
 

 

Remotely Sensed Data for High Resolution Agro-Environmental Policy Analysis 

Submitted in partial fulfillment of the requirements for 

the degree of 

Doctor of Philosophy 

in 

Engineering and Public Policy 

 

   

 

 

Paul Welle 

B.S., Environmental Engineering, Massachusetts Institute of Technology 

Department of Engineering and Public Policy 

Carnegie Mellon University 

Pittsburgh, PA 

 

 

August, 2017  



ii 

 

DEDICATION 

 

 

 

 

 

To Clara, of course 

  



iii 

 

ACKNOWLEGEMENTS 

I would like to acknowledge support from my adviser, Meagan Mauter, for her indispensable 

advice and encouragement these last three years. I would also like to thank the other three 

members of my committee for their steadfast support– Granger Morgan, Jay Whitacre, and 

Nicholas Muller. 

Besides the committee, I have very much benefited from collaborations with researchers from 

various institutions – Inês Lima Azevedo, Mitchell Small, Scott Doney, Sarah Cooley, Joshua 

Viers, Josue Medellín-Azuara, Siamak Ravanbakhsh, Barnabás Póczos, Karen Clay, and no 

doubt many others who took time to listen and give counsel.  

I would also like to thank friends and student collaborators for their insights and in depth 

conversations, including Daniel Posen, Hassan Khan, Katherine McMahon, Stephanie Seki, 

Shuchi Talati, Leslie Abrahams, Kathrin Kirchen, Catherine Zhu, Momin Ghalib, and the entire 

We3 lab for their support. 

Lastly, this effort would not have been possible without my mother and siblings, who have been 

there for me always.  

I have been very fortunate to have been funded by the Climate and Energy Decision Making 

Center (SES-0949710) for my first year and half, and then a National Science Foundation 

Graduate Research Fellowship Program under Grant No. (DGE-1252522) for the remainder of 

my degree. Additionally I was awarded a Bradford & Diane Smith Fellowship for 2014-2015. 

Research in this dissertation was also supported by the National Science Foundation under award 

number SEES-1215845 and CBET-1554117, as well as a gift from GreatPoint Ventures. 

  



iv 

 

COMMITTEE 

Meagan Mauter, Ph.D. (chair) 

Associate Professor  

Engineering and Public Policy & Civil and Environmental Engineering 

Carnegie Mellon University  

M. Granger Morgan, Ph.D. 

Hamerschlag University Professor of Engineering 

Engineering and Public Policy, Electrical and Computer Engineering & Heinz College  

Carnegie Mellon University  

Nicholas Muller, Ph.D., MPA 

Associate Professor  

Department of Economics and Environmental Studies Program  

Middlebury College  

Jay Whitacre, Ph.D. 

Professor  

Engineering and Public Policy & Materials Science and Engineering 

Carnegie Mellon University  

  



v 

 

ABSTRACT 

Policy analyses of agricultural and environmental systems are often limited due to data 

constraints. Measurement campaigns can be costly, especially when the area of interest includes 

oceans, forests, agricultural regions or other dispersed spatial domains. Satellite based remote 

sensing offers a way to increase the spatial and temporal resolution of policy analysis concerning 

these systems. 

However, there are key limitations to the implementation of satellite data. Uncertainty in data 

derived from remote-sensing can be significant, and traditional methods of policy analysis for 

managing uncertainty on large datasets can be computationally expensive. Moreover, while 

satellite data can increasingly offer estimates of some parameters such as weather or crop use, 

other information regarding demographic or economic data is unlikely to be estimated using 

these techniques. Managing these challenges in practical policy analysis remains a challenge. 

In this dissertation, I conduct five case studies which rely heavily on data sourced from orbital 

sensors. First, I assess the magnitude of climate and anthropogenic stress on coral reef 

ecosystems. Second, I conduct an impact assessment of soil salinity on California agriculture. 

Third, I measure the propensity of growers to adapt their cropping practices to soil salinization in 

agriculture. Fourth, I analyze whether small-scale desalination units could be applied on farms in 

California in order mitigate the effects of drought and salinization as well as prevent agricultural 

drainage from entering vulnerable ecosystems. And fifth, I assess the feasibility of satellite-based 

remote sensing for salinity measurement at global scale.  

Through these case studies, I confront both the challenges and benefits associated with 

implementing satellite based-remote sensing for improved policy analysis. 
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Chapter 1: Introduction 

The effectiveness of quantitative policy analysis is contingent on the availability of high-quality data that 

can illuminate the likely outcomes of different management alternatives. In agricultural and 

environmental systems, such data has typically been a limiting factor due to the vast spatial domains 

involved. While in situ sensors can act as point estimates which yield information in their immediate 

surroundings, they often fail to offer details regarding the system as a whole. For these reasons, data 

obtained by remote sensing from orbital sensors may offer a path to substantially improving policy 

analysis pertaining to agricultural and environment systems. 

The first satellite launched for earth observation was the Earth Resource Technology Satellite, later 

renamed Landsat 1 in 1973. It imaged the Earth in eighteen day cycles across seven bands in the visible 

and near-infrared spectrum, producing images with a spatial resolution of 80 meters.   

Since the launch of Landsat 1, hundreds of satellites have been placed in orbit in order to study the Earth 

system. There are currently 373 active satellites whose primary purpose is earth observation, and each has 

variety of capabilities and characteristics. Satellites such as Worldview-2 and Worldview-3 produce 

images with sub 1-meter spatial resolution. Other instruments, such as NASA’s Moderate Resolution 

Imaging Spectroradiometer (MODIS), are capable of surveying the Earth every 1-2 days. And the 

Hyperion instrument aboard Earth Observing 1 catalogs data across 220 different spectral bands. 

The net result of these data collection efforts is a rich archive that is continuously being collected on the 

Earth system. Information which was historically only available at aggregated scales (e.g. county, state, or 

country) are increasingly available at high-resolutions and global scales. For example, Burke et al. [1] 

were able to develop a method of measuring yields in maize from satellite data, allowing for new high-

resolution data and increased crop data availability in parts of the world without strong conventional data 

collection routines. You et al. [2] developed an approach for generating crop area estimates with 10 km 

resolution at a global scale using a mixture of satellite data and crop modelling. Allen et al. [3] were able 
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to successfully measure crop water use from satellite data through an energy balance by estimating the 

latent heat of evaporation, an approach which produces data on crop water use at the field scale. 

Famiglietti et al. [4] and Rodell et al. [5] were able to measure groundwater depletion in the Central 

Valley of California and India, providing measurements of resource drawdown in important agricultural 

regions. And Jean et al. [6] were able to predict poverty using machine learning techniques and nighttime 

satellite imagery, contributing data on household consumption and asset wealth in rural Africa.  

Remotely sensed data supplies information that has higher resolution and broader spatial extent than 

traditional data sources. Each of the above datasets supplies new information which could be used to 

address difficult problems in the policy domain. High-resolution land cover data has wide applicability 

across agricultural and environmental analyses and can be used to monitor land use change with possible 

applications to biofuels or urbanization. Data on crop water use could have application to how farmers 

respond to drought. Data on yields, groundwater availability, and socioeconomic factors can aid 

agricultural researchers in disaggregating their analyses to the farm level. And data on meteorological 

variables can be used to map the relationship between changing climate and ecosystem disruption. 

Policy analysis is likely to have particular benefit for agriculture, a key focus of this dissertation. 

Agriculture is a resource-intensive industry under increasing production pressure and environmental 

concern. The United Nations (UN) Food and Agriculture Organization (FAO) estimated a 70% 

volumetric increase in food production beyond 2009 levels would be needed to feed in the world in 2050 

[7]. Agriculture, meanwhile, already consumes 85% of the world’s freshwater and 38% of the land area 

making it the dominant anthropological user in these arenas [8, 9]. Food production also uses 

considerable amounts of energy [10]; emits nonpoint source water pollution [11, 12], and is a key driver 

in carbon emissions due to land use change [13]. Expansion and continuation of current practices is 

becoming less feasible as food systems are increasingly forced to confront the opposing needs of 

augmenting production while decreasing resource use and limiting environmental degradation.  
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In this dissertation, I investigate how data derived from remote-sensing technologies might improve 

policy analysis in the agricultural and environmental domains through a series of case-studies. The goals 

of these case studies were to measure the impacts of climate change on the environment (Chapter 2), 

assess economic damages to agriculture from soil salinity (Chapters 3 and 4), analyze specific policy 

management alternatives to soil salinity and drought (Chapter 5), and develop techniques to measure soil 

salinity directly (Chapter 6).  

In Chapter 2, I estimated the effects of climate change and anthropogenic stress on coral reefs during the 

2005 mass bleaching episode in the Caribbean. This study moved beyond other studies in the literature by 

accounting for not just temperature, but also photosynthetically active radiation, depth, wind speed (as 

proxy for hurricane damage), and distance from shore and population density (as proxies for human 

interference). Different regression techniques are employed, and an optimal model formulation is 

developed using cross-validation. In this study, each of the explanatory variables relies on satellite 

observations, and accurate assessment of the coral-climate response would not be possible without such 

data. 

In Chapter 3, I assess the likely effects of soil salinization on agriculture in the state of California. This 

study makes use of a satellite-based crop classifier and high resolution soils data to account for the lost 

revenues due to salinity at the field-scale. This approach gives better understanding of the spatial 

distribution of damages, but also results in higher accuracy reporting of net damages across the state. 

Resolution is particularly important in assessing the effects of salinity, because salinity can change over 

relatively small spatial scales, and so conventional county-level resolution datasets would introduce large 

error into the estimation of salinity damages.  

In Chapter 4, I investigate the behavioral response of farmers to extant salinity levels. The modelling 

efforts developed in Chapter 3 rely on current cropping patterns, and so implicitly assume that growers do 

not adjust their cropping practices given different levels of salinity. In Chapter 4 I test the importance of 

this assumption by modelling how growers change cropping patterns in response to salinity levels. To do 
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this, I employ a cross-entropy downscaling technique that uses a satellite-based crop classifier as well as 

county-level cropping data to produce an intermediate scale dataset of 56,043 spatial polygon 

observations. I then create a regression model to predict which crops will be planted within these 

polygons, and assess the impact of salinity on cropping decisions. 

In Chapter 5, I assess the possibility of employing small-scale desalination units in agricultural settings 

for combatting the effects of salinization and drought. By capturing drainage or other waste sources, these 

systems can (1) supply a new source of water in water scarce regions, (2) increase the quality of existing 

water supplies and thus decrease salinization, and (3) prevent harmful contaminants from entering the 

ecosystem. The benefits are measured using high-resolution data to model the value of decreasing 

salinity. The value of augmented water supply is estimated using positive mathematical programming, a 

technique to assess farmer decision making. These benefits are compared to the system’s fixed and 

operational costs, as well as the likely human health damages from air emissions associated with the 

energy use of such systems as estimated by the Air Pollution Emission Experiments and Policy Version 2 

(AP2) model.  

In Chapter 6, I assess the feasibility of monitoring soil salinity directly using satellite-based remote 

sensing. There have been recent successes in the literature to relate soil salinity to vegetation indices, 

those these efforts often use data from small spatial domains and relatively rudimentary statistical 

techniques. Recent advances in machine learning may offer more sophisticated ways of enhancing 

prediction. In this study I use a global dataset of salinity measurements and create a complimentary set of 

explanatory variables (including satellite measurements, temperature, precipitation, and elevation) to 

predict salinity using ordinary least squares, artificial neural networks, and convolutional neural networks.  

These case studies explore how high-resolution data can contribute to novel impact and policy 

assessments in the agricultural and environmental domains, where data availability is often limited. In 

each of the case studies techniques are employed to manage the technical challenges and uncertainty 

inherent in satellite derived data products. Where practical, traditional policy techniques such as 
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sensitivity analyses are performed on key parameters. By combining high-resolution data with traditional 

economic and policy analysis toolsets, this thesis demonstrates the value of such technologies for 

application to policy. 
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Chapter 2: Estimating the effect of multiple environmental stressors 

on coral bleaching and mortality 

This chapter is based on the following published work: 

Welle P D, Small M J, Doney S C, and Azevedo I L 2017 Estimating the effect of multiple 

environmental stressors on coral bleaching and mortality PloS One 12 e0175018.  

2.1 Introduction 

Coral reefs provide important ecosystem services, such as sustaining fisheries, coastal protection, and 

social and cultural services such as recreation and tourism [1]. Worldwide, the goods and services 

provided by coral reefs are estimated to contribute nearly $30 billion US dollars annually [2]. Coral 

biodiversity and cover have been decreasing over the last three decades, and the trend is projected to 

accelerate as ocean temperatures continue to rise [3,4].  

Environmental and climate change related stressors, such as temperature, solar radiation, and human 

interference are affecting these ecosystems, and the magnitude of such stressors will increase in the near 

future. The extent to which different stressors may contribute to bleaching and mortality of corals, 

however, is still largely unknown and uncertain.  

A consensus is emerging that the warming of the oceans caused by anthropogenic climate change is 

leading to coral habitat destruction and will continue to do so into the future with likely very serious 

consequences [3–5]. Higher ocean temperatures have led to increased coral bleaching. As carbon dioxide 

concentrations increase, ocean pH can be expected to decline, retarding the corals’ ability to produce their 

calcium carbonate exoskeleton [6] and affecting larval settlement and recruitment [7]. Temperature and 

pH have been seen to act in a synergistically destructive manner, each amplifying the others’ effect to 

cause increased bleaching and mortality [8,9]. Solar radiation arriving at corals is also likely to change 

with the climate, due to its sensitivity to aerosol and cloud concentrations [10]. 



18 

 

Undoubtedly, the most studied driver of habitat loss has been anomalously high temperatures. Elevated 

temperatures have consistently been seen to correlate with coral bleaching and death [11–15]. Results 

carried out from controlled laboratory experiments have confirmed these findings [8,16], and future 

increasing temperatures can be seen to be a major threat to corals worldwide. However, studies focusing 

on site condition, rather than controlled laboratory experiments, are still lacking.  

Coral bleaching, defined as the loss of coral pigmentation from algal symbionts, was first observed nearly 

a century ago. It has recently become an issue of much concern as sea temperatures rise and mass 

bleaching episodes become more common [17]. Bleaching leaves corals less able to generate energy from 

algal photosynthesis, more vulnerable to diseases, and less able to engage in spawning and reproduction 

[18]. Temperature anomaly has been widely identified as the chief driver in this phenomenon. However, 

the marginal sensitivity of coral health to temperature changes is still fairly uncertain. In addition, there 

are other contributors that are likely to intensify in the near future due to shifting climate and increased 

human interference. Variations in solar radiation, sedimentation, and abundance of herbivorous fish have 

been seen to affect coral health and can be linked to human action [19]. 

Solar radiation, either in the form of ultraviolet (UV) or photosynthetically active radiation (PAR), has 

been seen to cause damage to exposed corals, in some cases bleaching a number of corals without 

presence of elevated temperatures [20,21]. Sudden increases in the amount of radiation received by corals 

have also been linked to bleaching [22]. In laboratory experiments, elevated radiation coupled with 

elevated temperature caused additional bleaching beyond that of temperature alone [8], further evidence 

of which was provided by Downs et al. [23] by using molecular biomarkers.  

Humans often play a more direct role in harming coral ecosystems beyond affecting stressors driven by 

anthropogenic climate change. Improper diving and boating can lead to direct damage, which is becoming 

a significant problem in the Red Sea [24,25]. Overfishing, another anthropogenic stressor, reduces 

predation of the major coral competitor, macroalgae, and can cause increased likelihood of ecosystem 

phase shifts [26]. Proximity to land can leave corals at risk to fertilizer runoff and resultant 
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eutrophication, adding more pressure to the ecosystem to shift to an algal dominated state [27]. 

Population density has been found to be a strong indicator of anthropogenic stress, and has been 

successfully used in the literature as a proxy variable for such stress [28,29]. Marine protected areas 

(MPAs) and land-use regulation are common techniques used to address these problems (e.g. [30–33]). 

The depth at which corals are located has also been postulated to be important, as temperature and 

radiation attenuate with depth, but the direction of this effect is still fairly uncertain. For example, Mumby 

et al. [34] found an increased survival with deeper corals in French Polynesia, supporting results from 

earlier studies in Myrmidon Reef [35] and for a global analysis [36]. Deeper corals tend to be larger, 

slower growing, and more resistant to bleaching. The effect of depth is not always clear and will depend 

on several other factors, such as coral biology. For example, Marshall and Baird [37] found a significant 

spatial variation in bleaching, with some shallow sites reporting less bleaching than deeper ones. Williams 

and Bunkley-Williams [38] observe that “in the Florida Keys and Puerto Rico, bleaching started in the 

shallows and moved deeper; in Jamaica and St. Croix, the opposite was observed.” It is of great interest to 

develop an understanding of how all the above-identified stressors interact to impact coral health, so that 

this information can be combined with climate predictions to create a holistic understanding of the fate of 

coral reefs. 

Thermal bleaching has been attributed to an overproduction of protons during the light reaction of the 

photochemical process [20]. Increased light and temperature accelerate the chemical processes associated 

with these reactions to the point where the dark reaction is unable to make use of all the energy and free 

radicals of oxygen are created, that are hypothesized to subsequently damage the host coral. Thermal 

bleaching is the expulsion of the algal symbionts, or zooxanthallae, presumably as protection against the 

various dangerous forms of oxygen [17]. In support of this theory, it has been observed empirically that 

free radicals are produced before bleaching occurs [39,40]. It also appears that bleaching may occur less 

in corals that have recently bleached, causing their levels of zooxanthallae to be lower than would 
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otherwise be the case [21]. Additionally, the threshold for coral bleaching was found to be 1°C lower in 

winter when symbiont concentration is lowest [14].  

Using tank experiments, Anthony et al. [8] sought to understand the interaction between temperature, 

light, and sedimentation, and found that increased turbidity protects corals from bleaching. While it is 

well-established in the literature that sedimentation is damaging to reefs [41], it is likely that in these tank 

experiments the turbid water shielded the corals from radiative damage or a radiation-temperature 

interaction effect [8]. The studies by Anthony et al. [8], Brown et al. [21], and others indicate that the 

biological pathway through which bleaching occurs indeed relies on excess solar radiation and 

temperature.  

The National Oceanographic and Atmospheric Administration’s (NOAA’s) Coral Reef Watch (CRW) 

uses Degree Heating Weeks (DHW) to generate real-time warnings for areas at risk for bleaching. DHWs 

are computed by summing the number of degrees above maximum climatological monthly mean (MMM) 

for each week across the preceding twelve weeks (http://coralreefwatch.noaa.gov/), and therefore 

represent an estimate of how far above ‘typical’ values recent temperatures have strayed. Weeks with 

anomalies less than 1°C are considered to be non-anomalies and rounded to zero. Moderate bleaching is 

expected when DHW is larger than 4, and severe bleaching may occur with a DHW larger than 8. These 

data are made available in near real-time at a global scale. 

A number of studies have attempted to explain the effect of temperature on coral bleaching using the 

DHW formulation and statistical models for regression analysis [42–46]. Existing analyses of coral 

bleaching typically involve one of two approaches: predicting the probability of being in a categorical 

stage of bleaching or resilient state (e.g., “high” or “low”) or predicting the fraction of corals bleached 

with an ordinary least squares (OLS) model. For example, McWilliams et al. [42] used the ReefBase 

(http://www.reefbase.org) data to predict bleaching severity and spatial extent using DHW, and found a 

log-linear increasing relationship, and Eakin et al. [43] performed a similar analysis with data exclusively 
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from the 2005 bleaching event in the Caribbean, regressing bleaching on DHW using ordinary least 

squares (OLS).  

Two major studies used metrics similar to degree heating weeks to assess what coral cover might look 

like in the future as temperatures rise. Hoegh-Guldberg [11] predicted the Degree Heating Months (DHM, 

similar to DHW) into the future, showing that DHM would rise beyond triple the levels currently 

experienced by as early as 2080. More importantly, DHM exceeding the worst values observed to date 

would become yearly events before the end of the century. Another study used similar metrics in the 

Caribbean to show that the DHM associated with the 2005 mass bleaching episode would reoccur roughly 

every other year by 2030-2050, depending on adaptation [5]. 

A few of these studies [42,43] use only temperature in predicting coral bleaching, but no study to date has 

attempted to predict coral mortality. Those studies that include additional predictor variables [44–46] find 

that variables such as PAR, depth, and wind speed lead to significant improvement in predicting coral 

health outcomes. 

While a few of the above mentioned studies have attempted to determine the effect of temperature on 

coral bleaching using statistical and regression analyses [42–46], these studies have generally used an 

ordinary least-square (OLS) regression. There are several reasons why an OLS regression may not be an 

appropriate way to describe coral behavior in light of stressors, further elaborated upon in the methods. 

These studies have useful first order implications, but it is important to consider carefully whether 

temperature alone is sufficient for predicting future coral mortality. Theory and biological 

experimentation suggest that pH and radiation arriving at the corals will also be important in driving the 

photosynthesis reaction. If regressions of past temperature events are to be taken as predictive of future 

bleaching and mortality rates, it is important to consider the magnitude of the roles that each driver plays. 

Satellite radiation data available in the form of PAR or ultraviolet radiation (UVR) should be included as 

well as other environmental variables that might be relevant.   
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Yee, Santavy, and Barron [44] and Yee and Barron [45] extended the traditional analysis to include PAR 

taken from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite. 

The authors found that adding PAR (as well as other environmental variables and community taxonomic 

composition) increased R2 as well as resulted in lower corrected Aikaike Information Criterion (AICc). 

These studies fit models to understand the probability of bleaching events. These early results, combined 

with data from the empirical work discussed above, indicate it may be crucial to incorporate a wider 

variety of environmental variables to understand coral health. 

In this study, we use the observations of coral bleaching, mortality, and depth from a dataset compiled by 

Eakin et al. [43], which we describe in more detail in the data and methods section. The dataset includes 

2945 measurements of coral health taken during the Caribbean summer of 2005 and is the most thorough 

measurement of basin-scale bleaching ever recorded. Major coral losses were observed in the Caribbean 

during the period for which measurements were made. During this period, record temperatures were set 

across the basin. In some reefs measured bleaching rates were as high as 95% [47]. We complement the 

dataset with weather data, specifically DHWs data from NOAA CRW and photosynthetically active 

radiation (PAR) from MODIS Aqua satellite, as well as distance from each coral reef to the nearest 

coastline, population density, wind speed and information about biogeographic regions. We provide more 

details regarding these data in the data and methods section and in the SI. 

The work presented in this paper contributes to the literature by developing and using a novel regression 

approach, where the fraction of corals bleached and fraction of corals dead are estimated using a 

parametric non-linear model that controls for unobserved time invariant effects. Two separate models are 

created, one to predict coral bleaching, and the other to predict near-term mortality. A large ensemble of 

supporting data is assembled to control for omitted variable bias and improve fit, resulting in a significant 

improvement in predictive capacity.  
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2.2 Methods 

2.2.1 Data 

We collect data from a variety of sources and combine them into a comprehensive statistical analysis of 

the coral death and bleaching process. The final dataset included observations on coral bleaching and 

mortality, temperature in the form of degree heating weeks, photosynthetically active radiation, and 

distance from shore. The following sections provide additional detail on these data. 

2.2.1.1 Coral Bleaching and Mortality 

A dataset from Eakin et al. [43] is used to quantify the negative ecosystem effects observed in Caribbean 

reefs, with a total of 2,945 observations measured between May 2005 and January 2007. In Section 8.1 of 

Appendix A we include more information on the data used and limitations associated with the dataset. 

Figure S1 in Appendix A reports the spatial distribution of the observations, while the temporal 

distribution is reported in Figure 2-1. Figure 2-1A shows the average observed degree heating weeks 

(DHW) for the observations in that time period, and can be used to visualize the intensity of the 

temperature anomaly over time. The middle plots report the frequency of observations over time and are 

color coded to show the fraction of corals with different bleaching or mortality levels. Most observations 

were taken at the end of the summer of 2005, when temperatures were highest. The bottom graph 

illustrates the same information as the second graph with each bar normalized so trends in bleaching and 

mortality can be seen more clearly. Qualitatively, bleaching appears to be relatively stable while mortality 

increases with time.  

The outcome measures of interest are coral bleaching and coral mortality. Each can be measured as a 

percentage of cover affected or colonies affected. Cover bleached represents the fraction of coral 

bleached in the observed area, while colonies bleached represent the fraction of bleached coral organisms 

relative to healthy organisms. Likewise, cover dead is the fraction dead per area and colonies dead is the 

fraction dead to living organisms. Eakin et al. [43] showed that these two measures, fractional area and 
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fractional number of colonies, used independently give statistically indistinguishable results and uses this 

to justify selecting the average of the two as the dependent variable. In this study the same approach is 

followed and the average of the two measurement strategies is used, yielding one composite measure for 

bleaching and one for mortality.   

 

Figure 2-1. Temporal distribution of observations. Figures on the left column refer to bleaching, 

and those on the right refer to mortality. Figures 2-1A and 2-1B show the average DHW in the 

observed locations for the region of analysis between May 2005 and January 2007. Figures 2-1C 

and 2-1D show the number of observations, x, with 0%, 0% < x < 30%, or x >30% bleaching or 

mortality. Since the number of observed sites varies over time, in Figures 2-1E and 2-1F we show 

the share of observations in each distribution bin over time. The left and right panels for DHW, 

Figures 2-1A and 2-1B, differ because the observations available for mortality are a subset of those 

available for bleaching. 

 

It is not possible to assure that all bleaching and mortality are directly attributable to thermal stress (as 

opposed to, for example, disease or hurricanes). To address this concern, a measurement is included in the 

analysis only if it occurs after the first issuance of a thermal stress warning and before the 90th day 

following the last no stress alert, as defined in the CRW Bleaching Alert System 

(http://coralreefwatch.noaa.gov). All bleaching identified in our data, therefore, occurred under the 

http://coralreefwatch.noaa.gov/
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presence of thermal stress. As noted in Table 2-1, the spatial variation in temperature is still sufficient 

during the study period to yield a relatively wide range of DHW values, enabling its effects to be 

determined by the regression analysis. 

Lastly, it should be noted that the sampling campaign did not follow a strict probabilistic approach, 

meaning that the corals measured may not perfectly represent the distribution of corals in the wider 

Caribbean. The sample itself is unique, however, in its size and extent and thus offers valuable insight 

into how changing climate and anthropogenic stress may be affecting coral health outcomes. 

2.2.1.2 Temperature 

Temperature is expressed in degree heating weeks, DHW. All temperature measures are calculated using 

data from NOAA's Coral Reef Watch (CRW). CRW maintains a historical database of observed and 

maximum DHW values, which were used in this analysis. All data are available at a 50km resolution. 

DHW are matched with observations based on time and location. 

2.2.1.3 Photosynthetically active radiation (PAR) 

We utilize satellite-derived estimates of the daily-averaged, photosynthetically available radiation (PAR) 

(400-700nm) just below the sea surface. PAR is a standard data product from NASA MODIS Aqua 

(http://modis.gsfc.nasa.gov/data/dataprod/). MODIS Aqua is a moderate resolution satellite that images 

the Earth every 1-2 days, with data collected in 36 spectral bands. We use PAR data from the MODIS 

Level 3 8-day binned files. In order to calculate PAR anomaly, climatology data was used in order to 

establish a baseline. PAR variations are calculated using two different methods. The first is as an average 

of 12 satellite weeks of raw data. The second follows a method similar to the one for DHW, in which each 

weekly average is subtracted from the baseline maximum monthly PAR. In Table 2-1 the second measure 

is titled ‘PAR anomaly.’ As with DHW, a PAR anomaly value of 0 indicates no stress and increasingly 

positive numbers indicate increasing stress. 

http://modis.gsfc.nasa.gov/data/dataprod/
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2.2.1.4 Dual formulations for DHW and PAR 

For each of these stressors (DHW, PAR, and PAR anomaly), observed and maximum values are 

calculated. Observed DHW, for instance, represents the DHW calculated over the 12 weeks immediately 

preceding the observation (and therefore the stress observed up to the date of measurement). Maximum 

DHW represents the 12-week window between the January 1st, 2005 and the date of observation that 

records the highest DHW value. Maximum DHW, by construction, must be greater than or equal to 

observed DHW. We have used these two metrics to contrast continuous (or near-term) stress versus stress 

induced by past peak temperature or PAR events.  

2.2.1.5 Population Density 

The maximum population density within a 50 kilometer radius from the site of coral observation was 

calculated using the UN-Adjusted Gridded Population of the World v4 (GPWv4) dataset estimates for 

2005 (see Figure 2-2).  

 

Figure 2-2. Population density in people per km2 (in blue) and coral observations (red dots). Figure 

produced by the authors using data from the GPWv4 dataset. 
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2.2.1.6 Distance from Shore (DFS) 

Distance from the reef location to shore was calculated using ArcGIS and is defined as the minimal 

distance from each coral observation to land as measured in kilometers. 

2.2.1.7 Wind speed as a proxy for hurricane and storm intensity 

Since 2005 was an active hurricane year in the Caribbean, it is important to control for possible mortality 

associated with storms. Maximum wind speed was used as a proxy for storm and hurricane stress. The 

parameter was calculated by finding the maximum wind speed that occurred between Jan 1, 2005 and the 

date of coral observation. Data was sourced from the NCEP-DOE Atmospheric Model Intercomparison 

Project (AMIP-II) reanalysis (R-2) project, and represents wind speed at 10 meters above sea level. 

AMIP-II is available at global scale, is reported twice-daily, and has a spatial resolution of 2.5 degrees. 

Table 2-1 provides the summary statistics for the variables in the dataset. While a certain few locations 

report high mortality (maximum = 68%), the majority reported none at all (median = 0%; mean =2%). In 

contrast, the median bleaching was nearly 26%. For temperature, it can be seen that almost half of the 

observations reported no temperature stress on the date of measurement (Observed DHW), and the typical 

location experienced what NOAA CRW would consider ‘mild bleaching’ at least once during the summer 

(Maximum DHW). 

  



28 

 

Table 2-1. Summary of variables. 
Variable Min Median Mean Max 

Bleaching [%] 0 26 33 100 

Mortality [%] 0 0 2 68 

Maximum DHW [°C] 0 3.6 4.6 17.2 

Observed DHW [°C] 0 0.5 2.8 16.6 

Maximum PAR [Einstein / m2] 35.6 47.7 47.9 53.7 

Maximum PAR Anomaly 

[Einsteins / m2] 

1.6 16.0 17.9 56.0 

Observed PAR  

[Einsteins / m2] 

26.3 39.8 40.4 52.4 

Observed PAR Anomaly 

[Einsteins / m2] 

0 0.75 4.7 36.5 

Base PAR [Einsteins / m2] 42.3 51.1 50.4 54.2 

Distance from Shore [°] 0 0.014 0.062 1.79 

Depth [m] 0.9 9.2 10.0 42.7 

 

2.2.1.8 Controlling for spatial correlations  

We control for spatial correlation between observations by introducing spatial fixed effects, using the eco-

regional boundaries from the Marine Ecoregions of the World (MEOW). The data includes nine regions, 

as shown in Figure 2-3. The Northern Gulf of Mexico and Western Caribbean regions were lumped 

together since the Northern Gulf of Mexico region only contained 5 observations. 



29 

 

 

Figure 2-3. Marine Ecoregions of the World (MEOW) regions. Red points represent coral 

observations.  

 

2.2.2 Statistical Modelling 

As a part of the study, three major model specifications were tested – OLS, Tobit, and Fractional Logit. In 

the SI, section S1B we explain the assumptions that go with each of these modeling approaches. Here, 

and in the results, we present the results for the Fractional Logit model, since it performed best according 

to our selection criteria. While typical logit models are used to predict binary outcomes, by using a quasi-

likelihood approach it is possible to repurpose the functional form so as to be able to use a continuous and 

bounded dependent variable [48]. It has been argued that Fractional Logit is more appropriate when the 

values outside the censored range are infeasible, and indeed this model best fits our results.  

When considering spatial data, it is important to recognize that nearby observations will not be 

independent of one another. For example, due to larval dispersion in the water column, there is likely to 

be biological connectivity and similarity between nearby corals and reefs, as well as correlation between 

unobservable factors. To address this issue, we employ a fixed-effect regression that controls for spatial 

correlation. We include a spatial dummy for each of the nine ecoregions that span our data in the 

Caribbean as defined by the Marine Ecoregions of the World (MEOW) dataset. The fixed effects 
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Fractional Logit model can be stated in a general form as follows, with j stressors (x) and k spatial 

dummies (d): 

 

𝑦𝑖 =  
1

1 + 𝑒−(𝛽0+∑ 𝛽𝑗𝑥𝑖𝑗+ ∑ 𝛽𝑘𝑑𝑖𝑘 + 𝜖𝑖)𝑘𝑗
 (1) 

where yi denotes that fraction of coral sampled at location i exhibiting mortality (Model 1) or bleaching 

(Model 2).  As noted above, the dependent variables are calculated following Eakin et al. [43], as the 

average of the fraction of the area covered and the fraction of the colonies affected by mortality and 

bleaching, respectively.  The exact model formulation was selected according to performance in a k-fold 

cross-validation. In k-fold cross-validation, the data is partitioned into k distinct groups, with each group 

acting as the test data set while the other k -1 groups act to train the model. This process is repeated many 

times, and the reported model fit represents the average MSE across 1000 simulations. 

2.3 Results 

The selected models for bleaching and mortality employ the same functional form as well as spatial 

controls (Equation 1), differing only in the included interaction terms and on whether average or 

maximum observed values are used in the independent variables. Mortality or bleaching, y, is predicted 

using a function of explanatory variables, xj, and spatial controls, dk. We find that different explanatory 

variables affect bleaching and mortality, and thus the variables used in the two models are highlighted in 

Table 2-2. 
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Table 2-2. Variables included in the estimation models, description, and units. 

3 Variable Description Units 
Included in the 

mortality 

estimation model 

Included in the 

bleaching 

estimation model 

Bleaching Composite of cover bleached and 

colonies bleached  

%  X 

Mortality Composite of cover dead and 

colonies dead 

% X  

Maximum† DHW, Temperature anomaly °C X  

Observed‡ DHW Temperature anomaly °C  X 

Maximum PAR 

Anomaly 

Radiation anomaly Einstein / m2·day X X 

Distance from Shore 

(DFS) 

Shortest Euclidean path to 

shoreline 

Kilometers  X 

Population Density Maximum population density 

within 50km of observation 

1000 people per 

km2 

X X 

Wind Maximum wind speed before 

observation date 

Meters / second X X 

Depth Depth of coral below surface Meters X X 

Depth x MaxPAR Interaction terms between coral 

depth and maximum PAR 

anomaly 

Meters x Einstein / 

m2·day 

X X 

Depth x MaxDHW Interaction terms between coral 

depth and maximum DHW 

Meters x °C X  

Depth x ObsDHW Interaction terms between coral 

depth and observed DHW 

Meters x °C  X 

†Maximum stress is the most extreme values recorded since the beginning of the event (January, 2005). ‡Observed stresses are 

the values observed on the day of measurement 

3.2.1 Mortality.  

In Table 2-3 we show the estimated coefficients for mortality, as well as the marginal effects averaged 

across all data points in the sample. We find that maximum DHW, coral depth, and a coral depth-PAR 

Anomaly interaction term are all statistically significant in explaining coral mortality. Increases in 

maximum DHW lead to increased mortality, with an increase of 10 DHW leading to an approximate 4.9 

percentage point increase in mortality. Similarly, an increase in PAR anomaly of 10 Einstein/m2·day 

would be associated with an increase in 0.8 percentage points in mortality, and an increase in 10 meters of 

the depth of a coral reef is associated with 9.7 percentage points less mortality. While population and 

wind speed are not statistically significant in the model, we find that their inclusion improved 

performance during cross-validation. Both parameters were positively correlated with mortality.  

Finally, we do find a significant difference in coral survival across regions, as seen in the regional 

marginal effects in Table 2-3. These effects can be interpreted as the change in expected mortality from a 
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reference region, which has been set as the Western Caribbean / Northern Gulf of Mexico joint region. 

For example, according to the model the Eastern Caribbean region is expected to experience 4.7 

percentage points less mortality than the reference given the same level of stress, while the Greater 

Antilles are expected to experience 4.9 percentage points more mortality. One region, Bermuda, shows 

itself to be an outlier. This indicates the corals in Bermuda showed themselves to be more robust than 

corals in other regions given the same level of stress, however it should be noted that this region reports 

the least data in the aggregate dataset with just 41 observations. 
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Table 2-3. Results for the regression model of coral mortality as a function of different explanatory 

variables. 
Variables Coefficients Average Marginal Effect 

   

Maximum DHW 0.304*** 0.492*** 

 (0.050) (0.071) 

Maximum PAR Anomaly -0.0073 0.0808*** 

 (0.015) (0.018) 

Population 0.0373 0.0679 

 (0.031) (0.057) 

Wind 0.00114 0.00207 

 (0.040) (0.073) 

Depth -0.143*** -0.0969*** 

 (0.056) (0.023) 

Depth×Maximum PAR Anomaly 0.00517***  

 (0.0012)  

Depth×Maximum DHW -0.00328  

 (0.0040)  

Bermuda -10.9*** -93.1*** 

 (0.46) (5.8) 

Bahamian 1.56** -6.2* 

 (0.77) (3.5) 

Eastern Caribbean 0.474 -4.7*** 

 (0.35) (1.6) 

Greater Antilles 0.896** 4.9** 

 (0.42) (2.3) 

Southern Caribbean -2.08** -7.4*** 

 (1.03) (2.6) 

Southwestern Caribbean -0.380 -19.5*** 

 (0.35) (2.2) 

Floridian -1.23*** -12.3*** 

 (0.47) (2.2) 

Constant -5.74***  

 (0.89)  

Log Likelihood 

Cross-validated MSE 

-64.34 

30.64 

 

Cross-validated RMSE 5.53  

Cross-validated R2 0.325  

Number of Observations 1,045  

Estimated coefficients and average marginal effects using a fractional logit model, where coral mortality 

is explained as a function of environmental stressors. Robust standard errors are shown in parentheses 

(*** p<0.01, ** p<0.05, * p<0.1). 

 

3.2.2 Bleaching. 

In Table 2-4 we show the estimated coefficients for bleaching, as well as the marginal effects averaged 

across all data points in the sample. The marginal effect of temperature on bleaching is far larger than 

those of the other effects included in the model. Distance from shore, which is used as a proxy for coastal 
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environmental stressors from human activities, is negatively associated with bleaching, indicating that, as 

expected, corals found further from land (and therefore stressors such as runoff or land use) are less likely 

to experience bleaching. Likewise, as with the mortality model, population density and wind speed were 

found to be positively associated with coral bleaching. 

NOAA indicates that ‘mild bleaching’ can occur at DHW values larger than 4, and ‘severe bleaching’ at 

values of DHW larger than 8. The bleaching model suggests that an average DHW of 4 would be 

associated with a bleaching fraction of 37%, and an average DHW of 8 is associated with a bleaching of 

53%. These high levels of bleaching may indicate an increasing sensitivity in the Caribbean to 

temperature. Lastly, PAR is found to be associated with increased bleaching, but only when phrased in 

terms of PAR anomaly, or radiation above baseline. This result indicates that corals adapt to their local 

microclimates with radiation as well as temperature.  

Spatial variation across the Caribbean continues to significantly affect model results. Bermuda continues 

to report anomalous results, 19.8 percentage points below the reference region. The other regions report a 

5.6 percentage point spread, the Southern Caribbean reporting the least bleaching tendencies and the 

Bahamian region the most. Accounting for separate spatial fixed effects is therefore crucial in maintaining 

unbiased estimates of the effects of stressors on coral health outcomes. 
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Table 2-4. Results for the regression model of coral bleaching as a function of different explanatory 

variables. 
Variables Coefficients Average Marginal Effect 

   

Observed DHW 0.201*** 3.31*** 

 (0.014) (0.16) 

Maximum PAR Anomaly 0.0268*** -0.0274 

 (0.0054) (0.059) 

Distance from Shore -0.0363*** -0.72*** 

 (0.0137) (0.27) 

Population 0.0311*** 0.618*** 

 (0.0059) (0.12) 

Wind 0.0132 0.263 

 (0.0085) (0.17) 

Depth 0.0734*** 0.375*** 

 (0.011) (0.085) 

Depth×Observed DHW -0.00336**  

 (0.0010)  

Depth×Maximum PAR Anomaly -0.00246***  

 (0.00049)  

Bermuda 0.114 -19.8*** 

 (0.137) (1.7) 

Bahamian 1.05*** 2.8** 

 (0.245) (1.4) 

Eastern Caribbean 0.0185 0.86 

 (0.156) (0.64) 

Greater Antilles 0.325* 1.6** 

 (0.188) (0.77) 

Southern Caribbean 1.16*** -3.8** 

 (0.148) (1.9) 

Southwestern Caribbean 0.605*** -0.69 

 (0.148) (0.63) 

Floridian 0.476** -2.2** 

 (0.176) (0.89) 

Constant -2.421*** 

(0.198) 

 

   

Log-likelihood -1299  

Cross-validated MSE 607.0  

Cross-validated RMSE 24.6  

Cross-validated R2 0.29  

Number of Observations 2,945  

Estimated coefficients and average marginal effects using a fractional logit model, where coral bleaching 

is explained as a function of environmental stressors. Robust standard errors are shown in parentheses 

(*** p<0.01, ** p<0.05, * p<0.1). 

 

 

When assessing the final bleaching and mortality models, it is important to assess which elements have 

not been selected. For instance, while, as noted in the introduction, the literature suggests that a DHW – 

PAR interaction term has biological and laboratory support, it was not found to be superior in tests 

performed during the cross-validation. Likewise, in the bleaching model, maximum PAR Anomaly was 
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selected over observed PAR anomaly, indicating that exposure to anomalous levels of radiation before the 

12-week window is important in predicting current levels of bleaching. 

To illustrate the sensitivity to the different stressors, in Figure 2-4 we show the difference between the 

predicted coral outcome when each of the stressors is varied between the 5th and 95th percentile of 

observed values in the sample (while all other variables are held at their means). Temperature is the major 

driver of both the bleaching and the mortality responses. Population density, the proxy for anthropogenic 

stress included in both models, plays a secondary effect in both models. For instance, in both the 

bleaching and mortality models the temperature effect is ~4 times larger than that for population density.  

Hurricane stress, as measured by wind speed, plays a minor role in both models across the observed 

range. This tepid response is perhaps due to the cancelling out of the dual effects of hurricanes on coral 

health outcomes – hurricanes may increase stress on corals either directly or through increased runoff, or 

they may lessen stress due to upwelling [43,49]. 

Figure 2-4. Relative effects of temperature (DHW), solar radiation (PAR), depth, and distance from 

shore (DFS). In Figure 2-4A, the predicted coral mortality is displayed while holding each stressor 

at the 5th percentile and 95th percentile of its observed values in the sample (while all other stressors 

are held at their mean). The error bars represent plus/minus two standard errors of the expected 

value. In Figure 2-4B the analogous information is reported using bleaching as the dependent 

variable. 
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2.3 Discussion 

In this study, we present further evidence of the effects from climatic and anthropogenic influences on 

coral reef ecosystem health. These effects are robust across a range of modeling strategies, and show that 

even after controlling for confounding mechanisms sea surface temperature plays a dominating role in 

controlling coral bleaching and mortality. Predictions indicate that in the Caribbean and across the world 

anomalous temperature events will rise in severity and become more frequent [11]. If, as estimated in 

Donner et al. [5], events of the magnitude of the 2005 Caribbean warming episode become bi-annual 

events in the next few decades, reef systems will degrade at accelerating rates.  

Of note is that we find significant spatial differences between different geographic locales indicating 

varying ability of corals to respond to climate change. We also find interesting regional differences in 

correlations between stressors. For example, the correlation between distance from shore and depth varies 

across eco-regions, in some instances being high and positive, as is the case in the Southwestern 

Caribbean (ρ=0.21), sometimes high and negative (for example, Bahamian, where ρ=-0.39), and in other 

instances a low correlation. More detail is included in the supplementary information. However, barring 

rapid and drastic biological acclimation, our results show that Caribbean reefs will face mounting 

existential pressure as the ocean continues to warm. 

In conclusion, we find that that temperature and radiation far outweighed direct anthropogenic stressors in 

driving coral health outcomes during the 2005 Caribbean event. While selecting models based on 

performance using cross-validation decreases the risk of over-fitting, caution still must be used in 

generalizing the model to the modern Caribbean. Catastrophic events fundamentally change the nature of 

ecosystems, and it must be noted that the Caribbean of today cannot be completely represented by the 

Caribbean of 2005. However, the analysis presented in this paper provides additional evidence for the 

effect of temperature and other environmental stressors on coral health using a large sample of corals, and 

can be taken as suggestive of future trends both in the Caribbean and across the world. Indeed, the 

approach developed here can be used by other modelers and researchers to assess the effects for other 
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locations, times and conditions, and it also provides a first order estimate that modelers can use in climate 

models to assess the effects of future environmental stressor states on coral health.  
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Chapter 3: High-resolution model for estimating the economic and 

policy implications of agricultural soil salinization in California 

This chapter is based on the following work currently under review at Environmental Research Letters: 

Welle P D, and Mauter, M S High-Resolution Model for Estimating the Economic and Policy 

Implications of Agricultural Soil Salinization in California. Environmental Research Letters, 

accepted but not yet published. 

 Introduction 

Maintenance and intensification of agricultural practices will be critical to meeting the nutritional 

demands of the world’s growing population.  One widely practiced method of intensification, crop 

irrigation, can also lead to unintentional soil degradation and reduced crop yield when the total dissolved 

solids (TDS) concentration of the irrigation water is high or a substantial fraction of water is lost to direct 

evaporation [1, 2].  Quantifying the economic and social costs of soil salinization is critical to assessing 

conditions under which technology or policy intervention is necessary to correct market inefficiencies.    

Soil salinization, the process by which dissolved solids in the irrigation water accumulate in the root zone 

as irrigation water evaporates or transpires, is problematic in arid regions, in regions dependent on 

groundwater, in regions that have adopted water-conserving irrigation practices, and in regions with 

shallow, impermeable soil layers [3].  In the last case, the applied water forms a perched water table, from 

which salts can be transported back to the surface through capillary action [4].  Once salinized, 

agricultural soils become less productive due to the combination of osmotic and ionic stress exerted on 

the plant [5, 6].  Growers may choose to fallow salinized land, leading to land use change [7] and 

greenhouse gas emissions [8, 9], or continue to cultivate less productive salinized land by switching crops 

and/or adjusting management practices, leading to reduced revenues and intensification of agricultural 

inputs (e.g. water).  
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Best management practices for mitigating the effects of soil salinization in high-risk agricultural areas 

have largely been derived from laboratory and field-scale experiments which elucidate the mechanisms 

by which soil salinization diminishes crop yield.  These studies have probed the relationship between 

irrigation water quality and soil salinity, have provided yield reduction models that relate expected yield 

to soil salinity for a specific crop [6, 10-12] and have evaluated the efficacy of various remediation 

strategies.  The most prevalent remediation strategy is salinity leaching, or the excess application of 

irrigation water to drain soils of existing salt content.  Field experiments over a range of soil and crop 

types have been used to identify leaching fractions capable of maintaining soil salinity at moderate levels, 

but these leaching guidelines may not be implemented due to practical constraints on water availability or 

environmental discharge [13-16].  

In addition to the work seeking to identify best practices for managing saline soils at the farm-scale, a 

separate body of literature has quantified the regional extent of soil salinization.  Combining local 

inventories of affected land area with expert judgment, the UN Global Assessment of Human-induced 

Soil Degradation (GLASOD) program estimated that 76 million hectares, an area larger than France, were 

affected by human-induced salinization in 1991 [1].  More recent data compilation efforts suggest that 

China, Australia, and Pakistan are all experiencing the negative impacts of agricultural soil salinization 

[4, 17, 18].  Beyond land inventories, hydrological models have estimated the rate of salt flux over large 

areas [19] and informed predictions about future salt accumulation under current management practices.  

These regional assessments of soil salinity also serve as the basis for work quantifying the future social 

and economic impacts of soil salinization.  Typically formulated as an optimization problem in which 

individual agents maximize their profits given constraints and costs of the inputs to production, these 

studies estimate changes in the economic output of a region relative to a baseline year.  Examples include 

estimated revenue losses due to inefficient management of 14.5% in the Tungabhadra project in western 

India [20]; additional profit losses of $1.8 to $3.6 billion annually by 2030 over 2008 levels in the Central 

Valley of California [21]; and annual profit losses of 44-87% in the Murray-Darling Basin due to the 
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combined effects of climate change and salinity [22].  Each of these approaches quantifies losses relative 

to a baseline scenario, rather than the total current losses incurred, making it difficult to assess the full 

value of soil remediation efforts.   

These loss estimation approaches typically rely on aggregated data for either crop or soil parameters, 

while yields are determined by field-scale processes.  Unfortunately, using aggregated data can introduce 

bias into the estimate, as demonstrated in the climate adaptation and downscaling literature [23].  

Similarly, it has been seen that when multiple spatial resolutions are available the selection of which 

characteristic resolution can have large impacts on the final output of the analysis [24, 25].  While these 

effects have seldom been studied with regards to agricultural optimization models employed to assess soil 

salinization, there are examples of these effects within agricultural models in general [26]. 

The present work makes three contributions.  First, we develop a novel method for quantifying the 

absolute yield and revenue losses attributable to soil salinization.  Integrating high-resolution satellite 

data, interpolated ground measurements, and county level yields and prices, we extend grower models 

traditionally applied to field-scale processes to understa nd regional-scale trends in the productivity of 

critical agricultural regions.  Salinity and crop data are analyzed at the pixel scale (30 m by 30 m 

resolution), allowing precise modeling of specific soil conditions and avoiding the use of regional 

averages for spatially sensitive parameters.  Second, we incorporate techniques to remove bias from our 

satellite-based estimates using coarse resolution validation data as a basis for quantifying classifier 

accuracy.  This step is important in achieving correct results, and is documented in Appendix B Sections 

9.2 and 9.4.  Finally, we compare the model output to results from an analogous model using coarser 

resolution data to assess the influence of data resolution on the magnitude of the estimated salinity 

impacts.  We apply these models to estimate 2014 yield and revenue losses from soil salinization in the 

State of California and to study the effects of spatial aggregation in model estimation.  
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 Methods 

We assess the costs of salinization by analyzing high resolution pixel-level data.  These costs are 

quantified by calculating yield and revenue losses relative to a hypothesized non-salinized baseline state.  

After analyzing the model with high-resolution data sources, we apply the same approach to data 

aggregated at the regional level.  We then assess the advantages of using the computationally intensive 

disaggregated data in comparison with more aggregated data sources.   

3.2.1 Disaggregated Approach for Estimating Yield and Revenue Losses from Soil Salinization  

We quantify current losses due to soil salinization in terms of yield (tons) and revenue (dollars). Yield 

loss at each pixel is calculated using Equation 1. 

 𝑌𝑝
𝐿 = ∑ 𝑃𝑐∗,𝑐 ∗ (1 − 𝐹𝑝,𝑐) ∗ 𝑌̅𝑐

𝑀

𝑐

 
(1) 

where 𝑌𝑝
𝐿 is the yield lost (𝑌𝐿 ) due to salinity at pixel 𝑝.  𝑃𝑐∗,𝑐 is the probability that given the satellite 

based crop classifier indicates that a pixel contains a particular crop 𝑐∗, the pixel actually contains crop 𝑐.  

This term is used in order to remove bias from the estimate; a procedure further discussed in Appendix B 

Section 9.2. 𝐹𝑝,𝑐 is the fraction of maximum yield achieved given existing levels of salinity and choice of 

crop, estimated in Equation 2.  𝑌̅𝑐
𝑀 is the theoretical maximum yield, or the estimated crop-specific yield 

in the absence of soil salinity, and is estimated in Equation 3.  

 𝐹𝑝,𝑐 = 1 − 𝑏𝑐(𝑆𝑝
𝑆 − 𝑎𝑐) (2) 

 
𝑌̅𝑐

𝑀 = 𝑌𝑟,𝑐 ∙ (
1

𝑛
∑ 𝐹𝑝,𝑐

𝑝∈𝑐

)−1 
(3) 

Equation 2 models the crop salt tolerance response, as originally developed in Maas and Hoffman [11] 

where 𝑆𝑝
𝑆 is the soil salinity at a particular pixel and 𝑎𝑐 and 𝑏𝑐 represent the crop-specific threshold and 

slope response.  The function is piecewise linear, with 𝐹𝑝,𝑐 equaling 1 until 𝑆𝑝
𝑆 reaches 𝑎𝑐, then linearly 
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decreasing at rate 𝑏𝑐 until reaching 0.  In Equation 3 the theoretical maximum yield, 𝑌̅𝑐
𝑀, is calculated by 

dividing observed regional data on yields (𝑌𝑟,𝑐) by regionally averaged 𝐹𝑝,𝑐 values, where 𝑛 represents the 

number of pixels in region 𝑟. This results in a single estimate of average maximum yield 𝑌̅𝑐
𝑀 for each 

crop in each region, which captures differences in soil fertility, climate, and technology between regions.  

Following this method, we estimate total area wide yield losses 𝑌𝑇𝐿 (tons) using Equation 4, where 𝑘 is a 

coefficient that converts the intensity of yield from acre-1 to pixel-1.  

 𝑌𝑇𝐿 = ∑ 𝑘 ∗ 𝑌𝑝
𝐿

𝑝

 
(4) 

Similarly, revenue loss 𝑅𝑝
𝐿 is obtained by estimating the fraction of theoretical maximum revenue 𝑅𝑝,𝑐

𝑀  

that is realized given the salinity impacted yields (Equations 5 and 6).  The formulation for revenue loss 

parallels that of yield lost in Equation 1, with the addition of regional prices 𝑝𝑟,𝑐 to convert maximum 

yield to maximum revenue.  𝑅𝑝
𝐿 is translated into total revenues lost 𝑅𝑇𝐿 by summing over all pixels in the 

study and multiplying by the correction factor 𝑘.  

 𝑅𝑝
𝐿 = ∑ 𝑃𝑐∗,𝑐 ∗ (1 − 𝐹𝑝,𝑐) ∗ 𝑅𝑝,𝑐

𝑀

𝑐

 (5) 

 𝑅𝑝,𝑐
𝑀 = 𝑅𝑟,𝑐

𝑀 = 𝑝𝑟,𝑐𝑌̅𝑐
𝑀   (6) 

3.2.2 Aggregated Approach for Estimating Yield and Revenue Losses from Soil Salinization 

The aggregated approach mimics the disaggregated approach, but substitutes regionally aggregated 

estimates in place of pixel-level crop acreage estimates and salinity values.  First, regional salinity values 

𝑆𝑟
𝑆 are calculated by averaging pixel level salinity values across the region.  Next, the fraction of 

maximum yield achieved is estimated Equation 7.  Regional yield losses are calculated by estimating the 

theoretical maximum yield 𝑌𝑐
𝑀 in Equation 8 and assessing the impact of salinity 𝑆𝑟

𝑆 on yields and 

revenues (Equations 9 and 10).  Lastly, estimates of total yields lost 𝑌𝑇𝐿 and revenues lost 𝑅𝑇𝐿 are 
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obtained by multiplying the per acre revenue and yield losses (𝑌𝑟,𝑐
𝐿 , 𝑅𝑟,𝑐

𝐿 ) by regional crop acreages (𝐴𝑐,𝑟) 

and summing over all crops and regions. 

 𝐹𝑟,𝑐 = 1 − 𝑏𝑐(𝑆𝑟
𝑆 − 𝑎𝑐) (7) 

 𝑌𝑐
𝑀 = 𝑌𝑟,𝑐 ∙ (𝐹𝑟,𝑐)−1 

  

 (8) 

 𝑌𝑐,𝑟
𝐿 = (1 − 𝐹𝑟,𝑐) ∗ 𝑌𝑐

𝑀 (9) 

 𝑅𝑐,𝑟
𝐿 = (1 − 𝐹𝑟,𝑐) ∗ 𝑝𝑟,𝑐 ∗ 𝑌𝑐

𝑀 (10) 

 𝑌𝑇𝐿=∑ ∑ 𝑌𝑐,𝑟
𝐿 ∗ 𝐴𝑐,𝑟𝑟𝑐  (11) 

 𝑅𝑇𝐿=∑ ∑ 𝑅𝑐,𝑟
𝐿 ∗ 𝐴𝑐,𝑟𝑟𝑐  (12) 

3.2.3 Case study: California Yield and Revenue Losses from Soil Salinization 

We apply these methods to assess the effects of soil salinization on yields and revenues in the State of 

California.  California is the highest grossing agricultural state in the United States, with 2013 cash 

receipts of $46.4 billion, or 12% of US agricultural totals [27].  Growers in the arid Central Valley of 

California are dependent on irrigation to sustain agricultural output and have long been plagued with soil 

salinization issues.  Reduced yields from soil salinity are likely to be exacerbated during periods of 

drought, when application of leaching water is curtailed.   

We combine statewide agricultural statistics from the California Department of Water Resources (DWR) 

with national statistics from the National Agricultural Statistics Service (NASS) to populate the yield 

reduction model, with county-level data serving as regions. We use the top twenty most profitable 

(highest gross revenues) crops in California for participation in the study (Table S1 in Appendix B).  

When combined, these crops account for over 95% of the non-livestock agricultural cash receipts in the 

state [28].  In addition to these twenty crops we account for fallowed land, bringing the total crop 
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categories to twenty-one.  Crop data are released as 30 m square pixels, which define the characteristic 

resolution of the case study.  

The data are sourced from a variety of agencies that publish on intermittent intervals, requiring the 

combination of data from 2013 and 2014 in the loss analysis.  The two driving data sources, crop patterns 

and salinity, are both for 2014.  Prices and yields are for 2013, but have low year-to-year variation. We 

thus consider the year of analysis to be 2014.  Estimating rehabilitation potential also requires information 

on crop water use intensity and leaching practices, which was last reported in 2010.  Full detail on data 

sources is given in Appendix B Section 9.1. 

3.2.4 Statistical Analysis 

We perform a statistical analysis to determine the magnitude of the linear correlation between salinity and 

four parameters: crop marginal value, crop salt tolerance, estimated yield reduction, and estimated 

revenue losses per acre (Table S4).  To perform the regression, we use the vector salinity data and 

aggregate the four parameters up to the same scale using zonal averages. The regression is estimated 

using a generalized additive model (GAM) to control for latitude and longitude using a thin plate spline 

regression. See Appendix B Section 9.7 for additional detail. 

 Results 

This method provides the first quantitative estimate of lost yields and revenues to salinity at a sufficiently 

high resolution (30 m) for both field and region-level decision making.  We demonstrate the value of 

these methods using the State of California as a case study, calculating the losses due to salinity.  

3.3.1 Results of Adopting a Disaggregated Approach for Estimating Yield and Revenue Losses 

from Soil Salinization in CA 

We find that higher salinity soils in California (Figure 3-1A) are spatially correlated with low crop yield 

(Figure 3-1B; r = -0.84), high revenue losses (Figure 3-1C; r = 0.33), the cultivation of salt tolerant crops 

(Figure S4B in Appendix B; r = 0.26), and the cultivation of lower revenue crops (r = -0.30). When 
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regressing each of these four parameters of interest on salinity, we observe a statistically significant 

response for each variable’s coefficient (see Table S4). We find that salinity is correlated with lower 

relative yields (𝛽 = −5.38), higher revenue losses (𝛽 = 364.9), higher crop tolerance (𝛽 = 0.034), and 

lower crop revenues (𝛽 = −304.46). Each of these coefficients are significant at the p < 0.001 level. 

Salinity values are highest in the Imperial Valley (located in southeast California along the border with 

Mexico) and the southern Central Valley.  Relative yield is driven by two parameters: soil salinity and 

crop salt sensitivity (Table S1 in Appendix B). Although we observe that growers compensate for 

elevated levels of soil salinity by planting salt tolerant crops on salinity-impaired fields (Figure S5A in 

Appendix B), relative yield remains lowest where salinity values are highest.  

The spatially resolved data from Figure 3-1B is re-plotted in Figure 3-2B as a cumulative density function 

(CDF) which relates the fraction of agricultural land in California to the percentage of relative yield.  

According to the Cropland Data Layer published by USDA, approximately 1.7 million acres of California 

farmland are fallowed and produce no agricultural output, encoded with a relative yield of zero.  Another 

1.6 million acres have reduced agricultural yield, reporting salinity in excess of the tolerance threshold of 

the current crop mix.  The existing salinity levels on the final 4.8 million acres of agricultural land are 

unlikely to affect yield for the current crop mix.  Aggregating across all agricultural farmland in 

California, we estimate that soil salinization reduces crop yields by 8.0 million tons annually.   

Reduced agricultural yields result in lost revenue.  Revenue losses (Figure 3-1C) are highest in the 

western San Joaquin Valley, with losses as high as $3000 per acre on select fields.  While yield losses are 

higher in the Imperial Valley, revenue losses are less substantial as growers are primarily planting lower 

revenue crops, such as alfalfa.  The CDF of revenue lost per acre is reported in Figure 3-2A.  At the state 

level, we estimate that soil salinization reduced grower revenues by $3.7 billion, or 7.9% of CA 

agricultural output, in 2014.  We find that this value likely ranges between $1.4 billion and $7.0 billion 

and that nearly all the uncertainty in our data can be attributed to uncertainty in the salinity measurements 

(Figure S2 in Appendix B).  
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Figure 3-1.  Spatially resolved estimates of (A) soil salinity, (B) relative yield, (C) revenue lost per 

acre calculated with disaggregated data, and (D) revenue lost by county using aggregated data. 
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Lost yield and lost revenue for individual crops are plotted in Figure 3-2.  The Other High Uncertainty 

Crops (OHUC) category is an amalgamation of the seven crops that could not reliably be identified using 

remote sensing techniques (Figure S3 in Appendix B).  Together, almonds, strawberries, grapes, and 

alfalfa account for approximately half (49.5%) of the total $3.7 billion in annual revenue loss.  Revenue 

lost is a function of soil salinity, crop sensitivity, crop marginal revenue, and total crop acreage.  While 

these four crops account for a large percentage of total acreage, they also experience higher yield 

reductions on a per acre basis.  Relative yield averages 85% for these crops, compared to a 94% average 

yield for all other crops. 

 

Figure 3-2. Aggregate and per crop relative yield and revenue losses. (A) Cumulative density 

function of revenue lost per acre and relative yield. (B) Relative yield by crop. (C) Total revenue 

lost by crop. Other High Uncertainty Crops (OHUC) include those crops that cannot be 

consistently estimated (see Figure S3 in Appendix B) using remote sensing.  These include broccoli, 

carrots, celery, corn, lettuce, peaches and peppers. 

 

3.3.2 Results of Adopting an Aggregated Approach to Estimating Yield and Revenue Losses 

from Soil Salinization in CA 

A similar approach is applied using regional data. Cropping data comes from county-level statistics (see 

Section 9.1 in Appendix B for detail), while salinity data are aggregated to the county level (Figure 3-1D). 
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There are several prominent differences between results from the aggregate and disaggregate analyses. 

The first is that all of the estimated lost revenues occur in just 10 counties, compared with the 40 counties 

with estimated revenue loss using the disaggregated approach. Of the 10 counties with lost revenues, 97% 

of the losses occur in three counties (Imperial, Kings, and Merced). This contrasts with the wider 

distribution of losses that are estimated by the disaggregated model. 

Two effects are driving the differences between the aggregated and disaggregated approaches. The first is 

that salt-sensitive, high revenue crops are not likely to be grown on soils with salinity levels equal to the 

county average. Indeed, the spatially resolved satellite data shows a negative relationship between salinity 

and crop marginal revenue and a positive relationship between salinity and salt tolerance (Section 9.5 in 

Appendix B). This causes an upward bias in loss estimates.  

The second effect is that if elevated salinity is confined to a small geographic area within the county then 

the average salinity for the county may be low.  While models based on disaggregated data estimate 

damages in the area with elevated salinity, models based on aggregated data inherently smooth over 

variability in field-level soil salinity.  As a result, these aggregated modeling approaches may miss 

salinity losses if the county average salinity is below the threshold for the cultivated crops. This effect 

will cause a downward bias in the final estimate. 

After aggregating both approaches to the state level, we find that the aggregated model suggests that 

estimated annual lost revenues in the state of California due to salinity are $1.0 billion, compared with the 

$3.7 billion estimated in the disaggregated approach. This number lies outside the $1.7 - $7.0 billion 

determined in the uncertainty analysis (Section 9.3 of Appendix B).  

The differences in the two estimates may result from either the different crop data sources (i.e. satellite vs 

regional surveys) or the spatial resolution of the analysis.  To eliminate the effect of the differing crop 

data sources, we perform a third analysis where we run the aggregated model using pixel-level satellite 

data that has been aggregated at the county level to estimate regional crop acreage.  When we perform 
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this analysis, we find that the aggregated satellite data results in similar cumulative damages ($1.2 billion) 

to the those estimated using regional cropping data ($1.0 billion) and leaves Figure 3-1D unchanged.  

Thus, the lower yield and revenue loss estimates stem directly from performing the analysis at the county, 

rather than pixel, scale. 

 Discussion 

In analyzing agricultural systems there has historically been a tradeoff between the scale of the analysis 

and its resolution.  Field measurements are highly accurate, but can be costly to collect at sufficient 

density over large regions.  Regional estimates provide data at broader scales, but are typically limited in 

their ability to describe a variable’s spread and correlation with other variables, factors which are of 

critical importance in assessing spatially distributed processes such as salinization.  Recent improvements 

in remote sensing, combined with modern data storage and processing, are helping to circumvent the 

scale / resolution tradeoff.  By continuously collecting measurements with both high spatial and temporal 

resolution, orbital sensors are capable of describing a variable’s entire distribution as well as its spatial 

correlation with other covariates.  As the accuracy and availability of remotely sensed data increase, 

effectively integrating this information with more traditional, regional data sources offers significant 

promise for improving the accuracy of regional level agricultural policy analysis.  

In this study, we present a novel method that integrates high-resolution satellite data, interpolated ground 

measurements, and county level yields and prices to estimate the regional effects of soil salinization on 

agricultural productivity.  The estimates are performed at the field-scale, allowing the model to capture 

the local variation inherent in agricultural systems.  The method has broad applicability for testing 

alternative management practices and policies at the regional level, as illustrated in our case study of 

California where we evaluate leaching as a best-management practice for addressing soil salinization. 

Moreover, the generalized approach may serve as a template for integrating multi-modal data to assess the 

economic effects of phenomena on agriculture at high resolution over regional scales.  
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While the general approach is valid, the proposed methods are limited by their inability to predict crop 

switching, as well as their continued reliance on regional averages for a number of the inputs.  The model 

quantifies losses based on current cropping patterns and does not account for how producers might adjust 

their production practices given changes in resource availability, soil quality, or other factors.  For 

example, as salinity levels decrease, growers are likely to switch from lower value, salt tolerant species to 

higher value, salt sensitive crops.  The current analysis does not account for the theoretical gain of 

revenue that growers would accrue due to switching crops, meaning the current model is likely to 

underestimate the revenue losses from soil salinity.  In order to address this limitation, we would need to 

expand to a spatially resolved, multi-year data set.  Applying panel data methods to such data would 

allow for the estimation of switching costs, and accounting for these costs could provide an avenue for 

estimating the likely change in crop mix as salinity levels decrease. 

Second, the model is limited by the available data.  The salinity data are sourced from interpolated ground 

measurements which are smoothed through time and space, increasing the probability that reported values 

deviate from actual field conditions.  Emerging techniques for remotely collecting soil salinity data, 

which rely on either airborne electromagnetic surveys or salinity estimates from orbital sensors [29-31], 

will further enhance the resolution of soil salinity estimates and reduce uncertainty in yield reduction 

analyses. Lastly, the formulas approximating the relationship between leaching fraction, soil salinity, and 

crop yield represent average responses of each crop class.  They do not account for variation in other soil 

parameters or management practices that influence yield in specific fields, including irrigation practices, 

soil organic carbon and micronutrient concentrations, or the use of salt tolerant cultivars.  To account for 

this underlying variability, we perform extensive uncertainty analysis on the yield response function as 

described in Section 9.3 of Appendix B.  Future improvements in the remote sensing of soil quality 

parameters and crop yield may enable stronger statistical prediction of yield response.  If successful, 

revised yield response functions would be easily incorporated into this analysis framework.    
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The limitations of the method are critical for interpreting the results of the case study.  The estimated 

yield and revenue losses for California are calculated directly from current cropping patterns and do not 

account for crop switching.  Accounting for crop switching are likely to increase the estimated revenue 

losses, though the effect on relative yield is less clear.  The effect of incorporating local estimates for 

salinity, yield, and water use in place of regional ones is also uncertain, and depends on underlying 

correlations between the data.  For instance, it is possible that theoretical maximum yield is correlated 

within region to areas with either lower or higher salinity levels, an effect that would cause our results to 

be biased upwards or downwards, respectively.  Directly measuring these correlations and accounting for 

their effects is a significant motivation for seeking higher resolution data. 

Despite these limitations, multi-modal models for estimating the effects of soil salinization on agricultural 

productivity offer valuable insight into the magnitude of yield and revenue losses in vulnerable regions.  

The estimated 2014 losses of 8.0 million tons of yield and $3.7 billion in 2014 are a significant fraction of 

state agricultural outputs of 69 million tons with a combined worth $32 billion. To put this in perspective, 

these estimates suggest that the yearly economic damages due to soil salinization are of comparable scale 

to the yearly damages associated with the California drought in 2014 and 2015 [32, 33]. While the 

uncertainty analysis accounts for multiple years of data, the results presented are for 2014 and may differ 

under non-drought conditions. 

We have shown that salinity has large impacts on Californian agriculture.  Leaching, the primary strategy 

for managing soil salinity, is likely to be further constrained in California as a result of the high selenium 

content of this agricultural drainage discharge [34].  At the same time, drought and reduced snowpack 

water storage is expected to limit the water supply critical to leaching practices. Alternatives to salinity 

leaching include land fallowing or the application of lower salinity irrigation water, leading to climate 

impacts [8, 9] or the need for costly water treatment systems [35].  In short, salinization is likely to remain 

a significant societal and technological challenge in arid regions such as California.  Successful 
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management will rely on accurate monitoring and assessment coupled with impact analyses that are 

performed at a spatial scale that captures the underlying mechanisms of yield loss. 
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Chapter 4: Assessing the magnitude of crop switching due to salinity 

in the Central Valley of California 

This chapter is currently in preparation for publication. It is being co-authored with Meagan 

Mauter, Nicholas Muller, and Momin Ghalib. 

 Introduction 

It is important that methods which assess the impacts of policy changes on agriculture account for farmer 

behavioral response. One key response available to growers seeking to adapt to new conditions is crop 

switching – namely the practice of cultivating crops better suited to expected future conditions. From a 

theoretical perspective, impact assessment methods which do not account for crop switching are only 

appropriate if relevant shocks are unexpected and, thus, farmers are not able to adjust their crop mix to the 

new circumstances. Since policy changes are typically implemented with lead-in time, accurately 

predicting how farmers change their cropping decisions is a key research task for those seeking to 

estimate policy effects on agriculture.  

Approaches to model crop switching include both theoretical and empirical techniques. Positive 

mathematical programming (PMP) is a deductive technique based on assumed profit maximizing 

behavior [1-3], of which the Statewide Agricultural Production (SWAP) model is an example. The grower 

in a PMP model receives revenues according to the mix of crops planted, while their cost curve is 

calibrated to data from the region in which it is implemented. After calibration, the model can be used in 

policy exercises while accounting for the change in cropping patterns. Empirical approaches, on the other 

hand, seek to model behavioral response using regression techniques. For example, in their work to 

estimate the effects of climate change on US agriculture, Mendelson et al. [4] regress land value on 

climatic, economic, and soil parameters and use this regression to estimate the change in long term profits 

under climate change. Such a model assumes that farmers will modify their crop choice to maximize their 

property value, and so incorporates crop switching. The approach outlined in Mendelson et al. [4] has 
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been both extended and implemented in other contexts [5-14]. Other researchers have sought to apply 

discrete choice models (e.g. multinomial logit) to estimate crop switching directly. Discrete choice 

models use regression based approaches to predict what growers will cultivate directly, and have been 

applied to agriculture related to a variety of questions including adoption of conservation tillage practices 

[15], irrigation choice [16], as well as population expansion and industrial development [17]. 

Often theoretical and empirical models are applied to aggregated data (e.g. county or state-level) due to 

data availability, even though aggregated data may limit the accuracy of policy analyses. Measurements 

conducted at the farm-scale are costly and so government agencies typically rely on survey data to inform 

parameters such as yield and cropping patterns. However, applying policy analysis on aggregated data 

may limit accuracy for several reasons. First, aggregated data (e.g. county or country level) can result in 

inaccurate estimation if there is significant within-region variation in the parameters of interest [18, 19]. 

While county-level data may have sufficient resolution for models which seek to measure the impact of 

spatially smooth parameters such as climatic variables, variables which change over small spatial scales 

such as soil parameters require higher resolution data. Second, if the phenomenon of interest has a small 

spatial extent, relying on aggregated data may result in a small number of independent observations. And 

third, biophysical data are increasingly available at higher resolutions, and this increased information 

cannot be taken into account in models estimated using aggregated data.  

Spatial disaggregation techniques can be used to generate estimates of land use at high resolution from 

aggregate data when using aggregate data directly is not appropriate and disaggregated data are not 

available. One method for spatial disaggregation is termed cross-entropy minimization, which seeks to 

minimize the Kullback-Liebler divergence between a prior and final estimate subject to constraints. The 

key challenge to retrieving accurate estimates from cross-entropy minimization is constructing an 

accurate prior. Howitt et al. [20] use a Dynamic Markov model based on disaggregated data in order to 

generate priors. Chakir [21] proposes an econometric approach, using aggregated data as well as higher-

resolution biophysical data to generate priors at higher resolution. You et al. [22] and You et al. [23] 
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develop an framework which uses a variety of data on agronomic crop suitability as well as population 

density to generate priors at global scale. 

In this study, we model farmer behavioral response to salinity in the Central Valley (CV) of California by 

estimating a discrete choice model on a cross-sectional dataset from the year 2015. First, we statistically 

downscale county-level crop acreage estimates using cross-entropy to 56,043 soil polygon regions using a 

satellite based crop classifier as our prior. Next, we construct a rich set of explanatory variables for each 

soil polygon including salinity, other soil parameters, temperature, precipitation, topographical features, 

crop prices, expenses, as well as spatial fixed effects which demarcate local administrative boundaries. 

We use this econometric model to gain insight as to how farmers modify their cropping patterns in 

response to different salinity levels.  Lastly, we conduct policy exercises to determine the likely change in 

revenue given changes in extant salinity levels. 

 Methods 

In this study we model producer crop choice in order to assess behavioral response to soil salinity in the 

CV. The CV is a productive agricultural region in California spanning 19 counties - Butte, Colusa, Glenn, 

El Dorado, Fresno, Kern, Kings, Madera, Merced, Placer, San Joaquin, Sacramento, Shasta, Stanislaus, 

Sutter, Tehama, Tulare, Yuba, and Yolo. We select for the analysis the top 20 crops according to gross 

revenue in 2015, and cluster these crops into 10 categories by their crop type and salt tolerance (tolerance 

and revenue by crop category is reported in Table S1 in Appendix C). These categories are Sensitive 

Nuts, Tolerant Nuts, Other Trees, Feed (Hay), Grain, Field, Vineyard, Sensitive Vegetable, Vegetable, 

and Tolerant Vegetable. 

The general methodological approach involves downscaling land use data (Section 4.2.1), constructing a 

set of independent variables (Section 4.2.2), regressing downscaled land use data on explanatory variables 

(Section 4.2.3), and utilizing the regressions to conduct policy exercises (Section 4.2.4). 
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4.2.1 Downscaling Land Use Data 

A critical step in the analysis is downscaling land use data from county-level to the level of soil polygon 

regions (see Section 4.2.2 for details on soil polygons) using cross-entropy minimization. This procedure 

requires two sets of data – (1) regional level data at the aggregate scale and (2) priors at the disaggregated 

scale. 

For regional-level data we use crop area estimates reported at the county level by the National 

Agricultural Statistics Service (NASS) [24]. These data are released annually and contain estimates of 

price, yield, and gross acreage by crop. 

For the priors at the disaggregated scale, we aggregate up 30-meter pixel estimates of crop land use as 

reported by the Cropland Data Layer (CDL) [25]. While we could utilize the CDL directly for land use 

estimates, it was found in Welle and Mauter [26] that even after conducting bias correction procedures 

there can still be considerable difference between the CDL and county-level estimates of certain crops. 

The CDL has net accuracy of 84.9% at the pixel level, and thus serves as an excellent prior. For each soil 

polygon within an individual county the prior 𝜋𝑐𝑟 is formulated as the estimated area fraction of crop 𝑐 in 

region 𝑟, where region in this context refers to the soil polygons. It is calculated in Equation 1, where 

𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑟𝑐 is the estimated acreage from the satellite based crop classifier for crop 𝑐 in soil polygon 

region 𝑟. 

 
𝜋𝑟𝑐 =

𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑟𝑐

∑ 𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑟𝑐𝑟

 ∀𝑟, 𝑐 
(1) 

Once the prior is constructed, the minimization problem can be executed as described in Equations 2-5, 

where a separate optimization problem is resolved for each county. The decision variable, 𝑠𝑟𝑐, is the 

fraction of a crop’s land area to be allocated to particular soil polygon region. The optimization problem 

is subject to three constraints. Equation 3 ensures that the land fractions sum to 1 for each crop. Equation 
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4 restricts each value of 𝑠𝑟𝑐 to the unit interval. Equation 5 prevents more acreage being assigned to a 

region than its geographic size (𝑆𝑖𝑧𝑒𝑟), where 𝐴𝑟𝑒𝑎𝑐 is the number of acres for crop 𝑐 in a county. 

minimize  𝐶𝐸(𝑠𝑟𝑐) = ∑ ∑ 𝑠𝑟𝑐𝑙𝑛 𝑠𝑟𝑐 − ∑ ∑ 𝑠𝑟𝑐  𝑙𝑛 𝜋𝑟𝑐

𝑟𝑐𝑟𝑐

 
 

(2) 

subject to 
∑ 𝑠𝑟𝑐 =  1

𝑟

  ∀𝑐 (3) 

 0 ≤ 𝑠𝑟𝑐 ≤  1   ∀𝑟, 𝑐 (4) 

 
∑ 𝑠𝑟𝑐 ∙ 𝐴𝑟𝑒𝑎𝑐

𝑟
≤ 𝑆𝑖𝑧𝑒𝑟 ∀𝑟 (5) 

It should be noted that if the prior satisfies the constraints in Equations 3-5, then the solution to the 

objective function in Equation 2 will be 𝑠𝑟𝑐 = 𝜋𝑟𝑐;  ∀𝑐∀𝑟. Using this intuition, the procedure can be 

understood as one that attempts to disaggregate cropped area at the county level (𝐴𝑟𝑒𝑎𝑐) to the regional 

level according to regional-level priors, making small adjustments to the priors when they result in an 

infeasible solution.    

4.2.2 Independent Variables  

The land use data disaggregated in section 2.1 is regressed on a set of explanatory variables, including 

salinity, other soil parameters, temperature, precipitation, topographical features, crop prices, expenses, as 

well as dummy variables which demarcate local administrative boundaries.  

Soil parameters are sourced from the Soil Survey Geographic Database (SSURGO) for the year 2015, 

which is a vector dataset of 456,249 soil polygon regions across California [27]. The SSURGO database 

is first clipped to the 156,315 polygons which intersect the 19 counties of the Central Valley, of which 

56,043 contain agricultural crops as measured in the CDL. Soil polygons contain information on salinity, 

soil permeability, water capacity, sand, and clay. Polygons have median size of 0.12 km2. 

Weather and topographical parameters include temperature, precipitation, and elevation. Surface 

temperature is sourced from the National Centers for Environmental Prediction (NCEP) / National Center 

for Atmospheric Research (NCAR) Reanalysis project [28], while precipitation data come from the 
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Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). Both datasets are included in 

the regression as four monthly averages, representing seasons – January, April, July, and October. 

Elevation data are sourced from the National Elevation Dataset (NED) and have a spatial resolution of 1/3 

arc-second, or approximately 10 meters. All three datasets are averaged within the soil polygons. 

Crop prices and expense data are included as predictors in the regression, though the only available data 

are sourced from county level surveys. Prices for each of the crops are established using NASS county-

level data [24]. Expenses, including agriculture services, chemicals, fertilizers, depreciation, fuels, 

interest, labor, rent, seed and supplies, supplies and repairs, and taxes are available at the county level 

from the 2012 Census of Agriculture conducted by NASS. 

Lastly, since there are likely unobserved parameters which affect crop choice (e.g. state water contracts, 

groundwater, et cetera), we include spatial dummy variables for administrative districts. The 

administrative regions used are the California Department of Water Resources (DWR) Detailed Analysis 

Units (DAUs). DAUs are based on a combination of hydrologic and administrative boundaries (e.g. 

irrigation districts, county borders), and represent the smallest unit at which DWR releases data. There are 

a total of 355 DAUs in California, 89 of which intersect our study area. 

4.2.3 Modeling 

The land use of each crop cluster is related to explanatory variables through a fractional multinomial logit 

(FMNL) model, which is the multinomial generalization of the fractional logit model presented in Papke 

and Wooldridge [29]. Fractional multinomial logit allows for the prediction of values that are represented 

as a share or a percentage, and is thus suited to predicting farmer crop allocation. It is estimated by 

applying a quasi-maximum likelihood approach. An important assumption implicit in the FMNL 

framework is the independent of irrelevant alternatives (IIA) assumption, which implies that the ratio of 

fractional cropping area of any two categories is independent of all other categories. Because of this 

feature of model, we cluster the 20 study crops into 10 individual crop groupings.  
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The general model is presented in Equations 6-8. Equation 6 shows the model for predicting the share 𝑌𝑟𝑗 

of each of the ten crop categories 𝑗 in soil polygon region 𝑟. As with multinomial logistic regression, one 

of the categories is withheld as the pivot against which the other categories are estimated, here 

represented as crop group 𝐾. Equation 7 shows the implied crop share of the pivot crop category, derived 

using ∑ 𝑌𝑟𝑗𝑗 = 1. The independent variables in our analysis are displayed in Equation 8, and include the 

salinity parameter 𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑟, 4 soil parameters 𝑆𝑜𝑖𝑙𝑟𝑎, 20 price parameters 𝐶𝑜𝑢𝑛𝑡𝑦𝑃𝑟𝑖𝑐𝑒𝑟,𝑐, 89 DAU 

parameters 𝐷𝐴𝑈𝑟,𝑑, 4 temperature parameters 𝑇𝑒𝑚𝑝𝑟,𝑠𝑒𝑎𝑠𝑜𝑛, 4 precipitation parameters 𝑃𝑟𝑒𝑐𝑖𝑝𝑟,𝑠𝑒𝑎𝑠𝑜𝑛, 

and altitude parameter 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑟. 

 
𝐸[𝑌𝑟𝑗|𝑧𝑟𝑗] =

𝑒𝑧𝑟𝑗

1 + ∑ 𝑒𝑧𝑟𝑘𝐾−1
𝑘=1

 
(6) 

 
𝐸[𝑌𝑟𝑗|𝑧𝑟𝑗] =

1

1 + ∑ 𝑒𝑧𝑟𝑘𝐾−1
𝑘=1

 
(7) 

 𝑧𝑟𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑟 +  ∑ 𝛼𝑎𝑗𝑆𝑜𝑖𝑙𝑟𝑎 +

𝑎

∑ 𝛿𝑐,𝑗𝐶𝑜𝑢𝑛𝑡𝑦𝑃𝑟𝑖𝑐𝑒𝑟,𝑐

𝑐

+

∑ 𝜃𝑑,𝑗𝐷𝐴𝑈𝑟,𝑑 +

𝑑

∑ 𝜗𝑠𝑒𝑎𝑠𝑜𝑛,𝑗𝑇𝑒𝑚𝑝𝑟,𝑠𝑒𝑎𝑠𝑜𝑛 +

𝑠𝑒𝑎𝑠𝑜𝑛

∑ 𝜇𝑠𝑒𝑎𝑠𝑜𝑛,𝑗𝑃𝑟𝑒𝑐𝑖𝑝𝑟,𝑠𝑒𝑎𝑠𝑜𝑛 +

𝑠𝑒𝑎𝑠𝑜𝑛

𝛽2𝑗𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑟

 

 

 

(8) 

 

4.2.4 Policy Analysis 

We apply the fitted model to assess grower response to soil salinity. Specifically, we parametrically adjust 

the soil salinity and use the trained regression to predict the new crop mix for each soil polygon region. 

Using the new crop mix we calculate the predicted total revenue across all polygons under the new 

salinity set while allowing the growers to adjust their crop choice. 

The analysis is based upon the empirical yield reduction equation presented in Hoffman [30]. Each 

individual crop is measured through field experimentation for two parameters – a threshold and a slope. 
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The threshold (parameter 𝑎𝑗 in Equation 9) is the salinity above which a crop begins to experience yield 

losses. The slope (parameter 𝑏𝑗 in Equation 9) determines the rate at which salinity impacts yields. The 

result of Equation 9 is the relative yield, 𝑌𝑖𝑒𝑙𝑑𝑟𝑗
𝑅𝑒𝑙, which lies on the unit interval and represents the 

fraction of theoretical maximum yield that a crop receives while being cultivated at a specific salinity 

value. 

First, we estimate the theoretical maximum yield from many observations of 𝑌𝑖𝑒𝑙𝑑𝑟𝑗
𝑅𝑒𝑙. The finest 

resolution yield data that are available are at the county level, represented by 𝑌𝑖𝑒𝑙𝑑𝑗. The relative yield 

parameters within that county are averaged over the soil polygon regions, resulting in an average estimate 

of yield reduction for the county 𝑌𝑖𝑒𝑙𝑑𝑗
𝑅𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The theoretical maximum yield 𝑌𝑖𝑒𝑙𝑑𝑗

𝑀𝑎𝑥 is calculated by 

dividing 𝑌𝑖𝑒𝑙𝑑𝑗 by 𝑌𝑖𝑒𝑙𝑑𝑗
𝑅𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Theoretical maximum yield is assumed to be constant within each county, so 

the maximum yield at a polygon 𝑌𝑖𝑒𝑙𝑑𝑟𝑗
𝑀𝑎𝑥 is simply set to the county level value 𝑌𝑖𝑒𝑙𝑑𝑗

𝑀𝑎𝑥. 

For the policy analysis, soil salinity is varied by multiplying extant salinity by a multiplicative factor, as 

in Equation 11. The parameter 𝛼 is varied from -0.8 to 0.8, and a new crop mix 𝑌𝑟𝑗 is predicted for each 

soil polygon region in Equation 12. Lastly, revenue is calculated in Equation 13. 

 𝑌𝑖𝑒𝑙𝑑𝑟𝑗
𝑅𝑒𝑙 = 1 − 𝑏𝑗(𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑟 − 𝑎𝑗)  (9) 

 
𝑌𝑖𝑒𝑙𝑑𝑗

𝑀𝑎𝑥 =
𝑌𝑖𝑒𝑙𝑑𝑗

𝑌𝑖𝑒𝑙𝑑𝑗
𝑅𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 
∀𝑐𝑜𝑢𝑛𝑡𝑦 (10) 

 𝑁𝑒𝑤𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑟 = (1 + 𝛼) ∙  𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑟  (11) 

 𝑌𝑟𝑗 = 𝑓(𝑁𝑒𝑤𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑟 , … )  (12) 

 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = ∑ ∑ 𝐴𝑟𝑒𝑎𝑟
𝑗

∙ 𝑌𝑟𝑗 ∙ 𝑝𝑟𝑖𝑐𝑒𝑟𝑗 ∙ 𝑌𝑖𝑒𝑙𝑑𝑟𝑗
𝑅𝑒𝑙 ∙ 𝑌𝑖𝑒𝑙𝑑𝑟𝑗

𝑀𝑎𝑥

𝑟
 

 (13) 
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 Results and Discussion 

4.3.1 Behavioral Results 

Following Mendelsohn et al. [4], two models are estimated with different weighting schemes. The first 

regression uses cropland weights, which weigh each observation based on the total cropped area in that 

particular region. Revenue weights, likewise, weigh the observations based on total current revenue being 

generated in that soil polygon region.  

The average marginal effects from these regressions are reported in Table 4-1. Marginal effects represent 

the increased share in percentage points for each crop that would result from a one unit increase in 

salinity, where salinity is expressed in dS/m. Average marginal effects are the computed marginal effects 

at each observation averaged over all of the observations. While the interpretation of the beta coefficients 

in a FMNL model are interpreted relative to the pivot category, average marginal effects can be 

interpreted as stand-alone estimates. 

The cropland and revenue weighted regressions report largely similar marginal effects across the ten crop 

groups, both by significance and magnitude across. Of note is that all of the coefficients are relatively 

small; the largest being the negative coefficient for vineyards. The value of -0.25 in the cropland weighted 

regression for vineyards indicates that an additional unit of salinity would result in a decrease in one 

quarter of one percentage point of vineyard coverage.  

The parameter estimates for three crop groups are robustly significant over the different weighting 

schemes: tolerant vegetables, tolerant nuts, and vineyards. Tolerant vegetables and nuts have a 

significantly positive coefficient, indicating that as salinity rises so does their relative crop share. 

Vineyards, meanwhile, have a significantly negative coefficient. The fact that the more tolerant cultivars 

experience increased crop share under higher levels of salinity provides evidence for grower adaptation. 

Likewise, the decrease in relatively salt-sensitive high-revenue vineyards shows evidence that growers 

take salinity into account when making crop choice. The signs of the parameter estimates are robust to the 
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different weighting schemes employed. The one exception is for grain. However, the parameter estimate 

for this crop category is not significantly different from zero at conventional levels. 

Also reported are the normalized average marginal effects. Average marginal effects can be misleading if 

there are large differences in baseline group measurement. Sensitive nuts, for example, cover on average 

35% of the fractional share of each polygon, while vegetables cover just 2% (full baseline cropping is 

presented in Table SI1 in Appendix C). Normalized average marginal effects, also presented in Table 4-1, 

are calculated by simply dividing the average marginal effects by the average baseline cropped area. The 

values can be interpreted as the percent increase or decrease of fractional crop area relative to baseline 

levels. The value of -2.0 for vineyards in the cropland weighted regression, for example, indicates that 

2.0% less vineyards will be planted relative to 2015 levels given an increase in one unit of salinity. 

Clearly, the sign and significance of the normalized average marginal effects are the same as the average 

marginal effects by construction. 
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Table 4-1. Average Marginal Effects and Normalized Average Marginal Effects. 
 Average Marginal Effects Normalized Average Marginal Effects 

Variables Cropland 

Weights 

 Revenue 

Weights 

 Cropland 

Weights 

 Revenue 

Weights 

 

Nuts, Sensitive -0.06055  -0.13824  -0.175  -0.400  

 0.08509  0.08646  0.246  0.250  

Nuts, Tolerant 0.18275 *** 0.24430 *** 3.262 *** 4.360 *** 

 0.04127  0.05845  0.737  1.043  

Other Tree 0.04679  0.04334  0.479  0.444  

 0.04366  0.04307  0.447  0.441  

Feed (Hay) -0.01685  -0.03720  -0.086  -0.189  

 0.04469  0.04143  0.228  0.211  

Grain -0.02150  0.01175  -0.278  0.152  

 0.04937  0.06916  0.638  0.894  

Field 0.01137  0.01005  0.517  0.457  

 0.03110  0.03124  1.413  1.419  

Vineyard -0.25191 *** -0.21035 *** -2.023 *** -1.689 *** 

 0.06239  0.05062  0.501  0.407  

Vegetable,  -0.00001  -0.00003  -0.068  -0.145  

Sensitive 0.00004  0.00006  0.194  0.273  

Vegetable  0.01084  0.00189  0.598  0.104  

 0.00953  0.01108  0.526  0.612  

Vegetable,  0.10866 *** 0.08850 *** 1.746 *** 1.422 *** 

Tolerant 0.02984  0.02607  0.480  0.419  

DAU  X  X  X  X  

Dummies         

Soil  X  X  X  X  

Parameters         

Weather and  X  X  X  X  

Elevation         

Crop X  X  X  X  

Prices         

Expenses X  X  X  X  
         

*** p<0.01, ** p<0.05, * p<0.1 

Next, we compare the marginal effects reported in Table 4-1 with the theoretical salt tolerance of each of 

the individual crop clusters. Tolerance is computed using the 𝑎 and 𝑏 parameters in Equation 9 by 

calculating 𝑌𝑖𝑒𝑙𝑑𝑅𝑒𝑙,50
, the salinity at which a crop’s yield is estimated to decrease by half. In Figure 4-1, 

the average marginal effects are plotted alongside the crop groups which are clustered according to crop 

type (tree, vegetable, and other) and then sorted in increasing order by 𝑌𝑖𝑒𝑙𝑑𝑅𝑒𝑙,50
. A positive slope 
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indicates that as the tolerance of the crop group increases, so do the marginal effects. This trend is seen in 

each of the crop clusters, showing agreement between the regression and the agronomic literature. 

In plotting all of the crop groups together (see Figure S1A in Appendix C) the slope is still generally 

positive, although less apparent than when the crop groups are clustered by crop type. This may indicate 

an increased ability of growers to change crops within group as salinity shifts, perhaps indicating lower 

switching costs (e.g. equipment, training) between crops of a similar type. 

 

Figure 4-1. Estimated marginal effects vs. crop groups ranked by salt tolerance for tree crops (A), 

vegetables (B), and a miscellaneous category (C). 

 

4.3.2 Policy Scenario 

Figure 4-2 reports the results of the policy analysis. In Figure 4-2A, we vary the salinity levels between  

-80% and 80% of the original values. It should be noted that due to the multiplicative formulation, we are 

only modulating salinity in areas where salinity is nonzero. We do this for two policy scenarios – one in 

which crop fraction is fixed at 2015 levels and the other which allows for crop switching in accordance 

with the regression results. The outcome shows that, as expected, increasing and decreasing salinity result 

in decreased and increased revenues, respectively. The difference between the two scenarios is small, 

reflecting the small magnitude of response to salinity identified in the regression results. 
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In Figure 4-2B we conduct a similar exercise to compare the effects of crop switching to uncertainty 

inherent in the data. The SSURGO salinity data reports an estimated ‘high’ and ‘low’ value for salinity 

along with the midpoint estimate. We calculate the change in revenue that would occur if all soil polygon 

regions would receive their ‘low’ or ‘high’ values, and find a difference of $1 billion.  When we account 

for crop switching in accordance with the regression model this estimate remains largely unchanged. 

Figure 4-2. Estimated revenue change from baseline values with salinity altered parametrically (A) 

and salinity set to its reported ‘low’, ‘mid’, and ‘high’ estimates according to the SSURGO data. 

 

The approach as implemented has several limitations. First, the regression results are estimated from a 

cross-section of 2015 data, meaning the response is identified from growers in different parts of the state 

choosing to grow different crops. While we collect a large ensemble of explanatory data, there are 

heightened risks of omitted variable bias when employing such a design. Moreover, the regression results 

are not likely to be accurate in predicting crop share under salinity conditions that differ substantially 

from current levels.  

Second, the policy analyses rely on empirical relationships from Hoffman [30] in order to compute 

revenues under different salinity domains. The regression results indicate that farmers are relatively 
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insensitive to salinity, suggesting that they may have other management techniques to prevent yield loss. 

Because of this, our results offer evidence that there may be limitations in using the agronomic approach 

as developed in Hoffman [30] for salinity impact assessment. 

Despite these limitations, we believe the approach as implemented offers evidence that growers are 

modifying their cropping patterns according to the levels of salinity found in their soils, but that the 

general magnitude of this effect is small. When we implement crop switching in policy scenarios we find 

little difference in economic performance between portfolios optimized for 2015 salinity levels and those 

in which growers are allowed to modify their crop choice according to the regression results. These 

results support a conclusion that accounting for crop switching due to salinity levels may be a second-

order modelling concern. 
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Chapter 5: Economic and Policy Drivers of Agricultural Water 

Desalination in California’s Central Valley 

This chapter is based on the following work currently under review at Agricultural Water Management: 

Welle, P, Medellin-Azuara J, Viers J H and Mauter M S Economic and Policy Drivers of 

Agricultural Water Desalination in California’s Central Valley Agricultural Water Management, 

submitted for publication. 

 Introduction 

The twin stressors of water scarcity and soil salinization diminish agricultural yields and grower 

profitability in arid regions [1].  Climate models project expansion of arid regions and increased 

probability of drought in both the western United States and the majority of agricultural regions 

worldwide [2-4].  In these water-stressed regions, growers often augment water supply with alternative 

sources including brackish groundwater and agricultural drainage water.  The application of these lower 

quality water sources can lead to the accumulation of salts and, in areas with insufficiently permeable soil, 

to the development of shallow saline water tables [5].  Recent studies estimate the cost of soil salinization 

in California at billions of dollars per year [1, 6].  As a result, improving the sustainability of food 

production systems in arid, drought prone, and salinizing regions is a high environmental and policy 

priority [7]. 

Traditional responses to the diminished yields associated with soil salinization increase agricultural land 

area, intensify agricultural water consumption, and impose downstream environmental impacts.  Local 

land fallowing reduces agricultural production and drives land-use change, which is often associated with 

increased greenhouse gas emissions [8].  The second response, salinity leaching from salt-impaired fields 

via the excess application of irrigation water, consumes scarce water resources, raises elevated 

groundwater tables, and often leads to the discharge of saline tile drainage to sensitive environmental 

ecosystems [9].  While alternative drainage management schemes include re-application of tile drainage 
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to salinity tolerant crops or storage in evaporation ponds, most tile drainage is discharged to the 

environment [9, 10].  Specific contaminants found in this agricultural drainage, notably selenium and 

boron, impair reproduction, inhibit growth, suppress the immune system, and cause mutagenesis in fish 

and birds [11, 12].  Thus, conventional salinity management practices force tradeoffs in agricultural 

productivity and environmental sustainability [13]. 

Water treatment technologies offer a potential remedy to this issue by allowing farmers to treat existing 

irrigation waters or access new impaired water sources, including saline groundwater or agricultural tile 

drainage.  Drainage water leached from agricultural soils and discharged through tile drains can be 

deionized and beneficially reused as a source of irrigation water, while the residual brine concentrate may 

be disposed of through subsurface injection or crystallized and disposed of as solid waste.  Desalination 

of tile drain discharge would simultaneously minimize ecosystem damages, limit soil salinization, reduce 

agricultural water intensity (acre-feet / acre-year), and offer a new source of irrigation supply.   

Technologies potentially applicable to agricultural water desalination are distinct from conventional 

seawater desalination technologies for municipal water treatment in requiring higher water recovery, 

tolerance of highly variable feed streams, and cost-effectiveness at small to medium scales.  The cost-

effectiveness of these technologies will also be facilitated by limited requirements for pre-treatment, low 

operator oversight, and resiliency to intermittent or variable water quality.  Several technologies for 

distributed agricultural water desalination have been piloted or installed commercially, including thermal 

desalination (e.g. multi-effect distillation), membrane-based desalination (e.g. reverse osmosis), and 

electrochemical desalination (e.g. electrodialysis)[14-16].  In each case, the technology is capable of 

reducing the total dissolved solids concentration of the product water to effectively zero.   

Growing demand for drought mitigation and agricultural drainage treatment has motivated a number of 

studies assessing the technical feasibility and cost of specific agricultural water desalination technologies 

[14, 15, 17-20]. These studies have generated estimates of water treatment cost, but we are unaware of 

complementary work assessing the private benefits of technology adoption or the broader consequences 
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of technology adoption for integrated food, energy, and water systems.  There remains significant 

uncertainty about the implications of widespread water desalination for agricultural management practices 

such as soil leaching, the energy consumption of water desalination technologies and any associated air 

emission impacts, or the ecosystem services benefits of reduced discharge salinity.  Explicitly quantifying 

these benefits and costs is critical for assessing the likelihood of technology diffusion and the role for 

policy interventions that maximize public benefits.  

The present work quantifies the marginal public and private costs and benefits of agricultural water 

desalination under a range of future precipitation and climate scenarios in the Central Valley (CV) of 

California.  We present the first assessments of the marginal private benefits of water desalination, 

realized as improved agricultural yields, using high-resolution multi-modal soil salinity and crop data.  

We then assess private adoption at the field-level by comparing private benefits to current desalination 

costs.  Next, we contribute the first assessment of potential marginal public costs associated with adoption 

of agricultural water desalination.  Public costs in the form of human health and climate damages are 

estimated for three different desalination technologies that use renewable, grid, and fossil energy sources.  

Finally, we back out the effective value of human health and environmental benefits in watersheds 

impaired by agricultural drainage that would be required for the technology to have net positive effects 

from a societal perspective.  

 Methods 

We quantify the public and private costs and benefits associated with desalination systems in the CV, a 

region of high agricultural value, severe water scarcity, and impaired air and water quality.  The most 

agriculturally productive region in the US, the CV includes about 9 million acres of cropped land 

producing the majority of California growers’ $46 billion USD of revenue in 2013 [21].  Water 

availability for irrigation is often scarce due to the aridity of the region, persistent drought conditions 

exacerbated by a warming climate [4], unsustainable groundwater withdraws [22, 23], and suboptimal 

market mechanisms for water transfers [24].  In addition to water scarcity, soil salinization has required 
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widespread installation of tile drains that enable salinity leaching.  Discharging this tile drainage into 

surrounding ecosystems has impaired surface water throughout the CV [25]. 

A complete system analysis that incorporates the regulatory, legal, economic, and technical factors that 

impact water use and allocation is beyond the scope of the present work.  Instead, this analysis is framed 

in marginal terms, and therefore limits the decision space by assuming that present-day regulatory 

environment, legal conditions, and management practices remain constant.  Additionally, on the 

technological modeling side, we limit the analysis to that of a theoretical desalination system capable of 

reducing water salinity to 0 ppm TDS with 100% recovery for a cost of $0.78–$1.33 per m3 of feed.  This 

cost includes the financial costs of brine disposal, but assumes no environmental externalities associated 

with brine management.  While no desalination system is capable of providing this service, it reduces the 

need to model all possible desalination system design choices.  As a result of these assumptions, the 

analysis provides an upper bound estimate on the marginal benefits of actual desalination systems. 

5.2.1 Private Costs  

While the costs of large-scale seawater desalination have decreased to nearly $0.5/m3 [26] distributed, 

inland, brackish water desalination systems do not benefit from the same economies of scale or ease of 

concentrate disposal.  Instead, inland desalination systems must adopt brine management techniques, 

which typically range from $0.40 - $1.80 per m3 of concentrate [17, 27, 28].  Finally, minimizing these 

brine volumes requires high water recovery, which can lead to membrane scaling and increased 

maintenance costs.  As a result, the total system lifecycle costs of inland brackish water desalination are 

often significantly higher than seawater desalination systems.   

This analysis utilizes existing estimates of the lifecycle costs of distributed desalination costs sourced 

from the peer-reviewed literature.  These estimates include the costs associated with pretreatment, 

desalination processes, and concentrate management, as well as amortized fixed costs.  Recent estimates 

of lifecycle water desalination costs in the CV by McCool et al. [17] and Stuber [14] are consistent with 
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an earlier review of small scale desalination system costs ranging between $0.78–$1.33 per m3 of feed 

[19].  In most instances, we perform our analysis across this same range of amortized system costs.  When 

calculating the benefit gap, we simplify our calculations by selecting a mid-range value of $1/m3 of feed.  

The lifecycle system costs may reduce as desalination technologies mature [26]. 

5.2.2 Private Benefits 

The private benefits of increased agricultural revenue from reduced soil salinity and additional water 

supply are developed by extending two existing modeling approaches described elsewhere [1, 29].  Both 

estimates are developed as marginal quantities with units of [$/acre-ft] or [$/m3], which represent the 

marginal revenues of improved quantity (an additional unit of water) or quality (a completely desalinated 

unit of water).  Due to the marginal nature of the calculations, these benefits do not account for any 

potential benefits associated with switching from lower value to higher value crops, a theme more fully 

addressed in the discussion section. 

Additionally, the two models for water quality and water quantity operate at different levels of spatial 

aggregation.  Modeling improved water quality is highly dependent on local estimations of crop types and 

soil salinity, and so this model is resolved at a 30-meter pixel (referred to in this paper as field-scale) 

resolution.  Modeling the value of improved water supply is performed over hydrologic regions (referred 

to as regional-scale) with an average size of 2040 km2.  This approach allows estimation of a use value of 

water absent detailed water pricing data.   

5.2.2.1 Improved Water Quality 

Reducing the total dissolved solids (TDS) concentration of irrigation water reduces the soil salinity, 

increases agricultural yields, and confers higher revenues to the producer.  Revenues are assessed 

marginally according to Equation 1.  

 
𝑑𝑅

𝑑𝑊𝑇
=

𝑑𝑅

𝑑𝑆𝑆
∙

𝑑𝑆𝑆

𝑑𝑆𝑊
∙

𝑑𝑆𝑊

𝑑𝑊𝑇
 (1) 
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The value 
𝑑𝑅

𝑑𝑊𝑇 is the increased revenue 𝑅 per unit of water treated 𝑊𝑇 on the margin, which is further 

decomposed into three components – (1) the change in revenue per change in soil salinity 
𝑑𝑅

𝑑𝑆𝑆, (2) the 

change in soil salinity per change in salinity of applied water 
𝑑𝑆𝑆

𝑑𝑆𝑊, and (3) the change in salinity of 

applied water per change in quantity of water treated 
𝑑𝑆𝑊

𝑑𝑊𝑇.  These three components are represented in 

Equations 2, 3, and 4 respectively. 

 𝑑𝑅

𝑑𝑆𝑆
= {

0               ; 𝑆𝑆 ≤ 𝑡1  𝑜𝑟   𝑆𝑆 ≥ 𝑡2

 𝑏 ∙ 𝑝 ∙ 𝑌𝑀; 𝑆𝑆 > 𝑡1 𝑎𝑛𝑑 𝑆𝑆 < 𝑡2 
 (2) 

 𝑑𝑆𝑆

𝑑𝑆𝑊
=

1

𝐿
+

0.2

𝐿
∙ 𝑙𝑛 (𝐿 + (1 − 𝐿))𝑒−5 (3) 

 𝑑𝑆𝑊

𝑑𝑊𝑇
= −

𝑆0
𝑊

𝑊
 (4) 

Equation 2 is developed through differentiating the yield reduction model presented in Maas and Hoffman 

[30]. The parameter 𝑏, which is negative for all crops in the study, is the crop-specific sensitivity 

parameter, which determines how quickly yield decreases as salinity increases.  The two parameters 𝑝 and 

𝑌𝑀 are crop-specific county level values of price and theoretical maximum yield (for non salt-affected 

crops).  The expression 
𝑑𝑅

𝑑𝑆𝑆 is zero when salinity is less than the salinity threshold (𝑡1) at which relative 

yield is 100% or above the threshold (𝑡2), where the yield is 0%.  

The equilibrium relationship between soil salinity and the salinity of applied water is provided in 

Equation 3.  The model, originally presented in Hoffman and Van Genuchten [31], is calculated as a 

single function of the leaching fraction, 𝐿.  The leaching fraction is the fraction of total water that 

percolates through the soil column, and determines how quickly soil salinity changes as the salinity of the 

applied water shifts.   

Finally, we employ a simple dilution model in Equation 4 to calculate the salinity of the applied water 

when mixed with desalinated water, which throughout this analysis is modeled as water with no dissolved 
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solids.  The two parameters 𝑆0
𝑊and 𝑊 represent the salinity of the applied water and the total water 

applied, respectively.  In the absence of high-resolution data on the salinity or relative volumes of surface 

water, groundwater, and precipitation applied to crops during the growing season, the present analysis 

assumes that the salinity of the irrigation water before being mixed with desalinated water is constant at 

an average value of 490 ppm TDS (approximated in dS/m by assuming 𝑇𝐷𝑆 = 640 ∙ 𝐸𝐶).  Section 11.3 

of Appendix D provides further detail on the estimation of the salinity of the applied water as well as 

sensitivity to final results of changing assumptions on which this estimation is based.  Equation 4 thus 

represents the change in water salinity from 490 ppm that results when a marginal amount of 0 ppm TDS 

desalinated water is introduced. 

Each of these equations is resolved at a 30 meter pixel resolution across the CV.  Crop type is detected 

according to a satellite-based crop classifier, and all other parameters are measured locally at the county 

level [1]. 

5.2.2.2 Augmented Water Supply 

We employ the Statewide Agricultural Production (SWAP) model to estimate the economic value of 

water to agricultural producers under historical and future warm and dry climate scenarios [29].  SWAP 

uses the deductive Positive Mathematical Programming (PMP) technique to estimate the economic value 

of irrigation water over hydrologic regions assuming that growers seek to maximize net returns to land 

and management in irrigating crops [32].  PMP consists of a four-step procedure described in detail in 

Howitt, Medellín-Azuara, MacEwan and Lund [33].  The basic method can be outlined as follows: (1) a 

linear program with Leontief technology is solved to obtain marginal values on a calibration constraint; 

(2) a PMP exponential cost function is parameterized; (3) a constant elasticity of substitution (CES) 

production function is calibrated which makes use of the Lagrange multiplier on the calibration constraint 

in the first step; and (4) a non-linear program that includes the CES production function and the PMP cost 

function is solved.  The model specified by this four-step procedure calibrates exactly to the base dataset.  

SWAP uses four production inputs (land, water, labor, and supplies) and a 20-crop group set compatible 
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with the California Department of Water Resources classification.  The fully calibrated program is 

provided by the set of Equations 5 through 7:  

 𝑚𝑎𝑥 Π = ∑ ∑(𝜐
𝑔𝑖

𝑌𝑔𝑖) − 𝛿𝑔𝑖𝑒
𝛾𝑔𝑖𝑋𝑔𝑖,𝑙𝑎𝑛𝑑 − ∑ 𝜔𝑔𝑖𝑗𝑋𝑔𝑖𝑗

𝑗≠𝑙𝑎𝑛𝑑𝑖𝑔

 
 (5) 

where, 𝑌𝑔𝑖 = 𝜏𝑔𝑖(∑ 𝛽𝑔𝑖𝑗𝑋𝑔𝑖𝑗
𝜌

𝑗

)𝜐/𝜌 ∀𝑔, 𝑖 
(6) 

 ∑ 𝑋𝑔𝑖,𝑙𝑎𝑛𝑑

𝑖

≤ ∑ 𝑊𝑔,𝑤𝑠

𝑤𝑠

 ∀𝑔 
(7) 

and 𝑔 is the set of regions, 𝑖 is the set of crops, and 𝑗 is the set of production factors.  The decision 

variable is 𝑋𝑔𝑖𝑗, which is the amount of resources 𝑗 allocated for production of crop 𝑖 in region 𝑔.  The 

parameters 𝜐𝑔𝑖 and 𝑌𝑔𝑖 are prices and yields in region 𝑔 and crop 𝑖.  Land cost is represented by an 

exponential area response function with intercept and elasticity parameters 𝛿𝑔𝑖 and 𝛾𝑔𝑖.  Resource costs are 

represented as 𝜔𝑔𝑖𝑗. 

Equation 6 represents the CES production function which models 𝑌𝑔𝑖 using parameters β, τ, υ, ρ.  

Equation 7 is the resource constraint that defines the boundary for applied water 𝑊 in region 𝑔 according 

to a particular water source 𝑤𝑠 (local diversions, state or federal water projects, and groundwater).   

We conducted three SWAP model runs to obtain shadow values of water from the water resource 

constraint (Equation 7).  We employed base observed water availability for the pre-drought year of 2010, 

the drought year of 2014, and a climate scenario for 2050 with a warm-dry form of climate change 

following Medellín-Azuara, Howitt, MacEwan and Lund [29]. 

5.2.3 Public Costs 

Assuming responsible brine management, the human health and environmental externalities of 

agricultural water desalination will be dominated by the air emissions associated with powering 

desalination technologies.  To quantify these damages, we estimated energy consumption and associated 

criteria pollutant and greenhouse gas emissions of three desalination technologies: (1) solar powered, grid 
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supplemented, multi-effect distillation (MED) (Solar Thermal or ST); (2) natural gas powered, grid 

supplemented MED (Gas Thermal or GT); and (3) grid powered reverse osmosis (RO).  We estimated the 

energy consumption of MED desalination at 125 MJ / m3 supplemented with 1.5 kWh / m3 of grid energy, 

and the energy consumption of membrane pretreatment and RO of 5 kWh / m3.  These energy estimates 

are sourced from the literature for small-scale systems with high (>90%) recovery and are constructed to 

include pretreatment, treatment, and brine disposal [14, 17, 19].  Using these technologies, we then 

estimate the emissions associated with grid electricity using CA state-level average emissions factors for 

CO2, NOx and SO2 in 2012 derived from the EPA’s Emissions & Generation Resource Integrated 

Database (eGRID)[34]. The eGRID database does not monitor PM2.5, so we instead used CA state-level 

average emissions factors in 2011 from the EPA’s National Emissions Inventory [35].  We estimate 

emissions from the combustion of primary fuel in small scale natural gas boilers using US EPA AP-42 

Compilation of Air Pollution Emission Factors [36].  Further detail is available in Section 11.2 in 

Appendix D.   

We estimate the damages for NOx, SO2 and PM2.5 associated with air emissions from primary fuel and 

electricity consumption using the Air Pollution Emissions Experiments and Policy Version 2 (AP2) 

model for each county in California [37, 38].  Damages from emissions sourced from primary fuel are 

placed in the county which they occur, while damages associated with emissions sourced from grid 

locations are localized by assigning generation to each plant in proportion to their estimated relative 

contribution to the California grid (see Section 11.2 in Appendix D).  Damages to human health are 

typically high in those locations with large populations and poor existing ambient air quality.  For CO2 

emissions, we assumed a social cost of carbon of $41 per metric ton in 2014 USD [39].  

5.2.4 Public Benefits 

Agricultural drainage water desalination and concentrate disposal would reduce the amount of selenium, 

boron, nitrate, TDS and other contaminants in environmental systems.  The diversity of methods for 

valuing ecosystem services, however, makes estimating the public benefits highly uncertain [40].  Instead, 
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we select environmentally sensitive areas (ESAs) in the CV that are highly impaired by agricultural 

drainage and estimate ecosystem valuation that would be required for drainage water desalination to 

confer positive net benefits at a societal level.  This required valuation is termed the “benefit gap.” 

To estimate the benefit gap, we subtract private and public costs from private benefits of water 

desalination within the ESAs.  ESAs are selected using EPA’s Healthy Watershed program by first 

selecting those HUC12 watersheds that contain both agriculture and artificial drainage areas, and sub-

selecting the watersheds with rank normalized median summer conductivity greater than 0.8 (Figure S2 in 

Appendix D).  The at-risk zone is determined to include 88 watersheds, or 21% of the cropped area in the 

study.  Private costs are likely to vary depending on local electricity prices, brine disposal options, and 

regulations.  In this analysis, we adopt a uniform midpoint estimate of 1 $/m3 for all systems.  Private 

benefits and public costs are determined at the field level or county level as described above.  

 Results 

We estimate the private and public costs and benefits of agricultural water desalination to assess 

independent technology adoption as well as the potential role for policy intervention.  Desalination 

adoption is determined by the net private benefits of the technology for the grower, estimated as the 

additional revenues associated with lower irrigation water salinity and augmented water supply, minus the 

additional costs associated with system fixed and variable costs.  In addition to the benefits and costs of 

desalination for agricultural producers, the adoption of widespread desalination confers benefits and 

imposes costs to the public at large.  The balance of these public costs and benefits determine the socially 

optimal level of technology adoption and the policy interventions that may be warranted to encourage or 

discourage desalination.  We explore the role for policy by quantifying the human health impacts of 

reduced air quality associated with higher energy use and exploring the requisite breakeven benefits of 

reduced drainage on downstream ecosystems. 
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5.3.1 Private Benefits of Improved Water Quality 

We estimate the marginal value of reducing the salinity of CV irrigation water to zero while holding the 

volume of water applied constant.  The average marginal value of improved quality is $0.01 per m3 (5th 

percentile $0.00; 50th percentile $0.00; 95th percentile $0.08) and is highest in areas with high crop value, 

high salinity levels, low crop water needs, and high crop salt sensitivity (Figure 5-1A).  Areas with a 

higher marginal value of desalinated water are clustered in the southern and western CV, where salinity 

values are highest.  Almonds, pistachios, alfalfa and grapes report the highest crop revenue gains from 

decreasing the salinity of applied irrigation water, and these crops accounted for 2.2 million planted acres 

(or approximately 45% of planted acreage in the CV) in 2014. 

5.3.2 Private Benefits of Improved Water Supply 

Desalination technology also offers the possibility of increasing water supply by treating impaired water 

sources such as brackish groundwater or agricultural drainage water.  This additional water has an 

economic value to agricultural producers that increases with increasing water scarcity.  We model the 

additional value of water by using the shadow price as determined by training the SWAP model to 2010 

(pre-drought), 2014 (drought), and 2050 (climate change) scenarios for each of the 27 SWAP regions in 

the CV.  The average regional difference in value between the pre-drought and drought years is $250 per 

acre-ft, but varies between $0 and $880 per acre-ft depending on SWAP region.  The 2050 warm-dry 

climate change scenario, by contrast, increases the average regional difference by only $4.20 per acre-ft, 

or 3.1%.  The increase in value between non-drought and drought years is concentrated in the southern 

CV where water scarcity is highest (Figure 5-1B and 5-1C).  
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Figure 5-1. Marginal value of improved water quality and additional water supply. A) Marginal 

value of removing dissolved solids from a cubic meter of irrigation water, while holding the volume 

of irrigation water constant.  B) Marginal value of an additional acre-ft of irrigation water at 

salinities equivalent to current irrigation water (490 ppm TDS)[1] under pre-drought (2010) and 

future climate (2050) scenarios.  C) Marginal value of an additional cubic meter of irrigation water 

under drought scenarios represented by water availability in 2014.  One acre-ft is equivalent to 

1233 m3. 

 

 

Figure 5-2A plots the marginal values in Figure 5-1 as a cumulative density function (CDF).  The 

marginal values of augmented water supply for 2010 and 2014 are summed with estimates for the value 

of water quality to calculate a single combined value of water quality and quantity.  This value can be 

interpreted as the farmer’s willingness to pay for desalinated water from untapped sources.  The average 

value is $0.12 per m3 (5th percentile $0.02; 50th percentile $0.09; 95th percentile $0.26) in 2010 and $0.30 

(5th percentile $0.02; 50th percentile $0.26; 95th percentile $0.75) in 2014.  Under drought conditions, just 

4% of land area receives a value of desalinated water within the $0.78-$1.33 per m3 range of inland 

desalination costs reported in the literature.  Absent drought, however, very little land is likely to receive 

net private benefits from installing desalination technologies. 
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5.3.3 Public Air Emissions Costs 

Desalination processes consume primary fuel or electricity and may increase emissions of criteria air 

pollutants and greenhouse gasses.  We find that air emission damages to human health and the 

environment associated with desalinating agricultural water vary considerably depending on technology 

and power source.  Solar thermal (ST) desalination systems consume only a small amount of electricity 

for pumping and therefore generate the fewest air emission damages per volume of desalinated water at 

$0.05 per m3, or 58.40 per acre-ft.  Electricity driven reverse osmosis (RO) desalination technologies 

impose significantly larger damages of $0.16 per m3, or $196 per acre-ft.  The damages from electricity-

driven desalination technologies are estimated using generation-normalized average emissions factors for 

the CA electricity grid and, thus, the spatial distribution and proportion of damages from each pollutant 

are constant.  The estimated damages from criteria air pollutant and CO2 emissions are approximately 

equal, though the exact proportion depends on the specific technology (Figure 5-2B).   

Gas thermal (GT) systems impose significantly larger human health and environmental damages of $0.36 

per m3, or $449 per acre-ft.  The estimated air emission damages vary based on the county in which 

desalination activity occurs, and range between $404 and $550 per acre-ft.  Nearly two-thirds of these 

damages are attributed to CO2 emissions, a value that is substantially higher than that of ST or RO (Table 

S1 in Appendix D).  

5.3.4 Public Benefits of Agricultural Drainage Treatment 

Capturing and desalinating agricultural tile drainage will reduce the ecosystem damages associated with 

current leaching practices.  To circumvent the uncertainty associated with estimating marginal ecosystem 

services conferred by reduced agricultural water treatment, we instead assess the minimum value of 

ecosystem services necessary for policy interventions incentivizing technology adoption to be worthwhile 

from a public perspective.   
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The required value of ecosystem services depends on both the desalination process and the water 

availability in a given year.  In both drought (2014) and non-drought (2010) years, the ST system had the 

highest combined net social benefits, followed by grid-powered reverse osmosis, and finally natural gas 

powered thermal systems.  In non-drought years, the benefit gap for solar thermal is -$0.94 per m3 or -

$1160 per acre-ft for the median acre, indicating that nearly the entire private system cost would need to 

be supplied by the public.  During drought years this benefit gap for the median acre drops to -$0.69 per 

m3 or -$850 per acre-ft, and for the top 25th percentile the benefit gap drops to just -$0.35 per m3 or -$436 

per acre-ft.  Very few acres report net positive benefits, suggesting that policy interventions would be 

necessary to close the benefit gap and incentivize technology adoption.  

 

Figure 5-2. Private and public benefits and costs by crop and land area. A) CDF of private benefits 

for improved water quality and summed benefits of improved water quality and augmented supply 

in 2010 and 2014.  B) Estimated air emission damages per unit of desalinated water for the gas 

powered thermal (GT), grid-powered reverse osmosis (RO), and solar-powered thermal systems 

(ST).  C) CDF of private benefits minus social costs (the benefit gap) for GT, RO, and ST systems 

for 2010 and 2014 values of augmented supply. This benefit gap represents the minimum ecosystem 

valuation required for desalination technologies to have net societal benefits.  

 

 Discussion 

Desalination technologies confer benefits and costs to agricultural producers as well as society at large.  

In this study we quantify those benefits and costs to assess desalination adoption and the potential role of 

policy in stimulating societally optimal outcomes.  This analysis suggests that water desalination by 
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private growers is unlikely to be widely adopted in the CV, as the costs of small-scale desalination units 

under current policy and regulatory frameworks exceed the benefits that growers are likely to realize from 

improved water quality or augmented water supply.   

Desalination technologies also generate benefits and impose costs to outside parties beyond agricultural 

producers.  Water treatment technologies can be energy intensive and may lead to human health and 

climate impacts.  If growers installed desalination capacity to treat a quarter of the agricultural water 

applied to most economically beneficial 10% of the CV, annual air emission damages would range 

between $97 and $726 million.  Desalination technology and system location explain this variation in the 

magnitude of public costs, with solar powered MED reported damages nearly an order of magnitude 

smaller than on-site natural gas combustion driven MED systems.  These damages are significant with 

respect to the private costs to growers, varying between 4.7% and 36% of the system’s estimated private 

cost.   

Given the human health and climate damages associated with air emissions from water desalination, 

considerable ecosystem service benefits from reduced agricultural loading to the environment would be 

necessary to justify policy incentives for technology adoption.  During non-drought periods, we find the 

net public benefits associated with implementing desalination technologies will only be positive if 

ecosystem service benefits are on the order of the cost of the technology itself.  This implies that the 

private benefits are essentially entirely offset by public air emission damages.  For technology 

implementation to occur, this benefit gap could be closed by policy in the form of either a subsidy or a 

tax. 

The conclusions of this study are qualified by several assumptions delineated in the methods section.  

First, the benefits of desalinated water to the growers are quantified using economic modeling in marginal 

terms, meaning that non-marginal effects (such as crop switching) are not included.  The marginal 

assumption is likely to be more important for land currently cultivating low revenue crops (e.g. corn, 

wheat, rice, alfalfa, cotton), which may increase revenue by switching to high-revenue crops.  The 
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decision to switch from low value to high value crops is complex – for instance, while we observe that 

42% of the land area in our study correspond to low value crops, 52% of these low-value crops already 

have salinity below the threshold where yields of salt-sensitive almonds would be completely unimpaired.  

While salinity is no doubt important for crop selection, a wide variety of other variables including market 

factors, capital and operational expenses, risks exposure associated with perennial crops, water 

availability (both groundwater and surface water), soil fertility, applicability of irrigation technologies, 

and availability of drainage dictate what growers will ultimately cultivate.  While not accounting for crop 

switching may cause us to underestimate the value of desalinated water in some areas, resolving salinity 

does not imply that salt-sensitive high value crops will yield significantly higher revenue. 

Second, we assume that growers are rational agents with good information on water resources.  In reality, 

many perennial crop farmers were surprised by the drought and paid significantly more than the average 

costs for water modeled in this study.  

Third, agricultural water is assumed to have a fixed concentration of dissolved solids of 490 ppm, 

estimated in previous work [1]. We make this assumption in the absence of spatially resolved data on the 

salinity of the applied irrigation water, which is dependent upon the site-specific mix of groundwater, 

surface water, rainwater, and tile drainage water that a grower chooses to apply.  A grower using higher 

salinity sources may realize significantly greater value from implementing desalination technologies than 

reported in this study.  On the other hand, growers applying less saline sources would realize even less 

value.   

Fourth, each desalination system is assumed to have amortized costs of $0.78–$1.33 per m3, regardless of 

desalination technology, energy inputs, or system recovery.  In reality, there may be a tradeoff between 

public and private costs of different technologies, a tradeoff that could be explored with further research 

into theoretical energy requirements and more precise cost estimation.  Finally, the present analysis does 

not value the human health, environmental, or climate damages associated with brine disposal 
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technologies or the environmental externalities associated with manufacturing the capital equipment for 

water desalination.   

Despite the absence of strong economic or policy drivers for agricultural water desalination, there are 

several technological, economic, regulatory, and climate factors likely to evolve over the next two 

decades that may increase the net benefits of agricultural water desalination for growers in the CV.  The 

costs of water desalination could decrease as a result of research, development, deployment, and 

standardization of distributed brackish water desalination technologies.  In addition, CV growers are 

transitioning toward high value, perennial tree crops with higher capital costs and longer payback periods 

on the order of 30 years [42].  These crops reduce the elasticity of water demand during drought years, 

and may increase grower willingness to pay under future drought conditions.  Recent regulatory action 

limiting groundwater withdraws, which currently provide ~40% of the California water supply in a non-

drought year and much more in a drought year [43], may further increase the price of water in the CV 

above the SWAP predictions and thereby encourage on-farm water reuse efforts.  At the same time, 

restricting state-issued discharge permits and the provision of in-basin drainage management may limit 

the discharge of agricultural drainage to vulnerable ecosystems.  Finally, recent climate models predict 

that the western United States will become drier and more drought prone.  Despite these expected changes 

in water availability, we find that desalination is still not likely to offer significant net benefits to growers 

in an average, non-drought year circa 2050.  Since system capital costs are amortized over decades, 

economic assessments based upon conditions from short drought periods may be overly optimistic.   

Policy makers will need to consider a range of environmental, economic, and sociological factors when 

evaluating policy interventions affecting agricultural desalination in the CV.  Examples include alterative 

water sourcing costs; the value of the agricultural sector outputs; technology impacts to marginalized 

groups; expected changes in ecological impacts; and the hydrological implications of pumping saline 

groundwater [44].  Policy interventions could take the form of a subsidy or a tax, with taxes either 

incentivizing adoption or forcing farm closure.   
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In conclusion, we find that the primary private benefits of agricultural water desalination are derived from 

increased water availability under drought scenarios.  A small percentage of planted acreage in the CV 

may independently adopt desalination technologies if extreme drought conditions were forecast to persist 

over two decades, but the median acre is unlikely to experience adoption under the modelled drought or 

climate scenarios without significant policy intervention.  Under current and foreseeable technological 

and economic conditions the major role for desalination technology, if there is one, is confined to 

ecosystem protection. 
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Chapter 6: Assessing the Feasibility of Remote Sensing of Soil 

Salinity at Global Scale 

This chapter is currently in preparation for publication. It is being co-authored with Meagan 

Mauter, Siamak Ravanbakhsh, and Barnabás Póczos. 

 Introduction 

Soil salinity is a problem which affects agricultural production in arid regions across the globe, and yet, 

current monitoring programs are not capable of providing high quality data necessary for economic and 

policy analysis. An estimated 76 million hectares of agricultural land is thought to be salt-affected [1], 

although available global estimates rely heavily on expert judgement and are several decades out of date. 

Comprehensive monitoring programs are available in some parts of the world, such as the United States 

Department of Agriculture (USDA) National Resource Conservation Service’s (NRCS’s) Soil Surface 

Geographic Database (SSURGO) [2]. Programs like SSURGO translate field measurements into regional 

maps, and must maintain the balance between program cost and data fidelity. High-density sampling 

(through both time and space) is costly, and program managers must weigh the cost of sampling against 

the accuracy of the estimates provided for those areas not directly measured. Often these field campaigns 

provide the only data available for economic and policy analysis of soil salinization on agriculture. Recent 

work has shown that soil salinity levels are a key uncertainty in assessing the impact of salinization [3], 

highlighting the need for higher resolution data. 

Remote sensing through the use of orbital sensors offers an alternate approach for salinity monitoring.  

There are 373 active satellites whose primary purpose is earth observation or earth science as of March 

29, 2017 [4]. Many of these sensors image continuously at a global scale, generating a rich set of data. If 

measured outgoing radiation can be accurately related to soil salinity using scientific and/or statistical 
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techniques, it may be possible to conduct salinity monitoring simultaneously over large spatial scales, 

with high resolution, and at low cost.  

There have been two general approaches for detecting soil salinity through remote sensing – the direct 

approach and the indirect approach. The direct approach refers to the practice of detecting saline soils by 

observing the surface of bare soil [5-7]. Many salts commonly found in agricultural soils are highly 

reflective with absorption features across the visible-near infrared (VNIR), shortwave infrared (SWIR), 

and thermal infrared (TIR) spectral ranges [8, 9]. Using both the increased reflectivity and absorption 

features offers a method of distinguishing saline soils from their non-saline counterparts [7], even in the 

presence of confounding factors such as soil moisture [10]. However, mapping surface salinity is of 

limited use in agriculture, since plants are affected by salinity in the rootzone [11] and surface-level 

salinity does not always correlate well with rootzone salinity [12]. In irrigated agricultural regions, those 

regions most often affected by salinity, salts typically accumulate in the lower root-zone making them 

difficult to detect using reflectance profiles observed at the surface.  

The indirect approach instead relies on observing vegetation and inferring the levels of soil salinity based 

on plant type and status. In this way, vegetation can act as an indicator for salinity throughout the 

rootzone. Recent successes with this approach have been predicated on the observation that soil salinity is 

relatively stable in the short term (5-7 years), and thus multiyear compositing techniques may be 

employed to decrease noise in satellite observations [13]. Lobell et al. [13] was the first analysis that 

found a reliable signal in a multi-year averaging approach. Following on this advance, Wu et al. [14] used 

a multi-year maximum, compositing satellite images by taking a 3-years of vegetation indices. Likewise, 

Scudiero et al. [15] and Scudiero et al. [16] attempted to predict salinity in the central valley of California 

by first averaging within year, and then applying a multi-year maximum over vegetation indices. These 

successful predictions at the regional scale renewed interest in sensing salinity using vegetation as an 

indicator.    
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The publications which have followed the indirect multi-year compositing approach share a number of 

other design parameters. First, they often employ on-the-ground electromagnetic sensors to measure 

apparent electrical conductivity (ECa), which can be related to electrical conductivity of the soil extract 

(ECe) with high accuracy [17]. Following this approach many observations can be taken at a single field 

and scaled to the resolution of the satellite using geostatistical techniques. This ensures that the salinity 

values used as the dependent variable accurately represent the salinity over the broader spatial scale in 

which they are linked. Second, the modelling techniques employed usually involve simple regression 

approaches, in which vegetation indices such as the normalized difference vegetation index (NDVI) or 

enhanced vegetation index (EVI) are related linearly to salinity. Third, the data is often collected over 

regional (10 – 105 km2) domains. This is critical because spatial extent often serves as a proxy for data 

variability. Data collected over small spatial domains may include similar types of soils or crops, making 

the prediction task easier but making generalizability to other regions more difficult. 

Accuracy can be difficult to compare across prediction efforts, due to reliance on different performance 

metrics as well as the inability of certain performance metrics (i.e. R2) to reliably compare results between 

datasets with large differences in the range of the dependent variable (see [18] for details). This is 

especially important for development of soil salinity prediction algorithms whose primary application is 

in agricultural settings, since very high levels of salinity do not generally occur on land that is actively 

being cultivated. Complimenting measures such as R2 with mean-squared error (MSE) or mean average 

error (MAE) allows for a more comprehensive comparison of model results between studies.  

With the increasing application of cloud computing to satellite applications it is less difficult to scale 

regional methods to global data sets, which may increase sample sizes and allow for methods which avoid 

the pitfalls of parametric model choice. Since ECe is relatively inexpensive to measure, it is often assessed 

alongside other soil samples. Ensemble datasets combined from multiple sources can increase the number 

and spatial range of samples included in an analysis. The construction of larger data sets may also support 

more complex non-parametric methods, such as neural networks, which require less strict assumptions on 
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how the independent variables must interact [19, 20]. Artificial neural networks (ANNs) can be estimated 

using conventional regression databases. They are organized in a hierarchical manner, and are thus able to 

account for complex nonlinear interactions between variables. Convolutional neural networks (CNNs) 

have traditionally been used for image classification, and are thus able to incorporate entire images as 

explanatory data to predict a single outcome. In the context of salinity, CNNs can thus take in an image of 

a field and use information from all pixels to estimate the salinity at its center. Neural networks have been 

successfully employed on satellite data across applications, including poverty [21], rainfall [22, 23], solar 

radiation [24, 25], oil spills [26], roads [27], vehicles [28] and scene classification [29, 30]. 

However, increasing the spatial extent of the dataset may bring in other confounding factors. A greater 

spatial range will likely be correlated with greater variability in climate, soil properties, cropping patterns 

and management techniques, economic and demographic data, as well as other factors. Moreover, it is 

less likely that ensemble salinity datasets will contain ECa data, meaning there will be less certainty 

whether an individual point estimate accurately reflects the salinity of the surrounding area. Addressing 

whether successes in predicting soil salinity at regional scales can be scaled up to global datasets is an 

important research question, because success at larger scales will increase the cost-effectiveness of these 

technologies and contribute valuable sources of information for researchers and land managers.  

In this study, we analyze a global data set of salinity measurements with 3672 observations spanning 27 

years. Using Google Earth Engine, we download an array of satellite images for each individual 

observation. First, we analyze these data according to the multi-year compositing approach first 

implemented by Lobell et al. [13] in order to determine whether the conventional approaches can be 

successfully applied to a dataset with larger spatial extent. Next, we apply two other modelling 

approaches - artificial neural networks (ANNs) and convolutional neural networks (CNNs) to test whether 

we see an improvement in fit by using machine-learning techniques. We report the predictive capacity of 

each of these techniques on a subset of withheld testing data in order to compare the efficacy of the 

different approaches. 
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 Methods 

6.2.1 Overview 

The goal of this study is to apply various modelling approaches to predict soil salinity at global scale. Soil 

salinity data include rootzone salinity measurements sourced from the National Cooperative Soil Survey 

(NCSS). These salinity measurements are point estimates taken from field sampling campaigns. We 

attempt to predict these measurements using a set of independent variables, including satellite data, 

temperature, precipitation, and factors related to elevation and slope. Figure 6-1 provides a visual 

schematic of the data. 

Three modelling approaches are employed in this study. The first involves fitting an ordinary least 

squares (OLS) model using design parameters from other regional-scale analyses. The second approach 

applies an ANN on the same regression database constructed for the OLS model. The third approach 

applies a CNN on a larger set of image data in order to predict salinity at the image’s center. The increase 

in modelling complexity from OLS to ANN and ANN to CNN allows the models to avoid the need for 

parametrically choosing how the outcome is related to the explanatory variables. However, with a finite 

data sample it becomes more difficult to precisely estimate the more complex models, which may in turn 

yield poorer predictive capacity. 

 

Figure 6-1. Visual representation of data preparation. Around the original salinity measurement 

(red dot) a grid of 32 x 32 Landsat 5 pixels are taken. This is done for all Landsat images taken 

within three years of the observation. The green squares indicate the data used in the ordinary least 
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squares and artificial neural network approach, while the entire image is used in the convolutional 

neural network approach. 

 

6.2.2 Data 

7.2.2.1 Surface Reflectance Data – Landsat 5 

Landsat 5 was the fifth satellite for earth observation in the Landsat series and has the distinction of being 

the longest operating earth observing satellite. Its Thematic Mapper (TM) collected data between 1984 

and 2011. In this study we use the surface reflectance product, which corrects top of atmosphere radiation 

to surface reflectance using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

[31]. After correction, the surface reflectance for six bands are available – blue, green, red, near-infrared 

(NIR), SWIR 1, and SWIR 2.  

7.2.2.2 Elevation 

Elevation, slope, and aspect are calculated from USGS’s Global Multi-resolution Terrain Elevation Data 

2010 (GMTED), which reports data on elevation at a global scale by combining multiple data sources  

including the Shuttle Radar Topography Mission, Canadian elevation data, and data from the Ice, Cloud, 

and Land Elevation Satellite (ICESat) [32].  

7.2.2.3 Temperature 

Temperature data are sourced from the National Centers for Environmental Prediction (NCEP) / National 

Center for Atmospheric Research (NCAR) Reanalysis Data. The data have a spatial resolution of 2.5 

degrees with 6-hour temporal resolution. We aggregate temperature up to monthly averages before 

including it in the model. 
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7.2.2.4 Precipitation 

Precipitation data are collected from Climate Hazards Group InfraRed Precipitation with Station 

(CHIRPS) [33]. These data are available quasi-globally (50°S-50°N at all longitudes) at a spatial 

resolution of 0.05 degrees. 

7.2.2.5 Land Cover 

Land cover data are sourced from the Global Land Cover Map (GlobCover), satellite-derived land use 

map constructed with data from ENVISAT’s Medium Resolution Imaging Spectrometer (MERIS) [34]. 

GlobCover provides land classification according to 22 land cover classes defined by the United Nations 

(UN) Land Cover Classification System (LCCS). In some versions of the model we use the classes 

pertaining to farmland to divide the salinity data into subsets. 

7.2.2.6 NCSS Salinity Data 

The NCSS is a program that operates under the auspices of the United States Department of Agriculture’s 

(USDA’s) National Resources Conservation Service (NRCS). The NCSS coordinates efforts from across 

departments within the US federal government to standardize the collection, processing and dissemination 

of soils data. The database contains information collected from 1925 to present. Data include latitude, 

longitude, as well as the values of various soil parameters through the soil column, and are mapped in 

Figure S1 of Appendix E. Following the specification in Lobell et al. [13], soil salinity is defined as the 

weighted average of salinity for those horizons in the top 1.5 meters. 

In selecting Landsat 5 as the source of our reflectance data, we limit the possible data to the years of its 

operation – 1984 to 2012. There are 3,672 ECe values within this data range, and 1,064 ECe data points 

once the available data are subsetted to those points that exist in agricultural areas according to the 

GlobCover 2010 dataset. Both datasets are used in prediction, and model performance is assessed based 

on a withheld subset of 20% of the data. Additionally, only those points with salinity less than 20 dS/m 
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were included in order to maintain relevancy of the prediction to agricultural settings. A histogram of the 

distribution of salinity is provided in Figure 6-2.  

  

Figure 6-2. Histogram of salinity observations. Blue bars represent all salinity values (n=3672) and 

green bars represent the agriculture only subset (n=1064). 

 

7.2.3 Modelling Approaches 

7.2.3.1 Ordinary Least Squares 

The OLS approach attempts to predict salinity values using vegetation indices and ancillary data. For the 

purpose of this study we select four commonly used indices – the Normalized Difference Vegetation 

Index (NDVI), the Enhanced Vegetation Index (EVI), the Canopy Response Salinity Index (CRSI), and 

the Soil Adjusted Vegetation Index (SAVI). Each of these indices attempt to measure plant health, and are 

thus likely related to salinity levels. The indices are defined in Equations 1–4. 

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

(1) 

 
𝐸𝑉𝐼 = 𝐺 ∙

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝐶1 ∙ 𝑅𝐸𝐷 − 𝐶2 ∙ 𝐵𝐿𝑈𝐸 + 𝐿𝐸𝑉𝐼
 

(2) 
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𝐶𝑅𝑆𝐼 = √
𝑁𝐼𝑅 ∙ 𝑅𝐸𝐷 − 𝐺𝑅𝐸𝐸𝑁 ∙ 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅 ∙ 𝑅𝐸𝐷 + 𝐺𝑅𝐸𝐸𝑁 ∙ 𝐵𝐿𝑈𝐸
 

(3) 

 
𝑆𝐴𝑉𝐼 = (1 + 𝐿) ∙

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿𝑆𝐴𝑉𝐼
 

(4) 

In the equations above, the constants are set to the following parameters: 𝐺 = 2.5, 𝐶1 = 6, 𝐶2 = 7.5, 

𝐿𝐸𝑉𝐼=1, and 𝐿𝑆𝐴𝑉𝐼=0.5. 𝐵𝐿𝑈𝐸, 𝐺𝑅𝐸𝐸𝑁, 𝑅𝐸𝐷, and 𝑁𝐼𝑅 refer to Landsat 5 bands 1-4, respectively. 

The above indices are used to predict salinity in single and multi-variate regressions, according to 

Equations 5 and 6, in which 𝑉𝐼 represents one of the four vegetation indices defined in Equations 1–4. 

 𝐿𝑜𝑔(𝐸𝐶𝑖) = 𝛽0 + 𝛽1𝑉𝐼𝑖 + 𝜀𝑖  (5) 

 𝐿𝑜𝑔(𝐸𝐶𝑖) = 𝛽0 + 𝛽1𝑉𝐼𝑖 + 𝛽2𝑃𝑟𝑒𝑐𝑖𝑝𝑖 + 𝛽3𝑇𝑒𝑚𝑝𝑖 + 𝛽4𝐸𝑙𝑒𝑣𝑖 + 𝛽5𝑆𝑙𝑜𝑝𝑒𝑖 + 𝛽5𝐴𝑠𝑝𝑒𝑐𝑡𝑖 +  𝜀𝑖 (6) 

   

Since multiple years of satellite data are collected for each point, it is necessary to create data composites 

in order to estimate the coefficients in Equations 5 and 6. Two approaches are implemented –multi-year 

maximum and multi-year average. First, we take a subset of the satellite data which only contains cloud-

free summer imagery. Next, a vegetation index is calculated for each image. Lastly, the average and 

maximum of the resultant vegetation indices is calculated across all images.  

We conduct the multivariate and univariate regression for each of the vegetation indices for the two 

compositing techniques. We perform this analysis on the full set of soil salinity data, as well as the data 

agriculture only subset, resulting in a total of 32 regressions. 

7.2.3.2 Artificial Neural Networks 

The approach implemented for the OLS models relies on selecting the “best” parametric formulation of 

the satellite data as represented by the vegetation indices. These indices require strong assumptions on 

how the band data are related to salinity. To avoid these assumptions, we train an ANN on the same 

datasets prepared for the OLS approach. The model is trained on all six of the surface reflectance bands, 
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as well precipitation, temperature, elevation, aspect, and slope. Four ANNs are trained – one for each 

compositing method on the agriculture only subset as well as the full dataset.  

The ANN used in this analysis has two hidden layers with 256 and 128 nodes, respectively, and uses a 

rectified linear unit (ReLU) activation function. The total number of parameters implied with this 

architecture is 36,097, including bias terms. 

7.2.3.3 Convolutional Neural Networks 

In order to implement the OLS and ANN models, we must create data composites through time. The 

CNN, however, is trained on the entire set of satellite imagery over the preceding 3 years. Moreover, as 

indicated in Figure 6-1, the entire Landsat image is incorporated in the prediction rather than only the 

center pixels. The data for each observation together thus form a set, in that there are many unordered 

observations which will be used to predict outcome salinity at each observation. 

The CNN is trained using deep residual learning, a strategy which allows deeper neural networks to be 

trained while avoiding the vanishing gradient problem [35]. In this model, we take the set of data at each 

observation and implement 48 successive convolutional layers. We then use max pooling across the sets 

to arrive at an activation layer with 512 features, an approach described in Ravanbakhsh et al. [36]. 

Lastly, the 512 features are fed through a single dense layer to yield a point estimate of salinity. There are 

a total of 1,388,777 trainable parameters in the described modelling architecture. 

 Results 

7.3.1 Ordinary Least Squares 

The OLS modelling approach attempts to recreate the methods employed by Lobell et al. [13] on a global 

dataset. Of the regressions performed, we display the results from four in Figure 6-3 representing the best 

performing (as measured by out of sample R2) for the univariate and multivariate models trained on the 

full and agriculture only datasets. Each of the chosen regressions thus have the possibility of employing 
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either multi-year maximum or multi-year average compositing, as well as utilizing each of the four 

vegetation indices. We examine which of the parametric modelling choices results in the best fit.  

Figures 6-3A and 6-3C report the results from the best univariate models on the agriculture only subset 

and the full data set, respectively. When plotting the salinity against the vegetation index we see a 

downward sloping trendline, indicating that a higher vegetation index is correlated with lower salinity as 

would be expected. The two selected models make use of separate compositing techniques – with the 

multiyear maximum being used on the subset and the multiyear average being used on the full data. CRSI 

is selected as the best performing vegetation index in both data sets, although model fit is generally poor. 

For the agriculture only subset, out of sample R2 is 0.0018. For the full data, out of sample R2 is 0.022. 

Figures 6-3B and 6-3D report the results of the multivariate modelling efforts for the agriculture-only 

subset and the full data, respectively. As with the univariate modelling, models are selected based on 

performance on a withheld out of sample dataset. The y and x axes of these figures show the actual and 

predicted Log EC values, while the 1:1 trend line shows what would be a perfect fit. Model performance 

is highest with the CRSI vegetation index, and both models use multiyear max compositing. While the 

out of sample R2 values increase in the multivariate modelling scenario, they remain low. The agriculture 

only subset reports an R2 of 0.0081, while the full data reports an R2 of 0.051. 
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Figure 6-3. Out of sample results from the ordinary least squares approach. A and B show the 

results from the agriculture only subset, while C and D show the results from all of the data. A and 

C show the regression of the natural log of electrical conductivity on Canopy Response Salinity 

Index (CRSI) using a univariate regression. B and D show the results of the multivariate regression 

using all parameters. CRSI performed best as measured by out of sample R2 for each regression.     
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7.3.2 Neural Networks 

The results from the ANN and CNN approaches are reported in Figures 6-4A and 6-4B. Since both 

models are multivariate the Figures report the actual and predicted Log EC values reported alongside a 

perfect 1:1 trendline.  

Four ANNs were trained in total – multi-year maximum compositing technique on full data, multi-year 

maximum compositing technique on agriculture only subset, multi-year average compositing technique 

on full data set, and multi-year average compositing technique on the agriculture only subset. Figure 6-4A 

shows the results from the best performing ANN as measured by out of sample R2, which utilizes the 

average compositing technique on the full set of data. The reported out of sample R2 for the best 

performing model was 0.15. Figure 6-4B shows the result from the single CNN trained on the full set of 

data, which reports an out of sample R2 of 0.069 

 

Figure 6-4. Out of sample results from the artificial neural network (A) and the convolutional 

neural network (B). In A, the results from the best-performing ANN which utilized all of the data 

and the ‘average’ formulation. Blue line represents perfect prediction.  
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7.3.3 Model Comparison 

The OLS, ANN, and CNN models employed in this study vary significantly in their complexity. The 

more complex neural networks risk overfitting, so when comparing the models it is necessary to compare 

their out of sample performance. Results are reported in Table 6-1. 

For the agriculture only subset, the OLS model outperforms the ANN in all metrics of fit, though the 

results are qualitatively similar. The CNN is not trained on the agriculture only subset due to its limited 

sample size.  

For the full dataset, the ANN outperforms both the OLS model and the CNN in all measures of fit. Full 

results from all models are presented in Appendix E. 

Table 6-1. Out of sample measures of fit for OLS, ANN, and CNN models for full dataset. 

 

 AGRICULTURE ONLY SUBSET FULL DATA 

 

 

Mean 

Squared 

Error (MSE) 

Mean 

Average 

Error (MAE) 

R2 

Mean 

Squared 

Error (MSE) 

Mean 

Average 

Error (MAE) 

R2 

OLS 0.78 0.65 0.0081 0.94 0.78 0.051 

ANN 0.79 0.67 0.0029 0.80 0.70 0.150 

CNN N/A N/A N/A 0.89 0.78 0.069 

 

 Discussion 

In this study, we sought to test techniques traditionally used to predict soil salinity at regional scales on a 

global dataset, as well as apply more sophisticated statistical modelling. The techniques used to model 

regional-scale salinity processes rely on collecting exhaustive satellite imagery, weather data, and other 

auxiliary parameters over multiple years in order to predict rootzone salinity. These techniques are now 

easily ported to global datasets due to cloud computing services with access to satellite archives, such as 
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google earth engine. With the increased sample size it becomes feasible to implement more complex 

models, such as ANNs and CNNs.  

Our results showed that these methods cannot be easily scaled to global data, either due to increased 

variability in the samples or the lack of accompanying ECa data. Expanding the spatial domain of the 

sample increases variability in the climatic conditions, soil parameters, cropping patterns, management 

practices, ecological circumstances, among other variables. While global datasets will likely have larger 

sample size, extracting the signal from the noise amongst increased variability is likely to be a major 

challenge. Likewise, while ECe is likely to be assessed in many soil surveys, such point estimates of 

salinity may misrepresent the salinity of a wider spatial domain. Relating the point estimate to the gridded 

Landsat data, therefore, likely introduces error. Recent studies at the regional scale all made use of ECa 

data which produces a dataset with a much denser salinity mapping, allowing the researcher to be more 

confident that the salinity indicated at a particular location is representative of the entire satellite pixel 

[13, 37, 38]. While it is likely that many disparate datasets exist which contain ECe samples, it is less 

likely that there are many such full field assessments using noncontact ECa sensors. 

We found some evidence in our results that the parametric vegetation index choice criteria can be 

supplanted by more complex neural networks. Studies in the literature often focus on testing several 

parametric combinations of satellite data, when it may be possible to avoid such strict assumptions using 

nonlinear models, such as neural networks. While the OLS modelling techniques outperforms the ANN in 

the sparser data sample, when using the full dataset the ANN performs best in out of sampling testing. 

The size of the data is important in all models, with improved out of sample prediction occurring in the 

larger data sets across techniques. The predictive capacity of the CNN is qualitatively similar to that of 

the OLS models, indicating that our sample size of 3,672 observations may be too small for the most 

complex imaging processing techniques. The optimal approach for our dataset lies in the middle path 

between an approach that uses parametrically imposed domain knowledge and one that employs 

completely data-driven modelling techniques.  
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Within the OLS approach, the models all employed the same vegetation index but different compositing 

techniques. The Canopy Response Salinity Index (CRSI) performed best across all models and datasets. 

While there has been some debate on the applicability of multiyear maximum versus multiyear average, 

our results do not offer strong evidence in either direction. The multiyear average performed better for the 

univariate model trained on the agriculture only subset, while the multiyear maximum performed better 

for the univariate agriculture only subset as well as the multivariate model on both datasets. 

While the fit reported in this study is below that which would be useful for researchers and land 

managers, there is evidence to suggest the techniques employed in this study might serve to enhance 

prediction in other contexts. First, it was seen that prediction increased in larger sample sizes. All of the 

salinity data included in this study are sourced from one survey program, though it may be possible to 

collect an ensemble dataset by aggregating across national projects. Second, our study uses Landsat 5 

data, and future studies may be able to make use of more advanced orbital sensors. Hyperspectral sensors 

and multispectral sensors with higher radiometric resolution can bring in more information than our 

available in our six-band data. Neural networks as applied in this study offer an approach for 

incorporating data from multiple satellites, something that cannot be done easily with the vegetation index 

approach. Third, there is an increasing amount of ancillary data at the global scale. For example, 

researchers are developing techniques to generate satellite-based crop classifiers at a global scale [39, 40], 

data which is not available in the modelling results presented in this study. Lastly, we have shown that 

applying neural networks may be superior to the vegetation index approach, a finding which may support 

efforts to predict salinity at the regional scale.  
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Chapter 7: Conclusions  

The advent of remotely sensed data provides a new avenue for informed, quantitative policy analysis. 

These new data often have increased temporal resolution as well as both increased spatial extent and 

resolution compared to traditional sources. This confers two chief advantages – (1) the increase in 

resolution prevents the reliance on regional averages and thus increases the accuracy of policy analysis 

and (2) the increase in extent and resolution from survey/field sources makes certain analyses possible 

that would not have been otherwise.  

There are, however, key challenges inherent to remotely sensed data. Often, as is the case with land use 

classifiers, there will be errors in the satellite accuracy and it will be necessary to correct these data with 

ground-truth estimates. Residual monitoring programs are thus necessary to maintain high accuracy of 

usability of the data products. Likewise, the uncertainty in remotely sensed data call for the application of 

traditional policy analysis tools such as simulation and uncertainty analyses. Many of these techniques do 

not scale efficiently to very large datasets, making treatment of uncertainty a key difficulty in making use 

of the data. 

In this dissertation, I present the results of 5 policy analyses which make use of remotely sensed data 

sources for policy. Through these five chapters, I explore the complexity of employing high resolution 

satellite data sources for application in agricultural and environmental systems while treating the 

uncertainty inherent in the data. 

In Chapter 2, I assessed coral response to temperature in an effort to assess the impacts of climate change 

on coral reefs. Coral cover has been declining in recent decades due to increased temperatures and 

environmental stressors. However, the extent to which different stressors contribute both individually and 

in concert to bleaching and mortality is still uncertain. I developed a regression approach which uses non-

linear parametric models that control for unobserved time invariant effects to estimate the effects on coral 

bleaching and mortality due to temperature, solar radiation, depth, hurricanes and anthropogenic stressors 
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using historical data from a large bleaching event in 2005 across the Caribbean. Two separate models 

were created, one to predict coral bleaching, and the other to predict near-term mortality. A large 

ensemble of supporting data was assembled to control for omitted variable bias and improve fit, and a 

significant improvement in fit was observed from univariate linear regression based on temperature alone. 

The results suggest that climate stressors (temperature and radiation) far outweighed direct anthropogenic 

stressors (using distance from shore and nearby human population density as a proxy for such stressors) 

in driving coral health outcomes during the 2005 event. Indeed, temperature was found to play a role ~4 

times greater in both the bleaching and mortality response than population density across their observed 

ranges. The empirical models tested in the study have large advantages over ordinary-least squares – they 

offer unbiased estimates for censored data, correct for spatial correlation, and are capable of handling 

more complex relationships between dependent and independent variables. The models offered a 

framework for preparing for future warming events and climate change; guiding monitoring and 

attribution of other bleaching and mortality events regionally and around the globe; and informing 

adaptive management and conservation efforts. 

In Chapter 3, I introduced a generalizable approach for estimating the field-scale agricultural yield losses 

due to soil salinization. When integrated with regional data on crop yields and prices, this model provided 

high-resolution estimates for revenue losses over large agricultural regions.  The methods accounted for 

the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted 

model results.  I applied this method to estimate the effect of soil salinity on agricultural outputs in 

California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. 

county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis.  The 

model estimated that soil salinity reduced agricultural revenues by $3.7 billion ($1.7 - $7.0 billion) in 

2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific 

thresholds.   When using low-resolution data sources, I found that the costs of salinization are 
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underestimated by a factor of three.  These results highlight the need for high-resolution data in agro-

environmental assessment as well as the challenges associated with their integration. 

In Chapter 4, I assessed the evidence for crop switching as a behavioral response to salinity levels by 

growers in the Central Valley of California using a regression approach. Since the Central Valley of 

California only intersects 19 counties, I employed a spatial disaggregation technique to downscale land 

use data to 56,043 soil polygon regions. The spatial disaggregation technique, cross-entropy 

minimization, utilizes county data as well as high-resolution satellite imagery to compile information at 

an intermediate scale. Additionally, I constructed a rich set of explanatory variables for each soil polygon 

including salinity, other soil parameters, temperature, precipitation, topographical features, crop prices, 

expenses, as well as spatial fixed effects which demarcate local administrative boundaries. The regression 

results indicated that while growers behave in a manner consistent with agronomic data regarding crop 

tolerance, their response to salinity levels is relatively small in magnitude. Lastly, I conducted policy 

exercises to compare the results of damages from soil salinization for two models – one which allowed 

for farmer crop switching in accordance with the regression results and another which fixed cropping 

patterns at 2015 levels. Results from the policy analyses indicated that the effect of crop switching was 

much smaller than uncertainty inherent in the data. 

In Chapter 5, I assessed water desalination as a proposed solution for mitigating the effects of drought, 

soil salinization, and the ecological impacts of agricultural drainage.  An integrated modelling framework 

was used to estimate the public and private costs and benefits of distributed desalination in the Central 

Valley (CV) of California.  I employed environmental and economic models to estimate the value of 

reducing the salinity of irrigation water; the value of augmenting water supply under present and future 

climate scenarios; and the human health, environmental, and climate change damages associated with 

generating power to desalinate water.  It was found that water desalination is only likely to be profitable 

in 4% of the CV during periods of severe drought, and that current costs would need to decrease by 70-

90% for adoption to occur on the median acre.  Fossil-fuel powered desalination technologies also 
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generate air emissions that impose significant public costs in the form of human health and climate 

change damages, although these damages vary greatly depending on technology.  The ecosystem service 

benefits of reduced agricultural drainage would need to be valued between $800 and $1200 per acre-foot, 

or nearly the full capital and operational costs of water desalination, for the net benefits of water 

desalination to be positive from a societal perspective.  

In Chapter 6, I assessed the feasibility of monitoring soil salinity at the global scale using satellite-based 

remote sensing. Several studies have been successful relating soil salinity to satellite-based vegetation 

indices at regional scales using ordinary least squares (OLS) regression. Using google earth engine and a 

salinity dataset containing 3,672 observations of electrical conductivity of the soil extract (ECe), I 

compiled a global dataset of salinity measurements, satellite data, weather data, and information related to 

elevation and slope. I applied to this dataset the methods employed in regional-scale studies, namely 

multivariate OLS of salinity on vegetation indices and ancillary data. Next, I applied both artificial neural 

networks (ANNs) and convolutional neural networks (CNNs) to the same data, and compare models 

based on performance on a withheld portion of the data. While the predictive capacity is below that that 

would be useful to create an operational data product, I found that using neural networks may lead to 

better prediction of salinity than OLS approaches. Further research may benefit by compiling a broader 

set of ancillary data, as well as using datasets with a higher density of measurements, such as those with 

measurements of apparent electrical conductivity (ECa) collected by noncontact sensors. 

Through each of these case studies, satellite-based remote sensing provided key information. The 

analyses in Chapter 2 (assessment of climate change on corals), Chapter 4 (assessment of farmer’s 

behavioral response to salinity) and Chapter 6 (prediction of soil salinity) would have been not feasible 

without key satellite inputs. The analyses in Chapter 3 (assessment of salinity on California revenues) and 

Chapter 5 (assessment of desalination technologies) would have been feasible in theory, though the 

accuracy and reliability of the results would have been greatly reduced. 
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Each of the above analyses suggest further research. The assessment of coral response in Chapter 2 to 

climate change could be coupled with climate predictions for the coming decades in order to better 

understand the implication of coral decline. The approach utilized for assessing the costs of salinization in 

Chapter 3 could be extended to include empirical techniques to account for likely shifts in the commodity 

pricing and crop switching techniques of growers. The methodology in Chapter 4 could be extended to 

multiple years of data in order to more accurately estimate the effects of salinity. And the modelling 

approaches implemented to predict salinity in Chapter 6 might be tested using more technologically 

advanced orbital sensing on more recently collected salinity data. 

The policy analyses explored in these case studies help to illuminate the benefits and challenges 

associated with high-resolution satellite data sources, as well as indicate possible avenues for 

improvement. While the technology which predicts land use data for agriculture has matured, many other 

key agricultural data are not available. Factors related to price and cost data may never be available at 

high resolution, but other factors such as water use, irrigation type, and yields would likely significantly 

improve the ability to model farmer behavioral response to climate change or policy. As these data 

products become increasingly available, policy analyses are likely to become more accurate and 

applicable for policy makers seeking to manage agricultural and environmental systems. 
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APPENDIX A: Chapter 2 

 Spatial Distribution 

Figure S1 shows the spatial distribution of the observations. The temporal distribution can be found in 

Figure 3 of the main text. There were three main concentrations of data: Belize/Mexico (~44%), The 

Florida Keys (~14%), and the eastern Caribbean (~25%).  

 

Figure S1. Spatial distribution of observations. This figure shows spatial 

observations distributed over the Caribbean. Each black circle is an 

observation. The colors represent observation density, with pink showing 

high density and turquoise showing low. 

 

 Addressing Multi-Collinearity 

When dealing with multiple measures in a regression analysis it is necessary to be careful to avoid 

constructing models with problems of multicollinearity, or high correlation between independent 

variables. Correlated independent variables result in large standard errors making statistical inference 

difficult. While multicollinearity does not bias the estimates directly, it can magnify biases caused by 
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omitted variables or other causes. To avoid this, each of the models tested only includes one measure of 

each stressor (for instance maximum DHW or observed DHW, not both), with the presumption that 

different formulations of the same stressor will display high correlation. Table S1 shows the correlations 

between all variables, and indeed it can be seen that different formulations of the same stressor report 

correlation. Correlations across stressors (e.g. maximum DHW and maximum PAR anomaly) are 

generally low. 

Table S1. Correlations between stressors. The upper-right triangle contains sample correlation 

coefficients. 

 
Maximum 

DHW 

Observed 

DHW 

Maximum 

PAR 

Anomaly 

Observed 

PAR 

Anomaly 

Distance 

From 

Shore 

Population 

Density 
Wind Depth 

Maximum 

DHW 
1.00 0.67*** 0.19*** 0.11*** 0.06*** -0.08*** -0.04* 0.15*** 

Observed DHW 0.00 1.00 -0.06*** -0.33*** 0.03* -0.09*** -0.07*** 0.15*** 

Maximum PAR 

Anomaly 
0.00 0.00 1.00 0.36*** -0.02 0.32*** 0.06*** -0.10*** 

Observed PAR 

Anomaly 
0.00 0.00 0.00 1.00 -0.11*** -0.01 -0.14*** 0.00 

Distance From 

Shore 
0.00 0.08 0.34 0.00 1.00 -0.02 0.13*** 0.10*** 

Population 

Density 
0.00 0.00 0.00 0.71 0.31 1.00 0.05** -0.09*** 

Wind 0.06 0.00 0.00 0.00 0.00 0.01 1.00 -0.13*** 

Depth 0.00 0.00 0.00 0.92 0.00 0.00 0.00 1.00 

P-values for statistical significance of indicated correlation coefficients: 

*** p<0.01, ** p<0.05, * p<0.1 

 

 Functional Forms for the Regressions 

In Tables S2 and S3, a series of models are presented along with measures of fit. The marginal effect of 

temperature is reported alongside to show the robustness of effect to model choice. For the purposes of 

these tables, two stressor forms are considered: 

Univariate:  

𝐵𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝑖 = 𝑓(𝑂𝑏𝑠𝐷𝐻𝑊𝑖)  

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑖 = 𝑓(𝑀𝑎𝑥𝐷𝐻𝑊𝑖) 
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Multivariate: 

𝐵𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝑖 =  𝑓(𝑂𝑏𝑠𝐷𝐻𝑊𝑖, 𝑂𝑏𝑠𝑃𝐴𝑅 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑖 , 𝐷𝑒𝑝𝑡ℎ𝑖, 𝐷𝐹𝑆𝑖, 𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖, 𝑊𝑖𝑛𝑑𝑖, 𝑂𝑏𝑠𝐷𝐻𝑊𝑖

×𝐷𝑒𝑝𝑡ℎ𝑖, 𝑂𝑏𝑠𝑃𝐴𝑅 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑖×𝐷𝑒𝑝𝑡ℎ𝑖) 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑖 =  𝑓(𝑀𝑎𝑥𝐷𝐻𝑊𝑖, 𝑀𝑎𝑥𝑃𝐴𝑅 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑖 , 𝐷𝑒𝑝𝑡ℎ𝑖, 𝐷𝐹𝑆𝑖, 𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖, 𝑊𝑖𝑛𝑑𝑖 , 𝑀𝑎𝑥𝐷𝐻𝑊𝑖

×𝐷𝑒𝑝𝑡ℎ𝑖, 𝑀𝑎𝑥𝑃𝐴𝑅 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑖×𝐷𝑒𝑝𝑡ℎ𝑖) 

The functional forms used are OLS, Tobit, and Fractional Logit. OLS, while being a common modeling 

strategy due to its simplicity, can have limitations under certain circumstances. It is not an appropriate 

choice for a censored dependent variable and will yield biased results. The model’s linear formulation of 

independent variables can be misleading if the true data-generating process is not linear. Tobit allows for 

a censored dependent variable while maintaining the linear form of independent variables. Lastly, 

Fractional Logit would be more appropriate for modeling censored dependent variables with non-linear 

effects. 

 Using k-fold Cross-Validation to Identify the Best Model  

We used a k-fold cross-validation for model selection. Cross-validation allows for simulation of out of 

sample prediction by withholding part of the data as a training set and uses part as testing set. In this study 

k was set equal to 5, meaning 80% of the data was iteratively used to predict the remaining 20%. Cross-

validated R2 and cross-validated MSE allow us to simulate which model is predicting best out of sample. 

The fractional logit model that controls for spatial effects performs best for both mortality and bleaching. 

Table S2: Mortality models and results. 

Model Description 
Univariate 

/Multivariate 

Spatial 

Control 

Average 

Marginal 

Effect for 

Temperature 

Cross- 

Validation 

R2 

Cross-

Validation 

MSE 

OLS Standard linear regression Univariate None 0.660 0.15 38.59 

OLS Standard linear regression Multivariate None 0.666 0.20 36.32 

OLS Standard linear regression Multivariate 
Spatial 

Dummies 
0.502 0.28 32.69 

Tobit 
Linear regression which accounts 

for censored dependent variable 
Univariate None 1.530 0.15 38.59 
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Tobit 
Linear regression which accounts 

for censored dependent variable 
Multivariate None 1.680 0.18 37.23 

Tobit 
Linear regression which accounts 

for censored dependent variable 
Multivariate 

Spatial 

Dummies 
1.861 0.08 41.77 

Fractional 

Logit 

Sigmoid which allows for non-

linear effects  
Univariate None 0.594 0.17 37.68 

Fractional 

Logit 

Sigmoid which allows for non-

linear effects  
Multivariate None 0.614 0.30 31.78 

Fractional 

Logit 

Sigmoid which allows for non-

linear effects  
Multivariate 

Spatial 

Dummies 
0.050 0.32 30.87 

Table S3. Bleaching models and results. 

Model Description 
Univariate 

/Multivariate 

Spatial 

Control 

Average 

marginal effect 

for Temperature 

Cross- 

Validation 

R2 

Cross-

Validation 

MSE 

OLS Standard linear regression Univariate None 3.22 0.18 701.1 

OLS Standard linear regression Multivariate None 3.09 0.21 675.5 

OLS Standard linear regression Multivariate 
Spatial 

Dummies 
3.28 0.25 641.3 

Tobit 

Linear regression which 

accounts for censored 

dependent variable 

Univariate None 3.54 0.18 701.1 

Tobit 

Linear regression which 

accounts for censored 

dependent variable 

Multivariate None 3.33 0.20 684.0 

Tobit 

Linear regression which 

accounts for censored 

dependent variable 

Multivariate 
Spatial 

Dummies 
3.56 0.24 649.8 

Fractional 

Logit 

Sigmoid which allows for 

non-linear effects 
Univariate None 2.89 0.18 701.1 

Fractional 

Logit 

Sigmoid which allows for 

non-linear effects 
Multivariate None 2.70 0.23 658.4 

Fractional 

Logit 

Sigmoid which allows for 

non-linear effects 
Multivariate 

Spatial 

Dummies 
2.99 0.27 624.2 

 

 Within-Region Correlation Tables 

Table S4. Correlations between stressors in the Reference Region - Joint Northern Gulf / Western Caribbean. 

 

Maximum 

DHW 

Observed 

DHW 

Maximum 

PAR 

Anomaly 

Observed 

PAR 

Anomaly 

Distance 

From 

Shore 

Population 

Density 
Wind Depth 

Maximum DHW T 0.31*** -0.09 -0.09 -0.11 -0.02 0.08 0.04 

Observed DHW   -0.11 -0.25*** 0.06 -0.05 -0.09 0.01 

Maximum PAR 

Anomaly 
   0.23*** -0.26*** 0.73*** -0.73*** -0.10 

Observed PAR 

Anomaly 
    -0.19*** 0.34*** -0.22*** 0.13 

Distance From 

Shore 
     -0.37*** 0.54*** 0.03 

Population 

Density 
      -0.68*** 0.13 

Wind        -0.15** 

Depth         

P-values for statistical significance of indicated correlation coefficients: *** p<0.01, ** p<0.05, * p<0.1 
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Table S5. Correlations between stressors in the Bermuda Region.  

 

Maximum 

DHW 

Observed 

DHW 

Maximum 

PAR 

Anomaly 

Observed 

PAR 

Anomaly 

Distance 

From 

Shore 

Population 

Density 
Wind Depth 

Maximum DHW  1.00*** -0.16 -0.33 -0.06 NA NA 0.45** 

Observed DHW   -0.16 -0.33 -0.06 NA NA 0.45** 

Maximum PAR 

Anomaly 
   0.91*** -0.38 NA NA -0.48** 

Observed PAR 

Anomaly 
    -0.43** NA NA -0.50** 

Distance From 

Shore 
     NA NA -0.23 

Population 

Density 
      NA NA 

Wind        NA 

Depth         

P-values for statistical significance of indicated correlation coefficients:*** p<0.01, ** p<0.05, * p<0.1 
 

Table S6. Correlations between stressors in the Bahamian Region. 

 

Maximum 

DHW 

Observed 

DHW 

Maximum 

PAR 

Anomaly 

Observed 

PAR 

Anomaly 

Distance 

From 

Shore 

Population 

Density 
Wind Depth 

Maximum DHW  0.76*** -0.43*** -0.04 -0.03 0.95*** -0.49*** 0.34** 

Observed DHW   -0.31** -0.62*** 0.00 0.71*** -0.42** 0.26 

Maximum PAR 

Anomaly 
   0.06 0.65*** -0.48*** 0.20 -0.55*** 

Observed PAR 

Anomaly 
    0.06 -0.04 0.08 -0.09 

Distance From 

Shore 
     -0.19 -0.06 -0.39** 

Population 

Density 
      -0.48*** 0.39** 

Wind        -0.27 

Depth         

P-values for statistical significance of indicated correlation coefficients: *** p<0.01, ** p<0.05, * p<0.1 

 

Table S7. Correlations between stressors in the Eastern Caribbean. 

 

Maximum 

DHW 

Observed 

DHW 

Maximum 

PAR 

Anomaly 

Observed 

PAR 

Anomaly 

Distance 

From 

Shore 

Population 

Density 
Wind Depth 

Maximum DHW  0.14*** 0.14*** 0.22*** -0.07 -0.10* 0.14*** -0.14*** 

Observed DHW   -0.56*** -0.71*** -0.06 -0.19*** -0.14*** 0.11* 

Maximum PAR 

Anomaly 
   0.59*** 0.02 0.07 0.34*** -0.20*** 

Observed PAR 

Anomaly 
    -0.06 0.03 0.03 -0.14*** 

Distance From 

Shore 
     -0.21*** 0.29*** 0.13*** 

Population 

Density 
      0.01 -0.01 

Wind        -0.06 

Depth         

P-values for statistical significance of indicated correlation coefficients: *** p<0.01, ** p<0.05, * p<0.1 
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Table S8. Correlations between stressors in the Greater Antilles. 

 

Maximum 

DHW 

Observed 

DHW 

Maximum 

PAR 

Anomaly 

Observed 

PAR 

Anomaly 

Distance 

From 

Shore 

Population 

Density 
Wind Depth 

Maximum DHW  0.83*** 0.01 -0.03 -0.11 0.09 -0.22 0.22 

Observed DHW   -0.05 -0.30** -0.09 0.22 -0.27** 0.09 

Maximum PAR 

Anomaly 
   0.23 0.03 0.12 0.23 -0.05 

Observed PAR 

Anomaly 
    0.01 0.05 -0.30** -0.01 

Distance From 

Shore 
     0.30** 0.22 -0.08 

Population 

Density 
      -0.08 -0.11 

Wind        0.07 

Depth         

P-values for statistical significance of indicated correlation coefficients: *** p<0.01, ** p<0.05, * p<0.1 

 

Table S9. Correlations between stressors in the Southern Caribbean. 

 

Maximum 

DHW 

Observed 

DHW 

Maximum 

PAR 

Anomaly 

Observed 

PAR 

Anomaly 

Distance 

From 

Shore 

Population 

Density 
Wind Depth 

Maximum DHW  0.97*** 0.17 -0.54*** -0.11 -0.06 0.83*** 0.09 

Observed DHW   0.20 -0.54*** -0.09 -0.11 0.77*** 0.06 

Maximum PAR 

Anomaly 
   0.21 0.19 0.08 -0.01 0.00 

Observed PAR 

Anomaly 
    -0.06 0.41*** -0.64*** -0.07 

Distance From 

Shore 
     -0.19 0.07 0.01 

Population 

Density 
      0.07 -0.13 

Wind        0.09 

Depth         

P-values for statistical significance of indicated correlation coefficients: *** p<0.01, ** p<0.05, * p<0.1 

 

 

  



121 

 

Table S10. Correlations between stressors in the Southwestern Caribbean. 

 

Maximum 

DHW 

Observed 

DHW 

Maximum 

PAR 

Anomaly 

Observed 

PAR 

Anomaly 

Distance 

From 

Shore 

Population 

Density 
Wind Depth 

Maximum DHW  0.31*** -0.01 0.30*** 0.00 0.41*** -0.41*** -0.19 

Observed DHW   -0.38*** -0.07 0.00 0.18 -0.51*** -0.19 

Maximum PAR 

Anomaly 
   0.51*** -0.27*** -0.42*** -0.03 -0.17 

Observed PAR 

Anomaly 
    -0.10 -0.26*** -0.26*** -0.17 

Distance From 

Shore 
     -0.01 0.07 0.21* 

Population 

Density 
      0.14 0.16 

Wind        0.44*** 

Depth         

P-values for statistical significance of indicated correlation coefficients: *** p<0.01, ** p<0.05, * p<0.1 

 

Table S11. Correlations between stressors in the Floridian region. 

 

Maximum 

DHW 

Observed 

DHW 

Maximum 

PAR 

Anomaly 

Observed 

PAR 

Anomaly 

Distance 

From 

Shore 

Population 

Density 
Wind Depth 

Maximum DHW  0.31*** -0.09 -0.09 -0.11 -0.02 0.08 0.04 

Observed DHW   -0.11 -0.25*** 0.06 -0.05 -0.09 0.01 

Maximum PAR 

Anomaly 
   0.23*** -0.26*** 0.73*** -0.73*** -0.10 

Observed PAR 

Anomaly 
    -0.19 0.34*** -0.22*** 0.13 

Distance From 

Shore 
     -0.37*** 0.54*** 0.03 

Population 

Density 
      -0.68*** 0.13 

Wind        -0.15** 

Depth         

P-values for statistical significance of indicated correlation coefficients: *** p<0.01, ** p<0.05, * p<0.1 
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APPENDIX B: Chapter 3 

 Data for Case Study 

A map is provided in Figure S1 as a spatial reference for various geographic features of interest in 

California.  

 

Figure S1. Cropped area in the Central Valley of California (A) and major relevant hydrologic 

regions in California (B). 

9.1.1 NASS County Commissioner Data 

Table A1 reports the crops assessed in this study.  These 20 crops correspond to those crops with highest 

revenues as outlined in the statewide 2013 crop report [1].  Together, they correspond to over 95% of the 

revenues generated by the non-livestock agricultural sector. 

Yields and prices are obtained from the NASS County Agricultural Commissioner’s Data [2].  These data 

are published yearly and report statewide crop yields and prices at county-level resolution.  In Table S2, 

the crop names used in this study are paired with their corresponding NASS names and commodity codes.  
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If multiple NASS crops are listed for a single study crop, we calculate the weighted average of the yields 

and prices.  

If no yield or price data was available for a particular crop in a particular county, the values reported for 

“Sum of Others” was used in its stead.  For a single crop (Walnuts) no values were available for “Sum of 

Others,” and instead we substituted state averages.  All reported values are for 2013.  

Alongside the crop in Table S1 we display the threshold and slope parameters for the yield reduction 

model (4). These parameters are collected from a number of studies carried out in the mid-twentieth 

century that were first summarized in Maas and Hoffman [3] and subsequently updated and republished.  

While presented in numerous publications in varying degrees of completeness, we found no discrepancies 

between the values reported in the different articles and reports [3-6].  Where possible, we use values in 

more recent publications. For three crops (walnuts, pistachios, and oranges), no direct threshold and slope 

parameters were given. Rather, they were categorized into one of several tolerance groupings (sensitive, 

moderately sensitive, moderately tolerant, and tolerant). For each of these categories, a representative 

threshold and slope parameter were chosen based on graphical representations reported in Hoffman [6] 

and other publications. 

In order to use the agricultural county commissioner’s data, we first match the 20 study crops with NASS 

commodities codes [2].  The crops corresponded to NASS commodities with a ‘one-to-many’ 

relationship. Table S2 reports the mapping used in this study.  Once mapped, we develop county and state 

level datasets containing information on yield, prices, and revenue per acre.  These datasets inform key 

parameters in our study.  

9.1.2 NASS Cropland Data Layer: 

NASS produces the Cropland Data Layer (CDL) satellite-based crop classifier [7]. The CDL distinguishes 

between 132 distinct crops with an overall accuracy rating of 84.9%.  Table S3 relates crops in this study 

to CDL object identifiers and provides the producer and user accuracy for each crop.  Producer accuracy 



124 

 

represents the number of ground-truth points accurately classified in generating the map, representing the 

likelihood that a random crop will be correctly rendered.  User accuracy represents the likelihood that a 

given pixel on the map is actually what is found in the field.  These ground-truth points are used to 

remove bias from the estimates, as discussed previously. All reported values are for 2014.  

9.1.3 Gridded Soil Survey Geographic (gSSURGO) Database 

SSURGO is a nationwide dataset developed from the National Cooperative Soil Survey (NCSS).  NCSS 

is a collaboration between federal, state, and private institutions with the goal of disseminating 

information about the state of soils across the country led by the U.S. Department of Agriculture (USDA) 

and the National Resource Conservation Service (NRCS).  SSURGO map scale is between 1:12,000 and 

1:63,360 and is the most detailed soil survey product available from the program [8]. 

The FY2015 gSSURGO database is a December 1, 2014, snapshot of the soil data mart database released 

in the Environmental Systems Research Institute, Inc. (ESRI) file geodatabase format at the state level.  

Vector data are released as map units, including the 456,249 map units spanning California that have a 

median area of 0.12 km2 and average area of 0.92 km2.  Vector data is converted to raster format to 

improve computational performance. 

Electrical conductivity (EC) is measured at the ‘component’ level, a unit of soil classification smaller than 

map units.  No spatial data are available for components, and so to connect the EC measurements to a 

specific geographic location each component is first referenced to the map unit in which it is contained.  

Next, the map unit EC value is calculated by taking the weighted average (weights determined by area) of 

the component level data, then calculating a second weighted average through the A and B soil horizons. 

In order to arrive at the EC estimate for the component, SSURGO aggregates many local measurements.  

While the individual measurements are not released, a reported representative value is accompanied by 

the top and bottom of the observed range, allowing us to account for uncertainty in the salinity estimate 

(Figure S2). 
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The SSURGO dataset is derived from field measurements and is continuously updated to reflect changing 

soil conditions.  The labor intensity of measuring soil quality parameters and spatial extent of the dataset 

limit the frequency of resurveying, with most measurements occurring in regions with the greatest rate of 

soil quality change.  To account for uncertainty in soil quality estimates, we vary the SSURGO data in a 

sensitivity analysis in Section 9.3. 

Table S1. Crop Salt Tolerance Parameters.   

Crop Threshold Slope Source 

Almonds 1.5 19.0 Hoffman 2010 

Grapes 1.5 9.6 Hoffman 2010 

Strawberries 1.0 33.0 Maas 1993 

Walnuts* 1.5 15.4 Hoffman 2010 

Lettuce 1.3 13.0 Maas 1993 

Alfalfa 2.0 7.3 Hoffman 2010 

Tomatoes 2.5 9.9 Hoffman 2010 

Pistachios* 3.0 7.7 Maas 1993 

Broccoli 2.8 9.2 Maas 1993 

Rice 3.0 12.0 Maas 1993 

Oranges* 1.7 16.0 Maas 1993 

Cotton 7.7 5.2 Maas 1993 

Carrots 1.0 14.0 Maas 1993 

Celery 1.8 6.2 Maas 1984 

Peppers 1.5 14.0 Maas 1993 

Lemons 1.5 12.8 Maas 1993 

Peaches 1.7 21.0 Maas 1993 

Wheat 6.0 7.1 Hoffman 2010 

Cherries* 1.5 15.4 Maas 1993 

Corn 1.7 12.0 Hoffman 2010 

*Indicates that no direct data was available.  Instead category level data (tolerant, moderately tolerant, 

moderately sensitive, sensitive) were translated to values using graphical representations in Hoffman [6]. 

 

Table S2. Mapping Between Study Crops and NASS Commodity Data 

Study: Name NASS: Name NASS: 

Commodity 

Code 

2013 State 

Average Yield 

per Acre [tons] 

2013 Prices 

[$/ton] 

2013 Revenue 

per acre 

[$/acre] 

Alfalfa HAY ALFALFA, SEED 

ALFALFA 

181999, 

172119 
3.85 227.29 875.07 
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Almonds ALMONDS ALL 261999 1.12 5681.86 6363.68 

Broccoli BROCCOLI FOOD 

SERVICE, BROCCOLI 

FRESH MARKET, 

BROCCOLI 

PROCESSING, 

BROCCOLI 

UNSPECIFIED 

307189, 

307199, 

307299, 

307919 

 

7.29 813.91 5929.33 

Carrots CARROTS FOOD 

SERVICE, CARROTS 

FRESH MARKET, 

CARROTS 

PROCESSING, 

CARROTS 

UNSPECIFIED 

313189, 

313199, 

313299, 

313999 

 

23.8 250.00 5957.50 

Celery CELERY FOOD 

SERVICE, CELERY 

FRESH MARKET, 

CELERY UNSPECIFIED 

316189, 

316199, 

316999 

 

36.6 433.93 15886.18 

Cherries CHERRIES SWEET 213199 2.6 3817.60 10002.11 

Corn CORN GRAIN, CORN 

POPCORN, CORN 

SILAGE, CORN SWEET 

ALL 

111991, 

192999, 

111992, 

323999 

11.0 66.64 731.71 

Cotton COTTON LINT PIMA, 

COTTON LINT 

UNSPECIFIED, 

COTTON LINT 

UPLAND 

121229, 

121299, 

121219 0.9 2709.14 2411.13 

Grapes GRAPES RAISIN, 

GRAPES TABLE, 

GRAPES WINE 

216399, 

216199, 

216299 

11.2 896.62 10060.08 

Lemons LEMONS ALL 204999 16.5 758.06 12492.83 

Lettuce LETTUCE HEAD, 

LETTUCE LEAF, 

LETTUCE ROMAINE, 

LETTUCE 

UNSPECIFIED 

340999, 

342999, 

341999, 

339999 

17.3 480.05 8314.47 

Oranges ORANGES NAVEL, 

ORANGES 

UNSPECIFIED, 

ORANGES VALENCIA 

201119, 

201999, 

201519 
15.6 556.67 8689.62 

Peaches PEACHES 

CLINGSTONE, 

PEACHES FREESTONE, 

PEACHES 

UNSPECIFIED 

212399, 

212199, 

212999 12.8 620.84 7928.13 

Peppers PEPPERS BELL, 

PEPPERS CHILI HOT 

363999, 

364999 
18.0 735.28 13205.63 

Pistachios PISTACHIOS 268079 1.2 4695.91 5822.93 

Rice RICE MILLING, RICE 

SEED, RICE WILD 

106199, 

171069, 

198199 

3.2 418.69 1331.43 

Strawberries BERRIES 

STRAWBERRIES 

FRESH MARKET, 

237199, 

237299, 

237999 

29.8 1867.59 55728.89 
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BERRIES 

STRAWBERRIES 

PROCESSING, BERRIES 

STRAWBERRIES 

UNSPECIFIED 

Tomatoes TOMATOES FRESH 

MARKET, TOMATOES 

PROCESSING, 

TOMATOES 

UNSPECIFIED 

378199, 

378299, 

378999 36.4 96.90 3528.13 

Walnuts WALNUTS ENGLISH 263999 1.9 3432.90 6316.54 

Wheat WHEAT ALL, WHEAT 

SEED 

101999, 

171019 
2.4 264.11 639.15 

 

9.1.4 Computing 

The total analysis was performed in 20 hours of processing time using a combination of Python 2.7.11, 

ESRI ArcGIS 10.2.2 accessed through ArcPy, NumPy 1.10.1 [9], and IPython 4.0.1 [10]. All plots were 

made using Matplotlib 1.5.0 [11]. Regression analyses were performed in R 3.1.1 using mgcv package 

1.8.0 [12]. The analysis was run on a desktop computer with an Intel i7 3.4 GHz processor with 16GB of 

installed RAM.  

 Bias Removal 

The approaches taken in both models utilized in the main paper make use of field-scale estimates of crop 

type sourced from a satellite-based crop classifier and combines this estimated crop type with soil maps of 

salinity and region-level information on management practices, crop water-use, yields, and prices.  Small 

differences in classifier accuracy between different crop types can introduce a large bias into the estimate, 

even if the classifier on aggregate produces highly accurate results [13].  This bias can be systematically 

removed using accurate, though sparse, ground measurements to correct widely available, though biased, 

satellite classification.  While several approaches for removing bias have been discussed in the literature, 

in this study we make use of a direct estimator due its straightforward implementation and relative 

efficiency [14]. 
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To remove bias, a confusion matrix is constructed from ground truth data that indicates both the 

probability that a pixel is correctly classified and the probability that a pixel is misclassified as each of the 

other possible categories.  From this, an arbitrary value 𝑍𝑝,𝑐 calculated using crop-specific information is 

compiled into a pixel estimate of the same quantity 𝑍𝑝 by using the following transformation: 

 𝑍𝑝 = ∑ 𝑃𝑐∗,𝑐𝑍𝑝,𝑐

𝑐

 
(1) 

where the subscript c indicates crop, the subscript p indexes the pixel, and  Pc∗,c is the probability that 

given the classifier indicates that a pixel contains a particular crop c∗, the pixel actually contains crop c.  

 Uncertainty Analysis 

The key parameter in our study is the total revenues lost due to salinity, calculated at $3.7 billion 

annually.  There are key uncertainties in this calculation which should be tested in order to assess the 

robustness of our estimate.  First, the spatially resolved 30 m pixel salinity data generated by the 

SSURGO project contains considerable smoothing.  A single point estimate of soil electrical conductivity 

is generated for each ‘map unit.’  Map units have a median area of 0.12 km2, meaning that this median 

map unit is comprised of 4000 pixels each reporting the same value of salinity.  Since salinity as a process 

can vary in relatively short distances, this smoothing introduces uncertainty into our estimate.  

SSURGO reports a low and high value for each parameter alongside the representative value.  We assess 

the uncertainty parametrically by repeating the analysis using ‘low’, ‘medium’, and ‘high’ salinity values. 

The medium salinity value scenario is identical to the analysis in the main paper, while for the low and 

high analyses we apply the low and high electrical conductivity values respectively.  

Additional uncertainty arises from county level estimates of prices and yields.  While likely very accurate 

for the 2013 crop year, it is possible that this crop year was an anomaly in either yields or prices for some 

of the crops in the study.  To assess the likelihood of anomalies driving our result, we collect ten years of 
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crop data (2004 – 2013) and calculate the standard error on the trendline [2]. Specifically, we calculate 

the following regressions for each crop: 

 𝑝𝑖 = 𝛽0 + 𝛽1 ∙ 𝑌𝑒𝑎𝑟𝑖 +  𝜀𝑖 (2) 

 𝑦𝑖 = 𝛽0 + 𝛽1 ∙ 𝑌𝑒𝑎𝑟𝑖 +  𝜀𝑖 (3) 

where each observation i corresponds to a single year’s data.  The dependent variables, 𝑝𝑖 and 𝑦𝑖, are state 

average prices and yields.  The standard error of prices and yields is calculated by taking the root mean 

squared error of the residual.  

As with salinity, we calculate a ‘low’, ‘medium’, and ‘high’ scenario with both prices and yields.  The 

medium scenario is calculated as in the main paper, while the low and high scenarios are calculated by 

subtracting and adding the de-trended standard error to the 2013 estimates, respectively. 

In addition to rerunning the analysis with each individual parameter set at its low, medium, and high 

values, we perform a final analysis with all parameters set at their low, medium, and high values.  While 

setting all values simultaneously low or high is likely to be unduly pessimistic or optimistic, it is a useful 

step in understanding if total uncertainty is driven primarily by a single parameter or by the combination 

of parameters. 
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Figure S2. Revenue losses under low, medium, and high scenario cases for each parameter used in 

this study.  For each line, the other variables are held at their best guess, with the exception of the 

‘All’ line, in which each parameter is set at low, medium, and high.   

 

In Figure S2, the low, medium, and high scenarios are reported.  The year to year variation of prices and 

yields makes little impact on the final analysis, as indicated by the relatively similar estimates of revenue 

loss.  Uncertainty in the salinity data, on the other hand, drives a relatively large variation.  The low and 

high scenarios for salinity correspond to estimates of revenue lost of $1.5 and $6.7 billion, making up the 

majority of the $1.7 - $7.0 billion range.   

 Performance of Crop Classifier 

The USGS conducts an internal assessment of its crop classifier by collecting ground truth estimates of 

actual cropping patterns and comparing them to predictions from the crop classifier.  The accuracy can be 

quantified by using producer and consumer accuracy.  User accuracy is the likelihood that, given a crop is 

classified in a pixel as c, it is actually c in the field.  Producer accuracy is the likelihood that, given a crop 

is actually c in the field, it is classified correctly as c in the prediction.  Producer and consumer accuracies 

for the 2014 CDL for California are reported in Table Se.  Most crops have relatively high accuracies, 
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though, vegetable and fruit crops (e.g. broccoli, lettuce, strawberries) are identified less consistently than 

the field and tree crops.  Celery in particular, is never selected by the classifier, and is thus omitted from 

this analysis. 

Table S3. Accuracy of Remotely Sensed Land Use Data 

Crop CDL Crop  

Name 

Producer’s Accuracy User’s Accuracy 

 

Alfalfa Alfalfa 94.1% 90.7% 

Almonds Almonds 88.5% 90.7% 

Broccoli Broccoli 30.0% 61.8% 

Carrots Carrots 52.6% 72.6% 

Celery Celery 0% NA 

Cherries Cherries 32.8% 54.3% 

Corn Corn, Sweet Corn 85.2% / 44.1% 86.8% / 43.0% 

Cotton Cotton 96.9% 92.5% 

Grapes Grapes 92.0% 86.4% 

Lemons Citrus 88.7% 90.9% 

Lettuce Lettuce 54.2% 58.1% 

Oranges Oranges 78.7% 81.3% 

Peaches Peaches 84.2% 45.2% 

Peppers Peppers 33.0% 62.9% 

Pistachios Pistachios 72.1% 85.3% 

Rice Rice 99.3% 99.3% 

Strawberries Strawberries 39.1% 56.6% 

Tomatoes Tomatoes 90.5% 87.7% 

Walnuts Walnuts 83.4% 84.2% 

Wheat Durum Wheat, Spring Wheat, Winter Wheat 83.4% / 67.5% / 73.6% 81.7% / 75.9% / 75.9% 

 

All estimates in the study are unbiased using information from Table S3 as discussed in Methods.  

In order to test the performance of the USGS crop classifier, we compare unbiased land estimates from 

the crop classifier with the land estimates from the NASS county commissioner data (Figure S3).  If the 

ratio of these two values is above 1.0, the crop classifier is likely overestimating the representation of a 

particular crop, while if below 1.0 it is likely underestimating its representation.  Even after removing 

bias, seven crops are not estimated within 30% of their true value.  These crops are broccoli, carrots, 

celery, corn, lettuce, peaches and peppers.  Comparing with Table S3, these crops generally report lower 
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accuracies than those crops more accurately identified.  We aggregate these crops into a single category, 

Other High Uncertainty Crops (OHUC), when reporting their values in the main manuscript.  

Important to note is the CDL is developed for crop year 2014 while the NASS data corresponds to 2013, 

meaning that some of the variation noted in Figure S3 may be due to temporal mismatch.  

 

Figure S3. Ratio of the acres predicted by the crop classifier compared with acres reported in NASS 

agricultural commissioner’s data. Values above one indicate that the classifier is over-predicting 

crop representation, while values below one indicate the classifier is under-predicting crop 

representation. All values are unbiased using crop assessment reported in table D1. 

 

 Grower Adaptation 

We observe that growers are likely modifying their crop choices in accordance with extant salinity values. 

In Figure S4B, crop salt tolerance is plotted spatially.  It is quantified as Y50, or the salinity value at which 

yields are expected to be 50% of maximum levels. Figure S4B shows that in the Central Valley, crop salt 

tolerance is qualitatively higher in the southern and western regions where salinity is elevated, suggesting 

that salinity may be a factor in crop selection.  In the northern and southern extremes of the state crop 

salinity tolerance values are also high, driven largely by the large amounts of alfalfa grown in these 

regions. 
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Figure S4. (A) Location of areas with a shallow groundwater table, (B) salt tolerance values, (C) 

and extant salinity levels. Salt tolerance is quantified as Y50, or the salinity at which yield is 

expected to be reduced to 50%.  

 

We observe that the average soil salinity by crop and salt tolerance levels are positively correlated, while 

crop salt tolerance levels and marginal revenues are negatively correlated (Figure S5).  These two facts 

illustrate the tradeoff experienced by agricultural producers – they can either produce lower value, high 

tolerance crops with high yields or high value, low tolerance crops with reduced yields.  
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Figure S5. (A) Salt tolerance vs average salinity for each crop and (B) salt tolerance values vs 

marginal revenue for each crop. Average salinity represents the mean salinity value across all pixels 

for each crop in the study.  Marginal revenues are state averages.  

 

 Estimating Calorie Losses Associated with Soil Salinization in California 

While caloric losses are not of primary interest in the specialty crop dominated Californian agriculture 

system, we demonstrate here that the methods applied in the main paper can be used to analyze the loss in 

human nutrition as a result of land degradation. 

Caloric losses were determined by multiplying the estimates of lost yield at the pixel level by the energy 

density in calories per ton for each crop.  Energy density estimates were sourced from the FAO report  on 

Food Composition for International Use [15].  Certain crops, such as Alfalfa and Cotton, are not typically 

consumed and are therefore assigned a caloric density of 0 calories∙gram-1 even though, in the case of 

alfalfa, the crop may contribute indirectly to human caloric intake.   

We find that the majority of the calories lost are associated almonds and rice, due to a combination of 

their high acreage and high caloric density (Figure S6).  The Other High Uncertainty Crops (OHUC) 
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category also features prominently, driven primarily by the inclusion of corn.  Aggregate losses across all 

crops total 6.0 million person-years, assuming a 2000 calorie∙day-1 requirement. 

We find that different crops are driving aggregate caloric losses than those that are driving aggregate 

revenue losses. Figure S6A makes this difference clear by plotting losses for each crop. Those crops 

towards the lower right quadrant have high calorie losses but low revenue losses (e.g. rice) while those in 

the upper left quadrant (e.g. strawberries) have relatively higher revenue losses in comparison with their 

calorie losses. Almonds, due largely to their large gross acreage, lead in both metrics.  

 

Figure S6. (A) Calorie loss revenue loss tradeoff and (B) calorie losses by crop. 

 Statistical Analysis 

We performed a brief statistical analysis in order to determine the correlation between salinity and four 

parameters – crop marginal value, crop salt tolerance, estimated yield reduction, and estimated revenue 

losses per acre (Table S4).  The goal of the analysis was to assess the relative magnitude of the correlation 

between salinity and the parameters of interest as well as test the correlation for significance.  

The salinity data used in other parts of this study is stored in raster format to speed computation.  It is, 

however, originally released as a vector file, with 456,249 individual polygons spanning California.  In 

this section we revert to the polygon format so as to avoid artificially inflating our sample size. Our four 
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parameters of interest are each spatially averaged within the polygon to construct the dependent variable. 

After removing those polygons with no crops, we are left with a sample size of 296,987 data points. 

Spatial data often violate the independent and identically distributed (IID) assumption of ordinary least 

squares (OLS) due to correlation in the error term. While the estimated OLS coefficients remain unbiased, 

inference testing becomes inappropriate as the standard errors are downward biased. Common approaches 

for handling this issue (e.g. generalized least squares, spatial lag model, spatial error model, spatial durbin 

model) typically require the estimation of the correlation structure codified in a spatial weights matrix Wij. 

This matrix, if stored in a dense format, has size n x n where n is the number of data points. While size 

constraints can be lessened by imposing cutoffs based on distance and storing data in a sparse format, we 

found it difficult to construct a weighting matrix with a reasonable structure given our large sample size. 

Instead, we fit a generalized additive model (GAM) in an effort to control for spatial location. GAMs are 

non-parametric models that are used to estimate the effect of linearly independent covariates on a 

dependent variable.  Since GAMs avoid specifying the parametric form of the regressors they are able 

capture complex nonlinear behavior.      

We perform four regressions, each fitting on the four parameters of interest while controlling for location. 

Latitude and longitude are smoothed together using a thin plate spline regression, the parameters of which 

are fitted using generalized cross validation.  The general form is given in Equation 4, where 𝑦𝑖 represents 

a single observation 𝑖 of one of the four parameters of interest and 𝑆𝑖
𝑆 is soil salinity. 

 𝑦𝑖 = 𝛽0 + 𝛽1𝑆𝑖
𝑆 + 𝑓(𝐿𝑎𝑡, 𝐿𝑜𝑛) + 𝜀𝑖 (4) 

We find that both the 𝛽0 and the 𝛽1 parameter in each of the four regressions are highly significant. While 

we are primarily interested in the magnitude and significance of the effect of salinity (𝛽1), the intercept 

(𝛽0) is also informative since it can be interpreted as the estimated value of the parameter when there is 

no salinity present in the soils.  
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Regressing marginal revenue [$/acre] on soil salinity [dS/m] results in a positive intercept of $6245.44 

and a negative slope of -$304.46.  Marginal revenue is calculated as simply the observed price per ton 

multiplied by the observed yield per acre, both resolved at the county level.  The intercept indicates that 

crops being grown at locations with zero salinity have an expected value of $6245.44, and that with each 

increasing unit salinity, the marginal value decreases by $304.46.  This effect is likely due to the observed 

trend that crops with higher marginal revenues exhibit lower salt tolerance (figure E2b). 

Salt tolerance is calculated by solving for the salinity value at which crop yields would be reduced 50%. 

Regressing salt tolerance [dS/m] on salinity [dS/m] results in an intercept of 7.47 and a slope of 0.034. 

The positive slope indicates that, as salinity increases, farmers are observed planting more salt tolerant 

crop species. While the effect is statistically significant the slope is low in magnitude.  

Relative yield and revenue losses are both estimated (not observed) parameters that take salinity as direct 

inputs (Equations 2 and 6 in Chapter 3), making it unsurprising that the regressions report statistically 

significant correlations.  The slope in the relative yield [%] equation is negative, indicating that for each 

unit increase in soil salinity relative yield decreases by 5.38 percentage points.  Revenue losses increase 

with soil salinity, registering a $364.90 increase per unit increase in soil salinity.  The intercepts of both 

regressions indicate a slight misspecification, with zero salinity registering 101.2% yield and -$25.32 

revenue losses. This misspecification is likely a result of the truncated nature of salinity response in 

Equation 2 in Chapter 3, and is relatively small in magnitude. 

Table S4. Regression Results 

 Marginal 

Revenue 

Salt 

Tolerance 

Relative 

Yield 

Revenue 

Losses 

Salinity 

Coefficient 

 

-304.46*** 

(3.87) 

0.034*** 

(0.0012) 

-5.38*** 

(0.0048) 

364.9*** 

(1.81) 

Intercept 

 

 

6245.44*** 

(10.14) 

7.47*** 

(0.0031) 

101.2*** 

(0.0126) 

-25.32*** 

(4.76) 

Observations 296987 296987 296987 296987 

Adjusted R2 0.53 0.55 0.853 0.186 
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 Symbols 

𝑍: Example parameter [unitless] 

𝑃 : Probability that classifier is correct [unitless] 

𝑌𝐿 : Yield losses [tons / acre] 

𝐹 : Fraction of maximum yield [unitless] 

𝑌𝑀: Theoretical maximum yield [tons / acre] 

𝑏: Crop salt tolerance slope parameter [(dS/m)-1] 

𝑆𝑆 : Soil salinity [dS/m] 

𝑎: Crop salt tolerance threshold parameter [dS/m] 

𝑌𝑇𝐿:  Total yield losses [tons] 

𝑘: Acre to pixel conversion factor [acre / pixel] 

𝑅𝐿 : Revenue losses [$ / acre] 

𝑝: Prices [$ / ton]  

RTL:  Total revenue losses [$] 

A: Crop acreage [acres] 

c∗: Predicted crop 

c: Observed crop 

p: Pixel-scale measurement 

r: Region-scale measurement 

0: Initial value  
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APPENDIX C: Chapter 4 

Table S1. Tolerance and marginal revenue of crop categories. Tolerance is defined 

according to the salinity at which yields are estimated to be reduced by 50%, and 

marginal revenue is the estimated revenue per acre. 

 

Tolerance 

Marginal 

Revenue 

Nuts, Sensitive 4.28 5891.46 

Other Tree 4.68 10161.70 

Nuts, Tolerant 9.49 3075.09 

Grain 7.17 1536.35 

Feed (Hay) 8.85 1065.16 

Field 17.32 2305.19 

Vineyard 6.71 6978.27 

Veggie, Sensitive 2.52 61033.45 

Veggie 5.16 10686.22 

Veggie, Tolerant 7.73 5189.98 

 

 

Figure S1 Marginal effects for crop groups organized by increasing salinity tolerance (A) and 

decreasing marginal revenue reduction (B). Marginal revenue reduction is calculated by 

multiplying the slope parameter from Equation 9 by the price and yield of the each crop group. For 

both graphs, a positive slope indicates that the regression results agree with the agronomic data. 
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Figure S2. Marginal effects across salinity domains for tree crops (A), vegetables (B), and other 

crops (C). Marginal effects are estimated by parametrically setting salinity according to values in 

the x-axis and assigning all other variables their mean value. Lines are plotted from 0 to the 

𝐘𝐢𝐞𝐥𝐝𝐑𝐞𝐥,𝟓𝟎
 (the salinity value at which yields are reduced by half) of each crop.  

 

 

Figure S3 Policy analysis for tree (A), vegetable (B) and other (C) crop clusters. Clusters are 

defined as in Figure S2.  
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Table S2 Average Fractional Coverage of Crop Groups. 

Crop Group Average Fractional 

Coverage 

Nuts, Sensitive 0.3455 

Nuts, Tolerant 0.0560 

Other Tree 0.0977 

Feed (Hay) 0.1964 

Grain 0.0774 

Field 0.0220 

Vineyard 0.1245 

Veggie, Sensitive 0.0002 

Veggie 0.0181 

Veggie, Tolerant 0.0622 
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APPENDIX D: Chapter 5 

 Air Emission Damage Analysis 

In order to quantify public costs we value the damages associated with additional energy use, arriving at a 

value with units [$ / m3] or [$ / acre-ft].  We quantify the damages for three hypothetical systems – (1) 

solar powered, grid supplemented thermal desalination (ST); (2) gas powered, grid supplemented thermal 

desalination (GT); and (3) grid powered reverse osmosis (RO).  The two thermal systems are assumed to 

use 125 MJ / m3 for driving the desalination process and 1.5 kwh / m3 of auxiliary grid electricity.  The 

reverse osmosis system is assumed to be powered by 5 kwh / m3 of grid electricity.  In this study we focus 

on four key air pollutants: SO2, NOx, PM 2.5 (criteria air pollutants) and CO2.  

The first step of the valuation methodology is to quantify the emissions associated with unit energy use.  

For grid electricity, we consider in state generation as well as imports from other regions.  California 

generates roughly 66% of its energy use in-state, while 13% come from the northwest region (Alberta, 

British Columbia, Idaho, Montana, Oregon, South Dakota, Washington, and Wyoming) and 21% comes 

from the southwest region (Arizona, Baja California, Colorado, New Mexico, Nevada, Texas, and 

Utah)[1].  We assume each plant contributes to emissions in proportion to its share of annual generation 

by using a series of weights (Equations 1 and 2).  Generation from out of country sources (Alberta and 

British Columbia) are omitted due to their relatively small contribution and limits in data availability. 

 𝐸𝐹𝑖,𝑝
𝐶𝑎𝑙 = 𝑝𝑖 ∙ 𝐸𝐹𝑖,𝑝 (1) 

 
𝑝𝑖 = 𝑓𝑟 ∙

𝐺𝑖

𝐺𝑟
 

(2) 

In Equation 1, 𝐸𝐹𝑖,𝑝
𝐶𝑎𝑙 is the California specific emission factor which indicates the additional quantity of 

pollutant (subscript 𝑝) is emitted at a particular plant (subscript 𝑖) given an additional unit of energy used 

in California.  This is calculated by multiplying the plant specific emission factor 𝐸𝐹𝑖,𝑝 by the share of 

California’s consumption produced at plant 𝑖, 𝑝𝑖.  The share of generation (𝑝𝑖) is calculated in Equation 2, 
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where 𝐺𝑖 is the generation that occurs at plant 𝑖, 𝐺𝑟 is the generation that occurs in region 𝑟, and 𝑓𝑟 is the 

fraction of generation in region 𝑟 that is exported to California.  We use plant data for all plants in states 

within the northwest, southwest, and Californian regions. 

While annual generation and emission factors for NOx, SO2, and CO2 are all available through CEMS, 

PM 2.5 is not included in this program.  Data is instead incorporated from US EPA National Emissions 

Inventory (NEI)[2].  NEI reports gross emissions in tons at three year intervals.  We acquire separate data 

for biomass, coal, natural gas, and oil at the state level for 2011.  The gross emissions are divided by the 

total generation of each plant type in each state to estimate the emission rate.  Once the emission rate for 

each plant is determined, the weighting structure specified in Equations 1 and 2 are applied.  

In addition to grid emission, emissions from local natural gas generation for the GT system must be 

calculated. We estimate these emissions by using the US EPA AP-42 Compilation of Air Pollution 

Emission Factors, which reports that 120,000 lb / million standard cubic feet (mscf) of CO2, 7.6 lb / mscf 

PM, 0.6 lb / mscf SO2, 100 lb / mscf NOx are emitted by small boilers in the generation process [3]. 

The second step in valuation is converting emissions to damages. For CO2, a social cost of carbon of $36 / 

metric ton (2007 dollars) is applied.  For the three criteria air pollutants, damages depend on the location 

in which the pollutants are emitted.  The emission rates are aggregated from the plant to the county level, 

and damages rates from the Air Pollution Emission Experiments and Policy (APEEP) model are applied 

[4].  APEEP quantifies human health impacts from air pollutants based on where the pollutants are 

emitted – areas with high population density report more aggregate damages than sparsely populated 

zones.  

Grid emissions therefore have constant damages, since the emissions profile is identical regardless of the 

location of the desalination unit.  For the GT system, however, the location of the desalination system is 

important.  The closer the emissions are to population centers, the greater the estimate damages. Table S1 

shows the magnitude of damages per unit of water treated for each system, with a range reported for the 
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GT system depending on which county the unit is located.  Figure 11-1 shows the spatial variation of 

damages of the GT system for counties with agricultural production included in this analysis.  

Table S1. Estimated public damages of desalination in $/acre-ft. 

[$ / acre-ft] 
Thermal 

(solar) 

Reverse 

Osmosis 

Thermal 

(natural gas) 

CO2 Damages 

(county range) 

$31.00  $103.00  $363.00  

 

  

SO2 Damages 

(county range) 
$21.60  $71.90  $22.70  

 

 ($21.90 - $24.40) 

NOx Damages 

(county range) 
$3.15  $10.50  $39.90  

 

 ($13.50 - $102) 

PM 2.5 Damages 

(county range) 
$2.75  $9.10  $23.40  

 

 ($6.20 - $62.20) 

Total Damages 

(county range) 
$58.40  $196.00  $449.00  

 

 ($404 - $550) 

 

 

Figure S1. Air damages from a gas-powered, thermal desalination unit varies depending on 

location. Damages from solar-powered, thermal desalination and grid-powered reverse osmosis 

(not shown) do not vary spatially. 
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 Defining Environmentally Sensitive Areas 

Treating agricultural drainage at the farm level provides a mechanism for preventing harmful pollutants 

from arriving at environmentally sensitive areas (ESAs).  This public benefit, while difficult to quantify, 

may be an important driver of adoption for desalination technologies.  In the main text we analyze how 

large this public benefit would need to be in order to reap a net positive societal benefit.  

ESAs are chosen using data from EPA’s Healthy Watersheds Program [5].[5] This mission of this 

program is to generate a series of aggregated indices that indicate watershed health, and to publish these 

indices in GIS format. ESAs are chosen by first selecting HUC12 watersheds that contain agriculture and 

artificial drainage areas, and from those selecting the watersheds with rank normalized median summer 

conductivity greater than 0.8.  This method selects 88 watersheds which define our selected at-risk zone, 

together accounting for 21% of the cropped area in the study.  Figure S2 shows the selected areas for the 

analysis. 

 

Figure S2. Subset of environmentally sensitive area included in the analysis. 
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 Irrigation Salinity Data 

One of the key data limitations in our study is the lack of high-resolution data on the salinity of the 

applied water.  This parameter will differ from field to field, pursuant to the grower’s usage of 

groundwater and surface water as well as the quality of the available local sources.  Additionally, the 

quality of each of these sources is likely to vary on annual time scales.  As such, no data exists at 

sufficient resolution to quantify this parameter, and it must be estimated.  The main analysis uses a single 

point estimate of water salinity of 490 mg/L.  In this section we both detail the calculation that lead to this 

point estimate as well as discuss other possible approaches for estimating salinity of the applied irrigation 

water.  We then use each of these estimates to analyze the sensitivity of our results to modelling choices 

surrounding this parameter. 

11.3.1 Modelling Water Salinity 

The first approach for estimating the salinity of the applied water uses high-resolution data on soil salinity 

and converts this to implied irrigation water salinity using the same model presented in the main 

manuscript [6]. The conversion from soil salinity to water salinity can be accomplished through Equation 

3. 

 
𝑆𝑊 =

𝑆𝑆

1
𝐿 +

0.2
𝐿 ∙ 𝑙𝑛 (𝐿 + (1 − 𝐿))𝑒−5

 
(3) 

In Equation C.1, 𝑆𝑊 is the salinity of the applied water, 𝑆𝑆 is the soil salinity, and L is the crop-specific 

leaching fraction. 

The implied irrigation water salinity can be seen in Figure C.1A. When soils report salinity values of 0.0 

mg/L total dissolved solids (TDS), the model implies that the grower is applying water with 0.0 mg/L 

TDS. This is likely an underestimate, as all irrigation water contains some quantity of dissolved solids. It 

can also be seen in Figure S3A that certain areas purport to use water salinity values of >4000ppm. These 

are likely overestimates which result from violations of a fundamental assumptions built into the model, 
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namely that the soil be well-drained. Much of the saline areas of California, however, are plagued by 

shallow groundwater tables (see Figure S3B). 

 

Figure S3. Modelled salinity results (A) and locations affected by shallow groundwater table (B). 

The y-axis in A shows the percentage of total observations in each bin. For example, 54% of 

observations have salinity between 0 and 250 mg/L. Data for B from https://water.ca.gov/drainage.  

 

11.3.2 Averaged Modelling Results 

Since the first approach likely overestimates the salinity of applied water in areas with high salinity and 

underestimates in areas with low salinity, an approach that avoids these shortcomings would be to use the 

average of the estimated modelling results outlined in the previous section. Applying this technique 

causes there to be a loss of spatial heterogeneity in the modelling of this parameter, but avoids error being 

introduced by outliers. 

This can be accomplished in two ways. The first is averaging the modelling results across all pixels, 

which yields an estimate of TDS of 585 mg/L. Since the model is known to be inaccurate in areas with 
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shallow groundwater tables, however, a second approach would be to take a spatial average of all areas 

outside of the shallow groundwater zone (Figure S3B). This second average yields an estimate for TDS of 

490 mg/L, and is the baseline approach taken in the main analysis. 

11.3.3 Surface Water and Groundwater Estimates 

An alternative to deriving water salinity estimates from modelling results is to use information about the 

salinity of available surface and groundwater. While 38% of the California’s net human water use is 

groundwater, this number varies drastically by year and location [7]. As such, we perform a bounding 

analysis, calculating reasonable point estimates by assuming that farms use either only surface water or 

only groundwater. 

The quality of surface water imports is carefully monitored and managed through the use of electrical 

conductivity sensors in the major import canals. The California Aqueduct and Delta-Mendota canal, 

which supply irrigation water to much of the San Joaquin and Tulare Lake Basins, typically report salinity 

values between 300 and 350 mg/L [8]. While these values represent a large portion of the surface water 

imports in the south, other irrigation sources may have higher levels of salinity [9]. We apply the upper 

side of this range (350 ppm) to represent a farmer consuming surface water. 

The quality of groundwater is much more variable. The Groundwater Ambient Monitoring and 

Assessment (GAMA) program assesses water quality across the state and produces publications as to the 

state of groundwater quality [10]. In reviewing the results from three such studies in the Sacramento, 

Tulare, and San Joaquin Basins it was found that groundwater quality could vary between 123 and 2670 

μS/cm (78 and 1708 mg/L), though the averages for all the wells in each study were in the range of 400-

500 mg/L [11-13]. Since our earlier approaches already contain estimates in the range of the averages, 

and in the interest of conducting as broad of a sensitivity analysis as possible, we use the upper and lower 

range for groundwater conductivity (78 mg/L and 1708 mg/L, respectively) as two additional approaches. 

It should be noted, however, that these are aggressive ranges. The upper range (1708 mg/L) in particular, 
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assumes that the entire state applies irrigation levels well in excess of the 1000 mg/L upper secondary 

maximum contaminant level (SMCL-CA) set by the state of California [13]. 

11.3.4 Sensitivity of Results to Modelling Choices 

The salinity of the applied irrigation water enters the analysis when modelling the private benefits of 

improved water quality, Equation 4 in the main manuscript. Since the salinity of applied water term enters 

linearly, for each approach we can calculate the change in the value of improved water quality relative to 

the baseline scenario by applying a simple ratio between the salinity of the new approach and the salinity 

of the baseline. 

Improved water quality, however, does not make up the entirety of the private benefits. The second 

component is the value of augmented supply, which is not affected by the quality of existing irrigation 

water.  

In Table C.1, we report the percentage change from the baseline scenario for improved water quality, total 

private benefits (assuming 2010 pre-drought values of water), as well as the share of cropped area with 

private benefit above the estimated cost of desalination, $1 / m3. The more moderate assumptions of 350 

and 585 mg/L show modest adjustments to total private benefits, but do not affect the result that no land 

is available that exceeds the current costs of desalination. While the more aggressive assumptions of 17 

mg/L and 1708 mg/L change the computed private benefits more drastically, they still do not 

meaningfully adjust the amount of land in which total benefits exceeding system cost. 
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Table S2. Sensitivity to Assumed Water Salinity Values. The total private benefits includes 

improved water quality as well as the value of augmented supply for 2010 (pre-drought conditions). 

 Percentage Change, 

Improved Water 

Quality 

Percentage Change,  

Total Private Benefits 

Percentage Cropped Area 

with Private Benefit > 

$1/m3 

Baseline (490 mg/L) -- -- 0% 

Modelled Salinity see Figure C.2A see Figure C.2B 0% 

Average with Shallow 

Groundwater (585 

mg/L) 

19.3% 6.7% 0% 

Surface Water  

(350 mg/L) 

28.6% -9.8% 0% 

Groundwater, Low 

Estimate (17 mg/L) 

-96.5% -29% 0% 

Groundwater, High 

Estimate (1708 mg/L) 

249% 86% 1.1% 

 

The percentage change from baseline cannot be computed for the modelled water salinity results, as it 

will be different depending where in the distribution it is being assessed. Figure S4 shows the respective 

cumulative density functions with the modelled data. Since the baseline results use an average of the 

modelled results, the higher values are larger for the modelled results and the lower values are smaller. 

Despite being the higher values being larger than the baseline, 0% of the benefits exceed $1 / m3, the 

estimated cost of desalination.  We thus find, across a broad range of modelling assumptions, that our 

major conclusions are unaffected for reasonable values of the salinity of applied irrigation water. 
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Fig S4. Cumulative Density Function of Improved Water Supply (A) and Total Private Benefits (B) 

for baseline (490ppm) and spatially modelled output.  

 

 

 List of Symbols 

11.4.1 Variables 

𝑅: Revenues 

𝑆𝑆:  Soil salinity 

𝑏: Crop salt tolerance slope parameter 

𝑝: Prices 

𝑌𝑀: Theoretical maximum yield 

𝐿 : Leaching fraction 

𝑆𝑊: Water salinity 

𝑊𝑇: Water treated 

Π: Profits 

𝑊: Applied water 

𝜐: Prices 
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𝑌: Production 

𝛿: Exponential response function intercept 

𝛾: Exponential response function elasticity 

𝑋: Resources use 

𝜔: Resource cost 

𝜏: Factor productivity 

𝛽: Resource coefficient 

𝜌: CES elasticity parameter 

11.4.2 Subscripts: 

g:  Region 

i: SWAP crop group 

j: Resource 

ws: Water source (project water, surface diversion or groundwater) 

land: Land resource  
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APPENDIX E: Chapter 6 

Table S1. Univariate Out of Sample R2 values. 

 Agriculture Only Subset Full Dataset 

 Maximum 

Composite 

Average 

Composite 

Maximum 

Composite 

Average 

Composite 

NDVI -0.0092 -0.0082 0.0060 0.0085 

EVI -0.012 -0.010 0.0024 0.00055 

CRSI 0.0018 0.0010 0.016 0.023 

SAVI -0.0092 -0.0082 0.0060 0.0085 

 

Table S2. Multivariate Out of Sample R2 values. 

 Agriculture Only Subset Full Dataset 

 Maximum 

Composite 

Average 

Composite 

Maximum 

Composite 

Average 

Composite 

NDVI -0.0013 -0.0027 0.037 0.019 

EVI -0.0050 -0.0050 0.022 0.0019 

CRSI 0.0081 0.0068 0.051 0.035 

SAVI -0.0013 -0.0027 0.037 0.019 

ANN 0.0030 -0.052 0.10 0.14 

 

 

Figure S1. Spatial Distribution of observations. Green dots represent observations on 

agricultural land as defined by GlobCover 2010, while blue dots represent observations 

on non-agricultural land. 


