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Abstract
In graph theory, as in many fields of mathematics, one is often interested in

finding the maxima or minima of certain functions and identifying the points of
optimality. We consider a variety of functions on graphs and hypegraphs and
determine the structures that optimize them.

A central problem in extremal (hyper)graph theory is that of finding the
maximum number of edges in a (hyper)graph that does not contain a specified
forbidden substructure. Given an integer n, we consider hypergraphs on n
vertices that do not contain a strong simplex, a structure closely related to and
containing a simplex. We determine that, for n sufficiently large, the number
of edges is maximized by a star.

We denote by F (G, r, k) the number of edge r-colorings of a graph G that do
not contain a monochromatic clique of size k. Given an integer n, we consider
the problem of maximizing this function over all graphs on n vertices. We
determine that, for large n, the optimal structures are (k − 1)2-partite Turán
graphs when r = 4 and k ∈ {3, 4} are fixed.

We call a graph F color-critical if it contains an edge whose deletion reduces
the chromatic number of F and denote by F (H) the number of copies of the
specified color-critical graph F that a graph H contains. Given integers n and
m, we consider the minimum of F (H) over all graphs H on n vertices and m
edges. The Turán number of F , denoted ex(n, F ), is the largest m for which
the minimum of F (H) is zero. We determine that the optimal structures are
supergraphs of Turán graphs when n is large and ex(n, F ) ≤ m ≤ ex(n, F )+cn
for some c > 0.
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Chapter 1

Introduction

In this chapter, we briefly summarize our results.

1.1 Strong Simplices

We start by introducing some terms.

A hypergraph (or family) F is a collection of subsets of a ground set V ; we refer to the

elements of V as the vertices and the members of F as hyperedges (or edges) of F . If all

edges in F are k-element subsets of V for some fixed integer k ≥ 2, we call F a k-uniform

hypergraph (or a k-graph for short). For X ⊆ V , we use the shorthand
(

X
k

)
to refer to the

set of all subsets of X with exactly k elements and denote by [n] the set {1, 2, . . . , n}. F
is a star if there exists an element x that lies in all edges of F .

A problem of immense interest in extremal graph theory is determining the maximum

number of edges a hypergraph can contain if it does not contain a specified forbidden

configuration (or a set of forbidden configurations). One of the most important results in

extremal combinatorics is the Erdős-Ko-Rado Theorem [EKR61] which states that if the

members of F ⊂
(
[n]
k

)
are pairwise intersecting, then F ≤

(
n−1
k−1

)
.

In Chapter 2, we consider those hypergraphs that do not contain strong simplices,

a configuration introduced (with historical motivation) by Mubayi [Mub07] and closely

related to simplices. To be precise, a d-simplex is a collection of d + 1 sets such that every

d of them have nonempty intersection and the intersection of all of them is empty. A

strong d-simplex is a collection of d + 2 sets A, A1, . . . , Ad+1 such that {A1, . . . , Ad+1} is a

d-simplex, while A contains an element of each d-wise intersection. Answering a conjecture
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of Mubayi and Ramadurai [MR09], we prove for k ≥ d+2 ≥ 2 and n large, that a k-graph

on n vertices not containing a d-simplex has at most
(

n−1
k−1

)
edges. Furthermore, equality

holds only for a star.

This is joint work with Tao Jiang and Oleg Pikhurko [SIAM J. Disc. Math., 24 (2010)

1038–1045].

1.2 Monochromatic Cliques

Let G = (V, E) be a graph. An edge r-coloring of G is a mapping χ : E → [r]. Given G,

we wish to count the number of edge r-colorings of G that do not contain a monochromatic

copy of Kk, the complete graph on k vertices. We denote this quantity by F (G, r, k). For

example, if G itself contains no copy of Kk, one easily observes that F (G, r, k) = r|E|.

We consider the related quantity F (n, r, k), the maximum of F (G, r, k) over all graphs

G of order n, introduced by Erdős and Rothschild [Erd74, Erd92]. Recent work by Alon,

Balogh, Keevash and Sudakov [ABKS04], shows that for all k ≥ 3, r ∈ {2, 3} and n

large enough, the unique graph achieving this maximum is the Turán graph Tk−1(n), the

complete (k−1)-partite graph on n vertices with parts of size ) n
k−1* or + n

k−1,. In particular,

as Tk−1(n) contains no copy of Kk, they determine that F (n, r, k) = rtk−1(n), where tk−1(n)

is the number of edges in Tk−1(n).

Surprisingly, they show that one can do significantly better for r ≥ 4; that is, F (n, r, k)

is exponentially larger than rtk−1(n) for n large enough. In Chapter 3, we build upon their

result to show that F (n, 4, 3) and F (n, 4, 4) are attained by T4(n) and T9(n), respectively.

This is joint work with Oleg Pikhurko (submitted to J. London Math. Soc.).

1.3 Supersaturated Graphs

As mentioned above, the Turán graph Tk−1(n) contains no copy of Kk. Furthermore,

the celebrated result of Turán [Tur41] states that the largest size of a Kk-free graph on

n vertices is tk−1(n), with Tk−1(n) being the unique graph attaining this value. In light

of this, the generalized Turán number of a graph F , denoted ex(n, F ), is the maximum

number of edges in a graph on n vertices that does not contain a (not necessarily induced)

copy of F .
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Interestingly, Tk−1(n) is the extremal graph for a larger class of forbidden graphs,

namely, the class of color-critical graphs. A graph F is called r-critical if its chromatic

number is r + 1, but it contains an edge whose deletion reduces the chromatic number. A

result of Simonovits [Sim68] states that if F is r-critical, then ex(n, F ) = tr(n) for large n.

Call a graph G supersaturated with respect to F , if G has n vertices and at least

ex(n, F )+1 edges. It readily follows that F (G), the number of copies of F contained in G,

is at least one. However, typically, F (G) is much larger than 1, and given integers n and

m > ex(n, F ), an interesting question is to determine the minimum of F (G) over graphs

G on n vertices and m edges. The earliest result in this field, due to Rademacher (1941,

unpublished), states that we have at least )n/2* copies of K3 if m ≥ )n2/4*+ 1.

In Chapter 4, we address this problem for color-critical graphs F and m = ex(n, F )+q,

where q = O(n). We show that there exists a limiting constant c1(F ) > 0, such that, for

all ε > 0 and q < (c1(F )− ε)n, the extremal graph(s) for F (H) may be obtained by adding

q edges to the Turán graph Tr(n). We prove that our bound is tight for many graphs

(and classes of graphs) and give an example for which c1(F ) is irrational. In addition, we

provide a threshold c2(F ) for the asymptotic optimality of graphs obtained from Tr(n) by

adding extra edges.

This is joint work with Oleg Pikhurko (in preparation).
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Chapter 2

Set Systems without a Strong

Simplex

2.1 Forbidden Configurations

We begin by recalling the following result of Erdős, Ko and Rado — one of the most

important results in extremal combinatorics.

Theorem 2.1.1 (Erdős, Ko, and Rado [EKR61]). Let n ≥ 2k and let F ⊆
(
[n]
k

)
be an

intersecting family. Then |F| ≤
(

n−1
k−1

)
. If n > 2k and equality holds, then F is a star.

The forbidden configuration in Theorem 2.1.1 consists of a pair of disjoint sets. A

generalization of this configuration, with geometric motivation, is as follows.

Definition 2.1.2. Fix d ≥ 1. A family of sets is d-wise-intersecting if every d of its

members have nonempty intersection. A collection of d + 1 sets A1, A2, . . . , Ad+1 is a

d-dimensional simplex (or a d-simplex) if it is d-wise-intersecting but not (d + 1)-wise-

intersecting (that is, ∩d+1
i=1 Ai = ∅).

Note that a 1-simplex is a pair of disjoint edges, and Theorem 2.1.1 states that if

F ⊆
(
[n]
k

)
with n ≥ 2k and |F| >

(
n−1
k−1

)
, then F contains a 1-simplex. In general, it is

conjectured that the same threshold for F guarantees a d-simplex for every d, 1 ≤ d ≤ k−1.

For d = 2, this was a question of Erdős [Erd71], while the following general conjecture was

formulated by Chvátal.

Conjecture 2.1.3 (Chvátal [Chv75]). Suppose that k ≥ d + 1 ≥ 2 and n ≥ k(d + 1)/d. If

F ⊆
(
[n]
k

)
contains no d-simplex, then |F| ≤

(
n−1
k−1

)
. Equality holds only if F is a star.

Another motivation (see [Chv75, page 358]) is that when we formally let d = k, then we
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obtain the famous open problem of finding the Turán function of the hypergraph
(
[k+1]

k

)
,

posed by Turán [Tur41] in 1941.

Various partial results on the case d = 2 of the conjecture were obtained in [BF77,

Chv75, CK99, Fra76, Fra81] until this case was completely settled by Mubayi and Ver-

straëte [MV05]. Conjecture 2.1.3 has been proved by Frankl and Füredi [FF87] for every

fixed k, d if n is sufficiently large. Keevash and Mubayi [KM10] have also proved the

conjecture when k/n and n/2− k are both bounded away from zero.

Mubayi [Mub07] proved a stability result for the case d = 2 of Conjecture 2.1.3 and

conjectured that a similar result holds for larger d.

Conjecture 2.1.4 (Mubayi [Mub07]). Fix k ≥ d + 1 ≥ 3. For every δ > 0, there exist

ε > 0 and n0 = n0(ε, k) such that the following holds for all n > n0. If F ⊆
(
[n]
k

)
contains

no d-simplex and |F| > (1− ε)
(

n−1
k−1

)
, then there exists a set S ⊆ [n] with |S| = n− 1 such

that |F ∩
(

S
k

)
| < δ

(
n−1
k−1

)
.

Subsequently, Mubayi and Ramadurai [MR09] proved Conjecture 2.1.4 in a stronger

form except in the case k = d + 1, as follows.

Definition 2.1.5. Fix d ≥ 1. A collection of d + 2 sets A, A1, A2, . . . , Ad+1 is a strong

d-simplex if {A1, A2, . . . , Ad+1} is a d-simplex and A contains an element of ∩j "=iAj for

each i ∈ [d + 1].

Note that a strong 1-simplex is a collection of three sets A, B, C such that A ∩ B and

B ∩ C are nonempty, and A ∩ C is empty. Note also that if a family F contains no d-

simplex, then certainly it contains no strong d-simplex (but not vice versa). The main

result of Mubayi and Ramadurai [MR09] can be formulated using asymptotic notation as

follows, where o(1) → 0 as n →∞.

Theorem 2.1.6 (Mubayi and Ramadurai [MR09]). Fix k ≥ d + 2 ≥ 3. Let F ⊆
(
[n]
k

)

contain no strong d-simplex. If |F| ≥ (1− o(1))
(

n−1
k−1

)
, then there exists an element x ∈ [n]

such that the number of sets of F omitting x is o(nk−1).

Corollary 2.1.7 (Mubayi and Ramadurai [MR09]). Fix k ≥ d + 2 ≥ 3. Let F ⊆
(
[n]
k

)

contain no strong d-simplex. Then |F| ≤ (1 + o(1))
(

n−1
k−1

)
as n →∞.

In [KM10], a similar stability result was proved when k/n and n/2−k are both bounded

away from 0, and the result was used to settle Conjecture 2.1.3 in this range of n.

Let us describe our contribution. First, we observe that Theorem 2.1.6 does not hold

when k = d + 1.

6



Proposition 2.1.8. Let k = d + 1 ≥ 2. For every ε > 0 there is n0 such that for all

n ≥ n0 there is a k-graph F with n vertices and at least (1− ε)
(

n−1
k−1

)
edges without a strong

d-simplex such that every vertex contains at most εnk−1 edges of F .

The authors of [MR09] pointed out that that they were unable to use Theorem 2.1.6

to prove the corresponding exact result for large n (which would give a new proof of the

result of Frankl and Füredi [FF87]). They subsequently made the following conjecture,

which is a strengthening of Chvátal’s conjecture.

Conjecture 2.1.9 (Mubayi and Ramadurai [MR09]). Let k ≥ d + 1 ≥ 3, n > k(d + 1)/d,

and F ⊆
(
[n]
k

)
contain no strong d-simplex. Then |F| ≤

(
n−1
k−1

)
with equality only for a star.

In section 2.4, we will prove Conjecture 2.1.9 for all fixed k ≥ d + 2 ≥ 3 and large n.

Theorem 2.1.10. Let k ≥ d + 2 ≥ 3 and let n be sufficiently large. If F ⊆
(
[n]
k

)
contains

no strong d-simplex, then |F| ≤
(

n−1
k−1

)
with equality only for a star.

The case k = d+1 behaves somewhat differently from the general case k ≥ d+2 in that

by Proposition 2.1.8 there are almost extremal configurations very different from a star.

We were able to prove the case k = d + 1 of Conjecture 2.1.9 for all n ≥ 5 when k = 3.

However, shortly after our result, Feng and Liu [FL10] solved the case k = d + 1 for all

k, using a weight counting method used by Frankl and Füredi in [FF87]. Independently,

Füredi [Für] has obtained the same proof, which is short and follows readily from the

counting method. For these reasons, we have chosen to not include this proof in our paper

and in this thesis.

Independently of us, Füredi and Özkahya [FÖ09] have re-proved our main result, The-

orem 2.1.10, in a stronger form (for k ≥ d + 2 and large n). Namely, they can additionally

guarantee that (in the notation of Definition 2.1.5) the sets A1\A, . . . , Ad+1\A are pairwise

disjoint, while the sets A \ Ai, . . . , A \ Ad+1 partition A and have any specified nonzero

sizes. Füredi and Özkahya’s proof uses a sophisticated version of the delta system method

that has been developed in earlier papers such as [FF87] and [F8̈3]. Their method is very

different from ours.

The problem of forbidding a d-simplex where we put some extra restrictions on the sizes

of certain Boolean combinations of edges has also been studied before, with one particu-

larly interesting paper being that of Csákány and Kahn [CK99], which uses a homological

approach.

Frankl and Füredi’s proof [FF87] of Chvátal’s conjecture for a d-simplex for large n is

very complicated. Together with the stability result in [MR09], we obtained a new proof
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of a stronger result. One key factor seems be that having a special edge A in a strong

d-simplex {A, A1, . . . , Ad+1} that contains an element in every d-wise intersection in the

d-simplex {A1 . . . , Ad+1} facilitates induction arguments very nicely. This observation,

already made in [MR09], further justifies the interest in strong d-simplices.

2.2 Shadows

Let F ⊆
(
[n]
k

)
. Recall that a strong d-simplex L in F consists of d + 2 hyperedges

A, A1, A2, . . . , Ad+1 such that every d of A1, . . . , Ad+1 have nonempty intersection but

∩d+1
i=1 Ai = ∅. Furthermore, A contains an element of ∩j "=iAi for each i ∈ [d + 1]. This

means that we can find some d + 1 elements v1, v2, . . . , vd+1 in A such that for each

i ∈ [d + 1], vi ∈ ∩j "=iAj. Note that v1, v2, . . . , vd+1 are distinct because no element lies

in all of A1, . . . , Ad+1. We call A the special edge for L and the set {v1, v2, . . . , vd+1} a

special (d + 1)-tuple for L. (Note that there may be more than one choice of a special

(d + 1)-tuple.)

As usual, the degree dF(x) (or simply d(x)) of a vertex x in F is the number of hyper-

edges that contain x. In addition, let

F − x = {D : D ∈ F , x /∈ D},

Fx = {D \ {x} : D ∈ F , x ∈ D}.

For a positive integer p, the p-shadow of F is defined as

∆p(F) = {S ⊆ [n] : |S| = p, S ⊆ D for some D ∈ F}.

Also, we let

Tp+1(F) = {T : T is a special (p + 1)-tuple for some strong p-simplex in F}.

For each p ∈ [k − 2], let

∂∗p(F) = |∆p(F)|+ |Tp+1(F)|.

2.3 Proof of Proposition 2.1.8

We have to show that if k = d + 1, then there is no stability. Let ε > 0 be given. Choose

large m such that
(

m−1
k−1

)
> (1 − ε/2)

(
m

k−1

)
. Let the complete star H ⊆

(
[m]
k

)
consist of all

8



k-tuples containing 1. Clearly, H has no (k − 1)-simplex. Let n → ∞. A result of Rödl

[Röd85] shows that we can find an m-graph F ⊆
(
[n]
m

)
with at least (1 − ε/2)

(
n

k−1

)
/
(

m
k−1

)

edges such that every two edges of F intersect in at most k − 2 vertices. Replace every

edge of F by a copy of the star H. Since no k-subset of [n] is contained in two edges of F ,

the obtained k-graph G is well defined.

Next, we observe that G has no strong (k − 1)-simplex S. Indeed the special k-set X

of S intersects every other edge of S in k − 1 vertices; thus if X belongs to some copy of

the star H, then every other edge of S belongs to the same copy, a contradiction.

The size of G is at least (1− ε/2)
(

n
k−1

)
/
(

m
k−1

)
× (1− ε/2)

(
m

k−1

)
> (1− ε)

(
n

k−1

)
. Also, by

the packing property of F , the number of edges of G containing any one vertex is at most
(

n−1
k−2

)
/
(

m−1
k−2

)
×

(
m−1
k−1

)
< εnk−1 when n is large. This establishes Proposition 2.1.8.

2.4 Proof of Theorem 2.1.10

In order to prove Theorem 2.1.10, we first establish a general lower bound on ∂∗p(F) in

Theorem 2.4.5, which is of independent interest. Then we will use Theorem 2.4.5 to prove

Theorem 2.1.10.

We need several auxiliary lemmas. The first follows readily from Corollary 2.1.7.

Lemma 2.4.1. For each k ≥ d + 2 ≥ 3, there exists an integer nk,d such that for all

integers n ≥ nk,d if H ⊆
(
[n]
k

)
contains no strong d-simplex, then |H| ≤ 2

(
n−1
k−1

)
.

Lemma 2.4.2. For every k ≥ p + 2 ≥ 3, there exists a positive constant βk,p such that the

following holds.

Let nk,p be defined as in Lemma 2.4.1. Let H be a k-uniform hypergraph with n ≥ nk,p

vertices and m > 4
(

n−1
k−1

)
edges. Then |Tp+1(H)| ≥ βk,pm

p
k−1 .

Proof. From m > 4
(

n−1
k−1

)
, we get n < λkm

1
k−1 for some constant λk depending only on

k. Since m > 4
(

n−1
k−1

)
and n ≥ nk,p, by Lemma 2.4.1, H contains a strong p-simplex L

with A being its special edge. Let us remove the edge A from H. As long as H still has

more than m/2 > 2
(

n−1
k−1

)
edges left, we can find another strong p-simplex and remove its

special edge from the hypergraph. We can repeat this at least m/2 times. This produces

at least m/2 different special edges. Each special edge contains a special (p + 1)-tuple.

Each special (p + 1)-tuple is clearly contained in at most
(

n−p−1
k−p−1

)
special edges. So the

number of distinct (p+1)-tuples in Tp+1(H) is at least m
2(n−p−1

k−p−1)
. Using n < λkm

1
k−1 , we get

9



|Tp+1(H)| ≥ βk,pm
p

k−1 for some small positive constant βk,p depending on k and p only.

The next lemma provides a key step to our proof of Theorem 2.4.5. To some extent,

it shows that the notions of strong simplices and special tuples facilitate induction very

nicely.

Lemma 2.4.3. Let k ≥ p + 2 ≥ 3. Let F be a k-uniform hypergraph and x a vertex in F .

Suppose that T ∈ Tp(Fx) ∩∆p(F − x). Then T ∪ {x} ∈ Tp+1(F).

Proof. Note that Fx is (k − 1)-uniform. By our assumption, T is a special p-tuple for

some strong (p − 1)-simplex L = {A, A1, . . . , Ap} in Fx, where A is the special edge and

A ⊇ T . By definition, {A1, . . . , Ap} is (p − 1)-wise-intersecting, but ∩p
i=1Ai = ∅. Suppose

that T = {v1, . . . , vp}, where for each i ∈ [p] we have vi ∈ ∩j "=iAj. Since T ∈ ∆p(F − x),

there exists D ∈ F − x such that T ⊆ D.

For each i ∈ [p], let A′
i = Ai ∪ {x}. Let A′

p+1 = D and A′ = A ∪ {x}. Let L′ =

{A′, A′
1, . . . , A

′
p+1} ⊆F . We claim that {A′

1, . . . , A
′
p+1} is a p-simplex in F . Indeed,

x ∈ ∩p
i=1A

′
i. Also, for each i ∈ [p], vi ∈ ∩j∈[p+1]\{i}A′

j. So, {A′
1, . . . , A

′
p+1} is p-wise-

intersecting. Since ∩p
i=1Ai = ∅, the only element in ∩p

i=1A
′
i is x. But x /∈ D since D ∈ F−x.

So ∩p+1
i=1 A′

i = ∅. This shows that {A′
1, . . . , A

′
p+1} is a p-simplex in F .

Now, let T ′ = T ∪ {x} = {x, v1, . . . , vp}. Then A′ contains T ′. Let vp+1 = x. For

all i ∈ [p + 1] we have vi ∈ ∩j∈[p+1]\{i}A′
j. Since A′ contains v1, . . . , vp+1, L′ is a strong

p-simplex in F with T ′ being a special (p + 1)-tuple. That is, T ′ ∈ Tp+1(F).

Lemma 2.4.4. Let k > j ≥ 2. Let F be a k-graph and let x be a vertex of F . Then

∂∗j (F) ≥ ∂∗j (F − x) + ∂∗j−1(Fx).

Proof. We want to prove that

|∆j(F)|+ |Tj+1(F)| ≥| ∆j(F − x)|+ |Tj+1(F − x)|+ |∆j−1(Fx)|+ |Tj(Fx)|. (2.1)

Let T ∈ Tj(Fx); that is, T is a special j-tuple in Fx. If T ∈ ∆j(F − x), we say that T

is of Type 1. If T /∈ ∆j(F − x), we say T is of Type 2. Suppose Tj(Fx) contains a Type 1

special j-tuples and b Type 2 special j-tuples. Then a + b = |Tj(Fx)|.
For each Type 1 special j-tuple T of Fx, by Lemma 2.4.3, T ∪ {x} ∈T j+1(F). Further-

more, it is not in Tj+1(F − x) since T ∪ {x} contains x. Hence

|Tj+1(F)| ≥ |Tj+1(F − x)|+ a. (2.2)
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For each Type 2 special j-tuple T of Fx, we have T ∈ ∆j(F) since T is contained

in some special edge in Fx which in turn is contained in some edge of F . Also, by our

definition of Type 2 special tuples, T /∈ ∆j(F − x). Furthermore, T is not of the form

S ∪ {x} since it does not contain x. Also, for each S ∈ ∆j−1(Fx), S ∪ {x} is an element in

∆j(F) that is not in ∆j(F − x). Hence,

|∆j(F)| ≥ |∆j(F − x)|+ |∆j−1(Fx)|+ b. (2.3)

When we add (2.2) and (2.3), we obtain the desired inequality (2.1) completing the

proof of Lemma 2.4.4.

Theorem 2.4.5. For all k ≥ p + 2 ≥ 3, there exists a positive constant ck,p such that the

following holds: if F is a k-uniform hypergraph and m = |F|, then ∂∗p(F) ≥ ck,pm
p

k−1 .

Proof. Let us remove all isolated vertices from F . Let n denote the number of remaining

(i.e., non-isolated) vertices of F . Let nk,p be defined as in Lemma 2.4.1, which depends

only on k and p. Suppose that n < nk,p. Since clearly m ≤
(

n
k

)
<

(
nk,p

k

)
, m

p
k−1 is upper

bounded by some function of k and p. Hence, ∂∗p(F) ≥ αk,pm
p

k−1 for some small enough

constant αk,p. So, as long as we choose ck,p so that ck,p ≤ αk,p, the claim holds when

n ≤ nk,p. To prove the general claim, we use induction on p. For each fixed p, we use

induction on n noting that when n ≤ nk,p, the claim has already been verified.

For the basis step, let p = 1. Let ck,1 = min{αk,1, βk,1, 1/4}, where βk,1 is defined in

Lemma 2.4.2. First, suppose that m ≤ 4
(

n−1
k−1

)
< 4nk−1. Then n > (m/4)

1
k−1 > m

1
k−1 /4.

We have ∂∗1(F) ≥ |∆1(F)| = n ≥ ck,1m
1

k−1 .

Next, suppose that m > 4
(

n−1
k−1

)
. By Lemma 2.4.2, ∂∗1(F) ≥ |T2(F)| ≥ βk,1m

1
k−1 ≥

ck,1m
1

k−1 . This completes the proof of the basis step.

For the induction step, let 2 ≤ j ≤ k− 2. Suppose the claim holds for p < j. We prove

the claim for p = j. We use induction on n. Let

ck,j = min

{
αk,j, βk,j,

1

8k
ck−1,j−1

}
.

Suppose the claim has been verified for k-uniform hypergraphs on fewer than n vertices.

Let F be a k-uniform on n vertices. Suppose F has m edges. Suppose first that m > 4
(

n−1
k−1

)
.

By Lemma 2.4.2, ∂∗j (F) ≥ |Tj+1(F)| ≥ βk,jm
j

k−1 ≥ ck,jm
j

k−1 .

Next, suppose that m ≤ 4
(

n−1
k−1

)
< 4nk−1. Then n > m

1
k−1 /4. Hence, the average degree

of F is km/n < 4km
k−2
k−1 . Let x be a vertex in F of minimum degree d. Then d < 4km

k−2
k−1 .

11



Note that Fx is (k − 1)-uniform with d edges. By the induction hypothesis, we have

∂∗j−1(Fx) ≥ ck−1,j−1d
j−1
k−2 . Also, F − x is a k-uniform hypergraph on fewer than n vertices

(and has m− d edges). By the induction hypothesis, ∂∗j (F − x) ≥ ck,j(m− d)
j

k−1 . Hence,

by Lemma 2.4.4 we have

∂∗j (F) ≥ ck,j(m− d)
j

k−1 + ck−1,j−1d
j−1
k−2 . (2.4)

Recall that d ≤ 4km
k−2
k−1 . Also, d ≤ km/n. Since we assume that n is large (as a function

of k), we may further assume that d ≤ m/2.

Claim 2.4.6. We have ck,j(m− d)
j

k−1 + ck−1,j−1d
j−1
k−2 ≥ ck,jm

j
k−1 .

Proof of Claim 2.4.6. By the mean value theorem, there exists y ∈ (m − d, m) ⊆
(m/2, m) such that ck,jm

j
k−1 − ck,j(m − d)

j
k−1 = ck,jd

j
k−1y

j
k−1−1. It suffices to prove that

ck−1,j−1d
j−1
k−2 ≥ ck,jd

j
k−1y

j
k−1−1, which holds if ck−1,j−1y

k−j−1
k−1 ≥ ck,jd

k−j−1
k−2 . Since y ≥ m/2,

d ≤ 4km
k−2
k−1 , and ck,j ≤ 1

8kck−1,j−1, one can check that the last inequality holds.

By (2.4) and Claim 2.4.6, we have ∂∗j (F) ≥ ck,jm
j

k−1 . This completes the proof.

Lemma 2.4.7. Let k ≥ d + 2 ≥ 3. Let F ⊆
(
[n]
k

)
contain no strong d-simplex. Let

x ∈ [n]. Let C = {u1, . . . , ud} ∈ ∆d(F − x) ∩ ∆d(Fx). Let A, B ∈ F with x ∈ A, x /∈ B

and C ⊆ A ∩ B. Let W ⊆ [n] \ (A ∪ B) such that |W | = k − d. For each i ∈ [d], let

Ei
W = ({x} ∪ C ∪W ) \ {ui}. Then for at least one i ∈ [d], we have Ei

W /∈ F .

Proof. Suppose on the contrary that, for all i ∈ [d], Ei
W ∈ F . Consider the collection

{A, B, E1
W , . . . , Ed

W}. We have ∩d
i=1E

i
W = {x} ∪W . For each i ∈ [d], ∩j "=iE

j
W = {x, ui} ∪

W , and so (∩j "=iE
j
W ) ∩ B = {ui}. This also implies that (∩d

i=1E
i
W ) ∩ B = ∅. Hence

{B, E1
W , . . . , Ed

W} is d-wise-intersecting but not (d + 1)-wise-intersecting. That is, it is a

d-simplex. As A contains an element of each d-wise intersection among {B, E1
W , . . . , Ed

W},
these d + 2 sets form a strong d-simplex in F , a contradiction.

Now, we are ready to prove Theorem 2.1.10.

Proof of Theorem 2.1.10. Given d and k, let n be large. Suppose on the contrary

that F ⊆
(
[n]
k

)
contains no strong d-simplex, |F| ≥

(
n−1
k−1

)
, and F is not a star. We

derive a contradiction. By Theorem 2.1.6, there exists an element x ∈ [n] such that

12



|F − x| = o(nk−1) (that is, almost all edges of F contain x). Let

B = F − x,

M =

{
D ∈

(
[n]

k

)
: x ∈ D, D /∈ F

}
.

We call members of B bad edges and members of M missing edges. So, bad edges are

those edges in F not containing x, and missing edges are those k-tuples containing x which

are not in F . Since
(

n−1
k−1

)
≤ |F| =

(
n−1
k−1

)
− |M|+ |B|, we have |B| ≥ |M|. Let b = |B|. By

the definition of x,

b = o(nk−1). (2.5)

By Theorem 2.4.5, |∆d(B)| + |Td+1(B)| = ∂∗d(B) ≥ ck,db
d

k−1 . Since B ⊆ F , B contains

no strong d-simplex. So, |Td+1(B)| = 0. It follows that

|∆d(B)| ≥ ck,db
d

k−1 .

Let

S1 = ∆d(B) \∆d(Fx) and S2 = ∆d(B) ∩∆d(Fx).

We consider two cases.

Case 1. |S1| ≥| ∆d(B)|/2.

For any C ∈ S1 and a set W ⊆ [n]\(C∪{x}) of size k−d−1, the k-tuple D = {x}∪C∪W

does not belong to F because C /∈ ∆d(Fx). So D ∈ M. Doing this for each C ∈ S1

yields a list of
(

n−d−1
k−d−1

)
|S1| edges (with multiplicity) in M. An edge D = {x, y1, . . . , yk−1}

may appear at most
(

k−1
d

)
times in this list, as it is counted once for each d-subset of

{y1, . . . , yk−1} that appears in S1. Therefore,

b ≥ |M| ≥
(

n−d−1
k−d−1

)
|S1|(

k−1
d

) ≥ c · b
d

k−1 nk−d−1 (2.6)

for some properly chosen small positive constant c (depending on k only). Solving (2.6)

for b, we get b ≥ c′ · nk−1 for some small positive constant c′. This contradicts (2.5) for

sufficiently large n.

Case 2. |S2| ≥| ∆d(B)|/2.

By Lemma 2.4.7, for every d-tuple C ∈ S2 we may find two edges A, B ∈ F such that

for every (k − d)-set W ⊆ [n] \ (A ∪ B) there exists u ∈ C such that ({x} ∪ C ∪ W ) \
{u} ∈M . So, we obtain a collection of at least

(
n−2k
k−d

)
|S2| members of M. Pick an edge

13



D = {x, y1, . . . , yk−1} in M and consider its multiplicity in this collection. The edge D

may appear each time a (d − 1)-subset of {y1, . . . , yk−1} belongs to some d-tuple in S2.

There are
(

k−1
d−1

)
such subsets, and each may be completed to form a d-tuple in at most

n− d + 1 ways by picking the vertex u. Thus,

b ≥ |M| ≥
(

n−2k
k−d

)
|S2|

(n− d + 1)
(

k−1
d−1

) ≥ c′′ · b
d

k−1 · nk−d−1

for some small positive constant c′′. From this, we get b ≥ c′′′ · nk−1 for some positive

constant c′′′, which again contradicts (2.5) for sufficiently large n. This completes the

proof of Theorem 2.1.10.
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Chapter 3

The Number of K3-free and K4-free

Edge 4-colorings

3.1 Introduction

Given a graph G and integers k ≥ 3 and r ≥ 2, let F (G, r, k) denote the number of distinct

edge r-colorings of G that are Kk-free, that is, do not contain a monochromatic copy of Kk,

the complete graph on k vertices. Note that we do not require that these edge colorings

are proper (that is, we do not require that adjacent edges get different colors). We consider

the following extremal function:

F (n, r, k) = max{F (G, r, k) : G is a graph on n vertices },

the maximum value of F (G, r, k) over all graphs of order n.

One obvious choice for G is to take a maximum Kk-free graph of order n. The celebrated

theorem of Turán [Tur41] states that ex(n, Kk), the maximum size of a Kk-free graph of

order n, is attained by a unique (up to isomorphism) graph, namely the Turán graph

Tk−1(n) which is the complete (k − 1)-partite graph on n vertices with parts of size ) n
k−1*

or + n
k−1,. Thus

ex(n, Kk) = tk−1(n), for all n, k ≥ 2, (3.1)

where tk−1(n) denotes the number of edges in Tk−1(n). This gives the following trivial

lower bound on our function:

F (n, r, k) ≥ F (Tk−1(n), r, k) = rtk−1(n). (3.2)
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Erdős and Rothschild (see [Erd74, Erd92]) conjectured that this is best possible when r = 2

and k = 3. Yuster [Yus96] proved that, indeed, F (n, 2, 3) = 2t2(n) = 2&n
2/4' for large enough

n. Both sets of authors further conjectured that this holds for all k when we have r = 2

colors. Alon, Balogh, Keevash, and Sudakov [ABKS04] not only settled this conjecture for

large n but also showed that it holds for 3-colorings as well, i.e., we have equality in (3.2)

when r = 2, 3, k ≥ 3, and n > n0(k).

The generalization of the problem where one has to avoid a monochromatic copy of a

general graph F was also studied in [ABKS04]. The papers [HKL09, LP, LPRS09, LPS]

studied H-free edge colorings for general hypergraphs H. In particular, Lefmann, Person,

and Schacht [LPS] proved that, for every k-uniform hypergraph F and r ∈ {2, 3}, the

maximum number of F -free edge r-colorings over n-vertex hypergraphs is rex(n,F )+o(nk).

Interestingly, this result holds for every F even though the value of the Turán function

ex(n, F ) is known for very few hypergraphs F . Also, Balogh [Bal06] studied a version of

the problem where a specific coloring of a graph F is forbidden. Alon and Yuster [AY06]

considered this problem for directed graphs (where one counts admissible orientations

instead of edge colorings).

Let us return to the original question. Surprisingly, Alon et al. [ABKS04] showed that

one can do significantly better than (3.2) for larger values of r. In two particular cases,

they were also able to obtain the best possible constant in the exponent. Namely they

proved that

F (n, 4, 3) = 18n2/8+o(n2), (3.3)

F (n, 4, 4) = 34n2/9+o(n2). (3.4)

Let us briefly show the lower bounds in (3.3) and (3.4), which are given by F (T4(n), 4, 3)

and F (T9(n), 4, 4) respectively. Let W1, . . . ,Wk denote the parts of Tk(n). Consider T4(n)

first. Fix a function π that assigns to each pair {i, j} of {1, . . . , 4} a list π({i, j}) of two

or three colors so that each color appears in exactly four lists with the corresponding four

pairs forming a 4-cycle. Up to a symmetry, such an assignment is unique and we have two

lists of size 2 and four lists of size 3. Generate an edge coloring of T4(n) by choosing for

each edge {u, v} with u ∈ Wi and v ∈ Wj an arbitrary color from π({i, j}). Every obtained

coloring is K3-free and, if we assume that e.g. n = 4m, there are 34m2 · 22m2
= 18n2/8 such

colorings. We proceed similarly for T9(n) except we fix the (unique up to a symmetry)

assignment where each pair from {1, . . . , 9} gets a list of three colors while every color
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forms a copy of T3(9).

The goal of this chapter is to determine F (n, 4, 3) and F (n, 4, 4) exactly and describe

all extremal graphs for large n. Specifically, we will show the following results.

Theorem 3.1.1. There is N such that for all n ≥ N , F (n, 4, 3) = F (T4(n), 4, 3) and T4(n)

is the unique graph achieving the maximum.

Theorem 3.1.2. There is N such that for all n ≥ N , F (n, 4, 4) = F (T9(n), 4, 4) and T9(n)

is the unique graph achieving the maximum.

Thus a new phenomenon occurs for r ≥ 4: extremal graphs may have many copies of

the forbidden monochromatic graph Kk. This makes the problem more interesting and

difficult.

Similarly to [ABKS04], our general approach is to establish the stability property first:

namely, that all graphs with the number of colorings close to the optimum have essentially

the same structure. However, additionally to the approximate graph structure, we also

have to describe how typical colorings look like. This task is harder and we do it in stages,

getting more and more precise description of typical colorings (namely, the properties called

satisfactory, good, and perfect in our proofs). We then proceed to show that the Turán

graphs are, indeed, the unique graphs that attain the optimum. It is not surprising that

our proofs are longer and more complicated than those in [ABKS04]. The case of r ≥ 4

colors seems to be much harder than the case r ≤ 3. It is not even clear if there is a simple

closed formula for F (T4(n), 4, 3) and F (T9(n), 4, 4). Our proofs imply that

F (T4(n), 4, 3) = (C + o(1)) · 18t4(n)/3, (3.5)

F (T9(n), 4, 4) = (20160 + o(1)) · 3t9(n), (3.6)

where C = (214 · 3)1/3 if n ≡ 2 (mod 4) and C = 36 otherwise.

Unfortunately, we could not determine F (n, r, k) for other pairs r, k, which seems to

be an interesting and challenging problem. Hopefully, our methods may be helpful in

obtaining further exact results. It is possible that for all large n, n ≥ n0(k, r), all extremal

graphs are complete partite (not necessarily balanced) but we could not prove nor disprove

this.

This chapter is organized as follows. In Section 3.2 we state a version of Szemerédi’s

Regularity Lemma and some auxiliary definitions and results that we use in our arguments.

Theorem 3.1.1 is proved in Section 3.3 and Theorem 3.1.2 is proved in Section 3.4.
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3.2 Notation and Tools

For a set X and a non-negative integer k, let
(

X
k

)
(resp.

(
X
≤k

)
) be the set of all subsets

of X with exactly (resp. at most) k elements. Also, we denote
(

n
≤k

)
=

∑k
i=0

(
n
i

)
and

[k] = {1, 2, . . . , k}. We will often omit punctuation signs when writing unordered sets,

abbreviating e.g. {i, j} to ij.

As it is standard in graph theory, we use V (G) and E(G) to refer to the vertex and

edge set, respectively, of a graph G. Also, v(G) = |V (G)| and e(G) = |E(G)| denote

respectively the order and size of G. In addition, for disjoint A, B ⊆ V (G), we use G[A] to

refer to the subgraph induced by A and G[A, B] for the induced bipartite subgraph with

parts A and B. Let

NG(x) = {y ∈ V (G) : xy ∈ E(G)}

be the neighborhood of a vertex x in G. Let K(V1, . . . , Vl) denote the complete l-partite

graph with parts V1, . . . , Vl.

It will be often convenient to identify graphs with their edge sets. Thus, for example,

|G| = e(G) denotes the number of edges while G4H is the graph on V (G)∪V (H) whose

edge set is the symmetric difference of E(G) and E(H).

As we make use of a multicolor version of Szemerédi’s Regularity Lemma [Sze76], we

remind the reader of the following definitions. Let G be a graph and A, B be two disjoint

non-empty subsets of V (G). The edge density between A and B is

d(A, B) =
e(G[A, B])

|A| |B| .

For ε > 0, the pair (A, B) is called ε-regular if for every X ⊆ A and Y ⊆ B satisfying

|X| > ε|A| and |Y | > ε|B| we have

|d(X, Y )− d(A, B)| < ε.

An equitable partition of a set V is a partition of V into pairwise disjoint parts V1, . . . , Vm

of almost equal size, i.e., | |Vi| − |Vj| | ≤ 1 for all i, j ∈ [m]. An equitable partition of the

set of vertices of G into parts V1, . . . , Vm is called ε-regular if |Vi| ≤ ε|V | for every i ∈ [m]

and all but at most ε
(

m
2

)
of the pairs (Vi, Vj), 1 ≤ i < j ≤ m, are ε-regular.

The following more general result can be deduced from the original Regularity Lemma

of Szemerédi [Sze76] (cf. Theorems 1.8 and 1.18 in Komlós and Simonovits [KS96]).
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Lemma 3.2.1 (Multicolor Regularity Lemma). For every ε > 0 and integer r ≥ 1, there is

M = M(ε, r) such that for any graph G on n > M vertices and any (not necessarily proper)

edge r-coloring χ : E(G) → [r], there is an equitable partition V (G) = V1 ∪ . . . ∪ Vm with

1/ε ≤ m ≤ M , which is ε-regular simultaneously with respect to all graphs (V (G), χ−1(i)),

i ∈ [r].

Also, we will need the following special case of the Embedding Lemma (see e.g. [KS96,

Theorem 2.1]).

Lemma 3.2.2 (Embedding Lemma). For every η > 0 and integer k ≥ 2 there exists ε > 0

such that the following holds for all large n. Suppose that G is a graph of order n with an

equitable partition V (G) = V1 ∪ . . . ∪ Vk such that every pair (Vi, Vj) for 1 ≤ i < j ≤ k is

ε-regular of density at least η. Then G contains Kk.

While we have tk(n) = (1− 1/k + o(1))
(

n
2

)
for n →∞, the following easy bound holds

for all k, n ≥ 1:

max{e(G) : v(G) = n, G is k-partite} = tk(n) ≤
(

1− 1

k

)
n2

2
. (3.7)

We will also use the following stability result for the Turán function (3.1).

Lemma 3.2.3 (Erdős [Erd67] and Simonovits [Sim68]). For every α > 0 and integer k ≥ 1,

there exist β > 0 and n0 such that, for all n > n0, any Kk+1-free graph G on n vertices

with at least (1− 1/k)n2/2− βn2 edges admits an equitable partition V (G) = V1 ∪ . . .∪ Vk

with |G4K(V1, . . . , Vk) | < αn2.

3.3 F (n, 4, 3)

In this section we prove Theorem 3.1.1. Here we have to overcome many new difficulties

that are not present for 2 or 3 colors. So, unfortunately, the proof is long and complicated.

In order to improve its readability we split it into a sequence of lemmas. Since we use the

Regularity Lemma, the obtained value for N in Theorem 3.1.1 is very large and is of little

practical value. Therefore we make no attempt to determine or optimize it.

First, let us state some important definitions that are extensively used in the whole

proof. Fix positive constants

c0 5 c1 5 . . . 5 c10,
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each being sufficiently small depending on the previous ones. Let M = 1/c9 and n0 = 1/c10.

Typically, the order of a graph under consideration will be denoted by n and will

satisfy n ≥ n0. We will view n as tending to infinity with c0, . . . , c9 being fixed and use the

asymptotic terminology (such as, for example, the expression O(1) or the phrase “almost

every”) accordingly.

Let Gn consist of graphs of order n that have many K3-free edge 4-colorings. Specifically,

Gn =
{

G : v(G) = n, F (G, 4, 3) ≥ 18n2/8 · 2−c8n2
}

.

Let G = ∪n≥n0Gn. The lower bound in (3.3) (whose proof we sketched in the Introduction)

shows that Gn is non-empty for each n ≥ n0.

Next, for an arbitrary graph G with n ≥ n0 vertices and a K3-free 4-coloring χ of the

edges of G, we will define the following objects and parameters. As the constants c8 and

M satisfy Lemma 3.2.1 (namely, we can assume that M is at least the function M(c8, 4)

returned by Lemma 3.2.1), we can find a partition V (G) = V1∪. . .∪Vm with 1/c8 ≤ m ≤ M

that is c8-regular with respect to each color. Next, we define the cluster graphs H1, H2, H3,

and H4 on vertex set [m], where H! consists of those pairs ij ∈
(
[m]
2

)
such that the pair

(Vi, Vj) is c8-regular and has edge density at least c7 with respect to the *-color subgraph

χ−1(*) of G. For 1 ≤ s ≤ 4, let Rs be the graph on vertex set [m] where ab ∈ E(Rs) if

and only if ab ∈ E(H!) for exactly s values of * ∈ [4]. Let R = ∪4
s=1Rs be the union of the

graphs Rs. Let rs = 2e(Rs)/m2.

We view m, Vi, Hi, Ri, R, ri as functions of the pair (G, χ). Although we may have

some freedom when choosing the c8-regular partition V1, . . . , Vm, we fix just one choice for

each input (G, χ). We do not require any “continuity” property from these functions: for

example, it may be possible that χ1 and χ2 are two colorings of the same graph G that

differ on one edge only but ri(G, χ1) and ri(G, χ2) are quite far apart.

By Lemma 3.2.2, each cluster graph Hi is triangle-free and, by Turán’s theorem (3.1),

has at most t2(m) edges. By (3.7),

r1 + 2r2 + 3r3 + 4r4 =
e(H1) + e(H2) + e(H3) + e(H4)

m2/2
≤ 2. (3.8)

In addition, note that R3∪R4 is triangle-free because a triangle in R3∪R4 gives a triangle

in some Hi. Therefore, by (3.1) and (3.7),

r3 + r4 ≤ 1/2. (3.9)
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We also need the following “converse” procedure for generating all K3-free edge 4-

colorings of G. Our upper bounds on F (G, 4, 3) and some structural information about

typical colorings are obtained by estimating the possible number of outputs. Since the

parameters r1, . . . , r4 play crucial role in these estimates, some guesses of the functions m,

Vi, and Hi (and thus of Ri, R, and ri) are also generated. The procedure is rather wasteful

in the sense that it can generate a lot of “garbage”. But the obtained inequalities (3.8)

and (3.9) imply the crucial property that every K3-free edge 4-coloring of G with the

correct guess of m, Vi, and Hi is generated at least once provided v(G) ≥ n0.

The Coloring Procedure

1. Choose an arbitrary integer m′ between 1/c8 and M .

2. Choose an arbitrary equitable partition V (G) = V ′
1 ∪ · · · ∪ V ′

m′ .

3. Choose arbitrary graphs H ′
1, . . . , H

′
4 with vertex set [m′] such that we have

r′1 + 2r′2 + 3r′3 + 4r′4 ≤ 2, (3.10)

r′3 + r′4 ≤ 1/2, (3.11)

where R′
i, and r′i are defined by the direct analogy with Ri and ri. (For example, for

i ∈ [4], R′
i is the graph on [m′] whose edges are those pairs of

(
[m′]
2

)
that are edges in

exactly i graphs H ′
1, . . . , H

′
4.)

4. Assign arbitrary colors to all edges of G that lie inside some part V ′
i .

5. Select at most 4c8

(
m′

2

)
elements of

(
[m′]
2

)
and, for each selected pair ij, assign colors

to G[V ′
i , V

′
j ] arbitrarily.

6. For every color l ∈ [4] and every ij ∈
(
[m′]
2

)
color an arbitrary subset of edges of

G[V ′
i , V

′
j ] of size at most c7|V ′

i | |V ′
j | by color l.

7. For every edge xy of G that is not colored yet, let us say x ∈ V ′
i and y ∈ V ′

j , pick an

arbitrary color from the set Cij = {s ∈ [4] : ij ∈ H ′
s}. If Cij = ∅, then we color xy

with color 1.

Lemma 3.3.1. For every graph G of order n ≥ n0, the number of choices in Steps 1–6 of

the Coloring Procedure is at most 2c6n2
.

Proof. Clearly, the number of choices in Steps 1–3 is at most

M · nM ·
(
2(M

2 )
)4

= 2O(log n). (3.12)
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Fix these choices. Since m′ ≥ 1/c8, the number of edges that lie inside some part V ′
i is at

most m′ (*n/m′+
2

)
≤ c6n2/8; so the number of choices in Step 4 is at most 4c6n2/8. In Step 5

we have at most 2(
m′
2 ) · 44c8(m′

2 ) *n/m′+2 < 2c6n2/4 options. The number of choices in Step 6

is at most (
+n/m′,2

≤ c7+n/m′,2

)4(m′
2 )

< 2c6n2/4.

By multiplying these four bounds, we obtain the required.

The number of options in Step 7 can be bounded from above by

(
2e(R′

2) · 3e(R′
3) · 4e(R′

4)
)*n/m′+2

≤
(
2r′2 · 3r′3 · 4r′4

)n2/2+O(n)

= 2Ln2/2+O(n), (3.13)

where L = r′2 + log2(3) r′3 + 2r′4. One can easily show that the maximum of L given (3.10)

and (3.11) (and the non-negativity of r′1, . . . , r
′
4) is (log2 18)/4, with the (unique) optimal

assignment being r′1 = r′4 = 0, r′2 = 1/4, and r′3 = 1/2. When combined with Lemma 3.3.1,

this allows one to conclude that, for example,

F (n, 4, 3) ≤ 18n2/8 · 22c6n2
, for all n ≥ n0. (3.14)

This is essentially the argument from [ABKS04]. We need to take this argument further.

As the first step, we derive some information about r2 and r3 for a typical coloring χ. We

call a pair (G, χ) (or the coloring χ) satisfactory if

r2 > 1/4− c5/2 and r3 > 1/2− c5. (3.15)

Otherwise, (G, χ) is unsatisfactory. Next, we establish some results about satisfactory

colorings. Later, this will allow us to define two other important properties of colorings

(namely, being good and being perfect).

Lemma 3.3.2. For every graph G with n ≥ n0 vertices the number of unsatisfactory K3-

free edge 4-colorings is less than 18n2/8 · 2−c6n2
. In particular, if G ∈ Gn then almost every

coloring is satisfactory.

Proof. We use the Coloring Procedure and bound from above the number of outputs that

give unsatisfactory colorings. By Lemma 3.3.1, the number of choices in Steps 1–6 is at

most 2c6n2
. We use (3.13) to estimate the number of choices in Step 7.

The value of L under constraints (3.10), (3.11), and

r′3 ≤ 1/2− c5, (3.16)
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(as well as the non-negativity of the variables r′i) is at most

Lmax = (1/4 + 3c5/2) + (1/2− c5) log2 3 < (1/4− c2
5) log2 18.

This can be seen by multiplying (3.10), (3.11), and (3.16) by respectively y1 = 1/2, y2 = 0,

and y3 = log2 3−3/2 > 0, and adding these inequalities. The obtained inequality has Lmax

in the right-hand side while each coefficient of the left-hand is at least the corresponding

coefficient of L, giving the required bound. (In fact, these reals yi are the optimal dual

variables for the linear program of maximizing L.)

Likewise, when we maximize L under constraints (3.10), (3.11), and

r′2 ≤ 1/4− c5/2 (3.17)

then we have the same upper bound Lmax (with the optimal dual variables for (3.10),

(3.11), and (3.17) being respectively y1 = 2 − log2 3 > 0, y2 = 4 log2 3 − 6 > 0, and

y3 = 2 log2 3 − 3 > 0). Since in Step 7 we have only two (possibly overlapping) cases

depending on which of (3.17) or (3.16) holds, the total number of choices in Step 7 is

by (3.13) at most

2 · 2Lmaxn2/2+O(n) < 18(1/8−c25/3) n2
.

By multiplying this by 2c6n2
, we obtain the required upper bound on the number of

unsatisfactory colorings.

For each satisfactory coloring of G ∈ G we record the vector ν(χ) = (m, Vi, Hi) of

parameters. Call a vector (m, Vi, Hi) popular if

|ν−1((m, Vi, Hi))| ≥ 18n2/8 · 2−3c8n2
,

that is, if it appears for at least 18n2/8 · 2−3c8n2
satisfactory colorings, where n = v(G). As

the number of possible choices of vectors is bounded by (3.12), the number of satisfactory

colorings for which the corresponding vector is not popular is at most

2O(log n) · 18n2/8 · 2−3c8n2 ≤ 18n2/8 · 2−2c8n2
,

that is, o(1)-fraction of all colorings. Let Pop(G) be the set of all popular vectors and let

S(G) = ν−1(Pop(G)) (3.18)

be the set of satisfactory K3-free edge 4-colorings of G for which the corresponding vector

is popular. By Lemma 3.3.2, S(G) is non-empty.
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Our next goal is to exhibit a stability property, namely, that every graph G ∈ G is almost

complete 4-partite. First we show that, for every popular vector (m, Vi, Hi) ∈ Pop(G), the

cluster graph R is almost complete 4-partite. Then we extend this result to G.

Lemma 3.3.3. Let n ≥ n0, G ∈ Gn, and (m, Vi, Hi) ∈ Pop(G). Then there exist equitable

partitions [m] = A ∪B, A = U1 ∪ U2, and B = U3 ∪ U4 such that

∣∣ R3 4K(A, B)
∣∣ < c4m

2, (3.19)
∣∣ R2[A]4K(U1, U2)

∣∣ < 2c3m
2, (3.20)

∣∣ R2[B]4K(U3, U4)
∣∣ < 2c3m

2, (3.21)
∣∣ R4K(U1, U2, U3, U4)

∣∣ < 5c3m
2. (3.22)

Proof. We have already proved that R3 is triangle-free. As (m, Vi, Hi) is associated with

a satisfactory coloring, (3.15) is satisfied; in particular, r3 > 1/2− c5. Therefore, e(R3) =

r3m2/2 > t2(m)−c5m2/2. As c5 6 c4, we can apply Lemma 3.2.3 to partition V (R3) = [m]

into two sets A and B such that |A| = )m/2*, |B| = +m/2,, and (3.19) holds.

Since R2 ∩ R3 = ∅, we have |R2 ∩K(A, B)| ≤| K(A, B) \ R3| < c4m2. This and (3.15)

imply that

e(R2[A]) + e(R2[B]) > e(R2)− c4m
2 = r2m

2/2− c4m
2 > m2/8− 2c4m

2. (3.23)

What we show in the following sequence of claims is that R2[A] and R2[B] are both close

to being triangle-free and have roughly m2/16 edges each; then we can apply Lemma 3.2.3

to these graphs, obtaining the desired partitions of A and B.

For a vertex a ∈ A, let Ba = NR3(a) ∩ B be the set of R3-neighbors of a that lie in B.

Similarly, for a vertex b ∈ B, let Ab = NR3(b) ∩ A.

Claim 3.3.4. For every a ∈ A the graph R2[Ba] is 4-partite.

Proof of Claim. Each pair ab with b ∈ Ba is contained in R3 and, by definition, is labeled

with a 3-element subset Xb of [4]. Color b by the unique element of [4] \ Xb. If two

adjacent vertices b and b′ of R2[Ba] receive identical color c, then the label of bb′ ∈ R2 (a

2-element subset of [4]) has a non-empty intersection with [4] \ {c} which is the label of

both ab, ab′ ∈ R3. This implies the existence of a triangle in some Hi, a contradiction.

Claim 3.3.5. If a1a2 ∈ E(R2[A]), then K3 7⊆ R2[Ba1 ∩Ba2 ].

Proof of Claim. Suppose on the contrary that we have an edge a1a2 in R2[A] and a triangle

in R2[Ba1 ∩Ba2 ] with vertices b1, b2, and b3. Let S be the multiset produced by the union

24



of the labels of the edges a1a2, aibj, and bibj. As each edge aibj is labeled with a 3-element

subset of [4] and the remaining four edges are labeled with a 2-element subset of [4], we

have |S| = 6 · 3 + 4 · 2 = 26. By the Pigeonhole Principle, some member of [4] belongs

to S with multiplicity at least 7. But this corresponds to some Hi having at least 7 edges

among the 5 vertices a1, a2, b1, b2, b3. By Turán’s result (3.1), this implies that Hi has a

triangle, a contradiction.

Define

B′ = {b ∈ B : |Ab| > |A|−
√

c4m}.

As each vertex of B \ B′ contributes at least
√

c4m to |K(A, B) \ R3|, there are less than
√

c4m such vertices by (3.19). Thus |B′| > |B| − √c4m ≥ (1/2 − √c4)m. Similarly, we

can define A′ to be the set of vertices a ∈ A for which |Ba| > |B| −√c4m and note that

|A′| > |A|−√c4m > 0.

Claim 3.3.6. K3 7⊆ R2[B′].

Proof of Claim. Suppose on the contrary that b1, b2, b3 form a K3 in R2[B′]. Let X =

Ab1 ∩Ab2 ∩Ab3 . By definition, |A \Abi| <
√

c4m. So, |X| > |A|− 3
√

c4m. By Claim 3.3.5,

there are no edges within X. So, e(R2[A]) ≤ |A \X| · |A| < 3
√

c4m2.

Let us estimate e(R2[B]) from above. Consider Ba for some a ∈ A′. By definition,

|Ba| > |B|−√c4m and, by Claim 3.3.4, Ba is 4-partite. By (3.7), the number of edges in

R2[B] is at most (3/4) |Ba|2/2 +
√

c4m|B|.
However, these upper bounds on e(R2[A]) and e(R2[B]) contradict (3.23).

In particular, R2[B] may be made triangle-free by the removal of at most |B\B′| · |B| <
√

c4m2 edges. Hence, we have in fact that

e(R2[B]) < (1− 1

2
)|B|2/2 +

√
c4m

2 ≤ m2/16 + 2
√

c4m
2. (3.24)

By (3.23) and (3.24), e(R2[A]) > m2/16− 2c4m2 − 2
√

c4m2. As above, by removing at

most
√

c4m2 edges, we can form a graph R′
2 on vertex set A, which is triangle-free. We can

now apply Lemma 3.2.3 to R′
2, to find a partition A = U1∪U2 such that |R′

24K(U1, U2)| <
c3m2. As R′

2 and R2[A] differ in at most
√

c4m2 edges, we derive (3.20). The existence of

an equitable partition B = U3 ∪ U4 satisfying (3.21) is proved similarly.

By (3.19)–(3.21), we have |(R2∪R3)4K(U1, U2, U3, U4)| < 4c3m2+c4m2. Also, by (3.8)

and (3.15), we have r1 + r4 ≤ 4c5 and |R1 ∪R4| ≤ 2c5m2. Now (3.22) follows, finishing the

proof of Lemma 3.3.3.
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For a graph G ∈ G and a popular vector (m, Vi, Hi) ∈ Pop(G), fix the sets A, B, U1, . . . , U4

given by Lemma 3.3.3. For i ∈ [4], let Ũi = ∪j∈UiVj be the blow-up of Ui. Let F̃ =

K(Ũ1, Ũ2, Ũ3, Ũ4).

Lemma 3.3.7. For every n ≥ n0, G ∈ Gn, and (m, Vi, Hi) ∈ Pop(G), we have |G4 F̃ | <
12c3n2.

Proof. It routinely follows that the size of G \ F̃ is at most the sum of the following terms:

• m
(*n/m+

2

)
, the number of edges of G inside parts Vi;

• 4c8

(
[m]
2

)
· +n/m,2, edges between parts which are not c8-regular for at least one color

graph;

• 4c7

(
n
2

)
, edges between parts of density at most c7 for at least one color;

• |R \K(U1, U2, U3, U4)| · +n/m,2 ≤ 5c3m2 · +n/m,2, where we used (3.22).

Adding up, this gives less than 6c3n2.

Next, we estimate |F̃ \G| by bounding the number of satisfactory colorings of G that

give our fixed vector (m, Vi, Hi). Again, we use the Coloring Procedure to generate all

such colorings, where m, Vi, Hi are fixed in advance. By Lemma 3.3.1, we have at most

2c6n2
options in Steps 4–6. Once we have fixed the choices in these steps, the remaining

uncolored edges of G are restricted to those between the parts while the graphs R1, . . . , R4

specify how many choices of color each edge has. Thus the number of options in Step 7 is

at most

4∏

f=2

∏

ij∈Rf

f *n/m+2−|K(Vi,Vj)\G| ≤
(
22c6n2 · 18n2/8

) ∏

ij∈R2∪R3

2−|K(Vi,Vj)\G|, (3.25)

where we used the bound in (3.13) together with the maximization result mentioned im-

mediately after (3.13). Let us look at the last factor in (3.25). If we replace the range of ij

in the product by K(U1, U2, U3, U4) instead of R2∪R3, this will affect at most (c4 +4c3)m2

pairs ij by (3.19)–(3.21) and we get an extra factor of at most 25c3n2
. Thus

∏

ij∈R2∪R3

2−|K(Vi,Vj)\G| ≤ 2−|F̃\G| · 25c3n2
.

Since the vector (m, Vi, Hi) is popular, we conclude that

|F̃ \G| ≤ c6n
2 + 5c3n

2 + 2c6n
2 + 3c8n

2 ≤ 6c3n
2,

giving the required bound on |G4 F̃ |.
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Now, for every input graph G we fix a max-cut 4-partition V (G) = W1∪W2∪W3∪W4,

that is, one that maximizes the number of edges of G across the parts.

Lemma 3.3.8 (Stability Property). Let n ≥ n0, G ∈ Gn, and W ′
1 ∪W ′

2 ∪W ′
3 ∪W ′

4 be a

partition of V (G) with

∣∣ G ∩K(W ′
1, W

′
2, W

′
3, W

′
4)

∣∣ ≥
∣∣ G ∩K(W1, W2, W3, W4)

∣∣− c3n
2.

Then we have
∣∣ G4K(W ′

1, W
′
2, W

′
3, W

′
4)

∣∣ ≤ 15c3n
2 (3.26)

and for every popular vector (m, Vi, Hi) ∈ Pop(G) there is a relabeling of W ′
1, . . . ,W

′
4 such

that for each i ∈ [4],
∣∣ W ′

i 4 Ũi

∣∣ ≤ 2000c3n. (3.27)

Also, we have | |Wi| − n/4 | ≤ c2n for each i ∈ [4] and
∣∣ G4 K(W1, W2, W3, W4)

∣∣ ≤
15c3n2.

Proof. Let F ′ = K(W ′
1, W

′
2, W

′
3, W

′
4) and F = K(W1, W2, W3, W4). As the max-cut parti-

tion W1 ∪ . . .∪W4 maximizes the number of edges across parts, we have |F ′ ∩G|+ c3n2 ≥
|F ∩ G| ≥| F̃ ∩ G|. Since the partitions [m] = U1 ∪ · · · ∪ U4 and [n] = V1 ∪ · · · ∪ Vm are

equitable, we have

| |Ũi|− n/4 | ≤ m + n/m. (3.28)

Thus we have |F̃ | ≥| F ′|− c7n2 and, by Lemma 3.3.7,

|F ′4G| = |F ′|+ |G|− 2 |F ′ ∩G|

≤ (|F̃ |+ c7n
2) + |G|− 2( |F̃ ∩G|− c3n

2) (3.29)

= |F̃ 4G|+ c7n
2 + 2c3n

2 ≤ 15c3n
2,

proving the first part of the lemma.

We look for a relabeling of W ′
1, . . . ,W

′
4 such that |Ũi \ W ′

i | < 500c3n for each i ∈ [4].

Suppose that no such relabeling exists. Then, since c3 6 1 and e.g. each |W ′
i | ≤ n/3,

there is i ∈ [4] such that for every j ∈ [4] we have that |Ũi \ W ′
j| ≥ 500c3n. Take j ∈ [4]

such that |Ũi ∩W ′
j| ≥| Ũi|/4 and let X = Ũi ∩W ′

j and Y = Ũi \W ′
j . However, X, Y ⊆ Ũi

and Lemma 3.3.7 imply that e(G[X, Y ]) < 12c3n2 whereas X ⊆ W ′
j , Y ∩W ′

j = ∅, (3.28),

and (3.29) imply that

e(G[X, Y ]) ≥ |X| |Y |− 15c3n
2 ≥ (n/16− c7n) · 500c3n− 15c3n

2 > 12c3n
2,
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a contradiction. So take the stated relabeling. Now, (3.27) follows from the observation

that

W ′
i \ Ũi ⊆

⋃

j∈[4]\{i}

(Ũj \W ′
j).

Alternatively, one could use Lemma 3.3.7 that G is 12c3n2-close to the complete 4-

partite graph F̃ whose part sizes are close to n/4 by (3.28). One would get a weaker upper

bound on |W ′
i 4 Ũi| (of order

√
c3n) but which would also be sufficent for our proof.

Finally, the last two claims of Lemma 3.3.8 can be derived by taking W ′
i = Wi for

i ∈ [4] (and using (3.28)).

Define a pattern as an assignment π :
(
[4]
2

)
→

(
[4]
2

)
∪

(
[4]
3

)
(to every edge of K4 we

assign a list of 2 or 3 colors) such that π−1(c) forms a 4-cycle for every color c ∈ [4]. Up

to isomorphism (of colors and vertices) there is only one pattern. We say that an edge

4-coloring χ of G ∈ Gn follows the pattern π if for every ij ∈
(
[4]
2

)
we have

∣∣ χ−1([4] \ π(ij)) ∩G[Wi, Wj]
∣∣ ≤ c2n

2,

that is, at most c2n2 edges of G[Wi, Wi] get a color not in π(ij).

Recall that the set S(G) consists of all satisfactory colorings whose associated vector

is popular.

Lemma 3.3.9. For every graph G ∈ Gn with n ≥ n0, every coloring χ ∈ S(G) follows a

pattern.

Proof. Take any χ ∈ S(G). Recall that A, B, U1, . . . , U4 are the sets given by Lemma 3.3.3.

Let

R′ =
(
R3 ∩K(A, B)

)
∪

(
R2 ∩K(U1, U2)

)
∪

(
R2 ∩K(U3, U4)

)
.

Let the label of an edge uv in R be χ̂(uv) = {i ∈ [4] : uv ∈ E(Hi)}. So, for all edges

uiuj ∈ R′ across Ui × Uj, we have

|χ̂(uiuj)| =





2, if {i, j} ∈ {{1, 2}, {3, 4}},

3, otherwise.
(3.30)

We show next that χ̂ has a very simple structure: with the exception of a small fraction of

edges, χ̂ behaves as the blow up of some labeling on K4. Furthermore, the latter labeling

is isomorphic to some pattern π, as defined above.

Claim 3.3.10. Let the sets {v1, v2, v3, v4} and {w, v2, v3, v4} both span a K4-subgraph in

R′, where w ∈ U1 and each vi ∈ Ui. Then χ̂(v1vi) = χ̂(wvi) for all i ∈ {2, 3, 4}.
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Proof of Claim. First consider the restriction of χ̂ to X = {v1, v2, v3, v4}. Let S be the

multi-set produced by the union of χ̂(vivj), 1 ≤ i < j ≤ 4. So, |S| = 2 · 2 + 4 · 3 = 16.

As each Ht[X] is triangle-free, it follows by the uniqueness of the Turán graph that χ̂−1(t)

forms a 4-cycle on X for each t ∈ [4]. When taking (3.30) into consideration, we see

that there is only one possible configuration (up to isomorphism). A nice property of this

configuration is that χ̂(vivj) = χ̂(vkv!) whenever {i, j, k, *} = [4], i.e., edges that form a

matching on X receive identical labels. As {w, v2, v3, v4} also spans a copy of K4, we have

χ̂(wvj) = χ̂(vkv!) = χ̂(v1v!), where {j, k, *} = {2, 3, 4}, proving the claim.

Now choose X = {v1, v2, v3, v4}, where vi ∈ Ui, such that R′[X] ∼= K4 and, for each

vertex vi ∈ X, we have

|NR′(vi) ∩ Uj| > |Uj|− 2
√

c3m for all j ∈ [4] \ {i}. (3.31)

We may build such a set iteratively by picking v1 ∈ U1 satisfying (3.31), then v2 ∈ U2∩N(v1)

satisfying (3.31), and so on. We are guaranteed the existence of such vertices as at most

2c3m2 edges across a pair Ui, Uj are missing from R′. In fact, the number of vertices u ∈ Ui

that fail condition (3.31) is less than 3
√

c3m.

Let Ai ⊆ Ui consist of those vertices that lie in NR′(vj) for all vj ∈ X with j ∈ [4] \ {i}.
As all vertices vj satisfy (3.31), we have |Ai| > |Ui|− 6

√
c3m. If aiaj ∈ R′[Ai, Aj], then all

three sets X, {ai, vj, vk, v!}, and {ai, aj, vk, v!} form 4-cliques in R′, where {i, j, k, *} = [4].

By Claim 3.3.10 we have that χ̂(vivj) = χ̂(aivj) = χ̂(aiaj). Thus, the labeling on X

determines the labeling on all edges of R′ with the possible exception of at most m·24
√

c3m

edges incident to vertices of
⋃4

i=1(Ui \Ai). As |R \R′| < 5c3m2, we have a pattern π such

that χ̂(uiuj) = π(ij) for all but at most 25
√

c3m2 edges in R.

Now, Lemma 3.3.8 implies that for some relabeling of W1, . . . ,W4, we have

|K(W1, W2, W3, W4) \K(Ũ1, Ũ2, Ũ3, Ũ4)| < 4n · 2000c3n.

Then, including at most 5c7n2 edges that disappear without a trace in any Hi during the

application of the Regularity Lemma and at most 12c3n2 edges lost in Lemma 3.3.7, we

have that χ(wiwj) ∈ π(ij) for all but at most

5c7n
2 + 12c3n

2 + 25
√

c3m
2 · +n/m,2 + 8000c3n

2 < c2n
2

edges wiwj in G[Wi, Wj], proving the lemma.
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Since c2 is small, Lemma 3.3.8 implies that the pattern π in Lemma 3.3.9 is unique.

This allows us to make the following definition. A coloring χ ∈ S(G) of a graph G ∈ Gn

is good if for every ij ∈
(
[4]
2

)
, all subsets Xi ⊆ Wi and Xj ⊆ Wj with |Xi| ≥ c1n and

|Xj| ≥ c1n, and every color c ∈ π(ij) there is at least one edge xy in G[Xi, Xj] with

χ(xy) = c, where π is the pattern of χ. Otherwise χ ∈ S(G) is called bad.

Lemma 3.3.11. The number of bad colorings of any G ∈ Gn, n ≥ n0, is at most 18n2/8 ·
2−c21n2/8.

Proof. The following procedure generates each bad coloring of G at least once.

1. Pick an arbitrary pattern π, a pair ij ∈
(
[4]
2

)
, and a color c ∈ π(ij).

2. Choose up to 6c2n2 edges and color them arbitrarily.

3. Pick subsets Xi ⊆ Wi and Xj ⊆ Wj of size +c1n, each.

4. Color edges inside a part Wi arbitrarily.

5. Color all edges in Xi ×Xj using the colors from π(ij) \ {c}.

6. For each k* ∈
(
[4]
2

)
color all remaining edges of G[Wk, W!] using colors in π(k*).

The number of choices in Steps 1–3 is bounded from above by

O(1)

( (
n
2

)

≤ 6c2n2

)
46c2n2

(
|Wi|
|Xi|

)(
|Wj|
|Xj|

)
< 2c31n2

.

The number of choices at Step 4 is at most 415c3n2
by Lemma 3.3.8. The number of choices

in Steps 5–6 is at most

(
|π(ij)|− 1

|π(ij)|

)|Xi| |Xj | ∏

k!∈([4]
2 )

|π(k*)||Wk| |W!| ≤ (2/3)c21n2

(22 34)n2/16+c2n2
,

where we used Lemma 3.3.8. We obtain the required result by multiplying the above

bounds.

Call a good coloring χ of a graph G ∈ G perfect if χ(vivj) ∈ π(ij) for every ij ∈
(
[4]
2

)

and every edge vivj ∈ G[Wi, Wj], where π is the pattern of χ. Let P(G) denote the set of

perfect colorings of G.

The following lemma provides a key step of the whole proof.

Lemma 3.3.12. Let G be a graph of order n ≥ n0 +2 such that F (G, 4, 3) ≥ 18n2/8 ·2−c9n2
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and for every distinct v, v′ ∈ V (G) we have

F (G, 4, 3)

F (G− v, 4, 3)
≥ (18− c3)

n/4, (3.32)

F (G, 4, 3)

F (G− v − v′, 4, 3)
≥ (18− c3)

(n+(n−1))/4. (3.33)

Then the following conclusions hold.

1. G is 4-partite.

2. Almost every coloring of G is perfect; specifically,

|P(G)| ≥ (1− 2−c9n) F (G, 4, 3).

3. If G 7∼= T4(n), then there is a graph G′ of order n with F (G′, 4, 3) > F (G, 4, 3).

Proof. Since F (G− v− v′, 4, 3) > F (G− v, 4, 3)/4n > F (G, 4, 3)/16n for any v, v′ ∈ V (G),

we have G− v,G− v − v′ ∈ G and the notion of a good coloring with respect to G− v or

G− v − v′ is well-defined.

Claim 3.3.13. For any distinct v, v′ ∈ V (G), there is a good coloring χ of G − v (resp.

of G − v − v′) such that the number of ways to extend it to the whole of G is at least

(18− c2)n/4 (resp. at least (18− c2)n/2).

Proof of Claim. By Lemma 3.3.11 the number of bad colorings of G − v is at most

2−c21n2/9F (G, 4, 3). If the claim fails for all good colorings of G− v, then

F (G, 4, 3) ≤ 4n · 2−c21n2/9F (G, 4, 3) + (18− c2)
n/4F (G− v, 4, 3),

contradicting (3.32). The claim about G− v − v′ is proved in an analogous way.

Claim 3.3.14. For all i ∈ [4] and v ∈ Wi, we have |N(v) ∩Wi| < 8c1n.

Proof of Claim. Suppose on the contrary that some vertex v contradicts the claim. Take

the good coloring χ of G− v given by Claim 3.3.13.

For each class Wj (defined with respect to G), let nj = |N(v) ∩Wj|. Note that

nj ≤ |Wj| ≤ n/4 + c2n, for all j ∈ [4], (3.34)

by Lemma 3.3.8. Let W ′
1 ∪W ′

2 ∪W ′
3 ∪W ′

4 be the selected max-cut partition of G− v. As

∣∣ G ∩K(W ′
1 ∪ {v}, W ′

2, W
′
3, W

′
4)

∣∣ >
∣∣ G ∩K(W1, W2, W3, W4)

∣∣− n,

it follows again from Lemma 3.3.8 that, after a relabeling of W ′
1, . . . ,W

′
4, we have

|Wi 4W ′
i | ≤ 4000c3n + 1, for all i ∈ [4]. (3.35)
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Also, let π be the pattern (with respect to W ′
1, . . . ,W

′
4) associated with the good coloring

χ of G− v.

For each extension χ̄ of χ to G, record the vector x whose i-th component is the

number of colors c such that at least 2c1n edges of G between v and Wi get color c. Let

x = (x1, . . . , x4) be a vector that appears most frequently over all extensions χ̄. Fix some

χ̄ that gives this x. For a color c and a class Wj, let

Zj,c = {u ∈ Wj : χ̄(uv) = c}.

(Thus xj is the number of colors c with |Zj,c| ≥ 2c1n.) Analogously, for a color c, let yc

be the number of classes Wj for which |Zj,c| ≥ 2c1n. By (3.35), we have |Zj,c ∩W ′
j| > c1n

whenever |Zj,c| > 2c1n.

Let us show that yc ≤ 2 for each c ∈ [4]. Indeed, if some yc ≥ 3, then among the

three corresponding indices we can find two, say p and q, such that c ∈ π(pq). Since χ

is good, there is an edge uw ∈ (Zp,c ∩W ′
p) × (Zq,c ∩W ′

q) such that χ(uw) = c, giving a

χ̄-monochromatic triangle on {u, v, w}, a contradiction. In particular, we have

x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4 ≤ 8. (3.36)

Since there are at most 54 choices of (x1, . . . , x4) and we fixed a most frequent vector,

the total number of extensions of χ to G is at most

54
∏

j∈[4]

(
4

xj

)(
nj

≤ 2c1n

)4−xj

max(xj, 1)nj < 2c0n
∏

j∈[4]
xj "=0

x
nj

j . (3.37)

As W1 ∪ W2 ∪ W3 ∪ W4 is a max-cut partition, we have |N(v) ∩ Wj| ≥ 8c1n for all

j ∈ [4]. By the pigeonhole principle, we have that xj ≥ 1 for all j ∈ [4]. This and (3.36)

imply that x1x2x3x4 ≤ 16. By (3.34) and (3.37), the total number of extensions of χ is at

most

2c0n · (x1x2x3x4)
n/4 · 44c2n < 22c0n · 16n/4 < (18− c2)

n/4,

contradicting the choice of χ.

We will now strengthen Claim 3.3.14 and prove Part 1 of the lemma.

Claim 3.3.15. For all i ∈ [4] and distinct v, v′ ∈ Wi, we have vv′ 7∈ E(G).

Proof of Claim. Suppose on the contrary that the claim fails for some v and v′. Assume

without loss of generality that v, v′ ∈ W1.
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Let χ be the good coloring of G − v′ − v ∈ Gn−2 with at least (18 − c2)n/2 extensions

to G given by Claim 3.3.13. Let us recycle the definitions of Claim 3.3.14 that formally

remain unchanged even though χ is undefined on edges incident to v′. On top of them, we

define a few more parameters.

Specifically, we look at all extensions χ̄ that give rise to the fixed most frequent vector

x. For each such χ̄, we define Z ′
j,c = {u ∈ Wj : χ̄(uv′) = c} and let x′j be the number

of colors c such that |Z ′
j,c| ≥ 2c1n. Then we fix a most popular vector x′ = (x′1, . . . , x

′
4)

and take any extension χ̄ that gives both x and x′ and, conditioned on this, such that the

color χ̄(vv′) assumes its most frequent value, which we denote by s. We define yc as before

and let y′c be the number of j ∈ [4] such that |Z ′
c,j| ≥ 2c1n. This is consistent with the

definitions of Claim 3.3.14 because there we did not have any restriction on χ̄ except that

it gives the vector x.

Claim 3.3.14, the upper bounds on ni and n′i = |N(v′) ∩Wi| of Lemma 3.3.8, and the

argument leading to (3.37) show that the total number of extensions of χ to G is at most

(54)2 · 4 · 2c0n · (48c1n+3c2n)2 ·
4∏

i=2

(
max(xi, 1) ·max(x′i, 1)

)n/4
. (3.38)

If some |Zj,c| ≥ 2c1n but c 7∈ π({1, j}), say j = 3, then the 4-cycle formed by color c

visits indices 1, 2, 3, 4 in this order and, since χ is good, we have |Z2,c| < 2c1n and |Z4,c| <
2c1n (otherwise χ̄ contains a color-c triangle via v). Thus yc contributes at most 1 to x2 +

x3 +x4. Since each yi ≤ 2, we have that x2 +x3 +x4 ≤ 7. It follows that
∏4

i=2 max(xi, 1) ≤
12. Since x′2 + x′3 + x′4 ≤ 8, we have

∏4
i=2 max(x′i, 1) ≤ 18. Thus the expression in (3.38)

is at most 22c0n · (12 · 18)n/4, contradicting the choice of χ.

Thus xi ≤ |π({1, i})| for each i ∈ {2, 3, 4} and all these inequalities are in fact equalities

(otherwise
∏4

i=2 max(xi, 1) ≤ 12, giving a contradiction as before). We conclude for j ∈
{2, 3, 4} that |Zj,c| ≥ 2c1n if and only if c ∈ π({1, j}). The same applies to the parameters

x′i and Z ′
j,c.

Let the special color s = χ̄(vv′) appear in, say π({1, 2}) with |π({1, 2})| ≥ 3. Then for

all w ∈ W2∩N(v)∩N(v′) there are at most x2x′2−1 choices for the colors of vw and vw′ when

extending χ to G because s cannot occur on both edges. Also, if w ∈ W2 \ (N(v)∩N(v′))

then trivially there are at most 4 choices for this vertex w. This allows us to reduce the

bound in (3.38) by factor (8/9)n/4, giving the desired contradiction.

Thus we have proved Part 1 of the lemma. Next, we prove Part 2. If it is false, then by

Lemma 3.3.11 there are there are at least (1/2) · 2−c9n · F (G, 4, 3) colorings of G that are
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good but not perfect. For each such coloring there is a wrong edge vv′ whose color does

not conform to the pattern. Pick an edge vv′ that appears most frequently this way, say

v ∈ W1 and v′ ∈ W4, and then a most frequent wrong color s of vv′.

By a version of (3.35), it is not hard to show that the number of good colorings χ of

G−v−v′ for which there is an extension χ̄ which is a good coloring of G but with a different

pattern than that of χ is at most, for example, 2−c21n2/9 · F (G, 4, 3). Indeed, the pattern

π may change only when some color c ∈ π(ij) appears very infrequently in G[Wi, Wj] and

the proportion of such (degenerate) colorings can be bounded by e.g. (2/3 + c0)(n/4)2 .

It follows that there is a good coloring χ of G − v − v′ that has at least (18 − c2)n/2

pattern-preserving extensions to G with vv′ getting the wrong color s. Indeed, if this is

false, then we would get a contradiction to (3.33) by an argument of Claim 3.3.13:

(1/2) · 2−c9n · F (G, 4, 3)

4 ·
(

n
2

) ≤ 2 · 16n · 2−c21n2/9 · F (G, 4, 3) + (18− c2)
n/2F (G− v − v′, 4, 3),

Here, we use use the trivial upper bound 16n on the number of extensions for colorings of

G − v − v′ that are bad or are good but admit an extension with a different pattern. On

the other hand, a good but not perfect coloring of G may be overcounted as there may be

more than one choice of vv′ and s; we use the trivial upper bound of 4 ·
(

n
2

)
here.

Defining π, xi, x′i, Zj,c, Z ′
j,c, yi, y′i as in Claim 3.3.15, one can argue similarly to (3.38)

that the number of pattern-preserving extensions of χ is at most

2c0n

(
4∏

j=2

max(xj, 1) ·
3∏

j=1

max(x′j, 1)

)n/4

, (3.39)

where all smaller terms are swallowed by 2c0n. Moreover, as before, |Zj,c| ≥ 2c1n if and

only if c ∈ π({1, j}) while |Z ′
j,c| ≥ 2c1n if and only if c ∈ π({j, 4}).

Since s 7∈ π({1, 4}), we have s ∈ π({1, 3}) ∩ π({3, 4}). But then the number of choices

per w ∈ W3 ∩N(v)∩N(v′) is at most x3x′3− 1 (instead of x3x′3) because we cannot assign

color s to both vw and vw′. Also, if vw or vw′ is not an edge, then we have at most 4

choices per w (while |π({1, 3})| · |π({3, 4}| ≥ 6). This allows us to improve (3.39) by factor

(8/9)n/4. This contradicts the choice of χ and proves Part 2 of Lemma 3.3.12.

Let H = K(W1, . . . ,W4). Suppose first that G 7∼= H, that is, G is not complete 4-

partite. We know that almost every coloring χ of G is perfect. Moreover, if we start

with a perfect coloring χ of G and color all remaining edges in E(H) \ E(G) according

to the pattern of χ then we get at least 2|H\G| ≥ 2 extensions to H none containing a

monochromatic K3. Thus |P(H)| ≥ 2|P(G)| > F (G, 4, 3) and we can take G′ = H.
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Finally, suppose that G = H but G 7∼= T4(n). Let di = |Wi| for i ∈ [4]. Assume,

without loss of generality, that d1 ≥ d2 ≥ d3 ≥ d4 with d1 ≥ d4 +2. Let G′ be the complete

4-partite graph with parts of size d1− 1, d2, d3, d4 + 1. We already know that almost every

coloring of G is perfect. Thus, in order to finish the proof it is enough to show that, for

example, |P(G′)| > 1.1 |P(G)|.
The number of perfect colorings of G is given by the following expression:

|P(G)| = (12 + o(1)) (S1 + S2 + S3), (3.40)

where

S1 = 2d1d2+d3d43d1d3+d1d4+d2d3+d2d4 ,

S2 = 2d1d3+d2d43d1d2+d1d4+d2d3+d3d4 ,

S3 = 2d1d4+d2d33d1d2+d1d3+d2d4+d3d4 .

Note that we have an error term in (3.40) because some (degenerate) colorings are over-

counted in the right-hand side. Also,

|P(G′)| = (12 + o(1))
(
2−d2+d33d1−d4−1+d2−d3 · S1

+ 2d2−d33d1−d4−1−d2+d3 · S2 + 2d1−d4−1 · S3

)
.

But, as d1−d4 ≥ max{2, d2−d3}, the coefficient in front of each Si is at least 4/3. Therefore

|P(G′)| > 1.1 |P(G)|, finishing the proof of Lemma 3.3.12.

Routine calculations (omitted) show that

|P(T4(n))| = (C + o(1)) · 18t4(n)/3, (3.41)

where C = (214 · 3)1/3 if n ≡ 2 (mod 4) and C = 36 otherwise.

Proof of Theorem 3.1.1. Let e.g. N = n2
0. Let G be an extremal graph on n ≥ N vertices.

Suppose on the contrary that G 7∼= T4(n). Let Gn = G.

We iteratively apply the following procedure. Given a current graph Gm on m ≥ n0 +2

vertices with F (Gm, 4, 3) ≥ 18m2/8 · 2−c9m2
we apply Lemma 3.3.12. If (3.32) fails for some

vertex v ∈ V (Gm), we let Gm−1 = Gm − v, decrease m by 1, and repeat. Note that

F (Gm−1, 4, 3) ≥ F (Gm, 4, 3)/(18− c3)
m/4 ≥ 18(m−1)2/8 · 2−c9(m−1)2 .
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Likewise, if (3.33) fails for some distinct v, v′ ∈ V (Gm), we let Gm−2 = G−v−v′, decrease

m by 2, and repeat. If both (3.32) and (3.33) hold and Gm 7∼= T4(m), replace Gm by the

graph G′ returned by Lemma 3.3.12 and repeat the step (without decreasing m).

Note that for every m for which Gm is defined we have

F (Gm, 4, 3) ≥ F (G, 4, 3) · (18− c3)
−(n+(n−1)+...+(m+1))/4. (3.42)

It follows that we never reach m < n0 + 2 for otherwise, when this happens for the first

time, we get the contradiction

F (Gm, 4, 3) ≥ 18n2/8 · 2−c9n2

(18− c3)
((n

2)−(m
2 ))/4

> 4(m
2 ).

Thus we stop for some m ≥ n0 + 2, having Gm
∼= T4(m). We cannot have m = n, for

otherwise T4(n) strictly beats G. By Lemma 3.3.12, almost every coloring of Gm
∼= T4(m)

is perfect. Thus, by (3.42),

2 · |P(T4(m))| > F (T4(m), 4, 3) ≥ F (G, 4, 3) · (18− c3)
−(n+(n−1)+···+(m+1))/4. (3.43)

Also, note that t4(*) − t4(* − 1) = )3*/4*. Thus, (3.41) implies that, for example,

|P(T4(*))| ≥ 18!/4−1|P(T4(* − 1))| for all * ≥ n0. By the extremality of G, we conclude

that

F (G, 4, 3) ≥ F (T4(n), 4, 3) ≥ |P(T4(n))| ≥ 18(n+···+(m+1))/4

18n−m
|P(T4(m))|. (3.44)

But (3.43) and (3.44) give a contradiction to n > m, proving Theorem 3.1.1.

Remark. If we set G = T4(n) with n ≥ N in the above argument, then we conclude that

m = n (otherwise we get a contradiction as before). Thus we do not perform any iterations

at all, which implies that (3.32) and (3.33) hold for T4(n). By Part 2 of Lemma 3.3.12

almost every coloring of T4(n) is perfect. Thus the estimate (3.5) that was claimed in the

Introduction follows from (3.41).

3.4 F (n, 4, 4)

In this section we prove Theorem 3.1.2. Some parts of the proof closely follow those of

Theorem 3.1.1. We omit many details that have already been presented or are obvious

modifications of those in Section 3.3. We start by fixing positive constants

c0 5 c1 5 . . . 5 c10.
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Let M = 1/c9 and n0 = 1/c10. Define

Fn =
{

G : v(G) = n, F (G, 4, 4) ≥ 34n2/9 · 2−c8n2
}

.

and let F =
⋃

n≥n0
Fn. The lower bound in (3.4) shows that Fn is non-empty for every

n ≥ n0.

Using the obvious analogs of the previous definitions, we define the parameters (m, Vi, Hi, Ri, R, ri)

arising from an arbitrary graph G and a K4-free 4-coloring χ of the edges of G and fix one

such vector for each pair (G, χ).

By Lemma 3.2.2, each cluster graph Hi is K4-free and, by Turán’s theorem (3.1), has

at most t3(m) edges. Thus by (3.7)

r1 + 2r2 + 3r3 + 4r4 =
e(H1) + e(H2) + e(H3) + e(H4)

m2/2
≤ 8

3
. (3.45)

We also have a procedure for generating all K4-free edge 4-colorings of G at least once.

This procedure is identical to the Coloring Procedure provided in Section 3.3 with the only

difference being that in Step 3 the parameters ri (where we omit primes for convenience)

now satisfy (3.45) instead of (3.10) and (3.11). So, Lemma 3.3.1 that bounds the number

of choices in Steps 1–6 still holds.

The number of options in Step 7 is again bounded by (3.13), i.e., the expression

2Ln2/2+O(n), where L = r2 + log2(3) r3 + 2r4. Under the constraint (3.45) and the non-

negativity of the ri’s, the maximum of L is (8/9) log2 3 with the (unique) optimal assign-

ment being r1 = r2 = r4 = 0 and r3 = 8/9. We conclude that

F (n, 4, 4) ≤ 34n2/9 · 22c6n2
,

as it was also shown in [ABKS04].

We will now obtain structural information about the cluster graphs (and, indirectly,

about G). We call a pair (G, χ) (or the coloring χ) unsatisfactory if

r3 ≤ 8/9− c4. (3.46)

Otherwise, (G, χ) is satisfactory.

Lemma 3.4.1. For every graph G with n ≥ n0 vertices the number of unsatisfactory

K4-free edge 4-colorings is less than 34n2/9 · 2−c6n2
.

37



Proof. The maximum of L under constraints (3.45) and (3.46) (and the non-negativity of

ri’s) is

Lmax = (8/9− c4) log2(3) + 3c4/2 < (8/9) log2(3)− c5,

with the optimal dual variables for (3.45) and (3.46) being y1 = 1/2 and y2 = log2(3) −
3/2 > 0 respectively. Therefore, the total number of choices is at most 2c6n2 ·2Lmaxn2/2+O(n),

giving the required upper bound on the number of unsatisfactory colorings.

Call a vector (m, Vi, Hi) popular if it appears for at least 34n2/9 · 2−3c8n2
satisfactory

K4-free edge 4-colorings of G. As before, (3.12) guarantees that the number of colorings

for which the associated vector is not popular is at most 34n2/9 · 2−2c8n2
. Let Pop(G) be

the set of all popular vectors and let S(G) consist of all satisfactory colorings for which

the associated vector is popular.

Lemma 3.4.2. For any n ≥ n0, a graph G ∈ Fn, and a popular vector (m, Vi, Hi) ∈
Pop(G), there exists an equitable partition [m] = U1 ∪ . . . ∪ U9 such that

∣∣ R3 4K(U1, . . . , U9)
∣∣ < c3m

2, (3.47)
∣∣ R4K(U1, . . . , U9)

∣∣ < 2c3m
2. (3.48)

Proof. Suppose that some Y ⊆ [m] induces a clique of order 10 in R3. Then R3[Y ] contains
(
10
2

)
= 45 edges, each of which, by definition, belongs to exactly 3 cluster graphs Hi. Each

Hi is K4-free so, by Turán’s Theorem (3.1), Hi[Y ] has at most t3(10) = 33 edges. But

4 · 33 < 3 · 45, a contradiction.

Thus K10 7⊆ R3. Since e(R3) ≥ (8/9 − c4)m2/2, Lemma 3.2.3 gives an equitable

partition [m] = U1 ∪ . . . ∪ U9 satisfying (3.47). This partition also satisfies (3.48) because

r1 + r2 + r4 ≤ 3c4 by (3.45) and the negation of (3.46).

For a graph G and a popular vector (m, Vi, Hi) ∈ Pop(G), fix the equitable 9-partition

[m] = U1 ∪ · · · ∪ U9 given by Lemma 3.4.2. For i ∈ [9], let Ũi = ∪j∈UiVj be the blow-up of

Ui. Let F̃ = K(Ũ1, . . . , Ũ9).

Lemma 3.4.3. For any n ≥ n0, G ∈ Fn, and (m, Vi, Hi) ∈ Pop(G), we have |G4 F̃ | <

6c3n2.

Proof. First consider G\ F̃ . Up to 5c7n2 edges may be lost by application of the Regularity

Lemma. In addition, at most |R \K(U1, . . . , U9)| · +n/m,2 edges are missing in F̃ . Overall,

|G \ F̃ | < 3c3n2.
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On the other hand, we may estimate |F̃ \G| by bounding the number of colorings of G

associated with our vector (m, Vi, Hi). We revert to the Coloring Procedure and compute

the number of options in Step 7:

4∏

f=2

∏

ij∈Rf

f *n/m+2−|K(Vi,Vj)\G| ≤
(
34n2/9 · 22c6n2

) ∏

ij∈R3

2−|K(Vi,Vj)\G|

≤
(
34n2/9 · 22c6n2

)
· 2−|F̃\G|+2c3n2+O(n).

Since the vector (m, Vi, Hi) is popular, we have

| F̃ \G | ≤ c6n
2 + 2c3n

2 + 2c6n
2 + 3c8n

2 + O(n) ≤ 3c3n
2,

as required.

For each graph G fix a max-cut partition V (G) = W1 ∪ · · · ∪W9.

Lemma 3.4.4 (Stability Property). Let n ≥ n0, G ∈ Fn, and V (G) = W ′
1 ∪ . . .∪W ′

9 be a

partition with

∣∣ G ∩K(W ′
1, . . . ,W

′
9)

∣∣ ≥
∣∣ G ∩K(W1, . . . ,W9)

∣∣− c3n
2.

Then |G4K(W ′
1, . . . ,W

′
9) | ≤ 9c3n2 and, for any (m, Vi, Hi) ∈ Pop(G), there is a relabeling

of W ′
1, . . . ,W

′
9 such that

∣∣ W ′
i 4 Ũi

∣∣ ≤ 12000 c3n, for each i ∈ [9]. (3.49)

Also we have | |Wi|− n/9 | ≤ c2n for each i ∈ [9] and |G4K(W1, . . . ,W9) | ≤ 9c3n2.

Proof. Let F ′ = K(W ′
1, . . . ,W

′
9) and F = K(W1, . . . ,W9). As W1 ∪ . . . ∪W9 is a max-cut

partition, we have |F ′∩G|+c3n2 ≥ |F ∩G| ≥ |F̃ ∩G|. In addition, both [m] = U1∪ · · ·∪U9

and [n] = V1 ∪ · · · ∪ Vm are equitable partitions, so | |Ũi| − n/9 | < m + n/m. It follows

that |F̃ | ≥| F ′|− c7n2, and

|F ′4G | ≤| F̃ 4G |+ c7n
2 + 2c3n

2 ≤ 9c3n
2, (3.50)

where we used Lemma 3.4.3. This proves the first part of the lemma.

To prove the next part, we look for a relabeling of W ′
1, . . . ,W

′
9 such that |Ũi \ W ′

i | <

1250c3n for each i ∈ [9]. If no such relabeling exists, we have some i ∈ [9] such that

|Ũi \ W ′
j| ≥ 1250c3n for all j ∈ [9]. However, for some j, |Ũi ∩ W ′

j| ≥ |Ũi|/9. Let

X = Ũi ∩ W ′
j and Y = Ũi \ W ′

j . Then, by Lemma 3.4.3, we have e(G[X, Y ]) < 6c3n2
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while X ⊆ W ′
j , Y ∩W ′

j = ∅ and (3.50) imply that e(G[X, Y ]) > |X||Y |− 9c3n2 > 6c3n2, a

contradiction.

The desired estimate (3.49) follows from the observation that

W ′
i \ Ũi ⊆

⋃

j∈[9]\{i}

(Ũj \W ′
j).

The last two claims of the lemma follow by taking W ′
i = Wi.

A pattern is an assignment π :
(
[9]
2

)
→

(
[4]
3

)
(to every edge of K9 we assign a list of 3

colors) such that π−1(i) is isomorphic to T3(9) for each i ∈ [4]. It is easy to check that

up to isomorphism (of colors and vertices) there is only one pattern. It can be explicitly

described as follows. Identify the 9-point vertex set with (F3)2, the 2-dimensional vector

space over the 3-element finite field F3. There are 4 possible directions of 1-dimensional

subspaces. Let the color i ∈ [4] be present in the pattern in those pairs whose difference is

not parallel to the i-th direction.

We say that an edge 4-coloring χ of G ∈ Fn follows the pattern π if for every ij ∈
(
[9]
2

)

we have
∣∣ χ−1([4] \ π(ij)) ∩G[Wi, Wj]

∣∣ ≤ c2n
2.

Lemma 3.4.5. Let n ≥ n0 and G ∈ Fn. Then every coloring χ ∈ S(G) follows a pattern.

Proof. Let χ ∈ S(G) and (m, Vi, Hi) be the associated popular vector. Let [m] = U1∪ . . .∪
U9, be the partition given by Lemma 3.4.2.

Let the label of an edge uv ∈ R3 be χ̂(uv) = {i ∈ [4] : uv ∈ E(Hi)}. So, |χ̂(uv)| = 3

for all edges uv ∈ R3.

Claim 3.4.6. Let Y = {v1, . . . , v9} be a subset of [m] such that R3[Y ] ∼= K9 and vi ∈ Ui

for each i ∈ [9]. Let v′j ∈ Uj be such that Y ′ = (Y \{vj})∪{v′j} also spans K9 in R3. Then

χ̂(vjvi) = χ̂(v′jvi) for all i ∈ [9] \ {j}.
Proof of Claim. The identity 3 ·

(
9
2

)
= 4 ·t3(9) and Turán’s theorem imply that each K4-free

graph Hi[Y ] has exactly t3(9) vertices and thus is isomorphic to the Turán graph T3(9).

Let Yi,1, Yi,2, and Yi,3 be the parts of Hi[Y ]. The family of 3-sets {Yi,j : i ∈ [4], j ∈ [3]}
forms a Steiner triple system on Y , that is, every pair is covered exactly once. Thus if we

delete a vertex from Y , then the four triples that contain it are uniquely reconstructible.

It follows that if we know Hi[Y ] − vj for each i ∈ [4], then the labels of the eight pairs

containing vj are uniquely determined. This and the analogous statement for Y ′ imply the

claim.
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We can iteratively build a set Y = {v1, . . . , v9} such that R3[Y ] ∼= K9 and for all i ∈ [9]

we have vi ∈ Ui and

|NR3(vi) ∩ Uj| > |Uj|−
√

c3m for all j ∈ [9] \ {i}. (3.51)

Let Ai ⊆ Ui consist of those vertices that lie in NR3(vj) for all j ∈ [9] \ {i}. As all

v1, . . . , v9 satisfy (3.51), we have |Ai| > |Ui| − 8
√

c3m. Now, if aiaj ∈ R3[Ai, Aj] (without

loss of generality assume that (i, j) = (1, 2)), then all three sets {v1, v2, . . . , v9}, {a1, v2, . . . , v9},
and {a1, a2, v3, . . . , v9} form 9-cliques. By Claim 3.4.6 we have χ̂(vivj) = χ̂(aivj) = χ̂(aiaj).

Therefore the labeling on Y determines the labeling on all edges of R3 with the possible

exception of at most 72
√

c3m2 edges incident to vertices of
⋃9

i=1(Ui \ Ai). We, therefore,

have a pattern π such that χ̂(uiuj) = π(ij) for all but at most 73
√

c3m2 edges in R.

By applying (3.49) to W ′
i = Wi and arguing as in the proof of Lemma 3.3.9, one can

show that χ follows the pattern π.

A coloring χ ∈ S(G) is called good if for every distinct i, j, k ∈ [9], all sets Xi ⊆
Wi, Xj ⊆ Wj, Xk ⊆ Wk each of size at least c1n, and a color c ∈ π(ij) ∩ π(ik) ∩ π(jk),

we can find a monochromatic triangle in color c with one vertex in each of Xi, Xj, Xk.

Otherwise, call χ bad.

We make use of the following result [ABKS04, Lemma 3.1] that is proved by the stan-

dard embedding argument, see e.g. [SS91, Theorem 5].

Lemma 3.4.7. Let G be a graph and let V1, . . . , Vk be subsets of vertices of G such that,

for every i 7= j and every pair of subsets Xi ⊆ Vi and Xj ⊆ Vj with |Xi| ≥ 10−k|Vi| and

|Xj| ≥ 10−k|Vj|, there are at least 1
10 |Xi||Xj| edges between Xi and Xj in G. Then G

contains a copy of Kk with one vertex in each set Vi.

As a consequence of this lemma, a coloring fails to be good only if there are c, i, j

such that c ∈ π(ij) but for some sets Xi ⊆ Wi and Xj ⊆ Wj with |Xi|, |Xj| ≥ c1n/1000,

χ−1(c) has at most |Xi||Xj|/10 edges between Xi and Xj. The proof of Lemma 3.3.11 with

obvious modifications gives the following.

Lemma 3.4.8. The number of bad colorings is at most 34n2/9 · 2−c21n2/107
.

A good coloring χ of G is perfect if χ(vivj) ∈ π(ij) for every pair ij ∈
(
[9]
2

)
and every

edge vivj ∈ G[Wi, Wj]. Let P(G) consist of all perfect colorings of G.

Lemma 3.4.9. Let G ∈ Fn be a graph of order n ≥ n0 + 2 such that F (G, 4, 4) ≥
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34n2/9 · 2−c9n2
and for every distinct v, v′ ∈ V (G) we have

F (G, 4, 4)

F (G− v, 4, 4)
≥ (3− c3)

8n/9, (3.52)

F (G, 4, 4)

F (G− v − v′, 4, 4)
≥ (3− c3)

(8/9)(n+(n−1)). (3.53)

Then the following conclusions hold.

1. G is 9-partite.

2. |P(G)| ≥ (1− 2−c9n) F (G, 4, 4).

3. If G 7∼= T9(n), then there is a graph G′ with v(G′) = n and F (G′, 4, 4) > F (G, 4, 4).

Proof. As in the proof of Lemma 3.3.12, the notion of a good coloring is well-defined for

G−X provided |X| ≤ 2.

Claim 3.4.10. For each i ∈ [9] and every v ∈ Wi, |N(v) ∩Wi| < 8c1n.

Proof of Claim. Suppose that a vertex v violates the claim. Let W ′
1 ∪ · · · ∪ W ′

9 be the

selected max-cut partition of G− v. Similarly to Claim 3.3.13 there is a good coloring χ of

G− v with at least (3− c2)8n/9 extensions to G. Let π be the pattern of χ (with respect to

W ′
1, . . . .W

′
9) and ni = |N(v)∩Wi| for i ∈ [9]. As in the proof of Lemma 3.3.12, we take an

extension χ̄ of χ that gives a most frequent vector x = (x1, . . . , x9), where xi is the number

of colors c such that Zi,c = {u ∈ Wi : χ̄(uv) = c} has at least 2c1n elements. Also, let yc

be the number of j ∈ [9] such that |Zj,c| ≥ 2c1n. We have

x1 + x2 + . . . + x9 = y1 + y2 + y3 + y4. (3.54)

By the max-cut property, each xi ≥ 1. The argument of (3.37) shows that the number of

extensions of χ to G is at most 2c0n
∏9

i=1 xni
i .

Suppose that yc ≥ 7 for some color c. Any 7 vertices of the color-c graph that is

isomorphic to T3(9) span a triangle. The three c-neighborhoods of v in the corresponding

parts W ′
i have at least |Zi,c|−24000c3n > c1n vertices each by (3.49). Since χ is good, this

gives a copy of K4 of color c in χ̄, a contradiction.

Thus yc ≤ 6 for every c ∈ [4] and the sum of xi’s is at most 24. Since each xi is a

positive integer, their product is at most 2336 (it is clearly maximized when the factors are

nearly equal). Also, each ni ≤ n/9 + c2n by Lemma 3.4.4. Thus the number of extensions

of χ is at most 22c0n(2336)n/9 < (3− c2)8n/9, a contradiction that proves the claim.

Claim 3.4.11. If x1, . . . , x8 are non-negative integers with sum 24 then
∏8

i=1 max(xi, 1) ≤
38 with equality if and only if each xi equals 3.
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Proof of Claim. Clearly, the product of two positive integers k and l given their sum

is maximum when |k − l| ≤ 1. Thus if we fix t, the number of non-zero xi’s, then their

product is maximized when each positive xi is )24/t* or +24/t,. Thus, for t = 8, 7, . . . , 1 the

maximum of the product is respectively 38 = 6561, 34 · 43 = 5184, 46 = 4096, 4 · 54 = 2500,

64 = 1296, 83 = 512, 122 = 144, and 24. Here, 38 is the largest entry.

Claim 3.4.12. For all i ∈ [9] and all v, v′ ∈ Wi, we have vv′ 7∈ E(G).

Proof of Claim. Assume for a contradiction that vv′ ∈ E(G), where without loss of general-

ity v, v′ ∈ W9. As in Claim 3.3.13, one can find a good coloring χ of G−v−v′ ∈ Fn−2 with

at least (3−c2)16n/9 extensions to G. Define the parameters π, ni, Zi,c, xi, yi, n′i, Z
′
i,c, x

′
i, y

′
i, χ̄

and a most frequent color s of vv′, as it was done in Claim 3.3.15. Then a version of (3.38)

states that the total number of extensions of χ is at most

(59)2 · 4 · 2c0n · (48c1n+8c2n)2 ·
8∏

i=1

(max(xi, 1) ·max(x′i, 1))n/9. (3.55)

Since each yc ≤ 6, we have
∑8

i=1 xi ≤ 24. By Claim 3.4.11 we have that xi = x′i = 3

for each i ∈ [8], for otherwise the bound in (3.55) is strictly less than (3 − c2)16n/9, a

contradiction to the choice of χ.

Assume that the parts of Hs
∼= T3(9) are A1 = {1, 2, 3}, A2 = {4, 5, 6}, and A3 =

{7, 8, 9}.
Suppose first that there is j ∈ [8] such that |Zj,s| ≥ 2c1n but s 7∈ π({j, 9}), say j = 8.

By (3.49), we have |Z8,s ∩W ′
8| ≥ c1n. Since χ is good, in order to avoid a color-c K4 in χ̄

we must have |Zi,s| < 2c1n for all i ∈ A1 or for all i ∈ A2. Thus ys contributes at most 5 to
∑8

i=1 xi and (since any other yt is at most 6) this sum is at most 23, giving a contradiction

by Claim 3.4.11 and (3.55).

Also, this implies that |Zj,s| ≥ 2c1n for all j ∈ [6] (for otherwise ys ≤ 5). The same

claim applies to |Z ′
j,s|. Let y1z1, . . . , ymzm be a maximal matching formed by color-s edges

between W1 and W4. Since χ is good, we have that

m ≥ min(|W1|, |W4|)− c1n ≥ n/9− 2c1n.

When we extend the coloring χ to G, the number of choices to color the edges of

G[vv′, yizi] is at most 34 − 1 for every i ∈ [m] because, if all 4 pairs are present in G, then

we are not allowed to color all of them with color c while otherwise we have at most 43 < 34

43



choices. This allows us to improve the bound in (3.55) by factor (80/81)n/10, giving the

desired contradiction.

Thus we have proved Part 1 of the lemma.

Suppose on the contrary that the conclusion of Part 2 does not hold. As in the proof

of Lemma 3.3.8, we can find an edge vv′ ∈ G, say with v ∈ W1 and v′ ∈ W9, a color s, and

a good coloring χ of G − v − v′ such that there are at least (3 − c2)16n/9 good extensions

of χ to G that preserve the pattern π of χ and assign the “wrong” color s to vv′. Defining

xi, x′i, Zj,c, Z ′
j,c, yi, y′i by the direct analogy with the definitions of Claim 3.3.15, one can

argue similarly to (3.38) that the total number of extensions of χ is at most

2c0n ·
(

9∏

i=2

max(xi, 1) ·
8∏

i=1

max(x′i, 1)

)n/9

. (3.56)

By Claim 3.4.11, we have xi = 3 for each 2 ≤ i ≤ 9 and x′i = 3 for each i ∈ [8]. Thus

each yi and each y′i is equal to 6. It follows that, for any 2 ≤ j ≤ 9 and c ∈ [4], we

have |Zj,c| ≥ 2c1n if and only if c ∈ π({1, j}). Also, the analogous claim holds for |Z ′
j,c|.

Since s 7∈ π({1, 9}), we can find distinct i, j ∈ {2, . . . , 8} such that s belongs to π(ij) as

well as to the label of each pair in {1, 9} ×{ i, j}. As before, by considering a maximal

color-s matching in G[Wi, Wj], we can improve (3.56) by a factor (80/81)n/10, getting a

contradiction and proving Part 2 of the lemma.

Let us prove Part 3. If G is not complete 9-partite, then by Part 2 we can take

G′ = K(W1, . . . ,W9): indeed, |P(G′)| ≥ 3|P(G)| > F (G, 4, 4). So suppose that G is

complete 9-partite.

Let us determine the number of possible patterns (with distinguishable colors and

vertices). For the color-1 graph we have
(
8
2

)
·
(
5
2

)
choices (there are

(
8
2

)
choices for the part

A1 ∈
(
[9]
3

)
containing 1, then

(
5
2

)
choices for the part A2 containing the smallest element

of [9] \ A1.) Then we have 9 · 4 choices for color 2, then 2 choices for color 3, and one

choice for color 4. Thus the total number of patterns is 20160 = 9!/18. The same answer

can be obtained by noting that, when we permute [9], then we have a transitive action on

patterns and every pattern is fixed by 18 permutations.

It follows that G has (9!/18 + o(1)) 3e(G) perfect colorings in total, since every edge

of G has exactly 3 choices for a given pattern. Since G 7∼= T9(n), we have |P(T9(n))| ≥
(3+o(1))|P(G)| and we can take G′ = T9(n). This completes the proof of Lemma 3.4.9.

Now, Theorem 3.1.2 can be deduced from Lemma 3.4.9 in the same way (modulo some
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obvious modifications) as Theorem 3.1.1 was deduced from Lemma 3.3.12.

3.5 Remarks

In the preceding sections we extended the results obtained by Alon et al. [ABKS04] on

F (n, 2, k) and F (n, 3, k) to provide the extremal graphs for F (n, 4, 3) and F (n, 4, 4). As

the general problem of evaluating F (n, r, k) remains difficult, one may wonder for which

values of r and k it seems to be tractable. A natural extension may be fixing r = 4

and evaluating F (n, 4, k), possibly starting with F (n, 4, 5). On the other hand, one may

study monochromatic-triangle-free colorings by fixing k = 3 and looking at F (n, r, 3) in

general and F (n, 5, 3), in particular. Another interesting question happens to be that

of F (n, q + 1, q + 1) where q is a prime or a prime power where, as seen in the extremal

structure for F (n, 4, 4), the affine plane F2
q suggests that Tq2(n) may be the extremal graph.

We would like to say a few words on each.

In tackling F (n, r, k), our method, as in [ABKS04], will consist of applying the regularity

lemma to a given graph G and a coloring χ to obtain cluster graphs H1, . . . , Hr on vertex

set [m]. The cluster graphs allow us to construct the graphs Rs, where ab ∈ Rs if and only

if ab ∈ Hi for exactly s cluster graphs Hi. We also have the quantities es and rs where es

is the number of edges in Rs and rs = 2es/m2.

Now, loosely speaking, the number of colorings χ which give rise to a particular vector

(m, Vi, Hi, Ri, ei, pi) is on the order of (
∏r

s=1 srs)n2/2. So we try to optimize this function,

or rather
r∑

s=1

rs log s, (3.57)

under some constraints on the quantities rs. One such quantity is obtained by noting that

each graph Hi is Kk-free. Hence,

r∑

i=1

i · ri ≤ r
k − 2

k − 1
. (3.58)

We may also obtain inequalities of the form

r∑

i=s

ri ≤
t− 2

t− 1
(3.59)

by observing that Kt 7⊂ Rs ⊂
⋃

i≥s Ri. For example, r3 ≤ 1/2 was used in Section 3.3 and
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r3 ≤ 8/9 may have been utilized in computing this value for F (n, 4, 4) (in that case, (3.58)

was a dominating inequality).

3.5.1 F (n, 4, k)

For r = 4 and k ≥ 5, the optimal value for (3.57) under constraint (3.58), is obtained when

r3 = 1 and r2 = k−2
2(k−1) . Unfortunately, this value is unattainable and, in order to obtain

tighter bounds, we will have to find inequalities resembling (3.59). Clearly, r4 ≤ k−2
k−1 is

dominated by (3.58) and does not play a role, so the key question becomes finding a bound

for r3.

However, this becomes a Ramsey-type problem in which edges receive multiple colors.

To state it more generally, let

N(r, s, k) = min{n | ∀χ : E(Kn) →
(

[r]

s

)
there exists i ∈ [r] with χ−1(i) ⊃ Kk}.

Then, the Ramsey number R(k, k) is simply N(2, 1, k), and, as seen earlier, N(4, 3, 4) = 10.

In this particular case, we are interested in finding N(4, 3, k) where k ≥ 5. It is not at all

clear what this value should be even for k = 5, although it is bounded above by R(5, 5).

Assuming we know the value of N = N(4, 3, k), we may start exploring an extremal

structure for F (n, 4, k). One obvious choice is TN−1(n). This graph would be optimal

unless r2 > 0, in which case one would suspect that each part of TN−1(n) will be partitioned

further to furnish Tc(N−1)(n).

3.5.2 F (n, r, 3)

This case also requires the same Ramsey-type constraints and does not seem easier to

handle for general r. So, we restrict ourselves to the case when r = 5. It is simple to

obtain the inequalities r4, r5 ≤ 1/2 by showing that N(5, 5, 3) = N(5, 4, 3) = 3. However,

we will show below that N(5, 3, 3) = 5, giving us the inequality r3 ≤ 3/4. With the

inclusion of this inequality, the optimal point for (3.57) is r3 = 3/4, r2 = 1/8 giving us the

bound F (n, 5, 3) ≤ (21/833/4)(
n
2)+o(n2). This would suggest T8(n) as the extremal graph,

but unfortunately, no labeling π : E(T8(n)) →
(
[5]
3

)
∪

(
[5]
2

)
satisfies the above.

Claim 3.5.1. K5 7⊆ R3.

Proof of Claim. Assume W = {w1, . . . , w5} form a K5 in R3. As a triangle-free graph on 5

vertices may have at most 6 edges, each color is used on at most 6 edges. In addition, since
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there are
(
5
2

)
= 10 edges and each edge receives 3 colors, each color must appear exactly

6 times, i.e., each Hi[W ] ∼= K2,3. For each i, let Ai ∪ Bi = W be the bipartition, where

|Ai| = 2. So, an edge wjwk receives color i iff exactly one of wj, wk lies in Ai. As each

edge receives 3 colors, without loss of generality, wj belongs to Ai, for some i, more than

wk does. They appear together the rest of the time. However, this implies that the sum of

degrees of wj is greater than that of wk, whereas the sum of degrees at each vertex needs

to be exactly 4 · 3 = 12.

3.5.3 F (n, q + 1, q + 1)

In this case, where q is prime or a prime power, we have the inequality pq ≤ q2−1
q2 as

N(q + 1, q, q + 1) = q2 + 1. We may construct an edge k-coloring χ of the complete graph

on q2 vertices by using the affine plane F2
q as follows.

Let the vertices of Kq2 be of the form v = (α, β) where α, β ∈ Fq. For each ρ, σ ∈ Fq, we

have the linear subsets L(ρ, σ) = {(α, β) : β = ρα + σ}. Then, L(ρ) = {L(ρ, σ) : σ ∈ Fq}
partitions V (Kq2) into q sets of size q. Define some mapping θ : [r] → Fq and for each

i ∈ [r], let i ∈ χ(uv) if and only if {u, v} 7∈ L(θ(i), σ) for all σ ∈ Fq.

By blowing up this coloring, we obtain F (n, q + 1, q + 1) ≥ q
q2−1

q2
n2

2 , which we believe

is tight up to a constant factor. However, the optimal point for the linear optimization

(3.57) gives an upper bound that does not match the constructive lower bound.
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Chapter 4

Counting Color-Critical Graphs

4.1 Supersaturation

In 1907, Mantel [Man07] proved that a triangle-free graph on n vertices contains at most

)n2/4* edges. The celebrated result of Turán generalizes this result as follows: a graph

containing no copy of Kr+1 has at most tr(n) edges, where tr(n) is the number of edges in

the Turán graph Tr(n), the complete r-partite graph with parts of size )n/r* or +n/r,.
Stated in the contrapositive, this implies that a graph with tr(n) + 1 edges contains

at least one copy of Kr+1. A result of Rademacher (1941, unpublished), which is perhaps

the first result in the so-called “theory of supersaturated graphs,” shows that a graph on

)n2/4*+1 edges contains not just one but at least )n/2* copies of a triangle. Subsequently,

Erdős [Erd62a, Erd62b] proved that there exists some small constant cr > 0 such that

tr(n)+q edges (where 0 < q < crn) guarantee at least as many copies of Kr+1 as contained

in the graph obtained from Tr(n) by adding q edges to one of its maximal classes. Lovász

and Simonovits [LS75, LS83] later proved that the same statement holds with cr = 1/r.

In fact, in [LS83], they determine the extremal graphs for q = o(n2). Erdős [Erd69] also

considered the supersaturation problem for odd cycles C2k+1 and proved that a graph on

2n vertices and t2(2n) + 1 edges contains at least n(n− 1) · · · (n− k + 1)(n− 2) · · · (n− k)

copies of C2k+1.

We study the supersaturation problem for the broader class of color-critical graphs,

that is, graphs containing an edge whose deletion reduces the chromatic number.

Definition 4.1.1. Call a graph F r-critical if χ(F ) = r + 1 but it contains an edge e such

that χ(F − e) = r.
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Simonovits [Sim68] proved that for an r-critical graph F , the Turán number ex(n, F )

coincides with that of Kr+1 for n large enough. That is, a graph containing no copy of F

has at most tr(n) edges. Mubayi [Mub10] proved the following supersaturation result for

color-critical graphs:

Definition 4.1.2. Fix r ≥ 2 and let F be an r-critical graph. Let c(n, F ) be the minimum

number of copies of F in the graph obtained from Tr(n) by adding one edge.

Here, a copy of F in H is a subset of f = |V (F )| vertices and |F | = |E(F )| edges of H

such that the subgraph formed by this set of vertices and edges is isomorphic to F .

Theorem 4.1.3 (Mubayi [Mub10]). For an r-critical graph F , there exists a constant

c0 = c0(F ) > 0 such that for all sufficiently large n and 1 ≤ q < c0n, every n vertex graph

with tr(n) + q edges contains at least qc(n, F ) copies of F .

Mubayi proves that Theorem 4.1.3 is sharp for some graphs including odd cycles C2k+1

and K4 − e, the graph obtained from K4 by deleting an edge. However, the value of c0

obtained in the proof is small.

In this chapter, we extend these results in various ways. Our main result involves the

characterization of extremal graphs for certain values of q. Let HF (n, q) be the set of

graphs on n vertices and tr(n) + q edges which contain the fewest number of copies of F .

Let T q
r (n) be the set of graphs obtained from the Turán graph Tr(n) by adding q edges.

Then, with

qF (n) = max{q : HF (n, q′) ⊆ T q′

r (n) for all q′ ≤ q},

c1(F ) = lim inf
n→∞

{
qF (n)

n

}

we show

Theorem 4.1.4. For every connected r-critical graph F , c1 = c1(F ) > 0.

In fact, our proof proceeds by showing a lower bound on c1(F ). Roughly speaking,

we prove that T q
r (n) fails to be optimal if one of two phenomena occur: the number of

copies of F may be decreased either by using a non-equitable partition of the vertex set or

by rearranging the neighborhood of some vertex of large degree. Interestingly, in the first

scenario, the congruence class of n modulo r affects the value of qF (n). Hence, we also

define the following r constants

c1,i(F ) = lim inf
n→∞

n≡i mod r

{
qF (n)

n

}
.
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For the special case where F is an odd cycle, we obtain the exact result c1,1(C2k+1) = 1,

whereas c1(C2k+1) = c1,0(C2k+1) = 1/2 (see Lemma 4.4.4 and Theorem 4.5.2). We also

compute the exact value of c1(F ) for graphs obtained by deleting an edge from Kr+2 where

r ≥ 2 (Theorem 4.5.6).

We also examine a threshold for the asymptotic optimality of T q
r (n). Formally, with

#F (H) being the number of copies of F in H,

c2(F ) = sup

{
c : ∀ε > 0 ∃n0 s.t.∀n ≥ n0, q ≤ cn (H ∈ HF (n, q)) ⇒

(
#F (H)

qc(n, F )
≥ 1− ε

)}
.

That is, if q = cn, Gn ∈ T q
r (n) minimizes F (G) over all G ∈ T q

r (n), and Hn ∈ HF (n, q),

then limn→∞ #F (Hn)/F (Gn) = 1 if c ≤ c2(F ). In Section 4.2, we introduce a graph

parameter that allows one to calculate c2(F ) exactly (see Theorem 4.3.1). As c2(F ) ≥
c1(F ), the above parameter provides an upper bound on c1(F ).

While the focus of this chapter is on the supersaturation problem with q = o(n2), and

in particular q = O(n), it is worth mentioning that, for cliques, the case q = Ω(n2) has

been actively studied and proved notoriously difficult. Only recently, Razborov [Raz08],

using techniques developed in [Raz07], proved asymptotically sharp bounds on the number

of triangles in a graph with given edge density ρ ≥ 1/2. The case for K4 was answered by

Nikiforov [Nik11], but the question remains open for larger cliques.

The rest of the chapter is organized as follows. In the next section we introduce the

functions and parameters with which we work. In Section 4.3, we set up the general

framework and prove results for q = O(n2−η) for some η > 0. In particular, we use this

setup to prove our bound on c2(F ). Theorem 4.1.4 is proved in Section 4.4. We use the

last section to prove an upper bound on c1(F ) for a special class of graphs.

4.2 Parameters

We will first reproduce part of Mubayi’s argument in order to define some recurring con-

stants and structures. We will then extend his arguments to prove our results in subsequent

sections.

In the arguments and definitions to follow, F will be an r-critical graph and we let

f = |V (F )| be the number of vertices of F . We write x = y ± z to mean |x− y| ≤ z. We

begin with an expression for c(n, F ).
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Lemma 4.2.1. Let F be an r-critical graph on f vertices. There is a positive constant αF

such that

c(n, F ) = αF nf−2 ±O(nf−3).

This is proved by Mubayi [Mub10] by providing an explicit formula for c(n, F ). If F

is an r-critical graph, we call an edge e (resp., a vertex v) a critical edge (resp., a critical

vertex ) if χ(F − e) = r (resp., χ(F − v) = r).

Given disjoint sets V1, . . . , Vr, let K(V1, . . . , Vr) be formed by connecting all vertices

vi ∈ Vi, vj ∈ Vj with i 7= j, i.e., K(V1, . . . , Vr) is the complete r-partite graph on vertex

classes V1, . . . , Vr. Let H be obtained from K(V1, . . . , Vr) by adding one edge xy in the first

part and let c(n1, . . . , nr; F ), where ni = |Vi|, denote the number of copies of F contained

in H. Let uv ∈ F be a critical edge and let χuv be a proper r-coloring of F − uv where

χuv(u) = χuv(v) = 1. Let xi
uv be the number of vertices of F excluding u, v that receive

color i. An edge preserving injection of F into H is obtained by picking a critical edge uv

of F , mapping it to xy, then mapping the remaining vertices of F to H such that no two

adjacent vertices get mapped to the same part of H. Such a mapping corresponds to some

coloring χuv. So, with Aut(F ) denoting the number of automorphisms of F , we obtain

c(n1, . . . , nr; F ) =
1

Aut(F )

∑

uv critical

∑

χuv

2(n1 − 2)x1
uv

r∏

i=2

(ni)xi
uv

.

We obtain a formula for c(n, F ) by picking H ∈ T 1
r (n). In particular, if n1 ≤ n2 ≤ · · · ≤ nr

and nr − n1 ≤ 1,

c(n, F ) = min{c(n1, . . . , nr; F ), c(nr, . . . , n1; F )}. (4.1)

If r |n, we get a polynomial expression in n of degree f − 2 and αF is taken to be the

leading coefficient.

A recurring argument in our proof involves the deletion of one edge and its replacement

by another. Here, we define quantities that allow us to compare and bound the number of

copies gained and lost by this swapping process.

Definition 4.2.2. Let F be an r-critical graph. Given a graph H = Kn1,...,nr + uv, denote

by m(H,F ) the maximum number of copies of F to which an edge uw 7= uv belongs.

Definition 4.2.3. Let m(n, F ) = max{m(H,F ) : H ∈ T 1
r (n)}.

It is easy to see that limn→∞
m(n,F )
nf−3 exists; we denote it by µF .
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Another operation involves moving vertices or edges from one class to another, poten-

tially changing the partition of n. To this end, we compare the values of c(n1, . . . , nr; F ).

In [Mub10], Mubayi proves that there exists some γF such that

c(n1, . . . , nr; F ) ≥ c(n, F )− γF anf−3

for all partitions n1 + . . . + nr = n where )n/r* − a ≤ ni ≤ +n/r,+ a for every i ∈ [r]. We

need the following, more precise estimate:

Lemma 4.2.4. There exists a constant ζF such that the following holds for all δ > 0 and

n > n0(δ, F ). Let c(n, F ) = c(n′1, . . . , n
′
r; F ) as in (4.1). Let n1 + . . .+nr = n, ai = ni−n′i

and M = max{|ai| : i ∈ [r]}. If M < δn, then

c(n, F )− c(n1, . . . , nr; F ) = ζF a1n
f−3 ±O(M2nf−4).

Proof. We bound c(n1, . . . , nr; F ) using the Taylor expansion about (n′1, . . . , n
′
r). We first

note that c(n1, . . . , nr; F ) is symmetric in the variables n2, . . . , nr. Hence,

∂c

∂ni
(n/r, . . . , n/r) =

∂c

∂nj
(n/r, . . . , n/r)

for all 2 ≤ i, j ≤ r. Furthermore, as |n′i−n/r| ≤ 1 for all 1 ≤ i ≤ r, there is some constant

C1 such that
∂c

∂ni
(n′1, . . . , n

′
r)−

∂c

∂ni
(n/r, . . . , n/r) < C1n

f−4.

Then, we have the inequality

c(n1, . . . , nr; F )− c(n′1, . . . , n
′
r; F ) ≤

r∑

j=1

aj
∂c

∂nj
(
n

r
, . . . ,

n

r
) + C2M

2nf−4

= a1
∂c

∂n1
(
n

r
, . . . ,

n

r
) +

∂c

∂n2
(
n

r
, . . . ,

n

r
)

r∑

j=2

ai + C2M
2nf−4.

Similarly, we have

c(n1, . . . , nr; F )− c(n′1, . . . , n
′
r; F ) ≥ a1

∂c

∂n1
(
n

r
, . . . ,

n

r
)+

∂c

∂n2
(
n

r
, . . . ,

n

r
)

r∑

j=2

ai−C3M
2nf−4.

As
∑r

i=1 ai = 0, the lemma follows with ζF being the coefficient of nf−3 in ∂c
∂n2

(n/r, . . . , n/r)−
∂c

∂n1
(n/r, . . . , n/r).
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Definition 4.2.5. For an r-critical graph F , let πF =






αF
|ζF | if ζF 7= 0

∞ ζF = 0
.

To give a brief foretaste of the arguments to come, we compare the number of copies of

a 2-critical graph F in some H ∈ T q
2 (n) and a graph H ′ with K(V1, V2) ⊆ H ′ where n = 2*

is even, |V1| = *+1, and |V2| = *−1. While H contains q ‘extra’ edges, (*+1)(*−1) = *2−1

implies that the number of ‘extra’ edges in H ′ is q + 1. Ignoring, for now, the copies of F

that use more than one ‘extra’ edge, we compare the quantities qc(n, F ) ≈ qαF nf−2 and

(q +1)(αF nf−2− ζF nf−3). It becomes clear that the ratio αF /ζF will play a significant role

in bounding the value c1(F ).

Another phenomenon of interest is the existence of a vertex with large degree. Let

d = (d1, . . . , dr) and let F (n1, . . . , nr;d) be the number of copies of F in the graph H =

K(V1, . . . , Vr) + z where |Vi| = ni and z has a neighborhood of size di in Vi. Let F (n,d)

correspond to the case when n1 + . . . + nr = n− 1 are almost equal and n1 ≥ . . . ≥ nr.

We have the following formula for F (n1, . . . , nr;d). An edge preserving injection from

F to H is obtained by choosing a critical vertex u, mapping it to z, then mapping the

remaining vertices of F to H so that neighbors of u get mapped to neighbors of z and

no two adjacent vertices get mapped to the same part. Such a mapping is given by an

r-coloring χu of F − u and the number of mappings associated with χu is the number

of ways the vertices colored i can get mapped to the ith part of H (with neighbors of u

colored i being mapped to neighbors of z in the ith part). This gives

F (n1, . . . , nr;d) =
1

Aut(F )

∑

u critical

∑

χu

r∏

i=1

(ni − yi)xi
(di)yi

where yi is the number of neighbors of u that receive color i and xi is the number of

non-neighbors that receive color i. In particular, when H ⊇ Tr(n − 1) and r|(n − 1), we

have

F (n,d) =
1

Aut(F )

∑

u critical

∑

χu

r∏

i=1

(
n− 1

r
− yi

)

xi

(di)yi .

We find it convenient to write di = ξin and work instead with the following polynomial.

For ξ = (ξ1, . . . , ξr) ∈ Rr, let

PF (ξ) =
1

Aut(F )

∑

u critical

∑

χu

r∏

i=1

1

rxi
ξyi
i .

As a first exercise, let us characterize all connected graphs for which deg(PF ) = r (we

will later treat such graphs separately).
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Lemma 4.2.6. If F is a connected r-critical graph and deg(PF ) = r, then F = Kr+1 or

r = 2 and F = C2k+1 is an odd cycle.

Proof. The degree of PF is determined by the critical vertex with the largest degree. To

be precise, as deg(PF ) = max
u critical

{deg(u) =
∑

i

yi(u)}, it follows that deg(u) ≤ r for each

critical vertex u ∈ F . However, any r-coloring χu of F − u must assign all r colors to the

neighbors of u. Thus, deg(u) = r and yi = 1 for each critical vertex u and all i ∈ [r].

Therefore, every edge incident to u is a critical edge and, by extension, every neighbor of

u is a critical vertex. As F is connected, it follows that every vertex is critical and has

degree r. By Brooks’ Theorem [Bro41], F is either the complete graph Kr+1 or r = 2 and

F is an odd cycle C2k+1 for some k ≥ 1.

The case F = Kr+1 has been solved in a stronger sense by Lovász and Simonovits [LS83],

whose results imply that c1,1(Kr+1) = 2/r while c1,t(Kr+1) = 1/r for t 7≡ 1 (mod r).

We now discuss some properties of the polynomial PF (ξ).

Lemma 4.2.7. PF (ξ) is a symmetric polynomial with nonnegative coefficients.

Proof. Let σ be a permutation of [r]. For a critical vertex u and an r-coloring χu of F −u,

let σ(χu) be the coloring obtained by permuting the color classes of χu. It follows that

σ(χu) is an r-coloring of F − u. Then,

PF (ξσ−1(1), . . . , ξσ−1(r)) =
1

Aut(F )

∑

u critical

∑

χu

r∏

i=1

1

rxi
(ξσ−1(i))

yi

=
1

Aut(F )

∑

u critical

∑

σ(χu)

r∏

i=1

1

rxσ(i)
ξ

yσ(i)

i

= PF (ξ).

In addition, as xi ≥ 0 and yi ≥ 1, each term in the product has a positive coefficient.

We now restrict the domain of PF to those ξ which may arise as the density vector of

some vertex. As ξi = di/n, it follows that ξi ≥ 0 for all i ∈ [r]. Furthermore,
∑

i di ≤ n− 1

implies that
∑

i ξi ≤ 1. However, as we mostly encounter equitable partitions, we use the

more restrictive set

S = {ξ ∈ Rr : 0 ≤ ξi ≤ 1/r ∀i ∈ [r]}.

Lemma 4.2.8. There exists a constant CF such that for any ξ and ξ′ with ξ, ξ′ ≥ 0 and

max(‖ξ‖1, ‖ξ′‖1) ≤ 1, |PF (ξ)− PF (ξ′)| < CF‖ξ − ξ′‖1.
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Proof. Take CF to be the maximum gradient of PF on the set {ξ ≥ 0 : ‖ξ‖1 ≤ 1}.

Most of the arguments that follow involve minimizing PF , usually over some subset

of S. One such subset is Sρ = {ξ ∈ S :
∑

i ξi = ρ} where ρ ∈ [0, 1]. Let p(ρ) =

min{PF (ξ) : ξ ∈ Sρ} and let Dρ be the set of minimizers of PF (ξ) over the elements of Sρ.

Let D =
⋃

ρ∈[0,1]Dρ. In many instances, the minimizers belong to the set

S∗ = {ξ ∈ S : ∃j ∈ [r] with ξj = 0 or
∑

i"=j

ξi = 1− 1/r},

those density vectors which may be obtained from the vertices of (a subgraph of) some

graph H ∈ T q
r (n). This leads us to our next definition:

Definition 4.2.9. Let ρ∗F = inf{ρ ∈ [0, 1] : Dρ 7⊆ S∗}. If Dρ ⊆ S∗ for all ρ ∈ [0, 1], then

ρ∗F = ∞.

Lemma 4.2.10. ρ∗F > 1− 1/r.

Proof. First observe that PF (ξ) > 0 unless ξi = 0 for some i ∈ [r]. Thus, Dρ ⊆ S∗ for

ρ ∈ [0, 1− 1/r] and ρ∗F ≥ 1− 1/r.

We now show that there exists some ε > 0 such that for all ρ = 1− 1/r + ε′ with ε′ < ε

and all ξ ∈ Sρ, p(ρ) = PF (ξ) if and only if ξ ∈ S∗.

Let ξ ∈ Sρ where ρ = 1 − 1/r + ε′. As PF is symmetric, we may assume that ξ1 ≤ ξi

for all i ∈ [r]. We will first identify a threshold δ and provide lower bounds on PF (ξ) for

the cases ξ1 < δ and ξ1 ≥ δ. We then pick ε accordingly.

If ξ1 < δ, we bound PF (ξ) using the Taylor expansion about (0, 1/r, . . . , 1/r). That is,

PF (ξ) =
f−1∑

a1=0

· · ·
f−1∑

ar=0

δa1
1 (−δ2)a2 · · · (−δr)ar

a1! · · · ar!

∂a1+...+arPF

∂ξa1
1 · · · ∂ξar

r

(0, 1/r, . . . , 1/r),

where δ1 = ξ1 and δi = 1/r − ξi for 2 ≤ i ≤ r. Observe that δ1 =
∑r

i=2 δi + ε′ and

deg(PF ) ≤ f − 1.
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However, as δ1 < δ is small (that is, by choice of δ), we have

PF (ξ) =




f−1∑

i=1

δi
1

i!

∂PF

∂ξi
1

+
∑

a∈Zr
+

a2+...+ar>0

δa1
1 (−δ2)a2 · · · (−δr)ar

a1! · · · ar!

∂a1+...+arPF

∂ξa1
1 · · · ∂ξar

r



 (0, 1/r, . . . , 1/r)

≥
(

f−1∑

i=1

δi
1

i!

∂PF

∂ξi
1

− 2δ1

(
r∑

i=2

δi

)
∂2PF

∂ξ1∂ξ2

)
(0, 1/r, . . . , 1/r)

≥
(

f−1∑

i=1

δi
1

i!

∂PF

∂ξi
1

− 1

2

(
r∑

i=2

δi

)
∂PF

∂ξ1

)
(0, 1/r, . . . , 1/r)

≥
(

f−1∑

i=2

δi
1

i!

∂PF

∂ξi
1

(0, 1/r, . . . , 1/r) +

(
ε′ +

1

2

(
r∑

i=2

δi

))
∂PF

∂ξ1

)
(0, 1/r, . . . , 1/r)

≥ PF (ε′, 1/r, . . . , 1/r) +
1

2

(
r∑

i=2

δi

)
∂PF

∂ξ1
(0, 1/r, . . . , 1/r)

where the first inequality follows using a second order approximation and the fact that

∂a1+...+arPF

∂ξa1
1 · · · ∂ξar

r

(0, 1/r, . . . , 1/r) = 0

whenever a1 = 0. Hence, if ξ1 < δ, then PF (ξ) > PF (ε′, 1/r, . . . , 1/r) unless
∑r

i=2 δi = 0,

that is, ξ = (ε′, 1/r, . . . , 1/r).

On the other hand, as all coefficients in PF are non-negative, it follows that PF (ξ) ≥
PF (ξ1, . . . , ξ1). Hence, if ξ1 ≥ δ, we have the lower bound PF (ξ) ≥ PF (δ, . . . , δ). As

δ is a fixed constant, we may pick ε such that PF (δ, . . . , δ) > PF (ε, 1/r, . . . , 1/r) ≥
PF (ε′, 1/r, . . . , 1/r), to complete the proof.

We now illustrate a relationship between αF and vectors in S∗ by observing that

∂PF

∂ξ1
(0, 1/r, . . . , 1/r) = αF .

To be precise, if ξ = (ξ1, 1/r, . . . , 1/r) ∈ Sρ∩S∗, we have PF (ξ) =
∑f−1

i=1
ξi
1
i!

∂PF

∂ξi
1
(0, 1/r, . . . , 1/r).

So, PF (ξ) = αF (ρ − (1 − 1/r)) precisely when deg(PF ) = r. It also implies that if

deg(PF ) ≥ r + 1 and ρ ∈ ( r−1
r , ρ∗F ), then p(ρ) > αF (ρ − r−1

r ). We are interested in

the values of ρ for which the last inequality holds. We now define the following two, closely

related parameters.

Definition 4.2.11. Let ρF = inf
{
ρ ∈ [ρ∗, 1] : p(ρ) ≤ αF (ρ− r−1

r )
}
. If ρ∗F = ∞ or p(ρ) >

αF (ρ− (r − 1)/r) for all ρ ∈ [ρ∗F , 1], then ρF = ∞.
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Definition 4.2.12. Let ρ̂F = inf
{
ρ ∈ [ρ∗, 1] : p(ρ) < αF (ρ− r−1

r )
}
. If ρ∗F = ∞ or p(ρ) ≥

αF (ρ− (r − 1)/r) for all ρ ∈ [ρ∗F , 1], then ρ̂F = ∞.

As a consequence of Theorem 4.1.3 (Mubayi [Mub10]), we observe that ρ̂F−(1−1/r) ≥
c0(F ) > 0. In fact, we will prove in Section 4.3 that c2(F ) = ρ̂F − (1− 1/r). On the other

hand, ρF appears as one of our bounds on c1(F ).

!F 
!F 
^ 

p(!) 

Figure 4.1: ρF and ρ̂F .

To give a better picture of proceedings, let us recall some previous parameters. First,

consider starting with the Turán graph and ‘growing’ the graph by adding extra edges.

Loosely speaking, the number of copies of F grows ‘linearly’ with q with a slope of αF .

On the other hand, if we start with a slight perturbation of the partition sizes, we have a

slope slightly smaller than αF (but a higher intercept). The ratio πF gives the intersection

of these two curves. Alternatively, we may start with a Turán graph on one fewer vertices

and grow the graph by introducing a vertex of appropriate degree. The number of copies

then grows according to p(ρ). In this scenario, ρF and ρ̂F identify, respectively, the first

time this curve intersects and crosses the line of slope αF . In a sense, the values ρF and

ρ̂F signify critical densities when comparing H ∈ T q
r (n) with those graphs obtained by

altering the neighborhoods of certain vertices.

For generality, the values ρF and ρ̂F in Figure 4.1 do not coincide. However, ρF = ρ̂F

for all graphs we have thus far encountered, and we believe equality holds for all graphs.

In many instances, this would imply that c1(F ) = c2(F ).

Lemma 4.2.13. If ρF < ∞, then ρF < 1.

Proof. First, note that if deg(PF ) = r, then PF (ξ) = C
∏r

i=1 ξi, where C is some positive

constant. As
∏r

i=1 ξi is minimized by maximizing the variance of ξ1, . . . , ξr, it follows that
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ρ∗F = ∞ and, by definition, ρF = ∞.

On the other hand, if deg(PF ) ≥ r + 1, then

p(1) = PF (1/r, . . . , 1/r) =
f−1∑

i=1

(1/r)i ∂
iPF

∂ξi
1

(0, 1/r, . . . , 1/r)

> αF /r = αF (1− (1− 1/r))

as ∂PF
∂ξ1

(0, 1/r, . . . , 1/r) = αF and
∑f−1

i=2
∂iPF

∂ξi
1

(0, 1/r, . . . , 1/r) > 0. Hence, if ρF < ∞, then

ρF < 1.

We now relate PF (ξ) and F (n,d).

Lemma 4.2.14. For all δ > 0 and n large enough, if ξi = di/n, then |F (n,d)−nf−1PF (ξ)| <
δnf−1.

Proof. As nt ≥ (n)t for all n and t, it follows that

F (n,d) =
1

Aut(F )

∑

v critical

∑

χv

r∏

i=1

(ni − yi)xi
(ξin)yi

≤ 1

Aut(F )

∑

v critical

∑

χv

r∏

i=1

(n

r

)xi

ξyi
i nyi

= nf−1 1

Aut(F )

∑

v critical

∑

χv

r∏

i=1

1

rxi
ξyi
i

= nf−1 F (ξ)

Note that PF (ξ) = 0 if ξi = 0 for some i ∈ [r]. By Lemma 4.2.8, we may pick δ′ 6 δ

such that PF (ξ) < δ whenever ξi < δ′ for some i. Let N be such that (n)t ≥ nt(1− δ′/2)

for all n ≥ N and all t ≤ r. Let n0 = N/δ′.

Now, if di = ξin ≥ N for all i, where n ≥ n0, then

F (n,d) =
1

Aut(F )

∑

v critical

∑

χv

r∏

i=1

(ni − yi)xi
(ξin)yi

≥ 1

Aut(F )

∑

v critical

∑

χv

r∏

i=1

(1− δ′)
(n

r

)xi

ξyi
i nyi

= (1− δ′)rnf−1 1

Aut(F )

∑

v critical

∑

χv

r∏

i=1

1

rxi
ξyi
i

≥ (1− δ′)rnf−1 F (ξ)

≥ nf−1 F (ξ)− δnf−1.
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On the other hand, if ξjn < N for some j, then ξj < δ′ and nf−1PF (ξ) < δnf−1.

We now allow for inequitable partitions.

Lemma 4.2.15. For every ε > 0, there exists δ > 0 satisfying the following: if n =
∑

i ni

and |ni − n/r| ≤ δn for all i ∈ [r], then for all d = (d1, . . . , dr) with di ≤ ni, there exists

ξ′ ∈ S such that |ξ′i − di/n| ≤ δ and |F (n1, . . . , nr;d)− nf−1PF (ξ′)| < εnf−1.

Proof. Let H = K(V1, . . . , Vr) + u where |Vi| = ni and u has di neighbors in each Vi.

Then #F (H) = F (n1, . . . , nr;d). Now let H ′ ⊆ H ⊆ H ′′, where H ′ = K(V ′
1 , . . . , V

′
r ) + u′

and H ′′ = K(V ′′
1 , . . . , V ′′

r ) + u′′ with |V ′
i | = )(1/r − δ)n* and |V ′′

i | = +(1/r + δ)n,. Let

ξ′ be the density vector for both u′ and u′′, with ξ′i = min(ξi, 1/r), where ξ = di/n. So,

‖ξ − ξ′‖∞ ≤ δ and ‖ξ − ξ′‖1 ≤ δr. Therefore

F (n1, . . . , nr;d) ≥ F ((1− δr)n, ξ′)

≥ (1− δr)f−1nf−1PF (ξ′)− εnf−1/2

≥ nf−1PF (ξ′)− εnf−1.

Similarly, F (n1, . . . , nr;d) ≤ nf−1PF (ξ′) + εnf−1.

We note here that ξ′ ≤ ξ and thus
∑

i ξi ≤
∑

i di/n.

4.3 Asymptotic Optimality of T q
r (n)

In this section we prove the following result.

Theorem 4.3.1. Let F be an r-critical graph. Then, c2(F ) = ρ̂F − (1− 1/r).

We use the proof of Theorem 4.3.1, to build the framework that allows us to prove

Theorem 4.1.4. In a sense, the proof of Theorem 4.3.1 provides a strong stability condition

that we exploit in the sections to come.

As was the case in Mubayi’s result [Mub10], the graph removal lemma (see [KS96,

Theorem 2.9]) and the Erdős-Simonovits Stability Theorem are key components of our

proof.

Theorem 4.3.2 (Graph Removal Lemma). Let F be a graph with f vertices. Suppose that

an n-vertex graph H has at most o(nf ) copies of F . Then there is a set of edges of H of

size o(n2) whose removal from H results in a graph with no copies of F .

For hypergraph versions of the Graph Removal Lemma, see [Gow07, NRS06, RS06,

Tao06].
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Theorem 4.3.3 (Erdős [Erd67] and Simonovits [Sim68]). Let r ≥ 2 and F be a graph with

chromatic number r + 1. Let H be a graph with n vertices and tr(n) − o(n2) edges that

contains no copy of F . Then there is a partition of the vertex set of H into r parts so that

the number of edges contained within a part is at most o(n2). In other words, H can be

obtained from Tr(n) by adding and deleting a set of o(n2) edges.

Proof of Theorem 4.3.1 Let us first show that c2(F ) ≤ ρ̂F − (1 − 1/r). We may assume

that ρ̂F is finite (and, as a consequence of Lemma 4.2.13, less than 1). Given arbitrary

c > ρ̂F − (1 − 1/r), we produce an infinite sequence of graphs, Hn on n + 1 vertices and

tr(n + 1) + q edges (where q < cn) for which #F (Hn) < q(1− ε)c(n + 1, F ) for some ε > 0

independent of n.

As p(ρ) is continuous, we may pick λ, λ′ 6 c−ρ̂F +(1−1/r) such that p(ρ) < αF (ρ− r−1
r )

whenever ρ−ρ̂F ∈ (λ, λ′). Then, for ε small enough, there exists δ > 0 (with δ < (λ′−λ)/2)

such that p(ρ) ≤ (1 − 8ε)αF (ρ − r−1
r ) for ρ − ρ̂F ∈ [λ + δ, λ′ − δ]. We pick ξ ∈ Qr, with

∑
i ξi = ρ and ρ − ρ̂F ∈ [λ + δ, λ′ − δ] for which PF (ξ) < (1 − 4ε)αF (ρ − r−1

r ). Now, for

n large enough, such that ξn ∈ rZr (there are infinitely many such n), we construct the

graph Hn = Tr(n) + u where u has exactly ξin neighbors in each part Vi. That is, Hn has

n + 1 vertices and tr(n + 1) + q edges, where q = (ρ− r−1
r )n. Let F (u) be the number of

copies of F that use the vertex u. Then,

#F (Hn) = F (u)

≤ (1− 2ε)αF (ρ− r − 1

r
)nf−1

= (1− 2ε)qαF nf−2

< (1− ε)qc(n + 1, F ),

proving that c2(F ) ≤ ρ̂F − (1− 1/r).

Let us now prove the converse. For more generality, we initially assume only that

q ≤ n2−η for arbitrary η > 0. Given arbitrary ε > 0, we define some constants satisfying

the following hierarchy:

1/n0 6 δ1 6 δ2 6 δ3 6 δ4 6 δ5 6 δ6 6 δ7 6 ε.

Let n ≥ n0 and H be a graph on [n] with tr(n) + q edges, where q ≤ n2−η, containing

the fewest number of copies of F .

For comparison, we first consider #F (H∗) for some graph H∗ ∈ T q
r (n). In particular,

we pick H∗ where all q ‘extra’ edges belong to one part, say V1, and form a regular (or
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almost regular) bipartite graph (so, each vertex v ∈ V1 has about 2rq/n ≤ 2n1−η neighbors

in V1). Now, each of the q edges produces c(n, F ) copies of F . On the other hand, the

number of copies that contain more than one extra edge may be bounded by

q2f 42f2
nf−4 + q · 2(2rq/n)f 42f2

nf−3 = O(nf−2η),

where the first term counts the number of copies using disjoint extra edges and the second

term counts those copies that use adjacent extra edges. This gives us an upper bound of

qc(n, F )+o(nf−η) = O(nf−η) on the minimum number of copies of F contained in a graph

with tr(n) + q edges.

As #F (H) ≤ #F (H∗), it follows that #F (H) < nf−η/2. This allows us to apply the

Removal Lemma to obtain a subgraph H ′ containing tr(n) + q − δ1n2 edges and no copies

of F . We then apply the Erdős-Simonovits Stability Theorem and obtain an r-partite

subgraph H ′′ ⊆ H ′ with at least tr(n) + q − δ2n2 edges.

Let V (H) = V1 ∪ . . . ∪ Vr be maximum cut r-partition of V (H). We call the edges of

H that intersect two parts good and those that lie within one part we call bad. We denote

the sets of good and bad edges by G and B, respectively. Let M = K(V1, . . . , Vr) \ G be

the set of missing edges. We observe here that ni = |Vi| = n/r ± δ3n and |B| ≤ δ2n2. We

also assume, without loss of generality, that c(n1, n2, . . . , nr; F ) ≤ c(nσ(1), . . . , nσ(r); F ) for

all permutations σ of [r].

Let F (e) be the number of copies of F in H containing the edge e ∈ B but no other

bad edge. For uv ∈ M , we denote by F ′(uv) the number of potential copies of F using uv,

that is, F ′(uv) = #F (H ′)−#F (H), where H ′ = H + uv. Recall that F (u) is the number

of copies of F that contain the vertex u.

If M = ∅, #F (H) ≥ |B| · c(n1, . . . , nr; F ). However, |B| ≥ q and by Lemma 4.2.4,

c(n1, . . . , nr; F ) ≥ c(n, F )− 2ζF (δ3n)nf−3 ≥ (1− ε)c(n, F ), giving the desired result.

Now assume M 7= ∅ and let uv ∈ M . For each edge xw ∈ B where x ∈ {u, v}, there

are at most m(n, F ) + δ4nf−3 potential copies of F that use xw and uv (where m(n, F )

is the quantity defined in Definition 4.2.2). In addition, bad edges not incident to u or v

may contribute up to |B|f 42f2
nf−4 < δ4nf−2 potential copies via uv. So,

F ′(uv) ≤ µF nf−3(dB(u) + dB(v)) + 3δ4n
f−2. (4.2)

On the other hand, for u′v′ ∈ B

F (u′v′) ≥ αnf−2 − µF nf−3(dM(u′) + dM(v′))− 3δ4n
f−2. (4.3)
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However, H ∈ HF (n, q) implies that F ′(uv) ≥ F (u′v′) for any pair uv ∈ M and any

edge u′v′ ∈ B, as otherwise, one may delete the edge u′v′ and replace it with uv to obtain

a graph with fewer copies of F . Therefore,

0 ≤ F ′(uv)− F (u′v′)

≤ µF nf−3(dB(u) + dB(v) + dM(u′) + dM(v′))− αF nf−2 + 6δ4n
f−2

and

dB(u) + dB(v) + dM(u′) + dM(v′) ≥
(

αF

µF
− 4δ5

)
n. (4.4)

We now use the following identity
∑

uv∈M

(dB(u) + dB(v)) =
∑

u∈V

dM(u)dB(u) =
∑

u′v′∈B

(dM(u′) + dM(v′))

and the fact that |B| ≥ |M |, to obtain a pair uv ∈ M and an edge u′v′ ∈ B such that

dB(u) + dB(v) ≥ dM(u′) + dM(v′). (4.5)

Then, (4.4) and (4.5) imply the existence of a vertex u such that

dB(u) ≥
(

αF

4µF
− δ5

)
n. (4.6)

Consider the set X = {x ∈ V (H) : dB(x) > δ7n}. Note that (4.6) implies that X 7= ∅.
Let us first analyze the case where deg(PF ) = r. We know, by Lemma 4.2.6, that F = Kr+1

or F = C2k+1.

Claim 4.3.4. Let F be an r-critical graph and let deg(PF ) = r. Let H ∈ HF (n, q) and

u ∈ Vi with associated density vector ξ. If ξi > δ7, then ξj > 1/r − 2δ6 for all j 7= i.

Proof of Claim. Assume there is a vertex u violating the above condition. Say, without

loss of generality, that u ∈ V1, ξ1 > δ7 and ξ2 ≤ 1/r − 2δ6. Consider replacing u with a

vertex u′ with corresponding density vector ξ′, such that ξ′1 = ξ1 − δ6, ξ′2 = ξ2 + δ6 and

ξ′i = ξi for i ∈ [r], i 7= 1, 2. As V1 ∪ . . . ∪ Vr is a max-cut partition, we may assume that

ξi ≥ ξ1 > δ7 for all i ∈ [r]. Then, for some positive constant C = C(F ),

PF (ξ′) = C
∏

i∈[r]

ξ′i

= C(ξ1 − δ6)(ξ2 + δ6)
r∏

i=3

ξi

≤ C
∏

i∈[r]

ξi − Cδ2
6

r∏

i=3

ξi

≤ PF (ξ)− 3δ5.
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Lemma 4.2.15 implies that F (u) ≥ nf−1PF (ξ)− δ5nf−1 and F (u′) ≤ nf−1PF (ξ′) + δ5nf−1.

Hence, we reduce the number of copies of F by making this alteration, contradicting the

optimality of H.

As F (u) ≥ nf−1(PF (ξ)−δ5), it follows that F (x) = Θ(nf−1) for all x ∈ X. Furthermore,

as #F (H) < nf−η/2, it must be that |X| = O(n1−η/2) < δ5n. Let M(H −X) be the set of

missing edges in the graph H −X.

Claim 4.3.5. M(H −X) = ∅.
Proof of Claim. Assume there exists uv ∈ M with u, v 7∈ X. Then, by (4.2), F ′(uv) ≤
3δ7µnf−2. On the other hand, consider a vertex x ∈ X. There is a bad edge xw such that

dM(w) < δ6n (otherwise, |B| ≥ |M | > δ2n2). Then, for this edge, F (xw) ≥ αF nf−2 −
2rδ6nf−2 > F ′(uv), resulting in a contradiction.

Claims 4.3.4 and 4.3.5 imply that for any vertex u,

dM(u) ≤ max(|X|, (r − 1)(2δ6 + δ3)) < 2rδ6n. (4.7)

It follows that for any bad edge u′v′, dM(u′) + dM(v′) < 4rδ6n. That is, by (4.3)

F (u′v′) ≥ (1− ε)c(n, F ), (4.8)

implying that #F (H) ≥ (1− ε)qc(n, F ) for all H whenever deg(PF ) = r.

On the other hand, if deg(PF ) ≥ r + 1, we have the following claim:

Claim 4.3.6. If deg(PF ) ≥ r + 1 and H ∈ HF (n, q), then for all u ∈ Vi with associated

density vector ξ ∈ Sρ, ρ 7∈ [ r−1
r + δ6, ρF − δ6].

Proof of Claim. Consider p(ρ). By the definition of ρF , p(ρ) > αF (ρ − r−1
r ) for ρ ∈

( r−1
r , ρF ). So, p(ρ) − αF (ρ − r−1

r ) has a positive lower bound over any compact subset of

( r−1
r , ρF ). In particular, by choice of δ5 and δ6, we have p(ρ)−αF (ρ− r−1

r ) ≥ 5δ5 whenever

ρ ∈ [ r−1
r + δ6, L], (where L = 1 if ρF = ∞ and L = ρF − δ6 otherwise).

Therefore, if u (in V1, say) has density vector ξ ∈ Sρ with ρ ∈ [ r−1
r + δ6, L], then

F (u) ≥ (αF (ρ − r−1
r ) + 4δ5)nf−1. On the other hand, we may replace u with a vertex u′

whose associated density vector ξ′ ∈ Sρ′ has ξ′1 = 0 and ξ′i = |Vi|/n for i = 2, . . . , r. We

note here that |ρ′ − r−1
r | < δ4 and it follows that F (u′) ≤ δ5nf−1. Next, we distribute the

remaining (ρ− ρ′)n edges evenly amongst vertices in V1 with bad degree at most δ4n. As

these create at most (ρ− r−1
r + δ4)nc(n, F )+ δ5nf−1 new copies of F , we lower the number

of copies and contradict the optimality of H.
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It follows immediately that

d(x) > (ρF − δ6)n for any x ∈ X. (4.9)

Otherwise, F (x) ≥ nf−1(PF (δ7, . . . , δ7) − δ5) will exceed the δ6CF nf−1 upper bound for a

vector ξ ∈ S∗ with
∑

i ξi ≤ r−1
r + δ6. As a result, (4.6) implies that

(ρF = ∞) ⇒ (X = ∅) ⇒ (M = ∅) (4.10)

and we are done. We have the following claim if ρF is finite (that is, ρF < 1).

Claim 4.3.7. If ρF < 1, 0 < c < ρ̂F−(1−1/r), and q ≤ cn, then #F (H) ≥ q(1−ε)c(n, F ).

Proof of Claim. By assumption, M 7= ∅ and we have a vertex u satisfying (4.6). If

d(u) ≥ ρ̂F n, then

F (u) ≥ nf−1(p(ρ̂F )− δ4) ≥ nf−1(αF (ρ̂F − (1− 1/r))− δ4) > q(1− ε)c(n, F ).

Therefore, (ρF − δ6)n ≤ d(u) ≤ ρ̂F n. As p(ρ) ≥ αF (ρ− r−1
r ) for ρ ≤ ρ̂F , it follows that

F (u) ≥ nf−1(αF (d(u)/n− (r − 1)/r)− δ4) ≥ (d(u)− (r − 1)n/r − δ5) c(n, F ),

which implies the result if q < (ρF − (1−1/r)−δ5)n. So, assume q ≥ (ρF − (1−1/r)−δ5)n

and let H1 = H − u = H0 − u0. If H1 7∈ H(n − 1, q′) (for appropriate q′), we pick

H ′
1 ∈ H(n − 1, q′) and iteratively create sequences H ′

i and ui until we reach H ′
k where

M(H ′
k) = ∅ or |H ′

k| ≤ tr(n− k). Now,

#F (H) = #F (H ′
k) +

∑

i<k

F (ui) ≥ #F (H ′
k) + c(n, F )(1− δ6)

∑

i<k

(d(ui)− (r − 1)n/r).

As d(ui) ≥ (ρF − δ6)n for all i < k, it follows that k < 2c/ρF . If |H ′
k| ≤ tr(n − k), then

∑
i<k(d(ui)− (r− 1)n/r) ≥ q − k > (1− δ6)q. On the other hand, if M(H ′

k) = ∅, then for

all vw ∈ B(H ′
k), F (vw) ≥ c(n′1, . . . , n

′
r; F ) > (1− δ6)c(n, F ), where n′1 + · · ·+ n′r = n− k.

That is, #F (H ′
k) ≥ |B(H ′

k)|(1− δ6)c(n, F ). As |B(H ′
k)|+

∑
i<k(d(u)− (r−1)n/r) ≥ q−k,

it once again follows that #F (H) ≥ q(1− ε)c(n, F ).

Therefore, c2(F ) ≥ ρ̂F − (1− 1/r). This completes the proof of Theorem 4.3.1.

4.4 Optimality of T q
r (n)

We prove a stronger result that implies Theorem 4.1.4. Recall that the sign of x ∈ R,

denoted sgn(x), is 0 if x is 0 and x/|x|, otherwise. Let θF = ρF − (1− 1/r).
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We reuse many of the results and structures introduced in the previous section, includ-

ing the sequence of constants 1/n0 6 δ1 6 · · ·6 δ7 6 ε.

Theorem 4.4.1. Let F be a connected r-critical graph. Then, c1,i(F ) ≥ c1(F ) ≥ min(πF , θF )

for all i ∈ [r]. Furthermore, if t = sgn(ζF ), then c1,t(F ) ≥ min(2πF , θF ).

Proof of Theorem 4.4.1 Let c(n, F ) = c(n′1, . . . , n
′
r; F ). Pick some c > 0 and consider

H ∈ HF (n, q) where q < cn. Let G, B and M be the sets of good, bad and missing edges,

respectively, of a max-cut partition V (H) = V1∪ . . .∪Vr, with |V1| ≥ |V2| ≥ . . . ≥ |Vr|. Let

a = max(|V1|− +n/r,, )n/r* − |Vr|). It follows that |B| ≥ q + m + a2r
2(r−1) , where m = |M |.

Let us first consider the case m = 0. Then, by Lemma 4.2.4 we have,

#F (H) ≥ (q +
a2r

2(r − 1)
)(c(n, F )− |ζF |anf−3 −O(a2nf−4))

≥ qc(n, F ) +
a2r

2(r − 1)
(αF nf−2 −O(nf−3))− c |ζF |anf−2 − o(a2nf−2)

≥ qc(n, F ) + anf−2

(
αF

ar

2(r − 1)
− c |ζF |− δ4a

)

So, if a ≥ 2(c|ζF | + 1)/αF we have #F (H) > qc(n, F ) + anf−2. On the other hand,

as seen in the proof of Theorem 4.3.1, there is a graph in HF (n, q) containing at most

qc(n, F )+c2f 42f2
nf−2 copies of F . Therefore, as H is optimal, a ≤ max(c2f 42f2

, 2(c|ζF |+
1)/αF ) = O(1).

We now refine the argument to show that if c < πF − ε, then all optimal graphs are

contained in the set T q
r (n). In other words, if |H| = tr(n)+ q and H contains the complete

r-partite graph on parts of size n1, . . . , nr where n = n1 + . . . + nr and n1 ≥ nr + 2, then

H is not optimal unless q > (πF − ε)n.

For i ∈ [r], let Bi = B[Vi] be the set of bad edges contained in Vi.

Claim 4.4.2. If |Vj| = |Vk|+ s, where s > 1, then

(|Bj|−|Bk|)ζF ≥ (s− 1)(1− δ4)αF n.

Proof of Claim. Assume otherwise. Consider H ′ obtained from H by moving one vertex

from Vj to Vk. Let v ∈ Vj with dB(v) ≤ dB(u) for all u ∈ Vj. We replace v with a vertex v′

such that uv′ ∈ H ′ for all u 7∈ Vk. Next, we pick dB(v) vertices in Vk with the lowest bad

degrees as neighbors of v′. However, as (|Vj| − 1)(|Vk| + 1) = |Vj||Vk| + s − 1, we remove

s− 1 bad edges chosen arbitrarily.

Let us now consider the net effect of this change. As 0 ≤ |Bj|, |Bk| < q + a2, it follows

that 0 ≤ dB(v) < 3rc. In addition, we may assume that dB(u) < 6rc for all u such that
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uv′ ∈ B(H ′). The copies of F that use more than one bad edge that we introduce due to

this alteration are at most f 42f2 (
6rc dB(v)nf−3 + |B|dB(v)nf−4 + |B|2nf−5

)
= O(nf−3).

For the copies that contain exactly one bad edge, we use Lemma 4.2.4. First, the dB(v)

edges incident to v in H but to v′ in H ′ may add (2a)(3rc)|ζF |nf−3 = O(nf−3) copies of

F . All other bad edges either remain in the same part Bi or are deleted. Let FH(e) and

FH′(e) denote the number of copies of F that use the bad edge e in H (resp., H ′). As

FH(e) = c(n, F )− CiζF nf−3 ±O(nf−4), where Ci ∈ {|Vi|−) n/r*, |Vi|−+ n/r,},

FH(xy)− FH′(xy) =






c(n, F )±O(nf−3) if xy was deleted

−ζF nf−3 ±O(nf−4) if xy ∈ Bj

ζF nf−3 ±O(nf−4) if xy ∈ Bk

±O(nf−4) otherwise.

Here, we obtain the first expression as FH′(e) = 0 for each deleted edge. Furthermore, as

|Vi| remains unchanged for i 7∈ {j, k}, FH′(xy) differs from FH(xy) only in the error term

(which is O(nf−4)). The change in the cardinality of Vj and Vk, however, contributes a

difference of order nf−3.

As the number of deleted edges is |B(H)|−|B(H ′)| = s− 1, we have

0 ≥ #F (H)−#F (H ′)

≥
∑

e∈B

(FH(e)− FH′(e))−O(nf−3)

≥ (s− 1)c(n, F )− (|Bj|−|Bk|)ζF nf−3 −O(nf−3).

Thus, (|Bj|−|Bk|)ζF ≥ (s− 1)αF n− δ3n, proving the claim.

Note that if t = 0, then ζF = 0 and Claim 4.4.2 cannot be satisfied. Therefore,

|Vj|−| Vk| ≤ 1 for all 1 ≤ j, k ≤ r, that is, H ∈ T q
r (n).

Suppose that t ∈ {−1, 1} and H 7∈ T q
r (n). Then there exist j, k such that |Vj|−|Vk| ≥ 2.

Hence, |B| ≥ max(|Bj|, |Bk|) ≥ (1−δ4)πF n, and q ≥ |B|−a2 ≥ (1−ε)πF n as required. So, if

n ≡ t (mod r), there exist j, k, l with |Vj|−|Vk| ≥ 3 or j 7= k and |Vj|−|Vl| = |Vk|−|Vl| = 2t.

In the first case, we apply Claim 4.4.2 directly to obtain q ≥ 2(1 − ε)πF . On the other

hand, if the second case holds with t · ζF > 0, we have, by applying Claim 4.4.2 twice, that

|Bj|, |Bk| ≥ (1− δ4)πF , again implying that q ≥ 2(1− ε)πF .

Now assume M 7= ∅. We will handle the two case deg(PF ) = r and deg(PF ) ≥ r + 1

separately. Let us first consider the case deg(PF ) ≥ r + 1.
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If deg(PF ) ≥ r + 1 and θF = ∞, (4.10) implies M = ∅. Therefore, we may assume

θF ∈ (0, 1/r). Once again, if M 7= ∅, the set X = {x ∈ H : dB(x) ≥ δ7n} is nonempty.

Then (4.9) implies that for any x ∈ X,

F (x) ≥ nf−1(p(ρF − δ6)− δ5) > nf−1(αF θF − δ7) > (θF − ε)nc(n, F ) +
ε

2
nf−1.

Thus, if c ≤ θF − ε, the number of copies of F at some vertex x ∈ X exceeds qc(n, F ) +

c22f2
nf−2, contradicting our assumption that H ∈ HF (n, q).

This completes the proof of Theorem 4.4.1 for r-critical graphs with deg(PF ) ≥ r + 1.

We now consider the case when deg(PF ) = r, that is, F = Kr+1 or r = 2 and F = C2k+1.

It was already shown in [Mub10] that c1(C2k+1) > 0. In what follows, we improve this to

show that c1(C2k+1) ≥ 1/2. Let us first compute the values of αF and ζF .

Claim 4.4.3. If F is r-critical and deg(PF ) = r, then πF = 1
r .

Proof of Claim. We observe that

c(n1, . . . , nr; Kr+1) =
r∏

i=2

ni,

with c(n, F ) attained when n1 = +n/r,. Therefore, αKr+1 = r−r+1. Furthermore,

∂c

∂n1
(n/r, . . . , n/r) = 0 and

∂c

∂n2
(n/r, . . . , n/r) = (n/r)r−2.

It follows that ζKr+1 = r−r+2 and πKr+1 = 1/r.

On the other hand,

c(n1, n2; C2k+1) = n2 (n2 − 1) · · · (n2 − k + 1) (n1 − 2) · · · (n1 − k)

and
∂c

∂ni
(n/2, n/2) = (k + i− 2)(n/2)2k−2 + O(n2k−3).

So αC2k+1
= 2−2k+1, ζC2k+1

= 2−2k+2 and πC2k+1
= 1/2 = 1/r.

We also note that αF
µF

= 1/2 as

m(n1, n2; C2k+1) = (n2 − 1) · · · (n2 − k + 1) (n1 − 2) · · · (n1 − k) =
c(n1, n2; C2k+1)

n2
.

As we noted earlier, if F = Kr+1, Theorem 4.4.1 follows from a result of Lovász and

Simonovits [LS83]. Therefore, we focus on the case where r = 2, k ≥ 2 and F = C2k+1.

While proving c1(C2k+1) ≥ 1/2 is relatively straightforward, showing that c1,1(C2k+1) ≥ 1

is quite involved. We will prove these lower bounds in a stronger form.
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Lemma 4.4.4. Let F = C2k+1. There exists n0 = n0(k) such that HF (n, q) ⊆ T q
2 (n) for

all n ≥ n0 and q ≤ n/2− 2. Furthermore, if n is odd, HF (n, q) ⊆ T q
2 (n) for q ≤ n− 10k2.

Proof of Lemma Our proof resembles that of [LS75] in that an approximate structure is

refined repeatedly until, finally, it is seen that all optimal graphs belong to the special

set T q
2 (n). We use results from Section 4.3 to identify our initial approximate structure.

However, subsequent computations become more complicated as we have to account for

copies of C2k+1 that may appear in various configurations.

As in previous arguments, elements of this proof will involve alterations that contradict

the optimality of a given graph H. In addition, we present two graphs to serve as reference

points, i.e., these graphs provide an upper bound on #F (H). We will show that one of

these graphs is an optimal configuration; we make no such claims for the other.

If q ≤ n/2−2, we propose as an optimal graph the graph H∗(n, q) ∈ T q
2 (n) constructed

as follows: V (H∗) = U1 ∪ U2, |U1| = +n/2,, |U2| = )n/2* and E(H∗) = K(U1, U2) ∪
K({u∗}, W ), where u∗ ∈ U1, W ⊆ U1 \ {u∗} and |W | = q. That is, H∗(n, q) is obtained

from T2(n) by adding (the edges of) a star of size q in U1. For larger values of q and

a partition n = n1 + n2, we provide the graph H ′′(n1, n2, q) on parts U ′′
1 and U ′′

2 with

|U ′′
i | = ni and E(H ′′) ⊇ K(U ′′

1 , U ′′
2 ). The remaining |B(H ′′)| = q + )n2/4* − n1n2 edges

form a regular (or almost regular) bipartite graph in U ′′
1 .

Let us now bound #C2k+1(H∗) and #C2k+1(H ′′). As H∗−u∗ is bipartite, u∗ is contained

in every copy of C2k+1. Furthermore, each copy of C2k+1 uses an even number of edges

across the (U1, U2) cut and must use an odd number of bad edges. It follows that every

C2k+1 uses exactly one bad edge u∗w and #C2k+1(H∗) = qc(n, C2k+1).

To bound #C2k+1(H ′′), it becomes important to consider the number of copies contain-

ing more than one bad edge. Let us first introduce a few configurations (each using three

bad edges) that will appear repeatedly in what follows.

For a graph H on partitions of size |V1| = n1 and |V2| = n2, and K(V1, V2) ⊆ H, we

have the following types of copies of F that use 3 bad edges:

(i) If x0x1, x1x2, x2x3 ∈ H[V1] form a path of length 3, we have c(n1,n2;F )(n1−k−1)
(n1−2)(n1−3)(n2−k+1) copies

of F that contain this path.

(ii) If x0x1, x1x2, x3x4 ∈ H[V1], there are (2k−4) c(n1,n2;F )(n1−k−1)
(n1−2)(n1−3)(n1−4)(n2−k+1) copies of F that

use these edges.

(iii) If x0x1, x1x2 ∈ H[V1], y1y2 ∈ H[V2], we have (2k − 2) c(n2,n1;F )(n1−k)
n1(n1−1)(n1−2)(n2−k) copies of F
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that use these edges.

(iv) If x1x2, y1y2, z1z2 ∈ H[V1] are disjoint edges, there are at most

8
(

k−3
2

) c(n1,n2;F )(n1−k−1)
(n1−2)(n1−3)(n1−4)(n1−5)(n2−k+1) copies of F containing this triple.

(v) If x1x2, y1y2 ∈ H[V1] and z1z2 ∈ H[V2] are disjoint edges, there are at most

8
(

k−2
2

) c(n1,n2;F )
n2(n2−1)(n1−2)(n1−3) copies of F containing this triple.

These values are obtained simply by contracting two edges and counting the number of

C2(k−1)+1 that contain these ‘clusters’ and the remaining bad edge. For example, to count

copies of Type (ii), we replace the path x0x1x2 by a vertex y and form a copy of C2(k−1)+1

by picking (k − 1) vertices in V2, (k − 3) vertices in V1 \ {y, x3, x4}, picking one of (k − 2)

positions for y and one of two orientations for the path x0x1x2.

We note that these are not the only ways to form copies of F using more than one bad

edge. In fact, there may be copies of F using 2j + 1 bad edges for any j ≤ k. However, if

j ≥ 2, we have stronger upper bounds on the number of such copies and their contribution

will be minimal.

H ′′ contains at most

• |B(H ′′)|
(

2|B(H′′)|
n1

)2

paths of length 3,

• 1
2 |B(H ′′)|2 · 2

(
2|B(H′′)|

n1

)
triples of the form in Type (ii) copies,

•
(|B(H′′)|

3

)
disjoint edges as in Type (iv).

Therefore, we may bound #C2k+1(H ′′) from above by

c(n1, n2; F )

(
|B(H ′′)|+ 2k(k + 1)

3

|B(H ′′)|3(1 + o(1))

n4
1

)
+

2k+1∑

t=5

(
2k + 1

t

)
|B(H ′′)|tn2k+1−2t

As |B(H ′′)| ≤ 2n1, we note that the term |B(H ′′)|c(n1, n2; F ) dominates the above

sum. However, in most of the arguments that follow, our candidate graph H will contain

around |B(H)|c(n1, n2; F ) copies of C2k+1, where |B(H)| ≈ |B(H ′′)|. Therefore, the lower

order terms (at most 17k(k + 1)c(n1, n2; F )/3n1 for H ′′) become more significant when

comparing the two values #C2k+1(H) and #C2k+1(H ′′).

Now fix k ≥ 2 and let F = C2k+1. We fix ε = ε(k) > 0 small enough and let n be large

enough to satisfy (4.8). Let H ∈ HF (n, q), where q < n, and let G, B and M be the good,

bad and missing edges, respectively, of a max-cut partition V (H) = V1 ∪ V2 with |Vi| = ni

and |V1| ≥| V2|. Our goal is to show that M = ∅. The result then follows after applying a

stronger version of Claim 4.4.2.
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Claim 4.4.5. There do not exist three disjoint edges in M .

Proof of Claim. We first observe that

#F (H ′′(+n/2,, )n/2*, q)) ≤ c(n, F )

(
q + (1 + ε)

2k(k + 1)q3

3+n/2,4

)
≤ (1 + ε)qc(n, F ).

Therefore, if H ∈ HF (n, q), it follows that #F (H) ≤ (1 + ε)qc(n, F ). However, by (4.8),

F (u′v′) ≥ (1− ε)c(n, F ) for all u′v′ ∈ B = B(H) and we have the inequality

(1− ε)|B|c(n, F ) ≤ #F (H) ≤ (1 + ε)qc(n, F )

which implies that

|B| ≤ (1 + 3ε)q < (1 + 3ε)n. (4.11)

However, any missing pair uv ∈ M must satisfy the inequality F ′(uv) ≥ F (u′v′). So, by

(4.2)

dB(u) + dB(v) >

(
αF

µF
− 2ε

)
n = (1/2− 2ε)n. (4.12)

Therefore, if there exist three disjoint pairs u1v1, u2v2, u3v3 ∈ M ,

|B| ≥
3∑

i=1

(dB(ui) + dB(vi))− 6 ≥ (3/2− 7ε)n,

violating (4.11).

As |B| = q + )n2/4* − n1n2 + |M | = q + )(n1 − n2)2/4* + |M |, it follows from (4.11)

that n1 − n2 < 4
√

εn and |M | ≤ 3εn. We also observe, using the definitions of c(n1, n2; F )

and c(n2, n1; F ) that

c(n1, n2; F )

n2(n2 − 1)(n1 − k)
=

c(n2, n1; F )

n1(n1 − 1)(n2 − k)
. (4.13)

Claim 4.4.6. There do not exist a pair of disjoint edges in M .

Proof of Claim. Assume w1w3, w2w4 ∈ M are disjoint with w1, w2 ∈ V1. Let W =

{w1, w2, w3, w4} and let BW = {e ∈ B : e ∩W 7= ∅}. By (4.11) and (4.12), we have for

(i, j) ∈ {(1, 3), (2, 4)} that

(1/2− 2ε)n ≤ dB(wi) + dB(wj) ≤ (1/2 + 5ε)n.

It follows that (1− 5ε)n ≤ |BW | ≤ q and |B \BW | ≤ 5εn.
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Each bad edge uv ∈ B[V1]\BW is adjacent to at most 4 missing edges and is, therefore,

contained in at least

c(n1, n2; F )− 4c(n1, n2; F )

n2
− 2k|M |c(n1, n2; F )

n2(n2 − 2)
(4.14)

copies of F . Similarly, if uv ∈ B[V2] \ BW , the number of copies of F containing uv is at

least

c(n2, n1; F )− 4c(n2, n1; F )

n1
− 2k|M |c(n2, n1; F )

n1(n1 − 2)
. (4.15)

We note, as a consequence of (4.13), that the quantity in (4.15) is at least as large as the

quantity in (4.14). Thus, the number of copies of F using edges in B \BW is at least

c(n1, n2; F )(|B \BW |− (5εn)(4 + ε)/n2) > c(n1, n2; F )(|B \BW |− 41ε). (4.16)

For w ∈ W , the copies of F using exactly one bad edge incident to w amount to at

least

dB(w)c(n1, n2; F )

(
1− 1

n2
dM(w)− 2k

n2(n2 − 2)
(|M |− dM(w))

)
. (4.17)

We obtain (4.17) using w ∈ V1, but, once again, as a consequence of (4.13), we may use

the same bound for w ∈ V2.

Now let xi = 2dB(wi)/n. The number of copies of F of Types (i), (ii) and (iii) that use

the vertices of W is at least (1− 10ε)c(n1, n2; F )F3(x1, x2, x3, x4), where

F3(x1, x2, x3, x4) = (x1 + x2) max(x1 + x2 − 1, 0) + (x3 + x4) max(x3 + x4 − 1, 0)

+ (k − 2)x1x2(x1 + x2) + (k − 2)x3x4(x3 + x4)

+ (k − 1)(x2
1 + x2

2)(x3 + x4) + (k − 1)(x1 + x2)(x
2
3 + x2

4).

The number of copies of F using edges in BW is then at least

c(n1, n2; F )

(
|BW |+ (1− 10ε)F3(x1, x2, x3, x4)−

∑

w∈W

dB(w)

n2
(dM(w) + 13εk)

)
. (4.18)

Observe that, as V1 ∪ V2 is a max-cut partition, dB(w) < n2 for all w ∈ W . Therefore,

adding (4.16) and (4.18), we have

#F (H)

c(n1, n2; F )
≥ |B|+ (1− 10ε)F3(x1, x2, x3, x4)− 100kε− 1

n2

∑

w∈W

dB(w)dM(w).
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We focus on the last term of the above expression and write

1

n2

∑

w∈W

dB(w)dM(w) =
1

n2

∑

w∈W

∑

wy∈M

dB(w)

=
∑

wy∈M
w∈W, y "∈W

1

n2
dB(w) +

∑

wiwj∈M [W ]

1

n2
(dB(wi) + dB(wj))

≤ |M |−|M [W ]|+ 4ε +
∑

wiwj∈M [W ]

(xi + xj).

Optimizing the expression

F3(x1, x2, x3, x4) + |M [W ]|−
∑

wiwj∈M [W ]

(xi + xj)

subject to the constraints x1 + x3 = x2 + x4 = 1 and |M [W ]| ∈ {2, 3, 4}, we obtain a

minimum of 3/4 when |M [W ]| = 3, x1 = x4 = 3/4 and x2 = x3 = 1/4. Therefore,

#F (H) ≥ c(n1, n2; F ) (|B|−|M |+ 3/4− 200kε) .

On the other hand, #F (H ′′(n1, n2, q)) ≤ c(n1, n2; F )(|B(H ′′)|+ε). However, as |B(H ′′)| =
|B(H)|−|M |, we have #F (H ′′) < #F (H), contradicting the optimality of H.

It follows that if M 7= ∅ there exists some vertex u such that u ∈ e for all e ∈ M .

Claim 4.4.7. There exists u covering all missing edges with dB(u) ≥ (1/6− 4ε)n.

Proof of Claim. Let u cover M and assume dB(u) < (1/6−4ε)n. Then, dB(u′) ≥ (1/3+2ε)n

for all u′ with uu′ ∈ M . If dM(u) = 1, u′ satisfies the claim. If dM(u) ≥ 3, then

dB(u) + 3(1/3 + 2ε)n > (1 + 3ε)n, violating (4.11). It follows that |M | = dM(u) = 2.

Let {v1, v2} = NM(u). If w ∈ NB(v1) ∩ NB(v2) and xy ∈ B \ {v1w, v2w, v1v2} with

{x, y}∩ {v1, v2} 7= ∅, we may form a path of length 3 using the edges xy, v1w and v2w. So,

we have at least

(dB(v1)+dB(v2)−3)|NB(v1)∩NB(v2)| ≥ (dB(v1)+dB(v2)−3)(dB(v1)+dB(v2)−n1) (4.19)

paths of length 3 using v1 and v2. The number of copies of F lost due to missing edges is

at most

(2dB(u) + dB(v1) + dB(v2))
c(n1, n2; F )

n2
. (4.20)

Here, we use the fact that c(n1,n2;F )
n2

≥ c(n2,n1;F )
n1

, which follows from (4.13), to simplify the

sum and ignore the fact that u and v1, v2 belong to opposite classes.
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We now let (x, y, z) = 2(dB(u), dB(v1), dB(v2))/n and maximize the difference of (4.20)

and the number of copies of F of Type (i) formed using the paths counted in (4.19). Subject

to the constraints 0 ≤ x ≤ 1/3 and x + y, x + z ≥ 1, we obtain a maximum of 14/9 for the

expression

(2x + y + z)− (y + z)(y + z − 1).

As , |B(H ′′)| = |B(H)|−|M | = |B|− 2,

#F (H) ≥ (|B|− 15/9)c(n1, n2; F ) > (|B|− 2 + ε)c(n1, n2; F ) ≥ #F (H ′′),

contradicting the optimality of H.

Claim 4.4.8. dB(u) ≥ (1/2− 10ε)n.

Proof of Claim. Assume dB(u) < (1/2− 10ε)n. We wish to show that, under this assump-

tion, #F (H) > c(n1, n2; F )(|B|−|M |+ ε), exceeding the bound provided by #F (H ′′).

Let us first consider the number of potential copies (that is, missing copies) of F that

use a pair uv ∈ M . Each bad edge incident to u or v is involved in at most c(n1, n2; F )/n2

potential copies. On the other hand, if e ∈ B and e ∩ {u, v} = ∅, there are at most
2k c(n1,n2;F )

n2(n2−2) potential copies of F using e. So, we may write

#F (H)

c(n1, n2; F )
≥ |B|−

∑

v∈NM (u)

(
dB(u) + dB(v)

n2
+

2k(|B|− dB(u)− dB(v))

n2(n2 − 2)

)
. (4.21)

However, the above sum ignores the contribution of copies that use more than one bad

edge. For example, if vw ∈ B where both v, w ∈ NM(u) we have at least (dB(v)−1)(dB(w)−
2) paths of length 3 of the form xv, vw, wy. It follows from (4.12) that dB(v), dB(u) > 8εn,

so these result in at least 60ε2c(n1, n2; F ) copies of F of Type (i).

On the other hand, for each v ∈ NM(u), let B′(v) = NB(v) \ NM(u) and let d′B(v) =

|B′(v)|. We associate with the missing edge uv, the Type (iii) copies of F that use bad

edges incident to u and v, i.e., copies using triples of the form uw1, uw2, vz1 or uw1, vz1, vz2

where wi ∈ NB(u) and zi ∈ B′(v). The number of such copies is at least

(2k − 2)
c(n1, n2; F )

n3
2

(
dB(u)(dB(u)− 1)d′B(v) + dB(u)d′B(v)(d′B(v)− 1)

)
.

We now rewrite (4.21) by including the extra copies of F counted above. As 60ε2 >

2/n2, we ignore bad edges with both endpoints in NM(u). Let x = dB(u)/n2 and yv =

74



d′B(v)/n2. Then,

#F (H)

c(n1, n2; F )
≥ |B|−

∑

v∈NM (u)

((x + yv + ε)− (2k − 2)xyv(x + yv))

≥ |B|−|M |(1− 5ε)

> |B|−|M |+ 5ε,

as required. Here, the first inequality follows by noting that 2k−2 ≥ 2 and maximizing the

expression (x + y)(1− xy) subject to the constraints x + y ≥ 1, x ≥ 1/3− ε and y ≥ 8ε.

We now analyze the class of graphs that satisfy the conditions proved thus far. Let

u be the vertex covering all missing edges and let dB(u) = n2 − t where t < 10εn. We

separately look at the cases where u ∈ V1 and u ∈ V2, paying particular attention to the

difference between c(n1, n2; F ) and c(n2, n1; F ). Also of importance will be copies of F of

Type (i), (ii) and (iii) using the vertex u and we count such copies carefully.

The remainder of the proof involves detailed computation as we account for the various

copies of F that contain a specific edge. Loosely speaking, each bad edge contributes

c(n1, n2; F ) copies of F . We then add or subtract fractions of c(n1, n2; F ) as necessary. For

example, if uv ∈ M , each bad edge vw has about 1
n2

c(n1, n2; F ) missing copies. Similarly,

if vw ∈ B[V2], it is contained in an extra c(n2, n1; F )−c(n1, n;F ) ≈ n1−n2
n2

c(n1, n2; F ) copies

of F .

Once again, we will use the graph H ′′(n1, n2, q) as a reference point. However, the

slightly loose bound #F (H ′′) ≤ c(n1, n2; F )(|B(H ′′)| + ε) is no longer sufficient. We use

the stronger #F (H ′′) ≤ c(n1, n2; F )(|B(H ′′)|+ 17k2/3n1), instead.

Claim 4.4.9. If n1 > n2 or m > 0, then u 7∈ V2.

Proof of Claim. Assume u ∈ V2. We first classify the bad edges of H. Let B(u) be bad

edges incident to u, and for 0 ≤ * ≤ 2, let B!
1 = {vw ∈ B[V1] : |{v, w} ∩NM(u)| = *} and

B!
2 = {vw ∈ B[V2] : |{v, w} ∩NB(u)| = *}.

Let us count the number of copies of F that contain each type of bad edge.

1. If uv ∈ B(u), each missing edge uz contributes at most c(n2, n1; F )/n1 potential

copies of F . Therefore, F (uv) ≥ c(n2, n1; F )(1− m
n1

).

2. If vw ∈ B!
1, we may form copies of F of Type (iii) using vw and ux, uy ∈ B(u). We

subtract the missing copies using vw and the * missing edges adjacent to vw (on the

order of c(n1, n2; F )/n2) as well as those using the m− * missing edges not adjacent
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to vw (each contributing on the order of c(n1, n2; F )/n2
2). Thus, F (vw) is at least

c(n1, n2; F )

(
1− *(n1 −m)

n2(n1 − 2)
− 2k(m− *)

n2(n1 − 2)
+

(k − 1)(n2 − t)(n2 − t− 1)(1− ε)

n2(n2 − 1)(n2 − 2)

)
.

(4.22)

3. If vw ∈ B!
2, we may form copies of F of Types (i) and (ii). On the other hand, as vw

is not adjacent to any missing edges, the number of potential copies of F containing

both vw and a missing edge uz is at most 2kc(n2, n1; F )/n1(n2 − 2). We have the

following lower bound on F (vw):

c(n2, n1; F )

(
1− 2km

n1(n2 − 2)
+

(k − 2)(n2 − t)(n2 − t− 1)(1− ε)

(n2 − 2)(n2 − 3)(n2 − 4)
+

*(n2 − t− *)(1− ε)

(n2 − 2)(n2 − 3)

)
.

(4.23)

As m ≤ 3εn and n1 ≥ n/2, we observe that 2km/n1(n2 − 2) < 13kε/n2 (a similar

bound holds also for 2km/n2(n1− 2)). So, if vw ∈ B2, it follows from (4.23) that F (vw) >

c(n2, n1; F )(1−13kε/n2). Also note that (n1−m) < (1+ε)(n1−2) and (n2−t)(n2−t−1) >

(1− 50ε)n2
2. Hence, we simplify (4.22) to obtain

F (vw) ≥ c(n1, n2; F )(1 + (k − 1− *)/n2 − 65kε/n2)

for vw ∈ B!
1. That is, F (vw) ≥ c(n1, n2; F )(1 − 65kε/n2) unless k = * = 2. Furthermore,

as a consequence of (4.13), we have

c(n2, n1; F )

c(n1, n2; F )
>

(
1 +

n1 − n2

n2
− k(n1 − n2)

n2(n2 − 1)

)
=

(
n1

n2
− k(n1 − n2)

n2(n2 − 1)

)
. (4.24)

Therefore,

#F (H)

c(n1, n2; F )
≥ |B \B(u)|(1− 65kε/n2)− |B2

1 |/n2 +
c(n2, n1; F )

c(n1, n2; F )
|B(u)|(1−m/n1)

> |B|− 100kε−
(

m

2

)
1

n2
+

(
n1 − n2

n2
− m

n2

)
(n2 − t)

> |B|+ (1− 10ε)(n1 − n2)−m2/2n2 −m(n2 − t)/n2 − 100kε

On the other hand, #F (H ′′) ≤ c(n1, n2; F )(|B|−m + 17k(k + 1)/n1). So,

#F (H)−#F (H ′′)

c(n1, n2; F )
> (1− 10ε)(n1 − n2) + m

(n2 −m/2− (n2 − t))

n2
− 200kε

= (1− 10ε)(n1 − n2) +
m(t−m/2)

n2
− 200kε.

As t ≥ m, the above difference is positive unless n1 = n2 and m = 0, thereby proving the

claim.
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Let us now consider the case u ∈ V1. We modify the definition of B!
i to reflect this fact

and perform analogous computations.

1. If uv ∈ B(u), then F (uv) ≥ c(n1, n2; F )(1− m
n2

).

2. If vw ∈ B!
1, it is not adjacent to any missing edges and we may form copies of F of

Types (i) and (ii). Thus, F (vw) is at least

c(n1, n2; F )

(
1− 2km

n2(n1 − 2)
+

(k − 2)(n2 − t)(n2 − t− 1)

(n1 − 2)(n1 − 3)(n1 − 4)
+

*(n2 − t− *)

(n1 − 2)(n1 − 3)

)
.

(4.25)

3. If vw ∈ B!
2, we have potential copies due to missing edges adjacent to vw as well as

those not adjacent to vw. We also form copies of F of Type (iii). So, F (vw) is at

least

c(n2, n1; F )

(
1− *(n2 −m)

n1(n2 − 2)
− 2k(m− *)

n1(n2 − 2)
+

(k − 1)(n2 − t)(n2 − t− 1)

n1(n1 − 1)(n1 − 2)

)

≥ c(n1, n2; F )

(
1 +

n1 − n2

n2
− *(n2 −m)

n2(n2 − 2)
− 2k(m− *)

n2(n2 − 2)
+

(k − 1)(1− 50ε)

n2

)

(4.26)

where we use (4.13) and (4.24).

Putting these together, we have the following lower bound on #F (H)/c(n1, n2; F ):

|B|− 1

n2

(
m(n2 − t) +

2km|B −B(u)|
n2 − 2

+
2∑

!=0

|B!
2|(n1 − n2 − * + (k − 1)(1− 50ε))

)
.

In particular, if q ≤ n/2−2, we can show #F (H) > c(n1, n2; F )(|B|− |M |) by noting that

|B −B(u)| < 13εn and |B2
2 | ≤ m(m− 1)/2. That is, as k ≥ 2,

#F (H)

c(n1, n2; F )
− (|B|−m) ≥ 1

n2

(
mn2 −m(n2 − t)− 26εkm− (1 + 50εk)m(m− 1)/2

)
> 0.

It follows that #F (H) > (q + )(n1 − n2)2/4*)c(n1, n2; F ). However, #F (H∗) = qc(n, F )

and for n1 > n2, (q + )(n1− n2)2/4*)c(n1, n2; F ) > qc(n, F ), thereby proving the first part

of the lemma.

So we may assume n1 + n2 is odd and n/2− 2 < q ≤ n− 5k. We first prove that m, t

and n1 − n2 are all bounded by constants.

Claim 4.4.10. m ≤ 10k and t ≤ 20k2.

Proof of Claim. As a result of (4.25), edges in B1 are contained in at least

|B1|(c(n1, n2; F )− 2km/n2(n1 − 2)) > |B1|c(n1, n2; F )− 3km/n2
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copies of F .

On the other hand, if vw ∈ B!
2, by (4.26) and the fact that n1 ≥ n2 + 1 we have

F (vw) > c(n1, n2; F )(1 + (1− *)/n2). In particular, F (vw) > c(n1, n2; F ) if vw ∈ B0
2 ∪B1

2 ,

and F (vw) > c(n1, n2; F )(1− 1/n2) if vw ∈ B2
2 . Note that |B2

2 | ≤
(

m
2

)
.

We now compare #F (H) and #F (H ′′). Then,

#F (H)−#F (H ′′)

c(n1, n2; F )
≥

(
|B|− 1

n2

(
m(n2 − t)− 3km−

(
m

2

)))
−

(
|B|−m + 10k2/n2

)

≥ 1

n2

(
mt−m2/2− 3km− 10k2

)
,

and H fails to be optimal unless m ≤ 10k and t ≤ 20k2.

It follows that |B2
2 | < 50k2 and |B0

1 | ≤
(

t+n1−n2

2

)
< 10εn. We now strengthen the bounds

obtained from (4.25) and (4.26) and show that |B \ B(u)| < 12εn. First, as t ≤ 20k2,

for vw ∈ B1
1 ∪ B2

1 , we may strengthen F (vw) to c(n1, n2; F )(1 + (1 − ε)(* + k − 2)/n2).

Similarly, if vw ∈ B0
2 ∪B1

2 , we have F (vw) ≥ c(n1, n2; F )(1+(1− ε)(k−1)/n2). Therefore,

if |B1
1 ∪ B2

1 ∪ B0
2 ∪ B1

2 | > 200k, we will gain an extra (1 − ε)200k(k − 1)/n2 copies of F ,

thereby surpassing the deficit of (10k2+30k2+50k2)/n2 obtained when m = 10k. It follows

that, |B \B(u)| < 12εn and |B| < (1/2 + 15ε)n.

Claim 4.4.11. n1 = n2 + 1.

Proof of Claim. Assume n1 > n2 + 1. As n is odd, we have n1 ≥ n2 + 3. We show

that #F (H) may be decreased by moving a vertex from V1 to V2. In particular, let

v ∈ Ṽ1 = V1 \ (NB(u) ∪ {u}). We delete v and replace it by v′ where v′ is connected to

all w ∈ V1 \ {v} but not to any vertex in V2. As d(v′) − d(v) = (n1 − 1) − (n2 + dB(v)),

if dB(v) ≥ n1 − n2 − 1, we distribute the remaining dB(v) − (n1 − n2 − 1) edges among

vertices in V2. Otherwise, if dB(v) < (n1 − n2 − 1), we delete (n1 − n2 − 1) − dB(v) bad

edges. This operation reduces |B| by n1 − n2 − 1. As F (vw) ≥ c(n1, n2; F )(1 − 10k/n2)

for all vw ∈ B, we reduce #F (H) by (n1 − n2 − 1)c(n1, n2; F )(1− 10k/n2).

On the other hand, each remaining bad edge gains at most

c(n1 − 1, n2 + 1; F )− c(n1, n2; F ) 6 c(n1, n2; F )/n2

copies of F that use v′. Furthermore, each of the dB(v)− (n1 − n2 − 1) edges placed in V2

gain c(n2 + 1, n1 − 1; F )− c(n1, n2; F ) ≤ c(n1, n2; F )(1 + n1 − n2)/n2 copies. These edges

also gain at most (k− 1)c(n1, n2; F )/n2 copies of Types (iii). However, as |B1
1 | < 200k, we
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have dB(v)− (n1 − n2 − 1) < t + 200k ≤ 120k2. The net gain is, therefore, at most

c(n1, n2; F )

n2
(|B|+ 120k2(k + n1 − n2)− (n1 − n2 − 1)(n2 − 10k))

<
c(n1, n2; F )

n2
((1/2 + 15ε)n + 120k2(k + n1 − n2)− 2(n2 − 10k))

<
c(n1, n2; F )

n2
(120k2(k + n1 − n2)− n2/2)

< −1

4
c(n1, n2; F ),

contradicting the optimality of H.

Claim 4.4.12. |B1
2 | ≥ m.

Proof of Claim. Assume B1
2 < m. Then, there exists a vertex v ∈ NM(u) with dB(v) ≤

m−1. As q > n2−2, we have |B\B(u)| 7= 0. We alter H by removing an edge xy ∈ B\B(u)

and adding the edge uv. This procedure deletes at least F (xy) ≥ c(n1, n2; F )(1 − ε/n2)

copies of F that use the edge xy. On the other hand, for each edge uw ∈ NB(u) and

vx′ ∈ B2, we obtain at most c(n1, n2; F )/n2 extra copies of F using the edge uv. In

addition, bad edges disjoint from uv gain at most 2kc(n1, n2; F )/n2(n2 − 2) copies of F .

As t ≥ m, these amount to at most

c(n1, n2; F )

n2

(
n2 − t + (m− 1) +

2k|B \B(u)|
n2 − 2

)
< c(n1, n2; F )(1− (1− 50εk)/n2).

Therefore, the alteration reduces the number of copies of F , contradicting the optimality

of H.

Claim 4.4.13. t ≥ m + k.

Proof of Claim. As |Ṽ1| = n1−dB(u)−1 = t and vw ∈ B0
1 implies v, w ∈ Ṽ1, if t ≤ m+k−1,

then |B0
1∩B(v)| ≤ m+k−2 for all v ∈ Ṽ1. Let xy ∈ B1

2 , v ∈ Ṽ1, and w ∈ NM(u). Consider

removing the edge xy and all edges vz ∈ B and replace them with the edge uv and dB(v)

bad edges incident to w. As

F (xy)− F (uv) ≥ c(n1, n2; F )(1 + (k − 1− ε)/n2)− c(n1, n2; F )(1− (m− ε)/n2) and

F (vz)− F (wz′) ≥ c(n1, n2; F )(1 + (k − 2− *− ε)/n2)− c(n1, n2; F )(1 + (k − 1 + ε)/n2),

for vz ∈ B!
1, the net loss is at least

c(n1, n2; F )

n2
(k − 1 + m− |B0

1 ∩B(v)|− 2εdB(v)) > 0,

contradicting the optimality of H.
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Claim 4.4.14. H 7∈ HF (n, q).

Proof of Claim. Pick uv ∈ B(u) with dB(v) = 1. Consider the following alterations:

1. If |B1
2 | ≥ t− 1, remove the edge uv as well as t− 1 edges in B1

2 and include the edge

vw for each w ∈ Ṽ1.

2. If |B1
2 | = p < t− 1, remove the edge uv and all edges in B1

2 and add p edges vw with

w ∈ Ṽ1 as well as an edge ux for some x ∈ NM(u).

In the first instance, the t edges we created in B0
1 each give at most c(n1, n2; F )(1 +

(k − 2 + ε)/n2) copies of F . On the other hand, as F (uv) ≥ c(n1, n2; F )(1 −m/n2) and

F (xy) ≥ c(n1, n2; F )(1 + (k − 1 − ε)/n2) for the t − 1 edges removed from B1
2 , we lose at

least

c(n1, n2; F )

n2

(
m− (t− 1)(k− 1− ε) + t(k− 2 + ε)

)
>

c(n1, n2; F )

n2

(
t−m− k + 1− 2tε

)
> 0

copies.

In the second case, we delete c(n1, n2; F )((p+1)+ (p(k− 1)−m)/n2) copies of F . The

number of copies added is at most

pc(n1, n2; F ) + (dB(u)− 1 + d′B(x) + p(k − 2))c(n1, n2; F )/n2,

where d′B(x) counts the number of remaining bad edges of x. However, as |B1
2 | = 0 after

the alteration, d′B(x) ≤ m − 1. Furthermore, by Claim 4.4.12, p ≥ m. So, the net loss in

the number of copies of F is at least

c(n1, n2; F )

n2
(n2 + p−m− (n2 − t− 1)− (m− 1)) ≥ c(n1, n2; F )

n2
(t + p + 2− 2m) > 0,

and we reduce the number of copies of F .

Therefore, M(H) 7= ∅ implies that H is not optimal.

The result follows by comparing the various ways to partition n. In particular, it is

readily checked that c(+n/2,, )n/2*; F )(q + 2(17k2/3)/n) is less than

(q + 2)c(+n/2,+ 1, )n/2* − 1; F ) for q < n− 10k2.

4.5 Special Graphs

In this section we obtain upper bounds on c1,i(F ) for a class graphs and compute the exact

value for some special instances. We also give an example of a graph with c1(F ) strictly
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greater than min(πF , θF ).

4.5.1 Pair-free graphs

Definition 4.5.1. Let F be an r-critical graph. Say F is pair-free if for any two (different,

but not necessarily disjoint) edges u1v1, u2v2, there is no proper r-coloring χ of F − u1v1−
u2v2 where χ(u1) = χ(u2) = χ(v1) = χ(v2).

Alternatively, let H ∈ T 2
r (n) be formed by including two edges in one part. Then, the

class of pair-free graphs consists of r-critical graphs whose copies in H use exactly one of

the two bad edges. Many interesting graphs belong to this class. For instance, it is easily

seen that complete graphs Kt are pair-free and, as argued in the previous section, no copy

of the odd cycle C2k+1 uses exactly two bad edges. In addition, graphs obtained from the

complete bipartite graph Ks,t by adding an edge to the part of size s are pair-free if t ≥ 3.

Theorem 4.5.2. Let F be pair-free and let t = sgn(ζF ). Then c1,t(F ) ≤ 2πF and c1,i(F ) ≤
πF for i 7≡ t (mod r).

Proof. Let n be large and q = (πF + ε)n for some ε > 0. We prove the case n 7≡ t

(mod r); the other case follows in a similar manner. Write n = n1 + . . . + nr, where

c(n, F ) = c(n1, . . . , nr; F ) and consider the partition n = n′1+n′2+. . .+n′r where n′1 = n1+t,

n′2 = n2 − t and n′i = ni for i = 3, . . . r. Construct H ′ as follows: H ′ ⊇ K(V ′
1 , . . . , V

′
r ) with

|V ′
i | = n′i. Next place q + 1 bad edges in V ′

1 to form a regular (or almost regular) bipartite

graph. We claim that #F (H ′) < #F (H) for any H ∈ T q
r (n).

First of all, each bad edge in H ′ is contained in at most c(n, F ) − |ζF |nf−3 + O(nf−4)

copies of F that contain only one bad edge. As F is pair-free, no copy of F contains exactly

two bad edges. In addition, we may bound the number of copies of F using at least three

bad edges by Cq3nf−6 = C ′nf−3 for some constants C, C ′.

On the other hand, #F (H) ≥ qc(n, F ). Therefore,

#F (H ′)−#F (H) ≤ (q + 1)
(
c(n, F )− |ζF |nf−3 + O(nf−4)

)
+ C ′nf−3 − qc(n, F )

< αF nf−2 − (πF + ε)n|ζF |nf−3 − C ′′nf−3

< −ε|ζF |nf−2/2,

proving the theorem.

In particular, as Theorem 4.3.1 implies that c1,i(F ) ≤ ρ̂F − (1− 1/r), if F is pair-free

and ρF = ρ̂F , we have the exact value of c1,i(F ). This is the case for F = K+
s,t.
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Lemma 4.5.3. Let s, t ≥ 2 and F = K+
s,t be obtained from the complete bipartite graph

Ks,t by adding an edge to the part of size s. Then θF = ρ̂F − (1− 1/r).

Proof. Clearly, F = K+
s,t is 2-critical and

c(n1, n2; K
+
s,t) =

(
n2

t

)(
n1 − 2

s− 2

)
.

It readily follows that

αF =
2−(t+s−2)

t!(s− 2)!
, ζF = (t− s + 2)

2−(t+s−3)

t!(s− 2)!
, and

πF =





∞ if t = s− 2

(2(t− s + 2))−1 otherwise.

On the other hand,

PF (ξ) =
2−s+2

t!(s− 2)!
(ξ1ξ

t
2 + ξt

1ξ2).

As PF (c · ξ) = ct+1PF (ξ) for all ξ ∈ R2
+ and c ∈ R+, we consider the behavior of PF (ξ)

where ξ1 + ξ2 = 1. Let ξ1 = 1/2 + y, ξ2 = 1/2− y and express

PF (ξ) = pt(y) =
2−s+2

t!(s− 2)!

(
(1/2 + y)(1/2− y)t + (1/2 + y)t(1/2− y)

)
.

We observe that pt(y) is an even function with pt(1/2) = pt(−1/2) = 0 and pt(0) = αF .

Now consider the coefficient sk of yk in

t!(s−2)!2s−2p′t(y) = (1/2−y)t− t(1/2+y)(1/2−y)t−1 + t(1/2+y)t−1(1/2−y)− (1/2+y)t.

We obtain the following values from each term above:

1. (−1)k
(

t
k

)
2−t+k

2. −t/2 · (−1)k
(

t−1
k

)
2−t+k+1 − t · (−1)k−1

(
t−1
k−1

)
2−t+k

3. t/2 ·
(

t−1
k

)
2−t+k+1 − t ·

(
t−1
k−1

)
2−t+k

4. −
(

t
k

)
2−t+k.

Combining the above, we have

sk = 2−t+k
[
(−1)k − 1

] [(
t

k

)
− t

(
t− 1

k

)
+ t

(
t− 1

k − 1

)]

= 2−t+k
[
(−1)k − 1

] [
(k + 1)

(
t

k

)
− t

(
t− 1

k

)]

= 2−t+k
[
(−1)k − 1

]
(2k + 1− t)

(
t

k

)
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It follows that sk ∈






Z− if k > (t− 1)/2 and k is odd

{0} if k = (t− 1)/2 or k is even

Z+ if k < (t− 1)/2 and k is odd.

That is, for t ≥ 4, the coefficients of p′(t) change sign exactly once. By Descartes’

Rule of Signs [Des37], p′t(y) has exactly one positive root and, by symmetry, exactly one

negative root. As p′′t (0) > 0 for t ≥ 4, it follows that (0, αF ) is the unique local minimum

for pt with the two roots of p′t providing local maxima.

In addition, if t = 2, 3, p′t(y) is a decreasing odd polynomial. So, (0, α) is the unique

maximum point of pt(y) and no other local maxima or minima exist. It follows that

θ∗F = θF = ∞ in these two cases.

If t ≥ 4, we may solve for ρ∗F and ρF as the roots of certain polynomial equations. On

one hand, if ξ ∈ Sρ with ξ1 = ξ2 = ρ/2, we have PF (ξ) = αF ρt+1. On the other hand, if

ξ ∈ S∗ ∩ Sρ with ξ1 = ρ − 1/2 and ξ2 = 1/2, PF (ξ) = αF (ρ − 1/2) + αF 2t−1(ρ − 1/2)t.

Hence, ρ∗F is the smallest root (that is at least 1/2) of ρt+1 = (ρ − 1/2) + 2t−1(ρ − 1/2)t.

Similarly, ρF is the smallest root of ρt+1 = ρ− 1/2. We observe that 2−t−1 < θF < 2−t for

t ≥ 4.

Now, if θF 7= ρ̂F − (1 − 1/r), then the two curves αF ρt+1 and αF (ρ − (1 − 1/2)) must

be tangent at ρF . Therefore, ρF is not only a root of g1(ρ) = ρt+1 − ρ + 1/2, but also

of its derivative g′1(ρ) = (t + 1)ρt − 1. However, as (t + 1) < (5/3)t and 2−t < 1/10

for t ≥ 4, ρF = (t + 1)−1/t > .6 > (.5 + 2−t), resulting in a contradiction. Hence,

θF = ρ̂F − (1− 1/r).

As both πF and θF have been determined for F = K+
s,t, Theorems 4.4.1 and 4.5.2 give

us the exact value of c1,i(F ).

Theorem 4.5.4. Let s, t ≥ 2 and F = K+
s,t. Then c1(F ) = c1,0(F ) = min(πF , θF ) and

c1,1(F ) = min(2πF , θF ).

4.5.2 Non-tightness of Theorem 4.4.1

We now exhibit a graph for which c1(F ) > min(πF , θF ). Let F be the graph in Figure

4.2. Interestingly, for this graph, ρF = ρ̂F = ∞, so we only show that c1(F ) > πF . This

non-tightness occurs as a consequence of Claim 4.4.2. Specifically, if q < (πF − ε)n and the

max-cut partition of a graph H has parts of size n = n1 + n2 where n1 ≥ n2 + 2, Claim

4.4.2 implies that all bad edges lie in the same part. However, if |n1 − n2| ≤ 1, we reduce
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the number of copies of F by distributing the bad edges among the two parts.

g
a

b

c

d

e

f

Figure 4.2: Example for non-tightness of Theorem 4.4.1.

Note that F is 2-critical and ab is the unique critical edge. There is a unique (up to

isomorphism) 2-coloring χ of F − ab with χ−1(1) = {a, b, f} and χ−1(2) = {c, d, e, g}. It

readily follows that

c(n1, n2; F ) =

(
n2

3

)
(n1 − 2)(n2 − 3)

and αF = (3! · 25)−1. Taking derivatives, we observe that ζF = 2−5 and πF = 1/6.

We also have

PF (ξ) =
1

4 · 3!
(ξ1ξ

3
2 + ξ3

1ξ2),

which, if we fix ξ1 + ξ2, is minimized by maximizing the difference. Hence, θF = ∞.

However, note that F is not pair-free as there exists a 2-coloring χ∗ of F −ab−fg with

χ∗(a) = χ∗(b) = χ∗(f) = χ∗(g) = 1. In fact, if u1v1, u2v2 are two distinct edges in F , there

is no 2-coloring χ′′ of F − u1v1 − u2v2 with χ′′(u1) = χ′′(v1) and χ′′(u2) = χ′′(v2) unless

{u1v1, u2v2} = {ab, fg} and χ′′ is isomorphic to χ∗. That is, for any H ∈ T q
r (n), the only

copies of F in H that use exactly two bad edges correspond to χ∗.

We recall the set X = X(H) of vertices with large bad degree. As θF = ∞, (4.10)

implies that both X(H) and M(H) are empty for any H ∈ HF (n, q). That is, if ε > 0 is

fixed and if n is large enough, then dB(x) < εn for any x ∈ V (H). In addition, by Claim

4.4.2, if H ⊇ K(V1, V2) with |V1| ≥| V2|, then

|B1| ≥ |B1|−|B2| ≥ (1− ε)(|V1|−| V2|− 1)πF n.

In particular, if n is even and |V1| ≥ |V2| + 2, we have at least (πF n)2(1 − 2ε)/2 disjoint

pairs of edges in B1, each of which form 4
(|V2|

3

)
copies of F . Therefore,

#F (H) ≥ (q + 1)(c(n, F )− n4/25) +
1

864
n5 − εn5. (4.27)
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On the other hand, if H∗ ∈ T q
2 (n), we may place q/2 edges in each of B1 and B2, thereby

forming at most q2/4 pairs of bad edges that lie in the same part. Thus,

#F (H∗) ≤ qc(n, F ) + q2n3

48
+ εn5. (4.28)

Comparing the above quantities, and solving the resulting quadratic inequality, we see that

c1,0(F ) ≥ 5
√

5−9
12 > 1/6 = πF . In fact, a careful analysis will show

Theorem 4.5.5. c1,0(F ) = 3−
√

5
4 .

Proof. We prove the lower bound by showing that if |V1| ≥ |V2| + 2 and q < n/5, then

B2 = ∅. As a result of Claim 4.4.2 we may initially assume that |B1| ≥ (1− ε)n/6. Now,

if B2 7= ∅, an edge uv ∈ B2 is contained in at least c(n2, n1; F ) > c(n1, n2; F ) + 2(ζF − ε)n4

copies of F . However, if we remove uv and replace it with an edge xy where x, y ∈ V1 have

dB(x), dB(y) < 3, we form at most c(n1, n2; F ) + qn3/12 + εn4 copies of F . As

2ζF n4 = 2−4n4 > n4/60 ≥ qn3/12,

this alteration reduces the number of copies of F . So, #F (H) is minimized by making

B2 = ∅. Therefore, we have q2(1 − ε)/2 pairs of disjoint bad edges in B and we improve

(4.27) to

#F (H) ≥ (q + 1)(c(n, F )− n4/25) + q2n3

24
− εn5. (4.29)

The root of the resulting quadratic is now 3−
√

5
4 .

The upper bound follows by noting that inequalities (4.28) and (4.29) may be changed

to equations by replacing the last term with ±εn5.

4.5.3 Kr+2 − e.

Let r ≥ 2 and let F = Kr+2 − e be obtained from the complete graph Kr+2 by deleting

one edge. We obtain the following exact result for c1(F ).

Theorem 4.5.6. If r ≥ 2 and F = Kr+2 − e, then c1(F ) = πF = r−1
r2 .

By definition, χ(F ) = r + 1. In addition, if uv is the edge removed from Kr+2, we may

further reduce the chromatic number by removing an edge xy where {x, y} ∩{ u, v} = ∅.
It follows that F is r-critical and

c(n1, . . . , nr; F ) =
r∑

i=2

(
ni

2

) ∏

2≤j≤r
j "=i

nj =
(n− n1 − r + 1)

2

r∏

i=2

ni.
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Therefore, αF = r−1
2rr , ζF = 1

2rr−2 , and πF = r−1
r2 .

On the other hand,

PF (ξ) =
1

2

r∑

i=1

ξ2
i

∏

1≤j≤r
j "=i

ξj =
1

2

(
r∑

i=1

ξi

)
r∏

i=1

ξi.

Therefore, if
∑

i ξi = ρ is fixed, by convexity, PF (ξ) is minimized by picking ξ ∈ S∗,
implying that θF = ∞.

Theorem 4.4.1 now implies that c1(F ) ≥ πF , so we only prove the upper bound c1(F ) ≤
πF .

As M(H) = ∅ for H ∈ HF (n, q), we compare graphs obtained from a complete r-partite

graph by adding extra edges. First, given H ∈ T q
r (n), let us compute the number of copies

of F formed by pairs of bad edges. Let u1v1 ∈ Bi and u2v2 ∈ Bj, where r |n and |Vk| = n/r

for all k ∈ [r].

1. If i = j and {u1, v1} ∩ {u2, v2} = ∅, no copy of F contains both bad edges as any 4

vertices in F span at least 5 edges and only 2 edges are present among {u1, u2, v1, v2}.

2. If i = j and |{u1, v1}∩{u2, v2}| = 1, we may create a copy of F by picking one vertex

each from Vk where k 7= i. Therefore, we have (n/r)r−1 copies of F containing both

bad edges.

3. If i 7= j, we form a copy of Kr+2 by picking a vertex from each of the parts Vk where

k 7∈ {i, j}. We may then choose any of the
(

r+2
2

)
− 2 edges (except for u1v1 and

u2v2) to be the one missing in F . In addition, for any choice of k1, k2 7∈ {i, j}, we

may pick 2 vertices from Vk1 , no vertices from Vk2 and one vertex each from Vl where

l 7∈ {i, j, k1, k2}, to form a copy of F . So, the number of copies of F containing both

edges is ((
r + 2

2

)
− 2

)
(n/r)r−2 + (r − 2)

(
n/r

2

)
(r − 3)(n/r)r−4.

For q ≤ n/r, let H∗ ∈ T q
r (n) be formed by placing all q bad edges in V1. In particular,

consider enumerating the bad edges as e1, e2, . . . , eq and the vertices in V1 as v1, v2, . . . , vn/r.

Then, construct H∗ such that ei = v2i−1v2i for i ≤ n/(2r), and en/2r+j = v2jv2j+1 for

1 ≤ j ≤ q − n/(2r).

Claim 4.5.7. If q ≤ n/r, #F (H∗) ≤ #F (H) for all H ∈ T q
r (n).

Proof of Claim. If q ≤ n/(2r), #F (H∗) = qc(n, F ), which is a trivial lower bound for all

H ∈ T q
r (n). So we consider the case n/(2r) ≤ q ≤ n/r.
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Let H be the minimizer of #F (H) over the set T q
r (n). Assume, without loss of gener-

ality, that |B1| ≥| Bi| for al i ∈ [r]. If |B1| < n/(2r), then B \ B1 7= ∅. Say B2 7= ∅, and

consider removing an edge in B2 and replacing it by adding an extra edge to B1. We may

place this edge so that no new vertices of degree 2 are created. Then, the number of copies

of F is reduced by at least (|B1| −| B2| + 1)(n/r)r−2(
(

r+2
2

)
− 2), contradicting optimality

of H.

On the other hand, if |B1| ≥ n/(2r), then every edge uv ∈ B \B1 forms at least

c(n, F ) +

((
r + 2

2

)
− 2

)
(n/r)r−2|B1| ≥ c(n, F ) + 2(n/r)r−1

copies of F .

So we may assume that B = B1. Now, by convexity,
∑

v∈V1

(
dB(v)

2

)
is minimized when

there are exactly 2|B1|− n/r vertices of degree 2 and all remaining vertices have degree 1.

However, each vertex of degree 2 gives (n/r)r−1 copies of F that use both edges incident

to it. It follows that

#F (H) ≥ qc(n, F ) + 2(n/r)r−1 (|B \B1|+ |B1|− n/(2r))

= qc(n, F ) + (2q − n/r)(n/r)r−1

= #F (H∗).

Now consider a graph H on partition n = n1 + n2 + . . . + nr where n1 = n/r + 1,

n2 = n/r − 1 and ni = n/r for i ≥ 3 with K(V1, . . . , Vr) ⊆ H and all q + 1 bad edges

contained in V1 as in H∗. Then

#F (H) ≤ (q + 1)(c(n, F )− ζF nr−1) + (2q + 2− n/r)(n/r)r−1 + εnr−1.

In particular, if q ≥ (πF + ε)n, then

#F (H)−#F (H∗) ≤ αF nr − (πF + ε)ζF nr + nr−1/2 < −εζF nr−1/2,

thus proving the upper bound c1,0(F ) ≤ πF .
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[Röd85] V. Rödl, On a packing and covering problem, European J. Combin. 5 (1985),

69–78. 2.3
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