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Abstract
In order to support a multi-standard platform using a Software Defined

Radio (SDR), the novel idea of reconfigurable Radio Frequency (RF) front-
ends have recently been proposed by the U.S. Defense Advanced Research
Projects Agency (DARPA). A reconfigurable RF front-end has RF compo-
nents that are reconfigured separately in order to satisfy the requirement of
a particular communication standard. The reconfigurable RF front-end is a
more reliable front-end for SDR than the currently used fixed wide-band RF
front-ends, which have degraded system performance by passing more inter-
ference signals spread out in a wide range of frequency band.

In order to realize the reconfigurable RF front-end, this thesis investigates
the optimization method to select from the available configurations in radio
environments with interference. In order to select an optimal configuration,
we propose the Environment-Adaptable Fast (EAF) optimization algorithm
for a reconfigurable RF front-end. A reconfigurable RF front-end not only
needs to select an appropriate configuration that can operate for a given stan-
dard, but also needs to adapt quickly to a dynamic communication condition.
This is difficult since there may be millions of available configurations. First,
we studied RF impairment estimation for reconfigurable RF front-ends. Non-
linearity, phase noise, noise figure as well as frequency offset are RF impair-
ments most likely to affect a particular standard. Second, we formulated the
Signal-to-Interference-and-Noise Ratio (SINR) calculation which hastens the
optimization process. We demonstrate the performance of the EAF optimiza-
tion method in an exemplary scenario using Matlab Simulink. Finally, we
designed the EAF optimization algorithm as a heuristic to select a configura-
tion from the available ones. These simulation results demonstrate that while
finding an optimal configuration, the EAF optimization significantly reduces
simulation time compared to the four other previously proposed optimization
methods. Thus, we expect that a reconfigurable RF front-end would be useful
in real-time communication environments, since it would need significantly
fewer reconfigurations to find an adequate configurations.
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Chapter 1

Introduction

1.1 RF Front-ends in Radios

Traditionally, when multiple fixed narrow-band Radio Frequency (RF) front-ends are used

for communication systems, each front-end is designed for a single communication stan-

dard as shown in Figure 1.1(a). However, the plethora of communication standards can-

not be handled by the limited resources of the frequency spectrum. In order to utilize

frequency spectrum efficiently, the communication standards must be handled by modern

radio receivers. Frequency bands that are unused in time and space - White space - can

be accessed (flexibility) and utilized by cognitive radio. Recently, multi-standard radio

receivers have become important for future wireless communication systems.

In order to meet the emerging needs of multi-standard platforms, Software Defined

Radio (SDR) architectures have been proposed. A fixed wide-band RF front-end is com-

monly used in SDR, so as to cover multiple bands of interest, as shown by Figure 1.1(b).

(This particular architecture of the wideband RF front-end is based on the popular USRP

SDR [14].) Flexibility in such a front-end is obtained by changing the operating fre-
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quency of the local oscillator used for mixing from tens of MHz to a few GHz. In order

to support operation over this large range of frequencies, this front-end uses wide-band

amplifiers and mixers in a homodyne architecture, depicted in Figure 1.2(a), depending

on which RF daughter-board is chosen for the SDR.

Figure 1.1: Operating frequency bands of (a) narrow-band fixed RF front-end, (b) wide-

band fixed RF front-end and (c) reconfigurable (narrow-band) RF front-end. An analog-

to-digital converter and a digital front-end is retained in SDR.

However, this front-end precludes the use of narrow-band RF filters [3], so that the

signal of interest becomes vulnerable to inter-modulated signals. This phenomenon oc-

curs when two or more large interferers lying outside the channel of the signal of interest,

produce in-channel interference, due to non-linearity of the components in the wide-band

RF front-end. In a typical radio receiver, there may be several large interferers - not just

in the band of interest, but even far from the band of interest due to the wide-band nature

of the front-end. That can cause inter-modulation interference to the desired signal.

The U.S. Defense Advanced Research Projects Agency (DARPA) has recently pro-

posed the novel concept of a reconfigurable RF front-end (also called reconfigurable Ra-

dio Frequency-Field Programmable Gate Array (RF-FPGA)), in which various types of
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RF components (conceivably arranged in component banks), may be used to select dif-

ferent architectures, including heterodyne and homodyne, dynamically [4]. The reconfig-

urable RF front-end can flexibly change its operating channel based on the requirements

of the communication standard it is implementing as shown in Figure 1.1(c). Further,

amplifiers, filters, and mixers in each stage can be reconfigured according to the chosen

architecture and standard in Figure 1.2(b). This increases reusability of the RF compo-

nents, and allows novel architectures in the RF front-end. While a fixed RF front-end is

substituted with a reconfigurable RF front-end, an analog-to-digital converter and a digital

front-end is retained in SDR.

Unlike the fixed wide-band RF front-end, in a reconfigurable RF front-end of SDR,

RF filters can attenuate the power of large interferers, without compromising the receiver

sensitivity by attenuating the signal of interest. These RF filters can alleviate the inter-

modulated interference, thus improving the SINR. Furthermore, appropriate choices of

amplifiers and mixers can also be made to achieve the correct trade-off between sensi-

tivity and selectivity, depending on the dynamic environment. This improvement of a

reconfigurable RF front-end will be demonstrated by comparing its performance with a

fixed wideband RF front-end in Appendix A. Thus, it is a promising alternative to the

fixed wideband or specified narrowband front-ends used in SDRs presently.

1.2 Reconfigurable RF Front-end Optimization

With a reconfigurable RF front-end, an important challenge is finding an optimal config-

uration for a particular communication standard in a given RF environment. Recently,

Jun Tao’s study [19] investigated reconfigurable RF front-ends for radio receivers, and

proposed a method to find the optimal configuration, to minimize receiver power while
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Figure 1.2: Architectures of (a) wide-band fixed RF front-end and (b) reconfigurable

(narrowband) RF front-end

yielding adequate Signal-to-Noise Ratio (SNR), in a fixed communication environment.

In that method, a greedy algorithm is applied to select the RF components from among

those available in the RF front-end, while enforcing the minimum SNR criterion. While

those results provide a starting point for our study, they do not specify how to adapt the RF

front-end to a changing RF environment - specifically to the appearance of large interfer-

ers and blockers. In the presence of interference, the optimal configuration is one which

has the lowest power consumption and adequate quality of communication as measured

by the Signal-to-Interference-and-Noise Ratio (SINR). This reconfiguration must be done

quickly, by efficiently exploring space of millions of likely configurations.

To find an optimal configuration x(𝑜𝑝𝑡) of the reconfigurable RF front-end, the opti-

mization problem can be mathematically formulated as follows,

x(𝑜𝑝𝑡) = 𝑎𝑟𝑔 min 𝐹 (x),

𝑔𝑖(x, 𝑡) ≥ 𝐺𝑖 ∀𝑖 ∈ {1, 2, · · · , 𝑁𝑔}
(1.1)
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where the vector-valued x is one of the available configurations for a reconfigurable RF

front-end and each element of x is a parameter of an individual component. 𝐹 (x) is a cost

function (such as power consumption of the configuration), which needs to be minimized

while satisfying all constraints 𝑔𝑖(x, 𝑡) ≥ 𝐺𝑖 for 𝑖 ∈ {1, 2, · · · , 𝑁𝑔} at time 𝑡 (signal-to-

interference-plus-noise ratio, area, cost, etc.).

The main difficulty in finding the optimal configuration is the adaptation complexity,

measured in the time needed to discover the optimal configuration, due to the exponen-

tial number of possible configurations when the number of RF components (amplifiers,

filters, and mixers) is large, and when there are several stages of RF signal processing.

When the reconfigurable radio is initially programmed, several base configurations (i.e.,

default configurations) can be pre-programmed into it, based on the desired communica-

tion standards. However, the spectral environment is dynamic, with blockers and large

interferers appearing randomly at different frequencies. This cannot be pre-programmed

exhaustively, since there are too many possible scenarios to be considered. Rather, a fast

algorithm to adapt the RF front-end to interferers in real-time is needed.

1.3 Environment-Adaptable Fast Optimization Method

In this thesis, we developed a fast optimization algorithm - called Environment-Adaptable

Fast (EAF) optimization - for optimizing a reconfigurable RF front-end in a dynamic spec-

trum environment. We improve the efficiency of an optimization method by predicting

configurations that can be discarded, based on Signal-to-Interference-and-Noise Ratio

(SINR), which is calculated -as opposed to simulated (or measured during operation)-

using RF impairment information. Our contributions to reconfigurable RF front-end op-

timization are given below:
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First, we estimated RF impairments of a reconfigurable RF front-end (in Chapter 2).

To conduct this estimation, we designed estimators for Time-Invariant (TI) Impairments,

including nonlinearity, phase noise and noise figure, and Time-Variant (TV) impairments,

including frequency offset.

Second, utilizing the estimated RF impairments, we designed the EAF optimization

method that improves optimization speed by utilizing the calculated SINR (in Chapter 3).

The calculated SINR was formulated in terms of parameters of RF impairments and signal

spectrum of the signal of interest and interferers. The performance of the EAF optimiza-

tion was demonstrated in a reconfigurable RF-FPGA system.

Finally, the EAF optimization method was expanded and applied to a large-scale re-

configurable RF-FPGA system (in Chapter 4). In a large-scale RF front-end, the main

problem is that the RF impairments of all possible configurations cannot be estimated

due to the large number of possible configurations. Our approach for this problem was

to model the RF front-end in terms of component values, and to estimate the component

parameters using a Design of Experiments approach and an Interpolation method. This

thesis extensively uses simulations to model and verify the system and algorithm. This is

done using Matlab Simulink, augmented with the SimRF toolbox. Simulink can model

the baseband of a communication system in detail. The SimRF toolbox is capable of

modeling RF operations, such as filtering, mixing, and amplification, including detailed

noise, nonlinearity and frequency response modeling.

1.4 Our Contributions

This thesis claims the following novel contributions,

1. We studied RF impairment estimation for a large-scale RF-FPGA system. We
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derived statistical signal models of RF impairments, and based on the statistical signal

models we designed estimators of RF impairments. We focused on two main problems

while applying the estimators of RF impairments to a large-scale RF-FPGA system: two

saturation areas of nonlinearity estimates and limited resources in RF impairment estima-

tion procedures. The saturation areas of nonlinearity estimates are caused by a wide range

of RF front-ends. In order to solve the saturation, we designed a formula for changing

the transmission signal power in an estimation procedure. Also, we considered limited

resources in RF impairment estimation in a large-scale RF front-end. Solving the lim-

ited resource problem, we used a Design of Experiments (DoE) approach that effectively

selects sample configurations among the large number of all possible configurations in

a large-scale RF-FPGA and an Interpolation method that obtains unknown component

values from known component values of RF impairments calculated from sample config-

urations.

2. We derived a formula that calculates SINR in a given communication environment

in terms of phase noise, nonlinearity and noise figure. In order to improve the accuracy of

the SINR calculation, the impairing signal power by each RF impairment was separately

analyzed considering the frequency offset of interference and the power of the signal of

interest and interference. We assumed that RF impairments are estimated, and a signal

spectrum is obtained by a Signal Analyzer, a configuration of reconfigurable RF front-

ends that bypasses all filters and amplifiers.

3. Using the SINR calculation, we designed the EAF optimization method that has-

tens an optimization process for finding an operable configuration in a large-scale RF-

FPGA system. Simulation results showed that our EAF optimization method significantly

improves its optimization speed compared with the Two-phase relaxation optimization

method and the Multi-resolution optimization method.
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Chapter 2

RF Impairments and Estimation

The RF signal received by a RF front-end suffers from various deleterious effects as it is

processed by the RF front-end, resulting in a certain SINR at the baseband. Therefore, to

calculate SINR for the EAF optimization presented in Chapter 3, we first need to estimate

RF impairments of any configurations of the RF-FPGA. The relation between SNR (or

BER) and RF impairment has been studied previously, for example in [11]. The estimators

of RF impairments help the reconfigurable engine narrow down candidate configurations

from the pool of all configurations of reconfigurable RF systems. Based on the estimates

of RF impairments, configurations with dominant RF impairments can be eliminated in

the pool of candidate configurations [17].

Communication standards have different requirements of RF impairments. The esti-

mates of RF impairments of configurations directly tell us which configurations satisfy the

requirements of RF impairments for a given standard. For example, the IEEE 802.11a/b/g

standards require maximal gain of 18 dB, the third-order nonlinearity (IP3) of -5 dBm,

noise figure of 3 dB [2]. Therefore, the estimators of RF impairments discriminate among

useful configurations, and thus quicken the optimization process for reconfigurable RF

front-ends for different standards.
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The RF impairments to be estimated considered are chosen based on the typical base-

band standard requirements from a study published by Brendolini as shown in Table 2.1:

IIP3, phase noise, noise figure and gain.

RF impairments are estimated using baseband signals received after downconversion

by the reconfigurable RF front-end. Baseband signals are distinctively impaired by differ-

ent types of RF impairments. Also, baseband signals require a relatively lower sampling

frequency (typically, only up to a few tens of MHz) than passband signals, which are

typically in the GHz range.

There are two types of RF impairments: Time-Invariant (TI) RF impairments and

Time-Variant (TV) RF impairments. A TI RF impairment is characterized by fixed pa-

rameters while the TV RF impairment parameters may change over time.

Considering the characteristics of TI and TV RF impairments, we investigated esti-

mation methods for nonlinearity, phase noise, noise figure, gain, and frequency offset.

Table 2.1: Baseband Standard Requirement [2]. (phase noise is specified at 1MHz fre-

quency offset.)

Standard E-GSM (2G) UMTS (3G) 802.11a/g 802.11b

f (GHz) 0.88-0.915 1.85-1.91 5.15-5.725 2.4-2.4835

Noise Figure 9 dB 6 dB 7.5 dB 14.8 dB

Phase Noise -141 dBc/Hz -150 dBc/Hz -102 dBc/Hz -101 dBc/Hz

IIP3 -18 dBm -18 dBm -16 dBm -16 dBm

IIP2 +49 dBm +46 dBm - -
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2.1 Time-Invariant (TI) RF Impairments

Because of the fixed parameters of Time-Invariant (TI) RF impairments, it is assumed that

the TI impairments - nonlinearity, phase noise and noise figure - are estimated when a re-

configurable RF front-end is manufactured, called Factory mode of operation (Appendix

B).

2.1.1 Third Order Nonlinearity Estimator Design

The third order nonlinearity causes impairing received signals due to intermodulation of

the signal of interest and interference. The third-order nonlinearity is generally repre-

sented by the third-order intercept point (IP3).

In order to estimate IP3 that is defined as IP3 =

√︂
4

3

𝛼1

𝛼3

where 𝛼1 and 𝛼3 are the first

and third order gains respectively, we need to start by categorizing blockers [6].

First, set 𝐵(𝑘) is defined as a set of all pairs of blockers, which may cause inter-

modulated signals by third order non-linearity of the 𝑘-th configuration of a reconfig-

urable RF front-end.

𝐵(𝑘) = {(𝑏𝑚, 𝑏𝑛) : |2 · 𝐹𝑚 − 𝐹𝑛 − 𝐹𝑐| < 0.5 ·B}, (2.1)

where the two narrowband blockers 𝑏𝑚 and 𝑏𝑛 are located at the frequencies of 𝐹𝑚 and 𝐹𝑛,

respectively. 𝐹𝑐 is the carrier frequency of the signal of interest and B is the bandwidth

of the signal of interest. The pair of blockers 𝑏𝑚 and 𝑏𝑛 can be located either at the right-

handed side of the carrier frequency 𝐹𝑐 such as 𝐹𝑐 < 𝐹𝑚 < 𝐹𝑛 or at the left-handed side

such as 𝐹𝑛 < 𝐹𝑚 < 𝐹𝑐 on the frequency spectrum.

Since there are 𝑁𝑘 filters in the 𝑘-th configuration of the reconfigurable RF front-end,

we can order the filters in the order in which the signal passes through the RF-FPGA

chain. Suppose the passband of 𝑖-th filter is denoted by 𝑃𝑖. A pair of blockers (𝑏𝑚, 𝑏𝑛) in
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the set 𝐵(𝑘) may or may not simultaneously pass the 𝑖-th filter (e.g., 𝐹𝑚 and 𝐹𝑛 may or

may not in 𝑃𝑖) for 𝑖 ∈ {1, 2, · · · , 𝑁𝑘}.

Now, we can group pairs of blockers (𝑏𝑚, 𝑏𝑛), into 𝑁𝑘 subsets 𝐵𝑖
(𝑘) of set 𝐵(𝑘) based

on 𝐹𝑚, 𝐹𝑛 and passband 𝑃𝑖 of the 𝑖-th filter as follows, 𝐵𝑁𝑘+1
(𝑘) = ∅ and then for 𝑖 =

𝑁𝑘, 𝑁𝑘−1, · · · , 𝑁1, define

𝐵𝑖
(𝑘) = {(𝑏𝑚, 𝑏𝑛) ∈ 𝐵(𝑘) : 𝐹𝑚 ∈

𝑖⋂︁
𝑟=1

𝑃𝑟, 𝐹𝑛 ∈
𝑖⋂︁

𝑟=1

𝑃𝑟, (𝑏𝑚, 𝑏𝑛) ̸∈ 𝐵𝑖+1
(𝑘)}. (2.2)

There is only one set 𝐵𝑖
(𝑘), 𝑖 ∈ {0, 1, 2, · · · , 𝑁𝑘} containing a given pair of blockers

Figure 2.1: An example of categorization of a blocker pair (𝑏𝑚,𝑏𝑛): the 𝑘-th configuration

has three RF filters (e.g. see Figure 1.1 (b) with two RF filters) with passband ranges

plotted in (a), (b), and (c), respectively, in order. The first subset 𝐵1
(𝑘) has a pair of

blockers (𝐵1,1,𝐵1,2). Both of the blockers are placed in the passband (a) of the first filter

but at least one of them is not in the passband (b) of the second filter. Similarly, subsets

𝐵2
(𝑘) and 𝐵3

(𝑘) are shown in (b) and (c) respectively.
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(𝑏𝑚, 𝑏𝑛) in 𝐵(𝑘). If a pair of blockers (𝑏𝑚, 𝑏𝑛) belongs to 𝐵𝑖
(𝑘), at least one of the blockers

are significantly attenuated by the (𝑖+1)-th filter. Then, after passing through the (𝑖+1)-th

filter, inter-modulation of blockers does not occur additively. In other words, the inter-

modulation of blockers is caused by third order nonlinearity of RF components, through

which blockers have passed before passing the (𝑖 + 1)-th filter. Suppose parameter IP3𝑖,𝑘

represents the effective IP3 of the chain of RF components through which blockers have

passed before passing through the (𝑖 + 1)-th filter in the 𝑘-th configuration. In this case,

IP3𝑖,𝑘 for 𝑖 ∈ {1, 2, · · · , 𝑁𝑘} directly affects the magnitude of inter-modulated signals

caused by the blocker pairs in the set of 𝐵𝑖
(𝑘).

In order to estimate third order nonlinearity parameter IP3𝑖,𝑘, we use two sinusoidal

signals belonging to the frequency band
⋂︀𝑖

𝑟=1 𝑃𝑟 while one of the two sinusoids does not

belong to
⋂︀𝑖+1

𝑟=1 𝑃𝑟. Assume that when two such sinusoids of amplitude 𝐴1,𝑖,𝑘 and 𝐴2,𝑖,𝑘,

respectively, pass through the reconfigurable RF front-end, the received inter-modulated

signal has amplitude 𝐴𝑜𝑢𝑡,𝑖,𝑘. Assume that when a single sinusoid of amplitude of 𝐵𝑖𝑛,𝑘

at a frequency 𝐹𝑠 in the frequency band
⋂︀𝑁𝑘

𝑟=1 𝑃𝑟, passes through the reconfigurable RF

front-end, the received signal has amplitude 𝐵𝑜𝑢𝑡,𝑘.

Then, ̂︁IP3𝑖,𝑘 is given by the following formula [6],

̂︁IP3𝑖,𝑘(dBm) = −10 · log10

(︂
𝐴𝑜𝑢𝑡,𝑖,𝑘

𝐴1,𝑖,𝑘
2 · 𝐴2,𝑖,𝑘

𝐵𝑖𝑛,𝑘

𝐵𝑜𝑢𝑡,𝑘

)︂
+ 30. (2.3)

Thus, varying the frequencies of the generated one or two sinusoids and sending the

sinusoids through the reconfigurable RF system, we can obtain a set of ̂︁IP3𝑖,𝑘, where

𝑖 ∈ {1, 2, · · · , 𝑁𝑘} of the 𝑘-th configuration.

In addition, the gain 𝐺𝑘 of the 𝑘-th configuration is estimated by the following for-

mula,

̂︁𝐺𝑘(𝑑𝐵) = 20 · 𝑙𝑜𝑔10
(︂
𝐵𝑜𝑢𝑡,𝑘

𝐵𝑖𝑛,𝑘

)︂
. (2.4)
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Figure 2.2: Estimated of IP3𝑖,𝑘 vs. Calculated IP3𝑖,𝑘 for 𝑖 = 1, 2, 3 of the reconfigurable

RF system in Fig 1.2 (b).

Simulation and Results

The system was simulated using Matlab Simulink with the SimRF toolbox, as shown in

Figure 2.3 and 2.4.

The estimation result of IP3𝑖,𝑘 is plotted in Figure 2.2. IP3𝑖,𝑘, obtained by our esti-

mation method in (3.6), is on the 𝑦-axis, and IP3𝑖,𝑘, calculated from each IP3 and gain of

amplifiers, is on the 𝑥-axis. We observe that the estimated IP3 proportionally increases

with the calculated IP3. The variation between the calculated IP3 and the estimated IP3

is because the calculated IP3 on the 𝑥-axis did not account for the insertion loss of filters

or the gain and the nonlinearity in mixers, while the estimated IP3 did.

Therefore, using this method we estimated the non-linear parameters IP3𝑖,𝑘, and stored

them in a table of RF impairments for all possible configurations in Factory mode (Ap-

pendix B).
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2.1.2 Phase Noise Estimator Design

Phase noise is one of the most important RF impairments with respect to baseband stan-

dard requirements. Phase noise can degrade communication quality by mixing with strong

unwanted signals (Appendix C).

There have been studies for modeling a stochastic process with typical phase noise

spectra and generating stochastic signals caused by phase noise. The three main cat-

egories of phase noise spectrum modeling are given as (1) ARMA based models, (2)

fractional integration models, (3) wavelength based models of 1/𝑓 noise [9]. In this the-

sis, the fractional integration model - the most common approximation - is applied to the

model phase noise process for reconfigurable RF front-ends.

The fractional integration model is a superposition of filters with one pole that con-

verges to the phase noise spectrum in the limit of a large number of filters. Instead of

choosing the pole positions carefully, the Interpolated Finite Impulse Response (IFIR)

Figure 2.5: The IFIR model for phase noise spectrum estimation: the basis filters

𝐻1, 𝐻2, · · · , 𝐻𝑁 are fixed, and the gains 𝑐1, 𝑐2, · · · , 𝑐𝑁 are adjustable. 𝑋(𝑛) is AWGN

of mean of 0 and variance of 1.
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approach fixes the pole positions for basis filters and carefully chooses gains of the filters

[20].

Interpolated FIR (IFIR) Model

The IFIR model in Figure 2.5 has the fixed basis filters 𝐻1, 𝐻2, · · · , 𝐻𝑁 and the adjustable

gains 𝑐1, 𝑐2, · · · , 𝑐𝑁 . The discrete time sequence (𝑋𝑛) is Additive White Gaussian noise

(AWGN) of mean of 0 and variance of 𝜎2
𝑛.

The IFIR model can efficiently describe phase noise spectrum as the weighted sum

of lower order basis filters [13]. Assume that there are 𝑁 basis filters, with a frequency

response of 𝐻1, 𝐻2, · · · , 𝐻𝑁 . We define the transition bandwidth of 𝐻𝑘, (𝜔(𝑘)
𝑝 , 𝜔(𝑘)

𝑠 ) such

that 𝜔(𝑘)
𝑠 = 𝑀𝜔

(𝑘)
𝑝 = 𝜔

(𝑘+1)
𝑝 , where 𝑀 is a constant that determines the bandwidth size

of 𝐻𝑘. The highest frequency should be smaller than half of the sampling frequency,

𝜔
(𝑁)
𝑠 < 𝐹𝑠/2 where 𝐹𝑠 is the sampling frequency. The transition bandwidth of 𝐻𝑘 is

given as follows,

(𝜔(𝑘)
𝑝 , 𝜔(𝑘)

𝑠 ) = 𝑀𝑘−1 · (𝜔(1)
𝑝 , 𝜔(1)

𝑠 ). (2.5)

Then, the filters 𝐻𝑘 are designed using Algorithm 1 [8].

Algorithm 1 The Basis Filter Design Algorithm

1: Generate a digital lowpass filter 𝐺(𝑒𝑗𝜔) with transition bandwidth (𝜔
(𝑁)
𝑝 , 𝜔

(𝑁)
𝑠 )

2: 𝐻𝑁(𝑒𝑗𝜔) = 𝐺(𝑒𝑗𝜔)
3: for 𝑘 = 1, 2, ·, 𝑁 − 1 do
4: filter 𝐺𝑘(𝑒𝑗𝜔) = 𝐺(𝑒𝑗𝑀

𝑁−𝑘𝜔)

5: lowpass filter 𝐼𝑘(𝑒𝑗𝜔) with stop frequency 𝜔
(𝑁)
𝑠 /𝑀𝑁−𝑘

6: filter 𝐻𝑘(𝑒𝑗𝜔) = 𝐺𝑘(𝑒𝑗𝜔)𝐼𝑘(𝑒𝑗𝜔)
7: end for
8: Return 𝐻1(𝑒

𝑗𝜔), 𝐻2(𝑒
𝑗𝜔), · · · , 𝐻𝑘(𝑒𝑗𝜔), · · · , 𝐻𝑁(𝑒𝑗𝜔).

The IFIR design algorithm efficiently reduces the order of designed basis filters. The

Bode plots of some of the filters in Algorithm 1 are illustrated in Figure 2.6. We first
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implemented the digital filter 𝐺𝑘(𝑒𝑗𝜔) in line 1 using a Butterworth low-pass filter with

a passband attenuation of 1 dB and a stopband attenuation of 20 dB. We set 𝑀 = 2 and

𝑁 = 13. In line 4, 𝐺𝑘(𝑒𝑗𝜔) = 𝐺(𝑒𝑗𝑀
𝑁−𝑘𝜔) was obtained by up-sampling the time domain

signal 𝑔𝑘(𝑡) = 𝐹𝑇−1(𝐺𝑘(𝑒𝑗𝜔)) with the up-sampling factor 𝑀𝑁−𝑘 (the function 𝐹𝑇−1 is

the inverse Fourier transform). Then, the lowpass filter 𝐼𝑘(𝑒𝑗𝜔) eliminates the replicas in

𝐺𝑘(𝑒𝑗𝜔) obtained due to up-sampling.

Figure 2.6: Filters described in Algorithm 1.

Statistical Signal Model and Estimation of Phase Noise

While the IFIR technique was previously implemented in a heuristic manner in [13],

we establish a rigorous statistical signal model for utilizing the IFIR model. Then, we
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derive an estimator for the phase noise spectrum and apply the Least Mean Squares (LMS)

adaptive algorithm to complete the estimator.

Statistical Signal Model The signal subspace model is defined as follows [15],

𝑌 = 𝑋 ∙𝐻𝐶 + 𝑁, (2.6)

where 𝑌 , 𝑋 , 𝐻𝐶 , 𝑁 are 𝑀×1 vectors. 𝑌 is a vector of a received signal in the frequency

domain, 𝑋 is a vector of a AWGN in the frequency domain, and 𝑁 is a vector of AWGN,

measurement noise. 𝐻𝐶(𝑓𝑘) = 𝑐1𝐻1(𝑓𝑘) + 𝑐2𝐻2(𝑓𝑘) + · · ·+ 𝑐𝑁𝐻𝑁(𝑓𝑘) is the frequency

response of the IFIR model in Figure 2.5, where the vector 𝐻𝑖 is the frequency response of

the 𝑖-th basis filter in the frequency domain and the variable 𝑐𝑖 is a gain. The ’∙’ operator

is the element-wise product. Since the basis filters 𝐻𝑖(𝑓) are fixed, only the gains 𝑐𝑖 need

to be estimated.

Then, the 𝑘-th element 𝑌𝑘 of the vector 𝑌 is,

𝑌𝑘 = 𝑌 (𝑓𝑘) = 𝑋(𝑓𝑘) ·𝐻𝐶(𝑓𝑘) + 𝑁(𝑓𝑘), (2.7)

where 𝑌 (𝑓𝑖) and 𝑌 (𝑓𝑗) are independent if 𝑖 ̸= 𝑗, and 𝑌 (𝑓𝑘) ∼ 𝑁(0, 1 · |𝐻𝐶(𝑓𝑘)|2 + 𝜎𝑛
2)

for 𝑘 = 1, 2, · · · ,𝑀 .

Problem Definition and Maximum Likelihood Estimator (MLE) We need to obtain

the gains 𝑐1, 𝑐2, · · · , 𝑐𝑁 for the given model in Figure 2.5. While the variance 𝜎2
𝑛 can also

be estimated, we found that we can typically set it to 0.

We define the vector 𝐶 = [𝑐1, 𝑐2, · · · , 𝑐𝑁 ]𝑇 . Then, the log-likelihood function 𝐿(𝐶, 𝑌 )

of the vector 𝑌 is,

𝐿(𝐶, 𝑌 ) = 𝑙𝑛𝑓𝐶(𝑌 ) = 𝑙𝑛
∏︁
𝑓𝑘

𝑓𝐶(𝑌 (𝑓𝑘)) =
∑︁
𝑓𝑘

𝑙𝑛𝑓𝐶(𝑌 (𝑓𝑘))

=
1

2

∑︁
𝑓𝑘

(︂
−𝑙𝑛|𝐻𝐶(𝑓𝑘)|2 − |𝑌 (𝑓𝑘)|2

|𝐻𝐶(𝑓𝑘)|2

)︂
+ const., (2.8)
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assuming 𝜎2
𝑛 = 0.

The maximum likelihood estimator (MLE) ̂︀𝐶 is obtained by maximizing the log-

likelihood 𝐿(𝐶, 𝑌 ).

̂︀𝐶 = max
𝐶

𝐿(𝐶, 𝑌 ). (2.9)

In order to prevent overfitting the vector 𝐶, we added the Lasso regularization ||𝐶||1 =∑︀
𝑘 |𝑐𝑘| in (2.9).

̂︀𝐶 = max
𝐶

𝐿(𝐶, 𝑌 )− 𝛾 · ||𝐶||1 (2.10)

= max
𝐶

1

2

∑︁
𝑓𝑘

(︂
−𝑙𝑛|𝐻𝐶(𝑓𝑘)|2 − |𝑌 (𝑓𝑘)|2

|𝐻𝐶(𝑓𝑘)|2

)︂
− 𝛾 · ||𝐶||1.

Defining the cost function 𝐽(𝐶) = −(𝐿(𝐶, 𝑌 )− 𝛾 · ||𝐶||1), we can rewrite (2.10) in

a way of minimizing 𝐽(𝐶),

̂︀𝐶 = min
𝐶

𝐽(𝐶) (2.11)

= min
𝐶

1

2

∑︁
𝑓𝑘

(︂
𝑙𝑛|𝐻𝐶(𝑓𝑘)|2 +

|𝑌 (𝑓𝑘)|2

|𝐻𝐶(𝑓𝑘)|2

)︂
+ 𝛾 · ||𝐶||1.

Because of complications - dealing with the complex estimator ̂︀𝐶, we applied the

LMS adaptive algorithm.

The two main modifications from the primary LMS adaptive algorithm are initializa-

tion and termination: (1) The initialization condition in line 2 is modified from 𝐶(0) = 0

to 𝐶(0) = (𝐻𝑇𝐻)−1𝐻𝑇𝑌𝑎 where (𝑌𝑎)𝑘 = |(𝑌 )𝑘|. This modification prevents the met-

ric ∆𝑖 in line 13 from being∞ at the first iteration, and it also reduces the convergence

time for the while loop. (2) The termination condition is modified from estimator error

convergence to spectrum error convergence. Without the modification, the estimator er-

ror convergence condition suffers from convergence to a local optimum depending on the

initial point 𝐶(0).
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Figure 2.7: A phase noise power spectral density can be calculated as 𝐿(𝑓) = |𝐻𝐶(𝑓)|2 =

|𝑐1𝐻1(𝑓) + 𝑐2𝐻2(𝑓) + · · ·+ 𝑐𝑚𝐻𝑚(𝑓) + · · ·+ 𝑐𝑁𝐻𝑁(𝑓)|2.

Applying the LMS adaptive algorithm, we need the metric ∆𝑖, the derivative of 𝐽(𝐶)

in terms of 𝑐𝑖,

∆𝑖 =
𝑑𝐽(𝐶)

𝑑𝑐𝑖
(2.12)

=
1

2

∑︁
𝑓𝑘

𝐻𝑖(𝑓𝑘)

𝐻𝐶(𝑓𝑘)

(︂
1− |𝑌 (𝑓𝑘)|2

|𝐻𝐶(𝑓𝑘)|2

)︂
+ 𝛾 · 𝑠𝑖𝑔𝑛(𝑐𝑖). (2.13)

Therefore, we update the 𝑖-th element 𝑐𝑖 of the vector 𝐶 iteratively as follows,

𝑐𝑖
(𝑘+1) = 𝑐𝑖

(𝑘) − 𝜇 ·∆𝑖, 𝑖 = 1, 2, · · · , 𝑁, (2.14)

for 𝑘 ≥ 1 and the step size 𝜇.

We applied the LMS adaptive algorithm to do the optimization. Then, the phase noise

power spectral density can be calculated as 𝐿(𝑓) = |𝐻𝐶(𝑓)|2 = |𝑐1𝐻1(𝑓) + 𝑐2𝐻2(𝑓) +

· · ·+ 𝑐𝑚𝐻𝑚(𝑓) + · · ·+ 𝑐𝑁𝐻𝑁(𝑓)|2 in Figure 2.7.

The pseudocode of the LMS adaptive algorithm is given in Algorithm 2.
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Algorithm 2 The LMS Adaptive Algorithm for obtaining ̂︀𝐶.
1: 𝜖 = 𝜖0, 𝜇 = 𝜇0, 𝛾 = 𝛾0
2: 𝐶(0) = (𝐻𝑇𝐻)−1𝐻𝑇𝑌 where 𝐻 = [𝐻1, 𝐻2, · · · , 𝐻𝑁 ]

3: 𝑐
(0)
𝑚 = (𝐶(0))𝑚 for 𝑚 = 1, 2, · · · , 𝑁 .

4: 𝑘 = 0
5: while 𝑘 ≤ 𝑘𝑚𝑎𝑥 do
6: 𝐻𝐶 = 𝑐

(𝑘)
1 𝐻1 + 𝑐

(𝑘)
2 𝐻2 + · · ·+ 𝑐

(𝑘)
𝑚 𝐻𝑚 + · · ·+ 𝑐

(𝑘)
𝑁 𝐻𝑁

7: if 𝑘 > 0 then
8: 𝑒 = var(|𝑌 −𝐻𝐶 |)
9: if 𝑒 < 𝜖 then

10: break
11: end if
12: end if
13: ∆𝑚 =

1

2

∑︀
𝑓𝑘

𝐻𝑚(𝑓𝑘)

𝐻𝐶(𝑓𝑘)

(︂
1− |𝑌 (𝑓𝑘)|2

|𝐻𝐶(𝑓𝑘)|2

)︂
+ 𝛾 · 𝑠𝑖𝑔𝑛(𝑐𝑚)

14: for 𝑚 = 1, 2, · · · , 𝑁 do
15: 𝑐

(𝑘+1)
𝑚 = 𝑐

(𝑘)
𝑚 − 𝜇 ·∆𝑚

16: end for
17: 𝐶(𝑘+1) = [𝑐

(𝑘+1)
1 , 𝑐

(𝑘+1)
2 , · · · , 𝑐(𝑘+1)

𝑁 ]
18: 𝑘 ← 𝑘 + 1
19: end while
20: return ̂︀𝐶 = 𝐶(𝑘)
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Simulation and Results

Simulation results of phase noise estimation using Algorithm 2 are plotted in Figure 2.8.

A phase noise power spectral density 𝐿(𝑓) for a given phase noise is plotted in Fig-

ure 2.8a. We applied Algorithm 2 to obtaining gains 𝑐𝑘, and obtained the phase noise

power spectral density 𝐿(𝑓) using a formula 𝐿(𝑓) = |𝐻𝐶(𝑓)|2 = |𝑐1𝐻1(𝑓) + 𝑐2𝐻2(𝑓) +

· · ·+ 𝑐𝑚𝐻𝑚(𝑓) + · · ·+ 𝑐𝑁𝐻𝑁(𝑓)|2. In the plot, the obtained phase noise spectral density

(red) described the characteristic of the given phase noise (blue) in an acceptable range.

The Root-Mean-Square Error (RMSE) of the estimated phase noise is plotted against the

true phase noise (dBc/Hz) at 1 MHz frequency offset in Figure 2.8b. The oscillator in our

simulation has five configurations: −102,−104,−108,−118,−123 dBc/Hz at 1 MHz

offset frequency. The NMSE shows that the LMS adaptive algorithm provides estimates

of phase noise within an acceptable range.

2.1.3 Noise Figure Estimator Design

An ideal RF receiver has AWGN of power 𝑘𝑇B where 𝑘 is the Boltzmann constant, 𝑇 is

temperature, and B is the total bandwidth. In an actual receiver, additional noise is caused

by RF components such as amplifiers, and is represented by a noise figure.

Noise figure is estimated using the invariant estimator design that is explained in Sec-

tion 2.2. So, we defer its description to Section 2.2.2.
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(a) An estimated phase noise spectrum density 𝐿(𝑓) in dBc/Hz (red) for the given phase noise

(blue). Frequency on the 𝑥-axis is log-scaled.

(b) The RMSE of the estimated phase noise (dBc/Hz at 1MHz frequency offset) vs. true phase

noise (dBc/Hz at 1MHz frequency offset).

Figure 2.8: Simulation results of the estimated phase noise.
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2.2 Time-Variant (TV) RF Impairments

Time-Variant (TV) RF impairments need to be periodically estimated and updated using

pilot signals because of its dynamic characteristic. In order to estimate TV RF impair-

ments efficiently, joint invariant estimators are derived based on a signal subspace model

[7].

The frequency offset impairment, an example of TV RF impairment, represents the

time-varying mismatch of the carrier frequency of transmitted signals and the sinusoidal

frequency generated by an oscillator of a mixer. The frequency offset 𝐹𝑜𝑠 produces a

phase shift of 2𝜋𝐹𝑜𝑠𝑡 in the baseband signals.

2.2.1 Maximum-Likelihood Estimation (MLE) of a Single RF Im-

pairment

We will present the signal models when a single RF impairment - either nonlinearity or

frequency offset - is present, as well as introduce the maximum-likelihood estimation

(MLE) in the previous studies.

Baseband Signal Model for Estimation of Nonlinearity

The nonlinear behavior of the RF circuit is represented by the third order gain 𝛼3 in a

cubic function as below,

𝑣𝑜𝑢𝑡(𝑡) = 𝛼1𝑣𝑖𝑛(𝑡) + 𝛼2𝑣𝑖𝑛(𝑡)2 + 𝛼3𝑣𝑖𝑛(𝑡)3. (2.15)

The input signal 𝑣𝑖𝑛(𝑡) is the transmitted pass-band signal 𝑥𝑝(𝑡) of carrier frequency 𝜔𝑐,

𝑥𝑝(𝑡) = 𝑥𝐼(𝑡)
√

2 cos𝜔𝑐𝑡 + 𝑥𝑄(𝑡)
√

2 sin𝜔𝑐𝑡. (2.16)

where 𝑥𝐼(𝑡) and 𝑥𝑄(𝑡) are in-phase and quadrant base-band signals.
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We first analyze signal models and build the equivalent base-band models of impair-

ment parameters. We assume that the transmitted base-band signal is 𝑥(𝑡) = 𝑥𝐼(𝑡) + 𝑗 ·

𝑥𝑄(𝑡), the baseband signal 𝑧(𝑡) is received from the RF front-end receiver system, and

there is no interference signal in our signal model. The base-band signal 𝑧(𝑡) is expressed

in terms of the first order gain 𝛼1, the third order (nonlinearity) gain 𝛼3, as well as thermal

noise 𝑛(𝑡) given as below,

𝑧(𝑡) = 𝛼1𝑥(𝑡) + 3𝛼3𝑥(𝑡)|𝑥(𝑡)|2 + 𝑛(𝑡), (2.17)

where 𝛼1 and 𝛼3 are the overall gains by all amplifiers and mixers in the RF front-end and

𝑛(𝑡) = 𝛼1𝑛0(𝑡) and 𝑛0(𝑡) is thermal noise at the antenna.

Notice that the second order gain 𝛼2 does not affect the base-band signal 𝑧(𝑡), and

thus, can be ignored. A vector ZT is composed of the samples of 𝑧(𝑡) with sampling time

𝑇𝑠.

ZT = [𝑧(𝑇𝑠), 𝑧(2𝑇𝑠), · · · , 𝑧(𝑛𝑇𝑠), · · · , 𝑧(𝑁𝑇𝑠)]
𝑇 . (2.18)

Also, a vector XT and a vector VT are obtained from the samples of 𝑥(𝑡) and 𝑣(𝑡)

where 𝑣(𝑡) = 3𝑥(𝑡)|𝑥(𝑡)|2.

XT = [𝑥(𝑇𝑠), 𝑥(2𝑇𝑠), · · · , 𝑥(𝑛𝑇𝑠), · · · , 𝑥(𝑁𝑇𝑠)]
𝑇 ,

VT = [𝑣(𝑇𝑠), 𝑣(2𝑇𝑠), · · · , 𝑣(𝑛𝑇𝑠), · · · , 𝑣(𝑁𝑇𝑠)]
𝑇 . (2.19)

The relationship of vectors in (2.18) and (2.19) is

ZT = 𝛼1XT + 𝛼3VT + NT. (2.20)

The vector NT consists of samples of noise 𝑛(𝑡) having a normal distribution with mean

zero.
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The least-square estimators of parameters 𝛼1 and 𝛼3 are obtained by minimizing the

power of the noise term NT in (2.20) as follows,

[̂︁𝛼1 ̂︁𝛼3] = argmin
𝛼1,𝛼3

||ZT − (𝛼1XT + 𝛼3VT)||2. (2.21)

Then, maximum-likelihood estimators (MLE)̂︁𝛼1 and̂︁𝛼3 are given as,

[̂︁𝛼1 ̂︁𝛼3]
𝑇 = (Ψ𝐻Ψ)−1Ψ𝐻ZT, (2.22)

where the basis matrix Ψ is defined as Ψ = [XT VT] [1].

Baseband Signal Model for Estimation of Frequency Offset

The frequency offset represents the mismatch of the carrier frequency of transmitted sig-

nals and the sinusoidal frequency generated by an oscillator of a mixer. The frequency

offset 𝐹𝑜𝑠 produces a time-varying phase shift defined by 2𝜋𝐹𝑜𝑠𝑡 in the baseband signals.

The received baseband signal 𝑧(𝑡) contains the first order gain 𝛼1, frequency offset

𝐹𝑜𝑠 with noise 𝑛(𝑡) of a Gaussian distribution,

𝑧(𝑡) = 𝛼1𝑥(𝑡)𝑒𝑗2𝜋𝐹𝑜𝑠𝑡 + 𝑛(𝑡). (2.23)

The normalized frequency offset 𝜉 is defined as,

𝜉 =
𝐹𝑜𝑠

𝐹𝑠/𝑁
, (2.24)

where 𝐹𝑠 is the sampling frequency and 𝑁 is the number of symbols in OFDM [12].

The normalized frequency offset 𝜉 is estimated as [12],

̂︀𝜉 =
1

2𝜋
𝑎𝑟𝑔

(︃
𝑁∑︁

𝑛=1

(ZT)*𝑛(ZT)𝑛+𝑁

)︃
, (2.25)

where (ZT)𝑛 is the 𝑛-th element of the vector ZT.
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2.2.2 Joint Estimation of RF Impairments

Now, we will consider joint RF impairments -nonlinearity and frequency offset- in a base-

band signal model and design invariant estimators for gain, nonlinearity, frequency offset

and noise figure.

Baseband Signal Model for Joint Estimation of Nonlinearity and Frequency Offset

The received baseband signal 𝑧(𝑡) contains the first order gain 𝛼1, the third order gain 𝛼3,

frequency offset 𝐹𝑜𝑠, as well as thermal noise 𝑛(𝑡) as below,

𝑧(𝑡) = 𝛼1𝑥(𝑡)𝑒𝑗2𝜋𝐹𝑜𝑠𝑡 + 3𝛼3𝑥(𝑡)|𝑥(𝑡)|2𝑒𝑗2𝜋𝐹𝑜𝑠𝑡 + 𝑛(𝑡). (2.26)

The relationship of the vectors ZT, XT, VT and HT is given as below,

ZT = HT(𝛼1XT + 𝛼3VT) + NT, (2.27)

where ZT, XT, VT are given in (2.18) and (2.19), and the diagonal matrix HT has the

𝑛-th diagonal element of 𝑒𝑗2𝜋𝐹𝑜𝑠𝑛𝑇𝑠 . The vector NT consists of samples of noise 𝑛(𝑡).

The vector ZT of a discrete-time signal is transformed to the vector ZF of a discrete-

frequency signal using the Discrete Fourier Transform (DFT). In order to calculate the

DFT of HTXT and HTVT in (2.27), the following three properties of the Fourier Trans-

form are useful.

(A) DFT is not only calculated directly from a discrete-time signal, but it can also be

obtained by sampling the Discrete Time Fourier Transform (DTFT) of the time signal.

(B) In DTFT, multiplication of the diagonal matrix HT (composed of the 𝑛-th diagonal

element of 𝑒𝑗2𝜋𝐹𝑜𝑠𝑛𝑇𝑠) in the time domain is equivalent to the frequency shift by 𝐹𝑜𝑠𝑇𝑠 in

the frequency domain.

(C) DTFT can be reconstructed from DFT -inverse to property (A)- when DFT is convo-
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luted with the phase-shifted Dirichlet function 𝑃𝑁(𝑓):

𝑃𝑁(𝑓) =
𝑠𝑖𝑛(𝜋𝑓𝑁)

𝑠𝑖𝑛(𝜋𝑓)
𝑒−𝑗𝜋𝑓(𝑁−1)

≈ 𝑠𝑖𝑛𝑐(𝑁𝑓)𝑒−𝑗𝜋𝑓(𝑁−1). (2.28)

(the above approximation is valid when N is large enough.)

From property (C), the DTFT 𝑋(𝑓) of the time signal 𝑥[𝑛] = (XT)𝑛 is,

𝑋(𝑓) =
1

𝑁

𝑁−1∑︁
𝑛=0

(XF)𝑛𝑃𝑁

(︁
𝑓 − 𝑛

𝑁

)︁
, (2.29)

where the vector XF is obtained from the DFT of (XT)𝑛.

Because the signal 𝑋(𝑓) is the DTFT of (XT)𝑛, property (B) proves that the signal

𝑋(𝑓 − 𝜉/𝑁) is the DTFT of HTXT.

By property (A), the sampled signal of 𝑋(𝑓 − 𝜉/𝑁) at every 𝑓 = 𝑘
𝑁

, where 𝑘 ∈

{0, 1, · · · , 𝑁 − 1}, is the same as the DFT of HTXT. In the same manner, the DFT of

HTVT is obtained.

Therefore, the DFT (ZF)𝑘 of the discrete signal (ZT)𝑛 in (2.27) is expressed as,

(ZF)𝑘 = 𝛼1

𝑁−1∑︁
𝑛=0

(XF)𝑛 · 𝑃𝑁

(︂
𝑘 − 𝑛− 𝜉

𝑁

)︂

+ 𝛼3

𝑁−1∑︁
𝑛=0

(VF)𝑛 · 𝑃𝑁

(︂
𝑘 − 𝑛− 𝜉

𝑁

)︂
. (2.30)

When the function 𝑃𝑁(·) is approximated, (ZF)𝑘 is approximated to,

(ZF)𝑘 ∼= 𝛼1(XF)𝑛 · 𝑠𝑖𝑛𝑐 (0− 𝜉) 𝑒𝑗𝜋𝜉
𝑁−1
𝑁

+𝛼3(VF)𝑛 · 𝑠𝑖𝑛𝑐 (0− 𝜉) 𝑒𝑗𝜋𝜉
𝑁−1
𝑁 . (2.31)

Also, the functions 𝑠𝑖𝑛𝑐(·) and 𝑒𝑥𝑝(·) are approximated by Taylor series: 𝑠𝑖𝑛𝑐(𝑥) ≈

1 − 1
6
𝑥2 and 𝑒𝑥 ≈ 1 + 𝑥 when 𝑥 is small enough, and 𝑠𝑖𝑛𝑐(·) is an even function. The
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function 𝑠𝑖𝑛𝑐(·)𝑒𝑥𝑝(·) is approximated to 1 + 𝑘𝑥, which is substituted into (2.31). A new

vector equation is derived as follows,

ZF = 𝛼1(XF + 𝜉UF) + 𝛼3(VF + 𝜉WF) + NF. (2.32)

Practically, the vector WF is small enough to discard. Therefore, we derive the final

subspace model of baseband signals with joint RF impairments:

ZF = 𝛼1XF + 𝛼1𝜉UF + 𝛼3VF + NF. (2.33)

Invariance and Joint Estimation

Based on (2.33), we can design the estimators of 𝛼1, 𝛼3, 𝐹𝑜𝑠 in a reconfigurable RF

front-end. While the original baseband signal model (2.26) shows the effect of multiple

RF impairments, the linearization resulting (2.33) allows us to design (nearly) invariant

Figure 2.9: The projection matrix P⊥
S projects the received signal ZF to the orthogonal

complement of the column subspace of S: P⊥
SZF
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estimators for these parameters. In [7], we show this for all the above parameters. But for

the present purpose, we only describe how to estimate the frequency offset 𝐹𝑜𝑠.

The idea of our invariant estimators is that the received signal ZF is projected onto the

orthogonal complement of the basis vectors corresponding to nuisance parameters. We

need to design the projection matrix for the transformation of basis vectors and the vector

ZF of a received signal into the new orthogonal subspace (Figure 2.9).

To describe the invariant estimator, suppose the distribution of the vector ZF is given

as 𝑁(𝜇x + S𝜑, 𝜎2I) where the parameters 𝜇, 𝜑 and 𝜎 are unknown and the vector x, the

column matrix S are known and I is an identity matrix. In order to estimate the parameter

𝜇 invariant to nuisance parameter 𝜑, we eliminate the matrix S in the mean 𝜇x + S𝜑.

Assume that a projection matrix P⊥
S projects a vector to the orthogonal complement of

the column space of the matrix S. The vector P⊥
SZF has distribution 𝑁(𝜇x′, 𝜎′2𝐼) where

x′ = P⊥
Sx and 𝜎′ is a variance of noise in the projected subspace. Then, the invariant

estimator ̂︀𝜇 is designed as follows,

̂︀𝜇 = x′𝑇P⊥
SZF/(x′𝑇x′). (2.34)

(’Invariance’ refers to the fact that the distribution of the estimate ̂︀𝜇 is unaffected by the

nuisance parameter 𝜑 in [15, 16].)

Gain The estimator of̂︁𝛼1 is obtained by defining parameters in (2.34) as follow:

𝜇 = 𝛼1, x = XF

S = [UF VF], 𝜑 = [𝛼1𝜉 𝛼3]
𝑇 ,

where the vectors XF, UF, VF are the basis vectors in (2.33).
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Defining a vector x′ = P⊥
S · x = P⊥

S ·XF, the designed estimator̂︁𝛼1 is obtained as,

̂︁𝛼1 = x′𝑇P⊥
SZF/(x′𝑇x′). (2.35)

Nonlinear Parameter, IP3 The estimator ̂︁𝛼3 is obtained by defining parameters in

(2.34) as,

𝜇 = 𝛼3, x = VF

S = [XF UF], 𝜑 = [𝛼1 𝛼1𝜉]𝑇 .

We can estimate for obtaininĝ︁𝛼3 in (2.34) and using Algorithm 3.

Then, we converted̂︁𝛼3 to a third-order intercept point (IP3), a standardized parameter

representing for nonlinearity of RF systems.

̂︁IP3 =
̂︁𝛼1̂︁𝛼3

· 4

3
. (2.36)

Frequency Offset The estimator ̂︀𝜉 of normalized frequency offset is calculated by

defining,

𝜇 = 𝛼1𝜉, x = UF

S = [XF VF], 𝜑 = [𝛼1 𝛼3]
𝑇 .

After calculating ̂︀𝜇 in (2.34), the estimator ̂︀𝜉 is given as,

̂︀𝜉 = ̂︀𝜇/̂︁𝛼1. (2.37)

Based on the idea of invariant estimation presented in (2.34), we designed the estima-

tors of 𝜉 (which is the normalized frequency offset), where the projection matrix P⊥
S is

obtained by Algorithm 3.

After calculating ̂︀𝜇 in (2.34), the estimator ̂︀𝜉 is given as,

̂︀𝜉 = ̂︀𝜇/̂︁𝛼1. (2.38)
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Algorithm 3 find the matrix P⊥
S , which projects a vector to the orthogonal complement

of column space of S.
1: 𝐾 ← the number of columns in the matrix S.
2: Q← I.
3: for 𝑘 = 1, 2, · · · , 𝐾 do
4: y← the 𝑘-th column vector of the matrix S.
5: y1 ← Q𝑇 · y.
6: Py = y1y1

𝑇/(y1
𝑇y1).

7: Py
⊥ = I−Py.

8: Q← Q ·Qk.
9: end for

10: P⊥
S ← Q𝑇 .

The estimator ̂︁𝛼1 of the 𝑘-th configuration is calculated from ̂︁𝐺𝑘 in (2.4) estimated in

Factory mode, using the following formula,

̂︁𝛼1 = 10
̂︁𝐺𝑘/20. (2.39)

Estimate of Noise Figure In (2.33), the signal model ZF is defined by the multivariate

normal distribution 𝑁(S𝜑, 𝜎2
𝑛I) where S = [XF UF VF], 𝜑 = [𝛼1 𝛼1𝜉 𝛼3]

𝑇 , and

𝜎2
𝑛 = 𝛼2

1𝜎
2. The projection matrix P⊥

S has one more vector and is calculated using

Algorithm 3. Then,

̂︀𝜎2 = 𝑉 𝑎𝑟(P⊥
SZF)/𝛼2

1, (2.40)

where 𝑉 𝑎𝑟(·) denotes sample variance.

The estimated noise figure ̂︂𝑁𝐹 is defined as ̂︂𝑁𝐹 = 10 · log10

(︁ ̂︀𝜎2/(𝑘𝑇𝐵)
)︁

, where 𝑘

is the Boltzmann constant, 𝑇 is the current temperature in Kelvin, and 𝐵 is bandwidth of

the IF filter before sampling.

Gain after Bias Compensation We have assumed that 𝑣𝑖𝑛(𝑡) = 𝑥(𝑡) in (2.15) and noise

𝑛(𝑡) = 𝛼1𝑛0(𝑡), where 𝑛0(𝑡) is antenna noise, an additive white Gaussian noise (AWGN).
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However, the input signal 𝑣𝑖𝑛(𝑡) is equal to 𝑥(𝑡) + 𝑛0(𝑡), and thus, the noise term 𝑛(𝑡) is

complicated as follows,

𝑛(𝑡) = 𝛼1𝑛0(𝑡) + 𝛼3𝑛0(𝑡)
*𝑥(𝑡)2 + 2𝛼3𝑛0(𝑡)|𝑥(𝑡)|2

+2𝛼3|𝑛0(𝑡)|2𝑥(𝑡) + 𝛼3𝑛0(𝑡)
2𝑥(𝑡)* + 𝛼3|𝑛0(𝑡)|2𝑛0(𝑡)), (2.41)

where it is assumed that 𝐸[𝑛0(𝑡)] = 0, 𝐸[𝑥*(𝑡)] = 0, 𝐸[|𝑛0(𝑡)|2] = 𝜎2, |𝑛0(𝑡)|2𝑛0(𝑡))

is small enough to be ignored. Then, after averaging the noise 𝑛(𝑡), the fourth term

2𝛼3|𝑛0(𝑡)|2𝑥(𝑡) is placed in the subspace of XF causing bias on the estimator of 𝛼1 while

other terms are ignored as noise. The bias-compensated estimator̂︁𝛼1
′ is given as,

̂︁𝛼1
′ = ̂︁𝛼1 − 2 ·̂︁𝛼3 · ̂︀𝜎2. (2.42)

Calibration of Basis Vectors

The basis vectors XF, UF and VF of the linear model in (2.33) are obtained from the

calibration of simulation. For example, for obtaining the basis of gain, two signals pass

through the RF front-end for two different values of gain while other RF impairments are

fixed. The difference of the two obtained signals is normalized by the gain difference in

order to obtain the basis vector XF. Other basis vectors are obtained similarly.

2.2.3 Simulation and Results

Simulation Setup

In order to validate the RF impairment estimators designed in Section 2.2.2, we imple-

mented and simulated a reconfigurable RF front-end in MATLAB Simulink as shown

in Figure 2.3 and 2.4. There are 1080 configurations of a reconfigure RF front-end by
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Table 2.2: Simulation Setup

Channel Property AWGN channel

Pulse-shaping filter p(t)
Square-root raised cosine filter

Roll-off factor 0.2

Communication Standard
802.11a (OFDM system)

OFDM symbol size N=64

Carrier Frequency 2.4 GHz (WLAN environment)

Symbol Rate 20 MHz

Frequencies in RF system 3.6 GHz, 6.0 GHz

Signal Constellation BPSK

Received Signal Power -75 dBm

Gain (𝛼1) 0 dB to 20 dB increased by 4 dB

Nonlinearity (IP3) 0 to -40 dBm decreased by -10 dBm

Frequency Offset (𝐹𝑜𝑠) 0 to 50 kHz increased by 10 kHz

Noise Figure (NF) 0 dB to 25 dB increased by 5 dB

Signal-to-Noise Ratio (SNR) 0 to 25 dB increased by 5 dB

tuning gain and IP3 of amplifiers, frequency offset in mixers, and noise figure. In the

simulation, we collected baseband signals received after passing though the RF front-end

of the configuration. The baseband signals for each configuration are used for estimating

RF impairments of the configuration. The IEEE 802.11a standard is set as a baseband

communication system. The details of the setup parameters are specified in Table 2.2.

36



Simulation Results

Simulation results of RF impairment estimation are observed for our invariant estimators

presented in Section 2.2.2 as well as the MLE estimators in Section 2.2.1. Varying SNR

from 0 to 25 dB, the normalized mean square errors (NMSE) of gain, IP3 and noise figure

are given in Figures 2.10, 2.11 and 2.13, respectively, and mean square error (MSE) of

normalized frequency offset is given in Figure 2.12.

The NMSE of invariant estimates of gain in (2.35) drops as SNR increases and the

NMSE of the MLE estimates in (2.22) does so in Figure 2.10. However, the MLE esti-

mates (black) have higher gain estimation error than invariant estimates (blue). This is

because our invariant estimator is invariant to other nuisance impairments such as fre-

quency offset while the MLE estimator of gain is not. Still, the invariant estimates are

slightly biased by interaction noise and nonlinearity. However, the bias-compensated es-

timator in (2.42) (red) additionally improved the accuracy of the gain estimator.

The NMSE’s of IP3 estimator are plotted against SNR for three received signal pow-

ers of -75 dBm, -43 dBm and -29 dBm, respectively, as seen in Figure 2.11. The NMSE

of our invariant estimators in (2.36) improves its accuracy when signal power is increased

from -75 dBm to -43 dBm and -29 dBm (blue, yellow, red, respectively). This is because

the power of the cubed signal 𝑥(𝑡)|𝑥(𝑡)|2 is significantly small enough to be buried un-

der noise power. Thus, increased signal power distinguishes the basis vector of nonlinear

components and improves the accuracy of IP3 estimator. Meanwhile, the MLE estimator

of IP3 using (2.22) suffers from frequency offset as well as gain, even with increased sig-

nal powers (pink). When IP3 is higher (i.e., more linear), the influence of gain estimation

error causes a significant bias in the MLE estimator of IP3.

The MSE’s of normalized frequency offset are plotted against SNR in Figure 2.12.

The MLE estimator of frequency offset in (2.25) is also invariant to gain and IP3 just like
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Figure 2.10: the NMSE of gain against SNR: (a) the MLE estimator of gain in (2.22)

(black); (b) the invariant estimator of gain in (2.35) (blue) ; (c) the bias-compensated

estimator of gain in (2.42) (red).
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Figure 2.11: the NMSE of IP3 against SNR: the invariant estimator of IP3 in (2.36) at

received signal power of (a) -75 dBm (blue), (b) -43 dBm (yellow), (c) -29 dBm (red),

respectively; the MLE estimates of IP3 in (2.22) at received signal power of (d) -75 dBm,

(e) -43 dBm, (f) -29 dBm (all in pink).
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Figure 2.12: the MSE of normalized frequency offset against SNR: (a) the MLE estimator

in (2.25) (blue); (b) the invariant estimator in (2.37) (red).

our invariant estimator in (2.37). However, the MSE of the MLE estimates is higher than

that of the invariant estimates of frequency offset. The normalized frequency offset 𝜉 is

ranged from 0 to 0.2 in order to validate the linear approximation in (2.32).

The NMSE’s of NF estimates in Equation 2.40 are plotted against SNR in Figure 2.13

for four cases: all possible configurations (black); configurations for fixed IP3 of 0 dBm

(red); configurations for fixed frequency offset of 0 Hz (blue); configurations with fixed

IP3 of 0 dBm and frequency offset of 0 Hz (green). We found that when noise figure (i.e.,

noise power) is higher, the NMSE’s are higher. The NMSE’s of the noise figure without

frequency offset (black and red) are more accurate than that with frequency offset (blue

and green). This is because the basis vector of frequency offset are approximated using

Taylor series expansion, and additional nonlinear polynomial terms are included within

the measurement of noise.
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Figure 2.13: the NMSE of noise figure against SNR: the invariant estimators in (2.40) of

(a) all cases (black); (b) when IP3 is given as 0 dBm (red); (c) when frequency offset is

given as 0 Hz (blue); (d) when IP3 is 0 dBm and frequency offset is 0 Hz (green).
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In this chapter, we have studied estimation method of gain, nonlinearity, phase noise,

noise figure and frequency offset. The estimated RF impairments are useful for predict-

ing the communication quality represented by the metric SINR, as discussed in the next

chapter.
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Chapter 3

Environment Adaptable Fast (EAF)

Optimization

In order to hasten an optimization process, in this chapter, we first obtain a useful met-

ric, the calculated Signal-to-Interference-and-Noise Ratio (SINR). The calculated SINR

allows us to predict the communication quality of each configuration. Based on this cal-

culated SINR, we are able to prune out the configurations that are not likely to meet

the requirement of a given communication standard, thus allowing EAF optimization in

In-theater mode (Appendix B).

3.1 SINR Calculation

In this section, we derive the formula for calculating SINR based on the estimated RF

impairments. The SINR of the 𝑘-th configuration is calculated in terms of phase noise,

nonlinearity and noise figure.

SINR(𝑘) =
𝑃𝑆

𝑃𝑝ℎ𝑛
(𝑘) + 𝑃𝑖𝑝3

(𝑘) + 𝑃𝑛
(𝑘)

, (3.1)
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where 𝑃𝑆 is the signal power. 𝑃𝑝ℎ𝑛
(𝑘) is the impairing signal power by phase noise im-

pairment, 𝑃𝑖𝑝3
(𝑘) is the impairing signal power by third order nonlinearity impairment,

and 𝑃𝑛
(𝑘) is the impairing signal power by thermal noise impairment.

3.1.1 Phase Noise Impairment

The impairing signal power 𝑃𝑝ℎ𝑛
(𝑘) is given as,

𝑃𝑝ℎ𝑛
(𝑘) = 𝑃𝑝ℎ𝑛,𝑆

(𝑘) + 𝑃𝑝ℎ𝑛,𝐼
(𝑘), (3.2)

where 𝑃𝑝ℎ𝑛,𝑆
(𝑘) is due to the signal of interest, and 𝑃𝑝ℎ𝑛,𝐼

(𝑘) is due to interferers.

Phase Noise and the Signal of Interest

The first term 𝑃𝑝ℎ𝑛,𝑆
(𝑘) is calculated by the following equation,

𝑃𝑝ℎ𝑛,𝑆
(𝑘)

(𝑑𝐵𝑚) = 𝑃𝑆(𝑑𝐵𝑚) +

∫︁ inf

− inf

𝐿(𝑘)(𝑓)𝑑𝑓

⃒⃒⃒⃒
(𝑑𝐵)

, (3.3)

where 𝐿(𝑘)(𝑓) is the phase noise spectral density of the 𝑘-th configuration at the offset

frequency 𝑓 . Phase noise spectral density is estimated in Factory mode as shown in

Section 2.1.2.

Phase Noise and Interference

The impairing signal power 𝑃𝑝ℎ𝑛,𝐼
(𝑘) is,

𝑃𝑝ℎ𝑛,𝐼
(𝑘) =

∑︁
𝑗

𝑃𝑝ℎ𝑛,𝐼𝑗
(𝑘), (3.4)

where the interferer 𝐼𝑗 has the power 𝑃𝐼𝑗 . When 𝐼𝑗 is located at the offset frequency 𝑓𝑗 ,

𝑃𝑝ℎ𝑛,𝐼𝑗
(𝑘) is,

𝑃𝑝ℎ𝑛,𝐼𝑗
(𝑘)

(𝑑𝐵𝑚)
= 𝑃𝐼𝑗 (𝑑𝐵𝑚)

+ 𝐿(𝑘)(𝑓𝑗)(𝑑𝐵𝑐/𝐻𝑧) + 𝐵(𝑑𝐵), (3.5)
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where 𝐵 is the bandwidth of the signal of interest.

The phase noise spectral density 𝐿(𝑘)(𝑓) is assumed to be calculated in Factory mode

using the estimation method presented in Section 2.1.2.

3.1.2 Third Order Nonlinearity Impairment

We will calculate 𝑃𝑖𝑝3
(𝑘) as follows,

𝑃𝑖𝑝3
(𝑘) = 𝑃𝑖𝑝3,𝑆

(𝑘) + 𝑃𝑖𝑝3,𝑆,𝐼
(𝑘) + 𝑃𝑖𝑝3,𝐼

(𝑘). (3.6)

where 𝑃𝑖𝑝3,𝑆
(𝑘) is the impairing signal power due to the signal of interest, 𝑃𝑖𝑝3,𝑆,𝐼

(𝑘) is the

impairing signal power due to intermodulation of the signal of interest and interference,

and 𝑃𝑖𝑝3,𝐼
(𝑘) is the impairing signal power due to interference.

Nonlinearity and the Signal of Interest

If there is no interference, the impairing signal power 𝑃𝑖𝑝3,𝑆
(𝑘) is given as,

𝑃𝑖𝑝3,𝑆
(𝑘)

(𝑑𝐵𝑚) = 3 · 𝑃𝑆(𝑑𝐵𝑚) − 2 · IIP3
(𝑘)

(𝑑𝐵𝑚), (3.7)

where IIP3
(𝑘) is the Input Third-order Intercept Point (IIP3) of the 𝑘-th configuration.

IIP3
(𝑘) is assumed to be estimated in Factory mode using the estimation method presented

in Section 2.1.1

Nonlinearity and the Signal of Interest and Interference

If there is any interference within the passband of IF filter, the signal of interest and the

interferer are intermodulated as follows,

𝑦𝑝(𝑡) = 𝛼1(𝑥
𝑝(𝑡) + 𝐴𝑐𝑜𝑠(2𝜋(𝑓𝑐 + 𝑓0)𝑡))

+𝛼3(𝑥
𝑝(𝑡) + 𝐴𝑐𝑜𝑠(2𝜋(𝑓𝑐 + 𝑓0)𝑡))

3. (3.8)
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Then, (3.8) is expanded to,

𝑦𝑝(𝑡) = 𝛼1𝑥
𝑝(𝑡) + 𝛼1𝐴𝑐𝑜𝑠(2𝜋(𝑓𝑐 + 𝑓0)𝑡)

+𝛼3𝑥
𝑝(𝑡)3 + 3𝛼3𝑥

𝑝(𝑡)2𝐴𝑐𝑜𝑠(2𝜋(𝑓𝑐 + 𝑓0)𝑡)

+3𝛼3𝑥
𝑝(𝑡)𝐴2𝑐𝑜𝑠2(2𝜋(𝑓𝑐 + 𝑓0)𝑡)

+𝛼3𝐴
3𝑐𝑜𝑠3(2𝜋(𝑓𝑐 + 𝑓0)𝑡), (3.9)

where 𝑥𝑝(𝑡) = 𝑥𝐼(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) + 𝑥𝑄(𝑡)𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡).

In (3.9), the second, the fourth and the sixth terms are filtered out because these terms

are out of band. The first term is the signal of interest, and the third term was already

considered in (3.7). The fifth term is rewritten as,

3

2
𝛼3𝑥

𝑝(𝑡)𝐴2 (1 + 𝑐𝑜𝑠(4𝜋(𝑓𝑐 + 𝑓0)𝑡)) . (3.10)

While the second term at 2(𝑓𝑐 + 𝑓0) Hz is filtered out, the first term at 𝑓𝑐 still interferes

with the signal of interest at 𝑓𝑐.

Then, the intermodulated signal by the signal of interest and interference is given as,

𝑃𝑖𝑝3,𝑆,𝐼
(𝑘) =

∑︁
𝑗

𝑃𝑖𝑝3,𝑆,𝐼𝑗
(𝑘), (3.11)

𝑃𝑖𝑝3,𝑆,𝐼𝑗
(𝑘)

(𝑑𝐵𝑚) = 𝑃𝑆(𝑑𝐵𝑚) + 2 · 𝑃𝐼𝑗(𝑑𝐵𝑚) − 2 · IIP3
(𝑘)

(𝑑𝐵𝑚).

Nonlinearity and Interference

Finally, impairing signals 𝐼𝑗 are caused by intermodulation of two interferers at the fre-

quency 𝑓𝐼𝑗,1 and 𝑓𝐼𝑗,2, respectively, when the two interferers satisfy the condition 2·𝑓𝐼𝑗,1 =

𝑓𝐼𝑗,2 + 𝑓𝑐. The impairing signal power resulting from the intermodulation of the interfer-

ence is given as,

𝑃𝑖𝑝3,𝐼
(𝑘) =

∑︁
𝑗

𝑃𝑖𝑝3,𝐼𝑗
(𝑘), (3.12)
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𝑃𝑖𝑝3,𝐼𝑗
(𝑘)

(𝑑𝐵𝑚) = 2 · 𝑃𝐼𝑗,1(𝑑𝐵𝑚) + 𝑃𝐼𝑗,2(𝑑𝐵𝑚) − 2 · IIP3
(𝑘)

(𝑑𝐵𝑚),

where two interferers of the power 𝑃𝐼𝑗,1 and 𝑃𝐼𝑗,2 respectively are intermodulated.

3.1.3 Noise Figure Impairment

Finally, 𝑃𝑛
(𝑘) is obtained from the noise figure impairment obtained in Section 2.1.3.

𝑃𝑛
(𝑘)

(𝑑𝐵) = ̂︂𝑁𝐹
(𝑘)

(𝑑𝐵) + (𝑘𝑇𝐵)(𝑑𝐵), (3.13)

where ̂︂𝑁𝐹
(𝑘)

is the estimated noise figure of the 𝑘-th configuration, 𝑘 is the Boltzmann

constant, 𝑇 is the current temperature in Kelvin, and 𝐵 is the bandwidth of the IF filter

before sampling.

3.1.4 Simulation

Simulation Setup

We verified the performance of calculated SINR in (3.1) using Matlab Simulink in Fig-

ure 2.3 and 2.4. In the simulation, the standard IEEE 802.11g is used. The transmitted

signal of -67 dBm has the bandwidth 20 MHz, and a strong narrowband blocker of -35

dBm at an offset frequency of 20 MHz. We simulated 216 sample configurations and

compared their simulated SINR with calculated SINR.

Simulation Results

In Figure 3.1, we plotted simulated SINR on the 𝑦-axis and calculated SINR on the 𝑥-axis.

We colored the data point for the 𝑘-th configuration according to the type of a dominant

impairing signal power: 𝑃𝑝ℎ𝑛,𝐼
(𝑘) in (3.4) (pink), 𝑃𝑖𝑝3,𝐼

(𝑘) in (3.12) (blue), 𝑃𝑛
(𝑘)

(𝑑𝐵) in
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(3.13) (black). The simulation results demonstrate the accuracy of the calculated SINR in

(3.1).

Figure 3.1: Simulation Results - calculated SINR in (3.1) is on the 𝑥-axis and simulated

SINR is on the 𝑦-axis. The data point for the 𝑘-th configuration is colored according to

the type of a dominant impairing signal power: 𝑃𝑝ℎ𝑛,𝐼
(𝑘) in (3.4) (pink), 𝑃𝑖𝑝3,𝐼

(𝑘) in (3.12)

(blue), 𝑃𝑛
(𝑘)

(𝑑𝐵) in (3.13) (black).
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The signal spectrum required for calculating SINR can be obtained by a Spectrum

Analyzer. The Spectrum Analyzer obtains the power of both blockers and the signal

of interest, and center frequencies while we did not explicitly consider the design of a

Spectrum Analyzer, we note that this can be easily implemented if the reconfigurable

radio uses a homodyne architecture in Figure 3.2. The Spectrum Analyzer operates by

observing received signals in frequency domain while tuning the sinusoidal frequency of

a local oscillator in a mixer [5].

Figure 3.2: Spectrum Analyzer - reconfigurable RF front-end has a configuration that

bypasses all filters and amplifiers and has a homodyne architecture.
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3.2 Environment-Adaptable Fast (EAF) Optimization

The EAF optimization is designed to solve the reconfigurable RF front-end optimization

problem in (1.1). In this thesis, we define the cost function 𝐹 (x) as the power consump-

tion of the configuration x, and we consider a single constraint function 𝑔(x, 𝑡), defined as

the measured SINR. Thus, the optimization problem considered in this thesis is as below:

x(𝑜𝑝𝑡) = 𝑎𝑟𝑔 min Power(x),

SINR(x, 𝑡) ≥ SINRspec

(3.14)

where SINRspec is the minimum SNR acceptable for adequate system performance.

3.2.1 EAF Optimization Design

The EAF optimization method is composed of two phases as shown in Figure 3.3. This

algorithm is an adaptation of the Two-phase relaxation algorithm proposed in [19].

Algorithm 4 The Two-phase Algorithm (Phase I): find the configuration x(𝑚𝑎𝑥) of the
highest SINR(𝑚𝑎𝑥) in all configurations.

1: SNRcalc
(𝑚𝑎𝑥) ← SNR(𝑖𝑛𝑖𝑡).

2: x(𝑚𝑎𝑥) ← x(𝑖𝑛𝑖𝑡)

3: for 𝑘 = 1, 2, · · · , 𝐾 do
4: x(𝑘) ← the 𝑘-th configuration
5: SNR(𝑘) ← calculated SINR of x(𝑘)

6: if SNR(𝑘) > SNR(𝑚𝑎𝑥) then
7: x(𝑚𝑎𝑥) ← x(𝑘)

8: SNRcalc
(𝑚𝑎𝑥) ← SNR(𝑘)

9: end if
10: end for
11: SNR(𝑚𝑎𝑥) ← simulated (or measured) SINR of x(𝑘)

12: OUTPUT: x(𝑚𝑎𝑥), SNR(𝑚𝑎𝑥)

In the first phase (Phase I), the EAF optimization finds x(𝑚𝑎𝑥) as a configuration which

has the highest calculated SINR value among all available configurations. Finding x(𝑚𝑎𝑥)
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directly from SINR calculation significantly reduces computational cost. This is because

finding a point of the maximal SINR iteratively is the most time-consuming process in

the optimization process. The pseudocode of Phase I is given in Algorithm 4, where x(𝑘)

is the 𝑘-th configuration and SNR(𝑘) is the calculated SINR of x(𝑘).

In the second phase (Phase II), the EAF optimization utilizes the calculated SINR to

search for a configuration of the lowest power that still satisfies the SINR specification

for a given communication standard. By looking up the calculated SINR, we were able

to discern and prune out configurations that likely do not meet the SINR specification. In

other words, we excluded configurations x(𝑘) that do not satisfy the constraint function

SINR(𝑘) ≥ (SINR threshold) in the optimization process. The details of the proposed op-

Figure 3.3: Flow Chart of the EAF Optimization Algorithm.
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timization method are given as pseudo-code in Algorithm 5. Thus, the SINR calculation

can minimize the search space of overall configurations, and the EAF optimization can

drop its computational cost.

Algorithm 5 The Two-phase Algorithm (Phase II): find an optimal configuration x(𝑜𝑝𝑡)

1: INPUT: x(𝑚𝑎𝑥), SNR(𝑚𝑎𝑥)

2: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← x(𝑚𝑎𝑥)

3: SINR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← SNR(𝑚𝑎𝑥)

4: x(𝑜𝑙𝑑) ← x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

5: for 𝑚 = 1, 2, · · · ,𝑀 do
6: for 𝑛 = 1, 2, · · · , 𝑁𝑚 do
7: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← x𝑚(𝑛)
8: SINR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← calculated SINR of x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

9: if SINR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < SINRthreshold then
10: continue
11: else
12: SINR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← simulated (or measured) SINR for x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

13: Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← power of x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

14: end if
15: if SINR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≥ SINRspec then
16: 𝐸𝑚(𝑛) = Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

17: else
18: 𝐸𝑚(𝑛) =∞
19: end if
20: end for
21: x(𝑛𝑒𝑤) = arg min 𝐸𝑚(𝑛)

x∈{x𝑚(𝑛)|𝑛=1,2,··· ,𝑁𝑚}

22: if x(𝑛𝑒𝑤) = x(𝑜𝑙𝑑) then
23: break
24: else
25: x(𝑜𝑙𝑑) ← x(𝑛𝑒𝑤)

26: end if
27: end for
28: x(𝑜𝑝𝑡) ← x(𝑜𝑙𝑑)

29: OUTPUT: x(𝑜𝑝𝑡)

If there are 𝑀 RF components connected serially in a reconfigurable RF front-end,

the variable 𝑚 in line 5 refers to the 𝑚-th RF component, such as amplifiers, filters, and
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mixers. We can write the configuration x = [𝑥1, 𝑥2, · · · , 𝑥𝑚, · · · , 𝑥𝑀 ] where 𝑥𝑚 refers to

the 𝑚-th component selection. For the 𝑚-th RF component, there are 𝑁𝑚 configurations

such as amplifier1, amplifier2, etc. The variable 𝑛 in line 6 represents the 𝑛-th configu-

ration of the given 𝑚-th RF component. For the current configuration x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡), x𝑚(𝑛)

in line 7 is the configuration that chooses the 𝑛-th available component value at the 𝑚-th

RF component. Therefore, using the proposed algorithm, we find the (locally) optimal

configuration x(𝑜𝑝𝑡) of the optimization problem in (3.14).

3.2.2 Simulation Results

In this section, the performance of the designed EAF optimization is compared with four

other previously proposed optimization methods, and its efficiency is verified by simula-

tion using Matlab Simulink with the SimRF toolbox.

Simulation Setup

The RF receiver is designed for the IEEE 802.11g WLAN standard where the carrier

frequency is 2.4 GHz and the channel bandwidth is 20 MHz. While the received signal has

a power of -65 dBm, a narrowband blocker has a power of -35 dBm at 2.42 GHz. In this

example, the reconfigurable RF front-end is reconfigured by switching three amplifiers

and one oscillator, as shown in Figure 1.2 (b). The banks of three amplifiers have six

possible configurations each. One oscillator has five possible configurations. Thus, there

are a total of 1080 different candidate configurations for the reconfigurable RF front-end.

SINRspec = 29 (dB) was used for the optimization problem.
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Simulation Results

In order to demonstrate its performance, we compare our proposed environment-adaptable

fast (EAF) optimization method with the four algorithms proposed in [6].

(1) Exhaustive search: All configurations are simulated one by one, and based

on the obtained SINR, the exhaustive search method finds the optimal

configuration.

(2) Local relaxation search: In each iteration, only one RF component in a

current configuration can be adaptable to possible component values from

a bank, while other RF components are fixed. A local optimum among

the simulated configurations is updated to the current configuration for

the next iteration.

(3) Simulated annealing search: In each iteration, the random neighbor con-

figurations of a current configuration can be simulated by changing pos-

sible configurations in a bank. A local optimum among the simulated

neighbor configurations is stochastically updated to the current configu-

ration for the next iteration.

(4) Two-phase relaxation search [19]: The two-phase relaxation search first

narrows down the search space of configuration using a Pareto optimal

front. In the first phase, using a local relaxation search, this method

searches a configuration of maximal SNR, which is the initial point for

the second phase. In the second phase, it searches a configuration of min-

imum power, while satisfying the SINR constraint.

(5) EAF optimization: This method is explained in Section 3.2.1.

In Table 3.1, the performance of the EAF optimization algorithm is compared to the
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Table 3.1: Programming Results for the Reconfigurable RF Front-end

Algorithm SNR (dB) Power (mW) No. Simulation Steps

(1) Exhaustive 30.5 71.7 1080

(2) Local Relaxation 29.4 96.8 12

(3) Simulated Annealing 30.5 71.7 293

(4) Two-phase [19] 31.2 99.5 26

(5) EAF optimization [6] 31.2 99.5 5

performance of the other four optimization methods. We set the SINR threshold to 24

dB in the EAF optimization to conservatively accept candidate configurations because

SINRspec = 29 (dB).

(1) The exhaustive optimization finds a global optimal configuration, but it is time-

consuming with 1080 simulation steps. (2) The local relaxation search finds a local op-

timal configuration. This method is more practical compared to the exhaustive search as

it takes only 12 simulation steps. (3) The simulated annealing optimization takes 293

simulation steps - it is more efficient than the exhaustive search, but still takes many more

steps than the local relaxation search. Still, the simulated annealing optimization is able

to find the global optimum. (4) The Two-phase relaxation search finds a local optimal

configuration with slightly higher SINR than the local relaxation search. This method has

more than twice the number of simulation steps than the local relaxation search. It takes

longer because of the additional first phase of finding a configuration of maximum SINR.

(5) Finally, the EAF optimization method is the fastest of the five methods. This

method takes five simulation steps, and the SINR and power of the optimal configuration

is similar to the two-phase optimization. In Table 3.2, Phase I of the EAF optimization

needs only one simulation step compared with 19 simulation steps of the Two-phase relax-
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ation optimization method. Phase II of the EAF optimization takes four simulation steps

while Phase II of the Two-phase relaxation optimization needs seven simulation steps. In

both Phase I and Phase II, calculated SINR significantly helps reduce the number of sim-

ulation steps. Therefore, we can verify that the EAF optimization method significantly

improves computational cost compared to the other four optimization methods, and it can

still find a configuration with acceptable performance.

Table 3.2: The Number of Simulation Steps for the Reconfigurable RF Front-end

Algorithm Phase I Phase II Phase 1 + Phase II

(4) Two-phase [19] 19 7 26

(5) EAF optimization [6] 1 4 5
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In this chapter, we introduced our EAF optimization method and verified it on a small-

scale RF front-end. While our method shows potential to improve the efficiency of opti-

mization, we need to apply our method to a more realistic large-scale RF-FPGA system.

This is the subject of Chapter 4.

57



58



Chapter 4

EAF Optimization in Large-scale

RF-FPGA Systems

In Section 3.2, we showed that our EAF optimization method can be successfully utilized

as a heuristic to find a minimum power configuration of adequate SNR in an experimental

case of a (small) reconfigurable RF system. In contrast, a realistic RF-FPGA is likely to

be controlled by several hundred bits that select the component values. Such a large-scale

RF-FPGA poses a significant problem for EAF optimization because it is not possible

to directly measure and characterize the RF impairments of each of the possible config-

urations. In this chapter, we investigate a model-based approach to solve this problem,

allowing the use of EAF optimization in large-scale RF-FPGA systems.
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4.1 RF Impairment Estimation in Large-scale RF-FPGA

Systems

In this section, we investigate the estimation of RF impairments in a large-scale RF front-

end. The first problem associated with this large-scale is that the large number of RF

front-ends span a wide range of RF impairment values. In Section 4.1.1, we solve this

problem by designing a method that adjusts the transmission power during the estimation

procedure. The second problem is the large number of configurations in a large-scale RF

front-end. This problem is tackled by using a Design of Experiments (DoE) approach and

an Interpolation procedure as discussed in Section 4.1.2. These methods are important in

a large-scale RF front-end because we cannot simulate (or estimate) all configurations;

we can only simulate a limited number of sample configurations. For example, a recon-

figurable RF front-end with 63 bits of control means that the number of configurations is

about 9.2×1018, which results in an impractically time-consuming estimation procedure.

Our methods of RF impairment estimation in a large-scale RF front-end are utilized to

efficiently extract unknown properties of RF components from known properties that are

calculated from simulated data. This method of RF impairment estimation is applied to a

large-scale RF front-end of 63 bits.

Figure 4.1: A large-scale RF-FPGA system with 63 bits of control.
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4.1.1 Tackling a Wide Range of RF Impairment Values: Bias in IIP3

Estimate

Consider a large-scale RF-FPGA system, as shown in Figure 4.1. This front-end has 63

bits of control, allowing a wide range of values for gain and IIP3. Due to this, configura-

tions with a wide range of IIP3 values are possible. Figure 4.2 shows that the wide range

of IIP3 results in bias in estimated IIP3. Specifically, we found two areas of large bias:

lower boundary around -65 dBm and upper boundary around -43 dBm. The wide range

within the estimated IIP3 from -80 dBm to -10 dBm is mainly due to high gains obtained

by passing through multiple amplifiers. In order to solve the bias (saturation) problem in

IIP3 estimation, we obtained a formula for adjusting transmission power to a RF front-

end. The transmission power 𝑃tx was derived from the upper and lower boundaries of IIP3

saturation.

The upper boundary of IIP3 saturation is related to thermal noise. Thermal noise

power should be smaller than the Intermodulated signal power of transmitted signals in or-

der to be detected during the estimation procedure. More specifically, the overall thermal

noise power after passing a reconfigurable RF front is given as 𝑁𝐹0(𝑑𝐵𝑚/𝐻𝑧) + ∆𝑓(𝑑𝐵) +

𝑁𝐹(𝑑𝐵) where thermal noise floor is 𝑁𝐹0(𝑑𝐵𝑚/𝐻𝑧) = −174(𝑑𝐵𝑚/𝐻𝑧), ∆𝑓(𝑑𝐵) = 10 ·

𝑙𝑜𝑔10𝐵(𝑑𝐵) for the bandwidth 𝐵(𝐻𝑧) of the transmitted signal, and 𝑁𝐹(𝑑𝐵) is an additional

noise figure for noise margin. Meanwhile, the intermodulated signal with IIP3 has a power

of 3 · 𝑃sig(𝑑𝐵𝑚) − 2 · IIP3(𝑑𝐵𝑚) where 𝑃sig is the nominal transmitted signal power of the

two transmitted signals that are intermodulated. So, we derive the following condition to

allow accurate estimation of IIP3.

𝑁𝐹0(𝑑𝐵𝑚/𝐻𝑧) + ∆𝑓(𝑑𝐵) + 𝑁𝐹(𝑑𝐵) < 3 · 𝑃sig(𝑑𝐵𝑚) − 2 · IIP3(𝑑𝐵𝑚), (4.1)

where ∆𝑓(𝑑𝐵) = 10 · 𝑙𝑜𝑔10𝐵(𝑑𝐵).
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Figure 4.2: Calculated IIP3 from library data is given on the 𝑥-axis and estimated IIP3

from simulation is given on the 𝑦-axis when three amplifiers are reconfigured in a re-

configurable RF front-end. There are two saturation areas according to where the IIP3

estimate is: the lower boundary around -65 dBm and the upper boundary around -42 dBm

IIP3.

From this, the upper boundary of IIP3 saturation is given as,

IIP3(𝑑𝐵𝑚) <
1

2

(︀
3 · 𝑃sig(𝑑𝐵𝑚) −

(︀
𝑁𝐹0(𝑑𝐵𝑚/𝐻𝑧) + ∆𝑓(𝑑𝐵) + 𝑁𝐹(𝑑𝐵)

)︀)︀
= 𝑃sig(𝑑𝐵𝑚) +

1

2

(︀
𝑃sig(𝑑𝐵𝑚) −

(︀
𝑁𝐹0(𝑑𝐵𝑚/𝐻𝑧) + ∆𝑓(𝑑𝐵) + 𝑁𝐹(𝑑𝐵)

)︀)︀
.(4.2)

The lower boundary of IIP3 saturation in Figure 4.2 is related to the transmitted signal

power 𝑃sig. A transmitted signal with a high power level suffers from nonlinearity inter-

modulation. When an intermodulated signal by the third order nonlinearity has a power
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as large as the power of a transmitted sinusoid, the transmission power is defined as IIP3.

Thus, the transmitted signal power 𝑃sig should be smaller than IIP3 as follows,

𝑃sig(𝑑𝐵𝑚) < IIP3(𝑑𝐵𝑚). (4.3)

From (4.2) and (4.3), the range of IIP3 over which we can expect low bias is given as,

𝐾0 < IIP3(𝑑𝐵𝑚) < 𝐾0 + ∆𝐾, (4.4)

where 𝐾0 = 𝑃sig(𝑑𝐵𝑚) and ∆𝐾 =
1

2

(︀
𝑃sig(𝑑𝐵𝑚) −

(︀
𝑁𝐹0(𝑑𝐵𝑚/𝐻𝑧) + ∆𝑓(𝑑𝐵) + 𝑁𝐹(𝑑𝐵)

)︀)︀
.

Now we specify the choice of transmission power 𝑃tx(𝑑𝐵𝑚) = 𝑃sig(𝑑𝐵𝑚) + ∆𝑃(𝑑𝐵) that

should be used for IIP3 estimation to allow low bias.

The overall IIP3 of a configuration of cascaded components is as follows,

1

IIP3

=
1

IIP3,1

+
𝐺1

IIP3,2

+ · · ·+ 𝐺1 ·𝐺2 · · · · ·𝐺𝑁−1

IIP3,𝑁

, (4.5)

where IIP3,𝑘, 𝐺𝑘 are the IIP3 and gain of the 𝑘-th component for 𝑘 = 1, 2, · · · , 𝑁 .

From this, we can assume that the nonlinearity of the last cascaded component is

dominant, i.e.,
1

IIP3

≈ 𝐺1 ·𝐺2 · · · · ·𝐺𝑁−1

IIP3,𝑁

. In that case, IIP3 is given as IIP3(𝑑𝐵𝑚) ≈

IIP3,𝑁(𝑑𝐵𝑚) − 𝐺𝑁−1
1 (𝑑𝐵) where 𝐺𝑁−1

1 is the overall gain of the first 𝑁 − 1 components:

𝐺𝑁−1
1 (𝑑𝐵) = 𝐺1(𝑑𝐵) + 𝐺2(𝑑𝐵) + · · ·+ 𝐺𝑁−1(𝑑𝐵).

Thus, (4.4) is given as in terms of the IIP3 of the last component,

𝐾0 + 𝐺𝑁−1
1 (𝑑𝐵) < IIP3,𝑁(𝑑𝐵𝑚) < 𝐾0 + ∆𝐾 + 𝐺𝑁−1

1 (𝑑𝐵). (4.6)

Now, we assume that the approximate range of IIP3 such as IIP3,𝑁
(𝑚𝑖𝑛) and IIP3,𝑁

(𝑚𝑎𝑥)

of (the last) component is known. We define the transmission power increase ∆𝑃 over

the nominal value 𝑃sig(𝑑𝐵𝑚) for use in IIP3 estimation. Then, the range of power increase

∆𝑃 that satisfies (4.6) is given as follows,
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∆𝑃 (𝑚𝑎𝑥)
(𝑑𝐵) = IIP3,𝑁

(𝑚𝑖𝑛)
(𝑑𝐵𝑚) − (𝐾0 + 𝐺𝑁−1

1 (𝑑𝐵))

∆𝑃 (𝑚𝑖𝑛)
(𝑑𝐵) = IIP3,𝑁

(𝑚𝑎𝑥)
(𝑑𝐵𝑚) − (𝐾0 + ∆𝐾 + 𝐺𝑁−1

1 (𝑑𝐵)). (4.7)

Thus, we choose ∆𝑃 to be the mean of ∆𝑃 (𝑚𝑎𝑥)
(𝑑𝐵) and ∆𝑃 (𝑚𝑖𝑛)

(𝑑𝐵) in order to

avoid IIP3 estimation saturation.

∆𝑃 (𝑑𝐵) = mean(∆𝑃 (𝑚𝑎𝑥)
(𝑑𝐵),∆𝑃 (𝑚𝑖𝑛)

(𝑑𝐵))

= 0.5 · (IIP3,𝑁
(𝑚𝑖𝑛)

(𝑑𝐵𝑚) + IIP3,𝑁
(𝑚𝑎𝑥)

(𝑑𝐵𝑚))

−𝐾0 − 0.5 ·∆𝐾 −𝐺𝑁−1
1 (𝑑𝐵). (4.8)

Thus, in a large-scale RF front-end, the transmission power 𝑃tx for IIP3 estimation is

given as,

𝑃tx(𝑑𝐵𝑚) = 𝑃sig(𝑑𝐵𝑚) + ∆𝑃 (𝑑𝐵)

= 0.5 · (IIP3,𝑁
(𝑚𝑖𝑛)

(𝑑𝐵𝑚) + IIP3,𝑁
(𝑚𝑎𝑥)

(𝑑𝐵𝑚))

−0.5 ·∆𝐾 −𝐺𝑁−1
1 (𝑑𝐵). (4.9)

4.1.2 Tackling a Large Number of Configurations: Design of Exper-

iments (DoE) and Interpolation Methods

A significant challenge in applying the EAF optimization method to a large-scale RF

front-end is that RF impairment estimation is time-consuming when the number of con-

figurations is very large. In this section, we use model-based Design of Experiments

(DoE) and Interpolation methods to drastically reduce the time needed for estimation.
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Configuration Subsets: Full-factorial Design Set, Screening Design Set and Sample

Configuration Set

The configurations of a large-scale RF front-end can be successively narrowed into the

following subsets: full-factorial design set, screening design set, and sample configura-

tion set as shown in Figure 4.3. First, a full-factorial design set includes all possible

configurations for a large-scale RF front-end. In our example in Figure 4.1, assuming

three fixed filters and three reconfigurable amplifiers that are composed of three 7-bit

sub-amplifiers, the set of full-factorial design has configurations with 63 bits of control.

A screening design set is a subset of the full-factorial design set, and includes the most

significant factors of configurations. The configurations of a screening design set are ob-

tained by reconfiguring only a few of the most significant bits (MSBs) of sub-amplifiers

as seen in Figure 4.4. In our example, two MSBs of three sub-amplifiers are allowed to

be reconfigured with the remaining bits held constant at 0, resulting in a screening design

set of configurations with 18 bits of control. Finally, sample configurations are selected

for actual simulation and data collection from within the screening design set.

Figure 4.3: Configuration subsets - full-factorial design set, screening design set and

sample configuration set.
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Figure 4.4: Three sub-amplifiers in an amplifier- In our example, two MSBs of three

sub-amplifiers are allowed to be reconfigured for a screening design set.

Configuration Subsets and RF Impairment Calculation

In a cascaded chain of RF components, as in Figure 4.1, we can calculate the overall RF

impairment from the component values using the following formula,

𝐺𝐴
(𝑑𝐵) = 𝐺1(𝑑𝐵) + 𝐺2(𝑑𝐵) + · · ·+ 𝐺𝑁(𝑑𝐵), (4.10)

1

IIP3
𝐴

=
1

IIP3,1

+
𝐺1

IIP3,2

+ · · ·+ 𝐺1 ·𝐺2 · · · · ·𝐺𝑁−1

IIP3,𝑁

, (4.11)

𝐹𝐴 − 1 = 𝐹1 − 1 +
𝐹2 − 1

𝐺1

+
𝐹3 − 1

𝐺1 ·𝐺2

+ · · ·+ 𝐹𝑁 − 1

𝐺1 ·𝐺2 · · · · ·𝐺𝑁−1

, (4.12)

where 𝐺𝑘, IIP3,𝑘, and 𝐹𝑘 are the gain, IIP3, and noise factor, respectively, of the 𝑘-th

component of a configuration (𝑘 = 1, 2, · · · , 𝑁 ), and 𝐺𝐴, IIP3
𝐴, and 𝐹𝐴 are the overall

gain, IIP3, and noise factor, respectively, of the configuration.

Thus, in order to obtain an unknown value of overall RF impairments, we need to

obtain the component values of RF impairments. We will now explain how to obtain

component values from sample configurations and how to select sample configurations

based on a linear model of RF components in Section 4.1.2.
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Linear Model of RF Impairments in a Large-scale RF-FPGA

We note that, perhaps surprisingly, (4.10), (4.11) and (4.12) are all of the same general

linear form,

𝑍 = ℎ1𝑋1 + ℎ2𝑋2 + · · ·+ ℎ𝑘𝑋𝑘 + · · ·+ ℎ𝑁𝑋𝑁 , (4.13)

where 𝑋𝑘 represents the RF impairment of the 𝑘-th component of a configuration, ℎ𝑘 is a

coefficient for the 𝑘-th term, 𝑘 = 1, 2, · · · , 𝑁 , and 𝑍 represents the overall RF impairment

of the configuration. The impairment can be either gain (𝑋𝑘 = 𝐺𝑘(𝑑𝐵)), IIP3 (𝑋𝑘 =

1/IIP3), or noise factor (𝑋𝑘 = 𝐹𝑘 − 1). For example, for (4.11), 𝑋𝑘 =
1

IIP3,𝑘

, ℎ1 = 1,

ℎ𝑘 = 𝐺1 ·𝐺2 · · · · ·𝐺𝑘−1, for 𝑘 ∈ {2, · · · , 𝑁}.

When the value of the 𝑘-th component 𝑋𝑘 is chosen in a set of component values,

{𝜃𝑘,1, 𝜃𝑘,2, · · · , 𝜃𝑘,𝐶𝑘
}, we can define the vector 𝜃 that is composed of all available com-

ponent values as follows,

𝜃 =

[︂
𝜃1,1, 𝜃1,2, · · · , 𝜃1,𝐶1⏟  ⏞  , 𝜃2,1, 𝜃2,2, · · · , 𝜃2,𝐶2⏟  ⏞  , · · · , 𝜃𝑁,1, 𝜃𝑁,2, · · · , 𝜃𝑁,𝐶𝑁⏟  ⏞  

]︂
𝑇 . (4.14)

Then, we can build a linear model,

Y = H · 𝜃 + N, (4.15)

where Y is the vector of measured RF impairment using simulation or actual measure-

ment (each element corresponding to one sample configuration that is simulated) while

the vector N represents measurement noise during the estimation process.

We will now present how to define the matrix H in (4.15). The 𝑘-th component 𝑋𝑘

in (4.13) chooses a component value 𝜃𝑘,𝑘′ in (4.14) (𝑘′ ∈ {1, 2, 3, · · · , 𝐶𝑘}), and (4.13) is
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given as follows,

𝑌 = ℎ1𝜃1,1′ + ℎ2𝜃2,2′ + · · ·+ ℎ𝑘𝜃𝑘,𝑘′ · · ·+ ℎ𝑁𝜃𝑁,𝑁 ′ + 𝑁

= [ℎ1 · g1, ℎ2 · g2, · · · , ℎ𝑘 · g𝑘, · · · , ℎ𝑁 · g𝑁 ] · 𝜃

= h′ · 𝜃 (4.16)

where the row sub-vector g𝑘 in h′ is defined as follows,

(g𝑘)1,𝑙 =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑙 = 𝑘′

0 otherwise,
. (4.17)

where 𝑙 = 1, 2, 3, · · · , 𝐶𝑘 .

Thus, we can define the matrix H in (4.15) composed of the row vector h′ in (4.16)

corresponding to the measured sample configuration 𝑌 .

Based on (4.15), we obtain the unknown characteristics ̂︀𝜃 of all components using

Least-Squares (LS) estimation as below,

̂︀𝜃 = (H𝑇 ·H)−1 ·H · ̂︀Y. (4.18)

Given any configurations with unknown RF impairment, we can use (4.13) to estimate

its impairment using the estimated component values ̂︀𝜃. Thus, using a screening design

set of sample configurations, we can estimate component values ̂︀𝜃 and use the method

(4.13) to predict the RF impairments of any configurations as shown in Figure 4.5.

Design of Experiments (DoE) for Choosing Optimal Sample Configurations

We select a set of optimal sample configurations among the configurations in the screen-

ing design set using the Design of Experiments (DoE) approach. The DoE method selects

an optimal set of sample configurations (equivalently, the matrix H in (4.18) correspond-

ing to the selected sample configurations) using a D-optimal design approach. The D-

optimal design approach iteratively updates a set of configurations in order to increase
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Figure 4.5: Design of Experiments (DoE) and Interpolation Methods for Tackling a Large

Number of Configurations.

the determinant |H𝑇 ·H| i.e., minimize the log-determinant of noise variance matrix in

(4.15) to find optimal sample configurations. The implementation details of the DoE

method for choosing sample configurations are described in Algorithm 6.
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Algorithm 6 The DoE Approach: find XDoE (a set of sample configurations) and a matrix
HDoE in (4.15).

1: INPUT: 𝑚, XScreening

2: 𝑁condition =∞ ◁ conditional number
3: HScreening = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛amplifier ID to H (XScreening)

4: while 𝑁condition > 𝑁condition
(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) do

5: 𝑙𝑋 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛d-optimal method (𝑚,HScreening) ◁ a list of the extracted rows of
XScreening

6: HDoE = HScreening(𝑙𝑋 , :)
7: XDoE = XScreening(𝑙𝑋 , :) ◁ a row matrix of sample configurations
8: 𝜆(𝑚𝑎𝑥) ← the maximum of eigenvalues of HDoE

𝑇 ·HDoE

9: 𝜆(𝑚𝑖𝑛) ← the minimum of eigenvalues of HDoE
𝑇 ·HDoE

10: 𝑁condition = 𝜆(𝑚𝑎𝑥)/𝜆(𝑚𝑖𝑛)

11: end while
12: OUTPUT: XDoE,HDoE

In line 1, 𝑚 is the number of sample configurations to be selected. XScreening is a

row matrix composed of all configurations in a screening design set that is obtained by

reconfiguring a few pre-defined MSBs of sub-amplifiers. In line 3, HScreening is the matrix

H in (4.15) corresponding to XScreening. In line 4, 𝑁condition
(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is a constant of the

maximal limit of condition number 𝑁condition. In line 5, 𝑙𝑋 is a list of 𝑚 selected rows of

XScreening for sample configurations.
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(a) Estimated gain ̂︀Y of configurations in
a sample configuration set

(b) Estimated IIP3
̂︀Y of configurations in

a sample configuration set

(c) Estimated gain ̂︀𝜃 of each amplifier (d) Estimated IIP3
̂︀𝜃 of each amplifier

(e) Estimated gain ̂︀Z of configurations in
a screening design set

(f) Estimated IIP3
̂︀Z of configurations in

a screening design set

Figure 4.6: Simulation Results for RF impairment estimation using the Design of Exper-
iments (DoE) method.
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Simulation Results

Figure 4.6 shows the simulation results of gain and IIP3 estimation by applying the DoE

method to the RF-FPGA (Figure 4.1). We verify that the method can be successfully used

to estimate RF impairments of any configuration using a model-based approach, with

component values estimated by a DoE method.

The estimated gain and IIP3, ̂︀𝑌 in (4.18), of sample configurations are plotted on the 𝑦-

axis against true gain and IIP3 𝑌 of the sample configurations on the 𝑥-axis in Figure 4.6a

and 4.6b respectively. The simulation results show that the estimates of ̂︀𝑌 proportionally

increase with true values of ̂︀𝑌 . (At high gain values, around 100 dB, the estimates begin

to saturate in Figure 4.6a. Also, configurations where at least one amplifier is bypassed

have IIP3 estimates which are about 3 dB lower in Figure 4.6b.)

The estimated gain and IIP3, ̂︀𝜃 of the three amplifiers, are plotted on the 𝑦-axis against

true gain and IIP3 𝜃 of the three amplifiers on the 𝑥-axis in Figure 4.6c and 4.6d respec-

tively. The estimates ̂︀𝜃 proportionally increase with true values of 𝜃. (The estimated IIP3

of the first and second amplifiers are about 3 dB lower than that of the third amplifier in

Figure 4.6d.)

Finally, the estimated gain and IIP3, ̂︀Z, of the remaining configurations in the screen-

ing design set are plotted on the 𝑦-axis against true gain and IIP3 Z on the 𝑥-axis in Fig-

ure 4.6e and 4.6f respectively. The estimates ̂︀Z proportionally increase with true values

of Z.
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Interpolation Method

In order to extend the RF impairments estimated for configurations in the screening design

set to the full-factorial design set, the interpolation method is applied. Recollect that

the configurations in the screening design set only use a few of the MSB bits of each

component, with the other bits frozen to zero. The assumption made here is that the bits

of each component define a real number (or set of real numbers) and that the true RF

impairment is a continuous function of this (set of) real numbers.

Figure 4.7: The interpolation method is applied to obtain information of the configu-

rations with known RF impairments from the configurations with unknown RF impair-

ments.

The red data points - the configurations in a screening design set - have identified

values ̂︀𝜃 in (4.18) obtained from the sample configurations as described in Section 4.1.2.
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The stared points - the configurations in a full factorial design set - have unknown but

identifiable values by applying the interpolation method. First, the parameters in a math-

ematical model are determined to fit data of configurations in a screening design set to

the mathematical model. Second, using the parameters and the mathematical model, the

interpolation method interpolates the unknown component values in configurations. The

pseudocode of the interpolation method is given in Algorithm 7. For the interpolation pro-

cess, we utilized the Natural neighbor interpolation. Simulation results of applying the

interpolation method are plotted in Figure 4.8. Thus, we could measure configurations in

a full-factorial design set from a screening design set.

Algorithm 7 The Interpolation Approach: estimate unknown component values Vtest for
test configurations Vtest in a full factorial set.

1: INPUT: Xtest,Xknown,Vknown

2: 𝑁 ← the number of components in the configurations of Xtest

3: for 𝑖 = 1, 2, 3, · · · , 𝑁 do
4: X𝑝 ← the 𝑖-th cascaded component of a configuration
5: X𝑞 ← the 𝑖-th cascaded component of the configurations of Xtest

6: V𝑝 ← component values corresponding to X𝑝. it is obtainable from Vknown

7: V𝑞 ← 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛interpolation(X𝑝,V𝑝,X𝑞)
8: Vtest(𝑖)← V𝑞

9: end for
10: OUTPUT: Vtest

In line 1, Xtest,Xknown, and Vknown are a set of test configurations, a set of configura-

tions with known component values, and a set of the known component values in Xknown,

respectively. In line 7, a vector V𝑞 is composed of interpolated component values on the

components in X𝑞 from the known component values in V𝑝 on the components in X𝑝

using Natural neighbor interpolation.

74



(a) Interpolated gain of an amplifier (b) Interpolated IIP3 of an amplifier

(c) Estimated gain of a configuration with
three amplifiers using interpolated gain

(d) Estimated IIP3 of a configuration with
three amplifiers using interpolated IIP3

(e) Estimated gain of a configuration
using simulation

(f) Estimated IIP3 of a configuration
using simulation

Figure 4.8: Simulation Results of the Interpolation Method.

The gain and IIP3 characteristics of amplifiers in the full factorial design set on the

𝑦-axis are obtained by applying the interpolation method to the corresponding estimators
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of the screening design set. Figure 4.8a and 4.8b, which show gain and IIP3 respectively

on the 𝑦-axis, show close agreement with the true values on the 𝑥-axis.

The obtained RF impairment estimates using the interpolation method are applied to

calculate the overall RF impairments of the configurations in the full factorial set using the

formula (4.10), (4.11), (4.12). The calculated overall gain and IIP3 of 150 configurations

in a full factorial set on the 𝑦-axis are plotted against the true values on the 𝑥-axis in

Figure 4.8c and 4.8d respectively while estimates of gain and IIP3 obtained by simulation

of the same configurations representing a full factorial set are plotted in Figure 4.8e and

4.8f. The results demonstrate that unknown RF impairments of the configurations in a

full factorial design set are successfully obtained by applying the interpolation method.

Efficiency of the Design of RF Impairment Estimation for a Large-scale RF-FPGA

In this section, we discuss how the design of RF impairment estimation for a large-scale

RF-FPGA improves the efficiency of RF impairment estimation. The designed DoE and

interpolation methods are applied to measure RF impairment in a large-scale RF front-

end of 63 bits from sample configuration data. In Table 4.2, the number of simulations

(runs) and the required estimation time are calculated for three configuration sets: a full

factorial design set, a screen designing set (of reconfiguring two MSBs of knobs) and a

sample configuration set. The simulation time required for the estimation of gain is 41

seconds while IIP3 is 42 seconds. The number of configurations to be simulated is about

1019, 2.6 × 105, 384 in a full factorial design set, a screening design set and a sample

configuration set, respectively. The total required simulation time is about 1.3 × 1013

years, 3 × 103 hours, and 4.4 hours, respectively. We found that while estimating RF

impairments for a full-factorial or screening design set is costly and time-consuming,

estimating RF impairments for sample configurations are powerful and cost-effective, as
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shown in the Table 4.1. Thus, we verify that the design of RF impairment estimation for

a large-scale RF-FPGA is important to utilize limited resources, such as time and power,

for estimation.

Table 4.1: Comparison of Time Consumption for RF Impairment Estimation

RF Impairments Gain IIP3

Simulation running time for a configuration 41 seconds 42 seconds

The number of simulations for full factorial designs 1019 runs 1019

The number of simulations for screening designs (2

MSBs of components are reconfigured)

2.6× 105 runs 2.6× 105 runs

The number of simulations for sample configurations 384 runs 384 runs

Total simulation time for full factorial designs 1.3× 1013 years 1.33× 1013 years

Total simulation time for screening designs 3× 103 hours 3.1× 103 hours

Total simulation time for sample configurations 4.37 hours 4.45 hours
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4.2 SINR Calculation in a Large-scale RF-FPGA

The Signal-to-Interference-and-Noise Ratio (SINR) of a configuration is calculated using

(3.1) in Chapter 3. For the SINR calculation, we used the estimated RF impairments

obtained by applying the DoE approach and the interpolation method as introduced in

Section 4.1.2.

To compare the SINR calculation that uses estimated RF impairments to the SINR

calculation using true component values, we considered two scenarios: (1) interference

of the power -30 dBm at 20 MHz frequency offset from the signal of interest of -67 dBm,

and (2) two interferences of the power -35 dBm at 150 MHz and 300 MHz frequency

offset, respectively, from the signal of interest of -67 dBm. Figure 4.9 shows that the

SINR calculated by using estimated values of RF impairments is in the reasonable range

of the SINR calculated by using true values of RF impairments.

4.3 EAF-MR Optimization in a Large-scale RF-FPGA

We introduce the Environment-Adaptable Fast Multi-Resolution (EAF-MR) optimization

designed for a large-scale RF-FPGA to adapt to the dynamic conditions in communica-

tion. We designed the EAF-MR optimization method by applying the EAF optimization

that utilizes the SINR calculation to the Multi-Resolution (MR) optimization.

The MR optimization primarily has a similar structure as the Two-phase relaxation

optimization in Section 3.2. In Phase I, the MR optimization iteratively finds the con-

figuration of maximal SINR. In Phase II, starting from the found configuration, the MR

optimization finds an optimal configuration that has the lowest power consumption satis-

fying the SNR specification for a given communication standard.

In order to improve the Two-phase relaxation optimization for a large-scale reconfig-
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(a) Scenario 1: interference of the power -30 dBm at 20 MHz frequency offset from the signal of
interest of -67 dBm.

(b) Scenario 2: two interferences of the power -35 dBm at 150 MHz and 300 MHz frequency
offset, respectively, from the signal of interest of -67 dBm.

Figure 4.9: SINR calculated using (3.1)
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urable RF front-end, the MR optimization narrows down the search space into screening

design sets of available configurations in a large-scale RF front-end. The size of screen-

ing design sets is determined by the number of active reconfiguration knob bits in all RF

components. The fewer active bits of knobs, the more sparsely the characteristic values of

the configurations in the screening design sets are distributed. The MR optimization tries

to search for two types of configurations in the two phases, from small to large active bits.

If there is no improvement for one cycle of iterations for all configurations, the iterative

reconfiguration is stopped. The pseudocode of the MR algorithm is given in Algorithm 8.

In our EAF-MR optimization method, we applied the primary algorithmic structure

of the MR optimization, and we utilized the calculated SINR in order to reduce the num-

ber of configurations to be simulated. When the SINR calculation of the configurations

does not meet the pre-defined SINR threshold, the configurations are trimmed out in the

list of configurations to be simulated. The pseudocode of the MR algorithm is given in

Algorithm 9.

In Algorithm 8, x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡),SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡),Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) represent a current configura-

tion, the simulated SNR and power of the current configuration, respectively. nBit1(𝑚𝑎𝑥) =

nBit2(𝑚𝑎𝑥) = 4 for our simulation setting. In line 2 to 17, a configuration with maximal

simulated SNR (Phase I) is found. In line 7, a current knob K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is updated to the next

available knob. In line 8, a list of configurations to be simulated is obtained by reconfig-

uring component values at the current knob K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) of a current configuration x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡).

The resolution for the knob reconfiguration is given as 𝑁Resolution. In line 9, SNR(x) is

obtained by simulating configurations of x ∈ X. In line 18 to 35, a configuration that has

the lowest power while meeting a condition SNR(x) ≥ SNRSpec (Phase II) for x ∈ X is

found.

In Algorithm 9, x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡),SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡),Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) represent a current configura-
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Algorithm 8 Multi-Resolution Algorithm

1: INPUT: nBit1(𝑚𝑎𝑥), nBit2(𝑚𝑎𝑥)

2: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← x(𝑖𝑛𝑖𝑡𝑖𝑎𝑙),SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← SNR(𝑖𝑛𝑖𝑡𝑖𝑎𝑙),Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← Power(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

3: Power(x)← power for ∀x ∈ X
4: for 𝑁Resolution = 1, 2, · · · , nBit1(𝑚𝑎𝑥) do
5: K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← K(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

6: while (there has been recent updates on x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)) do
7: K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← the next available knob component of x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

8: X← a set of configurations obtained by reconfiguring the component values
with 𝑁Resolution bits control at K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) of x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) while other components are fixed.

9: SNR(x)← simulated (or measured) SNR for ∀x ∈ X
10: x(𝑚𝑎𝑥) ← arg max SNR(x)

x∈X

11: SNR(𝑚𝑎𝑥) ← SNR(x(𝑚𝑎𝑥))
12: if SNR(𝑚𝑎𝑥) > SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
13: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← x(𝑚𝑎𝑥),SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← SNR(𝑚𝑎𝑥)

14: Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← Power(x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡))
15: end if
16: end while
17: end for
18: for 𝑁Resolution = 1, 2, · · · , nBit2(𝑚𝑎𝑥) do
19: K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← K(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

20: while (there has been recent updates on x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)) do
21: K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← the next available knob component of x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

22: X ← a set of configurations obtained by reconfiguring the values with
𝑁Resolution bits control at K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) of x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) while other components are fixed.

23: SNR(x)← simulated (or measured) SNR for ∀x ∈ X
24: if (K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is a knob component in a filter) then
25: x(𝑚𝑎𝑥) ← arg max SNR(x)

x∈X

26: SNR(𝑚𝑎𝑥) ← SNR(x(𝑚𝑎𝑥))
27: if SNR(𝑚𝑎𝑥) > SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
28: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← x(𝑚𝑎𝑥),SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← SNR(𝑚𝑎𝑥),Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ←

Power(x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡))
29: end if
30: else if (K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is a knob component in an amplifier) then
31: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← arg min Power(x)

x∈X s.t. SNR(x)≥SNRSpec

32: SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← SNR(x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)),Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← Power(x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡))
33: end if
34: end while
35: end for
36: OUTPUT: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡),SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡),Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
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Algorithm 9 EAF Multi-Resolution (EAF-MR) Algorithm

1: INPUT: nBit(𝑚𝑎𝑥)

2: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← x(𝑖𝑛𝑖𝑡𝑖𝑎𝑙),SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← SNR(𝑖𝑛𝑖𝑡𝑖𝑎𝑙),Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← Power(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

3: K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← K(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

4: X← a set of configurations obtained by reconfiguring the values with 𝑁Resolution bits
control at K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) of x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) while other components are fixed.

5: SINR(𝑐𝑎𝑙)(x)← calculated SINR for ∀x ∈ X
6: Power(x)← power for ∀x ∈ X
7: x(𝑚𝑎𝑥) ← arg max SINR(𝑐𝑎𝑙)(x)

x∈X
8: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← x(𝑚𝑎𝑥)

9: SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← simulated (or measured) SNR of x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

10: Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← Power(x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡))
11: for 𝑁𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1, 2, · · · , nBit(𝑚𝑎𝑥) do
12: K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← K(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

13: while (there has been recent updates on x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)) do
14: K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← the next available knob component of x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

15: X ← a set of configurations obtained by reconfiguring the values with
𝑁Resolution bits control at K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) of x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) while other components are fixed.

16: X(𝑝𝑎𝑠𝑠) ← {x ∈ X|SINR(𝑐𝑎𝑙)(x) ≥ SINRThreshold}
17: SNR(𝑝𝑎𝑠𝑠)(x)← simulated (or measured) SNR for ∀x ∈ X(𝑝𝑎𝑠𝑠)

18: if (K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is a knob component in a filter) then
19: x(𝑚𝑎𝑥) ← argmax SNR(x)

x∈X(𝑝𝑎𝑠𝑠)

20: SNR(𝑚𝑎𝑥) ← SNR(𝑝𝑎𝑠𝑠)(x(𝑚𝑎𝑥))
21: if SNR(𝑚𝑎𝑥) > SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
22: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← x(𝑚𝑎𝑥),SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← SNR(𝑚𝑎𝑥)

23: Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← Power(x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡))
24: end if
25: else if (K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is a knob component in an amplifier) then
26: for x ∈ X(𝑝𝑎𝑠𝑠) is selected in descending order of SNR(𝑝𝑎𝑠𝑠)(x) do
27: if SNR(𝑝𝑎𝑠𝑠)(x) ≥ SNRSpec&Power(x) < Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
28: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← arg min Power(x)

x∈X s.t. SNR(x)≥SNRSpec

29: SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← SNR(x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡))
30: Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ← Power(x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡))
31: break
32: end if
33: end for
34: end if
35: end while
36: end for
37: OUTPUT: x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡),SNR(𝑐𝑢𝑟𝑟𝑒𝑛𝑡),Power(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
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tion, the simulated SNR and power of the current configuration, respectively. In line 1,

nBit(𝑚𝑎𝑥) = 4 for our simulation setting. In line 2 to 10, in order to find a configura-

tion with maximal simulated SNR (Phase I), calculated SINR is utilized. In line 11 to

36, a configuration that has the lowest power while meeting a condition SNR ≥ SNRSpec

(Phase II) is found. In line 14, a current knob is moved to the next available knob and

updated to K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡). In line 15, a list of configurations to be simulated is obtained by

reconfiguring component values at the current knob K(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) of a current configuration

x(𝑐𝑢𝑟𝑟𝑒𝑛𝑡). The resolution for the knob reconfiguration is given as 𝑁Resolution.

4.3.1 Simulation

We finally demonstrate the performance of our EAF-MR optimization using a Matlab

simulation.

Simulation Setting

We verified the performance of the designed EAF-MR optimization in a large-scale RF-

FPGA (Figure 4.1) using Matlab Simulink shown in Figure 2.3 and 2.4. In the simulation,

we used the communication standard IEEE 802.11g, and the required SNR specification is

11.5 dB. The transmitted signals have the bandwidth 20 MHz and the power -67 dBm. The

RF-FPGA has 63 bits, which implies approximately 1019 configurations. There are two

fixed RF filters, one fixed IF filter, and three 21 bit amplifiers. The power consumption

range of all possible configurations is from 11.85 mW to 107.85 mW. We tested two

optimization methods, MR and EAF-MR, on the scenario, which has one interferer of -30

dBm at 20 MHz frequency offset from the signal of interest.
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Simulation Results

Table 4.2 shows the simulation results. While the MR optimization method took 2172

simulations for finding an optimal configuration, our EAF-MR optimization method re-

quired only two simulations. The EAF-MR optimization increases optimization efficiency

since it is able to discard a large number of configurations whose calculated SINR does not

satisfy the SNR specification. Both optimization methods found optimal configurations

that satisfy the SNR specification (11.5 dB). The power consumption of the EAF-MR’s

optimal configuration is around 21 mW compared to around 12 mW (MR’s optimal con-

figuration). We found that the EAF-MR optimization is a trade-off between higher power

consumption and the number of simulations.

Table 4.2: Simulation Results

Optimization Method Power (mW) SINR (dB) Total Number of Simulations

Multi-Resolution Optimization 12.52 11.63 2172

MR-EAF Optimization 20.98 15.55 2

Table 4.3: Simulation Results of No. Simulations

Optimization Method Phase I Phase II Total Number of Simulations

Multi-Resolution Optimization 816 1356 2172

MR-EAF Optimization 1 1 2

Therefore, we verified that our EAF-MR optimization method allows fast reconfigu-

ration in dynamic communication environments, because it needs only a few reconfigu-

rations to find the optimal one.
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In this chapter, we have worked on the estimation process in order to utilize lim-

ited data resources for RF impairment estimation in a large-scale RF front-end. Us-

ing the estimated results, we designed the Environment-Adaptable Fast Multi-Resolution

(EAF-MR) optimization. The EAF-MR optimization method utilizes calculated Signal-

to-Interference-and-Noise Ratio (SINR) to reduce simulations in an optimization process

in a large-scale RF front-end. Thus, our simulation set-up demonstrated the efficiency

improvement of the EAF-MR optimization for a large-scale RF-FPGA.
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Chapter 5

Conclusions and Future Works

In this thesis, we proposed the Environment-Adaptable Fast (EAF) optimization method

for programming a reconfigurable RF front-end.

First, we studied estimation of gain, nonlinearity, phase noise, frequency offset, and

noise figure for a reconfigurable RF front-end. Based on the signal model of baseband

signals, we designed estimators of Time-Invariant (TI) RF impairments and Time-Variant

(TV) RF impairments. TI RF impairments such as IIP3 (nonlinearity) have fixed param-

eters and should be estimated when a reconfigurable RF front-end is manufactured. The

estimators of gain and IIP3 were designed using sinusoids with changed carrier frequen-

cies. The estimators for phase noise spectrum were calculated by using the Interpolated

Finite Impulse Response (IFIR) approach and the least mean square (LMS) adaptive al-

gorithm. TV RF impairments have dynamic characteristic, and should be periodically

estimated and updated. In order to utilize pilot signals, we designed TV RF impairment

estimators invariant to other nuisance impairments. We derived a signal subspace model,

and designed joint invariant estimators. Simulation results showed that the designed esti-

mates of designed RF impairments are in an acceptable range.

Second, we designed the EAF optimization that speeds up an optimization process by
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calculating the Signal-to-Interference-and-Noise Ratio (SINR) of possible configurations.

The SINR calculation uses estimated RF impairments and a signal spectrum in a given

communication environment. In the calculation, impairing signal power due to each of

the RF impairments - phase noise, IIP3, noise figure - was separately derived in terms of

the power of the signal of interest and interference. Thus, real-time blocker information

is reflected in SINR calculations. Also, we proposed the EAF optimization that quickly

finds a configuration for a reconfigurable RF front-end. In Phase I, the EAF optimization

directly finds a configuration of maximal SNR without any iterations using calculated

SINR. In Phase II, SINR calculation was used to identify the configurations that likely

do not meet a SINR specification and to narrow down the search space of configurations.

Numerical experiments demonstrate that the EAF optimization method improves the effi-

ciency of the optimization process for finding an optimal configuration. In particular, the

EAF optimization method reduced the computational cost significantly, finding an opti-

mal configuration after only five iterations instead of searching all possible configurations

exhaustively.

Third, we investigated the application of the EAF optimization in a large-scale RF-

FPGA. To estimate RF impairments in a large-scale RF front-end, we solved two main

problems. First, we solved the saturation of nonlinear estimates due to a wide range of

RF front-ends. To avoid the saturation problem, we obtained a formula for adjusting

transmission power for an estimation procedure. Second, we solved a limited estima-

tion resources problem. Because of a large number of configurations, it is not possible

to directly measure and characterize the RF impairments of all possible configurations.

We extended the estimation procedure to a large-scale RF-FPGA using the Design of

Experiments (DoE) approach and the Interpolation method. Finally, we designed a EAF

Multi-Resolution (EAF-MR) optimization method in which the EAF optimization method
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was applied to a Multi-Resolution (MR) optimization. Simulation results showed that our

EAF-MR optimization requires only two iterations while MR optimization takes more

than 2000 iterations. There is a trade off between efficiency and local optimum. How-

ever, as an optimal configuration exists, finding a global optimum is not necessary. The

main focus of our research is attaining low computational cost (fast convergence) in op-

timization for a real-time application. Therefore, using this algorithm, reconfigurable RF

front-ends can move forward to a reliable multi-standard platform for the needs of future

communication systems.

In the future, we want to investigate spectral strategies that help to prune the space

of RF configurations to be explored ("search space") and rules to automatically rank pre-

ferred RF configurations. In order to narrow down the search space, we plan to study the

heuristic rules that are applicable using the reconfigurability of filters and local oscilla-

tors (LOs). While reconfiguring filters and LOs, we assume that the characteristics of RF

components (e.g. filters’ center frequency and bandwidth) and also the signal spectrum

are accessible. When a blocker appears, in order to improve communication quality, in

addition to the choice of filters, etc, we can also change either radio frequency (RF) or in-

termediate frequency (IF) of the RF system based on the blocker information in the signal

spectrum. For example, the blocker signal can be effectively eliminated if it is placed on

the stopband of a notch filter in the frequency domain. In order to satisfy this condition,

the IF of a reconfigurable RF front-end can be changed by reconfiguring LOs considering

the characteristics of the notch filter. The heuristic strategies for reconfiguring filters and

LOs will help a reconfigurable RF front-end improve the speed of an optimization process

for In-theater mode.
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Appendix A

Reconfigurable RF front-end vs.

Wide-band RF front-end

To demonstrate the usefulness of a reconfigurable RF front-end, we compared it to a fixed

wide-band front-end using the Simulink platform of Mathworks, which was augmented

with the SimRF toolbox.

A.1 Simulation Setting

The simulated scenario was as follows. The signal of interest is a IEEE 802.11g WLAN

signal with a carrier frequency 2.4 GHz and bandwidth of 20 MHz, received at -75 dBm.

We added to the signal two interferers located at 2.475 GHz and 2.550 GHz. The first

interferer is received at -30 dBm while the second interferer is received at powers ranging

from -100 dBm to 0 dBm. (This range is selected because blockers of power up to 0 dBm

may be observed above 500 MHz, according to the survey in [18].)

In the scenario, we compare two architectures: a fixed wide-band RF front-end and a

reconfigurable RF front-end. The fixed wide-band RF front-end has a digital attenuator
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whose gain can be varied from -0.5 dB to -31.5 dB. The reconfigurable RF front-end

has 9747 configurations, one of which is optimal. Each of two narrow-band RF filters

is reconfigured by 19 configurations, all with various center frequency, filter order and

bandwidth [10]. Each of three amplifiers is reconfigured by three configurations, using

different gain, nonlinearity and noise figure. After down-conversion by the mixer, both

the systems use an IF filter to remove out-of-band interference, followed by a digital SDR

to do digital channel selection and digital down-conversion into baseband. These steps

are typical of an SDR such as the USRP. A baseband 802.11g demodulator then decodes

the obtained baseband signal.

A.2 Simulation Results

The maximal possible SINR, obtained by varying the attenuator (fixed RF case) or by

choosing the optimal configuration (reconfigurable RF case), is plotted against the second

interferer’s power in Figure A.1. We observe that the SINR of the fixed wide-band RF

front-end drops dramatically to reach 0 dB when the interferer power is higher than -50

dBm. However, the reconfigurable RF front-end has an SNR of 18.8 dB even with very

high interferer power up to 0 dBm. Note that the interferers are located far from the signal

channel of interest. These interferers are removed by the IF filter that precedes the SDR

in both cases. The degradation in performance in the fixed RF case is mainly due to the

non-linearity of the RF front-end, which causes inter-modulation interference to appear

in the channel of interest. While the inter-modulation interference is typically weak, it

becomes significant when the interferer power is large, as has previously happened in the

fixed front-end case. On the other hand, the reconfigurable front-end allows for judicious

use of RF filters, so that the interference will likely to be attenuated sufficiently when it
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Figure A.1: SINR (dB) vs blocker power (dBm) of a fixed wide-band RF front-end (blue)

and ra econfigurable RF front-end (red).

cause significant inter-modulation in the subsequent RF chain. Thus, we conclude that

the reconfigurable RF front-end, properly adapted, can outperform the fixed wide-band

RF front-end when there are high power interferers, due to non-linearity induced inter-

modulation. Therefore, the reconfigurable RF front-end can be used to obtain a reliable

multi-standard platform.
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Appendix B

Factory and In-theater Modes

In order to solve this optimization problem efficiently in real-time, we define three stages

in Factory mode and Theater mode as below:

B.1 Factory Mode

B.1.1 Profiling Stage

When manufacturing a reconfigurable RF front-end in a factory, a Configuration Profile

Table is built in order to provide information about all possible configurations in the re-

configurable RF front-end. For example, we decide if a configuration can operate for a

signal of interest based on the filter bandwidth and carrier frequency for each configura-

tion in the table. Also, the Configuration Profile Table provides the third-order intercept

point (IP3), a metric of non-linearity of RF components, needs to be given to predict the

inter-modulation effect of blockers in our algorithm.
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B.2 In-theater Mode

B.2.1 Exploring Stage

In contrast to Factory mode, a reconfigurable RF front-end updates real-time information

for practical use. In particular, we periodically update a Real-Time Table using estimated

SINR, based on the Configuration Profile Table created in Factory mode and the blocker

distribution given by Spectrum Analyzer .

B.2.2 Optimizing Stage

We run an environment-adaptable and fast optimization algorithm to find the optimal

configuration x
(𝑜𝑝𝑡)
𝑡 of a reconfigurable RF front-end at time 𝑡. In order to improve its

efficiency, the algorithm reflects real-time information of communication environments

using the Real-Time Table as well as the Configuration Profile Table.
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Appendix C

Phase Noise Impairments

In this section, we show how strong interference can interact with phase noise. We in-

vestigate the phase noise effect with and without interference using the IEEE 802.11a

and IEEE 802.11b transceivers as examples. Simulations are performed using Matlab

Simulink with the SimRF block set. In Table 2.1, we note that the IEEE 802.11a and

IEEE 802.11b standards require -102 dBc/Hz and -101 dBc/Hz phase noise, respectively,

at 1 MHz frequency offset.

In Figure C.2 and C.3, we plotted two scenarios in order to observe phase noise im-

pairments.

In the first scenario, we assumed that there is no interference and only the signal of

interest is presented. The signal of interest was -65 dBm for the IEEE 802.11a standard

and -76 dBm for the IEEE 802.11b standard, as shown in Figure C.1. The signal-only

case is depicted as the green curves in Figure C.2 and C.3. Because of other impairments

such as nonlinearity, the simulated SINR curve converges to a constant in the low phase

noise range. Otherwise, SINR decreases by 3 dB as phase noise increases by 3 dB in

simulated SINR, and also in calculated SINR, which is derived from (3.3) in Section 3.1.

In the second scenario, we assumed that interference exists in addition to the signal of
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Figure C.1: Blocking Mask- (a) the IEEE 802.11a standard (b) the IEEE 802.11b standard

[2].

interest. In our scenario, we had the interferer of -30 dBm at 50 MHz frequency offset,

the worst possible case specified by the blocking mask in the IEEE 802.11a as shown in

Figure C.1 (a). For the IEEE 802.11b, we consider the two possible scenarios specified

by the standard: the interferer of -35 dBm at 20 MHz frequency offset and the interferer

of -30 dBm at 30 MHz frequency offset.

For IEEE 802.11a, Figure C.2 shows that the required phase noise is -108 dBc/Hz

at 1MHz frequency offset, which is more stringent than -102 dBc/Hz from Brandolini’s

study [2] as specified in Table 2.1. This phenomenon is explained as follows: the im-

pairing signal caused by phase noise and the signal of interest in (3.3) and the impairing
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signal by phase noise and interference in (3.4) have almost the same value. The summed

signal is about 3 dB higher than either one of the impairing signals. Then, the SINR

of the impairing signals’ sum is about 3 dB lower than that found in Brandolini’s study.

Thus, SINR was impacted by the signal of interest and also by interference (in Section

3.1). This shows the need to derive a more accurate formula for SINR when there is phase

noise and interference.

For IEEE 802.11b, our simulation results in Figure C.3 show that phase noise re-

quirement is about -102 dBc/Hz, which is consistent with -101 dBc/Hz in Table 2.1. As

expected, the SINR with interference is much lower than the SINR without interference

because interference effect dominates phase noise.

Figure C.2: SINR (dB) vs. Phase Noise (dBc/Hz at 1MHz frequency offset) for the IEEE

802.11a with the SINR requirement of 29 dB.
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Figure C.3: SINR (dB) vs. Phase Noise (dBc/Hz at 1MHz frequency offset) for the IEEE

802.11b with the SINR requirement of 14.5 dB.
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