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Abstract 

The important growth in research collaboration is generating increasing attention by 

research administrators and policy makers. There is much interest in improving our 

understanding of the nature, dynamics and impact of this cooperation in science. This thesis 

contributes to this area in three dimensions. First, it proposes a novel method by which one can 

characterize and assess research collaboration, which takes into consideration the self-organizing 

process of scientific collaboration. Second, building partially on the new method, it studies how 

research collaboration, in particular research groups and scientific stars, influence the nurturing 

of new researchers that enter a scientific system. Finally, it explores in detail what the new 

researchers look for, and find, in their early collaborations. The field of physics and related areas 

(including applied physics, material sciences and optics) in Mexico is used to look at these 

issues. 

The proposed evaluation method uses self-organizing characteristics of science to 

identify and compare relevant units of analysis. To characterize groups, the thesis exploits the 

patterns of collaboration and develops a method that identifies and benchmarks research groups. 

Collaboration patterns of researchers are used to identify the frontiers of the focal research units 

and the backward citation patterns are employed to establish relevant benchmark units for each 

focal unit. The results suggest that the definition of the unit of analysis affects our understanding 

of the position a research institutions has within the Science Technology and Innovation (ST&I) 

System and provides evidence that the performance of Mexican institutions in Physics is highly 

heterogeneous within institutions. This is important because research administrators and policy 

makers need to take into account this heterogeneity when assessing the ST&I system. 
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The second contribution of this thesis is an investigation of how different forms of 

scientific collaboration early on in the career of a researcher relate to his or her future publication 

and citation rates, and their likelihood of becoming a leading scientist. In particular it quantifies 

the effect of collaborative research environments, such as prominent scientists or research groups 

(identified using the method developed in the thesis), on new scholars. This study shows that 

eminent scientists have an important role in the development of a scientific system (especially 

within the context of an emerging economy) in terms of publications and citations. In particular 

it finds that these stars have a positive and significant effect on the productivity and impact of 

young researchers, as well as on their likelihood of also becoming leading scientists. In addition, 

early collaboration with a highly productive research group and the leader of this group also 

contributes to superior productivity performance by scientists.  

Third, this thesis explores how budding scientists, some of which became highly 

accomplished researchers, used their collaborations with other top scientists and research groups 

early in their career. This works finds that researchers who later became star scientists focus on 

acquiring new ideas and knowledge through early interactions with other scientists, particularly 

foreign collaborators and existing stars, whereas those less prominent focus on accessing 

resources and only learning “basic” research kills, like publishing. 

Finally, this thesis provides important insights for policy makers by showing the 

significance research collaboration has in the development of ST&I of an emerging economy. In 

addition, this work highlights the importance of endogenously defining the unit of analysis and 

taking into account the heterogeneity within the system when making assessments of the ST&I 

system. Furthermore, this dissertation shows the relevance scientific stars surrounded by 
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nurturing environments have in the progress of science, as well as the importance cooperation 

with these scientists and foreign collaboration has in exposing young faculty to new ideas. 
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Chapter 1. Introduction 

Today’s emphasis on economic activity based on knowledge and innovation is leading 

industrialized as well as developing nations to place special attention on their science, 

technology and innovation (ST&I) systems (OECD, 2004b, 2011). In particular, there is strong 

emphasis in promoting policies that foster its progress and enhance its economic and social 

benefits (OECD, 1999, 2001, 2004a, 2004b, 2011). At the core of this system lies the individual 

researcher – in particular highly productive ones (Lotka, 1926; Pirce, 1963; Hagstrom, 1968; 

Cole, 1970; Cole and Cole, 1972; Allison and Stewart, 1974; Reskin, 1977, 1978; Fox, 1983; 

Zucker et al., 1998; Azoulay et al., 2007, Goodall, 2009; Oettl, 2009). They are responsible for 

expanding our knowledge base (Kuhn, 1962), transferring this knowledge into useful 

applications (Gibbons et al., 1994; Jain et al., 2009; Ding and Choi, 2011), and training and 

coaching the next generation of scientists and technologists (Bozeman and Corley, 2004; Ham 

and Weinberg, 2007; Waldinger, 2010). 

In addition to the individual, the group of research collaborators, or teams, is another 

dimension considered to be of paramount importance in the development of a ST&I system 

(Adams, et al., 2005; Wagner and Leydesdorff 2005; Wuchty et al., 2007). It is within a team 

that researchers can acquire new skills (Wagner, 2008, p2); and gain access to complementary 

expertise (Katz and Martin, 1997; Melin, 2000; Beaver, 2001), as well as valuable equipment 

and resources (Melin, 2000; Beaver, 2001). Research teams are also the primary environment 

where scientists are exposed to new ideas (Katz and Martin, 1997; Melin, 2000) and where they 

can increase their visibility and prestige (Crane, 1972; Beaver and Rosen, 1978, 1979a,b; Katz 

and Martin, 1997; Beaver, 2001). Furthermore, this is the setting through which cross-
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fertilization across fields is established (Beaver and Rosen, 1978, 1979a, 1979b; Katz and 

Martin, 1997; Melin, 2000).  

These observations have motivated an important stream of research focused on 

understanding the role scientific cooperation plays in the development of ST&I systems. In 

particular, a great effort has been dedicated to assessing the effect research collaboration and the 

different environments that emerge from these interactions, like conducting research with a star-

scientist1, has on the performance of researchers and the progress of their academic careers. In 

addition, previous research has also looked at how these connections in science can be used to 

identify the different invisible colleges in ST&I systems. It is within this area of study that 

researchers have used these interactions, and their occurrence and the patterns that emerge from 

them to developed algorithms that identify communities within co-authorship networks. In the 

remaining part of this chapter the literature that supports this thesis is reviewed. Additionally, the 

studies conducted in this work are summarized and their main findings highlighted. This section 

ends laying the structure of this dissertation. 

1.1. Research Collaboration 

The interactions that happen between scholars and the groups that emerge from these 

exchanges plays an important role in the development of the ST&I system. A variety of studies 

have looked at how research collaboration influences the progress of science. According to 

Bukvova (2010) these studies have primarily focused on five main domains: (a) defining what is 

research collaboration; (b) problems with measuring this phenomenon; (c) understanding why 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 In this work the terms star, highly regarded, eminent, prominent or key researcher/scientist are used 
interchangeably to refer to individuals that have (or are perceived of having) on average a higher performance than 
their peers. 
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researchers collaborate; (d) developing explanatory approaches to research collaborations; and, 

in recent years, (e) understanding the role Information and Communication Technologies (ICT) 

plays in promoting this type of activities in science. In particular, there has been special interest 

in defining what is research collaboration and developing appropriate methods to measures these 

interactions (Melin & Persson, 1996; Katz and Martin, 1997; Laudel, 2002); as well as, in 

uncovering the factors that promote and hinder cooperation in science (Bukvova’s, 2010). 

Similarly, previous studies have tried to assess the costs, benefits and opportunities these 

schemes produce to individual researchers throughout their professional career (Katz and Martin, 

1997; deB. Beaver, 2001). In the following sections we review these studies. 

1.2.1. What is Research Collaboration and how it can be Measured 

Research collaboration is not easy to define and measure because it is “largely a matter of 

social convention among scientists” that varies “across institutions, fields, sectors and countries” 

and changes over time (Katz and Martin, 1997). Collaboration takes place between individuals 

who primarily are researchers and belong to one or more institutions from one or more regions of 

the world. These interactions happen within and across fields of knowledge and, in some same 

cases, this cooperation happens at different organizational levels, such as departments or 

institutions (Bukvova, 2010). Some authors have tried to define research collaboration explicitly. 

For example, Laudel (1999, p.32; 2002) defines research collaboration as a “system of research 

activities by several actors related in a functional way and coordinated to attain a research goal 

corresponding with these actors’ research goals or interests.” Prior work has used a variety of 

dimensions to describe it, including the professional background and institutional affiliation of 

the participants, their disciplinary focus, their geographical location and the organizational level 
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where these interactions happen (Amabile et al., 2001; Sonnenwald, 2007) 2.  One way that has 

been extensively used to characterize cooperation in science is through bibliometric indicators 

(Laudal, 2002), in particular co-authorship. This provides many opportunities, although also 

some important limitations. For example, collaboration through co-authorship (i.e. multi-author 

or multi-address papers) is a partial indicator of this activity because sometimes collaboration 

does not lead to a co-authored paper. Conversely, peripheral interaction between scientists can 

yield co-authored publications (Katz and Martin; 1997). Studies have acknowledged (to a certain 

degree) the limitations stated by Katz and his colleague, but typically defend the use of co-

authorship as a measure of collaboration, arguing that this type of data is the most objective, 

tangible and well-documented form of scientific collaboration (Newman, 2001; Glänzel and 

Schubert, 2004). Five key advantages are particularly relevant: verifiability, stability over time, 

reduced cost, unobtrusiveness, and ease of measurement (Katz and Martin, 1997; He et al., 

2009).  

1.2.2. Factors Affecting Research Collaboration 

The scientific community has dedicated a great effort to the understanding of the factors 

that promote, enhance and hinder collaboration in science. These range from individual 

characteristics, such as particular personalities being suited for collaborative work (Stokols et al., 

2008), to group attributes, like size (Rigby, 2009), and ability to coordinate (Cummings and 

Kiesler, 2007), communicate (Stokols et al., 2008) and deal with differences (Jeffrey, 2003; 

Bammer 2008). Also important are institutional features, like academic culture (Sorensen, 2003) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Laudal (2002) indentifies two forms of specialization: Vertical specialization observed in theoretical and 
conceptual activities (like the ones found in apprenticeship, teacher/student or group-leader/doctoral student 
relationships) and horizontal specialization occurring at both levels of vertical specialization (e.g. group-leaders or 
doctoral students). 
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or granting scientific credit (Kennedy, 2003; Birnholtz, 2008) and policy aspects, such as 

funding (Defazio et al., 2009) or national security (Dias et al., 2010).   

1.2.3. Benefits and Costs of Research Collaboration 

Many authors have looked at the benefits and costs of scientific collaborations to 

individual researchers throughout their career. Cooperation in science can generate many 

advantages, including access to expertise, funding and resources (like instrumentation and data 

sets), exchange of ideas (especially across disciplines), learning new skills, pooling expertise for 

complex problems, prestige, and in some cases fun and pleasure (Katz & Martin, 1997; deB 

Beaver, 2001; Bukvova, 2010). However, collaboration is not risk free activity. In some 

instances, this endeavor can produce financial costs (from traveling or relocation), increase 

bureaucratic and managerial costs, in particular coordination costs (Cummings and Kiesler, 

2007). It can also be difficult to reconcile organizational and cultural differences (Katz and 

Martin, 1997) and in some instance it can be difficult to assign credit to the participants (Wray, 

2006).  

The research in this dissertation leverages the use of collaboration to, first, develop and 

test a method for the characterization and assessment of scientific teams. Then, it uses these 

interactions to quantify the impact early collaboration with eminent scientists and other forms of 

nurturing environments have on the performance and professional development of young faculty. 

Finally, this thesis also uses this early cooperation with different research environments to 

qualitatively assess the benefits of research collaboration. 
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1.3. Eminent Scientists 

In recent times, there has been a growing interest among research administrators, policy 

makers and scholars on the role eminent scientists have on the development of ST&I system. 

This interest stems from the fact that this group of people is responsible for many 

groundbreaking discoveries (Kuhn, 1962), produce a disproportional amount of the research 

(Lotka, 1926; Pirce, 1963; Zucker et al., 1998) and receive a large share of citations (Hagstrom, 

1968; Cole, 1970; Cole and Cole, 1972; Allison and Stewart, 1974). For example, Price (1963) 

found that six percent of physicists were responsible for publishing 50 percent of all the 

publications, while Cole (1979) and Reskin (1977,1978) have shown that this percentage of 

contributing scientists is 2.5 times higher in other fields. Additionally, Zuker and Darby (1998) 

discovered that 0.8% of the scientists contributing to the GenBank3 were 22 times more 

productive than the average scientist, publishing 17.3% more papers. Furthermore, Allison and 

Stewart (1974) also found that the distribution of citations is more unequal than the one for 

articles and that this inequality increases with tenure, for both measures. 

Star scientists are also important to research systems because they are responsible for 

training and coaching the next generation of highly qualified personnel. For instance, Zuckerman 

(1967) showed that 62% of the Noble laureates (in his sample) worked as young researchers 

under the supervision of previous prizewinners and Ham and Weinberg (2007) proved that being 

surrounded by other prizewinners had a significant positive effect on starting their own work that 

would yield this type of recognition. Furthermore, there is evidence that prominent scientists are 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 GenBank is a sequence database, produced and maintained by the National Center for Biotechnology Information 
(NCBI), which is part of part of the National Institutes of Health (NIH) in the United States. 
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more inclined to collaborate with other distinguished and highly productive researchers than with 

their less renowned counterpart (Zuckerman, 1967). 

Empirical studies have also shown that lead scientists have a positive effect on the 

productivity of their collaborators. For example, Azoulay et al., (2010) as well as Oettl (2009) 

have measured the impact that “superstars” have on their peers by calculating the drop in 

productivity when a leading scientist ceases to exist. In the first study, Azoulay and his 

colleagues show that coauthors of an ‘extinguished’ star “suffer a lasting 8 to 18% decline in 

their quality-adjusted publication output;” whereas Oettl documents a higher loss in productivity, 

between 19 to 35%. In addition, Waldinger (2010), using a similar exogenous variation (in this 

case the expulsion of mathematics professors in Nazi Germany), shows that faculty excellence is 

a very important determinant of short- and long-run doctoral student performance; according to 

him  

one-standard-deviation increase in faculty quality increases the probability of 
publishing the dissertation in a top journal by 13 percentage points, the 
probability of becoming a full professor by 10 percentage points, the probability 
of having positive lifetime citations by 16 percentage points, and the number of 
lifetime citations by 6.3. 

 

Star-scientists also matter as role models for the next generation of researchers, where the 

later tend to emulate the steps of their advisors and collaborators. As previously stated, young 

scientists working with Nobel Laureates have a higher propensity of replicating the success of 

their senior collaborators (Zuckerman, 1967). In addition, the mentorship literature has noted that 

“the majority of participating mentors had been involved in a previous mentoring relationship as 
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a protégé” (Allen el al., 1997) and showed that protégés that were trained by high fecundity4 

mentors also score high on this indicator (Malmgren et al., (2010). This suggests that advisees 

follow the steps of their advisors in terms of creating mentoring environments once they become 

research leaders. 

Finally, star-scientists are also important in other settings like research administrators or 

entrepreneurs. For example, Goodall (2009) shows that research quality of a university can be 

positively enhanced if this institution appoints an accomplished scholar as president (vice 

chancellors). Furthermore, Zucker and Darby (2007, 2010) find that stars themselves, rather than 

the disembodied knowledge associated with them, are crucial for the entry of a broad range of 

high-tech startups. 

1.4. Identification of Groups 

Although there have been important advances in our understanding of the role research 

collaboration plays in the development of science, much remains yet to be explored. In 

particular, when characterizing and assessing research groups (collaborations) the Research 

Evaluation literature usually overlooks the endogenous characteristics of the research endeavor. 

In a typical assessment, the unit of analysis is defined ad hoc and is typically associated with an 

administrative boundary (i.e. by department or institution) rather than a true research group. One 

area that has provided much advance in the characterization of scientific collaboration and 

identifying communities in social networks is the social network literature. This body of work  

provides structure to research collaborations by developing community structure algorithms that 

identify groups within patterns of collaboration, in particular co-authorship networks (as well as 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Malmgren et al. (2010) define mentorship fecundity as the number of protégés a mentor trains. 
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in other types of ensembles). The idea is that nodes in a network represent authors of a paper and 

an edge establishes whether two authors have been co-authors in one or more papers. In addition, 

nodes within a community have dense connections with each other and sparse or null interactions 

with vertices outside their group.  

Most algorithms operate by breaking a network into communities of nodes with dense 

connections within these groups and looser connections to other groups (Wasserman and Faust, 

1994, p249-290; Girvan and Newman, 2002; Newman, 2004; Radicchi et al., 2004). For 

example, graph-partitioning algorithms try to break the network into some g number of groups 

with roughly the same node size (Kernighan, and Lin, 1970), while edge-removal algorithms 

identify the different communities by removing the links between groups with high edge 

centrality (Girvan and Newman, 2002)5. These methods have typically been developed to 

characterize generalizable patterns across a variety of social networks, from scientists to the 

production of Hollywood movies. They consider that networks are alike and the communities 

that arise are formed under the same mechanisms and following similar patterns. Therefore, by 

construction, they use the same algorithm, instead of exploring the peculiarities of how the 

science endeavor is organized. As a result, these views may fail to recognize and leverage 

specific characteristics that collaborative networks of researchers may have, which distinguish 

them from others. 

As noted in the previous sections, another area where substantial work has been done in 

the last years is the one focused on quantifying the influence of  eminent scientists on others. 

Initial research has often composed of case studies that recount the mentoring experience, cross 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 Other popular alternatives are hierarchical clustering algorithms, which divide a network based on a hierarchy and 
a measure of similarity between pairs of vertices (Scott, 1988) and the clique percolation algorithm defines the 
different communities based on overlapping modular structures (Palla et al., 2005). 
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sectional studies or longitudinal analysis with usually short time frames, as well as small and 

often random data sets (e.g. Long et al., 1979; Reskin, 1979; Green and Bauer, 1995; Williamson 

and Cable, 2003; Judge et al., 2004; Paglis et al., 2006). More recently, there has been 

quantitative research in this domain, in particular looking at the impact of stars (Oettl, 2009; 

Azoulay et al., 2010; Waldinger, 2010). Yet, research has not really considered how theses stars 

interact with other scholars in the context of research teams, and their impact on the evolution of 

the system, especially in terms of researchers at the beginning of their career.  Moreover, with 

the exception of Malmgren et al. (2010), research on mentorship has not looked at the extent to 

which protégés mimic their mentors’ steps, performance and reputation.  

Previous research on scientific cooperation has also typically considered collaboration in 

broad general terms, or focused on a particular research environment (like only collaborating 

with eminent scientists) failing to notice the combined effect different environments have on 

scientists, for example publishing with a highly productive researcher vs. a highly productive 

research group. Moreover, research has not inquired as to how these various setups affect 

productivity or impact. 

Furthermore, with a few exceptions (Wagner et al., 2001; Gonzalez-Brambila and 

Veloso, 2007; Ordoñez-Matamoro et al., 2009; Horta et al., 2010), previous research in this area 

has mostly focused on the developed world. However, the ST&I community around the world 

has different characteristics (Nelson, 1993).  This means that a better understanding of the factors 

that condition research output, impact and success in science requires an analysis of a diverse set 

of countries. In addition, ST&I systems have particular disparities between developing and 

developed nations. In developing nations there are fewer resources and infrastructure dedicated 

to research and development (R&D). Moreover, government funds most R&D and human as 
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well as financial resources are centralized in a few institutions6. Thus, studying emerging 

economies provides a better understanding of the factors that influence the performance, impact 

and overall contribution of scientists in this environment (Nelson, 1993). In addition, studying 

this type of countries is relevant because these nations are actively developing and implementing 

policies to improve their S&T systems. Therefore, a better understanding of the factors that 

foster success at individual and aggregated levels could help leap forward their system.   

This thesis begins by developing and testing a characterization and assessment method 

that recognizes the particular endogenous, or self-organizing characteristics of research groups. 

Instead of establishing an ad-hoc unit of analysis and assuming an unspecified network structure, 

the proposed method uses the notion that modern science is conducted primarily through a 

network of collaborators (or groups) who organize themselves around key researchers, often 

known as the principal investigators. Specifically, the method identifies Principal Investigators7 

(PIs), or key figures in an RG and then characterizes its boundaries using the pattern and strength 

of ties they have with their coauthors. In addition, it relies on the body of knowledge that each 

RG leverages, identified through the backward citations found in their published papers, to 

establish group ‘knowledge footprints’. These footprints are used to evaluate the degree of 

structural similarity between groups, which is assessed through the degree of common cites to 

papers. Once all RG are characterized and their peers identified, one can measure and compare 

the performance/productivity of each RG.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 E.g. in Mexico in 2002 68% of the Gross Domestic Expenditure on Research and Development (GERD) was 
financed by the public sector (CONACYT, 2004, p16). In addition, in 2003 the National Autonomous University of 
Mexico (UNAM) had 27% of all the researchers belonging to the National Research System (SNI, 
http://www.conacyt.gob.mx/sni/) and received almost 50% of the federal R&D funding and four public institutions 
monopolized 92% of this budget (CONACYT, 2004, p24).  
7 For this work we define a Principal Investigator (PI) as an author with a high number of repeated connections, i.e. 
a researcher that has written several papers with a high number of coauthors.  
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This thesis continues by looking at the role that scientific stars (i.e. the most 

accomplished and salient researchers) have in a science system. In particular we assess how 

relevant these eminent scientist are for the development of a system. This means understanding 

how much they contribute to the output and impact of the system, as well as how influential are 

them in breeding the next generation of successful scientists, i.e. how successfully theirs protégés 

mimic their stellar performance. In addition it assesses how collaboration conditions the 

development of incoming scientists. In particular, we will look at the importance of the 

collaboration network of early co-authors for the productivity of new scientists and the 

likelihood that they also will become leading scientists.  

Finally, following the previous perspective, but from a qualitative point of view, this 

thesis focuses on assessing the impact different forms of early collaborations have on the 

professional careers of new scientists. In particular it surveys a group of researchers (in an 

emerging economy) about their initial cooperation in science, the opportunities these early 

interactions opened to them and what they learned from these initial relationships. 

Looking at these issues yields an important contribution to the literature on research 

collaboration, research evaluation and the science of science. There has been important progress 

in developing new approaches for assessing of research. There is also a growing knowledge 

based on methods that structure cooperation in science and identify its communities. There is a 

vast literature addressing the role research collaboration, and the collaborative environments that 

emerge from this interaction, plays in the development of science. But existing research on 

evaluation has hardly looked at how the endogenous characteristics of the research endeavor 

influence such assessments. By looking at the patterns and strength of collaboration to 

characterize teams and using their respective set of backward citations patterns (or knowledge 
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footprints) to assess their similarity research administrators, scholars and policy makers can have 

better assessments of the research endeavor. In addition, current research on collaboration has 

focused on understanding the impact this phenomenon has throughout the professional career of 

a researcher or the influence a particular environment, like working with an eminent scientist, 

has on its development and performance. By looking at new scientists and the initial conditions 

they face (in terms of research milieus) we can better understand which will have a higher 

chance of succeeding in science and making the biggest contribution to the ST&I system. 

To explore these issues, chapters 2 and 3 of this thesis use a database from Thomson 

Scientific8 (Institute of Scientific Information, 2003) containing all papers published between 

1980 and 2003 with at least one address in Mexico. This database contains the following 

information: article name, author(s), author(s), address(es), year of publication, journal, volume, 

pages, backward citations (i.e. references) and total number of citations received. From this 

database we selected all the papers published in Mexico in Physics and related areas (like applied 

physics, optics and material science among others) in the period of 1981-20039. We chose these 

fields because they have been widely studied around the world (e.g. Collazo-Reyes et al. ,2004; 

Shrum et al., 2007) and Mexico has a long tradition of publishing in international peer reviewed 

journals, indexed by ISI in these areas (ISI, 2003; CONACYT, 2008). In addition, for chapter 3 

we developed a questionnaire (appendix 1 has a sample of this instrument) that asks researchers 

about their initial interactions in science. The survey looks into the following topics: (1) how the 

researcher started his/her early collaborations in science, (2) what was the impact different 

environments and the interactions that happened within these settings had on incoming scientists, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 Formerly known as the Institute for Scientific Information (ISI) 
9 We only considered articles; this means that letters, notes and reviews were excluded. In addition, the extracted 
data have been undergone a detailed cleaning and then processed to bibliometric indicators. 
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(3) what opportunities these relationships opened, and (4) what the new researchers got out of 

these partnerships. We asked all the scientists that belong to the field of physics and related areas 

in Mexico that are part of CONACYT’s National Research System10 (SNI, acronym in Spanish) 

to participate in this survey. 

1.5. Thesis structure 

This thesis is organized into five chapters. Chapter one is this introduction. Chapter two 

(Research Groups Characterization and Assessment) draws from the literature of research 

evaluation and social network analysis to propose an evaluation method that takes into account 

the endogenous characteristics of research groups. Using data from the field of physics and 

related areas in Mexico, the chapter shows that the strength and frequency of the collaboration 

patterns are useful for identifying cohesive groups. In addition, this new technique allows 

scholars and policy makers to take into account the (expected) heterogeneity within institutions 

in their assessments. In addition, the overlap of common backward citation patterns and the 

benchmark at different levels of similarity in this cited work allows a departure from the 

established evaluation literature. This step allows potential evaluators to identify similar research 

groups, assess these groups and produce more meaningful comparisons and rankings. 

Furthermore, the research done by the different groups in Physics and related areas is (almost) 

non-redundant, i.e. the KFP overlap of these groups is relatively small, which means that each 

RG is (virtually) focused in one area of the research space. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 The SNI System was created 1980s by the Mexican Government to recognize the scientific and technological 
contribution of researchers in this country. The recognition is base on peer review evaluations and grants the 
appointment of National Researcher. This system has four levels, which are based on performance: candidate (which 
usually is the entry level to the system) and levels one, two and three; where the last level is the highest recognition 
within this system. Parallel to the appointment, the researcher receives an economic incentive based on the tier she 
belongs to (CONACYT, 2012)  
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 Chapter 3 (Birth of prominent scientists) confirms our expectations and previous results 

that eminent scientist have a prime role in the development of a scientific system, especially 

within the context of an emerging economy like Mexico. In particular, in terms of productivity 

and visibility, this work shows that this elite group (defined as all scientists that are above the 

average productivity plus one standard deviation in our sample) published 42% of all 

publications and received 50% of all citations and bred 18% to 26% of new entrants. This work 

also shows that scientists that enter the system by the hand of a prominent researcher had higher 

productive and citation rates vis-à-vis scholars that did not publish their first manuscripts with an 

accomplished scientist. In addition, young researchers had an additional boost on their 

productivity if they had an early collaboration with a scientist that belonged to a highly 

productive research group, but these settings did not have any effect on the citation rate of new 

faculty. In terms of mimicking success, we find that scientists working at the beginning of their 

careers with eminent researchers tend to replicate the success of their mentors.  

 Chapter 4 (Learning and Opportunities in Collaborative Research Environments) 

suggests that, from the beginning of their career, star scientists have a different mindset with 

regards to collaboration when compared with non-star scientists. Starting scholars who are to 

become prominent researchers focused on acquiring new ideas and being exposed to the frontier 

of science through international collaboration and collaboration with star scientist, whereas less 

prominent ones are more about obtaining access to economic and physical resources (like 

specialized laboratories), and learning “basic” scientific skills (like publishing or research 

techniques). 

 Finally, Chapter 5 (Conclusions) discusses the importance of this work to current policy 

problems and highlights the most important contributions from this thesis. Included in the 
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conclusions is a short discussion of future work that could help address the issues identified in 

this thesis. 

 Three appendices provide the full names and acronyms for the research organizations in 

chapter 2, the results of a sensitivity analysis to the regression models of chapter 3 and the survey 

used for chapter 4.  
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Chapter 2. Research Groups Characterization and Assessment 

2.1. Introduction and Motivation 

Throughout the last decades, tightening budgets and increasing competition, combined 

with a higher awareness on the outputs of science, have stimulated the development of new 

approaches towards the assessment of science (COSEPUP, 1999; Georghiou and Roessner, 2000, 

van Raan, 2000; Rip, 2000; Frederiksen, Hansson and Wenneberg, 2003). Current assessments 

have evolved from the classical peer review to an “informed” peer review, in which research is 

evaluated with the aid of quantitative benchmarks. Despite an important evolution, existing 

approaches towards scientific assessment still have a critical limitation: the boundaries of the 

unit of analysis are typically rigid (by individuals, institutes/departments, institutions, disciplines, 

regions, or countries), overlooking the unique and self-organizing characteristics of the research 

endeavor (Guimera et al., 2005). This means, for example, that present techniques have difficulty 

noting differences between low and top performing groups within a focal unit, say a university or 

even a department within a university. Likewise, benchmarking performance of university 

departments in a given area based solely on number of papers or citations fails to recognize that, 

for example, theoretical or experimental research profiles will necessarily imply different levels 

of publication and citation outputs. This renders a comparison based on average levels of 

productivity or impact for a broad area of limited value and potentially misleading. Furthermore, 

the performance of groups, or subunits (as described in Gläser, Spurling and Butler, 2004) 

cannot easily be measured. Finally, current methods are particularly limited when assessing 

interdisciplinary research groups (RGs) because it is difficult to ascribe these groups to a 

particular field of knowledge and measure their performance within this field in comparison with 

equivalent groups. 
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Along with the work on research evaluation, there has been important progress in the 

development of community structure algorithms that identify groups within a network. Most of 

these algorithms operate by dividing a network into communities of nodes with dense 

connections within these groups and looser connections to other groups (Wasserman and Faust, 

1994, p249-290; Girvan and Newman, 2002; Newman, 2004; Radicchi et al., 2004). For 

example, graph-partitioning algorithms try to break the network into some g number of groups 

with roughly the same node size (Kernighan, and Lin, 1970), while edge-removal algorithms 

identify the different communities by removing the links between groups with high edge 

centrality (Girvan and Newman, 2002)11. These methods have typically been developed to 

characterize generalizable patterns across a variety of social networks, from scientists to the 

production of Hollywood movies. Therefore, by construction, they consider that networks are 

alike and the communities that arise are formed under the same mechanisms and follow similar 

patterns. Such approach may fail to recognize and leverage specific characteristics that 

collaborative networks of researchers may have, which distinguish them from others. 

This research develops and tests a characterization and assessment method that 

recognizes the particular endogenous, or self-organizing characteristics of research groups. 

Instead of establishing an ad-hoc unit of analysis and assuming an unspecified network structure, 

the proposed method uses the notion that modern science is conducted primarily through a 

network of collaborators (or groups) who organize themselves around key researchers, often 

known as the principal investigators. Specifically, the method identifies Principal Investigators12 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 Other popular alternatives are hierarchical clustering algorithms, which divide a network based on a hierarchy and 
a measure of similarity between pairs of vertices (Scott, 1988) and the clique percolation algorithm defines the 
different communities based on overlapping modular structures (Palla et al., 2005). 
12 For this work we define a Principal Investigator (PI) as an author with a high number of repeated connections, i.e. 
a researcher that has written several papers with a high number of coauthors. 
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(PIs), or key figures in an RG and then characterizes its boundaries using the pattern and strength 

of ties they have with their coauthors. In addition, it relies on the body of knowledge that each 

RG leverages, identified through the backward citations found in their published papers, to 

establish group ‘knowledge footprints’. These footprints are used to evaluate the degree of 

structural similarity between groups, which is assessed through the degree of common cites to 

papers. Once all RGs are characterized and their peers identified, one can measure and compare 

the performance/productivity of each RG.  

The method is demonstrated by ranking research groups in Physics, Applied 

Physics/Condensed Matter/Materials Science and Optics in the leading institutions in Mexico, 

and showing how these groups are formed over time. This paper has two main results. First, it 

shows that the understanding of the scientific performance of an institution changes with a more 

careful account for the unit of analysis used in the assessment. Second, evaluations at the group 

level (using their knowledge footprint) provide more accurate assessments since they allow for 

appropriate comparisons within subfields of science. Third, this paper provides evidence that the 

performance of Mexican institutions in physics and related areas is highly heterogeneous within 

the institution itself. Finally, it shows that the research system is quite small, allowing less than 

two research groups (on average) in each subfield.  

This paper is divided into five sections. First, it describes different types of evaluations 

and their limitations. Second, it introduces the theories that support our method, Bibliometric and 

Social Network Analysis, reviewing in particular the most common community structure 

algorithms. Third, it explains the method to identify the PIs of the networks and their groups, and 

assesses their absolute and relative performance. Fourth, the method is used to analyze the fields 

of Physics, Applied Physics and Optics in Mexico in the 1995-1999 period, showing in particular 
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how to assess the absolute and relative performance of the groups in the country. Finally we 

present some policy implications. 

2.2. Research Evaluation 

In the last 30 years research evaluations and assessments have been on the rise. This trend 

has been fueled by budget stringencies, the need to better allocate scarce public resources and 

even a reassessment of the appropriate role of government in the economy (Papaconstantinou 

and Poltto, 1997, p. 9). In the specific context of Science and Technology (S&T), increasing 

costs and the desire to appropriately use the knowledge and results of these activities, combined 

with the need to further our understanding of the consequences of S&T policies, have spurred the 

use of a variety of assessment activities (Martin and Irvine, 1983; COSEPUP 1999; van Raan, 

2000; Rip, 2000, Frederiksen, Hansson and Wenneberg 2003). 

To accommodate these new S&T realities, several types of research assessments have 

been developed. Table 2.1 lists and describes the most common types of evaluations. 

Table 2.1. Current Methods for Research Evaluation 
Methods Description 
Bibliometric 
analysis 

Assumes that publications, citations, and patent counts signal the work and 
productivity of a unit of analysis.  

Economic rate 
of return 

Used to estimate the economic benefits (such as rate of return) of research; gives a 
metric for the outcomes of research. 

Peer Review  
Classic 
approach 

Traditional method for evaluating science in which scientists continuously exercise 
self-evaluation and correction. Focuses on individual scientific products. 

Modified 
approach 

 “Natural” development from the classical one, it incorporates issues that are not 
strictly cognitive. Focuses on group learning. 

Case studies “Historical accounts of the social and intellectual developments that led to key events 
in science or applications of science illuminate the discovery process in greater depth 
than other methods” 

Retrospective 
analysis 

Similar to case studies, but instead of focusing on one scientific or technological 
innovation it focuses on multiple cases. 

Benchmarking Used to assess whether a particular unit of analysis is at the cutting edge in terms of 
research, education or other measures.  

Source: COSEPUP (1999, p 18-22); van Raan (2000); and Frederiksen, Hansson and Wenneberg (2003). 
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Each method is substantially useful in its own way, but also has significant drawbacks 

(Table 2.2). For all established methods noted above, important additional limitations exist. One 

that stands out in particular is the fact that the boundaries of the unit of analysis are defined ad-

hoc, overlooking the endogenous characteristics of the research groups that are formed within 

such units. Furthermore, these assessments often assign broad cohort groups and often consider 

all units within a field as if they were homogenous in terms of the knowledge they use and their 

relative output and impact. The method proposed in this study aims to address these limitations. 

Table 2.2. Pros and cons in current evaluation methods 
Methods Pro Con 
Bibliometric 
analysis 

Quantitative; useful on aggregate 
basis to evaluate quality for some 
programs and fields 

At best, measures only quantity; not useful across 
all programs & fields; comparisons across fields or 
countries difficult; can be artificially influenced 

Economic rate 
of return 

Quantitative; shows economic 
benefits of research 

Measures only financial benefits, not social 
benefits; time separating research from economic 
benefit is often long; not useful across all 
programs and fields 

Peer Review Well-understood method and 
practices; provides evaluation of 
quality of research and sometimes 
other factors 

Focuses primarily on research quality; other 
elements are secondary; evaluation usually of 
research projects, not programs; great variance 
across agencies; concerns regarding use of "old 
boy network"; results depend on involvement of 
high-quality people in process 

Case studies Provides understanding of effects 
of institutional, organizational, and 
technical factors influencing 
research process, so process can be 
improved; illustrates all types of 
benefits of research process 

Happenstance cases not comparable across 
programs; focus on cases that might involve many 
programs or fields making it difficult to assess 
federal-program benefit 

Retrospective 
analysis 

Useful for identifying linkages 
between federal programs and 
innovations over long intervals of 
research investment 

Not useful as a short-term evaluation tool because 
of long interval between research and practical 
outcomes 

Benchmarking Provides a tool for comparison 
across programs and countries 

Focused on fields, not federal research programs 

Source: COSEPUP (1999, p 18-22). 
 

2.3. Theoretical Background 

The proposed method is based on the notion that Research Groups (RG) are at the core of 

the research endeavor and that assessment instruments should have the RG at the heart of the 
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analysis. The development of our method has three main steps. First, we use bibliometric 

analysis to chart the co-authorship network within a field and define the patterns of collaboration 

among this set of connections. Second, we use social network analysis and the institutional 

affiliation of the individuals and groups to delimit the boundaries of an RG. In particular, we 

draw on the notion of lambda sets (LSs) and cliques; we use the output of the LSs algorithm to 

find the key people, which we identify as PIs in the network and cliques to identify the cohesive 

group of direct collaborators of these researchers and thus establish the boundaries of the group. 

Third, we again rely in bibliometric analysis to establish the level of similarity between RGs. In 

particular, we use co-citation across groups to establish a metric of knowledge distance and 

identify peer groups. Finally, we assess group performance with respect to publication output 

and citation counts (normalized by group size), comparing groups against their peers. 

2.3.1. Co-authorship as a form of collaboration and network topology 

For this study we follow the common practice in the field of using multiple-author papers 

as an indicator of collaborative activity within a field (Newman, 2001; Melin and Persson, 1996; 

Katz and Martin, 1997; Newman, 2004b; Wagner and Leydesdorff, 2005). The idea is that co-

authorship is one of the most tangible and well-documented forms of scientific collaboration and 

the output of these interactions creates a ‘co-authorship network’ (Newman, 2001; Glänzel and 

Schubert, 2004) like the one depicted in figure 2.1. In this type of networks, a node represents an 

author of a paper and an edge establishes whether two authors have been coauthors in one or 

more papers. For this work, we use the number of co-authored papers (between authors) as an 

indication of the strength of the collaboration, i.e. higher numbers of papers represent stronger 

levels of collaboration.  
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Figure 2.1. Co-authorship network. This network provides a hypothetical example of a co-authorship 
network, where the nodes represent the authors and the ties if two authors have written one or more papers 
together. In addition, the strength of the collaboration (weights of the line) is based on the number of co-
authored papers.  
 

2.3.2. Network Analysis 

In its simplest form, a (social) network is a diagram of all of the relevant links between a 

certain group of nodes (or actors) that provides a means to visualize existing and potential 

interactions. Within the study of science and technology, Rogers, Bozeman and Chompalov 

(2001) state that networks can be used as guiding metaphors and as techniques “to measure 

structural properties of the ensemble”. These authors classify these types of studies by “the level 

of analysis that is given by the nature of the actors that will be placed at the nodes” (i.e. nodes 

can be individuals, teams, departments or institutions), by the nature of the links between nodes 
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(interaction networks vs. position networks)13, and by the domain in which the actors belong 

(intra-organizational vs. inter-organizational)14. 

In this work, we focus our analysis on the ties that emerge through co-authorship, which 

represent “formal” social interactions among researchers, and define an RG based on its levels of 

cohesiveness and the connectivity between co-authors. A network analysis of these co-authorship 

links is particularly useful because it will allow us to explore the structural configuration of 

social interactions, which provides a powerful model for the underlying social arrangement 

(Scott, 1988) that we are interested in understanding. 

Identification of groups and communities within networks 

The rich set of connections between nodes in many networks produce heterogeneous 

structures where cohesive subgroups of nodes will have relatively strong, direct, intense, 

frequent, or positive ties within a subgroup but fewer edges between subgroups Wasserman and 

Faust (1994, p. 249); creating a structure like the one depicted in figure 2.2.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 In Interaction networks, the links represent actual information exchanges or other communication events 
between actors; whereas in position networks, they represent relationships established by the relative positions of 
the actors in the system (Rogers, Bozeman and Chompalov, 2001) 
14 Intra-organizational studies only consider links between actors inside the boundaries of a single organization; in 
contrast, inter-organizational studies consider links between actors across organizational boundaries (Rogers, 
Bozeman and Chompalov, 2001) 
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Figure 2.2. Subgroup/community structure within a network. 
 

The question of how to identify these subgroups within a network has been addressed 

before in a variety of contexts. From a theoretical point of view, Wasserman and Faust (1994, p. 

251) uncover four mechanisms by which these clusters of nodes can be formed, and based on 

these mechanisms they identify eight methods for finding this type of ensembles within any type 

of networks: cliques, n-cliques, n-clans, n-clubs, k-plexes, k-cores, LS Sets, Lambda Sets 

(Wasserman and Faust, 1994, p. 249-290). Table 2.3 summarizes these methods. 
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Table 2.3. Methods used to delimit subgroup 
Mechanism Method Definition 
Mutuality of 
ties 

cliques A clique is a maximal complete subgraph with at least three nodes. It is a 
subset of nodes, all of which are adjacent to each other, and there are no 
other nodes that are also adjacent to all of the members of a clique. 

n-cliques An n-clique is a maximal subgraph in which the largest geodesic distance 
between any two nodes is no greater than n. When n = 1, the subgraphs 
are cliques. 

n-clans  An n-clan is an n-clique in which the geodesic distance, d(i,j), between all 
nodes in the subgraph is no greater than n for paths within the subgraph. 

Reachability 
and diameter (or 
closeness) 

n-clubs An n-club is a subgraph in which the distance between all nodes within the 
subgraph is less than or equal to n; furthermore, no nodes can be added 
that also have geodesic distance n or less from all members of the 
subgraph. 

k-plexes A k-plexes is a maximal subgraph in which each node may be lacking ties 
no more than k subgraph members. When k = 1, the subgraph is a clique. 

Nodal Degree 
(frequency of 
ties members) k-cores A k-cores is a subgraph in which each node is adjacent to at least a 

minimum number, k, of the other nodes in the subgraph. 
LS Sets An LS set is a subgroup definition that compares ties within the subgroup 

to ties outside the subgroup by focusing on the greater frequencies of ties 
among subgroup members compared to the ties between subgroup 
members to outsiders.  

Frequency of 
ties within vs. 
outside 
subgroups 

Lambda 
Sets 

A lambda set is a cohesive subset that is relatively robust in terms of its 
connectivity, i.e. it is difficult to disconnect by the removal of lines from 
the subgraph. Sub groups are defined by varying the number of ties, d, 
within clusters of nodes; the more ties you have to drop (within a group) 
the more cohesive this group is. 

Source: Based on Wasserman and Faust (1994, pp. 251-267). 
 

From a large-scale/real-world network perspective, several algorithms have been 

developed for the purpose of identifying communities (or groups) within this type of networks, 

like work assignment in parallel computing, co-authorship networks, Protein networks, and 

social networks (Kernighan and Lin, 1970; Ravasz et al., 2002; Spirin and Mirny, 2003;Newman 

2004a; Newman 2004c; Radicci et al., 2004; Palla et al., 2005). These algorithms typically 

perform such identification by assuming a general structure for the network and focusing on how 

to divide it into a set of disjoint communities. Two main approaches have been followed 

[Newman, 2004a]: the computer science approach, where the nodes of a network are divided into 

sets of roughly equal size, and sociological approach, where groups try to mimic reality and 

groups differ in size.  
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Early algorithms for partitioning a network attempted to find the minimum-cut to 

partition the network into two groups with roughly the same number of nodes (Ford and 

Fulkerson, 1962; Kernighan and Lin, 1970). Although useful for some applications in parallel 

computing, these algorithms are limited because they only split the graph into equivalent parts, 

and overlook the underlying structure of the communities. The hierarchical clustering method 

goes beyond the minimum-cut methods and can be customized to fit the underlying social 

structure of a network by varying the strength of connection between vertices, i.e. adding or 

removing edges to or from the network. (Scott, 2000). Still, this method assumes that such a 

measure exists for a given network, and that it is the only way in which vertices are categorized 

into groups. In addition, this method does not produce a definite number of groups, relying on 

some other complementary decision mechanism to establish a final network partition (Newman. 

2004a). 

More recent approaches overcome most limitations of the algorithms described above by 

iteratively removing edges and measuring the strength of the community structure found by the 

algorithm at each iteration. Yet, they still rely on the assumption that the community structure is 

generally consistent across any type of real world networks. For example, Newman’s Modularity 

Maximizing algorithm identifies groups based on the modularity metric, which is calculated 

using the expected number of edges between members of a group (Newman, 2006). Likewise, 

the Girvan-Newman algorithm forms groups based on the betweenness of edges15, (Newman, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 Edge betweenness is a measure that favors edges that lie between communities and disfavors those that lie inside 
communities. The betweenness of an edge is the number of shortest paths between all pairs of nodes in a network 
that run through it. When a network is made of tightly bound groups, loosely interconnected, all shortest paths 
between vertices in different groups have to go through the few intergroup connections, which therefore have a large 
betweenness value (Radicci et al, 2004). 
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2004). Table 2.4 summarizes the main algorithms used to partition a network and their 

limitations.  

Table 2.4. Algorithms used to partition a network 
Algorithm  Basic Measures Limitations 
Ford-Fulkerson 
Kerighan-Lin 

Maximum-Flow/Minimum-Cut • Only splits into two groups 
• Lacks consideration of underlying structure 

Hierarchical 
Clustering 

Similarity function • Does not output definite set of groups. 
• Limited to a notion of similarity 
• Lacks consideration of underlying structure. 

Modularity 
Maximizing 

Modularity • Lacks consideration of underlying structure. 

Girvan-Newman Modularity, Edge Betweenness • Lacks consideration of underlying structure 
 

2.3.3. Bibliometric Analysis 

Since the 1970s performance analysis, typically based on publication output and received 

citation (Martin and Irvine, 1983; van Raan, 2000; Kane, 2001; van Raan, 2005), has been 

widely used in evaluative bibliometrics (see Noyons, Moed and Luwel (1999) and van Raan, 

(2004) for a historical development).  This method is based on the premise that an article will be 

“published in a referred journal only when expert reviewers and the editor approve its quality” 

and it will be “cited by other researchers as recognition of its authority” (COSEPUP, 1999, p. 18; 

van Raan, 2004; Thomson-ISI, 2003)  

Another important dimension in bibliometric analysis is science mapping, which 

typically relies on co-citation analysis (Small, 1973; Narin, 1976; Narin, 1978; Small, 1978; 

Leydesdorff, 1987; Gmür, 2003). Co-citation analysis looks at the structure and development of 

scientific communities and areas. This methodology is based on the notion that a citation is a 

valid and reliable indicator of scientific communication, and this measure signals the relevance 

of an article (Small, 1978; Garfield, 1979; Gmür, 2003) or a scientist. The specialized literature 

identifies a co-citation if two publications or authors cite the same reference and uses the number 
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of co-citations as a measure of similarity of content or proximity between the two publications or 

authors (Gmür, 2003). In the last 30 years, two approaches have been developed within this 

framework, namely document co-citation (focused on documents and publications with peer-

review procedures) and author co-citation (focused on researchers). In previous work, document 

co-citation (Small, 1973; Small, 1977) and author co-citation analysis (White and McCain, 

1998), as well as co-word analysis16 (Callon et al., 1983; Noyons, 2004), have been used to map 

the structure of scientific and technological fields and their evolution over time. These studies 

have aimed at “identifying and analyzing emerging research specialties or ‘hot’ topics of great 

strategic or technological importance, their actors, and their relationships to other areas of 

research” (Moed, 2005, p.17). For this paper, document co-citation analysis is useful because it 

will allow us to measure how close (or far apart) groups are in terms of knowledge. 

2.4. Method 

In this section we discuss the method developed for the characterization and assessment 

of research groups. This method has six steps. First, the collaboration patterns among researchers 

will be characterized by mapping a co-authorship network within a certain period of time and 

area(s) of knowledge. Second, the most salient researchers of the co-authorship network will be 

identified. These will be considered the principal investigators (PIs) and all the collaborators will 

be attached to these key people. Third, different research groups (RGs) will be defined based on 

the PIs of the network, their collaborators and the patterns of links among these collaborators and 

between these and the PI. Fourth, the knowledge base that each group relies on, which we will 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
16 “Co-word analysis deals directly with sets of terms shared by documents instead of with shared citations. 
Therefore, it maps the pertinent literature directly from the interactions of key terms instead of from the interactions 
of citations” (Coulter et al., 1998) 
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term Knowledge Footprint17 (KFP) is delimited and a co-citation analysis is performed with 

these footprints to establish the distance between groups (i.e. overlap of KFP between groups). 

Fifth, the performance of each RG is measured using (normalized) total scientific output and 

citation counts. Finally, the performance of each RG is compared against its peers. Figure 2.3 

shows a conceptual representation of the method.  

In the remainder of this section we will explain in detail each step and illustrate the 

application of the method by relying on the co-authorship network centered on the Physicist 

Jerzy Plebanski18 and all the researchers that have a path length19 of three or less from him (i.e. 

his coauthors, the coauthors of his coauthors and the coauthors of the coauthors of his coauthors) 

for all the papers published by these scientists within the 1997 and 1999 with at least one 

institution in Mexico. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17 The knowledge footprint (KFP) for group i is the union of all the backward citations used by all members of a 
group in all of their papers within a specific time frame.  
18 We chose Jerzy Plebanski (1928-2005) to exemplify the method because he is a well known Polish Physicist that 
worked in Mexico for several years (CINVESTAV, 2008)  
19 The length of the path is the number of lines in a path (Wasserman and Faust; 1994, p. 107). “A path is a walk in 
which all the nodes and all the lines are distinct (Wasserman and Faust; ibid.) 
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Figure 2.3. Method steps. This figure shows the steps of the method for the characterization, assessment 
and benchmark of research groups. 
 

2.4.1. Network Definition 

In this step, we define the patterns of collaboration within a field of knowledge by 

looking at a specific co-authorship network, within a certain period of time. As stated previously, 

a node will represent a researcher, a link will denote a co-authored paper and a weight of the link 

will capture the number of co-authored papers. This step will produce a weighted NxN adjacency 

matrix (author by author) where the wij values of each cell indicate the strength or frequency of 

the relation (co-authorship) between authors i and j. Figure 2.4 presents Plebanski’s network and 

all the researchers that have a path length of three or less from him; in this graph the gray squares 

represent the authors and the links between them represent their common publications. The other 

elements in this figure are explained in the next section. 
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2.4.2. Identifying the Collaboration Groups 

In this step all the collaboration groups (CGs) are demarcated. For the purpose of the 

study, a CG will consist of a PI and all its co-authors that have published a paper with her and at 

least another co-author of the PI; dyads of the PI (i.e. individual authors that have ONLY co-

authored papers with the PI and with no other scientist in the PI’s collaboration group) will be 

excluded from this group. We impose this restriction because ensembles of three or more nodes 

produce relations/groups that have higher quality, and are more dynamic and stable than dyads 

(Krackhardt, 1999). Moreover, it is rather intuitive to consider that a research group requires at 

least 3 participants.  

This procedure entails three stages. First, the key scientists, or Principal Investigators 

(PIs), within a co-authorship network are identified by using the concept of lambda set (LS) and 

calculating the lambda set level (LSL) for each author. We use LS because this algorithm 

calculates the maximum number of ties that need to be removed so a node becomes completely 

isolated from the network. This means that by dropping and counting the ties at the node level 

this procedure gives a measure of the importance of each researcher, the LSL20. This stage 

produces a list of researchers decreasing in order of importance; measure in the number of ties 

that need to be removed so a researcher becomes completely isolated. Moreover, all the direct 

collaborators that have published a paper with the PI and at least an additional coauthor are 

identified using the concept of clique; this is done because this algorithm allows us to identify all 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
20 The LSL LR for a researcher R is defined as maximum flow fRT between R and T where fRT is greater than the 
maximum flow fRU between R and any other researcher U. By the max-flow min-cut theorem, this is essentially a 
measure of the maximum number of edges that need to be cut (or maximum number papers removed from the 
network), such that R is no longer connected to some other researcher (Ford and Fulkerson, 1962). 
The max-flow min-cut theorem states that the size of the maximum flow, or the total amount of flow that can exist 
between source node s and target node t using the edges connecting s and t, is equal to the size of the minimum-cut 
between s and t. 
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the nodes that are adjacent to a node (in this case the PI) in groups of three or more nodes 

(Wasserman and Faust; 1994, pp. 254). This stage creates a set of cliques centered at the PI. 

Finally, for each PI we define its collaboration group as the union of all its cliques. 

This step will produce a set of collaboration groups (centered at the PIs of the network) 

that might share one or more scientist on the interface of these groups; the challenge here is then 

to assign these scientists to only one group and create a set of disjointed groups. Figure 2.4 

shows where Plebanski stands in this network, as well the other key neighbor scientists 

highlighted in color circles. In addition, this figure depicts (for illustration purposes) all the direct 

collaborators of Plebanski and Matos (squares and pentagons), and defines their respective 

collaboration groups (in broken lines). For this example we can see that “Obregon O” belong at 

least to two CGs, one centered at “Plebanski JF” and the other to “Matos T”. 
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Figure 2.4. Identifying the PIs of the network. This figure shows for the Plebanski Network the different 
PIs (Plebanski, Matos, Perez-Lorenzana, Zapeda, Garcia-Compean, Obregon, Mielke and Macias) of this 
ensemble. In addition, it shows the Collaboration groups (CGs) of Plebanski and Matos and the interface of 
these CGs (Obregon). 
 

2.4.3. Research Group Delimitation 

In this step we define the boundaries of the research groups (RG) by using a two-stage 

rule on the scientists that are at the interface of two or more CGs. This means that, for each of 

these scientists, we first compare the percentage of co-authors she has in each group and assign 

her to the group where this percentage is higher. If for some reason this percentage is the same 

between two or more CGs we use the institutional profile21 of the researcher and each CG. We 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
21 The institutional profile of an author (or CG) is defined as a vector that contains in each cell the number of papers 
an author has published in a specific institution divided by the total number of papers this person has published, this 
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assign this researcher to the group that has the highest similarity between institutional profiles. 

We iterate this step until all researchers are assigned to one and only one RG. Figure 2.5 shows 

the four researchers within Plebanski’s CG that are also part of other CGs and highlights all the 

CGs for O. Obregon, one of the scientist in the interface of Plebanski’s CG.  

 
Figure 2.5. Interface for J.F. Plebanski’s collaboration group. 
 

After taking these steps, the universe of analysis will be clustered in a set of RG, as well 

as various researchers that are not integrated in any research group, as defined by the method. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
means that if we have four institutions, A, B, C, D; and an author has published 5 papers in institution A, 3 in 
institution B, 2 in institution C and 0 in institution D her institutional profile is (0.5, 0.3, 0.2, 0.0). This concept can 
be extended to the collaboration groups by counting for each institution the number of paper each author of the CG 
has published in this institutions and dividing this number by the total number of papers the CG has. 
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Figure 2.6 shows how Plebanski’s network breaks down into research groups after application of 

the algorithm. 

 
Figure 2.6. Plebanski’s three degree co-authorship network. 
 

2.4.4. Knowledge footprint and group similarity 

In this step of the method we define the level of similarity (or distance) between groups 

by identifying what we will define as the Knowledge Footprint of each group and then 

establishing the overlap between footprints. For such purpose, we characterize the Knowledge 

Footprint (KFP) of an RG as the union of all backward citations found in the work published by 

each group, and define the level of similarity between groups by performing a co-citation 

analysis between the footprints of the groups. A group is said to be completely similar to another 

if the KFP of the former entirely overlaps the KFP of the latter, in which case we say that the 
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level of similarity is 100%. In contrast, a group is dissimilar to another group if the intersection 

of their citations is disjointed; in this case we say that the level of similarity is 0%.  

The level of similarity is used to identify benchmark groups within a research system. We 

will use a one, five, ten, twenty-five and fifty percent overlap in KFP as baseline levels for 

similarity between groups. Figure 2.7 shows the KFP for the Pelbanski network. In this case the 

yellow heptagon is Pelbanski’s RG, the blue ones are the other RGs, the KFP overlap (links 

between triangles) and the different levels of similarities (line weight). Furthermore, this figure 

reveals the degree of structural similarity between groups by varying the level of similarity, from 

1% to 25%. 

 
Figure 2.7. Knowledge Footprint Hypothetical Example. 
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2.4.5. Scientific output and performance 

Once we have identified the relevant research groups and their benchmark peers, we need 

to compare their performance.  To measure the scientific performance of each group, we use 

total scientific output (papers published) divided by the number of researchers in a group as a 

proxy for a normalized measure of scientific productivity, and citation counts by group size as a 

proxy for a normalized measure of scientific impact (formula below). 

€ 

Normalized total scientific output (citation count) =  
Publications (citations) per group∑

Reserchers per group∑  
(1) 

 

2.5. Demonstration of the Method 

In this section we first describe the data used to demonstrate the application of the 

method described in the previous section. Then we demonstrate how this method can be used to 

identify groups and assess their performance.  

2.5.1. Data 

To test the proposed method, we use a database from Thomson Scientific22 (2004), formerly 

known as the Institute for Scientific Information (ISI), owned by the Mexican Council for 

Science and Technology (CONACYT). This database contains all papers published between 

1980 and 2003 with at least one address in Mexico23. This database contains the following 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
22 Thomson Scientific became in 2008 the Scientific business unit Thomson Reuters after the merger of the 
Thomson Corporation with Reuters in that year. 
23 In the last stage of our analysis we realized that this database also contained publications with at least one address 
in New Mexico and none in Mexico. We think that Thomson Scientific might have created this database with the 
key word Mexico, including all the papers from Mexico and New Mexico. We preserved the papers with all the 
addresses because we did not want to mistakenly eliminate useful data, however our primary concern was to 
concentrate on Mexico. 
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information: article name, author(s), author(s), address(es), year of publication, journal, volume, 

pages, backward citations (i.e. references) and total number of citations received. 

To illustrate the application of the method, we selected all the papers published in 

Mexico in the areas of Physics, Applied Physics/Condensed Matter/Materials Science and Optics 

in the period of 1990-1999. We chose these areas because Physics and its related areas have been 

widely studied around the world (e.g. Braun et al., 1992; Nagpaul and Sharma, 1994; Miquel et 

al., 1995; Marx and Hoffmann, 2011). Moreover, Mexico has a long tradition of publishing in 

international peer reviewed journals indexed by ISI in these areas (Narvaez-Berthelemot et al., 

1992; Russell, 1995; Gómez et al., 1999;  Collazo-Reyes and Luna-Morales, 2002; Collazo-

Reyes et al., 2004; Russell et al., 2007). The period for the analysis considers the most recent 

publications available in the database, while allowing for a citation window of five years. (i.e. for 

the papers published in 1990 we restricted the citation count to the period 1990-1994, for 1991 

we chose a 1991-1995 window, and so on). For the analysis, we used five-year periods, starting 

with 1990-1994 and ending with 1995-1999. 

2.5.2. Main outcomes 

Institutional Benchmarks 

Table 2.5 shows a traditional assessment done at the level of the institution (University or 

Research Center). From this table, it can be seen that the Autonomous National University of 

Mexico (UNAM) is the leading institution in absolute terms (for publications and citations) and 

ranks in the top ten if both measures are normalized by the total number of researchers ascribed 

to this institution. 
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Table 2.5. Publications and Citations in Physics and related areas for Selected Institutions, 1995-1999 
 Articles  Citations  Researchers 
Institution* Total Per researcher  Total Per researcher  Total 
  (Rank) (Rank)   (Rank) (Rank)     
UNAM 1376 (1) 1.54 (8)  5892 (1) 6.61 (7)  891 
CINVESTAV 507 (2) 1.47 (9)  1957 (2) 5.70 (11)  343 
UAM I 307 (3) 1.64 (6)  1211 (3) 6.47 (8)  187 
BUAP 256 (4) 1.44 (10)  787 (6) 4.44 (15)  177 
CIO 210 (5) 1.89 (4)  1079 (4) 9.72 (2)  111 
INAOE 170 (6) 1.61 (7)  832 (5) 7.92 (3)  105 
IPN 164 (7) 1.15 (19)  364 (11) 2.56 (23)  142 
UASLP 136 (8) 1.43 (11)  660 (8) 6.94 (6)  95 
CICESE 123 (9) 1.21 (17)  719 (7) 7.11 (5)  101 
UniGuan 123 (9) 1.89 (3)  467 (9) 7.18 (4)  65 
UniSon 112 (10) 1.36 (13)  392 (10) 4.78 (13)  82 
ININ 90 (11) 1.05 (22)  282 (12) 3.31 (17)  85 
UAM A 61 (12) 1.35 (14)  137 (16) 3.04 (20)  45 
UAEdoMor 60 (13) 1.42 (12)  243 (14) 5.78 (10)  42 
UniGDL 50 (14) 2.08 (2)  113 (18) 4.70 (14)  24 
UAZ 42 (15) 1.82 (5)  138 (15) 6 (9)  23 
UAQ 34 (16) 0.91 (25)  120 (17) 3.24 (19)  37 
UniMich 31 (17) 0.96 (23)  50 (22) 1.56 (24)  32 
IMP 26 (18) 0.96 (24)  81 (19) 3 (21)  27 
ITESM 26 (18) 1.3 (15)  66 (20) 3.3 (18)  20 
CIMAT 23 (19) 2.3 (1)  267 (13) 26.7 (1)  10 
UDLAP 17 (20) 1.13 (20)  18 (24) 1.2 (25)  15 
UAEdoMex 17 (20) 1.21 (18)  36 (23) 2.57 (22)  14 
UANL 15 (21) 1.07 (21)  51 (21) 3.64 (16)  14 
UABC 11 (22) 1.22 (16)   50 (22) 5.55 (12)   9 
* For a full description of the institutional acronyms see table A1 in the appendix.  

 

In Table 2.6, six institutions have been broken down according to administrative 

boundaries24. These depend on the nature of the institution and may reflect, for example, a 

research center focused just on research; an institute or department training graduate students and 

doing research; or a school primarily training undergrad students and doing little research. This 

Table reflects the typical level of detail allowed by existing methods. It already provides a more 

complete perspective than a high level institutional characterization. For example, the Physics 

Institute in UNAM (INST FIS) has a stellar performance (in total output in the area of physics), 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
24 Only UNAM, CINVESTAV, UAM-I, BUAP, IPN and USLAP were broken down by department because ISI did 
not record the department for the remaining ones. 
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stronger than the Faculty of Science (FAC CIENCIAS) and much different from the Applied 

Math and Systems Research Institute (IIMAS). By contrast, in BUAP (fourth place at the 

institutional level) the Physics Institute (IFBUAP) performs above eight departments of 

CINVESTAV (second place at the institutional level). 

However, if we would now look at the patterns of co-authorship and collaboration and 

identify research groups based on these patterns, a different and much more complete perspective 

emerges. Table 2.7 shows the number of groups25 identified along two dimensions: the number 

of institutions26 that are represented in the group (single vs. multiple institutions) and whether 

they belong to the top 25 Mexican institutions. The table shows that the method can identify 297 

research groups. However, only 191 are relevant units of analysis (i.e. the group is conformed by 

at least three researchers from one of the top 25 Mexican institutions). Table 2.8 provides the 

summary statistics for these groups and table 2.9 gives the summary statistics for 19 of the top 25 

Mexican institutions; these numbers differ because six institutions did not have sufficient critical 

mass to have groups with three researchers at the same institution. 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
25 For this analysis a group should have at least three researchers and published two or more papers within a certain 
period. 
26 Single institution groups (with three or more researchers in a particular institution) are used to properly assess the 
performance of this institution. Multiple institutions appear as a baseline application of the method because the 
initial criterion is only co-authorship in the context of a clique. Only when defining the boundary of the groups 
taking in consideration the institution can we get to groups that are meaningful from the point of view of 
benchmarking. 
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Table 2.6. Publications and Citations in Physics and related areas for Selected Institutions, 1995-1999 
 Articles  Citations  Researchers 

 Total Per 
researcher 

 Total Per 
researcher 

 Total 

Institution* (Rank) (Rank)  (Rank) (Rank)   

UNAM        
UNAM - INST FIS 566 (1) 1.60 (16)  2878 (1) 8.17 (8)  352 
UNAM - INST INVEST MAT 284 (3) 1.37 (26)  1104 (3) 5.35 (24)  206 
UNAM - INST CIENCIAS NUCL 231 (4) 1.90 (5)  1039 (5) 8.58 (7)  121 
UNAM - FAC CIENCIAS 84 (13) 1.4 (24)  172 (21) 2.86 (45)  60 
UNAM - CTR INVEST ENERGIA 61 (17) 1.24 (33)  226 (19) 4.61 (31)  49 
UNAM - CTR INSTRUMENTOS 52 (19) 1.44 (21)  129 (26) 3.58 (36)  36 
UNAM - CTR CIENCIA MAT 
CONDENSADA 43 (21) 1.48 (19)  102 (33) 3.51 (37)  29 

UNAM - INST QUIM 32 (25) 2.28 (3)  111 (29) 7.92 (9)  14 
UNAM - FAC QUIM 28 (28) 1.12 (44)  105 (32) 4.2 (33)  25 
UNAM - IIMAS 23 (31) 1.53 (18)  63 (40) 4.2 (33)  15 
UNAM - INST MATEMAT 22 (32) 1.04 (48)  107 (31) 5.09 (27)  21 
UNAM - INST ASTRON 17 (34) 1.41 (23)  134 (25) 11.1 (2)  12 
UNAM - INST GEOFIS 13 (38) 1.3 (31)  14 (51) 1.4 (55)  10 
UNAM - CTR INT CIENCIAS 13 (38) 1.08 (45)  108 (30) 9 (6)  12 
UNAM - CTR CIENCIAS FIS 7 (42) 0.77 (57)  66 (39) 7.33 (11)  9 
CINVESTAV        
CINVESTAV - DEPT FIS 357 (2) 1.73 (11)  1410 (2) 6.84 (16)  206 
CINVESTAV - DEPT FIS APLICADA 60 (18) 1.39 (25)  298 (13) 6.93 (15)  43 
CINVESTAV - DEPT INGN ELECT 40 (23) 1.17 (39)  95 (35) 2.79 (47)  34 
CINVESTAV - DEPT QUIM 11 (39) 0.91 (53)  36 (45) 3 (44)  12 
CINVESTAV - DEPT MATEMAT 8 (41) 1.14 (42)  33 (47) 4.71 (29)  7 
UAM I        
UAM I - DEPT FIS 225 (5) 1.8 (9)  875 (6) 7 (14)  125 
UAM I - DEPT QUIM 65 (16) 1.32 (30)  291 (14) 5.93 (19)  49 
UAM I - DEPT MATEMAT 8 (41) 1.33 (29)  31 (48) 5.16 (26)  6 
UAM I - DEPT IPH 8 (41) 1 (49)  36 (45) 4.5 (32)  8 
BUAP        
BUAP - IF BUAP 167 (8) 1.65 (13)  547 (9) 5.41 (23)  101 
BUAP - FCFM 68 (15) 1.23 (34)  183 (20) 3.32 (38)  55 
BUAP - IC BUAP - CIDS 29 (27) 1.45 (20)  84 (36) 4.2 (33)  20 
IPN        
IPN - ESFM 113 (10) 1.28 (32)  264 (17) 3 (44)  88 
IPN - ESIQIE 26 (30) 1.18 (38)  50 (42) 2.27 (51)  22 
IPN - ESIME 16 (35) 1.33 (29)  34 (46) 2.83 (46)  12 
IPN - CICATA 9 (40) 0.9 (54)  18 (49) 1.8 (52)  10 
UASLP        
UASLP - INST FIS 83 (14) 1.66 (12)  476 (10) 9.52 (5)  50 
UASLP - IICO 42 (22) 1.61 (15)  154 (22) 5.92 (20)  26 
UASLP - INST MET 9 (40) 0.9 (54)  10 (52) 1 (57)  10 
UASLP - FAC CIENCIAS 8 (41) 1.14 (42)  43 (43) 6.14 (17)  7 
* For a full description of the departmental acronyms see table A1 in appendix A. 
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Table 2.7. Total Number of Groups by Number and Type of Institutions 

Number of Groups All 
Institutions* 

Top 25 Mexican 
Institutions 

Multiple institutions** 297 291 
Single institution*** 231 191 
* Includes the groups of all institutions, Mexican and non-Mexican, top and non-top 
** Groups could belong to more than one institution 
*** Groups with at least three researchers that belong to the same institution 

 

Table 2.8. Summary Statistics for Groups at the Top 25 Mexican Institutions with a Single Institution 
Total Number of 

(per RG)  Normalized by 
Researcher N=291 

Researchers Articles Citations  Articles Citations 
Max 26.0 81.0 380.0  10.1 62.0 
Min 3.0 2.0 0.0  0.7 0.0 
Average 4.8 12.9 56.5  2.6 11.1 
STDEV 2.9 11.7 69.9  1.7 11.8 

 

Table 2.9. Institutional Summary Statistics for Groups with a Single Institution 
  Total (per Institution)  Average (per RG) 
  RGs* Res** Art Cit  Res** Art Cit Art/Res Cit/Res 
BUAP 14 70 166 596  5 11.9 42.6 2.2 8.4 
CICESE 9 31 55 294  3.4 6.1 32.7 1.6 7.8 
CIMAT 1 4 20 248  4 20 248 5 62 
CINVESTAV 28 165 449 1748  5.9 16 62.4 2.7 11.6 
CIO 9 46 128 807  5.1 14.2 89.7 2.7 15.1 
INAOE 6 27 74 419  4.5 12.3 69.8 2.7 14.8 
ININ 4 16 28 36  4 7 9 1.9 2.4 
IPN 10 35 65 152  3.5 6.5 15.2 1.7 4.2 
UAM A 2 6 18 63  3 9 31.5 3 10.5 
UAM I 10 48 150 642  4.8 15 64.2 3.4 13.6 
UNAM 74 356 991 4644  4.8 13.4 62.8 2.6 12 
UANL 1 3 3 6  3 3 6 1 2 
UAQ 3 10 15 55  3.3 5 18.3 1.4 5.1 
UASLP 9 43 84 430  4.8 9.3 47.8 1.8 9.8 
UAZ 1 6 18 58  6 18 58 3 9.7 
UniGDL 2 6 24 54  3 12 27 4 9 
UniGuan 3 15 94 348  5 31.3 116 5.2 18.5 
UniMich 1 3 6 2  3 6 2 2 0.7 
UniSon 4 18 67 181  4.5 16.8 45.3 3.9 10.7 
*!Research!Groups!from!top!25!Mexican!institutions!with!only!one!institution!represented!in!each!group.!
**!Res!=!Researchers!

 

Figure 2.8 shows the distribution of the share of research groups (identified by the 

method) in an institution by percentile. The figure is built by ranking the groups based on the 
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number of articles normalized by group size, and dividing this rank into percentiles. The 

assumption in this figure is that if the groups at each institution were drawn from a random 

process, each institution would have 10% of their groups on the 10th percentile, another 10% on 

the 20th particle, and so on. From this picture it can be seen that the system is quite 

heterogeneous within institutions, e.g. some institutions (like UNAM, CINVESTAV and UAM-

I) have groups in almost all percentiles while other have only in a few brackets (like UniSon, 

INAOE and CICESE). In addition, there is some level of skewness towards a specific percentile. 

For example, BUAP does not have any RG at the top percentile and has two times more groups 

on the 50th bracket, whereas more that 40% of the groups at CICESE are at the lowest percentile. 

 
Figure 2.8. Distribution of Research Groups within an Institution by Percentile (based on 
publications per group adjusted by size).  
 



!

 45!

Figures 2.9a and 2.9b show the heterogeneity within and across institutions by charting 

the relative strength (based on publications per group adjusted by size) each major institution has 

against the 10% base. The rationale is the same as in the previous graph. One would expect that 

all institutions will have 10% of their groups in the top 10 percentile, another 10% in the 20th 

bracket and so on; or in other words the shape of the decagon would be symmetric. For this 

picture it can be seen that the top three publishing institutions – UNAM, CINVESTAV and 

UAM-I  (figure 2.9a) – have an asymmetric performance, e.g. UAM-I has 30% of its groups in 

the top percentile and none in the second cohort. In addition, UNAM performs better than 

CINVESTAV at the upper percentiles (10th and 20th) but trails this institution in the next three 

percentiles. Furthermore, this asymmetry in performance is particularly prevailing in BUAP, 

CIO and UASLP (figure 2.b). 

Figures 2.9a. and 2.9b. Institutional Strength (based on publications per group adjusted by size) for 
Three Leading Institutions.  
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Figure 2.10 shows that this heterogeneity is also present in the system if the groups are 

ranked based on citations per group adjusted by size. 

Figure 2.10. Institutional Strength (based on citations per group adjusted by size) for Three Leading 
Institutions. 
 

As suggested in this analysis, identifying research groups should allow a much better 

understanding of the dynamics of scientific productivity within and across institutions and 

departments. Yet, this process also suggests that these groups will have very different 

characteristics with regard to the nature of their research. Therefore, it may not be reasonable to 

compare groups across the board, but rather complement the ideas described above with a 

method that would allow an identification of other benchmark groups with a comparable 

research profile. As described before, the proposed method allows us to compare a given group 

with others that produce comparable research by looking at the overlap of their KFP (or co-

citations between the papers they publish) and varying their level of similarity between KFPs. 
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Individual Group Benchmarks 

Tables 2.8 and 2.9 provide an example for research groups RG_037-UniSon and 

RG_049-CINVESTAV of how individual group benchmarks can be done. Overall, the first 

group has an average performance (in terms of publications adjusted by size) and the second  has 

an average-to-low performance. But if we use the KFP to measure the distance between groups 

and focus only on their relevant peers, a somewhat different picture emerges. Group RG_037-

UniSon improves its relative standing going from the 30th bracket to the 1st place at the 25% 

level of similarity (table 2.10). This happens because there are only four peer groups that share 

25% backward citations and, within those, RG_037 has the top output performance. In contrast, 

group RG_049-CINVESTAV still has an average-to-low performance at the same level of 

similarity, ranking in 5th place, out of six peers (table 2.11).  

Table 2.10. Relative Ranking Based on Group’s Knowledge Footprint Over 5 Years, RG_037 
     Rank within cohort 
    

Level of 
Similarity  

Articles per 
Researcher 

Overall 
percentile 5% 10% 15% 25% 

 RG_000-UNAM 10%  5.4 10th 1 1   
 RG_084-BUAP 21%  4.3 20th 2 2 1  
 RG_021-UniSon 10%  3.8 20th 3 3   
=> RG_037-UniSon* BASE  3.7 30th 4 4 2 1 
 RG_200-UAM-I 9%  2.3 40th 5    
 RG_000-CINVESTAV 10%  2.1 50th 6 5   

 RG_037-U. Auto 
Madrid** 100%  2  7 6 3 2 

 RG_021-U. Sao Paulo** 10%  2  8 7   

 RG_000-Slovak Acad 
Sci** 10%  1.9  9 8   

 RG_000-IPN 10%  1.8 70th 10 9   
 RG_037-UNAM 100%  1.8 70th 11 10 4 3 
 RG_084-U. Connecticut** 21%  1.3  12 11 5  
 RG_040-UNAM 6%  1 90th 13    
 RG_037-Hung. Acad Sci** 100%  0.7  14 12 6 4 
*This group has 31 peers at the 1% level of similarity, 13 at the 5%, 11 at the 10%, five at 15% and three at 25%. 
**These groups don’t appear in the overall ranking for articles and citations, 4th and 7th column, because they are based in a foreign 
institution. 
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Table 2.11. Relative Ranking Based on Group’s Knowledge Footprint Over 5 Years, RG_049 
   Rank within cohort 
  

Level of 
Similarity  

Articles Per 
Researcher 

Overall 
percentile 5% 10% 15% 25% 

 RG_004-UniSon 34%  6.3 010p 1 1 1 1 
 RG_000-UNAM 5%  5.4 010p 2    
 RG_007-CINVESTAV 17%  3.6 030p 3 2 2  
 RG_004-CINVESTAV 34%  3.1 030p 4 3 3 2 
 RG_004-BUAP 34%  2.7 040p 5 4 4 3 
 RG_004-UAQ 34%  2.3 050p 6 5 5 4 
 RG_000-CINVESTAV 5%  2.1 050p 7    
  RG_078-CINVESTAV 15%  2 060p 8 6 6  
=> RG_049-CINVESTAV 100%  1.9 070p 9 7 7 5 
 RG_000-Slovak A. Sci** 5%  1.9  10    
 RG_000-IPN 5%  1.8 070p 11    
 RG_004-CICESE 34%  0.7 100p 12 8 8 6 
*This group has 36 peers at the 1% level of similarity, 11 at the 5%, seven at the 10% and 15% and five at 25%. 
**These groups don’t appear in the overall ranking for articles and citations, 4th and 7th column, because they are based in a foreign 
institution. 

 

Number of groups by level of similarity 

In addition, the KFP can be used to assess how the number of relevant peers changes by 

varying the level of similarity between groups. Figure 2.11 gives the distribution of the number 

of peers by level of similarity; the x-axis has the different groups (identified with the method) 

and the y-axis has their respective number of peer groups at 1%, 5%, 10%, 25% and 50% level 

of similarity. From this chart it can be seen that the number of peers drops significantly from 9.5 

peers on average (at 1% level of similarity) to 1.2 peers (at the 50% level of similarity). These 

results suggest that groups in these fields are in niche areas because the overlap of their 

knowledge footprint is low at high levels of similarity.   
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Figure 2.11. Distribution of Number of Peers by level of Similarity. This figure shows how the number 
of relevant peers changes by varying the level of similarity in the KFP. The x-axis has the different groups 
(identified with the method), the y-axis has their respective number of peer groups at different level of 
similarity, and each line represent the distribution of relevant groups. For example, the blue line (which is 
the baseline for ordering the groups in descending order) shows the distribution of these groups at 1% level 
of similarity, whereas the aqua line presents this distribution at the 50% level. In addition, this figure 
provides in the upper right hand the maximum and average number of peers at different levels of similarity. 
These results suggest that groups in physics (and related fields) in Mexico are in niche areas because the 
overlap of their knowledge footprint is low at high levels of similarity 
 

 The example above shows the power of combining a method that allows an identification 

of research group boundaries with another that characterizes distances in their knowledge 

footprint. The potential is for a very sharp and clear identification and benchmark of the relevant 

pockets of knowledge generation and impact in an institution or region, allowing a more precise 

evaluation and reward process for university administrators, program managers or policy makers. 
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2.5.3. Group Formation and Evolution 

In addition to identifying and characterizing groups for a fixed period of time, the 

proposed method can also be used to understand how groups are formed, how they evolve, how 

their composition changes over time and the influence past performance has on current rankings. 

In this section we offer a brief description of how this method can be used to chart the evolution 

of groups over time. 

First, we show how groups evolve and how their ranking changes over time. Table 2.12 

shows the composition of four RGs in terms of authors (lines in the table) and how they evolve 

1990-1994 (period 0) to 1995-1999 (period 5). At period 0 these groups stand at the top 10th 

percentile (with nine additional groups). Yet, over the course of five periods (each with a group 

id and their percentile) we find that some remained unchanged in terms of performance (RG 1 

from Period I to Period 4), others split (RG 23 in period I), split and join (RG 36 in period I and 

RG 27 in period 3), or drop performance (RG 28 in period 2). In addition, we can assess the 

composition of teams in terms of group members and how this composition changes over time. 

For example, group 23 at period 0 (third group in the second column) has four members (A07 to 

A10); in period 1 this group breaks into two teams (RG9 and RG28) and each team adds one 

member (authors B01 and B02); in period 2, RG28 evolves into group 16 by adding authors A08 

and B01, and researcher A07 creates a new team (RG12) with C01 and C02; by period 5, RG23 

(from period 0) has evolved into two teams, RG39 and RG17, and there are only two remaining 

scientists from the original group, A08 and A10. 
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Table 2.12. Evolution of Research Groups 
 Period 0  Period 1  Period 2  Period 3  Period 4  Period 5 
 (90 – 94)  (91 – 95)  (92 – 96)  (93 – 97)  (94 – 98)  (95 – 99) 
Author RG*  RG Percentile  RG Percentile  RG Percentile  RG Percentile  RG Percentile 
A01 1  1 10  2 10  2 10  2 10    
A02 1  1 10  2 10  2 10  2 10    
A03 1  1 10  2 10  2 10  2 10    
A04 21  23 10  33 10  50 10       
A05 21  23 10  33 10  50 10  171 10    
A06 21  23 10  33 10  50 10  171 10  561 NA 
E01            171 10  561 NA 
C01      12 20  16 10  23 10  39 10 
C02      12 20  16 10  23 10    
A07 23  9 20  12 20  16 10  23 10  39 10 
A08 23  9 20  16 40  18 40  29 40  39 10 
B01   9 20  16 40          
B02   28 60  16 40  18 40       
A09 23  28 60  16 40          
A10 23  28 60  16 40  18 40  29 40  17 70 
D01         18 40  29 40  17 70 
F01               17 70 
B03   27 10  37 10  27 20  20 20  13 10 
A11 36  27 10  37 10  27 20  20 20  13 10 
A12 36  27 10  37 10  27 20  318 NA  525 NA 
A13 36  65 10  41 10  27 20  20 20  13 10 
B04   65 10  41 10          
B05   65 10  41 10          
A14 36  179 90  216 100  27 20  20 20    
B06   179 90  216 100  27 20  20 20    
B07   179 90  216 100  27 20  20 20    
B08   179 90  216 100  27 20       
*Six out of 13 groups were identified at the top percentile in the period 1990-1994. 
NA = these groups were not taken into account because they only published one paper or had fewer than three researchers in the period. 

 

In contrast to this, we can reverse this procedure to assess the way groups form over time 

and evaluate where the “pedigree” of a creating group came from. Table 2.13 shows how three 

groups (out of 31 at the 10th percentile) are formed between 1990-1994 (period -5) and 1995-

1999 (period 0). For example, RG13 (the second group in the second last column of table 13) in 

period 0 was created with members from groups 12, 36, 58 and 125 from period -5. In addition, 

the data suggest that the current standing of RG13 (at period -0) emerged from the strength of 

groups 36 and 12 from period -5. 
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Table 2.13. Formation of Research Groups 
Period -5  Period -4  Period -3  Period -2  Period -1  Period 0  
(90 – 94)  (92 – 96)  (94 – 98)  (90 – 94)  (92 – 96)  94 - 98  

RG Percentile  RG Percentile  RG Percentile  RG Percentile  RG Percentile  RG* Authors 
               9 A01 
         12 10  17 10  9 A02 

11 30  14 20  11 20  12 10  17 10  9 A03 
            32 10  9 A04 

333 NA  396 NA  435 NA  201 NA  32 10  9 A05 
         305 NA  32 10  9 A06 
            129 NA  9 A07 
               13 A08 
            20 20  13 A09 

12 20  11 20  14 20  22 20  20 20  13 A10 
         27 20  20 20  13 A11 

36 10  27 10  37 10  27 20  20 20  13 A12 
      41 10  27 20  20 20  13 A13 
   65 10  41 10  27 20  20 20  13 A14 

36 10  65 10  41 10  27 20  20 20  13 A15 
125 30  65 10  41 10  27 20  20 20  13 A16 

      81 40  27 20  20 20  13 A17 
12 20  54 30  23 40  28 30  20 20  13 A18 
58 50  51 40  81 40  41 50  20 20  13 A19 

   309 20  502 20  521 10  20 20  13 A20 
12 20  11 20  14 20  22 20  21 10  13 A21 

      502 20  521 10  108 20  13 A22 
            21 10  15 A23 
   11 20  14 20  22 20  21 10  15 A24 

12 20  11 20  14 20  22 20  21 10  15 A25 
12 20  23 10  33 10  22 20  21 10  15 A26 

*Three out of 31 groups were identified at the top percentile in the period 1995-1999. 
NA = these groups were not taken into account because they only published one paper or had fewer than three researchers in the period. 

 

2.6. Discussion and Policy Implications 

In the last thirty years the realm of science and technology has evolved dramatically. 

These changes have fostered an evaluation culture (and industry), enhanced traditional methods 

(like peer review, Guston, 2003) and created new ones, including benchmarking between 

countries (May, 1997; Adams, 1998; King, 2004; Veloso et al., 2005) or socioeconomic 

assessments (van Raan, 2000). While useful, these evaluation methods have an important 

common limitation: the boundaries of the focal unit are typically artificial and rigid, failing to 

notice unique and self organizing characteristics of the research endeavor. 
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To address this limitation, this paper proposes an evaluation method that takes into 

account the endogenous, or self-organizing, characteristics of research groups. It defines research 

groups based on the strength and frequency of the collaboration patterns (within a field of 

knowledge) and ranks them using the level of similarity of their knowledge footprint (i.e. 

common citations). In addition, this method is tested with a database from the fields of Physics 

and Applied Physics/Condensed Matter/Materials Science and Optics in Mexico containing all 

the papers published between 1995 and 1999 (as reported by ISI). A detailed full and relative 

peer benchmark is performed for both areas. 

The method developed in this paper and applied to the context of Mexico produces three 

main results. First, as expected, the strength and frequency of the collaboration patterns allows us 

to single out cohesive groups, i.e. this method identifies the key research groups (or collective 

actors) in a field of knowledge, regardless of the institutional or location context of the members 

(researchers). In addition, this new technique allows scholars and policy makers to take into 

account the (expected) heterogeneity within institutions in their assessments. This is a departure 

from traditional methods because a potential evaluator would not normally be able to assess the 

internal cohesiveness of groups, or self-organizing mechanisms.  

Second, the knowledge footprint (KFP) and the benchmark at different levels of 

similarity in KFP allows a departure from the established evaluation literature. This step allows 

potential evaluators to identify similar research groups, assess these groups and produce more 

meaningful comparisons and rankings (e.g. see tables 8 and 9). This solution contrasts with the 

more traditional approach, where the evaluator typically uses broad and artificial similarities, 

such as comparing mechanical engineering departments across universities, assuming that they 

are more or less the same. In addition, this method has an important feature: it can easily be 
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extended to other types of focal units, including, institutions, departments, networks or regions, 

and even individuals, with minor modifications.  

Third, the research done by the different groups in the areas of Physics, Applied 

Physics/Condensed Matter/Materials Science and Optics in Mexico is (almost) non-redundant. In 

fact, the KFP overlap of these groups is relatively small, which means that each RG is (virtually) 

focused on one area of the research space. For the casual observer, this could be seen as 

something good if resources are used efficiently to support only one RG in each area and there is 

no duplicity in teams. However, this could create a vicious cycle by creating a system where 

there is no competition and there are no emergent ideas. In order to overcome this, it would be 

healthy if international visiting committees assessed the performance of the RG and their 

performance compared with groups in similar economies, like Brazil. 

From the preliminary results one can conclude that this method can support policy 

makers and scientist to better identify the frontier of research groups and to find suitable and 

relevant peers for benchmarking. In addition, this procedure allows scholars, as well as policy 

makers, to better understand the self-organizing mechanisms of research groups and assess how 

they evolve over time. We believe this whole process will increase our knowledge of the 

research endeavor and, combined with other methods (like peer review), will produce better 

assessments. In addition, this method helps to close the gap between performance analysis and 

the mapping of science in bibliometric analysis by giving a different perspective to Noyons, 

Moed, and Luwel (1999). It also creates a link between the areas of research evaluation and 

network analysis.  
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The development of this new method also generates new questions that need to be 

addressed in subsequent work. One of them is the effect of weakening the clique assumption, 

using other measures of group cohesiveness (e.g. n-cliques, k-plexes, etc.) to define collaborative 

groups. In addition, further analysis is also needed to test the robustness of this method, by 

incorporating other fields of knowledge or using data from other countries or regions.  

Finally, this method could further our understanding of the determinants of research 

group productivity (Gonzalez-Brambila and Veloso, 2007) in a number of ways. One possibility 

is to study how the characteristics of the naturally emerging groups are tied to their productivity. 

Another possibility would be to extend the approach to other types of research output data 

amenable to equivalent analysis, in particular patents. 
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Chapter 3. Birth of prominent scientists 

3.1. Introduction 

Today’s emphasis on economic activity based on knowledge and innovation is leading 

industrialized as well as developing nations to place an important emphasis on policies to 

advance their science, technology and innovation (ST&I) systems and reap their benefits 

(OECD, 1999, 2001, 2004a, 2010 ). At the core of these efforts are policies to expand the 

scientific base and to generate, attract and retain highly talented scholars (Cervantes, 2004). 

Nations around the world have been pursuing a variety of strategies to this effect (Laudel, 2005). 

The most common approach is an effort to grow the size of their research system, aiming to build 

a critical mass of researchers across a variety of areas. For example, the Mexican Government 

has enlarged its scientific system by funding the training of scientists (with national and 

international fellowships) and developing repatriation and post-doctoral programs for researchers 

from Mexico27. Some nations have placed an emphasis on attracting and retaining some of the 

world's most accomplished and promising minds (Urquhart, 2000; Australian Research Council, 

2001; Pickrell, 2001). A good example of such strategy is Canada’s Research Chairs Program28. 

The underlying assumption is that these key scientists can play a vital role in the development of 

a research system because they will make groundbreaking scientific discoveries, as well as create 

and develop internationally renowned research centers, improve universities’ capacity for 

generating and applying new knowledge, train the next generation of highly qualified personnel 

and also enable the establishment of successful high-technology startups. Consequently, there is 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
27 See programs for graduate studies and support for scientific research in http://www.conacyt.gob.mx/ 
28 http://www.chairs-chaires.gc.ca/ 
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growing interest within research administrators, policy makers and scholars in the role scientific 

stars have on the development of an ST&I system. 

This has motivated an important stream of research focused on quantifying the impact 

leading researchers have on an established system, their peers and the institutions they work for. 

According to Zuker and Darby (1998) 0.8% of the scientists in the GenBank in the 1990s were 

22 times more productive than the average scientist, publishing 17.3% more papers. In addition, 

Azoulay, Zivin and Wang (2007) as well as Oettl (2009) have shown the impact that “superstars” 

have on their peers by calculating the drop in productivity when a leading scientist dies. In the 

first study, Azoulay and his colleagues show that coauthors of an ‘extinguished’ star “suffer a 

lasting 8 to 18% decline in their quality-adjusted publication output;” whereas Oettl documents a 

higher loss in productivity, between 19 to 35%. In a related study, Goodall (2009) shows that 

accomplished scholars appointed as presidents (vice chancellors) of a university have a positive 

impact on the research quality of their institutions. Furthermore, Zucker and Darby (2010) find 

that stars themselves, rather than the disembodied knowledge associated to them, are crucial for 

the entry of a broad range of high-tech startups. 

While stars may be important, collaboration networks, or teams, is another dimension 

considered to be of paramount importance in the development of a research system. A variety of 

authors have looked at how teams condition scientific production. One well-established 

dimension is that research collaboration has been on the rise in the last decades29 (Beaver, 2001; 

Wagner and Leydesdorff, 2005). This suggests that the teamwork research model rather than an 

individual-based approach is now the norm in most scientific endeavors (Adams et al., 2005; 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
29 This increase has been uneven even across fields (Newman, 2004; Bukvova, 2010). 
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Wuchty, Jones and Uzzi, 2007). The idea is that a collaborative approach in the production of 

knowledge enables scientists to access complementary expertise (Katz and Martin, 1997; Melin, 

2000; Beaver, 2001), valuable equipment and resources (Melin, 2000; Beaver, 2001), while 

exposing them to new ideas and encouraging cross-fertilization across fields (Beaver and Rosen, 

1978, 1979a,b; Katz and Martin, 1997; Melin, 2000). This change also appears to have had a 

positive effect on publishing productivity (Melin, 2000; Lee and Bozeman, 2005), quality 

(Persson et al., 2004; Rigby and Edler, 2005; Wuchty et al., 2007; He et al., 2009), as well as 

visibility and prestige (Crane, 1972; Beaver and Rosen, 1978, 1979a,b; Katz and Martin, 1997; 

Beaver, 2001).  

Some authors have also considered the extent to which ensembles of scientists provide a 

nurturing environment where researchers can flourish, in particular younger ones. For example, 

Bozeman and Corley (2004) emphasize the importance of collaboration on the development of 

the scientific and technical human capital30 of researchers, especially when a senior scientist 

works with a junior one and the former acts as her mentor. According to these authors, under the 

right circumstances, a graduate student or post-doctoral researcher can gain, “not only enhanced 

S&T knowledge, but craft skills, know-how, the ability to structure and plan research and, of 

course, increase contacts with other scientists, industry, and funding agents.” Oettl (2009) 

complements this perspective, noting that helpful eminent scientists have a greater impact 

(between 58% to 84% more) on the productivity of their co-authors than just highly productive 

researchers. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
30 Bozeman et al (2001) defines “Scientific and technical human capital” (S&T human capital) as “the sum of 
researchers’ professional network ties and their technical skills and resources.” 
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Research focused on the effects of sponsorships in academia has assessed the extent to 

which science follows Merton’s norms (1974)31 by trying to disentangle the impact achievement 

and ascription (like race, gender, institutional affiliation or recognition of close collaborators) 

have on scientific performance, allocation of resources and academic career success. This 

exploration has generated some evidence that location (e.g. institutional affiliation or doctoral 

origin) influences the reward structure of science. For example, Crane (1965) showed that the 

caliber of the institution has a positive impact on the productivity and prestige of its scientists, as 

well as the rate of the number of grants (Cameron, 1981; Long, 1978). Allison and Long (1990) 

suggest that changes in productivity can be ascribed to changes in departments and the prestige 

of these entities, while Reskin (1977), as well as Long and McGinnis (1981), establish that 

organizational context (like industry or academia) can influence a scientist’s level of 

performance. In addition, work focused on individuals has shown that the sponsor’s talent also 

matters. For example, Long’s (1978) study of academic biochemists found that sponsors' 

citations affected their students' number of publications and citations, as well as their prestige; 

and Reskin’s (1979) work on doctoral chemists showed that the advisor’s productivity influenced 

the pre-doctoral productivity of its advisees. Furthermore, advisees have a propensity to follow 

the steps of their advisors by replicating their success and skills. For example, Zuckerman (1967) 

showed that Nobel Prize winners tend to positively influence the chances of their students and 

collaborators in also becoming Nobel Laureates; and, in a recent study, Malmgren et al. (2010) 

found that protégés that were trained by high fecundity32 mentors also score high on this 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
31 Merton (1973) argues that science should be governed by the norms of universalism, communism, 
disinterestedness, and organized skepticism; implying that a successful academic careers should be based on talent 
and not be determined by ascriptive characteristics. 
32 Malmgren et al. (2010) define mentorship fecundity as the number of protégés a mentor trains. 
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indicator. Finally, there is a set of studies that have assessed the extent to which science is 

stratified by race and gender (e.g. see Long and Fox, 1995; Levin and Stephan, 1998; Fox, 2001). 

Despite the advances in our understanding of how the research context impacts the 

development of scientists, old and new, much remains to be explored. First, work focused on 

quantifying the influence of mentors and eminent scientists on others has not considered how 

they interact with other scholars in the context of research teams, and their impact on the 

evolution of the system, especially in terms of others at the beginning of their career. Second, 

previous research is typically composed of case studies that recount the mentoring experience, 

cross sectional studies or longitudinal analysis with usually short time frames as well as small 

and often random data sets (e.g. Long et al., 1979; Reskin, 1979; Green and Bauer, 1995; 

Williamson and Cable, 2003; Judge et al., 2004; Paglis et al., 2006). Third, with the exception of 

Malmgren et al. (2010), research on mentorship has not looked at the extent to which protégés 

mimic their mentors’ steps, performance and reputation.  

Furthermore, because the Science and Technology (S&T) community has different 

characteristics around the world (Nelson, 1993), a better understanding of the factors that 

condition research output, impact and success in science requires an analysis of a diverse set of 

countries. S&T systems have particular disparities between developing and developed nations. In 

developing nations there are fewer resources and less infrastructure dedicated to research and 

development (R&D). Moreover, the government funds most R&D and human, as well as 

financial, resources are centralized in a few institutions33. Thus, studying emerging economies 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
33 E.g. in Mexico in 2002 68% of the Gross Domestic Expenditure on Research and Development (GERD) was 
financed by the public sector (CONACYT, 2004, p16). In addition, in 2003 the National Autonomous University of 
Mexico (UNAM) had 27% of all the researchers belonging to the National Research System (SNI, 
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provides a better understanding of the factors that influence the performance, impact and overall 

contribution of scientists in this environment (Nelson, 1993). In addition, studying this type of 

countries is relevant because these are actively developing and implementing policies to improve 

their S&T systems. Therefore, a better understanding of the factors that foster success at 

individual and aggregated levels could help leap forward their system. This is particularly 

pertinent because, with a few exceptions (Veloso, et al. (2006); Gonzalez-Brambila and Veloso 

(2007). Wagner (2008); Ordonez-Matamoros et al. (2009); Horta, et al. (2010), chapters 2 and 3), 

research in this area has mostly focused on the developed world. 

This research tries to bridge existing gaps by combining the different research streams 

described above, with two complementary dimensions. One is to look at the role that scientific 

stars (i.e. the most accomplished and salient researchers) have in a science system. In particular 

we assess how relevant these eminent scientists are for the development of a system. This means 

understanding how much they contribute to the output and impact of the system, as well as how 

influential they are in breeding the next generation of successful scientists, i.e. how successfully 

their protégés mimic their stellar performance. The other dimension is to assess how 

collaboration conditions the development of incoming scientists. In particular, we will look at the 

importance of the collaboration network of early co-authors for the productivity of new scientists 

and the likelihood that they also become leading scientists. Furthermore, this study uses a unique 

data set that spans almost two decades and allows us to look at the research system of a 

developing country, Mexico.  

This work is divided in four sections. In the first section we lay out the purpose of this 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
http://www.conacyt.gob.mx/sni/) and received almost 50% of the federal R&D funding, and four public institutions 
monopolized 92% of this budget (CONACYT, 2004, p24).  
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study and its research questions. In the second we explain the methods we are going to use, 

explain the data and define some key concepts. The third part provides results. Finally, we 

provide conclusions and policy implications. 

3.2. Research Questions 

Previous research on the impact that (lead) scientists and mentors/sponsors have on other 

researchers has focused on quantifying the direct influence the former have on the productivity 

of their collaborators (Azoulay, Zivin and Wang, 2007; and Oettl, 2009), or in assessing how 

they contribute to successful postdoctoral careers, including their first job and subsequent awards 

(Reskin, 1979; Green and Bauer, 1995; Judge et al., 2004; Paglis et al., 2006). In this study we 

also consider the importance of accomplished scholars in a scientific system. Yet, instead of 

quantifying the impact these scientists have on ongoing relationships we measure the influence 

they exert on young faculty when they first enter a particular field. In addition, we measure the 

impact different nurturing environments (or research collaborations) have on the incoming 

scientist. Furthermore, we look at the extent to which new scientists follow the steps of their 

mentors and also become a star. 

3.2.1. Overall contribution of eminent scientists to a science system 

The notion that a small percentage of researchers contribute to a disproportionate share of output 

in terms of papers (Lotka, 1926; Pirce, 1963; Zucker, Darby, and Brewer, 1998) and citations 

(Hagstrom, 1968; Cole, 1970; Cole and Cole, 1972; Allison and Stewart, 1974) is well 

established in the literature. For example, Pirce (1963) found that a minority of scientists in 

physics (around six percent) publishes 50 percent of all the publications, while Cole (1979) and 

Reskin (1977,1978) have shown that this percentage of contributing scientists is fifteen percent 
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in several other fields34. Allison and Stewart (1974) also found that the distribution of citations is 

more unequal than the one for articles and that this inequality increases with tenure, for both 

measures. In addition, highly accomplished researchers also influence the realm of science by 

training, coaching and working with the next generation of eminent scientists, contributing 

indirectly to the system through the work of their advisees. For instance, Zuckerman (1967) 

found that 62% of the Noble laureates (in his sample) worked as young researchers under the 

supervision of previous prize-winners; and these eminent scientists were more inclined to 

collaborate with other distinguished and highly productive researchers than their less renowned 

counterparts. Furthermore, this skewness in productivity and impact can be more pervasive in 

emerging economies where limited resources and heterogeneity within the system (as seen in 

chapter 2 of this thesis) might favor a few scientists. With this in mind in this study we consider 

the direct impact that eminent scientists have in the system, by quantifying their total output and 

citations, as well as the number of subsequent stars that they breed. In addition, we also assess 

the indirect contribution these researchers have in the system by looking at the performance of 

the scientists they breed.  

3.2.2. Mentorship, Research Environments, Apprenticeship and Performance 

As previously stated, mentors can play an important role in the development of their 

protégés, having a positive impact in their careers (Phillips, 1979; Reskin, 1979; Bargar and 

Mayo-Chamberlain, 1983; Kram, 1985, p. 8; Cronan-Hillix et al., 1986; Fagenson, 1989; Green, 

1991; Cable and Murray, 1999; Tenenbaum et al., 2001; Allen et al., 2004; Paglis et al., 2006). 

Within academia, doctoral students are more than protégés. They are typically apprentices of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
34 Cole (1979) showed this on natural, biological, and social sciences, whereas Reskin (1977, 1978) proved it for 
chemistry. 
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their advisors and sometimes part of the research group of their mentors. This group provides 

direct input into the work performed by a student, showing her how to conduct research and get 

published (Reskin, 1979; Judge, 2004). Students working under the supervision of an eminent 

scientist could have additional benefits by being exposed early on in their careers to promising 

research ideas and being able to interact and collaborate with other reknown researchers, 

including Nobel Laureates  (Zuckerman, 1967). Ham and Weinberg (2007) analysis on Nobel 

laureates showed that being surrounded by other prize-winners had a significant positive effect 

on starting their own work that would yield this type of recognition. With this in mind, we will 

study how much the productivity of a new researcher increases if he or she enters into the system 

by the hand of a star.  

While the presence of stars is likely to be important, it is clearly not the only important 

aspect in the research environment of a nascent scientist. The organizational context and 

research/collaboration environment where scientists do their work are also likely to play an 

important role in fostering or hindering the productivity of budding researchers, in particular 

graduate students and postdoctoral fellows (Fox, 1983; Fox and Mohapatra 2007; Louis et al. 

2007). For example, Long and McGinnis (1981) found that an appointment in non-intensive 

research organizations depresses publication output, whereas employment in research 

universities fosters publication. Work at the department level has also found that scientists 

publish more when they are surrounded by productive peers (Braxton, 1983) and research-

oriented coworkers (Bland and Ruffin, 1992). Furthermore, leadership within research 

organizations of accomplished and experienced scientists is an additional factor that can affect 

productivity. As Dill (1992) noted, a team leader is there to “to influence member’s knowledge 

and values, to facilitate contact and networks, to attract other competent researchers, to help 
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colleagues who are blocked or stopped in their researcher efforts, and so on.” (Bland and Ruffin 

(1992) citing Dill (1990, 1992)).  

Prior work highlighting the role of both academic stars and the collaborative research 

environment of a new scientist establishes the critical questions we are interested in exploring. In 

particular, we assess the extent to which different research/collaborative environments influence 

the performance of incoming researcher by considering four contexts in which a new researcher 

becomes active in a scientific system. First, we consider that a new researcher enters the system 

in the context of an established research group (RG). Second, we separate the top RG from the 

rest, recognizing that leading groups may have some different characteristics from the average 

research group. We then consider whether the early collaboration of the new researcher is with 

the leader of an RG vs. the mentoring of other members of the group. Finally, we consider early 

mentoring by the leader of top RG.   

3.2.3. Following the steps of giants: Mimicking Success 

Previous studies on eminent scientists have stated the importance of sponsorship of leading 

researchers in their success. For example, Zuckerman (1967) found that young scientists working 

with Nobel Laureates tend to replicate the success of their senior collaborators; and Crane (1965) 

showed that the best students work under the supervision of top researchers at leading schools 

and become the next generation's most productive scientists.  In addition, the mentorship 

literature has noted that “the majority of participating mentors had been involved in a previous 

mentoring relationship as a protégé” (Allen el al., 1997), suggesting that some advisees follow 

the steps of their advisors. Yet, with the exception of Malmgren (2010), little has been done 

either to predict in advance those who will follow the same career path or to measure the 
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likelihood of their becoming a successful researcher. This research will look at the likelihood 

that a new researcher becomes a star if she enters with one.  

3.3. Method 

3.3.1. Database 

To answer the previous questions we will use a database from Thomson Scientific35 

(Institute of Scientific Information, 2003) containing all papers published between 1980 and 

2003 with at least one address in Mexico. This database contains the following information: 

article name, author(s), author(s) address(es), year of publication, journal, volume, pages, 

backward citations (i.e. references) and total number of citations received.  

From this database we selected all the papers published in Mexico in the areas of Physics 

and Applied Physics/Condensed Matter/Materials Science in the period of 1981-200336. We 

chose these areas because in the past the files of Physics and its related areas have been widely 

studied around the world (e.g. Collazo-Reyes et al. ,2004; Shrum et al., 2007) and Mexico has a 

long tradition of publishing in international peer-reviewed journals, indexed by ISI in these areas 

(ISI, 2003; CONACYT, 2008). 

Once all the papers were identified, we created a dataset containing the name of the 

article, its author or authors, the institutional affiliation of these scientists and the number of 

citations these articles received within a three-year window (e.g. for the papers published in 1990 

we restricted the citation count to the period 1990-1992). In addition we divided this set into 

three periods. Period one (which includes all the papers published between 1981 and 1983) is 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
35 Formerly known as the Institute for Scientific Information (ISI) 
36 We only considered articles; this means that letters, notes and reviews were excluded. In addition, the extracted 
data have undergone a detailed cleaning and then processed to bibliometric indicators. 
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used to identify the scientists that were in the system before the focal period used in the study. 

Period two (from 1984 to 2001) is the sample period and includes only scientists that entered the 

system, i.e. published an article for the first time, after 1984 up to 2000. Period three (2002-

2003) was used to identify the scientists that exited the system before 2001 and entered after 

1983. We say a researcher entered the system (within the focus period) if her name was not 

present in the first period but appeared (or published an article) after 1983; in the same respect, a 

researcher exited the system if she was present in period two but not in the third one. In order to 

avoid sporadic authors, we excluded from this dataset all the researchers that published only one 

paper and were present only one year within the sample period 1984-1999. 

3.3.2 Definitions 

For this analysis, we classify all the researchers in our sample along several dimensions.  

Star and non-star scientists 

First, we characterize the researchers on our sample as star (or eminent) and non-star 

scientists based on their performance for a certain period of time along two dimensions: 

productivity (measured in terms of papers per year) and impact (citations per year). Previous 

studies have used a 5% cutoff point in output or impact to define an elite group of scientists 

(Azoulay and Wang, 2010; Oettl, 2009). Although this characterization seems easy enough, it is 

difficult to decide whether to draw a precise cutoff point at a certain number like 1%, 5% or 10% 

because of the skewness of these variables. With this in mind, we follow a different approach 

and define this select group of researchers using the sample’s performance distribution. In this 

study a star scientist is a researcher who is above the average productivity plus one standard 

deviation (STDEV) of all scientists in the sample and a non-star scientist is one who is below 
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this threshold. We use one STDEV as the minimum performance level; however, more stringent 

levels (two or three STDEVs) can be used to identify these key people37.  

Research environments 

Second, using a novel method for the characterization of research groups (see chapter 2 

for a full description) we identify all the groups that are present in the system, as well as leaders 

of these communities; and based on this, single out different research environments to which 

researchers might be exposed. 

The main idea behind this new method is that it defines all the research groups based on 

self-organizing characteristics of the research endeavor (Guimerà, 2005). The proposed method 

uses the notion that modern science is conducted primarily through a network of collaborators 

(or groups) who organize themselves around key researchers, often known as the principal 

investigators (PIs). Specifically, this method uses the patterns of collaboration and the strength of 

ties in a co-authorship network to, first, identify the PIs38, or leaders, of these ensembles and, 

then, to characterize the boundaries of different research groups (RGs) centered on these key 

people (see chapter 2). This allows us to identify disjoint groups within a certain period of time, 

from two years to the entire period of study, by including all the papers that were published 

within those years. For this research we used a three-year rolling window. This meant that, first 

we characterized all the groups between t0 and t2, then we did it for t1-t3, up to tn-2- tn, where n is 

the maximum number of years of our sample. This method provides a list of all the PIs in the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
37 Below we show the number of stars by different STDEV levels and their average contribution and performance. 
In addition, we show a complete regression analysis of the one STDEV definition and the most important results for 
the two STDEV. 
38 This method defines a Principal Investigator (PI) as an author with a high number of repeated connections, i.e. a 
researcher that has written several papers with a high number of coauthors. 
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system and the composition of these communities.  

Based on the output of this method (i.e. the PIs and composition of RGs) and the 

performance of these groups39, we distinguish four types of research environments to which 

scientists might be exposed (at the beginning of their careers). Table 3.1 defines these 

environments. 

Table 3.1. Definition of Research Environments  
 Research environment Definition 

1. Exposure to a research 
group 

A scientist is said to be exposed to an RG if he or she 
collaborates with a researcher that belongs to a RG 

2. Exposure to a top research 
group 

A scientist is said to be exposed to a top-RG if he or she 
collaborates with a researcher that belongs to a top-RG 

3. Exposure to the leader of a 
research group 

A scientist is said to be exposed to the leader of an RG if he or 
she collaborates with the PI of an RG 

4. Exposure to the leader of a 
top research group 

A scientist is said to be exposed to the leader of a top-RG if he or 
she collaborates with the PI of a top-RG 

 

Tables 3.2 to 3.4 provide the summary statistics for the total number of papers, citations, 

authors and different type of stars for the 1981-2001 period. From table 3.2 it can be seen that 

4,180 unique authors were identified and 2,018 (or 48% of the total) were defined as suitable 

ones; in order to avoid sporadic authors we restricted our analysis to scientists that published two 

or more papers between 1984 and 2001 in at least two different years and entered the system 

before 1999. In addition, we can observe that the latter published 6550 articles in the sample 

period. Table 3.3 shows how the 2,018 authors break into two groups: the ones that entered the 

system before 1984 (8%) and the ones that did it after 1983 (92%). In addition, this table shows 

the number of eminent scientists based on articles and citations for these periods of time for the 

one-STDev definition (11% and 9% respectively) and two-STDev definition (~4% for both 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
39 Following a procedure similar to the one we used to define star and non-star scientists, we classify these 
communities into top and non-top research groups, a top research group is a group that is above the average 
productivity plus one standard deviation (STDEV) of all the groups in the sample, and a non-top research group is 
below this threshold. 



!

 71!

categories). Furthermore, table 3.4 illustrates how much star scientists contribute (directly) to the 

system. Depending on how you define an eminent scientist (articles or citations) they publish 

28% to 42% of all articles and receive roughly 50% of all citations for the one STDev definition. 

Table 3.2. Summary Statistics, Absolute Numbers of Papers and Authors 
 Authors  Papers 
Total number, 1981-2001 4180   7223  
Excluded form the analysis 21621   6732  
Remaining number, 1984-2001 2018 48%3  6550  91%3 
1Authors were excluded because they published only one paper, were present for only one year, exited the 
system before 1984, or entered the system after 1998. 
2Papers were not included because they were published before 1984 or by one of 2,162 excluded authors. 
3Percentage of the total number. 

 

Table 3.3. Summary Statistics, Absolute Numbers of Stars 

 

Table 3.4. Direct Contribution1 by Different Type of Star (One STDev)2 
Papers   Citations  
by star-articles3 2740 42%6  by star-articles3 6368 50%6 
by non-star-articles 53315   by non-star-articles 98665  
by star-citations4 1822 28%6  by star-citations4 6263 49%6 
by non-star-citations 57665   by non-star-citations 94355  
Total number of papers, 1984-2001 6549   Total number of citations, 1984-2003 12770  
1 Direct Contribution is the total number of published papers by a star, as well as the received citations of those papers. 
2 Stars are above the average plus one Standard Deviation. 
4 star-citations, stars are defined based on citations per year. 
3 star-articles, stars are defined based on articles per year. 
5 Non-star papers or citations could be double counted with those of stars, since a given paper might be published by both stars and non-stars. 
5 Percentage of the total number. 

 

Table 3.5 gives a general overview of the evolution of the system in terms of number of 

  Stars 
Based on 

  Articles per year 
(by star-articles)  Citations per year 

(by star-citations) 

  One 
STDev1 

Two 
STDev2  One 

STDev1 
Two 

STDev2 
Authors that entered before the 
studied period (1981-1983) 169 16 9% 9 5%  17 10% 7 4% 

Authors that entered within the 
studied period (1984-1998) 1857 201 11% 81 4%  167 9% 71 4% 

Remaining number, 1984-2001 2018 217  11% 90 4%  184  9% 78 4% 
1 One STDev = Stars are above the average plus one Standard Deviation. 
2 Two STDev = Stars are above the average plus two Standard Deviation. 
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researchers, stars and research groups (identified by the algorithm developed in chapter 2); total 

and average productivity (articles and citations), and average performance by type of stars and 

research groups for the three-year periods of 1984-1996 to 1999-2001 (the studied period) and 

1981-1984 (as reference). From this table it can be seen that between 1984-1986 and 1999-2001 

the system expanded six-times in terms of number of researchers and publications, as well as 4.6 

times in terms of citations; growing 13.8%, 14.1% and 12.2% each year, respectively. In 

addition, the number of research groups grew 5.3 times and the average size increased by 50%. 

Furthermore, the number of stars grew at faster rates. During this period of time, individual 

performance steadily increased by any measure, but group efficiency declined on all variables.  
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Table 3.5. System Evolution, 1981-2001 
Growth2 CAGR3 

 81-831 84-86 87-89 90-92 93-95 96-98 99-01  81-83 / 
99-01 

84-86 / 
99-01 

 81-83 / 
99-01 

84-86 / 
99-01 

Number of researchers 
Total number 169 216 334 531 930 1,422 1,503  7.9x 6x  12.9% 13.8% 
Stars, articles4 16 19 36 55 110 178 202  11.6x 9.6x  15.1% 17.1% 
Stars, citations5 17 18 32 43 91 129 142  7.4x 6.9x  12.5% 14.8% 

Number of articles 
Total number 245 303 408 658 1,164 1,820 2,197  8x 6.3x  12.2% 14.1% 
by star, articles4 71 83 129 168 408 825 1,127  14.9x 12.6x  15.7% 19.0% 
by star, citations5 67 76 116 128 296 521 685  9.2x 8x  13.0% 15.8% 

Average number of articles per author 
Average total 1.9 2.0 1.8 2.0 2.1 2.5 3.2  0.7x 0.6x  2.7% 3.3% 
by star, articles4 4.6 4.6 3.9 3.6 4.5 6.2 7.7  0.7x 0.7x  2.8% 3.5% 
by star, citations5 4.2 4.9 3.9 3.5 4.1 5.5 6.7  0.6x 0.4x  2.5% 2.1% 

Number of citations 
Total number 633 736 867 1,261 2,242 3,536 4,135  5.5x 4.6x  10.4% 12.2% 
by star, articles4 212 246 308 424 1,047 1,985 2,358  10.1x 8.6x  13.5% 16.3% 
by star, citations5 209 292 380 573 1,069 1,771 2,178  9.4x 6.5x  13.1% 14.3% 

Average number of citations per author 
Average total 6.3 6.9 5.3 5.8 6.4 7.0 8.2  0.3x 0.2x  1.4% 1.1% 
by star, articles4 16.1 15.3 10.0 11.2 14.4 17.2 19.3  0.2x 0.3x  1.0% 1.5% 
by star, citations5 16.7 22.5 13.3 18.2 18.0 23.6 27.8  0.7x 0.2x  2.7% 1.4% 

Research Groups (RGs) 
Total number of RG 32 36 52 101 173 271 226  6.1x 5.3x  11.5% 13.0% 
Top RGs, articles4 8 5 7 14 24 44 34  3.3x 5.8x  8.4% 13.6% 
Top RGs, citations5 3 7 5 12 18 37 28  8.3x 3x  13.2% 9.7% 

Researchers per researcher group 
Average number 4.1 3.9 4.4 4.2 4.8 5.5 6.2  0.5x 0.6x  2.3% 3.1% 

Average number of articles per researcher per group 
Total average 9.1 10.1 9.5 7.4 6.5 4.5 5.0  -0.5x -0.5x  -3.3% -4.6% 
by top RGs, articles4 17.1 20.6 16.2 17.6 14.2 12.5 12.9  -0.2x -0.4x  -1.6% -3.1% 
by top RGs, citations5 18.0 20.5 15.0 16.5 13.9 10.1 11.4  -0.4x -0.4x  -2.5% -3.8% 

Average number of citations per researcher per group 
Total average 19.1 21.4 18.0 15.0 11.7 7.9 8.7  -0.5x -0.6x  -4.3% -5.8% 
by top RGs, articles4 39.9 43.0 29.9 39.2 26.0 22.7 28.1  -0.3x -0.3x  -1.9% -2.8% 
by top RGs, citations5 44.7 50.8 36.2 45.8 35.4 32.3 35.4  -0.2x -0.3x  -1.3% -2.4% 
1 Warm-up period. 
2 “x” denotes times of expansion or contraction. 
3 CAGR: Compound Annual Growth Rate. 
4 Based on articles, one STDev definition. 
5 Based on citations, one STDev definition. 
 

Entry into the system 

In addition to establishing if a researcher is a star (within a certain period) and the 

different type of environments this person has been exposed to during the early part of her 

academic career, we also identify (1) when (year of entry), (2) where (institution of entry) and 
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(3) how (type of entry) this scientist entered the system. 

For each researcher, we first define her year of entry as the year40 in which she published 

her first paper(s). In addition, we use the address that appears on her first publication(s) to 

identify her institution of entry. Finally, we define the type of entry by looking at the research 

environment(s) a scientist was exposed to within her year of entry. We say that a researcher 

enters with a star if in her first year41 she publishes a paper with a star scientist. In addition, we 

say a researcher enters within a particular research environment if she is exposed to one on her 

first year of entry; this means that a scientist enters with a (1) RG, (2) top-RG, (3) the leader of 

an RG or (4) the leader of a top-RG if she is exposed to one of these environments in her year of 

entry. Figures 3.1 and 3.2 depict how the entry space is broken down by type of entry for all the 

scientists that entered the system between 1984 and 1999. In addition, these figures show in 

parentheses the productivity by each type of entry. From these figures it can be seen that 71% of 

the sample can be characterized by one (or more) of our entry definitions. In addition, these 

figures show that star scientists (with a high rate of citations and productivity) collaborate 

directly with 18% to 26% of new entrants. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
40 For this analysis we use calendar years to define the year of entry of a scientist. 
41 We use first year (and not first paper) because the time frame of our data is restricted to years; this means that 
within a particular year we cannot know which paper was published first. 
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Figure 3.1. Entry Space Based on Articles. This figure depicts how the entry space is broken down by type of 
entry for all the scientists that entered the system between 1984 and 1999. In addition these figures show in 
parenthesis the average productivity (number of articles per year per researcher) by each type of entry. 
 

 
Figure 3.2. Entry Space Based on Citations. This figure depicts how the entry space is broken down by type of 
entry for all the scientists that entered the system between 1984 and 1999. In addition this figure shows in 
parentheses the average impact (number of citations per year per researcher) for each type of entry. 
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Finally table 3.6 quantifies the indirect and total contributions42 each type of star makes 

to the system. From this table we can see that authors who entered by the hand of highly 

productive scientists contribute 22% percent of all articles and a quarter of all citations, whereas 

researchers that entered by the hand of one that has high impact supply 16% of all articles and 

17% of all citations. Overall, eminent scientists contribute (directly and indirectly) to two thirds 

of the system. 

Table 3.6. Indirect and Total contribution to the system by Type of Star (One STDev)1 
Papers  Citations 
Indirect Contribution2  Indirect Contribution2 
by author that enters w/star-articles4 1414 22%6  by author that enters w/star-articles4 3129 25%6 
by author that enters w/star-citations5 1077 16%6  by author that enters w/star-citations5 2189 17%6 
Total Contribution3    Total Contribution3   
by star-articles3 4154 64%6  by star-articles3 9497 75%6 
by star-citations4 2899 44%6  by star-citations4 8452 66%6 
Total number of papers, 1984-2001 6549   Total number of citations, 1984-2003 12770  
1 Stars are above the average plus one Standard Deviation. 
2 Indirect Contribution is the total number of published papers by an author that entered with a star, excluding all the ones that were published 
together; as well as the received citations of those papers. 
3 Total Contribution is the sum of direct (see table 3) and indirect contribution. 
4 Star-articles, stars are defined based on articles per year. 
5 Star-citations, stars are defined based on citations per year. 
6 Percentage from the total number. 

 

3.3.3. Regression Analysis 

To quantify the impact different types of entry  (i.e. collaboration upon entry with a star 

scientist or a researcher that is part of an RG or top-RG, or with a PI in an RG or top-RG) have 

on the productivity of the incoming scientists, we used an ordinary least square (OLS) regression 

model. We used an OLS (and not a negative binomial) model because our dependent variables 

(publications per year and citations per year) are continuous (see below for the description of 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
42 Indirect contribution is defined as the total number of published papers by an author that entered with a star, 
excluding all the ones that were published together; as well as the received citations of those papers. Direct 
Contribution is the total number of published papers by a star, as well as the received citations of those papers. Total 
Contribution is the sum of both quantities. 
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these variables). In addition, we employed a logistic regression model to measure the extent to 

which these new researchers mimic the steps of their mentors and the degree to which different 

research environments are conducive to becoming a leading scientist. 

A key characteristic of our analysis is the use of year and institution fixed effects on our 

regression models (Mundlak 1978; Hausman and Taylor 1981; Green, 2002). The model controls 

for otherwise unobserved heterogeneity between year of entry and institution of entry. These 

controls are important because different institutions will be associated with important 

heterogeneity in scientific performance and the ability of incoming researchers can vary over 

time. For example, it is likely that the Physics Department of CINVESTAV, a very well known 

department, attracts better people for its ranks when compared to a smaller regional university. If 

this were the case, results of the comparison of productivities for scientists across institutions 

could be entirely driven by unobserved differences between the institutions, rather than the 

differences between entry with star and non-star scientists. This could generate misleading 

results. The model is: 

 (1) 

where  

 (2) 

 

In this equation, regression coefficients are denoted as , k indexes the measured 

independent variables (Xs), i indexes individuals, t indexes time, j indexes institutions, and  = 

error terms;  = cross-sectional (institutional) component of error;  = time-wise component of 

error;  = purely random error component; and  = intercept. Y, the dependent variable, is 
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explained in the next section, as well as the different independent ones. 

Dependent variables 

In order to quantify the increase (or decrease) in productivity and impact that different 

types of collaborations at the time of entry have on the incoming researchers, two continuous 

variables were used on the left hand side of the OLS model. The sum of all papers published by a 

scientist during her tenure,43 divided by the researcher’s tenure, was used as a measure of 

productivity, whereas the sum of all citations received for each paper (with a three-year 

window), divided by the scientist’s tenure13, was used to indicate their level of impact. For the 

logistics model, a dummy variable was used on the left hand side of eq. 1, taking the value of 

“one” if the new scientist became a star within the studied period and “zero” otherwise. This 

indicates if this researcher followed the steps of their mentors.  

For this work we used the one STDev definition to identify the star scientists and top-RG 

in our sample. This means that this output is a lower bound (I don’t understand your use of the 

word “bound”; what would it be in Spanish?) for the impact early collaboration with elite 

scientists and groups have on incoming researchers. In the appendix we show the results for the 

analysis of the two-STDev definition of star scientists and top-RGs. 

Independent variables 

Five different dummy variables were used (individually and combined) on the right hand 

side of eq. 1 to assess the impact different types of entry have on the performance of new 

researchers and the likelihood of becoming a star scientist; table 3.7 shows these variables. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
43 The tenure of a researcher is defined as the total number of years this person was present in the system, from the 
year she enters the system up to when she leaves it or the year 2001, even if she didn’t publish anything in the years 
in-between. 
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Table 3.7. Independent variables 
Variables Description 
Star (articles or citations) 1 = entry with a star; 

0 = otherwise 
coAU in RG (articles or citations) 1 = entry with a coauthor that belongs to an RG; 

0 = otherwise 
coAU in top RG (articles or citations) 1 = entry with a coauthor that belongs to a top RG; 

0 = otherwise 
coAU-PI in RG (articles or citations) 1 = entry with a coauthor that is a PI in an RG; 

0 = otherwise 
coAU-PI in top RG (articles or citations) 1 = entry with a coauthor that is a PI in a top RG; 

0 = otherwise 
 

3.4. Results of Regression Models 

In this section we present the results of the regression models discussed previously. We 

divide the analysis in two parts. Part one shows the estimates for the increase in productivity and 

impact for different type of entries, while part two shows the extent to which incoming 

researchers follow the same path of eminent scientists or if another type of entry is associated 

with their success, e.g. collaboration with a PI or a co-author that belongs to a highly productive 

group. The regressions were run first with single variables (e.g. entry by the hand of a star 

scientist) to assess the individual impact these variables had on the different dependent variables 

and then with two or more variables (e.g. early collaboration with a star scientist and a co-author 

that belongs to an RG) to measure the combined effect of these variables on the left hand side of 

these equations. 

3.4.1. Type of Entry and Productivity Impact 

In this part we present the results of the OLS regression for papers and citations per year 

while controlling for different types of entry (tables 3.8 and 3.9). These models show that highly 

productive scientists have a positive influence on the output of their protégés, boosting their 

productivity by 27% on average (table 3.8 models AII-01 to AII-04). In addition, the regression 
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models show that entry with a co-author that belongs to a top RG increases the productivity of 

the new researcher by an average of 18% (table 3.8 models AII-01 and AII-02). Furthermore, 

entry with the leader of a top RG raises the output of the incoming collaborators by 38%, or 40% 

more than entering with a star (table 3.8 models AII-03 and AII-04).  

Table 3.8. Productivity increase by type of entry, articles per year, 1984-2001 
Type of Entry 
(Std. Err.) 
[Total Effect*] 

AI-01 AI-02 AI-03 AI-04 AI-05 AII-01 AII-02 AII-03 AII-04 

0.296 c     0.259 c 0.252 c 0.244 c 0.245 c 
(0.034)     (0.036) (0.037) (0.035) (0.036) Star**,  

articles [32%]     [28%] [27%] [26%] [26%] 
 0.136 c     0.028   
 (0.035)     (0.037)   coAU in RG, 

articles   [15%]     [NA]   
  0.290 c   0.168 c 0.161 c   
  (0.050)   (0.053) (0.054)   coAU in top 

RG**, articles   [31%]   [18%] [17%]   
   0.098 c     -0.005 
   (0.031)     (0.032) coAU-PI of RG, 

articles     [11%]     [NA] 
    0.476 c   0.348 c 0.350 c 
    (0.064)   (0.066) (0.068) coAU-PI of top 

RG**, articles     [51%]   [37%] [38%] 
* Total Effect = coefficient divided by average. 
** Star and top RG defined based on the average plus one standard deviation. 
a 10% confidence level, b 5% confidence level, c 1% confidence level. 
NA coefficient is not significant. 

 

Then we look at the influence of eminent scientists on impact, or number of citations per 

year, of new researchers. Models CII-01 to CII-04 in table 3.9 show that stars are associated with 

an increase in the amount of citations received by their advisees by an average of 142%, while 

other forms of entry have a negligible effect on their citation rate. 
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Table 3.9. Productivity increase by type of entry, citations per year, 1984-2001 
Type of Entry 
(Std. Err.) 
[Total Effect*] 

CI-01 CI-02 CI-03 CI-04 CI-05 CII-01 CII-02 CII-03 CII-04 

2.811 c     2.842 c 2.790 c 2.866 c 2.861 c 
(0.183)     (0.199) (0.201) (0.195) (0.198) Star**, 

citations 
[140%]     [142%] [139%] [143%] [143%] 

 0.814 c     0.296 a   
 (0.176)     (0.173)   coAU in RG, 

citations   [41%]     [15%]   
  1.454 c   (0.113) (0.172)   
  (0.273)   (0.283) (0.285)   coAU in top 

RG**, citations   [73%]   [NA] [NA]   
   0.536 c     0.023 
   (0.152)     (0.151) coAU-PI of 

RG, citations     [27%]     [NA] 
    1.515 c   (0.302) (0.309) 
    (0.357)   (0.363) (0.366) coAU-PI of top 

RG**, citations 
    [76%]   [NA] [NA] 

* Total Effect = coefficient divided by average. 
** Star and top RG defined based on the average plus one standard deviation. 
a 10% confidence level, b 5% confidence level, c 1% confidence level. 
NA coefficient is not significant. 

 

In addition to independently assessing the effect that highly productive and visible 

environments have on the productivity and citations of incoming scientists, we can combine both 

types of environments (publication output and received citations) on a single regression model 

and measure which milieu has the greatest influence on the publication output and received 

citations of new researchers. Table 3.10 show that stars with a high citation rate have on average 

1.4 more impact on the productivity of new scientists than highly productive ones. In addition, 

early collaboration with members of a highly productive group (especially the leader of the 

group) also enhances the productivity of the incoming researcher. In contrast, early collaboration 

with researchers that belong to a group with high citations rates does not have an impact on the 

productivity of new scientists. Furthermore, table 3.10 shows that a highly visible star, based on 

citations, is the only variable that has a significant and positive effect of the level of citations of 

new researchers. 
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Table 3.10. Productivity increase by type of entry, articles per year, 1984-2001 

 

3.4.2. Type of Entry and Likelihood of Also Becoming an Eminent Scientist 

In this section we measure the extent to which incoming scientists follow the steps of 

their mentors. According to the output of the logistics model, a scientist that enters the system by 

the hand of a highly productive researcher is on average 2.5 times more likely to mimic the 

success of their mentor and to be regarded as highly productive (table 3.11 models AV-01 to 

AV-04). In addition, early collaboration with a researcher that belongs to a highly productive 

group has almost the same effect (table 3.11 models AV-03 and AV-04). These results suggest 

that a nurturing environment is as important as entry with a highly productive scientist for 

success, at least in terms of output. 

 

Articles per year  Citations per year Type of Entry 
(Std. Err.) 
[Total Effect*] AIII-01 AIII-02 AIII-03 AIII-04 AIII-05  CIII-01 CIII-02 CIII-03 CIII-04 CIII-05 

0.180 c  0.153 c  0.141 c  (0.040)  (0.061)  (0.087) 
(0.040)  (0.041)  (0.041)  (0.195)  (0.201)  (0.199) 

Star**, 
articles 

[19%]  [16%]  [15%]  [NA]  [NA]  [NA] 
0.239 c  0.243 c  0.229 c  2.835 c  2.871 c  2.900 c 
(0.045)  (0.047)  (0.047)  (0.218)  (0.230)  (0.227) Star**, 

citations [26%]  [26%]  [25%]  [141%]  [143%]  [145%] 
 0.260 c 0.182 c     0.376 0.173   
 (0.063) (0.063)     (0.311) (0.306)   coAU in top 

RG**, articles  [28%] [20%]     [NA] [NA]   
 0.055 (0.091)     1.212 c (0.215)   
 (0.068) (0.070)     (0.338) (0.340)   coAU in top 

RG**, citations  [NA] [NA]     [61%] [NA]   
   0.460 c 0.364 c     0.842 b 0.485 
   (0.078) (0.078)     (0.388) (0.380) coAU-PI in top 

RG**, articles    [50%] [39%]     [42%] [NA] 
   0.032 (0.112)     0.990 b (0.589) 
   (0.086) (0.088)     (0.431) (0.428) coAU-PI in top 

RG**, citations 
   [NA] [NA]     [49%] [NA] 

* Total Effect = coefficient divided by average. 
** Star and top RG defined based on the average plus one standard deviation. 
a 10% confidence level, b 5% confidence level, c 1% confidence level. 
NA coefficient is not significant. 
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Table 3.11. Likelihood of becoming a Star by type of entry, citations per year, 1984-2001 
Type of Entry 
(Std. Err.) AIV-01 AIV-02 AIV-03 AIV-04 AIV-05 AV-01 AV-02 AV-03 AV-04 

2.779 c     2.317 c 2.384 c 2.499 c 2.591 c Star*,  
articles (0.387)     (0.339) (0.368) (0.312) (0.334) 

 1.491 b     0.893   coAU in RG, 
articles  (0.249)     (0.165)   

  3.232 c   2.205 c 2.257 c   coAU in top 
RG*, articles    (0.610)   (0.444) (0.463)   

   1.519 c     0.854 coAU-PI of RG, 
articles    (0.203)     (0.112) 

    4.849 c   2.150 c 2.264 c coAU-PI of top 
RG,* articles     (1.139)   (0.471) (0.507) 
* Star and top RG defined based on the average plus one standard deviation. 
a 10% confidence level, b 5% confidence level, c 1% confidence level. 

 

In terms of visibility (i.e. citations), a new scientist is on average seven times more likely 

of becoming a star if he or she enters the system by the hand of star (table 3.12). However, early 

co-authorship with a researcher that belongs to highly cited groups has in the best case a small 

effect (at least when compared to entry with a star) on the chances of the new scientist (table 

3.12 model CV-02) or no effect at all (table 3.12 model CV-03 and CV-04). These results 

suggest that the protégées of highly cited scientists will mimic the success of their mentors. 

Table 3.12. Likelihood of becoming a Star by type of entry, citations per year, 1984-2001 

Type of Entry 
(Std. Err.) CIV-01 CIV-02 CIV-03 CIV-04 CIV-05 CV-01 CV-02 CV-03 CV-04 

6.904 c     8.240 c 6.011 c 8.713 c 7.084 c Star*,  
citations (1.141)     (1.226) (1.097) (1.276) (1.302) 

 1.865 c     0.974   coAU in RG, 
citations   (0.383)     (0.221)   

  4.332 c   1.229 1.785 b   coAU in top 
RG*, citations    (0.927)   (0.240) (0.425)   

   1.444 b     0.759 coAU-PI of RG, 
citations    (0.226)     (0.138) 

    4.141 c   1.004 1.511 coAU-PI of top 
RG*, citations     (1.150)   (0.242) (0.458) 
* Star and top RG defined based on the average plus one standard deviation. 
a 10% confidence level, b 5% confidence level, c 1% confidence level. 

 

In terms of the impact that combined environments (i.e. different types of eminent 
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scientist – articles vs. citations – or other forms of early collaborations) have on the likelihood of 

replicating success, table 3.13 shows that a new scientist is more likely to become a star (based 

on articles) if he or she enters the system with a highly cited researcher instead of a highly 

productive one (models AVI-01, AVI-03 and AVI-05). In addition, early collaboration with 

researchers belonging to highly productive groups also has a positive and significant effect on 

the chances of the new scientist (models AVI-02 to AVI-05). Furthermore, models CVI-01, CVI-

03 and CVI-05 of table 3.13 show that entry with a highly cited scientist has the highest effect, 

compared to any other form of entry, on the likelihood of new researchers to replicate the same 

success. Models CVI-02 and CVI-03 show that early collaboration with a co-author that belongs 

to a top RG, based on citations, also has a positive effect of the chances of becoming a highly 

visible star.  

Table 3.13. Likelihood of becoming a Star by type of entry, 1984-2001 
Based on articles per year  Based on citations per year Type of Entry 

(Std. Err.) AVI-01 AVI-02 AVI-03 AVI-04 AVI-05  CVI-01 CVI-02 CVI-03 CVI-04 CVI-05 
0.593 c  1.607 c  1.556 b  0.560 b  0.600 b  0.566 b Star*,  

articles (0.169)  (0.279)  (0.270)  (0.126)  (0.139)  (0.130) 
0.812 c  2.104 c  2.159 c  9.847 c  8.184 c  9.218 c Star*,  

citations (0.176)  (0.390)  (0.397)  (2.161)  (1.842)  (2.077) 
 2.580 c 2.005 c     0.537 b 0.584   coAU in top 

RG*, articles  (0.638) (0.513)     (0.170) (0.192)   
 1.472 0.961     6.466 c 2.571 c   coAU in top 

RG*, citations  (0.397) (0.270)     (1.924) (0.806)   
   4.195 c 3.083 c     0.944 0.892 coAU-PI in top 

RG*, articles    (1.228) (0.941)     (0.355) (0.335) 
   1.327 0.812     4.289 c 1.521 coAU-PI in top 

RG*, citations    (0.450) (0.286)     (1.542) (0.556) 
* Star and top RG defined based on the average plus one standard deviation. 
a 10% confidence level, b 5% confidence level, c 1% confidence level 

 

Overall, these results show that highly productive and cited researchers have a positive 

and significant effect on the productivity of early career scientists and their ability to replicate 

the same success. In addition, the outcome of these models suggests that early collaboration with 
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scientists that are embedded in productive environments also enhances the productivity of new 

researchers. 

3.5. Conclusion and Policy Implications 

In the last decades, ST&I have been seen as a major source of economic growth. To be 

able to leverage ST&I, government officials and policy makers around the world have developed 

policies to develop their systems. At the core of these initiatives are strategies to expand the 

scientific base and to generate, attract and retain highly talented scholars. The main rationale 

behind these developments is that key scientists play a vital role in the growth of this system. 

In the past, several authors have studied the impact eminent scientists have on the 

development of the research system, the institutions they belong to and the scientists they work 

with. In addition, scholars have looked at the conditions that foster highly productive and 

talented scholars. This paper contributes to this body of knowledge by assessing the impact key 

scientists have on the development of the system. In particular, this work quantifies the effect 

that star scientists have, by themselves and within the context of different research environments, 

on the productivity and impact of young faculty, as well as on the likelihood of also becoming a 

leading personality in science. 

Our analysis confirms our expectations and previous results that eminent scientist have a 

prime role in the development of a scientific system, especially within the context of an 

emerging economy like Mexico. In particular, in terms of productivity and visibility, this work 

shows that between 1984 and 2001 the elite group of physicists in Mexico (approximately 10% 

of all scientists working in physics and related fields) authored 42% of all publications and 

received 50% of all citations and bred 18% to 26% of new entrants.  



!

 86!

In addition, our work shows that scientists that entered the system by the hand of a highly 

productive researcher increased their productivity on average by 28%, and those that did so by 

the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars 

that did not publish their first manuscripts with an eminent scientist. Furthermore, incoming 

scientists also had an additional boost in their productivity if they were exposed early on in their 

careers to the appropriate research environment. For example, young faculty increased their 

publication rate by 18% if they had an early collaboration with a scientist belonging to a highly 

productive research group, and 38% if this collaborator was the leader of the group. But these 

environments did not have any effect on the citation rate of new faculty. In summary, key 

scientists have a positive and significant effect on the productivity and visibility of young 

faculty, but nurturing environments only impact their productivity.  

In terms of mimicking success, this work shows that scientists working at the beginning 

of their careers with eminent researchers tend to replicate the success of their mentors. In 

particular, scholars that enter the system by the hand of a highly productive researcher were on 

average 2.5 more likely to also become a star, when compared to the ones that did their initial 

work with non-star scientists; and early collaboration with highly visible researchers increased 

7.4 the chances of a new scientists mimicking the success of their mentors. In addition, early 

collaboration with scholars belonging to a highly productive group and the leaders of such 

ensembles also had on average an additional impact of 2.2 on the probability of someone 

becoming a leading personality in science; whereas early collaboration with a co-author 

belonging to a highly visible group was the only environment that had an additional effect on 

someone’s likelihood of becoming a highly visible scientist; in this case by 1.8 percent. 

These results have important consequences for policy-making in science, technology and 
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innovation systems. They tell us that eminent scientists have a primary role in the growth of 

these systems and the development and productivity of young faculty. In addition, they show that 

nurturing environments play an additional role in the construction of these systems. This means 

that if a country or region wants to improve or become the leader in a certain area of knowledge 

it should focus on attracting and retaining the best and the brightest, and creating around these 

key figures appropriate collaborative environments so that research and researchers can flourish. 
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Chapter 4. Learning and Opportunities in Collaborative Research 

Environments 

4.1. Introduction 

In the last decades, science, technology and innovation (ST&I) have played a major role 

in fostering economic development and improving the welfare of society (Wagner et. al, 2001). 

Leydesdorff and Etzkowitz (2001) describe this evolution as a Triple Helix, which reflects an 

important transformation in the relationships between the university, industry, and government, 

with academia playing an enhanced role in innovation (Etzkowitz & Leydesdorff, 2000) and 

engaging in new functions, such as promoting firm-formation (Lissenburgh & Harding, 2000) 

and regional development (Etzkowitz, 2001).  

A major and growing force (deB. Beaver, 2001; Wagner and Leydesdorff, 2005) 

emerging alongside the development of the scientific endeavor is the ability of individual 

scientists to initiate and sustain productive partnerships with other scholars and foster 

collaborative research environments within universities (as shown in chapter three of this thesis) 

and with industry (Gibbons et al., 1994). To promote cooperation within academia and with 

firms, a variety of nations have adopted policies to promote collaboration within their ST&I 

system, across sectors and with other nations (Luukkonena, 2001). This has motivated an 

important stream of research on scientific collaboration. According to Bukvova (2010), studies 

have primarily focused on five main areas: (a) defining what is research collaboration; (b) 

problems with measuring this phenomenon; (c) understanding why researchers collaborate; (d) 

developing explanatory approaches to research collaborations and, in recent years, (e) 

understanding the role Information and Communication Technologies (ICT) plays in promoting 
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this type of activities in science. There has been a particular effort to uncover the factors that 

promote and hinder scientific collaboration, as well as to understand the role that research 

collaboration plays in the development of science (Bukvova’s, 2010).  Similarly, studies have 

tried to assess the costs, benefits and opportunities these schemes produce for individual 

researchers throughout their professional career (Katz and Martin, 1997; deB. Beaver, 2001).  

Past research has shown the importance that different research environments, and the 

interactions that happen within them, have on the development of researchers. According to 

Hemlin et al., (2009), the degree to which an “individual’s creative potential is expressed 

depends considerably on the environment in which that individual works. To understand 

scientific and technological creativity, one needs to analyze the interactions between individuals 

or groups and their environment.” Others have shown how collaboration, seen as social 

interaction, is a key condition for the emergence of creativity in science (Zuckerman, 1987; 

Laudel, 2001). Furthermore, scholars have assessed the impact these environments can have on 

the professional career of scientists. For example, Crane (1965) shows that the caliber of the 

institution has a positive impact on the productivity and prestige of its scientists, while Oettl 

(2009) notes that productive and collegial milieus have a higher impact on the productivity of 

researchers than only productive or cooperative setups.  

 Some authors have also considered the extent to which ensembles of scientists provide a 

nurturing environment where researchers, in particular younger ones, can flourish. Bozeman and 

Corley (2004) emphasize the importance of collaboration on the development of the scientific 

and technical human capital44 of researchers, especially when a senior scientist works with a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
44 Bozeman et al (2001) defines “Scientific and technical human capital” (S&T human capital) as “the sum of 
researchers’ professional network ties and their technical skills and resources.” 
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junior one and the former acts as her mentor. According to these authors, under the right 

circumstances, a graduate student or post-doctoral researcher can gain, “not only enhanced S&T 

knowledge, but craft skills, know- how, the ability to structure and plan research and, of course, 

increase contacts with other scientists, industry, and funding agents.” Chapter 3 complements 

this perspective by showing that leading researchers have a positive effect on the performance of 

young researchers and on the likelihood that they also become star scientists. Similarly, they find 

that early collaboration with a highly productive research group and the leader of this group also 

contributes to the future productivity of new scientists. 

 Despite these advances in the assessment of the effect of research collaboration on the 

scientific endeavor, there are still many gaps in our understanding of the phenomena. First, 

research on scientific collaboration has primarily focused on understanding the role it plays 

throughout the career of the scientist, overlooking the contributions this activity provides at 

different stages of the researcher’s professional life, especially at the beginning of their career. In 

addition, previous work has typically considered collaboration in general terms, or focused on 

particular research environments (like only collaborating with eminent scientists), failing to 

notice the combined effect that different environments can have on scientists. Publishing with a 

highly productive single researcher or being part of a highly productive research group can mean 

different things and have diverse impacts on the career of a scientist. Finally, with few 

exceptions (Duque et al., 2005; Wagner, 2008; chapters 2 and 3), work on research collaboration 

tends to focus on developed nations. This work tries to bridge some of the existing gaps in the 

literature by assessing the impact that different forms of collaborations have on the future career 

of new scientists. In particular, we asked a group of researchers in an emerging economy about 
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the opportunities they received and what they learned from their initial relationships with a 

variety of research settings.  

 The work is divided into four sections. First we lay out the purpose of this study and its 

research questions. Next, we define the methodology for this work, explain the data and define 

some key concepts. Third, we analyze the data and provide results. Finally we end the paper with 

policy implications and concluding remarks. 

4.2. Literature Review and Research Questions 

Previous studies on research collaboration, and the collaborative environment that 

emerges from these interactions, have mostly focused on understanding the role scientific 

cooperation plays in the development of science (deB. Beaver and Rosen, 1978, 1979a, 1979b; 

Wagner, 2008; Bukvova, 2010), uncovering the factors that promote this activity (Katz and 

Martin, 1997; deB. Beaver, 2001), quantifying the impact these interactions have on the 

performance of scientists (Azoulay et al., 2007; Ottle, 2009; Waldinger, 2010), or assessing the 

effect that different collaborative setups have on the professional career of researchers (Reskin, 

1979; Ottle, 2009; chapter 3). In this study, we also focus on the impact that scientific 

collaboration at the individual level, as well as collaborative research environments, have in the 

professional development of scientists. However, instead of assessing the effect that ongoing or 

recent research collaborations with their peers have on scientists and their performance, we will 

consider the qualitative impact that a variety of interactions at the beginning of their professional 

career have on their behavior. Furthermore, we assess the opportunities that these early 

relationships open, as well as what researchers learn within these settings. 
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4.2.1 Research Collaboration 

The surroundings in which research is conducted have been seen to influence the 

productivity and impact of scientists. For example, working with highly accomplished 

researchers (like Nobel laureates) has a significant positive effect on productivity and impact 

(Oettl, 2009: Azoulay et al., 2010; Waldinger, 2010), as well as the chances of also becoming 

highly regarded, i.e. also being recognized with a prize (Zuckerman, 1967; Ham and Weinberg, 

2007). The performance of a scientist can also be influenced by the caliber of the institution she 

belongs to (Crane, 1965; Allison and Long, 1990) and its organizational context, such as industry 

or academia (Reskin, 1977; Long and McGinnis, 1981).  

Given this relevance, it is not surprising that the scientific community has dedicated great 

effort to the understanding of the factors that promote, enhance and hinder collaboration in 

science. These factors include individual characteristics, such as particular personalities being 

suited for collaborative work and leadership (Stokols et al., 2008); group attributes, such as size 

(Rigby, 2009), and ability to coordinate (Cummings and Kiesler, 2007), communicate (Stokols et 

al., 2008) and deal with differences (Jeffrey, 2003; Bammer 2008); institutional features, such as 

academic culture (Sorensen, 2003) or granting scientific credit (Kennedy, 2003; Birnholtz, 

2008); and National/International Science Policy, such as funding (Defazio et al., 2009) or 

national security (Dias et al., 2010).  

A complementary perspective has specifically considered how the research environment 

in which an individual is embedded matters for his creativity45 and performance. Research shows 

that to understand creative processes in science and the production of knowledge, one needs to 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
45 According to Hemlin et al., (2009) creativity refers to the “generation of a product that is not only novel and 
imaginative but also useful and of good quality.” 



!

 94!

consider the environment (Amabile and Gryskiewicz, 1989; Witt and Beorkrem, 1989; 

Woodman et al., 1993; Hunter et al., 2007) and the interactions that researchers have within 

these setups at different levels of the organization (Hemlin et al., 2009).  

If collaboration does indeed matter, one may think that it would be particularly 

significant when considering young scientists and their initial steps into the scientific endeavor. 

For example, Bozeman and Corley’s (2004) work on scientific and technical human capital has 

shown the importance that research collaboration can have on the development of capabilities 

among junior scientists, especially when they work under the supervision of a senior researcher 

who acts as a mentor. According to these authors, under the right circumstances, a graduate 

student or postdoctoral researcher can gain, “not only enhanced S&T knowledge, but craft skills, 

know-how, the ability to structure and plan research and, of course, increase contacts with other 

scientists, industry, and funding agents” (Bozeman and Corley, 2004). They can also learn how 

to conduct research and get published (Reskin, 1979; Judge et al., 2004), critical tools for the 

budding researcher.  

When considering the surroundings in which research is conducted, academic stars, such 

as Nobel laureates, have been found to be of particular relevance for the productivity and impact 

of other scientists. This group of scholars is important because they contribute to the system with 

a large amount of papers (Lotka, 1926; Pirce, 1963; Zucker, Darby, and Brewer, 1998) and 

citations (Hagstrom, 1968; Cole, 1970; Cole and Cole, 1972; Allison and Stewart, 1974). In 

addition, this small percentage of researchers has a significant positive effect on the productivity 

and impact of its collaborators (Oettl, 2009: Azoulay et al., 2010; Waldinger, 2010) and their 

chances of also becoming highly regarded, i.e. also being recognized with a prize (Zuckerman, 

1967; Ham and Weinberg, 2007). 
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While interacting with a prominent researcher can have a profound effect on a scientist, it 

is clearly not the only dimension that could have an impact on their professional career. The 

surroundings in which research is conducted also influence the productivity and impact of 

scientists, in particular graduate students and postdoctoral fellows (Fox, 1983; Fox and 

Mohapatra 2007; Louis et al. 2007). For example, the performance of a scientist can be 

influenced by the caliber of the institution she belongs to (Crane, 1965; Allison and Long, 1990) 

and its organizational context, such as industry or academia (Reskin, 1977; Long and McGinnis, 

1981). In addition, work at the department level has also found that scholars publish more when 

they are surrounded by productive peers (Braxton, 1983) and research-oriented coworkers (Bland 

and Ruffin, 1992). 

Leadership within research organizations or groups is a variable that affects different 

factors, which in turn may also influence research productivity (Bland and Ruffin, 1992). Team 

leaders are there to “influence member’s knowledge and values, facilitate contact and networks, 

attract other competent researchers, and help colleagues who are blocked or stopped in their 

researcher efforts” (Bland and Ruffin, (1992) citing Dill (1985, 1986)), and they are crucial for 

enhancing productivity and boosting the morale in turbulent times (Ramsdena, 1998). This 

suggests that it would be important to consider the impact that different research environments 

may have at the beginning of a scientist’s professional career, which is the focus of this study. 

Many authors have looked at the benefits and costs of scientific collaborations to 

individual researchers throughout their careers. Cooperation in science can produce many 

advantages, including access to expertise, funding and resources (like instrumentation and 

datasets), ability to exchange ideas (especially across disciplines), learning new skills, pooling 

expertise for complex problems, prestige, and, in some cases, fun and pleasure (Katz & Martin, 
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1997; deB Beaver, 2001; Bukvova, 2010). However, collaboration is not risk-free activity. In 

some instances, this collaborative endeavor can lead to added financial costs (from travel or 

relocation), an increase in the amount of time spent on research, or greater bureaucratic and 

managerial costs; it can also be difficult to reconcile organizational and cultural differences 

between collaborators (Katz and Martin, 1997). In addition, it can amplify coordination costs 

(Cummings and Kiesler, 2007) and in some instances it can be difficult to assign credit to the 

participants (Wray, 2006). Table 4.1 presents a summary of the cost and benefits of research 

collaboration. 

Table 4.1. Impact of Research Collaboration 
Positive effects  Negative effects 
Access to expertise  Financial costs (from travel or relocation) 
Access to resources  Increase in the amount of time spent on research 
Exchange of ideas  Increase in bureaucratic and managerial costs 
Pooling expertise for complex problems   Difficulty in reconciling organizational and cultural differences 
Learning new skills  Amplification of the coordination costs 
Higher productivity  Assigning of scientific credit 
Access to funding   
Prestige   
Political factors   
Personal factors   
Fun and pleasure   
Based on Katz and Martin, 1997; deB Beaver, 2001; Bukvova (2010). 
 

While existing research has documented a variety of important factors associated with 

scientific collaboration and their impact on performance, much less has been considered in terms 

of how scientists value and leverage the various types of collaborations. In addition, there is 

virtually no work considering how young scientists value and leverage collaborative 

environments. In this research, we look at the benefits that research collaboration produce on 

new researchers. In particular, we assess the opportunities these interactions open to incoming 

scientists, as well as what they get in terms of learning. 
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4.3. Methodology 

For this study we used a descriptive approach because we were interested in a rich, 

detailed picture of the impact that early collaborations, and the different research environments 

that emerge from these interactions, have on the development of new researchers, as well as the 

opportunities they create and the knowledge that is shared within these setups. In particular we 

used an online survey to collect information about the characteristics, actions, or opinions of a 

large group of people (Pinsonneault and Kraemer, 1993p. 77), elicit their attitudes (McIntyre, 

1999, p. 75) and examine impacts in detail (Salant & Dillman, 1994, p. 2). An online 

questionnaire is a particularly useful instrument because it allowed us to reach a large number of 

scientists who provided detailed information about their early collaborations in science. The data 

is self-reported, which raises concerns with respect to response accuracy and selection bias. 

However, we believe that the benefits of such an online survey outweigh the drawbacks (for a 

discussion, see Bertrand and Mullainathan, 2001). 

4.3.1. Definitions 

For this analysis, we classify all the researchers in our sample along several dimensions. 

Star and non-star scientists 

First, we characterize the researchers in our study as star (or eminent) and non-star 

scientists based on how they perceived their own performance and the performance of their close 

collaborators vis-à-vis their peers along two dimensions: productivity (measured in terms of 

papers) and impact (calculated in terms of citations). This means that a researcher is considered a 

star scientist if she considers that her peers see her as playing a prominent role in academia when 

compared to other significant researchers in the field of study.  
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Initial collaborations in science 

Great effort has been dedicated by the research collaboration literature in answering the 

questions of what is research collaboration and how it can be measured. According to Katz and 

Martin (1997), research collaboration is not easy to define because it is “largely a matter of 

social convention among scientists” that varies “across institutions, fields, sectors and countries” 

and is not invariant over time. Cooperation in science can manifest itself through different forms 

of activity and only a few of these can be captured through co-authorship (Laudal, 2002). In spite 

of this, prior research has used different dimensions to describe it; for example, the professional 

background and institutional affiliation of the participants, their disciplinary focus, their 

geographical location and the organizational level where these interactions occur (Amabile et al., 

2001; Sonnenwald, 2007). This means that research collaboration is a social process that takes 

place between individuals who primarily are researchers and belong to one or more institutions 

from one or more regions of the world. These interactions happen within and across fields of 

knowledge and, in some same cases, this cooperation happens at different organizational levels, 

such as departments or institutions (Bukvova, 2010). Some authors have tried to define research 

collaboration explicitly. For example, Laudel (1999, p.32; 2002) defines research collaboration 

as a “system of research activities by several actors related in a functional way and coordinated 

to attain a research goal corresponding with these actors’ research goals or interests.”  

For this study, we define research collaboration based on co-authorship of book and 

articles (ISI and non-ISI papers), i.e., two or more researchers are collaborators if they have 

published a manuscript together. In addition, we define initial research collaboration based on 
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the first five manuscripts46 a researcher published in her scientific career. While this is an 

objective characterization, we also recognize that such an approach has a variety of limitations 

identified by the literature in terms of characterizing cooperation in science (Katz and Martin; 

1997). The survey presents this logic and asks the respondents to answer a series of questions 

based on the experience of the researcher in the context of these early publications.   

Research Groups and Principal investigator 

One of the key environments considered in our work is one of the Research Group (RG). 

This is defined as a group of people that collaborate repetitively in scientific research and publish 

the results of these activities in articles or books. In addition, we also characterize an individual 

as the Principal Investigator of a research group (PI-RG) if this person is the scientific leader of 

the group. Furthermore, following the same logic of the star scientist, an RG (principal 

investigator) is considered to be a highly productive group (top-PI) if the ensemble (individual) 

is seen as having played a leading role in academia when compared to other relevant groups 

(scientists). 

Research environments 

Based on the previous definitions we define thirteen research environments based on 

different publishing contexts of the first five papers (or fewer, if the researcher had a lower 

number of publications): (1) publish alone; co-author these articles with (2) one, (3) two to six, 

or (4) seven or more co-authors; work with a (5) highly productive scientist or one that has a (6) 

high impact; publish these manuscripts within a (7) RG or with a group that is (8) highly 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
46 If a scientist had less than five publications we used thiese manuscripts as her initial collaborations. 
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productive or has a (9) high impact; co-author a paper with the (10) PI of an RG, a (11) highly 

productive PI and a (12) PI with high impact; or (13) other form of collaboration. 

Factors promoting initial collaborations 

We define four ways to start collaborating with other researchers at the beginning of the 

career of a scientist: formal collaboration, when a scientist is invited to collaborate after 

participating in a competitive process at a research institution/program and being admitted to it 

(i.e., admission to a PhD program or post-doctoral position); informal collaboration, when an 

author is invited to collaborate without such competitive process; collaboration sought by the 

researcher, when this person actively sought a particular collaboration herself; and other types of 

collaborations includes relationships that are not included in those previously cited.  

Entry and tenure 

Finally, in this study we say that a researcher entered the scientific system in a particular 

year when she published her first article or book. In addition, we define the tenure of a researcher 

based on the number of years this person has been in the system or since she published her first 

manuscript. 

4.3.2. Data Collection 

To fully understand the effects that research collaborations, and the different 

environments that emerge from these, have on new researchers, we developed an online 

questionnaire (appendix 1 has a sample of this instrument). In addition to socio-demographic 

questions such as gender and academic rank, we asked respondents about their initial interactions 

in science, focusing on the following topics: (1) how the researcher started his/her early 
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collaborations in science, (2) the impact of different environments, and the interactions within 

these settings, on incoming scientists, (3) the opportunities these relationships presented, and (4) 

what the new researchers got out of these partnerships.  

The survey was designed to last approximately 20 minutes, and it was uploaded to 

Survey Monkey47 and customized for full usability on this website. Before administering this 

instrument, we tested it with two researchers from the Physics Department at CINVESTAV and 

incorporated some of their comments in the final version48. All the scientists that belong to the 

field of physics and related areas (like applied physics, optics and material science among others) 

in Mexico that were part of CONACYT’s National Research System by the end of 2010 were 

invited to participate. We collected all the answers in March of 2011. 

Before continuing with this work it is appropriate to give a small description of Mexico’s 

National Research System, or SNI (acronym in Spanish). The SNI System was created in 

the1980s by the Mexican Government to recognize the scientific and technological contribution 

of researchers in this country. The recognition is based on peer review evaluations and grants the 

appointment of National Researcher. This system has four levels, which are based on 

performance: candidate (which usually is the entry level to the system) and levels one, two and 

three, where the last level is the highest recognition within this system. Parallel to the 

appointment, the researcher receives an economic incentive based on the tier she belongs to 

(CONACYT, 2012). 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
47 http://www.surveymonkey.com. 
48 This survey was approved by the Carnegie Mellon University Institutional Review Board 
(www.cmu.edu/osp/regulatory-compliance/human-subjects.html). 
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4.4. Analysis and Results 

4.4.1. Summary Statistics 

In this section we describe our sample in terms of tenure, eminence and performance. For 

such purpose, we distinguish between two forms of eminence: one based on our definition of star 

scientist, noted previously; and the second based on the different levels of the National Research 

System of CONACYT. Table 4.2 shows the size of our sample, the number of physicists that 

answered our survey and the response rate. From this table it can be seen that almost 20% of 

physicists in Mexico answered our survey. 

Table 4.2. Sample space and response space 
 Number of Researchers 
Sample Space – Physics and related areas 1358* 
Number of people that:  
  - Started the survey 346 
  - Completed the survey 263 
Response rate: 19.4% 
* This number corresponds to all researchers that were part of SNI at the beginning of 2011 
in Physics and related areas, before we applied the online survey (CONACYT, 2011). 
 

Figure 4.1 shows the distribution of researchers by tenure and gender. From this figure it 

can be seen that our sample is relatively “young” in tenure, since 45% of it has less than 10 years 

in the system. In addition, there is on average a 3:1 male to female ratio in our sample. 

According to recent data from CONACYT, Mexico has 1358 researchers in the field of Physics 

and related areas, among which 195 (or 14%) are women (CONACYT-SIICYT, 2011).  
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Figure 4.1. Distribution of Researchers by Tenure and Gender.   
 

Table 4.3 reports the distribution of researchers by SNI level (real and sample) and self-

reported eminence. We can see that 21% of our sample are candidates, 43% belong to SNI level 

1, 21% to level 2 and 12% to level 3. In addition, it can be seen that the candidate category is 

slightly overrepresented, although the distribution of researchers appears to be the same. 

Furthermore, this table shows that our sample has a high self-esteem, since 32% think they are 

on average more productive than their peers and 29% think they have a higher impact. But self-

reported eminence is correlated with the SNI level, which is positive.  
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Table 4.3. Distribution of Researchers by SNI level and self-reported eminence 

   Researcher sees herself as a star-scientist 
 

SNI 
Distribution  Articles  Citations 

 Real(1)  Sample  No  Yes  NA  No  Yes  NA 
 %  # %(2)  # %(3)  # %(3)    # %(3)  # %(3)   
None 0%  5 2%  4 80%  1 20%    3 60%  0 0%  2 
Candidate 16%  55 21%  49 89%  6 11%    51 93%  2 4%  2 
Level 1 45%  114 43%  84 74%  29 25%  1  79 69%  24 21%  11 
Level 2 23%  56 21%  32 57%  24 43%    29 52%  27 48%   
Level 3 16%  32 12%  8 25%  23 72%  1  7 22%  24 75%  1 
Blank   1 0%        1        1 
Number, %(4)   263 100%  177 67%  83 32%  3  169 64%  77 29%  17 
(1) Percentage of the total number of SNI researchers in Physics and related areas (CONACYT-SIICYT, 2011). 
(2) Percentage within SNI Level of our sample. 
(3) Percentage from total (263). 
(4) Percentage across categories. 
NA = No Answer. 

 

4.4.2. Entry into the system and factors promoting initial collaborations 

Table 4.4 illustrates how our sample entered the system. These data were aggregated in 

groups of three columns showing (from left to right) the number of researchers that entered with 

other researchers, a Research Group, or the leader (w/ Principal Investigator) of an RG. In 

addition, the last two columns of each triplet show the number of researchers that were exposed 

early on in their career to a top-performing environment, i.e, an eminent scientist (w/ Star or Top 

PI) or top RG. From this table it can be seen that, in general, these scientists started collaborating 

early on in their careers, with 95% of them working with other researchers on their first 

manuscripts. Moreover, 3 out of 4 did it with an RG and 67% collaborated directly with the 

leader of a group. In addition, 44% of our sample were exposed to a top-performing environment 

– such as star scientist, a top-RG or a top-PI. Furthermore, this exposure happened at a higher 

degree for milieus with high productivity than those with a high citation rate. For example, 70% 

of our sample reported that they collaborated at the beginning of their career with a highly 

productive scientist, while only 58% did so with a high impact researcher.  
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Table 4.4. Entry into the system 
 Type of entry 

w/ another 
researcher  w/ Research Group 

(RG)  w/ Principal 
Investigator (PI)  

  w/ Star    Top RG    Top PI  
N=263   Art. Cit.   Art. Cit.   Art. Cit. 
Yes 249  183 152  201 139 118  177 146 117 
Percentage             
Total1 95%  70% 58%  76% 53% 45%  67% 56% 44% 
Within 
category2   73% 61%   69% 59%   82% 66% 

No 13  65 76  48 60 65  22 31 47 
No answer 1  15 35  14 64 80  64 86 99 
1 Total: Percentage based on the total number, N=263 
2 Within category: Percentage based on the total number within category: N1=249, N2=201 and N3=177. 

 

Table 4.5 shows how the scientists in our sample initiated their first collaborations. It 

provides the frequency rate (based on the total sample) of these initial publications by research 

environment and collaboration type. The table suggests that the mechanisms by which 

collaboration is initiated relate differently to the various collaborative environments that 

researchers can experience. First, structured competitive processes, like applying to a Ph.D. or 

postdoctoral program, tend to be associated with greater levels of collaboration with a (formal) 

research group, or its PI. In contrast, informal processes are more relevant when linking with an 

informal group of scientists (two to six coauthors). In addition, it seems that new researchers will 

actively seek to collaborate with specific researchers or the leaders of research groups. 
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Table 4.5. Factors promoting initial collaborations 
Type of Publishing Initiation  

Research Environment* 
(percentage relative to category) Formal  Informal  Search by 

researcher 
a. Alone 19%  18%  12% 
b. Only one coauthor 31%  35%  21%(2) 
c. Two to six coauthors 40%  56%(1)  21%(2) 
d. Seven or more coauthors 17%  22%  8% 
e. Star scientist – Art. 37%(3)  37%  17% 
f. Star scientist – Cit. 32%  35%  16% 
g. RG 49%(1)  43%(2)  17% 
h. Top RG – Art. 37%  31%  14% 
i. Top RG – Cit. 34%  30%  13% 
j. PI 44%(2)  39%(3)  22%(1) 
k. Top PI – Art. 35%  36%  20% 
l. Top PI  – Cit. 32%   33%   17% 
* First five or fewer papers published within contexts (a) to (h).  
NOTE: There can be double counting across research environments. 
(X) Indicates the collaboration startup with the highest percentage within collaboration categories. 

 

4.4.3. Impact, opportunities and learning 

As previously noted, the various avenues for research collaborations are expected to have 

diverse benefits and costs to scientists throughout their professional career. In this work we 

sought to better understand the impact that the different research environments that young 

scientists were exposed to had on their career. In particular, we assessed the impact that different 

forms of entry had on the scientists’ self-evaluation of eminence. In addition, we look at the 

opportunities these setting opened to them, as well as the knowledge they gained from these 

environments. 

Table 4.6 shows the impact that different forms of entry had on the likelihood of someone 

perceiving herself to be a top-scientist. The table suggests that early collaboration with a top-

research environment has a positive effect on the scientist’s perception of her own eminence; for 

example, scientists that cooperated with a top researcher at the beginning of their career had 

about  a 50% chance of seeing themselves as a prominent scholar; whereas the ones that did not 
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collaborate with this type of environment had a little bit more than a 25% chance of having an 

equivalent perception. This asymmetry is also prevalent in other environments. Moreover, the 

influence of any of the three critical collaborative dimensions on the likelihood that the young 

scientist becomes a star is equivalent. The data suggest that the odds that a budding scientist 

reaches eminence increases by 1.6 to 1.7 when exposed to any of these critical collaborative 

environments49. 

Table 4.6. Entry into the system and self-evaluation of eminence 
 Odds that a researcher sees herself as a star scientist 

Articles  Citations Type of entry 
Odds Odds ratio  Odds Odds ratio 

Entry with a star (N=249) 
  Based on Articles 74:175 42%    
       Yes 60:123 49%    
      No 14:52 27%    
  Based on Citations     70:179 39% 
      Yes    50:102 49% 
      No    20:77 26% 
Entry with a top RG (N=201) 
  Based on Articles 59:142 42%    
      Yes 45:94 48%    
      No 14:48 29%    
  Based on Citations     55:146 38% 
      Yes    37:81 46% 
      No    18:65 28% 
Entry with a top PI (N=177) 
  Based on Articles 52:125 42%    
      Yes 47:99 47%    
      No 5:26 19%    
  Based on Citations    48:116 41% 
      Yes    38:79 48% 
      No    10:37 27% 
Total 83:180 46%  77:186 41% 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
49 It’s greater for entering with a Top PI based on articles. Yet the number of observations is smaller for one of the 
categories, which might justify the unbalance.  
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Table 4.7 provides the response rate for the open question about “which research 

environment had the highest impact on your scientific career?50.” It considers three views of the 

population: (1) all the researchers in the sample; (2) a breakdown according to self-reported 

eminence of productivity and impact, as well as a cutoff according to (3) SNI level at the time 

that the questionnaire was implemented. For the first two categories there seems to be a 

consensus (with slight ordering differences) that research environments characterized by only 

one co-author, two or more co-authors, as well as an RG, had the highest impact on the career of 

those in our sample. In addition, the first two categories were also highly regarded by all SNI 

levels as being important. It is interesting to note that for the first two categories, as well as the 

first two SNI levels, early collaboration with star scientists and top PIs, do not seem to matter too 

much for this group of researchers. In contrast, there are important differences for scientists at 

level 3, where collaboration with star scientists and top PI were seen as having an important role 

in the career of this group of people. In fact, the data implies that the higher the SNI level the 

higher the important these two environments have on the development of researchers, for 

example, the importance of top PIs ranged from 7% at the candidate level up to 22% at level 3, 

the highest possible in SNI, whereas prominent scientists ranged form 11% up to 22%. In 

addition, these results also suggest that top scientists, such as those that have reached the top tier, 

saw a greater benefit in their development if they collaborated with only one researcher, in 

particular if this scholar was also an eminent one. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
50 For this question we received different types of answers, ranging from letters which made reference to the 
predefined researcher environments a to l, defined previously, to small paragraphs describing the setting that had the 
highest impact. The former set of answers were analyzed and converted to fit one of the following publishing 
milieus: a) alone, b) only one co-author, c) two or more co-authors, d) star scientists, e) RG, f) top RG, g) PI and h) 
top PI. In some cases, there was a 1-to-1 relationship between the answer and a setting, but in others an answer 
could fit more than one environment, in which case we included all the milieus that were relevant. 
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Table 4.7. Perceived Impact* of Research Environments upon entry and Eminence 
  Researcher sees herself as a star    
  Based on Art.  Based on Cit.  SNI Level 

Research 
Environment** 
(percentage within 
category) All  Yes No  Yes No  Non

e Candidate Level 1 Level 2 Level 3 

a. Alone 12%  14% 11%  13% 11%  0% 4% 10% 23% 16% 
b. Only one coauthor  26%(3)  30%(2) 23%(2)  31%(2) 22%(3)  33% 15% 27%(3) 30%(1) 31%(1) 
c. Two or more 
coauthors 35%(1)  35%(1) 34%(1)  34%(1) 33%(1)  17% 35%(1) 39%(2) 29%(2) 31%(1) 

d. Star Scientists  17%  14% 18%  19% 14%  0% 11% 17% 21% 22%(2) 
e. RG 32%(2)  27%(3) 34%(1)  23%(3) 32%(2)  67% 27%(2) 40%(1) 27%(3) 9% 
f. Top RG 12%  11% 12%  13% 11%  0% 15% 10% 13% 16% 
g. PI 20%  20% 19%  22% 18%  17% 22%(3) 23% 16% 13% 
h. Top PI 14%  16% 12%  17% 12%  0% 7% 14% 16% 22%(2) 
i. Other 1%  0% 2%  0% 2%       
Total 263  83 180  77 186  6 55 114 56 32 
*As reported by the researchers. 
**First five or less papers published within contexts (a) to (h). 
(X) Relative ranking within category. 

 

Table 4.8 provides the response rate for the open question “what opportunities did these 

different environments open?” and followed the same structure of the last table. From this table it 

can be seen that access to economic resources is the most important avenue that the different 

research environments have opened to young scientists. In addition, when comparing star and 

non-star researchers, there seems to be some difference between the two. The former ranks 

exposure to other ideas in second place and gives more importance to collaboration with 

foreigners, whereas the latter ranks exposure to other ideas in third place. Additionally, SNI top 

tier gave a greater importance to exposure to other ideas than any other option. In contrast, less 

prominent scientists and the lower ranks of SNI gave more importance to access to specialized 

laboratories. These outcomes suggest that non-star researchers focus more on resources, whereas 

eminent ones are more about ideas and international exposure. 
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Table 4.8. Perceived Opportunities* of Research Environments upon entry and Eminence 
  Researcher sees herself as a star    
  Based on Art.  Based on Cit.  SNI Level Opportunities 

(percentage within 
category) All  Yes No  Yes No  None Candidate Level 1 Level 2 Level 3 
Access to              

i. Economic resources 36%(1)  30%(1) 38%(1)  32%(1) 37%(1)  50% 45%(2) 35%(1) 32%(2) 25%(3) 
ii. Qualified personnel 17%  17% 17%  18% 16%  17% 20% 17% 13% 19% 
iii. Specialized 
laboratories 28%(2)  18% 32%(2)  19% 31%(2)  0% 47%(1) 25%(3) 21% 19% 

Collaboration 0%  0% 1%  0% 1%  0% 0% 0% 2% 0% 
ii. w/ labs 16%  17% 15%  18% 15%  17% 7% 17% 21% 16% 
iii. w/ universities 18%  18% 18%  19% 18%  17% 16% 20% 18% 16% 
iv. w/ foreigners 25%  25%(3) 24%  27%(3) 24%  17% 16% 24% 36%(1) 28%(2) 

g. Exposed to other ideas 27%(3)  27%(2) 28%(3)  29%(2) 27%(3)  17% 22%(3) 31%(2) 25%(3) 31%(1) 
Total 263  83 180  77 186  6 55 114 56 32 
*As reported by the researchers 
(X) Relative ranking within category. 

 

Table 4.9 provides the response rate for the question “what have you learned from the 

different environments (stated previously)?51,” where we follow the same structure of the last 

two tables. In general, there seems to be a consensus among the different categories that two of 

the main things scientists have leaned from the different settings is to (1) collaborate with other 

authors and (2) have access to new research techniques and (3) publish in ISI journals. However. 

Similarly to what was seen above, there seems to be a significant difference between researchers 

that have average productivity (or impact) vis-à-vis their eminent peers. Star scientists (as well as 

SNI levels 2 and 3) think that exposure to new ideas is the main insight they have learned from 

the different research environments, whereas non-star scientists give a higher weight to exposure 

to new research techniques. In addition, the data suggest that the higher the SNI level the higher 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
51 For this question we received different types of answers, ranging from one or two words to small paragraphs 
describing what scientists learned within one or more researcher settings. All the answers were analyzed and 
converted to fit one of the following options: a) new ideas, b) new research techniques, c) write research proposals, 
d) publish ISI articles, e) teach/advise scientists, and d) collaborate with other scientists. In some cases, there was a 
1-to-1 relationship between the answer and a setting but in others an answer could fit more than one environment, in 
which case we included all the options that were relevant. 



!

 111!

the importance of learning new ideas in their early collaborations; ranging from 25% in 

candidates up to 56% in SNI’s top tier. Furthermore, these results show that there is a difference 

between scientists that see themselves as highly productive and the ones that have high impact; 

the former learned how to publish ISI articles in their initial collaborations, whereas the latter 

learned new research techniques. These results suggest that less preeminent scholars concentrate 

more on acquiring the “basic” research skills (like learning how to publish or understanding the 

different research techniques) from their early collaborators. In contrast, top scientists center 

their efforts on exposure to new ideas and the frontier of science. 

Table 4.9. Learning* within a Research Environment upon entry and Eminence 
 Researcher sees herself as a star       
 Based on Art.  Based on Cit.  SNI Level Learning 

(percentage within 
category) All 

 
Yes No  Yes No  None Candidate Level 1 Level 2 Level 3 

a. New ideas 38%  41%(1) 35%  48%(1) 31%  33% 25% 37% 43%(1) 56%(1) 
b. New research 
techniques 41%(1)  33% 44%(1)  38%(3) 40%(1)  33% 45%(2) 43%(2) 36%(2) 41%(2) 

c. Write research 
proposals 24%  18% 26%  22% 22%  50% 25% 28% 14% 19% 

d. Publish ISI articles 39%(3)  36%(2) 39%(2)  35% 37%(2)  17% 49%(1) 42%(3) 29% 31%(3) 
e. Teach/advise scientists 15%  16% 15%  17% 15%  17% 20% 18% 9% 9% 
d. Collaborate w/ other 
scientists 40%(2)  41%(1) 39%(2)  47%(2) 35%(3)  33% 38%(3) 45%(1) 43%(1) 25% 

Total 263  83 180  77 186  6 55 114 56 32 
*As reported by the researchers 
(X) Relative ranking within category. 

 

4.5. Conclusion and Policy Implications 

In the last decades, ST&I have been seen as a major source of economic growth. A key 

and growing force behind the evolution of science is the ability of scientists to collaborate with 

other researchers, foster nurturing environments and develop cooperative projects with other 

sectors. 
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 In the past, scholars have studied the factors that promote research collaboration and 

assessed the cost and benefits these interactions produce for the individual researcher and the 

whole realm of science. This paper contributes to this body of knowledge by evaluating how 

research collaboration in the early stages of the academic life of a researcher can influence the 

development of new researchers. In particular, this work assesses the impact that various 

research environments have on the development of the next generation of scientists, as well as 

the factors that promote collaboration with a particular setting. In addition, it looks into the 

opportunities these interactions open and benefits they produce to this group of people. 

 Our analysis confirms the importance of research collaboration in the development of a 

scientific system, especially within the context of an emerging economy like Mexico. In 

particular, this work shows that 95% of physicists in Mexico52 started early on in their career 

cooperating with another scientist, and three quarters did so in the context of a research group. In 

addition, this work shows that scientists highly regard their initial collaborators, since 47% to 

73% said that early on in their careers they conducted research within a top research 

environment, like an eminent scientist or top research group, during their first publications.  

This works also shows that scientists will have a higher propensity to start collaborating 

organically with an informal group of researchers, in this case two to six co-authors. But if they 

have to apply for a position, like a Ph.D. or postdoctoral research program, their initial 

interactions will be with an established RG. Additionally, proactive scholars (i.e., the ones that 

actively sought out their co-authors) will prefer to collaborate with the leaders of those groups. 

These observations suggest that competitive processes and the entry of new scientists in the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
52 Our sample consisted in 263 researchers; this represents almost 20% of all the SNI researchers that belong to this 
field and related areas. 
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context of formal research groups are two related and intertwined dimensions in the evolution of 

a science system. 

 In terms of the impact research collaboration has on new scientists, this work confirms 

the importance that eminent researchers, as well as top PIs, have in the development of other 

prominent scholars, in particular in SNI’s top tier. In addition, this study suggests that star and 

non-star scientists, early on in their academic careers, focus on opening different opportunities 

and gaining different knowledge from their interactions with other researchers. In particular, less 

preeminent researchers focus more on gaining access to economic and physical resources (like 

specialized laboratories), and learning “basic” scientific skills (like publishing or research 

techniques), whereas more preeminent ones are more about new ideas and international 

exposure. 

These results have implications for policy-making in science, technology and innovation 

systems. They deepen our understanding of the role that eminent scientists, but also strong 

research groups, have in developing the next generation of prominent scholars. In addition, they 

suggest that initial collaborations in science open different opportunities and teach different 

things to star and non-star scientists. In particular, early interactions allow prominent scholars to 

gain access to international scholars and learn the latest ideas. This means that if a system wants 

to be on the cutting edge of science it should actively advance international collaboration, create 

exchange agreements for their young scientists, and promote the acquisition of nascent ideas. 

While the traditional way has been through the apprenticeship at the lab, it may be possible to 

provide access to these new and important ideas through alternative mechanisms.  
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Chapter 5. Conclusions 

As research collaboration increases in importance, research administrators and policy 

makers are trying to better grasp this phenomenon. Changes in the realm of science, including 

tightening budgets and higher awareness of the outputs of ST&I systems, are demanding a better 

understanding of cooperation and improved methods for assessing these interactions. This thesis 

exploits patterns of collaboration in science to propose and test a method that identifies and 

assesses research groups endogenously. In addition, it evaluates the impact this cooperation has 

on the progress of the ST&I system. In particular, it considers the influence that collaborative 

environments, including research groups or the presence of a prominent scientist, have on new 

scholars, as well as the opportunities that these various milieus open to the acquisition of new 

knowledge and competencies. This concluding chapter summarizes the major findings and 

discusses its contributions to the literature, its implications for science policy, and its 

implications for future research.  

5.1. Summary of empirical findings 

Using the patterns of collaboration and the strength of these interactions, Chapter 2 

proposes a method to identify and assess research groups that takes into account the self-

organizing characteristics of the research endeavor. The method is then tested with a database 

from the fields of Physics and related areas containing all the papers published in Mexico 

between 1995 and 1999 (as reported by ISI). The method produces three main results. First, the 

strength and frequency of the collaboration patterns allow us to identify cohesive groups, 

regardless of the institutional or location context of their members (researchers). In addition, this 

new technique allows its users to take into account the lack of homogeneity within institutions in 
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their evaluation efforts. Second, the knowledge footprint (KFP) allows potential evaluators to 

identify similar research groups, assess these groups and produce more meaningful evaluations, 

where benchmarks have reasonable proximity in their research characteristics. Third, the method 

shows that research done by the different groups in Physics and related areas in Mexico is mostly 

non-redundant. This means that each RG is (virtually) focused in one area of the research space 

with little overlap with other groups. This is perhaps not surprising because of the small size of 

the Mexican science system, which provides ample opportunities for each group to find its own 

research space.  

Chapter 3 provides quantitative evidence that prominent scholars have a prime role in the 

development of the scientific system, especially within the context of an emerging economy like 

Mexico. More significantly, this group of scientists has a significant effect on the research 

productivity and impact of new researchers with whom they collaborate upon entry into science. 

Their contribution is quite significant, with this early link conditioning the likelihood that young 

faculty will in turn become a future star. This chapter also shows that nurturing environments, 

like top research groups, have an impact on the scientific outcomes of incoming scientists, but 

only in terms of their productivity (i.e. number of publications), not necessarily on their impact 

and visibility (as measured by citations). 

Finally, Chapter 4 builds on the previous section by asking researchers to assess how the 

various nurturing environments, including prominent scholars, top research groups and other 

types of milieus impact the opportunities and acquired knowledge of young researchers. This 

chapter suggests that, from the beginning of their career, star scientists have a different mindset 

when compared with non-star scientists. Prominent scholars are focused on acquiring new ideas 

and being exposed to the frontier of science through international collaboration and relations 
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with existing stars, whereas less prominent scholars are more focused on obtaining access to 

economic and physical resources (like specialized laboratories), and learning “basic” scientific 

skills (like publishing or research techniques). 

5.2. Policy Implications 

A variety of science and public policy challenges arise from the findings of the thesis. 

First, when making assessments of the ST&I, this thesis suggests that research administrators, 

policy makers and scholars should be aware of the heterogeneity within this system. This means 

that they should pay close attention to how they define the unit of analysis, and compare and 

rank these entities only when there is a reasonable overlap in their knowledge footprint. This is 

particularly important in small emerging science systems, as in the case of Mexico, where 

research groups are likely to be very heterogeneous, with productive and lagging groups working 

side by side in the same department. In such cases, an average level of scientific productivity for 

an overall departmental unit produces information of limited value to the assessors. Assessments 

should incorporate international visiting committees, and the performance of the different units 

of analysis may be compared with peers in similar economies/systems, rather than unrelated 

units within the same system. For example, for the Mexican research groups, a benchmark could 

be Brazilian teams. 

Second, the findings of the thesis are consistent with existing research suggesting that 

prominent scientists have a primary role in the progress of the ST&I system. But the work goes 

further. First it shows the critical role that these stars play in the development and productivity of 

young faculty. In addition, it demonstrates how research collaborators in the context of a group 

play an additional role in the construction of these systems, especially to learn the tools of the 
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trade. This means that research groups are key for the dissemination of the scientific endeavor 

and cumulatively building of domestic capabilities. But if a country or region wants to become a 

leader in a certain area of knowledge, it may need to focus on attracting and retaining the best 

and the brightest, and creating around these key figures appropriate collaborative environments 

so that top research can flourish. 

Finally, the results of this thesis show that, early on in their career, scholars who later 

become stars benefit by collaborating with international peers and existing star scientists, which 

allows them to be exposed to the frontier of science by learning new ideas. In contrast, less 

prominent scientists focus more on obtaining access to economic and physical resources (like 

specialized laboratories), and learning “basic” scientific skills (like publishing or research 

techniques) through their research groups. Therefore, if a system wants to promote the 

development of its researchers, particularly eminent ones, international collaboration is critical, 

and the exchange of scientists across and within countries and institutions, (especially with 

leading research centers), appears to be particularly significant for young scholars. What they get 

through this exposure are the new ideas of the future of science. That, rather than just the how to 

or the resources, appears to distinguish the good from the top. 

5.3. Future work 

While the analyses and results of this thesis fill important gaps on the assessment of 

science and research collaboration literature, they also generate new questions that need to be 

addressed in subsequent work. First, further work should look at the effect that other measures of 

group cohesiveness (e.g. n-cliques, k-plexes, etc.) have on collaborative groups. In addition, 

additional analysis is needed to test the robustness of the method shown in chapter 2, by 
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incorporating other fields of knowledge or using data from other countries or regions. 

Furthermore, this method could be used to increase our understanding of the determinants of 

research productivity (Gonzalez-Brambila and Veloso, 2007) in a number of ways. One 

possibility is to study how the characteristics of the naturally emerging groups are tied to their 

productivity. Another possibility would be to extend the approach to other types of research 

output data amenable to equivalent analysis, in particular patents. 

Second, further analysis on the impact eminent scientists have on the ST&I system 

should incorporate a variety of complementary variables. One would certainly be the availability 

and accessibility of individual and institutional economic resources. Another is the role that the 

star plays within the research organization, distinguishing whether this person is a department 

head or the leader of a lab, as well as their position within its broader network of collaborators 

and the whole system (e.g. degree centrality, structural hole). Country of origin and, in general, 

international vs. domestic collaborations are also a dimension that could be further brought to 

complement the work. Finally, while ISI papers and citations have been the core variables used 

in the research, it would be good to include other measures of performance, such as number of 

Master and Ph.D. advisees, or patents. Each and all of these would allow a more complete, and 

therefore more robust, picture of the role of eminences and research groups. 
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Appendix A. Institutional Codes 

A.1. Overview 

In this section we provide a list of all the Mexican institution and their respective 

acronyms used in chapter 2, table A.1 provides this list. 

Table A.1. Institutional Codes 
Acronym Institution Name 
UNAM  Universidad Nacional Autónoma de México, 
CINVESTAV  Centro de Investigación y de Estudios Avanzados, 
UAM I  Universidad Autónoma Metropolitana – Iztapalapa 
BUAP  Benemérita Universidad Autónoma de Puebla 
CIO  Centro de Investigación en Óptica 
INAOE  Instituto Nacional de Astrofísica, Óptica y Electrónica 
IPN  Instituto Politécnico Nacional 
UASLP  Universidad de San Luis Potosí 
CICESE  Centro de Investigación Científica y de Educación Superior de Ensenada 
UniGuan  Universidad de Guanajuato 
UniSon  Universidad de Sonora 
ININ  Instituto Nacional de Investigaciones Nucleares 
UAM A  Universidad Autónoma Metropolitana – Azcapotzalco 
UAEdoMor  Universidad Autónoma del Estado de Morelos 
UniGDL Universidad de Guadalajara 
UAZ  Universidad Autónoma 
UAQ  Universidad Autónoma 
UniMich  Universidad Michoacana de San Nicolás de Hidalgo 
IMP  Instituto Mexicano del Petróleo 
ITESM  Instituto Tecnológico y de Estudios Superiores de Monterrey 
CIMAT  Centro de Investigación en Matemáticas 
UDLAP  Universidad de las Américas Puebla 
UAEdoMex  Universidad Autónoma del Estado de México 
UANL  Universidad Autónoma de Nuevo León 
UABC  Universidad Autónoma de Baja California 
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Appendix B. Sensitivity Analysis 

B.1. Overview 

In this section we present the sensitivity analysis of the OLS and LOGIT models (of 

tables 3.8, 3.9, 3.11 and 3.12) using a two standard deviation definition (2SDV), instead of a one 

standard deviation (1SDV), for the star scientists definition. The impact of entering the systems 

with a star and a top-PI that has been defend with a more stringent measure (i.e. 2SDV) is higher. 

B.2. Regression Models 

Table B.1 shows the productivity increase using the second definition for eminent 

scientists based on productivity (i.e. number of articles). Researchers that entered the system 

with star-2SDV were on average 37% more productive than the ones that did it with a star-

1SDV. And the ones that did it with a top-PI 2SDV were on average 27% more productive than 

the ones that did it with a top-PI 1SDV. 

Table B.1. Productivity increase by type of entry, articles per year, 2SDV, 1984-2001 
Type of Entry 
(Std. Err.) 
[Total Effect*] 

AIb-01 AI-02 AIb-03 AI-04 AIb-05 AIIb-01 AIIb-02 AIIb-03 AIIb-04 

0.379 c     0.352 c 0.339 c 0.352 c 0.346 c 
(0.041)     (0.041) (0.042) (0.041) (0.042) Star**,  

articles [32%]     [38%] [36%] [38%] [37%] 
 0.136 c     0.061 a   
 (0.035)     (0.036)   coAU in RG, 

articles   [15%]     [7%]   
  0.426 c   0.287 c 0.270 c   
  (0.085)   (0.085) (0.085)   coAU in top 

RG**, articles   [46%]   [31%] [29%]   
   0.098 c     0.021 
   (0.031)     (0.031) coAU-PI of RG, 

articles     [11%]     [NA] 
    0.569 c   0.444 c 0.435 c 
    (0.111)   (0.111) (0.112) coAU-PI of top 

RG**, articles     [64%]   [48%] [47%] 
* Total Effect = coefficient divided by the sample’s average 
** Star and top RG defined based on the average plus two standard deviations 
a 10% confidence level, b 5% confidence level, c 1% confidence level 
NA coefficient is not significant 
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Table B.2 shows the impact increase using the second definition for eminent scientists 

based on impact (i.e. number of citations). Researchers that entered the system with star-2SDV 

received on average 53% more citations than the ones that did it with a star-1SDV. And the ones 

that did it with a top-PI 2SDV had 102% more citations than the ones that did it with a top-PI 

1SDV. 

Table B.2. Productivity increase by type of entry, citations per year, 2SDV, 1984-2001 
Type of Entry 
(Std. Err.) 
[Total Effect*] 

CIb-01 CI-02 CIb-03 CI-04 CIb-05 CIIb-01 CIIb-02 CIIb-03 CIIb-04 

4.356 c     4.364 c  4.291 c 4.327 c 4.285 c 
(0.258)     (0.268) (0.268) (0.268) (0.270) Star**,  

citations [233%]     [234%] [230%] [232%] [230%] 
 0.814 c     0.499 a   
 (0.176)     (0.168)   coAU in RG, 

citations   [41%]     [27%]   
  1.979 c   -0.051 -0.172   
  (0.484)   (0.474) (0.475)   coAU in top 

RG**, citations   [106%]   [NA] [NA]   
   0.536 c     0.200 

   (0.152)     (0.146) coAU-PI of RG, 
citations     [27%]     [NA] 

    3.063 c   0.257 0.190 
    (0.655)   (0.644) (0.646) coAU-PI of top 

RG**, citations     [164%]   [NA] [NA] 
* Total Effect = coefficient divided by the sample’s average 
** Star and top RG defined based on the average plus two standard deviations 
a 10% confidence level, b 5% confidence level, c 1% confidence level 
NA coefficient is not significant 

 

Table B.3 shows the likelihood of becoming a leading researcher using the second 

definition for eminent scientists based on productivity (i.e. number of articles). Researchers that 

entered the system with star-2SDV were on average 74% more likely of becoming a leading 

scientist than the ones that did it with a star-1SDV. And the ones that did it with a top-PI 2SDV 

were on average 69% more likely than the ones that did it with a top-PI 1SDV definition. 
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Table B.3. Likelihood of becoming a Star by type of entry, articles per year, 2SDV, 1984-2001 
Type of Entry 
(Std. Err.) AIVb-01 AIV-02 AIVb-03 AIV-04 AIVb-05 AVb-01 AVb-02 AVb-03 AVb-04 

4.872 c     4.452 c 4.047 c 4.299 c 4.164 c Star*,  
articles (0.982)     (0.922) (0.859) (0.889) (0.907) 

 1.491 b     1.533   coAU in RG, 
articles  (0.249)     (0.421)   

  4.213 c   2.067 a 1.943 a   coAU in top 
RG*, articles    (1.568)   (0.815) (0.764)   

   1.519 c     1.099 coAU-PI of RG, 
articles    (0.203)     (0.231) 

    8.637 c   3.675 c 3.584 c coAU-PI of top 
RG*, articles     (3.592)   (1.803) (1.767) 
* Star and top RG defined based on the average plus two standard deviations 
a 10% confidence level, b 5% confidence level, c 1% confidence level 

 

Table B.4 shows the likelihood of becoming a leading researcher using the second 

definition for eminent scientists based on impact (i.e. number of citations). Researchers that 

entered the system with star-2SDV were on average 16% more likely of becoming a leading 

scientist than the ones that did it with a star-1SDV. And the ones that did it with a top-PI 2SDV 

were 77 % more likely than the ones that did it with a top-PI 1SDV definition. 

Table B.4. Likelihood of becoming a Star by type of entry, citations per year, 2SDV, 1984-2001 
Type of Entry 
(Std. Err.) CIVb-01 CIV-02 CIVb-03 CIV-04 CIVb-05 CVb-01 CVb-02 CVb-03 CVb-04 

8.971 c     8.339 c 7.946 c 8.491 c 8.461 c Star*,  
citations (1.795)     (1.226) (1.649) (1.756) (1.785) 

 1.865 c     1.386   coAU in RG, 
citations   (0.383)     (0.299)   

  4.845 c   1.229 1.673   coAU in top 
RG*, citations    (1.791)   (0.708) (0.666)   

   1.444 b     1.014 coAU-PI of RG, 
citations    (0.226)     (0.171) 

    7.317 c   1.755 1.747 coAU-PI of top 
RG*, citations     (3.658)   (0.951) (0.952) 
* Star and top RG defined based on the average plus two standard deviations 
a 10% confidence level, b 5% confidence level, c 1% confidence level 
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Appendix C. Questionnaire 

C.1. Overview 

In this section we present the questionnaire we used to collect the information from 

Mexican Physicists presented in chapter four of this thesis. Carnegie Mellon University’s 

Institutional Review Board (IRB) approved this instrument and the research protocol of this 

study. 

C.2. Questionnaire 

This questionnaire is divided in the following sections: 
• Section 1 – Personal Data. 
• Section 2 – Entry to the research system. 
• Section 3 – Influence and impact of different research environments in the development of new researchers. 

N.B.: In section three open-ended questions will be asked; please bare in mind this so you do not give information of 
someone else which is both identifiable and private/sensitive. 
If you have any questions about this survey (or my research) do not hesitate to contact me at 
lreyesgo@andrew.cmu.edu or give me a call +52 (55) 8421-6910. 
Section 1 – Personal Data  
1.1 Age: ____________ Sex: _____________  
1.2 Research Area: _____________________________________________ 
1.3 Type of Research (Theoretical/experimental): ______________________________________ 
1.4 Maximum level of study: _____________________________________________________ 
1.5 Starting year for maximum level of study: _______________________________________ 
1.6 Finishing year for maximum level of study: ____________________________________ 
1.7 Institution where the maximum level of study was obtained: _______________________________ 
1.8 Department/School/Faculty where the maximum level of study was obtained: ___________________ 
1.9 Current institutional affiliation: ____________________________________________________ 
1.10 Current departmental/School/Faculty affiliation: _________________________________________ 
1.11 Seniority at current institution/department: _________________________ 
1.13 Category within the (Mexican) National Researcher System: ____________________________ 
1.14 Considering that an ISI article is a manuscript that has been published in a journal indexed by the Institute for 
Scientific Information, please indicate the number of manuscripts you have published and an approximate number of 
citations you have received for those publications: 
 Number of articles Approximate number citations 
ISI Articles   
Other type of articles    
Books   
 
1.16 Within academia, do you consider that you play a more prominent role than other researchers in terms of the 
number of: 
• Published articles (YES/NO): ______________ 
• Received citations (YES/NO): ______________ 
 
 
 



!

 148!

Section 2 –Entry to the research system 
2.1 Considering that entry to the system is when you published your first article or book by yourself or with one or 
more authors, in which year you entered your first manuscript, or entered the system? ______ 
2.2 Institution you were affiliated when you entered the system: ______________________________ 
2.3 Department/School/Faculty you were affiliated when you entered the system: ___________________ 
2.4 Highest degree obtained when you entered the system: ______________________________ 
2.5 Was your first publication an ISI article (YES/NO): _______________________ 
2.6 In which year you published your first ISI article? ___________________ 
2.7 Please indicate under which collaboration scheme you published your first five articles (or less if you have 
published a lower number): 
Collaboration scheme* Number of articles 
Individual publications, where you are the only author  
Publications with only one coauthor   
Publications with two or more coauthors up to six coauthors  
Publications with seven or more coauthors  
*Mutually exclusive categories  
In case your first five manuscripts were individual publications please continue in section 3. 
2.8 Do you consider that any of your coauthors of your first five publications (or less if you have published a 
lower number) was playing at the time of publishing these manuscripts a more prominent role in academia than 
other researchers in terms of: 
• Published articles (YES/NO): ______________ 
• Received citations (YES/NO): ______________ 
2.9 Considering that a Research Groups (RG) is a group of people that collaborates repetitively in scientific 
research and publishes the results of these activities in articles or books, please indicate for your first five 
publications (or less if you have published a lower number) the number of articles that were developed/elaborated 
within a RG: __________ 
 
In case your first manuscripts were not developed/elaborated within a RG please continue in section 3. 
2.10 Your first five manuscripts (or less if you have published a lower number) were developed/elaborated in the 
same RG (YES/NO): _______ 
2.11 What was the average size of these RGs (number of researchers)? _____________ 
2.12 What was the maximum size of these RGs (number of researchers)? _____________ 
2.13 Do you consider that any of the RG where you developed/elaborated your first five publications (or less if 
you have published a lower number) was playing at the time of publishing these manuscripts a more prominent 
role in academia than other RG in terms of: 
• Published articles (YES/NO): ______________ 
• Received citations (YES/NO): ______________ 
2.14 Considering that a Principal Investigator of a research group (PI-RG) (defined in question 2.9) is the 
scientific leader of the group, please indicate for your first five publications (or less if you have published a lower 
number) the number of articles that were developed/elaborated with the PI-RG: ______ 
In case your first manuscripts were not developed/elaborated with the PI-RG please continue in section 3. 
2.15 Do you consider that any of PIs you have collaborated on your first five publications (or less if you have 
published a lower number) was playing at the time of publishing these manuscripts a more prominent role in 
academia than other researchers in terms of: 
• Published articles (YES/NO): ______________ 
• Received citations (YES/NO): ______________ 
 
 
Section 3 – Influence and impact of different research environments in the development of new researchers. 
3.1 Considering that 
• A FORMAL COLLABORATION is when you are invited to collaborate after participating in a competitive 

process at a research institution/program and being admitted to it (like admission to a PhD program or post 
doctoral position), 

• An INFORMAL COLLABORATION is when you were invited to collaborate without such competitive 
process, and  

• A COLLABORATION YOU LOOKED FOR is when you actively searched for that collaboration by yourself; 
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please indicate for your first five publications (or less if you have published a lower number) and the following 
research environments how you started to collaborate within a particular environment. 
Chose all the options that apply in your case, you can chose more than one option per row. 
If you have never collaborated in such environment choose N/A (no available): 
 

 How you start your collaborations? 

Research environment 

Through a 
FORMAL 

collaboration 
process:  

Through a 
INFORMAL 
collaboration 

process: 

You looked for 
the 

collaboration: 

Other form of 
collaboration, 
please specify 

in the next 
question: 

N/A 

Publish individually:      
Collaborate and publish with only one coauthor:      
Collaborate and publish with two or more coauthors up to 
six coauthors: 

     

Collaborate and publish with seven or more coauthors:      
Collaborate and publish with a researcher that on average 
had at the time this collaboration started a higher: 

     

Number of articles than the majority of scientists in the 
same field of research: 

     

Number of citations than the majority of scientists in 
the same field of research: 

     

Collaborate and publish in a research group (RG):      
Collaborate and publish within a RG that on a average 
had at the time this collaboration started a higher: 

     

Number of articles than the majority of groups in the 
same field of research: 

     

Number of citations than the majority of groups in the 
same field of research: 

     

Collaborate and publish with a principal investigator of a 
research group (PI-RG):  

     

Collaborate and publish with a PI-RG that on average had 
at the time this collaboration started a higher: 

     

Number of articles than the majority of scientists in the 
same field of research: 

     

Number of citations than the majority of scientists in 
the same field of research: 

     

Other research environment, specify:      
 
3.2 In case you chose OTHER form of collaboration to the previous question please specify how you started this 
collaboration? 

Research environment How you started this collaboration? 
  

 
3.3 Based on a scale of 1 to 4 (where 1 is “no impact” and 4 is “high impact”) please indicate the impact the 
following research environments have had in your scientific career.  
You can only chose ONE OPTION per row. 
If you have never collaborated in such environment choose N/A (no available): 
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1 2 3 4 
Research environment No 

Impact 
Low 

Impact 
Medium 
Impact  

High 
Impact 

N.A. 

Publish individually:      
Collaborate and publish with only one coauthor:      
Collaborate and publish with one or more coauthors up to six coauthors:      
Collaborate and publish with seven or more coauthors:      
Collaborate and publish with a researcher that on average had at the time this 
collaboration started a higher: 

     

Number of articles than the majority of scientists in the same field of research:      
Number of citations than the majority of scientists in the same field of 
research: 

     

Collaborate and publish in a research group (RG):      
Collaborate and publish in a RG that on a average had at the time this 
collaboration started a higher: 

     

Number of articles than the majority of groups in the same field of research:      
Number of citations than the majority of groups in the same field of research:      

Collaborate and publish with a principal investigator of a research group (PI-
RG):  

     

Collaborate and publish with a PI-RG that on average had at the time this 
collaboration started a higher: 

     

Number of articles than the majority of scientists in the same field of research:      
Number of citations than the majority of scientists in the same field of 
research: 

     

Other research environment, specify:      
 
In the remaining part of this section, open-ended questions will be asked; please bare in mind this so you do not give 
information of someone else which is both identifiable and private/sensitive. 
3.4 In terms of opportunities, what opportunities these research environments  
a) Publish individually: 
b) Collaborate and publish with only one coauthor: 
c) Collaborate and publish with one or more coauthors: 
d) Collaborate and publish with a researcher that on average had at the time this collaboration started a higher a 

number of articles/citations than the majority of scientists in the same field of research: 
e) Collaborate and publish in a research group (RG): 
f) Collaborate and publish in a RG that on a average had at the time this collaboration started a higher number of 

articles/citations than the majority of groups in the same field of research: 
g) Collaborate and publish with a principal investigator of a research group (PI-RG):  
h) Collaborate and publish with a PI-RG that on average had at the time this collaboration started a higher number 

of articles/citations than the majority of scientists in the same field of research: 
i) Other research environment, specify: 

have opened to you? (e.g. access of financial resources; qualified personnel’ specialized labs; opportunities to 
collaborate people at other research institutions, countries; being exposed to new ideas; etc. 

Research environment(s) with the highest 
impact on your scientific career  

What opportunities these research environments have opened to you? 
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3.5 In terms of learning, what have you learned from these research environments (discussed previously)? (e.g. new 
ideas; different research techniques; write research proposals; publish ISI articles; teach or advise other scientists; 
collaborate with other researchers; etc.): 

Research environment(s) with the highest 
impact on your scientific career 

What have you learned from these research environments? 

  
 
3.6 Is there another situation or setup that had influence positively or negatively the development of your scientific 
career. If this is the case pleas indicate, what has been this situation, the impact of it and what have you learned from 
it? 

Situation Impact What have you learned from this situation? 
   

 
Are you willing to have a more in-depth conversation with us about this topic and answer some additional questions 
(YES/NO): ____________________ 
If you answered positively the previous question please give us your contact information: 
Name: ______________________________________________________________________ 
Telephone: _____________________________________ 
e-mail: ________________________________________ 

 
 

The questionnaire ends here 
Thank you for you help 

 


