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Abstract

In general, sensor networks consist of sensing, data processing, and communication com-

ponents, and these sensors may communicate with each other or with a central processing

center, which then performs some form of data aggregation or data fusion. The terms ag-

gregation and fusion are often used for the same general purpose: how to simultaneously

use pieces of information provided by several sources in order to come to a conclusion or a

decision. A number of data fusion methods have been developed for sensor networks for a

variety of applications, with a primary function of taking in the data from multiple sensors

and combining this data to produce a condensed set of meaningful information with the

highest possible degree of accuracy and certainty.

In this work we primarily explore the use of state fusers for target tracking applications

that utilize long-haul communication networks where the underlying target dynamics are

nonlinear (as is the case, for example, for a maneuvering target or a ballistic target). However,

it is noted that the most popular approaches linearly combine the dataTherefore, the goal of

the work is two-fold: 1) investigate/improve nonlinear fusion algorithms for target tracking

and 2) develop methods to ensure that these nonlinear fusion algorithms are also robust

against packet losses and delays that result from long-haul communications. In particular,

we investigate the use of artificial neural networks (ANNs) for multisensor fusion. ANNs

possess the capability of modeling arbitrary mappings, as long as a sufficient number of

training samples are available from the same distribution. This also provides us with the

ability to use nonlinear functions for fusing the data, which may yield better results than
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with linear fusion given proper training.

More specifically, this thesis investigates several aspects of using ANN fusers for multi-

sensor fusion in target tracking. Simulation experiments show that a significant amount of

training data is required in close proximity to the test target in order to obtain good perfor-

mance. Alternate methods in ANN training are then introduced which reduce the amount

of training data required to obtain good performance, and widens the allowable training

space as well. Then, the use of multiple fusers, different input features, and varied ANN

architectures are investigated with the intent to further improve fuser performance. The

effects of imperfect communications are then explored for the ANN fuser, and another train-

ing enhancement is suggested to generate ANN fusers that are more robust against packet

losses and delays. Overall, this thesis intends to provide suggestions as to what parameters

or aspects of the ANN may be explored to help improve fuser performance for use in target

tracking.
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Chapter 1

Introduction

1.1 Motivation

In general, sensor networks contain sensor nodes that consist of sensing, data processing, and

communication components, and these sensors may communicate with each other or with a

central processing center, which often performs some form of data aggregation or data fusion.

The terms aggregation and fusion are typically used for the same general purpose: how to

simultaneously use multiple pieces of information provided by several sources in order to come

to a conclusion or a decision [5]. A number of data fusion methods have been developed

for sensor networks for a variety of applications, with a primary function of taking in the

data from multiple sensors and combining this data to produce a condensed set of meaningful

information with the highest possible degree of accuracy and certainty [6,7]. Sensor networks

have been used in a wide variety of applications, including healthcare, military, security, and

environmental monitoring, among others [8]. A particular class of sensor networks, which

we call long-haul sensor networks, have communication connections that may span tens

of thousands of miles. Such long-haul sensor networks have been deployed in a number

of applications such as “the monitoring of greenhouse gas emissions using airborne and

ground sensors [9], processing global cyber events using cyber sensors distributed over the

1
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Internet [10], space exploration using a network of telescopes [11], and target detection and

tracking for air and missile defense” [1].

In conventional sensor networks, the underlying communication network is regarded to

be relatively “small” so that the effects of most network latencies and/or losses can be

mitigated through an appropriate choice of communication protocols and data processing

algorithms [12, 13]. In contrast, for long-haul networks, the effects of the network latencies

and losses can become significant as the communication time may be on the same order as

the time required and/or is available for algorithms to run for reporting. For example, in tar-

get tracking, consider the scenario where a report of several targets’ positions must be made

every 5 seconds at the central processing center. The central processing center receives data

about target positions from various sensors that may be distributed across the globe or even

in space, and the central processing center runs data aggregation or data fusion algorithms

to agglomerate the received data, which, if performed appropriately, often results in more ac-

curate results than with any single sensor. These data fusion algorithms may require several

seconds to run to completion in order to produce a report (where suboptimal/potentially in-

accurate results are obtained if the data fusion algorithms are stopped prior to completion).

If the communication time between the sensors and the central processing center is also on

the order of seconds (which may be the case for long-haul networks), then any additional

latencies in receiving the data from the sensors may significantly cut into the fixed time

that is allotted for the data aggregation algorithms to run before a report must be made,

thus impacting the accuracy of the algorithms’ result. A decision must therefore be made of

whether to wait for the sensor data to be received or to continue and run the algorithms with-

out it, which is a problem that is generally not considered in smaller networks. Therefore,

mitigation techniques that are used for networks with short communication links may not

generally work well for larger networks. The long-haul connections considered here present

challenges that have not been adequately addressed by existing fusion methods, particularly

methods to accommodate or account for missing or delayed data.



CHAPTER 1. INTRODUCTION 3

1.2 Problem Statement and Goal

One area that has seen considerable work in data fusion is in target tracking, whereby

multiple sensors track a target by estimating its current state over time. Examples of such

states that may be of interest are the target’s kinematic states (e.g., its position, velocity),

its physical state (e.g., radar cross-section), or its target classification (e.g., friend or foe).

The main objective of target tracking is to estimate the state trajectories of moving targets,

and a typical target tracking system may consist of multiple sensors, which communicate

with a central processing center. We primarily explore the use of state fusers for target

tracking applications that utilize long-haul communication networks, where the underlying

target dynamics are nonlinear. We consider common communication problems such as power

or limited bandwidth to be not major issues in this application. The main focus of this work

is to investigate and develop improved fusion algorithms that have reduced error and are

robust against packet losses and delays that result from long-haul communications.

There are a number of sensor fusion methods that have been developed that are well-

suited for shorter and/or reliable communication links [7], and several such algorithms will be

briefly described in Chapter 3. However, it is noted that the most popular approaches linearly

combine the data. Therefore, the goal of the work is two-fold: 1) evaluate nonlinear fusion

algorithms for target tracking that have reduced error and 2) develop methods to ensure

that these nonlinear fusion algorithms are also robust against packet losses and delays that

result from long-haul communications.

It is noted that in most applications, field tests may be performed using the sensor

networks to collect measurements. We propose to use these measurements collected a priori

to learn ways to fuse the data; in particular, we investigate the use of learning-based fusers for

multisensor fusion. The methods explored here provide us with the ability to use nonlinear

functions for fusing the data, which may potentially yield better results than with linear

fusion. However, most learning-based fusers generally require that all of the inputs be

present when computing the final fused output. Therefore, we further develop methods for
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utilizing these nonlinear fusers in the case when there is missing input test data.

1.3 Contributions of the Thesis

In summary, this work primarily focuses on the investigation and development of improved

fusion algorithms that are robust with specific application to target tracking, and can also

deal with packet losses and delays that result from long-haul communications. The primary

contributions of this thesis are as follows:

• Machine Learning in Multisensor Fusion. The investigation and evaluation of

various nonlinear machine learning techniques for use in multisensor fusion for target

tracking.

• Robust Fusers. The development of improved nonlinear fusion algorithms that have

reduced error and are also robust against packet losses and delays that result from

long-haul communications.

• Training Considerations. An analysis of the impact of various heuristics that are

used in training learning-based fusers.

• Simulation Results. Demonstration of the performance of existing and new machine

learning algorithms for fusing data collected from simulated targets.

1.4 Outline of the Document

The rest of this dissertation is organized as follows. Chapter 2 provides a description of the

target tracking system considered herein, including a general architecture for the system and

several common target motion and sensor measurement models and state estimate generation

approaches, which will be used in subsequent chapters for simulating/demonstrating fuser

performance. In Chapter 3, a brief summary of prior work in the area of multisensor fusion is
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given. Chapter 4 discusses in more detail one of the best-performing nonlinear fusers found

in Chapter 3 and describes modifications that can be made to make the fuser more robust

for the purposes of target tracking. Chapter 4 also provides a more in-depth exploration of

various heuristics that can affect our fuser performance. In Chapter 5, we address the long-

haul aspect of our problem by investigating the application of previous methods for dealing

with missing data and introduce new methods. Chapter 6 concludes this dissertation by

revisiting our main contributions and includes some ideas for future work.



Chapter 2

Target Tracking

The main objective of target tracking is to estimate the state trajectories of a moving target.

The general architecture of the target tracking system that we consider here is shown in

Figure 2.1.

time-stamped 
state estimates 

targets 

Sensor/ 
Estimator 

 i =1,2,,N

Fusion Center 
 

Correlation and 
Fusion 

Network: 
loss, delay 

Global state 
estimates 

x̂1, x̂2 ,, x̂N
x̂i1
W , x̂i2

W ,, x̂ik
W

x̂1
F ,..., x̂L

F

Time window
 [t, t+W] e.g., position,  

velocity 

Figure 2.1: Target Tracking System Architecture [1].

There are objects, or “targets”, that are within the field of view of our N sensors, and

we wish to know the state of the target(s) (e.g., its position and velocity) while it is within

the field of view. The sensors collect information about the target (e.g., its range and/or

bearing), and each sensor can generate its own estimates of the true target state. These

state estimates, which will be denoted as x̂1, ..., x̂N (where the state estimate x̂i is generated

by sensor i), are time-stamped and transmitted to a fusion center over a long-haul network

6
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(e.g., over satellite links) over which random delays and packet losses may occur. Of these

N state estimates, only k ≤ N state estimates, namely x̂Wi1 , . . . x̂
W
ik

, arrive within a time-

window [t, t + W ] at the fusion center, and are used as inputs into the correlation and

fusion algorithms. At the fusion center, the objective of the correlation algorithm is to

group the state estimates such that each group corresponds to a single target. The fusion

algorithm then combines the state estimates of each group into a single global estimate for

that target (e.g., x̂F1 , ...x̂
F
L for L targets). In this work, as the focus is on multisensor fusion,

the correlation will be assumed to be perfect and will therefore not be discussed further

herein. The simulation results shown throughout are for a single target.

In the following sections, we will provide the necessary background information required

for simulating of the target tracking system shown in Figure 2.1. We will step through each

module in the diagram in Figure 2.1 and describe the mathematical models or algorithms

used to simulate each module:

• (Section 2.1) Target dynamic model

• (Section 2.2) Sensor measurement model

• (Section 2.3) State estimate generation

• (Section 2.4) Network loss/delay

• (Chapter 3) Sensor Fusion

The correlation aspect of the ‘Fusion Center’ will not be discussed in this thesis since it is

assumed that there is a single target in all simulations, and that there are no false alarms.

In addition, since sensor fusion is the primary topic of this thesis, previous work in sensor

fusion will be discussed in the next chapter.
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2.1 Target Dynamic/Motion Models

Most tracking algorithms utilize a motion model because not only is knowledge of the target

motion typically available, but tracking algorithms that use a model typically outperform

model-free tracking algorithms [14]. Model-based tracking algorithms have become the most

common type of tracking algorithm due to the improved performance that is gained by in-

corporating physical knowledge of the target motion in comparison to model-free algorithms,

provided that the model is an accurate representation of the system [14]. A target dynamic

(motion) model describes the evolution of a target’s state over time. In this work, we gener-

ally consider targets that move according to a discrete-time dynamic system that takes on

the following form:

x(k + 1) = f(x(k)) + v(k) (2.1.1)

where x(k + 1) is the n-dimensional state of the target at time k + 1 and is a function of its

previous state plus process noise v(k) that models “unpredictable disturbances”. Typically,

v(k) is modeled as zero-mean white Gaussian noise with covariance

E[v(k)v(k)T ] = Q(k). (2.1.2)

In this work, we examine state fusion performance through simulation where targets

move according to a linear or nonlinear dynamic system. We look at three different types

of motion models: 1) the target is traveling at a (nearly) constant speed, 2) the target

performs a maneuver; that is, a (nearly) coordinated turn (i.e., its turn rate and speed

are nearly constant), and 3) the target is a ballistic object (e.g., a missile) traveling in the

“coast” phase, where the dominant force acting upon the target is gravity. The motion

models used herein to represent these cases take on the general form of Eq. (2.1.1). In the

motion model for the first case, where the target is traveling at a nearly constant speed, the

states evolve linearly (i.e., the function f(·) in Eq. (2.1.1) is a linear function), yielding a



CHAPTER 2. TARGET TRACKING 9

relatively simple motion model. In the second and third cases, the states evolve nonlinearly,

thus necessitating the use of nonlinear target tracking filters such as the Interacting Multiple

Model (IMM) estimator and the Extended Kalman Filter (EKF). The following subsections

provide further details on the motion models used.

2.1.1 Discretized Continuous White Noise Acceleration (CWNA)

Model

The discretized Continuous White Noise Acceleration (CWNA) model [2] is a commonly

used motion model in which an object moving in a generic coordinate ξ is assumed to be

traveling at a near constant speed. The discrete-time state equation is as follows:

x(k + 1) = Fx(k) + v(k) (2.1.3)

where, (dropping the time index k), x = [ξ ξ̇]T here is a two-dimensional vector representing

the position and velocity, and F is known as the transition matrix.

Its acceleration is modeled as continuous time zero-mean white noise ṽ:

ξ̈(t) = ṽ(t) (2.1.4)

where

E[ṽ(t)] = 0 (2.1.5)

E[ṽ(t)ṽ(τ)] = q̃(t)δ(t− τ) (2.1.6)

where q̃ is referred to as the process noise intensity.
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Derivation of the State Transition Matrix and Process Noise Covariance [2]

The transition matrix F in Eq. (2.1.3) is derived from the continuous-time state equation,

which is given in continuous time by:

ẋ(t) = A(t)x(t) +D(t)ṽ(t) (2.1.7)

where A and D are known matrices, x is the state vector, and ṽ is the process noise. The

state equation in Eq. (2.1.7) has the following solution (see section 4.2.2 of [2]):

x(t) = F (t, t0)x(t0) +

∫ t

t0

F (t, τ)D(τ)ṽ(τ)dτ (2.1.8)

where x(t0) is the initial state and F (t, t0) is the state transition matrix from time t0 to t.

State Transition Matrix:

The transition matrix has certain properties, such as:

F (t, t0) = F (t0, t)
−1, (2.1.9)

and in general, it has no explicit form, unless the following commutativity property is satis-

fied:

A(t)

∫ t

t0

A(τ)dτ =

∫ t

t0

A(τ)dτA(t). (2.1.10)

Then, and only then, does the transition matrix have the form:

F (t, t0) = e
∫ t
t0
A(τ)dτ

(2.1.11)

The condition in Eq. (2.1.10) is satisfied for time-invariant systems. For a time-invariant
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system, assuming t0 = 0, one has:

F (t) , F (t, 0) = eAt. (2.1.12)

For the discretized CWNA model, our A and D matrices are

A =

0 1

0 0

 (2.1.13)

D =

0

1

 (2.1.14)

We can verify from plugging in the A and D from Eqs. (2.1.13) and (2.1.14) into Eq. (2.1.7)

that we get:

ẋ(t) =

0 1

0 0


ξ(t)
ξ̇(t)

+

0

1

 ξ̈(t)
=

ξ̇(t)
0

+

 0

ξ̈(t)


=

ξ̇(t)
ξ̈(t)


(2.1.15)

which is our desired result for the discretized CWNA model.

Therefore, for a sampling period of T , we can evaluate the state transition matrix F (t, t+

T ) with the given A as follows:

F (t, t+ T ) = e
∫ t+T
t A(τ)dτ = eAT . (2.1.16)
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We can make use of the following series expansion:

eAT =
∞∑
k=0

(AT )k

k!
= I + AT +

A2T 2

2
+ . . . (2.1.17)

where I is an identity matrix of the same dimension as A. We can see that with the given

A, we have

Ak =

0 0

0 0

 , k ≥ 2 (2.1.18)

so:

eAT = I + AT =

1 T

0 1

 (2.1.19)

Therefore, for a sampling period of T , the F in our discrete-time state equation in Eq. (2.1.3)

is:

F =

1 T

0 1

 (2.1.20)

Process Noise Covariance:

To find the process noise covariance, we can relate the discrete-time process noise v(k) to

the continuous-time process noise by:

v(k) =

∫ T

0

eA(T−τ)Dṽ(kT + τ)dτ. (2.1.21)
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We have eA(T−τ) =

1 T − τ

0 1

, so with the D from Eq. (2.1.14), Eq. (2.1.21) becomes:

v(k) =

∫ T

0

1 T − τ

0 1


0

1

 ṽ(kT + τ)dτ

=

∫ T

0

T − τ
1

 ṽ(kT + τ)dτ

(2.1.22)

Thus, the covariance of the process noise v(k) is (given that E[ṽ(t)] = 0 from Eq. (2.1.5) and

E[ṽ(t)ṽ(τ)] = q̃(t)δ(t− τ) from Eq. (2.1.6), and assuming q̃ to be constant):

E[v(k)v(k)T ] = E


∫ T

0

T − η
1

 ṽ(kT + η)dη


∫ T

0

T − τ
1

 ṽ(kT + τ)dτ


T

=

T∫
0

T∫
0

T − η
1

E[ṽ(kT + η)ṽ(kT + τ)T ]

[
T − τ 1

]
dηdτ

= q̃

T∫
0

 T∫
0

T − η
1

 δ(η − τ)dη

[T − τ 1

]
dτ

= q̃

T∫
0

T − τ
1

[T − τ 1

]
dτ

= q̃

T 3/3 T 2/2

T 2/2 T


(2.1.23)
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Thus our process noise covariance is:

Q , E[v(k)v(k)T ] =

T 3/3 T 2/2

T 2/2 T

 q̃ (2.1.24)

We can also extend the discretized CWNA model to two coordinates, ξ, and η, so that the

state of the target is x = [ξ ξ̇ η η̇]T :

x(k + 1) =



1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1


x(k) + v(k), (2.1.25)

and the process noise covariance is given by

Q(k) , E[v(k)v(k)T ] =


q̃ξ

T 3/3 T 2/2

T 2/2 T

 0 0

0 0

0 0

0 0
q̃η

T 3/3 T 2/2

T 2/2 T




, (2.1.26)

where q̃ξ and q̃η are the process noise intensities of the respective coordinates.

2.1.2 Target Maneuver

Targets may also move in a nonlinear fashion; for example, an aircraft may be traveling in a

straight line at some constant speed, but then perform a maneuver such as a turn. A turn

usually follows a pattern known as a coordinated turn, which is characterized by a constant

turn rate and a constant speed [2]. The turn rate Ω is incorporated into the motion model
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by augmenting the state vector for a horizontal motion model as follows:

x =
[
ξ ξ̇ η η̇ Ω

]T
, (2.1.27)

which gives rise to the Nearly Coordinated Turn (NCT) model [2], given by:

x(k + 1) =



1
sin Ω(k)T

Ω(k)
0 −1− cos Ω(k)T

Ω(k)
0

0 cos Ω(k)T 0 − sin Ω(k)T 0

0
1− cos Ω(k)T

Ω(k)
1

sin Ω(k)T

Ω(k)
0

0 sin Ω(k)T 0 cos Ω(k)T 0

0 0 0 0 1


x(k) + v(k), (2.1.28)

and the covariance matrix of the process noise is

Q(k) , E[v(k)v(k)T ] =



q̃ξ

T 3/3 T 2/2

T 2/2 T

 02×2

0

0

02×2 q̃η

T 3/3 T 2/2

T 2/2 T

 0

0

0 0 0 0 q̃ΩT


, (2.1.29)

where q̃Ω is the process noise intensity of the turn rate and 02×2 is a 2 by 2 matrix of zeros. It

can typically be assumed that the horizontal and vertical motion models are decoupled [15],

so the vertical component of the motion is not incorporated into this model.

2.1.3 Ballistic Coast Target

The final motion model we will consider for our simulations is the model for a ballistic coast

target (i.e., a ballistic target in “coast” phase). Li and Jilkov provide a comprehensive survey

of motion models for ballistic and space targets in [16], and some of the material from their
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survey that is utilized in our simulations will be summarized in this subsection.

In general, the state-space model of a ballistic target has the form

ẋ =

v

a

 , (2.1.30)

where x = [pT vT ]T is the state vector consisting of the target’s position p = [x y z]T and

velocity v = [ẋ ẏ ż]T , and x, y, and z characterize the coordinate system of interest. In this

work, we will use the Earth-centered Inertial (ECI) coordinate system, as it is typically used

in ballistic target tracking. The ECI coordinate system has its origin at the center of the

Earth and does not rotate with the Earth (i.e., it is fixed relative to the “fixed stars”) [16].

When a ballistic target is in the coast phase, gravity is considered to be the dominant

force acting on the target, so the total acceleration is a = aG, where aG is the gravitational

acceleration. There are three gravity models that are typically used for ballistic target

tracking: 1) a Flat Earth model, which is a model that assumes a flat, non-rotating Earth,

2) a Spherical Earth model, which assumes that the Earth and the target can be represented

as point masses at their centers, and the gravitational forces of the moon (and stars) can

be neglected, and 3) an Ellipsoidal Earth model, which, as the name suggests, replaces the

spherical Earth model with a (more accurate) ellipsoidal Earth model [16]. Li and Jilkov

note that for a long-range coast ballistic target (our scenario of interest), accounting for the

Earth sphericity and rotation may be essential, so we use the spherical Earth model for our

gravity model in our simulations.

The following expression for aG, the gravitational acceleration, assumes a spherical Earth

model [16]:

aG = − µ

‖p‖3
p (2.1.31)

where p is the target position vector from the Earth’s center to the target, ‖p‖ =
√
x2 + y2 + z2

is its length, and µ = 3.986012 × 105 km3/s2 is the Earth’s gravitational constant. The
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continuous-time model of the system in Eq. (2.1.30) can therefore be rewritten using Eq.

(2.1.31) as follows:

d

dt



x

y

z

ẋ

ẏ

ż


=



ẋ

ẏ

ż

−µx/‖p‖3

−µy/‖p‖3

−µz/‖p‖3


(2.1.32)

An efficient algorithm for computing the state propagation can be found in [17].

2.2 Sensor Measurement Models

Each of the sensors collect measurements (e.g., the target range) according to the following

measurement model:

z(k) = h(x(k)) + w(k) (2.2.1)

where z(k) is the measurement at time k, and is a function of the true target state, x(k),

plus measurement noise, w(k). w(k) is typically modeled as zero-mean white Gaussian noise

with covariance E[w(k)w(k)T ] = R(k) and is independent of the process noise.

In most tracking applications, the target dynamics are best modeled in Cartesian coor-

dinates, while the measurements are typically available in sensor coordinates (most often

spherical coordinates) [18]. In a two-dimensional scenario (which we will employ for the

discretized CWNA and NCT models since it is assumed that the x and y coordinates can be

decoupled from the z coordinate), suppose we have an active sensor located at the Carte-

sian coordinates (xa, ya). The sensor will collect measurements of the target range (r) and

azimuth angle (A) according to the following measurement model [19] (dropping the time
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index k):

z =

 r
A

 =


√

(x− xa)2 + (y − ya)2

tan−1

(
y − ya
x− xa

)
+ w, (2.2.2)

where w is white Gaussian noise with covariance

R =

σ2
r 0

0 σ2
A

 , (2.2.3)

and x and y are the true coordinates of the target.

We simulate the measurements for a ballistic coast target in 3D following the simulations

in [20] by adding another parameter, the elevation. The measurements of the range (r),

elevation (E), and azimuth (A) of the target are computed as follows:

z =


r

E

A

 =


√
x2 + y2 + z2

tan−1
(
z/
√
x2 + y2

)
tan−1 (x/y)

+ w, (2.2.4)

where w is white Gaussian noise with covariance

R =


σ2
r 0 0

0 σ2
E 0

0 0 σ2
A

 . (2.2.5)

2.2.1 State-Dependent Noise

We may have to assess state fuser performance under the presence of state-dependent noise

since this type of noise is likely present in real-world situations although most fusers are not

typically designed to account for state-dependent noise. For example, radar measurements

are typically noisier when a target is off of the antenna boresight than if it were directly on the
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axis of maximum antenna gain, so the measurement noise here depends on the target’s state

relative to the sensor location. Therefore, for our simulations, we also incorporate target

state-dependent noise into the measurement model by using a simplified radar model to

generate state values for σr, σE, and σA so that the errors are state-dependent and correlated

across sensors. We will only consider the error that is dependent on the signal-to-noise ratio

(SNR) for both the range and angle measurement accuracy since they usually dominate

their overall radar error [21]. From [21], we have the following relationship between the

standard deviation of the range and angle measurement errors and the SNR:

σr, σE, σA ∝
1√
SNR

(2.2.6)

The SNR (from the well-known radar range equation [21]) is inversely proportional to r4,

where r is the range from the sensor to the target. To simplify, we assume a number of the

radar parameters from the radar range equation are constant (e.g., the radar pulse duration,

antenna gain, etc.) so that

σr, σE, σA ∝ r2 (2.2.7)

The range and angle error of a ballistic target/satellite tracking phased array radar, the

Cobra Dane, are published in Table 1 of [22] as 15ft and 0.05◦, respectively, at a distance

of 1000 nautical miles. These parameters are used to find reasonable values for scaling the

standard deviations σr, σE, and σA used in the simulations to generate the state-dependent

measurement noise.

2.3 Generating State Estimates

Each sensor then uses these measurements to estimate the true state, x(k). The method used

for generating the state estimates depends on the assumed target motion model. For example,

the Kalman Filter is typically employed to estimate the state of a target moving according to
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a linear dynamic system (e.g., following the Discretized CWNA model from Section 2.1.1).

When the target is moving in a nonlinear fashion, such as when it is performing a turn, a

filter designed to account for the nonlinearities (e.g., the Extended Kalman Filter) should

be used to estimate the target state. As stated previously, for our simulations, two types

of targets will be considered for assessing fuser performance: 1) a civilian aircraft, which

effectively operates in two different modes: uniform motion (at a constant speed and course),

and a maneuver (e.g., a turn) [2], and 2) a ballistic target in the coast phase. As it is not

the focus of this thesis, existing methods will be used to generate the state estimates for

each target. For the aircraft, to generate the state estimates during uniform motion and

during a maneuver, a Kalman filter and an Extended Kalman Filter are utilized with an

Interacting Multiple Model (IMM) estimator, and for the ballistic target, a recursive Best

Linear Unbiased Estimator (BLUE) filter developed by Zhao et. al. [3] is employed.

2.3.1 Kalman Filter (KF)

The Kalman Filter is the optimal Minimum Mean Square Error (MMSE) estimator when

all noises entering the system are independent and normally distributed. If the noises are

not Gaussian, and one only has the first two moments of the noise, then the Kalman Filter

algorithm is the best linear MMSE state estimator [2]. Bar-Shalom et al. provide an excellent

overview of the Kalman Filter (KF) in [2], which will be summarized here. Consider the

scenario where we wish to know the true quantity x, but we are only given k measurements

(which are each a function of x), made in the presence of disturbances (noise), w(j):

z(j) = h (j, x, w(j)) , j = 1, ..., k. (2.3.1)

We would like to find a function of the k observations, x̂(k, Zk), which is called the estimator

of x, and is a function of the given measurements Zk = {z(j)}kj=1. Dropping the time index
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k (assuming it is fixed), the minimum mean-square error (MMSE) estimator is given by

x̂MMSE(Z) = arg min
x̂

E[(x̂− x)2|Z]

= E[x|Z].

(2.3.2)

For two random vectors x and z that are jointly Gaussian, the MMSE estimator x̂, i.e., the

conditional mean, is given by

x̂ , E[x|z] = x̄ + PxzP
−1
zz (z− z̄), (2.3.3)

and the corresponding conditional covariance matrix is

Pxx|z , E[(x− x̂)(x− x̂)T |z] = Pxx − PxzP−1
zz Pzx, (2.3.4)

where the overbar denotes the unconditional expected values (e.g., x̄ , E[x]), and

Pxx , cov(x) = E[(x− x̄)(x− x̄)T ]; (2.3.5)

Pxz , cov(x, z) = E[(x− x̄)(z− z̄)T ] = P T
zx; (2.3.6)

Pzz , cov(z) = E[(z− z̄)(z− z̄)T ]. (2.3.7)

Now consider a linear version of the general discrete-time dynamic system described earlier

in Eq. (2.1.1):

x(k + 1) = F (k)x(k) + v(k), (2.3.8)

and a linear version of the measurement equation given in Eq. (2.2.1):

z(k) = H(k)x(k) + w(k) (2.3.9)
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where F (k) and H(k) are matrices, and v(k) and w(k) are zero-mean white Gaussian noise

vectors and are assumed to be mutually independent.

Our goal is to obtain an estimate of x(k + 1), which is the true state at time k + 1, and

Eqs. (2.3.3) and (2.3.4) can be used to obtain a recursion that yields the state estimate at

time k + 1, denoted as x̂(k + 1), by relating our target dynamic model (the dynamic case,

Eq. (2.3.8)) with the MMSE estimator equation (the static case, Eq. (2.3.3)) as follows.

We can relate the static case to the dynamic case by letting the unconditional (prior)

expectations in Eq. (2.3.3) represent the expectations prior to the availability of the mea-

surement at time k+1. Similarly, the conditional (posterior) expectations in Eq. (2.3.3) will

represent the expectations posterior to obtaining the measurement at time k+ 1. Therefore,

from Eq. (2.3.3) we have the following equivalence for the prior mean:

x̄→ x̄(k + 1) , x̂(k + 1|k) , E[x(k + 1)|Zk] (2.3.10)

which is known as the predicted state. Similarly, for the measurement, let z in Eq. (2.3.3)

represent the measurement taken at time k + 1, z(k + 1), with the prior mean

z̄→ z̄(k + 1) , ẑ(k + 1|k) , E[z(k + 1)|Zk] (2.3.11)

which is also known as the predicted measurement. Let x̂ in Eq. (2.3.3) represent the

estimate of x(k + 1) in Eq. (2.3.8) (our desired quantity). We can compute the estimate

posterior to time k + 1 using the following representation:

x̂→ x̂(k + 1) , x̂(k + 1|k + 1) , E[x(k + 1)|Zk+1] (2.3.12)

Now, using the above equivalences, we obtain the following dynamic estimation algorithm.
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Predicted State:

We can substitute the state equation in Eq. (2.3.8) into Eq. (2.3.10) to obtain the predicted

state:

x̂(k + 1|k) , E[x(k + 1)|Zk]

= E[F (k)x(k) + v(k)|Zk]

= F (k)x̂(k|k)

(2.3.13)

Recall that the process noise v(k) is white and zero mean, so its expected value is zero.

Predicted Measurement:

Likewise, to obtain an expression for the predicted measurement, we can substitute the

measurement equation in Eq. (2.3.9) into Eq. (2.3.11) as follows:

ẑ(k + 1|k) , E[z(k + 1)|Zk]

= E[H(k + 1)x(k + 1) + w(k + 1)|Zk]

= H(k + 1)x̂(k + 1|k)

(2.3.14)

where again, since the measurement noise w(k + 1) is white and zero mean, its expected

value is zero.

Covariance Matrices:

Now that we have expressions for the predicted state and measurement, x̄ and z̄, respectively,

from Eq. (2.3.3), we still need the covariance matrices Pxz and Pzz (whose expressions are

given in Eqs. (2.3.6) and (2.3.7), respectively) in order to compute x̂. The state prediction

error can be obtained by subtracting the predicted state in Eq. (2.3.13) from the true state
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at time k + 1:

x̃(k + 1|k) , x(k + 1)− x̂(k + 1|k)

= F (k)x̃(k|k) + v(k),

(2.3.15)

and similarly, the measurement prediction error can be obtained by subtracting the

predicted measurement in Eq. (2.3.14) from the true measurement received at time k + 1:

z̃(k + 1|k) , z(k + 1)− ẑ(k + 1|k)

= H(k + 1)x̃(k + 1|k) + w(k + 1).

(2.3.16)

The covariance between the state and the measurement, Pxz is, using Eq. (2.3.16):

Pxz , E[x̃(k + 1|k)z̃(k + 1|k)T |Zk]

= E
[
x̃(k + 1|k) [H(k + 1)x̃(k + 1|k) + w(k + 1)]T |Zk

]
= E

[
x̃(k + 1|k)x̃(k + 1|k)T |Zk

]
H(k + 1)T

, P (k + 1|k)H(k + 1)T

(2.3.17)

where P (k + 1|k) is the state prediction covariance, which can be computed as follows:

P (k + 1|k) , E[x̃(k + 1|k)z̃(k + 1|k)T |Zk]

= F (k)E[x̃(k|k)x̃(k|k)T |Zk]F (k)T + E[v(k)v(k)T ]

, F (k)P (k|k)F (k)T +Q(k)

(2.3.18)

where recall that Q(k) is the process noise covariance.
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The measurement prediction covariance Pzz can be computed similarly to Pxz and is

given as:

Pzz , H(k + 1)P (k + 1|k)H(k + 1)T +R(k + 1)

, S(k + 1)

(2.3.19)

where recall that R(k) is the measurement noise covariance.

Now that we have expressions for the quantities given in Eq. (2.3.3), we can rewrite the

expression for the MMSE estimator x̂ using Eqs. (2.3.10), (2.3.11), (2.3.17), and (2.3.19) as

follows:

x̂(k + 1|k + 1) = x̂(k + 1|k) + P (k + 1|k)H(k + 1)TS(k + 1)−1 [z(k + 1)− ẑ(k + 1|k)]

(2.3.20)

which is also known as the updated state estimate and is our final estimate for the true

state at time k + 1. The Kalman Filter utilizes these equations to recursively estimate the

current state, and these equations are summarized in Table 2.1.

Table 2.1: Kalman Filter (KF) equations.

Prediction:

State prediction x̂(k + 1|k) = F (k)x̂(k|k)

State prediction covariance P (k + 1|k) = F (k)P (k|k)F (k)T +Q(k)

Update:

Measurement residual z̃(k + 1|k) = z(k + 1)−H(k + 1)x̂(k + 1|k)

Measurement residual covariance S(k + 1) = H(k + 1)P (k + 1|k)H(k + 1)T +R(k + 1)

Kalman Filter gain W (k + 1) = P (k + 1|k)H(k + 1)TS(k + 1)−1

Updated state estimate x̂(k + 1|k + 1) = x̂(k + 1|k) +W (k + 1)z̃(k + 1|k)

Updated state covariance P (k + 1|k + 1) = P (k + 1|k)−W (k + 1)S(k + 1)W (k + 1)T
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2.3.2 Extended Kalman Filter (EKF)

While the Kalman Filter is designed more for linear system dynamics, there are scenar-

ios (e.g., during a maneuver), where the underlying target dynamics are nonlinear. The

Extended Kalman Filter was developed based on the Kalman Filter to account for these

nonlinearities by using Taylor series expansion so that it is effectively a nonlinear version of

the Kalman Filter. The filter equations are slightly modified from the KF as shown in Table

2.2; the items shown in blue font are the terms that differ from the original Kalman Filter.

In the EKF, the state prediction is no longer a linear function of the previous state, but a

nonlinear (assumed to be known) function.

Table 2.2: Extended Kalman Filter (EKF) equations.

Prediction:

State prediction x̂(k + 1|k) = f(x̂(k|k))

State prediction covariance P (k + 1|k) = F (k)P (k|k)F (k)T +Q(k)

Update:

Measurement residual z̃(k + 1|k) = z(k + 1)−H(k + 1)x̂(k + 1|k)

Measurement residual covariance S(k + 1) = H(k + 1)P (k + 1|k)H(k + 1)T +R(k + 1)

Kalman Filter gain W (k + 1) = P (k + 1|k)H(k + 1)TS(k + 1)−1

Updated state estimate x̂(k + 1|k + 1) = x̂(k + 1|k) +W (k + 1)z̃(k + 1|k)

Updated state covariance P (k + 1|k + 1) = P (k + 1|k)−W (k + 1)S(k + 1)W (k + 1)T

State transition matrix F (k) =
∂f

∂x

∣∣∣∣∣
x̂(k|k)

Measurement matrix H(k + 1) =
∂h

∂x

∣∣∣∣∣
x̂(k+1|k)

2.3.3 Interacting Multiple Model (IMM) Estimator

The IMM estimator considers multiple target motion models by running multiple filters that

use the different motion models. The overall state estimate from the IMM estimator is ob-

tained by a weighted sum of the filter outputs, where the weights are model probabilities
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computed by the IMM estimator. This estimator is used in our simulations for the maneu-

vering target and runs the two filters (described in the previous subsections) in parallel: a

Kalman Filter (KF) using the discretized CWNA model, and an Extended Kalman Filter

(EKF) using the NCT model. The IMM estimator makes use of the total probability theo-

rem to combine the state estimates generated by each independent filter. The algorithm for

the IMM estimator is detailed in [2] and will be summarized here as well.

Figure 2.2 provides an overview of the IMM algorithm for a single cycle using two filters.

The output of each filter from the previous time step k − 1 is mixed using the mixing

probabilities to produce the “mixed initial conditions”. These mixed initial conditions are

then input into each filter, where they are are updated using the current measurement

to produce updated filter outputs, and the likelihood of each mode (target model) is also

computed. These mode likelihoods can then be used to update the mixing probabilities at

the current time k, which can then be used to combine the updated filter outputs to produce

a final state estimate and covariance at the current time k. While Figure 2.2 is depicted for

two filters, this algorithm is can easily accommodate more than two filters by running the

additional filters in parallel to the two filters depicted here.

The mathematical equations for the IMM algorithm are as follows. To fuse the individual

results from r different filters that are employed in parallel, the IMM algorithm computes

mixing probabilities for each possible mode (target model). The mixing probability for each

mode at time k is defined as follows:

µi|j(k − 1|k − 1) , P
[
Mi(k − 1)|Mj(k), Zk−1

]
=

1

c̄j
P
[
Mj(k)|Mi(k − 1), Zk−1

]
P
[
Mi(k − 1)|Zk−1

]
=

1

c̄j
pijµi(k − 1), i, j = 1, ..., r,

(2.3.21)

where Mj(k) is defined as the event that model j is in effect at time k, and the normalizing
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Figure 2.2: IMM Estimator for two filters (one cycle) [2].

constant c̄j is given by:

c̄j =
r∑
i=1

pijµi(k − 1), j = 1, ..., r. (2.3.22)

The “mixing” of the filters can then be performed by first computing the mixed initial state

for the filter matched to Mj(k), and its initial covariance:

x̂0j(k − 1|k − 1) =
r∑
i=1

x̂i(k − 1|k − 1)µi|j(k − 1|k − 1), j = 1, ..., r (2.3.23)

P 0j(k − 1|k − 1) =
r∑
i=1

µi|j(k − 1|k − 1)
{
P i(k − 1|k − 1)

+
[
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]
·
[
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]T }
, j = 1, ..., r

(2.3.24)

The initial state and covariance in Eqs. (2.3.23) and (2.3.24) are then input into the filter

matched to Mj(k), which then updates these initial estimates using the current measurement
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z(k).

To combine the filter outputs, the mode probabilities are updated as follows:

µj(k) =
1

c
· Λj(k)c̄j, (2.3.25)

where

c =
r∑
j=1

Λj(k)c̄j (2.3.26)

and

Λj(k) = N
[
z(k); ẑj

[
k|k − 1; x̂0j(k − 1|k − 1)

]
, Sj

[
k;P 0j(k − 1|k − 1)

]]
, j = 1, ..., r.

(2.3.27)

Once the mode probabilities are updated, the filter outputs can be combined as follows to

yield the final state estimate and covariance at time k + 1:

x̂(k|k) =
r∑
j=1

x̂j(k|k)µj(k); (2.3.28)

P (k|k) =
r∑
j=1

µj(k + 1)
{
P j(k|k) +

[
x̂j(k|k)− x̂(k|k)

] [
x̂j(k|k)− x̂(k|k)

]T }
. (2.3.29)

2.3.4 Coordinate Conversion

As stated earlier, since we are simulating a radar system for collecting our sensor measure-

ments, the target’s position is typically reported in polar or spherical coordinates. Two

common approaches for dealing with the different coordinate systems are provided in [23]:

1. Convert the measurements to a Cartesian frame of reference and utilize a KF.

2. Employ an EKF.

The accuracy of the measurement conversion is dependent on the accuracy of the original

measurements. For certain levels of measurement errors, the bias of the errors after conver-
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sion is significant, thus requiring some form of debiasing compensation [23]. We can compute

the bias in the converted measurement errors through the following conventional analysis.

Let us assume that the range measurement rm and the azimuth angle (bearing) measure-

ment Am are defined with respect to the true range r and true bearing A as follows:

rm = r + r̃, Am = A+ Ã, (2.3.30)

where r̃ and Ã are noise that are assumed to be independent and zero-mean with standard

deviations σr and σA, respectively. The polar coordinates can be converted into Cartesian

coordinates by the standard conversion:

xm = rm cosAm = (r + r̃) cos(A+ Ã);

ym = rm sinAm = (r + r̃) sin(A+ Ã).

(2.3.31)

We are interested in the converted measurement error statistics so that we may debias the

converted measurements and utilize the appropriate measurement covariance matrix when

employing the KF. We can compute the bias and covariance of the errors exactly with the

following assumptions: 1) the errors in the polar measurements are zero-mean and normally

distributed, and 2) we have knowledge of the true state (r, A). If we condition the true

mean and covariance on the true state (which we know from the second assumption), we can

compute the expressions for the mean and covariance exactly. However, since in practice the

true state is unknown, we can instead condition the mean and covariance on the measured

state. The resulting equations for the mean µ and covariance R are as follows [23]:

µ ,

E[x̃|rm, Am]

E[ỹ|rm, Am]

 =

rm cosAm(e−σ
2
A − e−σ2

A/2)

rm sinAm(e−σ
2
A − e−σ2

A/2)

 (2.3.32)
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R11 , var(x̃|rm, Am)

= r2
me
−2σ2

A [cos2Am(cosh 2σ2
A − coshσ2

A) + sin2Am(sinh 2σ2
A − sinhσ2

A)]

+ σ2
re
−2σ2

A [cos2Am(2 cosh 2σ2
A − coshσ2

A) + sin2Am(2 sinh 2σ2
A − sinhσ2

A)]

R22 , var(ỹ|rm, Am)

= r2
me
−2σ2

A [sin2Am(cosh 2σ2
A − coshσ2

A) + cos2Am(sinh 2σ2
A − sinhσ2

A)]

+ σ2
re
−2σ2

A [sin2Am(2 cosh 2σ2
A − coshσ2

A) + cos2Am(2 sinh 2σ2
A − sinhσ2

A)]

R12 , cov(x̃, ỹ|rm, Am)

= sinAm cosAme
−4σ2

A [σ2
r + (r2

m + σ2
r)(1− eσ

2
A)]

= R21

(2.3.33)

These equations for the mean µ and covariance R are derived from expanding Eq. (2.3.31),

and using the following set of identities (assuming zero-mean Gaussian errors in the polar

measurements):

E[cos Ã] = e−σ
2
A/2

E[sin Ã] = 0

E[cos2 Ã] =
1

2
(1 + e−2σ2

A)

E[sin2 Ã] =
1

2
(1− e−2σ2

A)

E[sin Ã cos Ã] = 0

(2.3.34)

The debiased conversion is then given by:

xdc
ydc

 =

rm cosAm

rm sinAm

− µ, (2.3.35)
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where µ is given in Eq. (2.3.32). Simulation results from [23] demonstrate that using

converted measurements after debiasing with the KF outperforms the EKF. Therefore, the

converted measurements with debiasing approach will be used in our simulations when utiliz-

ing the KF is desired. This approach will be denoted as CMKF-D (Converted Measurements

Kalman Filter with Debiasing).

2.3.5 Recursive Best Linear Unbiased Estimator (BLUE) Filter

However, the converted measurements approach with debiasing clearly has its flaws. The

true errors are dependent on the true state, while the CMKF-D computes the error statistics

based on the measurements, so the resulting filter is by no means optimal. Zhao et al.

note this in [3] and derive an optimal recursive filter in the linear MMSE sense for systems

with linear dynamics and nonlinear measurements. The algorithm is shown in Figure 2.3.

In Figure 2.3, both the prediction and update equations for this filter are provided, and

the framework is similar to that of the Kalman Filter with a few modifications. The main

deviations from the Kalman Filter are how the measurement error covariance matrix S, the

gain filter K, and the predicted measurement, are computed.

For comparison purposes, this filter is adopted for use with tracking the ballistic target.

The CMKF-D filter is used to help track the maneuvering target. Since the focus of this thesis

is not on state estimate generation but rather on multisensor fusion, both tracking approaches

(the CMKF-D and recursive BLUE filters) will be used in our simulations to demonstrate

the overall efficacy of the fusion techniques irregardless of which state estimation approach

is selected.
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TABLE I

One Iteration of BLUE Filter for Sstem with Linear Dynamics

and Converted Spherical Measurements Specified by (6), (7)

and (19)

1. Prediction:

x̄k = [x̄, _̄x, ȳ, _̄y, z̄, _̄z]
� = Fk�1x̂k�1 +¡k�1w̄k�1

P̄ = Fk�1Pk�1F
�
k�1 +¡k�1Qk�1¡

�
k�1

r̄ =
S
x̄2 + ȳ2 + z̄2, r̄

1
=

S
x̄2 + ȳ2

®=

�
¹
2
¾2r
r̄2

+
¹
3
z̄2

r̄2
1

+
¹
3
¾2r z̄

2

r̄2
1
r̄2

�

®
1
= (¸

2
¹
2
�¸2
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¹2
1
)x̄2 +¸
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®
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¹
2
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1
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2
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1
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Kk = ¹1[¸1P̄(:,1),¸1P̄(:,3), P̄(:,5)]S
�1

2. Update:

x̂k = x̄k +Kk(zk �¹1[¸1x̄,¸1ȳ, z̄]
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Pk = P̄k �KkSK
�
k

Constants:

¸
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, ¸
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Á
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x̄2z̄2=r̄2
1
in the above formula, but also the weight

¸2¹3 of E
�
x2z2=r2

1

�
in S11 is very small, we again

approximate E
�
x2z2=r2

1

�
simply by x̄2z̄2=r̄2

1
. Similarly,

E
�
y2z2=r2

1

�
and E

�
xyz2=r2

1

�
are approximated by

ȳ2z̄2=r̄2
1
and x̄ȳz̄2=r̄2

1
, respectively.

Based on the above analysis, it can be expected

that the approximations of the components of S are
quite accurate for most target tracking applications.

This will be verified by the simulation results in the

next section. We can see the true estimation errors are

almost always perfectly consistent with the computed

covariance by the filter in all simulations.

VII. SIMULATION AND COMPARISON

Before we do the simulations, for the convenience

of implementation, we summarize the BLUE filter for

the spherical coordinates in Table I.

Fig. 1. ANEES (case 1).

Considering that it has been shown in [1] and [3]

that the measurement-conversion method outperforms

the EKF clearly at long range for root-mean-square

azimuth of 1:5� (26 mrad) or more in terms of the
estimation accuracy and filter credibility [7], in the

following we only compare two state-of-the-art

conversion techniques with our proposed method. We

choose the MC approach and one version of the NC

approach [5], which are among the top choices in the

class of measurement-conversion methods. They were

referred to as “fixed-measurement” and “additive fixed

truth II” approaches in [9] and unbiased and debiased

methods in [3], [10], and [11], respectively.

Here the formulas of fixed-measurement and

additive fixed truth II in [9] are adopted for MC and

NC, respectively. The comparison results of the same

scenario as that of [9] are presented as follows.

Consider a scenario of a three-dimensional

Cartesian x-y-z space with a single sensor located
at the origin. The target sampling period is 1 s. The

coordinates (x,y,z) of the target object at time zero are
determined by random draws from three independent,

Gaussian distributions with means �50 km, 200 km,
and 0 km, respectively, and a common standard

deviation of 5 km. The target moves at a nearly

constant high velocity, whose components _x, _y,
and _z, obtained by a random draw from a Gaussian

distribution with means 1000m/s, 0m/s, and 0m/s,

respectively, and a common standard deviation of

0.1 km/s. The sensor’s independent measurement

errors have standard deviations ¾r = 4 m and ¾µ =
¾Á = 10 mrad.

Following [9], all the filters are initialized with an

effectively infinite initial state error covariance, and a

highly inaccurate initial state estimate. The tracking

period begins at 100 s after time zero and continues

for 100 s.

We compare only the average normalized

estimation error square (ANEES) and position rms

error (RMSE) of these three filters by increasing

the process noise first, and then increasing the

1330 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 4 OCTOBER 2004

Figure 2.3: Algorithm for the recursive BLUE filter presented in [3].
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2.4 Network Loss/Delays

After the sensors generate the state estimates, in our target tracking scenario the state

estimates are sent over long-haul communication links, where network delays and packet

losses may occur. Due to reporting time requirements (e.g., a report of the target state may

be due once per second), packets that are delayed are effectively considered to be lost since

a report must be made, and the fusion center cannot wait for the delayed packet to arrive.

Therefore, packet losses will also be simulated, and its effects on multisensor fusion will be

evaluated in Chapter 5.

For the simulations involving packet losses, we adopt the TCP model used by Rao et

al. in [1]. The TCP model presented in [1] considers a simple loss model where packets are

independently lost with some probability p. After each packet is sent, the sender waits for a

time-out period TTO to receive an acknowledgment from the receiver. The packet will then

be re-sent if no acknowledgment is received within the set time-out period. Typically, TTO

is on the order of several times the round-trip time of the connection, and over long-haul

networks, this could be on the order of seconds, which is the same as that of the time-window

allowed for the correlation and fusion algorithms to run [1]. Rao et al. derived an expression

for the probability that a message will be successfully delivered within some time window

W as follows.

Let T TEE denote the time at which a message is received at the receiver using TCP, and let

TL represent the latency of the connection. The probability that a message will be delivered

after exactly i losses is pi(1 − p), which corresponds to the time T TEE = iTTO + TL. Then,

the expected time at which the message is received using TCP is:

E
[
T TEE

]
= TL +

∞∑
i=0

ipi(1− p)TTO = TL +
p

1− p
TTO, (2.4.1)
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and the second moment is given by

E
[(
T TEE

)2
]

= T 2
L + 2TTOTL

p

1− p
+ T 2

TO

p(1 + p)

(1− p)3
. (2.4.2)

These expressions can be used to derive the probability that a message will be successfully

delivered within the time-window [TL, TL + W ] by applying Chebyshev’s inequality of the

second order, P{X > δ} ≤ E[X2]
δ2

, as follows:

P
{
T TEE − TL < W

}
= 1−P

{
T TEE − TL > W

}
≥ 1−

E
[
(T TEE − TL)2

]
W 2

= 1− T 2
TOp(1 + p)

W 2(1− p)3
,

(2.4.3)

For the simulations in Chapter 5, a time-out period of TTO = 0.3 secs will be used, with the

window W being set to 1 second to match the scan rate of the sensors, which will also be 1

second.

2.5 Summary of the Target Simulation Setup

To summarize, two different targets will be simulated:

1. Maneuvering Target: Travels at a constant zero or nonzero turn rate.

2. Ballistic Coast Target: The only force acting on this target is gravity.

The maneuvering target uses two dynamic models: the discretized CWNA model for when

the turn rate is zero so that the target is traveling in a linear fashion, and the NCT model

for when the turn rate is a nonzero constant. Since the horizontal and vertical motions for

the maneuvering are assumed to independent (and are therefore decoupled), only a 2D radar

measurement measuring the distance to (radius) and the bearing of the target (azimuth)

relative to the sensor is required. Furthermore, due to the two different models (i.e., modes)
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being employed for the maneuvering target, the use of an IMM filter is desirable, utilizing

both a KF and an EKF (with converted debiased measurements).

The ballistic target uses a single dynamic model where it assumes that the only force

acting on the target is gravity. The spherical Earth model is employed to model the gravi-

tational acceleration. Since the horizontal and vertical motions are not independent in our

ballistic target motion model (see Eq. (2.1.32)), a radar measurement that includes an eleva-

tion measurement is needed in order to estimate the true target state of the ballistic target.

A recursive BLUE filter is used to estimate the ballistic target state.

To simulate network loss, the state estimates from individual sensors are dropped with

some probability p. If a packet (i.e., state estimate) is dropped, the missing state estimate

will then be estimated at the fusion center using an assumed target model to predict the

missing estimate from a previously received state estimate. The models and algorithms used

for each target in our simulations are summarized in Table 2.3.

Table 2.3: Summary of the models and algorithms used in the simulation of tracking the
two targets.

Maneuvering Target Ballistic Coast Target

Dynamic Model 1) Discretized CWNA Model
2) Nearly Coordinated Turn
(NCT) Model

Gravitational Acceleration
only with Spherical Earth
Model

Sensor Measurement Model 2D Radar Measurement:
> Radius
> Azimuth
with state-dependent noise

3D Radar Measurement:
> Radius
> Azimuth
> Elevation
with state-dependent noise

State Estimate Generation IMM Filter with:
1) KF with debiased converted
measurements
2) EKF with debiased converted
measurements

Recursive BLUE Filter for
spherical (3D) measure-
ments

Network Loss Probability of loss following a uniform distribution ∼ U [0, 1]
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It is noted, however, that alternate tracking approaches could be used (different sensor

measurement models and/or different state estimation approaches). For example, we could

also elect to utilize an EKF with debiased converted measurements with the ballistic target,

but recall that the focus of this thesis is primarily on multisensor fusion. Different tracking

approaches will be used in our simulations to show the overall effectiveness of the fusion

techniques despite these differing approaches. In other words, we prefer to have more diver-

sity in our simulations so that fuser performance is not solely demonstrated for a single type

of simulation.

2.6 Simulations (Target Trajectories and Estimates)

Here we show plots of an example target trajectory and corresponding state estimates for

each simulated target. Note that these trajectories/state estimates are used for our test

target when comparing fuser performance in Chapter 3. The sampling/scan rate of the

sensors is one sample per second.

2.6.1 Sensor Locations

Since our measurement noise is dependent upon the location of the target with respect

to the sensor, two arbitrary sensor locations were selected around the world: Alaska, and

Greenland, with the exact latitudes and longitudes given in Table 2.4. These latitudes and

longitudes were then converted to the ECI coordinates for use in all simulations.

Table 2.4: Sensor locations and corresponding ECI coordinates.

Latitude Longitude ECI coordinates (x, y, z)

Sensor 1 (Alaska) 52.7373◦N 174.09143◦E (-3757.92, 889.624, 5076.18)

Sensor 2 (Greenland) 76.5311113◦N 68.7030563◦W (356.553, -1442.17, 6202.79)
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2.6.2 Example 1: Maneuvering Target

The initial state of the maneuvering target, xMT (0), in Cartesian coordinates (with the

positions x0 and y0 in km, the velocities ẋ0 and ẏ0 in km/s, and the turn rate Ω0 in radians)

is set to [19]:

xMT (0) = [x0 ẋ0 y0 ẏ0 Ω0]T

= [0 0.1 5 0.1 0]T
(2.6.1)

The example target travels straight (following the Discretized CWNA model) until time

t = 50s. At t = 50s, the target begins to take a left turn at a turn rate of 2◦/s for 50s

(following the NCT model), and then continues straight again until t = 150s. Figure 2.4

shows a plot of the true trajectory and the state estimates, as well as the Root-Mean-Squared

(RMS) error of the state estimates for one of the sensors.

2.6.3 Example 2: Ballistic Coast Target

The initial state of the target, xBT (0), is set to the following (in km for position, and km/s

for velocity):

xBT (0) = [x0 ẋ0 y0 ẏ0 z0 ż0]T

= [113.75 0.94 3950 3.33 6150 − 6.0125]T
(2.6.2)

For the ballistic target, checks were performed before all simulations to verify that the

simulated target was indeed within the expected range for a ballistic target; it should be

above the reentry point (100 km above the Earth), but less than the maximum altitude for

a ballistic target at approximately 1200 km [4]. Figure 2.5 shows a plot of the trajectory as

a function of its x-y-z coordinates, and Figure 2.6 shows the actual altitude of the ballistic

target above the Earth.
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(a) Maneuver Trajectory with overlaid corresponding sensor state estimates.
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Figure 2.4: Maneuvering Target
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Figure 2.5: Ballistic Trajectory in ECI coordinates.
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Figure 2.6: Ballistic Target altitude in km above the Earth (at 0 km). Also shown is the
minimum and maximum altitude for a ballistic target (100 km and 1200 km, respectively [4]).
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(a) Ballistic x-y Trajectory with overlaid corresponding sensor state estimates.

(b) Ballistic z Trajectory with overlaid corresponding sensor state estimates.
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(c) State estimate RMS error

Figure 2.7: Ballistic Target Trajectory with overlaid state estimates and corresponding RMS
error in position.



Chapter 3

Prior Work in Multisensor Fusion

After each sensor sends its state estimates to the fusion center, the state estimates from all

sensors are correlated to specific targets and combined to produce more accurate global target

state estimates. The correlation process is also sometimes referred to as data association,

which is actually not a straightforward process and can introduce errors that will also affect

the outputs after the fusion. However, in this work, a single target is assumed; therefore,

data association is not investigated as the focus here is primarily on fusers. In this chapter

we provide descriptions of two popular linear fusion methods for comparison with several

nonlinear fusers.

3.1 Linear Fusers

Two linear fusers will be described in this section, both of which are popular in target

tracking. The most commonly utilized linear fuser is the Linear Minimum Variance (LMV)

fuser, which requires the (typically unknown) error cross-covariance between sensors for

optimality. The second method presented here, called the Covariance Intersection(CI) fuser,

attempts to bypass the need for knowing the cross-covariance between sensors through an

alternate formulation of the fusion problem.

42
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3.1.1 Linear Minimum Variance (LMV) Fuser

An optimal state fuser (in the linear minimum variance sense) is derived in [24]. The algo-

rithm is as follows. Suppose we received an No-dimensional state estimate from each of the

N sensors, each of which we will denote as x̂i, where i is the sensor index (i = 1, ..., N). Each

state estimate also has an associated error covariance estimate P̂ii, which is an estimate of

the true error covariance Pii = E[(x− x̂i)(x− x̂i)
T ], where x is the true target state.

The fused state estimate x̂F is therefore defined as

x̂F = A1x̂1 + A2x̂2 + · · ·+ AN x̂N , (3.1.1)

and the optimal matrix weights Ai for i = 1, 2, ..., N are computed by

A = (BTΣ−1B)−1BTΣ−1, (3.1.2)

where Σ = [Pij]i,j=1,2,...,N is an NNo×NNo symmetric positive definite matrix (where Pij =

E[(x − x̂i)(x − x̂j)
T ]), and A = [A1, A2, ..., AN ]T , B = [INo , ..., INo ]

T are both NNo × No

matrices with INo being an No ×No identity matrix. The corresponding error covariance of

this fused estimate, PF , is given by

PF = (BTΣ−1B)−1. (3.1.3)

However, Pij for i 6= j is typically unknown, so Pij is typically set to 0No×No , but the result

will be suboptimal.

3.1.2 Covariance Intersection (CI) Algorithm

Another sensor fusion method is the covariance intersection (CI) algorithm. The intuition

behind this approach comes from a geometric interpretation of the problem. If one were to

plot the covariance ellipses for PF (defined as the locus of points {y : yTP−1
F y = c} where



CHAPTER 3. PRIOR WORK IN MULTISENSOR FUSION 44

c is some constant), the ellipses of PF are found to always lie within the intersection of the

ellipses for P1 and P2 for all possible choices of P12 [25]. The intersection is characterized by

the convex combination of sensor covariances (for two sensors, as an example):

PF = (ω1P
−1
1 + ω2P

−1
2 )−1 (3.1.4)

and the corresponding sensor fusion for the CI algorithm is

x̂F = PF
(
ω1P

−1
1 x̂1 + ω2P

−1
2 x̂2

)
, ω1 + ω2 = 1 (3.1.5)

where ω1, ω2 > 0 are weights to be determined (e.g., by minimizing the determinant of PF ,

which is related to minimizing the volume of space implied by the covariance matrix).

Recently, Wang and Li [26] proposed a fast CI algorithm where the weights are found

based on an information-theoretic criterion so that ω1 and ω2 can be determined analytically

as follows:

ω1 =
D(p1, p2)

D(p1, p2) +D(p2, p1)
(3.1.6)

where D(pA, pB) is the Kullback-Leibler (KL) divergence from pA(·) to pB(·), and ω2 = 1−ω1.

When the underlying estimates are Gaussian, the KL divergence can be computed as:

D(Pi, Pj) =
1

2

[
ln
|Pj|
|Pi|

+ dTxP
−1
j dx + Tr(PiP

−1
j )− k

]
(3.1.7)

where dx = x̂i− x̂j, k is the dimensionality of x̂i, and | · | denotes the determinant. Note that

in the case where P1 = P2, we have ω1 = ω2 = 0.5, and the resulting fused estimate will be

equivalent to that of the LMV fuser but with an inflated error covariance matrix (increased

by a factor of two).
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3.1.3 Simulations (Linear Fusers)

The simulation results shown below in Figure 3.1 demonstrate the benefits of fusing results

from multiple sensors over individual sensors by examining the RMS error of each linear

fuser and sensor. Figure 3.1 shows the error for two individual sensors, along with the error

for the LMV and CI fusers for the maneuvering target and the ballistic target. In both cases,

the LMV and CI fusers are able to fuse the sensor data to obtain more accurate results.

(a) Position RMS error for the Maneuvering Target.

(b) Position RMS error for the Ballistic Target.

Figure 3.1: RMS error in position for the (a) Maneuvering and (b) Ballistic Target. The
LMV and CI fusers outperform the individual sensors.
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3.2 Cross-Covariance Across Sensors

A major issue encountered with fusing sensor tracks is dealing with these state estimate

error correlations across sensors. In particular, the cross-covariance, which is a measure of

such correlations, may be nonzero due to a variety of factors such as common process noise

and correlated measurement noise across sensors. The cross-covariance is a key component

in several fusion strategies such as the LMV fuser, among others, (e.g., the best linear

unbiased estimation (BLUE) and optimal weighted least squares (WLS) fusion rules [27]),

but explicit estimation of the cross-covariance can be quite involved [23]. There are generally

two approaches to the fusion of state estimates; one approach attempts to fuse estimates

with unavailable cross-covariance, and the other approach requires knowledge of the cross-

covariance [26]. In the case of unavailable cross-covariance, one may try to estimate the

cross-covariance or fuse the data without it.

Learning approaches may bypass the need to compute the cross-covariance by implicitly

incorporating the correlations into the fuser function that is estimated from measurements.

It is noted that the cross-covariance could actually be computed off-line if the underlying

dynamic system were linear and time-invariant [28]; however, in many target tracking appli-

cations, the underlying system is often nonlinear. The aim in this section is to investigate

the benefits of estimating and utilizing the cross-covariance.

3.2.1 Methods for Estimating Cross-Covariance

Several methods for dealing with the cross-covariance are described in [29] and include esti-

mation by time averaging, fusion using pseudo-measurements, etc. We can actually estimate

the inter-sensor covariance in a similar manner to the state estimate error covariance if we

have information from the sensors such as the filter gain and measurement matrices, which we

will do in this section for comparison purposes. The method for estimating the inter-sensor

covariance (i.e., cross-covariance) is as follows.
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We have the following discrete-time state equation and measurement equations:

x(k) = F (k, k − 1)x(k − 1) + v(k, k − 1)

zi(k) = Hi(k)x(k) + wi(k)

(3.2.1)

where i is the index of the sensor. The state estimate from sensor i is given as:

x̂i(k|k) = x̂i(k|k − 1) +Wi(k)[zi(k)−Hi(k)x̂i(k|k − 1)] (3.2.2)

where x̂i(k|k − 1) is the predicted state estimate and Wi(k) is the filter gain.

For the case where there are two sensors, the cross-covariance between the state estimates

from the two sensors can be predicted by using the cross-covariance at the previous time

step, P12(k − 1|k − 1), the assumed transition matrix F , and the assumed process noise

covariance Q:

P12(k|k − 1) = F (k − 1)P12(k − 1|k − 1)F (k − 1)T +Q(k − 1) (3.2.3)

We can update the cross-covariance estimate using the following derivation [30]:

P12(k|k) , E[(x(k)− x̂1(k|k))(x− x̂2(k|k))T ]

= E[(x(k)− (x̂1(k|k − 1) +W1(k)[z1(k)−H1(k)x̂1(k|k − 1)]))

· (x(k)− (x̂2(k|k − 1) +W2(k)[z2(k)−H2(k)x̂2(k|k − 1)]))T ]

= E[((x(k)− x̂1(k|k − 1))−W1(k)[H1(k)x(k) + w1(k)−H1(k)x̂1(k|k − 1)]))

· ((x(k)− x̂2(k|k − 1))−W2(k)[H2(k)x(k) + w2(k)−H2(k)x̂2(k|k − 1)]))T ]

= E[((x(k)− x̂1(k|k − 1))−W1(k)H1(k)x(k)−W1(k)w1(k) +W1(k)H1(k)x̂1(k|k − 1)))

· ((x(k)− x̂2(k|k − 1))−W2(k)H2(k)x(k)−W2(k)w2(k) +W2(k)H2(k)x̂2(k|k − 1)]))T ]

= E[((I −W1(k)H1(k))(x(k)− x̂1(k|k − 1))−W1(k)w1(k)))

· ((I −W2(k)H2(k))(x(k)− x̂2(k|k − 1))−W2(k)w2(k)))T ]
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= E[((I −W1(k)H1(k))(x(k)− x̂1(k|k − 1)))((I −W2(k)H(2k))(x(k)− x̂2(k|k − 1)))T ]

+ E[W1(k)w1(k)(W2(k)w2(k))T ]

= (I −W1(k)H1(k))E[(x(k)− x̂1(k|k − 1))(x(k)− x̂2(k|k − 1))T ](I −W2(k)H2(k))T

+W1(k)E[w1(k)w2(k)T ]W2(k)T

= (I −W1(k)H1(k))P12(k|k − 1)(I −W2(k)H2(k))T , (3.2.4)

which uses the assumption that the measurement noise is zero-mean and independent across

sensors so that several cross-terms in this inter-sensor covariance derivation drop out. Eq.

(3.2.4) can be used to update the predicted cross-covariance computed using Eq. (3.2.3),

and this updated estimate, P12(k|k), can be utilized directly in the LMV fuser in Eq. (3.1.1),

also noting that P12(k) = P21(k|k)T .

3.2.2 Simulations (Cross-Covariance Estimation)

We can test the benefits of estimating and using the inter-sensor covariance by incorporating

it into the LMV Fuser and comparing the results. The cross-covariance is first initialized to

zero. Figure 3.2 shows the error for the LMV fuser with and without using the inter-sensor

covariance estimate, and the CI fuser is shown as well. While the LMV fuser with the inter-

sensor covariance estimate initially provides the lowest error , it seems to converge to the CI

fuser error as time goes on, thus indicating that the CI fuser may be performing optimally

for the ballistic target simulations.



CHAPTER 3. PRIOR WORK IN MULTISENSOR FUSION 49

Ballistic Coast Target

Figure 3.2: Position RMS error in km for the maneuvering target, comparing the LMV
fuser with (labeled ‘LMV Fuser w/CC’ – the ‘CC’ stands for Cross-Covariance) and without
(labeled ‘LMV Fuser’) the cross-covariance, and the CI fuser.

Simulations were only performed for the ballistic target since the maneuvering target has

multiple modes, thus making it more difficult to estimate the inter-sensor covariance using

the method described earlier.

3.3 Nonlinear Fusers

There are a number of nonlinear fusers that can be trained to combine state estimates, since

many types of regression analysis methods exist that can be used to learn or compute the

parameters of the fusing function we wish to estimate. It is noted that in most applications,

field tests may be performed using the sensor networks to collect test measurements (i.e.,

the training data). We propose to use these measurements collected a priori to learn ways

to fuse the data; in particular, we investigate the use of Support Vector Regression (SVR),
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the Nadaraya-Watson (NW) Estimator, the Nearest Neighbor (NN) Projective Fuser, and

artificial neural networks (ANNs) for multisensor fusion.

The use of nonlinear fusion methods for sensor fusion has been explored in previous

works. Rao examined the use of the NN Projective Fuser for generic sensor fusion in [31],

the Nadaraya-Watson estimator for sensor fusion in [32], and Artificial Neural Networks

in [33] and found favorable results. Therefore, these nonlinear fusers will be compared

along with SVR for nonlinear fusion. Support Vector Machines have previously been used

in multisensor data fusion for classifying targets [34–36]. ANNs and SVR take different

approaches to approximating the desired function; ANNs are typically designed to minimize

the error between the estimated function and the target function and possess the capability

of modeling arbitrary mappings [37], as long as a sufficient number of training samples

are available from the same distribution and the ANN has a sufficient number of nodes and

layers. SVR attempts to instead minimize the error bound between the estimated and target

function to try and achieve better generalization [38]. ANNs have also been proposed for

target tracking applications; e.g., for improving data association [39], filtering [40–42], and

measurement fusion [43], to name a few. Chowdhury [44] and Fong et al. [45] proposed

using ANNs for sensor fusion in target tracking, where the neural networks are used to

determine the weights for linearly combining sensor state estimates. Neural networks have

also been applied for sensor fusion in many other applications, such as automatic target

recognition [46–48], audio-visual speech recognition [49], image fusion [50, 51], fermentation

process control [52], edge map fusion [53], multimedia analysis [54], and weather [55]. All

of these learning-based methods provide us with the ability to use nonlinear functions for

fusing the data, which can potentially yield better results than with linear fusion.

3.3.1 Support Vector Regression (SVR)

Support Vector Regression was originally formulated by Vapnik [56] using the ε-insensitive

loss function. In this work, we investigate the use of a type of SVR called ν-SVR, which is
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an extension of Vapnik’s well-known ε-SVR [56]. We will begin with a brief description of

ε-SVR.

The regression estimate can be written as [57]

f(x) = (w · x) + b, w,x ∈ <N , b ∈ <, (3.3.1)

Given a set of training data (x1, y1), ..., (xl, yl) ∈ <N × < where xi are the inputs and yi

are the desired targets, the coefficients w and b in Eq. (3.3.1) are found by minimizing the

regularized risk functional

‖w‖2/2 + C

(
1

l

l∑
i=1

|yi − f(xi)|ε

)
(3.3.2)

where |yi − f(xi)|ε is the ε-insensitive loss function devised by Vapnik [56]:

|y − f(x)|ε = max{0, |y − f(x)| − ε}. (3.3.3)

Minimizing the first term in the regularized risk functional (Eq. (3.3.2)) will lead to a

smoother function, and the second term represents minimization of the error between the

target data and the predicted function (although errors less than some ε will not be penal-

ized).

The minimization of Eq. (3.3.2) is equivalent to the following constrained optimization

problem:

minimize f(w, ξ, ξ∗) =
1

2
‖w‖2 + C · 1

l

l∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w,xi〉 − b ≤ ε+ ξi

〈w,xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(3.3.4)
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The parameter ε represents the desired accuracy of the approximation and must be specified

before training, but one may simply want ε to be as low as possible without having to commit

to a specific level of accuracy a priori. Scholkopf et. al. present a modification of this ε-SVR

algorithm in [57] where they introduce a new variable, ν, so that one may automatically

minimize ε. The optimization function for ν-SVR for a constant ν ≥ 0 is given by

minimize
w,ξ,ξ∗,ε

f(w, ξ, ξ∗, ε) =
1

2
‖w‖2 + C ·

(
νε+

1

l

l∑
i=1

(ξi + ξ∗i )

)
, (3.3.5)

subject to the same constraints as in Eq. (3.3.4). As a result, in this approach the ν variable

has some nice properties if the resulting ε is nonzero: 1) 0 ≤ ν ≤ 1 can be used to control

the number of errors as it is shown in [57] that in this case, ν is an upper bound on the

fraction of errors, and 2) ν is the lower bound on the fraction of support vectors (SVs), so

in using ν-SVR, the user has the capability to control the number of SVs and errors.

3.3.2 Nadaraya-Watson (NW) Estimator

The Nadaraya-Watson estimator, or kernel regression, is a nonparametric regression tech-

nique where the regression function does not take on a specific form, but rather it is estimated

based on available data (e.g., the ‘training data’ collected from field tests). The Nadaraya-

Watson estimator is given by

f̂(x) =

l∑
i=1

K (x− xi) yi

l∑
i=1

K (x− xi)

(3.3.6)

where x, for example, is a vector containing the state estimates that we wish to fuse, xi is

the ith training sample, yi is the target value for the ith sample, and K(·) is a kernel function,

e.g., a ‘Gaussian’ kernel, which is given by

K(x− xi) = exp(−‖x− xi‖2/2σ2). (3.3.7)
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Each fused state (e.g., the position in the x-coordinate) is computed separately using Eq.

(3.3.6).

3.3.3 Nearest Neighbor (NN) Projective Fuser

The general method for projective fusers are to first compute the error regressions of the

sensors from the collected training data. The estimator that corresponds to the lower enve-

lope of regressions is then projected as the fused estimate. It was shown in [58] that for the

Nearest Neighbor (NN) Projective Fuser, as the sample size goes to infinity, the fuser is at

least as good as the best subset of sensors in a probabilistic sense. A description of the NN

Projective Fuser from [58] will be provided here for convenience.

To apply the NN Projective Fuser, the space of the input data X1, X2, ..., Xl is first

partitioned into a set of Voronoi regions V (X1), V (X2), ..., V (Xl), such that

V (Xj) = {X : ‖X −Xj‖ < ‖X −Xk‖ for all k = 1, 2, ..., l; k 6= j} (3.3.8)

where ‖ · ‖ is the Euclidean metric. (Note that points that are equidistant from more than

one sample point can be arbitrarily assigned to one of the regions).

Let NN(X) = k such that X ∈ V (Xk) for some k, which is the Voronoi cell that the data

point X belongs to. For the cell V (XNN(X)) that contains X, we identify the estimator that

achieves the lowest empirical error at the sample point XNN(X) by defining the estimator

index of X as follows:

iNN(X) = arg min
i=1,2,...,N

[
f(XNN(X))− f̂i(XNN(X))

]2

. (3.3.9)

where f̂i for i = 1, 2, ..., N are given estimators of the true function, f . iNN(X) is essentially

the index of the estimator that achieves the least empirical error at the sample point XNN(X)
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nearest to X. Then, the NN Projective Fuser is defined as:

f̂NN(X, f̂1(X), ..., f̂N(X)) = f̂iNN (X)(X). (3.3.10)

In other words, f̂NN(X) is equal to the f̂i(X) that achieves the least empirical error at the

nearest sample point to X. So, given a test point, one first determines the Voronoi region

that contains it, and the estimator that has the lowest error in that region is used as the

final predictor.

3.3.4 Artificial Neural Network (ANN) Fuser

We consider a three-layer feedforward neural network, whose overall architecture is shown

in Fig. 3.3. This network consists of an input layer, a hidden layer, and an output layer,

x̂(1)
a1

a2

aLInputs 

Hidden  
Layer 

Outputs 




x̂(Ni )

x̂F
(1)

x̂F
(No )

b1

bL

b2

bNo

o

b1
o

Figure 3.3: Example architecture of a simple three-layer neural network.

interconnected by weights (to be determined) which are represented by the arrows between

the layers. The inputs x̂(1), ..., x̂(Ni), for example, can be the state estimates from the sensors,

and the outputs x̂
(1)
F , ..., x̂

(No)
F are the global (fused) state estimates. There is also a bias unit

that is connected to each node in addition to the input nodes.

The nodes in the hidden layer are referred to as hidden nodes. The output of the jth

hidden node, aj, is given by

aj = g1

(
Ni∑
i=1

wijx̂
(i) + bj

)
(3.3.11)
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∑x̂(i)

x̂(1)

x̂(Ni )



 wNi j

ajg1(⋅)
wij

w1 j

bj

Figure 3.4: Node function diagram. The inputs are multiplied by weights for that hidden
node, summed, and then passed through a function to produce a hidden node output, aj.

where the parameters wij and bj are typically called the weights and biases, respectively. x̂(i)

is an input feature (e.g., a state estimate from a sensor), and g1(·) is a nondecreasing function

called the activation function, which is typically a bounded function such as the sigmoid. A

simple diagram illustrating this node function is shown in Fig. 3.4. If we concatenate all

of the hidden node outputs aj into a vector a = [a1, ..., aL]T , then we can write the hidden

node outputs as:

a = g1(W T
H x̂ + bH) (3.3.12)

where WH = [wij]Ni×L is the matrix of weights that are multiplied by the inputs x̂ =

[x̂(1), ..., x̂(Ni)]T , and bH = [b1, ..., bL]T is a vector of the biases for each hidden node. The

fused output of our network, x̂F , which is an No-dimensional vector, is then given by

x̂F = g2(W T
o a + bo) (3.3.13)

where Wo = [woij]L×No is another weight matrix, bo = [bo1, ..., b
o
No

]T is the a vector of biases

for each output, and g2(·) is another activation function.

3.3.5 Simulations (Nonlinear Fusers)

In this section, we show the baseline performance for all of the linear and nonlinear fusers

described in this chapter for a maneuvering target and a ballistic target, using the models and

algorithms described in Chapter 2 for our simulations. The test targets used in all simulations
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are as described in Section 2.6 and will briefly be described again in this subsection for

convenience. In order to train the fusers, we use the state estimates themselves as the inputs

to train and test the fusers.

Preprocessing

For the ANN fuser, however, the state estimates will be preprocessed prior to training and

testing. The state estimates, which (in our cases) are the estimated position and velocity

of the target, may have fairly dissimilar ranges. For example, as can be seen from Figure

2.7a, the x-coordinate for the ballistic target has an approximate range of 110km to 165km,

whereas the y-coordinate has an approximate range of 3950km to 4110km. For ANNs, when

the relative magnitudes of the input variables vary to a large extent, the variables with

larger magnitudes may mask the effect of the variables with smaller magnitudes. In other

words, the typical sizes of the inputs may not accurately reflect their relative importance in

determining the required outputs [59]. Therefore, we would like to scale the input variables

so that they fall within the same range (e.g., from −1 to 1) using a technique called Min-

Max Normalization [60]. In this approach, we use the following equation to scale the input

variable x:

xscaled =
(dmax − dmin)(x− xmin)

xmax − xmin
+ dmin (3.3.14)

where xmin and xmax are the minimum and maximum values, respectively, in the training

data for this input variable (e.g., the estimated x-coordinate), and [dmin, dmax] is our desired

range, which we will set to [−1, 1].

In our preprocessing, prior to training we apply Eq. 3.3.14 to both the inputs (the state

estimates) and target values (the true state) and store the xmin and xmax values for the

inputs and the targets separately, for each variable. When testing, we will apply Eq. 3.3.14

using the same xmin and xmax values stored from training to the test data, and to obtain the

correct outputs, we will apply the inverse operation of Eq. 3.3.14 to the outputs of the neural

network using the xmin and xmax values of the target values stored from the training data.
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However, it is noted that in employing this preprocessing technique, it may limit the range

for which the training and testing sets may differ. We would prefer to have the capability to

have largely differing training and testing sets, which may not be feasible when employing

this normalization technique. This subject matter will be explored further in Chapter 4.

Example 1: Maneuvering Target

The initial states of the training targets are randomly generated from a normal distribution

with the mean set to the initial state of the test target (repeated here for convenience, with

the position in km and velocity in km/s):

xMT (0) = [x0 ẋ0 y0 ẏ0 Ω0]T

= [0 0.1 5 0.1 0]T ,

(3.3.15)

with a standard deviation of 100m and 5m/s for the initial position and velocities, respec-

tively, in both the x and y coordinates. The time at which the maneuver starts and ends,

as well as the turn rate, are also randomly generated from a normal distribution where the

mean for the start and stop time is 50s and 100s, respectively, both with a standard deviation

of 5s, and the mean for the turn rate is 2◦/s with a standard deviation of 0.1◦/s.

Simulations were run for the cases where there are two and four sensors tracking the

target. The CI algorithm described in Section 3.1.2 is currently only defined for two sensors,

so results using the CI algorithm are only shown in the two sensors case. The resulting

position Root-Mean-Squared (RMS) error for each fuser is in shown in Figure 3.5 for the two

sensors. In Figure 3.5, it can be seen that the ANN and SVR Fusers are able to outperform

the linear fusers.
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Figure 3.5: Linear and Nonlinear Fuser Performance for the Maneuvering Target.

Example 2: Ballistic Coast Target

The initial states of the training and test targets are randomly generated from a normal

distribution with the mean set to the following (in km for position, and km/s for velocity) :

xBT (0) = [x0 ẋ0 y0 ẏ0 z0 ż0]T

= [113.75 0.94 3950 3.33 6150 − 6.0125]T
(3.3.16)

with a standard deviation of 100m and 5m/s for the position and velocity, respectively, in

the x and y coordinates. The RMS error in the position for the different fusers is shown in

Fig. 3.6 for two sensors. Twenty trajectories (each containing 100 samples) were generated

and used for training the nonlinear fusers.
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Figure 3.6: Linear and Nonlinear Fuser Performance for the Ballistic Target.

In these simulations, the ANN and SVR fusers are clearly able to outperform the linear

fusers, in addition to the NW fuser and the NN Projective fuser. The ANN fuser is the best

performing of all the nonlinear fusers in both the maneuvering target and ballistic target

cases, so the ANN fuser was selected for further investigation for use in target tracking and

will be discussed in greater detail in Chapter 4.



Chapter 4

Training the Artificial Neural

Network (ANN) Fuser

In the previous chapter, it was shown through simulation that the ANN fuser was able to

outperform other promising nonlinear fusers for both the maneuvering and ballistic coast

targets. Therefore, we elected to proceed with the ANN fuser for further analysis. In this

chapter, we intend to look deeper in two main topics: 1) Performance ; and 2) Prac-

ticality. That is, can we further improve the ANN fuser performance, and improve its

practicality? Specifically, the key questions that we investigate regarding these topics are:

1. (Performance). Can we utilize additional information that may be available (e.g.,

the error covariance estimates, previous state estimates) to further improve our ANN

fuser performance? (Subsections 4.1 and 4.4).

2. (Practicality). How can we train the ANN fuser so that the training data need not

be collected in such close proximity to the testing data, or can we use multiple fusers

to cover the state space? (Subsections 4.2 and 4.3).

3. (Performance). What parameters should we use for the ANN fuser (e.g., how many

hidden nodes should we use) for the best performance? (Subsection 4.5).

60
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4.1 Error Regularization

A learning algorithm is said to exhibit good generalization if it is able to perform accurately

on new, unseen data. One way of analyzing generalization is to look at the generalization

error. It is well known that the generalization error can be decomposed into two key com-

ponents: bias and variance [61], where a model that is too simple will have a large bias, but

a model that is too complex (i.e., flexible) will exhibit a large variance. In practice, there is

always a trade-off between these two error components. The best generalization is obtained

when we have the best compromise with a small bias and a small variance, and to find this

optimum balance, it is necessary to control the effective complexity of the model [59]. There

are primarily two approaches to controlling model complexity in neural networks. One is

called structural stabilization [59], where the number of adaptive parameters in the network

is varied (e.g., by varying the number of hidden nodes or the number of connections), with

a preliminary analysis presented in Section 4.5. The other approach makes use of regular-

ization, where additional information is introduced, typically in the form of a penalty for

model complexity (e.g., restricting the function to be smooth). Regularization techniques

for neural networks have been widely studied over the past few decades, and it has been

shown to improve the generalization capabilities of neural networks. In this section we pro-

pose a weighted error regularization based on the inherent noise properties of the data and

demonstrate improved performance over the baseline ANN fuser. Our proposed method is

also compared to other forms of error regularization.

4.1.1 Existing Methods for Regularization in ANNs

Typically, the ANN weights are determined by minimizing an error function, e.g., the sum

of squared errors:

S(w) =
m∑
i=1

(ti − f(xi,w))2 (4.1.1)
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where w is a vector of the ANN weights, m is the number of training samples, ti is the

(known) target for the ith training sample, and f(xi,w) is the ANN output for the ith

training sample. In regularization, smoother mappings are encouraged with the addition of

a penalty term to the error function. The error function then typically takes the form

S̃(w) = S(w) + λΩ (4.1.2)

The parameter λ controls the degree to which the penalty term Ω influences the form of the

solution [59]. Several methods of regularization are as follows.

Weight Decay/Ridge Regression

Weight decay, also known as ridge regression, is one of the simplest forms of regularizers:

S̃(w) =
m∑
i=1

(ti − f(xi,w))2 + λwTw (4.1.3)

It is known as weight decay since this function encourages the weights to go to zero, unless

supported by the data [59], which effectively limits the model complexity (by promoting a

smoother function) to avoid over-fitting. However, this introduces another problem where

now another parameter needs to be selected: the regularization coefficient λ. This value can

be chosen through methods such as cross-validation [37].

Bayesian Regularization

McKay [62] proposed a Bayesian framework that actually introduces two hyperparameters,

α and β, which are also used to trade off between the minimizing the sum of squared errors

or the sum of squared weights, but the trade-off is adaptive depending on the network

parameters and corresponding errors. (Note that α and β are referred to as hyperparameters

since they control the distribution of other parameters (weights and biases), so they are

labeled as hyperparameters to distinguish them from the actual parameters of interest).
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This approach also avoids the need for cross-validation to determine appropriate values for

additional parameters. The cost function can be written as:

S̃(w) = β
m∑
i=1

(ti − f(xi,w))2 + αwTw

= β · Ed + α · Ew

(4.1.4)

where Ed is the sum of squared errors, and Ew is the sum of squared weights.

The Levenberg-Marquardt (LM) method can be used to train the neural network, where

α and β are updated at each iteration according to the following algorithm:

γ = r − α · Tr(∇2S(w)−1) (4.1.5)

β = (m− γ)/(2Ed) (4.1.6)

α = γ/(2Ew) (4.1.7)

where r is the number of parameters (the number of weights and biases), m is the number

of training patterns, and Tr(∇2S(w)−1) is the trace of the inverse Hessian matrix of S(w).

Training with Noise

Several works (e.g., [63, 64]) have demonstrated that in practice, injecting noise into the

training data oftentimes yields better generalization results. In [65], Bishop showed that

training with noise is actually closely related to regularization. To employ this method,

noise is simply added into duplicates of the available training data.

4.1.2 Training the ANN

Before going into further details on the proposed regularization, we will provide some back-

ground on actually training an ANN. When the target outputs are known, a well-known

approach to determining the neural network parameters is called backpropagation. Back-
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propagation is based on gradient descent; the weights are initialized with random values and

are iteratively updated to reduce the error (according to some user-defined error function

like the mean-squared error). Once the network parameters are learned (from training data),

new inputs can simply be fed into the neural network to obtain the fused outputs.

The Levenberg-Marquardt (LM) algorithm [66] is a backpropagation method that is used

in this work to train the ANNs as it can be implemented efficiently and is considered to be

one of the faster training methods with relatively good performance. It is a second-order

method in that it uses both the first and second derivatives of the error function to find

a set of optimum weights. The formulation is as follows. Assume we want to minimize

some function S(w) with respect to a r-dimensional parameter vector w. Then the Gauss-

Newton method for updating w, which is an iterative method that uses the first and second

derivatives of a function to find a point where the derivative is zero, would be:

∆w = −[∇2S(w)]−1∇S(w) (4.1.8)

where ∇2S(w) and ∇S(w) are the Hessian and the gradient, respectively, of S(w). If we let

S(w) be a sum of squares function over m training patterns, e.g.,

S(w) =
m∑
k=1

(y(k) − f(x̂(k),w))2

=
m∑
k=1

(ek(w))2 = e(w)Te(w)

(4.1.9)

where ek(w) = y(k) − f(x̂(k),w) and e(w) = [e1(w), ..., em(w)]T , then the elements of the

gradient of S(w) can be written as:

[∇S(w)]j = 2
m∑
i=1

ei(w)
∂ei(w)

∂wj
(4.1.10)
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and the elements of the Hessian are given by

[∇2S(w)]jk = 2
m∑
i=1

(
∂ei(w)

∂wj

∂ei(w)

∂wk
+ ei(w)

∂2ei(w)

∂wj∂wk

)
(4.1.11)

If we assume that the second-order derivative terms (the second term in Eq. (4.1.11)) are

approximately zero, then we obtain an approximation of the Hessian:

[∇2S(w)]jk ≈ 2
m∑
i=1

JijJik (4.1.12)

where Jij = ∂ei(w)/∂wj and likewise, Jik = ∂ei(w)/∂wk, which are simply elements of the

Jacobian J of e(w). Therefore, we can rewrite the weight update equation in Eq. (4.1.8) in

terms of J as:

∆w = −(JTJ)−1JTe(w) (4.1.13)

where

J =


∂e1(w)
∂w1

. . . ∂e1(w)
∂wr

...
. . .

...

∂em(w)
∂w1

. . . ∂em(w)
∂wr

 (4.1.14)

The Levenberg-Marquardt modification to the Gauss-Newton method is:

∆w = −(JTJ + µI)−1JTe(w) (4.1.15)

where I is the identity matrix, and µ > 0 is a damping factor, which is adjusted at each

iteration of the weight update. If a step (i.e., weight update) results in an increased S(w),

then µ is multiplied by some factor β, and if a step results in a decreased S(w), then µ is

divided by β. The Jacobian of e(w) can be computed using the backpropagation approach

as described in [66], where w is a vector containing all of the neural network parameters
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more specifically as follows:

w = [WH(1, 1),WH(1, 2), ...,WH(L,Ni),bH(1), ...,bH(L),Wo(1, 1), ...,bo(No)]
T . (4.1.16)

If we have Ni network inputs, L hidden nodes, and No network outputs, then the dimension

of w is r = L(Ni + 1) + No(L + 1). In this work, the state estimates from each sensor

are used as a network input, so Ni = Ns if there are N sensors generating s-dimensional

state estimates, and No = s so that the neural network outputs an s-dimensional fused state

estimate.

4.1.3 Proposed Weighted Error Regularization

It is noted, however, that the sensors also provide additional information regarding the state

estimates: an estimate of its error covariance. It is an open question of how to best utilize

this information, if at all, when designing or using these nonlinear fusers. It is proposed

here that these error covariance estimates can be used when training the neural network to

improve the neural network’s generalization capability. If we assume that the state estimates

from the sensors can be modeled as the true states plus noise, that is:

x̂i = x + ni (4.1.17)

where i is the sensor index, and ni is zero-mean white Gaussian noise with covariance Pi,

then in fusing these state estimates, the neural network will also transform and fuse the noise.

We can therefore try to reduce the variance of the output in addition to the overall error

by adding the output variance to the objective function that we minimize when determining

the neural network parameters. But if one were to use a nonlinear activation function such

as the tangent hyperbolic sigmoid function, g1(z) = 2
1+e−2z − 1, then the variance becomes

quite difficult to determine analytically. However, from [67], we have the following upper
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bound on the variance of the function of a random variable X, if X ∼ N (µ, σ2):

V ar[g(X)] ≤ σ2E[g′(X)]2 (4.1.18)

We can write the output x̂F as a function of the noise n = [nT1 , ...,n
T
N ]T , where n ∼ N (0, P ).

P is a block diagonal matrix where the blocks are P1 through PN :

P =



P1 0s×s · · · 0s×s

0s×s P2 · · · 0s×s
...

...
. . .

...

0s×s · · · 0s×s PN


(4.1.19)

Recall that s is the number of states in the true target state x (e.g., s = 6 for the ballis-

tic coast target since we are interested in the position and velocity of the target in x-y-z

coordinates). For the ANN fuser, if we let the activation function for each hidden node be

g1(x) = 2
1+e−2x − 1 and the output activation function g2(x) = x, then the ANN fuser output

would be given by

x̂F = W T
o

(
2

1 + e−2(WT
H x̂+bH)

− 1

)
+ bo

= W T
o

(
2

1 + e−2(WT
H (x+n)+bH)

− 1

)
+ bo

= W T
o

(
2

1 + e−2(WT
Hx+bH)e−2WT

Hn
− 1

)
+ bo

(4.1.20)

Now if we let γ = W T
Hn, which is simply a linear transformation of the Gaussian random

variable n ∼ N (0, P ), then γ ∼ N (0,W T
HPWH). Therefore, we can write Eq. (4.1.18) as

V ar[x̂F (γ)] ≤ W T
HPWH · E

[
∂x̂F (γ)

∂γ

]2

(4.1.21)
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However, even determining E [∂x̂F (γ)/∂γ] is still quite complicated. Therefore, to simplify,

only the term W T
HPWH will be used to add to the error function for minimization. We can

modify the LM algorithm described in Section 4.1.2 to incorporate this additional term using

a tradeoff parameter λ:

S(w) =
m∑
k=1

(y(k) − f(x̂(k),w))2 + λwTΣw (4.1.22)

where

Σ =

 PR 0NLs×(r−NL)s

0(r−NL)s×NLs 0(r−NL)s×(r−NL)s

 , (4.1.23)

and PR ∈ <(NLs)×(NLs) is a block diagonal matrix with each block consisting of the matrix

P , repeated L times (once for each hidden node):

PR =



P 0Ns×Ns · · · 0

0 P · · · 0

...
...

. . .
...

0 · · · 0 P


(4.1.24)

Recall that N is the number of sensors and s is the number of states, so each block diagonal

matrix P is of size Ns×Ns. Following the LM approach, when we update w with ∆w, we

get the following update to our error function S(w):

S(w + ∆w) =
m∑
k=1

(y(k) − f(x̂(k),w + ∆w))2 + λ(w + ∆w)TΣ(w + ∆w)

=
m∑
k=1

(ek(w + ∆w))2 + λ(w + ∆w)TΣ(w + ∆w)

= [e(w + ∆w)]T e(w + ∆w) + λ(w + ∆w)TΣ(w + ∆w)

≈ [e(w) +∇e(w)∆w]T [e(w) +∇e(w)∆w]

+ λ(w + ∆w)TΣ(w + ∆w)

(4.1.25)
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where in the fourth line of Eq. (4.1.25), we approximate and substitute e(w + ∆w) with its

first-order Taylor expansion about w. We know that at the minimum of S(w + ∆w), the

gradient with respect to ∆w is zero, so we have:

∂S(w + ∆w)

∂∆w
≈ 2 [∇e(w)]T [e(w) +∇e(w)∆w] + 2λΣ(w + ∆w)

= 2JTe(w) + 2JTJ∆w + 2λΣw + 2λΣ∆w

= 0

(4.1.26)

where J is the Jacobian of e(w). The weight update equation becomes:

∆w = −(JTJ + λΣ)−1(JTe(w) + λΣw) (4.1.27)

and with the LM modification to include the damping factor, we obtain the final weight

update equation which incorporates the error covariance estimates into the training using

the LM method:

∆w = −(JTJ + λΣ + µI)−1(JTe(w) + λΣw) (4.1.28)

4.1.4 Simulations (Regularization)

Figures 4.1 and 4.3 show a comparison between the baseline ANN Fuser (without error

regularization), and with the proposed error regularization for the maneuvering and ballistic

target, respectively. The number of training trajectories was varied from 3, 4, 5, 6, 10, to 20,

and it can be seen that in using the proposed error regularization, the number of training

trajectories required for obtaining better performance than the linear fusers is reduced. We

can also compare the proposed error regularization to the existing regularization algorithms

described in Section 4.1.1. Figures 4.2 and 4.4 show these comparison results; it can be

seen in these plots that the proposed error regularization scheme also outperforms alternate

existing regularizers in this application.
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(a) 3 training trajectories (b) 4 training trajectories

(c) 5 training trajectories (d) 6 training trajectories

(e) 10 training trajectories (f) 20 training trajectories

Figure 4.1: ANN Fuser performance with (denoted by ‘w/COV ER’, which stands for ‘with
Covariance Error Regularization’) and without the proposed error regularization for the
maneuvering target. Each subfigure shows the position RMS error for a different number of
training trajectories.
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Figure 4.2: Fuser performance using various methods of regularization with the manuevering
target, using 4 training trajectories. BR: Bayesian Regularization, RR: Ridge Regression,
and COV ER: Covariance Error Regularization.
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(a) 3 training trajectories (b) 4 training trajectories

(c) 5 training trajectories (d) 6 training trajectories

(e) 10 training trajectories (f) 20 training trajectories

Figure 4.3: ANN Fuser performance with (denoted by ‘w/COV ER’, which stands for ‘with
Covariance Error Regularization’) and without the proposed error regularization for the
ballistic target. Each subfigure shows the position RMS error for a different number of
training trajectories.
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Figure 4.4: Fuser performance using various methods of regularization with the ballistic
target, using 6 training trajectories. BR: Bayesian Regularization, RR: Ridge Regression,
and COV ER: Covariance Error Regularization.

4.2 Significantly Different Training and Testing Sets

While we are able to reduce the number of training trajectories needed to obtain better

performance than the linear fusers using the proposed error regularization, we still have the

issue of requiring that the training trajectories be close to the test trajectory due to the

use of the commonly utilized “Min-Max” normalization scheme described in Section 3.3.5.

We can convert the locations of the trajectory samples to the corresponding latitude and

longitude and plot these points on a world map to demonstrate the proximity. The training

and testing samples for the simulated maneuvering and ballistic targets are shown in Figures

4.5 and 4.6, respectively, where the blue points indicate the training samples, and the red
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points indicate the test samples. It can be seen that the training samples here are indeed

very close in location to the testing samples, but such a scenario may not be feasible in a

real-world situation.

We would like to be able to use test trajectories that are not in such close proximity

to the training data in order to outperform linear fusers. We therefore propose the use of

an alternate normalization scheme for target tracking, where instead of normalizing each

dimension of the input to the ANN to be in some range such as [−1, 1] (as is typically

performed), we restrict each data sample to a smaller range by normalizing the data sample

by its own L2-norm. Since the resulting fused estimate should be within the same range as

the original sample, we can use that same L2-norm from that data sample to un-normalize

it after fusion. With this approach, we will demonstrate that we can now fuse samples

from test trajectories that can be a relatively long distance away from the actual training

trajectories, as is evidenced by the new maneuvering and ballistic target maps in Figures

4.7 and 4.8. Simulation results based on this alternative normalization approach are shown

in Section 4.2.1 for both the maneuvering target and the ballistic target.



CHAPTER 4. TRAINING THE ARTIFICIAL NEURAL NETWORK (ANN) FUSER 75

  30
°
 E   60

°
 E   90

°
 E  120

°
 E  150

°
 E  180

°
 E   0

°
   

 30
°
 N 

 60
°
 N 

(a)

(b) Close-up view of (a)

Figure 4.5: Original Trajectory Map for the maneuvering target. The blue points indicate
the training samples, and the red points indicate the test samples.
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(a)

(b) Close-up view of (a)

Figure 4.6: Original Trajectory Map for the ballistic target. The blue points indicate the
training samples, and the red points indicate the test samples.
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Figure 4.7: Updated Trajectory Map for the maneuvering target. The blue points indicate
the training samples, and the red points indicate the test samples.
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Figure 4.8: Updated Trajectory Map for the ballistic target. The blue points indicate the
training samples, and the red points indicate the test samples.

4.2.1 Simulations (Different Training/Testing Sets)

Example 1: Maneuvering Target

For the maneuvering target, we increased the standard deviation of the initial training posi-

tion to 2000m (previously 100m), and the standard deviation of the initial training velocity

to 200m (previously 5m/s).
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Figure 4.9: The LMV, CI, and ANN fusers using 6 training trajectories at locations similar
to that shown in Figure 4.7. The blue line in (a) is the resulting error from utilizing the Min-
Max Normalization scheme and the proposed error regularization, the magenta line, called
“ANN Fuser-norm”, is the resulting error from utilizing the new normalization scheme, and
the cyan line labeled “ANN Fuser -norm w/COV ER” line is the resulting error from utilizing
the new normalization scheme with the proposed error regularization.

Example 2: Ballistic Coast Target

For the ballistic target, the standard deviation of the initial training position was increased

to 500km (previously 0.1km), and the standard deviation of the initial training velocity was

increased to 1km/s (previously 0.01km/s). Simulations were run, testing 3 variants of the

ANN fuser: 1) “ANN Fuser-MinMax w/Cov ER”, which is the ANN Fuser with the Min-Max

Normalization scheme utilizing the proposed error regularization (with the error covariance

estimates), 2) “ANN Fuser-norm”, which is the ANN Fuser with the new normalization

scheme, and 3) “ANN Fuser-norm w/COV ER”, which is the ANN Fuser combining the new

normalization scheme and the proposed error regularization. The resulting RMS error in the
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target’s position in shown in Figure 4.10. Even with the proposed error regularization, with

the Min-Max normalization scheme the error is quite high (nearly three times that of the

linear fusers), but the with the alternate normalization scheme described in this section, the

ANN fusers are again able to outperform the linear fusers.
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(a)

(b) Close-up view of (a)

Figure 4.10: The LMV, CI, and ANN fusers using 6 training trajectories at locations similar
to that shown in Figure 4.8. The blue line in (a) is the resulting error from utilizing the Min-
Max Normalization scheme and the proposed error regularization, the magenta line (seen
more clearly in (b)), called “ANN Fuser-norm”, is the resulting error from utilizing the new
normalization scheme, and the cyan line (also seen more clearly in (b)) labeled “ANN Fuser
-norm w/COV ER” line is the resulting error from utilizing the new normalization scheme
with the proposed error regularization.
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In addition, it can be seen in Figure 4.10 that the proposed error regularization is able

to provide only a slightly reduced error over the baseline ANN fuser; the impact is not as

significant as shown when using Min-Max normalization. If we reduce the number of training

trajectories to 4 (shown in Figure 4.11), we still do not see as much of a benefit in using

the proposed error regularization with the L2-normalization scheme as we did with the Min-

Max normalization. Overall, it is still recommended that the proposed error regularization

scheme is utilized regardless of the normalization scheme used since it has been shown to

yield the lowest errors of all the schemes presented thus far and does not add any additional

computational cost during testing.

Figure 4.11: The LMV, CI, and ANN fusers using 4 training trajectories
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4.3 Multiple Fusers

Since there are essentially two different modes for the maneuvering target, it may make sense

to utilize different fusers based on whether or not the target is performing a maneuver (as

determined by evaluating whether or not the estimated turn rate is above a certain threshold,

e.g., 0.005◦/s, from the sensors). For the ballistic target, since there is only one basic mode,

we tested the utilization of different fusers depending on the region in which the target is

located.

4.3.1 Simulations (Multiple Fusers)

For the maneuvering target, two separate ANN fusers were trained. One ANN fuser was

trained only using data collected from when the target was traveling in a straight line (no

maneuver), and another ANN fuser was trained only using data that was collected during a

maneuver (i.e., when the turn rate is greater than zero). Then during testing, if the estimated

average turn rate (as estimated by the sensors) was above a certain threshold (≥ 0.005◦/s),

the maneuver-specific ANN fuser was used to fuse the data, and if the estimated average

turn rate was below that threshold (indicating that it was likely that a maneuver was not

being performed), the non-maneuver-specific ANN fuser was used to fuse the testing data.

Figure 4.12 shows the position RMS error if a single ANN fuser is used compared to using

multiple fusers – a maneuver-specific and non-maneuver-specific ANN fuser used separately,

depending on the estimated target state. From Figure 4.12, it can be seen that using multiple

fusers for the different motions (maneuvering and traveling straight) helped reduce the overall

error, thus suggesting that it may make more sense to train different fusers if there are

differing target motions. Note that during testing, the threshold for determining which

ANN fuser to use was strictly set; if the estimated average turn rate was ≥ 0.005◦/s, then

the maneuver-specific ANN fuser was used, otherwise, the non-maneuver-specific ANN fuser

was used.
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Figure 4.12: RMS error for the ANN fuser with the maneuvering target, comparing the
utilization of a single fuser versus two fusers (one for each mode of the target).

For the ballistic target, a different approach was used since there is only one motion

model assumed here. Instead of training motion-model-specific fusers, we trained fusers

based on location. We first divided the 3D training space (for position only) into eight cubic

regions (by dividing the x-y-z space into two regions for each coordinate). We then trained

an individual ANN fuser for each region, using the training data that was found in that

region. When testing, the test state estimates were used to determine the appropriate region

that the target was located in (at time k), and then the fuser for that region was used to

fuse that data. Figure 4.13 shows the resulting position RMS error for the ballistic target

for a single fuser and for multiple fusers. In this example, 50 training trajectories were used

in order to increase the amount of data that may be found within each region.
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Figure 4.13: RMS error for the ANN fuser with the ballistic target, comparing the utilization
of a single fuser versus multiple location-dependent fusers with 50 training trajectories.

For the ballistic target, even though 50 training trajectories are used to train the ANN

fusers, by necessity the use of multiple fusers reduces the overall amount of training data

available for each individual fuser. As can be seen in Figure 4.13, the single fuser (blue line)

outperforms the set of multiple fusers (magenta line), thus indicating that more training

data may be more beneficial to the ANN fuser than being within in a closer proximity to the

target. This may be also due to the normalization scheme presented in Section 4.2, where

each data point is normalized individually, regardless of where other data points are located

(cf. Min-Max normalization), so the need to train based on location is diminished. In Figure

4.13, we can also see that the error for multiple fusers and the single fuser seem to coincide

until it reaches the end of the trajectory. If we look at the average number of trajectories

used to train the ANN fuser used for each point in the test trajectory (shown in Figure
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4.14), we can see that towards the end of the testing trajectory, there are fewer training

data available in that region for the ANN fuser that was used. Therefore, the error begins

to increase due to there being less training data available. From these simulations we may

conclude that if 50 training trajectories are indeed available, it may be more constructive to

utilize all of the training data for training a single fuser versus dividing up the training data

for multiple fusers.
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Figure 4.14: Ballistic Target: Average number of training trajectories used to train the ANN
fuser used at a particular time step for the testing trajectory.

Also, similarly to the maneuvering target, the thresholds for determining which ANN fuser

to use were also strictly set; the boundaries of each region did not overlap.

From this brief study, it appears that utilizing more than one fuser depending on the

mode of the target (i.e., for different motion models) may be more beneficial, while training

based on location (for our setup utilizing the normalization scheme presented in Section 4.2)

does not appear to be of much assistance in reducing the error. It is also noted that the

use of fuzzy (instead of strict) thresholds for determining which ANN fusers to employ may
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provide better results during transition periods, which may be of interest in future work.

4.4 Input Features

In the previous simulations, the fused estimate at time k was computed using only the state

estimates at time k as the fuser inputs. As an example, the input vector (up until this point)

for the maneuvering target for two sensors has been:

x̂k =

[
ξ̂

(1)
k η̂

(1)
k ξ̂

(2)
k η̂

(2)
k

]T
(4.4.1)

where ξ̂
(i)
k is the state estimate for coordinate ξ at time k for sensor i, and similarly η̂

(i)
k is

the state estimate for coordinate η at time k for sensor i.

In this section we investigate whether or not it would be beneficial to incorporate addi-

tional information such as previous state estimates (e.g., at time k−1, k−2, etc.) to produce

the fused estimates at time k. According to our assumed target model (Eq. (2.1.1)), the

current state of the target is a function of the previous state plus noise. Therefore, we may

benefit from utilizing previous state estimates as inputs into the ANN fuser to potentially

furnish the ANN with additional information regarding the current state. Two separate

experiments were run using the previous state information in the following way:

(1) Appended all of the previous states (e.g., the previous position and velocities)

(2) Appended a function of the previous states (e.g., the previous position plus the veloc-

ities)

For experiments (1) and (2), for the given example above (the maneuvering target with two
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sensors), the input vector x̂k was appended with:

ak,(1) =



ξ̂
(1)
k−1

ˆ̇ξ
(1)
k−1

η̂
(1)
k−1

ˆ̇η
(1)
k−1

ξ̂
(2)
k−1

ˆ̇ξ
(2)
k−1

η̂
(2)
k−1

ˆ̇η
(2)
k−1



, ak,(2) =



ξ̂
(1)
k−1 + T · ˆ̇ξ

(1)
k−1

η̂
(1)
k−1 + T · ˆ̇η(1)

k−1

ξ̂
(2)
k−1 + T · ˆ̇ξ

(2)
k−1

η̂
(2
k−1 + T · ˆ̇η(2)

k−1


(4.4.2)

for experiments (1) and (2), respectively, where ak,(j) represents the appended vector at time

k for experiment j, and T is the time step from time k − 1 to time k. Therefore, the new

input vectors become:

x̂k,(1) =

 x̂k

ak,(1)

 , x̂k,(2) =

 x̂k

ak,(2)

 , (4.4.3)

again, for experiments (1) and (2), respectively.

4.4.1 Simulations (Input Features)

Figure 4.15 shows the RMS error for the maneuvering target for Experiments (1) and (2),

separately. As can be seen in Figure 4.15, in appending the input vector with a function of

the previous states (i.e., the estimates of the current state based on previous states) as was

done in Experiment (2), the performance can be slightly improved, while the Experiment (1)

results in Figure 4.15a showed no improvement. In addition, in Figure 4.15b (Experiment

(2)), it appears that using state estimates from two previous time steps (times k − 1 and

k−2) yields the best performance. Therefore, simulations will henceforth include appending
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two previous state estimates to the input vector for the ANN fuser for the maneuvering

target.

For the ballistic target, Figure 4.16 shows the error from using information for more than

one time instant. It can be seen in Figure 4.16a, Experiment (1) performs particularly poorly

for the ballistic target using Min-Max normalization. Experiment (1) uses the previous

positions and velocities as additional inputs to the ANN fuser when computing the state at

the current time. It is hypothesized that this is due to the previous velocities themselves

being poor indicators of the current position, and when Min-Max normalization is used, the

velocities are scaled to be just as “important” (i.e., have large values) as the previous and

current positions in computing the current state, thus resulting in higher errors.

Interestingly enough, however, if utilizing the Min-Max normalization scheme, then using

the current and previous time estimates from Experiment (2) indeed reduces the error (also

shown in Figure 4.16a), but if utilizing the proposed normalization scheme (from Section

4.2), then using only the current state estimate results in the best performance (shown in

Figure 4.16b). In Experiment (2), the previous velocity estimates are multiplied by the time

step and are added to previous position estimates to predict the current state. However,

perhaps this is a poor way to predict the current state for the ballistic target. The Min-Max

normalization scheme normalizes the inputs so that each input variable is scaled to within the

same range, which may somewhat correct the poor prediction. Alternatively, the proposed

normalization scheme would preserve the relative differences between the inputs and would

thus retain the poor predictions. It is conjectured that this may be what is contributing to

this difference in behavior for the ballistic target when using different normalization schemes.
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(a) Experiment (1): Using information from time k (the baseline), and time k and k − 1.

(b) Experiment (2): Using information from time k (the baseline), time k and k − 1, times (k, k −
1, k − 2), and times (k, k − 1, k − 2, k − 3).

Figure 4.15: ANN Fuser Performance for the Maneuvering Target using state estimates from
more than one time step.
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(a) Position RMS Error for the ANN Fuser using information from time k, time k and k − 1, and
time k, k − 1, and k − 2 with experiments (1) and (2), with the Min-Max normalization scheme.

(b) Position RMS Error for the ANN Fuser using information from time k, and time k and k − 1
with experiments (1) and (2), with the proposed normalization scheme.

Figure 4.16: ANN Fuser Performance for the Ballistic Target using state estimates from
more than one time step.
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4.5 ANN Architecture Parameters

In this section, we will examine how the given architecture of the ANN fuser affects the

performance. We can change the architecture of the ANN fuser by increasing or decreasing

the number of hidden nodes and by increasing the number of hidden layers. For the number

of hidden nodes, thus far the default number of hidden nodes used has been 20. In this

section we show the average position RMS error when varying the number of hidden nodes

and layers used in the ANN fuser.

4.5.1 Simulations (Hidden Layers)

In the past, training deep neural networks (i.e., neural networks with more than one hidden

layer) was known to be hard and often yielded poor solutions when applying the standard

learning strategy of randomly initializing the weights and applying gradient descent using

backpropagation [68]. However, advances in neural networks within the last decade [68, 69]

have shown that utilizing a proper initialization strategy for the weights of a deep ANN

(e.g., a greedy layer-wise unsupervised training strategy) can yield better results than with

a shallow ANN. For this set of experiments, we will therefore pre-train each layer by initially

treating each hidden layer separately, setting the outputs of each hidden layer to the final

target values. So for an ANN with two hidden layers, we use the following procedure:

1. Train the set of weights for the first hidden layer only by creating a temporary output,

where this temporary output is set to the final target values (the true states). Compute

the set of weights for the first hidden layer with the same backpropagation algorithm

used for training an ANN with one hidden layer using these temporary outputs.

2. Discard the temporary outputs, and compute the actual outputs of the first hidden

layer.

3. Use the actual outputs of the first hidden layer as the inputs into the second hidden

layer. Train the weights for the second hidden layer by treating the network now as
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an ANN with one hidden layer, where the inputs are the outputs of the first hidden

layer, and the outputs are the true states.

4. The weights are now “initialized”. Train the entire network now with both hidden

layers using backpropagation.

Figures 4.17 and 4.18 show the results for the maneuvering and ballistic target, respec-

tively. It can be seen that the addition of another layer, pretrained in the manner described,

does not reduce the error. However, this should not preclude the use of investigating deep

neural networks for use in multisensor fusion for target tracking. It is possible that alternate

pretraining schemes may assist in reducing the overall error for a multi-layered ANN fuser.

Figure 4.17: Maneuvering Target: average position RMS error for the ANN fuser using two
hidden layers, with 10 nodes per layer.
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Figure 4.18: Ballistic Target: average position RMS error for the ANN fuser using two
hidden layers, with 10 nodes per layer.

4.5.2 Simulations (Number of Hidden Nodes)

In varying the number of hidden nodes for these simulations, the number of hidden nodes

does not appear to have a significant effect on the RMS error, so the average RMS error

(averaged across time) is plotted instead. We found that for the ballistic target, the number

of hidden nodes needed to achieve the lowest average RMS error in the position is greater

(at 60 hidden nodes) than that needed for the maneuvering target (at 30 hidden nodes –

likely due to the increased number of inputs needed). The ballistic target has an additional

coordinate (and therefore, more input data) and also always follows a nonlinear trajectory,

thus perhaps requiring the use of more hidden nodes. The number of hidden nodes for the

maneuvering target in these simulations is constant regardless of whether it is performing a

maneuver or traveling a straight course.
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Example 1: Maneuvering Target

The average RMS error for the maneuvering target is shown in Figure 4.19. Based on these

results, simulations henceforth will utilize 30 hidden nodes in the ANN fuser.
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Figure 4.19: Average position RMS error for the ANN fuser with the maneuvering target,
varying number of hidden nodes from 5 to 50.

Example 2: Ballistic Coast Target

The average RMS error for the ballistic target is shown in Figure 4.20. Based on these

results, simulations henceforth will utilize 60 hidden nodes in the ANN fuser.



CHAPTER 4. TRAINING THE ARTIFICIAL NEURAL NETWORK (ANN) FUSER 96

10 20 30 40 50 60 70 80
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

a
v
e
ra

g
e
 p

o
s
it
io

n
 R

M
S

 e
rr

o
r 

(k
m

)

Number of hidden nodes

Figure 4.20: Average position RMS error for the ANN fuser with the ballistic target, varying
number of hidden nodes from 10 to 80 in increments of 10.

4.6 Summary

Throughout this chapter, we explored two main topics for the ANN fuser: 1) Performance,

and 2) Practicality. First, a new regularization scheme for the ANN fuser was presented,

which exploited additional information that we have about the inputs: the error covariance

estimates. Using the proposed regularization during the training of the ANN fuser allowed

for fewer training data to be used while still maintaining accuracy, but still required the

training data to be close to the testing data. Therefore, an alternate data normalization

method is suggested for use with the ANN fuser, which was shown in this chapter to broaden

the allowable training space while still obtaining error levels less than that of linear fusers.

Several other studies were conducted, yielding the following conclusions:

• It may be more beneficial to utilize multiple ANN fusers if the target can undergo

multiple motions.

• It is not necessary to break up the training data into regions to train location-dependent

ANN fusers.
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• It can also help to use information from previous time steps.

• The number of hidden nodes can be varied to further reduce the ANN fuser error.

• However, initial investigations in increasing the number of hidden layers did not show

improvement.



Chapter 5

Effects of Imperfect Communications

Due to the long-haul sensor network, however, the fusion center may not receive all of the

state estimates in time from the sensors as some packets may be lost and/or delayed. Given

that there is only a finite time window in which we can wait for delayed packets due to

reporting requirements, packets that are delayed beyond a certain threshold are effectively

considered to be lost packets. The ANN fuser is designed in such a way that all of the

inputs/state estimates are required in order for the ANN fuser to function as designed.

However, in target tracking, there is typically some prior assumed knowledge of the target’s

dynamic system, so one can use this information to predict a future state from a previous

state. So if a state estimate is missing, a replacement state estimate can be easily imputed

from previously received state estimates through prediction using an assumed target motion

model, and the error covariance additionally becomes inflated as a result. This predicted

state estimate is then used in place of the missing state estimate. We can likewise use the

predicted state in place of the missing input to the ANN fuser, but the ANN fusers are

trained with data that have a certain distribution, and the distribution of the predicted

state is different (i.e., has a higher error covariance) than that of the true state estimate,

which may potentially result in poorer fuser performance. We investigate here the effects of

packet losses/data replacements on the ANN fuser.

98
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5.1 Experimental Methods

In all of these experiments, any missing data will be imputed from the most recently received

state estimate. Experiments are run assuming that at least the first packet from all sensors

is received so that we may actually impute subsequent missing data. Several methods for

dealing with the missing data were tested for dealing with packet losses, and the following

training approaches will be used as the baseline comparison:

• Train the ANN fuser on all of the available data, and test on incomplete data.

• Train different fusers with different combinations of missing data (where if the data

is missing, it is replaced by imputed data using the previous state estimate). For

example, if there are two sensors, a different fuser is trained for the various cases of

missing sensor data: 1) Missing Sensor 1 Data, 2) Missing Sensor 2 Data, and 3)

Missing Sensors 1 and 2. We shall assume that we eventually receive the missing data

so that future data can be imputed.

• Augment the training data with duplications of the original training dataset with

different random missing state estimates.

The aforementioned ‘baseline’ methods will be compared to the following proposed methods:

• Introduce an additional input to represent a “confidence” that we have in the inputs

(i.e., the state estimates). For example, if the input is missing then we may say that

we have zero to little confidence in this input. The error covariance estimates will be

used as a measure of confidence.

• Train the neural network in such a way so it is somewhat “insensitive” or robust to

changes in the input. This method will be detailed in the following section.
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5.2 Artificial Neural Network (ANN) Sensitivity

The sensitivity of an ANN’s output to perturbations in its input has been studied extensively

in the past as one such method for assessing a neural network’s performance or generalization

ability. Sensitivity analysis in neural networks has been used for a number of different

purposes primarily related to assessing the significance of model inputs, which is useful for

applications such as selective learning [70], pruning the inputs [71, 72], and weight selection

[73], just to name a few. Here, we will look into the use of the neural network’s sensitivity

measure in an effort to produce neural networks that are relatively robust against changes

to the input by directly minimizing the sensitivity of the network.

Preliminary experiments suggest that solely minimizing the network sensitivity yields

very large errors. This is likely due to the sensitivity and the network error being completely

unrelated so that minimizing the network sensitivity does nothing to reduce the error be-

tween the neural network output and the ground truth. Therefore, two different approaches

will be tested to see if using the sensitivity will help with reducing errors due to packet

losses. Approach (1) will be to initialize the network by first minimizing the sensitivity and

then subsequently minimizing the error, and Approach (2) will be to attempt to simultane-

ously minimize the sensitivity and error by adding the sensitivity measure to the objective

function similarly to the regularization approach presented in Section 4.1.1. To reiterate (for

convenience), the error function in regularization typically takes the form

S̃(w) = S(w) + λΩ, (5.2.1)

where S(w) is the sum of the squared errors, and recall that the parameter λ controls the

degree to which the penalty term Ω influences the form of the solution [59]. We will let the

penalty term in Eq. (5.2.1) be the squared sensitivity for Approach (2), or we shall minimize

the squared sensitivity prior to minimizing the squared error for Approach (1).

Now, let us define the term ‘sensitivity’ as the measure of the change in an output given
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a change in an input, or, in mathematical terms, we can define this as the partial derivative

of an output, x̂
(m)
F , over the partial derivative of an input, x̂(n) as follows [71]:

V m
n =

∂x̂
(m)
F

∂x̂(n)
. (5.2.2)

This sensitivity can then be expressed in terms of the network parameters as

∂x̂
(m)
F

∂x̂(n)
=

L∑
j=1

womj
∂aj
∂x̂(n)

=
L∑
j=1

womja
′
jwnj

(5.2.3)

where aj is the output of the jth hidden node (out of L total hidden nodes), and womj is the

neural network weight that is multiplied by the jth hidden node for the mth output, and wnj

is the neural network weight that is multiplied by the nth input for the jth hidden node.

We can derive now a matrix expression for the network sensitivity. Following the notation

given in Section 3.3.4 where the ANN fuser is first described, WH is the matrix of weights

that are multiplied by the inputs. Let Wo represent the weight matrix that is multiplied by

the outputs from the hidden layer. If a is our vector of hidden node outputs, then let A be a

diagonal matrix with a along the diagonal. If x̂F is our vector of outputs, then let XF be a

diagonal matrix with x̂F along the diagonal. The network sensitivities can then be written

in matrix form as:

V = W T
o A

′W T
H (5.2.4)

where the prime (′) indicates the derivative with respect to a given input.

5.2.1 Minimizing the Squared Sensitivity

To minimize the optimization function for Approach (1) or (2) which involves the squared

sensitivity, we need the derivative of the squared sensitivity so we can compute the Jacobian
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used for updating the weights. The squared sensitivity v is given by

v , Tr(V V T ) = Tr(W T
o A

′W T
HWHA

′Wo). (5.2.5)

We are interested in computing the partial derivative of v with respect to the neural network

parameters. Let us first start with computing the partial derivative with respect to WH . Let

U = WHA
′, so we have

v , g(U) = Tr(W T
o U

TUWo). (5.2.6)

From [74], we have the chain rule for matrix derivatives:

∂g(U)

∂[WH ]ij
= Tr

[(
∂g(U)

∂U

)T
∂U

∂[WH ]ij

]
. (5.2.7)

And plugging Eq. (5.2.6) into Eq. (5.2.7), we have:

∂g(U)

∂[WH ]ij
= Tr

[(
∂Tr(W T

o U
TUWo)

∂U

)T
· ∂U

∂[WH ]ij

]

= Tr

[(
2 · UWoW

T
o

)T · ∂U

∂[WH ]ij

]
= 2 · Tr

[
W2W

T
2 U

T · ∂U

∂[WH ]ij

]
.

A general formula was found for computing
∂g(U)

∂[WH ]ij
in the above expression:

∂g(U)

∂[WH ]ij
= 2 ·

[
aj

L∑
h1=1

[Wo2]jh1ah1 [WH ]ih1 + a′jx̂i

L∑
h2=1

(
[Wo2]jh2ah2

Ni∑
c=1

[WH ]cj[WH ]ch2

)]
(5.2.8)

where Wo2 = WoW
T
o , aj is the output of the jth hidden node, and if we have aj , f(netj)

where f(·) is the activation function and netj is the input to the jth hidden node, then

a′j , f ′(netj). We can also compute a general formula for the partial derivative with respect
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to the biases that are added to the hidden node inputs, ∂g(U)
∂bj

:

∂g(U)

∂bj
= 2a′j

L∑
h=1

[Wo2]jh

(
Ni∑
c=1

[WH ]cj[WH ]ch

)
(5.2.9)

And lastly, since we are just considering one hidden layer here, we need to compute the

partial derivative of the squared sensitivity with respect to Wo:

∂g(U)

∂Wo

=
∂Tr(W T

o U
TUWo)

∂Wo

= 2UTUWo = 2A′W T
HWHA

′Wo (5.2.10)

5.3 Simulations (Data Loss)

In these simulations, the TCP model presented in Section 2.4 is used to compute the loss

probability of a network employing the TCP protocol. The testing data is created by discard-

ing state estimates at the TCP loss rate and predicting missing values. Multiple simulations

were run with fixed losses to better examine the effects of packet losses on the fuser perfor-

mance. The variants of the ANN fuser that were run under the presence of packet losses are

summarized in Table 5.1.

It can be seen in Figure 5.1 that the LMV and CI Fuser error lines exhibit peaks at

the locations where there were packets that were lost/delayed (either single or consecutive

packets). These peaks are clearly more pronounced when compared to that of the ANN

Fuser-SENS-trnLoss (the red line lower in the plot), which is also plotted on top of the

error curve that it would have had (ANN Fuser-SENS-trnLOSS (ALL DATA Rx)) if all

the data had been received. It is apparent that for the sensitivity Approach (1) to achieve

relatively low error, the training data should also include missing packets, otherwise its

performance is on par of that as the ANN Fuser without any modifications. Overall, the

sensitivity initialization procedure appears to help improve the overall performance with

relatively minimal impact to the error when there are packet losses especially compared to

that of the linear fusers.
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Table 5.1: ANN variants used in packet loss testing.

ANN Variant Description

ANN Fuser-CI Uses a “confidence” input

ANN Fuser-trnLoss: Augment the training data with duplications of the orig-
inal training dataset with different random missing state
estimates

ANN Fuser-SENS (Sensitivity – Approach (1)) Initialize network by mini-
mizing the squared sensitivity

ANN Fuser-MISS Train different fusers with different combinations of
missing data

ANN Fuser-SENS-LAMBDA (Sensitivity – Approach (2))Incorporate a penalty term
of the squared sensitivity into the optimization function

ANN Fuser-SENS-trnLoss (Sensitivity – Approach (1)) Use the same input data as
ANN Fuser-trnLoss

Figure 5.1: Position RMS error (km) for the linear and nonlinear fusers with packet losses
for the ballistic target.
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Figure 5.2: Time instants of packet losses for Figure 5.1.



Chapter 6

Discussion, Conclusions, and Future

Work

Overall, this thesis is intended to be an initial investigation into the use of machine learning

techniques for multisensor fusion in target tracking. Several existing machine learning ap-

proaches were investigated and extended for this particular application, and the real-world

effects of utilizing long-haul networks for these approaches were also explored. Of all of the

fusers that were investigated here, the ANN fuser was shown to have the best performance,

and simulation results showed that further improvements could be made by modifying the

conventional training procedures and the ANN architecture in order to enhance its perfor-

mance and practicality.

6.1 Thesis Summary and Discussion

Chapter 2 provided the background material for implementing the target tracking system

simulations. In Chapter 3, prior work in multisensor fusion was presented, where various

fusers were run in a full system simulation of two different targets: a maneuvering and a

ballistic target. Two popular linear fusers, the LMV and the CI fusers, were compared

with four nonlinear learning-based fusers, and it was found that of all of the fusers explored

106
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herein, the ANN fuser yielded the best results (in terms of the position RMS error) for both

targets. Therefore, it was selected for further investigation into improving certain aspects of

the fuser, namely its performance and its practicality.

In Chapter 4, a new method for training the ANN fuser was introduced utilizing the

error covariance estimates, which heuristically appeared to provide better generalization to

unseen data as fewer training data were required to obtain results better than that of the

linear fusers (which were used throughout as the baseline comparison). The proposed method

was compared with other existing regularization schemes and was found to outperform these

existing methods. However, the training trajectories used still needed to be within fairly

close vicinity to the testing trajectory. Therefore, an alternate data normalization scheme

was also suggested for use with the ANN fuser, thus broadening the training space, allowing

for the training and testing data to be farther apart in space yet still yield good results.

Several additional studies were conducted for enhancing the ANN fuser performance:

1. (Multiple state fusers). The use of multiple fusers to cover the state space was in-

vestigated, but it was found that (especially with the proposed alternate normalization

scheme), it would be more prudent to utilize all of the training data to train a single

fuser than to split up the training data to train multiple fusers. However, it was also

found that multiple fusers would be beneficial for the case where there are multiple

differing target motions (e.g., maneuver versus traveling in a straight line).

2. (Utilizing more dynamic information). Also under investigation in Chapter 4 was

the utilization of more dynamic information as inputs into the fusers instead of simply

the current time step, as was previously used by default. Several experiments were

carried out for each target where the input features were the current state estimates

in addition to either a function of the previous state estimates, or the previous state

estimates themselves. It was found that using previous state estimates (projected to

the current time step) actually assisted in further reducing the error for both targets,

but the error increased the further back in time we went.
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3. (Varying the ANN architecture). Lastly, the ANN architecture was briefly studied

in varying the number of hidden nodes and layers of the feedforward network. The

‘optimal’ number of hidden nodes were different for each target (i.e., greater for the

ballistic target), likely due to the additional coordinate that the ballistic target has over

the maneuvering target in its position. It was also found that increasing the number

of hidden layers did not seem to help reduce the error over a single hidden layer, but it

is well known that deeper neural networks are notoriously difficult to train due to the

increased number of parameters. It is possible that other pre-training schemes other

than the one provided may yield better results.

In Chapter 5, we investigated the effects of packet losses on the ANN fuser. Since it is

likely that we may have an assumed motion motion for the target, we can utilize that motion

model to predict/impute the missing estimates. It was found that the ANN fuser already

has reduced error for lost packets relative to the increase in error of the linear fusers. A

new scheme was presented for further reducing the overall error for missing packets by first

minimizing the sensitivity of the neural network and then minimizing the error. Simulation

results showed improved overall performance.

6.1.1 Remarks on RMS Error

Throughout this thesis, the fusers have solely been judged on their relative RMS error to

one another in the two different types of target simulations, but we would like to comment

here on what may be considered an acceptable level of absolute RMS error. The absolute

RMS error of the maneuvering target is actually on the same order as that in current target

tracking literature (e.g., Yuan et al. (2011) [19] showed RMS errors in position ranging from

about 25m−50m for a maneuvering target), but for the ballistic target, the absolute RMS

errors appear to be quite large (ranging from 1km−4km).

It is difficult to compare the ballistic target errors with current work as much of the

publicly published work studying ballistic targets is concerned with the boost or reentry
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phases instead of the coast phase. Yeddanapudi et al. (1995) [17], however, do report

RMS position errors for a coast ballistic target ranging from 0.1km−0.25km for sensors with

angle measurement errors of 25µrad. (Note that the work by Yeddanapudi et al. in [17] is

what is currently used to propagate the ballistic target trajectory in our simulations). If we

use this as a point of comparison, our sensors (due to the distance of the sensor locations

and the state-dependent measurement noise) have sensor angle measurement errors on the

order of 350−600µrad. If the overall RMS position errors are proportional to the sensor

angle measurement errors, then our level of sensor errors would extrapolate to RMS position

errors of around 1.4km−6km, which is on the same order of the error seen in our simulation

results.

However, it still remains that these levels of absolute RMS position errors for a ballistic

target are likely unacceptable in a real-world scenario. It is worth noting then, that there

are calculations used in our simulations that contribute to the high absolute RMS errors

in position that may be better in a real-world scenario. For example, the generated sensor

measurement errors in the simulations may actually be quite a bit higher than in a real-world

scenario due to the long distance of the sensors from the actual target. These measurement

errors were generated based on the distance between the sensor and the target using the

Cobra Dane radar specifications published in 1976 as the baseline (which had an angle

measurement error of approximately 278µrad for a target located 1852km away from the

sensor [22]). It may very well instead be the case that if a radar was needed to actually

track a ballistic target with the intent to take action, that a closer radar would be used,

thus decreasing the actual sensor measurement error. Furthermore, the radar specifications

utilized in these simulations were published several decades ago and have likely improved

since then. Improvement in these two factors (i.e., shorter distance to the target and better

radar specifications) would reduce the sensor measurement error and thus also reduce the

overall RMS position error beyond the error levels seen in these simulations.
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6.2 Contributions

Overall, the main contributions of this thesis fall under four main topics:

• Machine Learning in Multisensor Fusion for Target Tracking. The applica-

tion and investigation of machine learning techniques in multisensor fusion for target

tracking.

• Improved, More Robust ANN Fusers for Target Tracking. New ANN training

procedures were introduced to help enhance the robustness of the ANN fuser against

packet losses and limited amounts of available training data.

• Training Considerations. Evaluated the impact of various heuristics used in training

learning-based fusers.

• Full System-Level Simulations. Demonstrated fuser performance using full system-

level simulations of two different types of nonlinear targets.

Based on the work in this thesis, several recommendations can be made for applying learning-

based fusers to multisensor fusion in target tracking:

1. The ANN fuser was found to give the best performance. When training the ANN, it is

recommended to apply the error regularization scheme proposed herein (utilizing the

error covariance estimates).

2. The proposed normalization scheme should also be used as it vastly widens the usable

training space.

3. It is better to utilize all of the training data to train a single fuser than to split up the

training data to train multiple fusers. However, if there are differing target motions,

a separate fuser should be used for each type of target motion (e.g., maneuver versus

traveling in a straight line).
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4. Using more dynamic information (e.g., the previous state estimates projected to the

current time step) helps further reduce the error, but the error may increase the further

back in time the state estimates are.

5. The optimal number of hidden nodes may vary depending on the type of target.

6. Utilizing the proposed sensitivity approach from Chapter 5 can help further reduce the

error and improve the ANNs robustness against packet losses.

6.3 Future Work

While this investigation into learning-based fusers for multisensor fusion in target tracking

was certainly not exhaustive, and experiments were run only on simulated data, this thesis

intends to provide some suggestions as to what parameters or aspects of the ANN may

be explored to help improve fuser performance. Further investigation may be necessary to

again reduce the amount of training data required before these nonlinear, machine learning-

based fusers can actually be utilized in the field as the cost requirements for field tests

may be very high. Several additional topics (beyond the reduction of training data) that

may be of future interest may include: a deeper investigation into multi-layered neural

networks to devise better pre-training schemes for this application; better utilization of

dynamic information; the use of real-world data; and testing different sensitivity metrics to

further improve the robustness of the fuser against packet losses. In addition, it may be

possible to analytically show that the proposed error regularization leads to better tracking.

One would first need to show that using regularized neural networks leads to smoother and

more accurate trajectories. Next, since the learning algorithm is not guaranteed to reach a

global minimum, one could use a VC-type bound to show the approximation.

Another topic of interest for future work is outlier detection and mitigation (e.g., in

the case where the received data is faulty perhaps due to a malfunctioning sensor). The

aberrant data can either be rejected or utilized in an algorithm that is designed to be robust
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to outliers. There are numerous methods for detecting outliers [75], and data that may be

egregiously incorrect (e.g., all zeros) may be detected and discarded. For the outliers that

are retained, future work in this area would include testing the proposed sensitivity approach

on data containing faulty entries, and perhaps expanding the training algorithm to utilize

a different error function, such as that introduced by Liano in [76] for ANNs to be robust

against outliers.
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