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Abstract

As we work to move robots out of factories and into human environments, we must empower
robots to interact freely in unstructured, cluttered spaces. Humans do this easily, using di-
verse, whole-arm, nonprehensile actions such as pushing or pulling in everyday tasks. These
interaction strategies make difficult tasks easier and impossible tasks possible.

In this thesis, we aim to enable robots with similar capabilities. In particular, we formu-
late methods for planning robust open-loop trajectories that solve the rearrangement planning

problem using nonprehensile interactions. In these problems, a robot must plan in a cluttered
environment, reasoning about moving multiple objects in order to achieve a goal.

The problem is difficult because we must plan in continuous, high-dimensional state and
action spaces. Additionally, during planning we must respect the physical constraints induced
by the nonprehensile interaction between the robot and the objects in the scene.

Our key insight is that by embedding physics models directly into our planners we can
naturally produce solutions that use nonprehensile interactions such as pushing. This also
allows us to easily generate plans that exhibit full arm manipulation and simultaneous object
interaction without the need for programmer defined high-level primitives that specifically
encode this interaction. We show that by generating these diverse actions, we are able to find
solutions for motion planning problems in highly cluttered, unstructured environments.

In the first part of this thesis we formulate the rearrangement planning problem as a clas-
sical motion planning problem. We show that we can embed physics simulators into random-
ized planners. We propose methods for reducing the search space and speeding planning time
in order to make the planners useful in real-world scenarios.

The second part of the thesis tackles the imperfect and imprecise worlds that reflect the
true reality for robots working in human environments. We pose the rearrangement plan-
ning under uncertainty problem as an instance of conformant probabilistic planning and offer
methods for solving the problem.

We demonstrate the effectiveness of our algorithms on two platforms: the home care robot
HERB and the NASA rover K-Rex. We demonstrate expanded autonomous capability on
HERB, allowing him to work better in high clutter, completing previously infeasible tasks and
speeding feasible task execution. In addition, we show these planners increase autonomy for
the NASA rover K-Rex by allowing the rover to actively interact with the environment.
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Introduction

(a) HERB manipulating objects on a table

(b) K-Rex
Figure 1: (a) The HERB personal home
robot. (b) The K-Rex lunar explorer.
These robots will be used to demon-
strate the effectiveness of our algo-
rithms.

Recent years have seen an increased emphasis on robots perform-
ing autonomous manipulation tasks. These tasks require robots to
actively interact with and change their environment. Factory robots
were the first to perform such tasks. These robots work in highly
structured worlds, with fully known environments and very focused
tasking. As we move robotic technology forward, we must advance
their capabilities to allow them to work in unstructured and cluttered
environments. These advancements will allow us to transition robots
from their highly specific and ordered workspaces to complex and
often disorganized human environments.

Most commonly used autonomous manipulators rely solely on
the ability to pick-and-place objects, carefully moving one object at
a time. Humans use a much more diverse suite of actions to accom-
plish everyday tasks. Consider grabbing an item from the back of a
cluttered pantry. You may push aside items using your elbow, fore-
arm and the back of your hand, while simultaneously caging the
coveted item in your palm and dragging it to the front to grab it. We
rely on whole arm and whole body nonprehensile interactions such
as pushing or pulling in order to accomplish even basic tasks.

To transition robots into human environments we must empower
them with these same strategies. In this thesis, we develop planners
that generate open-loop strategies using nonprehensile interaction to
solve the rearrangement planning problem. In these problems, a robot
must manipulate several objects in clutter in order to achieve a goal.
Our planners must be capable of generating solutions that allow
simultaneous object interaction and whole arm manipulation. We
believe these properties to be critical to efficiently working in clutter.
Additionally, we require our planners quickly generate solutions
robust to uncertainty in the planning environment.

Developing planners that exhibit these behaviors poses a number
of challenges we must consider. We characterize these challenges
and present a set of insights that inform our approach. From these
insights, we develop a suite of planners that generate robust solutions
to rearrangement planning problems that exhibit diverse whole arm
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interactions.

Challenge 1: Integrating nonprehensile interactions. Nonprehensile
interactions have been shown to be critical for pre-grasp manipula-
tion [29, 65], large object manipulation [33] and simultaneous object
interaction [48, 64]. In addition, they can make manipulation possible
for robots not traditionally designed for interaction tasks. Consider
the K-Rex robot from Fig.1b. Unless extra payload explicitely de-
signed for performing manipulation tasks is added to the rover, this
robot must rely on interactions such as pushing and toppling in or-
der to manipulate the environment.

Purely geometric planners struggle to reason about nonprehensile
interaction because objects do not move rigidly with the robot. In-
stead, the motion of objects evolves under non-holonomic constraints
that represent the physics of the environment and the contact be-
tween robot and objects. Our planning algorithms must respect these
motion constraints.

Challenge 2: Fast planning in high-dimensional state and action spaces.

Our goal is to solve problems that require contact and interaction
with objects in the environment. This interaction changes the plan-
ning environment. Because of this, we must track the objects the
robot interacts with in our state during planning. This leads to a
search space size linear in the number of objects the manipulator
can move. In addition, we wish to plan motions for a high degree-
of-freedom (DOF) robot such as the HERB robot [115] (Fig.1a). Our
planning algorithms must be capable of quickly planning in high
dimensional state and action spaces.

Challenge 3: Planning robust trajectories. We require our planners gen-
erate open-loop trajectories that are robust to uncertainty in object
pose, physics modeling, and trajectory execution. This is particularly
hard for planning with pushing interactions. The contact between
robot and objects causes physics to evolve in complex, non-linear
ways and quickly leads to multimodal and non-smooth distribu-
tions. Consider Fig.2. Here the initial uncertainty in the object pose
appears Gaussian, but after a single push the distribution has sharp
edges and is multimodal and unstructured. Our planners must be
capable of handing complex evolution of uncertainty in order to pro-
duce trajectories robust to noise in object pose, action execution and
modeling of physical interactions.

Figure 2: Contact between the robot
and object quickly leads to multimodal
and non-smooth distributions.

Approach

This thesis describes a suite of planners that address these three
challenges. In Part I of the thesis, we describe a set of deterministic
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planners that solve rearrangement planning under the assumption
of perfect knowledge of the world and perfect modeling of robot
motions and interactions. These planners address the first two chal-
lenges. We then augment these planners to allow us to address the
third challenge and handle the uncertainties prevalent when execut-
ing tasks in the real world in Part II.

Randomized Rearrangement Planning in Deterministic Worlds

Randomized planners such as the Probabilistic Roadmap (PRM) [62]
or Rapidly Exploring Random Tree (RRT) [76] have been shown
to work well for high-dimensional state and action spaces. These
planners typically rely on being able to quickly solve the two-point
boundary value problem (BVP) to connect two states in state space.
The use of pushing actions introduces non-holonomic constraints in
the planning problem that make solving the two-point BVP difficult.
In particular, the motion of the pushed object is directly governed
by the physics of the contact between robot and object. To empower
our planner to reason about object motion, we embed a physics model

into the core of a kinodynamic randomized planner [77]. This allows us
eliminate the need for simplifying assumption about object geometry
and robot-object interaction prevalent in prior work [5, 15]. In this
thesis we demonstrate the use of both an analytic physics model with
closed form representation and commercial physics models such as
Box2D [3].

We first formulate the problem under the quasistatic assump-
tion (Ch.3). This increases tractability by allowing us to eliminate
the need to consider velocities in our search space, instead planning
only in configuration space. While this limits our solution space,
the quasistatic assumption applies in many manipulation applica-
tions [6, 7, 8, 24, 34, 89, 97, 129]. We show that we can reliably pro-
duce solutions for multiple tasks including pushing objects to goal
locations and clearing areas of clutter.

Even in this reduced state space the use of physics models within
our planner introduces extra computational complexity that slows
the search. Additionally, our formulation in Ch.3 lacks goal-directed
actions that explicitly aim to create the contact with objects critical
to rearrangement tasks. This further slows planning time. In Ch.4
we demonstrate two techniques to regain speed. First, we show that
we can increase the quantity of searched space by employing paral-
lelization during tree growth. Second, we increase the quality of the
search by improving the actions the planner considers. In particular,
we show our framework is amenable to including motion primitives
prevalent in prior works [15, 36, 94]. By coupling these primitives
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with our embedded physics model we strengthen their applicability,
allowing them to demonstrate whole arm interaction with multiple
objects simultaneously. We demonstrate that allowing the planner to

consider both low-level robot motions and higher level object relative primi-

tives improves planning times and produces a powerful planner able to
solve many problems.

Limiting the search to quasistatic interactions allows us to manage
the complexity of the search by planning only in configuration space.
However, embedding physics models allows us to model dynamic
interactions such as striking an object and letting it slide. Naive in-
tegration of these dynamic interactions into our planner doubles the
search space by requiring incorporation of velocities into the state.
This can have a crippling effect on the search time for our planner.
We observe that for our problems the absence of any external forces
other than gravity causes a manipulated object to eventually come to
rest due to friction. In Ch.5, we show that we can use this observation
to avoid the increased planning complexity by considering only dy-

namic actions that lead to statically stable states, i.e. we require all objects
in the scene to come to rest before the robot executes a new action.
This increases the space of problems our planner can handle with
only minor penalties to planning time.

Robust Rearrangement Planning

The planners we present in Ch.3-Ch.5 allow us to solve rearrange-
ment problems under perfect knowledge of the planning environ-
ment. Such perfect conditions rarely exist. In the second half of the
thesis we construct planners that consider the uncertainties prevalent
in the real world. In Ch.8 we incorporate uncertainty by exploiting
the fact that each call to a randomized planner will generate a funda-
mentally different trajectory and each generated trajectory varies in
its likelihood to achieve the goal when executed in uncertain environ-
ments. We formulate rearrangement planning under uncertainty as a
trajectory selection problem. We use the planners developed in Part I
to generate several candidate trajectories. Then we describe a bandit
style algorithm to efficiently evaluate these candidates and select the
most robust.

Framing the problem as a trajectory selection problem allows us
to use our planners with no modification and deal with uncertainty
entirely as a post-processing step. While attractive, it does not allow
us to make decisions during planning. Prior work [34] has shown
pushing interactions can be inherently uncertainty reducing. In Ch.9
we provide a set of metrics that allow us to characterize the performance

of individual actions under uncertainty and use this to identify actions
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like the one pictured in Fig.3. We integrate these metrics into our ran-
domized planning framework and show these allow us to produce
more robust plans by handling uncertainty at plan time.

Figure 3: Non-prehensile interactions
like pushing can be inherent uncer-
tainty reducing. Here a simple push
collapsed initial uncertainty in the pose
of the circular object.

This augmentation to our planner allows us to characterize per-
formance of individual actions but does not consider the evolution of
uncertainty throughout sequences of actions. In Ch.10 we frame our
problem as an instance of an Unobservable Markov Decision Process
(UMDP). The nonprehensile interactions we consider lead to non-
Gaussian and non-smooth distributions (Fig.2) that have no closed
form representation. We leverage the physics model used during
planning to perform Monte Carlo simulations of action sequences.
This allows us to model the complicated evolution of uncertainty
induced by the nonprehensile interaction. We show we can extend
Monte Carlo algorithms for solving Markov Decision Precesses to the
UMDP domain and use fast heuristic planners to quickly evaluate the
robustness of action sequences. This allows us to produce trajectories
that perform well under real world uncertainties.

Contributions

In summary, we propose the following contributions in this thesis:

1. A kinodynamic randomized planner capable of solving complex
rearrangement problems using nonprehensile interactions such as
pushing.

2. A set of metrics that identify and measure the robustness of in-
dividual actions and full rearrangement plans to uncertainties
prevalent at execution time.

3. A set of methods that use Monte Carlo simulations to estimate
these metrics, allowing us to identify and generate robust open-
loop rearrangement plans.

4. Experimental validation of our developed planners against state-
of-the-art baseline approaches on multiple platforms.
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Figure 4: Trade-offs of the proposed
planners in this thesis. Larger diameter
points indicate greater robustness to
uncertainty. Each of the proposed plan-
ners demonstrates trade-offs between
implementation complexity, planning
time and robustness to uncertainty.

We note that this thesis does not offer a single “golden” solution
to the rearrangement planning problem. The planners provided here
offer trade-offs between implementation complexity, planning time
and robustness of the solution (Fig.4). Throughout the thesis we
demonstrate these trade-offs on a consistent set of problems for both
the HERB robot [115] (Fig.1a) performing household tasks and the
KRex lunar rover (Fig.1b) performing tasks in outdoor environments.
For each robot, we provide results and anlysis from simulations and
real-world experiments. We leave it to the reader to decide the best
solutions given the constraints of their individual problem.
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Related Work

This work lies at the intersection of planning among movable obstacles

and nonprehensile manipulation. We provide an overview of related
work in each of these individual fields.

1.1 Planning Among Movable Obstacles

We wish to perform tasks that require the robot to work in clutter.
To achieve such tasks robots must be able to reason about moving
multiple objects. Wilfong [125] was the first to show that problems
of this type are NP-hard. However, it has been shown that imposing
simplifying assumptions can make the problem tractable.

Figure 1.1: An example solution to a
Navigation Among Movable Obstacles
problem [116]

One of the first formalizations of this class of planning problems
was the Navigation Among Movable Obstacles (NAMO) prob-
lem [116, 118] (Fig.1.1). Here, the robot is tasked with planning to
navigate from a start configuration to a goal among several movable
obstacles. These problems differ from prior navigation problems in
that the robot is not forced to adapt a plan to the environment but
can instead conform the environment to the robot’s goal. In other
words, the robot can reason about changing the environment through
contact to facilitate goal achievement.

The rearrangement planning problems we consider are an ex-
tension of NAMO into the manipulation domain. Here the robot is
tasked with reasoning about the displacement of multiple objects in
order to achieve a manipulation goal. Initial work in the field focused
on the use of pick-and-place actions to solve the problem [96, 119].
While effective, the class of solvable problems was limited to con-
taining only graspable items. Other work [18, 35, 36] showed that
empowering the robot to consider nonprehensile actions in addition
to pick-and-place actions broadened the functionality of the robot,
allowing robots to solve scenes with items too large or heavy for the
robot to grasp.

The NAMO problem and the rearrangement problem are example
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problems in the general domain of planning among movable obstacles.
Solutions to the problem can generally be grouped into three cat-
egories: (1) forward search over the free space, (2) forward search
over the state space or (3) backchaining. In the following sections we
summarize the three methods and their applicability to our domain.

Free Space Search

C1

C2

C3

C4

S(C1) G(C4)

C2

C3

LoveSeatTable1Table2

Table1

Table1

Couch

Figure 1.2: An example of rearrange-
ment planning using free space search
([116]). Here the planner constructs a
graph of free space components and the
objects that form the borders.

We first define state space in the context of the planning among mov-
able obstacles problems. A state is defined as the joint states of the
robot and all the movable objects. Under this definition, the size of
the state space increases linearly with the number of movable ob-
jects in the scene. To avoid searching this high-dimensional space,
one approach to the planning among movable obstacles problem is
to track the reachable free space. This is the workspace reachable by
the robot without moving objects. The planning problem can then be
framed as a search for a sequence of actions that place the robot and
the goal in the same free space component. Planners which reason
over this space [116, 123] often use a hierarchical structure. Here a
high-level planner reasons about connecting disjoint regions, while a
low-level planner is used to move the robot within a single free space
component.

State Space Search

In practice, tracking the free space is often difficult. Alternatively, it is
often favorable to plan in state space and use heuristics and problem
decomposition to limit the searched region of space.

When performing a forward search over state space, the problem
is framed as a search for any sequence of actions or controllers that
moves from a start state to any state that represents a goal. Many
works have explored modified version of traditional navigation and
manipulation planning algorithms. For example, Ben-Shahar and
Rivlin [18] perform forward search using a hill-climbing method to
traverse a cost-function. This method suffers from two significant
drawbacks. First, the cost function represents cost to achieve the
goal. Building such a function requires reverse simulation of pushing
actions. This is difficult in the general case.

Second, such a cost function relies on a fully specified goal. Often
in rearrangement planning problems, the goal is underspecified. In
these cases, the goal represents a region of the joint state space rather
than a single point. For example, we consider problems that specify
the final location for only one of the movable objects. This induces an
infinite set of goals with all other movable objects in any location in
free space.
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Other solutions follow the terminology for manipulation plan-
ning introduced by Simeon et. al. [112] and structure the problem as
reasoning over two types of action classes:

• Transit - The robot moves on its own, without making contact with
any movable objects

• Transfer - The robot manipulates one or more movable objects

Then the problem becomes searching for a sequence of transit and
transfer actions that lead to a goal state. Such problems can be solved
using search algorithms suitable for high dimensional problems, such
as the RRT. Tractibility is maintained by limiting search to alternating
sequences of transit and transfer actions [96].

Further tractibility of the problem can be gained by decomposing
the full problem into a sequence of subgoals involving subsets of ob-
jects [17, 31, 72, 99]. However, such decomposition explicitly forbids
multi-object contact, eliminating a large set of feasible solutions.

Figure 1.3: An example of a state space
search ([15]). Here the planner looks
for a sequence of transit and transfer
actions that move through the state
space to achieve the goal.

Perhaps the work closest to our is the DARRT planner [15]. Here
the planner uses an RRT to reason over a set of high-level primitives
targeted at a single object. To maintain tractability, the authors exploit
the fact that the constraints on most motion, including nonprehensile
motion, limit the application of many primitives to a much lower-
dimensional space that the full configuration space. We use similar
ideas in our formulation but remove the reliance on primitives, re-
ducing programmer burden and allowing multi-object contact and
whole arm interaction.

Backchaining

Figure 1.4: An example of a solution to
rearrangement planning obtained by
backchaining([119]). The goal is to grab
the hammer. To do this, the planner
must move the gear. To move the gear,
the fan must be moved.

Most of the planners presented in the previous two sections provide
methods for solving the planning among movable obstacles prob-
lem through forward reasoning. In other words, starting from the
initial configuration, the planners search for a sequence of objects to
move to achieve a goal configuration. Several works [35, 71, 119] have
solved the rearrangement planning problem using a backchaining
technique [41, 56, 85, 129]. The planners begin reasoning from the
goal, selecting an action and computing the set of objects that must
be moved in order to execute that action. This method is applied
recursively, building a list and ordering of objects to move in the pro-
cess. The planners reason over a predefined set of action primitives
and attempt to minimize the number of actions required to solve
the problem. To reduce the search space the planners rely on the as-
sumption of monotonicity [35, 117, 119] - each object can be moved
at most once. In practice, this assumption can be quite limiting. Re-
cent work has proposed methods to eliminate this assumption [71],
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Free
space
search

Forward
state-space

search Backchaining

Single
object

interaction
Monotone

plans
Contact

primitives

Fully
specified

goal
Nonprehensile

interaction

[9] X X X
[15] X X X X
[17] X X X X X
[18] X X X
[31] X X X
[35] X X X X X
[36] X X X X X
[72] X X X X
[71] X X X X
[94] X X X X
[96] X X X
[99] X X X X

[112] X X X X
[116] X X X X
[117] X X X X
[119] X X X X
[123] X X X

Table 1.1: Planning among movable
objectsfreeing the planners to interact with objects multiple times. We fol-

low this lead: our planning framework allows the robot to repeatedly
make and break contact with objects.

Tab.1.1 provides a summary of the works cited in this section and
their techniques and assumptions.

1.2 Nonprehensile Manipulation

Many definitions of nonprehensile have been proposed in the lit-
erature [5, 88, 128]. We will use the simple definition offered by
Mason [92]: nonprehensile manipulation is manipulation without
grasping.

One of the first uses of nonprehensile manipulation was as a strat-
egy for reducing uncertainty in object pose for parts alignment in
manufacturing [7, 21, 23, 42, 40, 46, 54, 103, 128, 129]. These systems
used vibration, pushing, rolling and sliding to reliably position and
orient parts.

Figure 1.5: Example parts feeder using
stationary fences to align objects [103]

Peshkin [103] noted that design of these parts-feeding and plan-
ning robot motion strategy can be considered duals to one another:
in a parts-feeder the workpieces move and interact with stationary
elements of the machine, while in a robot motion plan the moving
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robot interacts with stationary parts. Studying parts feeding greatly
improved the understanding of nonprehensile interaction and created
a baseline for the strategies used by robotic manipulators today.

We focus on the most studied form of nonprehensile manipula-
tion by robots: pushing. Many early works analyzed the motion of
a pushed object [86, 84, 91, 87, 102]. The analytical models devel-
oped in these works are the foundation for many applications of
manipulation by pushing, including ours. Perhaps one of the earliest
formulations of a planner using nonprehensile actions was offered by
Akella and Mason [8]. They introduce the Planar Pose Problem: given
a polygonal object on a horizontal table with known start pose (posi-
tion and orientation), find a sequence of pushing actions to move the
object to a goal pose.

The use of pushing imposes constraints not present in traditional
manipulation planning algorithms. In particular, the set of forces
that can be imparted on the object are limited by the geometric rela-
tionship between the robot and the object. This means, for example,
that once an object is pushed in one direction, the action cannot be
reversed by simply reversing the trajectory of the robot. Additionally,
the motion of the pushed object is constrained to the support sur-
face. The existence of these constraints must be incorporated into the
motion planning problem.

Figure 1.6: An example plan for a
pushed object treated as a nonholonom-
ically constrained vehicle [87]

Similar to the planning among movable objects problem, many
works have employed traditional motion and maniplation plan-
ning techniques to solve the planar pose problem. For example, it
has been shown that an object moved by stable pushing with line
contact behaves the same as a nonholonomically constrained vehi-
cle [86, 87]. This allows for the extension of planners originally de-
rived for planning for nonholonomic vehicles [14, 79] to the domain
of pushing [65, 87].

Alternatively, algorithms common to manipulation planning such
as the Probabilistic Roadmap (PRM) [61] or the Rapidly Exploring
Random Tree (RRT) [76] have been adapted to handle pushing con-
straints [5, 94, 127].

Finally, some works have used trajectory optimization techniques
to solve the problem [8, 88] by formulating the nonprehensile interac-
tion as a set of constraints on the problem.

We draw inspiration and guidance from many of these works. We
employ an RRT with a quasistatic pushing model, but extend beyond
the planer pose problem to consider contacts with multiple objects by
robots with complex geometries.
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The Rearrangement Planning Problem R Robot
XR Robot state space
M Movable objects
Xi Movable i state space
O Static obstacles
X Planning state space

X f ree Free state space
XG Goal region
U Control space
ξ Feasible trajectory
π Control sequence

Table 2.1: Rearrangement planning
terminology

Figure 2.1: All objects in the movable
set (M) can be moved to achieve the
goal. Objects in the obstacle set (O)
must be avoided.

Assume we have a robot, R, endowed with state space XR. The robot
is working in a bounded world populated with a set,M, of objects
that the robot is allowed to manipulate. Each object is endowed with
state space Xi for i = 1 . . . m. Additionally, there is a set, O, of ob-
stacles which the robot is forbidden to contact. Fig.2.1 depicts each of
these sets.

We define the state space of the planner X as the Cartesian prod-
uct space of the state spaces of the robot and objects: X = XR × X1 ×

· · · × Xm. We define a state x ∈ X by x =
(
xR, x1, . . . , xm

)
, xR ∈

XR, xi ∈ Xi ∀i.
We define the free state space X f ree ⊆ X as the set of all states

where the robot and objects are not contacting the obstacles and
are not penetrating themselves or each other. Note that this allows
contact between robot and movable objects, which is critical for ma-
nipulation.

We consider pushing interactions. Thus, the state x evolves non-
linearly based on the physics of the manipulation, i.e. the motion of
the objects is governed by the contact between the objects and the
robot. We describe this evolution as a non-holonomic constraint:

ẋ = f (x, u) (2.1)

where u ∈ U is an instantaneous control input. The function f en-
codes the physics of the environment.

In most manipulation problems, the goal is often under-specified.
We define a goal region XG ⊆ X f ree as the set of states with the
relevant subspace of the state meeting the specification. For example,
in [116] only the robot’s goal is specified. To represent this goal, we
can denote the robot’s goal as xG ∈ XR. Then we define XG as the set
of all states with the robot in state xG. In many other problems [33]
the task is to move a specific object to a specific place (or a set of
places). In these problems, we denote this object as the goal object
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G ∈ M with its state space XG and its goal as the set G ⊆ XG. We
define XG ⊆ X f ree as the set of all states with the goal object in G.

The task of the rearrangement planning problem is to find a fea-
sible trajectory ξ : R

≥0 → X f ree starting from a state ξ(0) ∈ X f ree

and ending in a goal region ξ(T) ∈ XG ⊆ X f ree at some time T ≥ 0.
A path ξ is feasible if there exists a mapping π : R

≥0 → U such
that ξ̇(t) = f (ξ(t), π(t)) for all t ≥ 0. This requirement ensures we
can satisfy the constraint f while following ξ by executing the con-
trols dictated by π. Tab.2.1 provides a summary of the terminology
introduced in this section.



3

Quasistatic Rearrangement Planning

This chapter is adapted from King et
al. [64].We utilize a Rapidly Exploring Random Tree (RRT) [76] to solve the

rearrangement problem. The basic RRT algorithm iteratively builds
a tree with nodes representing states in X f ree and edges representing
actions or motions of the system through X f ree. Tree building pro-
ceeds in four steps: (1) sample a random state xrand ∈ X f ree (Fig.3.1a),
(2) locate the nearest node in the tree xnear under a distance met-
ric, (3) select a control, u ∈ U that minimizes distance from xnear

to xrand while remaining in X f ree (Fig.3.1b), (4) add xnew, the state
reached by applying u, and the edge connecting xnear to xnew to the
tree (Fig.3.1c). The algorithm iterates until a node is added to the
tree that represents a goal state x ∈ XG. RRTs have been shown to
be well suited for planning in high dimensional state spaces with
non-holonomic constraints, making them an ideal fit for our problem.

Because we must plan in the joint configuration space of the robot
and objects, selecting the control u that exactly minimizes the dis-
tance from xnear to xrand is as difficult as solving the full problem. For
example, consider the extension in Fig.3.1. To transition from xnear

to xrand, we must first find a collision free path for the manipulator
from its configuration in xnear to a location near the object. Then we
must find a path that pushes the object to its new location. Finally,
we must generate a collision free path to move the manipulator to
its configuration in xrand. As the number of objects in the scene in-
creases, the complexity of finding these sequences that connect two
states in X f ree grows exponentially.

As suggested by Lavalle [77] a useful alternative is to use a dis-
crete time approximation to Eq.(2.1) to forward propagate all possible
controls and select the best using a distance metric defined on the
state space. In particular, we define an action set A : U ×R

≥0 where
a = (u, d) ∈ A describes a control, u, and associated duration, d, to
apply the control. Then we use a transition function Γ : X ×A → X

to approximate our non-holonomic constraint.
Our control space U is continuous, rendering full enumeration of
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xrand

(a) Random sample

xrand

xnear

(b) Nearest neighbor extended
to sample

(c) Validate and add new edge
to tree

︷ ︸︸ ︷

Figure 3.1: The basic RRT algorithm.
For rearrangement planning, solving
for optimal sequence of controls that
connect xnear and xrand is as difficult as
solving the full problem.

the action set infeasible. Instead we approximate it by sampling k ac-
tions, forward propagating each under Γ and selecting the best from
this discrete set. During forward propagation, we apply a physics
model to properly capture motion of the robot and objects. Alg.1
shows the basic implementation. In the following sections we detail
important components of the algorithm.

3.1 Configuration Sampling

We wish to sample a state x ∈ X f ree (Alg.1- Line 3). We can sam-
ple from any distribution, as long as we can guarantee that we will
densely sample from the space X f ree. In practice, we sample the robot
and all objects from the uniform distribution.

We use a modified rejection sampling to ensure the sampled con-
figuration is valid. We discard states that have robot-obstacle or
object-obstacle contact. For sampled states that have object-object
or robot-object penetration, we perturb one object in a direction se-
lected uniformly at random until the two components are in non-
penetrating contact. If the resulting state is invalid, i.e. the object is
in contact with an obstacle or outside of the world bounds, it is dis-
carded. This allows us to sample from the measure-zero set of states
with objects and robot in contact.

3.2 Distance Metric

Defining the distance between two states x1, x2 ∈ X f ree is difficult.
Prior work [15] denotes the correct distance metric is the length of the
shortest path traveled by the robot that moves each movable object
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Algorithm 1 Kinodynamic RRT

1: T ← {nodes = {x0}, edges = ∅}

2: while not ContainsGoal(T) do

3: xrand ← SampleConfiguration()

4: xnear ← Nearest(T,xrand)

5: for i = 1 . . . k do

6: (ui, di)← SampleAction()

7: (xi, di)← ConstrainedPropagate(xnear, ui, di)

8: i∗ = argmini Dist(xi, xrand)

9: T.nodes∪ {xi∗}

10: T.edges∪ {((xnear, xi∗), ui∗ , di∗)}

11: path← ExtractPath(T)

from its configuration in x1 to its configuration in x2. Computing this
distance exactly is intractable. Even approximating this distance is as
difficult as solving the rearrangement problem.

Instead, we use a weighted Euclidean metric.

Dist(x1, x2) = wR‖x
R
1 − xR

2 ‖+
m

∑
i=1

wi‖x
i
1 − xi

2‖ (3.1)

where x1 =
(

xR
1 , x1

1, . . . xm
1

)
, x2 =

(
xR

2 , x1
2, . . . xm

2

)
and wR, w1, . . . wm ∈

R.
The distance metric serves two purposes in the algorithm. First, it

is used to define the nearest neighbor in the tree prior to tree exten-
sion (Alg.1-Line 4). Second, it is used to select the best control during
propagation (Alg.1-Line 8).

3.3 Action Space

We follow the ideas of Simeon et al. [112] and describe feasible plans
as combinations of two types of actions: transit and transfer. We de-
fine transit actions as those where the robot moves without pushing
any movable objects. Transfer actions are those where one or more
movable objects are contacted during execution of the action.

Transfer actions are critical in rearrangement planning. We focus
our action selection such that we remain in areas of the robot con-
figuration space where we are likely to generate transfer actions. In
particular, we project all actions to a constraint manifold parallel to
the pushing support surface (e.g. table). This projection limits the
action space to the set of motions where the end-effector of the robot
moves along the manifold.

We use the ConstrainedPropagate function shown in Alg.2. This
constrained extension behaves similar to that described in Beren-
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Algorithm 2 The constrained physics propagation function.
Require: A step size ∆t

1: function ConstrainedPropagate(x,u,d)
2: t← 0
3: q← ExtractManipConfiguration(x)

4: while t < d do

5: qnew ← Project(q + ∆tu)

6: unew ← qnew − q

7: xnew ← PhysicsPropagate(x, unew)

8: if not Valid(xnew) then

9: break

10: (t, x, q)← (t + ∆t, xnew, qnew)

11: return (x, t)

son, et al. [20]. During extension, we apply the input control, u, for
a small time step, then project the resulting configuration back to
our constraint (Alg.2-Line 5). If successful, we generate a new con-
trol, unew, that moves directly along the constraint to this projected
point (Alg.2-Line 6). This new control is pushed through our physics
model (Alg.2-Line 7). The process is repeated for the entire sample
duration d or until an invalid state is encountered.

3.4 Quasistatic Pushing Model

We use a quasistatic planar pushing model with Coulomb fric-
tion [87] to perform the physics propagation(Alg.2-Line 7). In this
model, we assume pushing motions are slow enough that inertial
forces are negligible. In other words, objects only move when pushed
by the robot. Objects stop immediately when forces cease to be im-
parted on the object.

We assume friction between the object and underlying surface is
finite, the pressure distribution between the object and the surface is
known and finite, and friction between the object and manipulator
is known. Under these assumptions, we can analytically derive the
nonlinear motion of an object when pushed by the manipulator [45,
55].

Using a quasistatic model of interaction allows us to plan on a
lower dimensional manifold, C = {x = (q, q̇) ∈ X f ree|q̇ = 0},
that represents joint configuration space rather than joint state space,
i.e. we do not have to include object velocities in our planning state.
Additionally, restricting to pushing in the plane allows Xi = SE(2)
for all i, i.e. we can represent the state of movable objects by (x, y, θ).



quasistatic rearrangement planning 21

3.5 Experiments and Results

We implement the algorithm by extending the Open Motion Planning
Library (OMPL) framework [120]. We test our algorithm for three
goals: 1. Push an object to a goal region, 2. Move the manipulator
to a goal region, 3. Clear a region of all objects. In the following
sections, we present results and analysis from simulation experiments
for each of these three goals. We then present results from execution
of the planned paths in the real world.

3.5.1 Push object

Figure 3.2: An example task. HERB
must push the green box along the table
into the region denoted by the green
circle.

In our first set of experiments, we task our robot HERB [115] with
pushing an object (denoted “goal object”) on a table to a goal region
of radius 0.1 m using the 7-DOF left arm. We test our planner using
a dataset consisting of 7 randomly generated scenes with between
1 and 7 movable objects in the robot’s reachable workspace. Fig.3.2
shows an example scene. In each scene, we use the same goal object.
The starting pose of the goal object is randomly selected. The goal
region is placed in the same location across all scenes. We run each
experiment 50 times, giving us a total of 350 trials. A trial is consid-
ered successful if a solution is found within 300 seconds.

We constrain the end-effector to move in the xy-plane parallel to
the table. This allows us to define our action space as the space of
feasible velocities for the end-effector. Actions are uniformly sampled
from a bounded range. The Project function takes the sampled end-
effector velocity and generates an updated pose using the Jacobian
pseudoinverse:

qnew = q + ∆t(J†(q)a + h(q)) (3.2)

where q is the current arm configuration, a is the sampled end-
effector velocity and h : R

7 → R
7 is a function that samples the

nullspace.

Comparison with baseline planners

We denote our planner Physics Constrained RRT (PC RRT) and
compare its performance against two baseline planners. The first
planner (denoted Static RRT in all results) only allows the robot to
push the goal object. All other movable objects are treated as static
obstacles. Comparing with this planning scheme allows us to explore
our first hypothesis:

H.1 Allowing the planner to move clutter increases success rate
and decreases plan time.
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H.1 is motivated by two purposes. First, previous work has demon-
strated that allowing the manipulator to move clutter increases the
number of problems that can be solved [33, 48]. We verify our plan-
ner is consistent with these results. Second, we ensure that the extra
time required to propagate with the physics model is not so large
that the planner can no longer generate feasible solutions in a reason-
able amount of time.

We also compare our planner to an implementation of DARRT [15].
Following DARRT, we define three primitives:

1. Transit - Move the manipulator from one pose to another via a
straight line in configuration space. The motion must be free of
collision with any static or movable object in the space.

2. RRTTransit - Move the manipulator from one configuration to
another by planning using the RRT-Connect algorithm [73]. The
motion must be free of collision with any static or movable object
in the scene. The planner is run for 5 seconds before the primitive
is considered failed.

3. Push - Push (or pull) an object along a straight line from the start
pose to the goal pose of the object. The object motion is modeled
as a rigid connection with the hand. Again, the motion must be
free of collision with any static objects and all movable objects
other than the one being moved.

At each iteration, DARRT chooses to either sample a new pose for
the manipulator or a new pose for a single movable object. In our
implementation, we sample these options with equal probability.

If the manipulator is sampled, then the planner attempts to ap-
ply the Transit or RRTTransit primitive. If any of the objects are
sampled, the RRTTransit primitive is first applied to move the ma-
nipulator to make contact between the end-effector (hand) and object.
Then, the Push primitive is applied to relocate the object to its de-
sired position.

Comparing with this existing state-of-the-art rearrangement plan-
ner allows us to explore a second hypothesis:

H.2 Our algorithm increases success rate and decreases planning
time when compared to existing primitive based solutions.

Parameter selection

We identify three parameters that can affect performance of the
algorithm. The first is pgoal , the probability that the sample state
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(a) (b) (c) (d) (e)
Figure 3.4: In this scene the robot uses
the whole arm to manipulate objects to
achieve the goal. At several time points
((c), (d), (e)), the robot moves multiple
objects simultaneously.

during tree extension is a goal state. We set this value to 0.2 for all
three planners. This indicates that approximately 20% of extensions
will attempt to connect to a goal state.

Next we select bounds on the control space used for sampling
actions at each extension. As described earlier, the control space de-
fines the set of planer twists to apply to the end-effector. These twists
are then transformed to velocities for the arm using the Jacobian
pseudo-inverse (Eq.(3.2)). While we have hardware limits that de-
fine maximum velocities for motions in the full configuration space
of the robot, it is difficult to transform these to a set of limits on the
end-effector velocities that are guaranteed to produce feasible veloci-
ties when transformed through the Jacobian pseudo-inverse from all

configurations without being overly conservative. Instead, we select
end-effector velocity bounds that conform to the full configuration
space velocity bounds in most configurations. Then, we add a check
during tree extension that invalidates any control that produces a full
arm velocity that violates bounds. The bounds we select are 0.5 m/s
for the ∆x and ∆y components of the twist and 1.0 rad/s for ∆θ.
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Figure 3.3: Average distance to sample
across 50 trials selecting random points.

Finally, we must select k, the number of actions sampled during
each extension. We make this selection empirically by analyzing the
performance of the extension as k is increased. We run 50 extensions
between pairs of randomly generated start and target configura-
tions on a scene with a single object. We try each extension with
k = 1 . . . 10 randomly sampled controls and record the distance
from the end of the extension to the target for each value of k. Fig.3.3
shows the result. As can be seen, for values of k ≥ 3 the performance
gain is minimal. Thus, we run all experiments with k = 3.
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Figure 3.7: In low clutter scenes, the
planner still is able to use the whole
arm to manipulate the object.Statistical analysis

Fig.3.5 shows the success rate of the three planners as a function
of planning time. Fig.3.6 compares the average plan times across the
three planners. For these results, failed planning calls where assigned
a duration of 300 s (the planning time limit).
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Figure 3.5: The success rate of our
algorithm compared with the Static
RRT and DARRT. The graph depicts
the expected success each algorithm
achieves given any time budget up to
300 s.
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Figure 3.6: The average planning time
across all 350 trials for each planner.
Failed trials were assigned the max
planning time (300s). As can be seen,
the PCRRT reduces planning time.

Given a budget of 300 s, our planner improves overall success
rate by 15% and decreases plan time by 27 s on average when com-
pared to the Static RRT. We run an analysis of variance (ANOVA)
using planner (PC RRT, Static RRT, DARRT) as an independent vari-
able. The results show a significant main effect for both success rate
(F(2, 1046) = 13.45, p < 0.000001) and plan time (F(2, 1046) =

7.114, p < 0.001). Tukey HSD post-hoc analysis reveals the PCRRT
differs significantly from the Static RRT in success rate (p < 0.001)
and plan time (p < 0.02). These results support H.1: Allowing the

planner to move clutter increases success rate and decreases plan

time.

Fig.3.5 shows that our planner also outperforms the DARRT plan-
ner for any time budget greater than 15 s. Overall, our planner solves
73% of scenes while the DARRT planner is only able to solve 57%.
Additionally, our planner decreases plan time by 35 s on average.
Again, Tukey HSD post-hoc analysis reveals the PCRRT differs sig-
nificantly from DARRT in success rate (p < 0.0001) and plan time
(p < 0.001). These results support H.2: Our algorithm increases suc-

cess rate and decreases planning time when compared to existing

primitive based solutions.

Qualitative analysis

A deeper look at the solutions our planner achieves provides some
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Figure 3.8: In low clutter scenes, the
DARRT planner can often solve the
problem trivially by applying a single
primitive.

insight on the DARRT comparison. Fig.3.4 shows an example solu-
tion for a high clutter scene. The solution found by our planner relies
heavily on interaction with the full arm and moving multiple object
simultaneously. Even in lower clutter scenes such as the one depicted
in Fig.3.7, the planner relies on pushing with multiple parts of the
manipulator.

Typical primitives-based planners, including our DARRT imple-
mentation, allow only interaction with a single object at a time, and
restrict that interaction to contact using the end-effector only. This
restricts the solutions the planner can consider, causing high rates
of failure and longer plan times in scenes with more than just a few
items.

However, if we consider scenes with lower clutter, as in Fig.3.8,
primitive-based planners such as DARRT work well. In Fig.3.8, the
goal object can be moved directly to the goal region, without the
need to clear clutter. The Push primitive can solve this trivially, al-
lowing for very low planning times. Fig.3.9 shows the success rate as
a function of plan time for only this scene. As can be seen, DARRT
often finds solutions faster.
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Figure 3.9: Success rate as a function
of plan time for the scene from Fig.3.8.
In low clutter scenes, primitive based
planners such as DARRT outperform
our planner because a single primitive
can trivially solve the problem.

This highlights a fundamental trade-off between our approach and
planners similar to DARRT. The effectiveness of primitive based plan-
ners is heavily influenced by the richness of the underlying primitive
set. For example, were we to augment our DARRT implementation
with additional primitives to move the base or perform pick-and-
place it is likely the planner performance would improve. Conversely,
our planner is able to achieve good performance sampling from a
very basic action set, but trades efficiency on scenes that could be
solved with a single primitive.

3.5.2 Clear region

Figure 3.10: An example clearance task.
HERB must move the 3 objects in the
green rectangle outside the rectangle in
order to make space for placing a new
item into the refrigerator.

In our next set of experiments, we task HERB to clear space on a
shelf in a refrigerator. Fig.3.10 shows an example scene. HERB must
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Figure 3.11: In small cluttered space
like the shelf of a refrigerator, empow-
ering the planner to allow the robot to
touch multiple objects simultaneously
and use the whole arm for interaction is
critical to finding solutions.

move all objects outside of the green rectangle. The number of objects
on the shelf ranges from 3 to 5 objects. The robot can make contact
with any items of the shelf, but cannot make contact with the shelf
itself or the refrigerator. Similar to the previous set of experiments,
we constrain end-effector of the robot to move in the xy-plane par-
allel to the shelf and use the Jacobian pseudo-inverse to transform
end-effector motions to full arm motions.

Fig.3.11 shows an example solution for the task. The result high-
lights the usefulness of allowing the planner to contact multiple ob-
jects simultaneously and use the entire arm. The tight cluttered space
makes it nearly impossible to interact with a single object at a time.
The DARRT planner struggles to find solutions to these problems.
The Push primitive fails often because the fingers and arm collide
with several objects in the scene while executing even small pushes.
Our planner also is slower to solve problems in these small crowded
spaces (Fig.3.12) but is eventually able to solve 78% of trials.
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Figure 3.12: The success rate of the
PCRRT for the clearance tasks

3.5.3 Real robot experiments

Scene 1 Scene 2 Scene 3 Scene 4

10/10 4/10 7/10 10/10

Table 3.1: Success counts for trajectories
executed on the real robot.

Finally, we test that the trajectories we generate are able to be ex-
ecuted with some success on the HERB robot. For this, we return
to the task of pushing an object on a table from Sec.3.5.1. We gen-
erate trajectories for four scenes with varying amounts of clutter.
We measure initial locations of objects and the robot relative to the
table. This eliminates the need for a full perception system, and re-
duces the inaccuracies in initial pose estimates. For each of the four
scenes, we generate a trajectory and run it open loop on the robot
10 times. Fig.3.13 depict an execution of a single trial for two of the
four scenes. For the 10 trials for each scene, we record success or
failure based only on whether the goal object ended in the goal re-
gion. Tab.3.1 shows the result.

With these tests we are only verifying that our physics model is
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Figure 3.13: Real robot experiments. Top
Scene 1: The robot is able to achieve the
goal in all 10 executions of the trajec-
tory. Bottom Scene 3. The robot failed to
achieve the goal in 3 of 10 attempts at
executing the trajectory. These failures
were due to small uncertainties in robot
motion and initial object pose that led
the robot to push the one of the bottles
off of the edge of the table.

good enough to achieve some success. Our results are encouraging–
we are able to successfully achieve the goal many times. However,
it is clear that our model is not a perfect description of the physical
world. Inaccuracies in the physical model of objects, motion of the
robot and even small inaccuracies in the initial pose of the objects
account for the failures, particularly in Scene 2. In Part II, we will
present methods for accounting for these uncertainties.

3.6 Summary and Discussion

In this chapter, we show we can use a randomized kinodynamic
motion planner to solve rearrangement planning problems. By em-
bedding a physics model into the planner we are able to generate
trajectories with full arm manipulation and simultaneous object inter-
action. Careful selection of this model allows us to reduce our state
and action space, making the search feasible. Our experiments show
that this solution allows us to solve more problems than primitive
based approaches.

We note that while our planner does not require definition of any
motion primitives, it is inclusive of them. In particular, if a set of
primitives exists, it can be included in the action space. In fact, the
DARRT results on scenes with few objects demonstrate that includ-
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ing such primitives may in fact be very beneficial to overall planning
time. In the next chapter, we explore this idea in more detail. Addi-
tionally, our planner can itself be used as a primitive in a hierarchical
planner such as [16, 31]. While this thesis does not explore this idea
in detail, we do provide some initial thoughts and further discussion
in Ch.11.



4

Improving Randomized Rearrangement Planning

In this chapter, we present methods to improve upon the basic im-
plementation described in Ch.3. In particular we focus on improving
the speed and efficiency in generating solutions in Sec.4.2 and Sec.4.3
and improving the quality of the final result in Sec.4.4.

4.1 Timing Analysis
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Figure 4.1: A breakdown of the time
spent by the planner.

Fig.4.1 shows a breakdown of the plan time across five time inten-
sive components of the algorithm: tree extension, random state sam-
pling, nearest neighbor look-up, distance metric computation and
goal state sampling. These metrics were collected from all trials for
the HERB object pushing task in Sec.3.5.1. As can be seen, tree ex-
tension dominates plan time. This is not particularly surprising:
extension is often expensive because it requires collision checking a
full action, often at high resolution. For our planner, the expense of
tree extension is compounded by the need to run a physics model
for every action. Additionally, for each tree extension, we run the
physics model k times, one for each sampled action. We can improve
on our current implementation in two ways. First, we can improve
the quantity of extensions per second by parallelization. Second, we
can improve the quality of each extension by sampling from a more
relevant action set. We explore both of these methods in the follow-
ing two sections.

4.2 Parallelization

We improve the quantity of extensions per second by parallelization.
In particular, we parallelize the k rollouts required at each extension,
allowing us to test many sampled controls simultaneously. Addi-
tionally, we parallelize tree building, allowing us to grow the tree in
many directions simultaneously.
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First, we use parallelization to speed plan time for a single exten-
sion of the tree. In particular, each of the k rollouts performed during
an extension is independent given the start state and a dedicated in-
stance of the physics simulator. If we can run separate instances of
the physics model simultaneously, we can perform rollouts of our k

action samples in parallel (Fig.4.2a). This allows us to significantly
reduce the time for each extension.

(a) k rollouts performed simul-
taneously during an extension

(b) m extensions performed
simultaneously

Figure 4.2: Parallelized tree search.

In addition to parallelizing action rollouts for a single extension,
we take advantage of the large body of literature focused on paral-
lelizing randomized planners [26, 28, 58] in order to enable paralleliz-
ing multiple extensions simultaneously (Fig.4.2b). As a result, we can
grow the tree from multiple nodes at the same time. To do this, we
use a pool of m extension threads. Once a node in the tree is selected
for extension, the work is handed to an extension thread. The extension

thread performs the physics rollouts and selects the action to add to
the tree, then reports this result back to the main thread for insertion
into the tree. Offloading the extension frees the main thread to con-
tinue generating random samples and selecting nodes for extension.
The result is faster growth of the tree, leading to more exploration of
the state space in a given planning time budget.

4.2.1 Analysis

We first analyze the performance improvements achieved by par-
allelizing the k rollouts performed during a single extension of the
tree. We generate a dataset of 200 extensions. Then, we run each ex-
tension 10 times with k = {1, . . . , 8} sampled controls (experiments
executed on a machine with 8 available cores). We record the total
time to perform each extension for each value of k when we paral-
lelize the k rollouts vs. when we perform the simulations in serial
(non-parallelized).
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Figure 4.3: Average time for a single
tree extension. As we increase the
number of controls considered at each
extension (k) the improvements from
parallelization increase.

Fig.4.3 compares the time to perform an extension for each value
of k. For small values of k (k = 1, 2) the overhead of performing
the parallelization outweighs any performance gains. However, as
we increase k, the positive effects of parallelization become more
prevalent. When k = 8, performing extensions using parallelization
leads to a 44% reduction in time per tree extension.

Next we examine the performance improvements achieved by
parallelizing tree extension. We run the parallelized planner for a
short duration (t = 10 s) using m = {1, . . . , 8} threads for growing
the tree and record the size of the tree after 10 s of planning. We run
30 trials for each value of m, ensuring that each trial runs for the full
t = 10 s, i.e. if the planner finds a solution in less that 10 s, the trial
data is discarded and the trial is restarted.
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Fig.4.4 shows the average tree size across all trials. For m =

{1, . . . , 5} we see significantly improved tree size by increasing the
number of threads simultaneously extending the tree. However, for
m > 5 the performance improvements disappear. At this point, the
bottleneck becomes random sample generation, i.e. the main thread
cannot select nodes for extension fast enough to keep all worker
threads running.
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Figure 4.4: Average tree size after 10 s
of tree growth. Increasing the available
threads for simultaneous tree growth
m increases the number of extensions
we can consider, growing the tree larger
faster.
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Figure 4.5: Average plan time across
successful trials

Finally, we test the affect of each of these two methods on the full
test dataset for the HERB pushing task from Sec.3.5.1. We test the
default planner that did not use any parallelization (Baseline) against
a planner that parallelizes rollouts during extension (Extensions,
k = 8) and a planner that parallelizes tree growth (Tree growth,
m = 5). Fig.4.5 shows the results. Parallelizing extensions does
not demonstrate a significant improvement however it also does not
demonstrate decreased performance, despite the fact that we rollout
5 more samples per extension compared to results from Sec.3.5.1.
Parallelizing tree building does lead to significantly higher overall
success because we explore the state space faster.

4.3 Object-centric Action Spaces

This section is adapted from King et
al. [63].

In this section, we improve the quality of each extension by biasing
our control sampling to regions of control space likely to create ex-
tensions toward our sampled state. This will lead to the need for
fewer overall extensions, reducing plan time.

The planner presented in Ch.3 samples lower-level primitives that
describe only robot motions during tree extension. These primitives
have no object-relevant intent or explicit object interaction. The use
of these robot-centric motions contrasts methods from previous works
that have solved rearrangement planning using high-level primitives
that describe purely object-centric actions [15, 36, 113, 116, 119]. In
these works, the object-centric actions guide the planners to perform
specific actions on specific objects. Such actions can be highly ef-
fective – allowing the planner to make large advancements towards
the goal. However, the use of only these actions limits the types of
solutions generated by the planner. In particular, these interactions
usually involve only contact with a single part of the robot, i.e. the
end-effector, and often forbid simultaneous object contact.

The use of robot-centric motions in our planner relaxes the restric-
tions imposed by using object-centric actions, allowing the planner to
generate solutions that exhibit whole arm interaction and simultane-
ous object contact. However, the planner suffers from long plan times
due to the lack of goal directed motions available to the planner.

Our insight is that both types of actions are critical to generating



32 robust rearrangement planning using nonprehensile interaction

expressive solutions quickly. By integrating the two action types, we
can use the freedom of interaction fundamental to the robot-centric

actions while still allowing for the goal oriented growth central to the
object-centric methods. In this section, we first provide an overview
of object-centric based methods, then describe a modification to our
planner that allows for incorporating such actions.

4.3.1 Using high-level primitives
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Figure 4.6: Improvement in distance to
a sampled configuration as we increase
k, the number of sampled controls
on each extension of the tree. Using
object-centric actions ( ) improves
the extension quality over using only
robot-centric actions ( ).

During tree extension, the algorithm described in Ch.3 samples k

low-level robot-centric actions, forward propagates each and selects
the one that extends the tree nearest a desired point in configuration
space. This is necessary because solving the two-point boundary
value problem (BVP) is difficult. However, when selecting actions
uniformly at random, we often do not make significant progress
towards the sampled configuration. Consider the simple scene
in Fig.4.6-top. Fig.4.6-bottom shows the percent reduction in distance
to the sampled configuration as we increase k (averaged across 100

random extensions for the scene) using our method from Ch.3 (pur-
ple line). Even with k = 10 samples, we only reduce the distance to
the sample configuration by 5% on average. This can be particularly
detrimental when our sampled configuration is a goal configuration,
because our tree fails to grow towards the goal.

Algorithm 3 Kinodynamic RRT using motion primitives

1: T ← {nodes = {x0}, edges = ∅}

2: while not ContainsGoal(T) do

3: xrand ← SampleConfiguration()

4: xnear ← Nearest(T,xrand)

5: a1, . . . , aj ← GetPrimitiveSequence()

6: xnew ← PrimitivePropagate(xnear, (a1...aj))

7: if Valid((xnear, xnew), (a1, . . . , aj)) then

8: T.nodes∪ {xnew}

9: T.edges∪ {((xnear, xnew), (a1, . . . , aj))}

10: path← ExtractPath(T)

An alternate method employed in [15, 113] is to use a set of object-

centric primitives capable of solving the two-point BVP in a lower
dimensional subspace. For example, a “push-object” primitive would
be capable of providing a sequence of actions the moves a single
object from a start configuration to a sampled configuration. Alg.3
shows the integration of primitives into the RRT.

This method is attractive because it can allow large extensions
of the tree, and the sampling method is highly connected to tree
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growth. Fig.4.6-bottom (orange) shows the reduction in distance to
the sampled state on an extension is much better when using these
object-centric primitives. This is particularly useful when the sample is
a goal state: it allows the tree to grow to the goal.

However, the reliance on object-centric actions to generate all object
motion is detrimental in two ways. First, the actions are limited in
their expressiveness. In particular, contact is restricted to only inter-
actions between the manipulator and the single object targeted by
the action. The PrimitivePropagate function (Alg.3-line 6) explicitly
prohibits contact with other movable objects or obstacles in the scene.
This prevents simultaneous object interactions, eliminating many
feasible solutions when the robot is working in clutter.

(a) Desired end-effector pose for
a “push-object” primitive is not
within the reachable workspace
of the robot

(b) An alternative achievable
end-effector pose that cages and
pulls the object.

Figure 4.7: An example failed “push-
object” primitive. The desired end-
effector pose is not reachable. An
alternate primitive that cages and
pulls the object must be defined for
the planner to find a solution in object-
centric primitive based approaches.

Second, and possibly more important, this method is susceptible
to failure if the primitive cannot be successfully applied. Consider
the example in Fig.4.7a. An example primitive may be to move the
hand near the box with the palm facing in the direction of the desired
push, then push the box in the direction of its sampled location. The
box is near the edge of the reachable workspace of the manipulator.
As a result, all attempts at applying the high-level action will fail
because the robot cannot reach the desired pose relative to the box.
Even more problematic, a solution to the scene cannot be found given
the current action space. To generate a solution, the programmer
must define alternative or more flexible primitives (Fig.4.7b).

4.3.2 Hybrid approach

Alg.4 shows a modified algorithm that allows for the freedom of in-
teraction fundamental to our robot-centric method while still allowing
for the goal oriented growth central to the object-centric methods. Like
in our original solution, at each tree extension the best of k possible
actions is selected. However, each candidate i expresses a sequence of
actions, Ai. With some probability, prand, the sequence Ai contains a
single action a = (u, d) drawn uniformly at random from the space
of feasible robot motions. With probability 1− prand, Ai contains a
sequence of actions, {a1, . . . , aj}, with noise applied to the primitive
parameters. In all cases, the sampled action sequence Ai is propa-
gated through the physics model and the sequence is truncated at the
first infeasible state encountered, i.e. collision with a static obstacle.

This solution is attractive because it combines the strengths of our
original algorithm with the strengths of high-level primitive based
methods. Incorporating the physics model into the propagation re-
moves the restriction that object-centric primitives can only allow
interaction between the manipulator and the object the primitive is
defined on. Instead, any unintended contact with other objects in the
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Algorithm 4 Kinodynamic RRT using hybrid action sampling

1: T ← {nodes = {x0}, edges = ∅}

2: while not ContainsGoal(T) do

3: xrand ← SampleConfiguration()

4: xnear ← Nearest(T,xrand)

5: for i = 1 . . . k do

6: r ← Uniform01()

7: if r < prand then

8: Ai ← SampleUniformAction()

9: else

10: Ai ← SamplePrimitiveSequence()

11: (xi, Ai)← PhysicsPropagate(xnear, Ai)

12: i∗ = argmini Dist(xi, xrand)

13: if Valid((xnear, xi∗), Ai∗)) then

14: T.nodes∪ {xi∗}

15: T.edges∪ {((xnear, xi∗), Ai∗)}

16: path← ExtractPath(T)

scene can be modeled. Often, this unintended contact is not detri-
mental to overall goal achievement and should be allowed. Sampling
random actions with some probability allows the planner to generate
actions that move an object when all primitives targeted at the object
would fail (i.e. the example in Fig.4.7).

4.3.3 Experiments and Results

Again, we implement the planner described in this section in the
OMPL framework. We test three versions of our updated planner.
First, we set prand = 0. This forces the planner to always sample
object-centric actions. We denote this planner object-centric in all re-
sults. Second, we set prand = 1. This forces the planner to always
sample robot-centric actions. We note this is exactly the planner origi-
nally presented in Ch.3. We denote these results robot-centric in this
section. Finally, we set prand = 0.5. This allows the planner to choose
object-centric or robot-centric actions with equal probability. We denote
this planner as hybrid in all results. In the next section, we discuss
alternate values for prand and their impact on the results.

Using the planner, we execute a set of experiments to test the
following hypotheses:

H.1 Propagating object-centric primitives through the physics
model during tree extension improves the performance of planners
that purely rely on these primitives by allowing the primitives to
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exhibit simultaneous object contact and full arm interaction.

H.2 The hybrid planner achieves higher success rate and faster
plan times than the object-centric or robot-centric planners.

We test the hypotheses across multiple tasks in scenarios for two
robots: the KRex rover and HERB.

HERB Experiments

We first test H.1 using the same dataset described in Sec.3.5.1.
Here, we use 7 scenes that require our robot HERB to push an object
across a table from its starting location to a goal region. To test the
hypothesis we compare the object-centric planner to our implemen-
tation of the DARRT planner described in Sec.3.5.

Object-centric primitives

We define a push primitive similar to the DARRT primitive defined
in the experiments in Ch.3. The push primitive pushes an object along
the straight line connecting a start and goal configuration for the
object. The primitive returns a set of actions that first move the end-
effector to a position and orientation “behind” the object, then move
the end-effector straight along the line, pushing the object. The mo-
tion of the end-effector is confined to the plane parallel to the table
surface during the entire primitive.

This primitive differs from the DARRT primitive in two ways.
First, we allow and model contact between the robot and all other
movable objects in the scene during execution of the primitive. Sec-
ond, we only allow the robot to transit to the object via a straight line
in workspace. We note that this is more restrictive than the DARRT
primitive that can use a motion planner to plan motions of the arm
out of the plane.

By using these primitives within the object-centric planner (prand =

0.0), we create a planner very similar to DARRT. The key difference
is the use of the physics model to propagate primitives and model
contact between all movable objects in the scene and the full arm. As
a result, by comparing these two planners we are able to isolate and
understand the effect of allowing these new interactions.
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Figure 4.8: Success rate as a function of
plan time for HERB pushing objects on
a table.

Quantitative results

Fig.4.8 shows the success rate as a function of plan time across
all 7 scenes for the object-centric planner and the DARRT planner.
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Forearm
Wrist

Finger1

Finger2
Palm

Time
(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
Figure 4.9: An example object-centric
solution. The push primitive is used to
move the bowl in (b) and the box in (c)-
(e). Other objects are moved through
incidental contact during execution of
push or transit primitives.

The object-centric planner is able to solve 84% of problems while
the DARRT planner solves only 57%. This confirms our hypothesis:
Propagating object-centric primitives through the physics model

during tree extension improves the performance of planners that

purely rely on these primitives by allowing the primitives to ex-

hibit simultaneous object contact and full arm interaction.

Qualitative analysis

Analyzing breakdown of the success rate of the planners as a
function of the amount of clutter in the scenes reveals much of the
performance improvements come from higher clutter scenes.

Fig.4.9 shows an example object-centric solution from a scene
with 6 movables. For this scene, DARRT found solutions in 24% of
trials while the object-centric planner solved 98% of trials. The object-

centric solution uses the push primitive to move the bowl (Fig.4.9b)
and the green box (Fig.4.9c, Fig.4.9d). The bottle, glass and blue box
get moved through incidental contact during other push or transit
primitives. The contact occurs using several parts of the arm includ-
ing the wrist, forearm and back of the hand. These contacts are not
typically modeled in primitive based approaches. The ability to use
the whole arm and make simultaneous contact with objects allows
the transit and push primitives to succeed when they would other-
wise fail if restricted to hand-object interaction.

KRex Experiments

Figure 4.10: The K-Rex lunar explorer.

We next test H.2 using the mobile manipulator KRex (Fig.4.10).
The robot behaves as a steered car. For this robot, XR = SE(2) and a
control u = (v, δ) ∈ U describes the forward velocity and steering an-
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gle applied to the robot. The robot interacts with objects in the plane.
We use Box2d [3] as our physics model to forward propagate all ac-
tions. As in the previous chapter, we use objects that are quasistatic
in nature, allowing us to represent the state of objects by only their
configurations. As a result Xi = SE(2) for i = 1 . . . m.

(a) Transit primitive (b) Push primitive
Figure 4.11: Two primitives defined
for KRex. Dubins paths are used to
generate paths between two poses in
SE(2).

We define the following primitive set for the robot:

Transit: The transit primitive moves the robot from a start to a goal
configuration in SE(2) by finding the shortest length Dubins
curves [39] connecting two configurations (Fig.4.11a).

Push The push primitive pushes an object along a straight line con-
necting a start and goal configuration for the object. The primitive
returns a set of actions that first move the robot to a position and
orientation “behind” the object, then drives the robot straight
along the ray, pushing the object (Fig.4.11b).

When sampling random actions, we sample forward velocity from
the range [−0.2, 0.2] m/s and duration from the range 0.5 s to 5.0 s.
We sample steering angle from the range [−0.5, 0.5] rad. We also use
these velocity and steering angle bounds when generating Dubins
curves. The values are imposed by the physical limitations of the
vehicle.

Tasks

We test the updated planner across three tasks for KRex:

Traversal: The rover must drive from a start configuration to a goal
region with 10 cm radius. We test this task across 6 scenes.

Push object: The rover must push a box from a start configuration to
a goal region with 20 cm radius. We test this task across 5 scenes.

Clearance: The rover must clear a region of all items. We test this
task across 7 scenes. The size of the clearance region varies across
scenes.

For each task, we run each of the three planners 50 times for each
scene and record results. The scenes in each task contain a varying
number of movable objects and static obstacles. Examples of scenes
for each task are presented in the following sections.

Quantitative results

Fig.4.12 compares the success rate of the three approaches across
all three tasks. The hybrid approach consistently outperforms both
the robot-centric and object-centric planners. For the traversal task,
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(a) Traversal
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(b) Push object
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(c) Clearance

Figure 4.12: The success rate as a
function of plan time for each of the
three KRex tasks. The hybrid planner
( ) outperforms both the object-centric
( and robot-centric ( ) planners
across all tasks.

the hybrid approach is able to solve 99% of trials, outperforming
both the object-centric (65%) and robot-centric (60%) methods. In
addition, it finds solutions much faster, solving over 75% of problems
in less than 10 s. Statistical analysis reveals a significant main effect
for plan time (F(2, 897) = 121.2, p < 0.0001) and success (F(2, 897) =
84.61, p < 0.0001).

Similar results are revealed with statistical analysis of the push
object task (plan time - F(2, 747) = 75.4(p < 0.0001), success rate -
F(2, 747) = 49.32(p < 0.0001)) and the clearance task (plan time -
F(2, 946) = 49.86(p < 0.00001), success rate F(2, 946) = 39.17(p <

0.00001)).
Tukey HSD post-hoc analysis shows the hybrid approach differs

significantly from the robot-centric and object-centric approaches in
success rate (p < 0.0001) and plan time (p < 0.0001) on all three
tasks.

This analysis supports our H.2: The hybrid planner achieves

higher success rate and faster plan times that the object-centric or

robot-centric planners.

Qualitative analysis

While we have shown that in general the hybrid planner solves
problems more effectively than using only robot-centric or object-
centric actions, a deeper look at solutions to individual scenes pro-
vides further insight into these gains.

(a) Traversal (b) Push object (c) Clearance

Figure 4.13: A robot-centric ( ) and
object-centric ( ) solution easy scenes
for each task. Left: The robot must
traverse through an empty environment
to a goal region in the top right corner.
Middle: The robot must push the blue
box into a goal region in the top right
corner. All green boxes are movable
objects. Right The robot must push the
green box from its start pose in the
middle of the environment to any pose
outside the region outlined in green.

Fig.4.13 depicts a pure robot-centric and pure object-centric solu-
tion for a single scene for each of the three tasks. These scenes are all
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“easy”: they can be solved by a single primitive. The traversal task
(Fig.4.13a) requires KRex to drive from a start pose in the bottom
left corner of the world to any pose in a 10 cm radius goal region in
the top right corner. In this object and obstacle free world, a single
transit primitive can be used to find a direct path (Fig.4.13a-right).
Conversely, several small robot motions must be used to solve the
task when using the planner from Ch.3 (Fig.4.13a-left). As a result,
the object-centric planner is able to find solutions for this scene much
more efficiently than the robot-centric planner (Tab.4.1). The hybrid
planner can also find these single-primitive solutions, allowing it to
solve the scene just as quickly as the object-centric. Similar results
can be seen for the push object task (Fig.4.13b) and the clearance task
(Fig.4.13c).

Robot-centric Hybrid Object-centric

Traversal Success(%) 76 100 100

Plan time(s) 21.82± 23.92 0.13± 0.13 0.54± 0.51

Push Success(%) 78 100 100

Plan time(s) 19.3± 16.6 0.75± 0.75 1.28± 1.39

Clearance Success(%) 100 100 100

Plan time(s) 1.17± 1.39 0.08± 0.03 0.10± 0.03

Table 4.1: Success rate and plan time
for easy scenes. Plan times report mean
and ± one standard deviation.

However, when we look at higher clutter scenes we begin to see
the advantage of the hybrid planner. Consider the solution to the
pushing task in Fig.4.14 found by the hybrid planner. Transit and
pushing primitives are used to make large motions through the state
space that connect points. However, the importance of robot-centric
motions is highlighted in Fig.4.14b- Fig.4.14d. The push primitive
executed in Fig.4.14b led the robot to push a movable object (green
box) near an obstacle (gray box). The robot cannot advance forward
without pushing the movable into the obstacle. As a result, both
the transit and push primitives fail. A robot-centric action must be
applied to back the robot away (Fig.4.14c), freeing the robot to apply
another push primitive on a different movable (Fig.4.14d). A similar
sequence of motions can be seen in Fig.4.14d- Fig.4.14f.

The traversal task in Fig.4.15 demonstrates similar use of robot-
centric actions to move away from obstacles (Fig.4.15c) and bound-
aries (Fig.4.15e). The need for the robot-centric motion is due to the
use of Dubins curves to instantiate the object-centric primitives. The
set of primitives does not fully span the space motions the robot can
achieve – neither the transit or push primitive can reverse the robot.
By sampling low-level motions uniformly from U the robot-centric
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: A single solution to a
complex pushing task. Here the robot
uses object-centric ( ) motions to make
large advancements through the state
space. Robot-centric motions ( ) are
used to back the robot away from
obstacles.

(a) (b) (c)

(d) (e) (f)

Figure 4.15: A single solution to a
complex pushing task. Here the robot
uses object-centric ( ) motions to make
large advancements through the state
space. Robot-centric motions ( ) are
used to back the robot away from
obstacles.

motions can “fill the gaps” left by object-centric primitives.

Real robot experiments

In addition to our simulation results, we test the ability of the
robot to successfully execute plans generated for the pushing and
clearance tasks. These tests were executed on the KRex rover at the
NASA Ames Research Center.

We first tasked KRex with pushing a box from a start pose into
a goal region with 50 cm radius. We used the same setup as shown
in Fig.4.13b and tested three scenarios, one for each box. In scenario
1, KRex was tasked with pushing the left-most box from its start
pose to the goal region. In scenario 2, KRex was asked to push the
center box and in scenario 3, KRex was asked to push the right-most
box. The goal location and start position of KRex were the same
across scenarios. We used the hybrid planner to generate a trajectory
for each scenario. We then executed each trajectory on the robot
10 times. Objects were measured and placed in the correct starting
location. This eliminated the errors and complexity that the use of
a perception system introduces. After executing a trajectory, the
distance from the center of the box to the center of the goal region
was measured and recorded.
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Figure 4.16: Execution of the object
pushing task on the KRex rover

Fig.4.16 compares the planned execution with the true execution
of a single solution to scenario 2. Encouragingly, the actual trajectory
closely follows the planned trajectory. Tab.4.2 shows the average
distance of the final pose of the box to the center of the goal region.
In scenario 2, the goal was achieved in all but 1 trial.

Scenario 1 Scenario 2 Scenario 3

54.3± 4.2 48.7± 13.3 79.5± 6.5

Table 4.2: Average distance from goal
center (cm)

Scenario 1 and scenario 3 performed worse. In each of these sce-
narios, the final pose of the object stopped short of the goal several
times. These failures can be attributed to two sources of error. The
first is in the execution of the robot motion. For our HERB experi-
ments in Ch.3, the robot used a position controller to track the de-
sired robot trajectory. Given a sufficiently small stepsize between
trajectory points, the deviations between actual robot motion and our
modeled robot motion were minimal. In these KRex experiments, the
robot used a velocity controller to follow the planned actions. This
type of control is much more susceptible to integration errors, i.e.
small inaccuracies in modeling early motion can accumulate to large
inaccuracies in final robot position. As a result, the accuracy of our
modeled robot motion was lower.

The second source of error is in modeling of the physical envi-
ronment. The box that KRex pushed was modeled as a rigid object,
though in reality there is some compliance in the interaction. This
compliance leads the box to move less than modeled. In addition,
the pushing surfaces was composed of crushed gravel. While we
account for this when selecting coefficients of friction, we do not ex-
plicitly model the gravel in the physics simulator. Thus effects such
as piling of the stones as the box is pushed are unmodeled. These
phenomenon prevent the box from moving as modeled.

While the goal failed to be achieved many times in scenario 1 and
scenario 3, the overall deviation of the final pose of the box across tri-
als was less than 10 cm. This indicates that the trajectories themselves
are stable and repeatable.

Next we tasked KRex with a set of four clearance tasks. Here, we
asked KRex to push a box from its start pose to any pose outside a
designated clearance region. Fig.4.17 shows an example solution for
one scenario.

For this task, we performed five trials for each of the four scenar-
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Figure 4.17: Execution of the clearance
pushing task on the KRex rover

ios and simply recorded success or failure based on whether the final
pose of the box was outside the clearance region. Tab.4.3 shows the
result. Scenario 1 proved the least robust. However, in each of the 3

failures, the box was less that 5 cm from the edge of the goal region.
Overall, this task exhibited more success than the object push task.
We believe this is due to the much larger goal region inherent to the
task. While the motion of the box may not be perfectly modeled, the
errors are much more likely to lead to alternate states that still lie
inside the goal region. This is evident when comparing the planned
vs. actual final configuration in Fig.4.17. These achieved final config-
uration (top) differs from the planned final configuration (bottom) but
is still in the goal region.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

2/5 5/5 5/5 5/5

Table 4.3: Success rate of the clearance
task.

Effect of prand

In our KRex and HERB experiments, we used a hybrid planner
with prand = 0.5 to compare against an object-centric (prand = 0)
and robot-centric planner (prand = 1). Fig.4.18 examines the success
rate of the planner for different values of prand for all 7 HERB scenes
and all 5 KRex traversal scenes. As we decrease prand we allow the
planner to consider object-centric actions more often. The plot shows
two interesting trends. First, for both HERB and KRex, the use of any
object-centric primitives (prand < 1) leads to improved success rate.
For the HERB scenes, prand seems to have little effect beyond this
point. However, for KRex, the use of both object-centric and robot-
centric primitives (0 < prand < 1) proves beneficial.
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Figure 4.18: The success rate as a
function of prand, the percentage of time
robot-centric actions are used to grow
the tree.

We believe these seemingly conflicting results can be explained
by the construction of the object-centric primitive set for each robot.
As mentioned previously, the KRex primitive set fails to span the
space of feasible actions for KRex, namely they do not include reverse
motions for the robot. Robot-centric motions are important because
they include capabilities not expressed in the object-centric primitive
set.

Conversely, the object-centric primitives for HERB do span the
space of feasible actions: the transit primitive can move the robot
in any direction. By empowering the object-centric primitives to
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(a) The initial path. (b) The two manipulator states
selected for connection.

(c) The new states generated for
the shortcut.

(d) The new states added after the
shortcut.

Figure 4.19: The shortcutting algorithm.
For simplicity, we depict only the
motion of the end-effector. However,
the whole arm is considered during
planning. In (d) the motion of the
manipulator and green object remain
unchanged along the remainder of the
path. However, states are updated to
reflect the new location of the blue box
and purple circle.

allow simultaneous object contact and full arm interaction, we have
improved the strength and applicability of the primitive, rendering
the robot-centric actions less necessary for this task.

4.4 Path Shortcutting

Finally, in this section we improve the quality of the output of the
planners. The use of a randomized planner leads to paths that often
contain unnecessary movements of the manipulator. Several post-
processing techniques to smooth these paths have been introduced
in the literature. One commonly used technique [43, 51, 108, 110] is
to randomly select two points from the path and attempt to connect
them. If successful, intermediate points between the two selected
points are discarded from the path, and the new connection is added.

Use of this technique typically requires solving the two-point
boundary value problem to generate the new edge. As described
in Ch.3, this is non-trivial for our problem. Instead we employ a
slightly altered technique illustrated in Fig.4.19.

Given a trajectory produced by our planner, we first randomly
select two points in the trajectory (Fig.4.19b). We then attempt to
generate a new action to connect only the robot configuration in
these two states. If such an action is generated, we forward propagate
it using our physics model, and record the new intermediate states
(Fig.4.19c).

We note that the ending state of the shortcut action could differ
from the sampled state in the configuration of one or more movable
objects. For example, in Fig.4.19c the final state differs in the configu-
ration of both the blue box and the purple circle. Because of this, we
must forward propagate all remaining actions in the trajectory and
ensure the goal is still achieved (Fig.4.19d). If successful, the updated
path is accepted and the algorithm iterates.

4.4.1 Analysis

Original Shortcut
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Figure 4.20: Results from shortcutting
for 15s.

To examine the performance of the shortcutting algorithm, we return
to the results provided in Sec.3.5.1. We run the shortcut algorithm
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(a) Original scene (b) Manipulator path (c) Object path
Figure 4.21: An example shortcut. (b)
The original path (dotted) contains
unnecessary extra movements removed
in the shortcut path (solid). This leads
to a new final pose of the robot and
object (filled) when compared to the
original (outline). (c) The shortcut also
often leads to reduced motion of the
object.

for a maximum of 15 s on each of the 258 successfully generated
paths. Fig.4.20 shows a 35% reduction in manipulator path length
after shortcutting. A paired t-test comparing manipulator path length
before and after shortcutting shows a significant main effect (t =

17.34, p < 0.00001).
Fig.4.21 shows two example shortcutting results for the scenes

in Fig.4.21a. In Fig.4.21b we render the original path of the manip-
ulator (dotted) and the new path of the manipulator (solid). As can
be seen, the new path is more direct, cutting out motions unneces-
sary for goal achievement. In both scenes, the shortcut path leads to
a slightly modified final state (original final state shown in outline).
This new state is also a goal, allowing the shortcut to be accepted.
Note that we render only the path of the end-effector for visual
simplicity, though the shortcutting is done in the full configuration
space.

In Fig.4.21c we render the new path of the goal object. Though
reducing the distance this object is moved is not part of the short-
cut objective, the reduction of robot motions leads to a reduction of
motion of the object in many cases.

4.5 Summary and Discussion

In this chapter we presented three improvements to the randomized
rearrangement planner presented in Ch.3. We improved the quality of
each extension of the tree by integrating object-centric high level prim-
itives into our action set. By empowering these primitives to allow
simultaneous object contact and full arm interaction, we improved
their applicability. In addition, we showed that these primitives alone
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are not always strong enough to solve rearrangement problems. By
supplementing the object-centric primitives with low-level robot-centric

primitives we were able to improve overall performance of the plan-
ning framework.

In addition to the improved quality of each extension, we also in-
creased the quantity of extensions through parallelization. We showed
that for our problem parallelizing tree growth can speed planning.

Finally, we proposed a shortcutting technique that allows us to
improve the quality of solutions our randomized planner generates.
While our inability to exactly solve the two-point BVP prevents us
from directly using traditional shortcutting techniques, we showed
we are able to take advantage of the ability to solve the two-point
BVP in the lower dimensional subspace containing only the robot in
order to find feasible shortcuts.

The combination of these techniques improve the speed and qual-
ity of our planner. However, our experiments on KRex indicate that
while these plans may be feasible, uncertainties in the real world
cause them to fail to be properly executed. The use of the KRex robot
introduced new uncertainties in the control and environment mod-
eling that are less prevalent in HERB’s well modeled indoor envi-
ronments. We must account for these additional uncertainties as we
formulate methods to create more robust output from the planner
in Part II.





5

Rearrangement Planning with Dynamic Interactions

This chapter is adapted from Haustein
et al. [52] and contains work completed
in collaboration with Joshua Haustein.

The solution presented in Ch.3 reduced the search space by assuming
all interactions between robot and objects are quasistatic in nature.
This allows us to plan in configuration space, removing the need to
track velocities of objects in the scene. However, the use of the qua-
sistatic assumption limits the applicability of the planner to scenes
with objects that move quasistatically. In particular, the planner can-
not be used to solve planning queries with objects that easily slide or
roll. In this chapter we introduce a technique that eliminates the need
for the quasistatic assumption while still maintaining tractability in
the search.

5.1 Incorporating Dynamic Interactions

The recent increasing availability of fast dynamic rigid body physics
models [1, 2, 3, 4] allows modeling dynamic interactions between a
robot and the objects in its environment in planning algorithms [126,
127]. However, directly incorporating these models into our algo-
rithm incurs the costly consequence of searching in the full joint state
space containing both the configuration and velocity of each object
and the robot. This doubles the dimension of the search presented in
previous chapters.

Our insight is that we can choose dynamic actions that result in
statically stable states, e.g. the environment comes to rest after each
action. This allows us to keep the search in the lower dimensional
configuration space. Consider a bartender sliding a beer bottle to a
customer or a soccer player kicking a ball. In both cases, in absence
of any external forces other than gravity, the manipulated object
eventually comes to rest due to friction. In many activities humans
follow a similar approach by transitioning dynamically from one
static state into another static state (Fig.5.1). We modify our planner
to harness these same approaches to interaction.

We incorporate dynamic actions by formulating the rearrangement
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(a) Labyrinth maze (b) Pool billard (c) Bouldering (d) Mini golf
Figure 5.1: Examples for dynamic
actions between statically stable states
utilized by humans.

problem as a search for dynamic transitions between statically stable
states in the joint configuration space. We then incorporate a dy-
namic physics engine into our kinodynamic RRT to model dynamic
motions such as a ball rolling. To guarantee statically stable states,
we require the environment come to rest after a duration Tmax. In the
following section, we detail the changes to our algorithm required
and present results from the updated planner.

5.2 Terminology and Assumptions

We denote the manifold C = {x = (q, q̇) ∈ X f ree|q̇ = 0} as the
environment’s statically stable free state space, where every movable
object and the robot are at rest. As pointed out in Sec.3.4, this mani-
fold represents the free configuration space of the robot and movable
objects. Let CR and Ci denote the statically stable free state space for
the robot and all movables objects i = {1 . . . m}.

We assume our start state x0 ∈ C, i.e. the robot and all objects start
at rest. Additionally we assume the goal region G ⊆ C. The task of
our planning problems remains unchanged from Ch.2: we wish to
find a feasible trajectory, ξ, through X f ree that begins at x0 and ends
in G.

5.3 Planner Updates

Dynamics

C

x0

x1
x2

x3
x4

Figure 5.2: Dynamic transitions be-
tween statically stable states in C

In Ch.3 we structured the problem as a search for actions a ∈ A that
connect states in X f ree. We assumed Γ approximated a quasistatic
model of physics, ensuring xt+1 = Γ(xt, a) ∈ C. In other words, the
quasistatic assumption ensured that action a connected two states in
the statically stable free space. In this section, we allow Γ to approxi-
mate a fully dynamic model of physics. We modify our definition of
an action to include a duration, drest, to apply the null control to our
robot, i.e. the duration to keep the robot at rest but allow movable
objects to continue rolling or sliding. Then, we require that given a
state xt ∈ C and an action a ∈ A, xt+1 = Γ(xt, a) ∈ C (Fig.5.2).

To ensure this property holds during planning, we update the
ConstrainedPropagate function from Alg.2. Alg.5 shows the updated
function (denoted DynamicConstrainedPropagate). During exten-
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Algorithm 5 The dynamic constrained propagation function. After
applying the manipulator action for the desired duration, the physics
propagate is called for an additional duration with no manipulator
movement. All objects must come to rest by the end of this additional
time.
Require: A step size ∆t

1: function DynamicConstrainedPropagate(x,u,d,drest)
2: t← 0
3: q← ExtractManipConfiguration(x)

4: x̂ ← AddVelocities(x)

5: while t < d + drest do

6: if t > d then

7: u← ∅

8: qnew ← Project(q + ∆tu)

9: unew ← qnew − q

10: x̂new ← PhysicsPropagate(x̂, unew)

11: if not Valid(x̂new) then

12: break

13: (t, x̂, q)← (t + ∆t, x̂new, qnew)

14: if ObjectsAtRest(x̂) then

15: x ← RemoveVelocities(x̂)

16: return (x, t)

17: else

18: return (∅, 0)

sion, the state is expanded to include velocities. The AddVelocities

functions initializes velocities of all objects to 0 (Alg.5-Line 4). Af-
ter the robot action has been applied for the desired duration d, the
physics model continues to be applied for an additional duration,
drest, with no robot movement (Alg.5-Line 7). Before returning, the
return state is checked to ensure all objects in the environment are
stopped (Alg.5-Line 14). Only extensions resulting in these states are
considered valid.

5.4 Experiments and Results

In these experiments we use Box2D [3] as our physics model. Due to
the nature of this model, all experiments are run in a 2D workspace.
The state space for each movable object is Xi = SE(2) × se(2), the
set of poses and twists in the plane. The robot is only the hand (end-
effector) of HERB, which is assumed to move holonomically in the
plane. Therefore XR = SE(2)× se(2).

The action space A = se(2) × R
≥0 × R

≥0, is the set of twists,
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consisting of translational and rotation velocities to be applied for a
duration, d. As described in Sec.5.3, the third element of an action
describes the duration, drest, for the robot to wait while objects come
to rest. We set drest to be a constant value, Tmax, throughout a single
planning call, i.e. every action has the same value for drest. We model
the dynamics of the robot leading to achievement of a desired twist
as a ramp profile. In other words, we assume max acceleration is
applied to achieve the twist, then max deceleration is applied to
bring the robot back to rest at the end of the duration d. In these
experiments we set k = 10.

(a) Scene 1

(b) Scene 2

(c) Scene 3

Figure 5.3: Three example scenes. In
all three scenes, the robot must move
the green object into the goal region
denoted by a green circle. Blue objects
are movable. Red and orange objects
are obstacles.

We test 12 different scenes with varying numbers of movable ob-
jects and obstacles. Fig.5.3 depicts 3 of the scenes. We allow and
model contact between movable objects and obstacles. However, we
do not allow the robot to contact any obstacles. We task the robot
with pushing a single object into a circular goal region. We run each
planner 110 times on each scene. A run is considered a success if the
planner finds a solution within a planning time of 60 s.

Comparison with baseline planners

We run our planner (denoted Semi-dynamic in all results) for
different choices of Tmax = 0 s, 1 s, 8 s, 20 s, 60 s. This allows us to test
our first hypothesis:

H.1 Increasing Tmax leads to higher success rates for the semi-

dynamic planner.

H.1 is motivated by the fact that larger values of Tmax allow a
greater variety of actions. This is because the larger wait time in-
creases the likelihood of the environment coming to rest.

We compare against a baseline planner that plans in the full state
space, X f ree (denoted Dynamic in all results). This planner uses the
original propagate function from Alg.2 but uses the dynamic physics
model during the PhysicsPropagate step. As a result, this planner
searches across the full free space, X f ree, rather than the manifold C.
This allows us to examine the following hypothesis:

H.2 Given a restricted planning time budget, the semi-dynamic

planner achieves higher success rate than the dynamic planner.

H.2 is motivated by the fact that the semi-dynamic planner plans
in C ⊂ X f ree while the dynamic planner searches the larger X f ree.
Given a restricted time budget, we expect the semi-dynamic planner
to find a solution faster as long as a semi-dynamic solution exists,
i.e. there is enough friction in the environment to eventually bring all
objects to rest within Tmax.
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Generating full arm trajectories

Algorithm 6 Jacobian pseudo-inverse trajectory conversion
Require: An end-effector trajectory ξ of duration T, a mapping π, a

step size ∆t

1: ξ ′ ← InitTrajectory()

2: π′ ← InitActionMapping()

3: q← SampleStartIK(ξ(0))
4: t← 0
5: while t < T do

6: a← π(t)

7: φ← J†(q)a + h(q)

8: UpdateTrajectory(ξ ′, q, t)

9: UpdateMapping(π′, φ, t)

10: q← q + ∆tφ

11: t← t + ∆t

12: if not Valid(q) then return (∅, ∅)
return (ξ ′, π′)

Our choice of physics simulator allows us to quickly model dy-
namic interactions, but only in 2D environments. However, we wish
to generate trajectories for 7-DOF arm of the HERB robot. To do this,
we first plan motions for the end-effector moving in the plane using
our planner. Then, in a separate post-processing step we “lift” these
trajectories to the robot’s full configuration space by using the Ja-
cobian pseudo-inverse to generate joint velocities that achieve these
end-effector motions. Alg.6 shows the basic algorithm we use.

We initialize the conversion by sampling a full arm configura-
tion from the set of inverse kinematics solutions that place the end-
effector in the initial configuration specified in the trajectory (Alg.6-
Line 3). During the conversion, we generate a new trajectory ξ ′ that
describes the full arm configurations of the robot at each time step
(Alg.6- Line 8). Additionally, we generate a new mapping π′ that de-
scribes the joint motions the robot should execute at each time step
(Alg.6- Line 9). During trajectory generation, intermediate configura-
tions of the robot are checked to ensure there is no unmodeled colli-
sion, e.g. collision between the forearm and an obstacle or movable
object (Alg.6- Line 12). If we encounter an invalid configuration, an
empty path is returned and an outer process restarts the conversion.

Quantitative analysis
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Figure 5.4: The success rate of the semi-
dynamic planner with Tmax = 8 s and
the dynamic planner. Given a restricted
time budget of 60 s, the semi-dynamic
planner solves more scenes faster.

Fig.5.4 shows the success rate of the semi-dynamic planner for
Tmax = 8 s and the dynamic planner on all scenes as a function of
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planning time budget. As the planners are allowed more time, more
solutions are found and the success rate grows. For all time budgets,
the semi-dynamic planner outperforms the dynamic planner. This
support H.2: Given a restricted time budget the semi-dynamic

planner achieves higher success rate that the dynamic planner.
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Figure 5.5: Success rate for different
values of Tmax .

Next, we compare the success rates for different choices of Tmax.
From Fig.5.5 we can observe two interesting trends. First, the plan-
ners with Tmax = 0 s and Tmax = 1 s perform worst. This can be ex-
plained by the fact that many scenes require manipulation of objects
that behave dynamically. Consider the scenes in Fig.5.3b and Fig.5.3c.
The robot’s task is to move the ball into the goal. Finding actions that
result in statically stable states after 0 s or 1 s is unlikely because the
ball keeps rolling for some time after contact.

Second, the success rates for Tmax = 8 s, 20 s, 60 s do not differ
largely from each other at a budget of 60 s. The planner achieves
the highest success rate when Tmax = 8 s, followed by Tmax = 20 s
and then Tmax = 60 s. This weakens H.1: Increasing Tmax does not

necessarily lead to a higher success rate for a restricted planning

time budget.

Dyn. 0s 1s 8s 20s 60s
0.000

0.004

0.0080.008

0.012

0.016

A
v
g
.
p
ro
p
a
g
a
ti
o
n
ti
m
e
(s
)

Figure 5.6: Average time to try a prop-
agate a single extension of the tree. As
Tmax increases the propagation time
increases.

While the results support our hypothesis for Tmax < 8 s, the benefit
of increasing Tmax vanishes in the range of [8 s, 20 s]. At first glance,
this is surprising since any solution found with some T′max can also
be found with T′′max > T′max. An explanation can be found through
closer examination of the effect of Tmax on tree growth. In particular,
we examine the average time to try a single extension under different
values of Tmax in Fig.5.6. As we increase Tmax, we must spend more
time running the physics simulator to see if objects come to rest,
increasing propagation time. This time penalty means that given a
fixed planning time budget, fewer extensions can be added to the tree
as Tmax increases, reducing the amount of exploration the planner can
realize.

Finally, we examine the average path duration for the three scenes
from Fig.5.3. Scene 1 contains only high friction objects. These objects
are quasistatic in nature - they come to rest almost immediately after
the robot stops imparting forces. For these scenes, path duration is
similar for all values of Tmax and the dynamic planner (Fig.5.7-(left)).

Scene 2 contains two low friction objects, depicted as balls. These
objects continue moving after contact with the robot is lost. Here, the
path duration increases with higher values of Tmax. This indicates
that these solutions make use of actions that allow the balls to roll for
a longer duration after breaking contact with the robot. Fig.5.7-(right)
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Figure 5.7: Results for three scenes
in Fig.5.3. (Left) Average path duration.
(Note: Only one path was found for
Tmax = 0 s in Scene 3) (Right) Success
rate.

supports the need for these types of actions. The success rate on this
scene when Tmax = 0 s, 1 s is significantly lower than the rate for
higher values.

Scene 3 proves to be difficult for all planners. It contains a static
wall blocking direct access to the goal. Furthermore, the goal region
lies in open space, where no obstacle prevents the ball from rolling
through the goal region. The semi-dynamic planner with Tmax =

0 s, 1 s, 8 s, 20 s found very few solutions. If a solution was found
the path duration is on average shorter than for greater Tmax as it
involves less time waiting for objects to come to rest. For Tmax = 60 s,
more solutions are found but the average duration of solutions is
largest. The dynamic planner achieves similar success rate on this
environment, but found paths with the shortest execution times on
average. This highlights a fundamental trade-off in using the semi-
dynamic planner: semi-dynamic planners find solutions quicker but
typically exhibit longer path duration due to the need to wait for the
environment to come to rest between actions.

In fact, on average the solutions found by the dynamic planner are
shorter in execution time for all scenes with dynamically behaving
objects.

Qualitative analysis

Fig.5.8 shows an example trajectory that was first planned in
2D then lifted to a full arm trajectory. The robot’s task is to move
the green ball, which is modeled as a low-friction disc, into the
goal on the left side (red box). As can be seen in the velocity pro-
file of the end-effector and the target object, the robot moves the
target object from one statically stable state to another. A particu-
larly interesting caging behavior occurs between Fig.5.8b, Fig.5.8c
and Fig.5.8e, Fig.5.8f. In both cases, the robot first accelerates the ball
using one side of the end-effector and then catches it at the end of the



54 robust rearrangement planning using nonprehensile interaction

(a) (b) (c) (d)* (e) (f)

(g) (h)* (i) (j) (k) (l)*

0 2 4 6 8 10
0.00

0.10

0.20

0.30

0.40
(l)*(c) (d)*(a)(b) (e) (f) (g) (h)* (i) (j) (k)

V
el

o
ci

ty
 (

m
/

s)

Time (s)

Manipulator
Ball

V
el

o
ci

ty
 (

m
/

s)

Time (s)

Manipulator

Ball

Figure 5.8: Top: Snapshots from a semi-
dynamic trajectory lifted to a 7-DOF
arm trajectory and executed on the
robot in simulation (Tmax = 8s). The
task is to move the green ball into the
red goal. The orange boxes are static
obstacles. The states marked with ∗
are statically stable. Middle: Velocity
profile of the end-effector and the
target. Note how the robot waits until
the ball comes to rest before it performs
the next action. Bottom: Velocities for
a dynamic trajectory for the same
scene. In contrast to the semi-dynamic
trajectory the environment does not
come to rest after each action.

action using the other side of the end-effector. We observed this be-
havior frequently in many scenes. An action where the robot pushes
a ball into open space is less likely to lead to a statically stable state
within Tmax than an action for which caging occurs.

Fig.5.8-bottom shows the velocity profile for a trajectory planned
with the dynamic planner on the same scene. Note how both the
manipulator and the target object keep in motion for the whole tra-
jectory. As a result the total duration of the trajectory is shorter than
the semi-dynamic one.
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Figure 5.9: Top: Snapshots from a
semi-dynamic trajectory lifted to a
7-DOF arm trajectory and executed
on HERB (Tmax = 8s). The task is to
move the white box to the left. Bottom:
Velocity profile for the trajectory as
planned. Multiple objects are pushed
simultaneously. Also the target object,
the cup and one of the boxes are moved
multiple times. The statically stable
states are marked with ∗.

5.5 Summary and Discussion

In this chapter, we offered a method for moving beyond quasistatic
interactions and planning for dynamic interactions. We proposed to
limit the scope of the planner to consider only dynamic interactions
that result in statically stable states – all objects come to rest between
robot motions. This allowed us to keep the search in the joint con-
figuration space of the robot and objects. We showed this speeds the
search at the expense of limiting the types of solutions the planner
can generate.

In our formulation, we require all objects come to rest between ac-
tions. We note that this constraint may be too restrictive, particularly
when planning for highly dynamic objects that don’t easily come to
rest. We could instead employ a hybrid approach that incorporates
the full state of some objects, i.e. the rolling ball. This would allow
the planner to track velocities of these objects and remove the need
for these objects to come to rest between actions. This increases the
size of the state space but also increases the space of possible solu-
tions.

The implementation in Sec.5.4 plans for the robot’s end-effector
in 2D and then lifts the resulting trajectory to the full configuration
space of the robot. This method allows us to plan in 2D and use a
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fast physics model. However, it introduces two main limitations.
First, by planning in 2D we are unable to take into account the kine-
matics of the arm at plan time. As a result, the planner can produce
end-effector trajectories that are kinematically infeasible. When these
trajectories are encountered, they are discarded and the planner is
restarted.

Second, any contact between the arm and objects is not modeled.
Again, this can lead the planner to produce infeasible trajectories,
i.e. there exist no collision-free arm motions that realize the end-
effector motion. In the previous chapters, we have shown that allow-
ing contact between the full robot and objects proves beneficial to the
planner by expanding the space of solutions that can be achieved. In
order to allow these trajectories, we must substitute a full 3D physics
model. This will result in overall slower tree extension, but at the
added benefit of an expanded solution set.

Despite these limitations, our preliminary experiments show we
are able to produce executable trajectories on a real robot (Fig.5.9).
While we are able to achieve some success executing these trajectories
open-loop, the dynamic interactions highlight the need to incorpo-
rate uncertainty into our planner. It is impossible to perfectly model
the dynamic interactions, especially with low friction objects like the
rolling ball. As a result, many of our executions of scenes with such
objects resulted in failure. In Part II, we will present methods for in-
corporating the uncertainties prevalent in our real physical systems.



Part II

Rearrangement Planning

under Uncertainty
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Planning Under Uncertainty

The algorithm presented in Ch.3- Ch.5 planned assuming perfect
knowledge of the environment and perfect action execution. As a
result, while the plans generated by Alg.1 are feasible, they are of-
ten prone to failure due to uncertainty. In general, open-loop plans
are susceptible to failure due to uncertainty in the initial pose of
objects in the scene (Fig.6.1a), and uncertainty in the motion of the
manipulator (Fig.6.1b). Alg.1 introduces a third source of uncertainty:
uncertainty in the evolution of the physical interaction (Fig.6.1c). This
could be due to poor selection of parameters for the model, noisy
contacts or errors in the geometric representation of the scene. In the
next chapters, we formulate methods for characterizing and handling
this uncertainty in order to produce robust open-loop trajectories.

(a) Uncertainty in initial object pose

(b) Uncertainty in action execution

(c) Uncertainty in physics parameters
Figure 6.1: Three sources of uncertainty
in the system. (a) and (b) are preva-
lent in many planning domains. Our
framework introduces a third source of
uncertainty: uncertainty in the physics
model (c)

.

Planning under these uncertainties has been studied extensively in
the robotics community. In this chapter, we provide a brief descrip-
tion of the most widely adopted techniques and how they relate to
the rearrangement planning problem.

6.1 Conformant Planning

The basic assumption of a conformant planning problem is that the
system cannot be observed while the plan is being executed, and the
state of the system is not known for certain even at the beginning of
planning. The goal of conformant planning is to generate a sequence
of actions that is guaranteed to achieve the goal despite any uncer-
tainty in the system [32, 44, 114]. The problem is considerably more
difficult that traditional planning, even under simplifying assump-
tions such as bounding the length of plans [50].

A less restrictive framework is the probabilistic conformant planning

problem [57, 75]. Here, the goal is to generate a sequence of actions
that achieves the goal with sufficient probability. Framing the prob-
lem under this less restrictive condition opens the space of solutions
and eases the overall planning problem. We frame the rearrange-
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ment planning problem as an instance of probabilistic conformant
planning in Ch.7.

6.2 Sampling Based Approaches

Some works have proposed methods that extend sampling based
frameworks to solve the probabilistic planning problem. One of the
most common approaches is to build on the Probabilistic Roadmap
(PRM) algorithm [62] by accounting for stochasticity in robot pose [106],
transition dynamics [10] and obstacle representation [47]. While the
use of a PRM is infeasible for this problem, we borrow some key in-
spirations from these works. In particular, in Ch.8 we propose to use
Monte Carlo simulations to estimate the probability a sequence of
actions achieves success. This same method is employed to estimate
success of individual actions in [10].

Alternate works have built uncertainty into RRTs [83, 93, 101] un-
der assumptions such as bounded uncertainty. Indeed, we could
modify our algorithms from Part I so that each node represents
a set of possible states, or belief state, rather than a single known
state. The difficulty arises in defining an informative distance met-
ric between two belief states that allows us to effectively guide tree
growth [80]. We provide two methods of incorporating uncertainty
into RRTs in Ch.9.

6.3 Partially Observable Markov Decision Processes

An alternative and common method of handling planning under
uncertainty is to formulate the problem as a Partially Observable
Markov Decision Process (POMDP). POMDP solvers can reason
about uncertainty and incorporate closed-loop feedback from local or
global sensors. We refer the reader to one of several good surveys of
the formulation, theory and algorithms [27, 82, 95, 124].

We are interested in a sub-domain of POMDP problems: Un-
observable Markov Decision Process (UMDP). In these problems,
the robot does not receive observations that help determine state.
While the lack of observations reduces the complexity, the problem
is still difficult to solve exactly, particularly in our continuous state
and action space with non-Gaussian non-smooth distributions. In
this work we consider online solvers that find approximate solu-
tions [13, 74, 111, 121]. We use an algorithm inspired by Partially Ob-
servable Monte Carlo Planning (POMCP) [111] which relies on Monte
Carlo simulations to estimate our difficult distributions in Ch.10.
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6.4 Rearrangement Planning under Uncertainty

A few works have considered uncertainty in planning among mov-
able objects. Levihn et al. [78] formulate the problem as a Markov
Decision Problem and uses the Box2D physics simulator to estimate
transition probabilities between states. The proposed planner uses a
hierarchical approach, using the MDP to plan high-level actions that
connect regions of free state space by moving objects, then using a
state space planner to generate geometrically feasible instantiations of
these actions. An alternative backtracking-based approach is used to
solve rearrangement planning under uncertainty in [36].

Neither of these approaches can be applied directly to our prob-
lem without restricting the space of solutions our planner can con-
sider. The complexity of tracking free space [78] is difficult for the
high-dimensional robot state spaces we consider. The backtracking
approach [36] limits object interaction to a single object at a time.
However, we draw inspiration from both of these approaches in the
solutions we present in the following sections.
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Incorporating Uncertainty into Rearrangement Plan-

ning

Formally, we will augment the problem described in Ch.2. Rather
than planning from a deterministic start state x0 ∈ X f ree we instead
begin in an initial belief state b0 = p(x0) that is a probability distri-
bution over the start state. Additionally we assume our state evolves
as a stochastic non-holonomic system. Thus we have a distribution
p(ξ|π) of trajectories that results from starting in x0 ∼ b0 and ex-
ecuting control inputs π under the stochastic transition dynamics.
Our goal is to find a sequence of control inputs π that maximizes
the probability pπ = Pr[Λ[ξ] = 1] of satisfying the success functional

Λ : Ξ → {0, 1} where Ξ is the set of all trajectories. We define the
success functional

Λ[ξ] =







1 : ξ(Tξ) ∈ XG

0 : otherwise
(7.1)

where Tξ is the duration of trajectory ξ.
This problem is particularly hard for rearrangement planning.

First, the problem is set in a high-dimensional space with continu-
ous controls. Second, contact causes physics to evolve in complex,
non-linear ways and quickly leads to multimodal and non-smooth
distributions [68, 70, 104]. Third, finding good trajectories is inher-
ently hard: most trajectories achieve success with zero probability.

In the following chapters, we outline methods for handling uncer-
tainty under the challenges presented by rearrangement planning.
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Trajectory Selection for Rearrangement Planning

This chapter is adapted from Koval et
al. [69] and contains work completed in
collaboration with Michael Koval.

In this chapter we formulate rearrangement planning under uncer-
tainty as a selection problem. To do this we take advantage of three
characteristics of the planning framework presented in Part I: (1) the
method for generating trajectories is stochastic – several calls to the
planner for the same query will result in different trajectories, (2) the
use of a physics model allows us to easily forward-simulate the sys-
tem’s dynamics under different initial conditions, and (3) we can test
whether a simulation is successful, i.e. achieves the goal.

Given these properties we first use the stochastic planner to gen-
erate a finite set of state space trajectory candidates. We then perform
several noisy rollouts: forward-simulations under varying initial con-
ditions. We use the success or failure of these rollouts to form an
estimate of pπ , the probability of the trajectory being successfully
executed on the real robot, and use this estimate to select the most
robust trajectory.

Given a set of k trajectories, we could perform a fixed sufficient
number n of rollouts on each trajectory, requiring a total of kn roll-
outs. However, rollouts are computationally expensive, requiring the
evaluation of a full physics simulation. We seek an algorithm that can
efficiently choose the best trajectory given a small rollout budget.

We can formalize this selection problem as an instance of the “best
arm” variant [90] of the k-armed bandit problem [107]. In our for-
mulation, each candidate trajectory is an “arm” and the goal is to
identify the best arm given a fixed budget of rollouts. We use the
successive rejects algorithm [11] to select the best candidate. In the
following sections we detail important components of the method.

8.1 Trajectory Selection

Our goal is to find the most robust sequence of control inputs:

πbest = argmax
π∈Π

pπ (8.1)
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where Π is the set of all possible sequences of control inputs. Com-
pute πbest exactly is not possible. Instead, we propose an approxi-
mate solution and provide intuition about the accuracy of the ap-
proximation.

8.1.1 Approximating success probability

We can write pπ as the expectation:

pπ = E [Λ[ξ]] =
∫

Ξ
Λ[ξ]p(ξ|π)dξ

over the space of trajectories Ξ. Directly computing this integral
requires the ability to evaluate p(ξ|π). In the case of rearrangement
planning, this is not available.

(a) Uncertainty in initial pose of objects
in the scene

(b) Rollouts of each of these noisy initial
states

Figure 8.1: Rollouts of the control
sequence can be used to estimate proba-
bility of success under uncertainty.

Instead, we approximate this expectation as the mean

p̂π =
1
n

n

∑
j=1

Λ[ξ j]

of Λ over n rollouts ξ1, . . . , ξn ∈ Ξ. The law of large numbers guaran-
tees that limn→∞ p̂π = pπ : i.e. our approximation p̂π approaches the
true success probability pπ as the number of samples n increases.

Each rollout is an independent sample from the distribution ξ j ∼

p(ξ|π). We generate rollout ξ j by sampling an initial state xj ∼ p(xs),
then forward-propagating xj through stochastic dynamics while
executing the control inputs dictated by π. Fig.8.1 shows an example
of using rollouts to compute p̂π when there is uncertainty in the
initial pose of the objects and the physics models, but no uncertainty
in action execution.

8.1.2 Trajectory selection

Solving Eq.(8.1) also requires finding the global optimum of the
infinite-dimensional set of sequences of control inputs Π. To gain
tractability, we first generate a candidate set of control sequences
Πcan ⊆ Π and then select the most robust candidate

π∗ = argmax
π∈Πcan

pπ

from this finite set.
We populate Πcan by drawing samples from a distribution over Π.

In our rearrangement planning problem, we generate candidates by
repeatedly calling one of the planners from Part I. Our intuition is
that the RRT will generate a diverse set of candidates that achieve the
goal with varying success probabilities.
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Given Πcan, the simplest selection algorithm is to choose

π̂∗ = argmax
π∈Πcan

p̂π

using our approximation p̂π of pπ . To do this, for each candidate
πi we perform n rollouts and count the number of success, si. Then
p̂πi

= si/n.

8.1.3 Effect of approximation error

Approximating pπ with p̂π comes at a cost: we may incorrectly se-
lect a sub-optimal candidate π̂∗ 6= π∗ due to error. An error occurs
when a candidate πi performs well on the n rollouts used to esti-
mate pπi

, but performs poorly on the underlying distribution. This
phenomenon parallels the concept of overfitting.

The number of successful rollouts si is a Binomial random vari-
able. The magnitude of the error ‖ p̂π − pπ‖ is unbounded for any
finite number n of rollouts. However, we can use a Binomial confi-
dence interval to bound the probability

Pr(‖ p̂π − pπ‖ > δ) < α (8.2)

of an error with magnitude δ occurring. When the central limit theo-
rem holds, the Wald interval states

δ = z1−α/2

√

1
n

p̂π(1− p̂π) (8.3)

where z1−α/2 = Φ−1(1− α/2) is the (1− α/2)-th percentile of the
Gaussian distribution.

Given a desired δ and α, we can solve for the number of samples
n required to satisfy Eq.(8.2). The value δ is related to the minimum
difference between two trajectories that we can reliably detect. Ide-
ally we would drive δ → 0, allowing us to differentiate trajectories
with similar success rates. From Eq.(8.3) we see this requires a pro-
hibitively large value of n; e.g. reducing δ by half requires increasing
n by a factor of four.

8.2 Multi-Armed Bandit Formulation

The approach described in Sec.8.1 assumes that we need to perform
the same number of rollouts on all candidates. Our analysis in Sec.8.1.3
suggests that this is wasteful; we can use fewer samples to differ-
entiate between two candidates that have vastly different success
probabilities.

We formalize the intuition by framing the trajectory selection
problem as a variant of the multi-armed bandit problem [107]. This
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Phase 1

Phase 2

Final Selection

Figure 8.2: The successive rejects algo-
rithm. During each phase, rollouts are
performed on all remaining candidates
to improve estimates of p̂ for each can-
didate. After each phase, the candidate
with lowest probability of success is
eliminated. This continues until a single
candidate remains in the set.

enables us to use the successive rejects algorithm [11] to efficiently
identify the best candidate.

8.2.1 Multi-armed bandit formulation

A multi-armed bandit problem is a sequential process where an agent
is presented with k arms and at each time step must choose only one
arm to pull. After pulling an arm, the agent receives a reward. The
goal of the agent is to maximize expected sum of reward. Since the
agent does not know the distribution of rewards, it must trade off
between exploring different arms and exploiting its estimate of the best
arm.

Trajectory selection is an instance of the multi-armed bandit algo-
rithm where each candidate πi ∈ Πcan is an arm. Pulling the i-th arm
corresponds to performing one rollout, ξ j of πi. We receive a binary
reward Λ[ξ j] ∼ Bernoulli[pπi

] depending upon whether the rollout,
ξ j ∼ p(ξ|πi), achieves the goal.

Unlike the canonical bandit problem, the goal of trajectory selec-
tion is not to maximize the expected sum of reward across all roll-
outs. Instead, after exhausting a budget of B rollouts, we choose the
single best candidate π̂∗ = argmaxπ∈Πcan

p̂π and execute π̂∗ on the
real robot. Our goal is to optimally allocate the B rollouts among the
k candidates to maximize the success probability pπ̂∗ of our selection
π̂∗. This is known as the best arm or pure exploration variant of the
bandit problem [11, 90].
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Algorithm 7 Successive Rejects

Require: candidates Πcan = {π1, . . . , πk}, initial belief b0

1: A = {1, . . . , k}

2: si ← 0 for all i ∈ A

3: n0 ← 0
4: for l = 1, . . . , k− 1 do

5: n← nl − nl−1 ⊲ See Eq.(8.4) for def’n
6: for all i ∈ A do

7: for j = 1, . . . , n do ⊲ Perform n rollouts
8: xj ∼ b0

9: ξ j ← Rollout(xj, πi)

10: si ← si + Λ[ξ j]

11: iworst ← argmini∈A(si/nl)

12: A← A \ {iworst} ⊲ Reject the worst p̂π

13: {π̂∗} ← A

8.2.2 Successive rejects algorithm

The successive rejects algorithm (Alg.7) is a principled method of
solving the best arm problem. The intuition behind the algorithm is
to partition the B rollouts between several phases (Line 4). A set A ⊆

Πcan is repeatedly shrunk until it contains the single best candidate.
In each phase, we perform an equal number of rollouts n (Line 5) on
each remaining candidate π ∈ A and remove the candidate πworst =

argminπ∈A p̂π with the lowest estimated success probability from A

(Line 12). This repeats until we have completed k− 1 phases. At this
point, we return the remaining candidate π̂∗ in A as our selection
(Line 13). Fig.8.2 illustrates the algorithm.

The key component of the successive rejects algorithm is how
to select the number of rollouts to perform in phase l. If we have k

candidates and a total budget B of rollouts, then we choose

nl =

⌈

1

log k
·

B− k

k + 1− l

⌉

(8.4)

where log k = 1/2 + ∑
k
i=2

1/i and ⌈·⌉ denotes the ceiling operator [11].
nl is the total number of rollouts performed across all phases on each
candidate remaining in phase l. Only n = nl − nl−1 of these rollouts
are performed in phase l.

Given the choice of Eq.(8.4) for nl , prior work [11] shows that the
probability ǫ of Alg.7 making an error is bounded by:

ǫ ≤
k(k− 1)

2
exp

[

−
b− k

H2 log k

]
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where H2 = max2≤i≤k(i∆
−2
(i)

) and ∆(i) = pπ∗ − pπ(i)
is the gap

between the best candidate and the i-th best candidate π(i). We can

additionally bound H2 ≤ H1 with H1 = ∑
k
i=2 ∆−2

(i)
.

The quantities H1 and H2 formalize the difficulty of the prob-
lem. Since ∆(i) is the denominator of H1, a problem is more diffi-
cult if the gaps ∆(1), . . . , ∆(k) are small. This confirms our analysis
from Sec.8.1.3 that it is difficult to differentiate between two candi-
dates with similar success probabilities.

8.3 Experiments and Results

First, we verify the following two properties hold in our test environ-
ment:

P.1 The state space planner can generate candidate trajectories
with varying success probabilities.

P.2 Increasing the number of rollouts per trajectory improves
the estimated success probability, allowing us to make a better
selection.

Finally, we test two hypotheses:

H.1 The successive rejects algorithm requires fewer rollouts to
find the best trajectory than a baseline that uses a fixed number of
rollouts.

H.2 Selecting a good trajectory increases the likelihood of success-
ful execution on a real robot.

We evaluate our algorithm on the trajectories generated for the
HERB robot tests in Sec.4.3.3 using the hybrid planner with p = 0.5.
In these tests, HERB was tasked with pushing an object on the table
through clutter.

8.3.1 Robustness to uncertainty
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Figure 8.3: Histogram of the success
probabilities achieved by 50 candidate
control sequences that solve the scene
in Fig.8.4.

We test P.1 by evaluating the 50 candidate trajectories Πcan generated
for one of the HERB scenes (Fig.8.4). We execute 400 noisy rollouts
of each candidate πi ∈ Πcan and count the number of rollouts si that
achieve the goal to compute p̂πi

= si/400. Using n = 400 rollouts
gives us 95% confidence that our estimate p̂πi

is withing 5% of the
true success probability pπi

.
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(a) Original scene (b) p̂ = 0.28 (c) p̂ = 0.59 (d) p̂ = 1.0
Figure 8.4: Start poses for the object in
the scene are drawn from a Gaussian
with distribution µ = 0, Σ1/2 =
diag{2cm, 2cm, 0.1rad}. The robot must
push the box into the goal region. For
simplicity, only the robot hand is show,
though contact is allowed with the full
robot arm.

Fig.8.3 shows the distribution of success probabilities for Πcan.
Each of 400 noisy rollouts samples the initial pose of the object from
a Gaussian distribution with zero mean and Σ1/2 = diag{2cm, 2cm, 0.1rad}.

These results show that we can easily generate different trajecto-
ries with our state space planner. More importantly , this confirms
that the trajectories produced by our planner differ in robustness to
uncertainty.

8.3.2 Fixed rollout method

Nest, we verify P.2 with a baseline selection algorithm that uses a
fixed number n of rollouts to evaluate each trajectory. We compare
multiple values of n ∈ {15, 50, 150, 400} using the same set of candi-
date trajectories as from Sec.8.3.1. We use the calculated p̂πi

values as
the ground truth success probabilities p∗π for each trajectory. We then
discard the previous rollouts and generate 400 new rollouts to test
the selection algorithm.
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Figure 8.5: Achieved success probability
as a function of budget for the scene
in Fig.8.4.

Fig.8.5 shows the ground truth success probability p∗ of the trajec-
tory selected with a budget of B total rollouts. Results are averaged
across 300 trials. With a small rollout budget, small values of n find
trajectories with higher success probability. This is expected, as these
planners are able to evaluate more trajectories using B rollouts. For
example, with a budget of B = 800 rollouts, the n = 400 planner can
only evaluate two trajectories while the n = 15 planner can evaluate
all 50.

Large values of n find better solutions as B increases. This is also
expected. Increasing n shrinks the confidence interval and allows the
planner to accurately differentiate between trajectories with similar
success probabilities.

8.3.3 Success rejects algorithm

We test H.1 by comparing the successive rejects algorithm described
in Sec.8.2.2 against a baseline algorithm that uses a fixed number n of
rollouts. We begin by allocating a budget of B = 800 rollouts to each
algorithm. We run multiple iterations, increasing B by 400 rollouts
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each time until we reach B = 20000. At this point, the n = 400
algorithm can evaluate all 50 candidates. We record the ground-truth
success probability p∗ of the trajectory selected in each iteration.
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Figure 8.6: The successive rejects
algorithm finds better solutions than an
algorithm that applies a fixed number
of rollouts to every trajectory given the
same budget B.

Fig.8.6 shows the relative success probability of each selection
algorithm averaged over 300 trials. In each trial, we randomize the
order of Πcan and the outcome of the noisy rollouts for each candi-
date πi ∈ Πcan. The ordering of both trajectories and the outcomes is
kept constant within a trial.

For a fixed budget of 20000, both planners find the same near-
optimal trajectory. However, the successive rejects algorithm finds
the trajectory with far fewer rollouts on average. This supports our
hypothesis: The successive rejects algorithm requires fewer rollouts

to find the best trajectory than a baseline planner that uses a fixed

number of rollouts.

8.3.4 Real robot experiments
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Figure 8.7: Comparison of the success
probability estimated through Monte
Carlo rollouts (predicted) and observed
during ten executions on the real
robot (actual). Trajectories with a high
estimated probability of success tend to
succeed more often when executed on
the real robot.

We test H.2 by executing trajectories selected by our algorithm on a
real robot. We generate four new random scenes for HERB, construct
each by measuring the nominal location of each object relative to
HERB, and perturb the pose of each object by an offset drawn from
a Gaussian distribution. We use the successive rejects selection al-
gorithm to generate five trajectories for each of the four scenes and
record the success rate estimated by the planner for each candidate
trajectory. Finally, we select seven of the twenty generated trajectories
with varying estimated success rates and execute each 10 times on
HERB. We record success or failure of each execution.

Fig.8.7 shows the estimated and actual success rate of each tra-
jectory. The estimated success rate does not perfectly predict the
results that we see on the real robot. However, there is a clear cor-
relation between the estimated success rate and the probability that
executing the trajectory succeeds on the real robot. This supports our
hypothesis: Selecting a good trajectory increases the likelihood of

successful execution on a real robot.

The qualitative aspects of the real robot experiments are perhaps
more interesting. Fig.8.8 shows Trajectory 7. In this scene, the robot
is tasked with moving the white box into the circle. This trajectory
exhibits the highest success rate. As can be seen, a sweeping mo-
tion is used to move the box to the goal. Prior work [36] shows that
sweeping primitives are particularly effective at reconfiguring objects
under uncertainty. It is encouraging that our selection algorithm can
produce similar behavior.

Next, we examine Trajectory 3. Our planner estimated the success
rate of this trajectory to be p̂ = 0.41. However, we were unable to
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(a) (b) (c) (d)

Figure 8.8: Trajectory 7, from the results
presented in Fig.8.7, executed on HERB.
The trajectory selection algorithm chose
to use a sweeping motion to robustly
push the white box into the circular
goal region.

achieve any successful executions on the real robot. Examining the
rollouts used to evaluate this trajectory reveals unmodeled errors in
the physics model. This highlights a fundamental limitation of our
formulation: our estimate of p̂π can only be as good as our model of
noise in the system dynamics.

8.3.5 Modeling control errors

Our HERB experiments accounted for errors in the initial pose of the
objects in the scene. These errors are the most prevalent source of
failure when executing trajectories on HERB (though our real robot
experiments pointed out other physics modeling errors do exist).
When executing our KRex experiments in Ch.4 we noted that the
method of controlling KRex was much more prevalent to inaccuracies
than the control method for HERB. The trajectory selection method is
able to account for these uncertainties.
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Figure 8.9: Histogram of the success
probabilities achieved by 50 candidate
control sequences that solve the scene
in Fig.8.11.

To test this, we generate 400 noisy rollouts of the trajectories from
the KRex clearance experiments from Ch.4. Like the HERB experi-
ments, we sample the initial pose of objects from a Gaussian distri-
bution with zero mean and Σ1/2 = diag{2cm, 2cm, 0.1rad}. However,
we also sample the initial pose of KRex from a Gaussian distribu-
tion with zero mean and Σ1/2 = diag{2cm, 2cm, 0.0rad} to reflect
the initial pose errors prevalent when executing on KRex. Finally,
we sample noise into the duration each control is executed from a
Gaussian with zero mean and σ = 0.2 s to reflect the noisy control.

Fig.8.9 shows the distribution of Πcan for this task. This distribu-
tion contains far fewer candidates that succeed with high probability.
This is due to the nature of the modeled uncertainty: the noise in the
control execution grows unbounded (Fig.8.11).

0 4 8 12 16 20

Rollout Budget, B (1000s)

0.6

0.7

0.8

0.9

1.0

R
el
a
ti
v
e
S
u
cc
es
s
P
ro
b
a
b
il
it
y

n = 400
Successive Rejects

Figure 8.10: The successive rejects
algorithm finds better solutions than an
algorithm that applies a fixed number
of rollouts to every trajectory given the
same budget B.

Fig.8.10 uses the same method from Sec.8.3.3 to compare the
performance of the successive rejects algorithm vs. using a fixed
n = 400 rollouts per candidate. Here the performance improvements
are more drastic than the HERB case. The successive rejects algorithm
finds the best trajectory using less than 4000 rollouts on average
while the fixed rollout algorithm requires an average of over 16000

rollouts to select the best.
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8.4 Summary and Discussion

Our results show that selecting the best trajectory from a set of can-
didates is a surprisingly effective method of improving the likelihood
of the plan executing successfully. Additionally, we show that us-
ing the success rejects algorithm dramatically reduces the number
of rollouts required to achieve a desired level of performance. This
algorithm is simple to implement and performs strictly better than
using a fixed number of rollouts.

(a) p̂π = 0.8

(b) p̂π = 0.4
Figure 8.11: Success rate for two tra-
jectories for the same clearance task.
The top trajectory is more robust to
the control uncertainties prevalent for
KRex.

The performance of this algorithm depends entirely on the qual-
ity of the trajectories included in Πcan. First, the successive re-
jects algorithm is most beneficial when few candidates achieve the
goal with high probability, as is the case in the KRex experiments
from Sec.8.3.5. Second, the output trajectory can only be as good
as the best trajectory in Πcan. If all trajectories in the set are of poor
quality, the selected trajectory will be brittle.

We may be able to help this issue by seamlessly trading off be-
tween evaluating existing candidates and expanding Πcan to possibly
include better candidates. This is a smooth bandit problem [66] defined
over the continuous set of control sequences Π. The key challenge
is to define a meaningful metric over Π and insure that Λ is suffi-
ciently smooth. This formulation may result in an anytime planner
that continually outputs better trajectories over time.

Ideally, we would incorporate uncertainty directly into the planner.
Prior work [34] has show that some pushing actions reduce uncer-
tainty, while others increase it. Currently, we rely on such actions be-
ing randomly generated by a state space planner. In Ch.9 and Ch.10,
we provide two methods for incorporating uncertainty at plan time,
allowing our planner to explicitly include such actions.
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Convergent Rearrangement Planning

This chapter is adapted from Johnson et
al. [59] and contains work completed in
collaboration with Dr. Aaron Johnson.

Framing rearrangement planning under uncertainty as a trajectory
selection problem imposes one fundamental limitation: we cannot
optimize for robustness at plan time.

Figure 9.1: An example pushing action
that reduces uncertainty in object pose

Prior work [24, 35] has shown that nonprehensile interactions such
as pushing can be inherently uncertainty reducing (Fig.9.1). In this
chapter, we formulate a method for characterizing the robustness
of an action or set of actions inspired by results from contraction

analysis [81]. We propose three divergence metrics, partially based on
this analysis, and use these metrics to identify and select uncertainty
reducing actions at plan time. We show this allows us to actively
generate robust trajectories.

9.1 Contraction Analysis and Divergence Metrics

Contraction analysis [81] provides a proof of global exponential con-
vergence for a controller over a contraction region (a subset of the
configuration space where all states will converge to a single trajec-
tory). In this section we review the main results from contraction
analysis [81]. We then define divergence metrics partially based on this
analysis, as well as corresponding numerical approximations and
path metrics. These metrics provide a way to quantify the conver-
gence of a path as well as guide the search for a convergent plan.

9.1.1 Contraction analysis

Consider our system with state x ∈ X, control input u ∈ U and
(possibly time-varying) vector field, f : X × U ×R

≥0. Define F as the
symmetric part of the Jacobian of f , i.e.,

F(x, u, t) :=
1
2

(

∂ f (x, u, t)

∂x
+

∂ f (x, u, t)

∂x

T
)

(9.1)
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Let δξ(t) define the virtual displacement (an infinitesimal displace-
ment at a fixed time t) in a trajectory formed in f . This virtual dis-
placement is bounded by the magnitude of the initial displacement,
δξ(t0) and the integral of λmax(x, u, t), the maximum eigenvalue of F

at ξ at time t, [81, Eqn. 3], We use the notation x = ξ(τ) and
u = π(τ) where ξ is a solution to a
vector field ξ̇(t) = f (ξ(t), π(t), t) under
control π.‖δξ(t)‖ ≤ ‖δξ(t0)‖e

∫ t
t0

λmax(x,u,τ)dτ
. (9.2)

Define the maximal divergence metric Dm := λmax. In particular if
Dm (and therefore also F) is uniformly negative definite everywhere
in a region around a nominal trajectory, any differential length at the
start of a trajectory will vanish exponentially along its length, [81,
Thm. 1],

ξ0

Figure 9.2: Theor.9.1.1: Any trajectory
within a radius r of a nominal ξ0 will
converge to ξ0 if Dm < 0.

Theorem 9.1.1. Given a nominal trajectory, ξ0, that is the solution to

a vector field, ξ̇0(t) = f (ξ0(t), π0(t), t), under control π0, any other

trajectory that begins within region defined by a ball of radius r around the

nominal trajectory will converge exponentially to that trajectory so long as

F, Eq.(9.1), is uniformly negative definite over that region, i.e. if,

∃β > 0,∀t ≥ t0, x ∈ R(t), Dm(x, π0(t), t) ≤ −β < 0,

where R(t) := {x : ‖x− ξ0(t)‖ < r}. By bounding Dm we conclude that

all neighboring trajectories converge to a single trajectory (Fig.9.2).

Consider now the evolution of a differential volume, δV, around
the trajectory,

‖δV(t)‖ = ‖δV(t0)‖e
∫ t

t0
div f (x,u,τ)dτ

. (9.3)

Define the average divergence metric, Da := div f . As a relaxation
of Theor.9.1.1, consider [81, Sec. 3.9],

Theorem 9.1.2. Given a nominal trajectory, ξ0(t), that is the solution to

a vector field, ξ̇0(t) = f (ξ0(t), π0(t), t), under control π0(t), any other

trajectory that begins within a volume element δV around the nominal

trajectory will converge exponentially to a set of measure zero around that

trajectory so long as div f is uniformly negative definite at every point of

the nominal trajectory, i.e. if,

∃β > 0,∀t ≥ t0 Da(ξ0(t), π0(t), t) ≤ −β < 0.

This theorem says that if the average eigenvalue of F is negative
(since div f = tr F = ∑ λF) then a volume around a given trajectory
will collapse on average. There may still be some differential direc-
tions which do not collapse down to the nominal trajectory (and,
indeed, may diverge), however the differential volume will shrink to
zero and the trajectories will lie on some set of measure zero.
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Extending beyond the results of contraction analysis, consider the
evolution of the expected value of a virtual displacement, E

[
‖δξ(t)‖

]
,

taken over some distribution,

E
[
‖δξ(t)‖

]
=E
[
‖δξ(t0)‖

]
e
∫ t

t0
De(x,u,τ)dτ

, (9.4)

De(x, u, t) :=
d

dt
ln E

[
‖δξ(t)‖

]
. (9.5)

This form of the expected divergence metric, De, may not seem par-
ticularly useful. However we will show in the next section that it is
easy to compute numerically.

Dm Maximal divergence
Da Average divergence
De Expected divergence

Table 9.1: Divergence metricsTab.9.1 lists the metrics presented in this section for easy reference
during the remainder of this chapter.

9.1.2 Numerical approximation

The contraction analysis of [81] assumes a closed form differentiable
vector field. In rearrangement planning, this vector field is defined by
the non-holonomic constraint (Eq.(2.1)) that describes the motion of
the manipulator and objects. This vector field is not smooth – contact
is inherently discontinuous – and lacks an analytic representation
(although for simple problems this is theoretically possible [60]).
We have shown that f can be effectively approximated by a physics
simulator, however analytic divergence measures cannot be derived.
Instead, to approximate Dm, Da, and De we introduce numerical
divergence metrics that approximate the virtual displacement, δξ,
with finite samples.

Given a nominal trajectory, ξ0(t), generated by applying some ac-
tion π0(t) to a system with dynamics f , a perturbed trajectory (or
noisy rollout), ξi(t), is the solution to the same system and action as
the nominal trajectory, ξ̇i(t) = f (ξi(t), π0(t), t), but with a different
initial condition, ξi(t0) = ξ0(t0) + δξi. Thus Eq.(9.2) may be modi-
fied as, Here x0 = ξ0(τ) and u0 = π0(τ).

‖ξi(t)− ξ0(t)‖ ≤ ‖ξi(t0)− ξ0(t0)‖e
∫ t

t0
Dm(x0,u0,τ)dτ

, (9.6)

which holds in the limit as δξi goes to zero. Thus if Dm < 0, the ratio,
‖ξi(t) − ξ0(t)‖/‖ξi(t0) − ξ0(t0)‖, goes to zero exponentially. To get
the closest approximation, consider the largest such ratio, each of
which abides by the bound in Eq.(9.6),

max
i

‖ξi(t)− ξ0(t)‖

‖ξi(t0)− ξ0(t0)‖
≤e

∫ t
t0

Dm(x0,u0,τ)dτ
(9.7)

For a small time step δt, we have that,

D̂m(x0, u0, t) :=
1
δt

ln max
i

‖ξi(t + δt)− ξ0(t + δt)‖

‖ξi(t)− ξ0(t)‖
(9.8)
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and we arrive at the numerical approximation, D̂m ≈ Dm.
Similarly, for the average divergence Da, we will approximate

the differential volume by taking the volume spanned by a finite
set of points. Let V(ξ(t)) define such a volume, then D̂a ≈ Da is a
numerical approximation where,

D̂a(x0, u0, t) :=
1
δt

ln
V(ξ(t + δt))

V(ξ(t))
(9.9)

Finally, to estimate the divergence of expectation D̂e ≈ De, con-
sider the ratio of the average displacements,

D̂e(x0, u0, t) :=
1
δt

ln
1
N ∑

N
i=0 ‖ξi(t + δt)− ξ0(t + δt)‖

1
N ∑

N
i=0 ‖ξi(t)− ξ0(t)‖

(9.10)

The approximation holds exactly in the limit as N goes to infinity
and δt goes to zero, as can be derived from Eq.(9.10) or from stan-
dard results in Monte Carlo estimation, e.g. [37, Sec. 1.3.1]. Note that
the condition in Eq.(9.4) will hold over the length of a path if the set
of noisy samples, {δξi}, is drawn once at time t0 and not indepen-
dently at each time step.

9.1.3 Path metrics

Define for each metric Di the exponential of the integral of that met-
ric along a trajectory,

Ei := e
∫ T

0 Di(x,u,τ)dτ (9.11)

where note that some of the divergence metrics admit the following
simplifications,

Ea = exp
(∫ t

t0

div f (ξ(τ), π(τ), τ)dτ

)

=
‖δV(ξ(t))‖

‖δV(ξ(t0))‖

Êa = exp

(

lim
δt→0

∑
τ

ln
V(ξ(τ + δt))

V(ξ(τ))

)

=
V(ξ(t))

V(ξ(t0))

Ee = exp
(∫ t

t0

d

dτ
ln E

[
‖δξ(τ)‖

]
dτ

)

=
E
[
‖δξ(t)‖

]

E
[
‖δξ(t0)‖

]

Êe = exp lim
δt→0

(
t

∑
τ=t0

ln
1
N ∑

N
i=0 ‖δξi(τ + δt)‖

1
N ∑

N
i=0 ‖δξi(τ)‖

)

=
1
N ∑

N
i=0 ‖δξi(t)‖

1
N ∑

N
i=0 ‖δξi(t0)‖

.

9.2 Planning with Divergence Metrics

The contraction analysis described in the previous section provides
conditions for convergence but it does not provide a method of find-
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ing such regions. In this section we define two methods for incorpo-
rating the divergence metrics presented in Sec.9.1 into the planners
presented in Ch.3– Ch.5.

The Contraction Region RRT (CR-RRT) sets a threshold on diver-
gence in order to find a monotonically converging trajectory (e.g. to
meet the requirements of [81]). The Biased RRT (B-RRT) uses the di-
vergence as a heuristic bias in order to find more robust trajectories
even when a monotonically converging trajectory is not possible.

9.2.1 Contraction Region RRT (CR-RRT)

To allow our planner to meet the requirements of Theor.9.1.1 (or Theor.9.1.2)
we modify the extension step to only consider algorithms such that,

Dm(ξ(t), π(t), t) < 0 for all ti ≤ t ≤ ti+1, (9.12)

(respectively, Da < 0) where d = ti+1 − ti is the duration of the sam-
pled action and ti is the duration of the existing path to the start of
this extension in the tree. If no such actions are sampled, the tree is
not extended. If one or more such actions are sampled, the selection
criteria for choosing the best of all valid actions remains unchanged
from the original algorithm.

Not every problem will have a solution that meets the requirement
of Theor.9.1.1, and in such cases this algorithm will never terminate
with a solution. We can relax the requirement by altering the con-
straint,

Dm(ξ(t), π(t), t) < dm for all ti ≤ t ≤ ti+1, (9.13)

where dm ∈ R is a parameter that corresponds to the maximum
admissible divergence value.

9.2.2 Biased RRT (B-RRT)

An alternative method of incorporating the divergence metrics is
to include them in the distance computation, allowing them to bias
the search by altering the values used in the selection criteria at each
extension. Rather than selecting the best action based on a Euclidean
distance metric, as proposed in previous chapters, the biased RRT
(B-RRT) algorithm scales the original distance by a factor of s = ebDj .
Here b ∈ R is a bias and Dj is the chosen divergence metric. The
modification updates Alg.1-Line 8,

i∗ = argmin
i

ebDjDist(xi, xrand)

With this, actions that perform well with respect to the divergence
metric are preferred even if they are not the most direct path. Thus,
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the B-RRT heuristically tries to reduce the divergence, without en-
forcing the strict conditions of the CR-RRT. Note that when b = 0,
this algorithm is identical to our original algorithm.

9.3 Experiments and Results

Figure 9.3: Test scenario.

We test the modifications to the planning framework presented
in Sec.9.2.1 and Sec.9.2.2 on one of the scenes from the HERB robot
experiments in Sec.3.5.1 (Fig.9.3). As mentioned in Sec.9.1, we can-
not analytically compute divergence metric values for our problem.
Instead, we use the derived approximations. We evaluate plans gen-
erated by our previous planners, as well as with the B-RRT and CR-
RRT modifications using the exponential divergence Êe calculated
using N = 100 and sampling the initial object poses from a Gaussian
distribution with standard deviation σ = diag{2cm, 2cm, 0.1rad}.
This distribution was selected to reflect the actual distribution of
noise from our object detection system used to initialize real robot
experiments in Sec.9.3.4.

9.3.1 Baseline
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Figure 9.4: Comparison of Êe values
for the robot-centric (R), hybrid (H),
B-RRT and CR-RRT. Increasing the
bias in the C-RRT and decreasing the
threshold in the CR-RRT both lead to
better performing paths.

We first compute the exponential divergence Êe for all paths created
using the robot-centric planner from Ch.3 and the object-centric/robot-
centric hybrid planner (p=0.5) from Ch.4. These results are denoted R

and H respectively. Computing these values establishes a baseline for
which to compare our algorithm modifications.

Fig.9.4-(left) shows the Êe values for all 50 paths for each planner.
The incorporation of object-centric actions reduces Êe, indicating an
increased robustness to uncertainty. This is not surprising. The push
primitive is inherently uncertainty reducing [34].

9.3.2 B-RRT

We implement the B-RRT using D̂e as the divergence metric, i.e. the
numerical approximation to the expected value divergence. We use
the planner to generate 50 trajectories that solve the scene. This is
repeated for values of b = {0.0, 1.0, 1.5, 2.0}. Each trial used N = 10
samples at each extension step to calculate D̂e.
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Figure 9.5: The success rate of the
planners as a function of plan time.
The increased computational burden
of evaluating the divergence metric on
each extension increases planning time
and lowers success rate under a fixed
time budget. This highlights the trade-
off required to produce more robust
paths.

Fig.9.4-(middle) shows the Êe value as a function of b. As we in-
crease the value of b, the mean expected divergence Êe decreases.
Fig.9.5 compares the success rate vs. plan time for the B-RRT with
b = 2.0 to the hybrid planner with p = 0.5 from Ch.4. The two plots
highlight a trade-off in planning robust paths. The B-RRT exhibits
slower planning times and lower overall success. This is due to two
reasons. First, the additional computation time required to compute
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D̂e for each extension. Second, the tree spreads slowly because the
bias leads to selecting shorter actions where error has less time to
accumulate.

9.3.3 CR-RRT

Next, we test whether this problem admits a solution that falls
strictly inside a contraction region. To test this, we use the CR-RRT
with D̂m computed with N = 10 samples. We test with decreasing
values of dm = {2.0, 1.0, 0.5, 0.0}.

Figure 9.6: Two example trajecto-
ries.Top: Exponential divergence
Êe = 10.50. Bottom: Exponential di-
vergence Êe = 0.15.

Fig.9.4-(right) shows the Êe value of trajectories found by the CR-
RRT as a function of dm. As can be seen, lowering the threshold dm

leads to more robust trajectories. The best solutions are found with
dm = 0.0. Trajectories in this category are composed entirely of
convergent actions - each individual action reduces the uncertainty in
the system. Fig.9.6-(bottom) shows an example of such a trajectory.

Again, the increased robustness comes at a cost. Fig.9.5 shows the
success rate as a function of plan time for the CR-RRT with dm =

0 vs. the B-RRT (b = 2.0) and hybrid planners. Imposing a strict
threshold on extension leads many potential candidates to be rejected
and an lead to complete failure on some extensions due to lack of
valid candidates. This imposes additional computational burden over
the B-RRT, leading to longer planning times and lower overall success
rate.

9.3.4 Real robot experiments
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Figure 9.7: Measured success rate over
10 executions of trajectories on HERB
as a function of exponential divergence,
Êe.

In this section, we demonstrate that trajectories with lower Êe succeed
more often in execution than trajectories with high Êe values. We
generate several solutions to rearrangement problems for the HERB
robot similar to the scene used in the planning experiments. We use
AprilTags [98] to detect the pose of the box to be pushed. Similar to
prior results, plans are evaluated using Êe calculated with N = 100
and sampling the object poses from a Gaussian distributed with σ =

diag{2cm, 2cm, 0.1rad} to reflect actual computed error in AprilTag
measurements.

Fig.9.7 shows the results of 11 plans with varying Êe each executed
10 times on HERB. For each execution, the initial pose of the box is
disturbed by an offset drawn from the same Gaussian used in the
evaluation of Êe. This allows us to simulate several noisy detections.
An execution is a success if the final pose of the box is within 15 cm
of the planned final pose. The trials shaded in dark blue demonstrate
a negative correlation between success rate and Êe, i.e. trajectories
with lower Êe are more likely to succeed. Two trials (light blue) do
not follow the expected trend. A closer look at these paths attributes
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the discrepancy to unrealistic behavior in the physics simulator used
to calculate Êe.

9.3.5 Relationship to trajectory selection
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Figure 9.8: Êe vs. p̂π , the estimated
probability of success used to guide
trajectory selection in Ch.8, across all
trajectories generated by the B-RRT.
These two values are correlated: high Êe

indicates low p̂π .

We note that the path metrics proposed Sec.9.1.3 could be used
within the trajectory selection framework proposed in Ch.8. Each
of the numerical approximations to the exact path metrics use a finite
set of samples to estimate the true value of the metric. As mentioned,
this estimate becomes more accurate as the sample size increases.

Following the same ideas from Sec.9.1.3, we could use the Succes-
sive Rejects Algorithm to allocate noisy samples (rollouts) to each
path. These samples can then be used to refine the estimate of Êe. As
time, or rollout budget, expires, we select the candidate with mini-
mum Êe value. In fact, we see a strong correlation between Êe value
and the success probability metric used in the original trajectory
selection formulation (Fig.9.8).

9.4 Summary and Discussion

We have proposed new convergent path planning methods that can
search for open-loop trajectories that are inherently robust to state
uncertainty prevalent in robotics. We introduced analytic and numer-
ical divergence metrics that the convergent planners seek to mini-
mize. Using the strongest of these planners and metrics, we showed
the first planning based method to find contraction regions where all
states converge to a single trajectory.

We note that the divergence metrics are fundamental properties
of the underlying vector field, and motion planning will be most
effective when it considers these properties. Convergent motion
planners, like those presented here, provide a new way to generate
behaviors that are robust to uncertainty that is always present when
running robots in the real world.
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Unobservable Monte Carlo Planning

The planning modifications proposed in Ch.9 allow us to improve the
robustness of the trajectories generated by our planner while main-
taining the original planning framework from Part I. The use of the
proposed divergence metrics allow us to identify and select uncertainty
reducing actions when possible. However, the decisions made during
the search use only local information. At each extension of the tree,
individual actions are evaluated for robustness, but the planner lacks
the ability to track the evolution of uncertainty through the tree. This
limits the effectiveness of the overall planner in two ways. First, the
actions may not be evaluated under the true uncertainty conditions in
which they will be applied. Second, the planner is overly conserva-
tive. It attempts to reduce all uncertainty. Often, some uncertainty is
okay, especially in movables that are not relevant to the goal.

To overcome these limits we must track uncertainty as it evolves
under sequences of actions. To do this, we modify our planning ap-
proach to plan in belief space, B, where each point b ∈ B represents a
probability distribution over possible states, b = p(x). In this chapter,
we frame the planning problem as an instance of an Unobservable
Markov Decision Process (UMDP), a subclass of the widely used Par-
tially Observable Markov Decision Process (POMDP). We show that
we can extend Monte Carlo Tree Search methods [25] used to solve
large MDPs and POMDPs to the UMDP domain. These methods
rely on using Monte Carlo simulations to estimate the “goodness”
or value of an action sequence under unknown initial state. The con-

tact critical to successfully solving rearrangement planning problems
requires careful selection of the algorithm components, particularly
the actions and default policies, in order to guide the planner to por-
tions of the belief space likely to lead to goal achievement. We outline
methods that draw on our lessons and observations from Part I for
creating an informative action set and default policy and show that
these allow us to produce robust open-loop trajectories.
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10.1 Unobservable Markov Decision Processes

In our original planning formulation in Ch.3 we used a deterministic
transition function Γ : X ×A → X to approximate the non-holonomic
constraint imposed by the physical interactions of pushing. In reality,
it is impossible to create a transition function that perfectly represents
the real-world evolution of a state under an action, due to the uncer-
tainties prevalent when executing in real environments. In order to
capture the true evolution of uncertainty in our state, we must use
a non-deterministic transition function that can account for the un-
known or misrepresented elements in our model of the environment
dynamics.

The most common formulation for problems with non-deterministic
transition functions is a Markov Decision Process (MDP). MDPs are
defined by four elements: 〈X,A, T, R〉 where X is the state space,
A : U × R

≥0 is the space of actions to be applied, T = P(x′|a, x)

describes the stochastic transition function and R : X ×A → R de-
scribes a reward received for a transition from state x under action a.
A solution to an MDP provides an optimal policy, π∗ : X → A that
determines the best action to take from any state in X.

The MDP formulation assumes that the state is fully observable
at all times, e.g. in our problem the robot knows x, the exact state of
itself and all objects in the scene. The robot uses the policy to select
an action from its current state, executes the action in the real world,
observes the reached state and iterates. Our problem falls outside
this domain for two reasons. First, we have a noisy estimate of the
initial state, i.e. it is not possible to perfectly detect the initial pose of
objects, or the robot. Second, we assume open-loop execution making
it impossible to observe the state achieved after executing an action.

The Partially Observable Markov Decision Process (POMDP) ex-
tends the MDP formulation to partially observable domains where
the robot has some uncertainty in the state. POMDPs are comprised
of an MDP with two additional elements: O the set of observations
the robot can obtain while executing, and Z = Pr(o|x′, a) the distri-
bution of observations given a state x′ reached by executing action a.
A solution to a POMDP provides an optimal policy, π∗ : B → A that
determines the best action to take from any belief b ∈ B.

Our lack of observations during execution mean our problem can
be formulated as a sub-domain of POMDPs called Unobservable
MDPs (UMDPs). These are a special case of POMDPs in which there
is a single observation, the null observation, that is generated with
probability 1 at every time step and gives no information about the
current state.

Solving the UMDP that describes the rearrangement planning
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(a) Tree policy used to traverse
the tree

(b) Single node added to the
tree

(c) Default policy used to per-
form a simulation

(d) Simulation result back-
propagated through tree

Figure 10.2: The MCTS algorithm

problem exactly is difficult for three reasons: (1) we search across a
continuous state and action space, (2) the dynamics of the system
make closed form representation of the belief transition function
difficult and (3) most actions in the continuous action space fail to
make meaningful contact with objects.

The MCTS algorithm naturally account for difficulties (1) and (2).
In the following sections we show how we can extend this algorithm
to UMDPs and carefully select the important components of the
algorithm to handle difficulty (3).

10.2 Monte Carlo Tree Search

Figure 10.1: The evolution of the un-
certainty when performing a simple
pushing action. As can be seen, the
uncertainty quickly becomes non-
Gaussian and non-smooth.

In our domain, the evolution of the uncertainty when using nonpre-
hensile interactions is non-smooth and non-Gaussian. Consider the
toy example of a hand pushing a disc under uncertainty in the pose
of the disc (Fig.10.1). After performing a simple straight line pushing
action, the distribution of object poses becomes multimodal and has
rigid edges. These dynamics make closed form representation of the
belief transition function difficult.

Monte Carlo methods have been used in MDPs [22, 67, 122] and
POMDPs [111, 121] when the true transition probabilities are un-
known. These methods use a generative model, G, or black-box sim-
ulator, to sample successor states and rewards given a current state
and action: (x′, r) ∼ G(x, a). The generative model allows us to esti-
mate the value of actions and generate near-optimal policies without
closed form models of the environment dynamics.

Monte Carlo Tree Search [30, 111] (MCTS) is one such method for
solving MDPs using this paradigm. The MCTS algorithm iteratively
builds a tree using Monte Carlo simulations (Fig.10.2). Each node
in the tree represents a state x ∈ X f ree and each edge in the tree
represents an action. A node stores a count N(x) of the number
of times the state has been visited during the search, and a value,
Q̂(x, a) for each outgoing action a, or edge, from the node. The value
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Q̂(x, a) estimates the true underlying value function Q(x, a) that
describes the expected value, or reward, of taking action a when in
state x. The estimate is formed by tracking the mean reward obtained
from all Monte Carlo simulations that select action a when visiting
the node representing x during planning.

The tree is built incrementally. At each iteration, a tree policy is
used to search through the tree until a leaf node is reached for ex-
pansion (Fig.10.2a). The tree policy attempts to balance exploration
of new regions of state/action space, with exploitation of visited
and promising regions. Once the search leaves the tree (Fig.10.2b),
a default policy is used to rollout the remainder of the simulation
(Fig.10.2c). Then the reward resulting from the full simulation is
back-propagated through the tree and used to update value estimates
for each node (Fig.10.2d). The algorithm iterates until a termination
criteria is achieved, i.e. timeout.

A policy is extracted from the tree according to the following:

π∗(x) = argmax
a∈A

Q̂(x, a)

MCTS algorithms are a good fit for our problem. We can easily
use our physics model to perform black-box simulations of con-
trol sequences that build up our estimates of the value function at
each node in the tree. However, these simulations have some com-
putational expense. The MCTS framework focuses computational
resources to relevant regions of state space. In addition, the algorithm
is anytime and highly parallelizable.

10.2.1 Unobservable Monte Carlo Planning (UMCP)

The POMCP [111] algorithm applies the MCTS framework to par-
tially observable environments by augmenting the search to allow
each node to represent a history: a sequence of actions and obser-
vations. The tree then tracks an estimate of the belief state for each
history in the tree. This algorithm naturally deals with the curse of di-

mensionality1by considering only belief states reachable from a known
initial belief state b0. 1 The dimensionality of the belief

space is related to the number of
states. A problem with n states renders
an n-dimensional belief space. A
continuous state space leads to an
infinite dimensional belief space.

We use a similar approach to find approximate solutions for our
unobservable MDP. We build a tree such that each node represents a
unique history, h = {a1, . . . at}. Three values are stored for each node:
N(h) - the number of times the history, or action sequence, has been
explored, Q̂(h, a) - an estimate of the value of taking action a after
applying history h, and B̂(h) - an estimate of the true belief achieved
when applying the actions in h.

Alg.8 shows the MCTS algorithm applied to our UMDP. The tree is
rooted with an initial belief state s0 that contains a set of states drawn
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Algorithm 8 Unobservable Monte Carlo Planning
1: s0 ← GenerateInitialSamples()

2: while not timeout do

3: x ← SampleState(s0)

4: Simulate(x, {}, 0)

5: function Simulate(x, h, d)

6: if γd
< ǫ then return 0

7: if NotVisited(h) then

8: InitializeHistory(h) return DefaultPolicy(x)

9: a← TreePolicy(h)

10: x′ ← NoisyPhysicsPropagate(x, a.u, a.d)
11: r ← Reward(x, a) +γ· Simulate(x′, h ∪ {a}, d + 1)
12: B̂(h)← B̂(h) ∪ {x}

13: N(h)← N(h) + 1
14: Q̂(h, a)← Q̂(h, a) + r return r

from an initial distribution defined on the state space. Then, during
the search an initial state x ∼ s0 is drawn from the belief state (Line
3). This state is propagated through the tree by using the tree policy

to select actions (Line 9) and using a noisy physics model to forward
propagate the state under the selected actions (Line 10). After each
propagation, the new state is added to the belief state of the new
history (Line 12). The search recurses through the tree, propagating
a single state through the noisy transition dynamics. Over time, the
belief states represented at the nodes of the tree grow to represent the
true belief distribution.

Once the search reaches a previously unvisited history, a default

policy is used to rollout the remainder of a simulation and accumulate
reward (Line 8). This reward is propagated back through the tree to
update the value function estimate stored for each history/action
pair.

Reward model

As stated in Ch.7, our goal is to generate paths that maximize the
success functional Λ (Eq.(7.1)). We encode this functional into our In Ch.7 we defined Λ as a functional

that determines if the endpoint of a
trajectory is a goal state. In this chapter
we overload Λ to describe whether a
particular state represents a goal state:

Λ(x) =

{

1 : x ∈ XG

0 : otherwise

reward model:
R(x, a) = Λ(x) (10.1)

Action set

MCTS-based planners search across a discrete action set. In our
formulation from Ch.2, we search across a continuous action space.
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The naive method for generating a discrete action set from a contin-
uous space is to divide the space into partitions, and select a single
representative action from each partition, e.g. the mean action. How-
ever, this method ignores a key aspect of our problem: contact is
critical to success in rearrangement planning. Consider the simple
example of a robot pushing an object in Fig.10.3. Discretization of
the continuous action space leads to a discrete action set that moves
the robot in the four cardinal directions. The object is “trapped”, i.e.
there is no motion that can create enough contact to move it out of
the current cell.

Figure 10.3: A simple example of
a hand pushing objects. The basic
primitives allow the hand to translate
along the grid lines. In this simple
example, the object is “trapped”, i.e.
there are no primitives that allow it to
move out of the cell.

We could expand the action set by discretizing the control space
more finely. However, the size of the primitive set is directly related
to the branching factor of the search, so any large increase affects
the computation time. We wish to focus the discretization to promis-
ing areas of action space. To do this we follow ideas from Sec.4.3.
We first select a set of primitives that move the robot without the
explicit intent of creating contact or interaction with objects. These
basic primitives are small motions of the robot defined by a coarse
discretization of the control space.

These basic primitives are similar in motivation to the robot-centric

primitives used by our deterministic state space planners. The prim-
itives are context agnostic; they are not specific to the rearrangement
planning problem. Basic primitives may achieve some contact with
objects, but it is not guaranteed. We know contact with objects in the
environment is critical to goal achievement. With this in mind, we
augment the primitive set applied at each set with contact primitives
aimed at creating contact with objects in the scene. These are similar
in motivation to the object-centric primitives from Sec.4.3.

We instantiate these primitives using the first state in the estimated
belief x0 ∈ B̂(h) for each history. A contact primitive is generated
by solving the two-point BVP that moves the robot to a pose in con-
tact with an object based on the object’s pose in x0. We create one
contact primitive for each object in x0 that must be moved to achieve
the goal. For example, for the clearance task described in previous
chapters, we create one primitive for each object in the region to be
cleared.

Tree Policy

The tree policy is used to select actions, or edges, in the UMCP
tree to traverse. For a given node in the tree corresponding to history
h, the policy first uses the method from the previous section to gen-
erate a discrete set of actions Aactive. Once the discrete action set is
obtained, the tree policy must select a single action to traverse. We
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follow the UCT algorithm [67] and use UCB1 [12] as the tree policy.
Under this paradigm outgoing actions from each node are treated as
arms in a multi-armed bandit problem. UCB1 then selects an action,
or arm, as follows:

at = argmax
a∈Aactive

Q̂(h, a)

N(h ∪ {a})
+ c

√

log N(h)

N(h ∪ {a})
(10.2)

where c > 0 is an exploration constant. Note that this selection
method requires all actions are tried at least once.

The use of such a method is ideal because it provides a formal
method for trading between exploration and exploitation.

Default policy

Figure 10.4: An example of MCTS
applied to rearrangement planning.
A tree policy is used to select actions
that make contact (top-right). Then
the default policy plans in the a lower
dimensional space (middle-right). The
result is propagated through the full
space to generate a reward (bottom-
right).

Each time the search reaches a leaf in the tree, the default policy is
used to estimate the reward that will be obtained if we follow a path
that leads through this leaf. The most common default policy is to
randomly select a sequence of actions to apply. For our rearrange-
ment planning problem, this policy will rarely be informative: most
action sequences fail to create and maintain the contact with objects
that is critical to goal achievement.

Instead, we define an informed default policy that is capable of
quickly searching for a path to the goal. We perform the search in
the lower dimensional subspace containing only the elements of the
full state space that are defined in the goal. We allow the search to
simply ignore all other movable objects. Movable objects that are not
defined in the goal are not checked for collision or included in any
physics simulations during the search. This implicitly assumes that
all movable objects can trivially be moved out of the way.

After generating a set of actions that solve the problem in the
lower dimensional subspace, the actions are then forward simulated
through the full state space to generate the reward value that is back-
propagated through the tree. Fig.10.4 illustrates this method.

Our key insight is that by reducing the dimensionality of the state
space in the default policy search, we allow for the possibility of
using fast planners or exact solvers that provide much more infor-
mation than random action sequences. For tasks such as the K-Rex
traversal task that involve only the manipulator we can either solve
the two-point BVP directly or use a local planner. For tasks that re-
quire explicitly moving objects such as the clearance tasks for HERB
and KRex, we can use the planners from Part I. We provide a faster
heuristic planner in Appendix A capable of solving tasks that involve
moving a single object.
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Path extraction

We use our tree to create an anytime algorithm for extracting
paths. Upon request, a path π is extracted from the tree as follows.
First, we extract πtree by repeatedly picking the action at such that:

at = argmax
a∈Aactive

Q̂(h, a)

Once a leaf is encountered, we query the belief represented by the
history B̂(h) to obtain a probability of success p̂πtree = ∑x∈B̂(h) Λ(x).
If this probability is lower than a threshold pgoal , we randomly select
a state from the belief x ∈ B̂(h) and use the default policy to generate
a path πde f from x to the goal. If successful, all remaining samples
in B̂(h) are forward propagated through this path to get an updated
probability of success p̂π of the combined path π = πtree + πde f

formed from appending πde f to πtree. If p̂π is better than the success
probability from previous requests, the path is returned. Otherwise,
the previous best path is returned.

The use of a planner to generate the default policy means we can
often find paths that achieve the goal with non-zero probability. Our
insight is that these path segments can be particularly useful when
there is not enough planning time to deeply grow the tree.

10.3 Experiments and Results

We test the capabilities of the UMCP algorithm using the task of
HERB pushing an object to a goal region through clutter from Sec.3.5.1.
We test three hypothesis:

H.1 The planner using the planned default policy allows us to
generate paths with higher probability of success than the planner
with a random default policy.

H.2 Using explicit contact primitives allows the planner to gen-
erate paths with high probability than a planner that uses a basic

action set formed by discretization of each dimension of the action
set.

H.3 Our UMCP planner that uses contact primitives and the
planned default policy is able to produce paths that exhibit higher
probability of success compared to anytime versions of baseline
planners presented in previous chapters.
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H.1 verifies our intuition that using a powerful default policy ca-
pable of explicitly attempting to achieve the goal will outperform
the common default policy that selects random action sequences,
despite the extra resources and slower tree growth that result from
using a planner to compute the default policy. H.2 tests the need
for primitives that explicitly try to create contact with goal critical
objects. Finally, H.3 verifies the need to track the evolution of uncer-
tainty through sequences of actions. We expect this to be especially
important on problems where it is difficult to find sequences solely
comprised of uncertainty reducing actions, as preferred by the C-
RRT.

In the following sections we detail our planning setup and provide
results for each hypothesis.

10.3.1 Test setup

We use the heuristic structured search planner from Appendix A
as the planned default policy. Specifically, we use the action set and
heuristics described in the appendix in a weighted A* search with
w = 5. This strongly biases our search toward the goal. We allow the
planner 1 s to find a path.

We run each version of the UMCP planner 50 times on a low clut-
ter scene (Fig.10.6) and a high clutter scene (Fig.10.10). In each scene,
we generate the initial belief s0 by sampling noise into the initial
pose of each object from a Gaussian with distribution µ = 0, Σ1/2 =

diag{2cm, 2cm, 0.1rad}. We allow the UMCP planner to run for 300 s.
We request and record a path every 15 s.

10.3.2 Baseline planners

We compare the estimated success rate of the paths generated by the
UMCP algorithm to anytime versions of the B-RRT planner (with
bias b = 2.0) from Ch.9 and the original PCRRT from Ch.3. To create
anytime versions of these planners, we make as many repeated calls
to the planner as possible within 300 s. When a call completes we
perform a set of 100 noisy rollouts on the resulting control sequence
π to generate an estimate p̂π of the probability of success. We gen-
erate these noisy rollouts using the same noise parameters used to
create the initial belief s0 in the UMCP planner. We keep π only if it
has higher estimated success probability than all previous paths gen-
erated by the planner. This is a similar algorithm to the AMD-RRT
described in [59] though we use probability of success rather than
performance of the path under a divergence metric.
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(a) Tree policy (b) Planned default policy

(c) Tree policy (d) Random default policy

Figure 10.6: An example path com-
puted with the planned default policy
(top) and random default policy (bottom)
at t = 45 s.

10.3.3 Effect of default policy

We first examine the effect of our choice of default policy. Fig.10.5
shows the estimated probability of success of the chosen path, p̂π∗, as
a function of planning time. As can be seen, the use of the planned

default policy allows us to generate better paths faster, especially
in high clutter scenes. This is despite the planned default policy
taking almost 10x as long to compute as the random default policy
(mean time 0.5 s and 0.06 s respectively). This supports H.1: the use

of an informed default policy leads to better overall success rate in
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Figure 10.5: Use of a policy explicitly
seeking to achieve the goal ( ) results
in overall better paths when compared
to using a policy that randomly selects
actions ( ) for both low clutter (top)
and high clutter scenes (bottom).

Fig.10.6 shows an example path at t = 45 s for each version of
the UMCP planner. The left column shows the portion of the path
extracted from the tree. The paths are similar, though the UMCP
planner that uses the planned default policy finds a more robust
sequence (Fig.10.6-top). This is because the default policy is more
informative and allows better estimates of Q̂(h, a) early in the tree.

The main difference in the two results comes from the portion
of the path extracted using the default policy. The planned default
policy maintains contact with the goal object and eventually moves
the full belief either into or near the goal region. The random default
policy loses contact with the object quickly and fails to move any of
the belief to the goal.

Fig.10.7 shows a path requested later in the planning call (t =
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(a) Tree policy (b) Planned default policy

(c) Tree policy Figure 10.7: An example path com-
puted with the planned default policy
(top) and random default policy (bottom)
at t = 250 s.

250 s). At these later times we begin to see the advantage of using
a faster default policy. Here the tree using the random rollout pol-
icy is able to grow deep enough that a full path can be extracted
without needing the rollout policy to supplement the path. Still, the
planned rollout policy is more informative, enabling better estimates
of Q̂(h, a) leading to a more robust path.

10.3.4 Effect of contact primitives
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Figure 10.8: Using contact primitives
( ) allows for finding better paths
sooner than using basic primitives ( ).

Next we examine the effect of the contact primitives in the action
set. We compare to a baseline planner that uses only the basic ac-
tion set. Fig.10.8 compares the probability of success p̂π∗ of the path
returned by the planner at each time step.

In low clutter scenes, the usefulness of the contact primitive is
limited (Fig.10.8-top). The UMCP planner with the contact primitive
finds paths only slightly faster. This is due to the use of the planned

default policy used to complete paths extracted from the tree. Exami-
nation of the generated paths shows that the default policy is heavily
relied upon to generate the contact needed for success.

The benefit of these primitives is much more prevalent in high
clutter scenes (Fig.10.8-bottom). Here, the planned default policy
fails to be applied without first moving either the bowl or bottle
(Fig.10.10-left). The simple primitive set is not rich enough to create
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(a) Tree policy (b) Planned rollout policy

Figure 10.10: In high clutter scenes,
the UMCP algorithm with contact

primitives performs well. The algorithm
allows for increasing uncertainty in the
pose of the bowl, as long as it does not
inhibit goal achievement.

useful contact. In contrast, the contact primitive easily moves both
objects out of the way in order to make contact with the box. Then
the planned default policy can be applied to achieve the goal. Fig.10.10

depicts an example path found by the UMCP planner with contact

primitives.

10.3.5 Comparison to baseline planners

0 50 100 150 200 250 300

Planning Time (s)

0

20

40

60

80

100

P
ro
b
a
b
il
it
y
o
f
S
u
cc
es
s
(p̂

π
∗
)

0 50 100 150 200 250 300

Planning Time (s)

0

20

40

60

80

100

P
ro
b
a
b
il
it
y
o
f
S
u
cc
es
s
(p̂

π
∗
)

Figure 10.9: On simple scenes (top),
the B-RRT from Ch.9 ( ) is able to
find better paths quickly. The UMCP
algorithm ( ) is able to find better
paths more quickly than the PCRRT
from Ch.3 ( ). On difficult scenes
(bottom), the UMCP outperforms both
the C-RRT and the PCRRT.

Finally, we compare the UMCP planner using contact primitives in
the action set and the planned rollout policy to the baseline planners
described in Sec.10.3.2. Fig.10.8 shows the estimated probability of
success p̂π∗ of each planner as a function of planning time.

For the low clutter scene the PCRRT and B-RRT are easily able
to find solutions (Fig.10.9-top). The B-RRT performs exceptionally
well here because there exists a solution comprised almost entirely of
uncertainty reducing, or low divergence, actions.

The advantage of the UMCP algorithm can be seen for the high
clutter scene (Fig.10.9-bottom). Here, the B-RRT performs poorly be-
cause the actions that reduce uncertainty in the goal object increase
uncertainty of the pose of other objects, such as the bottle or bowl
(Fig.10.10). Such actions perform poorly under the divergence met-
rics. As a result, the B-RRT is slow to explore and find solutions. The
UMCP allows for increasing uncertainty along dimensions that are
not important for goal achievement. This allows the planner to find
solutions more easily.

Overall, for planning time budgets greater than 30 s the UMCP al-
gorithm finds solutions as good as the solutions found by the B-RRT
and PCRRT algorithms in the low clutter scene. The UMCP algorithm
outperforms both baseline planners in the high clutter scene. This
partially confirms H.3: Our UMCP planner that uses contact prim-

itives and the planned default policy is able to produce paths that

exhibit higher probability of success compared to anytime versions

of baseline planners presented in previous chapters.
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10.4 Summary and Discussion

In this chapter we present Unobservable Monte Carlo Planning, an
algorithm that extends MCTS to the Unobservable MDP domain. We
show that by carefully selecting an informative default policy and
an action set capable of generating contact with important objects in
the scene, we are able to plan solutions that are robust to uncertainty.
The result is an anytime algorithm that returns good solutions fast in
our example scenarios.

This algorithm represents a step toward planning rearrangement
planning by nonprehensile manipulation in belief space. We believe
there are two promising directions that may improve the quality of
the planner. First, we can expand the set of actions considered by the
planner by using gradient free methods to make local adjustments to
the action set. This idea was successfully demonstrated in [109] with
the Adaptive Belief Tree algorithm. Second, we believe this algorithm
could be extended to closed-loop planning by incorporating feedback
as observations in a full POMDP formulation. This is not trivial.
Careful thought must be applied to allow us to maintain tractability
under the exponential increase in histories. However, recent work
in using contact sensing [70] during pushing interactions shows it is
possible. We discuss this and other areas for future extensions in our
concluding chapter.
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Conclusion

In this thesis we proposed a set of planners capable of solving rear-
rangement planning problems using nonprehensile manipulation. We
showed that by incorporating uncertainty into our planners, we can
create paths that are more likely to be executed successfully on the
robot. Each of the planners described in this thesis trades off between
implementation complexity, planning efficiency and robustness of
the output to real world uncertainties. We do not offer a single so-
lution that best solves rearrangement planning under all conditions
and constraints, we doubt that such a planner exists. Throughout the
document, we have highlighted limitations in each individual solu-
tion. In this final chapter, we discuss limitations that apply across the
suite of planners and directions for future work that address these
limitations and could expand the effectiveness of the ideas we have
presented.

11.1 Lessons Learned

Development and test of the planners described in this thesis have
led to number of lessons, some surprising and some expected. We
identify a few important ones here:

Full arm interaction and simultaneous object contact: In this work,
we have taken an initial step in developing plans that exhibit full
arm interactions and simultaneous object contact. We hope we
have made a convincing argument for the importance and use-
fulness of these interactions – they expand the space of problems
a robot can solve and allow the robot to work more effectively in
clutter. These interactions are made possible by our use of nonpre-
hensile interaction – other modes of interaction such as grasping
would benefit less from this expanded set of interaction modes.
Still we believe that many manipulation problems can benefit from
the ability to reason about nonprehensile manipulation as a means
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to achieving manipulation goals.

Planning with physics models: Prior to beginning this work, we
identified two main concerns with integrating physics models at
plan time: (1) speed and (2) validity. Typical physics models per-
form many intensive computations each time they are stepped.
These computations include several small integrations and opti-
mizations to resolve collisions. Indeed, our plan times even under
the improvements in Ch.4 are much larger than desirable – taking
significantly longer than most modern geometric planners. For our
KRex experiments in Ch.4 we traded fidelity of the physics model
for speed. Here we used a 2D physics engine rather than a full 3D
model. Surprisingly, we were still able to achieve several successful
executions of the planned trajectories. We believe this affirms the
findings in prior work [19, 38] that using goal regions rather than
specific goal configurations can drastically improve performance
in a task. These goal regions allow the imperfect models to still be
“good enough” for goal achievement.

Unmodeled uncertainties: In Part II we outlined three strategies for
coping with uncertainties prevalent when executing planned tra-
jectories on the robot. We showed these strategies to be effective
at combating known uncertainties, i.e. uncertainties that we can
model. However, as highlighted by our real robot experiments
in Ch.8, the methods we described are powerless against unmod-
eled uncertainties. To account for such uncertainties, we believe we
must incorporate feedback directly into the physics model either
through a pre-processing step or during trajectory execution. We
discuss this further in the next section.

11.2 Future Work

Our work on this thesis has illuminated a number of promising direc-
tions for future work:

Learning heuristics: Humans accomplish the rearrangement tasks
described in this thesis effortlessly and often quite elegantly. Our
intuition is that we may be able to use human demonstrations to
guide our planning, allowing us to find more solutions faster. We
have recently completed preliminary work that reinforces this in-
tuition. In this work, we use Amazon Mechanical Turk to collect
demonstrations from users guiding a robot hand to perform rear-
rangement tasks on a table. From this data, we extract features of
the scene that can be provided as input to a multi-class learning
algorithm. The learned model provides a mapping from a state
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x ∈ X f ree to a single action in a discrete set. This mapping can
be used to guide action selection within the randomized plan-
ners from Ch.3–Ch.5. Alternatively, the mapping can be used as a
default policy in the UMCP planner from Ch.10.

Our current structure is limited in two ways. First, to simplify
understanding and input from the user, we only allow the user
to input discrete motions that move the hand in the plane. Our
learned model then maps state to an action from this discrete set.
Ideally, we would like to consider continuous action spaces. To
do this we must make two modifications to our method. First, we
must allow the users more flexibility in their inputs. Second, we
must switch from a multi-class classifier to a regression algorithm
capable of generating motions in the continuous action space.

The second limitation falls directly out of our test setup. We allow
the user to guide the hand, rather than the full manipulator, in or-
der to simplify the input mapping and cognitive load on the user.
However, by having the user move only the hand we eliminate the
ability of the user to use the full arm to solve the task. In addi-
tion, it allows the user to perform actions that are kinematically
infeasible or introduce unresolvable collisions (e.g. between the
robot arm and obstacles in the environment). Still we find this is a
promising direction for future examination.

Integration with hierarchical task planning: Our experience indi-
cates movable clutter can be categorized into two groups: (1) items
that can easily be moved through incidental contact and (2) items
that should be explicitly moved out of the way. The planners we
present in this thesis deal easily and naturally with items in the
category 1. Items in the category 2 lead to longer planning times
or failure of our planners.

Prior work has structured rearrangement planning as an instance
of hierarchical task planning [16, 53, 100]. Under this approach, a
high-level task planner is used to identify a set of objects to move
and an ordering for moving these objects. Then a low-level geo-
metric planner is used to find feasible trajectories to move each
object. This framework naturally deals with category 2 of clutter:
items that should be explicitly moved out of the way. An unfortu-
nate side effect is that items in the first category (objects that can
easily be moved through incidental contact) are often treated as
though they are in category 2. In these cases, the planner spends
extra computation and execution time planning unnecessary object
movement.

The difficulty comes in properly categorizing an item, i.e. it is
difficult to know how much “trouble” an object will cause our
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planner and which objects require explicit interaction. We believe
an interesting body of future work may be tightly coupling our
state space planners presented in this thesis with higher level task
planners. In particular, as we plan we can identify sources of fail-
ure. For example, when performing the randomized search we
may invalidate an action because the robot motion leads to an ob-
ject being pushed off the edge of the table. If several actions lead
to the same failure, our planner can inform the task planner that
the offending object must first be moved away from the edge or
removed from the table before this plan can succeed. The task
planner can then insert a sub-goal into the task that attempts to
move the object. Our hypothesis is that the introspection of the
planner in regards to failures during planning, coupled with re-
porting to a higher level task planner that can force changes in the
environment, may lead to overall better success at rearrangement
problems.

Incorporating feedback: This thesis focused on planning open-loop
trajectories. In reality, our robots have a corpus of sensors con-
stantly providing feedback during execution. We believe we can
use this feedback to improve both planning and execution.

Given access to sensor feedback, we can augment our UMDP
planner from Ch.10 to solve a full POMDP. Recent works have con-
sidered tactile feedback [70] for improved robustness in grasping
tasks. Similar feedback could be used in our planning problems to
allow the planner to incorporate information gathering actions that
ensure objects are properly localized and to gain a more robust
estimate of state when selecting actions to execute. The main chal-
lenge in constructing and solving such problems is managing the
large state space and longer time horizons required to accomplish
rearrangement tasks.

Alternatively, our quasistatic and semi-dynamic plans from Ch.3–
Ch.5 ensure that objects will be at rest between actions. We can
exploit this fact to incorporate feedback at execution time in lieu
of plan time. In particular, after executing each action in the plan,
the robot can observe the world and, if different from expecta-
tion, forward simulate the remainder of the plan to check goal
achievement. If the goal is not achieved, a replan can be triggered.
This paradigm is ideal because it allows for incorporating feed-
back while avoiding the need to solve a full POMDP. The main
drawback to the approach comes from the use of non-holonomic
nonprehensile interactions, i.e. the robot cannot easily reverse a
push. This can lead the robot to begin executing a path, fail, and
be unable to recover.
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11.3 The Last Word

This thesis is a small step towards increasing the capabilities of au-
tonomous robots. As we allow robots to interact more freely with
objects in the environment, we open them to plan for and exhibit the
types of interactions humans use naturally. In addition, we empower
robots to perform a broader range of tasks more effectively and effi-
ciently. We hope this work can serve as a stepping stone on the way
to enabling robots to perform meaningful tasks that help humans in
their every day lives.





A

Rearrangement Planning via Heuristic Search

In this section we describe a method for solving a specific rearrange-
ment task where the goal can be expressed in terms of a single object
Mj ∈ M. Example tasks may be clearing a single item from a region
or pushing an object into a goal.

Our goal is to harness the power of heuristically guided structured
search algorithms [49, 105]. These algorithms are desirable because
they produce near-optimal plans quickly, given a sufficiently expres-
sive heuristic. To create such a heuristic we make three assumptions
on the planning instance:

Assumption 1: Contact between the robot and goal object is re-
stricted to the end-effector. (We do allow contact between the full
robot and all other objects inM.)

Assumption 2: The goal object can only be moved by contact with
the robot. The robot cannot use other objects in the environment to
push the goal object.

Assumption 3: All motions of the robot and objects are quasistatic.

We note that when using this planner as the default policy in our
UMCP algorithm (Ch.10), we search across the lower dimensional
state space X′ = XR × X j where Assumption 2 is unnecessary. How-
ever, this algorithm can be applied to the full state space X contain-
ing movable objects other than the goal object Mj.

We construct an action set comprised of basic primitives that move
the robot along a lattice with contact and pushing primitives that ex-
plicitly attempt to create and maintain contact with objects. We then
define an informative and admissible heuristic that is used to quickly
guide the search toward the goal. In the following subsections we
briefly describe these two basic elements.
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A.1 Action Selection

We select a discrete set of primitives to apply to each state that allows
us to perform a feasible and focused search. We first select a set of
basic primitives: small motions of the robot defined by a coarse dis-
cretization of the control space. Basic primitives may achieve some
contact with objects, but it is not guaranteed. To improve perfor-
mance of the search, we augment the primitive set applied at each
state with a dynamically-generated contact or pushing primitive aimed
at creating or maintaining contact with the goal object. During the
search, we forward propagate all primitives through a quasistatic
model of physics to ensure our state transitions properly model ob-
ject motion under pushing contact. This allows us to include motions
that exhibit full arm manipulation and simultaneous object contact.
We use our insights from Ch.4 to create the contact and pushing primi-
tives.

A.2 Heuristic

We define the cost of a control sequence, π, as the distance the end-
effector of the robot moves in the configuration space of the goal
object. Formally, assume we have a distance metric, d : XR × X j →

R
≥0, and a function FK : CR → Cj that computes forward kinematics

from the robot’s configuration space to the goal object’s configuration
space.

We compute the cost of a single primitive, a, applied to a state
x ∈ X in two steps. First we compute the set Q = {q1 . . . qp+1} of
robot configurations achieved by the primitive. This can be obtained
by forward propagating the controls in the primitive through the
constraint f (Eq.(2.1)). Then the cost of a primitive is:

ca(a, x) =
p

∑
i=1

d(FK(qi), FK(qi+1)) (A.1)

And the cost of a path, π = {a1, . . . , an}:

cπ(π, x0) =
n

∑
i=1

ca(ai, xi) (A.2)

where xi is the state reached by sequentially applying primitives
a0 . . . ai−1 to x0.

Two observations of the problem can be used to generate a useful
heuristic that underestimates the cost-to-go from a state x ∈ X f ree.
First, by definition of the problem, contact with the goal object is
required for goal achievement. Due to Assumptions 1 and 2, this
contact must be between the end-effector and the object. Second, the



rearrangement planning via heuristic search 105

robot must stay in contact with the goal object for the object to move,
due to Assumption 3. Using these observations we develop a two
part heuristic to estimate the distance between state x and XG:

h(x) = d̂con(x)+ (A.3)

d̂move(x) (A.4)

Eq.(A.3) estimates the distance to make contact with the goal ob-
ject. Eq.(A.4) estimates the distance the end-effector must move to
push the goal object to the goal region.
Distance to contact: We compute d̂con by approximating the end-
effector with the smallest enclosing sphere. If this sphere penetrates
the object, d̂con = 0. Otherwise, d̂con is the translational distance
between the closest points on the sphere and object under the metric
d.

Proposition d̂con is a lower bound on the true cost to make contact
with the goal object.

Proof. Approximating the end-effector pose with the sphere means
all rotations of the end-effector have d̂con = 0. Thus our estimate of
the rotation distance is a lower bound of the true distance. The short-
est translational distance the end-effector can move to make contact
is the distance between the two closest points on the end-effector and
object. Selecting the closest point on the sphere to the object ensures
we underestimate this distance. Since we underestimate translational
and rotational distance, we must underestimate the true distance.

Distance to goal: We compute d̂move as the straight line distance
from the object location to the closest point in the goal region.

Proposition d̂move is a lower bound on the true cost to move the
object to the goal.

Proof. d̂move is the shortest distance the object can move and still
achieve the goal. By the quasistatic assumption, contact must be
maintained between robot and object for the object to move. As a
result, d̂move must also be the shortest distance the robot could move.

A.3 Expanding applicability

We define this algorithm to be applied only to rearrangement prob-
lems where the goal can be expressed in terms of a single movable
object, e.g. clear an object from a region or push an object to a goal
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location. As we add more movable objects to the goal, computing
an informative heuristic requires solving the traveling salesman
problem. Consider a clearance task where the robot must push n

items out of a defined goal region. We can easily define and compute
d̂move as the sum of the distance of the n objects from the edge of the
goal region. Computing d̂con is more difficult. We must compute the
shortest path for the robot to move between objects. An alternative
is to define d̂con as the distance to the furthest object. This is easy to
compute and still provides a lower bound, though admittedly looser.

Additionally, we would like to loosen our assumptions in order to
expand applicability of this algorithm. Assumption 1 is particularly
unsatisfying because it prevents the whole-arm interaction that is
useful in many rearrangement problems. We believe we can remove
this assumption by computing d̂con as the distance between the object
and the closest point on the manipulator. Computing this distance is
computationally more difficult. This will have meaningful impact on
overall planning times because the heuristic is computed on every
expansion.

To remove Assumption 2, we can adjust d̂con to be the distance
between the robot and the closest movable object rather than the dis-
tance between the robot and the goal object. To remove Assumption
3, we must eliminate d̂move from the heuristic all together, as a single
strike of an object may allow it to slide or roll all the way to the goal
with no further movement of the robot.

It is clear that eliminating all three assumptions quickly weakens
the power of the heuristic, reducing its ability to meaningfully guide
the search. Still our experimental results with this planner inspire
us to consider alternate meaningful heuristics that allow us to apply
structured search to rearrangement planning.
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