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Abstract

We present results using Durian’s bubble model [1] to study the spatio-

temporal correlations and rheological response to imposed shear flow in steady

state in jammed suspensions of soft, frictionless disks. We first study the so-

called mean drag (MD) variant of the model which is appropriate for modeling

particles at interfaces where the dominant dissipation comes from motion of

the particle with respect to the phases off the interface. In this case, we

find that the velocity fields are governed by a characteristic length, ξ, which

scales with shear rate, γ̇ like ξ ∼ γ̇−1/3. Below ξ the velocity fields have

the structure of uncorrelated Eshelby transformations. We find evidence for

substantial alignment of the Eshelby transformations at all orientations, in

contrast with the naive expectation that the sole contribution should come

from transformations aligned with the imposed shear.

The finite time displacement fields become increasingly anisotropic at long

lag times, ∆t (or, equivalently applied shear strain, ∆γ), and the correlations

corresponding to the Eshelby transformations aligned along directions other

than the principal shear directions become dominated by the correlations along

the primary shear direction. The decay of correlations along the primary shear

direction in real space becomes much slower for the displacements than the ve-

locities. However, at any ∆t, there is still a single characteristic length which

scales the same way as the length scale encoded in the velocity fields. At

the longest lag time, the structure factor of the displacement fields is consis-

tent with results from athermal-quasi-static (AQS) simulations of conventional

structural glasses with the power spectrum of the strain field, Sε(~k), decaying

like Sε ∼ k−0.7.
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We also measure the distribution of single-particle displacements in the

gradient direction, P (∆y) and its moments. The effective diffusion coefficient,

De = lim∆γ→∞〈∆y2〉/2∆γ = lim∆γ→∞〈∆y2〉/2γ̇∆t, scales with γ̇ like De ∼

γ̇−1/3. At low γ̇, De saturates to a system size dependent quasi-static (QS)

value, DQS which scales with the length of the system, L, as DQS ∼ L. We

can explain the relation between ξ and De by invoking an argument used to

describe De in AQS of structural glasses. We also show that the macroscopic

rheology follow a so-called Herschel-Bulkley (HB) law [2], δσ = σ − σy = Aγ̇β

with β ≈ 1/3 where σ is the shear stress, σy is the yield stress, and A is

a constant. We find that an effective temperature defined as Teff = δσDe is

essentially constant over several decades in γ̇ and conjecture that the constancy

of this effective temperature imposes a relation between De and δσ. At high

γ̇, P (∆y), is surprisingly Gaussian at all ∆γ, and there is a sharp cross-over

from a ballistic to a diffusive regime.

Finally, we study the so-called pair drag (PD) variant of the bubble model

using a form for the viscous drag which is appropriate for dissipation in a

bulk suspension or emulsion rather than an interfacial assembly. In agreement

with previous studies using the PD model [3], we find a HB exponent of β ≈

1/2. Here, we further show that the same basic connections between the

displacement fields, single-particle displacement statistics, and rheology play

out in the PD model in the same way as in the MD model. In particular,

we find that ξ ∼ γ̇−1/2, De ∼ γ̇−1/2, and δσ ∼ γ̇1/2 giving a constant value

of Deδσ over several decades in γ̇. The power spectrum of the displacement

fields in the PD model for kξ >> 2π is remarkably similar to that of the MD

model. For kξ . 2π, the power in the displacement fields for the PD model is

iv



essentially k independent, while for MD, it increases with k. We suggest that

this is simply due to the fact that a linearized, continuum version of PD would

damp all modes equally regardless of wavevector. Apart from this noise at

long wavelength, the two drag models essentially give indistinguishable finite

time displacement fields when compared at γ̇ values which give equivalent ξ.
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Introduction
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1.1 Rheology of Jammed Suspensions

1.1.1 Jammed Suspensions

Suspensions of deformable particles are ubiquitous and are the building blocks of

different everyday products such as food (ketchup, mayonnaise), personal care prod-

ucts (toothpaste, lotion, shaving cream), household goods (cement, paint) etc. All

these materials have a common property – they can behave like a solid sustaining

finite stresses, as well as a fluid flowing under the action of sufficient forces. These

materials are known as “Yield stress fluids” or “Soft viscoplastic solids”. These sus-

pensions are composed of particles whose length scale varies from few nanometers

to few hundreds of micrometers. Typical interactions energies are large compared to

kBT . They can be classified based on the particulate phase, as colloidal suspensions

(solid particles submerged in liquid), emulsions (liquid drops in another immiscible

liquid) and foams (air bubbles in liquid). Elastic forces and stresses in these systems

arise from the force network created due to the persistent deformation of the particles

at contact. Viscous forces and stresses arise from the shear induced in the suspend-

ing fluid when particles move relative to each other or relative to the background

flow. These materials can resist a finite amount of applied stress before flowing like a

viscous fluid above a particular yield stress, σy. The yield stress behavior is exploited

in various industries to make different consumer products where it is often desirable

for the materials to remain solid yet flow at low stress when desired (e.g. squeezing

toothpaste through a tube or ketchup or mayonnaise through a bottle). The rheology

2



in steady flow can usually be described by Herschel-Bulkley (HB) model [2],

σ = σy + Aγ̇β (1.1)

where, σ is the flow stress, γ̇ is the shearing rate, , and A and β are constants. β is

also known as the HB exponent. The HB model accounts for the yield stress behavior

as well as the non-linear viscosity observed in experiments.

Yield stress behavior in soft suspensions is observed particularly when the system is

above the jamming transition or in a jammed state. The jammed state is obtained

when the particles are confined volumetrically under compressive pressure such that

they are forced to deform even when not sheared [12–16]. In this state the particles

are in contact with most of its neighbors for finite duration of time and are confined by

positive osmotic pressure. This so called jammed state [12,13,17,18] can be achieved

by increasing the density of these particles above the Random Close Packing (RCP)

point [13].

In this work, we are interested in the regime where the characteristic energies

associated with rearrangning a configuration of jammed particles are many many

times kBT . In such athermal systems, the particles can only move in response to

external perturbations like imposed shear. The spontaneous thermal fluctuations are

far too small to cause any particle rearrangements in the packings.

3



Figure 1.1: From left to right : Different kinds of jammed suspensions, (a) Con-
centrated microgel suspensions [4], (b) Oil-water emulsion (Blair Lab, Georgetown
University), (c) Soap bubbles (Martin Van Hecke Laboratory, Leiden University)

1.1.2 Experimental Observations

In Fig. 1.1, we show optical images of some particular examples of the types of suspen-

sions we are interested in. In the past few years many experimentalists [5–8, 19–26]

have studied different classes of soft suspensions (soap bubbles, emulsions, microgel

suspensions) in the unjammed as well as jammed state and generally found HB rhe-

ology. Here we discuss two typical types of rheology for the denser jammed packings–

one for systems like soap bubbles and the another for micro-gel pastes and emulsions.

The experimental results indicate that a major factor which determines the rheology

is the geometry of the dissipation. In the case where the particles under shear live

at an interface between two fluids (like soap bubbles at the air-water interface in a

bubble raft), one finds an HB exponent of roughly 1/3. In the other case, where

particles are sheared in bulk and the dominant source of drag should come from

relative motion of particles, one finds an HB exponent of roughly 1/2.
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(a) (b)

Figure 1.2: Foam rheology using bubble raft in 2D Couette cell. Results from (a)
Pratt et. al. [5] and (b) Katgert et. al. [6]. The black line in (a) has a slope of 1/3
and the black curve in (b) is a Herschel Bulkley fit with an exponent of 0.36.

In 2003, Pratt et. al. [5] studied the rheology of a disordered wet foam. They

observed yield stress rheology at slow shearing rates and reported an HB exponent of

1/3 for fast shearing rates (Fig. 1.2a). In Martin Van Hecke’s group they performed

similar bubble raft experiments using different geometries - from a freely floating

monolayers of bubbles to confined bubbles with a glass plate on top [6,19–21]. They

found an HB exponent of 0.36 (Fig. 1.2b), roughly consistent with [5]. This type

of bubble raft experiments are performed in a cylindrical coquette cell where single

layer of disordered bubbles float on a water tank. The outer cylinder is the rotated

and the resistive torque is measured at the inner cylinder. Majority of the resistive

drag on the bubbles arrises due to the underneath flow field.
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(a) (b)

Figure 1.3: (a) Non-Newtonian rheology below jamming (φ < φc) and Yield stress
behavior above jamming (φ > φc) in a microgel system [7]. Different colors corre-
spond to different densities which are collapsed onto two master curves. (b) Scaled
stress vs strain rate data for two different types of emulsion: high viscosity oil in
water-glycerol (closed symbol) and low viscosity oil in water (open symbol). Dashed
line corresponds to Herschel-Bulkley fit using the elasto-hydrodynmic model. [8]

Nordstrom et. al. [7, 24] studied the motion of dense microgel suspensions in a

microfluidic rheometer for varying shearing rates. They observed different rheology

on the two sides dependence on shearing rates at the two sides of jamming transition

(Figure 1.3a). Above the jamming transition, the system developed a yield stress.

Below jamming, the stress went to zero at zero shearing rate. But irrespective of

packing fraction, at high γ̇, the suspensions show a common power-law behavior

with an exponent of 1/2. Langlois et. al. [3] studied the rheology using the Durian’s

bubble model [1] with drag forces proportional to the relative velocities of contacting

particles. They showed the HB exponent to be 0.54, which was very close to the

Nordstrom result [7]. In 2011, Seth et. al. [8] developed a detailed and relatively so-
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phisticated elasto-hydrodynamic model for a paste composed of the same material as

used by Nordstrom et. al. [7]. They also performed experiments on micro-emulsions

with the minority phase fluid of varying viscosity. Their model equated the lubri-

cation pressure at the gap between particles with the elastic pressure due to the

Hertzian contact assuming that the particles were solid like object. They showed

that this model also gave a HB rheology with an exponent of roughly 1/2 in agree-

ment with the bubble model results of Langlois, and a fit for the two HB parameters,

σy and A, resulted in an excellent fit to the data (Figure 1.3b).

1.1.3 Objective

In this work, we attempt to explain the observed rheology in both the interfacial

(with HB exponent of 1/3) and bulk drag (with HB exponent of 1/2) scenarios

by relating the macroscopic rheological response to the microscopic spatio-temporal

correlations. Although others have reproduced the rheology in simulations for the

bulk drag case [3, 8], here we differentiate ourselves by both performing an analysis

of these spatio-temporal correlations to understand the rheology and also studying

the interfacial drag case. We use discrete particle simulations in the athermal limit

to study dense packings of deformable particles. The model we use [1] has repulsive

harmonic interaction between particles and a simple damping force which models the

viscous effect of the suspension at finite shear rates.

In particular, we want to answer the the question, “How are rheology, diffusivity,

and spatial structure of the rearrangements related?” We will show that all three

of these are governed by a single correlation length for the rearrangements which
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diverges as the shearing rate vanishes in a way reminiscent of other athermal driven

systems.

1.2 Amorphous Plasticity

1.2.1 Amorphous Solids

Amorphous materials do not have the crystalline structure of an elastic solid. Locally

every site is different from every other site and stresses, energies, and other mechan-

ical properties are broadly distributed. This is in sharp contrast to crystals. Despite

having a broad distribution of local mechanical properties, at small load the response

is elastic, similar to conventional, crystalline solids. Under applied shear some sites

eventually yield and rearrange to accommodate the imposed shear. At low shear-

ing rates, the response is bursty and intermittent, resembling other slowly driven

out-of-equilibrium systems such as pinned elastic manifolds, Barkhausen noise in

disordered ferromagnets, martensitic phase transformations, or dislocation-mediated

crystal [27]. In recent years, it has become clear that shear flow in many types

of amorphous solids – structural glasses such as metallic or polymer glasses; soft

glasses such as pastes, emulsions, or foams; sheared granular matter – is governed by

localized plastic shear transformations [28–32]. Like dislocation motion in a crystal,

these shear transformations, or local rearrangements are the fundamental elementary

process responsible for plasticity in an amorphous solid.

Bulatov and Argon [33–35] pointed out that the local rearrangements in amor-

phous media induce long-ranged strain fields [9,36–39], which redistribute the stress
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in rest of the system. This load redistribution is precisely the same mechanism as in

Eshelby’s classical calculation of the stress increments in response to a local plastic

transformation [36]. The Eshelby field corresponding to a single flip can be visualized

in the far-field limit as the response due to two sets of force dipoles (Fig. 1.4a) acting

at the origin in an infinite, elastic medium [9]. The force F can be determined using

the dipole strength as F = 2aµ∆ε0, where µ is the shear modulus, a is the length

scale over which the flip occurs and ∆ε0 is the eigen strain at the core. Assuming

the stress developed due to the forces, F/2a to be equal to the stress release at the

core, µ∆ε0 the displacement field (r >> a) can be obtained as [40],

~u =
a2∆ε0

2π

sin 2θ

r2
~r (1.2)

(a) Force Dipole (b) Stress Response

Figure 1.4: (a) The perturbation due to a local plastic stress is equivalent to the
perturbation due to the two set of force dipoles; (b) Response in stress field under
the action of the force dipole. [9]
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Simultaneously the shear-strain field can be calculated by taking the proper gra-

dients [40],

εxy =
a2∆ε0
π

cos 4θ

r2
(1.3)

The quadrupolar symmetry in the shear stress response in Figure 1.4b reflects the

angular anisotropy of the far field solution of shear strain according to equation 1.3.

Figure 1.5: (a) Horizontal and (b) Vertical displacements during a horizontal slip
event, (c) Schematic representation of the non-affine displacements parallel to a slip
line of length L over a plastic zone of width h and a displacement discontinuity a. [10]

Maloney and Lemaitre [11] showed that in model metallic glasses, plastic events

are composed of a series of local shear transformations that organizes into line of

slips (Fig. 1.5). The slip lines are built up over the course of several successive

avalanches. Eventually subsequent avalanches decorrelate from previous ones, and

after this timescale, any given slip line is fully formed. In the quasi-static (QS)

regime, this timescale for the decorrelation between successive avalanches is precisely
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the same timescale required to build up a strain equal to the strain relieved by a

single slip line. In Fig. 1.6, they show local Eshelby transformation in a molecular

dynamics simulation of metallic glass. For the same Lennard-Jones glass, the long

ranged strain correlations appear to be anisotropic and has strong correlations along

the maximal shear stress direction [41].

Figure 1.6: Non-affine displacement field at the onset of a plastic event in a metallic
glass. Quadrupolar structure is the signature of an Eshelby flip event. [11]

1.2.2 Mean Field Models

Researchers have developed several mean field theories based on the idea of these

localized yielding events. All these theories assume independent shear transforma-

tion, resulting deformation that depends only on the number of such local zones and

their probability to yield. They explicitly neglect any correlations between transfor-

mations.

Modern studies of deformation in amorphous materials evolved from the works

of Ali Argon [42] in the late 1970’s and 1980’s. Argon argued that plastic strain in
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these materials arrises due to the balance of forward flips (releasing stress) and a

back flux. According to him, flips of these weak areas in a substance are governed

by an activation rate. This rate depends on the thermal activation energy needed

for a zone to overcome the difference between free energy and elastic energy under

an applied stress. In line with Argon’s model, Falk and Langer [28] proposed the

Shear Transformation Zone (STZ) theory, which states that deformation due to the

flip of particular zones can be characterized by the dynamical state variable, number

density of such zones. The idea of local flips or shear transformations has been

supported by numerical simulations [11, 43–46]. Apart from these, there are other

mesoscale models that describe the state of the system by probability distribution

of stress level – Hebraud-Lequeux model (HL) model [47, 48] and energy barrier –

Soft Glassy Rheology (SGR) [49,50]. These models vary in their assumptions about

the distribution of states, the barriers seen by the states, and the dynamics of the

yielding events, but they all predict the HB type power-law rate dependence of the

shear stress where σ − σy = δσ ∼ γ̇β. However, the exponent, β, varies from model

to model.

1.2.3 Elasto-plastic Models

One can, alternatively, construct explicit real-space models based on the notion of lo-

calized yielding events. These so-called elasto-plastic models (EPMs) were pioneered

by Bulatov and Argon and many variations have been proposed in the intervening

years [33, 35, 51–62]. These models, like the mean field theories, make assumptions

about the distribution of states, barriers, rules and dynamics of yielding, and, im-
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portantly, the dynamics of load redistribution after a local shear transformation. In

most cases, with a few exceptions [51, 52], the loads are transferred instantaneously

across all space as the site in question undergoes a yielding event. In one of the

few EPMs where loads are transferred dynamically, a δσ ∼ γ̇0.5 rheology was also

observed [52]. Recently, Liu et. al. [63], have shown that in a rate dependent EPM,

the rheology exhibits a crossover from a non-trivial universal scaling regime at low

rate where δσ ∼ γ̇0.65 to a mean field behavior at higher rate where δσ ∼ γ̇0.51.

1.3 Dissertation Structure

This dissertation is organized as follows. In Chapter 2, we start with a description

of the particle model explaining the two different dissipation mechanisms. We also

discuss the simulation environment and the parameters used to perform the analysis.

In Chapter 3, we present the rheology and instantaneous response for the Mean Drag

(MD) version of the model. Detailed analysis of spatial correlation of velocity field

for different shearing rates is demonstrated. We show interesting isotropic behavior

of the overall velocity field. In Chapter 4, we examine the finite time displacement

statistics, particle diffusion and the structure of the displacement field for the MD

variant. A measure of effective temperature for this athermal soft suspensions is

introduced to describe the connection between rheology and diffusion. In Chapter 5,

we perform similar analysis as in Chapter 3 and 4, but for more sophisticated Pair

Drag (PD) dissipation mechanism that take care of viscous forces due to individual

particle-particle contact. We show that a single correlation length is responsible for
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the diffusive behavior and an effective temperature can be constructed to explain the

diffusion-rheology connection, similar to the other damping mechanism.
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Chapter 2

Numerical Model
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In this chapter we introduce the numerical model used to perform the particle

based simulation. The important points to note here are:

1. All stresses come from persistent deformation at contact between the particles.

2. There is no thermal motion. If the system is not explicitly driven by external

deformation, it will remain at rest.

3. The precise form of the repulsion between the interacting particles is not impor-

tant. We use a harmonic repulsive contact force in the data reported here, but

have observed similar behavior with non-linear contact forces such as Hertzian

contacts.

4. The particles are modeled as perfectly circular disks, and there is no friction

or adhesion/attraction at the contacts.

To study the dynamic behavior of the system we drive the system using a simple

shear mechanism, under the assumption of overdamped dynamics, where the mass

of the particles does not play a role .

2.1 Particle Scale Dynamics

We consider two dimensional system (D = 2) of soft disc like particles in a bi-disperse

mixture to avoid crystallization [13]. Each particle i is defined by its radius Ri and

has 2 time dependent parameters: its position ~ri and velocity ~vi. rij = |~ri−~rj| is the

distance between the i-th and j-th particle. The particles can be thought as 2D discs

that overlap on each other when the distance between them is less than the sum of
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their radii, rij < (Ri + Rj). The overlap is measured as, δij = rij/(Ri + Rj) − 1.

There are NL large and NS small particles with NL : NS = 50 : 50. The size ratio of

the particles are 1.4 [13], i.e., RL : RS = 1.4 : 1. All lengths are reported in units of

the diameter of the smaller particle DS = 2RS.

�ij

rij

U(rij) / �2
ij

Figure 2.1: Repulsive Interaction between two disc like particles.

To study the dynamics of the collection of particles we follow the Durian’s Bubble

Model [1]. In this model, the particles experience two pairwise additive interactions

based on their overlap and dissipative mechanism. First, the elastic repulsion is

modeled by a harmonic potential U = kδ2 if δ < 0 and zero otherwise, where k is

the elastic spring constant between the particles. The elastic force on particle i due

to particle j is,

~FE
ij = −∂U(rij)

∂~rj
(2.1)

Thus, the total elastic force experienced by particle i due to its overlapping contacts

j is,

~FE
i =

∑
j

~FE
ij (2.2)

The second interaction is the viscous dissipation which is taken into account in two
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different ways.

Mean Drag (MD)

In this variant the dissipation occurs due to the relative velocity between the in-

dividual particle with respect to the average background flow. One can think this

type of dissipation as the implementation of normal Stoke's Drag. This type of

damping mechanism might be a realistic expression for the drag experienced by a

soap bubble (or other deformable particle) floating on the surface of a deep tank

of water [20, 64–67], where dissipative forces on a particle may be governed by the

generated subsurface flow. In this case, the total drag force on particle i is,

~FD
i = −b(~vi − yiγ̇x̂) (2.3)

where b is the damping parameter, yi is the location of the particle projected along

the flow-gradient direction, x̂ is the unit vector in the flow direction, and γ̇ is the

imposed shearing rate.

~vi

~vj

~vi

~vflow = yi�̇x̂

(a) (b)

Figure 2.2: Two types of drag mechanism: (a) Mean Drag, (b) Pair Drag
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Pair Drag (PD)

In this dissipation mechanism, drag force is proportional to the relative velocities of

the particle with respect to its neighbors.

~FD
i = −b

∑
j

(~vi − ~vj) (2.4)

where j′s are the particle indices for the neighbor of i−th particle. We call this

mechanism, Pair-Drag, because the dissipation is modeled taking care of each pair-

wise contact. Important point to note is that in both dissipation mechanism the drag

force is linear with the particle velocity. We then solve the Newton law of motion

for each individual particle,

mi
d2~ri
dt2

= ~FE
i + ~FD

i (2.5)

where mi is the mass of i− th particle. As we are interested in the overdamped limit,

mass can be considered negligible. For MD, replacing mi = 0, we get the equation

of motion for particle i,

d~ri
dt

= yiγ̇x̂+
1

b

∑
j

~FE
ij (2.6)

In the case of PD, the mass is chosen small enough such that the system is over-

damped. In this model the only relevant timescale is τD = b
k
. This is the character-

istic relaxation time arising due to the competing mechanism for elastic storage and

viscous dissipation. All subsequent times are reported in units of τD. In particular,

the shear rate in subsequent sections is reported in units of 1/τD. In our simulations

we have used b = 1 and k = 1.
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2.2 Simulation Protocol

Figure 2.3: Primary Simulation cell in 2D space. Simple shear is applied along x
direction.

We use the LAMMPS [68] molecular dynamics framework to perform the 2D nu-

merical simulations. To integrate the equations of motion, a first order predictor

corrector module has been written for LAMMPS with a time step, ∆t = 10−1τD

for the MD model. We have confirmed the stability of our numerical scheme based

on this time step for rates, γ̇ ≤ 10−3. For faster rates (γ̇ > 10−3), we use smaller

timesteps to avoid the numerical instabilities. For PD, we use ∆t = 0.05τD. Lees-

Edwards boundary conditions [69] are used to implement the simple shear along x.

We refer to the flow direction as x and the gradient direction as y. This is represented

in Figure 2.4. Periodic images are replicated in x-direction and displaced periodic

images are replicated in the y-direction according to the experienced shear. In this

way we impose shear in a finite size simulation cell without boundary artifacts such

as slip or structural ordering. Note however, the finite size of the cell could have an

impact.
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Figure 2.4: Strain Controlled periodic box with Lees Edwards boundary condition
for a simple shear application.

Volume fraction, φ, is defined as π(NLR
2
L+NSR

2
S)/L2, where NL and NR are the

number of large and small particles respectively, L is the simulation box size. As we

are interested in the jammed state of the suspensions, we set the particle density,

φ = 0.9, which is above the jamming point, φJ ≈ 0.843 in two dimension. We

consider different sizes of the box for our simulations, L = 40, 80, 160 corresponding

to a total number of, N equals to 1240, 4960, 19840 particles. In this thesis we report

steady state data, which is obtained beyond 50% of strain. Data accumulation and

statistical analysis are performed between 50% to 150% strain.
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Chapter 3

Instantaneous Response
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In this chapter, we present the numerical results for the MD dissipation mecha-

nism to illustrate instantaneous response of the system and explain how the structure

of velocity field varies with increasing shear rate. But before going into the details

of the velocity field, we evaluate the basic flow properties of the system under simple

shear. We discuss the flow behavior in terms of macroscopic stress or flow stress

which is measured as the average shear stress.

3.1 Macroscopic Stress

In the simple case of imposing a constant linear shear rate γ̇ on the system, the shear

stress σxy may be obtained from the usual microscopic Irving- Kirkwood definition

[70],

σαβ =
1

L2

N∑
i=1

[
1

2

N∑
j=1,i=1

fijαrijβ −miviαvjβ

]
(3.1)

where α, β represent the Cartesian coordinates, ~rij = ~rj − ~ri, fij is the force exerted

by on j-th particle on i and vi is the velocity of i-th particle. For our bubble model,

we use m = 0. Note that we exclude the contribution from the viscous forces which

is negligible in the regime of shearing rates studied here.

3.1.1 Stress Response at Various Rate

When an amorphous material is driven slowly, majority of its time is spent loading

elastically with little dissipation and a minority of its time is spent undergoing large

plastic dissipation. This behavior of bursty energy dissipation during slow loading

is seen in a many diverse systems including dislocation bursts in crystal plasticity
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[71–74], domain wall motion in disordered magnets [75–77] and in amorphous solids

like our model [78–82]. In the slow shear limit, the events are well separated from

each other and occurs after a period of elastic loading. In Fig 3.1, we plot the shear

stress, σxy vs. strain, γ for 3 different rates. At γ̇ = 10−6, one can clearly observe the

huge stress drop due to distinct particle rearrangement events (around γ = 1.23 in Fig

3.1) which are followed by several ramps of elastic loading [11,44,45]. As we increase

the shearing rate, the system does not have enough time to relax after an event and

the events start to overlap in time. Stress fluctuations for fast rates are suppressed

compared to the slow rate. At very fast shearing rates (γ̇ = 10−2), the relative

fluctuations in stress are very small and the burstiness completely disappears..

1.2 1.22 1.24 1.26 1.28 1.3

10
−3

10
−2

γ

σ
x
y

Figure 3.1: σxy vs. γ for different strain rates γ̇ = 10−6(blue), 10−4(purple), 10−2(red)
for L = 40.

3.1.2 Rheology

By definition, ‘Rheology’ is the study of flow properties of liquids and soft materials

under the condition where the response to applied stress is plastic in nature instead of
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Figure 3.2: σ vs. γ̇ for L = 40, 80, 160. The bold dashed line has a slope of 1/3.

the well known elastic behavior of matter. For a linear elastic solid the deformation

is proportional to the applied stress in small deformation limit and is governed by

the Hooke's law, γ = G−1σ, where G is the shear modulus. Above σy the material

deforms permanently due to plasticity. On the other hand, most of the familiar

liquids follow Newtonian behavior, σ ∝ γ̇; or in other words normal Newtonian

liquids have a constant viscosity η = σ/γ̇. The type of material we are interested

in shows dual characteristics of solid as well as fluid at the dense state and followed

HB behavior, δσ = σ − σy ∼ γ̇β. It is also known, that as we approach the quasi

static (QS) limit, the viscosity, η diverges with shear rate as η ∝ 1/γ̇. In Fig. 3.2,

we plot the σ vs. γ̇ for 3 different system sizes, L = 40, 80, 160 at a packing fraction

of φ = 0.9. We observe that σ does not depend on L. Irrespective of L, at vanishing

rates one approaches the same yield stress (σy). At higher rates, one approaches a

power-law regime which is described reasonably well by Eqn.1.1 with β = 1/3 for

over a decade. We cannot rule out a cross-over to a different behavior at very low

rates as one approaches the QS limit.
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3.2 Non-affine Velocity

In the QS limit, stress fluctuates about yield stress as the system experiences large

spatio-temporal fluctuations and shows intermittent behavior. As energy is injected

smoothly by the applied strain, it dissipates in discrete bursts. But with increasing

rate, the intermittency disappears and the stress fluctuations are minimized. In the

first part of this section, we study the distribution of velocities1 to discuss energy

dissipation at various rate. In the later part we focus on the spatial correlations of

the velocity field and the nature of the instantaneous structure of it.

3.2.1 Energy Dissipation and Velocity Distribution

In the MD model, we can define energy dissipation rate, Q, as the difference between

the power input due to the applied deformation, σγ̇,2 and time derivative of the total

potential energy dU/dt,

Q = σγ̇ − dU

dt
(3.2)

Time derivative of energy can be written as,

dU

dt
=
∂U

∂γ

∣∣∣∣
s

γ̇ +
∑
i

∂U

∂~si
~̇si = σγ̇ −

∑
i

~FE
i .δ~vi (3.3)

where, ~si is the position of the i-th particle in co-moving reference frame, δvi is the

non-affine velocity and ~Fi is the total force on particle i due to the harmonic springs

1All velocities are the non-affine velocities defined with respect to background average flow,
δvi = vi− < v >

2σ is the total virial (extensive) rather than the stress (intesive)
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attached to it. ∂U
∂γ

∣∣∣
s
γ̇ can be identified as the applied work, σγ̇. Combining equations

3.2 and 3.3 we can get the expression for the instantaneous dissipation rate Q,

Q = Γγ̇ =
∑
i

~FE
i .δ~vi = b

∑
i

δv2
i (3.4)

Γ being the energy dissipated per unit strain and b, the drag coefficient. Important

point to note, the total energy dissipated over all events occurring over a time interval

equals the total stress times applied strain during that cycle. Whenever there is a

big plastic rearrangement in the system the energy dissipation is huge. In Fig. 3.3,

we plot the probability distribution of Γ for different γ̇ for L = 160 in a log-log scale.

At γ̇ = 10−7, broad distribution of Γ can be understood as the interplay between

long period of elastic loading and infrequent huge plastic dissipation when Γ is huge.

In this low-rate regime, the Γ distributions are governed by the sum rule that the

average Γ must be equal to the yield stress. With increasing γ̇, Γ distributions get

narrower and the 〈Γ〉 shifts right as σ increases.

10
−1

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

Γ

P
(Γ

)

 

 

1 × 10−3

4 × 10−4

2 × 10−4

1 × 10−4

4 × 10−5

2 × 10−5

1 × 10−5

4 × 10−6

2 × 10−6

1 × 10−6

4 × 10−7

2 × 10−7

1 × 10−7

Figure 3.3: Probability distribution of Γ for different γ̇, L = 160.

For an non-interacting, equilibrium system, velocity follows a Maxwell-Boltzmann
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distribution with an width that depends on the temperature and mass of the parti-

cles. Our system is athermal but the dynamics is based on the dissipative particle

rearrangements which gives rise to the non-affine velocities. Γ distributions tells

us about the overall behavior of the dissipation and highlights the intermittency at

low rates. We are also interested in the distribution of the particle velocities. In

Fig. 3.4a we show the probability distribution of non-affine y-velocities for differ-

ent rates. We observe as γ̇ decreases the distributions become narrow. For slow

rates where σ approaches σy, we observe power-law like velocity distributions with

cutoffs at high velocities. For γ̇ ≥ 10−6, the crossover from plateau value follows

γ̇−1, which suggests a rate dependent velocity scale. In Fig. 3.4b we plot the same

distributions as in Fig. 3.4a, scaled by γ̇2/3 for γ̇ ≥ 10−6. The collapse of the

crossover (at vy/γ̇
2/3 ≈ 10−1) agrees with the overall scaling of dissipation rate,

Γ ∼ σ ∝ γ̇1/3 ⇒ 〈δv2〉/γ̇ ∝ γ̇1/3 ⇒ δv ∝ γ̇2/3.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

vy

P
(v

y
)

 

 

1 × 10− 3

4 × 10− 4

2 × 10− 4

1 × 10− 4

4 × 10− 5

2 × 10− 5

1 × 10− 5

4 × 10− 6

2 × 10− 6

1 × 10− 6

4 × 10− 7

2 × 10− 7

1 × 10− 7

(a) P (vy)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

vy/γ̇
2/3

P
(
v
y
/
γ̇
2
/
3 )

 

 

1 × 10
− 3

4 × 10
− 4

2 × 10
− 4

1 × 10
− 4

4 × 10
− 5

2 × 10
− 5

1 × 10
− 5

4 × 10
− 6

2 × 10
− 6

1 × 10
− 6

(b) P (vy/γ̇
2/3)

Figure 3.4: (a) Probability distribution of non-affine y-velocities for different γ̇, L =
160. The bold dashed line has a slope of -1. (b) Distribution of vy scaled by γ̇−2/3

for intermediate rates γ̇ ≥ 10−6, L = 160.

28



3.2.2 Emerging Correlation Length, ξ ∝ γ̇−1/3
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Figure 3.5: Top: A typical map of 104vy for (a) γ̇ = 10−3 and (b) γ̇ = 10−5 using

L = 160. Bottom: Spatial autocorrelation of y-velocities Cvy(~R)/Cvy(x = 1) for (c)
γ̇ = 10−3 and (d) γ̇ = 10−5.

To understand the the nature of the particle rearrangement spatially we first study

the spatial correlation of velocity field. We define spatial autocorrelation function

for vy as,

Cvy(~R) = 〈vy(~R + ~r, t)vy(~r, t)〉(~r,t) (3.5)

In Fig. 3.5, we plot a typical snapshot of vy field at two typical rates, (a) γ̇ =

10−3 and (b) γ̇ = 10−5, and their respective time-averaged spatial autocorrelation

functions, Cvy , in (c) and (d). The large coherent spatial structures are obvious.

These correspond to long lines of particles which are all slipping together at the same
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instant. The sharp jumps from blue to red as one traverses the image from left to right

indicate discontinuities in the velocity field with counter-clockwise vorticity. The real-

space correlation functions reflect the visual impression. The y-velocities have strong

correlations along the y direction. They are correlated along the x-direction for some

distance and eventually become anti-correlated. One would naturally associate the

cross-over from correlation to anti-correlation with the typical spacing between the

slip lines.
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Figure 3.6: (a) Cvy(R = x)/Cvy(x = 1) for different γ̇, L = 160. The bold dashed
line shows zero correlation. (b) ξ vs. γ̇ for different L. Inset: ξ/L vs. Lγ̇1/3. The
bold dashed line has a slope of −1.

In Fig. 3.6a, we plot the traces of Cvy , along the x-separations, normalized by

the x = 1 values, for various shearing rate for L = 160. In Fig. 3.6b, we plot the

location, ξ, of the minima of each Cvy curve as a function of rate for various system

size. For L = 40 and 80, we see a clear QS plateau at the lowest rates where ξ

saturates near the system size, while the L = 160 system is just starting to show

system-size dependent behavior at the lowest rate. At higher rates, the data is well

described by a ξ ∼ γ̇−1/3 power law. There are deviations from scaling in the high
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γ̇, small ξ regime, below about ξ ≈ 5. Nonetheless, we can observe over a decade

of scaling for the L = 160 system. In the inset, we plot ξ/L vs Lγ̇1/3 showing the

ξQS ∼ L quasi-static scaling. The data cannot rule out a logL correction.
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Figure 3.7: (a) Svx along kx, (b) Svx along ky, (c) Svy along kx and (d) Svy along ky
for different strain rates. The bold dashed lines have slopes of -2.

Next, we focus on the velocity correlation in fourier space. We calculate the

power spectrum, S(~k) which gives the intensity as a function of the wave-vector, ~k

[see Appendix C for the calculation]. In Fig. 3.7a and 3.7b, we plot the power of x-

velocities, Svx normalized by the power at 2 particle distance along longitudinal (kx)

and transverse (ky) direction respectively for various rates. Similarly in Fig. 3.7c and
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3.7d, we plot the power of y-velocities Svy along transverse (kx) and longitudinal (ky)

direction respectively for different rates. With increasing γ̇ there is a development of

peak whose location shifts to increasing k, which is clearly visible in the plots along

the transverse directions (in Fig. 3.7b and 3.7c). Irrespective of γ̇, transverse power

shows k−2 behavior at intermediate wavelengths before falling off for faster rates at

long wavelength limit. This k−2 dependence can be explained by the simultaneous

occurrence of several spatially uncorrelated Eshelby flips. It is surprising to see that

longitudinal power (in Fig. 3.7a and 3.7d) is relatively less sensitive to γ̇, compare

to transverse power.
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Figure 3.8: Left: Normalized Svx along cuts of ky scaled by γ̇1/3, Right: Normalized
Svy along cuts of kx scaled by γ̇1/3. The bold dashed lines have slopes of -2.

In Fig. 3.8, we show Svx and Svy along their respective transverse directions (as

in Fig. 3.7b and 3.7c) scaled by γ̇αβ vs. γ̇−1/3(ky/2π) and γ̇−1/3(kx/2π) respectively,

where α = −1/3 and β = −2. The data collapse for rates, 10−6 ≤ γ̇ ≤ 10−4,

suggests the emergence of a rate dependent correlation length. This result agrees with

ξ ∼ γ̇−1/3 behavior obtained from the real space transverse correlation[Fig. 3.7(b)].
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3.2.3 Structure of Velocity Field

We next present an exhaustive study of the structure of the instantaneous response

by looking at the velocity gradients3. The strain-rate tensor in two dimension can

be expressed as,

∇v =

∂xvx ∂yvx

∂xvy ∂yvy

 (3.6)

Instead of studying the individual components of the strain-rate tensor we look at

some particular combinations of these, which are relevant to understand shear defor-

mation. In simple shear geometry, principal stress directions lie along the diagonals,

θ equals to π/4 and 3π/4. And the maximal shear happens along the horizontal,

θ = 0 and vertical, θ = π/2 directions. As a result, shear deformations are dominated

by forming vertical and horizontally aligned transient slip lines [11].

In Fig. 3.9 we show typical snapshots of different measures of strain-rate, from left

to right, ε̇ = (∂xvy + ∂yvx)/2, Ψ̇ = (∂xvx − ∂yvy)/2 and ω̇ = (∂yvx − ∂xvy)/2 for 3

shearing rates, from top to bottom, γ̇ = 10−4, 10−5, 10−6. With decreasing γ̇, we can

observe the emergence of long ranged vertical and horizontal slip lines in the ε̇ field.

We can also observe small slips along the π/4 and 3π/4 direction in Ψ̇ fields, which

is surprising. ω̇ fields have more isotropic behavior compare to the ε̇ and ψ̇ fields,

but the horizontal slip lines (white line in Fig. 3.9c,f,g) can be seen analogous to the

ε̇ field (in Fig. 3.9a,d,g).

In Fig. 3.10, we plot the time averaged spatial auto correlation function for ε̇, Ψ̇

and ω̇ for the same rates, γ̇ = 10−4, 10−5, 10−6. The angular variation in ε̇ correla-

3Details about the gradient calculation is explained in Appendix. B
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Figure 3.9: Typical maps for ε̇, Ψ̇ and ω̇ for 3 different rates, Top row : γ̇ = 10−4

(a)103 × ε̇, (b)103 × Ψ̇, (c)103 × ω̇, Middle row : γ̇ = 10−5 (d)104 × ε̇,(e)104 ×
Ψ̇,(f)104× ω̇, Bottom row : γ̇ = 10−6(g)105× ε̇, (h)105× Ψ̇, (i)105× ω̇ for L = 160.

tions has a quadrupolar symmetry reminiscent of the strain fields one would obtain

from uncorrelated Eshelby transformations [83] with strong correlations along the

directions of maximum shear and strong anticorrelations 45 degrees away. For in-

creasing γ̇ the correlations are cutoff at shorter lengths, which is evident as we go

up from γ̇ = 10−5 (Fig. 3.10d) to γ̇ = 10−4 (Fig. 3.10a). CΨ̇ has similar quadrupolar

pattern as Cε̇ with positive correlations along the 45 degrees. For L = 160, CΨ̇ has

less dependance on rate compare to Cε̇. On the other hand although Cω̇ look more

isotropic than CΨ̇ and Cε̇, anisotropy increases with increasing γ̇.
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Figure 3.10: Spatial autocorrelation for ε̇, Ψ̇ and ω̇ for 3 different shearing rate.
From left to right : Cε̇/Cε̇(r = 0), CΨ̇/CΨ̇(r = 0), Cω̇/Cω̇(r = 0) and from top to
bottom : γ̇ = 10−4, γ̇ = 10−5, γ̇ = 10−6.

In Fig. 3.11, we plot the power spectrum S(~k) for ε̇, Ψ̇ and ω̇ for the same rates,

γ̇ = 10−4, 10−5, 10−6. The quadrupolar symmetry in power spectrum of ε̇ and ω̇ fields

indicates the emergence of slip lines along the vertical and horizontal directions. SΨ̇

has less power along the maximum correlation directions (π/4, 3π/4) compare to

the SΨ̇ along horizontal or vertical directions. We will discuss about the angular

dependence of strain-rate fields in the next subsection.
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Figure 3.11: Power spectrum of ε̇, Ψ̇ and ω̇ for 3 different shearing rate. From left
to right : Sε̇, SΨ̇, Sω̇ and from top to bottom : γ̇ = 10−4, γ̇ = 10−5, γ̇ = 10−6.

Isotropic velocity field

In this part we are interested to study the shear strain-rate for various orientation.

We can express shear strain-rate at an arbitrary angle θ as,

τ̇T (θ) = −Ψ̇xy sin 2θ + ε̇xy cos 2θ (3.7)

In Fig. 3.12 we show the power spectrum for the shear strain rate, τ̇T for 3

orientation, θ = 0, π/8, π/4 for an intermediate rate γ̇ = 10−5. By construction,
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Figure 3.12: Power S(kx, ky), for three different orientation of τ̇T (θ): (a) θ = 0, (b)
θ = π/8 and (c) θ = π/4, for γ̇ = 10−5, L = 160.

τ̇(θ = 0) and τ̇T (θ = π/4) correspond to ε̇ and −Ψ̇ respectively. Important point

to note, although imposed shear along horizontal direction initiates deformation via

the horizontal and vertical slip lines, the shear strain-rate power is almost angle

invariant. This is a strong indication of the isotropic nature of the instantaneous

velocity field.
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Figure 3.13: Sτ̇T /Sτ̇T (k = π) vs. k/2π where k is along θ for (a) θ = 0, (b) θ = π/8
and (c) θ = π/4.

In Fig. 3.13, we plot the power along the maximum power direction for the

three orientations of shear strain-rate, τ̇T . For fast rates, we observe similar rate

dependance of τ̇T (θ) for different θ. The power of τ̇T (θ) follows a flat spectrum for
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intermediate k before it rolls off below ξk ≈ 2π. At vanishing rates, power of τ̇T

approaches to an k independent regime at long wavelengths, which is a signature

of power accumulated over several uncorrelated Eshelby flips. We believe for larger

systems at low rates we would be able to converge to a θ-independent flat regime for

Sτ̇T .

To summarize, we have shown for the MD model, instantaneous velocity fields

show long range spatial correlations. These correlations are of precisely the Eshelby

form in the limit of low shearing rate. With increasing rate, the correlations are cut

off to a certain length, ξ, below which it follows similar Eshelby behavior. It was

also interesting to find that the shear strain-rate field is angle invariant indicating

the isotropic nature of the velocity field.
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Chapter 4

Finite Time Response
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In this chapter we study the particle diffusion and the structure of associated

long time plastic activities for MD. The diffusion coefficient is a measure of the

accumulated correlations originated from the particle rearrangements. Here we also

discuss about the connection between the rheology and diffusion constant for these

sheared suspensions in the framework of an effective temperature and the correlation

length.

4.1 Diffusive Behavior

4.1.1 Displacement Statistics

We first study the second moment of the displacement distribution. For this analysis

we use the y-displacement, ∆y of the individual particles, which are defined over

a time during which a strain of amplitude, ∆γ = γ̇∆t, was applied. We do this

for simplicity, as ∆y is transverse to the flow direction and thus have no affine

contribution from the horizontal shear flow. We would expect identical results for

the x-displacements (∆x) once the appropriate background motion is subtracted off.

To analyze the effect of elapsed strain on diffusion, we study the statistics of ∆y on

different strain interval of size ∆γ.

In Figure 4.1a, we plot the mean squared displacement (MSD) over ∆γ vs. ∆γ

for different rates, γ̇ ∈ [1 × 10−7, 8 × 10−3] for L = 40. For fast rates, MSD has

a sharp crossover from the ballistic behavior(∆y ∝ ∆γ) at small ∆γ to Diffusive

behavior(∆y2 ∝ ∆γ) at large ∆γ. But irrespective of γ̇, around ∆γ ≈ 1, 〈∆y2〉/2∆γ

reaches a plateau value indicating the saturation of plastic activities in the system.
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In Figure 4.1b, we show the non-Gaussian parameter, α = 3〈∆y2〉2/〈∆y4〉 for the

y-displacement distributions. For a Gaussian like distribution, α should be unity.

For relatively slower rates, ∆y distributions appear to be non-Gaussian at small ∆γ

and appear to reach the Fickian limit (both α = 1 and 〈∆y2〉 ∝ ∆γ) at a much

larger ∆γ ≈ 1. However, for fast rates ∆y distributions are always Gaussian and

crosses over to the Fickian limit at a similar ∆γ.
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Figure 4.1: (a) 〈∆y2〉/〈∆γ〉 vs. ∆γ and (b) α vs. ∆γ for different rates, γ̇= [1, 2, 4, 8,
10, 20, 40, 80, 100, 200, 400, 800, 1000, 2000, 4000, 8000, 10000, 20000, 40000, 80000]
×10−7 for L = 40. Red correspond to a fast rate (γ̇ = 8 × 10−3) and blue cor-
respond to a slow rate (γ̇ = 1 × 10−7). The bold dashed line in (b) corresponds to
α = 1.

Fig. 4.2 is a representative plot for the MSD for L = 160. In Fig. 4.3a, we plot

the Effective diffusion constant, De
.
= lim∆γ→∞〈∆y2〉/2∆γ vs. γ̇ for three different

system sizes, L = 40, 80 and 160. At large rates, De, is independent of L and follows

a γ̇−1/3 power law with remarkable precision and for over four decades of rate for

L = 160 system. At the lowest rates in the QS regime, a plateau is clearly visible

for L = 40 and 80. In the inset, we plot De/L against Lγ̇1/3. The data shows

a good collapse, indicating that the QS diffusion, DQS ∼ L. This behavior has
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Figure 4.2: 〈∆y2〉/2∆γ vs. ∆γ for different γ̇, L = 160.
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been understood to arise from system spanning lines of slip in molecular dynamics

simulations of LJ glasses [84–87]. The bubble model exhibits these same slip lines

in the QS regime. It is, rather, the rate dependence which is different here. Because

of the relatively weak rate sensitivity, the L = 160 system shows a strongly rate

dependent De even at γ̇ = 10−7, as it has not yet reached its QS plateau.

42



10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

γ̇

D
e
δ
σ

Figure 4.4: Effective athermal Stokes-Einstein temperature, Deδσ, vs. γ̇ for σy =
0.0011, L = 160.

4.1.2 Effective Temperature

Previously Ono et. al. [88, 89] have reported an effective temperature, Teff for the

sheared bubble system. They have defined Teff as the fluctuations in the elastic

energy and have shown it to scale with the product of the the diffusion constant, D

and bulk viscosity, η. But all of their analysis were valid for very fast rates where the

velocity distributions are Gaussian. Here in our system we are interested in much

slower rates as well where the viscosity diverges due to the yield stress limit. We

have already seen δσ and De to follow power law like behavior with γ̇. So instead

of looking at Dη or Deσ, we study Deδσ. In Fig. 4.4 we plot Deδσ for the L = 160

system. Deδσ can be considered as an effective Stokes-Einstein temperature. Our

results for Deσ agree with Ono et. al. [88, 89] for the γ̇ where the studies overlap,

but we show here that one can obtain a remarkably constant value of Deδσ for over
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three decades in rate for the L = 160 system.

4.2 Finite Time Displacement

In this section, we study the spatial correlations and the evolution of the structure

of non-affine displacement fields under shear. We first calculate the temporal auto-

correlation of y-velocity, C ′vy(∆t) to get an idea of the characteristic strain windows

to define displacement. C ′vy is defined as,

C ′vy(∆t) = 〈vy(~r, t+ ∆t)vy(~r, t)〉(~r,t) (4.1)

In Fig. 4.5, we plot C ′vy(∆t) normalized by the zero-time correlation, C ′vy(∆t = 0)
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Figure 4.5: C ′vy(∆t)/C ′vy(∆t = 0) for different γ̇, L = 160. Inset :
C ′vy(∆γ)/C ′vy(∆γ = 0) for same set of rates; bold dashed line correspond to 1/e.

for the various rates. C ′vy(∆t) is strongly rate dependent. For faster rates C ′vy de-

creases rapidly with time and crosses zero. On other hand at low γ̇, C ′vy decreases

monotonically and takes longer in time to decorrelate compared to faster rates. But
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from Fig. 4.2, we know that irrespective of γ̇, we can obtain a diffusive regime based

on the elapsed strain, ∆γ. In inset of Fig. 4.5, we plot the temporal autocorrelation

as a function ∆γ. For γ̇ ≤ 10−4, normalized C ′vy(∆γ) decreases to 1/e times of the

correlation at zero strain, around ∆γ∗ ≈ 10−2. This gives us a measure of a char-

acteristic strain, ∆γ∗ above which the velocities can be considered decorrelated for

rates corresponding to γ̇ ≤ 10−4. Fig. 4.6 shows typical map of the x-displacement,

ux in left (Fig. 4.6a) and y-displacement, uy in right (Fig. 4.6b), for ∆γ∗, occurred

between strain of 125% and 126% for γ̇ = 10−5. Black means the particles moved

horizontally towards left in Fig. 4.6a and vertically downward in Fig. 4.6b. We can

observe long slip lines at γ̇ = 10−5 but those are not system spanning as one expect

in QS limit.
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Figure 4.6: Typical real space map for displacements defined over ∆γ = 1% for
γ̇ = 10−5: (a)ux, (b)uy

4.2.1 Correlation Length, ξ ∝ γ̇−1/3

Next we look into the spatial correlation of the displacement field, similar to the

velocity field [Sec. 3.2.2]. We calculate the spatial autocorrelation of y-displacement
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(defined over certain ∆γ)1,

Cuy(~R) = 〈uy(~R + ~r, t)uy(~r, t)〉(~r,t) (4.2)
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Figure 4.7: (a) Cuy(R = x)/Cuy(x = 2) for different γ̇, L = 160 where uy is defined
over ∆γ∗; bold dashed line shows zero correlation. (b) ξ vs. γ̇ for different ∆γ; bold
dashed line has a slope of −1/3.

In Fig. 4.7a, we plot Cuy , along the x-separations, normalized by the x = 2

values, for various shearing rates, γ̇ ≤ 10−4 where uy is defined for a strain of ∆γ∗.

The curves suggest that Cuy is very sensitive to γ̇. At γ̇ = 10−4, Cuy has a sharp

dip and an unique minimum at around 6 particle distance before approaching to

zero correlation at bigger distance. With decreasing γ̇, not only the location of

the minimum increases suggesting a growing correlation length, the structure of the

correlation curves have noticeable changes. For γ̇ ≤ 10−6, the correlation does not

converge to zero correlation at larger lengths, which can be thought as an artifact of

the finite system size. Then we study the correlation of y-displacements defined over

1Details of displacement calculation can be found in Appendix. A
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various ∆γ. In Fig. 4.7b, we plot the location, ξ, of the minima of each Cuy curve as

a function of rate for 5 different ∆γ. We observe for 10−6 < γ̇ ≤ 10−4, the data can

be well described by a ξ ∼ γ̇−1/3 for every set of ∆γ. As we decrease the rate and

go beyond, γ̇ ≤ 10−6, the correlation lengths tend to saturate at the system size and

ξ departs from the γ̇−1/3 scaling regime.
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Figure 4.8: (a) Sux along kx, (b) Sux along ky, (c) Suy along kx and (d) Suy along ky
for different strain rates. The bold dashed lines have slopes of -2 and bold solid lines
(in (b) and (c)) have slopes of -2.7.

In Fig. 4.8a and 4.8b, we plot the power of x-displacements (defined overr ∆γ =

1%) along longitudinal (kx) and transverse (ky) direction respectively for various
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rates. In Fig. 4.8c and 4.8d, we plot the power of y-displacements (defined over

∆γ = 1%) along transverse (kx) and longitudinal (ky) direction respectively for

different rates. Similar to Fig. 3.7b and 3.7c, we observe a development of peak

in Fig. 4.8b and Fig. 4.8c, whose location shifts to increasing k with increasing γ̇.

The transverse power for displacements show a much stronger k−dependance than

the transverse power for instantaneous velocities following k−2.7 instead of k−2. The

abrupt rise in the longitudinal power for ux at long wavelength (in Fig. 4.8a) can

be understood as the artifact of finite size effect due to Lees Edwards boundary

condition.
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Suy along cuts of kx scaled by γ̇1/3. The bold dashed lines and solid lines have slopes
of -2 and -2.7 respectively.

In Fig. 4.9, we show the displacement powers along transverse direction (as in

Fig. 4.8b and 4.8c) scaled by γ̇(2.7/3) vs γ̇−1/3(k/2π). We observe a remarkable collapse

of the data for two decades of rates. This agrees with the γ̇ behavior of correlation

length, ξ ∼ γ̇−1/3 for 10−6 < γ̇ ≤ 10−4 measured in real space for ∆γ = 1% (in

Fig. 4.7b). The increase of power with increasing k at long wavelength (corresponding
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to lengths bigger than ξ) is due to the wavelength dependent damping nature of the

displacement field in MD dissipation mechanism.

4.2.2 Relation between ξ and De

Now the big question is whether there is a connection between the correlation length,

ξ and the diffusion coefficient, De. In 2009, Lemaitre et. al. [84] gave an argument

that the effective diffusion constant is related to a characteristic length, l, as, De ∼

l ln(L/l). In this thesis we show that the correlation length follows ξ ∼ γ̇−1/3. ξ can

be thought as the average length of the slip lines, which are particularly oriented along

the maximal shear direction. If we imagine that the system is accommodating the

strain we are injecting by organizing in these slip lines that are uncorrelated in space,

then following [84], we can explain the rate dependence of De as, De ∼ ξ ∼ γ̇−1/3.

Figure 4.10: Slip lines of length ξ are primarily aligned along the horizontal and
vertical directions.
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4.2.3 Structure of Displacement Field

Here we present a detailed analysis of the structure of the displacement field and

how it changes when the rate is varied or defined over a different strain window. To

this purpose, we focus on cartesian components of the displacement gradients2. The

strain tensor in two dimension can be expressed as,

∇u =

∂xux ∂yux

∂xuy ∂yuy

 (4.3)

In Fig. 4.11, we study the dependance of strain interval, ∆γ on 3 different mea-

sures of strain, ε = (∂xuy + ∂yux)/2, Ψ = (∂xux − ∂yuy)/2 and ω = (∂yux − ∂xuy)/2

for γ̇ = 10−5. We plot typical strain maps normalized by their respective Root Mean

Square (RMS) values for ∆γ = 0.1%, 0.2%, 0.5%, 1%, 2%. As we go from top to

down, we increase our strain interval and as we proceed from left to right we present

the ε, Ψ and ω field respectively in order. At ∆γ = 0.1%, the strain maps of ε, Ψ and

ω appears to be strikingly similar to their instantaneous counterparts of ε̇, Ψ̇ and ω̇

(Fig. 3.9d, 3.9e, 3.9f). With increasing ∆γ, ε and ω field become more anisotropic.

For large strain intervals, ∆γ ≥ 1%, we can observe elongated vertically oriented slip

lines with counter-clockwise vorticity as white lines in ε maps and black lines in ω

maps. Similarly long horizontally oriented slip lines with clockwise vorticity appear

as white lines in both ε and ω maps. Ψ fields look to be relatively insensitive to the

choice of various ∆γ.

In Fig. 4.12, we plot the time averaged spatial auto correlation function for ε,

2See Appendix. B for gradient calculations on sheared systems
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Ψ and ω for various ∆γ for γ̇ = 10−5. Cε shows four fold symmetry with strong

correlations along the maximal shear directions, θ = 0 and θ = π/2. With increasing

∆γ, the correlation grows but eventually starts to saturate over ∆γ ≥ 1%. Cψ is rel-

atively insensitive to ∆γ variation. Cω shows increasing anisotropy with increasing

∆γ with growing positive correlations along the maximal shear directions. Asymme-

try in ω correlations along x and y-direction, visible for ∆γ = 2%, is an artifact of

averaging over many different Lees-Edwards cell.

In Fig. 4.13, we plot the power spectrum, S(~k) for ε, Ψ and ω for various ∆γ for

γ̇ = 10−5. Both ε and Ψ powers have prominent quadrupolar symmetry, similar to

the real space correlation irrespective of ∆γ. With increasing ∆γ, ω field becomes

more anisotropic, which is visible in the right column of Fig. 4.13, as we go down

from top to bottom.

Fig. 4.14a shows the power of ε, along kx for ky = 0 and Fig. 4.14b shows power of

Ψ along kx = ky direction in a log-log scale for various ∆γ, γ̇ = 10−5. Overall powers

are normalized by the respective power at an wavelength of 2 particle distance. SΨ

is relatively flat for various ∆γ, before rolling off to zero at infinite wavelength. Sε

depends on ∆γ as the length of slip line grows with increasing amount of strain.

With increasing ∆γ, there is a development of peak at low k for Sε before decaying

at high k in a power law manner. The location of the peak in ∆γ independent and

agrees with the observation of similar correlation length for different ∆γ (in 4.7b).

The exponent for the power law increases (in negative scale) from zero at ∆γ = 0.1%

to 0.7 at ∆γ = 1%. It is believed that at diffusive limit for QS system, the system

will be saturated with system spanning slip lines and the power law exponent should

51



become constant, i.e., invariant of ∆γ.

Anisotropic Displacement Field

In Sec. 3.2.3 we have seen the velocity field is isotropic for various rates. Here we

want to examine the characteristics of the long time displacement field. We look

at the component of the shear strain at different orientation. Shear strain at an

arbitrary angle θ can be expressed as,

τT (θ) = −Ψxy sin 2θ + εxy cos 2θ (4.4)

By construction, τ(θ = 0) and τT (θ = π/4) correspond to ε and −Ψ respectively.

In Fig. 4.15 we show the power spectrum for the τT for 3 orientation, θ =

0, π/8, π/4 for ∆γ = 1%, γ̇ = 10−5. We observe more power along the principal

shear directions for θ = 0 than θ = π/8 and θ = π/4. This indicates the anisotropic

nature of the displacement field. It can be understood by the preference of the slip

lines to organize along the maximal shear directions (horizontal and vertical) for a

simple shear geometry.

In Fig. 4.16, we plot the power along the maximum power direction for the three

orientations of shear strain, τT . SτT has a stronger k-dependence, S ∼ k−0.7 for θ = 0

than θ = π/8, π/4. With increasing rates the power starts to roll off from the master

curve at higher k, suggesting a decreasing correlation length. In inset of Fig. 4.16a

and Fig. 4.16c, we observe that for intermediate rates, 10−5 ≤ γ̇ ≤ 4×10−5, the data

collapses when we scale them by the appropriate power, which signifies ξ ∼ γ̇−1/3.

In summary, we have shown that long time particle diffusion is connected to the
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rheology via an effective Stokes-Einstein temperature. The rate dependence of De

can be explained by the similar behavior of correlation length of the displacement

fields. This correlation length scales the same way with rate as the correlation length

extracted from the instantaneous response. We have also showed that the finite

time displacement fields become increasingly anisotropic at long strain intervals.

The correlations along the primary shear directions are stronger than any other

orientation of the shear strain.
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Figure 4.11: Typical maps of ε, Ψ and ω for 5 different strain windows for γ̇ = 10−5.
From left to right : ε/εRMS, Ψ/ΨRMS, ω/ωRMS and from top to bottom : ∆γ =
0.1%, ∆γ = 0.2%, ∆γ = 0.5%, ∆γ = 1%, ∆γ = 2%.
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Figure 4.12: Spatial autocorrelation of ε, Ψ and ω for 5 different strain windows for
γ̇ = 10−5. From left to right : Cε/Cε(r = 0), CΨ/CΨ(r = 0), Cω/Cω(r = 0) and
from top to bottom : ∆γ = 0.1%, ∆γ = 0.2%, ∆γ = 0.5%, ∆γ = 1%, ∆γ = 2%.
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Figure 4.13: Power spectrum of ε, Ψ and ω for 5 different strain windows for γ̇ = 10−5.
From left to right : Sε, SΨ, Sω and from top to bottom : ∆γ = 0.1%, ∆γ = 0.2%,
∆γ = 0.5%, ∆γ = 1%, ∆γ = 2%.
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Figure 4.14: (a) Sε/Sε(k = π) along θ = 0 for 5 different strain interval. (b)
SΨ/SΨ(k = π) along θ = π/4 for the same strain intervals, for γ̇ = 10−5, L = 160.
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Chapter 5

Pair Drag
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In the previous chapters we have discussed the connection between the rheology

and particle diffusion of sheared suspensions using the simple MD version of the

Durian’s bubble model [1]. We have seen that a single correlation length can be

obtained from the spatial structure which explains the diffusive behavior and the

rheology in the range of rates where effective temperature is almost constant. In this

chapter we study the PD version of the bubble model, to examine our hypothesis of

correlation length and effective temperature as the connection between macroscopic

flow stress and microscopic particle diffusion.

5.1 Rheology and Diffusion
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Figure 5.1: 〈∆y2〉/2∆γ vs. ∆γ for different rates, L = 160 for PD.

In Fig. 5.1, we plot the MSD over elapsed strain, ∆γ for different γ̇. We observe

similar behavior as the Mean Drag version, depicting diffusive motion above long

strain intervals, γ̇ ≈ 1. For fast rate, γ̇ = 10−1, we can see a clear distinction

between ballistic and diffusive behavior as we increase ∆γ.

Next we present the rheology and diffusion data over 4 decades of shearing rates. In
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Fig. 5.2a, we show flow stress, σ for L = 160. At low rates σ approaches to an yield

stress and with increasing γ̇, σ increases following a HB equation σ − σy ∼ γ̇1/2.

The exponent of the HB form is very different in this version of drag mechanism

that what we observe in the MD variant. The γ̇1/2 behavior of PD is reminiscent

of the experimental observations in microgel paste and dense emulsions [7, 8] and

agrees with previous results using PD [3]. In Fig. 5.2b, we plot the effective diffusion

constant, De vs. γ̇ for L = 160. At low rates γ̇ ≤ 10−4, De starts to plateau

showing saturation of spatial correlation at system size. For faster rates γ̇ > 10−4,

De follows a power law, De ∼ γ̇−1/2. In the inset of Fig. 5.2b, we show the measure

for effective temperature Deδσ, similar to MD case, which has a very little variation

over 4 decades of rate.
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has a slope of 1/2. (b) De vs. γ̇ for the PD, L = 160. The bold black dashed line
has a slope of -1/2. Inset: Effective athermal Stokes-Einstein temperature, Deδσ for
σy = 0.0012.
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5.2 Finite Time Plastic Correlation

Following Sec. 4.2, we study the finite time displacement correlation in this section

for the PD dissipation mechanism. We focus on the correlation of uy along x-axis

(transverse direction).
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Figure 5.3: (a) Cuy(R = x)/Cuy(x = 2) for the PD model for different γ̇ and a
particular ∆γ = 1%. The bold dashed line shows zero correlation. (b) ξ vs. γ̇ for 5
different ∆γ. The bold dashed line has a slope of -1/2.

In Fig. 5.3a, we plot correlation of uy separated along the x-separations, normal-

ized by the x = 2 values, for various shearing rates, where uy is defined over a strain

of 1%. Then we take the first minimum of the Cuy curves for different γ̇. In Fig. 5.3b,

we also include data for 5 different ∆γ to define the displacements. We observe for

all ∆γ, the correlation length, ξ follows ξ ∼ γ̇−1/2 for intermediate rates. At low

rates (γ̇ < 10−4), ξ plateau to a rate independent value suggesting the saturation of

spatial correlation. At very high rate (γ̇ > 10−2) the correlation decreases to particle
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scale which is evident from the departing of ξ from the power law to a constant

value of 3 particle diameter. We verify the γ̇1/2 dependence of ξ by looking at the

transverse power of uy. In Fig. 5.4a, we plot Suy along the transverse direction, kx

for various rates. In Fig. 5.4b, we show the same data scaled by appropriate power

of γ̇ against kx/2π normalized by γ̇1/2. We observe a remarkable data collapse over

2 decades of rate, 10−4 ≤ γ̇ ≤ 10−2. For wavelengths corresponding to λ ≤ ξ, the

transverse power shows a power law with an exponent of -2.7, similar to what was

observed in the MD case. At long wavelength limit, displacement power is flat. This

can be understood by the fact that in PD, all modes are equally damped regardless

of wavevector.
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Chapter 6

Summary and Conclusion
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We performed numerical simulations to study the behavior of soft particle jammed

suspensions under simple shear. We used Durian’s bubble model [1] where the repul-

sive forces due to the contact deformation of the soft particles are balanced by the

viscous forces caused by the surrounding fluid flow. The model shows yield stress

behavior following a Herschel-Bulkley power law [2], δσ = σ − σy ∼ γ̇β at finite

rates. β is roughly 1/3 for the mean drag version of the model where viscous forces

arise in response to the motion of the particle with respect to the background fluid

flow – appropriate for situations where the dominant effects are due to the motion

of fluid away from the particles such as particles moving at an air-water interface

in a bubble raft [5, 6, 20]. β is roughly 1/2 for the pair drag version of the model

where viscous forces arise in response to the motion of the particle with respect to

its immediate neighbors – appropriate for situations where the dominant effects are

due to the shear in the lubricating fluid films between particles [3,7,8]. Both of these

models are in agreement with the respective experiments where interfacial or bulk

drag would be expected to dominate.

The dissipated energy and velocity distributions are Gaussian at high rate but

very non-Gaussian at low rates. This is consistent with the emergence of bursty,

intermittent behavior as seen in other athermal, driven systems [27]. In the smallest

samples at the lowest rates, we can detect a bonafide QS regime where a peak at low

dissipation rate in the dissipation rate distribution corresponds to the times when

the system is not experiencing any significant plasticity, and the location of this QS

peak scales with rate accordingly.

We also studied single particle displacement statistics. At the highest rates,
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these show a sharp crossover from ballistic to diffusive behavior at a strain of the

order of unity. In this regime the displacement distributions are essentially Gaussian

at all times (with a very small kurtosis), from the ballistic through the diffusive

regimes resembling what one might observe in an ideal gas with a characteristic

collision time of the order of unity. In contrast, at low rates, the displacement

distributions are strongly non-Gaussian at short times. In the QS regime, the kurtosis

of the displacement has a similar power-law dependence on time as QS simulations

of conventional Lennard-Jones glasses.

The long time effective diffusion coefficient (De) saturates at a rate independent

value in the QS regime. This QS value of De scales linearly with the length of

the system, also in agreement with previous results on conventional Lennard-Jones

glasses. With increasing rate, De decreases following a power law, De ∼ γ̇−1/3 for

mean drag version. Again, in analogy with conventional LJ simulations, one would

expect this decrease in De to be controlled by a corresponding decreasing correlation

length in the displacement fields.

Irrespective of the drag mechanism, there is an effective Stokes-Einstein tempera-

ture, Teff, which remains constant over many orders of magnitude in shear rate. The

constancy of this effective temperature can explain the connection between rheology

and diffusion. Our results agree with Ono et. al. [89] for Deσ, but we find it inter-

esting that Deδσ remains constant over a much broader range of shearing rates than

Deσ, and we suspect that Deδσ gives a better measure of the effective temperature

in the QS regime.

For mean drag dissipation, we studied the spatial correlations of instantaneous
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velocity and finite time displacement fields to quantify the spatial correlations in

plastic rearrangements. We measured a correlation length (ξ) which follows ξ ∼ γ̇−1/3

for intermediate rates. At low rate, ξ saturates near the system size analogously to

De. In analogy with conventional molecular dynamics simulations of LJ glasses,

we expected to see this growing length in the displacement fields along with the

growing value of De. However, we were surprised to see the same length here in the

velocity fields. The velocity correlations are consistent with uncorrelated Eshelby

transformations occurring along all orientations, in addition to the maximum shear

directions. In the long-time displacement fields, the plastic strain along the direction

of maximum shear dominates all others. Along the direction of maximum shear, the

real-space strain correlations decay much more slowly than the Eshelby-like velocity

correlations. Nonetheless, we find the same characteristic lengthscale setting a cutoff

on the power spectrum along any particular direction.

For the pair drag dissipation mechanism we also found De ∼ ξ, with both having

similar rate dependance ∼ γ̇−1/2. The −1/2 is stronger than the −1/3 from the

mean drag dissipation. In [84], a length, l, was introduced to rationalize the rate

dependence of De.

The relation De ∼ ξ (for ξ << L), remains the same here and can be understood

as a simple kinematic consequence of plastic deformation essentially organizing along

lines as in ref [84]. We have also established the connection between stress and par-

ticle diffusion via the effective Stoke-Einstein temperature. It seems to us that the

emergence of a rate independent effective Stokes-Einstein temperature is a more

compelling – and apparently general – connection between the diffusion and rheol-
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ogy than a particular relationship between correlation length and stress relaxation

time as in [84]. We further speculate that Deδσ may be related to various effective

temperatures which arise in other mean-field and elasto-plastic models for amorphous

plasticity.

In short, we have made a connection between the rheology, the diffusion coeffi-

cient, and the spatial correlations in the plastic strain in model jammed suspensions

of soft particles. The excess stress, inverse effective diffusion and inverse correlation

length are all governed by the HB exponent, ∼ γ̇β. The two classes of dissipation,

mean drag (appropriate for particles at an interface like bubble rafts) and pair drag

(appropriate for particles in the bulk), give different β, but are otherwise virtually

identical. Our main contribution has been to show the relation between these quan-

tities in the two models. An a priori calculation of β in either the mean drag or pair

drag case remains an outstanding problem.

In addition to the questions about the origin of the rate dependence of ξ and the

relation between ξ and δσ, there are some other obvious open questions which needs

to be understood in future. Can one reproduce our results in simple adaptations of

the elasto-plastic models described in the introduction? What is the proper physical

rationale for defining an effective temperature based on the excess stress rather than

the total stress? Does one recover the same scaling laws when physical stress prop-

agation happens in an inertial underdamped system? It would be quite interesting

and relatively straightforward to include mass and modify the bubble model to study

the role of inertia. These are some of the questions which will need to be addressed

in the future in order to obtain a better understanding of these jammed suspensions
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and a chance at constructing a first principles theory of their rheology.
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Appendix A

Non-affine Displacement
Calculation for Oblique Cell

At first real space particle positions (xi, yi) are exported from LAMMPS simulation,

within a single Bravais cell, described by the Bravais vectors, ~d1 and ~d2. The
positions of all particles are represented by real-space co-ordinates that lie on the
interior of the parallelogram defined by ~d1 and ~d2. Note that the Bravais vectors for
a certain configuration are expressed with the cartesian unit vectors (in 2D) as,

~d1 = |d1|x̂ (A.1)

~d2 = |d2|(sin θx̂+ cos θŷ) (A.2)

where, |d1| = |d2| cos θ = L, size of the square simulation box before imposing the
strain.

~d1

✓

~x

~y

~d2

Figure A.1: Bravais Cell representation

Numerically, the value of strain (γ) is usually kept in the interval of (-0.5, 0.5].
For γ = 0.5, the symmetry in the system is utilized and the triangular right half is
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transposed to the left side of the system, This is known as the T-transformation.
Due to this, the orientation of the cell depends on the amount of the strain experi-
enced; after every odd multiple of the half strain the slope of the director line changes
from +0.5 to -0.5.

For each pair of times {t1, t2} for which a displacement calculation is required, the
position at t1 is subtracted from the position at t2 and a minimum image convention
is applied to the difference to account for the transit of a particle across the cell
boundary between t1 and t2. In this way, the the total displacement incurred between
the time interval of ∆t = t2 − t1 is obtained,

uTi,x(∆t) = xi(t2)− xi(t1) (A.3)

uTi,y(∆t) = yi(t2)− yi(t1) (A.4)

Next, the affine displacement field is subtracted off from the total displacement,

ui,x(∆t) = uTi,x(∆t)−
[
yi(t1) + yi(t2)

2

]
γ̇∆t (A.5)

ui,y(∆t) = uTi,y(∆t) (A.6)

Note that this procedure removes the affine motion corresponding to the average of
the initial and final positions. In practice, one should compute non-affine displace-
ment at long time by adding the non-affine displacements occurring on short time
intervals. Finally the displacement data are associated with the particle positions
at time 1(t1) into the primary Bravais cell: x and y-displacement of ’i’-th particle
at time t1 with real space co-ordinates (xi(t1), yi(t1)) is denoted by ui,x(t1,∆t) and
ui,y(t1,∆t) respectively.
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Figure A.2: Displacement occurred in a strain interval (∆γ) of 2.5% for each particle;
Left: ui,x and Right: ui,y.

An oblique grid[Ng, Ng] with a spacing of d = 1/2, in x-direction (such that
L/d = Ng) is created on our cell, which excludes the top and right boundary to
maintain periodicity. A grid point or a particular node in our oblique mesh is de-
noted by the (m,n) pair indices, where m,n ∈ [1, Ng]

(m, n) (m + 1, n)(m � 1, n)

(m, n � 1)

(m, n + 1)

�d1
�d2

Figure A.3: Oblique mesh mapped onto the Bravais cell. The real space co-ordinate
at a particular node (m,n) is denoted by (xm,n, ym,n).

In order to interpolate the displacement data onto this grid a cell with sufficiently
larger dimensions(precisely 10% longer on each direction) than the Bravais cell is con-
sidered, which captures our cell symmetrically inside in it. Then the area outside
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the cell is populated with the appropriate image particles containing the previously
computed displacement data.At last the displacement data is linearly interpolated
onto the mesh such that ux(m,n) denotes the magnitude of the x-displacement at
the node(m,n) on our oblique mesh.
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Figure A.4: Interpolated displacement field, ux(left) and uy(right) onto our oblique
grid.
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Appendix B

Numerics for Gradient Calculation
on an Oblique Cell

To calculate the gradients of a scalar field in 2D rectilinear space, the approach
of calculating it along the Bravais vector direction (~d1, ~d2) is taken and then it is
transformed back to the Cartesian direction(~x, ~y). We can express the Bravais unit
vectors as,

d̂1 = x̂ (B.1)

d̂2 = sin θx̂+ cos θŷ (B.2)

The equivalent gradient operator can be defined for these two co-ordinate systems
as,

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
(B.3)

= d̂1
∂

∂d1

+ d̂2
∂

∂d2

(B.4)

where, ∂
∂d1

= d̂1.∇ and ∂
∂d2

= d̂2.∇
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Mapping the gradient in Bravais space to Rectilinear space

The cartesian derivative operator can be obtained in terms of the new derivative
operator,  ∂

∂x

∂
∂y

 =

 1 0

− tan θ sec θ

 ∂
∂d1

∂
∂d2

 (B.5)

where, θ is the angle ~d2 makes with the vertical in an anti-clockwise direction.In
the numerical scheme, finite difference approach is taken to calculate the derivative
along ~d1, ~d2 for any scalar field φ defined on oblique grid. For any grid-point inside
the Bravais cell, the central difference is used,

(
∂φ

∂d1

)
m,n

=
φ(m+ 1, n)− φ(m− 1, n)

2∆d1

(B.6)(
∂φ

∂d2

)
m,n

=
φ(m,n+ 1)− φ(m,n− 1)

2∆d2

(B.7)

where ∆d1 = (xm+1,n − xm,n) and ∆d2 =
√

(xm,n+1 − xm,n)2 + (ym,n+1 − ym,n)2.
Periodic boundary conditions are used for all boundary nodes.

Using equation B.5, the gradients of φ with respect to the cartesian orthogonal
directions is acquired.
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Appendix C

Power spectrum for scalar field

The Fourier space representation of the real space function φ(~r) is obtained by the
decomposition of the function into its Fourier modes, which can also be seen as the
series sum,

φ(~r) =
∑
~k

φ̃(~k)ei
~k.~r (C.1)

where ~k lies on the reciprocal lattice [~k = p1
~b1 +p2

~b2, with p1, p2 as arbitrary integers]

of the primary Bravais cell [~R = n1
~d1 + n2

~d2, with n1, n2 as arbitrary integers] that
satisfies,

~di.~bj = 2πδij (C.2)

Discrete Fourier Transform operator (F)

φ̃ is attained by taking the Discrete Fourier Transform (DFT) of φ via the operator
F .

F(φ(~r)) =
∑
~r

φ(~r)e−i
~k·~r = φ̃(~k) (C.3)

F−1(φ̃(~k)) =
∑
~k

φ̃(~k)ei
~k·~r = φ(~r) (C.4)

We use FFT algorithm to perform the DFT on our scalar data φ(m,n) defined on
the oblique mesh. The 2-dimensional DFT of φ can be represented as,

φ̃(p, q) =

Ng∑
m=1

Ng∑
n=1

φ(m,n)e
−2πi
(

(m−1)(p−1)
Ng

+
(n−1)(q−1)

Ng

)
(C.5)
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where, (p, q) are the fourier indices of a grid-point in the reciprocal space satisfying
p, q ∈ [1, Ng].

Mapping the DFT data in reciprocal space

The next step is to represent our transformed data onto a regular mesh in the Fourier
space. Using equaltions A.1 and C.2, we derive the expression of the physical wave
vectors,

~b1 =
2π

L

(
x̂− tan θŷ

)
(C.6)

~b2 =
2π

L
ŷ (C.7)

The wave number in the reciprocal space corresponding to the fourier indices(p, q) is
given by,

kx(p, q) =
2π

L
(p) (C.8)

ky(p, q) =
2π

L
(q − p tan θ) (C.9)

In this way we map discrete data, φ̃(p, q) on the Fourier space and obtain φ̃(kx, ky).

Average on various Bravais orientation

Fourier space calculation is performed for φt(x, y) on different time instant(t) and

φ̃t(kx, ky) is obtained. A rectangular grid
[
Ng

2
+ 1, Ng

2
+ 1
]

is drawn on our reciprocal

space(r, s) such that r, s ∈
[
− Ng

4
, Ng

4

]
and simultaneously kx

2π
, ky

2π
∈
[
− 1, 1

]
. For

each configuration t then φ̃(kx, ky) is linearly interpolated on that grid. Finally it is
averaged over different configurations to get the power spectrum of φ̃(kx, ky) as:

|φ̃(~k)|2 = 〈|φ̃t(kx, ky)|2〉t (C.10)

At the last step, the power spectrum is normalized with suitable quantity to represent
the structure factor in 2D space.

Sφ(~k) =
1

N2
g

|φ̃x(~k)|2
〈~φ · ~φ〉

(C.11)
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