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Abstract

In the wake of rising energy costs, there is a critical need for sustainable energy

management of commercial and residential buildings. Buildings consume approxi-

mately 40% of total energy consumed in the US, and current methods to reduce

this level of consumption include energy monitoring, smart sensing, and advanced

integrated building control. However, the building industry has been slow to replace

current PID and rule-based control strategies with more advanced strategies such as

model-based building control. This is largely due to the additional cost of accurately

modeling the dynamics of the building and the general uncertainty that model-based

controllers can be reliably used in real conditions.

The first half of this thesis addresses the challenge of constructing accurate grey-

box building models for control using model identification. Current identification

methods poorly estimate building model parameters because of the complexity of

the building model structure, and fail to do so quickly because these methods are

not scalable for large buildings. Therefore, we introduce the notion of parameter

identifiability to determine those parameters in the building model that may not

be accurately estimated and we use this information to strategically improve the

identifiability of the building model. Finally, we present a decentralized identification

scheme to reduce the computational effort and time needed to identify large buildings.

The second half of this thesis discusses the challenge of using uncertain build-

ing models to reliably control building temperature. Under real conditions, building

models may not match the dynamics of the building, which directly causes increased

building energy consumption and poor thermal comfort. To reduce the impact of

model uncertainty on building control, we pose the model-based building control



problem as a robust control problem using well-known H∞ control methods. Further-

more, we introduce a tuning law to reduce the conservativeness of a robust building

control strategy in the presence of high model uncertainty, both in a centralized and

decentralized building control framework.
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Chapter 1

Introduction

Managing energy consumption in building environments has become an increasingly

difficult and complex problem. Often times, the energy needed to keep a building

environment comfortable and operational outweighs behavioral strategies for energy

conservation. In recent years, there has been an increase in automated energy man-

agement software and control solutions to address this problem. However, there is a

general reluctance to retrofit old buildings with newer automated strategies or include

advanced control strategies in newer buildings. Part of this reluctance stems from

capital costs due to the installation of a new building control system, the cost of com-

missioning this new system, training personnel to learn the new equipment, the cost

of maintenance, and the long-term returns on investment. Admittedly, some of these

costs are inevitable and cannot be completely eliminated from the equation. However,

this dissertation endeavors to tackle some of the costs associated with commissioning

model-based building control strategies.

Model-based control strategies are very difficult to instrument in real building

environments because of the complexity and size of the building dynamics to be
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modeled. Furthermore, depending on the type of control model employed, building

control models may have to be regularly retuned, maintained, and monitored to

ensure the model-based control strategy still works accurately. These activities all

come at a cost to the building owner and the companies employed to maintain these

systems. To tackle these challenges, we investigate two major questions related to

the commissioning and implementation of model based building control:

1. How do we accurately and efficiently model building environments?

2. How do we control buildings using uncertain building models?

This dissertation explores each of these questions in depth. We provide practical

strategies to efficiently and accurately create a control-oriented building model, and

we consider robust control approaches to deal with model uncertainty.

This chapter introduces some of the current and state-of-the-art approaches to

advanced building control. We motivate our discussion of model-based building con-

trol by highlighting current trends to reduce building energy consumption and the

potential for energy savings through advanced control strategies such as model-based

control. We balance this discussion with the potential problems of implementing a

model-based controller for real buildings, and we summarize our efforts to address

these issues.This chapter is organized as follows. Section 1.1 provides an overview

of the energy trends for building environments in the U.S. Section 1.2 reviews cur-

rent approaches to advanced building control strategies, including conventional and

model-based control strategies for real building environments. Finally, Section 1.3

summarizes the contributions and the organization of this dissertation.
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Figure 1.1: Breakdown of energy consumption in residential and commercial buildings
in 2010 created from building energy data in [29].

1.1 Trends in Building Energy Consumption

Building environments are broadly classified as either residential or commercial build-

ings, and this classification generally determines how energy is consumed in the build-

ing. Residential buildings such as apartment buildings, condominiums, and single

family homes cater to the general population and function primarily to shelter people.

Therefore, residential buildings primarily consume energy in the form of electricity

and fossil fuels to keep people comfortable through proper heating, cooling, and ven-

tilation. Commercial buildings such as schools, stores, office buildings, warehouses,

and hospitals cater to select segments of the population and serve different needs.

Consider a museum building which serves to store and showcase artwork for the gen-

eral population. Then, lighting and cooling are the primary uses of energy in the

building, and likely consume a majority of the energy consumed in the museum.

According to the U.S. Department of Energy (DOE), energy consumption of resi-

dential and commercial buildings constitute about 40% of the total energy consumed

in the U.S, where commercial buildings make up 22% of the total energy consumption
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[29]. Energy audits of residential and commercial buildings in [16, 29] reveal the top

five ways energy is consumed: space heating, space cooling, water heating, lighting,

and electrical plug loads. Fig. 1.1a and 1.1b illustrate the breakdown of energy use

in residential and commercial buildings, respectively. Space and water heating, space

cooling, and ventilation alone make up about 50% of total energy consumption for

both building classifications. Given these statistics, we observe heating, cooling, and

ventilating buildings significantly impact national energy consumption, contributing

to approximately 20% of total U.S. energy consumption. This observation, coupled

with increased energy costs and carbon emissions, has motivated policy makers and

some building owners to actively reduce building energy consumption, particularly in

commercial buildings.

The Building Technologies Office at the DOE has identified significant poten-

tial for energy savings in controlling systems that regulate building heating, cooling,

and ventilation known as HVAC (Heating, Ventilation & Air Conditioning) systems.

HVAC systems are composed of boilers, chillers, air handling units (AHU), variable

air volume (VAV) terminal units and auxilliary devices (pumps, fans, valves, etc.)

[62]. The goal of HVAC systems is to convert primary energy sources such as elec-

tricity, gas, and coal into secondary energy sources, and distribute these secondary

energy sources in the form of heated and cooled air (or water) through the building.

The DOE is committed to shaving about 30% - 40% of total building energy con-

sumption through cost-effective control and coordination of HVAC systems,1 which

we refer to as advanced building control strategies.

1www1.eere.energy.gov/buildings/technologies/sensors_controls_research.html
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1.2 Building Control Strategies

Commercial buildings are often equipped with large, centralized automated systems

to monitor and regulate the building indoor air quality (IAQ). These systems are

generally known as building automation systems (BASs) [8, 9, 84], and they imple-

ment advanced building control strategies to accomplish building-level tasks such

as heating, cooling, and ventilation. Typically, an advanced control strategy used

in a BAS has two levels of control denoted as local control and supervisory control.

Local building control regulates lower-level processes specific to HVAC equipment

such as maintaining boiler temperature, chiller sequencing control, and changing fans

speed. Supervisory building control denotes the coordination of lower level processes

to acheive a building-level task. Wang classifies the different types of local and super-

visory building control strategies in Fig 1.2. This section briefly highlights advanced

and conventional building control approaches currently used in building environments.

Figure 1.2: Classification of Building Control Strategies [84].

5



1.2.1 Conventional Building Control Strategies

Conventional building controls use rule-based control (RBC) at the supervisory level

in combination with a local controller (such as PID control, bang-bang, ON-OFF, etc)

to maintain building IAQ. RBC can be defined as a set of user-defined rules derived

from human expertise and knowledge of the building to govern building operation

[37, 84]. This type of supervisory control requires expert users, particularly facility

managers, to understand the rule semantics and the limitations of HVAC equipment.

These expert users can easily add or remove rules to the system to appropriately

adjust the building IAQ. However, as buildings become larger and more complex,

RBC becomes increasingly harder to scale and too complex to use.

At the local level, proportional-integral-derivative (PID) control has become the

popular and standard way of controlling local HVAC equipment. Generally, local

building controllers such as PID are packaged as part of the equipment, and users

are generally able to tune these local controllers. However, individual PID controllers

are quite difficult to tune especially in highly dynamic environments [28, 76]. Several

studies show that this conventional strategy wastes a lot of energy and poorly satisfy

occupant demands for comfort [28, 32, 84]. In one study, nearly 50% of occupants

questioned were dissatisfied with HVAC and the comfort of the building environment

[32]. Another study found conventional building thermostats act as bang-bang con-

trollers with dead zone and suffer from overshoot, which increases building energy

consumption [28].

1.2.2 Model-Based Building Control Strategies

Many studies have demonstrated that improvements to the supervisory and local

levels of a building control strategy can significantly reduce overall building energy
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consumption [7, 37, 76, 84, 85]. As a result, current research investigates promising

alternatives to the conventional building control such as RBC and PID [60]. One

such alternative is using model-based supervisory control, in combination with local

level controllers such as PID, and these controllers have shown to perform better than

model-free approaches because they leverage knowledge of the building to determine

optimal control actions. Model-predictive control (MPC) is a popular example of

current model-based strategies being actively studied and applied in buildings [10,

28, 59, 69, 76, 84].

Model-based control strategies require accurate models of the building environ-

ment [60, 84]. However, high-fidelity models of the dynamics in a building are difficult

to create and are likely too computationally complex to be integrated on low-cost,

resource constrained hardware used in buildings [76]. Therefore, a common solution

to the problem of building modeling has been to create simpler, parametric models

from known thermodynamic principles and estimate those model parameters with col-

lected building data [76, 84]. The difficulty with this approach is that these building

models can be costly to construct and unreliable to use for control [76]. Specifically,

simple building models can contain a large number of parameters can be unreliably

estimated due to complexity of the model and the nonlinearities in the building oper-

ation. Finally, there is the additional problem of controlling the building environment

using the estimated model.

1.3 Dissertation Contributions & Organization

As mentioned earlier, this dissertation seeks to address two main challenges: accu-

rately modeling building environments and reliably controlling building environments

with inaccurate building models. These questions are central to the feasibility of im-
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plementing model-based control strategies in real building environments, particularly

large-scale commercial buildings. This dissertation makes the following key contribu-

tions to make model-based control a more feasible strategy for large-scale buildings:

I. Parameter Identifiability of Grey-Box Building Models

One of the main advantages of grey-box building models is the flexibility to fit

the model to a set of building data by adjusting the model parameters. How-

ever, this process of estimating the right parameters to fit the model is not

without difficulty. Grey-box building models are classified as unidentifiable if

some or all of the model parameters cannot be accurately estimated. Chapter 3

broadly defines this notion of model identifiability, and presents metrics taken

from [24–26] to qualitatively and quantitatively measure it. Embedded within

this notion of model identifiability is the idea that not all parameters are equally

identifiable. It means that even among those parameters that can be estimated,

some are better estimated than others. In Chapter 3, we build on the previous

metrics for identifiability and we use new metrics to quantitatively determine

which parameters are least likely to be accurately estimated or identified. This

concept is known as parameter identifiability, and we use this concept to find

poorly identifiable building model parameters. Exposing the unidentifiable pa-

rameters in a model allows us to apply heuristics to improve the identifiability

of the model. This contribution is detailed in Chapter 3.

II. Design-Driven Building Model Identification Process

The current model identification process is largely open loop in that users

arbitrarily design and test different models and inputs in the hopes of accu-

rately estimating the dynamics of a building. This is primarily because there

is little feedback given about why model identification fails for a particular
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model or set of data. Given the notion of parameter identifiability, we propose

a design-driven identification process that exposes unidentifiable parameters.

This design-driven approach to identification gives the user key problem areas

to improve upon in the model. Based on some the structural challenges to

building models exposed in this process, we develop a heuristic to improve the

structure of the model used for identification. This heuristic improves the iden-

tifiability of the building model by mapping the unidentifiable set of parameters

to a reduced set of aggregate parameters that can be better estimated. This

technique is known as parameter aggregation and is outlined at length in Chap-

ter 3. Additionally, we demonstrate through a focused case study that using

identification with parameter aggregation improves the identifiability of build-

ing models. This contribution is also presented in Chapter 3.

III. Decentralized Identification of Control-Oriented Building Models

The proposed approach to construct identifiable building models is not scal-

able to the size of the building environments. Specifically, buildings that are

larger in size take longer to be identified and often times are unidentifiable.

This makes it especially difficult to run the identification procedure introduced

above. Therefore, we address the scalability of the identification scheme de-

scribed above by splitting the building model into building zone models. In

doing so, we reduce the total time of identification and make the identification

procedure more practical for large-scale buildings. The proposed decentralized

identification scheme accomplishes two key tasks. First, it uses graph theory to

represent building model structure in order to analyze the reachability of build-

ing models. We use digraphs of building models to define several important

substructures such as air-based subsystems (or building rooms), building maps,
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and building zones. Second, we present an efficient decomposition algorithm to

partition the building digraph into subgraphs that represent room and building

zone models. The proposed algorithm creates a non-unique set of ‘identifiable’

building zones. These contributions are presented in Chapter 4.

IV. Robust Model-Based Supervisory Control

Although the accuracy for simple control-oriented building models can be im-

proved, the performance of model-based building control strategies such as

model-predictive control is vulnerable to modeling mismatch and inaccuracies.

This can lead to energy-efficient control strategies that degrade over time if they

are not properly maintained. To address this challenge, we consider the use of

robust control strategies to better control dynamic systems given uncertainties

in the control-oriented model. One robust control strategy of interest is the

receding horizon H∞ controller which attenuates the impact of disturbances on

the overall performance of a controlled closed-loop system below a factor γ. In

Chapter 5, we develop a framework that integrates this receding horizon H∞

controller with a performance-based control strategy such as MPC. However the

power of this system lies in choosing a value of γ that is not overly conservative.

Therefore, we propose a method to automatically tune γ over time in order

to reduce the conservativeness of the controller and to improve the controller

performance. Details of this contribution can be found in Chapter 5.

V. Hierarchical and Robust Model-Based Supervisory Control

Given the framework for robust model-based supervisory control, we impose

a hierarchical structure on the proposed robust model-based control in order

to achieve robust and decentralized model-based building control. Decentral-

ized control is an attractive control approach because it is scalable for large

10



buildings and allows for modular control design. Our approach to decentralized

building control builds on the hierarchical control framework posed in [64, 74,

75], which introduces smaller low-level controllers and a high level supervisor.

Our proposed decentralized approach delegates the tasks of robust control to

the local controllers using local information and tasks the supervisor only with

the task of coordinating the local controllers. One major outcomes of this con-

trol structure is that the level of robustness needed to minimize uncertainty

is given locally, independent of what the other local controllers may be doing.

Therefore, we propose a method to independently tune the robustness γ for

each local controller. This contribution is presented in Chapter 6.

VI. MATLAB Simulator & Case Study

A key contribution of this work is the implementation and evaluation of the pro-

posed strategies proposed above, using examples of real building environments.

Chapter 2 introduces two building environments that are used to demonstrate

the main contributions in this thesis. The first example stems from a real build-

ing environment known as the Intelligent Workplace. The second example is a

12 floor reference building that typifies large-scale commercial buildings found

in the in the United States. We construct grey-box models of these building

environments using the developed MATLAB Simulator.

Finally, Chapter 7 concludes this work and presents interesting directions for

future work in the area of model-based building control.
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Chapter 2

Background on Building

Environments

Buildings are highly complex and dynamic environments that are difficult to model.

Energy simulation software such as EnergyPlus [31] use large sets of partial differ-

ential equations and finite element analysis to model building environments. These

simulation models are high-fidelity approximations of building dynamics and are often

used to accurately quantify building energy consumption over long periods of time. In

recent years, tools such as MLE+ have been developed to use simulation models for

building control [68]. However, these models are often too complex and too difficult

to be integrated in current model-based building control strategies.

Consequently, control-oriented building models are designed to be simpler than

simulation-oriented building models so that they can be easily implemented in model-

based building control strategies. These control-oriented models can be constructed as

either white-box, black-box, or grey-box building models. A white-box building model

uses first-principle equations to approximate the dynamics of a building. A black-box
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building model is created by constructing a mathematical relationship between the

building inputs and the building outputs using experimental data collected or mea-

sured from the building. A grey-box building model is a hybrid model that is derived

from the first-principle thermodynamic equations in white-box building models. The

difference between a grey-box building model and a white-box building model is that

grey-box model parameters are estimated using collected building measurements.

This chapter proposes a framework to construct grey-box control-oriented building

models using the resistive-capacitive (RC) modeling. This approach is commonly used

to approximate building dynamics [2, 10, 18, 19, 60, 82]. The chapter is organized as

follows. Section 2.1 reviews the first principles of heat transfer used to model building

thermodynamics; Section 2.2 reviews the RC modeling approach; and Section 2.4

introduces the building case study considered throughout this work.

2.1 Heat Transfer in Building Environments

In this section, we briefly review the different types of heat transfer that occur in

building environments [2, 67, 71, 81]. The heat stored in a material is the quantity of

energy (J) transferred to that material from the ambient environment. We denote the

heat in the material as Q(t). Heat flow is the rate of heat (W ) being transferred from

one material to another. We denote heat flow as Q̇(t), where Q̇(t) > 0 is heat flowing

into the material and Q̇(t) < 0 is heat flowing out of the material. The computation

of Q̇(t) is determined by the type of heat transfer: advection, conduction, convection,

radiation.
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2.1.1 Advective Heat Transfer

Advection (or mass transfer) occurs when heat is transferred by moving mass with

heat from one location to another. An example of advection in buildings is an air

handling unit (AHU) blowing hot air into a cold room. Then, heat is transferred to

the room simply by moving air with more heat into the room. Likewise, advection

occurs when cold air is blown into a hot room and heat is removed from the room.

Suppose the room air temperature is Ti(t), the temperature of the air leaving the

AHU is Tj(t), and the air leaving the AHU flows into the room at a rate of v̇j(t).

Then, the rate of heat transferred to the room is

Q̇(t) = ρav̇j(t)ca(Tj(t)− Ti(t)) (2.1)

where ρa is the density of air (kg/m3) and ca is the specific heat of the air ( J
kg·K ).

We note that ρa varies slightly with temperature and ca varies with pressure. The

air density ρa and the specific heat ca are assumed to be constant for the range of

building temperatures given the pressure in the building is held constant.

2.1.2 Conductive Heat Transfer

Conduction occurs when materials in direct contact transfer heat to reach thermal

equilibrium. Consider a wall separating the ith and jth rooms in a building with air

temperatures Ti(t) and Tj(t), respectively, where Ti(t) < Tj(t). As the air in the

jth room heats one side of the wall, conduction takes place when heat is transferred

through the wall to heat the air in the ith room. Fourier’s Law claims the rate of

heat transfer is proportional to the negative gradient of the temperature in the wall.

Consequently, a partial differential equation can be written to compute the rate of
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heat transfer. We assume the following simplified version of Fourier’s law, to compute

the rate of conductive heat transfer to the ith room,

Q̇(t) = kwAw
Tj(t)− Ti(t)

`w
(2.2)

where Aw is the cross sectional area of the wall (m2), `w is the thickness of the wall

(m), and kw is the thermal conductivity of the wall ( W
m·K ). Furthermore, we assume

the parameter kw is constant for the normal range of building temperatures.

2.1.3 Convective Heat Transfer

Convection occurs as a result of heat transferred by the movement of air over a

building surface. An example of convection is the heat transferred from a hot building

wall due to the natural (or forced) movement of cooler air that passes across the wall

surface. Let Ti(t) be the temperature of cool air and Tw(t) be the temperature of the

building wall. Using Newton’s law of cooling, the rate of heat transferred from the

wall to the air is

Q̇(t) = hwAw(Tw(t)− Ti(t)) (2.3)

where hw is the convective heat transfer coefficient ( W
m2·K ) and Aw is the surface area

of the wall (m2). This equation holds only for laminar air movement and breaks down

for turbulent air flow. Furthermore, the coefficient hw is subject to changing over time

as the flow of air over the wall changes with time. Therefore, this dissertation assumes

that air movement in building environments is always laminar and the convective heat

transfer coefficient is assumed constant.
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2.1.4 Radiative Heat Transfer

Radiation occurs when heat is transferred to a material through the absorption of

electromagnetic waves. A common example of radiation is an exterior building wall

with temperature Ti(t) heated through the absorption of solar rays with solar tem-

perature Ts(t). The rate of heat transferred to the building wall is governed by the

Stefan-Boltzmann Law and yields a nonlinear, fourth order equation. We approxi-

mate radiative heat transfer with the following linearized equation,

Q̇(t) = εiσhrAi(Ts(t)− Ti(t)) (2.4)

where εi is the emissivity of the wall surface, σ is the Stefan-Boltzmann constant, Ai

is the surface area of the building wall (m2), and hr is the linearized radiation heat

transfer coefficient ( W
m2·K ). We note that hr is a nonlinear function of the tempera-

tures, Ti(t) and Ts(t), but we will assume a constant value of hr.

2.2 RC Modeling of Heat Transfer

Resistance capacitance (RC) models are commonly used to describe heat transfer in

building environments [2, 19, 82]. These lumped capacitance models assume materials

with thermal mass have spatially uniform temperatures T (t), and they approximate

the heat flow between these uniform materials as described in Section 2.1. The main

advantage of RC modeling is that this approach exploits the natural analogies between

electrical RC circuits and the dynamics of the system to be modeled, making it easier

to mathematically approximate the thermodynamics of a building using circuit theory.

We highlight these parallels below.
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Q(t) : Electrical Charge (C) ⇐⇒ Q(t): Heat (J)

I(t) : Electrical Current (A) ⇐⇒ Q̇(t): Heat Flow (W )

V (t) : Voltage (V ) ⇐⇒ T (t): Temperature (◦K)

Re : Electrical Resistance (Ω) ⇐⇒ Rt: Thermal Resistance (◦K/W )

Ce : Electrical Capacitance (F ) ⇐⇒ Ct: Thermal Capacitance (◦K/J)

In this section, we use the analogies between electrical circuits and heat transfer in

buildings to create a parametric, state-space model of a building’s thermodynamics.

2.2.1 Thermal Resistances and Capacitances

Thermal resistance Rt denotes the resistance to heat transfer Q̇ that occurs between

materials. The value for Rt can be computed differently based on the type of heat

transfer, building geometry, and properties of the materials in the building construc-

tion.

• The advective thermal resistance is Rt(t) = 1/ρacaV̇j(t) given the advective heat

flow equation in (2.1). We note that advective resistance varies with time as

the volumetric flow v̇j(t) rate varies with time.

• The conductive thermal resistance is Rt = `w/kwAw given the conductive heat

flow equation in (2.2).

• The convective thermal resistance is Rt = 1/hwAw given the convective heat

flow equation in (2.3). We assume that the convective heat transfer constant,

hw, is constant.

• The radiative thermal resistance is Rt = 1/εiσhrAi given the radiative heat flow

equation in (2.4).
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Thermal capacitance Ct is defined as the ability to store heat in a material. Typically,

the thermal capacitance of the ith material is Ct = ρacavi where ca is the specific heat

of the material, ρa is the density of the material, and vi is the volume of the material.

2.2.2 Parametric State-Space Model

Dynamics of an RC circuit can be written as a set of differential equations by applying

Kirchhoff’s current law (KCL). Essentially, KCL states the sum of currents entering a

node must be equal to the sum of currents exiting the node,
∑
Iin(t)−

∑
Iout(t) = 0.

This is analogous to saying the net heat flowing into the ith material must be balanced,∑
Q̇in(t) −

∑
Q̇out(t) = 0. We define the heat flowing from Ti(t) to Tj(t) across

thermal resistance Rt as

Q̇r
i (t) =

Ti(t)− Tj(t)
Rt

(2.5)

according to Ohm’s Law. Likewise, the rate of heat being stored in the ith material

with thermal capacitance Ct is determined by the following equation,

Q̇c
i(t) = CtṪi(t). (2.6)

Therefore, the balanced heat equation for the ith material is

Q̇c
i(t)−

∑
j 6=i

Q̇R,ij(t) = 0. (2.7)

Buildings are physically made of many building elements (e.g. air, walls, roofs, floors,

etc.) and each element can be made of several materials, where the thermodynamics of

each material are determined by (2.7). Therefore, we can characterize the dynamics
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of a building as the set of thermodynamic equations for all materials, and we can

represent this set of equations as the following linear state-space system,

Ṫ(t) = Ac(θ)T(t) +Bc(θ)u(t) +Gc(θ)w(t) (2.8)

where θ ∈ Rq is the set of all thermal resistors and capacitors, T(t) is the vector of

all building material temperatures, u(t) is the vector of controllable heat inputs to

the building, and w(t) is the vector of uncontrollable heat inputs to the building. We

illustrate the parallels between circuit theory and thermodynamics in the following

example.

Example 1 (RC Model of a Building Wall)

Consider a single building wall that separates two rooms with uniform air tempera-

tures T1(t) and T2(t). Furthermore, assume the wall is made of a single material with

spatially uniform temperature Tw(t). Fig. 2.1 depicts both the physical wall and the

RC circuit used to describe the dynamics of the wall.
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   ZONE	
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T2	
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C2	
  

T1	
  

I1	
  

C1	
  
R11	
   R22	
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  1	
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  Gain	
  

Figure 2.1: The RC circuit models heat transfer to a building wall
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We define the thermal resistances and capacitances as follows:

• R1w and R2w model conductive thermal resistance to heat transfer from the

surface of the wall to the midpoint of the wall.

• R11 and R22 model the convective resistance to heat transferred from the room

air to the wall.

• I1(t) and I2(t) model convective and conductive heat transfer from the room

air, T1(t) and T2(t), to the wall Tw(t) according to (2.5)

• Icw(t) models the rate of heat being stored in the building wall due to the thermal

capacitance of the wall Cw according to (2.6).

Then, the balanced heat equation is Icw(t) − I1(t) − I2(t) = 0, and this can be

expanded to

CwṪw(t)︸ ︷︷ ︸
Icw(t)

− T1(t)− Tw(t)

R1︸ ︷︷ ︸
I1(t)

− T2(t)− Tw(t)

R2︸ ︷︷ ︸
I2(t)

= 0 (2.9)

where R1 = R11 + R1w and R2 = R22 + R2w. Then, we can represent the dynamic

equation in (2.9) as the following state-space model

Ṫ(t) =

[
− 1
R1Cw

− 1
R2Cw

]
T(t) +

[
1

R1Cw
1

R2Cw

]
w(t) (2.10a)

where θ =

[
R1 R2 Cw

]T
, T(t) = Tw(t), and w(t) =

[
T1(t) T2(t)

]T
.
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2.2.3 RC Model of Building Elements

Building elements such as walls, roofs, and floors are made from of a number of

materials that can store heat such as air, wood, concrete, plaster, etc. Therefore,

the RC model of a building element depends on the number of materials with heat

capacitance used to construct the element. We use the following shorthand notation

to describe RC models of building elements.

1R0C RC Model: A building element modeled as a single thermal resistor. The

model assumes the building element is made of a single material that does not

store heat, but resists heat flow. Windows and glass materials are typically

modeled as 1R0C RC models.

2R1C RC Model: A building element modeled as 2 thermal resistors and 1 thermal

capacitor. The model assumes the building element is made of a single material

that stores heat and resists heat flow across it. We assume all materials with

thermal mass like air, wood, concrete, plaster, and tar, etc. are modeled as

‘2R1C’ RC models. The RC circuit in Fig. 2.1 can be designed more simply

as a network with two resistors, R1 = R11 + R1w and R2 = R22 + R2w, and a

capacitor, Cw. Therefore, we denote the circuit shown in Fig. 2.1 as a 2R1C

RC model of the wall.

3R2C RC Model: A building element modeled as 3 thermal resistors and 2 thermal

capacitors. The model assumes the building element is made of two adjacent

materials that each store heat and resists heat flow across it. Fig 2.2 shows a

building wall modeled as a 3R2C RC model.

4R3C RC Model: A building element modeled as 4 thermal resistors and 3 thermal

capacitors. The model assumes the building element is made of three adjacent

21



jth	
  	
  Wall	
  Element	
  ith	
  Wall	
  Element	
  

R3	
  R2	
   R4	
   R5	
  Ti	
   Tj	
  

Ci	
   Cj	
  

R1	
   R6	
  

Figure 2.2: An illustration of a 3R2C RC wall model

materials that each store heat and resists heat flow across it. We assume that

this is the highest order RC model used to model a single building element.

In order to accurately model the dynamics of a building element, knowledge of

the number of materials that store heat in the building element is needed. Materials

such as glass that resist heat flow but do not store significant heat are modeled as a

single resistor or a 1R0C model. Likewise, those materials that are assumed to store

heat are assumed to have at least a 2R1C RC model or higher. Depending on the

complexity of the data, higher order RC models may be needed to accurately fit the

model output to the actual building output.
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2.3 Dynamics of Building Environments

2.3.1 Continuous-Time Building Dynamics

We assume the continuous-time dynamics of the building environments introduced

above are described by the following linear, parametric system

S :
Ṫ(t) = Ac(θ)T(t) +Bc(θ)u(t) +Gc(θ)w(t)

y(t) = CT(t) + e(t)

(2.11)

where θ ∈ Rq is the set of all building parameters values, T(t) ∈ Rn is the thermal

state of the building temperatures, u(t) ∈ Rm is the vector of thermal inputs to

the building, w(t) ∈ Rp is the vector of thermal disturbance inputs to the building,

y(t) ∈ Ro is the vector of building measurements, and e(t) ∈ Ro is the vector of

measurement errors. Furthermore, Ac(θ) : θ ∈ Rq → Rn×n, Bc(θ) : θ ∈ Rq →

Rn×m, and Gc(θ) : θ ∈ Rq → Rn×p. Given (2.11), we make the following simplifying

assumptions.

A1) Building temperatures can be broadly split into two categories: air tempera-

tures of open spaces and temperatures of materials in walls, roofs, floors, etc.

Therefore, we assume the temperature vector T(t) can be written as

T(t) =

Ta(t)

Tw(t)



where Ta(t) =

[
T1(t) . . . Ta(t)

]T
∈ Ra is the vector of air temperatures and

Tw(t) ∈ Rn−a is the vector of non-air temperatures for a ≤ n.
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A2) Given the input vector u(t) =

[
u1(t) . . . um(t)

]T
∈ Rm, let the input variable

ui(t) represent the total rate of heat applied to a building air temperature due

to controllable heating and cooling devices, where ui(t) ≥ 0 is a controllable

heating input and ui(t) ≤ 0 is a controllable cooling input. We assume that no

two inputs ui(t) and uj(t) for i 6= j are applied directly to the same building

air temperature. Furthermore, not all building air temperatures are directly

influenced by a controllable input which implies, m ≤ a.

A3) Then, the input matrix Bc(θ) is assumed to be

Bc(θ) =

 BA(θ)

0n−a×m

 ∈ Rn×m

where BA(θ) ∈ Ra×m. Furthermore, we assume rows and columns of Ba(θ)

have at most one non-zero entry, which implies ui(t) is applied to at most one

distinct, building air temperature.

A4) The disturbance vector w(t) represents the vector of signals that are uncon-

trollable and directly influence the dynamics of the buildings. We consider two

types of building disturbances: ambient outdoor temperature To(t) and uncon-

trollable heat sources q̇i(t) applied to the building air temperature Ti(t). Then,

the disturbance vector is assumed to be w(t) =

[
To(t) q̇1(t) . . . q̇a(t)

]T
∈ Rp

for p = a+ 1.

A5) We assume the building output yi(t) measures exactly one building air temper-

ature Ti(t), such that y(t) =

[
y1(t) . . . ya(t)

]T
∈ Ro and the output matrix

is C =

[
Ia×a 0o×n−a

]
∈ Ro×n where o = a.
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2.3.2 Discrete-Time Building Dynamics

Assume the continuous-time signals of S can be discretely sampled, for sampling

period Ts, such that T[k] = T(kTs), u[k] = u(kTs), w[k] = w(kTs), y[k] = y(kTs),

and e[k] = e(kTs) where the integer k represents a discrete time step. Then, (2.11)

can be written as the following discrete-time system,

Sd :
T[k + 1] = Ad(θ)T[k] +Bd(θ)u[k] +Gd(θ)w[k]

y[k] = CT[k] + e[k]

(2.12)

where the discretized matrices are Ad(θ) = eAc(θ)Ts , Bd(θ) =
(∫ Ts

0
eAc(θ)τdτ

)
Bc(θ),

and Gd(θ) =
(∫ Ts

0
eAc(θ)τdτ

)
Gc(θ). Often, the following approximation

∫ Ts

0

eA(θ)τdτ ≈ Ac(θ)
−1(Ad(θ)− In×n)

is used to compute the discretized system matrices Ad(θ), Bd(θ), and Gd(θ). Ap-

proximation of
∫ Ts

0
eA(θ)τdτ introduces some approximation error between S and Sd.

Finally, we assume A1) - A2) and A4)- A5) hold for the discrete-time signals T[k],

u[k], w[k], and y[k] as well. On occasion, we may use A(θ), B(θ), and G(θ) to denote

the discretized matrices Ad(θ), Bd(θ), and Gd(θ), respectively. In those cases, we will

clearly note the abuse of notation.

2.4 Case Studies of Buildings Environments

One of the major contributions of this dissertation is the demonstration of our pro-

posed strategies for real and large-scale building scenarios. We focus our case studies

on two real building environments, specifically the Intelligent Workplace at Carnegie
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Mellon University and a commercial office building. This section provides some back-

ground on these real building environments and provides some simplifying assump-

tions that we make about these building environments throughout the dissertation.

2.4.1 Intelligent Workplace

The Robert L. Preger Intelligent Workplace (IW) sits on the top of the Margaret

Morrison building at Carnegie Mellon University in Pittsburgh, Pennsylvania.1 The

IW provides 600 sq. ft of open office space and is dubbed a ‘living laboratory’ because

the space is equipped with cutting-edge building technologies that are constantly

being studied, tweaked, and tested. These technologies include window shading,

occupancy-based sensing, energy monitoring, automatic thermal and lighting control

[23, 34, 57]. We focus our attention on the thermal conditioning of the IW, which uses

a system water mullions or pipes to radiantly heat and cool the space [34, 57]. The

water mullions are run along the edge of the IW as can be seen in the floor plan for the

north bay of the IW in Fig.2.3. In colder weather, hot water is run through the water

mullion system to warm the air around the pipes and radiantly heat the building air.

This heating system mimics traditional steam radiators used to heat current building

environments [34]. Similarly, cold water is run through the water mullion system in

warmer weather to absorb heat from the space and provide additional energy-efficient

cooling. Finally, we note the IW can be split into a north bay known as the ‘IW-

North’ and a south bay (not depicted) known as the ‘IW-South’. For this case study,

we will only consider the thermal modeling and control of the IW-North depicted in

Fig. 2.3.

We will make the following set of simplifying assumptions about both the IW-North

and the heating systems at work.

1http://www.cmu.edu/iwess/about-us/iw.html

26



HEATING/
COOLING	
  
INPUT	
  

TEMP/
HUMIDITY	
  
SENSORS	
  

Figure 2.3: Floor Plan of the North Bay of the Intelligent Workplace [57]

B1) The materials used in the IW-North construction have the following thermal

properties shown in Table 2.2.

Building Element RC Model Resistivity Capacitivity

(m
2K
W

) ( J
Wm2 )

Interior Walls 1R0C 0.24 -
Exterior Walls 2R1C 1.60 81,320
Windows 1R0C 0.82 -
Roof 2R1C 3.30 104,870
Floors 2R1C 0.18 72,000

Table 2.2: Thermal Properties of IW-North Construction. We note the
exterior walls separate the outdoors from the indoors, while the interior walls partition
the indoor air spaces.

B2) The air temperature Ti(t) of each building area in the IW-North is measured

for all i ∈ [1, 13]. Furthermore, because the water mullion system is run along

the facade of the building, we will assume the perimeter areas in the IW-North

27



which are Areas 1 − 3, 5, 7 − 9, 11 − 13 have access to a controllable thermal

input.

B3) There are three major sources of disturbance to the air temperatures of the

IW-North: occupancy, outdoor air temperature To(t), and the IW-South air

temperature, Ts(t). For this case study, we will assume the roofing and flooring

border the outdoors and Ts(t) = To(t). Finally, the occupancy schedules and

the outdoor air temperatures in Pittsburgh during the month of January are

given in Table 2.4

2.4.2 Large Commercial Office Building

The Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Depart-

ment of Energy has developed a set of reference buildings to describe the current

population of commercial and residential buildings within the U.S. and across all

weather climates. This classification is useful to building research because it allows

users to benchmark energy consumption of a real building against similar buildings

in similar climates. For this case study, we are interested in the segment of U.S.

buildings that are classified as large commercial office building. E.E.RE. classifies the

typical large commercial office building as a space of about 500, 000 sq. ft. total with

12 floors and 5 building areas per floor [30]. Fig. 2.4 and Fig. 2.5 depict the reference

building that represents typical large commercial office spaces.

We will make the following assumptions about this reference building:

C1) The building is located within a climate similar to the climate in Pittsburgh,

which is outlined in Table 2.4. Furthermore, assume the thermal properties of

the building are outlined in Table 2.3.
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Figure 2.4: Exterior View of Large Office Building [30]

Figure 2.5: Floor Plan of Large Office Building [30]
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Building Element RC Model Resistivity Capacitivity

(m
2K
W

) ( J
Wm2 )

Interior Walls 2R1C 0.24 3600
Exterior Walls 2R1C 1.17 102,000,000
Windows 1R0C 1

3.24
-

Roofs 2R1C 2.85 104,870
Floors 2R1C 1.11 72,000

Table 2.3: Thermal Properties of Large Office Building Construction.
We note the exterior walls separate the outdoors from the indoors, while the interior
walls partition the indoor air spaces. Furthermore, windows comprise 40% of the
exterior building wall areas.

C2) The air temperature Ti(t) of each building area is measured for i ∈ [1, 60], and

the core areas contain a controllable thermal input.

C3) Building occupancy and outdoor air temperature are major sources of distur-

bance to large commercial office buildings. Table 2.4 is a combination of Pitts-

burgh weather data and occupancy schedules for large office buildings taken

from the Office of Energy Efficiency and Renewable Energy website [30]
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Time Ave. Outdoor Weekday Saturday
of Temperature Occupancy Occupancy

Day in January Schedule Schedule
(hrs) (K) (%) (%)

0:01 - 1:00 272.05 0 0
1:01 - 2:00 271.85 0 0
2:01 - 3:00 271.75 0 0
3:01 - 4:00 271.55 0 0
4:01 - 5:00 271.35 0 0
5:01 - 6:00 271.15 0 0
6:01 - 7:00 271.05 10 10
7:01 - 8:00 270.95 20 10
8:01 - 9:00 271.35 95 50
9:01 - 10:00 271.95 95 50
10:01 - 11:00 272.75 95 50
11:01 - 12:00 273.45 95 50
12:01 - 13:00 274.15 50 50
13:01 - 14:00 274.75 95 50
14:01 - 15:00 274.95 95 10
15:01 - 16:00 275.05 95 10
16:01 - 17:00 274.45 95 10
17:01 - 18:00 273.75 70 0
18:01 - 19:00 273.35 40 0
19:01 - 20:00 272.85 40 0
20:01 - 21:00 272.65 10 0
21:01 - 22:00 272.35 10 0
22:01 - 23:00 271.95 5 0
23:01 - 24:00 271.75 5 0

Table 2.4: Average Weather Temperature and Occupancy Data . Each
entry in the weather column represents the average daily temperature during that
time of day for the month of January in Pittsburgh. The occupancy schedules are
taken from the reference data for large scale building models. Each entry of the
occupancy schedule columns represent the percentage of maximum occupancy in a
large commercial building at that time of day. Note the occupancy schedules differ
based on the day of the week. Sunday is not given, so we will assume the Sunday
occupancy schedule is the same as Saturday occupancy.
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2.5 Summary

This chapter provides some preliminary background on building environments and

the types of heat transfer that takes place in a building. Given information about the

building geometry, building construction, and first principle heat flow equations, we

can construct control-oriented grey-box models using a well known lumped capaci-

tance approach called resistance capacitance (RC) modeling. RC modeling of build-

ing dynamics have several advantages over the conventional black-box approaches

including flexibility to changes in the environment and the ability to retain the phys-

ical meaning of the model. Furthermore, we define some standard notation used

to mathematically represent the dynamics of these real building environments, and

we state some simplifying assumptions. Finally we introduce two case studies that

will be used in subsequent chapters to demonstrate our approach to building model

identification and model-based building control.
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Chapter 3

Identification of Building Control

Models

The main advantage of using an RC model to approximate building dynamics is the

flexibility of the model to map a set of building inputs to building outputs. Flexible

RC building models assume an RC model (e.g. 1R0C, 2R1C, etc.) for each building

element a priori, and the model parameters are estimated to fit the model output to

the collected building data. As the number of parameters and the size of the model

state vector are increased, the building model becomes more flexible to fit nuances

found in the building data. This process of choosing a model structure to describe a

set of input/output data and estimating the model parameters from the data is known

as model identification [54]. Because building models need to be flexible, the challenge

of model identification in the context of building environments is the increased model

size and complexity, which leads to ill-conditioning.

Identification of ill-conditioned models is a difficult problem because there is insuf-

ficient data to sufficiently estimate all of the model parameters or the model is struc-

33



tured such that parameters may not be independently distinguished. One method

to alleviate this issue is to model highly dynamic processes in the frequency domain,

and provide heuristics to improve estimation of the low gain directions of the model

[4, 39, 79, 87]. Stec et. al consider the impact of different model structures and iden-

tification tests on the model of a high purity distillation column [79]. They observe

poor estimation of low gain directions is due to poor data, and conclude identification

data needs to be chosen to sufficiently excite the low-gain direction of the model. In

[87], Zhu et. al extend [79] to consider test inputs that sufficiently excite the low

gain directions of the model. Chaplais offers a slightly different approach by first

separating the model into fast and slow time-scales, and then identifying the transfer

function of each time-scale separately [11]. This time-scale separation approach is

applied to the identification of building models in [61], where ARX models are used

to describe the dynamics of the building.

Another method to eliminate ill-conditioning is to reduce the size of the model

since high model order and over parameterization lead to ill-conditioned models [42].

This is known as model reduction, and has been used in [3, 17, 19, 35] to improve

identification of thermal building models. In [20], the physical RC model is reduced

using a balanced truncation method, known as Moore’s reduction, which keeps the

dominant components of the model and retains the large time constants in the build-

ing. Dautin compares several truncation techniques on thermal building models in

[17], and Goyal extends the balanced truncation method to nonlinear building models

[36]. The drawback of these truncation methods is that the physical meaning of the

model is lost. To deal with this drawback, several new reduction methods known as

lumping or aggregation-based methods are introduced to preserve the physical mean-

ing of the model by combining a number of state variables affinely (and in some cases

nonlinearly) into a single state [3, 19]. In [19], Deng aggregates certain building states
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together, and estimates the thermal resistance and capacitance between these new

aggregated states.

This chapter addresses the deficiency of standard model identification to accu-

rately estimate the parameters of ill-conditioned building models. We propose a new

process called design-driven model identification that implements two key tasks. First,

this proposed approach uses the notion of model identifiability to quantitatively de-

termine the building model parameters that cannot be sufficiently estimated from the

measured building data. The topic of model identifiability is a mature area [15, 21,

22, 24, 25, 27, 33, 44, 52, 54, 55, 72], and is more thoroughly presented later in this

chapter as the framework to determine poorly estimated model parameters caused by

ill-conditioning. Second, we introduce a re-parameterization method that reduces the

number of parameters, improves estimation of poorly estimated parameters, and pre-

serves the physical meaning of the model. We demonstrate that implementing these

approaches to the standard model-identification process improves the identifiability

of ill-conditioned models.

The chapter is organized as follows. Section 3.1 defines a building model and

provides some assumptions about these models. Section 3.2 poses the model identifi-

cation problem in the context of building environments, and Section 3.3 introduces the

framework of model identifiability. Section 3.4 presents our proposed design-driven

approach to identification, and Section 3.5 demonstrates our approach for the Intel-

ligent Workplace. Finally, Section 3.6 summarizes the contributions of this chapter.

3.1 Assumptions & Notations

Consider a building environment with discrete-time dynamics Sd, given in (2.12), and

assume Sd satisfies the building conditions and assumptions detailed in the previous
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chapter. Then, we define a model of Sd as the following discrete-time system

M(θ) :
x[k + 1] = A(θ)x[k] +B(θ)u[k] +G(θ)w[k]

ŷ[k] = Cx[k]

(3.1)

where x[k] ∈ Rn is the modeled building state vector, u[k] ∈ Rm is the vector of

controllable heating inputs, w[k] ∈ Rp is the vector of uncontrollable heating inputs,

and ŷ[k] ∈ Ro is the modeled building output. With slight abuse of notation, we will

use the notation A(θ), B(θ), and G(θ) in this chapter to denote the structured matri-

ces Ad(θ), Bd(θ), and Gd(θ) in (2.12), respectively. We will assume the model output

ŷ[k] can be represented by the following input-output function ŷ[k] = g(k; θ,x[0], Uk),

where

g(k; θ,x[0], Uk) = CA(θ)kx[0] +
k−1∑
τ=0

CA(θ)k−1−τ
(
B(θ)u[τ ] +G(θ)w[τ ]

)
(3.2)

given θ, the initial condition x[0], and the set of building inputs, Uk = {u[τ ],w[τ ] :

∀τ ∈ [0, k−1]}, Occasionally, we will use (3.2) in lieu of ŷ[k] to show an explicit rela-

tionship between the model output ŷ[k], the initial value x[0], the model parameter

value θ, and the set of input data Uk. Furthermore, let the transfer function of the

building model M(θ) be

G(z, θ) =

[
C(zI − A(θ))−1B(θ) C(zI − A(θ))−1G(θ)

]
(3.3)

where z is a complex number in the discrete frequency domain.

Furthermore, consider the discrete-time signals u[k], w[k], and y[k] defined in

Chapter 2. Then, we will assume the following notation:

UN UN = {u[k],w[k] : k ∈ [0, N − 1]}.
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Y N Y N = {y[k] : k ∈ [0, N − 1]}.

ZN The building data set is ZN = UN ∪ Y N .

‖s[k]‖P ||s[k]||P =
√

s[k]TP s[k] for matrix P = P T and vector s[k].

‖s[k]‖ ‖s[k]‖ = ‖s[k]‖I where I is an identity matrix.

Consider a signal {s[k]}. Then, s[k] is quasi-stationary if s[k] is bounded for all

k and the autocorrelation of s[k] given by Rss(τ) = limN→∞
1
N

∑N−1
k=0 s[k]s[k − τ ]T

exists for all τ [54]. We will assume the signals {u[k]}, {w[k]}, and {y[k]} are quasi-

stationary.

3.2 Building Model Identification

This section introduces the standard model identification process [2, 54], in the con-

text of building environments. Alg. 1 summarizes the current process of identifying a

model in the following three stages: choice of model and data, parameter estimation,

and model validation. We expand on each of these stages in the following subsections.

Algorithm 1 Standard Identification Process

I. Choice of Model and Data

A) Choose a building model M(θ) ∈M such that Sd ∈M.

B) Choose a building data set ZN that captures the building dynamics.

II. Parameter Estimation: Solve (3.6) for the parameter estimate θ̂N .

III. Model Validation:

A) Choose a different building data set LN for validation.

B) Compute the mean squared error, VN(θ̂N , L
N) in (3.5).

C) If VN(θ̂N , L
N) < ε, then the model M(θ̂N) is identified.

37



3.2.1 Choosing a Model for Identification

Consider a building model M(θ) that will be identified to model the dynamics of a

building, Sd. According to [54], one of the major requirements to accurately identify

M(θ) is to guarantee the dynamic process Sd belongs to the model structure of M(θ).

Definition 1 (Model Structure [54]). The model structure of M(θ) is M =

{M(θ) : ∀θ ∈ Θ} where Θ ⊆ Rq is the set of all possible parameter values. ♠

Assuming Sd belongs to the model M (or Sd ∈ M), then the building model M(θ)

is guaranteed to sufficiently describe the dynamics of the building and model the set

of building data ZN provided the correct set of parameter values θ are chosen. We

can make this claim because both the building model M(θ) in (3.1) and the building

dynamics Sd in (2.12) use the same structured matrices A(θ), B(θ), G(θ), and C,

which are based on knowledge of the building geometry and heat transfer. Since Sd

and M(θ) have the same structure, then Sd and M(θ) are said to be equivalent when

the set of model parameter values is chosen to be the set of true parameters values,

θ = θS. This notion of model equivalence is defined below.

Definition 2 (Model Equivalence [54]). For parameter values θ1 and θ2, the

model M(θ1) is equivalent to the model M(θ2), denoted as M(θ1)
M
= M(θ2), if

G(z, θ1) = G(z, θ2) where G(z, θ) is defined in (3.3). ♠

Given the implication, M(θS)
M
= Sd, then the objective of model identification is

to find the set of true parameter values for which this implication holds.

38



3.2.2 Choosing a Data Set for Identification

Given a model M(θ) ∈ M and system Sd ∈ M, Ljung notes the data set ZN also

needs to be informative with respect to M in order to successfully identify the model

M(θ) from the set ZN .

Definition 3 (Informative Data Set, [54]). A set of quasi stationary signals

ZN is informative with respect to the model structure M if, for M(θ) ∈ M and

θ1 6= θ2, then

1

N

N−1∑
k=0

‖ê(k; θ1,x[0], ZN)− ê(k; θ2,x[0], ZN)‖2 = 0

implies M(θ1)
M
= M(θ2), where ê(k; θ,x[0], ZN) = y[k]− g(k; θ,x[0], UN). ♠

Intuitively, this means the building data set ZN sufficiently capture the dynamics

of the building Sd. Ljung also shows in [54] that one of the ways to ensure the data set

ZN is informative enough is to excite the dynamics of the building using a sufficiently

“rich” input signal. Ljung refers to this type of input as a persistently exciting signal.

Definition 4 (Persistently Exciting Signal [54]). A quasi-stationary signal

{s[k]} with spectrum Φss(ω) is persistently exciting if

Φss(ω) > 0, for almost all ω.

where Φss(ω) =
∑∞

τ=−∞Rss(τ)e−jωτ and Rss(τ) is the autocorrelation of s[k]. ♠
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Typical persistently exciting signals used for identification include pseudo-random

binary signals (PRBS), sinusoidal or the sum of sinusoidal signals (SINE), and random

Gaussian distributed signals (RGS) [54, 55]. We will assume for this work that the

building input signal u[k] and the building disturbance signal w[k] are persistently

exciting. This means significant planning is needed to take into account uncontrol-

lable conditions such as occupancy and outdoor weather when modeling real building

environments.

3.2.3 Parameter Estimation Problem

As stated earlier, the objective of model identification is to find the set of model

parameter values such that θ = θS. Since equivalent models yield equivalent outputs

for the same inputs, then the objective is to estimate the parameter θ that drives the

model output ŷ[k] to match the building output y[k].

Given the input-output model in (3.2) and the building data set ZN , let the error

between the building output y[k] and the model output ŷ[k] = g(k; θ,x[0], UN) be

ê(k; θ,x[0], ZN) = y[k]− g(k; θ,x[0], UN) (3.4)

where y[k] ∈ ZN and UN ⊂ ZN , θ. Furthermore, let the mean squared error between

the building output y[k] and the model output ŷ[k] = g(k; θ,x[0], UN) be

VN(θ, ZN) =
1

N

N∑
k=1

‖ê(k; θ,x[0], ZN)‖2
Q (3.5)

where Q = QT > 0. Typically, Q = P−1
e where Pe ∈ Ro×o is the covariance of

the measurement noise on the building output, y[k]. Using (3.5), Ljung poses the
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parameter estimation problem as the following convex optimization problem [54],

min
θ

1

2
VN(θ, ZN) s.t. θmin(i) ≤ θ(i) ≤ θmax(i) ∀θ(i) ∈ θ (3.6)

where θ(i) ∈ θ is the ith parameter value, and θmin(i) ∈ R1 and θmax ∈ R1 are the

ith the parameter constraints. We denote the set of parameter values that solve (3.6)

as the parameter set θ̂N ∈ Rq. A common approach to solve (3.6) is the prediction

error method (PEM) which uses a numerical gradient-based algorithm to find the

estimated set of parameter values θ = θ̂N that minimizes the predicted output error

ê(k; θ,x[0], ZN) = y[k]− g(k; θ,x[0], UN) [54].

3.2.4 Model Validation

After the set of parameter estimate θ̂N is obtained, a different set of informative

building data LN is used to validate that the output of the model M(θ̂N) is equivalent

to the output of Sd. We compute the mean squared error of the model output,

VN(θ̂N , L
N) in (3.5). If the mean squared error between y[k] and ŷ[k] is below a

threshold such that, VN(θ̂N , L
N) < ε, then the estimated model M(θ̂N) is considered

to be validated, which means M(θ̂N) accurately approximates the building dynamics

Sd. This also implies the set of estimated parameter values θ̂N is approximately equal

to the set of true parameter value θS given Sd and M(θ̂N) belong to the same model

structure. For models M(θ̂N) that cannot be validated with different data sets LN ,

then the structure of the model or the data set used for identification have to be

adjusted.
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3.3 Building Model Identifiability

In order to choose an appropriate model or data set for identification, we must first

determine and define the metrics that qualify a model or data set to be “good enough”

for identification. Several papers have introduced the concept of model identifiability

as a criteria to determine if the parameter estimation problem in (3.6) can be solved

given a model M(θ) and a data set ZN [1, 21, 22, 24, 25, 27, 41]. In the following

subsections, we explore the concept of model identifiability and review the two types

of model identifiability used to qualify building models and and building data sets:

structural identifiability and output identifiability.

3.3.1 Structural Identifiability

Consider the following definition of structural identifiability.

Definition 5 (Structural Identifiability, [25]). LetM be a model structure,

and let M(θ) ∈ M be a building model. Then, the model M(θ) is structurally

identifiable at θ = θ∗ if, for all θ1, θ2 in a neighborhood of θ∗,

M(θ1)
M
= M(θ2) =⇒ θ1 = θ2

where M(θ1) ∈M and M(θ2) ∈M. ♠

Structural identifiability implies there is a unique mapping from θ to M(θ), such

that distinct parameter values θ = θ∗ yield distinct models M(θ∗) for models in an

identifiable model structure M(θ∗) ∈M. Since a distinct model M(θ∗) uniquely maps
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the building inputs UN to the modeled building outputs, Y N , then changes to the

model parameter value θ∗ can be easily observed in the output and distinguished from

models with different model parameter values. This ability to distinguish between

models in a model structure is important because this impacts how well (3.6) estimates

the model parameter values.

Suppose M(θ) is not structurally identifiable at θ = θ∗. Then, by Definition

5, there exists distinct parameter values θ1 6= θ2 that yield an equivalent model

M(θ1)
M
= M(θ2). This means that there exists more than one possible solution for the

identification problem in (3.6), which makes it very difficult to distinguish between

models. In [24, 25], Van Doren defines a metric to quantitatively test for this one-to-

one mapping of θ to M(θ), and infers the identifiability of the model structure given

that test. Using Lemma 1 below and Definition 5, we present this test for structural

identifiability in Proposition 1.

Lemma 1 ([25]): Let Ω be an open set in Rn and f : Ω→ Rm be a k-times continu-

ously differentiable map with k ≥ 1. If ∂f(θ)
∂θ

∣∣
θm

has constant rank p in a neighborhood

of θm, then f is locally injective at θm if and only if p = n.

Proposition 1 (Test for Structural Identifiability, [25, 26]): Assume the discrete-

time building model M(θ) in (3.1), where θ ∈ Rq, belongs to a model structure

M(θ) ∈ M. Let Ci ∈ R1×n be the i-th row of C ∈ Ro×n. Furthermore, let the

mapping s(k, θ) : θ ∈ Rq → R1×(om+op) be defined as

s(τ, θ) :=

[
C1A(θ)τD(θ) C2A(θ)τD(θ) . . . CoA(θ)τD(θ)

]
(3.7)

where D(θ) =

[
B(θ) G(θ)

]
∈ Rn×(m+p), and let the mapping Sk(θ) : θ ∈ Rq →
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R1×(kom+kop) be defined as

Sk(θ) :=

[
s(0, θ) s(1, θ) . . . s(k − 1, θ)

]
. (3.8)

Given (3.8), let the mapping Fk(θ) : θ ∈ Rq → Rq×q be defined as

Fk(θ) =
∂Sk(θ)

∂θ

∂Sk(θ)

∂θ

T

. (3.9)

Then, M(θ) is structurally identifiable at θ = θ∗ if rank(Fk(θ)) = q for k ≥ 2n. ♣

Proof The proof of Prop. 1 follows directly from Lemma 1 and Definition 5. Given

the mapping Sk(θ) in (3.8) that describes the structure of the model M(θ), then Sk(θ)

is a unique or injective mapping if Lemma 1 is satisfied for rank

(
∂Sk(θ)
∂θ

∣∣∣∣
θ=θ∗

)
= q.

We note that rank

(
∂Sk(θ)
∂θ

∣∣∣∣
θ=θ∗

)
= rank(Fk(θ

∗)). �

3.3.2 Output Identifiability

Output identifiability highlights the importance of choosing a data set ZN that can

distinguish between different models. In [54], Ljung defines this type of data set ZN

as an informative data set, which is defined as follows. Given ŷ[k] = g(k; θ,x[0], Uk)

in (3.2), consider the following definition of output identifiability.

Definition 6 (Ouptut Identifiability [25, 26]). Let ŷ[k] = g(k; θ,x[0], Uk)

be the output of the model M(θ) ∈ M. Then, the model M(θ) is output identi-

fiable at θ = θ∗ given the initial condition x[0] and the input data Uk if, for all
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θ1, θ2 in a neighborhood of θ∗,

g(k; θ1,x[0], Uk) = g(k; θ2,x[0], Uk) =⇒ θ1 = θ2

where g(k; θ1,x[0], Uk) is the output of M(θ1) ∈ M and g(k; θ2,x[0], Uk) is the

output of M(θ2) ∈M. ♠

Definition 6 implies the model M(θ) ∈ M is output identifiable at θ = θ∗ if the

model output ŷ[k] = g(k; θ∗,x[0], Uk) is distinct given a distinct parameter value,

θ = θ∗ and input data Uk. Output identifiability differs from structural identifiability

because it accounts for the impact of Uk on being able to distinguish between models

M(θ) from the output ŷ[k] = g(k; θ,x[0], Uk).

Suppose M(θ) is structurally identifiable but not output identifiable given poor

input data, Ūk. Then, the model output g(k; θ,x[0], Ūk) is not distinct for the param-

eter value θ = θ∗, which implies there could exist another parameter value θM 6= θ∗

such that g(k; θ∗,x[0], Uk) = g(k; θM ,x[0], Uk) for all k. Van Doren defines a metric

in [25, 26] to quantitatively test for this one-to-one mapping of θ to g(k; θ,x[0], Uk),

and infers the output identifiability of M(θ) at θ = θ∗ given the input data Uk. We

present this test for output identifiability in Proposition 2.

Proposition 2 (Test for Output Identifiability, [25, 26]): Given the cost func-

tion VN(θ, ZN) defined in (3.5), let the hessian ∂2VN (θ,ZN )
∂θ2

∣∣∣∣
θ

be approximated by the

following function,

HN(θ, UN) =
1

N

N−1∑
k=0

∂ŷ[k]

∂θ
Q
∂ŷ[k]

∂θ

T

(3.10)
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where ŷ[k] = g(k; θ,x[0], UN) and Q = QT > 0. Then, the model structure M is

output identifiable given Uk at θ = θ∗ if rank(HN(θ∗, UN)) = q. ♣

Proof This proof is given in [25]. Since (3.6) is convex, then the solution θ̂N is

unique if the hessian of the cost function VN(θ, ZN) in (3.5) is positive definitive at

θ = θ̂N , or

∂2VN(θ, ZN)

∂θ2

∣∣∣∣
θ=θ̂N

> 0. (3.11)

Then, based on Definition 6 and the approximation HN(θ, UN), we note that

rank

(
∂2VN(θ, ZN)

∂θ2

∣∣∣∣
θ

)
= rank

(
HN(θ, UN)

)
= q (3.12)

implies the condition in (3.11) for θ = θ̂N . �

Remark 1 Van Doren notes HN(θ, UN) is a Fisher information matrix in [24–26]. A

Fisher information matrix bounds the covariance of the estimated parameter value

θ̂N according to the following inequality,

1

N

N−1∑
k=0

‖θ̂N − θS‖2 ≥ HN(θ̂N , U
N)−1 (3.13)

where θS is the true parameter value. The inequality in (3.13) is known as the

Cramér-Rao inequality, and indicates the minimum possible covariance of any un-

biased estimator. In other words, maximizing the information matrix HN(θ̂N , U
N)

minimizes the covariance of the estimated parameter HN(θ̂N , U
N)−1, which improves

the estimated parameter value, θ̂N .
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3.3.3 Linking Structural and Output Identifiability

Output identifiability implies distinct changes in the model parameter value yield

distinct changes in the model output g(k; θ,x[0], UN) given an informative data set

ZN . Implicit in this inference is that the model structure M yields a distinct model

M(θ) for a distinct parameter value θ, which means M(θ) is structurally identifiable

by Definition 5. Therefore, we present and prove Proposition 3, which establishes a

relationship between structural identifiability and output identifiability.

Proposition 3: M(θ) is output identifiable for an informative data set ZN if M(θ)

is structurally identifiable. ♣

Proof Suppose M(θ∗) ∈M is structurally identifiable at θ∗. Then, by Definition 5,

for any two parameters θ1 and θ2 in the neighborhood of θ∗ and for models M(θ1) ∈M

and M(θ2) ∈M, then

M(θ1)
M
= M(θ2) =⇒ θ1 = θ2.

Furthermore, given (3.4), let the model output errors for M(θ1) and M(θ2) be

ê(k; θ1,x[0], ZN) and ê(k; θ2,x[0], ZN), respectively. Since ZN is an informative data

set, then by Definition 3,

1

N

N−1∑
k=1

‖fe(k, θ1, θ2, Z
N)‖2 = 0,

where fe(k, θ1, θ2, Z
N) = ê(k; θ1,x[0], ZN) − ê(k; θ2,x[0], ZN). This leads to the fol-

lowing observation

fe(k, θ1, θ2, Z
N)T ê(k; θ1, Z

N) = fe(k, θ1, θ2, Z
N)T ê(k; θ2,x[0], ZN), ∀k

which also implies ê(k; θ1,x[0], ZN) = ê(k; θ2,x[0], ZN) for all k. Given (3.4), then
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we note ê(k; θ1,x[0], ZN) = ê(k; θ2,x[0], ZN) can also be written as

g(k; θ1,x[0], ZN) = g(k; θ2,x[0], ZN).

Then, g(k; θ1,x[0], ZN) = g(k; θ2,x[0], ZN) for all k if M(θ1)
M
= M(θ2) and ZN is

informative. This leads to the following result,

g(k; θ1,x[0], ZN) = g(k; θ2,x[0], ZN) =⇒ θ1 = θ2 ∀k

which is the condition for output identifiability in Definition 6.

3.4 Design-Driven Model Identification

The standard model identification process outlined in Alg. 1 is a well-accepted ap-

proach, and Ljung provides some general guidelines on choosing the appropriate model

structure and data set to accurately estimate mode parameters [54, 55]. However,

the standard model identification process cannot accurately estimate parameters of

ill-conditioned models such as RC building models, which are often ill-conditioned

because of their complexity and structure. To address this challenge, we propose

an improved identification process known as design-driven model identification that

both detects the parameters that cannot be estimated in an ill-conditioned model and

re-parameterizes the model structure to eliminate the effects of ill-conditioning. This

design-driven model identification process delivers a more focused and streamlined ap-

proach to improve the identifiability of the model. We summarize our design-driven

model identification process in Alg. 2. In the following subsections, we introduce

introduce two key contributions used in the proposed approach: parameter identi-
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fiability, which is used to detect model parameters that are likely inestimable and

parameter aggregation heuristics, which are used to improve the structural identifia-

bility of the model.

Algorithm 2 Design-Driven Model Identification Process

I. Choice of Model and Data:

A) Choose a building model M(θ) ∈M such that Sd ∈M.

B) Choose a building data set ZN that captures the building dynamics.

II. Parameter Identifiability:

A) Compute the structural identifiability matrix F̃k(θ) in (3.14)

B) Determine the set of structurally unidentifiable parameters, θu ⊆ θ.

C) Let θ = {θp, θu} where θp is the identifiable set of parameters.

III. Parameter Aggregation:

A) Apply heuristics to map θu to a reduced set of parameters ψu.

B) Let the reduced set of parameter values be θ̄ = {θp, ψu}.
C) Re-parameterize the model M(θ) to be M(θ̄) given θ̄.

IV. Parameter Estimation: Solve (3.6) for ˆ̄θN given M(θ̄)

V. Model Validation:

A) Choose a different building data set LN for validation.

B) Compute the mean squared error, VN(ˆ̄θN , L
N) in (3.5).

C) If VN(ˆ̄θN , L
N) < ε, then the model M(ˆ̄θN) is identified.

3.4.1 Parameter Identifiability

The main idea behind parameter identifiability is to quantitatively determine the

model parameters that may be poorly estimated. Parameter identifiability is implicit

in the notion of model identifiability, where a model is considered identifiable if all
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of the parameters are accurately estimated [43]. Likewise, unidentifiable models may

have one or more parameters that are not identifiable. In [52], Li uses principle

component analysis (PCA) of an output sensitivity matrix that resembles H(θ, UN)

to rank the parameters that are likely identifiable. The shortfall of this selection

approach is the computational costs of evaluating several sequences of parameters

that best ranks model parameters from least identifiable to most identifiable. In

[24, 25], Doren uses the singular values of model identifiability metrics Fk(θ) and

H(θ, UN) to re-parameterize the model in terms of the largest singular values of

the identifiability metrics. To ensure this approach works independent of parameter

scaling, Van Doren scales these metrics as follows

F̃k(θ) = Γ(θ)T
(
∂Sk(θ)

∂θ
P−1
S

∂Sk(θ)

∂θ

T)
Γ(θ) (3.14)

H̃N(θ, UN) =
1

N

N−1∑
k=0

Γ(θ)T

(
∂ŷ[k]

∂θ
Q
∂ŷ[k]

∂θ

T
)

Γ(θ) (3.15)

where Γ(θ) = diag(|θ(1)|, . . . , |θ(q)|), Sk(θ) is defined in (3.8), and PS = diag (s2
1, s

2
2, . . .)

where si is an element of Sk(θ).

Our notion of parameter identifiability expands on Van Doren’s work in [24, 25],

and explicitly determines which model parameters are identifiable based on the iden-

tifiability metrics. We use the diagonal values of the identifiability metrics Fk(θ)

and H(θ, UN) to quantify which parameters are identifiable because they represent

the amount of information content on each of the parameters [1]. In this section,

we present an improvement to our prior approach using the singular value decom-

position of the identifiability metrics. Since we are only interested in eliminating

ill-conditioning in the model structure M, we only consider the scaled structural

identifiability metric F̃k(θ) to determine structurally identifiable model parameters.
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Let the SVD of F̃k(θ) be F̃k(θ) = UΣVT where U ∈ Rq×q and V ∈ Rq×q are

unitary matrices and Σ = diag(σ1, σ2, . . . , σq) ∈ Rq×q such that σ1 ≥ σ2 ≥ . . . ≥ σq.

Suppose the singular values {σr+1, . . . , σq} are treated as zeros if σi < 1× 10−5σ1 for

all i ∈ [r + 1, q]. Then, F̃k(θ) can be partitioned as

F̃k(θ) ≈
[
U1 U2

]Σ1 0

0 0


VT

1

VT
2

 = U1Σ1V
T
1 (3.16)

where U1 ∈ Rq×r, U2 ∈ Rq×q−r, Σ1 ∈ Rr×r, V1 ∈ Rq×r, V2 ∈ Rq×q−r. Van Doren

determines U1 and V1 as identifiable subspaces of Fk(θ) that can be used to determine

an identifiable parameterization [24, 25]. Parameters that are strongly correlated with

identifiable subspaces U1 and V1 are observed to have high information content and

a low parameter variance, which means those parameters are likely identifiable.

We use the diagonal of the matrix U1V
T
1 to determine the parameters that are

strongly correlated with the identifiable subspaces of Fk(θ). The diagonal entries of

U1V
T
1 lie between 0 and 1, where the ith diagonal entry represents the correlation

of the ith parameter value with the identifiable subspace U1 and V1. Parameters in

θ are likely identifiable if the associated diagonal entry value is close to 1, which

denotes a strong correlation to the identifiable subspaces. We apply a threshold of

µσ = 0.8 over the diagonal entries, where entries below the threshold are determined

to be likely unidentifiable. While this metric does not absolutely guarantee certain

parameters can be estimated, this metric is a good indicator of the structurally iden-

tifiable parameters in the model. The following example demonstrates this concept

of parameter identifiability for a small-scale building environment.
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Example 2 (Parameter Identifiability of Two Room Building Model)

Consider the discrete-time model of the two room building environment in Appendix

A.1. Let the sampling period be Ts = 5 minutes, and let estimated parameter value

be θ̂N(i) = 0.7θS(i) for all i ∈ [1, q]. Then, Fig. 3.1 plots the diagonal values of the

structural identifiability matrix Fk(θ̂N), which denote the information content of each

model parameter.

R1_N R1_S R1_2a R1_2b R1_W R1_R R1_F R2_N R2_S R2_E R2_R R2_F C1 C2 C1_2
0
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8

Structural Identifiabiliy Matrix of BUILD2ROOM
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ag

(F
N
(θ

))

Figure 3.1: Diagonal Values of Fk(θ̂N) for Two Room Building

We observe in this plot that the parameters R12a, R12b, R1F , R2F , C1, C2, and C12

have high information content, which means these parameters are most likely to be

correctly identified. The parameters R1N , R1S, R1W , R1R, R2N , R2S, R2E, R1R have

low information content and signify parameters that are likely unidentifiable.

3.4.2 Parameter Aggregation

Example 2 shows that only some model parameters are structurally identifiable, which

implies the overall building model M(θ) is not structurally or output identifiable. As

discussed earlier, the main cause of structurally unidentifiable parameters is the over

parameterization of the model [42]. Over-parameterization of building models makes
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it difficult to distinguish between building model parameters given the amount of

building data used to estimate the model parameters. Jacquez highlights this issue of

parameter indistinguishability in [44] where he observes that state-space model pa-

rameters are numerically identifiable when they can be uniquely determined from the

coefficients of the model transfer function. A similar algebraic approach is taken in

compartmental models [14, 33, 72]. Godfrey et. al use simple geometric rules to deter-

mine the set of models with indistinguishable parameters based on the connectability

of the model structure. Likewise, we define two rules to reduce the indistinguisha-

bility of parameters by reducing the number of parameters based on the identifiable

and unidentifiable parameter values. We refer to this set of heuristics as parameter

aggregation, and we demonstrate improvements to the structural identifiability of a

model using parameter aggregation in the following section.

Rule 1: Aggregate All Parameters across a Single Building Element

In many cases, parameters across a single building element such as a roof, wall, floor,

etc. cannot be distinguished, and are considered numerically unidentifiable. As a

result, we can determine the unidentifiable parameters of a single building element,

and re-parameterize the model using the total thermal resistance R∗ and total thermal

capacitance C∗. We observe that estimating the aggregate total resistance and total

capacitance in a wall improves the overall structural identifiability of the model.

Consider a single building wall modeled as a 3R2C model, and let the set of

wall parameters be θi = {R1, R2, R3, C1, C2}. Suppose the thermal wall resistance

R2 cannot be estimated accurately because of the inability to distinguish between

individual wall resistances. To address this issue, we can re-parameterize the model

of the wall in terms of the the total thermal wall resistance R∗i = R1 + R2 + R3 and

the total thermal wall capacitance, C∗i = C1 + C2. Given this reduced parameter

53



set ψi = {R∗i , C∗i }, we both reduce the model parameter and improve the structural

identifiability of the model. We summarize this process for the ith building element

in Alg. 3, where θi is the set of parameters in the ith building element. Given Alg.

Algorithm 3 Parameter Aggregation across a Single Building Element

1. Let θi = {θpi , θui } where θui is the subset of unidentifiable parameters

2. Aggregate all resistances Rk ∈ θi into a single resistance R∗i =
∑

k Rk.

3. Aggregate all capacitances Ck ∈ θi into a single capacitance C∗i =
∑

k Ck.

4. Let ψi = {R∗i , C∗i } be the reduced set of parameter values.

3, the unidentifiable parameters in a building model can be removed by reducing the

parameter set of each building element θi for all i with an unidentifiable parameter to

a new parameter set ψi that only includes the total resistance and capacitance of that

particular building element. We note that this slight aggregation of the internal wall

parameters changes the structure of the model, and we can test the identifiability of

the restructured building model to note which lumped parameters are structurally

unidentifiable.

Rule 2: Aggregate Parameters across Multiple Building Elements

We observe that based on the structure of building models, parameters between build-

ing elements may not be structurally identifiable because they are indistinguishable.

For example, consider two side-by-side walls that separate two rooms. Given only

measurements of the air temperatures on either side of the wall, the parameters in

both walls may be considered indistinguishable since heat flow through each wall

cannot be individually measured or calculated without knowledge of the model pa-

rameters. Therefore, we define a second rule, summarized in Alg. 4, where the
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parameters across the indistinguishable walls are reduced to a total resistance and a

total capacitance.

Algorithm 4 Parameter Aggregation across Multiple Building Elements

1. Let θi and θj be indistinguishable building elements.

2. Aggregate all resistances Rk ∈ θi ∪ θj into a single resistance R∗ij =
∑

k Rk.

3. Aggregate all capacitances Ck ∈ θi ∪ θj into a single capacitance C∗ij =
∑

k Ck.

4. Let ψij = {R∗ij, C∗ij} be the reduced set of parameter values.

The first step in this approach is determining indistinguishable building elements,

which is directly tied to the connectability of the model structure as shown in [14,

33, 44]. In the context of building models, we find that building elements in a room

bordering the outdoors such as exterior walls, windows, exterior floors, and exterior

roofs tend to be indistinguishable. Therefore, the following example illustrates the

application of Rule 2 to the scenario in Example 2 and illustrates how parameter

aggregation can lead to significant improvement in the structural identifiability of the

restructured building model

Example 3 (Parameter Aggregation of Two Room Building Model)

Consider the two room building scenario in Example 2. Given the diagonal values

of the structural identifiability matrix Fk(θ) in 3.1, we note that the parameters

with the lowest information content correspond to the parameters of the exterior

walls, roof, and floor. The parameters in the exterior walls, floors, and roofs for

Room 1 (and Room 2) cannot be distinguished because it is impossible to distinguish

how much heat is being transferred through each exterior wall to identify individual

wall parameters given only the temperature of the room T1(t) (and T2(t)) from the
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outdoors To(t). Therefore, we apply Rule 2 to all the exterior walls, roofs, and

floor elements in each room such that ψRoom1 = {R1o} and ψRoom2 = {R2o} for

R1o = R1N +R1S +R1W +R1R +R1F and R2o = R2N +R2S +R2E +R2R +R2F . We

also apply Rule 1 to the interior wall such that

ψRule1 = {R12, C12}

where R12 = R12a + R12b. Given ψRule1 and ψRule2 = ψRoom1 ∪ ψRoom2, let the set of

aggregated parameters be

ψ = {R1o, R12, R2o, C1, C2, C12}.

Fig. 3.2 plots the diagonal values of the structural identifiability matrix based on the

restructured model, M(ψ̂N).
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Figure 3.2: Diagonal Values of Fk(ψ̂N) for Two Room Building

In comparison to Fig. 3.1, there is a much higher level of information on the

aggregated parameters, which implies those parameters ψ are likely identifiable. It

also implies the model M(ψ) is structurally identifiable given ψ = K(θ).
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3.5 Application: Identification of the IW-North

Model

This section demonstrates both the current and proposed approaches to building

model identification with the IW-North scenario highlighted in Chapter 2. We note

the commercial office building is too large of a model to be successfully identified with

the resources available.

3.5.1 Summary of Identification Metrics

We present the following metrics to analyze the accuracy of an identification process.

Mean Squared Output Error Given the set of parameter estimates θ̂N and vali-

dation data LN , let the mean squared output error be

VN(θ, LN) =
1

N

N∑
k=1

‖y[k]− ŷ[k]‖2

where {y[k]} ⊂ LN is the building output and ŷ[k] is the model output given

{u[k],w[k]} ⊂ LN . This metric will be used to determine if the output of the

model M(θ̂N) fits the actual building output y[k] given θ.

Mean Relative Parameter Error Given the parameter scaling deviations, let the

mean absolute parameter scaling deviation be

ε̄S(θ) =
1

nθ

nθ∑
i=1

|θS(i)− θ(i)|
θS(i)

where nθ is the number of parameters θ(i) ∈ θ and θS is the set of true parameter

values. This metric will be used as a benchmark that captures the quality of
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identification experiment that yields the parameter estimate θ = θ̂N where nθ is

the total number of parameters. For ε̄S(θ) ≤ 0.01, we will assume the parameter

θ is identified correctly because the parameter value θ(i) is within 1% of the

true parameter value θS(i) on average.

3.5.2 Initial Conditions & Assumptions

Suppose the building data is sampled every 5 minutes, Ts = 300 sec, and collected

for a period of two weeks, k ∈ [0, 8063]. Then, consider the following conditions for

identification.

• Let θ0(i) = 0.7θS(i) and let 0.7θS(i) ≤ θ(i) ≤ 1.3θS(i) for all θ(i) ∈ θ ∈ Rq.

• Let the identification data be the first week of building data, Z4032 = {u[k],w[k],y[k] :

k ∈ [0, 4031]} and let the validation data be the second week of building data,

L4032 = {u[k],w[k],y[k] : k ∈ [4032, 8063]}.

• Let ū[k] be a PRBS signal where 0W ≤ ūi[k] ≤ 2000W for all i and for all

m ∈ [0, 1, . . .].

• For sampling period Tm = 3600 sec (or 1 hr), let T̄o[m] be given in Table 2.4

for all m ∈ [0,∞). Then, let To[k] = T̄o[m] for m ≤ Ts
Tm
k < m+ 1 and for all k.

• For sampling period Tm = 600 sec (or 10 min), let q̇i[m] ∼ N (70W, 102W ) for all

i ∈ [1, 13] and for all m ∈ [0,∞). Then, let q̇i[k] = q̇i[m] for m ≤ Ts
Tm
k < m+ 1

and for all k.

• Let yi[k] be the ith building output with measurement error, ei[k] ∼ N (0, 0.12K)

for all i ∈ [1, 13].
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3.5.3 Comparison of Standard and Design-Driven

Identification of IW-North Model

In this subsection, we consider the following identification scenarios for the IW-North.

Case 1: Apply the standard identification process outlined in Alg. 1 to the IW-North

model under the initial conditions above.

Case 2: Apply the design-driven identification process in Alg. 2 to the IW-North

model under the initial conditions above.

Table 3.2 uses the metrics described above to quantify the quality of the solution θ̂N ,

assuming the true parameter θS is known for both case scenarios. Table 3.3 uses the

identifiability metrics presented earlier to demonstrate the usefulness of parameter

identifiability. Table 3.3 assumes the true parameter θS is unknown.

Table 3.2: Identification of the IW-North Model

Init. Estim. Model
Param. Param. Time Validation

ε̄S(θ0) ε̄S(θ̂N) (sec) V (θ̂N , L
N)

Case 1 0.30 0.20 225 0.78
Case 2 0.30 0.03 79 0.03

Table 3.3: Parameter Identifiability of the IW-North Model

# of θ Rank of Rank of

nθ F̃k(θ̂N) H̃N(θ̂N , U
N)

Case 1 166 142 138
Case 2 59 59 27

For Case 1, we observe that both the structural and output identifiability matrices

in Table 3.3 are not full rank, which means the model M(θ) is not structurally or
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output identifiable given ZN . The second column of Table 3.2 supports this claim

since a large number of parameters are cannot be identified. Furthermore, using

the notion of parameter identifiability, we are able to correctly detect some of the

parameters that are likely unidentifiable given the model structure and the data set.

Lastly, the large values for the mean relative parameter error in column 4 of Table 3.2

and the mean squared output error in column 5 of Table 3.2 are further proof that

the standard identification algorithm used in Case 1 poorly estimates parameters in

the IW-North.

In comparison to Case 1, Case 2 demonstrates the identification process with pa-

rameter aggregation does a significantly better job of accurately estimating the model

parameters. We observe from Table 3.3 that the rank of the structural identifiability

matrix is full rank. This implies all the parameters should be correctly estimated,

provided an informative input. We also note the output identifiability matrix is not

full rank, which means the model M(θ) is not output identifiable for a given set of

data ZN . Finally, the mean absolute parameter deviation and the mean squared out-

put error in Table 3.2 are much lower for Case 2 than Case 1 because the parameters

are better estimated in this process and approximate the true parameter values.
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3.6 Summary

This chapter poses the building model identification problem and presents the stan-

dard method of identifying grey-box building models. Using the concept of model

identifiability outlined in [24–26], we propose the following improvements to the cur-

rent identification process and make the following contributions.

1. Based on the structural and output identifiability metrics defined above, we

introduce the notion of parameter identifiability that answers the question

which model parameters are unidentifiable and why these model parameters are

unidentifiable. This analysis of the model parameters provides useful guidelines

to users about how to restructure the model to improve structurally unidentifi-

able.

2. We propose a design-driven identification process in Alg. 2 and provide heuris-

tics to improve the structural identifiability of the model. Specifically, we pro-

vide rules to aggregate an unidentifiable set of model parameters θ into a smaller

identifiable set of lumped parameters ψ. Finally, we demonstrate our proposed

design-driven identification process to identify a model of the IW-North.
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Chapter 4

Decentralized Identification of

Building Control Models

Chapter 3 presents a novel approach to identification using identifiability metrics to

improve estimation of model parameters. However, one of the biggest limitations

to identification of building models is scalability. Grey-box models of large-scale

buildings can have as many as hundreds or even thousands of parameters depending

on the complexity of the model. This also means the parameter estimation problem

in (3.6) becomes a large-scale optimization problem, which can potentially be too

time-consuming and too computationally expensive to solve.

To address this challenge, we propose a decentralized approach to the identifi-

cation scheme in Alg. 2. The idea behind this new approach is that decentralized

identification splits the overall identification problem into smaller, more tractable

identification problems, which improves the time and computational effort it takes

to identify a large building model. We break down the decentralized identification

problem into two major questions:
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1. How do we partition the decentralized identification problem into smaller prob-

lems?

2. How do we guarantee the decentralized approach yields equivalent results to the

centralized identification approach?

This chapter investigates the answer to each of these questions in the following sec-

tions: Section 4.1 provides basic background on graph theory, and Section 4.2 in-

troduces the concept of reachability using graph theory. Next, Section 4.3 lays the

framework to adequately address the first question. In Section 4.4, we introduce the

theoretical framework of model inclusion to answer the second question. Sections

4.5 and 4.6 apply this decentralized approach identification to case studies. Finally,

Section 4.7 summarizes the contributions of this chapter.

4.1 Background on Graphs

4.1.1 Graph Notation

We briefly review basic graph theoretic terms and notation used in our work. A

directed graph or digraph is an ordered pair G = {V,E} where V is the set of nodes

and E ⊂ V × V is the set of edges. The digraph Gs = {Vs, Es} is a subgraph of

G if Vs ⊆ V and Es ⊆ Vs × Vs ⊆ E. Gs spans G if Vs = V . A set of subgraphs

Gi = {Vi, Ei} for i = 1, . . . , N is a graph partition of G if
⋃
i Vi = V , Vi 6= ∅ for all

i , Vi
⋂
Vj = ∅ for all i, j, and Ei = Vi × Vi ⊆ E for all i. Let G1 = {V1, E1} and

G2 = {V2, E2}. Then, G = G1 ⊕ G2 is the graph sum of G1 and G2 if V = V1 ∪ V2

and E = E1 ∪ E2. We denote graph sums as
∑

iGi. Likewise, G = G1 − G2 is the

graph difference of G1 and G2 where V = V1\V2 and E = E1\E2.
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A vertex v1 is adjacent to vertex v2 on digraph G = {V,E} if there exists an

edge (v1, v2) ∈ E or an edge (v2, v1) ∈ E for v1, v2 ∈ V . The open neighborhood

of a vertex set Vs ⊂ V on the digraph G = {V,E} is N(Vs) = {v adjacent to

vi : v ∈ V \Vs, vi ∈ Vs}. We use the term neighborhood in place of the term open

neighborhood.

A simple path or path on graph G between the root vertex v1 ∈ V and the terminal

vertex vk ∈ V is a sequence of edges {(v1, v2), (v2, v3), . . . , (vk−1, vk)} for which all the

vertices are distinct i.e. vi 6= vj for i 6= j. A path P = {(v1, v2), . . . , (vk−1, vk)}

can be represented as a subgraph G(P ) = {V (P ), P} where V (P ) = {v1, v2, . . . , vk}.

G = {V,E} is a weakly connected digraph if there exists a path from vi to vj or there

exists a path from vj to vi for every pair of vertices vi, vj ∈ V for i 6= j. We use

the term “connected digraphs” to refer to weakly connected digraphs. G = {V,E} is

a strongly connected digraph if there exists a path from vi and vj and there exists a

path from vj and vi for all vi, vj ∈ V for i 6= j.

4.1.2 Digraph of Building Dynamics

Consider the structured system matrices Ac(θ), Bc(θ), Gc(θ), and C of the continuous-

time building dynamics in (2.11). Then, the structure of the building dynamics S

can be represented as a digraph, G(S) = {VS, ES}, where graph vertices v ∈ VS

represent building signals (such as building temperature) and graph edges (vi, vj) ∈

ES represent the dynamic interaction between these building signals. Given the

different types of building signals, we define the different types of vertices and edges

associated to the digraph G(S) below.

Ti The state vertex Ti represents the ith building temperature, Ti(t).

ui The input vertex ui represents the ith building input, ui(t).
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wi The disturbance vertex wi represents the ith building disturbance,

wi(t).

yi The output vertex yi represents the ith building output, yi(t).

(Ti, Tj) The edge (Ti, Tj) exists if [Ac(θ)]ij 6= 0.

(uj, Ti) The edge (uj, Ti) exists if [Bc(θ)]ij 6= 0.

(wj, Ti) The edge (wj, Ti) exists if [Gc(θ)]ij 6= 0.

(Tj, yi) The edge (Tj, yi) exists if [C]ij 6= 0.

X X = {T1, . . . , Tn} ∈ Rn is the set of all state vertices.

Xa Xa ⊆ X represents building air temperatures, Ta(t).

Xw Xw ⊂ X represents non-air building temperatures, Tw(t).

U U = {u1, . . . , um} ∈ Rm is the set of all input vertices.

W W = {w1, . . . , wp} ∈ Rp is the set of all disturbance vertices.

Y Y = {y1, . . . , yo} ∈ Ro is the set of all output vertices.

Ex,x Ex,x = {(Ti, Tj) : [Ac(θ)]ij 6= 0} ⊂ X × X is the set of all edges

between state vertices.

Eu,x Eu,x = {(uj, Ti) : [Bc(θ)]ij 6= 0} ⊂ U × X is the set of all edges

between state and input vertices

Ew,x Ew,x = {(wj, Ti) : [Gc(θ)]ij 6= 0} ⊂ W × X is the set of all edges

between state and disturbance vertices

Ex,y Ex,y = {(Tj, yi) : [C]ij 6= 0} ⊂ X ×Y is the set of all edges between

state and output vertices.

Using this detailed notation, the digraph of S is formally defined as follows.
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Definition 7 (Building Digraph). Given a building S, the building digraph is

G(S) = {X ∪ U ∪W ∪ Y,E} where E = Ex,x ∪ Eu,x ∪ Ew,x,∪Ex,y. ♠

4.2 Reachability of Building Dynamics

Several papers have studied the relationship between controllability, observability,

and identifiability [15, 21, 25] but have shown that controllability and observability

are neither necessary nor sufficient conditions for output identifiability. However,

Van Doren notes in [25] that structural identifiability is dependent on parameter

sensitivity, controllability, and observability. This makes sense because identifica-

tion exposes the relationship between system inputs and system outputs. Therefore,

buildings without an input cannot be controllable or structurally identifiable because

the building states cannot be influenced. Likewise, buildings without an output can-

not be observable or structurally identifiable because there are no building outputs

to observe changes in the building states. Intuitively, a building cannot be struc-

turally identifiable if the building states are inaccessible from the building inputs or

inaccessible to the building outputs.

Based on this logic, we highlight the importance of structural access to building

states from building inputs and to building outputs for structural identifiability. This

notion of structural access is more formally known as input and output reachability

in [14, 44] or structural controllability and observability in [53]. Although both sets

of terms are equivalent, we will exclusively use and define the terms input reachability

and output reachability. Given Definition 7, we define the reachability properties of

the building environment S as follows.
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Definition 8 (Input Reachability [14]). A dynamic system S is input reach-

able from the controllable input ui(t) if there exists a directed path on the digraph

of the system G(S) from the associated input vertex ui ∈ U to every state vertex

xi ∈ X. ♠

Definition 9 (Output Reachability [14]). A dynamic system S is output

reachable to the output yi(t) if there exists a directed path on the digraph of

the system G(S) from every state vertex xi ∈ X to the output vertex yi ∈ Y . ♠

In [53], Liu uses digraphs of large-scale systems to analyze the structural relation-

ship between the states and controllable inputs. Likewise, we use digraphs of building

dynamics provide an easy way to characterize structural input/output relationships

in a building that may lead to poor structural identifiability. The following example

depicts a building digraph and illustrates the notion of input and output reachability

for a small-scale building.

Example 4 (Reachability of Four Room Building)

Consider the four room building dynamics S in Appendix A.2. Then, the digraph of

the building dynamics is G(S) = {X ∪ U ∪W ∪ Y,Ex,x ∪ Eu,x ∪ Ew,x,∪Ex,y} where

the set of graph vertices are

Xa = {T1, T2, T3, T4}, Xw = {T12, T13, T24, T34} X = Xa ∪Xw
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U = {u1, u4}, W = {To}, Y = {y1, y2, y3, y4}

and the set of graph edges are

Ex,x = {(T1, T12), (T1, T13), (T2, T12), (T2, T24), (T3, T13), (T3, T34), . . .

(T4, T24), (T4, T34), (T12, T1), (T12, T2), (T13, T1), (T13, T3), . . .

(T24, T2), (T24, T4), (T34, T3), (T34, T4)}

Eu,x = {(u1, T1), (u4, T4)}

Ew,x = {(To, T1), (To, T2), (To, T3), (To, T4)}

Ex,y = {(T1, y1), (T2, y2), (T3, y3), (T4, y4)}.

Then, the building digraph G(S) is illustrated in Fig. 4.1. Given the building digraph

G(S), let Pu1,x and Pu4,x be the sets of all possible paths that start from input vertices

u1 and u4, respectively, and end on a state vertex Ti ∈ X, such that

Pu1,x = {{(u1, T1)}, {(u1, T1), (T1, T12)}, {(u1, T1), (T1, T12), (T2, T24), } . . .} (4.1a)

Pu4,x = {{(u4, T4)}, {(u4, T4), (T4, T24)}, {(u4, T4), (T4, T24), (T24, T2), } . . .} (4.1b)

From observation of the building digraph G(S) in Fig. 4.1, we conclude that the set

of paths Pu1,x and Pu4,x includes a path from every input vertex to every state vertex.

Therefore, the building S is input-reachable. Likewise, let Px,y1 , Px,y2 , Px,y3 , and Px,y4

be the sets of all possible paths that start from a state vertex and end on an output

vertex y1, y2, y3, and y4, respectively, such that

Px,y1 = {{(y1, T1)}, {(y1, T1), (T1, T12)}, {(y1, T1), (T1, T12), (T12, T2), } . . .} (4.2a)

Px,y2 = {{(y2, T2)}, {(y2, T2), (T2, T24)}, {(y2, T2), (T2, T24), (T24, T4), } . . .} (4.2b)

68



Px,y3 = {{(y3, T3)}, {(y3, T3), (T3, T13)}, {(y3, T3), (T3, T13), (T13, T1), } . . .} (4.2c)

Px,y4 = {{(y4, T4)}, {(y4, T4), (T4, T34)}, {(y4, T4), (T4, T34), (T34, T3), } . . .} (4.2d)

We observe that the set of paths Px,y1 , Px,y2 , Px,y3 , and Px,y4 includes a path from

every state vertex to every output vertex. Therefore, S is also output reachable.

T1 

T12 

T2 Y2 

To 

U1 

T3 

T34 

T4 

Y3 Y1 

T24 

T13 

Y4 

U4 

Figure 4.1: Digraph of Building Dynamics: Grey nodes represent state vertices, Ti ∈
X and dark grey nodes represent air state vertices, Ti ∈ Xa. Blue nodes represent
input vertices ui ∈ U , and red nodes represent output vertices yi ∈ Y . Green nodes
are disturbance inputs, wi ∈ W .
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4.3 Decentralized Reachability of Building

Dynamics

Although the reachability of S can be easily observed for the small-scale building in

Example 4, it can be much more difficult to detect for large-scale systems. To address

this issue, we propose a decentralized approach to determine the input-output reacha-

bility of the building. This approach first determines the input-output reachability of

the component air-based subsystems of S and then uses the interactions between these

air-based building subsystems to determine the reachability of the entire building.

4.3.1 Air-Based Building Subsystems & Building Maps

A building is a collection of rooms, offices, hallways, and other physical spaces. In

each of these spaces, heat is being transferred to the space air from surrounding

non-air materials with thermal mass (such as walls, roofs, floors), independent heat

sources such as radiators, and heat flow from neighboring spaces. We denote the

dynamics of the ith air space in the building as Sai , where Sai is a subsystem of S

and the digraph G(Sai ) is a subgraph of G(S). Sai is referred to as the ith air-based

subsystem of S. We provide a precise definition of Sai below.

Definition 10 (Air-Based Building Subsystem). Sai is the ith air-based sub-

system of S if G(Sai ) = {Xa
i ∪ Ua

i ∪ W a
i ∪ Y a

i , E
a
i } is a connected subgraph of

G(S) = {X ∪ U ∪W ∪ Y,E} and satisfies the following conditions:

• Xa
i ∩Xa = {Ti} and X i − {Ti} ⊂ Xw where Xa ∪Xw = X and Ti is the ith

building air temperature,
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• N(Xa
i ) ∩X ⊂ Xa where N(Xa

i ) is the neighborhood of Xa
i on G(S),

• Ua
i = N(Xa

i ) ∩ U ,

• W a
i = N(Xa

i ) ∩ (X ∪W ),

• Y a
i = N(Xa

i ) ∩ Y , and

• Ea
i = {(u, v) ∈ E : ∀u, v ∈ Xa

i ∪ Ua
i ∪W a

i ∪ Y a
i }. ♠

The concept of air-based building subsystems is important because it exposes the

structured thermodynamics of individual building spaces. We will use these compo-

nent subsystems later in this chapter to examine certain structural properties in the

building. In Appendix B.1, we present Alg. 12 which partitions the building digraph

G(S) into the set of subgraphs {G(Sai ) : ∀i ∈ [1, a]} that satisfy the conditions in

Definition 10. We can infer the interactions between any two subsystems Sai and Saj

based on the edges that are shared between the digraphs G(Sai ) and G(Saj ). These

interactions represent the heat flow between physical spaces in a building, and they

can be mapped on a high-level graph to expose the connections between the differ-

ent air-based subsystems. We define this high-level graph as a building map, and we

demonstrate this decentralized approach in the following example.

Definition 11 (Building Map). Let {Sai : ∀i ∈ [1, a]} be the set of all air-based

subsystems of S. Then, GR(S) = {VR, ER} is the building map of S if,

• VR = {1, . . . , a} where i ∈ VR represents the ith air based subsystem Sai ,

71



• The edge (i, j) ∈ ER exists for (i, j) ∈ VR × VR if there exists an edge

(u, v) ∈ Ea
i ∩ Ea

j where G(Sai ) = {V a
i , E

a
i } and G(Saj ) = {V a

j , E
a
j }. ♠

Example 5 (Decentralized Reachability of Four Room Building)

Given the digraph G(S), we apply the partitioning algorithm shown in Alg. 12 to

find digraphs of the air-based subsystems of S. We observe that the building digraph

G(S) is split into 4 component air-based subsystems, G(Sa1 ), G(Sa2 ), G(Sa3 ), and

G(Sa4 ) which are depicted in Fig. 4.2.

T1 

T12 
To 

U1 

Y1 

T13 

To 

T3 

T34 

Y3 
T13 

T12 

T2 Y2 

To 

T24 

To 
T34 

T4 T24 Y4 

U4 

T1 

T4 

T2 

T3 

T1 

T4 

T3 

T2 

Figure 4.2: Digraph of Air-Based Building Subsystems: Grey nodes represent state
vertices, Ti ∈ X and dark grey nodes represent air state vertices, Ti ∈ Xa. Blue nodes
represent input vertices ui ∈ U , and red nodes represent output vertices yi ∈ Y . Green
nodes are disturbance inputs, wi ∈ W , and white nodes are air temperatures from
neighboring rooms, Tj ∈ Xa which are treated as disturbance inputs
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We make the following observations about the reachability of each of these air-

based subsystems.

Reachability of Sa1 : The air-based subsystem Sa1 is input reachable because there

exists a directed path Pi ∈ Pu1,x on G(Sa1 ) from every input vertex Ua
1 = {u1}

to every state vertex in Xa
1 = {T1, T12, T13} where

Pu1,x = {(u1, T1)} ∪ {(u1, T1), (T1, T12)} ∪ {(u1, T1), (T1, T13)}. (4.3)

Likewise, S1 is output reachable because there exists a directed path Pi ∈ Px,y1

on G(Sa1 ) from every state vertex in Xa
1 to every output vertex Y a

1 = {y1} where

Px,y1 = {(T1, y1)} ∪ {(T12, T1), (T1, y1)} ∪ {(T13, T1), (T1, y1)}. (4.4)

Reachability of Sa2 : The air-based subsystem Sa2 is output reachable because there

exists a directed path Pi ∈ Px,y2 on G(Sa2 ) from every state vertex in Xa
2 =

{T2, T12, T24} to every output vertex Y a
2 = {y2} where

Px,y2 = {(T2, y2)} ∪ {(T12, T2), (T2, y2)} ∪ {(T24, T2), (T2, y2)}. (4.5)

Reachability of Sa3 : The air-based subsystem Sa3 is output reachable because there

exists a directed path Pi ∈ Px,y3 on G(Sa3 ) from every state vertex in Xa
3 =

{T3, T13, T34} to every output vertex Y a
3 = {y3} where

Px,y3 = {(T3, y3)} ∪ {(T13, T3), (T3, y3)} ∪ {(T34, T3), (T3, y3)}. (4.6)

Reachability of Sa4 : The air-based subsystem Sa4 is input reachable because there
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exists a directed path Pi ∈ Pu4,x on G(Sa4 ) from every input vertex Ua
4 = {u4}

to every state vertex in Xa
4 = {T4, T24, T34} where

Pu4,x = {(u4, T4)} ∪ {(u4, T4), (T4, T24)} ∪ {(u4, T4), (T4, T34)}. (4.7)

Likewise, Sa4 is output reachable because there exists a directed path Pi ∈ Px,y4

on G(Sa4 ) from every state vertex in Xa
4 to every output vertex Y a

4 = {y4} where

Px,y4 = {(T4, y4)} ∪ {(T24, T4), (T4, y4)} ∪ {(T34, T4), (T4, y4)}. (4.8)

We can characterize the interactions between these air-based building subsystems

using the building map shown in Fig. 4.3. Using the building map, we can determine

the reachability of the entire building based on how each of the air-based subsystems

are connected together.

1 

2 

3 

4 

U1 

Y1 

Y2 

Y3 

Y4 

U4 

Figure 4.3: Building Map of S

In this scenario, there exists a path from every input-output reachable air-based
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building subsystem to every other air-based building subsystem. This means that

there exists a path from an input or output vertex in an input-output reachable air-

based building subsystem to the states in other air-based subsystems. As a result,

we can conclude the entire building is both input and output reachable.

4.3.2 Input-Output Reachable Partitions of Building Map

In the prior example, we use the reachability of the air-based building subsystems to

determine the reachability of the entire building. This determines whether the entire

building has a room with access to at least an input and an output for identifiability.

In this subsection, we are interested in partitioning the building into potentially

identifiable zones such that each building zone has access to at least one input and

one output. This means we are interested in creating zones of the the building that

are both input and output reachable. Towards that end, we introduce this notion of

input-output reachable partitions of S to uniformly split the building structure into

input-output reachable partitions.

Definition 12 (Input-Output Reachable Partition of Building Map).

{{V k
R , E

k
R} : ∀k} is the input-output reachable partition of the building map

GR(S) = {VR, ER} if

• {{V k
R , E

k
R} : ∀k} is a graph partition of GR(S) = {VR, ER}

• There exists an input reachable Sai such that i ∈ V k
R

• There exists an output reachable Saj such that j ∈ V k
R

where Sai is the ith air-based subsystem of S. ♠
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The following example depicts the input-output partitions of the building map in

Fig. 4.3.

Example 6 (Digraph of Input-Output Reachable Partitions)

The building map GR(S) in Fig. 4.3 can be partitioned into input-output reachable

segments using Alg. 13. Fig. 4.5 provides examples of the types of input-output

reachable partitions of GR(S).

1 

2 

3 

4 

U1 

Y1 

Y2 

Y3 

Y4 

U4 

(a) Partition P1
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(c) Partition P3
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(d) Partition P4

Figure 4.4: Partition of the Building Map GR(S)
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These partitions produce non-unique subgraphs of G(S), and split the building

model into building input-output reachable zones that can be used for decentralized

identification. The easiest way to partition the building according to its reachability

is to partition the building map. Alg. 13 partitions the building map GR(S) into a set

of subgraphs {{V k
R , E

k
R} : ∀k} that satisfy the conditions in Definition 12. The idea

behind this algorithm is to analyze the reachability of all the air-based subsystems

and create fairly uniform groups of those air-based subsystems such that each group

is connected and input-output reachable. Finally, we can partition the building S

into input-output reachable subsystems.

4.3.3 Zone Partition of Building Dynamics

Using the input-output partition of the building map, we can create partitions of the

building digraph that are both input-output reachable and possibly identifiable. We

will refer to this process as the zone partitioning of the building dynamics S. This

leads to the following definition.

Definition 13 (Building Zone Partition). Let {{V k
R , E

k
R} : ∀k} be the input-

output partition of the building map GR(S). Then, {Sk : ∀k} is the zone partition

of S if the digraph of Sk is G(Sk) = {Xk ∪ Uk ∪Wk ∪ Yk, Ek} where

• Xk =
⋃
i∈V kR

Xa
i

• Uk =
⋃
i∈V kR

Ua
i

• Wk =
⋃
i∈V kR

W a
i

• Yk =
⋃
i∈V kR

Y a
i
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• Ek =
⋃
i∈EkR

Ea
i

such that G(Sai ) = {Xa
i ∪ Ua

i ∪W a
i ∪ Y a

i , E
a
i } is the digraph of the ith air-based

subsystem. ♠

We will use the term building zone to refer to an individual system Sk from the

zone partition of the building S. We outline the entire algorithm to partition the

building dynamics into a set of non-unique building zones.

Example 7 (Zone Partition of Building Digraph)

Using the partition P1, we note the zone partition of the building digraph is written

as follows.
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Figure 4.5: Zone Partition of the Building Digraph G(S)
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4.4 Decentralized Identification Process

In the previous chapter, we note that the current and design-driven identification

processes are not scalable for large building models. This is due to the size of the

building and the number of parameters to be identified. To overcome this problem,

we propose a decentralized approach to identification where the building environment

S is split into input-output reachable building zones that are separately modeled and

identified. This condition for input-output reachability imposed on the subsystems

of the building environment is important because it guarantees the building input

influences every state in the building and every state influences the building output.

As a result, parameter changes in the model can be detected in the modeled building

output, ŷ[k], which means the model is distinguishable in the output.

This section presents our decentralized identification scheme in the context of

building modeling, and is one of the major contributions of this work. In the following

subsections, we introduce the notation for modeling a building zone Sk, and we prove

that our decentralized approach is equivalent to the whole building identification

used in Chapter 3. Furthermore, we observe that the parameter identifiability of the

building zone models is related to the identifiability of the overall building model,

and we can use the structural and output identifiability of building zone models to

determine whether the zone model parameters can be estimated.

4.4.1 Continuous-Time Building Zone Models

Consider the structure of the continuous-time building dynamics S written in (2.11).

Let M(θ) be the continuous-time model of the building S where both S and M(θ)

belong to the same model structure M. Then, we assume the following notation to
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describe a subsystem of M(θ).

Mi(θi) The ith subsystem of M(θ) ∈M

θi θi ∈ Rqi is the parameter vector of Mi(θi), and a subvector of θ ∈ Rq

where qi ≤ q.

xi(t) xi(t) ∈ Rni is the state vector of Mi(θi), and a subvector of x(t) ∈

Rn where ni ≤ n.

ui(t) ui(t) ∈ Rmi is the input vector of Mi(θi), and a subvector of u(t) ∈

Rm where mi ≤ m.

wi(t) wi(t) ∈ Rpi is the disturbance vector of Mi(θi), and a subvector of

w(t) ∈ Rp where pi ≤ p.

yi(t) yi(t) ∈ Roi is the output vector of Mi(θi), and a subvector of y(t) ∈

Ro where oi ≤ o.

Ac,ii(θi) The submatrix of Ac(θ) associated to xi(t) and xi(t).

Ac,ij(θi) The submatrix of Ac(θ) associated to xi(t) and xj(t).

Bc,ii(θi) The submatrix of Bc(θ) associated to xi(t) and ui(t).

Bc,ij(θi) The submatrix of Bc(θ) associated to xi(t) and uj(t).

Gc,ii(θi) The submatrix of Gc(θ) associated to xi(t) and wi(t).

Gc,ij(θi) The submatrix of Gc(θ) associated to xi(t) and wj(t).

Cii The submatrix of C associated to yi(t) and xi(t).

Cij The submatrix of C associated to yi(t) and xj(t).

80



Then, let the ith subsystem of M(θ) be,

Mi(θi) :

ẋi(t) = Ac,ii(θi)xi(t) +Bc,ii(θi)ui(t) +Gc,ii(θi)wi(t)

+
∑
i 6=j

Ac,ij(θi)xj(t)

yi(t) = Ciixi(t).

(4.9)

where Bc,ij(θi) = 0ni×mj , Gc,ij(θi) = 0ni×pj , and Cij = 0oi×nj for i 6= j. In the

prior section, we split the building S into input-output reachable subsystems, Si for

i ∈ [1, P ], which are defined as building zones. Then, given M(θ) models S, we can

model the ith building zone Si using the ith subsystem of M(θ). Therefore, we will

refer to Mi(θi) as the ith building zone model. We can write the set of all zone models

{Mi(θi) : i ∈ [1, P ]} in the following form,

M̃(θ) :
˙̃x(t) = Ãc(θ)x̃(t) + B̃c(θ)ũ(t) + G̃c(θ)w̃(t)

ỹ(t) = C̃x̃(t)

(4.10)

where

x̃(t) =


x1(t)

...

xP (t)

 ũ(t) =


u1(t)

...

uP (t)

 w̃(t) =


w1(t)

...

wP (t)

 ỹ(t) =


y1(t)

...

yP (t)



Ãc(θ) =


Ac,11(θ1) . . . Ac,1P (θ1)

...
. . .

...

Ac,P1(θP ) . . . Ac,PP (θP )

 B̃c(θ) =


Bc,11(θ1) . . . 0n1×mP

...
. . .

...

0nP×m1 . . . Bc,PP (θP )


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G̃c(θ) =


Gc,11(θ1) . . . 0n1×pP

...
. . .

...

0nP×p1 . . . Gc,PP (θP )

 C̃ =


C11(θ1) . . . 0o1×nP

...
. . .

...

0oP×n1 . . . CPP (θP )

 .

We note that M̃(θ) = M(θ) if any two subsystems Mi(θi) and Mj(θj) are non-

overlapping for i 6= j. Otherwise, M̃(θ) is an expanded form of M(θ) such that x(t)

is a subvector of x̃(t), u(t) is a subvector of ũ(t), w(t) is a subvector of w̃(t), and

y(t) is a subvector of ỹ(t).

4.4.2 Decentralized Identifiability

This relationship between M(θ) and M̃(θ) is important because it allows us to infer

a relationship between the identifiability of the two models. Specifically, we claim

the expanded model M̃(θ) is identifiable if and only if M(θ) is also identifiable. In

order, to formalize this claim, we consider a more formal definition of the relationship

between the building model M(θ) and the set of zone models written as M̃(θ). Siljak

uses the terms restriction, aggregation, and inclusion [77] to define this relationship

given subsystems might overlap.

Definition 14 (Restriction & Aggregation, [77]). A model M(θ) is a re-

striction of M̃(θ) with respect to Im(V ) if there exists a full column rank matrix

V such that x̃ = V x. Likewise, M̃(θ) is an aggregation of M(θ) with respect to

Im(U) if there exists a full row rank matrix U such that x = U x̃. ♠
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Theorem 1 (Inclusion Principle, [77]): M(θ) ⊂ M̃(θ) if and only if there

exists a model M̄(θ) such that M(θ) ⊂ M̄(θ) ⊂ M̃(θ) where M̄(θ) is a restriction

of M̃(θ) and M̄(θ) is an aggregation of M(θ) ♦

Note With an abuse of standard notation, Siljak uses M(θ) ⊂ M̃(θ) to mean the

model M̃(θ) includes the model M(θ).

Theorem 2 formally presents this relationship between the identifiability of a build-

ing model and its building zone models, and we prove this claim below.

Theorem 2 (Decentralized Identifiability): The continuous-time building

model M(θ) is output (structurally) identifiable if and only if every building zone

model Mi(θi) is also output (structurally) identifiable for all i = 1, 2, . . . , P . ♦

Proof Since output identifiability implies structural identifiability according to Prop.

3, we only need to show that Mi(θi) is output identifiable if and only if all subsystems

{Mi(θi)} are output identifiable. First, given (4.10), we can write all the subsystems

as M̃(θ). Let y(t) be the output of the model M(θ) and let ỹ(t) be the output

of the model M̃(θ). Since M(θ) is a restriction of M̃(θ) and M(θ) includes itself,

then M(θ) ⊂ M̃(θ). This means there exist matrices P, P̃ such that y(t) = P̃ ỹ(t),

ỹ(t) = Py(t), and P̃P = I.

Assume the continuous-time version of the output identifiability matrix of M(θ)
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in (3.10) is,

Hc(θ, U
T ) =

1

T

∫ T

0

∂y(τ)

∂θ
Q
∂y(τ)

∂θ

T

∂τ (4.11)

and the continuous-time output identifiability matrix of M̃(θ) is

H̃T (θ, UT ) =
1

T

∫ T

0

∂ỹ(τ)

∂θ
Q
∂ỹ(τ)

∂θ

T

∂τ (4.12)

where the set of continuous-time building inputs is UT = {u(t),w(t) : t ∈ [0, T ]}.

Then, given ỹ(t) = Py(t), we can rewrite (4.12) as

H̃T (θ, UT ) = PHc(θ, U
N)P T . (4.13)

Because P is a full rank column matrix, rank(H̃T (θ, UT )) = q if rank(HT (θ, UT )) = q

which implies M(θ) is structurally identifiable. Likewise, we can apply y(t) = P̃ ỹ(t)

to (4.11) to reach the following conclusion,

HT (θ, UT ) = P̃ H̃T (θ, UT )P̃ T , (4.14)

where P̃ is a full rank row matrix. Then, rank(HT (θ, UT )) = q if rank(H̃T (θ, UT )) =

q, which implies M̃(θ) is output identifiable. �

We also note the following corollary to Theorem 2, which considers discrete-time

building models.

Corollary 3: The discrete-time building model Md(θ) is output (structurally) iden-

tifiable if and only if every building zone model Md,i(θi) is also output (structurally)

identifiable for all i = 1, 2, . . . , P . ♣
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Proof The proof of this corollary follows directly from the proof of Theorem 2 using

the discrete-time output-identifiability matrix HN(θ, UN) in (3.10). �

Given Theorem 2 and Corollary 3, we can determine the structural and output

identifiability of the entire building model by separately testing the structural and

output identifiability of each building zone model, Mi(θi). If at least one zone model

fails the tests for structural (or output) identifiability, then we know the entire build-

ing model cannot be structurally (or output) identifiable.

4.4.3 Decentralized Parameter Estimation

Another outcome of Theorem 2 is that we can solve the identification problem in (3.6)

for a large number of parameters θ by applying the identification problem (3.6) to

the subset of zone parameters θi provided some localized set of data ZN
i . We propose

this decentralized parameter estimation process in Alg. 5.

Algorithm 5 Decentralized Parameter Estimation

A) Partition the model M(θ) into the set of zone models, {Mi(θi) : ∀i}

B) Partition the building data ZN into the set of zone data, {ZN
i : ∀i}

C) For all i, discretize Mi(θi) and solve (3.6) for θ̂i,N given ZN
i .

D) Merge all θ̂i,N into a single parameter estimate, θ̂N

In the last step of this algorithm, estimates of the zone parameters are merged

together to form an estimate of the entire set of building parameters. Zone parameters

θ̂i,N may have overlapping parameters with another set of zone parameters. In those

cases, the mean of the overlapping estimates are taken and used as the final estimate

of that parameter.
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4.5 Application: Decentralized Identification of

the IW-North Model

This section demonstrates the decentralized identification process for the Intelligent

Workplace. The objective of this work is to show that decentralized identification of

the IW-North model yields equivalent results as the standard identification process

applied to the IW-North model in Section 3.5. The benefit of this decentralized iden-

tification process over the standard identification process is that this approach can be

scaled up to identify large building models. This section will show that the decentral-

ized identification of the IW-North is efficient and yields results that are equivalent

to the results found in Section 3.5. In the following section, we will demonstrate the

scalability of this work for a large commercial office building with over 500 parameters.

4.5.1 Initial Conditions & Assumptions

In order to apply the decentralized identification process, the IW-North needs to be

split into several zone models that are input-output reachable. In order to determine

the reachability of the IW-North we consider the building map of the IW-North

shown in Fig. 4.6a. We will also assume the input-output reachable partition of

the IW-North building map in Fig. 4.6b, where Partition 1 = {1}, Partition 2 =

{2, 4}, Partition 3 = {3}, Partition 4 = {5, 6}, Partition 5 = {7}, Partition 6 = {8},

Partition 7 = {9, 10}, Partition 8 = {11}, Partition 9 = {12}, and Partition 10 =

{13}. Based on Fig. 4.6b, the building model for the IW-North is split into 10 zone

models Mi(θi) where the ith zone model is derived from the ith input-output reachable

partition of the building map according to Definition 13. Finally, we apply the same

identification metrics, initial building conditions, and general building assumptions
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(a) IW-North Building Map
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(b) Input-Output Reachable Partition of (a)

Figure 4.6: This figure illustrates the IW-North building map and an input-output
reachable partition of the IW-North building map. Each numbered box in (a) refers
to the corresponding air-based subsystem of the IW-North, and edges represent in-
terconnections between these subsystems. Note that the controllable building inputs
are denoted by small blue circles and the measurable building outputs are denoted
by small beige circle. In (b), the orange boxes represent the individual building zones

87



given in Section 3.5 to the identification scenarios posed here.

4.5.2 Decentralized Standard Identification of the

IW-North Model

In this scenario, the standard identification process in Alg. 1 is applied to the

IW-North model M(θ) in combination with the decentralized parameter estimation

scheme in Alg. 5. Table 4.3 provides the parameter identifiability results for each

zone using the local zone parameter estimate θ̂i,N . In Table 4.3, none of the structural

or output identifiability metrics for each zone are full rank. This means the estimated

zone models Mi(θi) are neither structurally nor output identifiable. Based on The-

orem 2, the identified model M(θ̂N) is unidentifiable, which is the same conclusion

reached in the centralized identification case shown in Case 1 of Table 3.3.

Table 4.3: Parameter Identifiability of the IW-North Zone Models

# of θ Rank of Rank of

nθ F̃k(θ̂N) H̃N(θ̂N , U
N)

Zone 1 16 7 11
Zone 2 25 16 9
Zone 3 14 8 10
Zone 4 25 17 11
Zone 5 16 8 9
Zone 6 14 8 10
Zone 7 26 19 11
Zone 8 14 8 11
Zone 9 16 7 10
Zone 10 17 9 8

Assuming the set of true parameter values θS is known, the metrics in Table 4.4

describe the quality of the estimated zone parameter values θ̂i,N and the proximity of

the zone parameter estimate to the true zone parameter values. Table 4.4 supports the
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Table 4.4: Standard Identification of the IW-North Zone Models

Init. Estim. Model
Param. Param. Time Validation

ε̄S(θ0) ε̄S(θ̂N) (sec) V (θ̂N , L
N)

Zone 1 0.30 0.25 3.12 -
Zone 2 0.30 0.11 6.28 -
Zone 3 0.30 0.26 1.02 -
Zone 4 0.30 0.20 6.65 -
Zone 5 0.30 0.29 2.53 -
Zone 6 0.30 0.17 4.56 -
Zone 7 0.30 0.15 6.06 -
Zone 8 0.30 0.17 3.64 -
Zone 9 0.30 0.28 1.91 -
Zone 10 0.30 0.19 4.33 -

Merged 0.30 0.20 40.11 4.53

observations of Table 4.3, where the estimated mean relative parameter error ε̄S(θ̂N)

is significantly close to the initial mean relative parameter values, ε̄S(θ0) = 0.3. This

means that the estimated zone model parameters θ̂i,N cannot be accurately identified

using the standard identification process with decentralized parameter estimation.

However, we note the decentralized identification approach is more computation-

ally efficient than the standard centralized identification of the IW-North model in

the previous chapter. The total time taken for standard identification of the IW-

North model is 225 sec, which is an order of magnitude greater than the total time

for decentralized identification, which is found to be about 40 sec.

Finally, the last row of Table 4.4 demonstrates the quality of the merged parameter

estimate θ̂N in comparison to the set of true parameter values θS. We note the

merged estimate θ̂N is not identifiable because the mean relative parameter error

is significantly high and results in a high validation error V (θ̂N , L
N) = 4.53. This

supports the conclusion in Table 4.3 that the model is not structurally nor output
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identifiable. Furthermore, it supports the original conclusion from the centralized

standard identification scenario in Table 3.2.

4.5.3 Decentralized Design-Driven Identification of the

IW-North Model

In this scenario, the design-driven identification process in Alg. 2 is applied to the

IW-North in combination with the decentralized parameter estimation scheme in Alg.

5 to identify the building model M(θ). Table 4.5 provides the parameter identifiability

results for each zone model Mi(θ̂i,N). We note the structural identifiability metric for

each zone model satisfies the rank conditions for structural identifiability in Table 4.5,

which means the overall building model is also structurally identifiable. However, the

model is not output identifiable for the data set ZN since the output identifiability

metric for each zone model in Table 4.5 does not satisfy the full rank conditions for

output identifiability. Because the model is structurally identifiable but not output

identifiable, then the data set ZN is likely the culprit for poor model identification.

Table 4.5: Parameter Identifiability of the IW-North Zone Models

# of θ Rank of Rank of

q F̃k(θ̂N) H̃N(θ̂N , U
N)

Zone 1 5 5 5
Zone 2 12 12 10
Zone 3 6 6 6
Zone 4 12 12 6
Zone 5 5 5 5
Zone 6 6 6 5
Zone 7 13 13 8
Zone 8 6 6 4
Zone 9 5 5 5
Zone 10 6 6 5
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Table 4.6: Design-Driven Identification of the IW-North Zone Models

Init. Estim. Total Model
Param. Param. Time Validation

ε̄S(θ0) ε̄S(θ̂N) (sec) V (θ̂N , LN)

Zone 1 0.30 0.024 1.17 -
Zone 2 0.30 0.068 0.79 -
Zone 3 0.30 0.043 0.50 -
Zone 4 0.30 0.089 0.88 -
Zone 5 0.30 0.022 0.50 -
Zone 6 0.30 0.048 0.55 -
Zone 7 0.30 0.053 0.91 -
Zone 8 0.30 0.034 0.56 -
Zone 9 0.30 0.012 0.66 -
Zone 10 0.30 0.023 1.12 -

Merged 0.30 0.045 8.20 0.0805

Table 4.6 describes the accuracy of the zone model-parameters θ̂i,N estimated

from the design-driven identification process. The mean relative parameter error,

denoted as ε̄S(θ̂N), is relatively small in Table 4.6 compared to the values found in

Table 4.4. This means that the estimated parameter values do not deviate by much

from the true parameter values, and this is reflected in the low validation result,

V (θ̂N , L
N) = 0.0805. Furthermore, we note the time for decentralized design-driven

identification is reduced significantly from the standard identification process because

of the reduction in parameters. Finally, we observe that the last rows of Table 4.4

yields a similar result to that of Case 2 in Table 3.2.
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4.6 Application: Decentralized Identification of

an Office Building Model

This section demonstrates the scalability of the decentralized identification process

for a large commercial office building. The model for the commercial office building

has a total of 543 parameters, which makes it difficult to solve (3.6) quickly and very

difficult to create the identifiability metrics Fk(θ) and HN(θ, UN) quickly. To avoid

the computationally taxing process of identifying the entire office building at once, we

can split the building into several zones, identify the zone models given local building

data, and test the identifiability of each building zone model.

4.6.1 Initial Conditions & Assumptions

This office building has 12 floors and 5 building spaces per floor as shown in 2.5, for

a total of 60 open spaces. As noted in Chapter 2, we assume the temperature for

each of these open spaces is being thermally measured and the core spaces contain

building inputs. This means each floor has exactly one controllable input and 5

measurements, each of the air spaces in the building. Given this configuration, the

building map of this large commercial office building shown in Fig. 4.6a is partitioned

by floor as shown in Fig. 4.6b. For this commercial building scenario, we will assume

the following conditions for identification.

• Let the building data be sampled every 5 minutes, Ts = 300 sec, and collected

for a period of two weeks, k ∈ [0, 8063].

• Let θ0(i) = 0.7θS(i) and let 0.7θS(i) ≤ θ(i) ≤ 1.3θS(i) for all θ(i) ∈ θ.

• Let the identification data be the first week of building data, Z4032 = {u[k],w[k],y[k] :
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(a) Commercial Office Building Map
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(b) Input-Output Reachable Partition of (a)

Figure 4.7: This figure illustrates the building map of the large office building and
an input-output reachable partition of the building map. Each numbered box in (a)
refers to the corresponding air-based subsystem of the commercial office building, and
edges represent interconnections between these subsystems. Only 3 of the 12 floors
are represented in these graphs. All air-based subsystems are measured and there is
one controllable heating input per floor, and these inputs are in {5, 10, 15, . . . , 60}.
In (b), the orange boxes represent the individual building zones
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k ∈ [0, 4031]} and let the validation data be the second week of building data,

L4032 = {u[k],w[k],y[k] : k ∈ [4032, 8063]}.

• Let ū[k] be a PRBS signal where 0W ≤ ūi[k] ≤ 2000W for all i and for all

m ∈ [0, 1, . . .].

• For sampling period Tm = 3600 sec (or 1 hr), let T̄o[m] be given in Table 2.4

for all m ∈ [0,∞). Then, let To[k] = T̄o[m] for m ≤ Ts
Tm
k < m+ 1 and for all k.

• For sampling period Tm = 600 sec (or 10 min), let q̇i[m] ∼ N (70W, 102W ) for all

i ∈ [1, 60] and for all m ∈ [0, 1, . . .]. Then, let q̇i[k] = q̇i[m] for m ≤ Ts
Tm
k < m+1

and for all k.

• Let yi[k] be the ith building output with measurement error, ei[k] ∼ N (0, 0.12◦K)

for all i ∈ [1, 60].

Finally, we will assume the same identification metrics given in Section 3.5 to the

identification scenarios posed here.

4.6.2 Decentralized Standard Identification of an Office

Building Model

In this scenario, we apply the standard identification process in Alg. 1 with the de-

centralized parameter estimation scheme in Alg. 5 to the model of the office building,

M(θ). Table 4.7 provides the parameter identifiability results for each zone and as-

sumes no knowledge of θS. According to Table 4.7, all of the estimated zone models

do not meet the rank conditions for structural and output identifiability, which means

the overall model of the commercial building is neither structurally identifiable nor

output identifiable given the model and the data set.
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Table 4.7: Parameter Identifiability of Office Building Zone Models

# of θ Rank of Rank of

q F̃k(θ̂N) H̃N(θ̂N , U
N)

Zone 1 59 50 30
Zone 2 59 45 30
Zone 3 59 45 29
Zone 4 59 45 30
Zone 5 59 45 26
Zone 6 59 45 29
Zone 7 59 45 26
Zone 8 59 45 20
Zone 9 59 45 29
Zone 10 59 45 30
Zone 11 59 46 30
Zone 12 59 46 29

Table 4.8: Standard Identification of Office Building Zone Models

Init. Estim. Model
Param. Param. Time Validation

ε̄S(θ0) ε̄S(θ̂N) (sec) V (θ̂N , LN)

Zone 1 0.30 0.25 21.46 -
Zone 2 0.30 0.25 21.90 -
Zone 3 0.30 0.28 20.83 -
Zone 4 0.30 0.29 21.63 -
Zone 5 0.30 0.29 21.51 -
Zone 6 0.30 0.28 22.40 -
Zone 7 0.30 0.26 21.69 -
Zone 8 0.30 0.29 23.79 -
Zone 9 0.30 0.29 22.71 -
Zone 10 0.30 0.27 21.88 -
Zone 11 0.30 0.24 22.90 -
Zone 12 0.30 0.26 20.80 -

Merged 0.30 0.25 263.5 3.7

This conclusion is supported by the identification metrics in Table 4.8, which

describes the accuracy of the estimated zone model parameters θ̂i,N . We observe
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nearly all the parameters in the zones cannot be identified. Furthermore the mean

relative parameter error is significantly high, which means the estimated parameter

θ̂N deviates significantly from the true parameter value θS.

4.6.3 Decentralized Design-Driven Identification of an

Office Building Model

In this last scenario, we apply the design-driven identification process in Alg. 2

in combination with the decentralized parameter estimation scheme in Alg. 5 to

identify the building model M(θ). The identifiability results in Table 4.10 and the

identification results in Table 4.9 demonstrate little improvement to results of the

decentralized standard identification process in Table 4.8 and Table 4.7.

Table 4.9: Design-Driven Identification of Large Office Zone Models

Init. Estim. Model
Param. Param. Time Validation

ε̄S(θ0) ε̄S(θ̂N) (sec) V (θ̂N , LN)

Zone 1 0.30 0.28 7.83 -
Zone 2 0.30 0.27 15.59 -
Zone 3 0.30 0.27 15.56 -
Zone 4 0.30 0.28 16.30 -
Zone 5 0.30 0.26 15.58 -
Zone 6 0.30 0.28 15.83 -
Zone 7 0.30 0.24 15.34 -
Zone 8 0.30 0.24 15.99 -
Zone 9 0.30 0.27 15.79 -
Zone 10 0.30 0.27 14.72 -
Zone 11 0.30 0.27 15.09 -
Zone 12 0.30 0.23 11.30 -

Merged 0.30 0.25 174.92 0.13

This example highlights a limitation in our current identification approach to this

particular building configuration. With only one controllable heating input signal per
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Table 4.10: Parameter Identifiabilty of Office Building Zone Model

# of θ Rank of Rank of

q F̃k(θ̂N) H̃N(θ̂N , U
N)

Zone 1 33 32 22
Zone 2 41 36 10
Zone 3 41 36 22
Zone 4 41 36 21
Zone 5 41 36 24
Zone 6 41 36 21
Zone 7 41 36 24
Zone 8 41 36 19
Zone 9 41 36 15
Zone 10 41 36 20
Zone 11 41 36 19
Zone 12 33 32 22

floor, it is very difficult to accurately distinguish between all parameters in the zone

model unless the parameters are all aggregated together in a single resistance and

capacitance. Aside from changing the model completely, one of the simple ways to

improve the identifiability of this scenario is to increase the number of controllable

heating inputs per floor.
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4.7 Summary

Given the building model identification process in Chapter 3 is not scalable for large

models, we are interested in answering following questions:

• How do we partition the decentralized identification problem into smaller prob-

lems?

• How do we guarantee the decentralized approach yields equivalent results to the

centralized identification approach?

This chapter addresses each of these questions and makes the following contributions,

1. We apply a graph theoretic framework to building dynamics, and introduce

novel concepts such as air-based building subsystems and building maps to an-

alyze the input-output reachability of the building dynamics. Furthermore, we

develop graph partitioning algorithms found in Appendix B to partition the

building into input-output reachable subsystems.

2. We define the notion of building zones and demonstrate a link between the iden-

tifiability of building zone models and whole building models in Theorem 2 and

Corollary 3. Based on this relationship, we propose a decentralized parameter

estimation scheme in Alg. 5.

3. We demonstrate the process of decentralized identification for the IW-North

and a large commercial office building.
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Chapter 5

Robust Control of Building

Environments

Building control systems can be broadly divided into two categories: local equipment

control and supervisory control. At the equipment level, local building controllers

regulate building HVAC equipment such as air handling units, radiators, VAV boxes,

chillers, etc. to meet certain building conditioning tasks. Often, these equipments are

packaged with a standard controller, but these controllers may need to be tuned or

coordinated with other competing factors and equipment in the building. There has

been much research to create additional control systems to incrementally improve the

equipment energy efficiency and performance [9, 51, 62].

The other category for building control systems is supervisory control, which act

as the brain behind building control strategies. The job of supervisory building con-

troller is twofold. First, a supervisory building controller defines high level tasks such

as heating or cooling a building space based on external building conditions. Second,

the supervisory controller must coordinate local equipment level tasks to meet the
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high level conditioning tasks. Examples of building supervisory controllers include

building automation systems and energy management controllers, which are used to

maintain comfort throughout the entire building, as well as reduce energy consump-

tion. Wang classifies the several types of supervisory building controllers [84]. In

recent years, model-based supervisory control has been of particular interest to the

building community because of the large potential for energy savings [59, 70].

One of the challenging aspects to model-based supervisory building control is the

need for accurate building models, that approximately describe the building dynam-

ics. In Chapters 3 and 4, we address the question of improving the accuracy of

ill-conditioned building models. This chapter tackles the problem of using uncertain

building models for building control. Furthermore, we focus on model predictive con-

trol (MPC) because it has been at the center of so much research to reduce building

energy consumption [37, 38, 84], but has gained little traction in the building industry

because of the costs associated with developing an accurate building model.

The problem of using uncertain models for control is known in the literature as

H∞ control [5, 6, 58]. The main idea behind H∞ control is the ability to control

a system given the worst-case model uncertainty subject to a robustness factor, γ.

Therefore, the robust H∞ controller can be framed as a minimax MPC problem [6,

12, 56, 66] where the control input is chosen to mitigate the impact of the worst-

case building performance due to model uncertainty. Examples of robust H∞ control

applied to building systems can be found in [49, 63]. Kim highlights two potential

drawbacks of a robust control approach: increased computation to solve the robust

control problem and excessive conservativeness of controller performance[49].

This chapter deals with the latter issue of controller conservativeness by tuning

the robustness factor γ. In the following sections, we present the robust control

framework in the context of building dynamics and frame the problem of reducing
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the conservativeness of the robust building control strategy. Finally, we demonstrate

improvements to the baseline control strategies of using uncertain building models.

5.1 Building Control Assumptions and Notations

We first define some of the operational notation made in this chapter.

‖v‖P ||v||P =
√

vTPv for matrix P = P T and vector a.

‖v‖ ‖v‖ = ‖a‖I where I is an identity matrix.

‖M‖ ‖M‖ = max‖v‖6=0
‖Mv‖
‖v‖ =

√
σmax(M) where σmax(M) is the largest

singular value of matrix M

‖V ‖[to,tf ] ‖V ‖[to,tf ] =
√∑tf

k=to
v[k]Tv[k] for the set, V = {v[k] : k ∈ [to, tf ]}

Consider the following variation on the discrete-time system of building dynamics Sd

found in (2.12),

S∆ : T[k + 1] = AT[k] +Bu[k] +Gw[k] +G∆δ[k] (5.1a)

ỹ[k] = C̃T[k] + ẽ[k] (5.1b)

z[k] =

HT[k]

u[k]

 (5.1c)

where A = Ad(θ) ∈ Rn×n, B = Bd(θ) ∈ Rn×m, G = Gd(θ) ∈ Rn×p. Then, we make

the following assumptions about S∆ presented in (5.1)

A1) The system S∆ is equivalent to Sd for all parameter values θ ∈ Rq.

A2) Let the deviation between the system matrices in S∆ and S be defined as

∆A = Ad(θS)− A (5.2)
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∆B = Bd(θS)−B (5.3)

∆G = Gd(θS)−G. (5.4)

We will assume that these matrix deviations are both unknown and bounded,

such that ‖∆A‖ ≤ ka, ‖∆B‖ ≤ kb, and ‖∆G‖ ≤ kc.

A3) Since S∆ is equivalent to Sd in A1), the uncertainty in the state vector due to

the matrix deviations ∆A, ∆B, and ∆G is the vector

δ[k] = ∆AT[k] + ∆Bu[k] + ∆Gw[k] ∈ Rn×1. (5.5)

where the matrix deviations are unknown and bounded according to A2). We

also assume δ[k] is unknown and bounded by the building performance z[k],

such that

‖δ[k]‖ ≤ d‖z[k]‖ (5.6)

for all k and for d > 0. For the special case θ = θS, δ[k] = 0n×1. We note the

scaling factor for the state uncertainty is assumed to be G∆ = In×n.

A4) The measured building output ỹ[k] ∈ R1 denotes the weighted average of the

building air temperatures Ta[k] ∈ Ra, and the scalar variable ẽ[k] ∈ R1 denotes

the averaged measurement error. The output matrix C̃ is

C̃ =

[
c1 . . . ca 01×n−a

]
∈ R1×n (5.7)

where ci is the weight on the ith air temperatures and
∑a

i=1 ci = 1 and ci > 0

for all i ∈ [1, a].
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A5) We assume the matrixH = In×n and the pair (H,A) is detectable. Furthermore,

we assume the vector z[k] ∈ Rn+m represent the performance of the building at

time k, and the sequence Z = {z[k] : ∀k} represents the building performance

for all time k.

Given the the building assumptions in A1) - A5), let the predictive model of the

building dynamics in (5.1) be,

M(θ) : x̄[n+ 1] = Ax̄[n] +Bū[n] +Gw̄[n] +G∆δ̄[n] (5.8a)

ȳ[n] = C̃x̄[n] (5.8b)

z̄[n] =

Hx̄[n]

ū[n]

 (5.8c)

where

n The index n represents a discrete times step at present or future

time such that n ≥ k.

x̄[n] The predicted building state vector at future time n.

ū[n] The predicted building input vector at future time n.

w̄[n] The predicted building disturbance vector at future time n.

δ̄[n] The predicted state uncertainty at future time n.

ȳ[n] The average predicted building air temperatures at future time n.

z̄[n] The predicted building performance vector at future time n.
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5.2 Model Predictive Control Problem

In this section, we review the model-predictive control problem in the context of

building environments. Consider the real-time building dynamics S∆ in (5.1) and the

predictive building model M(θ) in (5.8) that predicts the state of the building over

the future time horizon n ∈ [k, k + np]. Then, we assume the following:

• The index np is the length of the control and prediction horizon.

• The initial predicted state of the building at time k is x̄[k] = T[k].

• The predicted building disturbances w̄[n] are assumed to be w̄[n] = w[k].

• The future constraints on the building control inputs umin[n] and umax[n] are

known for all time n.

• The future building temperature setpoint yset[n] is known for all time n.

• The sequence of predicted state uncertainties ∆̄k = {δ̄[n] : ∀n ∈ [k, k + np]} is

known for all time n.

Given these assumptions, consider the following finite-horizon control problem,

CU(k, k + np; T[k],w[k], ∆̄k):

min
Ūk

k+np∑
n=k

||yset[n]− C̃x̄[n]||2Q +

k+np−1∑
n=k

||ū[n]||2R (5.9a)

s.t. x̄[n+ 1] = Ax̄[n] +Bū[n] +Gw̄[n] +G∆δ̄[n], ∀n (5.9b)

umin[n] ≤ ū[n] ≤ umax[n], ∀n (5.9c)

x̄[k] = T[k], ū[n] ∈ Ūk, w̄[n] = w[k], δ̄[n] ∈ ∆̄k ∀n (5.9d)
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where Ūk = {ū[n] : n ∈ [k, k+np]} is a sequence of predicted building control inputs,

Q = QT > 0, and R = RT > 0. Let Ū∗k be the solution to (5.9), where Ū∗k =

CU(k, k + np; T[k],w[k], ∆̄k). Then, the building controller u[k] is a model predictive

controller if u[k] = ū[k]∗ for ū[k]∗ ∈ Ū∗k where Ū∗k = CU(k, k + np; T[k],w[k], ∆̄k) is

computed every time step k. Alg. 6 summarizes the model-predictive building control

policy.

Algorithm 6 Model Predictive Building Control Policy

1. Solve (5.9) for Ū∗k = CU(k, k + np; T[k],w[k], ∆̄k).

2. Apply u[k] = ū[k]∗ where ū[k]∗ ∈ Ū∗k .

3. Repeat Steps 1-2 for k = k + 1.

It is important to note the sequence of predicted control inputs Ū∗k minimizes the

predicted costs of the building given in (5.9a). Although there are many important

factors to consider in the building costs, the two major factors that we consider in

(5.9) are the predicted temperature setpoint error denoted as ē[n] = yset[n] − C̃x̄[n],

and the predicted input energy over the future time horizon n ∈ [k, k + np]. The

setpoint error ē[n] is a good predictor of the future thermal comfort to the occupants

in the building because large predicted deviations from the setpoint temperature

imply an uncomfortable building environment for building occupants while smaller

deviations imply a more comfortable environment. The second factor is a measure of

the predicted energy of the thermal inputs u[n], which is often related to the amount

of money spent on building energy. Consequently, when this sequence Ū∗ is applied

to the real building, the actual building setpoint error and the amount of energy

exerted to achieve setpoint regulation are minimized over the time horizon [k, k+np].

Example 8 demonstrates this control approach in a small-scale building environment.
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Example 8 (Small Scale Building Case with MPC)

Consider the small scale building example in Appendix A.2. Let the dynamics of

the building be the discrete-time system, Sd in (5.1) for sampling period Ts = 5

min. Furthermore, let the model of the building dynamics be M(θ0) in (5.8) for some

parameter value θ0. Suppose a model predictive control policy with a prediction (and

control) horizon of np = 6 time steps (or 30 min) is applied to the building over a

period of k ∈ [0, 288] (or 24 hrs). Then, let the building temperature setpoint be

yset[k] =


295K for k ∈ [1, 96]

297K for k ∈ [97, 192]

293K for k ∈ [193, 288].

(5.10)

We assume 0W ≤ u1[k] ≤ 2000W and 0W ≤ u4[k] ≤ 2000W , To[k] = 275K for all

k, and q̇i[k] = 500W for all i ∈ [1, 4] and for all k. Finally, let the initial building

temperature T[0] be known. Given these assumptions, we apply an MPC controller

for the following cases, and we plot the result of these control scenarios in Fig. 5.1.

Case 1: Assume the building model is equivalent to the true building dynamics,

M(θ0)
M
= Sd where θ0(i) = θS(i) for all θ(i) ∈ θ such that the true state

uncertainty is δ[k] = 0. Assume the predicted state uncertainty is δ̄[n] = 0 for

all n.

Case 2: Assume the building model is not equivalent to the true building dynamics,

M(θ0) 6= Sd where θ0(i) = .7θS(i) for all θ(i) ∈ θ such that the state uncertainty

δ[k] 6= 0. Assume the predicted state uncertainty is δ̄[n] = 0 for all n.
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Figure 5.1: The model M(θ) used for MPC is equivalent to the building dynamics S
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Example 8 illustrates the sensitivity of the MPC control policy outlined in Alg.

6 to the predicted state uncertainty. When the true state uncertainty is correctly

predicted such that δ̄[k] = δ[k], the building output y[k] achieves the desired setpoint

temperature yset[k] given the control u[k] as shown in Fig. 5.1a. However, when the

predicted state uncertainty differs from the true state uncertainty such that δ̄[k] 6=

δ[k], the control strategy u[k] overcompensates for the amount heat needed in the

building as shown in Fig. 5.1b. As a result, the building output shown in Fig. 5.1a

poorly achieves the desired setpoint temperatures. This example is important because

it reflects real control scenarios where the true state uncertainty δ[k] ∈ ∆ is unknown.

As a result, poorly predicting this uncertainty δ̄[k] could lead to poor performance.

This is one of the major barriers to applying MPC to real building controllers, and

motivates our approach to improve the performance of a model predictive building

controller given a poor building model. In the following section, we introduce the

framework of H∞ control which will be used in our proposed control strategy to

address the challenge of model mismatch.

5.3 H∞ Control Problem

This section explores the dual problem of both accurately predicting the state uncer-

tainty over time and designing a control strategy that achieves the desired building

performance. One class of control strategies that addresses this problem is known

as H∞ control and has been studied extensively in [6, 13, 45, 46, 48, 50, 78, 80].

The objective of this strategy is to predict the worst possible state uncertainty δ̄[k]

and design a control strategy u[k] that mitigates the impact of the worst possible

uncertainty δ̄[k] on the desired control performance. In the following subsections,

we define the worst possible state uncertainty and the summarize the framework for
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receding-horizon H∞ control detailed in [6, 13, 45, 46, 78, 80].

5.3.1 Finite-Horizon H∞ Controller

Consider the building model M(θ) used to predict the system of building dynamics

Sd for time n ∈ [k, k + np]. Assume the following statements are true:

• Let the sequence of predicted control inputs be Ūk = {ū[n] : n ∈ [k, k + np]}.

• Let the sequence of predicted state uncertainties be ∆̄k = {δ̄[n] : n ∈ [k, k+np]}.

• Let the predicted building performance for all time n be Z̄k = {z̄[n] : n ∈

[k, k + np]} where z̄[n] is defined in (5.8c).

We observe that the predicted building performance Z̄k is an implicit function of the

initial condition x̄[k], the predicted inputs Ūk, and the predicted state uncertainties

∆̄k according to the recursive state equation in (5.8a). Therefore, we define the gain

from ∆̄k to Z̄k as the following function,

GZ∆(k, k + np; x̄[k], Ūk, ∆̄k) =
‖Z̄k‖[k,k+np]

‖∆̄k‖[k,k+np]

. (5.11)

Suppose there exists a sequence of predicted state uncertainties ∆̄0
k that varies

from ∆̄ such that ε∆ = ‖∆̄0
k‖[k,k+np] − ‖∆̄k‖[k,k+np] 6= 0. Furthermore, let Z̄0

k be

the building performance associated to ∆̄0
k given the initial condition x̄[k] and the

sequence of predicted inputs Ūk. If the deviation of the normed performance is εZ =

‖Z̄0
k‖[k,k+np] − ‖Z̄k‖[k,k+np] 6= 0 for ε∆ 6= 0, then we can infer the predicted building

performance Z̄k is sensitive to the predicted state uncertainty ∆̄k. Moreover, the

gain GZ∆(k, k + np; x̄[k], Ūk, ∆̄k) in (5.11) is also sensitive to perturbations in ∆̄k.

Given this sensitivity, let the worst-case state uncertainty be the sequence ∆̄∗k that
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maximizes (5.11) for the initial condition x̄[k] and the predicted input Ūk, such that

GZ∆(k, k + np; x̄[k], Ūk, ∆̄
∗
k) ≥ GZ∆(k, k + np; x̄[k], Ūk, ∆̄k) (5.12)

for all possible ∆̄k. The maximum gain over the finite horizon n ∈ [k, k + np] is

explicitly defined in [78, 80, 86] as the following maximization problem,

Tnp(x̄[k], Ūk) = sup
δ̄[k] 6=0

δ̄[k]∈∆̄k

‖Z̄k‖[k,k+np]

‖∆̄k‖[k,k+np]
(5.13)

subject to the definition of z̄[k] ∈ Z̄k in terms of x̄[k], ū[k] ∈ Ūk, and δ̄[k] ∈ ∆̄k.

As np → ∞, then T∞(x̄[k], Ūk) approaches the H∞ norm of the gain GZ∆(k, k +

np; x̄[k], Ūk, ∆̄k).

Given the worst case gain Tnp(x̄[k], Ūk) in (5.13), a finite-horizon H∞ controller

chooses the sequence of admissible inputs Ū∗k over the horizon n ∈ [k, k + np] that

minimizes the predicted building performance, ‖Z̄k‖[k,k+np], subject to the constraint

Tnp(x̄[k], Ū∗k ) ≤ γ for the constant γ > 0. We note that Ū∗k is admissible if it satisfies

designated input constraints, and the admissible controller Ū∗k is an H∞ controller if

it satisfies the constraint on the worst-case gain. More importantly, Ū∗k mitigates the

impact of the worst-case state uncertainty ∆̄∗k on the building performance Z̄∗k .

In [6, 12, 13], the finite-horizon H∞ control problem over the horizon n ∈ [k, k+np]

is posed as the following min-max problem

C∞(k, k + np; T[k],w[k], γ):

min
Ūk

max
∆̄k

‖Hx̄[k + np]‖2 +

k+np−1∑
n=k

(
‖z̄[n]‖2 − γ2‖δ̄[n]‖2

)
(5.14a)

s.t. x̄[n+ 1] = Ax̄[n] +Bū[n] +Gw̄[n] +G∆δ̄[n], ∀n (5.14b)
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z̄[n] =

x̄[n]

ū[n]

 ∀n (5.14c)

x̄[k] = T[k], ū[n] ∈ Ūk, w̄[n] = w[k], δ̄[n] ∈ ∆̄k ∀n (5.14d)

for n ∈ [k, k + np] where the future input constraints umin[n] and umax[n] are known

for all n. The solution to the min-max problem in (5.24) is denoted as {Ū∗k , ∆̄∗k} =

C∞(k, k + np; T[k],w[k], γ).

Suppose the H∞ controller Ū∗k is applied to the building input Uk = Ū∗k and

Zk denotes the real-time building performance given {Uk,∆k} over the horizon n ∈

[k, k + np]. Then, given x̄[k] = T[k], we observe the following inequality to be true,

GZ∆(k, k + np; T[k], Uk,∆k) ≤ Tnp(x̄[k], Ū∗k ) ≤ γ (5.15)

where GZ∆(k, k + np; T[k], Uk,∆k) is the impact of the actual state uncertainty ∆k

on the actual building performance Zk. This is an important result because it implies

an upper bound on the sensitivity of the actual building performance to state uncer-

tainties, GZ∆(k, k + np; T[k], Uk,∆k) ≤ γ. Theorem 4 outlines conditions for which

(5.15) is true and GZ∆(k, k + np; x̄[k], Uk,∆k) ≤ γ.

Theorem 4 (Bounded Real Lemma [45, 46, 78]): Given the building

model M(θ) in (5.8), let A be a Hurwitz matrix and let the pair (H,A) be

detectable. Then, for γ > 0, the following statements are equivalent:

1. M(θ) is asymptotically stable, and the predicted worst-case gain defined in

(5.13) satisfies Tnp(x̄[k], Ūk) ≤ γ given the predicted control input Ūk.
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2. There exists a sequence of matrices Pn = P T
n > 0 that solves the Riccati

equation

Pn = ATPn+1A+HTH + ATPn+1G∆M
−1
n GT

∆Pn+1A (5.16)

where Mn = γ2I −G∆PnG∆ > 0 . ♦

5.3.2 Receding Horizon H∞ Control

Using the framework presented above, we now introduce the receding horizon H∞

control strategy detailed in [6, 13, 47]. Consider the finite-horizonH∞ control problem

posed in (5.24), and let (Ū∗k , ∆̄
∗
k) represent the min-max solution to that problem.

Then, a receding horizon H∞ controller solves (5.24) for {Ū∗k , ∆̄∗k} at time k, applies

the control to the building u[k] = ū[k]∗ at time k for ū[k]∗ ∈ Ū∗k , and repeats the

process for time k+1. We outline the receding horizon H∞ control policy for all time

k in Alg. 7.

Algorithm 7 Receding Horizon H∞ Control

1. Choose γ > 0.

2. Solve (5.24) for {Ū∗k , ∆̄∗k} = C∞(k, k + np; T[k],w[k], γ).

3. Apply u[k] = ū[k]∗ where ū[k]∗ ∈ Ū∗k .

4. Repeat Steps 2-3 for k = k + 1.

Given Theorem 4, we note that (5.24) satisfies the condition Tnp(T[k], Ū∗k ) < γ

since the solution (Ū∗k , ∆̄
∗
k) satisfies the Riccati equation given in (5.16). However,
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Theorem 4 alone does not prove that the closed-loop gain GZ∆(k, k + np; T[k], U,∆)

is upper bounded given the receding horizon control strategy, U = {u[k] : ∀k}.

Therefore, we introduce Theorem 5, which claims the impact of ∆ on the closed-loop

building performance, Z = {z[k] : ∀k} is bounded where z[k] is defined in (5.1c). To

prove this claim, we first present Lemma 2 and Lemma 3 taken from [12, 13].

Lemma 2 ([12, 13]): Given (Ū∗k , ∆̄
∗
k) is the solution to (5.24) for γ > 0, let the

optimal predicted cost over the horizon n ∈ [k, k + np) be

S(k, k + np) = ‖Hx̄[k + np]
∗‖2 +

k+np−1∑
n=k

(
‖z̄[n]∗‖2 − γ2‖δ̄[n]∗‖2

)
(5.17)

where δ̄[n]∗ ∈ ∆̄∗k, and the vectors z̄[n]∗, x̄[n]∗ are functions of x̄[k], Ū∗k , and ∆̄∗k

according to (5.24b) and (5.24c). Then, S(k, k + np) ≥ S(k, k + np + 1). ♣

Lemma 3 ([12, 13]): Given (Ū∗k , ∆̄
∗
k) is the solution to (5.24) for γ > 0, let S(k, k+

np) be the predicted cost over the horizon n ∈ [k, k + np], as defined in (5.17).

Furthermore, let S(k + 1, k + np + 1]) be the predicted optimal cost over the horizon

[k + 1, k + np + 1]. Then,

S(k, k + np)− S(k + 1, k + np + 1]) ≥ ‖z[k]‖2 − γ2‖δ[k]‖2 (5.18)

where δ[k] = δ̄[k]∗ is the actual state uncertainty at time k and z[k] = z̄[k]∗ is the

actual building performance at time k given ū[k]∗, as defined in (5.1c). ♣

The complete proofs for Lemmas 2 and 3 are given in Appendix ??. Lemma 3

ensures that that the actual performance z[k] and the actual state uncertainty δ[k]

are upper bounded at time k, given the receding horizon H∞ controller, u[k] = ū[k]∗.

Based on Lemma 3, we now present Theorem 5 which formally claims the overall
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closed-loop building performance Z = {z[k]} and the state uncertainty ∆ = {δ[k]}

satisfy the constraint Tnp(Z,∆) < γ.

Theorem 5 (Bounds on Receding Horizon H∞ Control [12, 13, 47]):

Let U = {u[k] : k ∈ [0, N ]} be a receding horizon H∞ control strategy as defined

in Alg. 7 and let ∆ = {δ[k] : k ∈ [0, N ]} be the true state uncertainty over the

horizon k ∈ [1, N ]. Furthermore, let Z = {z[k] : k ∈ [0, N ]} be the closed-loop

building performance where z[k] is defined in (5.1c) and is a function of U and

∆. Then, for γ > 0,

z0 + ‖Z‖2
[0,N ]

‖∆‖2
[0,N ]

≤ γ2 (5.19)

♦

where z0 = S(N,N + np) − S(0, np) and S(k, k + np) is the predicted cost over

the horizon n ∈ [k, k + np] given in (5.17).

Proof (of Theorem 5 ) Given Lemma 3, we know that

S(k, k + np)− S(k + 1, k + np + 1) ≥ ‖z[k]‖2 − γ2‖δ[k]‖2. (5.20)

We can add (5.20) over the horizon k ∈ [0, N ],

N∑
k=0

(
S(k, k + np)− S(k + 1, k + np + 1)

)
≥

N∑
k=0

(
‖z[k]‖2 − γ2‖δ[k]‖2

)
. (5.21)

114



Then, (5.21) reduces to the following inequality

S(0, np)− S(N,N + np) ≥
N∑
k=0

(
‖z[k]‖2 − γ2‖δ[k]‖2

)
. (5.22)

Assuming z0 = S(N,N + np) − S(0, np), then (5.22) can be rearranged into the

inequality shown in (5.19). �

Theorem 5 is important for two reasons. First, it ensures the uncertainty in the

building dynamics ∆ is bounded by the the building performance Z, which can be

measured. Second, it ensures the impact of ∆ to the building performance is atten-

uated by a factor γ > 0. In the following section, we will merge the standard MPC

control policy and the receding horizon H∞ control policy in order to define a con-

troller that achieves the desired MPC performance and the attenuates the sensitivity

of the controller to system uncertainties.

5.4 Robust Supervisory Building Control

In this section, we present a controller u[k] that solves the MPC problem in (5.9) and

the receding-horizon H∞ control problem in (5.24) at time k. We solve this mixed

problem in order to both minimize the standard MPC cost function in (5.9a) and to

satisfy the H∞ condition for closed loop robust performance shown in (5.19).

5.4.1 Robust Model Predictive Control

Let Ū∗k = CU(k, k+np; T[k],w[k], ∆̄∗k) be the model-predictive control problem at time

k in (5.9), and let C∞(k, k + np; T[k],w[k], γ) be the receding horizon H∞ controller
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in (5.24). Furthermore, assume

C∞(k, k + np; T[k],w[k], γ) = max
Ūk

C∆(k, k + np; T[k],w[k], Ūk, γ) (5.23)

where

C∆(k, k + np; T[k],w[k], Ūk, γ) :

max
∆̄k

‖Hx̄[k + np]‖2 +

k+np−1∑
n=k

(
‖z̄[n]‖2 − γ2‖δ̄[n]‖2

)
(5.24a)

s.t. x̄[n+ 1] = Ax̄[n] +Bū[n] +Gw̄[n] +G∆δ̄[n], ∀n (5.24b)

z̄[n] =

Hx̄[n]

ū[n]

 ∀n (5.24c)

x̄[k] = T[k], ū[n] ∈ Ūk, w̄[n] = w[k], δ̄[n] ∈ ∆̄k ∀n (5.24d)

Then, the robust model-predictive building controller at time k is u[k] = ū[k]∗ ∈ Ū∗k

where the set {Ū∗k , ∆̄∗k} satisfies the pair of coupled problems

Ū∗k = CU(k, k + np; T[k],w[k], ∆̄∗k) (5.25a)

∆̄∗k = C∆(k, k + np; T[k],w[k], Ū∗k , γ) (5.25b)

for γ ≥ 0. Then, given {Ū∗k , ∆̄∗k}, where ū[k]∗ ∈ Ū∗k . Alg. 8 outlines the robust MPC

strategy for all time k.

5.4.2 Robust MPC with Tuned Disturbance Attenuation

We note the solutions {Ū∗k , ∆̄∗k} are unique to the chosen value of γ ≥ 0 because (5.25a)

and (5.25b) are strictly convex problems. This means the control input u[k] = u[k]∗
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Algorithm 8 Robust Model Predictive Control Policy

1. Choose γ > 0.

2. Solve (5.25a) and (5.25b) for {Ū∗k , ∆̄∗k}.

3. Apply u[k] = ū[k]∗ where ū[k]∗ ∈ Ū∗k .

4. Repeat Steps 2-3 for k = k + 1.

yields a predicted state x̄[k+ 1] that underestimates the true building state T[k+ 1].

Likewise, choosing small values of γ, underestimates the modeling uncertainty of

(5.25a) and (5.25b). For very small values of γ, the control problems (5.25a) and

(5.25b) may be infeasible and consequently will not converge to a solution, {Ū∗k , ∆̄∗k}.

Therefore, we want to choose a value of γ > 0 such that (5.25a) and (5.25b) yields a

feasible solution of ū[k]∗ and δ̄[k]∗ for all time k such that the predicted state uncer-

tainty δ̄[k]∗ approximates the true state uncertainty δ[k]. We propose the following

tuning method in Alg. 9 to update the value of γ in real-time as the building is being

controlled.

Algorithm 9 Robust MPC with Tuned Disturbance Attenuation

1. Choose γk > 0 at time k = 0.

2. Solve (5.25a) and (5.25b) for {Ū∗k , ∆̄∗k}

3. Apply u[k] = ū[k]∗ for ū[k]∗ ∈ Ū∗k at time k.

4. Measure the building output ỹ[k + 1] at time k + 1.

5. Compute the output error ê[k + 1] = ỹ[k + 1]− C̃x̄[k + 1] at time k + 1.

6. Let γk+1 = γk + αP ê[k + 1] + αI
∑k+1

τ=1 ê[τ ]

7. Repeat Steps 2-6 for k = k + 1.

The idea behind this algorithm is to tune the value of γk such that the output
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error ê[k] = ỹ[k] − C̃x̄[k] is minimized for all time k. It is important to note that

the error e[k] also represents the measured error between the true state uncertainty

δ[k] and the estimated state uncertainty δ̄[k]. We note the error Therefore, tuning

γk to drive the error e[k] to 0 forces the robust MPC strategy in (5.25a) and (5.25b)

to tune the pair u[k]∗ ∈ Ū∗k and δ̄[k]∗ ∈ ∆̄∗k such that δ̄[k]∗ converges to δ[k]. The

update law for γk at Step 6 of Alg. 9 introduces this error ê[k] as feedback into the

controller which allows the controller to tune itself over time. We use the coefficients

αP and αI to control the rate of convergence over time. In the following example, we

compare this proposed approach outlined in Alg. 9 to the Robust MPC approach in

Alg. 8, and we demonstrate improvements to the control performance.

Example 9 (Robust Control Strategies for Small Scale Building)

Assume the building scenario and Cases 1-2 in Example 8. For this example, we will

consider two additional cases given below.

Case 3: Given the scenario θ0(i) = .7θS(i) for all i ∈ [1, q] in Case 2, we apply the

Robust MPC strategy in 8 to the small-scale building environment for γ = 14.

Case 4: Given the scenario θ0(i) = .7θS(i) for all i ∈ [1, q] in Case 2, we apply the

Robust MPC-T strategy in Alg. 9 to the small-scale building environment. We

assume γ0 = 14, αP = 2 and αI = 0.

Fig. 5.2 plots the building temperature and the heating inputs for each case. The

motivation for using a robust control strategy is to drive the output error between

the nominal MPC strategy in Case 1 and the mismatched MPC strategy in Case

2 to 0. From the plot, we compare these control strategies over time to determine

which robust controller best mimics the nominal MPC controller. In this example,
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we observe the Robust MPC-T performs better than the Robust MPC strategy in

terms of driving the building output temperature to the nominal MPC temperature,

even though Robust MPC demands less energy that the Robust MPC-T strategy.

5.5 Robust Supervisory Control of Case Study

Examples

This section demonstrates both the Robust MPC and Robust MPC-T approaches for

the IW-North and office building detailed in Chapter 2. We assume the following

building conditions.

5.5.1 Initial Conditions & Assumptions for the IW-North

Model

Suppose the building control model of the IW-North is the discrete-time model M(θ0)

in (5.8) where θ0(i) = 0.7θS(i) for all i ∈ [1, q]. Given a sampling period Ts = 5, let the

building be controlled for a period of one week, k = [0, 2016] using model predictive

control and assume a prediction and control horizon of 30 minutes or np = 6 time

steps. We will assume Q is a diagonal matrix of the appropriate size where the

diagonal entries are 1 × 108. We will also assume R is a diagonal matrix of the

appropriate size where the diagonal entries are 1.

For sampling period Tm = 3600 sec (or 1 hr), let the weather T̄o[m] and the input

disturbance q̇i[m] be given in Table 2.4 for all m ∈ [0, 1, . . .] and for all i. Then, let

To[k] = T̄o[m] and q̇i[k] = q̇i[m] for m ≤ Ts
Tm
k < m + 1 and for all k. Finally, let the

input constraints for the IW-North be 0W ≤ ui[k] ≤ 4W for i ∈ [1, 13].
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5.5.2 Initial Conditions & Assumptions for the Large Office

Building

We will also assume the building control model of the office building is the discrete-

time model M(θ0) in (5.8) where θ0(i) = 0.7θS(i) for all i ∈ [1, q]. Given a sampling

period Ts = 5, let the building be controlled for a period of one week, k = [0, 2016]

using model predictive control and assume a prediction and control horizon of 20

minutes or np = 4 time steps. We will assume Q is a diagonal matrix of the appro-

priate size where the diagonal entries are 1 × 1020, and R is a diagonal matrix of

the appropriate size where the diagonal entries are 1. The weather and disturbance

constraints are assumed to be the same as the conditions described above for the

IW-North. Finally we assume the input constraints for the commercial office building

is 0W ≤ ui[k] ≤ 50× 103W for all i ∈ [1, 60].

5.5.3 Comparison of Control Strategies

Given the initial conditions and assumptions, we consider the following building con-

trol scenarios and compare the performance of these control strategies.

Nominal MPC Apply the MPC strategy in Alg. 6 to the building Sd given the

exact building model M(θS)

Baseline MPC Apply the MPC strategy in Alg. 6 to the building Sd given an

uncertain building model M(θ0).

Robust MPC Apply the Robust MPC strategy in Alg. 8 to the building Sd given

M(θ0) and the constant γ0. For the IW-North, let γ = 10 for all time. For the

commercial office building, let γ = 20 for all time as well.
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Robust MPC-T Apply the Robust MPC scenario given above with the tuning

strategy described in Alg. 9, where αP = 2, and αI = 0.

5.5.4 Control Performance Metrics

For this study, we will consider two metrics. The first metric is the mean-squared

error between the nominally controlled building temperature ympc[k] and the building

temperature of interest y[k] over all time k, which is computed as

Ymse =
1

N

N−1∑
k=0

(ympc[k]− y[k])2. (5.26)

The second metric is the total heat energy needed to achieve that particular control

strategy, denoted as

Utot =
N−1∑
k=0

(∑
i

ui[k] · Ts

)
(5.27)

where Ts is the sampling period.

5.5.5 Comparison of Control Strategies

Table 5.3 provides a comparison of the different control strategies in the IW-North

based on the performance metrics Ymse and Utot. We observe that the Robust MPC

with Tuning strategy closely mimics the nominal MPC strategy in the output, and

consumes only slightly more energy than the nominal MPC strategy.

Likewise, Table 5.4 provides a comparison of the different control strategies in

a large commercial office building based on the performance metrics Ymse and Utot.

We note the Robust MPC performance is worse than the baseline MPC performance

because γ is not properly chosen. This highlights the importance of tuning the factor
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Table 5.3: Comparison Control Strategies in the IW-North

Ymse Utot
(K) (kWh)

Nominal MPC 0.00 2,500.8
Baseline MPC 1.50 3,823.3
Robust MPC 11.25 213.33
Robust MPC-T 0.02 2,526.7

γ which is demonstrated in the Robust MPC-T strategy. We note that the Robust

MPC-T strategy still consumes much more energy than the Nominal MPC strategy,

but the strategy also performs better than both the baseline and robust MPC strategy.

Table 5.4: Comparison of Control Strategies in the Office Building

Ymse Utot
(K) (kWh)

Nominal MPC 0.00 2,250,500
Baseline MPC 2.36 4,022,300
Robust MPC 2.91 678,580
Robust MPC-T 0.55 3,549,800
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5.6 Summary

In this chapter, we address the feasibility of model-based control, particularly the

challenge of using inaccurate building models for building control. We deal with this

challenge in the context of model-predictive building control, which is a growing area

of research and concern. We observe in small-scale examples the sensitivity of MPC

to poor models, and we work to correct this issue using the framework for receding-

horizon H∞ control. Using these results, we recast the original MPC problem as a

min-max problem in order to guarantee the sensitivity of the controller is bounded

by a factor γ. The major contribution of this chapter is the improvement of the min-

max robust control strategy, where γ is tuned over real-time in order to improve the

performance of the robust controller. We demonstrate this proposed strategy mimics

the nominal MPC strategy for real building environments and note significant im-

provements from the baseline and Robust MPC strategies. In the following chapters,

we extend this approach to a hierarchical and decentralized supervisory controller.
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Chapter 6

Decentralized Robust Control of

Building Environments

Chapter 5 proposes a robust model-predictive control strategy to address the challenge

of poor supervisory building control. This chapter takes a different approach, and

proposes a decentralized and hierarchical supervisory building controller to reduce

building energy consumption. Mesarovic lays the framework for hierarchical control

in [64, 65], and defines a hierarchical controller as a set of decision problems, CH =

{Dsup,Dinf}, where Dinf is the set of infimal decision problems and Dsup is the set of

supremal decision problems. Infimal decision problems D ∈ Dinf control low-level or

unique tasks, while supremal decision problems D ∈ Dsup coordinate infimal decision

problems to achieve a higher level task. In the context of building supervisory control,

we define zone controllers used to regulate indoor air quality (IAQ) within a building

zone as infimal decision problems. The benefit of using zone control in a building is

that users are able to locally regulate occupied spaces, and potentially save energy

waste from regulating the IAQ of unoccupied building spaces. The challenge of zone
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control is that building zones are interconnected, dynamic systems, and uncoordinated

zone controllers waste more energy than a coordinate system of zone controllers.

Therefore, we define a scheme to coordinate the zone controllers to reduce building

costs, and we classify this scheme as a supremal decision problem.

6.1 Hierarchical Control Assumptions and

Notations

The assumptions and notations in this chapter are a continuation of the assumptions

and notations in the previous chapter, Chapter 5. Given the discrete-time building

dynamics S∆ in (5.1), let S∆ be written as the interconnection of nz building zone,

S∆ : Ti[k + 1] = AiiTi[k] +Biiui[k] +Giiwi[k] + Aippi[k]

+G∆,iiδ[k] ∀i ∈ [1, nz] (6.1a)
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pi[k] =
∑
j 6=i

(
Ex,ijTj[k] + Eu,ijuj[k] + Ew,ijwj[k]

)
∀i ∈ [1, nz] (6.1b)

ỹi[k] = C̃iiTi[k] + vi[k], ∀i ∈ [1, nz] (6.1c)

where

Ti[k] Ti[k] ∈ Rni is the state vector of the ith building zone and a sub-

vector of T[k] ∈ Rn where ni ≤ n.

ui[k] ui[k] ∈ Rmi is the input vector of the ith building zone and a sub-

vector of u[k] ∈ Rm where mi ≤ m.

wi[k] wi[k] ∈ Rpi is the disturbance vector of the ith building zone and a

subvector of w[k] ∈ Rp where pi ≤ p.

ỹi[k] ỹi[k] ∈ R1 is the weighted average of the ith building zone air tem-

peratures in Ti[k].

pi[k] pi[k] ∈ Rfi is the interaction vector of the ith building zone

where fi = n + m + p − ni − mi − pi, and a subvector of[
T[k]T u[k]T w[k]T

]T
∈ Rn+m+p, such that fi < n+m+ p.

Ex,ij Ex,ij : Tj[k]→ pi[k] ∈ Rfi×nj and the entries of Ex,ij are 0 or 1.

Eu,ij Eu,ij : uj[k]→ pi[k] ∈ Rfi×mj and the entries of Eu,ij are 0 or 1.

Ew,ij Ew,ij : wj[k]→ pi[k] ∈ Rfi×pj and the entries of Ew,ij are 0 or 1.

Aii The submatrix of Ad(θ) associated to Ti[k] and Ti[k].

Aij The submatrix of Ad(θ) associated to Ti[k] and Tj[k].

Bii The submatrix of Bd(θ) associated to Ti[k] and ui[k].

Bij The submatrix of Bd(θ) associated to Ti[k] and uj[k].

Gii The submatrix of Gd(θ) associated to Ti[k] and wi[k].

Gij The submatrix of Gd(θ) associated to Ti[k] and wj[k].
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Aip Aip =
∑

j 6=i

(
AijE

T
x,ij +BijE

T
u,ij +GijE

T
w,ij

)
G∆,ii The scaling factor of the state uncertainty is assumed to be G∆,i =

Ini×ni

C̃ii The output matrix C̃ii : Ti[k] → ỹi[k] ∈ R1×ni averages the ith

building zone air temperatures, where the entries sum to 1.

Now, consider the discrete-time model M(θ) of S∆ in (5.8). Then, the decentral-

ized form of the predictive building model M(θ) in (5.8) is written as follows,

M(θ) : x̄i[n+ 1] = Aiix̄i[n] +Biiūi[n] +Giiw̄[n] + Aipp̄i[k]

+G∆,iδ̄[n] ∀i ∈ [1, nz] (6.2a)

p̄i[k] =
∑
j 6=i

(
Ex,ijx̄j[k] + Eu,ijūj[k] + Ew,ijw̄j[k]

)
∀i ∈ [1, nz] (6.2b)

ŷi[k] = C̃iix̄i[k], ∀i ∈ [1, nz] (6.2c)

where

Mi(θi) The discrete-time model of the ith building zone dynamics, Sd,i.

x̄i[n] x̄i[n] ∈ Rni predicts the state vector of the ith building zone dy-

namics for n ≥ k, where x̄i[n] is a subvector of x̄[n] ∈ Rn.

ūi[n] ūi[n] ∈ Rmi predicts the input vector of the ith building zone dy-

namics for n ≥ k, where ūi[n] is a subvector of ū[n] ∈ Rm.

w̄i[n] w̄i[n] ∈ Rpi predicts the disturbance vector of the ith building zone

dynamics for n ≥ k, where w̄i[n] is a subvector of w̄[n] ∈ Rp.

δ̄i[n] δ̄i[n] ∈ Rni is the predicted state uncertainty of the ith building

zone dynamics.
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p̄i[n] p̄i[n] ∈ Rfi predicts the interaction vector to the ith building zone

dynamics, where p̄i[n] is a subvector of

[
x̄[n]T ū[n]T w̄[n]T

]T
∈

Rn+m+p such that fi < n+m+ p.

ŷi[n] ŷi[n] ∈ R1 is the weighted average of the predicted building zone

air temperatures in x̄i[n].

6.2 Hierarchical MPC Problem

This section briefly reviews the main results of [73, 74], which frames the original

MPC problem as a hierarchical one. We consider these results within the context of

the discrete-time building environment Sd defined in (6.1) and discrete-time building

model M(θ) defined in (6.2).

Consider the model predictive control problem defined in (5.9). Given the decen-

tralized form of the building model in (6.2), then (5.9) can also be written in the

following decentralized form,

min
Ūi

nz∑
i=1

(
k+np∑
n=k

‖yi,set[n]− C̃iix̄i[n]‖Qi +

k+np−1∑
n=k

‖ūi[n]‖2
Ri

)
(6.3a)

s.t. x̄i[n+ 1] = Aiix̄i[n] +Biiūi[n] +Giiw̄[n] + Aipp̄i[n]

+G∆,iiδ̄i[n] ∀i, ∀n (6.3b)

p̄i[n] =
∑
j 6=i

(
Ex,ijx̄j[n] + Eu,ijūj[n] + Ew,ijw̄j[n]

)
∀i, ∀n (6.3c)

ui,min[n] ≤ ūi[n] ≤ ui,max[n] ∀i, ∀n (6.3d)

x̄i[k] = Ti[k], ūi[n] ∈ Ūi, w̄i[n] = wi[k], δ̄i[n] ∈ ∆̄i ∀i, ∀n (6.3e)

for i ∈ [1, nz] and n ∈ [k, k + np] where
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• Qi = QT
i > 0 and Ri = RT

i > 0,

• yi,set[n] is the future setpoint for the ith building zone air temperature, and

• ui,min[n] and ui,max[n] are the future constraints on the inputs for the ith building

zone.

Because the building cost function in (6.3b) can be separated into indivdual build-

ing zone costs, then (6.3) can be separated into nz individual building zone control

problems. The ith building zone control problem can be summarized as the con-

troller Ūi that minimizes the ith building zone cost,
∑k+np

n=k ‖yi,set[n] − C̃iix̄i[n]‖Qi +∑k+np−1
n=k ‖ūi[n]‖2

Ri
, subject to the ith building zone constraints in (6.3b) -(6.3e). The

problem with this naive approach to decentralized building control is that the con-

straint (6.3c) depends on the variables x̄j[n], ūj[n], and w̄j[n], which are determined

by the outcome of the jth building zone control problem. Sadati takes a hierarchical

approach to address this problem using the Lagrangian dual of (6.3) [73, 74]. Let the

Lagrangian dual of (6.3) be defined as the following min-max optimization problem,

min
{ᾱi},{β̄i},ζ̄

max
{X̄i},{Ūi},{P̄i}

nz∑
i=1

Li(k, k + np; ᾱi, β̄i, ζ̄, X̄i, Ūi, P̄i, ∆̄i) (6.4a)

s.t. β̄i[n] ≥ 0, ∀i ∈ [1, nz] ∀n ∈ [k, k + np] (6.4b)

where

• Li(k, k + np; ᾱi, β̄i, ζ̄, X̄i, Ūi, P̄i, ∆̄i) =

k+np∑
n=k

‖yi,set[n]− C̃iix̄i[n]‖Qi +

k+np−1∑
n=k

‖ūi[n]‖2
Ri

+

k+np∑
n=k

ᾱi[n]T
(

x̄i[n+ 1]− Aiix̄i[n]−Biiūi[n]
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−Giiw̄[n]−G∆,iiδ̄i[n]− Aipp̄i[n]

)
+

k+np∑
n=k

β̄i,min[n]T
(

ui,min[n]− ūi[n]

)
(6.5)

+

k+np∑
n=k

β̄i,max[n]T
(

ūi[n]− ui,max[n]

)

+

k+np∑
n=k

ζ̄i[n]T p̄i[n]

−
k+np∑
n=k

∑
j 6=i

ζ̄j[n]T
(
Ex,jix̄i[n] + Eu,jiūi[n] + Ew,jiw̄i[n]

)

• ᾱi[n] ∈ ᾱi, βi[n] =

β̄i,min[n]

β̄i,max[n]

 ∈ β̄i, ζ̄i[n] ∈ ζ̄ for all i ∈ [1, nz] and for all

n ∈ [k, k + np],

• X̄i = {x̄i[n] : n ∈ [k, k + np]}, Ūi = {ūi[n] : n ∈ [k, k + np]}, P̄i = {p̄i[n] : n ∈

[k, k + np]}, and ∆̄i = {δ̄i[n] : n ∈ [k, k + np]} for all i ∈ [1, nz], and

• w̄i[n] = wi[k] for all n ∈ [k, k + np].

It is important to note that the ith Lagrangian in (6.5) is purely a function of the

variables X̄i, Ūi, P̄i, ∆̄i, which are all exclusively related to the ith building zone model,

Mi(θi). Sadati splits the dual problem in (6.5) into an equivalent hierarchical control

framework shown in (6.6) and (6.7) [74]. Assuming ∆̄i is given, let the hierarchical

form of the model predictive controller in (5.9) be

CS(k, k + np; ᾱ, β̄, X̄, Ū):

min
ζ̄

max
P̄

nz∑
i=1

Li(k, k + np; ᾱi, β̄i, ζ̄, X̄i, Ūi, P̄i, ∆̄i) (6.6a)

s.t. ᾱi ⊆ ᾱ, β̄i ⊆ β̄, X̄i ⊆ X̄, Ūi ⊆ Ū , P̄i ⊆ P̄ , ∀i (6.6b)
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Ci(k, k + np; ζ̄ , P̄i, ∆̄i):

min
ᾱi,β̄i

max
X̄i,Ūi

Li(k, k + np; ᾱi, β̄i, ζ̄, X̄i, Ūi, P̄i, ∆̄i) (6.7a)

s.t. β̄i[n] ≥ 0, ∀i, ∀n (6.7b)

where

• {α∗i , β∗i , X̄∗i , Ū∗i } = Ci(k, k + np; ζ̄ , P̄i, ∆̄i) is the solution to the ith infimal con-

troller at time k, and

• {ζ̄∗, P̄ ∗} = CS(k, k+np; ᾱ, β̄, X̄, Ū) is the solution to the supremal controller at

time k

for i ∈ [1, nz] and n ∈ [k, k + np]. Furthermore, the solution {X̄∗i , Ū∗i , P̄ ∗i } solves the

original decentralized model-predictive control problem in (6.3).

In [73], Sadati sequentially solves the pair of control problems in (6.6) and (6.7)

to find the ith model predictive controller u∗i [k] ∈ Ū∗i for the ith subsystem of the

controlled process for all i ∈ [1, nz]. Alg. 10 presents the hierarchical MPC strategy

for all time k.

6.3 Robust Hierarchical MPC Problem

The previous section presents a hierarchical approach to model-predictive building

control using the work in [73–75]. One of the underlying assumptions in the literature

is that the control model is equivalent to the dynamics of the controlled process.

This implies the predicted model uncertainty is known, ∆̄i = ∆i = {0} for all i ∈

[1, nz]. In this section, we relax the assumption that the model uncertainty is known.
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Algorithm 10 Hierarchical MPC Algorithm [73]

1. Initialize {αmi , βmi , X̄m
i , Ū

m
i , ζ̄

m, P̄m
i , ∆̄

k
i } at m = 0 given the initial condition

x̄i[k] and ∆̄k
i at time k for all i ∈ [1, nz].

2. Using {αmi , βmi , X̄m
i , Ū

m
i , ζ̄

m, P̄m
i , ∆̄

k
i }, solve the infimal control problem (6.7)

for {αm+1
i , βm+1

i , X̄m+1
i , Ūm+1

i , ζ̄m, P̄m
i , ∆̄

k
i } for all i.

3. Using {αm+1
i , βm+1

i , X̄m+1
i , Ūm+1

i , ζ̄m, P̄m
i , ∆̄

k
i }, solve the supremal control prob-

lem (6.6) for {αm+1
i , βm+1

i , X̄m+1
i , Ūm+1

i , ζ̄m+1, P̄m+1
i , ∆̄∗i }

4. If ζi[n]m+1 − ζi[n]m < εz and pi[n]m+1 − pi[n]m < εp for all i = [1, nz] and all
n ∈ [k, k + np], go to Step 5. Otherwise, repeat Steps 2-3 for m = m+ 1.

5. Apply ui[k] = ūi[k]∗ for all i where ū[k]∗ ∈ Ūm
i .

6. Repeat Steps 1-5 for k = k + 1.

Specifically, we apply the robust model predictive control framework presented in

Chapter 5 to the hierarchical control framework introduced in the prior section.

Consider the pair of control problems CU(k) in (5.25a) and C∆(k) in (5.25a) that

comprise the robust model predictive control problem. The minimization problem

CU(k) solves for the predicted control sequence Ū given some predicted model uncer-

tainty ∆̄∗. We observe that the control problem CU(k) is equivalent to the MPC

problem in (6.3) given a decentralized building model (6.2). Then, (5.25a) can

be restructured as the hierarchical controller in (6.6) and (6.7) such that CU(k) =

{CoU(k), C1
U(k), . . . , CnzU (k)}. This leaves the maximization problem C∆(k) to be re-

structured to fit the hierarchical control framework. Suppose the control problem in

(5.25b) can be written in decentralized form as follows,

max
{∆̄i}

nz∑
i=1

(
k+np∑
n=k

‖C̃iix̄i[n]‖I +

k+np−1∑
n=k

‖ūi[n]‖2
I − γ2

i

k+np−1∑
n=k

‖δ̄i[n]‖2
I

)
(6.8a)

s.t. x̄i[n+ 1] = Aiix̄i[n] +Biiūi[n] +Giiw̄i[n]
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+G∆,iiδ̄i[n] + Aipp̄i[n] ∀i,∀n (6.8b)

p̄i[n] =
∑
j 6=i

(
Ex,ijx̄j[n] + Eu,ijūj[n] + Ew,ijw̄j[n]

)
∀i,∀n (6.8c)

x̄i[k] = Ti[k], w̄i[n] = wi[k], δ̄i[n] ∈ ∆̄i, ūi[n] ∈ Ū∗i , ∀i,∀n (6.8d)

where Ū∗i is given. Much like the control problem in (6.3), the decentralized con-

trol problem in (6.8) is not completetely separable because of the constraint in

(6.8c). Therefore, to relax this constraint, we will assume that P̄i = {pi[n] : n ∈

[k, k + np]} is given. Then, the (5.25b) can be completely decentralized, C∆(k) =

{C1
∆(k), . . . , Cnz∆ (k)} where the ith control problem Ci∆(k) at time k is

max
∆̄i

k+np∑
n=k

‖C̃iix̄i[n]‖I +

k+np−1∑
n=k

‖ūi[n]‖2
I − γ2

i

k+np−1∑
n=k

‖δ̄i[n]‖2
I (6.9a)

s.t. x̄i[n+ 1] = Aiix̄i[n] +Biiūi[n] +Giiw̄i[n]

+G∆,iiδ̄i[n] + Aipp̄i[n], ∀i,∀n (6.9b)

x̄i[k] = Ti[k], w̄i[n] = wi[k], δ̄i[n] ∈ ∆̄i, ∀i,∀n (6.9c)

ūi[n] ∈ Ū∗i , p̄i[n] ∈ P̄ ∗i ∀i, ∀n, (6.9d)

where Ū∗i and P̄ ∗i are given. Based on how CU(k) and C∆(k) are decentralized, we can

define a two tier hierarchical framework for robust model predictive control.

Building Zone Controller The first tier of this framework is composed of nz sepa-

rate controllers CiU(k) that use approximate models of the building zone Mi(θi)

to control the average zone air temperature. These controllers are referred to as

zone-level controllers, and the ith zone-level controller finds the set {X̄∗i , Ū∗i , ∆̄∗i }
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that solves the following pair of optimization problems,

CiU(k) : (6.7) s.t. (6.5)

Ci∆(k) : (6.9a) s.t. (6.9b)− (6.9d).

(6.10)

where γ ≥ 0 and the variables {ζ̄ , P̄i} are known. Then, given ū∗i [k] ∈ Ū∗i , each

zone-level controller applies a robust model predictive controller ui[k] = ū∗i [k]

to the building zone at time k.

Building Coordinator The second tier of this hierarchical control framework is

a higher level controller CoU(k) that coordinates the efforts of the individual

zone controllers {CiU(k) : i ∈ [1, nz]} in the entire building. This high-level

controller is known as a building coordinator, and finds the set of variables

{ζ̄∗, P̄ ∗i : ∀i ∈ [1, nz]} that solves the following optimization problem,

CoU(k) : (6.6) s.t. (6.5) (6.11)

where the zone-level variables {ᾱi, β̄i, X̄i, Ūi, ∆̄i} are assumed to be known. The

variables {ζ̄∗, P̄ ∗i : ∀i ∈ [1, nz]} are known as coordination variables, and these

variables are used to enforce the global constraint,

p̄i[n] =
∑
j 6=i

(
Ex,ijx̄j[n] + Eu,ijūj[n] + Ew,ijw̄j[n]

)
∀i, ∀n (6.12)

for i ∈ [1, nz] and n ∈ [k, k+np]. Essentially, the coordinator collects zone-level

control information {ᾱi, β̄i, X̄i, Ūi,∆i} from every zone, and then sends each

zone-level controller a prediction of the interaction vector p[n] ∈ P̄i over the

horizon n ∈ [k, k + np] and a weighting variable ζ̄.
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Similar to the sequential process in Alg. 10, the hierarchical framework for robust

model-predictive control iteratively arrives at a solution {ᾱ∗i , β̄∗i , X̄∗i , Ū∗i , ∆̄∗i , ζ̄∗, P̄ ∗i }

at every time step k, and applies ūi[k] ∈ Ū∗i to the ith building zone. This iterative

process is outlined below in Alg. 11. We demonstrate this hierarchical approach to

robust model-predictive control in the following example.

Algorithm 11 Hierarchical Robust MPC Algorithm

1. Initialize {αmi , βmi , X̄m
i , Ū

m
i , ∆̄

m
i , ζ̄

m, P̄m
i } at m = 0 given γ > 0 and the initial

condition x̄i[k] at time k for all i ∈ [1, nz].

2. Using {αmi , βmi , X̄m
i , Ū

m
i , ζ̄

m, P̄m
i , ∆̄

m
i } and γ, solve the zone-level control prob-

lem (6.10) for {αm+1
i , βm+1

i , X̄m+1
i , Ūm+1

i , ∆̄m+1
i , ζ̄m, P̄m

i } for all i.

3. Using {αm+1
i , βm+1

i , X̄m+1
i , Ūm+1

i , ∆̄m+1
i , ζ̄m, P̄m

i }, solve the building coordina-
tion problem (6.11) for {αm+1

i , βm+1
i , X̄m+1

i , Ūm+1
i , ∆̄m+1

i , ζ̄m+1, P̄m+1
i }

4. If ζi[n]m+1 − ζi[n]m < εz and pi[n]m+1 − pi[n]m < εp for all i = [1, nz] and all
n ∈ [k, k + np], go to Step 5. Otherwise, repeat Steps 2-3 for m = m+ 1.

5. Apply ui[k] = ūi[k]∗ for all i where ū[k]∗ ∈ Ūm
i .

6. Repeat Steps 1-5 for k = k + 1.

Example 10 (Hierarchical Robust MPC of Small Scale Building)

Consider the small scale building example in Appendix A.2. Let the dynamics of

the building be the discrete-time system, Sd in (5.1) for sampling period Ts = 5

min. Furthermore, assume the building is split into two building zones, where the

dynamics of Zone 1 includes the dynamics for Rooms 1 and 2 and the dynamics of

Zone 2 include the dynamics for Rooms 3 and 4. We will also assume that there are

two local model-based controllers that delivers heating to each zone (u1[k] for Zone

1 and u4[k] for Zone 2) in order to drive the average zone temperature to achieve

some setpoint. These controllers are assumed to be coordinated by a higher level
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coordinator. Finally, we will assume the same model M(θ0), input constraints, set

points, and time horizon k ∈ [0, 288] as in Example 8. Then, we will consider the

following cases in this example.

Case 1: Apply MPC to Sd given the model, M(θ0)
M
= Sd where θ0 = θS.

Case 2: Apply MPC to Sd given the model, M(θ0) 6M= Sd where θ0(i) = .7θS(i) for

all i ∈ [1, q].

Case 3: Apply the hierarchical form of Robust MPC for γ = 14 to Sd given the

model, M(θ0) 6M= Sd whereθ0(i) = .7θS(i) for all i ∈ [1, q].

Case 4: Apply the hierarchical form of Robust MPC-T for γ0 = 14 to Sd given the

model, M(θ0) 6M= Sd where θ0(i) = .7θS(i) for all i ∈ [1, q], and given αP = 2 and

αI = 0.

Given these control scenarios, Fig. 6.2 and Fig. 6.3 plot the resulting zone tempera-

ture and heating input for each control strategy and for each zone. We observe that

these plots are identical to Fig 5.2 in Example 9, and the hierarchical Robust MPC-T

yields the same performance as Robust MPC-T in Example 9.

This hierarchical approach to robust control has several advantages over the

scheme presented in the previous chapter. First, a supervisory model predictive con-

trol strategy for a large building environment can be easily decentralized into local

zone controllers that only require information about the dynamics of the building

zone and information from a high level coordinator. Second, this strategy takes into

account modeling uncertainties δ̄i[k] ∈ ∆̄i and compensates the predictive control

sequence Ūi for the worst case disturbance given γ > 0.

137



00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
292

293

294

295

296

297

298

Time (hrs)

T
em

pe
ra

tu
re

 (
K

)

Building Temperature

 

 
Nominal MPC
Mismatched MPC
Robust MPC
Robust−T MPC

(a) Output Temperatures

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (hrs)

H
ea

t G
ai

n 
(W

)

Building Inputs

 

 
Nominal MPC
Mismatched MPC
Robust MPC
Robust−T MPC

(b) Heat Inputs

Figure 6.2: Comparison of Cases 1-4 for Zone 1
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Figure 6.3: Comparison of Cases 1-4 for Zone 2
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6.4 Hierarchical Control of Case Study Examples

This section demonstrates the hierarchical Robust MPC and Robust MPC-T ap-

proaches for the case studies detailed in Chapter 2, where each building model is

split into building zone models and used for local control of a building zone. This

section will assume all the prior assumptions and cases from Section 5.5 and apply

them to this study. Table 6.3 and Table 6.4 are generated from these assumptions

for all Cases 1-4 outlined in Section 5.5. For Cases 3 and 4, we note γ = 100 and

γ0 = 100, respectively for the control strategy applied to the Office building. We use

these tables to compare the performance of these different control strategies.

Table 6.3: Comparison of Hierarchical Control Strategies for IW-
North

Nominal Mismatch Robust MPC Robust MPC
MPC MPC Constant γ Tuned γ
Utot Ymse Utot Ymse Utot Ymse Utot

(kWh) (K) (kWh) (K) (kWh) (K) (kWh)

Zone 1 176.7 3.14 280.0 2.84 112.5 0.0085 195.0
Zone 2 340.0 1.76 509.2 4.80 64.2 0.0132 339.2
Zone 3 149.2 2.16 246.7 3.01 54.2 0.0099 161.2
Zone 4 351.7 1.75 519.2 3.66 74.2 0.0121 349.2
Zone 5 164.2 2.83 263.3 3.07 105.8 0.0092 185.8
Zone 6 195.0 2.72 319.2 2.80 70.8 0.0104 204.2
Zone 7 395.8 3.87 575.0 5.89 30.8 0.0443 395.0
Zone 8 181.7 2.20 296.7 4.27 32.5 0.0119 185.0
Zone 9 210.0 2.83 354.7 3.33 58.3 0.0119 221.7
Zone 10 625.8 10.42 671.7 4.40 159.2 0.0937 631.7

Total Energy: 2,790.8 - 4,034.2 - 762.5 - 2,870

In Table 6.3, we observe that the Robust MPC-T strategy has the lowest mean

squared output error for all strategies, which means the building output under Ro-

bust MPC-T control mimics the building output under nominal MPC. Furthermore,
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we note that the amount of energy consumed in each zone for Robust MPC-T is

very similar to the amount of energy consumed under nominal conditions. With the

exception of Robuse MPC with constant γ, we note the aggregate amounts of energy

in the last row of 6.3 match the amounts found in 5.3, which indicates that under cer-

tain conditions the hierarchical strategy performs similar to the centralized building

controller.

Table 6.4: Comparison of Hierarchical Control Strategies for Office
Building

Nominal Baseline Robust Robust
MPC MPC MPC MPC-T
Utot Ymse Utot Ymse Utot Ymse Utot

(kWh) (K) (kWh) (K) (kWh) (K) (kWh)

Zone 1 418,060 7.74 420,000 1.75 412,810 2.45 420,000
Zone 2 363,820 8.40 416,960 0.80 309,130 2.64 406,380
Zone 3 207,460 4.19 358,800 0.84 49,160 1.10 337,060
Zone 4 122,110 1.41 322,010 1.34 14,200 0.31 224,740
Zone 5 116,730 0.58 248,330 1.63 17,580 0.20 199,540
Zone 6 117,730 0.37 238,800 1.78 17,800 0.20 180,810
Zone 7 117,840 0.34 239,760 1.80 17,790 0.19 181,290
Zone 8 117,680 0.37 239,000 1.66 17,870 0.20 181,100
Zone 9 116,690 0.54 245,440 1.39 17,770 0.20 197,290
Zone 10 122,830 1.24 317,500 0.99 14,400 0.28 220,420
Zone 11 222,990 3.38 362,200 0.53 55,870 0.82 338,410
Zone 12 384,670 5.56 417,450 0.86 325,600 1.40 414,450

Total 2.4× 106 - 3.8× 106 - 1.3× 106 - 3.3× 106

In Table 6.4, we observe something slightly different for the large office building.

Both the Robust MPC and the Robust MPC-T approaches outperform the baseline

MPC strategy. For a majority of zones the Robust MPC-T strategy is closer to the

nominal controller performance than the Robust MPC strategy and consumes more

energy to achieve improved thermal performance.
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6.5 Summary

This chapter serves as a continuation of Chapter 5 into the domain of hierarchical and

decentralized control. In this chapter, we review the framework of hierarchical control

as posed in [64, 73, 74], and apply some of the key results and frameworks for robust

control in Chapter 5 here. Furthermore, we develop a robust, hierarchical framework

for model-based building control, specifically model-predictive control. Our proposed

hierarchical model-based controller is a desirable one because the supervisory zone

controllers are individually robust to model uncertainties, scalable to building envi-

ronments with a large number of zones, and flexible to changes in the model. Finally,

this hierarchical strategy is demonstrated in the simulated case studies, and we ob-

serve the decentralized control strategy performs similarly to the centralized building

control strategy us in Chapter 5.
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Chapter 7

Conclusion & Future Work

7.1 Summary of Contributions

The main contributions for this work are summarized as follows.

Parameter Identifiability of Grey-Box Building Models

Based on the framework of model identifiability, we have developed an approach

to quantitatively determine model parameters that may not be identifiable.

This evaluation is important because it allows users to pinpoint parameters in

a model that may not be identifiable due to model structure. Furthermore, it

allows users to test for model structures and data sets that would improve the

identifiability of certain parameters.

Design-Driven Building Model Identification Process

In the standard identification process, users would have to completely discard

an unidentifiable model and choose a new model structure. This leads to a

frustrating process of trial and error in testing, where many different model
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structures are tested. To address this challenge, we introduce the design-driven

model identification process. This process uses parameter identifiability to first

determine which parameters are not identifiable and then uses heuristics to deal

with these unidentifiable parameters through aggregation.

Decentralized Identification of Control-Oriented Building Models

We observe from experience that building models are generally too large to be

identified efficiently with the current identification process.Therefore, we pro-

pose a decentralized approach to make identification scalable using the notion

of reachability and directed graphs of the building dynamics. This new decen-

tralized identification process very quickly parses building models into sizable

building zones that can be individually identified and pieced back together. Fur-

thermore, we introduce the notion of decentralized model identifiability where

the structural and output identifiability metrics are applied to all the build-

ing zone models in order to quickly determine the identifiability of the entire

building model.

Robust Model-Based Supervisory Control

The second half of this dissertation addresses the challenge of using uncertain

building models for model predictive control. The objective of this work is

to improve controller sensitivity to model uncertainty. To address this issue,

techniques from H∞ control are used to design a robust model-predictive control

strategy that can attenuate the effect of modeling errors subject to a robustness

factor. More importantly, we develop and implement a strategy to reduce the

conservativeness of the controller by automatically tuning the robustness factor.

This tuning process allows for significant improvements over the baseline control

strategies.
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Hierarchical and Robust Model-Based Supervisory Control

As a next step to the robust model-based control framework, we consider the

question of decentralized and robust model-based supervisory control. We build

on the current approach to hierarchical model predictive control and introduce

a hierarchical version of the robust control problem. Using this framework,

the local supervisory zone controllers can independently tune their robustness

factor for improved performance. This is an attractive feature since it allows

local supervisory controllers to independently determine the level of robustness

needed for the model-based zone controller.

MATLAB Simulator & Case Study

Finally, a major contribution of this work is the demonstration of the proposed

strategies using simulated examples of real building environments. We have

developed an extensive simulator in MATLAB to construct the building envi-

ronments and building models. Using these models, we developed algorithms

to demonstrate each of the contributions to building model identification and

control listed above.

7.2 Future Work

There are several directions for future work that build on the contributions listed

above. We provide an overview for some of the big ideas

7.2.1 Iterative, Systematic Parameter Aggregation

In Chapter 3, the proposed design-driven model identification approach uses the no-

tions of parameter identifiability and parameter aggregation to determine and alle-
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viate the challenges of identifying a building model. The strength of this approach

lies in the ability to appropriately tweak the model and deal with the poorly iden-

tifiable parameters in the model in order to improve the structural identifiability of

the models. We propose two rules to improve parameter identifiability via parame-

ter reduction, but these rules are not guaranteed to work every time for all building

models. Instead, these rules provide a first step towards a fully systematic process to

automatically aggregate those parameters in the model that are likely not identifiable.

One direction towards this systematic approach is to create an iterative process to

test different types of linear and non-linear aggregation methods that may improve

structural parameter identifiability. Examples of non-linear aggregation methods in-

clude aggregating parameters into time constants, τ = RC, which may be more easily

identified for a building element than individual parameters. Furthermore, more work

needs to be done to determine which parameters should be aggregated together. Our

current approach presents an intuitive method of aggregating the parameters in a sin-

gle building element and aggregating parameters across building elements that may

not be distinguishable or separately identifiable. To achieve this systematic approach,

formal methods are needed to first determine parameters that belong to indistinguish-

able building elements, and then to aggregate those parameters using linear and/or

non-linear methods.

7.2.2 Optimal and Decentralized Input Design

The proposed design-driven model identification process exclusively considers meth-

ods to improve the structural identifiability, but does not address output identifia-

bility. Although structural identifiability is necessary for output identifiability, it is

not a sufficient condition by itself that the model M(θ) be identifiable for a given

146



data set ZN . One of the key barriers to output identifiability is the richness of the

identification data ZN and designing identification experiments with sufficiently rich

identification data. This particular problem is known as optimal input design or opti-

mal design of experiments [4, 40, 83], and is an important one to consider to improve

the output identifiability of a model given a data set.

We can extend the design-driven model identification process to actively design

identification inputs to improve the estimation of structurally identifiable parame-

ters. Furthermore, based on the output identifiability metric, we can determine which

structurally identifiable parameters may not output identifiable. In those cases, the

choice of identification data impacts the quality of the parameter estimate. To sup-

port a fully automatic design-driven identification process, further work needs to be

done to automatically design controllable building inputs that yield sufficiently rich

identification data given building disturbances.

Another future direction to consider is input design for decentralized model iden-

tification in Chapter 4. Local identification experiments need to be designed for

individual zones in order to better estimate the parameters of a building zone model.

This leads to posing a decentralized input design problem, where correlations may exist

between disturbances to the building zone. Future work might look at coordinating

controllable inputs in neighboring zones to improve local data used for zone model

identification.

7.2.3 Mixed Building Control Strategies

We demonstrate in Chapters 5 and 6 that model-based control is a viable strategy

for supervisory building control. However, model-based control strategies may not

be widely installed in buildings because of high capital costs and maintenance. To
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reduce these costs, operators and owners may decide to install model-based control in

critical areas of the building such as high occupancy areas where energy consumption

and/or thermal comfort must be more finely controlled. This may lead to a mixed-

control scenario where different supervisory control strategies are used within in a

single building to save energy. We can pose this mixed building control scenario as

an extension of the hierarchical control problem introduced in Chapter 6 where su-

pervisory zone controllers are either model-based or model-free control strategies and

the building coordinator ensures the controllers are cooperatively working together.

Based on this scenario, there are several questions and areas for future research that

may be of interest to the building community.

One issue is providing guidelines on building scenarios for which model-based con-

trol might be better to use than model-free control such as PID, rule-based control,

etc. Factors such as occupancy, level of thermal tolerance, and sensing may be impor-

tant to determining the effectiveness of a model-based control strategy for a particular

space. Another issue is determining the optimal number of model-based strategies

that maximize the amount of energy saved per dollar spent towards capital costs of

installation. Further work on these two issues may yield some insightful guidelines

and tradeoffs on retrofitting old buildings with advanced building control strategies.

7.2.4 Integration of Additional Building Systems

Buildings are highly complex because they are a network of nonlinear processes and

systems. This work exclusively focuses on supervisory model-based controls for heat-

ing building spaces in cold climates, but there are several other scenarios for which

model-based control may be helpful. In warmer climates, model-based control can be

used to manage both cooling and humidification systems, which are building processes
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that are strongly coupled together and have to be managed together. Another im-

portant building process is ventilation, which is required in buildings where fresh air

has to be forced in through the air-handling unit. Standards for ventilation are met

by increasing the amount of fresh air being taken into the building, but often lead to

increased thermal conditioning since less of the conditioned air in the building cannot

be recycled. One advantage of model-based control is the ability to balance several

competing objectives for conditioning the building and energy needed to properly

condition the building. Therefore, it is crucial that real building control strategies

optimize more than just thermal performance in order to both comply with current

building standards and to maximize energy savings.
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Appendix A

Small-Scale Building Examples

A.1 Two Room Building Environment

Consider a building with two rooms, T1(t) and T2(t), separated by a wall as shown in

Fig. A.1. Let the thermal properties of the building be given in Table A.1:

Building Element RC Model Resistivity Capacitivity

(m
2K
W

) ( J
Wm2 )

Interior Walls 2R1C 0.24 3,600
Exterior Walls 1R0C 1.17 102,000,000
Roofs 1R0C 2.85 104,870
Floors 1R0C 1.11 72,000

Table A.1: Thermal Properties of Two Room Building Construction.
We note the exterior walls separate the outdoors from the indoors, while the interior
walls partition the indoor air spaces.

Let the parameters of the interior wall be R12a, R12b, and C12, where T12(t) is

the internal temperature of the interior wall. Let the parameters of the exterior wall

in Room 1 be R1N , R1S, R1W , R1F , R1R and the parameters of the exterior wall
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Figure A.1: 2 Room Building

in Room 2 as R2N , R2S, R2W , R2F , R2R. Then, the continuous-time model of the

building dynamics is written as follows,

S :


Ṫ1(t)

Ṫ2(t)

Ṫ12(t)

 =


−a11 0 1

R12aC1

0 −a22
1

R12bC2

1
R12aC12

1
R12bC12

−a1N



T1(t)

T2(t)

T12(t)

+


1
C1

0

0 1
C2

0 0


u1(t)

u2(t)



+


g1

1
C1

0

g2 0 1
C2

0 0 0



To(t)

q̇1(t)

q̇2(t)


y1(t)

y2(t)

 =

1 0 0

0 1 0



T1(t)

T2(t)

T12(t)



(A.1)
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where

a11 =
1

R12aC1

+
1

R1NC1

+
1

R1SC1

+
1

R1WC1

+
1

R1RC1

+
1

R1FC1

a12 =
1

R12bC2

+
1

R2NC2

+
1

R2SC2

+
1

R2EC2

+
1

R2RC2

+
1

R2FC2

a1N =
1

R1NaC1N

+
1

R1NbC1N

g1 =
1

R1NC1

+
1

R1SC1

+
1

R1WC1

+
1

R1RC1

+
1

R1FC1

g2 =
1

R2NC2

+
1

R2SC2

+
1

R2EC2

+
1

R2RC2

+
1

R2FC2

(A.2)

.

A.2 Four Room Building Environment

Consider the layout of a a four room building in Fig. A.2. Let the thermal properties

of the building construction be given in Table A.1. Given the floor plan and the

modeling assumptions, then the dynamics of the building is written as:

S :
Ṫ(t) = A(θ)T(t) +B(θ)u(t) +G(θ)w(t)

y(t) = CT(t)

where the system vectors are

T(t) =

[
T1(t) T2(t) T3(t) T4(t) T12(t) T13(t) T24(t) T34(t)

]T
u(t) =

[
u1(t) u4(t)

]T
w(t) =

[
To(t)

]T
y(t) =

[
y1(t) y2(t) y3(t) y4(t)

]T
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Figure A.2: Floor Plan of 4 Room Building

and the system matrices are

A(θ) =



−a11 0 0 0 1
R12aC1

1
R13aC1

0 0

0 −a22 0 0 1
R12bC2

0 1
R24aC2

0

0 0 −a33 0 0 1
R13bC3

0 1
R34aC3

0 0 0 −a44 0 0 1
R24bC4

1
R34bC4

1
R12aC12

1
R12bC12

0 0 −a55 0 0 0

1
R13aC13

0 1
R13bC12

0 0 −a66 0 0

0 1
R24aC24

0 1
R24bC24

0 0 −a77 0

0 0 1
R34aC34

1
R34bC34

0 0 0 −a88


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B(θ) =



1
C1

0

0 0

0 0

0 1
C2

0 0

0 0

0 0

0 0



G(θ) =



g11

g22

g33

g44

0

0

0

0



C =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0



a11 = g11 +
1

R12aC1

+
1

R13aC1

, g11 =
1

R1NC1

+
1

R1WC1

+
1

R1RC1

+
1

R1FC1

a22 = g22 +
1

R12bC2

+
1

R24aC2

, g22 =
1

R2SC2

+
1

R2WC2

+
1

R2RC2

+
1

R2FC2

a33 = g33 +
1

R13bC3

+
1

R34aC3

, g33 =
1

R3NC3

+
1

R3EC3

+
1

R3RC3

+
1

R3FC3

a44 = g44 +
1

R24bC4

+
1

R34bC4

, g44 =
1

R4SC4

+
1

R4EC4

+
1

R4RC4

+
1

R4FC4

a55 =
1

R12aC12

+
1

R12bC12

a66 =
1

R13aC13

+
1

R13bC13

a77 =
1

R24aC24

+
1

R24bC24

a88 =
1

R34aC34

+
1

R34bC34
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Appendix B

Building Digraph Algorithms

B.1 Partition into Digraphs of Air-Based

Subsystems

Algorithm 12 describes an approach that resembles a breadth first search to partition

G(S) into the component subgraphs G(Sai ). We can claim the algorithm is correct

by proving the claim of algorithm correctness in Proposition 4.

Proposition 4 (Correctness of Algorithm 12): Algorithm 12 decomposes G(S)

into the set of subgraphs, {G(Sai ) : ∀i ∈ [1, a]}, where the set of air-based subsystems,

{Sai : i ∈ [1, a]} as defined in Definition 10. ♣

Proof Line 2 satisfies the condition, Xa
i ∩Xa = {Ti}, and Line 5 does not violate

this condition since the set of state vertices Xw,i added to Xa
i are not in Xa

i by Line

4. Furthermore, the while-loop in Lines 3-6 is terminated only when the condition,

N(Xa
i )∩X ⊂ Xa on G(S), is satisfied. Therefore, Xa

i satisfies the first two conditions
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Algorithm 12 Decomposition of G(S) into the set of air-based subsystems G(Sai )

Input: G(S) = {X ∪ U ∪W ∪ Y,E}
Output: {G(Sai ) : ∀i ∈ [1, a]}

1: for all i := 1→ a do
2: Xa

i := {Ti}
3: while N(Xa

i ) ∩X 6⊂ Xa do
4: Xw,i ← N(Xa

i ) ∩Xw

5: Xa
i ← Xa

i ∪Xw,i

6: end while
7: Ua

i := N(Xa
i ) ∩ U

8: W a
i := N(Xa

i ) ∩ (X ∪W )
9: Y a

i := N(Xa
i ) ∩ Y

10: Ea
i := {(u, v) ∈ E : ∀u, v ∈ Xa

i ∪ Ua
i ∪W a

i ∪ Y a
i }

11: G(Sai ) := {Xa
i ∪ Ua

i ∪W a
i ∪ Y a

i , E
a
i }

12: i← i+ 1
13: end for
14: return {G(Sai ) : ∀i ∈ [1, a]}

of Definition 10. Lines 7-11 follows from the conditions outlined in Definition 10.

Therefore, Lines 2-11 satisfy definition for the ith air based subsystem Sai . Given the

for-loop introduced in Line 1, Algorithm 12 returns the set of all possible air based

subsystems in Line 14. �

B.2 Partitioning the Building Digraph

In this section, we present two algorithms to partition the building digraph into

input-output reachable graphs. We accomplish this challenge in two parts. First, we

partition the building map into uniform input-output reachable partitions. Second,

we use these input-output reachable partitions of the building map to create zones,

that are by definition input and output reachable.
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Algorithm 13 Create a uniform input-output reachable partition of the building
map

Input: GR(S) = {VR, ER}
Output: {{V k

R , E
k
R} : ∀k}

1: Vir := {i ∈ VR : for all input-reachable air based subsystems Sai }
2: Vor := {i ∈ VR : for all output-reachable air based subsystems Sai }
3: N := 0
4: for all i ∈ Vir ∩ Vor do . Create initial partitions, {V k

R , E
k
R}

5: N ← N + 1
6: V N

R := {i}
7: EN

R := ∅
8: GN := {V N

R , E
N
R }

9: end for
10: n := {1, 2, . . . , N}
11: Vnodesleft ← VR − (Vir ∩ Vor)
12: while Vnodesleft 6= ∅ do . Add remaining vertices to a partition {V k

R , E
k
R}

13: for all k ∈ n do
14: N(V k

R) := Neighborhood of vertex set V k
R on GR(S)

15: j := Choose a single element from N(V k
R) ∩ Vnodesleft

16: V k
R ← V k

R ∪ {j}
17: Ek

R ← Ek
R ∪ {(i, j) ∈ ER : i, j ∈ V k

R}
18: Vnodesleft ← Vnodesleft − {j}
19: end for
20: end while
21: return {{V k

R , E
k
R} : ∀k}

B.2.1 Partitioning Building Map

Proposition 5: Algorithm 13 returns {{V k
R , E

k
R} : ∀k} which is an input-output

reachable partition of the building map GR(S). ♣

Proof Given Lines 1 and 2, Lines 4-9 create initial subgraphs Gk = {V k
R , E

k
R} for

k ∈ n around vertices that correspond to an input-output reachable air based system.

For the remaining vertices j ∈ Vnodesleft, Lines 12-20 iterate through the subgraphs

{V k
R , E

k
R} and chooses a vertex j in the neighborhood of the vertex set V k

R to add to

V k
R . When the while loop is terminated, then Vnodesleft = ∅ and the set of subgraphs
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{V k
R , E

k
R} constitute a graph partition of GR(S). This guarantees each partition

includes the index of at least one input reachable air-based subsystem and one output

reachable air based subsystem. Therefore, Algorithm 13 satisfies the conditions for

an input-output reachable partition of the building map as outlined in Definition 12.�

B.2.2 Creating Building Zone Dynamics

Algorithm 14 Create a zone partition, {Sk : ∀k}
Input: S
Output: {Sk : ∀k}

1: G(S) := {X ∪ U ∪W ∪ Y,E}
2: Decompose S into a set of air based subsystems, {Sai : i ∈ [1, a]}
3: Create air based building map, GR(S) := {VR, ER}
4: Partition GR(S) into input-output reachable parts, {{V k

R , E
k
R} : ∀k}

5: for all k ∈ n do
6: Xk := ∅
7: for all i ∈ V ′k do
8: Xk ← Xk ∪Xa

i

9: Uk ← Uk ∪ Ua
i

10: Wk ← Wk ∪W a
i

11: Yk ← Yk ∪ Y a
i

12: Ek ← Ek ∪ Ea
i

13: end for
14: G(Sk) := {Xk ∪ Uk ∪Wk ∪ Yk, Ek}
15: end for
16: return {Sk : ∀k}
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Appendix C

Receding Horizon H∞ Control

Proofs

This chapter presents the detailed proofs to Lemma 2 and Lemma 3 in Chapter 5.

Proof (of Lemma 2) This proof is adapted from [12, 13]. Given S(k, k + np) in

(5.17), Let

S(k, k + np)− S(k, k + np − 1) = ‖Hx̄[k + np]
∗‖2 − ‖Hx̄[k + np + 1]∗‖2

+ γ2‖δ̄[K + np]
∗‖2 − ‖z̄[k + np]

∗‖2

(C.1)

where the vectors z̄[k+np]
∗ and x̄[k+np + 1]∗ are functions of x̄[k+np]

∗, ū[k+np]
∗,

and δ̄[k + np]
∗ according to (5.24b) and (5.24c).

Consider the function V (x̄[k]∗) = ‖x̄[k]∗‖2
P = S(k,∞) for some matrix P = P T >

0. Then, (5.17) can be written recursively in terms of V (x̄[k]∗) as follows,

V (x̄[k]∗) = ‖z̄[k]∗‖2 − γ2‖δ̄[k]∗‖2 + V (x̄[k + 1]∗). (C.2)
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Since the model M(θ) is asymptotically stable, then (C.2) becomes,

V (x̄[k]∗) ≥ ‖z̄[k]∗‖2 − γ2‖δ̄[k]∗‖2 + V (x̄[k + 1]∗) (C.3)

for all x[k]∗, u[k]∗, δ[k]∗, and z[k]∗. Assume V (x[k + np]
∗) = ‖Hx̄[k + np]

∗‖2 and

V (x[k + np + 1]∗) = ‖Hx̄[k + np + 1]∗‖2. Then, for time k + np, (C.3) becomes

‖Hx̄[k + np]
∗‖2 ≥ ‖z̄[k + np]

∗‖2 − γ2‖δ̄[K + np]
∗‖2 + ‖Hx̄[k + np + 1]∗‖2 (C.4)

for (ū[k + np]
∗, δ̄[k + np]

∗). Then, (C.1) becomes the following inequality

S(k, k + np)− S(k, k + np − 1) ≥ 0 (C.5)

which directly implies the original claim. �

Proof (of Lemma 3) This proof is also adapted from [12, 13]. Let the predicted

cost S(k, k + np) in (5.17) be written as the following maximization problem,

S(k, k + np) = max
∆̄k

{
‖Hx̄[k + np]‖2 +

k+np−1∑
n=k

(
‖z̄[n]‖2 − γ2‖δ̄[n]‖2

)}
(C.6)

where the vectors z̄[n], x̄[n] are functions of x̄[k], Ū∗k , and some sequence ∆̄k according

to (5.24b) and (5.24c). The sequence ∆̄k that maximizes (C.6) is the solution ∆̄∗k.

Suppose the actual state uncertainty at time k is δ[k] = δ̄[k]∗ where δ̄[k] ∈ ∆̄∗k and

the actual building performance at time k is z[k] = z̄[k]∗ given u[k] = ū[k]∗ ∈ Ū∗k .

Then, (C.6) can be rewritten as

S(k, k + np) = ‖z[k]‖2 − γ2‖δ[k]‖2 + max
∆̄k+1

{
‖Hx̄[k + np]‖2
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+

k+np−1∑
n=k+1

(
‖z̄[n]‖2 − γ2‖δ̄[n]‖2

)}
(C.7)

= ‖z[k]‖2 − γ2‖δ[k]‖2 + S(k + 1, k + np) (C.8)

where ∆̄k+1 ⊂ ∆̄k. Given the result S(k + 1, k + np) ≥ S(k + np, k + np + 1) from

Lemma 2 and (C.8), then

S(k, k + np) ≥ ‖z[k]‖2 − γ2‖δ[k]‖2 + S(k + 1, k + np + 1), (C.9)

which directly implies (5.18). �
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