
Runtime Monitoring for Safety-Critical

Embedded Systems

Submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Aaron Kane

B.S., Computer Engineering, Georgia Institute of Technology

M.S., Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University

Pittsburgh, PA 15213

February 2015



Copyright c© 2015 Aaron Kane



The first step in fixing something is getting it to break.

- Tracy Kidder, The Soul of a New Machine



iv



Abstract

The trend towards more commercial-off-the-shelf (COTS) components in

complex safety-critical systems is increasing the difficulty of verifying system

correctness. Runtime verification (RV) is a lightweight technique to verify that

certain properties hold over execution traces. RV is usually implemented as

runtime monitors that can be used as runtime fault detectors or test oracles

to analyze a system under test for bad behaviors. Most existing RV methods

utilize some form of system or code instrumentation and thus are not designed

to monitor potentially black-box COTS components.

This thesis presents a suitable runtime monitoring framework for monitor-

ing safety-critical embedded systems with black-box components. We provide

an end-to-end framework including proven correct monitoring algorithms, a

formal specification language with semi-formal techniques to map the sys-

tem onto our formal system trace model, specification design patterns to aid

translating informal specifications into the formal specification language, and

a safety-case pattern example showing the argument that our monitor design

can be safely integrated with a target system. We utilized our monitor imple-

mentation to check test logs from several system tests. We show the monitor

being used to check system test logs offline for interesting properties. We also

performed real-time replay of logs from a system network bus, demonstrating

the feasibility of our embedded monitor implementation in real-time operation.



vi



Acknowledgments

First and foremost, I’d like to thank and dedicate this thesis to Stephanie

Goldfein for her support and patience putting up with me throughout this entire

ordeal. I’d also like to thank my parents, Judy and Jerry Kane for instilling an

unending curiousity in me and providing me every opportunity to succeed. I’d

also like to thank my brother Gary for his friendship and drive which keeps

me on my toes. I also must thank all my friends in Pittsburgh without whom

I would not have survived so many winters. I’d like to thank Malcolm Taylor,

Milda Zizyte, Felix Huchinson, Jon Filleau, Chris Szilagyi, and Justin Ray

for their thoughts, friendship, and necessary distractions throughout this entire

process.

I thank my advisor Phil Koopman for his guidance and collaboration. Thank

you for helping me get this far. I would also like to thank my thesis committee

members Andupam Datta, Andre Platzer, and Chuck Weinstock for their time,

feedback, and patience. I owe a special thanks to Omar Chowdhury for helping

me get up to speed on the necessary formal math background and guiding me

through writing the algorithms and proofs in an acceptable way.

I’d also like to thank the researchers at General Motors R&D and NREC

for their feedback and help obtaining systems to test. In particular, I thank Tom

Fuhrman, Max Osella, Mike Wagner, and the rest of the ASTAA team.

Finally, I thank my research sponsors for funding this work. This work was

funded in part by the General Motors-Carnegie Mellon University Vehicular

Information Technology Collaborative Research Lab (CMU VIT-CRL).



viii



Contents

1 Introduction 1

1.1 Problem and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 7

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Safety-Critical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Safety Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Hazard Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Embedded networks . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Requirements and Specifications . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Safety Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 System Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Runtime Verification . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Formal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.4 Test Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



2.4.5 Enforcement Techniques . . . . . . . . . . . . . . . . . . . . . . . 29

3 Monitoring Architecture 31

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Monitor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Test Oracle Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Robustness Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Target Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Safety Specification . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.4 Testing Results and Lessons Learned . . . . . . . . . . . . . . . . 48

3.4 External Bus monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Sampling Based Monitoring . . . . . . . . . . . . . . . . . . . . . 54

3.5 Semi-formal Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Semi-Formal Interface Design . . . . . . . . . . . . . . . . . . . . 59

3.6 Usability Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.1 Specification Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.2 Safety Case Templates . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Formal Monitoring 73

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Practical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



4.3 Monitoring Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Correctness of the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.2 Proof of agmon Correctness . . . . . . . . . . . . . . . . . . . . 93

5 Monitor Implementation 103

5.1 Implementation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Embedded Limitations . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.2 System Specifications . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 PC-based Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.2 Embedded ARM Monitor . . . . . . . . . . . . . . . . . . . . . . 115

6 Monitor Evaluation 121

6.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1.1 Artificial Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Offline Vehicle Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1 Rule Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.2 Monitoring Results . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.3 Exploratory Example . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Embedded Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.1 Rule Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3.2 Monitoring results . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xi



6.4 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Discussion 149

7.1 Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.1.1 Monitor Correctness . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.2 Monitor Consolidation . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1.3 Semi-Formal Interface . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2 Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.1 System Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.2 Semi-Formal DSL . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Conclusion 161

8.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.1.1 Identifying suitable runtime verification architecture . . . . . . . . 161

8.1.2 Monitoring Framework . . . . . . . . . . . . . . . . . . . . . . . . 162

8.1.3 Feasibility of real-time monitoring . . . . . . . . . . . . . . . . . . 163

A Acronyms 165

B Specification Patterns 167

Bibliography 181

xii



List of Figures

2.1 Principal elements of goal structuring notation, from [1] . . . . . . . . . . 16

3.1 External monitor architecture outline . . . . . . . . . . . . . . . . . . . . 35

3.2 HIL feature instrumentation diagram . . . . . . . . . . . . . . . . . . . . 41

3.3 FSRACC module IO signals . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Monitor architecture showing multi-part specification . . . . . . . . . . . . 58

3.5 Partially instantiated safety case pattern . . . . . . . . . . . . . . . . . . . 71

4.1 Aggressive Monitoring Algorithm . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Static global formula representation . . . . . . . . . . . . . . . . . . . . . 106

5.2 Example of iterative reduce execution . . . . . . . . . . . . . . . . . . . . 108

5.3 Comparison of history structure list and interval representations . . . . . . 110

5.4 Hybrid monitor ideal task schedule . . . . . . . . . . . . . . . . . . . . . 119

5.5 Oscilloscope capture of embedded monitor task execution . . . . . . . . . 120

6.1 agmon Evaluation loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Execution time per step for simple formula . . . . . . . . . . . . . . . . . 124

6.3 Execution time per step of specifications with increasing number of policies 125

6.4 Execution time for formulas with increasing temporal durations . . . . . . 126

xiii



6.5 Execution time for nested temporal formulas . . . . . . . . . . . . . . . . . 126

6.6 Comparison of intervals and lists . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Comparison of full and restricted logic . . . . . . . . . . . . . . . . . . . 128

6.8 CAN replay setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.9 Heartbeat counter values over time . . . . . . . . . . . . . . . . . . . . . . 142

6.10 Bad heartbeat counter values . . . . . . . . . . . . . . . . . . . . . . . . . 144

xiv



List of Tables

3.1 Monitor specification for HIL simulator . . . . . . . . . . . . . . . . . . . 45

3.2 Specification pattern example . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Safety case pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 ARM hybrid monitor task allocation . . . . . . . . . . . . . . . . . . . . . 118

6.1 Offline log monitoring specification . . . . . . . . . . . . . . . . . . . . . 131

6.2 Offline log monitoring propositions . . . . . . . . . . . . . . . . . . . . . 132

6.3 Propositions for headway specification . . . . . . . . . . . . . . . . . . . . 136

6.4 CAN replay monitoring specification . . . . . . . . . . . . . . . . . . . . 139

6.5 CAN replay propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.1 Pattern 1.a Bounded Response . . . . . . . . . . . . . . . . . . . . . . . . 168

B.2 Pattern 1.b Bounded Response with Duration . . . . . . . . . . . . . . . . 169

B.3 Pattern 1.c Bounded Response with Cancel . . . . . . . . . . . . . . . . . 170

B.4 Pattern 1.d Bounded Response with Duration and Cancel . . . . . . . . . . 171

B.5 Pattern 2.a Conflicting State . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.6 Pattern 2.b Conflicting State with Duration . . . . . . . . . . . . . . . . . . 173

B.7 Pattern 2.c Past-Time Conflicting State with Duration . . . . . . . . . . . . 174

xv



B.8 Pattern 3.a No Instantaneous Transition . . . . . . . . . . . . . . . . . . . 175

B.9 Pattern 3.b No Transition within Duration . . . . . . . . . . . . . . . . . . 176

B.10 Pattern 4.a Always . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.11 Pattern 4.b Guarded Always (Implies) . . . . . . . . . . . . . . . . . . . . 177

B.12 Pattern 5.a Periodic State . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.13 Pattern 5.b Periodic State with Duration . . . . . . . . . . . . . . . . . . . 179

xvi



Chapter 1

Introduction

Embedded systems, from home appliances to automobiles, are becoming increasingly com-

plex due to the addition of new advanced features. Even traditionally non-critical systems

are becoming safety- or mission-critical due to the addition of connectivity, complex au-

tonomy and software reliant control (e.g., X-by-wire [2]. This is a risk both for obviously

critical systems such as automobiles as well as more subtly critical systems such as ther-

mostats [3].

As more embedded systems become safety-critical, it is imperative that developers have

methods to ensure that these systems are correct. The software engineering methods used to

ensure correctness include model-based and code-based methods [4]. We focus on model-

based methods in this thesis due to the complexities of modern system integration including

multi-vendor subsystems and black-box components.

Traditionally, three main techniques are used for system verification: theorem proving,

model checking, and testing [5]. Theorem proving and model checking are formal methods

which can provide guarantees about a model of the system. Safety critical systems are gen-

1



CHAPTER 1. INTRODUCTION

erally real-time systems and most also are distributed due to the redundancy employed to

reach their high system reliability requirements. These additional complexities increase the

complexity of the system’s models which helps lead to the state space explosion problem

which affects the scalability of these methods. Testing scales better with increasing system

complexity, although it’s well known that complete testing is infeasible for high-reliability

systems [6]. Since testing does scale better with increasing system complexity, we look to

build upon it.

Runtime verification (RV) is a more lightweight method aimed at verifying that a spe-

cific execution of a system satisfies or violates a given critical property [5]. Runtime ver-

ification can provide a formal analysis while avoiding many of the pitfalls that traditional

model-based methods have such as state space explosion and model abstractions. Because

RV scales with the trace rather than the system model, it can provide formal assurances on

systems with greater complexity. RV essentially provides the scalability of testing with the

stronger assurances of formal methods, giving up the guaranteed coverage that other formal

methods provide. Typically, runtime verification is implemented in the form of monitors,

which are devices or programs that observe the behavior of a system and detect whether it

is consistent with a given specification [5].

It is important to note that runtime verification is a supplementary technique to other

common methods. One way RV techniques can complement traditional methods is by

checking that the system satisfies a proven formal model’s assumptions and abstractions

at runtime [7, 8]. On the supplementary side, runtime monitoring is a useful way to find

design and run-time defects which can occur in software, hardware or even system require-

ments. Even if a systems has a “perfect” specification and implementation, RV detectable

faults can still arise from unanticipated operating conditions, maintenance errors, runtime

2



CHAPTER 1. INTRODUCTION

faults, malicious attacks, and other sources [10].

Though runtime verification is a growing field, there has not been much work focusing

on current trends in safety critical embedded systems, especially as industry moves towards

more commercial-off-the-shelf (COTS) components and faster design cycles. Being able

to verify that a system made up of diverse components from multiple suppliers is safe and

correct is difficult even without the lack of design information that is inherent with COTS

black-box components. This has led us to the need for a runtime monitor which can check

these types of systems. We present an external, isolated bus-monitor for this purpose. By

monitoring a system for high level properties at a system network/bus level (i.e., above the

black boxes), the monitor can be used to detect system behaviors that violate a specification

envelope regardless of the underlying cause (including hardware faults, software bugs and

design errors).

This type of monitoring has applications across the system development cycle. Dur-

ing development, runtime monitoring can be used as a debugging monitor or test oracle

for system simulation, prototyping, or tests [9]. This type of monitoring ensures testers

are notified of all specification violations, even if they are not easily noticable by testers

(such as short transient violations). In deployed systems, monitors can be used as a fault

detector to trigger recovery mechanisms such as safety shutdowns or switching to degraded

performance [11].

1.1 Problem and Scope

This thesis addresses the problem of performing runtime monitoring on a safety critical

embedded real-time system. The primary research questions are:

3



CHAPTER 1. INTRODUCTION

• How do the properties and design constraints of safety-critical embedded systems

affect the use of runtime monitoring?

• What monitoring architectures fit the constraints of these systems?

• Can we build a runtime monitor that fits existing constraints and can detect important

specification violations?

This thesis focuses on monitoring a distributed system by listening on the system’s

broadcast bus which connects (potentially black-box) distributed nodes. This design is a

common system architecture, especially for modern automobiles and other ground vehicles

which are the primary focus of this thesis.

System Requirements Perhaps the most important, and one of the most difficult aspects

of safety critical system design is defining the right set of requirements. While obtaining

meaningful benefits from runtime monitoring relies on having a good system specification

to check, requirements elicitation is beyond the scope of this thesis. This thesis does,

however, propose specification patterns which ease the translation from traditional informal

system requirements to formal logic-based requirements [12].

System Testing Although this thesis is motivated by the long-term goal of practical real-

time monitors performing live fault detection and recovery on deployed systems, much of

this work has been performed from a testing perspective. Some of this was influenced by

practicality (e.g., restricted system access and ease of analysis), but incorporating runtime

verification into system testing has the opportunity to provide very useful benefits on its

own [13]. We discuss these benefits by exploring the use of runtime monitors as test oracles

and exploratory diagnostic tools for system under development.

4



CHAPTER 1. INTRODUCTION

Assumptions This thesis focuses on issues directly related to monitoring safety-critical

embedded systems. There are many practical engineering issues we assume can be ade-

quately handled in this work. For example, although we use a proven correct monitoring

algorithm, we assume that the monitor implementation itself is correct. Similarly, we as-

sume that the data fed into the monitor is trusted (i.e., correct input traces are used). These

assumptions are discussed in more detail in Section 7.1.1.

1.2 Thesis Contributions

This thesis makes the following contributions:

• I have identified a suitable runtime verification architecture for monitoring safety-

critical embedded systems. Safety critical systems have unique constraints which

can subtly affect the applicability of runtime verification techniques. The possibility

of black-box components adds even more restrictions to system monitoring. This

thesis describes a semi-formal external bus monitor architecture which can be used

directly as a broadcast bus monitor (and is also amenable to other configurations).

This architecture is suitable for system testing as well as runtime fault detection on a

live system (albeit with additional considerations) even with black-box components.

• I provide a monitoring framework based on a formally proven monitoring al-

gorithm and an informal system mapping interface. I present a full end-to-end

framework including our formal view of a system trace, semi-formal techniques to

map real systems onto our formal view, a system specification logic, monitoring al-

gorithms, specification design patterns, and a safety case example pattern.

• I demonstrate the feasibility and show performance characteristics of the given

5



CHAPTER 1. INTRODUCTION

monitor framework on several diverse systems. In this thesis the monitor is ap-

plied to different systems and specifications, including artificial traces showing per-

formance characteristics as well as traces from real systems under test.

The rest of this thesis is organized as follows. Chapter 2 presents background and rel-

evant related work. The monitoring framework architecture is described in Chapter 3, in-

cluding our usability assisting patterns. The formal definitions and proofs of our monitoring

algorithm are presented in Chapter 4. Chapter 5 describes our monitor implementations.

In Chapter 6, the implemented monitors are evaluated against several different systems.

We discuss design, trade-off issues and future work in Chapter 7. Chapter 8 presents our

conclusions.

6



Chapter 2

Background and Related Work

2.1 Overview

This chapter describes the relevant background related to runtime monitoring of safety-

critical embedded systems. This work relies on a broad set of existing research areas,

ranging from traditional fault-tolerance and system safety to the much more theoretical

formal methods in runtime verification.

2.2 Safety-Critical Systems

This thesis focuses on safety-critical embedded systems. Embedded systems are systems

which include a computer but are not used for general purpose computing. Safety critical

systems are systems whose failure can result in loss of life, significant property damage,

or damage to the environment [14]. For our purposes, safety-critical systems are a repre-

sentative example of the more general notion of mission-critical systems, which can have

other critical properties relating to correct functionality and lack of failures that compro-

7



CHAPTER 2. BACKGROUND AND RELATED WORK

mise the system’s ability to correctly perform its primary mission. Such systems generally

have failure rate requirements ranging from 10−5 to 10−9 failures per hour or other suitable

time period [15], with reliability encompassing the notion that the system is continuously

operational and that it is operating with no functional defects during that time.

Traditional safety critical domains such as the aerospace, medical, chemical process-

ing, and nuclear industries have the benefits of history and strong safety cultures [16] to

mitigate the worst risks of incorporating safety-critical software. These domains have been

conservative, slowly moving to rely upon software systems due to the difficulty of being

able to prove that software-based systems will meet their desired operational reliability

requirements. These (and other) industries are integrating additional software control as

the advantages in efficiency, decreased costs, faster time-to-market, and advanced features

continue to overtake the perceived risks.

Newer non-traditionally safety critical software domains including automotive, home

automation, and civil infrastructure don’t always have the experience or the safety cultures

to help them accurately evaluate the benefits and risks of computer-based controls. Better

technologies, processes, and standards that improve or ease the use of software in safety-

critical domains are imperative to protect these domains where cost and functionality con-

cerns may put pressure on safety principles. Regardless of the domain, acceptable mission-

critical systems are unlikely to be built without good system engineering processes.

2.2.1 Safety Standards

As software safety has become more critical for safe operation, new standards have emerged

which attempt to ensure that adequately safe software is used. These standards are increas-

ingly suggesting and requiring formal methods as well as other best-practice development

8



CHAPTER 2. BACKGROUND AND RELATED WORK

processes. Standards generally can either be means-prescriptive (prescribing how to sat-

isfy safety objectives) or objective-prescriptive (defining objectives and leaving the meth-

ods up to designers) [17]. Different standards may be anywhere from completely means-

prescriptive (e.g., IEC 61508) to primarily objectives prescriptive (e.g., DO-178B/C).

There are a few major standards across the common safety-critical embedded system

domains. IEC 61508 [18] is a generic standard concerned with improving the development

of safety-related electrical/electronic/programmable electronic systems which are safety

critical. The standard only deals with functional safety [19]. In aerospace, DO-178B/C

[20] is an international standard which relates to civil aircraft. This standard is concerned

solely with software. ISO 26262 [21] is an automotive standard for mass production of

passenger cars loosely based on IEC 61508. Bowen provides a survey of some older safety

standards and their relationship to formal methods in [22].

Safety Integrity Levels Many safety standards have adopted a Safety Integrity Level

(SIL) approach to managing risk. SILs are classification levels indicating safety require-

ments in safety-critical systems [23]. Various standards across industries, such as IEC

61508 and ISO 26262, prescribe using SILs to classify the level of required safety integrity

for systems and components. The standards define multiple SIL levels (e.g., SIL0-SIL4)

which are used to allocate functional safety requirements to a system/component. Some

standards also assign quantitative targets to the SILs such as a probability of failured on

demand.

9



CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.2 Hazard Analysis

A hazard is a system state or set of conditions together with other environmental conditions

of the system that can lead inevitably to an accident [24]. Risk is the combination of the

likelihood of a hazard leading to an accident and the hazard’s consequences. The goal of

safety engineering is to reduce risk, either by reducing the likelihood that a hazard will

occur or by reducing its consequences. Safety must be designed into a system, so the

primary concern of system safety is the management of hazards: identifying, evaluating,

managing and controlling them throughout the design process [24].

Hazard analysis provides a structured method for reasoning about system hazards through-

out the development lifecycle. Hazard analysis is the foundation of safety engineering –

a system’s safety case and safety requirements are identified through hazard analysis. We

aim to improve system safety by utilizing runtime monitors, but a monitor that checks an

incorrect or incomplete specification is useless. The specifications we wish to monitor are

derived from safety requirements which are generated by hazard analysis.

Different hazard analysis techniques identify different sets of system hazards, so often

many different analyzes are used across the development cycle. We review some common

hazard analysis techniques here.

In the early stages of development hazard identification is often termed Preliminary

Hazard Analysis (PHA). This is the initial effort to identify safety-critical areas of the sys-

tem and identify hazards [25]. Identifying potential hazards, roughly ranking or evaluating

the hazards severity, and identifying the required hazard mitigation or management tech-

niques are all a part of PHA. The output of PHA is used in the rest of system development

including developing system requirements, specifications, and test planning. The hazards

and management techniques identified in this analysis strongly influence the system archi-

10



CHAPTER 2. BACKGROUND AND RELATED WORK

tecture and safety specification which determine how monitoring can be performed.

Hazards and Operability Analysis (HAZOP) is a qualitative technique for identifying

hazards based on deviations from expected operation or state. HAZOP uses guide words to

prompt analysts to consider the potential hazards caused by deviations of expected system

state. Although HAZOP was originally developed for the chemical industry, it has also

been applied to software systems [26].

Failure Modes and Effects Analysis (FMEA) is a forward search technique used to list

potential faults in a system and analyze the probabilities of failures. The variant Failure

Modes, Effects, and Criticality Analysis (FMECA) includes additional analysis of the crit-

icality of identified failure modes. Software Failure Modes and Effects Analysis (SFMEA)

is an extension of the FMEA technique to software, where the analysis is performed to

identify cause/effect relationships in which data or software behavior can result in failure

modes [27].

Fault Tree Analysis (FTA) [28] is a backward search technique for identifying the fault

or failure in a system that is the root cause of a given hazard. Hazards that have been

identified by other analysis techniques can be used within FTA to further analyze event

combinations that can lead to the identified hazards. Software Fault Tree Analysis (SFTA)

is a technique based on FTA used to analyze the safety of a software design [29]. Similar to

traditional hardware FTA, SFTAs analyze software based hazards and can identify software

properties or values that must be further analyzed and guaranteed to prevent the known

hazards.

11



CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.3 Embedded networks

Safety-critical distributed systems depend on their bus architectures to be reliable, espe-

cially as systems move towards more digital control such as X-by-wire control. Rushby

compares four common aerospace and automotive bus architectures in [30].

Network buses are primarily one of two types, time-triggered or event-triggered. On

time-triggered networks the activities (e.g., messages being sent) are driven by the passage

of time (e.g., every 50ms send a message). On event-trigged networks, activities are driven

by system events (e.g., when a value changes send a message).

Networks designed for use in safety critical systems are commonly time-triggered net-

works. Some networks are event-triggered but require extra mechanisms to help control

network demand. This is because safety-critical systems need to safely handle network

contention and bandwith allocation, even in the face of system faults. Time-triggered net-

works use a static pre-allocation of network bandwith which resolves contention at design

time. Event triggered networks for embedded systems use a variety of techniques including

priorities and token based methods to perform deterministic contention resolution.

Although time-triggered networks provide many useful properties for safety-critical

operation, they are less flexible than event-triggered networks which can handle nonsta-

tionary workloads and use bandwith more dynamically. Because the flexibility to dynam-

ically choose what messages to be sending is desirable in cost-sensitive systems, Flexray

[31], a protocol designed by the auto industry, includes both a time-triggered and an event

triggered portion.

12



CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.3.1 Controller Area Network

Controller Area Network (CAN) is a widely used automotive network developed by Bosch

in the 1980s. In this thesis we focus primarily on monitoring CAN because it is a common

automotive bus which typically conveys a lot of the state we wish to observe. CAN is

an event-based broadcast network with data rates up to 1Mb/s (although usually used at

125-500kbps). Messages on CAN are broadcast with an identifier which is used to denote

both the message and the intended recipients. The message identifiers are also used as the

message priorities for access control.

Although CAN is an event-based bus it is often used in a somewhat periodic, time

triggered way so the network usage can be statically analyzed. Because of this our mon-

itoring scheme is based on a time-triggered network sampling model, so it can monitor

time-triggered networks as well.

2.3 Requirements and Specifications

In general, system development starts with defining system requirements. In traditional

safety-critical design processes such as the Vee model [32], requirements elicitation or

capture is performed to create a functional requirements document which describes the

functional requirements of the system. Hazard and risk analysis may also be performed to

create the system safety requirements which define what constitutes safe and unsafe system

operation. From these requirements documents a system specification can be created and

used as the basis for the system design.

In a review of the role of software in aerospace accidents, Leveson notes that almost

all the identified software related accidents could be traced back to flaws in requirements

13



CHAPTER 2. BACKGROUND AND RELATED WORK

specification rather than coding errors [33]. That is, the software performed as the design-

ers intended but the designed behavior was not safe from a system viewpoint [24]. This

highlights the importants of identifying and validating the right set of system requirements.

Just as building a system with incorrect requirements can lead to accidents, monitoring a

system with an incorrect specification will lead to technically correct but practically useless

monitoring results.

The way in which requirements are documented also plays an important role in their

subsequent use [34]. A variety of formal, semi-formal, and informal languages have been

suggested for specifying requirements documentation [35].

Informal specification languages are attractive because they can be easier to read, use,

and understand, especially by non-experts. This includes natural language requirements in

plain text as well as structured informal specification languages such as UML [36]. The

ambiguities inherent in non-formal languages can lead to incorrect requirements which are

a common cause of system failures [37].

Formal specifications have many benefits including being unambigious and checkable

for syntactic correctness [38]. Formal specifications also enable other formal methods

including verification and code generation and they can support testing in many ways,

including guiding test selection and oracle generation [13].

Because expressing system specifications in formal languages such as temporal logic

can be complex and error-prone, specification patterns have been proposed as a technique

to help designers translate informal requirements to formal specification languages [12, 39,

40]. We utilize this idea ourselves, presenting our own specification templates based on

these formats to help translate requirements into our specification logic.

14



CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.1 Safety Cases

Safety cases, also known more generally as assurance cases, are a common tool that are a

part of many different safety standards. Safety cases are “a documented body of evidence

that provides a convincing and valid argument that a system is adequately safe for a given

application in a given environment” [41]. A safety case is comprised of three main elements

[1]:

• Requirements The safety goal(s) to be acheived.

• Evidence The available evidence about this goal.

• Argument The structured argument which describes the relationship between the

requirements and evidence.

Safety cases are generally used to justify a certain level of confidence that the system

will meet its safety (or other) goals with acceptable performance. Commonly, the level of

confidence in a safety case is qualitative and somewhat informal. Bloomfield et. al. explore

uncertainty in dependability cases including how to express quantitative confidence in a

safety case in [42]. They explore confidence from a SIL perspective, judging claimed SIL

levels based on beliefs about the system’s probability of failure on demand, arguing that

showing a higher than necessary SIL level can provide increased confidence in the claim

about the (lower) desired SIL level.

Another framework for justifying confidence in the truth of a safety case claim is to

use eliminative induction [43], a way to quantify the the confidence in a conclusion based

on how many reasons for doubting the claim have been eliminated. Under this framework,

rather than attempting to increase confidence in a claim by adding more evidence that sup-

ports the claim, the possible defeaters (sources of doubt about the claim) are identified and

15



CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Principal elements of goal structuring notation, from [1]

then evidence is used to eliminate the defeaters. The confidence of a given argument can

be presented as the Baconian probability E|D, with the number of identified defeaters D

and eliminated defeaters E [44]. Although these Baconian probabilities cannot be directly

compared to each other or reduced in any useful way (e.g., 1|2 6= 2|4), they do provide a

quantative measure which can represent increasing confidence in an argument (i.e., elim-

inating a defeater increases confidence). So while not immediately intuitive, this does

provide a clear, explicit way to discuss the confidence of an argument.

The Goal Structuring Notation (GSN) is a graphical notation for writing structured

arguments and has been widely adopted for writing safety cases [1, 45]. GSN explicitly

represents the individual elements (e.g., goals, evidence, context, etc.) and relationships

between elements in a graphical form primarily using the elements shown in Figure 2.1.

Kelly introduces safety case patterns as a method to improve the problems with infor-

mal reuse of safety cases [46]. Safety case patterns include a GSN pattern and an accom-

panying pattern description. We present our own safety case pattern as a starting point for

arguing the safety of an external monitor in Section 3.6.2. GSN has also been extended

for modular safety cases to help with the management of more complex systems and safety

cases [1].

16



CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 System Verification

As systems become more complex, ensuring that the system was built matching the design

becomes more and more difficult. Verification is the process of ensuring that the system

adheres to its design specification. This thesis focuses on runtime verification, which pro-

vides verification about the actual system rather than a model of the system. A precise

model of the environment is often not available, whether it is unknown, changing, or too

complex to model. However, some system behaviors, especially in embedded systems, are

dependent on the system’s environment. In these situations, runtime verification can pro-

vide more accurate assurances than model checking or theorem proving where a simplified

environment model must be used due to scalability issues. Examples include automobiles

(e.g., different surfaces, lighting conditions, weather, etc.) and exploration vehicles (e.g.,

space, undersea, and underground drones/probes) which may encounter unanticipated en-

vironments. Incorrect internal environments (e.g., race conditions in multitasking OSes,

corrupted RAM, etc.) are also often abstracted away in system models but can easily lead

to system faults.

2.4.1 Runtime Verification

Runtime verification can be performed online (i.e., at runtime on a live system) or offline

from recorded log files. We use the general term RV (or monitoring) for both online and

offline monitoring.

In RV, a correctness property, usually specified in a formal logic is translated into a

monitor which is used to check the target system. Linear Temporal Logic (LTL) [47] is

perhaps the most common formal logic for RV. LTL is designed to be checked over infinite

17



CHAPTER 2. BACKGROUND AND RELATED WORK

traces, but runtime verification inherently deals with finite traces. This mismatch has been

handled in many ways, from defining finite trace semantics for LTL to creating three-valued

[48] or even four-valued [49] variants which can represent inconclusive values which occur

when looking at finite prefixes of infinite traces.

LTL does not include time bounds, requiring the explicit definition of a clock variable to

specify real-time properties. Metric temporal logic (MTL) [50] is a temporal logic similar

to LTL with quantitative time bounds for specifying real-time properties. These logics

are often propositional, though monitoring of first-order logics is becoming more common

[51]. First-order logics are often used when monitoring logs for safety and privacy policies

[52, 53, 54]. We utilize a propositional logic since they are more simple to check and

embedded systems are generally fully defined at design time, so first-order quantifiers are

generally unnecessary.

One interesting aspect of a logic choice is that some specified properties may not be

monitorable. Safety properties, informally, are those which state that “something bad does

not happen” while liveness properties state that “a good thing eventually happens” [55].

These notions were formalized based on finite prefixes of infinite traces in [56]. Not all

specifiable properties can be monitored, but all safety properties can be. While liveness

properties can be interesting for software systems (e.g., no deadlocks, guaranteed response,

etc.), we generally want a bounded response to events when monitoring real-time system

properties. Bounded liveness properties are essentially safety properties. We restrict our

monitor to a bounded MTL which ensures that we only define safety properties in our

specifications which guarantees that any monitor specifications we write can actually be

monitored. This is a reasonable restriction for monitoring since there is no point in being

allowed to create unmonitorable or uninteresting specifications. Checking that a response

18



CHAPTER 2. BACKGROUND AND RELATED WORK

eventually (in the infinite future) happens doesn’t provide anything useful for RV since we

cannot act on properties that take an infinite amount of time to check. One potential use

case of more expressive logics is that the same logic and specification may be used for

both model checking (where liveness properties are checkable, for example) and runtime

verification of the same system.

2.4.1.1 Monitoring Safety-Critical Embedded Systems

Goodloe and Pike present a thorough survey of monitoring distributed real-time systems

in [57]. Notably, they present a set of monitor architecture constraints and propose three

abstract monitor architectures in the context of monitoring these types of systems. In [58]

Pike et. al update these constraints with the acronym “FaCTS”: Functionality, Certifiabil-

ity, Timing, and SWaP (size, weight and power). The Functionality constraint demands

that a monitor cannot change the system under observation’s (SUO’s) behavior unless the

target has violated the system specification. The Timing constraint similarly says that the

monitor can not interfere with the non-faulty SUO’s timing (e.g., task period/deadlines).

The Certifiability constraint is a softer constraint, arguing that a monitor should not make

re-certification of SUO onerous. This is important because certification can be a major por-

tion of design cost for these systems and nominally simple changes/additions to the SUO

can require a broad and costly recertification. Lastly, safety critical systems are often ex-

tremely cost sensitive with tight tolerances for additional physical size, weight or required

power. Any monitor we wish to add to an existing system must fit within these existing

tolerances.

One of Goodloe and Pike’s proposed distributed real-time system monitor architectures

is the bus-monitor architecture. The bus monitor architecture has the monitor recieve net-

19



CHAPTER 2. BACKGROUND AND RELATED WORK

work messages over an existing system bus just like any other system component. The

monitor can be configured in a silent or receive only mode to ensure it does not peturb the

system. This is a simple architecture which requires few (essentially no) changes to the

target system architecture. We utilize this architecture for our monitoring framework. The

other proposed architectures require either additional buses or distributed monitors, both

which add complexity and costs we wish to avoid when integrating a monitor.

2.4.2 Monitors

There are many existing runtime monitoring frameworks and monitoring algorithms with

different primary uses. Monitoring frameworks provide not just the specification language

and checking algorithm, but also the connection between the monitor and target system. In

this section we highlight some existing monitoring algorithms and frameworks, especially

existing algorithms and frameworks with similar approaches to ours (including some of

which our framework is based on).

Watterson and Heffernan give an overview of runtime verification tools in [59]. Peters

and Parnas present a requirements derived monitor in [60]. They utilize a four variable re-

quirements model which separates the controlled and monitorable state in the specification

to help create monitors from the system requirements. EAGLE [61] is a highly expressive

logic for monitoring systems upon which other logics including LTL can be built. Because

EAGLE is computationally expensive, RULER [62], a similar but simpler logic has also

been implemented.

Temporal Rover [63] is a monitor which instruments the target source code with moni-

tor checks. Specification assertions are written as comments in the target source code which

is compiled into an instrumented executable which contains an inline monitor.

20



CHAPTER 2. BACKGROUND AND RELATED WORK

The NASA PathExplorer project has led to both a set of dynamic programming-based

monitoring algorithms as well as some formula-rewriting based algorithms [64] for past-

time LTL. These dynamic programming algorithms require checking the trace in reverse

(from the end to the beginning) which makes them somewhat unsuitable for online moni-

toring [65]. The formula rewriting algorithms utilize the Maude term rewriting engine to

efficiently monitor specifications through formula rewriting [66].

Thati and Roşu [67] describe an dynamic programming algorithm for monitoring MTL

which is based on resolving the past and deriving the future. They perform formula rewrit-

ing which resolves past-time formulas into equivalent formulas without unguarded past-

time operators and derive new future-time formulas which separate the current state from

future state. They store formulas in a canonical form which allows expanding formulas to

not grow larger than exponential in the size of the original formula and allows for updating

formulas in exponential time. Like many similar algorithms, they store and calculate the

necessary histories recursively to evaluate formulas. While they have a tight encoding of

their canonical formulas, their monitoring algorithm still requires more state to be stored

than some other algorithms (because formulas grow in size as they are rewritten), includ-

ing the one presented in this thesis. Our monitoring algorithm is also based on formula-

rewriting, although we use formula reduction only rather than a full set of rewriting rules.

Our algorithm can also be thought of as a dynamic programming algorithm, building up

history state from the smallest subformula up to the specification policy.

Basin et. al. describe a set of MTL monitoring algorithms, specifically focusing on how

the time domain affects monitoring [68]. They point out that while point-based semantics

seem fitting for real-time systems which are often viewed as a set of events, the point-based

semantics can be unintuitive compared to interval semantics. Our monitoring algorithm

21



CHAPTER 2. BACKGROUND AND RELATED WORK

works in a very similar way to their point-based monitoring algorithm. They use an iterative

recursive algorithm which calculates truth values over the target formula structures utilizing

history structures. Our reduce procedure works similarly to their step procedure, except

they only check past-time MTL so step is always guaranteed to return an answer whereas

our reduce must handle inconclusive formulas as well.

There are some monitoring algorithms designed to handle incomplete trace information.

Bauer et. al. present a policy logic for monitoring transaction logs with partial observability

(i.e., not all parameters are observable) [69]. Basin et. al. also present a monitoring

algorithm for incomplete logs due to logging failures or disagreeing logs in [70]. Other

algorithms also handle log incompleteness [52, 53]. Our monitoring framework does not

deal with incomplete logs, except for missing future-time trace entries which we expect to

eventually obtain. We require that the entire state is available for all observed log steps.

Copilot is a Haskell-based embedded domain specific language for generating runtime

monitors for real-time distributed systems [71]. Copilot specifications can be used to gener-

ate constant-time and constant-space C code which include their own scheduler and can be

run alongside the program to be monitored. Unlike many of the other discussed monitors,

Copilot is designed with distributed safety-critical embedded systems and their constraints

in mind. Still, Copilot requires code source code access to instrument the target system (and

is designed to run on-chip). This is not usable for black-box systems and common-mode

faults between the monitor and target system may also be an issue.

The Monitoring and Checking (MaC) framework [72] is a generalized monitoring ar-

chitecture which instruments the target program to send the targeted state to the monitor.

MaC uses a two part specification which separates the implementation specific details from

the requirements specification. The primitive event definition language (PEDL) is used to

22



CHAPTER 2. BACKGROUND AND RELATED WORK

specify the low level specification which defines the instrumentation and how the system

state is transformed into monitor events. The meta event definition language (MEDL) de-

fines the actual safety rules that get checked. Kim et. al. describe a Java implementation

Java-MaC in [73]. Our semi-formal interface is similar to MaC’s filters which are used to

map the system to the checker’s formal model. However, MaC’s filters are implemented

on the instrumented target system (which requires source instrumentation) whereas our

mapping is performed on the monitor.

Monitor Oriented Programming (MOP) is a generalized framework for incorporating

monitors into programs. BusMOP [74] is an external hardware runtime monitor designed

to be used in verifying COTS components for real-time embedded systems. BusMOP is

one of the few existing monitors which targets systems with COTS components (and thus

cannot use any instrumentation). The monitor is an automatically generated FPGA moni-

tor that can sniff a system’s network (they use the PCI-E bus) to verify system properties.

This is an external bus monitor architecture similar to our monitoring framework. BusMOP

only supports past-time LTL and extended regular expressions so it cannot perform aggres-

sive checking of future-based properties. BusMOP system mappings are defined directly

in VHDL (which is compiled into the monitor) while the safety properties are written in a

formal logic. Instead of having each monitor be generated based on its mapping, our mon-

itoring algorithm is software based, so the mapping can be written in system level code (or,

eventually in a simple domain specific language).

Reinbacher et. al. present an embedded past-time MTL monitor in [75]. They use a

non-invasive FPGA monitor which is generated from the monitor specification. Their ar-

chitecture is similar to ours, wiretapping the target system interface and passing it through

an evaluation unit which creates atomic propositions out of the system state (similar to our

23



CHAPTER 2. BACKGROUND AND RELATED WORK

semi-formal interface). The actual implementation they describe does however presume

system memory access to obtain system state (rather than using state from the target net-

work). The generated atomic propositions are fed into the runtime verification unit which

checks the desired ptMTL properties. This monitor is limited to past-time MTL which

means it cannot check fully aggressive future properties unlike our monitor which allows

both past and future bounded MTL.

Heffernan et. al. present a monitor for automotive systems using ISO 26262 as a

guide to identify the monitored properties in [76]. They monitor past-time LTL formulas

(using explicit time bounds when necessary) obtaining system state from target system

buses (CAN in their example). They use “filters” as a system interface, allowing them

to generate atomic propositions which get fed to the “event recognizer” (i.e., the monitor

portion). Our semi-formal interface is equivalent to these filters. Their monitor is an on-

chip SoC monitor based on previous work which used an informal hardware logic instead of

past-time LTL [77]. The motivation and goals behind that work are very similar to ours, but

they use on-chip SoC monitors with instrumentation to obtain internal system state. This

is an important distinction since on-chip monitors aren’t suitable for black-box systems.

There is also the risk of common mode failures when the monitor is resident on the same

chip as the target system which we try to avoid.

Our monitoring algorithm is inspired by the algorithms reduce [52] and prècis [53],

adjusted for our aggressive monitoring and propositional logic use case. The algorithm

reduce is an offline, iterative monitoring algorithm for auditing privacy and security prop-

erties (e.g., HIPAA [78] or GLBA [79] requirements) over incomplete logs. It checks a

first order logic with restricted quantifiers [52] using an iterative, formula rewriting-based

algorithm. Their audit log is a partial structure which maps every ground predicate to ei-

24



CHAPTER 2. BACKGROUND AND RELATED WORK

ther true, false, or unknown. They require the entire audit log to be stored and available

for monitoring instead of summarizing the history in a structure. Storing the entire system

log (i.e., the trace) is not a feasible approach for an embedded monitor because the traces

continuously grow and thus can become very large. They also use explicit (quantified) time

values rather than temporal logic to handle time-based constraints.

The structure of our monitoring algorithm is based on Garg’s reduce algorithm. We also

use an iterative, formula-rewriting based algorithm (with the primary procedure also named

reduce), although our algorithm can be used for both online or offline monitoring. Our

algorithm works in a similar way, recursively reducing subformula and returning residual

formulas for “incomplete” or unreducable traces. We target a bounded propositional metric

temporal logic, so we do not need to deal with substitution of quantified variables. We only

need propositional logic because embedded systems are typically fully specified at design

time (i.e., we know all the possible network nodes and messages). Both algorithms can

return residual (i.e., incompletely reduced) formulas, but the reasons for incompleteness

of these two algorithms are different. Garg et. al.’s reduce can return residual formulas

due to unknown predicate substitutions or incomplete logs. Our reduce returns residual

formulas when the truth value of a temporal formula is currently inconclusive (i.e., depends

on future values). Our algorithm only handles incompleteness caused by needing to see

future state. We do not consider incomplete traces due to missing information. We use a

bounded propositional metric temporal logic rather than a first order logic, so we do not

need structures to aid in substitution of quanitified variables. We do use structures to store

any relevant state history to avoid storing the entire trace.

The online, iterative monitoring algorithm prècis generalizes Garg et. al’s reduce. The

prècis algorithm tries to summarize the log history as structures and falls back on reduce

25



CHAPTER 2. BACKGROUND AND RELATED WORK

style brute force checking when a summary structure cannot be built. Many existing mon-

itoring algorithms are special cases of prècis. When it is possible for prècis to build struc-

tures for all subformulas it performs a typical runtime monitoring algorithm (i.e., checking

the stored structure state following the semantics) whereas when it is not possible to build

any structures prècis works similarly to reduce.

prècis performs online, iterative checking of metric first order temporal logic properties.

Our overall algorithm agmon is based on prècis, with a similarly structured algorithm –

updating all history structures then checking the desired formulas. Our algorithm agmon

performs aggressive checking of future-time formulas (attempting to reduce them as soon

as possible) while prècis delays the checking of future-time formulas until they are guaran-

teed to be reducable. We do use this delaying tactic in our conservative checking algorithm.

We use a simpler propositional logic instead of prècis’s metric first-order temporal logic.

Instead of storing summary structures for predicate substitutions we keep subformula his-

tory structures.

2.4.3 Formal Methods

Formal methods are mathematical based languages, techniques, and tools for specifying

and verifying systems [80]. Hardware, software, and combined systems can all benefit

from formal analysis. Though in the past formal methods were inadequate for use with real

systems [80, 81], incorporating modern techniques can now be of more substantial benefit

to designers.

The idea that formal methods could be an important tool in creating critical systems

is not new [22, 82]. Safety-critical systems need some argument of correctness since they

have the potential to cause costly damage and injuries but it is known that fully testing

26



CHAPTER 2. BACKGROUND AND RELATED WORK

systems with high reliability requirements is infeasible [6]. Since we cannot guarantee the

behavior of these systems based on testing alone, the traditional approach has been to do it

through careful design and analysis. One way to look at the concept of runtime verification

is that it extends this analysis to run-time monitoring rather than ending the analysis phase

when the product ships.

2.4.3.1 Model Checking

Model checking is a technique that relies on building a finite model of a system and check-

ing that a formally specified desired property holds in that model [80]. If the model does

not satisfy the given specification, then a counterexample is provided by the checker, which

provides a detailed execution trace that demonstrates why the system model did not satisfy

the specification.

RV has roots in model checking, but there are some key differences. First, model check-

ing is used to check all executions of a model for the specified property, whereas runtime

verification only checks the execution traces that are seen. This makes RV more suitable for

black-box systems because model checking requires a precise model (an imprecise model

leads to imprecise answers).

The primary hurdle for model checking is the state space explosion problem. Proving

a property is true requires evaluating every possible state of the system. Although prun-

ing techniques and identifying state equivalence classes can reduce the number of distinct

states that must be evaluated, the number of states that needs to be checked grows quickly

as the model gets more complicated. This is an especially big problem when discussing

safety-critical embedded systems as they can have complex behaviors and environments

that themselves require descriptive models.

27



CHAPTER 2. BACKGROUND AND RELATED WORK

Model checking and runtime verification can be used together in a complementary fash-

ion. Models for model checking require a set of simplifying assumptions. Runtime ver-

ification techniques can be used to check these assumptions, providing assurance that the

system is operating within its model checked proof [7]. ModelPlex [8] formally verifies

properties of a system model and synthesizes monitors which validate the target system

executions to that model.

2.4.4 Test Oracles

Test oracles are procedures that identify whether a given test has succeeded or failed. In

traditional testing, human users, sometimes aided by automatic tools, act as test oracles.

Automated oracles can provide more accurate (no mistakes) checking of test results at

a faster rate than manual checking if they can be designed to accurately predict correct

system behavior in response to test stimuli. The oracle problem is how to create such an

automated predictor of system responses, including addressing situations in which such a

predictor is impractical [83].

Partial oracles, which are oracles that can sometimes – but not always – correctly decide

whether a test has succeeded or failed, can be easier to identify. Runtime monitors can be

used as partial test oracles [9], evaluating test logs against a specification which defines the

system behavior that identifies a passed or failed test.

In this way, RV can help improve testing in two primary ways. First, automated analy-

sis of test results allows more automated checking which can help improve test coverage.

Second, monitors can easily detect violations which may be hard to detect in other ways,

including small transient violations which may not affect the system’s observed behavior.

28



CHAPTER 2. BACKGROUND AND RELATED WORK

2.4.5 Enforcement Techniques

Safety kernels [84] are a technique used to ensure some specified properties of a system

(safety properties, in this case). Safety kernels are based on security kernels, which enforce

access control policies in information systems. Some of the primary benefits of safety ker-

nels are also goals of our monitoring, namely ensured enforcement of rules regardless of

the system implementation and simplicity/verifiability of the kernel (and monitor). Though

similar in goals, safety kernels are an enforcement scheme (actively blocking “bad” com-

mands) which is intrusive to the target system, as opposed to monitoring which is reactive

(see “bad” state and then react). It is often true that checking is easier than doing (e.g.,

proofs), and thus we focus on monitoring. Connecting a monitor between system com-

mands and the actuators (or having a monitor which can trigger recoveries fast enough to

effectively block outputs) would essentially make a monitor-based safety kernel.

Security automata and runtime enforcement monitors are monitors which act similarly

to security/safety kernels, enforcing system properties by ensuring the system trace satisfies

a given specification. Different enforcement mechanisms exist, from shutting the system

down when the specification is violated to the monitor editing the system requests to ensure

the system matches the satisfaction. These monitors are discussed in more detail in [85].

A process algebra and synthesis algorithm to build controllers which mimic these security

automata is presented in [87]. JavaMOP, a MOP based monitor for Java programs, has been

used to monitor and enforce security policies in Java programs [86].

29



CHAPTER 2. BACKGROUND AND RELATED WORK

30



Chapter 3

Monitoring Architecture

There are many proposed architectures for use in runtime monitoring. Fundamental ques-

tions such as where the monitor executes (e.g., external hardware or on-system), what the

monitor watches (e.g., memory values, executed instructions, etc.) and how the monitor

obtains input (e.g., system instrumentation, external sensors) are dependent on both the

properties of the system being monitored and the desired effects of monitoring (i.e., obser-

vation or enforcement/control).

Existing runtime monitoring techniques tend to clash with the constraints imposed by

safety-critical embedded systems. Most current proposed monitors rely on automatic gen-

eration of instrumentation code or generation of the monitor itself (e.g., [58, 65]). This

is unusable in black box or external supplier scenarios due to the lack of source code ac-

cess and has a greater chance of affecting the non-faulty system behavior, especially timing

in real-time systems. Instead, this thesis proposes a passive external monitor which only

checks system properties that are observable by watching a broadcast network.

This chapter describes our runtime monitoring architecture which is focused primar-

31



CHAPTER 3. MONITORING ARCHITECTURE

ily on ground vehicles including automobiles and other industrial vehicles. Specifically,

our framework is an external passive bus-monitor, primarily targeting vehicular CAN net-

works, that is capable of checking bus-observable system properties. This type of monitor

treats all system components as black-boxes, although more specific system information

can be useful to help create more accurate specifications. This is important for commer-

cial systems where some system components will inevitably be supplied by third parties

who may or may not provide detailed information about their components. Although we

specifically target ground vehicles and CAN in this work, the flexible interface and system

model allow other similar types of systems to be monitored with this approach. Systems

without broadcast buses may be monitored by exposing the desired system state to the

monitor (either through instrumentation or intelligent monitor placement such as network

gateways/routers).

3.1 Motivation

The choice of a passive external bus monitor arose from an emphasis on the following

ideas/constraints:

1. System components may be black-box components, with no available information

except interface specifications (e.g., network message dictionaries).

2. Bolt-on monitoring is preferred for easier development and deployment.

3. Using the monitor should not necessarily require expert specialists (e.g., formal

methods, safety, etc.).

4. Overall costs (e.g., extra hardware, power, network, implementation, integration,

etc.) should be kept minimal.

32



CHAPTER 3. MONITORING ARCHITECTURE

The possibility of having black-box components in the system forces us to perform

monitoring without source code annotation/instrumentation. This precludes the use of

many existing monitoring frameworks and limits the properties that can be checked to

externally observable state. Externally observable state is the set of system state that can

be obtained on external interfaces such as values exposed in messages on the monitored

broadcast bus. Though additional knowledge about the system can be useful when creating

the monitor specification, a black-box interface level of knowledge of a system is essen-

tially the minimum necessary to be able to perform useful monitoring and is thus a good

baseline for our framework.

A bolt-on monitor is a monitor which can be connected to an existing system with-

out requiring significant modification to the target system. This allows the monitor to be

connected to systems that were not designed specifically to be monitored (such as existing

automobiles). The notion of a bolt-on monitor leads towards reasonable monitor isolation

and system independence, which is helpful for functionality assurance and system certi-

fication. Although we focus on external bolt-on monitors in this work, more integrated

monitors are possible (e.g., on-chip monitor which has it’s own processing core). This is

discussed further in Section 3.4.

It is common knowledge that formal methods can be intimidating and thus are rarely

used in industry [88], although this is improving [89]. This thesis does not explore usability

directly, but with this in mind, certain design choices have been made which should ease

the use of the monitor. For example, providing both future and past time logic allows the

specification to use the most intuitive tense in any given case. The semi-formal interface

between the monitor and system provides flexibility which helps reduce the complexity

of the monitor and ensures that necessary but complex properties can be specified in our

33



CHAPTER 3. MONITORING ARCHITECTURE

framework. We provide a set of specification templates (see Section 3.6.1) to help non-

specialists create formal specification rules from natural language specifications and an

example safety case pattern (see Section 3.6.2) which can be used as a starting point for a

real system monitor’s safety case.

We have also emphasized a reasonable cost overhead to performing monitoring as a part

of our design motivation. The underlying desire is that the addition of a monitor should add

a minimal total cost overhead to the system (in terms of SWaP, design time, certification,

etc.) so that it is practical for industry to use. This overhead can be balanced in different

ways. This thesis focuses on isolation and certification ease at the expense of some SWaP

costs but discusses other possible tradeoffs as well.

Because runtime monitors are essentially fault detectors, we look towards two primary

applications: testing and run-time recovery. In system development and testing, monitors

can be used as test oracles or debugging tools by providing a framework to analyze test

results. In deployment, monitors could be used as a fault detector to trigger recovery actions

such as degraded performance or safety shutdowns.

3.2 Monitor Architecture

An outline of our monitor architecture is shown in Figure 3.1. The monitor is connected to

the system on its system broadcast bus. This bus is connected to the semi-formal interface

which observes the bus and generates atomic propositions for the monitor based on the

observed bus state, filling the monitor’s stored state snapshot. The trace that is formally

monitored is a series of these snapshots. The monitor algorithm takes the target specifica-

tion ϕ and the trace step generated by the semi-formal mapping σi and outputs whether the

34



CHAPTER 3. MONITORING ARCHITECTURE

Figure 3.1: External monitor architecture outline

current trace satisfies or violates the given specification. This output is sent to an action

controller, which chooses the desired action based on the monitor results. Possible ac-

tions include logging violations and activating warnings for passive monitors or triggering

a recovery action such as a safety shutdown for more active monitors.

This architecture separates the system independent formal aspects of the monitor from

the system dependent components including the semi-formal interface and system config-

urations. This allows us to utilize a core formal algorithm and framework with any system

where an interface map can be used to create a state snapshot. Separating the system depen-

dent and system-independent aspects of the monitor also lets the high level system require-

ments be somewhat abstracted away from the implementation. This means that changes to

the target system may only require changes to the interface configuration and not the high

level system specification. This is a similar situation to the two-level specifications used in

the MaC framework [73].

35



CHAPTER 3. MONITORING ARCHITECTURE

3.2.1 Use Cases

The ability for runtime monitors to be semi-formal fault detectors leads to some interesting

practical uses. This section discusses our two primary use cases.

3.2.1.1 Test Oracles

Testing is an important part of the system development process. Just as it is difficult to en-

sure a “finished” system is actually correct, deciding whether a complex system is behaving

correctly during a test can be difficult. Some test failures, especially during functional be-

havior testing, are obvious and easy to see (e.g., an autonomous vehicle driving off the

road). But subtle system failures are just as hard to identify during testing as in a finished

system. This notion leads us to a simple idea: if monitors are a useful way to detect system

faults at runtime, then they are also a useful way to detect system faults during develop-

ment. Runtime monitors can be used as test oracles since they can check for the desired

properties of a test trace [9].

Other aspects of our monitoring framework also lend themselves to being a useful test

oracle. External bolt-on monitors can easily integrate with the target system since they

do not (by design) require any changes to the target system for integration. Not only is

this simpler than integrating inline or other annotation-based monitors, but it also means

that changes to the system do not directly affect the monitor. This is important during

development as the system may be rapidly changing which could introduce bugs into the

monitor if it isn’t isolated correctly.

An external monitor can be seen as a diagnostic tool rather than a part of the system

that must be kept in sync to continue testing. The monitor being isolated from the target

system also allows us to perform essentially any desired testing strategy without adding

36



CHAPTER 3. MONITORING ARCHITECTURE

integration work. An external monitor can check a system under hardware fault injection

or robustness testing just as easily as during fault-less functional integration testing.

Beyond system independence, adding or updating specification rules is simple in our

monitor thanks to the semi-formal interface. Being able to quickly update the monitor

specification allows the monitor to be used as an exploratory diagnostic tool. The system

behaviors can be explored by adjusting the monitor rules to quickly check for interest-

ing system state or behaviors. This is especially useful for exploring the system’s actual

behavior which can be necessary to tune safety-margins or false positives in the monitor

specification.

Because our monitor is designed to target black box systems, we can monitor at dif-

ferent levels of system abstraction depending on the current level of system development.

Monitors can be used to check either individual components or a fully integrated system as

long as the necessary observability is available. This allows monitors to be used throughout

the entire development process regardless of which components are available. Individual

components can be tested to ensure they follow their specifications, and as integration be-

gins the partially integrated systems can be monitored as a whole, checking that component

interactions don’t cause system-level specification violations.

External monitoring only checks for the properties that are specified, not the underlying

behaviors that cause them. From the perspective of the monitor all specification violations,

whether due to software bugs, hardware faults, or a mistaken requirement, are equivalent.

From a system verification standpoint, this is an important distinction from other verifica-

tion techniques that focus on a formal model or even the system software. Even formally

proven “correct” systems can fail due to problems that occur beyond the scope of the model

(e.g., hardware data corruption). By checking the actual system state we can minimize the

37



CHAPTER 3. MONITORING ARCHITECTURE

risk of broken assumptions reducing the validity of our verification.

3.2.1.2 Runtime Fault Recovery

Runtime fault detection is an important aspect of fault-tolerant systems [90]. Most fault-

tolerant system techniques rely on robust detection of faults. Fail-stop/silent components

[91], which enable many fault-tolerant techniques, rely on a detection mechanism which

can ensure that faulty messages do not propogate. Using fast failure detectors can even

speed up fault-tolerant algorithms such as atomic broadcast and concensus [92].

As an abstract idea, monitors seem like a perfect fit to provide fault detection for sys-

tems or components, especially if used to trigger component recovery or shutdown. Isolated

monitors even benefit from their independence from the system, since faults in a compo-

nent won’t also affect the monitor which is supposed to detect them, which is an assurance

that inline monitors cannot provide.

Simple isolated monitors seem like a natural extension of simpler existing methods for

protecting systems at runtime such as bus guardians [93]. Unfortunately, system recovery in

a general sense is a hard problem. Systems or components which have simple generalized

safety-shutdowns or systems for which a backup/fail-safe component is available naturally

provide simple fault-recovery actions (e.g., shutdown or switch to backup). More complex

systems run into the steering problem, where the necessary recovery action in a given

situation may not be clear or commandable given a particular residual non-faulty portion

of the system. Complex system recovery is discussed more in Section 7.3.1

While recovery in general is beyond the scope of this thesis, we can clearly see that

monitors have the potential to perform complex fault detection, even of emergent system

properties. It is possible that the existence of strong fault detectors can lead towards systems

38



CHAPTER 3. MONITORING ARCHITECTURE

incorporating simple recovery mechanisms.

3.3 Test Oracle Example

This section contains work previously discussed in [9]. In [9] we utilized a prototype mon-

itor as a test oracle for a dSPACE hardware-in-the-loop (HIL) simulator at a commericial

automotive research lab. The monitor was an informal prototype which did not utilize the

monitoring algorithm and formal specifications described in this thesis. This earlier work

provided experience about some difficult aspects of using monitors as test oracles for real-

istic systems and informed some of our future design decisions.

The simulated vehicle we tested was a prototype development platform for semi-autonomous

driving features including full speed-range adaptive cruise control (FSRACC), automated

lane keeping and emegency collision avoidance. Because feature development was still

in progress we were only able to test the FSRACC features. We performed Ballista-style

robustness testing [94] on the simulator to exercise the system and attempt to trigger faults

that the monitor could identify. During and after this testing we learned that the simula-

tor features, including the FSRACC, were not hardened for robustness and therefore our

findings do not directly reflect upon the quality of production-grade features. However,

the FSRACC did provide a prototype-quality realistic automotive feature for our testing

purposes.

The simulator used MATLAB Simulink models to generate the code for individual

electronic control units. CarSim [95] was used to provide the simulated vehicle and en-

vironment which the vehicle models on the HIL operated within. The simulator used the

dSpace ControlDesk interface software to manage loading models and running tests (in-

39



CHAPTER 3. MONITORING ARCHITECTURE

cluding calibration, logging/measurements, and diagnostic access). ControlDesk includes

a library (rtplib) allowing real-time scripting access to the models running on the HIL. We

used this library to create some robustness testing scripts, and additionally used ControlD-

esk’s control panel functionality to control the manual injection of test values into some

individual signals. All logging was performed using ControlDesk’s trace capture function-

ality.

To facilitate the black box interception and injection of vehicle network messages for

robustness testing purposes, we added some instrumentation to the vehicle feature model

as shown in Figure 3.2. These modifications were solely for input interception/injection to

elicit system failures, and did not provide instrumentation for runtime monitoring. More-

over, they did not involve modification of the FSRACC code itself. Each input signal to

the FSRACC module was routed through a test-controlling multiplexor which enabled the

injection of test values (provided as an injection value) through an injection enable signal.

This allowed us to have each input signal individually passed-through or overwritten by the

chosen injection signal. These additional signals (the injection and enable signals) were

accessible through ControlDesk’s layouts and our rtplib-based Python scripts in a similar

manner to the existing model signals. Because this part of the system was a simulation

running in a fast HIL computer, the modifications did not affect system timing.

3.3.1 Robustness Testing

The primary goal of robustness testing the simulator was not necessarily to test the simu-

lated vehicle’s robustness directly, but to increase the chance of faults to better exercise the

monitor. We tested the simulated vehicle mostly while in FSRACC following (with manual

steering). During the testing we injected type-correct values into the target signals, which

40



CHAPTER 3. MONITORING ARCHITECTURE

System

Component

In
s
tru

m
e
n
ta

tio
n

M
u
x

Input

System

Test Controller Injection Values Injection 

Enables

Figure 3.2: HIL feature instrumentation diagram

were either floating point numbers, booleans, or enumerations (positive integers).

We performed three different classes of robustness testing on the HIL: random bit flips

(one, two, and four bits), random value injections, and exceptional value injections. For

each testing type we injected a particular number of faults each for 20s (to allow time for the

fault to manifest into a specification violation). Bits to flip were randomly chosen for each

individual bit flip fault. For random value injection we injected values from [−2000, 2000]

for floats, [0, 1] for booleans, and [0,maxint] for enums. The float range was chosen such

that it would go beyond the usual non-faulty values of the target messages while keeping the

range small enough that at least some values chosen would land in the value’s normal range.

For Ballista style testing [94] we performed exceptional value injection which targeted

float-typed messages with values chosen from the set {NaN, ∞, −∞, 0.0, -0.0, 1.0, -

1.0, π, π
2
π
4
, 2π, e, e

2
, e
4
,
√

2,
√
2
2

, ln(2), ln(2)
2

, 4294967296.000001, 4294967295.9999995,

41



CHAPTER 3. MONITORING ARCHITECTURE

I/O Name Type
Input Velocity float
Input AccelPedPos float
Input BrakePedPres float
Input ACCSetSpeed float
Input ThrotPos float
Input VehicleAhead boolean
Input TargetRange float
Input TargetRelVel float
Input SelHeadway float
Output ACCEnabled boolean
Output BrakeRequested boolean
Output TorqueRequested boolean
Output RequestedTorque float
Output RequestedDecel float
Output ServiceACC boolean

Figure 3.3: FSRACC module IO signals

4.9406564584124654e-324, -4.9406564584124654e-324}. Random injection values were

used for exceptional-input injection when targeting non-float data types due to the strong

value checking enforced on the HIL testbed.

3.3.2 Target Feature

The inputs and outputs of interest on the FSRACC module are listed in Figure 3.3. The

module has other inputs and outputs that were disregarded for testing because they were

uninteresting for this type of testing. For example, they had no observable effect, immedi-

ately cancelled cruise control, were interface indicators, or otherwise did not affect vehicle

safety.

The Velocity input message is the forward speed of the vehicle. AccelPedPos

gives the position of the accelerator pedal as a percentage (0 being fully released, 100 fully

42



CHAPTER 3. MONITORING ARCHITECTURE

depressed). The pressure applied to the brake pedal is given in BrakePedPres and the

position of the throttle as a percentage (i.e., how open the throttle is) is ThrotPos. The

commanded cruising speed is sent in the ACCSetSpeed message. The VehicleAhead

message tells the ACC module whether a vehicle is detected ahead of it in the lane. TargetRange

and TargetRelVel are the distance between the vehicle and the vehicle ahead of it (if

one exists) and the relative velocity between those two vehicles respectively. The selected

headway distance to the preceding car is an enum SelHeadway.

The output ACCEnable is whether the ACC thinks it is supposed to be in control of the

vehicle or not (i.e., engine and brake controllers should ignore these output values if ACC

isn’t enabled). The BrakeRequested output is true when the ACC feature is requesting

a deceleration. If the BrakeRequested output is true, then the RequestedDecel is a

requested deceleration in m/s2 for the brake controller to attempt to provide. If instead the

message TorqueRequested is true then the RequestedTorque output is the addi-

tional amount of torque the engine controller should attempt to provide. The ServiceACC

message is an error message used to enable an interface indicator to alert the driver that the

feature has detected an error.

3.3.3 Safety Specification

To evaluate the use of these techniques we created partial behavioral specifications that

were motivated by ensuring system safety. We used six safety rules that checked a mix of

system robustness and functionality.

Since the feature under test is a third party provided code module designed mainly as

a placeholder function to support early system integration, there was no available specifi-

cation. Instead we created a set of specification rules based on “expert” elicited common

43



CHAPTER 3. MONITORING ARCHITECTURE

sense (i.e., properties a knowledgeable engineer would expect to hold based on automo-

tive domain experience) through discussions with the system’s engineers and looking over

existing system metrics and other related documentation. While we would have preferred

to have rules directly derived from system documentation, this is not always possible in

industry (as in this example). In cases like this the usefulness of the monitoring results

depend heavily on the experts and the quality of the rules they choose. Though expert de-

rived rules may not provide as clear a notion of monitoring coverage, they can be made

with the expert’s direct needs in mind. It is important to note that partial coverage is still

better than no coverage. For example, while the rules we checked in this section are in no

way complete, they would be high priority (e.g., likely to lead to vehicle collisions) for a

production quality feature.

The six rules we checked against the robustness testing traces are shown in Table 3.1.

Because these rules were picked without any knowledge of the internal control algorithms

or design parameters of the system, some of them may be too strict (as turned out to be the

case). It seems likely that this sort of approach would be common when applying runtime

monitoring to real-world systems, which often have incomplete specifications and opaque

internal operation. Thus, the approach we took was to adopt these (potentially strict) rules

and then relax them when false positives and uninteresting violations were found. We

think this is a reasonable approach to employing runtime monitors in practice and also

helps to build insight into the the system’s operation as well. This is using the monitor as a

diagnostic tool.

The issue of whether the data required to implement the monitor would be observable

was simple since we were able to create our rules with knowledge of this restriction, writ-

ing rules based on system state available on the CAN bus. Observability would be a more

44



CHAPTER 3. MONITORING ARCHITECTURE

Table 3.1: Monitor specification for HIL simulator

Rule #
Informal Rule
Motivation

0
If the ServiceACC signal is true, then ACCEnabled must be false.
A simple consistency check to ensure that the feature does not continue to
attempt to control the vehicle when it knows something is wrong.

1
If the actual vehicle headway time is below 1.0s, then it must be recovered
to greater than 1.0s within 5s elapsed time.
This rule is derived from an existing headway metric for another similar
system.

2
If TargetRange is less than half the desired headway, then
RequestedTorque should not be increasing.
Check for feature trying to increase speed when it is already too close to the
target vehicle.

3
If Velocity is greater than ACCSetSpeed and RequestedTorque
is less than 0, RequestedTorque must still be less than 0 in the next
timestep.
Check for vehicle attempting to increase speed when already above the set
speed, avoiding tripping on control oscillations by only checking after there
are no active requests.

4
If Velocity is greater than ACCSetSpeed then RequestedTorque
must not be increasing at some point within 400ms.
Similar to #3: if vehicle velocity is increasing while above set speed, should
start slowing down (or at least hold speed) within 400ms.

5
If BrakeRequested is true then RequestedDecel must be less than
or equal to 0.
Checks if the value of a requested deceleration is in fact a deceleration
(negative).

6
If VehicleAhead is true and TargetRange is less than 1, then
TorqueRequest must be false or RequestedTorque must be less
than 0.
Checks for near collisions – assuming a feature should not be requesting a
increase in speed when the target vehicle is extremely close.

45



CHAPTER 3. MONITORING ARCHITECTURE

difficult issue when deriving rules from system requirements which may include require-

ments on properties that are not externally observable. We discuss this further in Section

3.4.1.

Coverage of the safety rules was not intended to be complete. Rather, the idea is to

express a set of safety rules that are useful and see if runtime monitoring detects rule vio-

lations for a black-box system which has not been augmented with additional monitoring

information.

3.3.3.1 System Interface

The semi-formal interface mapping required to create the propositions in this situation

was straightforward. We needed to convert boolean values to truth propositions, compare

floating point integers against thresholds, and check whether values were increasing be-

tween samples. Although the direct mapping required between the system and the monitor

specification was simple, we encountered other system mapping issues including state syn-

chronization across multiple message periods and discrete value jumps.

Mutiple Message Periods The first issue was handling multiple message periods. In

the vehicle we tested there were two relevant message periods, with some messages being

updated four times slower than the others. At first we simply assumed that these slower

values stayed constant between updates. But, dealing with values across multiple timesteps

required more care when trying to obtain it’s change over time, because a slowly sampled

value that is in fact increasing would appear to be unchanging for several cycles while the

faster samples were being checked.

As an example, to see if the FSRACC feature was requesting increasing torque, we

46



CHAPTER 3. MONITORING ARCHITECTURE

would calculate the difference of the previous and current RequestedTorque value.

However, if the held value is used in a monitor that updates four times between every

RequestedTorque update, the torque would appear to be constant for three samples

out of four due to the repetition of the most recent sampled value being held. Addition-

ally, jitter would sometimes cause slower-period messages to be delayed, resulting in five

faster frequency message updates occuring between the slower message updates. Once rec-

ognized, it was relatively simple to work around these problems in an ad hoc manner by

checking whether these values increased over four timesteps instead of one. The observa-

tion remains that runtime monitoring that involves data sampled at different periods can be

tricky, and a runtime monitoring architecture should have a uniformly applied mechanism

to deal with that issue.

Discrete Value Jumps Another network value issue that we came across was ensur-

ing that rules could handle message transitions from non-active to active. Some mes-

sages in a system, such as TargetRange can perform large discrete jumps when they

are activated even though they represent continuous physical properties. As an example,

TargetRange is 0 when there is no target being tracked, but once a target is found this

value will immediately jump to the actual range. This was noticed for rules that checked

if the ACC would command control when the change in TargetRange did not agree

with the sign of TargetRelVel. While these values should always agree in a non-fault

condition, there is one normal situation where they may not: when a vehicle comes into

sensor view the relative velocity may be correctly reported as negative, but the first change

in range seen is necessarily positive (change from zero to the actual positive range). De-

laying the check of such a rule until after the activation (allowing the “change” variable to

47



CHAPTER 3. MONITORING ARCHITECTURE

initialize before testing) avoids this problem.

Other message or rule types may also have initialization issues, such as rules that rely

on an integrator or running average of a value. A general observation is that run-time

monitors should have a uniform way of “warming up” monitors for data that changes state

abruptly, especially when changing from invalid to valid, to avoid false alarms.

3.3.4 Testing Results and Lessons Learned

For each of the either target signals we ran three different types of robustness tests – Ballista

style injections, bit flips, and random value injections. All three test types found similar

violations which we attribute to the lack of robustness of the target system (any value

mangling could cause the type of bad input values that caused the violations). The monitor

identified violations of all the specification rules except Rule #0.

Some of the violations turned out to be overly strict specification rules. One example

of this is most of the violations of Rule #5 which was often caused by control system over-

shoot causing a single cycle positive acceleration when the brakes were released. Similar

single-cycle violations which may be legitimate violations were also identified showing the

usefulness of an automated test checker for finding transient specification violations. With-

out thorough documentation we cannot be sure whether the system should contain short

violations of this type or not.

The process of performing robustness testing with a monitor-based test oracle led us

to identify and discuss three major research challenges. The first, intent estimation is the

challenge of approximating or representing desired system intent based on the observable

system properties. Intent estimation is discussed in Section 3.4.1.1.

The other two challenges identified were identifying the necessary language features

48



CHAPTER 3. MONITORING ARCHITECTURE

required for efficiently specifying a desired system property and how to map the target sys-

tem onto the monitor’s system model. In this thesis both these challenges are handled by

the semi-formal interface. We use a bounded propositional temporal logic as a specification

language which keeps the monitoring complexity down, but there are many system prop-

erties that are not directly expressible or cumbersome to express in this logic. Instead of

choosing a more expressive language (which would increase the difficulty of monitoring),

we have supplemented the logic by allowing a configurable interface to fill the propositions

that are used in the logic. This provides flexibility to build the propositions, which protects

the monitor from being unable to specify a new property that does not fit within the spec-

ification language. The system mapping is handled through the semi-formal interface in

the same way. Again, the semi-formal interface provides the ability to map many different

target systems into our monitor model.

3.4 External Bus monitoring

Although external monitoring follows naturally from targeting black-box systems, the iso-

lation from the system provided by an external monitor has other benefits as well. Isolation

between a monitor and its target SUO is a simple way to ensure that the monitor fits within

the known constraints of safety-critical system monitoring. Isolation in general reduces the

amount of possibly dangerous interactions that can occur between the monitor and the sys-

tem. Specifically, using an external, isolated monitor simplifies the argument that a monitor

fits the FaCTS constraints discussed in Section 2.4.1.1, especially the timing and function-

ality constraints. Notably, isolation provides a straightforward argument that the addition

of the monitor does not make the system less safe and thus any benefits the monitor pro-

49



CHAPTER 3. MONITORING ARCHITECTURE

vides are strictly gained benefits. This isolation will be utilized heavily in our safety case

pattern instantiation in Section 3.6.2.

Arguing that an external passive monitor will not affect the functionality or timing of

the SUO is straightforward, since isolation by definition precludes any interactions. Only

shared resources or potentially weakly isolated components need to be considered as poten-

tial problems. External monitors also may be independently certifiable, allowing a modular

certification [96] approach. Because the monitor is isolated (e.g., by ensuring it never sends

a message), there is little coupling or interactive complexity with the target system, making

independent certification straightforward. Having changes in either the system or monitor

be independent of each other with regards to certification provides flexibility in the devel-

opment cycle. For example, with a certified working monitor, last minute changes to the

system functionality do not affect the certified correctness of the monitor. This is especially

useful for research or prototype systems where changes may occur later in the development

process than is usual for production systems.

Size, Weight, and Power. The downside of using an external monitor is that it requires

extra resources (in general, more hardware). External monitors do somewhat contradict

the goal of minimizing the size, weight, and power contributions of the monitor. There

is a fundamental tradeoff between spending additional resources to obtain better isolation

or using more integrated resources to save costs. As with redundancy for fault-tolerance,

if the system needs strongly guaranteed isolation for assurance purposes, then there is no

avoiding the extra SWaP costs. The necessary level of isolation and thus extra SWaP costs

are system and situation dependent, but with hardware costs and size/power requirements

continuously decreasing the costs of isolation are constantly improving.

50



CHAPTER 3. MONITORING ARCHITECTURE

There may be situations where making room for extra hardware resources is impossible

(e.g., space probes with extreme weight constraints), but for systems where a strong guar-

antee of isolation is valuable it cannot be obtained in any other way. For systems where full

isolation is not worth the additional SWaP costs, this same framework can be applied in a

consolidated architecture on a single Electronic Control Unit (ECU) or network gateway

with existing system functionality. The monitor will still be performing external moni-

toring of the system, just from within an existing component. This can reduce the SWaP

overhead and provides the same monitoring output but may require more effort to show

monitor correctness due to possible interference on or from the shared system. Our moni-

tor design is based on a fully external monitor so it can be fully bolt-on and to simplify the

safety case. This isolation/consolidation tradeoff is discussed more in Section 7.1.2.

3.4.1 Observability

External monitoring of a SUO is limited by the external observability of the system. The

external observability of a system is the set of system state that can be obtained from outside

the system. For example, internal software variables of a component are not externally

observable, while values sent out in network messages are.

Obviously, a monitor can only check specifications over properties that it can observe.

Passive external monitors are restricted in that they only have access to system properties

that are already externally observable. This is in stark contrast to less passive and on-chip

(internal) monitoring approaches where it is possible to instrument a system or perform

inline monitoring directly on internal system state. Although being limited to observable

state is a seemingly tight restriction, broadcast buses tend to have useful observable state

such as component status messages and feature requests.

51



CHAPTER 3. MONITORING ARCHITECTURE

The external observability of a system is an extremely system-dependent property.

While a certain amount of information is likely to be available for any given system domain

due to common designs or standards (e.g., ground vehicles are likely to at least have the

common J1939 messages [97]), there is no guarantee that any given system will have any

certain observable properties. Some other solution needs to be found if an unobservable

property is required to check a desired specification. In some cases it may be possible to

calculate a proxy value from observable values. Imagine a sensor system which detects

obstructions ahead of a vehicle and provides a distance to the target object but no relative

or actual velocity of the target. In this case a target velocity can be derived from consecu-

tive samples of the distance to the target and the host vehicle’s velocity. More intrusively,

the system could be modified to expose the desired property, either by instrumenting the

system components themselves or by adding additional sensors connected to the monitor.

When possible, architecting externally visible state into the system is a general solution

to the observability problem. This does require identifying the necessary state that needs

to be exposed but allows monitoring many different properties. The MaC framework’s in-

strumentation works in this way, instrumenting the target program to expose the monitored

values. If no feasible instrumentation solutions exist, then the problematic requirements

may be deemed externally unmonitorable for the existing architecture.

In this thesis we work within the constraints of our target system’s observability without

making any changes to the system. While some requirements are not monitorable given this

restriction, we can often find a way to check useful or related properties. This is less of an

issue if the monitor design is a part of the system design since necessary properties can be

purposefully exposed.

52



CHAPTER 3. MONITORING ARCHITECTURE

3.4.1.1 Intent Estimation

A subtle problem that can arise due to observability issues is the intent estimation problem.

This is the question of how to represent a system or feature’s intent to perform some high

level action based on an observable set of lower level properties [98]. This problem has

been explored in many domains including defense aerospace [99], unmanned undersea

vehicles [100] and automobile driver intent [101].

System observability bleeds into the problem of intent estimation directly. System spec-

ifications, especially informal specifications, often utilize the intent of a system without

providing a directly observable proxy or behavioral definition. For example, during mon-

itoring of a prototype adaptive cruise control feature under robustness testing (see Section

3.3) we had a desired informal specification rule: “If the vehicle’s velocity is greater than

the cruise control set speed, then cruise control should not request an increase in velocity”.

Since the cruise control component only output requested torque to the engine controller,

we had no way to directly look for a request for increased velocity. We instead used an

increase in requested torque as an estimation for the ACC feature intending to accelerate

the vehicle. This was a reasonably conservative and causal estimation (increasing engine

torque generally increases vehicle speed) but it is not perfect as the necessary torque to

even sustain a given vehicle speed depends on a host of factors such as road conditions and

grade. Besides road conditions, instantaneous torque requests do not tell the whole story

about vehicle state due to system inertia (duration and amplitude of the torque requests are

important as well).

In this type of case, we can imagine the desire to implement a dynamics model in

the monitor to attempt to create a more accurate model of the ACC feature attempting

to accelerate the vehicle. This is possible but goes against our motivation from runtime

53



CHAPTER 3. MONITORING ARCHITECTURE

verification of performing simple checking to reduce the reliance on abstract models. We

still do allow utilizing moderately complex system models in the semi-formal interface, but

integrating complex models increases the risk that the monitoring results are undermined

by an incorrect model.

An important factor in choosing a useful estimation is understanding the abstraction

being used and how that affects the false positive and false negative rate of the monitor

output. For many cases, estimations that limit false negatives are ideal since they at least

preserve the detection ability of the monitor.

Intent estimation can be a problem while monitoring white-box systems as well. Even

though having access to a feature’s internals gives a more inclusive view of a system’s pro-

cess, intent can be an emergent property that does not appear in any given system variable.

Similar estimation solutions (finding acceptable estimations/proxy values) can be applied

to the white-box system case, albeit with more options of existing state to choose from and

usually a better understanding of what intent means.

3.4.2 Sampling Based Monitoring

Our monitor framework is a sampling-based time-triggered monitor. The monitor samples

the system state at a constant frequency and checks the specification against this series of

sampled state snapshots. This allows the monitor to be used to monitor both event-triggered

and time-triggered system architectures in a straightforward manner with predictable over-

head and no issues with event bursts [102].

Systems which are not inherentely time triggered can be monitored in this model by

using observed system events to fill a system state model which can be frozen and copied

when the monitor needs a snapshot. For example, when monitoring a CAN bus the mon-

54



CHAPTER 3. MONITORING ARCHITECTURE

itor’s system state view is updated by every relevant incoming message. At each monitor

checking step (i.e., periodically) a snapshot of the current system state can be taken and

used as the system’s state at that step. This allows the live system state view to continue to

be updated while the monitor is checking a given step.

Time-triggered architectures naturally fit within this framework, but event-triggered

system architectures require a bit more care to ensure that the monitor is checking what

users expect it to be checking. The monitor’s checking period (or sampling frequency) must

be fast enough to ensure that system behaviors which need to be distinguished from each

other can be. System events (changes in state) which occur between monitor checks cannot

be ordered or distinguished. This means that the sampling period must be twice as fast

as the fastest monitored event to avoid aliasing which could lead to inaccurate monitoring

answers. It should be noted that this is only with regards to values that affect the monitored

specification and need to be distinguished in time. Even if the system has state which

updates at 10ms, if all the specification-related values only update at 50ms, we can safely

check at 25ms, not 5ms.

Because we monitor the target system’s observable state, we avoid synchronization

issues in general by basing the monitor specifications on observable system state rather than

internal system state. For example, we may monitor that a given vehicle state obtained from

a status message (e.g., a button press) requires some response message within a bounded

time. Note that this is a requirement on the bus, the messages themselves, not the internal

system state. The desired timing of these state updates and requests on the bus is known

and can be encoded in the specification. Time-triggered system buses such as Flexray and

Time-Triggered Protocol (TTP) provide their own global time synchronization, so when

monitoring on these types of buses we are given more timing guarantees. Even though

55



CHAPTER 3. MONITORING ARCHITECTURE

CAN is an event triggered bus, by sampling the bus observed state fast enough we can

ensure that we obtain a true view of the state of the system (as far as the bus is concerned).

This highlights that the safety margins, not only on property values but also on temporal

rule durations, need to be chosen to ensure that the monitor is checking stable system state.

3.5 Semi-formal Monitoring

Using formal methods has some clear benefits such as removing ambiguity, enabling early

defect identification and allowing automated checking of properties. Even so, industrial

adoption of formal methods, especially in software and system engineering has been slow

(with hardware design being an exception) due to well known challenges such as a lack

of tools and difficulty integrating with real systems [103]. With regards to formal spec-

ifications, one possible cause is that completely describing a real system in most formal

languages can be difficult or imposible. This is a part of Knight et al’s formal specification

evaluation criteria coverage, which notes that a formal specification must permit descrip-

tion of all of an application or be designed to operate with any other notations that will

be required [104]. This is a key concept for any practical and general runtime verifica-

tion framework for real-world systems. Different systems will have varying specification

needs, and if these needs are not easily met history shows that system designers are likely

to just use an informal specification instead, which restricts the use of formal verification

techniques.

To ensure specification flexibility, we have implemented a semi-formal specification

which combines a formal specification with a semi-formal system mapping which translates

the actual system values into the monitor’s more abstract execution trace. This semi-formal

56



CHAPTER 3. MONITORING ARCHITECTURE

interface allows considerable leeway in designing the translation between the system and

monitor’s model. This leeway is both powerful and potentially dangerous. By allowing

certain transformations in the interface, we are able to remove complexity from the monitor

itself while ensuring that we can monitor a diverse set of needs. This approach needs to be

used carefully because it shifts part of the specification away from being formally defined,

creating more opportunity for design mistakes and eroding some of the benefits that lead

us to formal runtime verification in the first place.

The two part specification feeds into two parts of the monitor, as shown in Figure 3.4.

The high-level formal specification contains the formal logic formulas that are directly

checked by the formal monitoring algorithm. The lower-level semi-formal mapping is used

to define the system to monitor interface which generates the formal trace propositions that

are checked by the monitoring algorithm. From an framework perspective, the semi-formal

interface has minimal design constraints. As long as the interface provides a system trace

of the properties present in the formal specification, we do not restrict how this trace is

created.

Because the correctness of the monitor ultimately relies on the correctness of the inter-

face transformations, limiting the interface to a simple, verifiable set of transformations is

key to providing guarantees about the monitor’s output.

The interface has two primary purposes:

1. To convert actual system values (e.g., network message data) into a propositional

execution trace.

2. To provide additional semantic power to create useful propositions (e.g., state ma-

chines).

The interface translates observable system state into a trace of propositions which can

57



CHAPTER 3. MONITORING ARCHITECTURE

SF

Map

Trace Monitor

Algorithm

Monitor Specification

Recovery

Action 

Controller

Defines

Propositions

Figure 3.4: Monitor architecture showing multi-part specification

be checked against a specification by our monitoring algorithm. The interface provides the

ability to extract the relevant data out of network messages in a flexible, network agnostic

way. It can be used to extract the desired portion of a message, change units or typecast

as necessary and then store the created proposition value correctly for use with the mon-

itor. This ensures that the monitor is not restricted to networks or message types that it

already knows how to transform. Any necessary data transformations can also be done

in the interface. Besides simple transformations (e.g., storing boolean values into propo-

sitions, arithmatic comparisons, etc.), we can also do more complex compututations and

conversions in the interface such as building state machines whose state can be used to fill

propositions.

58



CHAPTER 3. MONITORING ARCHITECTURE

3.5.1 Semi-Formal Interface Design

The semi-formal interface is used provide the monitoring algorithm with the state trace.

There are no inherent limitations on the semi-formal interface besides that it must create a

viable trace for the monitor. There is, however, a practical limitation – the more complex

the interface becomes the less confidence we should have that it works correctly. Given this,

we’d like to restrict the interface as much as possible while still providing the necessary

flexibility.

From our experience with system requirements and monitoring, the important transfor-

mations that are common for these types of systems are simple arithmetic, boolean connec-

tives, comparisons to recent values, and simple state machines. Because of this, we restrict

our own semi-formal mapping syntax to a simplified subset of the C programming lan-

guage. We allow all the basic algorithmic, bitwise, and comparison operators and statically

allocated variables of primitive types (i.e., integers, floating point). We do allow simple

loops, for example over a static array holding a set of values, for calculating averages and

other simple values. We do not currently have a formal definition of the semi-formal syn-

tax, instead we trust that users can decide how restricted they wish to and realistically can

be.

Our monitor implementation’s semi-formal mapping configuration is integrated into the

monitor’s code directly by a specification compiler. This is essentially an internal domain

specific language (DSL) [105]. Using a DSL to specify the semi-formal mappings allows us

to restrict the specification of the interface to keep verification (of the interface) reasonable

while still providing the ease of use and power of a programming language. Other prototype

monitors we designed have used more traditional interface DSLs where the specifications

have been used to insert and generate the code used by the monitor for the interface. More

59



CHAPTER 3. MONITORING ARCHITECTURE

discussion about using domain specific languages for the semi-formal interface is included

in Section 7.3.2.

The motivation behind the restricted interface syntax is to provide enough power to

define the system propositions necessary to monitor any reasonable desired property while

incentivizing the monitor designers to work within the formal specification as much as

possible. Given a desired set of system properties, it is easy to imagine the pathological

case where the monitor is configured to check the proposition SystemOK and the interface

is built to compute this value directly. While this technically would work, it is obviously

an abuse of the interface and a bad (non?) use of the monitor framework. Doing this

essentially creates a completely informal monitor inside the interface, wasting the proven

correctness of the formal monitoring algorithm.

A more interesting case is when we have a system message which includes a value

and a validity bit (signifying whether the message value is valid). We can imagine that

most rules utilizing this value will want to check both some property of the value and

whether it is valid at the same time (e.g., valuePositive and valueValid). This

could be done on the formal side in the logic by using valuePositive∧valueValid

or by combining them in interface into one proposition valuePositiveValid which

is calculated from both incoming values.

In this case it is less clear which method is superior, but we can suggest a few heuristics

to help decide. Perhaps the most straightforward way to choose is to attempt to mirror

the design documentation and requirements in the monitor specification. If the system

requirements mention the validity either explicitly (as a message value) or implicitly (by

mentioning a “valid positive value”) then the monitor specification should also directly

mention validity and use the validity message value directly. If the requirements do not

60



CHAPTER 3. MONITORING ARCHITECTURE

mention validity, then we can treat validity as an implementation detail and hide it away

in the interface’s proposition transformation. This follows the idea that the high-level re-

quirements are abstracted away from the implementation. So if the validity bit is an artifact

of the implementation then it is intuitive to deal with it in the interface, but if the validity

bit is a part of the higher level system design then it should also be a part of the monitor

specification.

Other factors can also affect the decision, such as monitoring complexity (moving trans-

formations to the interface can reduce the amount of work the monitoring algorithm has to

do) or the desire to maximize the amount of monitoring that is formally performed. These

decisions should be kept consistent across specification rules to avoid confusion or misun-

derstanding.

In an ideal situation, the formal specification would contain all the relevant safety spec-

ification parts, leaving only the actual translation of system values to the semi-formal inter-

face. More complex translations than simple threshold comparisons or copying booleans

may require some semi-formal transformation if the desired properties cannot be expressed

in propositional logic. Moving parts of the transformation to the interface side is useful

when necessary, but as the interface configuration complexity increases it becomes more

important to validate and verify the interface itself.

3.6 Usability Concerns

One of the biggest hurdles to the adoption of formal techniques is the perceived difficulty

by non-experts of using them. In an attempt to diffuse these perceptions and provide a

guide to simple integration, we provide two design artifacts: specification patterns and a

61



CHAPTER 3. MONITORING ARCHITECTURE

safety case pattern.

3.6.1 Specification Patterns

The difficulty, both perceived and real, of applying formal methods to real systems includes

issues with using formal specification languages. Expressing system properties in formal

languages such as temporal logic can be difficult for formal method experts, let alone non-

expert system designers. Formal specification patterns have been proposed as a tool to

support users in creating formal specifications with pre-specified, generic patterns [12].

Specification pattern based approaches have been proposed in many different domains

[39, 106]. We have created a list of patterns common to autonomous ground systems. The

patterns are presented as a catalogue which provides a description, intent, usage informa-

tion and the specification rule in our bounded MTL for each pattern. We will refer to

our bounded logic as BMTL. This logic is described in Section 4.1.2. Users of the patterns

can create their system requirements using traditional requirements analysis methods (FTA,

FMEA, etc.) and then use the specification pattern catalogue to translate those requirements

into a formal specification.

One example of a specification pattern is shown in Table 3.2 (the rest of the pattern

catalogue is provided in Appendix A).

Each specification pattern has a unique number and descriptive name denoting the pat-

tern class. The intent entry provides a description of the high level intent of the pattern.

The example entry shows an example instantiation of the pattern, showing how the pattern

should be used in an applied setting. Next, the pattern provides the example in BMTL for-

mula form and then provides the generic pattern BMTL and ASCII BMTL formulas. The

variables entry describes each component of the formula in more detail. The description

62



CHAPTER 3. MONITORING ARCHITECTURE

entry gives a more thorough description of the formula and its actual meaning. Limitations

are also noted, explaining potential misconceptions, pitfalls, etc., of the specific pattern.

Other similar patterns are also listed, to help find the desired pattern if the current one does

not exactly match the desired specification.

The example in Table 3.2 is a straightforward requirement that could exist in a passen-

ger vehicle. The informal example requirement is “If the unlock doors button is depressed

then the driver side door must be unlocked within 500ms”. Given this requirement, the

appropriate specification pattern would be identified in the catalogue which in this case is

our example pattern 1.a Bounded Response. Once this pattern was chosen the user would

match the informal specification to the variables to fill in the formula. In this case, the

triggering event T is the unlock doors button being depressed, the triggered state E is that

the driver side door is unlocked, and the maximum time for the doors to open within h is

500ms. Filling the identified values into the formula, we would obtain the example formula

UnlockDoorsPressed -> <0,500> DriverDoorUnlocked.

We do not claim that our pattern catalogue is currently complete, nor do we make

any claim about the coverage of our patterns. It is clear that even if a complete set of

specification patterns for a given domain could be created, it would still require a matching

semi-formal mapping which is similarly an expert creation. Nonetheless, the use of patterns

in this way should help usability by letting non-experts create formal specifications by

applying the patterns.

3.6.2 Safety Case Templates

A primary aspect of the motivation and usefulness of an external bolt-on monitor is the

ease of composability both from a physical perspective (i.e., just connect the monitor to the

63



CHAPTER 3. MONITORING ARCHITECTURE

Table 3.2: Specification pattern example

Name 1.a Bounded Response
Intent To describe a relationship between two states where there

must be an occurance of the second within a bounded amount
of time of an occurance of the first

Example If the unlock doors button is depressed then the driver side
door must be unlocked within 500ms

Ex Formula UnlockDoorsPressed -> <0,500>
DriverDoorUnlocked

Formula BMTL T → ♦[l,h]E
ASCII T -> <l,h> (E)

Variables

T Triggering event/state
E Triggered event/state
l Minimum time between occurance of T and occurance of E
h Maximum time between occurance of T and occurance of E

Description This template is used for the common basic pattern where
some state requires that another state be occurring in some
bounded amount of time. As an invariant, note that any time
t the guard condition T is true, then E must be true at some
point in the future interval [t+ l, t+ h]

Known Uses This pattern can be used any time an event requires a change
in state, such as user input (button/pedal presses, etc.) which
cause a system mode change (turning off a feature, beginning
some transition) or requires a bounded response. Care should
be taken that one of the more specific rules is not actually
desired

Limitations Temporal Note that T and E only need to be true for a single time step.
If a specific duration is required then a more specific rule
should be used

See Also 1.b Bounded Response with duration

64



CHAPTER 3. MONITORING ARCHITECTURE

bus) and a verification (of correctness/certifiability) perspective. But is this composition of

systems actually simple? Can we actually argue for independent certification of the monitor

and target system? The degree of system independence and the ease of monitor integration

is system dependent, but we can at least outline the safety-case argument which shows that

the monitor and system is safely (and relatively easily) composable.

In this section we present a safety case pattern which outlines the safety case for safe

composability of the monitor and a target system. Our safety case pattern will follow

the format of [46], which includes a GSN pattern and an accompanying text description.

Our pattern is based on the existing Hazard Avoidance Pattern with two main classes of

important hazards, bad monitor actions and bad monitor interactions, directly emphasized.

The example instantiation of this pattern for our embedded ARM monitor is helpful to

direct the types of hazards that should be explored. Besides acting as a starting point for a

monitor’s safety case, the pattern and example also highlight the important properties of a

monitor implementation that affect its independence from a target system.

The underlying motivation here is to provide a safety case which argues that adding

an external isolated monitor such as our design to an existing system is safe. The pattern

attempts this by arguing that the monitor does not add any additional hazards to the system.

This case hinges on the monitor’s isolation from the target system, which comes down

to two primary properties. First, connecting the monitor to the system should not add

any unmitigated hazards. External monitor integration hazards can occur due to shared

resources such as power or the connected network interface. As long as the hazards of

any sharing are known and addressed, the integration itself will be safe. Second, if the

monitor can perform any external actions (e.g., trigger a recovery) then these actions and

any possible side-effects must not be hazardous. This covers both directly monitor-caused

65



CHAPTER 3. MONITORING ARCHITECTURE

actions (e.g., monitor commands an unsafe behavior) and potential interactions between

monitor actions and the real system (e.g., monitor disengages a necessary system feature,

monitor messages flood network bus, etc.).

Note that this pattern does not incorporate or require that the monitor’s software is fault

free (for which we could incorporate the GSN fault free software pattern). By using passive

monitors or monitors which only can actuate safe recoveries, which are always safe, even

if not necessary, the correctness of the monitor is a reliability concern but does not affect

the safety of the target system. That is, we wish to show that no matter what the monitor

does, it cannot affect the safety of the system. In this way, the correctness of the monitor

(besides isolation-affecting configuration concerns) does not affect system safety. Since

there are integration hazards that can arise regardless of the correctness of the monitor, we

frame the argument that integration is safe on inherent limitations of the integration (which

may depend on the monitor configuration being correct).

Our safety case pattern is shown in Table 3.3 and the example instantiation is shown in

Figure 3.5 for better readability.

Intent The intent of this pattern is to provide a framework for arguing

that the hazards of connecting a bolt-on monitor to a target system

have been mitigated.

Also Known As

Motivation The motivation for this pattern is to communicate the key claims

that need to be put forth to demonstrate that an external monitor

does not add unmanaged hazards to a target system.

66



CHAPTER 3. MONITORING ARCHITECTURE

Structure

67



CHAPTER 3. MONITORING ARCHITECTURE

Participants

G1 This goal sets out the overall objective of the pattern – to be

able to claim that introducing an external monitor does not

add hazards to the system.

G2 Defines the goal that the integration of the monitor does not

introduce hazards by affecting the system behavior.

G3 Defines the goal that the monitor itself does not perform ac-

tions which introduce hazards to the system.

S1 The argument approach defined by this strategy is to show that

the monitor cannot introduce integration hazards due to in-

herent limits of the network interface.

C1 This context should be instantiated to refer to the system de-

sign documentation. Specifically this should be used to cre-

ate the context in which the new hazards could occur.

C2 This context describes the system network, most importantly

providing information about possible limitations or actions

that the monitor can do to affect the system over the net-

work.

68



CHAPTER 3. MONITORING ARCHITECTURE

Collaborations The system and interface descriptions set the overall context.

The Monitor Actions strongly affects the entire case. A com-

pletely passive monitor has no actions and so G3 becomes trivial.

G2 depends only on physical issues such as power and network

load.

Applicability This pattern is applicable in contexts where an external monitor is

being connected to a target system through a network interface.

This pattern is mainly for use with passive monitors or monitors

which utilize specific recovery subsystems rather than trying to

alter system behavior.

This pattern also assumes that connecting the monitor to the inter-

face causes a negligible affect on the target system (e.g., network

has spare load capacity).

Consequences After instantiating this pattern, a number of unresolved goals will

remain:

G2: Monitor does not affect system behavior

G3: Monitor actions do not introduce additional hazards

See Participants for a description of the forms of support argument

expected for these goals

69



CHAPTER 3. MONITORING ARCHITECTURE

Implementation Implementation of this pattern first requires instantiating the con-

texts C1 and C2. The possible hazards that goals G2 and G3 show

as mitigated are defined by the context of C1 and C2. Both goals

G2 and G3 may need more subgoal instantiations as hazards are

identified.

Examples See Figure 3.5

Known Uses Example CAN ARM monitor safety case, see Figure 3.5

Related Patterns Hazard Avoidance Pattern [46]

Table 3.3: Safety case pattern

Being based on the safety case pattern, the partially instantiated safety case in Figure

3.5 has the same top-level goal which breaks down into two strategies: all integration

hazards are addressed (S1) and all monitor action hazards are addressed (S2). Both these

strategies depend on the identification of these classes of hazards, which is represented by

the dependence on the contexts C1 and C2.

This partially instantiated case is based on a fully-passive version of our CAN monitor

which silently listens on the CAN network rather than sending a warning message as we do

in Section 6.3. On the integration side, we see three goals (G2,G3,G4) which correspond

to three identified integration hazards. These are that the network may not have physical

capacity for another node (the monitor), that shared power between the monitor and sys-

tem could cause a fault, and that the monitor could cause the network schedule to fail. We

partially expand G2, leaving all three of these goals requiring further work to complete

evaluation. One subgoal G6 is expanded under goal G2, which is that the monitor does

not send network messages. A node on the network that doesn’t send a message cannot

70



CHAPTER 3. MONITORING ARCHITECTURE

G1

External Monitor does not introduce

additional hazards into system

S2

All identified monitor action hazards

addressed

C2

Identified hazards for

monitor actions

S1

All identified integration hazards

addressed

C1

Identified integration

hazards

G2

Monitor cannot cause

network schedule to fail

G4

Shared power

hazards have been

addressed

G3

Network has capacity

for monitor

S3

Monitor CAN Controller is

configured in silent mode

Sn1

Code Review

A

A1

Monitor CAN Controller HW silent

mode is fault free

C3

CAN network is monitor's only

external connection

G5

Monitor does not perform

any external actions

C4

CAN Controller Silent mode prevents

messages from being sent

G6

Monitor does not

send network

messages

Figure 3.5: Partially instantiated safety case pattern

71



CHAPTER 3. MONITORING ARCHITECTURE

affect the network schedule directly by use (although it could cause load problems or other

physical faults which could affect the schedule). The strategy used to show that the mon-

itor cannot send messages on the network is to show that the monitor’s CAN controller is

configured in silent mode, in which the controller receives but can not send messages (from

context C4). Given the assumption (A1) that the CAN controller is correct we can use a

code review (Sn1) of the monitor to show this is true.

This same strategy is utilized by the other high level branch, which argues that all

identified monitor action hazards have been addressed. This can be shown by verifying

goal G5 which states that the monitor does not perform any external actions. Given the

context that the monitor is not connected externally to anything but the CAN network (C3),

this can also be shown by S3.

72



Chapter 4

Formal Monitoring

We present the runtime verification algorithm agmon which takes a trace and specification

and reports whether the trace satisfies or violates the specification. agmon is an iterative,

sampling-based algorithm so it can be used at runtime to continually check the specification

against the current trace.

4.1 Preliminaries

The specification logic is built upon a set of atomic propositions which represent system

properties (e.g., a proposition speedLT40mph stating that the vehicle speed is less than

40mph). These propositions are created from the observable system state by the semi-

formal interface. Let AP be the set of atomic propositions. A state s : AP → {>,⊥} is a

mapping from AP to the set of truth values. A trace σ = s0s1s2 . . . sn is a finite sequence

of states. We use σi to denote the state si at position i in σ. A time series τ = t0t1t2 . . . tn

is a finite series of timestamps t ∈ T. The pair σ, τ together represent a timed trace where

each timestamp τi is the time associated with the occurance of state si.

73



CHAPTER 4. FORMAL MONITORING

4.1.1 Time Model

Temporal logics have many different characteristic parameters which are discussed and

compared in [107]. Time models for real-time logics are based on two sets of parame-

ters. First is whether they are continuous or discrete, that is, whether there are infinitely

many or a finite number of underlying time points in a given interval. A time model is also

either interval-based or point-based. Interval-based models treat traces as a series of inter-

vals of continuous system state whereas point-based models treat traces as a sequence of

system states (or transitions). Dense, interval-based time domains are thought of as more

intuitive/natural [68] but they have more computationally difficult decision problems.

We utilize a discrete pointwise semantics with the time domain T ≡ N for simplicity

(though other discrete domains could be used instead). In general, pointwise semantics

are best used when modeling the system as a series of events [108], but there is a risk that

point-based semantics can be unintuitive in contrast to interval-based semantics [68]. By

using our point-based semantics within a periodic sampling architecture we can avoid these

potential intuition mismatches while still benefiting from a conceptually simpler pointwise

algorithm. This requires forcing all temporal bounds to be multiples of the monitoring

period so that all checks are performed on the exact sample points and not between samples.

This can be easily ensured by using step-bounds in temporal operators instead of absolute

time bounds.

Our trace model is based on a time-triggered, sampling-based monitor strategy where

the system state is periodically sampled and then checked. Since the monitor state can

only change at these sample points, we can treat the state changes as instantaneous which

allows us to completely specify our interval traces with single points as discussed in [109].

This timed trace model has a clean mapping to two common actual system trace types:

74



CHAPTER 4. FORMAL MONITORING

state snapshots and update message logs. State snapshots are a series of (usually periodic)

timestamped system states often coming from instrumented or simulated systems. Value

update messages are aperiodic system property “updates” such as a network log where each

message carries an update to a single or small collection of property values. System traces

that are a series of state snapshots naturally fit into our execution trace. In this case the

execution trace is the series of timestamped state snapshots. A series of update messages

actually fits the point-based semantics more directly. We can treat each incoming message

as a transition which updates the system state. If the system is being sampled at a rate

slower than the incoming messages, then multiple update messages can be functionally

combined into a single state transition.

4.1.2 Specifications

A specification is a set of system invariants written in our bounded MTL variant BMTL

which is a past- and future-time MTL with only finite intervals. We refer to the invariants

as the specification rules or policies. The specification rules are checked at every monitored

step, so each rule has an implicit unbounded always over it (similar to safety rules in [110]).

The syntax of BMTL is shown below:

ψ ::= p | ¬ψ |ψ1 ∨ ψ2 |ψ1U[l,h]ψ2 |ψ1S[l,h]ψ2

Policy formulas are denoted by ψ. Policy formulas can include two bounded temporal

operators: the past-time operator since (S) and the future-time operator until (U). Both

temporal operators include a time bound interval [l, h] where l, h ∈ T and 0 ≤ l ≤ h.

These intervals bound the time in which the triggering subformula ψ2 is evaluated. An

75



CHAPTER 4. FORMAL MONITORING

until formula αU[l,h] β states that α must be true from the current step i until (but not

including) the time step k where τk ∈ [τi + l, τi + h] and β is true. Since formulas are

similar but in the past: αS[l,h] β states that α must have been true since (but not including)

timestep k where τk ∈ [τi − h, τi − l] and β was true (where i is the current time step).

Specification policies are interpreted over a timed system trace σ, τ . We write σ, τ, j �

ϕ to represent that the policy ϕ is satisfied by the timed trace (σ, τ) at trace position j. We

use a common definition of � defined inductively as follows:

σ, τ, j � >
σ, τ, j � p if and only if σj(p) = >
σ, τ, j � ¬ψ if and only if σ, τ, j,2 ψ
σ, τ, j � ψ1 ∨ ψ2 if and only if σ, τ, j � ψ1 or σ, τ, j � ψ2

σ, τ, j � ψ1U[l,h]ψ2 if and only if ∃k : (l ≤ τk − τj ≤ h), σ, τ, k � ψ2

and ∀k′ : (τj ≤ τk′ < τk), σ, τ, k
′ � ψ1

σ, τ, j � ψ1S[l,h]ψ2 if and only if ∃k : (l ≤ τj − τk ≤ h), σ, τ, k � ψ2

and ∀k′ : (τk < τk′ ≤ τj), σ, τ, k
′ � ψ1

We use the usual notational conveniences for the other common logic operators: even-

tually (♦[l,h]ψ ≡ >U[l,h]ψ), always (�[l,h]ψ ≡ ¬♦[l,h]¬ψ), past eventually (�[l,h]ψ ≡

>S[l,h]ψ), past always (�[l,h] ≡ ¬�[l,h]¬ψ) and the boolean connectives and and implies

(∧,→).

4.2 Practical Issues

An important aspect of the presented monitoring algorithm is the actual use of the algorithm

to perform runtime verification of safety-critical systems. We discuss three primary aspects:

76



CHAPTER 4. FORMAL MONITORING

(1) Correctness, (2) Promptness, and (3) Trace Indepedence.

Obviously, we want the monitoring algorithm to correctly monitor the target system.

We want to identify all violations and not any false positives. To do this we need to prove

that the monitor correctly implements the logic semantics, which we do in Section 4.4.

One important thing to note is that since we use a two-valued logic, we must ensure that

aggressive checking of incomplete traces does not return premature monitoring decisions

on inconclusive traces which could lead to false positives or worse, undetected violations.

Because we use a two-valued logic there are traces which are neither good nor bad prefixes

(i.e., the continuation of the trace could lead to either truth value [111]) but do have a truth

value based on our semantics [112]. In other words, formulas in our logic always have a

true or false interpretation even if that interpretation may change given more (future) in-

formation. For example, given the formula It will rain today or tomorrow (♦[0,1]rain), if it

is currently not raining we cannot conclusively answer for all possible futures. According

to the semantics of our logic, this formula is false (currently) if we have not seen rain. If

it does rain tomorrow, then the premature false interpretation will have been wrong. One

way to solve this dilemna is to use a three-valued logic which also includes a value repre-

senting unknown [113]. Instead of using a three-valued semantics, we have designed our

monitoring algorithm to distinguish between conclusive and inconclusive traces. The al-

gorithm delays checking formulas for which the current trace is inconclusive. Essentially,

rather than report a potentially incorrect answer, the algorithm puts the question aside until

it can conclusively answer. Our formal definitions of monitor correctness take this into ac-

count – we require that all answers the monitor provides are correct but we do not require

the monitor to provide immediate answers for inconclusive traces. We do require imme-

diate answers for conclusive traces, which is accounted for by the algorithm’s promptness

77



CHAPTER 4. FORMAL MONITORING

property.

To account for inconclusive traces, we utilize the notion of promptness which states that

the monitor will have checked a formulas as soon as the trace is guaranteed to be conclu-

sive for that formula. Every formula has a static delay (provided by ∆w(φ) which defines

how long after the current time t the monitor must wait before the trace is guaranteed to be

conclusive for φ at t. Because we use a bounded logic, this delay is guaranteed to be finite

and we thus know how long we must wait to answer any given formula. The aggressive

monitoring algorithm does attempt to check formulas early (i.e., before the trace is guaran-

teed to be conclusive) but if the formula can’t be conclusively answered the monitor delays

answering.

An important property for live, resource constrained monitoring is that the monitor be

relatively independent of the system trace length. We do not want to store the entire system

trace since it is constantly growing which would make storing the trace for long running

systems difficult or impossible. Our monitoring algorithm is an iterative algorithm that

stores the necessary history state (for checking temporal formulas) in structures but does

not store the entire trace. This algorithm is essentially trace length independent, performing

the same work at every iteration regardless of where in the trace it is currently checking.

The algorithm as presented below does keep a constantly growing history structure and the

entire timestamp sequence, but this can be easily pruned to a bounded amount of history

dependent on the formula’s temporal duration. We only need to keep enough history to en-

sure that we can conclusively check the specification at every monitor step. The amount of

history required to check any given step is defined by the formula’s storage delay (∆S(φ))

so we can remove entries older than this delay. Instead of keeping the entire timestamp

sequence τ we can instead store individual τk’s for each stored history step k in the history

78



CHAPTER 4. FORMAL MONITORING

structures which bounds the number of stored timestamps to the number of history entries.

These stored timestamps would then be pruned along with the history structure entries.

4.3 Monitoring Algorithms

The proposed monitoring algorithm is an aggressive, iterative algorithm that performs for-

mula reduction based on formula rewriting utilizing history structures to save any neces-

sary trace state. The formulas are eventually reduced to truth values which show whether a

given formula is satisfied or violated the given trace. The algorithm is aggressive in that it

attempts to check future-time temporal formulas as soon as possible rather than waiting un-

til an answer is guaranteed to be available. This aggressiveness is achieved by performing

short-circuiting of boolean operators and checking if temporal formulas can conclusively

be answered at all steps. This is in contrast to many existing runtime monitoring algorithms

which either are restricted to past time logics which can be checked with only the current

and past state (i.e., they are never inconclusive) [65, 114] or those that only check proper-

ties after their delay which guarantees they are conclusive [53, 110, 115]. The algorithm is

iterative in that the history structure must be updated at each timestep in the trace in order.

This allows us to only store the necessary state history (in history structures) rather than

keep the entire system trace. As noted, these history structures can be pared based on the

policy delay to bound their maximum size.

4.3.1 Definitions

Residues A residue rjφ = 〈j, ψ〉φ is a tagged pair where j ∈ N is a position in the trace

and ψ, φ are well-formed formulas. The monitoring algorithm is built on these residual for-

79



CHAPTER 4. FORMAL MONITORING

mulas which are used to represent the currently unreducible fragments (due to incomplete

information) of a given parent formula. The residual formula ψ is a reduced equivalent

form of the formula φ at time j. A residue is considered correct if ψ and φ have equivalent

truth values at j. Residues are used to hold the history information of a formula at a specific

time for checking temporal formula. The reduce function performs formula rewriting by

reducing a given residue based on the current state and history information.

Formula Delays There are two important delay functions that are used for this monitor.

These delays are similar to the sampling bound operator #(φ) from [115] where traces

generated by a system simulation were monitored. The sampling bound #(φ) describes

how much farther the simulation should be run to generate a trace long enough to guarantee

that φ can be conclusively checked. This bound is the same as the amount of wait time

needed to obtain the necessary state from a running system (rather than a simulation).

Our first delay is the wait delay ∆w(φ), which defines an upper bound on the maximum

time the monitor needs to wait before φ can be evaluated. The second delay function

∆S(φ) defines the storage requirements (i.e., how far back in time history needs to be kept)

for the history structure Sφ. This is similar to the wait delay of the formula φ but combines

the future and past delays additively since we must store the past history to evaluate past-

time formulas. Residues rj where τi − τj > ∆S(ϕ) in any history structure Siψ where

ψ ∈ tempsub(ϕ) can be pruned away to save storage space as they are no longer needed

by the algorithm.

80



CHAPTER 4. FORMAL MONITORING

∆w(φ) =



0 iff ψ ≡ >
0 iff ψ ≡ ⊥
0 iff ψ ≡ p

∆w(ψ) iff φ ≡ ¬ψ
max(∆w(α),∆w(β)) iff φ ≡ α ∨ β

h+max(∆w(α),∆w(β)) iff φ ≡ αU[l,h] β
max(∆w(α),∆w(β))− l iff φ ≡ αS[l,h] β

∆S(φ) =



0 iff ψ ≡ >
0 iff ψ ≡ ⊥
0 iff ψ ≡ p

∆(ψ) iff φ ≡ ¬ψ
max(∆(α),∆(β)) iff φ ≡ α ∨ β

h+max(∆(α),∆(β)) iff φ ≡ αU[l,h] β
h+max(∆(α),∆(β)) iff φ ≡ αS[l,h] β

Simplify The simplify(φ) function is used to rewrite a given formula in a syntactically

reduced form. For the restricted logic, simplify only rewrites two types of formulas. It

removes negations from formulas when the truth value is known and reduces disjunctive

formulas based on any known truth values. Otherwise simplify(φ) returns the formula

unchanged.

81



CHAPTER 4. FORMAL MONITORING

simplify(φ) =



> if φ ≡ ¬⊥
⊥ if φ ≡ ¬>
> if φ ≡ α ∨ > or φ ≡ > ∨ β
α if φ ≡ α ∨ ⊥
β if φ ≡ ⊥ ∨ β
φ otherwise

Subformulas of Temporal Formulas The only trace history that is necessary for moni-

toring in this algorithm is the history of the direct child formulas of temporal subformula.

That is, for αU[l,h] β we need to save the history of α and β (and if either of those are

also a temporal formula then we need their subformula’s history as well). The function

tempSub(ψ) returns a list of all the subformula of ψ that need their history to be saved to

monitor ψ.

tempSub(ψ) =



∅ if ψ ≡ p

{α} ∪ {β} ∪ tempSub(α)

∪tempSub(β) if ψ ≡ αU[l,h]β or ψ ≡ αS[l,h]β
tempSub(α) ∪ tempSub(β) if ψ ≡ α ∨ β

tempSub(α) if ψ ≡ ¬α

Formula Length The length |φ| of a formula φ is the number of subformulas in a formula

and is defined as follows:

82



CHAPTER 4. FORMAL MONITORING

|φ| =



1 if φ ≡ p

1 + |φ′| if φ ≡ ¬φ′

1 + |α|+ |β| if φ ≡ α ∨ β
1 + |α|+ |β| if φ ≡ αU[l,h] β
1 + |α|+ |β| if φ ≡ αS[l,h] β

Free Propositions A free proposition in a formula is a proposition which is not a subfor-

mula of a temporal operator. The procedue freep(φ) provides a list of free propositions in

φ. This will be used to define reducable residues which is necessary to ensure that residues

are initialized with their original state (since that state will not be saved).

freep(φ) =



p if φ ≡ p

freep(α) if φ ≡ ¬α
freep(α) ∪ freep(β) if φ ≡ α ∨ β

∅ if φ ≡ > or φ ≡ ⊥
or φ ≡ αU[l,h]β
or φ ≡ αS[l,h]β

History Structures A history structure Siφ = {r0φ, r1φ, . . . riφ} is a list of residues which is

used to store the history of a formula. We use Siφ to represent the set of history structures

for all temporal subformula of φ, i.e., Siφ =
⋃
ψ∈tempSub(φ) S

i
ψ. So Siφ holds all the history

structures necessary to check the formula φ.

History structures summarize the relevant portions of the past elements of a trace that

are (possibly) required to evaluate the truth value of the property in question. More pre-

cisely, the history structure Siφ for a given formula ϕ stores the truth values of the formula

φ at prior positions (including the current position) of the trace. This history is used as the

83



CHAPTER 4. FORMAL MONITORING

values of φ when checking any parent temporal formulas of φ.

History structures need to be updated when new state (i.e., trace entries) are encoun-

tered. This requires both reducing all the structure’s residues with the new state, which

updates them based on the new state, as well as adding a residue (i.e., a history entry) for

the current encountered state. The incrS(Si−1ψ ,Siψ, σi, τ, i, ψ) procedure performs this up-

date for structure Si−1ψ , reducing all of the structure’s residues as well as adding a reduced

residue for the current state.

The increment function takes the following parameters: The history structure from the

previous step we wish to increment Si−1φ , the set of necessary subformula history structures

for solving ψ Siψ (which may be empty), the current state σi, the timestamp sequence τ , the

current step i, and the formula ψ for which the history structure is currently being updated.

The function returns the updated history structure Siψ.

incrS(Si−1ψ ,Siψ, σi, τ, i, ψ) =

 ⋃
r∈Si−1

ψ

reduce(σi, τ,Siψ, r)

 ∪ reduce(σi, τ,Siψ, 〈i, ψ〉)

Monitor Algorithm The high level aggressive monitoring algorithm is shown in Figure

4.1. First, the history structure set Sϕ = {Sφ1 , Sφ2 , . . . , Sφn} is built by identifying the

required history structures Sφi needed to check the policy ϕ using tempSub(ϕ). The

history of these subformula and the current state at any given step are the only history

required by the algorithm. Once the structure Sϕ is built, the monitoring loop begins.

First, In each step, all the identified history structures are incremented with the current

step of the trace. This is done in increasing formula size since larger formula can depend

on the history of smaller formula which may be their subformula (i.e., this way when

84



CHAPTER 4. FORMAL MONITORING

1: For all recognized formulas ψ ∈ tempSub(ϕ): S−1ψ ← ∅
2: S−1ϕ ← ∅
3: i← 0
4: loop
5: Obtain next trace step (σi, τi) and extend τ with τi
6: for every ψ ∈ tempSub(ϕ) in increasing size do
7: Siψ ← incrS(Si−1ψ ,Siψ, σi, τ, i, ψ)

8: Siϕ ← incrS(Si−1ϕ ,Siϕ, σi, τ, i, ϕ)
9: for all 〈j,⊥〉 ∈ Siϕ do

10: Report violation on σ at position j
11: i← i+ 1

Figure 4.1: Aggressive Monitoring Algorithm

incrementing ψ every structure in Sψ has already been updated since they are all structures

of smaller formula). Each structure is updated using incrS(Si−1ψ ,Siψ, σi, τ, i, ψ) which

reduces all residues in the structure and adds a reduced residue for the current trace step.

Then, the same procedure is performed for the top level policy that is being monitored – the

policy’s structure is updated with incrS(Si−1ϕ ,Siϕ, σ, τ, i, ϕ). Once updated, this structure

is checked for policy violations (i.e., false residues) before the algorithm continues to the

next trace step. Any false residue in this structure represents a timestep when the formula

is false, so false residues in the policy’s structure show violations of the policy.

It is important to note that due to the recursive nature of the monitor algorithm, the

top-level policy is treated exactly as any temporal subformula would be (which follows

from the implicit always on all policies) except that violations of the top level policy are

reported. We separate incrementing the subformulas from the specification policies in the

algorithm description for clarity only. We could instead define tempsub(ϕ) to include ϕ

which would include the policy (and some other extraneous formula structures) in the loop.

85



CHAPTER 4. FORMAL MONITORING

Reduce The reduce function is the backbone of the monitor algorithm. It takes a residue

and the current trace state and returns the residue in a reduced form.

The reduce function takes the following parameters: the current state σi, the times-

tamp sequence τ , the current step i, the set of history structures Siφ, and a residue 〈j, ψ〉φ.

Reduce returns a reduced residue 〈j, ψ′〉φ. Note that for φ = reduce(αU[l,h]β) (and also

since) we know that Siφ at least contains Siα and Siβ (and possibly other structures if there

are temporal subformulaof α or β).

Residues which have truth values are already fully reduced, so reduce returns these

residues unchanged:

reduce(σi, τ, i,Si>, 〈j,>〉) = 〈j,>〉
reduce(σi, τ, i,Si⊥, 〈j,⊥〉) = 〈j,⊥〉

For residues whose formula is a proposition, reduce fills in this proposition with its

current truth value:

reduce(σi, τ, i,Sip, 〈j, p〉) = 〈j, σi(p)〉

For residues whose formula is a negated subformula ¬ψ, reduce is called on the sub-

formula ψ and the negation is added back onto the resulting reduced subformula. This

newly reduced and negated subformula is passed through simplify to evaluate the nega-

tion and then returned:

86



CHAPTER 4. FORMAL MONITORING

reduce(σi, τ, i,Si¬ψ, 〈j,¬ψ〉) =


Let α← reduce(σi, τ, i,Siψ, 〈j, ψ〉)

α′ ← simplify(¬α)

return 〈j, α′〉

For residues whose formula is a disjunction of subformula α ∨ β, reduce is called

on both subformula α and β. The resulting reduced subformula are recombined into a

disjunction α′ ∨ β′ which is passed through simplify to evaluate the disjunction and then

returned:

reduce(σi, τ, i,Siα∨β, 〈j, α ∨ β〉) =


Let α′ ← reduce(σi, τ, i,Siα, 〈j, α〉)

β′ ← reduce(σi, τ, i,Siβ, 〈j, β〉)
φ′ ← simplify(α′ ∨ β′)
return 〈j, φ′〉

For residues whose formula is an until formula αU[l,h]β, the history structures Siα and

Siβ are used to reduce the formula. If the formula can be evaluated conclusively then the

truth value is returned, otherwise the residue is returned unchanged. We utilize five marker

variables to evaluate the formula over the current trace:

• aa is the earliest in-bounds ([τj, τj + h]) step at which α is false. This represents the

latest time step at which β can be true for αU[l,h]β to be true.

• au is the latest in-bounds ([τj, τj +h]) step at which α has been true since the residue

time step. This represents the latest time step that the until formula would be conclu-

sively true if β was true at that step.

87



CHAPTER 4. FORMAL MONITORING

• ba is the earliest in-bounds ([τj + l, τj + h]) step at which β is not conclusively false.

This is used to check whether the formula is still satisfiable or not.

• bt is the earliest in-bounds ([τj + l, τj + h]) step at which β is conclusively true.

• bn is true if the current step is later than the wait delay ∆w(ψ) of the residue and all

residues in bounds are false (that is, β is conclusively false at all steps in bounds).

Using these marker variables, we can evaluate the semantics of until. If au ≥ bt (and

bt exists) then we know that α is true from the residue step j until the step bt where β is

true, which satisfies the semantics of until (so we return >). Otherwise, if aa < ba then α

is not true until the first possible step that β could be true (since ba is the earliest non-false

step). αU[l,h]β cannot be true in this case, so we return ⊥. Similarly, if bn is true, then there

is no β in bounds and the formula is false. If none of these cases exist then the trace is

inconclusive, so the residue is returned unchanged.

reduce(σi, τ, i,SiαU[l,h] β, 〈j, αU[l,h] β〉) =



let aa ← min({k|τj ≤ τk ≤ τj + h ∧ 〈k,⊥〉 ∈ Siα}, i)
au ← max({k|τk ∈ [τj, τj + h]

∧ ∀k′ ∈ [j, k − 1].(〈k′, α′〉 ∈ Siα ∧ α′ ≡ >}, i)
ba ← min({k|τj + l ≤ τk ≤ τj + h ∧ 〈k, β′〉 ∈ Siβ ∧ β′ 6= ⊥})
bt ← min({k|τj + l ≤ τk ≤ τj + h ∧ 〈k,>〉 ∈ Siβ})
bn ← > if (τi − τj ≥ ∆w(ψ))

∧ ∀k.(τj + l ≤ τk ≤ τj + h).〈k,⊥〉 ∈ Siβ
if bt 6= ∅ ∧ au ≥ bt

return〈j,>〉
else if (ba 6= ∅ ∧ aa < ba) or bn = >
return〈j,⊥〉

else
return〈j, αU[l,h] β〉

88



CHAPTER 4. FORMAL MONITORING

For residues whose formula is an since formula αS[l,h]β, the history structures Siα and

Siβ are used to reduce the formula. If the formula can be evaluated conclusively then the

truth value is returned, otherwise the residue is returned unchanged. We utilize five marker

variables to evaluate the formula over the current trace:

• aa is the latest in-bounds ([τj − h, τj]) step at which α is false. This represents the

earliest time step at which β can be true for αS[l,h]β to be true.

• as is the earliest in-bounds ([τj − h, τj]) step at which α has been true since then (up

until the residue step j). This represents the earliest time step that the since formula

would be conclusively true if β was true at that step.

• ba is the latest in-bounds ([τj − h, τj − l]) step at which β is not conclusively false.

This is used to check whether the formula is still satisfiable or not.

• bt is the earliest in-bounds ([τj − l, τj − h]) step at which β is conclusively true.

• bn is true if the current step is later than the wait delay ∆w(ψ) of the residue and all

residues in bounds are false (that is, β is conclusively false at all steps in bounds).

89



CHAPTER 4. FORMAL MONITORING

reduce(σi, τ, i,SiαS[l,h] β, 〈j, αS[l,h] β〉) =



let aa ← max({k|τj − h ≤ τk ≤ τj ∧ 〈k,⊥〉 ∈ Siα}, i)
as ← min({k|τk ∈ [τj − h, τj]

∧ ∀k′ ∈ [k + 1, j].(〈k, α′〉 ∈ Siα ∧ α′ ≡ >}, i)
ba ← max({k|τj − h ≤ τk ≤ τj − l ∧ 〈k, β′〉 ∈ Siβ ∧ β′ 6= ⊥})
bt ← max({k|τj − h ≤ τk ≤ τj − l ∧ 〈k,>〉 ∈ Siβ})
bn ← > if (τi − τj ≥ ∆w(ψ))

∧ ∀k.(τj − h ≤ τk ≤ τj − l).〈k,⊥〉 ∈ Siβ
if bt 6= ∅ ∧ as ≤ bt

return〈j,>〉
else if (ba 6= ∅ ∧ aa > ba) or bn = >
return〈j,⊥〉

else
return〈j, αS[l,h] β〉

4.4 Correctness of the algorithms

We will show the correctness of our top-level algorithm agmon through mutual induction.

We start with some definitions.

4.4.1 Definitions

A correct residue is one whose residual formula has an equivalent truth value with the

parent formula at the residue’s step. In other words, for a residue 〈j, φ〉ψ, the truth of φ

must be equivalent to the truth of ψ at step j.

Definition 1 (Residue correctness). The residue rjψ = 〈j, φ〉ψ is correct if for all traces σ,

timestamp series τ , timestep j, and formulas ψ, φ that σ, τ, j � ψ iff σ, τ, j � φ.

A prompt residue is one which is fully reduced to a truth value if the formula is guar-

90



CHAPTER 4. FORMAL MONITORING

anteed to be reducable. That is, if at least the parent formula’s delay has passed since the

residue’s time step, (τj + ∆w(φ) ≤ τi) then the residue value must be a truth value.

Definition 2 (Residue promptness). The residue r = 〈j, φ〉ψ is prompt at i iff for all traces

σ, timestamp series τ , timesteps j, i where j ≤ i, and formulas ψ, φ that τi − τj ≥ ∆(ψ)

implies φ ∈ {>,⊥}

A reducible residue is one which has already been initialized by its starting state (re-

placing all free propositions with truth values) or which is a residue of the current state

(which can be initialized). If a residue is not reducible at i then there is state unavailable at

step i which is necessary to reduce the residue.

Definition 3 (Reducible residues). A residue 〈j, ψ〉φ is reducible at i if j = i or there are

no free propositions in ψ (i.e., freep(ψ) = ∅).

A history structure is correct if all the residues it contains are correct.

Definition 4 (Correctness of history structures). A history structure Siψ is correct iff for all

timesteps i, formulas ψ, traces σ, and timestamp series τ : ∀k ∈ [0, i], rk ∈ Siψ and rk is

correct.

A history structure is prompt if all the residues is contains are prompt.

Definition 5 (Promptness of history structures). A history structure Siψ is prompt if for all

timesteps i, formulas ψ, traes σ, and timestamp series τ : ∀rk ∈ Siψ, rk is prompt at i.

A history structure is reducible if all the residues is contains are reducible.

Definition 6 (Reducibility of history structures). A history structure Siψ is reducible if for

all timesteps i, formulas ψ, traes σ, and timestamp series τ : ∀rk ∈ Siψ, rk is reducible at i.

With these properties defined, we can prove the correctness of the top-level algorithm

agmon. There are two separate properties we want for agmon to be correct. First, we

want it to provide correct answers, i.e., it should only say a policy is violated if it is conclu-

91



CHAPTER 4. FORMAL MONITORING

sively violated and only report a policy is satisfied if it is conclusively satisfied. This means

that if agmon reports a violation of policy φ at step j, then σ, τ, j 2 φ. We also want to

guarantee that we will get answers when they are available, so we want Prompt answers:

agmon should report violations/satisfaction for any timesteps older than the policy delay.

Thus, if σ, τ, j 2 φ then agmon must report the violation by time τj + ∆w(φ).

Theorem 1 (Correctness and Promptness of agmon). For all i ∈ N, all formula ϕ, all time

stamp sequences τ and all traces σ it is the case that (1) if 〈j,⊥〉 ∈ Siϕ then σ, τ, j 2 ϕ and

if 〈j,>〉 ∈ Siϕ then σ, τ, j � ϕ (Correctness) and (2) if τi − τj ≥ ∆w(ϕ) then if σ, τ, j 2 ϕ

then 〈j,⊥〉 ∈ Siϕ and if σ, τ, j � ϕ then 〈j,>〉 ∈ Siϕ (Promptness) .

Proof. By mutual induction over i and ϕ.

To show the correctness and promptness of agmon we just need Siϕ to be correct and

prompt.

We can show that each history structure Siψ (where ψ ∈ {ϕ, tempsub(ϕ)}) is correct,

prompt, and reducible at every step by showing Siφ and Si−1φ to be correct, prompt, and

reducible at every step.

First, we show that Siφ is correct, prompt, and reducible by construction due to the

order the history structures are incremented. For all φ ∈ tempSub(ϕ) in increasing order,

Siφ ← incrS(Si−1φ ,Siφ, σ, τ, i). Because for all Siψ ∈ Siφ, |ψ| < |φ| (by Lemma 2) and the

iteration over ψ is done in increasing size, we know that Siφ will be correct, prompt, and

reducible for each subformula because all the history structures in Siφ are smaller than φ

and thus were already incremented (and correct/prompt/reducible due to incrS by Lemma

3).

Next, we show that Si−1φ is correct, prompt, and reducible at every step. At step

i = 0, for all φ ∈ tempSub(ϕ), S−1φ is trivially correct, prompt, and reducible be-

92



CHAPTER 4. FORMAL MONITORING

cause S−1 is empty. Together this means that Siφ is reducible, prompt and correct for

all φ ∈ tempSub(ϕ) at step i = 0. With all Siφ prompt, correct, and reducible for

φ ∈ tempSub(ϕ), Siϕ is also prompt, correct, and reducible. Along with S−1ϕ being triv-

ially reducible, prompt, and correct and incrS() being correct, S0
ϕ is also prompt, correct,

and reducible.

This proof step follows for i > 0. Si−1ψ is correct and prompt from the previous step.

Since we increment the structures in order and incrS() is correct, Siψ is also prompt and

correct for every φ ∈ tempSub(ϕ). This means that Siϕ is correct and prompt and from

this it follows that Siϕ is correct and prompt.

4.4.2 Proof of agmon Correctness

In this section we present some assisting lemmas and definitions used to show the correct-

ness of agmon.

First, we note that simplify(ψ) preserves the correctness of ψ. In other words, simplify

does not change the truth evaluation of ψ at any step. This is clearly true since only simple

syntactic and semantic reductions are used.

Lemma 1 (Correctness of simplify(ψ)). For all positions i, formulas ψ, traces σ, and

time sequences τ it is the case that if ψ′ ← simplify(ψ) then σ, τ, i � ψ ↔ σ, τ, i � ψ′

Proof. Trivial by the semantics of simplify.

We also note that subformula are always smaller than their parent formula, which is

clear since the size of a formula includes the size of all of its subformula.

Lemma 2 (Subformula sizes). For all formulas φ, ψ, if φ ∈ tempSub(ψ) then |ψ| > |φ|.

93



CHAPTER 4. FORMAL MONITORING

Proof. If φ ∈ tempSub(ψ) then φ is a subformula of ψ. Subformula are inherently

smaller than their parent formulas since the size of the parent |ψ| is at least the size of

φ (it is contained in ψ) plus at least the one node which makes it a parent formula, thus

|ψ| > |φ|.

The incrS procedure is used to update history structures given a new input state. Here

we show that incrS creates correct, prompt and reducable structures if its input is correct,

prompt, and reducable. This relies on the fact that incrS only adds a residue for the current

state and reduces this and all the existing residues in the structure. Since reduce preserves

correctness, promptness, and reducability, incrS does as well.

Lemma 3 (Correctness of incrS). For all traces σ, timestamp series τ , timesteps i, formu-

las ψ, correct, prompt, and reducible structures Si−1ψ , and correct, prompt, and reducible

structure sets Siψ, if Siψ ← incrS((Si−1ψ , Siψ, σ, τ, i) then Siψ is correct, prompt, and re-

ducible.

Proof. The correctness/promptness/reducibility of incrS follows from the correct-

ness/promptness/reducibility of reduce. For Siψ to be correct, prompt, and reducible it

must have a residue entry for all k ∈ [0, i] and every entry must be correct, prompt, and

reducible. From the definition of incrS we can see that all entries in [0, i] exist in Siψ be-

cause Si−1ψ is correct (and thus has a residue entry for all k ∈ [0, i− 1]) and the 〈i, ψ〉 entry

is added to this. All the newly reduced residues from Si−1 are correct/prompt/reducible be-

cause reduce preserves those properties and they were already correct/prompt/reducible

(since Si−1ψ is correct/prompt/reducible). The new reduced residue 〈i, ψ〉ψ is also cor-

rect/prompt/reducible due to the correctness of reduce following that Siψ is correct and

94



CHAPTER 4. FORMAL MONITORING

prompt and i = j (so the residue is reducible).

All of agmon relies on reduce preserving correctness, promptness, and reducibility.

We show this in three parts. First, we show that reduce preserves correctness. This means

that all transforming reductions that reduce performs must preserve the residue’s eventual

truth value. Second, we show that reduce creates prompt residues. If enough time has

elapsed since the residue’s timestep, reduce is guaranteed to fully reduce the residual

formula to a truth value. Lastly, we show that reduce preserves reducibility. Once a

residue has had all of it’s free propositions removed it is always reducible, so all that is

necessary is that when reduce is called on a residue 〈j, φ〉ψ with i = j that it removes all

free propositions.

Lemma 4 (Correctness of reduce(σ, τ, i, Siψ, 〈j, ψ′〉ψ)). For all timesteps i, j ≤ i, formula

ψ, traces σ, timestamp series τ , formulas φ, where 〈j, φ〉ψ is reducible at i and correct,

reducible, and prompt history structure sets Siψ, if 〈j′, φ′〉ψ ← reduce(σ, τ, i, Siψ, 〈j, φ〉ψ)

then 〈j, φ′〉ψ is correct.

Proof by induction over φ.

Case φ ≡ p

There are two cases: σ, τ, j � p→ σ, τ, j � φ and σ, τ, j � φ→ σ, τ, j � p.

Subcase 1 If σj(p) = ⊥ then this is trivially true, so we look at the case σj(p) = >.

Since the residue is reducible and there is a free proposition (p) we know that i = j, and

from the definition of reduce we can see that φ will reduce to σi(p) = >. So, σ, τ, j � > →

σ, τ, j � >.

95



CHAPTER 4. FORMAL MONITORING

Subcase 2 Since the residue is reducible and there is a free proposition p, we know that

i = j. There are two possible subcases here, either σj(p) = ⊥ or σj(p) = >. If σj(p) = ⊥

then the implication is trivially true. If σj(p) = > then we have σ, τ, j � > → σ, τ, j � p

which is true from the semantics of p (since σj(p) = >).

Case φ ≡ ¬ψ1

There are two cases: σ, τ, j � ¬ψ1 → σ, τ, j � φ and σ, τ, j � φ→ σ, τ, j � ¬ψ1.

Subcase 1 From the semantics of not we know that if σ, τ, j � ¬ψ1 then σ, τ, j 2 ψ1.

Since reduce is correct we can see from the definition of reduce that ψ′1 ← reduce(〈j, ψ1〉)

will be 〈j,⊥〉 and then simplify(¬ψ′1) will return >.

Subcase 2 If σ, τ, j � φ then from the definition of reduce we see that φ← simplify(¬φ′).

Since simplify is correct, this means that σ, τ, j 2 φ′. Since reduce is correct, from line

one we see that σ, τ, j � φ′ ↔ σ, τ, j � ψ1. So σ, τ, j 2 φ′ → σ, τ, j 2 ψ1 and thus

σ, τ, j � ¬ψ1.

Case φ ≡ ψ1 ∨ ψ2

There are two cases: σ, τ, j � ψ1 ∨ ψ2 → σ, τ, j � φ and σ, τ, j � φ→ σ, τ, j � ψ1 ∨ ψ2.

Subcase 1 From the semantics of or we know that σ, τ, j � ψ1 or σ, τ, j � ψ2. Because

reduce is correct we know that either α′ or β′ will be 〈j,>〉. Since simplify conserves

correctness, this means φ′ will be 〈j,>〉.

Subcase 2 In this case we know that φ′ = 〈j,>〉 and backtracking through simplify we

see that either α′ or β′ must be >. Since reduce is correct, this means that either σ, τ, j � α

or σ, τ, j � β which by the semantics of or gives us σ, τ, j � ψ1 ∨ ψ2

96



CHAPTER 4. FORMAL MONITORING

Case φ ≡ αU[l,h]β

There are two cases, 1) σ, τ, j � φ′ → σ, τ, j � αU[l,h]β and 2) σ, τ, j � αU[l,h]β → σ, τ, j �

φ′.

Subcase [σ, τ, j � αU[l,h]β → σ, τ, j � φ] By the semantics of until, we know that

∃k.(l ≤ τk − τj ≤ h).(σ, τ, k � β ∧ ∀k′ ∈ [j, k − 1].(σ, τ, k′ � α)). Since Siβ is correct we

have 〈k,>〉 ∈ Siβ and since Siα is correct ∀k′ ∈ [j, k − 1].〈k′,>〉 ∈ Siα.

Given these values in the history structs, we can see from the definition of reduce that

bt ≤ k and au ≥ k (if there is a k then ∀k′ ∈ [j, k − 1].〈k′,>〉 ∈ Siα and au ≥ k otherwise

there is no such k and au = i ≥ k by the completeness of Siβ). Combining these, we find

that au ≥ bt and so φ′ = >.

Subcase [σ, τ, j � φ′ → σ, τ, j � αU[l,h]β] There are three possible subcases here:

φ′ = >, φ′ = ⊥, and φ′ = αU[l,h]β.

Sub-Subcase φ = > If φ = > then we know that au ≥ bt and bt 6= ∅. For this to

be the case there must exist a k such that τk ∈ [τj + l, τj + h] ∧ 〈k,>〉 ∈ Siβ (i.e., bt = k).

Since Siβ is correct, we know that σ, τ, k � β. We also know from the definition of au

and au ≥ bt that ∀k′ ∈ [j, bt − 1] that 〈k′,>〉 ∈ Siα which means that for all these k′ that

σ, τ, k′ � α. Given this, we see from the semantics of until that σ, τ, j � αU[l,h]β

Sub-Subcase φ′ = ⊥ This case is trivially true, since σ, τ, j 2 ⊥.

Sub-Subcase φ′ = αU[l,h]β This case is trivial since φ′ is returned.

Case φ ≡ αS[l,h]β There are two cases, 1) σ, τ, j � φ′ → σ, τ, j � φ and 2) σ, τ, j �

φ→ σ, τ, j � ψ′.

Subcase [σ, τ, j � αS[l,h]β → σ, τ, j � φ′] By the semantics of since, we know that

∃k.(l ≤ τj − τk ≤ h).(σ, τ, k � β ∧ ∀k′ ∈ [k + 1, j].(σ, τ, k′ � α)). Since Siβ is correct we

97



CHAPTER 4. FORMAL MONITORING

know 〈k,>〉 ∈ Siβ and from Siα being correct we have ∀k′ ∈ [k + 1, j].〈k′,>〉 ∈ Siα.

Given these values in the history structs, we can see from the definition of reduce that

bt ≥ k and as ≤ k (from the definition of as and bt). Combining these, we find that as ≤ bt

and so φ′ = >.

Subcase [σ, τ, j � φ′ → σ, τ, j � αS[l,h]β] There are three possible subcases here:

φ = >, φ = ⊥, and φ = ψ′.

Sub-Subcase φ = > If φ = > then we know that as ≤ bt and bt 6= ∅. For

this to be the case there must exist a k such that τk ∈ [τj − h, τj − l] ∧ 〈k,>〉 ∈ Siβ

(i.e., bt = k). Since Siβ is correct, σ, τ, k � β. We also know from as that that ∀k′ ∈

[k + 1, j].(〈k′,>〉 ∈ Siα) (i.e., as ≤ k). Since Siα is correct and as ≤ k = bt this tells

us that ∀k′ ∈ [k + 1, j].σ, τ, k′ � α. Given this, we see from the semantics of since that

σ, τ, j � αS[l,h]β.

Sub-Subcase φ = ⊥ This case is trivial, since σ, τ, j 2 ⊥

Sub-Subcase φ = ψ′ This case is trivial, since σ, τ, j � ψ′ → σ, τ, j � ψ′

As discussed, reduce also preserves residue promptness. For non-temporal formulas

this is trivial since they are always prompt. The definitions of reduce for until and since

are designed such that given the conclusive trace history (which is guaranteed after the

formula delay) they will always return a truth value.

Lemma 5 (Promptness of reduce(σ, τ, i, Siψ, 〈j, ψ′〉ψ)). For all timesteps i, j ≤ i, formu-

las ψ, traces σ, timestamp series τ , formulas φ, and correct, reducible, and prompt history

structures sets Siψ if 〈j′, φ′〉ψ ← reduce(σ, τ, i, Siψ, 〈j, φ〉ψ) then 〈j, φ′〉ψ is prompt at i.

Proof by induction over φ.

98



CHAPTER 4. FORMAL MONITORING

All cases but φ ≡ αU[l,h]β and φ ≡ αS[l,h]β follow simply from reduce being prompt.

We show these more difficult cases:

Subcase φ ≡ αU[l,h]β For 〈j′, φ′〉 to be prompt at i we must see that (τi − τj ≥ ∆w(ψ)→

φ ∈ {>,⊥}. First, we note that in this case both Siα and Siβ are prompt at k such that

τk ∈ [τj, τj + h]. We show this for α and note that β follows. First, ∆w(φ) − h =

max(∆w(α),∆w(β)) from the defintion of ∆w. So ∆w(α) ≤ ∆w(φ)− h. Since τi − τj ≥

∆w(φ) we have ∆w(α) ≤ (τi − τj)− h. Note that τk ≤ τj + h, and substituting above we

obtain ∆w(α) ≤ τi − τk. So if Siα is prompt at j, it is also prompt at these k’s.

There are two possible cases, either there is no true β residue or there is a true β residue.

Subcase no-β In this case, ∀k.(τj + l ≤ τk ≤ τj + h).〈k,⊥〉 ∈ Siβ . If this is true and

τi − τj ≥ ∆w(ψ) then we see from the definition of reduce that bn = > and so φ′ = ⊥.

Subcase β exists In this case, ∃k.(τj+l ≤ τk ≤ τj+h) such that k is the minimum step

where 〈k, ψ′〉 ∈ Siβ and ψ′ 6≡ ⊥. Since Siβ is prompt, ψ′ must be >. From the definition of

reduce we see that k = bt = ba.

Within this case, there are two sub-cases: either α is true until β (αUβ) or it is not

(¬(αUβ)). In either case we know that Siα is correct and prompt at all k with τk′ ∈ [τj, τk]

(as shown above). So all residues 〈k′, ψ〉 ∈ Siα exist and all residual formulas ψ ∈ {>,⊥}.

Sub-Subcase not α until β In this case, if ∃k′ ∈ [j, k − 1] where 〈k′,⊥〉 ∈ Siα then

from the definition of reduce we can see that aa < k = ba and so φ′ = ⊥

Sub-Subcase α until β Otherwise, ∀k′ ∈ [j, k − 1].〈k,>〉 ∈ Siα (due to promptness

of Siα). From the definition of reduce we can see that au ≥ k = bt so au ≥ bt and φ′ = >.

99



CHAPTER 4. FORMAL MONITORING

Subcase φ ≡ αS[l,h]β For 〈j′, φ′〉 to be prompt at iwe must see that (τi−τj ≥ ∆(ψ)→ φ ∈

{>,⊥}. First, we note that in this case both Siα and Siβ are prompt at k such that τk ∈ [τj −

h, τj]. We show this for α and note that β follows. First, ∆w(φ)+l = max(∆w(α),∆w(β))

from the defintion of ∆w. So ∆w(α) ≤ ∆w(φ) + l. Since τi − τj ≥ ∆w(φ) we have

∆w(α) ≤ (τi − τj) + l. We can rearrange this to −∆w(α) ≥ τj − l − τi. Note that

τk ≤ τj − l, and substituting above we obtain −∆w(α) ≥ τk − τi. Flipping the sign again

we see ∆w(α) ≤ τi − τk. So if Siα is prompt at j, it is also prompt at these k’s.

There are two possible cases, either there is no true β residue or there is a true β residue:

Subcase no-β In this case, ∀k.(τj − h ≤ τk ≤ τj − l).〈k,⊥〉 ∈ Siβ . If this is true and

τi − τj ≥ ∆(ψ) then we see from the definition of reduce that bn = > and so φ′ = ⊥.

Subcase β exists In this case, ∃k.(τj−h ≤ τk ≤ τj−l) such that k is the maximum step

where 〈k, ψ′〉 ∈ Siβ and ψ′ 6= ⊥. Since Siβ is prompt, ψ′ must be >. From the definition of

reduce we see that k = ba = bt.

Within this case, there are two sub-cases: either α is true until β (αSβ) or it is not

(¬(αSβ)). In either case we know that Siα is correct and prompt at all k with τk′ ∈ [τk, τj−l]

(as shown above). So all residues 〈k′, ψ〉 ∈ Siα exist and all residual formulas ψ ∈ {>,⊥}.

Subcase not α since β In this case, if ∃k′ ∈ [k + 1, j].〈k,⊥〉 ∈ Siα then from the

definition of reduce we can see that aa ≥ k′ > k = ba and so aa > ba and φ′ = ⊥

Subcase α since β Otherwise, ∀k′ ∈ [k + 1, j].〈k,>〉 ∈ Siα (due to promptness of

Siα). From the definition of reduce we can see that as ≤ k = bt so as ≤ bt and φ′ = >.

100



CHAPTER 4. FORMAL MONITORING

Showing that reduce preserves reducibility is straightforward. A residue is reducible at

all steps once all of its free propositions have been removed and reduce always removes

any free propositions in the formula by evaluating them at the current state. Evaluating

the propositions at the current step is the correct action to take since the residue must be

reducible and thus if it has any free propositions, j = i. So, if there are any free propositions

in a residue, reduce is guaranteed to remove them all so the resulting reduced residue will

be reducible at all steps.

Lemma 6 (Reducibility of reduce(σ, τ, i, Siψ, 〈j, ψ′〉ψ)). For all timesteps i, j ≤ i, formula

ψ, traces σ, timestamp series τ , formulas φ, and correct, reducible, and prompt history

structure sets Siψ if 〈j′, φ′〉ψ ← reduce(σ, τ, i, Siψ, 〈j, φ〉ψ) then 〈j, φ′〉ψ is reducible at all

steps.

Proof.

There is only one important case. If φ ≡ p then from the definition of reduce we see

that φ′ = σi(p). This means that any free propositions are replaced with their truth value,

so the returned residue will be reducible at all steps. For any other φ, reduce preserves the

reducibility of the residue since only free propositions affect reducibility.

101



CHAPTER 4. FORMAL MONITORING

102



Chapter 5

Monitor Implementation

This chapter describes our implementation of the monitoring framework. We have imple-

mented the basic monitoring algorithm as an ANSI C codebase which can be utilized in

different scenarios. We have created both a PC-based offline monitor and an ARM based

real-time CAN monitor implementation utilizing our framework monitor codebase.

5.1 Implementation Overview

The primary monitor codebase provides an implementation of the monitoring algorithm in

portable ANSI C. It contains the necessary data structures and an implementation of the

subcomponents of the agmon monitoring algorithm.

The code is designed to be used by a driver program which builds the system trace and

implements agmon (or another monitoring algorithm based on agmon’s history struc-

tures). The driver program interfaces with the system, acting as the semi-formal interface,

and fills the monitor data structures. It also implements the actual monitoring algorithm by

incrementing the structures at the appropriate time.

103



CHAPTER 5. MONITOR IMPLEMENTATION

The monitor specification is translated into configuration code which is compiled into

the subsequent monitor program directly. This is an easy way to implement the monitor

with the limitations described below in Section 5.1.1. This was done instead of a run-time

configuration to simplify the implementation. A run-time configurable monitor could still

be made in the exact same way as our monitor by adding logic to build the formula and

data structures at runtime from the configuration instead of at compile time.

We currently have two implemented driver files, a PC-based offline monitor which reads

comma sepearated value (CSV) formatted traces, and an embedded ARM driver which we

run on an ARM-based development board to monitor CAN networks in real-time.

5.1.1 Embedded Limitations

As has been noted, software designed for safety-critical embedded systems has more re-

strictive design constraints than typical system software. Two important limiting con-

straints which strongly affect the implementation of agmon are avoiding recursion and

no dynamic memory allocation [116]. We focus on these limitations because they directly

impact the implementation so it was imperative to ensure they could be handled in a prac-

tical way.

Static Memory Allocation Most safety-critical coding guidelines discourage or prohibit

the use of dynamic memory allocations after initialization [117]. This is primarily to avoid

memory leaks but also avoids unpredictable execution time within memory allocators and

garbage collectors. Using only statically allocated memory also provides a straightforward

upper bound on memory use and guides the system towards a more constant-time and

constant-space design which helps in calculating worst case execution time.

104



CHAPTER 5. MONITOR IMPLEMENTATION

While static memory allocation is safer and easier to analyze, dynamic allocation is

useful. agmon makes use of dynamic sets and lists which add and remove residues con-

stantly. Since our specification logic is bounded, it is possible to statically allocate storage

space for the maximum number of elements in the history structure lists (and elsewhere

when a temporary data structure is useful) in place of dynamic lists.

One issue from static allocation that permeates the entire design is how to handle rep-

resenting formulas with limited memory. The straightforward approach to implementing

agmon stores residue formulas as their abstract syntax trees (AST), which makes formula

traversal and rewriting easy. Storing an AST for every residue in the monitor wil take up a

lot of space for long formulas or formulas with long temporal durations. Statically allocat-

ing enough storage space to hold a full AST for every potential live residue in the system

could require a large amount of storage space. Our solution is to use a single global for-

mula tree and have the formulas in residues be indices into a table pointing to this global

tree. This reduces the monitor’s storage requirements dependence on formula durations.

By using a global formula we only require an extra index for every timestep duration rather

than an entire AST which allows us to monitor bigger formulas with long durations without

running into space limitations. For a specification formula which has a one second duration

and a 20ms monitoring period, the global formula only requires storing one global tree (the

formula AST plus any reducable subtrees) rather than storing 50 individual formula ASTs.

Even accounting for a large global tree (i.e., a formula with many reduction subformu-

las) and storage for the 50 residue indices, using a global tree can provide a large (5-50x)

reduction in storage requirements.

One issue with global formula trees in our algorithm is that they must include every sub-

formula of the specification that can occur in the monitor due to rewriting. When residues

105



CHAPTER 5. MONITOR IMPLEMENTATION

ϕ = a → (b ∨ c)
→

a ∨

b c

Formula Node ID Global
Formula

a 0 0
b 1 1
c 2 2
b ∨ c 3 2 ∨ 3
a→ (b ∨ c) 4 0→ 3
a→ b 5 0→ 1
a→ c 6 0→ 2 1 2

0 3

5

4

6

Figure 5.1: Static global formula representation

contain an actual AST it is easy to dynamically rewrite the formulas (i.e., just update the

AST in place), but since we use pointers to a static set of trees we must ensure that every

possible residual formula (including subformula in the history structures) has an entry in

the global formula tree. For example, the formula ψ = (a∨ b)→ (c∧ d) contains possible

reduced subformula such as b→ d which do not directly exist as a subformula of ψ. All of

these subformula which are reachable by reduce need to be present in the global formula

tree which is generated by the specification compiler described in Section 5.1.2. Figure

5.1 shows a specification formula AST and the global table and global formula tree that

would be generated from it. The global formula includes the extra subformulas (a→ b and

a→ c) required by reduce that are discussed below.

Avoiding Recursion Recursion is also generally prohibited in safety-critical design guide-

lines because it can be difficult to guarantee a maximum stack depth when using recursion.

Obviously, agmon utilizes recursion heavily, so we need a way to implement the recursive

aspects of the algorithm without actually recursively calling the reduce function.

Instead of recursively calling reduce over a residue, we utilize an iterative traversal

implementation which walks the formula tree. The iterative reduce is based on a straight-

106



CHAPTER 5. MONITOR IMPLEMENTATION

forward iterative depth-first traversal. Nodes cannot be marked as visited during traversal

since traversal is done over the global formula tree. Instead, the three statically allocated

stacks (traversal, values, and direction) are used to keep track of the traversal.

The traversal stack is used as in a traditional iterative depth-first search to hold list of

nodes to be visited. Every step of the iterative reduce loop, the next node to visit is popped

off the traversal stack. The direction stack keeps track of the traversal directions

(up/down and left/right) and is used to decide whether to continue traversal down the for-

mula tree (when traversing down) or evaluate the current node (when traversing up). The

values stack is used to hold the values of evaluated nodes, so when evaluating a node,

the values of its evaluated children can be found next on the values stack. Figure 5.2

shows a call of the iterative reduce algorithm on a simple formula. At each step, the current

node location of the traversal is highlighted, while the table shows each stack’s state at the

beginning of that iteration.

5.1.2 System Specifications

The implementation takes system specifications as a list of ascii-formatted BMTL formu-

las. This list is given to the configuration compiler which generates a C file which is com-

piled into the monitor. This file provides the functions to build and increment the history

structures for the given specification formulas. This method was chosen as a straightfor-

ward and simple way to configure the monitor with a static allocation. It is also possible

to provide a memory space which could then be filled by the monitor itself dynamically

at startup allowing the monitor to be reconfigured with a new specification without recom-

piling or reflashing. This setup would be preferable in a commercial design to gain the

benefits of a quickly configurable monitor (although recompiling/flashing is not slow with

107



CHAPTER 5. MONITOR IMPLEMENTATION

→

a ∨

b c

T V D
→ DL

→

a ∨

b c

T V D
→ DL
a DL

→

a ∨

b c

T V D
→ > DL

UL

→

a ∨

b c

T V D
→ > DL
∨ DR

→

a ∨

b c

T V D
→ > DL
∨ DR
b DL

→

a ∨

b c

T V D
→ > DL
∨ ⊥ DR

UL

→

a ∨

b c

T V D
→ > DL
∨ ⊥ DR
c DR

→

a ∨

b c

T V D
→ > DL
∨ ⊥ DR

> UR

→

a ∨

b c

T V D
→ > DL
> UR

→

a ∨

b c

T V D
> UL

For ϕ = a→ (b ∨ c)
a = >
b = ⊥
c = >

Figure 5.2: Example of iterative reduce execution

108



CHAPTER 5. MONITOR IMPLEMENTATION

the current code). The semi-formal interface is defined separately as a part of the monitor

driver and is triggered by incoming messages.

The specification compiler generates code for the following tasks:

• Simplification tables for constant-time lookups to simplify

• Static allocation of all the necessary data structures

• Initializing the history structures

• Building the global formula table and tree

• Defining configuration values (e.g., number of specification rules, proposition names,

etc.)

5.1.3 Optimizations

There are many possible optimizations and useful trade-offs that can be implemented on

top of the base agmon algorithm. Two high-value optimizations that are extremely useful

for efficient monitoring are interval history structures and directly implementing the ex-

tended logic operators. Due to the high value of these optimizations, they are used in our

implementation. The implementation of these optimizations is discussed in this section and

they are evaluated in Section 6.1.1.

5.1.3.1 Intervals

The basic approach to implementing agmon requires iterating over the history structure

lists to find the desired entries when checking temporal formula. This requires performing

a search over every entry in the set, which can be a problem for formulas with long dura-

tions (i.e., long lists) or nested temporal formulas where the number of checks increases

109



CHAPTER 5. MONITOR IMPLEMENTATION

Siφ =

{
〈0,>〉, 〈1,>〉, 〈2,>〉, 〈3,⊥〉,
〈4,⊥〉, 〈5, φ′〉, 〈6, φ〉, 〈7,>〉

≡


T :{[0, 2], [7, 7]}
F :{[3, 4]}
R :{〈5, φ′〉, 〈6, φ〉}

Figure 5.3: Comparison of history structure list and interval representations

multiplicatively with each nesting.

Instead of storing individual residues for each reduced timestamp, we can combine

reduced residues into intervals of truth values. Rather than only containing a list of residues,

each interval history structure contains a true interval list (T ), a false interval list (F ),

and a list of active residues (R). When a residue reduces to true or false, its timestamp t is

added into the appropriate interval list by either extending an existing interval in the list or

adding the empty interval [t, t]. Instead of iterating over an entire list of residues, checking

temporal formula using the structures requires searching the shorter list of intervals. Figure

5.3 compares the two history structure representations. Even in this small case, there are

less entries to search over in the interval notation than the list notation.

Although in the worst case this optimization provides no benefits (same number of

items, potentially more absolute space, and not increasing speed), realistic traces rarely are

worst case with respect to the interval notation. In fact, realistic traces tend to fit nicely

within this optimization by rarely having unreducable holes and because truth values tend

to cluster in real systems (due to physical/control inertia and modes/activation guards).

5.1.3.2 Additional Logic Operators

The specification logic we use defines a moderately minimal logic which utilizes notational

equivalences for many common logical operators. While this keeps proofs of correctness

110



CHAPTER 5. MONITOR IMPLEMENTATION

small it can reduce the efficiency of the monitor.

First, there are considerable space savings to be had by reducing the size of the spec-

ification formulas since a small change in formula size can be a large change in monitor

configuration size (due to the need to explicitly define every reachable subformula). For

example, a very straightforward formula (a∨ b∨ c∧d) translates into (a∨ b∨¬(¬c∨¬d))

which requires 62 formulas in the global formula tree. By directly implementing the and

operators we can reduce this to 18 formulas – a considerable space savings. The savings

increases as more equivalence-defined operators are utilized, with a∧b∧(c→ d) requiring

402 formulas versus 18 when fully implemented.

Besides reducing the amount of space used, reducing the size of a formula can shorten

the execution time of reduce by reducing the number of nodes it needs to visit. Every

aliased and node adds up to six extra iteration steps (three nodes both descending and

ascending) more than a direct implementation due to the three additional not nodes in the

translation (a∧b ≡ ¬(¬a∨¬b)). Even more importantly, the directly implemented temporal

operators can potentially save checking an entire list. For example, to check ♦[l,h]b we only

need to search over the history structure of b, but if we check this in the restricted logic as

> U[l,h] b we have to check the history list of > as well (although using intervals makes

checking the > list fast).

Implementing six extra common operators (and, implies, always, eventually, past al-

ways, past eventually) is simple and straightforward. Showing the correctness is straight-

forward as well (though we omit that here) since the nontemporal operators are straight-

forward and the temporal operators are sub-operators of until/since (their implementations

exist within the until/since implementations).

111



CHAPTER 5. MONITOR IMPLEMENTATION

5.1.3.3 Semi-Aggressive

The least amount of work that can be done to completely check a trace is to check each trace

entry once. The way to ensure this occurs is to check each step once after it is guaranteed to

be checkable. This is the basic conservative check (based on prècis), which evaluates each

formula after waiting long enough to guarantee that it can be evaluated (i.e., at least ∆w

time). Aggressive checks perform more work, doing extra checks hoping that the formulas

can be evaluated early. The benefit of aggressive checking is that we may detect specifi-

cation violations earlier than conservative approaches, providing more time to attempt a

recovery action. This extra recovery time may help avoid or reduce the damage caused by

a violation (e.g., engaging emergency stop earlier means a vehicle may avoid a collision or

collide with less speed).

There are situations, such as when fully aggressively checking a formula would take

too much computation time to guarantee correctness but checking a portion of the exist-

ing residues aggressively is necessary or useful. A straightforward implementation of a

semi-aggressive monitoring approach is a hybrid conservative/aggressive approach which

performs conservative checking and uses any spare time to check remaining residues ag-

gressively. This approach, which we use and discuss in Section 5.2.2.3, utilizes a conser-

vative checking approach to provide a promptness guarantee while still trying to benefit as

much as possible from aggressive checking. This is not the only possible hybrid approach,

but any method which provides some assurance of correctness or completeness will likely

be similar since all steps must eventually be checked.

All semi-aggressive approaches require deciding the order in which the history should

be checked (and thus, which residues may not get checked aggressively). This decision is

system dependent and expert knowledge can increase the efficiency of this type of monitor-

112



CHAPTER 5. MONITOR IMPLEMENTATION

ing. Simple factors such as deciding between checking oldest or newest residues first are

obvious tuning mechanisms, but there may be situations where more dynamic strategies

(e.g., check the oldest residue and if it doesn’t reduce start checking from newest) may per-

form better if certain likely system behaviors/inertia are known. More specific approaches

such as only aggressively checking certain specification rules or only aggressively checking

when the system is in a certain mode may also be useful.

Choosing a monitoring approach boils down to understanding the target system and

trying to attain the best monitoring results with the given monitoring resources. This is an-

chored on the level of correctness guarantees that can be made by any given approach. To

provide guarantees about checks beyond the simple conservative promptness, more timing

analysis is necessary to understand exactly how many residue checks can be performed in

the worst case. Given a certain number of checks, an aggressive strategy which is guaran-

teed to execute the highest priority checks can be used.

5.2 Implementations

We currently have two monitor implementations built on the monitoring code framework, a

PC-based CSV log monitor and an embedded ARM CAN monitor. This section describes

these two implementations.

5.2.1 PC-based Monitor

The PC-based monitor is an offline monitor designed to check specifications over CSV

formatted log files. Most log formats can be converted into CSV’s in a straightforward

manner, and the CSV logs are reasonably easy for a person to manually check for false

113



CHAPTER 5. MONITOR IMPLEMENTATION

positives/negatives and even try to diagnose identified violations. A monitor targeting CSV

logs is versatile since text-based tools can easily manipulate the logs. The sampled state

view of a system also maps perfectly onto CSV logs, where each line entry can be a new

timestamped state with each column representing a specific system property.

The PC-based monitor contains the necessary framework calls to set up monitoring, the

interfacing code to read CSV logs and fill the framework’s state buffer, and the code to

actually perform the monitoring.

The monitor is designed with separate conservative and aggressive checks. They are

configured such that either can be enabled or disabled, allowing this monitor to be used to

investigate performance with the different algorithms. When both are enabled the conser-

vative checks run first for all policies before the aggressive checking loop is run.

When executed, the monitor initializes itself (building the formulas, initializing data

structures, etc.) and then enters a loop which performs the following for every entry in the

log file:

1. Updates the system state buffer from the log entry (i.e., semi-formal interface)

2. Increments the existing history structures with the new state

3. Adds the specification policies to their history structures

4. If enabled, performs a conservative check of each policy (i.e., checks the oldest

residue)

5. If enabled, performs aggressive checking of each policy

The separated aggressive/conservative checks simplify performance analysis for the dif-

ferent implementations. The monitor also has configuration flags for other optimizations,

allowing us to enable or disable the full logic implementation and intervals (although the

114



CHAPTER 5. MONITOR IMPLEMENTATION

full logic using lists is not implemented and thus disallowed). The specification compiler

takes these configuration flags and enables features using #defines.

5.2.2 Embedded ARM Monitor

Runtime monitoring of real-time embedded systems is only useful if it can be performed

fast and cheap enough to be practical. We have implemented an agmon based monitor

on a STMicro STM32F4-Discovery development board and designed it to enable real-time

monitoring of CAN networks (although other interfaces are certainly possible).

5.2.2.1 Monitor Hardware

The STM32F4 microcontroller is a 32-bit ARM Cortex-M4 based microcontroller targeted

at DSP and other high-performance applications. This chip has a reasonable amount of ex-

ternal connectivity including 6x USARTS, I2C, CAN, Ethernet, SDIO, and multiple ADCs.

More importantly, this chip comes in large memory options, with the version we use con-

taining 1MB of flash and 192KB SRAM. Although this chip is likely more powerful (and

costly) than would be used to implement a mass-produced commercial monitor, the extra

memory provides a useful amount of leeway during implementation which allows us to

experiment with the limits of scalability of the approach.

The STM32F4-Discovery development board is a simple demonstration board for the

STM32F4 microcontroller. The board includes an ST-LINK/V2 debug tool, LEDS, a push-

button, a few other accessories (MEMS, accelerometer, microphone, etc.) and extension

headers for microcontroller I/O including the CAN controller. The microcontroller has a

CAN controller but does not include a CAN transceiver, so we utilize an external TI CAN

transceiver on a powered breadboard to interface with the target CAN networks.

115



CHAPTER 5. MONITOR IMPLEMENTATION

5.2.2.2 Simulator

The µVision IDE from Keil (ARM’s development tools branch) is a standard IDE for ARM

based chips which includes a microcontroller simulator. Unfortunately, the simulator does

not fully implement all the peripherals of our STM32F4 chip, so some peripherals, includ-

ing the Nested Vector Interrupt Controller which handles processor interrupts, are simulated

using the default peripheral simulation driver. This is primarily an issue because we would

like to simulate interrupts for both the CAN controller and some timers. It is possible to

manually trigger interrupts through a dialog but we cannot automatically simulate timer

interrupts periodically. This leads us to do most evaluation with the PC implementation

or onboard instead of in simulation, which unfortunately provides less relevant informa-

tion (from the PC version) or is much less flexible (onboard). Still, simple debugging,

especially of non-timing related aspects can be performed in simulation rather than on the

microcontroller.

5.2.2.3 Hybrid Conservative/Aggressive Implementation

Although we can calculate worst-case execution time for checking any given specification

we must perform a new analysis every time any specification rule is changed at all. Some

specifications may not be worst-case schedulable under aggressive monitoring (which can

be much more computationally expensive than conservative monitoring). This means that

for those specifications, we cannot get the early detection benefits that come with aggressive

checking without giving up some guarantees of monitor correctness. Specifications which

may in practice always be checkable can have worst-case execution times which are too

slow to guarantee monitor correctness. In many instances the system trace will not exhibit

worst-case monitoring behavior and an aggressive monitoring scheme may be able to fully

116



CHAPTER 5. MONITOR IMPLEMENTATION

check a property. Other specifications may have execution times such that we can guarantee

that they can be fully aggressively checked. Even if we know that in practice that the

aggressive check would always finish, the monitor cannot be trusted with high-criticality if

it isn’t guaranteed to finish executing on time.

In order to safely mix guaranteed specification checking with the benefits of aggressive

checking we have implemented a hybrid approach combining a conservative wait-to-check

algorithm (based on prècis [53]) with our aggressive algorithm. Under our periodic sam-

pling design, the conservative check is guaranteed to only need to check a single residue

for each specification policy in every step (plus updating structures or saving history once

per step). This conservative check can be done quickly at each period, leaving any extra

time until the next check for aggressive checking. This provides a guarantee that at least

the specification is checked within a known delay (i.e., a promptness guarantee) and allows

the monitor to aggressively check as much as possible. As long as we know that the worst

case execution time for message handing, incrementing the structures, and a single residue

check is short enough to finish within a monitor period then we are guaranteed at least a

(delayed) correct and prompt output.

Any early detection, even if it is not guaranteed, is still a benefit and can be important

for system safety if it provides additional time to perform a recovery. The cases where

the aggressive check is not guaranteed to finish are where a semi-aggressive strategy or an

intelligent order for aggressively checking can really provide an increased benefit (such as

increasing the likelyhood of aggressively catching failures).

The embedded monitor is designed as a multi-tasking system with four steps which are

separated into three tasks: updating the trace (i.e., the semi-formal interface), updating the

structures, the conservative check, and the aggressive check. This system is implemented

117



CHAPTER 5. MONITOR IMPLEMENTATION

Task Priority Location
Trace Update Highest CAN receive ISR
Structure update High Timer 2 ISR
Conservative Check High Timer 2 ISR
Aggressive Check Low Main Loop

Table 5.1: ARM hybrid monitor task allocation

as an interrupt service routine (ISR) based multitasking system. This could also be imple-

mented through multi-tasking without ISRs, but the ARM implementation is a bare-metal

C implementation so using the CAN receive ISR for interface handling and timer ISRs to

control the periodic monitor check was simpler than building a task scheduler. The trace

update task is performed inside the CAN receive ISR. The structure update and conser-

vative check are performed by a timer ISR, and the aggressive check is performed in the

monitor’s main loop. This task assignment is shown in Table 5.1

This is a straightforward allocation of work which fits well with the desired monitoring

scheme. The trace update task keeps a copy of the system state updated constantly. When-

ever a new incoming message is received, this interrupt is called and the task performs the

necessary semi-formal mapping to update the current state. The monitor’s checking fre-

quency is controlled by the Timer 2 interrupt. The monitor is currently configured to run at

a 25ms period, so every 25ms the Timer 2 interrupt fires, running the structure update and

conservative check function. This function samples a copy of the current system state. It

then increments the history structures based on this new state and performs a conservative

check for each policy.

Once the monitor is configured and the main monitor thread enters its checking loop,

it continuously performs an aggressive check over the specification policy structures. The

aggressive and conservative checks share the same policy lists and history structures so

118



CHAPTER 5. MONITOR IMPLEMENTATION

Figure 5.4: Hybrid monitor ideal task schedule

that they do not duplicate work. This requires some straightforward locking to ensure the

aggressive check does not check inconsistent data. If the aggressive checker detects that it

has been interrupted by the conservative check, it throws away the in-progress check and

starts over at the new current (i.e., the next) state. If the aggressive check finishes checking

the specification before the checking period is over, it enters a busy-wait until the next

period occurs.

In an ideally scheduled monitor, the execution would occur as depicted in Figure 5.4,

with the aggressive monitor finishing all checks within each period. Figure 5.5 shows the

execution of the embedded monitor instrumented to output the currently executing task

to an oscilloscope. With this specification, the specification used in Section 6.3 plus an-

other 200 residue eventually rule, there was still a large portion of idle time – 23ms of the

25ms loop was spent idle. This shows the aggressive checking finished reasonably quickly

and the monitor could handle much longer duration or more complex formulas before the

execution time was bad enough to not guarantee it will complete the aggressive check.

In the next section we evaluate the monitor performance and scalability.

119



CHAPTER 5. MONITOR IMPLEMENTATION

Idle

Trace Update

Conservative

Check

Aggressive

Check

Figure 5.5: Oscilloscope capture of embedded monitor task execution

120



Chapter 6

Monitor Evaluation

In this chapter the monitor implementation is evaluated in use checking logs from real

systems under test. We run the PC-based monitor against artificially generated logs to

analyze basic performance characteristics as well as use it to check logs obtained from a

test drive of a semi-autonomous research vehicle. The embedded monitor is used to check

a replay of CAN logs from testing of a separate autonomous vehicle component.

6.1 Analysis

Looking at both the algorithm and our implementation of agmon, there are three primary

parameters that affect the overall space usage and execution time: the number of policy

formulas, the number of required history structures and the total formula delay of these

structures. The actual values that occur in the trace and the monitor’s checking frequency

also have a strong effect.

We can divide the agmon evaluation loop into four phases: trace capture, updating the

structure, the conservative check, and the aggressive check as shown in Figure 6.1.

121



CHAPTER 6. MONITOR EVALUATION

1: Initialization (all the vars, interface, build structure, build formula).
2: for every step do
3: Trace Capture: update system state model
4: History Update: increment history structures and policy lists
5: Conservative Check: for each policy, check oldest residue
6: With available time: Aggressive Check: for each policy, check entire residue list

Figure 6.1: agmon Evaluation loop

Trace capture is the phase where the monitor takes in the trace data and fills the re-

quired propositions. Depending on the complexity of the mapping this can be negligibily

fast (e.g., copying boolean bytes out of the trace/network into variables) or more complex

(e.g., executing state machines, performing running averages/integrations of floating point

values). We recommend that the mapping used be relatively simple, so this phase is a small

component of monitoring, or at least an quick one in absolute terms. The practical limita-

tion here is that the mapping computations need to be computable in real-time to keep up

with the incoming system values coming from the network as well as leave enough time

between mappings to allow the monitoring algorithm to complete.

The history structure update phase is where the history structures are updated. This step

includes adding the current step to each structure and reducing each unresolved residue in

every structure. In the worst case this leaves us with
∑

Sφ∈Sψ ∆S(φ) reductions (to check

formula φ). If some formulas can be reduced before their delay, this can be reduced in the

best case up to the delay times (i.e.,
∑

Sφ∈Sψ 1).

The conservative check is a single step of reduce for every policy rule, so this is only

affected linearly with the number of policies. The aggressive check requires a reduce

for every unresolved residue for every rule, so similar to the history structure we have∑
Sφ∈Sψ(1 + ∆S(φ)) reductions in the worst case and no reductions in the best case (since

the conservative check already handles them).

122



CHAPTER 6. MONITOR EVALUATION

From this we can see that the worst scaling issues will come from increasing temporal

formula durations (big ∆S’s) and then from the number of history structures required (more

Sφ ∈ S) and the total number of policies. The worst case of adding an additional policy rule

is that the rule is completely independent of the existing specification which adds all the

required work to check the new rule. This is the same as running a separate monitor with

the rule. In some cases rules may share subcomponents such as history structures. Adding

rules which share history structures require less extra work to check than independent rules.

6.1.1 Artificial Traces

The first thing we look at is the implementation’s scalability against different parameters

(such as number of formulas, temporal formula durations, formula size, etc.) to compare

optimizations and to get a sense for the realistic limits. We perform these tests with our

PC-based offline monitor checking artificially generated traces to keep the analysis simple.

In these analyses we use the notion of best and worst case traces to see how the algorithm

performs given different types of traces. Different formulas have different best/worst case

traces, so the trace values used will be noted with each formula. We also note that we do

not care much about absolute time values here, except as a benchmark for potential perfor-

mance. We can compare relative times to understand scaling and basic monitor behavior,

but since these runs are performed on a PC using non-real time clocks and sharing resources

with other processes there are caching issues, jitter, and other delays which would not af-

fect a bare-metal implementation such as our ARM monitor. All values presented in this

section are averages of five runs unless otherwise noted.

Figure 6.2 shows the computation time per monitor step of a few simple formulas. We

can see that as expected, runtime per step is constant for a given formula as trace length

123



CHAPTER 6. MONITOR EVALUATION

0 200 400 600 800 1000
Trace Length (#steps) 

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

E
xe
cu
ti
o
n
 T
im

e
 (
s)

Execution Time per step

Cons True

Cons False

Cons <0,10> False

Cons <0,10> False

Aggr True

Aggr False

Aggr <0,10> False

Aggr <0,10> False

Figure 6.2: Execution time per step for simple formula

increases. The straight propositional policies (true and false) and the best-case eventually

policies (i.e., always true traces which always reduce) all have similar checking times while

the aggressive worst-case eventually (all false values) has a slightly higher runtime per step

because it has to check more live residues at every step.

The number of policies checked also has linear execution scaling. Each additional

policy is in the worst case independently checked, so it’s as if a separate monitor was run for

each policy. This is shown in Figure 6.3 which shows the execution time for an increasing

number of policy formulas. The figure shows the execution time per monitor step for

two different types of specifications, one filled with unique propositions and another with

unique eventually formulas. Each of these policies is checked with both all true valuations

and all false valuations. As expected, the execution time increases linearly with each new

policy rule and the eventually rules take longer per step than the plain proposition rules.

Increasing the duration of a temporal formula (e.g., ♦[0,X]p for increasing X) causes

124



CHAPTER 6. MONITOR EVALUATION

0 200 400 600 800 1000 1200
# Policies in Specification 

0.0000

0.0005

0.0010

0.0015

0.0020

E
xe

cu
ti
o
n
 T

im
e
 (
s)

Execution Time for Increasing Specification Size

False Props

True Props

<0,10> False

<0,10> True

Figure 6.3: Execution time per step of specifications with increasing number of policies

a linear increase in execution time. Figure 6.4 shows this increase with both best (true)

and worst (false) case traces. The conservative algorithms and best case aggressive (true

proposition values) checking stay relatively constant time. Conservative is naturally con-

stant since only one check is performed in every step, regardless of the policy. In this best

case situation, the aggressive algorithm also only performs one check every step because

the formula can be reduced at every step so there are no left over unreduced residues to

check later. Worst case aggressive execution time (false proposition values) increases in

the expected manner, since each additional step in the duration adds an additional residue

which will be live and needs to be checked in every step. Nested temporal formulas can add

a multiplicative scaling, as shown in Figure 6.5, although we can see that utilizing intervals

can keep the scaling modest.

Intervals vs. Lists As discussed in Section 5.1.3, straightfoward algorithm optimizations

including intervals and implementing a more full logic semantics can provide strong prac-

125



CHAPTER 6. MONITOR EVALUATION

0 200 400 600 800 1000 1200
Duration (steps)

Value of X 

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

E
xe
cu
ti
o
n
 T
im
e
 (
s)

Execution Time for Increasing Formula Duration

Aggr <0,X> False

Aggr <0,X> True

Cons <0,X> False

Cons <0,X> True

Figure 6.4: Execution time for formulas with increasing temporal durations

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
# of nested operators

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

E
xe

cu
ti

o
n

 T
im

e
 p

e
r 

st
e

p
 (

s)

<0,500> X
<0,400> <0,100> X
<0,300> <0,100> <0,100> X
 etc

Execution Time of Nested Temporal Operators

Aggr False Prop

Aggr True Prop

Cons False Prop

Cons True Prop

Aggr False Reverse Nest

Cons False Reverse Nest

Figure 6.5: Execution time for nested temporal formulas

126



CHAPTER 6. MONITOR EVALUATION

0 200 400 600 800 1000
Temporal Formula Duration

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
xe
cu
ti
o
n
 T
im
e
 (
s)

Comparisons of Interval and Lists

List Altenating Prop

List False Prop

List True Prop

Int Altenating Prop

Int False Prop

Int True Prop

Figure 6.6: Comparison of intervals and lists

tical benefits. Figure 6.6 compares the execution time of monitoring with residue intervals

rather than basic residue lists for formulas with different durations. The worst case aggres-

sive behavior for lists here is a false value which requires iterating over every step in the

duration. Using lists with a worst-case temporal trace (eventually with all false values) has

an execution time with gets much worse as the duration increases. Both using intervals

or a having a nicer (i.e., not worst case) trace keep the execution time down. The interval

implementation tends to have a smaller iteration since any adjacent residues will combine,

reducing the total number of iterations. The worst case behavior for intervals can be worse

than lists if the trace does not permit the combining of any steps (i.e., no two adjacent

timesteps have the same value), but this is unlikely. It requires a trace which matches the

specific worst-case of the specification, and even in some of these cases intervals can still

outperform lists.

127



CHAPTER 6. MONITOR EVALUATION

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
# of nested operators

0.000000

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

0.000008

0.000009

E
xe

cu
ti
o
n
 T

im
e
 p

e
r 
st

e
p
 (
s)

Full vs Restricted Logic

0 1 2 3 4
# of nested operators

0

200

400

600

800

1000

#
 o

f 
fo

rm
u
la

s

Full

Restricted

Full Eventually

Restricted Eventually

Figure 6.7: Comparison of full and restricted logic

Extended Logic The other major optimization that we’ve implemented is defining more

of the logic semantics directly. As discussed in Section 5.1.3.2 the size of the specifica-

tion formulas can be reduced by directly implementing the extra commonly used operators.

The memory savings alone are important for embedded implementations which have lim-

ited available memory, but smaller formulas can also save execution time. Not only are

smaller formulas easier to check since they requires fewer iterations to traverse, but the

directly implemented temporal operators (eventually, always, etc.) are easier to check than

their until- or since-based definitions. Figure 6.7 shows the execution time and number of

formulas with respect to the number of unrestricted subformulas in the specification. This

uses the formula a∨b∨c∨d∨e where each added extended operator transforms one of the

or’s (∨) into and and (∧). For example, two nested operators uses the formula a∨b∨c∧d∧e

Execution time is not heavily affected for this simple formula and trace set, but the number

of required formulas is controlled much better using the full logic (three nested operators

requiring 11 full-logic formulas versus 950 restricted logic formulas)

128



CHAPTER 6. MONITOR EVALUATION

The benefits gained by directly implementing the extended logic operators obviously

depend on how pervasive the new operators are in the specification. On one side, a spec-

ification which does not use the extended operators will gain no benefit (and in fact pay

some cost from the larger code size). On the other hand, certain specifications and traces

can create real differences. For example, checking the rule ♦[0,50]�[0,49]value with a trace

that has runs of values for 50 timesteps at a time takes half the time with the full logic

implemented (5s vs 3s).

6.2 Offline Vehicle Logs

In this section we describe the use of our offline PC-based monitor as a tool to check the

logged results of a vehicle test for safety and other interesting property violations. We used

this monitor to check test logs from a research vehicle under development at a commercial

automotive research lab.

The tests we analyze are from an approximately 16 hour drive with the primary purpose

of testing the autonomous lane centering (ALC) feature. The test logs were provided in a

proprietary format and were converted to CSV logs for use with the monitor.

The vehicle is a standard modern automobile which also contains new autonomy fea-

tures, some under development at the research facility and some COTS components from

third-party suppliers. We primarily focus on high level safety properties for a few obviously

safety-critical features including adaptive cruise control and automated lane keeping.

129



CHAPTER 6. MONITOR EVALUATION

6.2.1 Rule Elicitation

Specification rule elicitation was somewhat informal. Because the vehicle was in a rapid

state of development and some features were supplied by third-parties, there was no for-

mally defined specification of the vehicle or features. Also, no system safety requirements

documentation was available to us. Since we could not obtain any documents which clearly

led us to a useful monitoring specification, we first had to identify our own system specifi-

cation. We derived our specification rules based on an analysis of existing design metrics,

existing system design documents, discussions with system engineers, and observable sys-

tem state available in the test logs.

The full logs have over 35,000 individual values (fields). We identified 244 potentially

interesting values and exported logs containing these values to reduce the total amount of

data being investigated (and help get a better understanding of what values were available).

Based on previous monitoring experiences and the testing’s focus on the lane keeping

feature, we attempted to identify a set of rules which would trigger on lane keeping issues.

Because we had minimal documentation the tests logs were used extensively to understand

the basic system dynamics and architecture. This was a prime example of a black box

testing situation. We have no system implementation information whatsoever, even which

messages each feature actually utilizes was not entirely clear from the network’s data dic-

tionary.

Our two primary monitoring targets were the adaptive cruise control and lane keeping

features. With this in mind we looked for observable state which could be used to moni-

tor safety rules about ACC and ALC behavior such as feature state and appropriate sensor

messages. We identified cruise control messages which provided ACC control state, ACC

acceleration requests, and the ACC selected speed among others. We also identified lane

130



CHAPTER 6. MONITOR EVALUATION

Table 6.1: Offline log monitoring specification

Rule #
Informal Rule
BMTL

0
If the brake pedal has been pressed, then within 200ms cruise control should be
disengaged for 100ms
BrkPedalPressed→ ♦[0,200]�[0,100]¬CrsControlEngaged

1
The vehicle should not be within 1m of either lane edge for 1s while the auto-
mated lane centering feature is active
¬�[0,1000](ALCEngaged ∧ ((rdrDistToLeftLT1 ∧ rdrDistToLeftV al) ∨
(rdrDistToRightLT1 ∧ rdrDistToRightV al))

2
The vehicle should not be within 1m of either lane edge for 1s while the auto-
mated lane centering feature is active
¬�[0,1000](ALCEngaged ∧ (visDistToLeftLT1 ∨ visDistToRightLT1)

centering outputs and multiple sensors which provided lane information. With the knowl-

edge of what system properties were observable, we created the three specification policies

shown in Table 6.1.

Rule #0 comes from the simple idea that the driver should be able to override the cruise

control system by depressing the brake pedal. We gave the system a 200ms response time

between the pedal press being acknowledged on the bus and the cruise control feature ac-

knowledging that it has disengaged. We also require that the cruise control stay disengaged

for a 100ms duration. This helps to ensure that control is actually relinquished. Without

this, a single 10ms step where the cruise control message stated it was disengaged (even if

it re-engaged afterwords) would be enough to satisfy the rule. This is a prime example of

a problematic ambiguity in informal specifications; we have to make a decision about the

actual meaning of “ACC is disengaged”.

Rules #1 and #2 are the same rule covering two different input sensors. There are

multiple lane position inputs available in the system although we don’t know which are

actually used by the features. By comparing these sensor values with other information

131



CHAPTER 6. MONITOR EVALUATION

Table 6.2: Offline log monitoring propositions

Proposition Name System Variables Mapping
BrkPedalPressed Brake Pedal Travel message Direct Boolean
CrsControlEngaged ACC Activated message Direct Boolean
ALCEngaged Lane Centering Feature state message Value Comparison
rdrDistToLeftLT1 Radar Left Lane Position message Value Comparison
rdrDistToLeftV al Radar Left Lane Position validity message Direct Boolean
rdrDistToRightLT1 Radar Right Lane Position message Value Comparison
rdrDistToRightV al Radar Right Lane Position Validity message Direct Boolean
visDistToLeftLT1 Vision Left Lane Position message Value Comparison
visDistToRightLT1 Vision Right Lane Position message Value Comparison

in the traces (including captured video) we chose two different but generally compatible

sensor messages, one radar and one vision based, to use in our monitor specification. This

mostly was exploratory in nature. It’s easier to monitor both sensors and examine the

results before finding a good way to choose one or merge them. Monitoring both sensors

also helps look at system “ground truth”, as we’d expect both sensors to agree reasonably

with the actual state. If they do not mostly agree then we can assume something is wrong.

Given these policies and the observable system data, we need to create our semi-formal

mapping. Table 6.2 shows the propositions we monitor and the basic mapping they use.

Note that with these rules we only used direct boolean mappings (i.e., taking a single bit

from the network message and using that as the proposition value) and arithmetic com-

parisons (i.e., comparing an integer or floating point value to a threshold). None of the

more complex powers of the semi-formal interface (e.g., saved values, averages, etc.) were

necessary.

132



CHAPTER 6. MONITOR EVALUATION

6.2.2 Monitoring Results

We used the PC-based monitor to check the previously mentioned rules over our test traces.

The 16 hours of traces were split into 240 files, each approximately four minutes long (an

artifact from the original proprietary logs which are large even at 4 minute durations).

Running the monitor with the specification given above took approximately 4 minutes

(under 3 minutes of compute time according to the unix time program) on a 2.5Ghz Intel

Core i5 laptop with 8GB of RAM. Of the 238 log files tested, 65 contained specification

violations.

There we no violations of Rule #0. To see if the brake was used to cancel cruise control

in the logs, we tested the instanteous response version of Rule #0 BrkPedalPressed →

¬CrsControlEngaged. There were violations of this rule in the logs. Seeing these ex-

pected violations reinforces our understanding of the system dynamics and shows that the

brake was applied while cruise control was engaged in the logs. This is a simple example

of using the monitor to explore the system for debugging purposes. It’s useful to be able

to quickly check whether a certain scenario occured in the logs. This also helps check our

understanding of the system and specification.

We did find violations of both Rule #1 and #2 which may be actual problems and thus

would be useful to bring to the attention of the system designers. While violations tended

to occur in both rules relatively simultaneously, there were logs where one of the rules was

violated and the other was not. We chose these vision and radar sensor values because

they seemed accurate based on manual inspection and they generally contained matching

values. The vision sensor lane position value has more significant figures than the radar

sensor message. So while the two sensor values agree under rounding, there are situations

in the data where this rounding affects whether a trace satisfies or violates the monitoring

133



CHAPTER 6. MONITOR EVALUATION

specification. We could tune our specification to try to avoid these types of situations, but

we do need to be aware of the resolution of our data when writing specifications We can

see that the choice of which sensor value to monitor could affect our results.

6.2.3 Exploratory Example

Creating a monitoring specification for a system with limited documentation such as the

scenario above requires experience and intuition. A benefit of our monitoring framework is

that it can be used to easily explore a black box system such as this, even if we are limited

to testing logs. Exploring a system by trying different policies and adjusting thresholds

or formula durations based on the monitoring results is a straightforward method to help

understand the target system when other information is unavailable. In general, this type

of exploration can be done by identifying a desired property and trying a tightly bound

(i.e., possibly overspecified) policy that expresses the property. It is easier to start with an

overly-strict policy because any false positives provide information which can then be used

to tune the policy. The location (e.g., the timestep) of a potentially false-positive violation

can help identify the portions of a log which should be further investigated to improve

understanding of the system.

We saw one way how this can be done in the previous section when we checked that

braking did not instantaneously cause cruise control to be disabled. We explore this type

of usage more thoroughly with a separate monitoring property. In this case, we want to

specify a policy which ensures that the ACC feature does not command acceleration when

it is too close to a target vehicle.

We first need to pick the general requirement we want to explore. Headway is a mea-

surement of the time for a following vehicle to cover the distance between it and a lead

134



CHAPTER 6. MONITOR EVALUATION

vehicle [118]. In this case, we can use headway as our notion of “too close” to the target.

A commonly used minimum safe headway value is 2s [119], so that will be our starting

point. Deciding how to represent the ACC feature commanding acceleration is more diffi-

cult. This is a part of the intent estimation problem discussed in Section 3.4.1.1. Before we

make a decision on how we will represent this, it’s best to inspect the system and see what

state is available to work with.

Armed with this general idea for a rule, we can inspect the system documentation and

test logs to identify the observable state which we will use to monitor this property. For

this system, we find an obstacle tracking feature which provides us with (among other

values) targets, distances, and relative velocities. It turns out that our exported log values

do not include the vehicle speed. This provides an opportunity to demonstrate using the

semi-formal interface to utilize what observable state is available. Instead of checking the

headway directly with our desired headway time, we will use the ACC set speed and our

desired headway time to calculate our desired following distance which we can compare to

the actual following distance. We also have ACC messages which contain activation state,

engine torque requests, target speeds, etc. As we have done previously, we can start by

using an increase in ACC torque request as a metric for ACC acceleration.

Because the obstacle tracker provides separate messages for each of its tracking chan-

nels, we have two options for monitoring this data. We could create a rule for each channel,

monitoring them independently. We could also use the semi-formal interface to choose the

in-path obstacle and fill the propositions with the appropriate channel’s values so we only

need to monitor a single policy. These two options may not have the same meaning de-

pending on the implementation. One difference that needs to be accounted for is if there is

a lane change by the host vehicle or target vehicles such that the host is always behind a tar-

135



CHAPTER 6. MONITOR EVALUATION

Table 6.3: Propositions for headway specification

Proposition Name System Variables Mapping
V ehInPath Obstacle X In Path message Boolean Choice
HeadwayLT2s Obstacle X Distance

ACC Driver Selected Speed
Compare distance to speed calcu-
lated headway

ACCAccel ACC Torque Request History Differential

get vehicle. The version with independent rules for each channel will not see a continuous

headway in this case whereas the merged rule may. If this is seen as a continuous headway

a violation could be detected that is caused by following two separate vehicles too closely

for too long.

Generally we would suggest using separate rules to keep the semi-formal interface as

simple as possible, but here we will use the merged version to demonstrate some of the

semi-formal interface’s power. Our policy rule is thus (V ehInPath∧HeadwayLT2s)→

♦[0,200]�[0,100]¬AccAccel. Informally, if there is a vehicle in our path and the headway is

less than two seconds, then in the next 200ms there must exist the start of a 100ms duration

where the ACC torque request is not increasing. The timing durations will likely need

adjustment. We need them to allow for the component’s response time and have some

margin for small transients. We have just picked “reasonable” values until we have more

information.

The policy rule is straightforward here, but the semi-formal mapping is more involved.

In this case the mapping requires multiple system state variables to be used in the creation

of individual propositions. Table 6.3 describes the propositions and the inputs we will

create them with.

Checking this rule over the test logs, we find 21 logs which contain violations. In-

specting a few of these logs, we find some where the system seems to be behaving in a

136



CHAPTER 6. MONITOR EVALUATION

reasonable, but not specification satisfying, way. In these cases when the distance gets

smaller towards the rule’s threshold the torque requests are also decreasing until no more

torque is being requested. Since it looks like the system is behaving reasonably, we can

try lengthening the duration of the eventually subforumla, giving the ACC more time to

respond to the small headway.

Increasing the eventually duration to 500ms and then 1s removed many but not all of

the violations. Assuming this specification rule is reasonable (i.e., that the headway should

always recover in some set amount of time), we have either found a real problem or one of

our approximations is wrong. We could continue trying to alter the specified rule, perhaps

changing our headway approximation or choosing a new method to decide the ACC is

accelerating besides any increase in torque. At this point, however, we would be best

served by finding more information about the system and whether this rule is reasonable or

that we are specifying a behavior that is not required of the system.

6.3 Embedded Monitor

To evaluate the embedded monitor we need to check an actual CAN bus. Since we did

not have access to a real system with CAN and a data dictionary to monitor, we instead

performed real-time replay of timestamped CAN logs captured during testing of a real

system onto a bench CAN bus which the monitor was connected to, as shown in Figure

6.8.

The system under test that provided the logs is an autonomous heavy truck which is be-

ing designed for use in vehicle platoons. The system has multiple internal buses, some CAN

and some Ethernet, connecting different system components. The logs we monitor are from

137



CHAPTER 6. MONITOR EVALUATION

C
A

N
 B

u
s

Figure 6.8: CAN replay setup

robustness testing of the interface controller, so we focus on its CAN bus which contains

communication between the interface controller and the primary vehicle controller. The

logs contain both normal operation as well as some operation under injected robustness

testing. During robustness testing, the testing framework can hijack targeted network mes-

sages on the bus to inject testing values.

A PC was connected to a PCAN-USB Pro [120] device which provides a USB interface

to two CAN connections. One CAN channel was used as the log replayer, while the other

was used as a bus logger for analysis purposes. We performed log replay with a PC-

based script which would take a test log and replay it on the CAN bus based on the log’s

timestamps. A separate script used the second CAN connection to log the CAN network

traffic. The replay timing is based on a busy-wait using the log timestamps. We compared

the replayed log timings to the original test logs to ensure this replay was accurate. The

percent error in message timestamps relative to the start of the message in our longest logs

had an average of less than 0.01% error. The absolute error was generally sub-millisecond,

which is accurate enough for our 25ms monitor with its greater than 50ms minimum time

step resolution.

138



CHAPTER 6. MONITOR EVALUATION

Rule #
Informal Rule
BMTL

0
A feature heartbeat shall be received every 500ms
HeartbeatOn→ ♦[0,500ms]HeartBeat

1
The interface component heartbeat counter is correct
HeartbeatOn→ HeartbeatCounterOk

2
The vehicle shall not transition from manual mode to autonomous mode
¬((�[1,1]IntManualState) ∧ IntAutoStat)

3
The vehicle controller shall not command a transition from manual mode to
autonomous mode
¬((�[1,1]V ehManualModeCmd) ∧ V ehAutoModeCmd)

4
The vehicle shall not transition from system off mode to autonomous mode
¬((�[1,1]IntSDState) ∧ IntAutoStat)

5
The vehicle controller shall not command a transition from system off mode
to autonomous mode
¬((�[1,1]V ehSDModeCmd) ∧ V ehAutoModeCmd)

Table 6.4: CAN replay monitoring specification

6.3.1 Rule Elicitation

For this system we did have requirements documentation which could more directly lead

to a monitoring specification. Since we wanted to monitor the interface bus, we identified

requirements which we could monitor or partially monitor based on the state available on

this bus. The specifications we used on the embedded monitor are shown in Table 6.4 and

the propositions used in these rules are described in Table 6.5.

The rules were derived from the vehicle safety requirements documentation. Limited to

the observable state on the interface bus, we used the user interface LEDs as proxies for the

actual system state. This is an approximation we would feel is reasonable in most systems,

and in this case there were also safety requirements which state that the output LEDs should

be correct. This provides us more assurance that the approximation is reasonable.

Rule #0 is a heartbeat detection which ensures that the interface component is still run-

139



CHAPTER 6. MONITOR EVALUATION

ning (essentially a watchdog message). Rule #1 is a second component of this check. The

system’s heartbeat message contains a single heartbeat status bit which we checked di-

rectly in Rule #0, but the message also has a rolling counter field. We used the semi-formal

interface to create a proposition that represents whether the counter is incrementing cor-

rectly (i.e., one value at a time). To block false-positive violations during initialization, we

blocked these rules from being checked until after the first heartbeat message was received

by creating a guard propositionHeartbeatOnwith the semi-formal interface. Initialization

issues are discussed in more detail in Section 6.4.0.4.

We also watched the system state for illegal state transitions. Although the actual

mode decisions and commands are on a different bus, we can still monitor the system

state through the user interface LEDs which show the mode state. We created rules for

two of the illegal transitions, from manual mode to autonomous driving and from system

off to autonomous driving. We independently checked both the vehicle controller’s LED

command messages and the interface’s LED status message for these transitions.

The proposition mappings here were straightforward. The LED command and sta-

tus messages were single bit fields and we checked the heartbeat’s single bit status mes-

sage. We checked the rolling heartbeat counter for consistency (i.e., that it counted up and

wrapped correctly) by comparing it against the previously seen value in the semi-formal

interface. We also created the guard HeartbeatOn which is false until the first heartbeat

message is seen, and true from then on. Using a guard proposition is our primary method

to implement unbounded since/until type rules within our bounded logic. If we had un-

bounded operators we could use the formula (♦[0,500]Heartbeat) S (Heartbeat) instead

of a mode-based guard proposition, but without unbounded operators using guard proposi-

tions to enable or disable a formula is a reasonable replacement.

140



CHAPTER 6. MONITOR EVALUATION

Table 6.5: CAN replay propositions

Proposition Name System Variables Mapping
HeartBeat Feature Status Message

Heartbeat field
Fresh direct boolean

HeartbeatOn Interface HB message System Mode
HeartbeatCounterOk Interface HB message Comparison with Past Value
V ehManualModeCmd Vehicle command message Direct Boolean
V ehAutoModeCmd Vehicle command message Direct Boolean
V ehicleSDModeCmd Vehicle command message Direct Boolean
IntManualStat Interface status message Direct Boolean
IntAutoStat Interface status message Direct Boolean
IntSDStat Interface status message Direct Boolean

6.3.2 Monitoring results

We monitored the CAN log replays on our test CAN network with the specification dis-

cussed above. To capture violations for analysis we configured the monitor to send a CAN

message denoting the violated policy when violations were detected. These violation mes-

sages were rate limited to one message per second to allow the violation message to have a

high CAN priority without letting it take over the network.

The monitor found heartbeat violations in the logs captured during robustness testing.

Three different types of heartbeat violations were identified after inspecting the monitor

results. The first is a late heartbeat message. In one of the robustness testing logs the

heartbeat message was not sent on time, which is clearly a heartbeat violation. Figure 6.9

shows the heartbeat counter values and the inter-arrival time of the heartbeat messages over

time for this violation. We can see here that the heartbeat counter did in fact increment in a

valid way, just too slowly.

The second violation is on-time heartbeat status message but the heartbeat status field

is 0. We do not know from the available documentation whether a bad status in an on-time

141



CHAPTER 6. MONITOR EVALUATION

900 1000 1100 1200 1300 1400
Elapsed Log Duration (s)

0
50
100
150
200
250
300

Co
un

te
r V

al
ue

Heartbeat Counter Values

900 1000 1100 1200 1300 1400
Elapsed Log Duration (s)

0

5

10

15

20

M
es
sa
ge

 In
te
ra
rr
iv
al
 T
im

e 
(s
)

log file switchover,
missing message

Heartbeat Message Interarrival Time

Figure 6.9: Heartbeat counter values over time

142



CHAPTER 6. MONITOR EVALUATION

message with a good counter is valid or not. So without more information we cannot tell

whether these violations are false positives or not. This is worthy of further investigation.

The last type of violation is a bad counter. We have defined a good counter as one which

increments by one every message up to its maximum (255 in this case) before wrapping

back to zero. Every consecutive heartbeat status message must have an incremented heart-

beat counter or a violation will be triggered. Figure 6.10 shows the counter value history for

one of the traces with a heartbeat violation caused by a bad counter value. Further inspec-

tion of this violation showed that the bad counter values were sent by the testing framework

rather than the actual system. In this case, the network traffic the monitor is seeing is not

real system state but actually it is messages being injected by the testing framework. This

is not a real violation (since the violating state is not the actual system state), and so we

consider this a false positive violation.

Different counter restrictions could also be used, such as allowing unchanging as well

as incrementing values or requiring an increment to occur within a time threshold rather

than every message. Once again, without documentation to point us towards the right

restriction, all we can do is try a restriction and after seeing the monitoring results decide

whether we believe our restriction is accurate or causes too many false positives.

There were also violations of the transition rules, but these, similar to the heartbeat

counter violation, also turned out to be false positives triggered by message injections by

the robustness testing harness. Since the monitor checks network state, if we perform

testing that directly affects the values seen on the network (such as injection/interception

of network messages) we may detect violations which are created by the testing framework

rather than the system. This is a common issue when using monitors as a test oracle with

some sort of fault or behavior injection – the monitor needs to know which state is from

143



CHAPTER 6. MONITOR EVALUATION

0 100 200 300 400 500 600 700 800
Elapsed Log Duration (s)

0

50

100

150

200

250

300

C
o
u
n
te

r 
V
a
lu

e

Heartbeat Counter Values
Testing Induced False Positive

Figure 6.10: Bad heartbeat counter values

the test and which is from the system. Information about the test configurations can be

used to filter out these types of false positives which arise from test-controlled state. This

type of filtering can be automated if the test information can be input to the monitor, either

directly on the network (e.g., adding a message value to injected messages) or through a

side-channel (i.e., building a testing-aware monitor).

Comparing the violation messages from the monitor with the actual network state we

can see the monitor’s detection speed. The deteection time for the monitor should approx-

imately be the monitor’s period plus the time to perform the monitoring and the time to

send the detection message once the violation is detectable. This is approximately two

monitoring periods (given that the time to send a high priority message is negligable). This

bears out in the replay testing, where the violation messages come approximately 555ms

after the last good heartbeat message, which is a 55ms response time and close to double

the monitor’s 25ms period.

144



CHAPTER 6. MONITOR EVALUATION

6.4 Lessons Learned

In this section we discuss some lessons learned from the evaluation of the monitor imple-

mentation. In particular, we look at four important lessons:

1. The optimizations and trace values affect monitor execution time.

2. The monitor specification quality depends on the quality of system requirements and

documentation from which it is derived.

3. Detection accuracy, especially handling false positives, depends on an accurate mon-

itor specification.

4. The monitor specification must take state initialization and system modes into con-

sideration.

6.4.0.1 Optimizations and Traces

Checking the artificial traces has shown that the algorithm scales about as expected. In-

creased formula durations and additional temporal subformula (which means saving more

history) can cause increases in monitor execution time per step. The two major optimiza-

tions we implemented, intervals and the extended logic, help keep the monitor execution

time down in the face of these parameters. Interval structures keep the execution time lower

as temporal durations increase and the extended logic keeps the required monitor storage

(i.e., number and size of history structures) down.

Another important thing to note is how the specific trace values affects the execution

time. The difference between best and worst case traces can be very large. Because formula

duration and number of checks are the biggest contributors to execution time, bad traces

which leave many residues (requiring a lot of checks) cause much worse performance than

145



CHAPTER 6. MONITOR EVALUATION

good traces which may only require one single residue check per step even for complex

formula. It is possible, and may be desired, to write specification rules designed specifically

to avoid worst-case behavior based on the known usual state of the system. Modifying rules

with this in mind may help make worst-case traces either extremely unlikely or even less

bad.

6.4.0.2 System Requirements

It is clear that having accurate and complete requirements to derive the monitoring spec-

ification is key. The usefulness of monitoring results stems from having a specification

that provides a useful envelope of system behavior. If the system requirements can be

used to generate the formal monitoring specification directly then many of the specification

elicitation and exploration issues we saw do not exist. Good requirements need a full un-

derstanding of the scope of observable system state, including the available sensors, sensor

accuracy, and contain explicit state requirements rather than implicit intent. Less complete

requirements can obviously still be used, as we showed by performing monitoring essen-

tially without written requirements. Building a monitor specification that isn’t directly gen-

erated from the system requirements requires experience, time spent exploring the available

system information (both documentation and monitor-based exploration), and even some

luck that necessary and useful system properties are observable. This is especially apparent

when identifying the right system state and proxy value definitions. Accurately building

the system trace so it best represents the ground truth of the system depends heavily on a

complete understanding of the system itself.

146



CHAPTER 6. MONITOR EVALUATION

6.4.0.3 Detection Accuracy

When building these higher-level monitoring specifications we tend to avoid many impor-

tant false-negatives because the specification rules explicitly define the bad state we wish to

identify. False-positives, on the other hand, are harder to deal with because the systems can

violate these rules in small, interesting ways. Each identified false-positive violation has

to be removed individually by adjusting the specification, which can be time consuming

unless common specification misunderstandings are identified. This specification tuning is

a difficult part of specification building which depends heavily on how exact the system

requirements describe the actual system behaviors. The more thoroughly the requirements

describe the actual system behavior, the easier it is to specifically include only true vio-

lations into the monitor specification. For testing purposes, false-positive detections may

not be a major problem, but they may be costly on a deployed monitor which can trigger

recovery actions. In these cases, avoiding these types of false positives is paramount.

In the embedded monitor example, we had requirements documentation and straight-

forward rules which allowed us to create a monitor specification. But even in this situation

we were unsure whether an on time but zero-valued heartbeat status counted as a missing

heartbeat. This is a situation where a full requirements specification (or more likely, access

to knowledgeable designers) which explains what constitutes a valid and invalid system

behavior would be necessary.

6.4.0.4 Initialization

An issue that arises out of our use of invariants as specification policies is that we must

ensure that our specifications are designed to actually be satisfied by the system at all times,

including initialization. This means that in practice, most policies must be guarded by some

147



CHAPTER 6. MONITOR EVALUATION

state or action. Many system properties do not hold during system initialization, and even

for properties that do hold the network-based view of the system state might not yet show

a fully correct system state. This points towards a careful choosing of value initializations

in the monitor to ensure that the monitor doesn’t trigger specification violations before it

sees real system state.

We can see this in action with our HeartbeatOn guard from the embedded monitor

example. Although we’d expect a component heartbeat to be the type of property that is

actually invariant across system execution, it’s possible that some system components can

be started before the heartbeat component. This can cause a missing heartbeat failure to

be detected even though the component which is supposed to send the heartbeat hasn’t

started executing yet. Depending on the situation, different guard approaches may be used,

including waiting for the first target component message or not starting the monitor until a

specific system state is reached.

For the embedded monitor example, we did not start the monitoring until the first CAN

message was received. This still does not protect against the early missing heartbeat for

some logs where the heartbeat component wasn’t immediately started. We added the more

explicit guard to protect against this. We also see somewhat hidden guards in the offline ve-

hicle logs example. Both lane keeping rules (#1 and #2) are guarded by the ALCEngaged

proposition to ensure the feature is enabled when we check its behavior.

148



Chapter 7

Discussion

Real systems and operating environments can vary widely, making generalizations about

embedded systems risky. The caveat system-dependent is common when discussing pos-

sible trade-offs and design decisions. Because of this, we generally attempt to make rea-

sonable choices and provide information relating the possible tradeoffs inherent in any

decision. This chapter presents more discussion on some of our design decisions and as-

sumptions, explaining trade-offs and the justifications for our choices.

7.1 Design Issues

Our design and implementation choices were heavily motivated by the autonomous ground

vehicle use case. This led to some design choices which may not be applicable to all other

systems. These assumptions and design decisions are discussed here.

149



CHAPTER 7. DISCUSSION

7.1.1 Monitor Correctness

We have made the helpful assumption in this thesis that the monitor implementation and

input data is correct.

7.1.1.1 Monitor Correctness

We utilize a proven monitoring algorithm which ensures that we get prompt and correct

answers, but this does not protect the implementation, specification, or system mapping

from being incorrect. Instead, we assume that the monitor implementation is correct, or

more importantly, could feasibly be made correctly if desired. Given this, the trick becomes

creating the specification and mapping that correctly checks the desired properties.

As a research prototype, our monitor implementation inevitably has some bugs. But due

to its relative simplicity, we can envision the monitor implementation being built correctly

through formal techniques and strong software design process. Comparatively, the monitor

implementation is much simpler than the systems it is designed to monitor. This means that

regardless of the level of design rigor, we can expect that the monitor can be made near-

perfect in a much less costly way than the target system (e.g., an automobile). At worst, it

will be easier to make the monitor perfect than the system perfect for any nontrivial system.

The transfer of criticality possible by using a monitor as a fault detector which can trig-

ger recoveries can lead to a reduction of the size of critical system components. In the end

case, if system safety relies entirely on a working monitor (including a perfect recovery

mechanism), then the target system itself is no longer safety-critical at all (except the re-

covery mechanism) and can be made to any desired level of quality. In this case, instead of

safety, the correctness of the target system only affects system availability and the useful-

ness of the output. Reducing the amount of system that is critical means more effort can be

150



CHAPTER 7. DISCUSSION

spent ensuring that the smaller critical components are actually correct, which should im-

prove safety for the entire system. This does rely on a trusted recovery mechanism, which

is discussed more in 7.3.1.

7.1.1.2 Input Data

The output of any analysis method, including a runtime monitor, can only be as correct as

the input fed into it. This is commonly referenced as “garbage-in, garbage-out”. In our

case, this means that monitoring results are only as accurate, or real, as the network bus’s

system state model is correct. An inaccurate network model can make a monitor essentially

worthless. We will call the monitor’s network-based view of system the network model.

There are two main ways the network model can affect the correctness of our monitor

output. The first is simply that the network model does not match the actual system, which

can occur due to system faults or design errors. If the system state that we are monitor-

ing (the network model) is not equivalent to the actual system state, then obviously our

monitor results are also not equivalent. The other, slightly more insidious problem is that

a misunderstanding of the network model affects the overall meaning of the monitoring

specification. This is technically a fault of the specification, but we will discuss it here

since it can cause a similar outcome.

The primary potential causes of incorrect network state are network faults, system

faults, and design errors. Network faults such as dropped or mangled messages can cause

system state to be lost or delayed (which can be just as bad as lost in real-time systems).

Some of these faults may be detected directly by the monitor (e.g., dropped/lost heartbeat

messages can be detected), but others can cause inconsistent monitor state which can make

the monitor results innacurate. A faulty system or component on the network which does

151



CHAPTER 7. DISCUSSION

not fail silently may also cause an incorrect value to be present on the bus. Lastly, de-

sign errors can also cause a bad network state. Problems including mismatched units or

incorrectly specified/implemented messages can leave the network model in a inaccurate

state. One solution to help monitoring in the face of potentially faulty network state is uti-

lizing monitor-dedicated sensors. Extra sensors can be used to generate system state used

to perform sanity checks. For example, rotary encoders can be added to a wheel to obtain

low-resolution wheel speed which can be cross-checked with the network model state.

All of these issues are expected in distributed systems and there are plenty of known

protection mechanisms. The level of assurance needed is system dependent, but it is clear

that the level of fault-tolerance in the network is a major component to the trustworthiness

of a network-based monitor. A useful notion about these systems is that they generally

require some amount of fault-tolerance for functional reasons regardless of the monitor. So

we know that the network is at least accurate enough for the system to work as designed.

Obviously, this idea is of little help in the face of systems which aren’t designed to the

desired level of fault tolerance that we want to obtain from the monitor, but it is a start.

For testing, assuming the network is reliable may be reasonable due to the small exposure

time, but on a deployed system with the monitor actually affecting system safety it may

not be. Whether the target network is correct enough for our needs or not, fault-tolerance

for distributed systems is a well researched area and plenty of techniques exist for different

fault models (although other design constraints may cause problems) [121, 122].

The mismatch between the actual meaning of the network model and the meaning as-

sumed by the specification can be subtle yet can lead to monitoring problems. These are

errors in translating the requirements into a specification. They arise when the true mean-

ing of an observable network state is misunderstood. Examples of this mismatch include

152



CHAPTER 7. DISCUSSION

treating control requests as actions or using the wrong version of a message value (e.g., if

many different system nodes send messages denoting the same system-wide property). Our

offline test vehicle logs include multiple ACC engaged message values being sent from dif-

ferent system components (human-machine interface controllers, ACC controllers, engine

controllers, etc.). Choosing to monitor the wrong message value could lead to undetected

violations if the monitored value does not represent the system state that the specification

writer expected. These errors can be difficult to notice since the validation steps used to

check them may include the same misunderstandings.

Avoiding these errors requires careful process with strong validation. This ultimately

inherits from the difficulties of mapping the system to the monitor model. Care must be

taken to ensure that this mapping and the specification agree.

7.1.2 Monitor Consolidation

Fully isolating a system monitor provides many benefits, including protection from com-

mon faults and allowing independent certification. True full isolation is rarely used, except

in the most critical of systems. Often some resources, whether power or even the physical

enclosure, is shared between system components to reduce costs.

A separate hardware monitor has a strong use case as a testing oracle, since it can

be temporarily connected to an existing system without requiring much design effort for

integration.

In some systems the costs associated with extra physical hardware can be debilitating.

Commercial automobiles are moving towards more feature consolidation onto fewer con-

trol units to save costs [123]. Our monitor framework can easily be put into a network

gateway or consolidated ECU as an extra task, as demonstrated by the PC-based monitor

153



CHAPTER 7. DISCUSSION

version. Doing so can reduce the validity of independence arguments for correctness, but

modern real-time operating system process isolation might work well enough in practice.

Again, just as with the argument for network value correctness, if the system designers trust

combining multiple system processes on a single chip, it is likely also reasonable to trust

combining the monitor with similar tasks. Utilizing an extra core for the monitor could iso-

late an integrated monitor, mitigating the monitor’s effect on system timing as well as the

system’s effects on the monitor. This type of integration does remove the ability to partition

criticality onto just the monitor, but performing monitoring, even if not as independent as

ideal, still can provide the benefits of fault detection.

7.1.3 Semi-Formal Interface

The semi-formal interface provides flexibility and power to the monitor, especially in the

face of real systems which do not always map nicely onto rigid formal frameworks. The

usefulness of being able to define essentially any desired property that can be derived from

the system state is obvious, but we want the monitor specification to be as formal as pos-

sible. Since we don’t know where to draw the line that separates what should be formally

defined and what must be informal to incorporate the real system, we need the semi-formal

interface to be powerful and flexible enough to allow us to move this line ourselves as

needed. If a desired property cannot be fit into the formal specification language, it should

be creatable in the semi-formal interface. We see a similar setup in other monitoring frame-

works which utilize “filters” or similarly named components which generate atomic propo-

sitions to be monitored from the system state. Performing verification on a real system

requires some informal to formal interface that bridges the real system with the verification

trace.

154



CHAPTER 7. DISCUSSION

The monitor checks the specification it is given, no more, no less. Creating the right

specification is the real challenge. While the semi-formal interface provides a way to avoid

the formal aspects of monitoring, even so far as allowing the creation of a completely

informal monitor, it also provides a way to ensure that regardless of how difficult a desired

specification is to write formally we can mold the available system state enough to gain

some amount of formally guaranteed checking. This leaves the balance between informal

and formal aspects of the specification in the hand of the specification writers, who should

have the knowledge available to choose the right balance.

7.1.3.1 Choice of semi-formal semantics

We have provided a suggested semi-formal semantics which limits the semi-formal trans-

formations to simple, common computational elements which provide most of the neces-

sary power to extract useful properties from the system state while promoting the use of

the formal specification logic rather than the semi-formal interface.

Our restrictions were chosen based on needs that have arisen in our experience imple-

menting this type of monitoring. We can easily imagine wanting or needing more flexibility

or even more restrictions (e.g., no memory storage, no functions, etc.) which could ease

verification of the interface. A monitor for any system needs the ability to map system

state of different types to monitor propositions, such as copying booleans to a proposition

or comparing an integer to a threshold. There are also more complex transformations such

as comparing a running average of a value to a threshold or comparing system state to a

simple dynamics model that may be necessary in other situations.

Ultimately, it is clear that at some level the real system needs to be mapped to a formal

model if we want to perform formal checks of the system. Exactly what should occur in

155



CHAPTER 7. DISCUSSION

this mapping is still an open question, but we have shown that a semi-formal monitoring

framework which combines an informal mapping with formal checking is viable and useful.

7.2 Time Model

The monitor presented in this thesis is a time-triggered monitor, yet the monitoring algo-

rithm agmon is actually a pointwise asynchronous monitoring algorithm. This is some-

what a quirk of development, but it ends up providing a stronger overall use case for our

monitoring framework.

The time-triggered monitor checks a trace which is a list of periodic snapshots. We

treat the traces as snapshots of events that represent proposition updates. In this way we

can take a pointwise event semantics (i.e., trace of instantaneous update events) and view

the system trace as a series of state intervals between these events. This lets us treat the

trace as a time-triggered interval state trace (i.e., a list of intervals for each state), which is

more intuitive for discussing system state rather than a series of events. This interval model

fits well with time-triggered, state broadcast systems where the current system state values

are periodically broadcast to the network. These value update messages can be used as

the events which update their respective propositions. For example, if we receive a vehicle

velocity message stating the velocity is now 10m/s, the constant state model treats the

velocity as 10m/s until the next velocity message is seen. This model is useful for physical

system state since the real system state must always have some value and it handles actual

instantaneous events as well. To use instantaneous events and keep the interval semantics,

they can be treated as short duration constant states.

When used completely synchronously as shown in this thesis the monitoring speci-

156



CHAPTER 7. DISCUSSION

fications are checked in the intuitive way. The monitoring can also be done completely

asynchronously, where incoming instantaneous events are checked against each other but

the trace doesn’t carry state. If we want to check instantaneous events and constant state

together at the same time, the safest way is to use the synchronous system but give asyn-

chronous events negligible durations. Another more direct way is to build a new trace

model and use a dual algorithm based on agmon where asynchronous messages trigger

an asynchronous check. The semi-formal interface can be used to make asynchronous

propositions not carry state while carrying synchronous values. The heartbeat proposition

in the ARM example worked in a similar way, where a received heartbeat message set the

heartbeat proposition for just the current state (it was not carried over to the next sample).

7.3 Future Work

7.3.1 System Recovery

Once you have a monitor that is capable of correctly identifying when a system is violating

its safety specification, the next obvious step is to enable it to perform recoveries by steering

the system into a safe state.

A simple and straightforward steering strategy for violating systems is to engage an

emergency stop/shutdown (which many systems already have as part of their safety design).

For some violation scenarios and systems this is a perfectly fine response, but many systems

either cannot just be shut down (e.g., aerial vehicles) or prefer a more controlled shutdown

to avoid system damage (e.g., trains, chemical/industrial plants, etc.).

There are many possibilities for doing more elaborate shutdowns such as graduated

warnings, graduated shutdowns (e.g., turning off individual features/subcomponents that

157



CHAPTER 7. DISCUSSION

are faulty) or multiple step controlled shutdowns. Some systems may even want to attempt

to ride-through [124] safety violations if it may be safely possible to improve system relia-

bility. Because what constitutes a desired shutdown is very system dependent in both how

and when the shutdown is performed, steering is an interesting and hard problem.

One of the hardest aspects of performing complex recoveries is that they are initiated

only when the system is faulty, and so the recovery controller needs to be robust to different

fault scenarios. It’s possible that the fault which necessitates recovery also blocks the

preferred recovery tactic. A fault diagnosis and system partitioning which guaranteed that

certain recovery actions are still available given the known set of specification violations

would allow choosing the right recovery actions.

7.3.2 Semi-Formal DSL

The semi-formal interface presented in this thesis is relatively ad-hoc. We recommomend

a set of restrictions but allow any desired transformations. Defining the specification lan-

guage of the semi-formal interface in a more formal and standard way would both encour-

age correct usage and could lead to useful verification techniques on the mapping itself.

An internal domain specific language in the monitor’s implementation language (in our

case C) or one which could be compiled to the target implementation language would be

useful. The features necessary in the interface specification language are common across

systems. We would need to define the set of basic operators, a set of simple variable types,

a simple syntax for performing calculations over sets of variables, and the semantics for

simple state machines.

Before a “final” DSL can be defined, many design decisions would need to be better

understood. Two important decisions are the basic language types and allowed complex-

158



CHAPTER 7. DISCUSSION

ity. A common set of basic data types which is adequate for specifying the interface for

any target system and also has a clean mapping into the monitor implementation language

would need to be identified. It is important that the values from the system can be cleanly

represented in the interface specification, and perhaps more importantly, that the interface

implementation be easily generated from the DSL. If the DSL contains types that are hard

to implement in the target monitor, bugs and misunderstandings are more likely.

Understanding the correct computational constraints would also be important. What

operators are allowed? How does the language allow iteration, branching (e.g., if mode1

then set val2, otherwise set val3), and other dynamic computation constructs while still

restricting the interfaces complexity? If the DSL is not simplified in a way that improves

verification of the interface, then there is no reason to use the DSL instead of manually

designing the interface. The tradeoff between necessary complexity and verifiability is

fundamental, and finding the right combination that fits a general set of target systems is

nontrivial.

159



CHAPTER 7. DISCUSSION

160



Chapter 8

Conclusion

As safety-critical systems become more and more complex, including the use of software,

the importance of strong system verification has increased dramatically. These systems

have unique constraints which affect the use of existing runtime verification techniques,

especially the use of more COTS, black-box components.

8.1 Thesis Contributions

To address the difficulties in monitoring safety-critical embedded systems, this thesis makes

the following contributions:

8.1.1 Identifying suitable runtime verification architecture

I have identified a suitable runtime verification architecture for monitoring safety-critical

embedded systems.

Based on the motivation to create a bolt-on monitor for ground vehicle architectures,

161



CHAPTER 8. CONCLUSION

I have presented a monitoring architecture which uses an external bus monitor connected

to the target system using a semi-formal interface. The semi-formal interface provides

flexibility to handle unique system-dependent properties.

The primary motivations for my monitor architecture are presented in Section 3.1. The

monitor architecture was chosen specifically for distributed systems with broadcast buses

and black-box components which is a common architecture in modern ground vehicles.

Although the architecture was chosen to directly fit these systems, our system model is

generic enough that different target system architectures can be accommodated through

instrumentation. Chapter 3 details the identified monitoring architecture, discussing design

decisions and how the constraints of safety-critical systems can be appropriately handled.

Passive external monitors have many benefits that line up well against the constraints

imposed by safety-critical embedded systems. Isolating the monitor from the target system

helps ensure that system functionality is not compromised by the inclusion of the monitor.

We have shown that the presented architecture is suitable for performing runtime mon-

itoring of safety-critical systems by applying our monitor to example systems discussed in

Chapter 6.

8.1.2 Monitoring Framework

I provide a monitoring framework based on a formally proven monitoring algorithm and

an informal system interface

I have presented an end-to-end framework which fits the identified runtime verification

architecture into the more broad needs of actual monitoring integration. This includes not

only the monitoring algorithms and specification logic but guidelines for the semi-formal

interface, and design patterns for specifications and a monitor safety case.

162



CHAPTER 8. CONCLUSION

Chapter 4 presents the formal definitions that make up our monitoring framework. A

formal, bounded metric temporal specification logic is presented in Section 4.1.2. Our ag-

gressive runtime monitoring algorithm is presented in Section 4.3. It performs an iterative

check of a given specification against a trace step by step, so it can be used at runtime

to check a trace of sampled system state. Section 4.4 contains correctness proofs of this

algorithm, showing that the algorithm gives both correct and prompt answers.

To improve usability two different types of design patterns were presented. I have cre-

ated a set of specification patterns which can be used to translate informal system require-

ments into our bounded temporal logic. I also provide a safety case pattern and example

instantiation of the pattern as a starting point to creating a safety case which argues that

incorporating a monitor based on this framework into an existing system is safe. These

patterns are discussed in Section 3.6 and Appendix B.

An implementation of our monitor framework is detailed in Chapter 5. The implemen-

tation contains two different monitors (a PC-based log monitor and an embedded CAN

monitor) based on a portable monitor code library. The implementation fulfills some stan-

dard safety-critical embedded constraints including avoiding recursion and no dynamic

memory.

8.1.3 Feasibility of real-time monitoring

I demonstrate the feasibility and show performance characteristics of the monitoring frame-

work on multiple diverse systems

Runtime monitoring is a well researched field, but few monitors for safety-critical em-

bedded systems that can be used in real-time exist. Chapter 6 contains an evaluation of the

monitor implementation, detailing performance characteristics of the monitor framework

163



CHAPTER 8. CONCLUSION

and showing that real-time monitoring of a CAN bus is feasible.

An offline log monitor was used to show performance characteristics of our monitor-

ing framework with artificial traces in Section 6.2. The offline monitor was also used to

check test result logs from a commercial research lab’s autonomous research vehicle. We

also evaluated an ARM based network monitor with CAN logs replayed onto a live CAN

network, showing that real-time runtime monitoring of a CAN network with realistic spec-

ifications is feasible using commonly available embedded microcontrollers.

164



Appendix A

Acronyms

ACC Adaptive Cruise Control

ALC Autonomous Lane Centering

AST Abstract Syntax Tree

BMTL Bounded Metric Temporal Logic

CAN Controller Area Network

COTS Commercial off the Shelf

CSV Comma Separated Values

DSL Domain Specific Language

ECU Electronic Control Unit

FMEA Failures Modes and Effects Analysis

FMECA Failures Modes, Effects, and Criticality Analysis

FaCTS Functionality, Certifiability, Timing, Size, Weight, and Power

FSRACC Full Speed Range Adaptive Cruise Control

FTA Fault Tree Analysis

GSN Goal Structuring Notation

HAZOP Hazards and Operability Analysis

HIL Hardware-in-the-Loop

ISR Interrupt Service Routine

LTL Linear Temporal Logic

MaC Monitoring and Checking

MTL Metric Temporal Logic

165



APPENDIX A. ACRONYMS

MEDL Meta Event Definition Language

MOP Monitor Oriented Programming

PEDL Primitive Event Definition Language

RV Runtime Verification

SFTA Software Fault Tree Analysis]

SIL Safety Integrity Level

SFMEA Software Failure Modes and Effects Analysis

SUO System Under Observation

SWaP Size, Weight, and Power

TTP Time-Triggered Protocol

PHA Preliminary Hazard Analysis

UML Unified Markup Language

166



Appendix B

Specification Patterns

167



APPENDIX B. SPECIFICATION PATTERNS

Table B.1: Pattern 1.a Bounded Response

Name 1.a Bounded Response
Intent To describe a relationship between two states where there

must be an occurance of the second within a bounded amount
of time of an occurance of the first

Example If the unlock doors button is depressed then the driver side
door must be unlocked within 500ms

Ex Formula UnlockDoorsPressed -> <0,500>
DriverDoorUnlocked

Formula BMTL T → ♦[l,h]E
ASCII T -> <l,h> (E)

Variables

T Triggering event/state
E Triggered event/state
l Minimum time between occurance of T and occurance of E
h Maximum time between occurance of T and occurance of E

Description This template is used for the common basic pattern where
some state requires that another state be occurring in some
bounded amount of time. As an invariant, note that any time
t the guard condition T is true, then E must be true at some
point in the future interval [t+ l, t+ h]

Known Uses This pattern can be used any time an event requires a change
in state, such as user input (button/pedal presses, etc.) which
cause a system mode change (turning off a feature, beginning
some transition) or requires a bounded response. Care should
be taken that one of the more specific rules is not actually
desired

Limitations Temporal Note that T and E only need to be true for a single time step.
If a specific duration is required then a more specific rule
should be used

See Also 1.b Bounded Response with Duration

168



APPENDIX B. SPECIFICATION PATTERNS

Table B.2: Pattern 1.b Bounded Response with Duration

Name 1.b Bounded Response with Duration
Intent To describe a relationship between two states where there

must be an occurance of the second state for a specified du-
ration within a bounded amount of time of an occurance of
the first state

Example If the brake pedal is depressed then within 500ms cruise con-
trol should be disabled and stay disabled for at least 200ms

Ex Formula BrakePressed -> <0,500> [0,200]
ACCDisabled

Formula BMTL T → ♦[l1,h1]�[l2,h2]E
ASCII T -> <l1,h1> [l2,h2] (E)

Variables

T Triggering event/state
E Triggered event/state
l1 Minimum time between occurance of T and occurance of E
h1 Maximum time between occurance of T and occurance of E
l2 Time between start of E and start of required E duration
h2 Time between start of E and end of required E duration

Description This template is used for the common basic pattern where
some state requires that another state occur for a duration in
some bounded amount of time.

Known Uses This pattern can be used any time an event requires a re-
sponse state which must occur for a specified duration. This
rule is often the correct choice instead of the bounded re-
sponse, because a little duration ensures that the response
or state change actually holds (i.e., it isn’t a short, transient
state).

Limitations Temporal Note that with this rule, the duration of E only must start
within the first eventually bounds. It does not need to be
finished within those bounds.

See Also 1.a Bounded Response

169



APPENDIX B. SPECIFICATION PATTERNS

Table B.3: Pattern 1.c Bounded Response with Cancel

Name 1.c Bounded Response with Cancel
Intent To describe a relationship between two states where the oc-

curance of a triggering state requires the occurrence of a sec-
ond state within a bounded time unless a cancel event occurs.

Example If automated lane centering is enabled the vehicle should re-
turn to the lane center within 5s unless ALC is canceled.

Ex Formula ALC -> <0,5s> (VehicleCentered ||
ALCCancel)

Formula BMTL T → ♦[l,h](E ∨ C)
ASCII T -> <l,h> (E || C)

Variables

T Triggering Event/State
E Triggered Event/State
C Cancel Event/State
l Minimum time between occurance of T and occurance of E
h Maximum time between occurance of T and occurance of E

Description This template is used for the pattern where some state
requires that either another state occur in some bounded
amount of time or an event cancel occur.

Known Uses This pattern can be used any time an event requires another
event or state in a bounded amount of time but some other
state change can cancel the necessary response. This pattern
adds a cancel to the bounded response pattern, which is im-
portant for policies which are generally required but can be
canceled by another event. Canceling events include explicit
cancels (e.g., turning off the feature that requires a request)
as well as events or state changes which make a rule no long
apply. For example, a rule that requires a specific headway
be regained within a certain amount of time may be canceled
by a new vehicle cutting infront of it.

Limitations Temporal This rule requires the cancel occur within the same bounds
as the target. Many cancel events should use a ¡0,h¿ bound
instead to ensure that any cancel that occurs before the time
limit is caught. This rule would be T → ((♦[l,h]E)∨♦[0,h]C)

See Also 1.a Bounded Response
1.d Bounded Response with Duration and Cancel

170



APPENDIX B. SPECIFICATION PATTERNS

Table B.4: Pattern 1.d Bounded Response with Duration and Cancel

Name 1.c Bounded Response with Duration and Cancel
Intent To describe a relationship between two states where there

must be an occurance of the second state for a specified du-
ration or a response cancel within a bounded amount of time
of an occurance of the first state

Example If ACC is enabled and the target headway is less than 2s, then
a 2s headway should be regained for a duration of 1s within
5s

Ex Formula (ACCEnabled && HeadwayLT2s) -> <0,5s>
([0,1s] ∼HeadwayLT2s) || CutIn

Formula BMTL T → ♦[l1,h1](�[l2,h2]E) ∨ C)
ASCII T -> <l1,h1> ([l2,h2] (E) || C)

Variables

T Triggering Event/State
E Triggered Event/State
C Cancel Event/State
l1 Minimum time between occurance of T and start of duration

of E
h1 Maximum time between occurance of T and start of duration

of E
l2 Minimum delay between end of the outer bound and start of

duration of E
h2 Maximum delay between end of the outer bound and end of

duration of E
Description This template is used for the pattern where some state re-

quires that either another state occur for a duration in some
bounded amount of time or an event cancel occur.

Known Uses This pattern should be used if an event requires a response
state with a specified duration but the response can be can-
celed by another event. This pattern adds a cancel to the
bounded response with duration, which is important for poli-
cies which usually occur but can be canceled by another
event. Canceling events include explicit cancels (e.g., turn-
ing off the feature that requires a request) as well as events
or state changes which make a rule no longer apply. For ex-
ample, a rule that requires a specific headway be regained
within a certain amount of time may be canceled by a new
vehicle cutting infront of it.

Limitations Temporal This rule requires the cancel occur within the same bounds
as the target. Many cancel events should use a ¡0,h¿ bound
instead, as in pattern 1e

See Also 1.b Bounded Response with Duration
1.c Bounded Response with Cancel

171



APPENDIX B. SPECIFICATION PATTERNS

Table B.5: Pattern 2.a Conflicting State

Name 2.a Conflicting State
Intent To describe a property where two states are conflicting and

thus cannot both be true at the same time.
Example The ACC feature should not request both braking and accel-

eration at the same time
Ex Formula ∼(ACCBrakeRequest && ACCAccelRequest)
Formula BMTL ¬(A ∧B)

ASCII ∼(A && B)

Variables
A First Event/State
B Second Event/State

Description This pattern is used for situations where two states or events
are conflicting and cannot both be true at the same time.

Known Uses This pattern is used when there are conflicting system state
properties or events which should not occur together. This
includes directly conflicting requests (e.g., brake and accel-
erate) as well as illegal actions due to modes (e.g., cruise
control enabled while in park).

Limitations Temporal Note that this rule only covers instantaneous state. Many
seemingly conflicting states are actually temporal responses,
e.g., brake and cruise control can happen together when the
brake is first pressed since the cruise control can’t respond
before it’s seen the incoming state.

See Also 2.b Conflicting State Duration

172



APPENDIX B. SPECIFICATION PATTERNS

Table B.6: Pattern 2.b Conflicting State with Duration

Name 2.b Conflicting State with Duration
Intent To describe a property where two states are conflicting and

cannot both be true for some specified duration.
Example Cruise control cannot be enabled for 300ms while the brake

is also being depressed
Ex Formula ∼ [0,300] (ACCBrakeRequest &&

ACCAccelRequest)
Formula BMTL ¬�[l,h](A ∧B)

ASCII ∼[l,h](A && B)

Variables

A First Event/State
B Second Event/State
l Start of Time Bound for State Duration
h End of Time Bound for State Duration

Description This template is used for situations where two states or
events are conflicting and cannot both be true at the same
time for a specified duration.

Known Uses This pattern is used any time there is state cannot be in con-
flict for some specified duration. This includes directly con-
flicting requests (e.g., brake and accelerate) as well as illegal
actions due to modes (e.g., cruise control enabled while in
park). Small durations may be used to create functionally in-
stantaneous conflicting state rules which are more robust to
small amounts of jitter.

Limitations Temporal This pattern uses future time, which makes it useful for com-
posing with other guards or triggering events, but slightly
less useful for direct invariant rules. The past-time version
often makes more sense for pure invariant rules.

See Also 2.a Conflicting State Duration
2.c Past-Time Conlficting State with Duration

173



APPENDIX B. SPECIFICATION PATTERNS

Table B.7: Pattern 2.c Past-Time Conflicting State with Duration

Name 2.c Past-Time Conflicting State with Duration
Intent To describe a property where two states are conflicting and

cannot both be true for some specified duration.
Example Cruise control cannot have been enabled for 300ms while the

brake is also being depressed
Ex Formula ∼ [[0,300]] (ACCBrakeRequest &&

ACCAccelRequest)
Formula BMTL ¬�[l,h](A ∧B)

ASCII ∼[[l,h]](A && B)

Variables

A First Event/State
B Second Event/State
l Start of Time Bound for State Duration
h End of Time Bound for State Duration

Description This template is used for situations where two states or
events are conflicting and cannot both be true at the same
time for a specified duration in the past.

Known Uses This pattern is used any time there is state that cannot be
in conflict for some specified duration. This includes di-
rectly conflicting requests (e.g., brake and accelerate) as
well as illegal actions due to modes (e.g., cruise control en-
abled while in park). Small durations may be used to create
near-instantaneous conflicting rules which can handle small
amounts of jitter.

Limitations Temporal This pattern uses past-time, which makes it useful direct in-
variants because there is no waiting for the event to occur,
which reduces the amount of residue storage slightly. This
pattern will check past state when composed with other pat-
terns, which is useful if we want to check for conflicting state
before a given trigger

See Also 2.a Conflicting State
2.b Conlficting State Duration

174



APPENDIX B. SPECIFICATION PATTERNS

Table B.8: Pattern 3.a No Instantaneous Transition

Name 3.a No Instantaneous Transition
Intent To describe an illegal instantaneous transition.
Example The cruise control mode cannot immediately transition from

Off to Engaged.
Ex Formula ∼ (CruiseEngaged && [[p,p]] CruiseOff)
Formula BMTL ¬(A ∧�[p,p]B)

ASCII ∼ ( A && [[p,p]] B)

Variables

A First Event/State
B Second Event/State
p Monitor Period

Description This template is used for situations where a transition be-
tween states is illegal.

Known Uses This pattern is used any time there are two states that the
system cannot immediately transition between. The pattern
must use the monitor period p as the time bound for instan-
taneous transitions to be disallowed. Other patterns can be
used to limit transitions within a duration.

Limitations Temporal This pattern only checks for instantaneous transitions. If
transitions are disallowed for a certain duration a different
pattern is necessary.

See Also 3.b No Transition within Duration

175



APPENDIX B. SPECIFICATION PATTERNS

Table B.9: Pattern 3.b No Transition within Duration

Name 3.a No Transition within Duration
Intent To describe a transition which is illegal for a set duration.
Example The cruise control cannot be engaged for 250ms after the

brake pedal has been pressed.
Ex Formula ∼ (CruiseEngaged && <<0,250>>

BrakePressed)
Formula BMTL ¬(A ∧ �[l,h]B)

ASCII ∼ ( A && <<l,h>> B)

Variables

A First Event/State
B Second Event/State
l Lower Bound of Limited Duration
h Upper Bound of Limited Duration

Description This template is used for situations where a transition be-
tween states is illegal for some specified duration.

Known Uses This pattern is used any time there are two states that the sys-
tem cannot transition between for some specified duration. If
there is an event or state which precludes some other event
or state for a known amount of time, this pattern should be
used.

Limitations
See Also 3.a No Instantaneous Transitions

Table B.10: Pattern 4.a Always

Name 4.a Always
Intent To describe a proposition which should always be true.
Example Vehicle speed should always be below 100mph
Ex Formula SpeedLT100
Formula BMTL A

ASCII A
Variables A System State/Proposition
Description This template is used for basic invariant properties.
Known Uses This is the most basic pattern for describing simple invariant

propositions
Limitations
See Also 4.b Guarded Always (Implies)

176



APPENDIX B. SPECIFICATION PATTERNS

Table B.11: Pattern 4.b Guarded Always (Implies)

Name 4.b Guarded Always (Implies)
Intent To describe a proposition which should always be true if an-

other specific proposition is true.
Example If cruise control is active, the vehicle speed should always be

above 35mph
Ex Formula CruiseActive -> SpeedGT35
Formula BMTL A→ B

ASCII A -> B

Variables
A Guard State/Proposition
B System State/Proposition

Description This template is used for basic guarded invariant properties.
Known Uses This is a basic pattern for describing simple properties that

are guarded or activated by another simple property. The
second property B will not be checked unless A is already
true. This pattern is used often to check for initialization or
system mode before checking a property.

Limitations
See Also 4.b Guarded Always (Implies)

177



APPENDIX B. SPECIFICATION PATTERNS

Table B.12: Pattern 5.a Periodic State

Name 5.a Periodic State
Intent To describe a proposition which should occur periodically.
Example A component alive message should be received every 400ms
Ex Formula <0,400> Alive
Formula BMTL ♦[l,h]E

ASCII <l,h> E

Variables
E Periodic Event/State
l Delay before start of periodic occurence
h Maximum delay before occurance of event

Description This template is used for periodic events such as heartbearts
or required commands

Known Uses This pattern is used to specify properties that are periodically
required.

Limitations Temporal This pattern uses just an eventually time bound, so it only
requires a single occurance within each period, not a specific
frequency of events. More specific time bounds can be used
to specify event frequency.

See Also 5.b Periodic State with Duration

178



APPENDIX B. SPECIFICATION PATTERNS

Table B.13: Pattern 5.b Periodic State with Duration

Name 5.b Periodic State with Duration
Intent To describe a proposition which should occur periodically

with a specified duration.
Example The flow valve should be closed for at least 1s every 10s
Ex Formula <0,10s> [0,1s] ValveClosed
Formula BMTL ♦[l1,h1]�[l2,h2]E

ASCII <l1,h1> [l2,h2] E

Variables

E Periodic Event/State
l1 Delay before start of periodic occurence
h1 Maximum delay before occurance of event
l2 Minimum delay before start of event duration
h2 Maximum delay before start of event duration

Description This template is used for periodic events such as heartbearts
or required commands that must be active for a specific du-
ration

Known Uses This pattern is used to specify periodic properties that much
hold for some specified duration.

Limitations Temporal This pattern only requires the event duration occur within the
eventually bounds, it does not create a tight event frequency
which can be specified by using stricter eventually bounds.

See Also 5.a Periodic State

179



APPENDIX B. SPECIFICATION PATTERNS

180



Bibliography

[1] T. Kelly, “A systematic approach to safety case management,” SAE 04AE-19,, 2003. (docu-
ment), 2.3.1, 2.1, 2.3.1

[2] G. Leen and D. Heffernan, “Expanding automotive electronic systems,” Computer, vol. 35,
no. 1, pp. 88–93, 2002. 1

[3] P. Koopman, “Embedded system security,” Computer, vol. 37, no. 7, pp. 95–97, July 2004. 1

[4] D. Jackson and M. Rinard, “Software analysis: A roadmap,” in Proceedings of the
Conference on The Future of Software Engineering, ser. ICSE ’00. New York, NY, USA:
ACM, 2000, pp. 133–145. [Online]. Available: http://doi.acm.org/10.1145/336512.336545
1

[5] M. Leucker and C. Schallhart, “A brief account of runtime verification,” Journal
of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293 – 303, 2009, the 1st
Workshop on Formal Languages and Analysis of Contract-Oriented Software (FLACOS’07).
[Online]. Available: http://www.sciencedirect.com/science/article/B6W8D-4TK7X4V-2/2/
0442d2c20315ab050bb913af605cc126 1

[6] R. Butler and G. Finelli, “The infeasibility of quantifying the reliability of life-critical real-
time software,” Software Engineering, IEEE Transactions on, vol. 19, no. 1, pp. 3 –12, jan
1993. 1, 2.4.3

[7] A. Bayazit and S. Malik, “Complementary use of runtime validation and model checking,” in
Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM International Conference on, nov.
2005, pp. 1052 – 1059. 1, 2.4.3.1

[8] S. Mitsch and A. Platzer, “Modelplex: Verified runtime validation of verified cyber-physical
system models,” in Runtime Verification, ser. Lecture Notes in Computer Science,
B. Bonakdarpour and S. Smolka, Eds. Springer International Publishing, 2014, vol.
8734, pp. 199–214. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-11164-3 17
1, 2.4.3.1

[9] A. Kane, T. Fuhrman, and P. Koopman, “Monitor based oracles for cyber-physical system
testing: Practical experience report,” in Dependable Systems and Networks (DSN), 2014 44th
Annual IEEE/IFIP International Conference on, June 2014, pp. 148–155. 1, 2.4.4, 3.2.1.1,
3.3

[10] P. Koopman, “Challenges in representing cps safety,” in Workshop on Developing

181

http://doi.acm.org/10.1145/336512.336545
http://www.sciencedirect.com/science/article/B6W8D-4TK7X4V-2/2/0442d2c20315ab050bb913af605cc126
http://www.sciencedirect.com/science/article/B6W8D-4TK7X4V-2/2/0442d2c20315ab050bb913af605cc126
http://dx.doi.org/10.1007/978-3-319-11164-3_17


APPENDIX B. BIBLIOGRAPHY

Dependable and Secure Automotive Cyber-Physical Systems from Components, March 2011.
[Online]. Available: http://users.ece.cmu.edu/∼koopman/pubs/koopman11 cps safety.pdf 1

[11] M. Perhinschi, M. Napolitano, G. Campa, B. Seanor, J. Burken, and R. Larson, “Design of
safety monitor schemes for a fault tolerant flight control system,” Aerospace and Electronic
Systems, IEEE Transactions on, vol. 42, no. 2, pp. 562 – 571, 2006. 1

[12] F. Bitsch, “Safety patterns - the key to formal specification of safety requirements,” in
Proceedings of the 20th International Conference on Computer Safety, Reliability and
Security, ser. SAFECOMP ’01. London, UK, UK: Springer-Verlag, 2001, pp. 176–189.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647399.724860 1.1, 2.3, 3.6.1

[13] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick,
M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen, A. J. H. Simons,
S. Vilkomir, M. R. Woodward, and H. Zedan, “Using formal specifications to support
testing,” ACM Comput. Surv., vol. 41, no. 2, pp. 9:1–9:76, Feb. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1459352.1459354 1.1, 2.3

[14] J. Knight, “Safety critical systems: challenges and directions,” in Software Engineering,
2002. ICSE 2002. Proceedings of the 24rd International Conference on, 2002, pp. 547 –
550. 2.2

[15] N. G. Leveson, “Software safety: why, what, and how,” ACM Comput. Surv., vol. 18, pp.
125–163, June 1986. [Online]. Available: http://doi.acm.org/10.1145/7474.7528 2.2

[16] I. N. S. A. Group, “Safety culture,” International Atomic Energy Agency, Safety Report
SAFETY SERIES No. 75-INSAG-4, 1991. [Online]. Available: http://www-pub.iaea.org/
MTCD/publications/PDF/Pub882 web.pdf 2.2

[17] P. Baufreton, J. Blanquart, J. Boulanger, H. Delseny, J. Derrien, J. Gassino, G. Ladier,
E. Ledinot, M. Leeman, P. Quéré et al., “Multi-domain comparison of safety standards,”
in Proceedings of the 5th International Conference on Embedded Real Time Software and
Systems (ERTS2), Toulouse, France, 2010. 2.2.1

[18] I. S. 65A, “Functional safety of electrical/electronic/programmable electronic safety-related
systems,” The International Electrotechnical Commission, 3, rue de Varembé, Case postale
131, CH-1211 Genève 20, Switzerland, Tech. Rep. IEC 61508, 1998. 2.2.1

[19] R. Panesar-Walawege, M. Sabetzadeh, L. Briand, and T. Coq, “Characterizing the chain of
evidence for software safety cases: A conceptual model based on the iec 61508 standard,”
in Software Testing, Verification and Validation (ICST), 2010 Third International Conference
on, april 2010, pp. 335 –344. 2.2.1

[20] RTCA, DO-178B: Software Considerations in Airborne Systems and Equipment Certifica-
tion, Radio Technical Commission for Aeronautics (RTCA) Std., 1992. 2.2.1

[21] ISO, “ISO/DIS 26262 - Road vehicles – Functional safety,” Geneva, Switzerland, Tech. Rep.,
November 2011. 2.2.1

[22] J. Bowen, “Formal methods in safety-critical standards,” in Software Engineering Standards
Symposium, 1993. Proceedings., 1993, aug-3 # sep 1993, pp. 168 –177. 2.2.1, 2.4.3

182

http://users.ece.cmu.edu/~koopman/pubs/koopman11_cps_safety.pdf
http://dl.acm.org/citation.cfm?id=647399.724860
http://doi.acm.org/10.1145/1459352.1459354
http://doi.acm.org/10.1145/7474.7528
http://www-pub.iaea.org/MTCD/publications/PDF/Pub882_web.pdf
http://www-pub.iaea.org/MTCD/publications/PDF/Pub882_web.pdf


APPENDIX B. BIBLIOGRAPHY

[23] Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber, D. Chen, M. Törngren, D. Servat,
A. Abele, F. Stappert, H. Lonn, L. Berntsson, R. Johansson, F. Tagliabo, S. Torchiaro,
and A. Sandberg, “Automatic allocation of safety integrity levels,” in Proceedings
of the 1st Workshop on Critical Automotive Applications: Robustness &#38; Safety,
ser. CARS ’10. New York, NY, USA: ACM, 2010, pp. 7–10. [Online]. Available:
http://doi.acm.org/10.1145/1772643.1772646 2.2.1

[24] N. G. Leveson, Safeware - system safety and computers: a guide to preventing accidents and
losses caused by technology. Addison-Wesley, 1995. 2.2.2, 2.3

[25] H. E. Roland and B. Moriarty, Preliminary Hazard Analysis. John Wiley & Sons, Inc.,
2009, pp. 206–212. [Online]. Available: http://dx.doi.org/10.1002/9780470172438.ch23
2.2.2

[26] J. McDermid, M. Nicholson, D. Pumfrey, and P. Fenelon, “Experience with the application of
hazop to computer-based systems,” in Computer Assurance, 1995. COMPASS ’95. Systems
Integrity, Software Safety and Process Security. Proceedings of the Tenth Annual Conference
on, Jun 1995, pp. 37–48. 2.2.2

[27] R. Lutz and R. Woodhouse, “Contributions of sfmea to requirements analysis,” in Require-
ments Engineering, 1996., Proceedings of the Second International Conference on, Apr 1996,
pp. 44–51. 2.2.2

[28] J.-M. Flaus and J.-M. Flaus, Fault Tree Analysis. John Wiley & Sons, Inc., 2013, pp.
229–251. [Online]. Available: http://dx.doi.org/10.1002/9781118790021.ch12 2.2.2

[29] N. Leveson and P. Harvey, “Analyzing software safety,” Software Engineering, IEEE Trans-
actions on, vol. SE-9, no. 5, pp. 569–579, Sept 1983. 2.2.2

[30] J. Rushby, “A comparison of bus architectures for safety-critical embedded systems.”
Springer-Verlag, 2001, pp. 306–323. 2.2.3

[31] D. A. G. Bmw Ag, FlexRay Communications System Protocol Specification Version 2.1 Re-
vision A, F. Consortium, Ed., Dec. 2005. 2.2.3

[32] K. Forsberg and H. Mooz, “The relationship of system engineering to the project cycle,”
INCOSE International Symposium, vol. 1, no. 1, pp. 57–65, 1991. [Online]. Available:
http://dx.doi.org/10.1002/j.2334-5837.1991.tb01484.x 2.3

[33] N. G. Leveson, “A systems-theoretic approach to safety in software-intensive systems,”
IEEE Trans. Dependable Secur. Comput., vol. 1, no. 1, pp. 66–86, Jan. 2004. [Online].
Available: http://dx.doi.org/10.1109/TDSC.2004.1 2.3

[34] B. Nuseibeh and S. Easterbrook, “Requirements engineering: A roadmap,” in Proceedings of
the Conference on The Future of Software Engineering, ser. ICSE ’00. New York, NY, USA:
ACM, 2000, pp. 35–46. [Online]. Available: http://doi.acm.org/10.1145/336512.336523 2.3

[35] A. v. Lamsweerde, “Formal specification: A roadmap,” in Proceedings of the Conference on
The Future of Software Engineering, ser. ICSE ’00. New York, NY, USA: ACM, 2000, pp.
147–159. [Online]. Available: http://doi.acm.org/10.1145/336512.336546 2.3

183

http://doi.acm.org/10.1145/1772643.1772646
http://dx.doi.org/10.1002/9780470172438.ch23
http://dx.doi.org/10.1002/9781118790021.ch12
http://dx.doi.org/10.1002/j.2334-5837.1991.tb01484.x
http://dx.doi.org/10.1109/TDSC.2004.1
http://doi.acm.org/10.1145/336512.336523
http://doi.acm.org/10.1145/336512.336546


APPENDIX B. BIBLIOGRAPHY

[36] OMG, OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1,
Object Management Group Std., Rev. 2.4.1, August 2011. [Online]. Available:
http://www.omg.org/spec/UML/2.4.1 2.3

[37] D. Berry and E. Kamsties, “Ambiguity in requirements specification,” in Perspectives on
Software Requirements, ser. The Springer International Series in Engineering and Computer
Science, J. do Prado Leite and J. Doorn, Eds. Springer US, 2004, vol. 753, pp. 7–44.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4615-0465-8 2 2.3

[38] M. Heimdahl and C. Heitmeyer, “Formal methods for developing high assurance computer
systems: working group report,” in Industrial Strength Formal Specification Techniques,
1998. Proceedings. 2nd IEEE Workshop on, 1998, pp. 60–64. 2.3

[39] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property specifications for
finite-state verification,” in Proceedings of the 21st international conference on Software
engineering, ser. ICSE ’99. New York, NY, USA: ACM, 1999, pp. 411–420. [Online].
Available: http://doi.acm.org/10.1145/302405.302672 2.3, 3.6.1

[40] S. Konrad and B. H. C. Cheng, “Real-time specification patterns,” in Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference on, May 2005, pp. 372–381.
2.3

[41] P. Bishop and R. Bloomfield, “A methodology for safety case development,” in SAFETY-
CRITICAL SYSTEMS SYMPOSIUM, BIRMINGHAM, UK, FEB 1998. Springer-Verlag,
ISBN 3-540-76189-6, 1998. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.40.9838 2.3.1

[42] R. Bloomfield, B. Littlewood, and D. Wright, “Confidence: Its role in dependability cases
for risk assessment,” in Dependable Systems and Networks, 2007. DSN ’07. 37th Annual
IEEE/IFIP International Conference on, June 2007, pp. 338–346. 2.3.1

[43] J. Goodenough, C. Weinstock, and A. Klein, “Toward a theory of assurance case
confidence,” Software Engineering Institute, Carnegie Mellon University, Tech. Rep.
(CMU/SEI-2012-TR-002), 2012. [Online]. Available: http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=28067 2.3.1

[44] C. B. Weinstock, J. B. Goodenough, and A. Z. Klein, “Measuring assurance case confidence
using baconian probabilities,” in Proceedings of the 1st International Workshop on Assurance
Cases for Software-Intensive Systems, ser. ASSURE ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 7–11. [Online]. Available: http://dl.acm.org/citation.cfm?id=2662398.2662401
2.3.1

[45] T. P. Kelly, “Arguing safety – a systematic approach to managing safety cases,” Ph.D.
dissertation, University of York, 1998. [Online]. Available: http://www-users.cs.york.ac.uk/
tpk/tpkthesis.pdf 2.3.1

[46] T. Kelly and J. McDermid, “Safety case construction and reuse using patterns,” in
Safe Comp 97, P. Daniel, Ed. Springer London, 1997, pp. 55–69. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4471-0997-6 5 2.3.1, 3.6.2, 3.3

184

http://www.omg.org/spec/UML/2.4.1
http://dx.doi.org/10.1007/978-1-4615-0465-8_2
http://doi.acm.org/10.1145/302405.302672
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.9838
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.9838
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=28067
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=28067
http://dl.acm.org/citation.cfm?id=2662398.2662401
http://www-users.cs.york.ac.uk/tpk/tpkthesis.pdf
http://www-users.cs.york.ac.uk/tpk/tpkthesis.pdf
http://dx.doi.org/10.1007/978-1-4471-0997-6_5


APPENDIX B. BIBLIOGRAPHY

[47] A. Pnueli, “The temporal logic of programs,” in Foundations of Computer Science, 1977.,
18th Annual Symposium on, 311977-nov.2 1977, pp. 46 –57. 2.4.1

[48] A. Bauer, M. Leucker, and C. Schallhart, “Monitoring of real-time properties,” in In Pro-
ceedings of the 26th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 4337 of LNCS. Springer, 2006, pp. 260–272. 2.4.1

[49] ——, “Comparing ltl semantics for runtime verification,” J. Log. and Comput., vol. 20, no. 3,
pp. 651–674, Jun. 2010. [Online]. Available: http://dx.doi.org/10.1093/logcom/exn075 2.4.1

[50] R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-Time
Syst., vol. 2, pp. 255–299, October 1990. [Online]. Available: http://dx.doi.org/10.1007/
BF01995674 2.4.1

[51] A. Bauer, J.-C. Kster, and G. Vegliach, “From propositional to first-order monitoring,” in
Runtime Verification, ser. Lecture Notes in Computer Science, A. Legay and S. Bensalem,
Eds. Springer Berlin Heidelberg, 2013, vol. 8174, pp. 59–75. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40787-1 4 2.4.1

[52] D. Garg, L. Jia, and A. Datta, “Policy auditing over incomplete logs: Theory,
implementation and applications,” in Proceedings of the 18th ACM Conference on Computer
and Communications Security, ser. CCS ’11. New York, NY, USA: ACM, 2011, pp.
151–162. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046726 2.4.1, 2.4.2

[53] O. Chowdhury, L. Jia, D. Garg, and A. Datta, “Temporal mode-checking for runtime
monitoring of privacy policies,” in Computer Aided Verification, ser. Lecture Notes in
Computer Science, A. Biere and R. Bloem, Eds. Springer International Publishing, 2014,
vol. 8559, pp. 131–149. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-08867-9 9
2.4.1, 2.4.2, 4.3, 5.2.2.3

[54] D. Basin, M. Harvan, F. Klaedtke, and E. Zalinescu, “Monitoring usage-control policies in
distributed systems,” in Temporal Representation and Reasoning (TIME), 2011 Eighteenth
International Symposium on, Sept 2011, pp. 88–95. 2.4.1

[55] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE Trans. Softw. Eng.,
vol. 3, pp. 125–143, March 1977. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1313313.1313439 2.4.1

[56] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,” Distributed
Computing, vol. 2, pp. 117–126, 1987, 10.1007/BF01782772. [Online]. Available:
http://dx.doi.org/10.1007/BF01782772 2.4.1

[57] A. Goodloe and L. Pike, “Monitoring distributed real-time systems: a survey
and future directions,” no. NASA/CR-2010-216724, July 2010 [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.4769 2.4.1.1

[58] L. Pike, S. Niller, and N. Wegmann, “Runtime verification for ultra-critical systems,” in
Proceedings of the 2nd Intl. Conference on Runtime Verification, ser. LNCS. Springer,
September 2011 2.4.1.1, 3

[59] C. Watterson and D. Heffernan, “Runtime verification and monitoring of embedded systems,”

185

http://dx.doi.org/10.1093/logcom/exn075
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1007/978-3-642-40787-1_4
http://doi.acm.org/10.1145/2046707.2046726
http://dx.doi.org/10.1007/978-3-319-08867-9_9
http://portal.acm.org/citation.cfm?id=1313313.1313439
http://portal.acm.org/citation.cfm?id=1313313.1313439
http://dx.doi.org/10.1007/BF01782772
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.4769


APPENDIX B. BIBLIOGRAPHY

Software, IET, vol. 1, no. 5, pp. 172 –179, 2007. 2.4.2

[60] D. K. Peters and D. L. Parnas, “Requirements-based monitors for real-time systems,”
IEEE Trans. Softw. Eng., vol. 28, pp. 146–158, February 2002. [Online]. Available:
http://portal.acm.org/citation.cfm?id=506201.506204 2.4.2

[61] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Eagle monitors by collecting facts and
generating obligations,” Tech. Rep., 2003. 2.4.2

[62] H. Barringer, D. Rydeheard, and K. Havelund, “Rule systems for run-time monitoring:
From eagleto ruler,” in Runtime Verification, ser. Lecture Notes in Computer Science,
O. Sokolsky and S. Tasiran, Eds. Springer Berlin / Heidelberg, 2007, vol. 4839, pp.
111–125, 10.1007/978-3-540-77395-5 10. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-77395-5 10 2.4.2

[63] D. Drusinsky, “The temporal rover and the atg rover,” in Proceedings of the 7th International
SPIN Workshop on SPIN Model Checking and Software Verification. London, UK:
Springer-Verlag, 2000, pp. 323–330. [Online]. Available: http://portal.acm.org/citation.cfm?
id=645880.672089 2.4.2

[64] K. Havelund and G. Rosu, “Efficient monitoring of safety properties,” Int. J. Softw.
Tools Technol. Transf., vol. 6, no. 2, pp. 158–173, Aug. 2004. [Online]. Available:
http://dx.doi.org/10.1007/s10009-003-0117-6 2.4.2

[65] ——, “Synthesizing monitors for safety properties,” in Proceedings of the 8th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, ser.
TACAS ’02. London, UK, UK: Springer-Verlag, 2002, pp. 342–356. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646486.694486 2.4.2, 3, 4.3

[66] G. Rosu and K. Havelund, “Rewriting-based techniques for runtime verification,”
Automated Software Engineering, vol. 12, no. 2, pp. 151–197, 2005. [Online]. Available:
http://dx.doi.org/10.1007/s10515-005-6205-y 2.4.2

[67] P. Thati and G. Roşu, “Monitoring algorithms for metric temporal logic specifications,”
Electron. Notes Theor. Comput. Sci., vol. 113, pp. 145–162, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.entcs.2004.01.029 2.4.2

[68] D. Basin, F. Klaedtke, and E. Zalinescu, “Algorithms for monitoring real-time properties,”
in Runtime Verification, ser. Lecture Notes in Computer Science, S. Khurshid and K. Sen,
Eds. Springer Berlin Heidelberg, 2012, vol. 7186, pp. 260–275. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29860-8 20 2.4.2, 4.1.1

[69] A. Bauer, R. Gor, and A. Tiu, “A first-order policy language for history-based transaction
monitoring,” in Theoretical Aspects of Computing - ICTAC 2009, ser. Lecture Notes in
Computer Science, M. Leucker and C. Morgan, Eds. Springer Berlin Heidelberg, 2009,
vol. 5684, pp. 96–111. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-03466-4 6
2.4.2

[70] D. Basin, F. Klaedtke, S. Marinovic, and E. Zlinescu, “Monitoring compliance policies over
incomplete and disagreeing logs,” in Runtime Verification, ser. Lecture Notes in Computer

186

http://portal.acm.org/citation.cfm?id=506201.506204
http://dx.doi.org/10.1007/978-3-540-77395-5_10
http://dx.doi.org/10.1007/978-3-540-77395-5_10
http://portal.acm.org/citation.cfm?id=645880.672089
http://portal.acm.org/citation.cfm?id=645880.672089
http://dx.doi.org/10.1007/s10009-003-0117-6
http://dl.acm.org/citation.cfm?id=646486.694486
http://dx.doi.org/10.1007/s10515-005-6205-y
http://dx.doi.org/10.1016/j.entcs.2004.01.029
http://dx.doi.org/10.1007/978-3-642-29860-8_20
http://dx.doi.org/10.1007/978-3-642-03466-4_6


APPENDIX B. BIBLIOGRAPHY

Science, S. Qadeer and S. Tasiran, Eds. Springer Berlin Heidelberg, 2013, vol. 7687, pp.
151–167. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-35632-2 17 2.4.2

[71] L. Pike, “Schrödinger’s CRCs (fast abstract),” in 40th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN 2010), June 2010, participants’ proceed-
ings. Paper available at http://www.cs.indiana.edu/∼lepike/pub pages/dsn.html. 2.4.2

[72] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, “Runtime assurance based
on formal specifications,” in In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, 1999. 2.4.2

[73] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky, “Java-mac: A
run-time assurance approach for java programs,” Form. Methods Syst. Des., vol. 24,
no. 2, pp. 129–155, Mar. 2004. [Online]. Available: http://dx.doi.org/10.1023/B:
FORM.0000017719.43755.7c 2.4.2, 3.2

[74] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu, “Hardware Runtime Monitoring
for Dependable COTS-Based Real-Time Embedded Systems,” 2008 Real-Time Systems
Symposium, pp. 481–491, Nov. 2008. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4700460 2.4.2

[75] T. Reinbacher, M. Fgger, and J. Brauer, “Runtime verification of embedded real-time
systems,” Formal Methods in System Design, pp. 1–37, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10703-013-0199-z 2.4.2

[76] D. Heffernan, C. MacNamee, and P. Fogarty, “Runtime verification monitoring for automo-
tive embedded systems using the iso 26262 functional safety standard as a guide for the
definition of the monitored properties,” Software, IET, vol. 8, no. 5, pp. 193–203, October
2014. 2.4.2

[77] D. Heffernan, S. Shaheen, and C. Watterson, “Monitoring embedded software timing prop-
erties with an soc-resident monitor,” Software, IET, vol. 3, no. 2, pp. 140 –153, april 2009.
2.4.2

[78] U. Congress, “Health insurance portability and accountability act of 1996, privacy rule. 45
cfr 164,” August 2002. [Online]. Available: http://www.access.gpo.gov/nara/cfr/waisidx 07/
45cfr164 07.html 2.4.2

[79] ——, “Gramm-leach-bliley act, financial privacy rule. 15 usc §6801-§6809,” November
1999. [Online]. Available: http://www.law.cornell.edu/uscode/usc sup 01 15 10 94 20 I.
html 2.4.2

[80] E. M. Clarke and J. M. Wing, “Formal methods: state of the art and future directions,”
ACM Comput. Surv., vol. 28, pp. 626–643, December 1996. [Online]. Available:
http://doi.acm.org/10.1145/242223.242257 2.4.3, 2.4.3.1

[81] J. Bowen and V. Stavridou, “The industrial take-up of formal methods in safety-critical
and other areas: A perspective,” in FME ’93: Industrial-Strength Formal Methods, ser.
Lecture Notes in Computer Science, J. Woodcock and P. Larsen, Eds. Springer Berlin
/ Heidelberg, 1993, vol. 670, pp. 183–195, 10.1007/BFb0024646. [Online]. Available:

187

http://dx.doi.org/10.1007/978-3-642-35632-2_17
http://www.cs.indiana.edu/~lepike/pub_pages/dsn.html
http://dx.doi.org/10.1023/B:FORM.0000017719.43755.7c
http://dx.doi.org/10.1023/B:FORM.0000017719.43755.7c
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4700460
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4700460
http://dx.doi.org/10.1007/s10703-013-0199-z
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html
http://www.law.cornell.edu/uscode/usc_sup_01_15_10_94_20_I.html
http://www.law.cornell.edu/uscode/usc_sup_01_15_10_94_20_I.html
http://doi.acm.org/10.1145/242223.242257


APPENDIX B. BIBLIOGRAPHY

http://dx.doi.org/10.1007/BFb0024646 2.4.3

[82] J. S. Ostroff, “Formal methods for the specification and design of real-time safety
critical systems,” Journal of Systems and Software, vol. 18, no. 1, pp. 33 – 60, 1992.
[Online]. Available: http://www.sciencedirect.com/science/article/B6V0N-48TD2S0-9S/2/
06b26071a0f11b04e57a132def29e23b 2.4.3

[83] E. J. Weyuker, “On testing non-testable programs,” The Computer Journal, vol. 25, no. 4,
pp. 465–470, 1982. [Online]. Available: http://comjnl.oxfordjournals.org/content/25/4/465.
abstract 2.4.4

[84] K. Wika and J. Knight, “On the enforcement of software safety policies,” in Computer As-
surance, 1995. COMPASS ’95. ’Systems Integrity, Software Safety and Process Security’.
Proceedings of the Tenth Annual Conference on, jun 1995, pp. 83 –93. 2.4.5

[85] Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, “Runtime enforcement
monitors: composition, synthesis, and enforcement abilities,” Formal Methods in
System Design, vol. 38, no. 3, pp. 223–262, 2011. [Online]. Available: http:
//dx.doi.org/10.1007/s10703-011-0114-4 2.4.5

[86] S. Hussein, P. Meredith, and G. Roşlu, “Security-policy monitoring and enforcement with
javamop,” in Proceedings of the 7th Workshop on Programming Languages and Analysis
for Security, ser. PLAS ’12. New York, NY, USA: ACM, 2012, pp. 3:1–3:11. [Online].
Available: http://doi.acm.org/10.1145/2336717.2336720 2.4.5

[87] F. Martinell and I. Matteucci, “Through modeling to synthesis of security automata,”
Electronic Notes in Theoretical Computer Science, vol. 179, no. 0, pp. 31 – 46,
2007, proceedings of the Second International Workshop on Security and Trust
Management (STM 2006). [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1571066107003003 2.4.5

[88] J. Bowen and M. Hinchey, “Seven more myths of formal methods: Dispelling
industrial prejudices,” in FME ’94: Industrial Benefit of Formal Methods, ser.
Lecture Notes in Computer Science, M. Naftalin, T. Denvir, and M. Bertran,
Eds. Springer Berlin Heidelberg, 1994, vol. 873, pp. 105–117. [Online]. Available:
http://dx.doi.org/10.1007/3-540-58555-9 91 3.1

[89] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods: Practice
and experience,” ACM Comput. Surv., vol. 41, no. 4, pp. 19:1–19:36, Oct. 2009. [Online].
Available: http://doi.acm.org/10.1145/1592434.1592436 3.1

[90] M. Reynal, “A short introduction to failure detectors for asynchronous distributed
systems,” SIGACT News, vol. 36, no. 1, pp. 53–70, Mar. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1052796.1052806 3.2.1.2

[91] R. Schlichting, “Fail-Stop Processors: An Approach to Designing Fault-Tolerant Computing
Systems,” Transactions on Computer Systems, vol. 3, no. August, pp. 222–238, 1983.
[Online]. Available: http://portal.acm.org/citation.cfm?id=357371 3.2.1.2

[92] M. Aguilera, G. L. Lann, and S. Toueg, “On the impact of fast failure detectors on real-time

188

http://dx.doi.org/10.1007/BFb0024646
http://www.sciencedirect.com/science/article/B6V0N-48TD2S0-9S/2/06b26071a0f11b04e57a132def29e23b
http://www.sciencedirect.com/science/article/B6V0N-48TD2S0-9S/2/06b26071a0f11b04e57a132def29e23b
http://comjnl.oxfordjournals.org/content/25/4/465.abstract
http://comjnl.oxfordjournals.org/content/25/4/465.abstract
http://dx.doi.org/10.1007/s10703-011-0114-4
http://dx.doi.org/10.1007/s10703-011-0114-4
http://doi.acm.org/10.1145/2336717.2336720
http://www.sciencedirect.com/science/article/pii/S1571066107003003
http://www.sciencedirect.com/science/article/pii/S1571066107003003
http://dx.doi.org/10.1007/3-540-58555-9_91
http://doi.acm.org/10.1145/1592434.1592436
http://doi.acm.org/10.1145/1052796.1052806
http://portal.acm.org/citation.cfm?id=357371


APPENDIX B. BIBLIOGRAPHY

fault-tolerant systems,” Distributed Computing, pp. 354–369, 2002. [Online]. Available:
http://www.springerlink.com/index/E03YF4ETBNLE9728.pdf 3.2.1.2

[93] C. Temple, “Avoiding the babbling-idiot failure in a time-triggered communication system,”
in Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-Eighth Annual International
Symposium on, June 1998, pp. 218–227. 3.2.1.2

[94] P. Koopman, K. Devale, and J. Devale, Interface Robustness Testing: Experience and
Lessons Learned from the Ballista Project. John Wiley & Sons, Inc., 2008, pp. 201–226.
[Online]. Available: http://dx.doi.org/10.1002/9780470370506.ch11 3.3, 3.3.1

[95] M. S. Corporation, “Carsim overview,” November 2013. 3.3

[96] J. Rushby, “Modular certification,” NASA Contractor Report NASA/CR-2002-212130, Dec
2002. [Online]. Available: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030001129.
pdf 3.4

[97] Recommended Practice for a Serial Control & Communications Vehicle Network, SAE Std.
SAE J1939, 2004. 3.4.1

[98] P. H. Foo, G.-W. Ng, K. H. Ng, and R. Yang, “Application of intent inference for surveillance
and conformance monitoring to aid human cognition,” in Information Fusion, 2007 10th
International Conference on, 2007, pp. 1–8. 3.4.1.1

[99] K. Lee and J. Lunas, “Hybrid model for intent estimation,” in Information Fusion, 2003.
Proceedings of the Sixth International Conference of, vol. 2, 2003, pp. 1215–1222. 3.4.1.1

[100] E. H. L. Fong, “Maritime intent estimation and the detection of unknown obstacles,”
Master’s thesis, MIT, 2004. [Online]. Available: http://hdl.handle.net/1721.1/30279 3.4.1.1

[101] S. Lefevre, J. Ibanez-Guzman, and C. Laugier, “Context-based estimation of driver intent
at road intersections,” in Computational Intelligence in Vehicles and Transportation Systems
(CIVTS), 2011 IEEE Symposium on, 2011, pp. 67–72. 3.4.1.1

[102] B. Bonakdarpour, S. Navabpour, and S. Fischmeister, “Sampling-based runtime
verification,” in Proceedings of the 17th international conference on Formal methods, ser.
FM’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 88–102. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2021296.2021308 3.4.2

[103] J. Knight, “Challenges in the utilization of formal methods,” in Formal Techniques in
Real-Time and Fault-Tolerant Systems, ser. Lecture Notes in Computer Science, A. Ravn
and H. Rischel, Eds. Springer Berlin Heidelberg, 1998, vol. 1486, pp. 1–17. [Online].
Available: http://dx.doi.org/10.1007/BFb0055331 3.5

[104] J. Knight, C. DeJong, M. Gibble, and L. Nakano, “Why are formal methods not used more
widely?” in Fourth NASA Formal Methods Workshop. Citeseer, 1997. 3.5

[105] H. Barringer and K. Havelund, “Internal versus external dsls for trace analysis,” in
Runtime Verification, ser. Lecture Notes in Computer Science, S. Khurshid and K. Sen,
Eds. Springer Berlin Heidelberg, 2012, vol. 7186, pp. 1–3. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29860-8 1 3.5.1

189

http://www.springerlink.com/index/E03YF4ETBNLE9728.pdf
http://dx.doi.org/10.1002/9780470370506.ch11
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030001129.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030001129.pdf
http://hdl.handle.net/1721.1/30279
http://dl.acm.org/citation.cfm?id=2021296.2021308
http://dx.doi.org/10.1007/BFb0055331
http://dx.doi.org/10.1007/978-3-642-29860-8_1


APPENDIX B. BIBLIOGRAPHY

[106] D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti, “Specification patterns from research to
industry: A case study in service-based applications,” in Software Engineering (ICSE), 2012
34th International Conference on, june 2012, pp. 968 –976. 3.6.1

[107] P. Bellini, R. Mattolini, and P. Nesi, “Temporal logics for real-time system specification,”
ACM Comput. Surv., vol. 32, no. 1, pp. 12–42, Mar. 2000. [Online]. Available:
http://doi.acm.org/10.1145/349194.349197 4.1.1

[108] J. Ouaknine and J. Worrell, “Some recent results in metric temporal logic,” in Proceedings
of the 6th international conference on Formal Modeling and Analysis of Timed Systems, ser.
FORMATS ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 1–13. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-85778-5 1 4.1.1

[109] R. Alur and T. Henzinger, “Logics and models of real time: A survey,” in Real-Time:
Theory in Practice, ser. Lecture Notes in Computer Science, J. de Bakker, C. Huizing,
W. de Roever, and G. Rozenberg, Eds. Springer Berlin / Heidelberg, 1992, vol. 600, pp.
74–106, 10.1007/BFb0031988. [Online]. Available: http://dx.doi.org/10.1007/BFb0031988
4.1.1

[110] D. Basin, F. Klaedtke, S. Mller, and B. Pfitzmann, “Runtime monitoring of metric first-order
temporal properties,” in Proceedings of the 28th International Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 08), vol. Dagstuhl Seminar
Proceedings, 2008, pp. 49–60. 4.1.2, 4.3

[111] O. Kupferman and M. Vardi, “Model checking of safety properties,” Formal Methods
in System Design, vol. 19, no. 3, pp. 291–314, 2001. [Online]. Available: http:
//dx.doi.org/10.1023/A%3A1011254632723 4.2

[112] A. Bauer, M. Leucker, and C. Schallhart, “The good, the bad, and the ugly, but how ugly
is ugly?” in Proceedings of the 7th international conference on Runtime verification, ser.
RV’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 126–138. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1785141.1785155 4.2

[113] ——, “Runtime verification for ltl and tltl,” ACM Trans. Softw. Eng. Methodol., vol. 20,
no. 4, pp. 14:1–14:64, Sep. 2011. [Online]. Available: http://doi.acm.org/10.1145/2000799.
2000800 4.2

[114] T. Reinbacher, J. Brauer, M. Horauer, A. Steininger, and S. Kowalewski, “Past time ltl
runtime verification for microcontroller binary code,” in Formal Methods for Industrial
Critical Systems, ser. Lecture Notes in Computer Science, G. Salan and B. Schtz,
Eds. Springer Berlin Heidelberg, 2011, vol. 6959, pp. 37–51. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24431-5 5 4.3

[115] P. Zuliani, A. Platzer, and E. Clarke, “Bayesian statistical model checking with application
to stateflow/simulink verification,” Formal Methods in System Design, vol. 43, no. 2,
pp. 338–367, 2013. [Online]. Available: http://dx.doi.org/10.1007/s10703-013-0195-3 4.3,
4.3.1

[116] G. Holzmann, “The power of 10: rules for developing safety-critical code,” Computer,

190

http://doi.acm.org/10.1145/349194.349197
http://dx.doi.org/10.1007/978-3-540-85778-5_1
http://dx.doi.org/10.1007/BFb0031988
http://dx.doi.org/10.1023/A%3A1011254632723
http://dx.doi.org/10.1023/A%3A1011254632723
http://portal.acm.org/citation.cfm?id=1785141.1785155
http://doi.acm.org/10.1145/2000799.2000800
http://doi.acm.org/10.1145/2000799.2000800
http://dx.doi.org/10.1007/978-3-642-24431-5_5
http://dx.doi.org/10.1007/s10703-013-0195-3


APPENDIX B. BIBLIOGRAPHY

vol. 39, no. 6, pp. 95–99, June 2006. 5.1.1

[117] MIRA Ltd, MISRA-C:2004 Guidelines for the use of the C language in Critical Systems,
MIRA Std., Oct. 2004. [Online]. Available: www.misra.org.uk 5.1.1

[118] L. Evans, Traffic safety and the driver. Van Nostrand Reinhold Co, 1991. 6.2.3

[119] N. S. Council, “Defensive driving course,” 1992, (Course Guide). 6.2.3

[120] “Pcan-usb pro: Peak system,” http://www.peak-system.com/PCAN-USB-Pro.200.0.html?
&L=1. 6.3

[121] D. A. Rennels, “Fault-tolerant computing concepts and examples,” IEEE Trans.
Comput., vol. 33, pp. 1116–1129, December 1984. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1311963.1312787 7.1.1.2

[122] V. Nelson, “Fault-tolerant computing: fundamental concepts,” Computer, vol. 23, no. 7, pp.
19–25, July 1990. 7.1.1.2

[123] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion, “Multi-source and multicore automo-
tive ecus - os protection mechanisms and scheduling,” in Industrial Electronics (ISIE), 2010
IEEE International Symposium on, July 2010, pp. 3734–3741. 7.1.2

[124] A. Kane and P. Koopman, “Mode Based Ride-Through for Embedded System Runtime Mon-
itoring,” Dependable Systems & Networks, 2013., 2013, (in review). 7.3.1

191

www.misra.org.uk
http://www.peak-system.com/PCAN-USB-Pro.200.0.html?&L=1
http://www.peak-system.com/PCAN-USB-Pro.200.0.html?&L=1
http://portal.acm.org/citation.cfm?id=1311963.1312787
http://portal.acm.org/citation.cfm?id=1311963.1312787

	1 Introduction
	1.1 Problem and Scope
	1.2 Thesis Contributions

	2 Background and Related Work
	2.1 Overview
	2.2 Safety-Critical Systems
	2.2.1 Safety Standards
	2.2.2 Hazard Analysis
	2.2.3 Embedded networks

	2.3 Requirements and Specifications
	2.3.1 Safety Cases

	2.4 System Verification
	2.4.1 Runtime Verification
	2.4.2 Monitors
	2.4.3 Formal Methods
	2.4.4 Test Oracles
	2.4.5 Enforcement Techniques


	3 Monitoring Architecture
	3.1 Motivation
	3.2 Monitor Architecture
	3.2.1 Use Cases

	3.3 Test Oracle Example
	3.3.1 Robustness Testing
	3.3.2 Target Feature
	3.3.3 Safety Specification
	3.3.4 Testing Results and Lessons Learned

	3.4 External Bus monitoring
	3.4.1 Observability
	3.4.2 Sampling Based Monitoring

	3.5 Semi-formal Monitoring
	3.5.1 Semi-Formal Interface Design

	3.6 Usability Concerns
	3.6.1 Specification Patterns
	3.6.2 Safety Case Templates


	4 Formal Monitoring
	4.1 Preliminaries
	4.1.1 Time Model
	4.1.2 Specifications

	4.2 Practical Issues
	4.3 Monitoring Algorithms
	4.3.1 Definitions

	4.4 Correctness of the algorithms
	4.4.1 Definitions
	4.4.2 Proof of agmon Correctness


	5 Monitor Implementation
	5.1 Implementation Overview
	5.1.1 Embedded Limitations
	5.1.2 System Specifications
	5.1.3 Optimizations

	5.2 Implementations
	5.2.1 PC-based Monitor
	5.2.2 Embedded ARM Monitor


	6 Monitor Evaluation
	6.1 Analysis
	6.1.1 Artificial Traces

	6.2 Offline Vehicle Logs
	6.2.1 Rule Elicitation
	6.2.2 Monitoring Results
	6.2.3 Exploratory Example

	6.3 Embedded Monitor
	6.3.1 Rule Elicitation
	6.3.2 Monitoring results

	6.4 Lessons Learned

	7 Discussion
	7.1 Design Issues
	7.1.1 Monitor Correctness
	7.1.2 Monitor Consolidation
	7.1.3 Semi-Formal Interface

	7.2 Time Model
	7.3 Future Work
	7.3.1 System Recovery
	7.3.2 Semi-Formal DSL


	8 Conclusion
	8.1 Thesis Contributions
	8.1.1 Identifying suitable runtime verification architecture
	8.1.2 Monitoring Framework
	8.1.3 Feasibility of real-time monitoring


	A Acronyms
	B Specification Patterns
	Bibliography

