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ABSTRACT

Cyber-physical systems (CPS) refer to a promising clasgstéms featuring intimate coupling
between the ‘cyber’ intelligence and the ‘physical’ worl@nabled by the ubiquitous availability
of computation and communication capabilities, such systare widely envisioned to redefine
the way that people interact with the physical world, simiathe revolutionary role of internet
in transforming how people interact with each other. As thwl& society becomes increasingly
dependent on such systems, it is crucial to develop a thearmpderstand and optimize the CPS in
a systematic manner.

This thesis contributes to the foundations of CPS by idgintif and addressing a general class
of scheduling-type applications for a vital class of CP$,thysical networks (PhyNets). Different
from the abstract CPS, a PhyNet has a graph-type physicalvgaich represents the local inter-
actions among users in the system, as specified by certalfkm@iin physical laws. Thus, it is
very promising to develop efficient distributed algorithinsPhyNets with proper communication
infrastructure and protocols, due to the physical graphcaire. The ‘scheduling’ refers to the
applications where joint actions of all users are coordidain order to allocate system resources
to satisfy certain long term and uncertain demands. Impbdgplications of the scheduling in
PhyNets include packet scheduling in wireless networksrdinated charging of electric vehicles
(EV) in electric power grids, and workload scheduling inadaenters. In this thesis, we assume
very mild assumptions on the stochastic processes, anddprgvobabilistic scheduling perfor-
mance guarantees using the technique of fluid limits.

In this thesis, we will investigate a broad range of schedutilgorithms and discuss their per-
formance and distributed implementation. We first invedgtiggthe class of optimal scheduling al-
gorithms in the dynamic regime, where the system modes ehearglomly with time. We focus

on augmented max-weight scheduling schemes, which choosexaveight schedule, where the



weight is specified by queue lengths. Two scenarios are deresi in this case. For the first sce-
nario, we assume the scheduler has asymptotic knowledgs #te optimal cost, and propose

virtual cost queue based max-weight scheduling schemegréVe cost optimality and rate stabil-

ity results using fluid limits. For the second scenario, waiate no knowledge on optimal cost, and
adopt a Lyapunov optimization based approach. We demadastraasymptotic optimality and pro-

vide bounds on the average queue lengths. Finally, we abplgugmented max-weight algorithms
to the important application of coordinated EV charging amver systems.

We next consider the class of optimal scheduling algorithmtise quasi-static regime, where the
system modes remain constant for the scheduling applicatioe quasi-static property is promising
for efficient scheduling design by allowing the system tormegize’ good schedules. We propose a
simplex algorithm based scheduling scheme, and provettisasymptotically throughput optimal.
For the important application of packet scheduling in véssl networks, we show that the simplex
scheduling can be implemented in a distributed manner withagge consensus and carrier sensing
multiple access (CSMA) mechanisms. We also demonstraté thezhieves significant steady-state
delay reduction compared to the popular throughput optafistfibuted adaptive CSMA schemes,
by successfully avoiding the random walk behavior assediatith the distributed CSMA.

Finally, we investigate the performance of suboptimal daoling schemes. We will discuss
the performance of a class of interesting scheduling schemeximal scheduling. A maximal
scheduling algorithm only involves simple and local conadion among users, and therefore has
low complexity and is easy for distributed implementati@e propose a tight lower bound through-
put region for maximal scheduling algorithms, and show ithedin achieve a certain fraction of the
optimal region. We also investigate the performance imgmoent on maximal scheduling. In par-
ticular, for packet scheduling in wireless networks, wepmse a static priority assisted maximal
scheduling scheme. We show that the optimal static priassignment can be computed with low
complexity in an online manner, and that the combined gyi@$signment and maximal scheduling

achieve dramatic throughput improvement over the conveatimaximal scheduling.
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CHAPTER1

INTRODUCTION

The rapid development of information technologies in thst giecades has resulted in wide avail-
ability of embedded computing and communication capadsliin almost all types of objects. Such
large-scale and deep embedding of the cyber intelligerteetive physical world has created un-
precedented opportunities for researchers to developrgstvith huge societal impacts and eco-
nomic benefits. Commonly referred to as the cyber-physigstiems (CPS) [1-3], these systems
are envisioned to achieve important functionalities ttzatnot be achieved previously, by utilizing
the intimate coupling of the ‘cyber’ core with the ‘physicahvironment. The CPS is an emerging
and hot research area, covering a broad range of sectorsimybrtant applications ranging from
macro-scale infrastructure based systems, such as srithf#yrdata centers [5, 6], transportation
systems [7], to micro-scale systems, such as intelligenticakdevices [8]. It is widely envisioned
that the CPS will play such an important role that it will réde the way people interact with the
physical world, similar to the way internet revolutionizédte way that people interact with each
other.

The CPSresearch is both very important and highly chaltengihich covers a diverse range of
areas. Thus, itis important to develop theoretical foundatto understand and design such systems
in a systematic manner. Realizing this important goal, ismtiiesis we contribute to the foundations

of CPS by addressing a class of important applications,fallhich share a common structure, so
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that similar techniques can be brought to bear in each casexifigally, this thesis focuses on the
schedulingapplications for a vital class of CPS, thhysical networkgPhyNets). The ‘scheduling’
refers to applications where certain resources in the syate allocated by coordinating all users
to satisfy uncertain and long-term average demands. Onertar example is packet scheduling
in wireless networks, where the scarce wireless spectrigmdlae allocated across all links in the
network, to satisfy each link’s traffic demand. We are inderd in investigating such scheduling-
type problems in the context of PhyNets, where the graptctsirel of the physical plant allows
efficient and distributed implementations. For the remmajrof this chapter, we will provide a brief
introduction to the general scheduling problem, state ouatrdutions and provide a summary of

related work. We first introduce the model of PhyNets andutis¢he scheduling with PhyNets.

1.1 CyBER-PHYSICAL SYSTEMS AND PHYSICAL NETWORKS

Cyber-physical systems are advanced engineering systémsewhe computing and commu-
nication are carefully designed to achieve intimate iraign with the physical dynamics. An
example structure of the general CPS is illustrated in Fid. The typical CPS has three major
parts. The first part is thehysical plant which is an abstraction of the physical world. The second
part consists of manglatforms which are equipped with sensors, computing devices an@ics.
Finally, these platforms are interconnected by the thind, peamely acommunication networlso
that the operations of all platforms can be coordinated tiexe desired functionalities with the
physical plant. The platforms and the communication ngtworm the ‘cyber part’ of the CPS,
whereas the physical plant represents the ‘physical patiieoCPS.

The abstract structure of CPS, as shown in Fig. 1.1, is vargrgé which can be used to model
an enormous class of systems, from national infrastrustsueh as the power grid to small cardiac
medical devices. However, such level of abstraction in rfiogenakes it extremely challenging, if
not impossible, for researchers to address the CPS desiganatysis in a unified manner. A core

issue is that the ‘physical plant’, as shown in Fig. 1.1, du@sprovide any insight into the problem
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Platform 1 Platform 2
Network
Sensor 0 Actuator Sensor Actuator

Physical Plant

Figure 1.1: An example structure of a typical CPS.

structure in its full generality, and therefore is too adstifor efficient analysis and design. As an
alternative, this thesis focuses on one specific class of gf&ical networkswhere the abstract
physical plant can be modeled by a ‘physical graph’. An exanop the PhyNet is illustrated in
Fig. 1.2. Compared to the architecture of general CPS in Eifj, the most important feature of
a PhyNet is that its physical plant can be abstracted by a mimepler physical factor grapg.
For the physical grapfy, each variable node representsserin the system, which corresponds to
a concrete physical entity in the physical world, such aslkilh wireless networks, and a server
in data centers. The factor nodes represent network cgualimong the users, due to certain well-
known physical laws. It is somewhat surprising that a widea of physical laws can be described
or approximated as local interactions, such as the cortsmiaws. Thus, the PhyNet model can
potentially be used for many important CPS applications.

Compared to the abstract CPS structure, the physical geggpbgentation in a PhyNet is promis-
ing to achieve efficient and distributed algorithms. In tthiesis, we will propose a wide range
scheduling algorithms and show that they all can be impleéeteim a distributed manner, using
techniques such as dual decomposition, average consemglstatistical sampling. The specific
implementation method, on the other hand, should be bas#teatructure of the particular appli-

cation. We emphasize that all such distributed implememtanethods can be applied due to the
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Communication Links
Computing Node

Cyber Part

Physical Node

Physical Plant

Figure 1.2: An example structure of a PhyNet.

critical assumption that the physical plant can be modedeal graph.

1.2 SCHEDULING IN PHYNETS

This thesis considers one important type of applicationBhigNets, namely scheduling prob-
lems. The ‘scheduling’ in this thesis is a general definitinmich refers to applications where
resources in the system are efficiently allocated to satisftain long term and uncertain average
demands. In below, we will briefly discuss the motivationd applications of the scheduling prob-

lem in the context of different CPS applications:

e Packet Scheduling in Wireless Networks

As one important application of the scheduling framewohie packet scheduling in wire-
less networks has been subject to extensive studies in §1¢9&6]. For such applications,
the resource in the system corresponds to the scarce wigdestrum, which has to be effi-
ciently allocated among users in the network to satisfyrthacket traffic demands. For such
problems, the physical graph corresponds to the well-kninterference graph [27], which
specifies that two links which are connected by an edge (dvaeutly, a factor node) can-

not transmit together, due to the strong co-channel irmemfe. We will discuss this model
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in detail in Chapter 2, where we will also present a hypergrigperference model for the

cumulative co-channel interference.

e Coordinated Charging of Electric Vehicles in Power Systems

Another important application of the scheduling formwatis the coordinated charging of
electric vehicles (EV) in power systems [28-37], which iseamerging and hot research topic
in smart grids. It is widely envisioned that [30] [38] the mmt power system infrastructure
can only support a small EV penetration level (such@8) if all EVs charge in an uncoor-
dinated fashion, due to the severe congestion issues ataj@gbroblems during peak load
periods. Thus, for the EV charging problem, it is importamiatiocate the ‘active power
resource’ in the system to all EV users efficiently, so as tsfyatheir energy needs, while
guaranteeing that the power system can operate in a sealreleile manner. The physical
graph for the EV charging application corresponds to the A®@qy flow coupling, which is

a special case of the conservation law. We will discuss tteldd modeling in Chapter 2.

e Workload Scheduling in Data Centers

Finally, we will show that the scheduling formulation carlude workload scheduling in
data centers [39—44] as a special case. We are particutagsested in thermal-aware work-
load scheduling applications. Thermal issues have beesidemed as a dominating problem
for the efficient and reliable operation of data centers 440, as they can affect both the
performance of the processors and the cooling efficiencysTh is desired to allocate the
‘computing power resource’ among all processors in theegygtfficiently, so as to satisfy the
workload requirements for each processor, while maimgidiesired temperature profiles for
all processors. In this case, the physical graph modelstrenal coupling among different
processors, in that one processor’'s speed may affect thgetaimre of a ‘local’ subset of
processors, due to the heat energy conservation law. Weigglliss the modeling in detail in

Chapter 2.
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1.3 SUMMARY OF CONTRIBUTIONS

This thesis proposes a general scheduling framework fomgoitant class of CPS. We will
demonstrate that the framework can be used for a diverse afragplications, from packet schedul-
ing in wireless networks, to EV charging in smart grids andklad scheduling in data centers.
We will investigate both optimal scheduling schemes anagtiimal scheduling schemes, discuss
their distributed implementations, and demonstrate tperformance in the context of important
applications. Here is a brief summary of the key contrilngiof this thesis, which are listed in a

chapter-wise manner.

e Chapter 2 proposes the general scheduling problem with Blisylind shows that it includes
many CPS applications. We will demonstrate three apptinatinentioned in the previous

section in detail.

e Chapter 3 considers optimal scheduling schemes in the dgnagime, where the system
modes change randomly across different time slots. In tee wdth asymptotic knowledge
about the optimal scheduling cost, we propose virtual gumsed max-weight scheduling
schemes and prove the optimality results using fluid limitwo scheduling algorithms will
be presented. The first one is a generalization of the coimvethtmax-weight scheduling,
whereas the second one is a generalized ‘pick-and-compkyerithm, which has low com-
plexity and is easy to be implemented in a distributed manrgéng average consensus tech-
nigues. In the second case without knowledge about the apsoheduling cost, we will
propose a Lyapunov optimization based max-weight policy/@move its asymptotic optimal-
ity with Lyapunov drift analysis. We will finally apply the mawveight scheduling schemes

to the important application of coordinated EV charging imver systems.

e Chapter 4 addresses optimal scheduling in the quasi-stgfime, where the system modes re-

main unchanged for the scheduling problem. We propose destrafgorithm based schedul-
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ing scheme, and prove its optimality using fluid limits. We\wstthat the scheduling can be
implemented in a distributed manner using average conserestiniques. The distributed
scheduling incurs higher complexity than the ‘pick-andrpare’ scheduling in Chapter 3.
On the other hand, the algorithm achieves significant detgoyévement in steady states. Fi-
nally, we will apply the algorithms to the packet schedulprgblem in wireless networks,

and demonstrate that the distributed simplex schedulimgachieve dramatic steady state

delay improvement as compared to distributed CSMA algarith

e Chapter 5 investigates suboptimal scheduling policies.av@eparticularly interested in the
performance of maximal scheduling algorithms, which islgasmendable for distributed
implementation due to its simplicity. We will formulate anter bound on the throughput re-
gion with general PhyNets. We will also prove that maximaleztuling can achieve a certain
fraction of the optimal throughput region. We then try to naye the performance of maxi-
mal scheduling for packet scheduling in wireless netwohkgarticular, we propose a static
priority assisted maximal scheduling, and show that it aaniewve significant improvement
over maximal scheduling. We prove that the optimal stafiorjly can be computed with low

complexity.

1.4 RELATED WORK

The general scheduling framework proposed in this thegislated to applications from a di-
verse range of research areas. In the literature, theséeprethave been analyzed assuming dif-
ferent models. In the sequel, we will provide a brief overwiaf the related work. Closely related
results will be discussed in more detail in later chaptettiéncontext of the each specific topic.

The physical factor graph modeling in Chapter 2 is closelgteel to the interference graph
model in wireless networks. The interference graph modepézket scheduling in wireless net-

work has been extensively investigated in the past [10,8,44&-50]. The construction of the inter-
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ference graph depends heavily on the physical layer conuation technology. For example, for
spread spectrum communication systems such as BluetodtR+CDMA networks, the interfer-
ence graph is constructed based on the node exclusiveairdede model [10, 47], which specifies
that any pair of transmitting links cannot share a commorendebr the ubiquitous IEEE 802.11
networks, a two-hop interference model is commonly used4&} which specifies that any pair
of transmitting links must be separated by at least two hdps, to co-channel interference. A
K-hop interference model was proposed in [49] to construetrf@rence graph for general wire-
less networks, which generalizes the node exclusive mddet (1) and 802.11 interference model
(K = 2). Compared to these models in the literature, the contdbuf this thesis is that we
propose a hypergraph interference model [26], which nog pnéserves the graph structure, but
also incorporates the cumulative effect of co-channelriietence. The graph representation and
interpretation of power flow coupling is well-known in powsystems [51-53]. Recently, there
have been growing research interests in investigating ésegd and performance analysis of op-
timal power flow algorithms that utilize the graph repreaéioh of the power system [54-56]. A
physical graph-type representation of the thermal-awamk Woad scheduling in data centers was
recently developed in [41]. We emphasize that the genesaigdl factor graph model proposed in
this thesis can include all such applications as speciascas

The augmented max-weight optimal scheduling schemes ipt€ha are motivated by the max-
weight packet scheduling algorithm in wireless networks, Bl7, 58]. In the seminal work, [11]
proposed a queue length weighted scheduling algorithm amkeg its throughput optimality in
multi-hop wireless networks. The max-weight algorithm \edsr generalized in [57, 58] to the sce-
nario of cost-aware optimal scheduling. The ‘pick-and-pane’ algorithm was proposed in [12] to
approximate the max-weight algorithm over multiple timas| in order to reduce the computation
overhead per time slot. Recently, there have been grows®areh interests in achieving distributed
implementation of the max-weight algorithm using CSMA mesaksms [16, 59], which can be in-

terpreted as applications of the Markov Chain Monte-Cavi@iC) methods with the interference
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graph model [60]. The max-weight algorithm has also beesastigated in the context of EV charg-
ing in power systems, mostly in a heuristic manner. In paldic [61] proposed a max-weight
type EV charging algorithm and solved it using evolutionatgorithms without considering AC
power flow constraints. In [62], a heuristic max-weight EMVadding algorithm was implemented
in a low voltage distribution system subject to voltage aodgestion constraints. The max-weight
algorithm has also been recently investigated in for theklwad scheduling applications in data
centers. [43] proposed a Lyapunov optimization based meighw algorithm for the optimal ad-
mission control, routing and resource allocation in vilized data centers. In [44], a two time
scale max-weight algorithm was proposed for distributading and service management among
geographically separated data centers. Compared to thgséhans, the augmented max-weight
scheduling in this thesis not only generalizes the desigaoscheduling in PhyNets, but also
provides rigorous optimality guarantees with very milduasptions on the stochastic dynamics.

The simplex scheduling algorithm in Chapter 4 is relatechtodentralized packet scheduling
formulation in [63], which solves a static linear programaiversion of the packet scheduling in
wireless networks. The distributed CSMA implementatiorCimapter 4 in the context of wireless
networks is closely related to the distributed CSMA aldwritdesign in [15, 16, 64, 65]. As will be
shown later in this thesis, compared to such schemes, thesiracheduling proposed in this thesis
can achieve dramatic steady-state delay improvement &lass networks.

The maximal scheduling algorithms investigated in Chaptare motivated by the maximal
packet scheduling algorithms in wireless networks. Maxipscket scheduling in wireless net-
works has been extensively investigated in the literatlie 22, 47, 48]. [47] discussed the perfor-
mance of maximal scheduling under the node exclusive erente model and demonstrated that
it can achieve at least half of the optimal throughput reg[@#d, 48] investigated the throughput
performance of maximal scheduling under a general intenfex graph model. [66, 67] discussed
distributed implementations of the maximal schedulingpathm. The maximal scheduling scheme

in Chapter 5 is a generalization of such schemes from wiealesworks to the generalized CPS,
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with rigorous performance guarantees. The static pridwdiyed maximal scheduling in Chapter 5 is
related to the longest queue first (LQF) scheduling in wagleetworks, which dynamically assigns
priority based on queue lengths. [68] considered the thrpugperformance of the LQF schedul-
ing, and proposed a sufficient condition, which is calledltteal pooling’ condition, for throughput
optimality. The local pooling condition was later genezall to the ‘local pooling factor’ in [69],
which corresponds to be the scheduling efficiency of LQF dalieg. There has been extensive
research results [69—72] on estimating the local poolimgofawith different interference models.
Finally, distributed implementation of LQF scheduling diecussed in [71] and [73]. Compared to
LQF scheduling, the static priority assisted maximal sdtiag in this thesis achieves essentially
the same bound on the ‘local pooling factor’ [69], while reds the scheduling overhead associated

with priority updates.



CHAPTERZ2

THE SCHEDULING PROBLEM IN
CYBER-PHYSICAL SYSTEMS

In this chapter, we propose a very general formulation ofsttteeduling problem in PhyNets. As
described in Chapter 1, there are many scheduling-typdesrzhin the literature, which have been
modeled and analyzed independently in the context of @iffespplications, such as packet schedul-
ing in wireless networks, EV charging in smart grids, andkhaad scheduling in data centers. One
contribution of this thesis is to show that these applicetitrom diverse research domains can all
be modeled and analyzed similarly, within one unified framdw\We propose algorithms to solve
the scheduling problem in Chapters 3-5.

The organization of this chapter is as follows. In Sectiadh\#e propose the abstract physical
factor graph model for scheduling application. Sectiond&&cribes the queueing system model,
and Section 2.3 proposes a mathematical formulation of¢heduling problem. Section 2.4 dis-

cusses how the formulation can be applied to many differ&® @pplications.

2.1 HHYSICAL FACTOR GRAPH

In an abstract manner, we assume that the physical plane&@BS consists of a setof user

nodes which have concrete physical meanings for the schedulpmication. For example, for

12
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packet scheduling in wireless networks, a user may correspma link, whereas for EV charging
in power systems, a user refers to a bus in the power grid. €havior of each user nodec V is
described by a set of variablés;, x;, s; }, whose definitions are as follows. The first variablgs
the action variable which represents the operations that usesn perform. It will be shown later
that the control action variable;(n) specifies the job departure of ugan each time slot.. For
example, in wireless networks;(n) € {0, 1} can represent the transmission status of a link in time
slotn, such that ‘1’ represents transmitting, and ‘0’ otherwidé& assume that each action variable
a; is nonnegativeand lives in dfinite discreteset, which we denote a4;. The main task of the
scheduling problem is to optimally choose a sequence afreef all user nodeéa;(n)}, subject
to the physical and queue stability constraints, which wikdescribe very shortly. The physical
constraint is represented by tphaysical variabley;, which lies in a feasible regio®;. Eachy;
represents concrete physical quantities of interest fersttheduling problem. For example, for
EV charging problemsy; may represent the voltage of each bus, whose magnitude fiasrica
bounded regior®; = [V;™» V™ax] Finally, for general time-varying systems, we associata w
each uset amode variables;, which represents its ‘local mode’ and can change over tlots.g-or
example, for the EV charging problem, the local mode mayespond to the non-EV household
load. In wireless networks, the local mode of each link mayespond to the channel status, such
as ‘ON’ and ‘OFF’. We assume that eaghtakes value from a discrete s&t and that both the set
of control actions4; and the set of feasible physical variab{sare functions o§;, as the available
control actions and physical limits may change with the 'sdecal mode.

The physical interactions of user nodes are modeled fyyaical factor graptG (U, F,E). U

is the set of variable nodes, which can be further partitiomecording to different users as follows:
U = Uiey{ai, Xi, 8i }- (2.1)

F is the set of factor nodes, each of which represents netwargling among the variable nodes,
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Figure 2.1: An example physical factor graph with its ungiad queueing system. The white nodes
represent the variable nodes, and the grey node reprekerfector node.

as follows:
hk(aNk7XNk;SNk) = O,Vk, (22)
whereh,, is an abstract function, antl, is the set of users connected to the factor nbde F.

Thus, (2.2) describes the network coupling of the contrtibas {«;} and the physical variables

{x:}, due to certain physical laws. One example physical faataplyis shown in Fig. 2.1.

2.2 QUEUEING SYSTEM

We continue to formulate the queueing system model. As et Chapter 1, ‘scheduling’ in
this thesis refers to the coordinated actions of all usetisdrsystem, such that certain resources can
be efficiently allocated among them to satisfy long term amckdtain demands. As the demand can
be highly intermittent and uncertain, queueing systemstea used in the modeling, analysis and
design for such problems. Here, the queue lengths représeamount of ‘backlogged demand’,
so that the desired throughput performance can be achievi ipresence of stochastic demand
by stabilizing all queues. For the abstract schedulinglpraformulation considered in this thesis,

we refer to the demand as ‘jobs’. We assume a time-slotte@raysand associate each user node
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i € V with a queue. The queueing dynamics can be described awfollo
Ui(n) = Ui(n — 1) — gi(n) + Ai(n). (2.3)

In the abovelU;(n) is the queue length of useérat the end of time slot, o;(n) is the number of
job departures during time slat which is specified by a certain scheduling algorithkj(n) is the
number of external stochastic job arrivals during time slotin this thesis, we impose very mild

assumptions on the arrival processes:
Assumption 2.2.1. A;(n) is uniformly bounded by a constant with probability 1 (w)p.1

Ai(n) < AP Vi, n, (2.4)

where A;"** is a positive constant. Furthef;(n) is subject to the Strong Law of Large Numbers
(SLLN), as follows:

N
.1 .
]\}51(1)0 N,;:l Ai(n) = N, wp.1, Vi, (2.5)

where); is the average job arrival rate for user

Notice that the above assumptions are very mild, as theahmrocesses are allowed to be
arbitrarily correlated across different time slots as vaslidifferent users. Thus, the model is very
general, and can be used for many real world CPS applications

The scheduling algorithm has to specify the time series nfrobactions{«;(n)} to stabilize
all queues. We assume that the job departuy(e) is related to the control action variabig(n) as
follows

oi(n) = a;(n) AU;(n — 1), Yi,n. (2.6)

In the abovey A y = min(z,y), so that the queue lengths cannot become negative. We focus o
the throughput performance of the scheduling schemes., Tétability’ in this thesis refers to the
rate stability[74]:

lim M — 0, w.p.1,Vi. 2.7

n—oo N

Note that it is possible to obtain stronger stability resuttuch as positive recurrence of Markov

chains [11, 75, 76], by placing more restricted assumptionthe stochastic arrival processes. This
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will be addressed in future work. Section 3.2 provides amgugtic result on time-average queue
lengths under an augmented max-weight scheduling algeritfinally, notice that the action vari-
ables{a;(n)} are always subject to the physical factor graph constrasatspecified in the last
section, which can be highly random, and vary across tims,stlue to the randomness from the
stochastic local modeiss; (n) }. Similar to the arrival processes, we assume the followary mild
assumptions on the statistics with the local mode variables

Assumption 2.2.2. The local mode process¢s;(n)} satisfy the following:

N
lim > =1 Lisn)=s}

i ~ = ms, W.p.1. (2.8)

wherel,, is the indicator function, i.e.1e; = 1 and1yasg = 0, andn is the average time
fraction that the system mode takes a particular value

In the next section we continue with the discussion by foating) the scheduling cost, and then,

propose the general scheduling problem.

2.3 FORMULATION OF THE SCHEDULING PROBLEM

We assume the following general scheduling cost functicraah time slot:
Fla(n);sn)) = filan; (n); sn; (n)), (2.9)
jeg
where7 can be interpreted as a setaufst factor nodesand/\/j is the set of user nodes associated
with each cost factor nodg Thus, similar to the scheduling constraints, the costtfanacan also
be decomposed in a graph manner. Note that this assumptidregaade without loss of generality,

since even a global cost function can be modeled as a factlar cannected to all user nodes. We
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are now ready to formulate the general cost-optimal sciegiproblem:

SCH-C: min  limsup — N Z ij Oéj\/ ( )

{ai(n),xi(n)} N—oo nel e
SUbjeCt to UZ(TL) = UZ(’I’L — 1) — OZZ(TL) VAN UZ(’I’L — 1) + AZ(’I’L),\V/Z eV,n>1

hi(an, (n), X (n); s (n)) =0,Vk € Fon > 1
xi(n) € O(si(n)),Vie V,n>1
a;i(n) € Ai(si(n))Vie V,n>1

Stability of all queues (2.10)

In words, we are interested in minimizing a long-term aversgheduling cost, subject to the phys-
ical graph constraints in each time slot and the asymptatéug stability constraints. The above
scheduling formulation is very general, which includes ynamll-known applications as special

cases. Further, itis very promising to develop distribwkembrithms for such scheduling problems,
due to the local physical graph specification of the conssaiwhich are represented by factor
nodes.

We next formulate another version of the general schedylimdplem. This corresponds to
the case where certain knowledge about the optimal costdgdiunformation is available. For
example, in power systems, it is typically assumed that thetricity cost can be estimated or

predicted with good accuracy. In such cases, we can formtite scheduling problem as the
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following feasibility problem:

SCH-F: min 0

{ai(n),xi(n)}

N
. 1 .
subject to limsupﬁ E filan;(n);sn;(n) < fj,V5 €T

N—oo n—1

Ui(n) =Ui(n—1) —a;(n) ANU;(n—1) + Aj(n),Yie V,n > 1
his(o, (), X (n); sa, (n)) = 0,k € Fon > 1

xi(n) € O(si(n)),Vie V,n >1

a;i(n) € Ai(si(n)),Vi € V,n > 1

Stability of all queues (2.11)

wherefj is a budget or estimation of the optimal scheduling cost@atsd with cost factor node
4. We will discuss solutions to both of the above schedulirgpfgmsSCH-C andSCH-F in later
chapters. Before that, we first identify some important ipgibns and show how they can be

addressed by the general scheduling framework.

2.4 APPLICATIONS

In this section, we show that the general scheduling framleimaludes many CPS applications
as special cases, such as packet scheduling in wirelessniksfviEV charging in smart grids, and
workload scheduling in data centers. We start with the examppacket scheduling in wireless

networks.

2.4.1 Packet Scheduling in Wireless Networks

We first introduce the packet scheduling problem in wiretestsvorks, and then show that it is

a special case of the general scheduling problem.
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2.4.1.1 Introduction to Packet Scheduling in Wireless Neta/

For packet scheduling in wireless networks, each user septe a link in the network. The
gueue at each link represents the currently back-loggelemaavaiting for transmission. The

gueueing dynamics can be described as follows:
Ui(n) =U;(n — 1) — a;(n) AUi(n — 1) + Ai(n), (2.12)

where A;(n) represents the number of arrived packets during timersl@nd the control action
a;(n) € {0, 1} represents the transmission status of linkuch thaty;(n) = 1 means that link is
transmitting, and that;(n) = 0 means that link remains silent.

We now describe the interference model. For simplicity etdssion, we assume that the wire-
less network is quasi-static, where the network topologyaias constant for packet scheduling. For
typical wireless networks, it is often assumed that a pattkesmission for a link is successful if

its signal-to-interference-plus-noise ratio (SINR) ig@ba certain threshold:

P.
— >0, (2.13)
N; + E jeo Iji

whereF, is the received signal power at liikV; is the noise powetl;; is the received interference
at link ¢ from transmitting linkj, and#; is the SINR threshold for successful packet reception for
link 4, which is determined by the physical layer modulation, ckxd@ and coding specifications.
Note that for the simplicity of notation, we denateas the set of transmitting links, so that o
implies that link; is a transmitting link.

The SINR model can accurately describe the interferencesti@nts in wireless networks.
However, it is very difficult for the design of distributedhs&zluling algorithms, due to its global
nature. For typical wireless networks, in particular wéss ad hoc networks, where a central
scheduling entity often does not exist, it is crucial to degean interference model that allows
design and analysis of distributed scheduling algorithinsthe literature, this is achieved by the

interference graph model [10, 27, 58], which models therfatence as binary. The interference
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(@) (b) ©)

Figure 2.2: (a) A sample wireless network with 4 links, whegeliare nodes are the transmitters,
and round nodes are the receivers. (b) Its graph interfersradel. (c) Its hypergraph interference
model.

graph specifies that the transmission of a particular lirlks fhand only if there is a concurrent
transmission of any neighboring link. For example, conside 4-link wireless network in Fig. 2.2
(a), where an interference graph can be constructed byxémngle, placing a guard zone [50] with
certain radius around the receiver of each link. Two linksrfan edge in the interference graph if
one’s transmitter is in the guard zone associated with therotn such a case, the interference graph
for Fig. 2.2 (a) has only one edge= {1, 2}, as shown in Fig. 2.2 (b). Therefore, a transmission
schedule is valid as long as linksand2 are not transmitting simultaneously.

We next introduce a hypergraph interference model desttilyeour recent work [26]. The
motivation is that the interference graph is a rigid modehjoh over-simplifies the physical in-
terference in typical wireless networks [77, 78], sincedés not take into account tloemulative
effect of interference. That is, the transmission failura ink may occur due to the sum interfer-
ence from concurrent transmitting links, even though thatrdoution from each link is small. For
example, in Fig. 2.2 (a), it is possible that linKails when links{1, 3,4} are scheduled, due to the
sum interference from both linkand link4. In such a case, the interference graph can only guaran-
tee that the transmission at linkis successful when only one of the other two links is trantsngjt
due to its binary nature. On the other hand, if one builds thely conservatively by increasing the
size of the guard zone, such that two additional edde8} and{1, 4} are included (note that both

link 3 and link4 have the same distance to limkn this example), the network capacity is reduced,
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because when link transmits, neither linR nor link 3 is allowed to transmit, even though there is
no collision if only one of them transmits.

Realizing the inaccuracy of the graph model, we proposégipergraphinterference model,
which not only considers the cumulative nature of co-chhimterference in wireless networks, but
also is easy for distributed implementation, due to thellooastruction. The detailed construction
procedure is as follows. The key observation is that, foicalpwireless networks, a major por-
tion of the total interference is contributed by only a fevarigy transmitting links. Thus, we can
approximate the SINR locally with very good accuracy as

b %

R , (2.14)
Ni+3ieo Lo Nit Xjeoi gjersy)
whereL; is the set of ‘local’ links around link:
. , Si
jeL;if ———— < B, (2.15)

Ni+1j;
whereg; is a properly chosen threshold. Based on the above SINR @pabon, we can construct

a hyperedge = {i,41,42,...,0ip_1} If

P
——— 7 <Vt (2.16)
Ni+ ey L
where the links{iq, is, ..., ix_1} are selected only if they are i;, so that the MAC coordination
can be restricted to only local links. This simply impliesthhe links{i,i,i2,...,ix_1} are

not allowed to transmit simultaneously, since linkvill fail due to (2.16). Fig. 2.2 (c) shows
the hypergraph interference model corresponding to thiekdwireless network. Notice the new
hyperedgee = {1, 3,4}, due to the fact that the cumulative interference from liakand4 can
cause linkl to fail. Finally, note that by adjustings; } and the maximum allowed cardinality of
all hyperedges, the interference accuracy can be graduatisoved from the binary interference
graph model (smalb; andmax |e| = 2, where| - | denotes the cardinality) to the accurate SINR

model (larges; andmax |e| = |[V|). We provide quantitative analysis and simulation resoitshe
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accuracy of the hypergraph interference model in Appendix A

2.4.1.2 Scheduling Formulation for Packet Scheduling irel&%s Networks

We first demonstrate that the hypergraph interference naatebe converted to the physical
graph model for the general scheduling problem, as follofst each link-hyperedge pait, )
such that linki € e, we addy¢ to the set of physical variables of linkand a factor node for the

following network coupling:

=> . (2.17)

lee
Thus, x¢ represents the links local copy about the total number of transmitting linkdhie sete,

which can be interpreted as an estimate of the interfereawet for the set of links ir. The feasible
regionQy is as follows:

Of ={xi : 0 < x{ < le] —1}. (2.18)

Thus, one can easily observe that the above factor graphlnsdguivalent to the hypergraph
interference model. Further, the general queueing modg.B) can be naturally applied to the
packet queues in (2.12) for wireless networks, and the gélseheduling cost function in (2.9)
can also be well adapted to model typical scheduling costgrgless networks, such as average
transmission power. Thus, we conclude that the generallstihg problem formulation includes
the packet scheduling in wireless networks as a special dA&ewrite the packet scheduling in

wireless networks as below, for completeness:

min  limsup — filan;(
{ai(m)xi(n N ZZ ’

)} N—ooo n=1jeJ
SUbjECt to UZ(TL) = UZ(TL — 1) — OZZ(TL) AN UZ(TL — 1) + AZ(’I’L),\V/Z eV,n>1
Zal V(i,e) withi € e,;n > 1
lee
0<xi(n) <le|]—1,V(i,e) withi € e,n > 1
a;(n) € {0,1},Vie V,n>1

Stability of all queues (2.19)
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2.4.2 EV Charging in Power Systems

As another important application, we show that the cootduh&V charging problem in power

systems can be included as a special case of the general G&ikeg problem.

2.4.2.1 |Introduction to EV Charging in Power Systems

For the EV charging application, each usee V represents a bus in the power system. We
assume that each bus is either associated with one EV, ot &ssociated with any EV at all. Such
a model is used to represent the residential charging soemdrere the owner of a household either
uses EV for daily commute or does not own any EV. An exampléefstystem model is shown in
Fig. 2.3. In this case, the ‘jobs’ correspond the amount efgnneeded to fully refill the battery of
each EV. For example, for an EV at busith a battery ofl0kWh capacity an@0% state of charge
(SoC), the corresponding energy queue lengttki%h. The dynamics of the EV queue length is as
follows:

Ui(n) =Ui(n—1) — a;(n) ANU;(n — 1) + Ai(n), Vi, n. (2.20)

In above, the control action;(n) can be further expressed as follows:
ai(n) = niPy(n) At (2.21)

wheren); is charging circuit efficiency of the EV at busAt is the length of a time slot, ané (n) is
the active charging power of E¥ It is assumed thak;(n) belongs to a finite set of charging rates,
which we denote a®;. A;(n) is the amount of external ‘energy job’ arrivals during timet s,
due to the energy consumption from driving. Note that for bay without EV, the corresponding
energy queue lengtti;(n) is trivially zero all the time and the control actien(n) is also always
zero.

Given the above queueing model, the goal of the EV chargihgdider is to specify the time
series of charging poweP;(n)}, so that a long-term average charging cost is minimized|ewhi

ensuring that the energy needs of all EV are successfuligfisat Note that it is the general cost
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Figure 2.3: An example power system with EV charging apfibica

function in (2.9) can be well used to model typical averagargimg cost functions, such as the ones
based on electricity prices. Thus, it is now sufficient tovgltioat the physical charging constraints
can be described by in a physical factor graph manner. Theyidgaconstraints are as follows.

Firstly, the charging poweP;(n) for each bus is subject to the charging circuit rating constraint:
P < Py(n) < PPV, (2.22)
Further, the charging process is also constrained by thevaNaaility, so that
Pi(n) =0if a;(n) =0, Vi, (2.23)

wherea;(n) the indicator function that EV is ‘available’ for charging during time slat, i.e.,
a;(n) = 1if the EV is available for charging, and(n) = 0 otherwise. Notice thafa;(n)} is an
external random process, which depends on the stochastdriiedg patterns. Further, the impact
of the EV charging power to the power system states can belptbg the following AC power

flow equations:

P{*(n) + Pi(n Z Vi(n)[Gij cos(8i5(n)) + Bijsin(6;;(n))] (2.24)
JEN;
Q(n) Z Vj(n)[Gijsin(05(n)) — Bij cos(0i;(n))]. (2.25)

JjeEN;
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In above,V;(n) is the voltage magnitude at bust time slotn, and
0ij(n) = 0i(n) — 0;(n) (2.26)

is the voltage phase angle difference between<dbasd j during time slotn. G;; and B;; are
the conductance and susceptance of the transmission liwedse bus and its neighboring busg,
respectively.P"(n) andQ"®'(n) are the net active and reactive power consumption for theg\on

load, as follows:
Pinet(n) — Pibase(n) _ PireneW(n) (2_27)

QI(n) = Q) — QIF"(n), (2.28)

where P*"*Y(n) and Qi*"*(n) correspond to the active and reactive distributed gereratiith
renewable energy sources at hiusespectively. One example is the wind generator in Fig. 2.3
Notice that bothP[*"*"(n) and Q[*"*"(n) are trivially zero if busi has no renewable generation.

Finally, the voltage of each bus in the system has the foligwioltage limits:
| A I ) (2.29)

Thus, if the charging processes of EVs are uncoordinatéslwell possible that the EV charging
at one bus can make the voltage constraint at a remote bumbegolated. On the other hand, if
the charging processes of all EVs are coordinated careftiily very promising that not only the
power system can operate reliably, but also the highly initéent renewable energy sources can be

successfully ‘absorbed’ to refill the EV batteries.

2.4.2.2 Scheduling Formulation for EV Charging

We now show that the above EV charging problem can be incliméide general scheduling
formulation. It is easy to verify that the EV battery dynamia (2.20) is a special case of the

general queueing model. We only need to show that the pHysiostraints can be modeled by a
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factor graph. For each busdefine the local mode variable as
S = (aiv })inet> Q?et>7 (230)

and physical variable as

xi = (Vi, 0). (2.31)

Thus, it is easy to verify that the constraints in (2.22) ab@3) can be easily modeled by the
feasible regiom; € A;(s;). Further, the voltage limit in (2.29) can be modeled by thgiae
x: € O;. Notice that in this case, the regidh does not depend on the mode variagleFinally, we
can associate a physical factor node with each of the AC ptiexerequation in (2.25). Therefore,
we conclude that the EV charging problem can be modeled as@a$gase of the general CPS

scheduling problem. For completeness, we write the EV ¢haugroblem below:

min hmsup—Zng Py, (n); a;, (n), PRE(n), Q37 (n))

{Pi(n).Vi(n).0i(n)} N—soo N 7747
subjectto  U;(n) = U;(n — 1) — (P;(n)n;At) AUi(n — 1) + Aij(n),Vi € V,n

PM®(n) + Pi(n) = Z Vj(n)[Gij cos(8;5(n)) + Bjjsin(6;;(n))], Vi, n
JEN;
QM®Y(n) Z V;(n)[Gijsin(6;5(n)) — Bjj cos(6;5(n))], Vi, n
JEN;

Vvimin § V;(TL) S ‘/imax’v,i’n
Pi(n) =0if a;(n) =0,Yi,n

Stability of all queues (2.32)

where we have writtefl;; = §; — 6; as an abbreviation for notation simplicity.

2.4.3 Workload Scheduling in Data Centers

Finally, we will show that the general scheduling formwatcan include the workload schedul-

ing in data centers as a special case.
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2.4.3.1 Introduction to Workload Scheduling in Data Cester

We focus on the thermal-aware computing resource allatgtioblem within one data center
[40]. In this case, each user corresponds to a server in ecdatar. A uset is associated with a
gueue of computing tasks, where the queue length repretsengsmount of computing tasks to be

processed. The queueing dynamics is as follows:
Ui(n) = Ui(n — 1) — gi(vi(n)) A Ui(n — 1) + Ai(n), Vi,n, (2.33)

wherew;(n) is the processor speed, apd-) is a mapping between the processor speed to the
computing task processing rat&;(n) is the computing task arrival process, which is external and
random. Thus, each uséhas to dynamically adjust the speed of the processtr ensure that the
computing tasks can be successfully finished. We furthamasghaty; belongs to a finite set of
feasible speeds, which we denoteds An example workload scheduling is shown in Fig. 2.4.

A naive solution would be to set(n) = v["** for each servei € V to maximize the processing
speed. However, such control actions is in general infegsitlue to the thermal limit constraints,

as follows. Firstly, the temperature of each processsisubject to the following limit:
Ti(n) < T/ Vi, n, (2.34)

whereT;"* is the maximum allowed operational temperature specifieth&gevice manufacturer.
Thus, the speed of a procesgdnas to be judiciously adjusted to avoid hardware failures raa
liability issues. Secondly, the temperatures of diffenerdcessors are coupled. This is because
the power dissipation of one processor will increase thalltamperature, which will also affect
the temperature at other processors. The relationship @ienheat transfer between different
locations can be derived following the law of energy constown [40]. For example, a linearized
thermal model for such coupling in [40] is as follows:

Ti(n) = TE™(n) + > dijp;(v;(n)), (2.35)
JEN;
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Server 2 Air Conditioner
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Figure 2.4: An example of work load scheduling in data centehere the color of each server
illustrates its temperature.

whereﬂamb(n) is the ambient temperature, which is random, due to the atitichdynamics of the
cooling devices, such as the computer room air conditioB&AC) in Fig. 2.4.{d,; } are the heat
distribution coefficients, and,(-) is the power dissipation function, which is a mapping from th
processor speed to its power dissipation. A commonly adopted power dissipatunction is the

‘cube’ model, wherep; (v;) = ¢;v3 is proportional to the cube of the processor speed [79].

2.4.3.2 Scheduling Formulation for Data Center Workloatdegtuling

We now show that the above workload scheduling problem caindbeded as a special case
of the general scheduling framework. It is easy to see tlaabstract queueing model in Section
2.2 easily applies to the case of computing tasks. Thus,stifficient to show that the physical
constraints can be modeled by a factor graph. Note that fdr aseri, we can define its control
variablea; = v;, local mode variable ag = ﬂamb, and the physical variable as = T;. Thus, itis
easy to see thad; andO; correspond to the feasible set of processor speed and tatagelimits,
respectively. Further, we can associate a factor ihodith each equality in (2.35), which represents

the network coupling between the control actions and theiphl/variables. For completeness, we
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write the data center workload scheduling problem below:

mln lim sup — Z Z fi(on ( amb( )
{vi(n),Ti(n)} N—oo n 1jeg
SubjeCt toU;(n) =U;(n — 1) — gi(v;(n)) ANU;(n — 1) + Ay(n), Vi, n
Ty(n) = TE™(n) + > dij;(v;(n)), Vi, n
JjEN;
T;(n) < T/ Vi,n
vi(n) € A;,Vi,n

Stability of all queues (2.36)

where the scheduling cost function may correspond to theepoansumption.



CHAPTER3

OPTIMAL SCHEDULING IN THE DYNAMIC
REGIME: AUGMENTED MAX-WEIGHT
SCHEDULING

In Chapter 2, we proposed a general abstract schedulingepndbr PhyNets and demonstrated that
it includes CPS applications from diverse research areass chapter tries to solve the schedul-
ing problem optimally using augmented max-weight algonsh which generalize the max-weight
scheduling algorithm in [11, 57] for wireless networks. Jbhapter focuses on the dynamic regime,
where the local mode processgs(n)} are stochastic and vary over time slots. In Chapter 4, we
will focus on the quasi-static regime, where the local madesain constant for the scheduling ap-
plication, and show that a simplex scheduling algorithmlmaapplied with improved performance.
We propose three augmented max-weight algorithms in ttdpteln The first one is Algorithm

3.1.1, which computes a max-weight schedule in each timievitlo virtual cost queues. The second
one is Algorithm 3.1.2, which can be interpreted as a ‘pio-aompare’ implementation of the first
algorithm. The thrid one is Algorithm 3.2.1, which does nss@me knowledge about the optimal
scheduling cost by adopting a Lyapunov optimization apgind80] to compute a schedule in each
time slot that maximizes a queue length weighted departuneisrthe instantaneous scheduling
cost. All algorithms proposed in this chapter are amendtleistributed implementations, due

to the physical factor graph representation of the schegutbnstraints. However, the specific

30
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implementation method will depend on the structure of eaBts @pplication. For example, the
max-weight algorithms in Algorithm 3.1.1 can be implemehie a distributed manner for packet
scheduling in wireless networks using the distributed CS8gorithms [15, 16], which can be
interpreted as applications of Markov Chain Monte-Carlahuds. In power systems, the max-
weight algorithms can be implemented by distributed optipmaver flow algorithms [56], which
can be interpreted as applications of the dual decompnsitiethods. Finally, Algorithm 3.1.2
allows much easier distributed implementation than therdo algorithms, as it only requires the
random generation of a new schedule and comparison agaiét achedule. Such a scheme can
be easily implemented in a distributed manner using averagsensus algorithms.

The organization of this chapter is as follows. In Sectioh ®e propose augmented max-
weight algorithms for the feasibility proble®CH-F in Chapter 2, which assumes an estimate of
the optimal cost or budget information, and proves stabikisults using fluid limits. In Section
3.2 we propose an augmented max-weight algorithm for thamogation problemSCH-C and
proves its optimality using Lyapunov drift analysis. SentB.3 demonstrates the performance of
the augmented max-weight scheme for the important apjaicatf coordinated EV charging in

power systems.

3.1 AUGMENTED MAX-WEIGHT SCHEDULING WITH COST KNOWLEDGE

In this section, we propose max-weight scheduling algoritho solve the feasibility problem
SCH-F. We remind the reader th&CH-F assumes estimation of the optimal scheduling cost or
scheduling budget information, and requires the schedaolgatisfy the asymptotic scheduling cost
bound. The algorithms proposed in this section can be redaad augmentations of the conven-
tional max-weight algorithm [11], in that a novel virtualewe mechanism is introduced to achieve
cost-aware optimal scheduling. In particular, Algorithri.2 is a direct generalization of the max-
weight algorithm in [11], whereas Algorithm 3.1.2 can bearetpd as an amortized version of the

max-weight algorithm, by randomly ‘picking-and-compayirschedules to approximate the max-
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weight schedule over a long time interval, in order to redibgecomputation in each time slot and
achieve distributed implementation. We will prove the plity results using the technique of fluid
limits, to guarantee the sample path based cost optimaldystability with very mild assumptions
on the stochastic dynamics and cost estimation processestait with the model of virtual cost

queues.

3.1.1 Virtual Cost Queue

We associate with each component of the cost funcfigiay;; sx;;) an estimation process

{f;(n)}. The only assumption ofif;(n)} is the following:

N

1 R
*< lim — < .
fj_ngnooNnﬂf() ff+e, wp.l, (3.1)
wheree; is a positive constant, and
fr= hmsup— ij O‘N ); sn; (1)) (3.2)

N—o00
can be interpreted as the contribution of factor nggde) to the optimal cost{aj*vj (n)} is a solution

of the cost-aware optimal scheduling probl&@H-C. For simplicity of notation, define

fr= lim —ij (3.3)

N—oo N
as the estimated average optimal cost. Thus, we requiréhthatcheduling algorithm cannot incur
any asymptotic average cost larger trﬁn‘or the cost factor nodg; (-).

The key in achieving such guarantee is to introduce a vidaat queue for each component of
the cost functionf; (ax;; sn; ), Which we denote a&;(n). The queueing dynamics @f;(n) is as
follows:

®j(n) = ®;j(n —1) = fi(n) A j(n — 1) + fi(an; (n); sa7; (n))- (34)
Fig. 3.1. shows one example virtual queue. The instantansolieduling cost in each time slot

filan; (n); sn;(n)) can be interpreted as the arrival process to the virtualgusbereas the esti-
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filan; () spr (n)) fi(n)

— HO—

Figure 3.1: An example virtual cost queue.

mated scheduling coﬁ(n) corresponds to the instantaneous departure of the virteala Thus,
intuitively, if the virtual cost queue is rate stable, theage arrival rate has to be the same as the
average departure rate, which is at mgsirom the optimal cost, due to (3.1). This will be proved

rigorously by fluid limits later. We next describe the augteelnmax-weight scheduling algorithm.

3.1.2 Augmented Max-Weight Scheduling Algorithms

We first propose a direct augmentation of the max-weightdudiveg algorithm in Algorithm
3.1.1. One important feature of the scheduling algorithitinad it is myopi¢ which computes the
schedules in each time slot only using the queue lengthsioutrent time slot. That is, according
to (3.5), the scheduling algorithm always tries to stabitize job and virtual queues by maximizing
a queue length weighted job departures, penalized by théaViqueue lengths weighted arrivals.
Compared to the conventional max-weight algorithm [11¢ tlew component is the penalization
term induced by the virtual queue lengths, due to the ingatjmn of scheduling cost. Thus, when
the past scheduling decisions incur higher than expectstl the virtual cost queues become large,
which discourages the scheduling algorithm from choosiigdp lsost schedules, and vice versa.
Finally, the trade-off between minimizing queue lengthd acheduling cost can be adjusted by the
constant3, which can be chosen by system specification and historatal d

We next present a ‘pick-and-compare’ version of the augetentax-weight scheduling algo-
rithm in Algorithm 3.1.2, which can be regarded as a germatitin of the algorithm in [11]. In

the algorithm, the functiom(-; n) corresponds to the queue lengths weighted departure, which
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Algorithm 3.1.1 Augmented Max-Weight Scheduling
1: For each time slot, computex(n) by solving the following:

maximizea, ;> Ui(n —Da; — B> ®j(n — 1) f;(an;; sy, (n))

i€y JjeT
subjectto  hi(an;, XN SN (n)) =0,VE € F
Xi € O(si(n)),Vi eV
a; € Ai(si(n)),YieV (3.5)

2: Update queue$lU;(n)} and virtual queue$®;(n)} according to (2.3) and (3.4), respectively.

defined as follows:
ZU (n—1a BZCI) (n — 1) fi(an;; sn; (n)), (3.6)
i€V J€T
and the schedule®?(s) is defined as the last chosen schedule when the system mdde iBhais,
Algorithm 3.1.2 first randomly ‘pick’ a schedule’, and compare it with the'%(s(n)), which is
the latest schedule under the system mgdg. The algorithm then chooses the one with the larger
weight. Notice that such scheme needs to store the ‘old'dsdbsa®9(s(n)), which may require
certain amount of memory. On the other hand, the algorithmb&awell implemented in certain
CPS applications where the total number of system modesa#l,son the system modes remain
constant for the scheduling application.

The above ‘pick-and-compare’ algorithm belongs to thegmatg of the augmented max-weight
scheduling in that it can be regarded as computing the méghtvechedule in an approximately
‘simulated annealing’ fashion [12], so that the schedulesgaadually improved towards the max-
weight solution. Thus, compared to the direct augmentedweight approach in Algorithm 3.1.1,
the ‘pick-and-compare’ Algorithm 3.1.2 can substantiaduce the computation per time slot.
For example, for packet scheduling in wireless networkgo#fithm 3.1.1 corresponds to the max-
weight independent set (MWIS) problem, which is well-knaterbe NP-hard. On the other hand,
Algorithm 3.1.2 has low complexity, since it only requiresaadom independent set generation and

comparison. Further, Algorithm 3.1.2 is easily amendabtedfstributed implementation, such as
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Algorithm 3.1.2 Augmented Max-Weight Scheduling: Pick-and-Compare
1: For each time slot, randomly generate’, such that

P(a/ = a) > ¢ (3.7)

foranya € C(s).

2. if w(a/;n) > w(a®(s(n));n) then

3 aln)=d;

4: a%(s(n)) = o;

5: else

6. a(n) =a(s(n));

7: end if

8: Update queue$U;(n)} and virtual queue$®;(n)} according to (2.3) and (3.4), respectively.

using average consensus for the ‘compare’ phase. This eamatically reduce the coordination

overhead and simplify system design for CPS applications.

3.1.3 Optimality Proof

We next prove the optimality of the above scheduling algani, which is stated in the following

theorem:

Theorem 3.1.1. Assume that the proble®CH-F is feasible with{f*}, and that{ } satisfies

(3.1). The following holds for the augmented max-weighedaling schemes in Algorithm 3.1.1
and Algorithm 3.1.2:

N
timsup - 3 3 f(a; (0): s (n) < 7+ cwpd (3.8)
—00 n—=1jeq

where f* is the optimal scheduling cost f&CH-C, and

€= Z €. (3.9)

jeT
Further, all job queues are rate stable.

The above theorem guarantees the asymptotic optimalityecdtigmented max-weight schedul-
ing algorithm, in the sense that (3.8) holds for any gap 0 on the scheduling cost. Notice that
we assume that the scheduling cost is estimated in an gntinéhe manner, by adopting the novel

virtual queue technique. Thus, we only require thatdtymp hold asymptotically. Such mild as-



3.1 AUGMENTED MAX-WEIGHT SCHEDULING WITH COSTKNOWLEDGE 36

sumption can substantially simplify the design and analyscertain CPS applications, where the
optimal scheduling cost is hard to obtain initially, andréi®y can only be obtained in an online
manner.

We next prove the theorem. For the ease of demonstration,esd to first simplify some

notations and present a compact formulation of the quessisgm.

3.1.3.1 A Reformulation of the Queueing System

For a fixed system mode € S, we denote the set of feasible control actiong€&s. This is a
compact representation of the set of feasible control asfe; } which satisfy the physical factor
graph constraints in (3.5). Dendl&'(n) as a counting process which represents the total number
of time slots that a control action is chosen when the system modesiduring the firstn time

slots. We can rewrite the queueing dynamics in a very confpact as follows:

Ui(n) =Ti(0) = > Y aiT(n) + Ai(n) + Yi(n),Vi € V (3.10)
s€S ael(s)

Oi(n) = 0;(0)+ > Y filan;;sn)TE(n) — Fj(n) + Zj(n),Vj € I (3.11)
SES ael(s)

Y T2(n) =Ti(n),Vs €S (3.12)

a€eC(s)

> Ti(n) =n, (3.13)

SES

TX(n) is non-decreasingis € S, « € C(s), (3.14)

whereF};(n) can be written as follows:

Fi(n) =) fi(7). (3.15)

Yi(n) and Z;(n) are system ‘idling processes’ that prevent the queues frecorhing negative.
Ts(n) is the total number of time slots that the system is in mgdaccording to the definition in

(3.12). Thus, (3.13) follows naturally, since the systers tasbe in one mode during each time slot.
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3.1.3.2 Fluid Limits

The proof is done by the technique of fluid limits, which is agel framework in analyzing
stochastic systems. A brief introduction of fluid limits isAppendix B.1. The queueing system in

the fluid limit is as follows:

Ui(t) =Ui(0) = > Y aiT2(t) + Ai(t) + Yi(t),Vi € V (3.16)
SES ael(s)

P;(t) = ®;(0) + Z Z filan,ssn, ) TE(t) — F(t) + Z;(t),Vi e I (3.17)
s€S ael(s)

T (t) = Ts(t), (3.18)

a€eC(s)

D Ti(t) =t, (3.19)

SES

[(t) > 0,Ys € S, a € C(s). (3.20)

Yi(t) > 0,Z;(t) > 0,F(t) > 0,Vi € V,j € J,t > 0. (3.21)

The new continuous system is essentially the same as cothfmatiee original discrete stochastic
system, except that all processes are m@terministic Thus, the fluid limits allow much easier
analysis than the original stochastic system. Furtherptiveer of fluid limits that, the stability

guarantees in the continuous system can be extended toifjireabsystem, due to the following

lemma [74]:

Lemma 3.1.1. Supposé/;(t) = 0 for anyt > 0 if U;(0) = 0 for any fluid limit. Then, the queue
U;(n) is rate stable in the original stochastic queueing system.

Proof: The proof is in Appendix B.2. [ |
Thus, rate stability for a queue in the original stochasfi&tesn can be guaranteed by showing
that the corresponding fluid queue is always zero if thedhifueue length is zero. We now use this
lemma to prove Theorem 3.1.1. Before that, we need to explentain important properties of the
gueueing system in the fluid limits, and prove several tecitémmas.
We prove that the max-weight property in the original systerwording to Algorithm 3.1.1 and

Algorithm 3.1.2 can be naturally extended to the fluid limits
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Lemma 3.1.2. The following is true for any fluid limit under both Algorith&11.1 and Algorithm

3.1.2: )
T(t) = 0if o ¢ arg max Us(t BZCI) () fi(any;s sa;) (3.22)
a€C(s) i€y JjeJ

foranys € Sanda € C(s).

Proof: The proof is in Appendix B.3. [ |
We next prove the following important lemma, which shows steility result in fluid limits
under the augmented max-weight algorithm.
Lemma 3.1.3. For any fluid limit, if U;(0) = 0 and®;(0) = 0 forall i € V andj € J, we have
U;(t) = 0and®;(t) = 0 for anyt > 0 under the augmented max-weight scheduling algorithm.
Proof: The proof is in Appendix B.4. [ |
We are now ready to prove the main theorem of this section.
Proof of Theorem 3.1.1The rate stability for job queues are guaranteed by Lemma arid
Lemma 3.1.3. Thus, we only need to prove cost optimality ltesiAssume that the claim is not
true. Then, we can find a subsequekieg} such that

,gggor—Zng an; (1);sn; (1)) > f* + e (3.23)

=157

Sincee = . 7 €;, there must exisf € 7, a positive constant’ > 0 and a subsequende,, },

such that

Tnk

lim —Zf] (an; (T); 805 (7)) = fF+ e+ €. (3.24)

k—ro0 T, p—

Now, we can also find a further convergent subsequence, vdaiaterges to a fluid limit. In the

limit, we have
(1) > @5(0)+ ff + e+ € — Fi(1) (3.25)
= B0)+ f7+e+€—fF (3.26)
> ®,(0)+ ¢ (3.27)
> €, (3.28)
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which contradicts Lemma 3.1.3. Thus, we conclude that tsemgatimality holds and therefore the

theorem holds. [ |

3.2 AUGMENTED MAX-WEIGHT SCHEDULING WITHOUT COST KNOWLEDGE

In this section, we solve the optimization probl&@H-C. We remind the reader th&CH-C
does not require knowledge of the optimal scheduling cbstsequires the scheduling algorithm to
achieve the optimal scheduling cost asymptotically. #6H-C, we will propose another version of
the augmented max-weight scheduling algorithm, which isvated by the Lyapunov optimization
framework in [80] in the context of communication network§e will generalize the algorithm to

the broader area of CPS, and prove optimality results.

3.2.1 Augmented Max-Weight Scheduling Algorithm

The algorithm is shown in Algorithm 3.2.1. Compared to Algan 3.1.1, a major difference
is that the virtual cost queues are replaced by a constaigg sre do not assume knowledge about
the optimal scheduling cost. Thus, the scheduling algorith (3.29) always tries to achieve a
tradeoff between the queue length weighted job departune$he instantaneous scheduling cost in
each time slot. Further, in order to improve the delay pentoice, a ‘place holdet); is introduced
for each uset. In below, we will show that this algorithm still achievestiopal scheduling cost
asymptotically.

The performance of the above scheduling algorithm will beygared against the following
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Algorithm 3.2.1 Augmented Max-Weight Scheduling without Cost Knowledge
1: For each time slot, computex(n) by solving the following optimization:

maximizea, ;> (Ui(n—1) +&)as — B filan, (n)isy; (n)

ey Jjeg
subjectto  hg(an,, XN SN, (n)) =0,Vk € F
a; € Ai(si(n)),YieV
Xi € Oi(si(n)),Vi eV (3.29)

where{(;} andg are properly chosen positive constants.
2: Update queue¥ (n) according to (2.3).

N-slot look-ahead scheduling problem:

N
SCH-N: min % Z Z filan; (n);sa;(n)) (3.30)

{ai(n),xi(n)} o
subjectto  hi(an; (1), xaq (n);sa, (n) =0,Vk,1 <n <N (3.32)

a; € Ai(si(n))VieV,1<n<N (3.32)

Xi € Oi(si(n)),Vie V,1<n<N (3.33)

1 < 1<

~ > ai(n) > ~ > Ai(n) +e, Vi€V (3.34)
n=1 =

Essentially,SCH-N is a restriction ofSCH-C to the finite time interval0, N], where the stability
constraints on the queues are replaced by (3.34), whichresgthat the average departure rate
should be larger than the average arrival rate.by

Now, we assume that time is divided into frames, where eahdrhasV time slots. Denote
the optimal scheduling cost for the above probl8@H-N during them-th frame asf};,. We have

the following theorem:

Theorem 3.2.1. Algorithm 3.2.1 achieves the following asymptotic aversgfgeduling cost:
li
ﬁj&pM ;gfg a; (n); sa; (n))

M

By + BoN i

< lim Sup E e+ 1 BeN 4 ey "G . (3.35)
M—s00 B
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Further, the queue lengths can be bounded as follows:

1 MN
" ATy 2 2,V
n=1 i€y

ax

M
By + ByN (. 1 am
< — = 4+ 1 — * 1) 3.36
< S Slmsup 2 D )G (3.36)

€
M — o0 m—1 ey

whereB; and B are sufficiently large constants.

The above theorem shows that we can achieve the optimaldatgdost asymptotically with-
out prior knowledge about its value. Further, it demonesain interesting)(1/53) versusO(5)
tradeoff between the scheduling cost and average queuthJénghe sense that we can achieve a
scheduling cost gap on the order@©@f1//3), according to (3.35), while incurring an upper bound
on the average queue length on the orde®¢f), as shown in (3.36). Such tradeoff is also shown
in [80] in the context of communication networks. Intuitiyethis is due to the fact that Algorithm
3.2.1 always tries to achieve a balance between minimiziagjieue lengths and minimizing the
instantaneous scheduling cost, where the weight is spadifies, as shown in (3.29). Thus, large
B implies higher weight on the scheduling cost and larger guength, and vice versa. In CPS
applications has to be chosen carefully based on the desired schedushg@dormance and the
tolerance on the delay.

It is important to notice that the procesdes(n)} and{A;(n)} can be arbitrary, which include
other well-known models, such as Markov processes as aadpasie. In order to emphasize such

result, we propose the following corollary:

Corollary 3.2.1. Let{&;(n)} be any sequence of control actions such that the prol8&H-N is
feasible for anyV-slot frame. The following scheduling cost result holds :

MN MN
. 1 . 1 -
limsup = > 3 Syl (n)ssag () < limsup 7= 37 3 £ () ()
n=1jeJ n=1jeJ
B BoN ) max .
Lot +ﬁzzev oG (3.37)

where{a;(n)} are the control actions under Algorithm 3.2.1. Further, fbbowing average queue
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length result also holds:

Bl—i-BzN ahax
limsup —— g g Ui(n) < ———— E (—— —-1)G
M—o0 M n=1iey iev €
B
+ —1i 3.38
Stimsup o n} jlgjj il (n)ssn (n). - (3:38)

whereB; and B are sufficiently large constants.

Thus, compared to an arbitrary feasible sequence of coattibns{a;(n)}, which can be
computed by assuming certain models such as Markov pra;ebsecontrol actions specified by
Algorithm 3.2.1 achieve an arbitrarily close average salieg cost, while ensuring a guaranteed

upper bound on average queue lengths, wher®th¢ ) versusO(3) cost-delay tradeoff is spec-

ified by the parametes.

3.2.2 Optimality Proof

We use the Lyapunov drift analysis method by Neely [80] tovprthe optimality. The key to
the proof lies in analyzing the drift of a Lyapunov functidutn), which is defined as follows:

L(n) = % S Uin) + 62+ 8303 filaw, () sx (). (3.39)

€V jeJ =1

Define theT-slot drift of the Lyapunov function starting from time slotas
ArL(n) = L(n+T) — L(n). (3.40)
We first provide a bound on the drift @f(n) under Algorithm 3.2.1 over a single frame.

Lemma 3.2.1. Under Algorithm 3.2.1, théV-slot drift of L(n) for each framen can be bounded
as

AnL(nm,) _—GZZ i(nm +7 — 1)+ G) + BN fX +NZamaX<Z+NBl+NQBz,
ey =1 i€y

wheren,,, = (m — 1)N and By, B, are sufficiently large constants.

Proof: The proof is in Appendix B.5. [ |
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We next extend the above analysis from one frame to multrplaés:

Lemma 3.2.2. The drift of L(n) over the first\ frames satisfies the following:

AMNL < —Ezz 7’—1 +Cz)
T=1 i€V
M

+BN Y fr+ MNY o"™¢+ MNBy + MN?B,.  (3.41)
m=1 %

Proof: This can be obtained directly by summing the bound in LemrBd 2wverM consecu-

tive frames. [ |
We are now ready to prove Theorem 3.2.1.
Proof: According to the bound in Lemma 3.2.2, the average cost ddrames under Algo-

rithm 3.2.1 can be bounded as follows:

1 MN
MN Z > filan (1) s (1) (3.42)
jeJ =1

(a)
< W—NL(MN) (3.43)
- L(O) + AMNL(O)
- BMN (3.44)
®) L) | Bi+ BaN+> 0y amaxgz
: BMN 3 - Z S (3.45)

where (a) is due to the definition in (3.39), an@) is because of Lemma 3.2.2. Thus, the cost

optimality holds after takind/ — oc.

We now to prove the queue length bound. From (3.41) one cally sae that

MN
LY Swe o
=1 1€V
L(0) — L(MN B+ NB
< (O)EM]S[ ) 4 MZer Zama"g S1HENB 3 46)

%

from which (3.36) follows from above by takint/ — oo. ]
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3.3 APPLICATION: COORDINATED CHARGING OF ELECTRIC VEHICLES

In this section, we apply the max-weight scheduling algponi to the important case of coordi-
nated EV charging in smart grids. We first focus on the thrpuglperformance of the max-weight
scheduling algorithm in CPS by assuming constant cost, had shat the max-weight schedul-
ing algorithm can achieve high EV penetration level in lasgale power systems, while ensuring
that the power system can operate in a secure and reliablaemamhen, we consider the cost-
aware scheduling and show that the max-weight algorithrmreti®n 3.1 can achieve near-optimal

minimum variance total load profile for overnight EV chagiapplication.

3.3.1 Throughput Results

We next investigate the throughput performance of the meight algorithm, and show that it

can achieve high EV penetration in large-scale power syst&ve start with the simulation setup.

3.3.1.1 Simulation Setup

We simulate a residential EV charging scenario with thedsieshIEEE 13-bus test feeder [81],
which corresponds to a real-world distribution system. Tdmmlogy of the test feeder is shown in
Fig. 3.2, where the colored (black and gray) nodes reprekertiuses associated with residential
loads. In order to demonstrate the potential of EVs in irgtgg intermittent renewable energy
sources, it is assumed that a wind generator is installedsa6B1, which is the gray node in Fig.
3.2. The wind generation pattern for the simulation pergdhown in Fig. 3.3, which is obtained
from a real-world data trace in a Pennsylvania wind farm [8&}e simulation considers an over-
night charging scenario from 7pm to 5am in the next mornihg assumed that all EVs are always
plugged-in during the whole simulation period, and therefire always available for charging. The
non-EV residential load profile is specified by the real-@atata trace from the SCE website [83].
The total non-EV load profile is shown in Fig. 3.4, where wirghgration at bus 671 is treated

as negative load. The load at each bus is obtained by scakn§€E load profile proportionally
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Figure 3.2: The topology of the standard IEEE 13-bus testdee the case study. The colored
nodes are associated with residential loads. A wind gemeisaplaced in the system at bus 671.
according to the case file description [81].

The EVs are assigned to the buses associated with resideatis, as shown by the colored
nodes in Fig. 3.2. The number of EVs associated with eachsbpsoportional to the number of
households for each bus, which is obtained according towbeage daily load specification in the
case file of the test feeder. For this simulation, the totatimer of EVs in the system is 2185, which
corresponds to the 50% penetration scenario. It is assunaédhie maximum charging power of
each EV charger is 1.92kW, which corresponds to the stari0d, 16A charger. For the charging
simulation, it is assumed that the initial energy queuetlenfpr the overnight charging period for
all EV batteries are 8.8 kWh. This is according to the nafiGuavey of 25 miles average daily
commute distance, and the EV consumption rate of 34 kWh/1iG1§84]. A summary of the EV

specification for this simulation is in Table 3.1.

3.3.1.2 Simulation Results

For this simulation, the optimal AC power flow in each timetstocomputed by the technique
of sequential convex programming [85], which works as fe#lo At each step, the algorithm tries

to obtain a local convex approximation of the original namex optimization problem, and then
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Figure 3.3: The wind generation output profile in the casdystu

Table 3.1: Vehicle Facts
Parameter Value

Battery Capacity 16 kWh
Energy Usage per 100 miles 34 kWh
Charging Rate (120V, 16 A) 1.92 kw
Average Daily Commute Distance 25 miles
Daily Consumption 8.75 kWh
Charging Efficiency 0.90

Wind Generation

251

0 . | . . . . . . . ,
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Time (Hour)

tries to solve the approximated convex problem in a locabregnd obtain the EV charging rates.

The algorithm then solves the AC power flow with the updatedcBarging rates, and continues to

approximate the nonconvex power flow at the new operatingtpand search for locally optimal

solutions. The algorithm will stop if certain convergencietion is satisfied. For this simulation,

the AC power flow is solved using the OpenDSS software. Tha tmimputation time is around

10% seconds on a workstation with 64-bit Windows operatingesystunning with 2.26GHz Intel

Duo processor and 8GB RAM.

e Total Load Profile

The resulting system load profiles are shown in Fig. 3.4, w/liee dotted line illustrates the

non-EV load minus the wind generation, and the solid linegesponds to the total EV load.
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Figure 3.4: The load profiles according to the max-weight Bsrging algorithm.

Note that the dotted load profile is no longer smooth, due ¢oirtiegration of the highly
intermittent wind generation. From the figure, one can tjealrserve that the EV charging
is ‘smart’, in the sense that the total EV load profile changey adaptively to both the
wind generation and non-EV load profiles. For example, duttie peak hour (around 8pm),
when the non-EV load is very large, the EV load is quite sniralgrder to guarantee that the
physical limits are not violated, so that the power systemagzerate in a secure and reliable
manner. Further, one can easily observe a ‘symmetry’ betweenet load profile and the EV
load profile, in particular during the mid-night, in that artiease in the dotted load profile
usually results in a decrease in the EV load profile, and vizeas In particular, as the dotted
load suddenly drops around 2am, due to the sudden incredke imind power generation
output, one can clearly identify a very similar increasehia total EV charging profile. This
immediately implies that the max-weight charging algaritban successfully integrate the
renewable wind generation by absorbing its intermitteéyally, one can observe the sharp
decrease in the total EV load in the morning of the next days Hdicates that most EVs are

successfully refilled.
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Figure 3.5: The profiles of the minimum three phase voltageke case study.

¢ \oltage Profile

The minimum voltage profiles for each phase in the case studsteown in Fig. 3.5. One can

clearly observe that, phase C is the bottle neck of the systerihhas the smallest magnitude
among all three phases. Note that, interestingly, evereif/tiitages in the other two phases
are far away from the limit (0.95 per unit in this case study® corresponding EV loads are
still not allowed to charge more, due to the coupling betwisenphases. Further, note that
the minimum voltage in the entire power system is always alibe physical limit. Thus,

we conclude that the max-weight charging algorithm can esgfally control the charging
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Figure 3.6: The profile of the maximum energy queue lengthedch phase in the case study.

rates of all EVs in the power system to maintain reliable afien of the power system. This
also partially explains the symmetry between the dotted [wafile and the EV load profile
in Fig. 3.4, in that such constraint essentially places greupound on the total load in the
power system, so that when the net load decreases due to airat generation, the EV load
will increase, and vice versa. Finally, one can observerbeease in the minimum voltage

near the end of the overnight charging period. This is bexawmny EVs finish charging.

e Queue Length Results

In order to demonstrate the performance of the max-weigdnigihg in refilling the EV batter-
ies, we plot the profiles of the maximum energy queue lengthedch phase in Fig. 3.6. The
conclusion is that, for all three phases, the max-weightgthg algorithm can successfully
refill all EV batteries during the overnight charging perideurther, the figure also confirms
the coupling of the charging processes between the thremghahich is suggested in Fig.
3.5, in that even if the voltage limit in the phase A and B areffam the boundary, the EV

loads are not allowed to charge further during the chargemipg, due to their coupling ef-
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fect to the voltage in phase C, which is the bottleneck of teigvark. Thus, the maximum

energy queue lengths in all three phases behave very dymiidth the EV loads in phase

B finish relatively earlier, due to the fact that it is the leegnstrained in voltage, according
to Fig. 3.5. Similarly, the EV loads in phase A also finish iearthan phase C. Further, a
more careful inspection reveals that at the beginning o€ttzgging period, the charging rate
is relatively low, in order to avoid the power system congest The charging rate becomes
much higher near the end of the charging period. This is sgaduring such period, the

charging processes are essentially only constrained watimg of the EV charging circuits.

3.3.2 Scheduling Cost Results

We next investigate the performance on scheduling cost eratlgmented max-weight EV
charging. Since the EV charging problem is a highly non-eareptimization problem, it is diffi-
cult to compute the optimal cost in general. Thus, in ordatemonstrate the cost optimality, we
assume that the physical voltage constraints can alwayatlsfied, and investigate the minimum
variance EV charging problem for the overnight chargingnace. We assume that the cost for
each time slot is as follows:

FUPmY: PP} = (3 (Biln) + PPv(m))) (3.47)
i€V
where P;(n) and P""EV(n) are the EV charging power and non-EV active load atusspec-
tively. Thus, the optimal charging profile should be as flapassible. We next describe the simu-

lation setup.

3.3.2.1 Simulation Setup

The simulation setup is essentially the same as the one ilashsubsection. We simulate the
minimum variance charging in the standard IEEE 37-bus tsidr [81]. In this case, the total

number of vehicles is 3402 for the 50% EV penetration scen&dr comparison purpose, there are
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Figure 3.7: Base load profile used in the simulation with |IEIzEbus system.

three types of smart charging algorithms considered inithalation:

1. A static optimal minimum variance EV charging algorithwith perfect knowledge of the

day-ahead values of all random processes.

2. A static suboptimal charging algorithm, which solves thimimum variance EV charging

using imperfect forecast of day-ahead load curve as showigir3.7.

3. Augmented max-weight EV charging in Algorithm 3.2.1.

The charging algorithms are simulated at EV penetratioal$esf 30% and 50%. For the 30%
penetration case; = 0.0205, and¢; = 577 for each vehicle, whereas for the 50% penetration case,
B = 0.0161, and(; = 534 for each vehicle. The maximum total computation time of thdine
algorithm is 0.58 second for a 24-hour simulation scenariuje 3900 seconds for the static op-
timizations. Note the dramatic computation performancgrovement for the case of max-weight
charging. This is due to the fact that each charging scheédutemputed using current system
information, which have much smaller dimension than thaltstate processes. In practice, the

time scale of each time slot is on the order of minutes. Thescbomputation and communication
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Figure 3.8: The total system load profile with 30% EV pendairain the IEEE 37-bus system.

requirement of the max-weight charging algorithm can béyesatisfied. The results of total loads

are shown in Fig. 3.8 and Fig. 3.9, respectively. We havedhewing remarks.

e Valley Filling

One can easily observe that the minimum load variance al@can achieve #otally flat
load curve during the overnight charging period. Thus, camg to other smart charging
formulations, in particular, the ones based on electripifige, the minimum load variance
formulation can avoid an additional ‘midnight peak’, whiéh the extreme case, may cause

similar grid congestion issues as uncoordinated charging.

e Cost Optimality

The proposed on-line decentralized EV charging achievasstlthe same total load profile as
the static optimaleven though the former does not need to know the drivingrpadted loads
in advance This further verifies the theoretical result in Theorem BPhus, we can achieve

the same performance as the static optimal, with much snwhaputational overhead.
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Figure 3.9: The total system load profile with 50% EV pendairain the IEEE 37-bus system.

e Robustness Results

The day-ahead prediction based algorithms are vulneraliteetforecast errors. This can be
clearly observed from Fig. 3.8 and Fig. 3.9, where the faebased solutions cannot achieve
a flat profile in the presence of the load forecast error. Ity fae allowed these algorithms to
know the exact driving patterns in advance, which is clearlyealistic. On the other hand,
the optimal decentralized charging algorithm is not affddby such forecast errors, since it

is an online algorithm, which does not rely on forecasts.



CHAPTER4

OPTIMAL SCHEDULING IN THE QUASI-STATIC
REGIME: SIMPLEX SCHEDULING

Chapter 3 discussed applications of the augmented maxhtvedtpeduling algorithms in dynamic
systems. This chapter considers the scheduling problemevthe PhyNet operates in tlggiasi-
staticregime. That is, the local modes in the CPS remain constattidédime scale of the schedul-
ing application. As one example, the data packets in a véisedensor network are typically trans-
mitted assuming a very slowly changing network topologysuoh systems, it is possible to develop
efficient scheduling algorithms by utilizing the quasitistgroperty of the system. In this chapter,
we propose a simplex algorithm based optimal schedulingreehapplicable in the quasi-static
regime, and prove its throughput optimality.

The main algorithm in this chapter is Algorithm 4.3.2, whjgtoposes an optimal online sim-
plex scheduling scheme. The algorithm has two compondmss¢heduling component and the
column generation component. The scheduling componergtado‘max-weight’ form, in that
a max-weight schedule is selected from a subset of ‘basi@duides. We will show that this is
fundamentally different from the max-weight algorithmsQhapter 3, since the set of basic sched-
ules has much smaller cardinality (e.§|V|)) than the set of all schedules (e.*!). Thus, the
scheduling in Algorithm 4.3.2 is promising for distributedplementation, using average consensus

techniques. Notice that this may incur higher complexigntthe ‘pick-and-compare’ scheme in Al-

54



4.1 SMPLEX SCHEDULING ALGORITHM: IDEALIZED VERSION 55

gorithm 3.1.2, since consensus has to be reached on thetaefdll basic schedules, instead of the
single newly generated schedule. Such increase in comphtiieves significant improvement on
the steady-state delay, since Algorithm 4.3.2 will behaxelarly to the conventional max-weight
algorithm if the correct basic schedules are given. Finalgywill show that the column generation
component in Algorithm 4.3.2 is also a max-weight problerhjol can be similarly implemented
in a distributed manner using the techniques discussedapt€h3.

We will apply simplex scheduling to packet scheduling inedéss networks. We will demon-
strate that, by simulation results, the simplex algoritham achieve dramatic steady-state delay
improvement over the state-of-art CSMA based distributdaduling algorithms [15, 16]. Further,
we will also show that the simplex algorithm for packet salliedy in wireless networks can be
implemented in a distributed manner, using average conseard] distributed CSMA techniques.

The rest of this chapter is organized as follows. In Sectidnnve propose an idealized simplex
scheduling algorithm, and in Section 4.2 we demonstrateitiee scheduling algorithm and prove
its optimality. Section 4.3 applies the simplex schedufitgprithm to packet scheduling in wireless

networks, and show that it can be implemented in a distribotanner.

4.1 S9MPLEX SCHEDULING ALGORITHM: IDEALIZED VERSION

To motivate the development of the simplex-based scheglulive need to reformulate the

scheduling problem and system model.

4.1.1 A Reformulation of the Scheduling Problem

In this chapter, we are interested in solving the feasybilirsionSCH-F of the general schedul-
ing problem formulations in Chapter 2. Since the system thénquasi-static regime, the system
mode is constant. Thus, we can enumerate all feasible sigsenfua compact form as a matrix,
which we denote asgl, where each column € A represents a vector of feasible control actions.

Now, the general abstract scheduling problem can be idehliy the following static linear pro-
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gramming problem:

SCH-L: minimizeg, ., ~ (4.2)
subjectto Az = (1 —9)\ 4.2)

x>0 (4.3)

1Tz =1 (4.4)

wherez is the scheduling variable, such that represents the asymptotic time fraction that the
control action vector is chosen by the scheduler. Thus, the vectoaturally lives in the simplex
as described in (4.3) and (4.4). (4.2) is essentially the stbility constraint, where the LHS rep-
resents the average job departure rates, and the RHS nefsrése{1 — ) discounted arrival rates,
so that rate stability is achieved when the relaxation gap non-positive. Given the above lin-
ear programming formulation, we next propose the simplé&edaling algorithm for the idealized
problemSCH-L. We then prove its throughput optimality in the presencetaglsgastic job arrivals

in the next section.

4.1.2 Idealized Simplex Scheduling Algorithm

Since the optimizatiorSCH-L is a linear programming problem, we can solve it using the
celebrated simplex algorithm [86]. The simplex based salmgl algorithm is shown in Algorithm
4.1.1. In order to fully understand the algorithm, we needéris introduce the concept of vertex
in the context of the scheduling problem. (Note: ‘vertexlimear programming terminology is
different from vertex in graph terminology.) According twetrate stability equality constraints in
(4.2), we define a vertex as a péir’, v)”, wherey is a|V| x 1 sub-vector ofz, which is associated
with a || x |V| sub-matrix ofA. Following the terminology in linear programming, we dentie
sub-matrix as basic matri®. We assume that the problemnien-degenerateso that the matrix3

is always invertible throughout the analysis in this chapléus, the vertex can be obtained from
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Algorithm 4.1.1 Static Simplex Scheduling
1: Initialization: Initialize the scheduling variables as the following:

B = diaga™, ag®™, ... ,aﬁﬁx) (4.5)
i [ agmex ,
Y = —Zm, 1 S 1 S ‘V‘ (46)
Zjev )‘j/%
1
"}/ — 1 - < 1\ / _max (47)
Zjev )‘j/%’
2. if v > 0 then
3 whiley > 0do
4 Column Generation: Compute a new column of such that
Qpew = arg  max 1B o (4.8)
« is a column ofA
5: Scheduling Compute the new ‘vertexjnew and the throughput gafmew by solving the

following optimization problem:

minimizey, . .y Y
subjectto By + anewz = (1 —7)A

y=0,220
1Ty+2=1 (4.9)
6: Update: Denotea’ as the column iB whose coefficient innew is zero. Replace’ with

anew, relabel the variables iphew, and update optimization variables as follows:

Y = Ynew (4.10)
Y = Tnew (4.11)
7. end while
8 return (B,y)
9: end if
the basis matrix3 by solving the following:
B A Y A
= (4.12)
17 o) \v 1

Based on the above notion of a vertex, the static simplexdsdimg algorithm works as follows. It

starts from a feasible vertex, as shown in (4.6) and (4.7)¢chvborresponds to the basis matfx
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in (4.5). Then, it generates a new moving directigR,, by solving (4.8), and obtain the new basic
matrix and corresponding coefficients by solving (4.9). &@beve iteration continues untjl < 0,

in which case the arrival rate can be fully stabilized by thsi® matrixB. DenoteR* as the convex
hull of the columns in the matrid. This is the largest stability region achievable by any datiag

algorithm [11]. We now prove that Algorithm 4.1.1 achiev@s in the following theorem.

Theorem 4.1.1.1f A € R*, Algorithm 4.1.1 will return a solutiorf B, y) such that the following
holds:
By = A\ (4.13)

We first prove some technical lemmas. Firstly, we will shoat ttheaney returned in column

generation step in (4.8) is a cost-decreasing direction.

Lemma 4.1.1. After each iteration in Algorithm 4.1.1, the change to thieextuling cost functiory
is non-positive, and is strictly negativenif> 0.

Proof: The proof is in Appendix C.1. [ |
Given the new direction specified lyen, according to the standard simplex algorithm, the
coefficients should move along the direction as specifie@#fy,, 1), until it reaches a new vertex,
where some coordinate associated with one column of theadis lnatrixB becomes zero for the
first time. Then, Algorithm 4.1.1 replaces the column with,,, and relabel the variables. We next

prove the existence of such a column in Algorithm 4.1.1.

Lemma 4.1.2. For the solution(y.le,, 2news Jnew)” t0 the problem (4.9), we havge, > 0, and
there is one column i whose corresponding coefficientyjpew is zero.

Proof: The proof is in Appendix C.2. [ |
We are now ready to prove the theorem.
Proof of Theorem 4.1.1f ~ in (4.7) is non-positive, we have
> N el <, (4.14)
jeV
which implies that

= A, (4.15)
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from which the claim holds. Thus, we only need to considerdhge withy > 0. In this case,
Lemma 4.1.1 shows that each iteration moves along a costa@ng direction. This, combined
with the resultin Lemma 4.1.2, implies that the algorithnvemto a new vertex after each iteration,
which has a lower scheduling cost. Thus, the claim followmsesithe objective function is feasible,
due to the assumption thate R* and that there are a finite number of vertices for the feasible
region. [ |
Thus, we conclude that Algorithm 4.1.1 is optimal. Noticattlone interesting property of
the algorithm is that the scheduling phase is only resttittea sparseset of schedules, which
is represented by the basic matfx Such restriction can substantially simplify the compotat
and coordination overhead in each time slot, in particuengared to the augmented max-weight

scheduling schemes in Chapter 3.

4.2 39MPLEX SCHEDULING ALGORITHM: ONLINE VERSION

We have introduced the idealized simplex scheduling algorand proved its optimality in the
last subsection. However, the algorithm design and arsailysiill incomplete, due to the following.
Firstly, the scheduling variables in Algorithm 4.1.1 ardatis ‘time fraction’ result, which do not
specify how the schedules are selected for each time slaois, Bven if one finds the optimal basic
scheduling variableg*, it is highly nontrivial to implement it efficiently in eacinte slot. Secondly,
both algorithm design and optimality proof assume perfexiwkedge of arrival rates. It is still
unclear whether stability can be achieved by the simplerrdtgn under very stochastic arrival
processes with uncertain arrival rates. In this sectioncerginue with the simplex scheduling by

proposing an online version and prove its optimality.

4.2.1 Scheduling Algorithm

For the online scheduling algorithm, we assume that timauistjpned into frames, where each

frame has lengti’. At the beginning of each framk we estimate the arrival rates, as follows:
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Estimate the arrival rates as follows:

Ai((—1)T)

i) = eof 01T 1,Vi eV, (4.16)

where[-] is the standard ceiling function, amg is the quantization step size. Thus, the estimated
arrival rateS\Z-(l) is the quantized empirical arrival time-average arrivaéseover the first — 1
frames, where the accuracy is specifiedebyNote that we always assume the ‘rounding up’ op-
eration, in order to guarantee stability. The estimatetyadrrate \ is then used by the scheduling
algorithm throughout the entire frame.

The scheduling algorithm within each frame is shown in Aldon 4.2.1. Note that the second
step essentially refreshes the initial vertex in case tigie change in the arrival rates, so that
the basic setd3 is always feasible. Further, compared to the static versioflgorithm 4.1.1,
there are a few major changes. Firstly, the ‘schedulingd steAlgorithm 4.1.1 is replaced with
the ‘max-weight scheduling’ in (4.21), where the paraméter) is the dual variable for each rate
stability constraint in (4.2). Secondly, the ‘column geatem’ step in Algorithm 4.1.1 is replaced
by another max-weight algorithm in (4.24). Notice the intpat difference between the two ‘max-
weight’ algorithms. The first one in (4.21) searches over ahmamaller set, namely the columns of
B, whereas the second one search over the entire set of feashdules, the columns df The
number of columns iB can be much smaller than that ih For example, in wireless networks,
the number of columns ial can be exponential ifV|. Thus, the scheduling step in the online
version is much easier to solve than the conventional maghwelgorithm [11]. Secondly, the

online algorithm uses estimated arrival rateas shown in (4.16).

4.2.2 Stability Proof

We start the stability proof of the online simplex schedylalgorithm by showing that these
changes are equivalent to the static versions in Algorithinl4 We begin with the following tech-

nical lemma.
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Algorithm 4.2.1 Online Simplex Scheduling

1: Estimate arrival raté (1) with (4.16).
2. If X\i(1) = \i(1—1) for all i € V, the basis matri¥3 and scheduling variablg$, ) remain the
same. Otherwise, initialize them as the following:

B = diaga™, ag®™, ... sap) (4.17)

v =0 (4.18)

0 = 0 (4.19)
tnew = 0 (4.20)

Bforn=(1-1)T+1—1Tdo
4.  Max-Weight Scheduling Choosex(n) such that

a(n) € arg max G(n)Toz (4.21)
« is a column ofB or anew

5. Parameter Update The parameters are updated as follows:

On) = O(n—1)+e((1—~(n - 1))A—a(n)) (4.22)
v(n) = y(n—1)+€e@n—-1)TA-1) (4.23)

wheree is a standard small constant step size.
. if (6(n),~v(n)) converges ang > 0 then
7 Replace the column i8 with the minimum weight byynew, and relabel coefficients.
Generate a new columimey by solving the following:

Qnew € arg ~ max o(n)Ta (4.24)
« is a column ofA

9: endif
10: end for

Lemma 4.2.1. We assume that the estimated arrival ra{es} is fixed, and that both the basic
schedulesB and ayey are fixed. Then(f(n),~v(n)) will converge to the optimal primal and dual
solutions for the optimization in (4.9), respectively.

Proof: The proof is in Appendix C.3. [ |
We continue to show that the second ‘max-weight’ algoritiinfdi.24) is equivalent to the col-

umn generation step in (4.8) for the static optimization.

Lemma 4.2.2. The new columm,e, returned by the max-weight algorithm in (4.24) also solves
the problem in (4.8).

Proof: The proof is in Appendix C.4. [ |
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In the next lemma, we prove the result on average departtes irasteady states.

Lemma 4.2.3. Assume that the estimated arrival ratg}; } is fixed at the quantized value of the
true arrival rates, and that the throughput gap associateththe basic scheduleB and anew are
non-positive. The following is true:

Tn(t()+6) Tn(t()+5)

. 5 1 .
Tim {(1 - T D Ca) PV T Y aim}=0vieV, (4.25)
T:Tn(t0—5) T:Tn(t0—5)
for anyty > 0andd > 0.
Proof: The proof is in Appendix C.5. [ |

We are now ready to prove the throughput optimality of thepdia scheduling algorithm.

Theorem 4.2.1. Assume that the arrival rateé € R*. The network is rate stable under the online
simplex scheduling algorithm in Algorithm 4.2.1.

Proof: Consider any fluid limit, and the following Lyapunov funatio
1 _
L(t) = 5 > _(Ui(t)*. (4.26)
iV
Letty > 0 be given, we now show that
L(to) = 3" Uilto)(Ai — Di(to)) <0, (4.27)
iV
from which stability result holds after applying Lemma 3.1 Firstly, for any converging subse-
quence{r,, } to the fluid limit, since we have
lim sup |[A;"*(t) — \t| = 0, Vi, (4.28)
k=00 tef0,1]
for anye’ > 0, there existd<; such that
sup A" (1) — Mt < €, Vi, k > K. (4.29)
te[0,7
Now, we can choose sufficiently small, such that (4.29) implies that the quzeti estimated

arrival rates in (4.16) stay unchanged{é\g}, which is the quantized value of the true arrival rate.

Note that we also have

Ai > A, Vi, (4.30)
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due to the ‘round-up’ quantization procedure in (4.16). Nassume, > 0 is given and that there
isi € V such thatl;(ty) > 0. Due to the uniform continuity property of the fluid limits cithe

uniform convergence on compact set, we can ind 0, € > 0 and K, such that fork > Ky

U "™ (1) > €7 € (tg — 6,19 + 9). (4.31)

7

Recalling the definition of fluid scaling, this implies that
Ui(T) > 1, €, VT € (1, (to — 9), 7, (to + 0)). (4.32)

Thus, for sufficiently largé, we conclude thall; is always nonempty during-,, (to —6), rx,, (to +
9)). Now, from Lemma 4.2.1 and Lemma 4.2.2, the Algorithm 4.8.an implementation of the
static version in Algorithm 4.1.1. Thus, for sufficientlyrde &, we conclude from Theorem 4.1.1
that the basic matri¥8 andaney are such that the associated throughput-gépnon-positive after

rn,to. According to Lemma 4.2.3, we have

1 Tny (t0+5) 1 Tny, (t0+5)
Jim {(1- ST > A - T > w(n} =0, (4.33)
T=Tn, (t()—(;) T=Tny (t0_6)

from which and the convergence resultygf.), we conclude that

I
kggo 21y, 0

<Di(rnk (to + 6)) — Di(rn, (to — 5))) - (11— (4.34)

(4.35)

Vv
=
|
3
e

Takingé — 0, we obtain that

D;(t) > A, (4.36)

from which the stability holds. [ |
Thus, we conclude that the online scheduling algorithm isogd. We would like to emphasize

the fundamental difference between the max-weight scireglphase in (4.21) and the max-weight

algorithms in Chapter 3, in that (4.21) is restricted to g\sarse sefO(|V|)) of basic schedules,

where as the algorithms in Chapter 3 always search over tire spt of feasible schedules. Thus,
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Algorithm 4.3.1 Distributed CSMA
1. In each time slot:, do the following:
2: Randomly generate an independentsét).
3: for eachi € o/(t) do
4. p; = exp(6;)/(1+ exp(6;));
5
6

if no neighbor of is in&/(n — 1) then
Link 7 update its transmission status as follows:

L _ J 1 with probability p;
O‘Z(n)_{ 0 else (4.37)

end if
end for
: Any other linki ¢ o/ (n) seta;(n) = a;(n — 1).

© o N

(4.21) has much lower complexity than the direct max-weiglgorithm, and is amendable for

distributed implementation.

4.3 APPLICATION: PACKET SCHEDULING IN WIRELESSNETWORKS

In this section, we will apply the simplex scheduling algfom to the application of packet
scheduling in wireless networks. In particular, we will damtrate that the online simplex schedul-
ing in Algorithm 4.2.1 can be implemented in a distributeshian, using distributed CSMA [15, 16]

and average consensus techniques.

4.3.1 Scheduling Algorithm

We start with the distributed CSMA algorithm, which can bganeled as a basic block in achiev-
ing distributed implementation of the max-weight colummemtion in (4.24).

The algorithm is shown in Algorithm 4.3.1. Notice that ther@a sensing is applied twice
for each iteration of the algorithm. The first carrier segsmapplied during the generation of the

independent set’(n). We assume that'(n) satisfies the following condition [16]:

P(d/(n) = a) > 0, Va feasible (4.38)
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The second carrier sensing is used to detect whether a meighthe link: is transmitting during
time slotn — 1. Thus, the algorithm is fully distributed, with no explicitessage exchanges among
links. The following lemma from [16] proves a product fornatsbnary distribution of Algorithm

4.3.1.

Lemma 4.3.1. The schedule§a(n)} in Algorithm 4.3.1 form a time-reversible Markov chain, lwit
the following steady-state distribution:

7o = exp(6Ta)/Z(6), (4.39)

whereZ () is often referred to as the ‘partition function’:

Z(0) = > exp(dTa). (4.40)

«is a column ofA

Thus, if we implement Algorithm 4.3.1 with parametef, where3 > 0 is a large constant,

from (4.39) we have

To = exp(80a)/Z(B) (4.41)

(4.42)

1 {a€arg maxg;is a column ota 07 G}

which is an approximation of the max-weight schedule in4}.2Ve will use this procedure as a
building block to construct the distributed simplex schadyu
The fully distributed scheduling algorithm is shown in 23Compared to the online algorithm

in Algorithm 4.2.1, the major differences are as follows:

e The first max-weight scheduling in (4.21) is implemented tisaributed manner with local

weights updated by average consensus mechanisms.

e The second max-weight in (4.24) is implemented in a distebumanner by distributed

CSMA.

It is important to notice that the first change is feasibledose the number of columns ihis much
smaller than the set of all feasible schedules, which maw gngonentially in the size of the net-

work. Thus, the max-weight scheduling can be implementadjus/erage consensus schemes with
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Algorithm 4.3.2 Distributed Simplex Packet Scheduling

1: Estimate arrival raté (1) with (4.16).
2. If X\i(1) = \i(1—1) for all i € V, the basis matri¥3 and scheduling variablg$, ) remain the

same. Otherwise, initialize them as the following:

B =1 (4.43)
v =0 (4.44)
6 = 0 (4.45)
onew = 0 (4.46)
(4.48)

3 forn=(1-1)7T+1—1Tdo

4. Distributed CSMA : Updateacsma(n) by running Algorithm 4.3.1 with large constafit
5.  Distributed Max-Weight Scheduling: Each linki computes
a(n) € arg max w® (n) (4.49)
ais a column ofB or anew
where
we(n) = 0(n) o (4.50)
is the weight of independent set andwgf) (n) is link #'s local copy. Linki: transmits if it has
nonempty queue armlz(.’) (n)=1.
6: Parameter Update The parameters are updated as follows:
O(n) = 0(n—1)+e((1—v(n—1)\—an)) (4.51)
y(n) = y(n—1)+e@n-1)TA-1) (4.52)
wheree is a standard small constant step size.
7. Average Consensus: Run an average consensus algorithm over the quantities
8 if (A(n),v(n)) andacsma(n) convergeghen
9 Replace the minimum weight column B by anew, and relabel coefficients accordingly.
11:  endif
12: end for

low complexity, whereas the general max-weight schedwimdplem is NP-hard. Summarizing the

above discussions, we have the following theorem:

Theorem 4.3.1.Let any feasible arrival raté. € R* be given. Assume that the average consensus
in Algorithm 4.3.2 and the approximation in (4.42) are acter The network is rate stable under
the fully distributed simplex scheduling algorithm in Aliglom 4.3.2.
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6 O O 3

(a) (b)
Figure 4.1: (a) A star shaped interference graph for a wisshetwork with 7 links, and (b) A ring
shaped interference graph for a wireless network with Glink

4.3.2 Simulation Results

In this subsection we demonstrate the performance of thébdited simplex packet scheduling
in Algorithm 4.3.2 by simulation results. We will compareetperformance of simplex schedul-
ing against the hybrid queue-length-based distributed B$MQ-CSMA) scheduling algorithm
in [16], where the distributed CSMA scheduling in Algoriti#h8.1 is applied to the links with large
queue lengths (the threshold is choserl@y. During the simulation, we assume that the packet
arrivals are i.i.d with uniform arrival rates. The total silation period is3 x 10° time slots, and the

initial queue length for each link is03.

4.3.2.1 A Star Network

We first consider a star-shaped interference graph withkg imFig 4.1 (a), with the simulation
result shown in Fig. 4.2. In the figure, we plot the maximumwpéength under the simplex
scheduling and the queue lengths at link 1 and link 2 for theGEMA scheduling. Note that it is
sufficient to focus on these two links, due to symmetry of tpotogy. We assume that the uniform
arrival rate is ab5% of the capacity region boundary.

From the figure, one can clearly observe that the networkiésgtable in both cases, and that

HQ-CSMA scheduling has much larger queue lengths (ar@0fithan simplex scheduling (several
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Seven-Star Network
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Figure 4.2: The simulation result of a 7-star network with H©@QMA scheduling and simplex
scheduling.

hundreds) in the steady state. Further, one can observénkadt is the bottle neck for the HQ-
CSMA scheduling, since its queue length is the largest aladbthe time. This is because the HQ-
CSMA scheduling spends a considerable amount of time areaold ‘good’ schedule (such as the
center link or the peripheral links) before transiting te thtermediate and suboptimal schedules.
Notice that the HQ-CSMA achieves certain speed up by impteimg the CSMA step only on the
links with large queues, so that the center link 1 can quiddize the channel when the queue
lengths of all peripheral links are small. However, the $iaons of schedules are still quite slow,
due to the random-walk type design. On the other hand, skrgikeduling can quickly switch

between the optimal basic schedules, and therefore, has smaler queue lengths in steady states.

4.3.2.2 A Ring Network

We next consider a ring-shaped interference graph withl& lin Fig 4.1 (b). The simulation
result is shown in Fig. 4.3. Similar to the star network, wet phe maximum queue length under

the simplex scheduling and the queue lengths at link 1 ahd2ifor the HQ-CSMA scheduling.
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Six-Ring Network
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Figure 4.3: The simulation result of a 6-ring network with Hi3MA scheduling and simplex
scheduling.
We assume that the uniform arrival rate i9a% of the capacity region boundary.

One can easily observe that both algorithms can achievestalbdity. However, the simplex
scheduling achieves much smaller queue lengths in steathsghan the HQ-CSMA scheduling.
This, again, demonstrates the fact that the simplex schedain achieve low delay by quickly
switching between the optimal basic schedules. On the didwed, the switching between ‘good’
schedules for the HQ-CSMA scheme happens much less fréguegume to the random-walk type
design. Further, one can observe that the HQ-CSMA is notuitty sufficient gain by restricting

CSMA to the links with large queue lengths (greater théd).

4.3.2.3 A Large Random Network

Finally, we consider the performance of the simplex schiadwllgorithm in a large random net-
work with 100 links, where the topology is shown in Fig. 4.helinterference graph is constructed
such that, two links form an edge if one’s transmitter is with certain distance from the receiver

of the other link, where the threshold is computed assuniiagthe SINR threshold i$.77dB, the
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Random Network with 100 Links
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Figure 4.4: The topology of a large random network with 1084i

Random Network (100 Links)
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Figure 4.5: The simulation result of HQ-CSMA scheduling amdplex scheduling in a 100-link
random network.

SNR is20dB and the path loss exponenBisWe assume that the uniform arrival rate)is.

The simulation result is shown in Fig. 4.5, where we plot tteximum queue lengths for both
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scheduling algorithms. One can easily observe that theanktiw rate stable under both scheduling
algorithms, and that the simplex scheduling achieves muodilsr queue lengths in steady states
than the HQ-CSMA scheduling. Notice that the simplex alfponi may have larger queue lengths
during the ‘learning’ period, since the algorithm needs ol fll basic schedules. However, once
all basic schedules are successfully computed, the quagthkedecreases dramatically, such that
the delay performance is much better than the HQ-CSMA scheiieh needs sufficient amount

of time to transmit between good schedules, due to the randalkndesign.



CHAPTERS

SUBOPTIMAL SCHEDULING SCHEMES

The previous chapters have discussed optimal scheduliiggso Although optimal scheduling is
desirable, such scheduling policies can be very difficuiliriplement in certain applications, due to
the high complexity. For example, for the important caseaafiqet scheduling in wireless networks,
it is well known that optimal scheduling is NP-hard [87]. Bhwptimal scheduling schemes either
incur exponential complexity in each time slot, such as tle-meight algorithm in [11], or incur
exponential worst-case delay, such as the random ‘pickeantpare’ algorithm in [12] and the dis-
tributed CSMA scheduling in [15, 16], where the exponert@hplexity is ‘amortized’ to achieve
low scheduling complexity per time slot. Thus, suboptineieduling, even if it only achieves a
fraction of the maximum throughput region, is still veryrattive, due to the low complexity and
ease of distributed implementation.

In this chapter, we investigate suboptimal schedulingcpesi for a restricted class of PhyNets.
We are particularly interested in a class of low complexityexiuling policiesmaximal scheduling
A maximal scheduler only specifies that the schedule in ga@hglot cannot be further augmented.
Thus, compared to the max-weight scheduling schemes int&h8pmand simplex scheduling in
Chapter 4, maximal scheduling is much simpler, since it amplves local user node interaction.
Further, maximal scheduling is easily amendable for distéd implementation, such as using car-

rier sensing techniques for packet scheduling in wirelefa/orks [66,67]. For this reduction in

72
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251 a2 a3 Qg

Figure 5.1: A simplified physical factor graph model for sthiéng applications.

scheduling complexity is achieved at the expense of thrpugtegion reduction, it is very important
to provide throughput guarantees on the maximal schedatihgmes for general CPS applications.

In this chapter, we will investigate the throughput perfanoe of maximal scheduling for the
general scheduling problem in PhyNets. We focus on theligiisiformulation SCH-F in Chapter
2, and provide a lower bound on the stability region with apiteary maximal scheduling algo-
rithm. We then show that it can achieve a certain fractiorhefdptimal stability region. We will
also investigate specific maximal scheduling algorithmthwnproved throughput performances.
In particular, we focus on static priority assisted maxis@tieduling, and provide analysis for the
application of packet scheduling in wireless networks. Vilealso show that the optimal static pri-
ority can be computed online with low complexity. Comparedanventional maximal scheduling,
the static priority assisted maximal scheduling schemeachieve dramatic throughput improve-
ment.

The organization of this chapter is as follows. In Sectidh\se introduce the simplified CPS
system model, and in Section 5.2 we investigate the thrautgbgrformance of maximal scheduling
with PhyNets. Section 5.3 discusses prioritized maximaédaling. Finally, Section 5.4 discusses

the application of maximal scheduling schemes to packetdiding in wireless networks.
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5.1 A SMPLIFIED CPS ¥STEM MODEL

This chapter assumes a simplified system model of the gelRbydNet model in Chapter 2. We
assume that the system is quasi-static, so that the megsemain constant for the scheduling
application. Since the physical variablgg; } are functions of the control variablés; }, we elimi-
nate them for the simplicity of discussion. We also assuratethie physical factor nodes in (2.2) are
linear. Thus, we can write the physical constraints in teofrthe control actionga; } only. Thus,
we have the following factor constraints:

> Hypoy <1,Vk € T, (5.1)
SV
where{ Hy;} are coefficients as specified by the physical plant of the GP8is thesis, we assume
that the coefficientd,; are all nonnegative, so that the set of feasible schedutes do indepen-
dence system, i.e., for any < «, « is feasible implies that’ is also feasible. We are interested in

the non-trivial cases and assume that
Hy;o"™ < 1,Vk, i such thatH; > 0. (5.2)

Thus, each factor node € F involves at least two users, so that it represents netwauploa.
Intuitively, the user nodes in/,, form alocal conflict setfor resourcek, in that their normalized
weighted control actions cannot be larger than 1. An exarigoi®r graph model is shown in Fig.
5.1. In this case, assume that the feasible control actionsdia = {0,1} for each: and that

Ey; = 1/|Nj| for all i € N. Thus, the following constraint has to be satisfied for amgilglec:

1 1 1

3 + 32 + 33 <1, (5.3)
Lot tas<1 (5.4)
2042 2014_ . .

The above model includes many important CPS applicatiorspasial cases. For example, it in-
cludes the hypergraph interference model in Section 2.4speeial case. It can also be used for

the problem of EV charging in power systems. For the EV cimgrgipplication, (5.1) can be used
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to model the constraint that the total load associated wiplaréicular transmission line or trans-
former should be upper bounded, in a tree-structured bligioin system. We next investigate the

performance of maximal scheduling using the above physie@biork model.

5.2 MAXIMAL SCHEDULING

The maximal scheduling algorithm is very simple. Accordinghe maximal scheduling cri-
terion, the only requirement is that, in each time slot, ttleeglule is maximal, i.e., it cannot be
further augmented. The scheduling is otherwise arbithg/.say a schedule’ is an augmentation
of a if & = «, and that at least one inequality is strictly satisfied. Thhe only requirement
on a maximal scheduler is that it has to generate ‘maximapeddent sets’ of the independence
system as described by (5.1). Thus, the scheduling algotids low complexity, and is promising
to be implemented in distributed fashion. For example, fmiet scheduling in wireless networks,
a maximal scheduling algorithm can work as follows. In edotetslot, the scheduler considers
the back-logged links in an arbitrary manner, and adds altokhe transmission schedule if there
is no interference conflict whehis being considered. Fig. 5.2 shows an interference graph fo
wireless networks. In this case, if a maximal scheduler shsdhe transmitting links according to
the order{1, 2, 3,4}, the resulting schedule isl}. If the maximal scheduler choose transmitting
links according to the ordd4, 3, 2,1}, the resulting maximal schedule{d, 3}, which is also the
maximum independent set of the interference graph.

Thus, compared to the optimal scheduling schemes in Ch&pterd Chapter 4, maximal
scheduling has low complexity, and is promising for disttéddl implementation in general CPS,
since it only involves the local interactions of users. listbhapter, we analyze the throughput
guarantees of maximal scheduling algorithms for the gémseteeduling problem in CPS. We first

prove a lower bound on the stability region of maximal schexu
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Figure 5.2: An example interference graph in wireless ngkso

5.2.1 Stability Region

Before stating the stability guarantee, we need to intrecek@me notation first. Let the s@/

consists of allV| x |V| matricesiV which satisfy the following properties:
1. W is symmetric, andV;; > 0 for all ¢ and;.

2. W;; = 0foralli, andW;; = 0if j & N;, where the sel; is the ‘neighbor set’ of user such

that;j € \V; if and only if i and; are connected to a common factor node.

3. For any factok that is connected to usérwe have
> Wija; > 1 (5.5)
JENK

for any maximal schedule satisfyinga; = 0.

Intuitively, the matrix|¥ assigns weights to job departures, such that the weightedriee for
each active factor nodein a maximal schedule is larger than 1 when useridling, according to

(5.5). We are now ready to state the following theorem ondlaet bound stability region.

Theorem 5.2.1. All queues in the system are stable for an arrival ratender any maximal sched-
uler if there is a matriXx4/ € W, such that

1

WAZ’ + Z WiiAj <1, (5.6)
¢ JEN;

wherea™® > ( is the smallest positive value j;:

min — min a. (5.7)

al
a; €A;,0; 70



5.2 MAXIMAL SCHEDULING 77

Proof: We only need to prove stability result in the fluid limit. That for any fluid limit,
U;(t) = 0foralli € Vandt > 0if U;(0) = 0. Then, we can apply Lemma 3.1.1 to show stability
in the original system. Let a fluid limit be given. Considee following Lyapunov function:

ZU e Uit) + > Wyl;(1)). (5.8)

ZEV JEN;

We next calculate the derivative @ft) as follows:

£y = 3 D00 + 5 3 3 (W + Wi D)) (5.9)
1€V & zev JEN;
@ZU() +ZW’JU (5.10)
ey @ JEN;

mm/\ + > Wi — W + 3 WD), (5.11)
=% JEN; v JEN;

where(a) is because the matrid is symmetric, andb) is because of SLLN. We only need to
consider the case where there exists a usemdt, > 0 such that’;(¢y) > 0. In such a case, we

will show that

amln)\ + Z WZJ)‘ ( Z WZ]D tO O (512)
JjeEN; Z jEN;

from which one can conclude thﬁ(t) < 0, following which the theorem holds.

Now consider an arbitrary convergent subsequefice }7° , associated with the fluid limit.

SinceU;(ty) > 0, there is§ > 0 such that
Ui;(to) >0 > 0. (5.13)
Further, since the functiofi;(¢) is uniformly continuous, there exists> 0, such that
_ 0
Ui(to) > §,Vt€ (to — 1,to + 7). (5.14)
Thus, recalling the definition of fluid limit, for sufficiegtlargek we have

U () > g,w € (to — .10 + 7). (5.15)
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which implies that

5
Ui(n) > Ti > 1,¥n € (rn, (to — 7), 7, (to + 7)) (5.16)

Thus, for sufficiently largek, useri always has nonempty queue during the time s{ots (to —
7),rn, (to + 7)). Finally, according to maximal scheduling, in each time,stither uset has job
departure, in which case;(n) > ", or there is a factor node which include usei, such that
the corresponding constraint in (5.1) is active. In bottesase have

amln Z + Z VVZJaJ > 1,Vn € (Tnk (to - T)vrnk (to + 7_))7 (517)
v JEN;

due to the assumption in (5.5). Summing the above inequaligy multiple time slots, we obtain

the following:
1 Tny n Tn Tn
a?in(Di *(to+71) — D;" (to — T) ;/Wzg (to+7) = D" (to — 7)) > 27.
J

From which we conclude that, sineecan be arbitrarily small, in the fluid limit, we have

)+ > WiDj(t (5.18)
Z JEN;
Finally, we conclude from above and (5.6) that (5.12) holds. [ |

Thus, we can achieve a guaranteed lower bound on the stabijiton for maximal scheduling.
Notice that the important property is that the stabilityioegis specifiedocally. This is because
the scheduling algorithm only involves local interactiose that the a user nodeonly needs to
coordinate with the user nodgé;,. Such local interactions simplifies the design of the sclieglu

algorithm. We next investigate the scheduling efficiency.

5.2.2 Scheduling Efficiency

As maximal scheduling is a class of suboptimal schedulidigips, we are interested in its per-

formance compared to the optimal scheduling algorithmniadiy, this is defined by the scheduling
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efficiency, as follows:

Yr = sup{p > 0 :pR* C R}, (5.19)

where~; is the scheduling efficiency of schedulterR* is the optimal stability region, an® . is
the stability region associated with Thus,~, corresponds to the largest fraction of the optimal
stability regionR* that can be stabilized by.

We need to make some definitions before stating the resudist #fse scheduling efficiency for
maximal scheduling. Defind; associated each useas follows. We first associate each neighbor

J € N; with a weightA;; as follows:

Lijens)
min(o™", o)

Aij = max(uij, Vji)a (520)

2

where the termy;; is defined as follows

1
max max = (5.21)

Vi = .
Y (keF 10,5 )TN} o is maximala; =0 > jen; Lia;>0)
We will show later thaf A;;} € WW. Note thatA;; = 0 if ¢ and;j are not neighbors, and we define

A;; = 0. Now, defineA; as follows:

A;, = max {ﬂl{ai>0} + Z Aija;-naxl{aj>0}}. (5.22)

o is maximal a?“n Py
Intuitively, the above expression corresponds to an estimfthe total weight of job departures in
each time slot in a neighborhood;, where usei is associated with weighta* /o™, and user

j € Nj is associated with weighh,;;a’**. Finally, define
A = max A;. (5.23)
i€V

We will now show thatl /A is a lower bound on the scheduling efficiency of maximal salird
algorithms defined in (5.19).
Theorem 5.2.2. The scheduling efficiency of any maximal schedulexrbounded by

Ve > 1/A. (5.24)

Thus, ifA € R*, the network is stable under any maximal scheduler for amialrprocess with
average arrival rate\/A.
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We first present the outline of the proof. For any useén each time slot, we have

maX
mln )+ Z Agjaj(n) < mln Liai(m)>0y + Z Alﬂa 1{0@'(")>0}
JEN; JEN;
<A

<A, (5.25)

according to the definition ad\; in (5.22). Thus, for any feasible arrival ratec R*, we have

m

m>\ + ) AN <A (5.26)
JjeEN;

Further, we will prove that the set of coefficientd;;} € )V, which implies that\/A is in the
lower bound region defined in Theorem 5.2.2.

In order to prove the theorem, we first need to prove two lemMéesstart with Lemma 5.2.1.

Lemma 5.2.1. An arrival rate X is stable under any maximal scheduler if

—\ iiNg < .

— it D Ay <1, Vi (5.27)
v JEN;

Proof: The proof is in Appendix D.1. [ |

We next prove the following lemma, which proposes a necgssault on feasible arrival rates:

Lemma 5.2.2. For any feasible arrival rate\ € R*, we have

mm)\ + 3 AjA <A< ALY (5.28)
i JEN;
Proof: The proof is in Appendix D.2. [ |

Proof of Theorem 5.2.2We can now prove Theorem 5.2.2. From the result in Lemma 5.2.2
we conclude that i\ € R*, then(1/A)X must satisfy (5.27), and therefore, according to Lemma
5.2.1, is stable under any maximal scheduler [ |

We have proved that/A is a lower bound on the scheduling efficiency. Notice therégtng

property that each\; is defined locally. Thus, for many CPS applications with eahneighbor-
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of the optimal stability region. Such property is very atthee in the systems where the optimal

scheduling is hard to obtain.

5.3 RRIORITIZED MAXIMAL SCHEDULING

We have discussed the throughput guarantees of maximaddaig and its scheduling effi-
ciency. It should be noted that the class of maximal schedwigorithms is very broad, due to its
specification on ‘arbitrary’ maximal schedules. Thus, th@sicase maximal scheduling may be
quite suboptimal in certain cases. For example, it has bleanrsthat [14] maximal scheduling in
wireless networks under a ‘unidirectional equal power’ gladay not achieve any positive fraction
of the optimal stability region. In this section, we invegstie performance improvements by design-
ing specific maximal scheduling algorithms. We are parsidulinterested irstatic priority assisted
maximal scheduling schemeasue to its simple design. Note that the maximal schedulamgie
for the wireless network in 5.2 at the beginning of the lastisa also serves as an example of static
priority assisted maximal scheduling. For the generaldglireg problem in CPS considered in this
chapter, a static priority assisted maximal scheduler magkwas follows. In each time slot, the
scheduler will consider the back-logged users in a sequepeeified by the static priority. When a
useri is considered, it will choose the maximum feasible job deparrate, subject to the physical
graph constraints in (5.1) and the constraint that its quemmot be negative. It is easy to verify
that the resulting schedule is maximal, since the set oftadhs form an independence system.

Static priority assisted maximal scheduling is simple aaslygo implement. Analysis of its
throughput guarantees and the selection of the optimaltifgtion the other hand, is very difficult.
In this section, we provide throughput analysis of stationy assisted maximal scheduling and
priority selection for wireless networks with interferengraph constraints. The analysis and design

for general CPS will be addressed in future research.
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5.3.1 Maximal Scheduling with Static Priorities

We first introduce the concept of static priority. A prioritgctorp is defined as a permutation
of (1,2,...,|V|)T, wherep; is the priority of linki. We say that linki has higher priority than
link j if p; < pj. Thus, the linki with p; = 1 has the highest priority, while the link with
p; = V| has the lowest priority. Givep, the prioritized maximal scheduler computes the schedule

by considering the links sequentially, from the highesbity ‘ 1’ to the lowest priority {V

', adding
each back-logged link to the schedule if none of its high#érity neighbors have already been
scheduled when it is considered. The following is a key priypir the throughput guarantee of

the scheduling scheme:

Lemma 5.3.1.In any time slot, for any back-logged lirika maximal scheduler with priority will
schedule at least one departure among the litgsU N7, whereN? is the set of higher priority
neighbors of link.

Proof: The proof is in Appendix D.3. [ |

5.3.2 Stability Region

We next analyze the throughput performance of maximal sdhmedassuming a fixed priority
{p;} is always used. We first propose a lower bound stability refpo maximal scheduling with

static priority{p;}.

Theorem 5.3.1. The network is rate stable under maximal scheduling witkicstaiority {p;} if
the arrival rates satisfy the following:

Rpy={AeRY N+ Y Nl <L Vi€ V), (5.29)
JEN;

wherel{pi>pj} implies that only the neighbors with higher priority thankii are counted.

Essentially, the contribution of a priority in assisting aximal scheduling algorithm is that it
can reduce a neighborhodd; to the ‘higher priority neighborhood’ in (5.29).
Proof: Since the priority{p; } is fixed, for ease of notation, we relabel the links in dedreas

order of priorities according tfp; }. Thus, link 1 has the highest priority, and lifik| has the lowest
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priority. Consider the following Lyapunov function

L) = % ; T2(1). (5.30)
It is sufficient to prove thaf.(t) < 0if U;(0) = 0 for all i € V. Then, we can apply Lemma 3.1.1 to
obtain stability in the original stochastic system. To @raéhis, in the following we will show that,
by induction, 2U2(t) < 0 for each linki if T;(0) = 0 for all i € V.

We first consider the link, which has the highest priority according {p;}. Note that if

Ui (t) = 0, we have
Ui () = Di(H)U (t) (5.31)
= 0. (5.32)

Now suppose that, on the contrafy; (t) > 0 at somet > 0. Then, there exists a constant> 0

such that/; (t) > e > 0. SincelU, (¢) is uniformly continuous, there also exigts> 0 such that
Ui(1) > €/2,V7 € (t — §,t +9). (5.33)
Now consider any converging subsequefg¢é x (t)}2° ; for the fluid limit. We have
U™ (1) > €/4,Y7 € (t — 6,1 + 0). (5.34)
for sufficiently largek, which implies that

UL(T) > /4 > 1,97 € (1, (t — 0), 7 (£ + ). (5.35)

That is, link 1 is always back-logged during the time inten@l,, (¢t — ), r,, (t + 6)). Due to
the prioritized maximal scheduling specification, lihkransmits in every time slot in this interval,

since it has the highest priority. Thus, we conclude that

D1 (1, (t +8)) — Dy (rn, (t — 8)) = 2rm, (t+ ). (5.36)
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After taking limit ask — oo we have
Dl (t + 5) - Dl (t - 5) = 20, (5.37)

which implies thatD, (t) = 1 sinced > 0 can be arbitrarily small. Therefore, we conclude that

Uit =20, U1 (1) (5.38)
= 201 (t)(\; — D1 (1)) (5.39)
=2U0:(t)(\;i — 1) (5.40)
<0, (5.41)

where the last equality is due to the assumption tha R,. Thus, we havej—t J2(t) < 0 and
Ui(t) = 0forall t > 0.

We next proceed by induction. Suppose tﬁgf/,?(t) < 0 andUg(t) = 0 forall t > 0 and
k < 1-1,ie., the firstt — 1 highest priority links. Now consider the link which has thd-
th highest priority. Note that i/;(t) = 0 we have(j'l(t) = 0. Now supposd/;(t) > 0 for
somet > 0. Following the same argument as for lilkwe conclude that there is some interval
(7, (t = 9),rn, (t 4+ 0)) during whichU; (1) is nonempty. According to Lemma 5.3.1, in each time
slot the maximal scheduler with priorityp; } will schedule at least one departure{i} U A7, and
therefore, we have

((Dulrag(t+6) + D7 Dj(rag(t+6))
jeN?

> (Dulrag (b= ) + D2 Dj(rag(t = 6))) + 270, (5.42)
JENT

which implies, after taking — oo, that

Dit) + Y Dj(t)) > 1. (5.43)

jesy
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Thus, we conclude that

L0 < 200Gl + Y G50) (5.44)
JENY

= 20N+ 3. N — (D) + Y. Dyt)) (5.45)
JENT JEN?

<20+ Y A —1) (5.46)
JEN?

(b)

<0, (5.47)

where (a) is because, by induction hypothesis;(t) = 0 for all ¢ > 0 and all higher priority

neighborsj € N7, and(b) is because

NA DN, (5.48)

sincel € A,. Thus, by induction, we conclude thgfth(t) < O forallt > 0 and all links in the
network, from which the theorem follows. [ |

Having proved thak, is a lower bound stability region, we next show its tightness

Theorem 5.3.2.For any network, ifR,, # R*, there exists an arrival rate vector € R*, which is
arbitrarily close toR,, and a packet arrival process with average ratesuch that the network is

unstable under maximal scheduling with priority; }.

Proof: If R, # R*, there must be an arrival ralec R* such that for some link, we have
A+ YA > L (5.49)
JENY

Further, the links in{:} U Nf’ can not form a clique, since in that case we will havg R*. Thus,

we can always find two independent linkandk in the set\”. Now consider the following arrival

rates: A, = e, /\; = A, = 1/2, and\; = 0 for any other linki. It is easily seen that’ € R*,

since one can simply alternate between the two schedujesnd{j, £} in odd and even time slots

to achieve network stability. Note that by adjusting theapagtere, the arrival rate vectoh’ can

be arbitrarily close tdR?,. Now, we consider the following arrival process with artivate \'. In

every odd time slot, a packet arrives at lifkand in every even time slot, a packet arrives at link
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k. Thus, according to the maximal scheduling with priody; }, these packets are immediately
transmitted in the next time slot. Finally, in each time siopacket arrives at linkindependently
with probability e. Thus, link¢ is never scheduled by the maximal scheduler, and is therefor

starved. [ ]

5.3.3 Scheduling Efficiency

We need to make some definitions before stating the resulscloaduling efficiency. Given
a fixed priority {p;}, define A as the cardinality of the largest independent set in the rsipig
induced by links{i} UN?. This is the set of transmitting links in the local neighbwot {i} U N

with the maximum cardinality. We further define ‘prioriténterference degreé\? as

AP = max AP, (5.50)
%

We have the following theorem.
Theorem 5.3.3.For any A € R*, we havg1/AP)\ € R,,.

Proof: For any linki, according to the definition ak?, there are at mogk? packet departures
among{:} U N? in each time slot, since the transmitting links must formraependent set in the
subgraph induced bfi} UAN?. Thus, if the network is stable, the total average arrivals} UN?
must be no more than the total average departures, i.e.,

Ait DN SAP<AP Vie V. (5.51)
JENT
Multiplying both sides of the above inequality willf AP, and recalling the definition oR,,, we
conclude that1/AP)\ € A, and the theorem follows. [
DefineRsp = UpepR, as the union of the lower bound stability regions over allistariori-
ties. This is the largest set of arrival rates that are gueeahto be stable under all possible static

priorities. Similarly, we can defins, = max,cp AP. We will now show thatl /A, is a lower

bound on the scheduling efficiency Bf.
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Corollary 5.3.1. For any A € R*, we have(1/Agp) A € Resp.

Proof: Note that the set of prioritie® is a finite set, and therefore there must exjstss P,
such that the following holds:

AP = Agp= %g AP. (5.52)

Thus, according to theorem 5.3.3, we have
(1/Asp)X = (1/AP)\ € Rpe C Rep, (5.53)

from which the claim holds. [ |

5.3.4 Optimal Priority Assignment

For the simplicity of exposition, we start with a simple of#ischeme, where the priorities are
computed with perfectly estimated packet arrival ratelVe will present a priority assignment and

prove that it can produce a stabilizing priority as long\as Resp.

5.3.4.1 An Offline Assignment

The priority assignment algorithm is shown in Algorithm 3.3 At each step, the algorithm
chooses a link with the smallest ‘total neighborhood arrival rate; + djeNt A; in thereduced
interference graph, and assigns it the lowest priority ih&ically available. That is, linki only
needs to have higher priority than the neighboring linksohthave already been removed. The
algorithm then removek from V' and repeats. We next show that Algorithm 5.3.1 implicitlives

the following min-max optimization problem:
Theorem 5.3.4.The priority vectorm returned by Algorithm 5.3.1 solves the following:

€ i Ai Ai). 5.55
p € arg min max(A; + Z ;) (5.55)
JENT

Proof: Let a priority p’ € P be given. It is sufficient to prove that

Mt DA< max(d; + > A (5.56)
JENE jeENF
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Algorithm 5.3.1 Local Priority Assignment
1: Initialize: V' + V;
2: while V; # 0 do
3:  Choose linkk such that

k= argmin{\; + > AL (5.54)
JEN]
4. If no neighbor of linkk has been removed,, « |V|. Otherwisep;, < 5 — 1, whereg is the
lowest priority among the neighbors of litkwhich are already removed.
5:  Removed linkk from )" and its incident edges.
6: end while
7. return p

for any linkk € V. For notation simplicity, we relabel the links accordinghe reverse order of the
priority p, so that link 1 has the lowest priority, and lifk| has the highest priority. Now consider

the first iteration of Algorithm 5.3.1, and denatkeas the lowest priority link according td. We

have
- ~ (a) N
MADY N <A+ Y (5.57)
jeN] jeN?,
b) ~ ~
Q5+ 34 (5.58)
jeN{'ﬂ/
< \; \:). .
< ?é%f“l + Z/ A)) (5.59)
JENT

Note that here, the sef§] and A\, refer to the neighbors of link and1’ at the first iteration of
Algorithm 5.3.1, respectively(a) is because of (5.54), and) is becauseV|, = {'i’, since link
1’ has the lowest priority according 8. Now consider the second iteration of Algorithm 5.3.1,
with new reduced interference graph by removing liniSimilarly, denote2’ as the lowest priority

link according toy’ in the reduced interference graph at the second iteratiédgofrithm 5.3.1. We
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have
5\2 + Z S\j < ;\2/ + S\j (5.60)
JENS jeNQ’,
(a) . R
<d+ D (5.61)
jeNQP,'
< \; A :
= IZ%%}I{(/\Z + Z/ >‘J)7 (5.62)
JENT

where(a) is because the seiz’;il refers to the original interference graph, which is a sugten$
5» Which is the set of higher priority neighbors in the redugsdrference graph. Similarly, by
repeating the above arguments, we conclude that
s \. < \ \ )
i + Z Aj < max(d; + > A (5.63)
JEN jen?’
for each iteration ofi of the Algorithm 5.3.1. Finally, according to Algorithm 513 the links

removed later are always assigned higher priorities. Toerewe haveV? = N/, which implies

that
;\i + Z S\j = S\Z + Z ;\j (5.64)
JEN? JeN]
< \; \; .
< max(A; + Z, ) (5.65)
JENY
for all € V;, from which the theorem follows. [ |

As an application of Theorem 5.3.4, we next prove that Alponi5.3.1 can achievasy,

Theorem 5.3.5.1f A € Asp, Algorithm 5.3.1 will output a priority vectas such that) € A,.
Proof: Since) € Agp, there isp’ € P such that\ € A,,, which implies that

A. 3 ) < . )
max(A; + Z/ Aj) <1 (5.66)
JENT
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From Theorem 5.3.4, Algorithm 5.3.1 will return a priorjiysuch that

A4 )\ ) < A4 )\ ) < )
52%}1{(/\2 + Z Aj) < ?é%ii(/\l + Z Aj) <1, (5.67)
JENLP je'/\/’ip,
from which we conclude that € A,,. Therefore, the theorem follows. n

5.3.4.2 Online Assignment

We next extend the offline version to the online case withested arrival rates from stochastic
packet arrival processes, and prove that the same optmesitlt still holds. The online approach
works as follows. We first partition time into frames, whegele frame has duration @ time
slots. A fixed priorityp(l) is used throughout an entire framhe The computation op(l) is as
follows. For the first frame, we assigri1) arbitrarily. At the beginning of each subsequent frame,
we assignp(l) = p(l — 1) if the estimated arrival rate satisfidg — 1) € Ay, where\(l — 1) =
A((l = 1)T)/(l — 1)T. Otherwise we seb(l) = p, wherep is returned by Algorithm 5.3.1 with

estimated arrival rates(I — 1). We next show network stability in the following theorem:

Theorem 5.3.6. The network is rate stable under the online priority assigninscheme i\ ¢
int(Asp), whereint(-) denotes the interior.

Proof: We partition the set of priority vectors into three disjosuibsets:
P =P1UPyUPs, (5.68)

such that\ € Npep,int(A,), A € Npep,bd(Ay), and A € Nyep, A5, Whereint(-) denotes the
interior, bd(-) denotes the boundary, afd® denotes the complement. Thusis ‘strictly’ stable
for any priority fromP;, and is ‘critically’ stable for any priority fronP,, but is unstable under any
priority from Ps. In the following, we will show that after a finite number oéfnes, the sequence
of priority vectors{p(l)} will stay fixed at a priority vector in eitheP; or P,. Thus, an identical
argument using fluid limits as shown in the proof of TheorefiBcan be applied to show that the
network is stable.

First, since\ € N,cp,int(A,), there exists am > 0 such that, for any\ satisfying|| A — Al|» <
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e, we havel € Npep,int(A,). Further, since\ is ‘critically’ stable under any priority ifP,, we
can choose; > 0 such that for an;fx satisfyingHS\ — A2 < €2, and anyp € Py, p’ € Py, we have
?é%}f(;\l + jezj\;ip \j) < ?é%}f(j\l + jg\;ﬁ Aj)- (5.69)
Thus, if Algorithm 5.3.1 is executed with the aboyethe output priority vector must lie iy,
according to Theorem 5.3.4. Finally, note thgi-p,A; is an open set, we can choosg > 0
sufficiently small, such that any satisfying||A — |2 < e3 still satisfies\ e Npepy Ay Now, we
choose’ = min(ey, €2, €3), and because of the SLLN, we can chods® be large enough such
that for anyl > L, we have||A(I) — A||2 < ¢. Thus, if Algorithm 5.3.1 is executed for ahy> L,
we havep(l) € Py, because of (5.55). Further, for ahy>- L, if Algorithm 5.3.1 is executed, the
priority vector will stay at the output result € Py, since by assumptiorf\(l) € A,. Finally, we
only need to consider the case where Algorithm 5.3.1 is net@bed for all > L. Itis clear that in
such casey(l) ¢ Ps for anyl > L. Thus, for sufficiently largé, the priority vector stays at a point
in eitherP; or P, without invoking Algorithm 5.3.1, from which we can conckithat the network

is stable. [ ]

5.4 APPLICATION: PACKET SCHEDULING IN WIRELESSNETWORKS

In this section, we apply the maximal scheduling algoritlumesnes to the important application
of the packet scheduling in wireless networks. We first apbé/ analysis in Section 5.2 to the
wireless network scheduling with hypergraph interferemoelel. Then, we will focus on the static

priority assisted maximal scheduling, and demonstrateet®rmance by simulation.

5.4.1 Maximal Scheduling with Hypergraph Interference Mockel

As an application of the general maximal scheduling with¥étg, we will show the through-

put guarantees of maximal scheduling in wireless networikls general hypergraph interference
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models. In below, we will investigate both stability regiand scheduling efficiency, as a special

case of the general results for PhyNets.

5.4.1.1 Stability Region

We first formulate the lower bound stability region. Similathe definition for general PhyNets,

let the se®V consists of allV| x |V| matrices which satisfy the following properties:
1. W is symmetric, and < W;; < 1 for all 7 and;.
2. W;; =0foralli,andW;; = 0if j & N;;
3. For any hyperedgethat includes linlg, Zj@ Wi > 1.

We have the following theorem.

Theorem 5.4.1. Let a maximal scheduler with an interference hypergraph be given. Then, the
network is stable under any arrival rate if there is a matrixi/’ € W, such that

At > Wi <1,V (5.70)
JEN;

Note that if the hypergraph is indeed an interference grégehmatrixi¥” is the graph incidence
matrix: W;; = 0, W;; = 1if j € N, otherwiseW;; = 0. Therefore, the above stability region
reduces to the one proved in [14]. Thus, this lower boundreni Theorem 5.4.1 is a generalization

of the lower bound for the graph model to the hypergraph nzdel

5.4.1.2 Scheduling Efficiency

Based on the above analysis on the stability region, we negstigate its scheduling efficiency.
We first define the ‘interference degref’ as follows. We first associate each neighboring link

J € N; with a weightA,;; as follows:

1
Ay = - 5.71
J eefrfl{??}ge ‘6’ -1 ( )
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where the hyperedgehas to include both linksand; (A;; = 0if < andj are not neighbors). Now,

define the interference degree of lihks follows:

Ai = ois a maximal schedule + Z it (5.72)
JEN;
In the graph case, this is equivalent to the maximum numbé&ctife edges’, or simply the max-
imum number of concurrent transmissions in a litskneighborhood [14], sincé;; = 1 for all
J € N,. For general hypergraphs, we halg; < 1, due to the fundamental property of cumulative
interference. Finally, defind = max;cy A; as the interference degree of the hypergraph. As a

special case of Theorem 5.2.2, we conclude that maximatséihg with hypergraph interference
models can achieve a scheduling efficiency of at [@aAt:
Theorem 5.4.2. The queueing system is stable for any arrival process witlvarrate A /A under
any maximal scheduler if A € R*.

We next discuss the tightness of the above lower bound orctiedsling efficiency. Note that
if A =1, itis obvious that the scheduling efficiency is tight. We nassume thaf\ > 1, and show

a tightness result in the following theorem:

Theorem 5.4.3.Let a hypergraph be given, such that any link V with A; = A > 1 satisfies
the following condition. The set of independent links\in which achieve an integer interference
degreeA, can be written age; /{i},e2/{i},...,ea/{i}}, where the hyperedgds; } are disjoint
except a common link Then, for any > 0, there is a feasible arrival rate € A*, and an arrival
process with ratex’, which is arbitrarily close taz in the sense that

ay < (1/A)aj +€,Yj €V, (5.73)

Further, there is a maximal schedulersuch that the network is unstable undewith this arrival
process.

Essentially, the theorem assumes that the hypergraphdexla generalized ‘star’ shaped hy-
pergraph, where the independent set is a set of disjointrigiges (excluding link).

Proof: Consider the following arrival rate vector. \; = 1ifand only if j € {ej,es,...,
ea}/{i}, otherwisea; = 0. It is easily seen thak € R*, since the set of linkdey,es, ...,

ea}/{i} is an independent set. Now consider the arrival Mtsuch that\’, = \; /A if j # 4, and
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Figure 5.3: An interference graph of two cliques sharing coramon link.

A, = e. Thus, we have

N — (1/A)N =€ (5.74)

for all ; € V. We next show that there exists an arrival process with satguf, which makes the
network unstable under a maximal scheduteghat assigns link the lowest priority. That is, link

1 is always considered last by the scheduleturing scheduling. The arrival process is as follows.
In eachk-th time slots out of evenA time slots, there is a packet arriving at each link in the set
of links ex/{i}. Then, it is immediately transmitted in the next time slachuse these links have
higher priority than linki, and form an independent set. Further, it is easily seentllea¢ is no
departure from link, since in each time slot, the transmitting links form anita&thyperedge with
respect to linki. As far as linki is concerned, we assume that in each time slot, there is @&jpack
arriving at linki with probability ¢, so thata, = e. Thus, since link never gets a chance to transmit,

it is starved, and the network is unstable. [ ]

5.4.2 Prioritized Maximal Scheduling

In this section, we evaluate the performance of the propgsiedity scheduling scheme by
MATLAB simulation. All simulation results are obtained fro30 independent simulations over a

period of 10° time slots. Three types of scheduling algorithms are mdimtyised during simula-
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Figure 5.4: The performance of different scheduling screméhe two-clique network .

tion: 1) a maximal scheduler with a suboptimal priority \@ctas an upper bound on the worst-case
throughput performance of maximal scheduling, 2) maxiroheguling with the online priority as-
signment algorithm, and 3) the LQF scheduling. Among thebeduling methods, only 2) requires

estimation of arrival rates. For prioritized maximal schiet, we choosd” = 100.
5.4.2.1 Intersecting Cliques

We first consider a wireless network with 11 links as showni@ 5.3, where the center link
1 is at the intersection of two cliques. Thus, link 1 inteefemith both local clusters, and is the
bottleneck of the network. We assume that every link othen tink 1 has an arrival rate §0.99 —
A1)/5, so that each clique has a total arrival ratéd®0. We further assume the arrival processes
are independent Bernoulli processes. Thus, the onlingityriassignment algorithm converges

very quickly. Fig. 5.4 shows the maximum queue lengths udiiféerent values of\; with 95%

confidence intervals.

e Throughput Optimality
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Figure 5.5: A random wireless network with 10 links. The geuaodes are transmitters, and the
round nodes are receivers.

The network is unstable under the worst-case maximal sd¢ihgdwhich can be clearly ob-
served by the very large queue lengths. On the other handethrk is always stable under
maximal scheduler with the optimal priority. In fact, forigitopology, the optimal priority
scheduling scheme is globally optimal, since one can egsiify thatysp = 1. Thus, we can

obtain significant throughput improvement by properly opting the priorities.

e LQF Scheduling

The network is stable under LQF scheduling. In fact, it cashmmvn that LQF scheduling is
throughput optimal for such topology, due to the ‘local pogl condition [68]. In general,
the LQF scheduling can achieve quite good throughput padace, at the expense of fre-
quent update of global priorities. Compared to the LQF sulieg, the static priority based
maximal scheduling can achieve similar throughput perforoe, with smaller scheduling

overhead.
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5.4.2.2 Random Topology

We next consider a random wireless network with 10 links, sehoommunication graph is
shown in Fig. 5.5. To construct the interference graph, veeela guard zone [50] around the
receiver of each link, so that two links form an edge if onesmsmitter is inside the guard zone as-
sociated with the other. As a benchmark, we also simulategtimal max-weight scheduling [11].
In order to demonstrate the convergence and sensitivityeobhline priority assignment algorithm,
we consider slowly converging arrival processes as shoviign 5.6. All arrival processes have
similar shape with different ‘phases’, and converge ontgraf0* time slots. Fig. 5.6 also shows
priority updates at the corresponding links. One can glealtkerve that our approach not only can
quickly adapt to the empirical arrival rates in an online mam but also is robust against the esti-
mation errors, since the priorities change very infredyentith significantly oscillating empirical
arrival rates. For this network, the maximum degree of theriarence graph i, and the final
priority assignment has levels. Fig. 5.7 shows the maximum queue lengths dfiértime slots
with 95% confidence intervals.

Remarks:

e Throughput Optimality

Maximal scheduling with optimal priority achieves essalhfi the same maximum uniform
throughput as the max-weight scheduling, although witdamueue lengths. This is in
sharp contrast with the worst-case maximal schedulingrevtiead hocchoices of maximal
schedules result in significant loss of throughput. One eailyeobserve that the maximal
scheduling can only achieve a maximum throughpu6.6f, whereas the optimal priority
achieved).25. Thus, we conclude that we can achieve significant througimpprovement
by choosing the priority vectors carefully. Further, ndtattthe max-weight scheduling has
very high computational overhead. Thus, the optimal pgidsased maximal scheduling can

achieve essentially the same throughput with much lowepbexity.
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e LQF Scheduling

The LQF scheduling also achieves the network stability fbaaival rates, with smaller

queue lengths than the optimal static priority. Howeveis th achieved at the expense of
more priority computation overhead associated with chargegueue lengths. Note that
it is possible to design similar multi-slot LQF (such as fheslot updates in this paper) to
further reduce the priority update overhead. However, Lt@ie schemes typically incur
larger overhead than our approach, since the queue lengamge more significantly than
arrival rates in general. One can clearly observe this in Bi§, where the static priorities
in the online approach change very infrequently. More iptdénvestigation of the overhead

and sensitivity issues will be addressed in future research



CHAPTERG

CONCLUSIONS

This thesis presented a general scheduling framework isigdlynetworks, which covers a diverse
range of important CPS applications. In the literature hsG®S applications were modeled and
analyzed independently in the context of specific appbeesti such as packet scheduling in wireless
networks, EV charging in smart grids, and workload scheduin data centers. In this thesis, we
showed that they can all be addressed in a unified manner, ardkgigned general scheduling
schemes that can be applied to many applications. In thigstehave provide a summary of the

thesis and discuss future research directions.

6.1 SUMMARY

We started this thesis by proposing the general abstraedstihg problem in the context of
PhyNets. We introduced the physical factor graph and theejng system model, and formulated
the general scheduling problem as a stochastic optimizgtioblem. We then demonstrated broad
applications of this general scheduling formulation tcedbe research areas.

We then considered the design of optimal scheduling alynst We first focused on the cat-
egory of dynamic regime, where the system modes in the CP&ehandomly over time slots.

In such case, we proposed augmented max-weight algoritlihish choose schedules myopically
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in each time slot based on the current queue length infoomatiVe showed that, in the case with
optimal cost knowledge, a virtual cost queue based maxweilgjorithm can be used to achieve
both asymptotic cost optimality and rate stability. We glsoposed a ‘pick-and-compare’ version
of the augmented max-weight algorithm, which has low coxipleand is easy to be implemented
in a distributed manner, using average consensus teclmigoethe case without knowledge about
optimal cost, a Lyapunov optimization based max-weighb@dgm can also be used to achieve
optimal cost asymptotically. Finally, augmented max-via€iglgorithms were investigated for the
coordinated EV charging problem in power systems.

We next considered optimal scheduling in the quasi-statiome, where the system modes re-
main unchanged for the scheduling problem. In this casse, fiossible to design more efficient
scheduling algorithms by utilizing the quasi-static nataf the system. Inspired by the celebrated
simplex algorithm, we proposed a simplex scheduling schevh&ch chooses max-weight sched-
ules among the set of ‘basic’ schedules. Since the set of lsakedules is ‘sparse’, the simplex
scheduling can be implemented in a distributed manner wsirgage consensus techniques. Fur-
ther, we showed that the basic schedules can be solved dyemmoax-weight problem. We proved
the asymptotic throughput optimality of the simplex scHeduscheme with stochastic job arrivals.
We finally applied the simplex algorithm to the important lgagion of packet scheduling in wire-
less networks, and demonstrated that it can be implementadiistributed fashion, using average
consensus and distributed CSMA mechanisms. Simulatiartseshowed significant steady-state
delay reduction over the throughput-optimal distributeslMA schemes.

Finally, we investigated the design and analysis of submgdtischeduling algorithms. In this
thesis, we focused on the class of maximal scheduling altgos, which only require coordination
of local user nodes, and therefore have low complexity aacasy for distributed implementation.
We analyzed the throughput performance of maximal scheglulith PhyNets and proposed a
lower bound on the stability region. We also showed that tlagimal scheduling algorithm can

achieve a certain fraction of the optimal throughput regidrfe then investigated the performance
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improvement of maximal scheduling for packet schedulingimeless networks, by utilizing static
priorities. We analyzed the stability region associatethany fixed priority, and showed that the
optimal static priority can be computed online with low cdaxgty. We showed that the combined
priority assignment and maximal scheduling approach aehiigamatic throughput improvement

over conventional maximal scheduling algorithms.

6.2 FJUTURE DIRECTIONS

We next point out several future research directions as meation of this thesis work. It
should be emphasized that research on CPS is a huge andsicifghdary topic, which covers
many domains and a diverse range of applications. Thus, partcular problem instance, it is
important to adapt the general scheduling algorithms dised in this thesis to the structure of the

problem. We point out several future research directios$olows:

e Incorporation of prediction information

For many CPS applications, it is possible to obtain certagdigtions about future system
modes and other dynamics, perhaps within a certain timegémithe near future. For ex-
ample, for power systems, it is typically assumed that geftad predictions or renewable
generation can be obtained, using historical data or weptkdictions. Itis possible to utilize
such information to improve performance, such as redudtiatelay. It is an interesting and
challenging research direction to generalize the schegldchemes in this thesis with pre-
diction information, and compare its behavior and perforceawith existing research results,
such as computationally expensive dynamic programmingdB8euristic model predictive

control methods [89].

e Distributed implementation

Distributed implementations are crucial for certain CP®ligptions, in particular for the

ones without a central coordination entity. For the genscheduling problem with PhyNet
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considered in this thesis, it is very promising to develogtributed algorithms, due to the
graph sparsity of the physical plant. The detailed desigh amalysis, on the other hand,
may depend heavily on the specific structure of the apptinafror example, for the simplex
scheduling in wireless networks in Chapter 4, the distabdigcheduling is implemented with

a combination of average consensus and distributed CSMAamézm.

e Delay and QoS issues

The analyses in this thesis focuses on asymptotic througigriormance, which are based
on a stability approach, assuming that all buffers haveiteficapacity. Such an assumption
may not be true for certain CPS applications, where the buaifey have only finite capacity.

Thus, it is also very important to provide rigorous guaraaten delay performance, or other
metrics with finite buffers, for these applications. It isiarportant future work to extend the

design and analysis of the scheduling algorithms to addhesdelay and QoS issues.



APPENDIXA

ANALYSIS OF THEHYPERGRAPHINTERFERENCE
MODEL FORWIRELESSNETWORKS

In Section 2.4, we introduced a hypergraph interferenceeinfmat packet scheduling in wireless
networks, as one example of the physical graph model for ¢inerml scheduling problem in CPS.
Since the hypergraph model is an approximation of the SINRefhadhis chapter provided quanti-
tative analysis of the modeling accuracy using random nddsvaVhereas the main purpose of this
chapter is to analyze the approximation accuracy versushuminplexity tradeoff for the hyper-
graph interference model, we hope that the same modelimdysas and design philosophy can be

also extended to other CPS applications with physical fagrtaph approximations.

A.1 OUTAGE ANALYSIS OF THEHYPERGRAPHMODEL

The hypergraph interference model allows more accuratdlexitle modeling and control of
interference, as compared to the binary interference gragtel. In this section, we demonstrate the
modeling accuracy of the locally constructed hypergrapkehby analyzing its outage probability
in random infinite networks, where the nodes form a homogené&wisson Point Process (PPP)

[90]. We first describe the random network model.
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A.1.1 Random Network Model

We consider the Poisson random network model [91], whereghefcontendinghodes form a
homogeneous PPP on an infinite two dimensional plane. Thilehi®widely used in the literature
of wireless network analysis, since it is tractable, allmgvivaluable insights into the behavior of
large-scale networks. By the Slivnyak’s theorem [90], wsuase, without loss of generality, that
there is a receiver placed at the origin. We further assuitealhtransmitting nodes transmit with
equal powep, as is common in 802.11 networks. We assume that the chansdbject to Rayleigh

fading. Thus, the received signal power at the center recean be expressed as
Py = phody*, (A1)

whereh is the power fading coefficient, which is exponentially dizited with mean 14, is the
length of the center link, and is the path loss exponent. We assume that SINR is an appepria
metric of performance, and allow the system to be Directu®age Spread Spectrum (DSSS), due
to its capability in handling non-trivial levels of multiessinterference in wireless networks. Thus,

a packet is received successfully at the center receiver if

phodo_a > i
No+ 3 jeq Phjllzil~* = M’

(A.2)

where N is the received noise power over the entire bandwidtls the set of transmitting links,
x; is the location of the transmitter of a transmitting lipnkand 7 is the spreading factor of DSSS
(M = 1in non-spread spectrum systems).

Due to the interference constraint, the set of actual sdedduansmitters i is a subset of
the contending node set. In fact, the distribution of th@gnaitting nodes is quite complicated,
which depends on various factors, such as the stochastietpaaival processes, channel fading,
and scheduling algorithms. In this paper, in order to maleahalysis tractable, we apply an
approximation by assuming that the set of transmitting sdagi@lso a PPP with a smaller density

1, which is obtained by proper ‘thinning’ of the original PMN®te that, strictly speaking, the set
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of transmitting nodes should be separated by a certainndistan which case a hard-core point
process [90] is more suitable. However, it has been obsdhatdhe PPP model can still achieve
very accurate approximation [91] on the distribution of ithierference, especially when the guard
zone sizes are relatively small. This has also been verifiedifulation results, in the case of

graph interference models (see details in [50]). We nextyaaahe outage performance under the

approximate PPP model.

A.1.2 Outage Analysis

In order to explore the accuracy of the hypergraph model, sgeirae that the transmission
densityu. under the hypergraph model is as follows. A hypergraph wigximum hyperedge size
K can always guarantee that the following approximate ‘lamatage probabilityP! , at the center

receiver is bounded by

hody ¢ 0
Py = P( Pt <)<e (A.3)
M Ny + S byl e T M

wheree is a positive constanty; is the location of the-th nearest transmitting node, ahg, is
its corresponding power fading coefficient. This is becaheenypergraph model approximates the
total interference by the sum interference from the nedtest transmitters. Further, note that such
an outage bound can be easily achieved by a hypergraph withma hyperedge siz&’, since
if (A.3) fails to hold for a particular transmitting set casting of K links, one can simply form a
hyperedge to exclude such a transmission scenario. Fimaltg that by choosing an appropriate
outage bound, the transmission densijy can be controlled.

Since the approximated ‘local’ outage probabilij, only considers a subset of interfering
links, we are interested in its approximation accuracy \pect to the true outage probability at

the center receiver, which is defined as

phody " <2
No+ 322 phgllzpgll—e ~ M7~

Pout = P( (A.4)
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The key result of this section is the following theorem, whigves closed-form solutions to the
outage probabilities® ; and Poyt.
Theorem A.1.1. The outage probabilitie®.,, and Py can be expressed as follows:

l _ 0 o 2(:u77x2)K —pumz?
Py = 1—exp(—M—n)/ TR —————U(x)e " drx (A.5)
> 2n/a

0 0
Pout = 1—eXP(———M7ng(—> sn(27/a)

i - ) (A-6)

wheren = pd,“ /Ny is the Signal to Noise Ratio (SNR) at the center receiver, and

v 2Mratl K—1
v = (| e s am®)

In order to prove the theorem, we first need to prove two lemmagine the ‘local’ interference

(A7)

contributed by the nearesf — 1 transmitting nodegjo.(KX — 1) as follows:

Tioc(K Z phil(l|z g |])- (A.8)

We have the following lemma describing the distribution/jgf( K — 1):

Lemma A.1.1. The Moment Generating Function (MGF) Bd.(K — 1) can be expressed as fol-
lows:

> 2(pma?)K -
D foo(—1)(8) :/0 W‘I’(@ﬁ M da, (A.9)
wherel'(K) is the standard Gamma function
I'(K) = / eX e~y (A.10)
0
Proof: Denote R, = ||zl as the short-hand notation for the distance of A nearest

transmitting node. The MGF dfioc(K — 1), conditioning on the event thatx = rx, can be

expressed as follows:

E(esI|OC(K—1)|RK =rg) = E(e s 325 phyy IRK =rg) (A.12)
a K —a -
@ / T (A12)
0 Tk
) /’”K 2ratl K-1
= _—dr (A.13)
( o % (r*—ps) )
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where stef(a) is because, conditioned there beiRg— 1 nodes in the disk centered at the origin
with radiusr g, theseK — 1 nodes are independently and uniformly distributed insidedisk, due
to the property of PPP [90]. Stép) is because the fading coefficielis exponentially distributed

with meanl. Further, according to [92], the distribution &fx is as follows:

_ 2(pma)K e
fRK(ZL') = WE s (A14)
and therefore, the lemma holds after taking the expectatitnrespect tof, (). [ |

Similarly, denote the total interference received at theterereceiver agiot = .= (||} ])-

The following lemma describes the distributionIgf:.

Lemma A.1.2. The MGF of the total interferencgg; is

2 27/a
) = _ —sp)a——"L"_ ), A.15
Io(8) = exp (= pm(—sp) n(2r /a)) (A.15)
Proof: This is a standard result. See, for example, [91]. [ |
Based on the above lemmas, we are now able to prove the theorem
Proof of Theorem A.1.1By definition, we calculate the local outage probability as
phodo_a 0
Py =P = A.16
out (NO+—[|OC(K_1) < M) ( )
dgo
- IP’(hO < m(No + Tioe(K — 1))) (A.17)

a

L g {P(ho < jf;i x (No+ Too(K = 1) hoe(K 1))} (A.18)

(b) dgo d*o

= 1—Epx—nfexp (- MLp.noc(K —1))} x exp(—M No) (A.19)
(0 dgo dgo

= 1- q)lloc(K_l)(_Mp) exp(—MpNo), (AZO)

where stefia) follows from the law of total probability, stefh) is because the random variatile
is exponentially distributed with mean 1, and stepfollows from the definition of the MGF. Thus,

the claim holds from noting that = pd; /Ny and applying the result in (A.9).
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Now, using a similar argument, the true outage probabifify can be expressed as follows:

Pt = P(]’;ZLOTC@; <) (A.21)

= P(ho < j\lgi(No + Iiot)) (A.22)

— 1= i fexp (— 50 fu)exp(— 30 5) (1.23)

— 1 () exp(- 5 o), (.29

from which the claim holds after applying (A.15). [ |

A.2 NUMERICAL RESULTS

We now illustrate the interference approximation accu@die hypergraph model by compar-

ing the above two outage probabilities using numericaluatmons.

A.2.1 Infinite Random Networks

We next calculate the two outage probabilities in Theorefn A.By choosing parameters as in
Table A.1, we plot the numerical results in Fig. A.1, where tutage probabilities are shown in
both cases, as functions of the transmission densiyccording to (A.5) and (A.6), under differ-
ent path loss exponents. In the figur& -Hypergraph' refers to the hypergraph whose maximum
hyperedge size i&. Note that since the hypergraph model always underestintiageinterference,
we haveP! ,, < Py for all transmission densities.

We have the following remarks:

e Approximation Accuracy

Compared to the graph model, the hypergraph model alway®dprates the true outage
probability with better accuracy. For example, when= 1072 anda = 3, the true out-
age probability is around.22. However, the outage probability approximation by the grap

model is only around.15. Therefore, roughly speaking, arouBd% of the outage events
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Figure A.1: The numerical results of outage calculationstlie infinite two dimensional random
wireless networks with Rayleigh fadingz) shows the case with the path loss exponent 3, and
(b) shows the case with = 4.
are ignored by the graph, due to its binary interferenceraatu this case, the 4-Hypergraph

has a better approximation of around9. Thus, by considering the sum interference, the hy-

pergraph model can effectively capture more outage eventstherefore reduces the outage
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Table A.1: Parameters for Numerical Calculations

Symbol Description Value
do Center link length 10m
0 Target SINR | 3 =4.77dB
n SNR 20dB
M Spreading factor 16

probability.

e Accuracy versus Complexity

The approximation accuracy of the hypergraph has a ‘dimingsreturns’ property, which
can be seen by observing the fact that, the outage apprasimetror improvement decreases
as the maximum hyperedge si&eincreases. On the other hand, the construction complexity
of the hypergraph increases exponentiallysin Thus, one can trade-off some approximation
accuracy by only considering properly small hyperedgessize that the sum interference is

approximated with low complexity.

e Effect of Path Loss Exponent

The modeling accuracy of both graph and hypergraph modgisoves when the pass loss
exponent gets larger. In particular, wher= 4 and P,y = 0.3, all hypergraphs can capture
aboved5% outage events, and the graph can model ar@jfitloutage events, as can be seen
by computing the raticPéut/Pout. On the other hand, for the cage= 3 and Pyt = 0.3, the
ratio is only aboui85% for hypergraphs and abo@t% for the graph. Such improvement
with larger values of: is because, when grows larger, the contributions of the far-away
interferers are much smaller as compared to the near-bgféndes, and therefore, the local

interference approximation becomes more accurate.
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A.2.2 A Finite Random Network

We next consider the performance of hypergraph model in gefigindom network, where
the topology is shown in Fig. A.2. In the figure, 40 links aréformly distributed over a two
dimensional plane. The square nodes are transmittershamdund nodes are receivers. We assume
that the link lengths are equal. We further assume that feetedf fading is properly handled using
diversity techniques, such that all random coefficidiits} in (A.2) take the constant value The
SNR at the receivers are the same for all links. The paramassd in the simulation are shown in
Table A.1.

The hypergraph is generated according to the descripti@eation 2.4, with the modification

that (2.16) is replaced with
Si 0
k—1 <0
Ni+Y¥ L M
due to the DSSS physical layer. Further, we assume that mysippf a hyperedge is a hyperedge,

(A.25)

so that the hypergraph specification is not redundant.

In the simulation, we assume that the packet arrival preseaee i.i.d, with Bernoulli distribu-
tion and a uniform arrival rate. We simulate both hypergréphich includes graph) and the global
SINR based scheduling algorithms. We consider random nabdeheduling for the hypergraph
case, which adds the links to the schedule according to analydgenerated order in each time
slot, such that a back-logged link is scheduled if there i©yymeredge constraint violation when
it is being considered. We also consider the random maxioteduling under the global SINR,
which we denote as SINR-MS. As an upper bound, we simulat@pd¢nfermance of SINR based
LQF scheduling (SINR-LQF) in [93], which adds the links aaling to the queue lengths order,
subject to the physical SINR constraint (A.2). Finally, trecket reception at a transmitting limk

is assumed to fail if the true SINR constraint (A.2) is vielht
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Figure A.2: The topology of the random network with 40 links used for diaion. The square nodes are
transmitters, and the round nodes are receivers.

A.2.2.1 Throughput

The total queue lengths under different arrival rates amevehin Fig. A.3. The results are
averaged over 30 independent simulations, where eachationikconsists o10? time slots. One
can detect the boundary of the stability region (the maxinunifiorm throughput) by identifying
the point at which the total queue length begins to increhsepdy. For example, in the case of
a = 3 and = 4dB, the graph model achieves a maximum uniform rate.22, the hypergraph
models achieve abo0t24, the SINR-MS achieves arouic26, and the SINR-LQF has the largest
rate, which is aroun@.30. In the case of random maximal scheduling, the SINR baseselisding
algorithms achieve arountD% throughput gain over hypergraph based algorithms whea 3
and = 4dB. The gain is around% whena = 4 and 3 = 4dB. Such throughput gain is mainly
because of thperfect accuracyf the SINR model, which results in zero packet collision. {Oa
other hand, this is achieved at the expensaativork-wide user node coordinatiodue to the global

nature of the SINR model. In this sense, the hypergraph bedwetiulers are more attractive, due
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Figure A.3: The simulation results of the maximum total queue lengththa40-link random wireless
network, with the path loss exponenand the threshol@ values shown in each figure.

to the localized user coordination during scheduling. Téiggn throughput performance of SINR-
LQF over SINR-MS is also expected, since the queue lengthey anformation is used in the former
case, which requires higher scheduling complexity.

In all cases, the hypergraph based scheduling algorithinie\ac larger throughput than the
graph based scheduling. Note that due to the constructamegure in (A.25), the set of hyperedges
is always a superset of the set of edges, and therefore, itsewy like the hypergraph ‘should’
achieve a smaller capacity than the graph, due to the mondécted rules. However, since the

graph model is a binary approximation, the actual througlguveduced by the packet collisions
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caused by its ‘aggressive’ transmissions. Thus, even ththeg hypergraph models are relatively
‘conservative’, since they place more constraints acogrth the sum interference, overall they can
still achieve a better throughput as compared to the graptemo

Finally, by comparing the throughput results under différ& one can easily observe the ‘accu-
racy versus complexity’ trade-off for hypergraph modetstHe simulation results, the throughput
performance for hypergraph schedulers improves with tafgelue to more accurate interference
approximation by adding more links i, so that the number of packet collisions is reduced. Note
that the throughput gain also dependsagnvhere large implies more accurate interference ap-

proximation for the samg, since the contribution from far-away links gets smaller.

A.2.2.2 Outage Probability

The simulation results of average outage probabilitiessa@vn in Fig. A.4 with different
arrival rates, under different path loss exponemtnd threshold3 values. Note that the results of
both SINR based scheduling are not shown in the figure, asiibittyhave zero outage.

Remarks:

e Outage Probability

The hypergraph model achieves a significant outage pratyatgiduction, as compared to

the graph model. For example, wher= 3 and = 4dB, the average outage probability for
the 3-Hypergraph is aroun@02 under arrival raté).2. On the other hand, under the graph
model it is around).05. Thus, by modeling theuminterference, the hypergraph model can
reduce the packet collisions very effectively. Note that tlutage probability curves have
slower slopes when the arrival rates are large. This covretgpto the case when the network
is unstable. In such a case, the number of packet transmisisitess sensitive to the increase

in arrival rates.

e Outage Capacity
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Figure A.4: The simulation results of average outage probability in48dink random wireless network,
with the path loss exponeatand the threshol@ values shown in each figure.

If we consider theoutage capacityi.e., the maximum achievable rate under certain outage

probability constraint, the hypergraph interference ni®dan have much larger gain as com-

pared to the graph model. For example, under the outage lglitpaonstraint 0f0.02 when

a = 3 andf = 4dB, the 4-Hypergraph can support a maximum rate of ardutdwhereas

the graph model can only achieve about5. Thus, by considering the sum interference, the

hypergraph model achieves arouws increase in the outage capacity as compared to the

graph model.

e Accuracy versus Complexity
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The outage probabilities of hypergraph models decreasa tieethresholds increases, due
to the improved approximation accuracy by considering ntioks in a link’'s neighborhood.
For example, whem = 3 and3 = 0dB, all hypergraph models have an outage probabil-
ity of 0.03 under arrival rat#).2, as compared to arourtd02 when = 4dB. On the other
hand, the threshold has no effect on the graph model, due to the binary interberem-
ture. Further, note that whehis small, all hypergraph models achieve very similar outage
probability results, in which case the 3-Hypergraph is radteactive, due to its lower coor-
dination complexity. In general, increasing the threshdlchn effectively reduce the outage
probability by considering the interference from farthensmitting links, but at the expense
of more coordination overheads among links. Finally, thieiotion in the outage probability
decreases as the hypergraph sizes increases. This ‘dimimimarginal returns’ property,
again, confirms our observation that in wireless netwolitkes,majority of the interference is
from a few nearby transmitting links. Therefore, a hypepbravith a small hyperedge size

(e.g., 4-Hypergraph) can model the interference with gamdicacy.

o Effect of Path Loss Exponent

When the path loss exponedtgets larger, both graph and hypergraph models have smaller
outage probabilities. Further, the gap between these twidelnds also smaller. This is
the same conclusion as the numerical results for infinitdaannetworks. The intuition is
that, the interference signals get more attenuation gets larger, and therefore, is more
likely to be dominated by a few nearby transmitting linkeca the faraway transmissions are
attenuated more severely than the nearby transmissions, ftte accuracy of both the graph

and hypergraph models become better, and the differenegertthe two is also smaller.
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PROOFS INCHAPTER 3

B.1 CONSTRUCTION OFFLUID LIMITS

This section presents a brief introduction to the theory widflimits. For details, we urge
interested readers to read [74, 75] and the referencesrth@iiee construction of a fluid limit is as
follows. Given the discrete-time queueing system in SacBd, we first obtain a continuous time
system by extending the support frddto R, using linear interpolation. For a fixed sample path

w, define the following fluid scaling:

(1) = L2 ®.1)

wherer > 0 is a positive scalar, and the functigfr) can beU;(-), A;(+), Yi(+), Zi(-), T(-), Ts(-)
andﬁ‘j(-). From the Assumption 2.2.1 and Assumption 2.2.2, and thetfiat eachA; is a finite
set, it is not difficult to verify that these functions arefaninly Lipschitz-continuous [94]. That is,

there is a positive constaf > 0 such that
lg"(t+0)—g"(t)] < Ko (B.2)

foranyr,t > 0 andé > 0. Thus, these functions are equi-continuous. Accordindn¢oArzéla-

Ascoli Theorem [94], any sequence of functidigé~ () }5°_, contains a subsequenfe ™« (¢)}32 ;,

118
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such that w.p.1, we have

lim sup [g™ (v) - g(r)] = 0 (B.3)

k=00 7¢(0,4]

whereg(t) is a uniformly continuous function, and therefore diffdiable almost everywhere [94].

We can then define any such limit as a fluid limit.

B.2 PROOF OFLEMMA 3.1.1

Suppose the rate stability does not hold for usefhen, there is € V and a sequencgr, }

such that
lim Ui(rn)

n—oo Ty

> €, (B.4)

for somee’ > 0. Now, as all functions are equi-continuous, according &dbnstruction of fluid
limit, we can find a subsequen{e,, }, which converges to a fluid limit. Thus, according to (B.4),
we have

Uz(l) > 6/, (B.5)

which contradicts the assumption that(t) = 0 for all t > 0. Thus, we claim that rate stability

holds for queud/;(n) in the original stochastic system.

B.3 PROOF OFLEMMA 3.1.2

Since the lemma claims the result holds for both algorithaesprove them separately. We first
prove the case with Algorithm 3.1.1.

Proof: (Part )

Lett > 0, s € S anda € C(s) be given. Assume that thered$ € C(s) such that

ZU}(t BZ@ () fi(an;; sn;) <ZU ) —BZ@ (t) f;( 0‘/\/ SN )- (B.6)

2% jeJ % jeJ

Since all functions in the fluid limit are uniformly continus, there is’ > 0 andd > 0 such that
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foranyr € (t —d,t + d), we have

D Ui(m)ai = BY - @5(7)filan;ssag) < O Ti(m)ag — B @5(7) fi(ddyssn;) — €. (B.T)
=%

Y JjeT JjeET

Thus, consider any convergent subsequence for the fluitl lithere isK such that for any: > K,

we have

S U s~ B () g )

S JjeET

Tn Tn El
<Y U () = B @ (1) fi(dly s sv,) =5 (B.8)

i€y jeTJ

foranyr € (¢t — 6,t + J). According to the definition of fluid scaling, this impliesath

ZUi(T 5Z<I> f] O‘stN)

SY JjeET

T, €

<D Uiy = 8 ®5(n)fi(ady;isn;) — 5= (B.9)

i€y JjeJ

foranyr € (ry,, (t —9),r,, (t +9)). Thus, according to the augmented max-weight scheduler in
(3.5), the control actiorv is never chosen during the time period,, (t — 6),ry, (t + 0)), from

which we conclude that
(T) ™ (t+0) = (T) ™ (t — 6),Vk > K, (B.10)
which further implies that, after taking — oo, we have
Tt +6) =Tt —6). (B.11)

Thus, the lemma follows from the fact that ﬁg(t) >0. [ |
We now consider the case with Algorithm 3.1.2.
Proof: (Part I1)

Lett > 0, s € S anda € C(s) be given. According to the assumption, there is a schedule
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ande’ > 0 such that

Y Ui(t)ai = B ®;(t) fi(aw;i sar)

i€y JjeJ
< Uit)a; — B ®;(t)fi(an;sn,) — €. (B.12)
ey JjeJ

Now we defineB3 as the set of schedules such that B implies thate’ € C(s), and that

Y Ui(t)ai = B ®;(t) fi(aw;i sar)

i€y Jjeg
<> Tilt)ai = 8 8;(t) filaly;:sn;) — (B.13)
ey JjeT

We can choosé€ sufficiently small so that the cardinality & is maximized. ThusB is the set of
schedules whose weights are larger thawy at least’. Note that3 is not empty. Further, since all
functions in the fluid limit are uniformly continuous, these) > 0 such that for any € (t—4d, t+0)
anda’ € B, we have

D Ui(r)ai — B @5(7) f5(an;s s7)

i€y JjeJ

~

<N Uil — 83 8;(n) filaly;isn,) — 5. (B.14)

2
i€y jeJ

Thus, consider any convergent subsequence for the fluid lithere iskK” such that for any: > K,

we have

S UM (e — B0 (7) filag; sw)

i€V JjeJ
/
<STUE ()~ B @ () £l swg) — fz (B.15)
1S JjET

foranyr € (t — 0,¢t + 0) anda’ € B. According to the definition of fluid scaling, this impliesath

D Uir)ai = B> 05(7) filaw;i swy;)
IS JjeJ
/

<D Uim)al = B 05(n) il isn) — 4= (B.16)

Y JET
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foranyr € (1, (t — 0),m, (t + 9)). This implies that, for sufficiently largé, when Algorithm
3.1.2 chooses any schedulelrduring the time interva(ry,, (t — 9), ry, (t +0)), the schedules will
never leave the séi if the system mode is, sincel5 is maximal. Therefore, the schedulewill

never be chosen again during the same time interval. Nowalefin
Ap =T (rn, (4 06)) — T (rny, (t = 9)) (B.17)

as the total number of time slots that schedulés chosen during the time intervat,, (t —

d),rn, (t +0)) when the system mode és We will show that

A’“(S) > §o) = 0 (B.18)

Tny,

P(lim sup (

k—o00

for anyédy > 0, from which we can conclude that the following is true:

. A . Ay 1
P(1 = = 1-PU_,{l > — B.19
(1£S£p< rnch) 0) (Um=11 1£S£p( rnch) = 1) (B.19)
= 1, (B.20)
which implies that, in the fluid limit, we have
TX(t+6) = Tt — 6), (B.21)

from which the lemma holds. Now we prove (B.18). We now fix thetem modes and a schedule

o/ € B. Define the ‘hitting time’H,, as the total number of time slots that have passed since time
slotr,, (t — §) before Algorithm 3.1.2 randomly generates scheddléor the first time when the
system mode is at Note thatH}. only counts the time slots when the system mode iEhus, once

o/ is generated for the first time, schedulés never chosen during for the rest of the time interval,

as the schedules will be restricted to the8eWWe now have
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123

and it is sufficient to prove that

k)z&ﬁ:o

P(lim sup <2r 5
ng

k—00

Without loss of generality, we assume that > k/266,. Define the event;, as

Hy
= M > .
A =A{w 5 5 2 5o}

Nk

We have
2rn k 1 60

P(Ak) < (1 — 60)

(1- eo)k,

IN

where(a) is because of the random generation in Algorithm 3.1.2. Tiveshave

S P(A) < D) (1-e)

=1
< )

k=1

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

from which we conclude that";- , P(A) converges. According to the first Borel-Cantelli Lemma

[95], we have
P(limsup Ax) = 0,
k

from which we conclude that (B.23) holds.

B.4 PrROOF OFLEMMA 3.1.3

(B.29)

Before proving the stability results in the fluid limits, weed to prove some technical lemmas

Firstly, the following lemma shows that all external stogtimprocesses are deterministic:

Lemma B.4.1. The following are true for any fluid limit:
Li(t) =\ YieV,t>0

A
Fi(ty=fr VYjeJ,t>0
Vse S, t>0.

(B.30)
(B.31)
(B.32)
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Proof: Itis easy to verify (B.30) from the assumption of SLLN in (R.8B.31) is because of the
assumption in (3.1) and the definition in (3.2). Finally,3B) is because of the SLLN assumption
in (2.8). [

The following lemma shows the properties of the idling psses in the fluid limit. That is, the

cumulative idling processes remains constant when theeguge nonzero.

Lemma B.4.2. The following are true for any fluid limit:

() =0 ifU;(t)>0,VieV (B.33)
(t)=0 ifd;(t)>0VjeJ (B.34)

<

Proof: We only prove the first case. The proof of the second one fallawidentical procedure
as the first one. Assume thé(¢) > 0 for somei € V andt > 0. Since all functions in the fluid

limit are uniformly continuous, we can find> 0 andd > 0, such that the following is true:

Ui(t) > e, VT € (t —0,t+9). (B.35)

Now, we consider any subsequence which converges to theliftoitd Due to the definition of

uniform convergence on compact sets in (B.3), there is & laogstanf< such that

U?”nk (7_) 2

2

%,we (t—06,t+0), k> K. (B.36)

Recalling the definition of fluid scaling, this implies that

Mzg,we(f—é,tw),szc (B.37)

Nk

Thus, for large enough, we have
Ui(r) > 1 > amex e e (p, (t— 6), 10, (E+ 0)), (B.38)

5 =
whereo;"** is the largest job departure rate in each time slot for us€hus, the queue of usérs

always non-idling during the time intervat,, (¢t — ¢),ry, (t + 0)). Therefore, we have

Vi (4 0)) = Yi(ray (t - 8)), (8.39)
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which implies that, after fluid scaling and takikg— oo, we have
Yit +0) = Yi(t - 4). (B.40)

Finally, the claim holds following the fact that(¢) is a non-decreasing function. [ |
We are now ready to prove the lemma.
Proof of Lemma 3.1.3Due to the feasibility assumption @PT-F, it is well-known that the

‘arrival rates’ should be inside the convex hull of the déy@r schedules, i.e.,

A< D pbagvi (B.41)
SES ael(s)

o= )0 Y usfilangiswg), Vi, (B.42)
s€S ael(s)

where the set of coefficientg.$ } satisfy

ue > 0,Vs, « (B.43)
> ou=1,s. (B.44)
a€eC(s)

The proof is standard, see for example, [11]. Now, let a flumdtIbe given. Define the following

Lyapunov function:

L(t) = 3 SO0 + 5 (@502 (B.45)

i€y JjeT
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We calculate its drift as follows:

IN

—
INS

L(t)
S TOT) + 8y 5(0)Pi(t) (8.46)
i€y JjET
SUM(=X D Tr@ai+ i+ Vi)
eV s€S ael(s)
+85 @t ( 3 Tg(t)fj(%;%)_fwj(t)+zi(t)) (B.47)
JjeJ SES ael(s)
S Um(-X > TeWai+ )
i€y s€S ael(s)
8D 8;0(D Y T o) — F(0) (B.48)
JET s€S aGC( )
S00(-% ¥ et T 3 s
i€y s€S ael(s) s€S ael(s
8 8,0( Y Y T filansion) =D S nlfilan;isy;)) (B.49)
JjeT s€S ael(s) s€S ael(s)
=3 (@ - k) (D Uit — 8 ®5(0)fi(an;isw;)) (B.50)
s€S ael(s) eV JjeT
0. (B.51)

where(a) is because of Lemma B.4.2, afb) is because of the max-weight property proved in

Lemma 3.1.2. Thus, we havgt) = 0 if L(0) = 0, from which the lemma holds. [ |

B.5 PROOF OFLEMMA 3.2.1

In order to prove Lemma 3.2.1, we need to prove several teahlemmas first. We first provide

a bound on the single slot drift df(n).

Lemma B.5.1. The one-slot drift of.(n) satisfies the following under any control actiofn + 1):

AiL(n) < ) (Uin) + G)(Ai(n +1) = ai(n+1)) + 8 filan; (n+1);sp;(n +1))

i€V JjeET

£ 37 alG 4 SR P+ (P (8.52)

(1% (1% (1%
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Proof: For each usei € V, direct calculation shows that

%(Ui(n +1) +¢)? (B.53)
= LU~ il 1) ATn) + Aaln+ 1) + )’ (©.54)
= %(Uz<n)+cz)2+(U( ) +G)(Ai(n +1) — ai(n + 1) AUi(n))

+ %(Ai(n +1) —ai(n+ 1) AU (n))? (B.55)
<L)+ 6+ ) + A — il 1) + (0 4 G

+ %(Ai(n +1) — ai(n+ 1) AU (n))? (B.56)
< S(Uin) +G)* + (Ui(n) + G) (Ai(1) — ai(n+ 1)) + a"™¢;

+ %(A?a" + o) 4+ ()2, (B.57)

where the key stefr) can be verified as follows. Whei;(n) > «;(n + 1), it is obvious thatia)
holds, since}*** > 0 and¢; > 0. Thus, we only need to consider the case whigm) < «;(n+1).

In this case, we have

n) + ¢)(Ai(n + 1) — a;(n + 1) AUi(n)) (B.58)
= )+ G)(Ai(n + 1) — Ui(n)) (B.59)
= )+ G)(Ai(n+1) —as(n+ 1)) + (Ui(n) + G) (ci(n + 1) = Ui(n)) (B.60)
< )+ G)(Ai(n+1) — o (n+ 1)) + (o™ + G)af™. (B.61)
Thus, the lemma follows from the definition 6{~) in (3.39). ]

We next generalize the above bound from a single time slohéofiame withV time slots.
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Lemma B.5.2. The N-slot drift of L(n) satisfy the following for any control action profifex(n)}:

AnL(n) < Z n)+¢) Z in+7) —al(n+7))+Nm1+N2ﬁ2
% T=1
—|—5Zij(aNj(n—|—T);ij(n—l—T)) —|—NZO¢§MXQ, (B.62)
T=1jeJ 1SY

wherek, and k. are sufficiently large constants.

Proof: We carry out the drift analysis for a user= V in Lemma B.5.1 taV time slots and

obtain the following:

ST+ N) + G — 5 (Uin) + G (B.63)
= i (%(Ui(” +7)+G)* - %(Uz’(n +r=1)+G)?) (B.64)
=
¢ i(Ui(nw_ 1)+ &) (Ain +7) — agln+ 7)) (B.65)
=
F NaP™ G+ (AP 4 al™)? 4 N (o™ (B.66)
vy (i) + ) (Ailn +7) = asln+7) + (7 = DAPS(AP™ + ™)
=
+ Naj*™ ¢ + E(Amax a"™)? 4 N (af"™)? (B.67)
= ) +¢) Z (n+7) —ai(n+71)) + WA?“(A?“ + anex)
=
+ Noj"™ ¢ + E(A?ax QPaxX)2 L N (oRnax)2, (B.68)

where(a) follows from the bound in Lemma B.5.1, aifd) is because
Ui(n+ 1) < U;(n) + A" (B.69)

Therefore, the lemma follows. [ |
Note that the above bound holds for any control action prdfilgn)}. We next analyze the

specific drift of L*(n), which is the Lyapunov function under the optimal schedylpolicy for
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SCH-N. We have the following lemma:

Lemma B.5.3. The N-slot drift under the solution dCH-N for each framen can be bounded as

N
ANL () < =€ > (Uilnm +7 = 1) +G) + N D o™ ¢+ BN £, + Nig + N5y,
=14V %

wheren,,, = (m — 1)N, andks and x4 are sufficiently large constants.
Proof: We apply the solution t&CH-N to (B.62) and obtain

ANL () < =N Y (Ui(nm) + ) + BNfy + N Y oG + Ny + N%ky,  (B.70)
% %

where the ternB N £, is due to the fact thafw;(n)} is the optimal control policy. Now, note that
Ui(nm + 7) < Ui(nm) + 7A. (B.71)
We have

ANL*(nm) < _EZZ nm+T +<Z_7Amax)+5me
=1 €V
+ N oG+ Nry + N2k (B.72)
%
N(N +1
S S W 1)+ 6+ YN S gy

2 ,
T=14€V %

+ N oG + Nk + Nk, (B.73)
%

IN

from which the lemma holds. [ |
We are now ready to prove Lemma 3.2.1.

Proof of Lemma 3.2.1We first compute théV-slot drift with {«(n)} computed by Algorithm
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3.2.1, as follows:

N
ANL(nm) < DO (Ui(nm + 7= 1) + G)(Ai(nm + 7) = @i(nm + 7))
T=14€Y
) N
+ ﬁz Z filan; (nm =+ 7); 587 (M + 7))
T=1j€J
N AP+ g D_(AP 4+ a2 4 N (o)
eV eV eV
S S U + 7 1)+ ) Al +7) — s+ 7)
T=14ieVY
) N
+ ﬁz Z fj(af\/j (i + 7); 575 (i + 7))
T=1j5eJ
N
+N Z "G+ Z(A?“ax + )+ N Z(a?a")z (B.74)
eV eV eV

(®) N
< Z i(nm) +C’Z i +7) — (N, + 7))
i€V =1
+ N oG+ BN f, + k5N + kN (B.75)
%
(¢)
< —eN Z i(nm) +G) + BN+ N Z G 4 ks N 4 kg N2 (B.76)
% %
(d)
< —GZZ i(m +7— 1)+ () + BN
eV =1
+ N o™ + BN + ByN. (B.77)
%

(a) is because the control actier{n + 1) is the solution to the optimization in (3.29}) and(d)

are obtained by applying the following:
Ui(nm) — &1 < Uij(ng, + 7) < Ui(ngy) + 7AP, (B.78)

and(c) is becausga(n)} solvesSCH-N. [ |
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PROOFS INCHAPTER 4

C.1 PROOF OFLEMMA 4.1.1

Proof: We can write the equality constraints®CH-L as follows:

A A T A
= . (C.1)

17 o/ \y 1

It is not difficult to verify that the initial vertex as desbed by (4.6) and (4.7) is feasible. Thus, the

A
changes in the variablé2\z”', Av)” should always lie in the null space of the matfix
170

Given the new colummney, this implies that the existing coefficients should sattiiy following:

B A Ay Q@
Az ] =o. (C.2)
17 0/ \Ay 1
whereAz > 0 is the change of the scheduling variable associated withalecolumnone,. From

the first equality in (C.2), we have

Ay = —Azapew — BAy. (C.3)

131
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Multiplying both sides withi” B—! and noting that” Ay = —Az, we have

Az
@) Az T p—1
< (1 - - .
< g 1-1BW, (C.5)

where(a) is becausev,ey is by maximizing the function in (4.8), and thereby satisfies
1B anew > 1T B 1N, (C.6)

since\ is a convex combination of the columns 4f We now show thai\y < 0. Note that from
(4.12) we have

y=(1-~)B 1A (C.7)

Multiplying both sides of the above by and noting that”y = 1, we obtain

1Tp-y— 1 (C.8)
L=y

Thus, we can write the last inequality in (C.5) as follows:

1
Ay < Az(1-7)(1 - :) (C.9)
= —yAz. (C.10)
Thus, we conclude that,e, is a cost decreasing direction, and the lemma holds. [ |

C.2 PROOF OFLEMMA 4.1.2

Proof: Supposexnew = 0, then the solution to (4.9) is the same as the one associétiedhe
old vertex as specified by matri8. This contradicts with the fact that,e, is a cost-decreasing
direction, as proved in Lemma 4.1.1. Now, assume thaf > 0. Note that the cost reduction is at
least proportional tanew, according to (C.10). Since the objective function is badbelow, we
conclude thatey is finite. This only happens if some coefficientjimeaches zero for the first time,

so that certain inequality constraint in (4.9) becomesraciTherefore, the lemma holds. ]
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C.3 PROOF OFLEMMA 4.2.1
Proof: We first form the Lagrangian of (4.9) as follows:

minimizey, . 1 v+ 67 ((1 —7)A — By — anew?)
subjectto  1Ty+z2=1

y=0,2>0. (C.11)

Note that this is a linear programming problem where theateis(y”', 2)” lie in a simplex. We

further write the objective function as follows
Fy,2,7) = (1= 07Xy — 07 (By + anewz) + 67 A, (C.12)

Thus, given fixed(n), the optimal primal variable ify, z) can be obtained by choosing the column
in B or anew Which has the largest weight. This is is implemented in (.Rbw, consider the static
problem (4.9) as a convex optimization problem in variablenly. It is not difficult to see that
(1 —0(n)TA) is the sub-gradient of. Further, notice thaf(1 — v(n))A — a(n)) is a sub-gradient
of #(n), according to (C.11). Therefore, we conclude that the #lgoris a standard sub-gradient

method for a convex optimization problem from which the @mence result holds. [ |

C.4 PROOF OFLEMMA 4.2.2

Proof: For notation simplicity, we assume that one columBiis already replaced withney,
and that the coefficients are relabeled accordingly. We edd to show that at the the convergence
of {#(n)}, we have

(n)'B = (1 —~)17. (C.13)

Thus, at the convergence, all the schedule®ihave equal weights. Assuming (C.13), we then
have

0(n)a = (1 —~)1TB 1a, (C.14)
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from which the lemma holds.

Now we prove (C.13) as follows. Notice that the Lagrangian(#a9) is
fly,y) =1 —0TN)y — 6T By + 67\ (C.15)

Thus, if convergence is achieved, all columnsArshould have the same weight, since only the
column with the maximum weight will have nonzero coefficiartthe optimal solution, due to the

fact that the scheduling variablgdie in a simplex. Further, note that from (C.12) we have

f(n)tA =1, (C.16)
and the feasibility of (4.9) implies that
(1 —~)A = By. (C.a7)
Thus, we conclude that
1 = 0(n)TA (C.18)
_ 1 T
= 7= fy@(n) Yy (C.19)
- 9 47y (C.20)
L=y
@ _“% (C.21)
L=~
where(a) is because lies in a simplex. Therefore, the lemma holds. [ |

C.5 PROOF OFLEMMA 4.2.3

Proof: Since)\ is not changing and that the schedulg®ind aney Can achieve a non-positive
throughput gap, from Algorithm 4.2.1 we conclude that thedhzation of basic matrix3 in step 2

is never executed. Further, the column generation step2d)4s never executed. Notice that from
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(4.22) we have

1 Tn(t0+6) 1 7"7L(t0+6)
75 Ot +0)) — Bi{ra(to —))) = (1= 5 D=5 3 al).
n=ry(to—09) T=rn(to—9)
Since the sequend@(n)} is bounded, we conclude that
0 = nh—>ngo o be (0i(rp(to +0)) — 0i(rn(to — 9))) (C.22)
1 Tn(t()+6) R 1 Tn(t()+6)
= Jm {0-g Y kg X ) (€29
T:Tn(to—(;) T:Tn(to—(;)

from which the lemma holds. [ |



APPENDIXD

PROOFS INCHAPTERDS

D.1 PROOF OFLEMMA 5.2.1

Proof: It is sufficient to prove thafA;;} belongs to the sétV. Note that for the set of weights
{A;;} defined in (5.20), we hava;; > 0, A; = 0, andA;; = Aj; for all i, j € V. Further,
A;; = 0if < andj are not neighbors. Now, for any factor noélehat includes useir and any

maximal schedule: such thaty; = 0, we have

(@) ol
Z Aijozj > Z %I/ﬁ (D.1)
JEN JEN &
> Z Vijlia;>0} (D.2)
JENG
Q)
> 1, (D.3)

where(a) is because of the definition in (5.20), afig is because of (5.21) and the fact thats
maximal. Thus, we conclude that the matfi;; } belongs to/V, and therefore, the lemma holds

according to Theorem 5.2.1. [ |
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D.2 PROOF OFLEMMA 5.2.2

Proof: Let a useri € V be given. Since\ € R*, we assume that there is a schedulesuch

that A € R . For any such schedulet, consider the following ‘Lyapunov’ function

Li(n) = ﬁUi(n) + > AyU;(n) (D.4)
! JEN;
-~ ainn (T3(0) + Ai(n) = Di(m) ) + D~ Ay5(U;(0) + Ay (n) = Dy(n)). (©.5)

JEN;

Since the network is rate stable under the schedulgre have

lim Li(n) =0, w.p.1 (D.6)
n—o00 n
which implies that w.p.1,
ﬁAi(n) + > en; AijhAj(n) ﬁDz(n) + 2jen; BijDj(n)
lim — = lim -
n—o0 n n—oo n
(a)
< A (D.7)
< A, (D.8)

where(a) is because of the upper bound on the total departures inieaeklbt in (5.25). Therefore,
the lemma follows from the SLLN on the arrival processes aeddct that the schedulefis chosen

arbitrarily. [ |

D.3 PrROOF OFLEMMA 5.3.1

Proof: According to the scheduler, the IinksMip are always considered before linkThus,
when a back-logged linkis being considered by the scheduler, either there is giraatheduled
link in A7, or link 7 is put to the schedule. In both cases, there is at least orletpdeparture

among the links if{i} U AP, from which the lemma follows. [ |
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