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ABSTRACT

Resource allocation schemes play an important role in large-scale smart infrastructures

to ensure efficiency and fairness among users. However, designing good resource allocation

schemes is challenging due to technical limitation, policy barriers, and cost of change. The

goal of this thesis is to develop a methodology to design model-based, principled and practical

resource allocation schemes. Given the diverse characteristics of infrastructures, it is difficult

to design unified models and algorithms. Instead, we employ a case-study-based approach on

two representative smart infrastructures: Internet video delivery and electric power networks.

We further generalize the insights and develop a principled qualitative guideline to design

resource allocation schemes in smart infrastructures.

The Internet video delivery system employs a protocol-based resource allocation scheme:

network bandwidth is implicitly allocated by transport layer protocol (TCP) while client-

side video players adapt video quality based on application layer protocol (MPEG-DASH) to

optimize users quality of experience (QoE). We study 1) how client-side video players improve

users QoE by employing Model Predictive Control-based bitrate adaptation algorithms and

2) how to achieve multiplayer QoE fairness by router-side bandwidth allocation policies. We

prototype and evaluate the algorithms in real video players.

On the other hand, market-based schemes are adopted in real-time economic dispatch in

electric power systems to satisfy demand by lowest-cost generation. However, such schemes

can lead to power imbalances and market inefficiency when slow generators fail to follow sys-

tem operators command. We study 1) how system operators can mitigate power imbalance

by employing a centralized, two-stage robust dispatch and 2) how the market design can be

improved by penalizing non-complying generators.

Based on the lessons from the case studies, we develop a general methodology to de-

sign resource allocation schemes: First, develop a formal model capturing system objectives,

dynamics, and constraints; Second, identify key practical constraints that have major im-
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pact on the choice of schemes; Finally, design model-based schemes that respect practical

constraints for short-term and obtain insights to inform protocol or market improvement in

the long run. We envision that a mathematical theory can significantly improve the future

resource allocation ecosystems.
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Chapter 1

Introduction

1.1 Motivation

Resource allocation schemes play an important role in large-scale smart infrastructures to

ensure efficiency and fairness among users. To name a few examples, in electric power

networks, least-cost generation resources are scheduled and controlled in real-time to ensure

satisfaction of users’ demand. In video delivery networks, network bandwidth resources are

shared among internet applications to deliver streaming video from the source server to end

users. In transportation networks, carefully scheduling and routing are carried out so that

passengers share the road network in a congestion-free manner. As such, the efficiency and

fairness will suffer without designing good resource allocation schemes.

However, designing optimal resource allocation schemes is difficult due to three key prac-

tical challenges: First, technical limitation can negatively impact the sensing and control

capabilities of the system. For example, without SCADA system, power system operators

are not able to measure the system state in real time, which makes real-time control difficult.

On the other hand, software-defined network (SDN) has enabled centralized network control

that used to be difficult in legacy networks. Second, it may not be available to obtain key
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state information of the system and the users due to policy barriers, such as privacy concerns.

For example, while appliance-level energy usage pattern data can significantly improve de-

mand reponse program, obtaining such data may intrude users’ private information. Finally,

the cost of change from legacy sub-optimal resource allocation schemes may be too high to

adopt improved schemes. For instance, it is difficult to change widely adopted protocols,

such as TCP.

As such, this thesis focus on the following question:

How to design close-to-optimal and practical resource allocation schemes in smart infras-

tructures that better utilizes the increased sensing and actuation capabilities while respecting

the practical challenges posed by technical overhead, policy barriers and cost of change?

There are two key questions with respect to the design of such resource allocation schemes:

• Who makes the decision, e.g., by a centralized controller with full actuation capability,

or individual entities with limited view of the system?

• How system and user information is exchanged, e.g., how does the system knows the

objective, states and dynamics of the users, is the information exchange explicit or

implicit?

Depending on the answers to these questions, resource allocation schemes can be roughly

divided into three categories: fully centralized, fully distributed, and decentralized schemes.

On one hand, a fully centralized resource allocation scheme is optimal to achieve efficiency

and fairness given full sensing and actuation capabitities of the system, but can suffer from

significant overhead and delay; On the other extreme, a fully distributed scheme is light-

weight and can significantly reduce overhead and avoid single point of failure, but can reach

sub-optimal allocation due to limited view of the system. It is critical to understand the

tradeoff here and design resource allocation schemes that is close-to-optimal and respect

practical constraints.
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1.2 Proposed Case-Study-Based Approach

Our goal in this dissertation is to develop a general methodology to design resource alloca-

tion schemes. However, given the fact that each smart infrastructure has distinct structure

and characteristic, it is difficult to develop model and algorithm that can apply to all infras-

tructures. As such, in this dissertation, we propose to tackle the problem using a case-study-

based approach. Based on the structure of resource allocation schemes, we divide current

resource allocation schemes into two main categories: protocol-based schemes and market-

based schemes. We pick representative systems in each of the category, namely, Internet video

delivery systems and electric power networks, and further investigate the design, implemen-

tation and evaluation of resource allocation schemes that respects the practical constraints

in these systems. Based on the insights from these representative case studies, we conclude

the thesis by summarizing our findings and developing a general principled methodology on

the design of resource allocation schemes.

We first carry out case study in a representative protocol-based system. The Inter-

net video delivery system employs a protocol-based resource allocation scheme, where the

Dynamic Adaptive Streaming over HTTP (DASH) protocol is used to allocate network band-

width resources. With the DASH standard, each video is divided into chunks and encoded

with different bitrate levels which allows a client-side player to adapt the bitrate according

to network conditions so as to improve users’ quality-of-experience (QoE). In this thesis, we

first present a control-theoretic approach to design the client-side bitrate adaptation algo-

rithms. We then study the efficiency vs. fairness tradeoff when multiple players compete for

bandwidth in a network and develops coordination schemes to achieve fairness.

Different from video delivery networks, the smart grid employs a market-based approach

to allocate generation resources in the economic dispatch stage. In real-time dispatch stage

where generators are scheduled every 5-10 minutes, the slow generator’s deviation from
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the system operator’s command has recently been identified as a new type of uncertainty

which may lead to increased stress on automatic generation control (AGC) as well as market

inefficiency. In this thesis, we first present a centralized risk-aware economic dispatch scheme

that can be employed by a system operator to mitigate the deviation. We then develop a

distributed risk-based market structure to manage the risk by the profit maximization of

individual generators and compare with the centralized solution.

Note that as practical constraints play an important role in the design of resource alloca-

tion schemes, in this thesis we want to design schemes with formal modeling and theoretical

foundations while respecting practical constraints. The key contribution of this disseration

lies in the modeling and the use of principled approaches to design practical, ready-to-ship

resource allocation schemes.

1.3 General Methodologies to Design Resource Allo-

cation Schemes

Based on the case studies, we develop general principles and methodologies to design resource

allocation schemes in smart infrastucture. The key steps are:

1. Developing a formal mathematical model that captures system objectives, dynamics,

and constraints. Such models can be employed to 1) obtain insights on the structure of

the problem, design space, and optimal solution, 2) unify existing practical solutions

under the same umbrella and analyze their limitations, and 3) serve as a foundation

to adopt state-of-art algorithms from control and optimization theory to solve the

problem. The mathematical model can be based on physics, if the system behaviour is

well understood, or data-driven, if otherwise. Note that the model can also be hybrid,

e.g., in client-side video bitrate adaptation, the video downloading and rendering model
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is well understood and based on physics, while the user QoE function and bandwidth

dynamics models are data driven.

2. Identify key practical constraints that have major impact on the choice of resource

allocation schemes. Once we have a model and better understand the design space, it is

critical to systematically identify key practical constraints, such as technical overhead,

policy barriers and legacy cost, as the practical constraints may significantly limit the

available choices of resource allocation schemes.

3. Design model-based resource allocation schemes that respect practical constraints for

short-term solution. Given the formal model and practical constraints, we can develop

model-based, principled but practical solutions for resource allocation that is close-

to-optimal while satisfying the practical constraints. Note that such solutions can be

off-the-shelf solutions from control and optimization theory based on the model, or

approximate solutions to the optimal solutions if optimality needs to be compromised

to satisfy practical constraints.

4. Obtain insights that inform better long-term protocol or market change. While short-

term solutions can be developed that respects practical constraints, it will benefit

the system if the practical constraints can be relaxed in the long term. Based on the

modeling and analysis, we can quantify the impact of relaxing the practical constraints,

and use it to drive protocol or market change in the long run.

To illustrate how these principles work throughout this thesis and in general practical

resource allocation problems, let us consider the design of single-player, bitrate adapta-

tion schemes in video delivery networks as an example. We start by building a mathematical

model of the bitrate adaptation problem by formulating the objective — quality-of-experience

(QoE), video buffer dynamics, and player constraints. While we have physical model of buffer

dynamics, the QoE functions do depend on user behaviour and are data-driven. This formal
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mathematical model allows us to view the existing rate-based and buffer-based algorithms in

a unified framework and see their key limitations in that they discard possibly useful informa-

tion. Based on the insights, we employ off-the-shelf model predictive control (MPC) [74, 75]

approach to tackle the problem. However, given the practical constraint that the player code

needs to be downloaded and embedded in the browser and the licensing issue, we developed

an approximate but fast and practical solution FastMPC [74, 75] to solve the problem with

very low overhead. At last, based on the modeling and analysis, we obtain insights for pro-

tocol design: The performance of MPC will be significantly improved if the chunk sizes are

given in the manifest file in MPEG-DASH standard and a better throughput prediction can

be provided by a global throughput predictor.

In summary, the results of our case-study-based approach are model-based, principled

but practical solutions to resource allocation schemes in video delivery and electric power

networks, as well as general methodologies to develop such schemes that applies to general

resource allocation problems. As such, we hope this thesis not only addresses resource

allocation problems in specific infrastructures, but also provides useful insights to inform

design of resource allocation schemes in general smart infrastructure.

1.4 Summary of Contributions

The main contributions of this thesis are summarized as follows:

Video delivery networks—Single-player adaptive video streaming: The main con-

tributions are:

• Development of a formal control-theoretic model of the client-side bitrate adaptation

problem that unifies prior work under the same umbrella.
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• Design and evaluation of a robust single-player client-side bitrate adaptation algorithm

based on model predictive control (MPC) that subsumes existing rate- and buffer-based

strategies.

• A practical and fast table enumeration based algorithm FastMPC that near-optimally

approximates the performance of an exact MPC approach and a low-overhead imple-

mentation based on the open source reference video player dash.js;

Video delivery networks—Multi-player adaptive video streaming: The main con-

tributions are:

• Theoretical analysis of the multi-player QoE fairness of existing bandwidth allocation

and bitrate adaptation schemes.

• Modeling, design and evaluation of a router-assisted bandwidth allocation approach

that considers client-side bitrate adaptation strategies.

Electric power networks: The main contributions are:

• Identification and impact analysis of the non-complying slow generators in the stage

of real-time economic dispatch in electric power systems.

• Development of a centralized, two-stage risk-based real-time dispatch scheme that can

be employed by system operators to mitigate the negative impact of slow generators’

deviations.

• Design and evaluation of a risk-based market clearing scheme that allows fair cost

allocation.

Publications: Part of the results presented in this disseration have been published as listed

below. We publish the results of MPC-based single-player bitrate adaptation algorithms in
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ACM HotNets 2014 [75] and ACM SIGCOMM 2015 [74]. While not included in this thesis, an

extension of this work is published in ACM SIGCOMM 2016 [68] on design and evaluation of

network throughput prediction algorithms. We publish the results on centralized, risk-aware

real-time dispatch in the session of Best Conference Papers on Integrated Power System

Operations in IEEE PES General Meeting 2014 [44] and results on risk-based market design

in ISGT 2015 [73].

1.5 Thesis Outline

The rest of this thesis is organized as follows: We first conduct case study in video deliv-

ery networks in Chapter 2 and investigate the design and evaluation of single-player and

multiplayer adaptive video streaming problem. Next, we move on to case study in electric

power networks in Chapter 3 where we focus on designing resource allocation schemes to

mitigate the negative impact of slow generators’ deviations in real-time economic dispatch

stage. Finally, we conclude and discuss future work in Chaper 4.
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Chapter 2

Case Study in Video Delivery

Networks

2.1 Overview

Many recent studies have highlighted the critical role that user-perceived quality-of-experience

(QoE) plays in Internet video applications, as it ultimately affects revenue streams for con-

tent providers [33, 50]. Specifically, metrics such as the duration of rebuffering (i.e., the

player’s playout buffer does not have content to render), startup delay (i.e., the lag between

the user clicking vs. the time to begin rendering), the average playback bitrate, and the

variability of the bitrate delivered have emerged as key factors.

Given the complex Internet video delivery ecosystem and presence of diverse bottlenecks,

the bitrate adaptation logic in the client-side video player becomes critical to optimize user

experience [18]. In the HTTP-based delivery model that predominates today [64], videos

are typically chunked and encoded at different bitrate levels. The goal of an adaptive video

player is to choose the bitrate level for future chunks to deliver the highest possible QoE;
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e.g., maximizing bitrate while minimizing the likelihood of rebuffering and avoiding too many

bitrate switches.

Many recent efforts have pointed out key challenges in designing this adaptation logic

(e.g., [20, 42, 47, 67]) and several proposals have emerged to try and address these challenges

(e.g., [20, 43, 47]). Despite the proliferation of numerous algorithms, however, there appears

to be a lack of clarity and consensus across these solutions on several fronts; e.g., some argue

for better throughput estimation [69], while others suggest improving chunk scheduling [47].

Some researchers even argue against rate-based approaches that rely on throughput estimates

from previous chunk downloads and make the case for buffer-occupancy based algorithms that

make their decisions purely based on buffer occupancy [43].

In order to understand the fundamental tradeoffs between different classes of algorithms

(e.g., rate- vs buffer-based) under different operating regimes (e.g., low vs. high throughput

variability), we begin by formulating the video bitrate adapdation as a stochastic optimal

control problem. We formally define the key dynamic variables involved in the video adap-

tation problem and a concrete objective. This framework allows us to outline the broader

design space of control algorithms for this problem. We identify a key shortcoming in exist-

ing approaches that rely exclusively on pure rate- or buffer-based strategies, and that might

be potentially missing out on strategies that combine both signals.

Building on insights from the control-theoretic formulation, we argue that model predic-

tive control (MPC) [28] is a suitable class of algorithms that can optimally combine both

rate-based and buffer-based feedback signals. At a high level, MPC attempts to predict key

environment variables over a moving look-ahead horizon and solve an exact optimization

problem based on the prediction. MPC is the technology of choice in a multitude of real

world control problems [28]. In addition to its intuitive formulation, it can explicitly handle

complex control objectives and constraints, and has a set of well understood tuning param-

eters such as the prediction horizon. Moreover, MPC has other qualitative advantages as its
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development time is much shorter compared to advanced control methods and it is easier to

maintain, as changing model parameters does not require complete redesign.

In our context, the MPC approach entails predicting the expected throughput for the

next few chunks and using this to make optimal bitrate decisions for QoE maximization.

Indeed, our simulation results confirm that if we could run an optimal MPC algorithm and

the prediction error was low, then the MPC scheme can outperform traditional rate-based

and buffer-based strategies.

In practice, however, running a MPC-based algorithm is challenging because it needs

to solve a non-trivial discrete optimization problem at each time step. Even ignoring the

computational overhead, there are practical difficulties as we might need to bundle this

solver logic with every video player or require users to download and install additional

software. To address these challenges, we develop a simple-yet-efficient FastMPC mechanism.

Conceptually, FastMPC essentially follows a table enumeration approach, where we describe

the problem state-space, solve the specific instances optimally offline, and store the optimal

control decisions for future online use. If implemented naively, however, the size of this table

can induce significant memory overhead and startup delays for video players (e.g., additional

JavaScript to load). Fortunately, we show that with a simple value binning and compression

strategy, we can achieve near-optimal performance with manageable table sizes.

We have prototyped our FastMPC bitrate adaptation algorithm in an open source dy-

namic adaptive streaming player called dash.js [1]. Our choice of platform is a pragmatic

one—it is the reference open-source implementation for the MPEG-DASH standard based

on the HTML5 specification and is actively supported by leading industry participants [7].

We show that our implementation adds negligible overhead to the baseline dash.js player.

We also showcase the FastMPC-based player in our demo page [16].

We evaluate our algorithms and prototype implementation using realistic emulation ex-

periments on measured [9, 11] and synthetic throughput variability traces. We also augment
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these results with simulation-based sensitivity analysis experiments to analyze the effect of

key operating parameters on the performance of different classes of algorithms.

While client-side bitrate adaptation is critical to ensure high QoE for single player re-

garding available bandwidth as given by a black box, as video traffic becomes predominant

on the internet, it is more and more likely that multiple video players will share bottlenecks

and compete for bandwidth in the network [19, 42]. Such scenarios can be seen in home

network, commercial building network, and campus networks, where multiple devices (e.g.,

HDTV, tablet, laptop, cell phone, etc.) connect to Internet by a single Wifi router. In these

cases, in addition to single-player QoE, the multi-player QoE fairness becomes a critical

issue.

While there have been several practical proposals to address multiplayer QoE fairness

problem by designing better player bitrate adaptation algorithms [47, 54] and network-

assisted bandwidth allocation schemes [31, 36, 58], there are still a lot of open questions in

this space. For example, will the interaction among different classes of bitrate adaptation

algorithms lead to instability? Is centralized, in-network or server-side control necessary to

ensure multiplayer QoE fairness? How to design distributed control schemes with information

exchange to achieve QoE fairness? We envision that this rich and broad problem space

presents significant opportunities for control theory to provide insights to a real networking

problem and to guide real system design. As a first step in this direction, we formalize the

multiplayer QoE fairness problem and address a subset of the key questions.

We start from building a formal mathematical model of the multiplayer joint bandwidth

allocation and bitrate adaptation problem, extending the single-player bitrate adaptation

model from prior work [74, 75]. We first focus on the steady-state problem, and convert the

multiplayer fairness problem as the stability analysis of an equilibrium of a non-linear dynam-

ical system. We derive sufficent conditions under which multiple players with same/different

bitrate adaptation policies can converge to QoE fairness with TCP-based bandwidth sharing
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at the bottleneck, and found that TCP-based network bandwidth sharing is not sufficient to

ensure QoE fairness, confirming the observation of a measurement study [42] from a theory

aspect. The result of the analysis calls for active, in-network support for better bandwidth

allocation.

Given the recent development of smart routers such as Google OnHub router [10] and

programmable OpenWrt [14], we envision that a router-based bandwidth allocation scheme

is practical in the near future. While recent proposals of router-assisted schemes are based

on steady-state utility maximization, we propose a non-linear MPC-based router-assisted

bandwidth allocation algorithm that directly models players as close-loop dynamical systems.

We evaluate the proposed strategy using trace-driven simulations and find that the router-

assisted control outperforms existing steady-state solutions in both efficiency and fairness, by

adaptively allocating more bandwidth to players which has high resolution and insufficient

buffer level.

2.2 Background

We begin with a high-level overview of how HTTP-based adaptive video streaming works,

before describing the key shortcomings of today’s state-of-art solutions.

2.2.1 Single-player Video Streaming

Internet video technologies such as Microsoft SmoothStreaming [15], Apple’s HLS [5], and

Adobe’s HDS [2] rely on HTTP-based adaptive streaming. This class of protocols is being

standardized under the umbrella of Dynamic Adaptive Streaming over HTTP or DASH [18].

In DASH systems, each video consists of multiple segments or “chunks” (corresponding to a

few seconds of play time) and each chunk is encoded at multiple discrete bitrates. The chunks

from different bitrate streams are aligned so that the video player can switch to a different
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Figure 2.1: Abstract model of DASH players

bitrate if necessary at a chunk boundary. This approach has several pragmatic advantages

over custom streaming protocols such as Real-Time Messaging Protocol (RTMP). The use of

HTTP enables providers to seamlessly bypass middleboxes. Furthermore, it can use existing

commodity CDN servers without requiring custom modifications. Finally, by making the

server stateless, one can implement better application-layer resilience using multiple servers

and CDNs [56, 57].

Figure 2.1 shows an abstract model of the adaptive video player. The player uses some

inputs (e.g., buffer occupancy or estimates of the network throughput) in its decision logic

to choose the bitrate level for the next chunk(s) to be downloaded. In making this decision,

there are many potentially conflicting QoE considerations a player must account for: (1)

minimizing rebuffering events where the playback buffer is empty and cannot render the

video; (2) delivering as high a playback bitrate as possible within the throughput constraints;

(3) minimizing startup delay so that the user does not quit while waiting for the video to

load; and (4) keeping the playback as smooth as possible by avoiding frequent or large bitrate

jumps [33, 50].

To see why these objectives are conflicting, let us consider two extreme solutions. A

trivial solution to minimize rebuffering and the startup delay would be to always pick the
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lowest bitrate, but it conflicts with the goal of delivering high bitrate. Conversely, picking

the highest available bitrate may lead to many rebuffering events. Similarly, the goal of

maintaining a smooth playback may also conflict if the optimal choice to simultaneously

minimize rebuffering and maximizing average bitrate is to switch bitrates for every chunk.

The focus of this dissertation is on client-side adaptation solutions. Other complementary

work includes the use of server-side bitrate switching (e.g., [22, 52]), TCP changes to avoid

bursts (e.g., [37]), and in-network throughput management and caching (e.g., [41, 60, 65]).

We focus on the client-side problem for two key reasons. First, client-side solutions offer

the most immediately deployable alternative in contrast to solutions that require in-network

support (e.g., [41, 60, 65]), server-side software changes (e.g., [22, 52]), or modifications to

lower-layer transport protocols (e.g., [37, 38, 40, 51, 55]). Second, the client is often in the

best position to quickly detect performance issues and respond to dynamics. That said, we

believe that the formal foundations and algorithms we develop can be equally applied to

these other deployment scenarios.

Many measurement studies have shown the poor performance of state-of-art video players

with respect to these QoE measures (e.g., [42, 47, 67]). These studies show that most

problems are not artifacts of specific players but manifest across all state-of-art players

such as SmoothStreaming [15], Netflix [12], Adobe OSMF [3], and Akamai HD [4]. For

brevity we do not reproduce these results here but refer interested readers to prior work

(e.g., [42, 47, 67]).

To alleviate these problems, there have been several recent proposals in the research lit-

erature (e.g., [22, 43, 47, 54, 69]). At a high level, these solutions can be roughly divided

into two categories: (1) rate-based algorithms and (2) buffer-based algorithms. Video players

with rate-based methods essentially pick the highest possible bitrate based on the estimated

available throughput. However, as shown in prior work throughput estimation on top of

HTTP suffers from significant biases [42], which leads to problems with traditional rate-
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based approaches. Some solutions try to work around these biases by either smoothing out

throughput estimates [69] or choosing better scheduling strategies [47]. On the other hand,

recent work makes a case for buffer-based algorithms [43]. Rather than using throughput

estimates, this class of algorithms uses buffer occupancy as the feedback signal, and de-

signs mechanisms to keep the buffer occupancy at a desired level, essentially discarding any

available throughput information.

Despite the broad interest in this topic, we still need a principled understanding of bitrate

adaptation algorithms. Each aforementioned solution offers point heuristics that work under

specific (and implicit) environmental assumptions. While each approach seen in isolation has

been shown to outperform commercial players, there is little effort to systematically compare

how different classes of algorithms stack up against each other or which of these technical

components are critical, or how robust these algorithms are across different operating regimes

(e.g., throughput stability, buffer size, number of bitrate levels). Furthermore, many of these

algorithms even fail to formally state what objective they seek to optimize making it harder

to conduct a meaningful comparison.

Our first-order goal in this work is to bring some clarity to this space. Rather than

design yet another point solution, we start by developing a first-principles approach via

control theory to develop a general framework to reason about classes of algorithms. We use

this control-theoretic “lens” to formally define the stochastic optimization that video bitrate

adaptation algorithms try to solve.

2.2.2 Multi-player Video Streaming

While single-player bitrate adaptation algorithms have been well studied, they consider avail-

able bandwidth as a given stochastic variable and maximize QoE for a single player without

considering the impact to other players. However, When multiple players share a bottleneck
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in the network, the efficiency and fairness of QoE across multiple adaptive video players

become critical.

Note that multiplayer QoE fairness includes both fairness in steady state and transient

state. For example, when a HDTV and a tablet share a bandwidth bottleneck in a home

network, HDTV should ideally get more bandwidth in steady-state than the tablet as it needs

higher-quality video to match the higher resolution. On the other hand, for example, a player

with empty buffer is expected to obtain more bandwidth than another with full buffer sharing

the same bottleneck, as it needs to quickly accumulate buffer so as to converge quickly to

optimal bitrate and avoid rebuffering.

Different from single-player problem, the multiplayer QoE fairness can be affected by a

broader range of factors. As such, we zoom out from the adaptive player model in Figure 2.1

and look at how the internet video delivery ecosystem impacts the multiplayer QoE fairness.

As shown in Figure 2.2, the Internet video delivery ecosystem consists of a variety of

entities that has different control capabilities to optimize different objectives. Video source

providers, such as Netflix and YouTube, own the client players and can design client-side

bitrate control to optimize the user-perceived QoE; Content delivery networks (CDN), such
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as Akamai and Level3, place videos in CDN servers at the edge of the internet and assign

players to best servers in a video session; Internet service providers (ISP), such as Comcast

and Verizon, control the bandwidth available to CDN servers and client players according

to agreement with users; Video quality optimizers, such as Conviva, employ a global view

to provide centralized control of bitrate and CDN server selection for client players.

Given the diverse control capabilities in the internet video delivery system, there are

several classes of solutions to achieve multiplayer QoE fairness: player-side, in-network, and

server-side solutions.

Player-side solutions, such as FESTIVE [47] and PANDA [54], entail designing better

bitrate adaptation algorithms for multiplayer QoE fairness. While only requiring player

algorithm change and thus easy to deploy, player-side solutions do not alter bandwidth

allocation in the network and can suffer from suboptimal bandwidth allocation schemes

such as the unideal TCP effect [42] and interaction with uncooperative players and cross

traffic [19].

In-network solutions, on the other hand, employ active bandwidth allocation in the net-

work to achieve multiplayer QoE fairness. While bottleneck can occur anywhere in the

network making such schemes difficult to deploy, there are several recent proposals in partic-

ular on router-based bandwidth allocation algorithms to optimize steady-state QoE fairness

where router is the single bottleneck shared among players [31, 36, 58].

Alternatively, server-side solutions regard the server as a single point of control and

allocate bandwidth to players [21]. However, the actual bandwidth bottleneck can occur in

the network instead of server and the computation cost is high when the number of players

is too large.

The broad problem space for multiplayer QoE fairness has posed a series of key research

questions including:

1. What is the optimal approach and fundamental limitations of each class of solutions?

18



2. What is the fundamental tradeoff between different classes of solutions?

3. How to design the information exchange scheme to enable coordination of different

entities in the video delivery ecosystems to achieve QoE fairness?

As a first step to tackle the broader problem, in this thesis we want to develop a principled

framework and answer a subset of key questions so as to shed light on the broader problem

space and provide useful insights for future work.

2.3 Single-Player Adaptive Video Streaming

First, we focus on the design of single-player bitrate adaptation algorithms.

2.3.1 Control-Theoretic Model

In this section, we develop a mathematical model of the HTTP video streaming process and

formally define the bitrate adaptation problem. This model gives us a framework to compare

and evaluate existing algorithms and serves as the foundation for potential improvements.

Video Streaming Model

We model a video as a set of consecutive video segments or chunks, V = {1, 2, · · · , K}, each

of which contains L seconds of video. Each chunk is encoded at different bitrates. Let R

be the set of all available bitrate levels. The video player can choose to download chunk k

at bitrate Rk ∈ R. Let dk(Rk) be the size of chunk k encoded at bitrate Rk. In constant

bitrate (CBR) case, dk(Rk) = L × Rk, while in variable bitrate (VBR) case the dk ∼ Rk

relationship can differ across chunks.

The higher bitrate is selected, the higher video quality is perceived by the user. Let

q(·) : R → R+ be a non-decreasing function which maps selected bitrate Rk to video quality
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perceived by user q(Rk). Note that q(·) may depend on the video-playing device as well

as the content of the video. For example, while on HDTV 3Mbps and 1Mbps may lead

to significant difference in user experience, the video quality in 3Mbps and 1Mbps may be

similar on a mobile device; Also, improving the bitrate of “dynamic” chunks will result in

more QoE gain than improving “static” chunks.

The video segments are downloaded into a playback buffer, which contains downloaded

but as yet unviewed video. Let B(t) ∈ [0, Bmax] be the buffer occupancy at time t, i.e., the

play time of the video left in the buffer. The buffer size Bmax depends on the policy of the

service provider, as well as storage limitations on the player. A typical player buffer may

hold few tens of seconds of video segments.

Figure 2.3 helps illustrate the conceptual operation of the video player. At time tk,

the video player starts to download chunk k. The download time for this chunk will be

dk(Rk)/Ck; i.e., it depends on the size of selected chunk with bitrate Rk, as well as average

download speed Ck experienced during this download process. Once chunk k is completely

downloaded, the video player waits for ∆tk and starts to download the next chunk k + 1 at

time tk+1. We assume that the waiting time ∆tk is small and will not lead to rebuffering

events. If we denote by Ct the network throughput at time t, then we have:

tk+1 = tk +
dk(Rk)

Ck
+ ∆tk (2.1)

Ck =
1

tk+1 − tk −∆tk

∫ tk+1−∆tk

tk

Ct dt. (2.2)

The buffer occupancy B(t) evolves as the chunks are being downloaded and the video

is being played. Specifically, the buffer occupancy increases by L seconds after chunk k is

downloaded and decreases as the user watches the video.1 Let Bk = B(tk) denote the buffer

1The “startup” phase will be slightly different as the player waits for some amount of buffer to build up
before draining the buffer.
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occupancy when the player starts to download chunk k. The buffer dynamics can then be

formulated as:

Bk+1 =

((
Bk −

dk(Rk)

Ck

)
+

+ L−∆tk

)
+

(2.3)

Here, the notation (x)+ = max{x, 0} ensures that the term can never be negative. Note that

if Bk < dk(Rk)/Ck, the buffer becomes empty while the video player is still downloading

chunk k, leading to rebuffer events as shown in Figure 2.3.

The determination of waiting time ∆tk, also referred as chunk scheduling problem, is

an equally interesting and important problem in improving fairness of multi-player video

streaming [47]. However, in this dissertation we assume that the player immediately starts

to download chunk k + 1 as soon as chunk k is downloaded. The one exception is when the

buffer is full, the player waits for the buffer to reduce to a level which allows chunk k to be

appended. Formally,

∆tk =

((
Bk −

dk(Rk)

Ck

)
+

+ L−Bmax

)
+

(2.4)
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QoE Maximization Problem

The ultimate goal of bitrate adaptation is to improve the QoE of users in order to achieve

higher long-term user engagement [33]. Our goal is to provide a flexible QoE model rather

than a fixed notion of QoE as this is an active area of research [23]. While users may differ

in their specific QoE functions, we can enumerate the key elements of video QoE as:

1. Average Video Quality: The average per-chunk quality over all chunks: 1
K

∑K
k=1 q(Rk);

2. Average Quality Variations : This tracks the magnitude of the changes in the quality

from one chunk to another: 1
K−1

∑K−1
k=1 |q(Rk+1)− q(Rk)|;

3. Rebuffer : For each chunk k rebuffering occurs if the download time dk(Rk)/Ck is higher

than the playout buffer level when the chunk download started (i.e., Bk). Thus the total

rebuffer time 2 is
∑K

k=1

(
dk(Rk)
Ck
−Bk

)
+

.

4. Startup Delay Ts, assuming Ts � Bmax.

As users may have different preferences on which of the four components is more impor-

tant, we define the QoE of video segment 1 through K by a weighted sum of the aforemen-

tioned components:

QoEK
1 =

K∑
k=1

q(Rk)− λ
K−1∑
k=1

|q(Rk+1)− q(Rk)|

− µ
K∑
k=1

(
dk(Rk)

Ck
−Bk

)
+

− µsTs (2.5)

Here λ, µ, µs are non-negative weighting parameters corresponding to video quality vari-

ations, rebuffering time and startup delay, respectively. A relatively small λ indicates that

the user is not particularly concerned about video quality variability; the large λ is, the more

effort is made to achieve smoother changes of video quality. A large µ, relatively to the other

2Alternatively, one can also consider the number of rebuffering events formulated as∑K
k=1 1

(
dk(Rk)

Ck
> Bk

)
.
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max
R1,··· ,RK ,Ts

QoEK
1 (2.6)

s.t. tk+1 = tk +
dk(Rk)

Ck
+ ∆tk, (2.7)

Ck =
1

tk+1 − tk −∆tk

∫ tk+1−∆tk

tk

Ct dt, (2.8)

Bk+1 =

((
Bk −

dk(Rk)

Ck

)
+

+ L−∆tk

)
+

, (2.9)

B1 = Ts, Bk ∈ [0, Bmax] (2.10)

Rk ∈ R, ∀k = 1, · · · , K. (2.11)

Figure 2.4: Formulation for QoE maximization (QOE MAXK
1 ) subject to buffer and

throughput dynamics.

parameters, indicates that a user is deeply concerned about rebuffering. In cases where users

prefer low startup delay, we employ a large µs.

In summary, this definition of QoE is quite general as it allows us to model varying user

preferences on different contributing factors.

QoE maximization problem: We are now ready to formulate the problem of bitrate adap-

tation for QoE maximization as in Figure 2.4, denoted as QOE MAXK
1 . Given throughput

trace {Ct, t ∈ [t1, tK+1]} as input, the optimization provides the following as output: 1)

bitrate decisions R1,· · · , RK , and 2) startup time Ts.

Note that the problem QOE MAXK
1 is formulated assuming the video playback has

not started at the time of this optimization so the start-up delay Ts is a decision variable.

However, this QoE maximization can also take place during video playback at time tk0

when the next chunk to download is k0 and the current buffer occupancy is Bk0 . In this

case, we can drop the variable Ts and denote the corresponding steady state problem as

QOE MAX STEADY K
k0

.
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Classes of Algorithms

In this section we characterize problem QOE MAXK
1 and describe existing bitrate adapta-

tion algorithms within this framework to understand how they relate to one another.

The problem in Figure 2.4 is a finite-horizon stochastic optimal control problem. The

source of randomness is in the available throughput Ct. At time tk when the player chooses

bitrate Rk, only the past throughput {Ct, t ≤ tk} is available, while the future values {Ct, t >

tk} are not known.

However, a throughput predictor can be used to obtain predictions defined as {Ĉt, t > tk}.

Based on such prediction and on buffer occupancy information (which is instead known

precisely), the bitrate controller selects bitrate of the next chunk k:

Rk = f
(
Bk, {Ĉt, t > tk}, {Ri, i < k}

)
. (2.12)

The design of effective throughput predictors is an interesting research direction in its

own right [68]. In this dissertation, we focus on bitrate adaptation algorithms only and

assume that predictors are given to us and are characterized in terms of their expected

prediction errors. Namely, we focus on the design of f(·) and on the effect of the prediction

error on the performance of the compared control algorithms. In the following sections, we

will systematically evaluate how different algorithms perform with a state-of-art predictor

under a variety of variability conditions.

Now, different adaptation algorithms essentially adopt different functions f(·). Specifi-

cally, two main categories of algorithms appear in the literature: rate-based (RB) and buffer-

based (BB) algorithms. RB strategies essentially choose bitrate only based on throughput

prediction, i.e.,

Rk = f
(
{Ĉt, t > tk}, {Ri, i < k}

)
. (2.13)
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For example, a typical RB strategy is to choose the maximum possible bitrate below the

predicted throughput.

On the other hand, BB strategies advocate decision making based only on buffer occu-

pancy, namely:

Rk = f (Bk, {Ri, i < k}) , (2.14)

while regarding throughput variations as unmodeled disturbances. For example, Huang

et al., illustrate one roadmap for designing BB algorithms [43].

Note, however, that both classes of algorithms are discarding possibly useful information

as shown in Figure 2.5. Consequently, both are in principle suboptimal. Ideally, we want to

use both buffer occupancy and throughput prediction, thereby considering a broader design

space of bitrate adaptation strategies, as shown in Eq (2.12) and algorithm A3 depicted in

Figure 2.5.
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2.3.2 Model Predictive Control Approach

for Optimal Bitrate Adaptation

In this section, we make a case for a Model Predictive Control (MPC) approach for bi-

trate adaptation and describe a concrete MPC-based workflow that can optimally combine

throughput prediction and buffer occupancy. We also develop a robust MPC approach that

can better handle errors in throughput prediction under highly variable network conditions.

Why MPC?

First, we provide the intuition behind the choice of MPC in our setting. Note that we

cannot claim that MPC is necessary or the optimal choice in the space of all possible control

algorithms. Our goal is merely to argue that MPC is a natural fit for the bitrate adaptation

problem.

Strawman solutions: As we saw before, bitrate adaptation is essentially a stochastic

optimal control problem. In this respect, there are two candidate well-known control al-

gorithms: (1) Proportional-integral-derivative (PID) control [34] and (2) Markov Decision

Process (MDP) based control [25]. While PID is computationally simpler compared to MPC,

it can only serve to stabilize the system and cannot explicitly optimize our QoE objective.

In addition, PID control is designed to work in continuous time and state space and using

it in a highly discrete system such as ours may result in performance degradation or in-

stability [34]. Alternatively, with MDP we could consider formulating the throughput and

buffer state transition as Markov processes, and find the optimal control policy using stan-

dard algorithms such as value iteration or policy iteration [25]. However, this has a strong

assumption that throughput dynamics follow Markov processes and it is unclear if this holds

in practice. We regard the potential use of MDP and analysis of the throughput dynamics

as future work.
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Algorithm 1 Video adaptation workflow using MPC

1: Initialize
2: for k = 1 to K do
3: if player is in startup phase then
4: Ĉ[tk,tk+N ]= ThroughputPred(C[t1,tk])

5: [Rk, Ts] = f stmpc

(
Rk−1, Bk, Ĉ[tk,tk+N ]

)
6: Start playback after Ts seconds
7: else if playback has started then
8: Ĉ[tk,tk+N ]= ThroughputPred(C[t1,tk])

9: Rk = fmpc

(
Rk−1, Bk, Ĉ[tk,tk+N ]

)
10: end if
11: Download chunk k with bitrate Rk, wait till finished
12: end for

Case for MPC: Ideally, given perfect knowledge of future throughput over the entire horizon

of a video [t1, tK+1], the optimal bitrate R1, · · · , RK and startup delay Ts can be calculated in

one shot by solving the optimization problem for the entire video QOE MAXK
1 . In practice,

such perfect information is not available, making it difficult to find such optimal solutions

using offline optimization.

While perfect information may not be available for the entire future, it is possible that

reasonably accurate throughput prediction can be instead obtained for a short horizon to

the future [tk, tk+N ] [68]. The intuition here is that network conditions are reasonably stable

on short timescales and usually do not change drastically during a short horizon (tens of

seconds) [68, 77]. Based on this insight, we can run a QoE optimization using the prediction

in this horizon, apply the first bitrate Rk, and move the horizon forward to [tk+1, tk+N+1].

This scheme is known as model predictive control (MPC) or receding horizon control [28].

MPC algorithms are widely used in different domains, ranging from industrial control to

navigation. The general benefits of MPC are in that MPC can utilize predictions to optimize

a complex control objective online in a dynamical system under constraints.
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Basic MPC Algorithm

Algorithm 1 shows a high-level overview of the workflow of MPC for bitrate adaptation. In

our context, the algorithm essentially chooses bitrate Rk by looking N steps ahead (i.e., the

moving horizon), and solves a specific QoE maximization problem (this depends on whether

the player is in steady or startup phase) with throughput predictions {Ĉt, t ∈ [tk, tk+N ]}, or

Ĉ[tk,tk+N ]. The first bitrate Rk is applied by using feedback information and the optimization

process is iterated at each step k.

At iteration k, the player maintains a moving horizon from chunk k to k + N − 1 and

carries out the following three key steps, as shown in Algorithm 1.

1. Predict : Predict throughput Ĉ[tk,tk+N ] for the next N chunks using some throughput

predictor. Our goal in this dissertation is not to design a prediction mechanism but to

rely on existing approaches. Naturally, improving the accuracy of this prediction will

improve the gains achieved via MPC. That said, MPC can be extended to be robust to

errors as we discuss below.

2. Optimize: This is the core of the MPC algorithm: Given the current buffer occu-

pancy Bk, previous bitrate Rk−1 and throughput prediction Ĉ[tk,tk+N ], find optimal bi-

trate Rk. In steady state, Rk = fmpc

(
Rk−1, Bk, Ĉ[tk,tk+N ]

)
, implemented by solving

QOE MAX STEADY k+N−1
k . In the start-up phase, it also optimizes start-up time Ts as

[Rk, Ts] = f stmpc

(
Rk−1, Bk, Ĉ[tk,tk+N ]

)
, implemented by solving QOE MAX k+N−1

k . If we

ignore practical details about computational overhead, we can simply use off-the-shelf

solvers such as CPLEX to solve these discrete optimization problems. As we will see in

Section 2.3.3, we do not need to explicitly solve the optimization problem within the

video player in practice.

3. Apply : Start to download chunk k with Rk and move the horizon forward. If the player

is in start-up phase, wait for Ts before starting playback.
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This workflow has several qualitative advantages compared with buffer-based (BB), rate-

based (RB) as we discuss below. First, this MPC algorithm uses both throughput prediction

and buffer information in a principled way. Second, compared to pure RB approaches, MPC

smooths out prediction error at each step and is more robust to prediction errors. Specifically,

by optimizing several chunks over a moving horizon, large prediction errors for one particular

chunk will have lower impact on the performance. Third, MPC directly optimizes a formally

defined QoE objective, while in RB and BB the tradeoff between different QoE factors is

not clearly defined and therefore can only be addressed in an ad hoc qualitative manner.

Robust MPC

The basic MPC algorithm assumes the existence of an accurate throughput predictor. How-

ever, in certain severe network conditions, e.g., in cellular networks or in prime time when

the Internet is congested, such accurate predictors may not be available. For example, if

the predictor consistently overestimates the throughput, it may induce high rebuffering. To

counteract the prediction error, we develop a robust MPC algorithm.

Robust MPC essentially optimizes the worst-case QoE assuming that the actual through-

put can take any value in a range [Ĉt, Ĉt] in contrast to a point estimate Ĉt. Robust

MPC entails solving the following optimization problem at time tk to get bitrate Rk =

frobustmpc(Rk−1, Bk, [Ĉt, Ĉt]):

max
Rk,··· ,Rk+N−1

min
Ct∈[Ĉt,Ĉt]

QoEk+N−1
k (2.15)

s.t. Constraints (2.7) to (2.11) (2.16)

In general, it may be non-trivial to solve such a max-min robust optimization problem.

In our specific case, however, we can prove that the worst case scenario takes place when

the throughput is at its lower bound Ct = Ĉt. Thus, the implementation of robust MPC
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is straightforward. Instead of Ĉt, we use the lowest possible Ĉt as the input to the regular

MPC QoE maximization problem. Formally,

Theorem 1. The robust MPC controller is equivalent to the regular MPC taking the lower

bound of throughput as input, namely,

Rk = frobustmpc(Rk−1, Bk, [Ĉt, Ĉt])

= fmpc(Rk−1, Bk, Ĉt)

Sketch. Conceptually, QoE function QoE(R,C) can be written as the sum of 3 terms (g1:

total video quality, g2: total quality change, g3: rebuffer time), in which only the rebuffer

time term depends on throughput C. Thus,

max
R

min
C∈[C,C]

QoE(R,C)

≡max
R

(
g1(R)− λ× g2(R)− max

C∈[C,C]
µ× g3(R,C)

)
≡max

R
QoE(R,C)

As any decrease of throughput C will lead to longer rebuffer time, the minimum QoE is

achieved at C = C.

The one potential downside is that robust MPC is more conservative than regular MPC

by always assuming the lowest throughput. The degree of conservativeness here naturally

depends on how loose/tight the lower bound is. In practice, we use maximum prediction

error over the past several chunks as bounds in our implementation and find that it works

well in practice (discussed in Section 2.3.5).
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2.3.3 Using MPC in Practice — FastMPC

While rate-based and buffer-based algorithms need relatively minor computations, the chal-

lenge with MPC is that we need to solve a discrete optimization problem at each time step.

There are two practical concerns here:

• Computational overhead: First, the high computational overhead of MPC is especially

problematic for low-end mobile devices, which are projected to be the dominant video

consumers going forward. Since the bitrate adaptation decision logic is called before the

player starts to download each chunk, excessive delay in the bitrate adaptation logic will

negatively affect the QoE of the player.

• Deployment: Since we do not have a closed-form or combinatorial solution for the QoE

maximization problem, we will need to use a solver (e.g., CPLEX or Gurobi). However,

it may not be possible for video players to be bundled with such solver capabilities;

e.g., licensing issues may preclude distributing such software or it may require additional

plugin or software installations which poses significant barriers to adoption [35].

From the above discussion, it is evident that the solution we develop should be lightweight

and combinatorial (i.e., not solving a LP or ILP online). As such, in this section, we address

these two key practical issues by developing a fast and low-overhead FastMPC design that

does not require any explicit solver capabilities in the video player [70].

High-Level Idea of FastMPC

At a high level, FastMPC algorithms essentially follow a table enumeration approach. Here,

we do an offline step of enumerating the state-space and solve each specific instance. Then,

in the online step we just use these stored optimal control decisions mapped to the current

operation conditions. That is, the algorithm will be reduced to a simple table lookup indexed
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CPLEX

Offline Enumeration

CPLEX CPLEX

…

Scenario BufferLevel PrevBitrate Throughput Optimal Bitrate

1 1s 350kbps 350kbps 350kbps

2 2s 350kbps 600kbps 600kbps

… … … … …

50,000 20s 3000kbps 3000kbps 3000kbps

Query Lookup

BufferLevel 1s

PrevBitrate 350kbps

Throughput 350kbps

BufferLevel 2s

PrevBitrate 350kbps

Throughput 600kbps

BufferLevel 20s

PrevBitrate 3000kbps

Throughput 3000kbps

…

Online Bitrate Adaptation

Figure 2.6: “FastMPC” idea: We enumerate possible scenarios and create a table indexing
the optimal decision for each scenario.

by the key value closest to the current state and the output of the lookup is the optimal

solution for the selected configuration.

In our setting (Figure 2.6), the state-space is determined by the following dimensions: (1)

current buffer level, (2) previous bitrates chosen, and (3) the predicted throughput for the

next N chunks (i.e., the planning horizon). Thus, FastMPC will entail enumerating potential

scenarios capturing different values for each dimension and solving the optimization problems

offline.

Unfortunately, directly using this idea will be very inefficient as we have a high dimen-

sional state space. For instance, if we have 100 possible values for the buffer level, 10 possible

bitrates, a horizon of size 5, and 1000 possible throughput values, there will be 1018 rows

in the table!3 There are two obvious consequences of this large state space. First, it may

not be practical to explicitly store the full table in the memory. Note that this is not just

a hypothetical concern. If we need a practical implementation of this table lookup in the

3100 buffer levels × 10 bitrates × 1000 throughput 1 values × · · ·× 1000 throughput 5 values = 1018

entries.
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dash.js player [1] it will mean very high memory footprint along with large startup delay

as the table needs to be downloaded to the player module. Second, it will incur a non-trivial

offline computation cost that may need to be rerun as the operating conditions change.

Optimizing FastMPC Performance

Next, we present two key optimizations to make the table enumeration approach tractable.

Compaction via binning: First, to address the offline exploration cost, our insight is that

we may not need very fine-grained values for the buffer and the throughput levels. As a

consequence these values may be suitably coarsened into aggregate bins. Moreover, with

binning we do not need to explicitly store the row keys as these are directly computed from

the bin row indices. The challenge here is to balance the granularity of binning and the loss

of optimality in practice. In practice, we find that using 100 bins for buffer level and 100

bins for throughput predictions works well and yields near-optimal performance.

Table compression: Our second insight is that the decision table learned by the offline

computation will have significant structure. Specifically, the optimal solutions for several

similar scenarios will likely be the same. Thus, we can exploit this structure in conjunction

with the binning strategy to explore a simple lossless compression strategy using a run-length

encoding to store the decision vector. The optimal decision can then be retrieved online using

binary search. In practice, we see that with compression the table occupies less than 60 kB

with 100 bins for buffer levels, 100 bins for throughput predictions and 5 bitrate levels.

2.3.4 Implementation

In this section, we describe our implementation of the MPC approach in the dash.js frame-

work. Our implementation is based on the dash.js master branch (v1.2.0 release) as it

was the stable version at the time of development. We believe that our implementation can
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be easily adapted to future versions as we require minimal modifications (≈ 800 lines of

JavaScript). For more information on the source code and demo please visit our demo page

[16].

Choice of player: Many prior adaptive bitrate players were prototyped using the Adobe

OSMF framework [3, 13, 47] and this seemed a natural choice. However, our conversations

with industry personnel revealed that almost all content providers are switching to HTML5-

based players based on the MPEG-DASH standard [18] and thus OSMF (based on Flash

and with decreasing market share) is unlikely to be a platform with real-world impact.

Having chosen a DASH player, we qualitatively evaluated several implementations of the

DASH standard (e.g., [8, 30, 61]). Unfortunately, these rely either on custom clients or niche

video player platforms. Given these considerations, we chose the dash.js framework as it

is the reference open-source implementation for the MPEG-DASH standard and is actively

supported by leading industry participants [7]. We believe our prototype efforts will also

inform the evolution of these standardization efforts. For instance, a key requirement for

any control algorithms is to know the size (in bytes) of each video chunk, but the standard

does not mandate the manifest to report chunk sizes, which may be a key shortcoming of

the current specification.

dash.js overview: To understand our implementation and modifications, we begin with

some brief background on the architecture of the dash.js player. The key components are

highlighted in Figure 2.7.

At a high level, the dash.js implementation separates high-level video streaming func-

tionalities from low-level specific DASH standard related components. As we are not par-

ticularly interested in standard-specific implementation, we leave the code unmodified and

only focus on the adaptive streaming related functions.

The classes and functions that are key to bitrate adaptation and video streaming logic

are as follows:
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BufferController

validate

AbrController

getPlaybackQuality

Rule-Based 

Decision Logic

FastMPClogging

RB, BB, FESTIVE

ThroughputPredictor

Original dash.js Additional class/function

Figure 2.7: dash.js code structure and our modifications

• BufferController: This class provides functions to manage buffer levels of the player

by requesting new segments and making bitrate change decisions. Specifically, function

validate is periodically invoked and calls getPlaybackQuality function in AbrController

class to find optimal bitrate. It also maintains a variable bufferLevel to record the cur-

rent buffer occupancy of the player, which can be used for bitrate decisions.

• AbrController: This class contains the core bitrate adaptation logic. In the original

dash.js implementation, a rule-based decision logic is employed to find the bitrate.

Specifically, DownloadRatioRule selects bitrate based on the “download ratio” (play

time of last chunk divided by its download time); On the other hand,

InsufficientBufferRule chooses bitrate depending on whether the buffer level has

reached a lower limit recently to avoid rebuffers. Priorities are assigned to each rule to

resolve conflicts and make final bitrate decisions.

Modifications and extensions: We observed two implementation details in dash.js that

were problematic. First, the code periodically calls the validate function to check the

status of the buffer and call functions in AbrController to decide if the current bitrate

should be changed. Note that this implies the bitrate decisions are not always made at chunk

boundaries, which may lead to delay of execution of bitrate decisions, or even redownloading

previous chunks. Second, the dash.js downloads multiple chunks in parallel even though

chunks that are earlier in the video stream should ideally be prioritized.
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To address these concerns, we changed the bitrate decision and chunk download process

in dash.js code by making two key changes to BufferController class: 1) bitrate decisions

are made at the start of each chunk, 2) chunk download is completely sequential, i.e., no

concurrent downloads of multiple chunks are allowed. This allows a basic implementation

framework which is consistent with our model and other proposed algorithms.

With these fixes, we implemented different bitrate adaptation algorithms (e.g., FastMPC,

BB, RB) by replacing the original rule-based bitrate adaptation logic by our own implemen-

tation. The FastMPC implementation has a static table that is used to index control de-

cisions. We also implemented a harmonic mean based throughput prediction scheme based

on prior work [47], as well as additional logging functions in the BufferController class

to record a complete log of the state of the player, including buffer level, bitrates, rebuffer

time, predicted/actual throughput.

2.3.5 Evaluation

In this section, we compare our approach against existing rate- and buffer-based approaches

using a combination of real player and simulation experiments. We also present microbench-

marks on the CPU and memory overhead of our FastMPC implementation.

Setup

We begin by describing key parameters: (1) throughput variability traces; (2) video-specific

parameters; (3) configurations for various adaptation algorithms; and (4) definition of a

normalized QoE metric that we use throughout this section.

Throughput traces: Our goal is to evaluate various bitrate adaptation approaches using

realistic network variability conditions. Given the paucity of large-scale sustained throughput

measurements over several tens of seconds, however, we use a combination of existing datasets

and synthetic models:
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1. Broadband dataset (FCC) [9]: The FCC dataset consists of more than 1 million sets

of throughput measurements, where each set contains six data points each representing

average throughput during a 5s interval. We extract throughput traces of the same

server and client IP address and concatenate these to match the length of the video. For

experiments we randomly pick 1000 of the concatenated traces whose average throughput

is between 0 to 3Mbps, to avoid trivial cases where picking the maximum bitrate is always

the optimal solution.

2. Mobile dataset (HSDPA) [11]: The HSDPA dataset consists of 30min of continuous 1s

measurement of video streaming throughput of a moving device in Telenor’s 3G/HSDPA

mobile wireless network in Norway. We randomly pick 1000 throughput traces from the

full dataset.

3. Synthetic dataset: Finally we also use a synthetic dataset to supplement the aforemen-

tioned datasets. The throughput is based on some hidden state St ∈ S modeling the

number of users sharing a bottleneck link. The actual throughput Ct follows a Gaussian

distribution with mean ms and variance σ2
s , given the value of hidden state St = s. We

vary both the state transition probability matrix as well as the parameters ms, σ
2
s to

generate traces.

Figure 2.8 shows the throughput characteristics of all three datasets. Among three

datasets, throughput is the most stable in broadband network and the most variable in

mobile network. In other words, the HSPDA dataset is a good stress test for our MPC

approach that assumes the throughput is predictable on short timescales.

Video parameters: We use the “Envivio” video from DASH-264 JavaScript reference

client test page [6] which is 260s long, consisting of 65 4s chunks. The video is encoded

by H.264/MPEG-4 AVC codec in the following bitrate levels: R = {350kbps, 600kbps,

1000kbps, 2000kbps, 3000kbps}. This is consistent with the requirement for YouTube video

bitrate levels for 240p, 360p, 480p, 720p and 1080p respectively [17]. We set the buffer size
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Figure 2.8: Characteristics of datasets

to Bmax = 30s. We assume q(·) is an identity function. As a default QoE function, we use

the weights λ = 1, µ = µs = 3000, meaning 1-sec rebuffer/start-up time receives the same

penalty as reducing the bitrate of a chunk by 3000 kbps. We also run sensitivity experiments

that vary the QoE weights.

Adaptation algorithms: Determining the optimal algorithm within each class is difficult

as it involves optimizing over an infinite-dimensional functional space. To this end, we choose

a widely adopted function form for each class of algorithms from prior work, and optimize

the free parameters by empirical simulations based on a training dataset containing 100

throughput traces randomly picked across all datasets. We evaluate the following algorithms:

1. RB: The bitrate is picked as the maximum available bitrate which is less than p = 1

times throughput prediction using harmonic mean of past 5 chunks;

2. BB: We employ the function suggested by Huang et al [43], where bitrate Rk is chosen

to be the maximum available bitrate which is less than rk = f(Bk) with reservoir r = 5s

and cushion c = 10s.
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Figure 2.9: Real experiment results with different throughput traces

3. FastMPC: We use a look-ahead horizon h = 5 with throughput predictions using har-

monic mean of past 5 chunks; We use 100 bins for throughput prediction and 100 bins

for buffer level. We also evaluate the exact MPC with perfect throughput prediction for

the next 5 chunks in simulations (denoted as MPC-OPT ).

4. RobustMPC: We assume that the throughput lower bound is Ĉt = Ĉt/(1 + err), where

Ĉt is obtained using harmonic mean of past 5 chunks, while prediction error err is the

maximum absolute percentage error of the past 5 chunks.

5. dash.js: The original implementation adopts a rule-based bitrate decision logic as shown

in Section 2.3.4. We keep the original bitrate adaptation logic unmodified, but disable

the multi-chunk downloading and allow the bitrate to switch only at chunk boundaries.4

6. FESTIVE [47]: This rate-based algorithm balances both efficiency and stability, and in-

corporates fairness across players. We assume there is no wait time between consecutive

4This enables a consistent comparison of the algorithms rather than conflate it with other artifacts because
of parallel downloads. We also tested the original dash.js without any modification, but its performance is
worse than our modified version (not shown).
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chunk downloads, and implement FESTIVE without the randomized chunk scheduling.

Note that this does not negatively impact the player QoE in single player case. Specif-

ically, FESTIVE calculates the efficiency score depending on p = 1 times throughput

predictions using harmonic mean of past 5 chunks, as well as a stability score as a func-

tion of the bitrate switches in the past 5 chunks. The bitrate is chosen to minimize

stability score plus α = 12 times efficiency score.

Throughput predictor: Note that RB, *-MPC, and FESTIVE need a good throughput

predictor. Developing good predictors for different scenarios is outside the scope of the

dissertation, we refer interested readers to [68]. Building on insights from prior work, we use

the harmonic mean of the observed throughput of the last 5 chunks because it is robust to

outliers in per-chunk estimates [47].

Normalized QoE metric: We define a normalized QoE metric as follows. For a given

throughput trace {Ct, t ∈ [t1, tK+1]}, the offline optimal QoE, denoted by QoE(OPT ), is

the maximum QoE that can be achieved with perfect knowledge of future throughputs over

the entire horizon. It can be calculated by solving problem QOE MAXK
1

5 and provides a

theoretical upper bound of achievable QoE. On the other hand, a real online algorithm A

selects bitrate Rk based on current throughput predictions {Ĉt, t > tk} without knowing the

entire future. We denote the online QoE achieved by algorithm A by QoE(A) and define

normalized QoE of A (n-QoE(A)) for an algorithm A as: n-QoE(A) = QoE(A)
QoE(OPT )

.

Real Player Evaluation

First, we present emulations with the real player setup comparing our FastMPC approach

against several prior approaches. Our basic experiment setup consists of two computers

(Ubuntu 12.04 LTS) with a 100Mbps direct network connection emulating a video client

5To make it tractable to compute this offline optimal, we assume it can pick bitrates from a continuous
range [Rmin, Rmax].
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Figure 2.10: Detailed performance for FCC dataset

and server. The video client is a Google-Chrome web browser for linux (version 39) with

V8 JavaScript engine while the video server is a simple HTTP server based on node.js

(version 0.10.32). We use the linux tc tool to throttle the throughput of the link between

two computers according to the throughput traces employed. We use Emulab [71] to carry

out several such experiments in parallel.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Average Bitrate (kbps)

C
D

F

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Average Bitrate Change (kbps/chunk)

C
D

F

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Total Rebuffer Time (s)

C
D

F

 

 

RB
BB
FastMPC
RobustMPC
dash.js
FESTIVE

Figure 2.11: Detailed performance for HSDPA dataset
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Figure 2.9 show the CDF of normalized QoE over the three sets of throughput traces.

First, we see that existing algorithms achieve only 60-70% of optimal QoE confirming that

there is still large room to improve video QoE. Second, RobustMPC outperforms non-MPC

algorithms in all datasets with an improvement in median normalized QoE of 15%, 10%,

and 5% in the FCC, HSDPA, and Synthetic datasets respectively. Third, we see signif-

icant improvement (60+% median normalized QoE) compared with the original dash.js

player. Finally, we see that the basic FastMPC is more sensitive to prediction errors than

RobustMPC. While there is no difference between Fast- and RobustMPC on FCC and Syn-

thetic results, the difference is especially visible in the HSPDA result where regular FastMPC

suffers and presents no gains versus RB and BB.

To better understand the impact of prediction error, Figure 2.8 shows the CDF of per-

session average percentage prediction errors for the datasets. In FCC dataset, the average

error of our harmonic mean throughput predictor is less than 5%, while in HSPDA dataset,

the worst-case prediction error can be as high as 40%. We also observe that the predictor

over-estimates the true throughput for more than 20% of the time in HSPDA dataset which

leads to significant rebuffering. As such, inaccurate prediction can ruin the decision making

of regular FastMPC, while RobustMPC is less affected as it incorporates prediction error to

avoid choosing bitrate too aggressively when predictions are inaccurate.

The earlier normalized QoE result shows the aggregate combination of different QoE

factors. Next, we zoom in on the individual quality factors to explain the QoE improve-

ments in Figures 2.10 and 2.11. In the FCC dataset, all algorithms achieve similarly low

rebuffer time as throughput is predictable. The performance difference essentially stems

from reducing unnecessary bitrate switches. RobustMPC, FastMPC and BB achieve similar

average bitrates, but RobustMPC uses fewer bitrate switches. In the HSPDA result, rebuffer

time becomes a more important issue. While FastMPC achieves similar average bitrate and

fewer switches comparing to BB, it suffers from large rebuffer time. On the other hand,
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RobustMPC achieves significant less rebuffer time but at a slightly lower average bitrate:

Zero rebuffer in 65% of all cases, versus 40% for BB and FastMPC. As a result, RobustMPC

still outperforms other algorithms in overall QoE.

Doing a cross-dataset analysis, we see that the tail distributions of the overall QoE show

different characteristics. In the FCC result, only 1% users experience normalized QoE ¡0

while in HSPDA this occurs in 10% of all cases.6 Again, the main reason is that the high

variability of mobile network induces long rebuffering which affects the overall QoE.

Finally, even though FESTIVE is a rate-based algorithm, it performs slightly worse than

regular RB in our datasets because it puts a higher weight on stability and switches up bitrate

slowly even when the available throughput is increasing.7 On the other hand, the dash.js

heuristic rule-based adaptation achieves low rebuffer time, but incurs many unnecessary

switches. Thus, its overall QoE is significantly worse than all algorithms.

Sensitivity Analysis

For sensitivity analysis we evaluate different algorithms using a custom simulation frame-

work. As before, the simulation takes as input a throughput trace and models the video

download/playback process and the buffer dynamics. At time tk when the bitrate of chunk

k is needed, the simulation calls the bitrate controller embedded with different algorithms

to get Rk. Using this framework, we study the sensitivity of the approaches to key factors

such as: (1) prediction error, (2) choice of QoE function, (3) playout buffer size, (4) number

of bitrate levels, and (5) startup delay.

Throughput prediction: Here, we want to study the impact of prediction error of general

predictors rather than analyze a particular one (e.g., harmonic mean). To this end, we use the

average error level to characterize the performance of a throughput predictor and model the

6The QoE can be negative when rebuffer time is too long or there are too many switches.
7This is not a flaw, but a deliberate choice for achieving multi-player fairness [47].
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Figure 2.12: Sensitivity analysis vs. operating conditions

prediction output as being a combination of the true throughput with added random noise

according to the average error level. Figure 2.12a shows how the throughput prediction errors

influence the performance of bitrate adaptation algorithms. As expected, BB is unaffected

as it does not use any throughput information. When throughput predictions are accurate,

MPC has larger advantage over BB algorithms. As prediction error grows beyond 25%, MPC

can be even worse than BB. This suggests that if the actual prediction error is very large,

then the video player should drop RB or MPC and use pure BB algorithms. In contrast

with regular MPC, robust MPC is less affected by prediction error as it takes into possible

error into account and maximizes the worst case QoE.

Users’ QoE preferences: We compared the performance of the algorithms under 3 sets

of QoE weights, “Balanced” (λ = 1, µ = µs = 3000), “Avoid Instability” (λ = 3, µ = µs =

3000), “Avoid Rebuffering” (λ = 1, µ = µs = 6000). As shown in Figure 2.12b, as users

put more penalty weights to bitrate instability, the MPC algorithms show more advantage
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over RB and BB. This is because MPC algorithms explicitly model the bitrate vs. bitrate

instability tradeoff in the QoE function, while RB and BB do so in ad-hoc ways. However,

when rebuffering time is a more important factor, BB algorithms perform similarly with

FastMPC algorithms because of two key reasons. First, BB algorithms keep a minimum

buffer level so that the player has a better chance surviving low throughput with less/no

rebuffering time. Second, while MPC algorithms do a good job with perfect throughput

prediction, they can suffer from long rebuffering time since harmonic mean predictor is

imperfect. As such, MPC can be improved by maintaining a minimum buffer level and

employing a more accurate predictor.

Buffer size and startup delay: Figure 2.12c analyzes the impact of playout buffer size.

First, when buffer size is small (¡25s in play time), increasing buffer size improves the per-

formance of all algorithms. A larger buffer protects the player against rebuffering events

and also provides more degrees of freedom to optimize performance. As buffer size reaches a

certain level (25s of play time), the performances of all algorithms stay constant even buffer

size is further increased. Finally, RB is the least affected by buffer size because it does not

consider buffer level in its decision logic.

While our approach optimizes startup delay automatically, we analyze how overall QoE

(except the startup delay term) is affected if the startup delay is fixed. As shown in Fig-

ure 2.12d, as startup time increases, the performance of all algorithms improves, as the player

accumulates more video in the buffer at the start-up phase making it easier to manage re-

buffering events.

Bitrate levels: We also study how number of bitrate levels influences the performance (not

shown). With BB and MPC, we can achieve better performance using finer-grained set of

bitrate levels. With RB, however, the performance of RB first improves as we add more

bitrate levels, but decreases when there are too many bitrate levels. The reason is that RB

starts changing bitrate more frequently, leading to increased bitrate instability. One caveat
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with MPC is that finer-grained bitrate levels also require more discretization levels for the

FastMPC implementation. Understanding this tradeoff is an interesting direction for future

work.

MPC Configuration and Overhead

Overhead: As discussed earlier, FastMPC might increase player overhead relative to BB

and RB style algorithms. We compare the CPU and memory usage of our implementation of

FastMPC, BB, and RB algorithm with the default dash.js player. We find that FastMPC,

BB, and RB all consume similar amount of CPU, while FastMPC uses only 60 kB more

memory (not shown).

FastMPC discretization: Recall that the number of discretization levels is an important

design parameter for FastMPC. More discretization levels increase FastMPC performance but

require more player memory and may also increase startup delay. We study this performance

vs. overhead tradeoff in Figure 2.13a and Table 2.1. From Figure 2.13a, we see that more

discretization levels imply larger performance gains for FastMPC but the improvement shows

diminishing return; e.g., FastMPC achieves 90% of optimal QoE with 100 levels while this

drops to 70% if there are only 5 levels. Second, the gain vs. discretization level also has some

dependency on the throughput predictor especially with very coarse discretization. Table 2.1

shows that while the memory overhead increases with more levels, the simple compression

scheme we discussed earlier can reduce the memory overhead especially when number of

Discretization levels
Extra JavaScript code size

Full table Run length coding

50 25.0 kB 19.1 kB
100 100 kB 56.4 kB
200 400 kB 141 kB
500 2.50 MB 451 kB

Table 2.1: FastMPC table size
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Figure 2.13: MPC configuration parameters

levels is large. For instance, with 100 levels the compression rate is 0.5 while with 500 levels

it can reduce the table size by 82%. Even with 500 levels, the table size is quite reasonably

low.

Look-ahead horizon: Figure 2.13b shows how planning horizon impacts the performance

of MPC algorithms. As the look-ahead horizon increases, MPC performances grow and stay

stable since more information of future throughput is taken into account. However, as we

look further into the future, prediction accuracy can reduce. The performance of MPC can

even drop if the horizon is too large.

Summary of Results

Our main findings are summarized as follows:

1. RobustMPC outperforms existing algorithms in both broadband (FCC) and cellular

(HSDPA) datasets, while regular FastMPC does not show advantage in cellular network

due to high throughput instability;

2. Our implementation of FastMPC algorithm incurs very low overhead: near-zero CPU

overhead and 60 kB increase in memory usage compared to original dash.js;
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Figure 2.14: Modeling multiplayer joint bandwidth allocation and bitrate adaptation prob-
lem

3. Sensitivity analysis shows that FastMPC has advantages over BB and RB in wide pa-

rameter ranges. However, there is still room for improvement by increasing FastMPC

discretization granularity and employing more accurate throughput predictors.

2.4 Multi-Player Adaptive Video Streaming

Next, we switch our focus to multiplayer adaptive video streaming problem and investigate

how to jointly design better bandwidth allocation and bitrate adaptation schemes.

2.4.1 Modeling

In this section, we develop a mathematical model for multiplayer HTTP-based adaptive

video streaming. Figure 2.14 provides an overview of the model. Note that while this is

extending the single-player video streaming model discussed in previous section 2.3.1, we

adopt synchronized time steps for all players in multi-player scenario.

Video streaming model: We consider a discrete time model with time horizon K =

{1, · · · , K} with a sampling period ∆T . Let us consider a set of N video players P sharing
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a single bottleneck link with bandwidth W [k] at time k. Let wi[k] ∈ R+ be the available

bandwidth to the player i at the time k, we have:

∑
i∈P

wi[k] ≤ W [k], ∀k ∈ K (2.17)

We assume this link is the only bottleneck along the Internet path from the video players to

the servers.

Each video player streams video from some video server on the Internet via HTTP. The

video is encoded in a set of bitrate levels R. When downloading video, player i ∈ P is able

to choose the bitrate ri[k] ∈ R of the video at each time step k. In constant bitrate encoding,

ri × t bits of data need to be downloaded to get the video with t seconds of play time.

Each player has a buffer to store downloaded yet unplayed video. Let bi[k] ∈ [0, Bi] be

the buffer level at the beginning of time step k, namely, the amount of play time of the video

in the buffer. The buffer accumulates as new video is being downloaded, and drains as video

is played out to users. The buffer dynamics of the player i is formulated as follows:

bi[k + 1] = bi[k]−∆T +
wi[k]∆T

ri[k]
(2.18)

QoE objective: The objective of the adaptive video players is to maximize the quality-of-

experience (QoE) of users, which is modeled as a linear combination of the following factors:

1) average video quality, 2) average quality change, 3) total rebuffer time and 4) startup

delay (see previous section 2.3.1 for details). For simplicity, in this dissertation we enforce

that there are no rebuffering events, and we only consider the case where all the players have

started playback. As such, the QoE utility function Ui : R×R+×R+ → R of player i is the
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formulated as the average QoE of video downloaded over the entire time horizon:

Ui =

∑K
k=1

wi[k]
ri[k]

UP
i [k]∑K

k=1
wi[k]
ri[k]

(2.19)

where UP
i [k] is the QoE of the video downloaded in time k:

UP
i [k] = qi(ri[k])− µi |qi(ri[k])− qi(ri[k − 1])| (2.20)

Note that qi : R → R is the function that maps bitrate to the video quality perceived by

users. We assume qi(·) to be positive, increasing and concave to model the diminishing

return property. µi is the parameter that defines the trade-off between high average quality

and less quality changes. The larger µi is, the more reluctant the user i is to change the

video quality.

QoE fairness: Going from single player to multiplayer video streaming, a natural objective

function would be the sum of utilities (QoE) of all users, also known as social welfare or

efficiency, i.e.,
∑

i∈P Ui. However, in the context of multiplayer video streaming, QoE fairness

among players becomes a critical issue as each player usually serves a different user yet they

share the same bottleneck resource. As such, we consider the QoE fairness F (U1, · · · , UN)

as the objective, where F : Πi∈PUi → R is a general fairness measure [53]. Specifically, we

consider a class of fairness measures known as α-fairness [59], where:

Fα(U) =


∑

i∈P
U1−α
i

1−α α ≥ 0, α 6= 1∑
i∈P logUi α = 1

(2.21)

Note that α-fairness is a general fairness measure that satisfies axiom 1,2,3,5 from [53]. If

α = 1, α-fairness becomes proportional fairness ; if α→∞, it becomes max-min fairness.
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Multiplayer QoE maximization problem: Now we are ready to formulate the mul-

tiplayer QoE maximization problem where optimal bitrates (r[k], k ∈ K) and bandwidth

(w[k], k ∈ K) of players are decided to maximize some QoE fairness measure F (U), given

the capacity of the bottleneck link, (W [k], k ∈ K):

max F (U1, · · · , UN) (2.22)

over r[k],w[k] given W [k], k ∈ K (2.23)

s.t.
∑
i∈P

wi[k] = W [k], ∀k ∈ K (2.24)

bi[k + 1] = bi[k]−∆T +
wi[k]∆T

ri[k]
, (2.25)

∀i ∈ P , k = 1, · · · , K

Bi ≤ bi[k] ≤ Bi, ∀i ∈ P , k ∈ K (2.26)

wi[k] ≥ 0, ri[k] ∈ R ∀i ∈ P , k ∈ K (2.27)

Ideally, a centralized controller can decide both the bitrate r and the bandwidth w for

all players to achieve QoE fairness, given the complete information of the system. How-

ever, the current practice can be interpreted as a distributed way to solve the problem by

primal decomposition with no explicit message passing between players and router: Each

player i decides the bitrate of itself according to some bitrate adaptation policy ri[k + 1] =

f(wi[k], bi[k + 1]), while the bottleneck link (conceptually) decides how to allocate available

bandwidth according to some bandwidth allocation policy w[k] = h(r[k],b[k]). The design

of optimal distributed solution is to find optimal (h, f) pairs, i.e., (h∗, f ∗). Next, we discuss

respectively the design of h and f .

Bandwidth allocation policies: Given that the players in P shares a bottleneck link with

total bandwidth W [k], i.e.,
∑

i∈P wi[k] = W [k]. A bandwidth allocation policy h : Rn → Rn

is a function that maps bitrates r[k] to bandwidth allocation vector w[k]. Let hi : Rn → R
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be the function that maps r[k] to wi[k].

w[k] = h(r[k]) (2.28)

Under ideal TCP, all players get the equal share of the total bandwidth, i.e., w1[k] =

· · · = wN [k] = W [k]/N ,. However, in practice, TCP is not ideal in the sense that players

with larger bitrate gets larger share of the bandwidth due to the discrete effects [42]. We

have the following assumptions of the bandwidth allocation function under unideal TCP

according to measurement data in [42]:

Assumption 1. Under non-ideal TCP, the bandwidth allocation policy h(·) has the following

properties:

1. If ri = rj, hi(r) = hj(r);

2. If ri > rj, hi(r) > hj(r);

3. ∂hi(r)
∂ri

> 0, ∂hi(r)
∂rj

< 0, i 6= j;

4. limri→∞ hi(r) < W , limri→0 hi(r) > 0;

5. h(·) is symmetric over r (does not depend on order of players).

Lemma 1. The function h(·) has 1 + kn fixed points, where k ∈ N.

Bitrate adaptation policies: Bitrate adaptation policy of player i, fi(·), maps available

bandwidth wi[k] and buffer level bi[k] to bitrate to choose ri[k] so as to maximize the QoE

of the player. Bitrate adaptation policies have been widely studied by both in academia

and in industry, and each video streaming service has its own adaptation policy. To make

decisions on what bitrate to choose, there are two classes of algorithms: rate-based (RB) or

buffer-based (BB) controllers.
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In a rate-based policy RB(fi), ri[k] = fi(wi[k − 1]), where fi : R+ → R is an increasing

function. We consider a special case LRB(α) where fi is an affine function ri[k] = αwi[k−1].

In a buffer-based policy BB(fi), ri[k] = fi(bi[k]), where fi : R+ → R is an increasing

function. We also consider the special case LBB(α, β) of an affine f function ri[k] = αbi[k]+

β.

Note that both RB and BB policies can be regarded as heuristic algorithms to maximize

QoE which may lead to sub-optimal solution. However, it is still of great interest to study

these policies as they are currently widely deployed in the real-world players, such as Netflix

or YouTube.

2.4.2 Analysis of Fairness in Steady State

QoE fairness in the steady state: Note that an interesting special case of the multiplayer

problem is when the system is in steady state, where the video quality and bandwidth of all

players stay unchanged. Formally, we have the following definition:

Definition 1. Given fixed total available bandwidth W , the multiplayer video streaming

system is in steady state (r0,w0) if for each player i ∈ P:

1. Bitrate and bandwidth stay unchanged, i.e., ri[k] = r0i, wi[k] = w0i, ∀k ∈ K;

2. Buffer level is non-decreasing, i.e., bi[k + 1] ≥ bi[k], ∀k ∈ K.

Removing the inter-temporal constraints (2.25) and inter-temporal component in the

objective function (2.20), we get the multiplayer QoE fairness problem in steady state where
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optimal solution is denoted as (r∗0,w
∗
0):

max f (q1(r1), · · · , qN(rN)) (2.29)

over r,w given W (2.30)

s.t.
∑
i∈P

wi = W, (2.31)

ri ≤ wi, ∀i ∈ P (2.32)

wi ≥ 0, ri ∈ R, ∀i ∈ P (2.33)

Note that this problem is convex given that R = [R,R], and in the case that all players

share the same qi = q, the optimal solution is (r∗0,w
∗
0) : r0i = w0i = W/N .

Fairness of homogeneous RB players: We first consider the simplest case where all

players are using the same rate-based algorithm.

Theorem 1. If all players adopt RB(f) bitrate adaptation policies, the following statements

are true:

1. (r0,w0) : ri0 = f
(
w
n

)
, wi0 = w

n
is an equilibrium;

2. If h ◦ f is a contractive mapping, (r0,w0) is globally asymptotically stable;

3. If h ◦ f is a expansive mapping, (r0,w0) is unstable;

Proof. Combining rate-based policies with buffer dynamics, we get:

ri[k + 1] = f (hi(r[k])) , ∀i ∈ P

Consider the following Lyapunov function:

V (r) =
∑
i∈P

(hi(r)− hi(r0))2
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which satisfies V (r) > 0,∀r 6= r0, V (r0) = 0.

∆V (r) = V (r[k + 1])− V (r[k]) = · · ·

= ‖w[k + 1]‖2
2 − ‖w[k]‖2

2

= ‖h(f(w[k]))‖2
2 − ‖w[k]‖2

2

If h ◦ f is a contractive mapping, ∆V (r) < 0,∀r 6= r0, and ∆V (r0) = 0, the equilibrium is

globally asymptotically stable. On the other hand, if h ◦ f is expansive, ∆V (r) > 0,∀r 6= r0,

and ∆V (r0) = 0, the equilibrium is unstable.

Fairness of homogeneous BB players: We consider the case where all players adopt the

same buffer-based bitrate adaptation policy and have the same QoE function.

Lemma 2. If all players adopts buffer-based bitrate adaptation policy, (r0,w0) is an equilib-

rium if and only if:

1. r0 = w0;

2. h(r0) = r0.

Theorem 2. If all players adopts LBB(α, β) bitrate adaptation policy, the following state-

ments are true:

1. (r0,w0) : ri0 = wi0 = w
n

is an equilibrium;

2. If − 1
n
< ∂hi(r0)

∂rj
< 0, ∀i 6= j, then the equilibrium is locally asymptotically stable;

3. If ∂hi(r0)
∂rj

< − 1
n

, ∀i 6= j, then the equilibrium is unstable;

Proof. Combining buffer-based bitrate controller with buffer dynamics, we get:

ri[k + 1] = ri[k]− α∆T +
wi[k]α∆T

ri[k]
, ∀i ∈ P (2.34)
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We linearize the system about the equilibrium and let δri = ri − ri0.

δri[k + 1] = δri[k]

(
1 +

α∆T

r2
i0

(
∂hi(r0)

∂ri
ri0 − hi(r0)

))
+
∑
j 6=i

δrj[k]

(
α∆T

ri0
· ∂hi(r0)

∂rj

)
= δri[k]

(
1 +

α∆T

ri0

(
∂hi(r0)

∂ri
− 1

))
+
∑
j 6=i

δrj[k]

(
α∆T

ri0
· ∂hi(r0)

∂rj

)

Note that as
∑

i∈P wi = w, we have

∑
j∈P

∂hi(r)

∂rj
= 0

If we let ∂hi(r0)
∂rj

= c, ∀j 6= i, we have ∂hi(r0)
∂ri

= −(n − 1)c. Combining with the linearized

system equation, we get the following equation in matrix form:

δr[k + 1] = A · δr[k]

where

A =

(
1 +

α∆T

ri0
(−nc− 1)

)
· I +

(
α∆T

ri0
· c
)

11T

The eigenvalues of matrix A are:

σ(A) =

{
1 +

α∆T

ri0
(−nc− 1), 1− α∆T

ri0

}

From the second eigenvalue we have a constraint that couples α,∆T and ri0

2ri0
α∆T

> 1
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Using indirect Lyapunov method, if c < −1/n, the linearized system is unstable about

the equilibrium, then the original non-linear system is unstable. On the other hand, if

−1/n < c < 0, the equilibrium is locally asymptotically stable.

Derived results for the fairness of homogeneous video players (both RB and BB) yield

intuitive steady state solution. In a multiplayer system composed of N identical video players

one can expect for the optimal steady state policy be sharing the total bandwidth equally

between all the video players.

Note that comparing results in homogeneous RB and BB players, we found that the

convergence of RB players depends on both bandwidth allocation and bitrate adaptation

policies, while convergence of BB players only depends on bandwidth allocation functions.

The key reason is that, the bitrate decisions of BB players reflects the state of the player,

i.e., buffer level, while the bitrate decisions of RB players does not depend on the internal

state of the buffer.

Fairness of heterogeneous BB players: We consider the case where all players are

adopting different buffer-based bitrate adaptation policies but have the same QoE function.

Theorem 3. If player i adopts LBB(αi, β), i ∈ P bitrate adaptation policy, the following

statements are true:

1. (r0,w0) : ri0 = wi0 = w
n

is an equilibrium;

2. If 1
(
∑
i αi)/(maxαi)−n <

∂hi(r0)
∂rj

< 0, ∀i 6= j, then the equilibrium is locally asymptotically

stable;

3. If ∂hi(r0)
∂rj

< 1
(
∑
i αi)/(maxαi)−n , ∀i 6= j, then the equilibrium is unstable;
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Proof. Similarly to the proof of Theorem 2 by combining buffer-based bitrate controller with

buffer dynamics we get the following expression:

ri[k + 1] = ri[k]− αi∆T +
wi[k]αi∆T

ri[k]
, ∀i ∈ P (2.35)

We linearize the system about the equilibrium and let δri = ri − ri0.

δri[k + 1] = δri[k]

(
1 +

αi∆T

ri0

(
∂hi(r0)

∂ri
− 1

))
+
∑
j 6=i

δrj[k]

(
αi∆T

ri0
· ∂hi(r0)

∂rj

)

Given
∑

i∈P wi = w, we have
∑

j∈P
∂hi(r)
∂rj

= 0. If we let ∂hi(r0)
∂rj

= c, ∀j 6= i, we have

∂hi(r0)
∂ri

= −(n− 1)c. As in Theorem 2, combining the previous expression with the linearized

system equation, we get the same matrix equation δr[k + 1] = A · δr[k] where

A =

(
1 +

αi∆T

ri0
(−nc− 1)

)
· I +

(
αi∆T

ri0
· c
)

11T

The parameter αi is different in every rowi, ∈ P .The eigenvalues of the first part of matrix

A are:

σ(A1) =

{
1 +

αi∆T

ri0
(−nc− 1)

}
, ∀i ∈ P

The eigenvalues of the second part of matrix A are

σ(A2) =

0, 0, · · · 0︸ ︷︷ ︸
n−1

,
c∆T

ri0

∑
αi


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In this case the eigenvalues of A depend on αi > 0,∀i ∈ P . Lets assume that max(αi) = αk

and min(αi) = αl. Now, we can lower and upper bound the σ(A). The lower bound is

σmin(A) > 1 +
αl∆T

ri0
(−nc− 1)

and upper bound is

σmax(A) < 1 +
αk∆T

ri0
(−nc− 1) +

c∆T

ri0

∑
αi.

Now, using the indirect Lyapunov method we obtain the stability boundaries. The given

system is stable if both the lower and the upper bound is within the unit circle. From here

we get c ∈
(

1∑ αi
αk
−n , 0

)
.

Implications on system design: From the analysis we know that, in homogeneous player

case, the convergence of BB players only depends on the characteristics of the bandwidth

allocation function h(·), while for RB players, the convergence depends on the composite

of bandwidth allocation function h(·) and player adaptation algorithms f(·). This has the

following key implications that informs the system design:

First, the analysis confirms that the router-side bandwidth allocation function is critical

to the convergence of both RB and BB players. Given that the player adaptation algorithms

are designed by potentially different providers and may not be considering multiplayer ef-

fect, it could in turn be beneficial to redesign the bandwidth allocation function to ensure

convergence with a larger range of player adaptation algorithms.

Second, the analysis provides a theoretical guide for the design of RB player adaptation

algorithms which helps us better understand why existing design (such as [47]) works. Given

that the convergence depends on both bandwidth allocation and player adaptation, if TCP-
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based implicit bandwidth allocation is hard to change, we can design better player adaptation

algorithms so that h ◦ f is contractive. One example of this principle is the design of

FESTIVE [47], where f(·) function is concave to make sure h ◦ f is contractive.

2.4.3 NMPC-based Router-Assisted Bandwidth Allocation for QoE

Fairness

Despite a fully distributed scheme, the analysis from the previous section has posed the

fundamental limitation of TCP-based bandwidth allocation scheme: First, not all h(·) lead

to convergence to QoE fairness in steady state even if players have the same QoE function

U(·) and use the same class of bitrate adaptation policies f(·). Second, it cannot take into

account different QoE goals and will not converge to fairness when players employ different

classes of bitrate adaptation policies. As such, in order to achieve multiplayer QoE fairness,

we want to design better player bitrate adaptation policies fi(·) and bandwidth allocation

policy h(·).

However, it is difficult to deploy/modify bitrate adaptation policies of all video players

as they belongs to different and competing video streaming services, e.g., Netflix, YouTube,

Amazon Video, etc. Also, controlling the bandwidth from the player side is difficult as

the player runs on top of HTTP and cannot change the underlying TCP protocol. Instead,

routers are in a good position to collect information of each player and video stream, and can

technically control the bandwidth allocation. As smart routers are becoming more and more

pervasive in the home entertainment industry (e.g. Google OnHub router), we envision that

router-assisted bandwidth allocation scheme is more practical. Overall, we develop a hybrid

router-assisted control for fairness: we keep the player adaptation policies fi(·) unchanged,

and design bandwidth allocation policy h(·) to achieve QoE fairness.
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As routers have access to all video streams going through, we assume it can get or learn

the following information from each player i ∈ P : 1) current states of the player including

bitrate ri, buffer level bi, 2) bitrate adaptation policy fi(·), 3) QoE function Ui(·).

Given these information, the router-side bandwidth allocation function h(·) is obtained

implicitly by solving the following bandwidth allocation problem in a moving horizon manner,

regarding each player as a closed-loop system.

max F (U1, · · · , UN)

over w[k] given W [k], k ∈ K

s.t. (2.24)− (2.27)

ri[k] = fi(wi[k − 1], bi[k]), ∀i ∈ P , k ∈ K

Note that as the dynamics of players are non-linear, the resulting controller is a non-linear

MPC-based controller.

2.4.4 Evaluation

Evaluation Setup

Evaluation framework: We employ a custom Matlab-based simulation framework. The

duration of each time step is 2s and the simulation framework works in a synchronized

manner: At the beginning of each 2s interval, the states of the player and the network

is updated according to player dynamics and previously recorded traces. The bitrate and

bandwidth decisions are then made simultaneously. There is no event in between each 2s

interval. Note that this is slightly different from the single-player simulation in previous

section as the player decisions are not synchronized, i.e., the player can change the bitrate at
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chunk boundaries, which may not necessarily be every 2s. We acknowledge this limitation

and will test in real asynchronized settings in future work.

Resource allocation schemes: We compare the following algorithms:

1. Baseline: In baseline scheme, the bandwidth controller knows the q(·) function of

all players, and the bandwidth is allocated by solving the steady-state bandwidth

allocation problem at the beginning of each time step. Given allocated bandwidth,

each player then adopts RB or BB adaptation strategies to choose its bitrate. This

scheme has been seen in recent work [31, 36, 58].

2. Router : In router-assisted scheme, the bandwidth controller knows the QoE functions,

states (buffer level, bitrate), and bitrate adaptation strategies of all players. The

router-assisted bandwidth controller works in a moving horizon way: At the beginning

of each time steps, the controller predict the bandwidth in a fixed horizon to the future,

and solve the router-assisted bandwidth allocation problem (BWA) in the horizon to

decide bandwidth allocation. In this work, we assume the bandwidth is given and the

bandwidth allocation is calculated in one shot instead in a moving horizon way.

3. Centralized : The centralized scheme entails calculating the optimal bandwidth alloca-

tion and the bitrate decisions simultaneously by solving the joint optimization problem.

We assume the controller knows the entire future bandwidth. While less practical, the

centralized controller provides us with an upper bound of the performance.

Metrics: We evaluate the algorithms using the following performance metrics:

1. α-fairness : We adopt α-fairness measure as it is widely used in prior work [53]. Specif-

ically, we focus on two special case of α-fairness: 1) α = 0 corresponding to social

welfare, sum of QoE, or efficiency ; 2) α = 1 corresponding to proportional fairness.

As α-fairness can be decomposed into a component corresponding to efficiency and
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another component corresponding to fairness measures that does not depend on fair-

ness [53], we also use social welfare and normalized Jain’s index as detailed metrics.

2. Social welfare: Defined as sum of QoE of all players, i.e.,
∑

i∈P Ui.

3. Normalized Jain’s index : Defined as the Jain’s index [45] of normalized QoE, namely,

Jain’s index of U/(
∑

i∈P Ui). Jain’s index is widely used in prior work to depict QoE

fairness of players [24, 47, 53], it is defined as J(x) = (
∑
xi)

2/(n ·
∑
x2
i ). Note that

instead of Jain’s index, we could choose any other fairness measure that satisfies all

axioms as shown in [53]. However, here we show the fairness result in terms of Jain’s

index just in order to be consistent with prior work [24, 47].

Throughput traces: We use the throughput trace from FCC MBA 2014 project [9]. The

dataset has more than 1 million sessions of throughput measurement, each containing 6

measurement of 5-sec average throughput. For experiment purposes, we concatenate the

measurements from the same client IP and server IP, and use the concatenated traces in the

experiment. To avoid trivial cases where the available bandwidth is too high or too low, we

only use traces whose average throughput is 0 to 3Mbps. Also, we multiply the throughput

by the number of players in the experiment to eliminate the scaling effect in multiplayer

experiments.

Player pararmeters: The time horizon is discretized by ∆t = 2s. For simplicity, we

assume players can choose bitrate in a continuous range [200kbps, 3000kbps]. We set buffer

size to be 30s. For QoE functions, we set µ = 1 for all players. For default settings, players

has the following video quality function q(r) = rp, we set p = 0.6 by default, making q(·)

function concave. Note that this can be non-concave in general, e.g., we could also use the

sigmoid-like functions as suggested in [29], however, this will make the objective non-convex.

We let RB players adopt r[k] = 0.8× w[k − 1], while BB players adopt r[k] = 100× b[k] by

default.
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End-to-End Results

In this section, we focus on the end-to-end comparison of the algorithms.

Efficiency-vs-fairness tradeoff: We first evaluate the algorithms in terms of normalized

social welfare (sum of QoE) and normalized fairness measure (Jain’s index). We change α

in α-fairness in order to get different points on the curve. Figure 2.15 shows the pareto front

of the algorithms. There are three observations: First, router-assisted control outperforms

baseline controller by 5-7% in terms of social welfare given the same normalized Jain’s

index. For example, if we let normalized Jain’s index to be 0.8, router assisted controller

achieves 56% of optimal, while baseline controller only achieves 50% of optimal. Second,

centralized controller significantly outperforms both router-assisted and baseline controller

with 15+% advantage. This is because centralized controller has more flexibility on deciding

the bitrate for each player, while router-assisted controller does not have direct control

over players’ bitrates and can only steer the bitrate by controlling the bandwidth (for RB

players) and implicitly buffer level (for BB players). Third, we observe a natural tradeoff

between social welfare and fairness. According to Lan et al. [53], α-fairness can be factored

into two component: efficiency (social welfare) and fairness measure that satisfies the five

axioms and does not depend on scale. When α = 0, both centralized and router-assisted

controller optimizes social welfare without considering the fairness of players. As such, the

social welfare at the left most point of the curve is at the maximum. However, as α is

increased, more and more weight is put on the fairness of QoE, leading to increased fairness

but less total QoE. Note that this resonates with the observation in prior work [47] on the

tradeoff between sum of bitrates and their fairness, but our proposed algorithms are able to

systematically adjust this tradeoff by selecting an appropriate α.
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Figure 2.15: Social welfare vs fairness tradeoff

Sensitivity Analysis

Next, we conduct sensitivity analysis with respect to key parameters so as to understand the

robustness and the reason why router-assisted controller outperforms existing methods.

Impact of QoE functions: We first look at how the algorithms performs under different

QoE functions in Figure 2.16a. We use two BB players with the same parameters except

for video quality functions, i.e., q(·) function. We let q(r) = rp and vary the coefficient p.

The larger p is, the user-perceived quality is more sensitive w.r.t. bitrate; The smaller p is,

the less sensitive the user is to bitrate. As shown in Figure 2.16b, both baseline and router

assisted controller allocate more bandwidth to the player with larger p and thus requiring

higher bitrate, as both controllers takes into account the q(·) function in their optimization.

However, router-assisted algorithm outperforms baseline controllers as it considers player

buffer dynamics and lead to faster convergence to optimal bitrates. In addition, the advan-

tage of router-assisted algorithm over baseline controller is increasing as the video quality

coefficients p for different players become more diverse. Note that this confirms our observa-

tion that more bandwidth should be allocated to high-resolution devices in order to achieve

QoE fairness.
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Figure 2.16: Impact of QoE functions

Impact of initial conditions: We further investigate how the players’ initial buffer lev-

els impact the performance. Figure 2.17a shows the players’ normalized QoE vs different

initial conditions, while Figure 2.17b shows the bandwidth allocated to players in baseline

and router-assisted schemes. There are three key observations: First, the router-assisted al-

gorithm consistently outperforms baseline solution, increasing the normalized QoE for each

player. Second, the router-assisted algorithm has more advantage over baseline solution

when the initial buffer levels for the players become more diversed. For instance, while

router-assisted and baseline achieves similar performance when both players have 2s buffer

initially, both players’ QoE are significantly improved when initial buffer levels are 2s and

18s respectively. Third, an interesting observation from Figure 2.17b is that, while baseline

solution does not consider states and dynamics of the players and therefore allocate the same

bandwidth to both players even one player has much more buffer and need less bandwidth,

router assisted algorithm allocate less bandwidth to players with full buffer and more band-

width to player with empty buffer as it needs to quickly accumulate buffer so as to stream

at high bitrate. As such, router-assisted algorithm achieves better performance as it takes

into account the states and dynamics of the players, which is critical to players’ QoE.
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Figure 2.17: Impact of initial conditions

Summary of Results

Our main findings are summarized as follows:

1. Given fixed normalized Jain’s index, router-assisted algorithm ourperforms baseline

solution by 5-7% in terms of social welfare (sum of QoE), while centralized bandwidth

allocation + bitrate control achieves 70% of optimal, achieving 15+% advantage com-

paring to other solutions.

2. Our sensitivity analysis shows that router-assisted algorithm has more advantage over

baseline solution when the QoE functions and initial conditions of players are more

diverse. Moreover, router-assisted algorithm can allocate more bandwidth to players

with less buffer while baseline solution fails to take into account the states of the

players.

2.5 Summary

Our work was motivated by recent debates surrounding the design of dynamic adaptive

streaming over HTTP (DASH) algorithms. To bring some rigor to this space, we developed

a control-theoretic problem formulation that allowed us to explore the design space system-
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atically and evaluate quantitatively different classes of solutions through well-defined QoE

metrics. With the key insights that a broader design space is available compared to existing

solutions, we designed and implemented a model predictive control approach to optimally

combine buffer occupancy and throughput predictions in order to maximize the user’s QoE.

We demonstrated a practical implementation of MPC using the dash.js reference video

player. Our trace-driven emulations using realistic throughput variability traces confirmed

the advantages over state of the art solutions in a wide range of operating conditions with

negligible increase in computation and memory requirements.

Instead of regarding available bandwidth as given by a black box, we further consider the

multiplayer interaction in adaptive video streaming, namely, the joint bandwidth allocation

and bitrate adaptation problem with single bottleneck. We build a mathematical model and

conduct theoretical analysis on the convergence of RB/BB players under unideal TCP as-

sumptions. Given that convergence is not guaranteed in general, we develop a router-assisted

control which allocate bandwidth to players taking into account their bitrate adaptation

strategies and states. Using trace-drive simulations, we show that our proposed router-

assisted control outperforms existing QoE-aware bandwidth allocation algorithms as it can

adaptively allocate bandwidth to players with high resolution and in more urgent need to

accumulate buffer.
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Chapter 3

Case Study in Electric Power

Networks

3.1 Overview

Today’s electrical power system has seen an increasing presence of uncertaintes in its daily

operations, such as equipment failures, demand variations, and unpredictable power output

of renewable resources. These uncertainties can lead to inefficiency and potential risks in

power system operations if not well managed [44]. Various approaches have been proposed

by the researchers to manage the uncertainties and related risks at the system level [26, 44].

Electric power generators have diverse dynamic characteristics and control capabilities

which impact their ablilities to adjust power output to desired value in power system oper-

ations. Depending on the responsiveness and accuracy to system operators’ commands, we

roughly divide them to slow and fast generators. In addition to the well-studied variability

of demand and renewable generation resources, slow generator’s deviation from the system

operator’s schedule has been recently identified as a new type of uncertainty which may lead

to risks the real-time operations of the grid [44].
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Specifically, in today’s power system, online power balancing is achieved by combined

efforts of real-time dispatch, which is conducted every 5 minutes before the actual interval,

and automatic generation control (AGC), during the 5-min slot. While slow generators can

commit to certain amount of generation in real-time dispatch stage, their actual genera-

tion during the actual time interval may deviate from the agreed schedule due to physical

limitations and gaming.

These deviations lead to new risks in online power balancing: From the (independent)

system operators’ ((I)SO) perspective, these deviations create non-zero mean imbalances in

real-time, which needs more expensive AGC resources to compensate; From market partic-

ipants’ point of view, neither the generators with large uncertain deviations get penalized

under the current real-time market rule, nor the generators which follows the schedule better

get rewarded. As a result, if this risk is not well managed, it not only adds stress to the

AGC system, but also leads to inefficiency and unfairness in the real-time energy market and

ancillary services market. In this light, how to manage the risks created by slow generator’s

deviation becomes a fundamental question posed for the (I)SOs.

The risks can be managed by the (I)SO in a centralized way, or by the market partici-

pants, i.e., the generators, in a distributed, market-based way. A centralized framework has

recently been proposed in [44] to systematically manage the risks created by slow generator’s

deviations in online power balancing. Instead of the currently adopted real-time dispatch +

AGC 2-stage approach, [44] proposes a novel 3-stage framework comprising: 1) risk-based

real-time dispatch before the 5-min interval, 2) redispatch of fast generators at the beginning

of the actual interval, and 3) AGC during the interval. The characteristics of slow gener-

ators’ deviation are first statistically learned from historical data and directly by used the

(I)SO to dispatch slow generators taking into account their potential deviations. Right at

the beginning of the 5-min interval, actual deviations are observed and then compensated

by re-dispatching fast-responsive generators. The imbalances left are then covered by AGC.
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While the centralized framework hides the complexity of risk management from the mar-

ket participants, it is incomplete in the sense that it has not defined a transparent pricing

and cost allocation mechanism. To this end, in this dissertation, we design a novel market

structure to manage the risks.

We develop a risk-based market rule in which the slow generators with deviations are

charged with the corresponding redispatch cost due to their deviations. Under this market

rule, the slow generators consider and internalize the risks of potential deviations when they

create their “simple bid” functions in real-time balancing market. By conducting conven-

tional deterministic real-time dispatch based on “simple bids”, the (I)SO can reduce the risks

created by deviations. In other words, the risks of deviations are managed distributedly by

the market participants when they create the bid function, instead of being considered by

(I)SO in a centralized way in risk-based real-time dispatch.

We conduct numerical simulations to show that the proposed risk-based market struc-

ture 1) improves market efficiency by penalizing the generators with large deviations while

rewarding generators with less uncertainties according to market-based prices; 2) reduces

total generation cost as well as the randomness of the cost.

3.2 Background

In this section, we first provide a brief survery of risks in current electricity market, and

then identify new risks brought by slow generators’ deviations. We introduce related work

in electricity market formulations and argue that a new risk-based formulation is necessary

to address the new risks.
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3.2.1 Risks in Today’s Electricity Markets

There are several types of risks that exist in today’s electricity market. Here we give a brief

survey of the risks.

1. Equipment failure [26]. This includes generator failure and disconnection of transmis-

sion lines. For example, operating generators may experience unexpected failure and

are not able to provide power output. Transmission lines may fail to work due to over-

loading. These failures may pose significant risks in the electricity market as they may

substantially change the total power supply and the power flow in transmission net-

works. If not well managed, such failures can lead to cascading failures, e.g., the failure

of one transmission line can result in the routing of power flow to other lines, leading to

potential overloading and new line failures. The issue of the equipment failure is also

known as reliability issue. Note that we are not considering reliability-related risks in

this thesis.

2. Uncertainty of renewable resources [72, 76]. Renewable resources such as wind and solar

generators are known to be highly volatile and unpredictable. While in the dispatching

stage the renewable resources are considered according to predicted generations, the

actual generation may differ from the schedule and result in significant supply-demand

imbalance.

3. Uncertainty of demand [48, 49]. The amount of power demand from users is also volatile

and hard to predict. For example, a public sport event may significantly increase the

power demand for a short period of time, which will need more generations.

While these risks have been well studied by prior work [26, 48, 49, 72, 76], in this thesis, we

study a new type of risks posed by slow generators’ deviations.
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Figure 3.1: Today’s online power balancing scheme

Generator Cost Mean of ∆Pi Std of ∆Pi

1 50P 2
1 + 80P1 −20% 10%

2 100P 2
2 + 88P2 −15% 5%

3 200P 2
3 + 100P3 0 5%

4 600P 2
4 + 258P4 0 0

5 600P 2
5 + 300P5 0 0

Table 3.1: Generator profiles: 1-3 are slow generators, 4,5 are fast generators

3.2.2 Risks Posed by Slow Generators’ Deviations

We start by identifying the new risk in today’s online power balancing scheme. Figure 3.1

shows the current online power balancing scheme: Real-time dispatch (RTD) is carried out

every 5 minutes before the actual interval, while AGC is then used during the 5-min interval

to cover the imbalances left in real-time.

However, the deviation of generators from schedule can lead to potential risks in today’s

online power balancing scheme: While the generators are scheduled for certain amount of

generation in real-time dispatch stage, the actual generation during the 5-min interval can

deviate from the schedule, because of physical limitations and gaming (strategically not

following the command for its own profit). As a result, the (I)SO needs to utilize more AGC

to cover the imbalances caused by deviations, leading to increased stress in AGC system.

In addition, while the increased need of AGC is caused by deviations of generators, these

generators are not penalized for not following the schedule under the current settlement

process of real-time energy market or ancillary service market, which leads to increased

market inefficiency and unfairness.
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We use an example to illustrate the problem in more detail. In the test system, generator

1-3 can deviate from the (I)SO’s RTD command, and are thus called slow generators. On

the other hand, generator 4-5 are called fast generators, since they can exactly follow the

(I)SO’s command and adjust their generation output very quickly. Figure 3.2a shows the

scheduled and actual generation of slow generators 1-3, respectively. As a result, the (I)SO

sees the total non-zero mean imbalances shown in Figure 3.2b, which must be compensated

by the more expensive AGC resources in real-time.

The identified issue with today’s online power balancing then poses the following funda-

mental questions to the (I)SOs:

1. How to reduce the generators’ deviations and the resulting increasing need for expensive

AGC resources?

2. How to design market rules to allocate the cost of online power balancing to reward

the right technologies for what they do?

While previously proposed centralized risk-based real-time dispatch [44] provides an ini-

tial answer to these questions, no market rule has been designed to facilitate fair allocation of

cost of risks according to the causation. In this dissertation, we develop a risk-based market

structure to answer these questions. The desired risk-based market rule should:

1. Penalize generators with large deviations and reward those which follow the schedule

better;

2. Allow different generators to have different risk preferences;

3. Drive slow and fast generators to the optimal operating conditions such that total

generation cost is minimized.
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(a) Slow generators’ deviations from
the schedule

(b) Total imbalance seen by (I)SO

Figure 3.2: Supply-demand imbalance as a result of individual generator’s deviation from
schedule

In this thesis, we consider generators to be the only market participants while demand

is given/known. An interesting future work will be extending the proposed framework to

include demand resources as market participants.

3.2.3 Related Work in Electricity Market Formulations

There has been a lot of existing work on the mathematical foundations of the electricity

market [32, 49, 62, 63]. The determination of generation schedules and settlement process

can be formulated as an optimal power flow problem minimizing the total generation cost,

also known as economic dispatch problem. Using the lagrangian multipliers in the problem,

the (I)SO can calculate the locational marginal prices and decide payments. Specifically,

Joo et al. [49] proposed the use of principles of decomposition in deterministic economic

dispatch.

Risks have been considered in electricity market formulations by extending the determin-

istic optimization into stochastic optimization. For example, Joo et al. [48] considers the

risks of uncertainty of demand, while Zhang et al. [76] proposed risk-limiting dispatch to

consider the uncertainty of renewable resources.
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Figure 3.3: The new risk-based online power balancing scheme

However, the risks of slow generators’ deviations have not been studied in the electricity

market formulations. Next, based on the existing work on deterministic optimization and

risk-based optimization, we develop a risk-based dispatch that considers the risks of slow

generators’ deviations.

3.3 Centralized Risk-Based Real-Time Dispatch

In this section, we propose a centralized risk-based RTD approach as an extension to con-

ventional RTD to consider generators’ possible deviations.

Figure 3.3 provides an overview of the proposed risk-based online power balancing scheme.

Instead of the conventional 2-stage approach, the risk-based method consists of 3 stages:

Risk-based real-time dispatch, re-dispatch, and AGC. Before the 5-min interval, the (I)SO

first predicts possible deviations of slow generators based on historical data, and dispatch

slow generators taking into consideration the potential costs due to the deviations. At the

beginning of the actual interval, the (I)SO measures the actual deviations of slow generators

and adjusts fast generators to compensate the deviations. The imbalance left is then com-

pensated by AGC during the 5-min interval. In the rest of the section, we introduce each of

the stages in more detail.

Modeling slow and fast generators: First, we develop a formal model characterizing

slow and fast generators. We model slow generators as generators that can have deviation

of power output ∆Pi in the actual time interval, given the scheduled output Pi. While in

practice the deviation can be the result of generators physical limitation (e.g., poor govenor
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response) or strategic behavior (gaming), in this thesis we only consider physical limitations

and generators are not able to control their deviations in the actual interval and can only

regard it as random. We assume the deviation follows a Gaussian distribution: ∆Pi/Pi ∼

N (µi, σi). Ideally, real market data is needed to verify the assumption of distribution of

deviations and learn the parameters (µi, σi). However, we acknowledge that our model

is based on conversation with industry personnel and not based on real data. Instead of

building data-driven model, our goal in this thesis is to adopt a model to provide a proof-of-

concept analysis of the impact of the proposed two-stage dispatch. We regard real-data-based

analysis as future work elaborated in detail in Chapter 5. We assume each slow generators to

be owned by different entities. We model the fast generators as generators that can quickly

respond to the (I)SO’s command at the beginning of the actual interval. The fast generators

does not have deviations and only participate the re-dispatch stage as illustrated later in the

thesis.

Risk-based real-time dispatch: Different from conventional RTD, the potential risks

resulting from slow generator’s deviations are considered in the centralized risk-based RTD

approach. Given this statistical information of the deviations, the centralized risk-based real-

time dispatch problem is then formulated as follows, where the optimal generation of slow

generators, Pi,t, i ∈ S is found to minimize the conditional value-at-risk of the generation

cost of slow generators as well as potential redispatch cost of fast generators:
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min
Pi,t,i∈S

CV aRβ

(∑
i∈S

CS,i(Pi,t −∆Pi,t) +R(∆Pt)

)
(3.1)

s.t.
∑

i∈S
Pi,t = PD (3.2)

|F | ≤ F (3.3)

|Pi,t − Pi,t−1| ≤ RRi (3.4)

P i ≤ Pi,t ≤ P i (3.5)

∆Pi,t|Pi,t ∼ f(∆Pi,t) (3.6)

where CS,i(·) is the generation cost function of slow generator i, R(∆Pt) is the redispatch

cost given actual deviations of slow generators ∆Pt.

Since the actual deviation ∆Pt is unknown before the actual 5-min interval begins, the

actual generation cost CS,i(Pi,t −∆Pi,t) and the redispatch cost R(∆Pt) are both stochastic

at this point. We use the concept of conditional value-at-risk (CVaR) to quantify the cost,

defined as

CV aRβ(cost) = E (cost− V aRβ(cost))+ (3.7)

where V aRβ(cost) = min{L|Prob(cost ≤ L) ≥ β} is the value-at-risk of the cost. CVaR is

a widely-adopted coherent risk measure [66]. β ∈ [0, 1] repensents the risk preference of the

(I)SO. The more β is, the more risk is perceived which leads to more conservative decisions.

In extreme cases, if β = 0, the CVaR degenerates to the average cost; On the other hand, if

β = 100%, the CVaR becomes the worst-case cost.

Redispatch: In the redispatch stage, the actual deviations of slow generators ∆Pi,t are

measured and compensated by redispatching fast generators. The corresponding redispatch
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cost R(∆Pt), as well as the generation of fast generators, are calculated as follows:

R(∆Pt) = min
Pj,t,j∈F

∑
j∈F

CF,j(Pj,t) (3.8)

s.t.
∑

j∈F
Pj,t =

∑
i∈S

∆Pi,t (3.9)

|F | ≤ F (3.10)

|Pj,t − Pj,t−1| ≤ RRj (3.11)

P j ≤ Pj,t ≤ P j (3.12)

While the centralized risk-based dispatch provides a framework for risk management in

online power balancing, further work is still needed: First, the centralized approach acts as

a blackbox and does not have a transparent corresponding cost allocation or pricing mech-

anism. Second, in the centralized scheme, the (I)SO needs to learn the possible deviations

of slow generators from historical data, which can be inaccurate and lead to sub-optimal

decisions. Third, in real-world scenarios, different generators can have different risk prefer-

ences, which is difficult to incorporate in the centralized approach. To this end, a risk-based

market structure is needed to bring the risk-based dispatch to practice.

3.4 Risk-Based Market Design

In this section we develop a novel risk-based market structure to manage the risk caused by

slow generator’s deviations. We first explain the new risk-based market settlement process.

After that, we elaborate how the simple bids of slow generators are created by formulat-

ing a profit maximization problem. We compare the market-based risk management and

centralized approach at the end of the section.
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Revenue Slow generator i Fast generator j Load

RTD stage λPi 0 −λPD
Redispatch stage −α∆Pi αPj 0

Total revenue λPi − α∆Pi αPj −λPD

Table 3.2: Risk-based settlement process: λ is the RTD price while α is the redispatch price

3.4.1 Market Structure

In order to equip risk-based online power balancing scheme shown in Figure 3.3 with a

market structure, we propose the following risk-based market rule:

Risk-based market rule: Slow generator i are paid λPi according to RTD schedule Pi and

price λ, but are charged with α∆Pi based on its actual deviation ∆Pi and price α in the

redispatch stage at the beginning of the 5-min interval. Its total revenue is then λPi−α∆Pi.

Fast generator j are paid αPj where Pj is its generation in redispatch stage. Demand pays

λPD.

The risk-based market rule is summarized in Table 3.2. By allocating the redispatch

cost to the deviating slow generators, the market structure creates economic incentives for

the slow generators to follow the schedule better. Next, we elaborate how the online power

balancing scheme shown in Figure 3.3 works under this new market structure step by step.

Step 1: Bidding: In the bidding stage prior to RTD, slow generator i submits its “simple

bid” function Cs
S,i(Pi), or equivalently, supply curve Pi(λ), while fast generator j provides its

conventional bid function CF,j(Pj) or supply curve Pj(α). λ and α are RTD and redispatch

prices, respectively.

Step 2: Risk-based real-time dispatch: Before the 5-min interval begins, the (I)SO

dispatches slow generators and clears the RTD price λt by solving the following economic

dispatch problem with simple bids of slow generators Cs
S,i(Pi,t):
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min
Pi,t,i∈S

∑
i∈S

Cs
S,i(Pi,t) (3.13)

s.t.
∑

i∈S
Pi,t = PD (3.14)

|F | ≤ F (3.15)

|Pi,t − Pi,t−1| ≤ RRi (3.16)

Pi ∈ [P i, P i] (3.17)

The RTD price λt is defined as the corresponding locational marginal prices (LMP) calculated

by solving the real-time dispatch problem. At this point, the demand pays λtPD, while

the slow generator i is paid by λtPi,t. The market-based RTD is computationally much

simpler comparing to the centralized risk-based RTD (3.1)-(3.6), since the proposed market

structure distributes the complexity of risk management to the simple bids of individual

market participants.

Step 3: Redispatch: Once the actual deviations ∆Pi,t are measured at the beginning of

the 5-min interval, the (I)SO redispatches fast generators to compensate the imbalances by

solving the re-dispatch problem (3.8)-(3.12), the same as in the centralized framework. The

redispatch price αt is defined as the corresponding LMP in the re-dispatch problem. Different

from RTD, in redispatch stage the slow generators becomes inelastic demand because they

need fast generators to compensate their actual deviations ∆Pi,t. In this stage, the slow

generator i pays αt∆Pi,t while the fast generator j gets paid αtPj,t for compensating the

slow generators’ deviations.
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3.4.2 Profit Maximization of Generators under Proposed Market

Structure

Next, we explain how slow and fast generators create their “simple bids” by internalizing

potential risk of deviations and the corresponding costs under the new market structure.

Slow generators: Since slow generators are charged according to their deviations from

scheduled generation, they must consider the cost associated with the deviations when they

create their bids. However, the cost of deviations αt∆Pi,t, as well as generation cost CS,i(Pi,t−

∆Pi,t), are stochastic, because neither the redispatch price αt nor its actual deviation ∆Pi,t

is known to the slow generator i at the bidding stage. Instead, it only knows the probability

distribution of αt and ∆Pi,t. To this end, we introduce the concept of conditional value-at-risk

to formulate these stochastic costs.

The slow generator i’s profit maximization internalizing the potential deviations is as

follows:

max
Pi,t

λtPi,t − CV aRβi (CS,i(Pi,t −∆Pi,t) + αt∆Pi,t) (3.18)

s.t. |Pi,t − Pi,t−1| ≤ RRi (3.19)

Pi,t ∈ [P i, P i] (3.20)

αt ∼ f(αt), ∆Pi,t|Pi,t ∼ f(∆Pi,t) (3.21)

where βi ∈ [0, 1] the risk preference of slow generator i as previously explained in Section III.

For slow generator i with risk preference βi, out of the profit maximization is the optimal

generation output P ∗i,t given RTD price λt. By varying λt, a supply curve P ∗i,t(λt) as well as

the “simple bid” Cs
S,i(Pi,t) are created.

Fast generators: For fast generators, the bidding process is much more straight-forward:

since they exactly follow the (I)SO’s command and have no deviations, they are not charged
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with corresponding costs; Instead, they only participate re-dispatch market with conventional

cost/bid function CF,j(Pj).

3.4.3 Comparison with Centralized Approach

The market-based approach differs from centralized approach in various ways. In terms of

information flow between generators and the (I)SO, the market-based approach allows each

generator to internalize the statistical information of its own deviations into simple bids,

while in centralized approach this information must be obtained by the (I)SO by statistical

approaches. In terms of risk preferences, different generators can have their own risk measures

and preferences in the market-based approach, while in the centralizd approach there is a

risk preference common to all.

While market-based approach and centralized approach are fundamentally different, we

find that they are connected in the sense that, under certain conditions, centralized and

market-based approaches lead to the same results. Based on decomposition theory [27], we

have the following theorems as a theoretical validation of our market design.

Theorem 2. If expected cost is considered and ∆Pi are sufficiently small comparing to Pi

for all slow generators, the market-based dispatch and centralized risk-based dispatch yields

the same solution.

Proof. We start from the centralized risk-based dispatch problem where expected generation

cost is minimized.

min
Pi,t,i∈S

E

(∑
i∈S

CS,i(Pi,t −∆Pi,t) +R(∆Pt)

)

s.t.
∑

i∈S
Pi,t = PD

Constraints (3.3) - (3.6)
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The recovery cost can be written as Taylor expansions:

R(∆Pt) =
∑
i

∂R

∂∆Pi,t
∆Pi,t +O(‖∆Pt‖2

2)

The objective function can then be written as:

E

(∑
i∈S

CS,i(Pi,t −∆Pi,t) +R(∆Pt)

)

=E

(∑
i∈S

CS,i(Pi,t −∆Pi,t) +
∑
i

∂R

∂∆Pi,t
∆Pi,t +O(‖∆Pt‖2

2)

)

=
∑
i∈S

E
(
CS,i(Pi,t −∆Pi,t) +

∂R

∂∆Pi,t
∆Pi,t

)
+ EO(‖∆Pt‖2

2)

where ∂R
∂∆Pi,t

= αi is the redispatch LMP. The only couping among different generators is the

term EO(‖∆Pt‖2
2). When ∆Pi are sufficiently small comparing to Pi for all slow generators,

EO(‖∆Pt‖2
2) ≈ 0. In uncongested cases, we can write the lagrangian of the optimization

problem:

L(Pi,t, λ) =
∑
i∈S

E
(
CS,i(Pi,t −∆Pi,t) +

∂R

∂∆Pi,t
∆Pi,t

)
+ λ

(
PD −

∑
i∈S

Pi,t

)

=λPD −
∑
i

(
λPi,t − E

(
CS,i(Pi,t −∆Pi,t) +

∂R

∂∆Pi,t
∆Pi,t

))

Given that the second term is separable among generators, according to dual decomposition

theory, if original problem is convex, minimization of the lagrangian can be achieved by all

generators solving their own profit maximization problem:

max
Pi,t

λtPi,t − E (CS,i(Pi,t −∆Pi,t) + αt∆Pi,t)

s.t. Constraint (3.19) - (3.21)
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Figure 3.4: The IEEE 24-bus reliability test system (IEEE One Area RTS-96)

where αt is the redispatch price.

3.5 Evaluation

3.5.1 Setup

Evaluation framework: We employ a custom Matlab-based simulation framework in the

IEEE 24-bus reliability test system (IEEE One Area RTS-96) [39] as shown in Figure 3.4. We

add the profiles of slow generators in Table 3.1 to the existing set of generators in [39]. We

compare the proposed risk-based market structure with conventional RTD, where generators

are paid based on their RTD schedules and prices without considering risks of deviations.

We also implemented the generator-side and (I)SO-side decision making in Smart Grid in a

Room Simulator (SRGS).

Resource allocation schemes: We compare the following schemes:
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1. No deviation: This is the baseline case where slow generators do not have deviations,

i.e., they can follow exactly the system operator’s command. We use this result as a

lower bound of the generation cost and normalize the cost of other schemes.

2. Conventional : The conventional real-time dispatch scheme that solves an DC-OPF

problem to schedule slow generators, without considering the possible deviations. At

re-dispatch stage, slow generators’ deviations are compensated by solving another DC-

OPT problem on fast generators.

3. Risk-based : The risk-based approach entails solving a DC-OPF problem on (I)SO side

given slow generators’ bid function internalizing the risk of deviations. The re-dispatch

stage is similar to conventional dispatch, i.e., schedule fast generators to compensate

deviations of slow generators.

Metrics: We evaluate the algorithms using the following performance metrics:

1. Total generation cost : Sum of actual generation cost of both slow and fast generators

in the actual 5-min interval.

2. AGC amount needed : The 95% VaR of AGC amount needed to cover slow generators’

deviations if no fast generators are used to compensate the imbalances.

3. Real-time market price: The ex-ante average locational marginal price of the real-time

dispatch stage. This can be techinically calculated by the langrangian multipliers of

the corresponding constraints in the real-time dispatch problems.

3.5.2 System-Wide Impact

First, we show end-to-end result of proposed risk-based dispatch in Figure 3.5. We focus on

the following system-wide impact of proposed approach: total generation cost, AGC amount

needed, locational marginal prices, and cost allocation to generators.
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Figure 3.5: System-wide impact of deviations

Total generation cost: Figure 3.5a shows the comparison of total generation costs under

conventional RTD and the risk-based market rule. As slow generators’ deviations are increas-

ing, the total generation cost of conventional RTD is significantly increased. This is because

conventional RTD does not consider the potential deviations of slow generators, which may

lead to large imbalances that needs more expensive fast generators to compensate. On the

other hand, comparing to the conventional RTD, the average total generation cost, as well as

the standard deviation of the total cost, are reduced by adopting the risk-based market rule.

In addition, the amount of cost reduction becomes more and more significant as deviation is

increased.

AGC requirement: Figure 3.5b shows the 95% Value-at-Risk of AGC amount needed to

cover the deviations of slow generators if no fast generators are scheduled. First, as slow

generators’ deviation grow larger, more AGC resources are needed to cover their potential

deviations in the actual 5-min interval. This confirms our observation that slow generators’

deviations lead to increased stress on AGC. However, by using the risk-based approach, the

agc requirement is reduced as expected deviation is mitigated. The advantage of risk-based

approach becomes larger as deviation grows, resulting in a 20% reduction in AGC amount

when average deviation is 10%.
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Prices: Figure 3.5c shows the real-time market price under the proposed risk-based market

rule. The price change is near zero when average deviation of slow generators is zero. As

deviation is increasing, the price of risk-based dispatch keeps increasing while the price of

conventional dispatch stays unchanged. Note that while increasing, the price of risk-based

dispatch reflects the actual marginal cost of electric power: more expensive fast generators

are needed to compensate the increased imbalances caused by more deviations. On the other

hand, prices of conventional dispatch cannot reflect the cost of recovery, leading to potential

variations of ex-post prices and large deviations.

Cost allocation: In order to understand deeper the reason behind aforementioned system-

wide benefits, we also investigate how generators with different deviations are penalized or

rewarded differently in the proposed risk-based market structure comparing to conventional

RTD. In conventional RTD, generators are dispatched without considering risks of devia-

tions, therefore, the cheaper generators are scheduled to generate more power and obtain

more profit. In risk-based approach, generators with larger deviations are penalized com-

paring to conventional RTD and scheduled to generated less power, so as to avoid potential

large imbalances during the actual 5-min interval. On the other hand, generators with less

uncertainty are rewarded by being allocated more generation in the upcoming interval, since

they follow the (I)SO’s command more accurately. As a result, the profit of generators with

large deviation reduces, while profit of generators with less uncertainty increases comparing

to the conventional RTD. As such, risk-based dispatch allows more fair cost allocation while

in conventional dispatch the slow generators causing deviations are not penalized appro-

priately. Naturally, this will place incentives for slow generators to improve their control

accuracy so as to increase profitability. We will further investigate how this will impact

individual generators’ decision making shortly.
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3.5.3 Impact on Individual Generators

Next, we investigate how the adoption of risk-based market rule will impact the decision

making of individual generators.

Bid function: Under risk-based market rule, the slow generators make “simple” bids inter-

nalizing the risk of deviations, as is shown in previous sections. Now we zoom in and show in

Figure 3.6 an example of bid functions of a slow generators (with 10% expected deviation).

The blue curve shows the bid function when there is no deviation or no charge in the

system. Now as the generator can deviate from schedule for 10% in average, it needs to

consider the potential charge in risk-based market rule, as its deviation will be charged in

redispatch stage. As such, the marginal cost of providing a specific amount of power is

increased, and the bid curve moves to the right in the plot. The risk preference β also

plays an important role in the bid function: As β increases, the generator becomes more

conservative and considers CV aRβ of cost in its profit maximization, and therefore perceives

higher marginal cost.

Profit vs deviation: We study how profit of individual generator changes under the risk-

based market rule if its deviation characteristic is improved (not shown). If slow generators

can reduce its uncertainty level and become more accurately controllable in real-time, it

can get more profit under the proposed risk-based market rule. This result shows that the

proposed market rule can facilitate better risk management and less uncertainty level in the

slow generators’ operations in the long run.

3.5.4 Sensitivity Analysis

We conduct sensitivity analysis w.r.t. key system parameters, i.e., risk preferences and

redispatch prices.
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Figure 3.6: Example bid function for slow generators

Impact of risk preference: Figure 3.7 shows the system-wide impact of varying risk pref-

erences. Note that the risk perference refers to β, i.e., the confidence level of the conditional

Value-at-Risk of slow generators as they calculate bid functions. β = 0 means the slow

generator seeks to maximize expected profit while β = 1 corresponds to worst-case profit.

While different slow generators can have different risk preferences as is suggested in risk-

based market, here for illustration purposes we only show results with β being the same for

all slow generators.

First, we observe from Figure 3.7a that with risk-based market rule, the total generation

cost depends on the risk preference β: when β increases, the generators bid more conserva-

tively in order to avoid large deviation and corresponding charges. As such, the resulting

average total generation cost increases, while the variability of the cost decreases (not shown).

This leads to an interesting trade-off between the mean and the varibility of the total cost,

controlled by the risk preference β. Note that when β > 0.8, the slow generators can become

over-conservative, making the total generation cost even higher than conventional dispatch.

This is because the cost reduction of less deviations is not enough to cover the increased fuel

cost of more expensive but non-deviating generators.

Second, as β increases, the amount of AGC needed is significantly reduced as shown in

Figure 3.7b. When β = 0, the AGC requirement is reduced for 20+%; As slow generators
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Figure 3.7: Impact of risk preference

become more conservative, the AGC requirement keeps decreasing; At β = 0.9, only 50% of

AGC is needed comparing to conventional dispatch, which is a significant improvement.

We further look at the impact on system prices in Figure 3.7c. As the system level

risk preference β increases, the slow generators becomes more risk-averse, the RTD price

λ increases, while the redispatch price α decreases. This is because if slow generators are

more risk-averse, the ones with larger uncertainty, even though cheaper, will be scheduled

for less generation to avoid potential large deviations, which increases the system price in

RTD stage. As a result, as β increases, the potential imbalances during the actual interval

are reduced, which brings the re-dispatch price α down.

Impact of re-dispatch price: Finally, we study how re-dispatch price α impacts the

system performance in Figure 3.8. While in general re-dispatch price depends on the actual

deviation and can thus be a stochastic variable at the RTD stage, we use a fixed re-dispatch

price by setting a linear cost function for all fast generators and assume there is no congestion

in re-dispatch stage. We have the following observations:

First, while re-dispatch price does not affect total cost when no slow generators are

present, in cases with slow generators the total generation cost are increased as α grows

(Figure 3.8a). This is because the cost of fast generators is increased as α increases, resulting
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Figure 3.8: Impact of redispatch price α

in increased overall cost. We further observe that the risk-based approach can significantly

reduce total generation cost, and the reduction increases as α increases.

Second, as shown in Figure 3.8b, the AGC amount needed is significantly decreased as

redispatch price is increased in risk-based approach. The reason is that as redispatch price

increases, in order to avoid high deviation charges the slow generators bid more conserva-

tively, resulting in reduced overall expected deviation. On the other hand, as deviation

charges are not considered in conventional dispatch, the AGC needed keeps unaffected.

Finally, the re-dispatch price also affects the RTD price λ: As shown in Figure 3.8c, the

RTD prices increase as re-dispatch increase in risk-based approach, as the recovery cost of

deviations is reflected in the RTD price. As conventional RTD does not consider recovery

cost in RTD stage, the RTD price does not change, but the ex-post price can change due to

deviations.

3.5.5 Summary of Results

Our main findings are summarized as follows:

1. The adoption of proposed risk-based approach has major impact on system-wide per-

formances: Comparing to conventional dispatch, the risk-based dispatch can reduce
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expect total generation cost, significantly reduce AGC amount needed, and can reflect

the recovery cost in real-time market price.

2. The risk-based market rule allocates cost to the slow generators that causes deviations,

and thus allowing slow generators to consider and internaling this risk in the bid

functions, and more importantly, providing incentives for slow generators to improve

control accuracy and reduce deviations.

3. The sensitivity analysis shows that both risk preferences of slow generators and re-

dispatch price can affect system performance: Larger β results in more conservative

decisions and reduces AGC amount needed, but leads to increased total cost; Higher

redispatch price α increases the advantage of risk-base approach.
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Chapter 4

Conclusions and Future Work

In this chapter, we summarize the findings in this dissertation and suggest possible future

work. We envision that a mathematical theory can significantly improve future resource

allocation ecosystems in smart infrastructures.

4.1 Concluding Remarks

In this dissertation, we focus on the design of better resource allocation schemes in smart

infrastructure that respects practical constraints. Instead of a general theoretical analysis,

we adopt a case-study-based approach to provide insights from two representative systems:

internet video delivery and electric power entworks.

Specifically, in video delivery networks, we focus on the joint bandwidth allocation and

bitrate adaptation problem. We first attempt to improve resource allocation from client-side

in a fully distributed way: designing a MPC-based bitrate adaptation algorithms that can

dynamically optimize user QoE, essentially regarding available bandwidth as black-boxed

input. Given the analysis that TCP is not sufficient to guarantee QoE fairness, we further

consider the design of a router-assited network bandwidth allocator that treats players as
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closed-loop systems and allocate bandwidth according to the QoE function as well as their

states.

On the other hand, as an example to adopt market-based resource allocation schemes,

we investigate the design and evaluation of the risk-based real-time dispatch and market

design. This is motivated by the observation that slow generators’ deviation can negatively

impact system performance, e.g., adding stress to the AGC. While a centralized risk-based

dispatch entails learning each slow generator’s behaviour and make dispatch decisions taking

into account the possible deviation, a risk-based market rule is proposed to penalize slow

generators for their deviations and provide incentives for them to improve control accuracy.

Summing up the findings from the case studies, we have the following insights on the

general design of resource allocation schemes: First, there will be more overall benefits for

the centralized controller to know and manage each user/agent’s dynamics when agents

are more heterogeneous. For example, from the case study of multiplayer adaptive video

streaming, we know that a router-assisted control can benefit more if players have more

diversed buffer levels and QoE functions. Second, while a centralized controller can implicitly

know the characteristics of each agent, it may in turn be beneficial to design a mechanism

that provides incentives to shape agent’s behavior. For example, in case studies in electic

power networks, risk-based market rule can provide incentives and leave the complexity to

each slow generator; while in a centralized scheme slow generators are not charged according

to deviations.

4.2 Future Work

While we focus on a range of aspects in case studies in video delivery and electric power

networks, we acknowledge that there are several limitations in the current work. As such,

we suggest possible and interesting future work in this direction. In general, the current
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work can be improved by 1) improved modeling using real-world data and 2) evaluation in

real-world scenario.

Single-player adaptive video streaming: While we evaluate the proposed MPC algo-

rithm in real video players, we have not carried out experiments in real networks or studied

real improvement on user experience. There are several factors that makes the real evalua-

tion results potentially useful. First, it helps us understand and quantify the improvement

of user QoE under real environment and will give insights to the industry on whether MPC-

based players should be employed in practice. Second, we can study the robustness of MPC

under multiplayer scenario by running MPC with players with other adaptation strategies

and cross traffic. As such, in future work, we plan to evaluate MPC algorithms in real

networks instead of emulated networks.

In addition, we want to explore the possibility to further reduce FastMPC table size by

using an active-learning-based approach. We observe from our experiments that, the actual

adaptation policy using MPC is highly structured, i.e., a lot of entries in FastMPC table

are the same given similar scenarios. As such, we expect the adaptation policy computed

by MPC can be expressed by a simpler function form instead of using a look-up table, and

therefore can be potentially generated using active-learning-based approaches.

Multi-player adaptive video streaming: First, we want to apply decomposition and

distributed optimization theory to design distributed schemes with information exchange for

joint bandwidth allocation and bitrate adaptation, i.e., how each entity (players and router)

exchanges information and makes local decisions so that the system as a whole achieves

desired optimality or fairness. Given that the joint optimization problem is non-convex, we

plan to convexify it by linearizing the buffer dynamic equations.

Second, our current model of unideal TCP-based bandwidth allocation is based on the

measurement from Huang et al. [42]. In the future work, we want to conduct real network

measurement and build a data-driven model to better characterize the bandwidth allocation
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function h(·) in different network conditions so as to analyze the convergence to fairness in

practice. Based on the data-driven model of h(·), we also want to extend our steady-state

analysis and simulation to heteogeneous player cases and consider more general RB, BB and

hybrid policies with more general throughput prediction model.

Finally, we want to evaluate the proposed router-assisted algorithms in practice, espe-

cially in the case of heteogeneous players. We want to explore 1) the interaction of players

with the same control algorithms but different throughput prediction algorithms, 2) the in-

teraction of players with different control algorithms. While conducting real experiments,

we will also explore the feasibility of learning players’ state and adaptation policies at router

side.

Risk-based real-time dispatch: In future work, we will first use real data to develop a

data-driven model of slow generators’ deviations. In this thesis we assume the deviations

follow Gaussian distribution and cannot be controlled by the generators, however, in practice,

this assumption may not hold any more: Deviations may depend on a variety of factors, such

as ramp up/down amount, time of day, etc.; Also, the deviations may be due to the slow

generators’ strategic decisions in the scenario of gaming. We want to use real bid data from

(I)SOs to learn a model of the deviations and verify our simulation results and corresponding

insights.

Second, we want to further study market dynamics and strategic behavior as a result

of the risk-based market design. The proposed risk-based market design can significantly

change the behavior of slow and fast generators in the following aspects: 1) In the long

term, based on the profitability in real-time dispatch and re-dispatch markets, the number

of slow/fast generators/AGC resources can change accordingly; 2) In the short term, based

on the prices in the two market, fast generators may allocate their capacity to participate

real-time dispatch and re-dispatch market; 3) In the short term, the slow/fast generators

participating in both market stages may strategically change their deviations by anticipating

97



the system operator’s actions and market prices. In future work, we want to study and

quantify these impact and their implications on the market design.

Finally, in future work we want to implement the proposed market mechanism and con-

duct large-scale distributed simulation in Smart Grid in a Room Simulator (SGRS). SGRS

provides a distributed, class-oriented simulation environment in Matlab that enables large-

scale emulation of electricity markets. While in our simulation we are able to show the

improvement in controlled simulations, what is still lacking is a show-case of how this mar-

ket mechanism will perform in practical environments where generators do not have perfect

prediction of prices and thus submit approximate, piece-wise linear bid functions. Large-

scale emulations in SGRS will provide us with a better understanding of the implications on

real-world scenarios.

4.3 Toward a Mathematical Theory for Better Resource

Allocation Ecosystems

While this thesis aims at developing principled resource allocation schemes that respect

practical constraints, it is only utilizing the limited sensing and control capability at the edge

of the networks, which is constrained by the structure of the resource allocation ecosystems,

namely, entities that owns the resources/capabilities and the way these entities interact with

each other. For example, players of Netflix cannot communicate with or control players

with other video providers and non-video applications. As we observe from this thesis, the

structure of the resource allocation ecosystems, if not properly designed, will pose significant

limitations and challenges for the design of optimal resource allocation schemes. As such,

while in the short term it can benefits the system to design resource allocation schemes that

works practically in the current ecosystem, it becomes increasingly critical in the long term

to rethink and design better resource allocation ecosystems.
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As an illustrating example, in video delivery networks, there are a variety of entities that

controls different parts of the network and optimize their own profits. For example, video

source providers such as Netflix and YouTube, own the players and the algorithms inside

and want to maximize the user-perceived QoE; Content delivery networks (CDN), such

as Akamai and Level3, assign players to content servers and optimize the a combination

of metrics for general web traffic; Internet service providers (ISP), such as Comcast and

Verizon, can control the bandwidth available to end players/servers and want to reduce the

operating cost while provide guaranteed bandwidth according to agreement with users. The

maximization of users’ QoE needs the coordination of all entities, however, as the current

resource allocation ecosystems evolve in an ad-hoc manner without principled design, the

result of the current coordination schemes is still far from optimal.

A lot of recent research (e.g., [46]) has argued the need for better resource allocation

ecosystems, and proposed initial solutions that tackles specific resource allocation problems.

However, there are two key questions that remained unanswered by prior research:

1. Is the structure of the current resource allocation ecosystem sufficient to develop close-

to-optimal resource allocation schemes? For instance, does it result in instability or

suboptimal resource allocation if each entity optimize their own objective?

2. Can we design structure of the ecosystems to achieve better resource allocation? For

example, what is the information that needs to be exchanged between different entities

to improve overall allocation?

To answer these questions, we envision that a principled model-based approach will be

helpful in the analysis and design of the better ecosystems. To this end, we plan to develop

a mathematical theory for better resource allocation ecosystems.

In particular, we plan to model the ecosystems in two time scales: In the faster time

scale, we model each entity as a dynamical system with a feedback controller based on
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the actual information exchange patterns. Each entity is able to control their own input

based on its own state variable and the observed output from other entities. In the slower

time scale, we model each entity as an agent that makes discrete decisions that optimize its

objective. Given the stochastic nature of the network bandwidth and user’s demand, we also

plan to develop a data-driven dynamical model of the evolution of networks and demand.

First, we want to analyze the existing ecosystem through control theory and distributed

optimization/decomposition theory and derive results on the stability and optimality. Based

on the insights from the analysis, we want to develop better protocols and information

exchange patterns between the entities to enable better resource allocation and drive critical

change in smart infrastructures.
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