1’s backup. ERA revealed that

𝐶𝑜𝑟𝑒1 has OSPF configured on one of its interfaces, which is missing on 𝐶𝑜𝑟𝑒2. As a

result, if 𝐶𝑜𝑟𝑒1 fails, the departments that rely on OSPF will be disconnected from the

Internet.

∙Equivalence of pod routers: 𝑃𝑜𝑑1 and 𝑃𝑜𝑑2, connecting the campus to the Internet,

are both connected to 𝐼𝑆𝑃2 with the intention that link Pod1 − ISP2 is active and

Pod2 − ISP2 is its backup. ERA revealed that the ACLs on 𝑃𝑜𝑑1 and 𝑃𝑜𝑑2 affecting

their respective links with 𝐼𝑆𝑃2 are different. Specifically, 𝑃𝑜𝑑2 has more restrictive

ACLs than 𝑃𝑜𝑑1. This means if link Pod1 − ISP2 fails, a subset of campus-to-𝐼𝑆𝑃2

traffic will be mistakenly dropped by 𝑃𝑜𝑑2.

Finding new bugs in CloudNet: We used ERA to check equivalence of same-tier routers

(analogous to routers 𝑅1 and 𝑅2 in Figure 4-2) on configurations of seven production dat-

acenters of a large cloud provider. ERA revealed that seven routers in two datacenters had

a total of 19 static routes responsible for violations of equivalence policies. The operators

later removed all of these violating routes.

114

4.4.2 Scalability of ERA

Testbed: We run our scalability evaluation experiments on a desktop machine (4-core

3.50GHz, 16GB RAM).

Why not existing tools? The closest tool to ERA is Batfish [99], which (1) takes a concrete

network environment; (2) runs a high-fidelity model of the control plane (e.g., low-level

models of various routing protocols) to generate the data plane (i.e., routers forwarding

tables); and (3) performs data plane reachability analysis. To put this in perspective, in

an example scenario involving a chain topology with two routers, Batfish took about 4

seconds. In contrast, ERA took 0.17 seconds to analyze the same network (a 23X speedup

over Batfish). Further, as mentioned earlier, Batfish’s performance will degrade as the

size of the environment increases, while ERA’s BDD-based approach allows it to naturally

handle even the “maximal" environment, represented by the BDD true.

Effect of optimizations: Table 4.1 shows the effect of our optimizations from §4.3.3,

namely, the K-map, equivalence classes (EC), and fast set operations compared to a base-

line involving use of BDDs without these optimizations. The tables shows the average

values from 100 runs, each involving 𝐴-to-𝐵 reachability analysis between two randomly

selected ports. Stanford [50] and Purdue [43] are campus networks, OTEGlobe [53] is an

ISP, and FatTree is a synthetic datacenter topology. The takeaway here is that our opti-

mizations yield a speedup of 2.5× to 17×, making ERA sufficiently fast to be interactively

usable.

Topo. #routers/ave path len. Reachability analysis latency (sec)
baseline kmap kmap+EC ERA

Stanford 16/2 5 1.8 0.30 0.29
OTEglb 92/3.3 7.8 3.5 1.97 1.84
FatTree 1,024/5.89 13.8 7.01 6.1 5.4
Purdue 1,646/6.8 15 8 6.5 6

Table 4.1: Effect of our optimizations.

To see the effect of the type of policy on the analysis latency, we measured the analy-

sis latency for all properties from §4.3.4 on the Purdue and OTEGlobe topology, none of

which took more than 6.1 seconds. This is expected, as these policies are derivatives of

115

reachability analysis.

4.5 Summary
Since networks are constantly changing (e.g., new route advertisements, link failures), op-

erators want the ability to reason about reachability policies across many possible changes.

In contrast to prior work, which either focuses on a subset of the network’s control plane

or focuses on one incarnation of the network as represented by a single data plane, ERA

models the entire control plane and checks network reachability directly in that model.

Our design addresses key expressiveness and scalability challenges via a unified protocol-

invariant routing abstraction, a compact binary decision diagram based encoding of the

routers’ control plane, and a scalable application of boolean operations (e.g., vector arith-

metic).

We showed that ERA provides near-real-time analysis capabilities that can scale to

datacenter and enterprise networks with hundreds of nodes and uncover a range of latent

reachability bugs. While ERA does not automatically reason about all possible of envi-

ronments, it helps find latent reachability bugs by allowing the users to specify a rich set

environments using BDDs and quickly analyzing each such set. For instance, a particularly

challenging environment, of all possible routing announcements from a neighbor, can be

captured simply using BDD true.

A direction for future work is to identify conditions under which a single run of ERA is

guaranteed to cover all possible environments and extend ERA to automatically explore all

possible environments. Another natural direction for future work is to prioritize bug fixing

based on the likelihood of occurrence and severity of aftermath, and to bring the human

operator into the debugging and repair loop.

116

Chapter 5

Conclusions and future work

While there are many tools as well as a significant body of work related to network policy

enforcement, checking whether the intended policies have been enforced correctly remains

a mostly manual, slow, and error-prone process. The current practice has led to many

network outages and policy violations resulting in monetary and reputation damage to or-

ganizations.

What makes it hard to check the correctness of network policies is diversity (e.g., dif-

ferent routing protocols and their interactions) and stateful behaviors in both the data and

control planes (e.g., the route advertisements a router has received so far) and the data plane

(e.g., a firewall’s state with respect to a TCP session).

This thesis argues for the feasibility of checking realistic network policies by address-

ing the above challenges via a synergistic combination of two key insights (i) designing

unifying data abstractions that glue together different routing protocols in the control plane

and diverse elements in the data plane; (ii) exploring the state space of the network in a

scalable manner, we build tractable models of the control and data planes (e.g., by de-

composing logically independent tasks) and design domain-specific optimizations (e.g., by

narrowing down the scope of search given the intended policies). We have shown the utility

and performance of these techniques across a range of synthetic and real settings.

Going forward, there are several natural directions for future work :

• Automatic policy synthesis The input to both BUZZ and ERA is a specification of

117

the intended policies by the network operator. While the level of details at which

the operator is expected to provide this input is similar to the current practice (e.g.,

existing firewalls ACL files), we believe it is worthwhile to provide the operator with

a more intuitive policy interface (e.g., human language [183]).

• Automatic model synthesis for control and data planes: BUZZ and ERA use

hand-generated models of the data and control planes, respectively. A natural di-

rection for future work is to use program analysis to automatically synthesize these

models from actual middlebox and router implementation code (e.g., [84]) or input-

output logs (e.g., [74]).

• Proof of soundness: We found both BUZZ and ERA to be empirically sound in that

every bug they found was a real bug. However, we have not proven the soundness of

these tools. While it is customary in system research to rely on empirical soundness

(e.g., [148, 179]), it will be worthwhile to try to prove if these tools, or at least their

core algorithms, are false-positive-free.

• Reducing false negatives: A major direction for future work would be trying to

build policy checkers that minimize false negatives. Note that there are two types

of false negatives associated with network policy checking tools, including BUZZ

and ERA. The first category of false negatives are not due to an inherent limitation

of the policy checker but is considered a false negative only because of the real-

world interpretation of the scenario. For example, ERA finds route advertisements

that, if sent by a neighboring ISP, will cause a reachability policy violation. The

human operator, however, may consider such an output from ERA a false negative

considering the fact that the neighboring ISP is highly reputable and it very unlikely

to make such a blatant mistake. As reflected in the design of ERA, we believe it

is better to cover such scenarios as bugs and bring them to the operator’s attention;

e.g., there have been many cases of route leak by major ISPs due to unexpected

mis-configuration.

The second type of false negatives are due to the limitation of the tools we have built.

Specifically, ERA assumes routing protocols have converged; therefore, it cannot find

118

transient and convergence bugs in routing protocols. Further, ERA cannot find bugs

that stem from BGP community tags, as these tags can be used to arbitrarily override

the normal course of actions taken by routers in route selection. Trying to accommo-

date community tags would make our router model significantly more complex and

harder to explore. Similarly, BUZZ assumes that middleboxes perform state transi-

tions given the current state and the input as expected, and does not account for race

conditions. In our experience in building both ERA and BUZZ, there is fundamental

trade-off between reducing false negatives and scalability of the tool: A more faith-

ful modeling approach (e.g., capturing community tags for control plane analysis, or

code-level details in modeling middleboxes) would help reduce false negatives at the

cost of slowing down the analysis.

• Root cause analysis of policy violations: While BUZZ and ERA find policy vio-

lations, they do not directly provide an actionable output to the operator to help fix

the violation. For example, while ERA identifies which route advertisements would

violate an intended reachability policy by a router, it does not specify where in the

router’s configuration file the operator should look for the violation. This is a hard

problem, as a given mis-configuration can be due to either a commission (e.g., the

presence of an incorrect configuration directive) or omission (e.g., the lack of a nec-

essary output filter in a configuration file) error. To make it even harder, a given

violation may be fixable in many different ways. Therefor, assisting the human op-

erator in fixing a policy violation, will be an important direction for future work.

• Providing minimal output to human operator: Network operators are typically

busy professionals and may not be able to pay attention to every potential policy

violation. A broad direction for future work, therefore, is to try to prioritize bugs

based on the likelihood of occurrence and severity of aftermath.

• Automatic implementation of data and control planes: Instead of reasoning about

exiting networks, a bold direction for future work will be to build a system for syn-

thesizing correct-by-design router and middlebox code.

119

120

Bibliography

[1] BUZZ. https://github.com/network-policy-tester/buzz.

[2] ERA. https://github.com/Network-verification/ERA.

[3] 7007 Explanation and Apology, 1997. http://seclists.org/nanog/
1997/Apr/444.

[4] Arbor Networks, worldwide infrastructure security report, volume IX, 2014. http:
//pages.arbornetworks.com/rs/arbor/images/WISR2014.pdf.

[5] AT&T and Intel: Transforming the Network with NFV and SDN, 2014. https:
//www.youtube.com/watch?v=F55pHxTeJLc#t=76.

[6] AT&T Denial of Service Protection, 2015. http://soc.att.com/1IIlUec.

[7] AT&T Domain 2.0 Vision White Paper, 2013. http://soc.att.com/
1kAw1Kp.

[8] Balance. http://www.inlab.de/balance.html.

[9] BGP Message Generation and Transport, and General Message
Format, 2016. http://www.tcpipguide.com/free/t_
BGPMessageGenerationandTransportandGeneralMessageF-
2.htm.

[10] Bit-Twist. http://bittwist.sourceforge.net/.

[11] Border Gateway Protocol Path Selection, 2016. http://docwiki.cisco.
com/wiki/Border_Gateway_Protocol#BGP_Path_Selection.

[12] The CAIDA AS relationships dataset, Jan 2010. http://www.caida.org/
data/active/as-relationships/.

[13] CBMC. http://www.cprover.org/cbmc/.

[14] Cisco—What Is Administrative Distance?, 2013. http://www.cisco.
com/c/en/us/support/docs/ip/border-gateway-protocol-
bgp/15986-admin-distance.html.

121

[15] Cisco’s Reflexive Access Lists, 2016. http://www.cisco.com/c/en/us/
td/docs/ios/12_2/security/configuration/guide/fsecur_c/
scfreflx.html.

[16] CloudFlare. https://www.cloudflare.com/ddos.

[17] Dell PowerEdge Rack Servers, 2015. http://www.dell.com/us/
business/p/poweredge-rack-servers.

[18] Emulab. http://www.emulab.net/.

[19] Finding and Diagnosing BGP Route Leaks, 2015. https://blog.
thousandeyes.com/finding-and-diagnosing-bgp-route-
leaks/.

[20] Graphplan. http://www.cs.cmu.edu/~avrim/graphplan.html.

[21] GSA Advantage, 2015. http://1.usa.gov/1ggEgFN.

[22] How pakistan knocked youtube offline (and how to make sure it never happens
again). http://www.cnet.com/news/how-pakistan-knocked-
youtube-offline-and-how-to-make-sure-it-never-happens-
again/.

[23] httperf. https://code.google.com/p/httperf/.

[24] Incapsula Survey : What DDoS Attacks Really Cost Businesses, 2014. http:
//lp.incapsula.com/rs/incapsulainc/images/eBook%20-
%20DDoS%20Impact%20Survey.pdf.

[25] iperf. https://code.google.com/p/iperf/.

[26] iptables. http://www.netfilter.org/projects/iptables/.

[27] JDD, a pure Java BDD and Z-BDD library. https://bitbucket.org/
vahidi/jdd/wiki/Home.

[28] Juniper—Route Preferences. http://juni.pr/1fQC4LY.

[29] KCachegrind. http://kcachegrind.sourceforge.net/html/Home.
html.

[30] Kinetic. http://resonance.noise.gatech.edu/.

[31] KVM. http://www.linux-kvm.org/page/Main_Page.

[32] Mininet. http://yuba.stanford.edu/foswiki/bin/view/
OpenFlow/Mininet.

[33] Network Function Virtualization Research Group (NFVRG). https://irtf.
org/nfvrg.

122

[34] ns-3. http://www.nsnam.org/.

[35] NTP attacks: Welcome to the hockey stick era, 2014. http://it.toolbox.
com/companies/arbor-networks-inc/news/ntp-attacks-
welcome-to-the-hockey-stick-era-92429.

[36] ONS 2014 Keynote: John Donovan, Senior EVP, AT&T Technology & Network
Operations. https://www.youtube.com/watch?v=tLshR-BkIas.

[37] OpenDaylight project. http://www.opendaylight.org/.

[38] Openflow switch specification. https://www.opennetworking.
org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.4.0.pdf.

[39] OSPF Message Formats. http://www.tcpipguide.com/free/t_
OSPFMessageFormats.htm.

[40] POX Controller. http://www.noxrepo.org/pox/about-pox/.

[41] PRADS. http://gamelinux.github.io/prads/.

[42] Prolexic. http://www.prolexic.com/.

[43] Purdue campus network configuration files, 2008. https://engineering.
purdue.edu/~isl/network-config/.

[44] Radware. http://www.radware.com/Solutions/Security/.

[45] Rfc 3954, cisco systems netflow services export version 9, 2004.
https://tools.ietf.org/html/rfc3954.

[46] Route Leak Causes Amazon and AWS Outage, 2015. https://blog.
thousandeyes.com/route-leak-causes-amazon-and-aws-
outage/.

[47] Scapy. https://isc.sans.edu/forums/diary/TCP+Fuzzing+
with+Scapy/14080/.

[48] Snort. http://www.snort.org/.

[49] Squid. http://www.squid-cache.org/.

[50] Stanford campus network configuration files, 2012. https:
//bitbucket.org/peymank/hassel-public/src/
697b35c9f17ec74ceae05fa7e9e7937f1cf36878/hsa-python/
examples/stanford/Stanford_backbone/?at=master.

[51] tcpdump. http://www.tcpdump.org/.

123

[52] The Intel Intrinsics Guide. https://software.intel.com/sites/
landingpage/IntrinsicsGuide/#techs=AVX2.

[53] The Internet Topology Zoo. http://www.topology-zoo.org/index.
html.

[54] Time for an SDN Sequel?, 2014. https://www.sdxcentral.com/
articles/news/scott-shenker-preaches-revised-sdn-
sdnv2/2014/10/.

[55] Troubleshooting the network survey, 2011. http://eastzone.github.io/
atpg/docs/NetDebugSurvey.pdf.

[56] Valgrind. http://www.valgrind.org/.

[57] Vast Challenge, 2013. http://vacommunity.org/VAST+Challenge+
2013%3A+Mini-Challenge+3.

[58] Verizon-Carrier Adoption of Software-defined Networking, 2012. https://www.
youtube.com/watch?v=WVczl03edi4.

[59] What was wrong with United’s router?, 2015. http://www.networkworld.
com/article/2946070/cisco-subnet/what-was-wrong-with-
uniteds-router.html.

[60] World Enterprise Network and Data Security Markets. https://www.
abiresearch.com/market-research/product/1006059-world-
enterprise-network-and-data-security/.

[61] Enabling Service Chaining on Cisco Nexus 1000V Series. http://www.
cisco.com/c/en/us/products/collateral/switches/nexus-
1000v-switch-vmware-vsphere/white_paper_c11-716028.pdf,
2013.

[62] High Performance Service Chaining for Advanced Software-Defined Networking
(SDN). https://networkbuilders.intel.com/docs/Intel_Wind_
River_Demo_Brief.pdf, 2014.

[63] Tackling the Dynamic Service Chaining Challenge of NFV/SDN Networks with
Wind River and Intel. http://itpeernetwork.intel.com/tackling-
the-dynamic-service-chaining-challenge-of-nfvsdn-
networks-with-wind-river-and-intel/, 2014.

[64] Paving the way for nfv: Simplifying middlebox modifications using statealyzr. In
Proc. NSDI, 2016.

[65] Richard Alimi, Ye Wang, and Y. Richard Yang. Shadow configuration as a network
management primitive. In Proc. SIGCOMM, 2008.

124

[66] Shane Amante, Brian Carpenter, Sheng Jiang, and Jarno Rajahalme. IPv6 Flow
Label Update. http://rmv6tf.org/wp-content/uploads/2012/11/
rmv6tf-flow-label11.pdf.

[67] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. NetKAT: Semantic foundations for
networks. In Proc. POPL, 2014.

[68] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin Vahdat.
xOMB: extensible open middleboxes with commodity servers. In Proc. ANCS, 2012.

[69] Bilal Anwer, Theophilus Benson, Nick Feamster, and Dave Levin. Programming
slick network functions. In Proc. SOSR, 2015.

[70] Thomas Ball, Nikolaj Bjorner, Aaron Gember, Shachar Itzhaky, Aleksandr Karby-
shev, Mooly Sagiv, Michael Schapira, and Asaf Valadarskyi. VeriCon: Towards
verifying controller programs in software-defined networks. In Proc. PLDI, 2014.

[71] Gaurav Banga and Jeff Mogul. Scalable kernel performance for Internet servers
under realistic loads. In Proc. USENIX ATC, 1998.

[72] Paul Barford, Jeffery Kline, David Plonka, and Amos Ron. A signal analysis of
network traffic anomalies. In Proc. ACM SIGCOMM Workshop on Internet Mea-
surement, 2002.

[73] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
Don’t mind the gap: Bridging network-wide objectives and device-level configura-
tions. In Proc. SIGCOMM, 2016.

[74] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D.
Ernst. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In Proc. ESEC/FSE, 2011.

[75] Pat Bosshar, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Mar-
tin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hardware for SDN. In Proc. SIG-
COMM, 2013.

[76] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 35(8):677–691, 1986.

[77] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J.
Hwang. Symbolic Model Checking: 10ˆ20 States and Beyond. Inf. Comput., 98(2),
1992.

[78] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs. In Proc.
OSDI, 2008.

125

[79] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: Three
decades later. Commun. ACM, 56(2):82–90, February 2013.

[80] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer Rexford.
A NICE way to test openflow applications. In Proc. NSDI, 2012.

[81] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown,
and Scott Shenker. Ethane: Taking control of the enterprise. In Proc. SIGCOMM,
2007.

[82] Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. Fabric: A
retrospective on evolving sdn. In Proc. HotSDN, 2012.

[83] Margaret Chiosi and et al. Network Functions Virtualisation: An Introduction, Ben-
efits, Enablers, Challenges & Call for Action. http://portal.etsi.org/
nfv/nfv_white_paper.pdf, 2012.

[84] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Proc. CAV, 2000.

[85] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press,
1999.

[86] Ryan Craven, Robert Beverly, and Mark Allman. A middlebox-cooperative tcp for a
non end-to-end internet. In Proceedings of the 2014 ACM conference on SIGCOMM,
pages 151–162. ACM, 2014.

[87] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopoulos, Michael
Bailey, and Manish Karir. Taming the 800 pound gorilla: The rise and decline of ntp
ddos attacks. In Proc. IMC, 2014.

[88] Mihai Dobrescu, Katerina Argyarki, and Sylvia Ratnasamy. Toward Predictable
Performance in Software Packet-Processing Platforms. In Proc. NSDI, 2012.

[89] Mihai Dobrescu and Katerina Argyraki. Software dataplane verification. In Proc.
NSDI, 2014.

[90] Daniel J. Dougherty, Timothy Nelson, Christopher Barratt, Kathi Fisler, and Shriram
Krishnamurthi. The margrave tool for firewall analysis. In Proc. LISA, 2010.

[91] Li Erran Li, Z. Morley Mao, and Jennifer Rexford. CellSDN: Software-defined
cellular networks. In Techinical Report, Princeton University, 2013.

[92] Seyed K. Fayaz, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C. Mogul. En-
forcing network-wide policies in the presence of dynamic middlebox actions using
FlowTags. In Proc. NSDI, 2014.

[93] Seyed K. Fayaz and Vyas Sekar. Testing stateful and dynamic data planes with
FlowTest. In Proc. HotSDN, 2014.

126

[94] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. Efficient network reachability analysis using a succinct
control plane representation. In Proc. OSDI, 2016.

[95] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. Bohatei: Flex-
ible and elastic DDoS defense. In Proc. USENIX Security Symposium, 2015.

[96] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar.
BUZZ: Testing context-dependent policies in stateful networks. In Proc. NSDI,
2016.

[97] Nick Feamster and Hari Balakrishnan. Detecting bgp configuration faults with static
analysis. In Proc. NSDI, 2005.

[98] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn. Queue,
11(12):20:20–20:40, December 2013.

[99] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,
Ratul Mahajan, and Todd Millstein. A general approach to network configuration
analysis. In Proc. NSDI, 2015.

[100] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica.
X-trace: A pervasive network tracing framework. In Proc. NSDI, 2007.

[101] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. Frenetic: A network programming lan-
guage. SIGPLAN Not., 46(9), September 2011.

[102] Lixin Gao. On inferring autonomous system relationships in the internet. IEEE/ACM
Trans. Netw., 9(6), December 2001.

[103] Aaron Gember, Anand Krishnamurthy, Saul St. John, Robert Grandl, Xiaoyang
Gao, Ashok Anand, Theophilus Benson, Aditya Akella, and Vyas Sekar. Stratos:
A network-aware orchestration layer for middleboxes in the cloud. CoRR,
abs/1305.0209, 2013.

[104] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.
Fast control plane analysis using an abstract representation. In Proc. SIGCOMM,
2016.

[105] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. Opennf: Enabling innovation in
network function control. In Proc. SIGCOMM, 2014.

[106] Aaron Gember-Jacobson, Wenfei Wu, Xiujun Li, Aditya Akella, and Ratul Mahajan.
Management plane analytics. In Proc. IMC, 2015.

[107] Patrice Godefroid, Michael Y. Levin, and David Molnar. SAGE: Whitebox fuzzing
for security testing. ACM Queue, 2012.

127

[108] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rex-
ford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A clean slate 4D ap-
proach to network control and management. ACM CCR, 2005.

[109] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The stable paths prob-
lem and interdomain routing. IEEE/ACM Trans. Netw., 10(2):232–243, April 2002.

[110] Timothy G. Griffin and Joäo Luís Sobrinho. Metarouting. In Proc. SIGCOMM,
2005.

[111] Timothy G. Griffin and Gordon Wilfong. An analysis of bgp convergence properties.
In Proc. SIGCOMM, 1999.

[112] Brandon Heller, Rob Sherwood, and Nick McKeown. The Controller Placement
Problem. In Proc. HotSDN, 2012.

[113] Frederick J. Hill and Gerald R. Peterson. Introduction to Switching Theory and
Logical Design. 1981.

[114] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Hand-
ley, and Hideyuki Tokuda. Is it still possible to extend tcp? In Proc. IMC, 2011.

[115] Jain et al. B4: Experience with a globally-deployed software defined wan. In Proc.
SIGCOMM, 2013.

[116] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput. Surv.,
2009.

[117] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. Softcell: Scalable and
flexible cellular core network architecture. In Proc. CoNext, 2013.

[118] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini, F. Risso,
D. Staessens, R. Steinert, and C. Meirosu. Research directions in network service
chaining. In Future Networks and Services (SDN4FNS), 2013 IEEE SDN for, 2013.

[119] Wolfgang John, Kostas Pentikousis, George Agapiou, Eduardo Jacob, Mario Kind,
Antonio Manzalini, Fulvio Risso, Dimitri Staessens, Rebecca Steinert, and Catalin
Meirosu. Research directions in network service chaining. CoRR, abs/1312.5080,
2013.

[120] D. Joseph and I. Stoica. Modeling middleboxes. Netwrk. Mag. of Global Inter-
netwkg., 22(5), 2008.

[121] Dilip A. Joseph, Arsalan Tavakoli, and Ion Stoica. A policy-aware switching layer
for data centers. In Proc. SIGCOMM, 2008.

[122] Min Suk Kang, Soo Bum Lee, and V.D. Gligor. The crossfire attack. In Proc. IEEE
Security and Privacy, 2013.

128

[123] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McK-
eown, and Scott Whyte. Real time network policy checking using header space
analysis. In Proc. NSDI, 2013.

[124] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis:
static checking for networks. In Proc. NSDI, 2012.

[125] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. Veri-
flow: verifying network-wide invariants in real time. In Proc. NSDI, 2013.

[126] Donald Knuth. The Art of Computer Programming, Volume 4A: Combinatorial Al-
gorithms, Part 1. 2011.

[127] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The click modular router. ACM Trans. Comput. Syst., 2000.

[128] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha Gude, Paul Ingram, Ethan Jack-
son, Andrew Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin
Pettit, Ben Pfaff, Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling,
Pankaj Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang. Network
virtualization in multi-tenant datacenters. In Proc. NSDI, 2014.

[129] Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. Towards secure and
dependable software-defined networks. In Proc. HotSDN, 2013.

[130] Franck Le, Erich Nahum, Vasilis Pappas, Maroun Touma, and Dinesh Verma. Expe-
riences deploying a transparent split tcp middlebox and the implications for nfv. In
Proc. HotMiddlebox, 2015.

[131] Franck Le, Geoffrey G. Xie, Dan Pei, Jia Wang, and Hui Zhang. Shedding light on
the glue logic of the internet routing architecture. In Proc. SIGCOMM, 2008.

[132] Franck Le, Geoffrey G. Xie, and Hui Zhang. Instability free routing: beyond one
protocol instance. In Proc. CoNEXT, 2008.

[133] Franck Le, Geoffrey G. Xie, and Hui Zhang. Theory and new primitives for safely
connecting routing protocol instances. In Proc. SIGCOMM, 2010.

[134] Franck Le, Geoffrey G. Xie, and Hui Zhang. On route aggregation. In Proc.
CoNEXT, 2011.

[135] Erran Li, Vahid Liaghat, Hongze Zhao, MohammadTaghi Hajiaghayi, Dan Li, Gor-
don Wilfong, Y. Richard Yang, and Chuanxiong Guo. PACE: Policy-Aware Appli-
cation Cloud Embedding. In Proc. IEEE INFOCOM, 2013.

[136] W. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann, and J. Hu Z. Cao. Ser-
vice Function Chaining (SFC) Use Cases. https://tools.ietf.org/html/
draft-liu-sfc-use-cases-01, 2014.

129

[137] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George
Varghese. Checking beliefs in dynamic networks. In Proc. NSDI, 2015.

[138] Lori MacVittie. Service chaining and unintended consequences. https:
//devcentral.f5.com/articles/service-chaining-and-
unintended-consequences#.Uvbz0EJdVe9.

[139] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten God-
frey, and Samuel Talmadge King. Debugging the data plane with anteater. In Proc.
SIGCOMM, 2011.

[140] David A. Maltz, Geoffrey Xie, Jibin Zhan, Hui Zhang, Gísli Hjálmtýsson, and Albert
Greenberg. Routing design in operational networks: A look from the inside. In Proc.
SIGCOMM, 2004.

[141] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innova-
tion in campus networks. SIGCOMM Comput. Commun. Rev., 2008.

[142] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the relia-
bility of unix utilities. Commun. ACM, 1990.

[143] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos defense
mechanisms. In CCR, 2004.

[144] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing software-defined networks. In Proc. NSDI, 2013.

[145] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing Software Defined Networks. In Proc. NSDI, 2013.

[146] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and Stefan
Savage. Inferring internet denial-of-service activity. ACM Trans. Comput. Syst.,
2006.

[147] Y Mundada et al. Practical Data-Leak Prevention for Legacy Applications in Enter-
prise Networks. http://hdl.handle.net/1853/36612.

[148] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and
David L. Dill. Cmc: A pragmatic approach to model checking real code. In Proc.
OSDI, 2002.

[149] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram Kaul. Declarative infrastruc-
ture configuration synthesis and debugging. J. Netw. Syst. Manage., 16(3), Septem-
ber 2008.

[150] Network functions virtualisation – introductory white paper. http://portal.
etsi.org/NFV/NFV_White_Paper.pdf.

130

[151] Arbor Networks. ATLAS Summary Report: Global Denial of Service. http:
//atlas.arbor.net/summary/dos.

[152] James Newsome and Dawn Song. Dynamic Taint Analysis for Automatic Detection,
Analysis, and Signature Generation of Exploits on Commodity Software. In Proc.
NDSS, 2005.

[153] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang amd Aurojit Panda, Sylvia
Ratnasamy, Luigi Rizzo, and Scott Shenker. E2: A framework for NFV applications.
In Proc. SOSP, 2015.

[154] Aurojit Panda, Ori Lahav, Katerina J. Argyraki, Mooly Sagiv, and Scott Shenker.
Verifying isolation properties in the presence of middleboxes. CoRR, 2014.

[155] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg,
David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. Ananta: cloud scale load balancing. In Proc.
ACM SIGCOMM, 2013.

[156] Vern Paxson. Bro: A system for detecting network intruders in real-time. In Com-
puter Networks, pages 2435–2463, 1999.

[157] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang.
PGA: Using graphs to express and automatically reconcile network policies. In Proc.
SIGCOMM, 2015.

[158] Zafar Qazi, Cheng Tu, Luis Chiang, Rui Miao, and Minlan Yu. SIMPLE-fying
middlebox policy enforcement using sdn. In Proc. SIGCOMM, 2013.

[159] P Quinn et al. Network service chaining problem statement. http://tools.
ietf.org/html/draft-quinn-nsc-problem-statement-03.

[160] P. Quinn, J. Guichard, S. Kumar, P. Agarwal, R. Manur, A. Chauhan, N. Ley-
mann, M. Boucadair, C. Jacquenet, M. Smith, N. Yadav, T. Nadeau, K. Gray, and
B. McConnell. Network Service Chaining Problem Statement. https://tools.
ietf.org/html/draft-quinn-nsc-problem-statement-02, 2013.

[161] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield.
Split/merge: System support for elastic execution in virtual middleboxes. In Proc.
NSDI, 2013.

[162] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. In Proc. SIGCOMM, 2012.

[163] Christian Rossow. Amplification hell: Revisiting network protocols for ddos abuse.
In Proc. USENIX Security, 2014.

131

[164] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi.
Design and implementation of a consolidated middlebox architecture. In Proc.
NSDI, 2012.

[165] Vyas Sekar, Sylvia Ratnasamy, Michael K. Reiter, Norbert Egi, and Guangyu Shi.
The middlebox manifesto: enabling innovation in middlebox deployment. In Proc.
HotNets, 2011.

[166] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Krishna-
murthy, Christian Maciocco, Maziar Manesh, João Martins, Sylvia Ratnasamy,
Luigi Rizzo, and Scott Shenker. Rollback recovery for middleboxes. In Proc. SIG-
COMM, 2015.

[167] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud service. In Proc. SIGCOMM, SIGCOMM, 2012.

[168] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. AVANT-
GUARD: Scalable and vigilant switch flow management in software-defined net-
works. In Proc. CCS, 2013.

[169] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring ISP topologies with
Rocketfuel. In Proc. SIGCOMM, 2002.

[170] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. Symnet:
Static checking for stateful networks. In Proc. HotMiddlebox, 2013.

[171] Ahren Studer and Adrian Perrig. The coremelt attack. In Proc. ESORICS, 2009.

[172] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-
based testing approaches. Software Testing, Verification and Reliability, 22(5), 2012.

[173] Patrick Verkaik, Dan Pei, Tom Schollf, Aman Shaikh, Alex C. Snoeren, and Ja-
cobus E. van der Merwe. Wresting Control from BGP: Scalable Fine-grained Route
Control. In Proc. USENIX ATC, 2007.

[174] Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever, and Jennifer Rexford. Cen-
tral control over distributed routing. In Proc. SIGCOMM, 2015.

[175] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krishna-
murthy, and Zachary Tatlock. Bagpipe: Verified BGP configuration checking. In
Proc. OOPSLA, 2016.

[176] Wenfei Wu, Guohui Wang, Aditya Akella, and Anees Shaikh. Virtual network diag-
nosis as a service. In Proc. SoCC, 2013.

[177] Geoffrey Xie, Jibin Zhan, David Maltx, Hui Zhang Gisli Hjalmtysson, and Jennifer
Rexford. On Static Reachability Analysis of IP Networks. In Proc. INFOCOM,
2005.

132

[178] Hongkun Yang and Simon S. Lam. Real-time verification of network properties
using atomic predicates. In IEEE Transactions on Networking, 2015.

[179] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using
model checking to find serious file system errors. ACM Trans. Comput. Syst., 24(4),
November 2006.

[180] S.H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of software-defined
networking. Communications Magazine, IEEE, 2013.

[181] Tianlong Yu, Seyed K. Fayaz, Michael Collins, Vyas Sekar, and Srinivasan Seshan.
PSI: Precise security instrumentation for enterprise networks. In Proc. NDSS, 2017.

[182] Lihua Yuan and Hao Chen. FIREMAN: a toolkit for FIREwall Modeling and ANal-
ysis. In Proc. IEEE Symposium on Security and Privacy, 2006.

[183] Yifei Yuan, Rajeev Alur, and Boon Thau Loo. Netegg: Programming network poli-
cies by examples. In Proc. HotNets, 2014.

[184] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic
test packet generation. In Proc. CoNEXT, 2012.

[185] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda
Liu, Nick McKeown, and Amin Vahdat. Libra: Divide and conquer to verify for-
warding tables in huge networks. In Proc. NSDI, 2014.

[186] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun Mao.
Efficient querying and maintenance of network provenance at internet-scale. In Proc.
SIGMOD, 2010.

133

