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ABSTRACT

Cyber-physical systems (CPS) refer to a promising class of systems featuring intimate coupling

between the ‘cyber’ intelligence and the ‘physical’ world.Enabled by the ubiquitous availability

of computation and communication capabilities, such systems are widely envisioned to redefine

the way that people interact with the physical world, similar to the revolutionary role of internet

in transforming how people interact with each other. As the whole society becomes increasingly

dependent on such systems, it is crucial to develop a theory to understand and optimize the CPS in

a systematic manner.

This thesis contributes to the foundations of CPS by identifying and addressing a general class

of scheduling-type applications for a vital class of CPS, the physical networks (PhyNets). Different

from the abstract CPS, a PhyNet has a graph-type physical part, which represents the local inter-

actions among users in the system, as specified by certain well-known physical laws. Thus, it is

very promising to develop efficient distributed algorithmsin PhyNets with proper communication

infrastructure and protocols, due to the physical graph structure. The ‘scheduling’ refers to the

applications where joint actions of all users are coordinated, in order to allocate system resources

to satisfy certain long term and uncertain demands. Important applications of the scheduling in

PhyNets include packet scheduling in wireless networks, coordinated charging of electric vehicles

(EV) in electric power grids, and workload scheduling in data centers. In this thesis, we assume

very mild assumptions on the stochastic processes, and provide probabilistic scheduling perfor-

mance guarantees using the technique of fluid limits.

In this thesis, we will investigate a broad range of scheduling algorithms and discuss their per-

formance and distributed implementation. We first investigate the class of optimal scheduling al-

gorithms in the dynamic regime, where the system modes change randomly with time. We focus

on augmented max-weight scheduling schemes, which choose amax-weight schedule, where the
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weight is specified by queue lengths. Two scenarios are considered in this case. For the first sce-

nario, we assume the scheduler has asymptotic knowledge about the optimal cost, and propose

virtual cost queue based max-weight scheduling schemes. Weprove cost optimality and rate stabil-

ity results using fluid limits. For the second scenario, we assume no knowledge on optimal cost, and

adopt a Lyapunov optimization based approach. We demonstrate the asymptotic optimality and pro-

vide bounds on the average queue lengths. Finally, we apply the augmented max-weight algorithms

to the important application of coordinated EV charging in power systems.

We next consider the class of optimal scheduling algorithmsin the quasi-static regime, where the

system modes remain constant for the scheduling application. The quasi-static property is promising

for efficient scheduling design by allowing the system to ‘memorize’ good schedules. We propose a

simplex algorithm based scheduling scheme, and prove that it is asymptotically throughput optimal.

For the important application of packet scheduling in wireless networks, we show that the simplex

scheduling can be implemented in a distributed manner with average consensus and carrier sensing

multiple access (CSMA) mechanisms. We also demonstrate that it achieves significant steady-state

delay reduction compared to the popular throughput optimaldistributed adaptive CSMA schemes,

by successfully avoiding the random walk behavior associated with the distributed CSMA.

Finally, we investigate the performance of suboptimal scheduling schemes. We will discuss

the performance of a class of interesting scheduling schemes, maximal scheduling. A maximal

scheduling algorithm only involves simple and local coordination among users, and therefore has

low complexity and is easy for distributed implementation.We propose a tight lower bound through-

put region for maximal scheduling algorithms, and show thatit can achieve a certain fraction of the

optimal region. We also investigate the performance improvement on maximal scheduling. In par-

ticular, for packet scheduling in wireless networks, we propose a static priority assisted maximal

scheduling scheme. We show that the optimal static priorityassignment can be computed with low

complexity in an online manner, and that the combined priority assignment and maximal scheduling

achieve dramatic throughput improvement over the conventional maximal scheduling.
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CHAPTER 1

INTRODUCTION

The rapid development of information technologies in the past decades has resulted in wide avail-

ability of embedded computing and communication capabilities in almost all types of objects. Such

large-scale and deep embedding of the cyber intelligence into the physical world has created un-

precedented opportunities for researchers to develop systems with huge societal impacts and eco-

nomic benefits. Commonly referred to as the cyber-physical systems (CPS) [1–3], these systems

are envisioned to achieve important functionalities that cannot be achieved previously, by utilizing

the intimate coupling of the ‘cyber’ core with the ‘physical’ environment. The CPS is an emerging

and hot research area, covering a broad range of sectors, with important applications ranging from

macro-scale infrastructure based systems, such as smart grid [4], data centers [5, 6], transportation

systems [7], to micro-scale systems, such as intelligent medical devices [8]. It is widely envisioned

that the CPS will play such an important role that it will redefine the way people interact with the

physical world, similar to the way internet revolutionizedthe way that people interact with each

other.

The CPS research is both very important and highly challenging, which covers a diverse range of

areas. Thus, it is important to develop theoretical foundations to understand and design such systems

in a systematic manner. Realizing this important goal, in this thesis we contribute to the foundations

of CPS by addressing a class of important applications, all of which share a common structure, so

2
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that similar techniques can be brought to bear in each case. Specifically, this thesis focuses on the

schedulingapplications for a vital class of CPS, thephysical networks(PhyNets). The ‘scheduling’

refers to applications where certain resources in the system are allocated by coordinating all users

to satisfy uncertain and long-term average demands. One important example is packet scheduling

in wireless networks, where the scarce wireless spectrum has to be allocated across all links in the

network, to satisfy each link’s traffic demand. We are interested in investigating such scheduling-

type problems in the context of PhyNets, where the graph structure of the physical plant allows

efficient and distributed implementations. For the remaining of this chapter, we will provide a brief

introduction to the general scheduling problem, state our contributions and provide a summary of

related work. We first introduce the model of PhyNets and discuss the scheduling with PhyNets.

1.1 CYBER-PHYSICAL SYSTEMS AND PHYSICAL NETWORKS

Cyber-physical systems are advanced engineering systems where the computing and commu-

nication are carefully designed to achieve intimate integration with the physical dynamics. An

example structure of the general CPS is illustrated in Fig. 1.1. The typical CPS has three major

parts. The first part is thephysical plant, which is an abstraction of the physical world. The second

part consists of manyplatforms, which are equipped with sensors, computing devices and actuators.

Finally, these platforms are interconnected by the third part, namely acommunication network, so

that the operations of all platforms can be coordinated to achieve desired functionalities with the

physical plant. The platforms and the communication network form the ‘cyber part’ of the CPS,

whereas the physical plant represents the ‘physical part’ of the CPS.

The abstract structure of CPS, as shown in Fig. 1.1, is very general, which can be used to model

an enormous class of systems, from national infrastructures such as the power grid to small cardiac

medical devices. However, such level of abstraction in modeling makes it extremely challenging, if

not impossible, for researchers to address the CPS design and analysis in a unified manner. A core

issue is that the ‘physical plant’, as shown in Fig. 1.1, doesnot provide any insight into the problem



1.1 CYBER-PHYSICAL SYSTEMS AND PHYSICAL NETWORKS 4

Figure 1.1: An example structure of a typical CPS.

structure in its full generality, and therefore is too abstract for efficient analysis and design. As an

alternative, this thesis focuses on one specific class of CPS, physical networks, where the abstract

physical plant can be modeled by a ‘physical graph’. An example of the PhyNet is illustrated in

Fig. 1.2. Compared to the architecture of general CPS in Fig.1.1, the most important feature of

a PhyNet is that its physical plant can be abstracted by a muchsimpler physical factor graphG.

For the physical graphG, each variable node represents auser in the system, which corresponds to

a concrete physical entity in the physical world, such as a link in wireless networks, and a server

in data centers. The factor nodes represent network coupling among the users, due to certain well-

known physical laws. It is somewhat surprising that a wide variety of physical laws can be described

or approximated as local interactions, such as the conservation laws. Thus, the PhyNet model can

potentially be used for many important CPS applications.

Compared to the abstract CPS structure, the physical graph representation in a PhyNet is promis-

ing to achieve efficient and distributed algorithms. In thisthesis, we will propose a wide range

scheduling algorithms and show that they all can be implemented in a distributed manner, using

techniques such as dual decomposition, average consensus,and statistical sampling. The specific

implementation method, on the other hand, should be based onthe structure of the particular appli-

cation. We emphasize that all such distributed implementation methods can be applied due to the
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Figure 1.2: An example structure of a PhyNet.

critical assumption that the physical plant can be modeled as a graph.

1.2 SCHEDULING IN PHYNETS

This thesis considers one important type of applications inPhyNets, namely scheduling prob-

lems. The ‘scheduling’ in this thesis is a general definition, which refers to applications where

resources in the system are efficiently allocated to satisfycertain long term and uncertain average

demands. In below, we will briefly discuss the motivations and applications of the scheduling prob-

lem in the context of different CPS applications:

• Packet Scheduling in Wireless Networks

As one important application of the scheduling framework, the packet scheduling in wire-

less networks has been subject to extensive studies in the past [9–26]. For such applications,

the resource in the system corresponds to the scarce wireless spectrum, which has to be effi-

ciently allocated among users in the network to satisfy their packet traffic demands. For such

problems, the physical graph corresponds to the well-knowninterference graph [27], which

specifies that two links which are connected by an edge (or equivalently, a factor node) can-

not transmit together, due to the strong co-channel interference. We will discuss this model
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in detail in Chapter 2, where we will also present a hypergraph interference model for the

cumulative co-channel interference.

• Coordinated Charging of Electric Vehicles in Power Systems

Another important application of the scheduling formulation is the coordinated charging of

electric vehicles (EV) in power systems [28–37], which is anemerging and hot research topic

in smart grids. It is widely envisioned that [30] [38] the current power system infrastructure

can only support a small EV penetration level (such as10%) if all EVs charge in an uncoor-

dinated fashion, due to the severe congestion issues and voltage problems during peak load

periods. Thus, for the EV charging problem, it is important to allocate the ‘active power

resource’ in the system to all EV users efficiently, so as to satisfy their energy needs, while

guaranteeing that the power system can operate in a secure and reliable manner. The physical

graph for the EV charging application corresponds to the AC power flow coupling, which is

a special case of the conservation law. We will discuss the detailed modeling in Chapter 2.

• Workload Scheduling in Data Centers

Finally, we will show that the scheduling formulation can include workload scheduling in

data centers [39–44] as a special case. We are particularly interested in thermal-aware work-

load scheduling applications. Thermal issues have been considered as a dominating problem

for the efficient and reliable operation of data centers [40,45], as they can affect both the

performance of the processors and the cooling efficiency. Thus, it is desired to allocate the

‘computing power resource’ among all processors in the system efficiently, so as to satisfy the

workload requirements for each processor, while maintaining desired temperature profiles for

all processors. In this case, the physical graph models the thermal coupling among different

processors, in that one processor’s speed may affect the temperature of a ‘local’ subset of

processors, due to the heat energy conservation law. We willdiscuss the modeling in detail in

Chapter 2.



1.3 SUMMARY OF CONTRIBUTIONS 7

1.3 SUMMARY OF CONTRIBUTIONS

This thesis proposes a general scheduling framework for an important class of CPS. We will

demonstrate that the framework can be used for a diverse range of applications, from packet schedul-

ing in wireless networks, to EV charging in smart grids and workload scheduling in data centers.

We will investigate both optimal scheduling schemes and suboptimal scheduling schemes, discuss

their distributed implementations, and demonstrate theirperformance in the context of important

applications. Here is a brief summary of the key contributions of this thesis, which are listed in a

chapter-wise manner.

• Chapter 2 proposes the general scheduling problem with PhyNets, and shows that it includes

many CPS applications. We will demonstrate three applications mentioned in the previous

section in detail.

• Chapter 3 considers optimal scheduling schemes in the dynamic regime, where the system

modes change randomly across different time slots. In the case with asymptotic knowledge

about the optimal scheduling cost, we propose virtual queuebased max-weight scheduling

schemes and prove the optimality results using fluid limits.Two scheduling algorithms will

be presented. The first one is a generalization of the conventional max-weight scheduling,

whereas the second one is a generalized ‘pick-and-compare’algorithm, which has low com-

plexity and is easy to be implemented in a distributed manner, using average consensus tech-

niques. In the second case without knowledge about the optimal scheduling cost, we will

propose a Lyapunov optimization based max-weight policy and prove its asymptotic optimal-

ity with Lyapunov drift analysis. We will finally apply the max-weight scheduling schemes

to the important application of coordinated EV charging in power systems.

• Chapter 4 addresses optimal scheduling in the quasi-staticregime, where the system modes re-

main unchanged for the scheduling problem. We propose a simplex algorithm based schedul-
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ing scheme, and prove its optimality using fluid limits. We show that the scheduling can be

implemented in a distributed manner using average consensus techniques. The distributed

scheduling incurs higher complexity than the ‘pick-and-compare’ scheduling in Chapter 3.

On the other hand, the algorithm achieves significant delay improvement in steady states. Fi-

nally, we will apply the algorithms to the packet schedulingproblem in wireless networks,

and demonstrate that the distributed simplex scheduling can achieve dramatic steady state

delay improvement as compared to distributed CSMA algorithms.

• Chapter 5 investigates suboptimal scheduling policies. Weare particularly interested in the

performance of maximal scheduling algorithms, which is easily amendable for distributed

implementation due to its simplicity. We will formulate a lower bound on the throughput re-

gion with general PhyNets. We will also prove that maximal scheduling can achieve a certain

fraction of the optimal throughput region. We then try to improve the performance of maxi-

mal scheduling for packet scheduling in wireless networks.In particular, we propose a static

priority assisted maximal scheduling, and show that it can achieve significant improvement

over maximal scheduling. We prove that the optimal static priority can be computed with low

complexity.

1.4 RELATED WORK

The general scheduling framework proposed in this thesis isrelated to applications from a di-

verse range of research areas. In the literature, these problems have been analyzed assuming dif-

ferent models. In the sequel, we will provide a brief overview of the related work. Closely related

results will be discussed in more detail in later chapters inthe context of the each specific topic.

The physical factor graph modeling in Chapter 2 is closely related to the interference graph

model in wireless networks. The interference graph model for packet scheduling in wireless net-

work has been extensively investigated in the past [10, 14, 26, 46–50]. The construction of the inter-
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ference graph depends heavily on the physical layer communication technology. For example, for

spread spectrum communication systems such as Bluetooth and FH-CDMA networks, the interfer-

ence graph is constructed based on the node exclusive interference model [10, 47], which specifies

that any pair of transmitting links cannot share a common node. For the ubiquitous IEEE 802.11

networks, a two-hop interference model is commonly used [14, 48], which specifies that any pair

of transmitting links must be separated by at least two hops,due to co-channel interference. A

K-hop interference model was proposed in [49] to construct interference graph for general wire-

less networks, which generalizes the node exclusive model (K = 1) and 802.11 interference model

(K = 2). Compared to these models in the literature, the contribution of this thesis is that we

propose a hypergraph interference model [26], which not only preserves the graph structure, but

also incorporates the cumulative effect of co-channel interference. The graph representation and

interpretation of power flow coupling is well-known in powersystems [51–53]. Recently, there

have been growing research interests in investigating the design and performance analysis of op-

timal power flow algorithms that utilize the graph representation of the power system [54–56]. A

physical graph-type representation of the thermal-aware work load scheduling in data centers was

recently developed in [41]. We emphasize that the general physical factor graph model proposed in

this thesis can include all such applications as special cases.

The augmented max-weight optimal scheduling schemes in Chapter 3 are motivated by the max-

weight packet scheduling algorithm in wireless networks [11, 57, 58]. In the seminal work, [11]

proposed a queue length weighted scheduling algorithm and proved its throughput optimality in

multi-hop wireless networks. The max-weight algorithm waslater generalized in [57, 58] to the sce-

nario of cost-aware optimal scheduling. The ‘pick-and-compare’ algorithm was proposed in [12] to

approximate the max-weight algorithm over multiple time slots, in order to reduce the computation

overhead per time slot. Recently, there have been growing research interests in achieving distributed

implementation of the max-weight algorithm using CSMA mechanisms [16, 59], which can be in-

terpreted as applications of the Markov Chain Monte-Carlo (MCMC) methods with the interference
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graph model [60]. The max-weight algorithm has also been investigated in the context of EV charg-

ing in power systems, mostly in a heuristic manner. In particular, [61] proposed a max-weight

type EV charging algorithm and solved it using evolutionaryalgorithms without considering AC

power flow constraints. In [62], a heuristic max-weight EV charging algorithm was implemented

in a low voltage distribution system subject to voltage and congestion constraints. The max-weight

algorithm has also been recently investigated in for the workload scheduling applications in data

centers. [43] proposed a Lyapunov optimization based max-weight algorithm for the optimal ad-

mission control, routing and resource allocation in virtualized data centers. In [44], a two time

scale max-weight algorithm was proposed for distributed routing and service management among

geographically separated data centers. Compared to these algorithms, the augmented max-weight

scheduling in this thesis not only generalizes the design tothe scheduling in PhyNets, but also

provides rigorous optimality guarantees with very mild assumptions on the stochastic dynamics.

The simplex scheduling algorithm in Chapter 4 is related to the centralized packet scheduling

formulation in [63], which solves a static linear programming version of the packet scheduling in

wireless networks. The distributed CSMA implementation inChapter 4 in the context of wireless

networks is closely related to the distributed CSMA algorithm design in [15, 16, 64, 65]. As will be

shown later in this thesis, compared to such schemes, the simplex scheduling proposed in this thesis

can achieve dramatic steady-state delay improvement in wireless networks.

The maximal scheduling algorithms investigated in Chapter5 are motivated by the maximal

packet scheduling algorithms in wireless networks. Maximal packet scheduling in wireless net-

works has been extensively investigated in the literature [14, 22, 47, 48]. [47] discussed the perfor-

mance of maximal scheduling under the node exclusive interference model and demonstrated that

it can achieve at least half of the optimal throughput region. [14, 48] investigated the throughput

performance of maximal scheduling under a general interference graph model. [66, 67] discussed

distributed implementations of the maximal scheduling algorithm. The maximal scheduling scheme

in Chapter 5 is a generalization of such schemes from wireless networks to the generalized CPS,
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with rigorous performance guarantees. The static prioritybased maximal scheduling in Chapter 5 is

related to the longest queue first (LQF) scheduling in wireless networks, which dynamically assigns

priority based on queue lengths. [68] considered the throughput performance of the LQF schedul-

ing, and proposed a sufficient condition, which is called the‘local pooling’ condition, for throughput

optimality. The local pooling condition was later generalized to the ‘local pooling factor’ in [69],

which corresponds to be the scheduling efficiency of LQF scheduling. There has been extensive

research results [69–72] on estimating the local pooling factor with different interference models.

Finally, distributed implementation of LQF scheduling arediscussed in [71] and [73]. Compared to

LQF scheduling, the static priority assisted maximal scheduling in this thesis achieves essentially

the same bound on the ‘local pooling factor’ [69], while reduces the scheduling overhead associated

with priority updates.



CHAPTER 2

THE SCHEDULING PROBLEM IN
CYBER-PHYSICAL SYSTEMS

In this chapter, we propose a very general formulation of thescheduling problem in PhyNets. As

described in Chapter 1, there are many scheduling-type problems in the literature, which have been

modeled and analyzed independently in the context of different applications, such as packet schedul-

ing in wireless networks, EV charging in smart grids, and workload scheduling in data centers. One

contribution of this thesis is to show that these applications from diverse research domains can all

be modeled and analyzed similarly, within one unified framework. We propose algorithms to solve

the scheduling problem in Chapters 3-5.

The organization of this chapter is as follows. In Section 2.1 we propose the abstract physical

factor graph model for scheduling application. Section 2.2describes the queueing system model,

and Section 2.3 proposes a mathematical formulation of the scheduling problem. Section 2.4 dis-

cusses how the formulation can be applied to many different CPS applications.

2.1 PHYSICAL FACTOR GRAPH

In an abstract manner, we assume that the physical plant of the CPS consists of a setV of user

nodes, which have concrete physical meanings for the scheduling application. For example, for

12
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packet scheduling in wireless networks, a user may correspond to a link, whereas for EV charging

in power systems, a user refers to a bus in the power grid. The behavior of each user nodei ∈ V is

described by a set of variables{αi, χi, si}, whose definitions are as follows. The first variableαi is

theaction variable, which represents the operations that useri can perform. It will be shown later

that the control action variableαi(n) specifies the job departure of useri in each time slotn. For

example, in wireless networks,αi(n) ∈ {0, 1} can represent the transmission status of a link in time

slotn, such that ‘1’ represents transmitting, and ‘0’ otherwise.We assume that each action variable

αi is nonnegativeand lives in afinite discreteset, which we denote asAi. The main task of the

scheduling problem is to optimally choose a sequence of actions of all user nodes{αi(n)}, subject

to the physical and queue stability constraints, which we will describe very shortly. The physical

constraint is represented by thephysical variableχi, which lies in a feasible regionOi. Eachχi

represents concrete physical quantities of interest for the scheduling problem. For example, for

EV charging problems,χi may represent the voltage of each bus, whose magnitude has tolie in a

bounded regionOi = [V min
i , V max

i ]. Finally, for general time-varying systems, we associate with

each useri amode variablesi, which represents its ‘local mode’ and can change over time slots. For

example, for the EV charging problem, the local mode may correspond to the non-EV household

load. In wireless networks, the local mode of each link may correspond to the channel status, such

as ‘ON’ and ‘OFF’. We assume that eachsi takes value from a discrete setSi, and that both the set

of control actionsAi and the set of feasible physical variablesOi are functions ofsi, as the available

control actions and physical limits may change with the user’s local mode.

The physical interactions of user nodes are modeled by aphysical factor graphG(U ,F , E). U

is the set of variable nodes, which can be further partitioned according to different users as follows:

U = ∪i∈V{αi, χi, si}. (2.1)

F is the set of factor nodes, each of which represents network coupling among the variable nodes,
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Figure 2.1: An example physical factor graph with its underlying queueing system. The white nodes
represent the variable nodes, and the grey node represents the factor node.

as follows:

hk(αNk
, χNk

; sNk
) = 0,∀k, (2.2)

wherehk is an abstract function, andNk is the set of users connected to the factor nodek ∈ F .

Thus, (2.2) describes the network coupling of the control actions {αi} and the physical variables

{χi}, due to certain physical laws. One example physical factor graph is shown in Fig. 2.1.

2.2 QUEUEING SYSTEM

We continue to formulate the queueing system model. As described in Chapter 1, ‘scheduling’ in

this thesis refers to the coordinated actions of all users inthe system, such that certain resources can

be efficiently allocated among them to satisfy long term and uncertain demands. As the demand can

be highly intermittent and uncertain, queueing systems areoften used in the modeling, analysis and

design for such problems. Here, the queue lengths representthe amount of ‘backlogged demand’,

so that the desired throughput performance can be achieved in the presence of stochastic demand

by stabilizing all queues. For the abstract scheduling problem formulation considered in this thesis,

we refer to the demand as ‘jobs’. We assume a time-slotted system, and associate each user node
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i ∈ V with a queue. The queueing dynamics can be described as follows:

Ui(n) = Ui(n− 1)− σi(n) + Λi(n). (2.3)

In the above,Ui(n) is the queue length of useri at the end of time slotn, σi(n) is the number of

job departures during time slotn, which is specified by a certain scheduling algorithm.Λi(n) is the

number of external stochastic job arrivals during time slotn. In this thesis, we impose very mild

assumptions on the arrival processes:

Assumption 2.2.1.Λi(n) is uniformly bounded by a constant with probability 1 (w.p.1):

Λi(n) ≤ Λmax
i ,∀i, n, (2.4)

whereΛmax
i is a positive constant. Further,Λi(n) is subject to the Strong Law of Large Numbers

(SLLN), as follows:

lim
N→∞

1

N

N
∑

n=1

Λi(n) = λi, w.p.1.,∀i, (2.5)

whereλi is the average job arrival rate for useri.

Notice that the above assumptions are very mild, as the arrival processes are allowed to be

arbitrarily correlated across different time slots as wellas different users. Thus, the model is very

general, and can be used for many real world CPS applications.

The scheduling algorithm has to specify the time series of control actions{αi(n)} to stabilize

all queues. We assume that the job departureσi(n) is related to the control action variableαi(n) as

follows

σi(n) = αi(n) ∧ Ui(n− 1),∀i, n. (2.6)

In the above,x ∧ y = min(x, y), so that the queue lengths cannot become negative. We focus on

the throughput performance of the scheduling schemes. Thus, ‘stability’ in this thesis refers to the

rate stability[74]:

lim
n→∞

Ui(n)

n
→ 0, w.p.1,∀i. (2.7)

Note that it is possible to obtain stronger stability results, such as positive recurrence of Markov

chains [11, 75, 76], by placing more restricted assumptionson the stochastic arrival processes. This
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will be addressed in future work. Section 3.2 provides an asymptotic result on time-average queue

lengths under an augmented max-weight scheduling algorithm. Finally, notice that the action vari-

ables{αi(n)} are always subject to the physical factor graph constraintsas specified in the last

section, which can be highly random, and vary across time slots, due to the randomness from the

stochastic local modes{si(n)}. Similar to the arrival processes, we assume the following very mild

assumptions on the statistics with the local mode variables:

Assumption 2.2.2.The local mode processes{si(n)} satisfy the following:

lim
N→∞

∑N
n=1 1{s(n)=s}

N
= πs,w.p.1. (2.8)

where1{·} is the indicator function, i.e.,1{true} = 1 and1{false} = 0, andπs is the average time
fraction that the system mode takes a particular values.

In the next section we continue with the discussion by formulating the scheduling cost, and then,

propose the general scheduling problem.

2.3 FORMULATION OF THE SCHEDULING PROBLEM

We assume the following general scheduling cost function ateach time slot:

f(α(n); s(n)) =
∑

j∈J

fj(αNj
(n); sNj

(n)), (2.9)

whereJ can be interpreted as a set ofcost factor nodes, andNj is the set of user nodes associated

with each cost factor nodej. Thus, similar to the scheduling constraints, the cost function can also

be decomposed in a graph manner. Note that this assumption can be made without loss of generality,

since even a global cost function can be modeled as a factor node connected to all user nodes. We
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are now ready to formulate the general cost-optimal scheduling problem:

SCH-C: min
{αi(n),χi(n)}

lim sup
N→∞

1

N

N
∑

n=1

∑

j∈J

fj(αNj
(n); sNj

(n))

subject to Ui(n) = Ui(n− 1)− αi(n) ∧ Ui(n− 1) + Λi(n),∀i ∈ V, n ≥ 1

hk(αNk
(n), χNk

(n); sNk
(n)) = 0,∀k ∈ F , n ≥ 1

χi(n) ∈ O(si(n)),∀i ∈ V, n ≥ 1

αi(n) ∈ Ai(si(n)) ∀i ∈ V, n ≥ 1

Stability of all queues (2.10)

In words, we are interested in minimizing a long-term average scheduling cost, subject to the phys-

ical graph constraints in each time slot and the asymptotic queue stability constraints. The above

scheduling formulation is very general, which includes many well-known applications as special

cases. Further, it is very promising to develop distributedalgorithms for such scheduling problems,

due to the local physical graph specification of the constraints, which are represented by factor

nodes.

We next formulate another version of the general schedulingproblem. This corresponds to

the case where certain knowledge about the optimal cost or budget information is available. For

example, in power systems, it is typically assumed that the electricity cost can be estimated or

predicted with good accuracy. In such cases, we can formulate the scheduling problem as the
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following feasibility problem:

SCH-F: min
{αi(n),χi(n)}

0

subject to lim sup
N→∞

1

N

N
∑

n=1

fj(αNj
(n); sNj

(n)) ≤ f̂j,∀j ∈ J

Ui(n) = Ui(n− 1)− αi(n) ∧ Ui(n− 1) + Λi(n),∀i ∈ V, n ≥ 1

hk(αNk
(n), χNk

(n); sNk
(n)) = 0,∀k ∈ F , n ≥ 1

χi(n) ∈ O(si(n)),∀i ∈ V, n ≥ 1

αi(n) ∈ Ai(si(n)),∀i ∈ V, n ≥ 1

Stability of all queues (2.11)

wheref̂j is a budget or estimation of the optimal scheduling cost associated with cost factor node

j. We will discuss solutions to both of the above scheduling problemsSCH-C andSCH-F in later

chapters. Before that, we first identify some important applications and show how they can be

addressed by the general scheduling framework.

2.4 APPLICATIONS

In this section, we show that the general scheduling framework includes many CPS applications

as special cases, such as packet scheduling in wireless networks, EV charging in smart grids, and

workload scheduling in data centers. We start with the example of packet scheduling in wireless

networks.

2.4.1 Packet Scheduling in Wireless Networks

We first introduce the packet scheduling problem in wirelessnetworks, and then show that it is

a special case of the general scheduling problem.
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2.4.1.1 Introduction to Packet Scheduling in Wireless Networks

For packet scheduling in wireless networks, each user represents a link in the network. The

queue at each link represents the currently back-logged packets waiting for transmission. The

queueing dynamics can be described as follows:

Ui(n) = Ui(n− 1)− αi(n) ∧ Ui(n− 1) + Λi(n), (2.12)

whereΛi(n) represents the number of arrived packets during time slotn, and the control action

αi(n) ∈ {0, 1} represents the transmission status of linki, such thatαi(n) = 1 means that linki is

transmitting, and thatαi(n) = 0 means that linki remains silent.

We now describe the interference model. For simplicity of discussion, we assume that the wire-

less network is quasi-static, where the network topology remains constant for packet scheduling. For

typical wireless networks, it is often assumed that a packettransmission for a linki is successful if

its signal-to-interference-plus-noise ratio (SINR) is above a certain threshold:

Pi

Ni +
∑

j∈σ Iji
≥ θi, (2.13)

wherePi is the received signal power at linki, Ni is the noise power,Iji is the received interference

at link i from transmitting linkj, andθi is the SINR threshold for successful packet reception for

link i, which is determined by the physical layer modulation, detection and coding specifications.

Note that for the simplicity of notation, we denoteσ as the set of transmitting links, so thatj ∈ σ

implies that linkj is a transmitting link.

The SINR model can accurately describe the interference constraints in wireless networks.

However, it is very difficult for the design of distributed scheduling algorithms, due to its global

nature. For typical wireless networks, in particular wireless ad hoc networks, where a central

scheduling entity often does not exist, it is crucial to develop an interference model that allows

design and analysis of distributed scheduling algorithms.In the literature, this is achieved by the

interference graph model [10, 27, 58], which models the interference as binary. The interference



2.4 APPLICATIONS 20

(a) (b) (c)

Figure 2.2: (a) A sample wireless network with 4 links, wheresquare nodes are the transmitters,
and round nodes are the receivers. (b) Its graph interference model. (c) Its hypergraph interference
model.

graph specifies that the transmission of a particular link fails if and only if there is a concurrent

transmission of any neighboring link. For example, consider the 4-link wireless network in Fig. 2.2

(a), where an interference graph can be constructed by, for example, placing a guard zone [50] with

certain radius around the receiver of each link. Two links form an edge in the interference graph if

one’s transmitter is in the guard zone associated with the other. In such a case, the interference graph

for Fig. 2.2 (a) has only one edgee = {1, 2}, as shown in Fig. 2.2 (b). Therefore, a transmission

schedule is valid as long as links1 and2 are not transmitting simultaneously.

We next introduce a hypergraph interference model described by our recent work [26]. The

motivation is that the interference graph is a rigid model, which over-simplifies the physical in-

terference in typical wireless networks [77, 78], since it does not take into account thecumulative

effect of interference. That is, the transmission failure at a link may occur due to the sum interfer-

ence from concurrent transmitting links, even though the contribution from each link is small. For

example, in Fig. 2.2 (a), it is possible that link1 fails when links{1, 3, 4} are scheduled, due to the

sum interference from both link3 and link4. In such a case, the interference graph can only guaran-

tee that the transmission at link1 is successful when only one of the other two links is transmitting,

due to its binary nature. On the other hand, if one builds the graph conservatively by increasing the

size of the guard zone, such that two additional edges{1, 3} and{1, 4} are included (note that both

link 3 and link4 have the same distance to link1 in this example), the network capacity is reduced,
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because when link1 transmits, neither link2 nor link 3 is allowed to transmit, even though there is

no collision if only one of them transmits.

Realizing the inaccuracy of the graph model, we proposed ahypergraphinterference model,

which not only considers the cumulative nature of co-channel interference in wireless networks, but

also is easy for distributed implementation, due to the local construction. The detailed construction

procedure is as follows. The key observation is that, for typical wireless networks, a major por-

tion of the total interference is contributed by only a few nearby transmitting links. Thus, we can

approximate the SINR locally with very good accuracy as

Pi

Ni +
∑

j∈σ Iji
≈

Pi

Ni +
∑

j∈σ(Iji · 1{j∈Li})
, (2.14)

whereLi is the set of ‘local’ links around linki:

j ∈ Li if
Si

Ni + Iji
< βi, (2.15)

whereβi is a properly chosen threshold. Based on the above SINR approximation, we can construct

a hyperedgee = {i, i1, i2, . . . , ik−1} if

Pi

Ni +
∑k−1

s=1 Iisi
< θi. (2.16)

where the links{i1, i2, . . . , ik−1} are selected only if they are inLi, so that the MAC coordination

can be restricted to only local links. This simply implies that the links{i, i1, i2, . . . , ik−1} are

not allowed to transmit simultaneously, since linki will fail due to (2.16). Fig. 2.2 (c) shows

the hypergraph interference model corresponding to the 4-link wireless network. Notice the new

hyperedgee = {1, 3, 4}, due to the fact that the cumulative interference from links3 and4 can

cause link1 to fail. Finally, note that by adjusting{βi} and the maximum allowed cardinality of

all hyperedges, the interference accuracy can be graduallyimproved from the binary interference

graph model (smallβi andmax |e| = 2, where| · | denotes the cardinality) to the accurate SINR

model (largeβi andmax |e| = |V|). We provide quantitative analysis and simulation resultson the
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accuracy of the hypergraph interference model in Appendix A.

2.4.1.2 Scheduling Formulation for Packet Scheduling in Wireless Networks

We first demonstrate that the hypergraph interference modelcan be converted to the physical

graph model for the general scheduling problem, as follows.For each link-hyperedge pair(i, e)

such that linki ∈ e, we addχe
i to the set of physical variables of linki, and a factor node for the

following network coupling:

χe
i =

∑

l∈e

αl. (2.17)

Thus,χe
i represents the linki’s local copy about the total number of transmitting links inthe sete,

which can be interpreted as an estimate of the interference level for the set of links ine. The feasible

regionOe
i is as follows:

Oe
i = {χ

e
i : 0 ≤ χe

i ≤ |e| − 1}. (2.18)

Thus, one can easily observe that the above factor graph model is equivalent to the hypergraph

interference model. Further, the general queueing model in(2.3) can be naturally applied to the

packet queues in (2.12) for wireless networks, and the general scheduling cost function in (2.9)

can also be well adapted to model typical scheduling costs inwireless networks, such as average

transmission power. Thus, we conclude that the general scheduling problem formulation includes

the packet scheduling in wireless networks as a special case. We write the packet scheduling in

wireless networks as below, for completeness:

min
{αi(n),χi(n)}

lim sup
N→∞

1

N

N
∑

n=1

∑

j∈J

fj(αNj
(n))

subject to Ui(n) = Ui(n− 1)− αi(n) ∧ Ui(n − 1) + Λi(n),∀i ∈ V, n ≥ 1

χe
i (n) =

∑

l∈e

αl(n),∀(i, e) with i ∈ e, n ≥ 1

0 ≤ χe
i (n) ≤ |e| − 1,∀(i, e) with i ∈ e, n ≥ 1

αi(n) ∈ {0, 1},∀i ∈ V, n ≥ 1

Stability of all queues (2.19)
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2.4.2 EV Charging in Power Systems

As another important application, we show that the coordinated EV charging problem in power

systems can be included as a special case of the general CPS scheduling problem.

2.4.2.1 Introduction to EV Charging in Power Systems

For the EV charging application, each useri ∈ V represents a bus in the power system. We

assume that each bus is either associated with one EV, or is not associated with any EV at all. Such

a model is used to represent the residential charging scenario, where the owner of a household either

uses EV for daily commute or does not own any EV. An example of the system model is shown in

Fig. 2.3. In this case, the ‘jobs’ correspond the amount of energy needed to fully refill the battery of

each EV. For example, for an EV at busi with a battery of10kWh capacity and60% state of charge

(SoC), the corresponding energy queue length is4kWh. The dynamics of the EV queue length is as

follows:

Ui(n) = Ui(n− 1)− αi(n) ∧ Ui(n− 1) + Λi(n), ∀i, n. (2.20)

In above, the control actionαi(n) can be further expressed as follows:

αi(n) = ηiPi(n)∆t (2.21)

whereηi is charging circuit efficiency of the EV at busi, ∆t is the length of a time slot, andPi(n) is

the active charging power of EVi. It is assumed thatPi(n) belongs to a finite set of charging rates,

which we denote asPi. Λi(n) is the amount of external ‘energy job’ arrivals during time slot n,

due to the energy consumption from driving. Note that for anybus without EV, the corresponding

energy queue lengthUi(n) is trivially zero all the time and the control actionαi(n) is also always

zero.

Given the above queueing model, the goal of the EV charging scheduler is to specify the time

series of charging power{Pi(n)}, so that a long-term average charging cost is minimized, while

ensuring that the energy needs of all EV are successfully satisfied. Note that it is the general cost
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Figure 2.3: An example power system with EV charging application.

function in (2.9) can be well used to model typical average charging cost functions, such as the ones

based on electricity prices. Thus, it is now sufficient to show that the physical charging constraints

can be described by in a physical factor graph manner. The charging constraints are as follows.

Firstly, the charging powerPi(n) for each busi is subject to the charging circuit rating constraint:

Pmin
i ≤ Pi(n) ≤ Pmax

i ,∀i. (2.22)

Further, the charging process is also constrained by the EV availability, so that

Pi(n) = 0 if ai(n) = 0,∀i, (2.23)

whereai(n) the indicator function that EVi is ‘available’ for charging during time slotn, i.e.,

ai(n) = 1 if the EV is available for charging, andai(n) = 0 otherwise. Notice that{ai(n)} is an

external random process, which depends on the stochastic EVdriving patterns. Further, the impact

of the EV charging power to the power system states can be modeled by the following AC power

flow equations:

P net
i (n) + Pi(n) = −Vi(n)

∑

j∈Ni

Vj(n)[Gij cos(θij(n)) +Bij sin(θij(n))] (2.24)

Qnet
i (n) = −Vi(n)

∑

j∈Ni

Vj(n)[Gij sin(θij(n))−Bij cos(θij(n))]. (2.25)
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In above,Vi(n) is the voltage magnitude at busi at time slotn, and

θij(n) = θi(n)− θj(n) (2.26)

is the voltage phase angle difference between busi and j during time slotn. Gij andBij are

the conductance and susceptance of the transmission line between busi and its neighboring busj,

respectively.P net
i (n) andQnet

i (n) are the net active and reactive power consumption for the non-EV

load, as follows:

P net
i (n) = P base

i (n)− P renew
i (n) (2.27)

Qnet
i (n) = Qbase

i (n)−Qrenew
i (n), (2.28)

whereP renew
i (n) andQrenew

i (n) correspond to the active and reactive distributed generation with

renewable energy sources at busi, respectively. One example is the wind generator in Fig. 2.3.

Notice that bothP renew
i (n) andQrenew

i (n) are trivially zero if busi has no renewable generation.

Finally, the voltage of each bus in the system has the following voltage limits:

V min
i ≤ Vi(n) ≤ V max

i ,∀i. (2.29)

Thus, if the charging processes of EVs are uncoordinated, itis well possible that the EV charging

at one bus can make the voltage constraint at a remote bus become violated. On the other hand, if

the charging processes of all EVs are coordinated carefully, it is very promising that not only the

power system can operate reliably, but also the highly intermittent renewable energy sources can be

successfully ‘absorbed’ to refill the EV batteries.

2.4.2.2 Scheduling Formulation for EV Charging

We now show that the above EV charging problem can be includedin the general scheduling

formulation. It is easy to verify that the EV battery dynamics in (2.20) is a special case of the

general queueing model. We only need to show that the physical constraints can be modeled by a
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factor graph. For each busi, define the local mode variable as

si = (ai, P
net
i , Qnet

i ), (2.30)

and physical variable as

χi = (Vi, θi). (2.31)

Thus, it is easy to verify that the constraints in (2.22) and (2.23) can be easily modeled by the

feasible regionαi ∈ Ai(si). Further, the voltage limit in (2.29) can be modeled by the region

χi ∈ Oi. Notice that in this case, the regionOi does not depend on the mode variablesi. Finally, we

can associate a physical factor node with each of the AC powerflow equation in (2.25). Therefore,

we conclude that the EV charging problem can be modeled as a special case of the general CPS

scheduling problem. For completeness, we write the EV charging problem below:

min
{Pi(n),Vi(n),θi(n)}

lim sup
N→∞

1

N

N
∑

n=1

∑

j∈J

fj(PNj
(n); aNj

(n), P net
Nj

(n), Qnet
Nj

(n))

subject to Ui(n) = Ui(n− 1)− (Pi(n)ηi∆t) ∧ Ui(n− 1) + Λi(n),∀i ∈ V, n

P net
i (n) + Pi(n) = −Vi(n)

∑

j∈Ni

Vj(n)[Gij cos(θij(n)) +Bij sin(θij(n))],∀i, n

Qnet
i (n) = −Vi(n)

∑

j∈Ni

Vj(n)[Gij sin(θij(n))−Bij cos(θij(n))],∀i, n

V min
i ≤ Vi(n) ≤ V max

i ,∀i, n

Pi(n) ∈ Pi,∀i, n

Pi(n) = 0 if ai(n) = 0,∀i, n

Stability of all queues (2.32)

where we have writtenθij = θi − θj as an abbreviation for notation simplicity.

2.4.3 Workload Scheduling in Data Centers

Finally, we will show that the general scheduling formulation can include the workload schedul-

ing in data centers as a special case.



2.4 APPLICATIONS 27

2.4.3.1 Introduction to Workload Scheduling in Data Centers

We focus on the thermal-aware computing resource allocation problem within one data center

[40]. In this case, each user corresponds to a server in a datacenter. A useri is associated with a

queue of computing tasks, where the queue length representsthe amount of computing tasks to be

processed. The queueing dynamics is as follows:

Ui(n) = Ui(n− 1)− gi(vi(n)) ∧ Ui(n− 1) + Λi(n), ∀i, n, (2.33)

wherevi(n) is the processor speed, andgi(·) is a mapping between the processor speed to the

computing task processing rate.Λi(n) is the computing task arrival process, which is external and

random. Thus, each useri has to dynamically adjust the speed of the processorvi to ensure that the

computing tasks can be successfully finished. We further assume thatvi belongs to a finite set of

feasible speeds, which we denote asAi. An example workload scheduling is shown in Fig. 2.4.

A naive solution would be to setvi(n) = vmax
i for each serveri ∈ V to maximize the processing

speed. However, such control actions is in general infeasible, due to the thermal limit constraints,

as follows. Firstly, the temperature of each processori is subject to the following limit:

Ti(n) ≤ Tmax
i ,∀i, n, (2.34)

whereTmax
i is the maximum allowed operational temperature specified bythe device manufacturer.

Thus, the speed of a processori has to be judiciously adjusted to avoid hardware failures and re-

liability issues. Secondly, the temperatures of differentprocessors are coupled. This is because

the power dissipation of one processor will increase the local temperature, which will also affect

the temperature at other processors. The relationship among the heat transfer between different

locations can be derived following the law of energy conservation [40]. For example, a linearized

thermal model for such coupling in [40] is as follows:

Ti(n) = T amb
i (n) +

∑

j∈Ni

dijφj(vj(n)), (2.35)
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Figure 2.4: An example of work load scheduling in data centers, where the color of each server
illustrates its temperature.

whereT amb
i (n) is the ambient temperature, which is random, due to the stochastic dynamics of the

cooling devices, such as the computer room air conditioner (CRAC) in Fig. 2.4.{dij} are the heat

distribution coefficients, andφj(·) is the power dissipation function, which is a mapping from the

processor speedvi to its power dissipation. A commonly adopted power dissipation function is the

‘cube’ model, whereφi(vi) = civ
3
i is proportional to the cube of the processor speed [79].

2.4.3.2 Scheduling Formulation for Data Center Workload Scheduling

We now show that the above workload scheduling problem can beincluded as a special case

of the general scheduling framework. It is easy to see that the abstract queueing model in Section

2.2 easily applies to the case of computing tasks. Thus, it issufficient to show that the physical

constraints can be modeled by a factor graph. Note that for each useri, we can define its control

variableαi = vi, local mode variable assi = T amb
i , and the physical variable asχi = Ti. Thus, it is

easy to see thatAi andOi correspond to the feasible set of processor speed and temperature limits,

respectively. Further, we can associate a factor nodek with each equality in (2.35), which represents

the network coupling between the control actions and the physical variables. For completeness, we
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write the data center workload scheduling problem below:

min
{vi(n),Ti(n)}

lim sup
N→∞

1

N

N
∑

n=1

∑

j∈J

fj(vNj
(n);T amb

Nj
(n))

subject toUi(n) = Ui(n− 1)− gi(vi(n)) ∧ Ui(n− 1) + Λi(n),∀i, n

Ti(n) = T amb
i (n) +

∑

j∈Ni

dijφj(vj(n)),∀i, n

Ti(n) ≤ Tmax
i ,∀i, n

vi(n) ∈ Ai,∀i, n

Stability of all queues (2.36)

where the scheduling cost function may correspond to the power consumption.



CHAPTER 3

OPTIMAL SCHEDULING IN THE DYNAMIC
REGIME: AUGMENTED MAX -WEIGHT

SCHEDULING

In Chapter 2, we proposed a general abstract scheduling problem for PhyNets and demonstrated that

it includes CPS applications from diverse research areas. This chapter tries to solve the schedul-

ing problem optimally using augmented max-weight algorithms, which generalize the max-weight

scheduling algorithm in [11, 57] for wireless networks. This chapter focuses on the dynamic regime,

where the local mode processes{si(n)} are stochastic and vary over time slots. In Chapter 4, we

will focus on the quasi-static regime, where the local modesremain constant for the scheduling ap-

plication, and show that a simplex scheduling algorithm canbe applied with improved performance.

We propose three augmented max-weight algorithms in this chapter. The first one is Algorithm

3.1.1, which computes a max-weight schedule in each time slot with virtual cost queues. The second

one is Algorithm 3.1.2, which can be interpreted as a ‘pick-and-compare’ implementation of the first

algorithm. The thrid one is Algorithm 3.2.1, which does not assume knowledge about the optimal

scheduling cost by adopting a Lyapunov optimization approach [80] to compute a schedule in each

time slot that maximizes a queue length weighted departure minus the instantaneous scheduling

cost. All algorithms proposed in this chapter are amendablefor distributed implementations, due

to the physical factor graph representation of the scheduling constraints. However, the specific

30
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implementation method will depend on the structure of each CPS application. For example, the

max-weight algorithms in Algorithm 3.1.1 can be implemented in a distributed manner for packet

scheduling in wireless networks using the distributed CSMAalgorithms [15, 16], which can be

interpreted as applications of Markov Chain Monte-Carlo methods. In power systems, the max-

weight algorithms can be implemented by distributed optimal power flow algorithms [56], which

can be interpreted as applications of the dual decomposition methods. Finally, Algorithm 3.1.2

allows much easier distributed implementation than the other two algorithms, as it only requires the

random generation of a new schedule and comparison against an old schedule. Such a scheme can

be easily implemented in a distributed manner using averageconsensus algorithms.

The organization of this chapter is as follows. In Section 3.1 we propose augmented max-

weight algorithms for the feasibility problemSCH-F in Chapter 2, which assumes an estimate of

the optimal cost or budget information, and proves stability results using fluid limits. In Section

3.2 we propose an augmented max-weight algorithm for the optimization problemSCH-C and

proves its optimality using Lyapunov drift analysis. Section 3.3 demonstrates the performance of

the augmented max-weight scheme for the important application of coordinated EV charging in

power systems.

3.1 AUGMENTED MAX -WEIGHT SCHEDULING WITH COST KNOWLEDGE

In this section, we propose max-weight scheduling algorithms to solve the feasibility problem

SCH-F. We remind the reader thatSCH-F assumes estimation of the optimal scheduling cost or

scheduling budget information, and requires the schedulerto satisfy the asymptotic scheduling cost

bound. The algorithms proposed in this section can be regarded as augmentations of the conven-

tional max-weight algorithm [11], in that a novel virtual queue mechanism is introduced to achieve

cost-aware optimal scheduling. In particular, Algorithm 3.1.1 is a direct generalization of the max-

weight algorithm in [11], whereas Algorithm 3.1.2 can be regarded as an amortized version of the

max-weight algorithm, by randomly ‘picking-and-comparing’ schedules to approximate the max-



3.1 AUGMENTED MAX -WEIGHT SCHEDULING WITH COST KNOWLEDGE 32

weight schedule over a long time interval, in order to reducethe computation in each time slot and

achieve distributed implementation. We will prove the optimality results using the technique of fluid

limits, to guarantee the sample path based cost optimality and stability with very mild assumptions

on the stochastic dynamics and cost estimation processes. We start with the model of virtual cost

queues.

3.1.1 Virtual Cost Queue

We associate with each component of the cost functionfj(αNj
; sNj

) an estimation process

{f̂j(n)}. The only assumption on{f̂j(n)} is the following:

f⋆
j ≤ lim

N→∞

1

N

N
∑

n=1

f̂j(n) ≤ f⋆
j + ǫj , w.p.1, (3.1)

whereǫj is a positive constant, and

f⋆
j = lim sup

N→∞

1

N

N
∑

n=1

fj(α
⋆
Nj

(n); sNj
(n)) (3.2)

can be interpreted as the contribution of factor nodefj(·) to the optimal cost.{α⋆
Nj

(n)} is a solution

of the cost-aware optimal scheduling problemSCH-C. For simplicity of notation, define

f̂⋆
j = lim

N→∞

1

N

N
∑

n=1

f̂j(n) (3.3)

as the estimated average optimal cost. Thus, we require thatthe scheduling algorithm cannot incur

any asymptotic average cost larger thanf̂⋆
j for the cost factor nodefj(·).

The key in achieving such guarantee is to introduce a virtualcost queue for each component of

the cost functionfj(αNj
; sNj

), which we denote asΦj(n). The queueing dynamics ofΦj(n) is as

follows:

Φj(n) = Φj(n− 1)− f̂j(n) ∧ Φj(n − 1) + fj(αNj
(n); sNj

(n)). (3.4)

Fig. 3.1. shows one example virtual queue. The instantaneous scheduling cost in each time slot

fj(αNj
(n); sNj

(n)) can be interpreted as the arrival process to the virtual queue, whereas the esti-
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Figure 3.1: An example virtual cost queue.

mated scheduling cost̂fj(n) corresponds to the instantaneous departure of the virtual queue. Thus,

intuitively, if the virtual cost queue is rate stable, the average arrival rate has to be the same as the

average departure rate, which is at mostǫj from the optimal cost, due to (3.1). This will be proved

rigorously by fluid limits later. We next describe the augmented max-weight scheduling algorithm.

3.1.2 Augmented Max-Weight Scheduling Algorithms

We first propose a direct augmentation of the max-weight scheduling algorithm in Algorithm

3.1.1. One important feature of the scheduling algorithm isthat it ismyopic, which computes the

schedules in each time slot only using the queue lengths in the current time slot. That is, according

to (3.5), the scheduling algorithm always tries to stabilize the job and virtual queues by maximizing

a queue length weighted job departures, penalized by the virtual queue lengths weighted arrivals.

Compared to the conventional max-weight algorithm [11], the new component is the penalization

term induced by the virtual queue lengths, due to the incorporation of scheduling cost. Thus, when

the past scheduling decisions incur higher than expected cost, the virtual cost queues become large,

which discourages the scheduling algorithm from choosing high cost schedules, and vice versa.

Finally, the trade-off between minimizing queue lengths and scheduling cost can be adjusted by the

constantβ, which can be chosen by system specification and historical data.

We next present a ‘pick-and-compare’ version of the augmented max-weight scheduling algo-

rithm in Algorithm 3.1.2, which can be regarded as a generalization of the algorithm in [11]. In

the algorithm, the functionw(·;n) corresponds to the queue lengths weighted departure, whichis
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Algorithm 3.1.1 Augmented Max-Weight Scheduling
1: For each time slotn, computeα(n) by solving the following:

maximize{αi,χi}

∑

i∈V

Ui(n− 1)αi − β
∑

j∈J

Φj(n− 1)fj(αNj
; sNj

(n))

subject to hk(αNk
, χNk

; sNk
(n)) = 0,∀k ∈ F

χi ∈ O(si(n)),∀i ∈ V

αi ∈ Ai(si(n)),∀i ∈ V (3.5)

2: Update queues{Ui(n)} and virtual queues{Φj(n)} according to (2.3) and (3.4), respectively.

defined as follows:

w(α;n) =
∑

i∈V

Ui(n− 1)αi − β
∑

j∈J

Φj(n− 1)fj(αNj
; sNj

(n)), (3.6)

and the scheduleαold(s) is defined as the last chosen schedule when the system mode is at s. Thus,

Algorithm 3.1.2 first randomly ‘pick’ a scheduleα′, and compare it with theαold(s(n)), which is

the latest schedule under the system modes(n). The algorithm then chooses the one with the larger

weight. Notice that such scheme needs to store the ‘old’ schedulesαold(s(n)), which may require

certain amount of memory. On the other hand, the algorithm can be well implemented in certain

CPS applications where the total number of system modes is small, or the system modes remain

constant for the scheduling application.

The above ‘pick-and-compare’ algorithm belongs to the category of the augmented max-weight

scheduling in that it can be regarded as computing the max-weight schedule in an approximately

‘simulated annealing’ fashion [12], so that the schedules are gradually improved towards the max-

weight solution. Thus, compared to the direct augmented max-weight approach in Algorithm 3.1.1,

the ‘pick-and-compare’ Algorithm 3.1.2 can substantiallyreduce the computation per time slot.

For example, for packet scheduling in wireless networks, Algorithm 3.1.1 corresponds to the max-

weight independent set (MWIS) problem, which is well-knownto be NP-hard. On the other hand,

Algorithm 3.1.2 has low complexity, since it only requires arandom independent set generation and

comparison. Further, Algorithm 3.1.2 is easily amendable for distributed implementation, such as
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Algorithm 3.1.2 Augmented Max-Weight Scheduling: Pick-and-Compare
1: For each time slotn, randomly generateα′, such that

P(α′ = α) ≥ ǫ0 (3.7)

for anyα ∈ C(s).
2: if w(α′;n) > w(αold(s(n));n) then
3: α(n) = α′;
4: αold(s(n)) = α′;
5: else
6: α(n) = αold(s(n));
7: end if
8: Update queues{Ui(n)} and virtual queues{Φj(n)} according to (2.3) and (3.4), respectively.

using average consensus for the ‘compare’ phase. This can dramatically reduce the coordination

overhead and simplify system design for CPS applications.

3.1.3 Optimality Proof

We next prove the optimality of the above scheduling algorithms, which is stated in the following

theorem:

Theorem 3.1.1. Assume that the problemSCH-F is feasible with{f̂⋆
j }, and that{f̂⋆

j } satisfies
(3.1). The following holds for the augmented max-weight scheduling schemes in Algorithm 3.1.1
and Algorithm 3.1.2:

lim sup
N→∞

1

N

N
∑

n=1

∑

j∈J

fj(αNj
(n); sNj

(n)) ≤ f⋆ + ǫ,w.p.1, (3.8)

wheref⋆ is the optimal scheduling cost forSCH-C, and

ǫ =
∑

j∈J

ǫj . (3.9)

Further, all job queues are rate stable.

The above theorem guarantees the asymptotic optimality of the augmented max-weight schedul-

ing algorithm, in the sense that (3.8) holds for any gapǫ > 0 on the scheduling cost. Notice that

we assume that the scheduling cost is estimated in an entirely onlinemanner, by adopting the novel

virtual queue technique. Thus, we only require that theǫ-gap hold asymptotically. Such mild as-
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sumption can substantially simplify the design and analysis in certain CPS applications, where the

optimal scheduling cost is hard to obtain initially, and thereby can only be obtained in an online

manner.

We next prove the theorem. For the ease of demonstration, we need to first simplify some

notations and present a compact formulation of the queueingsystem.

3.1.3.1 A Reformulation of the Queueing System

For a fixed system modes ∈ S, we denote the set of feasible control actions asC(s). This is a

compact representation of the set of feasible control actions{αi} which satisfy the physical factor

graph constraints in (3.5). DenoteTα
s (n) as a counting process which represents the total number

of time slots that a control actionα is chosen when the system mode iss during the firstn time

slots. We can rewrite the queueing dynamics in a very compactform as follows:

Ui(n) = Ui(0)−
∑

s∈S

∑

α∈C(s)

αiT
α
s (n) + Λi(n) + Yi(n),∀i ∈ V (3.10)

Φj(n) = Φj(0) +
∑

s∈S

∑

α∈C(s)

fj(αNj
; sNj

)Tα
s (n)− F̂j(n) + Zj(n),∀j ∈ J (3.11)

∑

α∈C(s)

Tα
s (n) = Ts(n),∀s ∈ S (3.12)

∑

s∈S

Ts(n) = n, (3.13)

Tα
s (n) is non-decreasing,∀s ∈ S, α ∈ C(s), (3.14)

whereF̂j(n) can be written as follows:

F̂j(n) =

n
∑

τ=1

f̂j(τ). (3.15)

Yi(n) andZj(n) are system ‘idling processes’ that prevent the queues from becoming negative.

Ts(n) is the total number of time slots that the system is in modes, according to the definition in

(3.12). Thus, (3.13) follows naturally, since the system has to be in one mode during each time slot.
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3.1.3.2 Fluid Limits

The proof is done by the technique of fluid limits, which is a general framework in analyzing

stochastic systems. A brief introduction of fluid limits is in Appendix B.1. The queueing system in

the fluid limit is as follows:

Ūi(t) = Ūi(0)−
∑

s∈S

∑

α∈C(s)

αiT̄
α
s (t) + Λ̄i(t) + Ȳi(t),∀i ∈ V (3.16)

Φ̄j(t) = Φ̄j(0) +
∑

s∈S

∑

α∈C(s)

fj(αNj
; sNj

)T̄α
s (t)− F̄j(t) + Z̄j(t),∀j ∈ J (3.17)

∑

α∈C(s)

T̄α
s (t) = T̄s(t), (3.18)

∑

s∈S

T̄s(t) = t, (3.19)

˙̄Tα
s (t) ≥ 0,∀s ∈ S, α ∈ C(s). (3.20)

˙̄Yi(t) ≥ 0, ˙̄Zj(t) ≥ 0, ˙̄Fj(t) ≥ 0,∀i ∈ V, j ∈ J , t > 0. (3.21)

The new continuous system is essentially the same as compared to the original discrete stochastic

system, except that all processes are nowdeterministic. Thus, the fluid limits allow much easier

analysis than the original stochastic system. Further, thepower of fluid limits that, the stability

guarantees in the continuous system can be extended to the original system, due to the following

lemma [74]:

Lemma 3.1.1. SupposēUi(t) = 0 for any t > 0 if Ūi(0) = 0 for any fluid limit. Then, the queue
Ui(n) is rate stable in the original stochastic queueing system.

Proof: The proof is in Appendix B.2.

Thus, rate stability for a queue in the original stochastic system can be guaranteed by showing

that the corresponding fluid queue is always zero if the initial queue length is zero. We now use this

lemma to prove Theorem 3.1.1. Before that, we need to explorecertain important properties of the

queueing system in the fluid limits, and prove several technical lemmas.

We prove that the max-weight property in the original systemaccording to Algorithm 3.1.1 and

Algorithm 3.1.2 can be naturally extended to the fluid limits:
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Lemma 3.1.2. The following is true for any fluid limit under both Algorithm3.1.1 and Algorithm
3.1.2:

˙̄Tα
s (t) = 0 if α 6∈ arg max

α∈C(s)

∑

i∈V

Ūi(t)αi − β
∑

j∈J

Φ̄j(t)fj(αNj
; sNj

) (3.22)

for anys ∈ S andα ∈ C(s).

Proof: The proof is in Appendix B.3.

We next prove the following important lemma, which shows thestability result in fluid limits

under the augmented max-weight algorithm.

Lemma 3.1.3. For any fluid limit, if Ūi(0) = 0 and Φ̄j(0) = 0 for all i ∈ V and j ∈ J , we have
Ūi(t) = 0 andΦ̄j(t) = 0 for anyt ≥ 0 under the augmented max-weight scheduling algorithm.

Proof: The proof is in Appendix B.4.

We are now ready to prove the main theorem of this section.

Proof of Theorem 3.1.1:The rate stability for job queues are guaranteed by Lemma 3.1.1 and

Lemma 3.1.3. Thus, we only need to prove cost optimality results. Assume that the claim is not

true. Then, we can find a subsequence{rn} such that

lim
n→∞

1

rn

rn
∑

τ=1

∑

j∈J

fj(αNj
(τ); sNj

(τ)) > f⋆ + ǫ. (3.23)

Sinceǫ =
∑

j∈J ǫj, there must existj ∈ J , a positive constantǫ′ > 0 and a subsequence{rnk
},

such that

lim
k→∞

1

rnk

rnk
∑

τ=1

fj(αNj
(τ); sNj

(τ)) ≥ f⋆
j + ǫj + ǫ′. (3.24)

Now, we can also find a further convergent subsequence, whichconverges to a fluid limit. In the

limit, we have

Φ̄j(1) ≥ Φ̄j(0) + f⋆
j + ǫj + ǫ′ − F̄j(1) (3.25)

= Φ̄j(0) + f⋆
j + ǫj + ǫ′ − f̂⋆

j (3.26)

≥ Φ̄j(0) + ǫ′ (3.27)

≥ ǫ′, (3.28)
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which contradicts Lemma 3.1.3. Thus, we conclude that the cost optimality holds and therefore the

theorem holds.

3.2 AUGMENTED MAX -WEIGHT SCHEDULING WITHOUT COST KNOWLEDGE

In this section, we solve the optimization problemSCH-C. We remind the reader thatSCH-C

does not require knowledge of the optimal scheduling costs,but requires the scheduling algorithm to

achieve the optimal scheduling cost asymptotically. ForSCH-C, we will propose another version of

the augmented max-weight scheduling algorithm, which is motivated by the Lyapunov optimization

framework in [80] in the context of communication networks.We will generalize the algorithm to

the broader area of CPS, and prove optimality results.

3.2.1 Augmented Max-Weight Scheduling Algorithm

The algorithm is shown in Algorithm 3.2.1. Compared to Algorithm 3.1.1, a major difference

is that the virtual cost queues are replaced by a constant, since we do not assume knowledge about

the optimal scheduling cost. Thus, the scheduling algorithm in (3.29) always tries to achieve a

tradeoff between the queue length weighted job departures and the instantaneous scheduling cost in

each time slot. Further, in order to improve the delay performance, a ‘place holder’ζi is introduced

for each useri. In below, we will show that this algorithm still achieves optimal scheduling cost

asymptotically.

The performance of the above scheduling algorithm will be compared against the following
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Algorithm 3.2.1 Augmented Max-Weight Scheduling without Cost Knowledge
1: For each time slotn, computeα(n) by solving the following optimization:

maximize{αi,χi}

∑

i∈V

(Ui(n− 1) + ζi)αi − β
∑

j∈J

fj(αNj
(n); sNj

(n))

subject to hk(αNk
, χNk

; sNk
(n)) = 0,∀k ∈ F

αi ∈ Ai(si(n)),∀i ∈ V

χi ∈ Oi(si(n)),∀i ∈ V (3.29)

where{ζi} andβ are properly chosen positive constants.
2: Update queuesU(n) according to (2.3).

N -slot look-ahead scheduling problem:

SCH-N: min
{αi(n),χi(n)}

1

N

N
∑

n=1

∑

j∈J

fj(αNj
(n); sNj

(n)) (3.30)

subject to hk(αNk
(n), χNk

(n); sNk
(n)) = 0,∀k, 1 ≤ n ≤ N (3.31)

αi ∈ Ai(si(n)) ∀i ∈ V, 1 ≤ n ≤ N (3.32)

χi ∈ Oi(si(n)),∀i ∈ V, 1 ≤ n ≤ N (3.33)

1

N

N
∑

n=1

αi(n) ≥
1

N

N
∑

n=1

Λi(n) + ǫ,∀i ∈ V. (3.34)

Essentially,SCH-N is a restriction ofSCH-C to the finite time interval[0, N ], where the stability

constraints on the queues are replaced by (3.34), which requires that the average departure rate

should be larger than the average arrival rate byǫ.

Now, we assume that time is divided into frames, where each frame hasN time slots. Denote

the optimal scheduling cost for the above problemSCH-N during them-th frame asf⋆
m. We have

the following theorem:

Theorem 3.2.1.Algorithm 3.2.1 achieves the following asymptotic averagescheduling cost:

lim sup
M→∞

1

MN

MN
∑

n=1

∑

j∈J

fj(αNj
(n); sNj

(n))

≤ lim sup
M→∞

1

M

M
∑

m=1

f⋆
m +

B1 +B2N +
∑

i∈V αmax
i ζi

β
. (3.35)
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Further, the queue lengths can be bounded as follows:

lim sup
M→∞

1

MN

MN
∑

n=1

∑

i∈V

Ui(n)

≤
B1 +B2N

ǫ
+

β

ǫ
lim sup
M→∞

1

M

M
∑

m=1

f⋆
m +

∑

i∈V

(
αmax
i

ǫ
− 1)ζi, (3.36)

whereB1 andB2 are sufficiently large constants.

The above theorem shows that we can achieve the optimal scheduling cost asymptotically with-

out prior knowledge about its value. Further, it demonstrates an interestingO(1/β) versusO(β)

tradeoff between the scheduling cost and average queue length, in the sense that we can achieve a

scheduling cost gap on the order ofO(1/β), according to (3.35), while incurring an upper bound

on the average queue length on the order ofO(β), as shown in (3.36). Such tradeoff is also shown

in [80] in the context of communication networks. Intuitively, this is due to the fact that Algorithm

3.2.1 always tries to achieve a balance between minimizing the queue lengths and minimizing the

instantaneous scheduling cost, where the weight is specified byβ, as shown in (3.29). Thus, large

β implies higher weight on the scheduling cost and larger queue length, and vice versa. In CPS

applications,β has to be chosen carefully based on the desired scheduling cost performance and the

tolerance on the delay.

It is important to notice that the processes{si(n)} and{Λi(n)} can be arbitrary, which include

other well-known models, such as Markov processes as a special case. In order to emphasize such

result, we propose the following corollary:

Corollary 3.2.1. Let {α̃i(n)} be any sequence of control actions such that the problemSCH-N is
feasible for anyN -slot frame. The following scheduling cost result holds :

lim sup
M→∞

1

MN

MN
∑

n=1

∑

j∈J

fj(αNj
(n); sNj

(n)) ≤ lim sup
M→∞

1

MN

MN
∑

n=1

∑

j∈J

fj(α̃Nj
(n); sNj

(n))

+
B1 +B2N +

∑

i∈V αmax
i ζi

β
, (3.37)

where{αi(n)} are the control actions under Algorithm 3.2.1. Further, thefollowing average queue
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length result also holds:

lim sup
M→∞

1

MN

MN
∑

n=1

∑

i∈V

Ui(n) ≤
B1 +B2N

ǫ
+

∑

i∈V

(
αmax
i

ǫ
− 1)ζi

+
β

ǫ
lim sup
M→∞

1

MN

MN
∑

n=1

∑

j∈J

fj(α̃Nj
(n); sNj

(n)), (3.38)

whereB1 andB2 are sufficiently large constants.

Thus, compared to an arbitrary feasible sequence of controlactions{α̃i(n)}, which can be

computed by assuming certain models such as Markov processes, the control actions specified by

Algorithm 3.2.1 achieve an arbitrarily close average scheduling cost, while ensuring a guaranteed

upper bound on average queue lengths, where theO(1/β) versusO(β) cost-delay tradeoff is spec-

ified by the parameterβ.

3.2.2 Optimality Proof

We use the Lyapunov drift analysis method by Neely [80] to prove the optimality. The key to

the proof lies in analyzing the drift of a Lyapunov functionL(n), which is defined as follows:

L(n) =
1

2

∑

i∈V

(Ui(n) + ζi)
2 + β

∑

j∈J

n
∑

τ=1

fj(αNj
(τ); sNj

(τ)). (3.39)

Define theT -slot drift of the Lyapunov function starting from time slotn as

∆TL(n) = L(n+ T )− L(n). (3.40)

We first provide a bound on the drift ofL(n) under Algorithm 3.2.1 over a single frame.

Lemma 3.2.1. Under Algorithm 3.2.1, theN -slot drift ofL(n) for each framem can be bounded
as

∆NL(nm) ≤ −ǫ
∑

i∈V

N
∑

τ=1

(Ui(nm + τ − 1) + ζi) + βNf⋆
m +N

∑

i∈V

αmax
i ζi +NB1 +N2B2,

wherenm = (m− 1)N andB1, B2 are sufficiently large constants.

Proof: The proof is in Appendix B.5.
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We next extend the above analysis from one frame to multiple frames:

Lemma 3.2.2. The drift ofL(n) over the firstM frames satisfies the following:

∆MNL(0) ≤ −ǫ
MN
∑

τ=1

∑

i∈V

(Ui(τ − 1) + ζi)

+ βN
M
∑

m=1

f⋆
m +MN

∑

i∈V

αmax
i ζi +MNB1 +MN2B2. (3.41)

Proof: This can be obtained directly by summing the bound in Lemma 3.2.1 overM consecu-

tive frames.

We are now ready to prove Theorem 3.2.1.

Proof: According to the bound in Lemma 3.2.2, the average cost overM frames under Algo-

rithm 3.2.1 can be bounded as follows:

1

MN

∑

j∈J

MN
∑

τ=1

fj(αNj
(τ); sNj

(τ)) (3.42)

(a)

≤
1

βMN
L(MN) (3.43)

=
L(0) + ∆MNL(0)

βMN
(3.44)

(b)

≤
L(0)

βMN
+

B1 +B2N +
∑

i∈V αmax
i ζi

β
+

1

M

M
∑

m=1

f⋆
m, (3.45)

where(a) is due to the definition in (3.39), and(b) is because of Lemma 3.2.2. Thus, the cost

optimality holds after takingM →∞.

We now to prove the queue length bound. From (3.41) one can easily see that

1

MN

MN
∑

τ=1

∑

i∈V

(Ui(τ − 1) + ζi)

≤
L(0)− L(MN)

ǫMN
+

β

Mǫ

M
∑

m=1

f⋆
m +

1

ǫ

∑

i∈V

αmax
i ζi +

B1 +NB2

ǫ
, (3.46)

from which (3.36) follows from above by takingM →∞.



3.3 APPLICATION: COORDINATED CHARGING OF ELECTRIC VEHICLES 44

3.3 APPLICATION: COORDINATED CHARGING OF ELECTRIC VEHICLES

In this section, we apply the max-weight scheduling algorithms to the important case of coordi-

nated EV charging in smart grids. We first focus on the throughput performance of the max-weight

scheduling algorithm in CPS by assuming constant cost, and show that the max-weight schedul-

ing algorithm can achieve high EV penetration level in large-scale power systems, while ensuring

that the power system can operate in a secure and reliable manner. Then, we consider the cost-

aware scheduling and show that the max-weight algorithm in Section 3.1 can achieve near-optimal

minimum variance total load profile for overnight EV charging application.

3.3.1 Throughput Results

We next investigate the throughput performance of the max-weight algorithm, and show that it

can achieve high EV penetration in large-scale power systems. We start with the simulation setup.

3.3.1.1 Simulation Setup

We simulate a residential EV charging scenario with the standard IEEE 13-bus test feeder [81],

which corresponds to a real-world distribution system. Thetopology of the test feeder is shown in

Fig. 3.2, where the colored (black and gray) nodes representthe buses associated with residential

loads. In order to demonstrate the potential of EVs in integrating intermittent renewable energy

sources, it is assumed that a wind generator is installed at bus 671, which is the gray node in Fig.

3.2. The wind generation pattern for the simulation period is shown in Fig. 3.3, which is obtained

from a real-world data trace in a Pennsylvania wind farm [82]. The simulation considers an over-

night charging scenario from 7pm to 5am in the next morning. It is assumed that all EVs are always

plugged-in during the whole simulation period, and therefore are always available for charging. The

non-EV residential load profile is specified by the real-world data trace from the SCE website [83].

The total non-EV load profile is shown in Fig. 3.4, where wind generation at bus 671 is treated

as negative load. The load at each bus is obtained by scaling the SCE load profile proportionally
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Figure 3.2: The topology of the standard IEEE 13-bus test feeder in the case study. The colored
nodes are associated with residential loads. A wind generator is placed in the system at bus 671.

according to the case file description [81].

The EVs are assigned to the buses associated with residential loads, as shown by the colored

nodes in Fig. 3.2. The number of EVs associated with each bus is proportional to the number of

households for each bus, which is obtained according to the average daily load specification in the

case file of the test feeder. For this simulation, the total number of EVs in the system is 2185, which

corresponds to the 50% penetration scenario. It is assumed that the maximum charging power of

each EV charger is 1.92kW, which corresponds to the standard120V, 16A charger. For the charging

simulation, it is assumed that the initial energy queue lengths for the overnight charging period for

all EV batteries are 8.8 kWh. This is according to the national survey of 25 miles average daily

commute distance, and the EV consumption rate of 34 kWh/100 miles [84]. A summary of the EV

specification for this simulation is in Table 3.1.

3.3.1.2 Simulation Results

For this simulation, the optimal AC power flow in each time slot is computed by the technique

of sequential convex programming [85], which works as follows. At each step, the algorithm tries

to obtain a local convex approximation of the original nonconvex optimization problem, and then
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Table 3.1: Vehicle Facts
Parameter Value

Battery Capacity 16 kWh
Energy Usage per 100 miles 34 kWh
Charging Rate (120 V, 16 A) 1.92 kW

Average Daily Commute Distance 25 miles
Daily Consumption 8.75 kWh
Charging Efficiency 0.90
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Figure 3.3: The wind generation output profile in the case study.

tries to solve the approximated convex problem in a local region and obtain the EV charging rates.

The algorithm then solves the AC power flow with the updated EVcharging rates, and continues to

approximate the nonconvex power flow at the new operating point, and search for locally optimal

solutions. The algorithm will stop if certain convergence criterion is satisfied. For this simulation,

the AC power flow is solved using the OpenDSS software. The total computation time is around

103 seconds on a workstation with 64-bit Windows operating system running with 2.26GHz Intel

Duo processor and 8GB RAM.

• Total Load Profile

The resulting system load profiles are shown in Fig. 3.4, where the dotted line illustrates the

non-EV load minus the wind generation, and the solid line corresponds to the total EV load.



3.3 APPLICATION: COORDINATED CHARGING OF ELECTRIC VEHICLES 47

19:00 20:00 21:00 22:00 23:00 24:00 01:00 02:00 03:00 04:00 05:00
0

1

2

3

4

5

6

7

A
ct

iv
e 

P
ow

er
 (

M
W

)

Time (Hour)

Total Load

 

 
Non−EV Load − Wind
EV Load

Figure 3.4: The load profiles according to the max-weight EV charging algorithm.

Note that the dotted load profile is no longer smooth, due to the integration of the highly

intermittent wind generation. From the figure, one can clearly observe that the EV charging

is ‘smart’, in the sense that the total EV load profile changesvery adaptively to both the

wind generation and non-EV load profiles. For example, during the peak hour (around 8pm),

when the non-EV load is very large, the EV load is quite small,in order to guarantee that the

physical limits are not violated, so that the power system can operate in a secure and reliable

manner. Further, one can easily observe a ‘symmetry’ between the net load profile and the EV

load profile, in particular during the mid-night, in that an increase in the dotted load profile

usually results in a decrease in the EV load profile, and vice versa. In particular, as the dotted

load suddenly drops around 2am, due to the sudden increase inthe wind power generation

output, one can clearly identify a very similar increase in the total EV charging profile. This

immediately implies that the max-weight charging algorithm can successfully integrate the

renewable wind generation by absorbing its intermittency.Finally, one can observe the sharp

decrease in the total EV load in the morning of the next day. This indicates that most EVs are

successfully refilled.
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Figure 3.5: The profiles of the minimum three phase voltages in the case study.

• Voltage Profile

The minimum voltage profiles for each phase in the case study are shown in Fig. 3.5. One can

clearly observe that, phase C is the bottle neck of the system, as it has the smallest magnitude

among all three phases. Note that, interestingly, even if the voltages in the other two phases

are far away from the limit (0.95 per unit in this case study),the corresponding EV loads are

still not allowed to charge more, due to the coupling betweenthe phases. Further, note that

the minimum voltage in the entire power system is always above the physical limit. Thus,

we conclude that the max-weight charging algorithm can successfully control the charging
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Figure 3.6: The profile of the maximum energy queue lengths for each phase in the case study.

rates of all EVs in the power system to maintain reliable operation of the power system. This

also partially explains the symmetry between the dotted load profile and the EV load profile

in Fig. 3.4, in that such constraint essentially places an upper bound on the total load in the

power system, so that when the net load decreases due to wind power generation, the EV load

will increase, and vice versa. Finally, one can observe the increase in the minimum voltage

near the end of the overnight charging period. This is because many EVs finish charging.

• Queue Length Results

In order to demonstrate the performance of the max-weight charging in refilling the EV batter-

ies, we plot the profiles of the maximum energy queue lengths for each phase in Fig. 3.6. The

conclusion is that, for all three phases, the max-weight charging algorithm can successfully

refill all EV batteries during the overnight charging period. Further, the figure also confirms

the coupling of the charging processes between the three phases, which is suggested in Fig.

3.5, in that even if the voltage limit in the phase A and B are far from the boundary, the EV

loads are not allowed to charge further during the charging period, due to their coupling ef-
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fect to the voltage in phase C, which is the bottleneck of the network. Thus, the maximum

energy queue lengths in all three phases behave very similarly, with the EV loads in phase

B finish relatively earlier, due to the fact that it is the least constrained in voltage, according

to Fig. 3.5. Similarly, the EV loads in phase A also finish earlier than phase C. Further, a

more careful inspection reveals that at the beginning of thecharging period, the charging rate

is relatively low, in order to avoid the power system congestion. The charging rate becomes

much higher near the end of the charging period. This is because, during such period, the

charging processes are essentially only constrained by therating of the EV charging circuits.

3.3.2 Scheduling Cost Results

We next investigate the performance on scheduling cost on the augmented max-weight EV

charging. Since the EV charging problem is a highly non-convex optimization problem, it is diffi-

cult to compute the optimal cost in general. Thus, in order todemonstrate the cost optimality, we

assume that the physical voltage constraints can always be satisfied, and investigate the minimum

variance EV charging problem for the overnight charging scenario. We assume that the cost for

each time slot is as follows:

f({Pi(n)}; {P
non-EV
i (n)}) =

(

∑

i∈V

(

Pi(n) + P non-EV
i (n)

)

)2
, (3.47)

wherePi(n) andP non-EV
i (n) are the EV charging power and non-EV active load at busi, respec-

tively. Thus, the optimal charging profile should be as flat aspossible. We next describe the simu-

lation setup.

3.3.2.1 Simulation Setup

The simulation setup is essentially the same as the one in thelast subsection. We simulate the

minimum variance charging in the standard IEEE 37-bus test feeder [81]. In this case, the total

number of vehicles is 3402 for the 50% EV penetration scenario. For comparison purpose, there are
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Figure 3.7: Base load profile used in the simulation with IEEE37-bus system.

three types of smart charging algorithms considered in the simulation:

1. A static optimal minimum variance EV charging algorithm,with perfect knowledge of the

day-ahead values of all random processes.

2. A static suboptimal charging algorithm, which solves theminimum variance EV charging

using imperfect forecast of day-ahead load curve as shown inFig. 3.7.

3. Augmented max-weight EV charging in Algorithm 3.2.1.

The charging algorithms are simulated at EV penetration levels of 30% and 50%. For the 30%

penetration case,β = 0.0205, andζi = 577 for each vehicle, whereas for the 50% penetration case,

β = 0.0161, andζi = 534 for each vehicle. The maximum total computation time of the on-line

algorithm is 0.58 second for a 24-hour simulation scenario,while 3900 seconds for the static op-

timizations. Note the dramatic computation performance improvement for the case of max-weight

charging. This is due to the fact that each charging scheduleis computed using current system

information, which have much smaller dimension than the total state processes. In practice, the

time scale of each time slot is on the order of minutes. Thus, the computation and communication
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Figure 3.8: The total system load profile with 30% EV penetration in the IEEE 37-bus system.

requirement of the max-weight charging algorithm can be easily satisfied. The results of total loads

are shown in Fig. 3.8 and Fig. 3.9, respectively. We have the following remarks.

• Valley Filling

One can easily observe that the minimum load variance charging can achieve atotally flat

load curve during the overnight charging period. Thus, compared to other smart charging

formulations, in particular, the ones based on electricityprice, the minimum load variance

formulation can avoid an additional ‘midnight peak’, which, in the extreme case, may cause

similar grid congestion issues as uncoordinated charging.

• Cost Optimality

The proposed on-line decentralized EV charging achieves almost the same total load profile as

the static optimal,even though the former does not need to know the driving pattern and loads

in advance. This further verifies the theoretical result in Theorem 3.2.1 Thus, we can achieve

the same performance as the static optimal, with much smaller computational overhead.
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Figure 3.9: The total system load profile with 50% EV penetration in the IEEE 37-bus system.

• Robustness Results

The day-ahead prediction based algorithms are vulnerable to the forecast errors. This can be

clearly observed from Fig. 3.8 and Fig. 3.9, where the forecast based solutions cannot achieve

a flat profile in the presence of the load forecast error. In fact, we allowed these algorithms to

know the exact driving patterns in advance, which is clearlyunrealistic. On the other hand,

the optimal decentralized charging algorithm is not affected by such forecast errors, since it

is an online algorithm, which does not rely on forecasts.



CHAPTER 4

OPTIMAL SCHEDULING IN THE QUASI-STATIC
REGIME: SIMPLEX SCHEDULING

Chapter 3 discussed applications of the augmented max-weight scheduling algorithms in dynamic

systems. This chapter considers the scheduling problem where the PhyNet operates in thequasi-

staticregime. That is, the local modes in the CPS remain constant for the time scale of the schedul-

ing application. As one example, the data packets in a wireless sensor network are typically trans-

mitted assuming a very slowly changing network topology. Insuch systems, it is possible to develop

efficient scheduling algorithms by utilizing the quasi-static property of the system. In this chapter,

we propose a simplex algorithm based optimal scheduling scheme applicable in the quasi-static

regime, and prove its throughput optimality.

The main algorithm in this chapter is Algorithm 4.3.2, whichproposes an optimal online sim-

plex scheduling scheme. The algorithm has two components, the scheduling component and the

column generation component. The scheduling component adopts a ‘max-weight’ form, in that

a max-weight schedule is selected from a subset of ‘basic’ schedules. We will show that this is

fundamentally different from the max-weight algorithms inChapter 3, since the set of basic sched-

ules has much smaller cardinality (e.g.,O(|V|)) than the set of all schedules (e.g.,2|V|). Thus, the

scheduling in Algorithm 4.3.2 is promising for distributedimplementation, using average consensus

techniques. Notice that this may incur higher complexity than the ‘pick-and-compare’ scheme in Al-

54
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gorithm 3.1.2, since consensus has to be reached on the weights of all basic schedules, instead of the

single newly generated schedule. Such increase in complexity achieves significant improvement on

the steady-state delay, since Algorithm 4.3.2 will behave similarly to the conventional max-weight

algorithm if the correct basic schedules are given. Finally, we will show that the column generation

component in Algorithm 4.3.2 is also a max-weight problem, which can be similarly implemented

in a distributed manner using the techniques discussed in Chapter 3.

We will apply simplex scheduling to packet scheduling in wireless networks. We will demon-

strate that, by simulation results, the simplex algorithm can achieve dramatic steady-state delay

improvement over the state-of-art CSMA based distributed scheduling algorithms [15, 16]. Further,

we will also show that the simplex algorithm for packet scheduling in wireless networks can be

implemented in a distributed manner, using average consensus and distributed CSMA techniques.

The rest of this chapter is organized as follows. In Section 4.1 we propose an idealized simplex

scheduling algorithm, and in Section 4.2 we demonstrate theonline scheduling algorithm and prove

its optimality. Section 4.3 applies the simplex schedulingalgorithm to packet scheduling in wireless

networks, and show that it can be implemented in a distributed manner.

4.1 SIMPLEX SCHEDULING ALGORITHM: IDEALIZED VERSION

To motivate the development of the simplex-based scheduling, we need to reformulate the

scheduling problem and system model.

4.1.1 A Reformulation of the Scheduling Problem

In this chapter, we are interested in solving the feasibility versionSCH-F of the general schedul-

ing problem formulations in Chapter 2. Since the system is inthe quasi-static regime, the system

mode is constant. Thus, we can enumerate all feasible schedules in a compact form as a matrix,

which we denote asA, where each columnα ∈ A represents a vector of feasible control actions.

Now, the general abstract scheduling problem can be idealized by the following static linear pro-
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gramming problem:

SCH-L: minimize{x,γ} γ (4.1)

subject to Ax = (1− γ)λ (4.2)

x � 0 (4.3)

1Tx = 1 (4.4)

wherex is the scheduling variable, such thatxα represents the asymptotic time fraction that the

control action vectorα is chosen by the scheduler. Thus, the vectorx naturally lives in the simplex

as described in (4.3) and (4.4). (4.2) is essentially the rate stability constraint, where the LHS rep-

resents the average job departure rates, and the RHS represents the(1− γ) discounted arrival rates,

so that rate stability is achieved when the relaxation gapγ is non-positive. Given the above lin-

ear programming formulation, we next propose the simplex scheduling algorithm for the idealized

problemSCH-L. We then prove its throughput optimality in the presence of stochastic job arrivals

in the next section.

4.1.2 Idealized Simplex Scheduling Algorithm

Since the optimizationSCH-L is a linear programming problem, we can solve it using the

celebrated simplex algorithm [86]. The simplex based scheduling algorithm is shown in Algorithm

4.1.1. In order to fully understand the algorithm, we need tofirst introduce the concept of vertex

in the context of the scheduling problem. (Note: ‘vertex’ inlinear programming terminology is

different from vertex in graph terminology.) According to the rate stability equality constraints in

(4.2), we define a vertex as a pair(yT , γ)T , wherey is a|V|×1 sub-vector ofx, which is associated

with a |V| × |V| sub-matrix ofA. Following the terminology in linear programming, we denote the

sub-matrix as basic matrixB. We assume that the problem isnon-degenerate, so that the matrixB

is always invertible throughout the analysis in this chapter. Thus, the vertex can be obtained from
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Algorithm 4.1.1 Static Simplex Scheduling
1: Initialization: Initialize the scheduling variables as the following:

B = diag(αmax
1 , αmax

2 , . . . , αmax
|V| ) (4.5)

yi =
λi/α

max
i

∑

j∈V λj/αmax
j

, 1 ≤ i ≤ |V| (4.6)

γ = 1−
1

∑

j∈V λj/αmax
j

(4.7)

2: if γ > 0 then
3: while γ > 0 do
4: Column Generation: Compute a new column ofA such that

αnew = arg max
α is a column ofA

1TB−1α (4.8)

5: Scheduling: Compute the new ‘vertex’ynew and the throughput gapγnew by solving the
following optimization problem:

minimize{y,z,γ} γ

subject to By + αnewz = (1− γ)λ

y � 0, z ≥ 0

1T y + z = 1 (4.9)

6: Update: Denoteα′ as the column inB whose coefficient inynew is zero. Replaceα′ with
αnew, relabel the variables inynew, and update optimization variables as follows:

y = ynew (4.10)

γ = γnew (4.11)

7: end while
8: return (B, y)
9: end if

the basis matrixB by solving the following:






B λ

1T 0













y

γ






=







λ

1






(4.12)

Based on the above notion of a vertex, the static simplex scheduling algorithm works as follows. It

starts from a feasible vertex, as shown in (4.6) and (4.7), which corresponds to the basis matrixB
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in (4.5). Then, it generates a new moving directionαnew by solving (4.8), and obtain the new basic

matrix and corresponding coefficients by solving (4.9). Theabove iteration continues untilγ ≤ 0,

in which case the arrival rate can be fully stabilized by the basis matrixB. DenoteR⋆ as the convex

hull of the columns in the matrixA. This is the largest stability region achievable by any scheduling

algorithm [11]. We now prove that Algorithm 4.1.1 achievesR⋆ in the following theorem.

Theorem 4.1.1. If λ ∈ R⋆, Algorithm 4.1.1 will return a solution(B, y) such that the following
holds:

By � λ. (4.13)

We first prove some technical lemmas. Firstly, we will show that theαnew returned in column

generation step in (4.8) is a cost-decreasing direction.

Lemma 4.1.1. After each iteration in Algorithm 4.1.1, the change to the scheduling cost functionγ
is non-positive, and is strictly negative ifγ > 0.

Proof: The proof is in Appendix C.1.

Given the new direction specified byαnew, according to the standard simplex algorithm, the

coefficients should move along the direction as specified by(αT
new, 1)

T , until it reaches a new vertex,

where some coordinate associated with one column of the old basis matrixB becomes zero for the

first time. Then, Algorithm 4.1.1 replaces the column withαnew, and relabel the variables. We next

prove the existence of such a column in Algorithm 4.1.1.

Lemma 4.1.2. For the solution(yTnew, znew, γnew)
T to the problem (4.9), we haveznew > 0, and

there is one column inB whose corresponding coefficient inynew is zero.

Proof: The proof is in Appendix C.2.

We are now ready to prove the theorem.

Proof of Theorem 4.1.1:If γ in (4.7) is non-positive, we have

∑

j∈V

λj/α
max
j ≤ 1, (4.14)

which implies that

By =
1

∑

j∈V λj/αmax
j

λ � λ, (4.15)
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from which the claim holds. Thus, we only need to consider thecase withγ > 0. In this case,

Lemma 4.1.1 shows that each iteration moves along a cost decreasing direction. This, combined

with the result in Lemma 4.1.2, implies that the algorithm moves to a new vertex after each iteration,

which has a lower scheduling cost. Thus, the claim follows since the objective function is feasible,

due to the assumption thatλ ∈ R⋆ and that there are a finite number of vertices for the feasible

region.

Thus, we conclude that Algorithm 4.1.1 is optimal. Notice that one interesting property of

the algorithm is that the scheduling phase is only restricted to a sparseset of schedules, which

is represented by the basic matrixB. Such restriction can substantially simplify the computation

and coordination overhead in each time slot, in particular compared to the augmented max-weight

scheduling schemes in Chapter 3.

4.2 SIMPLEX SCHEDULING ALGORITHM: ONLINE VERSION

We have introduced the idealized simplex scheduling algorithm and proved its optimality in the

last subsection. However, the algorithm design and analysis is still incomplete, due to the following.

Firstly, the scheduling variables in Algorithm 4.1.1 are a static ‘time fraction’ result, which do not

specify how the schedules are selected for each time slot. Thus, even if one finds the optimal basic

scheduling variablesy⋆, it is highly nontrivial to implement it efficiently in each time slot. Secondly,

both algorithm design and optimality proof assume perfect knowledge of arrival rates. It is still

unclear whether stability can be achieved by the simplex algorithm under very stochastic arrival

processes with uncertain arrival rates. In this section, wecontinue with the simplex scheduling by

proposing an online version and prove its optimality.

4.2.1 Scheduling Algorithm

For the online scheduling algorithm, we assume that time is partitioned into frames, where each

frame has lengthT . At the beginning of each framel, we estimate the arrival rates, as follows:
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Estimate the arrival rates as follows:

λ̂i(l) = ǫ0⌈
Λi

(

(l − 1)T
)

(l − 1)Tǫ0
⌉,∀i ∈ V, (4.16)

where⌈·⌉ is the standard ceiling function, andǫ0 is the quantization step size. Thus, the estimated

arrival rateλ̂i(l) is the quantized empirical arrival time-average arrival rates over the firstl − 1

frames, where the accuracy is specified byǫ. Note that we always assume the ‘rounding up’ op-

eration, in order to guarantee stability. The estimated arrival rateλ̂ is then used by the scheduling

algorithm throughout the entire frame.

The scheduling algorithm within each frame is shown in Algorithm 4.2.1. Note that the second

step essentially refreshes the initial vertex in case thereis a change in the arrival rates, so that

the basic setsB is always feasible. Further, compared to the static versionin Algorithm 4.1.1,

there are a few major changes. Firstly, the ‘scheduling’ step in Algorithm 4.1.1 is replaced with

the ‘max-weight scheduling’ in (4.21), where the parameterθ(n) is the dual variable for each rate

stability constraint in (4.2). Secondly, the ‘column generation’ step in Algorithm 4.1.1 is replaced

by another max-weight algorithm in (4.24). Notice the important difference between the two ‘max-

weight’ algorithms. The first one in (4.21) searches over a much smaller set, namely the columns of

B, whereas the second one search over the entire set of feasible schedules, the columns ofA. The

number of columns inB can be much smaller than that inA. For example, in wireless networks,

the number of columns inA can be exponential in|V|. Thus, the scheduling step in the online

version is much easier to solve than the conventional max-weight algorithm [11]. Secondly, the

online algorithm uses estimated arrival ratesλ̂ as shown in (4.16).

4.2.2 Stability Proof

We start the stability proof of the online simplex scheduling algorithm by showing that these

changes are equivalent to the static versions in Algorithm 4.1.1. We begin with the following tech-

nical lemma.
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Algorithm 4.2.1 Online Simplex Scheduling

1: Estimate arrival ratêλ(l) with (4.16).
2: If λ̂i(l) = λ̂i(l− 1) for all i ∈ V, the basis matrixB and scheduling variables(θ, γ) remain the

same. Otherwise, initialize them as the following:

B = diag(αmax
1 , αmax

2 , . . . , αmax
|V| ) (4.17)

γ = 0 (4.18)

θ = 0 (4.19)

αnew = 0 (4.20)

3: for n = (l − 1)T + 1→ lT do
4: Max-Weight Scheduling: Chooseα(n) such that

α(n) ∈ arg max
α is a column ofB or αnew

θ(n)Tα (4.21)

5: Parameter Update: The parameters are updated as follows:

θ(n) = θ(n− 1) + ǫ((1− γ(n− 1))λ̂− α(n)) (4.22)

γ(n) = γ(n − 1) + ǫ(θ(n− 1)T λ̂− 1) (4.23)

whereǫ is a standard small constant step size.
6: if (θ(n), γ(n)) converges andγ > 0 then
7: Replace the column inB with the minimum weight byαnew, and relabel coefficients.
8: Generate a new columnαnew by solving the following:

αnew ∈ arg max
α is a column ofA

θ(n)Tα (4.24)

9: end if
10: end for

Lemma 4.2.1. We assume that the estimated arrival rates{λ̂i} is fixed, and that both the basic
schedulesB andαnew are fixed. Then,(θ(n), γ(n)) will converge to the optimal primal and dual
solutions for the optimization in (4.9), respectively.

Proof: The proof is in Appendix C.3.

We continue to show that the second ‘max-weight’ algorithm in (4.24) is equivalent to the col-

umn generation step in (4.8) for the static optimization.

Lemma 4.2.2. The new columnαnew returned by the max-weight algorithm in (4.24) also solves
the problem in (4.8).

Proof: The proof is in Appendix C.4.
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In the next lemma, we prove the result on average departure rates in steady states.

Lemma 4.2.3. Assume that the estimated arrival rates{λ̂i} is fixed at the quantized value of the
true arrival rates, and that the throughput gap associated with the basic schedulesB andαnew are
non-positive. The following is true:

lim
n→∞

{

(1−
1

2rnδ

rn(t0+δ)
∑

τ=rn(t0−δ)

γ(τ))λ̂i −
1

2rnδ

rn(t0+δ)
∑

τ=rn(t0−δ)

αi(τ)
}

= 0,∀i ∈ V, (4.25)

for anyt0 > 0 andδ > 0.

Proof: The proof is in Appendix C.5.

We are now ready to prove the throughput optimality of the simplex scheduling algorithm.

Theorem 4.2.1.Assume that the arrival rateλ ∈ R⋆. The network is rate stable under the online
simplex scheduling algorithm in Algorithm 4.2.1.

Proof: Consider any fluid limit, and the following Lyapunov function:

L(t) =
1

2

∑

i∈V

(Ūi(t))
2. (4.26)

Let t0 > 0 be given, we now show that

L̇(t0) =
∑

i∈V

Ūi(t0)(λi −
˙̄Di(t0)) ≤ 0, (4.27)

from which stability result holds after applying Lemma 3.1.1. Firstly, for any converging subse-

quence{rnk
} to the fluid limit, since we have

lim
k→∞

sup
t∈[0,T ]

|Λ
rnk

i (t)− λit| = 0,∀i, (4.28)

for anyǫ′ > 0, there existsK1 such that

sup
t∈[0,T ]

|Λ
rnk

i (t)− λit| ≤ ǫ′,∀i, k ≥ K1. (4.29)

Now, we can chooseǫ′ sufficiently small, such that (4.29) implies that the quantized estimated

arrival rates in (4.16) stay unchanged at{λ̂i}, which is the quantized value of the true arrival rate.

Note that we also have

λ̂i ≥ λi,∀i, (4.30)
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due to the ‘round-up’ quantization procedure in (4.16). Now, assumet0 > 0 is given and that there

is i ∈ V such thatŪi(t0) > 0. Due to the uniform continuity property of the fluid limits and the

uniform convergence on compact set, we can findδ > 0, ǫ̃ > 0 andK2 such that fork ≥ K2

U
rnk

i (τ) ≥ ǫ̃,∀τ ∈ (t0 − δ, t0 + δ). (4.31)

Recalling the definition of fluid scaling, this implies that

Ui(τ) ≥ rnk
ǫ̃,∀τ ∈ (rnk

(t0 − δ), rnk
(t0 + δ)). (4.32)

Thus, for sufficiently largek, we conclude thatUi is always nonempty during(rnk
(t0−δ), rnk

(t0+

δ)). Now, from Lemma 4.2.1 and Lemma 4.2.2, the Algorithm 4.2.1 is an implementation of the

static version in Algorithm 4.1.1. Thus, for sufficiently largek, we conclude from Theorem 4.1.1

that the basic matrixB andαnew are such that the associated throughput gapγ is non-positive after

rnk
t0. According to Lemma 4.2.3, we have

lim
k→∞

{

(1−
1

2rnk
δ

rnk
(t0+δ)
∑

τ=rnk
(t0−δ)

γ(τ))λ̂i −
1

2rnk
δ

rnk
(t0+δ)
∑

τ=rnk
(t0−δ)

αi(τ)
}

= 0, (4.33)

from which and the convergence result ofγ(n), we conclude that

lim
k→∞

1

2rnk
δ

(

Di(rnk
(t0 + δ))−Di(rnk

(t0 − δ))
)

= (1− γ)λ̂i (4.34)

≥ (1− γ)λi. (4.35)

Takingδ → 0, we obtain that

˙̄Di(t) ≥ λi, (4.36)

from which the stability holds.

Thus, we conclude that the online scheduling algorithm is optimal. We would like to emphasize

the fundamental difference between the max-weight scheduling phase in (4.21) and the max-weight

algorithms in Chapter 3, in that (4.21) is restricted to a very sparse set(O(|V|)) of basic schedules,

where as the algorithms in Chapter 3 always search over the entire set of feasible schedules. Thus,
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Algorithm 4.3.1 Distributed CSMA
1: In each time slotn, do the following:
2: Randomly generate an independent setα′(n).
3: for eachi ∈ α′(t) do
4: pi = exp(θi)/(1 + exp(θi));
5: if no neighbor ofi is in α′(n− 1) then
6: Link i update its transmission status as follows:

αi(n) =

{

1 with probabilitypi
0 else

(4.37)

7: end if
8: end for
9: Any other linki 6∈ α′(n) setαi(n) = αi(n− 1).

(4.21) has much lower complexity than the direct max-weightalgorithm, and is amendable for

distributed implementation.

4.3 APPLICATION: PACKET SCHEDULING IN WIRELESS NETWORKS

In this section, we will apply the simplex scheduling algorithm to the application of packet

scheduling in wireless networks. In particular, we will demonstrate that the online simplex schedul-

ing in Algorithm 4.2.1 can be implemented in a distributed fashion, using distributed CSMA [15, 16]

and average consensus techniques.

4.3.1 Scheduling Algorithm

We start with the distributed CSMA algorithm, which can be regarded as a basic block in achiev-

ing distributed implementation of the max-weight column generation in (4.24).

The algorithm is shown in Algorithm 4.3.1. Notice that the carrier sensing is applied twice

for each iteration of the algorithm. The first carrier sensing is applied during the generation of the

independent setα′(n). We assume thatα′(n) satisfies the following condition [16]:

P(α′(n) = α) > 0,∀α feasible. (4.38)
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The second carrier sensing is used to detect whether a neighbor of the link i is transmitting during

time slotn− 1. Thus, the algorithm is fully distributed, with no explicitmessage exchanges among

links. The following lemma from [16] proves a product form stationary distribution of Algorithm

4.3.1.

Lemma 4.3.1.The schedules{α(n)} in Algorithm 4.3.1 form a time-reversible Markov chain, with
the following steady-state distribution:

πα = exp(θTα)/Z(θ), (4.39)

whereZ(θ) is often referred to as the ‘partition function’:

Z(θ) =
∑

α is a column ofA

exp(θTα). (4.40)

Thus, if we implement Algorithm 4.3.1 with parameterβθ, whereβ > 0 is a large constant,

from (4.39) we have

πα = exp(βθTα)/Z(βθ) (4.41)

≈ 1{α∈argmaxα̃ is a column ofA θT α̃}, (4.42)

which is an approximation of the max-weight schedule in (4.24). We will use this procedure as a

building block to construct the distributed simplex scheduling.

The fully distributed scheduling algorithm is shown in 4.3.2. Compared to the online algorithm

in Algorithm 4.2.1, the major differences are as follows:

• The first max-weight scheduling in (4.21) is implemented in adistributed manner with local

weights updated by average consensus mechanisms.

• The second max-weight in (4.24) is implemented in a distributed manner by distributed

CSMA.

It is important to notice that the first change is feasible because the number of columns inB is much

smaller than the set of all feasible schedules, which may grow exponentially in the size of the net-

work. Thus, the max-weight scheduling can be implemented using average consensus schemes with
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Algorithm 4.3.2 Distributed Simplex Packet Scheduling

1: Estimate arrival ratêλ(l) with (4.16).
2: If λ̂i(l) = λ̂i(l− 1) for all i ∈ V, the basis matrixB and scheduling variables(θ, γ) remain the

same. Otherwise, initialize them as the following:

B = I (4.43)

γ = 0 (4.44)

θ = 0 (4.45)

αnew = 0 (4.46)

αCSMA = 0 (4.47)

(4.48)

3: for n = (l − 1)T + 1→ lT do
4: Distributed CSMA : UpdateαCSMA(n) by running Algorithm 4.3.1 with large constantβ.
5: Distributed Max-Weight Scheduling: Each linki computes

α(i)(n) ∈ arg max
α is a column ofB or αnew

w(i)
α (n) (4.49)

where
wα(n) = θ(n)Tα (4.50)

is the weight of independent setα, andw(i)
α (n) is link i’s local copy. Linki transmits if it has

nonempty queue andα(i)
i (n) = 1.

6: Parameter Update: The parameters are updated as follows:

θ(n) = θ(n− 1) + ǫ
(

(1− γ(n− 1))λ̂− α(n)
)

(4.51)

γ(n) = γ(n− 1) + ǫ
(

θ(n− 1)T λ̂− 1
)

(4.52)

whereǫ is a standard small constant step size.
7: Average Consensus: Run an average consensus algorithm over the quantities

{wα(n)}α∈B∪{αnew} andγ(n).
8: if (θ(n), γ(n)) andαCSMA(n) convergesthen
9: Replace the minimum weight column inB by αnew, and relabel coefficients accordingly.

10: Setαnew = αCSMA.
11: end if
12: end for

low complexity, whereas the general max-weight schedulingproblem is NP-hard. Summarizing the

above discussions, we have the following theorem:

Theorem 4.3.1.Let any feasible arrival rateλ ∈ R⋆ be given. Assume that the average consensus
in Algorithm 4.3.2 and the approximation in (4.42) are accurate. The network is rate stable under
the fully distributed simplex scheduling algorithm in Algorithm 4.3.2.
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(a) (b)

Figure 4.1: (a) A star shaped interference graph for a wireless network with 7 links, and (b) A ring
shaped interference graph for a wireless network with 6 links.

4.3.2 Simulation Results

In this subsection we demonstrate the performance of the distributed simplex packet scheduling

in Algorithm 4.3.2 by simulation results. We will compare the performance of simplex schedul-

ing against the hybrid queue-length-based distributed CSMA (HQ-CSMA) scheduling algorithm

in [16], where the distributed CSMA scheduling in Algorithm4.3.1 is applied to the links with large

queue lengths (the threshold is chosen as102). During the simulation, we assume that the packet

arrivals are i.i.d with uniform arrival rates. The total simulation period is3× 105 time slots, and the

initial queue length for each link is103.

4.3.2.1 A Star Network

We first consider a star-shaped interference graph with 7 links in Fig 4.1 (a), with the simulation

result shown in Fig. 4.2. In the figure, we plot the maximum queue length under the simplex

scheduling and the queue lengths at link 1 and link 2 for the HQ-CSMA scheduling. Note that it is

sufficient to focus on these two links, due to symmetry of the topology. We assume that the uniform

arrival rate is at95% of the capacity region boundary.

From the figure, one can clearly observe that the network is rate stable in both cases, and that

HQ-CSMA scheduling has much larger queue lengths (around103) than simplex scheduling (several
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Figure 4.2: The simulation result of a 7-star network with HQ-CSMA scheduling and simplex
scheduling.

hundreds) in the steady state. Further, one can observe thatlink 1 is the bottle neck for the HQ-

CSMA scheduling, since its queue length is the largest almost all the time. This is because the HQ-

CSMA scheduling spends a considerable amount of time aroundeach ‘good’ schedule (such as the

center link or the peripheral links) before transiting to the intermediate and suboptimal schedules.

Notice that the HQ-CSMA achieves certain speed up by implementing the CSMA step only on the

links with large queues, so that the center link 1 can quicklyseize the channel when the queue

lengths of all peripheral links are small. However, the transitions of schedules are still quite slow,

due to the random-walk type design. On the other hand, simplex scheduling can quickly switch

between the optimal basic schedules, and therefore, has much smaller queue lengths in steady states.

4.3.2.2 A Ring Network

We next consider a ring-shaped interference graph with 6 links in Fig 4.1 (b). The simulation

result is shown in Fig. 4.3. Similar to the star network, we plot the maximum queue length under

the simplex scheduling and the queue lengths at link 1 and link 2 for the HQ-CSMA scheduling.
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Figure 4.3: The simulation result of a 6-ring network with HQ-CSMA scheduling and simplex
scheduling.

We assume that the uniform arrival rate is at95% of the capacity region boundary.

One can easily observe that both algorithms can achieve ratestability. However, the simplex

scheduling achieves much smaller queue lengths in steady states than the HQ-CSMA scheduling.

This, again, demonstrates the fact that the simplex scheduler can achieve low delay by quickly

switching between the optimal basic schedules. On the otherhand, the switching between ‘good’

schedules for the HQ-CSMA scheme happens much less frequently, due to the random-walk type

design. Further, one can observe that the HQ-CSMA is not achieving sufficient gain by restricting

CSMA to the links with large queue lengths (greater than102).

4.3.2.3 A Large Random Network

Finally, we consider the performance of the simplex scheduling algorithm in a large random net-

work with 100 links, where the topology is shown in Fig. 4.4. The interference graph is constructed

such that, two links form an edge if one’s transmitter is within a certain distance from the receiver

of the other link, where the threshold is computed assuming that the SINR threshold is4.77dB, the
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Figure 4.4: The topology of a large random network with 100 links.
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Figure 4.5: The simulation result of HQ-CSMA scheduling andsimplex scheduling in a 100-link
random network.

SNR is20dB and the path loss exponent is3. We assume that the uniform arrival rate is0.1.

The simulation result is shown in Fig. 4.5, where we plot the maximum queue lengths for both
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scheduling algorithms. One can easily observe that the network is rate stable under both scheduling

algorithms, and that the simplex scheduling achieves much smaller queue lengths in steady states

than the HQ-CSMA scheduling. Notice that the simplex algorithm may have larger queue lengths

during the ‘learning’ period, since the algorithm needs to find all basic schedules. However, once

all basic schedules are successfully computed, the queue lengths decreases dramatically, such that

the delay performance is much better than the HQ-CSMA scheme, which needs sufficient amount

of time to transmit between good schedules, due to the randomwalk design.



CHAPTER 5

SUBOPTIMAL SCHEDULING SCHEMES

The previous chapters have discussed optimal scheduling policies. Although optimal scheduling is

desirable, such scheduling policies can be very difficult toimplement in certain applications, due to

the high complexity. For example, for the important case of packet scheduling in wireless networks,

it is well known that optimal scheduling is NP-hard [87]. Thus, optimal scheduling schemes either

incur exponential complexity in each time slot, such as the max-weight algorithm in [11], or incur

exponential worst-case delay, such as the random ‘pick-and-compare’ algorithm in [12] and the dis-

tributed CSMA scheduling in [15, 16], where the exponentialcomplexity is ‘amortized’ to achieve

low scheduling complexity per time slot. Thus, suboptimal scheduling, even if it only achieves a

fraction of the maximum throughput region, is still very attractive, due to the low complexity and

ease of distributed implementation.

In this chapter, we investigate suboptimal scheduling policies for a restricted class of PhyNets.

We are particularly interested in a class of low complexity scheduling policies,maximal scheduling.

A maximal scheduler only specifies that the schedule in each time slot cannot be further augmented.

Thus, compared to the max-weight scheduling schemes in Chapter 3 and simplex scheduling in

Chapter 4, maximal scheduling is much simpler, since it onlyinvolves local user node interaction.

Further, maximal scheduling is easily amendable for distributed implementation, such as using car-

rier sensing techniques for packet scheduling in wireless networks [66, 67]. For this reduction in

72



5.1 A SIMPLIFIED CPS SYSTEM MODEL 73

Figure 5.1: A simplified physical factor graph model for scheduling applications.

scheduling complexity is achieved at the expense of throughput region reduction, it is very important

to provide throughput guarantees on the maximal schedulingschemes for general CPS applications.

In this chapter, we will investigate the throughput performance of maximal scheduling for the

general scheduling problem in PhyNets. We focus on the feasibility formulation SCH-F in Chapter

2, and provide a lower bound on the stability region with an arbitrary maximal scheduling algo-

rithm. We then show that it can achieve a certain fraction of the optimal stability region. We will

also investigate specific maximal scheduling algorithms with improved throughput performances.

In particular, we focus on static priority assisted maximalscheduling, and provide analysis for the

application of packet scheduling in wireless networks. We will also show that the optimal static pri-

ority can be computed online with low complexity. Compared to conventional maximal scheduling,

the static priority assisted maximal scheduling scheme canachieve dramatic throughput improve-

ment.

The organization of this chapter is as follows. In Section 5.1 we introduce the simplified CPS

system model, and in Section 5.2 we investigate the throughput performance of maximal scheduling

with PhyNets. Section 5.3 discusses prioritized maximal scheduling. Finally, Section 5.4 discusses

the application of maximal scheduling schemes to packet scheduling in wireless networks.
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5.1 A SIMPLIFIED CPS SYSTEM MODEL

This chapter assumes a simplified system model of the generalPhyNet model in Chapter 2. We

assume that the system is quasi-static, so that the modes{si} remain constant for the scheduling

application. Since the physical variables{χi} are functions of the control variables{αi}, we elimi-

nate them for the simplicity of discussion. We also assume that the physical factor nodes in (2.2) are

linear. Thus, we can write the physical constraints in termsof the control actions{αi} only. Thus,

we have the following factor constraints:

∑

i∈Nk

Hkiαi ≤ 1,∀k ∈ F , (5.1)

where{Hki} are coefficients as specified by the physical plant of the CPS.In this thesis, we assume

that the coefficientsHki are all nonnegative, so that the set of feasible schedules form an indepen-

dence system, i.e., for anyα′ � α, α is feasible implies thatα′ is also feasible. We are interested in

the non-trivial cases and assume that

Hkiα
max
i < 1,∀k, i such thatHki > 0. (5.2)

Thus, each factor nodek ∈ F involves at least two users, so that it represents network coupling.

Intuitively, the user nodes inNk form a local conflict setfor resourcek, in that their normalized

weighted control actions cannot be larger than 1. An examplefactor graph model is shown in Fig.

5.1. In this case, assume that the feasible control actions are Ai = {0, 1} for eachi and that

Eki = 1/|Nk| for all i ∈ Nk. Thus, the following constraint has to be satisfied for any feasibleα:

1

3
α1 +

1

3
α2 +

1

3
α3 ≤ 1, (5.3)

1

2
α2 +

1

2
α4 ≤ 1. (5.4)

The above model includes many important CPS applications asspecial cases. For example, it in-

cludes the hypergraph interference model in Section 2.4 as aspecial case. It can also be used for

the problem of EV charging in power systems. For the EV charging application, (5.1) can be used
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to model the constraint that the total load associated with aparticular transmission line or trans-

former should be upper bounded, in a tree-structured distribution system. We next investigate the

performance of maximal scheduling using the above physicalnetwork model.

5.2 MAXIMAL SCHEDULING

The maximal scheduling algorithm is very simple. Accordingto the maximal scheduling cri-

terion, the only requirement is that, in each time slot, the schedule is maximal, i.e., it cannot be

further augmented. The scheduling is otherwise arbitrary.We say a scheduleα′ is an augmentation

of α if α′ � α, and that at least one inequality is strictly satisfied. Thus, the only requirement

on a maximal scheduler is that it has to generate ‘maximal independent sets’ of the independence

system as described by (5.1). Thus, the scheduling algorithm has low complexity, and is promising

to be implemented in distributed fashion. For example, for packet scheduling in wireless networks,

a maximal scheduling algorithm can work as follows. In each time slot, the scheduler considers

the back-logged links in an arbitrary manner, and adds a linki to the transmission schedule if there

is no interference conflict wheni is being considered. Fig. 5.2 shows an interference graph for

wireless networks. In this case, if a maximal scheduler chooses the transmitting links according to

the order{1, 2, 3, 4}, the resulting schedule is{1}. If the maximal scheduler choose transmitting

links according to the order{4, 3, 2, 1}, the resulting maximal schedule is{4, 3}, which is also the

maximum independent set of the interference graph.

Thus, compared to the optimal scheduling schemes in Chapter3 and Chapter 4, maximal

scheduling has low complexity, and is promising for distributed implementation in general CPS,

since it only involves the local interactions of users. In this chapter, we analyze the throughput

guarantees of maximal scheduling algorithms for the general scheduling problem in CPS. We first

prove a lower bound on the stability region of maximal schedulers.
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Figure 5.2: An example interference graph in wireless networks.

5.2.1 Stability Region

Before stating the stability guarantee, we need to introduce some notation first. Let the setW

consists of all|V| × |V| matricesW which satisfy the following properties:

1. W is symmetric, andWij ≥ 0 for all i andj.

2. Wii = 0 for all i, andWij = 0 if j 6∈ Ni, where the setNi is the ‘neighbor set’ of useri, such

thatj ∈ Ni if and only if i andj are connected to a common factor node.

3. For any factork that is connected to useri, we have

∑

j∈Nk

Wijαj ≥ 1 (5.5)

for any maximal scheduleα satisfyingαi = 0.

Intuitively, the matrixW assigns weights to job departures, such that the weighted departure for

each active factor nodek in a maximal schedule is larger than 1 when useri is idling, according to

(5.5). We are now ready to state the following theorem on the lower bound stability region.

Theorem 5.2.1.All queues in the system are stable for an arrival rateλ under any maximal sched-
uler if there is a matrixW ∈ W, such that

1

αmin
i

λi +
∑

j∈Ni

Wijλj ≤ 1, (5.6)

whereαmin
i > 0 is the smallest positive value inAi:

αmin
i = min

αi∈Ai,αi 6=0
αi. (5.7)
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Proof: We only need to prove stability result in the fluid limit. Thatis, for any fluid limit,

Ūi(t) = 0 for all i ∈ V andt ≥ 0 if Ūi(0) = 0. Then, we can apply Lemma 3.1.1 to show stability

in the original system. Let a fluid limit be given. Consider the following Lyapunov function:

L(t) =
1

2

∑

i∈V

Ūi(t)
( 1

αmin
i

Ūi(t) +
∑

j∈Ni

WijŪj(t)
)

. (5.8)

We next calculate the derivative ofL(t) as follows:

L̇(t) =
∑

i∈V

1

αmin
i

Ūi(t)
˙̄Ui(t) +

1

2

∑

i∈V

∑

j∈Ni

(Wij +Wji)Ūi(t)
˙̄Uj(t) (5.9)

(a)
=

∑

i∈V

Ūi(t)
( 1

αmin
i

˙̄Ui(t) +
∑

j∈Ni

Wij
˙̄Uj(t)

)

(5.10)

(b)
=

∑

i∈V

Ūi(t)
( 1

αmin
i

λi +
∑

j∈Ni

Wijλj − (
1

αmin
i

˙̄Di(t) +
∑

j∈Ni

Wij
˙̄Dj(t))

)

, (5.11)

where(a) is because the matrixW is symmetric, and(b) is because of SLLN. We only need to

consider the case where there exists a useri andt0 > 0 such thatŪi(t0) > 0. In such a case, we

will show that

1

αmin
i

λi +
∑

j∈Ni

Wijλj −
( 1

αmin
i

˙̄Di(t0) +
∑

j∈Ni

Wij
˙̄Dj(t0)

)

≤ 0, (5.12)

from which one can conclude thatL̇(t) ≤ 0, following which the theorem holds.

Now consider an arbitrary convergent subsequence{rnk
}∞k=1 associated with the fluid limit.

SinceŪi(t0) > 0, there isδ > 0 such that

Ūi(t0) > δ > 0. (5.13)

Further, since the function̄Ui(t) is uniformly continuous, there existsτ > 0, such that

Ūi(t0) >
δ

2
,∀t ∈ (t0 − τ, t0 + τ). (5.14)

Thus, recalling the definition of fluid limit, for sufficiently largek we have

U
rnk

i (t) >
δ

4
,∀t ∈ (t0 − τ, t0 + τ), (5.15)
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which implies that

Ui(n) >
rnk

δ

4
≥ 1,∀n ∈ (rnk

(t0 − τ), rnk
(t0 + τ)). (5.16)

Thus, for sufficiently largek, useri always has nonempty queue during the time slots(rnk
(t0 −

τ), rnk
(t0 + τ)). Finally, according to maximal scheduling, in each time slot, either useri has job

departure, in which caseαi(n) ≥ αmin
i , or there is a factor nodek which include useri, such that

the corresponding constraint in (5.1) is active. In both cases, we have

1

αmin
i

αi(n) +
∑

j∈Ni

Wijαj(n) ≥ 1,∀n ∈ (rnk
(t0 − τ), rnk

(t0 + τ)), (5.17)

due to the assumption in (5.5). Summing the above inequalityover multiple time slots, we obtain

the following:

1

αmin
i

(

D
rnk

i (t0 + τ)−D
rnk

i (t0 − τ)
)

+
∑

j∈Ni

Wij

(

D
rnk

j (t0 + τ)−D
rnk

j (t0 − τ)
)

≥ 2τ.

From which we conclude that, sinceτ can be arbitrarily small, in the fluid limit, we have

1

αmin
i

˙̄Di(t) +
∑

j∈Ni

Wij
˙̄Dj(t)) ≥ 1. (5.18)

Finally, we conclude from above and (5.6) that (5.12) holds.

Thus, we can achieve a guaranteed lower bound on the stability region for maximal scheduling.

Notice that the important property is that the stability region is specifiedlocally. This is because

the scheduling algorithm only involves local interactions, so that the a user nodei only needs to

coordinate with the user nodesNi. Such local interactions simplifies the design of the scheduling

algorithm. We next investigate the scheduling efficiency.

5.2.2 Scheduling Efficiency

As maximal scheduling is a class of suboptimal scheduling policies, we are interested in its per-

formance compared to the optimal scheduling algorithm. Formally, this is defined by the scheduling
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efficiency, as follows:

γπ = sup{ρ ≥ 0 :ρR⋆ ⊆ Rπ}, (5.19)

whereγπ is the scheduling efficiency of schedulerπ, R⋆ is the optimal stability region, andRπ is

the stability region associated withπ. Thus,γπ corresponds to the largest fraction of the optimal

stability regionR⋆ that can be stabilized byπ.

We need to make some definitions before stating the results about the scheduling efficiency for

maximal scheduling. Define∆i associated each useri as follows. We first associate each neighbor

j ∈ Ni with a weight∆ij as follows:

∆ij =
1{j∈Ni}

min(αmin
i , αmin

j )
max(νij , νji), (5.20)

where the termνij is defined as follows

νij = max
{k∈F :{i,j}⊆Nk}

max
α is maximal,αi=0

1
∑

j∈Nk
1{αj>0}

. (5.21)

We will show later that{∆ij} ∈ W. Note that∆ij = 0 if i andj are not neighbors, and we define

∆ii = 0. Now, define∆i as follows:

∆i = max
α is maximal

{αmax
i

αmin
i

1{αi>0} +
∑

j∈Ni

∆ijα
max
j 1{αj>0}

}

. (5.22)

Intuitively, the above expression corresponds to an estimate of the total weight of job departures in

each time slot in a neighborhoodNi, where useri is associated with weightαmax
i /αmin

i , and user

j ∈ Ni is associated with weight∆ijα
max
j . Finally, define

∆ = max
i∈V

∆i. (5.23)

We will now show that1/∆ is a lower bound on the scheduling efficiency of maximal scheduling

algorithms defined in (5.19).
Theorem 5.2.2.The scheduling efficiency of any maximal schedulerπ is bounded by

γπ ≥ 1/∆. (5.24)

Thus, ifλ ∈ R⋆, the network is stable under any maximal scheduler for any arrival process with
average arrival rateλ/∆.
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We first present the outline of the proof. For any useri, in each time slot, we have

1

αmin
i

αi(n) +
∑

j∈Ni

∆ijαj(n) ≤
αmax
i

αmin
i

1{αi(n)>0} +
∑

j∈Ni

∆ijα
max
j 1{αj (n)>0}

≤ ∆i

≤ ∆, (5.25)

according to the definition of∆i in (5.22). Thus, for any feasible arrival rateλ ∈ R⋆, we have

1

αmin
i

λi +
∑

j∈Ni

∆ijλj ≤ ∆. (5.26)

Further, we will prove that the set of coefficients{∆ij} ∈ W, which implies thatλ/∆ is in the

lower bound region defined in Theorem 5.2.2.

In order to prove the theorem, we first need to prove two lemmas. We start with Lemma 5.2.1.

Lemma 5.2.1. An arrival rateλ is stable under any maximal scheduler if

1

αmin
i

λi +
∑

j∈Ni

∆ijλj ≤ 1, ∀i. (5.27)

Proof: The proof is in Appendix D.1.

We next prove the following lemma, which proposes a necessary result on feasible arrival rates:

Lemma 5.2.2. For any feasible arrival rateλ ∈ R⋆, we have

1

αmin
i

λi +
∑

j∈Ni

∆ijλj ≤ ∆i ≤ ∆,∀i. (5.28)

Proof: The proof is in Appendix D.2.

Proof of Theorem 5.2.2:We can now prove Theorem 5.2.2. From the result in Lemma 5.2.2,

we conclude that ifλ ∈ R⋆, then(1/∆)λ must satisfy (5.27), and therefore, according to Lemma

5.2.1, is stable under any maximal schedulerπ.

We have proved that1/∆ is a lower bound on the scheduling efficiency. Notice the interesting

property that each∆i is defined locally. Thus, for many CPS applications with bounded neighbor-

hood sizemaxi∈V |Ni|, we can conclude that maximal scheduling can achieve a constant fraction
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of the optimal stability region. Such property is very attractive in the systems where the optimal

scheduling is hard to obtain.

5.3 PRIORITIZED MAXIMAL SCHEDULING

We have discussed the throughput guarantees of maximal scheduling and its scheduling effi-

ciency. It should be noted that the class of maximal scheduling algorithms is very broad, due to its

specification on ‘arbitrary’ maximal schedules. Thus, the worst case maximal scheduling may be

quite suboptimal in certain cases. For example, it has been shown that [14] maximal scheduling in

wireless networks under a ‘unidirectional equal power’ model may not achieve any positive fraction

of the optimal stability region. In this section, we investigate performance improvements by design-

ing specific maximal scheduling algorithms. We are particularly interested instatic priority assisted

maximal scheduling schemes, due to its simple design. Note that the maximal scheduler example

for the wireless network in 5.2 at the beginning of the last section also serves as an example of static

priority assisted maximal scheduling. For the general scheduling problem in CPS considered in this

chapter, a static priority assisted maximal scheduler may work as follows. In each time slot, the

scheduler will consider the back-logged users in a sequencespecified by the static priority. When a

useri is considered, it will choose the maximum feasible job departure rate, subject to the physical

graph constraints in (5.1) and the constraint that its queuecannot be negative. It is easy to verify

that the resulting schedule is maximal, since the set of schedules form an independence system.

Static priority assisted maximal scheduling is simple and easy to implement. Analysis of its

throughput guarantees and the selection of the optimal priority, on the other hand, is very difficult.

In this section, we provide throughput analysis of static priority assisted maximal scheduling and

priority selection for wireless networks with interference graph constraints. The analysis and design

for general CPS will be addressed in future research.
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5.3.1 Maximal Scheduling with Static Priorities

We first introduce the concept of static priority. A priorityvectorp is defined as a permutation

of (1, 2, . . . , |V|)T , wherepi is the priority of link i. We say that linki has higher priority than

link j if pi < pj. Thus, the linki with pi = 1 has the highest priority, while the linkj with

pj = |V| has the lowest priority. Givenp, the prioritized maximal scheduler computes the schedule

by considering the links sequentially, from the highest priority ‘1’ to the lowest priority ‘|V|’, adding

each back-logged link to the schedule if none of its higher priority neighbors have already been

scheduled when it is considered. The following is a key property for the throughput guarantee of

the scheduling scheme:

Lemma 5.3.1. In any time slot, for any back-logged linki, a maximal scheduler with priorityp will
schedule at least one departure among the links{i} ∪ N p

i , whereN p
i is the set of higher priority

neighbors of linki.

Proof: The proof is in Appendix D.3.

5.3.2 Stability Region

We next analyze the throughput performance of maximal scheduling assuming a fixed priority

{pi} is always used. We first propose a lower bound stability region for maximal scheduling with

static priority{pi}.

Theorem 5.3.1. The network is rate stable under maximal scheduling with static priority {pi} if
the arrival rates satisfy the following:

Rp = {λ ∈ R
|V|
+ : λi +

∑

j∈Ni

λj1{pi>pj} ≤ 1,∀i ∈ V}, (5.29)

where1{pi>pj} implies that only the neighbors with higher priority than link i are counted.

Essentially, the contribution of a priority in assisting a maximal scheduling algorithm is that it

can reduce a neighborhoodNi to the ‘higher priority neighborhood’ in (5.29).

Proof: Since the priority{pi} is fixed, for ease of notation, we relabel the links in decreasing

order of priorities according to{pi}. Thus, link 1 has the highest priority, and link|V| has the lowest
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priority. Consider the following Lyapunov function

L(t) =
1

2

∑

i∈V

Ū2
i (t). (5.30)

It is sufficient to prove thaṫL(t) ≤ 0 if Ūi(0) = 0 for all i ∈ V. Then, we can apply Lemma 3.1.1 to

obtain stability in the original stochastic system. To prove this, in the following we will show that,

by induction, d
dt
Ū2
i (t) ≤ 0 for each linki if Ūi(0) = 0 for all i ∈ V.

We first consider the link1, which has the highest priority according to{pi}. Note that if

Ū1(t) = 0, we have

1

2

d

dt
Ū2
1 (t) = Ū1(t)

˙̄U1(t) (5.31)

= 0. (5.32)

Now suppose that, on the contrary,Ū1(t) > 0 at somet > 0. Then, there exists a constantǫ > 0

such thatŪ1(t) > ǫ > 0. SinceŪ1(t) is uniformly continuous, there also existsδ > 0 such that

Ū1(τ) > ǫ/2,∀τ ∈ (t− δ, t+ δ). (5.33)

Now consider any converging subsequence{f rnk (t)}∞k=1 for the fluid limit. We have

U
rnk

1 (τ) > ǫ/4,∀τ ∈ (t− δ, t+ δ). (5.34)

for sufficiently largek, which implies that

U1(τ) > rnk
ǫ/4 ≥ 1,∀τ ∈ (rnk

(t− δ), rnk
(t+ δ)). (5.35)

That is, link 1 is always back-logged during the time interval(rnk
(t − δ), rnk

(t + δ)). Due to

the prioritized maximal scheduling specification, link1 transmits in every time slot in this interval,

since it has the highest priority. Thus, we conclude that

D1(rnk
(t+ δ))−D1(rnk

(t− δ)) = 2rnk
(t+ δ). (5.36)
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After taking limit ask →∞ we have

D̄1(t+ δ)− D̄1(t− δ) = 2δ, (5.37)

which implies that ˙̄D1(t) = 1 sinceδ > 0 can be arbitrarily small. Therefore, we conclude that

d

dt
Ū2
1 (t) = 2Ū1(t)

˙̄U1(t) (5.38)

= 2Ū1(t)(λi −
˙̄D1(t)) (5.39)

= 2Ū1(t)(λi − 1) (5.40)

≤ 0, (5.41)

where the last equality is due to the assumption thatλ ∈ Rp. Thus, we haved
dt
Ū2
1 (t) ≤ 0 and

Ū1(t) = 0 for all t ≥ 0.

We next proceed by induction. Suppose thatd
dt
Ū2
k (t) ≤ 0 and Ūk(t) = 0 for all t ≥ 0 and

k ≤ l − 1, i.e., the firstl − 1 highest priority links. Now consider the linkl, which has thel-

th highest priority. Note that if̄Ul(t) = 0 we have ˙̄Ul(t) = 0. Now supposeŪl(t) > 0 for

somet > 0. Following the same argument as for link1, we conclude that there is some interval

(rnk
(t− δ), rnk

(t+ δ)) during whichUl(τ) is nonempty. According to Lemma 5.3.1, in each time

slot the maximal scheduler with priority{pi} will schedule at least one departure in{l} ∪ N p
l , and

therefore, we have

(

(Dl(rnk
(t+ δ)) +

∑

j∈N p
l

Dj(rnk
(t+ δ))

)

≥
(

Dl(rnk
(t− δ)) +

∑

j∈N p
l

Dj(rnk
(t− δ))

)

+ 2rnk
δ (5.42)

which implies, after takingk →∞, that

˙̄Dl(t) +
∑

j∈Sp
l

˙̄Dj(t)
)

≥ 1. (5.43)
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Thus, we conclude that

d

dt
Ū2
l (t)

(a)
= 2Ūl(t)(

˙̄Ul(t) +
∑

j∈N p
l

˙̄Uj(t)) (5.44)

= 2Ūl(t)(λl +
∑

j∈N p
l

λj −
( ˙̄Di(t) +

∑

j∈N p
l

˙̄Dj(t)
)

) (5.45)

≤ 2Ūl(t)(λl +
∑

j∈N p
l

λj − 1) (5.46)

(b)

≤ 0, (5.47)

where(a) is because, by induction hypothesis,Ūj(t) = 0 for all t ≥ 0 and all higher priority

neighborsj ∈ N p
l , and(b) is because

λl +
∑

j∈N p
l

λj ≤ 1, (5.48)

sinceλ ∈ Λp. Thus, by induction, we conclude thatd
dt
Ū2
i (t) ≤ 0 for all t ≥ 0 and all links in the

network, from which the theorem follows.

Having proved thatRp is a lower bound stability region, we next show its tightness.

Theorem 5.3.2.For any network, ifRp 6= R
⋆, there exists an arrival rate vectorλ ∈ R⋆, which is

arbitrarily close toRp, and a packet arrival process with average rateλ, such that the network is
unstable under maximal scheduling with priority{pi}.

Proof: If Rp 6= R
⋆, there must be an arrival rateλ ∈ R⋆ such that for some linki, we have

λi +
∑

j∈N p
i

λj > 1. (5.49)

Further, the links in{i} ∪ N p
i can not form a clique, since in that case we will haveλ 6∈ R⋆. Thus,

we can always find two independent linksj andk in the setN p
i . Now consider the following arrival

rates:λ′
i = ǫ, λ′

j = λ′
k = 1/2, andλ′

l = 0 for any other linkl. It is easily seen thatλ′ ∈ R⋆,

since one can simply alternate between the two schedules{i} and{j, k} in odd and even time slots

to achieve network stability. Note that by adjusting the parameterǫ, the arrival rate vectorλ′ can

be arbitrarily close toRp. Now, we consider the following arrival process with arrival rateλ′. In

every odd time slot, a packet arrives at linkj, and in every even time slot, a packet arrives at link
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k. Thus, according to the maximal scheduling with priority{pi}, these packets are immediately

transmitted in the next time slot. Finally, in each time slot, a packet arrives at linki independently

with probability ǫ. Thus, link i is never scheduled by the maximal scheduler, and is therefore

starved.

5.3.3 Scheduling Efficiency

We need to make some definitions before stating the results onscheduling efficiency. Given

a fixed priority {pi}, define∆p
i as the cardinality of the largest independent set in the subgraph

induced by links{i} ∪N p
i . This is the set of transmitting links in the local neighborhood{i} ∪N p

i

with the maximum cardinality. We further define ‘prioritized interference degree’∆p as

∆p = max
i∈V

∆p
i . (5.50)

We have the following theorem.

Theorem 5.3.3.For anyλ ∈ R⋆, we have(1/∆p)λ ∈ Rp.

Proof: For any linki, according to the definition of∆p
i , there are at most∆p

i packet departures

among{i} ∪ N p
i in each time slot, since the transmitting links must form an independent set in the

subgraph induced by{i} ∪N p
i . Thus, if the network is stable, the total average arrivals in {i}∪N p

i

must be no more than the total average departures, i.e.,

λi +
∑

j∈N p
i

λj ≤ ∆p
i ≤ ∆p,∀i ∈ VI . (5.51)

Multiplying both sides of the above inequality with1/∆p, and recalling the definition ofRp, we

conclude that(1/∆p)λ ∈ Λp and the theorem follows.

DefineRsp = ∪p∈PRp as the union of the lower bound stability regions over all static priori-

ties. This is the largest set of arrival rates that are guaranteed to be stable under all possible static

priorities. Similarly, we can define∆sp = maxp∈P ∆p. We will now show that1/∆sp is a lower

bound on the scheduling efficiency ofRsp.
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Corollary 5.3.1. For anyλ ∈ R⋆, we have(1/∆sp)λ ∈ Rsp.

Proof: Note that the set of prioritiesP is a finite set, and therefore there must existsp⋆ ∈ P,

such that the following holds:

∆p⋆ = ∆sp = min
p∈P

∆p. (5.52)

Thus, according to theorem 5.3.3, we have

(1/∆sp)λ = (1/∆p⋆)λ ∈ Rp⋆ ⊆ Rsp, (5.53)

from which the claim holds.

5.3.4 Optimal Priority Assignment

For the simplicity of exposition, we start with a simple offline scheme, where the priorities are

computed with perfectly estimated packet arrival ratesλ̂. We will present a priority assignment and

prove that it can produce a stabilizing priority as long asλ̂ ∈ Rsp.

5.3.4.1 An Offline Assignment

The priority assignment algorithm is shown in Algorithm 5.3.1. At each step, the algorithm

chooses a linkk with the smallest ‘total neighborhood arrival rate’λ̂k +
∑

j∈N ′

k
λ̂j in the reduced

interference graph, and assigns it the lowest priority thatis locally available. That is, linkk only

needs to have higher priority than the neighboring links which have already been removed. The

algorithm then removesk from V ′ and repeats. We next show that Algorithm 5.3.1 implicitly solves

the following min-max optimization problem:

Theorem 5.3.4.The priority vectorp returned by Algorithm 5.3.1 solves the following:

p ∈ arg min
p′∈P

max
i∈V

(λ̂i +
∑

j∈N p′

i

λ̂j). (5.55)

Proof: Let a priorityp′ ∈ P be given. It is sufficient to prove that

λ̂k +
∑

j∈N p
k

λ̂j ≤ max
i∈V

(λ̂i +
∑

j∈N p′

i

λ̂j) (5.56)
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Algorithm 5.3.1 Local Priority Assignment
1: Initialize: V ′ ← V;
2: while V ′I 6= ∅ do
3: Choose linkk such that

k = argmin
i∈V ′

{λ̂i +
∑

j∈N ′

i

λ̂j} (5.54)

4: If no neighbor of linkk has been removed,pk ← |V|. Otherwisepk ← β − 1, whereβ is the
lowest priority among the neighbors of linkk which are already removed.

5: Removed linkk from V ′ and its incident edges.
6: end while
7: return p

for any linkk ∈ V. For notation simplicity, we relabel the links according tothe reverse order of the

priority p, so that link 1 has the lowest priority, and link|V| has the highest priority. Now consider

the first iteration of Algorithm 5.3.1, and denote1′ as the lowest priority link according top′. We

have

λ̂1 +
∑

j∈N ′

1

λ̂j

(a)

≤ λ̂1′ +
∑

j∈N ′

1′

λ̂j (5.57)

(b)
= λ̂1′ +

∑

j∈N p′

1′

λ̂j (5.58)

≤ max
i∈VI

(λ̂i +
∑

j∈N p′

i

λ̂j). (5.59)

Note that here, the setsN ′
1 andN ′

1′ refer to the neighbors of link1 and1′ at the first iteration of

Algorithm 5.3.1, respectively.(a) is because of (5.54), and(b) is becauseN ′
1′ = N

p′

1′ , since link

1′ has the lowest priority according top′. Now consider the second iteration of Algorithm 5.3.1,

with new reduced interference graph by removing link1. Similarly, denote2′ as the lowest priority

link according top′ in the reduced interference graph at the second iteration ofAlgorithm 5.3.1. We
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have

λ̂2 +
∑

j∈N ′

2

λ̂j ≤ λ̂2′ +
∑

j∈N ′

2′

λ̂j (5.60)

(a)

≤ λ̂2′ +
∑

j∈N p′

2′

λ̂j (5.61)

≤ max
i∈VI

(λ̂i +
∑

j∈N p′

i

λ̂j), (5.62)

where(a) is because the setN p′

2′ refers to the original interference graph, which is a superset of

N ′
2′ , which is the set of higher priority neighbors in the reducedinterference graph. Similarly, by

repeating the above arguments, we conclude that

λ̂i +
∑

j∈N ′

i

λ̂j ≤ max
i∈VI

(λ̂i +
∑

j∈N p′

i

λ̂j) (5.63)

for each iteration ofi of the Algorithm 5.3.1. Finally, according to Algorithm 5.3.1, the links

removed later are always assigned higher priorities. Therefore, we haveN p
i = N ′

i , which implies

that

λ̂i +
∑

j∈N p
i

λ̂j = λ̂i +
∑

j∈N ′

i

λ̂j (5.64)

≤ max
i∈VI

(λ̂i +
∑

j∈N p′

i

λ̂j) (5.65)

for all i ∈ VI , from which the theorem follows.

As an application of Theorem 5.3.4, we next prove that Algorithm 5.3.1 can achieveΛsp.

Theorem 5.3.5. If λ̂ ∈ Λsp, Algorithm 5.3.1 will output a priority vectorp such that̂λ ∈ Λp.

Proof: Sinceλ̂ ∈ Λsp, there isp′ ∈ P such that̂λ ∈ Λp′ , which implies that

max
i∈VI

(λ̂i +
∑

j∈N p′

i

λ̂j) ≤ 1. (5.66)
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From Theorem 5.3.4, Algorithm 5.3.1 will return a priorityp such that

max
i∈VI

(λ̂i +
∑

j∈N p
i

λ̂j) ≤ max
i∈VI

(λ̂i +
∑

j∈N p′

i

λ̂j) ≤ 1, (5.67)

from which we conclude that̂λ ∈ Λp. Therefore, the theorem follows.

5.3.4.2 Online Assignment

We next extend the offline version to the online case with estimated arrival rates from stochastic

packet arrival processes, and prove that the same optimality result still holds. The online approach

works as follows. We first partition time into frames, where each frame has duration ofT time

slots. A fixed priorityp(l) is used throughout an entire framel. The computation ofp(l) is as

follows. For the first frame, we assignp(1) arbitrarily. At the beginning of each subsequent frame,

we assignp(l) = p(l−1) if the estimated arrival rate satisfiesλ̂(l−1) ∈ Λp(l−1), whereλ̂(l−1) =

A((l − 1)T )/(l − 1)T . Otherwise we setp(l) = p, wherep is returned by Algorithm 5.3.1 with

estimated arrival rateŝλ(l − 1). We next show network stability in the following theorem:

Theorem 5.3.6. The network is rate stable under the online priority assignment scheme ifλ ∈
int(Λsp), whereint(·) denotes the interior.

Proof: We partition the set of priority vectors into three disjointsubsets:

P = P1 ∪ P2 ∪ P3, (5.68)

such thatλ ∈ ∩p∈P1int(Λp), λ ∈ ∩p∈P2bd(Λp), andλ ∈ ∩p∈P3Λ
c
p, whereint(·) denotes the

interior, bd(·) denotes the boundary, and(·)c denotes the complement. Thus,λ is ‘strictly’ stable

for any priority fromP1, and is ‘critically’ stable for any priority fromP2, but is unstable under any

priority from P3. In the following, we will show that after a finite number of frames, the sequence

of priority vectors{p̂(l)} will stay fixed at a priority vector in eitherP1 or P2. Thus, an identical

argument using fluid limits as shown in the proof of Theorem 5.3.1 can be applied to show that the

network is stable.

First, sinceλ ∈ ∩p∈P1int(Λp), there exists anǫ1 > 0 such that, for anŷλ satisfying‖λ̂−λ‖2 <
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ǫ1, we havêλ ∈ ∩p∈P1int(Λp). Further, sinceλ is ‘critically’ stable under any priority inP2, we

can chooseǫ2 > 0 such that for anŷλ satisfying‖λ̂− λ‖2 < ǫ2, and anyp ∈ P1, p′ ∈ P2, we have

max
i∈VI

(λ̂i +
∑

j∈N p
i

λ̂j) < max
i∈VI

(λ̂i +
∑

j∈N p′

i

λ̂j). (5.69)

Thus, if Algorithm 5.3.1 is executed with the aboveλ̂, the output priority vector must lie inP1,

according to Theorem 5.3.4. Finally, note that∩p∈P3Λ
c
p is an open set, we can chooseǫ3 > 0

sufficiently small, such that anŷλ satisfying‖λ̂ − λ‖2 < ǫ3 still satisfiesλ̂ ∈ ∩p∈P3Λ
c
p. Now, we

chooseǫ′ = min(ǫ1, ǫ2, ǫ3), and because of the SLLN, we can chooseL to be large enough such

that for anyl > L, we have‖λ̂(l) − λ‖2 < ǫ′. Thus, if Algorithm 5.3.1 is executed for anyl > L,

we havep(l) ∈ P1, because of (5.55). Further, for anyl > L, if Algorithm 5.3.1 is executed, the

priority vector will stay at the output resultp ∈ P1, since by assumption,̂λ(l) ∈ Λp. Finally, we

only need to consider the case where Algorithm 5.3.1 is not executed for alll ≥ L. It is clear that in

such case,p(l) 6∈ P3 for anyl ≥ L. Thus, for sufficiently largel, the priority vector stays at a point

in eitherP1 orP2 without invoking Algorithm 5.3.1, from which we can conclude that the network

is stable.

5.4 APPLICATION: PACKET SCHEDULING IN WIRELESS NETWORKS

In this section, we apply the maximal scheduling algorithm schemes to the important application

of the packet scheduling in wireless networks. We first applythe analysis in Section 5.2 to the

wireless network scheduling with hypergraph interferencemodel. Then, we will focus on the static

priority assisted maximal scheduling, and demonstrate itsperformance by simulation.

5.4.1 Maximal Scheduling with Hypergraph Interference Model

As an application of the general maximal scheduling with PhyNets, we will show the through-

put guarantees of maximal scheduling in wireless networks with general hypergraph interference
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models. In below, we will investigate both stability regionand scheduling efficiency, as a special

case of the general results for PhyNets.

5.4.1.1 Stability Region

We first formulate the lower bound stability region. Similarto the definition for general PhyNets,

let the setW consists of all|V| × |V| matrices which satisfy the following properties:

1. W is symmetric, and0 ≤Wij ≤ 1 for all i andj.

2. Wii = 0 for all i, andWij = 0 if j 6∈ Ni;

3. For any hyperedgee that includes linki,
∑

j∈eWij ≥ 1.

We have the following theorem.

Theorem 5.4.1.Let a maximal schedulerπ with an interference hypergraph be given. Then, the
network is stable under any arrival rateλ, if there is a matrixW ∈ W, such that

λi +
∑

j∈Ni

Wijλj ≤ 1,∀i. (5.70)

Note that if the hypergraph is indeed an interference graph,the matrixW is the graph incidence

matrix: Wii = 0, Wij = 1 if j ∈ Ni, otherwiseWij = 0. Therefore, the above stability region

reduces to the one proved in [14]. Thus, this lower bound region in Theorem 5.4.1 is a generalization

of the lower bound for the graph model to the hypergraph models.

5.4.1.2 Scheduling Efficiency

Based on the above analysis on the stability region, we next investigate its scheduling efficiency.

We first define the ‘interference degree’∆ as follows. We first associate each neighboring link

j ∈ Ni with a weight∆ij as follows:

∆ij = max
e∈F ,{i,j}⊆e

1

|e| − 1
, (5.71)
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where the hyperedgee has to include both linksi andj (∆ij = 0 if i andj are not neighbors). Now,

define the interference degree of linki as follows:

∆i = max
α is a maximal schedule

αi +
∑

j∈Ni

∆ijαj. (5.72)

In the graph case, this is equivalent to the maximum number of‘active edges’, or simply the max-

imum number of concurrent transmissions in a linki’s neighborhood [14], since∆ij = 1 for all

j ∈ Ni. For general hypergraphs, we have∆ij < 1, due to the fundamental property of cumulative

interference. Finally, define∆ = maxi∈V ∆i as the interference degree of the hypergraph. As a

special case of Theorem 5.2.2, we conclude that maximal scheduling with hypergraph interference

models can achieve a scheduling efficiency of at least1/∆:

Theorem 5.4.2.The queueing system is stable for any arrival process with arrival rate λ/∆ under
any maximal schedulerπ if λ ∈ R⋆.

We next discuss the tightness of the above lower bound on the scheduling efficiency. Note that

if ∆ = 1, it is obvious that the scheduling efficiency is tight. We nowassume that∆ > 1, and show

a tightness result in the following theorem:

Theorem 5.4.3.Let a hypergraph be given, such that any linki ∈ V with ∆i = ∆ > 1 satisfies
the following condition. The set of independent links inNi, which achieve an integer interference
degree∆, can be written as{e1/{i}, e2/{i}, . . . , e∆/{i}}, where the hyperedges{ek} are disjoint
except a common linki. Then, for anyǫ > 0, there is a feasible arrival ratea ∈ A⋆, and an arrival
process with ratea′, which is arbitrarily close toa in the sense that

a′j ≤ (1/∆)aj + ǫ,∀j ∈ V. (5.73)

Further, there is a maximal schedulerπ such that the network is unstable underπ with this arrival
process.

Essentially, the theorem assumes that the hypergraph includes a generalized ‘star’ shaped hy-

pergraph, where the independent set is a set of disjoint hyperedges (excluding linki).

Proof: Consider the following arrival rate vectorλ: λj = 1 if and only if j ∈ {e1, e2, . . . ,

e∆}/{i}, otherwiseaj = 0. It is easily seen thatλ ∈ R⋆, since the set of links{e1, e2, . . . ,

e∆}/{i} is an independent set. Now consider the arrival rateλ′, such thatλ′
j = λj/∆ if j 6= i, and
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Figure 5.3: An interference graph of two cliques sharing onecommon link.

λ′
i = ǫ. Thus, we have

λ′
j − (1/∆)λj = ǫ (5.74)

for all j ∈ V. We next show that there exists an arrival process with such ratea′, which makes the

network unstable under a maximal schedulerπ that assigns linki the lowest priority. That is, link

i is always considered last by the schedulerπ during scheduling. The arrival process is as follows.

In eachk-th time slots out of every∆ time slots, there is a packet arriving at each link in the set

of links ek/{i}. Then, it is immediately transmitted in the next time slot, because these links have

higher priority than linki, and form an independent set. Further, it is easily seen thatthere is no

departure from linki, since in each time slot, the transmitting links form an ‘active’ hyperedge with

respect to linki. As far as linki is concerned, we assume that in each time slot, there is a packet

arriving at linki with probabilityǫ, so thata′i = ǫ. Thus, since linki never gets a chance to transmit,

it is starved, and the network is unstable.

5.4.2 Prioritized Maximal Scheduling

In this section, we evaluate the performance of the proposedpriority scheduling scheme by

MATLAB simulation. All simulation results are obtained from 30 independent simulations over a

period of105 time slots. Three types of scheduling algorithms are mainlyfocused during simula-
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Figure 5.4: The performance of different scheduling schemes in the two-clique network .

tion: 1) a maximal scheduler with a suboptimal priority vector, as an upper bound on the worst-case

throughput performance of maximal scheduling, 2) maximal scheduling with the online priority as-

signment algorithm, and 3) the LQF scheduling. Among these scheduling methods, only 2) requires

estimation of arrival rates. For prioritized maximal scheduling, we chooseT = 100.

5.4.2.1 Intersecting Cliques

We first consider a wireless network with 11 links as shown in Fig. 5.3, where the center link

1 is at the intersection of two cliques. Thus, link 1 interferes with both local clusters, and is the

bottleneck of the network. We assume that every link other than link 1 has an arrival rate of(0.99−

λ1)/5, so that each clique has a total arrival rate of0.99. We further assume the arrival processes

are independent Bernoulli processes. Thus, the online priority assignment algorithm converges

very quickly. Fig. 5.4 shows the maximum queue lengths underdifferent values ofλ1 with 95%

confidence intervals.

• Throughput Optimality
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Figure 5.5: A random wireless network with 10 links. The square nodes are transmitters, and the
round nodes are receivers.

The network is unstable under the worst-case maximal scheduling, which can be clearly ob-

served by the very large queue lengths. On the other hand, thenetwork is always stable under

maximal scheduler with the optimal priority. In fact, for this topology, the optimal priority

scheduling scheme is globally optimal, since one can easilyverify thatγsp = 1. Thus, we can

obtain significant throughput improvement by properly optimizing the priorities.

• LQF Scheduling

The network is stable under LQF scheduling. In fact, it can beshown that LQF scheduling is

throughput optimal for such topology, due to the ‘local pooling’ condition [68]. In general,

the LQF scheduling can achieve quite good throughput performance, at the expense of fre-

quent update of global priorities. Compared to the LQF scheduling, the static priority based

maximal scheduling can achieve similar throughput performance, with smaller scheduling

overhead.



5.4 APPLICATION: PACKET SCHEDULING IN WIRELESSNETWORKS 97

5.4.2.2 Random Topology

We next consider a random wireless network with 10 links, whose communication graph is

shown in Fig. 5.5. To construct the interference graph, we place a guard zone [50] around the

receiver of each link, so that two links form an edge if one’s transmitter is inside the guard zone as-

sociated with the other. As a benchmark, we also simulate theoptimal max-weight scheduling [11].

In order to demonstrate the convergence and sensitivity of the online priority assignment algorithm,

we consider slowly converging arrival processes as shown inFig. 5.6. All arrival processes have

similar shape with different ‘phases’, and converge only after 104 time slots. Fig. 5.6 also shows

priority updates at the corresponding links. One can clearly observe that our approach not only can

quickly adapt to the empirical arrival rates in an online manner, but also is robust against the esti-

mation errors, since the priorities change very infrequently with significantly oscillating empirical

arrival rates. For this network, the maximum degree of the interference graph is6, and the final

priority assignment has7 levels. Fig. 5.7 shows the maximum queue lengths after105 time slots

with 95% confidence intervals.

Remarks:

• Throughput Optimality

Maximal scheduling with optimal priority achieves essentially the same maximum uniform

throughput as the max-weight scheduling, although with larger queue lengths. This is in

sharp contrast with the worst-case maximal scheduling, where thead hocchoices of maximal

schedules result in significant loss of throughput. One can easily observe that the maximal

scheduling can only achieve a maximum throughput of0.19, whereas the optimal priority

achieves0.25. Thus, we conclude that we can achieve significant throughput improvement

by choosing the priority vectors carefully. Further, note that the max-weight scheduling has

very high computational overhead. Thus, the optimal priority based maximal scheduling can

achieve essentially the same throughput with much lower complexity.
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Figure 5.6: The top sub-figure shows the convergence of empirical arrival rates at link8 and link
10, and the bottom sub-figure shows the convergence of their priorities. In the steady state, link8
has the lowest priority ‘10’, and link10 has the highest priority ‘3’.
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Figure 5.7: The simulation result in the random network with8 links, where the maximum queue
lengths are shown under uniform arrival rates.
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• LQF Scheduling

The LQF scheduling also achieves the network stability for all arrival rates, with smaller

queue lengths than the optimal static priority. However, this is achieved at the expense of

more priority computation overhead associated with changes in queue lengths. Note that

it is possible to design similar multi-slot LQF (such as theT -slot updates in this paper) to

further reduce the priority update overhead. However, LQF-type schemes typically incur

larger overhead than our approach, since the queue lengths change more significantly than

arrival rates in general. One can clearly observe this in Fig. 5.6, where the static priorities

in the online approach change very infrequently. More in-depth investigation of the overhead

and sensitivity issues will be addressed in future research.



CHAPTER 6

CONCLUSIONS

This thesis presented a general scheduling framework in physical networks, which covers a diverse

range of important CPS applications. In the literature, such CPS applications were modeled and

analyzed independently in the context of specific applications, such as packet scheduling in wireless

networks, EV charging in smart grids, and workload scheduling in data centers. In this thesis, we

showed that they can all be addressed in a unified manner, and we designed general scheduling

schemes that can be applied to many applications. In this chapter, we provide a summary of the

thesis and discuss future research directions.

6.1 SUMMARY

We started this thesis by proposing the general abstract scheduling problem in the context of

PhyNets. We introduced the physical factor graph and the queueing system model, and formulated

the general scheduling problem as a stochastic optimization problem. We then demonstrated broad

applications of this general scheduling formulation to diverse research areas.

We then considered the design of optimal scheduling algorithms. We first focused on the cat-

egory of dynamic regime, where the system modes in the CPS change randomly over time slots.

In such case, we proposed augmented max-weight algorithms,which choose schedules myopically

100
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in each time slot based on the current queue length information. We showed that, in the case with

optimal cost knowledge, a virtual cost queue based max-weight algorithm can be used to achieve

both asymptotic cost optimality and rate stability. We alsoproposed a ‘pick-and-compare’ version

of the augmented max-weight algorithm, which has low complexity and is easy to be implemented

in a distributed manner, using average consensus techniques. For the case without knowledge about

optimal cost, a Lyapunov optimization based max-weight algorithm can also be used to achieve

optimal cost asymptotically. Finally, augmented max-weight algorithms were investigated for the

coordinated EV charging problem in power systems.

We next considered optimal scheduling in the quasi-static regime, where the system modes re-

main unchanged for the scheduling problem. In this case, it is possible to design more efficient

scheduling algorithms by utilizing the quasi-static nature of the system. Inspired by the celebrated

simplex algorithm, we proposed a simplex scheduling scheme, which chooses max-weight sched-

ules among the set of ‘basic’ schedules. Since the set of basic schedules is ‘sparse’, the simplex

scheduling can be implemented in a distributed manner usingaverage consensus techniques. Fur-

ther, we showed that the basic schedules can be solved by another max-weight problem. We proved

the asymptotic throughput optimality of the simplex scheduling scheme with stochastic job arrivals.

We finally applied the simplex algorithm to the important application of packet scheduling in wire-

less networks, and demonstrated that it can be implemented in a distributed fashion, using average

consensus and distributed CSMA mechanisms. Simulation results showed significant steady-state

delay reduction over the throughput-optimal distributed CSMA schemes.

Finally, we investigated the design and analysis of suboptimal scheduling algorithms. In this

thesis, we focused on the class of maximal scheduling algorithms, which only require coordination

of local user nodes, and therefore have low complexity and are easy for distributed implementation.

We analyzed the throughput performance of maximal scheduling with PhyNets and proposed a

lower bound on the stability region. We also showed that the maximal scheduling algorithm can

achieve a certain fraction of the optimal throughput region. We then investigated the performance
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improvement of maximal scheduling for packet scheduling inwireless networks, by utilizing static

priorities. We analyzed the stability region associated with any fixed priority, and showed that the

optimal static priority can be computed online with low complexity. We showed that the combined

priority assignment and maximal scheduling approach achieve dramatic throughput improvement

over conventional maximal scheduling algorithms.

6.2 FUTURE DIRECTIONS

We next point out several future research directions as a continuation of this thesis work. It

should be emphasized that research on CPS is a huge and interdisciplinary topic, which covers

many domains and a diverse range of applications. Thus, for aparticular problem instance, it is

important to adapt the general scheduling algorithms discussed in this thesis to the structure of the

problem. We point out several future research directions, as follows:

• Incorporation of prediction information

For many CPS applications, it is possible to obtain certain predictions about future system

modes and other dynamics, perhaps within a certain time period in the near future. For ex-

ample, for power systems, it is typically assumed that certain load predictions or renewable

generation can be obtained, using historical data or weather predictions. It is possible to utilize

such information to improve performance, such as reductionin delay. It is an interesting and

challenging research direction to generalize the scheduling schemes in this thesis with pre-

diction information, and compare its behavior and performance with existing research results,

such as computationally expensive dynamic programming [88] or heuristic model predictive

control methods [89].

• Distributed implementation

Distributed implementations are crucial for certain CPS applications, in particular for the

ones without a central coordination entity. For the generalscheduling problem with PhyNet
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considered in this thesis, it is very promising to develop distributed algorithms, due to the

graph sparsity of the physical plant. The detailed design and analysis, on the other hand,

may depend heavily on the specific structure of the application. For example, for the simplex

scheduling in wireless networks in Chapter 4, the distributed scheduling is implemented with

a combination of average consensus and distributed CSMA mechanism.

• Delay and QoS issues

The analyses in this thesis focuses on asymptotic throughput performance, which are based

on a stability approach, assuming that all buffers have infinite capacity. Such an assumption

may not be true for certain CPS applications, where the buffer may have only finite capacity.

Thus, it is also very important to provide rigorous guarantees on delay performance, or other

metrics with finite buffers, for these applications. It is animportant future work to extend the

design and analysis of the scheduling algorithms to addressthe delay and QoS issues.



APPENDIX A

ANALYSIS OF THE HYPERGRAPHINTERFERENCE
MODEL FORWIRELESSNETWORKS

In Section 2.4, we introduced a hypergraph interference model for packet scheduling in wireless

networks, as one example of the physical graph model for the general scheduling problem in CPS.

Since the hypergraph model is an approximation of the SINR model, this chapter provided quanti-

tative analysis of the modeling accuracy using random networks. Whereas the main purpose of this

chapter is to analyze the approximation accuracy versus model complexity tradeoff for the hyper-

graph interference model, we hope that the same modeling, analysis and design philosophy can be

also extended to other CPS applications with physical factor graph approximations.

A.1 OUTAGE ANALYSIS OF THE HYPERGRAPHMODEL

The hypergraph interference model allows more accurate andflexible modeling and control of

interference, as compared to the binary interference graphmodel. In this section, we demonstrate the

modeling accuracy of the locally constructed hypergraph model by analyzing its outage probability

in random infinite networks, where the nodes form a homogeneous Poisson Point Process (PPP)

[90]. We first describe the random network model.

104
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A.1.1 Random Network Model

We consider the Poisson random network model [91], where theset ofcontendingnodes form a

homogeneous PPP on an infinite two dimensional plane. This model is widely used in the literature

of wireless network analysis, since it is tractable, allowing valuable insights into the behavior of

large-scale networks. By the Slivnyak’s theorem [90], we assume, without loss of generality, that

there is a receiver placed at the origin. We further assume that all transmitting nodes transmit with

equal powerρ, as is common in 802.11 networks. We assume that the channel is subject to Rayleigh

fading. Thus, the received signal power at the center receiver can be expressed as

P0 = ρh0d
−a
0 , (A.1)

whereh0 is the power fading coefficient, which is exponentially distributed with mean 1,d0 is the

length of the center link, anda is the path loss exponent. We assume that SINR is an appropriate

metric of performance, and allow the system to be Direct-Sequence Spread Spectrum (DSSS), due

to its capability in handling non-trivial levels of multiuser interference in wireless networks. Thus,

a packet is received successfully at the center receiver if

ρh0d
−a
0

N0 +
∑

j∈σ ρhj‖xj‖
−a
≥

θ

M
, (A.2)

whereN0 is the received noise power over the entire bandwidth,σ is the set of transmitting links,

xj is the location of the transmitter of a transmitting linkj, andM is the spreading factor of DSSS

(M = 1 in non-spread spectrum systems).

Due to the interference constraint, the set of actual scheduled transmitters inσ is a subset of

the contending node set. In fact, the distribution of the transmitting nodes is quite complicated,

which depends on various factors, such as the stochastic packet arrival processes, channel fading,

and scheduling algorithms. In this paper, in order to make the analysis tractable, we apply an

approximation by assuming that the set of transmitting nodes is also a PPP with a smaller density

µ, which is obtained by proper ‘thinning’ of the original PPP.Note that, strictly speaking, the set
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of transmitting nodes should be separated by a certain distance, in which case a hard-core point

process [90] is more suitable. However, it has been observedthat the PPP model can still achieve

very accurate approximation [91] on the distribution of theinterference, especially when the guard

zone sizes are relatively small. This has also been verified by simulation results, in the case of

graph interference models (see details in [50]). We next analyze the outage performance under the

approximate PPP model.

A.1.2 Outage Analysis

In order to explore the accuracy of the hypergraph model, we assume that the transmission

densityµ under the hypergraph model is as follows. A hypergraph with maximum hyperedge size

K can always guarantee that the following approximate ‘local’ outage probabilityP l
out at the center

receiver is bounded by

P l
out = P(

ρh0d
−a
0

N0 +
∑K−1

i=1 ρh[i]‖x[i]‖−a
<

θ

M
) ≤ ǫ, (A.3)

whereǫ is a positive constant,x[i] is the location of thei-th nearest transmitting node, andh[i] is

its corresponding power fading coefficient. This is becausethe hypergraph model approximates the

total interference by the sum interference from the nearestK−1 transmitters. Further, note that such

an outage bound can be easily achieved by a hypergraph with maximum hyperedge sizeK, since

if (A.3) fails to hold for a particular transmitting set consisting ofK links, one can simply form a

hyperedge to exclude such a transmission scenario. Finally, note that by choosing an appropriate

outage boundǫ, the transmission densityµ can be controlled.

Since the approximated ‘local’ outage probabilityP l
out only considers a subset of interfering

links, we are interested in its approximation accuracy withrespect to the true outage probability at

the center receiver, which is defined as

Pout = P(
ρh0d

−a
0

N0 +
∑∞

i=1 ρh[i]‖x[i]‖
−a

<
θ

M
). (A.4)
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The key result of this section is the following theorem, which gives closed-form solutions to the

outage probabilitiesP l
out andPout.

Theorem A.1.1. The outage probabilitiesP l
out andPout can be expressed as follows:

P l
out = 1− exp(−

θ

Mη
)

∫ ∞

0

2(µπx2)K

xΓ(K)
Ψ(x)e−µπx2

dx (A.5)

Pout = 1− exp(−
θ

Mη
− µπd20

( θ

M

) 2
a 2π/a

sin(2π/a)
) (A.6)

whereη = ρd−a
0 /N0 is the Signal to Noise Ratio (SNR) at the center receiver, and

Ψ(x) =
(

∫ x

0

2Mra+1

x2(Mra + da0θ)
dr
)K−1

. (A.7)

In order to prove the theorem, we first need to prove two lemmas. Define the ‘local’ interference

contributed by the nearestK − 1 transmitting nodesIloc(K − 1) as follows:

Iloc(K − 1) =

K−1
∑

i=1

ρh[i]l(‖x[i]‖). (A.8)

We have the following lemma describing the distribution ofIloc(K − 1):

Lemma A.1.1. The Moment Generating Function (MGF) ofIloc(K − 1) can be expressed as fol-
lows:

ΦIloc(K−1)(s) =

∫ ∞

0

2(µπx2)K

xΓ(K)
Ψ(x)e−µπx2

dx, (A.9)

whereΓ(K) is the standard Gamma function

Γ(K) =

∫ ∞

0
xK−1e−xdx. (A.10)

Proof: DenoteRk = ‖x[k]‖ as the short-hand notation for the distance of thek-th nearest

transmitting node. The MGF ofIloc(K − 1), conditioning on the event thatRK = rK , can be

expressed as follows:

E(esIloc(K−1)|RK = rK) = E(es
∑K−1

i=1 ρh[i]l(Ri)|RK = rK) (A.11)

(a)
=

(

∫ rK

0

2r

r2K
E(esρhr

−a

)dr
)K−1

(A.12)

(b)
=

(

∫ rK

0

2ra+1

r2K(ra − ρs)
dr
)K−1

(A.13)
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where step(a) is because, conditioned there beingK − 1 nodes in the disk centered at the origin

with radiusrK , theseK − 1 nodes are independently and uniformly distributed inside the disk, due

to the property of PPP [90]. Step(b) is because the fading coefficienth is exponentially distributed

with mean1. Further, according to [92], the distribution ofRK is as follows:

fRK
(x) =

2(µπx2)K

xΓ(K)
e−µπx2

, (A.14)

and therefore, the lemma holds after taking the expectationwith respect tofRK
(x).

Similarly, denote the total interference received at the center receiver asItot =
∑∞

i=1 l(‖x[i]‖).

The following lemma describes the distribution ofItot.

Lemma A.1.2. The MGF of the total interferenceItot is

ΦItot(s) = exp
(

− µπ(−sρ)
2
a

2π/a

sin(2π/a)

)

. (A.15)

Proof: This is a standard result. See, for example, [91].

Based on the above lemmas, we are now able to prove the theorem.

Proof of Theorem A.1.1:By definition, we calculate the local outage probability as

P l
out = P(

ρh0d
−a
0

N0 + Iloc(K − 1)
<

θ

M
) (A.16)

= P

(

h0 <
da0θ

Mρ

(

N0 + Iloc(K − 1)
)

)

(A.17)

(a)
= EIloc(K−1)

{

P

(

h0 <
da0θ

Mρ
×

(

N0 + Iloc(K − 1)
)

|Iloc(K − 1)
)}

(A.18)

(b)
= 1− EIloc(K−1){exp

(

−
da0θ

Mρ
Iloc(K − 1)

)

} × exp(−
daθ

Mρ
N0) (A.19)

(c)
= 1− ΦIloc(K−1)(−

da0θ

Mρ
) exp(−

da0θ

Mρ
N0), (A.20)

where step(a) follows from the law of total probability, step(b) is because the random variableh0

is exponentially distributed with mean 1, and step(c) follows from the definition of the MGF. Thus,

the claim holds from noting thatη = ρd−a
0 /N0 and applying the result in (A.9).
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Now, using a similar argument, the true outage probabilityPout can be expressed as follows:

Pout = P(
ρh0d

−a
0

N0 + Itot
<

θ

M
) (A.21)

= P
(

h0 <
da0θ

Mρ
(N0 + Itot)

)

(A.22)

= 1− EItot{exp
(

−
da0θ

Mρ
Itot

)

} exp(−
da0θ

Mρ
N0) (A.23)

= 1−ΦItot(−
da0θ

Mρ
) exp(−

da0θ

Mρ
N0), (A.24)

from which the claim holds after applying (A.15).

A.2 NUMERICAL RESULTS

We now illustrate the interference approximation accuracyof the hypergraph model by compar-

ing the above two outage probabilities using numerical calculations.

A.2.1 Infinite Random Networks

We next calculate the two outage probabilities in Theorem A.1.1. By choosing parameters as in

Table A.1, we plot the numerical results in Fig. A.1, where the outage probabilities are shown in

both cases, as functions of the transmission densityµ, according to (A.5) and (A.6), under differ-

ent path loss exponents. In the figure, ‘K-Hypergraph’ refers to the hypergraph whose maximum

hyperedge size isK. Note that since the hypergraph model always underestimates the interference,

we haveP l
out ≤ Pout for all transmission densities.

We have the following remarks:

• Approximation Accuracy

Compared to the graph model, the hypergraph model always approximates the true outage

probability with better accuracy. For example, whenµ = 10−3 anda = 3, the true out-

age probability is around0.22. However, the outage probability approximation by the graph

model is only around0.15. Therefore, roughly speaking, around30% of the outage events
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Figure A.1: The numerical results of outage calculations for the infinite two dimensional random
wireless networks with Rayleigh fading.(a) shows the case with the path loss exponenta = 3, and
(b) shows the case witha = 4.

are ignored by the graph, due to its binary interference nature. In this case, the 4-Hypergraph

has a better approximation of around0.19. Thus, by considering the sum interference, the hy-

pergraph model can effectively capture more outage events,and therefore reduces the outage
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Table A.1: Parameters for Numerical Calculations
Symbol Description Value

d0 Center link length 10m
θ Target SINR 3 = 4.77dB
η SNR 20dB
M Spreading factor 16

probability.

• Accuracy versus Complexity

The approximation accuracy of the hypergraph has a ‘diminishing returns’ property, which

can be seen by observing the fact that, the outage approximation error improvement decreases

as the maximum hyperedge sizeK increases. On the other hand, the construction complexity

of the hypergraph increases exponentially inK. Thus, one can trade-off some approximation

accuracy by only considering properly small hyperedge sizes, so that the sum interference is

approximated with low complexity.

• Effect of Path Loss Exponent

The modeling accuracy of both graph and hypergraph models improves when the pass loss

exponent gets larger. In particular, whena = 4 andPout = 0.3, all hypergraphs can capture

above95% outage events, and the graph can model around80% outage events, as can be seen

by computing the ratioP l
out/Pout. On the other hand, for the casea = 3 andPout = 0.3, the

ratio is only about85% for hypergraphs and about70% for the graph. Such improvement

with larger values ofa is because, whena grows larger, the contributions of the far-away

interferers are much smaller as compared to the near-by interferers, and therefore, the local

interference approximation becomes more accurate.
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A.2.2 A Finite Random Network

We next consider the performance of hypergraph model in a finite random network, where

the topology is shown in Fig. A.2. In the figure, 40 links are uniformly distributed over a two

dimensional plane. The square nodes are transmitters, and the round nodes are receivers. We assume

that the link lengths are equal. We further assume that the effect of fading is properly handled using

diversity techniques, such that all random coefficients{hi} in (A.2) take the constant value1. The

SNR at the receivers are the same for all links. The parameters used in the simulation are shown in

Table A.1.

The hypergraph is generated according to the description inSection 2.4, with the modification

that (2.16) is replaced with

Si

Ni +
∑k−1

s=1 Iisi
<

θ

M
, (A.25)

due to the DSSS physical layer. Further, we assume that no superset of a hyperedge is a hyperedge,

so that the hypergraph specification is not redundant.

In the simulation, we assume that the packet arrival processes are i.i.d, with Bernoulli distribu-

tion and a uniform arrival rate. We simulate both hypergraph(which includes graph) and the global

SINR based scheduling algorithms. We consider random maximal scheduling for the hypergraph

case, which adds the links to the schedule according to a randomly generated order in each time

slot, such that a back-logged link is scheduled if there is nohyperedge constraint violation when

it is being considered. We also consider the random maximal scheduling under the global SINR,

which we denote as SINR-MS. As an upper bound, we simulate theperformance of SINR based

LQF scheduling (SINR-LQF) in [93], which adds the links according to the queue lengths order,

subject to the physical SINR constraint (A.2). Finally, thepacket reception at a transmitting linki

is assumed to fail if the true SINR constraint (A.2) is violated.
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Figure A.2:The topology of the random network with 40 links used for simulation. The square nodes are
transmitters, and the round nodes are receivers.

A.2.2.1 Throughput

The total queue lengths under different arrival rates are shown in Fig. A.3. The results are

averaged over 30 independent simulations, where each simulation consists of104 time slots. One

can detect the boundary of the stability region (the maximumuniform throughput) by identifying

the point at which the total queue length begins to increase sharply. For example, in the case of

a = 3 andβ = 4dB, the graph model achieves a maximum uniform rate of0.22, the hypergraph

models achieve about0.24, the SINR-MS achieves around0.26, and the SINR-LQF has the largest

rate, which is around0.30. In the case of random maximal scheduling, the SINR based scheduling

algorithms achieve around10% throughput gain over hypergraph based algorithms whena = 3

andβ = 4dB. The gain is around5% whena = 4 andβ = 4dB. Such throughput gain is mainly

because of theperfect accuracyof the SINR model, which results in zero packet collision. Onthe

other hand, this is achieved at the expense ofnetwork-wide user node coordination, due to the global

nature of the SINR model. In this sense, the hypergraph basedschedulers are more attractive, due
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Figure A.3: The simulation results of the maximum total queue lengths inthe 40-link random wireless
network, with the path loss exponenta and the thresholdβ values shown in each figure.

to the localized user coordination during scheduling. The better throughput performance of SINR-

LQF over SINR-MS is also expected, since the queue lengths order information is used in the former

case, which requires higher scheduling complexity.

In all cases, the hypergraph based scheduling algorithms achieve larger throughput than the

graph based scheduling. Note that due to the construction procedure in (A.25), the set of hyperedges

is always a superset of the set of edges, and therefore, it mayseem like the hypergraph ‘should’

achieve a smaller capacity than the graph, due to the more restricted rules. However, since the

graph model is a binary approximation, the actual throughput is reduced by the packet collisions
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caused by its ‘aggressive’ transmissions. Thus, even though the hypergraph models are relatively

‘conservative’, since they place more constraints according to the sum interference, overall they can

still achieve a better throughput as compared to the graph model.

Finally, by comparing the throughput results under different β, one can easily observe the ‘accu-

racy versus complexity’ trade-off for hypergraph models. In the simulation results, the throughput

performance for hypergraph schedulers improves with larger β, due to more accurate interference

approximation by adding more links inLi, so that the number of packet collisions is reduced. Note

that the throughput gain also depends ona, where largera implies more accurate interference ap-

proximation for the sameβ, since the contribution from far-away links gets smaller.

A.2.2.2 Outage Probability

The simulation results of average outage probabilities areshown in Fig. A.4 with different

arrival rates, under different path loss exponenta and thresholdβ values. Note that the results of

both SINR based scheduling are not shown in the figure, as theyboth have zero outage.

Remarks:

• Outage Probability

The hypergraph model achieves a significant outage probability reduction, as compared to

the graph model. For example, whena = 3 andβ = 4dB, the average outage probability for

the 3-Hypergraph is around0.02 under arrival rate0.2. On the other hand, under the graph

model it is around0.05. Thus, by modeling thesuminterference, the hypergraph model can

reduce the packet collisions very effectively. Note that the outage probability curves have

slower slopes when the arrival rates are large. This corresponds to the case when the network

is unstable. In such a case, the number of packet transmissions is less sensitive to the increase

in arrival rates.

• Outage Capacity
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Figure A.4: The simulation results of average outage probability in the40-link random wireless network,
with the path loss exponenta and the thresholdβ values shown in each figure.

If we consider theoutage capacity, i.e., the maximum achievable rate under certain outage

probability constraint, the hypergraph interference models can have much larger gain as com-

pared to the graph model. For example, under the outage probability constraint of0.02 when

a = 3 andβ = 4dB, the 4-Hypergraph can support a maximum rate of around0.2, whereas

the graph model can only achieve about0.15. Thus, by considering the sum interference, the

hypergraph model achieves around30% increase in the outage capacity as compared to the

graph model.

• Accuracy versus Complexity
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The outage probabilities of hypergraph models decrease when the thresholdβ increases, due

to the improved approximation accuracy by considering morelinks in a link’s neighborhood.

For example, whena = 3 andβ = 0dB, all hypergraph models have an outage probabil-

ity of 0.03 under arrival rate0.2, as compared to around0.02 whenβ = 4dB. On the other

hand, the thresholdβ has no effect on the graph model, due to the binary interference na-

ture. Further, note that whenβ is small, all hypergraph models achieve very similar outage

probability results, in which case the 3-Hypergraph is moreattractive, due to its lower coor-

dination complexity. In general, increasing the thresholdβ can effectively reduce the outage

probability by considering the interference from farther transmitting links, but at the expense

of more coordination overheads among links. Finally, the reduction in the outage probability

decreases as the hypergraph sizes increases. This ‘diminishing marginal returns’ property,

again, confirms our observation that in wireless networks, the majority of the interference is

from a few nearby transmitting links. Therefore, a hypergraph with a small hyperedge size

(e.g., 4-Hypergraph) can model the interference with good accuracy.

• Effect of Path Loss Exponent

When the path loss exponenta gets larger, both graph and hypergraph models have smaller

outage probabilities. Further, the gap between these two models is also smaller. This is

the same conclusion as the numerical results for infinite random networks. The intuition is

that, the interference signals get more attenuation asa gets larger, and therefore, is more

likely to be dominated by a few nearby transmitting links, since the faraway transmissions are

attenuated more severely than the nearby transmissions. Thus, the accuracy of both the graph

and hypergraph models become better, and the difference between the two is also smaller.



APPENDIX B

PROOFS INCHAPTER 3

B.1 CONSTRUCTION OFFLUID L IMITS

This section presents a brief introduction to the theory of fluid limits. For details, we urge

interested readers to read [74, 75] and the references therein. The construction of a fluid limit is as

follows. Given the discrete-time queueing system in Section 3.1, we first obtain a continuous time

system by extending the support fromN to R+ using linear interpolation. For a fixed sample path

ω, define the following fluid scaling:

gr(t, ω) =
g(rt, ω)

r
, (B.1)

wherer > 0 is a positive scalar, and the functiong(·) can beUi(·),Λi(·), Yi(·), Zi(·), Tα
s (·), Ts(·)

andF̂j(·). From the Assumption 2.2.1 and Assumption 2.2.2, and the fact that eachAi is a finite

set, it is not difficult to verify that these functions are uniformly Lipschitz-continuous [94]. That is,

there is a positive constantK > 0 such that

|gr(t+ δ)− gr(t)| ≤ Kδ (B.2)

for anyr, t > 0 andδ > 0. Thus, these functions are equi-continuous. According to the Arzéla-

Ascoli Theorem [94], any sequence of functions{grn(t)}∞n=1 contains a subsequence{grnk (t)}∞k=1,

118
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such that w.p.1, we have

lim
k→∞

sup
τ∈[0,t]

|grnk (τ)− ḡ(τ)| = 0 (B.3)

whereḡ(t) is a uniformly continuous function, and therefore differentiable almost everywhere [94].

We can then define any such limit as a fluid limit.

B.2 PROOF OFLEMMA 3.1.1

Suppose the rate stability does not hold for useri. Then, there isi ∈ V and a sequence{rn}

such that

lim
n→∞

Ui(rn)

rn
≥ ǫ′, (B.4)

for someǫ′ > 0. Now, as all functions are equi-continuous, according to the construction of fluid

limit, we can find a subsequence{rnk
}, which converges to a fluid limit. Thus, according to (B.4),

we have

Ūi(1) ≥ ǫ′, (B.5)

which contradicts the assumption thatŪi(t) = 0 for all t > 0. Thus, we claim that rate stability

holds for queueUi(n) in the original stochastic system.

B.3 PROOF OFLEMMA 3.1.2

Since the lemma claims the result holds for both algorithms,we prove them separately. We first

prove the case with Algorithm 3.1.1.

Proof: (Part I)

Let t > 0, s ∈ S andα ∈ C(s) be given. Assume that there isα′ ∈ C(s) such that

∑

i∈V

Ūi(t)αi − β
∑

j∈J

Φ̄j(t)fj(αNj
; sNj

) <
∑

i∈V

Ūi(t)α
′
i − β

∑

j∈J

Φ̄j(t)fj(α
′
Nj

; sNj
). (B.6)

Since all functions in the fluid limit are uniformly continuous, there isǫ′ > 0 andδ > 0 such that



B.3 PROOF OFLEMMA 3.1.2 120

for anyτ ∈ (t− δ, t+ δ), we have

∑

i∈V

Ūi(τ)αi − β
∑

j∈J

Φ̄j(τ)fj(αNj
; sNj

) ≤
∑

i∈V

Ūi(τ)α
′
i − β

∑

j∈J

Φ̄j(τ)fj(α
′
Nj

; sNj
)− ǫ′. (B.7)

Thus, consider any convergent subsequence for the fluid limit. There isK such that for anyk ≥ K,

we have

∑

i∈V

U
rnk

i (τ)αi − β
∑

j∈J

Φ
rnk

j (τ)fj(αNj
; sNj

)

≤
∑

i∈V

U
rnk

i (τ)α′
i − β

∑

j∈J

Φ
rnk

j (τ)fj(α
′
Nj

; sNj
)−

ǫ′

2
(B.8)

for anyτ ∈ (t− δ, t+ δ). According to the definition of fluid scaling, this implies that

∑

i∈V

Ui(τ)αi − β
∑

j∈J

Φj(τ)fj(αNj
; sNj

)

≤
∑

i∈V

Ui(τ)α
′
i − β

∑

j∈J

Φj(τ)fj(α
′
Nj

; sNj
)−

rnk
ǫ′

2
(B.9)

for any τ ∈ (rnk
(t − δ), rnk

(t + δ)). Thus, according to the augmented max-weight scheduler in

(3.5), the control actionα is never chosen during the time period(rnk
(t − δ), rnk

(t + δ)), from

which we conclude that

(

Tα
s

)rnk (t+ δ) =
(

Tα
s

)rnk (t− δ),∀k ≥ K, (B.10)

which further implies that, after takingk →∞, we have

T̄α
s (t+ δ) = T̄α

s (t− δ). (B.11)

Thus, the lemma follows from the fact that the˙̄Tα
s (t) ≥ 0 .

We now consider the case with Algorithm 3.1.2.

Proof: (Part II)

Let t > 0, s ∈ S andα ∈ C(s) be given. According to the assumption, there is a scheduleα̃



B.3 PROOF OFLEMMA 3.1.2 121

andǫ′ > 0 such that

∑

i∈V

Ūi(t)αi − β
∑

j∈J

Φ̄j(t)fj(αNj
; sNj

)

≤
∑

i∈V

Ūi(t)α̃i − β
∑

j∈J

Φ̄j(t)fj(α̃Nj
; sNj

)− ǫ′. (B.12)

Now we defineB as the set of schedules such thatα′ ∈ B implies thatα′ ∈ C(s), and that

∑

i∈V

Ūi(t)αi − β
∑

j∈J

Φ̄j(t)fj(αNj
; sNj

)

≤
∑

i∈V

Ūi(t)α
′
i − β

∑

j∈J

Φ̄j(t)fj(α
′
Nj

; sNj
)− ǫ′. (B.13)

We can chooseǫ′ sufficiently small so that the cardinality ofB is maximized. Thus,B is the set of

schedules whose weights are larger thanα by at leastǫ′. Note thatB is not empty. Further, since all

functions in the fluid limit are uniformly continuous, thereis δ > 0 such that for anyτ ∈ (t−δ, t+δ)

andα′ ∈ B, we have

∑

i∈V

Ūi(τ)αi − β
∑

j∈J

Φ̄j(τ)fj(αNj
; sNj

)

≤
∑

i∈V

Ūi(τ)α
′
i − β

∑

j∈J

Φ̄j(τ)fj(α
′
Nj

; sNj
)−

ǫ′

2
. (B.14)

Thus, consider any convergent subsequence for the fluid limit. There isK such that for anyk ≥ K,

we have

∑

i∈V

U
rnk

i (τ)αi − β
∑

j∈J

Φ
rnk

j (τ)fj(αNj
; sNj

)

≤
∑

i∈V

U
rnk

i (τ)α′
i − β

∑

j∈J

Φ
rnk

j (τ)fj(α
′
Nj

; sNj
)−

ǫ′

4
(B.15)

for anyτ ∈ (t− δ, t+ δ) andα′ ∈ B. According to the definition of fluid scaling, this implies that

∑

i∈V

Ui(τ)αi − β
∑

j∈J

Φj(τ)fj(αNj
; sNj

)

≤
∑

i∈V

Ui(τ)α
′
i − β

∑

j∈J

Φj(τ)fj(α
′
Nj

; sNj
)−

rnk
ǫ′

4
(B.16)
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for any τ ∈ (rnk
(t − δ), rnk

(t + δ)). This implies that, for sufficiently largek, when Algorithm

3.1.2 chooses any schedule inB during the time interval(rnk
(t− δ), rnk

(t+ δ)), the schedules will

never leave the setB if the system mode iss, sinceB is maximal. Therefore, the scheduleα will

never be chosen again during the same time interval. Now define

∆k = Tα
s (rnk

(t+ δ))− Tα
s (rnk

(t− δ)) (B.17)

as the total number of time slots that scheduleα is chosen during the time interval(rnk
(t −

δ), rnk
(t+ δ)) when the system mode iss. We will show that

P(lim sup
k→∞

( ∆k

2rnk
δ

)

≥ δ0) = 0 (B.18)

for anyδ0 > 0, from which we can conclude that the following is true:

P(lim sup
k→∞

( ∆k

2rnk
δ

)

= 0) = 1− P(∪∞m=1{lim sup
k→∞

( ∆k

2rnk
δ

)

≥
1

m
}) (B.19)

= 1, (B.20)

which implies that, in the fluid limit, we have

T̄α
s (t+ δ) = T̄α

s (t− δ), (B.21)

from which the lemma holds. Now we prove (B.18). We now fix the system modes and a schedule

α′ ∈ B. Define the ‘hitting time’Hk as the total number of time slots that have passed since time

slot rnk
(t − δ) before Algorithm 3.1.2 randomly generates scheduleα′ for the first time when the

system mode is ats. Note thatHk only counts the time slots when the system mode iss. Thus, once

α′ is generated for the first time, scheduleα is never chosen during for the rest of the time interval,

as the schedules will be restricted to the setB. We now have

∆k ≤ Hk,w.p.1, (B.22)
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and it is sufficient to prove that

P(lim sup
k→∞

( Hk

2rnk
δ

)

≥ δ0) = 0. (B.23)

Without loss of generality, we assume thatrnk
≥ k/2δδ0. Define the eventAk as

Ak = {ω :
Hk

2rnk
δ
≥ δ0}. (B.24)

We have

P(Ak)
(a)

≤ (1− ǫ0)
2rnk

δδ0 (B.25)

≤ (1− ǫ0)
k, (B.26)

where(a) is because of the random generation in Algorithm 3.1.2. Thus, we have

∞
∑

k=1

P(Ak) ≤
∞
∑

k=1

(1− ǫ0)
k (B.27)

< ∞, (B.28)

from which we conclude that
∑∞

k=1 P(Ak) converges. According to the first Borel-Cantelli Lemma

[95], we have

P(lim sup
k

Ak) = 0, (B.29)

from which we conclude that (B.23) holds.

B.4 PROOF OFLEMMA 3.1.3

Before proving the stability results in the fluid limits, we need to prove some technical lemmas.

Firstly, the following lemma shows that all external stochastic processes are deterministic:

Lemma B.4.1. The following are true for any fluid limit:

˙̄Λi(t) = λi ∀i ∈ V, t > 0 (B.30)
˙̄Fj(t) = f̂⋆

j ∀j ∈ J , t > 0 (B.31)

˙̄Ts(t) = πs ∀s ∈ S, t > 0. (B.32)
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Proof: It is easy to verify (B.30) from the assumption of SLLN in (2.5). (B.31) is because of the

assumption in (3.1) and the definition in (3.2). Finally, (B.32) is because of the SLLN assumption

in (2.8).

The following lemma shows the properties of the idling processes in the fluid limit. That is, the

cumulative idling processes remains constant when the queues are nonzero.

Lemma B.4.2. The following are true for any fluid limit:

˙̄Yi(t) = 0 if Ūi(t) > 0,∀i ∈ V (B.33)
˙̄Zj(t) = 0 if Φ̄j(t) > 0.∀j ∈ J (B.34)

Proof: We only prove the first case. The proof of the second one follows an identical procedure

as the first one. Assume thatŪi(t) > 0 for somei ∈ V andt > 0. Since all functions in the fluid

limit are uniformly continuous, we can findǫ > 0 andδ > 0, such that the following is true:

Ūi(τ) ≥ ǫ,∀τ ∈ (t− δ, t + δ). (B.35)

Now, we consider any subsequence which converges to the fluidlimit. Due to the definition of

uniform convergence on compact sets in (B.3), there is a large constantK such that

U
rnk

i (τ) ≥
ǫ

2
,∀τ ∈ (t− δ, t+ δ), k ≥ K. (B.36)

Recalling the definition of fluid scaling, this implies that

Ui(rnk
τ)

rnk

≥
ǫ

2
,∀τ ∈ (t− δ, t + δ), k ≥ K. (B.37)

Thus, for large enoughk, we have

Ui(τ) ≥
rnk

ǫ

2
≥ αmax

i ,∀τ ∈ (rnk
(t− δ), rnk

(t+ δ)), (B.38)

whereαmax
i is the largest job departure rate in each time slot for useri. Thus, the queue of useri is

always non-idling during the time interval(rnk
(t− δ), rnk

(t+ δ)). Therefore, we have

Yi(rnk
(t+ δ)) = Yi(rnk

(t− δ)), (B.39)
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which implies that, after fluid scaling and takingk →∞, we have

Ȳi(t+ δ) = Ȳi(t− δ). (B.40)

Finally, the claim holds following the fact that̄Yi(t) is a non-decreasing function.

We are now ready to prove the lemma.

Proof of Lemma 3.1.3:Due to the feasibility assumption ofOPT-F, it is well-known that the

‘arrival rates’ should be inside the convex hull of the departure schedules, i.e.,

λi ≤
∑

s∈S

∑

α∈C(s)

µα
sαi,∀i (B.41)

f̂⋆
j ≥

∑

s∈S

∑

α∈C(s)

µα
s fj(αNj

; sNj
),∀j, (B.42)

where the set of coefficients{µα
s } satisfy

µα
s ≥ 0,∀s, α (B.43)

∑

α∈C(s)

µα
s = 1,∀s. (B.44)

The proof is standard, see for example, [11]. Now, let a fluid limit be given. Define the following

Lyapunov function:

L(t) =
1

2

∑

i∈V

(Ūi(t))
2 +

β

2

∑

j∈J

(Φ̄j(t))
2. (B.45)
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We calculate its drift as follows:

L̇(t)

=
∑

i∈V

Ūi(t)
˙̄Ui(t) + β

∑

j∈J

Φ̄j(t)
˙̄Φk(t) (B.46)

=
∑

i∈V

Ūi(t)
(

−
∑

s∈S

∑

α∈C(s)

˙̄Tα
s (t)αi + λi +

˙̄Yi(t)
)

+ β
∑

j∈J

Φ̄j(t)
(

∑

s∈S

∑

α∈C(s)

˙̄Tα
s (t)fj(αNj

; sNj
)− ˙̄Fj(t) +

˙̄Zi(t)
)

(B.47)

(a)
=

∑

i∈V

Ūi(t)
(

−
∑

s∈S

∑

α∈C(s)

˙̄Tα
s (t)αi + λi

)

+ β
∑

j∈J

Φ̄j(t)
(

∑

s∈S

∑

α∈C(s)

˙̄Tα
s (t)fj(αNj

; sNj
)− ˙̄Fj(t)

)

(B.48)

≤
∑

i∈V

Ūi(t)
(

−
∑

s∈S

∑

α∈C(s)

˙̄Tα
s (t)αi +

∑

s∈S

∑

α∈C(s)

µα
sαi

)

+ β
∑

j∈J

Φ̄j(t)
(

∑

s∈S

∑

α∈C(s)

˙̄Tα
s (t)fj(αNj

; sNj
)−

∑

s∈S

∑

α∈C(s)

µα
s fj(αNj

; sNj
)
)

(B.49)

= −
∑

s∈S

∑

α∈C(s)

( ˙̄Tα
s (t)− µα

s

)

(

∑

i∈V

Ūi(t)αi − β
∑

j∈J

Φ̄j(t)fj(αNj
; sNj

)
)

(B.50)

(b)

≤ 0. (B.51)

where(a) is because of Lemma B.4.2, and(b) is because of the max-weight property proved in

Lemma 3.1.2. Thus, we haveL(t) = 0 if L(0) = 0, from which the lemma holds.

B.5 PROOF OFLEMMA 3.2.1

In order to prove Lemma 3.2.1, we need to prove several technical lemmas first. We first provide

a bound on the single slot drift ofL(n).

Lemma B.5.1. The one-slot drift ofL(n) satisfies the following under any control actionα(n+1):

∆1L(n) ≤
∑

i∈V

(Ui(n) + ζi)(Λi(n+ 1)− αi(n+ 1)) + β
∑

j∈J

fj(αNj
(n+ 1); sNj

(n+ 1))

+
∑

i∈V

αmax
i ζi +

1

2

∑

i∈V

(Λmax
i + αmax

i )2 +
∑

i∈V

(αmax
i )2. (B.52)
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Proof: For each useri ∈ V, direct calculation shows that

1

2
(Ui(n + 1) + ζi)

2 (B.53)

=
1

2

(

Ui(n)− αi(n+ 1) ∧ Ui(n) + Λi(n+ 1) + ζi
)2

(B.54)

=
1

2
(Ui(n) + ζi)

2 + (Ui(n) + ζi)
(

Λi(n+ 1)− αi(n+ 1) ∧ Ui(n)
)

+
1

2
(Λi(n+ 1)− αi(n+ 1) ∧ Ui(n))

2 (B.55)

(a)

≤
1

2
(Ui(n) + ζi)

2 + (Ui(n) + ζi)
(

Λi(1)− αi(n+ 1)
)

+ (αmax
i + ζi)α

max
i

+
1

2
(Λi(n+ 1)− αi(n+ 1) ∧ Ui(n))

2 (B.56)

≤
1

2
(Ui(n) + ζi)

2 + (Ui(n) + ζi)
(

Λi(1)− αi(n+ 1)
)

+ αmax
i ζi

+
1

2
(Λmax

i + αmax
i )2 + (αmax

i )2, (B.57)

where the key step(a) can be verified as follows. WhenUi(n) > αi(n + 1), it is obvious that(a)

holds, sinceαmax
i > 0 andζi > 0. Thus, we only need to consider the case whenUi(n) ≤ αi(n+1).

In this case, we have

(Ui(n) + ζi)
(

Λi(n+ 1)− αi(n+ 1) ∧ Ui(n)
)

(B.58)

= (Ui(n) + ζi)
(

Λi(n+ 1)− Ui(n)
)

(B.59)

= (Ui(n) + ζi)
(

Λi(n+ 1)− αi(n+ 1)
)

+ (Ui(n) + ζi)
(

αi(n+ 1)− Ui(n)
)

(B.60)

≤ (Ui(n) + ζi)
(

Λi(n+ 1)− αi(n+ 1)
)

+ (αmax
i + ζi)α

max
i . (B.61)

Thus, the lemma follows from the definition ofL(n) in (3.39).

We next generalize the above bound from a single time slot to one frame withN time slots.
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Lemma B.5.2. TheN -slot drift ofL(n) satisfy the following for any control action profile{α(n)}:

∆NL(n) ≤
∑

i∈V

(Ui(n) + ζi)
N
∑

τ=1

(

Λi(n+ τ)− αi(n+ τ)
)

+Nκ1 +N2κ2

+ β
N
∑

τ=1

∑

j∈J

fj(αNj
(n+ τ); sNj

(n+ τ)) +N
∑

i∈V

αmax
i ζi, (B.62)

whereκ1 andκ2 are sufficiently large constants.

Proof: We carry out the drift analysis for a useri ∈ V in Lemma B.5.1 toN time slots and

obtain the following:

1

2
(Ui(n+N) + ζi)

2 −
1

2
(Ui(n) + ζi)

2 (B.63)

=

N
∑

τ=1

(1

2
(Ui(n + τ) + ζi)

2 −
1

2
(Ui(n+ τ − 1) + ζi)

2
)

(B.64)

(a)

≤
N
∑

τ=1

(Ui(n+ τ − 1) + ζi)
(

Λi(n+ τ)− αi(n+ τ)
)

(B.65)

+Nαmax
i ζi +

N

2
(Λmax

i + αmax
i )2 +N(αmax

i )2 (B.66)

(b)

≤
N
∑

τ=1

(

(Ui(n) + ζi)
(

Λi(n+ τ)− αi(n+ τ)
)

+ (τ − 1)Λmax
i (Λmax

i + αmax
i )

)

+Nαmax
i ζi +

N

2
(Λmax

i + αmax
i )2 +N(αmax

i )2 (B.67)

= (Ui(n) + ζi)
N
∑

τ=1

(

Λi(n+ τ)− αi(n + τ)
)

+
N(N − 1)

2
Λmax
i (Λmax

i + αmax
i )

+Nαmax
i ζi +

N

2
(Λmax

i + αmax
i )2 +N(αmax

i )2, (B.68)

where(a) follows from the bound in Lemma B.5.1, and(b) is because

Ui(n+ τ) ≤ Ui(n) + τΛmax
i . (B.69)

Therefore, the lemma follows.

Note that the above bound holds for any control action profile{αi(n)}. We next analyze the

specific drift ofL⋆(n), which is the Lyapunov function under the optimal scheduling policy for
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SCH-N. We have the following lemma:

Lemma B.5.3. TheN -slot drift under the solution ofSCH-N for each framem can be bounded as

∆NL⋆(nm) ≤ −ǫ
N
∑

τ=1

∑

i∈V

(Ui(nm + τ − 1) + ζi) +N
∑

i∈V

αmax
i ζi + βNf⋆

m +Nκ3 +N2κ4,

wherenm = (m− 1)N , andκ3 andκ4 are sufficiently large constants.

Proof: We apply the solution toSCH-N to (B.62) and obtain

∆NL⋆(nm) ≤ −ǫN
∑

i∈V

(Ui(nm) + ζi) + βNf⋆
m +N

∑

i∈V

αmax
i ζi +Nκ1 +N2κ2, (B.70)

where the termβNf⋆
m is due to the fact that{αi(n)} is the optimal control policy. Now, note that

Ui(nm + τ) ≤ Ui(nm) + τΛmax
i . (B.71)

We have

∆NL⋆(nm) ≤ −ǫ
N
∑

τ=1

∑

i∈V

(Ui(nm + τ) + ζi − τΛmax
i ) + βNf⋆

m

+N
∑

i∈V

αmax
i ζi +Nκ1 +N2κ2 (B.72)

≤ −ǫ
N
∑

τ=1

∑

i∈V

(Ui(nm + τ) + ζi) + ǫ
N(N + 1)

2

∑

i∈V

Λmax
i + βNf⋆

k

+N
∑

i∈V

αmax
i ζi +Nκ1 +N2κ2, (B.73)

from which the lemma holds.

We are now ready to prove Lemma 3.2.1.

Proof of Lemma 3.2.1:We first compute theN -slot drift with {α(n)} computed by Algorithm
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3.2.1, as follows:

∆NL(nm) ≤
N
∑

τ=1

∑

i∈V

(Ui(nm + τ − 1) + ζi)(Λi(nm + τ)− αi(nm + τ))

+ β
N
∑

τ=1

∑

j∈J

fj(αNj
(nm + τ); sNj

(nm + τ))

+N
∑

i∈V

αmax
i ζi +

N

2

∑

i∈V

(Λmax
i + αmax

i )2 +N
∑

i∈V

(αmax
i )2

(a)

≤
N
∑

τ=1

∑

i∈V

(Ui(nm + τ − 1) + ζi)(Λi(nm + τ)− α⋆
i (nm + τ))

+ β

N
∑

τ=1

∑

j∈J

fj(α
⋆
Nj

(nm + τ); sNj
(nm + τ))

+N
∑

i∈V

αmax
i ζi +

N

2

∑

i∈V

(Λmax
i + αmax

i )2 +N
∑

i∈V

(αmax
i )2 (B.74)

(b)

≤
∑

i∈V

(Ui(nm) + ζi)

N
∑

τ=1

(Λi(nm + τ)− α⋆
i (nm + τ))

+N
∑

i∈V

αmax
i ζi + βNf⋆

m + κ5N + κ6N
2 (B.75)

(c)

≤ −ǫN
∑

i∈V

(Ui(nm) + ζi) + βNf⋆
m +N

∑

i∈V

αmax
i ζi + κ5N + κ6N

2 (B.76)

(d)

≤ −ǫ
∑

i∈V

N
∑

τ=1

(Ui(nm + τ − 1) + ζi) + βNf⋆
m

+N
∑

i∈V

αmax
i ζi +B1N +B2N

2. (B.77)

(a) is because the control actionα(n + 1) is the solution to the optimization in (3.29),(b) and(d)

are obtained by applying the following:

Ui(nm)− αmax
i τ ≤ Ui(nm + τ) ≤ Ui(nm) + τΛmax

i , (B.78)

and(c) is because{α⋆
i (n)} solvesSCH-N.



APPENDIX C

PROOFS INCHAPTER 4

C.1 PROOF OFLEMMA 4.1.1

Proof: We can write the equality constraints inSCH-L as follows:






A λ

1T 0













x

γ






=







λ

1






. (C.1)

It is not difficult to verify that the initial vertex as described by (4.6) and (4.7) is feasible. Thus, the

changes in the variables(∆xT ,∆γ)T should always lie in the null space of the matrix







A λ

1T 0






.

Given the new columnαnew, this implies that the existing coefficients should satisfythe following:






B λ

1T 0













∆y

∆γ






+∆z







αnew

1






= 0. (C.2)

where∆z ≥ 0 is the change of the scheduling variable associated with thenew columnαnew. From

the first equality in (C.2), we have

λ∆γ = −∆zαnew−B∆y. (C.3)
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Multiplying both sides with1TB−1 and noting that1T∆y = −∆z, we have

∆γ =
∆z

1TB−1λ
(1− 1TB−1αnew) (C.4)

(a)

≤
∆z

1TB−1λ
(1− 1TB−1λ), (C.5)

where(a) is becauseαnew is by maximizing the function in (4.8), and thereby satisfies

1TB−1αnew≥ 1TB−1λ, (C.6)

sinceλ is a convex combination of the columns ofA. We now show that∆γ ≤ 0. Note that from

(4.12) we have

y = (1− γ)B−1λ. (C.7)

Multiplying both sides of the above by1T and noting that1T y = 1, we obtain

1TB−1λ =
1

1− γ
(C.8)

Thus, we can write the last inequality in (C.5) as follows:

∆γ ≤ ∆z(1− γ)(1−
1

1− γ
) (C.9)

= −γ∆z. (C.10)

Thus, we conclude thatαnew is a cost decreasing direction, and the lemma holds.

C.2 PROOF OFLEMMA 4.1.2

Proof: Supposeznew = 0, then the solution to (4.9) is the same as the one associated with the

old vertex as specified by matrixB. This contradicts with the fact thatαnew is a cost-decreasing

direction, as proved in Lemma 4.1.1. Now, assume thatznew > 0. Note that the cost reduction is at

least proportional toznew, according to (C.10). Since the objective function is bounded below, we

conclude thatznew is finite. This only happens if some coefficient iny reaches zero for the first time,

so that certain inequality constraint in (4.9) becomes active. Therefore, the lemma holds.



C.3 PROOF OFLEMMA 4.2.1 133

C.3 PROOF OFLEMMA 4.2.1

Proof: We first form the Lagrangian of (4.9) as follows:

minimize{y,z,γ} γ + θT ((1− γ)λ̂−By − αnewz)

subject to 1T y + z = 1

y � 0, z ≥ 0. (C.11)

Note that this is a linear programming problem where the variables(yT , z)T lie in a simplex. We

further write the objective function as follows

f(y, z, γ) = (1− θT λ̂)γ − θT (By + αnewz) + θT λ̂. (C.12)

Thus, given fixedθ(n), the optimal primal variable in(y, z) can be obtained by choosing the column

in B orαnew which has the largest weight. This is is implemented in (4.21). Now, consider the static

problem (4.9) as a convex optimization problem in variableγ only. It is not difficult to see that
(

1− θ(n)T λ̂
)

is the sub-gradient ofγ. Further, notice that
(

(1− γ(n))λ̂− α(n)
)

is a sub-gradient

of θ(n), according to (C.11). Therefore, we conclude that the algorithm is a standard sub-gradient

method for a convex optimization problem from which the convergence result holds.

C.4 PROOF OFLEMMA 4.2.2

Proof: For notation simplicity, we assume that one column inB is already replaced withαnew,

and that the coefficients are relabeled accordingly. We onlyneed to show that at the the convergence

of {θ(n)}, we have

θ(n)TB = (1− γ)1T . (C.13)

Thus, at the convergence, all the schedules inB have equal weights. Assuming (C.13), we then

have

θ(n)Tα = (1− γ)1TB−1α, (C.14)
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from which the lemma holds.

Now we prove (C.13) as follows. Notice that the Lagrangian for (4.9) is

f(y, γ) = (1− θTλ)γ − θTBy + θTλ. (C.15)

Thus, if convergence is achieved, all columns inB should have the same weight, since only the

column with the maximum weight will have nonzero coefficientfor the optimal solution, due to the

fact that the scheduling variablesy lie in a simplex. Further, note that from (C.12) we have

θ(n)Tλ = 1, (C.16)

and the feasibility of (4.9) implies that

(1− γ)λ = By. (C.17)

Thus, we conclude that

1 = θ(n)Tλ (C.18)

=
1

1− γ
θ(n)TBy (C.19)

=
c0

1− γ
1T y (C.20)

(a)
=

c0
1− γ

, (C.21)

where(a) is becausey lies in a simplex. Therefore, the lemma holds.

C.5 PROOF OFLEMMA 4.2.3

Proof: Sinceλ̂ is not changing and that the schedulesB andαnew can achieve a non-positive

throughput gap, from Algorithm 4.2.1 we conclude that the initialization of basic matrixB in step 2

is never executed. Further, the column generation step in (4.24) is never executed. Notice that from
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(4.22) we have

1

2rnδǫ
(θi(rn(t0 + δ))− θi(rn(t0 − δ))) = (1−

1

2rnδ

rn(t0+δ)
∑

n=rn(t0−δ)

γ(τ))λ̂i −
1

2rnδ

rn(t0+δ)
∑

τ=rn(t0−δ)

αi(n).

Since the sequence{θ(n)} is bounded, we conclude that

0 = lim
n→∞

1

2rnδǫ
(θi(rn(t0 + δ)) − θi(rn(t0 − δ))) (C.22)

= lim
n→∞

{

(1−
1

2rnδ

rn(t0+δ)
∑

τ=rn(t0−δ)

γ(τ))λ̂i −
1

2rnδ

rn(t0+δ)
∑

τ=rn(t0−δ)

αi(n)
}

, (C.23)

from which the lemma holds.
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PROOFS INCHAPTER 5

D.1 PROOF OFLEMMA 5.2.1

Proof: It is sufficient to prove that{∆ij} belongs to the setW. Note that for the set of weights

{∆ij} defined in (5.20), we have∆ij ≥ 0, ∆ii = 0, and∆ij = ∆ji for all i, j ∈ V. Further,

∆ij = 0 if i and j are not neighbors. Now, for any factor nodek that includes useri and any

maximal scheduleα such thatαi = 0, we have

∑

j∈Nk

∆ijαj

(a)

≥
∑

j∈Nk

αj1{αj>0}

αmin
j

νij (D.1)

≥
∑

j∈Nk

νij1{αj>0} (D.2)

(b)

≥ 1, (D.3)

where(a) is because of the definition in (5.20), and(b) is because of (5.21) and the fact thatα is

maximal. Thus, we conclude that the matrix{∆ij} belongs toW, and therefore, the lemma holds

according to Theorem 5.2.1.
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D.2 PROOF OFLEMMA 5.2.2

Proof: Let a useri ∈ V be given. Sinceλ ∈ R⋆, we assume that there is a schedulerπ such

thatλ ∈ Rπ. For any such schedulerπ, consider the following ‘Lyapunov’ function

Li(n) =
1

αmin
i

Ui(n) +
∑

j∈Ni

∆ijUj(n) (D.4)

=
1

αmin
i

(

Ui(0) + Λi(n)−Di(n)
)

+
∑

j∈Ni

∆ij(Uj(0) + Λj(n)−Dj(n)). (D.5)

Since the network is rate stable under the schedulerπ, we have

lim
n→∞

Li(n)

n
= 0, w.p.1, (D.6)

which implies that w.p.1,

lim
n→∞

1
αmin
i

Λi(n) +
∑

j∈Ni
∆ijΛj(n)

n
= lim

n→∞

1
αmin
i

Di(n) +
∑

j∈Ni
∆ijDj(n)

n
(a)

≤ ∆i (D.7)

≤ ∆, (D.8)

where(a) is because of the upper bound on the total departures in each time slot in (5.25). Therefore,

the lemma follows from the SLLN on the arrival processes and the fact that the schedulerπ is chosen

arbitrarily.

D.3 PROOF OFLEMMA 5.3.1

Proof: According to the scheduler, the links inN p
i are always considered before linki. Thus,

when a back-logged linki is being considered by the scheduler, either there is already a scheduled

link in N p
i , or link i is put to the schedule. In both cases, there is at least one packet departure

among the links in{i} ∪ N p
i , from which the lemma follows.
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