
Robust Manipulation via Contact Sensing

Michael C. Koval

September 7, 2016

CMU-RI-TR-16-54

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Siddhartha S. Srinivasa, CMU RI (co-chair)
Nancy S. Pollard, CMU RI (co-chair)

Geoffrey J. Gordon, CMU MLD
Tomás Lozano-Pérez, MIT CSAIL

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright © 2016 by Michael Koval

Abstract

Humans effortlessly manipulate objects in cluttered and uncertain
environments. In contrast, most robotic manipulators are limited to
carefully engineered environments to circumvent the difficulty of
manipulation under uncertainty. Contact sensors can provide robots
with the feedback vital to addressing this limitation.

This thesis proposes a framework for using feedback from contact
sensors to reliably manipulate objects under uncertainty. We formal-
ize manipulation as a partially observable Markov decision process
that includes object pose uncertainty, proprioceptual error, and kine-
matic constraints. Our algorithms exploit the structure of contact to
efficiently estimate state and plan with this model.

First, we introduce the manifold particle filter as a principled
method of estimating object pose and robot configuration. This
algorithm avoids degeneracy by drawing samples from the lower-
dimensional manifold of states induced by contact.

Next, we introduce two belief space planning algorithms that seek
out contact with sensors when doing so is necessary to achieve the
goal. One algorithm harnesses the decoupling effect of contact to
share computation between problem instances. The second leverages
lower-dimensional structure to plan around kinematic constraints.

Finally, we evaluate the efficacy of our approach in real-robot and
simulation experiments. The results show that our state estimation
and planning algorithms consistently outperform those that are not
tailored to manipulation with contact sensing.

Acknowledgements

I could not ask for better advisors than Sidd Srinivasa and Nancy
Pollard. Thank you both for teaching me how to write, present, and
do research. And for putting up with my side-projects on HERB.

I am grateful to the members of my committee, Geoff Gordon and
Tomás Lozano-Pérez, for their input. Geoff, thank you for sharing
your bottomless knowledge of machine learning. Tomás, thank you
for sharing your experience and helping me focus on important
problems. I would also like to thank Drew Bagnell, David Hsu, and
Joelle Pineau for our discussions: I have learned a lot from you.

I have had the joy—and, sometimes, anguish—of working on sev-
eral robots. It takes a team to run a robot, so thanks to everyone who
made this possible. On HERB, special thanks to Mike Vande Weghe,
Michael Dawson-Haggerty, and Clint Liddick for the thankless task
of keeping him running. On Andy, special thanks to Moslem Kazemi
and Jean-Sébastien Valois for bringing levity to even the most stress-
ful demonstrations. On Robonaut, special thanks to Julia Badger for
being my research collaborator and Allison Thackston for teaching
me how R2 works. At CMU, I would like to thank Jean Harpley,
Suzanne Lyons Muth, and Keyla Cook for all of your help.

Working in the Personal Robotics Lab has been an unforgettable
experience. Thanks to Aaron J., Aaron W., Gilwoo, Henny, J.S. Lee,
Laura, Matt K., Mehmet, Pyry, Rachel, Shervin, Shushman, Stefanos,
and Zita for making the lab awesome. Special thanks to Vikram
for being a great minion and to Anca, Chris, Jen K., and Liz for the
Caribbean—and non-Caribbean—fun. And thanks to Pras for being a
partner on our numerous side-projects.

Thanks to my friends for keeping me sane. Nitish, thank you for
being a great roommate and friend for the past seven years. Arun,
thank you for being my roommate, a friend, and for teaching me all
I know about machine learning. Akshara and Will, thank you for the
dinner conversations and all of our adventures. Thanks to Cody, Jeff,
Jen P., John, Jordan, Owen, and Nat (“the suite”) for keeping in touch.

My final thanks goes to my parents, Cap and Karen Koval, who
have always supported me. Thank you for everything: none of this
would have been possible without you.

Funding

This thesis contains work supported by a NASA Space Technologies
Research Fellowship Program (grant number NNX13AL62H); the
Defense Advanced Research Projects Agency (grant number DARPA-
BAA-10-28); the National Science Foundation (grant numbers NSF-
IIS-1218182, NSF-IIS-1409003 and NSF-IIS-1426703) the U.S. Office
of Naval Research (grant number N000141210613); and the Toyota
Motor Corporation.

Contents

1 Introduction 13

1.1 Challenges with Contact Sensing for Manipulation 14

1.2 Key Insights to Our Approach 16

1.3 Contributions 18

2 Background 19

2.1 Open-Loop Pushing Manipulation under Uncertainty 19

2.2 Contact Sensing for Manipulator Control 19

2.3 Contact Sensing for State Estimation 20

2.4 Motion Planning under Uncertainty 21

2.5 Planning for Manipulation under Uncertainty 21

3 Approach 23

3.1 Transition Model 24

3.2 Observation Model for Proprioception 25

3.3 Observation Model for Contact Sensors 25

3.4 Value and Reward Functions 26

3.5 Simplified Models 27

4 Object Pose Estimation 29

4.1 Particle Filter 29

4.2 Manifold Particle Filter 32

4.3 Simulation Experiments 36

4.4 Real-Robot Experiments 40

4.5 Discussion 41

10 michael c. koval

5 Robot Configuration Estimation 43

5.1 Implicitly Representing the Contact Manifold 43

5.2 Sampling via Constraint Projection 44

5.3 Computing Signed Distance 45

5.4 Simulation Experiments 45

5.5 Real-Robot Experiments 48

5.6 Discussion 49

6 Hand-Relative Planning 51

6.1 Policy Decomposition 51

6.2 Post-Contact Policy 53

6.3 Pre-Contact Trajectory 55

6.4 Simulation Experiments 57

6.5 Real-Robot Experiments 61

6.6 Discussion 62

7 Configuration Space Planning 65

7.1 Configuration Lattice 65

7.2 Online POMDP Planner 68

7.3 Simulation Experiments 71

7.4 Discussion 75

8 Conclusion 77

8.1 Discussion 77

8.2 Limitations and Future Work 81

8.3 Open Questions 85

8.4 Final Thoughts 87

Bibliography 89

List of Figures

1.1 HERB, Andy, and Robonaut 2 13

1.2 Perceptual and proprioceptive uncertainty 14

1.3 Discontinuity introduced by the transition model 14

1.4 Discontinuity introduced by the observation model 15

1.5 An information-gathering action 15

1.6 Sensing modalities with different maximum ranges 16

1.7 Workspace and configuration space geometry of contact 17

1.8 Contact manifold for a three-dimensional object 17

1.9 Lower-dimensional space of end-effector poses 18

3.1 State, actions, and observations 23

3.2 Belief state 24

3.3 Proprioceptive error 25

3.4 Contact manifold and free space 25

3.5 Reward function and goal region 26

4.1 Bayesian network of the state estimation problem 29

4.2 Particle deprivation caused by contact sensing 31

4.3 Effect of increasing contact sensor resolution or update rate 31

4.4 Explicit representations of the contact manifold 33

4.5 Kernel density estimate used to compute dual importance weights 34

4.6 Performance of the CPF and MPF in simulation 37

4.7 Performance of contact manifold representations in simulation 38

4.8 Number of sampling failures in simulation 39

4.9 Evaluation of the mixing rate parameter in simulation 39

4.10 Evaluation of the CPF and MPF on Andy 40

4.11 Contact sensors on the i-HY hand 40

5.1 Contact manifold defined in terms of signed distance 44

5.2 Signed distance field 45

5.3 Performance of the CPF and MPF at estimating configuration 47

5.4 Evaluation of the MPF at estimating the configuration of HERB 48

6.1 Branching in the pre-contact search 52

12 michael c. koval

6.2 Contact manifold colored by the active contact observation 53

6.3 Decomposition a policy into pre- and post-contact stages 54

6.4 Discretization of free space and the contact manifold 55

6.5 Performance of the post-contact policy in simulation 59

6.6 Evaluation of changing sensor resolution in simulation 60

6.7 Experimental setup for policy execution on HERB 61

6.8 Execution of the QMDP and POMDP policies on HERB 63

7.1 Lattice and the subset of it evaluated by DESPOT 69

7.2 Discretization of object pose used for planning 72

7.3 Rel-POMDP policy execution experiments in simulation 73

7.4 Lat-POMDP policy execution experiments in simulation 74

8.1 Uncertainty and over-confidence caused by discretization 82

8.2 Upper and lower bounds derived from episodic interation 83

1

Introduction

Humans effortlessly manipulate their environment. We are capable
of grasping our glasses from our nightstand in the dark, blindly
plugging a cable into the back of our computer, and grasping our
coffee mug without glancing away from our computer monitor. In
the process, we fearlessly push, pull, and slide objects as necessary
to complete the task. We use proprioception and tactile sensing to
manipulate with confidence despite the variety and complexity of
these tasks.

In contrast, most robotic manipulators perform only pick-and-place

actions in factories. First, the robot perceives an object and chooses
a grasp. Then, it uses a motion planner to generate a collision-free
trajectory to the grasp. Finally, the robot closes its fingers and—
hopefully—achieves the desired grasp. This approach ignores the fact
that manipulation is a noisy physical process.

Figure 1.1: HERB (top), Andy
(middle), and Robonaut 2 (bot-
tom) manipulating objects
in human environments. All
three of these robots rely on
on-board sensing to cope with
uncertainty.

Pick-and-place works in industrial applications because the robot
has clear access to the target object, is meticulously calibrated, and
operates in an environment specifically engineered for a robot to
autonomously perform its task. For example, industrial robots fre-
quently are equipped with task-specific end-effectors, track visual
fiducials, rely on off-board perception systems, and use fixtures to
precisely position the target object.

In many domains it is not possible to engineer the environment in
these ways. Robots like HERB [Srinivasa et al., 2012], Andy [Bagnell
et al., 2012], and Robonaut 2 [Diftler et al., 2011] operate in envi-
ronments designed for humans (fig. 1.1). Human environments are
cluttered and fundamentally uncertain. These robots rely on on-board
perception, suffer from occlusion, and rarely have a complete model
of their environment (fig. 1.2a). Additionally, robots designed for hu-
man environments typically use low-gain, inaccurate, controllers to
safely work in proximity to humans (fig. 1.2b). As a result, open-loop
actions are brittle and often fail.

Contact sensors provide vital feedback that can be used to reduce

14 michael c. koval

uncertainty. Contact is intimately linked to manipulation: a robot
can only apply force to an object while in contact with it. Vision
and depth sensors must infer contact from object pose and motion.
This is challenging in manipulation because the hand often occludes
the object of interest. In contrast, contact sensors directly observe
interaction with the object and are unaffected by occlusion.

(a) Perceptual Uncertainty

(b) Proprioceptive Uncertainty

Figure 1.2: Robots suffer form
uncertainty in both (a) percep-
tion and (b) proprioception.
Bottom figure courtesy of Klin-
gensmith et al. [2013].

However, contact sensors have two key limitations. First, contact
sensors do not directly estimate object pose. Second, contact sensors
provide little information while out of contact with an object. As a
result of these limitations, contact sensors are often neglected as a
source of real-time feedback during manipulation.

This thesis proposes a framework for using real-time feedback from

contact sensors to reliably manipulate objects under uncertainty.

To address this problem in depth, this thesis focuses on the manip-
ulation of a single object using feedback exclusively from propriocep-
tion and contact sensors. We assume that the goal can be expressed
in configuration space and that some—possibly uncertain—model of
the robot, object, and environment are available.

We do not specifically consider planning multi-stage tasks, but
anticipate that our framework could be used as a robust primitive
action in multi-stage planning algorithms. We also do not consider
feedback from other sensing modalities; e.g. vision. However, as we
discuss in section 8.2.5, it is relatively straightforward to incorporate
these observations into our state estimate at runtime.

1.1 Challenges with Contact Sensing for Manipulation

There are three principal challenges that make it difficult to use
contact sensing for closed-loop manipulation. We survey them here.

Challenge 1: Contact is Inherently Discontinuous

Figure 1.3: Pushing produces
a discontinuous belief state
where the pose of the object is
constrained to a line.

Contact is binary: two rigid bodies are either in contact or they
are not. If they are in contact, then the contact may transmit force.
If not—even if the bodies are infinitesimally close together—no
force is transmitted. As a result, changes in contact are inherently
discontinuous. The robot may make or break contact by moving an
infinitesimal distance. Similarly, an object’s motion may change
discontinuously.

Contact sensors accurately discriminate between contact and no-
contact. As a result, contact sensors inherit the discontinuous nature
of contact. The output of a contact sensor changes discontinuously
when the robot makes or breaks contact with an object.

robust manipulation via contact sensing 15

Discontinuities introduced by contact accumulate over time into
discontinuous belief states. Figure 1.3 shows an example of a pushing
action producing a belief state that is constrained to a line. Obser-
vations from contact sensors introduce additional discontinuities
into the belief state. Figure 1.4 shows an example where receiving
a sequence of (a) contact or (b) no-contact observations produces a
discontinuous belief state. In fig. 1.4b, the initial belief state was a
Gaussian distribution centered in the figure. The posterior belief state
assigns zero-probability to the swept volume of the hand because any
object in this region would have generated a contact observation.

(a) Contact Observation

(b) No-Contact Observation

Figure 1.4: Receiving (a) contact
or (b) no-contact observations
may produce discontinuous
belief states.

Planning in this domain is challenging. An infinitesimal change in
a policy may result in a discontinuous change in its quality. Policies
that exhibit this property are likely to fail when noisily executed on
a real system. Our goal is to generate robust policies that succeed
despite uncertainty during execution. Additionally, the presence of
discontinuous belief states makes it challenging to use planning tech-
niques that rely on discretization or require a compact, parametric
representation of belief states.

Challenge 2: Contact Sensors Require Active Sensing

Contact sensors provide rich information while in contact with an
object, but little information otherwise. For example, a contact sensor
may return a contact position and normal vector during contact. We
can use this information to partially infer the object’s pose. This is
not possible while out of contact with the sensor: we can only infer
that the object is not touching the sensor.

Figure 1.5: The robot moves
right to force the bottle into
contact with a sensor on its
fingertip. This action localizes
the bottle and allows the robot
to achieve the goal.

Fully utilizing contact sensors requires active sensing. The robot
must take information-gathering actions to force the object into contact
with its sensors (fig. 1.5). Information-gathering actions may not
directly work towards achieving the goal. Instead, they generate vital
observations that reduce uncertainty. Using these observations the
robot can robustly achieve the goal.

Synthesizing information-gathering actions requires reasoning
about uncertainty during planning. Planning under uncertainty
requires planning in belief space, the infinite-dimensional space of
probability distributions over state. Belief space planning is computa-
tionally expensive even in small, discrete domains.

Belief space planning is particularly hard for manipulation. First,
manipulation is continuous and high-dimensional. Second, the robot
requires multiple observations from contact sensors to infer the full
state of the environment. The planner must generate a sophisticated
policy that seeks out and combines information from multiple obser-
vations to achieves success.

16 michael c. koval

These challenges are not unique to contact sensing. Different sens-
ing modalities require differing amounts of information-gathering
(fig. 1.6). Long range sensors, like LIDAR (left), are nearly equally
accurate throughout the robot’s entire workspace. Near-touch sensors
(middle) only observe nearby objects. Contact sensors (right) take
this to the extreme by only observing objects touching the sensor. We
focus on contact sensing in this thesis, but believe that our framework
is applicable to other sensing modalities (section 8.2.5).

longer shorter

Figure 1.6: Different sensing
modalities have different maxi-
mum ranges. LIDAR (left) has a
long range, near-touch sensors
(middle) have a short range,
and contact sensors (right) have
zero range.

Challenge 3: Manipulation is a Physical Process

Making contact with an object also allows the robot to apply force to
it. This force may push the object out of the way or—if the object is
heavy—significantly affect the motion of the robot. The outcome of
the interaction is governed by physics.

Operation Time (ms) Percent

Physics Model 130.37 80.47%
Sensor Model 29.28 18.07%
Other 2.37 1.46%

Table 1.1: Time spent perform-
ing each operation in Koval
et al. [2015b]. Times are re-
ported for one update of the
filter.

Physics can be thought of as a non-holonomic constraint on the
evolution of the environment’s state. The presence of this constraint
means that it is difficult to solve the two-point boundary value problem

in state space; i.e to find a sequence of actions that moves the en-
vironment from an initial state to a desired final state. Planning in
this type of domain is challenging even when state is fully observed.
Most motion planning algorithms gain efficiency by performing a
bi-directional search [Kuffner and LaValle, 2000] or building a graph-
like structure in configuration space [Kavraki et al., 1996, Karaman
and Frazzoli, 2011, Gammell et al., 2015], both of which require
solving the two-point boundary value problem.

Parameter Dim. Units

Center of Mass 3 m
Mass 1 kg
Inertia Tensor 6 kg·m2

Friction Coeffient 1 –
Restitution Coefficient 1 –
Geometry ∞ –

Table 1.2: Properties necessary
to simulate a rigid body in the
DART [Liu et al., 2016] physics
simulator.

Additionally, planning with physics requires a physics model to
predict the outcome of actions. Physics models suffer from two key
problems. First, simulating physics is computationally expensive and
dominates planning time (table 1.1). Second, physics models depend
on a variety of physical properties; e.g. those listed in table 1.2. We
rarely know the value of these properties, so every action we take
introduces additional uncertainty into the state of the environment.

1.2 Key Insights to Our Approach

The general problem of planning under control and sensing uncer-
tainty is intractable. In this section, we identify the structure unique
to manipulation and contact sensing that allows us to plan efficiently.

Insight 1: Contact Constrains State to a Manifold

Contact is a constraint on configuration. Configurations can be
partitioned into free space (no contact), an invalid region (penetrating
contact), and a lower-dimensional contact manifold (non-penetrating

robust manipulation via contact sensing 17

contact). See fig. 1.7 for a graphical depiction of the contact manifold
for a radially symmetric object and fig. 1.8 for an asymmetric object.

(a) Workspace Geometry

C-space obstacle

contact manifold

state

(b) C-space Geometry

Figure 1.7: The (a) workspace
geometry of a robot pushing
an object induces (b) the lower-
dimensional contact manifold
in the configuration space of
the object.

Figure 1.8: For the planar ma-
nipulation of non-radially sym-
metric objects, such as the box
shown in fig. 1.3, the contact
manifold is a two dimensional
structure embedded in SE(2).

The lower-dimensional nature of the contact manifold introduces
the discontinuity described in challenge 1. However, we can also
exploit this structure to our benefit. If we receive a contact observa-
tion, then we can infer that an object lies on the lower-dimensional
contact manifold of the sensor. This observation eliminates one di-
mension of uncertainty. Each independent contact further reduces the
dimensionality of unobserved state by one.

This thesis uses the contact manifold in several ways. Chapter 4

uses an explicit representation of the contact manifold to efficiently
estimate the pose of an object relative to the end-effector. Chapter 5

uses an implicit representation of the contact manifold to estimate the
configuration of the robot in a known environment. Finally, chapter 6

discretizes the surface of the contact manifold to apply discrete
planning methods to a continuous problem.

Insight 2: Contact Decouples the Optimal Policy

Observing contact implies that the true state of the environment lies
on the contact manifold. As a result, we can infer that any hypothe-
sized state that is not on the contact manifold is incorrect. A contact
observation can be thought of as a “funnel” that collapses a large
set of initial belief states into a smaller set of belief states, each with
support restricted to the contact manifold.

This funneling behavior partially decouples the optimal pre-
contact policy from the optimal post-contact policy. We expect sce-
narios that result from the same contact observation to be solved by
similar post-contact policies. This allows us to efficiently plan long
horizon policies that gather information (challenge 2).

Chapter 6 exploits this structure by decomposing a policy into
an open-loop pre-contact trajectory followed by a closed-loop post-
contact policy. This method plans the post-contact policy offline, once
per object class. Then, when confronted with a problem instance, the
planner performs an online search to find a pre-contact trajectory.

Insight 3: Manipulation Occurs in a Lower-Dimensional Space

Finally, we note that the motion of an object often does not depend
on the full state of the environment. Instead, we can write the motion
of the object as a function of only the pose and motion of the robot’s
links that are in contact with it. Often, we only consider the pose of
the object relative to the end-effector (fig. 1.9a).

Solving this lower-dimensional problem may be significantly easier
than solving the full problem, i.e. may require fewer evaluations

18 michael c. koval

of the physics model (challenge 3). We can project from state to
end-effector pose using the robot’s forward kinematics. Similarly,
we can use inverse kinematics to project an end-effector pose back
into state (fig. 1.9b). However, this conversion is lossless only when
the motion of the robot is subject to no kinematic constraints, e.g.
kinematic reachability constraints, joint limits, or collision.

(a) End-Effector Pose

(b) Kinematic Redundancy

Figure 1.9: Interaction between
the object and end-effector is
invariant to (a) the end-effector
pose and (b) the null space of
inverse kinematics solutions.

Chapters 4 and 6 gain efficiency by, respectively, estimating and
planning for the pose of an object relative to the end-effector. These
techniques perform well when the robot is in an uncluttered environ-
ment that subjects it to few kinematic constraints. Chapter 7 exploits
this structure in a more nuanced way by using a hand-relative policy
to guide a planner through the robot’s configuration space.

1.3 Contributions

This thesis develops a framework that allows robots to use real-time
feedback from contact sensors to reliably manipulate objects under
uncertainty. Specifically, we contribute:

• A formulation of manipulation as a partially observable Markov
decision process (POMDP, Smallwood and Sondik [1973], Kael-
bling et al. [1998]) that includes object pose uncertainty, proprio-
ceptual error, and kinematic constraints (chapter 3).

• The manifold particle filter as a method of estimating the pose of an
object relative to the end-effector using real-time feedback from
contact sensors. (chapter 4, Koval et al. [2013b,a, 2016c, 2015b]).

• An implicit manifold representation that enables the manifold particle
filter to scale up to estimating robot configuration in known, static
environments (chapter 5, Klingensmith et al. [2016]).

• A planner for hand-relative manipulation that decomposes the policy

into pre- and post-contact phases to find long-horizon policies that
actively gather information (chapter 6, Koval et al. [2014, 2016d]).

• An online planner that uses heuristics derived from a hand-relative

policy to cope with both kinematic constraints and object pose
uncertainty (chapter 7, Koval et al. [2016a,b]).

Finally, chapter 8 concludes by discussing the limitations of our
approach and outlining potential directions for future research.

2

Background

This thesis builds on prior work on non-prehensile manipulation
(section 2.1), contact sensing for manipulator control (section 2.2),
and contact sensing for state estimation (section 2.3). Similar to some
recent work work on motion planning under uncertainty (section 2.4),
we formulate manipulation as a POMDP (section 2.5).

2.1 Open-Loop Pushing Manipulation under Uncertainty

Early work in manipulation addressed the part alignment problem.
In this problem, a robot plans an open-loop trajectory that reconfig-
ures an object despite uncertainty in its initial pose [Brokowski et al.,
1993, Erdmann and Mason, 1988, Brokowski et al., 1993]. More re-
cently, the same approach has been applied to the problems of grasp-
ing [Dogar and Srinivasa, 2010] and rearrangement planning [Dogar
and Srinivasa, 2012, Koval et al., 2015a] under the quasistatic assump-
tion [Lynch et al., 1992].

These techniques all consider non-deterministic uncertainty [LaValle
and Hutchinson, 1998] in object pose and use worst-case analysis to
guarantee success. For example, the push-grasp uses a long, straight-
line pushing action to funnel the object into the hand before closing
the fingers to achieve a stable grasp [Dogar and Srinivasa, 2010].

Our approach also makes the quasistatic assumption and—when
necessary to achieve the goal—generates uncertainty-reducing actions
that resemble the push-grasp. However, our approach uses real-time
feedback from contact sensors to estimate the pose of the object and
achieve the goal. This allows us to achieve the success more quickly
and under larger amounts of uncertainty than open-loop strategies.

2.2 Contact Sensing for Manipulator Control

One method of achieving success under uncertainty is to use real-
time feedback from contact sensors by directly mapping observations

20 michael c. koval

to actions. Prior work has developed controllers that can locally
refine the quality of a grasp [Platt et al., 2010a] or achieve a de-
sired tactile sensor reading [Zhang and Chen, 2000, Li et al., 2013].
These techniques achieve real-time control rates of up to 1.9 kHz [Li
et al., 2013] and impressive performance in controlled environments.
However—unlike our approach—these algorithms require a high-
level planner to analyze the scene and provide a set point to the
controller.

It is possible to subvert this problem by directly learning a robust
control policy. This has been done by learning a model of expected
sensor observations from past experience [Pastor et al., 2011] and
using perturbed rollouts to evaluate the effect of uncertainty on
candidate policies [Stulp et al., 2011]. These approaches have been
shown to perform well in practice, but policies learned in this way
do not easily generalize new tasks or robots. Our approach can be
applied to any task or robot for which transition, observation, and
reward functions are available.

2.3 Contact Sensing for State Estimation

An alternative use of contact sensing is to estimate the state of the en-
vironment during manipulation. Prior work has used contact sensors
to predict grasp stability [Dang et al., 2011] and object identity [Xu
et al., 2013, Schneider et al., 2009].

Approaches dating back to the 1970s [Šimunović, 1979] have
formulated manipulation under uncertainty as a Bayesian estimation
problem. Recently, there has been renewed interest in using contact
sensors in the particle filter to track the pose [Zhang and Trinkle,
2012] and physical parameters [Zhang et al., 2013] of an object being
pushed in the plane. Other, closely related work, used a particle filter
to track a hybrid discrete-continuous probability distribution over the
discrete contact formation [Xiao, 1993] and continuous pose of the
object [Gadeyne et al., 2005, Meeussen et al., 2007].

An alternative approach recursively applies local optimization
techniques, like iterative closest point [Besl and McKay, 1992], to
track robot configuration and object pose with a depth sensor [Klin-
gensmith et al., 2013, Schmidt et al., 2014]. These techniques have
been extended to penalize inter-penetration and disagreement with
contact observations [Bimbo et al., 2013, Schmidt et al., 2015].

State estimation is an important part of successfully manipulating
objects under uncertainty. We introduce the manifold particle as
a Bayesian method of estimating object pose (chapter 4) and robot
configuration (chapter 5) from contact sensor observations. Unlike
previous techniques, the manifold particle filter draws samples from

robust manipulation via contact sensing 21

the contact manifold to avoid particle deprivation during contact.
The implicit representation of the contact manifold that we intro-

duce in chapter 5 closely resembles the technique used to incorporate
contact sensors into an optimization-based tracker. However, unlike
those techniques, the manifold particle filter implements a true Bayes
update and, thus, provides an estimate of the full belief state.

2.4 Motion Planning under Uncertainty

Several motion planning algorithms generate closed-loop policies
that achieve a goal under uncertainty. These algorithms include low-
level controllers (e.g. those cited in section 2.2), high-level symbolic
planners [Smith and Weld, 1998, Hyafil and Bacchus, 2003], and
hybrid task planners [Kaelbling and Lozano-Pérez, 2013]. In this
thesis, we specifically consider the problem of generating a low-
level policy. These policies can be used as primitive actions inside a
high-level planning framework.

Other work has solved the motion planning under uncertainty
problems under the linear-quadratic-Gaussian (LQG) assump-
tions [Athans, 1971]. In this case, it is efficient to plan by generating
and testing candidate trajectories [van den Berg et al., 2010], building
a roadmap in state space [Agha-mohammadi et al., 2011, van den
Berg et al., 2011], or planning with the maximum-likelihood hypoth-
esis [Platt et al., 2010b]. These techniques have been extended to a
variety of application domains. Unfortunately, the belief states en-
countered during contact manipulation are non-Gaussian and quickly
become multi-modal (challenge 3). This precludes us from using
techniques that assume that the belief state remains Gaussian.

The idea of planning with the maximum-likelihood hypothe-
sis has also been applied to manipulation [Platt et al., 2011]. This
approach uses trajectory optimization to plan a trajectory that ei-
ther: (1) achieves the goal for a nominal hypothesis or (2) receives
observations that invalidate that hypothesis. In the latter case, the
algorithm is guaranteed to converge to the goal in a finite number of
re-planning steps [Platt. et al., 2012]. Unfortunately, theses techniques
aim for feasibility, not optimality. In contrast, our approach optimizes
a reward function that drives the robot to quickly achieve the goal.

2.5 Planning for Manipulation under Uncertainty

The work described above solves the general problem of motion
planning under uncertainty. In this thesis, we specifically consider
planning for manipulation tasks using feedback from contact sen-
sors. Physics-based manipulation under uncertainty is particularly

22 michael c. koval

challenging because the observations generated by contact sen-
sors are inherently discontinuous (challenge 1), we must generate
information-gathering actions (challenge 2), and we must plan with a
physics model (challenge 3).

Early work on robotic assembly used feedback from force sensors
to perform fine manipulation [Šimunović, 1979]. A common strategy
is to use guarded moves; i.e. move-until-touch actions, to localize
the manipulator relative to the environment [Will and Grossman,
1975]. Guarded moves were constructed by hand [Bolles and Paul,
1973] and, later, synthesized automatically [Lozano-Pérez et al., 1984].
Recent work has considered the problem of tactile localization [Petro-
vskaya and Khatib, 2011, Hebert et al., 2013, Javdani et al., 2013],
where the robot plans a sequence of guarded moves to localize an
object.

These techniques split the policy into an information-gathering
stage, which attempts to localize the object, followed by a goal-
directed stage. An alternative approach is to switch between execut-
ing information-gathering and goal-directed trajectories depending
upon the amount of uncertainty [Nikandrova et al., 2014]. We pro-
pose to eliminate the need for an explicit information-gathering stage
by naturally gathering information during execution when doing so
is necessary to achieve the goal.

We trade-off between information gathering and goal directed
behavior by formulating contact manipulation as a POMDP [Kael-
bling et al., 1998]. Hsiao et al. first formulated grasping as a POMDP
by decomposing the continuous state space into a discrete set of
cells [Hsiao et al., 2007] and, later, by selecting trajectories from a set
of candidates [Hsiao et al., 2008]. Both of these approaches assume
that the object does not significantly move when touched [Hsiao,
2009]. We consider the case of planar pushing, where motion of the
object is critical to achieving the goal.

More recent work has used SARSOP [Kurniawati et al., 2008]
to synthesize an efficient policy that grasps a lug nut under uncer-
tainty [Horowitz and Burdick, 2013]. That work explicitly models the
motion of the lug nut and introduces the concept of an interactivity-

based state space that densely discretizes states that are near contact.
Chapter 6 introduces a planner that also uses SARSOP to find

a post-contact policy and discretizes the state space. However, our
planner differs in three key ways: it (1) uses a pre-contact search
to extend the planning horizon, (2) re-uses a post-contact policy
across problem instances, and (3) discretizes the contact manifold to
preserve the discontinuity of contact. Chapter 7 introduces an online
planner based on DESPOT [Somani et al., 2013] that, unlike past
techniques, considers kinematic constraints during planning.

3

Approach

We consider the problem of a robot manipulating a movable object in
a static environment into a goal region. The robot has a configuration

space Q and the movable object has pose x ∈ X = SE(3). We represent
the state of the system as a point in the state space S = Q× X.

State space consists of immovable obstacles Sobs ⊆ S and free space

Sfree = S \ Sobs. We define Sfree to include its boundary to allow
non-penetrating contact between the robot, the object, and immovable
obstacles in the environment. Our goal is to manipulate the movable
object into a goal region G ⊆ Sfree defined in this space.

x

q

(a) State, s

a

(b) Action, a

oq

(c) Proprioceptive Observation, oq

oc

(d) Contact Sensor Observation, os

Figure 3.1: (a) State, (b) an
action, and (c)–(d) observations.

We model manipulation as a stochastic, discrete-time, dynamic
system. The robot begins in an initial state s0 ∈ S at time t = 0. At
each time step, the robot executes an action at = (ξ, ∆t) ∈ A that is a
configuration-space trajectory ξ : [0, ∆t] → Q with duration ∆t. State
evolves from st−1 to st according to a stochastic transition model

T(st−1, at, st) = p(st|st−1, at)

that includes the motion of the robot, collision with immovable
obstacles, and contact with the movable object.

After transitioning to state st, the robot receives an observation

ot = (oq, os) ∈ O consisting of a proprioceptive observation oq ∈ Oq from
the robot’s internal sensors and a contact sensor observation os ∈ Os

from its contact sensors. We assume that observations are generated
according to a stochastic observation model

Ω(ot, st, at) = p(ot|st, at) = p(oq|st, at)p(os|st, at),

which factors into two terms because proprioceptive and contact
sensor observations are conditionally independent given state.

The robot does not know the true state st. Instead, it uses the
transition and observation models to track the belief state

b(st) = p(st|a1:t, o1:t)

24 michael c. koval

over time. The belief state b(st) is the probability distribution over the
state st at time t given the history of past actions a1:t = a1, . . . , at and
observations o1:t = o1, . . . , ot (fig. 3.2). Each belief state is an element
of the infinite-dimensional simplex ∆ called belief space.

Figure 3.2: A belief state is a
probability distribution over
state given the history of ac-
tions and observations.

Our goal is to find a policy π : ∆ → A over belief space that
quickly reaches the goal. A policy chooses which action π[b] to exe-
cute in a belief state b. We encode our desire to reach the goal into a
value function Vπ : ∆ → R that defines the utility of starting in belief
state b and following policy π. Our goal is to find an optimal policy

π∗ = arg maxπ Vπ [b(s0)]

that achieves the highest value on the initial belief state b(s0).
The remainder of this section defines the transition model (sec-

tion 3.1), observation model (sections 3.2 and 3.3), and value function
(section 3.4) in detail. We conclude by defining three simplified
models that prove to be useful throughout this thesis (section 3.5).

3.1 Transition Model

The transition model encodes the physics of manipulation. We re-
strict ourselves to the quasistatic manipulation of objects resting on a
planar support surface. The quasistatic assumption states that friction
is high enough to neglect acceleration of the object; i.e. an object
stops moving as soon as it leaves contact with its pusher [Mason,
1986]. This assumption has been shown to be an accurate approxima-
tion of many household manipulation tasks [Dogar, 2013].

We implement the transition model using an analytic [Lynch et al.,
1992] or numerical [Catto, 2010] rigid body simulator. We model the
simulator as a deterministic transition function Tθ

det : S × A → S

parameterized by static properties θ ∈ Θ. The properties may include
those listed in table 1.2, e.g. geometry and friction coefficients.

In practice, θ is rarely known with certainty (challenge 3). We
model θ as a random variable with distribution p(θ) and define

T(st−1, at, st) =
∫

θ
δTθ

det(st−1,at)
(st) p(θ)dθ

where δ denotes the Dirac delta function. Marginalizing over θ intro-
duces uncertainty into the transition model, while still guaranteeing
that st is feasible [Duff et al., 2010, Duff, 2011].

As we explain in section 8.3.3, this approximation ignores corre-
lation of error between time steps. We discuss how to address this
limitation, by estimating θ as state, in section 8.2.4.

robust manipulation via contact sensing 25

3.2 Observation Model for Proprioception

If a robot has accurate proprioception, then p(oq|q) = δq

(
oq
)

and
oq = q. Unfortunately, this is not true on the many robots that suffer
from proprioceptive error.

Figure 3.3: Proprioception error
on the Barrett WAM arm due to
uncertainty in the transmission
between the arm’s encoders
and the joints. Courtesy of
Klingensmith et al. [2013].

Some robots, like the Barrett WAM [Salisbury et al., 1988], measure
joint positions at the actuator instead of the joint. Uncertainty in the
robot’s transmissions introduces error into its proprioception [Klin-
gensmith et al., 2013, Boots et al., 2014]. Figure 3.3 shows an example
of the difference between the measured (solid render) and actual
(semi-transparent render) configuration. Compliant mechanisms,
such as the flexible rubber joints used in the iHY hand [Odhner et al.,
2014], have an infinite number of unobservable degrees of freedom.

In general, we expect oq to differ from q by the affine model

oq = q + δq + ǫq(s)

where δq is a history-dependent offset [Boots et al., 2014] and ǫq is
state-dependent noise. We add δq as an auxiliary state variable and
assume its dynamics δqt ∼ p(δqt|st−1, at) are known.

3.3 Observation Model for Contact Sensors

Contact sensors are unique because they provide a wealth of infor-
mation while in contact, but little information otherwise. As in prior
work [Javdani et al., 2013, Hebert et al., 2013, Petrovskaya and Khatib,
2011], we assume that contact sensors are discriminative; i.e. unlikely
to generate false positive observations of contact.

Consider a robot with ns contact sensors. Each sensor i covers a
portion Gs,i(q) ⊆ ∂Gr(q) of the surface of the robot, where Gr(q) ⊆
R

3 is the geometry of the robot in configuration q and ∂ denotes the
boundary of a set. Define the contact manifold of sensor i to be

Sc,i = {(q, x) ∈ S : Gs,i(q) ∩ ∂Go(x) 6= ∅} ,

the set of states where the geometry of the movable object Go(x) ⊆
R

3 is in non-penetrating contact with the geometry of the sensor.

(a) Sensor Contact Sc

(b) No Sensor Contact Snc

Figure 3.4: The state space is
partitioned into (a) states in
contact with a sensor and (b)
those that are not.

Each contact sensor also partitions the observation space. Let
Oc,i ⊆ Os denote the set of contact sensor observations that indicate
contact with sensor i. A sensor is discriminative if receiving an obser-
vation from that set implies that the state lies on the sensor’s contact
manifold with high probability; i.e. Pr(st ∈ Sc,i|ot ∈ Oc,i) > 1− ǫs.

When os ∈ Oc,i, sensor i may provide additional information
about the state in the form of the likelihood p(os|s, a) over Sc,i. For
example, measurements of force/torque [Haidacher, 2004] and joint
effort [Dogar et al., 2010, Manuelli and Tedrake, 2016] constrain the

26 michael c. koval

set of feasible contact points. We refer to the set of all such observa-
tions Oc =

⋃ns
i=1 Oc,i as contact observations and use Λ(os) ⊆ [1, ns] to

denote which sensors are active for an observation os ∈ Oc.
When os ∈ Onc = Os \Oc, a contact sensor induces a uniform

likelihood function p(os|s, a) over Snc. This property encodes the fact
that receiving a no-contact observation provides little information.

In some cases, we ignore the distinction between contact sensors
by allowing Oc to induce a likelihood over the contact manifold Chapter 6 uses this simplification. It

also appeared in previous presentations
of the manifold particle filter [Koval
et al., 2013b,a, 2015b, 2016c].

Sc = {(q, x) ∈ S : ∂Gr(q) ∩ ∂Go(x) 6= ∅} ,

the set of states where the movable object is in non-penetrating
contact with the robot. Discriminative sensors only assign non-zero
likelihood to the observable contact manifold Sc,∗ =

⋃ns
i=1 Sc,i ⊆ Sc.

This simplification ignores the fact that receiving a contact obser-
vation os ∈ Oc constrains state to a set Sc,os =

⋂

i∈Λ(os) Sc,i, which may Each independent contact point reduces
the dimensionality of Sc,os by one.be of lower dimension than Sc. We discuss the theory behind mixing

probability distributions of different dimensionalities in section 8.3.1.

3.4 Value and Reward Functions

We encode our desire to reach the goal region (fig. 3.5) into a value
function Vπ that can be optimized. One intuitive choice of Vπ is the We negate the time required to reach G

to convert the maximization of value
into the minimization of time.

negative time required for π to reach G with probability greater than
1− ǫg. Unfortunately, this function is undefined for any π that is
incapable of reaching G with the desired confidence level.

Another intuitive choice of Vπ is the probability Pr(sT ∈ G) of
reaching G after taking T actions. This choice is flawed because there
is no incentive for a policy to reach G more quickly than T time steps.

Instead, we encode our goal into a reward function R : S× A → R

that encourages the robot to quickly reach G. We define

R(st−1, at) =







0 : st−1 ∈ G

−∆t : otherwise

by assigning zero reward to G and negative reward to other states.
G

Figure 3.5: The reward function
induces a value function that
drives the robot towards the
goal region G ⊆ S.

Our objective is to optimize the sum of expected future reward

Vπ [b(s0)] = E

[
∞

∑
t=1

γt−1R(st−1, at)

]

(3.1)

where the expectation E [·] is taken over the initial state s0 ∼ b(s0),
transitions st ∼ p(st|st−1, at), and observations ot ∼ p(ot|st, at)

assuming that actions are selected by at = π[b(st−1)]. The discount
factor 0 ≤ γ < 1 mediates between quickly reaching G with low
probability and slowly reaching G with high probability.

robust manipulation via contact sensing 27

Defining Vπ as we did in eq. (3.1) makes our model a partially

observable Markov decision process (POMDP) [Smallwood and Sondik,
1973, Kaelbling et al., 1998]. This allows chapters 6 and 7 to leverage
the rich history of prior work on POMDP solvers, which would not
be possible if Vπ were not defined in terms of a reward function.

3.5 Simplified Models

Our problem formulation allows for a movable object, object pose
uncertainty, and proprioceptive error. This thesis considers three
simplified versions of the full problem:

• Model 1: Hand-Relative The robot is a lone end effector actuated
by an incorporeal planar joint with perfect proprioception. This is
equivalent to setting Sobs = ∅, Q = SE(2), and p(oq|q) = δq

(
oq
)
.

We use this model to estimate object pose in chapter 4, plan end-
effector motion in chapter 6, and to build a heuristic in chapter 7.

• Model 2: Known, Static Environment The robot moves in a known
environment that contains no movable objects. This is equivalent
to assuming that b(x0) = δxstatic (x0) and p(xt|xt−1, at) = δxt−1 (xt).
for some static pose xstatic ∈ X. We use this model to estimate the
configuration of the robot in chapter 5.

• Model 3: Perfect Proprioception The robot has perfect propriocep-
tion, i.e. p(oq|q) = δq

(
oq
)
. We use this model to plan with object

pose uncertainty and kinematic constraints in chapter 7.

We discuss how to relax these assumptions in chapter 8.

4

Object Pose Estimation

This chapter is adapted from Koval et al.
[2013b,a, 2016c, 2015b].Estimating state is critical for a robot to reliably manipulate its envi-

ronment. We specifically consider recursive Bayesian estimation, where
we recursively construct the belief state

b(st) = η p(ot|st, at)
∫

S
p(st|st−1, at)b(st−1) dst−1 (4.1)

from the previous belief state b(st−1) using the most recent action at

and observation ot [Thrun et al., 2005].
Implementing a Bayes filter of this form is possible because the

stochastic dynamic system we defined in chapter 3 satisfies the
Markov property. This property requires state to be a sufficient statistic
for all previous actions and observations (fig. 4.1).

ot

st

at

st-1

ot-1

at-1

... ...

Figure 4.1: Bayesian network
for the state estimation problem.
The Markov property states that
the future is independent of the
past given the current state st.

This chapter introduces the manifold particle filter as an efficient
implementation of the Bayes filter for contact sensing. Our key
insight is to use the contact manifold (insight 1) to reduce the number
of particles required to maintain an accurate state estimate.

We restrict ourselves to model 1 from section 3.5 by estimating the
pose of an object relative to the end-effector. We extend the manifold
particle filter to robot configuration estimation in chapter 5.

4.1 Particle Filter

Implementing a Bayes filter requires committing to a parameteriza-
tion of the belief state that is closed under application of eq. (4.1).

The Kalman filter [Kalman, 1960] requires the belief state to be
Gaussian, the transition model to be linear, and the observation
model to be corrupted by additive Gaussian white noise. The ex-
tended and unscented [Julier and Uhlmann, 1997] Kalman filters
relax the requirements on the transition and observation models, but
still require the belief state to be Gaussian.

As a result, these filters are a poor fit for the complex belief states
(challenge 1) found in manipulation. Instead, we use the particle filter

30 michael c. koval

Algorithm 4.1 Conventional Particle Filter
Input: action at ∈ A and observation ot ∈ O

Input: particles St−1 = {〈s[i]t−1, w
[i]
t−1〉}n

i=1 s.t. St−1 ∼ b(st−1)

Output: particles St = {〈s[i]t , w
[i]
t 〉}n

i=1 s.t. St ∼ b(st)

1: St ← ∅

2: for i = 1, . . . , n do

3: s
[i]
t ∼ p(s

[i]
t |s

[i]
t−1, at) ⊲ eq. (4.3)

4: w
[i]
t ← w

[i]
t−1 p(ot|s[i]t , at) ⊲ eq. (4.4)

5: St ← {〈s[i]t , w
[i]
t 〉} ∪ St

6: end for

7: St ← Resample(St)

that represents the belief state as

b(st) ≈
n

∑
i=1

w
[i]
t δ

s
[i]
t

(st) ,

the weighted sum of n probability point masses [Gordon et al., We say that St is “distributed according
to b(st)” if eq. (4.2) is true for all
functions f . We abuse notation to
denote this by St ∼ b(st).

1993]. The points, along with their weights, are called particles

St = {〈s[i]t , w
[i]
t 〉}n

i=1 and are chosen such that St ∼ b(st).
We can approximate the expectation of any function f : S→ R as

Est∼b(st) [st] =
∫

S
f (st)b(st)dst ≈

n

∑
i=1

w
[i]
t f
(

s
[i]
t

)

(4.2)

by replacing the integral over S with a summation over St. Critically,
this statement holds when f is the value function used for planning.

Ideally, we would construct St by drawing samples from the
target distribution given by eq. (4.1). Sampling from this distribution
is challenging, so the particle filter instead draws samples from a

proposal distribution s
[i]
t ∼ q(st). It corrects for the mismatch between

q(st) and b(st) by computing an importance weight w
[i]
t ∼ b(st)/q(st)

for each sample. This technique is known as importance sampling.
Finally, the particle filter periodically re-samples n particles with

replacement from St with probability proportional to their impor-
tance weights. This step is known as re-sampling and is necessary to
prevent growth in the variance of the importance weights.

4.1.1 Conventional Proposal Distribution

Importance sampling is valid for any choice of proposal distribution
that satisfies b(st) > 0 =⇒ q(st) > 0. However, in practice, we must
choose a proposal distribution that allows us to efficiently: (1) draw a

sample s
[i]
t ∼ q(st) from the proposal distribution and (2) compute its

importance weight w
[i]
t = b(st)/q(st).

robust manipulation via contact sensing 31

Conventionally we choose the proposal distribution to be

q(st) =
∫

S
p (st|st−1, at) b(st−1)dst−1, (4.3)

the belief state after taking action at, but before receiving observation

ot. The importance weight for a sample s
[i]
t drawn from eq. (4.3) is

w
[i]
t =

b(s
[i]
t)

q(s
[i]
t)

= η p(ot|s[i]t , at), (4.4)

which integrates observation ot into the posterior belief state.
Figure 4.2: Only the small set
of particles (dark orange) that
are in the swept volume of the
sensors generate contact obser-
vations. Most particles (light
blue) generate no-contact ob-
servations and have low weight
during contact.

The conventional particle filter (CPF, algorithm 4.1) draws n samples
from eq. (4.3) by propagating each particle from time t− 1 through
the transition model to produce a particle at time t (line 3). Next, it
computes each particle’s importance weight (line 4) by evaluating
observation likelihood function. Finally, it periodically re-samples n

particles with replacement (line 7) to normalize their weights.

4.1.2 Degeneracy of the Conventional Proposal Distribution

Unfortunately, importance sampling from the conventional proposal
distribution performs poorly when using contact sensors. Contact
sensors are discontinuous (challenge 1) and only respond to state on
a lower-dimensional contact manifold. As a result, the conventional
proposal distribution is a poor approximation of the target distribu-
tion when os ∈ Oc. This cause particle deprivation, a condition where
no particles in St agree with ot with high probability (fig. 4.2).

U
p
d
at

e
R

at
e

Sensor Resolution

Figure 4.3: Increasing the sen-
sor’s resolution (left-to-right) or
update rate (top-to-bottom) re-
duces the swept volume of the
sensors. This exacerbates the
problem of particle starvation.

Surprisingly, this fact causes the CPF to perform worse as the sensor

resolution increases. Figure 4.3 illustrates the reason for this unintuitive
result. As sensor resolution increases (left-to-right), the swept volume
of each sensor becomes narrower. As the update frequency increases
(top-to-bottom), the distance traveled by the end-effector between
updates decreases and the swept volume shrinks.

4.1.3 Dual Proposal Distribution

Alternatively, we can draw samples from the dual proposal distribution

q̄(st) =
p(ot|st, at)

p(ot|at)
(4.5)

to generate a particle s̄
[i]
t ∼ q̄(st) that is consistent with the latest As in prior work, we assume that

p(ot|at) is finite [Thrun et al., 2000b].observation ot. Equation (4.5) ignores b(st−1) and generates samples
that are likely to produce observation ot.

The corresponding dual importance weight is

w̄
[i]
t ==

b(s̄
[i]
t)

q̄(s̄
[i]
t)

= η′
∫

S
p(s̄

[i]
t |st−1, at)b(st−1)dst−1 (4.6)

32 michael c. koval

Algorithm 4.2 Manifold Particle Filter
Input: number of dual particles nd and mixing rate φ

Input: action at ∈ A and observation ot ∈ O

Input: particles St−1 = {〈s[i]t−1, w
[i]
t−1}n

i=1
Output: particles St s.t. St ∼ b(st)

1: Scpf,t ← CPF(St−1, at, ot) ⊲ algorithm 4.1
2: for i = 1, . . . , nd do

3: s̄
[i]
t ∼ p(ot|s[i]t , at) ⊲ section 4.2.2

4: w̄
[i]
t =

∫

S p(s̄
[i]
t , st−1, at)b(st−1) dst−1 ⊲ section 4.2.3

5: S̄t ← {〈s̄[i]t , w̄
[i]
t 〉} ∪ S̄t

6: end for

7: St ← (1− φ)Scpf,t + [1− φ + φb(st ∈ Snc)](Scpf,t ∩ Snc)

+ φb(st ∈ Sc)(S̄t ∩ Sc) ⊲ section 4.2.4
8: St ← Resample(St)

with normalization factor η′. Dual importance weights incorporates
the outcome of executing action at in belief state b(st−1) into b(st).

4.2 Manifold Particle Filter

Sampling from the conventional proposal distribution performs well
when the transition model is more informative than the observation
model. Conversely, sampling from the dual proposal distribution
performs best when the observation model is informative. Neither
case directly applies to contact sensors.

Contact sensors provide a wealth of information while in contact,
but little information while in free space (challenges 1 and 2). Our
key insight is exploit this fact by factoring the belief state b(st) into

b(st) = b(st ∈ Snc)b(st|Snc) + ∑
os∈Oc

b(st ∈ Sc,os)b(st|Sc,os) (4.7)

where b(st|Snc) is a probability distribution over free space and
b(st|Sc,os) is a probability distribution over the states in contact with
all of the sensors Λ(os) active in observation os. The marginal proba-
bilities b(st ∈ Snc) and b(st ∈ Sc,os) define the probability of the state
residing in each of those sets.

The manifold particle filter (MPF, algorithm 4.2) samples in three
steps. First, the MPF chooses a manifold in proportion to its marginal Algorithm 4.2 differs from this descrip-

tion of the MPF because it includes the
optimization from section 4.2.4.

probability. Next, it uses importance sampling to draw a sample
from b(st) restricted to that set. We tailor our choice of proposal
distribution to the current set: we choose the conventional proposal
distribution for Snc and the dual proposal distribution for all of the
contact manifolds. Finally, we repeat this process n times such that
the number of particles remains constant.

robust manipulation via contact sensing 33

(a) Analytic (b) Rejection-Sampled (c) Trajectory Rollout

Figure 4.4: (a) Analytic, (b) re-
jection sampling, and (c) trajec-
tory rollout representations of
the contact manifold.

The MPF combines the advantages of the conventional and dual
proposal distributions. However, there are three key challenges in
implementing the MPF. First, we must estimate the marginal b(st ∈
Sc,os). Second, we must sample from the dual proposal distribution.
Third, we must compute the dual importance weights. We address
these challenges in the next three sections.

4.2.1 Estimating the Probability of Contact

Factoring b(st) requires estimating the probability of contact b(st ∈
Sc,os) for each combination of sensors that may be active for any
contact observation os ∈ Oc. We typically would compute

b(st ∈ Sc,os) =
∫

Sc,os

b(st) dst

by marginalizing the belief state over Sc,os . Unfortunately, computing Given b(st ∈ Sc,os), we can compute
b(st ∈ Snc) = 1−∑os∈Oc b(st ∈ Sc,os).this integral requires precisely the distribution we wish to estimate.

Instead, we set b(st ∈ Sc,os,t) = 1 for the most recent contact obser-
vation os,t and b(st ∈ Sc,os) = 0 for all os 6= os,t. This assumption is
correct when contact sensors are perfectly discriminative (section 3.3)
and a good approximation of the true belief dynamics when false
positives are unlikely, i.e. when ǫs is small.

4.2.2 Sampling from the Dual Proposal Distribution

The MPF samples from the dual proposal distribution, restricted to
the contact manifold Sc ⊆ S, when contact is observed. This section This section simplifies notation by

using Sc to refer to an arbitrary contact
manifold. In practice, we build a
separate representation of Sc,os for each
contact observation os ∈ Oc.

introduces three methods of constructing explicit representations of
Sc that are amenable to sampling. Chapter 5 describes an implicit

representation of Sc that scales to high-dimensional state spaces.
In some cases, e.g. when the end-effector and object are poly-

gons, we can compute an analytic representation of Sc. We use the
Minkowski sum to compute the C-obstacle of the end-effector in
the configuration space of the object at a fixed orientation [Lozano-
Pérez, 1983]. We repeat this computation for many orientations of the

34 michael c. koval

object and approximate Sc as the union of the boundaries of those
C-obstacles (fig. 4.4a). We draw a sample from Sc by first choosing
an orientation, then choosing a position along the boundary of the
corresponding C-obstacle.

It often is not feasible to represent Sc analytically. Instead, we can
approximate Sc with a discrete set of states S̃c ⊆ Sc on the manifold
(fig. 4.4b). The most straightforward way of building S̃c is through Ideally we would set ǫrs = 0 and

rejection sample from Sc. This is not
possible because Sc has zero measure
in the ambient space: there is zero
probability of drawing such a sample.

rejection sampling. Rejection sampling begins by drawing a candidate
state s ∼ uniform(S) from the ambient space. If mins′∈Sc ||s− s′|| ≤
ǫrs, then s is added to S̃c. Otherwise, it is rejected. This process
repeats until S̃c is sufficiently large. The parameter ǫrs > 0 trades off
between the speed of building S̃c and its accuracy.

Rejection sampling covers Sc with uniform density. As a result,
much of S̃c may be found in regions of Sc that remain low probability
during execution. We can perform trajectory rollouts from the initial
belief state to approximate the distribution of states that will be
encountered during execution. Each time we encounter a state s ∈ Sc

during a rollout, we add it to S̃c. Just as with rejection sampling, we
repeat this process until S̃c is sufficiently large.

4.2.3 Computing Dual Importance Weights

Once we have drawn a sample s̄
[i]
t from the dual proposal distri-

bution, we must compute its importance weight w̄
[i]
t . Recall from

section 4.1.3 that the importance weight integrates b(st−1) and the
effect of taking action at into the posterior [Thrun et al., 2000a].

We propagate each particle s
[i]
t from time t − 1 to time t using

the transition model s
[i]
t ∼ p(s

[i]
t |s

[i]
t−1, at). This set of particles

S+
t−1 = {〈s[i]t , w

[i]
t−1〉}n

i=1 is distributed according to b+(st−1), the
belief state after taking action at, but before receiving observation
ot. The importance weight defined by eq. (4.6) can be re-written as

w̄
[i]
t = b+(s̄

[i]
t), the density of this belief state at particle i.

Figure 4.5: Kernel density es-
timate used to compute dual
importance weights.

We use kernel density estimation [Rosenblatt, 1956] to estimate

b+(s̄
[i]
t) by promoting S+

t−1 into a probability density function

b+(s) ≈
n

∑
i=1

w
[i]
t−1K(s, s

[i]
t),

where K : S× S → R
+ is a kernel. We use this estimate to compute

the importance weight for each sample drawn from eq. (4.5).
We choose K to be a Gaussian kernel and select the bandwidth

matrix using a multivariate generalization of Silverman’s rule of
thumb [Silverman, 1981]. Note that K will assign non-zero probabil-
ity to Snc because it is defined in the ambient space. This is not issue
because b+(s) is only evaluated on samples drawn from q̄(st|Sc).

robust manipulation via contact sensing 35

4.2.4 Mixture Proposal Distribution

There are two potential issues with the MPF as described above.
First, the conventional and dual proposal distributions have com-

plementary strengths and weaknesses. Just as the how the conven-
tional proposal distribution performs poorly with accurate sen-
sors, the dual proposal distribution responds poorly to observation
noise [Thrun et al., 2000a]. The MPF uses the dual proposal distribu-
tion during contact and, thus, inherits the same weakness.

Second, the kernel density estimate used to compute dual impor-
tance weights introduces variance into the posterior belief state. This
is unavoidable: the technique replaces a point estimate of a proba-
bility distribution with a sum of kernel functions that has broader
support. If left unchecked, this variance could grow over time. We define the sum aX + cY of the

sets of particles X = {〈x[i], w
[i]
x 〉}nx

i=1

and Y = {〈y[i], w
[i]
y 〉}

ny

i=1 with non-
negative scale factors a, c ∈ R

≥0 to

be aX + cY = {〈x[i], aw
[i]
x /Wx〉}nx

i=0 ∪
{〈y[i], cw

[i]
y /Wy〉}ny

i=0. The variables

Wx = ∑
nx
i=1 w

[i]
x and Wy = ∑

ny

i=1 w
[i]
y

denote the total weight of X and Y.

We use a mixture proposal distribution [Thrun et al., 2000a] to mit-
igate these effects. Instead of sampling all of the particles from the
MPF, some particles Scpf,t from the CPF and the remainder of the
particles Smpf,t from the MPF. We combine the two sets of particles
St = (1− φ)Scpf,t + φSmpf,t weighted by a mixing rate 0 ≤ φ ≤ 1.

Implementing the mixture proposal distribution typically incurs
the computational expense of running both filters at once. We avoid
this overhead by integrating the mixing step into the MPF. To show
how this is possible, rewrite the mixture proposal distribution as We use Scpf,t to denote particles drawn

from q(st), St to denote particles drawn
from q(st|Snc), and q̄(st) to denote
particles drawn from q̄(st|Sc).

St = (1− φ)Scpf,t + φ [b(st ∈ Sc)S̄t + b(st ∈ Snc)St]

= (1− φ)Scpf,t + φ
[

b(st ∈ Sc)S̄t + b(st ∈ Snc)(Scpf,t ∩ Snc)
]

= (1− φ)(Scpf,t ∩ Sc) + [1− φ + φ b(st ∈ Snc)] (Scpf,t ∩ Snc)

+ φ b(st ∈ Sc)S̄t

by partitioning Scpf,t into particles Scpf,t ∩ Sc on the contact manifold
and those Scpf,t ∩ Snc that are not.

Our key observation is that the MPF draws particles from free
space using q(s|Snc), the same distribution q(s) used by the CPF,
except restricted to Snc. Instead of repeating this computation twice,
we substitute St = Scpf,t ∩ Snc. We also reuse Scpf,t to build S+

t−1, which
is required to compute the dual importance weights.

Instead of parameterizing the algorithm by a total number of
particles n, we specify the numbers of particles nc = |Scpf,t| to draw
from q(st) and the number of particles nd = |Smpf,t ∩ Sc| to draw
from q̄(st|Sc). These particles can be thought of as, respectively, the
number of particles necessary to cover the high-probability regions
of free space and the contact manifold. The mixing rate smoothly
transitions between the CPF (φ = 0) and the MPF (φ = 1).

Despite this, the MPF maintains a single set of particles: it is not

36 michael c. koval

meaningful to identify whether a particle was sampled from the
conventional or dual proposal distribution. After each time step, both
sets of particles are seamlessly mixed into the posterior distribution.

4.3 Simulation Experiments

This section compares the MPF with the CPF at estimating object
pose through simulation experiments. Because of the particle depriva-
tion problem described in section 4.1.2, we hypothesize that:

H1. The MPF will outperform the CPF after contact.

Increasing the contact sensor resolution or update rate should exacer-
bate the particle deprivation. Therefore, we hypothesize:

H2. The CPF will perform worse as sensor resolution increases; the

MPF will perform better.

H3. The CPF will perform worse as the sensor update rate increases; the

MPF will perform better.

All of the above hypotheses should be true regardless of which
representation of the contact manifold is used to implement the MPF.

Section 4.2.2 introduced the analytic (AM), rejection-sampled (RS),
and trajectory rollout (TR) representations of Sc as tools for drawing
samples from the dual proposal distribution. Since AM is the only
representation that avoids discretization, we hypothesize that:

H4. The MPF will perform best with the analytic representation.

Surprisingly, our results suggest that H4 is false: MPF-TR outper-
forms MPF-AM. It does so by focusing samples on the subset of Sc

that is reachable from the initial belief state.
Similar to AM, RS attempts to represent Sc with uniform resolu-

tion. Therefore, for the same reason as above, we hypothesize:

H5. The MPF will perform better with the trajectory rollout representa-

tion than the rejection-sampled representation.

4.3.1 Experimental Design

We implemented the CPF and MPF in a two-dimensional simulation
environment with polygonal geometry. Each trial consisted of a
simulated BarrettHand pushing a rectangular box in a straight line at
a speed of 1 cm/s for 50 s. The initial belief state was set to b(s0) =

N (s̄0, Σ0) with variance Σ1/2
0 = diag[5 cm, 5 cm, 20◦]. The mean

s̄0 = (x̄0, ȳ0, θ̄0) was placed a fixed distance x̄0 = 20 cm from the
end-effector and at lateral offset ȳ0 ∼ uniform[−10 cm, 10 cm] and
orientation θ̄0 ∼ uniform[0◦, 360◦].

robust manipulation via contact sensing 37

0

2

4

6

8

10
R
M
S
E

(c
m
)

CPF

MPF

-5 0 5 10 15

Time (s)

0
5

10
15
20
25
30
35

R
M
S
E

(◦
)

(a) Estimation Error

2.02.53.0

Sensor Resolution (cm)

0

1

2

3

4

5

6

7

R
M
S
E

(c
m
)

(b) Spatial Resolution

01234

Update Step Size (cm)

0

1

2

3

4

5

6

7

R
M
S
E

(c
m
)

(c) Temporal Resolution

Figure 4.6: Comparison be-
tween the CPF and the MPF-
AM in simulation. (a) The CPF
and MPF perform identically
before contact, but the MPF out-
performs the CPF post-contact.
(b) The MPF improves as spatial
sensor resolution increases,
whereas the CPF declines in
performance. (c) Similarly, the
MPF improves and the CPF
declines when faced with a
faster update frequency. Error
bars indicate a 95% confidence
interval.

We simulated the motion of the object using a penetration-based
quasistatic physics model [Lynch et al., 1992] with a 1 mm step size.
Before each step, the finger-object coefficient of friction µf and the
radius of the object’s pressure distribution c were sampled from the
Gaussian distributions µf ∼ N (0.5, (0.2)2) and c ∼ N (5 cm, (1 cm)2),
then truncated to enforce µf, c > 0.

The same model simulated observations for contact sensors dis-
tributed uniformly across the front surface of the hand. The simu-
lated contact sensors were perfectly discriminative, but had a 10%
chance of generating an incorrect observation during contact.

We quantified accuracy by computing the root mean square error

RMSE(St, s∗t) =

√
√
√
√∑

n
i=1(s

[i]
t − s∗t)2w

[i]
t

∑
n
i=1 w

[i]
t

of the particles St with respect to the true state s∗t . Instead of combin-
ing the position error (measured in centimeters) with the orientation
error (measured in degrees), we report separate values for each.

4.3.2 Conventional vs. Manifold Particle Filter (H1)

We ran the CPF with n = 100 particles and the MPF with nc = 100
conventional particles, nd = 25 dual particles, and a mixing rate
of φ = 0.1. We intentionally chose the same value of n = nc for
both algorithms—despite the addition of nd dual particles for the
MPF—because the dual sampling step adds negligible overhead to
the runtime of the algorithm. The MPF sampled from an analytic
representation of the contact manifold with a 1 mm linear and 1.15◦

angular resolution.
Figure 4.6a shows the performance of both filters averaged over

900 trials. These results show that—as expected—both filters behave

38 michael c. koval

0

2

4

6

8

10

R
M
S
E

(c
m
)

RS
TR
AM

-5 0 5 10 15

Time (s)

0
5

10
15
20
25
30
35

R
M
S
E

(◦
)

A
M

R
S

T
R

Figure 4.7: Performance of
the MPF using the rejection-
sampled (RS), trajectory-rollout
(TR), and analytical (AM) man-
ifold representations. The data
is aligned such that contact
occurs at t = 0. The perfor-
mance of the CPF is drawn as a
dashed lined.

similarly before contact (t ≤ 0) and there was not a significant
difference in RMSE. After contact (t > 0), the MPF quickly achieves
4.4 cm less RMSE than the CPF. This supports H1.

4.3.3 Spatio-Temporal Sensor Resolution (H2 and H3)

Next, we evaluated the effect of sensor resolution on estimation
accuracy by varying the resolution of binary contact sensors. In all
cases, the sensors are distributed uniformly over the front surface
of the hand. Figure 4.6b shows the relative performance of the CPF
and MPF for three different resolutions averaged over 95 trials. As
expected, the CPF performs worse as the spatial sensor resolution
increases. In contrast, the MPF performs better. This supports H2.

We also varied the distance traveled between sensor updates from
5 mm to 4 cm. Since the hand was moving at a constant velocity, this
corresponds to changing the sensor’s update frequency. Figure 4.6c
shows the performance of the CPF and MPF averaged over 95 tri-
als. As expected, the CPF performs worse as the update frequency
increases. The MPF performs better, supporting H3.

4.3.4 Contact Manifold Representation (H4 and H5)

We also compared the performance of the MPF using the RS, TR, and
AM representations of the contact manifold. The RS representation
consisted of 10,000 samples that were held constant across all trials.
The TR representation generated a different set 10,000 samples for
each trial by collecting five samples each from 2000 trajectory rollouts
using the same physics model as used during execution. We built the
AM representation using the parameters described in section 4.3.1.

Figure 4.7 shows the performance of the three representations

robust manipulation via contact sensing 39

averaged over 900 trials. The MPF outperformed the CPF with all
three representations. As expected, the results support H5: MPF-
AM and MPF-TR both outperform MPF-RS. This occurs because
RS attempts to cover Sc at uniform density. In contrast, TR focuses
the same number of samples on the smaller region of Sc that is
encountered during execution.

Surprisingly, H4 is not supported: MPF-AM did not outperform
MPF-TR. This is partially explained by same reasoning as above:
the TR was able to densely cover the reachable subset of Sc at a
resolution indistinguishable from that of AM. Additionally, we know
that every sample drawn from TR must be reachable from the initial
belief state. MPF-TR does not waste samples from the dual proposal
distribution in regions of Sc that are known to be unreachable.

RS TR AM
0

20

40

60

80

100

S
u
cc
es
sf
u
l
S
a
m
p
le
s
(%

)

Figure 4.8: Percent of the time
that the MPF succeeded at sam-
pling from the dual proposal
distribution during contact.

4.3.5 Sampling Failures

Our intuition is that the relatively poor performance of MPF-RS is
caused by it frequently failing to sample from the dual proposal
distribution. Sampling fails when all particles drawn from q̄(st|Sc,os,t)

have low probability p(ot|st, at) of generating ot. In the case of binary
contact sensors, a sampling failure typically occurs when several
sensors are simultaneously active that were never observed to be
simultaneously active while building the contact manifold representa-
tion.

Figure 4.8 shows the rate of sampling failures for MPF-AM, MPF-
RS, and MPF-TR over 900 trials. We formally define a sampling
failure as an update where p(ot|st, at) < 0.1 for all samples from the
dual proposal distribution. Under this metric, MPF-TR and MPF-AM
fail to sample from the dual proposal distribution for < 30% of time
steps. Conversely, the MPF-RS fails to sample > 70% of time steps.

When sampling fails the MPF behaves identically to the CPF. As a
result, MPF-RS performs poorly compared to MPF-AM and MPF-TR.

0.0 0.2 0.4 0.6 0.8 1.0

Mixing Rate (φ)

0

1

2

3

4

5

6
R
M
S
E

(c
m
)

Figure 4.9: Performance of the
MPF-AM as a function of the
mixing rate 0 ≤ φ ≤ 1.

4.3.6 Mixing Rate

In addition to the choice of manifold representation, the MPF has
a mixing rate parameter φ. We repeated the experiments described
in section 4.3.2 while varying MPF-AM’s mixing rate over the set
φ = {0.025, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Note that φ = 1 corresponds
to the pure MPF. Figure 4.9 shows the post-contact performance of
the MPF averaged over 150 trials and plotted as a function of φ. The
performance of the CPF (φ = 0) is plotted as a horizontal dotted line.

As expected, the MPF outperforms the CPF for all φ > 0. Surpris-
ingly, however, the optimal value of φ falls into the lowest range of
values 0.025 ≤ φ ≤ 0.1 that we tested. Increasing φ out of this range

40 michael c. koval

Experiment 1 Experiment 2 C
am

era
C

P
F

M
P

F

(a) (b) (c) (d) (e) (f) (h) (i)

Figure 4.10: Andy pushing a
box (a)–(d) and cylinder (e)–(i)
across the table. The top row
shows a video of the experi-
ment from an overhead camera.
The bottom two rows show the
belief state estimated by the
CPF (middle, dark blue) and
MPF (bottom, light orange) as
a cloud of particles. Ground
truth is shown as a thick green
outline.

leads to a predictable, linear increase in error. This occurs for two
reasons. First, the dual proposal distribution performs poorly when
there is observation noise [Thrun et al., 2000a]. Second, the MPF sam-
ples from an approximation of the dual proposal distribution that has
higher variance than the true posterior belief. Reducing the mixing
rate decreases the rate at which this variance grows.

4.4 Real-Robot Experiments

We evaluated the CPF and MPF on Andy [Bagnell et al., 2012], which
used a Barrett WAM arm [Salisbury et al., 1988] equipped with the i-
HY [Odhner et al., 2014] end-effector to push an object across a table.
The i-HY’s palm (48 tactels), interior of the proximal links (12 tactels
each), interior of the distal links (6 tactels each), and fingertips (2
tactels each) were equipped with the arrays of tactile sensors [Tenzer
et al., 2014] shown in fig. 4.11. The tactels were grouped into 39

vertical stripes to to simplify the observation model.
Figure 4.10 shows two representative runs of the state estimator

on Andy. We tracked the ground-truth pose of the movable object
with an overhead camera using a visual fiducial. Both filters were
run with 250 particles, with n = 250 for the CPF and nc = 225,
nd = 25, φ = 0.1 for the MPF, and were updated after each 5 mm of
end-effector motion. With the speed of the arm, this corresponded to
an update rate of approximately 5–15 Hz.

Figure 4.11: Tactile sensors
(yellow lines) on the i-HY hand.

In Experiment 1, Andy pushed a metal box that (b) made initial
contact with the right proximal link and (c) rolled into the palm. The
CPF did not have any particles consistent with the contact observa-
tion and, thus, failed to track the box as it (d) rolled into the palm.
The MPF successfully tracked the box by sampling particles that
agreed with the observation. Note that the MPF was able to exploit
the observation of simultaneous contact on the palm and distal link
to correctly infer the orientation of the box.

In Experiment 2, Andy pushed a cylindrical container that (e)

robust manipulation via contact sensing 41

made initial contact with its left fingertip. The cylinder (f) rolled
down the distal and (h) proximal links to finally (i) settle in the palm.
Both the CPF and MPF made use of the initial contact observation
to localize the container near the robot’s left fingertip. However, the
CPF’s few remaining particles incorrectly rolled off of the fingertip
and outside the hand. The MPF avoided particle deprivation near
the true state and was able to successfully track the container for the
duration of contact.

4.5 Discussion

This chapter introduced the manifold particle filter as a Bayesian
filter that exploits the contact manifold (insight 1) to cope with the
discontinuity of contact (challenge 1). Our simulation (section 4.3)
and real-robot (section 4.4) experiments show that the MPF out-
performs the CPF at the task of estimating the pose of the movable
object relative to the end-effector.

While the MPF is a principled realization of a Bayes filter, we had
to make several approximations to implement it. We enumerate those
assumptions here.

First, we replace the marginal probability of contact with an obser-
vation likelihood (section 4.2.1). This substitution is exact only when
contact sensors are perfectly discriminative and is a good approxima-
tion when false positives are unlikely. Extending the MPF to noisy
contact sensors would require another method of estimating contact
state, e.g. using a contact state graph [Meeussen et al., 2007].

Second, we draw particles from an approximate representation of
the contact manifold (section 4.2.2). This introduces error because
the particles: (1) may lie slightly off the surface of the manifold, (2)
are not uniformly distributed, and (3) are drawn from a subset of
the manifold. Our experiments found (1) to be insignificant, (2) to
be difficult to quantify due to the subtlety described in section 8.3.1,
and (3) to be dominant. These errors are exacerbated when S is high-
dimensional because fidelity of representation often is sacrificed for
computational tractability. We ameliorate this in the next chapter.

Third, we approximate the dual importance weights using a kernel
density estimate (section 4.2.3). Kernel density estimation increases
the variance of the posterior distribution by promoting a probability
distribution with finite support to one with broad support. When ap-
plied recursively, as in the MPF, this substitution causes the variance
of the belief state to grow over time. We reduce the rate of, but can
not eliminate, variance growth using the mixture proposal distribu-
tion (section 4.2.4). This growth in variance is the dominant source
of error in the MPF and, as a result, our experiments show that a

42 michael c. koval

surprisingly low value of φ is optimal. Reducing this error requires
reducing the variance of the kernel density estimate, e.g. through
shrinkage [Liu and West, 2001], or eliminating the kernel density
estimate entirely, e.g. using a Markov chain Monte Carlo method.

Finally, this chapter applied the MPF specifically to object pose
estimation under model 1. The next chapter extends this algorithm
to robot configuration estimation under model 2. We also discuss
how the MPF could be extended to incorporate other modalities
(section 8.2.5) estimate static parameters (section 8.2.4), and cope with
un-modelled error (section 8.3.3) in future work.

5

Robot Configuration Estimation

This chapter is adapted from Klingen-
smith et al. [2016] and contains work
done in collaboration with Matthew
Klingensmith.

The manifold particle filter is a recursive Bayesian estimation tech-
nique that is applicable to any state space. However, our implemen-
tation of the algorithm in chapter 4 requires constructing an explicit

representation of the contact manifold offline that is used to draw
samples from the dual proposal distribution. Doing so is tractable
for hand-relative manipulation (model 1 in section 3.5), where state
consists only of the three-dimensional pose of the movable object.

However, as we described in chapter 1, many robots also suffer
from proprioceptive uncertainty. On some robots, like the Barrett
WAM arm [Salisbury et al., 1988] or a soft manipulator [Sanan et al.,
2011], this error originates from the transmission that connects a po-
sition sensor to its joint. On others, like an under-actuated hand [Rig,
2016], there may be no mechanism of measuring position at all.

Unfortunately, it is often intractable to explicitly represent the
contact manifold in a high-dimensional configuration space. Due
to the curse of dimensionality, the number of samples required to
represent the manifold scales exponentially with its dimension.

This chapter introduces an implicit representation of the contact
manifold that enables the manifold particle filter to scale up. Our
key insight is to use constraint projection to draw samples from
the manifold that will be assigned high importance weights. We
specifically consider model 2 from section 3.5 by estimating the
configuration of a manipulator in a known, static environment.

5.1 Implicitly Representing the Contact Manifold

Recall that the contact manifold is the set of states where the robot is
in non-penetrating contact with the object. We can write the contact
manifold Sc,o of observation o as the zero iso-contour

Sc,o = {s ∈ S : fo(s) = 0}

44 michael c. koval

of a constraint function fo : S → R
na , where na = |Λ(o)| is the

number of sensors active in o. We choose this function to be

fo(s) =









SDist(Gs,i1(q), Go(x))

SDist(Gs,i2(q), Go(x))
...

SDist(Gs,ina
(q), Go(x))









, (5.1)

where each entry is the signed distance between the geometry
Gs,ij

(q) ⊆ R
3 of sensor ij ∈ Λ(o) in configuration q and the geometry

Go(x) ⊆ R
3 of the movable object at pose x.

Gr(qa)

qa

qb

qc

Go(x)

(a) Workspace

qa

qb

qc

q1

q2

Q

(b) Configuration Space

Figure 5.1: (a) Three configu-
rations of a robot that satisfy
fo(s) = 0 and, thus, (b) lie on
the contact manifold.

Equation (5.1) is defined in terms of the signed distance function

SDist(A, B) =







dist(A, B) : A ∩ B = ∅

−dist(A, Bc) : otherwise
(5.2)

that returns the positive distance dist(A, B) = mina∈A,b∈B ||a − b||
between two disjoint sets or the negative penetration depth between
two intersecting sets.

5.2 Sampling via Constraint Projection

Implementing the MPF requires drawing samples from the dual
proposal proposal restricted to Sc,o. Given eq. (5.1) and its gradient,

a root-finding algorithm can project a seed state ŝ
[i]
t ∈ S from the

ambient space onto Sc,o by finding a root of the equation fo(s) = 0.
We use an iterative algorithm to use root-finding to generate

a diverse set of samples from Sc,o. Each iteration proceeds by: (1)

generating a seed state ŝ
[i]
t using a projection strategy, (2) using a root-

finding algorithm to project ŝ
[i]
t to a state s̄

[i]
t ∈ Sc,o and (3) accepting

the state if fo(s̄
[i]
t) ≤ ǫproj. We repeat this process until enough Projection may fail if no solution exists

or the root-finding algorithm fails to
find a solution in an acceptable time
limit.

samples are available or the set of seed states is exhausted.
The uniformity of the samples drawn by this algorithm depends

on the projection strategy. This thesis considers three strategies.

Uniform projection draws ŝ
[i]
t ∼ uniform S. This strategy is unbiased

with respect to St−1 and has a non-zero probability of sampling
from every point on Sc,o. Unfortunately, a large number of samples
may be required to cover Sc,o with adequate density when it is high-
dimensional. This can lead to particle deprivation.

Particle projection tightly focuses samples near St−1 by choosing the
seed states at time t to be S+

t−1, the set of particles from time t− 1 after
applying action at. This strategy avoids particle deprivation, but has
two downsides: (1) S+

t−1 may have a highly non-uniform distribution
and (2) the finite set of n seed states be exhausted if the root-finding
algorithm fails frequently.

robust manipulation via contact sensing 45

Ball projection combines uniform and particle projection strategies

by drawing ŝ
[i]
t ∼ uniform R(S+

t−1) where R(S+
t−1) =

⋃

s∈S+
t−1

B(s, rb)

is the subset of S within radius rb of at least one particle propagated
from time t− 1. The notation B(c, r) = {p ∈ R

3 : ||p− c|| < r} denotes
a ball with radius r centered at c.

Ball projection is equivalent to particle projection as rb → 0 and
to uniform projection as rb → ∞. In practice, we choose rb such that
the normalized importance weight of any particle outside of R(S+

t−1)

is determined to be sufficienty small. This is possible because dual
importance weights are computed by kernel denesity estimation.

5.3 Computing Signed Distance

Figure 5.2: Voxel grid colored to
show large positive, small
positive, and negative values
of Φ. Best viewed in color.

We use a signed distance field to compute fo and its gradient ∇s fo

when Go(x) = Gconst is known and static. The signed distance field

Φ(p) = SDist({p}, Gconst)

returns the signed distance between a point p ∈ R
3 and the environ-

ment. We approximate Φ by converting Gconst to a voxel grid and
evaluating its distance transform [Felzenszwalb and Huttenlocher,
2012]. We approximate the gradient ∇pΦ, which is needed below, by
the finite-difference of Φ between voxels.

Approximate the geometry of each sensor i as a collection of balls It is possible to approximate any solid
object represented by triangular mesh
as a union of balls [Wang et al., 2006]

Gs,i(q) =

nb,i⋃

j=1

B(ci,j(q), ri,j),

where ci,j : Q → R
3 defines the forward kinematics for the center of

the j-th ball representing sensor i and ri,j is its radius.
Under this assumption, we write fo and its gradient as

fo,i(s) = min
j∈[1,nb,i]

[
Φ(ci,j(q))− ri,j

]
(5.3)

∇s fo,i(s) =
[
∇pΦ

(
ci,j∗(q)

)]
Jci,j∗ (q) (5.4)

where j∗ is the value of j that minimizes eq. (5.3) and Jci,j∗ is the
Jacobian of ci,j∗ . This is equivalent to the linear component of the ma-
nipulator Jacobian of ci,j∗(q) as if it were rigidly attached to ball j∗ of
the i-th sensor active in observation o. This is the same method that
CHOMP, a trajectory optimization algorithm for motion planning,
uses to penalize collision [Zucker et al., 2013].

5.4 Simulation Experiments

This section compares the MPF with the CPF at estimating robot
configuration. Just as with object pose estimation, we expect:

46 michael c. koval

H1. The MPF will outperform the CPF at estimating robot configuration.

This chapter introduced an implicit representation of the contact
manifold. Both implicit and explicit methods will saturate the contact
manifold in low-dimensional spaces, so we expect that:

H2. All implicit and explicit representations of the contact manifold will

perform similarly when S is low-dimensional.

Uniform projection (MPF-Uniform) attempts to cover all of Sc at
uniform density. In contrast, particle (MPF-Particle) and ball (MPF-
Ball) projection focus their samples on the subset of Sc that will be
assigned high importance weight. Therefore, we hypothesize:

H3. Particle and ball projection outperform uniform projection when S is

high-dimensional.

Unlike MPF-Particle, which may produce samples that are heavily
biased towards S+

t−1, MPF-Ball attempts to approximate a uniform
distribution over the relevant portion of the contact manifold. There-
fore, we expect that:

H4. Ball projection will perform best when S is high-dimensional.

Our results results indicate that all four hypotheses are true.

5.4.1 Experimental Design

We evaluate the CPF and MPF with n = 250 on three different
simulated manipulators interacting with known, static environments.
Each trial begins by choosing an initial proprioception offset δq ∼
N (0, Σδq) and executing a pre-defined sequence of actions. We model
motion of the arm using a frictionless contact model that projects the
robot out of inter-penetration. After each time step, we simulate a
proprioceptive observation with noise ǫq ∼ uniform B(0, rq).

First, we consider a two degree-of-freedom (2-DOF) manipulator
in a two-dimensional workspace that contains a single point obstacle
(fig. 5.3a). The robot has one binary contact sensor on the tip of its
distal link. We set Σ1/2

δq = (2 rad)I and rq = 0.05 rad.
Next, we consider a 3-DOF manipulator in a two-dimensional

workspace that contains an unstructured obstacle (fig. 5.3b). The
robot has 20 binary contact sensors spaced evenly along its two
distal-most links. We set Σ1/2

δq = (0.8 rad)I and rq = 0.05 rad.
Finally, we consider a 7-DOF Barrett WAM arm [Salisbury et al.,

1988] with a BarrettHand [Townsend, 2000] end-effector in a three-
dimensional workspace that contains several boxes (fig. 5.3c). The
robot has binary contact sensors on its hand, wrist, and forearm. We
set Σ1/2

δq = (0.5 rad)I and rq = 0.01 rad.

robust manipulation via contact sensing 47

0 200 400

1.5

1.2

0.9

0.6

0.3

Time Step

R
M
S
E

(r
a
d
.)

0
MPF-Analytic

CPF

(a) 2-DOF Manipulator

0 500 1,000
0

0.2

0.4

0.6

0.8

1

Time Step

MPF-Uniform

MPF-Particle

MPF-Ball

(b) 3-DOF Manipulator

0 500 1,000
0

0.2

0.4

0.6

0.8

Time Step

(c) 7-DOF Manipulator

Figure 5.3: Performance of the
MPF using different projec-
tion strategies on (a) 2-DOF,
(b) 3-DOF, and (c) 7-DOF ma-
nipulators. Results are averaged
over 100 experiments. All three
plots show RMSE and the error
bars denote a 95% confidence
interval. Best viewed in color.

In all three cases, we implemented root-finding by using gradient
descent to minimize the loss function Fo(s) = 1

2 || fo(s)||2 with gra-
dient ∇Fo(s) = fo(s). This function achieves its global minimum at
fo(s) = 0; i.e. when fo has a root.

5.4.2 Conventional vs. Manifold Particle Filter (H1 and H2)

The contact manifold for the 2-DOF planar arm experiments consists
of two points in configuration space corresponding the “elbow-up”
and “elbow-down” configurations with the tip of the manipulator
in contact with the point obstacle. We use this fact to implement
MPF-Explicit by drawing samples from an explicit representation of
the contact manifold derived from the robot’s kinematics.

Figure 5.3a shows that the robot was able to reduce most of its
uncertainty in two touches. The first touch (t ≈ 200) constrained
the robot to one of two configurations. The second touch (t ≈ 350)
disambiguated between those configurations.

The CPF performed poorly because particle deprivation caused
the belief state to quickly collapse to one, possibly incorrect, con-
figuration. The MPF performed better by drawing samples from
both modes. All variants of the MPF performed similarly because
the contact manifold was low-dimensional. These results support
H1 and H2: all variants of the MPF outperform the CPF on low-
dimensional problems.

48 michael c. koval

(a) 0 200 400
0

0.5

1

R
M
S
E

(r
a
d
.)

MPF-Uniform

(b) 0 10 20 30 40
0

0.1

0.2

R
M
S
E

(r
a
d
.)

CPF

MPF-Particle

MPF-Ball

Figure 5.4: Estimating the con-
figuration of a (a) BarrettHand
end-effector and (b) Barrett
WAM arm using the CPF
and MPF. The middle figure
shows a snapshot of the belief
state with (a) the maximum-
likelihood estimate in red and
(b) each particle in blue. Data
from these trials supports our
simulation results: MPF out-
performs CPF and MPF-Ball
performs best in the WAM’s
7-DOF configuration space.
Best viewed in color.5.4.3 Projection Strategy (H3 and H4)

We repeated the same experiment on a 3-DOF manipulator to eval-
uate how the projection strategies scale with dimensionality. Fig-
ure 5.3b shows that MPF-Particle and MPF-Ball both continued to
outperform the CPF. However, MPF-Uniform suffered from particle
deprivation and performed the worst. This supports H3: strategies
that focus their samples outperform those that do not.

Figure 5.3c shows that increasing from a 3-DOF to a 7-DOF manip-
ulator exacerbates this effect: MPF-Uniform performed so poorly that
it is omitted from the plot to avoid distorting the scale. These results
also support H4: MPF-Ball outperformed MPF-Particle by avoid-
ing introducing bias into the belief state. Maintaining an unbiased
estimate is critical for a 7-DOF manipulator due to the additional
ambiguity introduced by kinematic redundancy.

5.5 Real-Robot Experiments

We implemented the CPF and MPF on HERB [Srinivasa et al., 2012]
to estimate the configuration of a BarrettHand [Townsend, 2000]
end-effector and the Barrett WAM arm [Salisbury et al., 1988]. In
both cases, HERB used the BarrettHand’s strain gauges to detect
binary contact with the distal links of the fingers. We measured the
actual configuration of the robot using optical joint encoders. These
measurements were not available to the estimator. We specifically
chose these tasks because ground truth data was available.

In the first experiment (fig. 5.4a), we held the arm in a fixed con-
figuration and closed the end-effector around an object. We assumed
that the proximal joint angles were known, but the distal joint angles
were not. This was a simple estimation problem because each finger

robust manipulation via contact sensing 49

was an independent kinematic chain. Figure 5.4a shows data from
two grasps: one from t ≈ 40 to t ≈ 100 and another from t ≈ 450 to
t ≈ 500. Our results are consistent with the 2-DOF simulation results
in section 5.4: all variants of the MPF outperformed the CPF.

In the second experiment (fig. 5.4b), we kept the hand open and
considered the configuration of the arm to be uncertain. We teleoper-
ated HERB to execute a trajectory in an environment that contained a
large box on a table. We used the joint angles measured by encoders
located before the cable drive transmission as oq. We ran the CPF and
MPF with n = 100, Σδq = (0.1 rad)I, and rq = 0.1 rad. Figure 5.4b
supports our simulation results: the MPF achieved lower error than
the CPF and MPF-Ball performed best.

5.6 Discussion

This chapter introduced an implicit representation of the contact
manifold (section 5.1) based on constraint projection (section 5.2)
that scaled the MPF up to robot configuration estimation. Our ex-
perimental results, both in simulation (section 5.4) and on a real
robot (section 5.5) showed that the MPF with the ball projection strat-
egy outperformed the CPF across all experiments. However, as in
chapter 4, we made several assumptions to implement the MPF.

First, we used the technique from Felzenszwalb and Huttenlocher
[2012] to evaluate the signed distance function and its gradient. This
technique is efficient under model 2 because a static environment
allows us to re-use a signed distance field across multiple update
steps. Extending our approach to a dynamic environment requires
a method of computing signed distance, e.g. with Gilbert-Johnson-
Keerthi algorithm [Gilbert et al., 1988] for distance and the expanding
polytope algorithm [van den Bergen, 2001] for penetration depth.

Second, projecting samples drawn uniformly from the ambient
space onto the contact manifold may yield a non-uniform distribu-
tion over the manifold. Quantifying this error is difficult because, a
we discuss in section 8.3.3, a probability measure over the ambient
space differs from a probability measure defined over the contact
manifold. In practice, the error introduced by this discrepancy did
not harm the MPF’s ability to outperform the CPF.

This chapter highlights the ability of the MPF to generalize across
tasks: we applied the same algorithm that we used to estimate object
pose in chapter 4 to estimate robot configuration with only minor
modifications. We exploited the idea of lazy evaluation (section 8.1.4)
to implicitly represent the contact manifold. We exploit a similar idea
in the next two chapters for planning.

6

Hand-Relative Planning

This chapter is adapted from Koval et al.
[2014, 2016d].State estimation is an important part of manipulation, but it fun-

damentally does not tell the robot which actions to execute. This
chapter introduces a belief space planner that trades off between
information-gathering and goal-directed actions to achieve the goal.

Finding an optimal policy for an arbitrary partially observable
Markov decision process (POMDP, Smallwood and Sondik [1973],
Kaelbling et al. [1998]) is intractable [Littman, 1996], so we use
domain-specific knowledge to inform the design of our planner. These stages resemble the dichotomy

between gross (pre-contact) and fine
(post-contact) motion planning found
in early manipulation research [Hwang
and Ahuja, 1992].

Our key insight is that contact decomposes a policy into pre- and
post-contact stages (insight 2). We exploit this effect by planning
the post-contact policy in an offline computation step and sharing
it between problem instances. Then, when confronted with a new
problem instance, we plan a pre-contact trajectory using an efficient
online search. We prove that decomposing planning in this way has a
bounded effect on the optimality of the overall policy.

This chapter specifically considers model 1 from chapter 3 by
planning for a lone end-effector manipulating a movable object. Our
planner ignores kinematic constraints during planning and, thus, the
policy may not be feasible to execute in environments cluttered with
kinematic constraints. We use the insights gained in this chapter to
develop a planner that considers kinematic constraints in chapter 7.

6.1 Policy Decomposition

The discriminative nature of contact sensing causes policies to nat-
urally decompose into pre- and post-contact stages (insight 2). Be-
fore observing contact, the robot executes an open-loop pre-contact

trajectory ζ = (a1, a2, . . . , at) and receives a series of no-contact obser- This chapter uses o to refer to the
contact sensor observation os. The
proprioceptive observation oq is unnec-
essary because model 1 asserts perfect
proprioception.

vations o1, o2, . . . , ot−1 ∈ Onc. Once contact is observed ot ∈ Oc, the
robot switches to a post-contact policy πc that incorporates real-time
feedback from observations to achieve the goal.

52 michael c. koval

Any policy π of this form has a value function

Vπ [b] = R(b, a) + γ
∫

∆
T(b, a, b′)

(

Ω(onc, b′, a)Vπ [b′]

︸ ︷︷ ︸

pre-contact

+ ∑
o∈Oc

Ω(o, b′, a)Vc[b′]

︸ ︷︷ ︸

post-contact

)

db′ (6.1)

that decomposes into two terms based on the most recent observa-
tion. This equation assumes that the action a = π[b] is selected by the
policy and overloads the notation R(b, a) =

∫

S R(s, a) ds, T(b, a, b′) =
∫∫

S T(s, a, s′)b(s)b′(s′) ds ds′ and Ω(o, b, a) =
∫

S Ω(o, s, a)b(s) ds.
The pre-contact term includes the value Vπ [b′] earned by following

π given that contact has not yet been observed. Critically, evaluat-
ing this term does not require computing an expectation over Onc

because all such observations are indistinguishable. We use onc ∈ Onc

denote an arbitrary observation from that set.
The post-contact term includes the value Vc[b′] earned by executing

πc once the robot observes contact. Critically, this term does not
recursively include Vπ [b′] because πc is assumed to be fixed.

a1 ...
onc o1 ok

b0

ana2

Vc(b2)
...b2b1 bk
Vc(bk)

Figure 6.1: Online POMDP
solvers must branch over both
A and O. The pre-contact
search only branches over A by
evaluating all post-contact be-
lief states with the post-contact
value function Vc.

We leverage this decomposition to compute the post-contact policy,
once for each object that the robot expects to encounter, in an offline
pre-computation step (section 6.2). Finding such a policy is tractable
because the set of belief states consistent with a contact observation
is small. Then, when presented with an initial belief state, we plan a
pre-contact trajectory (section 6.3). Doing so is efficient because, as
fig. 6.1 shows, eq. (6.1) does not branch on observations.

Decomposing planning in this way has a bounded effect on the
optimality of the resulting policy. We prove this for the case where
the pre-contact trajectory is planned using a H-step lookahead:

Theorem 6.1. Suppose that policy π executes a pre-contact trajectory ζ

until contact is observed, then switches to following πc. If ζ is found by

performing a H-step lookahead on eq. (6.1), then

||V∗ −Vπ ||∞ ≤ γHǫnc +
γ(1− γH)

1− γ
pmaxǫc

where ǫnc = ||V∗ −V0||∞ is the sub-optimality of the evaluation function V0

used to truncate the lookahead, ǫc = ||V∗ − Vc||∞ is the sub-optimality of

πc, and pmax is the maximum single step probability of observing contact.

Proof. Let Vh be the value function of a h-step lookahead policy. Since

robust manipulation via contact sensing 53

x y

θ

Figure 6.2: The contact mani-
fold Sc for a hand manipulating
a rectangular box. Each color
indicates that the object is in
contact with a particular sensor.
White indicates contact with
multiple sensors. Best viewed
in color.

π is a H-step lookahead policy, we use the fact that Vπ = VH to show

||V∗ −Vπ ||∞ ≤ γ||V∗ −VH−1||∞ + γpmax||V∗ −Vc||∞

≤ γH ||V∗ −V0||∞ +
H

∑
t=1

γt pmax||V∗ −Vc||∞

≤ γHǫnc +
γ(1− γH)

1− γ
pmaxǫc.

First, we distribute || · ||∞ using the triangle inequality and bound
the single-step probability of observing contact by pmax. Next, we
recursively expand VH in terms of VH−1 down to V0. Finally, we
evaluate the infinite sum over t as a geometric series.

Theorem 6.1 shows that the sub-optimality of π comes from two
sources. First, truncating the lookahead at depth H introduces the
gap γHǫnc characteristic of this type of policy [Ross et al., 2008]. This
gap vanishes as H → ∞ or ǫnc → 0. Second, the sub-optimality of the

post-contact policy introduces a gap of γ(1−γH)
1−γ pmaxǫc. This gap does

not vanish as H → ∞ because π cannot deviate from πc once contact
is observed, even if it is sub-optimal. It does, however, vanish as πc

approaches an optimal policy, i.e. ǫc → 0.

6.2 Post-Contact Policy

Our planning method requires that πc be known while planning the
pre-contact trajectory. This section describes how we use an offline
POMDP solver to find a near-optimal post-contact policy.

Suppose the robot is in belief state b while partway through its
execution of ζ, takes action a, receives observation o ∈ Oc, and
transitions to the posterior belief state b′. At this point, the robot
switches to executing πc.

54 michael c. koval

∆c

∆

b(s0)

ζ

(a) Pre-Contact Trajectory

R(∆c)
ζ

∆c

∆

Bc

b(s0)

(b) Post-Contact Policy

Figure 6.3: We decompose the
policy π into a (a) pre-contact
trajectory ζ and a (b) post-
contact policy πc. Pre- and
post-contact are coupled by the
small set of post-contact belief
states ∆c ⊆ ∆.

Since contact sensors are discriminative, we know that s ∈ Sc with
high probability. The set of belief states that satisfy this constraint

∆c = {b ∈ ∆ : b(s) = 0 ∀ s 6∈ Sc}

form the post-contact belief space (fig. 6.3a). The set ∆c is small rel-
ative to ∆, which makes planning πc amenable to a point-based
method [Lee et al., 2007].

Point-based methods, first introduced by Pineau et al. [2003], are
a class of offline POMDP planners that break the curse of history by
performing backups at a finite set of belief points B ⊆ R(b0). These
methods perform well when the reachable belief space R(b0) ⊆ ∆, the
set of beliefs that are reachable from the initial belief b0 given any
sequence of actions and observations, is small [Pineau et al., 2003].

6.2.1 Initial Belief Points

Point-based methods typically require the initial belief state to be
known. In our application, we only know that b0 ∈ ∆c and cannot
initialize B = ∆c because it is uncountably infinite.

Instead, we initialize the method with a finite set of points B =

Bc ⊆ ∆c selected to be representative of the post-contact belief space
(fig. 6.3b). We may refine this set over time by adding to it any post-
contact belief state that we encounter during execution.

Given Bc, the simplest way of planning πc is to find a separate
policy for each belief point and combine their α-vectors. Since each
α-vector is a global lower bound on the optimal value function,
their union provides a tighter lower bound than any one policy in
isolation. However, this approach is inefficient because it does not
share any information while planning the individual policies.

We leverage this structure by converting the POMDP with the set
of initial belief states Bc into an augmented POMDP with one initial
belief state. By doing so, we allow the point-based method to exploit
its heuristics to simultaneously find a policy over all of ∆c.

robust manipulation via contact sensing 55

6.2.2 State Space Discretization

Most point-based methods—with few exceptions [Porta et al., 2006,
Brunskill et al., 2008, Bai et al., 2011]—also require the state space to
be discrete. The model we defined in chapter 3 has a continuous state
space, so must discretize S to apply one of these methods.

Ideally, we would only discretize the subset of S required to
support the belief states R∗(∆c) reachable from ∆c under an optimal
policy. Unfortunately, finding R∗(∆c) is as difficult as planning an
optimal policy [Kurniawati et al., 2008]. Instead, we define a trust

region Strust ⊆ S that we believe to over-approximate the support of
R∗(∆c), discretize Strust, and use that discretization for planning.

(a) Free Space

(b) Contact Manifold

Figure 6.4: Explicit discretiza-
tion of (a) free space and (b) the
contact manifold.

There is a trade-off in choosing the size of Strust: making it too
small may disallow the optimal policy, while making it too large may
make planning πc intractable. In the case of quasistatic manipula-
tion [Mason, 1986], we believe Sc to be relatively small because the
optimal policy will not allow the object to stray far from the hand.

We compute the transition, observation, and reward functions
for the discrete state space by taking an expectation over the corre-

Assuming there is a uniform dis-
tribution over the discrete state is
motivated by the principle of maximum
entropy [Jaynes, 1957]. We discuss
drawbacks to this assumption in sec-
tion 8.2.1.

sponding continuous models. We approximate the expectation with
Monte Carlo sampling by assuming a uniform distribution over the
aggregation of continuous states that map to each discrete state.

Discretization at a uniform resolution poorly represents the struc-
ture of Strust: two states in S may be arbitrarily close together, but
behave differently due to the presence or absence of contact (chal-
lenge 1). Instead, we separately discretize Strust ∩ Snc into a uniform
grid and Strust ∩ Sc along the surface of an analytic representation of
the contact manifold described in section 4.2.2.

6.3 Pre-Contact Trajectory

The belief dynamics are a deterministic function of the action given
a fixed sequence of “no contact” observations. This allows us to find
the optimal trajectory ζ by solving a shortest path problem over an
augmented belief space (fig. 6.3b).

To show that value is additive over actions, a requirement of A*,
we recursively expand eq. (6.1) to write the Bellman equation as: Equation (6.2) defines the Bellman

equation a policy of the form described
in section 6.1. We abuse notation and
denote this by V∗, even though there
may exist a superior policy that is not
of that form.

V∗[b0] = max
ζ

∞

∑
t=1

[

γt−1

(
t−1

∏
i=1

Ω(onc, bi, ai)

)
(

R(bt−1, at)

+ ∑
ot∈Oc

Ω(ot, bt, at)V
c[bt]

)
]

. (6.2)

Each term in the outer summation corresponds to taking a single
action in ζ. The product computes the probability of reaching time t

56 michael c. koval

without having observed contact. We find the optimal value of ζ by
solving a shortest path problem over a graph.

6.3.1 Graph Construction

Define the directed graph Gζ = (V, E, c) where each vertex v =

(b, pnc, t) ∈ V consists of a belief state b, the probability pnc of hav-
ing not yet observed contact, and the time t. An edge (v, v′) ∈ E

between v and v′ = (b′, p′nc, t′) represents the outcome of exe-
cuting an action a ∈ A. Its successor vertex is given by b′(s′) =

ηΩ(onc, s′, a)
∫

S T(s, a, s′)b(s)ds, p′nc = pncΩ(onc, b′, a), and t′ = t + 1. As in chapters 4 and 5, we use η to
represent a normalization factor chosen
such that

∫

S b′(s′) ds′ = 1.
The cost of an edge (v, v′) ∈ E generated by action a is given by

c(v, v′) = −γt pnc

(

R(b, a) + γ ∑
o∈Oc

Ω(o, b′, a)Vc[b′]

)

,

precisely one term in the summation in eq. (6.2). This expression
consists of two parts: (1) the immediate reward R(b, a) and (2) the
expected reward ∑o∈Oc Ω(o, b′, a)Vc[b′] obtained by executing πc if
contact is observed. A minimum-cost path trades off between quickly
making contact to reduce pnc and passing through belief states that
have high value under the post-contact policy to increase Vc[b′].

6.3.2 Search Algorithm

Finding the maximum ζ with lookahead H is equivalent to finding
the shortest path in Gζ from the start vertex (b(s0), 0, 0) to the set of Theorem 6.1 bounds the error intro-

duced by terminating the A* search
at depth H, instead of optimizing the
infinite horizon value function.

goal vertices {(b, pnc, t) ∈ v : t = H} at time H. We use weighted A*,
a heuristic search algorithm, to solve this shortest path problem [Pohl,
1977]. Weighted A* operates identically to A* but sorts the vertices in
the frontier by priority function

g(v) = f (v) + ǫwh(v)

where f is the cost-to-come, h is a heuristic estimate of the cost-to-go,
and ǫw ≥ 1 is a heuristic inflation factor. We require h to be admissible

by under-estimating the true cost-to-go [Pearl, 1984].
If ǫw = 1, weighted A* is identical to A*. For ǫw > 1, weighted

A* may return a path of cost up to ǫw times that of an optimal
path [Pohl, 1977]. However, weighted A* tends to expand far fewer
vertices than A* when h is informative. This is beneficial for our
application because expanding a vertex is computationally expensive.

6.3.3 Heuristic Function

We specifically constructed Gζ such that the cost-to-go is −V∗. There-
fore, we can find an admissible heuristic by computing an upper
bound on the optimal value function.

robust manipulation via contact sensing 57

First, we apply the MDP approximation [Ross et al., 2008] The symbol VMDP is overloaded to
refer both to the MDP optimal value
function VMDP : S → R and the MDP
approximation to the POMDP value
function VMDP : ∆ → R. These uses are
unambiguous because the two functions
have different domains.

V∗[b] ≤ VMDP[b] =
∫

S
VMDP(s)b(s) ds

to bound V∗ by optimal value function VMDP of the Markov decision
process (S, A, T, R). This is equivalent to assuming full observability.

Next, we further relax the MDP approximation

VMDP(s) ≤ V̄MDP(s) =
tmin(s)

∑
t=1

γtRmax

by allowing the movable object to pass through the robot. In this
equation, Rmax = maxs∈S\G,a∈A R(s, a) is the maximum reward
obtainable while s 6∈ G and tmin(s) is a lower bound on the number
of steps required to place the movable object in the goal region.

Finally, we compute a lower bound on that number of steps

tmin(s) ≤
⌊

mins′∈G dist(s, s′)
dmax

⌋

using the straight-line distance dist(s, s′) and the maximum length
dmax of an action. Note that we could not directly use the distance
dists′∈G(s, s′) in V̄MDP because it omits the discount factor γ.

We combine all three relaxations to form the heuristic function

h(v) = γt pnc

∫

S
V̄MDP(s)b(s)ds,

which is admissible. This heuristic assumes full observability, allows
the robot to pass through the movable object, and under-estimates
the time required to reach the goal region. However, it still guides the
graph search towards vertices that are closer to the goal region.

6.4 Simulation Experiments

This section evaluates our planner in simulation experiments. We use
a QMDP policy, which does not plan to take multi-step information-
gathering actions, as a baseline for comparison [Littman et al., 1995].

We begin by evaluating the performance of the post-contact policy
in isolation. Since information-gathering is important for contact
sensing (challenge 2), we hypothesize:

H1. The POMDP post-contact policy will achieve higher value than the

baseline QMDP policy.

H2. The POMDP post-contact policy will achieve success with higher

probability than the baseline QMDP policy.

58 michael c. koval

The key difference between these two hypotheses is the model used
for evaluation: H1 uses the discrete POMDP model used for planning
and H2 uses the continuous model. Ideally, we would compare against

a policy computed by a point-based
POMDP solver over the entire state
space. Unfortunately, we were not able
to get implementation of SARSOP pro-
vided by the APPL toolkit [Kurniawati
et al., 2008] to successfully load the full
discrete POMDP model due to its size.

Next, we evaluate the impact of decomposing planning into pre-
and post-contact phases. Theorem 6.1 suggests that this decomposi-
tion will not significantly harm performance, so we hypothesize:

H3. The pre-contact trajectory will not significantly affect the success

rate of a post-contact policy.

H4. The full POMDP policy will outperform the full QMDP policy.

Finally, we evaluate the effect of varying sensor coverage on these
policies. Increasing sensor coverage should reduce the burden on the
planner to take information-gathering actions, so we hypothesize:

H5. Both policies will improve with better sensor coverage.

Since the QMDP policy is optimal when state is fully observed, we
expect it to benefit more than the POMDP policy:

H6. The QMDP policy will improve more than the POMDP policy.

Our results suggest that all of these hypotheses are satisfied.

6.4.1 Experimental Design

We evaluated both policies on a quasistatic simulation of a Barrett-
Hand [Townsend, 2000] pushing a 3.5 cm× 5 cm box in the plane. The
goal was to push the center of the box into a 4 cm× 8 cm goal region
in front of the palm. The robot received feedback from binary con-
tact sensors on its two fingertips. The contact sensors were perfectly
discriminative, but had a 10% error rate of generating an incorrect
observation during contact.

We chose a trust region Strust of size 15 cm× 50 cm. We discretized
the no-contact portion of Strust at a 2 cm × 2 cm × 12◦ resolution
and the contact portion at a 1 cm× 12◦ resolution. The discrete state Actions that are not aligned with the

discretization can lead to discretization
artifacts that affect the performance of
the post-contact policy.

space consisted of 2625 no-contact states, 1613 contact states, and one
sentinel state to represent S \ Strust.

The robot could take five purely translational actions: forward, left,
right, forward-left, and forward-right. We assigned the axis-aligned Our use of the discrete Bayes filter to

track the belief state during execution
of the post-contact policy differs from
the experiments presented in earlier
versions of this work [Koval et al., 2014].
In those experiments, we used the
manifold particle filter to track state
during execution of the full policy. As
a result, the results that we present in
this thesis slightly differ from those
presented in prior work.

actions a length of 2 cm and the diagonal actions a length of 2
√

2 cm
align all five actions with our discretization of the state space.

We used a particle filter [Gordon et al., 1993] to implement the
belief update during execution of ζ. Once we observed contact, we
switched to using a discrete Bayes filter to implement the belief
update [Thrun et al., 2005]. This ensured that the belief update used
during execution matched that used during planning.

robust manipulation via contact sensing 59

Q

-18.11

-11.83

P

-20

-15

-10

-5

(a) Discrete Value

0 10 20 30 40 50

Simulation Step

0.2

0.4

0.6

0.8

1.0

QMDP

POMDP

(b) Post-Contact Success Rate

0 10 20 30 40 50

Simulation Step

0.2

0.4

0.6

0.8

1.0

QMDP

POMDP

(c) Full Policy Success Rate

Figure 6.5: Performance of
the post-contact policy. (a) Ex-
pected value, at depth 50, of
the QMDP (Q) and POMDP
(P) post-contact policies eval-
uated on the discrete system
dynamics. Reward is always
negative, so less-negative values
are better. Success rate of the
(b) post-contact and (c) full
policy evaluated on the con-
tinuous system dynamics. The
error bars and gray shaded
region denote a 95% confidence
interval.

We evaluated a policy π on two metrics. First, we estimated its
value Vπ by performing rollouts of π and recording the reward that
it achieved. This is the quantity that was directly maximized by our
planner. Second, we measured the success rate Pr(st ∈ G) of the
policy’s ability to push the movable object into the goal region.

6.4.2 Post-Contact Policy (H1 and H2)

We solved for a post-contact QMDP policy by running MDP value
iteration on the discrete POMDP model until it converged. This
process required 1729 iterations and took 8.36 s (4.84 ms per backup).
The resulting policy consisted of five α-vectors and took 7.64 ms to
evaluate on a discrete belief state.

We repeated this procedure to generate the post-contact POMDP
policy by running a point-based solver on |Bc| = 15 initial belief
points, each assigned equal weight. Each belief point bi ∈ Bc was
a Gaussian distribution bi = N (µi, Σi) with mean µi = [xi, yi, θi]

T

and covariance matrix Σ1/2
i = diag[5 cm, 5 cm, 15◦]. The mean was

a fixed distance xi = 20 cm in front of the hand with lateral offset
yi ∼ uniform[−10 cm, 10 cm] and orientation θi ∼ uniform[0◦, 360◦].

We solved the resulting discrete POMDP using the SARSOP
implementation provided by APPL Tookit [Kurniawati et al., 2008].
We ran SARSOP for 5 minutes, during which it produced a policy
that consisted of several thousand α-vectors and took 7.62 ms to
evaluate. We intentionally ran SARSOP until convergence, as we did
for QMDP, to eliminate this as a variable in our analysis: it may be
possible to terminate planning much earlier with negligible impact
on the quality of the policy.

We evaluated the QMDP and POMDP post-contact policies on
the discrete model by performing 1000 trials on initial belief selected
from the set described above. Figure 6.5a shows that the POMDP
policy significantly outperformed the QMDP policy. This result
confirms H1: it is advantageous to plan a policy that is capable of

60 michael c. koval

Q

-20

P

-15

-10

-5

(a) Discrete Value

0 10 20 30 40 50

Simulation Step

0.2

0.4

0.6

0.8

1.0

QMDP

POMDP

(b) Full Policy Success Rate

Figure 6.6: Effect on (a) discrete
value and (b) success rate of
increasing sensor coverage from
only the fingertips (faded col-
ors) to the entire surface of the
hand (solid colors). Again, note
that less-negative values are
better. Error bars are omitted to
reduce visual clutter.

taking information-gathering actions to reduce uncertainty.
Next, we ran 500 trials of the same experiment on the continuous

model. Figure 6.5b shows that the higher-quality discrete POMDP
policy translated to a high-quality policy on the underlying continu-
ous model. The POMDP policy successfully achieves the goal with
higher probability than the QMDP policy, supporting H2.

6.4.3 Pre-Contact Trajectory (H3 and H4)

Next, we evaluated the impact of decomposing a policy into pre- and
post-contact stages. We planned a pre-contact trajectory ζ using a
weighted A∗ search with ǫw = 2. The search terminated after 20 s or These termination conditions differs

from the standard A* termination
condition stated in section 6.3.2 to
return a solution quickly when when a
full search to depth H is not necessary.

once a vertex was expanded with pnc = 1 or 85% of b in Strust.
We simulated each policy on initial belief states of the form de-

scribed above, except with the distance from the mean to the palm
increased to xi = 50 cm. All of these belief states laid significantly
outside of Strust and, thus, could not be directly solved by πc.

Figure 6.5c shows the success rate of the robot executing the com-
bined policy. Both the QMDP and POMDP policies achieved success
rates comparable to those in section 6.4.2. These result supports H3:
the pre-contact trajectory faithfully extends a post-contact policy to
a longer horizon. They also support H4: the POMDP policy outper-
forms QMDP even when executed after a pre-contact trajectory.

6.4.4 Sensor Coverage (H5 and H6)

Finally, we analyzed the impact of varying sensor coverage on the
performance of the policies. To do so, we consider an alternate obser-
vation model where where each of the hand’s seven links served as
a binary contact sensor. We analyzed analytic representation of the
contact manifold to compute that 10 of the 27 = 128 possible contact
observations are geometrically feasible. This is a large increase over
the three observations that were feasible with fingertip sensors.

robust manipulation via contact sensing 61

(a) Experimental Setup

7

(b) Belief 1

3
1

6

(c) Belief 2

3

(d) Belief 3

Figure 6.7: (a) HERB in the
initial configuration used to be-
gin each trial. (b)–(d) Samples
(circles) drawn from the three
initial belief states (light gray
iso-contours) used for evalua-
tion. Samples are drawn with
a black dot in the center if the
QMDP policy succeeded and a
red × if it failed. In (c) belief 2,
the three samples on which
SARSOP failed are drawn with
a dotted line. Labels corre-
spond to the trial numbers from
table 6.1.

Figure 6.6a shows that increasing sensor coverage improved the
value achieved by both post-contact policies. Figure 6.6b shows the
improvement in the post-contact policies directly translated into
improvement of the full policies. These results support H5.

Our experiments also show that improving sensor coverage
yielded larger improvements in the QMDP policy than in the
POMDP policy. This is most visible in the final success probabil-
ity achieved by each policy, near simulation step 50 in fig. 6.6b. This
supports H6: taking information-gathering actions becomes less
important as sensor coverage improves.

6.5 Real-Robot Experiments

We evaluated the QMDP and SARSOP policies on HERB [Srinivasa
et al., 2012] manipulating a bottle into a 4 cm× 8 cm goal region in
front of the palm. HERB used a Jacobian pseudo-inverse controller
to execute the five translational actions described in section 6.4.1
and used the BarrettHand’s strain gauges (see section 5.5) to detect
contact with the distal link of each finger.

We generated three Gaussian initial belief states with means
µ1 = [35 cm, 12 cm], µ2 = [35 cm, 0 cm], and µ3 = [35 cm, 6 cm]

relative to the hand and variance Σ1/2 = diag[5 cm, 5 cm]. We drew
ten samples from each initial belief state and used the resulting thirty
samples, shown in figs. 6.7b to 6.7d, to evaluate both policies.

Table 6.1 shows the outcome of each trials. The position of the
bottle used in each trial is shown in fig. 6.7. A trial terminated when
the selected action was infeasible or the bottle reached the edge of the
table. A trial was considered successful if the bottle was in the goal
region at the moment of termination. The POMDP policy achieved
success on 27/30 trials (90%). In contrast, the QMDP policy only
achieved success on only 20/30 trials (67%).

The pre-contact trajectories for both policies aligned the mean of
the initial belief state with the center of the palm. Once the trajectory
was exhausted, the QMDP post-contact policy resembled an open-

62 michael c. koval

1 2 3 4 5 6 7 8 9 10

Belief 1
QMDP · × · · · × ·∗ · × ×

POMDP · · · · · · · · · ·

Belief 2
QMDP × · · × · · · × · ·

POMDP ×† · ×† · · ×‡ · · · ·

Belief 3
QMDP · · × · × · × · · ·

POMDP · · · · · · · · · ·

Table 6.1: Outcome of execut-
ing the QMDP and POMDP
policies on HERB. Each policy
was executed on ten samples
from three initial belief states.
The symbol · denotes success
and × failure to push the ob-
ject into the goal region. The
trial marked with ∗ succeeded
because the object contacted
a sensor during execution of
the pre-contact trajectory, tri-
als marked with † failed due
to kinematics, and the trial
marked with ‡ failed due to
un-modelled errors in the
observation model (see text).

loop push-grasp [Dogar and Srinivasa, 2010] by moving straight. The
POMDP policy moved straight for several time steps, then executed
a sideways information-gathering to force the bottle into a contact
sensor. Once the bottle was localized, the policy moved to achieve the
goal. Figure 6.8-Bottom shows an example this behavior.

All failures of the QMDP policy occurred because the bottle came
to rest in a configuration that was: (1) outside of the goal region
and (2) not in contact with a sensor. The policy chose the “forward”
action because moving to either side would reduce the probability
of the bottle being in the goal region at the next time step. This
highlights the key limitation of a QMDP policy: it does not plan
multi-step information gathering actions [Littman et al., 1995].

However, the QMDP policy does incorporate feedback from con-
tact sensors during execution. This was critical in belief 1 trial 7

(marked with a ∗ in table 6.1 and section 6.5-Top). In this trial, the
QMDP policy achieved success despite the fact that the initial pose of
the bottle began outside of the capture region of the open-loop push
grasp because the bottle naturally came into contact with a sensor.

The POMDP policy used information-gathering actions to localize
the object regardless of its initial configuration. As a result, the SAR-
SOP policy succeeded on 20/20 trials on beliefs 1 and 3. Surprisingly,
the SARSOP policy failed on three trials from belief 2. Two trials
(marked with † in table 6.1, section 6.5-Bottom shows one of these)
occurred because HERB’s elbow collided with the table. In both cases,
HERB could have avoided collision by moving left (instead of right)
to localize the bottle. We address this limitation in the next chapter.

6.6 Discussion

This chapter introduced a planning algorithm that exploited the
natural decomposition between pre- and post-contact (section 6.1,
insight 2) to gain efficiency. First, in an offline pre-computation
step, we used a point-based method to plan a post-contact policy
over post-contact belief space (section 6.2). Then, when presented
with an initial belief state, we used a deterministic shortest path

robust manipulation via contact sensing 63

B
el
ie
f
1,

T
ri
al

7 Q
M
D
P

P
O
M
D
P

B
el
ie
f
2,

T
ri
al

1 Q
M
D
P

P
O
M
D
P

B
el
ie
f
3,

T
ri
al

3 Q
M
D
P

P
O
M
D
P

(a) Initial State (b) Initial Belief (c) (d) (e) Final State

Figure 6.8: Three trials executed on HERB with the QMDP and POMDP policies. Columns (a) and (e) show, respec-
tively, the initial and final pose of the object relative to the hand. Column (b) shows several samples drawn from the
initial belief state. Columns (c) and (d) show the belief state over object pose at two points during execution. The trial
numbers referenced in this figure correspond to those used in fig. 6.7 and table 6.1.

64 michael c. koval

algorithm to plan a pre-contact trajectory that terminates once contact
is observed (section 6.3). Our experimental results, both in simulation
(section 6.4) and on a real robot (section 6.5), show that the policies
produced by our approach outperform a baseline policy that does not
take multi-step information-gathering actions.

Our real-robot experiments identified two important failure modes
in the policies planned with our algorithm. First, one trial failed be-
cause of an un-modelled error in the observation model. We discuss
how to recover from such a failure in section 8.3.3. Second, the robot
collided with the environment in two trials because our algorithm
does not consider kinematic constraints during planning. The next
chapter addresses this limitation by planning under model 3.

7

Configuration Space Planning

Planning for a hand-relative model (model 1 from chapter 3), as we This chapter is adapted from Koval et al.
[2016a,b].did in chapter 6, often produces policies that are infeasible to execute

in clutter. Kinematic constraints—like reachability, joint limits, and
collision—are constraints on robot configuration. As a result, they
fundamentally cannot be incorporated into this type of planner.

This chapter introduces a planner that considers both object pose
uncertainty and kinematic constraints. Doing so is challenging be-
cause the robot’s configuration space is typically continuous and
high-dimensional. Additionally, any policy that we compute offline,
e.g. the post-contact policy in chapter 6, could be rendered invalid by
a change to the obstacles present in the environment.

Instead, we use DESPOT [Somani et al., 2013], an online POMDP
solver, to plan for a model that includes both object pose uncertainty
and kinematic constraints (model 3 from chapter 3). We leverage two
key insights for computational efficiency. First, we lazily discretize
the configuration space into a lattice of configurations connected by
constrained trajectories. Second, we leverage heuristics computed
from the hand-relative model to guide the search (insight 3).

Similar to the pre-contact search described in the previous chapter,
this algorithm is an online search guided by heuristics derived from a
hand-relative QMDP policy. However, since it plans in the joint space
of robot configurations and object poses, we cannot pre-compute a
post-contact policy to share between problem instances. We describe
how to unify these two approaches in section 7.4.

7.1 Configuration Lattice

Planning in this space requires choosing a suitable representation of
robot configuration. We choose to represent the robot’s configuration
as a point in a configuration space lattice. By exploiting the lower-
dimensional structure of planar manipulation (insight 3), we con-
strain the end-effector to have a fixed transformation supTee ∈ SE(3)

66 michael c. koval

relative to the support surface Tsup ∈ SE(3). A configuration q ∈ Q

satisfies this constraint iff

Tee(q) = Tsup
supTee Trans([xr, yr, 0])Rot(θr, êz) (7.1)

where (xr, yr, θr) ∈ Xr ⊆ SE(2) is the pose of the end-effector in
the plane, Rot(θ, v̂) is a rotation about v̂ by angle θ, Trans(v) is a
translation by v, and êz = [0, 0, 1]T .

Just as with end-effector pose, we also constrain the movable
object to have a fixed transformation supTo ∈ SE(3) relative to the
support surface. We parameterize its pose as

x = Tsup
supTo Trans([xo, yo, 0])Rot(θo, êz)

where (xo, yo, θo) ∈ Xo ⊆ SE(2) is the pose of the object in the plane.
We discretize the space of the end-effector poses Xr by con-

structing a state lattice Xr,lat ⊆ Xr with a translational resolution
of ∆xr, ∆yr ∈ R

+ and an angular resolution of ∆θr = 2π/nθ for some
integer value of nθ ∈ N [Pivtoraiko and Kelly, 2005]. The lattice
consists of the discrete set of points

Xr,lat = {(ix∆xr, iy∆yr, iθ∆θr) : ix, iy, iθ ∈ Z}.

Each point xr ∈ Xr,lat may be reachable from multiple configurations. The inverse kinematics function does
not necessarily depend on the structure
of the lattice. We use qlat to denote
inverse kinematic solutions to remain
consistent with the other notation used
in this section.

We assume that we have access to an inverse kinematics function qlat(xr)

that returns a single solution {q} that satisfies Tee(q) = xr or ∅ if
no such solution exists. A solution may not exist if xr is not reach-
able, the end-effector is in collision, or the robot collides with the
environment in all possible inverse kinematic solutions.

Defining this configuration lattice allows us to plan in the state
space Slat = Qlat × Xo where Qlat =

⋃

xr∈Xr,lat
qlat(xr) is the set of

configurations returned by qlat on all lattice points.

7.1.1 Action Templates

Most actions do not transition between states in the lattice Slat, so we
restrict ourselves to actions that are instantiated from one of a finite
set Alat of action templates. An action template alat = (ξlat, ∆t) ∈ Alat

is a Cartesian trajectory ξlat : [0, ∆t] → SE(3) that specifies the
relative motion of the end-effector. The template starts at the origin
ξlat(0) = I and ends at some lattice point ξlat(∆t) ∈ Xr,lat. More than
one action template may end at the same lattice point.

An action a = (ξ, ∆t) instantiates action template alat at lattice
point xr ∈ Xr,lat if it satisfies three conditions: (1) starts at con-
figuration ξlat(0) = qlat(xr), (2) ends at configuration ξlat(∆t) =

qlat(xrξlat(∆t)), and (3) satisfies Tee(ξ(τ)) = xrξlat(τ) for all 0 ≤ τ ≤

robust manipulation via contact sensing 67

∆t. These conditions are satisfied iff ξ moves between two configura-
tions in Qlat while producing the same motion as ξlat.

We define the function Proj(xr, a) 7→ alat to map an action a to the
action template alat that it instantiates. The pre-image Proj−1(xr, alat)

defines set of all possible instantiations of alat at xr. We assume that
we have access to a local planner ψ(q, alat) that returns a singleton
action {a} ⊆ Proj−1(q, alat) from this set or ∅ to indicate failure.
The local planner may fail due to kinematic constraints, end-effector
collision, or robot collision.

7.1.2 Configuration Lattice POMDP

We use the lattice to define the configuration lattice POMDP, Lat-
POMDP, with the state space Slat, actions Alat, observations O, tran-
sition model Tlat, observation model Ωlat, and reward function Rlat.
The structure of the lattice guarantees that that all instantiations
of the action template alat execute the same motion ξlat of the end-
effector, regardless of the configuration of the robot.

If the movable object only contacts the end-effector—not other
parts of the robot or the environment—then the motion of the object
is also independent of the robot configuration. We refer to a violation
of this assumption as un-modelled contact. The lattice transition model
Tlat(slat, alat, s′lat) is identical to T(s, a, s′) when alat is feasible and
no un-modelled contact occur. If either condition is violated, the
robot transitions to the absorbing state sbad. Similarly, the lattice
observation model Ωlat(o, slat, alat) is identical to Ω(o, s, a) for valid
states and is uniform over O for sbad.

We penalize sbad, infeasible actions ψ(qlat(xr), alat) = ∅, and
un-modelled contact in the reward function by assigning them −1
reward. Otherwise, we define Rlat(s, a) = R(s, a). This choice guar-
antees that an optimal policy of Lat-POMDP will never take an
infeasible action:

Theorem 7.1. An optimal policy π∗lat of Lat-POMDP will not execute an

infeasible action in belief b if V∗lat[b] >
−1

1−γ .

Proof. Suppose V∗lat[b] >
−1

1−γ and an optimal policy π∗lat executes
infeasible action alat in belief state b. The robot immediately re-
ceives a reward of −1 and transitions to sbad. For all time after
that, regardless of the actions that π∗lat takes, the robot receives a
reward of Rlat(sbad, ·) = −1 at each time step. This yields a value of
V∗lat[b] =

−1
1−γ , which is the minimum reward possible to achieve.

The optimal value function satisfies the Bellman equation V∗lat[b] =

maxalat∈Alat
Q∗lat[b, alat], where Q∗lat[b, alat] denotes the value of taking

action alat in belief state b, then following the optimal policy for all

68 michael c. koval

time. We know that V∗lat[b] >
−1

1−γ , so there must exist at least one

feasible action a∗lat ∈ Alat for which Q∗lat[b, a∗lat] >
−1

1−γ .
The Bellman equation also asserts that an optimal policy chooses

π∗lat[b] = arg maxalat∈Alat
Q∗lat[b, a∗lat]. This is a contradiction: the policy

π∗ chose alat in belief state b, but the fact that Q∗lat[b, alat] < Q∗lat[b, a∗lat]

implies that π∗ is not optimal. Therefore, an optimal policy will not
execute an infeasible action if V∗lat[b] >

−1
1−γ .

We can strengthen our claim if we guarantee that every reachable
lattice point from has at least one feasible action and it is possible to
achieve the goal with non-zero probability. Under those assumptions
we know that V∗lat[b] >

−1
1−γ and theorem 7.1 guarantees that π∗lat will

never take an infeasible action. One simple way to satisfy the first
condition is to require that all actions be reversible.

7.2 Online POMDP Planner

Lat-POMDP has a large state space that changes whenever obstacles
are added to, removed from, or moved within the environment.
This makes it difficult to apply an offline method, like we used in
chapter 6, to this problem. Instead, we use DESPOT [Somani et al.,
2013], an online POMDP solver, to efficiently plan in this space.
DESPOT incrementally explores the action-observation tree rooted at
b(s0) by performing a series of trials. Each trial starts at the root node,
descends the tree, and terminates by adding a new leaf node to the
tree.

In each step, DESPOT chooses the action that maximizes the
upper bound V̄[b] and the observation that maximizes weighted excess

uncertainty, a regularized version of the gap V̄[b] − V
¯
[b] between

the bounds. This strategy heuristically focuses exploration on the
optimally reachable belief space [Kurniawati et al., 2008]. Finally,
DESPOT backs up the upper and lower bounds of all nodes visited
by the trial.

We leverage two key ideas for computational efficiency. First, we
interleave lattice construction with planning to evaluate only the
parts of the lattice that are visited by DESPOT (section 7.2.1). Second,
we guide DESPOT with upper (section 7.2.2) and lower (section 7.2.3)
bounds derived from model 1: a relaxation of the problem that
considers only the pose of the movable object relative to the hand.

7.2.1 Configuration Lattice Construction

DESPOT uses upper and lower bounds to focus its search on belief
states that are likely to be visited by the optimal policy. We exploit

robust manipulation via contact sensing 69

this fact to avoid constructing the entire lattice. Instead, we interleave
lattice construction with planning and only instantiate the lattice
edges visited by the search, similar to the concept of lazy evaluation

used in motion planning [Bohlin and Kavraki, 2000, Hauser, 2015].
We begin with no pre-computation and run DESPOT until it

queries the transition model Tlat, observation model Ωlat, or reward
function Rlat for a state-action pair (xr, alat) that has not yet been
evaluated. When this occurs, we pause the search and check the
feasibility of the action by running the local planner ψ(xr, alat). We
use the outcome of the local planner to update the Lat-POMDP
model and resume the search. Figure 7.1 shows the (a) full lattice
and (b) subset evaluated by DESPOT, only a small fraction of the full
lattice.

It is also possible to use a hybrid approach by evaluating some
parts of the lattice offline and deferring others to be computed on-
line. For example, we may compute inverse kinematics solutions,
kinematic feasibility checks, and self-collision checks in an offline
pre-computation step. These values are fixed for a given support
surface and, thus, can be used across multiple problem instances.

(a) Full Lattice

(b) Evaluated Lattice

Figure 7.1: The (a) full lattice
and the (b) subset evaluated by
DESPOT during planning.

7.2.2 Hand-Relative Upper Bound

Recall from section 7.1.2 that the motion of the movable object rela-
tive to the hand is independent of the robot’s configuration. Inspired
by model 1, we define a hand-relative POMDP (Rel-POMDP) with the
state space Srel, actions Alat, observations O, transition model Trel,
observation model Ωrel, and reward function Rrel. The state space
Srel includes only the pose of the movable object relative to hand.
The hand-relative transition model, observation model, and reward
function are identical to the original model when no un-modelled
contact occurs.

Rel-POMDP is equivalent to assuming that environment is empty
and the robot is a lone end-effector actuated by an incorporeal planar
joint. As a result, Rel-POMDP is a relaxation of Lat-POMDP:

Theorem 7.2. The optimal value function V∗rel of Rel-POMDP is an upper

bound on the optimal value function V∗lat of Lat-POMDP.

Proof. Define a scenario ψ = (s0, ψ1, ψ2, . . .) to be an abstract simula-
tion trajectory that captures all uncertainty in our POMDP model [Ng
and Jordan, 2000, Somani et al., 2013]. A scenario is generated by
drawing the initial state s0 ∼ b(s0) from the initial belief state and
each random number ψi ∼ uniform[0, 1] from the unit interval. Given
a scenario ψ, we assume that the outcome of executing a sequence
of actions is deterministic; i.e. all stochasticity in the transition and
observation models is captured in the random numbers.

70 michael c. koval

Suppose an arbitrary Rel-POMDP policy π executes the sequence
of actions alat,1, alat,2, . . . in scenario ψ. The policy visits the se-
quence of states srel,0, srel,1, . . . and receives the sequence of rewards
R1, R2, . . . given by the reward function Ri = Rrel(srel,i, alat,i).

Consider executing the same π in the same scenario ψ on Lat-
POMDP. Let H be the time step at which π first takes an infeasible
action or makes un-modelled contact. The policy receives the se-
quence of rewards R1, R2, . . . , R2, . . . , RH−1,−1,−1, . . . as it did on
Rel-POMDP until time step H. Then, it receives −1 reward, transi-
tions to sbad, and continues receive −1 reward for all time.

The policy π achieves value Vπ
rel,ψ = ∑

∞
t=0 γtRt on Rel-POMDP

and Vπ
lat,ψ = ∑

H−1
t=0 γtRt − γH

1−γ on Lat-POMDP in scenario ψ. Since
Rt ≥ −1, we know that Vπ

rel,ψ ≥ Vπ
lat,ψ. The value function is the

expectation Vπ = Eψ[Vπ
ψ] over scenarios under the distribution

described above, so this relationship proves that Vπ
rel ≥ Vπ

lat.
Consider the optimal policy π∗lat of Lat-POMDP. There exists some

Rel-POMDP policy πmimic that executes the same sequence of action
as π∗lat in all scenarios. From the reasoning above, we know that
V

πmimic
rel ≥ V∗lat. We also know that V∗rel ≥ V

πmimic
rel because the value of

any policy is a lower bound on the optimal value function. Therefore,
by the transitive property, we have shown that V∗rel ≥ V∗lat.

This result implies that any upper bound V̄rel ≥ V∗rel for Rel-
POMDP is also an upper bound on the optimal value function of
Lat-POMDP. The key advantage of doing so is that V̄rel may be pre-
computed once per hand-object pair. In contrast, an upper bound
specifically constructed for Lat-POMDP must be re-computed for
each problem instance.

7.2.3 Hand-Relative Lower Bound

We exploit the fact that the value function of any policy is a lower
bound on the optimal value function to define V

¯ lat. We use of-
fline pre-computation to compute a rollout policy on πrollout for Rel-
POMDP once per object pair, e.g. using MDP value iteration [Littman
et al., 1995] or a point-based method [Pineau et al., 2003].

Given πrollout, we construct an approximate lower bound V
¯ lat by

estimating the value V
πrollout
lat of executing πrollout on Lat-POMDP

with Monte Carlo rollouts. Approximating a lower bound with a
rollout policy is commonly used in POMCP [Silver and Veness, 2010],
DESPOT [Somani et al., 2013], and other online POMDP solvers.

Each rollout begins by drawing a state s0 ∼ b(s0) from the initial
belief state. Then, for each time step t = 1, . . . , H, we take the action

robust manipulation via contact sensing 71

at = πrollout[b(st−1)], receive reward Rt = R(st−1, at), transition to
st ∼ T(st−1, at, st), and simulate ot ∼ Ω(ot, st, at). Once a rollout is
complete, we compute its value as ∑

H
t=1 γt−1Rt. We take the mean of

this value across many rollouts to approximate V
¯ lat = Vπrollout .

7.3 Simulation Experiments

This section evaluates our planner in simulation experiments of
HERB [Srinivasa et al., 2012], the same robot used for the real-robot
experiments in chapters 5 and 6, manipulating a movable object on a
cluttered table top.

We begin by verifying that DESPOT [Somani et al., 2013], the on-
line method used in this chapter, performs similarly to SARSOP, the
offline method we used in chapter 6. We compare the two algorithms
on Rel-POMDP and expect:

H1. Rel-DESPOT performs similarly to Rel-SARSOP on Rel-POMDP.

Next, we evaluate the importance of considering kinematic con-
straints and information-gathering during planning. We compare
two policies on Lat-POMDP. The first, Rel-SARSOP takes information-
gathering actions, but does not consider kinematic constraints. The
second, Lift-QMDP considers kinematic constraints, but does not take
information-gathering actions.

Our results in chapter 6 indicate that both aspects of manipulation
are important. Therefore, we expect to find problem instances for
which each algorithm performs better:

H2. Rel-SARSOP can outperform Lift-QMDP on Lat-POMDP.

H3. Lift-QMDP can outperform Rel-SARSOP on Lat-POMDP.

Our algorithm (Lat-DESPOT) considers both information-gathering
and kinematic constraints during planning, so we hypothesize:

H4. Lat-DESPOT performs the best.

Our results suggest that all four of these hypotheses are satisfied.

7.3.1 Experimental Design

Our simulation experiments required HERB to manipulate a bottle
on a cluttered table using a Barrett WAM arm [Salisbury et al., 1988]
equipped with a BarrettHand [Townsend, 2000] end-effector. The
configuration space Q = R

7 contained the seven joint angles of the
WAM arm. In each trial, the robot began at a known configuration
and the pose of the movable object was drawn from a Gaussian

72 michael c. koval

distribution centered in front of the hand with variance Σ1/2 =

diag[5 mm, 10 cm].
Configuration Lattice. First, we constructed a lattice of resolution

∆xr = ∆yr = 1 cm at a constant height above the table top. Next, we
selected an inverse kinematic solution qlat(xr) for each lattice point
xr ∈ Xr,lat using an iterative inverse kinematics solver initialized
with the configuration of an adjacent lattice point. Finally, we used In most configurations, the 1 cm

resolution of the lattice is sufficiently
dense to simply connect adjacent lattice
points with a straight-line trajectory in
configuration space.

a Cartesian motion planner to find a trajectory that connects those
configurations. We deferred collision checking of a trajectory until its
feasibility was queried by a planner.

Transitions and Observation Models. At each time step, the robot exe-
cuted one of four 1 cm translational actions templates: forward, back,
left, or right. We simulated the motion of the movable object using
Box2D [Catto, 2010] and introduced noise into its parameters at each
time step [Duff et al., 2010]. After taking an action, the robot received
binary observations from two contact sensors on its fingertips that
perfectly discriminated between contact and no-contact.

Figure 7.2: Discrete state space
used to represent the pose of
the object relative to the hand
used during planning.

Hand-Relative Discretization. We discretized Srel to speed up evalua-
tion of the model and to enable calculation of QMDP [Littman et al.,
1995] and SARSOP [Kurniawati et al., 2008] policies. We discretized a
region of size 20 cm× 44 cm at a 1 cm resolution (fig. 7.2). We did not
separate contact and no-contact states because the simple geometry
and high resolution of the discretization made doing so unnecessary.

Dependent Measure. We evaluated a policy π on the same two
metrics as we used in chapter 6. First, we estimated the value Vπ

achieved by the policy on the discrete POMDP model. This is the
quantity that was directly maximized by our planner. Second, we
measured the success rate Pr(st ∈ G) of the policy’s ability to push the
movable object into the goal region.

7.3.2 Policies under Evaluation

We evaluate the performance of several policies:
Rel-QMDP applied the QMDP approximation [Littman et al.,

1995] to Rel-POMDP. This policy neither takes information-gathering
actions nor considers kinematic constraints during planning. This is
equivalent to the QMDP post-contact policy from chapter 6.

Rel-SARSOP uses SARSOP [Kurniawati et al., 2008], a point-based
method, to compute an offline policy for Rel-POMDP that is capable
of taking information-gathering actions. This is equivalent to the
POMDP post-contact policy from chapter 6.

Rel-DESPOT uses DESPOT [Somani et al., 2013] to plan for Rel-
POMDP using Rel-QMDP as V̄ and Rel-QMDP as πrollout. DESPOT is
an online solver that requires minimal pre-computation.

robust manipulation via contact sensing 73

RM RS RD

-20

-40

-60

V

(a) Value, Vrel

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

p
t

(b) Success Probability, Pr(st ∈ G)

Figure 7.3: Performance of Rel-
QMDP (RM), Rel-SARSOP
(RS), and Rel-DESPOT (RD

) on Rel-POMDP. (a) Value
Vrel achieved by each policy.
Note that the y-axis is inverted;
lower (less negative) is better.
(b) Success probability on the
continuous Rel-POMDP prob-
lem. Results are averaged over
averaged over 500 trials and
error bars denote a 95% confi-
dence interval. Best viewed in
color.

Lift-QMDP and Lift-SARSOP use the state lattice to evaluate the
feasibility of the action selected by Rel-QMDP or Rel-SARSOP before
executing it. If that action is infeasible, the policy instead executes the
feasible action with the next highest value estimate. This is a heuristic
solution to modify a policy to obey kinematic constraints.

Lat-DESPOT, the proposed algorithm, uses DESPOT [Somani et al.,
2013] to plan for Lat-POMDP using Rel-QMDP as V̄ and Lift-QMDP
πrollout. This is the only algorithm to both plan information-gathering
actions and consider kinematic constraints during planning.

We used the implementations of SARSOP [Kurniawati et al., 2008]
and DESPOT [Somani et al., 2013] provided by the APPL toolkit. We
tuned DESPOT’s parameters for Rel-DESPOT and Lat-DESPOT on a
set of trials distinct from the results presented in this thesis.

7.3.3 Rel-POMDP Experiments

We begin by considering Rel-POMDP to isolate the effect of uncer-
tainty from that of kinematic constraints. Figure 7.3a shows the value
achieved by three policies over 100 time steps on the discretized
Rel-POMDP model. Figure 7.3b shows the success probability of
each policy when simulated using the continuous model. This con-
firms that higher value on the discrete model translates into a higher
success rate on the continuous model.

Consistent with our findings in chapter 6, these results show that
Rel-SARSOP () outperforms Rel-QMDP (). This is expected
because SARSOP plans multi-step information-gathering actions,
whereas QMDP cannot.

Figure 7.3 also supports H1: Rel-DESPOT () performs compa-
rably to Rel-SARSOP. This is an encouraging result because DESPOT,
unlike SARSOP, is an online planner that requires minimal offline
pre-computation.

74 michael c. koval

RM RS RD LM LS LD
0

-20

-40

-60

V

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

p
t

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

pf
t

(a) No Obstacle

RM RS RD LM LS LD
0

-20

-40

-60

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

(b) Right Obstacles

RM RS RD LM LS LD
0

-20

-40

-60

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

(c) Left Obstacles

RM RS RD LM LS LD
0

-20

-40

-60

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

(d) Complex Obs.

Figure 7.4: Performance of Rel-
QMDP (RM), Rel-SARSOP
(RS), Rel-DESPOT (RD

), Lift-QMDP (LM),
Lift-SARSOP (LS), and
Lat-DESPOT (LD), the
proposed algorithm, on four
Lat-POMDP environments.
(Top) Value achieved by the
discretized problem. (Mid-
dle) Success probability on
the continuous Lat-POMDP
problem. (Bottom) Probability
that execution is feasible; Lift-
QMDP, Lift-SARSOP, and Lat-
DESPOT are omitted because
they do not take infeasible ac-
tions. Results are averaged over
500 trials and error bars denote
a 95% confidence interval. Best
viewed in color.

7.3.4 Lat-POMDP Experiments

Next, we evaluate planning on the Lat-POMDP model in in four
different environments: (a) an empty table, (b) obstacles on the
right, (c) obstacles on the left, and (d) different obstacles on the right.
These scenes are constructed out of objects selected from the YCB
dataset [Calli et al., 2015]. Kinematic constraints are present in all of
these environments in the form of reachability limits, self-collision,
and collision between the arm and the environment.

Figure 7.4 shows results for each scene. Figure 7.4-Top shows
the value achieved on the discretized model and Figure 7.4-Middle
shows the success rate of each policy. Trials that took an infeasible
action were terminated and assigned zero success probability. Fig-
ure 7.4-Bottom shows the proportion p f trials that failed in this way.

Rel-QMDP (RM) and Lift-QMDP (LM) performed poorly
across all four environments, achieving < 30% success probability,
because they did not take multi-step information-gathering actions.
This result supports H2: it is important to gather information even
when kinematic constraints are present.

Rel-SARSOP (RS) and Rel-DESPOT (RD) performed
well on environments (a) and (b) because they hit obstacles late in
execution. The converse was true on environments (c) and (d): the
policies hit obstacles so quickly that they performed worse than Rel-
QMDP! This result supports H3: it is important to consider kinematic

robust manipulation via contact sensing 75

constraints even when uncertainty is present.
Lift-SARSOP (LS) performed near-optimally on environments

(a) and (b) because it did not take infeasible actions and gathers
information. However, it performed no better than Rel-QMDP on
problem (d). This occured because Lift-SARSOP myopically consid-
ered obstacles in a one-step lookahead and often oscillated when
blocked. Small changes in the environment were sufficient to induce
this behavior: the key difference between environments (b) and (d)
was the introduction of a purple box that creates a cul-de-sac.

Our approach, Lat-DESPOT (), avoided myopic behavior by
considering action feasibility during planning. Lat-DESPOT per-
formed no worse than Lift-SARSOP on environments (a) and (b) and
outperformed it on environments (c) and (d). Unlike Rel-SARSOP,
Lat-DESPOT identified the cul-de-sac in (d) during planning and
avoided becoming trapped in it. In summary, this result supports
H4: Lat-DESPOT is the only policy that performs near-optimally
on all four environments because it considers both uncertainty and
kinematic constraints during planning.

Our unoptimized implementation of Lat-DESPOT took between
200 µs and 2.4 s to select an action on a single core of a 4 GHz Intel
Core i7 CPU. The policy was slowest to evaluate early in execution,
when information-gathering was necessary, and fastest once the
movable object was localized because the upper and lower bounds
become tighter. The QMDP and SARSOP policies, which were com-
puted offline, took an average of 1.6 µs and 218 µs to evaluate respec-
tively.

7.3.5 Upper Bound Validation

Finally, we combine the data in Figure 7.3-Left and Figure 7.4-Top to
empirically verify the bound we proved in Theorem 7.2. The value
of Rel-SARSOP () and Rel-DESPOT () on Rel-POMDP (Fig-
ure 7.3) was greater (i.e. less negative) than the value of all policies
evaluated on Lat-POMDP (Figure 7.4-Top). The data supports theo-
rem 7.2: the optimal value achieved on Rel-POMDP is no worse than
the highest value achieved on Lat-POMDP in environment (a) and
greater than the highest value achieved in environments (b), (c), and
(d).

7.4 Discussion

This chapter introduced a planning algorithm that considers both
object pose uncertainty and kinematic constraints (model 3) during
planning. Our key insight was to represent robot configuration as a

76 michael c. koval

point in a configuration space lattice (section 7.1). We gain efficiency
by lazily constructing the lattice as it is searched by an online plan-
ning algorithm guided by heuristics derived from a hand-relative
relaxation of the problem (section 7.2). Our experimental results in
simulation (section 7.3) show that our approach outperforms policies
that consider either uncertainty or kinematic constraints in isolation.

Instead of planning with a hand-relative model, like we did in
chapter 6, we used the hand-relative model as a heuristic to guide a
planner in the joint space of object poses and robot configurations.
This allowed our planner to avoid taking infeasible actions by reason-
ing about kinematic constraints while planning.

However, our planner does not fully leverage the pre- and post-
contact policy decomposition introduced by chapter 6. We de-
rived the upper and lower bounds used to guide DESPOT in our
experiments from a QMDP policy that does not take multi-step
information-gathering actions. As a result, DESPOT must plan
information-gathering actions without aid from its heuristic.

There are two ways of potentially unifying the approaches. First,
we could use a point-based method to derive tighter upper and lower
bounds on the optimal value function that do take information-
gathering actions. Second, we could plan using a graph-based
method that re-uses the same sub-policy across multiple belief states,
e.g. using Monte Carlo value iteration [Bai et al., 2011] or by merging
similar belief states under a suitable distance metric [Littlefield et al.,
2015].

Finally, our approach does not address the challenge of un-
modelled error. This limitation could be addressed by estimating
static parameters (section 8.2.4) and learning more accurate physics
models from data (section 8.3.3). Since DESPOT is an online method,
we are optimistic that our planning approach can scale to the continu-
ous, frequently-changing models introduced by these extensions.

8

Conclusion

This thesis proposed a framework for using feedback from contact
sensors to reliably manipulate objects under uncertainty. We for-
mulated manipulation as a stochastic discrete time dynamic system
(chapter 3) and used this formulation to develop several algorithms.

First, we used our insight that contact constrains state to a man-
ifold (insight 1) to develop the manifold particle filter for object
pose (chapter 4) and robot configuration (chapter 5) estimation. Our
results, both in simulation and on real robots, showed that the mani-
fold particle filter outperforms a conventional baseline.

Next, we leveraged our insight that contact decouples the optimal
policy (insight 2) to combine online and offline planning for manip-
ulating an object relative to the end-effector (chapter 6). Our results
in simulation and on HERB showed that our policy achieves a higher
success rate than a baseline.

Finally, we exploited our insight that manipulation occurs in a
lower-dimensional space (insight 3) to derive a heuristic for an online
planner that considers both uncertainty and kinematic constraints
(chapter 7). Our simulation results showed that our policy outper-
forms baseline policies that consider either aspect in isolation.

This chapter concludes by discussing themes shared throughout
this thesis (section 8.1), outlining directions for future work (sec-
tion 8.2), and identifying open research questions (section 8.3).

8.1 Discussion

This thesis outlined three key insights about manipulation and
contact sensing: (1) contact constrains state to a manifold, (2) contact
decouples the optimal policy, and (3) manipulation occurs in a lower-
dimensional space. This section describes how we translated this
insight into efficient algorithms for state estimation and planning.

78 michael c. koval

8.1.1 Formulating Manipulation as a POMDP

We formulated contact manipulation as a partially observable
Markov decision process (POMDP, Smallwood and Sondik [1973],
Kaelbling et al. [1998]) in the joint space of robot configurations and
object poses. Our formulation included all major aspects of manip-
ulation: physics, reachability, collision with obstacles, self-collision,
object pose uncertainty, sensor noise, and proprioceptive error.

It was daunting to address all of these at once, so we designed
algorithms using the simplified models listed in section 3.5. We omit-
ted robot configuration from chapters 4 and 6, object pose uncertainty
from chapter 5, and proprioceptive error from chapter 7.

However, we still leveraged the common formulation to share
vocabulary, notation, and insight between problems. For example,
we used the fact that contact constrains state to a manifold (insight 1)
to estimate object pose in chapter 4, estimate robot configuration
in chapter 5, and constrain the size of the post-contact belief space
in chapter 6. We are optimistic that our insights will be equally
applicable to future problems.

Additionally, our formulation provided us with several concrete
benefits.

First, we were able to leverage the rich history of work on Bayesian
state estimation and POMDP planning. We adapted the dual pro-
posal distribution from a previous application of Bayesian estimation
to mobile robot localization [Thrun et al., 2000a], used a point-based
POMDP solver to plan the post-contact policy [Kurniawati et al.,
2008], and used an online POMDP solver to cope with kinematic
constraints [Somani et al., 2013].

Second, we were able to make rigorous statements about perfor-
mance. We proved that the manifold particle filter implements a
Bayes update, decomposing the policy into pre- and post-contact
stages is near-optimal (theorem 6.1), and our online search does
not take infeasible actions (theorem 7.1). Theory does not—nor can
it—guarantee that our algorithms perform well in practice. It does,
however, suggest that our positive results will generalize to other
domains by isolating flaws in the model from those in the algorithm.

Third, the value function imposed a natural trade-off between
quickly completing a task with low probability and slowly complet-
ing it with high probability. Optimizing either quantity in isolation
tends to produce poor results. Maximizing success probability results
in a circuitous policy that lacks goal-direction. Minimizing time re-
quires committing to a desired success probability, which may not be
achievable for a given problem instance. The policies produced by
our planning algorithms suffer from neither drawback.

robust manipulation via contact sensing 79

Finally, our formulation generalized to several physics models. We
switched between a planar quasi-static physics model (Lynch et al.
[1992], chapter 4), the Box2D physics engine (Catto [2010], chapters 6

and 7), and a frictionless model that projects states out of penetration
(chapter 5). In future work, these models could be replaced by a
three-dimensional physics engine or a model learned from data.
Doing so will make the algorithms in this thesis perform better by
providing them with a more accurate model of the environment.

8.1.2 Respecting the Contact Constraint

Manipulation differs from many planning and control problems
because contact is discontinuous (challenge 1). As a result, applying
methods developed for continuous problems to contact sensing
often yields poor results. Chapters 4 and 5 demonstrated this: the
conventional particle suffered from particle deprivation because its
proposal distribution is ill-suited for contact sensing.

The manifold particle filter avoids particle deprivation by sam-
pling from the contact manifold when receiving contact observations.
Chapter 6 incorporates the same insight into planning by differenti-
ating between states that are in contact and those that are not while
discretizing the state space. In both cases, we successfully tailored
a well-known approach to manipulation by respecting the sharp
discontinuity between “contact” and “no-contact.”

8.1.3 Combining Online and Offline Planning

Modern belief space planners are broadly split into two categories.
Offline solvers plan a policy before starting execution. Once planning
is complete, the agent does not deviate from that policy. Online
planners interleave planning with execution. The agent plans one
action, executes it, and re-plans after receiving an observation.

Offline solvers produce policies that are efficient to evaluate by
performing most costly computation, e.g. evaluating the transition
and observation models, offline. Unfortunately, doing so requires
foreknowledge of the initial belief state that is often not available in
manipulation. Additionally, it requires a policy representation that is
amenable to optimization. Such representations, e.g. α-vectors [Small-
wood and Sondik, 1973], scale poorly to large state spaces.

Online planners avoid these challenges by deferring all computa-
tion until the policy is queried during execution [Ross et al., 2008].
Doing so allows online planners to scale to large, continuous state
spaces that do not emit a compact policy representation. However,
online planners tend to produce policies that are expensive to eval-
uate online. Chapter 7 showed that an offline policy produced by

80 michael c. koval

SARSOP [Kurniawati et al., 2008] takes only 218 µs to evaluate, com-
pared to an online policy produced by DESPOT [Somani et al., 2013]
that takes up to 2.4 s.

This thesis combined online and offline planning to achieve a
level of performance that is possible by neither alone. Chapter 6

used an offline post-contact policy to truncate an online search when
contact is observed. Chapter 7 used an offline solver to compute a
heuristic that guides an online search. In both cases, we carefully
constructed the problem such that the offline solver does not require
foreknowledge of the initial belief state. Then, we used an online
solver to adapt the offline solution to a particular problem instance.
This is a powerful technique that could apply to other domains.

8.1.4 Focusing Effort with Lazy Evaluation

Manipulation often occurs in a high-dimensional state space. This
makes it intractable for to build explicit structures, like the contact
manifold in chapter 4 or the configuration lattice in chapter 7, over
state space. We leveraged two techniques to gain tractability.

First, we used domain knowledge to construct the subset of the
structure relevant to the task. Chapter 4 showed that the trajectory
rollout representation of the contact manifold outperformed all
others by focusing on the reachable subset of state space. Chapter 6

applied the same insight to planning by computing the post-contact
policy only over a small trust region near the hand. This mirrors how
a point-based POMDP solver samples the reachable [Pineau et al.,
2003] or optimally reachable [Kurniawati et al., 2008] belief space.

Second, we used lazy evaluation to defer construction until neces-
sary. Chapter 5 avoided explicitly representing the contact manifold
by representing it implicitly as the iso-contour of a function. Doing
so allowed us to scale the manifold particle filter from object pose
estimation to robot configuration estimation.

Chapter 7 combined both techniques. DESPOT [Somani et al.,
2013] uses upper and lower bounds on the optimal value function to
focus tree construction on the optimally reachable belief space [Kur-
niawati et al., 2008]. Our algorithm gained further efficiency by
deferring evaluation of the local planner—and, thus, collision check-
ing of lattice edges—until evaluated by DESPOT. This mirrors the
lazy collision checking strategy employed by lazy motion planning
algorithms [Bohlin and Kavraki, 2000, Hauser, 2015].

robust manipulation via contact sensing 81

8.2 Limitations and Future Work

Our state estimation and planning algorithms produced promising
results both in simulation and on real-robots. However, they suffer
from several limitations that we outline in this section. Addressing
these limitations would enable our algorithms to handle more com-
plex tasks, produce higher-quality policies, and scale up from the
simplified models in section 3.5 to the full manipulation problem.

8.2.1 Planning in a Continuous State Space

Chapters 6 and 7 discretized the space of object poses relative to the
hand for planning. We did so for two important reasons.

First, the discretized transition and observation models were faster
to evaluate than the corresponding continuous models. Table 8.1
shows that the difference in speed ranges from a factor of 54× for
Box2D to more than 400× for MuJoCo, the fastest three-dimensional
physics engine we evaluated.

Second, a discrete state space allowed us to represent policies
and value functions with α-vectors. It is possible to generalize α-
vectors to α-functions over continuous space [Porta et al., 2006], but
doing so requires making restrictive assumptions about the structure
of the value function. Evaluating a policy graph [Bai et al., 2011],
the most common policy representation used for continuous state
spaces, requires many computationally-expensive evaluations of the
transition and observation models.

Method ×RT

DART [Liu et al., 2016] 194.6
MuJoCo [Todorov, 2016] 245.8
Box2D [Catto, 2010] 1852.7
Discrete 101841.0

Table 8.1: Speed, as a multiple
of real-time (×RT), for a 1 cm
planar push. The discretized
model is several orders of mag-
nitude faster than all physics
models we evaluated.

Unfortunately, discretization also introduces artifacts into the
transition and observation models. Figure 8.1 shows two examples of
artifacts in a simple problem domain. The robot has contact sensors
on its fingertips and can move left, right, or forward in increments of
3 mm. The object is a point, drawn as a small black circle. The state
space is discretized into a 1 cm grid and the discrete belief state is
drawn by shading each cell in proportion to its probability.

In fig. 8.1 (a)–(d) the robot moves right to perform an information-
gathering action, then moves left to grasp the object. After (b) the
first timestep there is 2/3 probability that the object remains in its
initial state and 1/3 probability that it transitions to the adjacent state.
This uncertainty is eliminated when (c) the object contacts the sensor.
Unfortunately, by (d) the time the information-gathering action is
complete, enough uncertainty has accumulated to render the action
useless. This demonstrates that discretization can introduce additional

uncertainty that is not present in the continuous model.
Discretization can also cause the robot to become overly confident

about its state. In fig. 8.1 (e)–(h), the robot’s contact sensor cannot

82 michael c. koval

(a) Initial Belief State, t = 0 (b) t = 1 (c) t = 7 (d) t = 15

(e) Initial Belief State, t = 0 (f) t = 1 (g) t = 2 (h) t = ∞

Figure 8.1: Examples of dis-
cretization (a)–(d) introducing
uncertainty and (e)–(g) causing
overconfidence in belief. See the
text for a detailed description.

differentiate between two discrete states. We assign 2/3 and 1/3
probability, respectively, to the lower and upper states that overlap
with the sensor. In this situation, the discrete model implies that
the robot can localize the object in the lower state by (e) moving
left, (f) moving right, and (g)–(h) repeating. In reality, the robot has
not localized the object. This shows that discretization can lead to

overconfidence compared to the continuous model.
Scaling up to longer horizon plans and more intricate geometry

exacerbates this problem, making discretization infeasible. Discretiza-
tion can be thought of as a learned model that encodes discrete state
as a one-hot binary feature [Sherstov and Stone, 2005]. Combining
a richer set of features with a learning algorithm tailored for multi-
step prediction [Venkatraman et al., 2015] could yield the similar
computational benefits as naïve discretization with fewer artifacts.

Additionally, we could leverage the loose coupling between model
evaluations performed during planning to parallelize computation.

8.2.2 Planning in a Continuous Action Space

Chapters 6 and 7 also discretized the action space. This was neces-
sary because most POMDP solvers, with one notable exception [Seiler
et al., 2015], require a finite set of actions. Unfortunately, restricting
our planner to that set artificially limits the quality of the policy that
it can find. Other policies could achieve higher value by executing
actions outside of that set.

Additionally, discretization ignores valuable structure in the
action space. Nearby actions are likely to transition to similar belief
states and, thus, have similar value. A planner could exploit this
structure to share lower bound, upper bound, and value estimates
between nearby actions. Formalizing this concept, e.g. through
Lipschitz continuity of the transition model, could provide optimality
guarantees with respect to the continuous action space.

Macro actions could allow us to leverage continuous structure

robust manipulation via contact sensing 83

1

2

1
2

(a)

(b)

Episodic Interaction

Figure 8.2: HERB uses (a) lower
bounds derived from harder
and (b) upper bounds derived
from easier problems to guide
its search. As HERB gains more
experience, he can transition
from solving easy (left) to hard
(right) problem instances.

without abandoning discrete search. Consider a macro action that
executes a primitive action k times in sequence. Combining macro
actions of different lengths could allow a planner to quickly explore
with long actions, then switch to short actions to achieve the goal.
This strategy is similar to an experience graph, which biases an A∗

search over a large graph to a small sub-graph that may represent the
connectivity of the space [Phillips et al., 2012].

While macro actions increase the effective planning horizon, they
do not expand the set of available primitives. We could use a planner
like GPS-ABT to incrementally refine a discrete set of actions [Seiler
et al., 2015]. Alternatively, we could use an optimizer to plan directly
in the infinite-dimensional space of trajectories [Zucker et al., 2013,
Schulman et al., 2014]. Incorporating trajectory optimization into a
macro action [Vien and Toussaint, 2015] could allow a POMDP solver
to break free from a finite set of action primitives.

8.2.3 Learning through Episodic Interaction

Section 8.1.3 showed how offline computation can be used to speed
up online evaluation. This was possible because manipulation is
often episodic: it consists of similar tasks being repeated many times
with only subtle variation between episodes. As a result, or same
reason, we expect that experience gained in one episode could prove
valuable in future episodes.

Consider the example shown in fig. 8.2. Suppose the robot has an
existing policy for grasping a cylindrical object under uncertainty
and in the presence of clutter (left). Now, for the first time, the robot
experiences an object in front of its goal (Episode (a)). If we were to
simply execute the policy, it would fail by hitting an obstacle.

However, similar to chapter 7, we could use the past experi-
ence as a heuristic to guide an online planner. Easier episodes, like
fig. 8.2 (a), could be used as an upper bound and harder episodes,

84 michael c. koval

like fig. 8.2 (a), could be used as a lower bound on the optimal value
function. The planner would detect the problem, search through the
space of possible solutions, and find a policy that completes the task.
The robot would then update its heuristic accordingly.

Leveraging past experience requires balancing the value provided
by a heuristic against the cost of evaluating it. The planner must
identify a relevant subset of past episodes to use as a heuristic. If
the set is too small, then the planner will lack the focus necessary to
find a high-quality solution. If the set is too large, then the cost of
evaluating the heuristic will dominate planning. We are optimistic
that domain knowledge, such as the relaxation used in chapter 7, and
a distance metric could be used to quickly identify relevant episodes
from a large corpus of experience.

8.2.4 Static Parameter Estimation

Our model assumes that its transition and observations models are
corrupted by noise that is independent between time steps when
conditioned on state. This assumption, required by the Markov
assumption, and is valid for difficult-to-model transient error. Unfor-
tunately, it is violated by systematic error in static parameters of the
model (e.g. geometry, friction coefficients).

Incorporating this uncertainty into our model requires adding
all unknown parameters to state. Unfortunately, estimating static
parameters with a particle filter quickly leads to particle deprivation
due to their deterministic dynamics. The Liu and West filter [Liu and
West, 2001] avoids degeneracy by kernel smoothing its belief over
static parameters. This smoothing operation is similar to—and could
be combined with—the kernel density estimate used to compute dual
importance weights (section 4.2.3) in the manifold particle filter.

Estimating static parameters provides another mechanism for a
robot to learn from experience. When a robot encounters an object
for the first time, it has little information about its physical properties
and plans a conservative policy to achieve the goal. As it completes
the task, the robot learns about the object and refines its belief state
over those properties. Next time the robot encounters that object, it
could transfer that knowledge to the initial belief state and complete
the task more quickly.

8.2.5 Multiple Sensing Modalities

Robotic manipulators typically have a variety of sensors, including
cameras, depth sensors, joint encoders, and contact sensors. This
thesis focused on proprioception and contact sensing at the exclusion
of other modalities. By doing so, we developed algorithms that cope

robust manipulation via contact sensing 85

with the unique challenges associated with those modalities.
We could further improve the performance of the system by in-

corporating observations from all of the robot’s sensors. This is
theoretically straightforward: our formulation can naturally incor-
porate any sensor for which a probabilistic model is available. The
Bayes update optimally combines all available observations into a
unified belief state. Different sensing modalities typically have uncor-
related error, so the conditional independence assumption we made
in chapter 3 still allows us to implement the update efficiently.

There are two key challenges to integrating vision and depth sens-
ing into our framework. First, it is challenging to build an probabilis-
tic model of these sensing modalities. Error is often spatio-temporally
correlated due to occlusion, lighting, specularity, and shadows. Sec-
ond, the space of observations is high-dimensional. A single image
captured by a camera contains millions of pixels, each of which has
one (depth image) or three (color image) channels. Most of this in-
formation is irrelevant to the task, so we must plan using algorithms
that improve—instead of degrade due to excess branching—when
observations are numerous.

8.3 Open Questions

We identified several open research questions in preparation of
this thesis. Answering these questions may be important to better
understand the theory of manipulation and advance the start-of-the-
art in robustness.

8.3.1 Measure-Theoretic Formulation

This thesis exploits the fact that contact constrains state to a manifold
(insight 1) to improve state estimation (chapters 4 and 5) and adap- This section may appear to be mathe-

matical pedantry. However, rigorous
definitions are required to make any
meaningful statements about probabil-
ity in the presence of contact.

tively discretize the state space (chapter 6). These algorithms rely on
our ability to factor the belief state b(st) = b(st ∈ Sc)b(st|Sc) + b(st ∈
Snc)b(st|Snc) into a distribution b(st|Sc) over the contact manifold
and a distribution b(st|Snc) over free space. However, this defini-
tion introduces an apparent inconsistency: How can b(st ∈ Sc) be
non-zero when Sc is a lower-dimensional manifold?

We formalize this question using measure theory. Our probability
space (S, F, µ) consists of the sample space S, the σ-algebra of events
F ⊆ 2S, and a probability measure µ : F → R. Most applications
assume that µ is isomorphic to the Lebesgue measure λ : F → R over
the unit interval [Rokhlin, 1962]. Since the n-dimensional Lebesgue
measure assigns zero measure to any set with dimension less than n,
there does not exist a measurable map between µ and λ because any

86 michael c. koval

such map would assign µ(Sc) = 0.
Instead, we express the probability measure µ = µc + µnc as the

sum of two measures over, where µc : 2Sc → R is a measure over
Sc and µnc is a measure over Snc. If µc and µnc are partial probability

measures and satisfy µc(Sc) + µnc(Snc), then µ is a probability measure A measure µ is a partial probability
measure if µ(∅) = 0, µ(S) ≤ 1, and µj

is σ-additive.
over S. Any such probability distribution µ′ over S can be defined
in terms of a probability density function p(s) with respect to µ. In
this case, the probability density function is the Radon–Nikodym
derivative of µ′ and

∫

A p(s)dµ(s) is the Lebesgue integral of p(s) over
A ⊆ S, both taken with respect to measure µ [Resnick, 1999].

We intuitively arrived at the same understanding by factoring Technically, the conditional belief
p(A|B) is undefined if p(B) = 0. This
is why we defined µ as the sum of
partial probability measures instead
of as the convex combination of full
probability measures. This is not a
concern for the MPF because it only
samples from A when it has positive
marginal probability.

the belief state as a weighted sum. The marginal b(st ∈ Sc) =
∫

Sc
b(st)dµ(st) is the total probability contributed by the partial proba-

bility measure µc, the probability of st residing on Sc. The conditional
distribution b(st|Sc) is simply the measure of the corresponding
partial probability measure normalized such that it sums to one.

8.3.2 Value of Information-Gathering

The planning algorithms introduced in thesis take information-
gathering actions when doing so is beneficial. Our results confirm
that this behavior is valuable: the policies produced by our algo-
rithms consistently outperform QMDP [Littman et al., 1995], a base-
line that does not take multi-step information-gathering actions.
However, planning these policies is more computationally expensive
than evaluating a policy that does not do information-gathering.

In some cases, information-gathering may not be necessary. Con-
tact is used both to reduce uncertainty and to complete the task. As
a result, the robot may naturally gain information while completing
the task. Section 6.5 showed an example of this: one instance of the
QMDP policy achieved success after the object naturally came into
contact with one of HERB’s fingertip contact sensors.

Chapter 6 also showed that increasing sensor coverage improves
the success rate of QMDP policy more than that of our policy. Fur-
ther increasing sensor resolution could continue to close the gap
between the two policies. Integrating other sensing modalities (sec-
tion 8.2.5), like vision or depth sensing, could have the same effect.
Designing an effective manipulation system requires balancing
hardware complexity (sensor coverage, resolution) with software
complexity (information-gathering, multiple sensing modalities).

Note that formulating manipulation as a POMDP (chapter 3) is
valuable even if information-gathering is not required. Modeling un-
certainty is required to plan robust policies, like QMDP, that do not
take information-gathering actions. Modern online POMDP solvers,

robust manipulation via contact sensing 87

like SARSOP [Kurniawati et al., 2008] and DESPOT [Somani et al.,
2013], use these policies as heuristics to guide their search. When
those heuristics are informative, i.e. the QMDP policy performs well,
DESPOT is negligibly slower than the heuristics that guide it.

8.3.3 Un-Modelled Error

Our model incorporates uncertainty in the initial belief state, tran-
sition model, and observation model. If these stochastic models are
accurate, then a Bayes filter optimally estimates state and a POMDP
solver optimally trade off between information-gathering and goal-
directed behavior. The same is not true if the model is inaccurate.

We intentionally introduced one source of error by assuming that
unknown properties, e.g. friction coefficient or object geometry, are
corrupted by independent noise at each time step. In reality, these
parameters are often static or highly correlated over time. This may
result in error accumulating, rather than cancelling. We found this to
be an acceptable compromise to avoid addressing the challenges of
estimating static parameters outlined in section 8.2.4.

Other sources of error are more insidious. A small error in object
geometry can cause a seemingly-infeasible observation to occur. If
this occurs during execution, the Bayes update would produce a
degenerate belief state. Sensor hysteresis, a common issue with force
sensors, can lead to the same outcome.

Both of these sources of errors are difficult to model and, even
if accurate models were available, other sources of un-modelled There is a stark distinction between

“known unknowns” that are included
in our stochastic model and “unknown
unknowns” that are not. It is fundamen-
tally impossible to optimize a policy
over an unknown distribution of error.

error would arise. It is difficult to even formulate this challenge
as a research question: any attempt to model un-modelled error
is inherently flawed. Discriminative learning provides a potential
solution: we can use any inconsistencies we detect during execution
to improve our models for future use. This is an exciting opportunity
to combine recent work in machine learning with the model-based
estimation and planning algorithms introduced by this thesis.

8.4 Final Thoughts

Our long-term vision is for a robot to maintain a probabilistic rep-
resentation of the world that is updated as its interacts the envi-
ronment. This representation should include uncertainty in the
configuration of the robot, the pose of objects in the environment,
the geometry of obstacles, and inaccuracies in the robot’s model of
physics. Using this representation, the robot may reason about the
propagation of uncertainty through multi-step manipulation tasks
and take sensing actions when necessary to achieve success.

88 michael c. koval

This thesis made a first step towards this vision by developing
state estimation (chapters 4 and 5) and planning (chapters 6 and 7)
algorithms tailored for manipulation with contact sensors. Consistent
with our vision, these algorithms maintain a principled represen-
tation of uncertainty based on Bayesian probability. Our proposed
future work (section 8.2) outlines several concrete extensions of these
algorithms to improve their generality and performance.

We are optimistic that the insights (section 1.2) and techniques
(section 8.1) developed by this thesis will help to realize this vision.

Bibliography

A.-A. Agha-mohammadi, S. Chakravorty, and N.M. Amato. FIRM:
Feedback controller-based information-state roadmap–a frame-
work for motion planning under uncertainty. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, 2011. doi:
10.1109/IROS.2011.6095010.

M. Athans. The role and use of the stochastic linear-quadratic-
Gaussian problem in control system design. IEEE Transactions on Au-

tomatic Control, 16(6):529–552, 1971. doi: 10.1109/TAC.1971.1099818.

J.A. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert,
M. Kazemi, M. Klingensmith, J. Libby, T.Y. Liu, N. Pollard, et al.
An integrated system for autonomous robotics manipulation. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2012. doi: 10.1109/IROS.2012.6385888.

H. Bai, D. Hsu, W.S. Lee, and V.A. Ngo. Monte Carlo value iteration
for continuous-state POMDPs. In Workshop on the Algorithmic

Foundations of Robotics, 2011. doi: 10.1007/978-3-642-17452-0_11.

P.J. Besl and N.D. McKay. A method for registration of 3-D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:
239–256, 1992. doi: 10.1109/34.121791.

J. Bimbo, L. D. Seneviratne, K. Althoefer, and H. Liu. Combining
touch and vision for the estimation of an object’s pose during
manipulation. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2013. doi: 10.1109/IROS.2013.6696931.

R. Bohlin and L.E. Kavraki. Path planning using lazy PRM. In IEEE

International Conference on Robotics and Automation, pages 521–528,
2000. doi: 10.1109/ROBOT.2000.844107.

R. Bolles and R. Paul. The use of sensory feedback in a pro-
grammable assembly system. Technical Report STAN-CS-396,
Computer Science Department, Stanford University, Stanford, CA,
1973.

http://dx.doi.org/10.1109/IROS.2011.6095010
http://dx.doi.org/10.1109/TAC.1971.1099818
http://dx.doi.org/10.1109/IROS.2012.6385888
http://dx.doi.org/10.1007/978-3-642-17452-0_11
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/IROS.2013.6696931
http://dx.doi.org/10.1109/ROBOT.2000.844107

90 michael c. koval

B. Boots, A. Byravan, and D. Fox. Learning predictive models
of a depth camera & manipulator from raw execution traces. In
IEEE International Conference on Robotics and Automation, 2014. doi:
10.1109/ICRA.2014.6907443.

M. Brokowski, M. Peshkin, and K. Goldberg. Curved fences for part
alignment. In IEEE International Conference on Robotics and Automation,
1993. doi: 10.1109/ROBOT.1993.292216.

E. Brunskill, L.P. Kaelbling, T. Lozano-Pérez, and N. Roy. Continuous-
state POMDPs with hybrid dynamics. In International Symposium on

Artificial Intelligence and Mathematics, 2008.

B. Calli, A. Singh, A. Walsman, S.S. Srinivasa, P. Abbeel, and A.M.
Dollar. The YCB object and model set: Towards common benchmarks
for manipulation research. In IEEE International Conference on

Advanced Robotics, 2015. doi: 10.1109/ICAR.2015.7251504.

E. Catto. Box2D. http://box2d.org, 2010.

H. Dang, J. Weisz, and P.K. Allen. Blind grasping: Stable robotic
grasping using tactile feedback and hand kinematics. In IEEE

International Conference on Robotics and Automation, pages 5917–5922,
2011. doi: 10.1109/ICRA.2011.5979679.

M.A. Diftler, J.S. Mehling, M.E. Abdallah, N.A. Radford, L.B. Bridg-
water, A.M. Sanders, R.S. Askew, D.M. Linn, J.D. Yamokoski, F.A.
Permenter, et al. Robonaut 2–the first humanoid robot in space. In
IEEE International Conference on Robotics and Automation, 2011. doi:
10.1109/ICRA.2011.5979830.

M.R. Dogar. Physics-Based Manipulation Planning in Cluttered Human

Environments. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,
2013.

M.R. Dogar and S.S. Srinivasa. Push-grasping with dexterous hands:
Mechanics and a method. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2010. doi: 10.1109/IROS.2010.5652970.

M.R. Dogar and S.S. Srinivasa. A planning framework for non-
prehensile manipulation under clutter and uncertainty. Autonomous

Robots, 33(3):217–236, 2012. doi: 10.1007/s10514-012-9306-z.

M.R. Dogar, V. Hemrajani, D. Leeds, B. Kane, and S. Srinivasa.
Proprioceptive localization for mobile manipulators. Technical
Report CMU-RI-TR-10-05, The Robotics Institute, Carnegie Mellon
University, 2010.

http://dx.doi.org/10.1109/ICRA.2014.6907443
http://dx.doi.org/10.1109/ROBOT.1993.292216
http://dx.doi.org/10.1109/ICAR.2015.7251504
http://box2d.org
http://dx.doi.org/10.1109/ICRA.2011.5979679
http://dx.doi.org/10.1109/ICRA.2011.5979830
http://dx.doi.org/10.1109/IROS.2010.5652970
http://dx.doi.org/10.1007/s10514-012-9306-z

robust manipulation via contact sensing 91

D.J. Duff. Visual motion estimation and tracking of rigid bodies by physical

simulation. PhD thesis, University of Birmingham, 2011.

D.J. Duff, J. Wyatt, and R. Stolkin. Motion estimation using physical
simulation. In IEEE International Conference on Robotics and Automation,
2010. doi: 10.1109/ROBOT.2010.5509590.

M.A. Erdmann and M.T. Mason. An exploration of sensorless
manipulation. IEEE Journal of Robotics and Automation, 1988. doi:
10.1109/56.800.

P.F. Felzenszwalb and D.P. Huttenlocher. Distance transforms of
sampled functions. Theory of Computing, 8(19):415–428, 2012. doi:
10.4086/toc.2012.v008a019.

K. Gadeyne, T. Lefebvre, and H. Bruyninckx. Bayesian hybrid
model-state estimation applied to simultaneous contact forma-
tion recognition and geometrical parameter estimation. Inter-

national Journal of Robotics Research, 24(8):615–630, 2005. doi:
10.1177/0278364905056196.

J.D. Gammell, S.S. Srinivasa, and T.D. Barfoot. BIT*: Batch in-
formed trees for optimal sampling-based planning via dynamic
programming on implicit random geometric graphs. In IEEE

International Conference on Robotics and Automation, 2015. doi:
10.1109/ICRA.2015.7139620.

E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A fast procedure
for computing the distance between complex objects in three-
dimensional space. In IEEE International Conference on Robotics

and Automation, 1988. doi: 10.1109/56.2083.

N.J. Gordon, Salmond D.J., and A.F.M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings

F, 1993. doi: 10.1049/ip-f-2.1993.0015.

S. Haidacher. Contact Point and Object Position from Force/Torque and

Position Sensors for Grasps with a Dextrous Robotic Hand. PhD thesis,
Technical University of Munich, 2004.

K. Hauser. Lazy collision checking in asymptotically-optimal motion
planning. In IEEE International Conference on Robotics and Automation,
pages 2951–2957, 2015. doi: 10.1109/ICRA.2015.7139603.

P. Hebert, T. Howard, N. Hudson, J. Ma, and J.W. Burdick.
The next best touch for model-based localization. In IEEE In-

ternational Conference on Robotics and Automation, 2013. doi:
10.1109/ICRA.2013.6630562.

http://dx.doi.org/10.1109/ROBOT.2010.5509590
http://dx.doi.org/10.1109/56.800
http://dx.doi.org/10.4086/toc.2012.v008a019
http://dx.doi.org/10.1177/0278364905056196
http://dx.doi.org/10.1109/ICRA.2015.7139620
http://dx.doi.org/10.1109/56.2083
http://dx.doi.org/10.1049/ip-f-2.1993.0015
http://dx.doi.org/10.1109/ICRA.2015.7139603
http://dx.doi.org/10.1109/ICRA.2013.6630562

92 michael c. koval

M. Horowitz and J. Burdick. Interactive non-prehensile manipulation
for grasping via POMDPs. In IEEE International Conference on Robotics

and Automation, 2013. doi: 10.1109/ICRA.2013.6631031.

K. Hsiao. Relatively robust grasping. PhD thesis, Massachusetts
Institute of Technology, 2009.

K. Hsiao, L.P. Kaelbling, and T. Lozano-Pérez. Grasping POMDPs. In
IEEE International Conference on Robotics and Automation, 2007. doi:
10.1109/ROBOT.2007.364201.

K. Hsiao, T. Lozano-Pérez, and L.P. Kaelbling. Robust belief-based
execution of manipulation programs. In Workshop on the Algorithmic

Foundations of Robotics, 2008.

Y.K. Hwang and N. Ahuja. Gross motion planning–a survey. ACM

Computing Surveys, 1992. doi: 10.1145/136035.136037.

N. Hyafil and F. Bacchus. Conformant probabilistic planning via
CSPs. In International Conference on Automated Planning and Scheduling,
2003.

S. Javdani, M. Klingensmith, J.A. Bagnell, N.S. Pollard, and S.S.
Srinivasa. Efficient touch based localization through submodularity.
In IEEE International Conference on Robotics and Automation, 2013. doi:
10.1109/ICRA.2013.6630818.

E.T. Jaynes. Information theory and statistical mechanics. The Physical

Review, 106(4):620–630, 1957. doi: 10.1103/PhysRev.106.620.

S.J. Julier and J.K. Uhlmann. A new extension of the Kalman filter
to nonlinear systems. In International Symposium on Aerospace/Defense

Sensing, Simulation, and Controls, 1997.

L.P. Kaelbling and T. Lozano-Pérez. Integrated task and motion
planning in belief space. International Journal of Robotics Research, 2013.
doi: 10.1177/0278364913484072.

L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial Intelligence,
1998. doi: 10.1016/S0004-3702(98)00023-X.

R.E. Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 1960. doi: 10.1115/1.3662552.

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. International Journal of Robotics Research, 30(7):
846–894, 2011. doi: 10.1177/0278364911406761.

http://dx.doi.org/10.1109/ICRA.2013.6631031
http://dx.doi.org/10.1109/ROBOT.2007.364201
http://dx.doi.org/10.1145/136035.136037
http://dx.doi.org/10.1109/ICRA.2013.6630818
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1177/0278364913484072
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1177/0278364911406761

robust manipulation via contact sensing 93

L.E. Kavraki, P. S̆vestka, J.-C. Latombe, and M.H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configu-
ration spaces. IEEE Transactions on Robotics and Automation, 12(4):
556–580, 1996. doi: 10.1109/70.508439.

M. Klingensmith, T. Galluzzo, C. Dellin, M. Kazemi, J.A. Bagnell,
and N. Pollard. Closed-loop servoing using real-time markerless arm
tracking. In IEEE International Conference on Robotics and Automation

Humanoids Workshop, 2013.

M. Klingensmith, M.C. Koval, S.S. Srinivasa, N.S. Pollard, and
M. Kaess. The manifold particle filter for state estimation on high-
dimensional implicit manifolds. In arXiv, 2016. arXiv:1604.07224

[cs.RO].

M.C. Koval, M.R. Dogar, N.S. Pollard, and S.S. Srinivasa. Pose
estimation for contact manipulation with manifold particle filters.
In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2013a. doi: 10.1109/IROS.2013.6697009.

M.C. Koval, M.R. Dogar, N.S. Pollard, and S.S. Srinivasa. Pose
estimation for contact manipulation with manifold particle filters.
Technical Report CMU-RI-TR-13-11, The Robotics Institute, Carnegie
Mellon University, 2013b.

M.C. Koval, N.S. Pollard, and S.S. Srinivasa. Pre- and post-
contact policy decomposition for planar contact manipulation
under uncertainty. In Robotics: Science and Systems, 2014. doi:
10.15607/RSS.2014.X.034.

M.C. Koval, J.E. King, N.S. Pollard, and S.S. Srinivasa. Robust
trajectory selection for rearrangement planning as a multi-armed
bandit problem. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2015a. doi: 10.1109/IROS.2015.7353743.

M.C. Koval, N.S. Pollard, and S.S. Srinivasa. Pose estimation for
planar contact manipulation with manifold particle filters. In-

ternational Journal of Robotics Research, 34(7), June 2015b. doi:
10.1177/0278364915571007.

M.C. Koval, D. Hsu, N.S. Pollard, and S.S. Srinivasa. Configuration
lattices for planar contact manipulation under uncertainty. In arXiv,
2016a. arXiv:1605.00169 [cs.RO].

M.C. Koval, D. Hsu, N.S. Pollard, and S.S. Srinivasa. Configuration
lattices for planar contact manipulation under uncertainty. In
Workshop on the Algorithmic Foundations of Robotics, 2016b.

http://dx.doi.org/10.1109/70.508439
https://arxiv.org/abs/1604.07224
https://arxiv.org/abs/1604.07224
http://dx.doi.org/10.1109/IROS.2013.6697009
http://dx.doi.org/10.15607/RSS.2014.X.034
http://dx.doi.org/10.1109/IROS.2015.7353743
http://dx.doi.org/10.1177/0278364915571007
https://arxiv.org/abs/1605.00169

94 michael c. koval

M.C. Koval, N.S. Pollard, and S.S. Srinivasa. Manifold representations
for state estimation in contact manipulation. In International Sympo-

sium of Robotics Research, 2016c. doi: 10.1007/978-3-319-28872-7_22.

M.C. Koval, N.S. Pollard, and S.S. Srinivasa. Pre- and post-contact
policy decomposition for planar contact manipulation under un-
certainty. International Journal of Robotics Research, 35(1–3):244–264,
JanuaryâĂŞ-March 2016d. doi: 10.1177/0278364915594474.

J.J. Kuffner and S.M. LaValle. RRT-Connect: An efficient approach
to single-query path planning. In IEEE International Conference on

Robotics and Automation, 2000. doi: 10.1109/ROBOT.2000.844730.

H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Efficient point-
based POMDP planning by approximating optimally reach-
able belief spaces. In Robotics: Science and Systems, 2008. doi:
10.15607/RSS.2008.IV.009.

S.M. LaValle and S.A. Hutchinson. An objective-based frame-
work for motion planning under sensing and control uncer-
tainties. International Journal of Robotics Research, 1998. doi:
10.1177/027836499801700104.

W.S. Lee, N. Rong, and D.J. Hsu. What makes some POMDP
problems easy to approximate? In Advances in Neural Information

Processing Systems, 2007.

Q. Li, C. Schürmann, R. Haschke, and H. Ritter. A control framework
for tactile servoing. In Robotics: Science and Systems, 2013. doi:
10.15607/RSS.2013.IX.045.

Z. Littlefield, D. Klimenko, H. Kurniawati, and K.E. Bekris. The
importance of a suitable distance function in belief-space planning.
In International Symposium of Robotics Research, 2015.

M.L. Littman. Algorithms for Sequential Decision Making. PhD thesis,
Brown University, 1996.

M.L. Littman, A.R. Cassandra, and L.P. Kaelbling. Learning policies
for partially observable environments: Scaling up. International

Conference on Machine Learning, 1995. doi: 10.1016/B978-1-55860-377-
6.50052-9.

C.K. Liu, M.X. Grey, and J. Lee. Dynamic Animation and Robotics
Toolkit. http://dartsim.github.io, 2016.

J. Liu and M. West. Combined parameter and state estimation in
simulation-based filtering. In Sequential Monte Carlo methods in practice.
Springer, 2001. doi: 10.1007/978-1-4757-3437-9_10.

http://dx.doi.org/10.1007/978-3-319-28872-7_22
http://dx.doi.org/10.1177/0278364915594474
http://dx.doi.org/10.1109/ROBOT.2000.844730
http://dx.doi.org/10.15607/RSS.2008.IV.009
http://dx.doi.org/10.1177/027836499801700104
http://dx.doi.org/10.15607/RSS.2013.IX.045
http://dx.doi.org/10.1016/B978-1-55860-377-6.50052-9
http://dx.doi.org/10.1016/B978-1-55860-377-6.50052-9
http://dartsim.github.io
http://dx.doi.org/10.1007/978-1-4757-3437-9_10

robust manipulation via contact sensing 95

T. Lozano-Pérez. Spatial planning: A configuration space approach.
IEEE Transactions on Computers, 1983. doi: 10.1109/TC.1983.1676196.

T. Lozano-Pérez, M. Mason, and R.H. Taylor. Automatic synthesis
of fine-motion strategies for robots. International Journal of Robotics

Research, 3(1):3–24, 1984. doi: 10.1177/027836498400300101.

K.M. Lynch, H. Maekawa, and K. Tanie. Manipulation and ac-
tive sensing by pushing using tactile feedback. In IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, 1992. doi:
10.1109/IROS.1992.587370.

L. Manuelli and R. Tedrake. Localizing external contact using
proprioceptive sensors: The contact particle filter. Under Review,
2016.

M.T. Mason. Mechanics and planning of manipulator pushing
operations. International Journal of Robotics Research, 5(3):53–71, 1986.
doi: 10.1177/027836498600500303.

W. Meeussen, J. Rutgeerts, K. Gadeyne, H. Bruyninckx, and J. De
Schutter. Contact-state segmentation using particle filters for
programming by human demonstration in compliant-motion
tasks. IEEE Transactions on Robotics, 23(2):218–231, 2007. doi:
10.1109/TRO.2007.892227.

A.Y. Ng and M. Jordan. PEGASUS: A policy search method for large
MDPs and POMDPs. In Uncertainty in Artificial Intelligence, 2000.

E. Nikandrova, J. Laaksonen, and V. Kyrki. Towards informative
sensor-based grasp planning. Robotics and Autonomous Systems, 62(3):
340–354, 2014. doi: 10.1016/j.robot.2013.09.009.

L. Odhner, L.P. Jentoft, M.R. Claffee, N.Corson, Y. Tenzer, R.R. Ma,
M. Buehler, R. Kohout, R.D. Howe, and A.M. Dollar. A compliant,
underactuated hand for robust manipulation. International Journal of

Robotics Research, 33(5), 2014. doi: 10.1177/0278364913514466.

P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Online
movement adaptation based on previous sensor experiences. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2011. doi: 10.1109/IROS.2011.6095059.

J. Pearl. Heuristics: intelligent search strategies for computer problem

solving. Addison-Wesley, 1984. ISBN 978-0201055948.

A. Petrovskaya and O. Khatib. Global localization of objects via
touch. IEEE Transactions on Robotics, 27(3):569–585, 2011. doi:
10.1109/TRO.2011.2138450.

http://dx.doi.org/10.1109/TC.1983.1676196
http://dx.doi.org/10.1177/027836498400300101
http://dx.doi.org/10.1109/IROS.1992.587370
http://dx.doi.org/10.1177/027836498600500303
http://dx.doi.org/10.1109/TRO.2007.892227
http://dx.doi.org/10.1016/j.robot.2013.09.009
http://dx.doi.org/10.1177/0278364913514466
http://dx.doi.org/10.1109/IROS.2011.6095059
http://dx.doi.org/10.1109/TRO.2011.2138450

96 michael c. koval

M. Phillips, B. J. Cohen, S. Chitta, and M. Likhachev. E-Graphs:
Bootstrapping planning with experience graphs. In Robotics: Science

and Systems, 2012. doi: 10.15607/RSS.2012.VIII.043.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In International Joint Conference on

Artificial Intelligence, 2003.

M. Pivtoraiko and A. Kelly. Efficient constrained path planning
via search in state lattices. In International Symposium on Artificial

Intelligence, Robotics and Automation in Space, 2005.

R. Platt, A.H. Fagg, and R.A. Grupen. Nullspace grasp control:
theory and experiments. IEEE Transactions on Robotics, 26(2):282–295,
2010a. doi: 10.1109/TRO.2010.2042754.

R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Pérez. Belief space
planning assuming maximum likelihood observations. In Robotics:

Science and Systems, 2010b. doi: 10.15607/RSS.2010.VI.037.

R. Platt, L. Kaelbling, T. Lozano-Pérez, and R. Tedrake. Simultaneous
localization and grasping as a belief space control problem. In
International Symposium of Robotics Research, 2011.

R. Platt., L.P. Kaelbling, T. Lozano-Pérez, and R. Tedrake. Non-
Gaussian belief space planning: Correctness and complexity. In
IEEE International Conference on Robotics and Automation, 2012. doi:
10.1109/ICRA.2012.6225223.

I. Pohl. Practical and theoretical considerations in heuristic search

algorithms. University of California, Santa Cruz, 1977.

J.M. Porta, N. Vlassis, M.T.J. Spaan, and P. Poupart. Point-based
value iteration for continuous POMDPs. Journal of Machine Learning

Research, 7:2329–2367, 2006.

S. Resnick. A Probability Path. Birkhäuser, Boston, 1999. ISBN
978-0817684082. doi: 10.1007/978-0-8176-8409-9.

ReFlex Hand. RightHand Robotics, 2016.

V.A. Rokhlin. On the fundamental ideas of measure theory. American
Mathematical Society, 1962.

M. Rosenblatt. Remarks on some nonparametric estimates of a
density function. The Annals of Mathematical Statistics, 27(3):832–837,
1956.

S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa. Online planning
algorithms for POMDPs. Journal of Artificial Intelligence Research, 2008.
doi: 10.1613/jair.2567.

http://dx.doi.org/10.15607/RSS.2012.VIII.043
http://dx.doi.org/10.1109/TRO.2010.2042754
http://dx.doi.org/10.15607/RSS.2010.VI.037
http://dx.doi.org/10.1109/ICRA.2012.6225223
http://dx.doi.org/10.1007/978-0-8176-8409-9
http://dx.doi.org/10.1613/jair.2567

robust manipulation via contact sensing 97

K. Salisbury, W. Townsend, B. Eberman, and D. DiPietro. Preliminary
design of a whole-arm manipulation system (WAMS). In IEEE

International Conference on Robotics and Automation, 1988. doi:
10.1109/ROBOT.1988.12057.

S. Sanan, M.H. Ornstein, and C.G. Atkeson. Physical human
interaction for an inflatable manipulator. In International Conference of

the IEEE Engineering in Medicine and Biology Society, pages 7401–7404,
2011. doi: 10.1109/IEMBS.2011.6091723.

T. Schmidt, R. Newcombe, and D. Fox. DART: Dense articulated
real-time tracking. In Robotics: Science and Systems, 2014. doi:
10.15607/RSS.2014.X.030.

T. Schmidt, K. Hertkorn, R. Newcombe, Z. Marton, M. Suppa, and
D. Fox. Depth-based tracking with physical constraints for robot
manipulation. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2015. doi: 10.1109/ICRA.2015.7138989.

A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, and
W. Burgard. Object identification with tactile sensors using bag-of-
features. In IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2009. doi: 10.1109/IROS.2009.5354648.

J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel. Motion planning with sequential
convex optimization and convex collision checking. International

Journal of Robotics Research, 33(9):1251–1270, August 2014. doi:
10.1177/0278364914528132.

K. Seiler, H. Kurniawati, and S.P.N. Singh. GPS-ABT: An online and
approximate solver for POMDPs with continuous action space. In
IEEE International Conference on Robotics and Automation, 2015. doi:
10.1109/ICRA.2015.7139503.

A.A. Sherstov and P. Stone. Function approximation via tile coding:
Automating parameter choice. In International Symposium on Abstrac-

tion, Reformulation, and Approximation, pages 194–205. Springer, 2005.
doi: 10.1007/3-540-44914-0.

D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In
Advances in Neural Information Processing Systems, 2010.

B.W. Silverman. Using kernel density estimates to investigate multi-
modality. Journal of the Royal Statistical Society. Series B (Methodological),
pages 97–99, 1981.

http://dx.doi.org/10.1109/ROBOT.1988.12057
http://dx.doi.org/10.1109/IEMBS.2011.6091723
http://dx.doi.org/10.15607/RSS.2014.X.030
http://dx.doi.org/10.1109/ICRA.2015.7138989
http://dx.doi.org/10.1109/IROS.2009.5354648
http://dx.doi.org/10.1177/0278364914528132
http://dx.doi.org/10.1109/ICRA.2015.7139503
http://dx.doi.org/10.1007/3-540-44914-0

98 michael c. koval

R.D. Smallwood and E.J. Sondik. The optimal control of partially
observable Markov processes over a finite horizon. Operations

Research, 21(5):1071–1088, 1973. doi: 10.1287/opre.21.5.1071.

D.E. Smith and D.S. Weld. Conformant graphplan. In National

Conference on Artificial Intelligence, 1998.

A. Somani, N. Ye, D. Hsu, and W.S. Lee. DESPOT: Online POMDP
planning with regularization. In Advances in Neural Information

Processing Systems, 2013.

S.S. Srinivasa, D. Berenson, M. Cakmak, A. Collet, M.R. Dogar,
A.D. Dragan, R.A. Knepper, T. Niemueller, K. Strabala, and
M. Vande Weghe. HERB 2.0: Lessons learned from developing
a mobile manipulator for the home. Proceedings of the IEEE, 100(8):
1–19, 2012. doi: 10.1109/JPROC.2012.2200561.

F. Stulp, E. Theodorou, J. Buchli, and S. Schaal. Learning to grasp
under uncertainty. In IEEE International Conference on Robotics and

Automation, pages 5703–5708, 2011. doi: 10.1109/ICRA.2011.5979644.

Y. Tenzer, L.P. Jentoft, and R.D. Howe. The feel of MEMS barometers:
Inexpensive and easily customized tactile array sensors. 21(3):89–95,
September 2014. doi: 10.1109/MRA.2014.2310152.

S. Thrun, D. Fox, and W. Burgard. Monte Carlo localization with
mixture proposal distribution. In National Conference on Artificial

Intelligence, 2000a.

S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo
localization for mobile robots. Technical Report CMU-CS-00-125,
Computer Science Department, Carnegie Mellon University, Pitts-
burgh, PA, 2000b.

S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT Press,
2005. doi: 10.1145/504729.504754.

E. Todorov. MuJoCo: Modeling, Simulation and Visualization of Multi-

Joint Dynamics with Contact. Roboti Publishing, Seattle, 2016.

W. Townsend. The BarrettHand grasper–programmably flexible part
handling and assembly. Industrial Robot: An International Journal, 27

(3):181–188, 2000. doi: 10.1108/01439910010371597.

J. van den Berg, P. Abbeel, and K. Goldberg. LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect
state information. In Robotics: Science and Systems, 2010. doi:
10.15607/RSS.2010.VI.017.

http://dx.doi.org/10.1287/opre.21.5.1071
http://dx.doi.org/10.1109/JPROC.2012.2200561
http://dx.doi.org/10.1109/ICRA.2011.5979644
http://dx.doi.org/10.1109/MRA.2014.2310152
http://reports-archive.adm.cs.cmu.edu/anon/2000/abstracts/00-125.html
http://dx.doi.org/10.1145/504729.504754
http://dx.doi.org/10.1108/01439910010371597
http://dx.doi.org/10.15607/RSS.2010.VI.017

robust manipulation via contact sensing 99

J. van den Berg, P. Abbeel, and K. Goldberg. LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect
state information. International Journal of Robotics Research, 31, 2011.
doi: 10.1177/0278364911406562.

G. van den Bergen. Proximity Queries and Penetration Depth Computa-

tion on 3D Game Objects. 2001.

A. Venkatraman, M. Hebert, and J.A. Bagnell. Improving multi-step
prediction of learned time series models. In National Conference on

Artificial Intelligence, pages 3024–3030, 2015.

N.A. Vien and M. Toussaint. POMDP manipulation via trajectory
optimization. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 242–249, 2015. doi: 10.1109/IROS.2015.7353381.

S.N. Šimunović. An Information Approach to Parts Mating. PhD thesis,
Massachusetts Institute of Technology, 1979.

R. Wang, K. Zhou, J. Snyder, X. Liu, H. Bao, Q. Peng, and B. Guo.
Variational sphere set approximation for solid objects. The Visual

Computer, 22(9-11):612–621, 2006. doi: 10.1007/s00371-006-0052-0.

P.M. Will and D.D. Grossman. An experimental system for computer
controlled mechanical assembly. IEEE Transactions on Computers, 100

(9):879–888, 1975. doi: 10.1109/T-C.1975.224333.

J. Xiao. Automatic determination of topological contacts in the
presence of sensing uncertainties. In IEEE International Conference on

Robotics and Automation, 1993. doi: 10.1109/ROBOT.1993.291962.

D. Xu, G.E. Loeb, and J.A. Fishel. Tactile identification of objects
using Bayesian exploration. In IEEE International Conference on

Robotics and Automation, 2013. doi: 10.1109/ICRA.2013.6631001.

H. Zhang and N.N. Chen. Control of contact via tactile sensing. IEEE

Transactions on Robotics and Automation, 16(5):482–495, 2000. doi:
10.1109/70.880799.

L. Zhang and J.C. Trinkle. The application of particle filtering to
grasping acquisition with visual occlusion and tactile sensing. In
IEEE International Conference on Robotics and Automation, 2012. doi:
10.1109/ICRA.2012.6225125.

L. Zhang, S. Lyu, and J.C. Trinkle. A dynamic Bayesian approach
to simultaneous estimation and filtering in grasp acquisition. In
IEEE International Conference on Robotics and Automation, 2013. doi:
10.1109/ICRA.2013.6630560.

http://dx.doi.org/10.1177/0278364911406562
http://dx.doi.org/10.1109/IROS.2015.7353381
http://dx.doi.org/10.1007/s00371-006-0052-0
http://dx.doi.org/10.1109/T-C.1975.224333
http://dx.doi.org/10.1109/ROBOT.1993.291962
http://dx.doi.org/10.1109/ICRA.2013.6631001
http://dx.doi.org/10.1109/70.880799
http://dx.doi.org/10.1109/ICRA.2012.6225125
http://dx.doi.org/10.1109/ICRA.2013.6630560

100 michael c. koval

M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith,
C.M. Dellin, J.A. Bagnell, and S.S. Srinivasa. CHOMP: Covariant
hamiltonian optimization for motion planning. International Journal of

Robotics Research, 32(9–10):1164–1193, August/September 2013. doi:
10.1177/0278364913488805.

http://dx.doi.org/10.1177/0278364913488805

	Introduction
	Challenges with Contact Sensing for Manipulation
	Key Insights to Our Approach
	Contributions

	Background
	Open-Loop Pushing Manipulation under Uncertainty
	Contact Sensing for Manipulator Control
	Contact Sensing for State Estimation
	Motion Planning under Uncertainty
	Planning for Manipulation under Uncertainty

	Approach
	Transition Model
	Observation Model for Proprioception
	Observation Model for Contact Sensors
	Value and Reward Functions
	Simplified Models

	Object Pose Estimation
	Particle Filter
	Conventional Proposal Distribution
	Degeneracy of the Conventional Proposal Distribution
	Dual Proposal Distribution

	Manifold Particle Filter
	Estimating the Probability of Contact
	Sampling from the Dual Proposal Distribution
	Computing Dual Importance Weights
	Mixture Proposal Distribution

	Simulation Experiments
	Experimental Design
	Conventional vs. Manifold Particle Filter
	Spatio-Temporal Sensor Resolution
	Contact Manifold Representation
	Sampling Failures
	Mixing Rate

	Real-Robot Experiments
	Discussion

	Robot Configuration Estimation
	Implicitly Representing the Contact Manifold
	Sampling via Constraint Projection
	Computing Signed Distance
	Simulation Experiments
	Experimental Design
	Conventional vs. Manifold Particle Filter
	Projection Strategy

	Real-Robot Experiments
	Discussion

	Hand-Relative Planning
	Policy Decomposition
	Post-Contact Policy
	Initial Belief Points
	State Space Discretization

	Pre-Contact Trajectory
	Graph Construction
	Search Algorithm
	Heuristic Function

	Simulation Experiments
	Experimental Design
	Post-Contact Policy
	Pre-Contact Trajectory
	Sensor Coverage

	Real-Robot Experiments
	Discussion

	Configuration Space Planning
	Configuration Lattice
	Action Templates
	Configuration Lattice POMDP

	Online POMDP Planner
	Configuration Lattice Construction
	Hand-Relative Upper Bound
	Hand-Relative Lower Bound

	Simulation Experiments
	Experimental Design
	Policies under Evaluation
	Rel-POMDP Experiments
	Lat-POMDP Experiments
	Upper Bound Validation

	Discussion

	Conclusion
	Discussion
	Formulating Manipulation as a POMDP
	Respecting the Contact Constraint
	Combining Online and Offline Planning
	Focusing Effort with Lazy Evaluation

	Limitations and Future Work
	Planning in a Continuous State Space
	Planning in a Continuous Action Space
	Learning through Episodic Interaction
	Static Parameter Estimation
	Multiple Sensing Modalities

	Open Questions
	Measure-Theoretic Formulation
	Value of Information-Gathering
	Un-Modelled Error

	Final Thoughts

	Bibliography

