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Abstract

Light interacts with the world around us in complex ways. These interactions can

broadly be classified as direct illumination – when a scene point is illuminated directly

by the light source, or indirect illumination – when a scene point receives light that is

reflected, refracted or scattered off other scene elements. Several computer vision techniques

make the unrealistic assumption that scenes receive only direct illumination. In many real-

world scenarios, such as indoors, underground caves, underwater, foggy conditions and for

objects made of translucent materials like human tissue, fruits and flowers, the amount

of indirect illumination is significant, often more than the direct illumination. In these

scenarios, vision techniques that do not account for the indirect illumination result in strong

and systematic errors in the recovered scene properties.

The above stated assumption is made because computational models for indirect illu-

mination (also called global illumination or global light transport) are complex, even for

relatively simple scenes. The goal of this thesis is to build simple, tractable models of global

light transport, which can be used for a variety of scene recovery and rendering applications.

This thesis has three contributions. First, recovering scene geometry and appearance de-

spite the presence of global light transport. We show that two different classes of shape

recovery techniques - structured light triangulation and shape from projector defocus - can

be made robust to the effects of global light transport. We demonstrate our approaches on

scenes with complex shapes and optically challenging materials. We then investigate the

problem of recovering scene appearance in the presence of common poor visibility scenarios,

such as murky water, bad weather, dust and smoke. Computer vision systems deployed in

such conditions suffer due to scattering and attenuation of light. We show that by control-

ling the incident illumination, loss of image contrast due to scattering can be significantly

reduced. Our framework can be used for improving visibility in a variety of outdoor appli-

cations, such as designing headlights for vehicles, both terrestrial and underwater.

Global light transport is not always noise. In numerous scenarios, measuring global

light transport can actually provide useful information about the scene. The second con-

tribution is to recover material and scene properties by measuring global light transport.

We present a simple device and technique for robustly measuring the volumetric scattering

properties of a broad class of participating media. We have constructed a data-set of the

scattering properties, which can be immediately used by the computer graphics community

to render realistic images. Next, we model the effects of defocused illumination on the pro-

cess of measuring global light transport in general scenes. Modeling the effects of defocus

is important because projectors, having limited depth-of-field, are increasingly being used

as programmable illumination in vision applications. With our techniques, we can sepa-
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rate the direct and global components of light transport for scenes whose depth-ranges are

significantly greater than the depth of field of projectors (< 0.3m).

The third contribution of this thesis is fast rendering of dynamic and non-homogenous

volumetric media, such as fog, smoke, and dust. Rendering such media requires simulating

the fluid properties (density and velocity fields) and rendering volumetric scattering effects.

Unfortunately, fluid simulation and volumetric rendering have always been treated as two

disparate problems in computer graphics, making it hard to leverage the advances made in

both fields together. In particular, reduced space methods have been developed separately

for both fields, which exploit the observation that the associated fields (density, velocity

and intensity) can be faithfully represented with a relatively small number of parameters.

We develop a unified reduced space framework for both fluid simulation and volumetric

rendering. Since both fluid simulation and volumetric rendering are done in a reduced space,

our technique achieves computational speed-ups of one to three orders of magnitude over

traditional spatial domain methods. We demonstrate complex visual effects resulting from

volumetric scattering in dynamic and non-homogenous media, including fluid simulation

effects such as particles inserted in turbulent wind-fields.
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Chapter 1

Introduction

There are two kinds of light - the glow that illuminates, and the

glare that obscures. ∼ James Thurber

Light interacts with the world around us in complex ways, resulting in a rich variety

of visual sensations: the glow around street-lights on a foggy night, the soft appearance

of translucent objects like skin, flowers and marble, different colors of liquids like wine,

beer and milk and the splendor of underwater effects (Figure 1.1). These interactions can

broadly be classified as direct illumination – when a scene point is illuminated directly

by the light source, or indirect illumination – when a scene point receives light that is

reflected, refracted or scattered off other scene elements. It is hard to imagine the world

without the effects of indirect illumination, also called global illumination or global light

transport. Without these intra-scene optical interactions, it would become hard for us to

perceive the three-dimensional shapes of the indoor spaces that we are in. Human skin,

flowers and fruits would lose their beautiful, soft appearance, instead looking like plastic.

Red wine would look like red paint and the glow around the moon would disappear. Global

illumination is such an integral part of our daily visual experience that the human visual

system has learnt to account for global illumination effects when perceiving the color and

shape of surfaces [8, 34], much like it is known to discount direct illumination from light

sources [76, 5, 70].

Computer graphics researchers have strived to simulate global illumination to recreate

the visual world around us. The very first images were rendered assuming only direct il-

lumination from the light sources. But now, complex global light transport effects, such

as inter-reflections, sub-surface scattering and volumetric scattering can be faithfully ren-

dered, resulting in almost photo-realistic images. Unfortunately, the same can not be said

for computer vision. Several computer vision techniques make the unrealistic assumption
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(a) (b)

Figure 1.1: Global Illumination. (a) Light interacts in complex ways with the world around us.
These complex interactions, in the form of inter-reflections, sub-surface scattering and volumetric
scattering are collectively called global illumination. (b) Given that it is almost impossible to find
a real world scene without global illumination, it is important to make vision algorithms robust to
the presence of global illumination.

that scenes receive only direct illumination. In many real-world scenarios, such as indoors,

underground caves, underwater, foggy conditions and for objects made of translucent mate-

rials like human tissue, fruits and flowers, the amount of indirect illumination is significant,

often more than the direct illumination. In these scenarios, vision techniques that do not

account for the indirect illumination result in strong and systematic errors in the recovered

scene properties.

This assumption has been necessary because scene recovery using active vision involves

modeling and inverting light transport models, which can become intractable as the com-

plexity of models increases. The goal of this thesis is to derive simple models of global

light transport for a variety of scene recovery and rendering applications. We show that by

actively controlling the illumination, we can recover scene properties (geometry, appearance

and material properties) despite, and in some scenarios, using global illumination. This

has been made possible by the observation that for computer vision techniques, often we

need to model only the aggregate effects of global light transport. Although modeling in-

dividual light rays might be complex, but much simpler models can be made for aggregate

effects [87, 43]. In addition, the recent advent of projectors has provided us with an un-

precedented flexibility in controlling illumination. With projectors, light can be modulated

along multiple dimensions: space, time, wavelength, focus and polarization. Projectors can

thus act as powerful probes for understanding light transport and scene recovery.

Broadly, this thesis has three main thrusts:
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Recovering scene geometry and appearance in the presence of global light

transport: Virtually all active scene recovery techniques, for example shape and ap-

pearance from intensity [97, 65, 129, 53, 134, 51], shape from structured light triangula-

tion [102, 56, 12], and shape from projector defocus [131] do not account for global light

transport. Given the ubiquity of global light transport, ignoring it can result in strong, sys-

tematic biases in the recovered scene properties [38, 86]. In general, separating the effects of

global illumination from a shape/appearance cue requires explicit modeling and inverting of

global illumination [86]. Given the complexity of light transport though, this can be nearly

impossible.

We have built simple aggregate models of global light transport and used them to derive

two classes of shape-recovery techniques that are invariant to global light transport. First,

we consider the depth-cue of projector defocus [131] (Chapter 2). We have studied the

inter-relationship between defocused illumination and global light transport and showed

that both these effects manifest themselves as similar low frequency artifacts during image

formation. This observation brings the two seemingly different physical phenomena on the

same platform - now, we can simply use signal processing tools to analyze and separate

both effects. This enables accurate depth recovery in the presence of global light transport,

without explicitly modeling or measuring it. The second class of shape recovery techniques

that we consider is structured light triangulation, one of the oldest and most widely used 3D

shape measurement technique. As with most active vision techniques, it does not model the

effects of global illumination, thus resulting in potentially significant errors [16, 15, 130]. We

formally analyze the errors caused due to different modes of global light transport. Then, we

design structured light illumination patterns that modulate global illumination and prevent

the errors at capture time itself (Chapter 5). We have demonstrated our approaches using

scenes with complex shapes and material properties including (a) marble, wax and natural

objects such as fruits, milk and plants that show strong subsurface scattering, (b) objects

with complex reflectance properties and textures such as fur, velvet, metal, wood and (c)

objects with occlusions and deep concavities with strong inter-reflections.

Computer vision systems deployed in the presence of volumetric scattering media such

as murky water, bad weather, dust and smoke face a different set of challenges. Images

captured in these conditions show severe contrast degradation, blurring and loss of light

due to attenuation, making it hard to perform meaningful scene analysis. The ability to

improve image contrast of passive methods such as digital post-processing is limited when

the quality of acquired images is extremely poor to begin with. In such scenarios, it is

thus critical to act before the images are captured. We have investigated the problem of

how to illuminate the scene for minimizing light attenuation and the loss of contrast due

to backscatter, while maximizing the signal (Chapter 5). Our framework can be used for
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improving visibility in a variety of outdoor applications, such as designing headlights for

vehicles (terrestrial and underwater). We are extending our analysis to multi-camera vision

systems deployed in scattering media, for the purpose of shape recovery.

Measuring light transport in scenes and materials: Global light transport is not al-

ways noise. In numerous scenarios, sensing and measuring global illumination can actually

provide useful information about the scene, especially material properties. For instance,

measuring the amount of scattering in volumetric media such as milk, beverages and ocean

water can provide their optical properties, which in turn can be used to render realistic

images of these materials. As before, this is hard because of the complexity of light trans-

port. The key observation that we made is that light transport in scattering media can be

simplified by simply diluting the media with water. This is similar in spirit to measuring

the reflectance properties of surfaces by measuring intensities of single flat patches. In chap-

ter 4, we present a simple device and technique for robustly estimating the optical properties

of a broad class of participating media using active illumination. We have constructed a

database of the scattering properties of variety of media, which can be immediately used

by the computer graphics community to render realistic images of materials.

In general, measuring the global component separately from the direct component can

provide useful insights into various scene properties, which their sum can not. For example,

sub-surface scattering is a measure of material translucency. Inter-reflections can be used

to infer the geometric lay-out of scenes. It was only recently that Nayar et al presented

an efficient way to perform the direct-global separation [87]. This technique assumes that

the light source is a point or a distant light source or that the scene is roughly planar, so

that illumination defocus effects are not modeled. This is another important assumption

made by most active vision techniques. It has become particularly pertinent as projectors,

having limited depth-of-field, are increasingly being used as programmable illumination in

vision applications. We have derived simple models for the effects of defocused illumination

on the direct-global separation process. With our techniques, we can separate the direct

and global components for scenes whose depth-ranges are greater than the depth of field of

projectors (< 0.3m).

A future goal is to decompose global light transport further into it’s constituent modes:

inter-reflections, sub-surface scattering and volumetric scattering. We are particularly in-

terested in building machine vision systems for measuring sub-surface scattering as it is the

physical process behind the perception of translucency. Several objects of interest to hu-

mans, such as food, plants and skin are translucent. Such a system would have wide ranging

applications from food inspection, medicine and surgery to cosmetics industry. We believe

that a combination of active illumination and building simple models of translucency would
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go a long way towards achieving this goal.

Rendering of scenes under volumetric scattering: Brute-force rendering of volumet-

ric media, although capable of achieving nearly photo-realistic images, can be prohibitively

slow (taking CPU-days or even weeks). On the other end of the spectrum are analytic solu-

tions, which although fast, are possible only for homogenous and static media. Most of the

interesting real world phenomenon such as smoke, dust and fog are non-homogenous and

evolving with time. Despite this complexity, most of these physical processes can be rep-

resented with a significantly fewer variables (reduced space) than that required by a finite

element methods based computer simulation. This observation has led to the development

of a variety of reduced space methods in computer graphics. Examples include reduced

space methods for fluid simulation [121] and pre-computed radiance transfer for render-

ing [112]. These methods achieve significant computational speed-ups over spatial-domain

finite element based simulations.

Despite significant advances in both the fields of fluid simulation and rendering, these

two continue to be addressed separately. In nature, both these processes interact with

each other to provide us with a variety of rich visual experiences. This makes a case for

both of them to be studied together to better leverage the advances in both fields. We

have proposed a unified framework for both fluid simulation and rendering in an analytic

reduced space (Chapter 6). We believe that this is an important first step towards bridging

the gap between model reduction for fluid simulation and pre-computed radiance transfer

for rendering. Since both fluid simulation and rendering are done in a reduced space,

our technique achieves computational speed-ups of one to three orders of magnitude over

traditional spatial domain methods. We demonstrate complex visual effects resulting from

volumetric scattering in dynamic and non-homogenous media, including fluid simulation

effects such as particles inserted in turbulent wind-fields.

It is worth noting a few important difference between volumetric scattering and

other modes of light transport. In volumetric scattering, there is a clear boundary

between the scene and the medium. For other modes of light transport, there is no such

dichotomy. For all other modes of light transport, there is usually a single significant

scattering event along a sensor element’s line of sight. On the other hand, for volumetric

scattering, there can be multiple significant scattering events along a line of sight. Thus,

a significant portion of the irradiance received at the sensor is due to light rays that never

reach a scene point (backscatter).

In view of these differences, this thesis is divided into two parts. The first part deals with

inter-reflections, sub-surface scattering and illumination defocus. The first chapter builds a
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combined theory of defocused illumination, inter-reflections and sub-surface scattering. All

these effects are expressed as blur kernels on the incident illumination and an invariant is

derived to separate the device dependent effect (defocus) from the global light transport

effects (inter-reflections and sub-surface scattering). This invariant is used to recover scene

depths using the depth cue of projector defocus despite the presence of global illumination

effects. Second chapter presents a structured light based 3D scanning system which is robust

to the presence of global illumination effects.

The second part deals with scene recovery and rendering techniques under volumetric

scattering. In the third chapter, we present a simple device and technique for robustly esti-

mating the optical properties of a broad class of volumetric media using active illumination.

In the fourth chapter, we design active vision systems which can see clearer and farther in

various poor visibility scenarios, such as smoke, fog and underwater. In the fifth chapter,

we present a fast rendering technique for dynamic and non-homogenous volumetric media.

Finally, in the sixth chapter, we discuss future research directions.
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Part I

Inter-reflections, sub-surface

scattering and defocused

illumination
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Chapter 2

A Combined Theory of Defocused

Illumination and Global Light

Transport

http://graphics.cs.cmu.edu/projects/DefocusGlobal/

Office of the future [1] Direct-Global Separation [87] High Speed Vision [82]

Figure 2.1: Projector are being used as programmable illumination for a variety of applications
in Computer Graphics, vision, virtual reality and human-computer interfaces. In most of these
applications, projectors interact not just with flat screens, but with complex real world scenes
around us. Since projectors are limited depth of field devices, this creates an interesting interplay
between defocused illumination and global light transport.

The goal of this work [43] is to study the inter-relationship between defocused illumina-

tion and global light transport. This relationship is important as projectors are increasingly

being used as programmable illumination in a variety of applications in computer graphics,

vision, virtual reality and human-computer interfaces (Figure 2.1). In virtually all these

scenarios, projectors interact not just with flat screens but with complex, real world objects
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around us. Since projectors are limited depth of field devices, this creates an interesting

interplay between defocused illumination and global light transport.

It may seem that these two are completely different physical phenomena. Defocus is

a result of the optics of the source, and encodes scene depths. On the other hand, global

light transport encodes the intrinsic properties of the scene, such as 3D geometry and

material properties. Our key observation, which brings these effects on a common ground,

is that both of them manifest as low pass filters on the incident illumination. This enables

using signal processing tools to analyze both these effects, without having to explicitly

model either of them. Building on this observation, we derive an invariant between the two

effects, which can be used to separate the two. This is directly useful in scenarios where

limited depth-of-field devices (such as projectors) are used to illuminate scenes with global

light transport and significant depth variations. Especially from a computer vision point of

view, it is desirable to separate them as both of them encode different information about

the scene.

We show applications in two scenarios. First, accurate depth recovery in the pres-

ence of global light transport. Under global illumination, most active techniques such as

photometric stereo [129], shape from shading [53], structured light scanning, shape from

projector defocus [131] produce erroneous results. We show that global light transport can

be separated from the depth cue of illumination defocus [131] without explicitly modeling

or measuring light transport. This significantly reduces the errors caused due to global light

transport.

The second scenario that we consider is the separation of the direct and global com-

ponents of light transport for scenes with depth variations larger than the narrow depth of

field of projectors (< 0.3m) It is interesting to note the duality between the two applications

in terms of their respective noise and signal : in the first application, global illumination is

noise and defocus is the signal, while in the second application, defocus is the noise and

global illumination is the signal.

2.1 Related work

Modeling global light transport and defocused illumination: A lot of work has

been done in the computer graphics literature on modeling and simulating forward light

transport. However, most of these models are too complex for the purpose of recovering

scene properties. For volumetric scattering, the single scattering assumption is used to

simplify light transport and thus, to recover scene properties [119, 81, 85]. However, the

single scattering assumption is not valid in general for other modes of global light transport

such as sub-surface scattering and inter-reflections. There has been extensive work on
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modeling camera defocus [114] and using it to recover scene depths [88, 127]. However,

there has been limited work on modeling illumination defocus due to area light sources or

due to limited depth of field devices such as projectors. Most active vision techniques either

assume a point light source or the scene to be planar to avoid defocused illumination.

Shape recovery under global light transport: Most existing shape-from-intensity

techniques [129, 53, 131] account for only the direct component of light transport. One

possibility is to remove the global component a priori using the approach of Nayar et

al [87]. However, this approach requires the projector’s illumination to be focused on the

entire 3D scene, making it unamenable for depth recovery using projector defocus analysis.

Nayar et al [86] recovered depths in the presence of inter-reflections for scenes made of a

few Lambertian planar facets. Approaches based on explicitly measuring the light transport

matrix [109, 30] can be used to remove inter-reflection from images [107]. Such approaches

require measuring a large number of impulse responses of the scene. Our methods do not

require explicit modeling or estimation of the light transport matrix.

For structured light based techniques, the presence of sub-surface scattering and inter-

reflections hinders the detection of the light sheet intersection with the objects [38]. Re-

searchers have used polarization [15], modulation with a high-frequency illumination pat-

tern [16] and fluorescence [54] to mitigate the adverse effects of global illumination. How-

ever, polarization does not reduce the effects of inter-reflections, and the fluorescence based

technique requires submerging the scene in a fluorescent dye. Moreover, as with any tri-

angulation based technique, structured lighting suffers from the presence of occlusions in

complex scenes. Depth from camera focus (DFF) [88, 46] and depth from camera defocus

(DFD) [127] techniques can compute complete depth maps1, but they rely on scene texture

for accurate scene recovery. We use a co-located camera-projector setup for data acquisition,

as shown in Figure 2.3 (a). Using this setup prevents shadows due to occlusions, enabling

recovery of complete, hole-free depth-maps. Also, our techniques can handle scenes with or

without textures.

Another class of techniques measure density distribution of volumetric media using

active lighting [7, 39]. Confocal imaging techniques recover partially transparent volumes

by focusing the illumination and sensor simultaneously on slices of the volume [28, 72].

Morris et al [79] and Kutulakos et al [69] reconstruct specular and transparent scenes by

capturing multiple images under varying illumination and varying imaging geometry. The

focus of this work is reconstructing opaque and translucent surfaces. It will be interesting

to analyze the effects of volumetric scattering and transparency on our techniques in the

future.

1Although DFD and DFF also suffer from occlusion, the effects are not as severe due to a much smaller
base-line [105].
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2.2 Defocused illumination and global light transport as low

pass filters

(a) Direct Illumination (b) Direct+Indirect Illumination

Figure 2.2: Defocused and Global Illumination as low-pass filters. (a) A periodic illumination
pattern is projected on the scene using a projector. The temporal radiance profiles of scene points
which are not in focus are blurred. The amount of defocus blur is a function of the scene depths. (b)
The presence of global light transport due to sub-surface scattering and inter-reflections introduces
an additional blur. We show that the blur due to global illumination is independent of the projector
focus setting. This enables depth recovery even in the presence of global light transport.

Seemingly, defocused illumination and global illumination are very different physical

phenomena. Defocus is a result of the optics of the illumination (or imaging) system, and

encodes scene depths. On the other hand, global illumination is an intrinsic property of the

scene, and encodes material properties and scene geometry. We start with the observation

that, interestingly, both defocused and global illumination manifest themselves as low pass

filters on the incident illumination. An out-of-focus projector projects a blurred image.

On the other hand, volumetric scattering around street lights in the presence of fog results

in a glow, which again is blurring of the illumination.

In particular, consider a scene being illuminated by a projector with a periodic high

frequency pattern. An example pattern is shown in Figure 2.3(b). The pattern is translated

horizontally, one pixel at a time, and an image is acquired for each translation. In the

following, we show that the temporal radiance profile at each pixel can be modeled as a

convolution of the input pattern with the two blur kernels associated with illumination

defocus and global illumination (see Figure 2.2(b)).

Direct Illumination: Consider the illustration in Figure 2.2 (a). The direct component

of the radiance edi (t, f) at the scene point Si is the convolution of the illumination pattern,
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(a) (b)

Figure 2.3: Data acquisition setup. (a) Co-located camera-projector setup enables recovery of
hole-free depth maps. (b) The periodic pattern used to illuminate the scene.

pi(t), and the defocus blur kernel bi(t, f) at Si
2 3:

edi (t, f) = αi pi(t) ∗ bi(t, f) . (2.1)

where t denotes time, and f is the location of the projector focal plane. The blur kernel

bi(t, f) depends on the depth of Si and the position of the projector focal plane, f . The

scale factor αi accounts for the BRDF of the scene point, orientation of the surface with

respect to the illumination source and the sensor, and the intensity fall-off.

Global Illumination: Global illumination at a scene point Si is due to radiance received

from other scene points, as shown in Figure 2.2(b). Let mij be the fraction of the direct

radiance at the scene point Sj that reaches Si, possibly after multiple inter-reflections

and sub-surface scattering. Then the global component egi (t, f) is obtained by adding the

contributions from all other scene points:

egi (t, f) =
∑

Sj∈Scene,j 6=i

mij pj(t) ∗ bj(t, f) . (2.2)

2We assume that both incoming and outgoing radiance remain constant within the small solid angles
(< 1◦) subtended by the projector and camera apertures respectively at the scene point.

3We assume that there is no camera defocus. Experimentally, this is achieved by using a small camera
aperture.
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The total radiance ei(t, f) at Si is the sum of the direct and the global components:

ei(t, f) = edi (t, f) + egi (t, f) . (2.3)

We compactly write the expression for radiance at scene point Si using Eqs. 2.1, 2.2

and 2.3:

ei(t, f) =
∑

Sj∈Scene

mij pj(t) ∗ bj(t, f) . (2.4)

We have implicitly included the αi term with mii. Taking the Fourier transform of

Eq. 2.4:

Ei(w, f) = P (w)
∑

Sj

mij exp(−I w φj)Bj(w, f) , (2.5)

where, uppercase symbols denote the Fourier transforms of the corresponding lower-case

symbols. The variable w represents the frequency. Since pj(t) is a shifted version of pi(t),

their Fourier transforms have the same magnitude P (w) and differ only in the phase term

exp(−I w φj). Rearranging the terms:

Ei(w, f) = P (w) Bi(w, f) Gi(w, f) , (2.6)

Gi(w, f) =
∑

Sj

mij exp(−I w φj)
Bj(w, f)

Bi(w, f)
. (2.7)

The term Bi(w, f) is the Fourier transform of the defocus blur kernel at Si. This term

encodes scene depths and is independent of global illumination. We define Gi(w, f) as the

Fourier transform of the global illumination blur kernel at Si. The term Gi(w, f) encodes

the optical interactions between different scene points via the light transport coefficients

mij. Equation 2.6 states that the observed radiance profile at Si is the convolution of the

input pattern with the defocus blur kernel and the global illumination blur kernel. By

expressing both these phenomena as blur kernels, now we don’t have to explicitly model

either of these. This enables us to borrow tools from signal-processing literature to analyze

both these effects. Note that the above analysis and the techniques presented in this section

do not make any assumption on the particular form of the blur kernels.
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We compute Ei(w, f) by taking the Discrete Fourier Transform of the observed radiance

profile. We use the third coefficient of the DFT (w = 3) as a measure of the amount of

blur, as we empirically found it to be the most informative coefficient. For brevity, we drop

the argument w, i.e. E(w, f), G(w, f) and B(w, f) will be denoted as E(f), G(f) and B(f)

respectively.

2.3 Relationship between global light transport blur and pro-

jector defocus

As shown in the previous section, the observed blur kernel is the convolution of the blur ker-

nels due to both global illumination and illumination defocus. For a variety of applications,

especially those in computer vision, it is desirable to separate the effects of defocus and

global illumination. Indeed, both the blurs encode different information about the scene,

which can be recovered by separating them. How can the two kernels be separated? Fortu-

nately, we know that the defocus kernel B(f) can be modulated by changing the projector

focus settings. In this section, we study the dependence of the global illumination blur

kernel on the projector focus setting.

2.3.1 Invariance of global illumination blur to projector defocus

Consider the expression for the global illumination blur at a scene point Si, as given in

Equation 2.7. In the summation, the contribution from points Sj which are distant from

Si is low because the form factors mij fall rapidly with distance. Additionally, in a local

neighborhood, the form factors remain nearly constant. On the other hand, the phase terms

vary between −1 and 1, thus canceling out the contributions from a local neighborhood.

For points at relatively small distances from Si, although the form factor can be large, the

defocus blur kernel is approximately the same as that of Si. Consequently, the ratio
Bj(w,f)
Bi(w,f)

remains nearly constant as the focus setting is changed. Thus, the global illumination blur

kernel Gi(w, f) is nearly invariant to the projector focus setting.

In the following, we provide empirical validation for the above observation using scenes

exhibiting strong inter reflections and sub-surface scattering. In appendix 2.7 at the end

of this section, we provide validation using simulations for different distributions of scene

points.

2.3.2 Empirical validation of the invariance

For the purpose of validation, we measure G(f) for a wide range of projector focus settings

f . For a scene point Si, we can compute Gi(f) up to a constant scale factor by identifying
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another scene point Sj which does not receive any global illumination, and has the same

depth as Si. Using Eq. 2.6 and noting that Bi(f) = Bj(f):

Gi(f)

αj

=
Ei(f)

Ej(f)
. (2.8)

Experimental Setup: We use a co-located camera-projector system as shown in Figure 2.3

(a). Our system consists of a Sony Cineza 3-LCD video projector and a Lumenera Lu165C

12-bit camera. The projector focus setting is changed by rotating the focus ring manually.

Markings were made on the focus ring to be able to replicate the focus settings. We use

the pattern shown in Figure 2.3 (b) to illuminate the scene.4 This pattern has a period

of 24 pixels in the horizontal direction [131]. For each focus setting, we acquire 24 images

as the pattern is translated horizontally, one pixel at a time. The total number of images

acquired is 24 × F , where F is the number of focus settings used. The acquisition time is

approximately 1 minute per focus setting.

Validation Results: We design experiments to establish the invariant for both sub-surface

scattering and inter-reflections. For inter-reflections, we construct a V-groove using

two diffuse planes, as shown in Figure 2.4(a). Figures 2.4(b-d) show sample input im-

ages for three out of six focus settings. We compute E(f) at different focus settings for

the scene point B, which receives global illumination due to inter-reflections. We repeat

the experiment for the same set of focus settings by removing the right red colored plane

(Figure 2.4(a)). In this case, the scene point A does not receive any global illumination.

Figures 2.4(i-j) show temporal intensity profiles at Point A and B respectively. The profiles

at B are more blurred than the profiles at A due to the additional global illumination blur.

Figures 2.4(k-l) show discrete-time Fourier transform E(ω, f) of (i) and (j). Figure 2.4(m)

shows the plot of E(3, f) for points A (no global illumination) and B (with global illumina-

tion). The global illumination blur G(f) is computed by taking the point-wise ratio of the

two curves, according to Eq. 2.8. Figure2.4(n) shows the plot of scaled G(3, f) at point B.

Figures 2.4(k-l) shows global illumination blur kernels and defocus blur kernels computed

at different focus settings.

Two observations can be made from the plots. First, as shown in Figure 2.4(n), the

total variation in G(f) is less than 5% over the entire range of focal plane positions (0.3m-

2.5m). It can also be observed in Figures 2.4(k-l) that the global illumination kernels

remain nearly constant, while the defocus kernels show significant variation. This validates

our claim that the global illumination blur resulting from inter-reflections is insensitive

to the projector focus setting. Second, we observe that the plots for E(f), with and

4Note that any periodic pattern with broad-band frequency response can be used.
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without global illumination, achieve maxima at the same focal plane position, as shown in

Figure 2.4(m).

For sub-surface scattering, we use a wax candle with the top and the bottom part

covered with diffuse reflective paper, leaving the center exposed, as shown in Figure 2.5 (a).

We choose a point B on the exposed part which receives global illumination in the form of

sub-surface scattering. Point A, on the same vertical column and lying on the diffuse paper,

is at the same depth as B but receives no global illumination. We plot E(f) for A and B in

Figure 2.5(i). As before, G(f) at B is computed by taking the point-wise ratio of the two

curves. We observe similar results as in the case of inter-reflections: the global illumination

blur kernel remains nearly constant as the projector focus setting is changed significantly.

2.4 Depth Recovery under Global Illumination

Based on the invariant derived in the previous section, we present two algorithms for re-

covering depths in the presence of global light transport. We follow the frequency domain

approach of Zhang et al [131] and derive two depth estimation algorithms. The first al-

gorithm requires a sweep of the focal plane across the scene, acquiring images at multiple

focus settings. This is similar in spirit to shape-from-camera-focus techniques which require

a sweep of the camera focal plane. Recall that the total blur is a convolution of the defocus

blur and the global illumination blur, both of which are unknown. Thus, we need intensity

profiles for at least two focal settings in order to separate the two blur kernels. The second

algorithm that we present requires only two focus settings and is similar in spirit to shape-

from-camera-defocus methods. Note that our analysis is done independently at each pixel.

Hence, we do not impose any smoothness constraints, or require presence/absence of scene

texture.

2.4.1 Depth from multiple projector focal planes

In this algorithm, the DFT coefficients E(f) are computed for multiple (≥ 3) focal plane

positions f spanning the depth-range of the scene. Since the global illumination blur G(f) is

invariant to f , the plot of E(f) against f reflects the behavior of the defocus blur B(f). In

other words, E(f) and B(f) attain a maxima at the same focal plane location f , when the

corresponding scene point is the best in focus. It follows that scene points at the same depth

but receiving different amounts of global illumination share the same maxima location. Two

examples are shown in Figures 2.4(m) and 2.5(i). This suggests the maxima location f i as

a global-illumination invariant depth measure:
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f i = argmax
f

Ei(f) (2.9)

The resolution of the above depth measure is limited by the number of focal settings

used. The resolution can be improved by interpolating the focus measures Ei(f) between

the discrete focal plane settings [88]. As a one time calibration step, we compute a one-to-

one mapping between scene depths and f i using a planar, diffuse reflective board, whose

depths are known a priori (see Figure 2.6 (a)). This mapping, along with the estimates of

f , is used to compute the actual depths for a given scene. This algorithm can be considered

a dual to the shape-from-camera-focus technique, where depths are computed by sweeping

the camera focal plane across the scene.

2.4.2 Depth from two projector focal planes

In this algorithm, we compute depths as a function of a defocus measure defined using only

two focal positions f1 and f2. Since Gi(f) is invariant to f , Gi(f1) = Gi(f2). Using Eq. 2.6,

we define the following ratio measure which is invariant to global illumination:

Ωi =
Ei(f2)

Ei(f1)
=

Bi(f2)

Bi(f1)
. (2.10)

We compute a mapping (monotonic) between scene depths and Ωi using a planar cali-

bration board, as shown in Figure 2.6 (b). This mapping, along with the estimates of Ω is

used to compute the actual depths for a given scene.

Results Figure 2.7 shows results of our techniques for the V-groove and the candle scenes.

The single focal plane algorithm [131] over-estimates the defocus blur due to inter-reflections

and sub-surface scattering resulting in incorrect depth estimates near the concavity and for

the exposed parts of the candle. Our depth from two planes (Section 2.4.2) and multiple

planes (Section 2.4.1) algorithms reconstruct both the shapes accurately. Theoretically,

3 focal planes are sufficient for the multiple focal planes algorithm. For robustness, we

used 6 to 8 focal plane positions. Since we compute depths independently at every pixel,

fine details such as the wick of the candle are reconstructed as well. The ground truth

depths in Figure 2.7 were acquired using a calibration plane with pre-measured depths. We

demonstrate our algorithms on scenes with complex shapes and material properties, and

significant global illumination, as explained below.

Candle and marble scene (Figure 2.8): This scene consists of a wax candle inside a

white pot closest to the projector, a marble statue of Atlas, a V-groove and a polyresin bust,
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in this depth order. The single focal plane algorithm [131] does not account for global light

transport effects. Notice the incorrect depths, most noticeably on the candle and inside

the V-groove concavity. The apparent details on the two statues are also spurious; they

appear due to inter-reflections between the folds on the statues. In contrast, on the depth

maps computed using our techniques, the errors due to global illumination are significantly

reduced. 5

Synthetic materials scene (Figure 2.9): This scene consists of objects with complex

and anisotropic BRDF’s (metal, velvet and fur) and intricate shapes. The single focal plane

algorithm computes incorrect depths at the base of the objects due to inter-reflections.

Notice the sharp variation in depth at the base of the red-cylinder. The correct depth map

should have a smooth depth transition, as can be noticed on depth maps computed using

our techniques. Similarly, in the scene consisting of various industrial parts (Figure 2.12),

the depth map computed using the single focal plane algorithm has errors due to sharp

inter-reflections and different material properties. In the depth map computed using our

technique, the errors are significantly reduced.

Real and fake materials scene (Figure 2.10): This scene consists of real and fake

flowers, real and fake fruits and milk with different fat content. Objects present in this

scene exhibit varying degrees of sub-surface scattering due to different material properties.

The single focal plane algorithm does not account for different material properties, thus

computing incorrect depths. For instance, in the correct depth map, the two milk glasses

should have the same depths, which is the case with our results. Similar effect can be

noticed in the Candles and soaps scene (Figure 2.11), where all the objects are placed at

roughly the same depth. However, the single focal plane algorithm computed significantly

different depths due to different material properties. In comparison, the depth variation in

the results computed by our algorithms is significantly lesser.

Failure case: If a scene point receives strong global illumination contributions from other

scene points at significantly different depths, the global illumination blur is not invariant

to the projector focus setting. This can happen in a scene with strong, long range inter-

reflections, for example due to mirrors. In this case, our techniques will fail to completely

account for the errors due to global illumination. This is illustrated in Figure 2.13. The pot

receives strong, specular inter-reflections from a distant mirror (not visible in the image).

Depth computed using the single focal plane method is incorrect for points on the pot

which receive specular inter-reflections. Although the errors in the depth maps computed

using our techniques are mitigated, they are not completely removed. The projector and

5The striped artifacts visible in the depth maps are due to aliasing of the illumination pattern resulting
from limited spatial resolution and non-ideal optics of the projector. The aliasing is mitigated by pre-filtering
the pattern before projection.
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camera were not co-located in this experiment. Depth computation was not performed in

the shadow regions.

2.5 Direct-Global Separation under Defocus

The direct component can be considered as the purest measurement of a scene’s material

properties. On the other hand, the global component encodes the optical interactions

between different scene objects. Separating the direct component from the global component

provides useful insights into various scene properties, which their sum can not.

The algorithm proposed in [87] separates the direct and global components of light

transport with a single projector focal plane position. This technique, however, does not

take into account the effects of defocused illumination. In the presence of defocus blur, a

single focal plane is not sufficient to recover the correct separation. Such a situation would

arise if the depth range of the scene is larger than the depth of field of the projector. In this

section, we derive measures of global illumination that are invariant to projector defocus.

We present two algorithms for separating the direct and global components of radiance in

the presence of defocus blur. The first algorithm uses multiple focal planes, and the second

uses a single focal plane in addition to a depth map of the scene, which can be recovered

using approaches of the previous section.

First, we derive the separation equations in the presence of defocus blur. Suppose we

use a high-frequency pattern pi(t) with an equal number of on and off pixels to illuminate

the scene. Then, following [87], the max-image, e+(f), computed by taking pixel-wise max-

imum, receives approximately half the global component. In the presence of defocus blur,

the illumination pattern gets blurred. However, since the period of the pattern remains the

same, this approximation still holds. Thus, using Eqs. 2.1 and 2.3, we write the expression

for e+(f) in the presence of defocus:

e+i (f) = β+
i (f) e

d
i + 0.5 egi , (2.11)

β+
i (f) = maxt { pi(t) ∗ bi(t, f)} . (2.12)

where αi = edi . Note that edi and egi are the direct and global components respectively

at Si when the scene is fully illuminated. Similarly, we compute the min-image, e−(f):

e−i (f) = β−
i (f) e

d
i + 0.5 egi , where (2.13)

β−
i (f) = mint { pi(t) ∗ bi(t, f)} . (2.14)
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These equations are generalizations of the separation equations given in [87], as they ac-

count for defocus blur as well. The coefficients β+
i (f) and β−

i (f) depend on the defocus blur

kernel bi(t, f) at Si. If Si is in perfect focus at the focus setting f , β+
i (f) = 1 and β−

i (f) = 0.

2.5.1 Separation using multiple focal planes

In this section, we present a separation technique using multiple focal planes. We use a

checker-board illumination pattern as in [87]. Input images (about 25) 6 are acquired at

different focus settings. Figure 2.15 shows sample input images for the V-groove scene for 3

out of 6 focus settings. For a point Si, we compute e+i (f) and e−i (f) at each focus setting.

Using a Gaussian interpolation scheme similar to previous section, we compute e+i and e−i ,

the extrema values of e+i (f) and e−i (f) respectively. An example plot for a point on the

candle is shown in Figure 2.14 (a). Note that the curve for e+i (f) attains a maximum, while

the curve for e−i (f) attains a minimum. The computed images e+i and e−i are the max and

min image respectively as if the scene is in perfect focus. Thus, we can write the separation

equations as:

e+i = edi + 0.5 egi (2.15)

e−i = 0.5 egi (2.16)

The direct and global components can then be computed, respectively, as edi = e+i − e−i
and egi = 2 e−i .

2.5.2 Separation using one plane and a depth map

Here, we present an algorithm to compute separation in the presence of defocus blur using

a single focal plane and a depth map of the scene computed using the techniques presented

in Section 2.4. For a scene point Si, the direct and the global component are given using

Eqs. 2.11 and 2.13:

edi =
e+i (f) − e−i (f)

β+
i (f) − β−

i (f)
, (2.17)

egi = ei − edi , (2.18)

where ei is the observed intensity when the scene is fully lit. The denominator in Eq. 2.17

6Theoretically, only 2 images are required. For robustness, we acquire multiple images
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encodes the effects of defocus blur, and needs to be eliminated in order to recover the direct

and global components. To this end, we build a mapping between
(
β+
i (f)− β−

i (f)
)
and

scene depths using a flat diffuse inclined plane with known depths and no global illumination,

as shown in Figure 2.14 (b). For a point Sr on the inclined plane, we compute the max and

the min images, e+r (f) and e−r (f) respectively. Then:

β+
r (f)− β−

r (f) =
e+r (f)− e−r (f)

er
, (2.19)

where er is the intensity at Sr when the plane is fully lit. If Sr and Si are at the same

depth, we can substitute for the denominator in Eq. 2.17 with Eq. 2.19, to recover the direct

and global components.

Experiments and results for direct-global separation: For direct-global separation,

we use the same setup as for depth estimation. We illuminate the scene with a checkerboard

pattern with checkers of size 8× 8 pixels. The pattern is shifted 5 times by 3 pixels in both

dimensions to acquire a total of 25 images per focal setting. The max-image and min-image

are computed by simply taking the pixel-wise maximum and minimum respectively.

Figure 2.16 shows the direct-global separation results for the candle and the V-groove

scene. The focal plane was placed in front of the scene so that the objects are not in focus.

The technique in [87] does not account for illumination defocus and incorrectly estimates

the direct and global components. The direct component is underestimated and the global

component is over-estimated on the planes of the V-groove and on the background plane

in the candle scene. In contrast, our techniques account for defocus while computing the

direct-global separation. Notice the color-bleeding due to inter-reflections inside the V-

groove and large global component on the exposed parts of the candle due to sub-surface

scattering.

We also consider scenes with large depth variations (0.3m - 2m), significantly more than

the depth of field of the projector, as shown in Figures 2.17. The technique in [87] produces

different direct-global separation for different projector focus settings. This is incorrect

since the direct-global separation is inherent to the scene, and should not depend on the

projector focus setting. Our separation algorithms account for the defocus blur, and recover

the correct direct and global components. Notice the large global component on the candle

due to sub-surface scattering and inside the V-groove due to inter-reflections.

Figure 2.18 shows results for more scenes containing objects with a variety of material

properties and different geometries. The depth range of all the scenes is larger than 150 cms.,

more than the depth of field of projectors (∼ 30 cms.). For more results and comparison,
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see the project web-page [2].

2.6 Discussion and Limitations

We have studied the interplay between defocused illumination and global illumination and

derived an invariant which can be used to separate the two effects for scene recovery. Based

on the invariant, we have shown two applications: First, accurate depth recovery in the

presence of global illumination (sub-surface scattering and inter-reflections). Second, fac-

toring out the effects of defocus for correct direct-global separation in large depth scenes.

Defocused illumination from area light sources: We have discussed defocused illumi-

nation in the context of projectors. However, illumination defocus is a more general effect

which can be observed whenever an occluder is placed in front of an area light source. If

the occluder is a long, thin mask, for example a fence, the shadow would be sharp near

the obstacle and becomes more and more blurred as one moves away from the obstacle, as

illustrated in Figure 2.19 (a). This effect is similar to defocus observed with projectors.

Formally, the shape of the occluder (mask) acts as the projector-pattern. For example,

the fence shown in Figure 2.19 (a) simulates vertical projector stripes. The mask also acts

as the focal plane of the setup - scene points close to the mask receive sharp shadow and

points further away receive defocused shadow. The area light source acts as the aperture

of the projector - larger the source, more the defocus. We can change the focus setting

by either moving the mask or by changing the size of the area source. With this setup,

we can use sun as the light source and port all our techniques to outdoor settings, where

the dynamic range of projectors may not be sufficient. Sun has previously been used for

outdoor scene recovery [67, 10, 87]. However, illumination defocus effects have not been

considered, thus requiring the occluder to be very close to the scene.

Limitations: We now discuss some limitations of our approaches. Our approaches do not

handle perfectly mirrored objects due to high frequency global illumination. In the presence

of specular reflections from mirrored objects, a scene point may receive global illumination

from distant scene points. In this case, the global illumination blur is not invariant to the

projector focus setting. As a result, our techniques do not fully account for the effects of

global illumination, as shown in Figure 2.13.

The striped artifacts visible in the depth maps are due to aliasing of the illumination

pattern resulting from limited spatial resolution and non-ideal optics of the projector. The

aliasing is mitigated by pre-filtering the pattern before projection.

Another challenging problem is to analyze the effects of volumetric scattering and trans-

parency on our techniques. Currently, the data acquisition process for our algorithms is
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not real-time. An avenue of future work is to extend our techniques for dynamic scenes.

Finally, it will be interesting to account for camera defocus to combine the advantages of

our techniques with those of shape from camera focus/defocus.

2.7 Appendix: Validation of invariance using simulations

In this section, we verify the invariance of global illumination blur to projector focus settings

using simulations in MATLAB. We compute G(f) according to Equation 2.7. To account for

intensity fall-off, occlusions and multiple bounces, we assume that the transfer coefficients

mij between two points Si and Sj to be inversely proportional to D2
ij , the square-distance

between them. Thus:

mij ∝ 1

D2
ij

(2.20)

For sub-surface scattering, mij encodes the additional exponential decay due to atten-

uation:

mij ∝ 1

D2
ij

exp(−Dij) (2.21)

For diffusion, we use the following expression for the form factor:

mij ∝ 1

Dij

exp(−Dij) (2.22)

The scene is modeled as a 2D symmetric uniform distribution of points around point Si,

which is assumed to be at the origin. We assume a Gaussian model for defocus blur. The

spread of the gaussian is given by the distance between the scene point and the focal plane.

We sample 100000 scene points from the distribution over 100 trials. We compute the

average global illumination blur over all the scene points for different focal plane positions.

Results: Figure 2.20 shows our simulation result. The global illumination blur has far less

variation (∼ 0.5% for the inter-reflection case for the second DFT component) over f as

compared to the defocus kernel (25 − 40% variation). The variation is even lesser for sub-

surface scattering and diffusion. This is because the form-factors for sub-surface scattering

and diffusion fall-off much more rapidly with distance as compared to inter-reflections.
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Figure 2.21 shows results for a non-symmetric scene distribution. In this case, the plots are

not symmetric around the origin. However, Gi(w, f) still remains nearly constant over a

large range of f .
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(a) V-Groove (b) Focus setting 1 (c) Focus setting 3 (d) Focus setting 6︸ ︷︷ ︸
Input Data

(e) Single Plane (f) Focus Setting 1 (g) Focus Setting 3 (h) Focus Setting 6︸ ︷︷ ︸
Input Data
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Figure 2.4: Experiments to show the invariance of global illumination blur (due to inter-reflections)
to the projector focus setting. (a) A V-groove constructed by placing two planes. (b-d) Sample input
images for three out of six focus settings. (e) A single plane after removing the right, red colored
plane from the V-Groove. (f-h) Sample input images for three out of six focus settings. (i) Plot of
E(3, f) for Points A (no global illumination) and B (with global illumination). (j) Plot of scaled
G(3, f) at point B. The relative variation in G(3, f) is less than 5%. (k) Global illumination blur
kernels computed at different focus settings. (l) Defocus blur kernels at different focus settings.
The global illumination kernels remain nearly constant, while the defocus kernels show significant
variation.
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(a) Candle Scene (b) Focus setting 1 (c) Focus setting 5 (d) Focus setting 8︸ ︷︷ ︸
Input Data
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Figure 2.5: Experiments to show the invariance of global illumination blur (due to sub-surface
scattering) to the projector focus setting. (a) Candle scene. (b-d) Sample input images for three
out of eight focus settings. (e-f) Temporal intensity profiles at Point A and B respectively. (g-h)
Discrete-time Fourier transform E(ω, f) of (e) and (f). (i) Plot of E(3, f) for Points A (no global
illumination) and B (with global illumination). (j) Plot of scaledG(3, f) at point B. This is computed
by taking the ratio of the two curves in (d) as in Eq. 2.8. The relative variation in G(3, f) is less
than 7% across the range of projector settings. (k) Global illumination blur kernels computed at
different focus settings. (l) Defocus blur kernels at different focus settings. The global illumination
kernels remain nearly constant, while the defocus kernels show significant variation.
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Figure 2.6: Mappings between (a) scene depths and the focus measure f , (b) scene depths and the
defocus measure Ω.
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Figure 2.7: Comparison of the three depth recovery techniques for the V-groove
(Fig. 2.4) and the candle (Fig. 2.5) scenes. The single focal plane algorithm [131] over-estimates
the defocus blur in the presence of inter-reflections and sub-surface scattering. This results in incor-
rect depth estimates near the concavity of the V-groove and for the exposed parts of the candle. On
the other hand, the relative RMS error for our algorithms is less than 1% for the V-groove and less
than 5% for the candle. The ground truth depths were acquired using a calibration inclined plane
with pre-measured depths.
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(a) ’Candle and Marble’ Scene (b) Depth using single focal plane [131]

(c) Depth using two focal planes (Sec. 2.4.2)(d) Depth using multiple focal planes (Sec. 2.4.1)

(e,f) Renderings from alternative view-point using depth map from (d)

Figure 2.8: Depth computation for the ’Candle and Marble’ scene. (a) This scene consists
of a wax candle inside a white pot closest to the projector, a marble statue, a V-groove and a
polyresin bust, in this depth order. There is significant global light transport in form of sub-surface
scattering (candle and the marble statue) and inter-reflections (inside the v-groove and between the
folds on the statues). (b) Depth map using the single plane algorithm [131]. Notice the incorrect
depths, most noticeably on the candle and inside the V-groove concavity. The apparent details on the
two statues are also spurious; they appear due to inter-reflections between the folds on the statues.
(c,d) Depth maps using our two focal planes and multiple focal planes algorithms respectively. The
errors due to global illumination are significantly reduced. (e-f) Texture-mapped 3D model of the
scene computed using (d).
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(a) ’Synthetic materials’ scene (b) Depth using single focal plane [131]

(c) Depth using two focal planes (Sec. 2.4.2)(d) Depth using multiple focal planes (Sec. 2.4.1)

Figure 2.9: Depth computation for the ’Synthetic materials’ scene. (a) This scene consists
of objects with complex and anisotropic BRDF’s (metal, velvet and fur) and intricate shapes. (b)
The single focal plane algorithm computes incorrect depths at the base of the objects due to inter-
reflections. Notice the sharp variation in depth at the base of the red-cylinder. The correct depth
map should have a smooth depth transition. (c,d) Depth maps computed using our techniques.
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(a) ’Real and fake materials’ scene (b) Depth using single focal plane [131]

(c) Depth using two focal planes (Sec. 2.4.2)(d) Depth using multiple focal planes (Sec. 2.4.1)

Figure 2.10: Depth computation for the ’Real and fake materials’ scene. (a) This scene
consists of real and fake flowers, real and fake fruits and milk with different fat content. Materials
present in this scene exhibit varying degrees of translucency. (b) The single focal plane algorithm
does not account for different material properties, thus computing incorrect depths. For instance,
in the correct depth map, the two milk glasses should have the same depths. (c,d) Depth maps
computed using our techniques.

(a) ’Candles and soaps’ scene (b) Depth using single (c) Depth using multiple
focal plane [131] focal planes (Sec. 2.4.1)

Figure 2.11: Depth computation for the ’Candles and soaps’ scene. (a) This scene consists
of soaps and candles with different material properties. (b) Depth map computed using the single
focal plane algorithm has significant errors; in the correct depth map, all the soaps and candles
should have the same depths. (c) Depth map computed using our technique.
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(a) ’Industrial parts’ scene (b) Depth using single (c) Depth using multiple
focal plane [131] focal planes (Sec. 2.4.1)

Figure 2.12: Depth computation for the ’Industrial parts’ scene. (a) This scene consists of
different industrial parts. (b) Depth map computed using the single focal plane algorithm has errors
due to sharp inter-reflections and different material properties. (c) In the depth map computed
using our technique, the errors are significantly reduced.

Illustration of setup Scene Depth map Depth map Depth map

(single plane) (two planes) (multiple planes)

Control scene: No global light transport

Failure case scene: Strong inter-reflections from a distant object

Figure 2.13: A failure case: Top row: Control scene. In the absence of global light transport,
all three techniques compute accurate depth maps. Bottom row: Failure case scene. The pot
receives strong, specular inter-reflections from a distant mirror (not visible in the image). Depth
map computed using the single focal plane method has errors on scene points which receive specular
inter-reflections. In this case, because of significant light transport among distant scene points, the
global illumination blur is not invariant to the projector focus setting. Consequently, although the
errors in the depth maps computed using our techniques are mitigated, they are not completely
removed.
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Figure 2.14: (a) Separation using multiple focal planes. We compute the extrema values of e+i (f)
and e−i (f) and use them for separation in Eqs. 2.15 and 2.16. (b) Separation using one focal plane.
Mapping between β+

i (f)− β−
i (f) and scene depths. Given a depth map of the scene, this mapping

is used to recover the correct separation using Eqs. 2.17 and 2.18.

(a) V-groove (b) Focus setting 1 (c) Focus setting 3 (d) Focus setting 6︸ ︷︷ ︸
Input Data

Figure 2.15: Input images for direct-global separation. The multiple focal planes algorithm
(Sec. 2.5.1) requires images captured at multiple (at-least 3) focus settings. Shown above are sample
input images at 3 out of 6 different focus settings. The single focal plane + depth map algorithm
(Sec. 2.5.2) requires images captured only at a single focal plane, and a depth map of the scene.
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Separation using Multiple focal planes Single focal plane

Nayar et al [87] (Sec. 2.5.1) + depth-map (Sec. 2.5.2)

Direct Global Direct Global Direct Global

V-groove scene

Candle scene

Figure 2.16: Comparison of the three direct-global separation techniques. The technique
in [87] does not account for illumination defocus and incorrectly estimates the direct and global
components. The direct component is underestimated and the global component is over-estimated
on the planes of the V-groove and on the background plane in the candle scene. Our techniques
account for defocus while computing the direct-global separation. Notice the color-bleeding due to
inter-reflections inside the V-groove and large global component on the exposed parts of the candle
due to sub-surface scattering.
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(a) Direct (top) and Global (bottom) components computed at different focal plane positions using [87].
From left to right: projector focal plane in front of the scene, in the middle of the scene and behind the scene.

(b) Direct (left) and Global (right) components computed using multiple focal planes method (Sec. 2.5.1)

(c) Direct (left) and Global (right) components computed using single focal plane + depth map method (Sec. 2.5.2)

Figure 2.17: Comparison of direct-global separation techniques for the marbles and
candle scene. The depth of the scene is approximately 150 cms, larger than the depth of field
of projectors (∼ 30 cms.). Thus, illuminating this scene with a projector results in defocused
illumination. The technique in [87] incorrectly produces different direct-global separation for different
focus settings. On the other hand, our techniques account for defocus while computing the direct-
global separation. Notice the large global component on the candle due to sub-surface scattering
and inside the V-groove due to inter-reflections.
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Scene Direct Component Global Component

Two scenes consisting of organic materials. Notice the inter-reflections between the eggs.

Scene consisting of translucent candles and soaps.

Scene consisting of synthetic materials.

Figure 2.18: Direct-Global separation for different scenes computed using the multiple
focal planes algorithm (Sec. 2.5.1). The depth range of all the scenes is larger than 150 cms.,
more than the depth of field of projectors (∼ 30 cms.). For large depth scenes, it is critical to
account for illumination defocus to compute the correct direct-global separation. See the project
web-page [2] for more results.
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(a) (b)

Figure 2.19: Simulating illumination defocus using an area light source. (a) Placing an obstacle in
front of an area light source (e.g., sun) creates a shadow. The shadow is sharp near the obstacle and
becomes more and more blurred as one moves away from the obstacle. (b) Using this observation,
we can simulate illumination defocus using an area light source and a mask placed in front of it.
The mask acts as the focal plane of the setup and the area light source acts as the aperture. We
can change the focus settings by either moving the mask or by changing the size of the area source.
With this setup, we can use sun as the light source and port all our techniques to outdoor settings.
Image in (a) courtesy http://images-1.redbubble.net/img/art/.
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Figure 2.20: Simulation result for symmetric case. The first row is for the first DFT
coefficient (w = π/12 in our setup). The second row is for the second DFT coefficient
(w = π/6). For each row, the first column is the defocus kernel at that frequency, the
second column is average global illumination blur over 100 simulations. Blue curve is for
inter-reflection, black for sub-surface scattering and red for diffusion.
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Figure 2.21: Asymmetric case. See the caption of Figure 2.20 for labels. The variation
of geometry blur is higher than symmetric case, yet it still remains nearly constant over a
large range of f .
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Chapter 3

Structured Light 3D Scanning

Under Global Light Transport

Structured light triangulation has become the method of choice for shape measurement in

several applications including industrial automation, graphics, human-computer interaction

and surgery. Since the early work in the field about 40 years ago [128, 78, 95], research

has been driven by two factors: reducing the acquisition time and increasing the depth

resolution. Significant progress has been made on both fronts (see the survey by Salvi et

al [102]) as demonstrated by systems which can recover shapes at close to 1000 Hz. [133]

and at a depth resolution better than 30 microns [31].

Despite these advances, most structured light techniques make an important assumption:

scene points receive illumination only directly from the light source. For many real world

scenarios, this is not true. Imagine a robot trying to navigate an underground cave or an

indoor scenario, a surgical instrument inside human body, a robotic arm sorting a heap of

metallic machine parts, or a movie director wanting to image the face of an actor. In all

these settings, scene points receive illumination indirectly in the form of inter-reflections,

sub-surface or volumetric scattering. Such global or indirect illumination1 effects often

dominate the direct illumination and strongly depend on the shape and material properties

of the scene. Not accounting for these effects results in large errors in the recovered shape

(see Figure 3.1d-e). Moreover, because of the systematic nature of these errors, it is hard

to correct them in post-processing.

Our goal is to build an end-to-end system for structured light scanning under a broad

range of global illumination effects. First, we formally analyze the errors caused due to

different global illumination effects. We show that the types and magnitude of errors depend

1Global illumination should not be confused with the oft-used “ambient illumination” in structured light
settings. Ambient illumination is subtracted by capturing image with the structured light source turned off.
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on the region of influence of global illumination at any scene point. For instance, some

scene points may receive global illumination only from a local neighborhood (sub-surface

scattering). We call these short-range effects. Some points may receive global illumination

from a larger region (inter-reflections or diffusion). We call these long range effects.

The key idea is to design patterns that modulate global illumination and prevent the

errors at capture time itself. Short and long range effects place contrasting demands on the

patterns. Whereas low spatial frequency patterns are best suited for short range effects,

long range effects require the patterns to have high-frequencies. Since most currently used

patterns (e.g., binary and sinusoidal codes) contain a combination of both low and high

spatial frequencies, they are ill-equipped to prevent errors. We show that such patterns

can be converted to those with only high frequencies by applying simple logical operations,

making them resilient to long range effects. Similarly, we use tools from combinatorial

mathematics to design patterns consisting solely of frequencies that are low enough to

make them resilient to short range effects.

But how do we handle scenes that exhibit more than one type of global illumination effect

(such as the one in Figure 3.1a)? To answer this, we observe that it is highly unlikely for two

different patterns to produce the same erroneous decoding. This observation allows us to

project a small ensemble of patterns and use a simple voting scheme to compute the correct

decoding at every pixel, without any prior knowledge about the types of effects in the scene

(Figure 3.1f). For very challenging scenes, we present an error detection scheme based on a

simple consistency check over the results of the individual codes in the ensemble. Finally, we

present an error correction scheme by collecting a few additional images. We demonstrate

accurate reconstructions on scenes with complex geometry and material properties, such as

shiny brushed metal, translucent wax and marble and thick plastic diffusers (like shower

curtains).

Our techniques do not require explicit separation of the direct and global components

of scene radiance and hence work even in scenarios where the separation fails (e.g., strong

inter-reflections among metallic objects) or where the direct component is too low and noisy

(e.g., translucent objects or in the presence of defocus). Our techniques consistently out-

perform many traditional coding schemes and techniques which require explicit separation

of the global component, such as modulated phase-shifting [16]. Our methods are sim-

ple to implement and can be readily incorporated into existing systems without significant

overhead in terms of acquisition time or hardware.
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3.1 Related Work

In this section, we summarize the works that address the problem of shape recovery under

global illumination. The seminal work of Nayar et al [86] presented an iterative approach

for reconstructing shape of Lambertian objects in the presence of inter-reflections. In the

previous chapter (ref. [43]), we presented methods for recovering depths using projector

defocus [131] under global illumination effects. Chandraker et al [13] use inter-reflections

to resolve the bas-relief ambiguity inherent in shape-from-shading techniques. Holroyd et

al [52] proposed an active multi-view stereo technique where high-frequency illumination is

used as scene texture that is invariant to global illumination. Park et al [93] move the camera

or the scene to mitigate the errors due to global illumination in a structured light setup.

Hermans et al [50] use a moving projector in a variant of structured light triangulation. The

depth measure used in this technique (frequency of the intensity profile at each pixel) is

invariant to global light transport effects. In contrast, our focus is on designing structured

light systems while avoiding the overhead due to moving components.

Recently, it was shown that the direct and global components of scene radiance could be

efficiently separated [87] using high-frequency illumination patterns. This has led to several

attempts to perform structured light scanning under global illumination [15, 16]. All these

techniques rely on subtracting or reducing the global component and apply conventional

approaches on the residual direct component. While these approaches have shown promise,

there are three issues that prevent them from being applicable broadly: (a) the direct

component estimation may fail due to strong inter-reflections (as with shiny metallic parts),

(b) the residual direct component may be too low and noisy (as with translucent surfaces,

milk and murky water), and (c) they require significantly higher number of images than

traditional approaches, or rely on weak cues like polarization. In contrast, we explicitly

design ensembles of illumination patterns that are resilient to a broader range of global

illumination effects, using significantly less number of images.

3.2 Errors due to Global Illumination

The type and magnitude of errors due to global illumination depends on the spatial fre-

quencies of the patterns and the global illumination effect. As shown in Figures 3.2 and 3.3,

long range effects and short range effects result in incorrect decoding of low and high spatial

frequency patterns, respectively. In this section, we formally analyze these errors. For ease

of exposition, we have focused on binary patterns. The analysis and techniques are easily

extended to N-ary codes.

Binary patterns are decoded by binarizing the captured images into projector-illuminated
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vs. non-illuminated pixels. A robust way to do this is to capture two images L and L, under

the pattern P and the inverse pattern P , respectively 2. For a scene point Si, its irradi-

ances Li and Li are compared. If, Li > Li, then the point is classified as directly lit. A

fundamental assumption for correct binarization is that each scene point receives irradiance

from only a single illumination element (light stripe or a projector pixel). However, due to

global illumination effects and projector defocus, a scene point can receive irradiance from

multiple projector pixels, resulting in incorrect binarization.

In the following, we derive the condition for correct binarization in the presence of global

illumination and defocus. Suppose Si is directly lit under a pattern P . The irradiances Li

and Li are given as:

Li = Li
d + β Li

g , (3.1)

Li = (1− β)Li
g , (3.2)

where Li
d and Li

g are the direct and global components of the irradiance at Si when the

scene is fully lit. β is the fraction of the global component under the pattern P .

In the presence of defocus (projector or camera), the projected patterns and the captured

image is blurred. Similarly, projectors with imperfect optics also result in blurring of the

projected patterns 3. Using Gray codes, which have a Hamming distance of one between

consecutive code-words gives resistance for up to 1 pixel blur. If the blur is larger, it

influences the highest frequency patterns, often completely blurring them out. Unlike sub-

surface scattering, defocus modulates the direct component as well, as shown in [43]. The

image intensities are given as:

Li = αLi
d + β Li

g , (3.3)

Li = (1− α)Li
d + (1− β)Li

g . (3.4)

The fractions (α and 1−α) depend on the projected pattern and the amount of defocus.

In the absence of defocus, α = 1. For correct binarization, it is required that Li > Li, i.e.

αLi
d + β Li

g > (1− α)Li
d + (1− β)Li

g (3.5)

2The inverse image L can be generated by subtracting the image L from the image of the fully lit scene.
3For example, pico-projectors are increasingly getting popular for structured light applications in indus-

trial assembly lines. We have noticed that due to imperfect optics, they can not faithfully resolve a striped
pattern of 2-pixel width.
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This condition is satisfied in the absence of global illumination (Li
g = 0) and defocus

(α = 1). In the following, we analyze the errors in the binarization process due to various

global illumination effects and defocus, leading to systematic errors4.

Long range effects (diffuse and specular inter-reflections): Consider the scenario

when Si receives a major fraction of the global component when it is not directly lit (β ≈
0), and the global component is larger than the direct component (Li

d < Li
g) as well.

Substituting in the binarization condition (Eqn. 3.5), we get Li < Li, which results in a

binarization error. Such a situation can commonly arise due to long-range inter-reflections,

when scenes are illuminated with low-frequency patterns. For example, consider the v-

groove concavity as shown in Figure 3.2. Under a low frequency pattern, several scene

points in the concavity are brighter when they are not directly lit, resulting in a binarization

error. Since the low frequency patterns correspond to the higher-order bits, this results in

a large error in the recovered shape.

Short-range effects (sub-surface scattering and defocus): Short range effects result

in low-pass filtering of the incident illumination. In the context of structured light, these

effects can severely blur the high-frequency patterns, making it hard to correctly binarize

them. This can be explained in terms of the binarization condition in Eqn 3.5. For high

frequency patterns, β ≈ 0.5 [87]. If the difference in the direct terms |αLi
d − (1 − α)Li

d|
is small, either because the direct component is low due to sub-surface scattering (Li

d ≈ 0)

or because of severe defocus (α ≈ 0.5), the pattern can not be robustly binarized due to

low signal-to-noise-ratio (SNR). An example is shown in Figure 3.3. For conventional Gray

codes, this results in a loss of depth resolution, as illustrated in Figure 3.4.

In summary, in the presence of long-range effects, low-frequency patterns are susceptible

to incorrect binarization. On the other hand, for short-range effects, high-frequency patterns

are susceptible to coding errors.

3.3 Patterns for Error Prevention

Errors due to global illumination are systematic, scene-dependent errors that are hard

to eliminate in post-processing. In this section, we design patterns that modulate global

illumination and prevent errors from happening at capture time itself. In the presence of

only long range effects and no short-range effects, high-frequency binary patterns (with equal

off and on pixels) are decoded correctly because β ≈ 0.5 [87], as shown in Figures 3.2(f-i).

On the other hand, in the presence of short-range effects, most of the global illumination

comes from a local neighborhood. Thus, for low frequency patterns, when a scene point is

4Errors for the particular case of laser range scanning of translucent materials are analyzed in [38]. Errors
due to sensor noise and spatial mis-alignment of projector-camera pixels were analyzed in [123].
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directly illuminated, most of its local neighborhood is directly illuminated as well. Hence,

α ≥ 0.5 and β ≥ 0.5. Thus, if we use low frequency patterns for short-range effects, the

global component actually helps in correct decoding even when the direct component is low

(Figure 3.3).

Because of the contrasting requirements on spatial frequencies, it is clear that we need

different codes for different effects. For long range effects, we want patterns with only high

frequencies (low maximum stripe-widths). For short-range effects, we want patterns with

only low frequencies (high minimum stripe-widths). But most currently used patterns con-

tain a combination of both low and high spatial frequencies. How do we design patterns

with only low or only high frequencies? We show that by performing simple logical oper-

ations, it is possible to design codes with only high frequency patterns. For short range

effects, we draw on tools from the combinatorial maths literature to design patterns with

large minimum stripe-widths.

3.3.1 Logical coding-decoding for long range effects

We introduce the concept of logical coding and decoding to design patterns with only high

frequencies. An example of logical coding-decoding is given in Figure 3.2. The important

observation is that for structured light decoding, the direct component is just an intermediate

representation, with the eventual goal being the correct binarization of the captured image.

Thus, we can bypass explicitly computing the direct component. Instead, we can model the

binarization process as a scene-dependent function from the set of binary projected patterns

(P) to the set of binary classifications of the captured image (B):

f : P ⇒ B . (3.6)

For a given pattern P ∈ P, this function returns a binarization of the captured image

if the scene is illuminated by P . Under inter-reflections, this function can be computed

robustly for high-frequency patterns but not for low-frequency patterns. For a low frequency

pattern Plf , we would like to decompose it into two high-frequency patterns P 1
hf and P 2

hf

using a pixel-wise binary operator ⊙ such that:

f(Plf ) = f
(
P 1
hf ⊙ P 2

hf

)
= f

(
P 1
hf

)
⊙ f

(
P 2
hf

)
(3.7)

If we find such a decomposition, we can robustly compute the binarizations f
(
P 1
hf

)
and

f
(
P 2
hf

)
under the two high frequency patterns, and compose these to achieve the correct
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binarization f (Plf ) under the low frequency pattern. Two questions remain: (a) What

binary operator can be used? (b) How can we decompose a low frequency pattern into two

high frequency patterns? For the binary operator, we choose the logical XOR (⊕) because

it has the following property:

P 2
hf ⊕ P 1

hf = Plf ⇒ P 2
hf = Plf ⊕ P 1

hf (3.8)

This choice of operator provides a simple means to decompose Plf . We first choose a

high-frequency pattern P 1
hf . The second pattern P 2

hf is then computed by simply taking

the pixel-wise logical XOR of Plf and P 1
hf . We call the first high frequency pattern the

base pattern. Instead of projecting the original low frequency patterns, we project the base

pattern P 1
hf and the second high-frequency patterns P 2

hf . For example, if we use the last

Gray code pattern (stripe width of 2) as the base pattern, all the projected patterns have

a maximum width of 2. We call these the XOR-02 codes (Figure 3.5). In contrast, the

original Gray codes have a maximum stripe-width of 512. Note that there is no overhead

introduced; the number of projected patterns remains the same as the conventional codes.

Similarly, if we use the second-last pattern as the base-plane, we get the XOR-04 codes

(Figure 3.5).

3.3.2 Maximizing the minimum stripe-widths for short-range effects

Short-range effects can severely blur the high-frequency base plane of the logical XOR codes.

The resulting binarization error will propagate to all the decoded patterns. Thus, for short-

range effects, we need to design codes with large minimum stripe-width (min-SW). It is not

feasible to find such codes with a brute-force search as these codes are extremely rare5.

Fortunately, this problem has been well studied in combinatorial mathematics. There

are constructions available to generate codes with large min-SW. For instance, the 10-bit

Gray code with the maximum known min-SW (8) is given by Goddyn et al [37] (Figure 3.5).

In comparison, conventional Gray codes have a min-SW of 2. Kim et al [64] used a variant

of Gray codes with large min-SW called the antipodal Gray codes to mitigate errors due to

defocus. For conventional Gray codes, although short-range effects might result in incorrect

binarization of the lower-order bits, the higher-order bits are decoded correctly. Thus, these

codes can be used in the presence of short-range effects as well.

5On the contrary, it is easy to generate codes with small maximum stripe-width (9), as compared to 512
for the conventional Gray codes, by performing a brute-force search
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3.3.3 Ensemble of codes for general scenes

Global illumination in most real world scenes is not limited to either short or long range

effects. Codes optimized for long-range effects would make errors in the presence of short-

range effects and vice versa. In general, it is not straight-forward to identify which code to

use without knowing the dominant error-inducing mode of light transport, which in turn

would require a priori knowledge about scene. We show that by projecting a small ensemble

of codes optimized for different effects, we can minimize the errors automatically without a

priori knowledge about the scene.

We project four codes optimized for different effects: two for long-range (the XOR-04

codes and the XOR-02 codes), and two for short-range (the Gray codes with maximum

min-SW and the conventional Gray codes). The key idea is that errors made by different

codes are nearly random. We can find the correct depth value by comparing the depth

values computed using the individual codes. If any two agree within a small threshold,

that value is returned. If only the two Gray codes agree, we return the value computed by

the Gray code with maximum min-SW, because they result in a better depth resolution.

Since the chosen set of codes are optimized for different effects, they cover a large class of

optically challenging scenes.

Results: Figure 3.1 shows a scene consisting of a bowl on a marble slab. For our en-

semble codes, we project a total of 41 patterns - 10 patterns for each of the 4 codes and

1 all-white pattern. For phase-shifting, we project 18 patterns (3 frequencies, 6 shifts for

each frequency). For modulated phase-shifting [16], we project 162 patterns (9 modulated

patterns for each phase-shifting pattern). Interestingly, by analyzing the errors made by

the individual codes, we can get qualitative information about light-transport. Scene points

where only the logical codes agree (marked in light-blue) indicate strong inter-reflections.

On the other hand, scene points where only the two Gray codes agree (green) correspond

to translucent materials (sub-surface scattering). Scene points where all the codes agree

(maroon) do not receive much global illumination.

The scenes in Figure 3.6 has inter-reflections inside the fruit basket and strong sub-

surface scattering on the fruits. Modulated phase-shifting performs poorly on translucent

materials, whereas conventional Gray codes and phase-shifting produce errors in the pres-

ence of inter-reflections. Reconstruction produced using our ensemble of codes has signifi-

cantly reduced errors. Similarly, figures 3.1 and 3.8 have global illumination in the form of

inter-reflections, sub-surface scattering and diffusion. As before, conventional Gray codes

and phase-shifting produce errors in the presence of long-range effects (inter-reflections and

diffusion) whereas modulated phase-shifting results in errors due to short-range sub-surface

scattering. Our ensemble of codes minimize the errors while keeping the number of acquired
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images low.

Figure 3.9 shows shape measurement of two translucent materials. Because of signif-

icant sub-surface scattering, modulated phase-shifting produces poor reconstructions. In

Figures 3.10 and 3.11, the goal is to reconstruct the lamp and the shower curtain respec-

tively. The correct shape of the curtain is planar, without any ripples. Light diffuses

through the curtain and is reflected from the background, creating long-range interactions.

Similarly, light diffuses through the lamp, is reflected from the interior and comes back out,

creating long-range optical interactions. Conventional Gray codes and phase-shifting result

in large errors. In the case of the shower-curtain, with only the logical codes optimized for

long-range interactions, a nearly error-free reconstruction is achieved, with the number of

images the same as the conventional codes.

Our techniques consistently outperform many existing schemes (Gray codes, phase-

shifting, and modulated phase-shifting [16]). For some moderately difficult scenes, modu-

lated phase-shifting performs as well as our methods, but requires an order of magnitude

more images (162 vs. 11). In these cases, it is sufficient to use only one of our patterns,

instead of the full ensemble.

3.4 Error detection and correction

The patterns presented in the previous section can successfully prevent a large fraction of

errors. For highly challenging scenes, however, some errors might still be made. For building

a reliable shape measurement system, it is critical to detect and correct these residual errors.

In this section, we present strategies for error detection and correction.

Error detection: Traditionally, error detection and correction strategies from commu-

nication theory have been adopted in the context of structured light. An example is the

Hamming error correcting codes used by Minou et al [78]. These techniques treat struc-

tured light coding-decoding as a signal transmission problem. Although good for handling

random sensor/illumination noise, these codes can not handle the systematic errors made

due to global illumination.

We show that the consistency check proposed in the previous section, in addition to

preventing errors, can also be used for detecting errors. For a pixel, if none of the four

codes agree, we mark it as an error pixel. This is illustrated in figure 3.12. Error pixels

are marked with red color. It is possible that one of the four values might be the correct

value. However, as there is an error correction stage, we take a conservative approach

and classify such pixels as error pixels. Since no extra patterns need to be projected, the

error detection stage does not place any overhead in terms of acquisition time. Park et
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al [93, 92] use similar consistency checks across range scans acquired from different view

points. By registering different scans and comparing the values from different scans, they

remove spurious measurements due to specular inter-reflections. In contrast, our technique

does not require moving the acquisition setup or the object.

Error correction: To correct the errors, we iteratively collect additional images while

illuminating only the scene points corresponding to the error pixels. This technique, based

on the work of Xu et al [130], progressively reduces the amount of global illumination,

resulting in reduction of the error pixels. The concave lamp made of shiny brushed metal

given in figure 3.12 is an extremely challenging object because of high-frequency inter-

reflections. Conventional Gray codes can not reconstruct a large portion of the object.

Separation based modulated phase-shifting [16] can not account for the high-frequency

inter-reflections, resulting in large errors. Our ensemble of codes, while reducing the errors,

can not reconstruct the object completely. By acquiring images in 2 extra iterations, we

achieve a nearly perfect reconstruction. In this case, we projected only the logical codes in

subsequent iterations, thus requiring 81 images in total.

It is important to note that for this error correction strategy to be effective, our error

prevention and detection stages are critical. Since our techniques correctly reconstruct a

large fraction of the scene in the first iteration itself, we require only a small number of extra

iterations (typically 1-2) even for challenging scenes. In comparison, Xu et al’s approach

requires a large number of iterations (10-20) and images (500-800), even for moderately dif-

ficult scenes. This is because they use conventional Gray codes, which do not prevent errors

in the first place. Secondly, their error detection technique, based on direct-global sepa-

ration, is highly conservative. For translucent materials, their error detection mechanism

always results in error, and the technique does not converge.

3.5 Limitations

Our techniques can not handle objects with perfectly mirror inter-reflections. The frequency

of these optical interactions is higher than what our codes can handle. Additionally, our

methods assumes a single dominant mode of light transport for every scene point. If a

scene point receives both large short-range and long-range effects, for example, inside of a

translucent concave bowl, all our individual codes will result in errors. Since neither code

produced the correct result, our combination technique and further error correction steps

will not be able to retrieve the correct result. Currently, we have not considered the effects of

volumetric scattering. Volumetric scattering is challenging as it results in both short-range

and long-range interactions. Narasimhan et al [85] presented a technique for reconstructing

the shape of under-water scenes. Their scanning technique is slow and assumes a single
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scattering model. A future direction would be to design fast systems for reconstructing

shape under a general model of volumetric scattering.
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(a) Bowl on a marble slab (b) Low-frequency illumination (c) High-frequency illumination

(d) Depth using conventional (e) Depth map using modulated (f) Depth map using our

Gray codes (11 images) phase shifting [16] (162 images) ensemble codes (41 images)

(g-i) 3D visualizations for (d-f) respectively (j) Qualitative

light-transport map

Figure 3.1: Measuring shape for the ‘bowl on marble-slab’ scene. This scene is challenging
because of strong inter-reflections inside the concave bowl and sub-surface scattering on the translu-
cent marble slab. Images captured under low frequency patterns (b) and high-frequency patterns
(c) are binarized incorrectly due to long range and short-range effects respectively. (d-f) Shape re-
constructions. Parentheses contain the number of input images. (d) Conventional Gray codes result
in incorrect depths due to inter-reflections. (e) Modulated phase-shifting results in errors on the
marble-slab because of low direct component. (f) Our technique uses an ensemble of codes optimized
for individual light transport effects, and results in the best shape reconstruction. (j) By analyzing
the errors made by the individual codes, we can infer qualitative information about light-transport.
Points marked in green correspond to translucent materials. Points marked in light-blue receive
heavy inter-reflections. Maroon points do not receive much global illumination.
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Figure 3.2: Errors due to inter-reflections: Top row: Conventional coding and decoding. (a)
A concave V-groove. The center edge is concave. (b) Low frequency pattern. (c-d) Images captured
with pattern (b) and its inverse respectively. Point S is directly illuminated in (c). However, because
of inter-reflections, its intensity is higher in (d), resulting in a decoding error. (e) Decoded bit plane.
Points decoded as one (directly illuminated) and zero (not illuminated) are marked in yellow and
blue respectively. In the correct decoding, only the points to the right of the concave edge should be
one, and the rest zero. (k) Depth map computed with the conventional codes. Because of incorrect
binarization of the low frequency patterns (higher-order bits), depth map has large errors. Second
row: Logical coding and decoding (Section 3.3.1). (f-g) Pattern in (b) is decomposed into two
high-frequency patterns. (h-i) Binarization of images captured with (f-g) respectively. (j) Binary
decoding under (b) computed by taking pixel-wise XOR of (h) and (i). (l) Depth map computed
using logical coding-decoding. The errors have been completely removed. (m) Comparison along
the dotted lines in (k-l).
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(a) (b) (c) (d) (e)

Figure 3.3: Errors due to sub-surface scattering: (a) This scene consists of a translucent slab of
marble on the left and an opaque plane on the right. (b) A high frequency pattern is severely blurred
on the marble, and can not be binarized correctly (c). Image captured (d) under a low-frequency
pattern can be binarized correctly (e).
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(a) Scene (b) Conventional Gray codes (11 images)
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(c) Large min-SW Gray codes (11 images) (d) Comparison

Figure 3.4: Depth computation under defocus: (a) A scene consisting of industrial parts. (b)
Due to defocus, the high frequency patterns in the conventional Gray codes can not be decoded,
resulting in a loss of depth resolution. Notice the quantization artifacts. Parentheses contain the
number of input images. (c) Depth map computed using Gray codes with large minimum stripe-
width (min-SW) does not suffer from loss of depth resolution. The number of input images is the
same as conventional Gray codes.
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(a) Conventional Gray Codes

(b) XOR-02 Codes

(c) XOR-04 Codes

(d) Gray codes with maximum min-SW

Figure 3.5: Binary codes for structured light: The range of stripe-widths for conventional
Gray codes is [2, 512]. For XOR-02 and XOR-04 codes (optimized for long range effects), the ranges
are [1, 2] and [2, 4] respectively. On the other hand, for Gray codes with maximized mins-SW
(optimized for short-range effects), the range is [8, 32].
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(a) Fruit-basket (b) Conventional Gray codes (11 images)

(c) Phase-shifting (18 images) (d) Modulated phase shifting [16] (162 images)

(e) Our ensemble codes (41 images) (f) Visualization for (e)

Figure 3.6: Depth map computation for the fruit-basket scene. Parentheses contain the
number of input images. Conventional Gray codes (b) and phase-shifting (c) result in errors at points
receiving inter-reflections. Modulated phase-shifting (d) produces errors on translucent fruits, due
to low direct component. (e) Our ensemble of codes significantly reduces the errors.
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(a) Bowls-and-milk scene (b) Conventional Gray codes (11 images)

(c) Phase-shifting (18 images) (d) Modulated phase-shifting [16] (162 images)

(e) Our ensemble codes (41 images) (f) 3D visualization of (e)

Figure 3.7: Depth map computation for the bowls-and-milk scene. Parentheses contain
the number of input images. Conventional Gray codes (b) and phase-shifting (c) result in errors
at points receiving inter-reflections. Modulated phase-shifting (d) produces errors on the boundary
of the translucent milk glass, due to low direct component. (e) Our ensemble of codes significantly
reduces the errors.
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(a) Flower-vase and candles scene (b) Conventional Gray codes (11 images)

(c) Modulated phase-shifting [16] (162 images) (d) Our ensemble codes

Figure 3.8: Depth map computation for the flower-vase and candles scene. Light diffuses
inside the flower-vase, gets reflected and seeps out, creating long-range interactions. Consequently,
phase-shifting (b) result in errors at points on the vase. Modulated phase-shifting (c) produces
errors on translucent candles and stones, due to low direct component. (e) Our ensemble of codes
significantly reduces the errors.
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(a) Translucent wax objects (b) Modulated phase-shifting [16] (c) Our ensemble codes

(162 images) (41 images)

Figure 3.9: Depth map computation for translucent objects. Parentheses contain the number
of input images. Modulated phase-shifting (b) produces errors due to low direct component. (c)
Results with our ensemble of codes.
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(a) Ikea lamp (b) Conventional Gray codes (c) Our ensemble codes

(11 images) (41 images)

(d) 3D visualization of (c)

Figure 3.10: Depth map computation for an Ikea lamp. Parentheses contain the number of
input images. Light diffuses through the thin outer wall of lamp, gets reflected inside and comes back
out, creating long range interactions. Consequently, conventional Gray codes (b) produce erroneous
depths. (c) Errors are significantly mitigated in the depth map computed using our ensemble of
codes.
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(a) Shower curtain (b) Conventional Gray codes (11 images)

(c) Phase-shifting (18 images) (d) XOR-04 (11 images)

Figure 3.11: Reconstructing a shower-curtain: The correct shape of the curtain is planar,
without ripples. Light diffuses through the curtain and is reflected from the background. (b-c) Con-
ventional Gray codes and phase-shifting result in large errors due to long range optical interactions.
(d) Reconstruction using logical codes is nearly error-free, with same number of input images as
conventional codes.
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(a) Hemispherical lamp (b) Conventional Gray codes (c) Modulated phase-shifting

made of brushed metal (11 images) (162 images)

(d) Our ensemble codes (e) Error map of (d) (f) Depth map after one

(41 images) (Red pixels = error) iteration (61 images)

(g) Depth map after two 3D visualizations of (g)

iterations (81 images)

Figure 3.12: Depth computation for the shiny metal lamp. (a) A hemispherical lamp made
of brushed shiny metal. (b-c) Both conventional Gray codes and modulated phase-shifting perform
poorly due to strong and high-frequency inter-reflections. (d) Our ensemble codes reduce the errors
significantly. (e) Detection of error pixels. Our error detection does not require capturing additional
images. (f-g) Using a small number of additional iterations and captured images, we progressively
reduce the errors and get a nearly perfect reconstruction. Numbers in parentheses indicate the
cumulative total number of acquired images.
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Part II

Volumetric Scattering

64



Chapter 4

Measuring scattering properties of

volumetric media

http://www.cs.cmu.edu/∼ILIM/projects/LT/dilution/

Very often in our daily lives, we see participating media such as fluids (juices, beverages,

milks) and underwater impurities (natural ocean, river and lake waters). The propagation of

light through these media results in a broad range of effects, including softer appearance of

milk, coloring of wines and juices, the transformation of appearances when liquids are mixed

(coffee with milk, and cocktails), the brilliant caustics from glasses containing these liquids,

and low visibility in underwater situations. These effects inherently depend on several

physical properties of the media such as scattering nature, sizes, shapes, and densities of

particles [55, 14]. Rendering these effects accurately is critical to achieving photo-realism

in computer graphics.

In the past few years, there has been a considerable effort towards developing efficient

and accurate rendering algorithms for participating media, based on Monte Carlo simu-

lation and analytic approximations. All these algorithms and models contain parameters

(scattering coefficient, absorption coefficient, phase function) that directly or indirectly rep-

resent the physical properties of the medium. In order to faithfully render the effects of

any participating medium, the right parameters must be input. Given the progress in de-

veloping rendering algorithms, the quality of images is now often limited by the quality of

these input parameters. Since there has so far been relatively little work in measuring or

estimating scattering properties of media relevant to computer graphics, the parameters are

currently often set in an ad-hoc manner.

This situation is similar in some ways to that of standard surface rendering. In that case,

global illumination algorithms have progressed to the point of creating almost photo-realistic
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images, leaving the realism limited by the quality of the reflectance models, and leading

to much recent effort on measuring BRDFs. [73, 19, 74]. However, existing methods for

directly measuring physical properties for media usually require very expensive equipment,

such as the particle sizing apparatus used in colloidal chemistry [24, 58], resulting in little

usable data for graphics.

(a) Acquired (b) Rendering at (c) Rendering at

photographs low concentrations natural concentrations

Figure 4.1: (a) Photographs of our simple setup consisting of a glass tank and a bulb, filled with
diluted participating media (from top, Merlot, Chardonnay, Yuengling beer and milk). The colors of
the bulb and the glow around it illustrate the scattering and absorption properties in these media.
At low concentrations, single scattering of light is dominant while multiple scattering of light is
negligible. From a single HDR photograph, we robustly estimate all the scattering properties of the
medium. Once these properties are estimated, a standard volumetric Monte Carlo technique can be
used to create renderings at any concentration and with multiple scattering, as shown in (b) and
(c). While the colors are only slightly visible in the diluted setting in (b), notice the bright colors
of the liquids - deep red and golden-yellow wines, soft white milk, and orange-red beer - in their
natural concentrations. Notice, also the differences in the caustics and the strong interreflections of
milk onto other liquids.

Earlier efforts to estimate scattering properties from images of media have often yielded

ill-conditioned and non-unique results, because of the difficulties of solving the inverse light

transport problem. The reasoning for the ill-conditioning of the inverse problem is mainly

due to multiple scattering, which blurs the incident light field and results in significant loss

of information [77, 6]. This is analogous to the ill-conditioning of BRDF estimation under

complex illumination [98]. In this work [81], we take a completely different approach. The

key idea is to estimate properties of media by acquiring the data in a state where multiple

scattering effects are negligible. Instead, the data is acquired when single scattering (which

does not degrade the incident light significantly) is the dominant effect. This is achieved
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by diluting the material to low concentrations.

We present a simple and inexpensive experimental setup, along with a robust and ac-

curate technique for measuring the scattering properties of a broad class of participating

media that can be either (a) diluted in water such as juices, beverages, paints and cleaning

supplies, or (b) suspended in natural waters such as impurities and organisms, or even (c)

dissolved in water such as powders and sugar or salt crystals. These media collectively

have a wide range of scattering and absorption properties. We first derive a simple image

formation model for single scattering of light in our setup. Through extensive simulations of

both our model and ground truth (with multiple scattering), we then determine the space

of concentrations and scattering properties of media for which single scattering is dominant.

Within this regime of valid concentrations, we conduct simulations to demonstrate that our

estimation technique uniquely solves the inverse single scattering light transport problem.

Finally, we present a simple experimental procedure to determine the best concentration

(dilution) for any material despite no prior knowledge of its scattering properties.

We have used our approach to create a dataset of scattering parameters for forty com-

monly found materials, which can be directly used for computer graphics rendering.

Once the scattering parameters have been estimated, they can be used to render realistic

images of arbitrary concentrations of the material with multiple scattering, using a stan-

dard physically based volumetric rendering algorithm. Figure 4.1 shows two renderings of

a scene with four liquids in their natural high density states and their diluted states. The

scattering parameters of each material were computed using a single HDR photograph of

our setup. Notice the bright saturated colors obtained despite the murky appearance of

the diluted states. We can also create realistic images of mixtures of the original measured

materials, thus giving the user a wide flexibility in creating realistic images of participating

media.

4.1 Related Work

Figure 4.2 shows the most common properties of participating media including the scat-

tering and absorption coefficients, and the phase function (angular scattering distribution

represented by the Henyey-Greenstein (H-G) model [49]). The scattering and absorption co-

efficients are proportional to the concentration or volume fraction of the particulate medium.

We will briefly review some of the representative works on the direct measurement and in-

direct estimation of these parameters.

Estimation based on analytic approximations to light transport. Surprisingly,

little work has been done in computer graphics on the measurement of scattering properties
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Medium Property Notation
Concentration or Volume Fraction C
Scattering Coefficient (mm−1) β
Absorption Coefficient (mm−1) κ
Extinction Coefficient (mm−1) σ = β + κ
Single Scattering Albedo ω = β/σ
Scattering Angle θ
Henyey-Greenstein (H-G) Parameter g

H-G Phase Function P (g, θ) = 1
4π

1−g2

(1+g2−2g cos θ)3/2

Figure 4.2: The different scattering properties of a participating medium and their nota-
tions used in this section. Light transport equations are usually written in terms of three
parameters σ, β and g. We estimate these parameters for participating media based on
single scattering.

of media. A diffusion model for sub-surface scattering was proposed in [61]. They present

a measurement of a number of translucent materials. However, the diffusion approximation

assumes multiple scattering for optically dense media, so that only a limited amount of

information on the scattering parameters can be estimated. For instance, this approximation

is independent of the phase function of the medium, and therefore this important property

cannot be estimated. Furthermore, the diffusion is a poor approximation when scattering is

comparable to absorption [96]. The analytic multiple scattering model presented in [84] has

also been used to estimate properties of only purely scattering media (visibility and type

of weather such as fog and mist). Our focus is somewhat different in considering fluids like

juices or beverages, instead of subsurface scattering in translucent solids like marble and

skin, or weather conditions such as fog. Nevertheless, our approach is valid for media with

the entire range of absorbing and scattering properties, significantly extending the class of

measurable media for graphics.

[47] measure the extinction coefficient of optically thin smoke from the exponential

attenuation of a laser beam in a tank. They also use a separate mirror setup to directly

measure the phase function (see below). In contrast, our setup uses divergent beams from

a simple bulb to include more light in the volume (than a single laser beam) for robust

measurements, and requires only a single photograph to measure all scattering properties

shown in Figure 4.2.

Numerical solution to inverse light transport: In cases where there are no analytic

solutions to light transport, several works have taken a numerical approach to estimate

scattering properties [6]. However, it is widely known, that inverse problems in radiative

transfer that take into account multiple scattering are ill-conditioned and require regu-

larizing assumptions to obtain reliable estimates. See the reports and critiques in [77].

Furthermore, the computational complexity of such inverse estimation techniques make it
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hard for measuring large sets of media for computer graphics or vision applications. Our

focus here is on estimating scattering properties of media that can be measured in a state

where multiple scattering is negligible.

The observation that single scattering is dominant for optically thin media has been

made by [47, 116]. We exploit this observation and apply the single scattering model for

the first time to a large class of materials which exhibit significant multiple scattering in

their natural states of existence. We also determine the exact range of optical thicknesses

for which single scattering is dominant for media with arbitrary scattering properties, and

propose an experimental procedure to ensure the dominance of single scattering in real data.

Goniophotometry is often used to directly measure the phase function. Here, several

detectors measure radiance in different directions after being scattered by a very small

volume of the medium. [29] use thin laser light sheet microscopy for detecting and localizing

microorganisms in ocean waters. [9, 91] investigate the relationship of light scattering at

a single angle and the extinction coefficient using specialized receivers and transmitters.

However, all these techniques assume that there is no attenuation of light through the

sample and require expensive devices with precise alignment of detectors and transmitters.

In contrast, our setup is extremely simple (consisting of a glass tank and an off the shelf

bulb), and our technique robustly estimates all properties from only a single photograph,

thus making it inexpensive and easy to measure a large number of participating media.

4.2 Single Scattering in Dilute Media

Our approach is to measure media in a state where single scattering is dominant and multiple

scattering is negligible. This is achieved by diluting the otherwise optically thick media,

such as fluids, in water. The process of dilution does not usually corrupt the inherent

scattering properties of media1 since the scattering and absorption of pure water itself is

negligible for very small distances (less than 50 cm) [115]. We begin by presenting our

acquisition setup and an image formation model for single scattered light transport within

the measurement volume. We will then present extensive simulations of this model and

compare with traditional Monte-Carlo approaches that include multiple scattering, to derive

a valid space of scattering parameters over which single scattering is dominant. Based on

this simulation, we design a simple experimental procedure to choose the best concentration

for any particular medium. Later, we will describe our algorithm to estimate the scattering

parameters using our image formation model.

1When crystals are dissolved in water, they may exhibit different scattering properties due to ionization.
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Frosted Bulb

Anti-reflection glass

Figure 4.3: Two views of the apparatus used to measure scattering properties of water-
soluble media. A glass tank with rectangular cross-section is fitted with a small light bulb.
The glass is anti-reflection coated. Different volumes of participating media are diluted with
water in the tank, to simulate different concentrations. A camera views the front face of
the tank at normal incidence to avoid refractions at the medium-glass-air boundaries.

4.2.1 Acquisition Setup

The measurement apparatus, shown in Figure 4.3, consists of a 25 × 30 × 30 cm3 tank

that is filled with the diluted scattering medium. The depth of the tank is large enough

to ensure the scattering angles are adequately covered (0 to 175 degrees). The volume

of the tank is designed to be large enough to dilute concentrated media such as milk.

Two sides of the tank are constructed using anti-reflection glass and the other sides using

diffuse black coated acrylic. A small frosted (diffuse) glass bulb fixed to a side of the tank

illuminates the medium. A Canon EOS-20D 12-bit 3504x2336 pixel digital camera with

a zoom lens is placed five meters away from the tank and observes a face of the tank at

normal incidence. The field of view occupied by the tank in the image is three degrees

and is therefore approximately orthographic. Orthographic projection avoids the need for

modeling refractions of light rays at the medium-glass-air interfaces. In all our experiments,

about 25 different exposures (1/500s to 10s) were used to acquire HDR images.

4.2.2 Image Formation Model

Although the basic principles of single scattering are well known, the exact nature of the

image formation model depends on the geometry of the volume and the locations of the

source and the camera. Figure 4.4 illustrates the illumination and measurement geometry

based on our acquisition setup. For simplicity, we will assume that the medium is illumi-

nated by an isotropic point light source (later we extend the analysis to area sources) of

intensity I0 that is located at the coordinates (0, B,H).

Consider the path of one single-scattered light ray (thick ray in Figure 4.4) in the medium
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Figure 4.4: A volume filled with a homogeneous participating medium and illuminated by
an isotropic point light source. A camera views the front face of the volume at normal
incidence. The path of one single-scattered ray as it travels from the source to the camera
is shown. This ray is first attenuated in intensity over a distance d, is then scattered at an
angle π − θ, and finally, is attenuated again over a distance z, before reaching the camera.
The irradiances due to all the rays that scatter into a viewing direction must be integrated
to obtain the final camera irradiance.

as it travels from the source to the camera. This ray is first exponentially attenuated in

intensity for a distance d. At location U (x, y, z), depending on the phase function P , a

fraction of the light intensity is scattered at an angle π − θ. Finally, the ray is attenuated

again for a distance z, before it reaches the camera. Mathematically, the irradiance at the

camera produced by this ray is written as [116],

E(x, y, z) =
I0
d2

. e−σd . β P (g, π − θ) . e−σz .

d =
√

x2 + (y −H)2 + (z −B)2 , cos θ = (z −B)/d . (4.1)

Here, P (g, π − θ) is the Henyey-Greenstein (H-G) phase function, and β and σ are the

scattering and extinction coefficients (Figure 4.2). Then, the total irradiance E at pixel

(x, y) in the camera is obtained by integrating intensities due to all rays that are scattered

at various angles along the pixel’s line of sight (Z-direction),

E(x, y) =

2B∫

0

E(x, y, z) dz

= β

2B∫

0

I0 e
−σ(z+

√
x2+(y−H)2+(z−B)2)

x2 + (y −H)2 + (z −B)2
P (g, π − θ) dz . (4.2)

The above equation relates the camera irradiances as a function of the three medium pa-

rameters, σ, β and g. Although obtaining an analytic (closed-form) solution to the above
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integral is hard [116], it is straightforward to evaluate it numerically.

4.2.3 Space of valid medium parameters

Different materials have their own natural densities and scattering properties, which are all

unknown before experimentation. So, how do we know if single scattering is dominant at a

particular concentration for a given material? Note that the scattering β, absorption κ and

extinction σ, coefficients are proportional to the concentration (fraction of volume diluted

in water) of the medium. Thus, we performed exhaustive simulations to derive the complete

space of parameters for which the above image formation model is accurate2. For ground

truth, we simulated the irradiances obtained using multiple scattering for the same set of

parameter values, using a standard volumetric Monte Carlo technique. Figure 4.5 shows

a plot of the differences between energies captured by the single scattering and multiple

scattering simulations for a set of parameter values. From the RMS errors in the plot, we

can define the upper bounds on the parameters κ and σ = β + κ as those for which the

energy differences between our model and the ground truth are less than five percent. For

example, the valid domain where single scattering is dominant, is approximately σ < 0.04

for κ < 0.004 .

4.2.4 How to choose the best concentration?

Based on the simulations, we present an experimental method to determine the best concen-

tration for our measurements. Figure 4.6 shows images acquired of different concentrations

of milk and MERLOT. Which among these images should we use to measure the scattering

properties? Several heuristics may be used to decide on a particular concentration. For

instance, the extent of blurring of the light source provides us a good clue to determine

whether multiple scattering is significant (rightmost image in Figure 4.6). A better heuris-

tic is to compute an approximation to the extinction coefficient σ from the attenuated

brightness of the light source. Under single scattering, the radiance in the direction of the

source (distance d) can be approximated using exponential attenuation as:

E(0) ≈
(
I0
d2

)
e−σ̂ d , (4.3)

where σ̂ is an estimate of the extinction coefficient σ. In the absence of multiple scatter-

ing, this estimate is closer to the true value of σ (and varies linearly with concentration),

whereas, in the presence of multiple scattering, this estimate is called diffuse or reduced

attenuation coefficient [57] and is usually much lesser than σ. Thus, we can determine

2This extends the simulations in [116], where a small part of the possible parameter space (pure isotropic
scattering) was considered.
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Figure 4.5: Plot showing the differences between irradiances obtained by simulating single
scattering and multiple scattering (ground truth) models, for a large space of parameter
values σ and κ = σ − β. An upper bound on the differences of, say, 5%, can be used to
define the range of parameters for which single scattering is a valid approximation. From
the plot, the valid range is approximately σ < 0.04 for κ < 0.004 .

whether the concentration can be used for measurement by observing the plot (Figure 4.7

of σ̂ versus the volume fraction of the medium diluted with water). Figure 4.7 shows that

after a certain amount of milk is added to water, the σ̂ no longer remains linear with con-

centration (dashed line), and must not be used for measurements. For a purely absorbing

liquid like wine (MERLOT), the plot is completely linear and any image that has the best

signal-to-noise ratio may be used. Similarly, the plot shows that coke scatters, albeit weakly,

and ESPRESSO coffee scatters light strongly. We use this simple procedure to try several

concentrations and observe where the linearity in the plot fails to determine the best con-

centration. As a further test, we check if the estimated parameters from this concentration

lie within the valid space of parameters simulated above.

4.3 Estimating Medium Properties based on Single Scatter-

ing

In this section, we present a non-linear minimization algorithm to estimate the properties

of the medium (σ, β and g), from the measured image irradiances E(x, y) (see Equation

(4.2)). We then demonstrate the accuracy of the algorithm through extensive simulations.

73



9ml 15ml 20ml
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Figure 4.6: Images illustrating different degrees of scattering and absorption. [Top row]
Images of milk at various concentrations. Since milk is a highly scattering liquid, we observe
an increase in blurring with increasing concentration. [Bottom Row] Images of red wine at
various concentrations. Red wine is a highly absorbing liquid, showing only a saturation of
the bulb color with increasing concentration, and no blurring. The highlighted images are
chosen for estimating the parameters.

4.3.1 Formulating the Error Function

The error at each pixel is written as the difference between the measured irradiance E(x, y)

and the irradiance predicted by the model in equation 4.2,

F(x, y) = E(x, y)−RHS(x, y) . (4.4)

Here RHS(x, y) is the numerically evaluated right hand side integral in the model of equa-

tion 4.2.

Then, the parameters σ, β and g can be estimated by computing the global minimum

of the sum of squares of the errors of all the pixels, as,

min
β,σ,g

∑

y

∑

x

F2(x, y) . (4.5)

The above function essentially requires a 3-parameter search. However, note that the pa-

rameter β is a global scale factor. Thus, we can eliminate β by defining a normalized error
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Figure 4.7: Plot of extinction coefficient estimate σ̂ as a function of the volume of the
media diluted in water in the measurement apparatus. The plots are linear when multiple
scattering is negligible and single scattering is dominant. As the concentrations of media
(and hence multiple scattering) increase, the estimated σ̂ is less than the true extinction
coefficient σ. For a highly scattering medium such as milk, the linearity fails at very low
concentrations, while for an absorbing medium such as MERLOT, the linearity is always
preserved.

function as,

Fnorm(x, y) =
E(x, y)

max
x,y

E(x, y)
− RHS(x, y)

max
x,y

RHS(x, y)
. (4.6)

Now, instead of requiring a 3-parameter search, the above problem can be reduced to a

2-parameter search that minimizes the normalized objective function to estimate σ and g:

min
σ,g

∑

y

∑

x

F2
norm(x, y) . (4.7)

Then, the scale factor β can be recovered using the original function F . To compute

the global minimum, we use Nelder-Meade search implemented by the MatlabTM function

”fminsearch”.

4.3.2 Estimation Accuracy using Simulations

Fortunately, since the space of the possible parameters is small (see Section 4.2.3), exhaus-

tive simulation of the above algorithm is possible. We only show the correctness of the
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Figure 4.8: Plot showing the errors in reconstruction of the single scattering parameters
σ and q = |g|, where −1 < g < 1, compared to ground truth values. The low errors
indicate the accuracy of our estimation technique. The maximum of the errors for positive
or negative g is shown.

estimated parameters σ and g, using Equation (4.7). The estimation of the scale factor

β then follows trivially. Gaussian noise of unit standard deviation was added in all our

simulations. The non-linear search was initialized randomly for both the parameters σ and

g. The plot in Figure 4.8 shows the error in the estimated parameters as compared to

ground truth values. In all the cases, the estimation errors were less than 0.0001%, and

the number of iterations required for convergence was less than 100. Since the numerical

evaluation of the integral is very fast, the time for convergence is usually of the order of a

few minutes. This demonstrates that the inverse estimation is fast and results in unique

and correct parameters.

4.3.3 Implementation Issues

We present two issues that need careful implementation for our algorithm to be successful

on real images.

Calibrating the area source: Our method does not rely on isotropic point sources but

requires only a calibrated divergent source to take advantage of the different phase angles

measured in the same view and hence, any off-the-shelf bulb suffices. For our real setup, we

have implemented a spherical diffuse area source. To compute the irradiance at any point

P within the tank, we sample (using roughly 10x10 samples) the hemisphere of the bulb

that is visible to that point P. The non-uniform directional intensities and intensity fall-off

were calibrated carefully by using a light meter at discrete 3D locations within the tank.

The camera also measures a pure water image (without any scattering or absorption) to

give the image irradiance of each source element (sample). This irradiance along with the

fall-off value and the pixel solid angle is used to determine the intensity without scattering.
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Instabilities in the H-G phase function for highly absorbing media: The H-G

phase function was designed for scattering media and is not defined for purely absorbing

media. However, for highly absorbing media, the scattering coefficient β is very low and

the average cosine g ≈ 1 since rays only pass straight through, much like highly forward

scattering media. Even though this was not a problem in simulations, the instability for

g > 0.95 can be high in real experiments. For this special case, we simply use a truncated

legendre polynomial expansion of the H-G phase function as P (g, θ) =
∑

i (2i+1) gi Li(θ) ,

and truncate to less than 100 terms. As an undesirable byproduct the fits may show some

“ringing” at the tail of the phase function. However, this truncated function still fits higher

brightness well and thus does not affect appearance strongly. Despite this instability, the

H-G phase function is flexible enough to model the scattering behavior of all our materials.

4.4 Actual Measurements and Validation

Using our approach, we have measured the scattering properties of a broad class of forty

commonly found participating media that can be either (a) diluted in water such as juices

(for example, apple, strawberry, orange), beverages (for example, coffee, soft drinks, milks,

wines, beers), cleaning supplies (detergents), or (b) suspended in natural waters such as

impurities and organisms, or even (c) dissolved in water such as powders and sugar, salt

crystals. In addition to liquids available at the usual supermarkets, we have also collected

four samples from different locations and depths in the Pacific ocean. We then present

detailed validation by showing that our parameters extrapolate correctly to higher concen-

trations as well, where multiple scattering is prominent.

A subset of nine photographs of the diluted set of liquids contained in the glass tank is

shown in Figure 4.9, similar to the four in Figure 4.1. Together, these include representative

types of media such as highly scattering, highly absorbing and moderate levels of absorption

and scattering. The images show a high dynamic range of brightness and are enhanced to

show the scattering effects. The set of scattering parameters for all the media is shown in

Table 4.1. The extinction (σ) and scattering (β) coefficients are given for each of the three

color channels, red, green and blue. The phase function parameter g is also shown for the

three color channels. Note that all the extinction and scattering coefficients are less than

0.04 in accordance with our simulations in Section 4.2.3. Also, as expected, in all cases, the

scattering coefficient does not increase with wavelength.

The second column in the table lists the volumes V of the materials dissolved in 23−V

litres of water to achieve the desired levels of dilution where single scattering is dominant.

These parameters can be proportionately scaled to any other volume Vn, using a scale factor
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of Vn/V . The percentage RMS errors (obtained over all pixels) quantify the accuracy of fits

achieved with the estimated parameters to the measured intensity profiles. Errors for all the

highly scattering media are less than 3%. For low-scattering materials, the total intensity of

profiles is relatively low, thus making the estimation more sensitive to noise. Even for such

low-scattering media, the errors are less than 5−6%. The last four rows are the parameters

for various ocean water samples at their original concentrations. The time elapsed between

the collection of samples and the image acquisition is listed in the parentheses. Since the

suspended particles in ocean water settle down with time, we observe a small decrease in

scattering coefficients in the sample for which 8 hours had been elapsed as compared to the

one which was imaged just 30 minutes after collection. Note that all the extinction and

scattering coefficients are less than 0.04 in accordance with our simulations in Section 4.2.3.

As expected, the scattering coefficients do not decrease with wavelength. The scattering

albedos (ratio of scattering coefficients to the extinction coefficients) is much higher for the

scattering media (milk, coffee, orange powder) as compared to the absorbing ones (coke,

wine). For materials that have β = 0, the phase function parameter g is undefined. As

seen from the values of g which are closer to 1, several media are predominantly forward

scattering. The parameters for the milks match those in [61] up to a scale factor (due to

the different fat contents in the milks used), providing further support for our estimation.

4.4.1 Fits to Measured Brightness Profiles

We demonstrate the accuracy of our technique by reconstructing the photographs using the

estimated parameters. Although we considered the brightness at all pixels in the captured

photographs, for illustration purposes we show only the profile of intensity values in the

direction that is radially outward from the source. Figure 4.10 shows the good fits obtained

using the estimated parameters compared against the measured profiles for a subset of six

materials of varying degrees of scattering and absorption properties. When there is no

scattering (pure absorption), fitting a scattering model can induce some “ringing” effect in

the dark tail end of the profile. We can detect this special case and use the attenuation

model to compute the absorption coefficient (κ = σ).

4.4.2 Extrapolation to higher concentrations

The extinction and scattering coefficients are proportional to the concentration of the

medium. Thus, if β1 and σ1 are estimated at concentration c1, then the coefficients β2

and σ2 at another concentration c2 can be extrapolated using:

β2 = β1

(
c2
c1

)
, σ2 = σ1

(
c2
c1

)
. (4.8)
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Note, however, that g is independent of the medium concentration. While we estimate the

parameters from lower concentrations, it is important to ensure that the parameters can

be scaled to any concentration (where multiple scattering cannot be ignored) to produce

accurate scattering effects. We show an example validation using fits obtained in comparison

to the measured brightness profiles of chocolate milk at various concentrations. Figure

4.11 shows the fits in this validation experiment. First, we estimate the parameters from

the photograph of only 8ml of chocolate milk diluted in water, where single scattering

is dominant. In (a), we show the fit obtained compared against the measured intensity

profile. However, for higher concentrations of 50ml, 100ml and 150ml, multiple scattering

cannot be ignored. For these cases, we scaled the coefficients (σ and β) by factors of

{50/8, 100/8, 150/8} (see Equation 4.8) and use them in a standard volumetric Monte Carlo

renderer that includes multiple scattering. The plots in (b) - (d) demonstrate the strong

fits obtained. This demonstrates that our parameters are robust enough to be extrapolated

to higher concentrations. In fact, we will show renderings of most of the liquids at their

natural concentrations (Section 4.5) despite measuring the parameters at significantly dilute

states.

4.5 Example Volumetric Renderings

The scattering properties estimated in this work can be input to any volumetric render-

ing algorithm to create visual effects of participating media. Here, we chose brute-force

volumetric Monte-Carlo path tracing since it can be used to render arbitrary materials3.

We use photon mapping for rendering caustics. For display purposes, we have applied a

tone-mapping operator [126] to the renderings. Indices of refraction (IOR) of these media

are also important for rendering. In initial experiments, we found the IOR to be between

1.33 (water) and 1.42 (milk) and varying linearly with concentrations, by using location of

total internal reflection from the top of the water surface in the tank. In current renderings,

we have simply used an IOR proportionate to the medium concentrations between 1.33 and

1.42, since this does not alter the visual appearance of the liquid drastically. We wish to

perform thorough experiments in the future.

Figure 4.12 shows a mosaic of images of liquids rendered in their natural concentra-

tions, partially filled in a cognac glass and illuminated by the “Kitchen Environment Map”

[20]. These include two different types of wine (deep red MERLOT and golden-yellow

CHARDONNAY), dark brown coffee ESPRESSO, and the golden-orange YUENGLING

beer. Notice the color differences between MERLOT (no scattering) and ESPRESSO (mod-

3Under-sampling of path-traces can cause speckle noise seen in the renderings, and is not an artifact of
our estimation.
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erate scattering) even though both of them are dark liquids. Observe that while beer and

CHARDONNAY are very clear liquids, coffee is noticeably more opaque. Similarly, Figure

4.13 shows a mosaic of predominantly bright colored liquids such as the deep blue ERA

detergent, the reddish strawberry shampoo, and powders dissolved in water such as the

”pinkish” strawberry lemonade and orange powders. These images are illuminated only by

a strong directional source to illustrate the bright caustics whose colorings are primarily due

to absorption. We also present different types of novel visual effects obtained by changing

or blending the parameters of different media to create realistic images of dilutions and

mixtures of the original measured materials.

Effect of changing concentrations: Figure 4.14 illustrates the effects of changing

concentrations of media in water. The top row shows a transition from pure water to

MERLOT, obtained by scaling parameters of wine as in Equation 4.8. Notice the changes

in caustics and the gradual deepening of the red color of the liquid. Note that as the

transition occurs, the liquid remains clear even though the color changes; this is due to the

pure absorbing nature of wine, as depicted by our parameters. The bottom row shows the

effect of changing milk concentration in water. Since milk is a highly scattering medium, as

expected, the appearance quickly changes from murky whitish water to soft and thick white

milk. This is because the scattering albedo β/σ is high and the phase function parameter

g is such that a significant amount of light diffuses into different directions.

Blending parameters for mixtures of media: For example, what are the properties

of a mixture of ESPRESSO and milk, or otherwise known as light coffee? Consider a medium

containing a mixture of two types of media, A and B. The properties of the individual

media are denoted with the subscripts A and B. The scattering coefficient of the mixture

is obtained by a weighted average,

βmix =
VAβA + VBβB

VA + VB
. (4.9)

The absorption and extinction coefficients are similarly defined. Unlike above where we just

changed the scattering and absorption coefficients, here a new phase function parameter

must be defined for the mixture as the weighted average [63],

gmix =
gAβA + gBβB

βmix
. (4.10)

These equations can be used to render mixtures of participating media or morph from

one medium into another. Figure 4.15 shows mixing of different proportions of milk and

wine. The second example shows a more common mixing of milk and coffee. Such mixing

between materials, for the first time, gives a user the flexibility to create novel renderings
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of participating media.

4.6 Discussion

Rendering the rich visual effects of participating media, like fluids or underwater impurities,

requires precise measurements of their scattering properties. We have developed a simple

device and method for accurately estimating the scattering properties of a variety of media

that can be diluted in water. Our approach only requires a single high dynamic range

photograph. By diluting the medium, we work in the single scattering regime, where the

inverse light transport problem is well conditioned—however, we can later render at arbi-

trary concentrations and even mix materials. We have presented a database of scattering

parameters for 40 commonly found materials. This database is the first of its kind, and

enables computer graphics practitioners to accurately render a wide variety of participating

media, rather than having to set parameters in an ad-hoc fashion. In the future, we would

like to improve this work by investigating different phase functions and measuring indices

of refraction more accurately.

This work is a step towards data-driven measurements and models of scattering, just

as there has been much recent work on data-driven reflectance and texture. In the future,

we expect more work in this direction—for example, we currently mostly use a parametric

phase function, but in future, we can develop an arbitrary non-parametric expansion in

Legendre polynomials. We also wish to measure scattering properties of inhomogeneous

media, just as there is interest in spatially-varying reflectance. In general, we believe that

the accurate simulation of participating media is critical for photorealistic renderings, and

accurate scattering properties of real materials are crucial to achieving this goal.

During the course of the entire experimentation, we have learnt a few important lessons

which we believe will allow us to obtain even better datasets in the future. Most importantly,

we wish to use a multi-spectral camera that measures radiance at finer resolution wavelength

bands. Off-the-shelf cameras measure the three wide-band color channels, R, G, and B,

while scattering properties can vary strongly within each wavelength band. This results

in a somewhat lower color saturation for thick highly scattering liquids. This problem

is in some ways analogous to the saturated colors of surface interreflections. Finally, we

wish to explore more sophisticated phase functions, borrowing from literature in colloidal

chemistry.
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Material Name
Extinction Coefficient (σ) Scattering Coefficient (β) Average Cosine

Volume (×10−2 mm−1) (×10−2 mm−1) (g)
R G B R G B R G B

Milk (lowfat) 16ml 0.9126 1.0748 1.2500 0.9124 1.0744 1.2492 0.932 0.902 0.859
Milk (reduced) 18ml 1.0750 1.2213 1.3941 1.0748 1.2209 1.3931 0.819 0.797 0.746
Milk (regular) 15ml 1.1874 1.3296 1.4602 1.1873 1.3293 1.4589 0.750 0.714 0.681
Coffee (espresso) 8ml 0.4376 0.5115 0.6048 0.2707 0.2828 0.2970 0.907 0.896 0.880
Coffee (mint mocha) 6ml 0.1900 0.2600 0.3500 0.0916 0.1081 0.1460 0.910 0.907 0.914
Soy Milk (lowfat) 16ml 0.1419 0.1625 0.2740 0.1418 0.1620 0.2715 0.850 0.853 0.842
Soymilk (regular) 12ml 0.2434 0.2719 0.4597 0.2433 0.2714 0.4563 0.873 0.858 0.832
Chocolate Milk (lowfat) 10ml 0.4282 0.5014 0.5791 0.4277 0.4998 0.5723 0.934 0.927 0.916
Chocolate Milk (regular) 16ml 0.7359 0.9172 1.0688 0.7352 0.9142 1.0588 0.862 0.838 0.806
Soda (coke) 1600ml 0.7143 1.1688 1.7169 0.0177 0.0208 0.0000 0.965 0.972 −
Soda (pepsi) 1600ml 0.6433 0.9990 1.4420 0.0058 0.0141 0.0000 0.926 0.979 −
Soda (sprite) 15000ml 0.1299 0.1283 0.1395 0.0069 0.0089 0.0089 0.943 0.953 0.952
Sports Gatorade 1500ml 0.4009 0.4185 0.4324 0.2392 0.2927 0.3745 0.933 0.933 0.935
Wine (chardonnay) 3300ml 0.1577 0.1748 0.3512 0.0030 0.0047 0.0069 0.914 0.958 0.975
Wine (white zinfandel) 3300ml 0.1763 0.2370 0.2913 0.0031 0.0048 0.0066 0.919 0.943 0.972
Wine (merlot) 1500ml 0.7639 1.6429 1.9196 0.0053 0.0000 0.0000 0.974 − −
Beer (budweiser) 2900ml 0.1486 0.3210 0.7360 0.0037 0.0069 0.0074 0.917 0.956 0.982
Beer (coorslight) 1000ml 0.0295 0.0663 0.1521 0.0027 0.0055 0.0000 0.918 0.966 −
Beer (yuengling) 2900ml 0.1535 0.3322 0.7452 0.0495 0.0521 0.0597 0.969 0.969 0.975
Detergent (Clorox) 1200ml 0.1600 0.2500 0.3300 0.1425 0.1723 0.1928 0.912 0.905 0.892
Detergent (Era) 2300ml 0.7987 0.5746 0.2849 0.0553 0.0586 0.0906 0.949 0.950 0.971
Apple Juice 1800ml 0.1215 0.2101 0.4407 0.0201 0.0243 0.0323 0.947 0.949 0.945
Cranberry Juice 1500ml 0.2700 0.6300 0.8300 0.0128 0.0155 0.0196 0.947 0.951 0.974
Grape Juice 1200ml 0.5500 1.2500 1.5300 0.0072 0.0000 0.0000 0.961 − −
Ruby Grapefruit Juice 240ml 0.2513 0.3517 0.4305 0.1617 0.1606 0.1669 0.929 0.929 0.931
White Grapefruit Juice 160ml 0.3609 0.3800 0.5632 0.3513 0.3669 0.5237 0.548 0.545 0.565
Shampoo (balancing) 300ml 0.0288 0.0710 0.0952 0.0104 0.0114 0.0147 0.910 0.905 0.920
Shampoo (strawberry) 300ml 0.0217 0.0788 0.1022 0.0028 0.0032 0.0033 0.927 0.935 0.994
Head & Shoulders 240ml 0.3674 0.4527 0.5211 0.2791 0.2890 0.3086 0.911 0.896 0.884
Lemon Tea Powder 5tsp 0.3400 0.5800 0.8800 0.0798 0.0898 0.1073 0.946 0.946 0.949
Orange Powder 4tbsp 0.3377 0.5573 1.0122 0.1928 0.2132 0.2259 0.919 0.918 0.922
Pink Lemonade Powder 5tbsp 0.2400 0.3700 0.4500 0.1235 0.1334 0.1305 0.902 0.902 0.904
Cappuccino Powder 0.25tsp 0.2574 0.3536 0.4840 0.0654 0.0882 0.1568 0.849 0.843 0.926
Salt Powder 1.75cup 0.7600 0.8685 0.9363 0.2485 0.2822 0.3216 0.802 0.793 0.821
Sugar Powder 5cup 0.0795 0.1759 0.2780 0.0145 0.0162 0.0202 0.921 0.919 0.931
Suisse Mocha Powder 0.5tsp 0.5098 0.6476 0.7944 0.3223 0.3583 0.4148 0.907 0.894 0.888
Mission Bay Surface Water (1-2 hours) 3.3623 3.2929 3.2193 0.2415 0.2762 0.3256 0.842 0.865 0.912
Pacific Ocean Surface Water (1 hour) 3.3645 3.3158 3.2428 0.1800 0.1834 0.2281 0.902 0.825 0.914
Mission Bay 10ft deep Water (30 min) 3.4063 3.3410 3.2810 0.0990 0.1274 0.1875 0.726 0.820 0.921
Mission Bay 10ft deep Water (8 hours) 3.3997 3.3457 3.2928 0.1018 0.1033 0.1611 0.929 0.910 0.945

Table 4.1: Scattering properties for 40 different water-soluble materials estimated using our technique.
The second column in the table lists the volumes V of the materials dissolved in 23 − V litres of water
to achieve the desired levels of dilution where single scattering is dominant. These parameters can be
proportionately scaled to any other volume Vn, using a scale factor of Vn/V . The last four rows are the
parameters for various ocean water samples at their original concentrations. The time elapsed between
the collection of samples and the image acquisition is listed in the parentheses.
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Grape Juice ERA Detergent Strawberry Shampoo

Lemon Tea Powder Chocolate milk (regular) Pink Lemonade Powder

Cappuccino Powder Coffee Espresso Low Fat Milk

Figure 4.9: Captured photographs of a variety of water-soluble media illustrating different
degrees of scattering and absorption. For highly scattering media such as milk, chocolate
milk and espresso, we observe a significant blur around the bulb. For highly absorbing
media such as grape juice, there is very little scattering. All the images have wide dynamic
range of intensities and hence, we have tone-mapped them for illustration. Please see the
project web-page [3] for more images.
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Figure 4.10: Fits obtained using the estimated parameters as compared against the corre-
sponding measured brightness profiles in the captured photographs. The brightness profile
is measured radially outward from the source in the image. The red, green and blue plots
correspond to the three color channels of the camera. The match between the estimated
and measured data demonstrates the accuracy of the estimation technique. The fits for six
(out of 40) representative materials with varying degrees of absorption and scattering are
shown. Please see the project web-page [3] for more plots.
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Figure 4.11: Extrapolation of parameters to higher concentrations with multiple scattering.
(a) 8 ml of chocolate milk is diluted in water and the parameters are estimated using the
measured brightness profile. (b) - (d) The parameters estimated in (a) are scaled to higher
concentrations (50ml, 100ml and 150ml) where multiple scattering cannot be ignored. Plots
show a good fit between the brightness profile obtained by extrapolating our estimated
parameters with a Monte Carlo renderer, and the ground truth measurements. The fits are
shown in logarithmic scale.
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MERLOT Wine CHARDONNAY Wine

ESPRESSO Coffee YUENGLING Beer

Figure 4.12: Rendered scenes of liquids in a cognac glass under complex lighting. The
KITCHEN environment map [20] was used for the lighting. The natural colors, shading
and caustics indicate the high accuracy of our parameters.
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Pink Lemonade Powder ERA Detergent

Strawberry Shampoo Orange Powder

Figure 4.13: Rendered scenes of liquids and powders in a cognac glass illuminated with
a single directional white light source. The bright caustics show the colors transmitted
through the media.
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α = 0.03 α = 0.125 α = 0.25 α = 0.99

α = 0.03 α = 0.125 α = 0.25 α = 0.99

Figure 4.14: Effect of changing concentrations of a highly absorbing (MERLOT) and a
highly scattering (milk) liquid. In the case of wine, notice that while the color gradually
becomes deep red, the liquid remains clear, due to the lack of scattering. In the case of milk,
however, we see a quick transition from a murky appearance to a soft white appearance,
due to the high scattering albedo of milk.
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50% Milk + 50% Coffee 75% Milk + 25% Coffee

50% Wine + 50% Milk 75% Wine + 25% Milk

Figure 4.15: Mixing two liquids - milk and coffee (top) and milk and wine (bottom), in
different proportions. The wine-milk combination produces a soft pink appearance while
the ESPRESSO-milk combination produces soft but brown appearance. (Minor noise due
to Monte-Carlo under-sampling.)
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Chapter 5

Illuminating the scene in poor

visibility environments

http://graphics.cs.cmu.edu/projects/LightTransport/

(a) (b) (c) (d)

Figure 5.1: Light transport in scattering media for different source and sensor configurations.
(a) Illustration of the three light transport components. (b) The backscatter B reduces the image
contrast. The amount of backscatter increases with the common backscatter volume. (c) By chang-
ing the relative placement of the sensor and source, we can modulate the light transport components
for increasing the image contrast. (d) The common backscatter volume can be reduced by using
light stripe scanning as well.

Computer vision systems are increasingly being deployed in domains such as surveillance

and transportation (terrestrial, underwater or aerial). To be successful, these systems must

perform satisfactorily in common poor visibility conditions including murky water, bad

weather, dust and smoke. Unfortunately, images captured in these conditions show severe

contrast degradation and blurring, making it hard to perform meaningful scene analysis.

Passive methods for restoring scene contrast [83, 104, 118] and estimating 3D scene

structure [18, 80, 132] rely on post-processing based on the models of light transport in

natural lighting. Such methods do not require special equipment and are effective under
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moderate visibility [80], but are of limited use in poor visibility environments. Very often,

there is simply not enough useful scene information in images. For example, in an 8-bit

camera, the intensity due to dense fog might take up 7 bits, leaving only 1 bit for scene

radiance. Active systems, on the other hand, give us flexibility in lighting and/or camera

design, allowing us to control the light transport in the environment for better image quality.

While propagating within a medium such as murky water or fog, light gets absorbed and

scattered. Broadly speaking, light transport [14] can be classified based on three specific

pathways: (a) from the light source to the object, (b) from the object to the sensor and

(c) from the light source to the sensor without reaching the object (see Figure 5.1). Of

these, the third pathway causes loss of contrast and effective dynamic range (for example,

the backscatter of car headlights in fog), and is thus undesirable.

The goal of this research [42] is to design computer vision systems which can see clearer

and farther in poor visibility conditions. One way to achieve this is to actively control

illumination and choose sensing modalities that maximize light transport along the first two

pathways while simultaneously minimizing transport along the third. To this end, we exploit

some real world observations. For example, while driving in foggy conditions, flood-lighting

the road ahead with a high-beam may reduce visibility due to backscatter. Underwater

divers realize that maintaining a good separation between the source and the camera reduces

backscatter, and improves visibility [111, 59]. On the other hand, polarization filters have

also been used to reduce contrast loss due to haze and murky water [110, 106, 33]. Based

on these observations, we attempt to address two key questions:

(1) First, which illumination and sensing modality allows us to modulate the three

light transport pathways most effectively? We present an active imaging technique called

polarized light striping and show that it performs better than previous techniques such as

flood-lighting, unpolarized light striping [66, 85, 59], and high frequency illumination based

separation of light transport components [87].

(2) Second, what is the “optimal” placement of the source and the sensor? We derive

a numerical approach for computing the optimal relative sensor-source position in poor

visibility conditions. We consider a variety of illumination and sensing techniques, while

accounting for the limits imposed by sensor noise. Our model can be used for improving

visibility in different outdoor applications. It is useful for tasks such as designing headlights

for vehicles (terrestrial and underwater). We validate our approach in real experiments.

Finally, we extend the analysis to multi-camera vision systems for the purpose of recov-

ering shape of underwater scenes. We propose a technique for recovering both scene depths

and normals simultaneously. It is based on the principle of Helmholtz reciprocity ( [48], p.

231). Our techniques can be applied in a variety of outdoor applications, such as designing

headlights for vehicles (terrestrial and underwater).
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(a) (b)

Figure 5.2: Visibility degradation in scattering media. (a) An underwater scene shot in the Mediter-
ranean Sea. The glow at the top and bottom of the image corresponding to backscatter from the
two light sources has reduced image contrast. The image is taken from Treibitz et al [119]. (c)
Backscatter due to car headlights reduces visibility in foggy conditions.

5.1 Light Transport in scattering media

While propagating through a scattering medium, light gets absorbed and scattered (Fig-

ure 5.2 (a)). The image irradiance at a pixel is given as a sum of the three components, the

direct signal (D), the indirect signal (A) and the backscatter (B):

E(x, y) = D(x, y) +A(x, y)︸ ︷︷ ︸
Signal

+ B(x, y)︸ ︷︷ ︸
Backscatter

. (5.1)

The signal component S is

S(x, y) = D(x, y) +A(x, y) . (5.2)

The backscatter component B reduces image contrast thus degrading visibility. For

example, Figure 5.2 (a) illustrates an underwater scene shot in the Mediterranean Sea. The

glow at the top and bottom of the image corresponding to backscatter from the two light

sources has reduced image contrast. Similarly, everybody who has driven in foggy conditions

has observed that flood-lighting the road ahead with a high-beam can be counter-productive

due to backscatter.

5.2 How to Illuminate and Capture the Scene?

The goal of an active vision system deployed in poor visibility conditions should be to

modulates the components of light transport effectively. Specifically, we want to maximize

the signal S, while minimizing the backscatter B. We present an active imaging technique,
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Experimental Setup Kodak Contrast Chart

Figure 5.3: Our experimental setup consisting of a glass tank, filled with moderate to high con-
centrations of milk (four times as those in [85]). An LCD projector illuminates the medium with
polarized light. The camera (with a polarizer attached) observes a contrast chart through the
medium.

polarized light striping, which combines the advantages of different imaging and illumination

modalities. We also analyze the relative merits of different existing techniques, and show

that polarized light striping outperforms them.

We begin by analyzing a representative set of existing techniques in laboratory experi-

ments. Our experimental setup consists of a 60 × 60 × 38 cm3 glass tank filled with dilute

milk (see Figure 5.3). The glass facades are anti-reflection coated to avoid stray reflec-

tions.1 The scene consists of objects immersed in murky water or placed behind the glass

tank. A projector illuminates the scene and a camera fitted with a polarizer observes the

scene. We use a Sony VPL-HS51A, Cineza 3-LCD video projector. The red and the green

light emitted from the projector are inherently polarized channels. If we want to illuminate

the scene with blue light, we place a polarizer in front of the projector. We use a 12-bit

Canon EOS1D Mark-II camera, and a Kodak contrast chart as the object of interest to

demonstrate the contrast loss or enhancement for different techniques.

High-frequency illumination: Ref. [87] presented a technique to separate direct and

global components of light transport using high frequency illumination, with good separa-

tion results for inter-reflections and sub-surface scattering. What happens in the case of

light transport in volumetric media? Separation results in the presence of moderate volu-

metric scattering are illustrated in Figure 5.4. The direct component is the direct signal

(D), whereas the global component is the sum of indirect signal (A) and the backscatter

(B), as shown in Figure 5.1. Thus, this method seeks the following separation:

1Imaging into a medium through a flat interface creates a non-single viewpoint system. The associated
distortions are analyzed in [120].
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(a) Maximum image (b) Global component (c) Direct component (d) Direct component

(low freq illumination)

Figure 5.4: Limitations of the high frequency illumination based method. A shifting checkerboard
illumination pattern was used with the checker size of 10 × 10 pixels. (a) Maximum image (b)
Minimum image (global component) (c) Direct component (d) Direct component obtained using
lower frequency illumination (checker size of 20× 20 pixels). The direct component images have low
SNR in the presence of moderate to heavy volumetric scattering. The global image is approximately
the same as a flood-lit image, and hence, suffers from low contrast. This experiment was conducted
in moderate scattering conditions, same as the second row of Figure 5.6.

E(x, y) = D(x, y)︸ ︷︷ ︸
Direct

+A(x, y) +B(x, y)︸ ︷︷ ︸
Global

. (5.3)

However, to achieve the best contrast, we wish to separate the signal D + A from

the backscatter B. As the medium becomes more strongly scattering, the ratio D
S

falls

rapidly due to heavy attenuation and scattering, as illustrated in Figure 5.5. This plot was

estimated using numerical simulations using the single scattering model of light transport.2

Consequently, for moderate to high densities of the medium, the direct image suffers from

low signal-to-noise-ratio (SNR), as shown in Figure 5.4. Further, the indirect signal (A)

remains unseparated from the backscatter B, in the global component. Thus, the global

image is similar to a flood-lit image, and suffers from low contrast.

Polarized flood-lighting: Polarization imaging has been used to improve image con-

trast [106, 119, 33] in poor visibility environments. It is based on the principle that the

backscatter component is partially polarized, whereas the scene radiance is assumed to be

unpolarized. Using a sensor mounted with a polarizer, two images can be taken with two

orthogonal orientations of the polarizer:

Eb =
D +A

2
+

B(1− p)

2
(5.4)

2With multiple scattering, the ratio falls even more sharply.
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Figure 5.5: The relative direct component of the signal reduces with increasing optical thickness
of the medium. This plot was calculated using simulations, with a two-term Henyey-Greenstein
scattering phase function [44] for a parameter value of 0.8.

Ew =
D +A

2
+

B(1 + p)

2
, (5.5)

where p is the degree of polarization (DOP) of the backscatter. Here, Eb and Ew are the

‘best-polarized image’ and the ‘worst-polarized image’, respectively. Thus, using optical

filtering alone, backscatter can be removed partially, depending on the value of p. Further,

it is possible to recover an estimate of the signal Ŝ in a post-processing step [106]:

Ŝ = Eb

(
1 +

1

p

)
+ Ew

(
1− 1

p

)
. (5.6)

However, in optically dense media, heavy backscatter due to flood-lighting can domi-

nate the signal, making it impossible for the signal to be recovered. This is illustrated in

Figure 5.6, where in the case of flood-lighting under heavy scattering, polarization imaging

does not improve visibility.

Light stripe scanning: Here, a thin sheet of light is scanned across the scene. In com-

parison to the above approaches, the common backscatter volume is considerably reduced

(see Figure 5.1d). The sheet of light intersects the object to create a stripe that is detected

using a gradient operator.3 All stripes are then mosaiced to create a composite image

CI [66, 85, 59]. Alternatively, the composite image can be obtained by simply selecting the

maximum value at each pixel over all the individual light stripe images SIk:

3In our particular implementation, the projector illuminates a single plane and has low power. We
compensate for this by increasing the exposure time of the camera.
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Flood-Lighting Polarized Light Striping Polarized
Flood-Lighting Light Striping
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Figure 5.6: Comparison of various illumination and sensing techniques (zoom into the marked areas
to better assess the image quality). Flood-lit images suffer from a severe loss of contrast, specially in
the presence of heavy scattering (a,b). Polarized light striping achieves a significant increase in image
contrast, even in the presence of heavy scattering (a-d). In moderate scattering, fine details (text)
are recovered more reliably in (g) and (h), as compared to (e). See (i), (j), (k) and (l) for close-ups
of the marked areas in (e), (f), (g) and (h) respectively. The moderate scattering experiment was
conducted under the same conditions as the experiment in Figure 5.4.
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(a) (b) (c) (d)

Figure 5.7: Unpolarized versus polarized light stripe scanning. (a) Ray diagram illustrating light
stripe scanning, adapted from [85]. (b) The camera observes a light stripe (1 out of 30) without
a polarizer. The visible light plane is the backscatter and impedes reliable detection of the object
stripe. (c) Through a polarizer, there is a considerable reduction in backscatter. The light plane-
object intersection becomes more distinct, thus enabling its reliable delineation. (d) The removed
backscatter (difference of (b) and (c)). Video of a complete scan can be downloaded from the project
web-page [2].

Flood Lighting Polarized Light Striping Comparison

Figure 5.8: Comparison between the performance of flood-lighting and light-stripe scanning.

CI(x, y) = maxk{SIk(x, y)} . (5.7)

5.2.1 Improving image contrast using polarization + light stripe scanning

We propose polarized light striping as a technique that combines the advantages of polar-

ization imaging and light striping, and thus, is applicable for an extended range of medium

densities. Earlier, we demonstrated that light striping reduces the amount of backscatter.

However, reliable localization of the object stripes (by using gradient operator or by select-

ing the maximum pixel value, as in Eq. 5.7) is severely impeded due to strong backscatter.

This is illustrated in Figure 5.7.
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To enable reliable detection of the object stripes even in the presence of strong scat-

tering, we use polarization imaging in conjunction with light striping. A high DOP of the

backscatter is essential for removing the backscatter using polarization filtering (Eq. 5.4),

or to recover a reliable estimate of the signal using post-processing (Eq. 5.6). In our ex-

periments, the camera observes the scene through a polarization filter and the light sheets

irradiating the scene are polarized. Since the incident illumination is completely polarized,

the DOP of the backscatter is high (see appendix). This results in a significant reduction

in the amount of backscatter, and thus, enables reliable detection of the stripes.4 This is

shown in Figure 5.7. We compare the results of polarized light striping versus previous

illumination and sensing techniques in Figure 5.6. Notice especially the differences in the

contrast under strong scattering. Another result is shown in Figure 5.8.

5.3 Optimal Camera-Source Placement

Conventional wisdom from the underwater imaging literature suggests maximizing the

sensor-source separation to reduce the backscatter, and hence, increase the image con-

trast [59, 111] (see Figure 5.1). However, this does not take into account the limitations

posed by measurement noise. Placing the source and the sensor far from each other or

the scene results in strong attenuation of light, and a low Signal-to-Noise-Ratio (SNR). We

study this trade-off and derive a numerical approach for computing the optimal sensor-

source placement for many different illumination and sensing modalities.

5.3.1 Image Quality Measures

In order to formalize the notion of “optimal”, we define various image quality measures for

different imaging and illumination techniques. These quality measures serve as objective

functions which can be maximized to find the optimal placement of the source and the

camera.

Contrast Quality Measure: A major goal of an imaging system is to maximize the image

contrast. Analogous to [11, 32], we define the contrast quality measure, CQM(x, y) as the

ratio of the signal S(x, y) to the total intensity E(x, y):

CQM(x, y, p) =
S

S +B(1− p)
· (5.8)

This measure takes polarization imaging into account by defining the total intensity as that

of the best polarized image, as in Eq. (5.4). In the absence of a polarizer, p = 0.

4Polarization imaging was previously used with phase-shifted structured illumination for improved re-
construction of translucent objects [15].
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(a) (b) (c)

Figure 5.9: Simulating image formation for finding the optimal sensor-source configuration. (a) A
schematic view of the volume. We use a point light source (L) and a pinhole camera (C). The object
is Lambertian, with reflectance R. (b) We calculate D, A and B according to Eqs. (5.11-5.13). (c) In
the case of light striping, the point O′ is not getting directly irradiated by the source. Also, the
viewing ray from O′ does not intersect the common backscatter volume. Thus, the direct component
and the backscatter component at O′ are null. This results in a brightness gradient across the stripe
edge. The strength of the gradient is given by Eq. 5.9.

Delineation of light plane-scene intersection: Success of light striping in scattering

media relies on reliable delineation of the object stripe. One scheme is to detect a brightness

discontinuity in the intensity profile across the stripe edge. Thus, for a light stripe scanning

system, we define a gradient quality measure (GQM) along the edge of the stripe in terms

of the strength of gradient across the stripe edge. Consider Figure 5.9c; since the scene

point O′ does not have the direct component D or the backscatter component B(1−p), the

normalized difference in intensity of O and O′ is given as:

GQM(x, y, p) =
D +B(1− p)

D +A+B(1− p)
· (5.9)

SNR dependent weighting: An image with high contrast but low overall intensity may

result in a low SNR, and hence be of limited use. Thus, we define an SNR dependent

weight W as a monotonically increasing function of the total signal value S. The quality

measures (CQM and GQM) are weighted by W so that signal values in the low SNR range

are penalized. For example, W can be a linear function of S. For more flexibilty, we use a

sigmoid function of S:

W(x, y) =
1

1 + e−(
S−µ
z )

, (5.10)

where µ is the shift and z is the steepness of the sigmoid. For example, µ can be the

dark current offset. Similarly, if the noise is derived from a Gaussian distribution, z can be

the standard deviation. In addition, we should account for the effect of post-processing on
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image noise [103].

Simulations

Consider an underwater scenario where a remote operated vehicle (ROV) wants to capture

images at a given distance. Given an approximate estimate of the object albedo, medium

scattering parameters [81] and sensor noise, we can simulate the image formation process. To

illustrate the concept, we simulate the image formation process for our experimental setup.

The Lambertian object reflectance was assumed to be 0.6. For different source-camera

configurations, we compute the appropriate quality measure described above. Then, the

optimal configuration is the one that maximizes the quality measure.

Figure 5.9 illustrates the image formation geometry. In our experiments and simulations,

the scene and camera remain fixed, while the source is moved to vary the sensor-source

separation dLC . Point O on the object is being observed by the camera. Points X and Y

are in the medium. The distances dLO, dCO, dLX , dXO, dCO, dLY and dY C , and the angles

φ, α, γ, θ are as illustrated in Figure 5.9. To keep our simulations simple, we assume a single

scattering model of light transport and a homogeneous medium. The individual components

of light transport are then given by:

D =
I0
d2LO

e−σ(dLO+dCO)R(φ) (5.11)

A =

∫

V

I0
d2LX

e−σ(dLX+dXO+dCO)F (α)R(γ)dV (5.12)

B =

∫ C

O

I0
d2LY

e−σ(dLY +dY C)F (θ)dY , (5.13)

where I0 is the source radiance, σ is the extinction coefficient, R is the Lambertian object

reflectance, F is the scattering phase function (we use the two-term Henyey-Greenstein

function [44]) and V is the illuminated volume.

Polarized images, Eb and Ew are simulated according to Eqs. (5.4-5.5). This requires

knowledge of the DOP of the backscatter p. Using our experimental setup, we estimated

p to be approximately 0.8, from the regions of the image without any object. We can also

compute p analytically, given the dependence of the DOP of scattered light on the scattering

angle, such as given in the Appendix.

Optimal configuration for flood-lighting: Let us find the configuration that is optimal

in terms of both image contrast and noise. We plot the product of the CQM and W versus

the sensor-source separation dLC (Figure 5.10a). The tradeoff between contrast and SNR

results in a local maximum. Notice that polarization improves image quality as compared
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to unpolarized imaging. However, since the DOP (and hence, the amount of contrast en-

hancement) is similar for all sensor-source positions, the location of the peak remains the

same. The curve for the ideal case of zero noise increases monotonically. However, for

real world scenarios, where measurement noise places limits on the sensor’s abilities, our

approach can yield an optimal placement. This is illustrated in Figure 5.10 (b-c). The

image taken using the optimal separation (40 cms) has high contrast and low noise. On the

other hand, notice the significant noise in the image taken using a large separation (60 cms).

Optimizing the light stripe scan: The case of light stripe scanning is more interesting.

Instead of illuminating the whole scene at once, we illuminate it using one sheet of light

at a time. We want to find the optimal light stripe scan. Should we scan the scene (a)

by rotating the source, (b) by translating it, or (c) a combination thereof? To answer

this, we plot the product of the GQM and the W for our setup (Figure 5.11). We observe

different optimal separations for different (3 out of 30) stripe locations. Figure 5.11 (e)

shows the high-contrast image acquired using the results of the simulations. The camera

and the projector were placed at a small distance from the facade of the glass tank in real

experiments. By carefully choosing the light rays, we can simulate a light source and a

sensor placed on the glass facade, as assumed in the simulations. The optimal scan for

polarized light striping is the same as unpolarized light striping, but results in better image

quality.

5.4 Recovering 3D structure of underwater scenes

We are investigating the problem of how to illuminate the scene for multi-camera vision

systems deployed in scattering media. The goal is to recover scene shape - both depths and

normals. First, we consider depth recovery using binocular stereo. We discuss the issues

which need to be addressed while designing a stereo system under scattering media. Second,

we present a technique for recovering both surface depths and normals simultaneously. This

technique is based on the principle of Helmholtz reciprocity ( [48], p. 231), and uses ideas

from the Helmholtz Stereopsis technique proposed by Zickler et al [134].

5.4.1 Binocular Stereopsis in scattering media

In the presence of scattering media, due to attenuation and backscatter, the relative place-

ment of the source with respect to the sensors is an important consideration.Consider the

imaging geometry in Figure 5.12. This setup is used to acquire a stereo image pair. The

two cameras are places at locations A and B, and the light-source is placed at location L.
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For binocular stereo, we assume the scene to be Lambertian. We will relax this assumption

later in the section. Let P be a scene point, with its normal given by n̂P .

For low concentrations, we can assume a single scattering model of light transport in

participating media. Additionally, we can assume the indirect signal component to be

negligible as compared to the direct signal component [42]. Let Il be the total image

intensity for scene point P when the camera is at the left location (A). The total intensity

has two components, the direct signal component Dl and the backscatter Bl :

Il = Dl +Bl . (5.14)

Let σ be the extinction coefficient of the medium. Let fP be the albedo at the scene

point P . Then, the direct signal component Dl is given as:

Dl =
Io e

−σdLP

d2LP
cos(β)

fP
π

e−σdAP . (5.15)

Let the scattering phase function is given by Ω(g, γ), where g is the phase function

parameter, and γ is the angle between the incident and the scattered ray. Then, the

backscatter component Bl (single scattering only) is given as:

Bl =

∫ dAP

0

Io e
−σa

a2
Ω(g, γ) e−σx dx . (5.16)

Similarly, let Ir be the total image intensity when the camera is at the right location

(B):

Ir = Dr +Br . (5.17)

The direct signal and the global components, Dr and Br are given as:

Dr =
Io e

−σdLP

d2LP
cos(β)

fP
π

e−σdBP . (5.18)
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Br =

∫ dBP

0

Io e
−σb

b2
Ω(g, ρ) e−σy dy . (5.19)

How to place the source relative to the sensors?

In the presence of scattering media, due to attenuation and backscatter, the relative place-

ment of the source with respect to the sensors is an important consideration. The first row

of Figure 5.13 illustrates 4 different sensor-source configurations. The second and the third

rows show the corresponding images (left camera and right camera respectively) simulated

using the single scattering model. The scene consists of a textured sphere, placed at a

distance of 1m from the source and the sensor. The sensor-source baseline is 0.5m. The

extinction coefficient σ = 1.0m−1. Following is a comparison of the four configurations in

terms of the contrast and SNR of the acquired images:

• Configuration 1 - Light in the middle: In this configuration, the sensor-source

separation for both the cameras is low, resulting in high backscatter and low contrast

for both the images.

• Configuration 2 - Light to the side: The sensor-source separation for the left

camera is high, resulting in high contrast but low SNR. Right image has low contrast

due to high backscatter.

• Configuration 3 - Light at the apex: We can have optimal sensor-source separa-

tion for both the cameras, resulting in good contrast and SNR for both the images.

• Configuration 4 - Swap source and sensor: In this configuration, the left image

is taken by placing the source at the right sensor location. The right image is taken

by placing the source at the left sensor location. Similar to configuration 3, we can

have the optimal sensor-source placement for both the images. Note that both the

images have good contrast and SNR.

Binocular stereo matching constraint

In clear air, the binocular stereo matching constraint is simply:

Il = Ir , (5.20)
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i.e., the images of a scene point in the two cameras should have equal intensities. How-

ever, in the presence of scattering media, the image intensities of the corresponding scene

points in the two images are different due to different amounts of backscatter and attenua-

tion. Thus, the matching constraint has to account for backscatter and attenuation. From

Eqs. 5.15 and 5.18:

Dl eσdAP = Dr eσdBP . (5.21)

By substituting Dl = Il−Bl and Dr = Ir−Br, we derive the binocular stereo matching

constraint in the presence of scattering media:

(Il −Bl) eσdAP − (Ir −Br) eσdBP = 0 . (5.22)

In this equation, Il and Ir are measurements obtained from the camera. For geometri-

cally calibrated cameras, dAP and dBP are functions of the depth d of the scene point. Also,

the backscatter terms Bl and Br are functions of the depth d. Additionally, the backscat-

ter terms depend on the medium scattering parameters: the phase function parameter g,

the extinction coefficient σ and the scattering coefficient. The LHS of Eqn. 5.22 can be

written as s(d, σ, g) to denote the fact that it is a function of the scene depth and medium

parameters:

s(d, σ, g) = (Il −Bl) eσdAP − (Ir −Br) eσdBP .

Thus, given the knowledge of the medium parameters, scene depths can be computed

by minimizing s(d, σ, g) as a function of d:

d∗ = argmin
d

{s(d, σ, g)} . (5.23)

Figure 5.14 illustrates the depth recovery results on simulated images using our binocular

stereo matching constraint. The input image pairs were simulated using the single scattering

model of Eqs. 5.14- 5.19. Few example input images are shown in Figure 5.13. The three

shapes considered are a fronto-parallel plane, an inclined plane and a half-sphere. The

ground truth shapes are shown in the top row. Depths recovered using our new matching

constraint are shown in the middle row. Depths recovered using the clear air matching
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constraint (Eq. 5.20) are shown in the bottom row. We can notice that the depths recovered

without accounting for attenuation and backscatter are incorrect.

Recovering the medium parameters

We need to recover the medium scattering parameters to estimate depths using the stereo

matching constraint, as in the previous sub-section. We can recover the medium parameters

from a single image of the medium (without any scene). An example simulated image is

shown in Figure 5.15. The light source is to the left of the camera. Both the light source

and the camera are pointed in the same direction, perpendicular to the baseline. We added

Gaussian noise with a standard deviation of 0.03 times the mean intensity of the image. By

fitting the image formation model to the observed image [81], we could recover the medium

parameters accurately and robustly despite the presence of noise.

5.4.2 Helmholtz Stereopsis in scattering media

In this section, we present a technique for recovering both the scene depths and normals

simultaneously in the presence of scattering media. Our technique is based on the principle

of Helmholtz reciprocity. Zickler et al [134] used the reciprocity principle in the context of

surface reflection to recover surface shape. Recently, in astro-physics literature, the principle

of reciprocity has been extended to volumetric scattering [35, 36]. We extend the Helmholtz

Stereopsis technique proposed by Zickler et al to account for volumetric scattering effects.

Following are the advantages of Helmholtz stereo over binocular stereo:

• The input images for Helmholtz Stereo are acquired by swapping the source-sensor

positions, as shown in the last column of Figure 5.13. With this configuration, we can

maintain the optimal sensor-source separation for all the input images, resulting in

high image quality, both in terms of contrast and SNR.

• Most underwater scenes do not have much scene texture. In the absence of scene

texture, binocular stereo can produce erroneous depth-estimates. Helmholtz stereo

uses photometric information to recover scene normals in addition to the depths. The

normals can then be integrated to compute a more reliable estimate of scene depths.

• With Helmholtz stereo, we can relax the assumption of the scene being Lambertian,

and handle a much more general class of BRDFs.
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Image Formation Model

Now we describe the image formation model for the Helmholtz stereo image acquisition

setup. Consider the imaging geometry in Figure 5.16. This setup is used to acquire a re-

ciprocal image pair. The first image is taken by placing the camera at the left location (A),

and the light at the right location (B), as shown in Figure 5.16 (a). The second image is

taken by switching the light and the camera positions, as shown in Figure 5.16 (b). Note

the difference with Figure 5.12, where the light source remains stationary for

both the views. Let P be a scene point, with its normal given by n̂P . Let ˆdAP and ˆdBP

be the unit vectors from the scene point P to the locations A and B respectively, with dAP

and dBP being the respective vector-lengths.

As before, we assume a single scattering model of light transport and a negligible indirect

signal component [42]. Let Il be the total image intensity for scene point P when the

camera is at the left location (A). The total intensity has two components, the direct signal

component Dl and the backscatter Bl :

Il = Dl +Bl . (5.24)

Let σ be the extinction coefficient of the medium. Let fP (θi, θr) be the BRDF at the

scene point P , where θi and θr are the angles that the normal makes with the incident and

the reflected ray respectively. Then, the direct signal component Dl is given as:

Dl =
Io e

−σdBP

d2BP

cos(β) fP (β, α) e−σdAP . (5.25)

Let the scattering phase function is given by Ω(g, γ), where g is the phase function

parameter, and γ is the angle between the incident and the scattered ray. Then, the

backscatter component Bl (single scattering only) is given as:

Bl =

∫ dAP

0

Io e
−σa

a2
Ω(g, γ) e−σx dx . (5.26)

Similarly, let Ir be the total image intensity when the camera is at the right location

(B), and the light is at the left location (A):
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Ir = Dr +Br , (5.27)

The direct signal and the global components, Dr and Br are given as before:

Dr =
Io e

−σdAP

d2AP

cos(α) fP (α, β) e−σdBP . (5.28)

Br =

∫ dBP

0

Io e
−σb

b2
Ω(g, ρ) e−σy dy , (5.29)

Helmholtz stereo matching constraint

Now we derive the matching constraint for the input images acquired using the Helmholtz

setup. The principle of Helmholtz reciprocity states that the BRDF is symmetric about

the incoming and the outgoing directions, i.e., fP (α, β) = fP (β, α). Using this principle,

we derive the following relation from Equations 5.25 and 5.28:

Dl

d2BP

cos(β)
= Dr

d2AP

cos(α)
. (5.30)

Since Dl = Il −Bl and Dr = Ir −Br:

(Il −Bl)
d2BP

cos(β)
= (Ir −Br)

d2AP

cos(α)
. (5.31)

By substituting cos(α) = ˆdAP . n̂P and cos(β) = ˆdBP . n̂P , and re-arranging the terms,

we get:

(
(Il −Bl)

ˆdAP

d2AP

− (Ir −Br)
ˆdBP

d2BP

)
. n̂P = 0 (5.32)

In this equation, Il and Ir are measurements obtained from the cameras. Also, for
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geometrically calibrated cameras, the values dAP , dBP and the vector ˆdAP and ˆdBP are

functions of the scene depth d. As before, the backscatter terms Bl and Br are functions

of the depth d and the medium scattering parameters: the phase function parameter g, the

extinction coefficient σ and the scattering coefficient, which can be estimated, as shown in

Section 5.4.1. We can rewrite Eq. 5.32 compactly as:

w(d, g, σ) . n̂P = 0 . (5.33)

Note that the vector w lies in the epipolar place defined by points P , A and B. The

above equation provides a constraint on the pixel intensities of the corresponding image

points. For each scene point, we have three unknowns: the surface normal nP and the

depth d. Thus, we need at least 3 such reciprocal image pairs to solve for both the depths

and the normals. We acquire such pairs by changing the orientation of the source-sensor

arm. An example set of simulated input images is shown in Figure 5.17.

For each camera-light pair, w lies on the intersection of the epipolar plane (E) and the

plane perpendicular to the normal. We define W (d, g, σ) as the matrix formed by stacking

all the w vectors row-wise. Then, it follows that the rank of the matrix should be ≤ 2. We

can find the correct depth by minimizing the rank of the W (d) matrix:

d∗ = argmin
d

{rank(W (d, σ, g))} . (5.34)

The normal nP can then be computed by finding the null-space of the matrix W (d∗).

Once we have the normals, the scene depths can also be estimated by integrating the

normal field. Figure 5.18 shows the depth recovery results using Helmholtz stereo. We

can notice that the depths estimated using normals are smoother and more reliable. The

depth estimates using the previous Helmholtz stereo algorithm [134] doesn’t account for

backscatter, thus producing erroneous depth estimates.

5.5 Discussion

With existing techniques for measurement of medium scattering [81] and polarization prop-

erties [125], our simulation-based approach can be used to adapt the illumination and sensing

system in-situ. Post-processing approaches are expected to recover the scene when applied

to the images acquired using our system.

For depth recovery under scattering media, we have extended binocular and Helmholtz

108



stereo to account for volumetric scattering. We have analyzed the performance of both algo-

rithms using simulated images. Currently, we are building a rig to capture real, underwater

images for testing our techniques.

Appendix: Degree of Polarization of Scattering

In this appendix, we study the dependence of the DOP of the scattered light, DOPB, on the

scattering angle and the DOP of the incident light, DOPL. We consider only the vertical

and horizontal polarized components of linearly polarized light. Hence, we consider the first

2× 2 sub-matrix of the full 4× 4 Mueller matrix. Polarization properties of scattered light

can be characterized by the Mueller matrix [124]:

[
IB
QB

]
=

[
m11 m12

m21 m22

][
IL
QL

]
, (5.35)

where IL is the sum, and QL is the difference of the horizontal and vertically polarized com-

ponents of the incident light. Similarly, IB and QB are the sum and difference respectively

of the scattered light. Note that DOP = Q
I
. Consequently, based on Eq. (5.35):

DOPB =
m21 +m22 DOPL
m11 +m12 DOPL

· (5.36)

Using the above equation and the measured Mueller matrix data for ocean water [125],

we plot DOPB versus the scattering angle in Figure 5.19. For comparison, we also plot

the behavior for Rayleigh scattering. For low values of DOPL (natural light), the curve

qualitatively resembles that of Rayleigh scattering. On the other hand, for a completely

polarized source (for example, an LCD projector), the curve is flatter, with an average

value of 0.8 for backscattering angles. Interestingly, this agrees with the observation made

in [119] as well.

109



0  20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sensor−Source Separation d
LC

 (cm)

Q
ua

lit
y 

M
ea

su
re

 (
C

Q
M

 ×
 W

)

Zero Noise

Non−zero Noise

Polarization

Contrast

SNR

Optimal
Separation

Large
Separation

(a)

(b) Large Separation (c) Optimal Separation

Figure 5.10: Optimal sensor-source configuration for flood-lighting. (a) Plot of CQM × W versus
dLC for our experimental setup. The tradeoff between contrast and SNR results in a maximum.
(b) Large separation (60 cms) results in heavy image noise (c) Optimal separation (40 cms) results
in a high contrast, low noise image (zoom into the marked area). Both the frames were captured
with the same exposure time.
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Figure 5.11: We can scan the scene (a) by rotating the source, (b) by translating it, or (c) a
combination thereof. (d) Plot of GQM × W versus dLC for different stripe locations O1, O2 and
O3, for our setup. We can notice different optimal separations for these stripe locations. (e) A high
contrast image resulting from the optimal light stripe scan designed using simulations.

Figure 5.12: Image formation model for Binocular Stereo under scattering media.
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Config 1 Config 2 Config 3 Config 4

Light in the middle Light to the side Light at the apex Swap light and camera

Left Image, Config 1 Left Image, Config 2 Left Image, Config 3 Left Image, Config 4

Right Image, Config 1 Right Image, Config 2 Right Image, Config 3 Right Image, Config 4

Figure 5.13: Different placements of the source relative to the sensors. The first row of Figure 5.13
illustrates 4 different sensor-source configurations. The second and the third rows show the corre-
sponding images simulated using the single scattering model for the left camera and the right camera
respectively.
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Flat Plane Ground Truth Inclined Plane Ground Truth Sphere Ground Truth

Shapes recovered using our binocular stereo constraint (Eq. 5.22) - our method

Shapes recovered using the original clear air stereo constraint (Eq. 5.20) - previous method

Figure 5.14: Depth recovery results using binocular stereo. The ground truth shapes are shown
in the top row. Depths recovered using our new matching constraint are shown in the middle row.
Depths recovered using the clear air matching constraint (Eq. 5.20) are shown in the bottom row.
We can notice that the depths recovered without accounting for attenuation and backscatter are
incorrect.
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Figure 5.15: A simulated image of the medium (without scene). Such an image can be acquired
and used to recover the medium scattering parameters.

(a) Camera left, Illumination right (b) Camera right, Illumination left

Figure 5.16: Image formation model for Helmholtz stereo setup.
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Simulated input images from the left camera

Simulated input images from the right camera

Figure 5.17: Simulated input images for Helmholtz stereo setup. Here we show 5 (out of 18) pairs
of simulated images for the inclined plane for different orientations of the source-sensor arm.
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Flat Plane Ground Truth Inclined Plane Ground Truth Sphere Ground Truth

Shapes recovered by minimizing the rank - our method (Eq. 5.32)

Shapes recovered by integrating the normals - our method (Eq. 5.32)

Shapes recovered by minimizing the rank - previous method [134]

Shapes recovered by integrating the normals - previous method [134]

Figure 5.18: Depth recovery using Helmholtz stereo. Depths estimated using normals (third row)
are smoother and more reliable as compared to the depths estimated by minimizing the ranks (second
row). The previous Helmholtz stereo algorithm [134] doesn’t account for backscatter, thus producing
erroneous depth estimates (fourth and fifth row).
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Figure 5.19: Variation of the DOP of the scattered light, DOPB, on the scattering angle. For
low values of DOPL, the curve qualitatively resembles that of Rayleigh scattering. For a completely
polarized source, the curve is flatter, with an average value of ≈ 0.8 for backscattering angles (> 90◦).
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Chapter 6

Real-time rendering of dynamic,

non-homogenous volumetric media

http://graphics.cs.cmu.edu/projects/LegendreFluids/

Clear Weather Snow Snow and mist

Figure 6.1: Legendre domain 3D fluid simulation and rendering: In this example, we
have 3000 snow flakes being carried by a wind field (Legendre domain fluid simulation). We
add mist to the scene using Legendre domain rendering for participating media. Notice further
objects appearing brighter due to the air-light effect, and distant snow-flakes becoming invisi-
ble as the mist density is increased. The clear weather Christmas image was downloaded from
www.survivinggrady.com/2005 12 01 archive.html

Most of the computer generated imagery today in video games, movies and scientific

simulations are of scenes on clear days or nights. However, it is important to simulate

the visual effects resulting from global light transport for providing realism in movies and

games. Besides digital entertainment, such effects also need to be simulated for training

human operators in safety, medical and hazardous situations - pilots landing through fog,

soldiers conducting reconnaissance in dusty desert terrain, divers exploring ocean depths,

and doctors looking for cancerous tissue. In the absence of such effects, a rendering would
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appear unnatural. Also, many applications like games require interactive changes in lighting,

view-point and the medium properties. For such applications, it is imperative to achieve

these visual effects in real-time.

Brute-force rendering of volumetric media can be prohibitively slow (taking CPU-days

or even weeks). On the other end of the spectrum are analytic solutions, which although

fast, are possible only for homogenous and static media. However, most of the interesting

real world phenomenon such as smoke, dust and fog are non-homogenous and evolving with

time. Despite this complexity, most of these physical processes can be represented in a

space with significantly lower dimensionality (reduced space) than that required by a finite

element methods based computer simulation. This observation has led to the development

of a variety of reduced space methods in computer graphics. Examples include reduced

space methods for fluid simulation [121] and pre-computed radiance transfer for render-

ing [112]. These methods achieve significant computational speed-ups over spatial-domain

finite element based simulations.

Despite significant advances in both the fields of fluid simulation and rendering, these

two continue to be addressed separately. In nature, both these processes really interact

with each other to provide us with a variety of rich visual experiences. This makes a case

for both of them to be studied together to better leverage the advances in both fields. The

goal of this research [41] is fast rendering of complex visual effects involving dynamic

and non-homogenous media, including fluid simulation effects such as particles inserted

in turbulent wind-fields. We propose a unified framework for both fluid simulation and

rendering in an analytic reduced space. We believe that this is an important first step

towards bridging the gap between model reduction for fluid simulation and pre-computed

radiance transfer for rendering. Since both fluid simulation and rendering are done in a

reduced space, our technique achieves computational speed-ups of one to three orders of

magnitude over traditional spatial domain methods. We demonstrate several visual effects

resulting from volumetric scattering in time-varying participating media. Figure 6.1 shows

frames from a sequence where we add mist and snow-flakes to a clear day scene.

Analytic Space: Most previous reduced space techniques are data-driven; a low-dimensional

space is constructed from previously observed/simulated data. While achieving consider-

able speed-ups, these approaches might not generalize to novel instances. We propose a

completely analytic reduced space defined by Legendre polynomials [14] basis. Such a

space has the advantage of generalizing to novel instances while providing computational

speed-ups as well. To keep the analysis tractable, we will focus on optically thin media

where single scattering is the dominant form of light transport [116, 81]. Under these con-

ditions, the common Legendre polynomial basis for different fields allows us to analytically
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solve both the Navier-Stokes and light transport equations in the reduced Legendre space.

It turns out that this solution requires us to analyze triple product integrals of Legendre

polynomials and their sparsity (see Appendix A at the end of the chapter), similar in spirit

to the triple product wavelet integrals for relighting [89].

6.1 Related Work

Fluid simulation: The Navier-Stokes equations for incompressible fluid flow [17] provide

a differential model for simulating the density and velocity fields. Explicit analytic solutions

to Navier-Stokes equations are hard to obtain and hence, a number of works that employ

numerical finite difference methods (FDM) have been proposed [26, 27, 113, 25, 23, 90, 108].

Although simple to implement, such schemes require high spatial resolution to minimize the

finite differencing numerical errors, placing serious demands on memory and compromising

speed. [122] develop an approach for key-framing of fluid flows that alleviate the dis-

cretization errors. However, their approach becomes computationally prohibitive for large

grid sizes. A data-driven approach was proposed in [121] to simulate the velocity fields

using a reduced dimensional PCA basis. This approach achieves considerable speed-ups

and produces impressive results, but at the cost of high memory requirements and lengthy

pre-computation. Furthermore, as the authors mention, it is unclear whether the approach

generalizes to new fluid flows that are not represented in the pre-computation.

Rendering of participating media: Rendering of participating media requires modeling

the intensity fields resulting from volumetric scattering. The intensity field of the partici-

pating medium can be rendered by solving the light transport equation [14]. Analogous to

fluid modeling, many works that numerically solve the light transport equation based on

FDMs have been proposed [62, 60, 94, 22, 101, 71, 100]. As such, many of the issues re-

lated to numerical errors must be addressed here as well. While these methods can produce

impressive visual effects, they are too slow for interactive applications. Recent hardware-

accelerated techniques [21, 99, 45] can significantly decrease the running times of numerical

simulations, although they are specialized to particular phenomena.

In addition, the intensity fields depend on the illumination and viewing geometry as

well as the scattering properties [81, 47] of the participating medium. Moreover, the

lighting, viewpoint and the densities of the medium may change with time. Thus, the

pre-computations required are too prohibitive for data driven approaches to be applied

to intensity fields. For the special case of homogeneous media, many previous analytic

approaches [75, 116, 61, 84] may be used to render the effects of scattering in real-time.

However, we the assumption of homogenous medium is too restrictive for several appli-

cations. We wish to render non-homogenous and dynamic media, like smoke, dust and
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u velocity field
u♦ ♦−component of velocity field
r density field
b external force field
b♦ ♦−component of force field
Ed direct transmission intensity field
Es scattered intensity field
ν kinematic viscosity
σ extinction coefficient
β scattering coefficient
θ scattering angle

Ω(θ) scattering phase function
ωd lighting direction
ωs viewing direction

Figure 6.2: Notation used in this section. ♦ stands for either x, y or z.

fog.

6.2 Physical Models for Participating Media

Dynamic and non-homogenous participating media can be characterized by density, velocity

and intensity fields, that vary across both space and time. Whereas Navier-Stokes equations

for incompressible fluid flow model the evolution of the density and velocity fields over time,

the intensity fields are rendered using light transport equations. The time evolution of the

velocity field u is given by [17]:

∂u

∂t
= −(u.∇)u− ν∇2u+∇p+ b, s.t. ∇.u = 0, (6.1)

where, ν is the kinematic viscosity, p is the pressure field and b denotes the external forces

(the notation used in this section is given in Figure 6.2). Following [113, 17], Equation 6.1

can be written as:

∂u

∂t
= P︸︷︷︸

projection


−(u.∇)u︸ ︷︷ ︸

advection

+ ν∇2u︸ ︷︷ ︸
diffusion

+ b︸︷︷︸
forces


 (6.2)

Here, P is a linear operator which projects a vector field to its divergence free component.

Equation 6.2 can be resolved by splitting the right hand side into four sequential steps: (i)

advection, (ii) diffusion, (iii) external forces and (iv) projection [113]. Similarly, the time

evolution of the density field r is given by:
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Figure 6.3: The participating medium is illuminated by a distant light source and is viewed by an
orthographic camera. Under the single scattering assumption, the intensity field within the medium
volume can be split into two sets of light rays: the pre-scattering (direct transmission) intensity field
Ed(x, t) and post-scattering intensity field Es(x, t) (shown using red rays).

∂r

∂t
= −(u.∇)r︸ ︷︷ ︸

advection

− κ∇2r︸ ︷︷ ︸
diffusion

+ −αr︸︷︷︸
dissipation

+ Sr︸︷︷︸
source

, (6.3)

where, κ is the diffusion constant, α is the dissipation rate and Sr is the source term for

density.

Using the density field r, we can render the intensity fields for any configuration of

illumination and viewing geometry. In this work, we consider optically thin media where

single scattering is the dominant form of light transport. Figure 6.3 shows an orthographic

camera viewing a participating medium that is illuminated by a distant light source. Then,

we can split the intensity fields into two components: the pre-scattering (direct transmission)

intensity field Ed(x, t), and the post-scattering intensity field Es(x, t). Mathematically,

these intensity fields can be written as [14]:

(
ωd.∇

)
Ed = −σr ·Ed (6.4)

(ωs.∇)Es = −σr ·Es + βr · Ω(θ) · Ed (6.5)

Here, σ and β are the extinction and scattering coefficients respectively and Ω(θ) is the

phase function. When the camera is outside the medium, the acquired 2D image of the

medium is simply the boundary of the 3D intensity field Es(Figure 6.3).

6.2.1 Compact Analytic Representation using Legendre Polynomials Ba-

sis

The key idea is to represent the 3D spatial variation of the density, velocity and intensity

fields using the same analytic basis. We choose to use Legendre polynomials as basis

functions. In many situations, natural effects such as mist, outdoor smoke and dust are
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Orthogonality
∫ 1
−1 Li(x)Lj(x)dx = δij

Derivative L′
i(x) =

∑
k cikLk(x)

Integral
∫
Li(x)dx =

∑
k bikLk(x)

Figure 6.4: Properties of Legendre Polynomials [14].

smooth (low frequency) phenomena, and can be compactly represented by a small number

of coefficients. Legendre polynomials are orthogonal, have global support (non-zero over the

entire domain), and have analytic derivatives and integrals (Figure 6.4). As a result, they

find wide application in mathematical physics literature in conjunction to solving differential

equations [14].

A function f(x) can be represented as a linear combination of Legendre polynomials Lk

of different orders f(x) =
∑

k FkLk(x), where the Legendre domain coefficients [Fk] can be

computed analytically as:

Fk =

1∫

−1

f(x)Lk(x)dx . (6.6)

In 3D, we represent a field f(x, y, z) that is smooth in x-,y- and z-directions as:

f(x, y, z) =
∑

ijk

FijkLi(z)Lj(y)Lk(x) . (6.7)

For notational ease, Equation 6.7 is written as f(x, y, z) ⇔ [Fijk]. The Legendre represen-

tations for the various fields are given in Figure 6.5.

6.3 Analytic Operators in Legendre Domain

In this section, we derive the Legendre space formulations for various operators and establish

that they are compact, computationally efficient, and completely analytic in nature. For

ease of exposition, we illustrate the concepts with 1D examples; analysis in 2D and 3D

follows in an exactly similar manner.

Derivative Operator

Observe that spatial derivatives appear both in the Navier-Stokes and the light transport

equations (6.2, 6.3, 6.4, 6.5) in the form of gradient and Laplacian operators. Using the

property that derivative of a legendre polynomial can be expressed in terms of lower order

legendre polynomials (Figure 6.4), we derive the derivative operator in legendre domain,
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Field Spatial ⇔ Legendre

Density Field r ⇔ [R]
Velocity Field u♦ ⇔ [U♦]

Divergence free Velocity Field û♦ ⇔ [Û♦(t)]
External Force Field b+ ⇔ [B+(t)]
Direct Transmission Intensity Field Ed ⇔ [Id]
Scattered Intensity Field Es ⇔ [Is]

Figure 6.5: Legendre representations of various fields, where ♦ stands for x,y or z. In Figures 6.5
and 6.6, sub-scripts and arguments have been dropped for brevity. For example, d and [D] should
be read as d(x, y, z, t) and [Dijk(t)] respectively.

Operation Operand Result Complexity

Derivative g ⇔ [G] ∂
∂♦g ⇔ D♦ · [G] O(K2)

Integral g ⇔ [G]
∫
gd♦ ⇔ Î♦ · [G] O(K2)

Product
g ⇔ [G]

g · h ⇔ MG · [H] O(K3)
h ⇔ [H]

Truncation [G] [GT ] = T · [G] O(K2)

Legendre
[G] g O(NK)

to Spatial

Figure 6.6: Legendre Space Operators (♦ stands for x,y or z). N is the size of the spatial grid. K
is the size of legendre coefficient representation.
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which is completely analytic, and hence, devoid of the numerical errors resulting from

the Finite Difference approximation:

f(x) =
∑

i

FiLi(x) ⇒ f ′(x) =
∑

i

FiL
′
i(x) (6.8)

⇒ f ′(x) =
∑

k

(
∑

i

Fi ∗ cik
)
Lk(x) . . . (Figure 6.4)

=
∑

k

F ′(k)Lk(x)

where F ′(k) =
∑

i Fi ∗ cik. We can write this equation in matrix form, with [F ′
k] and

[Fi] as the coefficient vectors corresponding to the derivative and the original function

respectively. The derivative operator (x-direction) in Legendre Domain is thus given by the

matrix Dx(i, k) = cik:

[F ′
k] = Dx ∗ [Fi] (6.9)

Derivatives in y and z and the integral operator can be defined likewise. Figure 6.6 lists all

the legendre space operators that we derive, along with the corresponding time complexity.

Given K as the size of legendre space representation [Fi], the matrix-vector multiplication

require O(K2) computations. Building the derivative and integral matrices is a one time

operation, and takes O(K2) time.

Product Operator in Legendre Domain

The advection term in the Navier-Stokes equation (6.2, 6.3) as well as the single scattering

equation for rendering (6.4, 6.5) entail multiplication of two fields to compute a third one.

This motivates investigating the general problem of multiplying two functions, h(x) =

f(x).g(x), where both the functions and the result are represented in the Legendre Basis:

f(x) =
∑

j

FjLj(x) g(x) =
∑

k

GkLk(x) h(x) =
∑

i

HiLi(x)

To compute the ith basis coefficient for the result, we use orthogonality of Legendre Poly-

nomials (see Figure 6.4)
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Hi =

1∫

−1

Li(x)h(x)dx =

1∫

−1

Li(x)f(x)g(x)dx

=

1∫

−1

Li(x)


∑

j

FjLj(x)



(
∑

k

GkLk(x)

)
dx

=
∑

jk

FjGkTIijk

where TIijk =
∫ 1
−1 Li(x)Lj(x)Lk(x)dx is the Legendre Polynomial triple product integral,

and can be pre-computed apriori. As with the derivative and integral case, we can write

the above equation in matrix form as follows:

[Hi] = MG ∗ [Fj ] = MF ∗ [Gk] (6.10)

where, MG(i, j) =
∑

k GkTIijk and MF (i, k) =
∑

j FjTIijk. Given the size of legendre

representations as K, the multiplication matrix has O(K2) entries. For each entry, O(K)

computations are required. Thus, we need O(K3) computations to build the multiplication

matrix and O(K2) time for the matrix-vector multiplication. Therefore, total time com-

plexity of legendre space multiplication is O(K3). However, we show that the 3D tensor

TI is sparse using the Legendre Polynomials Triple Product Integrals theorem (see

Appendix A). Using the theorem, we show that approximately 3
4 of the entries of the TI

tensor are exactly zero. We exploit this sparsity to achieve computational speed-ups in the

advection and the rendering stages. Indeed, the time required to construct the multiplica-

tion matrix can be reduced by a factor of 4 in 1D and by 43 = 64 in the 3D case.

Lower Order Approximation: Note that multiplying two polynomials of degree K each

results in a polynomial of degree 2K. Therefore, given two functions, each with Legendre

representation of size K, the Legendre representation of the product will have size 2K.

For computational savings, it is desirable to keep the size of the Legendre representation

constant. To this end, we devise a simple approximation scheme using the Chebyshev

Polynomials to truncate a given Legendre representation from 2K terms to K terms,

while keeping the approximation error low under the L∞ norm (see Appendix B at the end

of this chapter). We define the Truncation Matrix Operator T in legendre space,

such that

[F T
i ]︸︷︷︸

K×1

= T︸︷︷︸
K×2K

∗ [Fi]︸︷︷︸
2K×1
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where [Fi] is the legendre representation of size 2K, and [F T
i ] is the corresponding truncated

representation of size K. As with derivatives and integrals, truncation requires a matrix

multiplication with a time complexity of O(K2). Building the truncation matrix T is a one

time operation requiring O(K2) operations.

6.4 Fluid Simulation in Legendre Domain

Using the Legendre representations for fields and the operators (derivative, multiplication,

truncation), we solve the Navier-Stokes equations (6.2, 6.3) in the Legendre domain. For

velocity simulation, we decompose Equation 6.2 into the 4 sequential steps of advection,

diffusion, external forces and projection [113]. Now we show how each of these steps can be

simulated in the Legendre domain:

Advection

In the spatial domain, the conservation form of the advection equation is given by:

∂

∂t
u♦ = −∇ · (uu♦) (6.11)

= −
(

∂

∂x
uxu♦ +

∂

∂y
uyu♦ +

∂

∂z
uzu♦

)
(6.12)

Subscript ♦ denotes either x,y or z direction. This form implicitly assumes a divergence

free velocity field, i.e. ∇ · u = 0.

Legendre space advection equation is then derived by substituting the legendre repre-

sentations of the fields (Figure 6.5), along with the legendre space derivative and multipli-

cation operators (Figure 6.6) in Equation 6.12:

∂
∂t
[U♦(t)] = −A · [U♦(t)] (6.13)

where A = T︸︷︷︸
truncation

·



∑

♦

D♦︸︷︷︸
derivative

· MU♦s
︸ ︷︷ ︸

multiplication




∑
♦

(·)♦ is short-hand for (·)x + (·)y + (·)z. For example,
∑
♦

D♦ ·MU♦ is expanded as Dx ·

MUx +Dy ·MUy +Dz ·MUz . We update the legendre representations of the velocity field

by computing the eigen decomposition of A = AE · ∧ · A−1
E [121]:
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[U♦(t+△t)] =
(
AE · e△t·

∧

·A−1
E

)
· [U♦(t)] (6.14)

A similar approach can be used to update the density field as well. Since it uses the

multiplication operator, the time complexity of Legendre advection is O(K3) (Section 6.3),

where K is the number of coefficients. In addition to the computational speed-up, using the

completely analytic Legendre domain derivative operator reduces the numerical dissipation

inherent in the FDM based approximations of the derivative operator (Figure 6.7).

(a) Original Field (b) Legendre Advection (c) Spatial Advection

Figure 6.7: Comparison between Legendre and Spatial domain advection (high intensities signify
higher values of the field). Notice, that the field after advection in the spatial domain (c) has
lower energy than the field resulting from analytic legendre domain advection (b). Spatial advection
results in dissipation of energy due to discretization of the gradient operators. The grid size used
for spatial advection was 5002, while 144 coefficients were used for legendre advection.

Diffusion

For the diffusion step, we solve the implicit form of diffusion equation:

(
IN×N − ν△t ∇2

)
u♦ (x, t+△t) = u♦ (x, t) (6.15)

where N is the total number of simulation grid voxels. The implicit form of diffusion

equation is more stable than the explicit form. However, one drawback of the implicit form

is that it requires solving a large system of linear equations. Fortunately, in our case, this

issue is addressed by solving the diffusion equation in the reduced legendre space. Once

again, we use the legendre representation of the fields and the operators (Figures 6.5 and
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6.6) to obtain the legendre space diffusion equation:

(
IK×K − ν△t D2

)
[U♦ (t+△t)] = [U♦ (t)] (6.16)

where, D2 = (Dx)
2 + (Dy)

2 + (Dz)
2 is the legendre space Laplacian operator. Since we

solve a K×K linear system, the time complexity of legendre space diffusion is O(K3). This

is a considerable speed-up over solving the (N ×N) system in spatial domain.

External Forces

External forces are handled by adding their legendre representation (Figure 6.5) to that of

the velocity field:

[U♦(t+△t)] = [U♦(t)] + [B♦] · △t (6.17)

Projection

This step ensures that the velocity field is divergence free, which is required to satisfy

mass-conservation. For the projection step, we use the implicit definition of the projection

operator P :

∇2q = ∇ · u û = Pu = u−∇q (6.18)

This step requires solving the following Poisson system of equation for the scalar field q:

∇2q = ∇ · u. û, the divergence free component of u (∇ · û = 0), is then computed by

subtracting the gradient of q from u. The Poisson equation can be formulated as a linear

system of equations by discretizing the ∇2 operator in the spatial domain. Analogously, we

can define PL, the projection operator in the legendre space implicitly as follows:

D2 · [Q] =
∑
♦

D♦ · [U♦(t)] (6.19)

[Û♦(t)] = PL · [U♦(t)] = [U♦(t)]−D♦ · [Q] (6.20)

Hence, in legendre space projection step, we need to solve the linear system of equations

in the unknown vector [Q] (Equation 6.19), requiring O(K3) time. As with diffusion, this

is a considerable speed-up over solving the (N × N) linear system in spatial domain. As

an additional advantage, using the analytic definitions of the derivative operators in all

the simulation steps alleviates the numerical errors resulting from spatial finite difference
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approximations.

Density Dissipation

For density simulation, Equation 6.3 is solved in the legendre space. The advection, diffusion

and source terms are handled in a way similar to velocity simulation. The dissipation term

is then solved in the legendre space as follows:

(1 +△tα) · [R(t+△t)] = [R(t)] (6.21)

Size of the Legendre representation: Figure 6.8 illustrates the time-evolution of 2D

density and velocity fields for different sizes of Legendre representations. We start with the

same low frequency density and velocity fields and apply the same forces throughout the

3 different Legendre domain simulations. We can observe that more coefficients allow for

higher frequencies and vorticities as the density and velocity fields evolve. In Figures 6.9,

6.10 and 6.11, we also provide theoretical and empirical computational complexity of our

framework as a function of the size of the Legendre representation (K). A user can use these

as a guide for choosing the Legendre representation size that best addresses the demands

(speed/ high frequency detail) of a particular application.

6.5 Rendering in Legendre Domain

Rendering requires solving the light transport equations (6.4,6.5) in the Legendre domain

using techniques similar to those used for the Navier-Stokes equations.

Direct Transmission intensity field

As earlier, substituting Legendre representations of various fields and Legendre operators

(Figures 6.5 and 6.6) into Equation 6.4, we get:


∑

♦

ωd

♦D♦


 · [Id] = −σT ·MR · [Id]

⇒ Lωd · [Id(t)] = 0 (6.22)

where Lωd =

(
∑
♦

ωd

♦D♦ + σT ·MR

)
.
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Initial Density Field Initial Velocity Field

Evolved Density Fields
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8th second 16th second 32nd second

Figure 6.8: 2D Legendre domain Simulation results: Evolution of density and velocity for
different number of Legendre coefficients. More coefficients allow higher frequencies and vorticities
in the density and velocity fields.

Scattered intensity field

Similarly, we can project Equation 6.5 into the Legendre domain:


∑

♦

ωs

♦D♦


 · [Is] =−σT ·MR · [Is] + βΩ(θ) · T ·MR · [Id]

⇒ Lωs · [Is] = βΩ(θ) · T ·MR · [Id] (6.23)
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For every time step:

• Update Velocity and Density Fields
Advection ( 6.13) and Diffusion ( 6.16) O(K3)
Forces/Source ( 6.17) O(K2)
Projection( 6.19, 6.20) O(K3)

• Update Intensity Fields
Direct Transmission( 6.22), Scattered ( 6.23) O(K3)

• Compute Image ( 6.24) O(SK)

Figure 6.9: Legendre domain Rendering algorithm: K is the size of Legendre space represen-
tations and S is the image resolution.

where Lωs =

(
∑
♦

ωs

♦D♦ + σT ·MR

)
.

In the legendre space, both the light scattering equations are thus formulated as linear

systems of equations in the unknowns [Id] (6.22) and [Is] (6.23). Along with the boundary

conditions, which can be formulated as additional linear constraints, these systems can be

solved in O(K3) time.

Imagine a camera observing the medium from the outside (Figure 6.3). Then, the image

recorded is given by the scattering intensity field Es at the domain boundary:

Es(x, y, z, t) =
∑
ijk

IsijkLi(x)Lj(y)Lk(z) (6.24)

If the image resolution is S, then time-complexity of image computation is O(SK). Note

that the image computation step is output-sensitive, and can easily be parallelized. Our

Legendre domain modeling and rendering framework is summarized in Figure 6.9.

6.6 Results

Our results show that Legendre polynomials can express a variety of interesting density and

force distributions compactly, thereby letting the user manipulate the densities, velocities

and forces globally to produce the desired effects.

Particles immersed in dynamic fluid media: Figure 6.12 and Figure 6.1 show simu-

lations of 500 pieces of confetti and 3000 snow-flakes respectively being carried by a wind

field simulated using 216 Legendre coefficients each. We can notice vorticities being created

in the confetti example due to the turbulent behavior of the wind field. On the other hand,

the snow flakes are carried by a more gentle, breeze-like wind. Reader is referred to the

project web-page [4] for the animation results.
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Number of Legendre Coefficients

16 36 64 144

S
p
a
ti
a
l
G
ri
d
S
iz
e 2002 500X 250X 75X 10X

3002 1250X 625X 187X 25X

4002 2500X 1250X 375X 50X

5002 5000X 2500X 750X 100X

Figure 6.10: Typical computational speed-ups for 2D simulation and rendering in Legendre domain
as compared to the spatial domain.

Number of Legendre Coefficients

S
p
a
ti
a
l
G
ri
d
S
iz
e 64 125 216

203 100X 25X 8X

303 1300X 325X 105X

403 7500X 1875X 600X

Figure 6.11: Typical computational speed-ups for 3D simulation and rendering in Legendre domain
as compared to the spatial domain.

Simulation of smoke and advection of scattering albedos: Figure 6.14 shows a

vertically upwards axial impulse applied to a vase shaped smoke density field. Since the

impulse is applied for a short duration, the density field dissolves towards the end of the

simulation. For the first time, we also show advection of the optical properties of the

medium (scattering albedos), in addition to the physical properties (densities and velocities),

resulting in completely new colors and appearances as the medium evolves under external

forces.

Single Scattering based rendering of participating media: We demonstrate the

visual effects of both relighting the medium under the single scattering model, and varying

the viewpoint and scattering albedos, as the medium evolves under user defined forces. We

also show interesting effects of shadowgrams that are cast by the medium on a background

plane (Figures 6.13 and 6.14).

3D Visual effects resulting from volumetric scattering in non-homogenous and

dynamic participating media: In the examples of Figure 6.15 and Figure 6.1, we add

non-homogenous mist to scenes with large depth variation. Notice how distant objects

appear brighter due to the airlight [68] effect. Reproducing such effects accurately, particu-

larly for non-homogenous media, is critical for achieving photo-realism while rendering 3D
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scenes. Finally, in Figure 6.16, we add non-homogenous and dynamic fog to a clear day

fly-through of Swiss Alps.

Computational Speed-ups: Due to the compact representations of fields in the Legen-

dre domain, we can achieve computational speed-ups of one to three orders of magnitude,

depending on the number of Legendre coefficients (Figures 6.10 and 6.11). The comparison

is made with our implementation of the Stable Fluids [113] algorithm in the spatial domain.

However, our technique places a restriction on the size of the simulation time-step; adding

higher frequencies will require a progressively smaller time-step owing to stability consid-

erations given by the CFL condition [27]. On the other hand, the Stable Fluids technique

can support arbitrarily large time-steps. All our implementation was done in MATLAB on

a 3.2GHz P-4 PC with 2 GB of RAM.

Figure 6.12: Legendre domain Simulation result: 500 pieces of confetti being carried by a
turbulent wind field simulated using 216 Legendre coefficients.

6.7 Discussion

Our goal is fast rendering of non-homogenous and dynamic participating media. We achieve

this by representing the spatio-temporally varying intensity (rendering), as well as density

and velocity (simulation) fields in a reduced analytic Legendre space. This results in a sin-
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Light Source and View Point Variation Variation in Scattering Properties

Figure 6.13: 3D Legendre domain Rendering: Here we consider a smoke-cube illuminated by
distant light source(s). The image is formed at an orthographic viewer observing the scene. Since
the whole of our pipe-line is in the reduced Legendre domain, the user can control the view-point,
lighting and scattering albedo interactively. Notice the varying shadow-gram patterns on the wall
as the smoke evolves. The smoke and the shadow become darker as we decrease the albedo. Colored
smoke and shadows can be created by varying the scattering properties differently across the color
channels. This example required 64 coefficients for density and velocity, and 216 coefficients for
intensity fields.

gle scattering based rendering technique for smooth non-homogenous and dynamic media,

a significant improvement over similar techniques which make the severely limiting assump-

tion of homogenous medium densities [116]. We believe this is the first work that provides a

unified framework for both modeling and rendering in an analytic reduced space, and hope

this can help bridge the gap between model reduction in fluids and pre-computed radiance

transfer in rendering.

Limitations: The speed and analytic nature of our technique come at the cost of its lim-

ited ability to handle high frequency fluid phenomena. Indeed, using only a global Legendre

Polynomials basis offers limited local control and allows only for the box-boundary con-

ditions, making it difficult to account for complex effects like local vorticities, turbulence

and objects inside the medium. Also, being a global sub-space method, it offers low

flexibility on the domain boundaries. Also, currently our techniques can not handle ob-

jects within the medium, and it assumes single scattering, orthographic viewing and distant

lighting.

These limitations can be addressed by augmenting the global Legendre polynomials ba-

sis, which capture the majority of the energy of the fluid flow, with a local-support basis

such as Haar-Wavelets or spatial voxels, thus accounting for the spatially sparse ’residual

energy’. This is similar in spirit to adding local high frequency turbulence, or vorticities [23]

to counter the dampening caused by the Stable Fluids semi-Lagrangian technique. Also,

high frequency details in a particular dimension can be captured by keeping the full spa-

tial representation and using Legendre expansion in the remainnig directions. Using such

hybrid bases can provide the desired local control in addition to computational speed-ups,
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Figure 6.14: 3D Legendre domain simulation and advection of optical properties: 3D
Simulation results for a vertically upwards axial impulse applied to a vase shaped smoke density
field.. Also, we advect the optical properties of the media (scattering albedos) along with the
densities and velocities to create the effect of mixing of different media. This example required 216
Legendre coefficients for density and velocity fields (simulation) and 512 coefficients for intensity
fields (rendering).

Clear Weather Homogenous mist Non-homogenous mist Attenuation

Figure 6.15: Rendering of Non-homogenous participating media: Our technique can be
used to render non-homogenous media as well under the single scattering model efficiently. Here
we add mist to a clear weather scene (Images courtesy Google Earth). Non-homogenous density
distributions, for example the high mist density over the lake provides for more realism as compared
to homogenous mist. Also, notice how distant objects appear brighter due to the air-light effect,
whereas distant objects appear darker in the attenuation-only image.

and in our opinion, forms a very promising direction for future research. Since we also

make assumptions of single scattering, orthographic viewing and distant lighting, extending

our system to perspective viewer and more general, near-field lighting is another research

direction worth exploring.

6.8 Appendix A: Sparsity of Legendre polynomials triple

product integrals

We have analyzed Legendre polynomials triple product integral. Such integrals arise when-

ever two functions are multiplied, with both the operands and the result represented in

the Legendre polynomial basis. We derive a recurrence relation to calculate these integrals
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Figure 6.16: Snapshots from a fly-through of Swiss Alps with Non-homogenous and dynamic
fog added (Images courtesy Google Earth). Images have been tone-mapped to high-lite the non-
homogeneity of the medium. Complete video is included with the supplemental material.

analytically. We also establish the sparsity of the triple product integral tensor, giving the

exact closed form expression for the sparsity structure. We show that approximately 3
4 of

the triple-product integral values are exactly zero. We exploit this sparsity to achieve com-

putational speed-ups in addition to that achieved using sparse representation. We believe

that this analysis of triple product integrals for Legendre Polynomials can be useful in any

scenario where functions are represented in terms of their Legendre polynomials coefficients.

Legendre Polynomial Triple Product Integral Given two functions f(x) and g(x),

suppose we want to find the product h(x) = f(x) ∗ g(x), where all the functions are repre-

sented in Legendre Polynomials basis:

f(x) =
∑

i aiLi(x), g(x) =
∑

i biLi(x), h(x) =
∑

i ciLi(x),

where Li is the ith Legendre Polynomial.

⇒∑
k ckLk(x) = (

∑
i aiLi(x)) ∗ (

∑
j bjLj(x))

⇒∑
k ckLk(x) =

∑
i

∑
j aibjLi(x)Lj(x)

c′ks are the unknowns here. To simplify, we exploit the orthogonality of Legendre Poly-

nomials. Multiplying by Lk(x) and integrating from −1 to 1:

ck = 2k+1
2

∑
i

∑
j aibjTI(i, j, k)

where TI(i, j, k) =
∫ 1
−1 Li(x)Lj(x)Lk(x)dx is defined as the Legendre Polynomial Triple

Product Integral.

Given K terms each in the expansion of f(x) and g(x), h(x) will have 2K terms. Thus,

we have a total of 2K × K × K = 2K3 computations to calculate all the ck. However,

looking at the slices of the TI tensor (3D), one can observe that a large fraction of the
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Figure 6.17: Various Slices of the TI tensor. Area in black is zero. We can observe that a
significant fraction of the TI tensor is zero. Also, the sparsity of the TI tensor seems to have a
particular structure. We establish the sparsity formally, and find a closed form expression for the
sparsity structure.

entries are zero (Figure 6.17). In the following, we first establish the sparsity of the TI

tensor – prove that only a small fraction of elements are non-zero. Next, we also find out the

exact distribution of non-zero elements, i.e. find the closed analytical form of the function

N(i, j, k), which returns 1 if the element is non-zero, and 0 otherwise.

Previous Work Ng et al [17] provide an analysis of triple product integrals for basis

like Haar Wavelets, Spherical Harmonics and Fourier Series. However, to the best of our

knowledge, there is no such previous work on Legendre Polynomials. Legendre Polynomials

form a system of basis polynomials with a wide support, as compared to Haar Wavelets

which provide only compact support. Thus, in practise, a function can be represented

using a relatively small number of Legendre Polynomials. We believe that a thorough

analysis of triple product integrals for Legendre Polynomials would be useful, given the

generality of the problem (multiplication of two functions in Legendre Coefficients domain).
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Recurrence relation for the triple integral

As earlier, TI(i, j, k) =
∫ 1
−1 Li(z)Lj(z)Lk(z)dz. We will now try to calculate the triple

integrals by formulating a recurrence relation for the same:

TI(i, j, k) =

∫ 1

−1
Li(z)Lj(z)︸ ︷︷ ︸

Term1

Lk(z)︸ ︷︷ ︸
Term2

dz . . . . . . (Integration By Parts)

=

[
LiLj

∫
Lk

]1

−1

−
∫ 1

−1
(LiLj)

′

∫
Lk

=
1

2k + 1
[LiLj(Lk+1 − Lk−1)]

1
−1 −

1

2k + 1

∫ 1

−1
(LiLj)

′(Lk+1 − Lk−1)

= 0− 1

2k + 1

∫ 1

−1
(L′

iLj + LiL
′
j)(Lk+1 − Lk−1)

= − 1

2k + 1

∫ 1

−1


Lj

⌈ i
2
⌉∑

r=1

(2i+ 3− 4r) ∗ Li+1−2r + Li

⌈ j
2
⌉∑

r=1

(2j + 3− 4r) ∗ Lj+1−2r


 ∗ (Lk+1 − Lk−1)

= − 1

2k + 1

⌈ i
2
⌉∑

r=1

(2i+ 3− 4r) ∗ [TI(i+ 1− 2r, j, k + 1)− TI(i+ 1− 2r, j, k − 1)]

− 1

2k + 1

⌈ j
2
⌉∑

r=1

(2j + 3− 4r) ∗ [TI(i, j + 1− 2r, k + 1)− TI(i, j + 1− 2r, k − 1)]

Thus, we have expressed TI’s in terms of a summation of TI’s of lower order. We can

calculate the 3D tensor of TI’s using Dynamic Programming in time O(K4). We can also

exploit the symmetry TI(i, j, k) = TI(i, k, j) = TI(j, k, i) = . . . to make the computations

fast and numerically stable.

Sparsity of the triple integral

We use the recurrence relation derived above to prove the sparsity of the TI tensor, as given

by the following Legendre Polynomials Triple Product Integral theorem:

Theorem 1. TI(i, j, k) = 0 if either of the following two conditions hold:

• The triplet (i,j,k) doesn’t satisfy triangle inequality, i.e. either i+j < k, or i+k < j

or j + k < i

• (i+ j + k) mod 2 6= 0.
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Figure 6.18: First Level of the recurrence tree

Proof. We will prove the two cases separately:

• The triplet (i,j,k) doesn’t satisfy triangle inequality: Let the triplet (i, j, k)

doesn’t satisfy triangle inequality. Without loss of generality, lets assume that i+ j <

k. Consider the recurrence tree for TI(i, j, k). The first level is shown in Figure 6.18.

We will first prove that if the root triplet (i, j, k) doesn’t satisfy triangle inequality,

then neither of the triplets in the corresponding sub-tree does.

Let a child of TI(i, j, k) be TI(i′, j′, k′). We consider two cases:

– k′ = k + 1: Since either i′ < i, j′ = j or i′ = i, j′ < j, we have i′ + j′ < k′

– k′ = k − 1: Since either i′ <= i − 1, j′ = j or i′ = i, j′ <= j − 1, we still have

i′ + j′ < k

Hence, given a root triplet (i, j, k) not satisfying triangle inequality, neither of the

triplets in the corresponding sub-tree does.

Now we look at the leaves of such a sub-tree, or the base cases. We stop recursing

when one of the indices (i,j or k) becomes 0. This is when we have reached a leaf of

the tree. Let the triplet at a leaf be ib, jb, kb. Without loss of generality, let ib = 0.

Now, ib + jb < kb (by above argument). Since ib = 0, we have jb 6= kb. Thus, the

value at the leaf is given by:

TI(ib, jb, kb) =
∫ 1
−1 L0(x)Ljb(x)Lkb(x)dx

⇒ TI(ib, jb, kb) =
∫ 1
−1 Ljb(x)Lkb(x)dx = 0
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So, if i + j < k for the root of the recurrence tree, TI = 0 for all the leaves in the

sub-tree. Since the value at the root is a linear combination of all the leaves, the value

at the root is zero too.

• (i+ j + k) mod 2 6= 0: Consider the recurrence tree for TI(i, j, k) (Figure 6.18). The

sum of indices of all the children of TI(i, j, k) is (i+ j+k)+(2−2r) or (i+ j+k)−2r,

for a given positive integer r. The same will hold for all the recursion sub-trees as

well. This implies that like the Triangle Inequality-ness, the even-ness of the sum of

indices (i+ j+ k) is preserved into the sub-tree, starting from the root. The sum will

be even for all the nodes in the tree if it is even for the root and will be odd if it is

odd for the root.

Now we again look at the leaves of the tree, or the base cases. We stop recursing

when one of the indices (i,j or k) becomes 0. If the sum of indices of the root of the

tree is odd, sum of indices for all the leaves will be odd too (from above). Since one

of the indices is zero, the other two won’t be the same, and hence, as above, values at

all the leaves in the tree would be zero. Thus, the value at the root, TI(i, j, k) = 0 if

(i+ j + k) mod 2 6= 0.

Using the above theorem, the following result can be derived:

Result 1. Let 1 ≤ i, j, k ≤ K. The total number of TI(i,j,k) is K3. The number of non-

zero TI’s ≤ ⌈14k3 + 3
8k

2 + 1
4k⌉.

It is easy to derive the above number by using Theorem 1 and simple counting. This result

implies that only about 1
4 of the TI entries are non-zero.

6.9 Appendix B: Polynomial truncation scheme using Cheby-

shev polynomials

In many settings, we are interested in approximating a polynomial by a lower degree poly-

nomial, while keeping the approximation error low. For example, if we use K terms for the

Legendre expansion of two polynomials f(x) and g(x), then the product polynomial will

have 2K terms. For a variety of computational considerations (memory, speed), it would

be desirable to keep the degree of the product polynomial the same as the operands, i.e.

K.

We derive a truncation scheme to approximate a polynomial with a lower degree polyno-

mial, while keeping the approximation error low under the L∞ norm. We use the Chebyshev
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T0(x) 1

T1(x) x

T2(x) 2x2 − 1

T3(x) 4x3 − 3x

T4(x) 8x4 − 8x2 + 1

T5(x) 16x5 − 20x3 + 5x

T6(x) 32x6 − 48x4 + 18x2 − 1

Figure 6.19: First few Chebyshev Polynomials

polynomials to derive our truncation scheme. Chebyshev Polynomials are a set of orthogo-

nal polynomials, and are denoted by Tn(x). First few Chebyshev polynomials are given in

Figure 6.19.They are defined using the following recurrence:

Tn+1(x) = 2xTn(x)− Tn−1(x), with T0(x) = 1, T1(x) = x

We present empirical results which suggest that the approximation error is quite low,

even for fairly low degree approximations. For computing a product of two polynomials in

the Legendre domain, this scheme can help in keeping the degree of the product the same

as that of the operands.

Truncation Scheme

Chebyshev polynomials find wide use in approximating polynomials with a lower degree

one. In particular, the polynomial

pn−1(x) = xn − 21−nTn(x)

is the best n − 1 degree approximation for f(x) = xn on the interval [−1, 1] under the

L∞ norm, with the maximum deviation being 21−n. We call pn−1(x) as the degree n − 1

mini-max polynomial, as it minimizes the maximum deviation.

We extend the result by coming up with an approximation for the function f(x) = xn+1

defined on the interval [−1, 1] with a polynomial of degree k, for any k, 0 ≤ k ≤ n. It is a

useful result since we can approximate xn+1 with a polynomial of any lower degree.

Suppose we want a degree k approximation for xn with 0 ≤ k ≤ n− 1. We start with the

expression for pn(x), the degree n−1 approximation. Since, it is a degree n−1 polynomial,

it can be written as:
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pn(x) = cn−1x
n−1 + cn−2x

n−2 + . . .+ cmxk + . . . + c0

Now, we replace xn−1 with degree n−2 mini-max polynomial in the above expression,

which in turns gives us a degree n − 2 approximation for xn. Similarly, we cascade down,

each time replacing the leading power of x in successive approximations with the one-lower

degree mini-max polynomial. In each step, we reduce the degree by one; we repeat until we

have a degree k approximation.

Note that although we don’t have any theoretical error bounds, we present empirical re-

sults which suggest that the approximation error is quite low (Figure 6.20) , even for fairly

low degree approximations.

Truncation as a matrix operation

In this section, we formulate the degree truncation operation as a matrix multiplication

operation. We represent a polynomial p(x) by a vector P of its coefficients. Let the degree

k polynomial approximation of f(x) = xn, according to our scheme, is given by tnk(x), and

the corresponding coefficient vector by T n
k (size k + 1).

Then, given a degree n polynomial pn(x), and its coefficient vector Pn, we can calculate

pk(x) (Pk), its degree k approximation (k < n) as a matrix multiplication:

Pk︸︷︷︸
k+1×1

= Mnk︸︷︷︸
k+1×n+1

∗ Pn︸︷︷︸
n+1×1

where,

Mnk =
[
T n
k T n−1

k . . . T k+1
k Ik×k

]
, Ik×k is a k × k identity matrix.
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Figure 6.20: Lower Degree Polynomial Approximations of x31 with our algorithm in the interval
[−1, 1]. Green plot is the approximation, and red crosses indicate the original function. Sub-
Captions of plots are the degrees of approximationm. The numbers in parentheses are the maximum
approximation error (L∞ error norm) over the interval [−1, 1]. We can observe that for m > 15, the
two plots are almost indistinguishable, which is remarkable, since we are approximating x31. This
establishes the accuracy of the algorithm in an empirical sense. For m < 15, we start noticing some
error.
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Chapter 7

Future Directions

In this thesis, we have shown that it is possible to build simple computational models for

global light transport. By using these models, combined with active control of illumination,

we have made a variety of computer vision techniques robust to the effects of global illumi-

nation. On the other hand, again, by simplifying the light transport models and using active

illumination, we have used global light transport for recovering scene/material information

as well. We believe that this is an important step towards increasing the scope of computer

vision systems to challenging real world settings.

The study of global light transport effects in computer vision is still a relatively nascent

field. We believe that there are numerous avenues for future research. A few of them are

listed below.

Separating global light transport further into inter-reflections and scattering:

The technique given in [87] efficiently separates the direct and the global components of

light transport. A future goal is to decompose global light transport further into it’s con-

stituent modes of inter-reflections, sub-surface scattering and volumetric scattering. Both

inter-reflections and sub-surface scattering result in blurring of the incident illumination.

However, we have observed that the blurs associated with the two processes are different.

The blur at each scene point could be easily measured by illuminating the scene with only a

few illumination patterns. The measured blurs could be used to classify the dominant mode

of light transport at each scene point further into sub-surface scattering vs. inter-reflections.

Such a classification provides more information than the direct-global separation. For in-

stance, it could be used to infer a qualitative geometric model (from inter-reflections) and

a translucent material map (from sub-surface scattering) of the scene.

Time varying global light transport: So far, we have considered global light transport

as a static phenomenon. However, real world scenes evolve with time. Most of the objects of
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interest to humans, such as fruits, plants, skin, biological tissues change material properties.

Many physical processes such as weathering change the geometric lay-out of scenes as well,

either at a macro or micro structure scale. The variation in appearance of such scenes

can be captured by modeling and acquiring time varying global light transport. This can

be thought of as generalizing time varying models for surface appearance [40, 117]. Such

models will be useful in computer graphics for rendering time varying appearance of a wide

range of scenes.

Photometric and Helmholtz stereo under global light transport: Active shape

recovery techniques can be classified three ways into triangulation based techniques using

structured light, shape from illumination defocus and photometric methods such as photo-

metric and Helmholtz stereo [134]. Each class of techniques has a different set of merits and

demerits, and is best suited in different scenarios. In this thesis, we have made the first two

resistant to errors due to global light transport. As with the first two techniques, we plan

on building simple aggregate models of global illumination which could easily be separated

from the shape cues used by photometric and Helmholtz stereo techniques.

Shape recovery for transparent objects: Light transport through transparent objects

follows the laws of refraction. Since most traditional shape-recovery techniques are designed

for objects that scatter light, they can not be used to reconstruct the shape of transparent

objects. Recently, Kutulakos et al [69] presented a technique for reconstructing transparent

objects by reconstructing a number of individual 3D light paths, that intersect at a common

vertex lying on the object. The number of camera views required grows with the complexity

of the object. For instance, reconstructing an object with 2 refractions requires at least 3

camera views if the refractive index is known, and at least 4 views if the refractive index is

unknown. In practice, however, many more views (∼ 7) are required for robustness, since

each point on the surface is reconstructed individually.

We observe that a large collection of light rays can potentially intersect on the object,

forming a light network. Instead of reconstructing each light path individually, a large

network of 3D rays can be reconstructed together. This offers two advantages. First, it

decouples the number of required camera views from the number of light paths needed.

For the example mentioned above, an object with 2 refractions can be reconstructed using

only 2 camera views, even in the case of unknown refractive index. Second, a light network

can potentially pass through a large cluster of points on the surface of the object. Each

path in the network constrains the degree of freedom of the network. Interestingly though,

the total number of degrees of freedom of the network remains the same irrespective of the

number of light paths. By reconstructing the complete network, all the light paths (therefore

all the points) can be reconstructed together, thus significantly improving the quality of
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reconstruction. This is akin to solving for a small number of unknowns with a large number

of equations. Since the robustness is coming from considering the light network, we don’t

need to take more camera views than the minimum required theoretically.

Machine vision algorithms for material recognition and computational models

for sub-surface scattering: While there is significant research effort in computer vision

for object recognition and scene understanding, the problem of material recognition has

received little attention. We believe that recognizing materials in images is an important

stepping stone towards the goals of object recognition and scene understanding. Several

objects of interest to humans, such as food, plants and skin are translucent. Perception of

translucency results from the physical process of sub-surface scattering. Understanding sub-

surface scattering can provide useful cues for recognizing translucent materials in images.

We wish to build machine vision systems for measuring sub-surface scattering in objects.

Unlike surface reflectance, which depends only on the local shape, sub-surface scattering

in an object is a complex function of both local and global shape, along with material

properties, illumination and imaging conditions. If these factors could be untangled, sub-

surface scattering could prove to be a rich source of information about the scene. By building

factorizable computational models, each of these factors could be recovered by controlling

the others. For instance, we plan to investigate the possibility of recovering shape and

material properties from measuring sub-surface-scattering using controlled illumination.

Such systems would have wide ranging applications in food inspection, digitizing cultural

heritage, medicine, surgery and cosmetics industry.
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