
Representation, Planning, and Learning of
Dynamic Ad Hoc Robot Teams

Somchaya Liemhetcharat

CMU-RI-TR-13-22

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

August 2013

Thesis Committee:
Manuela M. Veloso, Chair

Howie Choset
M. Bernardine Dias

Peter Stone (University of Texas at Austin)

Copyright c© 2013 Somchaya Liemhetcharat. All rights reserved.

To my loving wife, Junyun Tay, for her endless support and encouragement.

Abstract

Forming an effective multi-robot team to perform a task is a key problem in many domains. The
performance of a multi-robot team depends on the robots the team is composed of, where each
robot has different capabilities. Team performance has previously been modeled as the sum of
single-robot capabilities, and these capabilities are assumed to be known.

Is team performance just the sum of single-robot capabilities? This thesis is motivated by
instances where agents perform differently depending on their teammates, i.e., there is synergy

in the team. For example, in human sports teams, a well-trained team performs better than an all-
stars team composed of top players from around the world. This thesis introduces a novel model
of team synergy — the Synergy Graph model — where the performance of a team depends on
each robot’s individual capabilities and a task-based relationship among them.

Robots are capable of learning to collaborate and improving team performance over time, and
this thesis explores how such robots are represented in the Synergy Graph Model. This thesis
contributes a novel algorithm that allocates training instances for the robots to improve, so as to
form an effective multi-robot team.

The goal of team formation is the optimal selection of a subset of robots to perform the
task, and this thesis contributes team formation algorithms that use a Synergy Graph to form an
effective multi-robot team with high performance. In particular, the performance of a team is
modeled with a Normal distribution to represent the nondeterminism of the robots’ actions in a
dynamic world, and this thesis introduces the concept of a δ-optimal team that trades off risk
versus reward. Further, robots may fail from time to time, and this thesis considers the formation
of a robust multi-robot team that attains high performance even if failures occur.

This thesis considers ad hoc teams, where the robots of the team have not collaborated to-
gether, and so their capabilities and synergy are initially unknown. This thesis contributes a
novel learning algorithm that uses observations of team performance to learn a Synergy Graph
that models the capabilities and synergy of the team. Further, new robots may become available,
and this thesis introduces an algorithm that iteratively updates a Synergy Graph with new robots.

i

This thesis validates the Synergy Graph model in extensive simulations and on real robots,
such as the NAO humanoid robots, CreBots, and Lego Mindstorms NXTs. These robots vary
in terms of their locomotion type, sensor capabilities, and processing power, and show that the
Synergy Graph model is general and applicable to a wide range of robots. In the empirical evalu-
ations, this thesis demonstrates the effectiveness of the Synergy Graph representation, planning,
and learning in a rich spectrum of ad hoc team formation scenarios.

ii

Acknowledgments

First and foremost, I would like to express my thanks and gratitude to my advisor, Manuela
Veloso. She has provided invaluable guidance and support throughout my undergraduate and
graduate life. Her creativity and energy has inspired me to greater heights.

I would also like to thank Howie Choset, Bernardine Dias, and Peter Stone, for graciously
agreeing to be on my thesis committee, and devoting their precious time to provide invaluable
guidance and advice for my thesis.

I am eternally grateful and blessed with my wife, Junyun Tay. She has been understanding
and encouraging, and has dedicated much of her time supporting me during my Ph.D., discussing
research questions and directions, analyzing my results, and carefully proof-reading my papers.
Considering that she is also working on her Ph.D and taking care of our daughter at the same
time, I am truly impressed and amazed at her capabilities!

My family has always been supportive, and I would like to thank my parents and parents-in-
law for their encouragement, and concern for our well-being. Their love is truly boundless.

I am also thankful for my daughter, Dhanaphon, who motivated me to finish my thesis with
her bright smiles, and inspired me with her incredible learning capabilities. I hope to someday
develop artificial intelligence and learning algorithms that will rival a baby’s abilities.

A Ph.D. is a long process, and I am thankful for the many friends I made along the way, such
as the CORAL group at CMU, including Brian Coltin, Susana Brandao, and Çetin Meriçli, who
I’ve had many fun experiences with. I would also like to thank Felipe Trevizan, who methodi-
cally read my thesis and offered many useful comments and suggestions, and Yucheng Low and
Qirong Ho, who shared their knowledge of statistics and machine learning with me.

The Singaporean community in Pittsburgh have truly made living here feel like home, and
my many friends, including Rodney and Suzanne, Jiaqi and Weiling, Chwee Ming and Andrea,
Bryan and Cocoa, Kenneth and Linli, have been there through the ups and downs of life overseas,
and I feel honored to be their friend.

iii

I would also like to thank my friends, back in Singapore as well as overseas, such as Jun
Wei Chuah, Winston Goh, Ramanpreet Singh, Rinawati Rahmat, Mike Phillips, Jonathan Wang,
Junhao Soh, Dillon Ng, who have been in touch with me over the years and providing support.

I am also very grateful to the Agency for Science, Technology and Research (A*STAR) of
Singapore, which graciously funded my undergraduate and graduate studies, and to Carnegie
Mellon University, for allowing me to pursue my research interests here.

Lastly, I would like to thank the Reprisal guild of Steamwheedle Cartel in the World of
Warcraft, notably Tom, Jess, Marco, Michele, and Brooks. We have spent many hours online
saving the world (of Warcraft) together, and our friendships have brought me much joy and
laughter.

iv

Contents

1 Introduction 1
1.1 Thesis Question and Approach . 3

1.1.1 Representing Capabilities and Synergy 3

1.1.2 Planning Effective Multi-Robot Teams 5

1.1.3 Learning the Capabilities and Synergy 6

1.1.4 Evaluation . 7

1.2 Thesis Contributions . 9

1.3 Document Outline . 10

2 Synergy Graph Model and Team Formation 13
2.1 Team Formation Problem . 13

2.2 Task-Based Relationships . 14

2.3 Agent Capabilities . 16

2.4 Unweighted Synergy Graph Model . 17

2.5 Weighted Synergy Graph Model . 19

2.5.1 A Weighted Synergy Graph Example 20

2.5.2 Equivalence in Weighted Synergy Graphs 21

2.6 Assumptions of the Synergy Graph Model . 22

2.7 Solving the Team Formation Problem . 23

2.7.1 Forming the δ-Optimal Team . 24

2.7.2 Approximating the δ-Optimal Team . 26

2.7.3 Comparing the Team Formation Algorithms 27

2.8 Comparing Unweighted and Weighted Synergy Graphs 29

2.8.1 Experimental Setup . 29

2.8.2 Comparison Results . 30

2.9 Chapter Summary . 32

v

3 Learning Synergy Graphs 33
3.1 Overview of the Learning Algorithm . 33

3.2 Learning the Synergy Graph Structure . 35

3.2.1 Generating a Random Synergy Graph Structure 36

3.2.2 Generating a Neighbor Synergy Graph Structure 36

3.3 Learning Capabilities . 38

3.3.1 Learning Capabilities with a Least-Squares Solver 38

3.3.2 Learning Capabilities with a Non-Linear Solver 41

3.4 Computing Log-Likelihood and Accepting Neighbors 41

3.5 Evaluating the Learning Algorithm . 42

3.5.1 Learning Unweighted Synergy Graphs 42

3.5.2 Learning Representative Weighted Graph Structures 45

3.5.3 Learning Random Weighted Synergy Graphs 47

3.5.4 Comparing the Capability Learning Algorithms 49

3.6 Chapter Summary . 50

4 Iteratively Learning a New Teammate 51
4.1 Learning Algorithm for Adding a Teammate . 51

4.2 Generating the Teammate’s Initial Edges . 54

4.3 Generating Neighbor Edges . 57

4.4 Learning the Teammate’s Capability . 57

4.5 Analyzing the Iterative Learning Algorithm . 58

4.5.1 Experimental Setup . 58

4.5.2 Comparison Results . 60

4.5.3 Comparing Different Learning Approaches 62

4.6 Chapter Summary . 63

5 Modifications to the Synergy Graph Model 65
5.1 Agents with Multiple Capabilities . 65

5.1.1 Role Assignment Problem Definition 66

5.1.2 Weighted Synergy Graph for Role Assignment (WeSGRA) Model 67

5.1.3 Finding Role Assignments and Learning WeSGRAs 69

5.1.4 Experiments with WeSGRAs . 70

5.2 Graphs with Multi-Edges . 72

5.2.1 Configurable Team Formation Problem Definition 73

5.2.2 Synergy Graph for Configurable Robots (SGraCR) Model 75

vi

5.2.3 Configuring Multi-Robot Teams and Learning SGraCRs 78

5.3 Non-transitive Task-Based Relationships . 79

5.3.1 Modeling Non-Transitivity in Synergy Graphs 79

5.3.2 Implications of Non-Transitive Synergy 80

5.4 Chapter Summary . 82

6 Agents with Complex Characteristics 83
6.1 Agents that Probabilistically Fail . 83

6.1.1 Robust Team Formation Problem Definition 83

6.1.2 Robust Synergy Graph for Configurable Robots (ρ-SGraCR) Model . . . 87

6.1.3 Solving the Robust Team Formation Problem 88

6.1.4 Evaluating the ρ-SGraCR Model . 89

6.1.5 Comparing the Robust Team Formation Algorithms 90

6.2 Agents that Learn to Coordinate Better over Time 91

6.2.1 Dynamic Weighted Synergy Graph (DyWeSG) Model 92

6.2.2 Solving the Learning Agents Problem 95

6.2.3 Evaluating the Algorithms . 98

6.3 Chapter Summary . 101

7 Applications and Results 103
7.1 Team Formation with Probabilistic Robot Capabilities 103

7.1.1 Probabilistic Model of Robot Capabilities 104

7.1.2 Experimental Setup . 104

7.1.3 Experimental Results . 106

7.2 Team Formation in RoboCup Rescue . 106

7.2.1 The RoboCup Rescue Simulator . 107

7.2.2 Experimental Setup . 108

7.2.3 Experimental Results . 110

7.3 Role Assignment in RoboCup Rescue . 111

7.3.1 Experimental Setup . 111

7.3.2 Experimental Results . 112

7.4 Role Assignment in a Foraging Task . 113

7.4.1 The Foraging Task . 113

7.4.2 Experimental Setup . 114

7.4.3 Experimental Results . 115

7.5 Configuring a Team for a Manufacturing Task 116

vii

7.5.1 Experimental Setup . 116
7.5.2 Experiments with Synthetic Data . 117
7.5.3 Experiments with Simulated Robots . 118
7.5.4 Experiments with Real Robots . 118

7.6 Robust Team Formation in a Foraging Task . 120
7.6.1 The Foraging Task . 120
7.6.2 Robot Types and Behaviors . 122
7.6.3 Experimental Setup . 123
7.6.4 Experimental Results . 124

7.7 Chapter Summary . 125

8 Related Work 127
8.1 Multi-Robot Task Allocation . 127
8.2 Role Assignment . 130
8.3 Coalition Formation . 131
8.4 Ad Hoc Teams . 135
8.5 Team Formation . 136
8.6 Operations Research . 136
8.7 Robustness and Redundancy . 137

9 Conclusion and Future Work 139
9.1 Contributions . 139
9.2 Bridging Previous Work and Future Work . 141
9.3 Future Directions . 145
9.4 Concluding Remarks . 147

Bibliography 149

viii

List of Figures

1.1 Three robot platforms used to evaluate this thesis. a) Aldebaran NAO humanoid
robot; b) CreBot: our version of the TurtleBot; c) Lego Mindstorms NXT. 8

1.2 Overview of the thesis approach, and organization of the chapters. 11

2.1 a) A fully-connected task-based graph with 4 agents, where the edge weights
represent the cost of agents working together to perform the task. b) A connected
task-based graph with the same 4 agents, where some edges have been removed
while still preserving the pairwise distances between agents. 15

2.2 Task-based graphs with 3 agents, where the agents’ heterogeneous capabili-
ties are attached to each vertex and are represented as a) values; b) Normally-
distributed variables. 17

2.3 An Unweighted Synergy Graph with 5 agents. Each vertex represents an agent,
and the distance between vertices in the graph indicate how well agents work
together. Agent capabilities are modeled as Normally-distributed variables. . . . 19

2.4 a) A weighted task-based graph with 3 agents. b) An unweighted task-based
graph with the 3 agents (all edges have a weight of 1). If the compatibility
function in (a) is φ(d) = 1

d
, the task-based relationships of the agents cannot be

represented with an unweighted graph and an adjusted compatibility function. . . 20

2.5 An example of a Weighted Synergy Graph modeling capabilities and the task-
based relationships of a group of agents in a rescue task. 21

2.6 Three equivalent Weighted Synergy Graphs, i.e., the shortest distance between
pairs of agents is equivalent in the three graphs. 22

2.7 Effectiveness of teams found in the learned Weighted Synergy Graph and learned
Unweighted Synergy Graph, using simulated annealing with 1000 iterations. The
compatibility function was φfraction(d) = 1

d
. 31

2.8 Average effectiveness of teams found in the learned Weighted and Unweighted
Synergy Graphs, using 1000 and 2000 iterations of simulated annealing to learn
the Synergy Graph structure, using φfraction(d) = 1

d
. 31

ix

2.9 Effectiveness of teams found in the learned Weighted and Unweighted Synergy
Graphs with φdecay(d) = exp

(
−d ln 2

2

)
, and 1000 iterations of simulated annealing. 31

3.1 The process of learning from observations. The individual capabilities of agents
in the Synergy Graphs are not shown. 34

3.2 The four possible actions used to generate neighbor Weighted Synergy Graph
structures. 37

3.3 The capabilities of agents are learned from the observation set and a Weighted
Synergy Graph structure using a least-squares solver. 40

3.4 The error in the learned Unweighted Synergy Graph with varying number of
agents and both compatibility functions. 44

3.5 The error in the learned Unweighted Synergy Graph of 10 agents with heteroge-
neous task performance, using the compatibility function a) φdecay(d) = exp(−d ln 2

3
)

and b) φfraction(d) = 1
d
, compared with the initial Unweighted Synergy Graph

used by the learning algorithm, with random structure but learned agent capabil-
ities. 44

3.6 Results of the learning algorithm using representative graph structure types. The
agent capabilities are not shown, and the vertices are laid out for visual pur-
poses. a) Examples of Weighted Synergy Graphs with 5 agents generated to
form representative structure types. b) The initial randomly-generated Weighted
Synergy Graph of the learning algorithm. c) Learned Weighted Synergy Graphs
corresponding to the Weighted Synergy Graphs in (a), after 1000 iterations of
simulated annealing. 46

3.7 Performance of the learning algorithm with different Weighted Synergy Graph
structure types, averaged over 100 trials. 47

3.8 Performance of the learning algorithm on random weighted graph structures with
varying number of agents, averaged over 100 trials. 48

3.9 Learning curves of two compatibility functions — φdecay and φfraction, averaged
over 100 trials. 48

3.10 Log-likelihoods of learned Weighted Synergy Graphs using a least-squares solver
and non-linear solver to learn the agent capabilities, compared to the log-likelihood
of the hidden Weighted Synergy Graph. 50

x

4.1 The learning algorithm AddTeammateToSynergyGraph adds a new team-
mate into a Synergy Graph (a Weighted Synergy Graph is used in this figure).
Simulated annealing is performed, where edges of aN+1 are modified, and the
capability CN+1 is learned. 52

4.2 The experimental process to compare the initial edge generation functions and
capability learning methods. 59

4.3 Examples of the four Weighted Synergy Graph structure types generated: chain,
loop, star, and random. 59

5.1 An example of the distances among three agent types a1, a2, a3 ∈ A, where a
low distance between agent types reflects high compatibility and vice versa. . . . 68

5.2 The experimental process to evaluate the learning and team formation algorithms
for WeSGRA. 71

5.3 Learning curve of the learning algorithm using training examples generated by a
hidden WeSGRA model. 71

5.4 A SGraCR with 6 vertices, modeling two types of modules (shown in different
shades). The edges with two weights indicate the intra and inter-robot weights
respectively, and the self-looping edges have inter-robot weights. 77

5.5 A Weighted Synergy Graph with four agents. When the task-based relationship
is assumed to be transitive, the edge {a1, a2} is never used in the computation of
synergy. 80

5.6 Two non-transitive Synergy Graphs where the team {a1, a2, a3} is valid. 82

6.1 A Dynamic Weighted Synergy Graph with 5 agents. Agent pairs that learn to
coordinate better over time are denoted with bold edges. Initial edge weights are
shown in black text, and the learning rates are shown in blue. 94

6.2 The performance of teams formed after K training instances by various heuris-
tics. The dotted black line shows the performance of the optimal team. 100

7.1 An example of probabilistic robot capabilities. The numbers indicate probabili-
ties of success, and the dashed lines out of actions 2 and 3 indicate that both are
required to trigger the desired output. 104

7.2 The experimental process to compare our Synergy Graph algorithms against the
ASyMTRe algorithm. 105

xi

7.3 Screenshot of the RoboCup Rescue simulator showing the initial positions of the
simulated robots. Green, red, blue, and white circles are civilians, fire engines,
police cars, and ambulances respectively. The grey areas indicate buildings that
darken as they burn down. 107

7.4 Learning curve of the Synergy Graph learning algorithm using cross-validation
of data from the RoboCup Rescue simulator. 112

7.5 The distribution of values of role assignment policies. The values in the train-
ing examples is shown as a cross (the mean) with horizontal lines showing the
standard deviation. 113

7.6 The experimental setup for the foraging experiments. The red circle indicates
a hidden fifth ball, and the blue circle indicates where balls are replaced if they
are moved past the side and back lines. Different combinations of robots were
placed in the 3 robot roles r1, r2, r3. 114

7.7 a) The layout of the experiments involving NXT robots transporting items from
L0 to L3. b) A NXT robot as it approaches L1. 119

7.8 The three robot platforms used in the foraging task: a) Lego NXT; b) CreBot; c)
Aldebaran NAO. 121

7.9 The setup of the foraging experiment showing the initial robot positions and
wooden block positions. Uncolored and colored wooden blocks are to be foraged
to their respective stockpiles on the left and right sides of the field. 121

7.10 The robustness scores of teams formed by ρ-SGraCR and competing approaches.
The dark blue line indicates the median, the top and bottom of the box represent
the 75th and 25th percentiles, and the top and bottom whiskers represent the
maximum and minimum values. 124

xii

List of Tables

2.1 The number of evaluations done by the algorithms FormδOptimalTeam and
ApproxδOptimalTeam to compute and approximate the δ-optimal team re-
spectively in a Weighted Synergy Graph, the time taken by the algorithms in
milliseconds, and the quality of the team found (where 0 means the worst team
and 1 is the optimal team). 28

2.2 The number of evaluations done by the algorithms FormδOptimalTeam and
ApproxδOptimalTeam in an Unweighted Synergy Graph, the time taken in
milliseconds, and the effectiveness of the team found. 28

3.1 Effectiveness of multi-agent teams formed. 45

3.2 Scaled log-likelihood of the learned Weighted Synergy Graphs, varying the num-
ber of agents, and γ, the scale-factor of agent capabilities. 48

4.1 Average difference D(S∗, S+) between the hidden and learned Weighted Syn-
ergy Graphs given different hidden structure types and capability learning algo-
rithms. 61

4.2 Average difference between the hidden and learned Weighted Synergy Graphs
using different learning methods. 63

6.1 The optimal robustness scores of teams with 1 robot (3 modules) to 4 robots (12
modules). 90

6.2 The robustness scores of teams formed by ApproxOptimalRobustTeam

compared to the optimal team formed by FormOptimalRobustTeam. 91

6.3 Regret of various heuristics versus the optimal allocation of training instances. . . 101

7.1 Effectiveness of teams formed by using the Unweighted Synergy Graph versus
ASyMTRe. 106

xiii

7.2 Average scores of combinations of algorithms in the RoboCup Rescue simula-
tor, formed by the Weighted Synergy Graph model, Unweighted Synergy Graph
model, and IQ-ASyMTRe. 110

7.3 Effectiveness of algorithms in the foraging domain with real robots. 116
7.4 Experimental results of SGraCR and two competing approaches using synthetic

data derived from a hidden SGraCR model, simulated robots in a manufacturing
scenario, and robot experiments using Lego NXT robots. The scores indicate the
number of standard deviations above the mean, i.e., a score of x means that the
approach found a team with a value µ + xσ, where µ and σ are the mean and
standard deviation of values of teams. 117

xiv

Chapter 1

Introduction

The performance of a multi-robot1 team depends on the robots the team is composed of. The
problem of team formation is the selection of the optimal subset of robots from a larger set, where
the optimal team has the highest performance. Team formation has similarities with multi-robot
task allocation (MRTA) [Gerkey and Mataric, 2004] and coalition formation [Sandholm et al.,
1999], with the key difference that only a single team with highest performance is formed in
team formation, while MRTA optimizes the sum of utilities from completed tasks, and coalition
formation optimizes the sum of utilities of coalitions. Research in robot capabilities has focused
on single-robot capabilities, e.g., the carrying capacity of a robot, and the performance of a team
is the sum of single-robot capabilities [Shehory and Kraus, 1998].

We understand that there is synergy among the robots in a team, where team performance at a
particular task depends not only on the robots’ individual capabilities, but also on the composition
of the team itself. There are many illustrations of synergy in real human teams, basically for any
task. An example is an all-star sports team comprised of top players from around the world,
hence individual agents with high capabilities, who may have a lower synergy as a team and
perform worse than a well-trained team of individuals with lower capabilities but much higher
synergy. We consider a “team” as a group of robots that coordinate together to perform a task,
as compared to a general multi-robot system where the robots may perform tasks independently.
In particular, we are interested in problems for which a representation of team performance that
goes beyond the sum of single-robot capabilities is needed. Specific robots may have or acquire
a high task-based relationship that allows them to perform better as a team than other robots
with equivalent individual capabilities but a low task-based relationship. This thesis introduces a
novel model of team performance that incorporates individual capabilities and team synergy.

We are motivated by research in ad hoc agents that learn to collaborate with previously un-

1This thesis applies to robots and software agents. Hence, we use the terms robot and agent interchangeably.

1

2 CHAPTER 1: INTRODUCTION

known teammates [Stone et al., 2010]. This thesis investigates the impact of learning agents, and
contributes an algorithm that iteratively selects opportunities for the learning agents to improve
their performance, so as to form the highest-performing multi-robot team at the end of a fixed
number of iterations. In particular, we model pairs of agents whose team performance improves
over time. Hence, by focusing on team formation with learning agents, this thesis complements
the growing research on ad hoc agents and other learning agents.

When robots act in a dynamic environment, their performance may be nondeterministic,
e.g., wheel slippage of a robot may cause it to take slightly different times to reach a location. We
represent capabilities and team performance as random variables to capture the nondeterminism,
which is novel compared to representing performance as a utility value. However, when team
performance is represented as a random variable, the definition of the optimal team has to account
for the nondeterminism. We introduce a notion of optimality that ranks teams based on the
probabilistic performance, and provides a measure of risk versus reward.

Further, robots may occasionally fail and be unable to perform a task. This thesis also inves-
tigates team robustness and defines the optimal robust team. Two team formation algorithms are
introduced to form and approximate the optimal team assuming no failures occur, and two robust
team formation algorithms are introduced to form multi-robot teams that are robust to failures of
their members. We are interested in solutions to the team formation problem that are computa-
tionally feasible, and hence we contribute approximation algorithms that efficiently converge to
near-optimal solutions.

Most existing team formation approaches assume that the robot capabilities are known a

priori (e.g., [Zhang and Parker, 2012]). An ad hoc team is one that is formed for a particular
task, where the robots in the team may not have collaborated with each other. Assuming an ad
hoc team, we address the team synergy learning question as: given a set of robots with unknown
capabilities, how do we model and learn the capabilities and synergy of the robots through obser-
vations, in order to form an effective team, i.e., a subset of the robots? A solution to this problem
will enable ad hoc teams to be applied to a variety of problems in the real world, where effec-
tive teams will inevitably need to be composed of robots who may not have previously worked
together, or have not been developed by the same team of researchers.

Hence, we want to learn team synergy from data. We assume that some observations of
the performance of teams are given (similar to tryouts on human teams), and the learning goal
is to fit the best model to the training data. By using only observations of team performance
for learning, and not requiring additional domain information, we are able to apply our model
and algorithms to a wide range of multi-robot problems. For example, we are motivated by
the urban search-and-rescue domain, where researchers from around the world have developed

1.1 THESIS QUESTION AND APPROACH 3

various rescue robots and algorithms. This thesis seeks to learn the capabilities and synergy of
such robots and algorithms, in order to form an ad hoc team when a disaster strikes. The thesis is
not limited to any particular domain, and we demonstrate our model and algorithms in a variety
of real robot scenarios.

Sometimes not all data is available upfront. For example, a new robot may join the set of
available robots but there is no prior information about it. This thesis introduces two learning
algorithms: one that learns the model from a set of observations, and one that incorporates a new
robot into an existing model. The second learning algorithm, which incorporates a new robot into
the existing model, can be run iteratively to update the model as new robots become available,
thus alleviating the need to completely relearn the model whenever new information is received.

Thus, this thesis investigates how to represent the capabilities and synergy of robots, how
to form an effective multi-robot team, and how to learn the model of capabilities and synergy
from observations. This thesis evaluates the Synergy Graph model and algorithms in a variety of
simulated and real robot experiments, in domains such as urban search-and-rescue and foraging.
We demonstrate that our approach is applicable to a wide range of multi-robot problems, and
forms effective teams that outperform competing approaches.

1.1 Thesis Question and Approach

The thesis question is:

Given a set of agents with non-deterministic performance at a task, how:
• to model synergistic effects among members of an ad hoc team;

• to learn such a model through observations of cooperative robots; and

• to form an effective team?
We present our approach to the thesis question by further dividing it into three categories:

representation; planning; and learning, with two sub-questions per category.

1.1.1 Representing Capabilities and Synergy

How can the capabilities of heterogeneous robots and their synergy in a multi-robot team
be represented?

We contribute a representation of team performance that goes beyond the sum of single-robot
capabilities; there is a notion of synergy among the robots in the team, where team performance
depends not only on the robots’ individual capabilities, but also a task-based relationship among

4 CHAPTER 1: INTRODUCTION

them. To model the task-based relationship, this thesis introduces a graph structure where the
robots are vertices in the graph, and edges represent the task-based relationship. In such graphs,
we define the level of synergy of a set of robots as a function of the shortest path between them.
We further devise a non-binary metric of team performance based on a Gaussian model of the
individual robot capabilities. Such probabilistic variables capture the inherent variability in team
performance in a dynamic world.

This thesis formally defines the Synergy Graph model, and how it is used to compute the
synergy of a multi-robot team. We introduce the Unweighted Synergy Graph model, where the
edges in the graph are unweighted (i.e., unit distance), and the Weighted Synergy Graph model
that has weighted edges in the graph, and compare the two models. The Synergy Graph model is
general and easily modified for specialized needs.

This thesis presents modifications to the general Synergy Graph model that allow it to be
used in a wide variety of problems. First, by considering robots with multiple capabilities and
self-loops in the graph structure, the Synergy Graph is applied to the role assignment domain.
Second, by considering graphs with multi-edges, specifically two edges between every pair of
vertices, and self-loops between each vertex, we apply the Synergy Graph model to configurable
multi-robot teams where each robot is a selection of relevant robot modules. Instead of having a
vertex represent a single robot (as in the Unweighted and Weighted Synergy Graph models), we
consider using each vertex to represent a module of a robot. The multi-edges between module
vertices model the synergy of modules within a robot as well as across robots. Third, the Synergy
Graph model assumes that the task-based relationship is transitive (the shortest distance between
robots is always used). We consider non-transitive task-based relationships, and explore the
expressiveness of the updated model and its implications on the Synergy Graph algorithms.

How to model robots that learn to improve coordination?

We investigate how the Synergy Graph model can represent robots that learn from experience
to improve their coordination in a team, i.e., their performance improves as a function of the
number of learning instances they have had. In particular, we are inspired by research in ad
hoc agents [Stone et al., 2010], that learn and model their teammates in order to improve their
coordination and team performance.

This thesis models such improvements in coordination as changes in the edge weights of the
Synergy Graph structure. In addition to modeling learning robots, this thesis further investigates
the associated learning and team formation problem, i.e., given a fixed number of instances to
learn and the goal of forming a multi-robot team at the end of the instances, how do we trade off
between exploration (improving our estimate of the learning rate of the robots) and exploitation

1.1 THESIS QUESTION AND APPROACH 5

(improving the final team score)? The learning robots problem has many similarities with the
multi-armed bandit problem, and this thesis explores these in detail. We highlight important
differences between the two problems, and evaluate the performance of heuristics from the bandit
problem when they are applied to the learning robots problem.

1.1.2 Planning Effective Multi-Robot Teams

In a dynamic environment where the performance of robot teams is non-deterministic, how
is the optimal multi-robot team formed?

The Synergy Graph model uses Normally-distributed variables to model robot capabilities
and team performance. This thesis introduces the concept of δ-optimality, that ranks teams based
on a probabilistic measure, i.e., the δ-optimal team is one that has the highest value with proba-
bility δ. The probability δ determines whether the δ-optimal team is risky or risk-adverse. When
δ = 1

2
, only the mean performance is considered, and the δ-optimal team is equivalent to the stan-

dard optimal team (commonly used by other approaches) that uses utility values. When δ < 1
2
, a

risky team is preferred, where there is a low probability of attaining a high value (high risk, high
reward). Conversely, when δ > 1

2
, a risk-adverse team is preferred that has a high probability of

attaining a low value (low risk, low reward).
This thesis uses the concept of δ-optimality and contributes two team formation algorithms,

FormδOptimalTeam and ApproxδOptimalTeam. The inputs to both algorithms are a Syn-
ergy Graph, and the number of robots in the δ-optimal team. When the number of robots is
unknown, the algorithms are run iteratively over all possible sizes. The first algorithm, Form-
δOptimalTeam, uses branch-and-bound to form the δ-optimal team, by estimating the mini-
mum and maximum team performance bounds of possible teams. FormδOptimalTeam runs
in O(Nn), where N is the total number of robots, and n is the number of robots in the team.
The second algorithm, ApproxδOptimalTeam, uses an approximation algorithm to explore
the space of possible teams, and approximates the δ-optimal team in O(n2). This thesis com-
pares the effectiveness of teams found by the two algorithms against the amount of search space
explored.

6 CHAPTER 1: INTRODUCTION

How do potential failures in robots affect optimality, and how is the optimal robust multi-
robot team formed?

Robots have variable performance due to the dynamics of the world, e.g., errors in move-
ment from wheel slippage, or from inaccurate localization. Robots may also completely fail to
function, e.g., a breakdown of a key component, or a battery running out of power. This thesis
investigates how such failures are modeled and accounted for. We detail how the optimal ro-
bust team is defined in two ways: i.e., the team that attains the highest value with probability δ
taking into account potential failures, and the team that maximizes the probability of attaining a
minimum value.

The two measures of robust optimality are closely-linked, and we contribute two robust team
formation algorithms that solve the first robust optimality measure (the algorithms can be mod-
ified for the second optimality measure). FormOptimalRobustTeam iterates through all
possible teams and computes the optimal robust team in exponential time, by considering all
possible failures in the multi-robot team. The second robust team formation algorithm, Ap-
proxOptimalRobustTeam, approximates the optimal robust team by making assumptions
in the failures of the robots in the teams and runs in polynomial time, and is more scalable to
real-world problems.

1.1.3 Learning the Capabilities and Synergy

How can the model of robot capabilities and synergy be learned using observations of team
performance?

This thesis presents LearnSynergyGraph, an algorithm that learns a Synergy Graph us-
ing only observations of team performance. As such, the learning and team formation algorithms
enable the Synergy Graph model to be applied to a variety of problems, since the only input is
the training observations and no additional information about the problem domain is required.

The learning algorithm learns the structure of the Synergy Graph by iteratively improving the
graph structure, and learns the robots’ capabilities using the observations and the graph structure.
The Synergy Graph structure is iteratively modified by randomly selecting discrete actions on
the graph structure, such as adding and removing edges. Using the graph structure and synergy
equations, the observations of team performance are used to learn the robot’s capabilities. This
thesis presents two methods of learning robot capabilities, by using a least-squares solver and
a non-linear solver. We show that the learning algorithm learns representative graph structure
types and random Synergy Graphs effectively, and that the learned Synergy Graph is used to
form effective multi-robot teams with the team formation algorithms.

1.1 THESIS QUESTION AND APPROACH 7

How can information about a new robot be incorporated into a learned model?

The learning algorithm LearnSynergyGraph assumes that observations of all the robots
are available initially, and learns the best Synergy Graph that fits the observations. However,
not all observations may be readily available. Specifically, information about new robots may
only be available at a later time. This thesis presents AddTeammateToSynergyGraph, an
algorithm that uses observations of a new teammate to incorporate it into an existing Synergy
Graph. The algorithm creates a new vertex to represent the new robot, and edges that connect the
new vertex to the existing vertices in the Synergy Graph. We explore three heuristics to create the
initial edges of the new vertex, and experimentally compare the effectiveness of these heuristics
in a variety of Synergy Graph structures.

LearnSynergyGraph can also be used to incorporate information about a new teammate,
namely by relearning the entire Synergy Graph using the union of the old and new observations.
This thesis compares three learning approaches: completely relearning the Synergy Graph using
LearnSynergyGraph; learning the Synergy Graph using the old observations with Learn-
SynergyGraph and adding a teammate with AddTeammateToSynergyGraph; iteratively
adding all the robots with AddTeammateToSynergyGraph.

1.1.4 Evaluation

We evaluate the model and algorithms presented in this thesis in several simulated and real robot
experimental domains. A complete description of the domains and experimental process is in-
cluded with each evaluation.

Figure 1.1 shows the three platforms we use in this thesis: Aldebaran NAO humanoid robot,
CreBot, and Lego Mindstorms NXT. These robot platforms vary in terms of:

• computational power: the NAOs and CreBots have full-fledged PCs, while the NXTs have
microcontrollers;

• configurability: the hardware on the NAOs are fixed, the NXTs are completely config-
urable, and the CreBots are in between;

• sensors: the NAOs use video cameras, the CreBots use Kinects, and the NXTs use light
sensors;

• mobility: the NAOs walk on two legs, while the CreBots and NXTs use wheels;

Thus, the three robot platforms we chose for this thesis span a wide range of characteris-
tics. They were chosen to demonstrate that this thesis is applicable to general robots, since our
approach does not require any specialized knowledge of the platforms.

8 CHAPTER 1: INTRODUCTION

(a) (b) (c)

Figure 1.1: Three robot platforms used to evaluate this thesis. a) Aldebaran NAO humanoid
robot; b) CreBot: our version of the TurtleBot; c) Lego Mindstorms NXT.

The Aldebaran NAO humanoid robot is produced by Aldebaran Robotics, with updates to the
hardware approximately every year. In this thesis, we use the RoboCup edition NAO robot (H21).
The NAO is a fully-autonomous robot with an internal CPU and wireless capabilities. I began
my work with the Aldebaran NAO in 2008 through the RoboCup Standard Platform League
(SPL) [RoboCupSPL, 2013], where two teams of autonomous NAOs attempt to score goals
against each other in robot soccer. Through the RoboCup SPL, I realized that small differences
in the manufacturing of the NAOs (they were assembled by hand by engineers at Aldebaran
Robotics) and varying wear-and-tear on the motors cause differences in performance during robot
soccer. In particular, we would manually pick robots for specific roles, such as using a less worn-
out robot as the main attacker since it would need to walk quickly and stably, and a more worn-
out robot for the goalkeeper as it was stationary for most of the game. From my experience in
RoboCup, I decided to pursue a formal and quantitative approach to the team formation problem
for my thesis.

The iRobot Create robot is commercially available from iRobot, and is a modification of the
Roomba robotic vacuum system — the Create does not contain the vacuum and is more eas-
ily programmed. In this thesis, we use the CreBot infrastructure, that uses the Willow Garage
TurtleBot hardware and software for low-level control, and the CoBot infrastructure for high-
level control. I first used the iRobot Create platform for the LANdroids research project, where
the goal was to autonomously establish a connected wireless network in unknown indoor envi-
ronments. The CoBot project was also on-going in the CORAL research group that I am a part of
(although I did not work directly on the CoBot project), with the goal of creating an autonomous
robot in an office environment that would perform tasks such as delivering items from office
to office. The CoBot infrastructure was written in the Robot Operating System (ROS) and was
compatible with the TurtleBot hardware and software. Hence, the CreBot platform was available
for the experiments of this thesis2.

2We thank Brian Coltin and Joydeep Biswas for their work in developing the CreBot platform.

1.2 THESIS CONTRIBUTIONS 9

The Lego Mindstorms NXT is commercially available as a kit containing the NXT Intelligent
Brick, and various Lego connectors, sensors and motors. We use an additional XBee radio that
allows the NXTs to communicate wirelessly. I had prior experience with the Lego Mindstorms
RCX (an older version of Mindstorms), and used the NXTs as part of the FIRE research project
that involved developing curriculum in multi-robot communication. My experience with the
NXTs in the FIRE project inspired me to consider configurable robots as a part of the thesis, as
robots built with the NXT kit are easily redesigned and reconfigured.

1.2 Thesis Contributions

The contributions of this thesis are:

• Representation

– The Synergy Graph model, where the performance of a multi-robot team depends on
the robots’ capabilities and the task-based relationship among them;

– Extensions to the Synergy Graph model for applications in the role assignment do-
main, configuring robot modules, capturing the potential failures of robots, and mod-
eling complex task-based relationships among the robots;

– A representation of robots that learn to collaborate better over time, and an algorithm
that iteratively learns the rate of improvement of the learning robots, in order to form
the optimal team at the end of a fixed number of iterations;

• Planning

– Two team formation algorithms that form and approximate the optimal multi-robot
team given a Synergy Graph, assuming there are no failures in the robots;

– Two robust team formation algorithms that form and approximate the optimal robust
multi-robot team, taking possible failures into account;

• Learning

– The Synergy Graph learning algorithm that learns a synergy graph from observa-
tions by iteratively improving the Synergy Graph structure and learning the robots’
capabilities;

– A learning algorithm that learns the capabilities and synergy of a new teammate and
adds it into an existing Synergy Graph;

• Evaluation of the Synergy Graph model and algorithms in simulated and real robot do-
mains, with Aldebaran NAO, CreBot, and Lego Mindstorms NXT robots.

10 CHAPTER 1: INTRODUCTION

1.3 Document Outline

Figure 1.2 presents an overview of the thesis approach and organization of the chapters. The
outline below presents a summary of the chapters that follow:

Chapter 2 – Synergy Graph Model and Team Formation. We define the team formation
problem and the δ-optimal team, and present the Unweighted and Weighted Synergy Graph
models and how they model robot capabilities and task-based relationships. We present two
team formation algorithms that form and approximate the δ-optimal team respectively.

Chapter 3 – Learning Synergy Graphs. We present a learning algorithm that learns the
Synergy Graph model from data. We evaluate the learning algorithm using synthetic data, and
show that effective teams are formed using the learned Synergy Graphs.

Chapter 4 – Iteratively Learning a New Teammate. We present an algorithm that uses ob-
servations of a new teammate to incorporate it into an existing Synergy Graph. We evaluate three
heuristics that initialize the algorithm, and compare different Synergy Graph learning approaches
given new observations.

Chapter 5 – Modifications to the Synergy Graph Model. We present modifications to
the Synergy Graph model, such as agents with multiple capabilities, graphs with multi-edges,
and non-transitive task-based relationships. These modifications allows Synergy Graphs to be
applied to other problems such as role assignment and forming a multi-robot team by selecting
modules of configurable robots.

Chapter 6 – Agents with Complex Characteristics. We present how agents with complex
characteristics are represented in the Synergy Graph model, such as agents that probabilistically
fail, and agents that learn over time. We formally define a robust team, and present two algo-
rithms that forms and approximates the optimal robust team respectively. We discuss learning
agents and how they are represented in the Synergy Graph model. We present an algorithm that
iteratively learns the rate of improvement of the learning agents, in order to form the optimal
team at the end of a fixed number of iterations.

Chapter 7 – Applications and Results. We present the application of the Synergy Graph
model and algorithms in a variety of simulated and real robot domains, such as urban search-
and-rescue and foraging. We demonstrate that our approach forms near-optimal teams and out-
performs competing algorithms.

Chapter 8 – Related Work. We discuss previous work in areas such as: multi-robot task
allocation; coalition formation; and team formation, and we discuss how they relate to this thesis.

Chapter 9 – Conclusion and Future Work. We conclude the dissertation with a summary
of its contributions along with a discussion of promising directions for future work.

1.3 DOCUMENT OUTLINE 11

Observed Teams

...

Performance
Synergy Graph

Learning Algorithm

Chapter 3

Synergy Graph

with New Agent

Performance
Synergy Graph

Iterative Learning

Chapter 4

Algorithm

Learning

Team Formation

Chapter 2

Algorithm

Multi-Agent Team

Performance

Selection Algorithm

Chapter 6

Performance
Learning Agents

Update Algorithm

Chapter 6

Learning Agents

Planning

Synergy Graph

Observed Teams

Synergy Graph

Agents with Multiple Capabilities
Graphs with Multi-edges

Agents that can Fail

Chapter 5

Chapter 2

Non-Transitive Relationships
Agents that Learn to Coordinate

Chapter 6

Representation

Heterogeneous Agents

New Agent

Learning Agents

Complete Set of Agents

...

Synergy Graph

Graphs with Unweighted Edges

Graphs with Weighted Edges

Pair of
Learning Agents

Figure 1.2: Overview of the thesis approach, and organization of the chapters.

12 CHAPTER 1: INTRODUCTION

Chapter 2

Synergy Graph Model and Team
Formation

This chapter presents the Synergy Graph model and how it models robot capabilities and task-
based relationships among the robots [Liemhetcharat and Veloso, 2012a, Liemhetcharat and
Veloso, 2013d]. We begin with a formal definition of the team formation problem that is used
throughout this document.

2.1 Team Formation Problem

We begin with the definition of the set of agents and the definition of a team:

Definition 2.1.1. The set of agents is A = {a1, . . . , aN}, where each an ∈ A is an agent.

Definition 2.1.2. A team is any subset A ⊆ A.

There is a task to be performed that can be accomplished with any number of agents with
varying performance, and hence any subset ofA is a valid team. The performance of a team is the
utility attained by that team when performing the task, and is domain-dependent. In a dynamic
world, the performance of teams of agents is non-deterministic, so multiple observations of the
same team at the task may result in different values:

Definition 2.1.3. The performance of a team A ⊆ A is PA and is non-deterministic.

Definition 2.1.4. An observation oA is a real value corresponding to an observed utility attained

by the team A ⊆ A, i.e., oA is a sample of PA.

For example, suppose that a disaster has occurred in an urban area (such as a city), and that
multiple urban search-and-rescue (USAR) personnel have arrived on the scene to offer their aid.
A is the set of all USAR personnel, and the task is saving lives and minimizing damage to the

13

14 CHAPTER 2: SYNERGY GRAPH MODEL AND TEAM FORMATION

city. Suppose A0 ⊆ A is a USAR team that performs the task. The performance of the team
is measured and forms the observation oA0 = 3.4. However, due to the dynamic nature of the
USAR task (for example, wind causing fires to spread), the observed performance of A0 may be
different if the task was repeated, i.e., oA0 would be a different number each time A0 performed
the task.

Since the performance of a team is non-deterministic, we define the δ-optimal team:

Definition 2.1.5. The δ-optimal team is the team A∗δ ⊆ A such that there exists some utility u

whereA∗δ obtains a utility of at least u with probability δ, and the probability of any other teamA

doing so is at most δ:

P(PA∗δ ≥ u) = δ and P(PA ≥ u) ≤ δ ∀A ⊆ A

The goal is to find the δ-optimal team of agents A∗δ ⊆ A, and we assume that δ is given as
part of the domain information. The δ-optimality measure was designed in order to rank non-
deterministic performance; when performance is deterministic (or only the mean is considered),
comparing the performance of teams is done with the ≥ operator. In δ-optimality, δ determines
whether a risky team or risk-averse team is preferred. For example, when δ = 1

2
, only the mean

performance is considered, and the δ-optimal team is equivalent to the optimal team with non-
deterministic performance. When δ < 1

2
, a high-risk, high-reward team is preferred, i.e., one

that has a low probability of attaining a high performance. Conversely, when δ > 1
2
, a low-risk,

low-reward team is preferred, i.e., one that has a high probability of attaining a low performance.

2.2 Task-Based Relationships

In order to find the δ-optimal team A∗δ , we want to create a model of how well agents work
together at the task. In the social networks domain, social graphs are used for team formation,
where an edge between a pair of agents indicates that the agents have a social relationship, and
the weight of the edge indicates the communication cost between them [Lappas et al., 2009, Dorn
and Dustdar, 2010]. We are interested in forming teams that perform well at a task, and hence
we model the task-based relationships among the agents as a task-based graph, where agents are
vertices in the graph and edges represent the task-based relationships.

One approach to the task-based graph is to use a fully-connected graph, where the weight
of an edge indicates the cost of 2 agents working together. Figure 2.1a shows an example of a
fully-connected task-based graph with 4 agents. The agent a1 works better with a2 than a3, hence
the lower edge weight of 1.2 between a1 and a2, compared to 4.9 between a1 and a3.

2.2 TASK-BASED RELATIONSHIPS 15

a1 a2

a3

1.2

a4

3.7

2.4

7.3
4.9 6.1

(a)

a1 a2

a3

1.2

a4

3.7

2.4

(b)

Figure 2.1: a) A fully-connected task-based graph with 4 agents, where the edge weights repre-
sent the cost of agents working together to perform the task. b) A connected task-based graph
with the same 4 agents, where some edges have been removed while still preserving the pairwise
distances between agents.

A fully-connected task-based graph has a major drawback — the task-based relationship
between pairs of agents are completely independent, since every pair of agents is connected by
an edge whose weight can be arbitrary, so the graph structure does not provide any additional
information. Using the notion that edge weights represent the cost of agents working together,
we introduce the concept of transitivity in task-based relationships. For example, if agent a1

works very well with a2, and a2 works very well with a3, then a1 will work well with a3. The
transitivity occurs because for a1 to work very well with a2, there should be some underlying
coordination strategy, and similarly between a2 and a3. Assuming that the agents use the same
algorithms regardless of partners (i.e., they do not switch strategies), then a1 and a3 will be able
to work well together since there is some overlap in their coordination strategies with a2, albeit
with higher cost. We assume that agents are always able to coordinate (e.g., all agents use the
same communication protocol), or performance is based on their joint actions (similar to game
theory), so any pair of agents has some task-based relationship.

To capture this notion of task-based transitivity, we use a connected graph where the short-
est distance between agents indicates the cost of them working together. Figure 2.1b shows a
connected task-based graph, by modifying the graph in Figure 2.1a such that edges {a1, a3},
{a1, a4}, and {a2, a4} have been removed. However, the shortest distance between agents is
equal in both Figure 2.1a and Figure 2.1b, and thus both graphs express the same task-based
relationships. The edge weights in Figure 2.1a were chosen so that the pairwise distance is iden-
tical whether one edge (e.g., {a2, a4}) or two edges (e.g., {a2, a3} and {a3, a4}) are traversed.
We will consider other cases later.

While the shortest distance between agents in the task-based graph represents the cost of
agents working together, we want to explicitly model the task-based relationship. Thus, we
introduce a compatibility function φ : R+ → R+, where φ(d(ai, aj)) returns the task-based

16 CHAPTER 2: SYNERGY GRAPH MODEL AND TEAM FORMATION

compatibility between agents ai and aj , and d(ai, aj) is the shortest distance between them in
the task-based graph. φ is a monotonically decreasing function, so larger distances correspond to
lower compatibility. The compatibility function φ is domain-specific, and two intuitive examples
of φ are:

φfraction(d) =
1

d
(2.1)

φdecay(d) = exp

(
−d ln 2

h

)
(2.2)

where φfraction is a fraction function, and φdecay is an exponential decay function with half-life h.

2.3 Agent Capabilities

The task-based graph and compatibility function described above model how well agents work
together at a task. However, heterogeneous agents have different capabilities that affect their
performance at a task. The performance of a team of agents depends on the capabilities of the
agents and their task-based relationship.

One method to represent heterogeneous agent capabilities is to assign a value µi for each
agent ai, where µi corresponds to the agent ai’s mean capability at the task. In this thesis, we
view capability as a measure of an agent’s contribution to the team performance at a task, and
not a binary (capable/incapable). As such, the mean capability refers to the average utility the
agent contributes to the task, independent of its teammates. The effects of teammates on the team
performance are modeled via the task-based graph.

Figure 2.2a shows an example of 3 agents a1, a2, a3, where a1 works equally well with agents
a2 and a3, i.e., d(a1, a2) = d(a1, d3). Even though a1 works equally well with them, a2 has a
higher mean capability than a3 — the mean performance of team {a1, a2} is greater than {a1, a3}.

While the agents’ mean capabilities at the task can be represented as values, they do not cap-
ture variability. Since the agents act in a dynamic, non-deterministic world, their performance
varies over multiple instances. Thus, instead of a single value, we use a Normally-distributed ran-
dom variable to represent the agent’s capability, i.e., each agent ai is associated with a variable
Ci, which is the agent ai’s non-deterministic capability at the task. We use a Normal distribu-
tion because it is unimodal, corresponding to the agent’s peak performance, and variability in
the performance as its standard deviation. Also, Normal distributions are widely used for their
mathematical properties, which we exploit later.

2.4 UNWEIGHTED SYNERGY GRAPH MODEL 17

a1 a2

a3

4.6 5.8

0.6
(a)

a1 a2

a3

C1 ∼ N (4.6, 1.2) C2 ∼ N (5.8, 10.7)

C3 ∼ N (0.6, 1.2)

(b)

Figure 2.2: Task-based graphs with 3 agents, where the agents’ heterogeneous capabilities are
attached to each vertex and are represented as a) values; b) Normally-distributed variables.

By using a Normal variable, we can now model how consistent an agent is at the task. Fig-
ure 2.2b shows a modification of Figure 2.2a, where a2 has a higher variance for its performance
compared to a3. As such, depending on δ, the team {a1, a3} may outperform {a1, a2}.

2.4 Unweighted Synergy Graph Model

We have detailed how task-based relationships are represented with the compatibility function φ
that uses the distance between agent vertices in a graph, and how agent capabilities are repre-
sented as Normally-distributed variables. We formally define the Unweighted Synergy Graph
model and how it is used to compute the performance of a team of agents at a task.

Definition 2.4.1. An Unweighted Synergy Graph is a tuple (G,C), where:

• G = (V,E) is a connected unweighted graph,

• V = A, i.e., the set of vertices corresponds to the set of agents,

• E are unweighted edges in G, and

• C = {C1, . . . , CN}, where Ci ∼ N (µi, σ
2
i) is agent ai’s capability.

Synergy Graphs are connected, so at least one path exists between any pair of vertices. The
distance d(ai, aj) between any two agents ai, aj is defined to be the shortest distance between
them in the graph. In the Unweighted Synergy Graph model, d(ai, aj) corresponds to the mini-
mum number of edges between the vertices (since edges are unweighted).

Definition 2.4.2. The pairwise synergy between two agents ai and aj is:

S2(ai, aj) = φ(d(ai, aj)) · (Ci + Cj)

where d(ai, aj) is the shortest distance between ai and aj , and φ is the compatibility function.

18 CHAPTER 2: SYNERGY GRAPH MODEL AND TEAM FORMATION

We assume that Ci and Cj are independent for all i, j, and so the summation Ci + Cj in
the pairwise synergy function can be performed easily. This assumption is reasonable as the
effect of agents working in a team is captured by the compatibility function and their distance
in the Synergy Graph, so the variables representing their individual capabilities are independent.
The pairwise synergy function between any two agents always exists, since we assume that the
Synergy Graph is connected and that the task can be accomplished with any number of agents.

We use the graph structure to model the synergy among agents, specifically using the edges
(that connect two agents) to compute the shortest distance between pairs of agents, and hence
the pairwise synergy is the building block for the synergy of a team of agents. We relax this
assumption of using the shortest distance in the graph in Chapter 6.

Using the pairwise synergy function, we now define the performance of a team of agents:

Definition 2.4.3. The synergy of a set of agents A ⊆ A is the average of the pairwise synergy of

its components:

S(A) =
1(|A|
2

) ·
∑

{ai,aj}∈A
S2(ai, aj)

Using the synergy definitions, the synergy of a team A is a Normally-distributed random
variable CA ∼ N (µA, σ

2
A). In particular:

µA =
1(|A|
2

)
∑

ai,aj∈A
φ(d(ai, aj)) · (µi + µj) (2.3)

σ2
A =

1
(|A|

2

)2

∑

ai,aj∈A
φ(d(ai, aj))

2 · (σ2
i + σ2

j) (2.4)

The synergy function S models the performance of teams of agents, and the synergy of a
team A ⊆ A depends critically on the capabilities of the agents in A and the pairwise distances
between them. The definition of synergy involves the summation of individual capabilities, and
it is weighted by the distance of agents in the Synergy Graph. As such, the addition or removal
of specific agents can have a large impact on the total score of a team. For example, from
Figure 2.3, suppose that φ(d) = 1

d
. Then, the team {a1, a3} has a mean performance of 9.5, and

the team {a1, a2, a3} (adding a2 into {a1, a3}) increases the mean to 19.9. Conversely, the team
{a1, a3, a5} has a mean of 14.4, even though the individual capability of a5 is higher than a2.

2.5 WEIGHTED SYNERGY GRAPH MODEL 19

C1 ∼ N (5.2, 1.3)

C3 ∼ N (4.3, 0.4)

C2 ∼ N (20.3, 10.9)

C5 ∼ N (35.7, 3.3)C4 ∼ N (6.5, 3.1)

a1 a2

a4a3 a5

Figure 2.3: An Unweighted Synergy Graph with 5 agents. Each vertex represents an agent,
and the distance between vertices in the graph indicate how well agents work together. Agent
capabilities are modeled as Normally-distributed variables.

2.5 Weighted Synergy Graph Model

The Unweighted Synergy Graph model uses unweighted edges in its graph structure, and allows
a conceptually simpler representation of task-based relationships. However, not all task-based
relationships can be modeled with unweighted edges. Figure 2.4a shows one such example
of a task-based graph that cannot be represented with unweighted edges. Suppose φ(d) = 1

d
,

the compatibility of {a1, a2} , {a1, a3}, and {a2, a3} are then 1
3
, 1

8
and 1

5
respectively. Suppose

we use an unweighted task-based graph and find an adjusted compatibility function φ′, such
that φ′(d′(ai, aj)) = φ(d(ai, aj)), where d′ and d are the shortest distance functions in the un-
weighted and weighted task-based graphs respectively. In an unweighted task-based graph, the
longest possible distance between 2 agents is |A| − 1, if all the agents formed a chain. Thus,
with 3 agents, the greatest distance is 2. Since the compatibility function is monotonically de-
creasing, φ′(2) = 1

8
, which is the lowest compatibility among a1, a2, and a3, and implies that

d′(a1, a3) = 2. However, this in turn implies that d′(a1, a2) = d′(a2, a3) = 1 (Figure 2.4b). As
such, no compatibility function φ′ can be defined, since φ′(1) has to be equal to 1

3
and 1

5
which is

impossible.

20 CHAPTER 2: SYNERGY GRAPH MODEL AND TEAM FORMATION

a1 a2

a3

3

5

(a)

a1 a2

a3
(b)

Figure 2.4: a) A weighted task-based graph with 3 agents. b) An unweighted task-based graph
with the 3 agents (all edges have a weight of 1). If the compatibility function in (a) is φ(d) = 1

d
,

the task-based relationships of the agents cannot be represented with an unweighted graph and
an adjusted compatibility function.

Thus, to model task-based relationships that require weighted edges, we define the Weighted
Synergy Graph:

Definition 2.5.1. The Weighted Synergy Graph is a tuple (G,C), where:
• G = (V,E) is a connected weighted graph,
• V = A, i.e., the set of vertices corresponds to the set of agents,
• ei,j = (ai, aj, wi,j) ∈ E is an edge between agents ai, aj with weight wi,j ∈ R+,
• C = {C1, . . . , CN}, where Ci ∼ N (µi, σ

2
i) is agent ai’s capability.

The definitions of pairwise synergy (Definition 2.4.2) and synergy (Definition 2.4.3) apply to
the Weighted Synergy Graph model, with the caveat that the shortest distance d(ai, aj) between
two agents ai, aj uses the weights on the edges.

2.5.1 A Weighted Synergy Graph Example

Figure 2.5 shows an example of a Weighted Synergy Graph with 5 agents in a rescue task. a1, a2

and a3 are personnel in the ambulance, namely the agent that carries the stretcher, the agent
that performs CPR, and the agent that drives the ambulance respectively. Since these 3 agents
have trained as a team, their task-based relationship is high, and so the distance between them in
the Weighted Synergy Graph is low. As heterogeneous agents, their individual capabilities are
different. For example, the capability of a2, the CPR agent, has a high mean (that reflects the
high payoff CPR provides to the task) and correspondingly high variance (that reflects that CPR
does not always succeed). As each agent is individually capable of saving lives (i.e., the driver
agent and stretcher agent can also perform first aid), the task can be completed with any subset
of agents.

2.5 WEIGHTED SYNERGY GRAPH MODEL 21

3

1

1 1 2

3

C1 ∼ N (5.2, 1.3)

C3 ∼ N (4.3, 0.4)

C2 ∼ N (17.2, 10.9)

C5 ∼ N (35.8, 2.3)C4 ∼ N (3.5, 3.1)

a1 a2

a4a3 a5

Figure 2.5: An example of a Weighted Synergy Graph modeling capabilities and the task-based
relationships of a group of agents in a rescue task.

a4 is an intern at the hospital, and a5 is a surgeon at the hospital. The surgeon’s capa-
bility is both better and more consistent than the CPR agent’s: C5 ∼ N (35.7, 3.3) versus
C2 ∼ N (20.3, 10.9), reflecting the surgeon’s skills.

Using Definitions 2.4.2 and 2.4.3, and assuming that φ(d) = 1
d
, we can compute the syn-

ergy of the agents. The team of agents in the ambulance, i.e., {a1, a2, a3}, has a synergy of
C{a1,a2,a3} ∼ N (17.8, 2.8). Since the surgeon a5 is more capable than a2 (the CPR agent), one
might consider replacing a2 with a5. However, the synergy would beC{a1,a3,a5} ∼ N (12.1, 0.3),
which has a lower mean than the team {a1, a2, a3}. The lower mean is due to the task-based re-
lationships among the agents — the other agents in the ambulance (the stretcher agent and the
driver agent) work well and perform better with the CPR agent than with the surgeon.

When these four agents are in a team, their synergy is C{a1,a2,a3,a5} ∼ N (17.8, 0.8),
which shows that the addition of the surgeon agent (instead of replacing the CPR agent) poten-
tially benefits the team by lowering the variance of their performance. However, adding agents
does not always improve the team performance — the team of all the agents has a synergy
C{a1,a2,a3,a4,a5} ∼ N (13.0, 0.3), since the intern agent does not contribute much to the perfor-
mance and has a poor task-based relationship with the other agents, as reflected by its high edge
weights to other agents.

Thus, the Weighted Synergy Graph captures interesting and complex relationships among
agents, where the composition of the team makes a significant difference in the overall task
performance.

2.5.2 Equivalence in Weighted Synergy Graphs

Figure 2.6 shows three examples of Weighted Synergy Graphs with three agents, such that the
shortest distance between agents are: d(a1, a2) = 1.3, d(a1, a3) = 2.4, and d(a2, a3) = 3.7.
Since the shortest distance is used to compute synergy, the three Weighted Synergy Graphs are

22 CHAPTER 2: SYNERGY GRAPH MODEL AND TEAM FORMATION

C1

C3C2

1.3 2.4

a1

a2 a3

(a)

C1

C3C2

1.3 2.4

3.7

a1

a2 a3

(b)

C1

C3C2

1.3 2.4

5.9

a1

a2 a3

(c)

Figure 2.6: Three equivalent Weighted Synergy Graphs, i.e., the shortest distance between pairs
of agents is equivalent in the three graphs.

equivalent. In Figure 2.6a, only 2 edges are present while 3 edges are present in Figures 2.6b and
2.6c. If the weight of edge e2,3 in Figure 2.6b was less than 3.7, it would not be equivalent to the
other two. Also, edge e2,3 in Figure 2.6c is not used, since a shorter path exists between a2 and
a3 using e1,2 and e1,3 — we consider how to use such edges in graphs for modeling non-transitive
relationships later in Section 5.3. Thus, in general, more than one graph structure can be used to
define the shortest distance relationship among agents.

Definition 2.5.2. Weighted Synergy Graphs S = (G, C) and S ′ = (G′, C ′) are equivalent if:

• V = V ′,

• C = C ′,

• d(ai, aj) in graph G = d(ai, aj) in graph G′ ∀ai, aj ∈ A.

Since the shortest distance between all pairs of agents are identical, their compatibility (as
computed by φ) is identical, and hence the synergy of a team of agents are equal given equivalent
Weighted Synergy Graphs. In this work, we do not distinguish between equivalent Weighted
Synergy Graphs.

2.6 Assumptions of the Synergy Graph Model

The Synergy Graph model captures the task-based relationships among agents and is used to
compute the synergy of agent teams using the distances in the graph and the agent capabilities.
We now list the assumptions of the model, and a short discussion of the rationales behind the
assumptions and how the assumptions can be relaxed:

1. Team performance is Normally-distributed,

2. The synergy of a team is a function of the pairwise synergies,

2.7 SOLVING THE TEAM FORMATION PROBLEM 23

3. Task-based relationships are transitive and modeled via shortest distance in the graph.

Regarding Assumption 1, Section 2.3 explains the rationale of using Normal distributions
to model team performance. If the actual performance was from some other distribution, the
Synergy Graph model can be modified to use that distribution or any arbitrary distribution, al-
though the computation of pairwise synergy S2 and synergy S could be more complex (by adding
arbitrary distributions together).

Assumption 2 comes about from the graph-based nature of the Synergy Graph model. Since
edges involve two agents, we derive the synergy function S from the pairwise synergy S2. Fur-
ther, the task can be accomplished by any number of agents, so pairwise synergy between any
two agents always exists. If the assumption is relaxed, the Synergy Graph can be extended to use
hyperedges (edges between more than two agents), and S can be updated to reflect the change.

The Synergy Graph model assumes transitivity in the task-based relationship (Assumption 3).
Our work focuses on tasks where this assumption holds. In cases where the assumption does not
hold, the model can be updated to use other measures other than the shortest distance between
agents, which we consider later in Section 5.3.

2.7 Solving the Team Formation Problem

We defer how a Synergy Graph is learned from observations of performance to the next chapter.
In this section, we explain how to use a Synergy Graph to form the δ-optimal team for the task,
i.e., the team A∗δ such that P(PA∗δ ≥ u) = δ and P(PA ≥ u) ≤ δ ∀A ⊆ A.

Using the Synergy Graph model and the synergy equations, we can compute the synergy of
any team of agents A ⊆ A. However, the synergy computed is a Normally-distributed variable,
and we need to rank such variables to choose one possible team over another.

To do so, we use an evaluation function that converts a Normally-distributed variable into a
real number using the parameter δ [Liemhetcharat and Veloso, 2011]:

Evaluate(X, δ) = µX + σX · Φ−1(1− δ) (2.5)

where X ∼ N (µX , σ
2
X) and Φ−1 is the inverse of the cumulative distribution function of the

standard Normal distribution.

In particular, for any Normally-distributed variable X , Evaluate(X, δ) returns a value vX
such that P (X ≥ vX) = δ. When δ = 1

2
, Evaluate(X, δ) returns µX , the mean of X; σX ,

the standard deviation of X , decreases (increases) the value returned by Evaluate(X, δ) when
δ > 1

2
(δ < 1

2
).

24 CHAPTER 2: SYNERGY GRAPH MODEL AND TEAM FORMATION

Theorem 2.7.1. Let A,A′ ⊆ A, and CA = S(A), CA′ = S(A′).

Let Evaluate(CA, δ) = vA and Evaluate(CA′ , δ) = vA′ .

If vA ≥ vA′ , then P (CA′ ≥ vA) ≤ δ.

Proof. P (CA′ ≥ v′A) = δ and vA ≥ v′A.
⇒ P (CA′ ≥ vA) ≤ P (CA′ ≥ vA′)

⇒ P (CA′ ≥ vA) ≤ δ

Collorary 2.7.2. A∗δ = argmaxA⊆AEvaluate(S(A), δ)

Proof. Let Aδ = argmaxA⊆AEvaluate(S(A), δ).
Let Evaluate(S(Aδ), δ) = v.
∀A ⊆ A, P (S(A) ≥ v) ≤ δ (from Theorem 2.7.1)
∴ A∗δ = Aδ

Hence, Evaluate returns a real number that we use to rank possible teams and find the
δ-optimal team A∗δ , since the team that returns the highest value from Evaluate corresponds
to the δ-optimal team.

We now contribute two team formation algorithms: FindδOptimalTeam, a branch-and-
bound algorithm that finds the δ-optimal team in exponential time, and a second algorithm
ApproxδOptimalTeam, that approximates that δ-optimal team in polynomial time.

Both algorithms assume that n∗ = |A∗δ| is known and given as a parameter to the algorithm.
This is a reasonable assumption, since the size of teams are typically limited by external factors,
e.g., a cost budget, size restrictions. For example, the size of teams in sports is fixed, and also in
tasks that require handing of a fixed number of devices, such as the operators of an ambulance. If
n∗ is unknown, then the algorithms are run iteratively for n = 1, . . . , N and the best-performing
team is selected. Both algorithms are applicable to the Unweighted Synergy Graph and Weighted
Synergy Graph models without any modifications, since the synergy function S applies to both
models.

2.7.1 Forming the δ-Optimal Team

Our first team formation algorithm, FormδOptimalTeam, uses branch-and-bound to find the
δ-optimal team. Algorithm 1 shows the pseudocode of the algorithm. The inputs to the algorithm
are n (the size of the desired team), δ (for δ-optimality), S (the Synergy Graph),A (the team being
considered), and vbest (the value of the best team found so far). |A| ≤ n during the execution of
the algorithm, and contains the fixed members of the team, e.g., if n = 5 and A = {a1, a2}, then

2.7 SOLVING THE TEAM FORMATION PROBLEM 25

FormδOptimalTeam returns the optimal team of 5 agents given that {a1, a2} are in the team.
The initial call to FormδOptimalTeam sets A = ∅ and vbest = −∞.

Algorithm 1 Find the δ-optimal team of size n
FormδOptimalTeam(n, δ, S, A, vbest)

1: if |A| = n then
2: vA ← Evaluate(S(A), δ)
3: if vA ≥ vbest then
4: return (A, vA)
5: else
6: return (Abest, vbest)
7: end if
8: end if
9: j ← maxai∈A (i)

10: for i = j + 1 to N do
11: Anext ← A ∪ {ai}
12: (nextmin, nextmax)← CalculateBounds(n, δ, S, Anext)
13: if nextmax ≥ vbest then
14: vbest ← max(vbest, nextmin)
15: (Abest, vbest)← FormδOptimalTeam(n, δ, S, Anext, vbest)
16: end if
17: end for
18: return (Abest, vbest)

Lines 1–8 describe the base case when the team is fully-formed — the value of the team is
computed with Evaluate, and the team is returned if its value is greater than the current best
team. Otherwise, branching and bounding is performed. The branching occurs as agents are
added to A and the algorithm is recursively called (lines 11 and 15). The bounds of the team are
computed with CalculateBounds (described below), and the team is pruned if the maximum
of the bound (nextmax) is lower than the current best value vbest (line 13).

To compute the bounds of a team given a Synergy Graph, CalculateBounds uses the fol-
lowing heuristic. The minimum and maximum pairwise distance between vertices in the Synergy
Graph (excluding pairs of the selected team Anext) are computed, as well as the minimum and
maximum agent capabilities (excluding the agents in Anext). The maximum bound is computed
by using the synergy function S and assuming that all distances with undetermined agents are
the minimum distance, and agent capabilities are maximum. Similarly, the minimum bound is
computed using the maximum distances and minimum agent capabilities.

26 CHAPTER 2: SYNERGY GRAPH MODEL AND TEAM FORMATION

Finding the δ-optimal team is NP-hard, and branch-and-bound can fully explore the space
in the worst case. As such, the runtime of FormδOptimalTeam is O(Nn), where N is the
total number of agents, and n is the number of agents in the team. If n∗ is unknown, then the
algorithm is run for increasing n for a total runtime of O(NN).

2.7.2 Approximating the δ-Optimal Team

Finding the δ-optimal team takes exponential time in the worst case, and in many situations,
a near-optimal team is sufficient to solve the problem. Algorithm 2 shows the pseudocode for
ApproxδOptimalTeam, that approximates the δ-optimal team of size n, given δ and a Syn-
ergy Graph S.

Algorithm 2 Approximate the δ-optimal team of size n
ApproxδOptimalTeam(n, δ, S)

1: Abest ← RandomTeam(S, n)
2: vbest ← Evaluate(S(Abest), δ)
3: repeat
4: Aneighbor ← NeighborTeam(Abest)
5: vneighbor ← Evaluate(S(Aneighbor), δ)
6: if accept(vbest, vneighbor) then
7: Abest ← Aneighbor

8: vbest ← vneighbor

9: end if
10: until done()
11: return Abest

Algorithm 2 first begins by generating a random team of size n, which is performed by ran-
domly selecting n agents from A. The value of the team is then computed with the Evaluate
function. The random team and its value thus forms the initial guess of the algorithm.

Next, the algorithm begins its approximation loop. Lines 3–10 of Algorithm 2 show a general
approximation algorithm (with functions accept and done) to illustrate that our algorithm is
compatible with most approximation algorithms. In this thesis, we use simulated annealing
but other approximation algorithms (such as hill-climbing) are suitable as well. In simulated
annealing, the done function would check if the desired number of iterations has been run, and
the accept function would accept a neighbor based on the temperature schedule (computed
from the current iteration number) and the difference in Evaluate scores of the current best
guess and its neighbor.

NeighborTeam(Abest) randomly swaps one selected agent a ∈ Abest with an unselected
one a′ ∈ A\Abest. In this way, neighbor teams are generated from the current best estimate Abest

2.7 SOLVING THE TEAM FORMATION PROBLEM 27

so as to effectively explore the space of possible teams of size n. The value of the neighbor team
vneighbor is computed with Evaluate, and the team is accepted or rejected based on the criteria
of the approximation algorithm (e.g., simulated annealing uses a temperature schedule).

Thus, Algorithm 2 finds an approximation to the δ-optimal team given its size n. The algo-
rithm runs in O(n2) (the synergy function S takes O(n2) and simulated annealing runs a constant
number of iterations) if n∗ is known. Otherwise, the algorithm is run iteratively for increasing n
and has total runtime of O(N3). In comparison, a brute-force algorithm would take O(

(
N
n

)
) if

n∗ is known, and O(2N) otherwise.

2.7.3 Comparing the Team Formation Algorithms

To evaluate both team formation algorithms, and compare their performance (amount of the
search space explored, and value of the formed team), we generated random Weighted Synergy
Graphs. We varied the number of agents in the graph from 10 to 15, and randomly created 1000
connected weighted graph structures where each edge weight was an integer that varied from 1
to 5. For each weighted graph structure generated, the agent capabilities Ci ∼ N (µi, σ

2
i) were

also randomly generated, such that µi ∈ (50, 150) and σ2
i ∈ (0, 10000). The size of the desired

team n was set to bN
2
c, so that the search space is as large as possible.

FormδOptimalTeam always finds the optimal team, so we were interested in evaluating
how many times CalculateBounds and Evaluate were called. For the other algorithm
ApproxδOptimalTeam, we ran simulated annealing for 1000 iterations (so 1000 calls to
Evaluate were made), and we were interested in evaluating the quality of the team formed.

Table 2.1 shows the results of our comparisons. The effectiveness of the formed team is
expressed as a value in [0, 1], where 0 means the worst possible team (with the minimum value),
and 1 means the optimal team (with the maximum value):

Effectiveness(A) =
Evaluate(A, δ)− Evaluate(Amin

δ , δ)

Evaluate(A∗δ , δ)− Evaluate(Amin
δ , δ)

(2.6)

where A∗δ is the δ-optimal team, and Amin
δ is the worst possible team given δ.

FormδOptimalTeam finds the optimal team but evaluates a large number of teams — the
number of calls to CalculateBounds and Evaluate are greater than the size of the search
space. In comparison, running ApproxδOptimalTeam for a fixed number of iterations (1000)
finds the δ-optimal team or a team very close to optimal most of the time. When there are twelve
or more agents, ApproxδOptimalTeam performs competitively with FormδOptimalTeam
while evaluating a smaller amount of teams (only 1000). We believe the high performance of

28 CHAPTER 2: SYNERGY GRAPH MODEL AND TEAM FORMATION

Weighted Synergy Graph

agents
FormδOptimalTeam ApproxδOptimalTeam

Evaluations Time (ms) Effectiveness # Evaluations Time (ms) Effectiveness
10 340± 69 18± 4 1 1000 17± 2 0.996± 0.021
11 545± 125 32± 8 1 1000 17± 2 0.992± 0.034
12 1216± 254 83± 18 1 1000 24± 2 0.997± 0.020
13 1993± 449 157± 37 1 1000 30± 2 0.996± 0.021
14 4439± 932 412± 90 1 1000 62± 2 0.998± 0.010
15 7307± 1694 791± 191 1 1000 101± 3 0.998± 0.013

Table 2.1: The number of evaluations done by the algorithms FormδOptimalTeam and
ApproxδOptimalTeam to compute and approximate the δ-optimal team respectively in a
Weighted Synergy Graph, the time taken by the algorithms in milliseconds, and the quality of
the team found (where 0 means the worst team and 1 is the optimal team).

Unweighted Synergy Graph

agents
FormδOptimalTeam ApproxδOptimalTeam

Evaluations Time (ms) Effectiveness # Evaluations Time (ms) Effectiveness
10 265± 64 14± 4 1 1000 17± 3 0.998± 0.013
11 391± 108 23± 6 1 1000 17± 2 0.997± 0.016
12 860± 233 56± 16 1 1000 24± 2 0.999± 0.008
13 1291± 389 99± 31 1 1000 30± 2 0.998± 0.011
14 2849± 811 262± 77 1 1000 62± 2 0.999± 0.004
15 4237± 1346 451± 149 1 1000 101± 3 0.999± 0.005

Table 2.2: The number of evaluations done by the algorithms FormδOptimalTeam and
ApproxδOptimalTeam in an Unweighted Synergy Graph, the time taken in milliseconds,
and the effectiveness of the team found.

FormδOptimalTeam is because the neighbor generation allows for good exploration of the
space — a team with a high score will remain with a high score when a single member is
swapped. Comparatively, in FormδOptimalTeam, the bounds of performance are computed
when some agents in the team is fixed; the bounds are large when few agents are fixed and only
become narrow as most agents are fixed. As such, pruning can only occur towards the bot-
tom of the branch-and-bound search tree and so a large search space is required. Thus, we use
ApproxδOptimalTeam for the remainder of this thesis. Similarly, FormδOptimalTeam
takes much larger amounts of time to run as the number of agents increases, compared to
ApproxδOptimalTeam. In particular, although ApproxδOptimalTeam performs 1000
evaluations, there is an overhead to computing the shortest distance between agents that explains
why there is an increase in the computation time as the number of agents increases.

We repeated the experiment using Unweighted Synergy Graphs, and the results were similar.
Table 2.2 shows the results of the second set of experiments.

2.8 COMPARING UNWEIGHTED AND WEIGHTED SYNERGY GRAPHS 29

2.8 Comparing Unweighted and Weighted Synergy Graphs

In this section, we evaluate the expressiveness of the Weighted Synergy Graph model compared
to the Unweighted Synergy Graph. To do so, we assume that the agent capabilities are known,
and we iterate across possible Synergy Graph structures.

2.8.1 Experimental Setup

The LearnSynergyGraph algorithm (explained in Chapter 3) learns the structure of the
Weighted Synergy Graph, and we use this algorithm in these experiments, except that the func-
tion LearnCapabilities is not called since the agent capabilities are known. The learning
algorithm iteratively modifies the Synergy Graph structure, and computes the log-likelihood of
the observation set given the Synergy Graph.

We varied the number of agents N from 5 to 15. In each trial, a hidden Weighted Synergy
Graph was randomly created where the agent capabilities Ci ∼ N (µi, σ

2
i) were generated with

γ = 10, where µi ∈ (γ
2
, 3γ

2
) and σ2

i ∈ (0, γ2). The hidden Weighted Synergy Graph is hidden
from the learning and team formation algorithms, and is used as the ground truth of the experi-
ment. The observation set comprising the performance of teams with 2 and 3 agents are extracted
from the hidden Weighted Synergy Graph. From the same observation set, a Weighted Synergy
Graph and an Unweighted Synergy Graph are learned. The performance of teams with 4 and
more agents are extracted from the hidden Weighted Synergy Graph and form the test observa-
tion set. We calculate the log-likelihood of the learned Weighted Synergy Graph and Unweighted
Synergy Graph using the test set.

In addition, with each of the learned Synergy Graphs, we approximate the δ-optimal team of
size n∗ = max(4, bN

2
c) using ApproxδOptimalTeam. We chose such a value of n∗ so as to

maximize the number of possible teams (i.e.,
(
N
bN

2
c
)
≥
(
N
i

)
∀i ∈ {1, . . . , N}), while having a

minimum size of 4 since the performance of teams with sizes 2 and 3 are used in learning the
Synergy Graphs. From the teams found, we computed their effectiveness (Equation 2.6).

Thus, the effectiveness of a team is a value from 0 to 1, where 1 is the δ-optimal team, and 0
is the worst-possible team. We use the effectiveness to measure the performance of the learned
Synergy Graph, because the goal of the Synergy Graph is to form an effective team, and the
performance is scaled since the actual performance of teams varies from trial to trial due to the
randomized generation of the hidden Weighted Synergy Graph.

30 CHAPTER 2: SYNERGY GRAPH MODEL AND TEAM FORMATION

2.8.2 Comparison Results

In our first set of experiments, we used the fraction compatibility function φfraction (Equation 2.1),
and set δ = 1

2
. For each value of N , we performed 100 trials, where a different hidden Weighted

Synergy Graph was generated in each trial. The Weighted and Unweighted Synergy Graphs were
then learned using 1000 iterations of simulated annealing for each trial using the observation
set extracted from the hidden model. Figure 2.7 shows the effectiveness of the teams found
by the Weighted and Unweighted Synergy Graphs. As the number of agents N increases, the
effectiveness of the teams found by both Synergy Graph types decrease, reflecting the increase
in difficulty in learning the graph and finding the δ-optimal team. However, across all values
of N , the team found by the learned Weighted Synergy Graph outperforms the team found by
the learned Unweighted Synergy Graph. We performed a paired Student’s T-test (one-tailed) on
the 1100 total trials (11 values of N with 100 trials per N), and the results were statistically
significant to a value of p = 9.8× 10−258.

We repeated the experiments with φfraction(d), but increased the number of iterations of simu-
lated annealing to 2000, to investigate if a higher number of iterations would improve the overall
performance of the learned Synergy Graphs. Figure 2.8 shows the average effectiveness of the
teams found by the Weighted and Unweighted Synergy Graphs with both 1000 and 2000 itera-
tions of simulated annealing. The learned Weighted Synergy Graph performs better with 2000
iterations compared to 1000 iterations (statistically significant to a value of p = 8.7 × 10−20).
However, a greater number of iterations of simulated annealing does not affect the performance
of the learned Unweighted Synergy Graph (p = 0.14). Thus, a greater number of iterations of
simulated annealing allows the Weighted Synergy Graph learning algorithm to converge on a
closer match to the hidden Synergy Graph, while the “best” Unweighted Synergy Graph is al-
ready found within 1000 iterations and hence increasing the number of iterations has little effect.

Thirdly, we used the decay compatibility function φdecay(d) (Equation 2.2) with half-life
h = 2. In this way, the compatibility function φdecay decreases at a slower pace than φfraction

initially, but has much smaller values once d is large. As before, we varied N and ran 100 trials
per value of N . We ran 1000 iterations of simulated annealing for both learning algorithms, and
Figure 2.9 shows the effectiveness of the teams found by the learned Synergy Graphs. While
the effectiveness of the learned Weighted Synergy Graph decreases more rapidly as N increases
compared to φfraction, the learned Weighted Synergy Graph outperforms the learned Unweighted
synergy Graph, with p = 3.6× 10−160.

Thus, these experiments show that the Weighted Synergy Graph is more expressive than the
Unweighted Synergy Graph. The results are statistically significant across agent sizes, with two
compatibility functions, and with different maximum iterations of simulated annealing.

2.8 COMPARING UNWEIGHTED AND WEIGHTED SYNERGY GRAPHS 31

Figure 2.7: Effectiveness of teams found in the learned Weighted Synergy Graph and learned
Unweighted Synergy Graph, using simulated annealing with 1000 iterations. The compatibility
function was φfraction(d) = 1

d
.

Figure 2.8: Average effectiveness of teams found in the learned Weighted and Unweighted Syn-
ergy Graphs, using 1000 and 2000 iterations of simulated annealing to learn the Synergy Graph
structure, using φfraction(d) = 1

d
.

Figure 2.9: Effectiveness of teams found in the learned Weighted and Unweighted Synergy
Graphs with φdecay(d) = exp

(
−d ln 2

2

)
, and 1000 iterations of simulated annealing.

32 CHAPTER 2: SYNERGY GRAPH MODEL AND TEAM FORMATION

2.9 Chapter Summary

This chapter presented the team formation problem, and formally defined the Unweighted Syn-
ergy Graph and Weighted Synergy Graph models, how the synergy of teams are computed using
the models. This chapter presented FormδOptimalTeam that forms the δ-optimal team in ex-
ponential time, and ApproxδOptimalTeam that approximates the δ-optimal team in polyno-
mial time. Both algorithms are applicable to the Unweighted and Weighted Synergy Graph mod-
els, and ApproxδOptimalTeam finds near-optimal team without exploring a large amount of
the search space. This chapter presented results that compared Unweighted and Weighted Syn-
ergy Graphs, and showed that teams formed from learned Weighted Synergy Graphs are more
effective (i.e., closer to optimal) than teams formed from learned Unweighted Synergy Graphs.

Chapter 3

Learning Synergy Graphs

The previous chapter presented the Synergy Graph model, defined the synergy of multi-agent
teams, and presented team formation algorithms that form effective teams. The team formation
algorithms assume the existence of a Synergy Graph, but it is difficult, even for a domain ex-
pert, to manually write down a Synergy Graph based on a problem setup. This chapter presents
LearnSynergyGraph, a learning algorithm that learns Synergy Graphs from observational
data [Liemhetcharat and Veloso, 2012a, Liemhetcharat and Veloso, 2013d], so that the learned
Synergy Graph can be used by the team formation algorithms. By automating the learning pro-
cess, all that is required to apply the Synergy Graph model to real world scenarios is the collec-
tion of the observations. LearnSynergyGraph has two main components, a graph structure
learner and an agent capability learner. This chapter presents two capability learners, Learn-
CapabilityLeastSquares and LearnCapabilityNonLinear, that LearnSyner-
gyGraph uses to learn the agent capabilities using a least-squares solver and non-linear solver
respectively.

3.1 Overview of the Learning Algorithm

The performance of multi-robot teams is initially unknown, and the Synergy Graph aims to
model the performance with the synergy function S. In order to do so, we assume that observa-
tions of the performance of some teams are available, that is representative of the overall team
performance.

Recall that an observation oA is a real value corresponding to an observed utility attained by
agents A ⊆ A, i.e., oA is a sample of A’s performance.

Definition 3.1.1. An observation group OA =
⋃
oA is the set of all observations of A.

33

34 CHAPTER 3: LEARNING SYNERGY GRAPHS

{a1, a2} : 3.2
{a1, a2} : 4.1

{a1, a2, a3} : 5.7
{a1, a2, a3} : 4.5

Observation set O

Sinitial Slearned

learn capabilities

random graph structure

learn structure and capabilities

O{a1,a2}

O{a1,a2,a3}

{a1, a2} : 3.1

...

...

...

Figure 3.1: The process of learning from observations. The individual capabilities of agents in
the Synergy Graphs are not shown.

Each observation groupOA contains all the observations of a unique teamA. We assume that
A, the set of all agents, is known a priori. Otherwise, A =

⋃
OA
A. From these observation

groups OA, we define the observation set:

Definition 3.1.2. The observation set O is the union of observation groups, i.e., O =
⋃ {OA}.

The observation set O is the only input to the learning algorithms — the algorithms do not
require any other information, other than domain knowledge such as A. Figure 3.1 shows an
overview of the entire learning process.

Algorithm 3 shows the pseudocode of LearnSynergyGraph, the Synergy Graph learning
algorithm that learns a Synergy Graph using only the observation set. Algorithm 3 first creates
a random Synergy Graph structure, and learns the agent capabilities C using the Synergy Graph
structure G and observation set O, which forms the initial guess of the Synergy Graph S =

(G,C). The log-likelihood of the observations given S is then computed.

Next, the algorithm enters the learning loop, where the learned Synergy Graph is iteratively
improved. From the current guess of the Synergy Graph, a neighbor structure (i.e., the graph
structure without agent capabilities) is generated. The neighbor generation function depends on
the type of Synergy Graph being generated, which we elaborate later. From the neighbor struc-
ture G′ and observation set O, agent capabilities C ′ are computed, which form a new Synergy

3.2 LEARNING THE SYNERGY GRAPH STRUCTURE 35

Graph S ′. The log-likelihood of O given S ′ is computed, and S ′ is accepted as the best guess
based on the approximation algorithm, as the goal is to find the Synergy Graph that best matches
the observations, i.e., that Synergy Graph that is most likely to have produced the observations
given its graph structure and individual capabilities. In this thesis, we use simulated annealing,
so the accept function uses the difference in log-likelihoods of S and S ′, and the temperature
schedule to decide if S ′ is accepted, and done considers if the maximum number of simulated
annealing iterations have been performed.

Algorithm 3 Learn a Synergy Graph from observations
LearnSynergyGraph(O)

1: G = (V,E)← RandomStructure(A)
2: C ← LearnCapabilities(G,O)
3: S ← (G,C)
4: score← LogLikelihood(S,O)
5: repeat
6: G′ = (V,E ′)← NeighborStructure(G)
7: C ′ ← LearnCapabilities(G′, O)
8: S ′ ← (G′, C ′)
9: score′ ← LogLikelihood(S ′, O)

10: if accept(score, score′) then
11: S ← S ′

12: score← score′

13: end if
14: until done()
15: return S

Hence, the learning algorithms consist of two main components — learning the Synergy
Graph structure, and learning agent capabilities using the structure and observation set. We now
elaborate on each of these components.

3.2 Learning the Synergy Graph Structure

The Synergy Graph learning algorithm, LearnSynergyGraph, first begins with a random
Synergy Graph structure (with RandomStructure), and iteratively improves the structure by
making random neighbors to the existing structure (with NeighborStructure) and compar-
ing its log-likelihood. Every time a Synergy Graph structure is created, the agent capabilities are
learned to completely define the Synergy Graph, so that the log-likelihood of the observations
can be computed.

36 CHAPTER 3: LEARNING SYNERGY GRAPHS

3.2.1 Generating a Random Synergy Graph Structure

The Synergy Graph model consists of a graph structure and agent capabilities. The Synergy
Graph structure refers to the graph component of the model. Algorithm 4 generates a random
Synergy Graph Structure. A common characteristic among the Synergy Graph models is that the
graph is connected, i.e., any pair of vertices are connected, so line 3 loops until a connected set
of edges are created. A domain variable EdgeProbability ∈ (0, 1] determines the probability that
a random edge is created, e.g., EdgeProbability = 1 creates a fully-connected graph.

Algorithm 4 Create a Random Synergy Graph Structure
RandomStructure(A)

1: V ← A // Create vertices for all agents
2: E ← ∅
3: while not Connected(V, E) do
4: E ← ∅
5: for all v1, v2 ∈ V do
6: if random() > EdgeProbability then
7: if isUnweightedSynergyGraph() then
8: E ← E ∪ {v1, v2}
9: else if isWeightedSynergyGraph() then

10: w ← randint(wmin, wmax)
11: E ← E ∪ {v1, v2, w}
12: end if
13: end if
14: end for
15: end while
16: return (V,E)

The functions isUnweightedSynergyGraph() and isWeightedSynergyGraph()
are mutually exclusive, so only one function returns true, depending of which Synergy Graph
model is being created. Weights are generated for the edges of Weighted Synergy Graphs, where
randint(wmin, wmax) returns an integer between the two parameters wmin and wmax (inclusive).

3.2.2 Generating a Neighbor Synergy Graph Structure

NeighborStructure takes an existing Synergy Graph structure and makes a discrete change
in order to generate a neighbor Synergy Graph Structure, by performing one of the following four
possible actions:

1. Add an edge between two vertices

2. Remove a random edge that does not disconnect the graph

3.2 LEARNING THE SYNERGY GRAPH STRUCTURE 37

a1

a4

a2

a5

a3
2

1

3

2

5

a1

a4

a2

a5

a3
2

1 2

5
a1

a4

a2

a5

a3
2

1

3

2

5

a1

a4

a2

a5

a3
3

1

3

2

5

a1

a4

a2

a5

a3
2

1

3

1

5

4

Original Weighted Synergy Graph structure

Increase edge weight Decrease edge weight

Remove edge Add edge

Figure 3.2: The four possible actions used to generate neighbor Weighted Synergy Graph struc-
tures.

3. Increase the weight of a random edge by 1

4. Decrease the weight of a random edge by 1

Only actions 1 and 2 are applicable for the Unweighted Synergy Graph model; all four actions
are applicable to the Weighted Synergy Graph model (action 1 generates a random edge weight).
Since the Synergy Graph structure is always a connected graph, action 2 will only be applied if
removing the edge does not disconnect the graph. Actions 3 and 4 change the edge weights of
the edges. While the edge weights in the Weighted Synergy Graph definition are real numbers,
NeighborStructure only generates structures with integer weights. We use integer weights
in the learning algorithm, as they provide a close approximation while still allowing discrete
steps in neighbor generation. Higher accuracy can be achieved by increasing/decreasing the edge
weights with smaller step size values. However, decreasing the step size increases the space of
possible weighted graphs, so it is a trade-off that has to be managed. Figure 3.2 illustrates these
four actions on an example Weighted Synergy Graph.

By iteratively changing the Synergy Graph structure, the Synergy Graph learning algorithm
explores the space of possible structures in order to converge on the best structure that fits the
observation set.

38 CHAPTER 3: LEARNING SYNERGY GRAPHS

3.3 Learning Capabilities

After a Synergy Graph structure is generated, the agent capabilities are learned using the gen-
erated Synergy Graph structure and observation set. We present two agent learning algorithms,
LearnCapabilitiesLeastSquares, that learns the agent capabilities with a least-squares
solver, and LearnCapabilitiesNonLinear, that learns the agents capabilities with a non-
linear solver. The latter algorithm uses less training data (O(N) compared to O(N3) for the
former), but requires a higher runtime due to the non-linear solver.

3.3.1 Learning Capabilities with a Least-Squares Solver

LearnCapabilitiesLeastSquares learns the individual agent capabilities, using the
Synergy Graph structure G and observation set O, and Algorithm 5 shows the pseudocode. Ma-
trices M and b are created such that Mx = b, e.g., Mµ xµ = bµ, where xµ = [µa1 , . . . , µaN]T .
Using Equations 2.3 and 2.4, each row in M and b corresponds to an observation group OA in O.
The only unknowns in the equations are the agent capabilities (the compatibility function φ are
known and pairwise distances are computed from the Synergy Graph structure), so the equations
are manipulated to make the agent capabilities the subject. Each column in M corresponds to an
agent inA. A least-squares solver is run to find x, which corresponds to the means and variances
of the agent’s capabilities.

We assume that O, the observation set, contains all pairs and triples of agents. Let A2 ⊂ 2A

such thatA2 =
⋃
A∈A s.t. |A|=2A. Similarly, letA3 ⊂ 2A such thatA3 =

⋃
A∈A s.t. |A|=3 A. Hence,

A2 andA3 are the sets of all pairs and triples of agents respectively. Our learning algorithm uses
the observations of the agents in A2,3 = A2 ∪ A3. Specifically, let O be the set of observations,
where ∀A ∈ A2,3,∃OA ∈ O such that each oA is an observation of the performance of the
team A (we typically use |OA| = 30 in this thesis, although any large |OA| would suffice). Since
any subset of agents will attain a performance value at the task, and the synergy function S is
computed from the pairwise synergy function S2, the observation set O is sufficient for learning.
In particular,A2 provides information about the shortest distance between pairs of agents and the
agents’ capabilities using the pairwise synergy function S2 (Definition 2.4.2). However, there are
multiple solutions for any pairwise synergy (increasing capabilities versus decreasing distances),
and A3 provides information about the overall structure of the graph using the synergy function
S (Definition 2.4.3), and provides additional constraints to the learning problem.

For example, Figure 3.3 shows an example Weighted Synergy Graph structure, and the pro-
cess of Algorithm 5. We will use the example Weighted Synergy Graph and the team {a1, a2}
to explain how the matrices are set. Suppose the compatibility function is φfraction (Equation 2.1).

3.3 LEARNING CAPABILITIES 39

Algorithm 5 Learn the agent capabilities with a least-squares solver
LearnCapabilitiesLeastSquares(G,O)

1: Let O =
{
OA1 , . . . , OA|O|

}
, where Ai ⊆ A.

2: // Initialize the matrices with 0s
3: Mµ ← 0|O|×N
4: Mσ2 ← 0|O|×N
5: bµ ← 0|O|×1

6: bσ2 ← 0|O|×1

7: // Fill in the matrices
8: for all OAi ∈ O do
9: for all aj ∈ Ai do

10: Mµ(i, j)← 1

(|Ai|2)

∑

{aj ,a}∈Ai

φ(d(vaj , va))

11: Mσ2(i, j)← 1

(|Ai|2)
2

∑

{aj ,a}∈Ai

φ(d(vaj , va))
2

12: end for
13: bµ(i)← 1

|OAi |
∑

o∈OAi

o

14: bσ2(i)← 1
|OAi |−1

∑

o∈OAi

(o− bµ(i))2

15: end for
16: // Solve least-squares for x where Mx = b
17: means← LeastSquares(Mµ, bµ)
18: variances← LeastSquares(Mσ2 , bσ2)
19: for all aj ∈ A do
20: Caj ∼ N (means(j), variances(j))
21: end for
22: C ← ⋃

aj∈ACaj
23: return C

40 CHAPTER 3: LEARNING SYNERGY GRAPHS

{a1, a2} : 5.3
{a1, a2} : 7.1...
{aN−1, aN} : 1.4

{a1, a2, a3} : 4.2...
{aN−2, aN−1, aN} : 9.8

All pairs of agents

All triples of agents

Observation Set O {ai, aj} : N (µi,j, σ
2
i,j)

{ai, aj, ak} : N (µi,j,k, σ
2
i,j,k)

...

...

a1

a4

a2

a5

a3
2

1

3

2

5

Weighted synergy graph structure

Mµ



µ1
...
µN


 = bµ

Mσ2



σ21
...
σ2N


 = bσ2

Solve for µi, σ
2
i

C1 ∼ N (µ1, σ
2
1)...

CN ∼ N (µN , σ
2
N)

Estimate
distributions

Create system
of equations
in matrix form

Figure 3.3: The capabilities of agents are learned from the observation set and a Weighted Syn-
ergy Graph structure using a least-squares solver.

Using Definition 2.4.2, the team {a1, a2} forms the equation 1
2
(C1 + C2). Furthermore, the

observations involving {a1, a2} in the observation set are used to estimate N (µ{a1,a2}, σ
2
{a1,a2}),

and two equations are generated:

1

2
(µ1 + µ2) = µ{a1,a2}

1

22
(σ2

1 + σ2
2) = σ2

{a1,a2}

These two equations are separately formed and evaluated because the distributions Ci ∈ C are
independent. Since the distance between a1 and a2 is 2, di,j = 2 in Algorithm 5, and φ(di,j) = 1

2
,

which sets the values of columns 1 and 2 of Mµ to 1
2

(Line 10). Similarly, Line 11 sets columns
1 and 2 of Mσ2 to be φ(di,j)

2 = 1
22

using the second equation. The values of the corresponding
rows of bµ and bσ2 are set to be µ{a1,a2} and σ2

{a1,a2} respectively (Lines 13–14).

Once Mµ,Mσ2 , bµ, and bσ2 have been filled in by iterating through all teams with two and
three agents and filling in the matrices, a least-squares solver is used to solve for the means and
variances of the agent capabilities. These then form the agent capabilities C = {C1, . . . , CN}
that are returned by the algorithm.

3.4 COMPUTING LOG-LIKELIHOOD AND ACCEPTING NEIGHBORS 41

3.3.2 Learning Capabilities with a Non-Linear Solver

LearnCapabilitiesNonLinear learns the capabilities of the agents with a non-linear
solver, using an existing Synergy Graph structure and the observation set O. There are N agents,
and as such there are N Normal distributions to be estimated. We assume that |O| > 2N so that
the problem is over-constrained as opposed to underconstrained.

Similar to the previous subsection, the Synergy Graph structure is known, so the shortest
distance between any two agents can be computed. LearnCapabilitiesNonLinear esti-
mates Normal distributions so as to maximize the log-likelihood of the observations in O. From
a single training example (A, oA) ∈ O, an equation is formed that involves the means and vari-
ances of the agent capabilities.

We will use the example Weighted Synergy Graph structure in Figure 3.3. Suppose that the
compatibility function is φfraction. The synergy S({a1, a2}) = φ(d(a1, a2))(C1 + C2), which
simplifies to 1

2
(C1 + C2). Hence, the log-likelihood of the example o{a1,a2} is:

−1

2
log(2π · 1

4
(σ2

1 + σ2
2))− (o{a1,a2} − 1

2
(µ1 + µ2))2

2 · 1
4
(σ2

1 + σ2
2)

Thus, each observation in O corresponds to an expression involving the means and variances
of the agent capabilities. In order to find the distributions that maximize the log-likelihood of O,
the sum of log-likelihoods must be maximized. All log-likelihood expressions are summed and
the non-linear solver is used to solve for the agent capabilities.

3.4 Computing Log-Likelihood and Accepting Neighbors

The Synergy Graph structure and learned capabilities are combined to form the Synergy Graph.
The function LogLikelihood computes the sum of log-likelihood of every observation o ∈ O

given a Synergy Graph S. Every observation is oA where A ⊆ A is an agent team, and oA ∈ R
is the observed performance of the team. Algorithm 6 calculates the log-likelihood of an ob-
servation set O, given a Synergy Graph S. In order to do so, for each observation group OA in
O, the synergy N (µA, σ

2
A) of the group A ⊆ A is calculated using S. Since the synergy is a

Normal distribution, LogLikelihood computes the log-likelihood of each observed value in
the observation group OA, and sums the log-likelihoods across all the observations.

The score (i.e., summed log-likelihood of observations) of the current best Synergy Graph is
compared to the score of the neighbor Synergy Graph, and accepted based on the approximation
algorithm used. For example, when simulated annealing is used, the difference in the scores

42 CHAPTER 3: LEARNING SYNERGY GRAPHS

Algorithm 6 Computing log-likelihood of an observation set
LogLikelihood(S,O)

1: score← 0
2: for all OA ∈ O do
3: CA ← S(A)
4: for all o ∈ OA do
5: score← score + log(1√

2πσ2
A

exp(−(o−µA)2

2σ2
A

))

6: end for
7: end for
8: return score

is compared to the temperature schedule. Hence, the Synergy Graph learning algorithm itera-
tively improves the Synergy Graph structure and learns the agent capabilities that best match the
observations given.

3.5 Evaluating the Learning Algorithm

We describe the extensive experiments that show the efficacy of our learning algorithm. We first
generate Synergy Graphs that are hidden from the learning algorithm. The observation set O
used for learning is extracted from the hidden model, and then used to learn a new Synergy
Graph, which we compare against the hidden one.

In order to quantitatively measure how well the learning algorithm performs, we used the
log-likelihood of data given the hidden Synergy Graph. During training, the log-likelihood of
the training examples is used to determine whether or not to accept a neighbor Synergy Graph.
In addition, a set of test data is generated, that contains information that is never seen or used
by the learning algorithm. We measured the log-likelihood of the test data given the learned
Synergy Graph in each iteration of simulated annealing.

3.5.1 Learning Unweighted Synergy Graphs

In order to create random Unweighted Synergy Graphs, we first definedN , the number of agents,
and EdgeProbability ∈ (0, 1], the probability of an edge. In our experiments below, we iter-
ated between values of EdgeProbability from 0.1, 0.2, . . . , 0.9 and collated the results across all
EdgeProbability.

Then, the simulator generated the agents’ capabilities. We generated Ca ∼ N (µa, σ
2
a) such

that µa ∈ (−γ, γ) and σ2
a ∈ (0, γ), where γ is a multiplying factor. γ affects how the performance

of the agents are affected by the weight functions. For example, a compatibility of 1
2

reduces a

3.5 EVALUATING THE LEARNING ALGORITHM 43

capability of 4 to 2 (a difference of 2 units), but reduces 40 to 20 (a much larger difference
of 20), which could have effects on the learning algorithm. Thus, we varied γ in our learning
experiments to study the effect of the range of utilities on the performance of our algorithm.

We used 2 compatibility functions, φfraction (Equation 2.1) and φdecay (Equation 2.2). The two
compatibility functions were selected to demonstrate that the algorithms’ performance is similar
regardless of the compatibility function, and because both φfraction and φdecay were intuitive and
easy to understand. For these experiments, we set the half-life h = 3 in φdecay, since |A| was
set to be at most 10, so the compatibility between agents would have a similar range for both
functions.

Log-Likelihoods of Learned Unweighted Synergy Graphs

We first generated an Unweighted Synergy Graph Shidden using the method described above, and
then generated a training observation set Otrain, with sets of 2 and 3 agents, i.e., ∀ OA ∈ Otrain,
2 ≤ |A| ≤ 3. We generated 100 data points from each pair/triple, and learned a Synergy Graph
Slearned from the data.

Then, to test how well our algorithm learns the Unweighted Synergy Graph, we generated a
test observation setOtest using combinations of 4 or greater agents, i.e., ∀OA ∈ Otest, |A| ≥ 4,
that had 1000 observations in total. We then measured the difference in log-likelihoods between
the hidden and learned Unweighted Synergy Graphs, i.e., LL(Otest|Strue)− LL(Otest|Slearned),
where LL(O|S) = LogLikelihood(O, S). A low log-likelihood difference indicates that the
Unweighted Synergy Graph is as likely as the true graph to have produced the observations. We
compared this difference in log-likelihood versus the initial random Synergy Graph used in the
learning algorithm, Sinitial, that had random edges but learned agent capabilities, to observe if
the graph structure has an effect on the log-likelihoods.

Figure 3.4 shows the log-likelihood differences of the learned Unweighted Synergy Graphs
with the 2 compatibility functions compared to the hidden Unweighted Synergy Graph, and
varying the number of agents from 6 to 10. Varying the number of agents does not affect the
log-likelihood error much — the compatibility function and the multiplier γ have greater effects.

Figures 3.5a and 3.5b show the log-likelihood difference of the learned Unweighted Synergy
Graphs and the initial Unweighted Synergy Graphs when |A| = 10. The learned Unweighted
Synergy Graphs are much closer to the hidden Unweighted Synergy Graphs, i.e., the difference
in log-likelihood is close to 0 and orders of magnitude lower than the initial Synergy Graphs. The
error in log-likelihood increases as γ, the multiplying factor, increases, especially for Sinitial, and
shows that γ affects the difficulty of the learning problem (seen from the errors of Sinitial), but
our learning algorithm is capable of significantly reducing this error in Slearned. Furthermore, the

44 CHAPTER 3: LEARNING SYNERGY GRAPHS

Figure 3.4: The error in the learned Unweighted Synergy Graph with varying number of agents
and both compatibility functions.

(a) (b)

Figure 3.5: The error in the learned Unweighted Synergy Graph of 10 agents with heteroge-
neous task performance, using the compatibility function a) φdecay(d) = exp(−d ln 2

3
) and b)

φfraction(d) = 1
d
, compared with the initial Unweighted Synergy Graph used by the learning algo-

rithm, with random structure but learned agent capabilities.

observation set used for learning only included pairs and triples of agents, but the learned graph
had a low log-likelihood difference when testing against data of teams comprising 4 or more
agents, which shows that the structure of the learned graph and the individual agent capabilities
match the hidden Synergy Graph well.

Measuring Team Performance

The goal is to find the optimal multi-agent team, and we use ApproxδOptimalTeam (Algo-
rithm 2) on the learned Synergy Graphs Slearned. The performance of this set of agents is then
computed in the hidden Unweighted Synergy Graph Shidden, and compared against the best and

3.5 EVALUATING THE LEARNING ALGORITHM 45

Learned Graph Hidden Graph
6 agents 0.9990± 0.0073 1.0000± 0
7 agents 0.9989± 0.0045 1.0000± 0.0005
8 agents 0.9994± 0.0032 1.0000± 0
9 agents 0.9996± 0.0028 1.0000± 0

10 agents 0.9995± 0.0036 0.9999± 0.0012

Table 3.1: Effectiveness of multi-agent teams formed.

worst possible combinations of agents. For example, if the set of agents A′ is selected from
Slearned, then the value of A′ is computed on Shidden.

We varied |A|, the number of agents in the Synergy Graph, from 6 to 10, and the algorithm
picked the best 5 agents. We set γ = 1, and ρ = 0.75. Table 3.1 show the effectiveness of
the picked teams (Equation 2.6), where 0 denotes the worst possible combination, and 1 is the
optimal team, and the performance of the selected team on the hidden Unweighted Synergy
Graph Shidden. The worst and optimal teams were discovered by iterating through all possible
combinations of agents and computing their value. It is remarkable that our algorithm finds a
team that obtains a score of at least 0.9989, and has a similar score when the algorithm is run
on the hidden Unweighted Synergy Graph, and thus shows that the learned Unweighted Synergy
Graphs are in fact very close to hidden Unweighted Synergy Graphs that were used to generate
the observation sets, and that ApproxδOptimalTeam can be used to find effective teams.

3.5.2 Learning Representative Weighted Graph Structures

In this set of experiments, we used hidden Weighted Synergy Graphs that were of three rep-
resentative structure types — chain, loop, and star. The learning algorithm does not know the
structure type of the hidden Weighted Synergy Graph, and instead starts with a random graph
structure. Figure 3.6 shows the hidden, initial and final Weighted Synergy Graphs for each of the
representative structure types. When the hidden Synergy Graphs are generated, the edge weights
are random integers in the range [1, 10]. The limits were chosen to provide reasonable bounds
for the learning algorithm’s exploration of structures, while allowing for a significant difference
in compatibility among agents.

It is very interesting that the structure learned closely matches the hidden Synergy Graph,
even though the learning algorithm has no prior regarding such structures. The algorithm ran-
domly generates a graph by creating edges between all possible pairs of vertices with 50% prob-
ability (i.e., EdgeProbability = 0.5 in Algorithm 4).

Since each trial uses a randomly generated hidden graph, log-likelihood values vary from

46 CHAPTER 3: LEARNING SYNERGY GRAPHS

a1 a2 a3 a4 a510 3 1 9

a1 a2 a3 a4 a53 3 6 3

a1

a2

a3a4

a5

6

7

9
10

10

a1

a2

a3a4

a5
9

10
8

1

7

8

a5

a1

a2

a3

a4

7
7 4

9

a5

a1

a2

a3

a4

4
5

4

5

Chain Loop Star

a)

b)

a1 a2 a3 a4 a510 4 1 10

a1

a2

a3a4

a5

3

5

8
6

5

10
a5

a1

a2

a3

a4

5
6 5

8

8

10

7c)

5 9

2

3
8

1

Figure 3.6: Results of the learning algorithm using representative graph structure types. The
agent capabilities are not shown, and the vertices are laid out for visual purposes. a) Examples
of Weighted Synergy Graphs with 5 agents generated to form representative structure types. b)
The initial randomly-generated Weighted Synergy Graph of the learning algorithm. c) Learned
Weighted Synergy Graphs corresponding to the Weighted Synergy Graphs in (a), after 1000
iterations of simulated annealing.

trial to trial. Thus, we scaled the log-likelihood numbers to be between 0 and 1, where 0 is the
log-likelihood of the initial guess, and 1 means that the log-likelihood of the learned Weighted
Synergy Graph matches that of the hidden one used to generate the data. Figure 3.7 shows the
learning curves of simulated annealing for 1000 iterations with 10 agents and averaged over 100
trials per structure type. While the scaled log-likelihood of star rises very quickly compared to
loop and chain, the latter two outperform star after 600 iterations. The final score of star, loop,
and chain are 0.93, 0.95 and 0.96 respectively, which shows that the learned Weighted Synergy
Graphs closely matches the hidden ones. The experiments were run in Java using MATLAB
as the least-squares solver, on a Intel Quad-Core 2.4 GHz machine. On average, the learning
algorithm took 20.6± 0.3 seconds to perform 1000 iterations of simulated annealing to learn the
Weighted Synergy Graph with 10 agents, and was consistent across the structure types.

3.5 EVALUATING THE LEARNING ALGORITHM 47

Figure 3.7: Performance of the learning algorithm with different Weighted Synergy Graph struc-
ture types, averaged over 100 trials.

3.5.3 Learning Random Weighted Synergy Graphs

We randomly generated Weighted Synergy Graphs, to further explore the space of possible graph
structures. We varied the number of agents from 10 to 15, and varied the agent capabilities C
with a scale-factor γ. Each agent capability Ci ∼ N (µi, σ

2
i) was randomly generated such that

µi ∈ (γ
2
, 3γ

2
) and σ2

i ∈ (0, γ2). Thus, a higher value of γ creates a larger range of possible agent
capabilities, and we wanted to investigate if it would have any effect on the learning algorithm.

Figure 3.8 shows the performance of the learning algorithm with a varying number of agents,
and γ = 10, averaged over 100 trials per number of agents. The shape of the learning curve
is consistent, and the performance of the learning algorithm decreases slightly as the number of
agents increases. Table 3.2 shows the final scaled log-likelihood of the learned Weighted Synergy
Graph as the number of agents and scale-factor γ varies. In all cases, the scaled log-likelihood
is 0.89 or higher, which indicates that the learned Weighted Synergy Graph closely matches the
hidden one. The scale-factor γ has little to no effect of the final learning outcome, while an
increase in the number of agents decreases the score slightly.

In the experiments above, we used the compatibility function φfraction. Figure 3.9 shows the
learning curves of the learning algorithm with the compatibility functions φfraction and φdecay.
Although φfraction increases more slowly than φdecay, the final score of the algorithm is similar
after all 1000 iterations, which indicates that while the compatibility function has an effect on
the learning rate, the final outcome is similar.

48 CHAPTER 3: LEARNING SYNERGY GRAPHS

Figure 3.8: Performance of the learning algorithm on random weighted graph structures with
varying number of agents, averaged over 100 trials.

Figure 3.9: Learning curves of two compatibility functions — φdecay and φfraction, averaged over
100 trials.

agents
Scale-factor of agent capabilities (γ)
1.0 2.5 5.0 7.5 10.0

10 0.96 0.95 0.97 0.97 0.96
11 0.96 0.95 0.95 0.95 0.95
12 0.93 0.93 0.94 0.93 0.94
13 0.93 0.93 0.93 0.92 0.93
14 0.90 0.93 0.93 0.92 0.91
15 0.89 0.90 0.91 0.91 0.91

Table 3.2: Scaled log-likelihood of the learned Weighted Synergy Graphs, varying the number
of agents, and γ, the scale-factor of agent capabilities.

3.5 EVALUATING THE LEARNING ALGORITHM 49

3.5.4 Comparing the Capability Learning Algorithms

The experiments above learned Unweighted and Weighted Synergy Graphs using LearnCa-

pabilityLeastSquares, the agent capability learner that uses a least-squares solver. In
the experiments below, we evaluate the performance of using the non-linear solver to learn
agent capabilities with LearnCapabilityNonLinear. In all the experiments below, we
use Weighted Synergy Graphs, and we believe the results are representative of Unweighted Syn-
ergy Graphs as well.

First, we varied the number of agents N from 10 to 15, and generated 100 hidden Weighted
Synergy Graphs Shidden with γ = 100 for each value of N . We generated the training observa-
tion set Oall by retrieving 15 samples of performance for each agent pair and triple. Next, we
generated subsets of Oall by using up to one sample per agent pair and triple, and limiting the
total number of agent teams to 50 and 100, forming the training observations sets O50 and O100

respectively. Using the graph structure of the hidden Weighted Synergy Graph andOall, Learn-
CapabilityLeastSquares learned a Weighted Synergy Graph Sls, and Oall, O50, and O100

were used with LearnCapabilitiesNonLinear to learn Snl, S50, and S100 respectively.
To evaluate the learned Weighted Synergy Graphs, we generated the test observation set Otest by
retrieving 30 samples of performance for every agent team that had greater than 3 members. The
log-likelihood of Otest given the learned Weighted Synergy Graph was then computed.

Figure 3.10 shows the log-likelihoods of the learned Weighted Synergy Graphs, compared to
the log-likelihood of the hidden Weighted Synergy Graph. The log-likelihood of Sls is close to
that of Shidden, showing that the least-squares solver is able to effectively learn the agent capa-
bilities. The log-likelihood of Snl is slightly above half of Sls even though both used the same
observation set, reflecting that the non-linear solver generally does more poorly than the least-
squares solver. There are two main reasons for the discrepancy. First, the least-squares solver
solves the means and variances of the agent capabilities separately. Second, the least-squares
solver uses the synergy equations to compute the means and variances directly, while the non-
linear solver has to solve the actual log-likelihood equation that involves the Normal distribution
probability density function.

Although the non-linear solver does not perform as well as the least-squares solver, it has
a major advantage: it can learn agent capabilities even when the observation set is small. The
log-likelihoods of S50 and S100 are considerably lower than Sls and Snl, but they only used 50 and
100 observations respectively, compared to 15 · (

(
N
2

)
+
(
N
3

)
) for Sls and Snl. For example, where

N = 15, Sls and Snl had 8400 observations. Hence, the non-linear solver provides a method to
learn agent capabilities with varying number of observations, with a trade-off between accuracy
and observation size.

50 CHAPTER 3: LEARNING SYNERGY GRAPHS

Figure 3.10: Log-likelihoods of learned Weighted Synergy Graphs using a least-squares solver
and non-linear solver to learn the agent capabilities, compared to the log-likelihood of the hidden
Weighted Synergy Graph.

3.6 Chapter Summary

This chapter presented LearnSynergyGraph, the Synergy Graph learning algorithm that it-
eratively improves the Synergy Graph structure and learns the agent capabilities. The only input
to the algorithm is a set of observations of team performance, and the algorithm begins by gener-
ating a random Synergy Graph structure and learning the agent capabilities using the generated
structure and observation set. Next, it enters an approximation loop, where it iteratively modifies
the Synergy Graph structure and re-learns the agent capabilities, and accepts the new Synergy
Graph candidate based on the approximation algorithm (i.e., based on the difference in log-
likelihoods and temperature schedule in simulated annealing). This chapter presented Learn-
CapabilitiesLeastSquares and LearnCapabilitiesNonLinear, that learn the
agent capabilities using an existing Synergy Graph structure and the given observation set. The
former algorithm uses a least-squares solver, while the latter uses a non-linear solver. The effi-
cacy of the learning algorithm was demonstrated with a variety of experiments on Unweighted
Synergy Graphs and Weighted Synergy Graphs.

Chapter 4

Iteratively Learning a New Teammate

The Synergy Graph model is learned from data, with the underlying assumption that data about
all the agents are available initially. This chapter focuses on how to incorporate new information
into the model, and introduces the AddTeammateToSynergyGraph algorithm, that uses ob-
servations of a new agent working with the previous agents, to add the new agent into an existing
Synergy Graph [Liemhetcharat and Veloso, 2013b]. This chapter presents three heuristics for
generating the edges that connect the new agent to the previous agents, and experiments that
compare these heuristics. This chapter also compares different learning approaches: completely
re-learning the SynergyGraph with LearnSynergyGraph, learning all but one agent with
LearnSynergyGraph followed by one agent with AddTeammateToSynergyGraph, and
learning all the agents incrementally with AddTeammateToSynergyGraph.

4.1 Learning Algorithm for Adding a Teammate

Recall that A = {a1, . . . , aN} is the set of agents initially known. The learning algorithm
LearnSynergyGraph assumes that the observation set O about teams in A is initially avail-
able, and the algorithm learns a Synergy Graph model S from O.

Suppose there is a new agent aN+1, and let the new set of agents be A+ = A ∪ {aN+1}.
Also suppose that observations about the new agent are available, and let ON+1 be the set of new
observations. We will elaborate on the details of ON+1 later. The goal of this chapter is to learn
an updated synergy graph S+ that models the agents A+.

LearnSynergyGraph is capable of learning a synergy graph to model A+: by using the
union of all the observations O+ = O ∪ ON+1. However, using O+ to learn a new model has
two main drawbacks. First, the previously learned Synergy Graph S is discarded. Second, the
runtime is high — the model of all N + 1 agents and their capabilities have to be learned.

51

52 CHAPTER 4: ITERATIVELY LEARNING A NEW TEAMMATE

a1 a2

a4 a5

a3

a6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

Observations ON+1

Synergy Graph with a1, . . . , aN

a1 a2

a4 a5

a3

a6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

a7

2

3

a1 a2

a4 a5

a3

a6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

a7

3

3
C7

Add aN+1

Learn aN+1’s capability

Modify edges of aN+1

Figure 4.1: The learning algorithm AddTeammateToSynergyGraph adds a new teammate
into a Synergy Graph (a Weighted Synergy Graph is used in this figure). Simulated annealing is
performed, where edges of aN+1 are modified, and the capability CN+1 is learned.

Our approach is to use the previously learned synergy graph S to jump-start the learn-
ing. We assume that S models the interactions and capabilities of the agents in A, and only
seek to learn aN+1’s capability, and its interactions with the other agents, i.e., the weighted
edges that connect aN+1 to the other agents. While we consider a new agent aN+1, our ap-
proach can be applied to re-learning an existing agent’s capabilities and synergy, i.e., ai ∈
{a1, . . . , aN}. For example, the agent ai has a changed capability due to a broken sensor since
the original observations were made. Re-learning ai’s capability and synergy is done by setting
A′ = {a1, . . . , ai−1, ai+1, . . . , aN} and a′N+1 = ai. In such a situation, The existing Synergy
Graph S would only contain the agents in A′ — if removing ai’s edges disconnects the graph,
edges can be added with weights equal to the shortest distance between vertices before removing
ai.

Figure 4.1 shows our learning process, and Algorithm 7 shows the pseudo-code. The key
difference in AddTeammateToSynergyGraph versus LearnSynergyGraph is that the
former only considers edges that connect aN+1 to other agents in A, and only learns aN+1’s
capability.

4.1 LEARNING ALGORITHM FOR ADDING A TEAMMATE 53

Algorithm 7 Add a new teammate to a Synergy Graph
AddTeammateToSynergyGraph(S, aN+1, ON+1)

1: // Add a new vertex to represent aN+1

2: V + ← V ∪ aN+1

3: // Generate initial edges to connect aN+1 to A
4: Einitial ← GenerateTeammateEdges(S, aN+1, ON+1)
5: E+ ← E ∪ Einitial

6: // Form the new Synergy Graph structure
7: G+ ← (V +, E+)
8: // Learn aN+1’s capability
9: CN+1 ← LearnTeammateCapability(G+, ON+1)

10: // Form the initial Synergy Graph
11: S+ ← (G+, C ∪ CN+1)
12: score← LogLikelihood(S+, ON+1)
13: // Simulated annealing loop
14: for k = 1 to kmax do
15: G′ ← NeighborTeammateEdges(G+, aN+1)
16: C ′N+1 ← LearnTeammateCapability(G′, ON+1)
17: S ′ ← (G′, C ∪ C ′N+1)
18: score′ ← LogLikelihood(S ′, ON+1)
19: if P(score, score′, temp(k, kmax)) > random() then
20: S+ ← S ′

21: score← score′

22: end if
23: end for
24: return S+

54 CHAPTER 4: ITERATIVELY LEARNING A NEW TEAMMATE

There are three main components to AddTeammateToSynergyGraph: generating the
initial edges (GenerateTeammateEdges), generating neighbor edges in the simulated an-
nealing loop (NeighborTeammateEdges), and learning aN+1’s capability (LearnTeam-
mateCapability) given the structure of the graph. We will explain each of these three func-
tions in detail next.

4.2 Generating the Teammate’s Initial Edges

The goal of the GenerateTeammateEdges function (Line 4 of Algorithm 7) is to generate
edges that connect the new vertex aN+1 to the other vertices (a1, . . . , aN) in the Synergy Graph.
Recall that a Synergy Graph is a connected graph, and so aN+1 must have at least one edge that
connects it to another vertex.

One method is to randomly generate these edges. Algorithm 8 shows how this is done. A
probability 0 < p ≤ 1 is defined, and for every possible edge connecting aN+1 with another
vertex, a dice is thrown and the edge is created with probability p. If the edge is weighted, then
the weight of the created edge is also randomly chosen to be an integer between wmin and wmax.
The while-loop ensures that at least one edge is created so aN+1 is connected to some other
vertex.

While GenerateRandomTeammateEdges suffices to create an initial guess, it requires
a defined probability p, which may be domain-specific and difficult to ascertain. An improved
method, GenerateTeammateEdgesWithDensity (Algorithm 9), first estimates p by ex-
amining the existing Synergy Graph S and determining the density of edges (i.e., number of
edges divided by the number of possible edges) in that graph. GenerateTeammateEdges-
WithDensity makes the following assumption:

Assumption 4.2.1. The number of edges connecting the new agent aN+1 with other agents is

similar to the edge density of S.

Line 2 of Algorithm 9 only counts edges with two unique end-points, so that self-looping
edges are not counted (which are present in some Synergy Graphs such as the WeSGRA model
described in Chapter 5).

4.2 GENERATING THE TEAMMATE’S INITIAL EDGES 55

Algorithm 8 Generate edges with random probability p
GenerateRandomTeammateEdges(S, aN+1, p)

1: Enew ← ∅
2: while Enew = ∅ do
3: Enew ← ∅
4: for all a ∈ {a1, . . . , aN} do
5: if p > random() then
6: if isUnweightedSynergyGraph() then
7: Enew ← Enew ∪ {(a, aN+1)}
8: else if isWeightedSynergyGraph() or isWeSGRA() then
9: w ← randint(wmin, wmax)

10: Enew ← Enew ∪ {(a, aN+1, w)}
11: else if isSGRaCR() or isρ-SGraCR() then
12: wintra ← randint(wmin, wmax)
13: winter ← randint(wmin, wmax)
14: Enew ← Enew ∪ {(a, aN+1, wintra, winter)}
15: end if
16: end if
17: end for
18: end while
19: if isWeSGRA() or isSGRaCR() or isρ-SGraCR then
20: w ← randint(wmin, wmax)
21: Enew ← Enew ∪ {aN+1, aN+1, w}
22: end if
23: return Enew

Algorithm 9 Determine density of other edges and generate new edges
GenerateTeammateEdgesWithDensity(S, aN+1)

1: // S = ((V,E), C)
2: n′ ← |{(vi, vj, wi,j) ∈ E | vi 6= vj} |
3: density← n′

(N2)
4: Enew ← GenerateRandomTeammateEdges(S, aN+1, density)
5: return Enew

56 CHAPTER 4: ITERATIVELY LEARNING A NEW TEAMMATE

The third method to generate the initial edges also uses the existing edges of the synergy
graph S. However, instead of computing the density of edges, GenerateSimilarTeamma-
teEdges (Algorithm 10) finds the agent ai ∈ A most similar to aN+1, and duplicates all its
edges. This method is similar to the nearest-neighbor heuristic in Machine Learning classifica-
tion, but the difference is that we are interested in duplicating the edges of the nearest neighbor.
The similarity between agents is computed using the observations in ON+1, which contain ob-
servations of teams containing aN+1. For example, suppose that one observation o ∈ ON+1 is
(A′, v), which indicates a team {aN+1, aj} = A′ ⊆ A that had a performance of v. A new
synthetic observation o′ = ({ai, aj} , v) is created where aN+1 is replaced with ai. All such
synthetic observations form a new set O′, and the log-likelihood of O′ given S is computed. The
most similar agent to aN+1 is then the one with the highest log-likelihood. GenerateSimi-
larTeammateEdges makes the following assumption:

Assumption 4.2.2. The new agent aN+1 is similar to another agent ai already present in the

Synergy Graph S, and hence has similar edges as ai.

Algorithm 10 Replicate edges of most similar agent
GenerateSimilarTeammateEdges(S, aN+1, ON+1)

1: aclosest ← a1

2: score← −∞
3: for all ai ∈ A do
4: O′ ← ∅
5: for all o = (A′, v) ∈ ON+1 s.t. ai /∈ A′ do
6: O′ ← O′ ∪ {(A′ \ {aN+1} ∪ {ai} , v)}
7: end for
8: score′ ← LogLikelihood(S,O′)
9: if score′ > score then

10: aclosest ← ai
11: score← score′

12: end if
13: end for
14: Enew ← ∅
15: for all e = (ai, aj, wi,j) ∈ E s.t. ai = aclosest do
16: Enew ← Enew ∪ {(aN+1, aj, wi,j)}
17: end for
18: return Enew

4.3 GENERATING NEIGHBOR EDGES 57

4.3 Generating Neighbor Edges

The three functions (GenerateRandomTeammateEdges, GenerateTeammateEdges-
WithDensity, and GenerateSimilarTeammateEdges) described previously create an
initial guess of the edges connecting aN+1 to the other vertices in the Synergy. During the
simulated annealing search, new candidate Synergy Graph structures are generated, so as to
effectively explore the space of all possible edges.

We use the same four actions of neighbor generation as NeighborStructure in Learn-
SynergyGraph (Algorithm 3), except that we only consider edges involving aN+1, i.e., an
edge e = (aN+1, ai, wi,j):
• Remove an existing edge if it does not disconnect aN+1,

• Add a new edge with a randomly-generated weight w,

• Increase the weight of an edge by 1, subject to wmax,

• Decrease the weight of an edge by 1, subject to wmin.

There are (wmax − wmin + 1)N possible edges that connect aN+1 to the other vertices, and so
it is infeasible to consider all combinations of edges. Through these four actions, we can explore
the space of such edges iteratively. Further, since only edges involving aN+1 are considered,
a much smaller and restricted space of edges are considered compared to all possible edges in
NeighborStructure. Thus, the space is better explored with the same number of simulated
annealing iterations. We compare the effectiveness of searching this restricted space versus the
entire space of edges later.

4.4 Learning the Teammate’s Capability

The Synergy Graph learning algorithm learns the capabilities of all the agents in the synergy
graph, using two algorithms: LearnCapabilitiesLeastSquares and LearnCapabi-
litiesNonLinear. The former requires thatO (the set of observations involving a1, . . . , aN)
contains all teams of size 2 and 3, with multiple observations per team. A Normal distribution
per observed team is estimated using the data, and a matrix least-squares solver is used to solve
for the means and variances of the agent capabilities. In LearnCapabilitiesNonLinear,
O contains samples of team performance, and each observation in O forms a log-likelihood
expression involving the means and variances of the agents in the team. A non-linear solver then
solves for the agent capabilities using the expressions to maximize the log-likelihood.

The LearnTeammateCapability algorithm learns agent aN+1’s capability using the
Synergy Graph structure and the observation set ON+1. We assume that the capabilities of

58 CHAPTER 4: ITERATIVELY LEARNING A NEW TEAMMATE

a1, . . . , aN are known, so the only unknowns are µN+1 and σ2
N+1, the mean and variance of

aN+1’s capability, i.e., CN+1 ∼ N (µN+1, σ
2
N+1).

We use two techniques to learn aN+1’s capability, which are modified from LearnCapa-

bilitiesLeastSquares and LearnCapabilitiesNonLinear. If ON+1 contains ob-
servations of all teams of size 2 and 3 involving aN+1, i.e., ∀o = (t, v) ∈ ON+1, aN+1 ∈ t, then
we use a matrix least-squares operation to solve for CN+1. Otherwise, we form log-likelihood
expressions and use a non-linear solver.

4.5 Analyzing the Iterative Learning Algorithm

We contributed three functions for generating the edges of the Synergy Graph to initialize the
learning algorithm to include agent aN+1 into the Synergy Graph:
• GenerateRandomTeammateEdges, that generates random edges with a given proba-

bility 0 < p ≤ 1;

• GenerateTeammateEdgesWithDensity, that generates edges randomly based on
the density of edges in the Synergy Graph containing a1, . . . , aN ;

• GenerateSimilarTeammateEdges, that replicates the edges of the most similar
agent to aN+1.

We also contributed two functions to learn the agent aN+1’s capability, using a matrix least-
squares computation, and using a non-linear solver. In this section, we compare the three edge
generation functions and two capability learning functions to analyze their characteristics and
performance.

4.5.1 Experimental Setup

Figure 4.2 shows the process of our experiments. We first randomly generate a Weighted Syn-
ergy Graph S∗ with N + 1 agents, and label the vertices v1 to vN+1, such that ∀1 ≤ i ≤ N + 1,
the subgraph with vertices v1, . . . , vi remains connected. In particular, the subgraph containing
v1, . . . , vN forms the pre-existing Weighted Synergy Graph to our learning algorithm (S in the
input to Algorithm 7). Figure 4.3 shows the four different graph structures of Weighted Synergy
Graphs created: chain, loop, star, and random structure (where edges are added probabilisti-
cally). For each graph structure type, we generate 50 Weighted Synergy Graphs, and hence 200
Weighted Synergy Graphs S∗ are generated in total.

From the Weighted Synergy Graph S∗, we generate the observation set ON+1. For the ex-
periments using the matrix least-squares agent capability learner, we use all pairs and triples of

4.5 ANALYZING THE ITERATIVE LEARNING ALGORITHM 59

Observations ON+1

S∗ (models r1, . . . , rN+1)

v1 v2

v4 v5

v3

v6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

v1 v2

v4 v5

v3

v6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

v7

4

3
C ′

7

Extract S (models r1, . . . , rN)

Learn S+

v1 v2

v4 v5

v3

v6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

v7

5

3
C7

Generate observations

Compare S∗ and S+

Figure 4.2: The experimental process to compare the initial edge generation functions and capa-
bility learning methods.

v1 v2

v4

v3

4

5

2

C1 C2

C3

C4

v1 v2

v4

v3
4

5

2

C1 C2

C3

C4

v1 v2

v4

v3
4

1

5

C1 C2

C3

C4

v1 v2

v4

v3

1

2

4

C1 C2

C3

C4

3

2

Chain Loop

Star Random

Figure 4.3: Examples of the four Weighted Synergy Graph structure types generated: chain,
loop, star, and random.

60 CHAPTER 4: ITERATIVELY LEARNING A NEW TEAMMATE

agent teams that contain aN+1, i.e., ∀o = (t, v) ∈ ON+1, t = (aN+1, ai) or t = (aN+1, ai, aj).
The value v is sampled from the synergy of t (Definition 2.4.3). For each team, 30 samples are
generated so 30 different observations are present per team in ON+1 (there are O(N2) teams).
We used 30 samples per team so the computed sample distributions of team performance are
accurate. For the experiments using the non-linear solver, we generate 25 samples of team per-
formances, i.e., |ON+1| = 25. We used 25 samples for the non-linear solver as the only unknowns
are the mean and variance of aN+1’s capability so 25 samples should be sufficient for learning.

Algorithm 7 then adds agent aN+1 into the Weighted Synergy Graph to form S+. To compare
how close S∗ and S+ are, we use the KL-divergence of the synergy of possible teams: we com-
pute the synergy (a Normally-distributed variable) of all teams containing aN+1, i.e., A ⊂ A+

s.t. |A| ≥ 2 and aN+1 ∈ A and calculate the KL-divergence of the synergy using the learned S+

from the actual S∗. The difference between S∗ and S+ is defined as the median KL-divergence
of the synergies:

D(S∗, S+) = medianA(DKL(S∗(A) ‖ S+(A))), (4.1)

where A ⊂ A+ s.t. |A| ≥ 2 and aN+1 ∈ A, and S∗ and S+ use S∗ and S+ respectively.

The learning algorithm uses simulated annealing, and anneals with a fixed number of itera-
tions, which may have an impact on the learned Weighted Synergy Graph. Hence, we ran the
algorithms for both 50 and 100 iterations of simulated annealing, to determine its effects. Also,
there is a random element to the learning algorithm (from the random generation of neighbor
structures), and so we repeated the experiment 10 times per hidden S∗, for a total of 2000 trials
(4 graph types, 50 Weighted Synergy Graphs per type, 10 trials per Weighted Synergy Graph) for
each setup of the learning algorithm (capability learner and initial edge generation). We chose to
perform 10 trials per hidden S∗ to have a sense of the variability in the result, while keeping the
total number of trials manageable.

4.5.2 Comparison Results

Table 4.1 shows the results of these experiments. We set N = 14, so aN+1 is the 15th agent
in the Weighted Synergy Graph that is learned. There were four Weighted Synergy Graph
structure types: Chain; Loop; Star; and Random. We generated the initial edges of aN+1 us-
ing three heuristics: Random (GenerateRandomTeammateEdges); Density (Generate-
TeammateEdgesWithDensity); and Most Similar (GenerateSimilarTeammateEd-
ges). We used two agent capability learners, Least-squares and Non-linear, with 50 and 100
iterations of simulated annealing.

4.5 ANALYZING THE ITERATIVE LEARNING ALGORITHM 61

Capability Learner Initial Edges
Weighted Synergy Graph Structure Type
Chain Loop Star Random

Least-squares
(50 iterations)

Random 16.0 47.8 3.8 7.9
Density 14.9 33.8 4.6 7.2

Most Similar 9.4 21.8 2.2 7.5

Least-squares
(100 iterations)

Random 14.4 32.4 3.3 5.8
Density 14.8 31.6 2.9 8.7

Most Similar 9.3 18.6 1.7 6.8

Non-linear
(50 iterations)

Random 75.3 200.0 12.7 16.6
Density 77.3 162.0 14.2 28.2

Most Similar 40.9 97.1 14.4 17.7

Non-linear
(100 iterations)

Random 91.2 74.0 13.9 24.2
Density 69.9 135.2 15.8 15.5

Most Similar 45.9 72.7 14.8 17.6

Table 4.1: Average difference D(S∗, S+) between the hidden and learned Weighted Synergy
Graphs given different hidden structure types and capability learning algorithms.

Comparing Agent Capability Learners

Across the capability learning functions, the average difference between the hidden Weighted
Synergy Graph and the learned Weighted Synergy Graph generally improves as the number of
iterations of simulated annealing goes from 50 to 100. However, when the difference is already
small (e.g., with the Star structure type), more iterations do not improve the algorithm’s perfor-
mance. Between the two types of capability learners, Least-squares has a smaller difference than
Non-linear, because Least-Squares has much more data to learn from.

Comparing Initial Edge Generation Heuristics

The three heuristics used for the initial edge generation have varying performance. The Most

similar heuristic performs the best, learning the closest Weighted Synergy Graph across the ca-
pability learners and number of iterations. The Random and Density heuristic perform similarly,
which is due to the fact that the underlying algorithm is similar except for a different density p
used.

Comparing Weighted Synergy Graph Structure Types

Between the four Weighted Synergy Graph structure types, Star structures were the easiest to
learn, followed by Random, while Chain and Loop structures have similar performance. The
learning performed well on Random structures due to the random search in the simulated an-

62 CHAPTER 4: ITERATIVELY LEARNING A NEW TEAMMATE

nealing iterations, as seen from the improvement in performance between 50 and 100 iterations.
The best learning performance on the Star structure was probably because the pairwise distances
between agents do not change much with the addition or removal of new edges. In contrast, the
Chain and Loop structures are more difficult to learn, since an extra edge can easily “disrupt” the
structure and change the shortest distance between existing agents.

4.5.3 Comparing Different Learning Approaches

In the previous section, we analyzed the different heuristics and capability learning functions of
our learning algorithm. In this section, we compare the performance of our learning algorithm
against the baseline of the LearnSynergyGraph algorithm.

The LearnSynergyGraph algorithm assumes that the observation set of all the agents
a1, . . . , aN+1 are available initially (O+ = O ∪ ON+1), while AddTeammateToSynergy-
Graph only requires the observations of aN+1 interacting with the other agents (ON+1), but
assumes the existence of a Synergy Graph modeling a1, . . . , aN and adds aN+1 into the Synergy
Graph.

To compare these learning algorithms, we did the following: we first generate a hidden
Weighted Synergy Graph S∗ with N + 1 agents, and label the vertices v1 to vN+1 such that
∀1 ≤ i ≤ N +1, the subgraph with vertices v1, . . . , vi remains connected, similar to the previous
section. The observation sets O and ON+1 are then generated using S∗. We used 3 learning
approaches to learn the Weighted Synergy Graph. First, in Completely Relearn, the Learn-
SynergyGraph algorithm is run with the complete observation set O+. In Learn N then Add

Teammate, we use LearnSynergyGraph to learn a Weighted Synergy Graph ofN agents (us-
ing the observation set O, then AddTeammateToSynergyGraph to learn the N + 1 agent’s
capability. In the third approach, Completely Iterative, we assume that the Weighted Synergy
Graph modeling a1 and a2 is given (the subgraph of S∗ containing two vertices), and iteratively
add a3, a4, and so on until aN+1, using AddTeammateToSynergyGraph.

The learned Weighted Synergy Graph from the different learning approaches are compared
to the hidden one S∗ using the distance function in the previous subsection (Equation 4.1). We
varied the number of agents from 5 to 10, and Table 4.2 shows the results. Completely Relearn

performs the best, as expected, with a low difference of 1.7 with 5 agents to 17.9 with 10 agents.
The difference increases with the number of agents as the learning problem becomes more dif-
ficult. In comparison, Learn N then Add Teammate has a higher difference. However, the rate
of increase in error is lower than completely relearning, which suggests that when N is large,
Learn N then Add Teammate will perform comparably to Completely Relearn. Also, the runtime
cost of Completely Relearn is much higher than that of Learn N then Add Teammate. The last

4.6 CHAPTER SUMMARY 63

Synergy Graph Learner
Number of Agents

5 6 7 8 9 10
Completely Relearn 1.7± 5.1 4.4± 9.3 7.8± 12.8 13.0± 15.3 15.1± 16.3 17.9± 18.6

Learn N then Add Teammate 19.2± 52.9 18.5± 28.7 22.3± 28.1 24.0± 25.0 33.0± 63.5 29.4± 28.1
Completely Iterative 28.2± 47.9 33.3± 37.5 33.4± 31.2 43.0± 36.2 48.8± 38.9 52.3± 44.3

Table 4.2: Average difference between the hidden and learned Weighted Synergy Graphs using
different learning methods.

approach, Completely Iterative, has much higher error than the other two approaches, which is
due to the fact that errors accumulate as more agents are learned iteratively. Hence, it would
be recommended to use Completely Relearn at certain intervals, so as to reset the accumulated
errors, albeit at high runtime cost, and use iterative learning in small steps.

4.6 Chapter Summary

This chapter presented AddTeammateToSynergyGraph, an algorithm that adds a new agent
teammate into an existing Synergy Graph. The algorithm assumes that observations of the new
teammate and existing agents are available, and uses those observations to add the teammate into
the Synergy Graph. To do so, a vertex representing the new teammate is created in the Synergy
Graph, and edges are generated to connect the vertex to the other vertices in the Synergy Graph.
Simulated annealing is then performed to change the edges and converge on the best edges for
the new vertex. This chapter introduced three heuristics for generating the initial edges, Gener-
ateRandomTeammateEdges, that randomly generates edges given a prior probability; Gen-
erateTeammateEdgesWithDensity, that is similar to the previous heuristic except it esti-
mates the edge probability using the existing Synergy Graph; and GenerateSimilarTeam-
mateEdges, that finds an agent in the existing Synergy Graph that is the most similar to the
new teammate, and replicates its edges. This chapter empirically compared the three heuristics,
and showed that GenerateSimilarTeammateEdges performed the best over a variety of
Weighted Synergy Graph structure types. This chapter also evaluated three different methods to
learn a Synergy Graph: learning all vertices from scratch with LearnSynergyGraph, learning
all but one vertex with LearnSynergyGraph then one iteration of AddTeammateToSyn-
ergyGraph, and learning all the vertices with AddTeammateToSynergyGraph. The re-
sults showed that learning the entire Synergy Graph with LearnSynergyGraph performs the
best, but has a high runtime cost. Comparatively, learning all but one performs only slightly
worse but improves the runtime, and learning all the vertices iteratively with AddTeammate-
ToSynergyGraph performs poorly when there is a large number of agents.

64 CHAPTER 4: ITERATIVELY LEARNING A NEW TEAMMATE

Chapter 5

Modifications to the Synergy Graph Model

This chapter presents modifications to the Synergy Graph model that apply it to other problems
such as role assignment and selecting the modules of each robot in a multi-robot team. This
chapter first presents a modification to the Synergy Graph model, where each agent has mul-
tiple capabilities, and how the new Weighted Synergy Graph for Role Assignment (WeSGRA)
model applies to role assignment problems [Liemhetcharat and Veloso, 2012b]. This chapter next
presents modifications on the edges of the Synergy Graph, that model the interactions of robot
modules within a robot and across robots in a multi-robot team, to form the Synergy Graph for
Configurable Robots (SGraCR) model [Liemhetcharat and Veloso, 2013c]. This chapter also ex-
plores non-transitive relationships in the Synergy Graph model, i.e., where the shortest distance
between agents is not always used in the computation of synergy, and how the non-transitive
relationships affect the expressiveness of Synergy Graphs.

5.1 Agents with Multiple Capabilities

In the Synergy Graph model, each agent has an individual capability that is represented by a
Normally-distributed variable, indicating the agent’s contribution to the team performance. In
this section, we are interested in agents that have multiple capabilities. Specifically, an agent can
perform multiple roles, and the agent has a different capability for each role. The goal is to find
a role assignment, i.e., a mapping from roles to agents, so that each role is assigned to one agent.
The performance of the multi-agent team depends on which agents are assigned to which roles.

65

66 CHAPTER 5: MODIFICATIONS TO THE SYNERGY GRAPH MODEL

Motivating Role Assignment Scenario

As a motivating scenario, suppose that an earthquake has occurred in a city, and civilians are
trapped and require rescue. Fires have started, and fallen rubble has created road blockages. An
urban search-and-rescue (USAR) team is deployed in the city, with the goal of saving as many
civilians as possible, and also to minimize fire damage to the city. There are three roles for the
USAR agents: ambulances that can save civilians, fire engines that put out fires, and police cars
that clear rubble from roads.

Many USAR agents from around the world arrive at the disaster scene ready to help, but due
to safety concerns, only a small number of USAR agents can be deployed. In particular, there
is a fixed set of locations within the city that the USAR agents will be deployed from. Because
the USAR agents come from different places, many have not worked together before and it is
unknown how well they will be able to coordinate. Thus, the goal is to pick the best ad hoc team
comprising USAR agents from different sources.

5.1.1 Role Assignment Problem Definition

In the role assignment problem, we use a set of agent types:

Definition 5.1.1. The set of agent types is A = {a1, . . . , aN}.
An agent type is a combination of the hardware of a robot and the software (i.e., the al-

gorithms) controlling it. For example, physically-identical robots running different algorithms
would be represented as different agent types, while physically-identical robots running the same
algorithms would be represented by a single a ∈ A. Hence, N is the number of possible com-
binations of hardware and software, and not the total number of robots available. With software
agents, each agent type a ∈ A is an algorithm, and N is the number of algorithms. When an
algorithm is instantiated for a particular role, an agent is created from the agent type.

Definition 5.1.2. The set of roles is R = {r1, r2, . . .}.
The task is sub-divided into multiple roles — we assume that the roles are domain-specific

and given: in the USAR scenario, these roles indicate both the type of robot (ambulance, fire
engine, police car) and its initial location in the city.

Using agent types and roles, we define a role assignment policy:

Definition 5.1.3. A role assignment policy π : R→ A is an assignment of roles to agent types.

For any role assignment policy π, every role must be assigned to an agent type. It is valid for
the same agent type a ∈ A to be assigned multiple roles, i.e., ∃rα, rβ ∈ R s.t. π(rα) = π(rβ).
Such an assignment means that multiple identical agents (e.g., robots with identical hardware
and software) will each perform the role.

5.1 AGENTS WITH MULTIPLE CAPABILITIES 67

The agents act in a dynamic world, so the performance Pπ of a role assignment policy π is
non-deterministic, similar to the performance of teams in the team formation problem. Observa-
tions oπ of the performance Pπ of some role assignment policies π are available. In the USAR
scenario, oπ would depend on the number of civilians saved and the state of the buildings in the
city.

Since this is an ad hoc scenario, the capabilities of the agent types (how well they perform
at different roles) are initially unknown, in addition to how well different agent types perform
together in a team. The goal is to find the δ-optimal role assignment policy, that is similar to the
δ-optimal team in the team formation problem:

Definition 5.1.4. The δ-optimal role assignment policy is π∗δ : R → A such that there exists

some utility u where π∗δ obtains a utility of at least u with probability δ, and the probability of

any other role assignment policy π doing so is at most δ:

P(Pπ∗δ ≥ u) = δ and P(Pπ ≥ u) ≤ δ ∀π

The key differences between the role assignment problem and team formation problem are:

1. A team is an assignment of roles to agent types, and not a selection of agents;

2. The size of a team is fixed, i.e., |R|, and every role must be assigned to an agent type.

5.1.2 Weighted Synergy Graph for Role Assignment (WeSGRA) Model

There are N agent types and |R| roles, and the goal is to find the optimal role assignment pol-
icy π∗δ . We assume that the performance of a role assignment policy is represented by a Normal
distribution, similar to the performance of teams in the Synergy Graph model.

Each agent type ai ∈ A is associated with |R| Normal distributions
{
Ci,1, . . . , Ci,|R|

}
, where

each Ci,α is the individual capability of ai at role rα, i.e., how well the agent type performs at
the particular role. In the Synergy Graph model, agent capabilities are represented with a single
Normally-distributed variable.

While the Normal distributions define the individual capabilities of agent types at different
roles, it does not model how well agent types perform together. For example, suppose that in the
USAR scenario, there are two roles r1, r2 ∈ R involving ambulances deployed next to each other.
Further suppose that agent type a1 has high performance at r1 and r2, while a2 has low perfor-
mance at r1 and r2. However, if the role assignment policy is (r1 → a1, r2 → a1), the overall
task performance is low, because the algorithm of a1 sends both agents to the same civilian. If
the policy is (r1 → a1, r2 → a2), the task performance is higher because different civilians
would be saved. Thus, the synergy of a team is not modeled by the individual capabilities.

68 CHAPTER 5: MODIFICATIONS TO THE SYNERGY GRAPH MODEL

1 2

8 9 5

a1 a2 a3

Figure 5.1: An example of the distances among three agent types a1, a2, a3 ∈ A, where a low
distance between agent types reflects high compatibility and vice versa.

To effectively model synergy, i.e., how well a role assignment will perform, we use the com-
patibility function φ (Chapter 2), where a high compatibility reflects that agent types have good
synergy and work well together. Figure 5.1 shows an example of the distances of three agent
types a1, a2, a3, where a1 and a2 have high compatibility (distance of 1) with each other, but
low compatibility (distances of 8 and 9 respectively) with themselves. a3 has high compatibility
with a2 (distance of 2). As such, through transitivity, the compatibility of a1 and a3 will also
be moderately high (distance of 3). An agent type has compatibility with itself because multiple
roles can be assigned to the same agent type (multiple agents of the same type are used, each
performing a separate role), and this compatibility models how well the agents of the same type
interact.

We defined the individual agent capabilities that represents how well an agent type performs
at a role, and the compatibility function φ that relates how well pairs of agent types work together
in a team. Putting these together, we now formally define the WeSGRA model:

Definition 5.1.5. A Weighted Synergy Graph for Role Assignment (WeSGRA) model is a tuple

(G,C), where:
• G = (V,E) is a connected weighted graph;
• V = A, i.e., the set of vertices corresponds to the set of agent types;
• E = Eacross ∪ Eloop, i.e., there are two types of edges, edges that go across two vertices,

and self-looping edges;
• eacross = (ai, aj, wi,j) ∈ Eacross is an edge between agent types ai, aj with weightwi,j ∈ R+;
• ∀ai ∈ A, ∃eloop = (ai, ai, wi,i) ∈ Eloop, i.e., every agent type has a self-looping edge;
• ∀ai ∈ A,∃Ci ∈ C s.t. Ci =

{
Ci,1, . . . , Ci,|R|

}
where Ci,α ∼ N (µi,α, σ

2
i,α) is the capability

of ai at role rα.

The WeSGRA model captures both the individual agent capabilities with C, and the compat-
ibility φ between agent types through the distance between vertices in the graph.

5.1 AGENTS WITH MULTIPLE CAPABILITIES 69

We modify the pairwise synergy function (Definition 2.4.2) of the Synergy Graph model to
apply to the WeSGRA model:

Definition 5.1.6. The pairwise synergy between two agent types ai, aj assigned to roles rα, rβ

respectively is:

S2(ai, aj, rα, rβ) = φ(d(ai, aj)) · (Ci,α + Cj,β) (5.1)

where d(ai, ai) = wi,i, and for i 6= j, d(ai, aj) is the shortest distance between ai and aj in the

WeSGRA graph.

Similarly, we modify the synergy function (Definition 2.4.3) to computes the performance of
a role assignment:

Definition 5.1.7. The synergy of the team of agents assigned by the role policy π : R→ A is:

S(π) =
1(|R|
2

) ·
∑

rα,rβ∈R
S2(π(rα), π(rβ), rα, rβ) (5.2)

Thus, the synergy function S returns a Normally-distributed variable that represents the per-
formance of the team in the role assignment policy. The same agent type can have multiple roles
in π, e.g., π(rα) = π(rβ) = ai, which implies that the pairwise synergy function for this pair of
roles will use the self-looping edge in the WeSGRA graph to compute the distance (and hence
the compatibility).

The WeSGRA model represents heterogeneous agents in a role assignment problem, and is
also applicable to homogeneous agents with different initial states. For example, suppose there
is a transportation task in a city, and there are three identical agents located at different parts of
the city. The role assignments decide which agent picks up which passengers for transport, and
the three identical agents would be modeled as three vertices in the WeSGRA model, since the
agent’s different initial states create different capabilities at the roles, and hence the agents are
actually heterogeneous with respect to the task.

5.1.3 Finding Role Assignments and Learning WeSGRAs

In the WeSGRA model, a team is defined as a role assignment π : R → A that maps from a
role r ∈ R to an agent a ∈ A. The δ-optimal team has an identical meaning to that in the team
formation problem, i.e., the team that has the highest utility with probability δ.

The team formation algorithm ApproxδOptimalTeam is applicable to WeSGRAs with
two modifications:

1. RandomTeamWesGRA replaces RandomTeam and returns a role assignment π such that
π(r) is some random agent a ∈ A.

70 CHAPTER 5: MODIFICATIONS TO THE SYNERGY GRAPH MODEL

2. NeighborTeamWeSGRA replaces NeighborTeam and takes an existing role assignment
π and returns a neighbor role assignment π′ such that:

π′(r) =




π(r) if r 6= r′

a′ otherwise
(5.3)

for some random role r′ ∈ R and random agent a′ ∈ A such that a′ 6= π(r′).

With the modified functions RandomTeamWesGRA and NeighborTeamWeSGRA, the space of
role assignments is explored, and the ApproxδOptimalTeam algorithm effectively approxi-
mates the δ-optimal role assignment.

The learning algorithm LearnSynergyGraph iterates through Synergy Graph structures
and learns the agent capabilities with a least-squares solver and a non-linear solver. The algo-
rithm is applied to the WeSGRA model with the following modifications:

1. RandomStructureWeSGRA replaces RandomStructure and returns a random con-
nected weighted graph structure with additional self-looping edges of random weight;

2. NeighborStructureWeSGRA replaces NeighborStructure, where the random ac-
tions may also increase and decrease the weight of self-looping edges;

3. LearnCapsLSWeSGRA replaces LearnCapabilitiesLeastSquares, where Mµ

andMσ2 are 0|O|×N |R|, and these matrices are filled out using Definitions 5.1.6 and 5.1.7;

4. LearnCapsNLWeSGRA replaces LearnCapabilitiesNonLinear and uses Defini-
tions 5.1.6 and 5.1.7 to create the log-likelihood expression to be maximized.

5.1.4 Experiments with WeSGRAs

In the experiments that follow, we use LearnCapabilitiesNonLinear, that learns the
agent capabilities with a non-linear solver; we ran 100 trials using synthetic data derived from a
hidden WeSGRA. In each trial, we randomly created a hidden WeSGRA with 5 agent types and
5 roles, that we then used to generate 500 training and 500 test examples of Pπ for different role
assignment policies π. SinceN = |R| = 5, the size of the policy space is 55 = 3125 and thus the
training examples do not cover the space. The training examples were used to learn a WeSGRA.
The accuracy of the learned model was measured using the log-likelihood of the test examples.
Next, the learned model was used to approximate the optimal role assignment policy. The value
of this policy was obtained using the hidden WeSGRA, and compared to the optimal (which was
found by brute force). The hidden WeSGRA was only involved in generating the training and test
examples, and evaluating role assignment policies. Figure 5.2 shows the experimental process.

5.1 AGENTS WITH MULTIPLE CAPABILITIES 71

a1 a365 1
{C ′

1,1, C
′
1,2} {C ′

3,1, C
′
3,2}

a2

4

{C ′
2,1, C

′
2,2}

2 5

Hidden WeSGRA Generate training examples
((r1 → a1, r2 → a1), 10.9)

((r1 → a1, r2 → a3), 3.8)

((r1 → a3, r2 → a2), 7.2)
...

a1 a34 1
{C1,1, C1,2} {C3,1, C3,2}

a2

3

{C2,1, C2,2}
3 6

Learn WeSGRA using

((r1 → a1, r2 → a2), 6.4)

((r1 → a2, r2 → a2), 5.5)

((r1 → a3, r2 → a3), 1.7)

Generate test examples

training examples

r1 → a1
r2 → a2

Approximate optimal
role assignment policy

Compute
log-likelihood

Compute value of role assignment policy

...

Figure 5.2: The experimental process to evaluate the learning and team formation algorithms for
WeSGRA.

Figure 5.3: Learning curve of the learning algorithm using training examples generated by a
hidden WeSGRA model.

72 CHAPTER 5: MODIFICATIONS TO THE SYNERGY GRAPH MODEL

Figure 5.3 shows the learning curve of our learning algorithm over 1000 iterations of simu-
lated annealing. Each point on the curve shows the log-likelihood of the current learned WeS-
GRA on the 500 test examples. The dotted line shows the average learning over all 100 trials,
while the full line shows one trial of the 100 trials. The log-likelihood of the test data becomes
higher as the number of iterations increases, showing that our learning algorithm is capable of
learning a WeSGRA that closely resembles the hidden one.

To compute the effectiveness of the role assignment policy selected by our team formation
algorithm, for each trial, we found (through a brute-force search) the optimal and worst role
assignment policies in the hidden WeSGRA, by computing the Normal distribution of every
policy and converting it into a number using Evaluate with δ = 1

2
. Next, the value of the

role assignment policy found from the learned WeSGRA was also computed. Since the value of
policies (optimal, minimum, and learned) differed across trials, we scaled them to be between 0
and 1:

Effectiveness(π) =
Evaluate(π, δ)− Evaluate(πmin, δ)

Evaluate(π∗δ , δ)− Evaluate(πmin, δ)
(5.4)

where π∗δ and πmin are the optimal and worst policies (given δ) respectively.

Over the 100 trials with synthetic data, the effectiveness of the role assignment policy found
from the learned WeSGRA graph was 0.97 ± 0.08, which shows that the learned WeSGRA
closely matches the hidden one, and also that the team formation algorithm is capable of finding
a near-optimal team using the learned graph.

5.2 Graphs with Multi-Edges

In the Synergy Graph model, the Synergy Graph structure is a connected graph with unweighted
or weighted edges, where there is at most one edge between any two vertices. In this section, we
explore graphs with multi-edges, i.e., there can be more than one edge between any two vertices.
In particular, we are interested in graphs with two edges per pair of vertices, and one self-looping
edge per vertex. Such multigraphs (graphs with multi-edges) are applicable to problem such as
the configuration of modules of the robots in a multi-robot team, as described in this section.

Motivating Scenario for Configurable Robots

A motivating scenario comes from the manufacturing domain. High-mix low-volume manufac-
turing is an emerging trend, where manufacturing plants have to manufacture a large variety of
products, each with a low volume. This is in stark contrast to the typical manufacturing line
that produces a large volume of a single product. In order to handle high-mix low-volume or-

5.2 GRAPHS WITH MULTI-EDGES 73

ders, manufacturing floors have to be reconfigurable and cater to each order. Each manufacturing
station is viewed as a robot, and the entire manufacturing plant is a multi-robot system. Manu-
facturing stations include the typical drilling and milling, and also mobile robots that transport
items. Each manufacturing robot is a configuration comprising one or more modules, e.g., a
drilling robot comprises a drilling machine, and a mobile robot comprises motors and sensors.
New types of robots can be configured, such as a robot that drills as it transports items.

Given a manufacturing task, the manufacturing plant has to select and configure manufactur-
ing robots that will complete the task. The goal is to complete the task as quickly as possible,
while limiting the cost of production. Robot modules have a fixed dollar cost that is borne by the
manufacturing plant. Also, by assigning manufacturing modules to robots, the modules cannot
be used for other orders and there is opportunity cost. Hence, the multi-robot team that is formed
is capped at a maximum level of cost decided by the plant, which is a function of the dollar cost
and opportunity cost. In addition, the task has a pre-defined sequence of actions (e.g., drilling
followed by milling followed by polishing), and the multi-robot team has to be capable of com-
pleting the task. In particular, random combinations of modules may not be able to perform the
task (e.g., selecting a robot team that does not include any drilling machines).

5.2.1 Configurable Team Formation Problem Definition

In the configurable team formation problem, robots are configured from modules, so we begin
with the definition of the modules:

Definition 5.2.1. The set of modules isM = M1 ∪ . . . ∪MN , where each Mn ⊂ M is a set of

modules of type n ∈ {1, . . . , N}.
The set of modules is divided into N types. For example, in the manufacturing scenario, M1

would contain possible drilling modules, such that M1 = {drill0, . . . , drill3} where the subscript
refers to the number of drilling machines. M2 would contain motors of different maximum
speeds, i.e., M2 = {none, slow, medium, fast}.

Using the modules, we define a configurable robot and the set of all robots:

Definition 5.2.2. A configurable robot is R = (m1, . . . ,mN), where each mn ∈ Mn. The set
of all possible configurable robots isR.

Thus, each robot is a configuration/selection of modules of every type. In the manufacturing
example, R0 = (drill2, none) is a stationary drilling robot with two drilling machines, while a
mobile transportation robot is R1 = (drill0,medium). A robot that can drill and transport items
is R2 = (drill1, slow).

74 CHAPTER 5: MODIFICATIONS TO THE SYNERGY GRAPH MODEL

From the definition of robots, we define a team of robots:

Definition 5.2.3. A team of configurable robots is T = (R1, R2, . . .), where each Ri ∈ T is a

robot configured by N modules. The set of all possible teams is T .

Each Ri ∈ T is not unique, i.e., if Ri = Rj then Ri and Rj are each configured with copies
of identical modules.

Only some teams may be able to complete the task, hence we define the feasibility function:

Definition 5.2.4. The feasibility function is F : T → {0, 1}, where F (T) = 1 if and only if the

team T is feasible to complete the task, and 0 otherwise.

The feasibility function F is domain-dependent and given as part of the problem definition.

Every module has some cost, and we define the module, robot, and team cost functions:

Definition 5.2.5. The module cost function is CM :M→ R+
0 .

Definition 5.2.6. The robot cost function is CR : R → R+
0 , such that CR(R) =

∑N
i=1 CM(mi).

Definition 5.2.7. The team cost function is CT : T → R+
0 , such that CT (T) =

∑
R∈T CR(R).

As such, the cost of a robot is the sum of costs of its modules, and the cost of a robot team is
the sum of costs of the robots in it. The module cost function is domain-dependent and part of
the problem definition. In the manufacturing domain, CM would depend on the dollar cost of the
module and the opportunity cost of using the module for the task.

The performance of a robot team T ∈ T is PT . As we are interested in robots acting in
a dynamic world, PT is non-deterministic and multiple observations oT of PT return different
values. In the manufacturing example, PT would be related to the time required for the team T

to complete the manufacturing task and the cost of the team, e.g., a task that completes earlier
with a lower cost team attains a higher value; the non-determinism would be related to potential
failures in the manufacturing modules.

The goal is to form the δ-optimal multi-robot team that attains the highest value subject to a
maximum cost cmax while being feasible:

Definition 5.2.8. The δ-optimal team is the team T ∗δ ∈ T such that:

F (T ∗δ) = 1

CT (T ∗δ) ≤ cmax

P(PT ∗δ ≥ u) = δ

and for all teams T ∈ T such that CT (T) ≤ cmax and F (T) = 1,

P(PT ≥ u) ≤ δ

We assume that the values cmax and δ are given and domain-specific, as are the functions F
and CM as mentioned earlier.

5.2 GRAPHS WITH MULTI-EDGES 75

5.2.2 Synergy Graph for Configurable Robots (SGraCR) Model

In the Unweighted and Weighted Synergy Graph models, agents are treated as atomic (indivis-
ible) entities, and the agents’ capabilities are modeled as Normally-distributed variables. We
introduce the Synergy Graph for Configurable Robots (SGraCR) model, that is specialized to
model configurable modular robots performing multi-robot tasks. We first describe each compo-
nent of our model, and give the formal definition at the end of this section.

While treating agents as atomic entities allows an abstraction to capture humans and robots,
we are interested in using the Synergy Graph for teams of robots. Robots are comprised of a
configuration of various hardware and software modules. We model each module as a separate
vertex in a graph, which offers a large benefit in scalability. From the problem definition, there are
N types of modules M1, . . . ,MN , and a robot is composed of one of each type of module. In our
SGraCR model, there are

∑N
n=1 |Mn| vertices; the Synergy Graph model would have

∏N
n=1 |Mn|

vertices. For example, suppose there are 3 different types of motors, 2 different LIDARs, 3
cameras, and 2 SLAM algorithms. By modeling each module as a vertex, our SGraCR would
contain 3 + 2 + 3 + 2 = 10 vertices. A Synergy Graph models each possible type of agent/robot
separately with 3 × 2 × 3 × 2 = 36 vertices. Thus, the number of vertices increases linearly in
SGraCR with the number of modules, while the Synergy Graph increases geometrically.

Synergy of Modules

We are interested in modeling the task-based performance of multi-robot teams, where each robot
is composed of different modules. We build upon the Synergy Graph model, where the synergy
of a multi-agent team is a combination of individual agent capabilities and their compatibility
in the team. Since the SGraCR models robots as composite modules, we need to differentiate
between two types of synergy: intra-robot synergy and inter-robot synergy.

Intra-robot synergy models how the configuration of modules that compose a single robot
affects how well the robot performs at the task. For example, a robot with faster motors performs
the task quickly and attains a high performance. Comparatively, a robot with slightly slower
motors but a more accurate vision system may be able to perform the task more accurately with
even higher performance.

Inter-robot synergy models how different combinations of robots affect the overall task per-
formance. Since the task requires multiple robots, different choices of robots in the team will
critically affect the task performance. For example, in a foraging task, a team consisting of a
single robot with accurate vision and multiple fast-moving robots that retrieve the objects may
perform better than a team with multiple robots with accurate vision but move more slowly.

76 CHAPTER 5: MODIFICATIONS TO THE SYNERGY GRAPH MODEL

Similar to the Synergy Graph model, we use Normally-distributed variables to represent the
capability of each module. These variables represent the contribution of task performance from
the module, subject to the synergy from intra and inter-robot relationships. We use the distance
between vertices in the graph to represent how well modules work together. However, there is
one key difference in the SGraCR model compared to the Synergy Graph model. We distinguish
between intra and inter-robot synergy by assigning two weighted edges between every pair of
vertices. Conceptually, it is equivalent to an edge with two weights, an intra-robot weight and
an inter-robot weight. We use the edge with two weights in our descriptions below, so that it
is clearer and easier to refer to the relevant weight. Using edges with two weights implies that
the underlying structure of the graph (i.e., whether edges exist between vertices) is common
between intra and inter-robot synergy, even though the weights may differ. Such a representation
offers a more elegant structure (a single graph structure with multiple weights) compared to two
independent graphs. We believe that it is justified as there is a correlation between intra and
inter-robot synergy — a module that works well for a robot will also benefit a multi-robot team.

In addition to the weighted multigraph structure, the SGraCR model has an additional edge
associated with each vertex, that models the inter-robot synergy between the same module on
different robots, e.g., the task performance of two robots that both have the same type of motors.
An intra-robot weight in this case is not needed, since each individual robot cannot select multiple
copies of the same module type.

Formal definition of the SGraCR Model

We have described the components of the SGraCR model above, and now we formally define it:

Definition 5.2.9. The Synergy Graph for Configurable Robots (SGraCR) model is a tuple

(G,C), where:
• G = (V,E) is a connected graph;
• V =M, i.e., the set of vertices correspond to the set of modules;
• E = Emulti ∪ Eloop, i.e., there are two types of edges, multi-edges and self-looping edges;
• emulti = (m,m′, wintra, winter) ∈ Emulti is an edge with two weights; equivalently, there are

two edges between m and m′ with weights wintra and winter respectively. wintra and winter are

the intra and inter-robot weights respectively;
• ∀m ∈ M,∃eloop = (m,m,winter) ∈ Eloop, i.e., every module has a self-looping edge with

a single inter-robot weight;
• C =

{
C1, . . . , C|M|

}
is a set of module capabilities, where Cm ∼ N (µm, σ

2
m) is the

capability of a robotic module m ∈M.

5.2 GRAPHS WITH MULTI-EDGES 77

m2

m5

m3m1

m4

C1 ∼ N (µ1, σ
2
1) C2 ∼ N (µ2, σ

2
2) C3 ∼ N (µ3, σ

2
3)

C4 ∼ N (µ4, σ
2
4) C5 ∼ N (µ5, σ

2
5)

m6

2, 3

C6 ∼ N (µ6, σ
2
6)

2

1, 5

3, 1 2, 2

5, 2

3

1
5

4

1

Figure 5.4: A SGraCR with 6 vertices, modeling two types of modules (shown in different
shades). The edges with two weights indicate the intra and inter-robot weights respectively, and
the self-looping edges have inter-robot weights.

Figure 5.4 shows an example of a SGraCR with 6 vertices, where there are two types of
modules with 3 options each. Compared to a Synergy Graph that models 6 agents with 6 vertices,
3× 3 = 9 different types of robots are represented with the SGraCR.

Definition 5.2.10. The intra-robot synergy Sintra(R) of a robot R = (m1, . . . ,mN) is:

Sintra(R) =
∑

mi,mj∈R
φ(dintra(mi,mj))(Cmi + Cmj) (5.5)

where Cmi and Cmj are the capabilities of modules mi and mj respectively, dintra(mi,mj) is the
shortest distance between mi and mj in the SGraCR using the intra-weights wintra of the edges,
and φ : R+ → R+ is the compatibility function.

Definition 5.2.11. The inter-robot synergy Sinter(R,R
′) of two robots R = (m1, . . . ,mN) and

R′ = (m′1, . . . ,m
′
N) is:

Sinter(R,R
′) =

∑

mi∈R,m′j∈R′
φ(dinter(mi,m

′
j))(Cmi + Cm′j) (5.6)

where Cmi and Cm′j are the capabilities of modules mi and m′j respectively, dinter(mi,m
′
j) is the

shortest distance between mi and m′j in the SGraCR using the inter-robot weights winter of the
edges. In particular, if mi = m′j then the self-looping edge is used to determine dinter.

The compatibility function φ : R+ → R+ converts distances in the SGraCR graph to real
numbers reflecting the compatibility among robot modules (explained in detail in Chapter 2).

Definition 5.2.12. The synergy S(T) of a multi-robot team T is:

S(T) =
1

|T |
∑

R∈T
Sintra(R) +

1(|T |
2

)
∑

R,R′∈T
Sinter(R,R

′) (5.7)

78 CHAPTER 5: MODIFICATIONS TO THE SYNERGY GRAPH MODEL

Thus, the synergy of a multi-robot team is the sum of the average intra-robot synergy of each
robot and the average inter-robot synergy of every pair of robots.

The intra and inter-robot synergy equations are modified from the pairwise synergy function
of the Synergy Graph model, using the intra and inter-robot weights in the SGraCR model. The
synergy function is also adapted from the Synergy Graph model, but takes into account the new
definitions of intra-robot and inter-robot synergy.

5.2.3 Configuring Multi-Robot Teams and Learning SGraCRs

In the configurable team formation problem, each robot is a configuration of M modules and a
multi-robot team is a set of such configurable robots. The δ-optimal team is the team that attains
the highest utility with probability δ with additional constraints: the δ-optimal team T ∗δ must be
feasible (F (T ∗δ) = 1), within the cost threshold (C(T ∗δ) ≤ cmax). In addition, the size of the
δ-optimal team is unknown, so n is no longer a parameter to ApproxδOptimalTeam. Instead,
RandomTeamSGraCR iteratively increases and decreases the size of the team, and the maximum
size of the team is bounded by the functions F and C.

NeighborTeamSGraCR generates neighbors of the existing team with three actions:

1. a random robot rexisting is removed,

2. a random robot rnew is created;

3. a module on an existing robot rexisting is changed.

Actions 1 and 2 (removing and creating robots) involve changing the team T . Action 1 picks
a random robot rexisting ∈ T and removes rexisting from T . Similarly, Action 2 randomly selects a
robot rnew ∈ R and adds it to T .

Action 3 first picks a random robot rexisting ∈ T . Suppose rexisting = (m1, . . . ,mM). Action 3
then picks a random number i ∈ {1, . . . ,M} and changes modulemi in the robot to bem′i 6= mi.
Hence, the new robot rnew = (m1, . . . ,mi−1,m

′
i,mi+1, . . . ,mM); rnew differs from rexisting by

only one module. The robot rexisting is then replaced by rnew in T .
These 3 actions generate candidate teams that effectively explore the space of all teams, but

the teams may not be feasible and/or be over the cost threshold. Thus, if F (T) = 0 or C(T) >

cmax, the actions are repeated until a suitable team is generated. The difficulty of generating a
feasible team within the cost threshold is domain-dependent since it depends on F , C, and cmax.
Once a neighbor team is formed, its synergy is computed with S and converted into a real number
by Evaluate. The new team’s value is then compared to the existing and accepted subject to
the temperature schedule of the simulated annealing algorithm.

5.3 NON-TRANSITIVE TASK-BASED RELATIONSHIPS 79

LearnSynergyGraph is applied to the SGRaCR model with the following modifications:

1. RandomStructureSGraCR replaces RandomStructure and returns a random con-
nected weighted multigraph structure with addition self-looping edges of random weight;

2. NeighborStructureSGraCR replaces NeighborStructure, where the random ac-
tions add and remove multi-edges, and increase and decrease the weight of the multi-edges
and self-looping edges;

3. LearnCapsLSSGraCR replaces LearnCapabilitiesLeastSquares, where matri-
cesMµ andMσ2 are are filled out using Definitions 5.2.10, 5.2.11, and 5.2.12;

4. LearnCapsNLSGraCR replaces LearnCapabilitiesNonLinear and uses Defini-
tions 5.2.10, 5.2.11, and 5.2.12 to create the log-likelihood expression to be maximized.

5.3 Non-transitive Task-Based Relationships

The Synergy Graph model assumes that the task-based relationships between agents are transi-
tive, i.e., the compatibility of two agents depends on the shortest distance between them. Fig-
ure 5.5 shows an example of four agents in a Weighted Synergy Graph. The shortest distance
between agents a1 and a2 is 2, using edges (a1, a3) and (a2, a3). The edge (a1, a2) is never used
in the computation of synergy, since the transitive assumption implies that the compatibility of
a1 and a2 should be based from the shortest distance of 2. This section explores task-based
relationships that are non-transitive and how it affects the expressiveness of Synergy Graphs.

5.3.1 Modeling Non-Transitivity in Synergy Graphs

An example of a non-transitive task-based relationship is when the agents speak different lan-
guages (or use different communication protocols). Using Figure 5.5, suppose a1 communicates
via wireless LAN, a2 communicates via bluetooth, a4 communicates via infrared, and a3 has all
forms of communication. The edge (a1, a2) with a distance of 5 implies that if a1 and a2 were
the only members of the team, they would not be able to communicate directly, and hence have a
poor task-based relationship. The distances of 1 between a1, a2 and a3 implies that communica-
tion is possible. Further, the distance of 2 between a1 and a2 (using edges (a1, a3) and (a2, a3))
implies better coordination between the two agents if a3 is present to relay communications.

To model non-transitive task-based relationships, we consider using the shortest distance in
the subgraph containing the agents in the team. The subgraph shortest distance approach would
treat the distance between a1 and a2 as 5 with the team {a1, a2}, and 2 with the team {a1, a2, a3}.
An interesting related question would be the synergy of the team {a1, a4}— the subgraph of a1

80 CHAPTER 5: MODIFICATIONS TO THE SYNERGY GRAPH MODEL

a1

a3a2
C3 ∼ N (µ3, σ

2
3)

C1 ∼ N (µ1, σ
2
1)

C2 ∼ N (µ2, σ
2
2)

1

5 1

a4
C4 ∼ N (µ4, σ

2
4)

2

Figure 5.5: A Weighted Synergy Graph with four agents. When the task-based relationship is
assumed to be transitive, the edge {a1, a2} is never used in the computation of synergy.

and a4 is disconnected, which would imply no compatibility between the two agents, i.e., they
are unable to complete the task.

Hence, we define non-transitive pairwise synergy and team synergy:

Definition 5.3.1. The non-transitive pairwise synergy between two agents ai and aj in a team

A ⊆ A is:

Snt,2(ai, aj, A) =




φ(dA(ai, aj)) · (Ci + Cj) if 0 < dA(ai, aj) <∞
−∞ otherwise

where dA(ai, aj) is the shortest distance between ai and aj in the subgraph containing A (∞ if

ai and aj are disconnected), and φ : R+ → R+ is the compatibility function.

Definition 5.3.2. The non-transitive synergy of a set of agents A ⊆ A is the average of the

non-transitive pairwise synergy of its components, i.e., Snt(A) = 1

(|A|2)
·

∑

{ai,aj}∈A
Snt,2(ai, aj).

The definitions of non-transitive synergy are applicable to the Unweighted and Weighted
Synergy Graph models directly, and can be applied to the other Synergy Graph models with
minor modifications (e.g., using role assignments instead of subsets for the WeSGRA model).

5.3.2 Implications of Non-Transitive Synergy

Non-transitive task-based relationships and the updated synergy definitions have two major im-
plications:

1. The pairwise synergy between two agents depends on the composition of the entire team;

2. Only connected subgraphs of agents are capable of completing the task.

The first implication comes directly from the definition of non-transitive pairwise synergy;
the new definition was designed to model such non-transitive task-based relationships.

5.3 NON-TRANSITIVE TASK-BASED RELATIONSHIPS 81

The second implication is due to possible disconnected subgraphs, and having pairwise dis-
tances of∞. The non-transitive pairwise synergy of such pairs of agents would be −∞, so the
non-transitive synergy of the team would also be −∞.

In particular, the second implication affects the learning algorithm: teams that are in the
observation set O are valid teams, so the learning algorithm has to ensure that such agent teams
remain connected in their respective subgraphs. Formally, ifOA ∈ O, then the subgraph of agents
in A must be connected. Hence, the functions RandomStructure and NeighborStruc-
ture of the LearnSynergyGraph algorithm must be updated to take into account this new
constraint.

Further, while the updated learning algorithm ensures that valid teams in the observation
set O form connected subgraphs, the final learned Synergy Graph structure may have connected
subgraphs of invalid teams. Figure 5.6 shows an example with three agents, where the training
observation set had the team {a1, a2, a3}. Although a2 and a3 are connected in Figure 5.6a, it
does not necessarily imply that the team {a2, a3} is valid; Figure 5.6b shows a different Synergy
Graph structure that fits the training observation set, with a2 and a3 disconnected.

In fact, the only valid teams that can be inferred from the observation set are those that are
unions of the teams in the observations:

Theorem 5.3.3. Let A1 and A2 be valid teams, i.e., the agents in A1 and A2 form connected

subgraphs in a non-transitive Synergy Graph. If A1 ∩ A2 6= ∅, the team A+ = A1 ∪ A2 is also

valid.

Proof. Suppose A1 = {a1,1, . . . , a1,n1} and A2 = {a2,1, . . . , a2,n2}.
Since A1 is a valid team, a1,i is connected to a1,j ∀1 ≤ i, j ≤ n1 in the subgraph of A1.
Since A2 is a valid team, a2,α is connected to a2,β ∀1 ≤ α, β ≤ n2 in the subgraph of A2.
Let a ∈ A1 ∩ A2.
Since a1,i is connected to a in the subgraph of A1, a1,i is connected to a in the subgraph of A+.
Since a2,α is connected to a in the subgraph of A2, a2,α is connected to a in the subgraph of A+.
Therefore, a1,i is connected to a2,α ∀1 ≤ i ≤ n1, 1 ≤ α ≤ n2 in the subgraph of A+, and A+ is a
valid team.

As a result, the team formation algorithms FormδOptimalTeam and ApproxδOptimal-
Team can only iterate on teams that are known to be valid, i.e., teams within the training obser-
vation set, and the union of teams that have common agents.

Non-transitive task-based relationships model interesting characteristics of agents, where
their pairwise compatibility changes depending on the composition of the team. However, it
does not model “inhibition” among the agents, e.g., an agent that, when added into a team, re-

82 CHAPTER 5: MODIFICATIONS TO THE SYNERGY GRAPH MODEL

a1

a3a2
C3 ∼ N (µ3, σ

2
3)

C1 ∼ N (µ1, σ
2
1)

C2 ∼ N (µ2, σ
2
2)

5

3

(a)

a1

a3a2
C3 ∼ N (µ3, σ

2
3)

C1 ∼ N (µ1, σ
2
1)

C2 ∼ N (µ2, σ
2
2)

3 2

(b)

Figure 5.6: Two non-transitive Synergy Graphs where the team {a1, a2, a3} is valid.

duces the pairwise compatibility among all of other agents in the team. We are interested in
cooperative, collaborative agents, and so we focus on situations where agents generally improve
team performance.

5.4 Chapter Summary

This chapter presented modifications to the Synergy Graph model to apply the model to other
problems such as role assignment and forming teams of configurable robots. The Weighted Syn-
ergy Graph for Role Assignment (WeSGRA) model uses agents with multiple capabilities (one
for each possible role), and the Synergy Graph for Configurable Robots (SGraCR) model con-
siders graphs with multi-edges (in particular, two weighted edges between each pair of vertices),
that enable the model to capture the synergy of modules within a single robot, and the synergy of
modules across robots in a multi-robot team. This chapter also presented non-transitive synergy
that captures interesting characteristics, such as how a team is valid only if it forms a connected
subgraph, and the implications of non-transitive synergy on the learning and team formation
algorithms.

Chapter 6

Agents with Complex Characteristics

This chapter investigates agents that have complex characteristics: being susceptible to failure,
and being able to improve team performance over time. First, we consider agents that proba-
bilistically fail, i.e., there is a given probability that an agent may fail at starting the task, and
define robustness and the optimal robust team [Liemhetcharat and Veloso, 2013a]. Second, we
consider agents that learn to coordinate over time and improve the team performance, such as
ad hoc agents [Stone et al., 2010], and explore how their improvements over time is modeled as
changes in pairwise compatibility in the Synergy Graph model.

6.1 Agents that Probabilistically Fail

In this section, we consider agents that have a fixed known probability of failure. A failure
occurs prior to the start of the task, and the remaining members of the team carry out the task as
if the agent was not part of the team. For example, if a team consists of agents a1, . . . , a5, and
agent a1 experiences a failure, then a2, . . . , a5 perform the task and obtain some utility. Given
such failure probabilities of agents, what is a robust team, and how do we form the optimal robust
team? We consider an extension of the Synergy Graph for Configurable Robots (SGraCR) model
where each vertex in the graph is a robot module, but the algorithms and approach applies to any
Synergy Graph model.

6.1.1 Robust Team Formation Problem Definition

There is a complex task to be completed, and a robust multi-robot team is to be formed to perform
the task. The goal is to form a robust team in the face of potential failures in the robots. To
formally define this problem, we distinguish and precisely define three commonly-used terms in

83

84 CHAPTER 6: AGENTS WITH COMPLEX CHARACTERISTICS

multi-robot research: capability, performance, and robustness.
To aid in the explanation of the problem, we will use a consistent motivating scenario. Sup-

pose that the task is to forage resources from the environment. There are multiple types of
resources in the environment, and the multi-robot team is to find and move these resources into
separate stockpiles within a limited amount of time.

We are interested in configurable robots, where every robot is configured by selecting differ-
ent modules. Hence, we will use many of the definitions in Section 5.2.1. However, since we
are considering possible failures in the robots, we will redefine some of the terms here to fit the
robust team formation problem.

The set of modules is M = M1 ∪ . . . ∪ MN , where each Mn is a set of modules of
a certain type (Definition 5.2.1). A configurable robot R is a configuration of N modules,
i.e., R = (m1, . . . ,mN) where each mn ∈ Mn (Definition 5.2.2).

Hardware and software failures can and do occur in real life, and we model the probability
of success of modules:

Definition 6.1.1. The probability of success 0 ≤ pm ≤ 1 of a module m ∈ M is the probability

that module m does not experience a failure.

Conversely, 1 − pm is the probability that m fails and is unable to run successfully. When a
module fails, a robots uses the fall-back module:

Definition 6.1.2. The fall-back module m∗n of type n ∈ {1, . . . , N} is a module that never fails,

i.e., pm∗n = 1 ∀n ∈ {1, . . . , N}, and is the module that a robot R = (m1, . . . ,mN) uses if it

experiences a failure of module mn.

For example R = (m1, . . . ,mN) becomes R = (m∗1,m2, . . . ,mN) if module m1 fails. In
the foraging example, N = 4, where M1 are motors, M2 are sensors, M3 are manipulators,
and M4 are robot bases. Some example modules in this example are: M1 = {mfast,m

∗
slow} and

M4 = {mwheeled,mtreaded,mlegged,m
∗
no base}. Let R = (mfast,mcamera,m

∗
no manipulator,mwheeled) be

an example of a wheeled robot capable of moving fast and detecting resources with its cam-
era, but is unable to manipulate them. The module m∗no manipulator represents the choice of having
no manipulators on the robot, and is the fall-back module of that type. Fall-back modules can
be defined to indicate the absence of something (e.g., mno base,mno manipulator) or provide a base-
line module (e.g., mslow for motors); the modules and fall-back modules are pre-defined by the
problem domain.

The probabilities pm are independent, and multiple copies of the same module are also inde-
pendent. For example, if R1 = (m,m′) and R2 = (m,m′′), a failure of m on R1 is independent
of a failure of m′ in R1, m in R2, and m′′ in R2.

6.1 AGENTS THAT PROBABILISTICALLY FAIL 85

R is the set of all possible robots (Definition 5.2.2), and T = (R1, R2, . . .) ∈ T is a multi-
robot team (Definition 5.2.3). A robot uses a fall-back module whenever a failure occurs in one
of its modules. We now define the alternatives of a robot and team:

Definition 6.1.3. The set of alternative robots AR(R) of a robot R = (m1, . . . ,mN) is:

AR(R) =
N

"
n=1
{mn,m

∗
n}

Definition 6.1.4. The set of alternative teams AT (T) of a team T = (R1, R2, . . .) is:

AT (T) = "
R∈T

AR(R)

The set of alternative robots contains module configurations that encompass all possible fail-
ures, e.g., if R = (m1,m2), then AR(R) = {(m1,m2), (m∗1,m2), (m1,m

∗
2), (m∗1,m

∗
2)}. Simi-

larly, the set of alternative teams contains robot configurations that encompass all possible fail-
ures. Using the set of alternative robots and teams, we define the probability of occurrence of an
alternative robot and team:

Definition 6.1.5. The probability of occurrence of a robot R′ ∈ AR(R) is:

P(R′, R) =
∏

mn∈R




pmn if mn ∈ R′

1− pmn otherwise

Definition 6.1.6. The probability of occurrence of a team T ′ = (R′1, R
′
2, . . .) ∈ AT (T) is:

P(T ′, T) =
∏

R′n∈T ′
P(R′n, R)

Using the set of alternative robots and teams, and the probability of occurrence, we now
define the capability and performance of a team:

Definition 6.1.7. The capability CT of a team T ∈ T is the non-deterministic utility attained by

T assuming that no failures occur in the modules of the robots comprising T .

Definition 6.1.8. The performance PT of a team T ∈ T is the non-deterministic utility attained

by T taking possible failures into account, and is a mixture model of the capabilities of the set of

alternative teams of T : PT has |AT (T)| components, where each component T ′ ∈ AT (T) has

probability P(T ′, T) and distribution CT ′ .

The robots act in a dynamic world where their actions have non-deterministic outcomes. CT
captures the performance due to the non-determinism in the world, e.g., wheel slippage causing

86 CHAPTER 6: AGENTS WITH COMPLEX CHARACTERISTICS

a robot to arrive at a destination at a slower pace, and PT captures both the non-determinism
and the effects of failures. The capability and performance of teams are initially unknown, but
observations oT of CT are available for some teams.

In the foraging example, CT and PT depend on the number and types of resources foraged.
Suppose |T | = 5 and CT ∼ N (40.3, 51.7), i.e., the capability CT follows a Normal distribution,
and the mean utility attained is 40.3 assuming no failures occur in any of the modules of the
5 robots. Further suppose that one of modules m in one of the robots has a 0.1 probability of
failure (pm = 0.9), while all other modules m′ are guaranteed to always work (pm′ = 1). The
performance of T is then a function of CT and CT ′ , where T ′ is a team composed of the robots in
T except that m is replaced with m∗ in one of the robots. To be precise, PT is a mixture model
with 0.9 probability of drawing from CT and 0.1 probability of drawing from CT ′ .

The performance of a multi-robot team is a mixture model, and now we define robustness:

Definition 6.1.9. The robustness ρ(T, u) of a team T ∈ T is the probability that the perfor-

mance PT is at least a threshold utility threshold u:

ρ(T, u) = P(PT ≥ u)

In the foraging example, ρ(T, 30) is the probability that enough resources are foraged for at
least 30 utility, considering possible module failures.

Not all multi-robot teams are capable of completing the task, e.g., as a trivial example, a
robot team where all the modules have failed cannot complete any task. F : T → {0, 1} is the
feasibility function, where F (T) = 1 iff the team T can complete the task (Definition 5.2.4). The
feasibility function F is domain-specific and we assume it is part of the problem description.

The goal is to form the optimal feasible robust team, and we introduce two measures of
optimality: risk-averse optimality and risk-controlled optimality:

Definition 6.1.10. The risk-averse optimal team T ∗adv is the team that has maximum robustness

given a threshold threshold uthresh:

T ∗adv = argmaxT∈T s.t. F (T)=1ρ(T, uthresh)

Definition 6.1.11. The risk-controlled optimal team T ∗con is the team with the highest utility with

probability pcon:

T ∗con = argmaxT∈T s.t. F (T)=1 {uT |ρ(T, uT) = pcon}

6.1 AGENTS THAT PROBABILISTICALLY FAIL 87

The risk-averse optimal team and risk-controlled optimal team are two sides of the same coin:
the former maximizes robustness given a utility threshold, while the latter maximizes utility given
a desired robustness. The problem domain determines whether the goal is to form the risk-averse
optimal team or the risk-controlled optimal team (and the associated parameters uthresh and pcon

respectively).

6.1.2 Robust Synergy Graph for Configurable Robots (ρ-SGraCR) Model

We introduced the Synergy Graph for Configurable Robots (SGraCR) model in the previous
chapter, that models the capabilities of multi-robot teams composed of configurable robots. We
use and extend the SGraCR model to solve the robust team formation problem by doing the
following:

1. Use observations oT to learn a SGraCR;

2. Augment the learned SGraCR with pm to form the ρ-SGraCR model;

3. Form the optimal team using the ρ-SGraCR.

The SGraCR model effectively models the capabilities and interactions of configurable robots
in a multi-robot team, but does not account for possible module failures. Hence, we augment the
SGraCR model to form the Robust-SGraCR (ρ-SGraCR) model, where each vertex m in the
graph is associated with the success probability pm:

Definition 6.1.12. The Robust Synergy Graph for Configurable Robots (ρ-SGraCR) model is a

tuple (G,C, P), where:

• G = (V,E) is a connected graph;

• V =M, i.e., the set of vertices correspond to the set of modules;

• E = Emulti ∪ Eloop, i.e., there are two types of edges, multi-edges and self-looping edges;

• emulti = (m,m′, wintra, winter) ∈ Emulti is an edge with two weights; equivalently, there are

two edges between m and m′ with weights wintra and winter respectively. wintra and winter are

the intra and inter-robot weights respectively;

• ∀m ∈ M,∃eloop = (m,m,winter) ∈ Eloop, i.e., every module has a self-looping edge with

a single inter-robot weight;

• C =
{
C1, . . . , C|M|

}
is a set of module capabilities, where Cm ∼ N (µm, σ

2
m) is the

capability of a module m ∈M.

• P =
{
p1, . . . , p|M|

}
is a set of probabilities of success of modules, where each pm is the

probability of success of module m ∈M.

Using the ρ-SGraCR, we now solve the robust team formation problem, as described next.

88 CHAPTER 6: AGENTS WITH COMPLEX CHARACTERISTICS

6.1.3 Solving the Robust Team Formation Problem

In this section, we contribute two team formation algorithms that form a robust multi-robot
team. In our description below, we assume that the goal is to find the risk-averse optimal
team given a threshold uthresh, i.e., to find T ∗adv = argmaxT∈T s.t. F (T)=1ρ(T, uthresh). The algo-
rithms would only have to be modified slightly so as to form the risk-controlled optimal team
T ∗con = argmaxT∈T s.t. F (T)=1 {uT |ρ(T, uT) = pcon}.

Our first team formation algorithm, FormOptimalRobustTeam, computes the optimal
robust multi-robot team of size n∗. n∗ is assumed to be known, otherwise the algorithm is run
iteratively for increasing n. Algorithm 11 shows the pseudo-code of FormOptimalRobust-
Team. The algorithm first generates all possible multi-robot teams comprising n robots. Next,
the algorithm uses the synergy function S to compute the multi-robot team capability for all
possible teams T and computes its score (based on the optimality function).

Algorithm 11 Find the optimal robust team with n robots
FormOptimalRobustTeam(n)

1: Tn ← GenerateTeams(M, n)
2: for all T ∈ Tn do
3: Score(T)← P(S(T) ≥ uthresh)
4: end for
5: for all T ∈ Tn do
6: ρ(T, uthresh)←

∑
T ′∈AT (T) P(T ′, T)Score(T ′)

7: end for
8: T ∗ ← argmaxT∈Tnρ(T, uthresh)
9: return T ∗

Recall that AT (T) is the set of all combinations of robots where some subset of modules work
(including the superset of all modules) and some don’t. To compute ρ(T, uthresh), all combinations
of module failures in the robots of T have to be considered:

ρ(T, uthresh) =
∑

T ′∈AT (T)

P(T ′, T)P(S(T ′) ≥ uthresh) (6.1)

The number of teams of n robots is |Tn| = O(|M|nM) and |AT (T)| = O(2nM), where M is
the set of all modules, and M is the number of modules in a robot, and so Algorithm 11 runs in
exponential time.

Since finding the optimal robust team takes exponential time, we contribute the algorithm
ApproxOptimalRobustTeam, that approximates the optimal robust team of size n and runs
in polynomial time. Algorithm 12 shows the pseudo-code of the algorithm. Simulated annealing

6.1 AGENTS THAT PROBABILISTICALLY FAIL 89

is performed to limit the number of teams considered; instead of considering all possible teams
of size n, only kmax iterations of simulated annealing are run.

Algorithm 12 Approximate the optimal robust team with n robots
ApproxOptimalRobustTeam(n)

1: T ∗ ← GenerateRandomTeam(M, n)
2: score∗ ← ApproxScore(T ∗)
3: for k = 1 to kmax do
4: T ← RandomNeighbor(T ∗)
5: score← ApproxScore(T)
6: if P(score∗, score,Temp(k, kmax)) > random() then
7: T ∗ ← T
8: score∗ ← v
9: end if

10: end for
11: return T ∗

The function ApproxScore(T) approximates the score of a team T , by using the optimality
function (e.g., ρ for risk-averse optimality), and only considers 3 cases: the function assumes that
either none of the modules in a robot team fail, a fixed number mfail of the modules fail, or all
of them fail. Hence, only

(
nM
mfail

)
+ 2 combinations of teams are considered in A′T (T) ⊆ AT (T)

and significantly reduces the computational time to be polynomial, albeit for an approximation
of the true team score:

ApproxScore(T)← 1

η

∑

T ′∈A′T (T)

P(T ′, T)P(S(T ′) ≥ uthresh) (6.2)

where η =
∑

T ′∈A′T (T) P(T ′, T), so 1
η

is a normalizing factor.

GenerateRandomTeam and RandomNeighbor are identical to the SGraCR team for-
mation algorithm, so that there is effective exploration of the space of multi-robot teams. The
difference in scores is compared with the temperature schedule and a random number to decide
whether or not to accept a neighbor candidate.

6.1.4 Evaluating the ρ-SGraCR Model

In our first set of experiments, we use the ρ-SGraCR model to evaluate how well it solves the
robust team formation problem. To do so, we generated 100 random instances of the ρ-SGraCR
model, using 3 types of modules with 3 modules each (9 modules in total, 33 = 27 unique
configurable robots), with randomly created module capabilities and compatibility.

90 CHAPTER 6: AGENTS WITH COMPLEX CHARACTERISTICS

No penalty Fall-back penalty
of robots Optimal Robust Team Average team Optimal Robust Team Average team

1 0.577± 0.251 0.272± 0.181 0.249± 0.169 0.067± 0.052
2 0.623± 0.307 0.248± 0.231 0.134± 0.179 0.008± 0.016
3 0.653± 0.345 0.235± 0.273 0.103± 0.182 0.002± 0.006
4 0.672± 0.365 0.231± 0.300 0.089± 0.187 0.001± 0.003

Table 6.1: The optimal robustness scores of teams with 1 robot (3 modules) to 4 robots (12
modules).

We used two different settings to generate the module capabilities, no penalty and fall-back

penalty. In the no penalty setting, all 9 module capability means were uniformly sampled from
(50, 150) and standard deviations were uniformly sampled from (0, 100). In the fall-back penalty

setting, the 3 fall-back modules (1 for each type) had means set to 0 and standard deviations set to
100, while other modules had means and standard deviations sampled from (50, 150) and (0, 100)

as before. The fall-back penalty setting assigns the lowest capability to fall-back modules, while
the no penalty setting has no penalties on any modules. We were interested to see if the settings
would affect the optimal robust team found.

We ran the FormOptimalRobustTeam team formation algorithm to find the optimal ro-
bust team, from a size of 1 robot (3 modules) to 4 robots (12 modules). Table 6.1 shows the
scores of the optimal teams of a fixed size. In the no penalty setting, increasing the number of
robots in the team generally improves its robustness (the probability of at least attaining the per-
formance threshold), while in the fall-back penalty setting, increasing the number of robots in the
team generally decreases its robustness. The results are interesting as they show that increasing
redundancy does not always improve robustness. Increasing the number of robots increases the
likelihood that some of them are functional, but also increases the probability that some mod-
ule(s) will fail and lower the team performance. As such, in the fall-back penalty setting, this
causes the overall team score to decrease.

Thus, the ρ-SGraCR model is capable of modeling instances where the redundancy does (in
the no penalty setting) or does not (in the fall-back penalty setting) improve team performance,
or somewhere in between (where fall-back modules have a fraction of the other modules’ capa-
bilities), demonstrating its expressiveness in the space of robust team formation problems.

6.1.5 Comparing the Robust Team Formation Algorithms

Our second set of experiments compares the two robust team formation algorithms we con-
tribute, FormOptimalRobustTeam and ApproxOptimalRobustTeam. The first algo-
rithm, FormOptimalRobustTeam, searches for the optimal robust team of a given size n in

6.2 AGENTS THAT LEARN TO COORDINATE BETTER OVER TIME 91

No penalty Fall-back penalty
of robots Approximate Robust Team Difference to optimal Approximate Robust Team Difference to optimal

1 0.565± 0.258 0.012± 0.030 0.239± 0.171 0.011± 0.021
2 0.543± 0.322 0.080± 0.103 0.109± 0.161 0.026± 0.039
3 0.556± 0.360 0.098± 0.138 0.067± 0.132 0.036± 0.077
4 0.531± 0.386 0.141± 0.190 0.042± 0.107 0.047± 0.104

Table 6.2: The robustness scores of teams formed by ApproxOptimalRobustTeam com-
pared to the optimal team formed by FormOptimalRobustTeam.

exponential time, while ApproxOptimalRobustTeam approximates the optimal robust team
of a given size n in polynomial time. The goal of these experiments is to empirically compare
how well the approximation algorithm performs with respect to the optimal team.

Similar to the experiments above, we generated 100 random instances of ρ-SGraCR models,
with 3 module types of 3 modules each (9 modules in total, 27 unique robots), in two settings,
no penalty and fall-back penalty.

We used both robust team formation algorithms to compose a multi-robot team of 1 to 4
robots. There are 3654 possible 3-robot teams, and ApproxOptimalRobustTeam only
searched 1000 teams with simulated annealing, so less than 1

3
of the space was considered. Fur-

ther, as an approximation, ApproxOptimalRobustTeam assumes that all modules do not
fail, mfail = 4 fail, or all fail, and does not consider cases in between.

Table 6.2 shows the results of our experiments. The score (the probability of at least at-
taining a performance threshold) of the optimal team is higher than that of the team found by
ApproxOptimalRobustTeam, but the difference between the scores is small, which shows
that ApproxOptimalRobustTeam performs very well considering its approximations and
lower runtime.

6.2 Agents that Learn to Coordinate Better over Time

In the previous section, we considered agents that experience failures probabilistically, and how
the Synergy Graph model is used to form a robust team. In this section, we investigate agents
that learn to coordinate and improve team performance over time, i.e., their team performance
improves as the number of learning instances they have had increases. We first formally define
the problem and how the Synergy Graph model represents such learning agents. Next, we con-
sider heuristics from the multi-armed bandit problem that apply to this learning agents problem,
and empirically evaluate the performance of the heuristics.

92 CHAPTER 6: AGENTS WITH COMPLEX CHARACTERISTICS

6.2.1 Dynamic Weighted Synergy Graph (DyWeSG) Model

When agents learn to perform better over time, there are two possible reasons: the agent is
learning about the task and improving its skill at the task; or the agent is learning to coordinate

with its teammates better and improving the team performance. The former is represented in the
Synergy Graph model as a change in the agents’ capabilities, and the latter is represented by a
change in the Synergy Graph structure.

We are interested in the latter, where agents learn to coordinate better with their teammates.
Research on ad hoc agents (e.g., [Barrett et al., 2011]) demonstrated that changing the behavior
of an agent in response to a teammate improves team performance. By considering changes in
the graph structure, we are not limited to specific agents that improve; any edge in the graph
(i.e., a pair of agents) can potentially improve over time. Ad hoc agents would be represented
by considering that all edges connected to them can improve. Other forms of learning agents,
such as specific pairs of agents that can only improve performance with each other, would be
represented by only considering the edge that connects them. We consider learning agent pairs
(compared to tuples of n learning agents) since the Synergy Graph uses a graph structure where
edges have two agents as end-points (compared to hyper-edges that have n agents as end-points).

We use the term learning agents to refer to agents that learn to coordinate better with team-
mates, to reduce ambiguity about the term ad hoc as used in “ad hoc teams” in other chapters,
i.e., ad hoc teams are teams where the agents have not collaborated before, so their capabilities
and synergy are initially unknown.

Learning Agents Problem Definition

The set of agents is A = {a1, . . . aN} (Definition 2.1.1). From the set of agents, we define
learning agent pairs:

Definition 6.2.1. A learning agent pair is a pair of agents {ai, aj} ∈ A2 that will improve their

performance over time. The set of learning agent pairs is L ⊆ A2.

Learning agent pairs improve their performance when they are allocated training instances,
which we define next:

Definition 6.2.2. A training instance k ∈ {1, . . . , K} is an opportunity for a learning agent pair

{ai, aj} ∈ L to improve its performance.

6.2 AGENTS THAT LEARN TO COORDINATE BETTER OVER TIME 93

Training instances are allocated to learning agent pairs, and observations are obtained:

Definition 6.2.3. An observation of learning o{ai,aj} is obtained for each training instance that

is allocated to the learning agent pair {ai, aj} ∈ L.

Since {ai, aj} are learning, the value o{ai,aj} increases on expectation as a function of the
number of training instances {ai, aj} is allocated.

There are K > 0 training instances, and the goal is to form the optimal team of given size
n∗ at the end of the K instances that has the highest mean performance (i.e., the δ-optimal team
with δ = 1

2
). The performance of a team A ⊆ A of size n∗ at the end of the training instances

depends on the number of learning agent pairs in A, and the number of training instances each
learning agent pair is allocated out of K.

Representing Coordination Improvement in Synergy Graphs

We assume that a Weighted Synergy Graph Sinitial is given, that represents the team performance
of the agents in A prior to the K training instances. In particular, each {ai, aj} ∈ L corresponds
to an edge (ai, aj, wi,j) in Sinitial.

We formally define the Dynamic Weighted Synergy Graph (DyWeSG) model, that represents
such learning edges and their improvement rate:

Definition 6.2.4. The Dynamic Weighted Synergy Graph (DyWeSG) model is a tuple (G,C),

where:

• G = (V,E) is a connected weighted graph;

• V = A, i.e., the set of vertices corresponds to the set of agents;

• E = Elearn ∪ Eregular, i.e., there are two types of edges, learning edges and regular edges;

• ∀ {ai, aj} ∈ L, ei,j = (ai, aj, wi,j, li,j) ∈ Elearn is a learning edge between agents ai and

aj with initial weight wi,j ∈ R+ and a learning rate li,j ∼ N (µi,j, σ
2
i,j);

• ∀ {ai, aj} /∈ L, ei,j = (ai, aj, wi,j) ∈ Eregular is an edge between agents ai and aj with

weight wi,j ∈ R+;

• C = {C1, . . . , CN}, where Ci ∼ N (µi, σ
2
i) is agent ai’s capability.

The learning rate li,j models how much the coordination between ai and aj improves in each
training instance. We assume that the improvement rate is static and constant, and we use a
Normal distribution N (µi,j, σ

2
i,j) as our estimate of it.

Thus, from a Weighted Synergy Graph Sinitial, a DyWeSG S is created where the agent ca-
pabilities are identical, and the graph structure is identical except for learning agent pairs. Such
pairs are modeled with special edges that have an initial weight corresponding to the edge in
Sinitial and is augmented with the learning rate li,j .

94 CHAPTER 6: AGENTS WITH COMPLEX CHARACTERISTICS

C3

2

3

4

1 3

1
3

l1,2

l1,5
l1,4

l1,3

l4,5

C1

a1 a2

a4a3 a5

C2

C4 C5

Figure 6.1: A Dynamic Weighted Synergy Graph with 5 agents. Agent pairs that learn to coor-
dinate better over time are denoted with bold edges. Initial edge weights are shown in black text,
and the learning rates are shown in blue.

Figure 6.1 shows an example DyWeSG with 5 agents, where 4 agent pairs that learn to co-
ordinate better over time are represented with bold edges. An ad hoc agent [Stone et al., 2010]
is represented with all its edges bold, such as a1 in Figure 6.1. Other forms of learning agents,
such as specific pairs of agents that only improve with respect to each other are represented only
with their edges, such as {a4, a5} in Figure 6.1.

Using the DyWeSG model, we compute the dynamic pairwise synergy of two agents:

Definition 6.2.5. The dynamic pairwise synergy between ai and aj where {ai, aj} ∈ L is:

Sd,2(ai, aj) = (φ(wi,j) + (ki,j · µi,j)) · (Ci + Cj)

where wi,j is the initial weight of the edge between ai and aj , and φ : R+ → R+ is the compati-

bility function, ki,j is the number of training instances {ai, aj} have had, and li,j ∼ N (µi,j, σ
2
i,j)

is the estimate of the {ai, aj}’s learning rate.

The dynamic pairwise synergy uses the sum of the agents’ capabilities, and multiplies it by
the sum of the initial compatibility (φ(wi,j)) and the learning rate multiplied by the number of
training instances the agent pair has received. As such, the DyWeSG assumes that each training
instance improves the compatibility of an agent pair linearly. While the compatibility improves
linearly, the edge weight between them typically does not — the effective edge weight between
ai and aj is:

w′i, j = φ−1(φ(wi,j) + (ki,j · µi,j))

where φ is the compatibility function.

6.2 AGENTS THAT LEARN TO COORDINATE BETTER OVER TIME 95

For any other pair of agents, the pairwise synergy (Definition 2.4.2) applies. The synergy of
a team containing learning agents is:

Definition 6.2.6. The synergy of a set of agents A ⊆ A is:

Sd(A) =
1(|A|
2

) ·
∑

{ai,aj}∈A




Sd,2(ai, aj) if {ai, aj} ∈ L
S2(ai, aj) otherwise

Using the DyWeSG model, solving the learning agents problem has two steps:

1. Allocating K training instances, i.e., selecting K learning edges in the DyWeSG;

2. Forming the optimal team with the DyWeSG.

Comparison with the Multi-Armed Bandit Problem

There are many similarities between the learning agents problem and the multi-armed bandit
problem, where each learning agent pair is viewed as an arm in the bandit problem:

1. There are a fixed number of trials/training instances;

2. Each trial improves the estimate of li,j;

3. There is an optimal allocation of the K trials to minimize regret.

However, there is a key difference between the two problems: the goal of the multi-armed
bandit problem is to maximize the cumulative sum of rewards, while the goal of the learning
agents problem is to maximize the performance of a team after the K trials.

Pulling an arm in the multi-armed bandit problem always improves the final score on expec-
tation. In the learning agents problem, assigning an agent pair a training instance improves their
compatibility, but may not affect the final team’s score. For example, if the agent pair {ai, aj}
received k ≤ K training instances, but the team A that is formed after all the training instances
does not contain the pair {ai, aj}, then the k training instances did not add to the final score.

While there is a significant difference between the multi-armed bandit problem and the learn-
ing agents problem, approaches and heuristics from the bandit problem provide insights to solv-
ing the learning agents problem, as we explain next.

6.2.2 Solving the Learning Agents Problem

The goal of the learning agents problem is to form the optimal team after K training instances.
The difficulty of the problem lies in the allocation of the K training instances — after all the
training instances have been allocated, the team formation algorithms FormδOptimalTeam

96 CHAPTER 6: AGENTS WITH COMPLEX CHARACTERISTICS

(Algorithm 1) and ApproxδOptimalTeam (Algorithm 2) are applicable with δ = 1
2
, with a

minor change that Sd is used in the computation of team synergy instead of S. In this section, we
first define the optimal allocation of the K training instances, and then consider heuristics from
the multi-armed bandit problem.

Computing the Optimal Allocation of Training Instances

Suppose that S∗ is a DyWeSG that models the agents’ team performance, where all the learning
rates are known, i.e., ∀ {ai, aj} ∈ L, li,j ∼ N (µi,j, 0)1. Since all the learning rates are known,
the maximum score of any team can be computed. Algorithm 13 shows the pseudocode to find
the optimal allocation of the K training instances and to form the optimal team.

Algorithm 13 Solve the learning agents problem with K training instances
SolveLearningAgentsProblem(S∗, n∗, K)

1: Abest ← ∅
2: vbest ← −∞
3: kbest = (k1, . . . , kK)← (∅, . . . , ∅)
4: for all A ⊂ A s.t. |A| = n∗ do
5: (vA, kA)← OptimalAllocation(S∗, A,K)
6: if vA ≥ vbest then
7: Abest ← A
8: vbest ← vA
9: kbest ← kA

10: end if
11: end for
12: return (Abest, vbest, kbest)

OptimalAllocation computes the optimal allocation of the K training instances given
a particular team A, and returns the team value and allocations kA. To determine the optimal
allocation of the K training instances, we first consider the bases cases:

1. If A contains no learning agent pairs, i.e., ∀ {ai, aj} ∈ L, ai /∈ A or aj /∈ A, then kA is
irrelevant, and vA = Evaluate(Sd(A), 1

2
).

2. If A contains a single learning agent pair {ai, aj}, then kA = ({ai, aj} , . . . , {ai, aj}), and
vA = Evaluate(Sd(A), 1

2
) where ki,j = K and k¬i,j = ki,¬j = k¬i,¬j = 0.

The first case is when the team A has no learning agent pairs — no allocation of the training
instances would improve A’s score. The second case when A contains a single learning agent
pair — all training instances are allocated to the pair to maximize the final score.

1Since the learning rates are known, li,j is a constant value, and we use a Normal distribution with variance 0 for
consistency with our previous definition of li,j .

6.2 AGENTS THAT LEARN TO COORDINATE BETTER OVER TIME 97

In all other cases, where there are two or more learning agent pairs, the optimal allocation is
to pick a single learning agent pair and allocate all K training instances to it, as shown below:

Theorem 6.2.7. Let {ai, aj} ∈ L such that ai ∈ A and aj ∈ A.

Let {aα, aβ} ∈ L such that aα ∈ A and aβ ∈ A.

Let ci,j = µi,j(µi + µj), where µi,j is the learning rate of {ai, aj}, and µi, µj are the mean

capabilities of the agent ai and aj respectively.

Let cα,β = µα,β(µα + µβ), where µα,β is the learning rate of {aα, aβ}, and µα, µβ are the mean

capabilities of the agent aα and aβ respectively.

WLOG, suppose ci,j ≥ cα,β .

Then, kA = ({ai, aj} , . . . , {ai, aj}) is the optimal allocation of training instances.

Proof. Let k′A = ({a1,1, a1,2} , . . . , {aK,1, aK,2}) be some allocation of training instances such
that {aγ,1, aγ,2} = {ai, aj} or {aγ,1, aγ,2} = {aα, aβ} ∀γ = [1, K].
Let k′i,j =

∑
{aγ,1,aγ,2}∈k′A

1{ai,aj}({aγ,1, aγ,2})
Let k′α,β =

∑
{aγ,1,aγ,2}∈k′A

1{aα,aβ}({aγ,1, aγ,2})
Let v′i,j = (φ(wi,j) + (k′i,j · µi,j)) · (µi + µj)

Let v′α,β = (φ(wα,β) + (k′α,β · µα,β)) · (µα + µβ)

argmaxk′A(Sd(A)) = argmaxk′A(v′i,j + v′α,β).
v′i,j + v′α,β = c+ k′i,j · ci,j + k′α,β · cα,β , where c = φ(wi,j)(µi + µj) + φ(wα,β)(µα + µβ).
If ci,j ≥ cα,β , then kA = ({ai, aj} , . . . , {ai, aj}) = argmaxk′A(v′i,j + v′α,β).

Theorem 6.2.7 extends to agent teams with more than two learning agent pairs — it is optimal
to allocate all K training instances on a single learning agent pair.

Minimizing Regret in the Learning Agent Problem

When the learning rates of the learning agent pairs are known, the optimal allocation can be com-
puted, as shown previously. However, when the learning rates are unknown, some exploration is
required to estimate the learning rates. We consider two heuristics from the multi-armed bandit
problem that are applicable to the learning agents problem, the Upper Confidence Bound (UCB)
heuristic [Auer et al., 2002] and the Thompson sampling (TS) heuristic [Thompson, 1933].

Algorithm 14 shows the pseudocode for the UCB heuristic on the learning agents problem.
The training instances are selected by creating a modified DyWeSG where the learning agent
pairs have fixed rates (Lines 6-7) and calling SolveLearningAgentsProblem. The learn-
ing rate of the agent pair being considered is set to the sum of the mean and standard deviation
of its estimate, hence the heuristic is called upper confidence bound. Train applies a training

98 CHAPTER 6: AGENTS WITH COMPLEX CHARACTERISTICS

instance on the selected learning agent pair and receives an observation oα of its performance
(Line 16). The observed oα is used to update the estimate of learning rate (Line 17).

Algorithm 14 Upper Confidence Bound heuristic on learning agents problem
UCB(S, n∗, K)

1: kbest = (k1, . . . , kK)← (∅, . . . , ∅)
2: for α = 1, . . . K do
3: Abest ← ∅
4: vbest ← −∞
5: for all {ai, aj} ∈ L do
6: l′i,j ∼ N (µi,j + σi,j, 0)
7: l′¬i,j = l′i,¬j = l′¬i,¬j ← N (0, 0)
8: S ′ ← DyWeSG modified from S with l′ as the learning rates
9: (Ai,j, vi,j, ki,j)← SolveLearningAgentsProblem(S ′, n∗, K − α + 1)

10: if vi,j ≥ vbest then
11: kα ← {ai, aj}
12: vbest ← vi,j
13: Abest ← Ai,j
14: end if
15: end for
16: oα ← Train(kα)
17: lkα ← UpdateLearningRate(oα)
18: end for
19: return Abest

Algorithm 15 shows the pseudocode of Thompson sampling on the learning agents problem.
For each learning agent pair, the best possible team of size n∗ that uses the pair is computed
(Lines 6–9). The performance of the team is computed, and a sample is drawn from the distribu-
tion Ci,j (Lines 10–11). The learning agent pair with the highest sampled value is trained (Line
18), and the learning rate is updated (Line 19).

In both Algorithms 14 and 15, a crucial step is the function UpdateLearningRate, that
updates the estimate of the learning rate of a learning agent pair. Since oα is drawn from Sd,2(kα),
which is a Normally-distributed variable, and the dynamic pairwise synergy computation is lin-
ear, a Kalman filter is used to maintain the estimate of the learning rate lkα .

6.2.3 Evaluating the Algorithms

To compare the performance of the UCB and TS heuristics on the learning agents problem, we
compared the regret of both algorithms with respect to the optimal allocation of training in-
stances. We ran 100 trials, where we generated a random Weighted Synergy Graph of 10 agents,

6.2 AGENTS THAT LEARN TO COORDINATE BETTER OVER TIME 99

Algorithm 15 Thompson sampling on learning agents problem
TS(S, n∗, K)

1: Abest = ∅
2: kbest = (k1, . . . , kK)← (∅, . . . , ∅)
3: for α = 1, . . . K do
4: vbest ← −∞
5: for all {ai, aj} ∈ L do
6: l′i,j ∼ N (µi,j, 0)
7: l′¬i,j = l′i,¬j = l′¬i,¬j ← N (0, 0)
8: S ′ ← DyWeSG modified from S with l′ as the learning rates
9: (Ai,j, . . .)← SolveLearningAgentsProblem(S ′, n∗, K − α + 1)

10: Ci,j ← Sd(Ai,j)
11: Sample vi,j from Ci,j
12: if vi,j ≥ vbest then
13: kα ← {ai, aj}
14: vbest ← vi,j
15: Abest ← Ai,j
16: end if
17: end for
18: oα ← Train(kα)
19: lkα ← UpdateLearningRate(oα)
20: end for
21: return Abest

100 CHAPTER 6: AGENTS WITH COMPLEX CHARACTERISTICS

Figure 6.2: The performance of teams formed after K training instances by various heuristics.
The dotted black line shows the performance of the optimal team.

where the agent capabilities Ci ∼ N (µi, σ
2
i) were generated with γ = 100, where µi ∈ (γ

2
, 3γ

2
)

and σ2
i ∈ (0, γ2). We then randomly selected 5 edges to be learning agent pairs, with a hidden

learning rate sampled from (0, 0.1).

We variedK, the total number of training instances, from 100 to 500, and compared the UCB
and TS heuristics. In addition, we ran a random heuristic that would randomly pick a learning
agent pair for training, and a heuristic that did not pick any learning agent pairs at all. Figure 6.2
shows the performance of the teams formed by the various heuristics, as well as the performance
of the team formed after the optimal allocation of training instances. The performance of the
optimal team improves steadily as K increases, since there are more training instances for the
best agent pair to improve. In contrast, the performance of the team when no learning is done
remains flat. Among the other three heuristics, UCB performs the best and has a performance
close to optimal. TS performs about halfway between random and UCB.

Another method of comparison is the amount of regret of each heuristic. Table 6.3 shows
the regret of the heuristics compared to the optimal allocation of training instances. The regret is
computed by taking the difference between the optimal team performance and the performance
of the team formed by using the heuristic after the K training heuristics. Table 6.3 shows that
the regret of UCB remains at around 95 after 400 training instances, while the regret of the other
heuristics continue to increase. Thus, UCB outperforms the other heuristics (including TS).

6.3 CHAPTER SUMMARY 101

Heuristic
Number of Training Instances

100 200 300 400 500
None 168± 44 308± 94 483± 134 668± 158 894± 224

Random 127± 32 201± 65 294± 82 401± 119 514± 172
TS 94± 33 137± 53 198± 71 256± 100 320± 120

UCB 48± 45 58± 46 75± 75 93± 119 97± 96

Table 6.3: Regret of various heuristics versus the optimal allocation of training instances.

6.3 Chapter Summary

This chapter presented how agents with complex characteristics (i.e., agents that can fail, and
agents that learn to coordinate) are represented in the Synergy Graph model. We first considered
agents that have probabilities of failure, and introduced the Robust Synergy Graph for Config-
urable Robots (ρ-SGraCR) model. We contributed two algorithms that form and approximate the
optimal robust team respectively, where the optimal robust team considers the performance of
the team if failures were to occur. Second, we considered agents that learn to coordinate better
over time. We showed that agent pairs that perform better over time are modeled as edges in the
Synergy Graph where the edge weights decrease over time, and highlighted the similarities and
differences between the learning agents problem and the multi-armed bandit problem. We also
contributed two algorithms that solve the learning agents problem using the upper confidence
bound heuristic and Thompson sampling heuristic, and showed that the upper confidence bound
heuristic forms the best-performing team, and has the lowest regret compared to the optimal
allocation of training instances.

102 CHAPTER 6: AGENTS WITH COMPLEX CHARACTERISTICS

Chapter 7

Applications and Results

This chapter presents the application of the Synergy Graph model on various simulated and
real robot problems. We consider team formation using a probabilistic model of robot capabili-
ties [Parker and Tang, 2006, Liemhetcharat and Veloso, 2012a]; team formation and role assign-
ment in RoboCup Rescue [Liemhetcharat and Veloso, 2012b, Liemhetcharat and Veloso, 2013d];
role assignment in a foraging task [Liemhetcharat and Veloso, 2012b]; configuring robot mod-
ules in a pseudo-manufacturing task [Liemhetcharat and Veloso, 2013c]; and forming a robust
multi-robot team in a foraging task [Liemhetcharat and Veloso, 2013a]. This chapter presents
each domain and the setup of the experiments, followed by the results of the Synergy Graph
model and algorithms in forming effective teams.

7.1 Team Formation with Probabilistic Robot Capabilities

Synergy Graphs model team performance as a function of individual robot capabilities and their
pairwise compatibility. Normally-distributed variables are used to capture the performance of the
team as well as the robot capabilities. In this section, we use the robot capability model of Parker
and Tang [Parker and Tang, 2006] for team formation, i.e., selecting a subset of the robots. We
chose the probabilistic model of robot capabilities as our first benchmark as it is conceptually
intuitive, and is sufficiently different from the Synergy Graph model. As such, we can evaluate
the performance of the Synergy Graph model when the underlying robot capabilities and team
performance does not match the Synergy Graph perfectly.

103

104 CHAPTER 7: APPLICATIONS AND RESULTS

Action 1

Action 2

Action 3

Desired Output

0.8

0.9

a1

a2

a3

0.3

0.7

0.6

0.9

...
Figure 7.1: An example of probabilistic robot capabilities. The numbers indicate probabilities of
success, and the dashed lines out of actions 2 and 3 indicate that both are required to trigger the
desired output.

7.1.1 Probabilistic Model of Robot Capabilities

In the probabilistic model of robot capabilities, every robot has a subset of actions that it can
perform, and every action by a robot has a probability of success. These actions are then chained
across robots to produce the desired output, again with some probability of success. Figure 7.1
shows the capabilities of 3 agents and how the actions are chained together to produce the desired
outcome. Since each agent has a subset of the actions, different subsets of agents will have
different results. In our experiments, we varied the number of agents from 4 to 10 and randomly
picked their capabilities in each trial — each agent had a 0.7 chance of being able to perform
each action, and the probability of success of the action was uniformly sampled from [0.1, 0.9].

We computed the performance of a team of agents based on the cost of executing the actions
and the reward achieved by generating the output. The cost of attempting actions 1, 2 and 3 were
30, 10 and 15 respectively, and the cost of attempting to generate the output from action 1 was
10 and 15 from the combination of action 2 and 3. When the output was achieved successfully,
a reward of 100 was given. The values of costs and reward were arbitrarily chosen, but further
experiments with different values yielded similar results. In each trial, every agent would attempt
to execute its actions, and if they were successful, the output was also attempted to be generated.
Thus, the team performance had a probability density function (pdf) that depended on the agent
capabilities — this pdf was not Normally distributed in general. We were interested to find out
how accurately we could learn a Synergy Graph in such a situation.

7.1.2 Experimental Setup

Figure 7.2 shows the experimental process. The probabilistic model was used to generate ob-
servations of subsets of 2 and 3 agents, and then an Unweighted Synergy Graph is learned with

7.1 TEAM FORMATION WITH PROBABILISTIC ROBOT CAPABILITIES 105

Unweighted Synergy Graph

ASyMTRe

exposed

Probabilistic model

hidden learn select
team

select team

performance
Team

performance
Team

Figure 7.2: The experimental process to compare our Synergy Graph algorithms against the
ASyMTRe algorithm.

LearnSynergyGraph (Algorithm 3). A team is selected using ApproxδOptimalTeam on
the learned Unweighted Synergy Graph (Algorithm 2), and the performance of the team is com-
puted using the probabilistic model. To attain results for ASyMTRe [Parker and Tang, 2006], the
probabilities of success and costs of actions in the model were exposed, and the heuristic to rank
teams in [Parker and Tang, 2006] was used. The ASyMTRe algorithm is an anytime algorithm,
but for our experiments, we ran it to completion so that the optimal team with respect to the
authors’ heuristic was chosen. The effectiveness of the selected teams were computed by com-
paring their performance compared to the maximum and minimum team performance (perfmax

and perfmin respectively), which were attained by performing a brute-force search of all possible
combinations of agents, and thus scaling the results of the synergy and ASyMTRe algorithms to
be between 0 and 1:

Effectiveness(A) =
perfA − perfmin

perfmax − perfmin
(7.1)

The ranking heuristic in the ASyMTRe algorithm has a factor p ∈ [0, 1] that balances
between the probability of success of performing an action versus the cost of the action. For
our experiments, we varied p from 0 to 1 at 0.1 intervals, and collated the results. The Synergy
Graph team formation algorithm uses δ ∈ (0, 1); we varied δ from 0.1 to 0.9 at 0.1 intervals and
collated the results. The results were collated across p and δ since the values were consistent
and had little effect on the performance of the algorithms in general. We varied |A|, the number
of agents, from 4 to 10, and picked teams of sizes 2 to |A| − 1. For a given size of |A|, we
performed 30 trials for each team size.

106 CHAPTER 7: APPLICATIONS AND RESULTS

of agents Unweighted Synergy Graph ASyMTRe
4 0.95± 0.17 0.64± 0.34
5 0.95± 0.14 0.64± 0.33
6 0.96± 0.10 0.63± 0.31
7 0.97± 0.08 0.60± 0.29
8 0.93± 0.07 0.59± 0.27
9 0.97± 0.07 0.59± 0.25
10 0.96± 0.08 0.63± 0.27

Table 7.1: Effectiveness of teams formed by using the Unweighted Synergy Graph versus
ASyMTRe.

7.1.3 Experimental Results

Table 7.1 shows the scores of the two algorithms. Across all number of agents, the Unweighted
Synergy Graph outperforms ASyMTRe in terms of the effectiveness of the team selected, even
though the probabilistic model of robot capabilities is hidden to the Synergy Graph algorithms
but exposed for the ASyMTRe algorithm. The ASyMTRe algorithm finds teams that score
around 60% of the optimal while the Synergy Graph algorithm forms teams that score above
90%. This significant difference is due to a number of reasons: firstly, the ASyMTRe algorithm
was designed to also plan the agents’ actions, i.e., which actions each agent should perform in
order to complete the task. Secondly, the ASyMTRe typically plans for a set number of out-
puts (e.g., find a team to produce 2 outputs), but in our experiments the heuristic was used to
find a team that produces as much output as possible. We compared our synergy algorithm to
ASyMTRe as it is a well-known algorithm for multi-robot team formation and coordination that
exploits heterogeneity in the agents to maximize task performance.

7.2 Team Formation in RoboCup Rescue

In this section, we use the RoboCup Rescue simulator to simulate rescue robots in a urban dis-
aster scenario. The underlying dynamics and capabilities of the robots are hidden to the Synergy
Graph algorithms, and we are interested to evaluate the performance of teams that are formed. In
particular, many teams from around the world participate in the international RoboCup compe-
tition, and create task-allocation algorithms that control the rescue robots in the simulator. The
experiments below treat each task-allocation algorithm as an agent, and the team formation task
is to form the optimal ad hoc team, i.e., a subset of task-allocation algorithms to control the
rescue robots in the RoboCup Rescue simulator.

7.2 TEAM FORMATION IN ROBOCUP RESCUE 107

Figure 7.3: Screenshot of the RoboCup Rescue simulator showing the initial positions of the
simulated robots. Green, red, blue, and white circles are civilians, fire engines, police cars, and
ambulances respectively. The grey areas indicate buildings that darken as they burn down.

7.2.1 The RoboCup Rescue Simulator

The RoboCup Rescue Simulation League provides an open-source simulator for agent develop-
ment [Kitano et al., 1999]. The simulator uses a map of a city, such as Berlin, Istanbul, Paris etc,
and simulates the event that a natural disaster has occurred. Civilians are randomly positioned
in the city with varying amounts of health, some of whom may be buried under rubble. Fires
break out in random parts of the city, and roads throughout the city are blocked by fallen debris,
making them impassable for humans and vehicles.

Three types of rescue robots are deployed: ambulances, fire engines and police cars. The
ambulances help to rescue civilians, while fire engines put out fires and police cars clear the road
obstructions. The simulator runs for a fixed number of timesteps, and the score is a weighted
sum based on the number of civilians and rescue robots alive and the proportion of buildings in
the city that are not burnt.

The RoboCup Rescue domain is a multi-robot task allocation problem in the ST-MR-TA
category [Gerkey and Mataric, 2004]. Different approaches have been used to solve this problem,
such as treating it as a generalized allocation problem [Ferreira et al., 2010], using a biologically-
inspired approach [dos Santos and Bazzan, 2011], and extending coalition formation to handle
spatial and temporal constraints [Ramchurn et al., 2010].

108 CHAPTER 7: APPLICATIONS AND RESULTS

7.2.2 Experimental Setup

As part of the RoboCup Rescue competition, participants from various universities around the
world develop algorithms to control all the rescue robots (i.e., the non-civilians). We use the
RoboCup Rescue simulator as an ad hoc multi-robot scenario, where combinations of pre-
existing algorithms are used to compose an effective team. The rescue robots have a standard-
ized communication protocol defined in the RoboCup Rescue simulator, which allows different
RoboCup participants’ algorithms to be run simultaneously, each controlling a subset of the res-
cue robots. In particular, we are interested in modeling the performance of ad hoc combinations
of these algorithms. For example, when running two algorithms simultaneously, each algorithm
controls half of the rescue robots. We wanted to compare the effectiveness of the Weighted
Synergy Graph model at modeling the interactions and forming an effective team, versus the
Unweighted Synergy Graph model, as well as IQ-ASyMTRe [Zhang and Parker, 2010, Zhang
and Parker, 2012].

We used the Istanbul1 map from RoboCup 2011, and the source code of 6 RoboCup 2011 par-
ticipants: Poseidon, RoboAKUT, Ri-one, RMAS ArtSapience, SBCe Saviour, and SEU RedSun
[RoboCupRescue, 2011]. The source code of 8 RoboCup participants were available for down-
load, but only 6 ran out of the box without much modification. In the Istanbul1 map, there are
46 rescue robots to be controlled, and each of the 6 RoboCup algorithms are designed to control
all 46 robots to perform the task. We treated the 6 RoboCup algorithms as 6 separate agents,
such that any subset of these 6 agents can be used to control the 46 robots. We distributed the
46 rescue robots among the selected agents randomly, such that each agent controlled an ap-
proximately equal number of rescue robots. For example, if two agents (RoboCup algorithms)
were picked, then each algorithm would control 23 robots (assigned randomly), and the score
of the two agents would be the score returned by the RoboCup Rescue simulator at the end of
its simulation, which is based on the number of civilians and rescue robots alive and the health
of the buildings in the city. The RoboCup Rescue simulator models randomness and noise in
the simulation, and we used the default settings of the simulator in our experiments, with the
Istanbul1 map from RoboCup 2011.

We varied the number of selected agents N from 2 to 5. For each value of N , there are
(

6
N

)

combinations of agents, and we ran 30 simulations for each combination. For example, when
N = 3, there are 20 combinations of agent triples (e.g., Poseidon, RoboAKUT, and Ri-one), and
we ran 30 simulations for each triple. Each simulation had a different allocation of rescue robots
to agents, and hence each simulation resulted in a different score given by the simulator. An
observation consists of the agents (e.g., Poseidon, RoboAKUT, and Ri-one) and a single score
they attained (e.g., 14.8), and there are 30 observations per agent team combination.

7.2 TEAM FORMATION IN ROBOCUP RESCUE 109

We used the scores of simulation runs where N = 2 and N = 3 as the observation set for
training, with 1050 = 30(

(
6
2

)
+
(

6
3

)
) total observations. To evaluate the learned models, the

algorithms formed teams of size 4 and 5. Since the score of a team changes depending on the
robot allocation, we used the average score attained in the 30 simulations as our measure, hence
corresponding to δ = 1

2
in our problem definition. We did not form any team of size 6, because

only one such team exists (using all the agents). We did not include data from N = 1 for training
or testing, since the simulator is deterministic (given a fixed initial random seed) so there would
not be variance in the agents’ performance over 30 simulations.

For the Weighted and Unweighted Synergy Graph models, we used the decay compatibility
function, i.e., φdecay(d) = exp

(
−d ln 2

h

)
, where h = 2, and ran 1000 iterations of simulated

annealing. We chose the decay compatibility function as the compatibility decreases more grad-
ually than φfraction, and used 1000 iterations of simulated annealing as it had good results in
previous experiments. In addition, since the learned Synergy Graph depends on a random pro-
cess of changing edges, we performed 10 trials to learn the Synergy Graph from the RoboCup
Rescue data.

IQ-ASyMTRe [Zhang and Parker, 2012] calculates the expected cost of a coalition A and
task t as:

cost(A, t) = ĉost(A, t)/F (QA, Yt) (7.2)

where ĉost(A, t) is the summation of costs of all activated schemas in A, QA is the coalition
quality of A, Yt is the task type of t, and F (QA, Yt) is the success probability of QA at Yt.

Since we have a single task, and all coalitions (combinations of agents) can complete the task,
we set F (QA, Yt) = 1 for all A. As such, cost(A, t) = ĉost(A, t). Since the internal schemas of
the participants’ algorithms are unknown, we treat each agent as a single schema, and estimate
its cost as the average of the score of agent combinations involving it:

ĉost(a) =

∑
A s.t. a∈A score(A)

|A ∈ A s.t. a ∈ A| (7.3)

where a is an agent (i.e., one of the 6 algorithms), A is a team of 2 to 5 agents, and score(A) is
the score obtained in the RoboCup Rescue simulator using the agents in A to control the rescue
robots.

From the cost of each agent, we then define the cost of a coalition in IQ-ASymTRe as:

ĉost(A, t) =
∑

a∈A
ĉost(a) (7.4)

110 CHAPTER 7: APPLICATIONS AND RESULTS

Algorithm 4 agents 5 agents
Weighted Synergy Graph 14.3 12.7

Unweighted Synergy Graph 14.3 12.7
IQ-ASyMTRe 12.3 8.4

Best Possible Team 14.3 13.0
Worst Possible Team 7.1 8.1

Table 7.2: Average scores of combinations of algorithms in the RoboCup Rescue simulator,
formed by the Weighted Synergy Graph model, Unweighted Synergy Graph model, and IQ-
ASyMTRe.

To form a team using IQ-ASyMTRe, we iterate through all possible combinations of agents
given the desired team size, and pick the team with the highest cost. Typically, the team with
the lowest cost is picked in IQ-ASyMTRe, but because we used the score as the measure of cost
(there is no actual metric for cost of the algorithms), it is desirable to pick the team with the
highest score.

7.2.3 Experimental Results

Table 7.2 shows the scores of the teams formed with the Weighted Synergy Graph, Unweighted
Synergy Graph, and IQ-ASyMTRe. 30 trials for each team was run in the RoboCup Rescue
simulator, and the score is the average value returned by the RoboCup simulator at the end of the
30 simulations, which corresponds to using δ = 1

2
.

The Weighted and Unweighted Synergy Graph models perform similarly, showing that while
the Weighted Synergy Graph model is more expressive, the interactions of the agents in the
RoboCup Rescue domain can be modeled with an unweighted graph. Further, both Synergy
Graph models always form the optimal 4-agent team, and forms the optimal 5-agent team 80%
of the time. In comparison, IQ-ASyMTRe finds a good but non-optimal 4-agent team, and
forms a 5-agent team that is close to the worst possible combination. The results are statistically
significant to a value of p = 5 × 10−137 for 4 agents, and p = 4 × 10−9 for 5 agents (single-
tailed paired T-test) between the Synergy Graph model and IQ-ASyMTRe. The p-values for the
weighted and unweighted models versus IQ-ASMTRe are identical since both Synergy Graph
models attained the same results.

Thus, the Synergy Graph model outperforms IQ-ASyMTRe. The results are compelling in
that only observations of 2 and 3 agents were used for training, but teams of 4 and 5 agents were
formed. Further, no assumptions of the agents were used and they were treated as black-boxes
in the Synergy Graph model.

7.3 ROLE ASSIGNMENT IN ROBOCUP RESCUE 111

7.3 Role Assignment in RoboCup Rescue

The previous section applied the Synergy Graph models to RoboCup Rescue, by treating existing
RoboCup Rescue task-allocation algorithms as agents, and selecting subsets of the algorithms to
control the simulated rescue robots. In this section, we treat each simulated rescue robot as a
separate role, and consider the best role assignment of task-allocation algorithm to rescue robots,
using the Weighted Synergy Graph for Role Assignment (WeSGRA) model.

7.3.1 Experimental Setup

The RoboCup Rescue Agent Simulation League releases the simulator, maps, and source code
of participating teams annually, as described in the previous section. We compiled and ran the
algorithms of 6 RoboCup teams (with minor modifications); each agent type in the WeSGRA
model corresponded to a RoboCup team’s algorithm. We used the Istanbul1 scenario from the
actual RoboCup 2011 competition, where there are 46 rescue robots to be controlled. Typically,
one team’s algorithm is used to control and coordinate all 46 robots at once. However, because
we are interested in modeling the interactions of multiple algorithms in an ad hoc setting, we did
the following: for each of the 46 robots, one of the 6 algorithms was chosen at random to control
it. Thus, a role assignment policy in this case would be an assignment of algorithms to each of
the 46 rescue robot, and as such there are 646 possible role assignment policies.

We randomly generated 600 policies (i.e., policies with different combinations of RoboCup
algorithms), and ran an instance of the simulator per policy. At the end of each simulation, the
value was retrieved from the simulator, which was a weighted sum of the health of the civilians
and rescue agents still alive, and the status of the buildings of the city.

First, we performed 6-fold cross-validation on the 600 examples, where we split the data in
6 sets of 100, and trained on 500 and tested on the remaining 100. However, because of the
small number of training examples, we were unable to estimate the variances of the agent type
capabilities Ci,α, and instead set them to be a constant. Figure 7.4 shows the cross-validation
learning curves of the first fold and the average of the 6 folds, where each point on the curve
is the log-likelihood of the currently learned WeSGRA (using 500 training data) on the 100 test
data. The log-likelihood of the test set improves with the number of iterations of simulated
annealing, and illustrates that the WeSGRA model is capable of modeling the interactions of the
role assignment policies running with the 6 RoboCup algorithms.

Next, we used the learned WeSGRAs from the 6 runs of cross-validation to approximate the
optimal role assignment policy. The policies found were then run in the simulator to retrieve
its value. We also learned a WeSGRA using all 600 examples, and used the simulator to obtain

112 CHAPTER 7: APPLICATIONS AND RESULTS

Figure 7.4: Learning curve of the Synergy Graph learning algorithm using cross-validation of
data from the RoboCup Rescue simulator.

the value of the role assignment policy found from the learned WeSGRA. We compared the role
assignment policies found by our approach with three methods: a random guess, a market-based
approach, and picking the policy with the highest value in the training examples. The value
of choosing a random policy was computed based on the 600 examples. In the market-based
approach, each algorithm ai formed a different bid Bid(ai, rα) for each of the 46 roles rα, based
on the value of policies in the 600 examples that contained it:

Bid(ai, rα) =
1

|Π|
∑

π∈Π

oπ (7.5)

where Π = {π|π(rα) = ai}, and oπ is the observation of the value of the role assignment π. For
each role, the market-based role assignment algorithm picked the agent type with the highest bid.

7.3.2 Experimental Results

Figure 7.5 shows the distribution of values of the role assignments found by WeSGRA (from
cross-validation, and from using all the data) and methods we used for comparison. The role
assignments formed by WeSGRA outperforms a random policy and the market-based algorithm.
The performance of WeSGRA using all the data is similar to picking the best policy in the training
data, but we believe this is due to the small size of training data. WeSGRA’s performance will
improve with more examples, while choosing the best training policy can lead to over-fitting.

7.4 ROLE ASSIGNMENT IN A FORAGING TASK 113

Figure 7.5: The distribution of values of role assignment policies. The values in the training
examples is shown as a cross (the mean) with horizontal lines showing the standard deviation.

7.4 Role Assignment in a Foraging Task

For our third set of experiments, we applied the WeSGRA model to real robots in the foraging
domain. We used two hardware platforms — Aldebaran NAO humanoid robots, and Lego Mind-
storms NXT robots. While we used these two robot platforms, our results are general and can
be applied to other robot types. To increase the heterogeneity in the robots, we also varied the
algorithms the NAOs ran, which we will elaborate in detail below. The foraging domain was
chosen as it bears many similarities to the USAR domain, namely searching and “rescuing” in a
limited amount of time.

7.4.1 The Foraging Task

For the foraging task, 3 roles r1, r2, r3 were defined with starting locations in one half of a
RoboCup Standard Platform League soccer field, where 5 balls were placed (Figure 7.6). Four
of the balls were in open areas and easily seen by the NAOs, while 1 ball was hidden from view
under a tunnel, thus requiring an NXT to handle it. The robots were to find and move as many
balls as possible to the other half of the field, in as little time as possible. If a ball was moved
outside the half of the field (i.e., the side or back lines), the ball was replaced in the middle of the
half (denoted by the blue circle in Figure 7.6). The value of the team π was based on the number
of balls foraged and the time in which the balls were foraged:

V(π) = vball · |Bπ|+
∑

b∈Bπ
(ttotal − tb) (7.6)

114 CHAPTER 7: APPLICATIONS AND RESULTS

Figure 7.6: The experimental setup for the foraging experiments. The red circle indicates a
hidden fifth ball, and the blue circle indicates where balls are replaced if they are moved past the
side and back lines. Different combinations of robots were placed in the 3 robot roles r1, r2, r3.

where vball is the value per ball foraged,B are the balls foraged, tb is the time elapsed (in seconds)
when b was foraged, and ttotal is the total time of the trial in seconds.

7.4.2 Experimental Setup

The NAO robots had three different algorithms: Chase-and-Kick (CK), Kick-past-Midline (KM),
and Observer (Ob). A NAO running CK would search for a ball, walk to it, and then perform
a straight kick in whichever direction the robot was currently facing. In the KM algorithm, the
NAO would explicitly localize (based on landmarks on the field such as the yellow and blue goal
posts) and attempt to kick the ball past the middle line. Thus, the KM algorithm explicitly kicks
the ball towards the target area (the other half of the field), while the CK algorithm kicks in any
direction, but over time CK succeeds in foraging since balls kicked past the side and back lines
are replaced. Also, in both algorithms, the NAO would perform obstacle avoidance so as not to
walk into another NAO, NXT or the tunnels.

The Ob algorithm of the NAO did not actively forage the balls — instead, the NAO would
search for balls, and transmit the ball’s position through a wireless connection to other NAOs in
the team, and as such potentially reducing the amount of time another NAO needed to find a ball.

The NXT robots were programmed to follow lines, such that they moved straight across the
green field, turned around when they encountered a white line, and followed a purple line. Thus,
the NXT robot would move across the field until it found one of the two sets of purple lines
around a tunnel, and then followed it endlessly (it turned around at the end of the purple line).
If a ball was present inside the tunnel, the NXT would push it out as part of the line-following

7.4 ROLE ASSIGNMENT IN A FORAGING TASK 115

behavior. As such, the NXT robots were not capable of foraging the balls directly, but only
assisted the overall team goal.

The robots in our experiments ran autonomously, without any central computer or process-
ing. The only information communicated between the robots was the ball position that the Ob
algorithm sent to KM, that KM would use to approach the ball. We chose these algorithms so
that there was a greater heterogeneity in the robots, and also that some algorithms were explicitly
“helper” types (i.e., Ob and NXTs), where they would not attain any value on their own, but can
improve the overall value given the right teammates.

There were 3 roles, and 4 possible agent types (CK, KM, Ob, NXT), and thus there were
43 = 64 possible role assignment policies. We performed 61 of these policies and recorded the
times in which balls were successfully foraged (3 combinations involving all NAOs could not be
run due to hardware problems).

Next, we set vball = 100, and computed the values of each of the combinations, given different
amounts of time per trial. For example, if ttotal was 120 seconds, then we ignored all balls foraged
after 120 seconds. We varied ttotal from 120 to 600 seconds at 60 second intervals.

For each value of ttotal, we performed 6-fold cross-validation on the data, comparing the WeS-
GRA model (using 4 agent types and 3 roles) with the market-based algorithm (Equation 7.5).
Due to the small number of training examples, we again fixed the variances in the WeSGRA
model to a constant. As ttotal increases, the values of policies found by both algorithms increase,
as there is more time for the robots to forage balls. To compare the performance of the algo-
rithms, we used the effectiveness measure to scale the results from 0 to 1:

Effectiveness(π) =
V (π)− V (πmin)

V (πmax)− V (πmin)
(7.7)

where πmax and πmin are the optimal and worst role assignment policies respectively.

7.4.3 Experimental Results

Table 7.3 shows the results of WeSGRA and the market-based algorithm. WeSGRA outperforms
the market-based algorithm across all values of ttotal. Using a single-tailed paired-sample T-test,
we found that our results are statistically significant with p = 3× 10−5.

The market-based technique picked the role assignment (r1 → CK, r2 → KM, r3 → KM)
regardless of ttotal and as such the team could only forage the 4 visible balls. The WeSGRA
model picked teams involving 1 NXT and 2 NAOs (running CK and KM), and were thus able to
forage more balls in general and attain a higher value. Thus, the WeSGRA model successfully
modeled the interactions between the helper types of robots. While the Ob algorithm helped to

116 CHAPTER 7: APPLICATIONS AND RESULTS

Algorithm
ttotal

120 180 240 300 360 420 480 540 600
WeSGRA 0.91± 0.11 0.92± 0.11 0.96± 0.04 0.93± 0.08 0.92± 0.07 0.93± 0.06 0.88± 0.06 0.88± 0.06 0.90± 0.08

Market-based 0.80± 0 0.80± 0 0.88± 0 0.93± 0 0.90± 0 0.89± 0 0.87± 0 0.86± 0 0.86± 0

Table 7.3: Effectiveness of algorithms in the foraging domain with real robots.

provide ball information to the other NAOs, it was not selected as part of the optimal team, as
having more NAOs walking in the field provides a larger benefit.

7.5 Configuring a Team for a Manufacturing Task

In this section, we apply the Synergy Graph for Configurable Robots (SGraCR) model to a
pseudo-manufacturing scenario. We define various modules that a configurable robot uses for
manufacturing and transportation, with the goal of maximizing the team performance and keep-
ing the total cost of the modules below a threshold.

7.5.1 Experimental Setup

In all three sets of experiments below, we used the same problem domain — manufacturing. The
task involved transporting some items from location L0 to perform drilling (at location L1) and
then milling (at location L2) and finally delivered to a destination location L3. The manufactur-
ing floor had pre-existing drilling and milling stations at fixed locations (L1 and L2 respectively),
and the goal was to form a multi-robot team that would move all the items through the manu-
facturing plan. All the robots would be mobile, and had varying behaviors. Robots could also
be configured to perform drilling or milling, which would allow the items to be transported past
locations. For example, if a robot could drill, then it could transport items from L0 directly to L2

for milling, bypassing L1 since the robot performs the drilling.

We defined 3 types of modules: M1,M2,M3. M1 = {slow, medium, fast} are the motors,
M2 = {1, 2, 3, 4} are the carrying capacities, andM3 = {B0,1, B0,2, B1,2, B1,3, B2,3} encapsulate
both the software programmed into the robots and drilling/milling capabilities. A behaviorBi,i+1

implies that the robot only transports items from Li to Li+1. A behavior Bi,i+2 implies that the
robot also performs drilling/milling, e.g., B1,3 means that a robot transports drilled items from
L1 to location L3 and performs milling on the item.

The feasibility function returns 1 iff the team of robots are able to drill, mill and transport
all items to L3. For all our experiments below, we set δ = 1

2
, so the goal was to find the team

that attains the highest mean value. Faster motor speeds, higher carrying capacities, and adding
drilling/milling functionality had higher costs. The cost threshold cmax was set such that the

7.5 CONFIGURING A TEAM FOR A MANUFACTURING TASK 117

Approach
Score

Synthetic Data Simulation Real Robots
SGraCR 1.77± 1.64 1.33± 0.52 0.86± 0.46

Unweighted Synergy Graph 0.56± 1.45 1.33± 0.29 0.37± 0.82
IQ-ASyMTRe 0.93± 1.99 0.41± 0.54 0.59± 0.23

Table 7.4: Experimental results of SGraCR and two competing approaches using synthetic data
derived from a hidden SGraCR model, simulated robots in a manufacturing scenario, and robot
experiments using Lego NXT robots. The scores indicate the number of standard deviations
above the mean, i.e., a score of x means that the approach found a team with a value µ + xσ,
where µ and σ are the mean and standard deviation of values of teams.

maximum number of robots was five for the synthetic and simulation experiments, and three for
the real robot experiments.

In each trial, we generated a set of training data. The learning algorithm uses the training
data to learn a SGraCR model, and the team formation algorithm uses the learned SGraCR to
find the team that approximates the δ-optimal team. A similar approach was used to learn a
Synergy Graph and form a team, and for IQ-ASyMTRe the training data set was used to estimate
the module costs.

7.5.2 Experiments with Synthetic Data

In our first set of experiments, we used synthetic data derived from a hidden SGraCR model.
Using the experimental domain described above, we generated a hidden SGraCR model with 12
vertices and randomly generated the module capabilities. The hidden model was used to create
100 training data (T, V (T)) ∈ Otrain, where the value V (T) = Evaluate(S(T), 1 − δ) of
the hidden model. The training data was used to learn a new SGraCR model. Finally, our team
formation algorithm was run on the learned SGraCR model, and its value calculated using the
hidden model, i.e., if the algorithm selected team T , then V (T) = Evaluate(S(T), 1 − δ) of
the hidden model.

We performed 20 trials, where a different hidden SGraCR model was generated each time.
The Synthetic Data column of Table 7.4 shows the results of our trials with synthetic data.
SGraCR outperformed the Unweighted Synergy Graph model and IQ-ASyMTRe. We believe
that this is largely because the data was derived from a hidden SGraCR model. The low perfor-
mance of the Unweighted Synergy Graph compared to SGraCR shows that SGraCR is a more
expressive model; otherwise, the Synergy Graph would have a similar score to SCraCR.

118 CHAPTER 7: APPLICATIONS AND RESULTS

7.5.3 Experiments with Simulated Robots

In our second set of experiments, we created a 2D simulator, where mobile robots moved to
transport items from one location to another. The value of a team was the negative of the number
of timesteps taken to transport 100 items from L0 to L3, i.e., if a team T took t timesteps then
V (T) = −t.

We ran the simulator on all 6056 possible teams to calculate their value. These 6056 values
were scaled to form the complete data set for the experiment, where a score of x means the team
had a value of µ + xσ, where µ and σ are the mean and standard deviation of the values of
all 6056 teams. We ran 20 trials where in each trial, 100 data points of the 6056 was used for
training, so only a small subset of possible teams was visible by the learning algorithm to learn
a SGraCR. The team formation algorithm then searched the learned SGraCR to approximate the
δ-optimal team. The score of the formed team was then retrieved from the 6056 data points.

The Simulation column of Table 7.4 shows the results of the simulated experiments. Both the
SGraCR and Unweighted Synergy Graph models perform very well, finding teams with scores of
1.33, which indicates that the simulated domain can be sufficiently modeled with the Unweighted
Synergy Graph model. However, although the Unweighted Synergy Graph model has a similar
performance, it contains 60 vertices compared to SGraCR’s 12, showing that the Unweighted
Synergy Graph model does not scale as well as the SGraCR model to more complex scenarios
involving modular robots. Thus, the SGraCR model is well-suited for configurable robots in
multi-robot teams.

7.5.4 Experiments with Real Robots

In our final set of experiments, we used Lego NXT robots in a pseudo-manufacturing setting.
We chose the Lego platform as the hardware is modular and configurable to fit any task. We
designed the robot task such that it involved manipulation and movement, which are essential
components of many robot domains. Since we only used the time of task completion to train the
SGraCR model, the approach in our experiments would be identical if any other robot platform
or task was used. Figure 7.7a shows the layout of our robot experiments, and Figure 7.7b shows a
NXT robot approaching L1, with some of its components labeled. Each robot was programmed
to follow a white line from station to station, and pass transparent cups to each other. The
drilling/milling operations were not actually performed but assumed to take place either at the
stations or by the robot transporting it.

Due to the limited carrying capacity of the NXT robots, we set the carrying capacity modules
M2 = {1}. Also, we had the physical limitation of 3 NXT robots, so teams had a maximum size

7.5 CONFIGURING A TEAM FOR A MANUFACTURING TASK 119

(a) (b)

Figure 7.7: a) The layout of the experiments involving NXT robots transporting items from L0

to L3. b) A NXT robot as it approaches L1.

of 3. As such, |T | = 45. In each trial, the robots moved 3 items from the start location L0 to
the end L3, handing 1 item to each other at each station. The value of a team was the negative
of the cost and the time taken, i.e., a team T with cost c and took t seconds to transport all 3
items had a score of V (T) = −Ucost(c)−Utime(t). For these experiments, we set Ucost(c) = c and
Utime(t) = t, but the results should be representative of any utility function. We reduced the value
of a team by its cost for two reasons: to show the efficacy of the SGraCR model over different
value functions (compared to the previous subsections), and to better reflect that the cost of a
team has an effect in a manufacturing scenario.

Similar to the experiment in simulation, we ran all 45 teams and computed their value, then
scaled them to form each team’s score. The 45 scores then formed then complete data set. We
used a subset of the data set to learn a SGraCR. We then formed a multi-robot team using the
learned SGraCR. In these experiments, |Otrain| = 20, which is less than half of |T |. The SGraCR
and Synergy Graph models have 9 and 15 vertices respectively, and so we chose a training size
of 20 to provide enough information to solve for the unknowns. We ran 100 trials, where each
trial used a different subset of 20 training data. The Real Robots column of Table 7.4 shows
the results of our robot experiments. SGraCR outperforms the Unweighted Synergy Graph and
IQ-ASyMTRe approaches, demonstrating that SGraCR captures interactions that are unmodeled
by the Unweighted Synergy Graph model and IQ-ASyMTRe. We performed a one-tailed paired
T-test on the results, and found that SGraCR has a statistical significance of p = 4×10−7 against
the Unweighted Synergy Graph model, and a statistical significance of p = 8× 10−9 against IQ-
ASyMTRe. Thus, the SGraCR model is robust and well-equipped to be applied to robot domains
involving configurable multi-robot teams.

120 CHAPTER 7: APPLICATIONS AND RESULTS

7.6 Robust Team Formation in a Foraging Task

We applied the Robust Synergy Graph for Configurable Robots (ρ-SGraCR) model to real robots
in the foraging domain, to demonstrate its efficacy and relevance to real robot scenarios. We used
three types of robot platforms: Lego NXTs, CreBots, and Aldebaran NAO humanoid robots.
We chose these robots as they represent a spectrum from being easily reconfigurable (NXT) to
being difficult to reconfigure (NAO). Figure 7.8 shows the three types of robots. The CreBots are
iRobot Creates with TurtleBot hardware running our CoBot software. The colored squares on the
NXT and CreBot are used for global localization. Within each platform, we defined configurable
hardware modules for greater heterogeneity in the team (explained later).

7.6.1 The Foraging Task

The task of the multi-robot team was to forage wooden blocks from a 4m × 3m area to two
stockpiles located on each side. Figure 7.9 shows the setup of the experiment. There were 9
wooden blocks (resources to forage) in total, belonging to two types: colored (i.e., yellow, blue,
and orange) and uncolored (i.e., regular brown). One of the blocks was located inside a small
tunnel that was accessible only by NXTs (the other robots would not fit), and two of the blocks
were placed on top of the tunnel and released only when a CreBot or NAO was nearby (the NXT
was too short to activate the dropping mechanism). We set up these three blocks as “bonus”
resources that can be foraged only when the right robot is included in the team.

The stockpiles on the left side of the field was for uncolored blocks, and the right for colored
blocks. The robots had three minutes to complete the task, and their utility was:

Utility = Ug · (|Bg,c|+ |Bg,i|) + Ud · (|Bd,c|+ |Bd,i|) (7.8)

+
∑

b∈Bg,c

Utime(ttotal − tb) +
∑

b∈Bd,c

Utime(ttotal + tdrop − tb)

where Ug and Ud are the utilities for foraging blocks on the ground and blocks that were dropped
respectively, and Utime(t) = t is the utility function that converts time in seconds to utility values.
The first subscript (g/d) of B indicates the initial position of the block (ground, dropped), and
the second subscript (c/i) indicates if the block was foraged to the correct stockpile (correct, in-
correct), e.g., a colored block at the colored stockpile is correct; a colored block at the uncolored
stockpile is incorrect. Blocks foraged to the correct stockpile received a time bonus based on the
time remaining (in seconds) when the block was foraged. Dropped blocks had an additional time
bonus; coordinating to drop the blocks right before foraging them had higher utility.

7.6 ROBUST TEAM FORMATION IN A FORAGING TASK 121

(a) (b) (c)

Figure 7.8: The three robot platforms used in the foraging task: a) Lego NXT; b) CreBot; c)
Aldebaran NAO.

Figure 7.9: The setup of the foraging experiment showing the initial robot positions and wooden
block positions. Uncolored and colored wooden blocks are to be foraged to their respective
stockpiles on the left and right sides of the field.

122 CHAPTER 7: APPLICATIONS AND RESULTS

The utility function was designed so that foraging any block would yield some utility, but
foraging blocks to the correct stockpile had a large bonus (from the time bonus). Dropped blocks
had extra utility to reflect the higher amount of coordination between the robots (one robot had
to drop the blocks, and another to forage them).

7.6.2 Robot Types and Behaviors

We used three robot platforms (NXT, CreBot and NAO), and defined the modules as follows.
M1 = {normal∗, fast} were the motors, where all platforms could use their normal motors, and
the NXT had the option of faster motors. M2 = {mute∗, comm} was the communication
modules, that allowed the robots to communicate and coordinate. M3 = {odometry-only∗,
global-localization} was the localization module, that allowed the NXTs and CreBots to know
their global (x, y) position (the NAOs did not have the global localization module). Lastly, to
differentiate the robot platforms, M4 = {none∗,NXT,CreBot,NAO}, where none indicated a
failed/non-existent robot (explained later). The superscript ∗ indicates that a module is the fall-
back module of its type, i.e., it has a success probability of 1, and if another module fails, the
robot uses the fall-back module.

Only two robots (4×2 = 8 modules) performed the task at each trial. For example T = {(fast,
mute, global-localization, NXT), (normal, mute, odometry-only, NAO)} is a two-robot team with
a NXT and NAO, where both robots could not communicate, and the NXT had fast motors and
global localization while the NAO did not. Robot teams are able to communicate only if both of
them have communication modules.

The behaviors of the robots depend greatly on the configuration of the team. Generally,
the NXTs would perform line following to forage the blocks on the lines connecting the two
stockpiles (A, B, and C in Figure 7.9), and would also forage the blocks at the disconnected lines
if they had global localization. The CreBot and NAO robots would drop the blocks at the start of
the trial; if they could communicate with the NXT, then they would coordinate with the NXT to
maximize tdrop in Equation 7.8. The CreBot would forage the block closest to its initial location,
and other blocks if it had global localization; the NAO does not forage any blocks. The robots
did not know which blocks were colored or uncolored, unless a NAO was on the team and both
robots had communication modules — the NAO robot provided a unique benefit, despite only
being able to drop the blocks and not forage any blocks on its own.

We designed the foraging task, robot configurations and behaviors in such a way that we (as
humans and the task designers) did not know upfront what the optimal team for the task would
be. We wanted to test the efficacy of the ρ-SGraCR model in learning the robot team performance
and forming a robust team in a complex task scenario.

7.6 ROBUST TEAM FORMATION IN A FORAGING TASK 123

7.6.3 Experimental Setup

We are interested in forming a robust multi-robot team by configuring the robot modules. We
manually defined each module’s failure rate for the experiment (the fall-back modules had 100%
probability of success, and other modules had varying success rates from 30% to 80%). Since
it is difficult to get robot modules to fail on demand at the desired failure rate, we instead ran
the foraging trials assuming modules were always successful, and did the analysis of module
failures separately. For example, suppose that a team T had a success probability of 0.7, and
would become T ′ with probability 0.2 and T ′′ with probability 0.1. We used the utility attained
by T, T ′ and T ′′ to define the ground-truth performance of T , i.e., with 0.7 probability of attaining
Utility(T), 0.2 probability of Utility(T ′) and 0.1 probability of Utility(T ′′).

With the modules defined in the previous subsection, there were 14 unique robot config-
urations (8 NXTs, 4 CreBots, and 2 NAOs) with 84 feasible two-robot teams and 8 feasible
one-robot teams. Teams were considered feasible if there was at least one NXT in the team. The
goal was to form a robust two-robot team, but a two-robot team can become a one-robot team if
the robot base module fails on one of them.

We performed 30 trials in the foraging experiments to enumerate all the feasible teams. Only
30 trials were necessary since the robot behaviors did not always change based on the module
configuration, e.g., a team with both robots having no communication modules performs identi-
cally to a team where one robot has the communication module.

We then performed 10-fold cross validation, where 90% of the training data (utilities of
teams) was used to learn a ρ-SGraCR model, and the learned model is used to form the risk-
adverse team. We set the performance threshold to be 700 for the trials, which is slightly less
than the mean utility attained by the teams. We used the ApproxRobust team formation algo-
rithm, whereNfail = 4. We only used ApproxOptimalRobustTeam as the optimal algorithm
FormOptimalRobustTeam is infeasible to be run on general problems due to its exponential
runtime.

To compare the performance of our model and algorithm, we used two benchmarks. First, we
used a highest utility heuristic, that computed the robustness score of the team that attained the
highest utility (i.e., the team that had the best utility assuming no modules failed). Second, we
used a market-based technique where each module bid using the utility attained from the training
data and module failure probabilities:

Bid(m) =
1

η

∑

T s.t. m∈T
P(T) · Utility(T)

where 1
η

is a normalizing factor.

124 CHAPTER 7: APPLICATIONS AND RESULTS

Figure 7.10: The robustness scores of teams formed by ρ-SGraCR and competing approaches.
The dark blue line indicates the median, the top and bottom of the box represent the 75th and
25th percentiles, and the top and bottom whiskers represent the maximum and minimum values.

7.6.4 Experimental Results

Figure 7.10 shows the results of our robot experiments, where the dark blue line indicates the
median, the top and bottom of the box represent the 75th and 25th percentiles respectively, and
the top and bottom whiskers represent the maximum and minimum values. The robustness scores
of all the teams were distributed between 0 (worst team) and 0.64 (optimal team), with a median
of 0.06. ρ-SGraCR formed a team with a median robustness of 0.48, with the 25th percentile also
at 0.48. The 75th percentile and maximum value are 0.64, which is the robustness of the optimal
team of this experiment; ρ-SGraCR found the optimal team in 4 of the 10 trials. The market-
based algorithm always found the same team that had a robustness score of 0.43. ρ-SGraCR
outperformed the market-based algorithm in 8 of the 10 trials (the other 2 trials had robustness
scores of 0.42 and 0.26). The highest-utility heuristic, i.e., picking the team that attained the
highest utility, had a score of 0.17 in 9 of the 10 trials and 0.14 in 1 trial.

Thus, the ρ-SGraCR model outperforms the competing market-based algorithm and highest-
utility heuristic (with p-values of 0.025 and 5 × 10−6 respectively using a one-tailed paired
Student’s t-test), and found the optimal robust team 40% of the time. In 9 of the 10 trials, the team
formed is above the 75th percentile, which reflects that the ρ-SGraCR model effectively modeled
the team performance and formed good robust teams. As such, our results demonstrate that ρ-
SGraCR is well-suited to model the performance of robust multi-robot teams in challenging
scenarios where the optimal team is difficult to compute a priori.

7.7 CHAPTER SUMMARY 125

7.7 Chapter Summary

This chapter presented extensive experiments in simulation and on real robots, where the Synergy
Graph model was learned from data, and applied to actual problems:
• We compared the Unweighted Synergy Graph with ASyMTRe when the robot capabilities

follow a probabilistic model [Parker and Tang, 2006] and showed that the learned Un-
weighted Synergy Graph formed teams with effectiveness of at least 0.93 compared to at
most 0.64 with ASyMTRe.

• We learned Unweighted and Weighted Synergy Graphs using the RoboCup Rescue simu-
lator [RoboCupRescue, 2011], and outperformed IQ-ASyMTRe with a statistical signifi-
cance of p = 5× 10−137 with 4 agents, and p = 4× 10−9 with 5 agents.

• We learned WeSGRAs using the RoboCup Rescue simulator to perform role assignment,
and showed through cross-validation that the learned WeSGRA has high log-likelihood.
We demonstrated that the role assignments generated using the WeSGRA has high value,
compared to a market-based approach.

• We used NAOs and NXTs in a foraging task, and showed that the role assignments formed
using the learned WeSGRA outperforms a market-based approach, and is statistically sig-
nificant to p = 3× 10−5.

• In a manufacturing task, with simulated robots and real robots (NAOs and NXTs), we
demonstrated that the Synergy Graph for Configurable Robots (SGraCR) model forms
effective configurable robot teams, and outperforms IQ-ASyMTRe. Our results for the
real robots are statistically significant to p = 8× 10−9.

• The NAO, CreBot, and NXT robots performed a foraging task, and the goal was to form a
robust multi-robot team. We showed that the team formed from using the learned Robust
Synergy Graph for Configurable Robots (ρ-SGraCR) model is effective and forms the op-
timal team 40% of the time, outperforming a market-based approach and a highest-utility
heuristic with p = 0.025 and p = 5× 10−6 respectively.

The results in this chapter empirically show that the Synergy Graph is effective at modeling
team performance in a variety of real robot problems, and outperforms competing approaches.
Since the Synergy Graph algorithms only require observations of team performance as input,
they are applicable to a wide range of multi-robot problems.

126 CHAPTER 7: APPLICATIONS AND RESULTS

Chapter 8

Related Work

This chapter presents a review of related work, discussing the relevant domains of task allocation,
role assignment and coalition formation. The discussion also covers the fields of ad hoc robot
coordination, team formation, and operations research.

8.1 Multi-Robot Task Allocation

Multi-robot task allocation (MRTA) is focused on the problem of allocating a set of tasks T to
a group of robots R so as to maximize a utility function. A thorough overview of this domain
is given in [Gerkey and Mataric, 2004], and the authors categorize the problem along three
axes: single-task robots (ST) versus multi-task robots (MT), single-robot tasks (SR) versus multi-
robot tasks (MR), and instantaneous assignment (IA) versus time-extended assignment (TA). ST
and MT define whether robots are capable of executing a single task (ST) or multiple tasks
(MT) simultaneously. SR and MR define whether a task Tj ∈ T can be completed with single
robots (SR) or require multiple robots (MR). IA means the tasks are known and assigned once
to the robots without future allocations, while TA means that tasks may arrive over time and
assignments of tasks to robots have to be done as the tasks arrive.

This thesis considers ST-MR-IA, with the key difference that we consider forming a team for

a single task, while MRTA considers the allocation of multiple teams to multiple tasks.

Representing Heterogeneous Capabilities

The capabilities of heterogeneous robots have been represented in different ways. Capabilities
have been modeled as values, where higher values indicate better task performance [He and
Ioerger, 2003], and with a Normal distribution to represent the uncertainty in the agents’ perfor-

127

128 CHAPTER 8: RELATED WORK

mance [Guttmann, 2008]. A general utility function has also been proposed [Gerkey and Mataric,
2004], where Ui,j = Qi,j − Ci,j is the utility attained if Ri is capable of performing Tj , Qi,j

is the quality of the task execution, and Ci,j is the expected resource cost. If Ri is not capable
of performing Tj , then Ui,j = 0. The utility of a robot performing a task is quantified, and it is
general and does not impose any restrictions on the utility function. However, this generality is
a double-edged sword and does not impose any structure on the tasks that would allow them to
be grouped.

Another technique models the number and types of resources that the robots possess. Let S
be a set of resources, e.g., robot arm, camera, sonar [Shehory and Kraus, 1998, Chen and Sun,
2011]. Then, each robot Ri is defined as a vector (si,1, . . . , si,|S|), where si,k is the number of
the resource Sk that Ri possesses. In this model, resources are either completely interchangeable
(i.e., a robot arm onR1 is equivalent to a robot arm onR2) [Service and Adams, 2011a, Tosic and
Agha, 2004, Shehory and Kraus, 1998], or with a level of quality, i.e., qi,k ∈ [0, 1] is the quality
of each of the si,k resources of type Sk in Ri [Chen and Sun, 2011]. In these resource models,
tasks are defined as a list of required resources, e.g., a task requires 2 robot arms, 3 cameras,
and 1 sonar, and in the latter model, a minimum quality qmin,i,k ∈ [0, 1] of each resource is also
defined.

The service model of capabilities [Service and Adams, 2011a, Vig and Adams, 2007] is sim-
ilar to the resource model, with the following distinctions: a robot Ri is either able or unable
to performance a service S ′k, i.e., there is no quantity or quality of a single service a robot pos-
sesses (s′i,k ∈ {0, 1}). Tasks are defined as a list of the number of each type of service required
(similar to the resource model), but the in task allocation process, each robot can only perform a
single service, instead of providing all the services it is capable of. The authors state that while
resources can be exchanged in multi-agent systems, resources on multi-robot systems are usually
physical and cannot be exchanged. Having a minimum number of resources does not necessarily
imply task completion because other constraints such as proximity have to be represented and
met. The resource model can still be applied with the addition of constraints, but the service
model abstracts and represents these constraints succinctly.

Robot capabilities have also been defined as a set of schemas [Parker and Tang, 2006, Tang
and Parker, 2007, Zhang and Parker, 2010, Zhang and Parker, 2012], where schemas have defined
inputs and outputs. Robots are defined as sets of schemas: the sensors of the robots provide
outputs without any inputs, and other schemas are perceptual (e.g., vision, localization), motor
(e.g., controlling actuators), and communication. The task is defined as a set of desired outputs,
and a team of robot R′ ⊆ R is capable of completing the task if a joint plan exists for R′ that
produces the outputs by chaining the schemas in R′.

8.1 MULTI-ROBOT TASK ALLOCATION 129

This thesis considers robot capabilities as Normal variables, where the mean corresponds to

the peak performance and variance represents the dynamics of the world. In addition, the per-

formance of a team is not just the sum of single-robot capabilities. Prior research has assumed

that the capabilities of the robots are known a priori. This thesis learns the robot capabilities

and team synergy from observations.

Evaluating Task Allocations

Let T ′ ⊆ T be the subset of tasks that are allocated, RTj ⊆ R be the robots allocated to perform
task Tj ∈ T ′, and Ci,j be the cost of Ri executing Tj . There are two main methods to quantify
the performance of an allocation of tasks to robots. The first method, task-based performance,
defines a utility Vj gained by completing each task Tj . The second method, team-based perfor-
mance, defines the quality of performance of each robot Ri performing the task Tj , i.e., Qi,j .

Task-based performance is commonly seen in market-based techniques [Dias, 2004, Dias
and Stentz, 2002] and other approaches [de Weerdt et al., 2007]. Each task is associated with
a reward, that is computed based on domain-specific factors, such as the amount of unexplored
space [Zlot et al., 2002] or number of items picked up [Dias and Stentz, 2000]. In market-based
techniques, the cost Ci,j of Ri performing Tj is used to form the bid, and an auctioneer assigns
tasks based on robots’ bids [Tang and Parker, 2007]. The final performance of the task allocation
is then computed based on the profit, i.e., the difference between the utility gained from the tasks
and the costs incurred:

∑
Tj∈T ′(Vj−

∑
Ri∈RTj

Ci,j) [Dias and Stentz, 2000]. In some approaches,
only the sum of utilities gained is used to calculate performance, and the costs are only used for
the allocation process, i.e.,

∑
Tj∈T ′ Vj [Vig and Adams, 2006a, Tang and Parker, 2007], and

in others the goal is to complete all the subtasks while minimizing the total cost [Lim et al.,
2009]. The benefit of task-based performance is that the utility gained from completing a task is
independent of how the task is completed — after the allocation, each task is either completed
or not completed, and there is no measure of how well a particular task was done, other than the
costs incurred by the robots assigned to it.

In team-based performance, the quality of a completed task varies depending on the robots
allocated to it, e.g., R1 may complete task T1 with a lower quality than if R2 completed T1.
The performance of the task allocation is then the difference between the quality of completed
tasks and the costs incurred by the robots:

∑
Tj∈T ′

∑
Ri∈RTj

(Qi,j − Ci,j). With this formulation,
the ST-SR-IA problem can be posed as an optimal assignment problem and solved in O(mn2)

time, or with a market-based approach where the bids are Qi,j−Ci,j and the highest bid wins the
auction [Gerkey and Mataric, 2004]. When each task requires more than one robot to complete, it
becomes a ST-MR-IA problem, and has many similarities with the coalition formation problem,

130 CHAPTER 8: RELATED WORK

which we describe later. Team-based performance measures how well a task was completed,
so the composition of a team has a larger impact beyond the costs. The ST-MR-IA problem is
strongly NP-hard, and heuristics have been considered to solve the problem, that also account
for inter-task constraints [Zhang and Parker, 2013].

This thesis uses team-based performance, where the composition of the team has a large

effect on the team performance. However, the team performance is beyond the sum of individual

capabilities, and is dependent on the Synergy Graph structure that describes the task-based

relationships among the robots.

8.2 Role Assignment

In role assignment, there is a single task that can be divided into a set of roles R. Each role Rj

specifies the behavior of the robot performing it [Stone and Veloso, 1999], and the role assign-
ment problem is to find the optimal assignment of roles to robots. Role assignment has many
similarities with ST-SR-IA and ST-SR-TA of MRTA. One key difference is that while tasks in
MRTA are typically independent, roles can have interdependencies that affect the overall per-
formance of a team of robots. In addition, while the set of roles R is fixed, formations can be
used to define the active roles at a point in time, with triggers to switch between formations
as needed [Stone and Veloso, 1999]. Similarly, in the Skills, Tactics and Plays (STP) paradigm,
plays determine which roles are currently active and available to be assigned to robots, and appli-
cability conditions are used to switch between plays over time [Bowling et al., 2003, Browning
et al., 2005].

Role assignment has been used in many domains, such as robot soccer [Roth et al., 2003,
McMillen and Veloso, 2006], agent organizations [Le et al., 2011, Dastani et al., 2003], treasure
hunt [Jones et al., 2006], assembly [Simmons et al., 2000], and formation control [Chen and
Wang, 2007, Ji et al., 2006].

Market-based techniques are also frequently used for role assignment, where robots submit
bids on roles based on their state, and roles are assigned to the highest bidder [Frias-Martinez
et al., 2004, Jones et al., 2006]. Regions are also used in role assignment, where a robot that
is already in a role’s region continues to take that role, in order to minimize role switching
among the team [McMillen and Veloso, 2006]. In order to synchronize the available roles in
the team, a shared world model is used, where robots periodically update their teammates with
their observations and state, so that every robot has a similar world model [Vail and Veloso,
2003, Coltin et al., 2010, Liemhetcharat et al., 2010].

8.3 COALITION FORMATION 131

In many role assignment domains, robots are assumed to be homogeneous or capable of
being assigned any role [Browning et al., 2005]. The state of the team is then the key factor
used to choose between role assignments [Chen and Wang, 2007]. In heterogeneous teams, the
capabilities of the robots have to be considered for effective role assignment, and the capabilities
can be represented as a binary for each possible role, i.e., Capi,j = 1 iff Ri can perform role
Rj [Zhu and Alkins, 2009].

However, while different role assignment algorithms have been proposed and analyzed, there
has been relatively little research done in the formal definition of roles, other than a description
of its behavior [Stone and Veloso, 1999] or a mapping of roles to robots that are capable of
fulfilling it [Zhu and Alkins, 2009]. In particular, roles have been treated as atomic and not split
into relevant components to better describe its purpose in a heterogeneous team.

This thesis considers role assignment with the Weighted Synergy Graph for Role Assignment

(WeSGRA) model, that is an extension of the Synergy Graph model where the agents have multi-

ple capabilities, one for each role. The robots are heterogeneous, and we model the synergistic

effects of the robots in the role assignments.

8.3 Coalition Formation

Coalition formation involves the partitioning of a set of agents A into disjoint subsets so as to
maximize the overall utility. In characteristic function games (CFGs), the value of each possible
subset S ⊆ A is given by a characteristic function V , and the goal is to find the optimal coalition
structure CS to as to maximize

∑
S∈CS V (S), where ∀Si, Sj ∈ CS, i 6= j ⇒ Si ∩ Sj = ∅,

and
⋃
S∈CS S = A [Sandholm et al., 1999]. The number of coalition structures is O(|A||A|)

and ω(|A||A|/2) [Sandholm et al., 1999], so enumerating possible coalition structures to find the
optimal is intractable. Coalition formation is applicable to MRTA [Service and Adams, 2011a]
in domains such as deciding flight targets for UAVs [George et al., 2010].

Coalition formation focuses on how to partition a set of agents to maximize a value function,

while this thesis is interested in modeling the value function, based on noisy observations of the

robots at the task.

Establishing Bounds on Coalition Structures

To find a coalition structure CS within a bound from the optimal CS∗, i.e., k = min {κ}
where κ ≥ V (CS∗)

V (V S)
, the minimum number of coalition structures visited is 2|A|−1 and the bound

is k = |A| [Sandholm et al., 1999]. In addition, the authors provided an anytime algorithm that

132 CHAPTER 8: RELATED WORK

lowers the bound, by representing all coalition structures in a tree, searching the bottom two
levels of the tree (with 2|A|−1 nodes), and then searching from the top of the tree downwards
through the layers, with the ability to stop at any time once the bottom two layers have been
searched.

An anytime algorithm has been designed that finds a coalition structure within a factor k of
the optimal [Service and Adams, 2011b]. Coalition formation has been applied to task alloca-
tion [Service and Adams, 2011a], where the CFG is defined to be based on the task a coalition
is assigned to complete, i.e., the task-based performance model of MRTA. They provided two
algorithms that are capable of finding a coalition structure within a factor of k + 1 of the op-
timal, assuming that coalitions are restricted to k or fewer agents. The first algorithm uses a
resource-based model for task allocation and is able to complete within O(|A|km) time, where
m is the number of tasks. The second uses the service-oriented task allocation model and runs
in O(|A|3/2m) time. Further, they showed that if there are p types of agents, then a dynamic
programming-based algorithm can find the optimal coalition structure in O(|A|2pm) time. If
individual coalition values can be observed, instead of the value of a coalition structure, then dy-
namic programming can solve the coalition formation problem in O(3|A|) time [Vig and Adams,
2007]; however, this is infeasible when a coalition’s value can only be evaluated when it is paired
with a task.

Forming the optimal team is NP-hard, and this thesis contributes two team formation algo-

rithms: one that forms the δ-optimal team in exponential time, and one that approximates it in

polynomial time. This thesis showed that the approximation algorithm forms near-optimal teams

with high performance in the extensive experiments on real robots.

Techniques to Form Coalitions

Besides the algorithms that have bounded guarantees listed above, other techniques have also
been used to form coalition structures. Coalition formation has also been applied to task allo-
cation using the task-based performance model [Vig and Adams, 2006b]. However, they use a
heuristic function to form the coalitions, in order to balance between computation and communi-
cation, as well as coalition imbalance, which is how dependent a coalition is on a single member
providing a large amount of the required resources of the task.

Constraints have been used to verify the feasibility of robots performing tasks even if the
resource requirements are met [Vig and Adams, 2007]. They defined a metric called FTC that
trades-off between the imbalance in a coalition and its size. In addition, the authors cast the multi-
robot coalition formation problem as winner determination in combinatorial auctions, where the
bidders are tasks, items are robots, and bids are the utility that each task has to offer for a par-

8.3 COALITION FORMATION 133

ticular subset of robots. Winner approximation in combinatorial auctions is inapproximable, and
the authors provide a market-based bidding process in order to solve this problem in a distributed
manner.

Since coalition formation is NP-hard, many heuristic solutions have been proposed, but it
is often difficult to pick the right heuristic for a problem. The intelligent Coalition Formation
for Humans and Robots (i-CiFHaR) framework was recently introduced, that models the fea-
tures of coalition formation problems and utilities of coalition formation algorithms in a decision
network [Sen and Adams, 2013].

This thesis compares the Synergy Graph algorithms against competing approaches, including

market-based techniques. One difference between the Synergy Graph model and i-CiFHaR is that

the latter learns a utility value for every combination of coalition formation problem features,

causing the utility table to be exponential in size; Synergy Graphs model the synergistic effects

of agents, and would not have an exponential size.

Externalities in Coalitions

In characteristic function games, the value of a coalition depends only on the agents within it.
There has been recent work in coalition formation with externalities, where a coalition’s value
depends on the structure of other coalitions. A logic-based representation is used for coalition
formation with externalities, that is fully expressive and at least as concise as regular coalition
formation representations [Michalak et al., 2010]. Positive and negative externalities can be
considered separately, where PF+

sub means weakly sub-additive, so merging two coalitions de-
creases their joint value (or keeps it constant) while increasing the values of other coalitions in
the structure (or keeps them constant), and PF−sup means weakly super-additive, where merg-
ing a coalition increases its value and decreases the values of other coalitions (or keeps values
constant) [Rahwan et al., 2009]. The authors compute the upper and lower bounds for coalition
values in these settings, and identify the minimum search to establish a bound k from the optimal
coalition structure.

Mixed externalities have also been considered, where both positive and negative effects can
occur [Banerjee and Kraemer, 2010]. They define agents with a set of type T , and that agents
of some types as competitors, and the value of a coalition structure CS improves if they are in
singleton coalitions. Conversely, agents of the remaining types are collaborators, and the value
of CS improves if all of them are in a single large coalition. Using this formulation, the authors
use a branch and bound algorithm to find the best coalition structure with guaranteed worst-case
bounds.

134 CHAPTER 8: RELATED WORK

Externalities in coalitions is an interesting area because it considers how the values of coali-
tions are computed. In regular coalition formation, the characteristic function defines the values
of coalitions, and the function is assumed to be general and unknown, so little work has been
done to analyze possible structures in the characteristic function.

Externalities model how coalition values change based on the composition of other coali-

tions, this thesis is interested in how the value of a team (or coalition) is formed based on the

members within it, and not those outside it.

Other Formulations

In addition to externalities, coalition formation under uncertainty has been considered, where
agents have different types and skill levels (good, average, bad) [Chalkiadakis and Routilier,
2010]. The skills levels affect the probability of success of actions, e.g., building an outstanding
house with a good painter, good carpenter and good builder has a high probability of success,
while doing so with a bad painter/carpenter/builder has a low probability of success. The agents
know their types, but not the types of other agents, and they have to update their beliefs of agents
they have interacted with through observations of interactions. Thus, agents have to trade off be-
tween exploring new teammates versus exploiting current knowledge about previous teammates.

Coalition Skill Games (CSGs) are also considered, where there is a set of skills, and each
agent has a subset of skills [Bachrach et al., 2010]. Then, a coalition of agents can perform a
task only if the union of skills is a superset of the skill requirement of the task. The authors
showed that any coalition formation problem can be cast as a Weighted Task Skill Game, and
considered the case where all weights are positive, in order to find the optimal coalition structure
in polynomial time.

Coalition formation with spatial and temporal constraints were explored [Ramchurn et al.,
2010], and the main domain was in urban search-and-rescue. The authors proved that the problem
is NP-hard, and provided a heuristic algorithm to solve it. Each task in the domain required a
number of units of work, and increasing the number of agents on a task decreased the amount of
time required to complete the task.

This thesis models capabilities of robots with Normal variables, and computes the team per-

formance of a multi-robot team using the capabilities and the task-based relationships among

the robots.

8.4 AD HOC TEAMS 135

8.4 Ad Hoc Teams

The ad hoc domain was recently introduced, and the goal is “to create an autonomous agent that
is able to efficiently and robustly collaborate with previously unknown teammates on tasks to
which they are all individually capable of contributing as team members” [Stone et al., 2010].
An example of an ad hoc problem is with two robots — one that is pre-programmed to follow a
certain policy, and another that has to adapt its behavior so that the pair will be jointly optimal
without explicit communication. The pre-programmed robot and the ad hoc robot can be viewed
as the teacher and learner in a multi-armed bandit problem [Stone and Kraus, 2010, Barrett and
Stone, 2011]. Similarly, a two-player game-theoretic setting is used to study how an ad hoc
agent can vary its actions so as to maximize the payoff with a best-response teammate that has
varying amounts of memory of previous interactions [Stone et al., 2009], with extensions to
situations where a single ad hoc agent leads multiple teammates in selecting the optimal joint
action [Agmon and Stone, 2012].

Role assignment in an ad hoc team is considered [Genter et al., 2011], where an ad hoc agent
has to select a role, such that it maximizes the team’s overall utility based on its observations of its
teammates. An ad hoc agent in the pursuit domain has to vary its behavior to better suit the team’s
objective of capturing the target, by modeling its teammates and choosing a best response [Barrett
et al., 2011]. In the case where the system state and joint action is fully observable, but the model
of teammates is unknown, biased adaptive play can be used by an ad hoc agent to optimize the
joint action of the team [Wu et al., 2011].

Ad hoc agents have been applied to flocking [Genter et al., 2013], where the ad hoc agent
adjusts its heading to direct the flocking agents. Different strategies for ad hoc agents have been
proposed, to improve performance when the teammates are Markovian [Chakraborty and Stone,
2013], and when their behavior models can be learned [Barrett et al., 2012].

Locker-room agreements, i.e., policies agreed upon by the team prior to evaluation, can be
used to coordinate robots without additional communication. Robots can estimate the state of a
teammate in order to decide which robot should approach the ball in the robot soccer domain [Isik
et al., 2006], and the authors showed that while the robots agree on the policy> 90% of the time,
communication is necessary for situations where errors in state estimation may cause policy
fluctuations in the team.

Research in the ad hoc domain has so far focused on how an ad hoc agent can adapt to its

teammates in order to improve task performance. This thesis considers how to form an effective

team comprised of learning robots, that progressively learn to coordinate better together with

experience.

136 CHAPTER 8: RELATED WORK

8.5 Team Formation

Team formation is focused on the problem of selecting the best subset R∗ ⊆ R that can complete
a task T . Robots can be defined with schemas [Parker and Tang, 2006] (described above) and
the team R∗ is selected by composing feasible teams through planning, and then selecting the
optimal one using a heuristic in the ASyMTRe algorithm. ASyMTRe has been extended to form
teams that complete multiple tasks, using both team formation and a market-based task allocation
algorithm [Tang and Parker, 2007]. The skills and scores of agents in a team can be tabulated,
and solved with a linear program to form the best team [Boon and Sierksma, 2003].

Graphs can be used to represent relationships among agents, where a subgraph of connected
agents are selected to complete a task [Gaston et al., 2004, Gaston and desJardins, 2005]. Sim-
ilarly, by using social networks of agents, where agents have different skills, and edge weights
represent communication costs, the optimal team to complete the task has to cover all the required
skills [Lappas et al., 2009, Li and Shan, 2010], or trade off between skills and connectivity [Dorn
and Dustdar, 2010]. The edges in a social network graph can also be used as constraints, where
an agent is assigned a task, and must find teammates that are directly connected to it [de Weerdt
et al., 2007], or form a connected sub-network [Bulka et al., 2007].

This thesis introduces the Synergy Graph model, that is motivated by social graphs, but

adapted to robots executing a task. In particular, this thesis models the capabilities of the robots

and how team performance varies as a function of the team composition. Also, this thesis com-

pares the performance of the Synergy Graph against ASyMTRe.

8.6 Operations Research

In operations research, agents and resources are represented in a matrix K, where Ki,j repre-
sents the knowledge that the ith agent knows about the jth resource. The goal is then to obtain
a diagonalization of K in order to form team of agents and resources, subject to some measure
of performance [Agustin-Blas et al., 2011, Dereli et al., 2007, Zakarian and Kusiak, 1999]. A
similar approach is used to form cross-functional teams by selecting members from different de-
partments of a company, where individual and pairwise performance are considered for various
criteria, and each member is given a score for every criteria. In such a formulation, the goal
is to jointly optimize individual performance, pairwise performance and exterior organizational
collaborative performance, and a genetic algorithm is used to solve the team formation prob-
lem [Feng et al., 2010]. While pairwise interactions are considered, it is assumed to be given by
experts and not learned.

8.7 ROBUSTNESS AND REDUNDANCY 137

Another aspect of team formation in operations research considers the composition of a team
during the execution of a task, such as soccer. One method is to find the optimal team formation
(e.g., the number of strikers and mid-fielders) throughout the game, considering the current score
and time remaining [Hirotsu and Wright, 2003]. Another approach is to consider the overall team
strategy, such as whether to play defensively or aggressively, and to choose between non-violent
and violent styles of play (a violent style of play is more risky and commits more fouls, but has a
higher likelihood of scoring goals) [Dobson and Goddard, 2010]. However, these approaches are
focused on adjusting the team as a result of the state of the game, and not the optimal selection of
a line-up of players on the team. Forming the optimal line-up involves assigning scores to players
and positions based on skills such as passing and keeping a ball. These scores are computed with
a linear program and the score of a team is the sum of scores of players in positions [Boon and
Sierksma, 2003].

Most team formation algorithms in operations research assume that the capabilities and

knowledge of agents are given by an expert, and focus on how to best allocate personnel to tasks.

This thesis is interested in representing the capabilities and performance of the team, learning

the capabilities from observations, and then forming an effective team. The learning approaches

in operations research consider team performance as a linear function of individual capabilities,

while this thesis considers the synergistic effects of members in a team.

8.7 Robustness and Redundancy

Robustness in multi-robot systems can be considered with three areas: detecting when robots
have failed, diagnosing and identifying robot failures, and responding to robot failures [Parker,
2011]. Research in multi-robot robustness has mostly focused on coordination algorithms that are
robust to failures. For example, coordination strategies using self-organization and self-healing
are applied to resource-flow systems in order to complete a task even with robot failures [Parker,
1998, Preisler and Renz, 2012]. A distributed algorithm monitors key agents in a team to in-
crease its failure-detection and robustness [Kaminka and Tambe, 2000], and a robust multi-robot
data association technique improves performance in SLAM [Cunningham et al., 2012]. We are
interested in forming a robust multi-robot team where the behaviors and coordination strategies
of the robots are pre-defined — our approach forms the team that maximizes robustness given
such algorithms.

Redundancy has been used to form robust multi-robot and multi-agent teams. Robots are
modeled as Markov processes and redundancy allows the team to stay in desired states when
some robots fail [Napp and Klavins, 2010]. Similarly, multiple software agents are run con-

138 CHAPTER 8: RELATED WORK

currently to procure a service, so that at least one of the agents completes the task before the
deadline [Stein et al., 2011]. We model and consider how the performance of the team varies
with possible failures, in order to find a robust team. We do not assume that redundancy in-
creases robustness — we show how our model also handles scenarios where redundant robots
decrease overall team performance.

Research in robust robot teams has mostly focused on coordination algorithms that allow

robot teams to adapt to failures among the teammates. This thesis considers forming a robust

team that maximizes the probability of attaining a threshold performance in the presence of

failures.

Chapter 9

Conclusion and Future Work

This chapter presents the scientific contributions of this thesis, and presents several interesting
directions for future work that build on this thesis.

9.1 Contributions

This thesis makes the following scientific contributions:

• Synergy Graph Model
We formally defined the Synergy Graph model, where agents are vertices in a connected
graph, and their task-based relationships are modeled with the edges of the graph. The
agents’ capabilities are modeled with Normal variables that capture the inherent variabil-
ity in performance in a dynamic world. We further defined pairwise synergy and synergy

that uses a Synergy Graph to compute the performance of a multi-agent team. The Syn-
ergy Graph model represents team performance beyond the sum of the capabilities of the
members of the team; the synergy among the team members play a large role in the team
performance.

• Two Team Formation Algorithms
We presented two team formation algorithms, FormδOptimalTeam and Approxδ-

OptimalTeam, that use a Synergy Graph to form a multi-agent team. FormδOptimal-
Team uses branch-and-bound to form the δ-optimal team in exponential time, and the sec-
ond algorithm, ApproxδOptimalTeam, uses simulated annealing to approximate the
δ-optimal team in polynomial time. We showed that ApproxδOptimalTeam forms
near-optimal teams without exploring a large amount of the search space.

139

140 CHAPTER 9: CONCLUSION AND FUTURE WORK

• Synergy Graph Learning Algorithm
We contributed LearnSynergyGraph, the algorithm that learns a Synergy Graph from
observations of team performance. The algorithm iteratively improves the Synergy Graph
structure and learns the agents’ capabilities using either a least-squares solver or a non-
linear solver. We showed that LearnSynergyGraph learns Synergy Graphs with high
log-likelihood, and the learned Synergy Graphs can be used to form effective teams.

• Synergy Graph Iterative Learning Algorithm
We presented AddTeammateToSynergyGraph, a learning algorithm that adds a new
teammate into an existing Synergy Graph. The algorithm uses heuristics to generate an
initial guess of the new teammate’s edges in the Synergy Graph structure, and iteratively
improves the edges and learns the new teammate’s capabilities. We showed that the Add-
TeammateToSynergyGraph algorithm can be run iteratively to add new teammates.

• Extensions to the Synergy Graph Model
We showed that the Synergy Graph model is extensible to capture other characteristics,
by considering modifications such as agents with multiple capabilities (to apply Synergy
Graphs to role assignment problems), graphs with multi-edges (to model configurable
robots), and non-transitive task-based relationships.

• Two Robust Team Formation Algorithms
We presented how the Synergy Graph model is augmented to model agents that probabilis-
tically fail, and showed that the augmented Synergy Graph models situations where redun-
dancy improves robustness, and where redundancy reduces robustness. We contributed two
robust team formation algorithms, FormOptimalRobustTeam, that forms the optimal
robust team in exponential time, and ApproxOptimalRobustTeam, that approximates
the optimal robust team in polynomial time.

• Team Formation with Learning Agents
We detailed how Synergy Graphs represent agents that learn to collaborate better over time,
using edges that decrease their weight, and how such a representation models ad hoc agents
and other learning agents. We contributed an algorithm that uses heuristics from the multi-
armed bandit problem to allocate training instances in order to maximize the performance
of the multi-agent team formed after training, and showed that the upper confidence bound
heuristic performed the best with the lowest regret compared to the optimal.

9.2 BRIDGING PREVIOUS WORK AND FUTURE WORK 141

• Empirical Evaluation of the Synergy Graph Model We applied the Synergy Graph
model to various simulated and real robot problems, using simulated rescue robots, and
real robots such as the Aldebaran NAO humanoids, Lego Mindstorms NXTs, and CreBots.
We demonstrated the the Synergy Graph model effectively captures the team performance
of heterogenous robots in dynamic problems, and outperforms competing approaches.

9.2 Bridging Previous Work and Future Work

During the course of my undergraduate and Ph.D. studies, I worked on several robot projects that
helped to shape my research direction and thesis topic, most notably working on RoboCup from
2006. In this section, I describe some of the lessons learned from my RoboCup work, and how
my thesis forms a bridge between my previous work and my future research directions.

• A capable teammate improves team performance
In 2006 and 2007, I participated in the RoboCup 4-Legged League using the Sony AIBOs.
The AIBOs played four-on-four games of robot soccer, where each team had one goal-
keeper and three field players. I designed the behavior of the goalkeeper, whose main role
was to defend against opposing robots who were trying to score goals.

The outcome of a game of robot soccer depends on the number of goals scored for and
against the team. By having a competent goalkeeper that effectively defended the goal, we
drastically reduced the number of goals scored against us. Further, by clearing the ball out
of the penalty box quickly, the field players were able to launch a counter-attack and score
goals.

Thus, improving the capability of a single member of the team increases team performance,
and this aspect is captured in the agent capabilities of the Synergy Graph model. A future
direction would be to analyze and model how a teammate’s capability can be modeled
beyond a Normal distribution, e.g., being state-dependent.

• A capable teammate compensates for weaknesses in the team
We have observed over the years at RoboCup that with a capable attacker, i.e., a robot
that approaches the ball and kicks it towards the opposing goal quickly and accurately, the
other robots of the team contribute very little to the team performance. In fact, in the early
games of the RoboCup competition, the goalkeeper does not have much to do since the ball
is almost always on the opposing half of the field. The goalkeeper and other members of
the team contribute more in the later games where opponents are increasingly challenging.

142 CHAPTER 9: CONCLUSION AND FUTURE WORK

Similarly, a capable defender robot alleviates the need for a capable goalkeeper. The de-
fender robot is designed to prevent the ball from going past a certain point in the field,
that we refer to as the defending line. When the defender robot performs well at its role,
the ball never gets past the defending line and the goalkeeper again contributes little to the
team performance, whether or not the goalkeeper is highly capable.

These examples provided motivation that team performance is not just the sum of single-
robot capabilities — the team performance in the examples above would be similar irre-
gardless of the capabilities of the goalkeeper. The Synergy Graph model in this thesis
considers task-based relationships in addition to robot capabilities, and a future direction
would be to consider how certain robots can “mask” the effects of others on the team.

• Teamwork contributes greatly to team performance
Our RoboCup team is divided into a number of roles: a goalkeeper, an attacker, an offen-
sive supporter and a defensive supporter (or defender). The latter three roles are assigned
dynamically to the three field robots, i.e., robots on the field that cannot enter the defen-
sive penalty area. The role assignment of the field players is performed by using a shared
world model. The robots communicate constantly to share their global position and the
ball’s global position. A distributed role assignment algorithm then runs in each robot,
that uses the world model to compute its role. If communication is error-free and instan-
taneous, all robots on the team have the same world model and there is no conflict in the
role assignment.

The attacker role is the most important, as it is the only robot that approaches the ball
to kick it into the opposing goal. In certain situations where there is latency or errors
in communication, multiple robots may take on the attacker role (they cannot distinguish
between failed communication and having all teammates switched off), and so multiple
robots on the same team approach the ball. Such a phenomenon is similar to children
playing soccer where everyone heads to the ball, and as such, no one is able to properly
kick and score goals. Thus, having teamwork trumps having many individually capable
robots.

Another example of the contribution of teamwork comes from games against faster oppo-
nents. Certain teams in RoboCup focus their research on locomotion and faster walking
gaits. Their individual robots can walk much faster than ours and typically reach the ball
before our robots do. However, we developed effective positioning of the supporter robots
(i.e., the non-attacker field robots) to overcome the speed difference. By placing a defen-
sive supporter behind the attacker, if an opponent kicked the ball past our attacker, our

9.2 BRIDGING PREVIOUS WORK AND FUTURE WORK 143

defensive supporter was already in position to receive the ball and kick it further up-field
or towards the opposing goal. As a result, our team with better teamwork performed better
than some teams that had faster walks but poorer teamwork.

Thus, I was motivated by the fact that a team of highly-capable individual robots may
perform poorly compared to a team with individually less capable robots but with better
teamwork, and this led me to develop the Synergy Graph model. The Synergy Graph model
in this thesis considers pairwise interactions, and a future direction would be to consider
state-dependency and interactions beyond pairwise relationships.

• Slight differences in robot hardware have large effects
In the RoboCup 4-Legged League (that used Sony AIBOs up till 2008), that was later
renamed the RoboCup Standard Platform League (that uses Aldebaran NAOs from 2008),
every team in the league is required to use the same robot hardware. Thus, the focus of the
league is to develop algorithms without having to optimize the hardware.

However, our experience at RoboCup is that “homogeneous” robots are not always ho-
mogeneous. In particular, robots may have slight manufacturing differences (especially
the NAOs that are hand-assembled by engineers), and varying wear-and-tear. As a result,
different robots have slightly different capabilities. For example, one robot may be able to
walk more quickly and with less odometry error than another, or a robot may be able to
perform multiple types of kick stably while other robots are only able to perform a subset
of the kicks due to wear-and-tear on the joints.

Our strategy for selecting the initial roles of the robots for the RoboCup games was to
specifically select the main attacker robot and goalkeeper. Typically, the robot with the
fastest walking and most stable kicks would be the attacker, and the robot that had a poor
walk would be the goalkeeper (since the goalkeeper seldom moves). Although the role
assignment algorithm would dynamically assign the attacker and supporter roles to the
field players during the game, the main attacker that we picked would always be positioned
closest to the ball at the beginning of the game and after goals were scored, so it would run
the attacker behavior most of the time.

From these experiences, I sought to develop an algorithm that would quantitatively learn
the robots’ capabilities and perform the team selection that we had been manually doing.
The Synergy Graph learning and team formation algorithms were a first step to solving the
problem, and future work would improve upon these algorithms to apply them to scenarios
such as RoboCup.

144 CHAPTER 9: CONCLUSION AND FUTURE WORK

• Taking risks can have huge payoffs
In previous years, our RoboCup behaviors tended to be “cautious”, where a robot would
only kick the ball when it was sure of the opposing goal’s location. Such a strategy prevents
the ball from needlessly being kicked out of bounds, which causes the ball to be replaced
behind the robot and is a negative consequence. However, the robots tend to take extra
time to confirm their position before kicking, which gives time for the opposing team to
approach the ball and block the shot to goal.

Recently, we have experimented with taking “risky” shots at goal. One method is for
the robot to kick a ball as long as it will travel up-field — a ball going up-field may not
necessarily enter the opposing goal, but makes it easier for a subsequent shot to enter. A
second method is to kick the ball towards the goal even if the localization estimate of the
robot’s position is imprecise. The overall idea of taking such risks is to maximize the
number of shots on the goal. Instead of taking a small number of shots on goal with a high
probability of success, we opted to take more shots on goal with a lower probability of
success, so that overall more goals will be scored.

The variability of team performance at RoboCup was a strong motivation for me to con-
sider random variables to model capabilities and not utility values. Further, the trade-off
between risk and reward prompted me to pursue the concept of δ-optimality in this thesis.
An interesting future direction would be to consider how to pick δ so as to optimize the
end result of the task.

• Every team is developed independently
Currently, each team that participates in RoboCup develops its algorithms independently.
Some teams release their source code and documentation after the competition is com-
pleted, which other teams may then use in the future competitions. However, for any given
year, every team has its own set of algorithms to handle team coordination, role switching,
communication, etc.

There have been efforts to create an ad hoc robot soccer team (also known as a pickup
soccer team), where different teams provide different robots who play on the same team.
Such an endeavor requires either some form on implicit communication, e.g., a robot does
not approach the ball when it sees a teammate near the ball, or explicit communication
with some pre-defined protocols.

The concept of ad hoc robot soccer appealed to me, and while I am interested in how to
design an algorithm that can play soccer with new teammates, I am primarily interested in
how a “coach” of such a team would function. The goal of the coach would be to select

9.3 FUTURE DIRECTIONS 145

the best robots for the team, and possibly also “train” them to perform better. This concept
of a “coach” has been a primary motivation for the thesis to consider ad hoc teams, and
also learning agents. Future work would include more development of algorithms for the
coach, such as how observations of the team performance are made, and how to improve
the robots’ behaviors during the task.

9.3 Future Directions

The Synergy Graph model is general and applicable to many interesting multi-robot problems.
We enumerate a number of directions for future work that are closely related to the scientific
contributions of this thesis:

• Incorporating details of team performance
In this thesis, we treated team performance as a value returned by a black-box, and the
Synergy Graph model used these values to learn its structure and agent capabilities. For
example, when we performed the real robot experiments, we hand-crafted functions that
computed the team performance using features such as the amount of time the team took
to complete the task, the number of items foraged, etc. It would be interesting if the per-
formance function was revealed to the Synergy Graph, so that it may learn the underlying
features of the team and predict its performance more accurately.

• Fully-iterative learning and team formation
The approach of this thesis consists of two discrete phases: learning the Synergy Graph
from observations, and then using the learned Synergy Graph to form a team. An interest-
ing approach would be to learn an initial Synergy Graph from a limited number of obser-
vations, and use an active-learning approach to form teams and obtain new observations in
order to improve the learned Synergy Graph.

• Modeling beyond pairwise relationships
The Synergy Graph model uses pairwise relationships as the building block for computing
synergy. An extension to the model would be to consider n-ary relationships, e.g., three
specific agents that have high performance as a team, but have low performance individu-
ally or in pairs.

• Modeling non-Gaussian capabilities
The Synergy Graph model uses Gaussian variables to represent the capabilities of the

146 CHAPTER 9: CONCLUSION AND FUTURE WORK

agents, and Gaussian mixture models to represent team performance when failures may
occur. An interesting direction would be to consider other (possibly non-parametric) dis-
tributions of capabilities and performance.

• Learning the Synergy Graph using expectation-maximization
The Synergy Graph learning algorithm presented in this thesis iteratively improved the
Synergy Graph structure, and learned the agent capabilities given some structure. A future
direction would be to consider the expectation-maximization algorithm to improve the
structure and agent capabilities, which may provide faster convergence and/or a better
learned result.

• Proving bounds to the learning and team formation algorithms
The learning algorithms and team formation algorithms presented in this thesis were em-
pirically evaluated and shown to be effective. However, it would be useful to prove bounds
on the algorithms such that there is a measure of the worst case result of the algorithms,
especially when Synergy Graphs are applied to real problems.

• Selecting δ to maximize performance
This thesis assumed that the probability δ is given, and finds the δ-optimal team. It would
be interesting to consider how δ can be selected so as to maximize some other optimality
criterion, for example to “hedge bets” on performance.

• Applying Synergy Graphs to human teams
The experiments in this thesis considered multi-robot and multi-agent teams. An interest-
ing future direction would be to consider human teams, and whether the Synergy Graph
model sufficiently captures relationships among humans. Some possible domains include
sports (such as basketball and baseball where detailed information about players and games
are available) and business (such as organizational teams commonly considered in oper-
ations research). Further, humans are able to learn through experience, and their perfor-
mance may not be readily observable, so it would be interesting to consider how to model
and learn Synergy Graphs for human teams.

9.4 CONCLUDING REMARKS 147

9.4 Concluding Remarks

This thesis has shown that the Synergy Graph model is general and applicable to many multi-
agent and multi-robot problems; the learning and team formation algorithms only require obser-
vations of team performance and no other domain information. The Synergy Graph model is
easily extended to capture many interesting characteristics, such as those detailed in this thesis.
Extensive empirical evaluation of the Synergy Graph model has been performed using simulated
and real robots, that demonstrate that teams formed by applying the Synergy Graph are effective
at solving the task and obtaining high performance. In this thesis, we have focused our exper-
iments on teams of 2-3 robots, and we believe that the Synergy Graph model is applicable to
larger teams. At the same time, we believe that the notion of synergy may not be applicable to
huge teams (e.g., more than 50 robots) since such large teams will likely be decomposable into
smaller sub-teams performing independent sub-tasks; the Synergy Graph would then be applica-
ble to model the synergy of the smaller sub-teams.

148 CHAPTER 9: CONCLUSION AND FUTURE WORK

Bibliography

[Agmon and Stone, 2012] Agmon, N. and Stone, P. (2012). Leading Ad Hoc Agents in Joint
Action Settings with Multiple Teammates. In Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems, pages 341–348. 8.4

[Agustin-Blas et al., 2011] Agustin-Blas, L., Salcedo-Sanz, S., Ortiz-Garcia, E., Portilla-
Figueras, A., Perez-Bellido, A., and Jimenez-Fernandez, S. (2011). Team formation based
on group technology: A hybrid grouping genetic algorithm approach. Journal of Computers

& Operations Research, 38(2):484–495. 8.6

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time Analysis of
the Multiarmed Bandit Problem. Machine Learning, 47(2-3):235–256. 6.2.2

[Bachrach et al., 2010] Bachrach, Y., Meir, R., Jung, K., and Kohli, P. (2010). Coalitional Struc-
ture Generation in Skill Games. In Proceedings of the International Conference on Artificial

Intelligence. 8.3

[Banerjee and Kraemer, 2010] Banerjee, B. and Kraemer, L. (2010). Coalition Structure Gener-
ation in Multi-Agent Systems with Mixed Externalities. In Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems, pages 175–182. 8.3

[Barrett and Stone, 2011] Barrett, S. and Stone, P. (2011). Ad Hoc Teamwork Modeled with
Multi-armed Bandits: An Extension to Discounted Infinite Rewards. In Proc. Int. Conf. Au-

tonomous Agents and Multiagent Systems - Adaptive Learning Agents Workshop. 8.4

[Barrett et al., 2011] Barrett, S., Stone, P., and Kraus, S. (2011). Empirical Evaluation of Ad
Hoc Teamwork in the Pursuit Domain. In Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems, pages 567–574. 6.2.1, 8.4

[Barrett et al., 2012] Barrett, S., Stone, P., Kraus, S., and Rosenfeld, A. (2012). Learning Team-
mate Models for Ad Hoc Teamwork. In Proc. Int. Conf. Autonomous Agents and Multiagent

Systems - Adaptive Learning Agents Workshop. 8.4

[Boon and Sierksma, 2003] Boon, B. and Sierksma, G. (2003). Team formation: Match-

149

ing Quality Supply and Quality Demand. European Journal of Operational Research,
148(2):277–292. 8.5, 8.6

[Bowling et al., 2003] Bowling, M., Browning, B., Chang, A., and Veloso, M. (2003). Plays as
Team Plans for Coordination and Adaptation. In Proceedings of the RoboCup International

Symposium, pages 686–693. 8.2

[Browning et al., 2005] Browning, B., Bruce, J., Bowling, M., and Veloso, M. (2005). STP:
Skills, Tactics and Plays for Multi-Robot Control in Adversarial Environments. IEEE Journal

of Systems and Controls Engineering, 219(1). 8.2

[Bulka et al., 2007] Bulka, B., Gaston, M., and desJardins, M. (2007). Local Strategy Learning
in Networked Multi-Agent Team Formation. Journal of Autonomous Agents and Multi-Agent

Systems, 15:29–45. 8.5

[Chakraborty and Stone, 2013] Chakraborty, D. and Stone, P. (2013). Cooperating with a
Markovian Ad Hoc Teammate. In Proceedings of the International Conference on Au-

tonomous Agents and Multiagent Systems, pages 1085–1092. 8.4

[Chalkiadakis and Routilier, 2010] Chalkiadakis, G. and Routilier, C. (2010). Sequential Op-
timal Repeated Coalition Formation under Uncertainty. Journal of Autonomous Agents and

Multi-Agent Systems, pages 1–44. 8.3

[Chen and Sun, 2011] Chen, J. and Sun, D. (2011). Resource Constrained Multirobot Task Al-
location Based on Leader-Follower Coalition Methodology. Journal of Robotics Research,
30(12):1423–1434. 8.1

[Chen and Wang, 2007] Chen, Y. and Wang, Y. (2007). Obstacle Avoidance and Role Assign-
ment Algorithms for Robot Formation Control. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 4201–4206. 8.2

[Coltin et al., 2010] Coltin, B., Liemhetcharat, S., Ç. Meriçli, Tay, J., and Veloso, M. (2010).
Multi-Humanoid World Modeling in Standard Platform Robot Soccer. In Proceedings of the

IEEE-RAS International Conference on Humanoid Robots. 8.2

[Cunningham et al., 2012] Cunningham, A., Wurm, K., Burgard, W., and Dellaert, F. (2012).
Fully distributed scalable smoothing and mapping with robust multi-robot data association.
In Proceedings of the IEEE International Conference on Robotics and Automation, pages
1093–1100. 8.7

[Dastani et al., 2003] Dastani, M., Dignum, V., and Dignum, F. (2003). Role-Assignment in
Open Agent Societies. In Proceedings of the International Conference on Autonomous Agents

and Multiagent Systems, pages 489–496. 8.2

150

[de Weerdt et al., 2007] de Weerdt, M., Zhang, Y., and Klos, T. (2007). Distributed Task Allo-
cation in Social Networks. In Proceedings of the International Conference on Autonomous

Agents and Multiagent Systems, pages 500–507. 8.1, 8.5

[Dereli et al., 2007] Dereli, T., Baykasoglu, A., and Das, G. (2007). Fuzzy quality-team forma-
tion for value added auditing: A case study. Journal of Engineering Technology Management,
24(4):366–394. 8.6

[Dias, 2004] Dias, M. B. (2004). TraderBots: A New Paradigm for Robust and Efficient Multi-

robot Coordination in Dynamic Environments. PhD thesis, The Robotics Institute, Carnegie
Mellon University. 8.1

[Dias and Stentz, 2000] Dias, M. B. and Stentz, A. (2000). A Free Market Architecture for
Distributed Control of a Multirobot System. In Proceedings of the International Conference

on Intelligent Autonomous Systems, pages 115–122. 8.1

[Dias and Stentz, 2002] Dias, M. B. and Stentz, A. (2002). Multi-Robot Exploration Controlled
By A Market Economy. In Proceedings of the IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, pages 2714–2720. 8.1

[Dobson and Goddard, 2010] Dobson, S. and Goddard, J. (2010). Optimizing Strategic Be-
haviour in a Dynamic Setting in Professional Team Sports. European Journal of Operational

Research, 205(3):661–669. 8.6

[Dorn and Dustdar, 2010] Dorn, C. and Dustdar, S. (2010). Composing Near-Optimal Expert
Teams: A Trade-off between Skills and Connectivity. In Proceedings of the International

Conference on Cooperative Information Systems, pages 472–489. 2.2, 8.5

[dos Santos and Bazzan, 2011] dos Santos, F. and Bazzan, A. L. C. (2011). Towards Efficient
Multiagent Task Allocation in the RoboCup Rescue: A Biologically-Inspired Approach. Jour-

nal of Autonomous Agents and Multi-Agent Systems, 22:465–486. 7.2.1

[Feng et al., 2010] Feng, B., Jiang, Z., Fan, Z., and Fu, N. (2010). A Method for Member
Selection of Cross-Functional Teams using the Individual and Collaborative Performances.
European Journal of Operational Research, 203(3):652–661. 8.6

[Ferreira et al., 2010] Ferreira, P., Santos, F. D., Bazzan, A. L., Epstein, D., and Waskow, S. J.
(2010). RoboCup Rescue as Multiagent Task Allocation among Teams: Experiments with
Task Interdependencies. Journal of Autonomous Agents and Multi-Agent Systems, 20:421–
443. 7.2.1

[Frias-Martinez et al., 2004] Frias-Martinez, V., Sklar, E., and Parsons, S. (2004). Exploring
Auction Mechanisms for Role Assignment in Teams of Autonomous Robots. In Proceedings

151

of the RoboCup International Symposium, pages 532–539. 8.2

[Gaston and desJardins, 2005] Gaston, M. and desJardins, M. (2005). Agent-Organized Net-
works for Dynamic Team Formation. In Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems, pages 230–237. 8.5

[Gaston et al., 2004] Gaston, M., Simmons, J., and desJardins, M. (2004). Adapting Network
Structure for Efficient Team Formation. In Proceedings of the AAAI Symposium on Articial

Multi-agent Learning. 8.5

[Genter et al., 2011] Genter, K., Agmon, N., and Stone, P. (2011). Role-Based Ad Hoc Team-
work. In Proceedings of the Plan, Activity, and Intent Recognition Workshop at the Twenty-

Fifth Conference on Artificial Intelligence (PAIR-11). 8.4

[Genter et al., 2013] Genter, K., Agmon, N., and Stone, P. (2013). Ad Hoc Teamwork for Lead-
ing a Flock. In Proceedings of the International Conference on Autonomous Agents and

Multiagent Systems, pages 531–538. 8.4

[George et al., 2010] George, J. M., Pinto, J., Sujit, P. B., and Sousa, J. B. (2010). Multiple
UAV Coalition Formation Strategies (Extended Abstract). In Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems, pages 1503–1504. 8.3

[Gerkey and Mataric, 2004] Gerkey, B. P. and Mataric, M. J. (2004). A Formal Analysis
and Taxonomy of Task Allocation in Multi-Robot Systems. Journal of Robotics Research,
23(9):939–954. 1, 7.2.1, 8.1, 8.1, 8.1

[Guttmann, 2008] Guttmann, C. (2008). Making allocations collectively: Iterative group deci-
sion making under uncertainty. In Proceedings of the 6th German Conference on Multiagent

System Technologies, pages 73–85. 8.1

[He and Ioerger, 2003] He, L. and Ioerger, T. R. (2003). A quantitative model of capabilities in
multi-agent systems. In Proceedings of the International Conference on Artificial Intelligence,
pages 730–736. 8.1

[Hirotsu and Wright, 2003] Hirotsu, N. and Wright, M. (2003). Determining the Best Strategy
for Changing the Configuration of a Football Team. Journal of the Operational Research

Society, 54(8):878–887. 8.6

[Isik et al., 2006] Isik, M., Stulp, F., Mayer, G., and Utz, H. (2006). Coordination without ne-
gotiation in teams of heterogeneous robots. In Proceedings of the RoboCup International

Symposium, pages 355–362. 8.4

[Ji et al., 2006] Ji, M., Azuma, S., and Egerstedt, M. (2006). Role assignment in multi-agent
coordination. International Journal of Assistive Robotics and Mechatronics, 7(1):32–40. 8.2

152

[Jones et al., 2006] Jones, E. G., Browning, B., Dias, M. B., Argall, B., Veloso, M., and
Stentz, A. (2006). Dynamically Formed Heterogeneous Robot Teams Performing Tightly-
Coordinated Tasks. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 570–575. 8.2

[Kaminka and Tambe, 2000] Kaminka, G. and Tambe, M. (2000). Robust agent teams via
socially-attentive monitoring. Journal of Artificial Intelligence Research, 12:105–147. 8.7

[Kitano et al., 1999] Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou,
A., and Shimada, S. (1999). RoboCup Rescue: Search and Rescue in Large-Scale Disasters
as a Domain for Autonomous Agents Research. In Proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics, pages 739–743. 7.2.1

[Lappas et al., 2009] Lappas, T., Liu, K., and Terzi, E. (2009). Finding a Team of Experts in
Social Networks. In Proceedings of the International Conference on Knowledge Discovery

and Data Mining, pages 467–476. 2.2, 8.5

[Le et al., 2011] Le, V., Stinckwich, S., Noury, B., and Doniec, A. (2011). Dynamic role assign-
ment for large-scale multi-agent robotic systems. In Bai, Q. and Fukuta, N., editors, Advances

in Practical Multi-Agent Systems, volume 325 of Studies in Computational Intelligence, pages
311–326. Springer Berlin / Heidelberg. 8.2

[Li and Shan, 2010] Li, C. and Shan, M. (2010). Team Formation for Generalized Tasks in
Expertise Social Networks. In Proceedings of the International Conference on Social Com-

puting, pages 9–16. 8.5

[Liemhetcharat et al., 2010] Liemhetcharat, S., Coltin, B., and Veloso, M. (2010). Vision-Based
Cognition of a Humanoid Robot in Standard Platform Robot Soccer. In Proceedings of the

International Workshop on Humanoid Soccer Robots, pages 47–52. 8.2

[Liemhetcharat and Veloso, 2011] Liemhetcharat, S. and Veloso, M. (2011). Modeling Mututal
Capabilities in Heterogeneous Teams for Role Assignment. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 3638–3644. 2.7

[Liemhetcharat and Veloso, 2012a] Liemhetcharat, S. and Veloso, M. (2012a). Modeling and
Learning Synergy for Team Formation with Heterogeneous Agents. In Proceedings of the

International Conference on Autonomous Agents and Multiagent Systems, pages 365–375.
Nominated for Best Student Paper Award. 2, 3, 7

[Liemhetcharat and Veloso, 2012b] Liemhetcharat, S. and Veloso, M. (2012b). Weighted Syn-
ergy Graphs for Role Assignment in Ad Hoc Heterogeneous Robot Teams. In Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5247–5254.

153

5, 7

[Liemhetcharat and Veloso, 2013a] Liemhetcharat, S. and Veloso, M. (2013a). Forming an Ef-
fective Multi-Robot Team Robust to Failures. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems. 6, 7

[Liemhetcharat and Veloso, 2013b] Liemhetcharat, S. and Veloso, M. (2013b). Learning the
Synergy of a New Teammate. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems. 4

[Liemhetcharat and Veloso, 2013c] Liemhetcharat, S. and Veloso, M. (2013c). Synergy Graphs
for Configuring Robot Team Members. In Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems, pages 111–118. 5, 7

[Liemhetcharat and Veloso, 2013d] Liemhetcharat, S. and Veloso, M. (2013d). Weighted Syn-
ergy Graphs for Effective Team Formation with Heterogeneous Ad Hoc Agents. Journal of

Artificial Intelligence. Under Revision. 2, 3, 7

[Lim et al., 2009] Lim, C., Mamat, R., and Braunl, T. (2009). Market-based Approach for Multi-
Team Robot Cooperation. In Proceedings of the International Conference on Autonomous

Robots and Agents, pages 62–67. 8.1

[McMillen and Veloso, 2006] McMillen, C. and Veloso, M. (2006). Distributed, Play-Based
Role Assignment for Robot Teams in Dynamic Environments. In Proceedings of the Interna-

tional Symposium on Distributed Autonomous Robotics Systems, pages 145–154. 8.2

[Michalak et al., 2010] Michalak, T., Marciniak, D., Szamotulski, M., Rahwan, T., Wooldridge,
M., McBurney, P., and Jennings, N. (2010). A Logic-Based Representation for Coalitional
Games with Externalities. In Proceedings of the International Conference on Autonomous

Agents and Multiagent Systems, pages 125–132. 8.3

[Napp and Klavins, 2010] Napp, N. and Klavins, E. (2010). Robust by composition: Programs
for multi-robot systems. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 2459–2466. 8.7

[Parker, 1998] Parker, L. (1998). ALLIANCE: An Architecture for Fault Tolerant Multi-Robot
Cooperation. IEEE Transactions of Robotics and Automation, 14(2):220–240. 8.7

[Parker, 2011] Parker, L. (2011). Reliability and Fault Tolerance in Collective Robot Systems.
In Kernbach, S., editor, Handbook on Collective Robotics. Pan Stanford Publishing. 8.7

[Parker and Tang, 2006] Parker, L. and Tang, F. (2006). Building Multirobot Coalitions Through
Automated Task Solution Synthesis. Proceedings of the IEEE, 94(7):1289–1305. 7, 7.1, 7.1.2,
7.7, 8.1, 8.5

154

[Preisler and Renz, 2012] Preisler, T. and Renz, W. (2012). Scalability and robustness analysis
of a multi-agent based self-healing resource-flow system. In Proceedings of the Federated

Conference on Computer Science and Information Systems, pages 1216–1268. 8.7

[Rahwan et al., 2009] Rahwan, T., Michalak, T., Jennings, N., Wooldridge, M., and McBurney,
P. (2009). Coalition Formation with Spatial and Temporal Constraints. In Proceedings of the

International Joint Conference on Artificial Intelligence, pages 257–263. 8.3

[Ramchurn et al., 2010] Ramchurn, S., Polukarov, M., Farinelli, A., and Truong, C. (2010).
Coalition Formation with Spatial and Temporal Constraints. In Proceedings of the Interna-

tional Conference on Autonomous Agents and Multiagent Systems, pages 1181–1188. 7.2.1,
8.3

[RoboCupRescue, 2011] RoboCupRescue (2011). RoboCup Rescue Simulation League.
http://roborescue.sourceforge.net/. [Online]. 7.2.2, 7.7

[RoboCupSPL, 2013] RoboCupSPL (2013). RoboCup Standard Platform League. http://

www.tzi.de/spl/. [Online]. 1.1.4

[Roth et al., 2003] Roth, M., Vail, D., and Veloso, M. (2003). A Real-time World Model for
Multi-Robot Teams with High-Latency Communication. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 2494–2499. 8.2

[Sandholm et al., 1999] Sandholm, T., Larson, K., Andersson, M., Shehory, O., and Tohme, F.
(1999). Coalition Structure Generation with Worst Case Guarantees. Journal of Artificial

Intelligence, 111:209–238. 1, 8.3, 8.3

[Sen and Adams, 2013] Sen, S. and Adams, J. (2013). A Decision Network based Framework
for Multiagent Coalition Formation. In Proc. Int. Conf. Autonomous Agents Multiagent Sys-

tems, pages 55–62. 8.3

[Service and Adams, 2011a] Service, T. and Adams, J. (2011a). Coalition formation for task
allocation: theory and algorithms. Journal of Autonomous Agents and Multi-Agent Systems,
22:225–248. 8.1, 8.3, 8.3

[Service and Adams, 2011b] Service, T. and Adams, J. (2011b). Constant factor approximation
algorithms for coalition structure generation. Journal of Autonomous Agents and Multi-Agent

Systems, 23:1–17. 8.3

[Shehory and Kraus, 1998] Shehory, O. and Kraus, S. (1998). Task Allocation via Agent Coali-
tion Formation. Journal of Artificial Intelligence, 101(1-2):165–200. 1, 8.1

[Simmons et al., 2000] Simmons, R., Singh, S., Hershberger, D., Ramos, J., and Smith, T.
(2000). First results in the coordination of heterogeneous robots for large-scale assembly.

155

http://roborescue.sourceforge.net/
http://www.tzi.de/spl/
http://www.tzi.de/spl/

In Proceedings of the International Symposium of Experimental Robotics, pages 323–332.
8.2

[Stein et al., 2011] Stein, S., Gerding, E., Rogers, A., Larson, K., and Jennings, N. (2011). Algo-
rithms and Mechanisms for Procuring Services with Uncertain Durations using Redundancy.
Journal of Artificial Intelligence, 175(14-15). 8.7

[Stone et al., 2010] Stone, P., Kaminka, G., Kraus, S., and Rosenschein, J. (2010). Ad Hoc
Autonomous Agent Teams: Collaboration without Pre-Coordination. In Proceedings of the

International Conference on Artificial Intelligence. 1, 1.1.1, 6, 6.2.1, 8.4

[Stone et al., 2009] Stone, P., Kaminka, G., and Rosenschein, J. (2009). Leading a Best-
Response Teammate in an Ad Hoc Team. In Agent-Mediated Electronic Commerce: De-

signing Trading Strategies and Mechanisms for Electronic Markets, pages 132–146. 8.4

[Stone and Kraus, 2010] Stone, P. and Kraus, S. (2010). To Teach or not to Teach? Decision
Making Under Uncertainty in Ad Hoc Teams. In Proceedings of the International Conference

on Autonomous Agents and Multiagent Systems, pages 117–124. 8.4

[Stone and Veloso, 1999] Stone, P. and Veloso, M. (1999). Task Decomposition, Dynamic Role
Assignment, and Low-Bandwidth Communication for Real-Time Strategic Teamwork. Jour-

nal of Artificial Intelligence, 110(2):241–273. 8.2

[Tang and Parker, 2007] Tang, F. and Parker, L. (2007). A Complete Methodology for Gener-
ating Multi-Robot Task Solutions using ASyMTRe-D and Market-Based Task Allocation. In
Proceedings of the IEEE International Conference on Robotics and Automation, pages 3351–
3358. 8.1, 8.1, 8.5

[Thompson, 1933] Thompson, W. (1933). On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples. Biometrika, 25(3/4):285–294.
6.2.2

[Tosic and Agha, 2004] Tosic, P. and Agha, G. (2004). Maximal Clique Based Distributed
Coalition Formation for Task Allocation in Large-Scale Multi-Agent Systems. In Proceedings

of the International Workshop on Massively Multi-Agent Systems, pages 104–120. 8.1

[Vail and Veloso, 2003] Vail, D. and Veloso, M. (2003). Dynamic multi-robot coordination. In
Multi-Robot Systems: From Swarms to Intelligent Automata, Volume II, pages 87–100. 8.2

[Vig and Adams, 2006a] Vig, L. and Adams, J. (2006a). Market-based Multi-Robot Coali-
tion Formation. In Proceedings of the International Symposium on Distributed Autonomous

Robotics Systems, pages 227–236. 8.1

[Vig and Adams, 2007] Vig, L. and Adams, J. (2007). Coalition Formation: From Software

156

Agents to Robots. Journal of Intelligent Robotic Systems, 50:85–118. 8.1, 8.3, 8.3

[Vig and Adams, 2006b] Vig, L. and Adams, J. A. (2006b). Multi-Robot Coalition Formation.
IEEE Transactions of Robotics, 22(4):637–649. 8.3

[Wu et al., 2011] Wu, F., Zilberstein, S., and Chen, X. (2011). Online Planning for Ad Hoc
Autonomous Agent Teams. In Proceedings of the International Joint Conference on Artificial

Intelligence, pages 439–445. 8.4

[Zakarian and Kusiak, 1999] Zakarian, A. and Kusiak, A. (1999). Forming teams: an analytical
approach. IIE Transactions, 31(1):85–97. 8.6

[Zhang and Parker, 2010] Zhang, Y. and Parker, L. (2010). IQ-ASyMTRe: Synthesizing Coali-
tion Formation and Execution for Tightly-Coupled Multirobot Tasks. In Proc. IEEE Int. Conf.

Intelligent Robots Systems, pages 5595–5602. 7.2.2, 8.1

[Zhang and Parker, 2012] Zhang, Y. and Parker, L. (2012). Task allocation with executable
coalitions in multirobot tasks. In Proceedings of the IEEE International Conference on

Robotics and Automation. 1, 7.2.2, 8.1

[Zhang and Parker, 2013] Zhang, Y. and Parker, L. (2013). Considering Inter-Task Resource
Constraints in Task Allocation. Journal of Autonomous Agents and Multi-Agent Systems,
26(3):389–419. 8.1

[Zhu and Alkins, 2009] Zhu, H. and Alkins, R. (2009). Group Role Assignment. In Proceedings

of the International Symposium on Collaborative Technologies and Systems, pages 431–439.
8.2

[Zlot et al., 2002] Zlot, R., Stentz, A., Dias, M. B., and Thayer, S. (2002). Multi-Robot Explo-
ration Controlled By A Market Economy. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation, pages 3016–3023. 8.1

157

	1 Introduction
	1.1 Thesis Question and Approach
	1.1.1 Representing Capabilities and Synergy
	1.1.2 Planning Effective Multi-Robot Teams
	1.1.3 Learning the Capabilities and Synergy
	1.1.4 Evaluation

	1.2 Thesis Contributions
	1.3 Document Outline

	2 Synergy Graph Model and Team Formation
	2.1 Team Formation Problem
	2.2 Task-Based Relationships
	2.3 Agent Capabilities
	2.4 Unweighted Synergy Graph Model
	2.5 Weighted Synergy Graph Model
	2.5.1 A Weighted Synergy Graph Example
	2.5.2 Equivalence in Weighted Synergy Graphs

	2.6 Assumptions of the Synergy Graph Model
	2.7 Solving the Team Formation Problem
	2.7.1 Forming the -Optimal Team
	2.7.2 Approximating the -Optimal Team
	2.7.3 Comparing the Team Formation Algorithms

	2.8 Comparing Unweighted and Weighted Synergy Graphs
	2.8.1 Experimental Setup
	2.8.2 Comparison Results

	2.9 Chapter Summary

	3 Learning Synergy Graphs
	3.1 Overview of the Learning Algorithm
	3.2 Learning the Synergy Graph Structure
	3.2.1 Generating a Random Synergy Graph Structure
	3.2.2 Generating a Neighbor Synergy Graph Structure

	3.3 Learning Capabilities
	3.3.1 Learning Capabilities with a Least-Squares Solver
	3.3.2 Learning Capabilities with a Non-Linear Solver

	3.4 Computing Log-Likelihood and Accepting Neighbors
	3.5 Evaluating the Learning Algorithm
	3.5.1 Learning Unweighted Synergy Graphs
	3.5.2 Learning Representative Weighted Graph Structures
	3.5.3 Learning Random Weighted Synergy Graphs
	3.5.4 Comparing the Capability Learning Algorithms

	3.6 Chapter Summary

	4 Iteratively Learning a New Teammate
	4.1 Learning Algorithm for Adding a Teammate
	4.2 Generating the Teammate's Initial Edges
	4.3 Generating Neighbor Edges
	4.4 Learning the Teammate's Capability
	4.5 Analyzing the Iterative Learning Algorithm
	4.5.1 Experimental Setup
	4.5.2 Comparison Results
	4.5.3 Comparing Different Learning Approaches

	4.6 Chapter Summary

	5 Modifications to the Synergy Graph Model
	5.1 Agents with Multiple Capabilities
	5.1.1 Role Assignment Problem Definition
	5.1.2 Weighted Synergy Graph for Role Assignment (WeSGRA) Model
	5.1.3 Finding Role Assignments and Learning WeSGRAs
	5.1.4 Experiments with WeSGRAs

	5.2 Graphs with Multi-Edges
	5.2.1 Configurable Team Formation Problem Definition
	5.2.2 Synergy Graph for Configurable Robots (SGraCR) Model
	5.2.3 Configuring Multi-Robot Teams and Learning SGraCRs

	5.3 Non-transitive Task-Based Relationships
	5.3.1 Modeling Non-Transitivity in Synergy Graphs
	5.3.2 Implications of Non-Transitive Synergy

	5.4 Chapter Summary

	6 Agents with Complex Characteristics
	6.1 Agents that Probabilistically Fail
	6.1.1 Robust Team Formation Problem Definition
	6.1.2 Robust Synergy Graph for Configurable Robots (-SGraCR) Model
	6.1.3 Solving the Robust Team Formation Problem
	6.1.4 Evaluating the -SGraCR Model
	6.1.5 Comparing the Robust Team Formation Algorithms

	6.2 Agents that Learn to Coordinate Better over Time
	6.2.1 Dynamic Weighted Synergy Graph (DyWeSG) Model
	6.2.2 Solving the Learning Agents Problem
	6.2.3 Evaluating the Algorithms

	6.3 Chapter Summary

	7 Applications and Results
	7.1 Team Formation with Probabilistic Robot Capabilities
	7.1.1 Probabilistic Model of Robot Capabilities
	7.1.2 Experimental Setup
	7.1.3 Experimental Results

	7.2 Team Formation in RoboCup Rescue
	7.2.1 The RoboCup Rescue Simulator
	7.2.2 Experimental Setup
	7.2.3 Experimental Results

	7.3 Role Assignment in RoboCup Rescue
	7.3.1 Experimental Setup
	7.3.2 Experimental Results

	7.4 Role Assignment in a Foraging Task
	7.4.1 The Foraging Task
	7.4.2 Experimental Setup
	7.4.3 Experimental Results

	7.5 Configuring a Team for a Manufacturing Task
	7.5.1 Experimental Setup
	7.5.2 Experiments with Synthetic Data
	7.5.3 Experiments with Simulated Robots
	7.5.4 Experiments with Real Robots

	7.6 Robust Team Formation in a Foraging Task
	7.6.1 The Foraging Task
	7.6.2 Robot Types and Behaviors
	7.6.3 Experimental Setup
	7.6.4 Experimental Results

	7.7 Chapter Summary

	8 Related Work
	8.1 Multi-Robot Task Allocation
	8.2 Role Assignment
	8.3 Coalition Formation
	8.4 Ad Hoc Teams
	8.5 Team Formation
	8.6 Operations Research
	8.7 Robustness and Redundancy

	9 Conclusion and Future Work
	9.1 Contributions
	9.2 Bridging Previous Work and Future Work
	9.3 Future Directions
	9.4 Concluding Remarks

	Bibliography

