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Abstract
This thesis addresses several questions in Ramsey theory and in probabilistic

combinatorics.
We begin by considering several questions related to the Hales–Jewett Theorem,

a central result in the study of Ramsey theory. We use bounds due to Shelah [46] to
attack a geometric Ramsey problem due to Graham and Rothschild [28], improving
on the the previous bound known as Graham’s number (which at one point held
the Guinness world record for the largest number used in a mathematical proof).
Extending ideas developed in studying that question, we obtain a bound of less than
1011 on the Hales–Jewett number HJ(4, 2).

Next, we consider problems in random graphs, and especially the use of ran-
dom structures in solving extremal problems. We begin by a classical random graph
result, analyzing an invariant called the game chromatic number for the random
3-regular graph Gn,3. Then, we extend the increasing paths problem posed by Gra-
ham and Kleitman [27] to the random setting. Finally, we consider a purely graph-
theoretic problem, that of distance-uniform graphs, introduced by Alon et al. in
[2]. Here, we prove a marked difference between the behavior of random graphs
which are distance-uniform, and worst-case behavior of distance-uniform graphs,
constructing a family of distance-uniform graphs which are separated by an expo-
nential gap from the random example.
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Chapter 1

Introduction

1.1 Ramsey theory

As a branch of extremal combinatorics, Ramsey theory is often characterized in terms of the

flavor of its results: in any sufficiently large structure, we can find a small substructure which is

highly ordered in some sense. The name originates from Ramsey’s theorem, one of the earliest

examples of such a result. Originally proved by Ramsey in [44] as a result in formal logic, this

theorem is now commonly stated a statement about edge-colorings of the complete graph Kn:

Theorem 1.1.1 (Ramsey’s theorem). For any integer k, there exists a sufficiently large n so

that the following holds. Whenever each edge of the complete graph Kn is assigned one of 2

colors, there must be a set S of k vertices such that the complete subgraph induced by S is

monochromatic: all
(
k
2

)
of its edges have been assigned the same color.

We are often interested in quantifying the “sufficiently large n” of such a result. In the

example of Theorem 1.1.1, as in many others, once the desired statement holds for n = n0, it

holds for all n > n0 as well (since Kn will contain Kn0 as a subgraph). It’s therefore meaningful

to ask: what is the least value of n, as a function of k, for which the statement holds? In the

case of Ramsey’s theorem, this is known as the (diagonal) Ramsey number R(k). A sufficiently

concrete proof of Theorem 1.1.1 will imply an upper bound on R(k), and we may continue work
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on the problem in the hope of finding better upper bounds.

If we declare Ramsey theory to be the study of combinatorial results of this flavor, it is not

at first obvious that what we get is anything more than a collection of theorems. In fact, the

theorems are connected by an intricate network of reductions that allow us to deduce upper or

lower bounds on one Ramsey-type result from bounds on another. It is then natural to ask: can

we find some universal Ramsey-type theorem from which all or most others will follow?

One of the first attempts in this direction was the Graham–Rothschild parameter sets theo-

rem [28]. This is a very similar statement to that of Theorem 1.1.1 in spirit, replacing the notions

of “edge” and “complete subgraph” by a more general notion of “k-parameter set”. The full

statement of the theorem is complex, and is given as Theorem 2.1.1 in Chapter 2.

In practice, it was found that the Hales–Jewett theorem, which (like many other results) is

a special case of the parameter sets theorem, captures enough of its complexity to be equally

useful in deducing other results. First proven in [30], the Hales–Jewett theorem is a statement

about coloring points of the grid [t]n (where [t], from here on, will be shorthand for the set

{1, 2, . . . , t}). Imprecisely speaking, it states that an r-coloring of this grid will contain a line

t collinear points of the same color, provided that the dimension n is sufficiently large: at least

the Hales–Jewett number HJ(t, r). The exact statement restricts the set of lines we consider. It

is described in terms of the parameter sets theorem in Chapter 2, and stated independently in

Chapter 3.

Somewhat facetiously, Ramsey theory has also been called “the branch of combinatorics

consisting of iterated use of the pigeonhole principle”. This observation actually has an impor-

tant consequence: very often, pigeonhole-type arguments lead to extremely fast-growing upper

bounds, which differ greatly from the best lower bounds known.

For example, the lower bounds to the dimension n required for the Hales–Jewett theorem to

hold are merely exponential in r and t. On the other hand, the upper bounds require defining new

quickly-growing functions (such as those defined in Section 2.5) to state.
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Chapters 2 and 3 of this thesis focus on problems in Ramsey theory. Specifically, they provide

partial progress on one fundamental question: can we prove upper bounds on quantities like the

Hales–Jewett numbers without heavy use of the pigeonhole principle? This produces significant

improvements in all cases where it has succeeded. For example, in Chapter 2, a lemma proved

via SAT solver finds an exact answer of 6 to a problem for which the classical upper bound is

on the order of 2 ↑↑ 18 (in the notation of Section 2.5). In Chapter 3, the main result improves

an upper bound on HJ(4, 2) between 2 ↑↑ 7 and 2 ↑↑ 8 to one which is “merely” an 11-digit

number.

1.2 Random graphs

Whereas upper bounds for problems in Ramsey theory must come from universal arguments—

ones that find order in every possible example of a structure—lower bounds have a very different

nature. To prove a lower bound for the Ramsey number R(k), for example, it’s natural to try

to provide an edge-coloring of Kn, for some large n, which does not contain a monochromatic

complete subgraph of size k.

Finding an explicit rule for such an edge-coloring is challenging, more or less because any

rule which is simple enough for us to verify its correctness is too structured to avoid large

monochromatic complete subgraphs. Instead, the best known lower bound for R(k) comes from

coloring the edges of Kn randomly: an idea originally due to Paul Erdős [17].

Random structures, including multiple models for choosing random graphs, have now be-

come both a mainstay source of counterexamples in combinatorics and an object of study in

their own right. One particularly fundamental model is the Erdős–Rényi graph Gn,p, in which

each edge between n vertices in total is independently present with probability p. Often, to get a

handle on the behavior of a graph parameter such as the diameter or the chromatic number in a

“typical’ case, we study its distribution for a randomly graph in this model or in others. In many

situations, one can prove that interesting properties hold with probability 1− o(1), in which case
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the property is said to hold asymptotically almost surely, or a.a.s. for short.

For example, in Chapter 4, we consider a graph invariant called the game chromatic number.

We would like to understand when this invariant differs from the ordinary chromatic number of

the graph, and by how much. In Chapter 4, we show that these two invariants a.a.s. differ for the

random 3-regular graph Gn,3 (chosen uniformly at random from all n-vertex graphs in which all

vertices have degree 3).

Similarly, when faced with a problem in extremal combinatorics, we can often shed light

on it by considering its random analog. Chapter 5 of this thesis deals with such a situation.

Given a total ordering of the edges of the complete graph Kn, which can be specified by a bijec-

tion
(
f :E(Kn)→{1,2,...,{n

2}}

)
, an increasing path is one whose edges (e1, e2, . . . , ek) satisfy f(e1) <

f(e2) < · · · < f(ek).

It has recently been shown by Milans [42] that for any such f , we can find an increasing

path of length at least O(n/ log n)2/3, improving a previous bound of O(
√
n) due to Graham

and Kleitman [27]. However, edge-orderings with no long increasing path seem difficult to find:

several constructions with a linear upper bound are known, but none that improve on (1
2
+o(1))n.

In Chapter 5, we give a partial explanation of this gap. In fact, if the bijection f is chosen

uniformly at random, then the longest increasing path is very long: we show that not only is

there a path of the maximum length n − 1 with probability at least 1
e
, but also that even a path

chosen by the greedy algorithm attains linear length a.a.s. Thus, edge-orderings with no long

increasing paths must be rare, if they exist at all.

However, imagining that all cases of a problem behave like the typical, randomly chosen

case can be misleading. An instance of this is explored in Chapter 6, which considers distance-

uniform graphs: graphs with the surprising property, that, for some constant d, every vertex is

at distance exactly d from all but a small fraction of the other vertices. Though it is not initially

obvious that nontrivial examples of distance-uniform graphs exist at all, it is a consequence of

the work of Bollobás on the diameter of random graphs [10] that, for many choices of p, the
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Erdős–Rényi random graph Gn,p is distance-uniform a.a.s.

A distance-uniform graph obtained in this way has a diameter logarithmic in n (and there-

fore the constant d is also at most logarithmic in n). It is reasonable to conjecture that all

distance-uniform graphs resemble Gn,p, and also satisfy d = O(log n). However, we show in

Chapter 6 that a class of distance-uniform graphs exists with much larger diameter, satisfying

d = 2Ω( logn
log logn

).

1.3 Acknowledgment

The chapters of this thesis are based on research papers which are in various stages of publication.

Specifically, Chapter 2 corresponds to [37] (co-authored with John Mackey and Mitchell Lee),

Chapter 3 to [36], Chapter 4 to a section of [22] (co-authored with Alan Frieze and Simcha

Haber), Chapter 5 to [38] (co-authored with Po-Shen Loh), and Chapter 6 to [39] (also co-

authored with Po-Shen Loh).
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Chapter 2

Improved Upper and Lower Bounds on a

Geometric Ramsey Problem

2.1 Background

2.1.1 The parameter sets theorem

Let A be a finite set with at least 2 elements, and An the set of n-tuples of elements of A. Fix

a finite group G which acts on A. We define a k-parameter subset of An to be the image of an

injection f : Ak → An such that for all 1 ≤ i ≤ n, fi has one of two forms:

1. either there is some a ∈ A such that for all (x1, . . . , xk) ∈ Ak, fi(x1, . . . , xk) = a,

2. or there are some 1 ≤ j ≤ k and some σ ∈ G such that for all (x1, . . . , xk) ∈ Ak,

fi(x1, . . . , xk) = σ(xj).

The requirement that f is an injection is equivalent to asking that for all 1 ≤ j ≤ k, there exist

i, σ such that fi(x1, . . . , xk) = σ(xj). Notably, if f defines a t-parameter subset of An, and g

defines a k-parameter subset of At, then f ◦ g defines a k-parameter subset of An.

The n-parameter sets were introduced by Graham and Rothschild [28], who proved the fol-

lowing result:
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Theorem 2.1.1 (Graham–Rothschild Parameter Sets Theorem). Pick an alphabet A, a group G

acting on A, and integers 0 ≤ k ≤ t and r ≥ 2. Then there exists a N such that for all n ≥ N , if

the k-parameter subsets of An are colored one of r colors, then some t-parameter subset of An

can be found, all of whose k-parameter subsets receive the same color.

For the remainder of this chapter, we will only consider 2-colorings (r = 2) and, when

necessary, we will call these two colors “red” and “blue”.

There are several special cases of Theorem 2.1.1 which are of interest.

Graham’s number

Take A = {±1}, and let G be the group of both permutations of A: {x 7→ x, x 7→ −x}. Then

any two points in {±1}n form a 1-parameter set. More generally, a d-parameter set consists of

2d points that lie on a d-dimensional affine subspace of Rn (if we include {±1}n ⊂ Rn in the

natural way). We will also call this a d-dimensional subcube of {±1}n.

An edge-coloring of {±1}n is a 2-coloring of the edges of the complete graph on the 2n

points of {±1}n: a coloring of the 1-parameter subsets of {±1}n. Let Graham(d) be the smallest

dimension n such that every edge-coloring of the n-dimensional cube contains a monochromatic

d-dimensional subcube. Then Theorem 2.1.1 implies that Graham(d) exists and is finite for all

d.

In particular, Graham(2) is the smallest dimension n such that every edge-coloring of {±1}n

contains a monochromatic planar K4: a set of 4 coplanar points in {±1}n such that all 6 edges

between them are the same color. An incredibly large upper bound on Graham(2) was popular-

ized as “Graham’s number” by Martin Gardner [24], and appeared in the 1980 Guinness Book

of World Records as the highest number ever used in a mathematical proof.

8



The Hales–Jewett number

Take A = [t] := {1, 2, . . . , t}, let G = {e}, and color the 0-parameter sets of [t]n, which is

equivalent to coloring elements of [t]n. A 1-parameter set in [t]n is called a combinatorial line,

and a d-parameter set is called a d-dimensional combinatorial space.

The Hales–Jewett number HJ(t, r) be the least dimension n such that every r-coloring of

[t]n contains a monochromatic combinatorial line. More generally, HJ(t, r, d) is the least dimen-

sion n such that every r-coloring of [t]n contains a monochromatic d-dimensional combinatorial

space.

The Hales–Jewett number is probably the most well-studied of the three problems. In [46],

Shelah proved a primitive recursive upper bound on HJ(t, r, d).

The tic-tac-toe number

Again consider coloring the elements of [t]n, but this time allow a wider variety of d-parameter

subsets: let G = {e, π}, which acts on [t] by e(x) = x and π(x) = t + 1 − x. A 1-parameter

subset using this G is called a tic-tac-toe line, and a d-parameter subset a d-dimensional tic-

tac-toe space. We define the tic-tac-toe numbers TTT(t, r) and TTT(t, r, d) analogously to the

Hales–Jewett numbers.

Since the same set of points is colored, but more subsets are acceptable, it is clear that

TTT(t, r, d) ≤ HJ(t, r, d). Furthermore, it is easily shown that for all t, r, and d, HJ(dt/2e , r, d) ≤

TTT(t, r, d), so the overall behavior of the tic-tac-toe numbers and Hales–Jewett numbers are

similar. However, for small values of t (and we will only consider the case t = 4) the behavior of

these two bounds is potentially quite different, and it is therefore worthwhile to state our results

in terms of the tic-tac-toe number instead.
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2.1.2 Previous results on Graham(d)

In [28], Graham and Rothschild observed that Graham(2) ≥ 6, and conjectured that Graham(2) <

10. This conjecture has been proven false, but not by much: the lower bound was later improved

to 11 by Exoo [19] and then to 13 by by Barkley [3].

The upper bound is a more complicated story. Most sources list the bound from [28] as the

best upper bound known. However, by combining several known results in a straightforward

way, we see that there is a primitive recursive upper bound on Graham(d).

First, by using Theorem 5.1 in [12], we can reduce Graham(d) to an application of Theo-

rem 2.1.1 in which G = {e}, at the cost of increasing k and t: we now look for 2d-parameter

sets with monochromatic 2-parameter subsets. Theorem 2.2 in [46] now applies, and gives the

primitive recursive bound on Graham(d) which follows.

Let m be the diagonal Ramsey number R(2d) (e.g., for d = 2, m = 18). Then Graham(d) ≤

km, where k0, . . . , km are defined recursively by

k0 = 0, ki+1 = ki + HJ(ki + 2, 2(2d+2)ki+m−i−1

).

2.1.3 New results

Our primary results are the following improved bounds on Graham(d) and especially Graham(2):

Theorem 2.1.2. TTT(4, 2, d) + 1 ≤ Graham(d+ 1).

Theorem 2.1.3. Graham(2) ≤ TTT(4, 2, 6) + 1.

To convert this to a numerical upper bound, we resort to Knuth’s up-arrow notation, defined

in Section 2.5. In particular, if we bound TTT(4, 2, 6) by HJ(4, 2, 6), then by Lemma 2.5.2,

which analyzes the growth rate of Shelah’s bound on HJ(t, k, d), we have Graham(2) ≤ 2 ↑↑

(2 ↑↑ (2 ↑↑ 9)) < 2 ↑↑↑ 6. This is a significant improvement on all previously known bounds.

The proof of Theorem 2.1.3, however, is not completely satisfactory. For Lemma 2.2.2, which

states that under some strong simplifying assumptions a monochromatic K4 exists in dimension
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n = 6 (a tight bound), we only have a computer-aided proof. However, a weaker version of this

lemma can be easily shown, yielding:

Theorem 2.1.4. There exists a positive integer d, e.g. d = 2 ↑↑ 18, such that Graham(2) ≤

TTT(4, 2, d) + 1.

This is still easily strong enough to yield 2 ↑↑↑ 6 as an upper bound.

We also consider a simpler problem: given an edge-coloring {±1}n, to find a monochromatic

planar rectangle. The points defining a rectangle are still a 2-parameter set; however, rather

than requiring that all 6 edges between them are monochromatic, we only consider the 4 edges

between “adjacent” points.

This simplified problem has a much smaller upper bound:

Theorem 2.1.5. An edge-coloring of {±1}78 necessarily contains a monochromatic planar square

whose sides have Hamming length 2.

2.2 Bounds on Graham(d)

2.2.1 Setup

Let Q be the cube {±1}n+1 with coordinates numbered 0, . . . , n. Let Q− = {x ∈ Q : x0 = −1}

and Q+ = {x ∈ Q : x0 = +1}.

Let φ : {±1}2 → [4] be given by φ(−1,−1) = 1, φ(−1,+1) = 2, φ(+1,−1) = 3,

φ(+1,+1) = 4. We use φ to define a bijection Φ from the edges Q− ×Q+ to [4]n:

Φ(x, y) = (φ(x1, y1), . . . , φ(xn, yn)).

For a (d + 1)-dimensional subcube of Q, there are three possibilities: either it is contained

entirely in Q−, or entirely in Q+, or half of its vertices are in Q− and half are in Q+. In the

third case, we call the subgraph formed by the edges of the subcube going from Q− to Q+ a

d-dimensional hyperbowtie (the name is formed by analogy with the case d = 1, in which case

the four edges make a bowtie shape).
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Lemma 2.2.1. If S ⊆ Q− ×Q+ is a set of edges of Q, then S is a d-dimensional hyperbowtie if

and only if Φ(S) is a d-dimensional tic-tac-toe subspace of [4]n.

Proof. Let f : {±1}d+1 → {±1}n+1 be a function whose image is a (d + 1)-dimensional

subcube half contained in Q− and half in Q+. Then f0 cannot be constant; because so far,

all coordinates of {±1}d+1 are symmetric, we may assume that f0(x0, . . . , xd) = x0. Define

g : [4]d → [4]n as follows: if (z1, . . . , zd) ∈ [4]d, let (xi, yi) = φ−1(zi) for 1 ≤ i ≤ d, and let

g(z1, . . . , zd) = Φ(f(−1, x1, . . . , xd), f(+1, y1, . . . , yd)). As z varies, the edge from (−1, x) to

(+1, y) varies over all edges in S, the d-dimensional hyperbowtie corresponding to the image of

f . Therefore the image of g is Φ(S).

For each coordinate 1 ≤ i ≤ d, we consider all possibilities for fi, and check what form gi

then has:

• If fi(x) = a for a constant a ∈ {±1}, then fi(−1, x1, . . . , xd) = a and fi(+1, y1, . . . , yd) =

a, and so gi(z) = φ(a, a) which is a constant: either φ(−1,−1) = 1 or φ(1, 1) = 4.

• If fi(x) = ax0 for a ∈ {±1}, then fi(−1, x1, . . . , xd) = −a and fi(+1, y1, . . . , yd) = a,

so gi(z) = φ(−a, a) which is a constant: either φ(−1, 1) = 2 or φ(1,−1) = 3.

• If fi(x) = xj , for j ≥ 1, then gi(z) = φ(xj, yj) = zj .

• If fi(x) = −xj , for j ≥ 1, then gi(z) = φ(−xj,−yj). It can be checked that φ(−x,−y) =

5− φ(x, y), and so gi(z) = 5− φ(xj, yj) = 5− zj .

Therefore g has the correct form for the image of g to be a d-dimensional tic-tac-toe sub-

space. Moreover, every possibility for gi can be obtained by some choice of fi, and so every

d-dimensional tic-tac-toe subspace can be obtained in this way: as the image under Φ of a d-

dimensional hyperbowtie.

2.2.2 The lower bound

Proof of Theorem 2.1.2. Let n = Graham(d+ 1)− 1 and let Q be the cube {±1}n+1.
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Pick an arbitrary 2-coloring of [4]n. The map Φ is a bijection between [4]n and those edges

of Q which change the first coordinate, so we use this bijection to assign those edges a color. To

color the remaining edges, we assign the edge from (x0, x1, . . . , xn) to (y0, y1, . . . , yn), where

x0 = y0, the same color as the edge from (−1, x1, . . . , xn) to (+1, y1, . . . , yn).

Because n + 1 = Graham(d + 1), a (d + 1)-dimensional subcube of Q is monochromatic.

Suppose this subcube is half contained in Q+ and half in Q−. Then the edges of the subcube

contained in Q+×Q− form a monochromatic d-dimensional hyperbowtie, and by Lemma 2.2.1,

Φ maps it to a monochromatic d-dimensional tic-tac-toe space in [4]n.

Now consider the other possibility: the subcube is entirely contained in Q+ or Q−. Let i

be the first coordinate which is not constant on this subcube. We restrict our attention to the 4d

edges in the subcube which change coordinate i: edges from (x0, . . . , xi−1,−1, xi+1, . . . , xn) to

(y0, . . . , yi−1,+1, yi+1, . . . , yn), where x0 = y0, x1 = y1, . . . , xi−1 = yi−1. Alter each edge by

replacing x0 with −1 and y0 with +1. By construction, the new edge has the same color, so the

edges we obtain will also be monochromatic. But now the edges we get form a d-dimensional

hyperbowtie, and we use Lemma 2.2.1 again to obtain a monochromatic d-dimensional tic-tac-

toe space in [4]n.

Therefore we have shown that [4]n always contains a monochromatic d-dimensional tic-tac-

toe space, and so n ≥ TTT(4, 2, d).

2.2.3 A special case

To prove the upper bound on Graham(2), we will first state a lemma about a special case of this

problem.

Lemma 2.2.2. Suppose the cube {±1}6 is 2-colored so that all parallel edges receive the same

color. Then the cube contains a monochromatic planar K4.

Unfortunately, we do not have a proof of this lemma. However, with the parallel edge as-

sumption, we can write a Boolean formula with 364 variables which is satisfied if and only if a

13



coloring with no monochromatic planarK4 exists. The Boolean satisfiability problem is tractable

on instances of this size, and a computerized search showed that no solutions exist.

It is possible, however, to prove a weaker version of the lemma.

Lemma 2.2.3. Let n = 2 ↑↑ 18, and suppose the cube {±1}n is 2-colored so that all parallel

edges receive the same color. Then the cube contains a monochromatic planar K4.

Proof. An equivalence class of parallel edges in the cube {±1}n can be described by a direction

a ∈ {−1, 0, 1}n, corresponding to all possible edges of the form (x−a, x+a) for some x; a and

−a represent the same direction.

We define addition and subtraction of directions componentwise. In order for a+ b and a− b

to also be directions, we require that a and b have disjoint support: for all 1 ≤ i ≤ n, at most one

of ai and bi are nonzero. (Otherwise, we risk that ai ± bi 6∈ {−1, 0, 1}.)

Suppose that, for two directions a and b with disjoint support, the four directions a, b, a + b,

and a− b are all the same color. Choose x ∈ {−1, 0, 1}n such that for all 1 ≤ i ≤ n, exactly one

of ai, bi, and xi is nonzero, and let P = x− a− b, Q = x− a+ b, R = x+ a− b, S = x+ a+ b.

Then PQRS is a monochromatic planar K4: edges PR and QS have direction a, PQ and RS

have direction b, PS has direction a+ b, and QR has direction a− b. Therefore it suffices to find

a monochromatic set of directions a, b, a+ b, a− b.

We appeal to the finite unions theorem also proven in [28] by Graham and Rothschild:

Theorem 2.2.1 (Finite Unions Theorem (Corollary 3 in [28])). Given integers ` and r, there

exists an integer N = N(`, r) such that if the subsets of [N ] are r-colored, there exist ` disjoint

nonempty subsets S1, . . . , S` of [N ] such that all 2`−1 unions
⋃
j∈J Sj with J ⊆ [`], J 6= ∅, have

one color.

We take ` = 4 and r = 2 in this result, and will later verify that N(4, 2) is no greater than

n = 2 ↑↑ 18. By the usual correspondence between subsets of [n] and elements of {0, 1}n,

the finite unions theorem lets us choose four directions a, b, c, d ∈ {0, 1}n with the following

properties:

14



• a, b, c, and d have disjoint support.

• The 15 directions a, . . . , d, a+ b, a+ c, . . . , c+ d, a+ b+ c, . . . , b+ c+ d, a+ b+ c+ d

are the same color (say, red).

If a − b is red, then {a, b, a + b, a − b} determine a red planar K4, so assume a − b is blue.

Similarly, if c− d is red, then {c, d, c + d, c− d} determine a red planar K4, so assume c− d is

blue.

If a− b+ c− d is red, then {a+ c, b+ d, a+ b+ c+ d, a− b+ c− d} determine a red planar

K4, so assume a− b+ c− d is blue. Similarly, if a− b− c+ d is red, then {a+ d, b+ c, a+ b+

c+ d, a− b− c+ d} determine a red planar K4, so assume a− b− c+ d is blue.

But now {a− b, c− d, a− b+ c− d, a− b− c+ d} determine a blue planar K4, and we have

what we wanted.

It remains to check that the dimension N(4, 2) in the finite unions theorem is not too large.

We rely on the second proof outlined in [29], p. 83.

Let n(k) be the dimension needed to obtain k directions a1, . . . , ak with the following prop-

erties: for each nonempty I ⊆ [k], the color
∑

i∈I a
i is determined only by max{I}. As a base

case, n(1) = 1, since then any direction suffices.

To go from n(k) to n(k + 1), let n = HJ(2, 2, n(k)) and choose a monochromatic n(k)-

dimensional combinatorial subspace of {0, 1}n. This can be described by directions b0, . . . , bn(k) ∈

{0, 1}n (with disjoint support) such that for all I ⊆ [n(k)], b0 +
∑

i∈I b
I is the same color (say,

red).

The set of all possible sums of b1, . . . , bn(k) is isomorphic to {0, 1}n(k), so we can find k direc-

tions a1, . . . , ak, which are sums of some of the bi and have the property we want. Furthermore,

let ak+1 = b0. Then for all nonempty I ⊆ [k + 1], the sum
∑

i∈I a
i is determined by max{I}:

this is true by the inductive hypothesis if max{I} ≤ k, and if max{I} = k + 1, the sum lies in

the combinatorial subspace we found, and is red. Therefore n(k + 1) ≤ n.

By the bound in [46], HJ(2, 2, d) ≤ 222d , so n(k + 1) ≤ 222n(k) ≤ 222
n(k)

. Since n(1) = 1 =
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2 ↑↑ 0, n(7) ≤ 2 ↑↑ 18.

Finally, if we take n = n(7), we can find seven directions a1, . . . , a7 as above. Choose four

of these that are the same color; then because
∑

i∈I a
i has the color of amax{I}, all their sums will

share that color, and we can use them above to obtain a monochromatic planar K4.

2.2.4 The upper bound

Proof of Theorem 2.1.3. Let n = TTT(4, 2, d), where d is either 6 or 2 ↑↑ 18, depending on

whether Lemma 2.2.2 or Lemma 2.2.3 is used. Let Q be the cube {±1}n+1. Given a 2-coloring

of the edges of Q, we consider just the edges from Q− to Q+, and apply Φ to them to get a

coloring of [4]n. This coloring must contain a monochromatic d-dimensional tic-tac-toe space;

by Lemma 2.2.1, its preimage in Q is a d-dimensional monochromatic hyperbowtie.

From now on, we will look only at the (d + 1)-dimensional subcube containing this hyper-

bowtie. What we know about this cube is that all edges which change the first coordinate (which

we will call the “middle” of the cube) are colored the same color, which may as well be red. The

remaining edges are contained in one of two d-dimensional cubes: the “top” and “bottom”.

We reduce the problem of finding a monochromatic planarK4 in this subcube to Lemma 2.2.2.

We color the edges of {±1}d as follows:

(1) An equivalence class of parallel edges is colored blue, if the corresponding edges on the

top are all colored blue.

(2) An equivalence class of parallel edges is colored red, if the corresponding edges on the

bottom are all colored blue, and (1) does not hold.

(3) If neither of these occurs, then there is a pair of parallel edges, one on the top and one on

the bottom, which are colored red. Together with four edges in the middle, which are also

red, they form a monochromatic planar K4.

We are done if (3) holds for some equivalence class of parallel edges. Otherwise, by Lemma 2.2.2

or Lemma 2.2.3, the coloring we obtain contains a monochromatic planar K4. If it is blue, then
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the corresponding K4 on the top is monochromatic blue. If it is red, then the corresponding K4

on the bottom is monochromatic blue.

2.3 Monochromatic planar squares

For a vertex v of the n-dimensional cube and 1 ≤ i ≤ n, let v ⊕ i denote the vertex obtained by

flipping the i-th coordinate of v. Whenever we refer to length or distance between two vertices,

it will be Hamming distance: the number of coordinates in which the two coordinates differ.

Lemma 2.3.1. For n ≥ 4, in any edge-coloring of the n-dimensional cube, at least 1
2
− 1

2bn2 c−2

of all right angles formed by edges of length 2 are monochromatic.

Proof. Choose a vertex v of the n-dimensional cube, and a permutation π of {1, . . . , n}.

Let k =
⌊
n
2

⌋
; for 1 ≤ i ≤ k, letwi = v⊕π(2i−1)⊕π(2i). Then the edges (v, w1), . . . , (v, wk)

are mutually perpendicular and have length 2. There are
(
k
2

)
pairs of edges in this set; the num-

ber of monochromatic pairs is minimized if k
2

of the edges are red, and k
2

are blue, for a total of

2
(
k/2
2

)
monochromatic pairs.

When k ≥ 2, the ratio of these is 1
2
− 1

2(k−1)
, which is the proportion of monochromatic pairs

among these edges. By averaging over all choices of v and π, we obtain the same proportion

over the entire cube.

Lemma 2.3.2. For n ≥ 4, in any edge-coloring of the n-dimensional cube, at least 1
2
− 1

2(n−3)

of all pairs of parallel edges of length 2, which are also at distance 2 from each other, are

monochromatic.

Proof. Choose a vertex v of the n-dimensional cube, and a permutation π of {1, . . . , n}.

Let k = n − 2; for 1 ≤ i ≤ k, let vi = v ⊕ π(i) and wi = vi ⊕ π(n − 1) ⊕ π(n). Then the

edges (v1, w1), . . . , (vk, wk) are all parallel, have length 2, and are at distance 2 from each other.

There are
(
k
2

)
pairs of edges in this set; the number of monochromatic pairs is minimized if k

2
of

the edges are red, and k
2

are blue, for a total of 2
(
k/2
2

)
monochromatic pairs.
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When k ≥ 2, the ratio of these is 1
2
− 1

2(k−1)
, which is the proportion of monochromatic pairs

among these edges. By averaging over all choices of v and π, we obtain the same proportion

over the entire cube.

Lemma 2.3.3. For n ≥ 5, in any edge-coloring of the n-dimensional cube, at most 14
15

of all 2×2

squares have an odd number of red edges.

Proof. Choose a vertex v of the n-dimensional cube, and a permutation π of {1, . . . , n}.

Let v1, . . . , v10 be v⊕ π(i)⊕ π(j), for 1 ≤ i < j ≤ 5. Using only edges of length 2 between

these vertices, 15 squares can be formed, which together use each edge exactly twice.

Assume for the sake of contradiction that these edges are colored so that all 15 squares have

an odd number of red edges. Represent the two colors, red and blue, by 1 and 0, and let the

sum of a square be the sum of the colors of its edges. The sums of all 15 squares must be odd,

so adding up all 15 sums, we also get an odd number. However, each edge is used twice and

therefore contributes an even number to this total; a contradiction.

Therefore at most 14
15

of these squares have an odd number of red edges. By averaging over

all choices of v and π, we obtain the same proportion over the entire cube.

Proof of Theorem 2.1.5. There are four types of colorings of 2× 2 squares, up to symmetry and

interchanging the two colors:

For n ≥ 5, fix an edge-coloring of the n-dimensional cube. We will use the four symbols

above to denote the proportions of 2× 2 squares of each type. By applying the lemmas, we can

write the following system of inequalities:

+ + + = 1 (2.1)

+
1

2
· +

1

2
· ≥ 1

2
− 1

2
⌊
n
2

⌋
− 2

(2.2)

+
1

2
· + ≥ 1

2
− 1

2(n− 3)
(2.3)
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≤ 14

15
. (2.4)

Solving for by taking 2 · (2) + (3)− (1)− 1
2
· (4), we get

2 · ≥ 1

30
− 1⌊

n
2

⌋
− 1
− 1

2(n− 3)
.

For n ≥ 78, the left-hand side is positive, and therefore a monochromatic 2×2 square exists.

2.4 Computer proof of Lemma 2.2.2

The following Mathematica code, which was used to verify Lemma 2.2.2, is also available at

http://www.math.cmu.edu/˜mlavrov/other/Graham.nb. The online version in-

cludes additional code which, for n ≤ 5, will draw an edge coloring containing no monochro-

matic planar K4.

2.4.1 Subroutines

Here we define several short subroutines that will be used in the next section to construct the

6-dimensional cube.

1. CanonicalForm: A class of parallel edges will be represented by an n-element list

of elements of {−1, 0, 1} indicating the edges’ direction in each coordinate. Each list

indicates the same class as its negation; CanonicalForm picks a canonical sign for

each such list.

CanonicalForm[edge_] := Last[Sort[{edge, -edge}]]

2. DisjointSupportQ: Returns True if two directions have disjoint support (in each

coordinate, at most one is nonzero); edges in these directions are perpendicular.

DisjointSupportQ[{edge1_, edge2_}] :=

Module[{support1, support2},
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support1 = Flatten[Position[edge1, 1 | -1]];

(* which elements of edge1 are nonzero *)

support2 = Flatten[Position[edge2, 1 | -1]];

(* which elements of edge2 are nonzero *)

Return[Intersection[support1, support2] == {}];

];

3. MakeK4FromRectangle: Given two directions (which are assumed to have disjoint

support, as above), completes them to a set of four directions spanning a planar K4.

MakeK4FromRectangle[{a_, b_}] :=

{a, b, CanonicalForm[a+b], CanonicalForm[a-b]};

4. NotMonochromatic: Given four directions, defines a Boolean formula on the corre-

sponding variables which is satisfied if and only if the variables are not all equal: in the

coloring interpretation, if and only if the corresponding planar K4 is not monochromatic.

NotMonochromatic[{a_, b_, c_, d_}] :=

(x[a]˜Or˜x[b]˜Or˜x[c]˜Or˜x[d])

˜And˜

Not[x[a]˜And˜x[b]˜And˜x[c]˜And˜x[d]]

2.4.2 Structure

Next, we initialize variables that store the structure of the cube: the parallel edge classes and the

planar K4’s they form.

1. n: the dimension of the cube.

n=6;

2. edges: all possible parallel edge classes, defined by whether they increase (+1), decrease

(1) or do not change (0) in each coordinate. We exclude the trivial direction which does
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not change any coordinate, and put each direction in canonical form, removing duplicates.

edges = Tuples[{-1, 0, 1}, n];

edges = Cases[edges, Except[{0 ..}]];

edges = DeleteDuplicates[Map[CanonicalForm, edges]];

3. rectangles: Two directions form the sides of a rectangle if they change disjoint sets of

coordinates.

rectangles = Select[Subsets[edges, {2}], DisjointSupportQ];

4. k4s: All planar K4’s are formed by the sides and diagonals of a rectangle.

k4s = Map[MakeK4FromRectangle, rectangles];

2.4.3 Satisfiability

Finally, we express the coloring problem as a SAT instance, which allows us to use Mathemat-

ica’s built-in commands to check that no solution exists.

For each direction (stored in edges), we have a binary variable, True or False depend-

ing on the color of the edge. The constraints are simply that no planar K4 (stored in k4s) is

monochromatic.

variables = Map[x, edges];

constraints = Map[NotMonochromatic, k4s];

formula = Apply[And, constraints];

The SatisfiabiliyInstances command attempts to assign values to the variables

(colors to the edges) satisfying the constraints, returning {} if this is impossible. Expect this

command to take several minutes to execute.

output = SatisfiabilityInstances[formula, variables]
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2.5 Rate of growth of Shelah’s Hales–Jewett bounds

We will make use of Knuth’s up-arrow notation. Let a ↑ b := ab; then define

a ↑↑ b = a ↑ (a ↑ (a ↑ · · · ↑ a))︸ ︷︷ ︸
b a′s

.

Finally, define

a ↑↑↑ b = a ↑↑ (a ↑↑ (a ↑↑ · · · ↑↑ a))︸ ︷︷ ︸
b a′s

.

We will use the following rules to rewrite expressions written in this notation:

• An expression of the form a ↑ a ↑ · · · ↑ a with arbitrarily-inserted parentheses is always

maximized when the parentheses are placed as in the definition of a ↑↑ b.

• Therefore (a ↑↑ b) ↑↑ c ≤ a ↑↑ (b · c), by expanding and rearranging the parentheses.

• Since (2 ↑↑ k)2 ≤ 2 ↑↑ (k + 1), it is also true that a · (2 ↑↑ k) < 2 ↑↑ (k + 1) for any

a < 2 ↑↑ k.

• Finally, a+ (2 ↑↑ k) < 2 · (2 ↑↑ k) ≤ 2 ↑↑ (k + 1), for any a < 2 ↑↑ k.

Lemma 2.5.1. If HJ(t− 1, 2, d) ≤ 2 ↑↑ m, then HJ(t, 2, d) ≤ 2 ↑↑ (2 ↑↑ (m+ 3)).

Proof. From [46], we know the following: suppose HJ(t − 1, r, d) = n. Then HJ(t, r, d) ≤

nf(n, rt
n
), where f(`, k) is defined recursively by f(1, k) = k+1 and f(`+1, k) = kf(`,k)2` +1.

We begin by bounding f(`, k) in up-arrow notation. Whenever we will need to find f(`, k),

we will have k > 2`. Thus, we can write f(`, k) < kf(`−1,k)k ; iterating this bound, and rearrang-

ing the parentheses, we get

f(`, k) < kk
k
. .
.
k

︸ ︷︷ ︸
2`

= k ↑↑ 2`.

Suppose HJ(t − 1, 2, d) ≤ 2 ↑↑ m. It is easy to check that HJ(t − 1, 2, d) ≥ t − 1, and

therefore t ≤ 1 + 2 ↑↑ m ≤ 2 ↑↑ (m+ 1). So we have 2t
n ≤ 2 ↑↑ (2m+ 2). Therefore

nf(n, 2t
n

) ≤ (2 ↑↑ m) · f(2 ↑↑ m, 2 ↑↑ (2m+ 2))

≤ (2 ↑↑ m) · [(2 ↑↑ (2m+ 2)) ↑↑ (2 · 2 ↑↑ m)]
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≤ (2 ↑↑ m) · [(2 ↑↑ (2m+ 2)) ↑↑ (2 ↑↑ (m+ 1))]

≤ (2 ↑↑ m) · [2 ↑↑ ((2m+ 2) · 2 ↑↑ (m+ 1))]

≤ (2 ↑↑ m) · [2 ↑↑ (2 ↑↑ (m+ 2))]

≤ 2 ↑↑ (1 + 2 ↑↑ (m+ 2))

≤ 2 ↑↑ (2 ↑↑ (m+ 3)).

Lemma 2.5.2. HJ(4, 2, 6) < 2 ↑↑ (2 ↑↑ (2 ↑↑ 9)) < 2 ↑↑↑ 6.

Proof. The doubly exponential bound on HJ(2, 2, 6) from [46] yields HJ(2, 2, 6) ≤ 2212 < 2 ↑↑

5. Applying Lemma 2.5.1, we get HJ(3, 2, 6) < 2 ↑↑ (2 ↑↑ 8), and

HJ(4, 2, 6) < 2 ↑↑ (2 ↑↑ (3 + 2 ↑↑ 8))

< 2 ↑↑ (2 ↑↑ (2 ↑↑ 9))

< 2 ↑↑ (2 ↑↑ (2 ↑↑ 65536))

= 2 ↑↑ (2 ↑↑ (2 ↑↑ (2 ↑↑ (2 ↑↑ 2))))

= 2 ↑↑↑ 6.

With d = 2 ↑↑ 18 in place of 6, we have HJ(2, 2, d) ≤ 222·(2↑↑18) < 2 ↑↑ 21 instead. Applying

Lemma 2.5.1, we get HJ(3, 2, d) < 2 ↑↑ (2 ↑↑ 24), and

HJ(4, 2, d) < 2 ↑↑ (2 ↑↑ (3 + 2 ↑↑ 24))

< 2 ↑↑ (2 ↑↑ (2 ↑↑ 25)).
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Chapter 3

An Upper Bound for the Hales–Jewett

Number HJ(4, 2)

3.1 Background

Consider r-colorings of the n-dimensional grid [t]n = {1, 2, . . . , t}n. We define a combinatorial

line in [t]n to be an injective function ` : [t]→ [t]n such that for each coordinate 1 ≤ i ≤ n, `i is

either constant or the identity function on [t]. An example of such a line in [4]5 is the function

`(x) = (3, x, 1, x, 4)

whose image is the set of four points {(3, 1, 1, 1, 4), (3, 2, 1, 2, 4), (3, 3, 1, 3, 4), (3, 4, 1, 4, 4)}. A

classic result in Ramsey theory, the Hales–Jewett Theorem [30], asserts that for all values of the

parameters t and r, there exists a sufficiently large n such that any r-coloring of [t]n will contain a

monochromatic combinatorial line (that is, a line such that the points in its image are all assigned

the same color). The Hales–Jewett number HJ(t, r) is defined to be the least n which suffices.

A pigeonhole argument is enough to show that HJ(2, r) = r for all r. Moreover, Hindman

and Tressler [31] have shown that HJ(3, 2) = 4. For more difficult cases, no exact values are

known, and the best upper bounds were shown by Shelah [46]. For HJ(4, 2), this upper bound
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is already enormous. Shelah proves that if HJ(t− 1, r) ≤ n, then HJ(t, r) ≤ nf(n, rt
n
), where

f(`, k) is an upper bound for a related problem that satisfies k ↑↑ ` ≤ f(`, k) ≤ k ↑↑ (2`).

Starting from HJ(3, 2) = 4, we get a bound for HJ(4, 2) between 2 ↑↑ 7 and 2 ↑↑ 8.

On the other hand, the best lower bounds for the Hales–Jewett numbers, which can be ob-

tained from the van der Waerden theorem (as in [46]), are very far away from these upper bounds.

For instance, the integers {1, 2, . . . , 34} can be 2-colored in such a way that no 4-term arithmetic

progression is monochromatic [13]. This coloring can be used to define a coloring of [4]11 with

no monochromatic combinatorial line, by coloring a point (x1, x2, . . . , x11) with the color of

x1 + x2 + · · · + x11 − 10, which shows that HJ(4, 2) > 11. In general, this argument yields

merely exponential lower bounds on the Hales–Jewett numbers: Berlekamp [5] showed that for

prime p, we can 2-color p · 2p consecutive integers with no monochromatic p-term arithmetic

progression. This opens up the possibility that the true values of the Hales–Jewett numbers may

be much smaller.

We find a much smaller upper bound on HJ(4, 2), proving the following result:

Theorem 3.1.1. Whenever the 1011-dimensional grid [4]1011 is 2-colored, there exists a monochro-

matic combinatorial line. That is, HJ(4, 2) ≤ 1011.

3.2 Setup

Given a combinatorial line ` : [4]→ [4]n, we define its length |`| to be the number of coordinates

1 ≤ i ≤ n for which `i(x) varies with x. For example, the line given by `(x) = (3, x, 1, x, 4)

has length 2. (To justify this terminology, note that |`| is the Hamming distance between the two

endpoints `(1) and `(4), or indeed between any two points of `.)

Fix a 2-coloring of [4]n. For each length k, we classify the combinatorial lines of length k

into three types, and count their densities:

• p2(k) is the fraction of lines of length k which have 2 points of each color.
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• p3(k) is the fraction of lines of length k which have 3 points of one color, and 1 of the

other.

• p4(k) is the fraction of monochromatic lines of length k.

Since this classification is exhaustive, we have p2(k) + p3(k) + p4(k) = 1.

We are also interested in the fraction of pairs of collinear points (on lines of length k) assigned

the same color. On each line, there are 6 pairs of points. For lines counted by p2, 2 pairs are

monochromatic; for lines counted by p3, 3 pairs are monochromatic; for lines counted by p4, all

6 pairs are monochromatic. Therefore

q(k) :=
1

3
p2(k) +

1

2
p3(k) + p4(k) (3.1)

counts the fraction of monochromatic pairs of points on lines of length k.

The grid [4]n contains large “cliques”: sets of points in which any two are collinear. In such a

clique, the number of monochromatic pairs is least when the colors are balanced, and even then

is close to 1
2
. Thus, we expect that for at least some lengths k, q(k) > 1

2
− ε for some ε that goes

to 0 with n. This intuition is correct in a way that we will make more precise.

If we could show the stronger statement that q(k) > 1
2

for some k, the proof would be

complete: p4(k) occurs in (3.1) with a coefficient greater than 1
2
, so we would know that p4(k) >

0, which means that a monochromatic line exists.

Even if q(k) < 1
2
, a large value of q(k) gives partial information: either p4(k) > 0, or else

p3(k) is close to 1. Therefore we can also prove that p4(k) > 0 by showing that for some k, q(k)

is close to 1
2
, but p3(k) is bounded away from 1. More formally, we can solve (3.1) for p4(k)

(substituting p2(k) = 1− p3(k)− p4(k)) to get

p4(k) =
3

2

(
q(k)− 1

6
p3(k)− 1

3

)
. (3.2)

We will prove that a monochromatic line exists by showing that the right-hand side of (3.2) is

positive for some k.
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3.3 Showing that q(k) is close to 1
2

It is hopeless to show that q(k) approaches 1
2

for any individual k. For example, the “checker-

board” coloring, which colors a point by the sum of its coordinates modulo 2, has p2(k) = 1, and

therefore q(k) = 1
3
, for all odd k. Instead, we prove an inequality for a weighted sum of the first

s values of q(k), where s is a parameter to be determined later.

3.3.1 A bound for n-dimensional hypercubes

We begin by considering collinear pairs in the hypercube [2]n. Here, lines consist of only 2

points, and therefore q(k), defined as before, simply counts monochromatic lines of length k.

Lemma 3.3.1. For every s ≤ n, whenever [2]n is 2-colored,
s∑

k=1

(s− k + 1)q(k) ≥ s2 − 1

4

(
1− s

√
2

πn

)
. (3.3)

Proof. The hypercube [2]n is the union of n! chains of length n+1: maximal sequences of points

C0, . . . , Cn such that any two points Ci and Cj are collinear. For each permutation σ of [n], we

obtain such a chain by letting Ci(σ) be the point with 2 in the coordinates σ(1), σ(2), . . . , σ(i)

and 1 in all others. The line through Ci(σ) and Cj(σ), for i < j, has length j − i. Any

permutation σ′ such that {σ(1), . . . , σ(i)} = {σ′(1), . . . , σ′(i)} and {σ(i + 1), . . . , σ(j)} =

{σ′(i + 1), . . . , σ′(j)} will satisfy Ci(σ) = Ci(σ
′) and Cj(σ) = Cj(σ

′); therefore Ci(σ) and

Cj(σ) occur together in i!(j − i)!(n− j)! chains.

Fix any 2-coloring of [2]n. Let Qi,j(σ) = 1 if Ci(σ) and Cj(σ) are given the same color, and

0 otherwise. There are
(
n
k

)
2n−k total lines of length k; if a q(k) fraction of them are monochro-

matic, the number of monochromatic lines is
(
n
k

)
2n−kq(k). We can express this quantity in terms

of the indicators Qi,j(σ) as:(
n

k

)
2n−kq(k) =

∑
σ

n−k∑
i=0

Qi,i+k(σ)

i!k!(n− i− k)!

=
1

n!

(
n

k

)∑
σ

n−k∑
i=0

(
n− k
i

)
Qi,i+k(σ).
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Therefore

q(k) =
1

n!

∑
σ

(
n−k∑
i=0

(
n−k
i

)
2n−k

Qi,i+k(σ)

)
. (3.4)

Let

q(k, σ) =
n−k∑
i=0

(
n−k
i

)
2n−k

Qi,i+k(σ).

Then equation (3.4) shows that q(k) is the average of q(k, σ) over all σ. To complete the proof of

Lemma 3.3.1, it suffices to show that for each permutation σ, inequality (3.3) holds with q(k, σ)

in place of q(k).

Define wi,j :=
(n−(j−i)

i )
2n−(j−i) , a shorthand for the coefficient of Qi,j(σ) in q(j − i, σ). We have

s∑
k=1

(s− k + 1)q(k, σ) ≥
n−s∑
h=0

 ∑
i,j∈[h,h+s]

i<j

wi,jQi,j(σ)

 (3.5)

because each pair i, j is contained in at most s− (j − i) + 1 intervals [h, h + s] (fewer if j < s

or i > n − s), and so each term wi,jQi,j(σ) occurs in the right-hand side of (3.5) for at most

s− (j − i) + 1 values of h.

Each sum ∑
i,j∈[h,h+s]

i<j

wi,jQi,j(σ)

counts (with varying weights) the number of monochromatic pairs among the s+1 points Ch(σ),

Ch+1(σ), . . . , Ch+s(σ), any two of which are collinear. There must be at least 2
(

(s+1)/2
2

)
= s2−1

4

such pairs; their number is minimized if half the points receive one color and half receive the

other. We do not know which weights correspond to those pairs. However, at the very least, we

have the lower bound ∑
i,j∈[h,h+s]

i<j

wi,jQi,j(σ) ≥ s2 − 1

4
w∗h,

where w∗h is the least of all weights wi,j for i, j ∈ [h, h + s] with i ≤ j. (We allow i = j to

simplify calculations later, though such a weight does not occur in the sum.) Substituting this
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lower bound into inequality (3.5), we get

s∑
k=1

(s− k + 1)q(k, σ) ≥ s2 − 1

4

n−s∑
h=0

w∗h.

It remains to find a lower bound for the sum of the w∗h.

From Pascal’s identity it follows that wi,j = 1
2
(wi−1,j + wi,j+1). Therefore each coefficient

wi,j is a weighted average of some of the coefficients

wh,h, wh,h+1, . . . , wh,h+s, wh+1,h+s, . . . , wh+s,h+s.

Since all of these coefficients are included in the minimum defining w∗h, we know that w∗h must

be one of these. Furthermore, this sequence is unimodal, so w∗h = min{wh,h, wh+s,h+s}.

The sequencew0,0, w1,1, . . . , wn,n is just the sequence (n0)
2n
,
(n1)
2n
, . . . ,

(nn)
2n

, and is also unimodal.

So the sum
∑n−s

h=0w
∗
h will begin by summing wh,h and eventually switch to summing wh+s,h+s,

skipping some s terms. Therefore

n−s∑
h=0

w∗h ≥
n∑
h=0

wh,h − s max
0≤h≤n

wh,h = 1− s

(
n
bn/2c

)
2n

≥ 1− s
√

2

πn
.

It follows that
s∑

k=1

(s− k + 1)q(k, σ) ≥ s2 − 1

4

(
1− s

√
2

πn

)
and by averaging this inequality over all permutations σ and applying equation (3.5), we obtain

the desired inequality (3.3).

3.3.2 Extending the bound to the grid [4]n

By giving away another error term, we can extend Lemma 3.3.1 to all collinear pairs in [4]n.

Lemma 3.3.2. For every s ≤ n
4
, whenever [4]n is 2-colored,

s∑
k=1

(s− k + 1)q(k) ≥ s2 − 1

4

(
1− e−(n−s)/8 − 3s

√
2

π(n− s)

)
.
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Proof. We say that a collinear pair of points `(a), `(b) for some line ` and some a, b ∈ [4] has

type m if there are m coordinates in total in which either point is equal to a or b; in other words,

`i(x) is the constant a or b form−|`| values of i. We define q(k,m) to be the fraction of collinear

pairs of type m and on lines of length k which are monochromatic.

The type of a collinear pair matters because a collinear pair of type m is contained in the

m-dimensional subcube of [4]n obtained by letting all m coordinates of either point which are

equal to a or b vary freely between the two values. In thism-dimensional subcube, two points are

collinear if and only if the corresponding points of {a, b}m (obtained by dropping all coordinates

not equal to a or b) are collinear, so it has the structure of the hypercube [2]m. The fraction of

collinear pairs in this subcube which are monochromatic satisfies Lemma 3.3.1. By averaging

over all m-dimensional subcubes, which cover each collinear pair of type m exactly once, we

obtain
s∑

k=1

(s− k + 1)q(k,m) ≥ s2 − 1

4

(
1− s

√
2

πm

)
. (3.6)

There are 6
(
n
k

)
4n−k collinear pairs on lines of length k; of them,

(
m
k

)
2m−k are in each m-

dimensional subcube, and there are 6
(
n
m

)
2n−m such subcubes. So the fraction of lines of length k

which have type m is (
m
k

)
2m−k

(
n
m

)
2n−m(

n
k

)
4n−k

=

(
n−k
m−k

)
2n−k

.

Therefore we may express q(k) as a weighted average of all the q(k,m) by

q(k) =
n∑

m=k

(
n−k
m−k

)
2n−k

q(k,m). (3.7)

Unfortunately, the weight of q(k,m) in this average depends on k as well as m, which pre-

vents us from simply averaging inequality (3.6) over all m. To fix this problem, we replace the

weights in (3.7) by lower bounds independent of k, which will result in an inequality relating

q(k) to q(k,m). (We will assume that 1 ≤ k ≤ s ≤ n
4
.)

For m ≤ n
4
, our lower bound will be 0: we drop all terms where m is too low, because the

statement of inequality (3.6) is too weak in such cases. Otherwise, we want to replace the weight

by the minimum of
(
n−k
m−k

)
2−(n−k) over all k ≤ s.
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From Pascal’s identity, we have
(
n
r

)
2−n = 1

2

((
n−1
r−1

)
2−(n−1) +

(
n−1
r

)
2−(n−1)

)
. Applying this

iteratively, we can express each
(
n−k
m−k

)
2−(n−k) as a weighted average of some of(

n−s
m−s

)
2n−s

,

(
n−s

m−s+1

)
2n−s

, . . . ,

(
n−s
m

)
2n−s

.

This sequence is unimodal, so the minimum is achieved at one of the endpoints, and we may

replace equation (3.7) by

q(k) ≥
n∑

m=n/4

min
{(

n−s
m−s

)
,
(
n−s
m

)}
2n−s

q(k,m). (3.8)

Sum the inequality (3.6) over all m ≥ n
4

with weights as in inequality (3.8). The right-hand

side of (3.8) will be smallest when m = n
4
, so we may use that value for all m. We obtain

s∑
k=1

(s− k + 1)q(k) ≥ s2 − 1

4

(
1− s

√
2

πn/4

)
n∑

m=n/4

min
{(

n−s
m−s

)
,
(
n−s
m

)}
2n−s

. (3.9)

It remains to simplify the right-hand side.

The omission of the first n/4 terms of the sum in (3.9) results in an error of
∑

m<n/4

(
n−s
m−s

)
2−(n−s),

which is simply the binomial probability Pr[Bin(n − s, 1
2
) < n

4
− s]. By the Chernoff bound

(see, e.g., [1]),

Pr
[
Bin(n− s, 1

2
) <

n

4
− s
]
< Pr

[
Bin(n− s, 1

2
) <

n− s
4

]
≤ exp

(
−n− s

8

)
.

With these initial terms, the sum in (3.9) would be equal to 1, except for skipping s terms

near the middle, which occurs when the minimum switches from selecting
(
n−s
m−s

)
to selecting(

n−s
m

)
. Each of these terms is at most

(
n−s

(n−s)/2

)
2−(n−s) ≤

√
2

π(n−s) , so we lose at most s times

this quantity. Therefore the sum in inequality (3.9) satisfies

n∑
m=n/4

min
{(

n−s
m−s

)
,
(
n−s
m

)}
2n−s

≥ 1− e−(n−s)/8 − s

√
2

π(n− s)
.

Combining the two error terms, we complete the proof.
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3.4 Showing that p3(k) cannot be arbitrarily close to 1

In this section, we say that a combinatorial line in a 2-colored grid [4]n is odd if it has an odd

number of points of each color. That is, an odd line has 3 points of one color and 1 point of the

other, so it is exactly the type of line counted by p3(k).

To bound p3(k) away from 1, we first find a set of lines in [4]4 which cannot all be odd:

Lemma 3.4.1. Whenever [4]4 is 2-colored, the 15 lines

`1(x) = (x, 2, 3, 4) `6(x) = (x, 2, x, 4) `11(x) = (x, x, x, 4)

`2(x) = (1, x, 3, 4) `7(x) = (x, 2, 3, x) `12(x) = (x, x, 3, x)

`3(x) = (1, 2, x, 4) `8(x) = (1, x, x, 4) `13(x) = (x, 2, x, x)

`4(x) = (1, 2, 3, x) `9(x) = (1, x, 3, x) `14(x) = (1, x, x, x)

`5(x) = (x, x, 3, 4) `10(x) = (1, 2, x, x) `15(x) = (x, x, x, x)

cannot all be odd.

Proof. A key observation is that each point of [4]4 lies on an even number of these lines. The

point (1, 2, 3, 4) lies on the 4 lines of length 1, and no other. Take any other point (x1, x2, x3, x4)

expressible as `j(x) for some index j and some x ∈ {1, 2, 3, 4}. Any coordinate i where xi 6= i

must be a variable coordinate of `j; any coordinate i where xi = i 6= x must be a constant

coordinate of `j . There is always exactly one coordinate where xi = i = x, so there are 2

choices for j, depending on whether that coordinate is variable or constant.

If [4]4 is 2-colored, choose either of the colors, and add up the number of points of that color

on each of the fifteen lines. This total must be even, because each point is counted an even

number of times. However, 15 odd numbers cannot add up to an even total, so one of the lines

must contribute an even number. Therefore not all 15 lines can be odd.

Structures isomorphic to the set of lines `1, . . . , `15 occur many times in [4]n, and in each

such structure at most 14
15

of the lines are odd. So our next step is to show that by (more or less)
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averaging over all such structures, we get an upper bound of 14
15

for the overall densities of odd

lines of certain lengths, up to an error term.

Lemma 3.4.2. For every k ≤ n
4
, whenever [4]n is 2-colored,(

1− 16k2

n

)(
4

15
p3(k) +

6

15
p3(2k) +

4

15
p3(3k) +

1

15
p3(4k)

)
≤ 14

15
. (3.10)

Proof. Fix a 2-coloring of [4]n and some k ≤ n
4
. Let a k-embedding of [4]4 into [4]n be a

function L : [4]4 → [4]n such that for each coordinate 1 ≤ i ≤ n, Li is either constant or given

by Li(x1, x2, x3, x4) = xj for some j ∈ {1, 2, 3, 4}. Moreover, we require that for each j, there

are exactly k coordinates in which Li varies with xj . Let Lk be the set of all k-embeddings

[4]4 → [4]n.

Each L ∈ Lk induces a 2-coloring of [4]4, by taking the preimage under L of the coloring of

[4]n. Moreover, a line ` : [4]→ [4]4 corresponds to a line L ◦ ` : [4]→ [4]n, with |L ◦ `| = k|`|,

which is odd if and only if ` is odd in the induced coloring.

Count the number of odd lines L ◦ `j , where L ∈ Lk and `j is one of the 15 lines of

Lemma 3.4.1. For a fixed L, at most 14 of the lines L ◦ `j are odd; therefore we count at

most 14|Lk| odd lines total.

Let P3(k) be the number of odd lines of length k in [4]n, related to the density p3(k) by

P3(k) =
(
n
k

)
4n−kp3(k). If each line of length k could be expressed M(k) times as L ◦ `j , we

would have the inequality

M(k)P3(k) +M(2k)P3(2k) +M(3k)P3(3k) +M(4k)P3(4k) ≤ 14|Lk|. (3.11)

Unfortunately, the number of ways to express a line ` : [4] → [4]n as L ◦ `j depends on `;

specifically, on the number of coordinates of ` with each constant value. Inequality (3.11) still

holds, however, if we instead define M(k) to be the minimum multiplicity of any line of length

k.

We compute the minimum multiplicity for each of the four possible lengths. Below, let n1, n2,

n3, and n4 denote the number of coordinates of ` with constant value 1, 2, 3, and 4, respectively.
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• If |`| = k, then ` can be expressed asL(x, 2, 3, 4) in
(
n2

k

)(
n3

k

)(
n4

k

)
ways; we also get the cor-

responding counts for expressions of the form L(1, x, 3, 4), L(1, 2, x, 4), and L(1, 2, 3, x).

In total the line is counted with multiplicity
(
n2

k

)(
n3

k

)(
n4

k

)
+
(
n1

k

)(
n3

k

)(
n4

k

)
+
(
n1

k

)(
n2

k

)(
n4

k

)
+(

n1

k

)(
n2

k

)(
n3

k

)
. This sum is minimized when n1, n2, n3, n4 are as equal as possible, so

M(k) ≥ 4

(
n−k

4

k

)3

.

• If |`| = 2k, then ` can be expressed as L(x, x, 3, 4) in
(

2k
k

)(
n3

k

)(
n4

k

)
ways; we also get

the corresponding counts for expressions of the form L(x, 2, x, 4) and so on, for a total

of
(

2k
k

) ((
n3

k

)(
n4

k

)
+
(
n2

k

)(
n4

k

)
+
(
n1

k

)(
n4

k

)
+
(
n2

k

)(
n3

k

)
+
(
n1

k

)(
n3

k

)
+
(
n1

k

)(
n2

k

))
. This is, once

again, minimized when n1, n2, n3, n4 are as equal as possible, so

M(2k) ≥ 6

(
2k

k

)(
n−2k

4

k

)2

.

• If |`| = 3k, then ` can be expressed as L(1, x, x, x) or L(x, 2, x, x) or L(x, x, 3, x) or

L(x, x, x, 4) in a total of
(

3k
k,k,k

) ((
n1

k

)
+
(
n2

k

)
+
(
n3

k

)
+
(
n4

k

))
ways, so

M(3k) ≥ 4

(
3k

k, k, k

)(
n−3k

4

k

)
.

• Finally, if |`| = 4k, then ` can only be expressed as L(x, x, x, x), which can be done in

M(4k) =

(
4k

k, k, k, k

)
ways.

We can further replace |Lk| by
(

n
k,k,k,k,n−4k

)
4n−4k. This allows us to rewrite inequality (3.11) as

4

(
n−k

4

k

)3(
n

k

)
4n−kp3(k) + 6

(
2k

k

)(
n−2k

4

k

)2(
n

2k

)
4n−2kp3(2k)+

+ 4

(
3k

k, k, k

)(
n−3k

4

k

)(
n

3k

)
4n−3kp3(3k) +

(
4k

k, k, k, k

)(
n

4k

)
4n−4kp4(4k) ≤

≤
(

n

k, k, k, k, n− 4k

)
4n−4k.
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This inequality can be simplified by factoring out 4n−4k

k!4
from each term. If we also replace falling

powers of the form x(x − 1)(x − 2)(· · · )(x − r + 1) by xr on the right-hand side (as an upper

bound) and by (x− r)r on the left-hand side (as a lower bound), we obtain

4(n− k)k(n− 5k)3kp3(k) + 6(n− 2k)2k(n− 6k)2kp3(2k)+

+ 4(n− 3k)3k(n− 7k)kp3(3k) + (n− 4k)4kp3(4k) ≤ 14n4k.

Finally, dividing through by n4k yields factors such as
(
1− k

n

)k. By iteratively applying the

inequality (1− x)(1− y) ≥ 1− x− y for x, y ≥ 0, we bound the first such factor:(
1− k

n

)k (
1− 5k

n

)3k

≥
(

1− k2

n

)(
1− 15k2

n

)
≥ 1− 16k2

n
.

Similarly, the factors of
(
1− 2k

n

)2k (
1− 6k

n

)2k,
(
1− 3k

n

)3k (
1− 7k

n

)k, and
(
1− 4k

n

)4k are each at

most 1− 16k2

n
. After pulling out this factor, we obtain the inequality (3.10).

3.5 Completing the proof of Theorem 5.1.2

To simplify notation, let p+
3 (k) := 4

15
p3(k) + 6

15
p3(2k) + 4

15
p3(3k) + 1

15
p3(4k) (the quantity

bounded by Lemma 3.4.2) and let q+(k) := 4
15
q(k) + 6

15
q(2k) + 4

15
q(3k) + 1

15
q(4k). We noted

previously that if q(k)− 1
6
p3(k) > 1

3
for some k, then equation (3.2) implies that p4(k) > 0, so a

monochromatic line exists. Similarly, showing that q+(k)− 1
6
p+

3 (k) > 1
3

is positive suffices: this

is a weighted average, so q(ik)− 1
6
p3(ik) > 1

3
will hold for some 1 ≤ i ≤ 4.

We express as much of the left-hand side of Lemma 3.3.2 as possible in terms of q+. We

assume that the still-undetermined parameter s is a multiple of 4 for simplicity. In the sum

s/4∑
k=1

(s+ 1− 2k)q+(k) (3.12)

the coefficient of each q(k) is 0 for k > s, and otherwise maximized if k is divisible by both 3

and 4, in which case it is at most

4

15
(s+ 1− 2 · k)+

6

15

(
s+ 1− 2 · k

2

)
+

4

15

(
s+ 1− 2 · k

3

)
+

1

15

(
s+ 1− 2 · k

4

)
= s+1−103

90
k,
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so it is always less than s+ 1− k. This means pulling out the sum (3.12) from the left-hand side

of Lemma 3.3.2 leaves each q(k) with a positive coefficient: we may write

s∑
k=1

(s+ 1− k)q(k) =

s/4∑
k=1

(s+ 1− 2k)q+(k) +
s∑

k=1

Rkq(k) (3.13)

where R1, . . . , Rs are all positive. Furthermore, though each Rk is tedious to calculate, since

equation (3.13) is valid for all values of q(1), . . . , q(s), it remains valid if we set each of them to

1, and therefore

s∑
k=1

Rk =
s∑

k=1

(s+ 1− k)−
s/4∑
k=1

(s+ 1− 2k) =
s2 + s

2
− 3s2

16
=

5s2 + 8s

16
.

If q(k) > 1
2

for any k, then from equation (3.1) we can conclude that p4(k) > 0 and a

monochromatic line exists. So assume the contrary: that q(k) ≤ 1
2

for all k. Then equation (3.13)

implies that
s∑

k=1

(s+ 1− k)q(k) ≤
s/4∑
k=1

(s+ 1− 2k)q+(k) +
5s2 + 8s

16
· 1

2
.

Therefore, by applying Lemma 3.3.2,

s/4∑
k=1

(s+ 1− 2k)q+(k) ≥ s2 − 1

4
(1− ε(n, s))− 5s2 + 8s

32
,

where ε(n, s) is the relative error term

ε(n, s) := e−(n−s)/8 + 3s

√
2

π(n− s)
.

Dividing by 3s2

16
to obtain a weighted average and simplifying, we are left with

16

3s2

s/4∑
k=1

(s+ 1− 2k)q+(k) ≥ 1

2
− 4

3s
− 4

3
ε(n, s) +

4(1− ε(n, s))
3s2

.

The last term is positive and may be dropped. Therefore there is some length k∗ ≤ s/4 for which

q+(k∗) ≥ 1
2
− 4

3s
− 4

3
ε(n, s).

On the other hand, Lemma 3.4.2 tells us that, as long as 4k∗ <
√
n, p+

3 (k∗) ≤ 14
15

(
1− 16(k∗)2

n

)−1

,

which is at most 14
15

(
1− s2

n

)−1

. Therefore a lower bound on q+(k∗)− 1
6
p+

3 (k∗)− 1
3

is

1

6
− 4

3s
− 4

3
ε(n, s)− 7

45

(
1− s2

n

)−1

, (3.14)
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which is valid for any s <
√
n.

As n→∞ and s→∞, provided that s
2

n
→ 0, (3.14) approaches 1

90
, and so a monochromatic

line must exist. In particular, (3.14) is already positive for n = 1011 and s = 368, completing the

proof. (More precisely, n = 19 012 590 257 and s = 240 are enough; this is the least value of n

which makes (3.14) positive, though this bound could almost certainly be improved by tweaking

the overall argument.)
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Chapter 4

The Game Chromatic Number of Random

3-Regular Graphs

4.1 Background

We now switch gears and consider more graph-theoretic results. This chapter, which solves an

easy problem related to graph coloring, may serve as a warm-up to the rest of this thesis.

Let G = (V,E) be a graph and let k be a positive integer. We consider a game in which

players Alice and Bob take turns in coloring the vertices of G with k colors. Each move consists

of choosing an uncolored vertex of the graph and assigning to it a color from {1, . . . , k} so that

the resulting coloring is proper, i.e., adjacent vertices get different colors.

Alice wins if all the vertices of G are eventually colored. Bob wins if, at some point in

the game, the current partial coloring cannot be extended to a complete coloring of G. This

impossibility may be initially subtle, but once Bob wins, we may as well continue the game until

his victory is obvious: there is an uncolored vertex such that each of the k colors appears at least

once in its neighborhood.

We assume that Alice goes first (our results will not be sensitive to this choice). The game

chromatic number χg(G) is the least integer k for which Alice has a winning strategy. Note
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that (as Winkler points out in [51, 52]) it does not immediately follow that Alice has a winning

strategy for each k > χg(G); this seems intuitively clear, but is still open.

This parameter is well defined, since it is easy to see that Alice always wins if the number of

colors is larger than the maximum degree of G. Clearly, χg(G) is at least as large as the ordinary

chromatic number χ(G), but it can be considerably more.

The game was first considered by Brams about 25 years ago in the context of coloring planar

graphs and was described in Martin Gardner’s column [23] in Scientific American in 1981. The

game remained unnoticed by the graph-theoretic community until Bodlaender [6] re-invented it.

For a survey see Bartnicki, Grytczuk, Kierstead and Zhu [4].

Some results are known for the game chromatic number of random graphs. Bohman, Frieze,

and Sudakov [7] consider the game chromatic number of the Erdős–Rényi random graph Gn,p

in the relatively dense setting: p ≥ (logn)c

n
for large c. In this range, we know that the ordinary

chromatic number satisfies χ(Gn,p) ∼ n
2 logb np

, where b = 1
1−p . To contrast with this, Bohman,

Frieze, and Sudakov prove the following:

1. There exists K > 0 such that for ε > 0 and p ≥ (log n)Kε
−3
/n we have that a.a.s.

χg(Gn,p) ≥ (1− ε) n

logb np
.

2. If α > 2 is a constant, K = max{ 2α
α−1

, α
α−2
}, and p ≥ (log n)K/n, then a.a.s.

χg(Gn,p) ≤ α
n

logb np
.

Thus, for p sufficiently large depending on ε > 0, (2 − ε)χ(Gn,p) < χg(Gn,p) < (4 + ε)χ(Gn,p).

In [22], weaker results are shown for smaller p, still bounding χg(Gn,p) within a multiplicative

factor of χ(Gn,p).

In this chapter, we consider the game chromatic number of the uniformly chosen random

3-regular graph Gn,3. Here, it follows from Brooks’s theorem that the chromatic number of Gn,3

is 3 a.a.s. We prove that, on the other hand:

Theorem 4.1.1. χg(Gn,3) = 4 a.a.s.
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It is worth discussing how the random 3-regular graph Gn,3 is chosen. The usual approach

is via the configuration model due to Bollobás [9], which produces each 3-regular graph on n

vertices with the same probability. However, Robinson and Wormald [45] prove that a.a.s., a

graph chosen in this way will be Hamiltonian, which suggests a different method for sampling a

3-regular graph: starting with a cycle C on n vertices, a random perfect matching is added.

This process does not yield the same distribution. In particular, 3-regular graphs which are

not Hamiltonian are sampled with probability 0; moreover, if the perfect matching shares edges

with C, the result is actually a 3-regular multigraph. However, the deviation is known to be

sufficiently slight that a result which holds a.a.s. in one model will also hold a.a.s. in the other;

see [54]. We may therefore prove Theorem 4.1.1 in this model instead.

It is always possible to complete a partial coloring of a 3-regular graph to a 4-coloring;

therefor χg(Gn,3) ≤ 4. We show that χg(Gn,3) > 3 a.a.s. by proving that, if the coloring game is

played on Gn,3 with k = 3 colors, the Bob wins a.a.s.

This proof will proceed in two steps. We first describe a kind of subgraph H such that, if Gn,3

contains a copy of H , then Bob can win the coloring game with k = 3 colors. Second, we show

that a.a.s., Gn,3 contains such a subgraph H (and, moreover, contains enough such subgraphs that

we can choose one sufficiently far from the vertex where Alice makes her first move).

4.2 The winning strategy

We will say that two vertices are close if they are connected by a path of length two or less, and

that a path is short if some vertex on it is close to both endpoints. (This is not the same as being

of length at most four). Vertices that are not close are far apart and a path that is not short is

long. The motivation for this terminology is that coloring a vertex can only have an effect on

vertices that are close to it; we will make this precise later on.

We first assume the existence of a subgraph H with the following properties (see Figure 4.1):

1. H consists of two vertices, v and w, together with three (internally disjoint) paths from
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v

w

Figure 4.1: The subgraph H required for Bob’s strategy.

one to the other.

2. Each of the paths consists of an even number of edges.

3. No two vertices in H are connected by a short path outside of H (in particular, H is

induced).

4. The three paths themselves are all long.

In addition,

Property F: if Alice goes first, then the vertex colored by Alice on her first move is far from H .

Bob first plays on the vertex v. Provided Alice’s next move is not on the vertex w, or on the

neighbors of v or w, it is close to at most one of the three paths which make up H (this follows

from Properties 3 and 4). The remaining two paths form a cycle containing v, with no other

already colored vertices close to the cycle; by Property 2, the cycle is even. Call the vertices

around the cycle (v, v1, v2, . . . , v2k−1).

Starting from this even cycle, Bob proceeds as follows. He colors v2 a different color from v;

this creates the threat that on his next move, he will color the third neighbor of v1 the remaining
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color, leaving no way to color v1 and winning. We will call such a move by B a forcing move at

v1. A can counter this threat in several ways:

• By coloring v1 the only remaining viable color.

• By coloring v1’s third neighbor the same color as either v or v2.

• By coloring that neighbor’s other neighbors in the color different from both v and v2.

In all cases, Alice must color some vertex close to v1, that does not lie on the cycle.

Bob continues by making a forcing move at v3: coloring v4 a different color from v2. Contin-

uing to play on the even vertices v2i, Bob makes forcing moves at each odd v2i−1. By Property

3 of H , the set of vertices Alice must play on to counter each threat are disjoint; thus, Alice’s

response to each forcing move does not affect the rest of the strategy. By Property F, Alice’s first

play does not affect the strategy either.

When Bob colors v2k−2, this is a forcing move both at v2k−3 and at v2k−1 (provided Bob

chooses a color different both from v2k−4 and v). Alice cannot counter both threats, therefore

Bob wins.

We now account for the remaining few cases. If Alice colors a neighbor of v or w on her

second move, this vertex will be close to all three possible even cycles. However, we know that

all three paths in H have even length. Therefore we can still apply this strategy to the even cycle

not containing the vertex Alice colored. Even though it will be close to v or w, we will never

need to force at v or at w, because we only force at odd numbered vertices along the path.

Finally, if Alice colors w itself, then there is no path we can choose that will avoid the vertex.

Instead, Bob picks any of the paths from v to w, and makes forcing moves down that path.

Provided that the path is sufficiently long to do so (which follows from Property 4), the final

move will be a forcing move in two ways, winning the game for Bob once again.

43



4.3 Proof of existence

It remains to show that the subgraph H exists a.a.s. (even allowing for Alice’s first move). In the

following, let c be a constant; we will later see that we need c to be less than 1 for the proof to

hold.

We begin by counting good segments of length m = bc
√
nc on C, by which we mean those

with no internal chords. First of all let X be twice the number of chords that intercept segments

of length m or less – these are the only chords that could possibly be internal to a segment of the

desired length. X can be written as the sum X1 +X2 + · · ·Xn, where Xi is the 0-1 indicator for

the i-th vertex (call it vi) to be the endpoint of such a chord. Also, let Yi denote the length of the

smaller of the two segments defined by vi (this segment stretches from vi to its partner). Thus

Pr(Yi = t) =


2

n−1
2 ≤ t ≤ b(n− 1)/2c

1
n−1

t = n/2, n even

Clearly Xi = 1 if and only if Yi ≤ m, and so

E(Xi) =
2m

n− 1
and E(X) =

2mn

n− 1
≈ 2c
√
n.

In addition, Var(Xi) ≤ E(Xi), and so

Var(X) =
n∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj) ≤ E(X) +
∑
i 6=j

Cov(Xi, Xj).

Now

Cov(Xi, Xj) = − 4m2

(n− 1)2
+

m∑
t=2

Pr(Xi = 1 | Yj = t) Pr(Yj = t)

≤ − 4m2

(n− 1)2
+

2m

n− 3
· 2m

n− 1

=
8m2

(n− 1)2(n− 3)
.

Thus,

Var(X) ≤ E(X) +
8m2n

(n− 1)(n− 3)
≈ E(X).
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a1

a2

a3

b1
b2

b3

Figure 4.2: A typical example of the subgraph H found in the Hamiltonian cycle model.

By Chebyshev’s inequality,

Pr(|X − E(X)| ≤ λE(X)) ≤ Var(X)

λ2 E(X)2
≤ 2

λ2c
√
n
.

Putting λ = n−1/5 we see that a.a.s. X ∼ 2c
√
n.

Consider the n different segments of length m on C. Each chord counted by X eliminates

at most m of these segments as being good, which leaves (1 − c2)n segments remaining. We

will want non-overlapping good segments; each good segment overlaps at most 2m other good

segments and so we can assume that we can find 2n1 ∼ (c−1 − c)
√
n/2 non-overlapping good

segments a.a.s. Here the segments are σ1, σ2, . . . , σ2n1 are in clockwise order around C. We pair

them together Pi = (σi, σn1+i), i = 1, 2, . . . , n1.

Pick any pair Pj . If there are exactly 3 chords from one segment to the other, as in Figure 4.2,

then we will construct H as follows (assuming ai and bi are the endpoints of the chords, as

labeled in Figure 4.2):
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• Set v and w to be a2 and b2, respectively.

• The first path from v to w is (a2, . . . , a1, b3, . . . , b2), where the vertices in the ellipses are

chosen along C.

• The second path from v to w is (a2, b1, . . . , b2).

• The third path from v to w is (a2, . . . , a3, b2).

The paths given above require that the three chords are (a1, b3), (a2, b1), and (a3, b2). In order for

H to satisfy Properties 2 and 4, we impose conditions on the lengths of the paths (a1, . . . , a2),

(a2, . . . , a3), (b1, . . . , b2), and (b2, . . . , b3): they must not be too small, and must have the right

parity so that the three paths from v to w have even length. However, these conditions (and the

condition that (a2, b2) must not be a chord) eliminate only a constant fraction of the possible

chords; therefore there are Ω(m6) ways to choose the chords.

The probability, then, that a subgraph H can be found between two given good segments, is

at least

Ω

(
m6

n3

)
·
(

1− m

n− 2m

)2m

where the last factor bounds the probability that there are no extra chords between the two seg-

ments. This tends to a constant ζ1 that does not depend on n. Thus the expected number of j for

which Pj has Properties 1,2 and 4 are satisfied is at least ζ1n1.

We now consider the number of pairs of good segments in which we can hope to find this

structure. In order to ensure that, should a subgraph H be found, it satisfies Property F, we

eliminate all pairs which contain a vertex close to the vertex Alice chooses on her first move – a

constant number of pairs.

To ensure Property 3 we eliminate all pairs Pj in which two vertices have chords whose other

endpoints are 1 or 2 edges apart. This happens with probability O(1/n) for any two vertices,

regardless of the disposition of the other chords incident with the segments in Pj . The pair Pjs

contains
(

2m
2

)
≤ 2c2n pairs of vertices. Therefore with probability at least (1−O(1/n))2c2n,

which tends to a constant, ζ2 say, a pair Pj satisfies Property 3.
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Thus the expected number of j for which the pair Pj give rise to a copy of H satisfying all

required properties is at least ζn1 where ζ = ζ1ζ2. To prove concentration for the number of j we

can simply use the Chebyshev inequality. This will work, because exposing the chords incident

with a particular pair Pj will only have a small effect on the probability that any other P ′j has the

required properties.
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Chapter 5

Increasing Hamiltonian Paths in Random

Edge Orderings

5.1 Background

The classical result of Erdős and Szekeres [18] states that any permutation of {1, 2, . . . , n2 + 1}

contains a monotonic subsequence of length n + 1. Many extensions have been found for this

theorem: see, e.g., any of [21, 34, 43, 47, 48]. In this chapter, we consider the direction started by

Chvátal and Komlós [14]. They posed the natural analogue of the problem for walks in a graph,

which may be considered an extension of the Erdős–Szekeres result in a similar spirit to how

Ramsey’s theorem is an extension of the pigeonhole principle. Rather than ordering the integers

{1, 2, . . . , n}, order the edges of Kn by setting a bijection f : E(Kn)→ {1, 2, . . . ,
(
n
2

)
}. A walk

in Kn whose edges are (e1, e2, . . . , ek) is called f -increasing if the labels f(e1), f(e2), . . . , f(ek)

form an increasing sequence. (In this setting, we can assume that the monotone sequence of

labels is increasing without loss of generality, since a decreasing walk is just an increasing walk

traversed backwards.) As in the Erdős–Szekeres result, the objective is to prove a worst-case

lower bound on the length of the longest increasing walk. Here, a walk is permitted to visit the

same vertex multiple times.
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This question was resolved by Graham and Kleitman [27]. In [52], Winkler communicates

an elegant formulation of their solution, which is due to Friedgut: a pedestrian stands at every

vertex ofKn, and the edges are called out in increasing order; whenever an edge is called out, the

pedestrians on its endpoints switch places. After all edges have been called out, the n pedestrians

have taken a total of n(n − 1) steps, and therefore at least one must have taken at least n − 1

steps, producing an increasing walk with length (number of edges) at least n− 1.

This is easily seen to be tight for even n, for which Kn can be partitioned into n− 1 perfect

matchings, and edges within each individual matching can receive consecutive labels. For odd

n, a partition into n maximal matchings only gives an upper bound of n; a more complicated

argument in [27] shows that n − 1 is still correct for all n except n = 3 and n = 5, where n is

the right answer.

Chvátal and Komlós also posed the corresponding problem for self-avoiding walks, or paths,

which are not permitted to revisit any vertex. Self-avoiding walks are generally much harder to

analyze, and indeed, in this setting, even determining the answer asymptotically is still an open

question. Calderbank, Chung, and Sturtevant [11] construct an ordering of Kn for which no

increasing path is longer than
(

1
2

+ o(1)
)
n. For a long time, the best known lower bound was

the first bound proven by Graham and Kleitman in [27], where they show that there must always

be an increasing path of length
√
n− 1. A recent result of Milans [42] improves this bound to

length O(n/ log n)2/3.

Many extremal questions for combinatorial structures have also been studied in the random

setting (see, e.g., either of the books [8, 33] on random graphs), which is in a sense equivalent

to asking about the average-case rather than the worst-case behavior of some property. For

example, the random analogue of the Erdős–Szekeres result considers the length In of the longest

increasing subsequence in a random permutation of {1, 2, . . . , n}, and this is a well-studied topic:

it is known [40, 50] that In ∼ 2
√
n a.a.s. (Here and in the remainder, we write X ∼ Y to denote

limn→∞
X
Y

= 1. To avoid two separate limits as n → ∞, we define X ∼ Y a.a.s. to mean that
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for all ε > 0, limn→∞ Pr[
∣∣X
Y
− 1
∣∣ < ε] = 1.)

In this chapter, we consider the random version of the increasing path problem. Suppose

the ordering f is chosen uniformly at random. What can we say about the length of the longest

f -increasing path? It is natural to begin by considering the performance of the greedy algorithm

on a randomly ordered graph, since all walks traced by pedestrians in the above argument are

greedy in the following sense: every walk exits each vertex along the minimally-labeled edge

which maintains the increasing property.

Proposition 5.1.1. Let v0 be an arbitrary vertex in Kn. Given an edge ordering f of the edges

of Kn, let the greedy f -increasing path from v0 be the path v0v1v2 . . . vt with the following

properties: (i) v0v1 is the lowest-labeled edge incident to v0, (ii) for each 1 ≤ i ≤ t − 1, vi+1 is

the vertex x which minimizes the label of vix over all x 6∈ {v0, v1, . . . , vi} with vix exceeding the

label of vi−1vi, and (iii) every vertex x 6∈ {v0, . . . , vt} has vtx labeled below vt−1vt. Then, if f is

chosen uniformly at random, the length of the greedy f -increasing path from v0 is (1− 1
e
+o(1))n

a.a.s.

Since the analysis in this result is tight, one must consider more complex algorithms in order

to find longer paths in the random setting. The main challenge in analyzing more sophisticated

algorithms arises from the fact that randomness is revealed during the algorithm’s execution. We

introduce a novel extension of the greedy algorithm which adds some foresight, but which is

formulated in a way that is amenable to analysis. At each step, this k-greedy algorithm greedily

finds a tree of k potential edges that can extend the increasing path, before choosing the one

that has the best short-term prospects. (The ordinary greedy algorithm is the k = 1 case of this

algorithm.) A detailed description of this algorithm appears in Section 5.3.1.

The performance of the k-greedy algorithm is related to statistics which arise in the Chinese

Restaurant Process, or equivalently, to the random variable Lk which measures the length of the

longest cycle in a uniformly random permutation of {1, . . . , k}. Let αk = E[ 1
Lk

+ 1
Lk+1

+ · · ·+ 1
k
].

Theorem 5.1.1. If an edge ordering f of Kn is chosen uniformly at random, then the k-greedy
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algorithm finds an f -increasing path of length (1− e−1/αk + o(1))n a.a.s.

Remark. The constant αk is monotone decreasing in k and explicitly computable. The particular

choice k = 100 produces an increasing path of length 0.85n a.a.s. As k →∞, this monotonicity

implies that αk converges to α = limk→∞ E
[
− log Lk

k

]
, a constant related to the Golomb–

Dickman constant limk→∞ E
[
Lk
k

]
≈ 0.6243. Numerically, we estimate α ≈ 0.5219, and 1 −

e−1/0.5219 ≈ 0.853, so k = 100 appears to be a near-optimal choice.

The first two results establish successively stronger linear lower bounds on the increasing

path length in a random edge ordering. There is a trivial upper bound of n − 1: the length of a

Hamiltonian path, and at first glance, one may assume that an increasing Hamiltonian path would

be too much to hope for. Indeed, when one calculates the expected number of f -increasing

Hamiltonian paths, the total number of paths, which is n!, is almost exactly canceled by the

probability that each is increasing, which is 1
(n−1)!

. Thus, the expected number of increasing

Hamiltonian paths is only n, which grows to infinity relatively slowly. In comparison, in the

Erdős–Rényi random graph modelGn,p, where each edge appears independently with probability

p, the expected number of Hamiltonian paths is about n when p ∼ e
n

, but Hamiltonian paths

don’t appear until p ∼ logn
n

. Furthermore, for Hamiltonian cycles in the random graph process,

at the moment Hamiltonicity is achieved, the number of Hamiltonian cycles jumps from 0 to[
(1+o(1)) logn

e

]n, as shown recently by Glebov and Krivelevich [25] (improving an earlier result

of Cooper and Frieze [15]). It may therefore come as a surprise that random edge orderings often

have Hamiltonian paths, despite the extremely low expected value.

Theorem 5.1.2. If an edge ordering f ofKn is chosen uniformly at random, then an f -increasing

Hamiltonian path exists in Kn with probability at least 1
e

+ o(1).

The proof of Theorem 5.1.2 uses the second moment method. Let Hn be the number of

increasing Hamiltonian paths. As mentioned above, it is easy to see that E[Hn] = n! · 1
(n−1)!

= n.

The main step of our proof is to upper-bound the second moment E[H2
n]. We actually go one step

further, and asymptotically determine E[H2
n] = (1 + o(1))en2, from which the result follows.

52



Throughout this chapter, we make use of several well-known probabilistic results, which all

appear, e.g., in [1]. In Section 5.2, we use the following corollary of Chebyshev’s inequality: for

a random variable X with Var[X] = o(E[X]2), X ∼ E[X] a.a.s. In Section 5.3.1, we rely on the

Azuma–Hoeffding inequality for martingales, which can be stated as the bound

Pr[|Xn| > λ] < 2 exp

(
− λ2

2L2n

)
for a martingale (Xt) with X0 = 0 and |Xi+1 − Xi| ≤ L for all 0 ≤ i < t. Moreover, if τ is

a stopping time for (Xt) that always satisfies τ ≤ n, Pr[|Xτ | > λ] satisfies the same inequality.

Finally, Theorem 5.1.2 will follow from the calculation in Section 5.4 by use of the second

moment inequality Pr[X > 0] ≥ E[X]2

E[X2]
, valid for a nonnegative random variable X .

5.1.1 Recent work

Theorems 5.1.1 and 5.1.2 complement each other, as they establish a.a.s. almost-Hamiltonicity

and almost-a.a.s. Hamiltonicity. Numerical simulations led us to conjecture a stronger result:

Conjecture 5.1.1. If an edge ordering f of Kn is chosen uniformly at random, then an f -

increasing Hamiltonian path exists in Kn a.a.s.

This conjecture was recently proven by Martinsson in [41] in a quantitative form, by extend-

ing our second moment calculations in Section 5.4 to a third moment analysis of Hn (the number

of increasing Hamiltonian paths) and related quantities.

Theorem 5.1.3 (Theorem 1.2 in [41]). If an edge ordering f of Kn is chosen uniformly at ran-

dom, then a.a.s. as n→∞ we have Hn > 0. Moreover, for any x > 0,

lim sup
n→∞

Pr[Hn ≤ xn] ≤ e · x.

5.2 The length of the greedy increasing path

As a warm-up for the k-greedy algorithm, we begin by proving Proposition 5.1.1, which estab-

lishes that the greedy algorithm produces an increasing path of linear length a.a.s. In this section,
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it is convenient to introduce a different (but equivalent) model for generating the edge labels,

which features more independence. In order to sample a uniform permutation of {1, 2, . . . ,
(
n
2

)
}

for the labels, we choose a labeling f : E(Kn) → [0, 1], where the labels f(e) are i.i.d.

Uniform(0, 1) random variables. Since with probability 1 no two labels will be equal, this in-

duces a total ordering on the edges, and by symmetry, all orderings occur with the same proba-

bility.

Let (e1, e2, . . . , ek) be the edges of any path, not necessarily f -increasing. We define the

jumps X1, . . . , Xk along this path by X1 = f(e1), and

Xk = (f(ek)− f(ek−1)) mod 1 =


f(ek)− f(ek−1), if f(ek) > f(ek−1)

1 + f(ek)− f(ek−1), if f(ek) ≤ f(ek−1).

The sumX1 +X2 + · · ·+Xk telescopes to f(ek)+p, where p is the number of points at which the

path fails to be f -increasing. Therefore the path is f -increasing if and only ifX1+X2+· · ·+Xk ≤

1.

Choose a Hamiltonian path (e1, e2, . . . , en−1) by the following rule: starting from an arbitrary

vertex, always take the edge with the smallest jump. The result coincides with the greedy path

for the entire length of the greedy path. However, when the greedy path would stop, this rule

merely makes a step that isn’t f -increasing. This allows us to keep going until n − 1 edges are

chosen, no matter what. The length of the greedy increasing path will therefore be the largest k

for which the initial segment (e1, e2, . . . , ek) forms an f -increasing path; equivalently, the largest

k such that X1 +X2 + · · ·+Xk ≤ 1.

When constructing this path, we only expose the labels of the edges as we encounter them.

Specifically, if we already have the partial Hamiltonian path (e1, . . . , ek−1), then the next edge ek

will be one of the n − k edges from the last vertex to a new vertex not on the current path. Call

those possible edges e1
k, . . . , e

n−k
k , and expose f(e1

k), . . . , f(en−kk ). The jump Xk is given by

Xk = min
{

(f(e1
k)− f(ek−1)) mod 1, . . . , (f(en−kk )− f(ek−1)) mod 1

}
.
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The values (f(ejk)−f(ek−1)) mod 1 are also uniformly distributed on [0,1], and exposing them is

equivalent to exposing f(e1
k), . . . , f(en−kk ). This means that Xk is the minimum of n−k uniform

random variables, which are independent from each other and from all previously exposed values.

Since Pr[Xk ≥ x] = (1− x)n−k, the probability density function is (n− k)(1− x)n−k−1, so:

E[Xk] =

∫ 1

0

x(n− k)(1− x)n−k−1 dx =
1

n− k + 1
,

E[X2
k ] =

∫ 1

0

x2(n− k)(1− x)n−k−1 dx =
2

(n− k + 1)(n− k + 2)
.

Suppose t = τn for some constant 0 < τ < 1, and let St = X1 + X2 + · · · + Xt. Then

E[St] = 1
n

+ · · · + 1
n−t+1

, and therefore E[St] = log n
n−t + O(n−1) = log 1

1−τ + O(n−1).

Furthermore, we have Var[Xk] = O(n−2) for 1 ≤ k ≤ t, so (by the independence of the Xk)

Var[St] = O(n−1), which means that St = (1 + o(1)) E[St] a.a.s. When τ < 1 − 1
e
, E[St] < 1,

so St < 1 a.a.s., and the greedy path is f -increasing through the first t steps. On the other hand,

when τ > 1 − 1
e
, E[St] > 1, so St > 1 a.a.s., and the greedy path is not f -increasing after the

first t steps. This completes the proof of Proposition 5.1.1. �

5.3 The k-greedy algorithm

Throughout this section, let k be a constant. The k-greedy algorithm extends the greedy algo-

rithm by adding some limited look-ahead to the choice of each edge. We analyze it using the

same model as in the previous section: each edge receives an independent random label from

Uniform(0, 1). For the purposes of intuition, we think of the label f(e) of an edge e as the

time at which e appears in the graph. We first describe how the algorithm would run, given a

(deterministic) full labeling of the edges of Kn with real numbers from [0, 1].

The challenge with any complex algorithm is dependency between iterations. Our main

innovation is to distill the algorithm and pose it in a way that is particularly clean and amenable

to analysis.
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5.3.1 Algorithm k-greedy

1. Initialize the path P to be a single (arbitrary) vertex v1. Initialize the rooted tree T to be

the 1-vertex tree with v1 as the root. Initialize the time t to be 0.

2. While the rooted tree T has fewer than k edges, do:

(a) Let S be the set of all edges with one endpoint in T , the other endpoint not in P ∪ T ,

and label at least t.

(b) If S is empty, then set t = 1, and terminate the algorithm.

(c) Identify the edge of S with minimum label, add it to T , and set t to be its label.

3. The rooted tree T now has exactly k edges. Among the children of the root, identify the

child x whose subtree (rooted at x) is the largest. Extend P by one edge to x, and set T to

be the subtree rooted at x. This may substantially reduce the size of T , as it deletes all of

the other subtrees, as well as the root.

4. Go back to step (2).

Lemma 5.3.1. The path P produced by the k-greedy algorithm is always a simple increasing

path.

Proof. Consider any moment at which an edge e is added to T . Suppose that e = xy, where x

was previously in T , and y is a new leaf of T . By construction, the label of e is at least t, but the

label of every other edge in P ∪ T is at most t (and a.s. not equal to t). So, by induction, at all

times during the algorithm, all paths from the first vertex v1 ∈ P to any leaf of T are increasing

paths. They are all simple paths because we only extend T by edges to vertices not currently in

P ∪ T .
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5.3.2 Managing revelation of randomness

We now take a closer look at what information needs to be revealed at each step in order to

run the algorithm. We find that Step (2b) requires a yes/no answer, and Step (2c) requires the

identification of a single edge, together with its label. Therefore, if we have access to an oracle

which reports this information upon request, we will be able to run the complete algorithm.

The information revelation in Step (2b) is a minor issue, which we can easily sidestep. If S

is nonempty, the revelation of a single step from S in Step (2c) will screen off that information

anyway. We will not have to worry about the after-effects of the revelation that S is empty,

because at that point the algorithm halts.

We will carefully describe how we manage the exposures in Step (2c). At the beginning,

the labels on all edges are independent, and each is uniformly distributed in [0, 1]. Consider the

exposure the first time Step (2c) is encountered. The oracle reports an edge v1x and its label, and

so at this point, the label of v1x is certainly determined. Let us refer to it as t1. We also learn

some information about all other edges v1y, with y 6∈ {v1, x}: their labels are not in the range

[0, t1). We do not learn any restrictions on any the labels of any other edges. Importantly, the

labels on all edges are still independent, and uniformly distributed over their (possibly-restricted)

ranges. They are just not identically distributed.

Consider the second time the algorithm encounters Step (2c). Now, the oracle reports another

edge, say xz, and suppose its label is t2. Then, we know that all edges v1y and xy with y 6∈

{v1, x, z} have labels outside of the interval (t1, t2]. We already learned that some of those edges

had labels outside [0, t1); for those, we now know that their labels avoid [0, t2). Again, all labels

are still independent and uniformly distributed over their ranges.

So, at every intermediate time t during the course of the algorithm, some edges will have their

labels determined, but independence between non-determined labels is preserved throughout.

Each non-determined label is still uniformly distributed over some range of the form [0, 1]\ (I1∪

I2 ∪ · · · ∪ It), where the Ii are disjoint sub-intervals. Note that all ranges still completely include
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[t, 1], and so this phenomenon can only increase the likelihood that we can still use the edge:

Step (2a) queries only edges with labels at least t. Since all non-determined edges have label

ranges including [t, 1], they satisfy this property with probability exactly (1 − t)/µ, where µ is

the measure of their current range. This is worst when µ = 1, which corresponds to the fully

unrestricted [0, 1] range.

5.3.3 Intuitive calculation

Now that we have a clean model which definitively indicates how much randomness is sur-

rendered at each step, we conduct a rough analysis which captures the main structure of the

argument. This will also derive the constant in Theorem 5.1.1. The key statistic to estimate is the

typical waiting time, which we define to be the difference between the labels of successive edges

added to T by Step (2c) of the algorithm.

Suppose that at some stage of the algorithm, the path has length `, and the tree T has j

vertices. If all of the j(n − ` − j) edges between T and vertices outside P ∪ T still had labels

which were uniformly distributed over [0, 1], then the waiting time would be the minimum of

that many random variables Uniform(0, 1). The waiting time would then be exactly 1
j(n−`−j)+1

in expectation. In our situation, this is not exactly true. We still have independence, but the labels

are distributed uniformly over sub-ranges of [0, 1]. Also, some of those j(n− `− j) edges could

potentially already have their labels determined, if they had previously been added as edges to T

in an earlier stage of the algorithm, but were discarded by some Step (3). As mentioned at the

end of Section 5.3.2, the first issue is in our favor, because it only reduces the waiting time. The

second issue works against us, because it reduces the number of independent random labels that

are competing in Step (2c), but we will show in Section 5.3.5 that in fact both of these effects are

negligible. So, we first analyze the (fictitious) ideal case.

For now, let us proceed using 1
j(n−`−j)+1

∼ 1
n−` ·

1
j

as the expected waiting time. Then, the
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expected time until the search tree fills up from j − 1 to k edges is asymptotically

1

n− `
·
(

1

j
+

1

j + 1
+ · · ·+ 1

k

)
∼ 1

n− `
log

k

j
.

At this point, the increasing path is extended by 1, and the search tree shrinks to the largest

subtree determined by a child of the root. From the formula above, we see that only the size of

this subtree affects the next waiting time.

In our ideal setting, when a potential edge is added to a search tree with j vertices, its endpoint

in the search tree is randomly distributed uniformly over all j vertices currently in the tree.

From the point of view of subtree sizes among children of the root, it therefore starts a new

subtree with probability 1
j

(if its tree-endpoint is the root itself), or is added to one of the existing

children’s subtrees with probability proportional to current size (depending on which subtree

its tree-endpoint is in). This is equivalent to the Chinese restaurant process, which generates the

cycle decomposition of a uniformly random permutation: if π is a uniformly random permutation

of {1, . . . , j − 1}, then we can transform π into a uniformly random permutation of {1, . . . , j}

by making j a fixed point with probability 1
j
, and otherwise inserting j in a uniformly chosen

point in any cycle (which means a cycle of length i is chosen with probability i
j
). Therefore

the number of vertices in the largest subtree has the same distribution as a well-studied random

variable: the length Lk of the longest cycle in a uniformly random permutation of {1, . . . , k}.

Define the random variable Ak = 1
Lk

+ 1
Lk+1

+ · · · + 1
k
∼ − log Lk

k
, and define the constant

αk = E[Ak]. Let X` be the waiting time for the increasing path to grow from length ` − 1 to

length `. From what we have shown, E[X`] ∼ αk
n−` . As in the analysis of the greedy algorithm,

we expect it to be true that a.a.s., the current time t = X1 + · · ·+X` satisfies

∑̀
i=1

Xi ∼ E

[∑̀
i=1

Xi

]
.

We determine the length of the path by finding the point at which this expected value reaches 1:

1 =
∑̀
i=1

E[Xi] ∼ αk

(
1

n
+ · · ·+ 1

n− `

)
∼ αk log

n

n− `
.
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Therefore the algorithm typically achieves a length ` such that `
n
∼ 1− e−1/αk .

To make this argument rigorous, we will have to deal with two main issues. First, we must

show that even when we deviate from the ideal setting, the expectations E[Xi] remain mostly

the same. Second, we need to show that the sum
∑`

i=1Xi does not deviate too much from its

expected value.

5.3.4 Determination of constant

In order to determine the numerical bounds in Theorem 5.1.1, we must understand αk. In [26],

a recurrence relation is given for the number of permutations of {1, . . . , n} with greatest cycle

length s. Using our notation, we present a modified version of this recurrence: if Ln is the length

of the longest cycle in a random permutation of {1, 2, . . . , n}, then for 1 ≤ s ≤ n,

Pr[Ln = s] =

bn/sc∑
j=1

1

j! sj
Pr[Ln−sj ≤ s− 1],

where L0 is the constant 0 whenever it occurs. This recurrence allows for an exact numerical

computation of αk = E[Ak] for any k. Several seconds of computation are enough to confirm

that α100 < 0.523, which implies that the 100-greedy algorithm typically finds an increasing path

of length at least cn, where c > 1− e−1/0.523 > 0.85.

It is natural to wonder whether a particular finite choice of k would be optimal for the k-

greedy algorithm. Using a careful coupling argument, we can show that αk is monotone de-

creasing with respect to k: if we consider Lk and Lk+1 as stages in the same Chinese restaurant

process, we have

E[Ak+1 − Ak | Lk] ≤
1

k + 1
− 1

Lk
· Lk
k + 1

= 0

since with probability at least Lk
k+1

, the longest cycle increases in length. Therefore as k → ∞,

αk approaches some constant α.

Therefore, no finite k is optimal. Since the Golomb–Dickman constant limk→∞ E[Lk
k

] ≈

0.6243 has no closed form, we expect the same to be true for α = limk→∞ E[− log Lk
k

]. Our
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numerical methods estimate α ≈ 0.5219, so our choice of k = 100 already achieves a bound

which is close to optimal for k-greedy algorithms.

5.3.5 Rigorous analysis

There are two obstacles in the way of the uniformity we assumed for this analysis. On one

hand, we may expose potential edges, add them to the search tree, but fail to use them (deleting

them from the search tree as we pass to a subtree), and then encounter these edges again, which

increases the waiting time because these edges can’t be added to the search tree. On the other

hand, when a minimal edge is found, we learn that all other edges we consider are outside some

range [t1, t2]. We describe this as gaining a partial exposure of t2 − t1 for those edges. When

edges with partial exposure are considered a second time, the waiting time decreases. In this

section, we show that both of these obstacles are asymptotically irrelevant. In our discussion, an

exposed edge is one whose label has been completely determined. Even if an edge has gained

partial exposure, we still call it unexposed.

At any point in the k-greedy algorithm’s execution, we say that the algorithm is well-behaved

if it satisfies the following two conditions:

1. No vertex of the graph has entered the search tree more than C1 = log n times.

2. In each iteration of Step (2c) (including the final one, if the algorithm has terminated), t

increased by at most C2 = 20 logn
n

.

Lemma 5.3.2. While the algorithm is well-behaved, the following additional conditions also

hold:

3. The partial exposure on each edge is at most 2k2C1C2 = o(1).

4. No vertex is incident to more than k2C1 = o(n) exposed edges.

Proof. An edge vw gains partial exposure only when v orw is in the search tree; by condition (1),

this happens at most 2C1 times total for either v or w.
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Suppose v has entered the search tree. After at most k iterations of Step (2c), the search tree

reaches k edges, and is then replaced by a subtree. This means v either leaves the search tree or

is now one step closer to the new root. Initially, v is at most k steps away from the root; thus,

after at most k2 iterations of Step (2c), v must leave the search tree. The same is true for w.

Therefore there are at most 2k2C1 iterations of Step (2c) when v or w are in the search tree.

On each of these, the edge vw can gain at most C2 partial exposure, by condition (2). Therefore

vw cannot have accumulated partial exposure greater than 2k2C1C2.

Furthermore, edges incident to a vertex v become exposed only while v is in the search tree,

or as it enters the search tree. By the same argument as above, there are at most k2 iterations of

Step (2c) for every time v enters the search tree, and so v can gain at most k2 exposed edges each

time, for a total of k2C1.

Lemma 5.3.3. If the algorithm has been well-behaved up until an iteration of Step (2c), each

unexposed edge with one endpoint in the search tree T and one endpoint outside P ∪ T has, up

to a factor of 1 + o(1), an equal chance of being added to T .

Proof. Let e1 and e2 be two such edges. Taking partial exposure into account, suppose that for

i ∈ {1, 2} the label of ei is uniformly distributed on Si ⊆ [0, 1], with [t, 1] ⊆ Si; let A be the

event that the labels of e1 and e2 are both contained in S1 ∩ S2. Conditioned on A, the labels of

e1 and e2 are identically distributed, so Pr[e1 is added to T | A] = Pr[e2 is added to T | A].

However, by condition (3), the partial exposures on both edges are each o(1) soA holds a.a.s.

Therefore without conditioning onA the probabilities are also equal up to a factor of 1+o(1).

We expect the k-greedy algorithm to remain a.a.s. well-behaved until it terminates, but we

will not be able to prove this until the end of this section. For now, we prove that the algorithm

is well-behaved until it terminates, or until the path becomes sufficiently long (which we expect

not to happen except with probability o(1)).

Lemma 5.3.4. The algorithm is a.a.s. well-behaved for as long as ` = |P | < 9
10
n (or until it

terminates).
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Proof. We begin by defining an auxiliary process which runs in parallel to the k-greedy algo-

rithm. This process maintains all the same data as the k-greedy algorithm, and updates it by the

following rule:

• If the algorithm was still well-behaved before the current iteration of Step (2c), the auxil-

iary process copies the k-greedy algorithm.

• Otherwise, the auxiliary process does nothing (in particular, the time t does not change).

The auxiliary process is well-behaved (that is, it satisfies conditions (1) and (2)) if and only if the

original algorithm is, because the two only deviate after one of the conditions fails. So it suffices

to show that while ` < 9
10
n, the auxiliary process is a.a.s. well-behaved.

Fix a vertex v. We show that while ` < 9
10
n, on each iteration of Step (2c), v enters the

search tree with probability at most 20
n

, regardless of its previous history. Suppose the process

was well-behaved on previous iterations, and v is not in the search tree; if these do not both hold,

then the probability that v enters the search tree is 0, at least for the auxiliary process.

By Lemma 5.3.3, each of the unexposed edges from T to v is chosen asymptotically uni-

formly. Each vertex of T has at most one unexposed edge to v, but (by condition 4) at least

n− `− |T | − o(n) > (1 + o(1)) n
10

unexposed edges to vertices outside P ∪T , so the probability

that an edge to v is chosen is at most (1 + o(1))10
n
< 20

n
.

There are at most kn iterations (actually, at most 9
10
kn) on which v could enter the search

tree. The probability that v enters the search tree on some C1 of them is at most(
nk

C1

)(
20

n

)C1

≤
(

20ek

C1

)C1

.

(Though the probabilities are not independent, the value 20
n

is an upper bound when conditioned

on any previous history, so the multiplication is still valid.)

Because C1 = log n, for large n we have 20ek
C1

< e−2, and so this probability is less than

n−2. By a union bound over all vertices v, the probability is o(1) that the auxiliary process ever

violates condition (1).
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Second, we prove that while ` < 9
10
n, on each iteration of Step (2c), the auxiliary process

increases t by at mostC2. It’s enough to show that on a single iteration, this holds with probability

1− o(n−1), because there are at most O(n) iterations.

Fix a single iteration; we may assume the process was well-behaved up until now, because

otherwise t is not going to increase at all. Choose a vertex v ∈ T ; by condition (4), v has

n − ` − |T | − o(n) > (1 + o(1)) n
10

unexposed edges to vertices outside P ∪ T . This is also a

lower bound for the total number of edges from T to the complement of P ∪ T , which may be

larger if there are multiple vertices in T . If t increases to a new value t′, whether it’s because

a new edge with label t′ has been found, or because the algorithm terminated (and t′ = 1), we

learn that none of these edges have a label in the interval [t, t′). In particular, if t′− t > C2, none

of these edges can have labels in the range [t, t + C2]. The probability that this happens for a

single edge is at most 1−C2; this only decreases if the edge has any partial exposure. Therefore

t increases by more than C2 with probability at most

(1− C2)(1+o(1)) n
10 ≤ exp

(
−(1 + o(1))

n

10
· 20 log n

n

)
= n−2+o(1).

By the union bound, the probability is o(1) that t increases by more than C2 on any of the O(n)

iterations, and therefore the auxiliary process satisfies condition (2) a.a.s.

Let F` be the σ-algebra generated by the information revealed at the time the path reaches

length `, and recall that X` is the waiting time for the increasing path to grow from length `− 1

to `, so that X` is F`-measurable. Define the stopping time τ to be the lesser of 9
10
n, or the first `

for which the algorithm is no longer well-behaved, or the length of the path when the algorithm

terminates. Our first goal is to show that for all ε > 0, a.a.s.∣∣∣∣∣
τ∑
`=1

X` − αk log
n

n− τ

∣∣∣∣∣ ≤ ε.

Define the martingale (Z`) as follows. Let Z0 = 0, and for each ` < τ , let Z`+1 = Z` +

X`+1 − E[X`+1 | F`]. For each ` ≥ τ , let Z`+1 = Z`.
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We next study the successive martingale differences Z`+1 − Z` = X`+1 − E[X`+1 | F`]. For

this, it is helpful to identify that the most critical information from F` is the number of vertices

in the search tree at the time the path reaches length `.

Lemma 5.3.5. Suppose that ` < τ (our stopping time). Let A`,s be the event that at the time the

path reaches length `, the search tree contains s vertices. Then

E[X`+1 | F`, A`,s] ∼
1

n− `

k∑
i=s

1

i
.

Proof. It suffices to show that if the search tree currently contains i vertices, then the expected

waiting time until the search tree contains i+1 vertices is (1+o(1)) 1
i(n−`) . To this end, recall that

in the ideal case, there are i(n−`−i) edges to choose from, each associated with a Uniform(0, 1)

waiting time, and the minimum of i(n− `− i) waiting times has expected value 1
i(n−`−i)+1

. This

is (1 + o(1)) 1
i(n−`) since ` < τ implies that n− ` is still linear in n, while i ≤ k is constant.

In reality, the edge labels are not Uniform(0, 1). However, since ` < τ , by condition (3),

any edge we look at has o(1) total partial exposure. Therefore its associated waiting time is

uniform on an interval of length 1 − o(1); furthermore, by condition (4), the vertices of the

search tree are incident to n− `− i− o(n) unexposed edges. As in the ideal case, the minimum

of i(n− `− i− o(n)) such random variables has expected value (1 + o(1)) 1
i(n−`) , and summing

over i as the search tree grows from s to k + 1 vertices, we establish the lemma.

For ` < τ , condition (2) bounds the time to add an edge to the search tree by 20 logn
n

. Since

X` is the sum of at most k such waiting times, X` <
20k logn

n
, and therefore Z`+1−Z` is bounded

from above by L = 20k logn
n

. But Z`+1 − Z` is at least −E[X`+1 | F`], which is always Θ( 1
n
)

due to Lemma 5.3.5. Therefore (Z`) is Lipschitz with |Z`+1 − Z`| ≤ L for all `. Hence by the

Azuma–Hoeffding inequality, we have |Zτ | > L
√

2n log n with probability at most 2
n

. Other-

wise, |Zτ | ≤ L
√

2n log n = O( (logn)3/2√
n

), which is o(1). Therefore |Zτ | < ε
4

a.a.s. By unraveling

the construction of (Z`), we see that a.a.s.,∣∣∣∣∣
τ∑
`=1

X` −
τ∑
`=1

E[X` | F`−1]

∣∣∣∣∣ ≤ ε

4
(5.1)

65



where the sum of conditional expectations is itself another random variable, which we must

control.

Let S`, for ` − 1 ≤ τ , be the initial size of the search tree T as the path is growing from

length ` − 1 to length `; since this is determined by the shape of the search tree just as the path

reaches length ` − 1, S` is F`−1-measurable. If ` − 1 > τ , let it be an independent random

variable, distributed as the length of the longest cycle in a uniformly random permutation of

{1, . . . , k}. Define the random variables

Y` =
1

n− `

k∑
i=S`

1

i
.

Y` is an F`−1-measurable estimate of the waiting time X`.

By Lemma 5.3.5, if ` ≤ τ , then E[X` | F`−1] ∼ Y`, and so
∑τ

`=1 E[X` | F`−1] = (1 +

o(1))
∑τ

`=1 Y`. Since Y` = O( 1
n
), it follows that a.a.s.,∣∣∣∣∣
τ∑
`=1

E[X` | F`−1]−
τ∑
`=1

Y`

∣∣∣∣∣ ≤ ε

4
. (5.2)

Therefore, it now remains to control
∑τ

`=1 Y`.

We have an adapted process in which each Y` is F`−1-measurable, but it helps to study the

Y` (or equivalently, S`) with respect to the coarsest possible filtration. Specifically, to observe

S`, we now only need to watch the evolution of the search tree, and crucially, we may proceed

by revealing only the number of vertices in the subtree of each child of the root. If we reveal

these numbers at every step when an edge is added to the search tree, then in the ideal case,

each subtree receives the edge with probability proportional to its size, and we have exactly the

Chinese Restaurant Process. When we reach k edges and pass to the largest branch of the root,

we reveal the next level of subtree size information. In the ideal case, conditioned on the previous

partition and the size of the new search tree, when we reveal the new partition of subtree sizes,

the distribution is precisely a new and independent Chinese Restaurant Process. It turns out that

reality is not far off. Let G` be the σ-algebra generated by {S1, . . . , S`}, i.e., the natural filtration.
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Figure 5.1: Two histories paired by the bijection replacing R` with R∗` . White nodes in the

top history eventually become nodes of R`, and must be replaced in the bottom history by the

corresponding nodes of R∗` .

Lemma 5.3.6. For all ` ≤ τ , Pr[S`+1 = s | G`] = (1 + o(1)) Pr[Lk = s], where Lk is the length

of the longest cycle in a uniformly random permutation of {1, . . . , k}.

Proof. If ` ≤ τ , then each vertex in the search tree T is incident to somewhere between n −

|P ∪ T | and n − |P ∪ T | − o(n) unexposed edges whose other endpoint is outside P ∪ T , by

condition 4. Since ` ≤ 9
10
n, this number is (1 + o(1))(n− `) for each vertex in T . Furthermore,

by Lemma 5.3.3, each of these edges has the same probability, up to a factor of 1+o(1), of being

added to T . Therefore each vertex in the search tree has the same probability, up to a factor of

1 + o(1), of acquiring a child as any other vertex.

The search tree at the moment when the path reaches length ` can be described as a recursive

tree on k edges: if the vertices of the tree are labeled by the order in which they enter the search

tree, then every child receives a label greater than its parent. In the ideal case when new leaves

are added to uniformly random vertices, all k! recursive trees would be equally likely. We will

show that a similar statement holds here.

Define the history up to length ` to be the sequence of (R1, . . . , R`) of recursive trees obtained
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at lengths 1, 2, . . . , `. Not every sequence of recursive trees is a valid history: the trees must be

consistent, since Ri+1 must be a suitably relabeled extension of the largest branch of the root of

Ri. Nevertheless, if we partition all valid histories by the value of R`, there is a natural bijective

correspondence between any two parts. To change the final tree in a history (R1, . . . , R`) to R∗` ,

we make the same substitution in subtrees of R`−1, R`−2, and so on, going back to R`−k+1 at

worst. If the first i nodes of R` are a subtree of R`−j , we replace them by the first i nodes of R∗` .

An example of two histories paired by this correspondence is given in Figure 5.1.

Two histories corresponding in this way have the same value of S1, S2, . . . , S`: while the

shapes of the subtrees measured by these random variables may be different, their sizes are the

same. Moreover, since the two histories agree on all but the last k trees, they only disagree in

at most k2 steps of the algorithm, so the probability of obtaining them differs by a factor of

(1 + o(1))k
2

= 1 + o(1). It follows that (R` | G`) is asymptotically uniformly distributed.

Since R` can take on exactly k! values, we must have Pr[R` = R | G`] = (1 + o(1)) 1
k!

for

any recursive tree R. It follows that any event determined by the shape of R` has asymptotically

the same probability of occurring, conditioned on G`, as it would if (R` | G`) were a uniformly

random recursive tree.

In a uniformly chosen recursive tree, the size of the largest branch of the root has the same

distribution as Lk. Therefore S`+1, the size of the largest branch of the root of R`, satisfies

Pr[S`+1 = s | G`] = (1 + o(1)) Pr[Lk = s], as desired.

Since k is a constant, each Pr[Lk = s] is a constant, for each fixed s ∈ {1, . . . , k}. So,

by Lemma 5.3.6, the conditional distribution of Y` given G`−1 is also supported on k values in

the range Θ( 1
n
), with all probabilities bounded away from 0 and 1 by at least some constant

depending on k. Crucially, regardless of the particular G`−1, the distribution of Y` is always

asymptotically 1
n−`Ak, where Ak = 1

Lk
+ · · · + 1

k
is the random variable defined with respect to

the longest cycle in the Chinese Restaurant Process at the end of Section 5.3.3.
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To complete the analysis, define the martingale

W` = (Y1 − E[Y1]) + (Y2 − E[Y2 | G1]) + · · ·+ (Y` − E[Y` | G`−1]).

It is Lipschitz with successive variations bounded by O( 1
n
) because k is a constant, and so the

Azuma–Hoeffding inequality applied to (W`) implies that a.a.s.,

|Wτ | ≤
log n√
n
≤ ε

4
,

or equivalently, that a.a.s., ∣∣∣∣∣
τ∑
`=1

Y` −
τ∑
`=1

E[Y` | G`−1]

∣∣∣∣∣ ≤ ε

4
. (5.3)

Since the distribution of (Y` | G`−1) is asymptotically 1
n−`Ak, the random variable E[Y` | G`−1]

is asymptotically constant: E[Y` | G`−1] = (1 + o(1)) 1
n−` E[Ak], which is (1 + o(1)) αk

n−` , by

definition of αk. Therefore a.a.s.,

τ∑
`=1

E[Y` | G`−1] = (1 + o(1))αk log
n

n− τ
.

Since τ ≤ 9
10
n, the right-hand side is bounded by a constant, so a.a.s.,∣∣∣∣∣

τ∑
`=1

E[Y` | G`−1]− αk log
n

n− τ

∣∣∣∣∣ ≤ ε

4
. (5.4)

Combining inequalities (5.1), (5.2), (5.3), and (5.4), we obtain that a.a.s.,∣∣∣∣∣
τ∑
`=1

X` − αk log
n

n− τ

∣∣∣∣∣ ≤ ε,

as desired. Since
∑τ

`=1X` ∈ [0, 1], we have αk log n
n−τ ≤ 1+ ε and τ ≤ (1−exp(−1+ε

αk
))n a.a.s.

In particular, τ < 9
10
n a.a.s., and by Lemma 5.3.4, the algorithm is a.a.s. well-behaved for

` < 9
10
n; therefore a.a.s. the algorithm is still well-behaved at length τ , and the stopping rule

triggered because the algorithm terminated. In that case, by condition (2), the algorithm’s time

t never increased by more than C2, yet t reached 1 when the algorithm terminated. Therefore

when the path first reached length τ , which was at most k steps before the algorithm terminated,
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the time t =
∑τ

`=1 X` must have been at least 1 − kC2 = 1 − o(1) a.a.s. Therefore a.a.s.,

αk log n
n−τ ≥ 1− 2ε and τ ≥ (1− exp(−1−2ε

αk
))n.

Since ε can be made arbitrarily small, and a.a.s. the algorithm produces a path of length τ ,

the a.a.s. bounds (
1− exp

(
−1− 2ε

αk

))
n ≤ τ ≤

(
1− exp

(
−1 + ε

αk

))
n

complete the proof of Theorem 5.1.1. �

5.4 Computing the second moment of Hn

The core of our proof of Theorem 5.1.2 is the second moment calculation for Hn, the random

variable which tracks the number of increasing Hamiltonian paths in a uniformly random edge

ordering. This second moment, H2
n, counts the number of ordered pairs of increasing Hamilto-

nian paths, which can be expressed as a sum of indicator variables: H2
n =

∑
A

∑
B IA,B, where

A and B range over all Hamiltonian paths, and IA,B = 1 if both paths are increasing when f

is chosen, and 0 otherwise. Note that although we are working with undirected graphs, we con-

sider Hamiltonian paths with direction, and therefore, when we speak of a Hamiltonian path in

this section, we are referring to a permutation of the n vertices. In particular, each undirected

n-vertex path will correspond to two such permutations, and will appear twice in our indexing,

once in each direction.

We begin by grouping pairs of paths into equivalence classes which we call intersection

profiles. Two pairs of paths (A,B) and (A′, B′) are in the same intersection profile if there is a

permutation of the edges of Kn (without necessarily preserving all pairwise incidence relations

between edges) that maps A to A′ and B to B′. We can represent such a profile as a graph by

choosing any representative (A,B), and separating the vertices ofA andB that are not endpoints

of a common edge. Figure 5.2 shows an example of such a graph. Note that when the two paths

share a single common edge, it’s possible for them to visit its endpoints in two different orders,
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v1

v2 v3 v4

v5 v6

v7 v8

v9

v10 v11 v12 v13

A:

B:

Figure 5.2: A graph representation of an intersection profile for two paths: A =

(v1, v2, v3, v4, v5, v6, v7, v8, v9) and B = (v10, v11, v2, v3, v4, v12, v8, v7, v13).

as with edge (v7, v8) in Figure 5.2.

Vertices not incident to a common edge of A and B appear twice: in Figure 5.2, vertices

{v1, v5, v6, v9} are the same as {v10, v11, v12, v13}. However, changing the exact correspondence

between these sets of vertices would not change the intersection profile, as long as no new com-

mon edges are created.

We keep track of three parameters of a pair of paths (A,B); these are preserved by the

permutations that map (A,B) to a different pair of paths (A′, B′) in the same intersection profile,

and so we may treat them as properties of the profile P containing (A,B).

1. c(P ) is the number of common edges shared by the two paths A and B. In Figure 5.2,

c(P ) = 3, as the two paths share edges (v2, v3), (v3, v4), and (v7, v8).

2. k(P ) is the number of common segments shared by the two paths: this satisfies k(P ) ≤

c(P ) because each common segment contains at least one edge, and k(P ) ≤ n − c(P )

because each path contains at least one edge between two common segments. In Figure 5.2,

the two common segments are (v2, v3, v4) and (v7, v8), so k(P ) = 2.

3. `(P ) is the number of common segments which consist of exactly one edge: since c(P ) ≥

`(P ) + 2[k(P ) − `(P )], this satisfies `(P ) ≥ 2k(P ) − c(P ). In Figure 5.2, `(P ) = 1,

counting the segment (v7, v8).

We define P(c, k, `) as the set of profiles P such that c(P ) = c, k(P ) = k, and `(P ) = `.
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Figure 5.3: A graph representation of a labeled profile for two paths of length 8, whose underly-

ing profile is the one given in Figure 5.2.

Given a profile P represented by the pair of paths (A,B), there are many ways to choose a

relative order for the edges of A and B so that both A and B are increasing. Furthermore, the

number of ways to do so does not depend on the choice of representative (A,B). If a relative

order of the edges of A and B is chosen such that A and B are increasing, and (A′, B′) is another

pair that fits P , a permutation of the edges of Kn mapping A to A′ and B to B′ will induce a

unique relative order of the edges of A′ and B′ such that A′ and B′ are increasing. Therefore we

may speak of a labeling of P , by which we mean a choice of relative order for the edges of some

representative (A,B) that makes A and B increasing.

We define a labeled profile L as a profile, together with such a labeling. We say that two

paths A and B fit L if they fit (are a representative of) the unlabeled profile corresponding to L.

An example of a labeled profile is given in Figure 5.3. We let L(c, k, `) denote the set of labeled

profiles whose underlying profile is an element of P(c, k, `).

Given a labeled profile L ∈ L(c, k, `), the total number of edges in two paths that fit L is

2(n− 1)− c. For any pair of paths A and B that fits L, if an edge ordering f is chosen randomly,

the ordering of A and B will match the labeling of L with probability 1
(2n−c−2)!

. Therefore

E[H2
n] =

∑
c,k,`

∑
L∈L(c,k,`)

|L|
(2n− c− 2)!

(5.5)

where |L| is the number of pairs of paths (A,B) that fit L.

We split the sum (5.5) into several parts:
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1. S1, the sum over c ≤ log n (most other notions of “small” c would also be sufficient here);

2. S2, the sum over log n < c ≤ 9
10
n; and

3. S3, the sum over c > 9
10
n.

It will be S1 that contributes the most to E[H2
n]. We state two lemmas that provide asymp-

totically exact estimates (with multiplicative error tending to zero as n → ∞) for S1 while only

serving as rough upper bounds for S2 and S3. In the following,
(

n
a,b,c

)
denotes the multinomial

coefficient n!
a!b!c!

.

Lemma 5.4.1. For all c, k, `,

|L(c, k, `)| ≤ 2`
(
k

`

)(
c− k − 1

k − `− 1

)(
2(n− c− 1) + k

n− c− 1, n− c− 1, k

)

and |L(c, k, `)| is asymptotically equal to the right hand side when c ≤ log n. Furthermore,

∑
`

|L(c, k, `)| ≤ 2k
(
c− 1

k − 1

)(
2(n− c− 1) + k

n− c− 1, n− c− 1, k

)

Lemma 5.4.2. For all L ∈ L(c, k, `), |L| ≤ n!(n − c − k)!; furthermore, if c ≤ log n, then

|L| ∼ e−2n!(n− c− k)!.

By using these lemmas, we can write out algebraic expressions for S1, S2, and S3:

S1 ∼ e−2

logn∑
c=0

∑
k,`

2`
(
k

`

)(
c− k − 1

k − `− 1

)(
2(n− c− 1) + k

n− c− 1, n− c− 1, k

)
n!(n− c− k)!

(2n− c− 2)!
(5.6)

S2 ≤
9n/10∑
c=logn

∑
k

2k
(
c− 1

k − 1

)(
2(n− c− 1) + k

n− c− 1, n− c− 1, k

)
n!(n− c− k)!

(2n− c− 2)!
(5.7)

S3 ≤
n−1∑

c=9n/10

∑
k

2k
(
c− 1

k − 1

)(
2(n− c− 1) + k

n− c− 1, n− c− 1, k

)
n!(n− c− k)!

(2n− c− 2)!
. (5.8)

Therefore, E[H2
n] ∼ en2 will follow from:

Lemma 5.4.3. The right hand side of the expression (5.6) is asymptotic to en2, and both of the

right hand sides of (5.7) and (5.8) simplify to o(n2).
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5.4.1 Asymptotics for |L(c, k, `)| and for |L| when L ∈ L(c, k, `)

Proof of Lemma 5.4.1. Let c, k, and ` be given. For the remainder of the proof, letm = n−c−1

stand for the number of edges that belong to A but not B (equivalently, to B but not A), when

pathsA andB fit a profile from L(c, k, `). Consider the following two-stage method for selecting

a labeled profile from L(c, k, `). All such labeled profiles will be reachable in this way.

1. Choose the sequence of lengths for the common segments, and their relative orientations

within paths A and B. The segments of length 1 can appear in
(
k
`

)
positions, and the

remaining c−` common edges can be partitioned into k−` ordered parts of size at least 2 in(
c−k−1
k−`−1

)
ways. Common segments of length at least 2 will already have a fixed orientation,

because their sequential edge labels will need to be increasing with respect to both A and

B. On the other hand, a common segment of length 1 could be traversed in either the same

direction by both paths, or in opposite directions (as in the case of the second common

segment in Figures 5.2 and 5.3). Therefore, by considering relative orientations, we gain

another factor of exactly 2`.

2. Now that the sequence of lengths and directions has been fixed for all common segments,

it remains to choose an order in which the k common segments, the m edges of A, and

the m edges of B appear. For this, we construct labeled profiles from strings of m A’s, m

B’s, and k C’s. For example, if we have already fixed the first common segment to have

length 2, and the other common segment to have length 1, traversed in both directions,

then the string BABCAABBACAB corresponds precisely to Figure 5.3. (Note that a single

C represents an entire common segment, whose length we have already fixed, and not a

single common edge.) There are at most
(

2m+k
m,m,k

)
such strings of A’s, B’s, and C’s.

The above two-step procedure immediately implies the claimed upper bound on |L(c, k, `)|

in Lemma 5.4.1. Our next objective is to show that this bound is asymptotically correct for

c ≤ log n. The second step overestimates |L(c, k, `)| because of two possible illegal interactions

between adjacent common segments: (a) we cannot have two consecutive C’s, separated by all
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A’s or all B’s, and (b) no consecutive C’s can be separated by exactly one A and exactly one B.

We will show that the number of such strings is an o(1)-fraction of the total number of strings

which appear in the second step.

First, we control the number of strings which have two C’s which are separated only by B’s.

For this, fix one of the k− 1 gaps between common segments, and suppose that there are exactly

m − i B’s in the gap, with 0 ≤ i ≤ m. Then, those strings are in bijective correspondence with

the strings with exactlym A’s, exactly i B’s, and exactly k−1 C’s: the bijection is realized by the

deletion of a segment BB. . . BC (with m− i B’s) after the C which corresponds to the beginning

of the gap. Thus, the total number of strings which have two C’s separated only by B’s is at most

(k − 1)
m∑
i=0

(
m+ i+ k − 1

m, i, k − 1

)
= (k − 1)

(
m+ k − 1

k − 1

) m∑
i=0

(
m+ k − 1 + i

i

)
= (k − 1)

(
m+ k − 1

k − 1

)(
2m+ k

m

)
= (k − 1)

k

m+ k

(
2m+ k

m,m, k

)
. (5.9)

The same bound applies for the total number of strings with two C’s separated only by A’s.

Similarly, if two C’s are separated by exactly one A and one B, there are two possible orderings

(AB, BA) between the C’s, and so the total number of such strings is at most

(k − 1)2

(
2m+ k − 3

m− 1,m− 1, k − 1

)
= (k − 1)2

(2m+ k − 3)!

(m− 1)!(m− 1)!(k − 1)!

=
2(k − 1)m2k

(2m+ k)(2m+ k − 1)(2m+ k − 2)
· (2m+ k)!

m!m!k!
(5.10)

When k ≤ c ≤ log n, both (5.9) and (5.10) are of order k2

m

(
2m+k
m,m,k

)
, and k2

m
= o(1). Therefore

the true number of choices to be made in the second step is indeed (1− o(1))
(

2m+k
m,m,k

)
for small c

and k, as claimed. Finally, to obtain the rougher approximation for the second part of the lemma,

we forget about the value of `, and get an upper bound by assuming that all k segments can be

reversed, even if they don’t have length 1. Effectively, we use 2` ≤ 2k and
∑

`

(
k
`

)(
c−k−1
k−`−1

)
=(

c−1
k−1

)
.
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Proof of Lemma 5.4.2. Since the number of pairs (A,B) that fit L is the same as the number that

fit P , the underlying profile of L, we may as well forget about the labeling, and count paths that

fit a profile P ∈ P(c, k, `).

The first part of the lemma is immediate: there are n! ways to choose the n vertices of A, and

(n − c − k)! ways to choose the remaining n − c − k vertices of B. However, this mistakenly

counts some pairs of paths that don’t fit the profile P . For example, if the profile in Figure 5.2

embeds into Kn by sending v5 and v10 to the same vertex v ∈ Kn, and sending v6 and v11 to the

same vertex w ∈ Kn, then the embedded paths no longer correspond to the intersection profile in

the figure, because additional common segments are created. So, to prove the second part of the

lemma, we must estimate the probability that in a random permutation of the n− c− k vertices

of B which are not on common segments with A, no new common segments are created between

the embedded paths.

We first consider the case c = k = 0, which corresponds to the probability that in a ran-

dom permutation of {1, 2, . . . , n}, no two consecutive elements are adjacent. Wolfowitz [53]

has shown that asymptotically, the number of adjacent consecutive elements has the Poisson

distribution with mean 2, and therefore we obtain the desired probability of e−2.

For the general case, suppose that the n vertices of A have been fully embedded into Kn.

Exactly n − c − k of them correspond to vertices of A which are not shared by B in the pro-

file diagram. Following the natural order for A in the profile, label those n − c − k embedded

vertices (in Kn) by 1, 2, . . . , n − c − k. Then, each embedding of the remaining n − c − k ver-

tices of B (which completes the embedding of the two paths A and B) corresponds precisely to

a distinct permutation of {1, 2, . . . , n − c − k}, because both A and B are Hamiltonian paths,

and thus each use all of the vertices. Here, the permutation is the order in which the vertices

{1, 2, . . . , n− c− k} are visited when the embedded B is traversed in its natural order. Permu-

tations with adjacent consecutive elements still approximately correspond to embeddings which

create extraneous common segments, and it remains to quantify the error in the approximation,
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which arises at junctions with common segments.

When A is traced in its natural order, there are either k − 1 or k vertices of A which come

immediately before the start of a common segment. (There are k − 1 if the first vertex of A is

already part of a common edge between the two paths, and k otherwise.) Let ij ∈ {1, 2, . . . , n}

with j = 1, 2, . . . , k be the label in Kn of the embedded vertex corresponding to the vertex of A

which comes immediately before the start of the j-th common segment. If there are only k − 1

such vertices, then leave i1 undefined, and ignore all references to it in the remainder of this

argument.

In terms of the ij’s, permutations σ with adjacent consecutive elements correspond to em-

beddings with extraneous common segments, except when for some j, we have that (a) ij and

ij + 1 are adjacent in σ, or (b) the vertex of B which immediately precedes the j-th common

segment maps to ij , or (c) the vertex of B which comes right after the j-th common segment

maps to ij + 1. To see this, observe that (a) identifies a “false positive,” in which the elements

are adjacent in σ, but are actually separated by a common segment in B’s traversal. On the other

hand, (b) and (c) represent the “false negatives,” in which the j-th common segment is unduly

extended. Fortunately, a union bound over all j shows that the probability of (a) happening is at

most 2k
n−c−k−1

, the probability of (b) happening is at most k
n−c−k , and the probability of (c) has the

same bound. All of these quantities are o(1) for k ≤ c ≤ log n, and therefore the probability that

no new common segments are created differs by o(1) from the probability that no consecutive

elements occur, and is also asymptotically e−2.

5.4.2 Estimating S1

To simplify the expressions involved, we use the notation (n)k for the falling power n!
(n−k)!

=

n(n − 1) · · · (n − k + 1). This satisfies (n)k ∼ nk for k = o(
√
n). In particular, for c ≤ log n,

we have k ≤ log n as well; therefore for falling powers linear in c and k, we may freely use this
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asymptotic relation. Starting from (5.6), we have:

S1 ∼ e−2

logn∑
c=0

∑
k,`

2`
(
k

`

)(
c− k − 1

k − `− 1

)(
2(n− c− 1) + k

n− c− 1, n− c− 1, k

)
n!(n− c− k)!

(2n− c− 2)!

= e−2

logn∑
c=0

∑
k,`

2`
(
k

`

)(
c− k − 1

k − `− 1

)
(2n− 2c+ k − 2)!n!(n− c− k)!

k!(n− c− 1)!2(2n− c− 2)!

= e−2

logn∑
c=0

∑
k,`

2`
(
k

`

)(
c− k − 1

k − `− 1

)
1

k!
· (n)c+1

(n− c− 1)k−1(2n− c− 2)c−k

∼ e−2n2

logn∑
c=0

∑
k,`

(
k

`

)(
c− k − 1

k − `− 1

)
2`−c+k

k!
.

Splitting off the e−2n2 factor, we are left with a sum of the first log n terms of an infinite series

that does not otherwise depend on n. It turns out that this series converges to a constant C as

n → ∞, and we now compute this limit. Recall that the constraints on k and ` in the inner sum

are that 0 ≤ ` ≤ k ≤ c and, furthermore, that c ≥ ` + 2(k − `) = 2k − ` (which is a stronger

bound than c ≥ k). Therefore

C =
∞∑
c=0

∑
k,`

(
k

`

)(
c− k − 1

k − `− 1

)
2`−c+k

k!

=
∞∑
k=0

2k

k!

k∑
`=0

2`
(
k

`

) ∞∑
c=2k−`

(
c− k − 1

k − `− 1

)
2−c

=
∞∑
k=0

2k

k!

k∑
`=0

2`
(
k

`

)
2−2k+`

∞∑
j=0

(
j + (k − `− 1)

k − `− 1

)
2−j ,

where we re-parameterized the final sum as j = c − (2k − `). The final summation is now

conveniently in the form of the following power series identity:
∞∑
j=0

(
j +m− 1

m− 1

)
zj =

1

(1− z)m
.

Therefore,

C =
∞∑
k=0

2k

k!

k∑
`=0

2`
(
k

`

)
2−2k+` · 2k−`

=
∞∑
k=0

1

k!

k∑
`=0

2`
(
k

`

)
=
∞∑
k=0

3k

k!
= e3 ,

which implies that S1 ∼ e−2n2C = en2, as claimed.
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5.4.3 Estimating S2

Let ac,k be one of the summands in (5.7). Then

ac,k+1

ac,k
=

2(c− k)

k(k + 1)
· 2n− 2c+ k − 1

n− c− k
. (5.11)

Our goal is to simplify the upper bound on S2 by selecting, for each c, the k that maximizes ac,k,

and then using this maximum in place of all the terms with that value of c.

First consider k such that k ≤ 1
2
(n − c). In this case, the second factor of (5.11) is bounded

between 1 and 5: on one hand, (2n− 2c+ k − 1)− (n− c− k) = n− c+ 2k − 1 ≥ 0, and on

the other hand, (2n− 2c+ k − 1)− 5(n− c− k) = 6k − 3(n− c)− 1 ≤ 0. Therefore we have

2(c− k)

k(k + 1)
≤ ac,k+1

ac,k
≤ 10(c− k)

k(k + 1)
.

If k maximizes ac,k and lies in this range, then 2(c − k) ≤ k(k + 1) and therefore k ≥ (1 −

o(1))
√

2c; otherwise, 10(c − k − 1) ≥ k(k − 1) and therefore k ≤ (1 − o(1))
√

10c. We may

safely and concisely say
√
c < k < 4

√
c.

On the other hand, if k ≥ 1
2
(n − c), since S2 only runs c up to 9n

10
, we have k ≥ 1

2
(n − c) ≥

n/20 in the denominator of (5.11), and we always have k ≤ c ≤ n in the numerator. So,

ac,k+1

ac,k
<

2n

k2
· 3n

n− c− k
≤ 2n

n2/400
· 3n

n− c− k
=

2400

n− c− k
,

which is less than 1 as long as k ≤ n − c − 2400. Therefore the maximizing k is either in the

range found above, or between n− c− 2400 and n− c (since k ≤ n− c always).

Let S ′2 be the result of replacing in S2 all terms ac,k by ac,k∗ where
√
c < k∗(c) < 4

√
c is the

maximizing k from the range 0 ≤ k ≤ n− c− 2400. Then

S ′2 <

9n/10∑
c=logn

c · 2k∗
(
c− 1

k∗ − 1

)(
2(n− c− 1) + k∗

n− c− 1, n− c− 1, k∗

)
n!(n− c− k∗)!
(2n− c− 2)!

=

9n/10∑
c=logn

k∗2k
∗

k∗!

(
c

k∗

)
(n)c+1

(n− c− 1)k∗−1(2n− c− 2)c−k∗

<

9n/10∑
c=logn

k∗
(

2e

k∗

)k∗ ( ce
k∗

)k∗ (n)c+1

(n− c− 1)k∗−1(2n− c− 2)c−k∗
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< n2

9n/10∑
c=logn

k∗(2e2)k
∗ (n− 2)c−k∗

(2n− c− 2)c−k∗
· (n− c+ k∗ − 2)k∗−1

(n− c− 1)k∗−1

.

We now eliminate the powers of n in the summand. In the first fraction, since c ≤ 9
10
n, 2n− c ≥

11
10
n, and therefore (n−2)c−k∗

(2n−c−2)c−k∗
≤
(

10
11

)c−k∗ . In the second fraction, since k∗ is less than 1
2
(n− c),

n− c+ k∗ − 2 < 3
2
(n− c− 1), and therefore (n−c+k∗−2)k∗−1

(n−c−1)k∗−1
< (3/2)k

∗ . Thus

S ′2 < n2

9n/10∑
c=logn

k∗
(

2e2 · 11

10
· 3

2

)k∗ (
10

11

)c

= n2

9n/10∑
c=logn

k∗
(

33e2

10

)k∗ (
10

11

)c

< n2

∞∑
c=logn

4
√
c

(
33e2

10
·
(

10

11

)√c/4)4
√
c

.

The sum is the tail of a convergent series in c, and therefore S ′2 = o(n2).

To show that S2 = o(n2), it remains to consider the terms ac,k for which n − c − k ≤ 2400,

as these are potentially not dominated by ac,k∗ . For this case, we consider a second ratio:

ac,k
ac+1,k

=

(
c− k + 1

c

)
· (2n− 2c+ k − 2)(2n− 2c+ k − 3)

(n− c+ 1)(n− c− 1)
· (n− c− k)

(2n− c− 2)
.

Here, n − c − k ≤ 2400 and c − k + 1 ≤ c; all other factors are Θ(n) because c ≤ 9n
10

, and so

the overall ratio is O(n−1). Therefore, once n surpasses some absolute constant, all of these ac,k

with n− c− k ≤ 2400 satisfy ac,k ≤ an−k,k, and there are at most 2400n of them. It remains to

control an−k,k in the range k ≥ n− c− 2400 ≥ (1− o(1)) n
10

, where we used c ≤ 9n
10

. For those,

we have

an−k,k < 2k
(
n− k − 1

k − 1

)(
3k − 2

k − 1, k − 1, k

)
n!

(n+ k − 2)!

< 2k2n−k−133k−2 · 1

(n+ k − 2)k−2

<
54n

(n+ k − 2)k−2

<
54n

n(1−o(1))n/10
= o(1) .
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Therefore, the total contribution of these residual ac,k is at most 2400n · o(1), and S2 = S ′2 +

o(n) = o(n2), as claimed.

5.4.4 Estimating S3

Let d = n− c and consider the sum for 1 ≤ d ≤ n
10

. Then from (5.8) we get

S3 ≤
n/10∑
k=1

n/10∑
d=k

2k
(
n− d− 1

k − 1

)(
2d+ k − 2

d− 1, d− 1, k

)
n!(d− k)!

(n+ d− 2)!

≤
n/10∑
k=1

n/10∑
d=k

2k

(k − 1)!
· (n− d− 1)!

(n− d− k)!
· 32d+k−2 · n!(d− k)!

(n+ d− 2)!

=

n/10∑
k=1

n/10∑
d=k

6k · 9d−1

(k − 1)!
· (n− d− 1)k−1(d− k)!

(n+ d− 2)d−2

≤
n/10∑
k=1

n/10∑
d=k

6k · 9d−1 · (d− k)!

(k − 1)! · nd−k−1
.

Let bd,k be a term of this sum; since d− k ≤ d ≤ n
10

,

bd,k
bd−1,k

=
9(d− k)

n
≤ 9

10
.

Therefore an upper bound on S3 is:

S3 ≤
n/10∑
k=1

bk,k

n/10∑
d=k

(
9

10

)d−k
≤ 10

∞∑
k=1

6k · 9k−1

(k − 1)! · n−1
= 60e54n = o(n2) ,

which completes our proof.
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Chapter 6

Distance-Uniform Graphs with Large

Diameter

6.1 Background

We say that an n-vertex graph is ε-distance-uniform if there is a value d, called the critical

distance, such that, for every vertex v, all but εn of the other vertices are at distance exactly d

from v. This notion is introduced by Alon, Demaine, Hajiaghayi, and Leighton in [2], motivated

by the analysis of network creation games.

In a network creation game, according to a model proposed by Fabrikant et al. in [20], a graph

is constructed and modified by independently acting nodes. Each node must pay a creation cost

to add nodes to the graph, but once the graph is built, each node must pay usage costs depending

on how well-connected it is to other nodes in the graph. (This can be modeled in various ways,

but we will take the usage cost to be a node’s total distance to all other nodes.) Research in this

area focuses on comparing the total cost to the nodes when this game is played to the optimal

value of this cost over all graphs. The ratio between these quantities is known as the price of

anarchy, a term first used by Koutsoupias and Papadimitriou [35].

Alon et al. simplify the problem by starting with an existing graph, and allowing each node
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v to perform edge swaps, adding one edge vw and deleting another edge vw′; this lets us sep-

arate creation costs from usage costs. A graph is said to be in sum equilibrium when no node

can decrease its total distance to other nodes by any edge swap. If this network creation game

terminates, it ends with a graph in sum equilibrium; as a result, the price of anarchy is given by

comparing the worst-case and best-case sum equilibrium graph.

Alon et al. show that sufficiently large graph powers of a graph in sum equilibrium will result

in distance-uniform graphs; if the critical distance is large, then the original sum equilibrium

graph imposed a high total cost on its nodes. This application motivates the already natural

question: in an ε-distance-uniform graph with n vertices and critical distance d, what is the

relationship between the parameters ε, n, and d? Specifically, can we derive an upper bound on

d in terms of ε and n? Up to a constant factor, this is equivalent to finding an upper bound on the

diameter of the graph, which must be between d and 2d as long as ε > 1
2
.

Random graphs provide one example of distance-uniform graphs. In [10], Bollobás shows

that for sufficiently large p = p(n), the diameter of the random Erdős–Rényi random graph Gn,p

is asymptotically almost surely concentrated on one of two values. In fact, from every vertex v

in Gn,p, the breadth-first search tree expands by a factor of O(np) at every layer, reaching all or

almost all vertices after about logr n steps. Such a graph is also expected to be distance-uniform:

the biggest layer of the breadth-first search tree will be much bigger than all previous layers.

More precisely, suppose that we choose p(n) so that the average degree r = (n−1)p satisfies

two criteria: that r � (log n)3, and that for some d, rd/n − 2 log n approaches a constant C as

n→∞. Then it follows from Lemma 3 in [10] that (with probability 1−o(1)) for every vertex v

in Gn,p, the number of vertices at each distance k < d from v isO(rk). It follows from Theorem 6

in [10] that the number of vertex pairs in Gn,p at distance d + 1 from each other is Poisson with

mean 1
2
e−C , so there are only O(1) such pairs with probability 1 − o(1). As a result, such a

random graph is ε-distance-uniform with ε = O( logn
r

), and critical distance d = logr n+O(1).

This example provides a compelling image of what distance-uniform graphs look like: if
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the breadth-first search tree from each vertex grows at the same constant rate, then most other

vertices will be reached in the same step. In any graph that is distance-uniform for a similar

reason, the critical distance d will be at most logarithmic in n. In fact, Alon et al. conjecture that

all distance-uniform graphs have diameter O(log n).

Alon et al. prove an upper bound ofO( logn
log ε−1 ) in a special case: for ε-distance-uniform graphs

with ε < 1
4

that are Cayley graphs of Abelian groups. In this case, if G is the Cayley graph of

an Abelian group A with respect to a generating set S, one form of Plünnecke’s inequality (see,

e.g., [49]) says that the sequence

|S + S + · · ·+ S︸ ︷︷ ︸
k

|1/k

is decreasing in k. Since S, S + S, S + S + S, . . . are precisely the sets of vertices which can be

reached by 1, 2, 3, . . . steps from 0, this inequality quantifies the idea of constant-rate growth in

the breadth-first search tree; Theorem 15 in [2] makes this argument formal.

In this chapter, we disprove Alon et al.’s conjecture by constructing distance-uniform graphs

that do not share this behavior, and whose diameter is exponentially larger than these examples.

We also prove an upper bound on the critical distance (and diameter) showing our construction

to be best possible, in one asymptotic sense, for a wide range of ε. Specifically, we show the

following two results:

Theorem 6.1.1. In any ε-distance-uniform graph with n vertices and ε = 2−Ω(
√

logn), the critical

distance d satisfies

d = 2
O( logn

log ε−1 )
.

Theorem 6.1.2. For any ε and n with 1
n
≤ ε ≤ 1

logn
, there exists an ε-distance-uniform graph on

n vertices with critical distance

d = 2
Ω
(

logn

log ε−1

)
.

Combined, these results prove that the maximum critical distance is 2
Θ( logn

log ε−1 ) whenever they

both apply. Unfortunately, we were unable to extend this upper bound on d to large values of
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ε: for example, when ε is constant as n → ∞. Of course, since a 1
logn

-distance-uniform graph

is also 1
2
-distance-uniform, Theorem 6.1.2 provides a lower bound of d = 2Ω( logn

log logn
) for any

ε > 1
logn

.

The family of graphs used to prove Theorem 6.1.2 is interesting in its own right. We give

two different interpretations of the underlying structure of these graphs. First, we describe a

combinatorial game, generalizing the well-known Tower of Hanoi puzzle, whose transition graph

is ε-distance-uniform and has large diameter. Second, we give a geometric interpretation, under

which each graph in the family is the skeleton of the convex hull of an arrangement of points on

a high-dimensional sphere.

6.2 Upper bound

Before proceeding to the proof of Theorem 6.1.1, we begin with a simple argument that is effec-

tive for an ε which is very small:

Proposition 6.2.1. The minimum degree δ(G) of an ε-distance-uniform graphG satisfies δ(G) ≥

ε−1 − 1.

Proof. Suppose that G is ε-distance-uniform, n is the number of vertices of G, and d is the

critical distance: for any vertex v, at least (1− ε)n vertices of G are at distance exactly d from v.

Let v be an arbitrary vertex of G, and fix an arbitrary breadth-first search tree T , rooted at v.

We define the score of a vertex w (relative to T ) to be the number of vertices at distance d from

v which are descendants of w in the tree T .

There are at least (1 − ε)n vertices at distance d from v, and all of them are descendants of

some vertex in the neighborhood N(v). Therefore the total score of all vertices in N(v) is at

least (1− ε)n.

On the other hand, if w ∈ N(v), each vertex counted by the score of w is at distance d − 1

from w. Since at least (1 − ε)n vertices are at distance d from w, at most εn vertices are at
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distance d− 1, and therefore the score of w is at most εn.

In order for |N(v)| scores of at most εn to sum to at least (1 − ε)n, |N(v)| must be at least

(1−ε)n
εn

= ε−1 − 1.

This proposition is enough to show that in a 1√
n

-distance-uniform graph, the critical distance

is at most 2. Choose a vertex v: all but
√
n of the vertices of G are at the critical distance d

from v, and
√
n− 1 of the vertices are at distance 1 from v by Proposition 6.2.1. The remaining

uncounted vertex is v itself. It’s impossible to have d ≥ 3, as that would leave no vertices at

distance 2 from v.

For larger ε, the bound of Proposition 6.2.1 becomes ineffective, but we can improve in it by

iterating the same argument.

Proposition 6.2.2. Let ak = 4k−1
3

, satisfying a1 = 1 and ak+1 = 4ak + 1.

In an ε-distance-uniform G, for each vertex v, and for any k such that ak is less than the

critical distance d, the number of vertices within distance at most ak from v is at least 2−k
2
(ε−1−

1)k.

Proof. We induct on k. Proposition 6.2.1 provides the k = 1 case of this theorem.

Suppose the proposition holds for some value of k, and that ak+1 < d. Once again, we

choose an arbitrary vertex v and an arbitrary breadth-first search tree T , rooted at v, and assign

each vertex w a score relative to T .

Next, we assign each vertex w a metascore equal to the sum of the scores of all vertices

within distance ak from w. Suppose w is at a distance of at least 2ak + 1 from v. Then taking

up to ak steps from w and then following the shortest path in T to depth d will yield a vertex at

distance d − 1 or less from w. Therefore, at most εn vertices of G are descendants of a vertex

within distance ak from w.

This does not, however, mean that the metascore of w is at most εn: these εn vertices can be

counted multiple times when they are descendants of several vertices within distance ak from w.
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Each vertex at depth d has at most 2ak + 1 ancestors within distance ak from w. Taking this into

account, we conclude that the metascore of w is at most (2ak + 1)εn.

Now sum the metascores of all vertices at a distance between 2ak+1 and ak+1 = 4ak+1 from

v. If x is a vertex at distance 3ak +1 from v, then the score of x is included in the metascore of at

least 2−k
2
(ε−1−1)k vertices; the scores of all vertices at distance 3ak +1 add to at least (1− ε)n,

and therefore the total of all metascores we have summed is at least 2−k
2
(ε−1 − 1)k(1− ε)n.

Since each vertex contributes at most (2ak + 1)εn to this total, we conclude that there are at

least

2−k
2
(ε−1 − 1)k(1− ε)n
(2ak + 1)εn

=
2−k

2

2ak + 1
(ε−1 − 1)k+1 >

2−k
2

4k
(ε−1 − 1)k+1 > 2−(k+1)2(ε−1 + 1)k+1

vertices at a distance between 2ak + 1 and 4ak + 1, and therefore within distance ak+1, from

v.

The result of Proposition 6.2.2 is, in particular, a lower bound on the number of vertices in

G, in terms of d and ε, which we can hope to reverse to get an upper bound on d in terms of ε

and n. The following propositon makes this argument precise.

Proposition 6.2.3. In an ε-distance-uniform graph with critical distance d, the number of ver-

tices is at least

min
{

2Ω((log ε−1)2), 2Ω(log d log ε−1)
}
.

Proof. Let G be ε-distance-uniform with critical distance d.

For any k with ak < d, Proposition 6.2.2 implies that G has at least 2−k
2
(ε−1 − 1)k vertices;

this is maximized when k = log4(ε−1 − 1). We will choose some value of k such that k ≤

log4(ε−1 − 1); then 2−k
2
> 2−k log4(ε−1−1) = (ε−1 − 1)−k/2, so 2−k

2
(ε−1 − 1)k > (ε−1 − 1)k/2 =

2k log4(ε−1−1), and the guarantee of Proposition 6.2.2 is that G has at least 2k log4(ε−1−1) vertices.

Let k1 be the value of k that satisfies 4k1−1
3

< d ≤ 4k1+1−1
3

: k1 is the largest value of k that

can be chosen in Proposition 6.2.2, since ak1 < d ≤ ak1+1, and satisfies k1 = log4 d − O(1).

88



If k1 ≤ log4(ε−1 − 1), then it makes sense to use k = k1 in the proposition. In this case, we

conclude that G has at least 2k1 log4(ε−1−1) = 2Ω(log d log ε−1) vertices.

On the other hand, if k1 > log4(ε−1 − 1), then we achieve better results by using k2 =

blog4(ε−1 − 1)c in the proposition: for larger k, the bound we get on n will start decreasing. In

this case, we conclude that G has at least 2k2 log4(ε−1−1) = 2Ω((log ε−1)2) vertices.

To obtain the upper bound in Theorem 6.1.1, we assume that ε is small enough that the first

bound of Proposition 6.2.3 is less than n: the upper bound on ε we derive from this assumption

has the form ε = 2−Ω(
√

logn).

In this case, the first bound of Proposition 6.2.3 does not hold; therefore the second bound

must hold, and n = 2Ω(log d log ε−1). Solving for d, we conclude that d = 2
O( logn

log ε−1 ), as desired.

6.3 Lower bound

6.3.1 The Hanoi game

We define a Hanoi state to be a finite sequence of nonnegative integers ~x = (x1, x2, . . . , xk) such

that, for all i > 1, xi 6= xi−1. Let

Hr,k =
{
~x ∈ {0, 1, . . . , r}k : ~x is a Hanoi state

}
.

For convenience, we also define a proper Hanoi state to be a Hanoi state ~x with x1 6= 0, and

H∗r,k ⊂ Hr,k to be the set of all proper Hanoi states. While everything we prove will be equally

true for Hanoi states and proper Hanoi states, it’s more convenient to work with H∗r,k, because

|H∗r,k| = rk.

In the Hanoi game on Hr,k, an initial state ~a ∈ Hr,k and a final state ~b ∈ Hr,k are chosen.

The state ~a must be transformed into~b via a sequence of moves of two types:

1. An adjustment of ~x ∈ Hr,k changes xk to any value in {0, 1, . . . , r} other than xk−1. For

example, (1, 2, 3, 4) can be changed to (1, 2, 3, 0) or (1, 2, 3, 5), but not (1, 2, 3, 3).
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2. An involution of ~x ∈ Hr,k finds the longest tail segment of ~x on which the values xk and

xk−1 alternate, and swaps xk with xk−1 in that segment. For example, (1, 2, 3, 4) can be

changed to (1, 2, 4, 3), or (1, 2, 1, 2) to (2, 1, 2, 1).

We define the Hanoi game on H∗r,k in the same way, but with the added requirement that all

states involved should be proper Hanoi states. This means that involutions (or, in the case of

k = 1, adjustments) that would change x1 to 0 are forbidden.

The name “Hanoi game” is justified because its structure is similar to the structure of the

classical Tower of Hanoi puzzle. In fact, though we have no need to prove this, the Hanoi game

onH∗3,k is isomorphic to a Tower of Hanoi puzzle with k disks.

It’s well-known that the k-disk Tower of Hanoi puzzle can be solved in 2k−1 moves, moving

a stack of k disks from one peg to another. In [32], a stronger statement is shown: only 2k − 1

moves are required to go from any initial state to any final state. A similar result holds for the

Hanoi game onHr,k:

Lemma 6.3.1. The Hanoi game onHr,k (orH∗r,k) can be solved in at most 2k − 1 moves for any

initial state ~a and final state~b.

Proof. We induct on k to show the following stronger statement: for any initial state ~a and final

state~b, a solution of length at most 2k − 1 exists for which any intermediate state ~x has x1 = a1

or x1 = b1. This auxiliary condition also means that if ~a,~b ∈ H∗r,k, all intermediate states will

also stay inH∗r,k.

When k = 1, a single adjustment suffices to change ~a to ~b, which satisfies the auxiliary

condition.

For k > 1, there are two possibilities when changing ~a to~b:

• If a1 = b1, then consider the Hanoi game on Hr,k−1 with initial state (a2, a3, . . . , ak) and

final state (b2, b3, . . . , bk). By the inductive hypothesis, a solution using at most 2k−1 − 1

moves exists.

Apply the same sequence of adjustments and involutions inHr,k to the initial state ~a. This
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has the effect of changing the last k− 1 entries of ~a to (b2, b3, . . . , bk). To check that we’ve

obtained~b, we need to verify that the first entry is left unchanged.

The auxiliary condition of the inductive hypothesis tells us that all intermediate states have

x2 = a2 or x2 = b2. Any move that leaves x2 unchanged also leaves x1 unchanged.

A move that changes x2 must be an involution swapping the values a2 and b2; however,

x1 = a1 6= a2, and x1 = b1 6= b2, so such an involution also leaves x1 unchanged.

Finally, the new auxiliary condition is satisfied, since we have x1 = a1 = b1 for all

intermediate states.

• If a1 6= b1, begin by taking 2k−1 − 1 moves to change ~a to (a1, b1, a1, b1, . . . ) while satis-

fying the auxiliary condition, as in the first case.

An involution takes this state to (b1, a1, b1, a1, . . . ); this continues to satisfy the auxiliary

condition.

Finally, 2k−1− 1 more moves change this state to~b, as in the first case, for a total of 2k− 1

moves.

If we obtain the same results as in the standard Tower of Hanoi puzzle, why use the more

complicated game in the first place? The reason is that in the classical problem, we cannot

guarantee that any starting state would have a final state 2k − 1 moves away. With the rules we

define, as long as the parameters are chosen judiciously, each state ~a ∈ Hr,k is part of many pairs

(~a,~b) for which the Hanoi game requires 2k − 1 moves to solve.

The following lemma almost certainly does not characterize such pairs, but provides a simple

sufficient condition that’s strong enough for our purposes.

Lemma 6.3.2. The Hanoi game onHr,k (orH∗r,k) requires exactly 2k−1 moves to solve if~a and~b

are chosen with disjoint support: that is, ai 6= bj for all i and j.

Proof. Since Lemma 6.3.1 proved an upper bound of 2k − 1 for all pairs (~a,~b), we only need to

prove a lower bound in this case.
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Once again, we induct on k. When k = 1, a single move is necessary to change ~a to ~b if

~a 6= ~b, verifying the base case.

Consider a pair ~a,~b ∈ Hr,k with disjoint support, for k > 1. Moreover, assume that ~a and ~b

are chosen so that, of all pairs with disjoint support, ~a and~b require the least number of moves to

solve the Hanoi game. (Since we are proving a lower bound on the number of moves necessary,

this assumption is made without loss of generality.)

In a shortest path from ~a to ~b, every other move is an adjustment: if there were two con-

secutive adjustments, the first adjustment could be skipped, and if there were two consecutive

involutions, they would cancel out and both could be omitted. Moreover, the first move is an

adjustment: if we began with an involution, then the involution of ~a would be a state closer to ~b

yet still with disjoint support to~b, contrary to our initial assumption. By the same argument, the

last move must be an adjustment.

Given a state ~x ∈ Hr,k, let its abbreviation be ~x′ = (x1, x2, . . . , xk−1) ∈ Hr,k−1. An adjust-

ment of ~x has no effect on ~x′, since only xk is changed. If xk 6= xk−2, then an involution of ~x is

an adjustment of ~x′, changing its last entry xk−1 to xk. Finally, if xk = xk−2, then an involution

of ~x is also an involution of ~x′.

Therefore, if we take a shortest path from ~a to ~b, omit all adjustments, and then abbreviate

all states, we obtain a solution to the Hanoi game on Hr,k−1 that takes ~a′ to ~b′. By the inductive

hypothesis, this solution contains at least 2k−1 − 1 moves, since ~a′ and ~b′ have disjoint support.

Therefore the shortest path from ~a to ~b contains at least 2k−1 − 1 involutions. Since the first,

last, and every other move is an adjustment, there must be 2k−1 adjustments as well, for a total

of 2k − 1 moves.

Now let the Hanoi graphG∗r,k be the graph with vertex setH∗r,k and edges joining each state to

all the states that can be obtained from it by a single move. Since an adjustment can be reversed

by another adjustment, and an involution is its own inverse, G∗r,k is an undirected graph.

For any state ~a ∈ H∗r,k, there are at least (r−k)k other states with disjoint support to ~a, out of
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|H∗r,k| = rk other states, forming a
(
1− k

r

)k
> 1− k2

r
fraction of all the states. By Lemma 6.3.2,

each such state~b is at distance 2k− 1 from ~a in the graph G∗r,k, so G∗r,k is ε-distance uniform with

ε = k2

r
, n = rk vertices, and critical distance d = 2k − 1.

Having established the graph-theoretic properties of G∗r,k, we now prove Theorem 6.1.2 by

analyzing the asymptotic relationship between these parameters.

Proof of Theorem 6.1.2. Begin by assuming that n = 22m for some m. Choose a and b such that

a+ b = m and
22b

22a
≤ ε <

22(b+1)

22a−1 ,

which is certainly possible since 20

22m
= 1

n
≤ ε and 22m

220
> 1 ≥ ε. Setting r = 22a and k = 2b, the

Hanoi graph G∗r,k has n vertices and is ε-distance uniform, since k2

r
≤ ε. Moreover, our choice

of a and b guarantees that ε < 4k2√
r

, or log ε−1 ≥ 1
2

log r− 2 log 2k. Since n = rk, log n = k log r,

so

log ε−1 ≥ 1

2k
log n− 2 log 2k.

We show that k ≥ logn
6 log ε−1 . Since ε ≤ 1

logn
, this is automatically true if k ≥ logn

6 log logn
, so assume

that k < logn
6 log logn

. Then
1

3k
log n > 2 log log n > 2 log 2k,

so

log ε−1 ≥ 1

2k
log n− 2 log 2k >

1

2k
log n− 1

3k
log n =

1

6k
log n,

which gives us the desired inequality k ≥ logn
6 log ε−1 . The Hanoi graph G∗r,k has critical distance

d = 2k − 1 = 2
Ω( logn

log ε−1 ), so the proof is finished in the case that n has the form 22m for some n.

For a general n, we can choose m such that 22m ≤ n < 22m+1
=
(
22m
)2, which means in

particular that 22m ≥
√
n. If ε < 2√

n
, then the requirement of a critical distance of 2

Ω( logn

log ε−1 )

is only a constant lower bound, and we may take the graph Kn. Otherwise, by the preceding

argument, there is a ε
2
-distance-uniform Hanoi graph with 22m vertices; its critical distance d

satisfies

d ≥ 2
Ω
(

log
√
n

log(ε/2)−1

)
= 2

Ω
(

logn

log ε−1

)
.
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To extend this to an n-vertex graph, take the blow-up of the 22m-vertex Hanoi graph, replacing

every vertex by either bn/22mc or dn/22me copies.

Whenever v and w were at distance d in the original graph, the copies of v and w will be at

distance d in the blow-up. The difference between floor and ceiling may slightly ruin distance

uniformity, but the graph started out ε
2
-distance-uniform, and dn/22me differs from bn/22mc at

most by a factor of 2. Even in the worst case, where for some vertex v the ε
2
-fraction of vertices

not at distance d from v all receive the larger number of copies, the resulting n-vertex graph will

be ε-distance-uniform.

6.3.2 Points on a sphere

In this section, we identify Gr,k, the graph of the Hanoi game on Hr,k, with a graph that arises

from a geometric construction.

Fix a dimension r. We begin by placing r + 1 points on the r-dimensional unit sphere

arbitrarily in general position (though, for the sake of symmetry, we may place them at the

vertices of an equilateral r-simplex). We identify these points with a graph by taking the 1-

skeleton of their convex hull. In this starting configuration, we simply get Kr+1.

Next, we define a truncation operation on a set of points on the r-sphere. Let δ > 0 be

sufficiently small that a sphere of radius 1 − δ, concentric with the unit sphere, intersects each

edge of the 1-skeleton in two points. The set of these intersection points is the new arrangement

of points obtained by the truncation; they all lie on the smaller sphere, and for convenience, we

may scale them so that they are once again on the unit sphere.

Proposition 6.3.1. Starting with a set of r + 1 points on the r-dimensional sphere and applying

k truncations produces a set of points such that the 1-skeleton of their convex hull is isomorphic

to the graph Gr,k.

Proof. We induct on k. When k = 1, the graph we get is Kr+1, which is isomorphic to Gr,1.

From the geometric side, we add an auxiliary statement to the induction hypothesis: given
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points p, q1, q2 such that, in the associated graph, p is adjacent to both q1 and q2, there is a 2-

dimensional face of the convex hull containing all three points. This is easily verified for k = 1.

Assuming that the induction hypotheses are true for k−1, fix an isomorphism of Gr,k−1 with

the set of points after k − 1 truncations, and label the points with the corresponding vertices of

Gr,k−1. We claim that the graph produced after one more truncation has the following structure:

1. A vertex that we may label (~x, ~y) for every ordered pair of adjacent vertices of Gr,k−1.

2. An edge between (~x, ~y) and (~y, ~x).

3. An edge between (~x, ~y) and (~x, ~z) whenever both are vertices of the new graph.

The first claim is immediate from the definition of truncation: we obtain two vertices from the

edge between ~x and ~y. We choose to give the name (~x, ~y) to the vertex closer to ~x. The edge

between ~x and ~y remains an edge, and now joins the vertices (~x, ~y) and (~y, ~x), verifying the

second claim.

By the auxiliary condition of the induction hypothesis, the vertices labeled ~x, ~y, and ~z lie on

a common 2-face whenever ~x is adjacent to both ~y and ~z. After truncation, (~x, ~y) and (~x, ~z) will

also be on this 2-face; since they are adjacent along the boundary of that face, and extreme points

of the convex hull, they are joined by an edge, verifying the third claim.

To finish the geometric part of the proof, we verify that the auxiliary condition remains true.

There are two cases to check. For a vertex labeled (~x, ~y), if we choose the neighbors (~x, ~z) and

(~x, ~w), then any two of them are joined by an edge, and therefore they must lie on a common

2-dimensional face. If we choose the neighbors (~x, ~z) and (~y, ~x), then the points continue to lie

on the 2-dimensional face inherited from the face through ~x, ~y, and ~z of the previous convex hull.

Now it remains to construct an isomorphism between the 1-skeleton graph of the truncation,

which we’ll call T , andGr,k. We identify the vertex (~x, ~y) of T with the vertex (x1, x2, . . . , xk−1, yk−1)

ofGr,k. Since xk−1 6= yk−1 after any move in the Hanoi game, this k-tuple really is a Hanoi state.

Conversely, any Hanoi state ~z ∈ Hr,k corresponds to a vertex of T : let ~x = (z1, z2, . . . , zk−1),

and let ~y be the state obtained from ~x by either an adjustment of zk−1 to zk, if zk 6= zk−2, or else
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an involution, if zk = zk−2. Therefore the map we define is a bijection between the vertex sets.

Both T and Gr,k are r-regular graphs, therefore it suffices to show that each edge of T cor-

responds so an edge in Gr,k. Consider an edge joining (~x, ~y) with (~x, ~z) in T . This corresponds

to vertices (x1, x2, . . . , xk−1, yk−1) and (x1, x2, . . . , xk−1, zk−1) in Gr,k; these are adjacent, since

we can obtain one from the other by an adjustment.

Next, consider an edge joining (~x, ~y) to (~y, ~x). If ~x and ~y are related by an adjustment in

Gr,k−1, then they have the form (x1, . . . , xk−2, xk−1) and (x1, . . . , xk−2, yk−1). The vertices cor-

responding to (~x, ~y) and (~y, ~x) inGr,k are (x1, . . . , xk−2, xk−1, yk−1) and (x1, . . . , xk−2, yk−1, xk−1),

and one can be obtained from the other by an involution.

Finally, if ~x and ~y are related by an involution in Gr,k−1, then that involution swaps xk−1 and

yk−1. Therefore such an involution in Gr,k will take (x1, . . . , xk−1, yk−1) to (y1, . . . , yk−1, xk−1),

and the vertices corresponding to (~x, ~y) and (~y, ~x) are adjacent in Gr,k.
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Chapter 7

Conclusion

I began this thesis with a discussion of combinatorial results proven by other mathematicians

nearly a century ago. It seems appropriate to end it with a discussion of the problems on which I

hope to see progress—and which I intend to work on personally—in the future.

The results of Chapter 3 prove improved upper bounds on the Hales–Jewett number HJ(4, 2).

A more ambitious goal of mine is to achieve improved upper bounds on HJ(t, 2) for arbitrary t,

extending this result. Recent work on the Hales–Jewett theorem has focused on density results,

which strengthen the statement at the cost of returning to Ackermann-type bounds on the dimen-

sion n. On the other hand, our approach avoids iterated use of the pigeonhole principle; if the

challenges that currently prevent generalization from t = 4 can be solved, it is unlikely that the

resulting bound would grow much faster than the exponentially-growing lower bound.

I am also interested in making progress on the deterministic side of the Chvátal and Komlós

problem mentioned in Chapter 5. This problem asks to determine the largest m(n) such that

every edge-ordering of the edges of Kn contains an increasing path of length at least m(n). This

problem has remained open for decades, and the last few years have seen a burst of progress: in

addition to already-mentioned work by Milans [42] and Martinsson [41], a recent result of de

Silva et al. [16] extends the problem to the hypercube graph and to the random graph Gn,p.

I could go on discussing my hopes for problems already discussed in this thesis. However,
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what I look forward to the most is something that, by definition, I cannot describe. It is the

certainty that no matter which directions the field of combinatorics proceeds in, it will open the

way for new questions that are more exciting than anything we have already thought about.
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[14] V. Chvátal and J. Komlós. Some combinatorial theorems on monotonicity. Canad. Math.

Bull., 14:151–157, 1971. 5.1

[15] C. Cooper and A. M. Frieze. On the number of Hamilton cycles in a random graph. J.

Graph Theory, 13(6):719–735, 1989. 5.1

[16] Jessica De Silva, Theodore Molla, Florian Pfender, Troy Retter, and Michael Tait. Increas-

ing paths in edge-ordered graphs: the hypercube and random graph. Electron. J. Combin.,

23(2):Paper 2.15, 9, 2016. 7

[17] P. Erdös. Some remarks on the theory of graphs. Bull. Amer. Math. Soc., 53:292–294, 1947.

1.2
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