
Robust, Automated Methods for Filtering and Processing Neural Signals

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical & Computer Engineering

John W. Kelly

B.S., Electrical Engineering, North Carolina State University
B.S., Computer Engineering, North Carolina State University
M.S., Electrical Engineering, North Carolina State University

Carnegie Mellon University
Pittsburgh, PA

May 2013

i

For my grandfather,
whose love of science lives on

ii

Abstract

This dissertation presents novel tools for robust filtering and processing of neural signals. These
tools improve upon existing methods and were shown to be effective under a variety of conditions.
They are also simple to use, allowing researchers and clinicians to focus more time on the analysis
of neural data and making many tasks accessible to non-expert personnel. The main contributions
of this research were the creation of a generalized software framework for neural signal processing,
the development of novel algorithms to filter common sources of noise, and an implementation of
a brain-computer interface (BCI) decoder as an example application.

The framework has a modular structure and provides simple methods to incorporate neural
signal processing tasks and applications. The software was found to maintain precise timing and
reliable communication between components. A simple user interface allowed real-time control of
all system parameters, and data was efficiently streamed to disk to allow for offline analysis.

One common source of contamination in neural signals is line noise. A method was developed
for filtering this noise with a variable bandwidth filter capable of tracking a sinusoid’s frequency.
The method is based on the adaptive noise canceling (ANC) technique and is referred to here as
the adaptive sinusoid canceler (ASC). This filter effectively eliminates sinusoidal contamination
by tracking its frequency and achieving a narrow bandwidth. The ASC was found to outperform
comparative methods including standard notch filters and an adaptive line enhancer (ALE).

Ocular artifacts (OAs) caused by eye movement can also present a large problem in neural
recordings. Here, a wavelet-based technique was developed for efficiently removing these artifacts.
The technique uses a discrete wavelet transform with an automatically selected decomposition
level to localize artifacts in both time and frequency before removing them with thresholding. This
method was shown to produce superior reduction of OAs when compared to regression, principal
component analysis (PCA), and independent component analysis (ICA).

Finally, the removal of spatially correlated broadband noise such as electromyographic (EMG)
artifacts was addressed. A method termed the adaptive common average reference (ACAR) was
developed as an effective method for removing this noise. The ACAR is based on a combination of
the common average reference (CAR) and an ANC filter. In a convergent process, a weighted CAR
provides a reference to an ANC filter, which in turn provides feedback to enhance the reference.
This method outperformed the standard CAR and ICA under most circumstances.

As an example application for the methods developed in this dissertation, a BCI decoder was
implemented using linear regression with an elastic net penalty. This decoder provides automatic
feature selection and a robust feature set. The software framework was found to provide reliable
data for the decoder, and the filtering algorithms increased the availability of neural features that
were usable for decoding.

iii

iv ABSTRACT

Acknowledgments

I would like to thank the great number of people who have contributed to the completion of this
work, starting with my committee members. To my advisors, Dan Siewiorek and Asim Smailagic,
the freedom and encouragement you both gave me in pursuing this research was invaluable, as
was your time and guidance. Wei Wang, thank you for welcoming me as a part of your lab and
for providing the resources, expertise, and much of the motivation for this dissertation. Also to
Richard Stern, thank you for a class that laid the foundation for much of this work and as with the
rest of my committee members, for your valuable time and knowledge.

I must also thank my family, starting with my parents. Your support, sacrifices, and perhaps
most importantly your patience, ensured that I always had every opportunity to pursue my goals.
Without your constant love and guidance I would not be the person I am today. Patrick, you
always set a high standard to shoot for that has helped me accomplish many things, and you were
also there when I needed to be kept in check. To Jessi, my wonderful wife, thank you for the
incredible dedication and unwavering support you have shown. I could not have made it through
these years without you and I know at times it was as hard for you as it was for me.

Without my labmates at hRNEL none of this research would have been possible. I would like
to especially thank Alan Degenhart and Robin Ashmore, whose collaboration and feedback paved
the way for a large part of this work. Jen Collinger, Stephen Foldes, and Brian Wodlinger also
provided valuable input and discussions, and although they only recently arrived John Downey
and Bridget Endler helped get me through many days of writing this dissertation.

I should also thank Brian French and Scott Fisk, who provided a great office environment at
CMU. I would also like to thank the professors at CMU who impacted my work, including Jelena
Kovac̆ević, Markus Püschel, Xin Li, and Vijayakumar Bhagavatula.

There are many people to thank for providing data, beginning with Gustavo Sudre, Dean
Pomerleau, Rob Gaunt, and Doug Weber. Their studies provided MEG data, for which Anna
Haridis and the Center for Advanced Brain Magnetic Source Imaging (CABMSI) at the University
of Pittsburgh Medical Center should also be thanked. For ECoG data, many of the same people
from hRNEL are to thank, but also Elizabeth Tyler-Kabara, Michael Boninger, and Aaron Batista.

Finally, I owe a debt of gratitude to those who have kept the past few years enjoyable. Many
of the same people already mentioned should be thanked, but there are also many others that are
too numerous to list. I should especially thank my teammates, including those from the Gigahurtz
and the Incapacitors. Also, an enormous thank you must be given to Jack Hoffman and the Golden
Triangle Waterski Club, who put a boatless grad student out on the river for some great skiing.

This work was supported by a National Defense Science and Engineering Graduate Fellowship
sponsored by the Air Force Office of Scientific Research, an NSF Graduate Research Fellowship,
and the Quality of Life Technology Center under NSF Grant No. EEEC-0540865.

v

vi ACKNOWLEDGMENTS

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Motivation . 2
1.2 Background . 3

1.2.1 Software Framework . 3
1.2.2 Filtering Neural Signals . 3
1.2.3 Analyzing Neural Signals . 5

1.3 System Overview . 6
1.3.1 Software Framework . 6
1.3.2 Filtering Neural Signals . 7
1.3.3 Analyzing Neural Signals . 9

1.4 Contributions . 9
1.5 Organization . 10

2 Software Framework 11
2.1 Introduction . 12
2.2 Related Software . 14
2.3 Craniux System Design . 15

2.3.1 Top Level Design . 16
2.3.2 Module Design . 21
2.3.3 System Communication . 23
2.3.4 Data Saving . 25

2.4 System Evaluation . 26
2.4.1 Reliability . 27
2.4.2 Performance . 29
2.4.3 Ease of Use . 31
2.4.4 Extendability . 33

2.5 Conclusions . 34

3 Line Noise 37
3.1 Introduction . 38
3.2 Background . 39

vii

viii CONTENTS

3.2.1 Line Noise . 39
3.2.2 Adaptive Noise Canceler . 40
3.2.3 Adaptive Line Enhancer . 43

3.3 Methods . 44
3.3.1 Adaptive Sinusoid Canceler . 44
3.3.2 Data Collection . 47
3.3.3 Experimental Parameters . 48

3.4 Results and Discussion . 49
3.4.1 Simulated Data . 49
3.4.2 Real Data . 57

3.5 Conclusions . 58

4 Ocular Artifacts 61
4.1 Introduction . 62
4.2 Background . 63

4.2.1 Ocular Artifacts & Neural Recordings . 63
4.2.2 Ocular Artifact Removal Techniques . 65
4.2.3 Evaluation of Artifact Reduction . 67

4.3 Methods . 68
4.3.1 Regression-Based Removal . 69
4.3.2 Component-Based Removal . 69
4.3.3 Wavelet-Based Removal . 72
4.3.4 Quantitative Analysis . 74

4.4 Results and Discussion . 76
4.4.1 Overall Evaluation . 76
4.4.2 Ocular Artifact Removal by Dataset . 79
4.4.3 Visual Results . 80

4.5 Conclusions . 80

5 Broadband Common Mode Noise 83
5.1 Introduction . 84
5.2 Background . 85

5.2.1 Multi-Channel Physiological Recordings 85
5.2.2 Common Average Reference . 86
5.2.3 Independent Component Analysis . 87

5.3 Methods . 88
5.3.1 Adaptive Common Average Reference . 88
5.3.2 Independent Component Analysis . 91
5.3.3 Data Collection . 91
5.3.4 Analysis . 92

5.4 Results and Discussion . 93
5.4.1 Simulated Data . 93
5.4.2 Real Data . 100

5.5 Conclusions . 103

CONTENTS ix

6 Application - BCI Decoding 105
6.1 Introduction . 106
6.2 Background . 107

6.2.1 Brain-Computer Interface Decoding . 107
6.2.2 The Curse of Dimensionality . 108
6.2.3 Regularized Linear Regression . 109
6.2.4 Elastic Net . 109

6.3 Elastic Net Validation . 110
6.3.1 Data . 110
6.3.2 Classification . 111
6.3.3 Results . 112

6.4 Impact of Methods on BCI Decoding . 114
6.4.1 Data and Methods . 114
6.4.2 Craniux . 115
6.4.3 Broadband Noise . 116
6.4.4 Line Noise . 120
6.4.5 Ocular Artifacts . 124

6.5 Conclusions . 124

7 Conclusion 127
7.1 Overview . 128
7.2 Directions for Future Work . 129

7.2.1 Craniux Development . 130
7.2.2 ASC Improvements . 130
7.2.3 OA Removal . 131
7.2.4 ACAR Considerations . 132
7.2.5 Additional Analysis . 133

Bibliography 135

x CONTENTS

List of Figures

1.1 An overview of the developed neural signal processing methods 7

2.1 Overview diagram highlighting system framework 12
2.2 Craniux screenshots . 15
2.3 Craniux system framework . 16
2.4 Craniux engine execution . 22
2.5 Craniux network communications . 24
2.6 Craniux data saving process . 26
2.7 Reconstruction of a Craniux experiment . 28
2.8 Craniux system processing times . 30
2.9 Craniux distribution speedup . 31
2.10 Craniux system launcher . 32

3.1 Overview diagram highlighting line noise removal 38
3.2 System design for an ANC filter . 41
3.3 System design for an ALE . 43
3.4 System design for the ASC . 45
3.5 Average autocorrelation of 10 second windows of simulated ECoG data 49
3.6 ASC frequency tracking and bandwidth as changes in noise frequency occur 50
3.7 Performance of the ASC with and without variable bandwidth 52
3.8 Performance of filters on a deterministically drifting sinusoid 53
3.9 Performance of the ASC and the ALE as the initial SNR changes 55
3.10 Performance of line noise filters with a sinusoidal signal component 56
3.11 Spectral power of filtered ECoG data with line noise contamination 58
3.12 Coherence of ECoG data with the output of the ASC and an ALE 58

4.1 Overview diagram highlighting OA removal . 62
4.2 Types of OAs . 64
4.3 Effect of an OA on different data channels . 65
4.4 Illustration of component-based artifact removal process 66
4.5 EOG reference channels and corresponding principal components 70
4.6 Distribution offset values for ICA on one channel of data 72
4.7 Wavelet approximation coefficients for an OA at two decomposition levels 74
4.8 Process for finding the optimal wavelet decomposition level for OA removal 75
4.9 Frequency correlation between original and filtered signals for OA removal 78

xi

xii LIST OF FIGURES

4.10 Example of OA removal with multi-level wavelets 80

5.1 Overview diagram highlighting broadband noise removal 84
5.2 Block diagram of the ACAR . 89
5.3 MSE over time for the ACAR with variable step sizes 93
5.4 Histogram of SNR for the ACAR . 94
5.5 MSE over time for the ACAR with variable input SNRs 95
5.6 MSE over time for the ACAR with a variable number of data channels 96
5.7 Filtered ECoG data with common mode artifacts 101
5.8 Filtered ECoG data with heavy broadband contamination 102

6.1 Overview diagram highlighting BCI decoding . 106
6.2 Percentage of timepoints classified incorrectly for different decoders 112
6.3 Change in distance to target for 1D cursor control with different decoders 113
6.4 Decoder weights calculated from one session of data 114
6.5 TAE with added simulated broadband noise. 117
6.6 CAE with added simulated broadband noise . 118
6.7 Decoder weights with added simulated broadband noise 119
6.8 Spectral estimate with light line noise . 120
6.9 Spectral estimate with heavy line noise . 121

List of Tables

2.1 Currently available Craniux acquisition modules 18
2.2 Currently available Craniux signal processing modules 19
2.3 Currently available Craniux application modules 20
2.4 Craniux system frame rates . 31

3.1 MSE between the actual and estimated ASC frequency 51
3.2 Filtered SNR for different models for sinusoidal noise frequency 54

4.1 Evaluation of OA Removal Techniques . 77
4.2 OA removal percentages for different datasets . 79

5.1 Filtered SNR with broadband noise and variable ACAR step sizes 93
5.2 Filtered SNR with broadband noise and variable initial SNRs 94
5.3 Filtered SNR with broadband noise and a variable number of data channels 96
5.4 Filtered SNR with variable broadband noise noise conditions 97
5.5 Filtered SNR with different signal and broadband noise distributions 98
5.6 Filtered SNR with broadband noise and correlated signals 99
5.7 Filtered SNR with different broadband noise polarities 100

6.1 Decoding errors with added simulated broadband noise. 119
6.2 CAE for filtering light line noise . 122
6.3 CAE for filtering heavy line noise . 123

xiii

xiv LIST OF TABLES

List of Acronyms

ACAR adaptive common average reference
ALE adaptive line enhancer
ANC adaptive noise canceling
AR autoregressive
ASC adaptive sinusoid canceler
BCI brain-computer interface
BSS blind source separation
CAE cumulative angle error
CAR common average reference
ECoG electrocorticography
EEG electroencephalography
EKG electrocardiogram
EMG electromyographic
EOG electrooculographic
FFT fast Fourier transform
FIR finite impulse response
GUI graphical user interface
ICA independent component analysis
IIR infinite impulse response
lasso least absolute shrinkage and selection operator
LMS least mean squares
MEG magnetoencephalography
MSE mean squared error
NLMS normalized LMS
OA ocular artifact
OLS ordinary least squares
PCA principal component analysis
SNR signal-to-noise ratio
STD standard deviation
TAE timepoint angle error
TCP transmission control protocol
UDP user datagram protocol

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

The study of human brain function can benefit both engineering and medicine. Clinical neural

monitoring is critical in diagnosing and treating many neurological disorders such as epilepsy.

Neuroscience research can help find the causes and cures for many of these same disorders. The

development of brain-computer interfaces (BCIs) presents the possibility of creating a direct link

between humans and their environment. This link could allow the use of brain-controlled devices to

assist people with disabilities [1]. These sophisticated systems have been able to achieve real-time

operation of assistive technology such as computer cursors and prosthetic arms [2], [3]. People

with severe neurological or physical impairments could benefit greatly from such devices that

restore even a small fraction of their lost function.

In part due to advances in neural recording techniques and computing power, there has been a

steady increase in the availability and quality of recorded neural data. Analyzing these signals is a

difficult process that requires extensive time, knowledge, and training. Often the raw signals must

go through multiple conditioning steps including the filtering of noise and artifacts. This process

can often impede researchers and clinicians, even those experienced in signal processing and soft-

ware development, by taking away time that could be devoted to analysis of the data. Furthermore,

the required skill set in processing neural signals hinders many potential technological advances,

such as the practical implementation of BCIs in real-world settings. For BCIs both to become

economically sustainable and to meet the goal of assisting those with disabilities, they must be

operable by a user who has minimal training.

It is important then that tools be available for neural signal processing that can effectively

perform commonly needed tasks in a simple and automated fashion. Researchers and clinicians

could then minimize time lost to these tasks so that their focus could remain on producing the

technology that fully harnesses the available neural data. This technology would also be accessible

and beneficial to a larger population. In order to achieve this desired impact, such tools need to be

packaged with a generalized framework for neural signal processing that can easily be adapted to

users’ specific needs.

1.2. BACKGROUND 3

1.2 Background

1.2.1 Software Framework

The need to create a framework to test and implement neural signal processing tasks is not new,

and there are many packages available for use. These packages vary from highly complex, spe-

cialized software created for custom use, to small applications that perform a single task. Multiple

software platforms for recording and viewing neural signals exist, and packages are also available

for different types of analysis on these signals. BCI software even exists that can record, view,

and process neural signals while presenting feedback to a user. While many of these packages do

fill specific needs and provide an excellent model for a framework, there is still much room for

expansion and improvement in this area.

The goal for a generalized framework would be to allow researchers to spend less time creating

the software that encapsulates their experiments, and to make neural signal processing tasks more

accessible to those without extensive programming experience. To meet these goals the framework

should provide simple, built-in functionality for a variety of common tasks in neural signal pro-

cessing. Additionally, it must be easily extendable. Finally, as with any software, data integrity

and consistent system execution must be maintained.

1.2.2 Filtering Neural Signals

One common task in neural signal processing software is effective signal conditioning, including

filtering noise and artifacts. Artifacts can be quite prevalent in neural data and can come from a

variety of sources, including eye movement, muscle movement, cardiac rhythm, outside sources,

and even neural processes other than the one of interest [4]. If the recordings are from a human

subject then the best solution is sometimes to instruct the subject to avoid producing some of these

artifacts. This is not always practical, though, due to the conditions of the experiment, environment,

or the subject [5]. Often such noise can be detected and the contaminated data then ignored, but

loss of data is not an optimal solution, especially if the recording is being used in real-time [6].

4 CHAPTER 1. INTRODUCTION

The only consistently viable solutions for dealing with these artifacts are to either remove them

or, in the case of BCIs, to develop decoding algorithms that are invariant to them. The latter method

is not always possible, though, if the artifact is contaminating important neural features. Also, it is

difficult to prove invariance without an artifact-free signal for comparison. Thus, artifact removal

is highly beneficial to both BCI and general neuroscience research [7], [8].

One other difficulty in noise removal from neural signals is that in many cases the people ana-

lyzing the signals have their expertise in areas outside of signal processing. For BCI applications

the end goal is to have the user operate the system unassisted, so in that case the signals might not

even be monitored. It would be useful then to be able to filter out noise with methods that are not

only effective, but easy to implement and capable of operating semi-autonomously.

Line Noise

One of the most prominent sources of corruption in neural recordings is line noise, which is caused

by the power line transmission frequency. Elimination of this contamination has been an active area

of research, but many methods implemented still fail to effectively eliminate the interference while

minimizing distortion of the signal. One common practice is to use a fixed notch filter centered

around the average power line frequency. The main problem with this approach is that power line

frequency varies around its mean, so the notch must be wide enough to account for this variation

[9]. Increasing the notch width increases the possibility of also removing interesting physiological

data. Other common approaches include low pass filtering below the power line frequency or

doing a spectral analysis of the signal and ignoring those frequencies near the contamination.

These techniques could also discard useful data.

Ocular Artifacts

Ocular artifacts (OAs) caused by eye movement are another common problem in many recordings

and can be difficult to remove in an efficient manner [7]. An OA typically has a much higher am-

plitude than that of neural activity and can severely corrupt the data. Attempting to avoid blinking

1.2. BACKGROUND 5

introduces a cognitive process that alters the neural signals [10], [11]. Numerous methods have

been attempted to filter OAs, including ones based on regression, principal component analysis

(PCA), and independent component analysis (ICA) [12], [7]. Many of these methods, though,

fall short in recovering the neural data and might require manual operation by an expert. The in-

creasing dimensionality of recorded neural data also causes some methods to be computationally

demanding.

Broadband Common Mode Noise

Other sources of neural contamination, such as electromyographic (EMG) artifacts caused by mus-

cle movement, are broadband in nature. This property makes filtering the noise or using any part of

the neural signal more challenging [13]. EMG artifacts are also usually spatially correlated across

multiple channels of a recording. In a physiological recording, this type of multi-channel contam-

ination is often referred to as a common mode artifact. Good referencing, blind source separation

techniques, and source localization methods have all been used in attempts to remove this type of

neural signal corruption. These methods are not always able to reveal the underlying neural data

or operate in real-time, and again can require manual operation by an expert.

1.2.3 Analyzing Neural Signals

Once neural signals are conditioned properly, the next step is typically the identification and anal-

ysis of neural features of interest. This is the step at which the needs of each researcher or user

begin to diverge. In a clinical setting, a physician might examine the signals for signs of a seizure

or other abnormality. In a BCI, this step usually involves a neural decoder which, after performing

feature extraction, generates a control signal from the neural features. The decoder can consist of

anything from simple linear classifiers that produce an output based on weighted sums of a few

features to complex machine learning algorithms.

Due to its importance in a BCI a large amount of time is often spent in setting up and training

the neural decoder. Although automated decoding methods exist, the complexity of identifying

6 CHAPTER 1. INTRODUCTION

the best method to use is an example of a situation that would greatly benefit from a generalized

framework with robust neural signal processing methods. By removing the need to focus on other

aspects of the system such as filtering the neural signals, BCI researchers are free to devote more

time directly to the decoder and to the other scientific questions they are attempting to answer.

The decoder itself also has the potential to perform better with signals that have been effectively

filtered.

1.3 System Overview

Although neural signal processing systems can vary in their applications and implementations,

most of them contain many of the same basic system components: data acquisition, signal condi-

tioning, and some form of decoding or analysis of the signals. In a BCI, feedback is also typically

given to the user in the form of some device being controlled. The goal of this research was to

provide a fully functional system that could not only provide a framework for these system com-

ponents, but also perform many of the tasks that are commonly required of them. By building a

general framework and automating some of the most difficult and common parts of neural signal

processing, both researchers and end-users could benefit. In order to realize these benefits, the sys-

tem must obtain accurate results while being usable by a non-expert. To do so the system needs to

maintain precise system timing, ensure data integrity, minimize set up time, be robust to noise, and

be capable of producing a reliable system output. Fig. 1.1 provides an overview of the methods

developed to accomplish these goals.

1.3.1 Software Framework

The software framework is an important part of a neural signal processing system. It must provide

reliable communication between system components, as well as a user interface powerful enough

to control custom experiments and simple enough to be operable by non-experts. The software

must also ensure data integrity and maintain precise system timing to provide smooth, accurate

1.3. SYSTEM OVERVIEW 7

Figure 1.1: An overview of the developed neural signal processing methods. The general setup is
outlined by the system framework boxes, with each of these parts broken into the individual sys-
tem components that were developed. The results indicate the criteria by which the implemented
methods were evaluated.

feedback to the user. A generalized framework is presented here that is capable of handling these

duties.

The software platform, which is called Craniux, was developed using the LabVIEW (National

Instruments) graphical programming environment. LabVIEW has a lower learning curve than

many languages, and it also provides many built-in libraries for signal processing and data visu-

alization. Craniux employs a modular system structure to allow for code reuse, extendability, and

the ability to be distributed across a network. Additionally, the system internally manages all tasks

related to the framework such as communication between components, data saving, and system

execution. These features help to make the software reliable, efficient, and easy to use.

1.3.2 Filtering Neural Signals

Due to the susceptibility of neural recordings to noise and artifacts, one of the most common tasks

of neural signal processing systems is filtering the data. Accordingly, signal filtering was a primary

8 CHAPTER 1. INTRODUCTION

focus of the methods developed here. Novel algorithms were developed that can remove OAs,

line noise, and common mode broadband noise from neural signals. These removal methods are

relatively simple to use, capable of real-time processing, and effective in maximizing noise removal

while minimizing signal distortion. Such methods can both help the performance of neural signal

processing systems and simplify the setup process.

Line Noise

For line noise removal, the adaptive sinusoid canceler (ASC) was developed. The ASC is an adap-

tive filter that can track the frequency of drifting sinusoidal noise and narrow its filter bandwidth

around it. In this way it is able to specifically target and filter the line noise while minimizing

the resulting distortion to the neural signals. This method was found to outperform both standard

notch filters with fixed center frequencies and bandwidths, and an adaptive line enhancer (ALE).

Ocular Artifacts

The OA filtering method is based on a wavelet decomposition in which the goal is again to target

the OA and make as small of an impact as possible on the actual neural data. This is accomplished

by first selecting the best level of wavelet decomposition, then removing the OA with a threshold

function in the wavelet coefficients before reconstructing the signal. Methods based on regression,

PCA, and ICA were also implemented with the multi-level wavelet technique producing superior

results.

Broadband Common Mode Noise

For broadband noise the adaptive common average reference (ACAR) was created, which takes

advantage of the spatial correlation of the noise. This again uses an adaptive filter, and it also

takes ideas from the common average reference (CAR). A weighted CAR provides a reference

for the adaptive filter, and the output of the filter in each data channel is then used to adjust how

the reference is created for the next timepoint. The process was found to reliably converge, and

1.4. CONTRIBUTIONS 9

provided better results in most cases than the CAR and ICA.

1.3.3 Analyzing Neural Signals

The analysis portion of a neural signal processing system is the application for which the other

components presented in this dissertation are meant to apply. The framework and processing com-

ponents provided by the methods developed in this work should save time for those who need to

focus on the individual needs required at this step. In a BCI, this step usually involves a neural

decoder which generates a control signal from neural features. This BCI setup was used in this

dissertation as an example application to examine the impact of filtering and processing methods.

In keeping with the goal of providing effective and easy to use methods, the neural decoder that

was implemented used linear regression with an elastic net penalty to provide automatic feature

selection and robust results.

1.4 Contributions

This dissertation provides robust, automated methods for neural signal processing and its main

contributions include:

• a generalized software framework for the research and implementation of neural signal pro-

cessing technologies

• algorithms for filtering common noise and artifacts found in neural signals such as:

– line noise

– ocular artifacts

– common mode broadband noise such as that produced by EMG artifacts

• an implementation of a BCI decoder as an example application

10 CHAPTER 1. INTRODUCTION

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents Craniux, the software

framework created for neural signal processing. Chapter 3 covers the ASC, an algorithm devel-

oped to remove line noise or other sinusoidal components that drift in frequency. The removal of

OAs, including the novel multi-level wavelet method, is discussed in Chapter 4. Common mode

broadband noise and its removal using the ACAR algorithm are presented in Chapter 5. Chapter 6

discusses BCI decoding as an example application for the methods developed in this dissertation.

Finally, Chapter 7 offers conclusions and discusses potential future work.

Chapter 2

Software Framework

11

12 CHAPTER 2. SOFTWARE FRAMEWORK

Figure 2.1: Overview diagram highlighting the system framework. The boxes with shadows indi-
cate the portion of the system that is discussed in this chapter.

2.1 Introduction

This chapter presents the generalized framework for neural signal processing that is used by the

algorithms discussed in later chapters. Fig. 2.1 highlights these portions of the system, including

the related overall results. The framework presented here is not only a tool for the implementation

of algorithms in this dissertation; it also serves a need in itself. The creation of a powerful and

accessible system for processing neural signals must include the software framework.

In neural signal processing the time and difficulty involved in creating or modifying the re-

quired software can be quite large. This time sink can sometimes be due to a lack of the per-

sonnel’s coding expertise, but it can also be attributed to the complexity of the systems involved.

In brain-computer interface (BCI) studies, for example, researchers often need to implement dif-

ferent recording modalities, signal processing methods, feature extraction techniques, decoding

algorithms, and applications.

To allow researchers to maximize the time spent investigating important algorithms and scien-

tific questions, it is necessary for software to be available that can reduce the overhead involved

2.1. INTRODUCTION 13

in experimental setup and analysis. This software must be able to adapt to users’ differing needs

and address their wide range of potential methods and applications. To provide such a framework

a software package, called Craniux, was developed. Some of the software’s goals are listed below,

with a keyword that is used throughout the text when referring to each goal. These goals tie in di-

rectly with this dissertation’s overall aim of providing effective and easy to use methods for neural

signal processing. In relating these goals to Fig. 2.1 the first one is directly tied to data integrity,

the second to timing precision, and the last two to setup time.

1. Reliability - Maintain data integrity and stream all necessary data to disk for analysis in an

offline environment.

2. Performance - Provide consistent real-time execution with data visualization and parameter

updates.

3. Ease of use - Be able to efficiently test common experimental paradigms and parameters

with minimal setup time and training needed by the user.

4. Extendability - Allow experimenters to extend the software by developing custom modules

with minimal time spent on overhead such as the system framework and user interface.

Craniux achieved these goals with a modular, distributable system coded in LabVIEW (Na-

tional Instruments). This open-source software was created at the Human Rehabilitation and Neu-

ral Engineering Laboratory (hRNEL) with the primary development team consisting of Alan De-

genhart, Robin Ashmore, and the author. Much of this material was earlier published in [14]. The

next section discusses related software, while Section 2.3 discusses the design and implementation

of Craniux. Section 2.4 presents some system performance measures and discussion of the goals

listed above. Finally, Section 2.5 offers conclusions along with some of the possible implications

and impacts of the software.

14 CHAPTER 2. SOFTWARE FRAMEWORK

2.2 Related Software

Most software for neural signal processing targets specific needs without offering the flexibility

to easily customize or extend existing capabilities. A large number of packages are available for

monitoring, recording, and replaying neural signals. This type of software is commonly used in

clinical settings and provides simple filtering and visualization tools. Some packages, such as

CURRY (Neuroscan) and BESA (BESA GmbH) [15], offer more advanced analysis and brain

mapping functions. Such software is typically not easily modified or extended, though. Some

similar open source packages are also available, such as EEGLAB [16] and Brainstorm [17].

BCI researchers typically have a wider array of needs than other potential end users of neural

signal processing software [18], [19]. In many cases these needs result in the development of highly

specialized software packages [20], [21]. Some software packages, however, have attempted to

serve a broader range of BCI researchers by being more adaptable to users’ needs. BCI2000 is one

successful package for general purpose BCI research [22]. This open-source software has seen

great success in part due to its modular design, which allows the user to select one module each for

acquisition, signal processing, and the application. Although the development of custom modules

does require programming knowledge in C++, BCI2000 provides a user datagram protocol (UDP)

interface for communicating with 3rd party software as well as the ability to create new modules

in higher level languages such as Python.

Other software targeting BCI research has also seen recent success. One such platform is

OpenViBE, which is again written in C++ and has a modular design [23]. One advantage of

OpenViBE is the ability to use a graphical environment to arrange any number of modules into a

BCI system. The TOBI Common Implementation Platform (CIP) is another effort to improve the

effectiveness and reusability of BCI software [24]. The CIP provides a set of common interfaces

that allows communication between individual components from different systems and software

platforms through a standardized protocol.

Each of these software packages fills needs in neural signal processing. The system presented

here, Craniux, builds upon their success. Its goal is to use the strengths of these platforms and add

2.3. CRANIUX SYSTEM DESIGN 15

Figure 2.2: Craniux screenshots showing real-time display of (Top Left) neural signals, (Top Right)
a BCI cursor task in a 3D environment, (Bottom Left) normalized high-gamma band power on a
32 channel electrode layout, and (Bottom Right) system timing and packet loss information.

additional capabilities to create a multi-use neural signal processing software suite that minimizes

the time involved in experimental setup and analysis. In doing so, it would be a valuable tool for a

wide array of applications for end users, researchers, and developers.

2.3 Craniux System Design

Craniux was implemented using the LabVIEW programming language. One of the main reasons

for choosing LabVIEW was the high-level graphical programming environment. This environment

has a lower learning curve than traditional text-based languages such as C or C++, which increases

the software’s accessibility to researchers who want to create custom code and do not have a

16 CHAPTER 2. SOFTWARE FRAMEWORK

Figure 2.3: Craniux system framework. The Craniux system consists of interchangeable modules
that are arranged to perform the individual tasks in an experimental paradigm. Each module (light
gray) has an associated GUI for parameter updates and data visualization. System framework
components (white) automatically handle the software framework including communication, data
saving, and system execution. All engines have additional connections not shown, to the system
launcher and to the data saving manager.

strong background in programming. The code is inherently multi-threaded, allowing complex

systems with a large number of individual components to be executed more efficiently. LabVIEW

also provides a large number of tools useful to even experienced programmers, such as real-time

debugging and built-in libraries for data visualization, signal processing, and hardware integration.

Some of these tools can be seen in Fig. 2.2, a screenshot showing various portions of the Craniux

system during a real-time experiment.

2.3.1 Top Level Design

Craniux employs a modular system structure as shown in Fig. 2.3. System execution, discussed

below, is controlled by the system launcher, which also loads the selected modules and contains

system-level parameters. Each module consists of an engine and a graphical user interface (GUI),

and modules of the same type are interchangeable. The role of modules in the system framework

is discussed in this section, with details regarding the internal structure of modules provided in

Section 2.3.2. Communication between components are handled by robust, automated protocols

2.3. CRANIUX SYSTEM DESIGN 17

that allow for network distribution of Craniux, as discussed later in this section. The communica-

tion channels, which are described further in Section 2.3.3, exist between each engine and its GUI,

between engines, between each engine and the data saving manager, and between each engine and

the system launcher. The data saving manager streams all necessary data to disk in parallel to main

system execution. This process is discussed in Section 2.3.4.

System Execution

Craniux initially loads with only the system launcher. The launcher provides a simple interface

with which modules and system parameters can be manually entered, or from which a parameter

file with this information can be loaded. Parameter files are created by saving any created config-

uration. Once the selected modules are opened, system execution begins in a suspended state. In

this state all system functions are operating, but no data is being saved. Parameters of any of the

modules can be updated during this time, and data can be visualized as well. The user can then use

the system launcher to put the system in its running state to begin an experimental trial. At this

point data saving begins, with each engine and the launcher communicating with the data saving

manager. From there the data is streamed to disk in parallel to ensure that the time-consuming

writes do not hinder main system execution. At any time the user can put the system back into its

suspended state or stop execution altogether.

Determinism and data integrity between components are maintained through the dataflow

driven system design. The engines located prior to the feedback control module (shown in Fig.

2.3 as the acquisition engine and the first block of signal processing engines) are free to execute

as fast as data arrives. After this chain of execution the data can be buffered if necessary in the

feedback control module, which waits for feedback from the application engine. The buffer only

protects against a spike in system timing, as only a user-specified amount of data is buffered before

data begins to be dropped. Once both feedback and data from the previous module arrive at the

feedback control module, both are passed into the second block of signal processing engines. The

feedback control module also keeps track of system timing including the system’s refresh rate,

18 CHAPTER 2. SOFTWARE FRAMEWORK

Table 2.1: Currently available Craniux acquisition modules.
* indicates modules for which the author was a primary developer

Engine Name Description

Acquisition Template* Generates random data, available for development and testing
FieldTrip Buffer Reads data from a FieldTrip buffer [25]
gUSBamp* Reads data from g.USBamp (g.tec) amplifiers
Replay Data* Reads data stored in a MATLAB (MathWorks) structure
Ripple Reads data from grapevine system (Ripple)
RTMA Reads data using the Real-Time Messaging Architecture [26]
SimECoG* Generates simulated ECoG data
UDP Binary Reads raw data transmitted via UDP

the amount of time system processing is lagging behind data acquisition, and the processing time

for both the portion of the system before and the portion after the feedback control module. This

information, along with the number of dropped packets, is sent to a chart on the user interface host

so that system timing information can be viewed in real-time. This chart is shown in the bottom

right of Fig. 2.2.

Module Types

Craniux modules are fully interchangeable with modules of the same type. The type can be either

acquisition, signal processing, or application, and the placement of these modules in the system is

shown in Fig. 2.3. Each type has a template that can be used to quickly develop new modules.

There are also a large number of built-in modules that implement common neural signal processing

tasks. Below is a further description of the built-in modules and the responsibilities of each module

type as related to the overall system.

Acquisition modules are responsible for reading and parsing neural data. If the data does not

have its own external timing source then these modules must also control system timing. Currently

available acquisition modules are shown in Table 2.1. These modules include interfaces with

recording systems, a simulated electrocorticography (ECoG) data source for testing new signal

processing or application modules, a method for replaying previously recorded data, and a UDP

2.3. CRANIUX SYSTEM DESIGN 19

Table 2.2: Currently available Craniux signal processing modules.
* indicates modules for which the author was a primary developer

Engine Name Description
Add Noise* Adds simulated noise to the data
ALE* Adaptive line enhancer
Artifact Rejection Flags data contaminated by detected artifacts
DAQ Code Sender Sends data to a National Instruments DAQ device
Glove 5DT Stores data from a 5DT data glove
Linear Classifier* Outputs weighted combinations of input features
Neural Decoder Trains various decoding algorithms, saves and loads parameters
Replay RTMA Sends reply using Real-Time Messaging Architecture [26]
Signal Filtering* Applies various filters, references, and artifact removal tools
Signal Processing Template* Available for development and testing
Spectral Estimation* AR spectral estimation using the Burg method [27]

connector.

Signal processing modules are the most generic, as they can perform any action that alters

the data between the source and the target application. These actions typically include signal

conditioning or analysis. In Fig. 2.3 these modules are split into two blocks. There are no structural

differences between the modules in these two blocks, only a difference in what type of information

the module receives and when it receives it. Signal processing modules in the first block are free

to execute as soon as data arrives from the previous module, but do not receive feedback data from

the application. In the second block feedback data is received so these modules must wait on data

from two sources. Any signal processing module can be placed in either block, but the user should

decide for a given experimental setup which modules need feedback data.

Currently available signal processing modules are shown in Table 2.2. As can be seen some

modules perform tasks like interfacing with additional hardware or simulating data, rather than the

usual signal processing duties. The neural decoder module implements some common decoding

algorithms used in BCIs such as the Kalman filter [28] and ordinary least squares (OLS) regression.

OLS is sometimes referred to as the optimal linear estimator (OLE) in BCI literature [29]. The

signal filtering module implements some common methods used in neural signal processing, as

20 CHAPTER 2. SOFTWARE FRAMEWORK

Table 2.3: Currently available Craniux application modules.
* indicates modules for which the author was a primary developer

Engine Name Description
Application Template* Maintains dataflow, also available for development and testing
Circle Drawing Application for drawing circles and ellipses
Cursor Control Cursor control task with target presentation
DEKA Arm Control Controls a DEKA prosthetic arm
FES Controls a functional electrical stimulation system [30]
Flip Book Uses control signal to move through a flip book
Game Control Controls simple built-in games for 1D and 2D BCI control
MPL Controls a Modular Prosthetic Limb [31]
Path Task Displays a path on a monitor that can be traced
Stimulus Presentation* Sequentially presents various stimuli on a monitor
Virtual Arm Control Controls an arm in a Unity (Unity Technologies) environment
WoW Controller* Allows control of a character in World of Warcraft (Blizzard)

well as many of the algorithms presented in other chapters of this dissertation such as the adaptive

sinusoid canceler (ASC) and the adaptive common average reference (ACAR). In the top left, Fig.

2.2 shows data visualization in the signal filtering module.

The implementation of the Burg algorithm in the spectral estimation module used non-recursive

calculations, as it was found that the fully recursive implementation carried a risk of instability

due to round-off error when operating on a band-limited signal. Eliminating any chance of data

corruption was a higher priority than timing improvements. Spectral estimation did benefit greatly

from LabVIEW’s multi-threading, though, as the calculation for each channel of data could be

performed in parallel. The bottom left of Fig. 2.2 shows the layout of a 32 channel electrode grid

with visualization of high-gamma band power from the spectral estimation module.

Application modules are responsible for displaying any form of feedback or stimulus to the user,

whether it be a pure stimulus or something that is being controlled by the user in a BCI setup. Cur-

rently available application modules are shown in Table 2.3. Most of these modules are designed

for BCI tasks, with the main exception being stimulus presentation. In a BCI, the application must

send information back to any signal processing modules, such as decoding algorithms, that need

to know the feedback state. The feedback from the cursor control module is shown in the top left

2.3. CRANIUX SYSTEM DESIGN 21

of Fig. 2.2. The stimulus presentation module can display any sequence of text, image, video, or

audio stimuli including pseudorandom and looped sequences. For some experimental paradigms,

though, it would be desired to not have any application at all. In this case the application template

could be used to return blank feedback and maintain system data flow.

Network Distribution

Although Craniux is multi-threaded and can be run effectively on one computer, the system can

also be distributed across a network. As shown in Fig. 2.3, all GUIs, as well as the system launcher,

data saving manager, and timing display, are located on the user interface host. All engines, which

handle a module’s main processing, can also be on this host for a local configuration. With two

hosts all engines can be placed on the second host, which ensures that visualizations and user

interactions do not interfere with data processing. The system can be further distributed all the

way to the point at which each engine is on a separate host. Distributing the system also allows

experimental setups in which a subject and a researcher are using different computers, possibly

even in remote locations.

2.3.2 Module Design

A main difficulty in Craniux is in allowing parallel control, processing, and visualization while

enforcing determinism throughout the system. A large portion of this problem is handled by the

system’s dataflow-driven system execution discussed in Section 2.3.1. No module is free to begin

the data processing portion of its execution until receiving data from the previous module. Some

processes within each module, though, such as GUI events, data saving, or training a decoding

algorithm, can be handled in parallel to allow system execution to continue. Preventing race con-

ditions and data corruption for these cases must be handled at the module level.

Each module consists of an engine, which handles the actual system execution and data pro-

cessing, and a corresponding GUI, which is a stand alone application that provides data visual-

ization and allows module parameters to be updated. This separation allows GUI interactions and

22 CHAPTER 2. SOFTWARE FRAMEWORK

Figure 2.4: Craniux engine execution [14]. Engines in the Craniux system are structured in a way
that enforces determinism and data integrity, while allowing efficient execution through multi-
threading. Core functionality is indicated by the white boxes and is provided in engine templates.
The researcher then needs only to implement the specific algorithm or idea of interest, indicated
by the gray boxes.

processor intensive visualizations to occur without interfering with time critical system processes.

The GUI displays visualization data and sends parameter updates as soon as possible. As with the

system launcher, a parameter file can be loaded. The engine ensures that these events are handled

in a way that maximizes efficiency and ensures determinism. The basic execution sequence of an

engine is shown in Figure 2.4.

When an engine is loaded it begins execution by initializing. This process includes establishing

connections to other system components, identifying those variables that need to be sent over each

connection, and loading a parameter file if specified. After initialization the engine begins waiting

on data from the previous engine (or acquiring the first block of data if it is an acquisition engine).

Once data arrives, the engine implements any parameter changes that were sent from the GUI.

Allowing updates at only this point prevents race conditions in which the parameters could be

2.3. CRANIUX SYSTEM DESIGN 23

written to at an unknown time while reads are occurring.

Once an engine has received data and updated parameters it is free to begin execution of its

main task. Sometimes an engine might contain a process that only occurs occasionally but takes a

long time to complete, such as training a decoding algorithm. To allow the system to continue with

real-time execution, these processes are passed off onto another thread until they complete. Upon

returning, these processes can write to any relevant engine variables at the step at which parameter

values are updated.

When engine-specific operations are complete all necessary data is sent to the next engine so

that it can begin execution. While other engines are executing, visualization data is buffered to

be sent to the GUI and data that needs to be saved is buffered for the data saving manager. In a

separate thread these buffers are continuously monitored and any new packets are removed and

sent to their correct destinations. This design minimizes the chance that these operations could

affect overall system timing. It does mean that perfect synchronization of the visualization data is

not enforced, but any amount of lag would be on the order of milliseconds and imperceptible to the

user. The data that is sent to the data saving manager contains all necessary information, including

the sample index, so its precise timing is not important. Once all tasks are complete, the engine

returns to its state of waiting for data from the previous engine.

2.3.3 System Communication

Communication between Craniux components utilizes self-establishing and self-repairing trans-

mission control protocol (TCP) network connections. These connections provide efficient, reliable

data flow and can handle any LabVIEW data type that needs to be transmitted. The establishment

of all connections is handled by the system framework as shown in Fig. 2.5. A preliminary con-

nection is first established using LabVIEW’s network streams. This connection is used to inform

the client of the port number that the host has automatically selected for the TCP connection. The

host then waits on the connection attempt from the client. Once the TCP connection is complete,

any communication failure causes the connection to be closed and re-established. This process

24 CHAPTER 2. SOFTWARE FRAMEWORK

Figure 2.5: Craniux network communications. Communication in Craniux is established through
automated, self-repairing TCP connections. The dotted lines represent network communications
while the black lines represent process flow. The task in the unshaded box is performed by the
system launcher.

requires no configuration from the user.

All network connections use the TCP protocol. TCP was chosen over UDP because its supe-

rior reliability is important in a dataflow driven program; a dropped packet between engines would

break the dataflow and leave each engine waiting for data that would never arrive. It is also im-

portant to note that Nagle’s algorithm [32] was disabled for all connections used in the Craniux

system. Nagle’s algorithm attempts to reduce TCP packet overhead and bandwidth usage by inten-

tionally delaying transmission so that multiple packets can be combined before being sent. Here,

the latency introduced by this algorithm is unacceptable, and bandwidth usage is not a concern.

The concept behind Nagle’s algorithm is retained, however, as all data to be sent simultaneously is

combined into a single packet before transmission.

2.3. CRANIUX SYSTEM DESIGN 25

When creating a new module, the developer must implement a communications class that in-

herits from the base communications data class. The base class contains definitions and methods

for communicating standard variables, so only additional variables and methods needed by a mod-

ule must be defined. This same class can then be used on the receiving side of the connection to

read, parse and write the correct values to each variable.

2.3.4 Data Saving

The Craniux data saving process, shown in Fig. 2.6, is designed to reliably stream data to disk

with minimal impact on system timing. The data saving manager is a stand alone application that

launches whenever Craniux enters its running state. This application establishes TCP connections

with all engines as described in Section 2.3.3. When an engine is ready to save data (Fig. 2.4) it

enqueues the necessary data, including a sample index, in a first in, first out buffer. In a separate

thread any available data is continuously removed from this buffer and sent to the data saving

manager. This design minimizes the impact of saving on system performance and also allows

all data to be saved in the same file on one host computer. The maximum size of the data saving

buffer is limited only by LabVIEW memory availability, but as long as the write speed of the disk is

faster than the read speed of the incoming data a large backup will not occur. For example, a typical

system setup that samples 32 channels of single-precision data at 1200 Hz and saves the data and

20 neural features per channel once every 40 samples would require an absolute minimum write

speed of approximately 2 MB/s. This speed is far below the capabilities of modern hard drives.

The data is separated into two categories for each engine: sampled variables and controls. The

first category contains data that is saved for every iteration of the system, such as the raw neural

data. The second category contains parameters that only change through user input, and thus only

need to be saved when these changes occur. For both categories the current sample index is saved

along with the data to ensure that all data can be aligned to reconstruct the experiment in an offline

setting. As with system communication, a developer creating new modules must implement a class

that inherits from the base data saving class and adds the custom variables and methods necessary

26 CHAPTER 2. SOFTWARE FRAMEWORK

Figure 2.6: Craniux data saving process. Data saving in Craniux follows a process that reliably
streams data to disk for offline analysis while minimizing the impact on system timing. The dotted
lines represent network communications while the black lines represent process flow.

for that module.

Data from each experimental trial, designated by the time period during which the system is

in its running state, is reliably streamed to a file in LabVIEW’s TDMS format. This format was

specifically created for efficiently streaming data to the hard drive [33]. Craniux also contains a

separate application that can be used to convert Craniux TDMS files into the MAT-file format us-

able by MATLAB (The MathWorks, Inc.). For offline analysis MATLAB is the software of choice

for many researchers, so the ability to convert to this format greatly improves data accessibility.

Furthermore, any data that is modified or created in MATLAB can be loaded and replayed through

the Craniux system by using the appropriate acquisition module.

2.4 System Evaluation

The goals laid out in Section 2.1 provide a means for measuring the effectiveness of Craniux. Of

these objectives it is difficult to quantitatively assess the last two: ease of use and extendability.

These goals can be assessed, though, by examining the requirements that are placed on a user or

2.4. SYSTEM EVALUATION 27

developer. The first two criteria, reliability and performance, can be more precisely measured.

Reliability is essentially a binary measure, in that it either is or it is not reliable. Any lack of data

integrity at all is not desirable, so it should be the case that no data is lost and that in an offline

environment the experiment can be fully reconstructed. Performance is easily examined by the

timing and consistency of system execution.

2.4.1 Reliability

Reliability is the most important of the four goals, as data integrity is a top priority with nearly

any potential Craniux task. An initial test on the data can be performed just by ensuring that no

data packets are lost. This check is simple and can be seen in real-time during the experiment

on the timing window. It is also easy to check for dropped packets by looking at the saved data

offline. The dozens of Craniux data files used throughout this dissertation contained no dropped

packets. The ability of the system to operate in real-time without losing data, though, depends on

the system’s processing time being faster than the data acquisition rate, which is examined further

in the next section.

Just checking for dropped packets alone does not ensure data integrity, though. The data must

be aligned between modules and saved correctly. This result can be shown by demonstrating that

an experiment with meaningful data can produce good results and be reconstructed offline. To

obtain this data, Craniux was used in a BCI experiment with real human ECoG data from an able-

bodied subject undergoing subdural epilepsy monitoring. All data collection and procedures were

approved by the University of Pittsburgh’s Institutional Review Board and informed consent was

obtained prior to implantation.

The experimental setup used the gUSBamp module, signal filtering, spectral estimation, a lin-

ear classifier, and cursor control. The subject attempted to control vertical cursor velocity to hit

targets. The control signal was generated from the high-gamma band power (70-110 Hz) of two

neighboring electrodes that showed modulation during overt movement [34]. These spectral fea-

tures were normalized to zero mean and unit variance using a baseline recording. A push-pull

28 CHAPTER 2. SOFTWARE FRAMEWORK

Figure 2.7: Reconstruction of a Craniux experiment [14]. This shows the data from a Craniux
BCI paradigm that used real-time human subject ECoG data. The experiment was reconstructed
offline in MATLAB using the data saved to disk from Craniux. Shown is (Top) one channel of
the raw ECoG data, (Top Middle) the time-frequency data for the same channel, (Bottom Middle)
the normalized control signal produced for vertical cursor movement, and (Bottom) the resulting
vertical cursor position over time, with the target position shown by the circles and trial onsets
shown by vertical dashed lines.

scheme was used for the control signal, as shown in (2.1), where c is the control signal, p1 and p2

are the spectral features, a is a gain factor, and θ is an offset.

c = a(p1 − p2)− θ (2.1)

For the cursor control task the cursor first appeared at the center of the screen. A target was

then presented at a location directly above or below the cursor. A trial was successful if the subject

was able to hit the target within 10 seconds. Fig. 2.7 shows the experimental results for one session

of brain control, during which the subject achieved 88% success. Each step of the experimental

process was reconstructed in MATLAB with the saved data, from the raw neural signal all the way

to the cursor control. The reconstructed portions of the experiment lined up correctly with each

other, and the results matched what was seen during the real-time experiment. This result shows

2.4. SYSTEM EVALUATION 29

that Craniux was able to maintain data integrity throughout the experiment and successfully stream

all necessary data to disk.

2.4.2 Performance

To evaluate the system performance, Craniux’s timing was analyzed for a typical experimental BCI

setup. Simulated data was passed into a g.USBamp amplification system from another computer.

Craniux sampled this data at 1200 Hz and processed it in 40 sample blocks for a 33.3 ms expected

system cycle time. The data was first passed through a band pass filter and standard notch filters

for line noise removal. Spectral estimation was then performed for a 25th order autoregressive

(AR) model with the Burg method and a 100 ms window. The estimate was divided into 10 Hz

frequency bins, with spectral power evaluated at 10 points in each bin. These spectral features

were used by a simple linear decoder. The application was a center-out cursor task rendered in a

3D environment, as shown in Fig. 2.2.

Two different timing measurements were evaluated: processing time and system frame rate.

There measurements were taken on both a single computer (Windows 7 x64 operating system,

Intel Core i7 CPU 920 @ 2.67GHz, 6 GB RAM, NVIDIA GeForce 9800 GT video card) and

with Craniux distributed across the network. For the distributed test, the user interface host, with

the portions of the system shown in Fig. 2.3, was the computer just described and all engines

were located on a second computer (Windows 7 x64 operating system, Intel Core i7 CPU 870 @

2.93 GHz, 4 GB RAM, ATI Radeon 4550 HD video card). For both configurations, tests were

conducted using 8, 16, 32, 64, and 128 channels of data.

The timing measurements were evaluated on 5,000 consecutive blocks, or nearly 3 minutes,

of collected data. The processing time measurement determined the amount of time between the

arrival of a block of data from the amplifier, and the time when Craniux had finished all processing

and feedback for that block of data. These results are shown in Fig. 2.8. As expected, processing

time was found to increase with the number of processed channels but remained below the 33.3

ms time required to maintain a consistent frame rate and prevent the loss of data. The increase

30 CHAPTER 2. SOFTWARE FRAMEWORK

Figure 2.8: Craniux system processing times. The error bars represent standard deviation.

in processing time appears to be linear with the number of channels. It should also be noted that

spectral estimation was by far the most computationally expensive portion of the tested system

configuration, and any changes to the configuration of that module could greatly affect the system’s

processing demands.

Distributing Craniux across the network showed slight improvements in processing time for all

channel configurations, with the improvement increasing substantially for the 128 channel case.

Fig. 2.9 shows the speedup of the distributed system, calculated as the ratio of the processing

time for the local configuration over the processing time for the distributed configuration. Since

processing time is only required to remain below the frame rate, running Craniux as a distributed

system is not necessary unless the system is under a heavy load. The extra processing time made

available when Craniux is distributed could easily be utilized to run more complex signal process-

ing algorithms or to decrease the frame rate, though. Network latency must also be taken into

consideration when distributing the system.

The system frame rate measurement used the same 5,000 consecutive frames of data. The

frame rate is the amount of time from when Craniux begins processing one block of acquired

data to when it begins processing the next. The results for the local configuration are shown in

Table 2.4. The distributed configuration had no significant effect on this measurement. For all

configurations the frame rate was found to be 33.3 ms, precisely what would be expected given the

system configuration. Furthermore, the low variability of this timing indicates that the user would

2.4. SYSTEM EVALUATION 31

Figure 2.9: Speedup obtained from distributing Craniux across two computers

Table 2.4: Craniux system frame rates. The values shown are mean ± standard deviation.

Channels Frame rate (ms)
8 33.3± 0.2
16 33.3± 0.1
32 33.3± 0.2
64 33.3± 0.6
128 33.3± 1.2

experience a consistent feedback update with no noticeable jitter.

2.4.3 Ease of Use

Craniux’s ease of use can be assessed by the requirements placed on a Craniux user in running

common experimental paradigms. The interchangeable modules and the straight forward interface

provided by the system launcher (Fig. 2.10) and the GUIs greatly help to minimize these require-

ments. By providing common modules that can be configured and connected according to the

user’s needs, many experimental setups can be created without any programming knowledge. For

example, common acquisition and signal processing methods can be easily tested with different

application modules.

Although it is not feasible to provide every existing paradigm as a built-in feature of Craniux,

dozens of common experiments can be implemented using modules that are already developed

and shown in Tables 2.1, 2.2, and 2.3. With a parameter file, any paradigm with existing modules

32 CHAPTER 2. SOFTWARE FRAMEWORK

Figure 2.10: Craniux system launcher

could be run simply by selecting the correct file and then clicking two buttons. Manually selecting

modules without a parameter file would require slightly more knowledge and time from the user,

but with instructions is still easily performed in seconds.

Customization of module parameters takes little additional effort as well, as the parameters can

be changed even during run-time through the module’s GUI. Updating parameters in this way is

highly useful, especially in BCI research where settings might need to be adjusted in response to

the feedback being generated by the user. Determining the correct adjustments is also made easier

by providing real-time visualization of all important data and system output.

The simplest method of running an experiment would only require one executable that could

open Craniux, load the modules, set the parameters, and begin execution. This method would

require a separate executable for every possible configuration, though, and would thus limit the

2.4. SYSTEM EVALUATION 33

number of experiments that could easily be run through combining different modules and setting

custom parameters. As Craniux currently stands it allows a fairly wide variety of paradigms to be

tested and customized with its built-in modules, but still requires minimal time and expertise to

run. Ultimately, though, the amount of skill required to correctly configure any module depends

on the task of the module itself and the design of the algorithm it implements. The main focus

of other chapters in this dissertation is in creating algorithms that effectively perform some of the

most common tasks in neural signal processing with simple, automated methods.

2.4.4 Extendability

Extendability can be examined by considering the requirements placed on a developer when creat-

ing a new module. This goal is highly related to the ease of use criteria, as many of the same design

considerations impact extendability. The modular design, along with the availability of common

paradigms, allows extensive code reuse. If a developer wants to test, for example, a new signal

filtering algorithm, then it would be possible to reuse acquisition, application, and other signal

processing modules as part of the experimental setup. The developer then only needs to work on

the new module.

Module layout minimizes the effort necessary in the creation of new modules. As can be seen in

Fig. 2.3.2, all portions of an engine relating to system framework (indicated by the white boxes) are

provided in templates. The GUI design is similar in that regard. The only framework-related work

that must be done when creating a new module is implementing classes for saving and system

communication. These classes inherit from the base classes that provide common functionality.

The developer is then free to focus on coding the algorithms of interest.

The task of developing modules is further simplified by the high-level programming environ-

ment provided by LabVIEW. Some programming knowledge and familiarity with LabVIEW are

still required, but the learning curve is fairly low compared to a language such as C++. The numer-

ous visualization and signal processing tools available also help to ensure that no additional coding

beyond the module-specific task needs to be done. Additionally, DLL files compiled from other

34 CHAPTER 2. SOFTWARE FRAMEWORK

languages and even nodes containing MATLAB script can easily be used within the framework.

Developers then have these options if they are more familiar with other languages or the task re-

quires another language. The gUSBamp module, for example, communicates with the amplifiers

through custom DLLs that were written and compiled in C++. It should be noted that a small

amount of overhead is involved in calling MATLAB scripts so these can not be used for tasks that

require optimal execution speed.

Craniux is designed to allow for fully custom algorithms and paradigms to be implemented as

new modules, while minimizing the time and programming skill it takes to do so. The design was

successful in allowing a developer to focus on the task of interest. Furthermore, the effort required

to implement those tasks was reduced. Few tasks that involve developing neural signal processing

methods are trivial, but Craniux provides a framework to make programming these methods easier

and more accessible.

2.5 Conclusions

It has been shown that Craniux is an effective software package for neural signal processing. It

maintains data integrity while reliably streaming data and experimental parameters to disk. System

execution is efficient, benefitting from the software’s design and from LabVIEW’s multi-threading

capabilities. The software also has a high ease of use; it allows common experimental paradigms to

be efficiently tested, customized, and visualized in real-time. Finally, due to the software’s design,

the provided templates, and the high-level graphical programming, it can be easily extended to

test novel algorithms and experimental paradigms. These traits make Craniux an excellent tool for

researchers, programmers, and non-expert end users.

The creation of tools such as Craniux is an aim of the work done for this dissertation. Indeed,

the goals for the software that were laid out in Section 2.1 reflect the overall goal of providing

accessible, yet powerful methods for neural signal processing. In order for the full potential of

Craniux to be realized, though, robust algorithms must be developed and implemented that fill

2.5. CONCLUSIONS 35

common needs. The following chapters explore such algorithms, with a focus on filtering and

artifact removal methods. Craniux was used as the main software platform for the research, devel-

opment, and implementation of the novel methods that are presented.

36 CHAPTER 2. SOFTWARE FRAMEWORK

Chapter 3

Line Noise

37

38 CHAPTER 3. LINE NOISE

Figure 3.1: Overview diagram highlighting line noise removal. The boxes with shadows indicate
the portion of the system that is discussed in this chapter.

3.1 Introduction

The software presented in the previous chapter is an excellent framework, but for a system to

truly be a valuable tool it must include methods to overcome common obstacles faced by users.

One such obstacle is the corruption of neural signals from various sources of noise. The next few

chapters develop algorithms that minimize the effects of some of the most common sources of

noise. In relation to the overall system, these algorithms are included in the conditioning block in

Fig. 3.1. This particular chapter focuses on line noise, as indicated in the same diagram.

Sinusoidal contamination can be a problem in many signal recordings. One of the most com-

mon sources of sinusoidal noise is the power line frequency at 60 Hz or 50 Hz. Interference from

line noise can especially be a problem in physiological recordings where the signal-to-noise ratio

(SNR) is typically low [35], [36]. This type of contamination can be a major hindrance in the

research or use of neural signals. Elimination of line noise has been an active area of research,

but many methods commonly implemented still leave room for improvement in eliminating the

interference while minimizing distortion of the underlying signal.

3.2. BACKGROUND 39

This chapter discusses a method for removing sinusoidal contamination that will be referred

to as the adaptive sinusoid canceler (ASC). The ASC is capable of frequency tracking and a

variable bandwidth in the absence of a noise reference. This method adds minimal complexity

to the standard adaptive noise canceling (ANC) filter configuration and using a generalized setup

proved effective in eliminating sinusoidal noise and avoiding signal distortion. In keeping with

the goals of this dissertation the filter achieved high performance while remaining accessible to a

non-expert user.

Relevant background methods and material are discussed in Section 3.2. The full implementa-

tion and details of the ASC are covered in Section 3.3. In order to obtain quantitative results, much

of the data used for analysis was simulated. For further verification real neural data was used, but

these results can only be visually presented since the true signal and noise are not known. The per-

formance of the ASC, standard notch filters, and an adaptive line enhancer (ALE) are compared in

Section 3.4. The conclusion is presented in Section 3.5. It should also be noted that the ASC was

first presented and initially validated in [37]. The work in this chapter improves upon the filter, and

offers greatly expanded analysis and results.

3.2 Background

3.2.1 Line Noise

For removing line noise in neural signals, it is common practice to use fixed notch filters centered

at the average power line frequency and its harmonics [38], [39]. The problem with this approach

is that power line frequency varies around its mean, so the notch must be wide enough to account

for the variation [40]. Increasing the notch width helps ensure the noise is removed, but also

increases the amount of the signal that is removed. Other common approaches include low pass

filtering below the power line frequency or doing a spectral analysis of the signal and ignoring

frequencies near the contamination. These techniques, while normally effective in eliminating the

contamination, could also discard useful data.

40 CHAPTER 3. LINE NOISE

The main objective of any noise removal problem is to eliminate the interference while causing

minimum distortion of the signal. For a sinusoidal noise component that can drift in frequency

this goal is best achieved by implementing a filter that is able to track the drifting frequency [41].

In doing so it can then also maintain a narrower filter bandwidth to decrease the distortion caused

to the underlying signal [42], [9]. Adaptive filters and phase-locked loops (PLLs) are two com-

mon solutions to accomplish this task, but these typically require an external reference signal and

possibly additional hardware as in [43].

3.2.2 Adaptive Noise Canceler

Overview

Adaptive filters have time-varying weights that adjust to minimize the mean squared value of an

error signal. In most cases the goal of the filter is to converge to a state in which it imitates an un-

known system. The ANC filter is a form of adaptive filter based largely on work done by Widrow

[44] and has proven to be an effective means of removing noise that is correlated with a known ref-

erence signal [45]. In [46], an ANC infinite impulse response (IIR) notch filter with varying poles

and zeros was developed to effectively remove sinusoidal noise, but this filter required manual

adjustment of parameters and a reference input that was correlated with the noise.

In some experimental setups, it might be difficult to record an accurate reference for the si-

nusoidal interference. This difficulty could be due to a number of factors including available

hardware, safety precautions and regulations, or the knowledge and experience of the personnel

involved. If a reference cannot be recorded then one must be artificially generated and it becomes

difficult for the ANC filter to outperform a standard notch filter. In order to maximize the potential

of using an ANC filter in this situation it is vital to be able to generate as accurate of a reference as

possible.

The method presented in [47] is an excellent example of an ANC filter that has been modified

to eliminate the need for an external reference signal for sinusoidal noise. That method produced

good results, but its bandwidth remained stationary and it also required an additional notch filter

3.2. BACKGROUND 41

Figure 3.2: System design for an adaptive noise canceling (ANC) filter. D is the recorded signal
that consists of the true signal S plus noise N . A reference correlated with N is given by X , and
the filter coefficients W are adapted by minimizing the output Ŝ so that N̂ most closely resembles
N before being subtracted.

that did not adapt with the detected noise frequency. For effective removal of sinusoidal noise

it is necessary to be able to track the noise’s frequency, and it is also useful to be able to vary

the bandwidth of the filter in order to more quickly and accurately adjust to changes in the noise

frequency.

Theory

A typical ANC filter is given in Fig. 3.2. The recorded signal is given by D, and a reference for

the noise is given by X . The reference must be temporally correlated with N , although a small

amount of time shift is acceptable as long as it does not exceed the length of the finite impulse

response (FIR) filter shown in the diagram with coefficients W . The filter minimizes Ŝk, which is

the difference between D and N̂ . Since X is correlated with N and not S, this process should also

minimize the difference between N and N̂ so that Ŝ converges towards S. For good performance

the correlation between N and S should be minimal. The sample index is denoted by k.

One of the most commonly used convergence methods for adaptive filters is the least mean

squares (LMS) algorithm [48]. The LMS filter update equation is given in (3.1), where L is the

filter length and σ2
x is the signal power of X . For real-time applications σ2

x must typically be

estimated. The bound on µ, the step-size parameter, is required for stability of the filter and was

derived in [49]. Many other factors are important, though, in ensuring the filter’s stability. In

general, smaller values of µ or larger values of L result in longer convergence times and smaller

steady state error, and vice versa.

42 CHAPTER 3. LINE NOISE

Wk+1 = Wk + 2µŜkXk, 0 < µ <
1

Lσ2
x

(3.1)

Sinusoidal Noise

For the case of sinusoidal noise, X is a sinusoid of the form in (3.2) where fsamp is the sampling

frequency, and B and φ are the amplitude and phase of the sinusoid, respectively. In this special

case, the ANC filter actually implements a 2nd order IIR notch filter centered at fx, the frequency

of the reference sinusoid. In [50] it was shown that the transfer function for an ANC filter in

the case of a pure sinusoidal reference is given by (3.3), where z is from the Z-transform. This

approximates a notch filter centered at fx with bandwidth approximated by (3.4).

xk = B cos(2πfxk/fsamp + φ) (3.2)

W (z) =
z2 − 2z cos(2πfx/fsamp) + 1

z2 − 2
(
1− LµB2

4

)
z cos(2πfx/fsamp) +

(
1− LµB2

2

) (3.3)

BW =
LµB2fsamp

2π
Hz (3.4)

The accuracy of this approximation depends on the strength of the time-invariant components

of the filter’s transfer function relative to the time-varying components. This ratio was also shown

in [50] to be given by (3.5). If fx is known beforehand to not drift by a large amount then it is easy

to minimize β by choosing an L to make the numerator of (3.5) close to zero. L should then be the

nearest integer to any value that produces an integer when multiplied by the normalized frequency

(fx/fsamp). As the range of possible values for fx increases or as the normalized frequency ap-

proaches 0 or 0.5 (values at which the denominator of β is close to zero), L must be increased to

help ensure β is small.

β =
sin(2πLfx/fsamp)

L sin(2πfx/fsamp)
(3.5)

3.2. BACKGROUND 43

Figure 3.3: System design for an adaptive line enhancer (ALE). This filter operates the same way
as the ANC shown in Fig. 3.2, but a delayed version of the recorded signal is used as the reference.

When given a sinusoidal reference and an appropriate value of L, it is then known that the

ANC technique with the LMS algorithm converges to a notch filter centered at the reference’s

frequency with a bandwidth that depends on µ. If the reference is an accurate model for the noise,

then the ANC filter is able to easily track drifts in the frequency of the sinusoidal interference. For

situations where the frequency of the sinusoidal noise has any amount of uncertainty, such as with

power line noise, this method is a far superior solution to a fixed notch filter. The challenge then

becomes maintaining this performance in the absence of an accurate reference.

3.2.3 Adaptive Line Enhancer

The ALE is a version of the ANC filter that was designed for cases where a reference is unavailable

and either the noise or the signal is known to be periodic [51]. It has been found to be useful for

many other tasks, though, and can also be used to eliminate correlated portions of a signal [52].

For the purposes here, it is known that the noise is periodic and elimination of any other correlated

signal portions should be avoided. The ALE typically assumes then that the signal is not periodic,

although if configured carefully can still be used as long as the signal period is not an integer

multiple of the noise period and vice versa. The ALE design is shown in Fig. 3.3. Although prior

work has shown convergence algorithms and other parameters to have an effect on its performance

[53], it is not a difficult method to implement.

There are a few practical considerations to keep in mind with the ALE. The key to most of

these is remembering that the reference is the recorded signal shifted by τ , which the adaptive

filter can then shift an additional L in either direction. This means that the range from τ − L to

44 CHAPTER 3. LINE NOISE

τ + L should contain minimal values in the autocorrelation function of S. It also means that same

range should contain an integer multiple of the period of N . These two considerations allow the

filter to match N̂ to the periodic N while minimizing the effect of S that remains in N̂ . If L is

greater than one half-cycle of N then the second condition is met no matter the value of τ .

The ALE is effective at removing periodic noise, but it can add a significant amount of signal

distortion. Even if the filter is able to perfectly remove N , it still contaminates the signal with a

delayed and filtered version of S. So based on a number of factors such as the original SNR of

the recording, the autocorrelation of S, the spectral shape of S near fN , and how precisely fN is

known, an ALE may or may not outperform a notch filter for the removal of sinusoidal noise.

3.3 Methods

3.3.1 Adaptive Sinusoid Canceler

It is well known that an ANC filter is effective if given an accurate reference signal, and the

difficulty here lies in implementing an ANC scheme that does not rely on an external reference.

This can be accomplished by taking advantage of the inherent structure of the ANC filter and

making a few small changes to the algorithms presented in Section 3.2.2. The method discussed in

this section is diagrammed in Fig. 3.4.

Frequency Tracking

A useful property of the ANC filter can be utilized to track the frequency of sinusoidal noise. In

Section 3.2.2 it was seen that in Fig. 3.2, the path from D to Ŝ when X is sinusoidal is a notch

filter centered at fx with a bandwidth given by (3.7). A corollary to this property is that the path

from D to N̂ is a bandpass filter matching the notch filter in center frequency and bandwidth [50].

This property means that if the true line noise frequency (fN) drifts then a sinusoid correlated

to N , although attenuated, is still present in N̂ . Since N̂ is bandpassed the estimated frequency,

fN̂ , can be calculated with a method as simple as measuring time between zero crossings (ZC). The

3.3. METHODS 45

Figure 3.4: System design for the adaptive sinusoid canceler (ASC). The same basic structure
as the ANC in Fig. 3.2 is present, but here the reference is a digitally generated sinusoid with a
frequency of f̄N̂ . This frequency is calculated by taking a moving average of the distances between
zero crossings in N̂ . The learning rate of the filter is also a function of f̄N̂ , as shown by (3.9).

time of a zero crossing can be estimated using interpolation. Due to noise introduced by broadband

signal components, a moving average (MA) of length T is applied to fN̂ to produce f̄N̂ . Higher

values of T produce smoother, less responsive estimates. Since the goal is to demonstrate a generic

filter without fine-tuning parameters, T = 120 was used for all analysis. New samples of fN̂ occur

at each zero crossing of N̂ . So for fN = 60 Hz this window corresponds to one second of data.

A reasonable estimate of fN is used to initialize the ASC. If no estimate for fN is known, then

the filter might need to be initialized by using a method such as spectral peak detection to determine

the initial reference frequency. Once the filter is initialized it begins calculating f̄N̂ , which tracks

and converges towards the true fN . The speed and accuracy of this convergence depend on the

bandwidth of the filter, but this value is adapted through an automated method as well.

Variable Bandwidth

To simplify the bandwidth calculation, the normalized u given in (3.6) is used in place of µ [48].

Any further reference to the learning rate is referring to u. This substitution is sometimes referred

to as normalized LMS (NLMS). In addition to making the learning rate bounds easier to remember,

u allows the filter bandwidth given in (3.4) to be represented by (3.7), since for a sinusoid the signal

power (σ2
x) is known to be B2/2. The dependence on L and B has been removed.

46 CHAPTER 3. LINE NOISE

µ =
u

Lσ2
x

, 0 < u < 1 (3.6)

BW =
ufsamp
π

Hz (3.7)

The bandwidth of the notch filter from D to Ŝ, and also the bandwidth of the corresponding

bandpass filter, is then controlled by u. This value can be automatically adjusted based on the

behavior of f̄N̂ . If the estimate is not consistent, demonstrating that the ASC has a poor confidence

in its estimated reference frequency, then the bandwidth should be increased. This increase helps

maintain the elimination of the sinusoidal noise in Ŝ, and at the same time helps to decrease the

attenuation of the line noise in N̂ , causing the measurement of the zero crossings to be more

accurate. As f̄N̂ approaches fN and becomes more consistent, u decreases and the filter narrows

around f̄N̂ . This decrease reduces the amount of the broadband signal eliminated in Ŝ and passed

through to N̂ , both improving the output and increasing the accuracy of f̄N̂ (which in turn allows

u to decrease further). The process repeats in an iterative fashion as f̄N̂ tracks fN . Bounds were

placed on u so that the filter’s bandwidth remained between 0.2 and 4 Hz.

The relation between the changes in f̄N̂ and the filter bandwidth is shown in (3.8), where the

function GT (f̄N̂) calculates the difference between the maximum and minimum of f̄N̂ during the

window T . Various other measures were experimentally examined, and GT proved to be a good

tradeoff between stability and responsiveness. Measures such as the derivative that use the rate of

change of f̄N̂ were not as consistent. Measures such as the standard deviation of f̄N̂ , or even a

linear fit to all the points in the window, were fairly consistent but did not respond as quickly to

changes in fN . The results of (3.8) were not highly susceptible to small fluctuations in f̄N̂ , but still

quickly responded when f̄N̂ began moving towards a new value of fN .

BW = c ∗GT (f̄N̂) Hz (3.8)

The value of c is a free parameter that determines how much the filter’s bandwidth responds to

3.3. METHODS 47

changes in f̄N̂ , and is referred to as the bandwidth sensitivity. The effect of bandwidth sensitivity

does depend somewhat on T , but this relationship is not as strong as would be expected. Higher

values of T calculate GT over a greater distance, but they also add more smoothing to f̄N̂ . These

two behaviors to a large extent cancel each other out, and a single value of c was experimentally

found to be effective for various values of T , fsamp, and fN . Again, though, the goal here is

to produce a generalized filter rather than demonstrating the effect of fine-tuning parameters, so

c = 20 was used for all results and analysis of the ASC filter.

Finally, combining (3.7) and (3.8) gives the ASC’s learning rate u shown in (3.9). The end

result is a notch filter that tracks fN while minimizing its bandwidth through a process that first

increases bandwidth to locate a new fN , then narrows its bandwidth around the new value.

u =
cπGT (f̄N̂)

fsamp
(3.9)

3.3.2 Data Collection

Simulated Data

An electrocorticography (ECoG) signal simulator built in to Craniux, the software framework dis-

cussed in Chapter 2, was used to generate 8 channels of signals [14]. These signals had a sampling

frequency of 1200 Hz and contained pink noise with a 1/f power falloff to simulate ECoG baseline

signals [54]. Simulated power line noise N was added to S using (3.10), where m is the harmonic

number and fN is the fundamental line noise frequency. Two harmonics were added (M = 2) in

addition to the fundamental frequency and each was given half the amplitude of the previous one.

N =
M∑
m=0

A

2m
cos(2πmfN + φ) (3.10)

A was calculated to create a specified SNR between S and N . Since the harmonics are non-

interfering sinusoids their total power is equal to the sum of their individual powers as shown in

(3.11). For a specific SNR, A is then calculated with (3.12). Ps is the average power of S.

48 CHAPTER 3. LINE NOISE

PN =
M∑
m=0

(A/2m)2

2

=
2A2

3
(1− (1/4)M+1) (3.11)

A =

√
3Ps

2 ∗ 10SNRdb/10(1− (1/4)M+1)
(3.12)

At times the line noise fundamental frequency, fN , was controlled deterministically. For further

analysis, it was also sometimes varied according to the Gauss-Markov process in (3.13) as was

done in [9]. η∆k
is a random sample from a zero-mean Gaussian distribution with variance σ2

η .

fN,∆k+1
= fN,∆k

+ η∆k
(3.13)

Real Data

A small amount of ECoG data was also used to qualitatively show the removal of line noise from

real data. This data also had a sampling frequency of 1200 Hz and was collected from a human

subject who was subdurally implanted with a 32 channel ECoG grid over primary motor and senso-

rimotor areas. All data collection and procedures were approved by the University of Pittsburgh’s

Institutional Review Board and informed consent was obtained prior to implantation.

3.3.3 Experimental Parameters

Data was collected in the method described in Section 3.3.2 and the ASC was validated through

comparison to more traditional removal methods for sinusoidal noise. The error after filtering, or

the remaining noise, was calculated as the difference between the true signal and the filtered signal.

In this way all mean squared error (MSE) and SNR calculations took into account both the removal

of the sinusoidal noise and any distortion that occurred to the signal. Unless otherwise noted, the

3.4. RESULTS AND DISCUSSION 49

Figure 3.5: Average autocorrelation of 10 second windows of S. The error bars represent the
standard deviation across all windows.

SNR before filtering was always 0 dB. All results presented for the simulated data took the average

across the 8 channels of data and all filtering methods operated on the same sets of data. The ASC

tracked the noise’s fundamental frequency and for the ASC, as well as all notch filter methods,

corresponding filters were added for the harmonics.

As stated previously, the ASC used c = 20 and T = 120 for all conditions. For both the ALE

and the ASC, L = 20 was used. According to (3.5), this length should allow the ASC to perform

optimally by minimizing β. A length of 20 is also longer than one half-cycle of N , which means

the only consideration for the ALE was to select τ to minimize the autocorrelation of S, which is

shown in Fig. 3.5. From this figure, τ = 0.5 seconds was chosen as a sufficient delay.

3.4 Results and Discussion

3.4.1 Simulated Data

Internal State of the ASC

The overall performance of the ASC depends on the accuracy of its internal adjustments, so the

behavior of its frequency tracking and variable bandwidth was examined first. To do so, the fre-

quency of the additive sinusoidal noise was adjusted at 30 second intervals by increasingly larger

amounts. Fig. 3.6 shows the internal behavior of the ASC as these changes occurred. As can be

50 CHAPTER 3. LINE NOISE

Figure 3.6: ASC frequency tracking and bandwidth as changes in noise frequency occur. Shown is
(Top) the error in the ASC’s frequency estimate, (Middle) the ASC’s bandwidth as the frequency
changes occur, and (Bottom) the log scaled magnitude of changes in the noise frequency.

seen, the filter was able to effectively track changes in the noise frequency while adjusting its filter

bandwidth accordingly. As a reminder, the ASC’s bandwidth was bounded by 0.2 and 4 Hz.

The spikes in the frequency error correspond to the convergence period of the filter, and during

these periods the bandwidth of the filter increased to help keep the noise attenuated and to allow

the filter to more quickly find the new frequency. As the changes in frequency get progressively

larger so do the size and then duration of the increases in bandwidth. This process is susceptible to

noise, as evidenced partly by the small unexpected increases in bandwidth seen between the two

frequency changes near 250 seconds.

ASC Frequency Tracking Performance

The frequency tracking of the ASC needed a baseline to compare against, so a spectral peak de-

tection method was implemented and analyzed. This method simply took a fast Fourier transform

(FFT) of the signal and looked for the frequency between 55 and 65 Hz where a peak occurred.

To examine the effectiveness of this method against the ASC’s frequency tracking the stochastic

model for noise frequency given in (3.13) was employed. The model was set up with ∆k = 2

seconds and ση = 0, 0.01, and 0.1. For ση = 0 the frequency remained at 60 Hz.

It is well known that the accuracy of an FFT’s frequency estimate increases with the length

3.4. RESULTS AND DISCUSSION 51

Table 3.1: MSE between the actual and estimated ASC frequency

σn = 0 σn = 0.01 σn = 0.1

ASC 5.0 ∗ 10−5 9.8 ∗ 10−3 2.9 ∗ 10−1

FFT 3.4 ∗ 10−3 8.3 ∗ 10−3 2.9 ∗ 10−1

of its window, which corresponds to the resulting number of frequency bins. When the goal is to

track frequency changes, though, longer windows could result in missing quick changes. With this

in mind, the spectral peak detection method was tested using window sizes from 1 second up to 10

seconds in 1 second increments. An increase in performance was seen from 1 second to 2 seconds,

but after that the average results did not vary significantly.

The results for a 2 second window are given in Table 3.1. Both methods perform similarly,

with the ASC coming out ahead at ση = 0 and spectral peak detection slightly better at ση = 0.01.

It is expected that there are times in which spectral peak detection or other frequency estimation

methods could produce better results than the one employed here by the ASC. A main benefit of

the ASC in its current form is that it does not add much complexity or computational cost to the

standard ANC configuration.

ASC Variable Bandwidth Performance

Next, the effect of the ASC’s variable bandwidth on performance was analyzed. Since the variable

bandwidth was bounded by 0.2 and 4 Hz, for comparison the filter was set up to first have a fixed

bandwidth of 0.2 Hz, and then of 4 Hz. The resulting performance is shown in Fig. 3.7. This

figure was created using the same data as Fig. 3.6, so these two figures can be examined together

to better see the relationship between speed of convergence and the ASC’s variable bandwidth.

With a fixed 0.2 Hz bandwidth the filter could converge to a low MSE, but convergence time

significantly increased as the magnitude of the changes in frequency increased. With a fixed 4

Hz bandwidth, the filter was very consistent and converged quickly even at the larger frequency

changes, but it was not able to produce as low of an MSE. With the variable bandwidth the filter

still had more variance in its MSE than the fixed 4 Hz bandwidth, but it was able to converge

52 CHAPTER 3. LINE NOISE

Figure 3.7: Performance of the ASC with and without variable bandwidth. The top three graphs
show the MSE between the true signal and filtered signal. The MSE was smoothed with a 100 ms
long moving average filter to make the plots more visibly clear. Shown is (Top) variable bandwidth
between 0.2 and 4 Hz, (Top Middle) bandwidth set at 0.2 Hz, (Bottom Middle) bandwidth set at 4
Hz, and (Bottom) the log scaled magnitude of changes in the line noise frequency.

quickly and produce a lower average MSE. The SNRs over the whole trial for the variable, 0.2

Hz, and 4 Hz bandwidth were 20.2 dB, 11.5 dB, and 17.0 dB, respectively. The results of the fixed

0.2 Hz and 4 Hz bandwidths do not necessarily indicate the performance that would be seen from

bandwidths in between these values, but the boundary conditions were used to illustrate that the

variable bandwidth method is able to retain some of the advantages of both the extreme cases.

Deterministic Noise Frequency

For filters with a fixed center frequency, their effectiveness depends only on the distance of the

noise frequency from that center. Using the stochastic model given by (3.13) with a limited number

of samples could give inconsistent results for these methods based on how far the sample mean

drifts from the true mean. So for comparison to a fixed 4 Hz notch filter the frequency of the

additive noise was increased from 60 Hz by 0.1 Hz every 2 minutes to measure the resulting SNR

at specific frequencies. The SNR after adding the noise was 0 dB.

As shown by Fig. 3.8, the performance of the standard notch filter degraded as the frequency

increased to 61 Hz even though its bandwidth was 4 Hz. The ASC and ALE were able to maintain

a steady SNR. The ASC produced the highest SNR even at 60 Hz, the ideal condition for the

3.4. RESULTS AND DISCUSSION 53

Figure 3.8: Performance of filters on a deterministically drifting sinusoid. The x-axis shows the
distance of the noise frequency from 60 Hz and the y-axis shows the filtered SNR.

fixed notch filter. Note that the SNR here also takes into account the time period during which the

ASC is adjusting to the new frequency, and the small variance in the SNR is due to this convergent

process and finite data sample lengths.

The performance of ALE on this data was well below that of the ASC. This was most likely

due to the delayed portions of S used by the filter impacting the output. Even if the autocorrelation

is zero at the chosen lag, the delayed signal is still part of N̂ and is subtracted out. This essentially

adds random noise to the signal that has the same shape as S.

Stochastic Noise Frequency

To measure the ASC’s performance on drifting sinusoidal noise, the stochastic model for noise

frequency given in (3.13) was once again employed with ∆k = 2 seconds and ση = 0, 0.01, and

0.1. The case of ση = 0 was included so that a baseline comparison to a standard notch filter could

be made, and also since an adaptive filter such as the ASC might be used in the case where it is

unknown if a sinusoidal noise frequency will actually drift or not. For each value of ση, 5 minutes

of data were generated and analyzed. The outcomes of these experiments are given in Table 3.2.

These results are consistent with both Fig. 3.7 and Fig. 3.8. The first column of Table 3.2 again

indicates that the ASC outperformed a traditional 4 Hz notch filter even under ideal circumstances

for the notch filter. This is because the frequency estimate is able to converge to 60 Hz and then

use its confidence in the noise frequency to narrow its bandwidth and minimize distortion of the

54 CHAPTER 3. LINE NOISE

Table 3.2: Filtered SNR (dB) for different standard deviations in the noise frequency model.

σn = 0 σn = 0.01 σn = 0.1

Var. fc, BW (ASC) 25.3 22.8 17.2
Var. fc, BW = 0.2 25.1 22.0 6.9
Var. fc, BW = 4 17.2 17.2 17.0
4 Hz Notch 17.2 - -
ALE 4.6 4.5 4.3

signal. The ALE once again maintains consistent performance, but not at the level of the ASC.

Of the frequency tracking methods, the variable bandwidth produced the highest SNR across all

3 tested conditions. It is interesting to note that, although by an insignificant amount, the variable

bandwidth ASC outperformed the variable frequency, 0.2 Hz bandwidth filter even at ση = 0.

Since the frequency estimate is subject to noise, it is possible that the variable bandwidth is an

advantage even for a fixed unknown noise frequency.

At ση = 0.1, the 0.2 Hz bandwidth filter’s performance dropped significantly while the variable

bandwidth ASC was able to keep performance at the level of the 4 Hz bandwidth filter. The 4 Hz

bandwidth filter performed well in all tested conditions, but was unable to take advantage of the

lower variances to converge more tightly around the line noise. The variable bandwidth method

was able to increase performance at the lower variances and still maintain a good SNR at the

highest variance.

A careful reader might note that results similar to those in Table 3.2 and Fig. 3.8 were presented

in [37], but that the numbers are slightly different. For some of the results this is simply due to

modifications made to the ASC. It is also because all methods were tested on new data sets that

were generated with an initial SNR that included all noise harmonics, while in [37] the initial SNR

was only measured between the signal and the noise at the fundamental frequency.

Variable Initial SNR

With SNR in mind, it can be observed that the accuracy of the ASC’s frequency tracking and band-

width adjustments might depend heavily on the initial SNR of the recording. To help determine

3.4. RESULTS AND DISCUSSION 55

Figure 3.9: Performance of the ASC and the ALE as the initial SNR changes.

this effect, 5 minute segments of data were generated with SNRs ranging from -40 to 40 dB. The

stochastic noise frequency model was used with ση = 0.01. The results for both the ASC and the

ALE for this data are shown in Fig. 3.9.

The ASC was able to improve the signal quality for any initial SNR below 10 dB, with its best

performance coming at 0 dB. Once the initial SNR got to 20 dB the ASC was unable to locate the

noise due to the broadband noise components in N̂ being significant enough to make the frequency

estimate unreliable. As with a standard notch filter, though, even if the frequency estimate were

accurate it is doubtful that the SNR could be improved at that point. The distortion caused by the

filter would most likely outweigh the noise removal.

For lower initial SNRs, the frequency estimate accuracy improved but the resulting SNR from

the ASC still dropped sharply. The penalty for the accuracy being off even a small amount was

much more severe in this case because the high power noise was then not fully attenuated by the

filter. The variance in the noise frequency model was enough to cause momentary inaccuracies

in the frequency estimate that let some of the noise slip through. Refer back to Table 3.1 to see

that even with an initial SNR of 0 dB the frequency estimate MSE dropped by almost 2 orders of

magnitude from ση = 0 to ση = 0.01. For example, with a -40 dB initial SNR and ση = 0, the

ASC was still able to converge to output an SNR of about 16 dB.

The ALE’s performance on the variable SNR data was more consistent than that of the ASC,

but still overall lower. Unsurprisingly, the ALE was not able to improve its performance above

about 5 dB for the higher initial SNRs, resulting in degraded signal qualities. At lower SNRs, the

ALE’s performance did not drop off as sharply as the ASC’s, with the ALE actually having far

56 CHAPTER 3. LINE NOISE

Figure 3.10: SNR resulting from filtering a signal with a sinusoidal component near the sinusoidal
noise component. The difference in frequency between the components is given on a log scale.

superior results at an initial SNR of -40 dB. Since the ALE is using the signal itself as a reference

rather than generating its own, it always has the precise frequency of the noise in its reference. By

the very way in which it’s designed, the ALE places a much higher value on removing the noise

than it does on preserving the signal. This trait causes the relative strength of the ALE to increase

as the initial SNR decreases.

Sinusoidal Signal Components

As a last test with simulated data, the ability of the ASC to discriminate between sinusoidal noise

and a neighboring sinusoidal signal component was examined. In this test the assumption was

made that the initial frequency estimate is closer to the noise frequency than to the sinusoidal

signal component, otherwise the ASC would latch on to the wrong sinusoid. The noise component

was set to a frequency of 60 Hz, while the signal component began at a frequency of 70 Hz and

every 2 minutes was moved closer to 60. The results of this test are shown in Fig. 3.10. The initial

SNR was again set at 0 dB, which means that the sinusoidal noise component did have a slightly

higher amplitude than the sinusoidal signal component.

For the ASC, the main transition in performance in Fig. 3.10 occurred between about a 2 and

5 Hz frequency difference. Above 6 Hz the performance leveled out, indicating that the sinusoidal

signal component was left intact by the ASC. At the top the performance was even slightly higher

than in Fig. 3.8, which was most likely because the sinusoidal signal component resulted in a

larger portion of the signal power being outside of and unaffected by the notch filter. Below a 1

3.4. RESULTS AND DISCUSSION 57

Hz difference the performance again leveled out, indicating that the filter could no longer discern

between the two components. Until the ASC was able to discriminate between the 2 frequencies

and maximize its performance, it behaved similarly to a 4 Hz fixed notch filter.

The results of the ALE are also presented in Fig. 3.10, although this test was not something for

which the ALE was designed. The ALE does not target a specific frequency, so it removed both

components. Although τ and L can be manipulated to get the ALE to favor one component, this

would in general not be a worthwhile practice if that much information is known beforehand about

the relevant frequencies.

3.4.2 Real Data

Finally, the effectiveness of the ASC in removing line noise from ECoG signals was qualitatively

shown on a small amount of real data. These results are meant to offer initial evidence for the

feasibility of the filter on real data. Before any additional processing was performed, the signals

were bandpass filtered from 1 to 250 Hz. Fig. 3.11 shows the FFT on 5 minutes of this data before

and after being filtered by both the ASC and the ALE. Standard notch filters are not shown here

since visibly, there would not be much difference between them and the ASC.

In the original signal clear spikes are visible at 60 Hz and 180 Hz, with only a small one at 120

Hz. The ASC removed all of these spikes, and the visible lower frequency portions of the signal

were not noticeably affected. The ALE greatly diminished, but did not remove, all of the spikes. It

also affected other portions of the signal.

To get a closer look at the effect of the filtering on the real data’s spectrum, the coherence of

the data over the same 5 minute interval was calculated. The results are shown in Fig. 3.12. The

ASC’s coherence was what would be expected for a typical notch filter, with sharp dips to 0 at each

noise harmonic, and 1 everywhere else (the small dip below 1 Hz is a result of the signal being

bandpass filtered and having no real content below 1 Hz).

The ALE’s coherence showed significant effects on portions of the spectrum outside of the

noise harmonics. Surrounding 60 Hz and 180 Hz, the coherence could be seen to drop. Addition-

58 CHAPTER 3. LINE NOISE

Figure 3.11: Spectral power of real ECoG data with line noise contamination. Shown is (Top)
the original signal, (Middle) the signal after filtering with the ASC, and (Bottom) the signal after
filtering with the ALE.

Figure 3.12: Coherence of the ECoG data with the output of (Top) the ASC and (Bottom) the ALE

ally, the lower frequency portion of the coherence resembled the inverse of the original signal’s

spectrum. This result can be expected since the ALE subtracts out a shifted and filtered version of

the original signal.

3.5 Conclusions

This chapter presented a filter, termed the adaptive sinusoid canceler (ASC), designed to effectively

remove drifting sinusoidal noise. The ASC operates in a computationally efficient manner with

3.5. CONCLUSIONS 59

minimal user input and without the use of a reference signal. The results from the ASC were

superior to those from traditional notch filters and an adaptive line enhancer (ALE).

The frequency tracking and variable bandwidth portion of the ASC were shown to work well.

The filtering performance was shown to be excellent under varying conditions for the noise fre-

quency. Circumstances that could cause the performance of the ASC to drop were also explored,

including the initial SNR being too low or too high or the signal having a sinusoidal component

close in frequency to the noise component. The ASC performed within expectations for these sit-

uations and comparable to or better than alternative methods. Finally, it was demonstrated that the

ASC was effective on real data.

For a specific situation in which parameters such as the SNR, the precise noise frequency, and

maybe even a reference signal are known beforehand, a better filter could probably be tailored to

meet that need. Indeed the ASC’s parameters could even be fine-tuned to better suit some of the

situations tested in this chapter. The ASC was shown to still be effective with the same parameters

under a variety of conditions, though, and this versatility and ease of use is part of what makes it

an attractive option for the removal of sinusoidal noise. The computational cost of the ASC also

allows it to be used in most real-time systems.

The results of the ASC in this chapter demonstrate that it outperforms traditional methods for

line noise removal from neural signals. It is also easy to use; it requires no expert knowledge to

configure it in such a way as to achieve the performance shown here. The ASC is another valuable

method for effectively processing neural signals and allowing researchers and end users alike to

focus on other tasks.

Line noise is far from the only source of contamination in neural data, though, and for a system

to be effective in filtering these signals it must also address other common noise. The follow-

ing chapters present methods for some of these other types of noise. In the next chapter ocular

artifacts (OAs) are examined and in Chapter 5 broadband contamination, usually caused by elec-

tromyographic (EMG) activity, is addressed.

60 CHAPTER 3. LINE NOISE

Chapter 4

Ocular Artifacts

61

62 CHAPTER 4. OCULAR ARTIFACTS

Figure 4.1: Overview diagram highlighting OA removal. The boxes with shadows indicate the
portion of the system that is discussed in this chapter.

4.1 Introduction

Artifacts produced by eye movement and blinks, commonly referred to as ocular artifacts (OAs) or

electrooculographic (EOG) artifacts, are another common source of noise in neural signals. OAs

are often dominant over other electrophysiological artifacts and can make neural data unusable.

The methods developed for this chapter attempt to remove these artifacts in order to prevent the

loss of data contaminated by OAs. Fig. 4.1 indicates this goal, as related to the entire system

presented in this dissertation.

In this chapter, OA removal techniques are evaluated on magnetoencephalography (MEG) data.

Although OAs do occur in intracranial recordings [55], they are usually a larger problem in record-

ings from outside the skull such as MEG. This high-dimensional data covers nearly the entire

surface of the brain, accounting for the changes in OAs across different recording sites. The feasi-

bility of removal techniques on high-dimensional data is also an important factor to determine. The

goal of this chapter is to evaluate novel OA removal algorithms on this data through a quantitative

comparison to traditional removal methods. This material was earlier published in [56].

4.2. BACKGROUND 63

The first novel technique uses a discrete wavelet transform with a Haar basis function to localize

artifacts in time and frequency before removing them with thresholding. A method was developed

in order to automatically select the level of decomposition for optimal time-frequency isolation of

artifacts. This method is based on the smoothness of the artifactual approximation coefficients.

The second novel method separates the signal into independent components and labels some

as artifactual by a method termed distribution offset, which measures the difference between the

mean and median of each component. The correct number of components is removed based on

distribution offset and the power of the reconstructed signal.

A major challenge with OA reduction in neural data is evaluating the results [57] on real data.

A method for that purpose was developed here based on correlation, Euclidean distance, and differ-

ence in power between the signal before and after OA removal, as well as the number of detected

artifacts before and after removal. These metrics attempt to measure the effectiveness of the tech-

niques in removing OAs while preserving neural data.

For comparison to the novel OA removal techniques, a few traditional methods based on re-

gression, principal component analysis (PCA), and independent component analysis (ICA) are also

analyzed. The background for methods used in this chapter is presented in Section 4.2 and the im-

plementation of these methods is given in Section 4.3. The results and discussion are in Section

4.4 and the conclusion in Section 4.5.

4.2 Background

4.2.1 Ocular Artifacts & Neural Recordings

OA removal is a difficult task due to the unpredictable changes in the artifacts between channels

and the challenges in obtaining a clean reference signal. EOG recordings near the eyes can pro-

vide a good model for an artifact, but even these recordings are contaminated by neural data and

other external signals. It is also difficult to avoid OAs, since attempting to not blink introduces a

cognitive process in the brain that alters the underlying neural data [10], [11].

64 CHAPTER 4. OCULAR ARTIFACTS

Figure 4.2: Types of OAs. Shown is (Top) eye movement, (Middle) saccadic movement, and
(Bottom) an eye blink.

Neural recordings can be modeled as in (4.1), where D is the recorded signal channel m at

timepoint k, S is the actual neural activity at the sites of the recordings, N contains each noise

source v, and A determines the contribution of each noise source to each channel of neural data.

Here, it is assumed that the source of noise is eye movement so A is null for the columns of all

other noise sources. Three types of OAs must be accounted for, though: 1) normal eye movement

resembles a low frequency drift, 2) blink artifacts produce a sharp spike, and 3) saccadic artifacts

produce a near box-shaped waveform (Fig. 4.2). OAs occupy a fairly wide frequency band due to

these different types, but they are generally strongest at under 4 Hz [58].

Dm,k = Sm,k + Am,v ∗Nv,k (4.1)

It is often possible to obtain a model for an OA through EOG reference channels. OAs occur

because the cornea and retina are oppositely charged, causing the eye to be a dipole. Movement

of this dipole creates a large change in potential that propagates across the scalp and contaminates

neural recordings, especially those with electrodes or sensors located outside the skull. EOG ref-

erence channels attempt to measure this contamination at the source with electrodes placed above

and below and to either side of the eye (to account for both horizontal and vertical eye movement).

Sometimes electrodes are also used to measure radial eye movement.

4.2. BACKGROUND 65

Figure 4.3: Effect of an OA on different data channels. Shown is (Top Left) the EOG reference
channel, (Top Right) a neural data channel in which the artifact is nearly duplicated, (Bottom Left)
a neural data channel in which the OA’s effect has opposite polarity and appears slightly delayed,
and (Bottom Right) a neural data channel in which no obvious effect is visible.

4.2.2 Ocular Artifact Removal Techniques

Regression

Since it is possible to obtain a model for the noise through EOG recordings, (4.1) leads naturally

to the use of regression to remove the artifacts from the recorded signal. N is approximated by the

EOG channels, and then it is only necessary to calculate A to solve for S in (4.1). The problem

with the regression method, though, is that it assumes the EOG recordings are clean models for the

noise. In reality the contamination is bi-directional and a small amount of neural data propagates

to the sites of the EOG recordings. In subtracting out the EOG signals some neural information

is then lost. Also, neural data that propagates to the reference channels is introduced into other

recording sites [59].

With correlation between the clean neural signal and the EOG recording, it is actually im-

possible to solve for an exact value of A in the regression model. Even methods that utilize a

topographic map of electrical propagation from the eyes across the scalp fail due to the inherent

variance in such a map caused by skin and environmental conditions. An OA can also affect neural

channels in different ways, as shown by Fig. 4.3.

66 CHAPTER 4. OCULAR ARTIFACTS

Figure 4.4: Illustration of component-based artifact removal process. Here, the eye blink artifact
seen near the end of the signals is isolated to the top component. The columns are then nulled that
correspond to this component in the mixing matrix, so that the component is removed from the
original signals.

Component-based Removal

Another approach for OA reduction uses component-based methods such as PCA and ICA. The

goal in these methods is to 1) transform the original signal into a component space, 2) identify

components that correspond to artifacts, and then 3) transform back to the original data space

using only non-artifactual components. This process is shown in Fig. 4.4.

PCA transforms a dataset into uncorrelated components and sorts them in order of the amount

of variance each component contributes to the dataset. In the context of noise removal, PCA can be

useful in multi-channel datasets in which the same source of noise is contaminating all channels,

especially if the noise has a higher amplitude than the signal. This has been shown to be effective

in OA removal [60]. For this process, the somewhat arbitrary assumption must be made that the

signal sources are spatially orthogonal. Also, while PCA does decorrelate the signals, it does not

guarantee independence.

ICA is able to go beyond decorrelation and achieve independence between components. ICA

is one of the most highly studied and successful techniques for artifact removal in neural signals

[61] - [64]. Neural recordings (other than single-neuron recordings) consist of a mixture of signal

sources at each recording site, so the problem of removing OAs can be modeled as a blind source

separation (BSS) problem. ICA separates the sources by maximizing independence based on one

of a number of possible metrics. A few assumptions are made when using standard ICA, the most

4.2. BACKGROUND 67

important here being that at most one of the sources is Gaussian and that there is negligible signal

propagation delay. ICA is also unable to determine the correct order, scale, or polarity of the

sources, making artifact identification difficult.

Wavelet Methods

The final method examined in this chapter uses wavelet decomposition for OA removal. This

technique has received much less attention in the research community, but some work has been

done and wavelets have been applied in other areas of neural signal processing [65] - [68].

Wavelet decomposition involves recursively passing the signal through a pair of quadrature

mirror filters and downsampling, resulting in the coefficients at each level of decomposition having

higher frequency resolution and lower temporal resolution than the previous level. The goal in

removing artifacts with wavelet decomposition is normally to isolate the artifact so that it can be

removed with a thresholding function. This can be done by attempting to match the shape of the

wavelet to the transient of interest, which is an OA in this case, or by trying to isolate an artifact

based on its time-frequency localization. In either case, the isolated artifact can then be removed

with thresholding before reconstructing the signal from the wavelet coefficients. Typically, this

technique does not need a template for the noise channel and it is also fairly easy to automate,

but its performance depends largely on the choice of threshold, basis function, and decomposition

level.

4.2.3 Evaluation of Artifact Reduction

Quantitatively evaluating artifact removal in real data is a difficult problem in itself. Since the true,

artifact-free neural signal is never known it is difficult to quantitatively assess the performance of

OA removal techniques. With recorded neural data it is difficult to even estimate the artifact-free

signal since neural signals are non-stationary. There is then no available ground truth to use for

comparison with the processed signal. In simulated data this truth is known, but simulations in this

case do not capture the true nature of OA contamination in neural recordings.

68 CHAPTER 4. OCULAR ARTIFACTS

If the ground truth is known, such as in simulated data, there are methods to evaluate the results

of OA removal techniques. Some of these measures are the correlation coefficient, the ratio of the

standard deviation (STD), and the Euclidean distance between the processed signal and the true,

artifact-free signal [69]. The correlation coefficient determines how well the shape of the true

signal is retained, the STD ratio determines how much the power is affected, and the Euclidean

distance helps measure both shape and amplitude. The closer the correlation coefficient and STD

ratio are to 1 and the closer the Euclidean distance is to 0, the better the results of the OA removal.

These methods must be adapted for use on real data, though.

Another common evaluation criteria is to look at frequency correlation [65]. In (4.2), x̃ and ỹ

are the Fourier coefficients of the two signals, and w1 and w2 are bounds of the frequency window.

This measure is just a windowed version of coherence. The goal is to show that the processed signal

is nearly perfectly correlated to the original signal at all frequencies except the band containing the

artifact.

cx,y =
0.5 ∗

∑w2

w1
x̃∗ỹ + x̃ỹ∗√∑w2

w1
x̃x̃∗ ∗

∑w2

w1
ỹỹ∗

(4.2)

4.3 Methods

As stated before, high-dimensional neural data allows the OA removal techniques to be tested

on a wide range of recording sites. This type of data can also be extremely useful in clinical

studies and in both brain-computer interface (BCI) and neuroscience research, so it is important

that the computational burden can be handled. Some of the methods presented here are adapted to

overcome the unique problems encountered in removing OAs from high-dimensional data. Both

novel and traditional OA removal methods based on regression, component analysis, and wavelets

were implemented. The performance of these methods was analyzed using automated, quantitative

metrics that are also presented here. All methods were fully automated and computation time was

measured, as speed and automation are important in high-dimensional data.

4.3. METHODS 69

4.3.1 Regression-Based Removal

The first removal method examined was regression. As stated in Section 4.2.2, regression attempts

to calculate A in (4.1) in order to solve for S. Many algorithms have been used in solving for A,

and the one used here is given by (4.3). This equation can be mathematically proven under the

false, but necessary assumption that the correlation between the EOG reference channel (N) and

the neural signal (S) is 0 [69]. Note that in (4.3) Xm and Np are zero-mean and the ratio is the

estimations at zero lag of the cross-covariance between Xm and Np to the auto-covariance of Np.

Am,p =
Xm ∗NT

p

Np ∗NT
p

(4.3)

Here it was assumed that A was the same for multiple EOG channels (i.e. Am,i = Am,j for

all i, j), so in (4.3) p = 1 and N1 equaled the sum of the EOG channels. This was a reasonable

assumption since the source, and thus the propagation path, of the EOG channels was the same.

Since A was calculated algorithmically, this removal method was fully automated.

4.3.2 Component-Based Removal

PCA

With high-dimensional data, PCA and ICA became difficult since they perform computations on

all channels at once. With PCA the computations were still possible, but it was at times difficult to

load the necessary data into memory at once.

Like regression, PCA was simple to automate. This was mostly due to the high amplitude

of OAs relative to neural signals. Since the artifact was distributed throughout the neural data at

various scales, the high amplitude caused the artifact to contribute a large amount of variance to

the data. With the absence of other high amplitude artifacts such as interictal spikes in subjects

with epilepsy, it was fairly safe to assume then that any artifactual components would contribute

the highest amount of variance to the data. Since PCA orders components by variance, the first p

principal components should then contain the artifacts, where p is the number of EOG channels.

70 CHAPTER 4. OCULAR ARTIFACTS

Figure 4.5: EOG reference channels and corresponding principal components. Shown is (Top) the
EOG reference channels and (Bottom) the corresponding principal components.

Fig. 4.5 shows this result from running PCA on the full set of neural data and EOG reference

channels. In transforming the components back to the original signal space, the first p columns of

the transformation matrix were nulled.

ICA

ICA faced the most difficulties with high-dimensional data. For ICA to converge, the number of

time points usually needs to be at least several times the square of the number of data channels

[61]. For high-dimensional data, the number of time points needed often exceeds trial length.

Two solutions were considered for allowing ICA to converge. First, multiple trials could be

concatenated to achieve enough time points. This method assumes that the neural sources and the

linear mixture model are stationary across trials. Second, a separate epoch of ICA could be run for

each neural data channel paired with the EOG reference channels, as opposed to doing one epoch

of ICA containing all the data channels. This is a very time-consuming process, but it also has

a few beneficial side effects such as less of a need to worry about the mixtures of distinct neural

processes at each electrode: i.e. spatial stationarity of the underlying neural sources, linearity of

the mixtures, and the number of sources. Here, the latter of the two methods was used. This is

because different trials in the data could contain different stimuli and thus it would be unknown

if the neural sources would remain stationary across trials. To somewhat alleviate the problem of

4.3. METHODS 71

computation time, the FastICA algorithm was used [70].

A further difficulty in using ICA on high-dimensional data was automating the process of

identifying artifactual components. Many studies using ICA manually identify artifacts through

visual inspection [62], but for a large dataset that would be impractical. Multiple methods for

automation have been examined, such as the Hurst exponent [63], kurtosis, Shannon’s entropy, and

Renyi’s entropy [64]. Unfortunately Renyi’s entropy proved too computationally costly for high-

dimensional data due to the kernel density estimation necessary for each component. The Hurst

exponent was used, and the results were compared to a novel method for identifying artifactual

components. For the Hurst exponent method, removing components with Hurst values in the eye

blink range of 0.58-0.64 removed very few artifacts, so only components with values of 0.70-0.76

that correspond to data from actual neural processes were kept while all others were marked as

artifacts. These values are described further in [63].

The novel artifactual component identification method, which will be referred to as the distri-

bution offset, ranks each component by its chances of being an artifactual component. The high

amplitude of an artifact causes the mean of the component’s distribution to be offset from its me-

dian. The mean of a clean neural signal, even one with the presence of a strong event-related

potential, is not offset nearly as much. To calculate the distribution offset, the component was

centered, and then the difference between the number of samples on the same side of zero and

half the number of time points was calculated. This is shown in (4.4), where k is the number of

samples and C is the independent component. This measure is similar to skewness, but skewness

also factors in the distances of points from the mean.

abs
k

2
−

k∑
i=1

yi, yi =


1, Ci − E[C] > 0

0, otherwise

(4.4)

The distribution offset was used to initially mark artifactual components as those where the

value in (4.4) was more than 3% of the number of samples. As is the case in Fig. 4.6, the distribu-

tion offset normally made a good distinction between artifactual components and neural compo-

72 CHAPTER 4. OCULAR ARTIFACTS

Figure 4.6: Distribution offset values for components of ICA for one channel. Shown is (Top) an
artifactual component as detected by its distribution offset of 370.5, (Middle) a component with
a distribution offset of 1.5, and (Bottom) a component with a distribution offset of 6.5. The gray
dotted line represents the signal mean.

nents, but an additional step was taken to ensure removal of the correct number of components.

After re-mixing, if the signal’s power was far above the power of a normal neural signal then

the component with the next highest distribution offset was removed. Likewise, if the resulting

signal power was far below the power of a normal neural signal the removed component with the

lowest distribution offset was added back in to create the final signal. Acceptable power levels for

the MEG data that was used corresponded to an STD between 1E-15 and 1E-11. These thresholds

could vary with neural recording method. This procedure was also used with the Hurst exponent

method, with the distance of the exponent from 0.73 as the ranking criteria.

4.3.3 Wavelet-Based Removal

The wavelet approach used here was a novel method that took advantage of OAs being well lo-

calized in time and frequency. The traditional discrete wavelet transform was used with the goal

of isolating the artifact in both time and frequency in order to minimize the impact of the artifact

removal process on the neural signal. The wavelet coefficients were thresholded to remove the

artifact before reconstructing the signal from the thresholded coefficients.

4.3. METHODS 73

For the wavelet basis function, the Haar wavelet was chosen as it is the simplest wavelet and

computation time is important on high-dimensional data. The Haar wavelet provides accurate

decomposition and reconstruction with minimum distortions and data redundance [71]. Also, many

of its limitations, such as non-differentiability and a chance for detail coefficients to miss sudden

changes, were not a concern here as only approximation coefficients are examined before simply

thresholding and re-constructing the data. The strategy of selecting a wavelet that matches the

shape of the transient of interest was not used since the three types of OAs have different shapes.

To localize the artifact, it is important to zoom in the right amount in time and frequency. This

was done by selecting the proper level of wavelet decomposition. Each level of decomposition

increases frequency resolution and decreases temporal resolution. Decompose too far and the arti-

fact becomes diluted across frequency bands, making it difficult to remove with thresholding and

difficult to isolate in time. Decompose too little and the artifact will not be isolated in frequency,

causing neural data to be unnecessarily lost in the thresholding process. This is shown in Fig. 4.7,

where the level 3 decomposition failed to isolate the artifact in frequency and the level 6 decom-

position began to stretch the temporal bounds of the artifact. The proper level of decomposition

depends in large part on whether the artifact is the result of a blink, or of saccadic or regular eye

movement, and also on the sampling frequency of the data.

Multi-level Wavelet Decomposition

To choose the proper decomposition level for each artifact a strategy of multi-level wavelet decom-

position was used. If an artifact has been fully isolated its wavelet coefficients should be smooth,

but cross-contamination with neural signals can make it appear to have higher frequency compo-

nents (Fig. 4.7). The multi-level process attempts to continue the wavelet decomposition to a depth

that is sufficient to remove these higher frequency components.

In this process the signal first underwent a minimum level wavelet decomposition, which was

set at level 3. The bounds of any OAs were then marked by finding the first local extrema on

the outside of threshold crossings. The threshold was ±(5E-11 + |median(R)|), where R is the

74 CHAPTER 4. OCULAR ARTIFACTS

Figure 4.7: Wavelet approximation coefficients for an OA at two decomposition levels. Shown
is (Top) the original signals and (Bottom) the wavelet approximation coefficients at two decom-
position levels. Level 3 and level 6 were used to accentuate the differences between levels of
decomposition.

vector of wavelet coefficients, although the optimal value of this threshold could again vary with

recording method. To determine smoothness, it was checked if the derivative of the artifactual

coefficients ever changed sign on either side of the peak. If it did, neural data was assumed to still

be present and the wavelet decomposition went a level deeper. The artifactual coefficients with

an absolute value above the threshold were set to the median of the set of coefficients outside the

artifact. This differs from typical wavelet denoising (hard, soft, or soft-like thresholding) in that

it is concerned with eliminating the values above the threshold rather than below. The multi-level

wavelet decomposition technique is illustrated below in Fig. 4.8. For comparison to this process,

wavelet removal was also done with the level held constant at each value from 3 through 9.

4.3.4 Quantitative Analysis

Analysis of OA removal is a difficult process in itself. The seemingly two most obvious methods

of evaluation are visual inspection and in the case of a BCI, decoding results. Visual inspection is

effective for quick verification or with small datasets, but it is subject to human bias and error and is

impractical for use on high-dimensional data. BCI decoding results are not a good criteria because

4.3. METHODS 75

Figure 4.8: Illustration of the process for determining the optimal level of wavelet decomposition.
The minimum level decomposition was set at level 3. The ’Check OA’ step checks the smoothness
of the coefficients marked as artifactual as described in the text.

the decoding algorithm could be invariant to OAs or eye movement could be biased towards a

certain class, thereby improving decoding results and giving the impression that the BCI is effective

when the system is actually controlled by eye movement.

There are two main criteria that should be used to evaluate an OA removal technique: 1) how

well the artifact was removed and 2) how well the neural data was preserved. The methods used

here to measure these criteria were in large part taken from previous methods given in Section

4.2.3 [65], [69], but modifications were made to improve performance and to adapt to using real

neural data rather than simulated. This is key since the main difficulties in evaluating OA removal

arise with real data where the ground truth is not known.

To determine how well the neural data was preserved a number of measures were used. For

many of these measures, only those portions of the signals that were originally artifact free were

used. These portions should remain the same after OA removal. OAs were marked by low pass

filtering at 10 Hz and then detecting threshold crossings. On the uncontaminated portion of the

signal, correlation coefficient and Euclidean distance were used as discussed in Section 4.2.3. The

STD ratio was replaced due to the possibility that a denominator near 0 for any trial would be

a large enough outlier to ruin the overall average. Instead of the STD ratio, the mean squared

difference between the STD of the original and processed signals was used. This will be referred

to as the exterior STD difference.

To determine how well the artifact was removed, the main metric was the percentage of con-

76 CHAPTER 4. OCULAR ARTIFACTS

taminated trials where an OA was no longer detected after the reduction process (using the filtering

and thresholding method discussed in the previous paragraph). It should be noted that the absolute

percentage of removed artifacts is not as important as the relative percentages between methods

since the artifact detection itself is not perfect. Also, the difference between the STD of the entire

processed signal and that of the artifact-free portion of the original signal was calculated. This will

be referred to as the total STD difference. Using the entire signal should reduce the impact of the

signal’s non-stationarity and since the power of a portion of the signal can deviate to either side

of the mean, taking the mean over a large number of trials should produce a value as close to 0 as

possible. Finally, the frequency correlation was examined to determine the effect of the removal

process on the signal’s spectrum.

4.4 Results and Discussion

The datasets used here contained 306-channel MEG neural recordings, sampled at 1 kHz, of both

language processes and motor functions. In the language sets, subjects were observing various

words and images. Trials are 5 seconds long, and there were a total of 540 trials. The motor datasets

contain 2.5 second trials of both overt (775 trials) and imagined (640 trials) wrist movement. All

subjects had normal brain function and data collection was approved by the Institutional Review

Boards of the University of Pittsburgh and Carnegie Mellon University. The different datasets were

used to test OA removal methods on data of different trial lengths and with different frequencies

of each type of OA. EOG recordings were made above and lateral to the eye. It has been shown

that having vertical and horizontal EOG channels produces better results than one channel [72].

4.4.1 Overall Evaluation

Table 4.1 shows the results of the quantitative performance metrics discussed in Section 4.3.4 after

performing OA removal on the datasets above. The running time of each removal process relative

to the fastest method (regression) is also given. To evaluate the effectiveness of the multi-level

4.4. RESULTS AND DISCUSSION 77

Table 4.1: Evaluation of OA Removal Techniques

ICA Wavelet
Metric Regression PCA Dist. Offset Hurst Level 5 Level 4 Multi-Level

Corr. Coeff. (E-2) 99 ± 1.9 98 ± 2.4 96 ± 14 72 ± 35 98 ± 5.8 98 ± 5.2 98 ± 5.2
Euclidean Dist. (E-11) 2.6 ± 3.8 3.3 ± 4.3 3.5 ± 8.2 8.0 ± 11 2.4 ± 6.7 2.1 ± 6.1 2.4 ± 6.8
Ext. STD Diff. (E-25) 0.3 ± 2.5 0.5 ± 4.8 20 ± 140 62 ± 190 3.0 ± 30 2.6 ± 28 2.9 ± 29
Total STD Diff. (E-14) -10 ± 54 -5 ± 53 18 ± 140 110 ± 220 0.7 ± 65 -2.6 ± 61 -0.5 ± 65
Removal Percentage 20 29 74 65 89 91 91
Relative Comp. Time 1.0 2.2 21 20 2.8 2.5 2.7

wavelet technique, its results were compared to the results of using wavelets with optimal constant

decomposition levels, which were found to be levels 4 and 5 through the same metrics presented

in Table 4.1.

Surprisingly, regression performed well in measures of preservation of the neural data. The

poor performance in removing artifacts nulls any value associated with retention of neural data,

though. The removal percentage was extremely low, and the negative total STD difference in-

dicates that not enough power was removed from the contaminated portion of the signal. These

results indicate that the regression coefficients (A in (4.1)) were too small. Using a regression

method in which the regression coefficients are calculated separately for each EOG channel might

improve results, but it probably could not increase removal percentage to a satisfactory level while

maintaining high preservation of neural data due to the neural contamination in EOG channels.

PCA was also not very effective at removing artifacts. This result is most likely an inherent

limitation of using PCA for OA removal in that PCA was unable to fully separate the artifacts from

the neural data. PCA only decorrelates the data, and its requirement of spatial orthogonality of the

signal components is an additional restriction that might prevent separation of artifacts from the

neural components. Methods of detecting additional artifactual components or residuals distributed

throughout the remaining principal components could improve results, but any improvement with

this method would most likely come at the cost of preservation of neural data and PCA would

probably still not match the results from other removal techniques.

ICA showed a large improvement over PCA and regression in removing artifacts. The novel

distribution offset method outperformed the Hurst exponent method in identification of artifactual

components. Distribution offset had a higher removal percentage, but its main advantage was that

78 CHAPTER 4. OCULAR ARTIFACTS

Figure 4.9: Frequency correlation between original and filtered signals. Here, ICA used distribu-
tion offset for identification of artifactual components.

it far exceeded the Hurst exponent in preserving neural data. Since the Hurst values eliminated

were associated with any non-interesting data rather than just OAs, as in [63], it is possible that the

Hurst method removed additional noise, such as line noise or electromyographic (EMG) artifacts,

rather than vital neural data, but it is doubtful that the large amount of information removed could

be fully accounted for by noise.

Even using distribution offset, ICA was not as effective as other methods in preserving neural

data. Fig. 4.9 reinforces this result. This tradeoff was expected, and the overall results showed ICA

to be a much more viable option for OA removal than regression and PCA. Based on the neural

preservation metrics and the positive total STD difference, ICA removed too much data, which

was most likely a result of neural data not being fully separated from artifactual components. The

frequency correlation graph also shows this as ICA (distribution offset method) had the smallest

correlation of any removal technique.

A method that computes ICA on the full data matrix might be able to better separate the data,

but on this dataset such a method would require concatenation of trials to obtain enough data points,

which means the assumption must be made of spatial stationarity of the neural sources across trials.

This would be a difficult assumption to make given that the trials here contained different stimuli,

although it should be noted that some studies have found it satisfactory to only compute the ICA

4.4. RESULTS AND DISCUSSION 79

Table 4.2: Removal percentages for different datasets

Dataset Regression PCA ICA (Dist. Offset) Wavelet (Multi-Level)

Language 56 62 86 96
Overt Wrist 12 23 73 90
Imagined Wrist 14 21 73 90

unmixing matrix once with as little as 10 s of data [59]. That technique also helps alleviate ICA’s

other downside, which is its computation time.

The most effective method examined was the wavelet method. Not only did the wavelet tech-

nique produce the best results in removing OAs, it was far superior to ICA in retaining neural data.

It was also much more consistent than ICA in all measures as indicated by the standard deviations

in Table 4.1. Additionally, the wavelet method produced results that had the highest frequency

correlation with the original signal above 20 Hz, as shown by Fig. 4.9.

The multi-level method also had superior performance compared to the fixed-level results

shown in Table 4.1. Although multi-level wavelets were not the best in every metric, the overall

results were slightly better than any single level. As expected, the multi-level technique removed

artifacts as well as level 4 decompositions as indicated by removal percentage, while still leaving

behind the proper amount of power in the contaminated portion of the signal as shown by total

STD difference. The multi-level technique also saved the time of manually finding the optimal

level. If the optimal level for nearly all artifacts is the same, though, then the multi-level method

adds unnecessary computation time.

4.4.2 Ocular Artifact Removal by Dataset

Wavelets, along with ICA, were also more robust to the different datasets (Table 4.2). Regression

and PCA performed over 40% worse at removal in the motor datasets compared to the language

set. There was no significant difference between the imagined and overt motor sets for any removal

method, though, which would seem to indicate that the large drop in removal percentage from the

language set was due to the change in trial length from 5 to 2.5 seconds.

80 CHAPTER 4. OCULAR ARTIFACTS

Figure 4.10: Example of OA removal with multi-level wavelets. At the beginning of the signal
there is an eye movement artifact, and at the end of the signal an eye blink occurs. Both artifacts
were removed while retaining neural data.

4.4.3 Visual Results

In visual inspection of a sample of signals, the multi-level wavelet technique again showed the

best results. Fig. 4.10 shows typical results from multi-level wavelets in which it is clear that the

non-contaminated portions of the signal were left untouched, and two types of OAs appear to have

been removed while still retaining the neural data.

4.5 Conclusions

This chapter presented the development of a novel wavelet technique for removal of ocular artifacts

from neural data, a novel method for automatic identification of ocular artifact components in ICA,

and a set of quantitative metrics for automatic evaluation of the effectiveness of OA removal on

real neural data. As discussed in Section 4.4, multi-level wavelets were most effective in terms

of OA removal and preservation of neural data. This conclusion is supported by the quantitative

metrics (Table 4.1, Fig. 4.9) as well as by visual inspection of a sample of signals (such as Fig.

4.10). This method also did not require EOG reference channels.

Although ICA encountered complications with the high-dimensional data, it has been highly

used in low-dimensional datasets. Here, distribution offset, the novel method that was developed

for automatic artifact identification, outperformed the Hurst exponent technique in both artifact

4.5. CONCLUSIONS 81

removal and preservation of neural data. Neither ICA method performed as well as wavelets, but

were both far superior to regression and PCA.

With its performance and full automation, the multi-level wavelet method is a valuable tool

for processing neural signals. It provides a means of removing a common artifact that can heavily

corrupt neural data, but it requires no expertise to use. Also, the wavelet technique has the distinct

advantage of not needing the EOG reference channels, thereby decreasing experimental complex-

ity and possible sources of error while increasing the subject’s comfort. These traits make it an

important step towards meeting this dissertation’s overall goal of providing effective and accessible

methods for processing neural signals.

As with the line noise discussed in the previous chapter, the algorithms developed for OAs

were able to take advantage of known characteristics of the noise in order to effectively remove it.

Line noise is sinusoidal near a known frequency, and OAs produce a relatively low frequency, high

amplitude burst that can be localized in time. Some noise in neural data, though, can come from an

unknown source or is not as well defined. Noise from EMG activity, for example, is broadband in

nature and can have a wide, varying amplitude. This type of noise is discussed in the next chapter.

82 CHAPTER 4. OCULAR ARTIFACTS

Chapter 5

Broadband Common Mode Noise

83

84 CHAPTER 5. BROADBAND COMMON MODE NOISE

Figure 5.1: Overview diagram highlighting broadband noise removal. The boxes with shadows
indicate the portion of the system that is discussed in this chapter.

5.1 Introduction

Sometimes the source and characteristics of noise in neural data are known, such as with power

line noise, cardiac rhythm, or ocular artifacts (OAs), and it can be removed by filters specifically

aimed at its characteristics such as those presented in Chapters 3 and 4. In many cases, though,

contamination is present that is more difficult to isolate. Some noise in neural signals is broadband

in nature, highly variable in power, and not always well-isolated in time. Fig. 5.1 indicates this

noise in the main system diagram.

Electromyographic (EMG) activity from muscle movement is an excellent example of this type

of noise [7]. The broadband nature and large amplitude of EMG artifacts makes filtering the noise

or using any part of the signal more challenging [13]. A few likely characteristics of this noise do

exist that can be utilized in filters, though, such as spatial correlation. Due to the relatively low

signal-to-noise ratios (SNRs), small recording areas, and conductivity of the surrounding tissues,

most contamination in neural recordings affects multiple channels. In any multi-channel physio-

logical data contamination that affects a large number of channels is often referred to as a common

5.2. BACKGROUND 85

mode artifact.

The goal of this chapter is to demonstrate a robust and automated method for removing com-

mon mode artifacts from neural signals. The method presented is based on a combination of the

popular common average reference (CAR) [73] and an adaptive noise canceling (ANC) filter [44],

and as a result it is referred to as the adaptive common average reference (ACAR). The basic idea

of the ACAR is that for each iteration a weighted CAR is used as a reference signal in an ANC

filter for each channel, and the correlation between the reference and the ANC output is then used

as a weight for each channel in calculating the reference on the next iteration.

Relevant background methods and material are discussed in Section 5.2. The full implemen-

tation and details of the ACAR are covered in Section 5.3. In order to obtain quantitative results,

much of the data used for analysis was simulated. For further verification real neural data was

used, but these results can only be visually presented since the true signal and noise are not known.

The performance of the ACAR, independent component analysis (ICA), and the CAR is compared

in Section 5.4. The conclusion is presented in Section 5.5.

5.2 Background

5.2.1 Multi-Channel Physiological Recordings

A generalized model for a multi-channel recording contaminated by noise can be given as follows:

Dm,k =
∑
U

αm,u ∗ Su,k−τu,m +
∑
V

βm,v ∗Qv,k−ηv,m (5.1)

where D is the recorded signal channel m at time point k, S is the actual uncontaminated signal

from source u with a propagation delay of τ to each recorded channel, α determines the contri-

bution of each S to each channel of D, Q is the noise source v with a propagation delay η and a

contribution of β to each channel.

For common mode artifact removal in physiological signals a simplified approach is often used.

86 CHAPTER 5. BROADBAND COMMON MODE NOISE

The propagation delays in (5.1) are assumed to be zero, and the signal processing and analysis can

be done at the sensor level instead of the source level [34]. By treating the recording at each sensor

as its own signal, (5.1) can then be simplified by the following: U = M and α is an identity matrix.

The assumption of no propagation delay also means that τ = 0 for all u,m and η = 0 for all v,m.

These simplifications are shown in (5.2).

Dm,k = Sm,k +
∑
V

βm,v ∗Qv,k (5.2)

Physiological noise is usually the summation of many sources (for example muscle fibers or

neurons firing together) as represented in (5.2). It is sometimes assumed, though, that the relative

contribution of each source of common mode noise to each sensor is constant, meaning the noise

portion of (5.2) can be simplified as shown in (5.3). So (5.1) simplifies to (5.4), where γm and Rk

are defined in (5.3). Finally, this is often simplified further to (5.5).

∑
V

βm,v ∗Qv,k =
∑
V

γm ∗ δv ∗Qv,k

= γm ∗Rk (5.3)

Dm,k = Sm,k + γm ∗Rk (5.4)

Dm,k = Sm,k +Nm,k (5.5)

5.2.2 Common Average Reference

The model in (5.4) gives rise to the popular CAR used in physiological recordings, which has been

proven effective under the right conditions but does have many limitations [74]. The CAR simply

subtracts from each channel the average across all channels, and is given below in (5.6), where the

5.2. BACKGROUND 87

Em[Dk] operator represents the expected value of Dk across all M channels. It is assumed that the

signals of interest are uncorrelated. The idea is that the reference then mostly contains the common

mode noise since the signal portions of the recording should average out. If in (5.4), γ = 1 for all

m and Em[Sk] = 0, then the CAR would provide perfect removal of R.

Ŝm,k = Dm,k − Em[Dk] (5.6)

One problem with the CAR comes from the fact that differing channel characteristics can cause

the noise to have unpredictable amplitudes and even polarity in each channel (γ 6= 1 for all m in

(5.4)). With these difficulties the CAR could actually be harmful if some channels were not origi-

nally affected by the noise or if amplitude and polarity differences caused an inaccurate reference

to be generated.

5.2.3 Independent Component Analysis

The shortcomings of the CAR have led to other algorithms being used for removal of spatially

correlated noise in multi-channel physiological recordings, with blind source separation (BSS)

techniques being among the most common [5]. One of the most well-known methods is ICA. ICA

has seen widespread use in numerous problems involving identifying individual signal and noise

sources in multi-channel recordings, and as a result is a good standard to measure against [75].

In the context of noise removal, ICA is used in an attempt to isolate the noise to its own inde-

pendent component(s). Any noise component must then be identified, and its corresponding row

in the mixing matrix is set to zero before re-mixing the components back into the original signal

space (Fig. 4.4). At times identification of the noise components can be done algorithmically. ICA

guarantees nothing about the order, amplitude, or polarity of the separated components, though, so

at times this process can be complex and possibly require manual identification [62]. This task is

made more difficult if the noise and signal characteristics are similar or unknown.

Also, ICA can fail to separate the signals in many situations depending on the convergence

88 CHAPTER 5. BROADBAND COMMON MODE NOISE

algorithm, including the cases where there are more sources than sensors or where the sources are

not spatially stationary. Even if the sources are spatially stationary, ICA cannot be used in real-

time unless a recorded segment of data is available beforehand with which the mixing matrix can

be calculated and the noisy components determined.

5.3 Methods

5.3.1 Adaptive Common Average Reference

The method presented here, referred to as the adaptive common average reference (ACAR), at-

tempts to combine the strengths of the CAR and of an ANC filter. The ANC filter, which was

described in Section 3.2.2, has been shown to be extremely effective in removing noise if an accu-

rate reference is available [45].

As in Chapter 3, the ANC filters here used the normalized LMS (NLMS) convergence algo-

rithm, which is given again in (5.7). For stability, a step size u between 0 and 1 is required. σ2
X can

be estimated from a segment of X . In this implementation a one second segment of data was used,

although the exact value is not critical as long as it is long enough to provide a stable estimate and

short enough to adapt to changes in X . The filter length is represented by L. Decreasing L has

similar effects to increasing the step size and in general should be as small as possible to model

the necessary system. Since the desire here was to show that the ACAR works with a generalized

setup for an unknown system rather than fine-tuning multiple parameters for a specific data set, L

was set to 10 for all data.

Wk+1 = Wk +
2uŜkXk

Lσ2
X

, 0 < u < 1 (5.7)

The CAR is in general able to produce a usable reference signal for spatially correlated noise,

which is needed for X . The CAR might not provide a reference good enough for an ANC filter to

be fully effective, but it is good enough for the ANC filter to begin converging. The filter output

5.3. METHODS 89

Figure 5.2: Block diagram of the ACAR. D is the recorded data channels and Ŝ is the filtered
output. The ANC block contains the contents of Fig. 3.2 and the h block performs a moving
average on g and normalizes the weights used for each channel in generating the reference as
given in (5.9). PDk

is the average signal power of all channels of D in a moving window as given
by (5.10). Note: Until the window used by h is filled, g is calculated as the product of X and D as
explained in the text.

can then be used to improve upon the reference, which in turn makes the ANC filter more effective.

These two convergent processes build upon each other to effectively reduce the spatially correlated

noise. A diagram of this process is shown in Fig. 5.2.

In the diagram, D is the original recorded signal as in (5.1), and each ANC block contains the

contents of Fig. 3.2. On initialization, X is the standard CAR. For each channel of the recording,

if X is correlated with N then the scale and polarity of N relative to X can be estimated by the

product of X with N̂ , which produces g in Fig. 5.2. If the noise changes polarity across channels,

then the polarity information provided by g can alone greatly enhance X . The magnitude is also

useful as it allows the channels to be weighted by the relative strength of the noise that is present

in each channel.

It should be noted that g is a rudimentary measure of correlation betweenX and N̂ . Calculation

of correlation usually also involves z-scoring the data, but the mean is not removed since the noise

90 CHAPTER 5. BROADBAND COMMON MODE NOISE

could have a DC component. Also, the ANC filter adapts N̂ based on the noise in each channel

and normalizing by the standard deviation of N̂ would penalize noisier channels. Normalizing by

the standard deviation of X is also not necessary since normalization of g and the reference signal

is performed later and thus only the relative values of g are important at this step.

The values of h are calculated by smoothing g with a moving average and then rescaling it as

shown in (5.8) and (5.9). As with all windows used in this chapter, any reasonable length should

work and so T was set to be one second of data. The maxm(|ḡk|) operator represents the maximum

of |ḡk| across all M channels.

ḡm,k =
1

T
∗

T∑
i=1

gm,k−i+1 (5.8)

hm,k =
ḡm,k

maxm(|ḡk|)
(5.9)

It should be noted that the initial samples of N̂ before the ANC filter begins converging are

inaccurate and h cannot provide much smoothing until its moving average window is filled. Due

to this concern, the system implemented here calculates g as the product of X and D until the

window used by h is filled. This modification had no discernible affect on the steady state error of

the system, but did improve the speed and consistency of convergence.

After h is calculated, it is used to weight each channel before summing and producing X for

the next iteration. As a final step, the reference is scaled by the average power across all channels

of D given by (5.10). This scaling ensures that the reference signal remains stable and does not

undergo rapid changes in power as the ANC filters adapt. As a fail-safe, the ANC filter coefficients

are continuously monitored by computing the reflection coefficients with Levinson recursion and

checking stability with the Schur-Cohn algorithm [48]. If instability is detected the ANC filter

maintains its previous coefficients and D is passed through to the output unchanged.

PDk
=

1

T ∗M
∗

M∑
j=1

T∑
i=1

D2
j,k−i+1 (5.10)

5.3. METHODS 91

5.3.2 Independent Component Analysis

In order to give ICA optimal results and not have its performance depend on an algorithm for de-

tecting the noise component, an oracle was used to determine which independent components were

noise. Each component was individually removed and the one was selected that, when removed,

resulted in the highest SNR in the reconstructed signals. This process was repeated iteratively until

the SNR could not be further improved. In this way, if ICA did not achieve full separation of the

data then multiple components containing noise could be eliminated. For real data, the noise com-

ponents were manually identified by two experts in the analysis of neural recordings. In practice,

automatically selecting the correct component can be difficult and time-consuming [62].

ICA was implemented using RobustICA, which has shown excellent results for the kind of

data used here [76]. RobustICA attempts to maximize the non-Gaussianity of the sources. The

algorithm iteratively calculates the normalized kurtosis contrast function and can separate any

component that has non-zero kurtosis. It should then be capable of separating any data set that

has at most one Gaussian source. The use of higher order moments such as kurtosis is common

amongst ICA methods. In some circumstances, though, such as when multiple signal sources are

Gaussian, BSS algorithms that rely on other measures can produce superior results [77].

5.3.3 Data Collection

Simulated Data

Most of the data used for analysis was simulated to ensure that the target signal was known. Signals

were generated at 1200 Hz using the Craniux software suite presented in Chapter 2 [14]. S in (5.4)

again consisted of pink noise with a 1/f power falloff to simulate a baseline electrocorticography

(ECoG) recording [54]. This pink noise was created by generating uniform white noise and passing

it through a digital filter with a 1/f response. Additional uniform white noise was added to the

filtered signal, resulting in data that was sub-Gaussian with a kurtosis of about 2.4.

The noise, R, consisted of Gaussian white noise. For each trial, the mixing vector γ was

92 CHAPTER 5. BROADBAND COMMON MODE NOISE

generated with each element as a random number between -1 and 1. This vector was then scaled

to provide a specified average SNR as calculated in (5.11). The average SNR was calculated as the

mean signal power over the mean noise power, which ensured that a constant SNR also provided a

constant mean squared error (MSE).

SNRaverage = 10 log10

(
Em[Ek[S

2]]

Em[Ek[(γ ∗R)2]]

)
(5.11)

Real Data

The ACAR filter was also tested on real ECoG data. Although the true, noise-free signal was not

known for these recordings, it is useful to at least qualitatively show that the method performs well

on real data. All data was collected with g.USBamp (Guger Technologies) amplifiers and the raw

signals were sampled at 1200 Hz. A standard 4 Hz wide notch filter was used to remove line noise

and its harmonics. The data was recorded with subdural ECoG while the subjects attempted to use

high gamma band modulation to control cursor movement in a 2D space.

The first data set was collected from a human subject who was implanted with a 32 channel

grid over primary motor and sensorimotor areas. The subject was a 30 year old male who suffered

a complete C4 spinal cord injury 7 years prior. All data collection and procedures were approved

by the University of Pittsburgh’s Institutional Review Board and informed consent was obtained

prior to implantation. The second data set was obtained from a non-human primate who had

12 electrodes over primary motor and pre-motor areas. All data collection and procedures were

approved by the University of Pittsburgh’s Institutional Animal Care and Use Committee.

5.3.4 Analysis

ICA and the CAR were implemented for comparison to the ACAR. The CAR was not used when

the noise had polarity changes across channels due to its poor performance in this situation. Unless

otherwise noted, each result was averaged over 50 trials that were each 20 seconds long with 16

channels of data and an average SNR before filtering of 0 dB. As in Chapter 3, the error after

5.4. RESULTS AND DISCUSSION 93

Figure 5.3: MSE for the ACAR with variable step sizes. The dotted line is the average unfiltered
MSE. Step sizes were (Top to Bottom) 0.005, 0.01, and 0.05.

Table 5.1: SNR (mean ± standard deviation) for variable ACAR step sizes

Step Size SNR (dB)

0.005 10.0 ± 0.8
0.01 9.2 ± 0.9
0.05 7.1 ± 0.7

filtering was calculated as the difference between the true signal and the filtered signal. The MSE

after filtering was used to examine convergence speed. The SNR was used to measure steady state

error, so its calculation ignored the first 5 seconds of each trial.

5.4 Results and Discussion

5.4.1 Simulated Data

ACAR Learning Rate

The ACAR was first tested with different step sizes, u in (5.7). As expected Fig. 5.3 shows that

smaller step sizes take longer to converge, but result in a smaller steady state error as confirmed

by Table 5.1. The optimal learning rate varies depending on many factors, but the goal here, is to

show that a single ACAR setup works well under a variety of circumstances. So for the remainder

of the analysis a step size of 0.01 was used. Fig. 5.4 shows a histogram of the filtered SNR for the

50 trials with a 0.01 learning rate. The ACAR improved the signal quality for every trial.

94 CHAPTER 5. BROADBAND COMMON MODE NOISE

Figure 5.4: Histogram of SNR for the ACAR with a 0.01 step size.

Table 5.2: SNR (mean ± standard deviation) for variable initial SNRs

Unfiltered ACAR ICA

-20 11.5 ± 0.5 1.2 ± 0.5
-10 11.2 ± 0.5 3.1 ± 0.7
-5 10.5 ± 1.0 5.2 ± 1.0
0 9.2 ± 0.9 5.7 ± 1.0
5 6.5 ± 1.0 7.1 ± 0.9
10 3.1 ± 0.5 8.1 ± 0.6
20 3.6 ± 0.3 10.5 ± 1.3

Variable Initial Noise Power

Next, the behavior of the ACAR with different initial SNRs was examined by varying the SNR for

each session. Fig. 5.5 shows the convergence of the ACAR for different initial SNRs. Although it

is difficult to tell due to the scales, the ACAR did take slightly longer to fully converge at the lower

SNRs. Table 5.2 shows the resulting SNR after filtering this data using both the ACAR and ICA.

The ACAR remains consistent and exceeds the performance of ICA up until an initial SNR of 5

dB. The lower the initial SNR, the more accurate of a reference the ACAR was able to generate,

which compensated for the problem of removing higher levels of noise. At high input SNRs, the

ACAR was unable to converge upon an accurate reference.

In further testing the ACAR remained consistent down to around -280 dB, after which point it

continued to attenuate about 290 dB of noise but could not maintain the output at over 10 dB as

seen with the lower SNRs in Table 5.2. At -280 dB the filter took approximately 20 seconds to

5.4. RESULTS AND DISCUSSION 95

Figure 5.5: MSE for the ACAR with variable initial SNRs. The dotted line represents the average
unfiltered MSE. The initial SNRs in dB were (Top to Bottom) -20, -10, -5, 0, 5, 10, 20.

fully converge. For arbitrarily high input SNRs, the ACAR maintained an output SNR of 3 to 5

dB. ICA was also unable to improve its performance for higher SNRs and maintained an output

SNR of about 10 to 12 dB as the input SNR increased beyond 20 dB.

So the improvement in signal quality from the ACAR increased with decreasing input SNRs.

At about 5 dB the ACAR began to struggle to converge and at higher input SNRs the signal quality

was made worse by the ACAR, although an output SNR of over 3 dB was maintained. ICA

outperformed the ACAR at these higher input SNR levels, but it also hurt the signal quality for

tested input SNRs greater than 5 dB. With high SNRs it becomes difficult for many filters to

remain effective since signal distortion caused by the filter begins to outweigh the benefit of noise

removal. Most physiological recordings that the ACAR would target would have fairly low SNRs.

Variable Number of Data Channels

The performance of the ACAR as the number of data channels changed was also tested. Fig. 5.6

shows the convergence of the filter for each number of channels, and Table 5.3 shows the converged

96 CHAPTER 5. BROADBAND COMMON MODE NOISE

Figure 5.6: MSE for the ACAR with a variable number of data channels. The dotted line represents
the average unfiltered MSE. The number of data channels were (Top to Bottom) 2, 4, 8, 16, 32,
and 64.

Table 5.3: SNR (mean ± standard deviation) for a variable number of data channels

Channels ACAR ICA

2 2.4 ± 0.3 1.9 ± 1.1
4 4.7 ± 0.5 3.7 ± 1.3
8 7.2 ± 0.8 4.7 ± 1.1
16 9.2 ± 0.9 5.7 ± 1.0
32 11.6 ± 0.9 6.4 ± 0.8
64 13.8 ± 1.0 7.1 ± 0.5

SNR. As can be seen, the filter converged more quickly and smoothly as the number of channels

increased, and the converged SNR improved as well. As the number of channels increase the

signal itself is more likely to average out to zero when generating the reference signal, resulting in

a cleaner reference for the noise. ICA also improved as the number of channels increased, but in

all cases was outperformed by the ACAR in both mean and in consistency.

Variable Noise Source Conditions

The ACAR was also tested under conditions in which the noise did not have consistent power

or spatial stationarity. Both the initial SNR and the mixing vector were adjusted according to

5.4. RESULTS AND DISCUSSION 97

Table 5.4: SNR for variable noise conditions, calculated over 20 minutes of data.

Condition Unfiltered ACAR ICA

Var Mix 0.0 9.2 1.9
Var SNR -2.1 7.8 11.9
Var Mix, SNR -5.4 7.6 0.9

the Gauss-Markov process shown in (5.12). In this process a is the value being updated, ∆ is

the timepoint at which the update occurs, and η is a value drawn from a zero-mean Gaussian

distribution with a specified standard deviation.

a∆k+1
= a∆k

+ η∆k
(5.12)

For the first trial, the SNR was held constant at 0 dB and every 2 seconds each value in the

mixing vector was changed by η with a standard deviation of 0.1. The values were clipped between

-1 and 1 and re-normalized. For the second trial, the mixing vector was held constant and the SNR

was adjusted every 2 seconds by η with a standard deviation of 1. The SNR was clipped if it went

outside the bounds of -10 to 10 dB. For the third trial, both the mixing vector and the SNR were

varied. Each trial was 20 minutes long.

Table 5.4 shows the SNR across each trial for both the ACAR and ICA. The ACAR improved

the signal quality across all trials and maintained performance that is consistent with what was seen

in earlier trials. ICA performed poorly on the two trials in which the mixing vector varied, which

is expected since ICA expects spatially stationary sources. On the trial where only SNR varied,

though, ICA performed very well. The noise power changing most likely caused the distribution

of the noise over the entire trial to be non-Gaussian, allowing ICA to better separate it into its own

component.

Signal and Noise Gaussianity

The Gaussianity of the signals and the noise can greatly contribute to the performance of an ICA al-

gorithm that relies on kurtosis. As stated earlier, the simulated signals were sub-Gaussian while the

98 CHAPTER 5. BROADBAND COMMON MODE NOISE

Table 5.5: SNR for different signal and noise distributions

Signal Distribution Noise Distribution ACAR ICA

Uniform Gaussian 11.4 7.1
Sub Gaussian pink noise Uniform 9.2 10.2
Uniform Uniform 11.4 12.1

noise itself was Gaussian. In order to compare results to ICA under more optimal (i.e. less Gaus-

sian) conditions, tests were done with signal and noise sources that were uniformly distributed.

Table 5.5 shows these results.

Making the signals uniform, causing them to be even more sub Gaussian, improved ICA’s re-

sults slightly. The biggest advantage, though, was seen in making the noise uniformly distributed,

despite it being expected that RobustICA could separate the data when only one Gaussian source

was present. ICA outperformed the ACAR when the noise was uniform, but the ACAR did stay

within 1 dB. Interestingly, the ACAR’s results were slightly improved by having uniformly dis-

tributed source signals. This could be explained by lower frequency signals having better odds

of being correlated by chance, and the 1/f signals are skewed more towards the lower end of the

frequency spectrum.

Signal Correlation

In general the ACAR makes the assumption that the source signals are uncorrelated, and thus

anything spatially correlated across the recorded channels is considered noise. This is not always

the case in practice, especially in physiological recordings where the signal sources can often

propagate to multiple recording sites. To examine the performance of the ACAR in this non-ideal,

but realistic situation, a simulated data set was created in which the signals were created from

mixing the independently generated sources.

For one condition a square matrix, with height and width equal to the number of data channels,

was created with the elements being uniformly distributed between 0 and 1. The original sources

were then multiplied by this matrix to create the actual signal channels seen by the filters. For

5.4. RESULTS AND DISCUSSION 99

Table 5.6: SNR for correlated signals

Condition ACAR ICA

Fully random 4.5 7.7
Spatially normalized 8.0 7.7

the second condition the mixing matrix was symmetric with all ones on the diagonal. The off-

diagonal elements were chosen in the same manner as the previous condition except this time they

were scaled by the difference in the row and column index. This means that each source was

treated as local to one channel, but it spread to neighboring channels with a gain proportional to

distance. This behavior is similar to what can be expected in real physiological recordings. The

results for these data sets are shown in Table 5.6.

The ACAR was still able to improve the signal quality under the fully random condition. ICA

outperformed the ACAR in that case, and ICA received a modest boost in performance compared

to previous results in which the sources were not mixed. For the second condition, in which the

strength of each source was scaled by the distance to a channel, the ACAR performed well and

was on par with the results of ICA.

ACAR was still effective in these situations because the noise remained the dominant source

in the recordings and the single dominant source is what the filter is designed to find. In the fully

random condition an SNR of 0 dB means that the noise still on average contributes as much power

to each channel as the independent sources combined. In the spatially normalized condition the

noise is even more dominant due to the attenuation of the independent source by distance. This

condition also makes it less likely that the spatial distribution of any signal source would overlap

with the distribution of the noise and thus get removed along with the noise.

Changes in Noise Polarity

Finally, the effect of the polarity of the noise across channels was examined. In the ’uniform’

condition the noise was added to each channel with the same polarity and scaling factor. In the

’monopolar’ condition the noise was given the same polarity across all channels, but still had a

100 CHAPTER 5. BROADBAND COMMON MODE NOISE

Table 5.7: SNR for different noise polarities

Noise ACAR ICA CAR

Uniform 9.3 ± 0.8 5.7 ± 1.0 11.8 ± 0.5
Monopolar 9.3 ± 0.8 5.6 ± 0.8 4.7 ± 0.9
Bipolar 9.2 ± 0.9 5.7 ± 1.0 -0.4 ± 0.6

random scaling factor between 0 and 1. For reference, the ’bipolar’ condition used in previous

tests is also included. This data allowed the results for the CAR to be included for comparison.

The results are shown in Table 5.7.

Table 5.7 shows that the ACAR and ICA performed consistently across all conditions. As

expected the CAR performed poorly on the bipolar condition, better on the monopolar condition,

and on the uniform condition exceeded even the performance of the ACAR. The uniform condition

is the ideal situation for the CAR and in this case provides an upper bound on how well the ACAR

could be expected to perform under those circumstances. The ACAR was unable to perfectly

converge to the CAR for the uniform condition, but as the characteristics of the noise began to

move away from the uniform condition the performance of the CAR dropped steeply while the

ACAR maintained consistent performance.

5.4.2 Real Data

Human Data

The results of the ACAR on real data were also promising. Fig. 5.7 shows the 32 channels of

human-subject ECoG data after high-pass filtering at 0.1 Hz, and after application of the CAR,

ICA, and the ACAR. The raw data contained a highly periodic common mode artifact from an

unknown source. It is unlikely this noise was physiological in nature due to its timing. A much

larger artifact was also present in the recording at about 100 seconds.

As shown, the CAR managed to clean the artifact much of the time for most channels. It

struggled with some channels, though, such as 4 and 19, and it added the artifact to channels

where it was not initially present, such as 8 and 9. It also failed to provide much improvement to

5.4. RESULTS AND DISCUSSION 101

Figure 5.7: ECoG data with common mode artifacts. The data was processed by (Left) high-
pass filtering at 0.1 Hz, (Left Middle) high-pass filtering and then using a CAR, (Right Middle)
high-pass filtering and then using ICA, and (Right) applying the ACAR.

the large artifact near the end of the recording, which is probably partly due to the fact that there

seems to be some polarity changes in that artifact across channels. ICA removed the large artifact

better than the CAR and it did not adversely affect clean channels, but it still failed to remove much

of the contamination.

The ACAR consistently removed the periodic artifact, and avoided disturbing the channels

where the artifact was not present. Most of the the large artifact was also removed, although it

is still noticeable in most of the channels. This remaining spike is most likely the result of the

ACAR not adapting quickly enough to such a large artifact. It should be noted that due to amplifier

characteristics the data had a large DC offset and low frequency drift, which is normally eliminated

with a high pass filter. The ACAR was able to remove this offset and correlated drift on its own in

addition to the periodic noise.

102 CHAPTER 5. BROADBAND COMMON MODE NOISE

Figure 5.8: ECoG data with heavy EMG contamination. The data was processed by high-pass
filtering at 1 Hz and then (Left) no additional filtering was used, (Left Middle) a CAR was applied,
(Right Middle) ICA was used, and (Right) the ACAR was applied.

Non-human Primate Data

The 12 channel non-human primate data was more heavily contaminated due to constant jaw and

tongue movement by the subject. As can be seen in Fig. 5.8, the original signals were nearly

completely masked by the EMG artifacts. The recording was also affected more strongly by low

frequency drift and to achieve optimal results a high-pass filter at 1 Hz was applied before all

methods, including the ACAR. The ACAR was capable of removing the drift on its own, but if

allowed to do so its performance removing the EMG noise decreased as in this case the drift had a

much different spatial distribution than the targeted noise. In this data set the recording contained

16 channels, but channels 2, 4, 5, and 13 contained no data and were ignored during filtering. For

easier visualization the open channels have been set to zero in Fig. 5.8.

As can be seen, the CAR performed well on this data. The result of the ACAR highly resembles

that of the CAR, and only through close examination or by overlaying the plots could it be seen

that the ACAR reduced the artifacts by an insignificant amount more. This result is not surprising

5.5. CONCLUSIONS 103

for this data given that the contamination appeared to be monopolar and fairly uniform across

channels. These conditions are ideal for the CAR, and it is good that the ACAR converged to

nearly the same result. ICA performed extremely well in removing the noise, but this was at the

expense of eliminating 5 out of the 12 components. It is unknown how much neural data was lost in

the process. Without a knowledge of the true underlying signal, it is difficult to tell with certainty

in this case whether the ICA result is more or less desirable than the result obtained by the CAR

and the ACAR.

5.5 Conclusions

The ACAR is a method for effectively removing common mode artifacts from multi-channel phys-

iological recordings. The technique works even with polarity changes in the noise between chan-

nels. It was found to be effective with as few as 2 channels of data, with performance improving

further as the number of channels increased. It also showed consistent results in improving signal

quality to around 10 dB on data with an average SNR in the range of about -280 to 5 dB. At higher

SNRs the ACAR could not generate an accurate noise reference and degraded the signal quality,

but consistently kept its output between 3 and 5 dB. At these higher input SNR levels a filter would

not be needed in most physiological recordings. A noise detector could also be added that only

triggered the ACAR when the noise power reached a certain level.

In addition to reducing constant, spatially stationary noise, the ACAR was found to produce

consistent results under variable noise conditions. This includes situations in which the noise

power, mixing vector, or both were changing over time. This is important since most sources of

real noise will drift slightly in power or spatial location, although probably not to the extent that

was tested here. Real multi-channel physiological data also often contains correlation between

the signals recorded by each channel, so this situation was tested as well. Although the ACAR’s

performance did decrease in some of these conditions, it still consistently improved signal quality.

Through visual inspection the ACAR was found to be effective in removing various artifacts

104 CHAPTER 5. BROADBAND COMMON MODE NOISE

from real data. Most conditions tested with both real and simulated data showed that for removing

spatially correlated noise from multi-channel recordings, the ACAR was superior to a standard

CAR and in many cases better than the RobustICA algorithm. This was with an implementation

of ICA in which an oracle determined the noise component that should be removed before recon-

structing the signals. Additionally, the ACAR was able to improve the quality of the underlying

neural signals of interest in real data that was corrupted by simulated noise.

The ACAR was used in a generalized form without changing any parameters across multiple

conditions for simulated and real data, and so it should be easily usable in an automated fashion

without configuration by expert personnel. Unlike ICA it can be easily implemented in real-time,

which is a significant advantage for applications that need online analysis and processing, such

as brain-computer interfaces (BCIs). The filter presented in this chapter showed potential for

reducing common mode artifacts in both offline and online recordings of physiological data, and

its performance here justifies further investigation and development.

There are situations, though, where the ACAR might not be the best choice for common mode

artifact removal. Some of these examples were presented in this chapter. When the noise had no

polarity or amplitude changes across channels the standard CAR performed better. As the signals

and the noise became less Gaussian, ICA improved to a point where it exceeded the ACAR. Last,

it was shown that correlation between the signals could decrease the performance of the ACAR.

Although this result was expected, it is a highly realistic condition for multi-channel physiological

recordings.

Additionally, the ability of the ACAR to uncover the underlying signals of interest needs to be

further studied. Spatial filters, such as the CAR, have been shown to improve the performance of

electroencephalography (EEG) BCIs [78], [58]. This topic is examined in the next chapter where a

BCI decoder is presented as an example application for the methods developed in this dissertation.

Examining the effect of the ACAR on such experiments is an important step in determining the

level of impact it can have on neural recordings.

Chapter 6

Application - BCI Decoding

105

106 CHAPTER 6. APPLICATION - BCI DECODING

Figure 6.1: Overview diagram highlighting BCI decoding. The boxes with shadows indicate the
portion of the system that is discussed in this chapter.

6.1 Introduction

The system framework presented in Chapter 2, as well as the filters presented in Chapters 3-5, all

have the goal of increasing the accessibility and efficiency of the development, implementation,

and use of technologies that harness neural signals. The effectiveness of these novel methods

in simplifying and improving neural signal processing has been demonstrated, but the question

still remains of the impact that these techniques could have on actual technologies that use neural

signals. An example of such technology is brain-computer interfaces (BCIs), which decode neural

signals in order to control a computer or device. This chapter presents a BCI as an example of

an application for the work in the previous chapters. The BCI was implemented using elastic net

regularization for linear regression, which was chosen based on its performance and the ability to

automatically eliminate irrelevant features while retaining a robust feature set.

The goal of this chapter is not only to demonstrate and discuss the merits of this decoding

method; it is also to show the potential impact of the algorithms and techniques presented in

previous chapters when applied to a real application of neural signal processing. Fig. 6.1 highlights

6.2. BACKGROUND 107

the decoding portion of the system in the main diagram. Much of the material related to the

decoding methods and data used in this chapter can be found in [79] and [2].

Section 6.2 covers the relevant background information for the decoder and Section 6.3 dis-

cusses its implementation and validation. Section 6.4 shows some results demonstrating the im-

pact of the methods from this dissertation on BCI decoding. Finally, Section 6.5 discusses the

conclusions and implications of this chapter.

6.2 Background

6.2.1 Brain-Computer Interface Decoding

BCIs have progressed greatly in recent years, and continue to move towards the goal of offering

neural control of assistive devices. This progress is due in part to improvements in computing

power, as well as recording and processing methods, that allow increasingly larger amounts of

neural data to be processed and analyzed in real time. This increase in data generally increases the

likelihood that useful signals are present, but it also causes an increase in the amount of irrelevant

or noisy data.

In the case of a BCI the goal is typically to decode the neural data to produce a control signal

for an external device such as a computer cursor, robotic arm, or wheelchair [80]. The decoding

algorithm could be anything from a simple linear classifier to complex methods such as support

vector machines (SVMs) or Kalman filters [81], [82]. Two popular methods for BCIs that decode

movement are the population vector and the optimal linear estimator (OLE) [83], [29]. These two

methods assume that every feature has a preferred direction of movement and solve for a set of

weights that best reproduce the observed movement.

If not handled properly, extraneous or contaminated neural features can translate into noise in

the output. The objective then should be to implement a neural decoding method that is invariant

to irrelevant features. One strategy to choose the best features is to observe the modulation of the

neural signals and then choose appropriate parameters for the decoder [34]. Neural plasticity then

108 CHAPTER 6. APPLICATION - BCI DECODING

typically allows the brain to further adapt to the selection [1]. This strategy has even been taken

to the extreme in non-human primates, where it was shown that the brain could eventually adapt

to randomly chosen features [84]. This strategy is time-consuming, though, and requires operation

by highly trained personnel. For BCIs to be usable by non-experts, as is the goal for all methods

in this dissertation, the decoding algorithm needs to be highly automated and robust.

6.2.2 The Curse of Dimensionality

The task of training a classifier with a large number of irrelevant features and a small number

of observations is not unique to BCIs. Overfitting and the contributions of noisy features both

become major concerns in these types of problems. Dimensionality reduction, feature selection,

and regularization are methods often employed in high-dimensional decoding problems. Dimen-

sionality reduction methods such as principal component analysis (PCA) and linear discriminant

analysis (LDA) have been used in BCIs [75], but these techniques transform the features to a new

basis, making it more difficult to interpret the real-world significance of the raw features. Feature

selection retains the original basis, but might not capture as much of the original information as

dimensionality reduction.

A number of BCI studies have used ’pure’ feature selection methods. These methods, such

as forward stepwise regression, only choose features and then separately solve for weights using

a standard method such as ordinary least squares (OLS). For feature selection, forward stepwise

regression adds the feature at each step that eliminates the most residual error (backward stepwise

removes features at each step that eliminate the least amount of residual error). These techniques

can be biased, since the best set of M + 1 features does not necessarily contain the best set of

M features [85]. They can also be unstable, in that a small change in the data could result in

a large change in the selected features. Stagewise regression attempts to minimize the problems

associated with stepwise regression by increasing a feature’s weight by a small amount at each step

rather than all the way to the least squares solution. The adjusted feature could remain the same

for multiple steps.

6.2. BACKGROUND 109

6.2.3 Regularized Linear Regression

Linear regression, which has been used frequently in BCIs, takes the form of the optimization

problem given by (6.1). Y is a vector containingM observations, X is anM×P matrix containing

P features for each observation, β is a vector of P weights that map the features to the observations,

and θ is the bias, or offset, term. OLS is the simplest method for computing β based on this model.

β̂ = argmin
β
‖Y −Xβ + θ‖2

2 (6.1)

Regularization can help address overfitting and other problems with high-dimensional feature

spaces. This technique adds a penalty term, represented by c(β) in (6.2). λ is a free parameter that

determines the magnitude of the penalty. In the case of `2 regularization, sometimes referred to as

ridge regression, the penalty is the `2-norm of β. In `1-regularization, also known as lasso (least

absolute shrinkage and selection operator), the penalty is the `1-norm. The lasso penalty is more

computationally challenging since it is non-differentiable, but it also performs feature selection by

reducing some values of β to zero [86]. It has actually been shown that in stagewise regression as

the feature weight step size optimally approaches zero, the result approaches the lasso [85].

β̂ = argmin
β

(‖Y −Xβ‖2
2 + λ ∗ c(β)) (6.2)

6.2.4 Elastic Net

Lasso has proven to be be highly effective in classification problems with a large number of irrele-

vant features and has been used on neural data, however, it is not without drawbacks. In a situation

where multiple features are useful but highly correlated, lasso tends to keep one and drop the rest.

Stability then becomes a concern, and robustness could also be an issue in situations where not all

features remain reliable over time due to noise or other events.

Elastic net blends the `1 and `2 penalties, as shown in (6.3). The goal is to produce a sparse

feature space with the `1 penalty, but improve stability and retain correlated features with the `2

110 CHAPTER 6. APPLICATION - BCI DECODING

penalty. Like lasso this penalty is not a computationally simple problem, but efficient methods for

solving it have been developed. There is also an additional free parameter, α, which determines

the relative strength of the penalties. Previous studies have shown this technique to be effective in

classification of functional magnetic resonance imaging (fMRI) data [87], [88].

β̂ = argmin
β

(‖Y −Xβ‖2
2 + λ(α‖β‖1 + (1− α)‖β‖2)) (6.3)

6.3 Elastic Net Validation

6.3.1 Data

The datasets used for validation of the elastic net decoder consisted of electrocorticography (ECoG)

signals recorded from two subjects undergoing monitoring for intractable epilepsy. Informed con-

sent was obtained from both subjects prior to implantation, and all data collection and experimental

procedures were approved by the Institutional Review Board of the University of Pittsburgh.

The signals were sampled at 1200 Hz with g.USBamp amplifiers and bandpass filtered from

0.1 to 200 Hz. The data signals were acquired using BCI2000 and were then sent to Craniux, the

software framework discussed in Chapter 2 [22], [14]. Spectral estimation was performed for an

autoregressive (AR) model with 10 Hz frequency bins, 300 ms windows, and a 33 ms step size.

Subjects were observed to ensure eye and facial movements were not used to control the BCI.

In choosing the data for offline analysis, it was attempted to use experimental paradigms that

have minimal online error correction by the user. Paradigms with error correction, such as a 2D

cursor task in which the subject might not move along the ideal path to the target, present problems

in offline analysis of a decoder. It can become difficult to determine the subject’s exact intent and

to incorporate the neural adaptation that is occurring as a result of error correction.

Subject A performed a simple hand grasp screening task. The subject was presented with a

visual cue in the form of a gray box on a black screen, and was instructed to continually open and

close the hand that was contralateral to grid placement while the cue was present. For Subject B,

6.3. ELASTIC NET VALIDATION 111

the experimental paradigm was a 1D center-out cursor task. A cursor would appear on the screen

along with a target to the right or the left of the cursor. The subject was instructed to perform

hand grasps to move the cursor to the right, and to move their elbow to send the cursor to the left.

The cursor was constrained to horizontal movement and the trial ended when the cursor touched

the target. It is then assured that the subject was always attempting to move the cursor in the

same direction for the duration of each trial. The hand and elbow used for movement were again

contralateral to grid placement.

Subject A had 64 recorded channels: 48 from a standard clinical ECoG grid, and 16 from a

high-density ECoG research grid. Subject B had 128 recorded channels: 62 from clinical grids,

32 from research grids, 2 electrocardiogram (EKG) channels, and 32 open channels. The EKG

and open channels were left in the data to show the feasibility of an automated decoder with no

supervision on channel selection. Data from Subject A consisted of 5 sessions with 24 trials each.

For Subject B, data contained 4 sessions with 42 to 90 trials each for a total of 234 trials.

6.3.2 Classification

Decoding of the neural signals was done in an offline analysis using four different methods: elastic

net, lasso, ridge regression, and OLS. The solutions for the first three methods were calculated

using a modified version of glmnet, a freely available software package developed at Stanford

University. Glmnet uses cyclical coordinate descent in a pathwise fashion and has previously

shown excellent results and convergence speed [89], [90].

To determine the best value of λ for elastic net, lasso, and ridge regression, 10-fold cross-

validation was performed for each training of the classifier across 20 different values of λ. A

similar scheme was originally adopted to determine the best value of α, but it was found that this

method generally caused the result to closely mirror the lasso solution. While this solution may

indeed be the best fit for a particular set of training data, it fails to produce the robustness and

stability that were earlier discussed as motivations for using the elastic net penalty. For this reason,

α was set at 0.1 (α = 1 is equivalent to lasso and α = 0 is ridge regression).

112 CHAPTER 6. APPLICATION - BCI DECODING

Figure 6.2: Percentage of timepoints classified incorrectly. The value shown indicates the per-
centage across all timepoints in all sessions. The error bars indicate the minimum and maximum
percentage of timepoints classified incorrectly for an individual session.

Results for each session were calculated using 10-fold cross-validation. In the training set, the

time-average of each feature over each trial was used, but in the testing set the decoding was done

on each timepoint of spectral data as it would be in a real-time BCI. The main metric calculated was

the percent of timepoints in which the decoder was correct. For Subject A this means determining

whether the subject was grasping or not, and for Subject B this means determining if the cursor

would move in the correct direction. Since this metric only determines the accuracy of the direction

of movement and not magnitude, the change in distance to target was also measured for Subject B.

For both subjects, timepoints that were within 500 ms of stimulus onset were ignored. This was to

ensure that the spectral estimation window consisted of neural data produced after the subject had

reacted to the stimulus.

6.3.3 Results

Fig. 6.2 shows the percentage of timepoints that were classified incorrectly for both subjects using

each decoder. Elastic net had a lower error than the other decoders across all sessions for both

subjects. The advantage over lasso in the average error is small, although elastic net did appear to

be more dependable across sessions as indicated by the maximum session error for both subjects.

The range of error across sessions was quite large for all decoders with Subject B, but as expected

the error and consistency for the simpler task performed by Subject A was much better.

6.3. ELASTIC NET VALIDATION 113

Figure 6.3: Change in distance to target for 1D cursor control. The distances were normalized by
the original distance to the target, and then binned with a bin width of 1. The values represent the
count of timepoints in each bin.

The better consistency of Subject A helped highlight the significant improvement of elastic net

and lasso over ridge regression and OLS (p < 0.05 for all cases). It should also be noted that for

similar tasks results are often reported for testing on time-averaged features for each trial rather

than individual timepoints, which generally results in lower errors. For Subject B this method

resulted in errors of 10%, 13%, 22%, and 20% (elastic net, lasso, ridge regression, OLS).

The results in Fig. 6.3 reinforce those given by Fig. 6.2. Additionally, they show that ridge

regression produced a control signal that, although not as accurate on average, was much more

stable than the other decoders in that it never moved the cursor a great distance in either direction.

This could be desirable in operating physical devices such as robotic arms where sudden jerks and

unpredictability could present a danger.

The sparsity of the weights used by the decoders is also important in their discussion. Fig. 6.4

shows the weights calculated by each decoder when trained on one session of data from Subject

B. As expected OLS had no sparsity in its results and ridge regression, while having many weights

that were close to zero, also did not give a sparse set of weights. Some banding can even be seen

in these weights near 120 Hz and 180 Hz, which was most likely the result of line noise harmonics

in the data. Lasso, on the other hand, produced a set of weights in which only 35 of the 2,560

weights were non-zero. For the elastic net decoder, 114 features had non-zero weights. Elastic net

and lasso also chose no features from the 32 open channels at the end, although there were a few

114 CHAPTER 6. APPLICATION - BCI DECODING

Figure 6.4: Decoder weights calculated from one session of data from Subject B

small non-zero weights on one of the EKG channels.

Many of the features eliminated by lasso but retained by elastic net closely neighbor a non-

zero lasso weight both spatially and in frequency. For example, lasso used the 100-110 Hz bin on

channel 27. Elastic net used this feature as well as the rest of the gamma band on channel 27 and

channel 19, which was spatially adjacent. This extra redundancy in the decoder could be useful in

a BCI where the features are subject to noise and are themselves adapting due to neural plasticity.

The extra stability in the feature set would also be desired when re-training so that the decoding

weights are not as much of a moving target for the BCI user. When trained on each session of

Subject B data, not a single feature was common across all sessions for lasso.

6.4 Impact of Methods on BCI Decoding

6.4.1 Data and Methods

Additional data was collected from a human subject who was implanted with a 32 channel ECoG

grid over primary motor and sensorimotor areas. The subject was a 30 year old male who suffered

a complete C4 spinal cord injury 7 years prior. All data collection and procedures were approved

6.4. IMPACT OF METHODS ON BCI DECODING 115

by the University of Pittsburgh’s Institutional Review Board and informed consent was obtained

prior to implantation. Data from this subject was also used in Chapters 3 and 5. In this chapter this

subject will be referred to as Subject C.

For offline analysis, the signals were decoded using the elastic net algorithm presented in this

chapter [79]. As in Section 6.3, training features were averaged over the presentation time of each

cursor target and for testing each timepoint was decoded individually as it would be in a real-

time BCI. Results were again calculated using 10-fold cross validation. To minimize the effect of

online error correction attempted by the subject only the first one second of cursor movement data

for each target was used (or until the cursor hit the target). In the real-time experiment the targets

were presented 500 ms before movement could begun to ensure the subject had time to react to the

target.

6.4.2 Craniux

Craniux was used with this subject for real-time data collection and BCI control. The software

provided an excellent platform for efficiently conducting the experiments. Parameters could be

updated during run-time, modules could be interchanged, system timing was consistent, and BCI

decoding weights could be saved and loaded whenever desired. During real-time operation the

system was configured with a standard notch filter for line noise removal, AR spectral estimation,

and an OLS decoder. As with data presented earlier in this chapter, the spectral power in 10 Hz

bins from 0 to 200 Hz was used as features for the decoder. With this Craniux setup the subject was

able to achieve a success rate of nearly 90% in hitting targets with 2D cursor movement and 80%

with 3D cursor movement, the first time such effective control has been demonstrated with ECoG

in a subject with tetraplegia [2]. The data was also streamed to disk with important experimental

parameters, allowing for further analysis in an offline environment.

For offline analysis the data could be processed by loading it back into Craniux or by using

other software such as MATLAB (The MathWorks, Inc.). In the following sections, which exam-

ine the effect of noise and filtering on Subject C’s data, a combination of these approaches was

116 CHAPTER 6. APPLICATION - BCI DECODING

used. The raw neural data was first loaded and replayed through Craniux with different system

configurations. Modules were used that performed tasks such as adding simulated noise and ap-

plying the filters under investigation, including the adaptive common average reference (ACAR)

and the adaptive sinusoid canceler (ASC). The newly processed data was again streamed to disk

by Craniux. In MATLAB, the data was then decoded using the elastic net algorithm to analyze the

effects of the filters on the decoding results.

6.4.3 Broadband Noise

Methods

The data from Subject C in which good BCI performance was obtained was relatively free of

broadband common mode noise. It was desired, though, to examine the impact of the ACAR

from Chapter 5 on removing such noise to reveal the underlying neural activity that can be used

for BCI decoding. To do so, simulated noise was added to the real data. The use of simulated

noise also ensured that the contamination would not be correlated with the desired decoder output,

so the decoder performance should decrease from the corruption of the neural data. To allow

a comparison to the common average reference (CAR), monopolar noise was used as in Table

5.7. To simulate the realistic power fluctuations in physiological noise and to minimize any bias

resulting from the use of a single constant mixture, the noise model with a variable mixture and

signal-to-noise ratio (SNR) presented in Table 5.4 was used. This model precludes the use of

independent component analysis (ICA) as a viable method, but in real-time BCI operations ICA

would typically be difficult to use.

The best available neural data was used as the original signals, which consisted of 3 consecutive

sessions of data that contained 176 targets and over 16,000 timepoints. To measure the effect of the

corruption the original signals were first decoded, and then the noise was added and the decoding

performed once again. The noise was then filtered back out with the ACAR before decoding once

again to measure the ability of the ACAR to recover the original neural information buried under

the added noise. For comparison, a standard CAR was separately applied to the same corrupted

6.4. IMPACT OF METHODS ON BCI DECODING 117

Figure 6.5: Distribution of TAE magnitude with simulated broadband noise. The errors were
binned into 30 degree wide bins with the first bin center at 15 degrees. The values shown are the
count in each bin.

signals before decoding a final time. In all cases the signals were first passed through a 1 Hz

high-pass filter and a standard 4 Hz notch filter at each line noise harmonic.

Evaluation

The offline decoding of 2D cursor control data was first evaluated by measuring the angle error

for each timepoint between the direction to the desired target (the target vector) and the direction

of movement determined by the decoder (the movement vector). This metric will be referred to

as the timepoint angle error (TAE). The magnitude of this error can range from 0 to 180 degrees.

For each signal condition, the distribution of this error is shown in Fig. 6.5. The distribution was

calculated by placing all errors in 30 degree wide bins, with the first bin centered at 15 degrees. As

expected, the performance of the decoder on the original signals was the best. The distribution for

the noisy signals was much flatter with more timepoints having larger errors. The CAR improved

the results of the noisy signals and the ACAR showed an even further improvement. The results

from the ACAR more closely match the performance of the original signals, indicating that it was

best able to recover the underlying neural information.

The angle error is a valuable metric in examining the performance of 2D cursor control, but it

118 CHAPTER 6. APPLICATION - BCI DECODING

Figure 6.6: Distribution of CAE magnitude with simulated broadband noise. The errors were
binned into 30 degree wide bins with the first bin center at 15 degrees. The values shown are the
count in each bin.

does not necessarily tell the entire story. Moving far away from the target on one timepoint and

slightly towards it on another is clearly not as good as doing the opposite, even though the average

angle error might be the same. For this reason a metric was conceived that could account for the

magnitude of movement as well as the angle. For each timepoint, the target vector was rotated to

0 degrees. The movement vector was then rotated by the same amount. The rotated movement

vectors for each timepoint were then added to produce one movement vector for all timepoints

relative to the same target vector. The angle of this summed vector was measured to provide an

angle error that took into account the magnitude of movement for each timepoint. This procedure

was followed for each target presentation in the data, resulting in one error measurement for each

target. This measure will be referred to as the cumulative angle error (CAE).

The distributions of the CAE magnitude are shown in Fig. 6.6. As with the TAE, the results for

the original signals are the best, followed closely by the signals filtered by the ACAR. By factoring

in the magnitude of movement, the drop-off from the ACAR to the CAR appears to have grown.

The distributions for the clean signals and for the ACAR signals approach 0 much more quickly,

while the distributions for the CAR and for the corrupted signals decrease more gradually. For

additional reference, the average magnitude of both the TAE and the CAE are given in Table 6.1.

In addition to the measures of error in the decoding results, it can be useful to look at the

6.4. IMPACT OF METHODS ON BCI DECODING 119

Table 6.1: BCI decoding mean error magnitudes for real data with simulated broadband noise.

Clean ACAR CAR Corrupted

TAE 42 48 59 63
CAE 17 22 33 41

Figure 6.7: Elastic net decoder weights for vertical movement in 2D cursor control with real data
and simulated broadband noise.

decoding weights for each feature as was done during the validation of the elastic net decoder. For

2D cursor control a separate set of weights are generated for each dimension. Fig. 6.7 shows these

weights for the vertical movement dimension. The interesting thing to note is that what was shown

to be an improvement in the decoder performance corresponds to an increase in the magnitude

of the decoder weights at higher frequency features. For the clean signals the decoder heavily

weighted features all the way up to 200 Hz. For the ACAR strong features were found mostly

below about 120 Hz while the prominent CAR weights were mostly below 70 Hz and the decoder

for the corrupted data was forced to choose a large portion of its features from below 30 Hz.

This result can be explained by the 1/f falloff in the power spectrum for ECoG signals. The

higher the frequency, the more sensitive a feature is to noise. So as the power of corrupting white

noise increases, the maximum frequency for which useful neural information can be recovered

120 CHAPTER 6. APPLICATION - BCI DECODING

Figure 6.8: Spectral estimate with light line noise contamination.

decreases. This is not to say that the noise does not affect lower frequencies as well, but there is a

higher SNR at the lower frequencies. Retaining useful features at higher frequencies is important

for BCI decoding, though, as these features typically reflect more localized neural activity. The

low frequency information is more widely distributed and thus might not be capable of specifically

targeting a BCI task. The increased decoding performance offered by the ACAR over the CAR

and the corrupted signals might then be attributable to the availability of higher frequency features.

6.4.4 Line Noise

Methods

As with most physiological recordings, line noise was present in the data from Subject C. The

amount of contamination varied between sessions, though, as shown in Fig. 6.8 and Fig. 6.9.

Light line noise contamination is shown in Fig. 6.8, which is from the same session of data used

in Section 6.4.3. This data will be referred to as Session 1. The heavier contamination in Fig.

6.9 comes from a separate session of data that had inferior real-time decoding results and will be

referred to as Session 2.

The figures contain the AR spectral estimates, binned every 10 Hz, that are commonly used in

BCI decoding as has been done in this chapter. Compared to the fast Fourier transform (FFT) the

AR model has a low error variance and an increased resolution with short time records, but it is still

6.4. IMPACT OF METHODS ON BCI DECODING 121

Figure 6.9: Spectral estimate with heavy line noise contamination.

susceptible to spectral leakage and some anomalous effects can occur when the data is dominated

by sinusoidal components [27]. As shown by both figures, the contamination from the line noise at

its fundamental frequency and harmonics caused a ripple effect in the spectral estimate that altered

everything over 40 Hz.

In Section 6.4.3 it was suggested that the higher frequency neural features play a large role

in the effectiveness of BCI decoding. Given the apparent effect of line noise on these upper fre-

quencies, it might be expected that the noise would greatly impact decoding results. Many BCI

studies, though, do not have access to the higher frequency content that ECoG does. Electroen-

cephalography (EEG), which is similar in frequency content to magnetoencephalography (MEG),

typically only uses spectral content up to 70 Hz since the SNR at higher frequencies makes the

neural information difficult to use [91]. In the presence of line noise at 60 Hz a low-pass filter at

50 Hz is often used, discarding a potentially valuable and relatively large portion of the already

limited neural data.

To evaluate the impact of line noise filtering on decoding results data was decoded in an offline

environment without line noise removal, and then after filtering by standard notch filters and by the

ASC. It was known that the line noise would not make any large, sudden changes in frequency so

for quicker convergence the ASC was adjusted to a maximum bandwidth of 2 Hz and for Session

1 a bandwidth sensitivity of 10. In Chapter 3 these values were 4 Hz and 20, respectively. The

same methods used in Section 6.4.3 were used for decoding, with a high-pass filter at 1 Hz, 10

122 CHAPTER 6. APPLICATION - BCI DECODING

Table 6.2: Average CAE magnitude for Session 1 data with line noise filtering

Features No Filter Notch Filter ASC

All 16 17 16
< 70 Hz 25 26 22
< 50 Hz 26 26 26
50− 70 Hz 40 38 33

Hz frequency bins for features, and the elastic net decoding algorithm. The impact of the filtering

when the frequency content of the neural data had a more limited range, as might be seen in EEG

or MEG, was also examined.

Evaluation

The CAE presented in the previous section was used to measure the offline decoding results for

line noise removal. These results are shown in Table 6.2 for Session 1 and Table 6.3 for Session

2. Only features from those frequencies indicated were used. As would be done in EEG and MEG

studies that only use content below 50 Hz, a low-pass filter with a cutoff at 50 Hz was used in that

situation to ensure the removal of any line noise influence.

Although the differences in results from the different filtering methods are not as large as in

Section 6.4.3, there are a few interesting things to note. First, in both sessions it was found that

eliminating data never increased performance, even if no line noise filtering at all was implemented.

This would indicate that even if data is contaminated it is better to let the decoder try to make use

of it than to completely discard it. In the presence of a good decoding algorithm with automatic

feature selection, such as elastic net, bad features are better than no features. Completely useless

or harmful features are ignored.

Second, the impact of line noise was more harmful on Session 2. Given the stronger perfor-

mance of Session 1 in general, though, it is difficult to tell how much of this impact was due to the

stronger line noise contamination and how much was due to Session 1 merely having strong, re-

dundant features that eliminated the need for those features contaminated by line noise. In Session

1 the effect of the standard notch filter was negligible at best, which again was most likely due to a

6.4. IMPACT OF METHODS ON BCI DECODING 123

Table 6.3: Average CAE magnitude for Session 2 data with line noise filtering

Features No Filter Notch Filter ASC

All 56 54 52
< 70 Hz 69 60 58
< 50 Hz 76 76 76
50− 70 Hz 76 66 62

combination of the weak line noise and the strong neural features that were eliminated along with

the line noise. In Session 2 forgoing a line noise filter had a more detrimental effect, especially

when features above 70 Hz were not available.

Last, on this limited sample size the ASC did show improved performance over the standard

notch filter. This improvement was most pronounced when only features between 50 Hz and 70

Hz were used. Session 1 also showed the advantage of the ASC in situations with weak line noise

contamination and/or strong neural features. The ASC was designed to minimize signal distortion

while removing sinusoidal noise, and the effect of preserving the neural data can be seen. While

the standard notch filter had trouble outperforming the unfiltered signals in this situation, the ASC

produced the best results when features above 70 Hz were unavailable. In Session 2 the advantage

of ASC over the standard notch filter was smaller, which is most likely due to a combination of

the stronger line noise and the weaker neural features. In such a situation the tradeoff between

removing noise and preserving the signal is pushed more towards the side of noise removal, which

is what the standard notch filter places the most value on.

So while without further data the overall improvement the ASC offers over the standard notch

filter is marginal, it did appear to do a better job of removing the line noise while preserving any

neighboring neural features. The resulting impact on decoding performance most likely depends

on how harmful the line noise is and on how valuable those neural features are, but with this data it

appeared that having extra neural features was negligible at worst. The situation might occur then,

where better neural features are lost and the robustness and redundancy offered by those extra

features would at that point become more valuable.

It is also important to remember that decoding accuracy depends on the relative changes in the

124 CHAPTER 6. APPLICATION - BCI DECODING

spectral features during BCI-related tasks, not on the absolute magnitude of the spectral features.

As long as the modulation induced by these tasks is enough to cause significant changes in the

spectral estimate, decoding results might not suffer significantly from constant noise. Unlike most

broadband contamination, line noise power does not greatly fluctuate in short time windows. As

shown by Fig. 6.8 and Fig. 6.9, though, it can vary significantly over longer time periods or due

to changing environmental conditions. For long-term BCI use then, in which decoder training is

infrequent, the effective removal of line noise could play a greater role.

6.4.5 Ocular Artifacts

Good BCI decoding data contaminated with ocular artifacts was not available, and as indicated in

Chapter 4 ocular artifacts (OAs) are difficult to accurately simulate. It is also difficult to accurately

assess the impact of OA removal from decoding results since the artifacts themselves are often cor-

related with the BCI’s task. Effective removal of the artifacts then would not necessarily improve

decoding results. In most BCI studies that are susceptible to OA, trials that are contaminated by

OA are simply discarded. This practice results in a loss of valuable data, and in a real-time BCI

would not be practical. For example, in wrist movement data presented in Chapter 4 anywhere

from 5% to 20% of trials in each session were contaminated by OA and originally discarded. The

multi-level wavelet method was then on average able to increase the amount of available data by

about 13%.

6.5 Conclusions

This chapter first demonstrated the feasibility of sparse linear regression using the elastic net

penalty for BCIs. The decoding accuracy of this method was better than ridge regression and

OLS, but not much of an improvement over lasso. The feature set the elastic net chose appeared to

retain more correlated features than lasso, though, resulting in a more stable set of feature weights

across training sessions.

6.5. CONCLUSIONS 125

Some level of sparsity is typically desired in any decoding problem with a high-dimensional

feature set in order to eliminate noisy and irrelevant features, but the proper level of sparsity in

a BCI remains an open problem. Having fewer features may allow the BCI user to more easily

adapt to the decoding weights. Eliminating features that are only moderately useful could allow

those features to be used to control an additional degree of freedom. As discussed here, though, a

feature space that is too sparse could result in loss of robustness and stability. A further advantage

of the elastic net penalty is that the level of sparsity can be scaled all the way from lasso to the

ridge regression solution.

The elastic net decoder was also used as an application example to show the effect that some

of the methods presented in previous chapters could have on a real neural signal processing task.

The results from these examples showed that the methods have potential to positively impact BCI

decoding. Craniux allowed a real-time BCI experiment to operate smoothly and achieve effective

control of 3D cursor movement, something that had not been achieved before with ECoG in a

subject with tetraplegia. In offline analysis, the filtering methods in many cases improved the

decoding results in the presence of noise. In the very least they made more features or trials

available for use by the decoder, which improves robustness and reliability.

The amount of available data was limited, so it should be remembered that the presented analy-

sis was meant to offer an example from a real application of neural signal processing. This analysis

is not sufficient for conclusive evidence, but does provide solid initial results to show the impact

some of the methods in this dissertation could have on a BCI. To fully measure their effective-

ness, though, further studies should be done with additional real data. Real-time application of the

methods also needs to be examined, so that the BCI user’s adaptation is also a factor. It could be

possible that results would improve even further in that situation, as the BCI user might be able to

learn to make use of the improved, filtered data.

126 CHAPTER 6. APPLICATION - BCI DECODING

Chapter 7

Conclusion

127

128 CHAPTER 7. CONCLUSION

7.1 Overview

The outcome of this research was an increase in the effectiveness and accessibility of some com-

mon neural signal processing tools. It is hoped that through these tools clinicians and researchers

will be able to better focus on the neural analysis and scientific questions that drive their work.

The same tools should also help many basic tasks in neural signal processing, such as operation

of a brain-computer interface (BCI), to become possible for non-expert users. This result would

increase the target population for advanced technologies that are based on neural signal process-

ing, and also further ease the burden on researchers and clinicians by allowing more tasks to be

delegated to non-expert personnel.

The software presented in Chapter 2, Craniux, proved to be an excellent system framework for

neural signal processing. It reliably maintained data integrity and performed well with consistent

system timing. The user interface, as well as the automation of many system components, make it

easy to use the system for real-time control and visualization of experiments. Its highly modular

design, as well as the use of a high-level language with powerful built-in libraries, simplifies the

process of extending the software by adding new components or algorithms to the system. The

combination of these features gives users with a wide range of skill sets the flexibility to perform

both real-time experiments and thorough offline analysis.

Results also showed that the novel filtering algorithms have the potential to effectively perform

and automate some of the common steps that are necessary in neural signal processing systems. In

Chapter 3 the adaptive sinusoid canceler (ASC) was presented as a filter that could track and isolate

sinusoidal components in a signal. It does so by using an adaptive noise canceling (ANC) filter

setup and internally tracking the line noise frequency in order to generate its own reference. This

filter was applied to the prevalent problem of line noise in neural recordings, and results showed

the method to be superior to other methods commonly used for this problem such as standard notch

filters and an adaptive line enhancer (ALE). The ASC is able to ensure removal of the sinusoidal

component, while minimizing the distortion to the underlying signal.

Chapter 4 discussed the multi-level wavelet technique for removal of ocular artifacts (OAs) in

7.2. DIRECTIONS FOR FUTURE WORK 129

neural data. This method relies on localizing the artifacts in both time and frequency before remov-

ing them with a threshold function. The localization is done by identifying an artifact, determining

the optimal level of wavelet decomposition, and then locating its temporal bounds. After removing

the artifact in the wavelet coefficients, the remaining signal can be reconstructed. This technique

was found to be more effective than traditional techniques such as regression, principal component

analysis (PCA), and independent component analysis (ICA), and it is also fully automated and

computationally efficient on large data sets.

The adaptive common average reference (ACAR), a method for removing common mode arti-

facts, was presented in Chapter 5. Like the ASC, this algorithm uses an ANC filter and internally

generates its own reference. The reference is first produced by a common average reference (CAR),

after which the output of the ANC filter is used as feedback to enhance the reference on the next

timepoint. Results showed the ACAR to be effective at removing spatially correlated noise, and

under most circumstances was superior to a CAR and to ICA.

Finally, Chapter 6 presented BCI decoding, an example application for the methods developed

in this dissertation. Craniux was found to be an effective framework for real-time BCI decoding.

The data the software streamed to disk also allowed offline analysis to be performed using linear

regression with elastic net regularization. This decoder was shown to provide automatic feature se-

lection and robust results. The novel filtering algorithms were demonstrated to increase the amount

of usable data that was available for the decoding process by improving the quality of contaminated

neural signals. Given the typically limited amount and quality of neural data available for training

BCIs, any extra data is always desired. Whether an increase in data comes in the form of additional

trials or additional features, it is beneficial to the accuracy and robustness of the decoder.

7.2 Directions for Future Work

The methods in this dissertation should provide a stepping stone to further research in the expand-

ing field of neural signal processing. This final section will discuss ways in which the presented

130 CHAPTER 7. CONCLUSION

algorithms and ideas can be further improved or studied. There are numerous needs for the future

development of advanced tools that assist with the processing of neural data, but here the discus-

sion will be limited to topics directly related to the tools created for this dissertation. These topics

include improvements that could be made, as well as additional analysis that could be done to

further validate or gain new insight into the methods.

7.2.1 Craniux Development

Multi-tasking. Craniux currently provides an excellent means for conducting a single experi-

ment or task, but it could at times be useful to run multiple real-time tasks at once. For example,

in a BCI it might be useful to simultaneously look at the output produced by different decoders or

feature sets. To accomplish this, Craniux would need to be capable of branching between modules

rather than relying on the single input and output from each module. The main difficulty would lie

in still ensuring that determinism was maintained between modules.

Executables Craniux is currently freely available as open-source software and runs in the Lab-

VIEW environment. It would be accessible to an even larger number of people, though, if it were

compiled down to executables. These executables could clearly not be modified as the source code

can, but would allow its built-in functionality to be used without access to LabVIEW. One road-

block to creating these executables is that some current aspects of communication between system

components rely on LabVIEW features that cannot be compiled. Removing the need for these

features would most likely require the creation of a stand alone communications manager or server

that could help initialize the communication channels between system components.

7.2.2 ASC Improvements

Frequency identification. The lowest effectiveness of the ASC is at high signal-to-noise ratios

(SNRs), where it is at times unable to initially locate and then track the frequency of the noise.

This problem can create a situation in which, instead of the frequency estimate being improved by

7.2. DIRECTIONS FOR FUTURE WORK 131

a narrowing bandwidth, the bandwidth broadens to search for the frequency and creates an even

higher SNR within the bandpassed portion of the signal. The need for the filter is minimized at

high SNRs, but a more advanced method for determining the noise frequency could help alleviate

this problem. It was shown that the current method outperformed spectral peak detection at an

SNR of 0 dB, but at higher SNRs some form of spectral peak detection would most likely be less

susceptible to interference from the surrounding signal.

Noise detection. The ASC might also be improved by including or calculating an estimate of the

SNR. The filter could then adjust its bandwidth sensitivity to close more tightly and prevent signal

distortion in the high SNR case and open more widely to ensure noise attenuation in the low SNR

case. This adjustment would also help optimize the frequency estimate. At the least, a mechanism

could be implemented in which the filter is automatically bypassed if the SNR is too high.

7.2.3 OA Removal

Wavelet function. The selection of the Haar wavelet for OA removal was made mostly for com-

putational efficiency and due to the fact that the differing types of OA would make it difficult to

select a single optimal wavelet basis function. A more thorough investigation into the effect of

different wavelets could either confirm the Haar as the most practical choice, or determine a better

basis function that could be used to further improve the method. If a real-time implementation is

needed, then computation time would have to be considered in addition to effectiveness.

Thresholding method. The performance of the multi-level wavelet method lies in its ability to

localize the artifact in both time and frequency. Once localized, though, the artifact is still removed

with a simple threshold. A more advanced algorithm that could take into consideration the shape

of the OA might better preserve the neural data present at that time/frequency. This information

might be obtained by locating the same time/frequency window on the electrooculographic (EOG)

reference channel, but this would also eliminate the advantage of the removal method not requiring

132 CHAPTER 7. CONCLUSION

the reference. Since a multi-channel recording would probably be in use and most OAs qualify as

common mode, it might be possible to generate a reference using a method similar to the ACAR.

As with any engineering question, though, it must be considered if the resulting improvement in

that case would be worth the increased system complexity.

7.2.4 ACAR Considerations

Channel selection. One of the benefits of the ACAR over the CAR is its ability to weight chan-

nels when creating a reference based on the strength and polarity of the common mode artifact in

each channel. If a channel contains a small amount of the artifact then it receives a small weight.

The weight is not zero, though, and if the channel has a much larger amplitude than other chan-

nels then it can adversely affect the reference. An example of this is an open channel that is just

acting as an antenna. It would be useful if such channels could be completely ignored (i.e. set

their weights to zero) when generating the reference. Simply normalizing the weight by the chan-

nel’s power would help, but this would be a major detriment when a channel has high power due

to heavy contamination by the artifact. A combination of looking at the channel’s power and its

potential weight could probably arrive at a solution that ignored these problematic channels. Also,

it would be useful if the channel selection could extend to not filtering any channels in the case

where no common mode noise is detected.

Multiple common mode sources. The ACAR converges to a reference and spatial map for the

most dominant source in the recording. This property limits the ACAR to only removing noise

over one spatial distribution. Multiple noise sources could be removed, but only if they had similar

spatial distributions or if they were temporally isolated so that the filter could adapt between them.

As long as the noise sources had varying powers so that an ACAR could converge to the strongest

remaining source, then multiple ACARs could be cascaded to remove all the noise. This might not

be possible, though. If not then the only other current option would be to present each noise source

individually, allow an ACAR to adapt, and then lock its values into place. It could be beneficial to

7.2. DIRECTIONS FOR FUTURE WORK 133

develop a method that could allow the ACAR to isolate multiple spatially distinct sources of noise.

Source localization and connectivity analysis. Many source localization and connectivity anal-

ysis techniques rely on the correlation between signals to find the dominant sources (although some

actually look for the differences between channels [92]). It is important then that any filtering per-

formed before source localization does not affect the signal correlation structure. The effect that

the ACAR has on this structure could vary greatly depending on factors such as SNR, the spa-

tial layout of the noise and sources of interest, and the number of recorded channels. The same

property mentioned above that currently only allows the ACAR to converge to one noise source

should also prevent it from damaging the correlation of signal sources, though. In the case where a

source of interest is dominant, or where it has a spatial distribution similar to the dominant source,

it would likely be corrupted by the ACAR. A full understanding of this interaction between the

ACAR and source localization requires further investigation and would make an interesting study.

7.2.5 Additional Analysis

Real-time BCI decoding. All of the results in this dissertation that examine the impact of the

filtering methods on BCI decoding use offline data. To truly understand the effect of these filters

they must be implemented in real-time decoding. BCI adaptation is a two-way process: as the

decoder learns the neural features the BCI user is also learning the decoder. Improved filtering can

make more features usable by the decoder, but if the filtering is done in an offline environment then

the user is never able to adapt to the availability or improvement of those features. In a real-time

environment, the subject might be able to make better use of the features to further improve the

results. It would likely take a large amount of data to conclusively determine the impact of the

filters, though, due to the learning that occurs as the subject uses the BCI.

Other applications. BCI decoding was presented as an example application for the novel neural

signal processing methods that were developed. The impact of these methods is not meant to be

134 CHAPTER 7. CONCLUSION

limited to BCIs, though, and it would be desired to examine their effect on other applications.

Neuroscience studies, medical research, and clinical monitoring are just a few other areas where

some of this work might be applicable. Some of the filters might even be useful in completely

unrelated areas in which similar noise is a problem. The end goal of this research was to create

effective and accessible tools that could assist with neural signal processing, but that should not be

considered a limit to its applications.

Bibliography

[1] W. Wang, J. Collinger, M. Perez, E. Tyler-Kabara, L. Cohen, N. Birbaumer, S. Brose,
A. Schwartz, M. Boninger, and D. J. Weber, “Neural interface technology for rehabilitation:
exploiting and promoting neuroplasticity,” Phys. Medi. and Rehab. Clinics of N. Amer.,
vol. 21, no. 1, pp. 157–178, 2010.

[2] W. Wang, J. Collinger, A. Degenhart, E. Tyler-Kabara, A. Schwartz, D. Moran,
D. Weber, B. Wodlinger, R. Vinjamuri, R. Ashmore, J. Kelly, and M. Boninger, “An
electrocorticographic brain interface in an individual with tetraplegia,” PloS One, vol. 8,
no. 2, p. e55344, Feb. 2013.

[3] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara, D. J. Weber,
A. J. McMorland, M. Velliste, M. L. Boninger, and A. B. Schwartz, “High-performance
neuroprosthetic control by an individual with tetraplegia,” Lancet, vol. 6736, no. 12, pp. 1–8,
Dec. 2012.

[4] T. Vaughan and W. Heetderks, “Brain-computer interface technology: a review of the
Second International Meeting.” IEEE T. on Neural Sys. and Rehab. Eng., vol. 11, no. 2, pp.
94–109, Jun. 2003.

[5] M. De Vos, D. M. Vos, S. Riès, K. Vanderperren, B. Vanrumste, F.-X. Alario, S. Van Huffel,
V. S. Huffel, and B. Burle, “Removal of muscle artifacts from EEG recordings of spoken
language production,” Neuroinform., vol. 8, no. 2, pp. 135–50, Jun. 2010.

[6] J. P. Donoghue, “Bridging the brain to the world: a perspective on neural interface systems,”
Neuron, vol. 60, no. 3, pp. 511–21, Nov. 2008.

[7] M. Fatourechi, A. Bashashati, R. K. Ward, and G. E. Birch, “EMG and EOG artifacts in
brain computer interface systems: A survey,” Clin. Neurophys., vol. 118, no. 3, pp. 480–94,
Mar. 2007.

[8] R. J. Croft and R. J. Barry, “EOG correction: which regression should we use?” Psychophys.,
vol. 37, no. 1, pp. 123–5, Jan. 2000.

[9] D. Olguin, F. Bouchereau, and S. Martinez, “Adaptive Notch Filter for EEG Signals Based on
the LMS Algorithm with Variable Step-Size Parameter,” in Conf. on Inf. Sciences and Sys.,
2005.

[10] C. J. Ochoa and J. Polich, “P300 and blink instructions,” Clin. Neurophys., vol. 111, no. 1,
pp. 93–8, Jan. 2000.

135

136 BIBLIOGRAPHY

[11] R. Verleger, “The instruction to refrain from blinking affects auditory P3 and N1 amplitudes,”
Electroenceph. and Clin. Neurophys., vol. 78, no. 3, pp. 240–51, Mar. 1991.

[12] G. L. Wallstrom, R. E. Kass, A. Miller, J. F. Cohn, and N. A. Fox, “Automatic correction
of ocular artifacts in the EEG: a comparison of regression-based and component-based
methods,” Int. J. of Psychophys., vol. 53, no. 2, pp. 105–19, Jul. 2004.

[13] I. I. Goncharova, D. J. McFarland, T. M. Vaughan, and J. R. Wolpaw, “EMG contamination
of EEG: spectral and topographical characteristics,” Clin. Neurophys., vol. 114, no. 9, pp.
1580–1593, 2003.

[14] A. D. Degenhart, J. W. Kelly, R. C. Ashmore, J. L. Collinger, E. C. Tyler-Kabara, D. J.
Weber, and W. Wang, “Craniux: a LabVIEW-based modular software framework for
brain-machine interface research,” Comp. Intell. and Neuro., vol. 2011, Jan. 2011.

[15] W. Miltner, C. Braun, and R. Johnson, “A test of brain electrical source analysis (BESA): a
simulation study,” Electroenceph. and Clin. Neurophys., 1994.

[16] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis,” J. of Neuro. Meth., vol. 134,
no. 1, pp. 9–21, Mar. 2004.

[17] F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, “Brainstorm: a user-friendly
application for MEG/EEG analysis,” Comp. Intell. and Neuro., vol. 2011, Jan. 2011.

[18] C. Brunner, G. Andreoni, and L. Bianchi, “BCI Software Platforms,” in Towards Practical
Brain-Computer Interfaces. Biological and Medical Physics, 2013, pp. 303–331.

[19] P. Brunner, L. Bianchi, C. Guger, F. Cincotti, and G. Schalk, “Current trends in hardware and
software for brain-computer interfaces (BCIs),” J. of Neural Eng., vol. 8, no. 2, p. 025001,
Apr. 2011.

[20] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz, “Cortical control
of a prosthetic arm for self-feeding.” Nature, vol. 453, no. 7198, pp. 1098–101, Jun. 2008.

[21] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical control of 3D
neuroprosthetic devices,” Science, vol. 296, no. 5574, pp. 1829–32, Jun. 2002.

[22] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, “BCI2000: a
general-purpose brain-computer interface (BCI) system,” IEEE T. on Biomed. Eng., vol. 51,
no. 6, pp. 1034–43, Jun. 2004.

[23] Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O. Bertrand,
and A. Lécuyer, “OpenViBE: an open-source software platform to design, test, and use
braincomputer interfaces in real and virtual environments,” Presence: Teleoperators and
Virtual Environments, vol. 19, no. 1, pp. 35–53, Feb. 2010.

[24] C. Breitwieser, I. Daly, C. Neuper, and G. R. Müller-Putz, “Proposing a standardized
protocol for raw biosignal transmission,” IEEE T. on Biomed. Eng., vol. 59, no. 3, pp. 852–9,
Mar. 2012.

BIBLIOGRAPHY 137

[25] R. Oostenveld and P. Fries, “FieldTrip: open source software for advanced analysis of MEG,
EEG, and invasive electrophysiological data,” Comp. Intell. and Neuro., vol. 2011, Jan.
2011.

[26] S. Clanton, “Brain-computer interface control of an anthropomorphic robotic arm,” Ph.D.
dissertation, Carnegie Mellon University, 2011.

[27] S. M. Kay and S. L. Marple, “Spectrum analysis - a modern perspective,” Spectrum, vol. 69,
no. 11, 1981.

[28] R. Kalman, “A new approach to linear filtering and prediction problems,” J. of Basic Eng.,
vol. 82, no. Series D, pp. 35–45, 1960.

[29] E. Salinas and L. F. Abbott, “Vector reconstruction from firing rates,” J. of Comp.
Neuroscience, vol. 1, no. 1-2, pp. 89–107, Jun. 1994.

[30] D. Rushton, “Functional electrical stimulation,” Phys. Meas., vol. 241, 1999.

[31] C. Moran, “Revolutionizing Prosthetics 2009 Modular Prosthetic Limb - body interface:
overview of the prosthetic socket development,” Johns Hopkins APL Technical Digest,
vol. 30, no. 3, pp. 240–249, 2011.

[32] J. Nagle, “Congestion control in IP/TCP internetworks,” Ford Aerospace and Communica-
tions Corporation, Tech. Rep. January, 1984.

[33] NI, “The NI TDMS File Format,” National Instruments, Tech. Rep., 2012.

[34] W. Wang, A. D. Degenhart, J. L. Collinger, R. Vinjamuri, G. P. Sudre, P. D. Adelson,
D. L. Holder, E. C. Leuthardt, D. W. Moran, M. L. Boninger, A. B. Schwartz, D. J.
Crammond, E. C. Tyler-Kabara, and D. J. Weber, “Human motor cortical activity recorded
with micro-eCoG electrodes, during individual finger movements,” in Conf. of the IEEE
Eng. in Med. and Bio. Soc., vol. 2009, Jan. 2009, pp. 586–9.

[35] P. Jiruska, R. Cmejla, A. D. Powell, W.-C. Chang, M. Vreugdenhil, and J. G. R. Jefferys,
“Reference noise method of removing powerline noise from recorded signals,” J. of Neuro.
Meth., vol. 184, no. 1, pp. 110–4, Oct. 2009.

[36] A. K. Ziarani and A. Konrad, “A nonlinear adaptive method of elimination of power line
interference in ECG signals,” IEEE T. on Biomed. Eng., vol. 49, no. 6, pp. 540–7, Jun. 2002.

[37] J. W. Kelly, J. L. Collinger, A. D. Degenhart, D. P. Siewiorek, A. Smailagic, and W. Wang,
“Frequency Tracking and Variable Bandwidth for Line Noise Filtering without a Reference,”
in Conf. of the IEEE Eng. in Med. and Bio. Soc., 2011.

[38] N. R. Anderson, T. Blakely, G. Schalk, E. C. Leuthardt, and D. W. Moran,
“Electrocorticographic (ECoG) correlates of human arm movements,” Exp. Brain Research,
vol. 223, no. 1, pp. 1–10, Nov. 2012.

138 BIBLIOGRAPHY

[39] T. Blakely, K. J. Miller, R. P. N. Rao, M. D. Holmes, and J. G. Ojemann, “Localization and
classification of phonemes using high spatial resolution electrocorticography (ECoG) grids.”
in Conf. of the IEEE Eng. in Med. and Bio. Soc., vol. 2008, Jan. 2008, pp. 4964–7.

[40] T. V. Baak, “60 Hz AC mains frequency accuracy measurement,”
http://www.leapsecond.com/pages/mains/, 2004.

[41] M. Ta and V. DeBrunner, “Adaptive Notch Filter with time-frequency tracking of
continuously changing frequencies,” in IEEE Conf. on Acoustics, Speech and Sig. Proc.,
Mar. 2008, pp. 3557–3560.

[42] D. W. Mortara, “Digital filters for ECG signals,” Comp. in Cardiology, 1977.

[43] M. M. Z. Zadeh, S. Niketeghad, and R. Amirfattahi, “A PLL based adaptive power line
interference filtering from ECG signals,” in CSI Int. Symp. on Art. Intell. and Sig. Proc., no.
Aisp. Ieee, May 2012, pp. 490–496.

[44] B. Widrow, J. Glover, J. McCool, J. Kaunitz, C. Williams, R. Hearn, J. Zeidler, J. Eugene
Dong, and R. Goodlin, “Adaptive noise cancelling: principles and applications,” Proc. of the
IEEE, vol. 63, no. 12, pp. 1692–1716, 1975.

[45] S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 1996.

[46] M. Ferdjallah and R. E. Barr, “Adaptive digital notch filter design on the unit circle for the
removal of powerline noise from biomedical signals,” IEEE T. on Biomed. Eng., vol. 41,
no. 6, pp. 529–536, 1994.

[47] I. S. Badreldin, D. S. El-Kholy, and A. A. El-Wakil, “A modified adaptive noise canceler
for electrocardiography with no power-line reference,” in Cairo Int. Biomed. Eng. Conf.,
vol. 13, no. 2, 2010, pp. 5–8.

[48] J. S. Lim and A. V. Oppenheim, Advanced Topics in Signal Processing. Englewood Cliffs,
NJ: Prentice Hall, 1988.

[49] B. Widrow, P. E. Mantey, L. J. Griffiths, and B. B. Goode, “Adaptive antenna systems,”
Proc. of the IEEE, vol. 55, no. 12, pp. 2143–2159, 1967.

[50] J. R. Glover, “Adaptive noise canceling applied to sinusoidal interferences,” IEEE T. on
Acoustics, Speech, and Sig. Proc., vol. 25, no. 6, pp. 484–491, 1977.

[51] J. Treichler, “Transient and convergent behavior of the adaptive line enhancer,” IEEE T. on
Acoustics, Speech, and Sig. Proc., no. 1, 1979.

[52] R. Ramli, A. Noor, and S. Samad, “A review of adaptive line enhancers for noise
cancellation,” Australian J. of Basic and App. Sci., vol. 6, no. 6, pp. 337–352, 2012.

[53] S. Dhull, S. Arya, and O. P. Sahu, “Performance comparison of adaptive algorithms for
adaptive line enhancer,” Int. J. of Comp. Sci., vol. 8, no. 3, pp. 553–558, 2011.

[54] M. Keshner, “1/f noise,” Proc. of the IEEE, vol. 70, no. 3, pp. 212–218, 1982.

BIBLIOGRAPHY 139

[55] C. K. Kovach, N. Tsuchiya, H. Kawasaki, H. Oya, M. a. Howard, and R. Adolphs,
“Manifestation of ocular-muscle EMG contamination in human intracranial recordings,”
NeuroImage, vol. 54, no. 1, pp. 213–33, Jan. 2011.

[56] J. W. Kelly, D. P. Siewiorek, A. Smailagic, J. L. Collinger, D. J. Weber, and W. Wang,
“Fully automated reduction of ocular artifacts in high-dimensional neural data,” IEEE T. on
Biomed. Eng., vol. 58, no. 3, pp. 598–606, Mar. 2011.

[57] B. Noureddin, P. D. Lawrence, and G. E. Birch, “Quantitative evaluation of ocular artifact
removal methods based on real and estimated EOG signals,” Conf. of the IEEE Eng. in Med.
and Bio. Soc., vol. 2008, pp. 5041–4, Jan. 2008.

[58] D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wolpaw, “Spatial filter selection
for EEG-based communication,” Electroenceph. and Clin. Neurophys., vol. 103, no. 3, pp.
386–94, Sep. 1997.

[59] T. P. Jung, S. Makeig, C. Humphries, T. W. Lee, M. J. McKeown, V. Iragui, and
T. J. Sejnowski, “Removing electroencephalographic artifacts by blind source separation.”
Psychophysiology, vol. 37, no. 2, pp. 163–78, Mar. 2000.

[60] T. Lagerlund, F. Sharbrough, and N. Busacker, “Spatial filtering of multichannel
electroencephalographic recordings through principal component analysis by singular value
decomposition,” Clinical Neurophysiology, vol. 14, no. 1, p. 73, 1997.

[61] S. Makeig, “Frequently asked questions about ICA applied to EEG and MEG data,”
http://sccn.ucsd.edu/eeglab sccn.ucsd.edu/˜scott/icafaq.html, 2013.

[62] T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski,
“Removal of eye activity artifacts from visual event-related potentials in normal and clinical
subjects,” Clin. Neurophys., vol. 111, no. 10, pp. 1745–58, Oct. 2000.

[63] S. Vorobyov and A. Cichocki, “Blind noise reduction for multisensory signals using ICA
and subspace filtering, with application to EEG analysis,” Bio. Cybernetics, vol. 86, no. 4,
pp. 293–303, Apr. 2002.

[64] N. Mammone and F. C. Morabito, “Enhanced automatic artifact detection based on
independent component analysis and Renyi’s entropy,” Neural Networks, vol. 21, no. 7, pp.
1029–40, Sep. 2008.

[65] V. Krishnaveni, S. Jayaraman, L. Anitha, and K. Ramadoss, “Removal of ocular artifacts
from EEG using adaptive thresholding of wavelet coefficients,” J. of Neural Eng., vol. 3,
no. 4, pp. 338–46, Dec. 2006.

[66] T. Zikov, S. Bibian, G. A. Dumont, M. Huzmezan, and C. R. Ries, “A wavelet based
de-noising technique for ocular artifact correction of the electroencephalogram,” in Proc. of
the 2nd joint IEEE EMBS/BMES Conf., 2002, pp. 98–105.

[67] G. Ouyang, X. Li, Y. Li, and X. Guan, “Application of wavelet-based similarity analysis to
epileptic seizures prediction,” Comp. in Bio. and Med., vol. 37, no. 4, pp. 430–7, Apr. 2007.

140 BIBLIOGRAPHY

[68] X. Li, X. Yao, J. Fox, and J. G. Jefferys, “Interaction dynamics of neuronal oscillations
analysed using wavelet transforms,” J. of Neuro. Meth., vol. 160, no. 1, pp. 178–85, Feb.
2007.

[69] L. Vigon, M. Saatchi, J. Mayhew, and R. Fernandes, “Quantitative evaluation of techniques
for ocular artefact filtering of EEG waveforms,” IEE Proceedings - Science, Meas. and
Tech., vol. 147, no. 5, p. 219, 2000.

[70] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,”
IEEE T. on Neural Networks, vol. 10, no. 3, pp. 626–34, Jan. 1999.

[71] H. Cui and G. Song, “Study of the wavelet basis selections,” in Int. Conf. on Comp. Intell.
and Sec., no. x, 2006, pp. 1833–1836.

[72] T. Elbert, W. Lutzenberger, B. Rockstroh, and N. Birbaumer, “Removal of ocular artifacts
from the EEG - a biophysical approach to the EOG,” Electroenceph. and Clin. Neurophys.,
vol. 60, pp. 455–463, 1985.

[73] F. Offner, “The EEG as potential mapping: the value of the average monopolar reference,”
Electroenceph. and Clin. Neurophys., 1950.

[74] J. Dien, “Issues in the application of the average reference: review, critiques, and
recommendations,” Behavior Research Meth., Instr., & Comp., vol. 30, no. 1, pp. 34–43,
Mar. 1998.

[75] A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, “A survey of signal processing
algorithms in brain-computer interfaces based on electrical brain signals,” J. of Neural Eng.,
vol. 4, no. 2, pp. R32–57, Jun. 2007.

[76] V. Zarzoso and P. Comon, “Robust independent component analysis by iterative
maximization of the kurtosis contrast with algebraic optimal step size,” IEEE T. on Neural
Networks, vol. 21, no. 2, pp. 248–261, 2010.

[77] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A blind source
separation technique using second-order statistics,” IEEE T. on Sig. Proc., vol. 45, no. 2, pp.
434–444, 1997.

[78] S. T. Foldes and D. M. Taylor, “Offline comparison of spatial filters for two-dimensional
movement control with noninvasive field potentials,” J. of Neural Eng., vol. 8, no. 4, p.
046022, Aug. 2011.

[79] J. W. Kelly, A. D. Degenhart, D. P. Siewiorek, A. Smailagic, and W. Wang, “Sparse linear
regression with elastic net regularization for brain-computer interfaces,” in Conf. of the IEEE
Eng. in Med. and Bio. Soc., vol. 2012, Aug. 2012, pp. 4275–8.

[80] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan,
“Brain-computer interfaces for communication and control,” Clin. Neurophys., vol. 113,
no. 6, pp. 767–91, Jun. 2002.

BIBLIOGRAPHY 141

[81] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification
algorithms for EEG-based brain-computer interfaces,” J. of Neural Eng., vol. 4, no. 2, pp.
R1–R13, Jun. 2007.

[82] W. Wu and N. G. Hatsopoulos, “Real-time decoding of nonstationary neural activity in
motor cortex,” IEEE T. on Neural Sys. and Rehab. Eng., vol. 16, no. 3, pp. 213–22, Jun.
2008.

[83] A. Georgopoulos, A. Schwartz, and R. Kettner, “Neuronal population coding of movement
direction,” Science, vol. 233, no. 4771, pp. 1416–1419, Sep. 1986.

[84] A. G. Rouse and D. W. Moran, “Neural adaptation of epidural electrocorticographic
(EECoG) signals during closed-loop brain computer interface (BCI) tasks.” in Conf. of the
IEEE Eng. in Med. and Bio. Soc., vol. 2009, Jan. 2009, pp. 5514–7.

[85] T. Hesterberg, N. H. Choi, L. Meier, and C. Fraley, “Least angle and L1 penalized regression:
a review,” Stat. Surveys, vol. 2, pp. 61–93, 2008.

[86] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. of the Royal Stat.
Society, pp. 267–288, 1996.

[87] M. K. Carroll, G. a. Cecchi, I. Rish, R. Garg, and a. R. Rao, “Prediction and interpretation of
distributed neural activity with sparse models,” NeuroImage, vol. 44, no. 1, pp. 112–22, Jan.
2009.

[88] S. Ryali, K. Supekar, D. a. Abrams, and V. Menon, “Sparse logistic regression for
whole-brain classification of fMRI data,” NeuroImage, vol. 51, no. 2, pp. 752–64, Jun. 2010.

[89] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” J. of Stat. Software, vol. 33, no. 1, pp. 1–22, Jan. 2010.

[90] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for Cox’s
proportional hazards model via coordinate descent,” J. of Stat. Software, vol. 39, no. 5, 2011.

[91] E. Niedermeyer and F. da Silva, Electroencephalography: basic principles, clinical
applications, and related fields, 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins,
2012.

[92] J. Zhang, G. Sudre, X. Li, W. Wang, D. J. Weber, and A. Bagic, “Task-related MEG source
localization via discriminant analysis,” Conf. of the IEEE Eng. in Med. and Bio. Soc., vol.
2011, pp. 2351–4, Jan. 2011.

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Software Framework
	1.2.2 Filtering Neural Signals
	1.2.3 Analyzing Neural Signals

	1.3 System Overview
	1.3.1 Software Framework
	1.3.2 Filtering Neural Signals
	1.3.3 Analyzing Neural Signals

	1.4 Contributions
	1.5 Organization

	2 Software Framework
	2.1 Introduction
	2.2 Related Software
	2.3 Craniux System Design
	2.3.1 Top Level Design
	2.3.2 Module Design
	2.3.3 System Communication
	2.3.4 Data Saving

	2.4 System Evaluation
	2.4.1 Reliability
	2.4.2 Performance
	2.4.3 Ease of Use
	2.4.4 Extendability

	2.5 Conclusions

	3 Line Noise
	3.1 Introduction
	3.2 Background
	3.2.1 Line Noise
	3.2.2 Adaptive Noise Canceler
	3.2.3 Adaptive Line Enhancer

	3.3 Methods
	3.3.1 Adaptive Sinusoid Canceler
	3.3.2 Data Collection
	3.3.3 Experimental Parameters

	3.4 Results and Discussion
	3.4.1 Simulated Data
	3.4.2 Real Data

	3.5 Conclusions

	4 Ocular Artifacts
	4.1 Introduction
	4.2 Background
	4.2.1 Ocular Artifacts & Neural Recordings
	4.2.2 Ocular Artifact Removal Techniques
	4.2.3 Evaluation of Artifact Reduction

	4.3 Methods
	4.3.1 Regression-Based Removal
	4.3.2 Component-Based Removal
	4.3.3 Wavelet-Based Removal
	4.3.4 Quantitative Analysis

	4.4 Results and Discussion
	4.4.1 Overall Evaluation
	4.4.2 Ocular Artifact Removal by Dataset
	4.4.3 Visual Results

	4.5 Conclusions

	5 Broadband Common Mode Noise
	5.1 Introduction
	5.2 Background
	5.2.1 Multi-Channel Physiological Recordings
	5.2.2 Common Average Reference
	5.2.3 Independent Component Analysis

	5.3 Methods
	5.3.1 Adaptive Common Average Reference
	5.3.2 Independent Component Analysis
	5.3.3 Data Collection
	5.3.4 Analysis

	5.4 Results and Discussion
	5.4.1 Simulated Data
	5.4.2 Real Data

	5.5 Conclusions

	6 Application - BCI Decoding
	6.1 Introduction
	6.2 Background
	6.2.1 Brain-Computer Interface Decoding
	6.2.2 The Curse of Dimensionality
	6.2.3 Regularized Linear Regression
	6.2.4 Elastic Net

	6.3 Elastic Net Validation
	6.3.1 Data
	6.3.2 Classification
	6.3.3 Results

	6.4 Impact of Methods on BCI Decoding
	6.4.1 Data and Methods
	6.4.2 Craniux
	6.4.3 Broadband Noise
	6.4.4 Line Noise
	6.4.5 Ocular Artifacts

	6.5 Conclusions

	7 Conclusion
	7.1 Overview
	7.2 Directions for Future Work
	7.2.1 Craniux Development
	7.2.2 ASC Improvements
	7.2.3 OA Removal
	7.2.4 ACAR Considerations
	7.2.5 Additional Analysis

	Bibliography

