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ABSTRACT 

 

The U.S. electric power sector is in the early stages of transitioning from a reliance on carbon 

intensive generation sources to a system based on low-carbon sources.  In this thesis, I present 

analyses of four different aspects of this transition, with an emphasis on the PJM Interconnection.  

The effects of bulk electricity storage on the PJM market 

I analyze the value of three storage technologies in the PJM day-ahead energy market, using a 

reduced-form unit commitment model with 2010 data. I find that large-scale storage would increase 

overall social welfare in PJM. However, the annualized capital costs of storage would exceed social 

welfare gains. Consumers would save up to $4 billion annually, largely at the expense of generator 

surplus. Storage modestly increases emissions of CO2 and other pollutants. 

The external costs and benefits of wind energy in PJM 

Large deployments of wind create external costs and benefits that are not fully captured in 

power purchase agreements. I find that wind’s external costs in the PJM market are uncertain but 

significant when compared to levelized PPA prices.  Pollution reduction benefits are very uncertain 

but exceed external costs with high probability. 

The climate and health effects of a USA switch from coal to gas electricity generation 

I analyze the emission benefits created by a hypothetical scenario in which all U.S. coal plants are 

switched to natural gas plants in 2016.  The net effect on warming is unclear; results are highly 

sensitive to the rate of fugitive methane emissions and the efficiency of replacement gas plants.  



 v 

However, the human health benefits of such a switch are substantial. The costs of building and 

operating new gas plants likely exceed the health benefits. 

Robust resource adequacy planning in the face of coal retirements 

Over the next decade, many U.S. coal-fired power plants are expected to retire, posing a 

challenge to system planners.  I investigate the resource adequacy requirements of the PJM 

Interconnection, and how procuring less capacity may affect reliability.  I find that PJM’s 2010 

reserve margin of 20.5% was sufficient to achieve the stated reliability standard with 90% 

confidence.  PJM could reduce reserve margins to 13% and still achieve levels of reliability accepted 

by other power systems.  
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Chapter 1: INTRODUCTION 

The U.S. electric power sector is currently undergoing one of the most significant 

transformations in its history. The risks posed by climate change are increasingly apparent to the 

public, policymakers, and regulators.  Pressure to reduce greenhouse gas emissions, as well as criteria 

pollutants that harm public health, is growing.  In response, the industry has begun to shift how 

electricity is generated and consumed in fundamental ways.  

This transformation poses many challenges.  Large deployments of intermittent renewables will 

make grid operations and planning more difficult.  Significant retirements of heavily polluting coal 

plants will challenge the ability of system planners to provide reliable service.  However, potential 

solutions exist.  Abundant shale gas resource have made generating power from natural gas much 

more economical over the past decade.  Emerging technologies, such as grid-scale electricity storage 

and demand response, may also be viable solutions. 

The PJM Interconnection is an interesting microcosm of this transformation. PJM is the nation’s 

largest independent system operator, serving more than 60 million people [1].  As of 2010, PJM had 

78 GW of installed coal capacity, which made up 41% of total capacity [2].  PJM has identified 11 

GW of this capacity “at high risk” of retirement, and an additional 14 GW “at some risk” of 

retirement [2].  At the same time, PJM member states have established renewable portfolio standards 

that are expected to lead to a tenfold increase in PJM’s generation from wind and solar from 1.2% of 

total generation in 2010 to 14% of total generation by 2026 [3,4].  As a restructured market, PJM 

must manage these and other challenges through market designs that are fair and transparent to 

participants. 

This thesis contains four studies into different aspects of the challenges the power sector will 

face over the coming years while transitioning to a low-carbon future.  The focus of these analyses is 
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the PJM Interconnection, due to its relative importance, size, and leadership status amongst U.S. 

grid operators. 

In Chapter 2, I investigate the potential for bulk electricity storage to participate in the PJM 

wholesale energy market.  Widespread deployment of storage could assist in managing the 

intermittency of renewable sources, and in meeting peak load.  Storage profits on energy markets by 

charging during low price hours, typically at night, and discharging at peak hours when prices are 

high. Several technologies have been proposed for the bulk storage of electricity, including pumped 

hydropower storage, compressed air storage, and chemical batteries.  I find that storage would 

reduce prices at peak hours on PJM’s energy market.  This in turn would create large savings for 

consumers, and a net reduction in system costs.  However, the capital costs of storage are likely to 

exceed the benefits they provide. 

In Chapter 3, I explore the external costs and benefits of wind power in PJM.  Large 

deployments of wind create costs and benefits that accrue to entities other than the owner.  Wind 

creates external benefits by offsetting emissions of greenhouse gases and criteria pollutants that 

would otherwise come from fossil generation.  External costs are due to the intermittency and 

variability of wind, which can force other plants to operate less efficiently and can require significant 

grid expansion and reinforcement.  I find that the external costs of wind are uncertain, but may be 

significant when compared to the levelized cost of wind.  External benefits due to pollution 

reduction are very uncertain but exceed external costs with very high probability. 

In Chapter 4, I present an analysis of the potential climate and health benefits of switching the 

U.S. coal plant fleet to either gas plants or zero emission plants.  The advent of low cost shale gas 

has made generation from natural gas increasingly economical.  This has prompted industry and 

politicians to welcome gas as a ‘bridge fuel’ to a low carbon grid.  I analyze the effect of retiring all 
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U.S. coal plants in 2016, and replacing them with either natural gas generation or zero emission 

plants such as renewables or nuclear.  I find that the effect this switch would have on warming is 

unclear; results are highly sensitive to rate of fugitive emissions from the production and 

transportation of natural gas.  However, the switch would significantly reduce criteria pollutant 

emissions and benefit public health. 

In Chapter 5, I analyze the effects that significant retirements of coal plants may have on the 

reliability of the PJM system.  PJM procures sufficient capacity to ensure that supply shortages only 

occur once per ten years.  I find that PJM correctly sets its capacity target to meet this standard.  

However, PJM procures more capacity than needed to meet the target, suggesting PJM is risk averse 

and wants to meet the standard with 90% confidence.   The reliability standard set by PJM is more 

stringent than the standards used by several other systems in the U.S. and abroad.  Switching to a 

different reliability standard would reduce PJM’s needed level of capacity by 10 GW, equal to the 

amount of coal capacity that PJM deems “at high risk” of retirement. 

The work in this thesis is intended to better inform policies associated with reducing emissions 

in restructured markets.  The challenges of transitioning to a low-carbon electricity system are 

multifaceted; this thesis contains studies into four aspects of these challenges. With carefully 

designed policies and market rules, system operators will be able to reduce emissions in intelligent 

and cost-effective ways. 

1.1 References 
[1]  PJM Interconnection. PJM 2013 Annual Report; Norristown, PA, 2013. 

[2] PJM Interconnection. Coal Capacity at Risk of Retirement in PJM: Potential Impacts of the Finalized EPA 
Cross State Air Pollution Rule and Proposed National Emissions Standards for Hazardous Air Pollutants; 
Norristown, PA, 2011.  

[3] PJM Interconnection. 2010 State of the Market Report for PJM, Volume 2; Norristown, PA. Prepared by 
Monitoring Analytics, LLC. 2011. 

[4] PJM Interconnection.  PJM Renewable Integration Study; Norristown, PA. Prepared by GE Energy 
Consulting. 2014.   
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Chapter 2: THE EFFECTS OF BULK ELECTRICITY STORAGE 

IN THE PJM MARKET 

 

Abstract 

Recent advancements in battery technologies may make bulk electricity storage economically 

feasible.  We analyze the value of two electrochemical storage technologies and traditional pumped 

hydropower storage in the 2010 PJM day-ahead energy market, using a reduced-form unit 

commitment model.  We find that large-scale storage would increase overall social welfare in PJM.  

However, the annualized capital costs of storage would exceed social welfare gains.  Consumers 

would save up to $4 billion annually due to reduced peak prices and reduced reliance on expensive 

peaking generators.  These savings are equivalent to ~10% of sales in the PJM day-ahead energy 

market. Savings come largely at the expense of generator surplus.  Existing market mechanisms are 

insufficient to encourage the socially optimal quantity of storage.  Storage reduces the profitability of 

generators and the need for peaking generation capacity.  Storage modestly increases emissions of 

CO2 and other pollutants in a system with 2010 PJM characteristics.   

 

 

This paper was published as Lueken, R.; Apt, J. The effects of bulk electricity storage on the PJM 

market. Energy Systems. 2014 , DOI: 10.1007/s12667-014-0123- 7.  
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I. Introduction 
Electric power systems today have limited storage capacity. Both in the USA and worldwide, 

storage makes up less than 3% of generation capacity [1].  This lack of storage forces grid operators 

to continuously balance generation and load, and prevents the electricity sector from operating as a 

conventional competitive market that relies on inventory. 

Pumped hydropower storage (PHS) is the predominant storage technology today, making up 

99% of all deployed storage capacity.  The Federal Energy Regulatory Commission (FERC) has 

issued preliminary permits to an additional 55 PHS facilities, with a combined capacity of 47 GW 

[2].  R&D investments have led to rapid improvements in advanced battery technologies.  Recent 

advancements suggest batteries with long cycle life may approach cost parity with pumped 

hydropower [1]. 

Inexpensive electricity storage has the potential to transform electricity markets.  Storage can 

provide a variety of high-value services, including ancillary services such as frequency regulation [3].  

Although profitable, these relatively small market opportunities are expected to saturate quickly: in 

PJM, average hourly regulation procurement is less than 1 GW, or ~1% of total load [4].  At that 

point, storage operators and manufacturers will consider larger volume, lower value applications.  

One such application is arbitrage in wholesale energy markets. 

In wholesale markets, storage profits by buying electricity when prices are low and selling at peak 

hours.  For small amounts of storage, this arbitrage will not affect prices or generator dispatch order.  

A large body of research exists on how small, price-taking storage devices can maximize profits in 

wholesale markets.  This research has looked at storage in several applications, including the value of 

electric vehicle batteries for grid storage [5] and the economics of storage in the New York state 

electricity market [6]. 
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How large amounts of storage will change wholesale markets is less well understood.  Existing 

studies have found that the benefits of 1 GW of storage are 10% - 20% less than price-taking 

storage in PJM, assuming a linear relationship between load and electricity price [7].  Recent research 

[8] used a unit commitment model to study the effect of up to 800 MW of electricity storage on the 

Irish power system (12% of peak annual demand), finding that storage reduces production costs, but 

increases average electricity prices due to storage capital costs. Using a game-theoretic approach, 

Schill and Kemfert find that while the utilization of storage depends on the operator’s market 

power, storage generally increases consumer welfare and reduces producer surplus in the German 

market [9].  Sioshansi analyses the value of large-scale wind and energy storage deployments in the 

ERCOT (Texas) market and the effects of market power [10]. 

Here we analyze the effect of bulk storage on the PJM’s day-ahead wholesale energy market and 

capacity market.   Storage has the potential to effectively provide power at peak load hours, which 

would reduce wholesale energy prices and expenditures on capacity markets.  We estimate the value 

of large storage deployments in the PJM Interconnection’s day-ahead energy market and capacity 

market with a reduced-form unit commitment model.  The viability of storage in PJM is likely to be 

representative, as PJM is the world’s largest competitive electricity market with $35 billion in 

transactions and 167 GW of installed capacity in 2010 [4]. 

We build upon existing research by investigating the feasibility of three different storage 

technologies: pumped hydropower storage, aqueous hybrid ion (AHI) batteries (an example of the 

class of aqueous intercalation batteries), and sodium sulfur (SS) batteries. We investigate how storage 

will affect overall consumer welfare.  We also investigate the effect on consumer costs on the day-

ahead wholesale market and capacity market, the profitability of bulk storage, and its effect on the 

revenues of generators.  We constrain the analysis to short-term effects; we assume storage does not 

cause changes to the PJM generation fleet or net load (we do include the additional load imposed by 
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charging the storage).  Finally, we investigate how bulk storage will affect emissions of CO2, nitrous 

oxides (NOX), and sulfur dioxide (SO2).  

2.1 Methods 

2.1.1 Unit commitment and economic dispatch model 

 
We developed a reduced-form unit commitment and economic dispatch (UCED) model, called 

PHORUM, to simulate the 2010 PJM day-ahead market.  This software is open source and freely 

available online1.  PHORUM is a mixed integer linear program (MILP) that calculates the least-cost 

combination of generators and storage to meet load at each hour on the day-ahead market, subject 

to generator and transmission constraints. We assume that under a scenario with large capacities of 

storage, system operators will control the dispatch of storage to maintain grid reliability.  

PJM calculates locational marginal prices (LMPs) for more than 10,000 nodes [4].  The nodal 

pricing system allows PJM to account for transmission constraints that result from locational 

variation in supply and demand.  In general, transmission constrains the flow of power from 

Midwestern states to coastal load centers, resulting in higher LMPs along the coast.  Congestion 

costs make up approximately 5% of costs in the PJM day-ahead energy market [4].  Details of 

transmission assets are designated as Critical Energy Infrastructure Information and not publically 

available.  However, PJM provides hourly data on the capacity of seven transmission interfaces, each 

made up of multiple 500 kV lines, which form critical congestion paths that made up 49% of all 

congestion costs in 2010 [4]. 

Based on the seven transmission interfaces, we divided PJM into five transmission buses to 

account for transmission constraints (Figure 2-1). We aggregated the seven PJM interfaces into six 
                                                

1 PHORUM can be downloaded at https://github.com/rlueken/PHORUM 
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transmission lines between regions.  We ignored other transmission constraints, and assumed 

lossless power flow between buses. We assumed that within each bus, transmission is unconstrained 

and all LMPs are equal.  2010 LMP data shows that within our defined buses, zonal LMPs are highly 

correlated (Figure A-3), supporting this assumption.    Other researchers have used this technique of 

dividing PJM into regions [11].  More details can be found in Appendix A. 

 
Figure 2-1.  Reduced form model of the PJM Interconnection 

We simulated 1,017 generators and four existing PJM pumped hydroelectric storage (PHS) 

facilities: Bath County (VA, 2.8 GW), Yards Creek (NJ, 400 MW), Muddy Run (PA, 1 GW), and 

Smith Mountain (VA, 240 MW).    These facilities total 4.5 GW of capacity, approximately 2.5% of 

total generation capacity [12].  Generators smaller than 5 MW were excluded.  We assumed demand 

is perfectly inelastic; the short-term elasticity of demand is highly inelastic [13].  We constrained the 

analysis to short-term effects; we assumed storage does not cause changes to the PJM generation 

fleet or net load.   

PHORUM tracks emissions of CO2, NOX, and SO2 from each generator, using emission rate 

data from the EPA Emissions & Generation Resource Integrated Database (eGRID) [12].  We 

assumed emission rates are linear with output level and independent of time of year or ambient 

temperature.  We also did not account for variations in NOX output for ozone season.  We tracked 
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emissions associated with generator startups [14]; however, startup emissions are less than 1% of 

total emissions. 

We ran 365 daily optimizations, each minimizing costs over a 48-hour period.  The 

optimizations were rolled over, with the 25th hour of the previous optimization becoming the first 

hour of the next.  This rollover ensured that minimum runtime/downtime constraints held between 

days.  Storage state of charge is constrained to 50% for the first hour of the first optimization and 

the 48th hour of each optimization.  PJM’s actual dispatch process minimizes costs over one day 

only; cross-day decisions are made manually by the day-ahead operator [15].  Appendix A contains 

more details on how variables are passed across day boundaries. 

We assumed perfect information over the 48-hour optimization.  In reality, the system operator 

has perfect information for the first 24 hours of each period (the day ahead forecast), but not hours 

25-48 (the day ahead forecast for the second day).  The assumption of perfect information inflates 

the value of storage; in reality, forecast error in load and wind generation will lead to suboptimal use 

of storage.  Optimizing storage operations over a longer period of time would increase the value of 

storage; however, accurately predicting load more than 48 hours out may be difficult.  The relatively 

high charging and discharging speed of storage gives system operators the ability to flexibly respond 

to unforeseen forecast errors in real time [3].  We do not simulate the real time market, and 

therefore do not capture this value.  

Two types of data were used: hourly data and generator data.  Hourly data from PJM were used 

to calculate net hourly load at each bus and transmission limits between buses.  Net hourly load 

considers such factors as imports, exports, and must-take wind generation.  Generator data were 

used to characterize each generator, and were derived from multiple sources, including eGRID, 

EPA National Electric Energy Data System (NEEDS) database, and PJM reports.  Data on fuel 
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prices, aggregated by state and by month, were from the Energy Information Agency.  Appendix A 

contains details on all data sources. 

To maintain reliability, PJM co-optimizes the day-ahead energy market and a separate day-ahead 

scheduled reserve (DASR) market.  Rather than co-optimizing the energy and DASR markets, we 

approximated hourly reserve requirements by adding 3.6 GW to hourly load. 3.6 GW is equivalent 

to PJM’s hourly synchronized reserve requirement: the total capacity of largest unit in RFC (bus 1), 

the largest unit in the Mid-Atlantic control zone (buses 2-4), and the largest unit in Dominion (bus 

5)  [16].  This approximation overstates the load each hour, and therefore increases hourly LMPs.  

However, the error caused by this approximation is minimal; compared to a scenario in which 

reserve requirements are not added to load, average LMPs increase by less than 5%.  When 

compared to actual 2010 LMPs, including reserves as load also results in lower error than not 

including reserves as load.  Section 3 contains more details on model validation.  Mean hourly LMP 

error is 0%, suggesting this approximation does not induce bias into our results.  The approximation 

was necessary to keep computation time manageable.   
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Table 2-1. Model Nomenclature 

Constants    Initial level of generator i [MW] 

  Consumer demand at time t in bus r [MW]   Ramp rate of generator i [MW/h] 

  Net imports from other regional transmission 
operators (RTOs) at time t to bus r [MW] 

   Startup cost of generator i [$] 

  Net load demand at time t in bus  r [MW]    Initial state of generator i (1 if online, 0 
otherwise) 

 Spinning reserve requirement at time t for 
bus r [MW] 

  Minimum uptime / downtime of 
generator i 

  Wind generation at time t in bus r [MW]  Variables  

 Max power flow on interface rm [MW]    Power imported (+) or exported (-) from 
bus r via interface rm [MW] 

  Max SoC of storage unit k [MWh]    SoC of storage unit k at time t [MWh] 

  Initial SoC of storage unit k [MWh]  ,

  

Power discharged or charged by 
storage unit k at time t [MW] 

  Max charge/discharge rate from storage unit 
k [MW] 

  Power generated by generator i at time t 
[MW] 

 Ρ Round trip efficiency of storage units [%]   Startup cost of generator i at period t [$] 

 Fuel cost of generator i [$/MMBtu]   State of generator i at time t (1 if online, 
0 otherwise)  

  Number of periods generator i must be 
initially online due to its minimum up time 
constraint 

 

Sets  

  Heat rate of generator i [MMBtu/MWh]    Set of indices of the generators in bus r 

  Number of periods generator i must be 
initially offline due to its minimum down time 
constraint 

   Set of indices of the storage units in bus 
r 

  Variable O&M costs of generator i [$/MWh]    Set of buses 

  Max and min output from generator i [MW]    Set of indices of the transmission 
interfaces 

     Set of indices of the time periods 

  

(0)iP

( )rD t  
Pi

( )rIMP t iS

( )rND t (0)iU

( )rSR t ,i iUT DT

( )rWG t

( )rmP t , ( )r rmp t

kC ( )kc t

(0)kC ( )kpd t
( )kpc t

kP ( )ip t

( )is t
FCi ( )iu t

iG

iHR rI

iL rK

iOM R

,i iP P RM

T



 12 

Table 2-2. Model Formulation 

Minimize   
1.1pi (t)*(HRi *FCi +OMi )+ si (t)

i∈Ir
∑

r∈R
∑

t∈T
∑   (2–1) 

System Constraints  

NDr (t) = pi (t)+ (pdk (t)− pck (t))+ pr ,rm (t)
rm∈RM
∑

k∈Kr

∑
i∈Ir
∑

   
∀t ∈T ,∀r ∈R

  
(2–2) 

−Prm (t) ≤ pr ,rm (t) ≤ Prm (t)    ∀r ∈R,∀rm∈RM ,∀t ∈T   (2–3) 

Storage Constraints 

ck (t +1) = ck (t)+ ρ * pck (t)−
pdk (t)

ρ
    ∀k ∈K ,∀t ∈T   (2–4) 

0 ≤ ck (t) ≤Ck      ∀k ∈K ,∀t ∈T  (2–5) 

0 ≤ pdk (t) ≤ Pk    ∀k ∈K ,∀t ∈T  (2–6) 

0 ≤ pck (t) ≤ Pk    ∀k ∈K ,∀t ∈T   (2–7) 

ck (0) ≤Ck (0)      ∀k ∈K   (2–8) 
Generator Constraints 

      (2–9) 

      (2–10) 

si (t) ≥ Si *(ui (t)− ui (t −1))     (2–11) 

si (t) ≥ 0       (2–12) 

Pi *ui (t) ≤ pi (t) ≤ Pi *ui (t)     
   

  (2–13) 

 
pi (t) ≤ pi (t −1)+ !Pi *ui (t −1)+ Pi *(ui (t)− ui (t −1))     (2–14) 

 
pi (t −1)− pi (t) ≤ !Pi *ui (t)+ Pi *(ui (t −1)− ui (t))      (2–15) 

     (2–16) 

    
∀i ∈I ,∀t ∈Gi +1...T −UTi +1 

 (2–17) 

   ∀i ∈I ,∀t ∈T −UTi + 2...T  (2–18) 

ui (t) = 0t=1

Li∑      (2–19) 

    
∀i ∈I ,∀t ∈Li +1...T − DTi +1  (2–20) 

    ∀i ∈I ,∀t ∈T − DTi + 2...T  (2–21) 

    (2–22)  

pi (0) = Pi (0) i I∀ ∈
(0) (0)i iu U= i I∀ ∈

,i I t T∀ ∈ ∀ ∈

,i I t T∀ ∈ ∀ ∈

,i I t T∀ ∈ ∀ ∈

,i I t T∀ ∈ ∀ ∈

,i I t T∀ ∈ ∀ ∈

1
[1 ( )] 0iG

it
u t

=
− =∑ i I∀ ∈

1 ( ) [ ( ) ( 1)]it UT
i i i in t
u n UT u t u t+ −

=
≥ − −∑

{ ( ) [ ( ) ( 1)]} 0T
i i in t
u n u t u t

=
− − − ≥∑

i I∀ ∈

1[1 ( )] [ ( 1) ( )]it DT
i i i in t
u n DT u t u t+ −

=
− ≥ − −∑

{1 ( ) [ (t 1) (t)]} 0T
i i in t
u n u u

=
− − − − ≥∑

( ) ( ) ( ) ( ) ( )r r r r rND t D t SR t WG t IMP t= + − + t T∀ ∈
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Our formulation owes much to earlier work [17, 18] and is similar to the model used by PJM to 

dispatch power on the day-ahead market [19].  The objective function, (2–1), minimizes the total 

social cost of providing electricity, which includes the variable costs and startup costs.  The equation 

includes the 10% cost adder that PJM allows all generators to add to their hourly bid [20].  (2–2) sets 

separate supply/demand constraints for each bus.  The LMPs at each bus are the negative Lagrange 

multiplier (shadow price) of these constraints.   

(2–3) sets transmission limits between buses.  Equations (2–4) to (2–8) are storage constraints 

that limit the capacity, charge/discharge rates, and set initial charge levels.  (2–9) and (2–10) set 

initial conditions for generators.  Equations (2–11) and (2–12) trigger startup costs when a generator 

turns on, and (2–13) constrains generation capacity while the generator is online.  Equations (2–14) 

and (2–15) constrain generator ramp rates.  Equations (2–16) to (2–18) ensure generators satisfy 

uptime constraints: (2–16) sets initial uptimes, (2–17) constraints uptimes for subsequent hours, and 

(2–18) forces generators that turn on near the end of the day to stay on over the final time periods.  

Equations (2–19) to (2–21) are analogous to (2–16) to (2–18), but for generator downtimes.  

Equation (2–22) calculates net hourly load in each region, considering wind generation and 

imports/exports to PJM.   

2.1.2 Storage modeling 

We modeled three storage technologies: pumped hydropower, aqueous hybrid ion (AHI) 

batteries, and sodium sulfur (SS) batteries.  We modeled each technology with four parameters: 

capacity (in GW), round-trip efficiency (RTE), duration (how long storage can provide the rated 

capacity before going flat), and location (bus 1-5).  We varied capacity from 0.5 – 80 GW (0.4% - 

60% of peak annual demand).   
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Data on storage technologies is uncertain for three reasons.  First, AHI and SS battery 

technologies are relatively new and extensive commercial data are not yet available.  Second, 

performance and cost of large storage projects vary greatly.  Third, the RTE of electrochemical 

batteries depends on how quickly they are charged and discharged; charging more slowly improves 

efficiency [21].  To incorporate these uncertainties, we modeled two cases for each technology, as 

shown in Table 2-3.  The lower bound scenario assumes pessimistic technical assumptions and fast 

charging/discharging (low RTE, low duration, high capital cost); the upper bound scenario assumes 

optimistic technical assumptions and slow charging/discharging (high RTE, high duration, low 

capital cost).  Cycle counts are held constant between upper and lower bound scenarios.  Parameter 

assumptions are from [1, 22, 23]. 

Table 2-3. Modeled storage technologies [1, 22, 23].  Costs in 2010 dollars 

Technology    Duration 
[hours] 

% Round trip 
efficiency 

Maximum 
cycle count 

Cost  
[$/kWh] 

Aqueous hybrid ion (AHI) battery 
Lower bound 4 80% 10,000 300 
Upper bound 20 90% 10,000 300 
Sodium sulfur (SS) battery 
Lower bound 6 75% 4,500 550 
Upper bound 8 86% 4,500 535 
Pumped hydropower  
Lower bound 4 70% >13,000 430 
Upper bound 12 85% >13,000 250 

 

We deployed storage to each of the five buses in proportion to fraction of total annual load on 

that bus (45% bus 1, 10% bus 2, 8% bus 3, 24% bus 4, 14% bus 5).  We assumed storage could be 

deployed in any grid location and in any capacity.  We also assumed storage is dispatched by the 

system operator, who has perfect information of prices over the 48-hour optimization.  We made 

several simplifying assumptions in our model of storage devices, ignoring storage degradation, 
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minimum depth of discharge, operational costs, and standby losses.  By ignoring these 

complications, we somewhat overestimated the value of storage.  We set storage state of charge to 

50% for the first hour of the year and the last hour of each optimization. 

We calculated the lifespan of each storage technology with (2–23).  We assumed one ‘cycle’ is 

equivalent to discharging energy equal to the device’s capacity.  We assumed all devices are 

decommissioned after 40 years, putting an upper bound on lifespan. 

 
(2–23) 

 

2.1.3 Effects of storage on market participants 

We modeled the effect of bulk storage by first simulating a ‘business as usual’ case, the actual 

operations of the 2010 PJM day-ahead energy market.  We then added bulk storage and examine 

how prices, dispatch order, and emissions changed.  From the annual simulations, we quantified the 

following effects that storage has on participants in the PJM wholesale market. 

Consumer benefits 

We analyzed the benefits that storage provides to consumers on the PJM day-ahead wholesale 

energy market and capacity market.  We quantified energy market savings as the reduction in total 

annual consumer expenditures on the energy market, as calculated by Equation (2–24).  

Consumer energy costs = LMPhour ,bus *Loadhour ,bus
bus
∑

hour
∑  

(2–24)  

In PJM, generators receive payments on the capacity market for providing firm capacity towards 

reliability. Bulk storage reduces the amount of capacity that is needed; as more storage is deployed, 

fewer peaking plants are needed and could in theory be decommissioned.  We quantified the savings 

to consumers if these unused plants are decommissioned with the 2010/2011 PJM capacity auction 

Lifespan = min(total cycle count*kWh capacity
annual kWh discharged

, 40)
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price of $175/MW-day [24].  We did not endogenously model effects of storage on capacity auction 

clearing prices, but performed sensitivity analyses on the benefits under a range of clearing prices 

(see section 5).  Storage is currently ineligible for capacity payments in PJM [25].  Other research has 

estimated the capacity value of storage by using other methods [26, 27, 28]. 

Finally, we calculated the net consumer benefits of storage: changes in the money transacted on 

the wholesale energy and capacity market minus the annualized cost of storage. A positive net 

consumer benefit means consumers are made better off by storage on the wholesale and capacity 

markets.  We annualized capital cost using an 8% cost of capital and storage lifespan calculated with 

Equation (2–22). 

Effect on generators 

Bulk storage changes the dispatch of generators, altering how much electricity generators 

produce and how much revenues they receive.  For each generator in PJM, we compared annual 

electricity production and revenues for a scenario with storage to the business as usual scenario. 

Storage profitability 

Storage profits in this application by arbitraging between high and low prices on the wholesale 

energy market.  Storage profits were calculated as in (2–25).  

StorageProfit = (LMPbus,hour *Dischargebus,hour − LMPbus,hour *Chargebus,hour )− AnnualCost
hours
∑

buses
∑  

 (2–25)  

Overall social welfare 

We define changes in overall social welfare as reductions in total energy market costs minus the 

annualized capital cost of storage.  Reductions in total energy market costs, measured as 

improvements to the system operator’s cost minimization (2–1), are the net effect of storage on 

consumers, generators, and storage operators.  Changes in the capacity market are excluded, as any 

consumer savings in the capacity market are a direct transfer from generators.  Our social welfare 
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analysis excludes implications of adding storage on other markets and the effects of changes in 

emissions of CO2, NOX, and SO2. 

Emissions 

We quantified the change in annual emissions of CO2, NOX, and SO2 due to storage by 

comparing the total annual emissions from each PJM generator in a scenario with storage to the 

business as usual scenario. 

2.2 Validation 

To validate that PHORUM captures the salient factors that determine electricity price and 

dispatch order, we constructed a business as usual (BAU) scenario that simulates the market as it 

was in 2010.  We then compared the LMPs from the BAU simulation to the actual 2010 day-ahead 

market LMPs, aggregated by bus.  We measured accuracy with two metrics: hourly error and daily 

arbitrage error.  The first tracks the model’s accuracy in predicting prices each hour (2–26).  The 

second tracks how well PHORUM predicts the minimum and maximum daily prices (2–27).  

The model consistently modestly under-predicts arbitrage and therefore under-predicts the value 

of storage.  We investigated the implications by comparing the total annual revenue a price-taking 

storage device would receive under the simulated LMPs and the actual 2010 LMPs.  Annual revenue 

to storage with a two-hour duration (charges the two lowest priced hours and discharges the two 

highest priced hours each day) is 3% less under the simulated LMPs than the actual 2010 LMPs; 

revenue for 20-hour duration storage is 10% less.   We conclude that although our results will be 

biased to somewhat under-predict the value of storage, results are close enough to the observed data 

to validate the model’s usefulness for this application. 
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Table 2-4. Validation equation and variables 

Equation Variables 

 (2–26) 
 Modeled hourly LMP 

 Actual 2010 hourly LMP 

Daily Aritrage Error =
ΔLMPmax,modeled − ΔLMPmax,actual

ΔLMPmax,modeled

 (2–27) 
ΔLMPmax,modeled  Modeled maximum daily 

difference in hourly LMPs 

ΔLMPmax,actual  
Actual 2010 maximum daily 
difference in hourly LMPs 

 

Table 2-5   Validation Results 

 Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Average 
Hourly Error (%) 
Mean  1% 0% 8% 5% -15% 0% 
Standard Deviation 24% 24% 24% 23% 21% 23% 
Arbitrage Error (%) 
Mean  4% -6% 9% 15% -34% -2% 
Standard Deviation 72% 64% 68% 71% 52% 65% 

 

2.3 Results 

2.3.1 Consumer benefits 

Storage benefits consumers in two ways: by reducing costs in the wholesale energy market, and 

by reducing reliance on expensive peaking generators. Table 2-6 shows how consumer benefits 

increase as more storage is deployed.  

Storage reduces wholesale energy costs by lowering locational marginal prices (LMPs) at high-

load hours.  Annual wholesale energy savings reach $2 billion.  More than 75% of total savings are 

reached with 20 GW of storage.  These savings are up to 6% of total 2010 PJM wholesale energy 

Hourly Error =
LMPmodeled − LMPactual

LMPactual

LMPmodeled
LMPactual
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costs of $35 billion. Storage also reduces LMP volatility; large deployments reduce volatility by more 

than 50%. 

Storage reduces consumer capacity costs by replacing peaking plants, which in theory could be 

decommissioned.  Up to 30 GW, or 20% of total PJM capacity, could be retired (Figure 2-2).   

Capacity savings approach $2 billion, assuming the 2010/2011 PJM capacity auction price of 

$175/MW-day [24].  The majority of these benefits are achieved by 20 GW of storage.   

Decommissioning plants due to bulk storage would not significantly affect PJM reserve margins.  

According to the North American Electric Reliability Corporation (NERC), any storage primarily 

used for energy (not regulation or transmission) qualifies as reserves [29].  Therefore, PJM reserve 

margins do not fall below 15% for any level of storage deployment, as additions in storage capacity 

offset the generation capacity that is decommissioned. 

 
Figure 2-2. Cumulative peaking capacity that is never needed due to storage, and could in 
theory be decommissioned.  Storage technology is AHI battery, 90% round trip efficiency, 
20-hour duration   
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Table 2-6. Consumer savings due to storage.  Energy savings are savings in the wholesale 
day-ahead energy market.  Capacity savings are the avoided capacity payments to plants 
that storage has replaced, valued at the 2010/2011 capacity auction price of $175/MW-day. 
Ranges represent lower and upper bounds. 2010 dollars 

 Storage Capacity [GW] 
Savings [$B] 1 10 20 40 80 
Sodium sulfur batteries    
Energy  0.2 1.2 – 1.7 1.6 – 2.2 1.7 – 2.0 1.7 – 1.9 
Capacity 0.0 – 0.1 0.7 – 0.8 1.5 – 1.7 1.6 – 1.8 1.7 – 1.9 
Total 0.2 – 0.3 1.9 – 2.5 3.1 – 3.9 3.3 – 3.8 3.4 – 3.8 
Aqueous hybrid ion batteries   
Energy  0.1 – 0.4 0.8 – 1.7 1.4 – 2.0 1.9 – 2.0 1.8 – 2.0 
Capacity -0.1 – 0.0 0.5 – 0.8 1.0 – 1.8 1.7 – 2.0 1.7 – 2.0 
Total 0.0 – 0.4 1.3 – 2.5 2.4 – 3.8 3.6 – 4.0 3.5 – 4.0 
Pumped hydropower 
Energy 0.1 – 0.4 0.7 – 1.4 1.2 – 2.0 1.5 – 1.9 1.6 – 1.7 
Capacity -0.1 – 0.0 0.5 – 0.8 0.9 – 1.7 1.6 – 1.9 1.6 – 1.9  
Total 0.0 – 0.4 1.2 – 2.6 2.1 – 3.7 3.1 – 3.8 3.2 – 3.8 

 

We next calculated net consumer benefit, defined as total consumer benefit minus annualized 

storage costs.  Figure 2-3 shows that AHI batteries can provide positive net consumer benefits 

depending on parameter assumptions, while the net benefit of SS batteries is always negative.  Under 

optimistic technical assumptions and operating conditions (slow, high efficiency charging and 

discharging), AHI can provide positive net benefits up to 35 GW of deployment. First movers 

provide large benefits, as they displace the most inefficient and expensive peaking generators.  The 

net benefits of AHI are similar to that of traditional pumped hydropower.  Differences in capital 

costs are the primary driver of the variation in net consumer benefit (Section 5.2). 
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Figure 2-3. Net annual consumer benefit (total consumer benefit – annualized storage cost).  
(a): sodium sulfur (SS) batteries; (b): aqueous hybrid ion (AHI) batteries and pumped 
hydropower. Net benefits vary depending on assumptions of storage parameters and cost.  
Net benefits of AHI batteries similar to that of conventional pumped hydro.  2010 dollars 

2.3.2 Effect on generators 

By reducing prices on the wholesale energy market and reducing reliance on peakers, storage 

reduces generator revenues.  As shown in Table 2-7, generation from peaking plants (combustion 

turbine, oil/gas steam, and combined cycle) falls as they are displaced by storage.  Output from coal 

plants increases as they charge storage at off-peak hours.  Revenues to all generators on the 

wholesale energy market fall as storage capacity increases; total revenues fall by more than 10% in 

high storage cases.  In addition, generator revenues on the capacity market are reduced by an 

amount equal to the consumer savings on the capacity market (Table 2-6).  Our findings agree with 

other research that shows the increases in consumer welfare due to storage come with significant 

reductions in producer surplus accruing to generators [7, 30]. 
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Table 2-7. Generator output and energy market revenue, business as usual (BAU) scenario 
and a scenario with 80 GW of aqueous hybrid ion (AHI) storage (90% round trip efficiency, 
20-hour duration).  Revenues in 2010 dollars 

 
Generation [TWh]  Energy Market Revenues [$M] 

Generator type BAU AHI storage   BAU AHI storage  
Nuclear 260 260   $9,200   $8,950  
Hydropower 8 8   $380   $370  
Coal steam 420 432   $5,350   $4,820  
Natural gas combined cycle 48 42   $650   $20  
Natural gas combustion turbine 4 0   $131   $0  
Oil/gas steam 1 0   $20   $0 

 

2.3.3 Storage profits 

Figure 2-4 shows that storage revenues peak with considerably less than 20 GW of storage 

deployed; as more storage is deployed, less arbitrage opportunities are available, and revenues drop.   

If used only for arbitrage, net annual profits are negative, regardless of the technology used or 

capacity deployed. For both AHI and SS batteries, debt service on capital costs greatly exceeds 

wholesale energy market revenues (Table 2-8). 

 
Figure 2-4. Annual wholesale market arbitrage revenues to storage operators.  Revenues vary 
depending on upper bound (UB) or lower bound (LB) assumptions of storage parameters 
and cost.  Revenues peak with less than 20 GW of storage deployed.  2010 dollars 
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Table 2-8. Annual net profits of storage technologies to storage operator.  Ranges represent 
lower and upper bounds.  2010 dollars 

Capacity 
[GW] 

AHI battery 
profit [$B] 

SS battery 
profit [$B] 

PHS 
profit [$B] 

1 [   0,   0] [  0,    -1] [   0,   0] 
10 [  -5, -1] [ -4,    -3] [  -2, -1] 
80 [-40, -8] [-28, -20]  [-20, -7] 

 

2.3.4 Overall social welfare 

Adding storage to the system increases overall social welfare on the wholesale energy market.  

Total energy market savings monotonically increase as more storage is deployed (Figure 2-5).  Total 

market savings are much smaller than improvements in consumer welfare (Table 2-6), as the 

majority of consumer welfare benefits are transfers from generators.  Although storage increases 

total social welfare, the annualized capital costs of storage exceed these savings (Table 2-9). 

 
Figure 2-5. Total savings on the wholesale energy market due to storage.  2010 dollars 
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Table 2-9. Change in overall social welfare on the energy market minus annualized storage 
capital cost.  Ranges represent lower and upper bounds.  2010 dollars  

Capacity [GW] AHI battery [$B] PHS [$B] SS battery [$B] 
1  [   0,   0]  [   0,   0]  [  0,     0] 
10  [  -5, -1]  [  -4,   0]  [ -4,    -3] 
20  [-10, -2]  [  -9, -2]  [ -8,    -5] 
40  [-20, -4]  [-17, -3]  [-15, -10] 
80  [-40, -8]  [-35, -7]  [-30, -21] 

 

2.3.5 Effect on emissions 

Storage modestly increases emissions (Table 2-10).  This is for two reasons.  First, storage is 

primarily charged off-peak by coal plants, which have higher emissions than the peaking gas plants 

they replace.  Second, additional electricity must be generated to compensate for the losses inherent 

in storing electricity.  However, the effect of storage on emissions will depend on underlying market 

dynamics (see section 5). 

Table 2-10. Annual emission increases and associated damages due to storage in the 2010 
PJM wholesale energy market.  Storage technology is aqueous hybrid ion (AHI) batteries, 
90% round trip efficiency, 20-hour duration. 

AHI battery 
capacity [GW] 

Change in Emissions [MT] (%) 
CO2 NOX SO2 

1 2,400,000 
(0.5%) 

2,500 
(0.6%) 

16,600 
(0.9%) 

    

10 5,400,000 
(1.2%) 

4,700 
(1.2%) 

58,000 
(3.0%) 

    

80 6,600,000 
(1.5%) 

5,600 
(1.4%) 

71,800 
(3.7%) 
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2.4 Sensitivity Analysis 

We tested the robustness of our results with four sensitivity analyses: 

• Sensitivity of consumer benefits to storage round trip efficiency and duration 

• Sensitivity of net consumer benefits to the capital cost and lifespan of storage 

• Sensitivity of consumer benefits to capacity market prices 

• Sensitivity of consumer benefit and emissions to fuel prices and the amount of wind 

deployed. 

2.4.1 Sensitivity to round trip efficiency and duration parameters 

To test for sensitivity to RTE and duration, we performed a one-way sensitivity analysis.  We 

varied the RTE of a generic storage device from 64%-100% and duration from 4-20 hours.  These 

ranges capture the majority of storage technologies being discussed today. Figure 2-6 shows that 

increasing storage RTE increases total consumer savings on the wholesale energy and capacity 

markets.  Increasing duration does not increase savings, but allows a given level of savings to be 

reached with less storage capacity.  

 
Figure 2-6. Sensitivity of total annual consumer savings to storage round trip efficiency 
(RTE) and duration. 2010 dollars 
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2.4.2 Sensitivity to capital costs and lifespan 

We next tested for sensitivity to the capital cost and lifespan of storage technologies.  We fixed 

the capital cost at $300/kWh for both SS and AHI battery technologies and analyzed the resulting 

net consumer benefit.  Because the lifespan of SS batteries varies from 14 – 40 years depending on 

the amount deployed, we examined sensitivity of net consumer benefit to SS battery lifespan by 

setting lifespan to 40 years, the same as AHI batteries.  Variations in net consumer benefit are solely 

due to differences in technology parameters (efficiency and duration). Figure 2-7 shows that SS 

batteries become competitive with AHI batteries if equal capital costs are assumed.  Improving SS 

battery lifespan to 40 years increases net consumer benefit by up to 20% for deployments less than 

20 GW.  Because the RTE and duration parameters of AHI vary greatly depending on how the 

battery is operated, the range of net consumer benefits is wider than SS.  

 
Figure 2-7. Net annual consumer benefit for sodium sulfur (SS) and aqueous hybrid ion 
(AHI) batteries, assuming a capital cost of $300/kWh for both technologies. Dashed lines 
are SS net annual consumer benefits, assuming 40-year lifespan.  Net benefits vary between 
upper bound (UB) and lower bound (LB) depending on assumptions of storage parameters.  
2010 dollars 
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2.4.3 Sensitivity to capacity market prices 

Capacity prices in PJM have varied significantly since capacity auctions were established in 2007.  

Prices have varied from a high of $174/MWh in the 2010/2011 auction to a low of $16/MWh in 

the 2012/2013 auction [24].  The value of storage to consumers is highly dependent on capacity 

market prices, as half of the total consumer benefits of storage are due to reductions in capacity 

market expenditures (Table 2-6).  Reducing the modeled capacity market price from $174/MWh to 

$16/MWh would reduce modeled total consumer benefits by half.   

Future capacity prices are highly uncertain, and historic prices show no clear trend.  

Environmental regulations such as the Clean Air Interstate Rule are expected to put upward 

pressure on capacity prices; PJM projects 20 GW of coal capacity will be forced to retire due 

environmental regulations [31].  However, the rapid growth of demand response (DR) will put 

downward pressure on capacity prices.  DR’s participation in the PJM capacity market has expanded 

from 700 MW in 2008/2009 to 19 GW in 2015/2016 [24].  How these and other forces will affect 

capacity prices in the coming years will significantly affect the consumer benefits of storage. 

2.4.4 Sensitivity to fuel price 

The above analysis uses 2010 fuel prices.  However, fuel prices have changed dramatically since 

2010 due to the expansion of the shale gas industry.  In particular, the average delivered price of 

natural gas to PJM generators has dropped by roughly 30% (as of late 2012) [32].  To test the 

robustness of our results, we ran a simulation with fuel prices from August 2011 – July 2012.   All 

other variables were left unchanged. 

Without storage, changing from 2010 to 2011/2012 fuel prices reduces total consumer 

expenditures in the energy market from $35B to $30B.  The new fuel prices also cause the generator 
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dispatch order to change.  Coal generation decreases by 14%; this drop is filled primarily by 

combined cycle gas generation (our model results match the observed switch from coal to gas well).   

Storage provides greater benefits under the 2011/2012 fuel price scenario; on average, benefits 

are 10% higher.  The increased benefits are due to higher savings in the wholesale energy market; 

capacity savings are largely unchanged.  Based on this analysis, the conclusion that storage provides 

substantial benefits to consumers is robust to variations in fuel price, including current low natural 

gas prices. 

Without storage, emissions of CO2, NOX, and SO2 are lower in the 2011/2012 fuel price 

scenario than the 2010 scenario due to the decrease in coal generation.  Adding storage increases 

emissions of CO2 and SO2 in both scenarios, although increases are smaller in the 20111/2012 fuel 

price scenario (Table 2-11).  Storage increases emissions of NOX in the 2010 scenario, but does not 

change NOX emissions in the 2011/2012 fuel price scenario.  Adding storage to the 2011/2012 fuel 

price scenario increases emissions from coal generators, which are largely offset by decreased 

emissions from peaking generators.  NOX emissions are unchanged, as reductions from peaking 

plants are as large as increases from coal plants. 

2.4.5 Sensitivity to amount of wind deployed 

Finally, we investigated how the benefit of storage changes in a scenario with high penetrations 

of wind.  Over the next decade, PJM anticipates a large expansion of wind in order to meet state 

renewable portfolio standards.  We investigated the benefits of deploying 40 GW of 90% RTE, 20-

hour duration AHI storage in two scenarios: the base 2010 scenario (1.5% of energy supplied by 

wind), and a scenario with 20% of energy from wind.  For the 20% wind scenario, we used the data 

from the Eastern Wind Integration and Transmission Study [33] to identify hourly generation from 
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likely wind sites in PJM member states.  We then added sites in order of decreasing capacity factor 

until total wind generation was 20% of load.   

In the base scenario, storage induces $3.2 billion in consumer benefits; in the 20% wind 

scenario, total benefits increase ~10% to $3.6 billion.  This increase is due to reductions in wind 

curtailment.  Without storage, 5% of wind energy is curtailed; with storage, no wind is curtailed.  

Therefore, we conclude that the benefits of storage are unlikely to increase dramatically in high wind 

scenarios. 

Without storage, emissions are significantly lower in the 20% wind scenario than the base 

scenario.  Adding storage in the 20% wind scenario increases CO2 and SO2 emissions by less than 

1%; NOX emissions slightly decrease (Table 2-11).  The net CO2 emission increase is due to a 2% 

increase in CO2 emissions by coal plants, which is largely offset by a 93% reduction in CO2 

emissions from peaking combustion turbine and oil/gas steam plants.  Although researchers have 

shown that hybrid wind/storage systems can provide low emission baseload power [34], our 

findings agree with studies that show adding storage into high-wind systems can increase emissions. 

Tuohy and O’Malley find that storage increases the level of carbon emissions at wind penetrations 

less than 60% in the Irish system [26, 27].  Sioshansi finds that adding large amounts of storage (10 

GW) to the ERCOT system in the presence of high wind (10 GW) increases emissions of CO2, 

NOX, and SO2, assuming a competitive market [35]. 

Table 2-11. Emissions of CO2, NOX, and SO2 in the business as usual (BAU) scenario - 2010 
fuel prices, a scenario with 2011/2012 fuel prices, and a scenario with 20% of energy from 
wind. Storage is 40 GW aqueous hybrid ion (AHI) batteries (90% RTE, 20-hr duration) 

 BAU  
[Million tons] 

 2011/2012 fuel prices 
[Million tons] 

 20% wind  
[Million tons] 

 CO2 NOX SO2  CO2 NOX SO2  CO2 NOX SO2 
No storage 466 0.43 2.09  432 0.36 1.71  337 0.31 1.46 
Storage 473 0.44 2.16  434 0.36 1.73  338 0.30 1.46 
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2.5 Discussion 

Although storage increases overall social welfare on the wholesale energy market, the annualized 

capital cost of storage exceeds these benefits.  However, storage creates large benefits for 

consumers, ~10% of the value transacted in PJM’s day-ahead energy market.  These benefits are 

primarily transfers from generators on the wholesale and energy markets.  Net consumer benefits, or 

total benefit on wholesale energy and capacity markets minus annualized capital costs, are positive 

under optimistic technical and operating assumptions for AHI batteries but negative for SS batteries.  

The positive benefits of AHI batteries could be distributed in three ways: they could be given to 

consumers as reduced energy costs, to generators to compensate for revenue losses, or to storage 

operators as profit.  Even if all net benefits are given to generators, they are insufficient to 

completely compensate for lost revenues.   

Due to the high capital costs, operating storage on wholesale markets is unprofitable for storage 

operators if used solely for arbitrage.  Figure 2-8 illustrates that under current market design, storage 

revenues are much smaller than total welfare increases, and therefore the socially optimal amount of 

storage is not achieved.  Other researchers have noted the limitations of existing market designs in 

signaling the value of energy storage [36].  
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Figure 2-8. Percentage of the total social welfare benefits captured by storage operators.  
Storage operators capture only a small fraction of the benefits they create at high levels of 
deployment.  Results vary between upper bound (UB) and lower bound (LB) depending on 
assumptions of storage parameters.   

Sioshansi has shown that consumer or generator ownership of storage is not welfare maximizing 

[37]. Consumers overuse storage, as they neglect the producer surplus losses the storage creates.  

Generators underuse storage, as they seek to minimize producer surplus losses.  Merchant operated 

storage does result in social welfare maximization, assuming perfectly competitive storage and 

generation.  We propose four strategies that might be used in various combinations to encourage 

storage deployment closer to the societally optimal level by merchant operators.  

First, regional transmission operators (RTOs) should ensure that storage assets are eligible for 

capacity market payments, where such markets exist. 

Second, RTOs could establish rules that allow profit maximizing behavior.  For example, storage 

operators could be permitted to bid into the market the prices at which they are willing to charge or 

discharge. Our analysis assumes RTOs will dispatch storage in order to minimize total social costs, 

as they currently dispatch generators.  

Third, RTOs or governments could directly subsidize storage operators.  This subsidy would be 

based on the overall social welfare benefits that storage provides.   
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Finally, system operators could attempt to incentivize storage by removing all price caps and 

allowing for high price spikes.  During these few hours of very high prices, some argue that storage 

could possibly recoup enough money to be profitable [38]. 

2.6 Conclusion 

Storage increases overall social welfare on the wholesale energy market.  However, the 

annualized capital cost of storage exceeds these benefits.  Storage provides substantial benefits to 

consumers in two ways: by reducing prices in the wholesale energy market, and by reducing the need 

for peaking generators.  20 GW of storage would reduce consumer expenditures by more than $2.5 

billion annually and allow 30 GW of peaking capacity to be retired.  However, storage reduces the 

profitability of all generators.  Generation from peaking gas and oil plants decreases, while 

generation from coal plants increases.  Storage modestly increases system emissions of CO2 and 

other pollutants in the 2010 PJM market.  No current storage technologies are profitable if solely 

used for arbitrage on the PJM day-ahead market.   

The current market design results in merchant storage operators receiving only a small fraction 

of the total social welfare they create at high levels of deployment.  Four strategies might be used by 

PJM and the public utilities commissions and governments in its territory to encourage storage 

deployment closer to the socially optimal level: (1) ensure storage is eligible for capacity payments; 

(2) establish rules that allow profit-maximizing behavior for storage; (3) directly subsidize storage for 

the overall social welfare benefits it provides; and (4) remove all price caps and allow for high price 

spikes if this is shown to be effective. 

Future research could improve the accuracy with which storage is modeled in the unit 

commitment model framework by (1) modeling transmission congestion within each of the 5 buses; 
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(2) considering wind uncertainty by using a stochastic unit commitment model; and (3) co-

optimizing the energy and reserve markets. 
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A Appendix: Detailed model description 

Our analysis used a five-bus model of PJM.  Each of the five buses consists of one or more of 

the 19 PJM zones (Figure A-1). When defining buses, more data are now available than were 

available to earlier researchers, so we were able to incorporate additional granularity.  The London 

Economics International (LEI) analysis [1] includes three transmission interfaces (Western, Central, 

and Eastern), and five regions.  PHORUM includes three additional transmission interfaces: 

Bedington – Black Oak, AEP-DOM and AP South. Figure A-2 shows all PJM transmission 

interfaces.  We added one more bus than the LEI study, bus 5 (Dominion/VA), but did not model 

Delmarva Power and Light (DPL) as a separate region.  Finally, we did not divide the METED zone 

across multiple regions, as did LEI.  DUK (Duke Energy) zone was integrated into PJM Jan 1, 2012 

and was not included in the analysis. 

We made three modifications when dividing the PJM transmission interfaces into PHORUM’s 

transmission lines: (1) the Western Interface is made up of four 500kV lines, each connecting 

different buses.  Therefore, we divided the Interface’s capacity into quarters and apportion the 

capacity to lines as appropriate; (2) the 500X(5004+5005) Interface is made up of two 500kV lines 

that are contained within the Western Interface.  Therefore, we did not model the 500X(5004+5005) 

interface as it is included in the Western Interface; and (3) we combined the Bedington-Black Oak, 

AP South, and AEP-DOM Interfaces into a single line between buses 1 and 5.  We made the 

simplifying assumption that the capacity of each line is independent of how much current it carries. 

Table A-1. Assignment of PJM zones to PHORUM buses and PJM interfaces to PHORUM 

transmission lines.  Table A-1 summarizes the assignment of PJM zones and interfaces to 

PHORUM buses and transmission lines.  2010 LMP data shows that within our defined buses, zonal 

LMPs are highly correlated, supporting our assumptions of bus locations and unconstrained 
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transmission within each bus (Figure A-3).  Aggregating PJM into five transmission buses will 

obscure the high arbitrage potential, and therefore storage revenue, at a few localized nodes.  

However, we assume large deployments of storage will saturate these localized opportunities and act 

to equalize LMPs at all nodes within the bus. 

 
Figure A-1. The PJM Interconnection and its constituent zones [2] 

 
Figure A-2. PJM 500kV transmission lines (white lines) and transmission interfaces (red 
lines) [3, 4].  Most interfaces contain multiple 500kV lines 
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Table A-1. Assignment of PJM zones to PHORUM buses and PJM interfaces to PHORUM 
transmission lines. 

Bus PJM Zones 
Bus 1 AEP, APS, COMED, DAY, DUQ, PENELEC, ATSI 
Bus 2 BGE, PEPCO 
Bus 3 METED, PPL 
Bus 4 JCPL, PECO, PSEG, AECO, DPL, RECO 
Bus 5 DOM 
Line PJM Interface 
Line 1 ¼ of Western Interface capacity 
Line 2  ½ of Western Interface capacity 
Line 5 ¼ of Western Interface capacity 
Line 3 Bedington-Black Oak, AP South, AEP-DOM 
Line 4 Central Interface 
Line 6 Eastern Interface 
Not modeled 500X(5004+5005) 

 

  
Figure A-3. Correlation coefficients between zones for 2010 hourly day-ahead LMPs.  High 
correlation within a bus supports the model’s simplifying assumption that transmission is 
unconstrained within the bus 

PJM operates several electricity markets, the largest of which are the day-ahead (DAH) and real-

time energy markets.  We modeled the DAH market instead of the real-time market for two reasons.  

First, the DAH market is larger, with generally lower and less volatile prices, serving as a 

conservative lower bound on storage profits [5].  Secondly, prices in the real-time market are highly 
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influenced by factors outside the capability of PHORUM, such as sudden changes in the weather, 

forced generator outages, transmission outages, and strategic behavior.  According to PJM, “The 

price difference between the Real-Time and the Day-Ahead Energy Markets results, in part, from 

volatility in the Real-Time Energy Market that is difficult, or impossible, to anticipate in the Day-

Ahead Energy Market” [5].  We assumed all available generators participate in the DAH market.  In 

reality, 2010 PJM DAH load was met by a combination of bilateral contracts (4.9%), self-supply 

from the load-serving entity’s own generation (75.8%), and spot purchases on the DAH market 

(19.3%) [5].  This assumption is equivalent to assuming that bilateral contracts and self-supply do 

not cause out-of-merit-order dispatch. 

We ran 365 optimizations, each minimizing costs over 48 hours.  Each 48-hour optimization 

was initialized with four variables from the last hour of the previous day’s optimization: 

• The on/off state of each generator 

• How much longer each generator must remain on/off 

• The power output of each generator 

• The state of charge for each storage unit 

Figure A-4 illustrates how cross-day variables are handled by PHORUM.  In addition, the state 

of charge of each storage device at hour 48 is constrained to be the same as the each 48-hour 

optimization constraints.  
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Figure A-4. Illustration of how PHORUM handles day boundaries.  Each optimization runs 
for a full 48 hours, but only the first 24 hours of results are retained.  Variables are passed 
from the 24th hour of the first optimization to hour 0 of the second. 

Table A-2 details each data element used in PHORUM.  We made several modifications to the 

generator data in order to improve accuracy.  First, for generators in the PJM EIA-411 generator 

database but not in the NEEDS database, we assumed values for NEEDS and eGRID data 

elements.  These assumptions are based on values for similar plants.  Similarly, the PJM database 

occasionally combines two generators that NEEDS calls out separately.  In these cases, we 

combined the generators as in the PJM database and assumed values based on the constituent 

generators.  We assumed generators have linear heat rates, variable O&M costs, ramp rates, and 

emission factors over their operating range.  Better data could further improve accuracy.  In 

particular, better information on when generators are offline for maintenance, more detailed 

transmission constraints, and more refined buses would improve the model.   
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Table A-2. PHORUM data sources 

Data Element Source 
Generator Data  
Plant type [6] 
State & county1 [6] 
Heat Rate [Btu/kWh] [6] 
Fuel [6] 
Capacity [MW] (Summer & winter)2 [7] 
Variable O&M Cost [$/MWh]3 [8] 
Monthly Fuel Price: Jan – Dec 2010 [$/MMBtu]4 [9, 10] 
Ramp Rate [MW/hr]5 [11] 
Min uptime & downtime [hrs]6 [12] 
Startup cost adder [$]7 [13, 14] 
Minimum Generation [% of maximum generation] [15] 
Monthly Equivalent Availability Factor: Jan – Dec 20108 [16, 17] 
Stack Height [ft] [18] 
CO2 emission rate [lb/MMBtu] [19] 
NOx & SO2 emission rates [lb/MWh] [19] 
Hourly Data  
Load10 [20] 
Imports/Exports [MW]11 [21] 
Zonal Locational Marginal Prices (LMPs) [$/MWh] [22] 
Transmission Capacity [MW] [23] 
Wind Generation [MW]12 [24] 
Reserve Requirement [MW]13 [25] 

1. Plants are assigned to zones by state and county codes. 

2. Generator capacities listed for different databases (PJM EIA-411, eGRID, and NEEDS) vary widely.  
We use data listed in the PJM EIA 4-11 report.  Hydro generator capacities are derated by their annual 
capacity factor. 

3. Variable O&M costs are 2010 values.  LFG and MSW costs are based on [27]. 

4. Fuel prices are aggregated by state and by month for each fuel.  This aggregation captures both 
location and seasonal variation in fuel price.  Prices are primarily based on the EIA’s Electric Power 
Monthly data for coal, petroleum liquids, and natural gas delivered price.  These databases intentionally 
exclude some entries in order to maintain anonymity for data providers.  Excluded prices are assumed to 
be the Census Division average, with the exception of West Virginia coal prices, which are derived from 
the EIA-423 reporting.  Prices are assumed to be the same for all types of coal (BIT, SUB, waste coal, 
etc) and liquid petroleum (DFO, RFO).  Fuel price for LFG, MSW, and NUC are assumed to be zero. 

5. Ramp rates are derived from the GADS database [11].  Ramp rates are assumed to be equal for up-
ramping and down-ramping.  The GADS data was used to identify how the ramp rate of each plant type 
was correlated to the plant’s capacity.  We used an OLS regression of ramp rate against generator 
capacity.  Results are as follows: 
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• Combined cycle: 0.22 MW/h ramp / MW capacity 
• Steam Turbine: 0.14 MW/h ramp / MW capacity 
• Gas Turbine: 0.34 MW/h ramp / MW capacity 
• Combustion Turbine: 0.33 MW/h ramp / MW capacity 

6. Minimum runtime for small (<150MW) coal plants have been adjusted to account for the fact that these 
plants are used within PJM as shoulder plants.  Runtimes for LFG and MSW plants are assumed to be 
equal to combined cycle plants. 

7. Based on InterTek and CAISO data, startup costs are assumed at $25/MW for combustion turbine, 
$50/MW for combined cycle, $100/MW for coal, and $500/MW for nuclear 

8. PJM provided monthly 2010 EAF data, aggregated by generator type (coal 0-249 MW, coal 250-499 
MW, coal 500+MW, gas CC, and gas CT).  PJM-provided estimates were divided in half to roughly 
account for the effect of monthly averaging.  Nuclear EAF was derived from NRC data, using generators 
in PJM.  EAF for LFG and MSW was assumed to be equal to natural gas combustion turbine plants. 

9. NEI contains data on total pollutant emissions from each generator.  Data was cross-referenced with 
total annual power output numbers from eGRID to find pollutant emission rates in units of tons/MWh. 

10. PJM sums the DAH load for all zones within the MIDATL region (PENELEC, BGE, PEPCO, METED, 
PPL, JCPL, PECO, PSEG, AECO, DPL, and RECO) into one entry.  Therefore, we divide MIDATL load 
into its constituent zones. We do this by analyzing the Real Time load data, which is provided separately 
for all MIDATL zones.  For each MIDATL zone, we find the percentage of MIDATL total its load 
contributes.  We then assume that this percentage is the same for DAH and RT loads.  Finally, we use 
that percentage to find the DAH load for each MIDATL zone. 

11. Imports and export data is provided for each interface.  We assign these interfaces to the appropriate 
zones as follows.  We assume imports and exports do not change based on PJM prices. 

Zone Interfaces 

AEP ALTE, ALTW, CPLW, CWLP, DUK, EKPC, IPL, 
LGEE, MEC, MECS, NIPS, OVEC, TVA, WEC 

PENELEC FE 

PSEG NEPT, NYIS, LIND 

DOM CPLE 

DAY CIN 

 

12. PJM provides hourly wind generation for WEST & MIDATL PJM regions.  All WEST wind generation is 
assigned to bus 1, all MIDATL wind is assigned to bus 3, which is the location of most Mid-Atlantic wind 
capacity [27].  We assume wind generation is must take, and subtract it from load. 

13. For RFC (bus 1), DOM (bus 5) and Mid-Atlantic (buses 2-4), the synchronized reserve requirement is 
the single largest unit.  This is 1300 MW for bus 1, 1170 MW for buses 2-4, and 1170 MW for bus 5.  The 
1170 MW reserve for buses 2-4 is apportioned among the buses based on their loads.  Reserve 
requirements are added to zonal loads. 

 

To investigate the accuracy with which the model dispatches generators, we compared the 

simulated capacity factors of several PJM generators to their actual 2010 capacity factors.  To find 
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the generation and of PJM plants in 2010, we used data from the EPA’s Air Market Program 

Database (AMPD), which tracks generation and emissions from all plants regulated by the Clean Air 

Interstate Rule [28].  Because AMPD tracks generation at the plant level, we summed the power 

generation from all generators at the same plant in our simulation.  In total, we compared the 

generation from 196 plants in PJM. Figure A-5 shows the simulated and actual generation from all 

plants.  The mean error in capacity factor, weighted by plant capacity, was 3.6%.  The root mean 

squared error in capacity factor, weighted by plant capacity, was 15.9%. 

 

Figure A-5. Actual vs simulated 2010 generation for 197 PJM plants 
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Chapter 3: THE EXTERNAL COSTS AND BENEFITS OF WIND 

ENERGY: A CASE STUDY IN THE PJM 

INTERCONNECTION 

 

Abstract 
Large deployments of wind create external costs and benefits that are not fully captured in 

power purchase agreements.  External costs are due to the inherent variability and unpredictability 

of wind power and its negative effects on the local environment.  Reduced greenhouse gases and 

criteria pollutants from fossil plants are external benefits.  We investigate the external costs and 

benefits of wind in the PJM Interconnection for two scenarios: a 2012 scenario with 1.5% of energy 

from wind, and a high wind scenario with 20% of energy from wind.  We find that external costs are 

uncertain but significant when compared to levelized PPA prices.  The expected value of external 

costs is $23/MWh in both scenarios. Pollution reduction benefits are very uncertain but exceed 

external costs with high probability.  For the low wind scenario, expected pollution reduction 

benefits exceed expected external costs by $97/MWh, with a 90% confidence range of $40/MWh - 

$160/MWh.  In the high wind scenario, expected pollution reduction benefits exceed expected 

external costs by $114/MWh, with a 90% confidence range of $50/MWh - $190/MWh.   Pollution 

reduction benefits may decrease in the future if criteria pollutant emission rates from PJM fossil 

plants continue to drop. If EPA cross-state air pollution regulations result in binding emission caps, 

policies that incentivize wind will not reduce criteria pollutant emissions and wind’s external costs 

may exceed its external benefits.  If caps bind at anticipated permit prices, state renewable portfolio 

standards may have less benefits than if they do not bind. 

This paper was coauthored with Jared Moore and Jay Apt.   
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3.1 Introduction 

In the United States, a variety of government subsidies and falling capital costs have resulted in 

nationwide deployments of more than 60 GW of wind capacity since 2002 [1].  However, low 

wholesale electricity prices, driven by falling demand and the expansion of domestic gas production, 

have eroded support for wind subsidies.  The federal production tax credit expired at the end of 

2013 [2] and several state legislatures have considered repealing or limiting state renewable portfolio 

standards [3].  This debate is underpinned by the following question: are policies incentivizing wind 

justified?  

Wind developers typically sign long-term power purchase agreements (PPAs) to sell the energy 

produced by wind projects.  The price of a PPA is determined by the private costs of developing a 

wind project, which include turbine costs, installed project costs, transmission connection costs, 

taxes, subsidies, operations and maintenance costs, and other development costs.  PPA prices are 

also influenced by market characteristics, such as avoided costs on wholesale markets, and do not 

directly represent project costs [1]. 

Levelized PPA prices can be useful for comparing the competitiveness of wind to other 

electricity technologies.  However, levelized PPA prices are not a useful metric for fully accounting 

for the costs and benefits of wind power relative to other electricity technologies [1].  Evaluating 

wind’s effect on overall social welfare requires a full accounting of private costs and the costs and 

benefits that accrue to entities other than the PPA holder.  PPA prices “do not fully reflect 

integration, resource adequacy, or transmission costs” [1].  These external costs, along with wind’s 

environmental costs and benefits, accrue to third parties.  
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Wind power has several characteristics that create external costs and benefits (ECBs) that are 

different than those of traditional power plants.  Managing wind’s inherent variability can require 

operating other plants less efficiently and can require significant grid expansion and reinforcement.  

Wind may be harmful to ecosystems and wildlife, and may be a nuisance to local communities [4 – 

6].  Finally, wind turbines emit no greenhouse gases (GHG) or criteria pollutants (CP), benefiting 

public health and the climate.   

ECBs vary across different systems, and depend on system size, location, and level of wind 

penetration.  Several studies have investigated individual ECB categories [7 – 14].  These studies are 

difficult to compare, as the methods, assumptions, and systems they study vary greatly.  Few studies 

have attempted to comprehensively measure wind’s external costs and benefits.  The OECD 

analyzes the comprehensive costs of wind for several developed countries [7], but focuses on 

national-level costs and excludes the benefits of wind. 

In this paper, we quantify the external costs and benefits of wind power in the PJM 

Interconnection. Our accounting of these costs and benefits is meant to contribute to the evaluation 

of existing and future incentives for wind energy in PJM. We considered the major ECB categories 

discussed in literature (Table 3-1).  We levelized the ECBs so they can be directly compared to 

levelized PPA prices. We analyzed average expected ECBs for two scenarios: a low wind scenario 

representative of PJM as it was in 2010 with 1.5% of energy from wind, and a high wind scenario 

with 20% of energy from wind. These two scenarios can be viewed as lower and upper bounds of 

wind’s penetration in PJM for the foreseeable future.  ECBs are highly uncertain and cannot be 

calculated with a high level of precision.  Therefore, we did not attempt to find the marginal ECB 

nor the optimal level of wind deployment that satisfies the first order condition.  Rather, our goal 

was to identify if wind’s ECBs are significant, and therefore if policies to incorporate these costs and 

benefits into private decision making are warranted.  Due to this inherent uncertainty, our results are 
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presented as probability density functions.  Accounting for the full range of uncertainty is necessary 

for a robust evaluation of the appropriateness of current and future wind incentives. 

We do not quantify the damages that wind can cause to the local environment and stakeholders.  

Wind can harm biodiversity and ecosystems, cause bird and bat collisions, visual pollution, and noise 

pollution.  We provide a discussion of these issues, but do not quantify them as they are highly 

uncertain and difficult to quantify rigorously. 

The participation of wind on energy and capacity markets will create second-order effects for 

other market participants.  Wind provides energy at very low marginal costs, offsetting more 

expensive generation and lowering energy prices.  Wind also provides equivalent load carrying 

capability, which will affect prices on the capacity market.  We do not quantify these effects in this 

analysis.  Doing so would require a detailed analysis of the interplay between energy and capacity 

markets, which is beyond the scope of this paper.  The Methods section contains a more thorough 

discussion of this topic. 

Table 3-1. Definitions of External Cost and Benefit (ECB) categories quantified in this 
analysis  

Cost and benefit 
categories 

Definition 

External costs  

Operational costs The cost of ensuring stable grid operations, distributed across different 
markets (unit commitment, load following, regulation, and reserves) 

Grid reinforcement and 
expansion  

The cost of expanding and reinforcing the grid to support distant and 
variable wind plants 

External benefits  

Greenhouse gas 
reduction 

The societal benefit of reducing CO2 and other greenhouse gas pollutants 
by displacing fossil-fueled generation with wind 

Criteria pollutant 
reduction 

The societal benefit of reducing criteria pollutant emissions (NOX, SO2, 
particulate matter) that harm human health and the environment, by 
displacing fossil-fueled generation with wind 

Local environmental 
damages 

The harm to biodiversity and local stakeholders from wind farm 
development.  This includes harm to ecosystems such as bird and bat 
collisions, visual pollution, and noise pollution. 
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3.2 Methods 

We investigated the external costs and benefits of wind in the PJM Interconnection.  We 

separately analyzed the six categories most discussed in literature (Table 1).  We analyzed these 

categories for PJM under a low wind scenario with 1.5% of energy from wind, as it was in 2010, and 

a high wind scenario with 20% of energy from wind, as is possible under the renewable portfolio 

standards of PJM member states [2]. 

Because estimates of each ECB category are uncertain, we treated wind’s ECBs probabilistically 

with Monte Carlo simulation [15]. For each category, we estimated a lower bound, upper bound, and 

mode for triangular distributions in the low wind and high wind scenarios.  We then used Monte 

Carlo simulation to calculate the probability density function of total external costs and external 

benefits.  

Our estimates for each category are based on existing literature and our internal modeling using 

a unit commitment and economic dispatch model (UCED) of the PJM Interconnection.  ECB 

estimates are highly dependent on the makeup of the electricity grid, generator technologies, location 

and quality of wind resources, and fuel costs. Most importantly, estimates vary due to differences in 

methods among studies.  By combining prior research and the present modeling with multivariate 

Monte Carlo analysis, we investigated a large range of possible values for each ECB category. 

Our UCED, the PHORUM model, uses mixed integer linear optimization to find the least-cost 

combination of generators to meet load at each hour of the year [16].  The optimization considers 

each plant’s fuel costs and variable operations and maintenance costs.  PHORUM also tracks 

emissions from each plant.  PHORUM uses 2010 data to simulate PJM’s day-ahead energy market.  

We updated the emission rates of CO2, NOX, and SO2 for each plant to 2012 levels (see Pollution 

reduction benefits section).  We used PHORUM to estimate operational costs and pollution 
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reductions because we found no other study or model that allowed us to simulate system-level costs 

and emissions at different levels of wind penetration in PJM.  The high wind scenario, with 20% of 

energy from wind, used data from the Eastern Wind Integration and Transmission Study (EWITS) 

to characterize likely locations for new wind plants in PJM states [8].  

3.2.1 Operational costs 

Operational costs are the costs of maintaining grid stability by continuously balancing total 

generation with total load, given the variability and unpredictability of renewable energy. Operational 

costs occur from the next 48 hours to real-time [17]. The net effect of these costs is increased prices 

in markets run by the independent system operator (ISO), including the energy market, regulation 

market, and reserve markets. Compensating for wind variability requires ramping other generators in 

the system, which in turn can cause generators to operate inefficiently and increase the frequency of 

generator cycling. The variability of wind also leads to forecasting errors that increase reserve 

requirements and, when realized, may force system operators to use fast-ramping but inefficient 

generation instead of more cost-effective generators. Day-ahead wind forecast errors are typically 

8% - 14% (RMS error) [18]. 

Calculating increases in operational costs requires both a statistical model of wind generation 

and a model of the electricity grid. Wind models use either measured or simulated wind speed data. 

Grid simulations vary in complexity from simple unit commitment models to more sophisticated 

models that capture forecast uncertainty and electrical dynamics of the grid. To isolate the costs of 

wind variability and unpredictability, it is common to use the ‘flat-block’ approach, in which a 

scenario with wind is compared not to a scenario without wind, but rather to a scenario in which the 

wind generation is constant and perfectly known [8]. 
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Figure 3-1 shows operational cost estimates of several published studies [8 – 14] and our 

modeling with PHORUM.  The studies vary in the costs they include, but generally find that unit 

commitment and load following costs are larger than regulation and reserve costs.  The exception is 

Lueken et al. [14], which used historical California regulation market price data instead of simulation 

techniques to estimate operational costs.  The high resulting costs suggest that either simulation 

methods may be biased to under-predict regulation costs, or that the observed California price data 

may be unrepresentative of areas used in simulations.  

The published studies we review are for systems other than PJM.  Our internal modeling with 

PHORUM enabled us to directly assess the effect of wind on the PJM system.  Our findings are 

similar to those of other studies (Figure 3-1).  Increases in operational costs depend on the 

generation technology displaced by wind.  Our simulations show that in the low wind scenario, the 

generation offset by wind in PJM was 77% coal and 20% combined cycle.  For the high wind 

scenario, the generation offset was 91% coal and 4% combined cycle. If gas prices were to fall from 

the 2010 fuel prices used in PHORUM and make combined cycle generation more competitive with 

coal, we expect that wind could be integrated more inexpensively, as the higher ramp rates and 

flexibility of combined cycle plants match well with the variability of wind. 

The low wind scenario operational costs range from $0 - $4.3/MWh, with a mode of 

$1.2/MWh, and high wind scenario costs range from $1.9 - $9.7/MWh, with a mode of $4.0/MWh. 

For both scenarios, bounds were derived from existing literature and mode values from PHORUM 

simulations.   
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Figure 3-1. Estimates of operational integration costs from previous literature and this work 
(2010 dollars). 

3.2.2 Grid reinforcement and expansion costs 

The cost of connecting electricity produced by distant and variable renewables to load is an 

appreciable cost for wind energy.  The allocation of these costs is also subject to extensive debate, 

leading FERC to issue Order No. 1000 [19].  Order No. 1000 requires local transmission providers 

to participate in the regional transmission planning process.  It specifically requires transmission 

providers to devise cost allocation methods that, “…consider transmission needs driven by public 

policy requirements established by state or federal laws or regulations” [19]. 

FERC’s order recognizes that transmission is a large impediment to wind energy development 

and could keep states from realizing renewable portfolio standards [20].  Transmission lines typically 

require far more time to develop than wind projects, and, once developed, there is a “free-rider” 

problem.  Regions benefit from new transmission through eased transmission congestion or 

increased grid reliability by connecting dispatchable generators.  

Fully allocating the costs and benefits of transmission that is necessary to enable wind 

development is beyond the scope of this study.  For purposes of this research, we will follow the 
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allocation method set by PJM in response to FERC Order No. 1000.  PJM has allocated the costs to 

ratepayers for large transmission lines (above 345 kV) [21].   

The Lawrence Berkeley National Laboratory (LBNL) reviewed a sample of 40 transmission 

planning studies from across the country to assess the range of costs allocated to wind for 

transmission [22].  The vast majority of transmission lines in the sample were above 345 kV and the 

majority of these costs would be socialized among ratepayers according to PJM’s new transmission 

allocation cost method [21].  Therefore, we use the LBNL study for the external costs of 

transmission for wind at low penetrations of wind. 

LBNL found that transmission has a median cost of $300/kW of wind capacity. We converted 

these numbers to a levelized cost ($/MWh of wind) assuming a 28% capacity factor for PJM wind 

projects [1] and a fixed charged factor of 15% as assumed by the LBNL authors. A histogram of the 

costs is shown below in Figure 3-2. 

  
Figure 3-2. Histogram of transmission line costs from LBNL [22], assuming a wind 
capacity factor of 28% and fixed charge factor of 15%. 

Transmission costs varied from $0/MWh to $98/MWh with a median of $18/MWh.  Cost 

estimates at the high end are due to projects with transmission oversized for future plant 

development.  Ignoring these projects, we assumed transmission costs range from $0/MWh - 
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$48/MWh with a mode of $16/MWh. The study also examined the case in which costs were not 

allocated to fossil plants on the same transmission line. This made a small difference increasing the 

cost allocated to wind by $30/kW ($2/MWh). We did not include these co-benefits or costs in this 

analysis, but note that they may be appreciable [8, 23]. 

In order to realize 20% penetration of renewable energy, a significant “top-down” expansion of 

the transmission grid may be necessary [8]. Table 3-2 shows capital cost estimates from studies of 

very large transmission expansions across the country in order to incorporate high wind 

penetrations.  Based on these studies, we assumed bounds of $4 - $35/MWh of wind for the high 

wind scenario, with a most likely value of $15/MWh.  Transmission costs for these studies are in the 

range found in the LBNL report, and agree with LBNL’s finding that, “Unit transmission costs of 

wind … do not appear to increase significantly with higher levels of wind addition” [22]. 

Table 3-2. Capital Costs from Various Large Transmission Studies and Calculated Levelized 
Cost, assuming 28% Wind Capacity Factor and 15% Fixed Charge Factor 

Cost per kW of Wind 
[$/kW] 

Levelized Cost Per MWh of 
Wind [$/MWh] 

Study 

150 - 300 9 – 18 LBNL from AEP [22] 
207 13 NREL [8] 
316 19 LBNL from NEMS [22] 
67-367 4 – 22 Holttinen [24] 
350-570 21 – 35 DOE for ERCOT [25] 
- 9 Dobesova et al. [26] 

3.2.3 Resource adequacy 

In this section, we discuss the resource adequacy (capacity) implications of wind.  Wind energy 

provides relatively little capacity during times of peak load, as computed by the metric Equivalent 

Load Carrying Capability (ELCC) [27].  In PJM, wind receives an ELCC rating of 13% [27], meaning 

that 100 MW of nameplate wind capacity, its capacity contribution would be rated at 13 MW. 
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Some researchers have quantified the cost of procuring capacity so wind generators would have 

similar ELCC ratings as dispatchable generators [28].  In this research, we do not consider this point 

of view because we are not comparing wind to generator options.  Here, we are examining the 

externalized costs not included in PPA contracts for wind so that policymakers may make a more 

informed decision about whether or not to implement wind. 

In the sections above, we quantified transmission and ancillary services because wind increases 

the demand for these services and the costs are born by stakeholders other than the PPA holder.  

The addition of wind by itself does not increase the demand for capacity [29].  On the contrary, 

wind increases the supply of capacity, albeit in a relatively small amount.  To first order, the net 

effect of wind is increased energy and capacity supply.  How the cost of energy and capacity 

supplied by wind compares with the cost of energy and capacity it would displace is beyond the 

scope of this research. 

It is worth noting that wind energy may have adverse second order effects on capacity market 

prices because it supplies a disproportionate amount of energy compared to capacity.  Bids in capacity 

markets are driven by fixed costs less profits made in energy markets [30].  The addition of wind 

undercuts the profits of fossil generators in energy markets and causes them to increase their bids in 

capacity markets.  However, these changes affect the revenue source (i.e. energy or capacity markets) 

for producers and not the overall social costs of capacity. 

3.2.4 Curtailment costs 

Curtailment occurs when wind plants intentionally reduce power output due to transmission 

constraints or market conditions.  Wind curtailment has been reported for only six months in PJM 

and has been insignificant [1].  Curtailment costs could become significant at higher penetrations of 

wind as they were in ERCOT when 17% of wind energy was curtailed in 2009.  Assuming a large 
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expansion of the transmission grid necessary to support 20% wind, EWITS estimated that 

curtailments would range from 3.6% to 10% [8].   

Some PPA contracts compensate wind generators for curtailed wind via make-whole payments 

to wind generators, although rules vary by region [31].  We did not include curtailment payments 

here as an ECB, as reduced capacity factors due to weak wind resources, curtailment, or any other 

reason should not be included in the PPA.  Sustained compensation for curtailment would not 

incentivize wind developers to develop in areas that are most cost effective per unit of electricity 

actually delivered to the grid.  This is the precedent set for fossil fuel plants whose compensation is 

based on delivered electricity or delivered capacity. 

3.2.5 Local environmental damages 

Wind energy development has environmental costs that include fragmentation of local 

ecosystems, bird and bat collisions, noise pollution, and visual pollution.  Developers may indirectly 

internalize mitigation costs for some of these damages through PPAs.  For example, local 

landowners are compensated through lease payments for tolerating visual and noise pollution on 

their property.  Ecological damages may be quantified through mitigation costs for habitat 

destruction.  In California, developers pay to set aside some amount of land per acre disturbed based 

on the ecological sensitivity of the land affected.  However, “no obvious compensation ratio will 

offset bird and bat collisions with wind turbines” [32].  Therefore, California advises developers to 

“consult with the California Department of Fish and Game (CDFG), U.S. Fish and Wildlife Service 

(USFWS), and species experts in the development of site-‐specific ratios and fees to use in 

establishing compensation formulae” [32].  

Social costs such as visual and noise pollution and wildlife effects are real costs of wind 

power.  However, because these damages are site specific, may be internalized in PPAs, and 
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have “no obvious compensation” method, we omitted these damages in our quantifications for 

ECBs. 

3.2.6 Pollution reduction benefits 

A primary benefit of wind energy is pollution reduction. Because wind has very low short-run 

marginal costs, it is dispatched before more expensive generators. If wind displaces fossil-fueled 

generators, it reduces net grid emissions.  We assume that the addition of wind will result in a net 

reduction in GHG and criteria pollutants, providing external benefits that can be valued by the 

social damages that would have been caused by these avoided pollutants.  This may not be true if 

emissions are subject to a binding cap; this is not currently the case in PJM, and is unlikely to be in 

coming years (see Results & Discussion section below).  

Emission reductions are typically given as pounds of emissions avoided per MWh of electricity 

produced by wind. We monetized the benefit of pollution reductions with the estimated external 

cost of each pollutant.  We modeled pollution reduction benefits in the low wind and high wind 

scenarios as triangular distributions. We used PHORUM to simulate how adding wind to PJM in 

2012 would have changed each plant’s annual power generation and emissions.  We find that wind 

offsets predominantly coal generation.  In the low wind scenario, 77% of the generation offset was 

coal; in the high wind scenario, coal was 91% of the generation offset.  If gas prices were to fall 

significantly such that combined cycle plants operated as baseload in place of coal, we would expect 

pollution reduction benefits to decrease. 

CO2 emission reductions are valued with a social cost of carbon (SCC) of $12 - $114/ton, with a 

mode of $39/ton (2010 dollars), the US government’s estimates of SCC for 2015.  The low and 

mode cases are average damage estimates for 5% and 3% discount rates, respectively.  The high 
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damage case is the 95th percentile of damages under a 3% discount rate [33].  These are the bounds 

for our distribution of GHG reduction benefits (Table 3).   

We valued criteria pollutant reductions (NOX, SO2, 2.5 micrometer particulate matter (PM2.5)) 

with the AP2 model, a reduced form, integrated assessment model that links emissions of criteria 

pollutants to human health and environmental damages for all U.S. counties [34].  AP2 uses Monte 

Carlo analysis to provide uncertainty estimates for all damages, accounting for variations in value of 

statistical life, dose-response functions, and the air transport model.  We estimated the uncertainty of 

damages caused by emissions from PJM plants using AP2’s raw Monte Carlo results, which were 

provided by the model’s developer. For each of AP2’s Monte Carlo cases, we found the location-

specific damage rate for each plant, which we summed to find total damages caused by PJM plants.  

We identified the 5th, 50th, and 95th percentiles of the resulting distribution as the bounds for our 

distribution of wind’s criteria pollutant benefits. 

In the high wind scenario, it might be argued that AP2’s baseline emissions are affected enough 

so that the human health effects are no longer accurate. In the case of SO2, there is clear evidence 

that PM2.5 formation is linear, no threshold with reduced SO2 emissions [35].  Large cohort studies 

have found PM2.5 concentration-response functions and mortality are also linear with no threshold 

[36, 37].  Thus, for our high wind case at 20% wind the AP2 model predictions are justified. 

Since 2010, the year for which our base data are available, emissions of CO2 and criteria 

pollutants have dropped significantly in PJM due to lower natural gas prices, the Clean Air Interstate 

Rule (CAIR) [38], and the Mercury and Air Toxics Standard (MATS) [39].  2012 emissions of SO2 

were 42% lower than 2010 levels in PJM states, and NOX and CO2 emissions have both dropped 

15% [40].  To compensate for these reductions, we reduced the simulated 2010 emissions and 

associated damages from each plant by 42% for SO2, 15% for NOX, and 15% for CO2.  This 
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adjustment ignores any changes to the dispatch order that may have occurred since 2010.  We have 

applied this adjustment in the results that follow. 

3.3 Results and discussion 

Table 3-3 summarizes the parameters used in our Monte Carlo analysis of external costs and 

benefits in PJM. External costs are significant when compared to private costs – the average PPA 

price in 2012 was ~$50/MWh in the PJM region [1]. However, external costs are much smaller than 

both GHG emission reduction benefits and criteria pollutant emission reduction benefits (Figure 

3-3). Emission reduction benefits are higher in PJM than other ISOs due to the combination of 

PJM’s reliance on high emitting fossil-fueled generators and high population, resulting in increased 

pollution exposure compared to other ISOs.  

Table 3-3. External cost and benefit parameters used in Monte Carlo simulation  

Cost and benefit 
categories 

Low wind scenario ($/MWh) High wind scenario ($/MWh) 

Lower 
bound Median Upper 

bound 
Lower 
bound Median Upper 

bound 
Operational costs $0 $2 $4 $2 $4 $10 

Grid reinforcement 
and expansion $0 $16 $48 $4 $15 $35 

Greenhouse gas 
reductions $9 $30 $87 $9 $31 $87 

Criteria pollutant 
reductions $15 $57 $164 $19 $70 $198 

* Local environmental damages and curtailment costs were not monetized (see respective sections) 

 

Monte Carlo simulation results are shown in Figure 3-3. Total external costs have an expected 

value of $23/MWh in both the low wind and high wind scenarios.  The monetized external benefits 

from pollution reduction exceed the monetized external costs in both the low and high wind 

scenarios.  For the low wind scenario, expected pollution reduction benefits exceed expected 
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external costs by $97/MWh, with a 90% confidence range of $40/MWh - $160/MWh.  In the high 

wind scenario, expected pollution reduction benefits exceed expected external costs by $114/MWh, 

with a 90% confidence range of $50/MWh - $190/MWh. The probability that monetized external 

costs exceed pollution reduction benefits is less than 1% for both scenarios.  

   
Figure 3-3. Distribution of total external costs and benefits. External costs and benefits are 
larger in the high wind scenario than the low wind scenario.  Total external benefits are 
highly uncertain but have a very high probability of being significantly greater than costs. 

The analysis presented here is of average ECBs under the high and low wind penetration 

scenarios, not ECBs at the margin.  Other research has shown that marginal integration costs 

increase with increasing wind penetrations [1].  Therefore, the marginal external costs are likely 

higher than the average external costs we quantify here.  It is less clear if emission reduction benefits 

increase or decrease on the margin.  This will depend on if higher penetrations of wind increasingly 

offset high-emitting generation or low-emitting generation. Factors such as fuel price, the makeup of 

the generation fleet, and timing of wind generation will determine the marginal benefit of wind. 
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3.3.1 External benefits under a future, cleaner grid 

Over the next decade, several rules by the U.S. Environmental Protection Agency (EPA) are 

expected to force many of PJM’s coal generators to either retire or retrofit with improved emission 

control technologies. Rules include the Clean Air Interstate Rule (CAIR), which capped emissions of 

NOX and SO2 [38]; the Acid Rain Program, which capped emissions of SO2 and has since been 

superseded by CAIR [41]; the Mercury and Air Toxics Standard (MATS), which limits emissions of 

mercury and primary particulate matter [39]; and the forthcoming rules placing CO2 restrictions on 

existing power plants [42].  The EPA has proposed the Cross-State Air Pollution Rule (CSPAR) to 

replace CAIR [43].  The U.S. Supreme Court recently upheld CSPAR, which will likely replace CAIR 

[44].  PJM anticipates as much as 20 GW of coal capacity is at risk of retirement by CAIR/CSAPR 

and MATS, or 25% of total coal capacity. An additional 29 GW of capacity may need at least two 

retrofits to comply with the rules [45]. 

Two future scenarios are possible under the EPA regulations.  The first scenario is that the 

emission caps established by CAIR/CSPAR bind.  In this case, total emissions of NOX and SO2 will 

be fixed at the emissions cap and new additions of wind will not result in a net reduction in 

emissions.  Rather, wind will affect the price that other generators must pay for NOX and SO2 

emission permits.  The EPA anticipates permit prices will be $1,300/ton for SO2 and $2,100/ton for 

NOX in 2015 (2010 dollars) [38]. The anticipated SO2 permit price is much lower than the health 

damages caused by SO2 emissions from PJM plants.  The AP2 model estimates the median damage 

per ton of SO2 across all PJM coal plants has a 90% confidence range of $9,000 - $17,000 per ton, 

depending on location.  If CAIR/CSPAR emission caps bind, significant amounts of wind would 

put downward pressure on permit prices.  The external emission benefit of wind in this scenario 
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would be the reduction in permit prices paid by other generators, due to the addition of wind to the 

system.  This second order effect may be small relative to the EPA’s anticipated permit prices. 

 In states subject to binding CAIR/CSPAR emission caps, additional wind does not reduce 

criteria pollutants.  To simulate this effect, we repeat the analysis above but assume wind provides 

no external criteria pollutant emission benefits.  In this context, wind’s net external benefit is 

reduced to an expected value of $19/MWh for both the high wind and low wind scenarios.  

Expected net benefits are positive because greenhouse gas reduction benefits exceed external costs.  

The probability of net benefits being negative is 18% in the low wind scenario and 16% in the high 

wind scenario.  We therefore conclude that state renewable portfolio standards are still warranted in 

PJM states under binding emission caps, although their benefits will be significantly reduced. 

 

Figure 3-4. Distribution of wind’s net external benefits under a scenario in which criteria 
pollutant emissions are subject to a binding cap, and wind provides no criteria pollutant 
emission reduction benefits.    

The more likely scenario is that emission caps do not bind.   Due to significant wind 

deployment, low natural gas prices, and tightened fossil plant emission regulations under MATS, 

caps are not expected to bind [46].  In this scenario, new additions of wind would reduce criteria 
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pollutant emissions and should be valued by the human health benefits they induce.   These benefits 

will be lower than those in Table 3 if criteria pollutant emission rates from coal and oil plants 

continue to drop as mandated by MATS.  How much emission benefits fall will depend on the 

specifics of which plants retrofit or retire.  Because our modeling shows ~85% of total health 

damages are due to SO2, any reductions in the SO2 emission rates of PJM plants will greatly reduce 

the criteria pollutant benefits of wind.  Halving current PJM SO2 emission rates would result in 

expected pollution reduction benefits exceeding expected external costs by $64/MWh and 

$74/MWh for the low and high wind scenarios, respectively. 

We also note that there is considerable uncertainty in health damages across different models.  

Levy et al. [47] find that median damages per ton across all U.S. coal plants in 1999 had a 90% 

confidence range of $6,000 to $50,000 per ton for SO2; according to AP2 the median damages per 

ton of SO2 are $9,000 - $17,000 per ton. 

Two PJM member states, Maryland and Delaware, are subject to the Regional Greenhouse Gas 

Initiative (RGGI), a regional cap-and-trade program for CO2.  However, CO2 emissions from plants 

in Maryland and Delaware are less than 10% of total PJM CO2 emissions.  Furthermore, the market 

clearing price for CO2 permits has been much lower than the social cost of carbon estimates of the 

US government [48, 34].  Therefore, RGGI is unlikely to have a significant effect on PJM CO2 

emissions. 

3.3.2 Market implications 

The addition of wind to electric power systems creates external costs and benefits that are not 

priced in today’s markets. These external costs and benefits (ECBs) are highly uncertain and vary 

between markets. We find that the external costs of wind are primarily due to grid reinforcement 

and expansion costs and resource adequacy costs.  In PJM, our estimate of the expected value of 
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total external costs is $23/MWh in both the low wind scenario and a high wind scenario with 20% 

of energy from wind. The external benefits wind creates by reducing GHG and criteria pollutant 

emissions are expected to exceed total external costs by $97/MWh for the low wind scenario and 

$114/MWh for the high wind.  These net external benefits are significant compared to wind’s 

traditional levelized cost ~$80/MWh [49].  We therefore recommend that policies be established to 

incorporate the external costs and benefits of wind into the private decision making of wind 

developers. 

Adding wind to PJM is anticipated to reduce criteria pollutant emissions and human health 

damages because existing emission caps are not expected to bind [46].  If caps do not bind but 

criteria pollutant emission rates from coal and oil plants continue to fall below 2012 levels, as 

mandated by MATS, the pollution reduction benefits of wind will be reduced. Under the scenario in 

which CAIR/CSPAR results in binding emission caps at anticipated permit prices, additional wind 

will not reduce criteria pollutant emissions and external costs may exceed external benefits.  If these 

caps bind at anticipated permit prices, state renewable portfolio standards will have less benefits 

than if they do not bind.  
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Chapter 4: THE CLIMATE AND HEALTH EFFECTS OF A USA 

SWITCH FROM COAL TO GAS ELECTRICITY 

GENERATION 

Abstract 

Abundant natural gas at low prices has prompted industry and politicians to welcome gas as a 

‘bridge fuel’ between today’s coal intensive electric power generation and a future low-carbon grid. 

We used existing national datasets and publicly available models to investigate the upper limit to the 

emission benefits of natural gas in the USA power sector.  As a limiting case, we analyzed a switch 

of all USA coal plants to natural gas plants, occurring in 2016.  While the effect on global 

temperatures is small out to 2040, the USA power plant fleet’s contribution could be changed by as 

much as -50% to +5%.   By 2100, switching from coal would reduce global temperatures.  The net 

effect on warming is highly sensitive to the rate of fugitive CH4 emissions and efficiency of 

replacement gas plants.  The human health benefits of such a switch are substantial: SO2 emissions 

are reduced by more than 90%, and NOX emissions by more than 60%.  These reductions would 

reduce total national annual health damages by ~$20 billion annually. The costs of building and 

operating new gas plants likely exceed the health benefits; retrofitting coal plants with emission 

control technology is likely to be more cost effective.  

 

This paper was coauthored with Kelly Klima, W. Michael Griffin, and Jay Apt. 
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4.1 Introduction 

Over the past decade shale gas development has increased USA domestic gas production by 

20% [1]. Abundant gas at low prices has prompted industry and politicians to welcome gas as a 

‘bridge fuel’ between today’s electric power generation system, whose largest single fuel is coal, and a 

future, low-carbon grid. In June 2013 President Obama released the USA Climate Action Plan, 

which included “actions to promote fuel switching from oil and coal to natural gas” [2]. 

Recently, a growing body of research has questioned the ability of domestic natural gas to 

substantially reduce USA greenhouse gas (GHG) emissions. Natural gas power plants typically emit 

50% - 60% less carbon dioxide (CO2) than coal plants due to their higher efficiency and lower 

carbon content of their fuel [3]. However, fugitive emissions from the production and 

transportation of natural gas (methane, CH4), itself a potent GHG, may diminish these climate 

benefits [4 – 9].  

The human health consequences of such a shift have not received as extensive discussion as the 

GHG effects. Compared to coal plants without emission controls, natural gas plants emit less SO2 

and NOX, precursors of particulate matter.  Natural gas also has lower primary emissions PM2.5 and 

PM10 than coal.  Exposure to PM2.5 has been linked to human mortality and morbidity [10 – 14]. 

EPA regulations, including the Clean Air Interstate Rule (CAIR), the Cross-State Air Pollution Rule, 

and Mercury and Air Toxics Standard (MATS), are designed to reduce these emissions [10, 15, 16].  

These regulations have been one cause of a switch from coal to natural gas plants [1, 17].  

We investigated the potential for natural gas to reduce emissions of GHGs and criteria 

pollutants from the USA electric power sector.  To establish an upper bound on the potential 

benefits, we analyzed a switch of all USA coal plants to natural gas or zero-emission plants 
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(renewables or nuclear), occurring in 2016.  We quantified the reductions in total power sector 

emissions that would occur, as well as the associated climate and health benefits.   

Our intent was not to quantify the cost effectiveness of switching to gas or the optimal 

generation fleet.  Rather, the goal was to identify the limits to achieving U.S. pollution reduction 

goals through the use of natural gas power generation.  This study differs from existing studies of 

the climate and health implications of U.S. coal plants [4, 7, 8, 18, 19], in that we attempted to 

quantify the maximum achievable benefit of switching the USA fleet of coal generators to gas or 

zero-emission sources.  We also directly compare the magnitude of the reduction in GHG emissions 

to that of criteria pollutant emissions.   

We used U.S. Department of Energy (DOE) forecasts of emissions and generation as the 

baseline for our analysis.  From this baseline, we replaced all coal plants with either natural gas or 

zero-emission plants, starting in 2016.  We varied the fugitive methane emission rate from 0% - 7%, 

a range that includes estimates from existing literature [9]. Using the Global Temperature Potential 

(GTP), we estimated how switching from coal to gas would affect the power plant fleet’s 

contribution to global temperature until 2040, the last year for which EIA forecasts emissions and 

generation.  The APEEP model [20] was used to compute the health benefits of such a switch.  

4.2 Methods 

4.2.1 Calculation of baseline emissions 

We developed baseline emission scenarios for 2016 – 2040 based on the forecasts from the 

DOE’s Energy Information Agency (EIA) [21].  EIA forecasts installed capacity by plant type; 

electricity generation by fuel type; and total NOX and SO2 emissions from the electric power sector. 

We used the EIA’s Reference scenario as our analysis baseline; we also consider the EIA’s Low Oil 
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and Gas Resource and High Oil and Gas Resource.  Descriptions of each scenario are in Appendix 

B. 

Baseline greenhouse gas emissions 

EIA does not forecast CO2 or CH4 emissions.  We calculated CO2 emissions by multiplying 

EIA’s forecast of total electricity production from each fuel by the 2012 capacity-weighted average 

CO2 emission rate of plants of that fuel type. We used plant-level emission data from the EPA Air 

Market Program Database (AMPD) to identify 2012 CO2 emission rates for plants in 27 eastern 

states regulated by the EPA Clean Air Interstate Rule (CAIR) [22].  These generators made up 70% 

of 2012 CO2 emissions.   

We calculated CH4 emissions as the sum of combustion emissions and fugitive emissions from 

CH4 production and transportation. Combustion CH4 emissions for each fuel type are the capacity-

weighted average CH4 emission rates of plants in the EPA’s Emissions & Generation Resource 

Integrated Database (eGRID), 2009 [3].  We parameterized the rate of fugitive CH4 emissions in a 

range of 0 - 7%, covering estimates from existing literature [9].  We multiplied the fugitive rate by 

forecasts of total gas to calculate total fugitive CH4 emissions.  Total gas consumed was found by 

multiplying EIA’s forecast of natural gas generation [21] by the capacity-weighted heat rate of 

existing gas plants in 2012 [3].  Other fugitive emissions (greenhouse gases, NOX, SO2, PM2.5, PM10) 

from the production and transportation of coal and natural gas did not qualitatively change our 

results and were excluded from the analysis.   

Baseline NOX and SO2 emissions 

EIA forecasts total electric power NOX and SO2 emissions out to 2040.  It does not forecast 

emissions by fuel type.  We therefore separated out the NOX and SO2 emissions associated with 

coal, oil, and gas plants.  We first calculated NOX and SO2 emissions from oil and gas plants.  Similar 
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to CO2 emissions, we used the 2012 capacity-weighted average emission rate for oil and gas plants 

from AMPD [22]. 

Next, we multiplied these emission rates by EIA’s forecast of electricity production to find total 

NOX and SO2 emissions from oil and gas plants.  Finally, we calculated coal NOX and SO2 emissions 

as the difference between EIA’s forecast of total NOX and SO2 emissions and total oil and gas plant 

emissions. 

Baseline PM2.5 and PM10 emissions 

EIA does not forecast direct emissions of PM2.5 and PM10 from power plants.  We assumed that 

coal and oil plants emit 0.14 kg / MWh of PM2.5 and PM10, the limit imposed by the EPA’s MATS 

[15].  Gas plants are not regulated by MATS, and therefore we used data from the 2005 National 

Emissions Inventory (NEI) [23] and eGRID 2005 [3] to identify gas plant PM2.5 and PM10 

combustion emissions rates.  We found the capacity-weighted average emission rate of gas plants in 

the NEI database to be 0.06 kg/MWh for PM2.5 and 0.07 kg/MWh for PM10.  For coal, oil and gas 

plants, we multiplied the assumed emission rates by EIA’s forecast of annual electricity generation 

by each fuel. 

4.2.2 Calculation of replacement plant emission rates 

We modeled three scenarios to investigate the benefits of switching from coal to other fuels. 

Scenario a) retired all coal plants and built new, high-efficiency natural gas combined cycle (NGCC) 

plants.  New NGCC plants were assumed to have a heat rate of 5,700 Btu/MWh achieved by state-

of-the-art GE Flex-60 and Siemens Frame-H [24, 25].  The CO2 emission rate was calculated by 

multiplying the heat rate by the carbon content of natural gas. Other emission rates were assumed to 

be the load-weighted average emission rates of 450 existing NGCC plants, as identified by the 

EPA’s National Electric Energy Data System [26].  This assumption somewhat overstates emission 
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rates, as emission rates of new, high-efficiency NGCC will likely be lower than the existing NGCC 

fleet average.  NOX and SO2 emission rates were based on 2012 emission rates (AMPD); CH4 

emission rates were from eGRID 2009; PM2.5 and PM10 emission rates were based on NEI 2005.  

Scenario b) retired all coal plants and built new natural gas plants with same heat rate and 

emission rates as the existing gas fleet’s load-weighted average, considering both NGCC and 

combustion turbine plants.  Heat rates, CO2, NOX and SO2 emission rates were based on 2012 data 

(AMPD); CH4 emission rates were from eGRID 2009; PM2.5 and PM10 emission rates were based on 

NEI 2005.  This scenario isolates the benefits of fuel switching from the benefits of switching to 

high-efficiency plants (scenario a). 

Scenario c) retired all coal plants and built new plants that have zero emissions of all pollutants, 

either renewable or nuclear plants.  We assumed the replacement plants could provide firm baseload 

power; in reality, variable renewables such as wind would need storage to serve as baseload. 

We assumed replacement plants are built at the same location and have the same capacity as the 

coal plants they replace.  We believe that this assumption is reasonable, as the sites will have much 

of the infrastructure needed for new plants, such as access to transmission.  The location of 

renewable plants may be constrained by the availability of renewable resources (wind or solar).  Our 

analysis ignored changes in the dispatch order that may occur due to fuel switching, or changes in 

load due to consumer price response.  

4.2.3 Calculation of climate effects 

We calculated resulting temperature changes using a metric used by the IPCC, Global 

Temperature Potential (GTP) [27, 28].  GTP is defined as the ratio between the global mean surface 

temperature change (∆T) at a given future time horizon (TH) following an emission (pulse or 

sustained) of a compound x relative to an equivalent mass of CO2 [29], or: 
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Since power plant emissions are typically given at annual intervals, the total change in 

temperature (∆T) due to emissions of all pollutant types [28] over the entire time horizon (TH) years 

can be approximated as: 
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where M is the mass of the pollutant x emitted in year t (kg) and ∆TCO2 is the temperature 

response in year n due to a 1 kg pulse emission of pollutant emitted in year 0 (K/kg).   

For the results shown in this paper, we calculate the temperature forcing due to carbon dioxide 

and methane. GTPCO2 is defined to be 1, and ∆TCO2 can be represented through empirical analysis 

[30].  Fossil methane, including climate change feedbacks, is estimated to have a GTP at 20 years 

(GTP20) of 68, and a GTP100 of 15, although estimates are highly uncertain (roughly ± 75%); the 

most recent IPCC report fully characterizes 𝐺𝑇𝑃!"!!"  over a century [30].  A discussion of the global 

warming potential of CO2 and CH4 emissions can be found in Appendix B. 

While this simple model can allow the user to intuitively understand the changes in CO2 and 

CH4, it does not take into account the effects of NOX, SOX, black carbon (BC), and organic carbon 

(OC).  Due to the complex nature of the secondary chemistry involved in calculating temperature 

changes, we modeled climate change effects with the publicly available MAGICC6 model [31] a 

simple/reduced complexity climate model including an ocean, an atmosphere, a carbon cycle, and 

indirect aerosol effects; Appendix B contains a full model description and validation tests.  
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4.2.4 Calculation of health effects 

Switching from coal to either gas or zero-emission plants reduces emissions of SO2, NOX, PM2.5, 

and PM10.  We monetized the benefit to human health and the environment caused by this switch 

using the Air Pollution Emission Experiments and Policy (APEEP) model [20].  The model uses a 

reduced form air transport model and linear dose-response function to monetize the damages to 

human health and the environment caused by a marginal ton of emissions of NOX, SO2, PM2.5, 

PM10, volatile organic compounds (VOCs), and ammonia (NH3) from each county in the USA.  We 

excluded damages due to VOC and NH3 from our analysis due to uncertainty in the atmospheric 

science surrounding these pollutants, and the relatively small damages they cause compared to SO2, 

NOX, and PM [35, 36]. 

Health effects, if valued at $6 million per statistical life, constitute 94% of the total APEEP 

damages, dominating environment damages (visibility loss, damages to forestry and agriculture, 

damage to manmade structures) [20].  APEEP was used in the National Academies’ Hidden Costs of 

Energy report [18]; similar health models exist [19, 37] and have been used by the EPA to as technical 

support for major pollution regulations [10].  The APEEP model and our analysis exclude damages 

associated with emissions in Alaska and Hawaii.   

Because the damages caused by emissions vary by location, we estimated individual coal plant 

emissions of SO2, NOX, PM2.5, and PM10.  Although EIA forecasts total NOX and SO2 emissions, 

plant-level emissions out to 2040 are highly uncertain.  We assumed the fraction of total coal SO2 

and NOX emissions from each plant remains constant from 2012 levels through 2040 [3].  We 

assumed each coal plant emits 0.14 kg / MWh of PM2.5 and PM10 [15]. 

Switching all coal plants to gas would have a significant effect on criteria pollutants, and it might 

be argued that APEEP’s baseline emissions are affected enough so that the human health effects are 
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no longer good estimates. However, there is good evidence that the formation of PM2.5 caused by 

SO2 and NOX is linear with reduced emissions, with no threshold [38].  Major cohort studies have 

found PM2.5 concentration-response functions and mortality are linear with no threshold [39 – 41].  

Since we find NOX accounted for only 8% of total health damages from the electricity sector in 

2012, we ignore the known second-order nonlinearities in PM2.5 formation associated with NOX 

emissions due to decreasing SO2 emissions.  

4.3 Results 

Table 4-1 shows the load-weighted average emission rates and heat rates of coal plants in 2012, 

as well as the emission rates and heat rates for the coal replacement plants in scenarios a) – c).   

Switching to average gas reduces CO2 emissions by half; switching to high-efficiency gas reduces 

CO2 emissions by 2/3.  Both average and high-efficiency gas plants emit an order of magnitude less 

SO2 and NOX than coal plants. 

Table 4-1. 2016 load-weighted average emission rates for USA coal plants in EIA Reference 
Case, and replacement plants for scenarios a) – c).  

Plant type 
Combustion emission rates (kg/MWh) 

CO2 NOX  SO2 CH4 PM2.5 PM10 
Coal - 2016 910 0.69 0.72 0.010 0.14 0.14 
Scenario a): High-efficiency gas 300  0.09 0.02 0.008 0.06 0.07 
Scenario b): Average gas 450  0.17 0.02 0.009 0.06 0.07 
Scenario c): Zero-emission plants 0 0 0 0 0 0 

4.3.1 Change in emissions 

As shown in Figure 4-1, switching all coal plants to natural gas would reduce annual electric 

power CO2 emissions by 35% - 47% from the EIA’s reference case; CH4 emissions would be 

increase by 80% - 120%, assuming a 3% fugitive CH4 emission rate.  Switching to zero-emission 

plants would reduce CO2 emissions by 70%. Table 4-2 shows that CH4 reductions are highly 
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sensitive to the assumed fugitive CH4 emission rate. Reductions in CO2 and CH4 emissions are 

similar for the EIA Reference Case, High Gas Resource Case, and Low Gas Resource Case (see 

Appendix B).   

 
Figure 4-1. Percent change in total electric power GHG emissions (CO2 and CH4, 3% 
fugitive CH4 rate), and criteria pollutants from the EIA Reference Case in 2025.  Reductions 
are constant across years 2016 – 2040.  

Switching from coal to gas or zero-emission sources reduces SO2 emissions by more than 90%, 

NOX emissions by more than 60%, and PM emissions by 40% - 70% (Figure B-3 to Figure B-6).  

Because coal plants are the primary source of criteria pollutant emissions, switching from coal has a 

larger effect on criteria pollutant emissions than GHG emissions.  Emission reductions are 

insensitive to the EIA baseline case assumed (Appendix B). 

Table 4-2. Sensitivity of CH4 emissions in 2025 to fugitive CH4 emission rate, EIA Reference 
Case.   

 Percent change in CH4 emissions 
Scenario 0% fugitive 

CH4 
3% fugitive 

CH4 
5% fugitive 

CH4 
7% fugitive 

CH4 
Baseline 0% 8% 13% 18% 
A) Switch to high-efficiency gas 0% 14% 23% 33% 
B) Switch to average gas 0% 17% 29% 40% 
C) Switch to zero-emission plants 0% 8% 13% 18% 
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4.3.2 Effect on atmospheric concentrations of GHG emissions 

In agreement with published literature [4 – 9], using the simple GTP model we find that climate 

benefits for a USA policy of switching from coal to natural gas are limited unless this action results 

in other major polluters reducing their GHG emissions. Figure 4-2 and Figure 4-3 show the change 

in temperature from business as usual minus the change in temperature for scenarios a) -c).  

Switching from coal to natural gas results in a difference of temperature change between -0.02 oC 

and + 0.03 oC, depending on the assumed fugitive CH4 rate.  Differences in temperature changes are 

insensitive to the baseline EIA case assumed.  Switching to zero-emissions plants is more effective 

and less uncertain than switching to gas.  As shown in Appendix B, the MAGICC6 model simulates 

a nearly identical contribution of CO2 and CH4 to temperature.   

While a small change to global temperatures, these changes are a significant change to the 

temperature contributions from the US power plant fleet.  Table 4-3 shows the fraction of change in 

temperature from scenarios a) –c) divided by the change in temperature from business as usual (EIA 

Reference Case).  The table shows results for a GTP20CH4 of 68, as well as the GTP20CH4 uncertainty 

range of ± 75%.  Assuming GTP20CH4 is 68, we find that a switch to an average gas plant can 

change the power plant fleet’s contribution to temperatures in 2040 by -40% to +30%, depending 

on fugitive emissions rate.  A switch to high-efficiency plants is better for temperatures, and can 

change the power plant fleet’s contribution to temperatures by –50% to +5%.  A switch to zero-

emissions plants changes the power plant fleet’s contribution to temperatures by -70% to -40%.  

Results are insensitive to the baseline EIA case assumed.   
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Figure 4-2. Change in temperature from scenarios (A) high-efficiency gas, (B) average gas, 
and (C) zero-emission plants minus change in temperature from business as usual.  
Temperature changes include contributions from CO2 and CH4 only.  Solid line is 3% 
fugitive CH4 rate for the EIA reference case; shaded area is range across EIA reference case, 
high gas resource case, and low gas resource case.  Assumed GTP20CH4 of 68 ± 75%. 

 
Figure 4-3. Effect of fugitive CH4 rate uncertainty.  Change in temperature from scenarios 
(A) high-efficiency gas, (B) average gas, and (C) zero-emission plants minus change in 
temperature from business as usual.  Temperature changes include contributions from CO2 
and CH4 only.  Solid line is 3% fugitive CH4 rate for the EIA reference case; shaded area is 
represents uncertainty across EIA reference case, high gas resource case, and low gas 
resource case and 0% - 7% fugitive CH4 rate.  Assumed GTP20CH4 of 68 ± 75%. 
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Table 4-3. Fraction of change in temperature in 2040 from scenarios (A) high-efficiency gas, 
(B) average gas, and (C) zero-emission plants divided by the change in temperature from 
baseline EIA reference case.  Temperature changes include contributions from CO2 and 
CH4 only.  Reductions are constant across 2016 – 2040.  Assumed GTP20CH4 of 68; 
uncertainty range of ± 75% in parenthesis. 

 Change in warming contributed by U.S. electric power sector, 2040 
Scenario 0% fugitive CH4 3% fugitive CH4 5% fugitive CH4 7% fugitive CH4 
A) Switch to high-
efficiency gas -47% -18% 

(-38%, -3%) 
-5% 

(-33%, +11%) 
+5% 

(-28%, +21%) 
     
B) Switch to 
average gas -35% +1% 

(-24%, +18%) 
+16% 

( -18% +36%) 
+28% 

(-12%, +49%) 
     
C) switch to zero-
emission plants -70% -53% 

(-64%, -44%) 
-45% 

(-61%, -36%) 
-40% 

(-59%, -30%) 
 

Previous literature assumes the base coal fleet emits a large amount of SO2.  Therefore, a shift 

from coal to gas would significantly reduce SO2, offsetting both the climate forcing from the 

reduction in black carbon and some of the GHGs [6].  In our analysis, the baseline forecasts of SO2 

emissions account for mandated SO2 emissions due to the MATS standard, and therefore already 

have low SO2 emissions.  Appendix B contains an analysis of the effects of SOX, NOX, BC, and OC 

on warming through 2100 using the publicly available MAGICC6 model.   

4.3.3 Effect on human health 

Switching from coal to gas or zero-emissions sources would significantly reduce SO2, NOX, and 

PM emissions (Figure 4-2).  The monetized annual health and environmental damages of emissions, 

via the APEEP model, are shown in Figure 4-4.  Damage reductions are $20 billion - $24 billion per 

year if switching to high-efficiency gas and $20 to $27 billion per year if switching to zero-emission 

plants.  Damage reductions increase from 2016 – 2025, as the EIA forecasts increasing coal 

generation over that time period.  More than 75% of damage reductions are due to reductions in 
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SO2; reductions in NOX and PM2.5 each make up 10% of damage reductions.  Health and 

environmental damages vary regionally (Figure 4-5).  Most damages occur in the Ohio River Valley 

and Southeast due to the high concentration of coal plants and significant downwind population. 

 
Figure 4-4. Reduction in annual health damages due to switching from coal.  $6 million 
value of statistical life.  Solid line is EIA reference case; shaded area is the range across EIA 
reference case, high gas resource case, and low gas resource case. 

 
Figure 4-5. 2016 annual health and environmental damages due to emissions of criteria 
pollutants from coal plants, by NERC region.  Replacing coal plants with average gas plants 
(scenario b) reduces damages most significantly in the Midwest and Southeast. 

4.3.4 Costs of reducing emissions from coal 

Although replacing all USA coal generation with new, high-efficiency NGCC plants would 

create health benefits of $20 - $24 billion annually, the costs of constructing and operating such 



 82 

plants are approximately twice as large as the created health benefits.  The annual capital cost of 

replacing all 375 GW of USA coal capacity would be $35 - $65 billion, assuming new NGCC plants 

cost $1,000/kW - $1,300/kW, have a facility life of 20 years [42] and a blended cost of capital of 7- 

12% [43].  

Replacing coal plants with gas is only one option to mitigate SO2 emissions, the primary source 

of health damages.  Flue gas desulfurization and direct sorbent injection are two emission control 

technologies (ECTs) used to mitigate SO2 in existing coal plants. Table 4-4 compares the costs and 

effectiveness of each ECT to building a new NGCC.  ECTs have the potential to be a more cost 

effective SO2 mitigation option than building new gas plants.  Large deployments of these ECTs are 

anticipated by 2015, as utilities retrofit coal plants to comply with MATS [15, 17]. 

Table 4-4. Cost and effectiveness of different SO2 control technologies.  New NGCC costs 
and all fuel costs from [42]; FGD and DSI costs for a representative 500 MW coal unit [17].  
Assumes natural gas cost of $4.50/MMBtu and coal cost of $1.70/MMBtu 

SO2 control 
technology 

Capital cost 
($/kW) 

Fixed O&M 
($/MW-yr) 

Variable O&M 
($/MWh) 

Fuel cost 
($/MWh) 

SO2 
reduction 

Build new NGCC $1,000 - $1,300 $5,500 - $6,200 $2 - $3.5 $24 - $25 99% 

Flue gas 
desulfurization (FGD) $500 $8,100 $1.8 $15 - $20 98% 

Direct sorbent 
injection (DSI) $40 $590 $7.9 $15 - $20 50% 

4.4 Discussion 

In the short term, the potential for natural gas to reduce the USA power sector’s contribution to 

global warming is highly sensitive to the CH4 fugitive rate and efficiency of gas plants installed. 

Assuming 3% fugitive CH4 emissions, switching all coal plants to high efficiency NGCC plants 

would reduce the power sector’s contribution to warming by 20% in 2040.  Assuming GTP20CH4 of 

68, a switch to high-efficiency NGCC plants can change the power sector’s contribution to warming 

changes by -50% to +5% for fugitive CH4 rates of 0% to 7%.   Switching to average-efficiency 
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plants can change warming contribution by -35% to +30% for fugitive rates of 0% to 7%.  

Switching to zero-emission plants would change warming potential by -70% to -40%.  Considering 

the uncertainty in GTP20CH4 estimates further increases the uncertainty in our results.  In all cases, 

the net effect on global temperatures by 2040 is inconsequential unless US leadership induces 

pollution control by other large nations.  However, the same arguments can be made by every global 

region, which underscores the need for global coordinated efforts. 

Human health in the United States can greatly benefit from policies that continue the reduction 

of criteria pollutant emissions from coal plants, by switching to gas, installing emissions controls, or 

switching to renewables or nuclear.  Switching to gas would greatly reduce criteria pollutant 

emissions; SO2 emissions would be reduced by more than 90%.  Retrofitting existing coal plants 

with ECT is more cost effective than building gas plants in most cases (Table 4-4). It is likely that a 

combination of switching coal to gas and installations of ECT on coal plants will be the primary way 

utilities comply with MATS. Annual health damages could be reduced further by $18 - $24 billion if 

coal plants are either replaced with gas plants or fitted with flue gas desulfurization emission 

controls.   
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B Appendix 

Methods overview 

A graphical representation of the model used in this work is shown in Figure B-1.  We use 

existing national datasets of USA power plants, as well as forecasts of future energy production and 

emissions from the US Department of Energy’s Energy Information Agency (EIA) [1].  In 

particular, we identify total annual combustion emissions of carbon dioxide (CO2), CH4, nitric oxide 

and nitrogen dioxide (NOX), sulfur dioxide (SO2), and 2.5 micrometer and 10 micrometer particulate 

matter (PM2.5 & PM10) for the years 2016 - 2040. We then examine the benefits of three replacement 

scenarios: a) coal is replaced by new, high-efficiency natural gas combined cycle (NGCC) plants; b) 

coal is replaced by a combination of new NGCC and natural gas combustion turbine (NGCT) 

generators that matches the current gas fleet; and c) all coal is replaced by plants with zero 

emissions, either renewables or nuclear plants.  We investigate the effect of fugitive methane 

emissions from the production and transportation of natural gas (ranging from 0-7%). 

We use the publicly available APEEP model with its empirical health damages as a function of 

particulate type and location [2] to value the reductions in damages to human health and the 

environment associated with NOx, SO2, PM2.5, and PM10.  We calculate the change in temperatures 

in two ways: using a global temperature potential model under different EIA scenarios as described 

in the Main text Section 2, and the publicly available MAGICC6 climate model [3] under different 

representative concentration pathways (RCPs) as described below.  
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Figure B-1. Graphical representation of the model used in this work.  Thick red 
parallelograms denote inputs we varied.  Thick red ovals indicate outputs. 

Definitions 

As many different metrics have been applied to this problem, we briefly describe 1) what we 

mean by carbon dioxide equivalent, and 2) climate metrics. 

What we mean by carbon dioxide equivalent 

Combining different types of emissions and obtaining a value that is equivalent to carbon 

dioxide can be done in the following ways.  

Carbon dioxide equivalent, or CDE, is a forward-looking measurement.  This value is the 

mass of carbon dioxide that would have the same global warming potential as the mass in question 

when measured over a specified timescale.  This value is calculated as:  

 𝐶𝐷𝐸 = 𝐺𝑊𝑃!𝑚!
!

 (B-1) 

  

where n is number of types of molecules or particles, mn is the total mass of n, and GWPn is the 

global warming potential of a unit of particle n. 



 89 

Equivalent CO2, or carbon dioxide equivalent concentrations (CO2eq), is a snapshot in 

time. This value is the concentration of carbon dioxide that would have the same radiative forcing 

as the concentration in question when measured over a specified timescale.  Usually it includes 

historical emissions. This value is calculated as: 

 𝐶𝑂!𝑒𝑞 = 𝐶!𝑒
!"
!  (B-2)  

where Co is the concentration of the pre-industrial concentration of carbon dioxide (278 ppm), 

RF is the radiative forcing of the concentration in question, and α is a constant (5.35 W/m2). 

CDE and CO2eq depend on only the components of mass or concentration that are of interest.  

Most often, these values are calculated as a function of greenhouse gases only.  Sometimes, these 

values include both greenhouse gases and land use changes.  For instance, MAGICC’s “KYOTO 

CO2EQ” is a function of CO2, CH4, N2O, and halogenated gases regulated under the Kyoto 

protocol.  MAGICC’s “CO2EQ” is a function of CO2, CH4, N2O, and halogenated gases regulated 

under both the Montreal and the Kyoto protocol.  Another choice is to use CO2eq as a function of 

CO2 and CH4 only.  In other possible choices, these values also include aerosols.  

Climate metrics  

Radiative forcing, CO2eq, and temperature have quite different uncertainties.  A climate model 

such as MAGICC6 requires as input specifications the emissions of different constituents (e.g., CO2, 

CH4, SOX, NOX, and BC).  Due to different scenarios, fugitive methane emissions assumptions, and 

representative concentration pathways, there is significant uncertainty present in the model inputs.  

At each time step, the model calculates (with some uncertainty) the atmospheric concentrations of 

individual constituents, and from that (with additional uncertainty) the individual radiative forcings.  

Since individual radiative forcings can be added linearly, the first system-level output metric is total 

radiative forcing.  While small, an additional layer of uncertainty is added when using the radiative 
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forcing to calculate equivalent CO2 concentrations.  A much larger layer of uncertainty is added 

when using the radiative forcing to calculate temperature. 

Temperature changes are well understood by the general public.  While not as broadly 

understood, concentration metrics offer the ability to “draw lines in the sand” used by policy makers 

to argue for emissions targets such as “a doubling in greenhouse gas concentrations since pre-

industrial”.   

Here we use four climate metrics.  Radiative forcing (W/m2) is given as a change relative to 

preindustrial conditions in the year 1765 and includes all constituents in the model.  Temperature 

increase (°C) is derived directly from the radiative forcing and given as a change relative to 1765.  

In contrast to radiative forcing and temperature increase, equivalent CO2 (CO2eq, ppm) is defined 

here as a function of the change in greenhouse gases only (CO2 and CH4 only, not NOx, SO2, PM, 

N2O, or halogenated gases).  Secondary chemistry (e.g., changes in halogenated gases as a function 

of methane concentrations) is not included.   Referencing MAGICC6, in 2010 these values were 

2.15 W/m2 for radiative forcing, 0.8 °C for temperature increase, and 416 ppm for CO2eq.    

Because emissions comparisons are also of interest in some applications, we also provide carbon 

dioxide equivalent (CDE, million metric tons) as a function of CO2 and CH4 emissions (100-

year global warming potential of 21 [4]). 

To find the USA contribution toward CO2eq in 2010, we used MAGICC6 for global emissions 

data [3] and national databases for USA emissions data [5, 6].  Total CO2 annual average 

concentrations were 389 ppm in 2010; they were 278 ppm preindustrial.  The USA is responsible for 

24-26% of the CO2 concentrations and 9% of CH4 concentrations, with CO2 values varying as a 

function of uncertainty in CO2 lifetime (50-200 years, [5]).  Under this definition, the USA’s 

contribution to CO2eq is thus roughly 30 ppm. 
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Detailed emission results 

We used U.S. Department of Energy (DOE) forecasts of emissions and generation as the 

baseline for our analysis (see Methods - Calculation of baseline emissions in the main text).  From this 

baseline, we replaced all coal plants with either natural gas or zero-emission plants, starting in 2016.  

The following are EIA’s descriptions of the three baseline cases we used: 

• Reference case: baseline assumptions for economic growth (2.4 percent for 2012 - 2040), 

oil prices, and technology.  Brent spot price rises to about $141.50 per barrel (2012) in 2040 

• Low Oil and Gas Resource: Estimated ultimate recovery per shale gas, tight gas, and tight 

oil well is 50% lower than in the Reference case.  All other resource assumptions will remain 

the same as in the Reference case 

• High Oil and Gas Resource: Estimated ultimate recovery per shale gas, tight gas, and tight 

oil well is 50% higher and well spacing is 50% lower (or the number of wells left to be drilled 

is 100% higher) than in the reference case.  In addition, tight oil resources are added to 

reflect new plays or the expansion of known tight oil plays and the estimated ultimate 

recovery for tight and shale wells is increased 1% per year to reflect additional technological 

improvement.  Also includes kerogen development, tight oil resources in Alaska, and 50% 

higher undiscovered resources in lower 48 offshore and Alaska than the Reference case 
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Figure B-2. EIA forecast of generation from coal, gas, and oil plants, 2016 – 2040.  Solid lines 
are EIA Reference Case; ranges represent High Gas Resource Case and Low Gas Resource 
Case. 

 
Figure B-3. CO2 emissions. Solid line is EIA Reference Case; shaded area is range across 
EIA Reference Case, High Gas Resource Case, and Low Gas Resource Case. 
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Figure B-4. CH4 emissions.  Solid line is EIA Reference Case; shaded area is range across 
EIA Reference Case, High Gas Resource Case, and Low Gas Resource Case.  Note: 
Baseline and zero-emission cases are nearly identical. 

 

 
Figure B-5. SO2 emissions.  Solid line is EIA Reference Case; shaded area is range across 
EIA Reference Case, High Gas Resource Case, and Low Gas Resource Case. 
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Figure B-6. NOX emissions.  Solid line is EIA Reference Case; shaded area is range across 
EIA Reference Case, High Gas Resource Case, and Low Gas Resource Case. 

 
Figure B-7. PM2.5 emissions.  Solid line is EIA Reference Case; shaded area is range across 
EIA Reference Case, High Gas Resource Case, and Low Gas Resource Case. 
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Figure B-8. PM10 emissions.  Solid line is EIA Reference Case; shaded area is range across 
EIA Reference Case, High Gas Resource Case, and Low Gas Resource Case. 

Global Warming Potential 

We calculated the Global Warming Potential (GWP) of CO2 and CH4 emissions. GWP is 

defined as “the time-integrated radiative forcing due to a pulse emission of a given component, 

relative to a pulse emission of an equal mass of CO2” [7].  Thus while GWP represents the total 

energy added to the climate system by a component relative to that added by CO2, it does not 

provide information on radiative forcing or temperature changes. Fossil methane, including climate 

change feedbacks, has a GWP over 20 years (or GWP20) of 85 ± 25%, and a GWP100 of 30 ± 

35%. 
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Figure B-9. Carbon dioxide equivalent emissions, CO2 and CH4 (20-year GWP of 85), 2016 - 
2040.  Solid line is EIA Reference Case; shaded area is range across EIA Reference Case, 
High Gas Resource Case, and Low Gas Resource Case.  Assumed fugitive CH4 rate of 3%. 

 
Figure B-10. Carbon dioxide equivalent emissions, CO2 and CH4 (100-year GWP of 30) 2016 - 
2040.  Solid line is EIA Reference Case; shaded area is range across EIA Reference Case, 
High Gas Resource Case, and Low Gas Resource Case.  Assumed fugitive CH4 rate of 3%. 
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Fugitive emissions 

We analyzed the upstream fugitive emissions of CO2, NOx, SO2, and CH4 associated with the 

production and transportation of coal and natural gas (Table B-1).  Fugitive emissions (sometimes 

used synonymously with leakage) can have different meanings in different contexts. Here we define 

fugitive emissions as the sum of intentional and unintentional releases of the modeled gases to the 

atmosphere. Because fugitive emissions are highly uncertain, we calculated both a low and high 

estimate.  Fugitive emissions of NOx and SO2 for both coal and natural gas are taken from [8]. 

Upstream greenhouse gas (GHG) emissions from coal, in units of carbon dioxide equivalent mass 

(CDE), are the 5% and 95% confidence values reported by [9].  

Upstream GHG emissions for natural gas plants come from two sources: electricity used in the 

fuel’s transportation [8], and fugitive methane emissions from production and transportation.  Of 

the two, fugitive methane dominates [8].  Because the amount of fugitive methane is highly 

uncertain, we parameterized the fugitive emission rate between 0 – 7%, a range that includes 

estimates from other researchers [10, 11].  Total annual CH4 fugitive emissions were calculated by 

multiplying the fugitive emissions rate with the total gas consumption of all plants.   

Other than potential CH4 fugitive emissions from natural gas, all fugitive emissions are small 

when compared to combustion emissions.  We therefore exclude all fugitive emissions except CH4 

fugitives from natural gas from our analysis. 
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Table B-1. Upstream fugitive emission factors 

 Emission rate  (Low estimate, high estimate) 
[kg/MMBtu fuel produced] 

Pollutant Coal Gas 

CDE (1.055, 16.774) 
(0.068, 0.068)                  

(upstream electricity for 
transporting CH4 only) 

CH4 0 (0, 1.347) 
(0% - 7% fugitive emissions rate) 

NOX (0.014, 0.243) (0.004, 0.243) 

SO2 (0.003, 0.013) (0.003, 0.014) 

 

Climate Model to 2100:  

To model the complex chemistry associated with aerosols, SOX, NOX, BC, and OC, we needed 

to use a climate model.   This section first describes the process used to model climate effects, and 

then provides the results. .   

RCPs and their comparison to published data 

The representative concentration pathways (RCPs) are new projections of future emissions to 

2100 for the Intergovernmental Panel on Climate Change’s fifth assessment report [12].  The four 

scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) represent the range of global radiative forcing 

estimates by 2100, as low as 2.5 W/m2 to between 8 and 9 W/m2 and higher [13, 14]. While the 

RCPs provide values for land use, dust, and nitrate aerosol forcing, these are not included in the 

radiative forcing estimates [14]. 

The RCP authors caution that users must be careful to avoid over-interpreting the data.  The 

RCPs were developed by four independent modeling groups [15 – 18].  While integrated assessment 
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models were used (IMAGE, MiniCAM, AIM, and MESSAGE)2, the scenarios were created without 

consideration for changes in policy, technology, land-use, or climate. Thus, differences between the 

scenarios should be attributed in part to differences between models and to scenario assumptions 

(scientific, economic, and technological).  Additionally, the authors caution that users should not 

attempt to parse out individual countries’ contributions over time. This means we can examine only 

a snapshot in 2010 of the USA electric power fleet. Thus, we must instantaneously change 

generators in 2010 to those required in each scenario. This is not a limitation for the global RCPs 

that do report the primary energy sources individually in future years. So our global models examine 

for each RCP changing all future power plants as well as existing ones.  

Observed CO2 emissions are larger than the RCP 8.5 values [19]. Figure B-11 and Figure B-12 

compare the RCPs to published primary energy usage outlooks from BP [20] and ExxonMobil [21].  

BP’s predicted primary energy usage of coal is similar to RCP8.5, the scenario with the highest 

emissions and strongest radiative forcing.   ExxonMobil’s predicted primary energy usage of coal is 

intermediate between RCP6.0 and RCP8.5 until 2040; after that date ExxonMobil predicts 

substantial reductions in coal usage. The total primary energy usage modeled by ExxonMobil is 

similar to RCP6.0 through ~2025.   

                                                
2 Contact Information: RCP 2.6 (IMAGE): Detlef van Vuuren (detlef.vanvuuren@pbl.nl); RCP 4.5 (MiniCAM): 
Allison Thomson (Allison.Thomson@pnl.gov); RCP 6.0 (AIM): Toshihiko Masui (masui@nies.go.jp); RCP 8.5 
(MESSAGE): Keywan Riahi (riahi@iiasa.ac.at); Data and VOC details: Jean-Francois Lamarque (lamar@ucar.edu)  
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Figure B-11. Primary energy usage of coal, 2000-2040.  BP’s outlook matches that of RCP 
8.5.  ExxonMobil’s outlook is in between RCP6.0 and RCP8.5 until 2025, at which time they 
predict substantial reductions in coal usage; its total primary energy usage is in line with 
RCP6.0.   

 
Figure B-12. Primary energy usage of coal, 2000-2100.  BP’s outlook matches that of RCP 
8.5.  ExxonMobil’s outlook is between RCP6.0 and RCP8.5 until 2025, at which time they 
predict substantial reductions in coal usage; its total primary energy usage is in line with 
RCP6.0.   

Climate Model Benchmarking 

We modeled climate change effects with the publicly available MAGICC6 model [3]. MAGICC6 

is a simple/reduced complexity climate model including an ocean, an atmosphere, a carbon cycle, 
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and indirect aerosol effects.  MAGICC6 takes as inputs emissions scenarios (e.g., GtC, MtS, MtN, 

etc). The model outputs concentrations, radiative forcings, and temperatures.  The MAGICC6 

authors have converted the RCP scenarios to inputs for running in the model.  To test our scenarios 

a) through c), we slightly modified the included RCP scenarios.   Unfortunately, since the model is 

calibrated to run at higher emissions scenarios (e.g., RCP6.0 and RCP8.5), we were not able to run 

reductions from the lowest scenario, RCP2.6.  Since the RCP2.6 case appears unreasonably 

optimistic compared to the trajectory we are now on, as well as to ExxonMobil’s and BP’s energy 

outlooks, we chose to examine the upper three RCPs (RCP4.5, RCP6.0, and RCP8.5). 

Table B-2 lists other climate models used in the literature to examine the problem. MAGICC6 

builds on several of these models, resulting in the most comprehensive model used thus far to 

examine this problem.  Other models approach the problem differently by applying estimates of 

lifecycle emissions [22, 23] or by applying a Monte Carlo analysis of values published in the literature 

[10]. 

Table B-2. Climate models used in recent literature we cite. 

Model Type Climate Feedback, λ Ocean Chemistry 

Hayhoe et al. [24] Energy-Balance 
Model 

1.25 Wm2/K  (2.5°C 
degree rise for a 
doubling in CO2) 

Vertically-resolved 
upwelling-diffusion deep 
ocean 

Gas cycle 
models 

Myhrvold & 
Caldeira [25] 
 

Energy-Balance 
Model 1.25 Wm2/K 

4 km thick, diffusive slab 
with a vertical thermal 
diffusivity 10-4 m2/s 

Basic 

Wigley [26], Smith 
& Mizrahi [27], 
MAGICC6 [28] 

Simple/reduced 
complexity 
climate model 

Central value of 1.50 
Wm2/K; varies in 
model 

Upwelling-diffusion-
entrainment (UDE) 
ocean 

Carbon cycle, 
indirect aerosol 
effects 
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Climate Model Validation 

To validate our use of MAGICC6, we compared it to the closest published model used 

for a coal to natural gas switch, Wigley’s Figure2.b. (Figure B-13).  Scenario values are listed 

in Table B-3 and our temperature differences from business as usual is in Figure B-14.  We find that 

we can replicate Wigley’s CO2 and CH4 radiative forcings quite closely.  While we can replicate the 

general trend of the SOX closely, our increase in global temperature from 2040-2060 is not as 

pronounced as he finds (Figure B-14).  It is likely that Wigley may have applied the SOX reduction 

slightly differently than we did.  

Table B-3. Model description used in Wigley’s model and our choices to perform validation 
with MAGICC6. 

Item Wigley This work 
Baseline emissions 
scenario 

standard “no-climate-policy”  RCP 8.5 

Scenario Replaces coal with natural gas as given in his 
Figure 1. For every 1EJ of coal replaced by gas, 
reduce coal GtC by 0.027GtC/EJ  and increase 
gas GtC by 0.027GtC/EJ * 0.299 = 0.008073. 

Same 

Fugitive emissions 5%, or 66.6 TgCH4/GtC of natural gas Same 
SOX Assume a value of 12 TgS/GtC for the present 

(2010) declining linearly to 2 TgS/GtC by 2060 
and remaining at this level thereafter. 

Same 

BC No change in input to model.  BC’s radiative 
forcing reduces the SOx radiative forcing by 
30%. 

Replace MAGICC6 
output with Wigley 
assumption. 
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Figure B-13. Temperature changes from Wigley, Figure 2b (Adapted from [26]). 

 
Figure B-14. Temperature changes recreating the Wigley estimates 

Climate Results: Radiative forcing and temperature 

Finally we examined the effects of a US switch as described in the main text in the MAGICC6 

Model. For scenarios a) – c) and fugitive methane rates of 0% - 7%, we modeled changes from 

business as usual using MAGICC6’s default emissions for representative concentration pathways 

(RCPs) 4.5, 6.0, and 8.5 [13, 22]. Since the MAGICC6 climate model can allocate total emissions by 

region, we allocated all changes to the OECD region and assumed no changes in other regions). For 
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each RCP, we assumed that, to first order that we could use the appropriate EIA Case Scenario:  

Low for RCP4.5, Reference for RCP 6.0, and High for RCP8.5.  While the RCPs re not meant to be 

used this way, we believe this is an okay assumption.  For 2000-2040, we used annual intervals of 

changes from business as usual as described in our main text; starting in 2040, we assumed the 

changes remained constant to 2100.   We assumed all SO2 could be considered SOX. Additionally, 

we assumed NOX is made of 90% NO and 10% NO2 by mass [29].  Based on recent publications 

examining coal power plant particulate matter, we assumed that all particulate matter (PM2.5 and 

PM10) is 12% organic carbon, 4% black carbon, with the rest not relevant for the climate [30, 31].  

Total emissions were not allowed to drop below zero.  

In agreement with published literature [32 - 37], we find that climate benefits for a USA policy 

of switching from coal to natural gas are limited.  Fuel switching increases temperature in the short 

term due to reduction in aerosols and increased fugitive methane emissions, and decreases 

temperatures by 2100 due to reduction in CO2.  The length of this “temperature delay” in 2100 is 

dependent on the amount of coal switched.  Varying the methane fugitive emissions rate from 0-7% 

can alter changes from business as usual by as much as ±25%. 

Figure B-15 shows the change in temperature from business as usual for the USA policy for 

scenarios a) -c).  All of the coal to natural gas scenarios and RCPs are similar; scenario a) is best at 

reducing temperature concentrations, while scenario b) is least effective.  The zero emissions 

scenario c) is roughly 2-3 times more effective at reducing temperature as the gas scenarios.   While a 

USA policy reduces the nation’s contribution to global temperatures in 2010 by, in some cases, over 

33% as shown in the Main Text, the reduction values are small compared to global values.  For 

reference, Figure B-16 shows the relation between radiative forcings and temperatures. 
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Figure B-15. Change in Temperature from Business as usual for the USA Policy for 
scenarios (A) High efficiency Gas, (B) Average Gas, (D) zero emissions.   We note that this 
graph is meant to compare with the GTP value, and thus for our purposes includes changes 
from CO2 and CH4 only. 
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Figure B-16. Change from Business as usual for the USA Policy for Scenario b): Average Gas 
for (A) radiative forcings (W/m2) and (B) temperature (°C) 

 
Figure B-17. Change from Business as usual for the USA Policy for Scenario b): Average Gas 
for RCP8.5 for temperature contribution (°C) by individual constituents.  The total, shown 
as the solid black line, is for 3% fugitive methane emissions. 

Figure B-17 includes the effect of aerosols and shows the temperature contribution by individual 

constituents for RCP8.5.   While highly uncertain, the direct effect of aerosols in MAGICC6 is to 

cool the climate, so decreasing aerosols increases the temperature in the short term.  Their lifetime is 
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short, so aerosol contributions decrease quickly.  Reductions remain small compared to global 

values. We note that aerosol forcing has large uncertainties [38] that may be of the same size as that 

for methane leakage. 

Previous literature assumes the base coal fleet emits a large amount of SO2.  Therefore, a shift 

from coal to gas would significantly reduce SO2, offsetting both the climate forcing from the 

reduction in black carbon and some of the GHGs [26].  In our analysis, the baseline fleet in 2016 

has been updated to reflect the MATS standard, and therefore already has low SO2 emissions.  Thus 

the avoided SO2 emissions in scenarios a-d are no longer large enough to offset the changes from 

the reduction in black carbon.  This effect means that for some scenarios, a coal to gas shift would 

result in an initially sharp decrease in radiative forcings followed by an increase as the longer-lived 

methane dominates.   

We note that MAGICC6’s chemistry model has many interesting secondary effects we have not 

reported with these data, e.g., the lifetime of halogenated gases decreases as methane concentrations 

increase. As part of their work examining a coal to natural gas shift, Smith and Mizrahi calculate the 

change in radiative forcing from business as usual for gases regulated under the Kyoto protocol [27].  

Our analysis agrees with Smith and Mizrahi: depending on scenario and policy, we find the gases 

regulated under the Kyoto protocol result in an additional 20-30% reduction in radiative forcing in 

2100.  While this additional reduction suggests that a shift from coal to natural gas might be better 

for the climate than we suggest, the additional reduction is small compared to total reduction values 

and less than the model uncertainty. 

Global replacement scenario 

We next analyzed what would be the effect of switching all current and future coal power plants 

to natural gas.  Here we assumed all global existing and future power plants are switched.  The RCP 
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scenarios provide estimates of future primary energy use of coal.  Using 2005 data, we estimated that 

77% of the primary energy usage of coal is in the form of coal power plants [39]. While this percent 

is likely to change slightly from year to year, we assumed it was constant out to 2100.  We then 

calculated the total electricity generation from the coal used for electric power.  Finally, we assumed 

the coal plants generating this electricity were retired and replaced with natural gas or zero emission 

plants (Scenarios a)-c)).  Note that we assumed that all coal plants and replacement generators in the 

global scenarios have the same heat rates and emission rates as those in the USA scenarios. 

A global policy of switching all coal plants to natural gas would reduce total cumulative global 

GHG emissions to 2100 by 4% - 21% depending on the replacement scenario, assumed fugitive 

CH4 emissions rate, and RCP. Scenario b with a 5% fugitive emissions rate and RCP 6 would reduce 

global GHG emissions by 9% (see Figure B-18).  Switching to zero emission plants reduces 

emissions 26% assuming RCP 6. 
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Figure B-18. Total CO2eq (A-C) and Change in CO2eq from Business as usual (D-F) for, 
from top to bottom, the Global Policy for Scenario a): High efficiency gas, Scenario b): 
Average, Scenario c):  ZEG.   Solid black lines indicate the business as usual scenario for 3% 
methane leakage. 
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Figure B-19. Total (A-B) and change from Business as usual (C-D) for the Global Policy for 
Scenario b): Average for radiative forcings (A, C) and temperature (B, D). Solid black lines 
indicate the business as usual scenario for 3% methane leakage, and the error bars in B 
indicate the 66% confidence interval for a MAGICC6 multi-modal run where 171 Scenarios 
are run with all combinations of 19 AOGCM calibrations and 9 carbon cycle model 
calibrations. 

Figure B-18 shows the total CO2eq and change in CO2eq from business as usual for the Global 

Policy for scenario a)-d).  A global policy of switching from coal to natural gas could delay CO2eq in 

2100 by 5-25 years.  All of the coal to natural gas scenarios are very similar; it appears that scenario 

a) is best at reducing CO2eq concentrations, while scenario c) is the worst.  Scenario d) is roughly 2-3 

times as effective at reducing CO2eq.   Results vary with RCPs due to assumptions about future coal 

usage; since RCP8.5 assumes a large number of new coal power plants will be added to the fleet, it 

shows the largest decrease in concentrations.   

Figure B-19 includes the effect of aerosols, and shows the radiative forcing and temperature for 

scenario b).  The direct effect of aerosols is to cool the climate, so decreasing aerosols increases the 
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temperature in the short term.  Their lifetime is short, so this effect quickly disappears.  Reductions 

remain small compared to global values and model uncertainty.  
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Chapter 5: ROBUST RESOURCE ADEQUACY PLANNING IN 

THE FACE OF COAL RETIREMENTS 

Abstract 

Over the next decade, many U.S. coal-fired power plants are expected to retire, posing a 

challenge to system planners.  We investigate the resource adequacy requirements of the PJM 

Interconnection, and how procuring less capacity may affect reliability.  We find that PJM’s 2010 

reserve margin of 20.5% was sufficient to achieve the stated reliability standard of one loss of load 

event per ten years with 90% confidence.  PJM could reduce reserve margins to 13% and still 

achieve levels of reliability accepted by other U.S. and international power systems with 90% 

confidence.  Reducing reserve margins from 20.5% to 13% would reduce PJM’s capacity 

procurement by 11 GW, the same amount of coal capacity that PJM has identified as at high risk of 

retirement.  We find that the risk posed by supply shortages is primarily due to very rare, but severe 

events.  System operators should work to ensure that the system is robust to these extreme events.  
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5.1 Introduction 

Over the next decade, significant coal plant retirements are expected in the United States.  The 

Energy Information Agency forecasts that 40 GW of coal capacity will retire between 2014 – 2020 

[1].  These retirements are due to a combination of factors.  Many coal plants are near the end of 

their expected lifespan.  Many small and outdated coal plants are finding it cost prohibitive to make 

the retrofits necessary to comply with emission regulations.  Low natural gas prices have put 

downward pressure on revenues from wholesale electricity prices. 

These retirements pose a new challenge to system operators, who are mandated to meet 

resource adequacy requirements [2].  To meet these requirements, systems procure generation 

capacity that is rarely used but is needed in extreme circumstances.  This capacity, typically natural 

gas combustion turbines, has low upfront capital costs but high operating costs.  In the traditional 

regulated utility model, these generators are compensated through rate-of-return ratemaking, even if 

they produce no power.  The restructuring of 20 U.S. states in the late 1990s and early 2000s led to 

the industry to recognize the so-called “missing money problem”, whereby market designs would 

not support sufficient generation investment [3].  Today, most restructured markets use capacity 

markets to compensate generators for the capacity they provide. 

In both traditional regulated utilities and systems with capacity markets, the system operator 

centrally models the amount of capacity needed to achieve a given resource adequacy standard.  

These models consider the reliability of existing generators and forecasts of load.  Both generator 

outages and load forecasts are highly uncertain, creating the risk that inaccurate modeling may lead 

to an over- or under-procurement of capacity.  Over-procuring capacity will increase costs for 

ratepayers; under-procuring capacity will create outage risks above reliability targets. 
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The traditional metric of resource adequacy is the number of loss of load events (LOLE) per ten 

years.  Most U.S. systems, including the PJM Interconnection, procure enough capacity to meet a 

LOLE standard of one expected event per ten years, or 0.1 events per year (0.1 LOLE standard) [4]. 

The 0.1 LOLE standard dates back to the 1950s, although its origins are unknown [2].  Here we 

follow the standard definition of an outage “event” as an outage lasting one or more consecutive 

hours.  The LOLE metric is problematic, in that it does not consider either the duration of an 

outage, or magnitude of load that is shed during an outage. 

Due to the limitations of the LOLE metric, some systems have adopted other standards.  The 

Southwest Power Pool (SPP) uses the metric of 24 expected loss of load hours (LOLH) per ten 

years, or 2.4 hours per year (2.4 LOLH standard) [2].  The Scandinavian system uses the metric of 

expected unserved energy (UE) totaling 0.001% of total load served (0.001% UE standard).  

Australia’s National Energy Market (NEM) and South West Interconnected System (SWIS) have 

adopted a 0.002% UE standard [5].  The North American Electric Reliability Corporation has 

recommended system operators adopt UE standards, as they explicitly consider the magnitude of 

outages [6].  All three metrics consider only the risk of generator outages, and exclude other risks 

such as transmission or distributions outages. 

Resource planners base their capacity procurement decisions on the expected value of the metric 

used (0.1 LOLE, 2.4 LOLH, 0.001% UE).  By considering only the expected value, resource 

planners imply that they are risk neutral to supply shortages.  However, evidence suggests system 

operators are highly risk averse to supply shortages, as these shortages reflect poorly on the system 

operator, draw unwanted public attention, and can cause a host of grid management problems such 

as network collapse, leading to cascading failures [7].  
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Although a significant body of literature exists on the electric system reliability, resource 

adequacy risks have received less attention.  As part of a study into electricity reliability more 

broadly, Hines et. al. find that supply shortages over the period 1984 – 2006 were responsible only 

for 2.3% of U.S. outage events [8].  The methods used by system planners today are very similar to 

those outlined by Billinton in the 1970s [9].  More recently, system planners have begun to analyze 

the economically optimal reserve margin, or the reserve margin that minimizes total system costs 

and outage costs [2, 5]. 

Here we analyze the resource adequacy requirements of the PJM Interconnection, and how 

future retirements could affect reliability.  PJM anticipates 11 GW of coal capacity, or ~7% of total 

capacity, is “at high risk” of retirement [10].  Since 2007, PJM has procured capacity through its 

centralized capacity market.  Capacity market billings were $8 billion in both the 2009/2010 and 

2010/2011 auctions.  In 2010, 2010 capacity costs were roughly 18% of total 2010 billings [11]. 

PJM uses a forecasting model to calculate the capacity needed to meet the 0.1 LOLE standard 

[12].  The robustness of this model is important, as it sets the amount of capacity PJM procures, and 

therefore costs on the capacity and energy markets.  However, it is difficult to verify the model’s 

accuracy due to the rarity of supply shortages in PJM. 

We develop a robust statistical model of resource adequacy in PJM for the year 2010.  The 

model consists of a probabilistic forecast of hourly load and a probabilistic forecast of generator 

outages.  The load model explicitly considers three major drivers of uncertainty: uncertain load 

growth, natural temperature variability, and uncertainty in the underlying model/process.  The load 

model uses five years of load data and sixty years of temperature data from Pittsburgh International 

Airport and Reagan National Airport. We combine the load and outage models into a probabilistic 

forecast of supply shortages. 
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We analyze the sensitivity of LOLE, LOLH, and UE to PJM’s reserve margin, measured in 

terms of installed capacity.  In 2010, PJM calculated a 15.5% reserve margin was needed to achieve 

the 0.1 LOLE standard.  PJM procured more capacity than needed, making the realized reserve 

margin 20.5%.  We vary PJM’s reserve margin from 10% - 25% to see how LOLE, LOLH, and UE 

change.   

We find that PJM’s 15.5% reserve margin target met the 0.1 LOLE standard.  By procuring 

additional capacity such that the actual reserve margin was 20.5%, PJM’s revealed risk preference 

was to meet the 0.1 LOLE standard with 90% confidence.  

PJM could reduce reserve margins to 13% or 14% by switching to the 2.4 LOLH or 0.001% UE 

standard, while maintaining current risk preferences.  This represents a 9 – 11 GW reduction in 

capacity from a 20.5% reserve margin. We therefore conclude that PJM could significantly reduce 

reserve margins and still maintain reliability standards commonly used by other systems and current 

risk preferences.  More specifically, the 11 GW of coal capacity identified by PJM as “at high risk” of 

retirement could retire.  Maintaining a reserve margin of 13% or 14% would also minimize total 

system costs. 

However, the risk of a supply shortage rises if the potential for correlated outages among 

generators is considered.  We show that the risk of a natural gas supply disruption to PJM’s natural 

gas combustion turbines could increase outage risk, and cause PJM to underestimate this risk.   

We also find that the distribution of outage size is ‘fat tailed’, and the largest 10% of outages 

account for half of total load shed.  Therefore, system operators should recognize that supply 

shortages are more rare, but more disruptive than implied by reliability metrics.  
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5.2 Methods 

We develop a probabilistic forecast of supply shortages in PJM for 2010.  This forecast consists 

of two separate analyses: a probabilistic simulation of hourly load, and a probabilistic simulation of 

capacity available at each hour.  These analyses are described in detail below.  We then use Monte 

Carlo analysis to find the probability that load exceeds supply for each hour of the year.  We analyze 

three reliability metrics: LOLE, LOLH, and UE, and their sensitivity to PJM’s reserve margin. We 

perform several sensitivity analyses, and compare the results of our simulation to PJM’s modeling of 

capacity needs. 

5.2.1 Load forecast 

We use historic load and temperature data to forecast load in PJM.  Load forecasts have three 

sources of uncertainty: uncertainty in load growth, natural temperature variability, and uncertainty in 

the underlying model/process.  We consider each separately to robustly forecast load. 

A large literature exists on forecasting load.  Techniques commonly used include regression 

analysis, time-series analysis, and neural networks [13 – 15].  The model used by PJM to set reserve 

margin targets is a probabilistic model derived from Billinton [4, 9].  The model is not regression 

based, but uses heuristics that PJM has developed over time.  PJM uses a separate regression model 

to forecast long-term load growth [13]. 

We use regression analysis to forecast hourly load in PJM.  The regression model shares many 

features in common with the regression model PJM uses to forecast long-term load growth [13].  

Regression analysis is useful for estimating the expected value of load at each time period.  However, 

our focus is extreme events, i.e. high-load hours in which outages are more likely.  To account for 

these extreme events, we bootstrap the model’s residuals to simulate uncertainty in load at each time 

period. 
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We forecast hourly load in 2010 using hourly data from the previous five years. Using five years 

worth of data results in higher accuracy than if 10 or 15 years of data were considered.  This is 

because the relationship between temperature and load has changed in PJM over time, with loads 

becoming increasingly sensitive to high temperatures.  Using data more than five years old causes 

the model to under-forecast load at high temperatures.  For more details, see Appendix D.  

Hourly load data is from PJM [16].  Hourly temperature and associated weather data is from the 

National Oceanic and Atmospheric Association (NOAA) for the Reagan National Airport and 

Pittsburgh International Airport weather stations [17].  These weather stations were chosen as they 

have reliable temperature data available dating back to the 1940s, which is used to forecast 2010 

temperatures.  Data on the minutes of daylight for each day is from the US Naval Observatory [18] 

for Washington DC. 

Since its inception, the PJM territory has undergone several expansions (Table 5-1) [16].  To 

account for these expansions, we forecast load separately for “PJM Classic” (the PJM region prior to 

any expansions) and each expansion zone.  We then combine the forecasts into an overall PJM load 

forecast. 

Table 5-1. PJM Expansions, 1993 – 2010 [16] 

Expansion Date 
Rockland Energy March 2002 
Allegheny Energy April 2002 
Exelon – Commonwealth Edison May 2004 
AEP October 2004 
Dayton Power & Light October 2004 
Duquesne Light Co January 2005 
Dominion Virginia May 2005 
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For each zone, the analysis has the following seven steps: 

Step 1: Regress long-term trend 

We first identify and remove the five year, long-term trend in load growth.  By removing the 

long-term trend, we are able to explicitly incorporate PJM’s forecast of future load growth (step 5).  

To remove the long-term trend, we use a non-parametric, additive model and regress load against 

the hour index (5–1).  The hour index starts at 1 for the first hour of 2005, and ends at the last hour 

of 2009.  Using an additive model allows us to account for nonlinearities in load growth, and 

regressing the logarithm of load allows us to account for higher variability at high-load hours.  The 

model’s residuals, X, are stationary.  We use these residuals in step 2.  Figure 5-1 shows the long-

term trend of “PJM Classic”, the original PJM footprint, and the model’s stationary residuals.   

 log(load) = hourIndex + X   (5–1)  

 

Figure 5-1. (A) Fitted long-term trend and (B) stationary hourly residuals, X, for PJM 
Classic. 

Step 2: Regress stationary time series 
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The second step is to regress X, the stationary residuals from step 1, on several explanatory 

variables, including calendar events, temperature, and length of daylight hours (5–2). For hour of the 

day and length of daylight hours, we include interaction terms with the month of the year to account 

for changes in electric load patterns throughout the year.  Table D-1 lists all explanatory variables.  

We use model’s residuals, Y, to account for uncertainty in the underlying model/process (see step 

7).   

X = weekday + hour *month + holidays +Tadj,avgD + daylightHours*month +Y   (5–2) 

We use hourly weather data to calculate the Tadj,avgD, the average daily temperature adjusted 

for wind chill index (WCI) and temperature humidity index (THI) (Equations (5–3) to (5–6)).  For 

each region, we use data for either Reagan National Airport (DCA) or Pittsburgh International 

Airport (PIT) [17], depending on which is closest (Table 5-2).   

Because the relationship between temperature and load is highly nonlinear (Figure 5-2), we used 

a nonlinear, additive term to account for temperature in the regression.  We found that using a non-

linear model of temperature was more accurate than using linear relationships (see Appendix D).  

The remaining regression terms are linear.  
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Table 5-2. Weather station used for each zone’s regression 

Region Weather station 
used 

PJM Classic DCA 
Rockland Energy DCA 
Allegheny Energy DCA 
Exelon – Commonwealth Edison PIT 
AEP PIT 
Dayton Power & Light PIT 
Duquesne Light Co PIT 
Dominion Virginia DCA 

 

 
Figure 5-2. Relationship between hourly load in PJM Classic and adjusted average daily 
temperature at Reagan National Airport (DCA), 2005 - 2009.  Because the relationship is 
highly nonlinear, we use a non-linear, additive model to account for temperature 
dependence. 
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Table 5-3: Temperature calculations 

THIh = c1 + c2Th + c3Rh + c4ThRh + c5Th
2 + c6Rh

2 + c7Th
2Rh + c8ThRh

2 + c9Th
2Rh

2 

c1 = -42.379 
c2 = 2.04091523 
c3 = 10.14333127 
c4 = -0.22475541 
c5 = -6.83783x10-3 
c6 = -5.481717x10-2 
c7 = 1.22874x10-3 
c8 = 8.5282x10-4 
c9 = -1.99x10-6 

(5–3)  

WCIh = 35.74 + 0.6215Th – 35.75Vh
0.16 + 0.4275TVh

0.16 (5–4)  

                  THIh,   if Th ≥ 80 oF and Rh ≥ 40% 
Tadjh =      WCIh,  if Th ≤ 50  oF and Vh ≥ 3 mph 
                  Th,      otherwise 

(5–5) 

Tadj,avgD = mean(Tadjh),         (5–6)  

h = hour of the day 
D = day of the year 
Th = hourly temperature [oF] 
Rh = hourly relative humidity [percentage value between 0 and 100] 
Vh = hourly wind speed [mph] 
THIh = temperature humidity index [oF] 
WCIh = wind chill index [oF] 
Tadjh = hourly adjusted temperature 
Tadj,avgD = daily average adjusted temperature [oF] 
 
WCI index equation from [19]; THI index equation based on [20]. 
Although conversion equations are in English units, the remainder of our analysis uses 
Celsius. 

 

  

Step 3: Bootstrap residuals of the stationary model 

To account for uncertainty in the underlying process/model, we bootstrap the residuals of the 

stationary time series model, Y, (5–2).  We bootstrap residuals by month, in 24-hour blocks.  

Bootstrapping by month allows us to account for heteroskedasticity in the residuals (Figure D-9); 

∀h∈D
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using 24-hour blocks allows us to account for time dependence in the residuals (Figure D-10). The 

resulting bootstrapped residuals are used in Step 7. 

Step 4: Forecast temperatures 

Because the next year’s temperatures are uncertain, we develop temperature forecasts for 2010 

based on historic NOAA weather data dating back to 1949 for DCA and PIT airports [17] (years 

1966 – 1972 were excluded due to missing data).  We use hourly temperature, relative humidity, and 

wind speed data to calculate the average adjusted daily temperature (Tadj,avgD) for DCA and PIT 

each day (Equations (5–3) to (5–6)).  We bootstrap days from this 60 year dataset, by month, in 10-

day blocks.  Bootstrapping by month allows us to account for the seasonal variations in temperature; 

using 10-day blocks allows us to account for time dependence in weather patterns that can last for 

several days (Figure D-8).  Using 60 years of temperature data allows us to robustly account for 

extreme temperatures that may occur.  We do not observe a secular trend in the NOAA temperature 

data.  By using historic data, we do not account for the possibility of future climate-induced changes 

in temperature levels or volatility.  

Step 5: Forecast the stationary time series 

Once we have a model of the underlying stationary process (step 2), we use the model to predict 

the next year’s stationary time series.  This stationary time series excludes the effects of load growth.  

In this prediction, we use the temperature forecast developed in step 4.   

Step 6: Forecast load growth 

Our forecast of growth in average load is based on PJM’s 2009 forecast for 2010 load growth.  

We adjust the forecast to account for the historic accuracy of the Energy Information Agency’s 

(EIA) load forecasts in the Annual Energy Outlook; insufficient data on PJM forecast accuracy is 

publically available.  Between 1999 – 2008, EIA load growth forecasts had an average bias of -0.3% 
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and standard deviation of 1.9% [21].  We assume forecast errors are normally distributed, and 

develop a distribution of possible load growth rates (Figure 5-3).  We then sample growth rates from 

the resulting distribution.  We assume load growth is linear throughout the year.  

 
Figure 5-3. PJM’s 2010 load growth forecast, with and without the historical accuracy factor, 
and actual load growth that occurred. 

Step 7: Forecast hourly load  

Finally, we sum the three components of our load forecast model: forecast load growth (step 6), 

the forecast stationary time series (step 5), and the residuals of the stationary time series regression 

(step 3).  This allows us to separately account for the three sources of uncertainty: uncertain load 

growth, natural temperature variability, and uncertainty in the underlying model/process. As all three 

components are probabilistic, we repeat the process many times to measure the uncertainty 

associated with each.  The result is a probabilistic hourly forecast of load. 

Once we have developed probabilistic hourly load forecasts for each zone, we sum these 

forecasts to find the total load forecast for PJM.  We repeat the entire process 5,000 times to 

develop a probabilistic forecast of hourly PJM load in 2010. 
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5.2.2 Supply forecast 

We next forecast the total capacity available at each hour.  Total available capacity is the summed 

capacity of all online dispatchable plants, demand response, import capacity, and firm wind capacity.  

We use data from the 2010 PJM Form EIA-411 to identify each dispatchable plant’s summer and 

winter capacity, as cleared in the capacity auction [22].  We therefore assume the system operator has 

perfect information as to what generators will be available for the forecast year. We simulate the 

online status of each PJM generator, taking into consideration forced outages, planned outages, and 

maintenance outages.  We simulate total capacity available for each of the 8760 hours of the year, 

and repeat the simulation 5,000 times to get a distribution of capacity available at each hour.  We do 

not model other supply-side actions PJM can take to mitigate outage risks, such as voltage 

reductions. 

We first schedule planned outages and maintenance outages for all plants.  These outages are 

scheduled such that the likelihood of a supply shortage is minimized.  As such, the majority of 

outages are scheduled during the spring and fall. NERC’s Generating Availability Data System 

(GADS) provides data on the average number of planned outage hours and maintenance outage 

hours for plants, aggregated by plant type and size [23].  We find that these outages can be scheduled 

with minimal effect on LOLE.  More details on planned and maintenance outages can be found in 

Appendix D. 

We next model forced outages.  Forced outages are caused by unforeseen technical problems, 

occur randomly throughout the year, and have an uncertain duration.  We model plant forced 

outages as a two-stage discrete Markov chain [9]. Figure 5-4 illustrates this process.  At each time 

period t, if the plant is online there is probability P1,1 that it remains on at period t+1 and probability 

P1,0 that is fails.  If the plant is offline, it remains off with probability P0,0 and is repaired with 
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probability P0,1.  Accounting for the duration of outages increases the uncertainty of how much 

capacity is available at each hour.  We simulate each plant’s forced outages over one year (8760 

hours), then sum the total online capacity of all PJM plants.   

GADS provides data on the mean number of forced outages, and PJM provides data on plant 

equivalent demand forced outage rates (EFORd) [24].  We use these data to calculate the transition 

probabilities with equations (5–7) through (5–11).  EFORd is defined as “the probability that a 

generating unit will fail, either partially or totally, to perform when it is needed to operate” [11]. All 

data are aggregated by plant type and size.  

 
Figure 5-4. Forced outages 2-stage discrete Markov process 

Table 5-4. Forced outage equations 

  (5–7)  

  (5–8) 

 (5–9) 

 (5–10) 

 (5–11) 

MOD = mean outage duration 
NFO = Annual number of forced outages 
EFORd = Equivalent forced outage rate 

 

MOD = EFORd *8760
NFO

P0,1 =
1

MOD

P0,0 = 1− P0,1

P1,0 =
NFO
8760

P1,1 = 1− P1,0
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We assume that each plant’s transition probabilities are constant throughout the year. We also 

assume the duration of outages is uniformly distributed. 

We estimate the available DR capacity and net import capacity based on the results of the 

capacity auctions [25] (Table 5-5).  Each auction covers the period of June 1 of the first year to May 

31 of the second year.  We derate DR capacity by 5%, as is PJM’s practice to account for DR that 

does not respond to PJM requests [26].  Firm wind capacity is assumed by PJM to be 13% of 

nameplate capacity [25]; for both 2009 and 2010, firm wind capacity was 40 MW. 

Table 5-5. DR capacity and net import capacity, by capacity auction [25] 

Capacity 
auction 

DR capacity 
(MW) 

Net import 
capacity (MW) 

2009/2010 7,290 +320 
2010/2011 9,050 -400 

5.2.3 Outage forecast 

We assume an outage occurs when total load exceeds total available capacity.  Using the 

procedures outlined above, we develop yearly forecasts of hourly load and available capacity.  We 

then subtract the hourly load forecast from the hourly forecast of available capacity to identify if an 

outage has occurred (5–12).  We append 10 of these yearly forecasts together, and then calculate UE 

and LOLH with equations (5–13) and (5–14).  LOLE is calculated in a similar manner as LOLH, but 

all consecutive outage hours are counted as one outage event.  We repeat the process 10,000 times 

to develop distributions of LOLE, UE, and LOLH.  We repeat the entire process, varying the 

amount of installed capacity in order to see how reliability metrics change versus reserve margin. To 

vary capacity, we add or subtract a constant amount from each hour’s available capacity. 
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Table 5-6. Outage equations 

    (5–12) 

  (5–13) 

      (5–14) 

H = set of 8760 annual hours 

AvailableCapacityh = summed capacity of all online PJM generators, DR, net 
imports, and reliable wind power at hour h 

Loadh = total PJM load at hour h 

Outageh = binary variable indicating if an outage occurred at hour h 

 

In our modeling, we do not consider the effect of transmission constraints on resource 

adequacy.  In the 2009/2010 auction, PJM found inflows were constrained to the Eastern Mid-

Atlantic Area Council (EMAAC) and southwestern MAAC.  Additional capacity was procured in 

these regions, resulting in higher capacity prices in these regions [27].  In the 2010/2011 auction, 

PJM found no transmission constraints, and capacity prices were equal throughout the 

interconnection.  We also ignore any operating or synchronous reserve requirements. 

PJM’s Base Residual Auction is held in May, three years prior to the delivery year.  By 

conducting the auction three years in advance, PJM seeks to reduce uncertainty for market 

participants.  Each year after the Base Residual Auction, PJM conducts Incremental Auctions to 

account for changes in market conditions.  Our analysis simulates the last Incremental Auction, one 

year in advance of the delivery date.  As such, we use data from 2009 and earlier to develop the 2010 

forecast.  In principle, our methods could be used to simulate the Base Residual Auction, but would 

Outageh =
1: AvailableCapacityh <∑ Loadh
0 : AvailableCapacityh >∑ Loadh

∀h∈H

LOLH = Outageh
h
∑ ∀h∈H

EUE = (Loadh − AvailableCapacityh
h
∑ ) ∀h∈Outageh = 1
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need to be adjusted to account for the increased uncertainty in available capacity and load three 

years in advance. 

5.2.4 Economically optimal reserve margin 

An alternative to basing capacity decisions on reliability mandates is to instead base decisions on 

minimizing total system costs.  The ‘economically optimal reserve margin’ is the reserve margin that 

minimizes total system costs, including costs on the capacity market, energy market, supply shortage 

costs, and outage costs.  We estimate the total system costs in PJM for reserve margins of 10% to 

20%.  This analysis is described in detail in Appendix C.  

5.2.5 Correlated outages 

We test how LOLE, LOLH, and UE would vary if all 30 GW of PJM natural gas combustion 

turbines (NGCTs) were subject to the risk of a natural gas supply disruption. We model the hourly 

risk of a fuel supply shortage as PFS.  We then evaluate each hour if a supply shortage occurs (5–15).  

We assume the risk of a supply shortage is uniform throughout the year.  If a supply shortage 

occurs, the probability of each individual NGCT failing is Poutage,FS (5–16); if no supply shortage 

occurs, we adjust the probability of an independent failure occuring such that the overall risk of 

failure is equal to the case in which all outages are independent (5–10).  We therefore do not change 

the probability of an outage occurring.  Rather, we adjust the fraction of outages due to a supply 

shortage versus an independent failure. 

Because data on the frequency and severity of correlated outages is not publically available, we 

test the sensitivity to each parameter.  First, we vary the hourly probability of a supply shortage from 

0.023% to 0.002% (twice per year to once every 5.5 years), assuming that all NGCTs fail if a 

shortage occurs (Poutage,FS  = 1).  In the second test, we vary fraction of generators forced offline by a 
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supply shortage from 0% to 100%, assuming that shortage occur on average once per year (PFS = 

0.011%). 

Table 5-7. Correlated outage equations 

   (5–15) 

   (5–16) 

 (5–17) 

H = set of 8760 annual hours 

PFS = Probability of a fuel shortage 

fuelShortageh = binary variable indicating if there is a fuel shortage at hour h 

Poutage,FS = Probability that a generator goes offline if a fuel shortage occurs
 

5.3 Results 

 

Table 5-8 shows accuracy statistics of the load model, both in the training data for 2005-2009 

and test data when predicting 2010 load.  The test error is the model’s prediction error when given 

actual 2010 temperatures and load growth; it therefore ignores uncertainty in temperature and load 

growth.  Normalized root-mean-square error (NRMSE) controls for the size of the PJM region (5–

18).  Table D-1 shows detailed regression results for the PJM Classic regression. Figure 5-5 shows 

training and test residuals distributions.  Because the distributions are similar, resampling from the 

training residuals should reasonably account for model uncertainty (see Methods - Step 3). 

  (5–18) 

 

fuelShortageh =
1:rand() ≤ PFS
0 :rand() > PFS

∀h∈H

P1,0,h ' =
Poutage,FS : fuelShortageh = 1

P1,0 − Poutage,FS *PFS : fuelShortageh = 0
∀h∈H

P1,1 ' = 1− P1,0 '

NRMSE = RMSE
loadmax − loadmin
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Table 5-8. Accuracy statistics of the load forecast model, both training error (1993 – 2009) 
and test prediction error (2010).  

 Training, 1993 - 2009  Test, 2010 

PJM Region 
RMSE 
[MW] 

NRMSE 
[%] 

 RMSE 
[MW] 

NRMSE 
[%] 

PJM Classic 1690 4.0  1800 4.5 
AEP 790 5.2  910 6.7 
Allegheny Energy 300 5.3  330 6.2 
Dayton Power & Light 130 4.7  140 6.1 
Dominion Virginia 640 3.3  760 5.8 
Duquesne Light Co 80 4.1  90 5.2 
Exelon – Commonwealth Edison 930 5.6  1000 6.9 
Rockland Energy 20 4.2  20 5.1 
PJM total 3510 3.5  3840 4.3 

 

 
Figure 5-5. Distribution of training residuals and test residuals for PJM total. 

The model’s accuracy could certainly be improved further.  Including weather data from more 

points within PJM would likely have the greatest effect on model accuracy.  Our model uses weather 

data from Reagan National and Pittsburgh International Airports; PJM’s long-term load forecasting 

model uses temperature data from 24 airports [13].  However, the availability of reliable weather data 

dating to 1945 is spotty. 
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5.3.1 The effect of temperature and load growth uncertainty 

Our probabilistic forecast of 2010 load considers uncertainty in temperature, load growth, and 

model error. Figure 5-6 illustrates the model’s accuracy when these uncertain factors are considered. 

Although the actual load is within the forecast’s 95% confidence bounds, the forecast is biased to 

somewhat under-predict the probability of high loads.  This is because 2010 was a historically warm 

year compared to the past 60 years (Figure 5-7).  Using actual 2010 temperatures and load growth 

instead of probabilistic forecasts removes the model’s bias to underpredict the probability of high 

loads (Figure 5-6). 

 

Figure 5-6. Accuracy of load model.  Cumulative probability of actual 2010 hourly load, and 
forecasts’ 95% confidence intervals. 
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Figure 5-7. 2010 temperature distributions, and historic range of values 1949 – 2010.  2010 
had an unusually high number of days with average adjusted temperatures of 20 oC – 30 oC. 

5.3.2 Reliability metrics 

Figure 5-8 shows simulated 2010 LOLE for reserve margins of 10% to 25%.  The expected 

value of our 2010 simulation closely matches that of PJM’s 2013 simulation (data on PJM’s 2010 

simulation is not available, but the results of the simulation have changed very little over time [26]).  

In 2010, PJM found a 15.5% reserve margin was necessary to meet the 0.1 LOLE standard [26]; we 

find a 15.5% reserve margin would have resulted in an LOLE of 0.09 events per year.  Our 

simulation’s 90% confidence interval ranges from zero to three events per ten years at 15.5% reserve 

margin.   

The actual 2010 reserve margin was 20.5% (164 GW), as PJM procured more capacity than was 

needed on the capacity market [27]3.  We find that a 20.5% reserve margin corresponds to an 

expected LOLE of 0.02 events per year, and achieves the 0.1 LOLE standard with 90% confidence.  

                                                
3 Generation offered + fixed resource requirement (FRR) commitments – generation offered but not accepted 
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Therefore, PJM’s revealed risk preference in 2010 was to meet the 0.1 LOLE standard with 90% 

confidence. 

 
Figure 5-8. 2010 LOLE versus reserve margin.  Also shown are results from PJM’s 2013 
resource adequacy modeling (recreated from [26]). 

Figure 5-9 shows simulated 2010 unserved energy versus reserve margin.  At a 15.5% reserve 

margin, the expected UE is 1.5 GWh per year, or 0.0002% of actual 2010 load.  The 90% confidence 

interval ranges from 0 GWh per year to 7.5 GWh per year (0.0000% - 0.0011% of load unserved, 

respectively).  UE becomes increasingly uncertain at lower reserve margins.  Expected LOLH is 4, 

with a 90% confidence range of 0 to 16.   
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Figure 5-9. 2010 unserved energy versus reserve margin.   

5.3.3 Optimal reserve margin and the effects of risk aversion 

We find that PJM’s target 2010 reserve margin of 15.5% was sufficient to meet the 0.1 LOLE 

standard.  Switching to either the 2.4 LOLH standard or the 0.001% UE standard could reduce 

reserve margins to 10% or 11% (Table 5-9).  By procuring additional capacity such that the realized 

reserve margin was 20.5%, PJM’s implied risk preference is to meet the 0.1 LOLE standard with 

90% confidence.  PJM could meet the 2.4 LOLH standard and 0.001% UE standard with 90% 

confidence at reserve margins of 13% and 14%, respectively.  Requiring that the reliability metric be 

met with 95% or 99% confidence would further increase reserve margin requirements. 
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Table 5-9. Sensitivity of the target reserve margin and installed capacity to different 
reliability metrics and risk tolerances.  PJM’s target 2010 reserve margin was 15.5% (158 
GW), and actual 2010 reserve margin was 20.5% (165 GW).  

Metric 

Optimal reserve margin [%] 
(installed capacity [GW]) 

Risk Neutral 
90% 

Confidence 
95% 

Confidence 
99% 

Confidence 

0.1 LOLE 15.5% 
(158) 

20.5% 
(165) 

23% 
(168) 

>25% 
(>170) 

2.4 LOLH 10% 
(151) 

13% 
(154) 

14% 
(156) 

16% 
(159) 

0.001% UE 11% 
(152) 

14% 
(156) 

16% 
(159) 

18% 
(161) 

 

5.3.4 Distribution of outage size 

We find that there is extreme variation in the magnitude of outages. As shown in Figure 5-10, 

the distribution of unserved energy resulting from an outage is extremely fat tailed.  At a 15.5% 

reserve margin, the mean outage is 15 GWh, but outages range from 0 GWh to 126 GWh (Table 

5-10).  The top 10% largest outages account for half of total unserved energy, and the top 1% of 

outages account for 10% of total unserved energy.  The risk of a very large outage becomes more 

pronounced at lower reserve margins. 
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Figure 5-10. Distribution of the size of simulated outages, in terms of unserved energy, 
versus a fitted normal distribution.  Assumed reserve margin is 15.5%.   

Table 5-10. Outage summary statistics, 15.5% reserve margin 

  
Expected 

value 
90% Confidence 

Interval Maximum 

Outage duration [hours]  4   1 - 9   11  
Largest magnitude [GW]  4   0 - 11   18  
Total load shed [GWh]  15  0 - 58 126 

 

5.3.5 Model form uncertainty 

Load in PJM is highly sensitive to temperature, and accurately modeling this relationship is 

important for accurately calculating LOLE.  We used a nonparametric, additive model to account 

for the relationship between load and temperature.  We also tested a linear model to account for the 

relationship.  The linear model divided days into heating degree days (HDD) and cooling degree 

days (CDD).  Details can be found in Appendix D.  We find that the linear model significantly over-

predicts load at high temperature hours, which increases the modeled probability of outages relative 

to the nonparametric, additive model (Figure 5-11). 
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Figure 5-11. Comparison of LOLE estimates for non-parametric and linear temperature 
models at 15.5% reserve margin.  The linear model overestimates load at high temperature 
hours, and therefore overestimates the probability of an outage occurring. 

We also analyze the sensitivity of the model’s parameters to ‘leave-one-out’ testing (Figure 5-12).  

The base model uses data from 2005 – 2009 to estimate model parameters.  Estimating model 

parameters from only four years worth of data, leaving one of the years out, would change model 

parameters and therefore estimates of LOLE, LOLH, and UE. The baseline expected value of 

LOLE is 0.9 at a 15.5% reserve margin; ‘leave-one-out’ testing can vary the mean LOLE by +/- 

30% (0.64 to 0.97). 
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Figure 5-12.  Sensitivity of LOLE to ‘leave-one-out’ parameter testing. The base model 
(solid line) estimates parameters with data from 2005 – 2009.  The shaded area shows the 
range of results if one year’s worth of data is left out when estimating the parameters.  
Evaluated at 15.5% reserve margin. 

Finally, we test the sensitivity of results to a scenario in which EFORd varies with ambient 

temperature.  We find that LOLE would increase if EFORd rose in summer months and fell in 

winter months.  For more details, see Appendix D. 

5.3.6 Correlated failures 

We find that natural gas supply disruptions have the potential to significantly increase the risk of 

a supply shortage, assuming such outages force a large percentage of PJM’s NGCTs offline at once.  

If a supply disruption that forces all 30 GW of NGCTs offline occurs on average once every five 

years, the expected UE more than doubles (Figure 5-13).  If this supply disruption were to occur on 

average once per year, it would raise expected UE by more than 10 times.  However, supply 

disruptions pose a significant risk only if they force more than 50% of NGCTs offline at once 

(Figure D-12).  Supply disruptions can significantly increase the maximum size of supply shortages 

(Figure D-13).  We assume supply disruptions can occur at any time throughout the year; limiting 

supply disruptions to winter months would change the associated risk of supply shortages. 
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Figure 5-13. Sensitivity of unserved energy to natural gas supply shortages that force all PJM 
NGCTs offline.  Evaluated at 15.5% IRM. 

5.4 Discussion 

Using our probabilistic regression method, we find the 2010 reserve margin target of 15.5% was 

sufficient to meet the mandated 0.1 LOLE standard.  PJM procured 7 GW more capacity than 

needed to meet the 15.5% target, making the realized reserve margin 20.5%.  By procuring more 

capacity than needed, PJM’s revealed 2010 risk preference was to meet the 0.1 LOLE standard with 

90% confidence.  This risk aversion is due to PJM’s policy to procure more capacity than needed if 

the capacity can be procured at a cost less than the net cost of new entry of a natural gas 

combustion turbine (~$270/MW-day) [27, 28]. 

Switching from the 0.1 LOLE standard to either the 2.4 LOLH or 0.001% UE standard would 

have reduced PJM’s 20.5% reserve margin in 2010.  A 14% reserve margin would have been 

sufficient to meet the 0.001% UE standard with 90% confidence.  A 13% reserve margin would 

have been sufficient to meet the 2.4 LOLH standard with 90% confidence.  This represents a 9 GW 

– 11 GW reduction in capacity procurement, while still maintaining levels of reliability accepted by 
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other systems.  If PJM were to switch to either standard, the 11 GW of coal capacity “at high risk” 

of retirement could be retired without needing to be replaced. 

In line with NERC, we recommend that PJM adopt a reliability metric based on unserved 

energy.  The LOLE metric is flawed, in that it measures only the probability of an outage occurring 

and ignores both the severity and duration of outages. Our modeling shows that the severity and 

duration of outage events vary greatly (Table 5-10), undermining the usefulness of the LOLE metric.  

Because supply shortages could cause political fallout both regionally and for PJM management, we 

recommend that PJM work through their stakeholder process to identify both the appropriate UE 

target and the risk tolerance of PJM participants. 

Basing capacity decisions on traditional reliability standards ignores the cost effectiveness of 

carrying excess capacity.  Achieving a very high reliability standard may be possible, but extremely 

costly.  Recently, system operators such as ERCOT have begun to incorporate the cost effectiveness 

metrics into their decision making process [30]. The ‘economically optimal reserve margin’ is the 

reserve margin that minimizes total system costs, including costs associated with outages.   

As discussed extensively in the Appendix C, we find that the long run, economically optimal 

reserve margin in PJM is 13% - 15%.  This is the same reserve margin needed to meet either the 2.4 

LOLH standard or the 0.001% UE standard with 90% confidence.  We therefore conclude that 

either standard would be economically efficient.  However, maintaining PJM’s realized 2010 reserve 

margin of 20.5% would result in annual system costs $600 million higher than economically optimal 

in the long run. 

System operators should be aware that the risk posed by supply shortages is primarily due to 

extremely severe, but infrequent outages.  Our simulations show that the largest 10% of supply 

shortages are responsible for 50% of unserved energy.  Taking into account the possibility of 
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correlated generator outages further exacerbates this risk.  The risk of very large outages increases at 

low reserve margins, suggesting that some risk aversion on part of PJM may be justified.  System 

operators should work to ensure that their system is robust to large supply shortages, and that these 

shortages do not lead to cascading network failures.  

PJM’s resource adequacy modeling assumes that generator outages are independent.  We find 

that correlated outages among plants due to natural gas supply shortages could increase outage risk, 

and cause PJM to underestimate this risk.  Evidence suggests that correlated outages do occur with 

some regularity; winter storms on January 7, 2013 led to 19 GW of natural gas plants and 21 GW of 

other capacity simultaneously experiencing forced outages [29].  We recommend further research 

into the risks posed by correlated outages.  If the risks posed by correlated outages are found to be 

significant, we recommend that PJM consider this risk when planning resource adequacy needs.  If 

correlated outage risks are found to be significant, PJM may need to significantly increase reserve 

margins.  
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C Appendix: The economically optimal reserve margin 

Introduction 

In the main text of this chapter, we investigate how adopting a different resource adequacy 

standard in PJM would change the reserve margin.  We analyze three standards: the 0.1 LOLE 

standard, the 2.4 LOLH standard, and the 0.001% UE standard.  

Recently, system operators and researchers have begun to consider basing capacity decisions on 

system cost, rather than mandated resource adequacy standards [1, 2]. The decision to procure a 

given level of capacity affects costs not only on the capacity market, but also energy market costs, 

ancillary service market costs, and outage costs.  The ‘economically optimal reserve margin’ is the 

reserve margin that minimizes total system costs [1]. 

Here, we perform a simplified analysis to identify the level of capacity procurement that 

minimizes total system costs, both in the long run and short run.  We use PJM generator data and 

load data from 2010 in this analysis.  We consider costs from four sources: costs on the capacity 

market, energy market, outage costs, and reserve shortage costs.  We assume plant forced outages 

are independent of one another.  In 2010, PJM’s reserve margin (installed capacity) was 20.5%.  We 

quantify total system costs for reserve margins of 10% - 20%.  These methods are similar to those 

used by other studies of the economically optimal reserve margin [1,2]. 

The consequences of reducing PJM’s reserve margin depend greatly on the type of capacity that 

is no longer procured (retired).  Procuring less capacity would force the retirement of plants with the 

highest capacity market bids.  However, individual capacity market bids are not publically available, 

and therefore we cannot know which plants would retire.  If baseload capacity retired, costs on the 
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energy market increase significantly.  If peaking capacity retired, energy market costs would be 

unchanged. 

As a first order approximation, we assume procuring less capacity would force the retirement of 

coal plants that are expensive to operate.   PJM has identified 11 GW of coal capacity “at high risk” 

of retirement, and an additional 14 GW of coal capacity “at some risk” of retirement [3].  These 

plants are smaller than 400 MW and older than 40 years.  However, it is possible that lower reserve 

margins might force other types of capacity to retire.  We therefore bound our analysis with two 

scenarios: only baseload plants retire, and only peaking plants retire. 

We estimate that PJM’s long run, economically optimal reserve margin is 13% - 15%.  System 

costs change by less than $100 million within this range, or less than 1% of the total $28 billion in 

estimated system costs.  Because this range includes the targets needed to meet the 2.4 LOLH 

standard and 0.001% UE standard with 90% confidence (13% and 14%, respectively), we conclude 

that either of these standards could be considered efficient.  However, maintaining PJM’s realized 

2010 reserve margin of 20.5% would increase annual system costs by $600 million in the long run. 

In the short run, the economically optimal reserve margin is higher, at 15% to 18% or higher. 

This is because PJM currently has a large supply of relatively cheap capacity.  The costs of procuring 

capacity on today’s capacity market are therefore less than they are expected to be in the long run.  

PJM takes this fact into consideration when procuring capacity, which explains why PJM’s 2010 

reserve margin was 20.5%, 5% higher than needed to meet the 0.1 LOLE standard.  This policy of 

over-procuring capacity manifests itself as risk aversion on the part of PJM system planners. 

Our sensitivity analysis shows that system costs would significantly increase if baseload plants 

retired instead of the newest plants.  Baseload retirements significantly increase costs on the energy 
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market.  This suggests some additional incentives may be warranted to discourage the retirement of 

baseload plants.  If peaking plants were to retire, the optimal reserve margin would be 13%. 

Methods 

We evaluate four types of system costs: costs on the capacity market, energy market, outage 

costs, and reserve shortage costs.  Total system costs are approximated as the sum of these four cost 

categories.  We exclude several other types of costs, including costs on regulation markets, 

emergency import costs, and demand response costs.  Although these categories are small relative to 

the costs considered here [1], a more thorough analysis would consider these and other system costs. 

Energy market costs 

We quantify energy market costs with a simplified supply curve dispatch model.  Energy market 

costs are calculated as the sum of generator fuel and variable operation and maintenance costs 

throughout the year.  We assume generators are dispatched each hour in order of least cost.  We do 

not capture constraints that can lead to out-of-merit-order dispatch, such as transmission constraints 

and generator ramping constraints.   

We use 2010 hourly load data and generator capacity data from PJM [4, 5].  We derate each 

plant’s capacity by the forced outage rate [6].  Delivered fuel cost data is from the Energy 

Information Agency [7] and Lazard [8].  Variable operation and maintenance costs are from Lazard 

[7].  Plant heat rates are from eGRID [9]. 

In the baseline scenario, the most expensive coal plants to operate are retired.  For the sensitivity 

analysis, we retire plants with the lowest operating costs (baseload) and highest operating costs 

(peakers). 
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Figure C-1. Energy market supply curves for baseline 20.5% reserve margin, and 15.5% 
reserve margin with different types of capacity retired.  

Capacity market costs 

We estimate long run capacity costs as the total cost of building and operating a new natural gas 

combustion turbine (NGCT) plant, net expected revenues on the energy market.  We approximate 

this quantity, known as the net cost of new entry (net CONE), as $100/kW-yr ($274/MW-day) 

based on findings of existing studies [10]. 

Short run capacity costs are derived from the 2010/2011 capacity market supply curve [11] 

(Figure C-2).  The 2010/2011 market clearing price was $174/MW-day, corresponding to a market 

clearing quantity of 131 GW [12].  In addition to the quantity cleared on the capacity market, PJM 

resource adequacy planners took into account an additional 26 GW of capacity procured by load 

serving entities through bilateral, fixed resource requirement commitments [11], making the realized 

reserve margin 20.5%.  We measure long-run and short-run capacity market costs for reserve 

margins of 10% to 20%, corresponding to market quantities of 151 GW – 164 GW.  
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Figure C-2. 2010/2011 capacity market supply curve.  Based on [10]. 

Cost of reserve shortages 

We assume a reserve shortage occurs whenever hourly load is high enough to force PJM to draw 

from their day ahead schedule reserves (DASR) (C-1).  Shortages are valued at PJM’s current price 

cap of $2,700 / MWh [13].  Data on hourly 2010 DASR requirements is from PJM [14].  

ReserveShortageh = min(0,Loadh − (TotalCapacity − ReserveRequirementh ))   (C-1) 

Cost of outages 

The cost of an outage is the total unserved energy (UE), multiplied by the value of lost load 

(VoLL) of consumers.  In the main text of this chapter, we simulate expected UE for various reserve 

margins, assuming plant outages are independent of one another.  Here, we multiply these simulated 

values by an assumed VoLL to approximate the total cost of outages.  By using the expected value 

of unserved energy, we assume PJM is risk-neutral to outage costs.  We assume a VoLL of 

$15/kWh, based on the estimated costs of a one-hour interruption for medium/large commercial 

and industrial consumers [15]. 
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Results and Discussion 

Long run system costs 

We find the long run, optimal economic reserve margin is 13% - 15%.  Total system costs vary 

by less than $100 million per year within this range.  As shown in Figure C-3, costs associated with 

outages and reserve shortages become more significant as reserve margins fall below 14%.  Above 

14%, capacity market costs increase significantly. 

 
Figure C-3. Long run system costs.  Capacity market costs above a $15B/yr baseline. 

Short run system costs 

The short run, the optimal economic reserve margin is 15% - 16%. As shown in Figure C-4, 

system costs are within $100 million for reserve margins of 15% - 18%.  Below 15%, reserve 

shortage costs and outage costs become significant.   
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Figure C-4. Short run system costs.  Capacity market costs above a $15B/yr baseline. 

Sensitivity to type of capacity retired 

System costs are very sensitive to the type of capacity that is retired when PJM procures less 

capacity.  As shown in Figure C-5, if the retired capacity is baseload plants, total system costs 

increase significantly as reserve margins decrease.  This suggests that incentives to discourage the 

retirement of baseload capacity may be warranted.  If retired capacity is either expensive coal plants 

or peaker plants, system costs are minimized for reserve margins of 13% - 15%. 
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Figure C-5. Long run system costs, for different assumptions about what type of capacity is 
retired.  Baseload plants are those with the lowest operating costs; peaker plants are those 
with the highest operating costs. 

We find that outage costs are small in both the long run and short run, as the expected unserved 

energy is small.  We therefore conclude that the economically optimal reserve margin is insensitive 

to VoLL, here assumed to be $15/kWh.  More important is the shortage price cap, currently set at 

$2,700/MWh in PJM.  

We find that the economically optimal reserve margin is 13% - 15% in the long run.  As this 

range includes the reserve margins needed to meet the 2.4 LOLH standard and 0.001% UE standard 

with 90% confidence, we conclude that either of these standards could be considered efficient.  

However, maintaining PJM’s realized 2010 reserve margin of 20.5% would result in annual system 

costs $600 million higher than economically optimal. 

Our results are similar to those of other, similar, studies [1, 2].  The Brattle Group found that the 

economically optimal reserve margin in the ERCOT system is 10.2%, or lower than the reserve 

margin we find is optimal in PJM [1].  This is likely due to differences between the system such as 

generator makeup and fuel prices.  Similar to our results, the Brattle study found that system costs 
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do not vary significantly for reserve margins of 8% - 14%.  The study does note that there is more 

uncertainty in system costs at lower reserve margins. 

Future work in this area should include an expanded treatment of uncertainty.  In particular, we 

base outage costs on the expected unserved energy and therefore assume system operators are risk 

neutral to outage costs.  In the main text of this chapter, we show that unserved energy is highly 

uncertain.  Accounting for this uncertainty and system operator risk aversion may increase outage 

costs.  We also base our estimates of fuel costs and generation mix on 2010 data; considering a wider 

range of scenarios would allow for more robust results.   
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D Appendix: Detailed results 

Scheduling planned outages and maintenance outages 

We schedule each plant’s planned outages and maintenance outages with the following process: 

1. Find the total planned outage hours (POH) and forced outage hours (FOH) for each plant 

2. Divide plants into two categories: peaking plants (<100 MW) and non-peaking plants 

3. Schedule peaking outages such that the total offline capacity is roughly equal for all hours of the 

year.  Each plant is assumed to undergo one outage, of duration POH + FOH.  ~1.7 GW of 

peaking capacity is scheduled offline each hour. 

4. Schedule non-peaking outages to occur during the spring (March, April, May) and fall 

(September, October, November).  Each plant is assumed to undergo one outage, of duration 

POH + FOH.  ~35 GW of non-peaking capacity is scheduled offline each spring and fall hour. 

By scheduling outages in this manner, we minimize the likelihood of a supply shortage.  We also 

mimic the actual scheduling of outages in PJM, in which baseload coal and combined cycle plants 

are primarily offline during the spring and fall, and combustion turbines are offline throughout the 

year (Figure D-1). 

 
Figure D-1. Equivalent availability factor, PJM generators, 2010 [1]. 

 

65#

70#

75#

80#

85#

90#

95#

100#

Jan# Feb# Mar# Apr# May# Jun# Jul# Aug# Sep# Oct# Nov# Dec#

Eq
ui
va
le
nt
+A
va
ila
bi
lit
y+
Fa
ct
or
+[%

]+

++

Coal,+
500++MW+

Gas+CC+

Gas+CT+



 159 

Detailed Regression Results 

Table D-1 provides detailed regression results for the PJM Classic region.  We find that the 

significant results have the expected sign in most cases.  For example, signs are negative for holidays, 

reflecting that load are lower on these days.  Signs are also negative for low-load hours during the 

night and positive for high-load hours during the day and evening.   

Table D-1. Detailed regression results for the PJM Classic region.   

Note: Dependent variable is residuals from the long-term trend regression (see main paper, step 1). 

Significance codes: ‘***’ (P < 0.001); ‘**’ (P < 0.01); ‘*’ (P < 0.05); ‘.’ (P < 0.1); ‘ ‘ (P < 1) 

Variable Estimate Std. Error t value Significance Notes 

(Intercept) 1.81E-01 2.82E-02 6.42 *** 
 isTue 1.06E-02 6.83E-04 15.551 *** 
 isWed 1.39E-02 6.84E-04 20.32 *** 
 isThu 1.46E-02 6.87E-04 21.199 *** 
 isFri 1.67E-03 6.92E-04 2.417 * 
 isSat -8.53E-02 6.86E-04 -124.412 *** 
 isSun -1.15E-01 6.87E-04 -167.982 *** 
 isMLK -1.07E-02 3.53E-03 -3.036 ** 
 isPresidentsDay 3.24E-03 3.55E-03 0.913 
  isGoodFriday -5.23E-02 3.50E-03 -14.933 *** 
 isMemorialDay -1.01E-01 4.28E-03 -23.616 *** 
 isMemorialDayWeekend -2.92E-02 2.73E-03 -10.701 *** 
 isJuly4 -1.14E-01 3.57E-03 -31.912 *** 
 isLaborDay -1.13E-01 4.26E-03 -26.464 *** 
 isLaborDayWeekend -2.25E-02 2.63E-03 -8.572 *** 
 isChristmas -1.41E-01 4.65E-03 -30.313 *** 
 isXmasEveEve -1.56E-03 4.65E-03 -0.335 
 
Dec 23 

isChristmasEve -7.55E-02 4.65E-03 -16.234 *** Dec 24 
isXMasWk -2.49E-02 3.51E-03 -7.091 *** Dec 26 - 30 
XMasLights 1.39E-02 2.65E-03 5.256 *** Dec 4 - Dec 22 
isThanksgiving -1.50E-01 3.80E-03 -39.4 *** 

 isThanksgivingFriday -1.01E-01 3.80E-03 -26.556 *** Day after Thanksgiving 
isNewYearsDay -9.74E-02 3.62E-03 -26.935 *** 

 isNewYearsEve -5.05E-02 4.55E-03 -11.086 *** 
 isThanksgivingWeek -4.39E-03 1.95E-03 -2.249 * Mon - Sun, Thanksgiving week 

isXmasDayAfter -4.66E-02 3.84E-03 -12.129 *** Dec 26 
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Variable Estimate Std. Error t value Significance Notes 
isFeb 5.69E-01 3.58E-02 15.918 *** 

 isH1 -1.27E-01 3.18E-03 -40.034 *** 
 isH2 -1.58E-01 3.18E-03 -49.564 *** 
 isH3 -1.71E-01 3.18E-03 -53.732 *** 
 isH4 -1.72E-01 3.18E-03 -53.952 *** 
 isH5 -1.52E-01 3.18E-03 -47.793 *** 
 isH6 -9.37E-02 3.18E-03 -29.479 *** 
 isH7 1.63E-04 3.18E-03 0.051 
  isH8 5.40E-02 3.18E-03 16.975 *** 
 isH9 6.73E-02 3.18E-03 21.169 *** 
 isH10 7.31E-02 3.18E-03 23.001 *** 
 isH11 7.34E-02 3.18E-03 23.104 *** 
 isH12 6.48E-02 3.18E-03 20.401 *** 
 isH13 5.12E-02 3.18E-03 16.099 *** 
 isH14 3.93E-02 3.18E-03 12.356 *** 
 isH15 2.67E-02 3.18E-03 8.407 *** 
 isH16 2.58E-02 3.18E-03 8.13 *** 
 isH17 5.70E-02 3.18E-03 17.928 *** 
 isH18 1.31E-01 3.18E-03 41.196 *** 
 isH19 1.45E-01 3.18E-03 45.666 *** 
 isH20 1.32E-01 3.18E-03 41.475 *** 
 isH21 1.11E-01 3.18E-03 34.75 *** 
 isH22 6.89E-02 3.18E-03 21.672 *** 
 isH23 3.30E-03 3.18E-03 1.039 
  isH24 -6.95E-02 3.18E-03 -21.878 *** 
 isMar 7.45E-01 3.44E-02 21.642 *** 
 isApr 6.17E-01 3.65E-02 16.902 *** 
 isMay 1.35E-02 4.38E-02 0.309 
  isJun -2.49E+00 1.18E-01 -21.184 *** 
 isJul 1.13E+00 6.13E-02 18.502 *** 
 isAug 1.88E-02 3.87E-02 0.486 
  isSep 1.85E-02 3.64E-02 0.51 
  isOct 3.60E-01 3.41E-02 10.542 *** 
 isNov 5.39E-01 3.87E-02 13.929 *** 
 isDec 1.57E+00 1.08E-01 14.539 *** 
 sun.hours 6.30E-04 4.99E-05 12.617 *** Daily daylight length, DC [mins] 

isFeb:isH1 2.94E-02 4.54E-03 6.474 *** 
 isFeb:isH2 3.16E-02 4.54E-03 6.966 *** 
 isFeb:isH3 3.40E-02 4.54E-03 7.483 *** 
 isFeb:isH4 3.58E-02 4.54E-03 7.88 *** 
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Variable Estimate Std. Error t value Significance Notes 
isFeb:isH5 3.75E-02 4.54E-03 8.259 *** 

 isFeb:isH6 4.06E-02 4.54E-03 8.939 *** 
 isFeb:isH7 4.15E-02 4.54E-03 9.139 *** 
 isFeb:isH8 3.38E-02 4.54E-03 7.456 *** 
 isFeb:isH9 3.47E-02 4.54E-03 7.645 *** 
 isFeb:isH10 3.13E-02 4.54E-03 6.888 *** 
 isFeb:isH11 2.77E-02 4.54E-03 6.106 *** 
 isFeb:isH12 2.42E-02 4.54E-03 5.324 *** 
 isFeb:isH13 2.12E-02 4.54E-03 4.675 *** 
 isFeb:isH14 1.90E-02 4.54E-03 4.179 *** 
 isFeb:isH15 1.67E-02 4.54E-03 3.678 *** 
 isFeb:isH16 1.22E-02 4.54E-03 2.695 ** 
 isFeb:isH17 -1.80E-03 4.54E-03 -0.396 
  isFeb:isH18 -2.08E-02 4.54E-03 -4.584 *** 
 isFeb:isH19 1.29E-02 4.54E-03 2.848 ** 
 isFeb:isH20 1.84E-02 4.54E-03 4.051 *** 
 isFeb:isH21 2.00E-02 4.54E-03 4.403 *** 
 isFeb:isH22 2.13E-02 4.54E-03 4.693 *** 
 isFeb:isH23 2.30E-02 4.54E-03 5.076 *** 
 isFeb:isH24 2.53E-02 4.54E-03 5.569 *** 
 isH1:isMar 2.86E-02 4.42E-03 6.465 *** 
 isH2:isMar 2.71E-02 4.42E-03 6.126 *** 
 isH3:isMar 2.66E-02 4.43E-03 6.004 *** 
 isH4:isMar 2.71E-02 4.42E-03 6.143 *** 
 isH5:isMar 2.91E-02 4.42E-03 6.59 *** 
 isH6:isMar 3.70E-02 4.42E-03 8.378 *** 
 isH7:isMar 3.87E-02 4.42E-03 8.766 *** 
 isH8:isMar 4.10E-02 4.42E-03 9.294 *** 
 isH9:isMar 4.69E-02 4.42E-03 10.619 *** 
 isH10:isMar 4.77E-02 4.42E-03 10.795 *** 
 isH11:isMar 4.78E-02 4.42E-03 10.816 *** 
 isH12:isMar 4.71E-02 4.42E-03 10.674 *** 
 isH13:isMar 4.68E-02 4.42E-03 10.593 *** 
 isH14:isMar 4.64E-02 4.42E-03 10.498 *** 
 isH15:isMar 4.38E-02 4.42E-03 9.908 *** 
 isH16:isMar 3.60E-02 4.42E-03 8.163 *** 
 isH17:isMar 1.15E-02 4.42E-03 2.605 ** 
 isH18:isMar -3.91E-02 4.42E-03 -8.847 *** 
 isH19:isMar -4.31E-03 4.42E-03 -0.977 
  isH20:isMar 2.86E-02 4.42E-03 6.465 *** 
 



 162 

Variable Estimate Std. Error t value Significance Notes 
isH21:isMar 3.68E-02 4.42E-03 8.326 *** 

 isH22:isMar 3.57E-02 4.42E-03 8.073 *** 
 isH23:isMar 3.13E-02 4.42E-03 7.093 *** 
 isH24:isMar 2.67E-02 4.42E-03 6.045 *** 
 isH1:isApr 1.16E-02 4.48E-03 2.599 ** 
 isH2:isApr -8.57E-04 4.48E-03 -0.191 
  isH3:isApr -1.03E-02 4.51E-03 -2.291 * 
 isH4:isApr -1.44E-02 4.48E-03 -3.209 ** 
 isH5:isApr -1.68E-02 4.48E-03 -3.74 *** 
 isH6:isApr -9.50E-03 4.48E-03 -2.122 * 
 isH7:isApr -4.69E-03 4.48E-03 -1.048 
  isH8:isApr 9.13E-03 4.48E-03 2.039 * 
 isH9:isApr 3.21E-02 4.48E-03 7.178 *** 
 isH10:isApr 4.73E-02 4.48E-03 10.555 *** 
 isH11:isApr 5.98E-02 4.48E-03 13.365 *** 
 isH12:isApr 6.93E-02 4.48E-03 15.469 *** 
 isH13:isApr 7.69E-02 4.48E-03 17.172 *** 
 isH14:isApr 8.28E-02 4.48E-03 18.502 *** 
 isH15:isApr 8.44E-02 4.48E-03 18.859 *** 
 isH16:isApr 7.70E-02 4.48E-03 17.194 *** 
 isH17:isApr 4.43E-02 4.48E-03 9.89 *** 
 isH18:isApr -2.95E-02 4.48E-03 -6.597 *** 
 isH19:isApr -4.54E-02 4.48E-03 -10.138 *** 
 isH20:isApr -1.11E-02 4.48E-03 -2.486 * 
 isH21:isApr 4.66E-02 4.48E-03 10.399 *** 
 isH22:isApr 5.28E-02 4.48E-03 11.788 *** 
 isH23:isApr 4.11E-02 4.48E-03 9.186 *** 
 isH24:isApr 2.47E-02 4.48E-03 5.521 *** 
 isH1:isMay -2.65E-02 4.56E-03 -5.812 *** 
 isH2:isMay -4.77E-02 4.56E-03 -10.455 *** 
 isH3:isMay -6.37E-02 4.56E-03 -13.978 *** 
 isH4:isMay -7.67E-02 4.56E-03 -16.82 *** 
 isH5:isMay -8.53E-02 4.56E-03 -18.709 *** 
 isH6:isMay -8.81E-02 4.56E-03 -19.331 *** 
 isH7:isMay -9.21E-02 4.56E-03 -20.197 *** 
 isH8:isMay -6.09E-02 4.56E-03 -13.356 *** 
 isH9:isMay -2.11E-02 4.56E-03 -4.626 *** 
 isH10:isMay 1.01E-02 4.56E-03 2.223 * 
 isH11:isMay 3.71E-02 4.56E-03 8.13 *** 
 isH12:isMay 5.92E-02 4.56E-03 12.994 *** 
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Variable Estimate Std. Error t value Significance Notes 
isH13:isMay 7.75E-02 4.56E-03 17.009 *** 

 isH14:isMay 9.32E-02 4.56E-03 20.442 *** 
 isH15:isMay 1.04E-01 4.56E-03 22.723 *** 
 isH16:isMay 1.03E-01 4.56E-03 22.628 *** 
 isH17:isMay 7.35E-02 4.56E-03 16.118 *** 
 isH18:isMay -4.76E-03 4.56E-03 -1.045 
  isH19:isMay -3.53E-02 4.56E-03 -7.745 *** 
 isH20:isMay -3.06E-02 4.56E-03 -6.721 *** 
 isH21:isMay 1.95E-02 4.56E-03 4.27 *** 
 isH22:isMay 4.21E-02 4.56E-03 9.243 *** 
 isH23:isMay 2.59E-02 4.56E-03 5.685 *** 
 isH24:isMay 1.37E-03 4.56E-03 0.3 
  isH1:isJun -1.33E-01 6.46E-03 -20.594 *** 
 isH2:isJun -1.63E-01 6.46E-03 -25.214 *** 
 isH3:isJun -1.88E-01 6.46E-03 -29.167 *** 
 isH4:isJun -2.10E-01 6.46E-03 -32.541 *** 
 isH5:isJun -2.28E-01 6.46E-03 -35.239 *** 
 isH6:isJun -2.49E-01 6.46E-03 -38.536 *** 
 isH7:isJun -2.67E-01 6.46E-03 -41.394 *** 
 isH8:isJun -2.28E-01 6.46E-03 -35.286 *** 
 isH9:isJun -1.68E-01 6.46E-03 -26.041 *** 
 isH10:isJun -1.18E-01 6.46E-03 -18.229 *** 
 isH11:isJun -7.30E-02 6.46E-03 -11.307 *** 
 isH12:isJun -3.42E-02 6.46E-03 -5.288 *** 
 isH13:isJun -1.52E-03 6.46E-03 -0.234 
  isH14:isJun 2.60E-02 6.46E-03 4.024 *** 
 isH15:isJun 4.75E-02 6.46E-03 7.355 *** 
 isH16:isJun 5.42E-02 6.46E-03 8.385 *** 
 isH17:isJun 2.65E-02 6.46E-03 4.101 *** 
 isH18:isJun -5.42E-02 6.46E-03 -8.397 *** 
 isH19:isJun -9.27E-02 6.46E-03 -14.353 *** 
 isH20:isJun -1.07E-01 6.46E-03 -16.592 *** 
 isH21:isJun -9.39E-02 6.46E-03 -14.533 *** 
 isH22:isJun -6.30E-02 6.46E-03 -9.746 *** 
 isH23:isJun -7.39E-02 6.46E-03 -11.446 *** 
 isH24:isJun -9.86E-02 6.46E-03 -15.263 *** 
 isH1:isJul 3.13E-02 4.90E-03 6.4 *** 
 isH2:isJul -9.19E-04 4.90E-03 -0.188 
  isH3:isJul -2.99E-02 4.90E-03 -6.107 *** 
 isH4:isJul -5.57E-02 4.90E-03 -11.372 *** 
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Variable Estimate Std. Error t value Significance Notes 
isH5:isJul -7.88E-02 4.90E-03 -16.098 *** 

 isH6:isJul -1.07E-01 4.90E-03 -21.945 *** 
 isH7:isJul -1.48E-01 4.90E-03 -30.185 *** 
 isH8:isJul -1.16E-01 4.90E-03 -23.785 *** 
 isH9:isJul -4.95E-02 4.90E-03 -10.106 *** 
 isH10:isJul 1.15E-02 4.90E-03 2.349 * 
 isH11:isJul 6.66E-02 4.90E-03 13.598 *** 
 isH12:isJul 1.15E-01 4.90E-03 23.4 *** 
 isH13:isJul 1.55E-01 4.90E-03 31.573 *** 
 isH14:isJul 1.87E-01 4.90E-03 38.222 *** 
 isH15:isJul 2.12E-01 4.90E-03 43.326 *** 
 isH16:isJul 2.21E-01 4.90E-03 45.119 *** 
 isH17:isJul 1.94E-01 4.90E-03 39.662 *** 
 isH18:isJul 1.14E-01 4.90E-03 23.296 *** 
 isH19:isJul 7.45E-02 4.90E-03 15.213 *** 
 isH20:isJul 5.32E-02 4.90E-03 10.871 *** 
 isH21:isJul 5.90E-02 4.90E-03 12.056 *** 
 isH22:isJul 8.59E-02 4.90E-03 17.552 *** 
 isH23:isJul 7.95E-02 4.90E-03 16.23 *** 
 isH24:isJul 6.15E-02 4.90E-03 12.557 *** 
 isH1:isAug -1.60E-02 4.48E-03 -3.57 *** 
 isH2:isAug -4.49E-02 4.48E-03 -10.022 *** 
 isH3:isAug -7.22E-02 4.48E-03 -16.118 *** 
 isH4:isAug -9.64E-02 4.48E-03 -21.53 *** 
 isH5:isAug -1.18E-01 4.48E-03 -26.299 *** 
 isH6:isAug -1.39E-01 4.48E-03 -31.018 *** 
 isH7:isAug -1.74E-01 4.48E-03 -38.891 *** 
 isH8:isAug -1.57E-01 4.48E-03 -35.129 *** 
 isH9:isAug -9.56E-02 4.48E-03 -21.352 *** 
 isH10:isAug -3.69E-02 4.48E-03 -8.232 *** 
 isH11:isAug 1.73E-02 4.48E-03 3.853 *** 
 isH12:isAug 6.52E-02 4.48E-03 14.567 *** 
 isH13:isAug 1.05E-01 4.48E-03 23.494 *** 
 isH14:isAug 1.38E-01 4.48E-03 30.847 *** 
 isH15:isAug 1.63E-01 4.48E-03 36.395 *** 
 isH16:isAug 1.71E-01 4.48E-03 38.156 *** 
 isH17:isAug 1.43E-01 4.48E-03 31.836 *** 
 isH18:isAug 6.06E-02 4.48E-03 13.53 *** 
 isH19:isAug 1.92E-02 4.48E-03 4.299 *** 
 isH20:isAug 4.13E-03 4.48E-03 0.922 
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Variable Estimate Std. Error t value Significance Notes 
isH21:isAug 2.70E-02 4.48E-03 6.029 *** 

 isH22:isAug 3.24E-02 4.48E-03 7.246 *** 
 isH23:isAug 2.01E-02 4.48E-03 4.48 *** 
 isH24:isAug 3.15E-03 4.48E-03 0.704 
  isH1:isSep -2.96E-02 4.48E-03 -6.603 *** 
 isH2:isSep -5.28E-02 4.48E-03 -11.8 *** 
 isH3:isSep -7.29E-02 4.48E-03 -16.288 *** 
 isH4:isSep -9.00E-02 4.48E-03 -20.102 *** 
 isH5:isSep -1.04E-01 4.48E-03 -23.172 *** 
 isH6:isSep -1.09E-01 4.48E-03 -24.309 *** 
 isH7:isSep -1.06E-01 4.48E-03 -23.76 *** 
 isH8:isSep -1.00E-01 4.48E-03 -22.41 *** 
 isH9:isSep -5.75E-02 4.48E-03 -12.845 *** 
 isH10:isSep -1.41E-02 4.48E-03 -3.152 ** 
 isH11:isSep 2.48E-02 4.48E-03 5.534 *** 
 isH12:isSep 5.79E-02 4.48E-03 12.928 *** 
 isH13:isSep 8.69E-02 4.48E-03 19.415 *** 
 isH14:isSep 1.12E-01 4.48E-03 25.011 *** 
 isH15:isSep 1.31E-01 4.48E-03 29.165 *** 
 isH16:isSep 1.35E-01 4.48E-03 30.26 *** 
 isH17:isSep 1.07E-01 4.48E-03 23.929 *** 
 isH18:isSep 2.63E-02 4.48E-03 5.865 *** 
 isH19:isSep -5.96E-03 4.48E-03 -1.332 
  isH20:isSep 2.19E-02 4.48E-03 4.892 *** 
 isH21:isSep 3.78E-02 4.48E-03 8.452 *** 
 isH22:isSep 2.63E-02 4.48E-03 5.871 *** 
 isH23:isSep 7.17E-03 4.48E-03 1.603 
  isH24:isSep -1.35E-02 4.48E-03 -3.014 ** 
 isH1:isOct -1.58E-02 4.41E-03 -3.572 *** 
 isH2:isOct -3.00E-02 4.39E-03 -6.834 *** 
 isH3:isOct -4.09E-02 4.41E-03 -9.264 *** 
 isH4:isOct -4.90E-02 4.41E-03 -11.094 *** 
 isH5:isOct -5.28E-02 4.41E-03 -11.971 *** 
 isH6:isOct -4.45E-02 4.41E-03 -10.078 *** 
 isH7:isOct -2.13E-02 4.41E-03 -4.818 *** 
 isH8:isOct -7.60E-03 4.41E-03 -1.723 . 
 isH9:isOct 1.05E-02 4.41E-03 2.39 * 
 isH10:isOct 2.83E-02 4.41E-03 6.42 *** 
 isH11:isOct 4.42E-02 4.41E-03 10.024 *** 
 isH12:isOct 5.70E-02 4.41E-03 12.915 *** 
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Variable Estimate Std. Error t value Significance Notes 
isH13:isOct 6.85E-02 4.41E-03 15.525 *** 

 isH14:isOct 7.82E-02 4.41E-03 17.723 *** 
 isH15:isOct 8.39E-02 4.41E-03 19.011 *** 
 isH16:isOct 8.04E-02 4.41E-03 18.219 *** 
 isH17:isOct 5.33E-02 4.41E-03 12.073 *** 
 isH18:isOct -9.01E-03 4.41E-03 -2.043 * 
 isH19:isOct 6.71E-03 4.41E-03 1.522 
  isH20:isOct 3.96E-02 4.41E-03 8.976 *** 
 isH21:isOct 3.67E-02 4.41E-03 8.307 *** 
 isH22:isOct 2.87E-02 4.41E-03 6.505 *** 
 isH23:isOct 1.46E-02 4.41E-03 3.311 *** 
 isH24:isOct -7.66E-05 4.41E-03 -0.017 
  isH1:isNov 2.41E-03 4.51E-03 0.535 
  isH2:isNov -4.85E-03 4.50E-03 -1.076 
  isH3:isNov -9.05E-03 4.51E-03 -2.008 * 
 isH4:isNov -1.14E-02 4.51E-03 -2.529 * 
 isH5:isNov -9.98E-03 4.51E-03 -2.214 * 
 isH6:isNov -1.68E-03 4.51E-03 -0.372 
  isH7:isNov 5.75E-03 4.51E-03 1.274 
  isH8:isNov 6.81E-03 4.51E-03 1.511 
  isH9:isNov 2.07E-02 4.51E-03 4.589 *** 
 isH10:isNov 2.84E-02 4.51E-03 6.288 *** 
 isH11:isNov 3.27E-02 4.51E-03 7.243 *** 
 isH12:isNov 3.67E-02 4.51E-03 8.132 *** 
 isH13:isNov 4.00E-02 4.51E-03 8.865 *** 
 isH14:isNov 4.29E-02 4.51E-03 9.508 *** 
 isH15:isNov 4.50E-02 4.51E-03 9.968 *** 
 isH16:isNov 4.59E-02 4.51E-03 10.186 *** 
 isH17:isNov 5.32E-02 4.51E-03 11.807 *** 
 isH18:isNov 5.24E-02 4.51E-03 11.63 *** 
 isH19:isNov 3.94E-02 4.51E-03 8.739 *** 
 isH20:isNov 3.54E-02 4.51E-03 7.86 *** 
 isH21:isNov 3.14E-02 4.51E-03 6.966 *** 
 isH22:isNov 2.61E-02 4.51E-03 5.798 *** 
 isH23:isNov 1.94E-02 4.51E-03 4.306 *** 
 isH24:isNov 1.15E-02 4.51E-03 2.553 * 
 isH1:isDec 6.61E-02 6.13E-03 10.793 *** 
 isH2:isDec 5.80E-02 6.13E-03 9.457 *** 
 isH3:isDec 5.33E-02 6.13E-03 8.701 *** 
 isH4:isDec 5.13E-02 6.13E-03 8.377 *** 
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Variable Estimate Std. Error t value Significance Notes 
isH5:isDec 5.10E-02 6.13E-03 8.319 *** 

 isH6:isDec 5.08E-02 6.13E-03 8.289 *** 
 isH7:isDec 4.80E-02 6.13E-03 7.832 *** 
 isH8:isDec 4.83E-02 6.13E-03 7.879 *** 
 isH9:isDec 5.57E-02 6.13E-03 9.082 *** 
 isH10:isDec 5.85E-02 6.13E-03 9.54 *** 
 isH11:isDec 5.69E-02 6.13E-03 9.284 *** 
 isH12:isDec 5.56E-02 6.13E-03 9.073 *** 
 isH13:isDec 5.51E-02 6.13E-03 8.985 *** 
 isH14:isDec 5.54E-02 6.13E-03 9.048 *** 
 isH15:isDec 5.78E-02 6.13E-03 9.44 *** 
 isH16:isDec 6.27E-02 6.13E-03 10.231 *** 
 isH17:isDec 8.43E-02 6.13E-03 13.749 *** 
 isH18:isDec 9.31E-02 6.13E-03 15.199 *** 
 isH19:isDec 8.20E-02 6.13E-03 13.376 *** 
 isH20:isDec 8.16E-02 6.13E-03 13.31 *** 
 isH21:isDec 8.43E-02 6.13E-03 13.757 *** 
 isH22:isDec 8.79E-02 6.13E-03 14.35 *** 
 isH23:isDec 8.79E-02 6.13E-03 14.34 *** 
 isH24:isDec 7.92E-02 6.13E-03 12.922 *** 
 isFeb:sun.hours -9.88E-04 6.12E-05 -16.132 *** 
 isMar:sun.hours -1.26E-03 5.78E-05 -21.739 *** 
 isApr:sun.hours -1.08E-03 5.87E-05 -18.32 *** 
 isMay:sun.hours -3.03E-04 6.47E-05 -4.684 *** 
 isJun:sun.hours 2.66E-03 1.43E-04 18.647 *** 
 isJul:sun.hours -1.58E-03 8.15E-05 -19.384 *** 
 isAug:sun.hours -2.29E-04 6.01E-05 -3.82 *** 
 isSep:sun.hours -2.20E-04 5.93E-05 -3.715 *** 
 isOct:sun.hours -7.31E-04 5.81E-05 -12.582 *** 
 isNov:sun.hours -1.02E-03 6.72E-05 -15.176 *** 
 isDec:sun.hours -2.85E-03 1.93E-04 -14.738 *** 
 

Linear model results 

We use a non-parametric, additive model to account for the relationship between adjusted 

average daily temperature and hourly load (see Methods -  Step 2).  However, we also investigated 

the potential of using a linear model to account for the relationship.  As discussed below, we found 

that using a linear fit worked well for the majority of hours, but considerably over-predicted loads 
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during high temperature days.  This over prediction led to the linear model over-estimating the 

probability of a supply shortage. 

The linear model we used in the second step considered the maximum and minimum daily 

temperature (5–19).  We divided days into heating degree days (HDD) and cooling degree days 

(CDD), as is common in literature (5–20).  The split temperature between HDD/CDD was set to 

minimize model error: for Tmax terms, the temperature was 20.6 oC.  For Tmin terms, temperature 

was 7.2 oC.  We then used a linear and quadratic term for both HDD and CDD temperatures in the 

regression (5–21). 

Table D-2. Temperature calculations 

TmaxD = max Tadjh,      
TminD = min Tadjh       

(5–19) 

Tmax.HDD = max(69 – TmaxD, 0) 
Tmax.CDD =max(TmaxD - 69, 0) 
Tmin.HDD = max(45 – TminD, 0) 
Tmin.CDD = max(TminD – 45, 0) 

(5–20) 

h = hour of the day 
D = day of the year 
Tadjh = hourly adjusted temperature 
TmaxD, TminD = daily max and min temperature [oF] 

 

 

X = weekday + hour*month + holidays + Tmax.HDD + Tmax.CDD + Tmin.HDD + 
Tmin.CDD + Tmax.HDD2 + Tmax.CDD2 + Tmin.HDD2 + Tmin.CDD2 + 
daylightHours*month + Y 

(5–21) 

 

As shown in Figure D-2 - Figure D-4, the linear model significantly over-predicts load during 

high-temperature days.  This is because the linear model predicts exponential growth in load with 

increasing temperatures.  However, load growth actually begins to slow once a average daily 

∀h∈D
∀h∈D
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temperatures of ~27 oC are reached (Figure 5-2).  This is likely because air conditioning loads start 

to saturate once temperatures are high enough.  This overprediction of peak load hours causes the 

linear model to overstate LOLE (Figure D-5).  Due to this bias in the linear model, we use a non-

linear model in our main analysis. 

 
Figure D-2. In-sample and out-of-sample residuals for PJM, linear model.  Residuals are 
large at high temperature days. 

 
Figure D-3. In-sample and out-of-sample residuals for PJM, non-linear model.  The model 
is more accurate at predicting load during high temperature days than the linear model. 
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Figure D-4. Difference in linear and nonlinear model fits, when predicting load out-of-
sample.  

 
Figure D-5. Calculated LOLE for linear and nonlinear models 
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Temperature analysis 

 
Figure D-6. Relationship between temperature and load, different years.  Load in PJM has 
become increasingly responsive to high temperatures. 

 
Figure D-7. Distribution of average adjusted daily temperature, by decade.  Distributions 
are very similar across decade and show no evidence of a trend over time. 
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Figure D-8. Autocorrelation function, average adjusted daily temperature.  Data is for years 
1949 – 2010, except 1966 – 1972. 

Residuals analysis 

 
Figure D-9. In-sample residuals, by month 
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Figure D-10. Autocorrelation of in-sample residuals 

LOLE sensitivity to forced outage rate 

In our regressions, we hold each plant’s forced outage rate (EFORd) constant throughout the 

year.  Here we test the effects on LOLE of EFORd being sensitive to ambient temperature, rising 

50% in the warmest 6 months (April – September) and dropping 50% in the coolest 6 months 

(October – March).  To be clear, there is no evidence that EFORd does vary significantly from 

month to month or is correlated to ambient temperature. However, Figure D-11 shows varying 

EFORd in this extreme manner more than doubles the expected value of LOLE.  
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Figure D-11. Sensitivity of LOLE expected value to forced outage rate (EFORd).  

Correlated outages 

 
Figure D-12. Sensitivity of unserved energy to natural gas supply shortages that occur on 
average once per year.  Evaluated at 15.5% IRM. 
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Figure D-13.  Distribution of outage size, in terms of unserved energy.  Shown are both 
scenario in which outages are independent, and a scenario in which a natural gas supply 
shortage occurs on average once per year, forcing 50% of NGCTs offline at once.  Assumed 
reserve margin is 15.5%. 
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