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Abstract

Software security is a big data problem. The volume of new software artifacts created

far outpaces the current capacity of software analysis. This gap has brought an urgent

challenge to our security community—scalability. If our techniques cannot cope with an

ever increasing volume of software, we will always be one step behind attackers. Thus

developing scalable analysis to bridge the gap is essential.

In this dissertation, we argue that automatic code reuse detection enables an efficient

data reduction of a high volume of incoming malware for downstream analysis and en-

hances software security by efficiently finding known vulnerabilities across large code

bases. In order to demonstrate the benefits of automatic software similarity detection, we

discuss two representative problems that are remedied by scalable analysis: malware triage

and unpatched code clone detection.

First, we tackle the onslaught of malware. Although over one million new malware are

reported each day, existing research shows that most malware are not written from scratch;

instead, they are automatically generated variants of existing malware. When groups of

highly similar variants are clustered together, new malware more easily stands out. Unfor-

tunately, current systems struggle with handling this high volume of malware. We scale

clustering using feature hashing and perform semantic analysis using co-clustering. Our

evaluation demonstrates that these techniques are an order of magnitude faster than previous

systems and automatically discover highly correlated features and malware groups. Further-

more, we design algorithms to infer evolutionary relationships among malware, which helps

analysts understand trends over time and make informed decisions about which malware to

analyze first.

Second, we address the problem of detecting unpatched code clones at scale. When

buggy code gets copied from project to project, eventually all projects will need to be

patched. We call clones of buggy code that have been fixed in only a subset of projects

unpatched code clones. Unfortunately, code copying is usually ad-hoc and is often not
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tracked, which makes it challenging to identify all unpatched vulnerabilities in code bases

at the scale of entire OS distributions. We scale unpatched code clone detection to spot over

15,000 latent security vulnerabilities in 2.1 billion lines of code from the Linux kernel, all

Debian and Ubuntu packages, and all C/C++ projects in SourceForge in three hours on a

single machine. To the best of our knowledge, this is the largest set of bugs ever reported in

a single paper.
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Chapter 1

Introduction

1.1 Improving Software Security

People use many types of software everyday, from operating systems and web browsers to

word processors and email clients. With this extensive use, however, comes a pressing and

ongoing need for software security. According to the National Vulnerabilities Database,

5,289 new software vulnerabilities were reported in 2012 [7]. Ubuntu [9] and Debian [4]

also released 364 and 220 security advisories in 2012, respectively. These security reports

cover various kinds of software vulnerabilities, such as buffer overflow, integer overflow,

denial of service, information disclosure, and so on. Some of these vulnerabilities can be

exploited to install malware. For example, the 2011 attack against RSA started from an

email with a spreadsheet attachment. The spreadsheet contained an exploit for Adobe Flash

vulnerability (CVE-2011-0609) that was used to install a backdoor for gathering credential

information [144].

Malware becomes increasingly prevalent with the advance of technologies that allow

more users to be connected to each other, including malicious users. According to Syman-

tec, 5.5 billion malicious attacks were detected in 2011, which was an increase of more than

81% from 2010 [154]. McAfee, similarly, received hundreds of thousands of new malware

per day in 2012 [110], a number that is likely to keep increasing. In this hostile environ-

ment, it is important to ensure the security of software so that we can safely use software

for sensitive tasks, e.g., online banking and editing confidential documents.

Given limited resources of time, hardware, money, and human ability, it is necessary to

have techniques that can examine an ever greater amount of software. If our current tech-

niques can handle only part of the incoming malware, then the remaining malware cannot
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be processed and we may miss security-critical malware, e.g., next variants of Stuxnet.

My vision is to bridge the gap between the volume of new software created and the

current capacity of software analysis by developing scalable analysis for software security.

In this dissertation, we focus on scalability issues posed by extensive code reuse, or the

reuse of existing code to develop new software.

1.2 Code Reuse in Software Development

Code reuse is not uncommon in software development, including open source projects and

malware. For example, previous research found that 12% of all code in the Linux file system

code was copied [80, 83] and that 49 bugs in Linux were due to developers not fixing buggy

code that was copied from one project to another [101]. Symantec also discovered that Duqu

shared a significant portion of code with Stuxnet [153], and previous research showed that

most incoming malware were minor variants of existing malware [22, 69].

There are two types of code reuse: code duplication and code evolution. Code dupli-

cation involves copying and pasting some or all of the code from an existing program to a

new program. This is sharing of code among different programs called spatial code reuse,

as shown in Figure 1.1, where code is copied from P1 to P2. A software library for handling

common file formats (like an XML parser library or a JPEG image library) is a real-world

example of spatial code reuse. Developers can reuse a software library to reduce the costs

of software development and maintenance and to benefit from well-designed code [54].
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Code evolution, on the other hand, refers to the process of developing a new version of

software by updating previous versions. In the evolution of program source code, subse-

quent versions are derived from previous versions so that a substantial amount of code is

typically shared among them. This is called temporal code reuse, e.g., updating code from

P1 to P ′1, as shown in Figure 1.1. Software is constantly evolving to adapt to changing

needs, bug fixes, and feature additions [99]. For example, new variants of malware can be

equipped with additional modules to see if the malware is being run on a virtual environ-

ment, which malware analysts often do for safety reasons. If such a virtual environment is

detected, malware may stop executing or hide malicious activities to avoid detection.

1.3 Scalability as a Security Problem

Extensive code reuse has brought an urgent challenge to our security community—scalability.

The community is faced with questions about whether or not our current techniques will

work on very large data sets, and whether we can handle a large amount of data efficiently.

According to the Symantec Internet Security Threat Report [154], Symantec received

over 403 million new variants of malware in 2011, which is a 41% increase over 2010.

McAfee also collected over 35 million new malware in 2012 [110], which is a 52% increase

over 2011. It is unlikely that 1.1 million new malware are written from scratch every day.

It is more likely that malware authors slightly modify existing code to produce “new” mal-

ware variants. Reusing existing code to produce new variants saves both time and money.

For example, simple tweaks such as reordering instructions, inserting dummy instructions,

changing file headers, and modifying null alignment parts are enough to change the MD5

hash value of a file. When an anti-virus signature for a specific malware is based upon

MD5 checksums, e.g., hdb for a file and mdb for a Portable Executable (PE) section in

ClamAV [40], such tweaks can bypass anti-virus detection.

In order to handle such a huge volume of incoming malware fueled by extensive code

reuse, the security community proposed to perform clustering on malware [22, 69, 84, 131,

140], with the idea that if two malware samples shared a significant amount of identical

code, they were likely to be part of the same overall family. Based on the clustering results,

malware triage can be done to determine which malware should be analyzed with a high

priority. By grouping similar malware, analysts can also determine how much malware is

really unique and how much malware is a minor variant of existing malware.

However, current techniques are not scalable enough to handle such a huge volume of

incoming malware. For example, if we used one of the existing similarity metric libraries,
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such as SimMetrics v1.6.2 [36], to measure pairwise similarity of all possible pairs, we

would need more than 200,000 CPUs to handle 1.1 million new malware per day. We need

faster and more scalable techniques to efficiently handle this volume of malware.

Extensive code reuse also causes problems for goodware when the original code con-

tains bugs. When buggy code from one project is copied to a new project, both the original

and new project will eventually need to be patched. For example, if a patch ∆′1 fixes a bug

found in the code that is copied from P1 to P2 (as shown in Figure 1.1), then the duplicated

buggy code in P2 also needs to be fixed. Unfortunately, code copying is usually ad-hoc and

is often not recorded, which makes it challenging to identify and correct every copy of the

duplicated code. Unless the developer of P2 addresses the known bug with ∆′2 or copies

the updated code from P ′1, P ′2 still contains the bug which has been public since t1. For

example, consider the HFS and HFS+ filesystems, which both had the same buffer over-

flow vulnerability due to code duplication. The vulnerability in HFS filesystem was fixed

in December 2009, but it wasn’t until May 2012 that the same vulnerability was fixed in

HFS+ filesystem—more than 2 years later [156]. Existing research also shows that 17–45%

of software bugs are recurring bugs [128], meaning that resources are wasted in repeatedly

diagnosing the same problems. In order to mitigate such recurring problems, we need a

method to find all duplicated code of a known buggy version. For example, when a patch is

released to fix a problem or to add a new feature, we can search for the same pre-patched

original code that might be duplicated in other locations of OS distributions.

This raises the question of whether our current techniques can efficiently manage code

bases at the scale of entire OS distributions, e.g., the stable version of Debian Squeeze

containing over 16 GB of non-empty and non-comment code and spanning more than 348

million lines. In order to analyze the Linux kernel, all Debian and Ubuntu packages, and

all C/C++ projects in SourceForge, we need techniques scaling to billions of lines of code.

Scalable techniques would also enable us to promptly check for copies of known vulnera-

bilities in day-to-day development to improve the security of code.

1.4 Automatically Detecting Code Reuse

The thesis of this work is that automatic code reuse detection enables an efficient data

reduction of a high volume of incoming malware for downstream analysis and enhances

software security by efficiently finding known vulnerabilities across large code bases.

Code reuse detection is the process of finding common code sequences between pro-

grams. Automatic code reuse detection is a core component in many security scenarios and
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has the most value when used on very large data sets. For example, security companies re-

ceive more than 403 million malware samples that they would like to analyze to determine

how much malware is really unique. Similarly, we want to search entire OS distributions,

e.g., Debian Squeeze consisting of 348 million lines of non-empty and non-comment code,

for recurring software bugs.

We discuss how automatic code reuse detection is used in two security scenarios: mal-

ware triage and software vulnerability tracking at scale.

1.4.1 Malware Triage

In order to handle the exponentially increasing volume of malware, analysts need to allo-

cate limited resources effectively, e.g., by prioritizing incoming malware. Given a set of

malware, triage is performed to determine which malware needs to be analyzed first.

• Common triage tasks include identifying malware families via clustering [22] and

identifying the neighbors nearest to a particular malware sample [69]. This requires

measuring the similarity/distance between malware samples, e.g., two malware sam-

ples are similar if they have a significant amount of shared code.

• Semantic correlation between malware families allows analysts to reason about cor-

related malware groups and feature groups, e.g., common and distinguishing features

between malware samples.

• A temporal ordering of malware samples provides a clue to derivative relationships

among malware, e.g., malware y is a successor of malware x.

1.4.1.1 What Malware Are Related?

Given a set of malware samples, clustering is the process of grouping similar malware in

such a way that malware in the same group are more similar to each other than to malware

in other groups. In order to obtain an accurate clustering result, we need to calculate the

pairwise similarity between malware samples and then group similar malware samples into

the same cluster. The resulting clusters indicate that malware samples in the same group

are more closely related to each other than to malware samples in other groups.

It is challenging to perform clustering at a large scale due to performance bottleneck,

e.g., N(N−1)
2 times of pairwise similarity calculation where N is the number of malware

samples. As we discuss in Chapter 2, one way to address this issue is to reduce the required
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number of pairwise computations using locality sensitive hashing (LSH) [12] for probabilis-

tic dimension reduction. At a high level, LSH hashes input malware samples such that simi-

lar malware samples are mapped into the same hash value with a high probability. However,

LSH may have false positives, in which dissimilar malware samples are grouped in the same

bucket, and false negatives, in which similar malware samples are separated into different

buckets. For a more accurate clustering result, exact clustering can be performed within

each bucket that has a much smaller number of malware samples; thus, the total number of

pairwise comparisons will decrease. Another way to address this performance bottleneck

is to make pairwise comparison faster, which can be done by approximating similarity cal-

culation instead of reducing the number of pairwise computations. Minhashing [30] and

Winnowing [146] are well-known algorithms to generate compact “fingerprints” from large

documents while preserving the expected similarity of document pairs. These fingerprint-

ing algorithms provide fast approximate similarity computation for finding similar malware

groups quickly.

In Chapter 3, we propose a new fingerprinting algorithm using feature hashing [150,

159] with bit vectors for code resemblance detection. At a high level, feature hashing al-

lows us to reduce a high dimensional input space into a low dimensional feature space;

moreover, the use of compact bit vectors and bitwise operations significantly decreases

cache misses. Therefore, similarity comparisons can be performed an order of magnitude

faster than existing approaches, and we prove theoretically and empirically that our algo-

rithm well-approximates the true similarity. This fast and accurate similarity calculation

enables us to handle a large scale of input data efficiently. Furthermore, our algorithm has

only one-sided error, i.e., false positives, while minhashing and winnowing can have both

false positives and false negatives.

We implement BitShred [75], a system for fast similarity detection and clustering, based

on our fingerprinting algorithm. We demonstrate BitShred’s scalability and accuracy by

evaluating it with a large number of real-world malware data sets. Our approach makes

inter-malware comparisons in typical large-scale triage tasks, such as clustering and find-

ing nearest neighbors, an order of magnitude faster than existing methods while using less

memory. As a result, BitShred scales to current and future malware volumes where previ-

ous approaches do not. We have also developed a distributed version of BitShred on the

Hadoop [1] where double the hardware gives almost double the performance. In our exper-

iments, we demonstrate that BitShred can scale to clustering over 1.9 million malware per

day.
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1.4.1.2 Why Are They Related?

Given a set of malware samples, clustering only answers the question, “What malware are

related?” In other words, clustering produces a set of malware groups where each group

includes malware samples that are similar to each other in terms of similarity metrics, e.g.,

amount of shared code. For example, when malware x and malware y are grouped into the

same cluster, we know that x and y share a significant amount of code. From the clustering

results, we can tell which malware samples are similar and which malware samples are

dissimilar.

However, clustering provides no semantic meaning of grouping. For example, we only

know that malware x and malware y from the same cluster share a large amount of code.

We do not know which features caused x and y to be grouped. From the malware analysts’

perspective, it is valuable to understand what the common and distinguishing features are

between x and y.

In Chapter 4, we propose a new technique for semantic analysis on the clustering re-

sults to answer the question, “Why are they related?” Traditional clustering alone acts like a

blackbox, telling us only that malware samples grouped in the same cluster are similar. We

move one step beyond traditional clustering to identify common and distinguishing features

within the same group or among different groups. Common features can be main function-

alities of a specific group or shared functionalities among multiple groups, whereas distin-

guishing features can be clues to understand how variants are generated within a group.

We extend BitShred to perform semantic analysis on the clustering results—BitShred-

Semantic [75]. We utilize a co-clustering [35, 129] algorithm adapted to our fingerprinting

algorithm to automatically mine correlated features and malware groups. The identified

correlation enables analysts to reason about shared functionalities and unique operations

presented by a few variants.

1.4.1.3 How Are They Related?

Given a set of malware samples, clustering groups similar samples into the same group

and separates dissimilar samples into different groups. Co-clustering then identifies the

semantic meaning of the grouping results.

However, neither clustering nor co-clustering consider temporal code reuse, i.e., code

evolution for adapting to changing needs, bug fixes, and feature additions [99]. For ex-

ample, if malware y is derived from malware x, the similarity between x and y can be

high. Clustering will group both x and y into the same cluster, and co-clustering will report
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the main parts of the malware as common features and updated parts of the malware as

distinguishing features.

In Chapter 5, we propose new techniques to infer a temporal ordering of and deriva-

tive relationship between malware samples, which answers the question, “How are they re-

lated?” Software lineage—the evolutionary relationship among a set of software—provides

a potentially rich source of information for a number of security questions. From the pro-

gram analysts’ perspective, it is very useful to know which program is the earliest version

and how subsequent versions are derived in a cluster. For example, this information can

provide a timeline of a collection of programs for forensics and help malware analysts un-

derstand trends over time.

We implement ILINE to automatically infer software lineage from program binaries and

build IEVAL to scientifically measure the quality of a lineage inference algorithm [77]. We

evaluate ILINE on two types of lineage—straight line lineage and directed acyclic graph

(DAG) lineage—with large-scale real-world programs: 1,777 goodware spanning a com-

bined 110 years of development history and 114 malware with known lineage collected by

the DARPA Cyber Genome program [3]. Since there has been little study of software lin-

eage inference algorithms and proper metrics, we also evaluate seven metrics to assess the

diverse properties of lineage. Our results reveal that partial order mismatches and graph

arc edit distance often yield the most meaningful comparisons in our experiments. Our

evaluation shows that we can effectively identify software derivative relationships among

program binaries for which we have no prior information with over 84% mean accuracy for

goodware and over 72% mean accuracy for malware.

1.4.2 Software Vulnerability Tracking

Code duplication across different projects and different branches must be followed by co-

ordination when a bug is fixed in one location. However, it becomes more complex to track

all code changes, including bug fixes, as code and development teams grow in size. For ex-

ample, parallel branching development enables developers to maintain multiple customized

versions of software; however, this requires developers to ensure that bug fixes are in sync

across all branches.

In Chapter 6, we propose a new technique using Bloom filters [29] for software vul-

nerability tracking based on code containment detection. Bloom filters are designed to

efficiently perform a set membership test. At a high level, we use Bloom filters to ap-

proach a code containment problem (i.e., does program p contain code sequence c?) as a
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set membership problem (i.e., is code sequence c a member of program p?).

We implement ReDeBug [74], an architecture designed for unpatched code clone de-

tection. ReDeBug is designed to scale to entire OS distributions, to support many differ-

ent languages, and to guarantee zero false detections. Using ReDeBug, we examine over

2.1 billion lines of code from all packages in Debian Lenny/Squeeze, Ubuntu Maverick-

/Oneiric, all C/C++ projects in SourceForge, and the Linux kernel on a commodity desktop,

and identify 15,546 unpatched vulnerabilities in three hours. To the best of our knowledge,

this is the largest set of bugs ever reported in a single paper.

1.5 Contributions

We focus on developing scalable and accurate techniques for automatic code reuse detection

to examine a myriad of software for code security. This dissertation makes the following

high-level contributions:

• We propose new scalable techniques for code resemblance detection and code con-

tainment detection. Our approaches enable code reuse detection that is an order of

magnitude faster than existing techniques.

• We prove the correctness of our approximate code resemblance calculation theoreti-

cally and verify its accuracy empirically.

• We demonstrate the practical usages of code reuse detection in two security scenarios:

malware triage and software vulnerability tracking.
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Chapter 2

Background in Code Reuse Detection

Code reuse is not uncommon in software development. In an open source community, the

same code, e.g., library code, is often reused in multiple places. In order to understand the

current situation of code duplication, we performed a large-scale experiment to measure

the overall amount of copied code in OS distributions. We measured this at two different

granularities: the function level and the token (n-lines of source code) level.

First, for all C/C++ source files in the Debian Lenny code base, we roughly identified

functions using the following Perl regular expression:

/ ˆ \w+?\ s [ ˆ ; ] ∗ ? \ ( [ ˆ ; ] ∗ ? \ ) \ s ∗ ({ ( ? : [ ˆ { } ] + + | ( ? 1 ) ) ∗ } ) / xgsm

We realize that a regex may not be able to recognize all functions—that would require a

complete parser. However, for our evaluation this is sufficient to provide an estimate of

code duplication at the function level. We identified a total of 3,230,554 functions and

measured their pairwise similarity using the Jaccard index. As shown in Figure 2.1, most

of the function pairs had very low similarity (below 0.1), which is natural because different

packages would have dissimilar code for different functionality. However, surprisingly,

694,883,223 pairs of functions had more than 0.5 similarities, and 172,360,750 of them

were more than 90% similar. The result clearly shows a significant amount of code cloning,

and this suggests that code duplication will continue to be important and relevant in the

future.

Second, we calculated the total fraction of shared tokens in each file for the SourceForge

data set. As shown in Figure 2.2, about 30% of files were almost unique (0–10% shared

tokens). In contrast, more than 50% of files shared more than 90% of tokens with other

files, which shows that code cloning is common within the SourceForge community as
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Figure 2.2: Fraction of shared tokens

well. Note that 100% of shared tokens in a file does not necessarily mean it is copied from

another file as a whole. For example, this could also happen when a file consists of small

fractions from multiple files.

Code reuse is also common among malware authors, who reuse existing malware to

generate “new” variants [22, 69, 75].

2.1 What Features Do We Extract From Software?

2.1.1 Binary Abstraction

In many cases we may not have access to source code for the programs we want to analyze

for inferring software relationships. Malware authors are unlikely to provide source code in

order to aid malware analysis. It is also unlikely that proprietary software is provided with

its source code, since the code can be used to study and modify the program. Most people

typically do not have source code to the programs they run; however, they have an access

to binary, i.e., executable code. For example, malware authors only publish the executable

code. Commodity operating systems ship as binary code. Thus, it is often necessary to

abstract binary code for subsequent analysis steps.

There are three primary binary program analysis methods: syntax-based analysis, static

analysis, and dynamic analysis.

Syntax-Based Analysis. While syntax-based analysis may lack semantic understanding

of a program, previous work has shown its effectiveness in classifying unpacked programs.

Indeed, n-gram analysis is widely adopted in software similarity detection, e.g., [75, 84, 91,

146, 155]. The benefit of syntax-based analysis is that it is fast. This is because it does not

require disassembling.
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8b5dd485db750783c42c5b5e5dc383c42c5b5e5de9adf8ffff

(a) Byte sequence of program code

8b5dd485 5dd485db d485db75 85db7507 db750783

750783c4 0783c42c 83c42c5b c42c5b5e 2c5b5e5d

5b5e5dc3 5e5dc383 5dc383c4 c383c42c 5b5e5de9

5e5de91d 5de9adf8 e9adf8ff adf8ffff

(b) 4-grams

mov -0x2c(%ebp),%ebx;test %ebx,%ebx;jne 805e198

add $0x2c,%esp;pop %ebx;pop %esi;pop %ebp;ret

add $0x2c,%esp;pop %ebx;pop %esi;pop %ebp;jmp 805da50

(c) Disassembled instructions

mov mem,reg;test reg,reg;jne imm

add imm,reg;pop reg;pop reg;pop reg;ret

add imm,reg;pop reg;pop reg;pop reg;jmp imm

(d) Instructions mnemonics with operands type

mov mem,reg;test reg,reg;jcc imm

add imm,reg;pop reg;pop reg;pop reg;ret

add imm,reg;pop reg;pop reg;pop reg;jmp imm

(e) Normalized mnemonics with operands type

Figure 2.3: Example of feature extraction

• n-grams. An n-gram (or a shingle) is a consecutive subsequence of length n in a

sequence. In order to abstract binary code, n-grams are obtained by sliding a window

of n bytes over the extracted byte sequence of program code. For example, Figure 2.3b

shows 4-grams extracted from Figure 2.3a. The size of n should be large enough that the

probability of any given n-gram appearing in binary code is low. If n is too small, the

similarity between binary code may be overestimated.

• n-perms. An n-perm is a variant of an n-gram such that an n-perm represents every

possible permutation of n items in an n-gram. Since the order of n items in n-perms

does not affect the matching process, n-perms analysis is expected to be more tolerant of

reordering and to yield higher similarity scores. Karim et al. [84] proposed a malware

phylogeny generation technique using n-perms to match every possible permuted code.

Static Analysis. Existing work utilized semantically richer features by first disassembling

a binary. After reconstructing a control flow graph (CFG) of a program, each basic block

can be considered as a feature [53, 59]. In order to maximize the probability of identi-
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fying similar programs, previous work also normalized disassembly outputs by consider-

ing instruction mnemonics without operands [85, 87, 165] or instruction mnemonics with

only the types of each operand (such as memory, a register, or an immediate value) [145].

The limitation with static analysis comes from the difficulty of getting precise disassembly

outputs from obfuscated program binaries [103], e.g., inserting junk bytes at unreachable

locations. In order to disassemble such obfuscated binaries, Kruegel et al. [96] proposed

techniques that disassemble every address as the beginning of a new instruction, build a

supergraph of the real CFG by invoking a recursive disassembler at jump target candidates,

and prune invalid instructions.

• Instructions. Instruction sets can be obtained by disassembling the raw code in

a hexadecimal byte sequence. Instructions represent computational operations per-

formed by binary programs, and they include opcodes specifying types of operations

and operands specifying arguments.

• Basic blocks. A basic block is a sequence of instructions that has one entry point and

one exit point. In other words, no instruction within the basic block is a target of a

jump instruction, and only the last instruction can change the execution flow to other

basic blocks. Therefore, once the first instruction in a basic block is executed, the

rest of the instructions in the basic block are executed sequentially. Gheorghescu [59]

proposed a malware classification system based upon common basic blocks.

• Call graphs. A call graph represents the control flow between procedures in a di-

rected graph where a node indicates a procedure and an edge (fi, fj) indicates fi calls

fj . For example, Hu et al. [69] presented a function-call graph-based malware detec-

tion system where each malware is represented by its function-call graph and similar

malware is detected using graph isomorphism. Call graph matching is expected to be

less susceptible to deception by polymorphism than syntax-based matching.

• Control flow graphs. A control flow graph represents possible execution flows

within a procedure. It can be represented as a directed graph consisting of nodes in-

dicating basic blocks and edges (bi, bj) indicating a jump from bi to bj . For example,

Zynamics BinDiff [167] is a tool that uses a similarity metric based on isomorphism

between control flow graphs. Kruegel et al. [95] constructed a control flow graph

from a network stream and identified structural similarities to detect a polymorphic

worm.
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Dynamic Analysis. The main difference between dynamic analysis and syntax/static anal-

ysis is that dynamic analysis runs programs while monitoring program execution and changes

made to a system. Modern malware is often found in a packed binary format [63, 81, 107,

143], and it is often not easy to analyze such packed/obfuscated programs with static analy-

sis tools. In order to mitigate such difficulties, dynamic analysis has been proposed to moni-

tor program executions and changes made to a system at run time [16, 22, 55, 140, 149]. The

idea of dynamic analysis is to run a program to make it disclose its “behaviors”. Dynamic

analysis on malware is typically performed in controlled environments, such as virtual ma-

chines and isolated networks, to prevent infections from spreading to other machines [142].

Well-known malware analysis systems are CWSandbox [5, 161], Cuckoo sandbox [62],

TTAnalyze [23], and Anubis [71]. The limitation with dynamic analysis is that we can see

a specific execution path instead of entire execution paths depending on the context. At-

tackers can even blacklist public malware analysis systems by tracking the domains and IPs

of those systems1. This will make it more difficult to monitor malware behaviors.

Rossow et al. [142] discussed guidelines for designing malware experiments, includ-

ing the compilation of correct data sets, transparency of experimental setups, ensuring

realism of experiments, and safety or containment of experiments. Graziano et al. [61]

proposed techniques to model network traffic of malware execution, which can mimic the

network environment for the repeatability and the containment of malware execution. Kol-

bitsch et al. [90] presented an approach to mitigate stalling code problems, which are re-

peated “slow” operations causing significant slowdown on a monitoring system.

2.1.2 Source Code Representation

If we have access to source code, we can directly extract textual feature sets from source

code or parse source code to obtain higher-level representations.

String. A program is divided into strings, typically lines. Similarity between two code

fragments is then measured based on the amount of matched strings [17, 18, 48].

Token. A program is split into a sequence of tokens, e.g., variables, operators, keywords,

and so on. A token-based approach is more robust against simple modifications, such as

identifier renaming [80, 101].

1http://avtracker.info/
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Tree. A program is parsed to build a parse tree or abstract syntax tree (AST), a tree-

based representation of the tokens contained in the source code [21, 93, 109]. Similar code

fragments can be identified by comparing subtrees [57, 112, 163].

Program Dependency Graph (PDG). A program is represented as a graph where a node

denotes program statement/predicate and an edge means data/control dependence [56, 92,

94]. PDG-based similarity detection uses some variant of subgraph isomorphism to detect

similar code fragments.

2.2 How Do We Measure Distance Between Software?

Once we obtain feature sets from programs through binary analysis, we can measure dis-

tance/similarity between two sets using set distance metrics. There are several distance

metrics:

Let f1 and f2 denote the two feature sets extracted from p1 and p2, respectively. The

symmetric distance between f1 and f2 is defined to be:

SD(f1, f2) = |f1�f2|+ |f2�f1|, (2.1)

which denotes the cardinality of the set of features that are in f1 or f2 but not both. The

symmetric distance basically measures the number of unique features in p1 and p2.

The Dice coefficient distance is defined as:

DC(f1, f2) = 1− 2|f1 ∩ f2|
|f1|+ |f2|

. (2.2)

The Jaccard distance is defined as:

JD(f1, f2) = 1− |f1 ∩ f2|
|f1 ∪ f2|

. (2.3)

The Jaccard containment distance is defined as:

JC(f1, f2) = 1− |f1 ∩ f2|
min(|f1|, |f2|)

. (2.4)

In addition to these four distance measures, which are all symmetric, i.e., distance(f1, f2) =

distance(f2, f1), there is also an asymmetric distance measure, which can be used to cal-
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culate dissimilarity between two sets. We call it the weighted symmetric distance, denoted

WSD(f1, f2) = |f1�f2| × Cdel + |f2�f1| × Cadd (2.5)

where Cdel and Cadd denote a cost for deleting and adding a feature, respectively. Note that

WSD(f1, f2) = SD(f1, f2) when Cdel = Cadd = 1.

2.3 How Do We Group Similar Software?

Clustering is a task of grouping similar objects in such a way that objects in the same group

are more similar to each other than to objects in other groups. Clustering is an unsupervised

learning process where we do not have labeled data. Since we deal with unlabeled data,

we need ground truth with which we can compare our clustering outputs and measure the

accuracy of our clustering algorithm. There are two primary types of clustering algorithms:

hierarchical algorithms and partitioning algorithms.

Hierarchical Clustering. Hierarchical clustering or agglomerative clustering algorithms

start with each object in its own cluster. Then it combines the most similar pair of clusters

and updates the similarity between the newly combined cluster with other clusters. The

clustering stops when there remains only one cluster or when the similarity of remaining

clusters is below a predetermined threshold.

Since a cluster consists of multiple objects, there are different ways of determining

the similarity between clusters: single-linkage, complete-linkage, and average-linkage. In

single-linkage clustering, the similarity between two clusters is defined as the similarity

between their closest objects.

D(X,Y ) = max{D(x, y) : x ∈ X, y ∈ Y }

In complete-linkage clustering, the similarity between two clusters is defined as the simi-

larity between their furthest objects.

D(X,Y ) = min{D(x, y) : x ∈ X, y ∈ Y }

In average-linkage clustering, the similarity between two clusters is calculated as the aver-
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f1 f2 f3 f4 f5

s1 0 1 0 1 0
s2 1 1 0 0 0
s3 0 1 1 1 1
s4 1 0 0 0 1
s5 1 1 0 0 0

Figure 2.4: Sample/feature matrix (Fingerprinting reduces |F | and LSH reduces |S|.)

age similarity between objects from one cluster and objects from another cluster.

D(X,Y ) =
∑

(x,y)∈X×Y

D(x, y)

|X × Y |

Partitioning Clustering. Partitioning clustering constructs a partition of objects by as-

signing an object to the cluster which it best fits. A popular algorithm is k-means where

we predetermine a desired number of resulting clusters k. k-means starts with k randomly

selected cluster centroids. Then it assigns every object to the closest cluster centroid and

adjusts the k cluster centroids accordingly. It stops when none of objects are moved to

other clusters. The resulting clusters of the k-means algorithm are sensitive to the initial as-

signment of k cluster centroids. Therefore, k-means clustering typically runs with different

seeds.

2.4 Can We Make Clustering Faster?

Bottleneck in Clustering As we discussed in §2.3, k-means algorithm requires a desired

number of clusters k. However, when we cluster malware, it is not straightforward to

determine the resulting number of clusters at the beginning. For this reason, hierarchical

clustering is widely used for malware clustering [22, 75, 132].

Calculating the similarity between two malware samples is typically much slower than

comparing two similarity values for sorting in hierarchical clustering algorithms. The main

performance bottleneck in clustering is n(n−1)
2 comparisons. Suppose that we have a sam-

ple/feature matrix where a row represents a sample and a column represents a feature, as

shown in Figure 2.4. In order to make clustering faster, we can choose one of two approxi-

mation methods.

First, if we can reduce the number of columns (features), we can speed up clustering
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by having faster similarity calculation. Fingerprinting or feature dimension reduction al-

gorithms, e.g., minhashing [30] and Winnowing [146], construct a compact representation

of a sample. With smaller-sized signatures, similarity calculation can be performed more

quickly.

Second, if we can reduce the number of rows (samples), we can speed up clustering

by decreasing the required number of comparisons. Similar objects can be mapped to the

same bucket with high probability by performing locality-sensitive hashing (LSH) [12].

Then exact clustering can be performed with a much smaller number of objects within each

bucket. Bayer et al. [22] proposed the use of LSH for scalable malware clustering.

2.4.1 Fingerprinting Methods

Typically the feature sets extracted from binary code are large sets. For example, in the case

of n-gram analysis with n = 4 bytes, there are 232 = 4, 294, 967, 296 possible 4-grams.

For more efficient set similarity detection, we can generate smaller-sized “signatures” by

“fingerprinting” large feature sets. Such signatures allow us to more quickly perform simi-

larity detection between sets by estimating the true similarity. There is a trade-off between

efficiency and accuracy, i.e., the larger the signatures, the more accurate the similarity de-

tection.

Minhashing. One popular approach is minhashing [30]. Suppose we have 4 programs

{p0, p1, p2, p3} and each program has features as described in Table 2.1. We first permute

columns of the matrix, then the minhash of each program is the order of the first column

that has a 1. For example, with the permutation perm1, the minhash of p0 is 1. Similarly,

h1(p1) = 0, h1(p2) = 1, and h1(p3) = 0.

In order to construct a minhash signature, we select n number of random permutations

of the columns. In Table 2.4, we have two random permutations. From these permutations,

we compute the minhash signature matrix. The matrix initially consists of all ∞’s. In

Table 2.2, h1(p0) = 1, h1(p1) = 0, h1(p2) = 1, and h1(p3) = 0, and we can fill the first

column of the signature matrix using these values. In Table 2.3, h2(p0) = 1, h2(p1) = 3,

h2(p2) = 1, and h2(p3) = 0, and we can fill the second column of the signature matrix

accordingly. Then we have the minhash signature matrix, as shown in Table 2.4.

The signature matrix typically has fewer columns than the original matrix. We can

estimate the Jaccard similarity from the signature matrix because the probability that the

minhash values for two sets are the same as the Jaccard similarity of two sets. Given two

sets p1 and p2, there are three types of columns: 1) T1 having 1 in both columns, 2) T2
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f0 f1 f2 f3 f4

p0 1 0 0 0 1
p1 0 1 0 0 0
p2 1 0 1 0 1
p3 0 1 1 1 0

Table 2.1: Matrix representing feature sets

f1 f4 f3 f0 f2

p0 0 1 0 1 0
p1 1 0 0 0 0
p2 0 1 0 1 1
p3 1 0 1 0 1

Table 2.2: A permutation of columns (h1)

f3 f4 f2 f1 f0

p0 0 1 0 0 1
p1 0 0 0 1 0
p2 0 1 1 0 1
p3 1 0 1 1 0

Table 2.3: A permutation of columns (h2)

h1 h2

p0 1 1
p1 0 3
p2 1 1
p3 0 0

Table 2.4: Minhash signature

having 1 in one column and 0 in another column, and 3) T3 having 0 in both columns. The

Jaccard similarity can be calculated as |T1|
|T1|+|T2| . |T1| is the size of p1 ∩ p2 and |T1| + |T2|

is the size of p1 ∪ p2. The probability that we first meet T1 column prior to T2 column is
|T1|

|T1|+|T2| , which is the probability that h(p1) = h(p2). If we first meet T2 column before

T1, then h(p1) 6= h(p2).

Therefore, using this compressed-sized signature matrix, we can estimate the Jaccard

similarity between sets. For example, since p0 and p1 have no common minhash values

in the signature matrix, we can estimate that the similarity between p0 and p1 is 0. When

we compute the true Jaccard similarity from the original matrix, the similarity of p0 and

p1 is 0 (correct). The estimated similarity between p0 and p2 is 2/2=1 from the signature

matrix while the true Jaccard similarity is 2/3 (overestimated). The similarity of p2 and

p3 is estimated to be 0 from the signature matrix while the true Jaccard similarity is 1/5

(underestimated). In order to acquire close-to-true Jaccard similarity, a large number of

minhash values are required.

Winnowing. Schleimer et al. [146] presented a new document fingerprinting algorithm,

Winnowing, to detect local matches. Winnowing has previously been widely used in the

MOSS closed-source plagiarism detection tool [6].

Winnowing first divides a document into n-grams. All n-grams are hashed, and the

selected subset of the hashes becomes the fingerprint to represent the corresponding docu-

ment. Winnowing guarantees that any match of longer than or equal to t is detected, and
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32 12 55 7 45 25 7 65 19 41 53 12
(a) Hashes of the 5-grams

(32 12 55 7) (12 55 7 45) (55 7 45 25) (7 45 25 7) (45 25 7 65) (25 7 65 19)
(7 65 19 41) (65 19 41 53) (19 41 53 12)
(b) Windows of hashes when w = 4

7 7 19 12
(c) Fingerprints selected by Winnowing

Figure 2.5: Document fingerprinting using Winnowing

any match of shorter than n is not detected. A user determines two parameters t and n ≤ t.
Let w = t − n + 1 be a window size, and h1, h2, ..., hk the sequence of hashes

from the document. Winnowing selects the minimum hash value in every window of

hi, hi+1, ..., hi+w−1. If there is more than one minimum hash value in a window, Winnow-

ing selects the rightmost hash value. These selected hash sequences become the fingerprints

of the document. Figure 2.5 shows how winnowing selects hashes when w = 4.

The expected fingerprints density of winnowing is d = 2
w+1 . This equation tells us

that there is a trade-off between w and d or between t and the size of fingerprints. In other

words, small size of fingerprints can detect only a long match.

2.4.2 Feature Hashing

In this thesis, we present a new efficient fingerprinting algorithm which allows us to re-

duce a high dimensional input space into a low dimensional feature space and utilizes a

cache-friendly data structure and operations (§3.1). Our fingerprinting algorithm is based

on feature hashing, which is an effective strategy for dimensionality reduction and practical

nonparametric estimation [150, 159]. We employ feature hashing to increase scalability in

malware comparison and to enable data mining on co-occurring features.

Our use of feature hashing was motivated by the observation that we observed less than

1% of the total features from 1,000 Windows XP binary files when n=4 bytes, as shown

in Figure 2.6. We utilize feature hashing as an effective way of encoding features as a bit

vector. Most existing implementations of bit vector Jaccard, e.g., the one found in python,

assume that the feature space is completely encoded using index variables where feature

1 corresponds to bit 1, feature 2 to bit 2, feature 3 to bit 3, and so on. This scheme is

impractical when the feature space is large, such as in our case where such an encoding
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Figure 2.6: Fraction of unique, observed, and unobserved features

would result in a per-program data structure that is gigabytes in size.

Applications. Attenberg et al. [15] proposed a collaborative spam filtering system using

a hashing trick to build a personalized global classifier. Hanna et al. [65] built a system

to calculate similarity between Android applications based on feature hashing for identi-

fying known buggy code, malware, and pirated applications. Asiaee T. et al. [14] used a

hashing trick for Twitter sentiment analysis to compress a sparse feature vector into a lower-

dimensional space to gain computational efficiency without significant loss of classification

accuracy. Response prediction using collaborative filtering [113] and collaborative compet-

itive filtering [164] utilized feature hashing to effectively handle large-scale sparse data for

optimization.

2.4.3 Locality-Sensitive Hashing (LSH)

The main idea in LSH is to define a hash function h such that h(s1) = h(s2) if the two

programs p1 and p2 are similar [12]. The hash is run over all programs, and only those

with unique hash values are compared. LSH is complementary to feature hashing; while

LSH reduces the number of items, feature hashing reduces the number of features. Despite

this complementarity, our evaluation shows that the exclusive use of feature hashing out-

performs the exclusive use of LSH by a factor of 2 to 1. Previous work has shown that this

bears on theoretical analysis as well [150].

The size of feature space (2128 ≈ 1038 when n=16 bytes) is typically much larger than

21



the number of malware samples (106 per day according to [154]) in malware analysis. Thus

reducing feature space is preferable to reducing sample size. While in our evaluation we

focus on the effects of each algorithm independently, both feature hashing and locality-

sensitive hashing could be combined in a real system.

2.5 How Do We Semantically Group Software?

Clustering alone acts like a blackbox, telling us only that programs are grouped in the

same cluster because they are similar. From the analysts’ perspectives, it is very useful

to understand why programs are grouped into the same cluster or separated into different

clusters.

2.5.1 Co-clustering

Co-clustering [35, 129] (aka bi-clustering) goes one step further and tells us why programs

are similar by simultaneously clustering features as well as programs. For example, co-

clustering allows us to group two programs and to identify the feature sets that explain why

they are similar (e.g., a significant amount of shared code) and why they are different (e.g.,

contacting different command and control servers).

Co-clustering provides more general cross-program and cross-feature correlation than

the above approaches. Note also that co-clustering allows for a substantially richer analysis

than the nearest-neighbor algorithms. Nearest-neighbor algorithms typically only provide

a set of “neighboring” programs that is similar to an input sample (and may provide some

information on the amount of structural similarity between the “neighboring” programs).

Co-clustering results, on the other hand, provide information on the structural similarity

across all programs analyzed, i.e., they illustrate which groups of features co-occur with

which groups of programs for the entire data set.

Formally, n programs {s0, s1, ..., sn} that have m features {f0, f1, ..., fm} can be de-

scribed as n × m matrix M where each row represents a program and each column rep-

resents a specific feature. Let S and F be discrete random variables that take values from

{s0, s1, ..., sn} and {f0, f1, ..., fm}, respectively; then n × m matrix can be described as

the joint probability distribution between S and F , p(S, F ). Given the desired number

of disjointed row groups k and the desired number of disjointed column groups l, co-

clustering finds mapping Ŝ : {s0, s1, ..., sn} → {ŝ0, ŝ1, ..., ŝk} and F̂ : {f0, f1, ..., fm} →
{f̂0, f̂1, ..., f̂l}
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Cost Functions & Distributed Approach. The goal of co-clustering is to find the “best”

row/column group assignment such that a cost function becomes minimized. Since finding

a globally optimal co-clustering is NP-hard, algorithms typically perform a local optimal

search [46].

Dhillon et al. proposed information-theoretic co-clustering by considering co-clustering

as a problem of maximizing the mutual information between the clustered random variables—

row-clusters and column-clusters [46]. Ramanathan et al. proposed a parallel information-

theoretic co-clustering utilizing framework for rapid implementation of data mining engines

(FREERIDE) [137]. Huang et al. presented a scalable ensemble information-theoretic co-

clustering algorithm to improve the accuracy of co-clustering results [70]. They first gener-

ate multiple different co-clusters using a MapReduce framework and then combine them to

produce a final co-cluster with an ensemble clustering method. In information-theoretic co-

clustering, an optimal co-clustering minimizes I(S;F ) − I(Ŝ; F̂ ) where I(S;F ) denotes

the mutual information. For a fixed distribution p, I(S;F ) is fixed so that minimizing the

loss in mutual information is maximizing I(Ŝ; F̂ ). The loss in mutual information can be

calculated as DKL(p(S, F )||q(S, F )) where DKL(·||·) denotes the Kullback-Leibler diver-

gence (aka relative entropy or information gain) and q(s, f) = p(ŝ, f̂)p(s|ŝ)p(f |f̂).

Chakrabarti et al. proposed a cross-association algorithm where co-clustering finds ho-

mogeneous rectangular regions by minimizing code description length [35]. Papadimitriou

and Sun designed a distributed co-clustering algorithm based on the cross-association algo-

rithm using a MapReduce framework [129]. In a cross-association algorithm, the total code

length is defined as the sum of log∗k + log∗l (number of desired groups),
∑k−1

i=1 dlogāie+∑l−1
j=1dlogb̄je (number of rows/columns in each row/column group),

∑k
i=1

∑l
j=1dlog(aibj+

1)e (number of ones in the matrix), and
∑k

i=1

∑l
j=1C(Di,j) (number of bits to encode).

The total number of bits sent for each cross-association is calculated asC(D) =
∑1

i=0 ni(D)

log( n(D)
ni(D)) where n0(D) denotes the number of nonzero entries, n1(D) denotes the number

of zero entries, and n(D) = n0(D)+n1(D) inD. In addition, āi = (
∑k

t=i at)−k+ i, 1 ≤
i ≤ k − 1 and b̄j = (

∑l
t=j bt) − l + j, 1 ≤ j ≤ l − 1 where ai and bj denote dimensions

of Di,j .

Cho et al. defined co-clustering as minimizing the total squared residue which is the

sum of squared distance between each point and the mean (or row mean and column mean)

of a co-cluster [38]. Zhou and Khokhar proposed a parallel co-clustering algorithm based

upon a sum-squared distance using MPI [166]. Let mij be the (i, j)-th element of matrix

M . Two types of residues of an element mij are defined by co-cluster index I and J :

hij = mij − mIJ and hij = mij − miJ − mIj + mIJ where mIJ =
∑

i∈I,j∈J mij

|I|·|J | is

23



the mean of all the entries in the co-cluster, miJ =
∑

j∈J mij

|J | is the mean of the entries

in row i of the co-cluster, and mIj =
∑

i∈I mij

|I| is the mean of the entries in column j

of the co-cluster. Then the goal of co-clustering is to minimize the total squared residue

||H||2 =
∑

I,J ||HIJ ||2 =
∑

IJ

∑
i∈I,j∈J h

2
ij where HIJ means the residue of the co-

cluster determined by I and J . In other words, to goal is to minimize the Frobenius norm

of the residue matrix H .

Angiulli et al. proposed a greedy search approach to co-clustering where the quality of

homogeneity is measured based on squared rows and columns means together with the size

of the co-cluster [13]. The quality of each co-cluster indexed by I and J is calculated as

Q(I, J) =
∑

i∈I(miJ )
2+

∑
j∈J (mIj)

2

|I|+|J | ×
∑

i∈I,j∈J mij .

Applications. Co-clustering has been studied in many applications, e.g., text mining to

find similar documents with related word clusters [13, 46, 70], graph mining to summarize

the underlying structure of object associations [35], analysis of gene expression data to

capture the trends of genes over a subset of experimental conditions [38], and collaborative

filtering to predict a user’s preferences based on other users’ preferences in recommendation

systems [58].

We can benefit from co-clustering even if we want to cluster one dimension of a matrix

with sparse and high-dimensional data [46]. For example, Dhillon et al. demonstrate that

co-clustering is more effective than one-sided clustering even if we want cluster documents

with a word-document matrix [46]. This is because co-clustering implicitly performs di-

mensionality reduction while using word clusters instead of individual words as underlying

features. A more detailed discussion on co-clustering can be found in survey [106].

2.6 How Do We Detect Temporal Code Reuse?

Software evolves to adapt to changing needs, bug fixes, and feature additions [99]. As such,

software lineage—the evolutionary relationship among a set of software—can be a rich

source of information for a number of security questions. Indeed, the literature is replete

with analyses of known or manually recovered software lineages. For example, software

engineering researchers have analyzed the histories of open source projects and the Linux

kernel to understand software evolution [60, 162] as well as its effect on vulnerabilities in

Firefox [108]. The security community has also studied malware evolution based on the ob-

servation that the majority of newly detected malware are tweaked variants of well-known

malware [22, 69, 75]. With over 1.1 million malware appearing daily [154], researchers
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have exploited such evolutionary relationships to identify new malware families [87, 105],

create models of provenance and lineage [49], and generate phylogeny models based upon

the notion of code similarity [84].

The wealth of existing research demonstrating the utility of software lineage immedi-

ately raises the question, “Can we infer software lineage automatically?” We foresee a

large number of security-related applications once this becomes feasible. In forensics, lin-

eage can help determine software provenance. For example, if we know that a closed-source

program pA is written by author X and another program pB is derived from pA, then we

may deduce that the author of pB is likely to be related toX . In malware triage [22, 69, 75],

lineage can help malware analysts understand trends over time and make informed deci-

sions about which malware to analyze first. This is particularly important since the order

in which the variants of a malware are captured does not necessarily mirror their evolution.

In software security, lineage can help track vulnerabilities in software for which we do not

have source code. For example, if we know that a vulnerability exists in an earlier version

of an application, then it may also exist in applications that are derived from the earlier

version. Such logic has been fruitfully applied at the source level in our previous work [74].

Indeed, these and related applications are important enough that the US Defense Advanced

Research Projects Agency (DARPA) is funding a $43-million Cyber Genome program [3]

to study them.

We have established that the need for the automatic and accurate inference of software

lineage is an important open problem. Now let us look at how to formalize it. Software

lineage inference is the task of inferring a temporal ordering and ancestor-descendant rela-

tionships among programs. We model software lineage by a lineage graph:

Definition 2.6.1. A lineage graph G = (N,A) is a directed acyclic graph (DAG) compris-

ing a set of nodes N and a set of arcs A. A node n ∈ N represents a program, and an arc

(x, y) ∈ A denotes that program y is a derivative of program x. We say that x is a parent of

y and y is a child of x.

A root is a node that has no incoming arc and a leaf is a node that has no outgoing arc.

The set of ancestors of a node n is the set of nodes that can reach n. Note that n is an

ancestor of itself. The set of common ancestors of x and y is the intersection of the two sets

of ancestors. The set of lowest common ancestors (LCAs) of x and y is the set of common

ancestors of x and y that are not ancestors of other common ancestors of x and y [26].

Notice that in a tree each pair of nodes must have a unique LCA, but in a DAG some pairs

of nodes can have multiple LCAs.
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2.7 Applications

2.7.1 Malware Classification & Clustering

Software similarity detection can be used to identify copied or related code among malware

samples. Once copied code (and unique code) is identified, there are many subsequent uses,

e.g., using the code as feature vectors in machine learning algorithms that recognize new

malware [91]. Similarly, software similarity detection can be utilized to cluster malware:

if two malware samples contain shared code, they are likely to be part of the same overall

family [84]. We can analyze malware samples to determine how much malware is really

unique.

There has been extensive research that proposes the need for large-scale malware analy-

sis and triage, e.g., [22, 69, 84, 131, 140]. The main difference in our work is scalability and

co-clustering to automatically identify semantic features. Our work builds on per-sample

analysis and feature extraction, which is an extremely active area of research.

Syntactic Feature-based Analysis. Schultz et al. [147] proposed a data mining method

to detect malware based on PE header information such as DLLs, strings, and byte se-

quences. Abou-Assaleh et al. [11] applied n-gram analysis to detect malware. Kolter and

Maloof [91] suggested a classification method based upon 4-grams. Karim et al. [84] pro-

posed a malware phylogeny generation technique using n-perms to match every possible

permuted code. Wicherski [160] proposed peHash to calculate a per-binary specific hash

value based on structural information of binary and to cluster polymorphic malware.

Static Feature-based Analysis. Zynamics BinDiff tool [167] and Hu et al. [69] proposed

malware similarity methods that are based upon isomorphism between control flow and

function call graphs. Although graph-based isomorphism is expensive, it is less susceptible

to being fooled by polymorphism [69]. Ye et al. [165] designed a system to cluster malware

based on instruction frequencies and function-level instruction sequences. They utilized

a cluster ensemble to aggregate hybrid hierarchical clustering (hierarchical clustering and

k-medoids clustering at each iteration) on instruction frequencies and weighted k-medoids

clustering on instruction sequences. Neugschwandtner et al. [127] proposed a malware

sample selection method to maximize information gain when the sample is analyzed. Their

method is based on static features, such as peHash [160], static cluster from [72], PE header

information, Antivirus labels, and sample submitter information.
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Dynamic Feature-based Analysis. Bailey et al. [16] proposed a behavior-based malware

classification and clustering technique. They define the behavior of malware in terms of sys-

tem state changes, i.e., abstraction of system calls, and use normalized compress distance

as a distance metric. Rieck et al. [138–140] proposed a system for malware clustering and

classification based on behaviors observed by CWSandbox [161]. They encoded observed

behaviors into malware instruction sets, extracted n-grams over the encoded instruction

sets, and embedded the n-grams into a vector space. Prototype-based and incremental clus-

tering were used for scalability. Bayer et al. [22] performed large-scale malware clustering

based on dynamic behavior profiles, including system calls and network activities [71] and

LSH.

Model-based Analysis. Christodorescu et al. [39] proposed a malware detection algo-

rithm based on a formal semantic-aware template to detect variants of malware by miti-

gating common obfuscations. Fredrikson et al. [55] proposed a technique to extract dis-

criminative specifications to describe unique properties for a class of malware based upon

dynamic behavior analysis. Lanzi et al. [98] proposed an anomaly behavior-based malware

detection system based on a system-centric approach to model interactions of malware with

persistent OS resources, such as file systems and registries.

Reputation-based Analysis. Chau et al. [37] proposed a technique to detect malware

based on file reputation using the belief propagation algorithm. File reputation is related to

the prevalence of the file and the reputation of hosting machines. Rajab et al. [136] designed

a reputation-based malware detection approach integrated into a web browser where the

reputation of a domain or signer is determined by its history of maliciousness for a certain

period.

Structure-based Analysis. Perdisci et al. [132] explored clustering malware based on

similar network behavior interacting with the Web. They utilized both statistical similarity

and structural similarity of HTTP traffic. Šrndić and Laskov [152] proposed a static method

to detect malicious PDF files based on differences in the structural properties of malicious

and benign PDF files.

Textual Feature-based Analysis. Rahman et al. [135] designed a system to detect fake,

annoying, and possibly damaging posts on social media (a.k.a. socware) using a Machine
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Learning classifier based on spam keyword scores, message similarity, number of wall/news

feed posts, and number of likes/comments for a URL embedded in a post.

Clustering Quality. Li et al. [100] pointed out difficulties in evaluating malware cluster-

ing results. Along with [142], they argued that balanced and carefully designed data sets

are important for validating clustering accuracy. Perdisci and U [133] proposed a method to

assess the quality of malware clustering results by building a more representative reference

set. In order to handle the inconsistencies among different antivirus (AV) labels, they built

an AV label graph, an undirected weighted graph where a node denotes an AV label of an

AV scanner, an edge denotes two nodes (AV labels) assigned to at least one sample, and a

weight is calculated by the frequency of co-occurrences.

Packing and Obfuscation. In order to cope with packed malware, unpacking has been

actively studied [47, 63, 81, 107, 143, 149]. For example, Perdisci et al. [131] presented

a classification method between packed and non-packed PE files exploiting PE header in-

formation. Portable Executable Identifier (PEiD) [79] is used to detect packed binary code.

PEiD uses a signature database to detect packing and encrypting methods so that a sig-

nature database has to be updated to identify new packing methods. After PEiD identi-

fies the packing methods, this information can be used to unpack binary code. Royal et

al. [143] presented a behavior-based hidden-code extraction technique from malware sam-

ples, and implemented a tool called PolyUnpack. PolyUnpack takes a malware sample as

an input and performs static analysis to generate a static code model for each sample; then

PolyUnpack carries out dynamic analysis while running a malware sample in an isolated

environment. By comparing the runtime behavior of a malware sample with its static code

model, PolyUnpack is able to extract hidden code of a malware sample. Jacob et al. [72]

proposed a method to identify similar malware samples that might be packed. Accord-

ing to Jacob et al., current packers typically employ compression and weak encryption

schemes so that certain properties of binary files are preserved even after packing is ap-

plied. They utilized PE structural characteristics, code signal, and bigram distribution over

raw byte sequences. Coogan et al. [42] proposed a method to approximate original code

from virtualization-obfuscated code. From execution traces, they identify relevant instruc-

tions that affect system calls, e.g., values of arguments and conditional control flow.
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2.7.2 Code Clone & Clone-related Bug Detection

Code similarity detection has been utilized by many researchers to detect code clones. Well-

known examples include CCFinder [80], CP-Miner [101], Deckard [78], and DejaVu [57].

This line of research uses a variety of matching heuristics based on high-level code rep-

resentations such as CFGs and parse trees. For example, CCFinder [80] generates a to-

ken sequence from a program using a lexer and transforms the token sequence based on

language-dependent rules. A suffix-tree-based matching algorithm is then used to deter-

mine similar code. CP-Miner [101] detects copy-paste related bugs which can be caused

by inconsistent modification on copy-pasted code fragments. It parses a program, hashes

its tokens into numeric values, and then runs the frequent subsequence mining algorithm to

detect clone-related bugs. CP-Miner found 49 bugs in Linux that were due to developers

not fixing copied buggy code [101]. Deckard [78] and DejaVu [57] both build parse trees

and represent structural information of a parse tree as a vector, then cluster the vectors with

respect to the Euclidean distance. An advanced heuristic matching, however, can suffer

from a higher false detection rate. For example, 73% of bug reports from CP-Miner and

37% of bug reports from DejaVu were false code clones. Furthermore, implementing good

parsers is a difficult problem with which even professional software assurance companies

struggle [28]. In order to process a large-scale of data sets, DejaVu utilized a cluster with

5 nodes to examine 75 million lines of commercial code. Livieri et al. [104] designed a

distributed CCFinder where they analyzed FreeBSD spanning 400 million lines of code in

two days using 80 workstations.

Programmers do not often recognize some duplicated code when performing modifica-

tions. Propagating modifications is necessary in order to synchronize changes in all of the

clones [97]. Software similarity detection can be used to identify code similar to a known

buggy version. Pham et al. [134] studied vulnerability reports and categorized three types

of recurring problems: reusing implementation code, sharing common APIs/libraries, and

reusing algorithm or design. They proposed a method to extract object usage models show-

ing a set of related entities from vulnerable code to find matches. Nguyen et al. [128] con-

ducted an empirical study where seven experienced programmers inspected several thou-

sands of fixing changes and 17–45% of total fixing changes were recurring. They proposed

a method to identify code peers with similar object interactions and to recommend fixes to

other peers. For example, when a patch is released, programmers can search for the same

buggy code in entire OS distributions, such as Debian Squeeze consisting of 348 million

lines of non-empty and non-comment code. Code Assurance (aka Patch Miner) [130] is a
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commercial tool to find recurring bugs.

MOSS [146] is a well-known syntactic similarity detection tool using n-grams. MOSS

is based on an algorithm called Winnowing [146], a fuzzy hashing technique that selects a

subset of n-grams to find similar code. SYDIT [112] is a program transformation tool that

characterizes edits as AST node modifications and generates context-aware edit scripts from

sample edits. It was tested on a data set of 56 pairs of sample edits from open source projects

in Java, and perfectly mimicked developer edits on 70% of the targets. Comprehensive

comparisons of code clone detection tools are presented at [25], and the pros and cons of

code clones are discussed at [82].

2.7.3 Software Lineage Inference

Existing work has primarily focused on analyzing known lineage, not inferring lineage.

For example, Belady and Lehman [24] studied the software evolution of IBM OS/360,

and Lehman and Ramil [99] formulated eight laws describing the software evolution pro-

cess: 1) continuing change, 2) increasing complexity, 3) self-regulation, 4) conservation of

organizational stability, 5) conservation of familiarity, 6) continuing growth, 7) declining

quality, and 8) feedback system. Xie et al. [162] analyzed histories of open source projects

including Samba, Bind 9, OpenSSH, SQLite, Vsftpd, Sendmail, and Quagga in order to

verify Lehman’s laws of software evolution and confirmed that continuing change, increas-

ing complexity, self-regulation, and continuing growth are still valid in today’s open source

projects. However, the other four laws were not confirmed because of either lack of data

or imprecise definitions. Godfrey and Tu [60] investigated the Linux kernel to understand

a software evolution process in open source development systems. They found that Linux

has grown at a super-linear rate despite its huge size and its development model, which

was possible because most of the code can be developed independently, e.g., device drivers.

Kim et al. [89] studied the history of code clones to evaluate the effectiveness of refactoring

on software improvement with respect to clones. Shihab et al. [151] evaluated the effects of

branching in software development on software quality with Windows Vista and Windows

7.

Massacci et al. [108] studied the effects of software evolution, such as patching and

releasing new versions, on vulnerabilities in six major versions of Firefox. They found that

inherited vulnerabilities from the previous versions constituted almost half of the existing

vulnerabilities in Firefox due to a large fraction of code reuse. This indicates that software

evolution may not be able to resolve all known vulnerabilities. Davies et al. [43] proposed
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a signature-based matching of a binary against a known library repository to identify li-

brary version information, which can potentially be used for security vulnerabilities scans.

Edwards and Chen [51] statistically verified that an increase of security issues identified

by a source code analyzer may indicate an increase of exploitable bugs while examining

histories of Sendmail, Postfix, Apache httpd, and OpenSSL.

Gupta et al. [64] studied malware metadata including text descriptions and dates col-

lected by an anti-virus vendor to describe evolutionary relationships among malware. Du-

mitras and Neamtiu [49] studied malware evolution to find new variants of well-known

malware. Karim et al. [84] generated phylogeny models based on code similarity to un-

derstand how new malware were related to previously seen malware. Khoo and Lio [87]

investigated FakeAV-DO and Skyhoo malware families using a phylogenetic method to un-

derstand evolution and to identify families. Ma et al. [105] studied the diversity of exploits

used by notorious worms to identify families by constructing dendrograms. Ma et al. also

found non-trivial code sharing among different families. Lindorfer et al. [102] investi-

gated malware evolution by comparing subsequent versions of malware samples that were

collected by exploiting embedded auto-update functionality. By measuring the number of

added/deleted/shared basic blocks between behavioral components from two versions, they

observed incremental updates that reused most of the code. In addition, they found a corre-

lation between the release of new versions and detection by a larger number of AV engines.

Hayes et al. [67] pointed out the necessity of systematic evaluation in malware phy-

logeny systems and proposed two models to artificially generate reference sets of samples:

a mutation-based model and a feature accretion-based model. They generated 19 sets with

15 samples from Agobot. The accuracy is measured based on nodal distance, which is the

sum of the differences in path lengths between two graphs.
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Part I

Code Reuse Detection at the Binary
Code Level
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Chapter 3

Malware Triage via Code
Resemblance Detection

The volume of new malware, fueled by easy-to-use malware morphing engines, is growing

at an exponential pace [154]. In 2011 Symantec received over 403 million unique mal-

ware samples, which means over 1.1 million unique variants of malware are created every

day [154]. The sheer volume of malware means we need automatic methods for large-scale

malware triage techniques and systems.

At a high level, triage has two steps. First, per-sample malware analysis is run on each

sample to extract a set of features. Second, malware are compared in a pairwise fashion to

determine similarity, e.g., by using the Jaccard distance. Once we determine which malware

are similar, and what similarities and differences they have relative to known malware cases,

we can use triage to make informed decisions. For example, triage may be used to perform

further in-depth analysis on one representative malware sample per family in cases where

it would be cost-prohibitive to do analysis on the entire data set.

In this section, we present BitShred [75], a system for large-scale code similarity anal-

ysis and clustering. BitShred’s key feature is its agnosticism to the particular per-software

analysis routine, even when the extracted feature set has a very large feature space. This

property is useful in malware analysis because malware authors and defenders are caught

in a cyclic battle in which defenders invent ever-more advanced and accurate per-malware

analyses for feature extraction, which are then defeated by new malware obfuscation algo-

rithms. This cyclic battle underscores the need for malware triage techniques that allow us

to plug in the latest or most appropriate analysis for feature extraction. We empirically show

that BitShred meets the desired requirements by demonstrating BitShred on two previously
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proposed per-sample analyses: dynamic behavior analysis from Bayer et al. [22] where the

feature space is 217, and static code reuse detection as proposed in [11, 91, 158] where the

feature space is 2128.

The main issues for handling large volumes of malware are (a) efficiently representing

malware features (so we can fit more data in main memory without paging), (b) comparing

feature sets between malware, and (c) determining which features are correlated for mal-

ware groups. For a sense of scale, consider that currently over 1.1 million new malware are

observed per day, which require about 605 billion comparisons to find families using hierar-

chical clustering. If we perform n-item analysis when n = 16 bytes, an exact representation

of the features would require 2128 ( 295 gigabytes) per sample. We could not perform all

605 billion comparisons on previous data structures in 24 hours on a single CPU.

The central idea in BitShred is to use feature hashing [150, 159]. Feature hashing al-

lows for dramatic dimensionality reduction, so the hashed representation takes less room

in memory, and is also L1/L2 cache efficient. However, feature hashing introduces colli-

sions in the reduced feature space. For example, if we use a hash function that compresses

the 2128 feature space down to 218, there will be an enormous number of collisions in the

feature space. The surprising thing with feature hashing is that we need just a single hash

function for the dimensionality reduction of the feature space. BitShred’s advantages—the

requirement of a single hash function and the dimensionality reduction—have immediate

performance implications. Our result is backed by theory and experimentation which show

that pairwise comparison and algorithms built on top like hierarchical clustering will be

close to exact.

Contributions. Our main contribution is a system for performing the triage tasks de-

scribed above that scales to data sets which are orders of magnitude larger than what exist-

ing approaches are able to handle. We present a theoretical analysis showing that feature

hashing with the Jaccard offers near optimal results, and build a real system called Bit-

Shred that is independent of the particular per-malware analysis engine and works even for

high-dimensional feature sets. We extensively evaluate BitShred’s scalability, speed, and

accuracy using two different per-sample analyses: code similarity and dynamic behaviors.

Our performance evaluation shows that BitShred can cluster over 116,000 malware per day

on a single node, and over 1.9 million per day on a Hadoop cluster where we develop

an optimal schedule that minimizes communication overhead and provides uniform node

work.
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3.1 Fingerprinting for Resemblance Detection

We focus on any analysis that outputs a set of features that are Boolean, or that can be en-

coded as Boolean variables. For example, in code reuse detection the features are the pres-

ence or absence of a code fragment. Real-value features can be encoded via bucketizing,

where a Boolean feature is true if the feature falls within a particular bucket. This allows

us to plug in many types of analyses. As a new analysis is developed, we can continue to

use BitShred by simply defining a hash function over the particular features extracted by

the analysis.

We compute code similarity using the Jaccard similarity metric. The Jaccard calculates

the percentage of common features, with the idea that the more features the malware share,

the more alike the malware are, and the Jaccard is used extensively in previous work [22,

132]. More formally, given two feature sets ga and gb for programs pa and pb respectively,

the Jaccard similarity (i.e., index) is:

J(ga, gb) =
|ga ∩ gb|
|ga ∪ gb|

. (3.1)

In order to motivate feature hashing, consider first using a standard implementation of

Jaccard, e.g., as found in SimMetrics [36]. The advantage of this approach is that the size of

the feature data structure is linear in the number of features a program actually presents. For

example, if our feature space is in size 2128 but a particular program only has 230 features,

the data structure is still only 230 in size. Unfortunately, the set union and intersection

operations themselves are a bottleneck in similarity calculation. In our experiments, we

could only cluster about 2,388 malware per day using this approach (§3.5, labeled as exact

Jaccard).

We take an approach of encoding features as a bit vector so that the Jaccard similarity

can be calculated by fast CPU-friendly logic operations:

Jbv(fa, fb) =
S(fa ∧ fb)
S(fa ∨ fb)

(3.2)

where fi is the bit vector representation of the feature set for program pi and S(·) counts

the number of set bits.

Feature hashing [150, 159] is a specific way of encoding features as a bit vector. Most

existing implementations of bit vector Jaccard, e.g., the one found in Python, assume that

the feature space is completely encoded using index variables where feature 1 corresponds
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to bit 1, feature 2 to bit 2, feature 3 to bit 3, and so on. This scheme is impractical when

the feature space is large, such as in our case where such an encoding would result in a

per-program data structure that is gigabytes in size.

Others have proposed malware similarity methods that do not use boolean features. For

example, the Zynamics BinDiff tool [167] and Hu et al. [69] use a similarity metric based

on isomorphism between control flow and function call graphs. While we can compute

call graph similarity based upon features, e.g., how many basic blocks are in common, our

approach cannot readily be adapted to actually compute the isomorphism.

Classification vs. Clustering. Classification uses labeled samples to learn a rule for as-

signing labels to new samples. Feature hashing was previously used to build an efficient

spam classifier [15], which is trained with labeled (i.e., spam/not-spam) emails and then de-

termines whether an incoming email is spam or not. Clustering, on the other hand, groups

unlabeled samples based on given similarity metrics. In our setting, (unlabeled) malware

are grouped based on similar features, such as static code or dynamic behaviors. To the best

of our knowledge, ours is the first study to introduce clustering techniques that combine

feature hashing with the Jaccard and to present a theoretical proof of correctness.

Security. Feature hashing, like LSH, uses a hash function which must be kept secret. If

the hash function is known, then an attacker may be able to “fool” the algorithm into an

atypical number of collisions, thus potentially reducing the overall accuracy. This problem

is mitigated by using a keyed hash function, e.g., picking a secret key k and computing

h(k||sa||k) for item sa. For simplicity, in the rest of this paper we refer to the hash as

simply h instead of a keyed variant, with the expectation that it is used as a keyed function

for security.

3.2 BitShred Architecture

In this section we describe BitShred, our system for fast similarity analysis and malware

triage on very large malware data sets. We focus on the performance of our hash feature

approach in comparison to previously proposed methods, such as straight set-based analy-

sis, Winnowing, and locality-sensitive hashing. While there are data reduction techniques

that reduce the size of s, e.g., locality-sensitive hashing, we can expect that even after

data reduction the number of malware we need to cluster will continue to increase rapidly.

Another triage task is automatically identifying the nearest neighbors, which requires that
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Figure 3.1: BitShred Overview

given a sample m, we compute its distance to all other malware. An exacerbating issue is

that we want analysis which extracts many features, which in turn creates extremely high-

dimensional feature sets, and this, in turn makes each comparison more expensive. If we

can make each comparison as efficient as possible, then we will scale better even in worst

case scenarios.

Our main conclusion is that BitShred provides the same accuracy but better perfor-

mance. Better performance means that we can scale to much larger malware volumes and

deal with current volumes much more quickly. We also show that BitShred can be par-

allelized, which allows us to take advantage of infrastructures like supercomputers and

Hadoop as performance requirements exceed that which can be provided by a single CPU.

Finally, we show BitShred in the context of an end-to-end system for malware triage. In

our data set, BitShred is more than 90% accurate in automatically identifying malware fam-

ilies. While malware authors can always add more obfuscation and make analysis harder,

thereby decreasing the accuracy of any system, the core concepts in BitShred can “plug in”

any malware analysis that outputs Boolean or (binary-encoded) integer-valued values, and

speed it up while retaining similar accuracy to the exact Jaccard.

Throughout the rest of this paper, we use si to denote malware sample i, G to denote

the set of all features, and gi to denote the subset of all features G present in si.

3.2.1 BitShred Overview

At a high level, BitShred takes in a set of malware, runs per-malware analysis, and then

performs inter-malware comparison, correlation, and feature analysis, as shown in Fig-

ure 3.1. BitShred’s job is to speed up subsequent correlation after using existing techniques

to perform per-sample feature extraction. In our implementation, we experiment with us-

ing n-grams as proposed in [11, 91, 158] because the feature space is extremely large, and

dynamic behavior analysis from Bayer et al. [22] because it has been shown to be effective.

BitShred’s key role is the use of feature hashing to compactly represent even high-
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dimensional feature sets in a bit vector. We call the bit vector the malware fingerprint. The

algorithm that calculates the malware fingerprint using feature hashing is called BITSHRED-

GEN in Figure 3.1. We then replace the existing exact inter-malware feature set comparison

(called the Jaccard index) with an approximation algorithm called BITSHRED-COMPARE

that is just as accurate (with high probability), yet is significantly faster. In particular, the

main bottleneck with the Jaccard distance computation is that it requires a set intersection

and union operation with the entire feature space. BitShred’s algorithm replaces set oper-

ations with bit vector operations, which are orders of magnitude more efficient. We then

perform clustering using BITSHRED-CLUSTER to identify families.

We use full hierarchical clustering as a representative computationally expensive triage

task. Hierarchical clustering has a lower bound of s(s−1)/2 comparisons for s malware to

cluster [52]. Other problems, such as incremental clustering and finding the nearest neigh-

bor, are algorithmically less expensive. For example, incremental clustering, or comparing

incoming newly reported s′ malware against s malware in a database, requires s′ × s com-

parisons where s′ � s. The nearest neighbors to malware si can be identified by comparing

it to all other samples which are linear in s.

Without loss of generality, we focus on the representative setting where incoming mal-

ware is clustered by similarity, as shown in Figure 3.1. Other typical modifications that

encompass the same overall workflow tasks include finding the nearest neighbor for all

incoming malware [69], clustering new malware with respect to previously known sam-

ples [22], etc. Post-triage analysis can then be used to make choices based on the clus-

tering, e.g., focus on the largest clusters of malware first, compare identified clusters with

previously seen malware, or any number of other options.

3.2.2 Single Node BitShred

In this section we describe the core components of BitShred: BITSHRED-GEN, BITSHRED-

JACCARD, and BITSHRED-CLUSTER. In §3.2.3, we show how the algorithm can be paral-

lelized, e.g., to run on top of Hadoop or multi-core systems.

• BITSHRED-GEN (G→ F ): BITSHRED-GEN is an algorithm from the extracted feature

set gi ∈ G to fingerprints fi ∈ F for each malware sample si. A BitShred fingerprint fi
is a bit vector of length m, initially set to 0. BITSHRED-GEN performs feature hashing

to represent feature sets gi in fingerprints fi. More formally, for a particular feature

set we define a hash function h : χ → {0, 1}m where the domain χ is the domain of

possible features and m is the length of the bit vector. We use djb2 [27] and reduce the
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result modulo m. (Data reduction techniques such as locality-sensitive hashing [22] and

Winnowing [146] can be used to pare down the data set for which we call BITSHRED-GEN

and perform subsequent steps.)

• BITSHRED-JACCARD (F × F → R): BITSHRED-JACCARD computes the similarity

d ∈ [0, 1] between fingerprints fa and fb using the bit vector Jaccard from Equation 3.2.

A similarity value of 1 means that the two samples are identical, while a similarity of

0 means that the two samples have nothing in common (in our setting, this means they

share no features in G). Formally, Theorem 1 states that BITSHRED-JACCARD well-

approximates the Jaccard index.

Theorem 1. Let ga, gb denote two sets of size N with c common elements, and fa, fb
denote their respective fingerprints with bit vectors of lengthm and k hash functions. Let

Y denote S(fa∧fb)
S(fa∨fb) . Then, for m� N , ε, ε2 ∈ (0, 1),

Pr[Y ≤ c(1 + ε2)

2N − c−mε
] ≥ 1− e−mqε22/3 − 2e−2ε

2m2/Nk

and

Pr[Y ≥ c(1− ε2)
(2N − c) +mε

] ≥ 1− e−mqε22/2 − 2e−2ε
2m2/Nk

for q = 1− 2
(
1− 1

m

)kN
+
(
1− 1

m

)k(2N−c).
Although BITSHRED-COMPARE is probabilistic, Theorem 1 proves that it closely approx-

imates the Jaccard index. While attackers could certainly try to manipulate the per-sample

analysis, they cannot affect the accuracy of BitShred’s feature hashing as long as the hash

function is either unknown or collision-resistant.

We show a full proof in §3.3. Note that because the goal of feature hashing is different

than the goal of Bloom filters, our guarantees are not in terms of the false positive rate

for standard Bloom filters, but of how well our feature hashing data structure lets us ap-

proximate the Jaccard index. The intuition behind the difference with traditional Bloom

filters is that we are measuring similarity distance, rather than false positive probability,

and the overestimate in this distance grows with the number of hash functions.

• BITSHRED-CLUSTER ((F × F × R list)× R→ C): BITSHRED-CLUSTER takes the

list containing the similarity between each pair of malware samples and a threshold t,

and outputs a clustering C for the malware. BITSHRED-CLUSTER groups two malware if

their similarity d is greater than or equal to t: d ≥ t. The threshold t is set by the desired
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precision trade-off based on past experience. While a smaller t divides malware into a

few general families, a larger t discovers specific variants of a family. See §3.5 for our

experiments for different values of t.

BitShred currently uses an agglomerative hierarchical clustering algorithm to produce

clusters in that the number of clusters is typically not known in advance. Initially each

malware sample si is assigned to its own cluster ci. The closest pair is selected and

merged into a cluster. We iterate the merging process until there is no pair whose similar-

ity exceeds the input threshold t. When there are multiple samples in a cluster, we define

the similarity between cluster cA and cluster cB as the maximum similarity between all

possible pairs, i.e., BITSHRED-JACCARD(cA, cB) = max{BITSHRED-JACCARD(fi, fj)|
fi ∈ cA, fj ∈ cB} (single-linkage). We chose a single-linkage approach as it is efficient

and accurate in practice.

3.2.3 Distributed BitShred

BitShred’s throughput, as well as any clustering algorithm, is bottlenecked by how quickly

fingerprints can be compared. In addition to improved single-node performance, we have

also developed a distributed version of BitShred based upon Hadoop [1]. The distributed

version performs equal work on each node and does not perform cross-node communication

other than returning the result of Jaccard.

In order to improve performance linearly as we add more hardware resources, we need

to address two challenges. First, can we design an algorithm that does not require cross-

node communication? Second, can we develop an algorithm where no node is a bottleneck,

i.e., all nodes do the same amount of work? In this section we describe how the BITSHRED-

SCHEDULE algorithm optimally parallelizes BitShred to achieve both goals, as well as how

the parallelization can be implemented in the MapReduce framework.

We want methods that are parallelizable so that they are not bottlenecked by the re-

sources of a single node and so that we can improve performance by adding more hard-

ware resources. We utilize the Apache open-source Hadoop Map/Reduce framework by

transforming our sequential BitShred algorithm into a parallel BitShred algorithm. MapRe-

duce [45] is a software framework that processes huge data sets in parallel on a large number

of nodes. The input data sets are divided into smaller data sets that are separately processed

by map tasks. The outputs from map tasks are gathered, sorted, and handled by reduce

tasks. Each map and reduce task can be performed in parallel so that we can solve a big

problem (i.e., n2 comparison problem) by solving smaller sub-problems in a distributed
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manner.

• BITSHRED-SCHEDULE: We parallelize two steps in BitShred: fingerprint generation

in Phase 1, and the s(s − 1)/2 fingerprint comparisons in Phase 2 during clustering.

Parallelizing fingerprint generation is straightforward: given s malware samples and r

resources, we assign s/r malware to each node and run BITSHRED-GEN on each assigned

sample.

Parallelizing BITSHRED-JACCARD in a resource- and communication-efficient manner

requires more thought. There are s(s − 1)/2 comparisons and every comparison takes

the same fixed time; so if every node does s(s − 1)/2r comparisons, all nodes do equal

work. Unlike BITSHRED-JACCARD, comparisons between variable lengths of two sets

take time (computation) depending on the length, thus distributing uniform node work is

not simple.

To accomplish this, we first observe that while the first malware needs to be compared

against all other malware (i.e., s − 1 fingerprint comparisons), each of the remaining

malware require fewer than s − 1 comparisons each. In particular, malware i requires

only s− i comparisons, and malware s− i requires s− (s− i) comparisons.

A naive approach is to round-robin each set of comparisons on the available nodes, e.g.,

node 1 does s − 1 amount of work performing 1 → 〈2, s〉, node 2 does s − 2 work

initially performing 2 → 〈3, s〉, and so on. The problem with a round-robin approach

is that we must interactively communicate with each node to assign the next comparison

work, which causes a significant communication overhead. Furthermore, the amount of

work at each node is unbalanced.

Instead, we want to be able to assign similar amounts of work to each node, and to do this

while incurring minimal communication overhead between the nodes. Our main insight

is to pair the comparisons for malware i with s − i, so that the total comparisons for

each pair is s − i + s − (s − i) = s. If we pair the comparisons for malware i with

s − i, the total comparisons for each pair is s − i + s − (s − i) = s. Thus, for each

node to do uniform work, BITSHRED-SCHEDULE ensures that the s− i comparisons for

malware i are scheduled on the same node as the s − (s − i) comparisons for malware

s − i. BITSHRED-SCHEDULE then simply divides the pairs among the r nodes. Since

each pair requires s comparisons, and there are (s − 1)/2 pairs, we can split the jobs to

(s−1)/2 nodes where each node performs exactly s comparisons. Since each comparison

takes constant time, the total load is distributed equally across all nodes using the fixed

schedule.
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Figure 3.2: Similarity matrix

Although there may be other protocols for distributing computations, we note that this

approach is simple, and optimal in the sense that all nodes do equal work and there is no

inter-node communication during the s2 Jaccard calculations.

Our algorithm can be understood as the computation of a similarity matrix where cell

i, j corresponds to the distance between malware i and j, as shown in Figure 3.2a. Since

the similarity between i, j is the same as j, i, we only need to compute the upper triangle

of the matrix. BITSHRED-SCHEDULE essentially turns the triangle in Figure 3.2a into the

rectangle shown in Figure 3.2b. Finally, we note that BITSHRED-SCHEDULE is optimal

for distributing comparison operations evenly across all nodes in a communication-efficient

manner.

3.2.4 BitShred on Hadoop

Our distributed implementation uses the Hadoop implementation of MapReduce [1, 45].

MapReduce is a distributed computing technique for taking advantage of large computer

nodes to carry out large data analysis tasks. In MapReduce, functions are defined with

respect to 〈key,value〉 pairs. MapReduce takes a list of 〈key,value〉 pairs and returns a list

of values. MapReduce is implemented by defining two functions:

1. MAP: 〈Ki, Vi〉 → 〈Ko, Vo〉 list. In the MAP step, the master Hadoop node takes the

input pair of type 〈Ki, Vi〉 and partitions it into a list of independent chunks of work.

Each chunk of work is then distributed to a node, which may in turn apply MAP to
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further delegate or partition the set of work to complete. The process of mapping

forms a multi-level tree structure where leaf nodes are individual units of work, each

of which can be completed in parallel. When a node completes a unit of work, the

output 〈Ko, Vo〉 is passed to REDUCE.

2. REDUCE: 〈Ko, Vo〉 list→ Vf list. In the REDUCE step, the lists of answers from the

partitioned work units are combined and assembled into a list of answers of type Vf .

We also take advantage of the Hadoop distributed file system (HDFS) to share common

data among nodes.

In Phase 1, distributed BitShred produces fingerprints using the Hadoop by defining the

following MapReduce functions:

1. MAP: 〈Ki, si〉 list→ 〈Ki, fi〉 list. Each MAP task is assigned the subset of malware

samples si and creates fingerprints fi to be stored on HDFS. Fingerprint files are

named as Ki representing the index of the corresponding malware samples. The

outputs of map tasks are fingerprints for input samples. For example, if we process

2,048 samples, we have 2,048 32KB fingerprint files where the size of a fingerprint

is 32KB.

However, accessing lots of small files normally causes significant disk I/O overhead.

For instance, 2,096,128 disk accesses are required to compare every pair of 2,048

samples. Furthermore, HDFS is primarily designed for processing large streaming

data, so it is not efficient for accessing lots of small files.

To reduce disk I/O overhead, we divide input data sets into chunks of 2,048 samples

and assign those to map tasks. That is, each map task processes given 2,048 samples

and generate a big file containing 2,048 fingerprints. We assemble 2,048 fingerprints

because the default block size of HDFS is 64MB (=32KB×2,048). Similarly, we can

assemble multiples of 2,048 samples at once, e.g., 4,096, 8,192, etc.

2. REDUCE. In this step, no REDUCE step is needed. In our implementation, we will

optionally return the list of fingerprint files Ki.

In Phase 2, distributed BitShred runs BITSHRED-JACCARD across all Hadoop nodes by

defining the following functions:

1. MAP: 〈Ki, fi〉 list → 〈R, (sa, sb)〉 list MAP tasks read fingerprint data files created

during Phase 1 and runs BITSHRED-JACCARD on each fingerprint pair, outputting the

similarity d ∈ R.
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Figure 3.3: Chunking MAP tasks for optimized I/O.

2. REDUCE: 〈R, (sa, sb)〉 list→ sorted 〈R, (sa, sb)〉 list REDUCE gathers the list of the

similarity values for each pair and returns a sorted list of pairs based upon similarity.

We have also optimized this phase to use HDFS-sized blocks for fingerprints, where

each block corresponds to 2,048 malware fingerprints. BITSHRED-SCHEDULE creates a

schedule to break up MAP tasks into 2,048×2,048-sized grids, as shown in Figure 3.3a.

Given b blocks, we assign b/2 grid comparisons to up to b MAP tasks. BITSHRED-SCHEDULE

also optimizes the order in which blocks are accessed so as to minimize the number of reads.

For example, MAP0 in Figure 3.3a needs to read 1 vertical fingerprint block and 4 horizontal

fingerprint blocks to compare, which requires 5 disk reads. This schedule prevents less op-

timal orderings; for example, when MAP0 is assigned 4 grid comparisons chosen at random,

8 disk accesses are needed (4 times for the vertical blocks and 4 times for the horizontal

blocks). If we want to utilize more MAP tasks, we can further divide the b/4 grid compar-

isons up to 2b MAP tasks by splitting as in Figure 3.3b.

This phase returns a list of malware pairs sorted by similarity using standard Hadoop

sorting. The sorted list is essential for the agglomerative single-linkage clustering. In par-

ticular, malware si’s family is defined as the set of malware whose distance is less than θ;

thus all malware in the sorted list with similarity> θ are in the cluster. Given the sorted list,

it is straightforward to apply an agglomerative hierarchical clustering algorithm to produce

malware clusters.

44



G5

G0 G1 G2 G3

G3

G7

G1

G0

G4 G6G5

G2

G4

G6

G7

2048

2
0
4
8

Figure 3.4: Similarity matrix consisting of grids

We assemble 2,048 fingerprints in a file in order that we divide the matrix into small

grids whose size is 2,048×2,048 to access fingerprint data files in an efficient manner. For

example, to complete G0,7 in Figure 3.4, we need to read 2,048 vertical fingerprints from

G0 and 2,048 horizontal fingerprints from G7, which can be done by 2 disk reads.

3.3 Proof of Similarity Approximation

Our analysis shows that, with high probability, the Jaccard index |gi∩gj ||gi∪gj | is well approxi-

mated by the S(fi∧fj)
S(fi∨fj) , where fi and fj are the fingerprints of gi and gj . Throughout this

analysis, we let c denote the number of shared elements between sets gi and gj (note that

the Jaccard index |gi∩gj ||gi∪gj | is then c
2N−c ). The focus of our analysis is to show that the ratio

S(fi∧fj)
S(fi∨fj) is close to c

2N−c with high probability (unlike other analyses [73] that restrict their

focus to computing the expected value of S(fi ∧ fj)). We make the usual assumption that

the hash functions used are k-wise independent.

We first consider the union gi ∪ gj . We note that the bit vector obtained by computing

the bitwise-OR of the two fingerprints fi and fj is equivalent to the bit vector that would

be obtained by directly inserting all the elements in gi ∪ gj if the same k hash functions are

used on a bit vector of the same size.

Let the random variable U denote the number of bits set to 1 in fi ∨ fj . Note that the

set gi ∪ gj contains 2N − c elements. If these elements are inserted into a bit vector of size
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m with k hash functions, the probability qu that a bit is set to 1 is: 1 −
(
1− 1

m

)k(2N−c).
We can use this to compute the expected value of U :

E[U ] = mqu = m

(
1−

(
1− 1

m

)k(2N−c))
(3.3)

As U is tightly concentrated around its expectation [31], we get:

Pr[|U − E[U ]| ≥ εm] ≤ 2e−2ε
2m2/(2N−c)k ≤ 2e−2ε

2m2/Nk.

Next, we consider the intersection gi∩gj . Let the random variable I denote the number

of bits set to 1 in fi ∧ fj . A bit z is set in fi ∧ fj in one of two ways: (1) it may be set by

some element in gi ∩ gj , or (2) it may be set by some element in gi− (gi ∩ gj) and by some

element gj − (gi ∩ gj). Let Iz denote the indicator variable for bit z in fi ∧ fj . Then,

Pr[Iz = 1] =

(
1−

(
1− 1

m

)kc)
+

(
1− 1

m

)kc(
1−

(
1− 1

m

)k(|gi|−c))

·

(
1−

(
1− 1

m

)k(|gj |−c))

which may be simplified as:

1−
(

1− 1

m

)kN
−
(

1− 1

m

)kN
+

(
1− 1

m

)k(2N−c)
.

With linearity of expectation, we can compute E[I] as
∑

z Pr[Iz = 1], which reduces

to:

E[I] = m

(
1− 2

(
1− 1

m

)kN
+

(
1− 1

m

)k(2N−c))
. (3.4)

Note that the random variables I1, I2 . . . Im are negatively dependent, so we can apply

Chernoff-Hoeffding bounds to compute the probability that I deviates significantly from

E[I]: e.g., Pr[I ≥ E[I](1 + ε2)] ≤ e−mqε
2
2/3, where q = 1−

(
1− 1

m

)kN − (1− 1
m

)kN
+(

1− 1
m

)k(2N−c).
We now turn to the ratio S(fi∧fj)

S(fi∨fj) ; let the random variable Y denote this ratio. We have

just shown that U and I are both likely to remain close to their expected values, and we can
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use this to compute upper and lower bounds on Y – since U and I lie within an additive or

multiplicative factor of their expectations with a probability of at least 1 − 2e−mqε
2
2/3 and

1− 2e−2ε
2m2/Nk, respectively. We can derive upper and lower bounds on Y that hold with

probability at least 1− 2e−mqε
2
2/3 − 2e−2ε

2m2/Nk.

To do this, we first simplify the quantities E[U ] and E[I]. Assuming that m � 2kN ,

we can approximate E[U ] and E[I] by discarding the higher-order terms in each of bino-

mials in 3.3 and 3.4:

E[U ] ≥ m

(
1−

(
1− k(2N − c)

m

))
= mk

(
2N − c
m

)
= k(2N − c).

Likewise, we can approximate E[I] as:

E[I] ≤ m

(
1− 2

(
1− kN

m

)
+

(
1− k(2N − c)

m

))
= mk

( c
m

)
= ck.

Using these approximations for E[I] & E[U ], we see that Y ≤ c(1+ε2)
2N−c−mε , with proba-

bility at least 1− e−mqε22/3 − 2e−2ε
2m2/Nk. We can compute a similar lower bound for Y ,

i.e., Y ≥ c(1−ε2)
(2N−c)+mε , with probability at least 1−e−mqε22/2−2e−2ε

2m2/Nk. This shows that

with high probability, the ratio S(fi∧fj)
S(fi∨fj) is close to the Jaccard index c

2N−c for appropriately

chosen values of m and k. We have thereby proven our Theorem 1.

Lastly, we give an example to illustrate our bounds in our application scenario. Suppose

we set εm ≥ 5, m ≈ 1000N , k = 6. Then, our analysis shows us that with probability

at least 95%, Y ∈
(
c(1− 1√

2c
)

2N−c+5 ,
c(1+ 4√

c
)

2N−c−5

)
, i.e., that ratio of the bits set to the union is very

close to the Jaccard index.

3.4 Implementation

We have implemented single-node BitShred in 2,000 lines of C code. Since BitShred is

agnostic to the particular per-malware analysis methods, we only need individualized rou-

tines for extracting raw input features before converting them into fingerprints. In the case
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of static code analysis, BitShred divides an executable code section identified by GNU BFD

library into n-grams and hashes each n-gram to create fingerprints. For dynamic behavior

analysis, BitShred simply parses input behavior profile logs and hashes every behavior pro-

file to generate fingerprints. We use berkeley DB to store and manage the fingerprints

database. After building the database, BitShred retrieves fingerprints from the database to

calculate the Jaccard similarity between fingerprints. After applying an agglomerative hier-

archical clustering algorithm, malware families are formed. We use graphviz and Cluto [86]

for visualizing the clustering and family trees generated, as shown in Figure 3.11, 3.12.

Distributed BitShred is implemented in 500 lines of Java code. We implement a parser

for extracting section information from Portable Executable header information because

there is no BFD library for Java. In our implementation, we perform a further optimization

that groups several fingerprints into a single HDFS disk block in order to optimize I/O.

In the Hadoop infrastructure we use, the HDFS block size is 64MB. We optimize for this

block size by dividing the input malware set so that each node works on 2,048 malware

samples at a time (because 64MB = 32KB × 2,048). That is, each MAP task is given 2,048

samples (si, si+1, · · · si+2047) and generates a single file containing all fingerprints. We

can similarly optimize for other block sizes and different bit vector lengths, e.g., 64KB bit

vectors result in batching 1,024 malware samples per node.

3.5 Evaluation

We have evaluated BitShred for speed and accuracy using two types of per-sample analysis

for features. First, we use a static code reuse detection approach where features are code

fragments, and two malware are considered similar if they share common code fragments.

Second, we use a dynamic analysis feature set where features are displayed behaviors, and

two malware are considered similar if they have similar behaviors. Note that similarity

is a set comparison, so order does not matter (e.g., re-ordering basic blocks is unlikely to

affect the results). We stress that we are not advocating a particular approach such as static

or dynamic analysis but are instead demonstrating how BitShred could be used once an

analysis is selected.

3.5.1 Experimental Setup

System Environment. All single-node experiments were performed on a Linux 2.6.32-

23 machine (Intel Core2 6600 / 4GB memory) using only a single core. The distributed
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experiments were performed on a Hadoop using 64 worker nodes, each with 8 cores, 16

GB DRAM, 4 1TB disks, and 10GbE connectivity between nodes [2]. 53 nodes had a

2.83GhZ E5440 processor, and 11 had a 3GhZ E5450 processor. Each node was configured

to allow up to 6 map tasks and up to 4 reduce tasks at a time.

Malware Data Set. We performed our experiments on a malware data set collected from

a variety of open repositories such as Malware Analysis System (aka CW-Sandbox) [5],

Offensive Computing [8], and our Universities’ security infrastructure inbetween 2009-

2010. Our total data set consists of 655,360 unique samples by MD5 hash.

When evaluating accuracy, we used unpacked malware samples as identified by PEiD [79]

and ClamAV. Recall that we assume an effective unpacking strategy, e.g., previous work has

shown that up to 92% of malware can be automatically unpacked [63, 107, 143]. Since the

goal of this paper is not unpacking, we simply use ClamAV to unpack since it is public,

though we also have support for the research unpacking tool Renovo [81].

3.5.2 BitShred with Code Reuse as Features

Setup. Our static experiments are based on reports that malware authors reuse code as

they invent new malware samples [11, 91, 158]. Since malware is traditionally a binary-

level analysis, not a source analysis, our implementation uses n-grams to represent binary

code fragments. Malware similarity is determined by the percentage of n-grams shared.

We chose n-grams-based analysis because it is a previously proposed approach that

demonstrates a high-dimensionality feature space. We set n = 16 bytes, so there are 2128

possible n-gram features. We chose 16 bytes based on experiments that show that it would

cover at least a few instructions. If n is too small, then it is hard to catch meaningful byte

sequences. For example, if n = 1, every n-gram only represents 1 byte binary code, which

is not enough to capture the meaning of an instruction. On the other hand, if n is too big,

then it is not resilient to code reordering. For example, when n is equal to the size of the

entire program, we can only tell whether or not two programs are exactly the same.

In static code analysis, each n-gram can roughly be thought of as an n-length instruction

in the binary code without actually performing the disassembly. Since n-gram analysis rolls

over the code, our analysis is conceptually similar to the analysis of all possible n-length

disassemblies of the code. In order to determine an appropriate value of n to match instruc-

tions, we disassembled 9,000 malware samples using IDA Pro and counted the distribution

on instruction lengths. As shown in Figure 3.5, more than 98% of code sections consisted

of instructions whose length was equal to or less than 8 bytes. We set n = 16 bytes from
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Figure 3.5: Proportion of instructions of each instruction length

this experiment because it is highly likely that each n-gram covers at least 2 contiguous

instructions.

We can extend BitShred to use other features, such as basic blocks [53] by first build-

ing the appropriate feature and then defining a hash function on it; applying all possible

extensions of the per-sample analysis is out of scope for this work. Surprisingly, even this

simple analysis had over 90% accuracy when the malware was unpacked using off-the-shelf

unpackers. Pragmatically, n-gram analysis also has the advantage of not requiring disas-

sembling or building a control flow graph, which are known hard problems on malware.

Single Node Performance. Table 3.1 shows BitShred’s performance using a single node

in terms of speed, memory consumed, and the resulting error rate. We limited our experi-

ment to clustering 1,000 malware samples (which requires 499,500 pairwise comparisons)

in order to keep the exact Jaccard time reasonable. The “exact Jaccard” row shows the

overall performance when computing the set operations as shown in Equation 3.1 using the

SimMetrics library [36]. Clustering using exact Jaccard took more than 4 hours and re-

quired 644.13MB of memory. This works out to about 33 malware comparisons per second

and 2,388 malware clustered per day.

We performed two performance measurements with BitShred: one with 64KB finger-

prints and one with 32KB fingerprints. With 64KB fingerprints, BitShred ran about 317
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Size of fin-
gerprints

Time to com-
pare every
pair

Average
error on all
pairs

Average er-
ror on similar
(>0.5) pairs

Malware
comparisons
per second

Malware
clustered per
day

EXACT JACCARD 644.13MB 4h 12m 16s - - 33 2,388

BS64K 62.50MB 48s 0.0199 0.0017 10,472 42,538

BS32K 31.25MB 24s 0.0403 0.0050 20,812 59,970

WINNOW (W4) 66.97MB 41m 5s 0.0019 0.0109 203 5,918

WINNOW (W12) 30.16MB 20m 35s 0.0081 0.0128 404 8,360

BS32K (W4) 31.25MB 24s 0.0159 0.0009 20,812 59,970

BS32K (W12) 31.25MB 24s 0.0062 0.0039 20,812 59,970

BS8K (W4) 7.81MB 6s 0.0649 0.0086 78,047 116,131

BS8K (W12) 7.81MB 6s 0.0247 0.0016 78,047 116,131

Table 3.1: BitShred (BS) vs. Jaccard vs. Winnowing. We show BitShred with several
different fingerprint sizes.

times faster than exact Jaccard. With 32KB fingerprints, BitShred ran about 2 times faster

than with 64KB fingerprints, and ran about 631 times faster than exact Jaccard.

Since BitShred uses feature hashing, hash collisions may impact the accuracy of the

Jaccard distance computations. The overall error rate in the distance computations is a

function of the fingerprint length, the size of the feature space, and the percentage of code

that is similar. The statement in Theorem 1 formally expresses this trade-off. We also made

two empirical measurements. First, we computed the average error on all pairs, which

worked out to be about 2% with 64KB fingerprints and 4% with 32KB fingerprints. The

error goes up as the fingerprint size shrinks due to a higher chance of collisions. We also

computed the average error on pairs with a similarity of at least 50% and found the error to

be less than 1% of the true Jaccard. Note that the second metric (i.e., average error on pairs

with higher similarity) is the more important metric – these are the numbers with the most

impact on the accuracy, as these are the numbers that will primarily decide which family a

malware sample belongs to. Thus BitShred is a very close approximation indeed.

BitShred vs. Winnowing. So far we have considered techniques that provide an exact

ranking between all pairs of malware. Nonetheless, malware practitioners are constantly

facing the difficult choice of how much time to spend given finite computing resources,

and therefore may prefer “approximate but faster” clustering over “theoretically correct but

slower” clustering. LSH is one type of data reduction technique that improves performance.

Here we discuss another called Winnowing.
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In addition to comparing BitShred’s probabilistic algorithm to exact Jaccard, we also

compare BitShred to Winnowing [146]. Recall that Winnowing is a feature reduction tech-

nique used for code reuse detection. Winnowing is interesting because its performance is

guaranteed to be within 33% of the lower bound [146], and is currently the fastest (from

a theoretic sense) technique that we are aware of. We compare two settings: BitShred vs.

Winnowing as in previous work, and BitShred extended to include Winnowing.

Winnowing, the algorithm used by the MOSS plagiarism detection tool, is a fuzzing

hashing technique that selects a subset of features from a sample for analysis [146]. Letw be

a window measured in some way, e.g., w statements, w consecutive n-grams, w behaviors,

etc. Winnowing guarantees that at least one shared unit in any window of length at least

w+n−1 will be included in the feature set [146]. In our evaluation, we measure Winnowing

because a) MOSS is well-known, b) it corresponds to similarity detection based on code as

proposed in previous work [11, 91, 158], and thus is directly related to our approach, and

c) it is guaranteed to be within 33% of optimal for similarity detection [146]. We compared

BitShred and Winnowing in two settings: BitShred vs. Winnowing as in previous work, and

BitShred extended to include Winnowing. Table 3.1 also shows these results for window

sizes 4 (denoted as W4) and 12 (denoted as W12).

We observed that BitShred beats straight Winnowing. We reimplemented Winnowing as

detailed in [146] using a 32-bit hash function, as the original implementation is not public.

For the purpose of performance comparison, we computed the similarity using SimMetrics

library. BitShred is anywhere from 26 to 102 times faster while requiring less memory.

Winnowing does have a slightly better error rate, though none of the error rates are very

high. A more interesting case to consider is pre-processing the feature set with Winnow-

ing and then applying BitShred. With Winnowing applied, we can reduce the BitShred

fingerprint size down to 8KB, allowing all 1,000 samples to be clustered in 6 seconds.

Figure 3.6 relates all experiments with respect to the total number of malware clustered

per day. BitShred can efficiently handle incoming malware. Figure 3.6 also shows on the

right-hand y-axis one reason why BitShred is faster. Recall that exact Jaccard computations

are slow in part because they use set operations. These, in turn, are not efficient on real

architectures. BitShred’s bit vector fingerprints, on the other hand, are L1/L2 cache friendly.

Distributed BitShred. We have implemented a distributed version of BitShred on the

Hadoop and performed several experiments to measure overall scalability and throughput.

In our large-scale experiments, we used 131,072 UPX-unpacked samples to measure Bit-
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Figure 3.6: Overall malware clustered-per-day capabilities. We also report relative L1/L2
cache misses.

Shred’s clustering quality and 20,480 to 655,360 samples1 to evaluate BitShred’s scalability,

with each intermediate point doubling the total number of malware.

Figure 3.7 shows the BITSHRED-GEN fingerprint generation time. In this experiment,

we utilized 80 map tasks for small data sets (20,480 ∼ 81,920) and 320 map tasks for

large data sets (163,840 ∼ 655,360). The total time to create fingerprints for all samples

was 5m 45s with BS8K (W12) and 4m 40s with BS32K (W1). The graph also shows

a linear trend in the fingerprint generation time, e.g., halving the total number of samples

to 327,680 samples approximately halves the generation time to about 2m 54s and 2m 25s,

respectively. BITSHRED-GEN performance slightly dropped at 163,840 samples because the

startup and shutdown overhead of each map dominates the benefit of utilizing more maps.

Figure 3.8 shows the amount of time for computing the pairwise distance for the same

sample set. We utilized 200 map tasks for small data sets and 320 map tasks for large data

sets. Given the values in the graph, we can work out the number of comparisons per second.

For example, 163,840 samples require approximately 1.3×1010 comparisons and take 10m

15s with BS8K (W12), which works out to 21,823,888 comparisons per second. 327,680

1These samples were not unpacked since public implementations of unpackers are not readily available.
The scalability numbers should not be affected since generation time is dwarfed by comparison time.
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samples require about 5.4×1010 comparisons and take 40m 55s with BS8K (W12), which

works out to a similar 21,868,402 comparisons per second.

Overall, the distributed version achieved a pairwise comparison throughput of about

1.9× 1012 per day. This works out to full hierarchical clustering over 1.9 million malware

per day. In the case of incremental clustering, this works out to comparing over 190,000

malware per day against 10 million known malware that are already in a database.

Triage Tasks. Three common triage tasks are automatically identifying malware families

via clustering [22], identifying the nearest neighbors to a particular malware sample [69],

and visualizing malware by creating phylogenetic trees [84]. In this experiment, we explore

using BitShred with n-grams as the extracted features. While we stress that we are not

advocating n-gram analysis, we also note that it is interesting to see what the actual quality

would be in such a system. We repeat these analyses in §3.5.3 using dynamic behavior

features.

• Clustering. We define the quality of a clustering as how close a particular clustering

is to the “correct” clustering with respect to labeled data set. Overall quality will heavily

depend on the feature extraction tool (e.g., static or dynamic), the particular data set

(because malware analysis often relies on undecidable questions), and the quality of the

reference data set.

To create a reference clustering data set, we used 30∼40 different antivirus labels pro-

vided by VirusTotal [10]. First, we chose samples that were detected as malware by at

least 20 antivirus programs to get more reliable labels. We normalized and tokenized all

the labels; then, we assigned the family name based upon only the tokens occurring at

the majority of the detecting anti-virus programs. As a result, we had 3,935 samples.

The malware data sets we used were collected in 2008 and 2009. We believe AV vendors

could have enough time to analyze such malware samples and to assign more reliable

AV labels to samples, which could help us to prepare a more reliable reference clustering

data set.

The overall clustering quality is measured with respect to two metrics: precision and

recall. Precision measures how well malware in separate families are put in different

clusters, and recall measures how well malware within the same family are put into the

same cluster. Formally, precision and recall are defined as:
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Figure 3.9: Precision and Recall (3,935 samples)

Precision =
1

s

c∑
i=1

max(|Ci ∩R1|, ..., |Ci ∩Rr|)

Recall =
1

s

r∑
i=1

max(|C1 ∩Ri|, ..., |Cn ∩Ri|)

Using n-gram analysis, we clustered the reference data set of 3,935 samples. Figure 3.9

shows the overall quality of BitShred with Winnowing (BS32K (W4)). Surprisingly,

simple n-gram analysis did quite well. When t = 0.6, BS32K (W4) clustering produced

200 clusters with a precision of 0.932 and a recall of 0.928 in 8 minutes.

For a larger-scale experiment, we unpacked 131,072 malware samples using off-the-shelf

unpackers. We then clustered the malware and compared the identified families to a refer-

ence clustering using ClamAV labels2. Figure 3.10 shows the overall results of BitShred

with Winnowing (BS32K (W12)). When t = 0.57, BS32K (W12) clustering produced

7,073 clusters with a precision of 0.942 and a recall of 0.922. It took about 27m with 256

map tasks.

2A considerable amount of manual work is required to prepare a reference data set. For this reason, we
simply used ClamAV as a reference for 131,072 samples.
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Figure 3.10: Precision and Recall (131,072 samples)

In some cases, BitShred grouped two samples whose ClamAV virus names were incor-

rectly different, which reduced the precision of BitShred clustering. We manually spot-

checked the differences and found that in many cases, the ClamAV label was wrong and

BitShred’s clustering was correct. For example, ClamAV detected Trojan.Agent-65787

and Trojan.Agent-87221 based on MD5 hash of .text section. However, the difference

is that Trojan.Agent-87221 just filled the null part of .text section with some dummy

instructions. (Null bytes are filled at the end of each section of a PE file due to the sec-

tion alignment.) As a result, both samples had different MD5 values of .text section

while sharing the common malicious code. Similarly, there were only 7 different bytes in

code sections between Trojan.Tibia-162 and Trojan.Tibia-179 and only 8 different bytes

between Trojan.Spy-62099 and Trojan.Spy-62214.

Polymorphic malware changed the code pattern in every variant so that the malware pro-

duced low similarity in BitShred and dropped the recall of BitShred clustering. For

example, every variant of W32.Mabezat-2 had a different code section (except for the

decryption routine) because they were encrypted with different keys. ClamAV iden-

tified W32.Mabezat-2 by detecting the invariant decryption routine. Since a encrypt-

ing/decrypting procedure is similar to a packing/unpacking procedure, we can leverage a

generic unpacker to effectively handle the polymorphic malware.
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• Nearest Neighbor. Hu et al. describe finding the nearest k-neighbors to a given sample

as a common triage task [69]. In their implementation, Hu et al. return the 5 nearest

neighbors and achieve an 80% success rate in returning at least one malware from the

correct family among 5 nearest neighbors on a data set of 102,391 samples. The query

time was between 0.015s to 872s, with an average of 21s using 100MB of memory.

We have implemented similar functionality in BitShred by comparing the given malware

to all other malware. We did not have access to Hu et al.’s data set; we performed exper-

iments finding the 5 nearest neighbors to randomly chosen malware samples on the same

size of our 102,391 malware data set. We achieved the same 94.2% precision and 92.2%

recall as above. The average time to find the neighbors was 6.8s (w/ BS8K) and 27s (w/

BS32K), using 25MB memory, with variance always under 1s.

• Visualization. We also have implemented several ways to visualize clustering within

BitShred. First, we can create boxed malware graphs where each square represents a

malware family and each circle represents an individual sample. Figure 3.11 shows a

clustering of 20,000 malware samples when t = 0.573. In the figure we can see larger

families with many malware in the center, with the size of the family decreasing as we

move towards the edges. At the very edge are malware samples that cluster with no

family.

Another way to visualize the results using BitShred is to create phylogenetic family trees

based on similarity [84]. The more alike two malware samples are, the closer they are to

each other on the tree. Figure 3.12 depicts a sample tree created from our data set, labeled

with ClamAV nodes. It is interesting to note that ClamAV labels the malware as coming

from three families: Spy, Dropper, and Ardamax. We manually confirmed that all three

were indeed extremely similar and should be considered to be of the same family, e.g.,

Trojan.Ardamax-305 and Trojan.Spy-42659 are in different ClamAV families, but only

differ by 1 byte.

3.5.3 BitShred with Dynamic Behaviors as Features

Static analysis may be fooled by advanced obfuscation techniques, which has led researchers

to propose a variety of dynamic behavior-based malware analysis approaches, e.g., [16, 22,

115, 116, 143, 149]. One popular variant of this approach is to load the malware into a

3We pick 20,000 samples because larger numbers created graphs that hung our PDF reader, which could
potentially happen to others as well.
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Figure 3.11: Clustering graph when t = 0.57
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Figure 3.12: Lineage tree for a single malware family
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Figure 3.13: Clustering quality based upon behavior profiles

# of profiles Clustering Elapsed Time Required Memory (max)

2,658
BAYER-EXACT 16s 86MB
BITSHRED-EXACT 4s 12MB

75,692
BAYER-LSH 2h 25m 44s 4.3GB
BITSHRED-SETBITS 24m 35s 89MB
BITSHRED-EXACT 1h 2m 51s 89MB

Table 3.2: Scalability of systems

clean virtual machine. The VM is started, and observed behaviors such as system calls,

conditional checks, etc. are recorded as features.

Bayer et al. provided us with their implementation of clustering as well as the 2,658

behavior profiles they used to measure accuracy from their paper [22]. In this data set,

each behavior profile is a list of feature index numbers. The total number of features was

172,260. In our experiments, we used only a 1KB fingerprint size since the number of

features was relatively small.

As shown in Table 3.2, an exact clustering took 16s and 86MB of memory using the

code from Bayer et al. BitShred took 4s (4x as fast) and used 12MB of memory ( 7x less

memory). The average error was 2% using the 1KB fingerprint. Figure 3.13 depicts the

exact clustering vs. BitShred as a function of precision and recall. Both had the same
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precision of 0.99 and recall of 0.98 when t = 0.61. Overall, BitShred was faster and used

less memory, while not sacrificing accuracy for dynamic analysis feature sets.

Although Bayer et al. made the 2,658 profiles they used for accuracy, they did not

provide all 75,692 profiles they used when measuring performance. In order to measure

performance on this size of data, we synthetically generated 73,034 variants using the 2,658

profiles as a basis. We then ran the code from Bayer et al. on 75,692 profiles using the same

parameters as described in [22]: k = 10, l = 90, and t = 0.7. BAYER-LSH took 2h 25m 44s

using 4.3GB of memory and performed 236,132,556 distance computations. BITSHRED-

SETBITS4 took 24m 35s (5.9x as fast) using 89MB of memory (49x less memory) and

computed the similarity of 1,021,322,219 pairs when t = 0.7. (Note that BITSHRED-

SETBITS performed 4.3x more distance computations.) Even BITSHRED-EXACT at 1h 2m

51s outperformed (2.3x as fast) BAYER-LSH.

3.6 Extension of BitShred

Normalization. Our preprocessing and normalization process currently only unpacks mal-

ware. There are a variety of other techniques that can be used to maximize the probability

of finding similar code. For example, renaming all general purpose-registers to some con-

stant would prevent simple register renaming to thwart similarity analysis. Such techniques

would be performed as a pre-processing step independent of the core BitShred algorithm.

We leave an investigation into such extensions as future work.

Additional Applications. There are a number of other security applications for automatic

code similarity detection. For example, BitShred can be used for plagiarism detection,

similar to MOSS [146]. One immediate application is for finding copyright violations, e.g.,

by compiling all GPL libraries and then using BitShred to check for GPL violations, as

done in [68]. We leave the exploration of these scenarios as future work.

Recent research shows that there is extensive code reuse in open source software [114].

Based on this observation, it is possible that a bug already fixed in one project may still

exist in other projects if those projects shared their code. One good approach for finding

this copy-pasted buggy code on a binary code level would be to compile the buggy source

code with different compiler versions and options to generate various possible buggy binary

code. BitShred allows us to quickly check code for possible binary code sequences of

4We sorted the samples based on the number of set bits in fingerprints. Then each sample only needed to be
compared to the samples whose numbers of set bits were within the input threshold.
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known vulnerabilities.

3.7 Summary

In this chapter, we presented BitShred, a system for large-scale malware triage and simi-

larity detection. The key idea behind BitShred is the use of feature hashing to reduce the

high-dimensional feature space in malware analysis, which is supported by theoretical and

empirical analysis. Our approach makes inter-malware comparisons in typical large-scale

triage tasks, such as clustering and finding nearest neighbors, up to an order of magnitude

faster than existing methods while using less memory. As a result, BitShred scales to current

and future malware volumes where previous approaches do not. We have also developed

a distributed version of BitShred where 2x the hardware gives 2x the performance. In our

evaluation, we show that we can scale to clustering over 1.9 million malware per day.
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Chapter 4

Semantic Correlation Identification
Between Malware

Clustering based exclusively on code similarity detection (§3) acts like a blackbox, telling

us only that programs are grouped because they are similar. In other words, clustering itself

does not tell us why the programs are grouped, i.e., what the distinguishing or common

characteristics are within the program group. For example, large-scale malware analysis

has so far focused primarily on grouping malware into families, or finding the malware

samples most similar to an input malware sample. However, these analyses offer very little

insight into why a certain set of malware samples are clustered into a family, and why

other samples are clustered into a different family. Typically, an analyst still will need to

invest significant effort into manual post-analysis in order to understand the similarities and

differences between malware families.

Co-clustering (§2.5) goes one step further than clustering and tells us why programs

are similar by simultaneously clustering features as well as programs. For example, co-

clustering allows us to group two programs and to name the features that explain why they

are similar (e.g., a significant amount of shared code) and why they are different (e.g.,

contacting different command and control hosts).

In this chapter, we enhance BitShred, our system for fast similarity analysis and mal-

ware triage, with co-clustering algorithms that can not only cluster malware, but also per-

form semantic analysis to determine which features distinguish identified malware families.

These ideas are based on the idea of co-clustering, where we cluster together features and

malware to identify the features that matter for a particular family. Why do we do both

clustering and co-clustering? Co-clustering is more expensive because it must consider
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both what features malware pairs have in common, as well as what features are important.

Hierarchical clustering is faster since it only needs to determine whether or not malware

is similar. Thus we run hierarchical clustering to identify families and co-clustering to

identify inter-family and intra-family semantic features. For example, in our experiments,

co-clustering automatically identifies the particular IP address contacted as a distinguishing

feature within the Allaple malware family.

4.1 Mining Software Fingerprints

We extend BitShred to automatically mine the structure of the programs and program

groups to provide insight into the structural relationships between different programs. Re-

call that the basis of our clustering (and indeed, the success of nearly all malware clustering

approaches) is the existence of similar fingerprints such as behaviors or code sections. If we

could discover fingerprints co-occurring (and not co-occurring) in programs across differ-

ent groups, we could learn what features distinguish one program group from another. The

resulting code fingerprint clusters reveal relationships between different programs, both

within and across program groups, e.g., a single large code fingerprint cluster within the

same program group along with many smaller fingerprint clusters.

Given n programs, the m length of BitShred fingerprints can be represented as n ×m
binary matrix M where each row is a program and each column is a particular feature. Then

the binary matrix M completely encodes the features in fingerprints where an entry i, j is 1

if (hashed) feature gi appears in program pi and 0 otherwise. This intuition led us to the idea

of using co-clustering to auto-correlate both features and programs simultaneously. Within

the matrix, co-clustering auto-correlates by creating sub-matrices among columns (features)

and rows (programs), where each sub-matrix is a highly correlated program/feature pair.

Co-clustering allows us to discover substantial, non-trivial structural relationships be-

tween programs, many of which would not be discovered with simpler approaches. For

example, consider how the following simple approaches for mining features between two

programs would be limited:

• Identify all common features between clusters. This can be accomplished by taking

the bitwise-and (∧) of the bit vectors. However, we would miss identifying code that

is present in 99% of a cluster, e.g., features that are shared by most, but not all, of the

likely programs of a cluster.

• Identify all distinctive features in a group of programs. This can be accomplished
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M =
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= M′

Figure 4.1: M is co-clustered to identify the checkerboard sub-matrix M′ of highly corre-
lated malware/feature pairs.

with bitwise xor (⊕) of the bit vectors. This, however, would have limited value for

the same reasons as above.

• Cluster features either before or after programs have been clustered. Note, how-

ever, this approach would also result in misleading information, e.g., clustering the

features after clustering the programs would not reveal structural similarity in differ-

ent clusters, and clustering the features before clustering the programs may result in

poor program clusters if there are many feature clusters that are common to multiple

groups of program clusters.

We introduce some terminology to make co-clustering more precise. A matrix is homo-

geneous if the entries of the matrix are similar, e.g., they are mostly 0 or mostly 1, and define

the homogeneity of a matrix to be the (larger) fraction of entries that have the same value.

We define a row-cluster to be a subset of the rows M (i.e., programs) that are grouped

together, and a column-cluster to be a subset of the columns (i.e., the features) that are

grouped together. The goal of co-clustering is to create a pair of row- and column-labeling

vectors:

r ∈ {1, 2, ..., k}n and c ∈ {1, 2, ..., `}m

The sub-matrices created are homogeneous, rectangular regions. The number of rectangular

regions is either given as input to the algorithm or determined by the algorithm with a

penalty function that trades off between the number of rectangles and the homogeneity

achieved by these rectangles1.

For example, Figure 4.1 shows a list of 5 programs where there are 5 possible features. It

illustrates a co-clustering operation highlighting how a matrix with a low homogeneity can

1The goal is to make the minimum number of rectangles which achieve the maximum homogeneity. For
this reason, co-clustering algorithms ensure that the homogeneity of the rectangles is penalized by the number
of rectangles if they need to automatically determine k and `.
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be partitioned into a number of sub-matrices with high homogeneity. The result is the 5× 5

matrix M. Co-clustering automatically identifies the clustering to produce sub-matrices,

as shown by the checkerboard M′. The sub-matrices are homogeneous, indicating highly

correlated feature/program pairs. In this case, the labeling vectors are r = (12122)T and

c = (21121)T . These vectors indicate that row 1 in M mapped to row cluster 1 (above the

horizontal bar) in M’, row 2 mapped to row cluster 2 (below the horizontal bar), etc.; the

same occurs for the column vectors for features. We can reach two clustering conclusions.

First, the row clusters indicate that programs s1 and s3 are in one family, and s2, s4, and s5
are in another family. Second, the column clusters indicate that the distinguishing features

between the two clusters are features 2, 3, and 5.

4.2 BitShred Semantic Architecture

We have adapted the cross-associations algorithm [35], redesigned for the Map-Reduce

framework [129], to BitShred fingerprints. The basic steps are row iterations and column

iterations. A row iteration fixes current column groups and iterates over each row, updating

r to find the “best” grouping. In our algorithm, we seek to assign each row to a row group

that would maximize the homogeneity of the resulting rectangles. The same occurs for

columns while row groups are fixed. The algorithm performs a local optimal search (finding

a globally optimal co-clustering is NP-hard [129]).

• BITSHRED-SEMANTIC (C × F → G′): Based on the BITSHRED-CLUSTER results,

BITSHRED-SEMANTIC performs co-clustering on a subset of fingerprints to cluster fea-

tures as well as malware samples. Co-clustering yields correlated features-malware sub-

groups G′ which show the common or distinct features among malware samples.

Unlike typical co-clustering problems, co-clustering in BitShred needs to operate on

hashed features, i.e., our fingerprints are not the features themselves, but hashes of these

features. However, because our feature hashing is designed to approximately preserve struc-

tural similarities and differences between malware samples, we can apply co-clustering on

our hashed features just as if they were regular features and still extract the structural re-

lationships between the malware samples, with the increased computational efficiency that

comes from feature hashing. To our knowledge, our results are the first to demonstrate that

if co-clustering algorithms can be combined with the appropriate feature hashing functions,

they can still extract the underlying structure of the data accurately.
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(a) A typical matrix before co-clustering
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Figure 4.2: Semantic feature information (Grey dots represent 1 in the binary matrix, i.e.,
the presence of a feature.)
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Figure 4.2a shows a matrix before co-clustering where each row is a malware finger-

print and each column is a particular feature. Figure 4.2b and Figure 4.2c graphically depict

the results of co-clustering on 8 different kinds of Trojans and 3 different kinds of Adware,

respectively. Co-clustering reveals semantic feature information, i.e., the checkerboard pat-

terns which describe distinguishing or common features across the malware families. I

discuss both inter- and intra-family feature extraction in detail in §4.4.

There have been a number of co-clustering algorithms developed recently by machine

learning and data mining researchers trying to discover structure in large sparse binary

matrices [19, 35, 46, 58, 66]. The scale of our data volume, however, implies that we

need an algorithm that can be easily used in a distributed framework. We chose the cross-

associations algorithm [35], re-designed for the Map-Reduce framework [129], for two

reasons: (1) it is fully automatic, requiring no parameters to be pre-specified, and (2) it is

specially designed to discover structure in large, sparse, binary matrices, unlike algorithms

that are designed for more generic matrices, and are therefore less efficient for our problem.

For completeness, we now briefly describe the cross-associations algorithm and how it

may be used in a Map-Reduce framework. First assume that the number of row-clusters

k and the number of column-clusters l are fixed. The algorithm alternates between a row-

clustering phase and a column-clustering phase—in each phase, it re-arranges rows (and

likewise, columns) into appropriate row-clusters (and likewise, column-clusters) so that the

partitioning of the matrix M into sub-matrices (based upon the row-clusters and column-

clusters) is strictly improved. Intuitively, the algorithm moves a row into a new row-cluster

if the homogeneity of the affected sub-matrices increases by this movement, and in each

phase it selects the best row-cluster for each of the rows. This is repeated until no further

improvement in the sub-matrices, homogeneity can be achieved by a movement of a row or

column cluster. The algorithm then increases k and l to see if the quality of the clustering

could be improved. If the quality of the clustering cannot be improved, the algorithm stops.

Iterative Co-clustering. We also explore a new usage of co-clustering in malware analy-

sis called iterative co-clustering. Iterative co-clustering would be expected to have at least

three advantages. First, it can be used to perform malware clustering without choosing a

fixed global similarity threshold, which is often not a trivial task. Second, it does not suffer

from a local minimum, i.e., co-clustering may fail to find (near-) optimal results due to some

dominant sample groups. Finally, it can be used to identify “components” or meaningful

feature groups.

Iterative co-clustering is motivated by our analysis of co-clustering results. Co-clustering
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Figure 4.3: Co-clustering on 1,000 malware samples

Figure 4.4: Results after permuting row/column groups to place the most dominant row
group at the top

can suffer from a local minimum which prevents the algorithm from finding better corre-

lated row-column intersections. For example, Figure 4.3 shows co-clustering results on

1,000 malware samples and Figure 4.4 shows the same co-clustering results after permut-

ing row and column groups to place the most dominant (largest) row group at the top. As

depicted in Figure 4.4, the first dominant row group prevented co-clustering from identify-

ing better-correlated sub-matrices.

In order to mitigate this local minimum problem, we divide (intermediate) co-clustering

results into two groups: the most dominant group and the rest of groups. We then re-apply

co-clustering on each group. Our hypothesis is that co-clustering can find further correlation

among the rest of the groups by excluding the dominant group causing a local minimum.

Cost Functions for Co-clustering. The current cost function for co-clustering is to mini-

mize the description length, i.e., to maximize the homogeneity of the matrix. Co-clustering
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has been widely used in bioinformatics and text mining, and different methods have been

suggested to identify relevant clusters (§2.5.1). As future work, I will explore different cost

functions to find a more efficient cost function for semantic analysis.

4.3 Implementation

BITSHRED-SEMANTIC was designed for the Map-Reduce framework and implemented in

1200 lines of Java. We implemented a Python wrapper to iterate row and column operations

to find an optimal co-clustering. We also implemented BITSHRED-SEMANTIC using 3,000

lines of C and OpenMP API2 to take advantage of multiprocessor platforms.

4.4 Evaluation

We used BITSHRED-SEMANTIC to identify semantically distinguishing features among

malware families. We performed a variety of experiments and found that, overall, co-

clustering automatically identified both inter-family and intra-family semantic features.

Typical features identified included distinguishing register keys set and internet hosts con-

tacted.

4.4.1 Co-clustering of Behavior-Based Profiles

We performed a full co-clustering on the 2,658 behavior profiles from Bayer et al. that

were used for their paper [22]. Figure 4.5a depicts the malware/feature matrix before co-

clustering. We then co-clustered the profiles, which took 15 minutes.

Figure 4.5b shows the complete results. The checkerboard pattern corresponds to the

sub-matrices identified as being homogeneous, i.e., corresponding malware/feature pairs

that are highly correlated. For example, the large dark sub-matrix labeled g8 corresponds

to the fact that most malware had the same memory-mapped files including WS2HELP.dll,

icmp.dll, and ws2 32.dll. The sub-matrix g9 shows a commonality between two families

but no others. The commonality corresponds to opening the file \Device\KsecDD.

Figure 4.5c focuses on the 717 samples in the Allaple malware family. One semantic

feature, labeled g3, is that almost all samples use the same memory-mapped files such as

winrnr.dll, WS2HELP.dll, icmp.dll, and ws2 32.dll. More importantly, we also found that

many family members were distinguished by the register entry they created (e.g., HKLM\
2http://openmp.org/wp/
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(a) A typical matrix before co-clustering

g8

g9

(b) Inter-family analysis based on dynamic behavior profile

g3

g4

(c) Intra-family analysis based on dynamic behavior profile

Figure 4.5: Feature extraction by co-clustering (Grey dots represent 1 in the binary matrix,
i.e., the presence of a feature.)

71



g1 g2

(a) Intra-family analysis based on static code analysis

g5

g6 g7

(b) Inter-family analysis based on static code analysis

Figure 4.6: Feature extraction by co-clustering (Grey dots represent 1 in the binary matrix,
i.e., the presence of a feature.)

SOFTWARE\CLASSES\CLSID\ {7BDAB28A-B77E-2A87-868A-C8DD2D3C52D3} in

one sample) and the IP address they connected to, e.g., one sample connected to 24.249.139.x

while another connected to 24.249.150.y (shown as g4).

4.4.2 Co-clustering of n-gram Features

We also experimented with co-clustering using the n-gram features. Figure 4.6a shows

intra-family co-clustering for the Trojan.OnlineGames malware family. The features la-

beled g2 indicate all code from the code entry to a particular point that overlaps. The

feature set g1 corresponds to new functionality in a few variants that makes tcp connections
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to a new host not found in previous variants.

We also performed inter-family analysis. In this set of experiments, we envision that

an analyst would use co-clustering to mine similarities and differences between malware

family members or between malware families. We picked the Trojan.Dropper, Trojan.Spy,

Trojan.OnlineGames, and Adware.Downloader families, which have 1,280 total members.

The total time taken by co-clustering was 10 minutes (about 2s per sample), with about 1

minute for each column and row iteration. We used 10 maps for each row iteration and 64

maps for each column iteration.

Figure 4.6b shows the resulting co-clustering. Trojan.Dropper and Trojan.Spy were

grouped together by co-clustering, which is accurate: we manually confirmed that the sam-

ples we have from those families are not well distinguished. The sub-matrix labeled g5
is one distinguishing feature that corresponds to Adware.Downloader connecting to a par-

ticular host on the Internet. The sub-matrix labeled g6 corresponds to data section frag-

ments shared among members of the Trojan family, but not present in Adware. The sub-

matrix labeled g7 corresponds to shared code for comparing memory locations. This code

is shared between Adware.Downloader and Trojan.OnlineGames, but not Trojan.Spy/ Tro-

jan.Downloader.

4.4.3 Iterative Co-clustering

Iterative co-clustering can allow us to identify better-correlated sub-matrix patterns. For

example, the samples in Figure 4.4 were divided into two groups: the first dominant group

and the remaining group. Co-clustering is then run on each group separately. Figure 4.7

depicts the co-clustering result for the first dominant group, and the zoomed-in result of

Figure 4.8 shows that iterative co-clustering identifies more fine-grained correlated patterns.

In addition, iterative co-clustering on the remaining group identifies the second dominant

row group, as shown in Figure 4.9.

Figure 4.10 shows the merging of the co-clustering results for the first and second largest

row groups where the positions of the features from the first largest row group are fixed first,

and the features from the second largest row group are aligned. Figure 4.11 shows the result

after the 4th iterative co-clustering is done.

Iterative co-clustering can be used to find an effective similarity threshold value for

clustering, which is often not a trivial task. In other words, without pre-defining a threshold

value, we can perform iterative co-clustering on the samples to identify the dominant row

groups. A similarity threshold for clustering can then be chosen in the range between the
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Figure 4.7: Co-clustering on the first dominant row group

Figure 4.8: Co-clustering on the first dominant row group (zoomed in)

Figure 4.9: Co-clustering on the remaining samples after excluding the first dominant row
groups
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Figure 4.10: Arranging the first and the second largest row groups

Figure 4.11: After 4th iterative co-clustering

Figure 4.12: After 4th iterative co-clustering (zoomed in)
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lowest similarity within the dominant row group and the highest similarity between the

dominant row group and the remaining group.

Iterative co-clustering also can be utilized to identify “components”. For example, as

shown in Figure 4.12, a large column group in the first dominant row group was divided

into several smaller column groups by adding the next iterative co-clustering results. The

smaller column groups could be meaningful feature groups or “components”.

4.5 Summary

In this chapter, we proposed novel techniques for performing semantic analysis using co-

clustering. While simultaneously clustering rows (samples) and columns (features), co-

clustering can extract semantic features between malware samples and families. The ex-

tracted features provide insight into the fundamental similarities and differences between

and within malware data sets.
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Chapter 5

Evolutionary Relationship Inference
Between Malware

Software lineage refers to the evolutionary relationship among a collection of software. The

goal of software lineage inference is to recover the lineage given a set of program binaries.

Software lineage can provide extremely useful information in many security scenarios, such

as malware triage and software vulnerability tracking.

In this chapter, we propose automatic lineage inference algorithms and metrics for the

systematic investigation of software lineage as described in Figure 5.1, and ask four basic

research questions:

1. Can we automatically infer software lineage? Previous research focused on study-

ing known software history and lineage [60, 108, 162], not creating lineage. Creating

lineage is different from building a dendrogram based upon similarity [84, 87, 105].

Straight(Line(Lineage DAG(Lineage

Section Size
File Size

n-grams
Cyclomatic Complexity

S/D Instructions
S/D Mnemonics
S/D Normalized Mnemonics
S/D Multi-resolution

Features 12

Released Binaries
Malware

Contiguous Revisions
Released Versions

Datasets 4

Symmetric Distance
Weighted Symmetric Distance
Dice Coefficient
Jaccard Distance
Jaccard Containment

Set Distances 5

Inferred Root
Real Root

Root Revision 2

Inversions
Edit Distance to Monotonicity

Metrics 2

S/D Multi-resolution
Features 2

DAG Revisions
Malware

Datasets 2

Inferred Root
Real Root

Root Revision 2

No Timestamp
Pseudo Timestamp
Real Timestamp

Timestamp 3 Avg Distance to True LCA

Graph Arc Edit Distance
Partial Order

k-Cone

LCA Mismatches
Metrics 5

Figure 5.1: Design space in software lineage inference (S/D represents static/dynamic
analysis-based features.)
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A dendrogram can be used to identify families, but it does not provide any informa-

tion about a temporal ordering, e.g., root identification.

In order to infer a temporal ordering and evolutionary relationships among programs,

we develop new algorithms to automatically infer lineage of programs for two types

of lineage: straight line lineage (§5.2.1) and directed acyclic graph (DAG) lineage

(§5.2.2). In addition, we extend our approach for straight line lineage to k-straight

line lineage (§5.2.1.4). We build ILINE to systematically evaluate the effectiveness

of our lineage inference algorithms using twelve software feature sets (§5.1.1), five

distance measures between feature sets (§5.1.2), two policies on the root identification

(§5.2.1.1), and three policies on the use of timestamps (§5.2.2.2).

Without any prior information about data sets, for straight line linage, the mean accu-

racies of ILINE are 95.8% for goodware and 97.8% for malware. For DAG lineage,

the mean accuracies are 84.0% for goodware and 72.0% for malware.

2. What are good metrics? Previous research focused on building a phylogenetic tree

of malware [84, 87], but did not provide quantitative metrics to scientifically measure

the quality of their output. Good metrics are necessary to quantify the quality of our

approach with respect to the ground truth. Good metrics also allow us to compare

different approaches.

To this end, we build IEVAL to assess our lineage inference algorithms using multiple

metrics, each of which represents a different perspective of lineage. IEVAL uses two

metrics for straight line lineage (§5.3.1). Given an inferred lineage graph G and the

ground truth G∗, the number of inversions measures how often we make a mistake

when answering the question, “Which program, pi or pj , comes first?” The edit

distance to monotonicity asks, “How many nodes do we need to remove in G so

that the remaining nodes are in the sorted order (and thus respect G∗)?” IEVAL

also utilizes five metrics to measure the accuracy of DAG lineage (§5.3.2): An LCA

mismatch is a generalized version of an inversion because the LCA of two nodes in

a straight line is the earlier node. We also measure the average pairwise distance

between true LCA(s) and derived LCA(s) in G∗. The partial order mismatches in

a DAG asks the same question as inversions in a straight line. The graph arc edit

distance for (labeled) graphs asks, “What is the minimum number of arcs we need

to delete from G and G∗ to make both graphs equivalent?” A k-Cone mismatch

asks, “How many nodes have the correct set of descendants counting up to depth

k?” Among the above seven metrics, we recommend two metrics—partial order
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mismatches and graph arc edit distance. In §5.3.3, we discuss how the metrics are

related, which metric is useful for measuring which aspect of a lineage graph, which

metric is efficient to compute, and which metric is deducible from other metrics.

3. How well are we doing now? We would like to understand the limits of our tech-

niques even in ideal cases, i.e., cases in which we have (i) control over the variables

affecting the compilation of programs, (ii) reliable feature extraction techniques to

abstract program binaries accurately and precisely, and (iii) the ground truth with

which we can compare our results to measure accuracy and to spot error cases. We

discuss the effectiveness of different feature sets and distance measures on lineage

inference in §5.5.4.

We argue that it is also necessary to systematically validate a lineage inference tech-

nique with “goodware”, e.g., open source projects. Since malware is often surrepti-

tiously developed by adversaries, it is typically difficult or even impossible to obtain

the ground truth. More fundamentally, we simply cannot hope to understand the evo-

lution of adversarial programs unless we first understand the limits of our approach

in our idealized setting.

We systematically evaluated ILINE with both goodware and malware for which we

have the ground truth on. For straight line lineage, we collected three kinds of good-

ware data sets and also used malware data sets: (i) contiguous revisions from a ver-

sion control system—371 revisions from 3 programs representing 4 years of com-

bined history, (ii) released versions distributed to end users—271 releases from 5

programs representing 55 years of combined history, (iii) actual released program

binaries from deb or rpm package files—355 releases from 7 programs represent-

ing 40 years of combined history, and (iv) malware data sets collected by the Cyber

Genome program—84 samples with known lineage in 7 clusters, which include bots,

worms, and Trojan horses. Regarding DAG lineage experiments, we downloaded re-

vision histories of goodware that have multiple branching and merging points—780

revisions from 10 programs representing 11 years of combined history. We also used

two malware families collected by the Cyber Genome program. Each family has a

DAG evolution history, and there are 30 samples in total.

4. What are the limitations? We investigate error cases in G constructed by ILINE

and highlight some of the difficult cases where ILINE failed to recover the correct

evolutionary relationships. Since some of our experiments are conducted on good-

ware with access to source code, we are able to pinpoint challenging issues that must
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be addressed before we can improve the accuracy in software lineage inference. We

discuss such challenging issues—including reverting/refactoring, root identification,

clustering, and feature extraction—in §5.5.5. This is important because we may not

be able to understand malware evolution without understanding the limits of our ap-

proach with goodware.

5.1 Fingerprinting for Lineage Inference

5.1.1 Binary Abstraction

In order to fingerprint software, we use three program analysis methods: syntax-based anal-

ysis, static analysis, and dynamic analysis as described in §2.1.1. Given a set of program

binaries P , various features fi are extracted from each pi ∈ P to evaluate different abstrac-

tions of program binaries. Source code or metadata such as comments, commit messages

or debugging information are not used as we are interested in results in security scenar-

ios where source code is not typically available, e.g., forensics, proprietary software, and

malware.

Using Previous Observations. Previous work analyzed software release histories to un-

derstand a software evolution process. It has often been observed that program size and

complexity tend to increase as new revisions are released [60, 99, 162]. This observation

also carries over to security scenarios, e.g., the complexity of malware is likely to grow as

new variants appear [44]. We measured code section size, file size, and code complexity to

assess how useful these features are in inferring lineage of program binaries.

• Section size: ILINE first identifies executable sections in binary code, e.g., .text

section, which contain executable program code, and calculates the size.

• File size: ILINE also calculates the file size, including code and data.

• Cyclomatic complexity: Cyclomatic complexity [111] is a common metric that in-

dicates code complexity by measuring the number of linearly independent paths.

From the control flow graph (CFG) of a program, the complexity M is defined as

M = E −N + 2P where E is the number of edges, N is the number of nodes, and

P is the number of connected components of the CFG.
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8b5dd485db750783c42c5b5e5dc383c42c5b5e5de9adf8ffff

(a) Byte sequence of program code

8b5dd485 5dd485db d485db75 85db7507 db750783

750783c4 0783c42c 83c42c5b c42c5b5e 2c5b5e5d

5b5e5dc3 5e5dc383 5dc383c4 c383c42c 5b5e5de9

5e5de91d 5de9adf8 e9adf8ff adf8ffff

(b) 4-grams

mov -0x2c(%ebp),%ebx;test %ebx,%ebx;jne 805e198

add $0x2c,%esp;pop %ebx;pop %esi;pop %ebp;ret

add $0x2c,%esp;pop %ebx;pop %esi;pop %ebp;jmp 805da50

(c) Disassembled instructions

mov mem,reg;test reg,reg;jne imm

add imm,reg;pop reg;pop reg;pop reg;ret

add imm,reg;pop reg;pop reg;pop reg;jmp imm

(d) Instructions mnemonics with operands type

mov mem,reg;test reg,reg;jcc imm

add imm,reg;pop reg;pop reg;pop reg;ret

add imm,reg;pop reg;pop reg;pop reg;jmp imm

(e) Normalized mnemonics with operands type

Figure 5.2: Example of feature extraction

Using Syntax-based Features.

• n-grams. ILINE slides a window of n bytes over the identified byte sequence of

program code to obtain n-grams.

Using Static Features. In our experiments, we employ normalization steps, e.g., nor-

malizing operands and/or instruction mnemonics. This was motivated by our observations

when we analyzed the error cases in the lineages constructed. Our results indicate that this

normalization notably improves lineage inference quality.

We also evaluate binary abstraction methods in an idealized setting in which we can de-

ploy reliable feature extraction techniques. The limitation with static analysis comes from

the difficulty of getting precise disassembly outputs from program binaries [96, 103]. In

order to exclude the errors introduced at the feature extraction step and focus on evaluating

the performance of software lineage inference algorithms, we also leverage assembly gen-

erated using gcc -S (not source code itself) to obtain basic blocks more accurately. Note

that we use this to simulate what the results would be with ideal disassembling, which is in

line with our goal of understanding the limits of the selected approaches.
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• Basic blocks comprising disassembly instructions: ILINE disassembles a binary

and identifies its basic blocks. Each feature is a sequence of instructions in a basic

block. For example, in Figure 5.2c, each line is a series of instructions in a basic

block, and each line is considered as an individual feature. This feature set is seman-

tically richer than n-grams.

• Basic blocks comprising instruction mnemonics: For each disassembled instruc-

tion, ILINE retains only its mnemonic and the types of its operands (immediate, reg-

ister, and memory). For example, add $0x2c, %esp is transformed into add

imm, reg in Figure 5.2d. By normalizing the operands, this feature set helps us to

mitigate errors from syntactical differences, e.g., changes in offsets and jump target

addresses, and register renaming.

• Basic blocks comprising normalized mnemonics: ILINE also normalizes mnemon-

ics. First, mnemonics for all conditional jumps, e.g., je, jne and jg, are normalized

into jcc because the same branching condition can be represented by flipped con-

ditional jumps. For example, program p1 uses cmp eax, 1; jz addr1 while

program p2 has cmp eax, 1; jnz addr2. Second, ILINE removes the nop

instruction.

Using Dynamic Features. For malware specifically, ILINE traces an execution using a

binary instrumentation tool and collects a set of instruction traces. As with static features,

ILINE also generates additional sets of features by normalizing operands and mnemonics.

Using Multi-resolution Features. Besides considering each feature set individually, ILINE

also utilizes multiple feature sets to benefit from normalized and specific features. Specifi-

cally, ILINE first uses the most normalized feature set to detect similar programs and grad-

ually employs less-normalized feature sets to distinguish highly similar programs. This

ensures that less similar programs (e.g., major version changes) will be connected only

after more similar programs (e.g., only changes of constant values) have been connected.

5.1.2 Distance Measures Between Feature Sets

When feature sets are extracted from programs, we can measure the distance between two

feature sets using various distance metrics as discussed in §2.2. To measure the distance

between two programs p1 and p2, ILINE uses the symmetric difference between their feature

sets, which captures both additions and deletions made between p1 and p2. Distance metrics
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other than symmetric distance may be used for lineage inference as well, e.g., the Dice

coefficient distance, the Jaccard distance, and the Jaccard containment distance can all be

used to calculate the dissimilarity between two sets.

Besides the four distance measures above, which are all symmetric, i.e., distance(f1, f2) =

distance(f2, f1), we also evaluated an asymmetric distance measure to determine the di-

rection of derivation between p1 and p2 using the weighted symmetric distance.

Our hypothesis is that additions and deletions should have different costs in a software

evolution process, and we should be able to infer the derivative direction between two pro-

grams more accurately using the weighted symmetric distance. For example, in many open

source projects and malware, code size usually grows over time [44, 162]. In other words,

addition of new code is preferred to deletion of existing code. Differentiating Cdel and

Cadd can help us to choose a direction of derivation. In this paper, we set Cdel = 2 and

Cadd = 1. (We leave the investigation of the effect of these values as future work.) Sup-

pose program pi has feature set fi = {m1,m2,m3}, and program pj contains feature set

fj = {m1,m2,m4,m5}. By introducing asymmetry, evolving from pi to pj has a distance

of 4 (deletion ofm3 and addition ofm4 andm5), while the opposite direction has a distance

of 5 (deletion of m4 and m5 and addition of m3). Since pi → pj has a smaller distance, we

conclude that it is the more plausible scenario.

In this chapter, we use SD as a representative distance metric when we explain our

lineage inference methods. We evaluated the effectiveness of all five distance measures on

inferring lineage using SD as a baseline (see §5.5.4). Regarding metric-based features, e.g.,

section size, we measure the distance between two samples as the difference of their metric

values.

5.2 ILINE Architecture

Our goal is to automatically infer the software lineage of program binaries. We build ILINE

to systematically explore the design space illustrated in Figure 5.1 to understand the advan-

tages and disadvantages of our algorithms for inferring software lineage. We applied our

algorithms to two types of lineage: straight line lineage (§5.2.1) and directed acyclic graph

(DAG) lineage (§5.2.2). In particular, this is motivated by the observation that there are two

common development models: serial/mainline development and parallel development. In

serial development, every developer makes a series of check-ins on a single branch; this

forms straight line lineage. In parallel development, several branches are created for differ-

ent tasks and are merged when needed, which results in DAG lineage.
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5.2.1 Straight Line Lineage

The first scenario that we have investigated is 1-straight line lineage, i.e., a program source

tree that has no branching/merging history. This is a common development history for

smaller programs. We have also extended our technique to handle multiple straight line

lineages (§5.2.1.4).

Software lineage inference in this setting is a problem of determining a temporal order-

ing. Given N unlabeled revisions of program p, the goal is to output label “1” for the 1st

revision, “2” for the 2nd revision, and so on. For example, if we are given 100 revisions

of program p and we have no timestamp of the revisions (or 100 revisions are randomly

permuted), we want to rearrange them in the correct order, from the 1st revision p1 to the

100th revision p100.

5.2.1.1 Identifying the Root Revision

In order to identify the root/first revision that has no parent in lineage, we explore two

different choices: (i) inferring the root/earliest revision, and (ii) using the real root revision

from the ground truth.

ILINE picks the root revision based on Lehman’s observation [99]. The revision that has

the minimum code complexity (the 2nd software evolution law) and the minimum size (the

6th software evolution law) is selected as the root revision. The hypothesis is that develop-

ers are likely to add more code to previous revisions instead of deleting other developers’

code, which can increase code complexity and/or code size. This is also reflected in security

scenarios, e.g., malware authors are also likely to add more modules to make it look differ-

ent to bypass anti-virus detection, which leads to higher code complexity [44]. In addition,

provenance information such as first seen date [50] and tool-chain components [141] can

be leveraged to infer the root.

We also evaluate ILINE with the real root revision given from the ground truth in case

the inferred root revision was not correct. By comparing the accuracy of the lineage with

the real root revision to the accuracy of the lineage with the inferred root revision, we can

assess the importance of identifying the correct root revision.

5.2.1.2 Inferring Order

From the selected root revision, ILINE greedily picks the closest revision in terms of the

symmetric distance as the next revision. Suppose that we have three contiguous revisions:

p1, p2, and p3. One hypothesis is SD(p1, p2) < SD(p1, p3), i.e., the symmetric distance
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between two adjacent revisions would be smaller. This hypothesis follows logically from

Lehman’s software evolution laws.

There may be cases in which the symmetric distance between two different pairs are

the same, i.e., a tie. Suppose SD(p1, p2) = SD(p1, p3). Then both p2 and p3 become

candidates for the next revision of p1. Using normalized features can cause more ties than

using specific features because of the information loss.

ILINE utilizes more specific features in order to break ties more correctly (see §5.1.1).

For example, if the symmetric distances using normalized mnemonics are the same, then the

symmetric distances using instruction mnemonics are used to break ties. ILINE gradually

reduces normalization strength to break ties.

5.2.1.3 Handling Outliers

As an optional step, ILINE handles outliers (if any) in our recovered ordering. Since ILINE

constructs lineage in a greedy way, if one revision is not selected, the revision may not be

selected until the very last round. To see this, suppose we have 5 revisions: p1, p2, p3, p4,

and p5. If ILINE falsely selects p3 as the next revision of p1 (p1 → p3) and SD(p3, p4) <

SD(p3, p2), then p4 will be chosen as the next revision (p1 → p3 → p4). p4 and p5 are

neighboring revisions; then it is likely that SD(p4, p5) < SD(p4, p2) and p5 will be selected

(p1 → p3 → p4 → p5). The probability of selecting p2 gets increasingly lower as more

revisions are added. At last p2 is added as the last revision (p1 → p3 → p4 → p5 → p2)

and becomes an outlier.

In order to handle such outliers, ILINE monitors the symmetric distance between every

adjacent pair in the constructed lineage G. Since the symmetric distance at an outlier is the

accumulation of changes from multiple revisions, it would be much larger than the differ-

ence between two contiguous revisions. (See Figure 5.10 for a real-life example.) ILINE

detects outliers by detecting peaks among the symmetric distances between consecutive

pairs by means of a user-configurable threshold.

Once an outlier r has been identified, ILINE eliminates it in two steps. First, ILINE

locates the revision y that has the minimum distance with r. Then, ILINE places r imme-

diately next to y, favoring the side with a gap that has a larger symmetric distance. In our

example, suppose p3 is the closest revision to p2. ILINE will compare SD(p1, p3) (before)

with SD(p3, p4) (after) and then insert p2 into the bigger of the two gaps. Therefore, in

the case when SD(p1, p3) is larger than SD(p3, p4), we will recover the correct lineage, i.e.,

p1 → p2 → p3 → p4 → p5.
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5.2.1.4 k-Straight Line Lineage

We consider k-straight line lineage where we have a mixed data set of k different programs

instead of a single program, and each program has straight line lineage.

For k-straight line lineage, ILINE first performs clustering on a given data set P to

group the same (similar) programs into the same cluster Pk ⊆ P . Programs are similar if

D(pi, pj) 5 t where D(·) means a distance measurement between two programs and t is

a distance threshold to be considered as a group. After we isolate distinct program groups

between each other, ILINE identifies the earliest revision p1k and infers straight line lineage

for each program group Pk using the straight line lineage method. We denote the r-th revi-

sion of the program k as prk. One caveat with the use of clustering as a preprocessing step

is that more precise clustering may require reliable “components” extraction from program

binaries, which is out of our scope.

Given a collection of programs and revisions, previous work shows that clustering can

effectively separate them [69, 75, 165, 167]. ILINE uses hierarchical clustering because

the number of variants k is not determined in advance. Other clustering methods like k-

means clustering require that k is set at the beginning. ILINE groups two programs if

JD(f1, f2) 5 t where t is a distance threshold (0 5 t 5 1). In order to determine an

appropriate distance threshold t, we explore the entire range of t and find the value where

the resulting number of clusters becomes stable (see Figure 5.7 for an example).

5.2.2 Directed Acyclic Graph Lineage

The second scenario we studied is directed acyclic graph (DAG) lineage. This generalizes

straight line lineage to include branching and merging histories. Branching and merging are

common in large-scale software development because branches allow developers to modify

and test code without affecting others.

In a lineage graph G, branching is represented by a node with more than one outgoing

arc, i.e., a revision with multiple children. Merging is denoted by a node with more than

one incoming arc, i.e., a revision with multiple parents.

5.2.2.1 Identifying the Root Revision

In order to identify the root revision in lineage, we explore two different choices: (i) infer-

ring the root/earliest revision and (ii) using the real root revision from the ground truth as

discussed in §5.2.1.1.
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5.2.2.2 Building Spanning Tree Lineage

ILINE builds (directed) spanning tree lineage by greedy selection. This step is similar to the

ordering recovery step of the straight line lineage method. In order to recover an ordering,

ILINE only allows the last revision in the recovered lineage G to have an outgoing arc so

that the lineage graph becomes a straight line. For DAG lineage, however, ILINE allows

all revisions in the recovered lineage G to have an outgoing arc so that a revision can have

multiple children.

For example, given three revisions p1, p2, and p3, if p1 is selected as a root and

SD(p1, p2) < SD(p1, p3), then ILINE connects p1 and p2 (p1 → p2). If SD(p1, p3) <

SD(p2, p3) holds, p1 will have another child p3 and a lineage graph will look like the fol-

lowing:

p1

p2 p3

We evaluate three different policies on the use of a timestamp in DAG lineage: no

timestamp, the pseudo timestamp from the recovered straight line lineage, and the real

timestamp from the ground truth. Without a timestamp, the revision pj to be added to G is

determined by the minimum symmetric distance min{SD(pi, pj) : pi ∈ N̂ , pj ∈ N̂ c}where

N̂ ⊆ N represents a set of nodes already inserted into G, N̂ c denotes a complement of N̂ ,

and an arc (pi, pj) is added. However, with the use of a timestamp, the revision pj ∈ N̂ c

to be inserted is determined by the earliest timestamp, and an arc is drawn based on the

minimum symmetric distance. In other words, we insert nodes in the order of timestamps.

5.2.2.3 Adding Non-Tree Arcs

While building (directed) spanning tree lineage, ILINE identifies branching points by al-

lowing the revisions pi ∈ N̂ to have more than one outgoing arc—revisions with multiple

children. In order to pinpoint merging points, ILINE adds non-tree arcs (also known as

cross arcs) to spanning tree lineage.

For every non-root node pi, ILINE identifies a unique feature set ui that does not come

from its parent pj , i.e., ui = {x : x ∈ f i and x 6∈ f j}. Then ILINE identifies possible

parents pk ∈ N as follows:

i) if real/pseudo timestamps are given, pk with earlier timestamps than the timestamp

of pi
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ii) if symmetric distance measures such as SD, DC, JD, and JC are used, non-ancestors

pk added to G before pi

iii) and if the asymmetric distance measure WSD is used, non-ancestors pk satisfying

WSD(pk, pi) < WSD(pi, pk).

Among the identified possible parents pk, if ui and fk extracted from pk have common

features, then ILINE adds a non-tree arc from pk to pi. Consequently, pi becomes a merging

point of pj and pk and a lineage graph looks like the following:

pj pk

pi

After adding non-tree arcs, ILINE outputs DAG lineage showing both branching and merg-

ing.

5.3 IEVAL Architecture

We build IEVAL to scientifically measure the quality of our constructed lineage with respect

to the ground truth.

5.3.1 Straight Line Lineage

We use dates of commit histories and version numbers as the ground truth of ordering

G∗ = (N,A∗) and compare the recovered ordering by ILINE G = (N,A) with the ground

truth to measure how close G is to G∗.

IEVAL measures the accuracy of the constructed lineage graph G using two metrics:

number of inversions and edit distance to monotonicity (EDTM). An inversion happens if

ILINE gives a wrong ordering for a chosen pair of revisions. The total number of inversions

is the number of wrong orderings for all
(|N |

2

)
pairs. The EDTM is the minimum number of

revisions that need to be removed for the remaining nodes in the lineage graph G to be in

the correct order. The longest increasing subsequence (LIS) can be computed in G, which

is the longest (not necessarily contiguous) subsequence in the sorted order. Then the EDTM

is calculated by |N | − |LIS|, which depicts how many nodes are misplaced in G.

For example, we have 5 revisions of a program and ILINE outputs lineage 1 in Fig-

ure 5.3a and lineage 2 in Figure 5.3b. Lineage 1 has 1 inversion (a pair of p3 − p2) and 1

EDTM (delete p2). Lineage 2 has 3 inversions (p3− p2, p4− p2, and p5− p2) and 1 EDTM
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p1 p3 p2 p4 p5

(a) Lineage 1

p1 p3 p4 p5 p2

(b) Lineage 2

Figure 5.3: Inversions and edit distance to monotonicity

(delete p2). As shown in both cases, the number of inversions can be different even when

the EDTM is the same.

5.3.2 Directed Acyclic Graph Lineage

We evaluate the practical use of five metrics for measuring the accuracy of the constructed

DAG lineage: number of LCA mismatches, average pairwise distance to true LCA, partial

order mismatches, graph arc edit distance, and k-Cone mismatches.

p1

p2 p3

p4 p5

p6 p7

Figure 5.4: Lowest common ancestors

We define SLCA(x, y) to be the set of LCAs of x and y because there can be multiple

LCAs. For example, in Figure 5.4, SLCA(p4, p5) = {p2, p3}, while SLCA(p6, p7) = {p4}.
Given SLCA(x, y) in G and the true SLCA∗(x, y) in G∗, we can evaluate the correct LCA

score of (x, y) L(SLCA(x, y), SLCA∗(x, y)) in the following four ways:

i) 1 point (correct) if SLCA(x, y) = SLCA∗(x, y)

ii) 1 point (correct) if SLCA(x, y) ⊆ SLCA∗(x, y)

iii) 1 point (correct) if SLCA(x, y) ⊇ SLCA∗(x, y)

iv) 1− JD(SLCA(x, y), SLCA∗(x, y)) point

Then the number of LCA mismatches is

|N ×N | −
∑

(x,y)∈N×N

L(SLCA(x, y), SLCA∗(x, y)).
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The 1st policy is sound and complete, i.e., we only consider an exact match of SLCA.

However, even small errors can lead to a large number of LCA mismatches. The 2nd policy

is sound, i.e., every node in SLCA is indeed a true LCA (no false positive). Nonetheless,

including any extra node will result in a mismatch. The 3rd policy is complete, i.e., SLCA

must contain all true LCAs (no false negative). However, missing any true LCA will result

in a mismatch. The 4th policy uses the Jaccard distance to measure dissimilarity between

SLCA and SLCA∗. In our evaluation, ILINE follows the 4th policy since it allows us to attain

a more fine-grained measure.

We also measure the distance between the true LCA(s) and reported LCA(s). For ex-

ample, if ILINE falsely reports p5 as an LCA of p6 and p7 in Figure 5.4, then the pairwise

distance to the true LCA is 2 (=distance between p4 and p5). Formally, let D(u, v) rep-

resent the distance between nodes u and v in the ground truth G∗. Given SLCA(x, y) and

SLCA∗(x, y), we define the pairwise distance to true LCA T (SLCA(x, y), SLCA∗(x, y)) to

be ∑
(l,l∗)∈SLCA(x,y)×SLCA∗(x,y)

D(l, l∗)

|SLCA(x, y)× SLCA∗(x, y)|

and the average pairwise distance to true LCA to be

∑
(x,y)∈N×N

T (SLCA(x, y), SLCA∗(x, y))

|N ×N |
.

A partial order (PO) of x and y identifies which one of x and y comes first: either x or y,

or they are incomparable if they are not each other’s ancestors. For example, in Figure 5.4,

the PO of p3 and p7 is p3, while the PO of p6 and p7 is incomparable. The total number of

PO mismatches is the number of wrong orderings for all
(|N |

2

)
pairs.

A graph arc edit distance (GAED) measures how many arcs need to be deleted from

G and G∗ to make both G and G∗ identical. For every node x, we calculate E(x) =

SD(Adj(x), Adj∗(x)) where Adj(x) and Adj∗(x) denote the adjacency list of x in G and

G∗ respectively. Then GAED becomes
∑

x∈N E(x).

We define k-CONE(x) to be the set of descendants within depth k from node x. For ex-

ample, in Figure 5.4, 2-CONE of p1 is {p2, p3, p4, p5}. Then given the k-CONE(x) in G and

the true k-CONE∗(x) in G∗, we can evaluate the correct k-CONE score of x R(k-CONE(x))

using four different types of set comparisons: an exact match, a subset match, a superset

match, or the Jaccard index. In our evaluation, ILINE used the Jaccard index for a more
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SPECIAL CASE← · · · · · · · · · · · · · · · → GENERAL CASE
Property measured

Straight Line DAG

Inversions PO SLCA Order/Topology
EDTM GAED Misplaced nodes/arcs

k-Cone Descendants within depth k

Table 5.1: Relationships among metrics

fine-grained measure. Then the number of k-CONE mismatches is

|N | −
∑
x∈N

R(k-CONE(x)).

With smaller k, we can measure the accuracy of nearest descendants.

5.3.3 Relationships among Metrics

Table 5.1 shows the relationships among different metrics and a property measured by each

metric. A PO mismatch is a special case of an LCA mismatch because when x and y are in

different branches, an LCA mismatch measures the accuracy of SLCA while a PO mismatch

just says that two nodes are incomparable. An inversion is also a special case of an LCA

mismatch because querying the LCA of x and y in a straight line is the same as asking

which one of x and y comes first. Essentially, a PO mismatch in a DAG is equal to an

inversion in a straight line.

EDTM is a special case of GAED and an upper bound of GAED in a straight line is

GAED ≤ EDTM×6. One misplaced node can cause up to six arcs errors. For example,

p1 → p2 → p4 → p3 → p5 has 1 EDTM (delete p3 or p4) and 6 GAED (delete p2 → p4,

p4 → p3, and p3 → p5 in G and p2 → p3, p3 → p4, and p4 → p5 in G∗).

A k-Cone mismatch is a local metric to assess the correctness of nearest descendants of

nodes while the other six metrics are global metrics to evaluate the correctness of the order

of nodes and to count out-of-place nodes/arcs.

What are good metrics? We recommend two metrics among the seven: partial order

mismatches and graph arc edit distance. PO mismatches and GAED are both desirable

because they evaluate different properties of lineage and are not deducible from each other.

Observe that PO mismatches and SLCA mismatches measure the same property of

lineage and have similar accuracy results in our evaluation. However, it is more efficient to
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compute PO mismatches than SLCA mismatches. Moreover, PO gives an answer for a more

intuitive question: “Which one of these two programs comes first?” Thus PO mismatches

are preferred. Average distance to true LCA is supplementary to SLCA mismatches and so

this metric is not necessary if we exclude SLCA mismatches. The number of inversions and

edit distance to monotonicity can be respectively seen as special cases of PO mismatches

and GAED in the case of straight line lineages. k-Cone mismatches can be extremely

useful to an analyst during manual analysis, but it can be difficult to pick the right value of

k automatically.

5.4 Implementation

ILINE is implemented using C (2.5 KLoC) and IDAPython plugin (100 LoC). We use the

IDA Pro disassembler1 to disassemble binary programs and to identify basic blocks. As

discussed in §5.1.1, gcc -S output is used to compensate for the errors introduced at

the disassembling step. We utilize Cuckoo Sandbox2 to monitor native functions, API

calls, and network activities of malware. On top of Cuckoo Sandbox, we use malwasm3

with pintool4, which allows us to obtain more fine-grained, instruction-level traces. Since

some kinds of malicious activities require “live” connections, we also employ INetSim5

to simulate various network services, e.g., web, email, DNS, FTP, IRC, and so on. For

example, BlasterWorm in our data set sent exploit packets and propagated itself via TFTP

only when there were (simulated) live vulnerable hosts.

For scalability reasons, we encode extracted features into bit vectors using the fea-

ture hashing technique as described in §3.1. Feature hashing allows to represent high-

dimensional feature sets as cache-friendly bit vectors. For example, let bv1 and bv2 denote

two bit vectors generated from f1 and f2 using feature hashing. Then the symmetric dis-

tance in Equation 2.1 can be calculated efficiently by:

SDbv(bv1, bv2) = S(bv1 ⊗ bv2) (5.1)

where ⊗ denotes bitwise-XOR and S(·) means the number of bits set to one. The use of

fast bitwise operations on bit vectors instead of slow set operations allows ILINE to perform

1http://www.hex-rays.com/products/ida/index.shtml
2http://cuckoosandbox.org/
3http://code.google.com/p/malwasm/
4http://software.intel.com/en-us/articles/pintool
5http://www.inetsim.org/
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Figure 5.5: Software lineage inference overview

experiments with a number of variables quickly.

5.5 Evaluation

As depicted in Figure 5.5, we systematically evaluated our lineage inference algorithms

using (i) ILINE to explore all of the design spaces described in Figure 5.1 with a variety of

data sets and (ii) IEVAL to measure the accuracy of our outputs with respect to the ground

truth.

5.5.1 Straight Line Lineage

Data sets. For straight line lineage experiments, we collected three different kinds of

goodware data sets, e.g., contiguous revisions, released versions, and actual release binaries,

and malware data sets.

i) Contiguous Revisions. Using a commit history from a version control system, e.g.,

subversion and git, we downloaded contiguous revisions of a program. The

time gap between two adjacent commits varies considerably, from less than 10 min-

utes to more than a month. We excluded some revisions that only changed comments

because they did not affect the resulting program binaries.

Programs # revisions First rev Last rev Period
memcached 124 2008-10-14 2012-02-02 3.3 yr

redis 158 2011-09-29 2012-03-28 0.5 yr
redislite 89 2011-06-02 2012-01-18 0.6 yr

Table 5.2: Data sets of contiguous revisions

In order to set up idealized experiment environments, we compiled every revision

with the same compiler and the same compiling options. We excluded variations that

could come from the use of different compilers.
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ii) Released Versions. We downloaded only released versions of a program meant to be

distributed to end users. For example, subversionmaintains them under the tags

folder. The difference with contiguous revisions is that they may have program bugs

(committed before testing) or experimental functionalities that would be excluded in

released versions. In other words, released versions are more controlled data sets.

We compiled source code with the same compiler and the same compiling options

for ideal settings.

Programs #
releases

First release Last release
Period

Ver Date Ver Date
grep 19 2.0 1993-05-22 2.11 2012-03-02 18.8 yr
nano 114 0.7.4 2000-01-09 2.3.1 2011-05-10 11.3 yr
redis 48 1.0 2009-09-03 2.4.10 2012-03-30 2.6 yr

sendmail 38 8.10.0 2000-03-03 8.14.5 2011-05-15 11.2 yr
openssh 52 2.0.0 2000-05-02 5.9p1 2011-09-06 11.4 yr

Table 5.3: Data sets of released versions

iii) Actual Release Binaries. We collected binary files (not source code) of released

versions from rpm or deb package files.

Programs #
files

First release Last release
Period

Ver Date Ver Date
grep 37 2.0-3 2009-08-02 2.11-3 2012-04-17 2.7 yr
nano 69 0.7.9-1 2000-01-24 2.2.6-1 2010-11-22 10.8 yr
redis 39 0.094-1 2009-05-06 2.4.9-1 2012-03-26 2.9 yr

sendmail 41 8.13.3-6 2005-03-12 8.14.4-2 2011-04-21 6.1 yr
openssh 75 3.9p1-2 2005-03-12 5.9p1-5 2012-04-02 7.1 yr

FileZilla 62 3.0.0 2007-09-13 3.5.3 2012-01-08 4.3 yr
p7zip 32 0.91 2004-08-21 9.20.1 2011-03-16 6.6 yr

Table 5.4: Data sets of actual release binaries

The difference with contiguous revisions and released versions is that we did not have

any control over the compiling process of the program, i.e., different programs may

be compiled with different versions of compilers and/or optimization options. This

data set is representative of real-world scenarios in which we lack information about

development environments.

iv) Malware: We used 84 samples with known lineage collected by the Cyber Genome
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Figure 5.6: File size and complexity for contiguous revisions

program. The data set includes bots, worms, and Trojan horses and contains 7 clus-

ters.

Cluster # samples Family Cluster # samples Family
MC1 10 KBot MC5 10 CleanRoom.B
MC2 17 BlasterWorm MC6 15 MiniPanzer.B
MC3 15 MiniPanzer.A MC7 10 CleanRoom.C
MC4 7 CleanRoom.A

Table 5.5: Data sets of malware

Results. To determine which features provide the best lineage graph with respect to the

ground truth, we evaluated different feature sets on diverse data sets.

Mean accuracy with the inferred root Mean accuracy with the real root

Distance Metric Features Inversion Accuracy ED Inversion Accuracy ED

SD

Multi

95.8% 8.6 98.4% 6.0
WSD 95.4% 9.0 98.1% 6.7
DC 93.7% 9.7 97.1% 8.4
JD 93.7% 9.7 97.1% 8.4
JC 93.0% 12.2 97.1% 9.1

Table 5.6: Mean accuracy for straight line lineage on goodware

i) Contiguous Revisions: In order to identify the first revision of each program, we

measured the code complexity and code size of every revision. As shown in Fig-

ure 5.6, both file size and cyclomatic complexity generally increased as new revisions

were released. For these three data sets, selecting the revision that had the minimum

file size and cyclomatic complexity correctly identified the first revisions.
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A lineage for each program was constructed as described in §5.2.1. Although sec-

tion and file size achieved high accuracies, e.g., 95.5%–99.5%, these are not reliable

features because many ties can decrease or increase the accuracies depending on ran-

dom guesses. n-grams over byte sequences generally achieved better accuracies with

an exception of 2-grams (small size of n). In our experiments, n=4 bytes worked

reasonably well for these three data sets.

The use of disassembly instructions had up to 5% inversion error in redislite.

Most errors came from syntactical differences, e.g., changes in offsets and jump target

addresses. After normalizing operands, instruction mnemonics with operands types

decreased the errors substantially, e.g., from 5% to 0.4%. With additional normal-

ization, normalized instruction mnemonics with operands types achieved the same or

better accuracies. Note that more normalized features can result in better or worse

accuracies because there may be more ties where random guesses are involved.

In order to break ties, more specific features were used in multi-resolution features.

For example, all 10 tie cases in memcached were correctly resolved by using more

specific features. This demonstrates the effectiveness of using multi-resolution fea-

tures for breaking ties.

ii) Released Versions: By selecting the revision that had the minimum code size, we

correctly identified the first/root revisions. In some cases, simple feature sets, e.g.,

section/file size, could achieve higher accuracies than semantically rich feature sets

(i.e., those requiring more expensive processes), such as instruction sequences. For

example, ILINE with section size yielded 88.3% accuracy, while ILINE with instruc-

tions achieved 77.8% accuracy in grep. ILINE with instructions, however, was im-

proved to 100% with normalization. Like the experiments on contiguous revisions, 2-

grams performed worse in the experiments on released versions, e.g., 18.9% accuracy

in sendmail. Among various feature sets, multi-resolution features outperformed

the other feature sets, e.g., 99.3%–100%.

iii) Actual Release Binaries: Selecting the revision that had the minimum code size

correctly identified the first/root revisions for nano and openssh. For the other

five data sets, we performed the experiments with both the incorrect inferred root and

the correct root given from the ground truth.

Overall accuracy of the constructed lineage was fairly high across all the data sets,

even though we did not control the variables of the compiling process, e.g., 83.3%–
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99.8% accuracy with the correct root. One possible explanation is that closer revi-

sions (developed around the same time) might be compiled with the same version

of compiler (available around the same time), which can make neighboring revisions

look related to each other at the binary code level.

It was confirmed that lineage inference can be improved with the knowledge of the

correct root. For example, ILINE picked an incorrect revision as the first revision in

FileZilla, which resulted in 51.6% accuracy; the accuracy increased to 99.8%

with the correct root revision.

Mean accuracy with the inferred root (=real root)

Distance Metric Features Inversion Accuracy ED

SD

Static
Multi

97.8% 0.9
WSD 94.2% 1.3
DC 98.2% 0.9
JD 98.2% 0.9
JC 84.3% 3.1

SD

Dynamic
Multi

86.7% 2.6
WSD 80.0% 2.9
DC 85.5% 2.9
JD 85.5% 2.9
JC 70.9% 4.1

Table 5.7: Mean accuracy for straight line lineage on malware

iv) Malware: Selecting the sample that had the minimum code size correctly identified

the first/root samples for all seven clusters. Section size achieved high accuracies,

e.g., 93.3–100%, which showed that new variants were likely to add more code to

previous malware. File size was not a good feature to infer a lineage of MC2 because

all samples in MC2 had the same file size. The multi-resolution feature yielded 94.9–

100% accuracy.

Dynamic instrumentations at the instruction level enabled us to catch minor updates

between two adjacent variants. For example, subsequent BlasterWorm samples add

more checks for virtual environments to hide their malicious activities if they are be-

ing monitored, e.g., examining user names (sandbox, vmware, honey), running pro-

cesses (VBoxService.exe, joeboxserver.exe), and current file names (C:\sample.exe).

Dynamic feature sets yielded worse accuracy in MC1, MC2, MC3, MC5, and

MC6 while achieving the same accuracy in MC4 and better accuracy in MC7. One

key reason for the differences in accuracy is that dynamic analysis followed a spe-
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Figure 5.7: Clustering mixed data sets of 2 and 3 programs

cific execution path depending on the context. In MC2, for example, some variants

exited immediately when they detected a VirtualBox service process and produced

limited execution traces.

v) k-Straight Line Lineage: We evaluated ILINE on mixed data sets, including k differ-

ent programs. For 2-straight line lineage, we mixed memcached and redislite

because both programs had the same functionality and similar code section sizes.

Figure 5.7 shows the resulting number of clusters with various distance threshold

values. From 0.2 to 0.5 distance threshold, the resulting number of clusters was 2.

This means that ILINE can first perform clustering to divide the data set into two

groups, then build a straight line lineage for each group. The resulting number of

clusters of the mixed data set—memcached, redislite, and redis—became

stabilized to 3 from 0.2 to 0.5 distance threshold; this means they were successfully

clustered for the subsequent straight-line lineage building process.

We also evaluated ILINE on three mixed malware data sets, each of which is a

combination of the different clusters in Table 5.5: {MC2+MC5}, {MC4+MC6}, and

{MC2+MC3+MC7}. For each mixed data set, ILINE also clustered malware samples

correctly for the subsequent straight line lineage inference. We discuss inferring lin-

eage on incorrect clusters in §5.5.5.

5.5.2 Directed Acyclic Graph Lineage

Data sets. For DAG lineage experiments, we evaluated ILINE on both goodware and

malware.
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i) Goodware. We collected 10 data sets for directed acyclic graph lineage experiments

from github6. We used github because we knew when a project was forked from a

network graph showing the development history as a graph including branching and

merging.

We downloaded DAG revisions that had multiple branching and merging histories

and compiled them with the same compilers and optimization options.

Programs # revisions First rev Last rev Period
http-parser 55 2010-11-05 2012-07-27 1.7 yr

libgit2 61 2012-06-25 2012-07-17 0.1 yr
redis 98 2010-04-29 2010-06-04 0.1 yr

redislite 97 2011-04-19 2011-06-12 0.1 yr
shell-fm 107 2008-10-01 2012-06-26 3.7 yr

stud 73 2011-06-09 2012-06-01 1.0 yr
tig 58 2006-06-06 2007-06-19 1.0 yr

uzbl 73 2011-08-07 2012-07-01 0.9 yr
webdis 96 2011-01-01 2012-07-20 1.6 yr
yajl 62 2010-07-21 2011-12-19 1.4 yr

Table 5.8: Goodware data sets for DAG lineage

ii) Malware. We used two malware families with known DAG lineage collected by the

Cyber Genome program. They contain 30 samples in total.

Cluster # samples Family
MC8 21 WormBot
MC9 9 MinBot

Table 5.9: Malware data sets for DAG lineage

Results. We set two policies for DAG lineage experiments: the use of timestamp (none/pseu-

do/real) and the use of the real root (none/real). The real timestamp implied the real root so

that we explored 3 × 2 − 1 = 5 different setups. We used multi-resolution feature sets for

DAG lineage experiments because multi-resolution feature sets attained the best accuracy

in constructing straight line lineage.

6https://github.com/
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Mean accuracy with no prior information Mean accuracy with real timestamp

Distance Metric Features PO Accuracy GAED PO Accuracy GAED

SD

Multi

84.0% 52.4 91.1% 20.3
WSD 82.6% 57.3 90.0% 23.0
DC 83.8% 56.1 91.1% 20.0
JD 83.8% 56.1 91.1% 20.0
JC 74.5% 90.0 90.6% 35.0

Table 5.10: Mean accuracy for DAG lineage on goodware

i) Goodware. Without having any prior knowledge, ILINE achieved 71.5%–94.1% PO

accuracies. By using the real root revision, ILINE increased accuracies to 71.5%–

96.1%. For example, in case of tig, ILINE gained about 20% accuracy.

With pseudo timestamps, accuracies were low for most of the data sets, even with the

real root revisions, e.g., 64.0%–90.9% (see §5.5.4). By using the real timestamps,

ILINE achieved higher accuracies of 84.1%–96.7%. This means that the recovered

DAG lineages were very close to the true DAG lineages.

Mean accuracy with no prior information Mean accuracy with real timestamp

Distance Metric Features PO Accuracy GAED PO Accuracy GAED

SD

Static
Multi

69.5% 8.5 87.0% 6.0
WSD 72.0% 8.5 90.2% 5.5
DC 69.5% 8.5 87.0% 6.0
JD 69.5% 8.5 87.0% 6.0
JC 50.8% 19.5 86.6% 9.5

SD

Dynamic
Multi

61.4% 17.0 70.3% 13.0
WSD 62.2% 17.0 76.4% 12.5
DC 59.8% 19.0 72.8% 12.5
JD 59.8% 19.0 72.8% 12.5
JC 55.3% 17.5 72.8% 12.5

Table 5.11: Mean accuracy for DAG lineage on malware

ii) Malware. ILINE achieved 68.6%–75.0% accuracies without any prior knowledge.

Using the correct timestamps, the accuracies notably increased to 86.2%–91.7%.

While we obtained the real timestamps from the ground truth in our experiments,

we can also leverage the first-seen date of malware, e.g., Symantec’s Worldwide In-

telligence Network Environment [50].

With dynamic features, ILINE achieved 59.0%–75.0% accuracies without any prior

knowledge, and 68.6%–80.6% accuracies with real timestamps, which is a bit lower
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than the accuracies based on static features.

5.5.3 Performance

Given N binaries with their features already extracted, the complexity of constructing lin-

eage is O(N2) due to the computation of the
(|N |

2

)
pairwise distances. To give concrete

values, we measured the time to construct lineage with multi-resolution features, SD, and 32

KB of bit vectors on a Linux 3.2.0 machine with a 3.40 GHz i7 CPU utilizing a single core.

Depending on the size of the data sets, it took 0.002–1.431s for straight line lineage and

0.005–0.385s for DAG lineage with the help of feature hashing. On average, this translates

to 146 samples per second and 180 samples per second for straight line lineage and DAG

lineage, respectively. As a comparison, our BitShred malware clustering system [75]—

which was state of the art at the time of its publication in 2011—can process 257 samples

per second using a single core on the same machine. Since the running times of malware

clustering and lineage inference are both dominated by distance comparisons, and since

ILINE needs to resolve ties using multi-resolution features whereas BitShred does not, we

conclude that our current implementation of ILINE is competitive in terms of performance.

5.5.4 Discussion & Findings

Features. File and section size features yielded 94.6–95.5% mean accuracy in straight

line lineage on goodware. Such high accuracy supports Lehman’s laws of software evolu-

tion, e.g., continuing growth. However, size is not a reliable feature for inferring malware

lineage when malware authors are able to obfuscate a feature, e.g., samples with the same

file size in MC2. As simple syntactic features, 4-, 8-, 16-grams achieved 95.3–96.3% mean

accuracy in straight line lineage on goodware, whereas 2-grams achieved only 82.4% mean

accuracy. This is because 2-grams are not distinctive enough to differentiate between sam-

ples and cause too many ties. Basic blocks as semantic features achieved 94.0–95.6% mean

accuracy in straight line lineage on goodware. This slightly lower (when compared to n-

grams) accuracy was due to ties. Multi-resolution features performed the best, achieving

95.8–98.4% mean accuracy in straight line lineage on goodware. This is due to their use of

both syntactic and semantic features.

Distance Metrics. Our evaluation indicates that our lineage inference algorithms per-

form similarly regardless of distance metrics except for the Jaccard containment (JC) dis-

tance. JC turns out to be inappropriate for lineage inference because it cannot capture
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(a) Ground truth
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(b) Constructed lineage with the use of pseudo timestamps

Figure 5.8: Error caused by pseudo timestamps in uzbl

evolutionary changes effectively. Suppose that there are three contiguous revisions p1,

p2, and p3. p2 adds 10 lines of code to p1 and p3 adds 10 lines of code to p2. Then

JC(p1, p2) = JC(p1, p3) = JC(p2, p3) = 0 because one revision is a subset of another re-

vision. Such ties result in low accuracy. For example, JC yielded 74.5% mean accuracy,

whereas SD yielded 84.0% mean accuracy in DAG lineage on goodware.

Pseudo Timestamp. ILINE computes pseudo timestamps by first building a straight line

lineage and then use the recovered ordering as timestamps. Since ILINE achieved fairly

high accuracy in straight line lineage, at first we expected this approach to do well in DAG

lineage. To our initial surprise, ILINE with pseudo timestamps actually performed worse.

In retrospect, we observed that since each branch had been developed separately, it was

challenging to determine the precise ordering between samples from different branches. For

example, Figure 5.8 shows the partial ground truth and the constructed lineage by ILINE for

uzbl with pseudo timestamps. Although ILINE without pseudo timestamps successfully

recovered the ground truth lineage, the use of pseudo timestamps resulted in poor perfor-

mance. The recovered ordering (i.e., pseudo timestamps) was p22, p40, p41, p42, p43, p23,

p29, p30, p35, p36. Due to the imprecise timestamps, the derivative relationships in the con-

structed lineage were not accurate.

Revision History vs. Release Date. Correct software lineage inference on a revision his-

tory may not correspond with software release date lineage. For example, Figure 5.9 shows

the accumulated symmetric distance between two neighboring releases where a develop-

ment branch of nano-1.3 and a stable branch of nano-1.2 are developed in parallel.

ILINE infers software lineage consistent with a revision history.
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Figure 5.9: Development history of nano

Threats to Validity. Our malware experiments were performed on a relatively small data

set because of difficulties in obtaining the ground truth. Although it is difficult to indicate a

representative of modern malware due to its surreptitious nature, we evaluated our methods

on common malware categories such as bots, worms, and Trojan horses. To the best of our

knowledge, we are the first to take a systematic approach towards software lineage inference

to provide scientific evidence instead of speculative remarks.

5.5.5 Limitations

Reverting and Refactoring. Regression of code is a challenging problem in software

lineage inference. A revision that adds new functionalities is sometimes followed by sta-

bilizing phases, including bug fixes. Bug fixes might be performed by reverting to the

previous revision, i.e., undoing the modifications of the code.

Some revisions can become outliers because of ILINE’s greedy construction and issues

with reverting and refactoring. In §5.2.1.3, we proposed a technique to detect and process

outliers by looking for peaks of the distance between two contiguous revisions. For exam-

ple, ILINE had 70 inversions and 1 EDTM for the contiguous revisions of memcached.

The error came from the 53rd revision that was incorrectly located at the end of the lineage.

Figure 5.10 shows the symmetric distance between two adjacent revisions in the recovered

lineage before we processed outliers. The outlier caused an exceptional peak of the sym-

metric distance at the rightmost side of Figure 5.10. ILINE identified such possible outliers

by looking for peaks, then generated the perfect lineage of memcached after handling the

outlier.

There can also be false positives among detected outliers, i.e., a peak is identified even
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Figure 5.10: An outlier in memcached

if revisions are in the correct order. For example, a peak can be identified between two

contiguous revisions when there is a huge update, such as a major version change. However,

such false positives do not affect the overall accuracy of ILINE because the original (correct)

position will be chosen again when minimizing the overall distance.

Although our technique improves lineage inference, it may not be able to resolve every

case. Unless we design a precise model describing the developers’ reverting and refactoring

activity, no reasonable algorithm may be able to recover the same lineage as the ground

truth. Rather, the constructed lineage can be considered as a more practical and pragmatic

representation of the truth.

Root Identification. It is challenging to identify the correct roots of data sets when we

do not have any knowledge about the compilation process. ILINE successfully identified

the correct roots based upon code size and complexity in all data sets except for some

data sets of actual release binaries. This shows that Lehman’s laws of software evolution

are generally applicable to root identification, but with a caveat. For example, with actual

release binaries data sets, ILINE achieved 77.8% mean accuracy with the inferred roots.

The accuracy increased to 91.8% with the knowledge of the correct first revision.

In order to improve lineage inference, we can leverage the “first-seen” date of malware,

e.g., Symantec’s Worldwide Intelligence Network Environment [50] or tool-chain prove-

nance, such as compilers and compilation options [141].

Clustering. Clustering may not be able to group programs accurately due to noise or

algorithmic limitations. In order to simulate cases where clustering failed, we mixed bi-
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Figure 5.11: Recovered ordering of mixed data set

naries from seven programs including memcached, redis, redislite, grep, nano,

sendmail, and openssh into one set and ran our lineage inference algorithm on it. As

shown in Figure 5.11, revisions from each program group are located next to each other in

the recovered order (each program is marked in a different color). This shows that ILINE

can identify close relationships within the same program group even with high noise in a

data set. There are multiple intra-program gaps and inter-program gaps. Relatively large

intra-program gaps corresponded to major version changes of a program where the Jac-

card distances were 0.28–0.66. The Jaccard distances at the inter-program gaps were much

higher, e.g., 0.9–0.95. This means that we can separate the mixed data set into different

program groups based on the inter-program gaps.

Feature Extraction. Although ILINE achieved an overall 95.8% mean accuracy in straight

line lineage of goodware, ILINE achieved only 77.8% mean accuracy with actual released

binaries. In order to improve lineage inference, future work may choose to leverage bet-

ter features. For example, we may use recovered high-level abstraction of program bina-

ries [148], or we may detect similar code that was compiled with different compilers and

optimization options [88].
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5.6 Summary

In this chapter, we proposed new algorithms to infer software lineage of binary programs

for two types of lineage: straight line lineage and directed acyclic graph (DAG) lineage.

We built ILINE to systematically explore the entire design space depicted in Figure 5.1 for

software lineage inference and performed over 2,000 different experiments on large-scale

real-world programs—1,777 goodware spanning a combined 110 years of development his-

tory and 114 malware with known lineage. We also built IEVAL to scientifically measure

lineage quality with respect to the ground truth. Using IEVAL, we evaluated seven differ-

ent metrics to assess diverse properties of lineage, and recommended two metrics—partial

order mismatches and graph arc edit distance. We showed that ILINE effectively extracted

evolutionary relationships among program binaries with over 84% mean accuracy for good-

ware and over 72% for malware.
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Part II

Code Reuse Detection at the Source
Code Level

107



Chapter 6

Software Vulnerability Tracking via
Code Containment Detection

Programmers should never fix the same bug twice. Unfortunately, buggy code often gets

copied from project to project and the programmer fixes the same bug on each project in-

dependently. This means resources are wasted in repeatedly diagnosing the same bug. We

call clones of buggy code that have been fixed in only a subset of projects unpatched code

clones because they are code clones to which patches have yet not been applied. Unpatched

code clones are latent bugs which are likely to be vulnerable and can cause a serious vul-

nerability window, i.e., the time frame between when a vulnerability is disclosed and when

a project containing the vulnerable code clone is fixed. It is therefore important to detect

such latent vulnerabilities early before an adversary exploits them.

For example, the patch presented in Listing 6.1 was issued in July 2009 to fix a heap

overflow bug in libvorbis. The patched vulnerability could cause a program crash or

arbitrary code execution via a maliciously-crafted OGG file [119]. Unfortunately, we found

93 unpatched code clones of this bug in our November 2011 data set. Projects including

mplayer and libtritonus-java in Debian, mednafen and libvorbisidec in

Ubuntu, and ffdshow and guliverkli in SourceForge all had the same vulnerable un-

patched code. In this case, a total of 93 packages were exposed to this known vulnerability

for more than 800 days past the initial patch date.

--- a/lib/res0.c
+++ b/lib/res0.c
@@ -208,10 +208,18 @@

info->partitions=oggpack_read(opb,6)+1;
info->groupbook=oggpack_read(opb,8);
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+ /* check for premature EOP */
+ if(info->groupbook<0)goto errout;
+

for(j=0;j<info->partitions;j++){
int cascade=oggpack_read(opb,3);

- if(oggpack_read(opb,1))
- cascade|=(oggpack_read(opb,5)<<3);
+ int cflag=oggpack_read(opb,1);
+ if(cflag<0) goto errout;
+ if(cflag){
+ int c=oggpack_read(opb,5);
+ if(c<0) goto errout;
+ cascade|=(c<<3);
+ }

info->secondstages[j]=cascade;

acc+=icount(cascade);

Listing 6.1: Patch in libvorbis for CVE-2009-3379

As a second example, consider the patch presented in Listing 6.2, which was issued

in August 2010 to fix a bug in FreeType that used incorrect integer data types before

version 2.4.2 was released. The original vulnerability could be exploited to cause a pro-

gram crash or possibly arbitrary code execution [121]. Unfortunately, we found 185 un-

patched code clones of this bug in our November 2011 data set. Projects including vtk and

paraview in Debian, qt4-x11 and texlive-bin in Ubuntu, and MobileXpdf and

TomPlayer in SourceForge all had the same vulnerable unpatched code. In this case, a

total of 185 packages were exposed to this known vulnerability for more than 400 days past

the initial patch date.

--- a/src/smooth/ftsmooth.c
+++ b/src/smooth/ftsmooth.c
@@ -140,8 +140,26 @@

cbox.xMax = FT_PIX_CEIL( cbox.xMax );
cbox.yMax = FT_PIX_CEIL( cbox.yMax );

- width = (FT_UInt)( ( cbox.xMax - cbox.xMin ) >> 6 );
- height = (FT_UInt)( ( cbox.yMax - cbox.yMin ) >> 6 );
+ if ( cbox.xMin < 0 && cbox.xMax > FT_INT_MAX + cbox.xMin )
+ {
+ FT_ERROR(( "ft_smooth_render_generic: glyph too large:"
+ " xMin = %d, xMax = %d\n",
+ cbox.xMin >> 6, cbox.xMax >> 6 ));
+ return Smooth_Err_Raster_Overflow;
+ }
+ else
+ width = (FT_UInt)( ( cbox.xMax - cbox.xMin ) >> 6 );
+
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+ if ( cbox.yMin < 0 && cbox.yMax > FT_INT_MAX + cbox.yMin )
+ {
+ FT_ERROR(( "ft_smooth_render_generic: glyph too large:"
+ " yMin = %d, yMax = %d\n",
+ cbox.yMin >> 6, cbox.yMax >> 6 ));
+ return Smooth_Err_Raster_Overflow;
+ }
+ else
+ height = (FT_UInt)( ( cbox.yMax - cbox.yMin ) >> 6 );
+

bitmap = &slot->bitmap;
memory = render->root.memory;

Listing 6.2: Patch in FreeType for CVE-2010-2807

As a third example, consider the patch presented in Listing 6.3, which was issued in

August 2008 to address uninitialized memory access issues in the LZW decoder used in

LibTIFF v3.8.2 and earlier. An attacker could potentially execute arbitrary code via a

maliciously-crafted TIFF image by exploiting the vulnerability in the CODE CLEAR code

handling routine [118]. Unfortunately, we identified 95 unpatched code clones of this bug

in our November 2011 data set. For example, argyll and vxl in Debian, ivtools and

insighttoolkit in Ubuntu, and CamStudio and CinePaint in SourceForge were

all affected. In this case, a total of 95 packages were exposed to this known vulnerability

for over 1,100 days past the initial patch date.

--- tiff-3.8.2.orig/libtiff/tif_lzw.c
+++ tiff-3.8.2/libtiff/tif_lzw.c
@@ -604,12 +619,20 @@

if (code == CODE_CLEAR) {
free_entp = sp->dec_codetab + CODE_FIRST;

+ _TIFFmemset(free_entp, 0, (CSIZE-CODE_FIRST)*sizeof (code_t));
nbits = BITS_MIN;
nbitsmask = MAXCODE(BITS_MIN);
maxcodep = sp->dec_codetab + nbitsmask;
NextCode(tif, sp, bp, code, GetNextCodeCompat);
if (code == CODE_EOI)

break;
+ if (code == CODE_CLEAR) {
+ TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
+ "LZWDecode: Corrupted LZW table at scanline %d",
+ tif->tif_row);
+ return (0);
+ }
+

*op++ = code, occ--;
oldcodep = sp->dec_codetab + code;

Listing 6.3: Patch in LibTIFF for CVE-2008-2327
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These are just a few examples of unpatched code clones for serious vulnerabilities. Such

a large vulnerability window is a critical security problem because an adversary can spot

(potentially) vulnerable packages using known vulnerabilities. For example, an attacker

may be able to automatically create an exploit given a patch [32].

In this section, we present ReDeBug [74, 76], a lightweight syntax-based code clone

detection system that identifies unpatched code clones at scale. We have used ReDeBug to

determine how widespread the problem of unpatched code clone truly is, specifically: 1)

how much (potentially) vulnerable code an attacker can identify when a patch is released,

2) how responsive the new version of an OS is to known security vulnerabilities, and 3) how

many persisting unpatched code clones are copied from the previous version of an OS over

to the latest version.

Existing research has focused on methods for improving the number of code clones

detected, e.g., [57, 78, 80, 101]. While it is important to make advancements in finding

more code clones, this line of research potentially requires comparison among all code

pairs and uses various matching heuristics which can suffer from a higher false detection

rate. ReDeBug tackles a new point in the design space where we trade more expensive, yet

thorough, pattern matching algorithms for scalability, support for many different languages,

and zero false detections.

• Scalability. To give a sense of the scale necessary to find all unpatched code clones,

observe that Debian Squeeze alone contains 16 GB of non-empty and non-comment

code, spanning over 348 million lines. ReDeBug uses a syntax-based pattern match-

ing approach that can be implemented using extremely efficient data structures which

allow fast querying for code clones when given a patch. Using ReDeBug on a ma-

chine with a 3.40 GHz i7 CPU and SSD, we were able to scan the 2.1 billion lines

of code in our entire data set against 1,634 buggy code patterns in under 3 hours.

With the ability to rapidly search for unpatched code clones, ReDeBug can be used

to improve the security of code bases in day-to-day development by promptly and

automatically checking for copies of known vulnerabilities. It is desirable to have a

scalable solution that can be applied to hardware used by the average developer or

user, such as a basic desktop.

It is desirable to have a scalable solution that is applicable on hardware available to

an average developer or user, e.g., an average desktop.

• Support for many different languages. OS distributions include programs writ-

ten in a variety of languages. For example, Debian Squeeze consists of 288 million
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lines of C/C++, 24 million lines of JAVA, 14 million lines of Python, 12 million

lines of Perl, 5 million lines of PHP, and so on. To handle such a large variety

of languages, ReDeBug uses a simple, fast, and language-agnostic syntax pattern

matching approach to find unpatched code clones. We realize that there are more

advanced matching algorithms that are applicable when the code is correctly parsed,

and that such algorithms will likely find even more unpatched code clones. For ex-

ample, Deckard [78], CP-Miner [101], CCFinder [80], and DejaVu [57] first parse

a program and use a variety of matching heuristics based on high-level code repre-

sentations, such as CFGs and parse trees. The challenge, however, is in the building

of robust parsers for each language, which has proven difficult even for professional

software assurance companies [28]. While we encourage future developers to add

parsing support to ReDeBug, for now ReDeBug opts for a simpler robust algorithm

that works across a wide variety of languages.

• Zero false detection rate. There are two types of false reports that any clone detec-

tion algorithm can make. The first type is a syntactic false detection. This happens

when an algorithm says an unpatched code clone is present when it is not. ReDeBug

eliminates false detections by performing a slower but exact match after all poten-

tial matches have been rapidly identified. Our approach means that each reported

unpatched code clone is likely to be actionable. In contrast, the advanced heuristic

matching algorithms used to find more code clones can suffer from a higher false

detection rate. For example, CP-Miner had a false detection rate of 73% [101], and

DejaVu had a false detection rate of 37% [57]. It is important to report only true

matches to developers; otherwise, they end up wasting resources in examining the

false reports. The second type is a semantic false positive. This happens when an

algorithm detects an unpatched code clone, but the clone is used in a non-vulnerable

way such as when checks have been inserted in earlier locations. Though ReDeBug

inevitably can have false positives just like any other syntax-based method, we argue

that false positives still present latent security problems because the code can be used

in a vulnerable way due to a change in the future.

We have used ReDeBug to check for unpatched code clones in Debian 6.0 Squeeze

(348,754,939 LoC1), Debian 5.0 Lenny (257,796,235 LoC), Ubuntu 11.10 Oneiric (397,399,

865 LoC), Ubuntu 10.10 Maverick (245,237,215 LoC), Linux Kernel (8,968,871 LoC), and

all C/C++ projects at SourceForge (922,424,743 LoC). So far, ReDeBug has found 15,546
1We always count non-empty, non-comment lines.
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unpatched code clones in the total 2,180,581,868 LoC by checking 376 Debian/Ubuntu

security-related patches. The patches address a variety of issues ranging from buffer over-

flows to information disclosure vulnerabilities to denial of service vulnerabilities. Our mea-

surements indicate that even though ReDeBug is simpler, it actually finds a comparable

number of code clones to existing approaches (§6.4.7).

Previous work has shown that once a patch is released, an attacker can use the patch to

reverse engineer the bug and automatically create an exploit in only a few minutes [32]. Our

experiments indicate that one security implication of ReDeBug is the ability of an attacker

to find potentially thousands of vulnerable applications among billions of lines of code once

a patch is released. This could be done on a simple laptop in only a few minutes, assuming

the attacker has already preprocessed the code.

Contributions.

• We analyze entire OS distributions to comprehend the current trends of unpatched

code cloning. To the best of our knowledge, ReDeBug is the first tool to explore

over 2.1 billion lines of entire OS distributions to understand unpatched code clone

problems. We show that unpatched code clones are a recurring problem in modern

distributions, and find 15,546 unpatched code clones from Debian Lenny/Squeeze,

Ubuntu Maverick/Oneiric distributions, the Linux kernel, and SourceForge. So far,

ReDeBug has confirmed 145 real bugs.

• We describe ReDeBug, which suggests a new design space for code clone detection

in terms of scalability, speed, support for different languages, and false detection rate.

ReDeBug uses syntax-based pattern matching, which allows it to (i) scale to entire

OS distributions, (ii) support many different languages, and (iii) guarantee zero false

detections. In particular, the design point makes ReDeBug realistic for use by typical

developers in everyday environments in order to improve the security of their code

by quickly querying known vulnerabilities.

• We build a website and provide ReDeBug as an open-source tool to help developers

fight against unpatched code clones and improve the security of code bases in day-

to-day development.
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6.1 Fingerprinting for Containment Detection

Finding unpatched code clones is a problem of detecting containment of known vulnerable

code. Searching for all unpatched code clones is tricky and involves numerous considera-

tions. For example, how many lines of code need to be similar for a case to be reported? Is

one copied line enough, or are we only interested in multiple line matches? Should whites-

pace matter? Should the order of statements matter, and if so, should we only consider

some syntactic classes? Do we consider the syntactic text, tokens, or the parse of files? For

example, in C the order of declarations likely does not matter, but the order of computation

may. What if two segments are equivalent up to variable naming? What about semantic

equivalence, e.g., one code sequence multiples by 2 while the other performs a logical left

shift. Are these similar or different?

These questions all involve trade-offs between accuracy, efficiency, and how ease of

implementation of a robust algorithm. For example, consider code that is the same up to

variable names and variable declaration order. A straight string match of the files may

find virtually no commonality. We could certainly address these problems by normaliz-

ing declaration order, and parse code to determine variable name equivalence (so-called

α-equivalence) [33]. However, running such algorithms requires us to implement parsing

engines (which can be fragile) and run additional algorithms that take time, thereby reduc-

ing overall throughput. If we are not careful, we may end up subtly analyzing a model of

the original program that is not right, e.g., declaration order matters when looking for buggy

code clones of incorrect shadow variable declarations.

Our choices with ReDeBug were motivated by the design space goals of: (1) focusing

on unpatched code clones, (2) scaling to large and diverse code bases such as OS distribu-

tions, (3) minimizing false detection, (4) being modular when possible and offering users a

choice of parameters, and (5) being language-agnostic as much as possible so that we can

work with the wealth of languages found within an OS distribution code base.

6.1.1 Bloom Filters

ReDeBug utilizes Bloom filters to identify unpatched code clones containing any specific

bugs. A Bloom filter [29] is a space efficient randomized data structure used for set mem-

bership tests.

Suppose there is a data set S. A Bloom filter represents set S as a vector of m bits ini-

tially all set to 0. To add an element x ∈ S to the Bloom filter we first apply k independent

hash functions of range {1..m}. For each hash h(x) = i, we set the i’th bit of the bit vector
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Figure 6.1: Bloom filter with k = 3

to 1. In a Bloom filter, to test if an element of y ∈ S, we again apply the k hash functions

and check if all the bits are 1. If at least one of the hashed bits is 0, then we return y /∈ S.

If all bits are set to 1, then we return y ∈ S. Figure 6.1 shows a Bloom filter with k = 3.

Bloom filters have one-sided error for set membership tests. A false positive occurs

when the set membership test returns x ∈ S based on the bloom filter when x is not really

in S. False positives occur because of collisions in hash functions. The false positive rate

of the Bloom filter depends on the size of the bit array (m), the number of hash functions

(k), and the number of elements in S (N ). The probability of getting a false positive can be

made negligible by an appropriate choice of parameters [31]. Bloom filters have no false

negatives.

6.1.2 Containment Detection

The core of the ReDeBug system consists of the following steps:

1. ReDeBug normalizes each file. By default, ReDeBug removes typical language com-

ments, all non-ASCII characters, and redundant whitespace (except new lines), and

converts all characters to lowercase. We also ignore curly braces if the file is C, C++,

Java, or Perl (as identified by extension or the UNIX file command).

Normalization is modularized so that the exact normalization steps can easily be

changed.

2. The normalized file is tokenized based on new lines and regex substrings. A token is

a string ending in a new line.

3. ReDeBug slides a window of length n over the token stream. Each set of n tokens is

considered a unit of code to compare.

4. Given two sets fa and fb of n-tokens, we compute the amount of code in common.

When finding unpatched code clones, if fa is the original buggy code snippet we
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calculate

CONTAINMENT(fa, fb) =
|fa ∩ fb|
|fa|

(6.1)

It is common to only consider cases where the containment is greater than or equal to

some pre-determined threshold θ. In our implementation, we also perform obvious

optimizations, such as only verifying fa ⊆ fb instead of calculating an actual ratio

for CONTAINMENT when θ = 1.

5. ReDeBug performs an exact match test on the identified unpatched code clones to re-

move Bloom filter errors. When possible, ReDeBug also uses the compiler to identify

when a code clone is dead code.

For example, suppose we have three files A = t1t2t3t4, B = t1t3t4t2, and C = t3t4

where each ti is a token (note that tokens are written in the order in which they appear in the

file). The tokenization is then A = {t1, t2, t3, t4}, B = {t1, t3, t4, t2}, and C = {t3, t4}.
When n = 2, there are three 2-token strings in A and B: fA = {(t1, t2), (t2, t3), (t3, t4)}
and fB = {(t1, t3), (t3, t4), (t4, t2)}, and one 2-token string in C: fC = {(t3, t4)}. The

containment of (fB, fA) is 1/3 since one out of three 2-token sets are shared, (t3, t4), even

though the shared token sequence appears at different places in the file. As a result, ReDe-

Bug works with reorderings, insertions, and deletions of up to n-tokens. In addition, the

containment of (fC , fA) is 1 because fA is a superset of fC .

6.2 ReDeBug Architecture

At a high level, there are two approaches for finding unpatched code clones in OS distribu-

tions: (1) first find all code clones among the source code and then check to see if a patch

applies to the copies, or (2) check for clones of the patched code only. Previous work has

focused on techniques for the first approach. This makes sense when finding bugs on whole

code bases is cheaper than on unique code snippets. ReDeBug takes the second approach

because we only want to find clones of the original unpatched buggy code.

ReDeBug looks for unpatched code clones where patches are in UNIX unified diff

format. Unified diffs are popular among open source kernel developers and OS distribu-

tion maintainers, and are well-integrated into popular revision control systems like Subver-

sion [41].
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// Original buggy code
char buf[8];
strcpy(buf, input);

// Possible patch 1
char buf[8];

- strcpy(buf, input);
+ strncpy(buf, input, 8);

// Possible patch 2
char buf[8];

+ if(strlen(input) < 8)
strcpy(buf, input);

Figure 6.2: Buggy code example and two possible patches

A unified diff patch consists of a sequence of diff hunks. Each hunk contains the

changed filename and a sequence of additions and deletions. Added source code lines are

prefixed by a “+” symbol and deletions are prefixed by a “-” symbol. Line changes are

represented by deleting the original line and adding back the changed lines.

The original buggy code includes all code deleted by the patch. However, simply look-

ing for the lines that were changed (by being deleted) is insufficient: we must also consider

the surrounding context of the patch.

Consider the buggy code and two possible patch scenarios, as shown in Figure 6.2.

Patch 1 signifies that strcpy is buggy by deleting the line of code. The code is then

replaced with the safe strncpy version. We can go looking for the deleted line of code

and flag it as buggy everywhere we see it. However, patch 2 simply adds a check. Looking

for the missing check is not straightforward since we cannot directly look for missing lines

of code. Our approach is to look for copies of the surrounding context tokens, c, for each

changed line and to report clones of the context.

6.2.1 ReDeBug Overview

The overall steps used by ReDeBug to detect buggy code clones, as shown in Figure 6.3,

are:

• Step 1: Pre-process the source. A user obtains all source files used in their distribu-

tion. For Debian, this is done using the apt tool. ReDeBug then automatically:

1. Performs normalization and tokenization as described in the fingerprinting method

(§6.1.2).

2. Moves a window of n-length over the token stream. For each window, the

resulting n-tokens are hashed into a Bloom filter.

3. Stores the Bloom filter for each source file in a raw data format. ReDeBug

compresses Bloom filters before storing to disk to save space and to reduce the

117



diff
svn commit

patch

Extract original
code snippet 

including context

Normalize/
Tokenize

DB
(Bloom filter 

per file)

Sources
Debian, Ubuntu, 

Kernel, ...

Normalize/
Tokenize

Hash n-tokens 
into Bloom filters 

Unpatched 
Code Clone List

Remove 
BF errors/ 
dead code

Build DB

Unpatched
code clones

Find Bugs

Unpatched Code Clone Detection

(parallelized)
set membership 

test

Figure 6.3: The ReDeBug workflow.

amount of disk access at query time. Since Bloom filters are typically sparse bit

vectors, ReDeBug can significantly save disk space through compression.

While initially the above steps would be performed over the entire distribution, day-

to-day use would only run the steps on modified files, e.g., as part of a revision

control check-in. In our experiments and implementation, we also concatenate per-

file Bloom filters for a project into a single bitmap before saving to disk. This is

purely an optimization; loading the single large Bloom filter is much quicker than

loading a bunch of small Bloom filters onto our machines.

• Step 2: Check for unpatched code copies. A user obtains a unified diff software

patch. ReDeBug then automatically:

1. Extracts the original code snippet and the c tokens of context information from

the pre-patch source. The mechanics for the code snippet are simple: we extract

lines prefixed by a “-” symbol in the patch (lines prefixed with a “+” symbol are

added and thus not present in the original buggy code). If context information

is given in the patch, we use that, or else we obtain it from the original source
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files.

2. Normalizes and tokenizes the extracted original buggy code snippets. The nor-

malization process is the same as described in Step 1. For C, C++, Java, and

Python, we remove any partial comments in the c context lines since those lan-

guages support multi-line comments and c context lines may have only the head

or tail part of multi-line comments.

3. Hashes the n-token window into a set of hashes fp.

4. Performs a Bloom filter set membership test on each hashed n-token window.

We report an unpatched code clone with file f if CONTAINMENT(fp, f) ≥ θ.

• Step 3: Post-process the reported clones. Given reported unpatched code clones,

ReDeBug automatically:

1. Performs an exact-matching test to remove Bloom filter errors.

2. Excludes dead code which is not included at build time. For C, specifically, we

add assert statements to the buggy code region, and compile with -g option

which allows us to check the presence of assert statements using objdump

-S. For non-compiled languages this step is omitted.

3. Reports only non-dead code to the user.

Bloom filters have one-sided error for set membership tests. In our setting, the one-

sided error means we may mistakenly say that an n-token is present in the set when it is not.

The probability of this happening can be made arbitrarily low with appropriate parameter

selection, e.g., it is 0.3% in our implementation.

In our evaluation, we only report an unpatched code clone if a file contains all context

lines and all original n-tokens as described above, i.e., θ = 1. This is a conservative

configuration.

6.2.2 ReDeBug Parameters

ReDeBug is parameterized in two ways: the number of consecutive tokens to consider

together, n, and the threshold, θ. n determines the sensitivity for statement reordering, e.g.,

if n = 1 then statement order does not matter at all, n = 2 looks at statement pairs, and so

on. θ acts as a knob to indicate a significant amount of copying. When θ = 1, two files must

have exactly the same n-tokens (after normalization). When θ = 0, any match is considered
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significant. Values in between represent thresholds for the amount of similarity of interest.

There is no “right” value for these parameters. In our experiments we show typical values

that produce meaningful results. For example, n = 4 works well with existing patches.

6.2.3 Design Point Comparison

Our approach is in stark contrast to current research trends in code clone detection, such as

Deckard [78], CP-Miner [101], DejaVu [57], and others [80, 130], which focus on minimiz-

ing missed code clones at the expense of other factors. These approaches also normalize

the code, but then perform additional steps such as parsing the code into high-level rep-

resentations like parse trees and control flow graphs. They then employ advanced fuzzy

matching algorithms on the abstractions to find additional code clones that we may miss.

On the other hand, these approaches may report more false code clones, which then require

significant human effort to inspect. Furthermore, it is known to be very hard to implement

good parsers [28].

Overall, the main difference is that by employing simpler techniques that are language

agnostic, we can focus on efficient data structures and algorithms and ultimately scale to

much larger code bases written in many different languages. Our techniques may miss

some clones, but they minimize false clone detection rates. This is important for at least

two reasons. First, by quickly checking all code in a distribution, we can make basic guar-

antees that at least syntactically similar unpatched code clones do not exist. Second, we can

conservatively estimate the amount of code cloning in existing large code bases. The more

advanced algorithms in the above work have not demonstrated they can make either claim.

6.3 Implementation

ReDeBug is implemented in about 1,000 lines of C code and 250 lines of Python. Normal-

ization is modularized within the Python code. We use the QuickLZ library2 to perform

compression/decompression while setting QLZ COMPRESSION LEVEL to 3 for faster de-

compression speed.

2http://www.quicklz.com/
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Distributions Lines of Code Date Collected

Early 2011 (Σ1)

Debian Lenny 257,796,235 Jan 2011
Ubuntu Maverick 245,237,215 Mar 2011

Linux Kernel 2.6.37.4 8,968,871 Mar 2011
SourceForge (C/C++) 922,424,743 Mar 2011

Late 2011 (Σ2)
Debian Squeeze 348,754,939 Nov 2011
Ubuntu Oneiric 397,399,865 Nov 2011

Total 2,180,581,868 -

Table 6.1: Source data set

6.4 Evaluation

6.4.1 Experimental Setup

System Environment. We performed all experiments to find unpatched code clones by

both building and querying the database on a desktop machine running Linux 2.6.38 (3.4

GHz Intel Core i7 CPU, 8GB memory, 256 GB SSD drive). We utilized 8 threads to build

a DB and to query bugs.

Data Set. We collected our source code data set twice: early in 2011 and late in 2011.

We first collected our Early 2011 data set (Σ1) in January/March 2011, which included all

source packages for Debian 5.0 Lenny and Ubuntu 10.10 Maverick, as well as all public

SourceForge C/C++ projects using version control systems such as Subversion, CVS and

Git, and the Linux kernel v2.6.37.4. For the SourceForge data set we excluded identifiable

non-active code branches, such as branches and tags directories. In November 2011,

we prepared our Late 2011 data set (Σ2), which included all source packages for Debian 6.0

Squeeze and Ubuntu 11.10 Oneiric. Table 6.1 shows the detailed breakup of our collected

source code data set. The data set consists of a large number of projects written in a wealth

of languages including C, C++, Java, Shell, Perl, Python, Ruby, and PHP.

In order to find security-critical bugs, we collected security-related patches from the

Debian/Ubuntu security advisories that included the information about the corresponding

packages and patches/diffs. We downloaded 1,634 diffs whose related CVE numbers

were recognizable by the patch file names. As described in Table 6.2, pre-2011 patches (δ1)

were available at the time of collecting Σ1, and 2011 patches (δ2) were released between

the download dates of Σ1 and Σ2.

In the original source packages for Debian and Ubuntu there are a number of existing
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Data set # files # diffs Date Released

Patches before 2011 (δ1) 274 1,079 2001∼2010
Patches in 2011 (δ2) 102 555 2011

Total 376 1,634 -

Table 6.2: Security-related patch data set

patches (e.g., debian/patches/) that can be applied during a build; we applied these

patches as well. As a result, the patched packages were current up to security advisories on

the download date. Since we downloaded the SourceForge packages via revision control

systems, we assume that all patches were already applied.

We performed experiments to identify the number of duplicate buggy code segments

that were still likely to be vulnerable. Then we verified the presence of all reported un-

patched code clones, i.e., clones of the exact same buggy code, to confirm that the ReDeBug

implementation was correct. We discuss this measurement in §6.4.5.

Default Parameters. The default context in a diff file is 3 lines of code. Unless oth-

erwise noted, we set n = 4. n = 4 when the amount of context c = 3 guarantees that

every reported duplicate had at least one changed line along with surrounding context. In

all experiments for unpatched code clones we set θ = 1, i.e., with the default parameters

all n-tokens from the original buggy code segment needed to be found in an unpatched

copy to report a bug. m is the size of a Bloom filter and N is the number of n-tokens to

be hashed into a Bloom filter. ReDeBug used 256KB-sized Bloom filters where the m/N

ratio was greater than 32. ReDeBug took advantage of 3 fast hash functions: djb2, sdbm,

and jenkins3. A theoretical Bloom filter false positive rate for these parameter selections is

0.0717% [34].

6.4.2 Performance

We ran ReDeBug to create a database for each source code data set. Figure 6.4 shows

the database build time. It took about 19 minutes each to build the databases for Ubuntu

Maverick and Debian Lenny. Building the database for SourceForge took about 69 minutes.

This is the end-to-end time including the time to read files, to normalize and tokenize source

code, to create and store Bloom filters for a variety of languages, e.g., C/C++, Java, Shell,

Perl, Python, Ruby, and PHP. The experimental results suggest that the time to build a

3http://www.cse.yorku.ca/˜oz/hash.html
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Figure 6.4: Time to build a database with various sizes of data sets

Distributions DB Size Projects # Files #

Debian Lenny 6.0GB 10,699 1,155,594
Ubuntu Maverick 5.6GB 11,237 1,067,579

Linux Kernel 2.6.37.4 344MB - 57,653
SourceForge (C/C++) 29GB 30,437 5,574,905

Debian Squeeze 8.2GB 14,977 1,586,325
Ubuntu Oneiric 9.8GB 18,240 1,892,911

Table 6.3: Size of created databases

database increases linearly as the size of the source code increases. Once ReDeBug has

built the initial database, incremental update is quickly done by adding/changing only the

relevant parts of the database.

The resulting database sizes and the number of projects and files in the databases are de-

scribed in Table 6.3. As a reference point, Debian Lenny required 282 GB to store 1,155,594

files without compression, but only 6.0 GB with compression in ReDeBug. The large com-

pression factor is due to the sparseness of the Bloom filters.

Figure 6.5 depicts the time to query 1,634 security-related patches (δ1 and δ2) to each

database. As the size of a database (the number of files in a database) grew, the time to query

bugs increased linearly. Though there was an overhead to recover compressed Bloom filters

to perform the set membership test, the querying time was fast, e.g., 0.04 second per bug

against about 1 million source files in the case of Debian Lenny.
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Figure 6.5: Time to query 1,634 bugs to various sizes of DBs

Figure 6.6 shows the time to search for different number of bugs against the whole

database including both Σ1 and Σ2. The query time has a very gentle upward slope. The

results suggest that querying even a large number of patches should only take a few minutes.

For example, it took about 6 minutes 21 seconds to query 15 diffs, and this time increased

only slightly to 7 minutes 46 seconds for 1,634 diffs.

Together these 3 graphs show that ReDeBug is highly scalable and can be applied to

find unpatched code copies in day-to-day development. The time it takes us to perform all

operations increases linearly with the size of the database, and grows very slowly with the

number of diffs.

We compared ReDeBug with GNU grep which has a reputation of efficiently finding

patterns. As an example, consider the task of finding all unpatched code clones that match

all known buggy code in Debian Squeeze. Debian released 236 security advisories in 2011,

which means there were at least 236 security-related patches in that year. Debian Squeeze

contains 16 GB of non-empty and non-comment code, spanning over 348 million lines. By

using GNU grep it took 54 minutes using 455 MB of memory to search for 236 buggy code

patterns4. In order to match 400 buggy code patterns in Debian Squeeze, grep consumed

over 1 GB of memory for a large deterministic finite automaton (DFA) and took 7 hours.

Grep’s requirement of a large memory for a DFA causes poor cache use and performance.

Given the limitations of grep, it is desirable to have more scalable methods for examining

4In order to find multi-line buggy code patterns, we ran grep -Grz -f "patterns" "squeeze".
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Figure 6.6: Time to check for various numbers of bugs against the entire DB

several years of known vulnerabilities. Using ReDeBug, it took 9 minutes to match Debian

Squeeze against 236 buggy code patterns with 13 MB of memory.

6.4.3 Security-Related Bugs

In total, ReDeBug found 15,546 unpatched code clones in the two data sets Σ1 and Σ2. Fig-

ure 6.7 shows the detailed breakup of unpatched code clones identified in Σ1 and Σ2 when

querying for δ1 and δ2. We include some examples of the identified unpatched code clones

on our website http://security.ece.cmu.edu/redebug/ (§6.5). We consid-

ered three scenarios to understand the current situation of unpatched code clones.

• {δ1 & δ2} → Σ1: The unpatched code clones found in Σ1 using δ1 and δ2 approxi-

mate how many (potentially) vulnerable packages an adversary may be able to spot

when a patch becomes available. 10,248 unpatched code clones were detected in

the SourceForge data set. Debian Lenny and Ubuntu Maverick, which were still

supported on the download date, also had 1,482 and 1,058 unpatched code clones

respectively. When security-related bugs are fixed in the original packages, the re-

sulting vulnerabilities must be detected before an adversary identifies them.

• {δ1 & δ2}→Σ2: The unpatched code clones identified in Σ2 using δ1 and δ2 roughly

indicate how new versions of an OS respond to previously known security vulnerabil-

ities. Debian Squeeze and Ubuntu Oneiric included 1,532 and 1,223 such unpatched
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Figure 6.7: The number of unpatched code clones in Σ1 and Σ2

code clones respectively, which indicates that unpatched code clones are recurring in

modern OS distributions. We reported the 1,532 unpatched code clones identified in

Debian Squeeze packages to the Debian security team and package developers. So

far, 145 real bugs have been confirmed by developers either by private emails or by

issuing a patch. This showcases the real-world impact of ReDeBug.

• δ1 → Σ1 vs. δ1 → Σ2: The unpatched code clones found in both Σ1 and Σ2 using

δ1 demonstrate how many unpatched code clones persisted from the previous version

of an OS to the latest version of an OS. In our evaluation, we compared the 1,838

unpatched code clones from δ1 in Σ1 and the 1,991 unpatched code clones from δ1

in Σ2. Among these 3,829 clones, 1,379 persisted. Figure 6.8 shows the number of

unpatched code clones identified from patches released in different years. Note that

21 of the unpatched code clones are security vulnerabilities that were patched over

a decade ago (in 2001). This indicates that unpatched code clones are long-lived in

modern OS distributions.

6.4.4 The Identified Unpatched Code Clones

Figure 6.9 depicts the distribution of how often we found clones for patches. The maxi-

mum was 386 unpatched code clones of the patch shown in Listing 6.4, with most patches

having less than 50 respective unpatched code clones. This result demonstrates that there
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Figure 6.8: Unpatched code clones from patches in different years

2001 2006 2007 2008 2009 2010 2011

Lenny 2 109 76 88 565 301 341
Maverick 0 161 35 62 248 191 361

Kernel 0 0 0 0 1 2 0
SrcForge 19 1162 227 746 3845 2712 1537
Squeeze 0 264 46 77 379 282 484
Oneiric 0 232 45 73 341 252 280

Total 21 1928 429 1046 5379 3740 3003

Table 6.4: Unpatched code clones in each distribution from different years’ patches
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Figure 6.9: The identified unpatched code clones per patch

are potentially many vulnerable code clones for each new patch, highlighting the need to

implement unpatched code clone detection as part of the developer lifecycle.

const char *end,
POSITION *pos)

{
- while (ptr != end) {
+ while (ptr < end) {

switch (BYTE_TYPE(enc, ptr)) {
#define LEAD_CASE(n) \

case BT_LEAD ## n: \

Listing 6.4: Patch in Expat for CVE-2009-3720

Table 6.5 shows the number of identified unpatched code clones with various sizes of

n. When n increases from 4 to 7, ReDeBug hashes every 7 consecutive tokens and each

match represents an exact matching of 7 sequential tokens. Overall, this represents a larger

number of exactly matched tokens, which yields a more conservative metric for “real” bugs

(see §6.4.8 for discussion).

As we increased n, the total number of unpatched code clones that ReDeBug found

decreased. Note that as n increases, the total number of diffs we queried decreased. The

reason is that some diffs had fewer than n tokens in total. Overall, in the most con-

servative experiment, ReDeBug identified 3,374 unique unpatched code copies that likely

constitute real bugs.

128



The size of n n = 4 n = 5 n = 7

# of queried diffs 1,634 1,248 503

Unpatched code clones

Debian Lenny 1,482 1,013 309
Ubuntu Maverick 1,058 736 251

Linux Kernel 2.6.37.4 3 2 0
SourceForge (C/C++) 10,248 6,211 2,130

Debian Squeeze 1,532 1,061 391
Ubuntu Oneiric 1,223 828 293

Total 15,546 9,851 3,374

Table 6.5: Unpatched code clones with various n for δ1 and δ2

6.4.5 Code Clone Detection Errors

A key question is, “What is the false detection rate of ReDeBug?” There are several ways

to answer this. One popular metric is the accuracy of the matching process. In ReDeBug,

this is the Bloom filter test. Bloom filter tests have no false negatives, but may have false

positives. We performed an exact match test on the 15,599 unpatched code clones initially

reported, 15,546 of which were confirmed. Thus, overall we had a 0.3% false positive rate

in the Bloom filters. Our post-processing system removes this source of errors from the

final output.
In some cases, unpatched code clones may be found in dead code, e.g., vulnerable

code that is present but not included at build time, or vulnerable code that is included but
never gets executed due to logical conditions. The first situation usually happens when
external library code is embedded in a source package, but the package is written to prefer
the available system library to the embedded library. For example, Listing 6.5 shows the
vulnerability found in dead code, which is not included at build time. This vulnerability can
lead to an integer overflow that allows denial of service [120].

--- bzip2-1.0.5.orig/decompress.c
+++ bzip2-1.0.5/decompress.c
@@ -381,6 +381,13 @@

es = -1;
N = 1;
do {

+ /* Check that N doesn’t get too big, so that es doesn’t
+ go negative. The maximum value that can be
+ RUNA/RUNB encoded is equal to the block size (post
+ the initial RLE), viz, 900k, so bounding N at 2
+ million should guard against overflow without
+ rejecting any legitimate inputs. */
+ if (N >= 2*1024*1024) RETURN(BZ_DATA_ERROR);

if (nextSym == BZ_RUNA) es = es + (0+1) * N; else
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if (nextSym == BZ_RUNB) es = es + (1+1) * N;
N = N * 2;

Listing 6.5: CVE-2010-0405

We matched the above code to libcompress-bzip2-perl. However, the package

maintainers stated that the matched code was not an actual vulnerability since it was dead

code. Dead code, however, may still be a latent vulnerability in that the accompanied

vulnerable library code can be used depending on the availability of the system library

during compilation on the user’s machine. We discuss the second situation in §6.4.8.

For C, specifically, we compile code with an assert statement inserted into the identified

buggy code region and look for its corresponding assembly in the binary file to weed out

such cases. We measured the number of code clones in non-dead code for the 1,354 reported

unpatched code clones from 149 Debian Squeeze packages. We confirmed that 831 out of

1,354 (61%) unpatched code clones were non-dead code and were likely to represent real

vulnerabilities. Dead code may still present a problem that should be fixed because the code

may be used in a vulnerable way due to a change in the future.

Note that in the overall system, these errors are ultimately removed, and would never

be shown or affect the end user.

6.4.6 Examples of Security-Related Bugs

In order to evaluate the practical impact of ReDeBug, we reported 1,532 unpatched code

clones identified in Debian Squeeze packages to the Debian security team and developers.

So far, developers have confirmed 145 real bugs either via email or by issuing a patch. In

this section, we show several examples of the real bugs we found.
Some of the bugs were found in Qemu, a processor emulator that can be used as a hosted

virtual machine monitor. Various bugs, such as the one in Listing 6.6, which allows root
access on the host machine [117], have been fixed over the past few years. Two such bugs
include CVE-2008-0928 and CVE-2010-2784.

int len, i, shift, ret;
QCowHeader header;

- ret = bdrv_file_open(&s->hd, filename, flags);
+ ret = bdrv_file_open(&s->hd, filename, flags | BDRV_O_AUTOGROW);

if (ret < 0)
return ret;

if (bdrv_pread(s->hd, 0, &header, sizeof(header)) != sizeof(header))

Listing 6.6: CVE-2008-0928
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The patches for these bugs were not applied to the derivative package xen-qemu, the

Xen version of Qemu. When contacted, Debian and upstream developers confirmed the

presence of real bugs and indicated that fixing these bugs was necessary.
The patch in Listing 6.7 was issued to fix a vulnerability in rsyslog, a Linux and

Unix system logger. This vulnerability involved sending a specially crafted log message
that led to denial of service [124].

--- rsyslog-4.6.4.orig/tools/syslogd.c
+++ rsyslog-4.6.4/tools/syslogd.c
@@ -1291,7 +1291,7 @@

* outputs so that only 32 characters max are used by default.

*/
i = 0;

- while(lenMsg > 0 && *p2parse != ’:’ && *p2parse != ’ ’ && i < ←↩
CONF_TAG_MAXSIZE) {

+ while(lenMsg > 0 && *p2parse != ’:’ && *p2parse != ’ ’ && i < ←↩
CONF_TAG_MAXSIZE - 2) {
bufParseTAG[i++] = *p2parse++;
--lenMsg;

}

Listing 6.7: CVE-2011-3200

The patch above was not applied to the Debian package rsyslog-gssapi, a version

of rsyslog with plugins that allowed rsyslog to write and receive GSSAPI encrypted

logging messages. When contacted, the package maintainers decided to fix the vulnerability

by issuing an update.
The patch below was issued to fix a heap-based buffer overflow vulnerability in the

Paint Shop Pro plugin in GIMP 2.6.11 [123].

- if (code >= max_code)
+ if (code == max_code)

{
- *sp++ = firstcode;
+ if (sp < &(stack[STACK_SIZE]))
+ *sp++ = firstcode;

code = oldcode;
}

- while (code >= clear_code)
+ while (code >= clear_code && sp < &(stack[STACK_SIZE]))

{

*sp++ = table[1][code];
if (code == table[0][code])

Listing 6.8: CVE-2011-1782
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When contacted, the developers of Deutex, a Debian package used to manipulate files

for various games, indicated that this was likely a real vulnerability.
The following patch was issued to fix an integer overflow in PHP before 5.3.6 which

could lead to a denial of service and possibly an information leak [122]. This patch was not
employed to the Debian PHP package. When contacted, the package maintainer issued a
patch to fix the bug.

- if (start + count > shmop->size || count < 0) {
+ if (count < 0 || start > (INT_MAX - count) || start + count > shmop->←↩

size) {
php_error_docref(NULL TSRMLS_CC, E_WARNING, "count is out of range"←↩

);
RETURN_FALSE;

Listing 6.9: CVE-2011-1092

Listing 6.10 shows a recent patch for CVE-2011-3145, which was successfully patched
in an Ubuntu Oneiric package, but not in a Debian Squeeze package. This patch fixed an
incorrect /etc/mtab ownership in the ecryptfs-utils package, which might cause
arbitrary location unmount [157].

if (setreuid(uid, uid) < 0) {
perror("setreuid");

}
+ if (setregid(gid, gid) < 0) {
+ perror("setregid");
+ }

goto fail;
}

} else {

Listing 6.10: CVE-2011-3145

After we contacted the developers, the same patch that was applied to the Ubuntu

Oneiric package was issued for the Debian Squeeze package to fix the vulnerability.
Listing 6.11 shows a security patch applied to the Ubuntu Oneiric apache2 package

to fix a vulnerability in which remote attackers could send requests to intranet servers with
a well-crafted URI [125]. The same patch was applied to the Debian Squeeze package to
fix the bug after we reported it.

ap_parse_uri(r, uri);

+/* RFC 2616:
+ * Request-URI = "*" | absoluteURI | abs_path | authority
+ *
+ * authority is a special case for CONNECT. If the request is not
+ * using CONNECT, and the parsed URI does not have scheme, and
+ * it does not begin with ’/’, and it is not ’*’, then, fail
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+ * and give a 400 response. */
+if (r->method_number != M_CONNECT
+ && !r->parsed_uri.scheme
+ && uri[0] != ’/’
+ && !(uri[0] == ’*’ && uri[1] == ’\0’)) {
+ ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,
+ "invalid request-URI %s", uri);
+ r->args = NULL;
+ r->hostname = NULL;
+ r->status = HTTP_BAD_REQUEST;
+ r->uri = apr_pstrdup(r->pool, uri);
+}
+
if (ll[0]) {
r->assbackwards = 0;
pro = ll;

Listing 6.11: CVE-2011-3368

We highlighted the need to handle many languages in OS distributions. Here, we show
a non-C example in Ruby. Listing 6.12 shows a security patch for the puppet package
to fix a vulnerability in which an attacker could impersonate a master by exploiting a non-
default certdnsnames option when generating certificates [126]. After we reported this
bug, the package maintainer fixed the vulnerability by issuing a security patch.

# Sign a given certificate request.
-def sign(hostname, cert_type = :server, self_signing_csr = nil)
+def sign(hostname, allow_dns_alt_names = false, self_signing_csr = nil←↩

)
# This is a self-signed certificate
if self_signing_csr

+ # # This is a self-signed certificate, which is for the CA. Since←↩
this

+ # # forces the certificate to be self-signed, anyone who manages ←↩
to trick

+ # # the system into going through this path gets a certificate ←↩
they could

+ # # generate anyway. There should be no security risk from that.
csr = self_signing_csr

+ cert_type = :ca
issuer = csr.content

else
+ allow_dns_alt_names = true if hostname == Puppet[:certname].←↩

downcase
unless csr = Puppet::SSL::CertificateRequest.find(hostname)
raise ArgumentError, "Could not find certificate request for #{←↩

hostname}"
end

+
+ cert_type = :server

issuer = host.certificate.content
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+
+ # Make sure that the CSR conforms to our internal signing policies←↩

.
+ # This will raise if the CSR doesn’t conform, but just in case...
+ check_internal_signing_policies(hostname, csr, allow_dns_alt_names←↩

) or
+ raise CertificateSigningError.new(hostname), "CSR had an unknown←↩

failure checking internal signing policies, will not sign!"
end

cert = Puppet::SSL::Certificate.new(hostname)
- cert.content = Puppet::SSL::CertificateFactory.new(cert_type, csr.←↩

content, issuer, next_serial).result
+ cert.content = Puppet::SSL::CertificateFactory.
+ build(cert_type, csr, issuer, next_serial)

cert.content.sign(host.key.content, OpenSSL::Digest::SHA1.new)

Listing 6.12: CVE-2011-3872

6.4.7 Comparison to Prior Work

Existing tools such as Deckard [78], CP-Miner [101], CCFinder [80], and DejaVu [57] parse

programs for high-level code representations and perform “fuzzy” matching to find clones.

However, building robust parsers is not a straightforward task [28]. We need language-

independent techniques that can be easily adopted to detect unpatched code clones in many

different languages. ReDeBug’s use of syntax-based pattern matching allows it to be easily

adopted to detect unpatched code clones in many different languages. Roughly speaking,

ReDeBug performs simple normalization where whitespaces are removed and all charac-

ters are converted into lowercase equivalent. Such simple normalization can increase the

possibility of finding unpatched code clones in many different languages. Moreover, it is

less error-prone than sophisticated language parsers.

ReDeBug improves scalability with a decreased false detection rate, but may find fewer

code clones than previous code clone detection work. In order to measure the number of

unpatched code clones that ReDeBug missed, we compared the number of code clones

detected by ReDeBug to the number of code clones reported by Deckard [78]. We chose

Deckard because it claims better code clone detection performance than CP-Miner [101]

and CloneDR [20].

Theoretically, the code clones reported by Deckard should be the superset of the code

clones found by ReDeBug. In practice, however, Deckard missed more code clones than

ReDeBug. We used Deckard v1.25 for our experiments, and set parameters as follows:
5https://github.com/skyhover/Deckard
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Clone Detection Real Clones False Detection Missed

ReDeBug 180 0 15
Deckard 96 183 99

Table 6.6: Code clone detection performance

minT (minimum number of tokens required for clones) = 30, stride (size of the sliding

window) = 2 for their conservative results, and Similarity = 1 to minimize their false

detection. This was similar to the setup in the Deckard paper.

Deckard did not scale to the entire Debian Lenny distribution (257,796,235 LoC) in our

test setup due to its pairwise similarity calculation. During pairwise comparisons, Deckard

consumed more than 20 GB of memory in less than 2 minutes, after which we killed the

process. We ran Deckard on each package at a time instead of on the entire OS with 28

randomly selected C code files which contained security bugs. We only reported code

clones that matched the buggy code regions. Deckard took more than 12 hours to complete

the code clone detection in Debian Lenny, utilizing 8 threads to process 8 packages at the

same time. While Deckard processed only the source code written in C (Deckard can only

process one language at a time), ReDeBug processed a wealth of languages (e.g., C/C++,

Java, Shell, Python, Perl, Ruby, and PHP) in 6 hours.

Table 6.6 shows the code clone detection results of Deckard and ReDeBug. As ex-

pected, ReDeBug had no false detections, and surprisingly, missed one sixth as many code

clones compared to Deckard. The code clones that ReDeBug missed were due to the use of

different variable names or types.

Deckard faired worse than ReDeBug despite using a more sophisticated strategy. When

we investigated the causes, we found that 38 of the 99 cases were due to parse failures in

Deckard, and the remaining 61 cases were due to the algorithm for detecting code clones.

This result lends support to the idea that parsing code is difficult and can be a limiting

factor in practice, and that ReDeBug’s relatively simple approach can be valuable in such

circumstances.

6.4.8 Discussion

Unpatched code clones that are not vulnerable. Since ReDeBug gets rid of Bloom filter

errors and dead code, a metric for false positives is the number of unpatched code clones

that were not vulnerable for some other reason. We have identified two other causes for this

type of false positive. First, normalization may be too aggressive in some circumstances
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// case 1
for(i=0;i<maxlen;i++){
a[i]=0;

// case 2
for(i=0;i<maxlen;i++)
{
a[i]=0;

Figure 6.10: Two syntactically equivalent cases

and thus the identified code clone is not really a code clone. Second, we may find real

unpatched code clones, but other code modifications may prevent the unpatched code from

being used in an exploitable context.

Normalization reduces the false negative rate. Figure 6.10 shows an example. Without

normalization, these two code samples would not match; In the second case, the curly brace

would be considered a separate token, while in the first case it would be the part of the token

with the for loop statement. However, normalization may also increase the false positive

rate. For example, imagine two equivalent code sequences, with one performed on an

unsigned integer “A” and the other on a signed integer “a”. If the bug relates to signedness,

only the latter code is vulnerable. However, normalization converts all variables to lower-

case, thus we would mistakenly report both code sequences as being buggy.

Listing 6.13 shows an example of an unpatched code clone that is present but not vulner-

able. The patch fixes an integer signedness bug in various BSD kernels. NetBSD contained

the same vulnerable code, but fixed the problem by changing the type of crom buf->len

from signed integer to unsigned integer instead of using the shown patch.

- if (crom_buf->len < len)
+ if (crom_buf->len < len && crom_buf->len > 0)

Listing 6.13: CVE-2006-6013

ReDeBug may have false positives when unpatched code clone is present but not vulner-

able. For example, an unpatched code clone was detected in ircd-ratbox package from

the patch for CVE-2009-4016 shown in Figure 6.11a. The package maintainer informed us

that the integer underflow vulnerability was fixed in a different location, as shown in Fig-

ure 6.11b, which shows two new checks to guard against the vulnerable code, i.e., inserting

separate checks if(len <= 1) break; ahead of the vulnerable code. As a result, this

unpatched code clone is used in a way that makes it unexploitable. ReDeBug and all other

syntax-based approaches share the same problem.
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else

*d++ = *src;
- ++src;
- --len;
+ if (len > 0) {
+ ++src, --len;
+ }

}

*d = ’\0’;
return dest;

(a) Patch for CVE-2009-4016

- while (*src && (len > 0)) {
+ while (*src && (len > 1)) {

if(*src & 0x80) {

*d++ = ’.’;
--len;

+ if(len <= 1)
+ break;

...
else

*d++ = *src;
++src;
--len;

}

*d = ’\0’;
return dest;

(b) Another patch for CVE-2009-4016

Figure 6.11: Different fix for CVE-2009-4016

6.5 ReDeBug to Enhance Code Security

ReDeBug is available for download as an open-source tool on our website http://

security.ece.cmu.edu/redebug/ that can help developers fight against unpatched

code clones.

ReDeBug is rewritten in Python to make the tool (i) easy to use without the need to

compile first, (ii) useful on multiple platforms, and (iii) simple to extend with language-

specific optimizations. The website also offers an online unpatched code clone detection

service where developers can submit their code to test whether it contains any known vul-

nerabilities stored in our database. If a match is found, a report is presented showing both

the original buggy code and unpatched code clones found in the submitted code.

In this section, we concentrate on how to use ReDeBug to find unpatched code clones

in practice. As shown in Listing 6.14, ReDeBug takes two positional arguments: 〈patch
path〉 and 〈source path〉. The first refers to the top-level patch directory from which

we extract original buggy code snippets; the second points to the top-level directory of the

source tree to be checked. As optional arguments, -n defines how many lines of code are

to be considered as a unit of code to compare, -c sets how many surrounding lines of code

are to be reported as context, and -v enables verbose output.
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Figure 6.12: The ReDeBug website
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$ redebug.py -h
usage: redebug.py [-h] [-n NUM] [-c NUM] [-v] patch_path ←↩

source_path

positional arguments:
patch_path path to patch files (in unified diff ←↩

format)
source_path path to source files

optional arguments:
-h, --help show this help message and exit
-n NUM, --ngram NUM use n-gram of NUM lines (default: 4)
-c NUM, --context NUM print NUM lines of context (default: 10)
-v, --verbose enable verbose mode (default: False)

Listing 6.14: Help message of ReDeBug

ReDeBug consists of three major components: (i) PatchLoader, which extracts orig-

inal buggy code snippets from patch files, (ii) SourceLoader, which matches source files

against known buggy code, and (iii) Reporter, which generates a report after performing

an exact-matching test. We explain each component of ReDeBug below with an example

of identifying the unpatched code clone for the CVE-2009-3379 vulnerability in the Debian

mplayer package.

PatchLoader: ReDeBug takes patch files in the UNIX unified diff format, which is

popular among open source developers. Listing 6.1 shows a patch for the CVE-2009-3379

vulnerability in libvorbis in the unified diff format. A unified diff patch consists of a

sequence of diff hunks where each hunk includes the filename of a modified file, deleted

source code lines that are prefixed by a “-”, and inserted source code lines that are prefixed

by a “+”. Modifications are represented as deletions of old source code lines followed by

insertions of new source code lines.

1. Consider a set of patches Pi. ReDeBug extracts original code snippets P ′i from Pi by

excluding the lines prefixed by a “+” symbol. This is because the inserted lines are

not present in the original buggy code. The surrounding context lines are included to

conservatively identify unpatched code clones. ReDeBug requires only the patches,

not the pre-patch source code. Since we do not have to keep the original source code,

ReDeBug is able to save significant space.

2. ReDeBug normalizes the extracted original buggy code P ′i to P̄i by removing all

whitespaces except new lines and converting all characters into lower-case. We keep
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new lines since patches in the unified diff format operate at the line level. ReDeBug

also identifies file types using the libmagic library, and performs language-specific

normalization to increase the probability of identifying unpatched code clones. For

example, for C, C++, and JAVA, we remove single-line comments (//), multi-line

comments (/* */), and curly braces ({}). The code in Listing 6.15 shows the nor-

malized buggy code extracted from the code in Listing 6.1. Regular expressions for

such language-specific optimization are defined in common.py, which can be easily

extended to add more optimizations and support other languages.

info->partitions=oggpack_read(opb,6)+1;
info->groupbook=oggpack_read(opb,8);
for(j=0;j<info->partitions;j++)
intcascade=oggpack_read(opb,3);
if(oggpack_read(opb,1))
cascade|=(oggpack_read(opb,5)<<3);
info->secondstages[j]=cascade;
acc+=icount(cascade);

Listing 6.15: Normalized buggy code

3. ReDeBug slides a window of n-lines over the normalized code P̄i. For example, we

have 5 windows from the code in Listing 6.15 when n = 4: lines 1–4, 2–5, 3–6,

4–7, and 5–8. For each window w, we apply a list of hash functions H to build a list

of hash values hi = {h(w)|w ∈ P̄i, h ∈ H}. At present, ReDeBug utilizes 3 hash

functions: FNV-1a hash6, djb2 hash, and sdbm hash7 (refer to common.py). The

default context in a diff file is 3 lines of code. Therefore, we can guarantee that

each window has at least 1 changed line by setting n ≥ 4 (the default n is 4).

SourceLoader: ReDeBug builds a Bloom filter [29] for each source file to check for the

presence of known vulnerabilities. For example, ReDeBug checks for the CVE-2009-3379

vulnerability in the code in Listing 6.16 as follows:

info->begin=oggpack_read(opb,24);
info->end=oggpack_read(opb,24);
info->grouping=oggpack_read(opb,24)+1;
info->partitions=oggpack_read(opb,6)+1;
info->groupbook=oggpack_read(opb,8);

for(j=0;j<info->partitions;j++){
int cascade=oggpack_read(opb,3);

6http://isthe.com/chongo/tech/comp/fnv/
7http://www.cse.yorku.ca/$\sim$oz/hash.html
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if(oggpack_read(opb,1))
cascade|=(oggpack_read(opb,5)<<3);

info->secondstages[j]=cascade;

acc+=icount(cascade);
}

Listing 6.16: Source code snippet from mplayer package

info->begin=oggpack_read(opb,24);
info->end=oggpack_read(opb,24);
info->grouping=oggpack_read(opb,24)+1;
info->partitions=oggpack_read(opb,6)+1;
info->groupbook=oggpack_read(opb,8);
for(j=0;j<info->partitions;j++)
intcascade=oggpack_read(opb,3);
if(oggpack_read(opb,1))
cascade|=(oggpack_read(opb,5)<<3);
info->secondstages[j]=cascade;
acc+=icount(cascade);

Listing 6.17: Normalized source code snippet

1. ReDeBug normalizes source file Fj to F̄j in a similar way by removing all whites-

paces except new lines and converting all characters into lowercase. Then, language-

specific optimizations, such as comment removal, are applied according to the iden-

tified file type. For example, the code in Listing 6.16 is normalized into the code in

Listing 6.17.

2. ReDeBug slides a window of n-lines over the normalized source code F̄j . We hash

each window w using the same list of hash functions H . Specifically, for each h ∈
H , we set the h(w)-th bit of the Bloom filter BFj to 1. Each source file is now

represented by its corresponding Bloom filter.

3. ReDeBug tests whether a normalized source file F̄j includes normalized buggy code

P̄i by checking if every bit in the locations specified by hi is set to 1 in BFj . For

example, for all the hash values hi generated from the code in Listing 6.15, we check

if the corresponding bits are set to 1. If at least one of the bits is 0, then the corre-

sponding window of P̄i is not present in F̄j . ReDeBug only records the pair (P̄i, F̄j)

as a potential match if F̄j contains the entire P̄i.

Reporter: For every pair (P̄i, F̄j) recorded, ReDeBug verifies if P̄i really occurs in F̄j .

A Bloom filter may cause false detection due to hash collisions. This is why ReDeBug

performs exact matching to eliminate any possible false detection due to the use of Bloom

141



filters. For example, the code in Listing 6.17 does indeed contain the buggy code in List-

ing 6.15. Finally, ReDeBug reports that the Debian mplayer package contains an un-

patched code clone of CVE-2009-3379. The report also presents a pair of the patch in

Listing 6.1 and the matched source code in Listing 6.16, which helps developers to easily

inspect the identified unpatched code clone.

While we encourage future developers to add parsing support to ReDeBug, for now

ReDeBug opts for a simpler robust algorithm that works across a wide variety of languages.

6.6 Summary

In this chapter, we presented ReDeBug, an architecture designed for unpatched code clone

detection. ReDeBug was designed for scalability to entire OS distributions, the ability to

handle real code, and the minimalization of false detection rates. ReDeBug found 15,546

unpatched code clones, which likely represent real vulnerabilities, by analyzing 2.1 billion

lines of code on a commodity desktop. We demonstrated the practical impact of ReDeBug

by confirming 145 real bugs in the latest versions of Debian Squeeze packages. We believe

ReDeBug can be a realistic solution for regular developers seeking to enhance the security

of their code in day-to-day development, and make ReDeBug available as an open-source

tool.
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Chapter 7

Code Resemblance vs. Code
Containment

7.1 Introduction

We propose two fingerprinting methods: code similarity detection using feature hashing

and code containment detection using Bloom filters. We originally wanted a system that

used a single algorithm. While conceptually more elegant, such a design wasn’t optimal in

either scenario. For example, if we had based our similarity metric on Bloom filters with

multiple hash functions, we would have had a larger error rate than with feature hashing

due to extra collisions from the extra hash functions. If we had used feature hashing instead

of Bloom filters, we would again have had lower accuracy when performing set member-

ship tests. Although the internals of implementing both feature hashing and Bloom filters

are almost identical, specific parameters are selected in different ways because the goals

are different. Code similarity detection uses a single hash function and a distance metric

interface, whereas code containment detection utilizes multiple hash functions and a set

membership interface.

Both approaches are also algorithmically different. The time for code similarity de-

tection goes up quadratically with more files because we have to perform
(|N |

2

)
pairwise

similarity calculation. On the contrary, the time for code containment detection increases

linearly as we have more files and patches because we query patches against files, i.e., a

single sweep over files.
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Figure 7.1: Error with various k where m=8,192

7.2 Feature Hashing vs. Bloom filters

A Bloom filter is a probabilistic data structure used to efficiently encode sets and perform

set membership tests. Let h1, h2, h3, ..., hk be a set of hash functions of type D → R and

|D| � |R|, i.e., each hash is a compression function. A Bloom filter calculates hi(x) = d

and sets the d’th bit in the m-length bit vector for all hash functions hi and each feature

value x. To test if an element x′ is in the feature set, a check is performed to see that the

hi(x
′) bit is set for all i. If any bits are not set, then x′ is not in the set. Bloom filters have

false positives due to hash collisions, but never false negatives. The false positive rate is

reduced, all things being equal, by adding more hash functions.

Bloom filters did not work well for code resemblance detection because we wanted to

approximate the Jaccard similarity, not to perform set membership tests. Feature hashing is

similar to Bloom filters where we compute h(x) = d and set the d’th bit, except that only a

single hash function is used. Theorem 1 (§3.2.2) shows that the software fingerprints pro-

vide a near-optimal approximation of the true Jaccard index. To the best of our knowledge,

no previous work (e.g., [31]) has performed a similar analysis. Indeed, the proof shows that

increasing the number of hash functions increases error, which is why Bloom filters don’t

work well. This corresponds well to feature hashing, where only one hash function is used.

Further, requiring only one hash has obvious performance improvement implications.
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Through simulations on random sets of n-grams, we also showed that the use of single

hash function minimized the difference between the Jaccard in Equation 3.1 and the bit

vector Jaccard in Equation 3.2. In particular, we created two sets that contain 1000 n-

grams each, with varying numbers of overlapping n-grams, and measured how much the

bit vector Jaccard differed from the true Jaccard. Figure 7.1 shows the average error as the

fraction of common n-grams; the number of hash functions k varies (the standard deviation

is very small and is therefore not shown). We note that the error increases as k increases,

with minimum error achieved at k = 1, which is different from the usual Bloom filter set

membership tests.

7.3 Summary

We present two software similarity measures and their underlying fingerprinting algorithms.

First, code resemblance between two programs can be measured to tell how similar the

programs are. For this purpose, we use feature hashing [150, 159] to dramatically reduce

the high-dimensional feature spaces that are common in program analysis. Our evaluation

shows that our fingerprinting algorithm is up to an order of magnitude faster than previous

approaches and uses less memory with comparable accuracy. Second, code containment is

detected to find unpatched code clones. For this purpose, we utilize Bloom filters [29] to

quickly check if code contains known vulnerable code in it. By checking over 2.1 billion

lines of code for 376 security-related patches, we found 15,546 unpatched copies of known

vulnerable code.
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Part III

Conclusion
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Chapter 8

Conclusion

To keep modern systems secure, software analysis must be performed to determine whether

software contains malicious and/or buggy code. Unfortunately, the sheer volume of new

software fueled by extensive code reuse far outpaces the current capacity of software anal-

ysis. If we cannot cope with the ever increasing volume of software, we may miss critical

security problems. Therefore, it is critical to develop scalable analysis to bridge the gap.

In this dissertation, we show that automatic code reuse detection enables an efficient

data reduction of a high volume of incoming malware for downstream analysis and en-

hances software security by efficiently finding known vulnerabilities across large code

bases.

We propose a new software fingerprinting algorithm using feature hashing with bit vec-

tors and approximate software similarity calculation for scalability purposes. We also prove

a theoretical bound of our approximation and demonstrate the practical uses of our tech-

niques in many security scenarios, such as malware clustering, software lineage inference,

and unpatched code clone detection with large-scale real-world data sets.
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