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Abstract
Heterogeneity in modern datacenters is on the rise, in hardware resource charac-

teristics, in workload characteristics, and in dynamic characteristics (e.g., a memory-
resident copy of input data). As a result, which machines are assigned to a given job
can have a significant impact. For example, a job may run faster on the same machine
as its input data or with a given hardware accelerator, while still being runnable on
other machines, albeit less efficiently. Heterogeneity takes on more complex forms
as sets of resources differ in the level of performance they deliver, even if they con-
sist of identical individual units, such as with rack-level locality. We refer to this
as combinatorial heterogeneity. Mixes of jobs with strict SLOs on completion time
and increasingly available runtime estimates in production datacenters deepen the
challenge of matching the right resources to the right workloads at the right time.

In this dissertation, we hypothesize that it is possible and beneficial to simulta-
neously leverage all of this information in the form of declaratively specified space-
time soft constraints. To accomplish this, we first design and develop our principal
building block—a novel Space-Time Request Language (STRL). It enables the ex-
pression of jobs’ preferences and flexibility in a general, extensible way by using
a declarative, composable, intuitive algebraic expression structure. Second, build-
ing on the generality of STRL, we propose an equally general STRL Compiler that
automatically compiles STRL expressions into Mixed Integer Linear Programming
(MILP) problems that can be aggregated and solved to maximize the overall value
of shared cluster resources.

These theoretical contributions form the foundation for the system we archi-
tect, called TetriSched, that instantiates our conceptual contributions: (a) declarative
soft constraints, (b) space-time soft constraints, (c) combinatorial constraints, (d)
orderless global scheduling, and (e) in situ preemption. We also propose a set of
mechanisms that extend the scope and the practicality of TetriSched’s deployment
by analyzing and improving on its scalability, enabling and studying the efficacy of
preemption, and featuring a set of runtime mis-estimation handling mechanisms to
address runtime prediction inaccuracy.

In collaboration with Microsoft, we adapt some of these ideas as we design
and implement a heterogeneity-aware resource reservation system called Aramid
with support for ordinal placement preferences targeting deployment in production
clusters at Microsoft scale. A combination of simulation and real cluster experi-
ments with synthetic and production-derived workloads, a range of workload in-
tensities, degrees of burstiness, preference strengths, and input inaccuracies support
our hypothesis that leveraging space-time soft constraints (a) significantly improves
scheduling quality and (b) is possible to achieve in a practical deployment.
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Chapter 1

Introduction

Industry has embraced the benefits of consolidating various workloads on shared cluster infras-

tructures. Now, large clusters are shared by Big Data analytics batch jobs, High Performance

Computing (HPC) simulations, machine learning (ML) model-training applications, web search,

long-running front-end services, etc. Cluster framework diversity is evident and will continue to

rise as new frameworks (e.g., Caffe [35] for deep learning) join the ranks of recent ML, graph,

and data analytics frameworks like Spark, GraphLab, Hive, Giraph, MXNet, and Petuum. Het-

erogeneity in hardware is crucial to achieving efficiency, as different jobs and job phases run

differently on different types and sets of servers. Some workloads also derive additional ben-

efit from specialized interconnects, such as 2D torus overlays for reconfigurable FPGA fabric

instances used to score web documents for Bing search [53], or Infiniband interconnects for la-

tency critical High Performance Computing (HPC) and other bulk synchronous parallel (BSP)

jobs. Cluster hardware heterogeneity will also continue to grow, as evidenced by the increase in

Amazon AWS instance heterogeneity exposed to the user over the recent years. The combina-

tion of consolidation with increasing heterogeneity is a recent phenomenon for datacenters and

presents a new challenge for cluster resource management systems. This creates a new schedul-

ing problem: matching the right resources to the right workloads at the right times.
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1.1 Background

When dealing with homogeneous resources, traditional schedulers are effective; their focus is on

allocating quantities of resources to jobs. But, heterogeneity adds the additional consideration of

which resources (i.e., where the job is placed). While some schedulers ignore heterogeneity, most

support job-specific constraints on which resources the job is willing to use. Using constraints

to specify the best choice for a job can avoid receiving a sub-optimal placement. But, since best-

choice resources may not be immediately available, using hard constraints to indicate which

resources would be best can lead to high queuing delay [59, 66] and lower utilization—both

despite the availability of other acceptable machines.

Using hard constraints to specify preferred resources over-constrains the scheduler. With

sufficient over-provisioning, it is acceptable, but a different approach is needed to simultaneously

realize (i) the utilization benefits of consolidation and (ii) the efficiency benefits of heterogeneity.

This dissertation proposes the use of soft constraints [66] in cluster resource space to convey

which resources are better (i.e., job-specific placement preferences) together with an indication of

how much better. Armed with such information, a scheduler can explore the trade-offs involved,

attempting to optimize the matching of resources to jobs.

It is common for production cluster workloads to have time considerations as well as spatial

preferences. Timing flexibility is a second degree of freedom that has emerged. For exam-

ple, the vast majority of jobs in clusters at Microsoft [10] can be classified into two categories:

completion-time SLO driven and latency sensitive with varying degrees of urgency of their ex-

ecution. The recurrent nature of most of these jobs can be leveraged [10, 20] to inform the

scheduler about their estimated runtimes on various hardware configurations. For some work-

loads [20, 76], analytical models can be used to extend these estimates to a range of relevant

input sizes.

Thus, workloads in heterogeneous datacenters have both preferences and requirements on

where (space), when (time), and how (space-time shape) they run. Yet, little of this knowledge
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and flexibility is leveraged in cluster schedulers today. Space-time preferences, which we call

space-time soft constraints, are either partially or fully ignored, inflexibly considered mandatory,

or hard-coded in scheduling logic, limiting extensibility and scope. This dissertation proposes

fully embracing this two-dimensional flexibility, by providing the necessary building blocks for

the space-time soft constraints to be expressed, their benefits—quantified, and the knowledge—

leveraged to create better cluster schedules than state-of-the-art approaches that waste compute

resources or human time.

The challenge of scheduling for heterogeneous clusters is exacerbated by the fact that the

solution space is often combinatorial. Rack-local jobs can run on any k of machines on the same

rack on any rack. Data-intensive analytics applications can choose any k-subset from a set of

nodes that store their data [72]. Failure-sensitive applications must survive up to k′ simultaneous

failures, prompting no more than k′ tasks allocated per failure domain (e.g., PDU, rack, or data-

center) and so on. Our insight, however, is that this combinatorial explosion of choices can not

only be succinctly represented, but also leveraged to produce more efficient cluster schedules

compared to schedulers that either don’t consider these placement considerations or inflexibly

treat them as required.

Cluster scheduling research goes back decades. But the increasing levels of constraint-

inducing static and dynamic heterogeneity (discussed in §2) combined with the new scale of

datacenters, resource and workload types present a new multi-faceted challenge. A successful

solution must be able to:

1. capture resource and workload heterogeneity in a general and expressive way that need not

change with new types of hardware and software;

2. flexibly support both simple and combinatorial constraints found in datacenters today in

terms of where to run (space);

3. flexibly support temporal considerations, such as queuing delay, completion time SLOs,

calendared jobs, and estimated runtimes, i.e. when and how long to run (time); and
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4. efficiently allocate available resources to maximally benefit running jobs, increasing their

heterogeneous metrics of interest.

1.2 Thesis Statement

This dissertation confirms the effectiveness of a heterogeneity-aware resource allocation mecha-

nism simultaneously aware of both spatial and temporal resource preferences in achieving better

resource allocations than alternate approaches without such knowledge. Specifically:

Support for explicit expression, quantification, and exploitation of declarative space-

time soft constraints for scheduling of heterogeneous jobs in dynamic, heterogeneous dat-

acenters is (a) possible and (b) beneficial for effective assignment of heterogeneous re-

sources.

The dissertation provides the following evidence in support of this thesis statement.

1. We characterize real workloads from a large (≈ 12500 node) Google cluster cell, focusing

on its heterogeneity and scheduling constraints to motivate the problem and as an existence

proof of complex forms of dynamic heterogeneity in large-scale production clusters today.

2. We demonstrate that it is possible to succinctly represent highly complex placement pref-

erence structures by designing and implementing support for a space-time request lan-

guage (STRL)—an algebraic expression language for declaratively expressing heteroge-

neous objectives in a general fashion. STRL’s generality further accommodates forms of

heterogeneity in both hardware and software that do not yet exist, as long as they fit the

mathematical model of relational algebra we use as base.

3. We demonstrate that exploitation is possible by building a scheduler, called TetriSched,

and evaluate the effectiveness of scheduling mechanisms that have access to and ability to

comprehend such placement preferences.

4. To confirm that support for explicit expression, quantification, and exploitation is benefi-
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cial, we perform extensive real system experimentation and simulation analysis. Our re-

sults indicate that TetriSched is indeed more effective in resource allocation than a variety

of alternative options, including: (i) schedulers that treat preferences as hard constraints,

(ii) schedulers that ignore preferences, (iii) real schedulers that have limited, hard-coded

support for certain specialized types of preferences, such as YARN’s data locality prefer-

ences.

5. To extend the practicality of the fundamental building blocks proposed, we additionally

demonstrate that:

(a) TetriSched robustly handles a range of job runtime mis-estimation that is observed in

real production clusters

(b) TetriSched natively supports preemption “in situ”, as it leverages its STRL and MILP

Compiler to simultaneously consider jobs for (i) preemption, (ii) placement, and (iii)

deferral.

(c) TetriSched supports a more typical, greedy, single job at a time scheduling policy

to accommodate environments where per-job scheduling latency is critical. Indeed,

the composability of STRL makes it possible to schedule any number of pending

jobs (from one to all) per invocation of the MILP solver. This is a practical step

towards explicit management and control of MILP instance complexity generated by

the MILP Compiler.

1.3 Dissertation Focus

This dissertation focuses on the inefficiencies of resource management in dynamic, heteroge-

neous clusters. We make two key high-level observations:

1. (a) the degree and (b) complexity of heterogeneity is on the rise in both production clus-

ter resources and production jobs, creating a feedback loop, whereby more diversity in
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workloads incentivizes more heterogeneity in hardware and vice versa.

2. existing scheduling systems are not equipped to handle this rapidly spiraling resource allo-

cation complexity. This leads to significant inefficiencies in cluster resource management.

As a direct result, clusters are over-provisioned, causing lower utilization (and, therefore,

lower ROI), and/or cluster users don’t get predictable performance or any control over

when, where, and how their jobs are executed.

In this dissertation, we concern ourselves with the design, development, analysis, and eval-

uation of the necessary primitives, algorithms, mechanisms, and systems to enable declarative

space-time soft constraints in dynamic heterogeneous cluster resource management.

Achieving this enables cluster scheduling systems to leverage inherent flexibility in cluster

jobs’ placement needs and execution timeframe. It improves the quality of resource allocation,

by allowing the scheduler to make better bin-packing decisions, increasing cluster ROI. Lastly, it

gives power users more control over the spatial and temporal details of their workload execution.

We achieve this by building on a foundation of 2 key building blocks:

1. space-time request language (STRL), described in §3

2. Mixed Integer Linear Programming (MILP) compiler for STRL, described in §4

Together, these building blocks enable a list of novel TetriSched contributions, outlined in §1.4.

1.4 Contributions

This dissertation makes the following contributions.

1.4.1 Conceptual Contributions

Declarative Soft Constraints

With rising levels and types of heterogeneity, existing scheduling systems struggled to cope with

managing the resulting complexity in a general fashion. Ad-hoc solutions typically involved stat-
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ically partitioning cluster resources (e.g., into separate job submission queues based on resource

types), hard-coding heterogeneity-awareness for specific application types (e.g., data locality,

rack locality, anti-affinity), ignoring it, or deferring the complexity to higher-level frameworks

(e.g., as done by two-level schedulers, such as Mesos). We address this challenge in a general

manner to ensure that the resulting solution stands the test of time, as new types of heterogeneity

inevitably emerge. We thus introduce a notion of soft constraints as a way of capturing and quan-

tifying a, potentially, exponential number of resource assignments in a declarative fashion. Soft

constraints, intuitively and most succinctly, define a mapping function on the superset of cluster

resources to R. We differentiate between cardinal and ordinal soft constraints. Cardinal soft

constraints are mathematical functions mapping the elements from the cluster resource superset

to real numbers. Ordinal soft constraints define a preference relation on the domain of cluster

resource superset. The biggest challenge with declarative soft constraints is defining such a func-

tion (or a preference relation) in a succinct fashion, avoiding enumeration of exponentially many

placement options. We achieve this with the design and development of a space-time request

language (STRL), described in §3.

Space-time soft constraints

Building on declarative soft constraints, we introduce the notion of space-time soft constraints to

reason about resource allocation as a two-dimensional construct defined by (a) a set of resources

used (space) and (b) an interval of time it’s intended to be used for (time). Informally, we refer to

these two-dimensional constructs as “space-time rectangles” throughout this dissertation.1 The

shift from soft constraints in space only to 2D space-time soft constraints is fundamental. The

latter achieves strictly superior expressivity and an extra degree of freedom for resource alloca-

tion. To bridge these two notions conceptually, consider spatial soft constraints as space-time soft

constraints specified for infinity. As shown experimentally in §7, having a temporal component

to soft constraints is essential to achieving the highest effectiveness. Space-time soft constraints,
1Naturally, when visualized, these rectangles are not necessarily contiguous in space.
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formally, are functions that map such two-dimensional, spatiotemporal cluster resource shapes

to R. Similarly to soft constraints above, a less expressive alternative is for these functions to be

a preference relation instead.2

Combinatorial Constraints

Combinatorial constraints are an important category that should be accommodated explicitly.

We define simple constraints as a function that maps a quantity drawn from one resource subset

(however specified) to R. Examples of such simple constraints include a preference to run k

tasks on machines with a GPU (or any other attribute). Most prior HPC literature on various

labeling schemes and algebraic operations on those schemes to describe cluster resources funda-

mentally reduces down to the same idea: they specify an equivalence set of resources, a subset of

resources that satisfy some predetermined criteria. Simple constraints then may operate on this

set (however specified) by mapping some quantity of the set to a scalar value. It is, of course,

possible for a simple constraint to be a point function.

In contrast, combinatorial constraints cannot be specified by operating on a single subset

alone. Combinatorial constraints involve multiple subsets and can only be specified by using

higher order operators on a set of resource subsets. Rack locality is one simple example of a

combinatorial constraint. To declaratively specify a rack locality constraint, one must operate on

a set of resource subsets (each of which is a rack) and map a desired quantity of k containers

from each subset to a scalar value (e.g., a boolean, if the constraint is hard). A higher level oper-

ator then declares ANY of those outcomes as admissible. Anti-affinity and relaxed anti-affinity

(whereby no more than k′ tasks are requested per resource subset) are good examples of com-

binatorial constraints, natively supported by STRL (§3). In fact, the generality and expressivity

of STRL is such that it enables sweeping the continuum of options between a strict rack locality

constraint (all k tasks on one rack of many) and a strict anti-affinity constraint (no more than 1

2Preference relation is defined on X as a subset of X × X (the Cartesian product of X with self), where an
element (x, y) ∈ X ×X implies x � y (x is preferred to y).
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task per rack) in its entirety. Everything in between is expressible in STRL, and this continuum

exemplifies combinatorial constraints.

Orderless global scheduling

As resource requests and their associated spatiotemporal placement preferences are specified

and encoded in STRL, they can be aggregated and composed into a single high-level algebraic

expression. This dissertation describes an algorithm to automatically compile any STRL expres-

sion into a canonical form of Mixed Integer Linear Programming (MILP). Solving this problem

has an important property of considering all declaratively specified constraints simultaneously.

This obviates the need to decide on the order in which jobs should be considered for placement.

As we discuss in §5.2.2, heterogeneity has the undesired effect of breaking the nice properties

of associativity and commutativity that make homogeneous cluster scheduling much easier. The

order in which jobs are considered for placement starts to matter more with more constraints and

more resource types over which those constraints are specified. In fact, it can be shown that it is

possible for ANY order of jobs in a set of job order permutations to produce a space-time sched-

ule that is suboptimal, compared to simultaneous consideration of all jobs and their constraints

for placement. We explore the benefits of global scheduling in §7.4.2.

In Situ Preemption

Leveraging orderless global scheduling, we propose a mechanism to perform preemption simul-

taneously with considering jobs for placement. We refer to this as “in situ preemption”. Drawing

on the expressive power of STRL combined with its automatic translation to MILP, it is possible

to consider all or a subset of running jobs for preemption simultaneously with all or a subset

of pending jobs for placement—both specified as STRL expressions, aggregated, and translated

to a single canonical instance of MILP. As the cost of preempting running jobs intuitively con-

tributes negative value, maximizing the combined STRL expression will have the desired effect
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of minimal necessary preemptions to achieve maximal possible value from the set of available

resources.

1.4.2 Theoretical Contributions

Space-Time Request Language (STRL)

STRL is the fundamental building block that is a necessary condition for all of the conceptual

contributions listed above. It enables the ability to declaratively specify a fundamentally new

class of placement constraints succinctly. It directly addresses the main challenge of central-

ized, heterogeneity-aware scheduling in heterogeneous contexts—ability to succinctly specify

and quantify the combinatorial explosion of placement options. We explain why this is hard

in §2. STRL itself is designed as a collection of language primitives, consisting of language

operands and operators. Its “n choose k” language primitive serves as the enabling foundation

for STRL’s succinct method of reducing exponentially many options of identical value to a single

language primitive. Even combinatorial constraints, where a mapping has to be defined on a set

of resource subsets, STRL can express this in O(number of subsets), even though we draw k

units from each of the subsets, resulting in combinatorially many options to consider.

STRL to MILP compilation

An algorithm that automatically compiles any STRL expression to MILP is essential to the in-

tended generality of our design and implementation. Furthermore, reducing a set of independent

resource requests along with a set of preemptible jobs to a single canonical MILP problem in-

stance is an enabling mechanism for orderless global scheduling and in situ preemption.

1.4.3 Systems Artifacts

1. TetriSched—we’ve instantiated the ideas above in a system called TetriSched. TetriSched

is architected to operate independently as a scheduling policy server. It was, in fact, used
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in standalone mode for the numerous simulation experiments. TetriSched was also in-

tegrated with Hadoop YARN to leverage YARN’s ResourceManager for cluster resource

and job life cycle management, interacting with cluster resource consumers, monitoring

job progress, and servicing cluster resource heartbeats delivered by individual NodeMan-

agers. TetriSched plugs in as an independent scheduler, replacing YARN’s default Capac-

ityScheduler. We operated this integrated YARN/TetriSched system on a real 256-node

cluster at Carnegie Mellon, serving hundreds of jobs with the scheduler core configured to

operate on the scheduling cycle of 4 seconds. TetriSched was able to scale despite having

to continuously solve MILP problems to service resource requests. We describe a set of

engineering optimizations in §5.

2. Aramid—a system we built in collaboration with Microsoft to instantiate a subset of

TetriSched ideas in a system aimed at production cluster deployment. Aramid imple-

ments the notion of heterogeneity-awareness and ordinal placement constraints on top of

YARN’s stock reservation system called Rayon [10]. The key systems primitive we in-

troduce through Aramid work is the “variable space-time capacity guarantee queue” con-

struct. It vectorizes the previously scalar handling of resource capacity in YARN, coupling

it with the variable capacity guarantees introduced by Rayon. The variable space-time

capacity guarantee queue effectively implements space-time soft constraints in a widely

deployed, open source resource management framework, with open sourcing efforts un-

derway.

1.5 Dissertation Overview

We start with background and motivation in Chapter 2 by offering a brief taxonomy of hetero-

geneity (§ 2.1). This chapter explains the magnitude of the challenge of scheduling for hetero-

geneous resource environments. It also makes precise the intended meaning of the overloaded
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term “heterogeneity”. We further categorize various known approaches to handling placement

preferences engendered by heterogeneity (§2.2). We further describe a host of mechanisms that

can be used to quantify placement options and conclude the chapter with the discussion of the

temporal considerations of cluster scheduling. Space-time soft constraints—the key conceptual

contribution of our work, rests on the assumption that runtime estimates for resource requests are

available. (We do not, however, assume that they are accurate. Section 5.2.5 describes a set of

mechanisms to robustly handle runtime mis-estimation. In §2.4.1, we focus on categorizing the

various mechanisms that have been used to predict job runtimes.

In Chapter 3, we proceed to describe the design of the main theoretical contribution of this

work—the Space-Time Request Language. We introduce the notion of “equivalence sets” in

§3.1.1. Equivalence sets capture a subset of resources deemed indistinguishable relative to a

given job. We emphasize throughout this work that equivalence sets are dynamically constructed

as a property of the job, viewing the set of resources through its own lens. We develop the

intuition for STRL in §3.2, formally specify the primitives and operators, and provide several

common examples. To anchor this discussion in the context of a widely deployed YARN resource

management framework, we offer an example of how STRL expressions can be derived from

the combination of YARN resource requests and Rayon reservation requests. We conclude this

chapter with the discussion and formal specification of STRL primitives that enable “in situ

preemption”.

In Chapter 4, we discuss the second theoretical contribution of our dissertation work —the

Mixed Integer Linear Programming formulation and the algorithm that creates it automatically

for any given STRL expression. In §4.3, we separately draw the reader’s attention to MILP

generation for STRL’s preemption primitives. We build up the intuition for the automatic MILP

problem construction as a recursive expression tree descent, creating value in the leaves of the

tree and modifying the flow of this value in its non-leaf vertices with the end goal of maximizing

the overall value of the STRL expression. Handling supply and demand capacity constraint
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construction is also discussed.

Chapter §5 serves as an architecture chapter. There we bring together the expressive power of

STRL and MILP into a system architecture that instantiates our conceptual contributions. End-

to-end system architecture overview can be found in Fig. 5.1 and described in §5.1. The operation

of the TetriSched core is detailed in §5.2, which expands on a set of architectural building blocks

that comprise TetriSched, including plan-ahead (§5.2.1), global scheduling (§5.2.2), in situ pre-

emption (§5.2.3), and mechanism for runtime mis-estimation handling (§5.2.5). We conclude

with a brief overview of TetriSched’s integration with YARN.

In Chapter 6, we detail the experimental setup, system policies chosen for comparison, work-

load composition, cluster composition, and metrics of success for both a set of simulation exper-

iments and a set of real cluster experiments. Some tunable workload parameters (such as load

and slowdown) are also introduced in this chapter.

We present empirical evaluation results in support of our thesis statement in Chapter 7. The

structure of this chapter is as follows. We start by demonstrating the benefit of soft constraints

relative to constraint handling systems that treat preferences as required or ignore them. We

follow up with a deep dive under the hood (§7.1.1) to explain how TetriSched derives these per-

formance benefits and which of the success metrics ultimately contribute to the overall value.

The second major evaluation section §7.2 demonstrates the effect of adding the second, temporal

dimension to our space-time soft constraints. We detail specific workload characteristics, such

as workload inter-arrival burstiness, that particularly benefit from TetriSched’s ability to plan

ahead. We transition to a set of real cluster experiments with a transitional sensitivity experiment

that aims to quantify the effect of runtime mis-estimation on the quality of TetriSched’s place-

ment decisions. Based on the results of these experiments, we make a surprising discovery that

TetriSched is robust to runtime mis-estimation of up to 2x of the job’s ground truth runtime.

We transition to a set of experiments carried out on a real cluster with TetriSched integrated

with YARN in §7.4. The focus of §7.4.1 is to validate the earlier sensitivity study conducted in
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simulation. Sensitivity to mis-estimation is shown to be far greater in the state-of-the-art YARN’s

default stack as compared to YARN integrated with TetriSched. We break down the sources

of benefit in §7.4.2, focusing on soft constraint awareness, global scheduling, and plan-ahead.

Finally, we explore the scalability of TetriSched in §7.4.3.

In Chapter 8, we describe the instantiation of the subset of our conceptual contributions in

a different system, called Aramid. The significance of this effort is in targeting a production

cluster environment a priori. We overview the extent and types of heterogeneity observed the

target cluster environments in §8.1. Section 8.2 details the high-level scheduler components and

their interaction in Aramid. Aramid’s reservation definition language with our heterogeneity ex-

tensions is presented in Section 8.3. There, we focus on describing and developing intuition for

our main contributions to the language, namely the heterogeneity-awareness extensions to the

language primitive and the introduction of ordinal soft constraints. Finally, Section 8.4 presents

empirical evaluation results that demonstrate that the instantiation of a subset of our conceptual

contributions had a significant effect on the number and the aggregate size of resource reserva-

tions, evaluated at the scale of a 2700-node production cluster.

We conclude with Chapter 9, where we start by sharing some of the main high-level take-

aways and lessons learned in §9.1. We discuss the scope of TetriSched’s effectiveness as well as

limitations in §9.2 and capture some of the intended follow-up work in §9.3.
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Chapter 2

Background and Motivation

2.1 Taxonomy of Heterogeneity

Cluster jobs have become very heterogeneous [56, 57, 59]. This trend is expected to continue

and, in fact, gain further momentum [29]. New specialized frameworks of execution will con-

tinue to emerge. While previously the number of job types in a given enterprise cluster was

usually low, and resources could be statically partitioned among separate clusters, it has become

common practice to consolidate compute and data resources to take advantage of shared data and

statistical multiplexing properties. As a consequence, cluster resources themselves are becoming

increasingly diverse, to tailor to the needs of diverse workloads they support. Thus, hardware

specialization is also on the rise, making job placement a much more challenging task. Different

types of heterogeneity exist and should be considered in modern datacenters: static, dynamic,

and combinatorial.

Static heterogeneity refers to diversity rooted in the static attributes of cluster resources,

such as different processors, different accelerators (e.g., a GPU), faster disks (SSD), particular

software stacks, or special kernel versions [59]. Static heterogeneity is on the rise and is expected

to continue to increase [29, 35] . We refer to such node specialization as static heterogeneity—

diversity rooted in the static parameters of cluster resources.
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Dynamic or runtime heterogeneity refers to differences between cluster resources induced

by the workloads themselves. For example, data-intensive computation frameworks, such as

Hadoop MapReduce and Spark, derive performance benefits from data locality. Their jobs con-

sist of tasks with input and output dataflow relationships. Tasks read their data from distributed

local storage or cached in memory and pass their outputs to downstream intermediate tasks.

Their efficiency depends in part on the locality of tasks to data they consume. From such jobs’

perspective, a set of machines becomes heterogeneous, when viewed through the lens of data

locality. Machines with desired data become preferred to machines without it.

Presence or co-location with interfering workloads [15, 16] is another form of dynamic het-

erogeneity that affects job performance when ignored. Static and dynamic heterogeneity intu-

itively creates a differentiated view of cluster resources from jobs’ perspective. A given node

(or a set of nodes) could be unsuitable, acceptable, or desirable, depending on how it fulfills

the job’s needs. Expressing these placement options and associated tradeoffs (known as “soft”

constraints) is both challenging and necessary, as consolidated frameworks compete for the ever-

changing landscape of increasingly heterogeneous cluster resources.

Cluster operators and site reliability engineers at companies that maintain their own produc-

tion clusters may also assign machine roles to different parts of the cluster. Examples include

labeling a fraction of a cluster as “persistent” to ensure that critical application components (e.g.,

YARN application masters) are placed on machines with a priori lower probability of failure,

handover, or CPU frequency downthrottling. These assigned attributes are (a) often dynamic

in nature, and (b) follow neither from hardware (static) properties nor from software (dynamic)

properties, contributing to the need for the scheduler to understand dynamically changing re-

source attributes to make efficient placement decisions.

Resource churn also contributes to the dynamicity of the pool of resources. At production

scale, at any given point in time, it is likely for some nodes to be upgraded, maintained, and

generally, acquire new capabilities or dynamic attributes. Unlike static heterogeneity, resource
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Figure 2.1: Five potential schedules for 3 jobs. Each grid shows one potential space-time schedule,

with machines along the rows and time units along the columns. Each job requests 2 servers, and its

allocation is shown by filling in the corresponding grid entries. The cluster consists of 2 racks each with

2 servers, and rack 1 is GPU-enabled. The Availability job prefers 1 server per rack. The MPI job runs

faster if both servers are in one rack (2 time units) than if they are not (3 time units). The GPU job runs

faster if both servers have GPUs (2 time units) than if they don’t (3 time units).

churn and general node failures create a transient effect on resource accounting. As we attempt

to keep track of resource capacity for resource subsets defined by machine attributes, we must

make sure that scheduling mechanisms employed are robust to (a) transient and (b) frequent

changes to those resource sets. This is a qualitative departure from siloed, vertical partitioning

of resources either into separate management domains or into separate queues, based on the

assumption that machine attributes do not change. In addition to per-node attribute upgrades,

sets of nodes can acquire new connectivity through network backbone upgrades, deployment of

redundant, low latency interconnects, such as Infiniband, and deployment of specialized high-

performance interconnect overlays, such as the FPGA Torus interconnects used for Microsoft’s

Catapult project.
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Combinatorial heterogeneity: Finally, as exemplified by HPC and Machine Learning ap-

plications with tightly-coupled communicating tasks, different identically sized subsets of ma-

chines may influence job execution differently. Some subsets (e.g., rack-local collections of

k machines [66], data-local samples of data servers [72]) may speed up the execution or im-

prove application QoS, while others may degrade it. An interesting new trend in data analytics

contributes additional examples where applications must choose a subset of the data to operate

on [72], such as (a) approximate query processing, (b) machine learning, and (c) erasure coded

storage applications. All subsets, however, could be “good enough” to enable applications to run.

We refer to such heterogeneity as combinatorial. Jobs that prefer all k tasks to be simultaneously

co-located (e.g. MPI job in Fig. 2.1) in the same locality domain of the many locality domains

available exemplify combinatorial constraints. Their preference distribution is over a superset of

cluster nodes, in contrast to server-types or server quantities alone, which is a challenge to ex-

press and support. A distinguishing characteristic of combinatorial heterogeneity is its presence

in what could otherwise be deemed a completely homogeneous cluster with identical machines.

To gain an intuitive understanding of combinatorial heterogeneity, it helps to think of success

metrics of performance that can only be evaluated, when a given set of resources is known,

and cannot be evaluated based on quantity alone. Putting it in functional terms, the domain of

the preference or value function is no longer the amount of resource allocated (on the x-axis).

Rather it is the set of all possible subsets of resources. The function, in principle, maps the

relevant subsets of interest to the performance success metric of choice (typically a scalar value

in R). Given the fact that the cardinality of a superset is exponential in the number of elements

in the set, it becomes evident that a concise definition of this function is a necessary condition

for any solution addressing combinatorial heterogeneity.

TetriSched captures all such placement considerations succinctly with STRL described in §3.
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2.2 Handling Placement Preferences

As alluded to in the previous section, the rising levels of heterogeneity give rise to placement

preferences in consolidated cluster environments. Fundamentally, a preference is either an ex-

plicit or implicit ordering operator on the superset of available resources. Due to the complexities

of (a) identifying the preference order, (b) quantifying the degree of preference, and (c) providing

the mapping for a meaningful fraction of the preference function domain in a succinct fashion,

the manner in which cluster schedulers consider placement preferences varies significantly. We

categorize schedulers into four main categories, with respect to their ability to comprehend,

express, and leverage placement preferences. We refer to them as None, Hard, Soft, and

Deferring.

None-class schedulers (as in Fig. 2.2) don’t model or understand placement preferences.

Most such schedulers were designed assuming homogeneous infrastructures, focusing on load

balancing and quantities of resources assigned to each job. This class includes schedulers using

proportional sharing or random resource allocation for choosing placement candidates [51, 78].

Such schedulers fail to gain advantage from heterogeneous resources yielding opportunity costs

when the benefits of getting preferred allocations are tangible. This class of schedulers also

includes schedulers that, by design, concern themselves with fairness. It includes the Hadoop

Fair scheduler [1] and, more recently, the work done by Ali Ghodsi et al. on dominant resource

fairness [22] and the extension of that work to support hierarchical queues [5].

A large class of schedulers we refer to as Hard filled this semantic gap by defining resource

description schema and expressions on top of it. It enabled the specification of preferred types

of resources, which were treated as required and inflexibly honored by the scheduler. While

this class of schedulers was heterogeneity-aware (in contrast to None), the inflexible handling

of placement considerations as hard constraints is a limiting factor. Based on prior work [59]

as well as our own experiments (Fig. 2.2), this limitation contributes to noticeable performance

degradation, increasing queueing delays and causing jobs to unnecessarily wait for their specified

19



(a) Homogeneous (b) Heterogeneous
      overprovisioned

(c) Heterogeneous0
5

10
15
20
25
30
35
40
45
50

M
ea

n 
co

m
pl

et
io

n 
tim

e 
(m

in
)

None Hard Soft

Figure 2.2: Exploiting placement preference flexibility is crucial in heterogeneous infrastructures. Each

set of three bars are simulation results for jobs submitted to one of three sizable clusters: (a) a homoge-

neous cluster of 1000 generic machines; (b) an over-provisioned heterogeneous cluster of 1500 machines,

wherein any machine can run any job but the best-match machine (e.g., one with a GPU) does so with

50% lower execution time; (c) a (not-over-provisioned) heterogeneous cluster of 1000 machines. For

each, the three bars represent three classes of schedulers: None corresponds to schedulers that assume all

machines are equivalent (no placement preferences are considered); Hard refers to schedulers that treat

placement preferences as required; Soft corresponds to TetriSched, which is aware of placement pref-

erences and their magnitudes (e.g., 50% faster), considering fallbacks as needed. The results show that

realizing the benefits of heterogeneity requires that schedulers be aware of placement preferences, unlike

when scheduling for homogeneous clusters. Further, unless over-provisioned, the scheduler must flexibly

consider trade-offs associated with placement preferences to achieve the best performance.

preferences, possibly indefinitely. In turn, jobs miss SLO targets, latency-sensitive applications

suffer loss of quality due to increased queueing delays, and cluster utilization worsens.

Soft-class schedulers address these issues by treating placement preferences as soft con-

straints. Notable examples include MapReduce [13], KMN [73], Quincy [32], and ABACUS [3].

To date, however, such schedulers have specialized for very specific types of preferences. Unlike

the general-purpose approach of TetriSched, they hard-code support for handling specific place-

ment preferences (e.g., input data locality). Consequently, they lack the flexibility to adapt to new

types of heterogeneity in both hardware and software. Similarly, efforts primarily focused on dif-
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ferences in processor properties have led to approaches based on greedy selection [15, 17, 49],

hill-climbing [45, 46], and market mechanics [26]. An exception is Google’s Borg [77], which

comprehends soft constraints of diverse resources, but does not appear to use time estimates, and

employs static priority as the mechanism for both preemption and resolving contention unlike

TetriSched’s universal use of value optimization. Condor ClassAds [55] supports behavior akin

to “soft constraints”; however, it is fundamentally bilateral, matching a single job to a single

machine. It also lacks support for combinatorial constraints and gang scheduling, as provided by

TetriSched. Gang scheduling support helps TetriSched avoid hoarding (and associated potential

for deadlock) needed by other systems (e.g., Mesos [29], YARN [71]) to achieve the same effect.

[25] addresses the challenge of scheduling for heterogeneity, but focuses on the impact of poor

decisions induced by heterogeneity. We believe the work by Guevara et al. is, therefore, comple-

mentary, as it can be used to estimate degrees of preference and slowdown factors, contributing

to the construction of STRL expressions (§ch:strl).

Deferring-class schedulers, such as Mesos [29] and Omega [58], defer the complexity of

reasoning about placement tradeoffs to the hosted application frameworks by exposing cluster

state to pending resource consumers (via resource offers or shared state). The resource-offer

approach (Mesos) has been shown to suffer livelocks due to hoarding to achieve preferred al-

locations (especially combinatorial constraints) [58], and both approaches leave unresolved the

issue of conflict resolution among preferences of different frameworks. TetriSched addresses

these issues with a flexible language for soft constraints in cluster space-time.

2.3 Quantifying Placement Tradeoffs

It is inevitable for placement preferences to conflict. Moreover, the nature of this conflict is no

longer a matter of resource capacity. With the three types of heterogeneity—all prevalent in pro-

duction datacenters today—placement preferences overlap in complex ways. To make informed

scheduling decisions, one needs to arbitrate conflicting preferences. To do so, placement trade-
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offs must be quantified. When resources are over-provisioned and sufficient to meet all placement

preferences in the worst case, the scheduling problem is easy (Fig.2.2(b)). Over-provisioning is

expensive, however, and unpredictable demand for certain types of resources may cause tem-

poral imbalances and result in higher wait times. A scheduler that understands how to handle

resource contention flexibly (Soft) is desired (Fig. 2.2(c)). To inform its arbitration, however,

such a scheduler must be able to quantify placement tradeoffs.

Several approaches to quantifying placement tradeoffs have been used. First, fairness is

a popular choice in academic clusters, where proportional sharing of resources relative to the

agents’ resource contributions and/or importance is a primary concern. Note that fairness should,

indeed, be viewed as just a way to quantify tradeoffs when resources are contended. Second,

some large-scale Internet companies and public clouds use revenue as a mechanism for quan-

tifying placement tradeoffs. Either real or virtual currency has been used [30, 31]. For such

environments, the scheduler quantifies relative benefits of placement options based on the ag-

gregate revenue that can be achieved. Third, performance can be used as a tie-breaker. The

scheduler chooses resource assignments such that a contended resource is given to the job whose

performance will benefit the most from it.

We utilize the fact that utility—an economic theory mechanism assigning scalar value to

allocation outcomes—is expressive enough to represent most of these approaches to quantifying

placement tradeoffs. Throughout our thesis work, we use utility as a general way of quantifying

tradeoffs.

Fairness. Fairness is a popular choice as an arbiter of resource contention, especially for

academic clusters and federated resource pools with specified resource ownership proportions.

Previous work has used several models, including max-min fairness [4], dominant resource fair-

ness [22], and the state-of-the-art constrained max-min fair (CMMF) scheduler [23]. But, we do

not yet have a complete model for fairness in heterogeneous clusters. Max-min fairness assumes

identical resources, DRF [22] considers capacity heterogeneity only, and CMMF [23] models
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only hard constraints, which are not sufficient for preferences (See Fig. 2.2(c)).

In the scope of this dissertation, we consider a more general case of heterogeneity, described

in §2.1, as well as support for soft placement preferences. For such arbitrarily heterogeneous

pools of resources and workload mixes with simple and combinatorial placement preferences, the

notion of fairness remains undefined. Indeed, intuitively, given a mix of coconut and bananas,

fairness will not be achieved by proportionally dividing each pool of fruit, if some people are

allergic to coconut, some prefer bananas, and some are indifferent, as long as they get some

fruit. It would be achieved only if (a) all fruit were the same or (b) all persons were indifferent.

Defining fairness calls for a more nuanced modeling approach that captures and normalizes this

heterogeneity. We believe that defining fairness for environments with soft and combinatorial

constraints is an interesting question for future work that uses utility to quantify fairness across

diverse users with declaratively specified preference structures over a heterogeneous pool of

resources. For this reason, we purposefully leave fairness outside the scope of this dissertation

work.

Revenue. Another option is to allocate resources to the highest bidder and let the market

decide resource bid prices through supply and demand. The scheduler then allocates resources

in a way that maximizes revenue. Currency can be real or virtual with or without restrictions

on per-user or per-job budget allocations. Prior work on this suggests that charging users real

currency makes the system incentive-compatible [31].

Performance. Yet another option is to allocate resources in a manner that achieves maximum

aggregate performance. This can be done only in the cases when all jobs’ performance metrics

are comparable and can be aggregated. Examples include HPC clusters that primarily focus

on job completion times, such as Hadoop/Spark analytics and MPI batch jobs. In such cases,

the scheduler can quantify tradeoffs using the aggregate performance metric as the objective

to optimize. Note that the mix of jobs is heterogeneous, and scheduled over a (statically or

dynamically) heterogeneous mix of hardware. But, the performance metrics are homogeneous.
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Utility functions. Utility has been widely used to quantify placement tradeoffs in the schedul-

ing literature [36, 37, 39, 40, 41, 52, 62, 79]. It is attractive due to its generality, accommodating

performance, availability, revenue, etc. Indeed, Fig. 2.3 illustrates how performance metrics,

such as completion time and availability, as well as revenue naturally map to utility. Utility in the

form of a virtual currency can also be used to achieve fairness via allocation of budget and rate

of its replenishment [31]. Doing so for heterogeneous environments we target, however, remains

an open research question.

Quantifying tradeoffs in TetriSched. TetriSched can use any of the mentioned ways of

quantifying placement tradeoffs. In §3, we capture placement options by mapping them to a

user-defined and user-interpreted scalar value. It could be a measure of performance, revenue,

or utility. It must be understood, that utility functions , exemplified in Fig. 2.3, serve as a layer

of indirection with the following benefits. For job mixes with completion time as a measure of

performance, they enable differentiation of user urgency (steeper slope), user importance (higher

budget), and job deadline SLO. For job mixes with heterogeneous user objectives, utility serves

as the unifying currency allowing the scheduler to quantify placement tradeoffs across jobs with

incomparable objectives (e.g., completion times and availability).

Similarly to [20, 52], we choose time-based utility functions depicted in Fig. 2.4 as our place-

ment tradeoff quantification mechanism. To quote Lee et al [41], “there is a legitimate concern

that users may not be willing to provide this level of detail in a real-life job submission setting.”

However, the authors’ previous work [42] had shown that such information is easily obtainable.
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Figure 2.4: User objective function with respect to time. Temporal user objectives are modeled as

time-based user-defined utility functions (uduf). Budget B is the maximum utility possible for this job–

to be awarded if the job is started or completed by the Desired time (depending on whether it is start-

or completion-time oriented). Potential utility declines if the Desired target is not met, and penalty P

(negative utility) accrues for failure to meet the Deadline. The earliest start time S enables the expression

of calendared jobs.

In cases where it’s not, TetriSched’s STRL Generator provides reasonable defaults. Additionally,

we show that TetriSched is robust to user runtime estimate misrepresentation in §7.4 and §7.3.

Thus, we borrow utility functions from prior work as one of several ways of quantifying

heterogeneous placement preferences. User-specified utility functions serve as an optional high-

level interface to the scheduling system. We build on it by providing a general algebraic expres-

sion language for capturing simple and combinatorial placement preferences. It serves as the

main interface to the core scheduler, obviating the need for it to change with new types of het-

erogeneity. It is important to emphasize that the building blocks we propose and the mechanisms

that use them are oblivious to the actual quantification method of choice.
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2.4 Temporal considerations

In addition to a description of the possible placement options, job scheduling requests are often

associated with two other pieces of information: Service Level Objectives (SLOs) and estimated

runtimes. SLOs specify user-desired constraints on job execution timing. Completion-time ori-

ented jobs, for example, may specify that a job must complete by 5:00PM, or within an hour. For

TetriSched to schedule meaningfully with such constraints, jobs must also have associated run-

time estimates. Prior work [10, 16, 17, 18, 20, 76] has demonstrated the feasibility of generating

such estimates.

Given job runtime estimates, recent scheduling work [20, 70] shows that accurate job runtime

predictions can be exploited to significant benefit when dealing with workload and resource

diversity. Below we discuss three ways of exploiting submission-time job runtime information.

Resource type assignment in heterogeneous clusters. As discussed above, datacenter

resources, today, are increasingly heterogeneous; consolidation of multiple workloads onto a

shared infrastructure does not remove the efficiency benefits of resource specialization. Rather

than having separate clusters for each machine type, modern clusters consist of a mixture of

machines with different sizes (e.g., huge-memory machines), special accelerators (e.g., GPUs or

FPGAs), and ages (due to incremental cluster growth and refresh). As previously stated in §2.1

, various asymmetries may also arise, such as in interconnect topology (e.g., per-rack switches)

and data locality (e.g., cached executables and/or input data).

Jobs will be affected differently by specific machine assignments. Some jobs may execute

largely the same on any machines, a common assumption in historical schedulers; for others, only

certain assignments may be acceptable. A growing category of jobs, however, are those with soft

constraints [66, 69, 70]; such jobs can accept many assignments but will run faster or more

robustly given specific assignments (e.g., on a GPU-equipped machine or with all tasks on the

same rack). Maximizing cluster effectiveness in the presence of jobs with such soft constraints

requires careful scheduling.
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Scheduling jobs with soft constraints is more effective when job runtimes are known [6,

70, 82]. Naturally, the scheduler may assign the preferred resources, provided that they are

available when a new job is first considered for scheduling. But, if they are not, the scheduler

may need to decide whether assigning less-preferred resources immediately is better than waiting

for preferred resources to become available (and/or freeing them via preemption). A scheduler

can make a better, more informed decision if it knows how long the wait would be and how long

the new job would run on alternative resource subsets.

In the absence of runtime knowledge, some schedulers [71, 82] use delay scheduling—

waiting for a small, pre-configured amount of time for preferred resources to become available

and falling back to alternatives if they remain occupied. Of course, sometimes jobs wait when

they should not, and sometimes they don’t wait long enough, because the wait time is a configu-

ration parameter applied in all cases.

Packing deadline-oriented jobs with latency-sensitive jobs. Cluster workloads are increas-

ingly a mixture of business-critical production jobs and best-effort engineering/analysis jobs.

The production jobs are often workflows submitted periodically by automated systems [33, 63]

to process data feeds, refresh models, and publish insights. These jobs often consume significant

resources (e.g., many servers and tens of TBs of data), run for hours, and have strict completion

deadlines(i.e., completion-time Service Level Objectives, or SLOs). The best-effort jobs, such as

exploratory data analytics and software development/debugging, while lower priority, are often

latency-sensitive. Schedulers can more effectively order jobs when given their runtimes, simul-

taneously increasing SLO attainment for production jobs and reducing average latency for best-

effort jobs [10, 70]. Such information enables tighter packing of jobs in cluster “space-time”. By

carefully exploiting available slack between production job submission times and corresponding

deadlines, the scheduler can fit more in while squeezing in best-effort jobs as early and often as

is safe. Most schedulers without job runtime information strictly prioritize production jobs and

hope for the best, generally suffering more SLO (deadline) misses and much worse best-effort
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performance.

Gang scheduling with back-filling. A common requirement of high-performance comput-

ing (HPC) jobs , such as large-scale physical simulations and parallel SGD-based optimiza-

tions, is that all tasks making up a job be initiated and executed simultaneously [48, 50]. Such

gang scheduling requires a sufficient set of machines to be available to assign at once. To

avoid starving large jobs, HPC schedulers often reserve machines until the required number

become free. Since leaving machines idle is undesirable, HPC schedulers may employ backfill-

ing [19, 43, 65, 83] to opportunistically execute small jobs on the otherwise-idle compute ca-

pacity that will be used for the large job. Intuitively, backfilling “fills in the gaps” created when

the scheduler is collecting machines to initiate a large gang-scheduled job. Gang-scheduling and

backfilling are most effective when job runtimes are known. This information allows the sched-

uler to know (a) how long the “gap” resources would be idle (i.e., how long until the full set of

machines is ready for the large job) and (b) which pending “small” job(s) could complete within

the gap resources. Failure to accurately match small jobs to gaps can lead to using them for jobs

that do not finish in time, wasting opportunities to improve service quality for users even when

checkpointing avoids loss of work.

Elastic sizing of jobs based on progress. Jobs that expose progress metrics and are elas-

tically parallelizable can be dynamically resized to achieve completion-time targets [20]. The

progress metrics enable prediction of how much longer an executing job has before completion,

assuming that the current rate of progress continues. Coupled with knowledge of how adding

additional machines would increase the rate of progress, such predictions can be used to make

adaptive job sizing decisions. We differentiate this use of runtime predictions from our focus on

those that are available when deciding when and where to start a job—that is, available before

the job enters a Running state.
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2.4.1 Predicting job runtimes

In some environments, especially HPC and grid computing environments, users have been ex-

pected to provide runtime information explicitly. Naturally, the quality of such user-provided

information varies widely, and automated approaches to generating runtime predictions have

become desired by industry practitioners and datacenter operators. Automation eliminates the

possibility of users “gaming the system” and significantly increases runtime estimate accuracy.

Erroneous– and especially malicious– user-supplied runtime predictions may cause high priority

jobs to be delayed or denied allocation, as lower priority jobs under-represent their runtime. Pre-

emption helps but wastes resources, as best-effort jobs are terminated and have to be restarted

later from scratch. Rayon [10] took the approach of enforcing declared runtimes through a reser-

vation system that guarantees capacity allocations for jobs via a priori resource time profiles.

Accurate runtime estimates are still required, though, for proper operation.

Strategies for predicting job execution times may be categorized according to how much

is assumed or known about a job. First, some techniques [10, 14, 34, 38, 75] are designed

for explicitly repeating jobs, such as in a scripted simulation parameter sweep or regular post-

processing of an output file. So, each such job is a recurrence of a nearly identical job with known

historical runtime information. This category has been used in HPC and Grid computing [38, 75]

as well as cloud computing [10, 14, 34].

Second, performance modeling based on white-box techniques assumes that the structure of

each job is known. This information, together with input file characteristics, feeds performance

models used for runtime prediction. For example, Jockey [20] and Perforator [18] leverage job

structure and combine it with profiling for accurate runtime predictions. MapReduce’s map-

shuffle-reduce structure is well-understood and lends itself to analytical performance models,

such as ARIA [76] and Parallax [47]. Similarly, Apollo [6] and Ernest [74] rely on leveraging

job structure knowledge to estimate job runtimes.

A third category of runtime predictors uses black-box techniques to address the many jobs
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that neither (a) report explicit recurrence nor (b) arrive with known white-box models. Few such

predictors have been reported in the literature. Harchol-Balter and Downey [28] showed that, in

the absence of other information, a reasonable approach to predicting a job’s remaining runtime

is to assume it is half-way completed. But, such an approach does not provide pre-execution

runtime predictions (or particularly accurate predictions on a per-job basis). The closest prior

work categorized HPC jobs, such as by user or by site, during post-processing of Grid traces, to

characterize and determine the predictability of job runtimes and queue wait times [61]. We’ve

prototyped a new predictor that differs from prior approaches by applying online learning tech-

niques to identify adaptively the best job characteristics by which to categorize and the best

predictor to use for each resulting category. This is a separate body of work. Preliminary results

indicate that our predictor is capable of generating sufficiently accurate predictions even for the

extremely diverse collection of jobs submitted to a Google production cluster [56].

2.4.2 Addressing runtime mis-predictions

Of course, no runtime prediction mechanism will be perfect in practice. Performance jitter in

real systems can cause runtime variation, even for recurrences of the exact same computation.

Greater variance is naturally expected as the breadth of jobs treated as a single category grows.

At least occasionally, jobs will be submitted that do not fit into any existing category for which

a predictor has sufficient prior information to make good predictions. And, of course, there are

occasional major outliers... jobs that are expected to behave like recent similar jobs sometimes

instead behave very differently, running much longer or shorter due to unexpected bugs, corner

cases, user input, or other hidden changes.

Mis-predicted runtimes can lead to sub-optimal scheduling. For example, a job with an under-

estimated runtime might not be started early enough to finish by its deadline. Job runtime over-

estimates may result in other jobs being run less efficiently on non-preferred resources rather than

waiting for preferred (but expected to be occupied due to over-estimates) resources. In general,
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when a packing algorithm makes decisions based on inaccurate job “shapes”, cluster scheduler

efficiency may suffer significantly. Yet, we are aware of no work that analyzes and addresses

specific effects of mispredictions on cluster scheduling.

Preemption is one standard tool that can be applied (and has been applied) to address some

issues arising from mispredictions, either by killing (e.g., in container-based clusters [77]) or

migrating (e.g., in VM-based systems [80]) jobs. Traditionally, preemption is used to re-assign

resources occupied by lower-priority jobs to higher-priority jobs. However, it can also be used

to address situations where under-predicted runtimes result in a job unable to complete within

the time-window planned for it or to give preferred resources to jobs that would benefit more–

thereby raising overall cluster efficiency. We introduce a new approach to making preemption

decisions in §3.5 that regularly reviews the schedule holistically and determines the overall cost

and benefit of potential preemption-scheduling combinations.

If any jobs are in danger of missing their SLO deadlines, the scheduler will determine which

job(s) to preempt based on the values of all jobs involved. Based on this valuation, the scheduler

may, for example, (a) terminate a single mis-predicted job, (b) terminate a number of small jobs,

or (c) simply avoid scheduling new jobs. Our value-based approach enables the scheduler to

approach the decision as a global optimization.

Preemption alone is insufficient, and we introduce several refinements (§5.2.5) specifically

aimed at mitigating the negative effects of mispredictions. For example, when a job exceeds its

(under-)predicted runtime, careful online re-prediction is needed to make good decisions regard-

ing preemption. For jobs with short deadlines, some hedging is needed in the benefit model to

increase the likelihood that the scheduler will dispatch those jobs despite long predicted runtimes,

because those runtimes may be over-estimated.
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Chapter 3

Design: Space-Time Request Language

3.1 Dynamic Partitioning

3.1.1 Equivalence sets

With the heterogeneity and dynamicity of shared resources on the rise [57, 59], scheduler designs

can no longer assume that resources in the pool are interchangeable. Creation of work queues

statically tied to certain logical cluster partitions breaks down as tens of machine attributes ob-

served in large scale clusters today change over time. At best, the maintenance of these work

queues becomes a burden.

From another angle, the heterogeneity of workloads and their placement requirements makes

it clear that the machine attributes as well as the extent to which workloads care about them varies

greatly across jobs and over time. Evidence from available trace analyses [56, 57] suggests

that placement constraints can range from absent (maximum flexibility) to unachievable (zero

flexibility), even in the empty cluster with no running jobs. In short, the logical partitioning of

the cluster must be done from the perspective of the workload itself. It’s a property of a job and

a function of time.

To address this, we adapt the notion of equivalence sets. Each resource consumer can group
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resources into equivalence sets, based on its particular concerns, such that the individual resource

units within each equivalence set are fungible. In other words, the defining characteristic of an

equivalence set is that any k-subset of the given equivalence set is indistinguishable and identical

from the perspective of a job. Referring back to the discussion of combinatorial heterogeneity in

§2.1, equivalence sets effective enable grouping multiple elements of the superset together and

mapping them all to the same value. This reduction mechanism is significant, as exponentially

many spatial placement options can be coalesced typically reducing the spatial complexity of soft

constraint expressions. Thus, equivalence sets are the first mathematical primitive building block

in the design of our space-time request language. Such resource grouping can range from per-

machine sets on one extreme to having the entire cluster as a single set on the other. Given this

mapping, all subsequent primitives are defined over a (likely much reduced) set of equivalence

sets.

3.1.2 Partitioning Equivalence Sets

With multiple simultaneous resource requests, equivalence set specifications by multiple users

intersect. In Fig. 2.1 an MPI job’s fallback could be to run anywhere. The latter is an equiva-

lence set comprised of all machines. The scheduler thus needs to partition a set of intersecting

equivalence sets into a set of partitions pi. Partitions have the following properties:

• there exists a subset of partitions pj , such that ∪jpj exactly equals that equivalence set;

• ∪ipi = ∪jeqj for all submitted jobs j currently considered for placement. Note that we

repartition the cluster for each scheduling decision in order to minimize the number of

partitions, thereby reducing the complexity of the scheduling problem.

• Lastly, partitions are, by definition, non-intersecting.

The Scheduler consumes equivalence sets and dynamically repartitions them on demand. The

resulting partitions are subsequently used to formulate the MILP problem and solve for the sched-

ule. The role of partitions on MILP problem size is substantial, as all machines within a given
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Figure 3.1: Individual circles represent equivalence sets that have overlapping machines. Each
region is a partition and is uniquely determined by the bitvector of equivalence sets. Since each
such region consists of machines that share the exact same set of attributes (same set of bits is
turned on), we sometimes refer to partitions as samesets in this dissertation.

partition can be considered equivalent by the scheduler. We will be using this partition notation

in our language specification to make it clear what gets translated to the MILP problem.

Thus, instead of statically defining partitions, we develop an algorithm to dynamically con-

struct partitions based on the equivalence sets of currently pending jobs. This keeps the number

of partitions to a minimum, reducing the burden on the scheduler core. Fig. 3.1 illustrates the

relationship between equivalence sets and partitions with a Venn diagram.

Algorithm 1 converts a set of equivalence sets into a set of partitions. The key insight is

that a partition is uniquely identified by the set of equivalence sets of which it is a member.

Each bitvector position corresponds to a given equivalence set. To illustrate this, Fig. 3.1 labels

each partition with a bitvector encoding the equivalence sets it is a member of. Our algorithm

then creates these bitvectors and assigns partition numbers to each unique bitvector. When it

completes, it returns a mapping of machine sets to unique partitions.
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Algorithm 1: Partitioning algorithm
1 partition: equivClasses→ partitions
2 func partition(equivClasses):

// Create bitvectors for each machine corresponding to the equivalence
// sets of which it’s a member

3 bitvectors := new array of bitvector
4 foreach index, equivClass in equivClasses :
5 foreach machineId in equivClass :
6 bitvectors[machineId].setBit(index)

// Machines with the same bitvector assigned same partition number
7 partitions := new array of int
8 hashtable := new hashtable from bitvector to int
9 nextPartition := 0

10 for machineId := 0 to cluster size :
11 partition, found := hashtable.find(bitvectors[machineId])
12 if ! found :

// Bitvector hasn’t been seen before;
// assign new partition number to bitvector

13 partition = nextPartition
14 hashtable.insert(bitvectors[machineId], nextPartition)
15 nextPartition++
16 partitions[machineId] = partition
17 return partitions

3.2 Language Requirements, Goals, and Intuition

STRL’s design is governed by the following five requirements that capture most practical work-

load placement preferences encountered in datacenters [59] and HPC clusters [55]:

[R1] space-time constraints

[R2] soft constraints (preference awareness)

[R3] combinatorial constraints

[R4] gang scheduling

[R5] composability for global scheduling

Intuitively, we need a language primitive that captures placement options in terms of the

types of resources desired (encoded with equivalence sets defined above in § 3.1.1), their quan-
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tity, when, and for how long they will be used [R1]. This is captured by the STRL’s princi-

pal language primitive called “n Choose k” (nCK). This primitive concisely describes resource

space-time allocations. It eliminates the need to enumerate all the
(
n
k

)
k-tuples of nodes deemed

equivalent by the job. This primitive alone is also sufficient for expressing hard constraints. Soft

constraints [R2]—enumerating multiple possible space-time placement options—are enabled by

the MAX operator that combines multiple nCk-described options. MAX and MIN operators are

also used to support simpler combinatorial constraints [R3] such as rack locality and anti-affinity.

More complex combinatorial constraints can be achieved with SCALE and BARRIER, such as

high availability service placement with specified tolerance threshold for correlated failures [68].

Examples include a request to place up to, but no more than, k′ borgmaster servers in any given

failure domain totaling k servers. The SUM operator enables global scheduling [R5], batching

multiple child expressions into a single STRL expression. The intuition for this language is to

create composable expression trees, where leafs initiate the upward flow of value, while inter-

mediate operator nodes modify that flow. They can multiplex it (MAX), enforce its uniformity

(MIN), cap it, or scale it. Thus, a STRL expression is a function mapping arbitrary resource

space-time shapes to scalar value. Positive value means the STRL expression is satisfied.

3.3 Language Specification

3.3.1 Language Primitives

Resource consumers operating in heterogeneous resource context of any kind need the ability

to specify utility over both the quantity and the type of resources allocated. The equivalence

sets provide ability to dynamically and logically partition the cluster into “types”, and we define

primitives to map the quantity of resources chosen from a given equivalence set to utility. Then, a

composition of primitives, defined with the operators introduced in subsection 3.3.2, aggregates

the utility across potentially many equivalence sets.
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Figure 3.2: n Choose k primitive: utility function associating utility u with ≥ k resources allo-
cated from the specified equivalence set.
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Figure 3.3: Linear “n Choose k” primitive: piece-wise linear utility function associating utility u
with ≥ k resources allocated from the specified equivalence set, with a linear aggregation with
< k.

Primitives form the leaves of the utility function expression. They provide the ability to ex-

press utility associated with the quantity of resources chosen from a specified equivalence set.

For our preliminary evaluation, we have implemented two such primitives: the ”n Choose k”

(nCk) primitive and its linear counter-part. The nCk primitive maps an equivalence set and a

number (k) of resources from that set to a utility value. Thus, given an assignment of resources

across all equivalence sets, this primitive returns either 0, indicating that its request was unsatis-

fied, or the utility value, indicating that the provided assignment has issued ≥ k resources from

the specified set. Pictorially, the utility function encoded by the nCk primitive is shown in Fig-

ure 3.2, while the linear “n Choose k” in Figure 3.3 allows for linear aggregation of resources

from the specified equivalence set up to k, at which point it levels of at specified utility u.

We find that keeping the set of primitives as small as possible is advantageous for the orthog-

onality of the design. That said, we envision that other primitives may become more convenient
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expressions of certain soft constraints in the future.

A more formal specification follows. A primitive STRL expression can be:

1. nCk(equivalence set, k, start, dur, v): out of the specified equivalence set, choose k ma-

chines starting at start time start for duration dur to get value v. It is the main STRL

primitive we call “n Choose k” used to represent a choice of any k resources out of the

specified equivalence set, with the start time and estimated duration. nCk is useful for any

job that needs or benefits from using machines with particular characteristics. In Fig. 2.1,

the GPU job’s ask for k = 2 GPU nodes would be nCk({M1,M2}, k = 2, start =

0, dur = 2, v = 4), where v quantifies the value of such an allocation. This serves as an

example of how STRL captures simple space-time constraints [R1]. It helps to visualize

the nCk building block as a function assigning scalar values to arbitrary rectangles in re-

source space-time. In Fig. 2.1, each of the (potentially non-contiguous) rectangles can be

expressed with an nCk primitive (see §3.3.3).

2. LnCk(equivalence set, k, start, dur, v): out of the specified equivalence set, choose up

to k machines starting at start time start for duration dur to get value v. A choice of

k′ < k returns value v
k
· k′. This “linear nCk” primitive is useful for further coalescing

spatial placement options in terms of resource quantity drawn from one specified equiva-

lence set, as long as there’s a well-defined function mapping partial sub-k allocations to

R. It is useful to keep in mind that any LnCk primitive can be unrolled into a composite

MAX expression (§3.3.2) over k nCk primitives. Therefore, strictly speaking, LnCk is a

convenience primitive, reducing expression complexity by O(k) in cases where placement

options are flexible in the number of resources desired.

3.3.2 Language Operators

While the primitives allow association of numerical utility with the quantity of resources cho-

sen from a given equivalence set, the full expressiveness of STRL’s specification mechanism
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comes from the way they are composed. In fact, STRL language primitive are sufficient to ex-

press simple constraints, but not combinatorial constraints. Furthermore, specification of fallback

placement options cannot be done with the “n choose k” primitive alone. Composition of these

primitives enables operating on two or more subsets and, therefore, enables combinatorial and

soft constraints.

To compose these primitives, we introduce operators with the following intuitive semantics:

Min, Max, Sum, Scale, and Barrier. Each of these operators take numerical utility values as in-

put, and outputs a single utility value. The first three can have an arbitrary number of operands.

On input, they take a set of children that evaluate to a scalar utility value and perform the corre-

sponding min, max, or sum operation over them. Scale and Barrier are unary operators. Scale

multiplies the utility of the child by a specified scalar factor. Barrier() evaluates to zero until

the utility of the child reaches a certain barrier, at which point it returns the specified utility on

output.

A more formal specification follows. A composite STRL expression can be:

1. a MAX expression of the form max(e1, ..., en). It is satisfied if at least one of its subex-

pressions returns a positive value. MAX carries the semantics of OR, as it chooses one of

its subexpressions (of maximum value). MAX is used commonly to specify choices. In

Fig. 2.1, the GPU job’s choice between an exclusively GPU node allocation and any other

2-node allocation is captured as max(e1, e2) where:

e1 = nCk({M1,M2}, k = 2, start = 0, dur = 2, V )

e2 = nCk({M1,M2,M3,M4}, k = 2, start = 0, dur = 3, v)

and V > v. This example will be expanded in §3.3.3.

General space-time elasticity of jobs can be expressed using MAX to select among possible

2D space-time shapes specified with nCk. Indeed, iterating over possible start times in

the pictured range(start ∈ [0, 4]) adds more placement options when we add the time

dimension.
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2. a MIN expression of the form min(e1, ..., en) is satisfied if all subexpressions are satisfied.

MIN is particularly useful for specifying anti-affinity. In Fig. 2.1, the Availability job’s pri-

mary preference (simultaneously running its 2 tasks on separate racks) is captured with the

MIN expression as follows: min(nCk(rack1, k = 1, s = 0, dur = 3, v), nCk(rack2, k =

1, s = 0, dur = 3, v)). Here, each of the two subexpressions is satisfied iff one node is

chosen from one of the nodes on the specified rack. The entire MIN expression is satisfied

iff both nCk subexpressions are satisfied. This results in the allocation of exactly one task

per rack. This is an example of how STRL captures combinatorial placement constraints.

3. a BARRIER expression of the form barrier(e, v) is satisfied if the expression e is valued

v or more. It returns v when satisfied. This is used for advanced combinatorial constraint

specification, such as allocation of “up to but no more than K’ ” borgmaster [77] servers

in a given failure domain, with a total number of borgmaster servers totaling K. We’re not

aware of any other scheduling language that is capable of expressing such complexity.

4. a SCALE expression of the form scale(e, s) is satisfied if subexpression e is satisfied. It

is a unary convenience operator that serves to amplify the value of its child subexpression

by scalar s. Combined with BARRIER, SCALE is used for advanced combinatorial con-

straints [R3], such as high availability service placement with specified tolerance threshold

for correlated failure count [68].

5. a SUM expression of the form sum(e1, e2..., en) returns the sum of the values of its subex-

pressions. It is satisfied if at least one of the subexpressions is satisfied. The sum operator

is used to aggregate STRL expressions across all pending jobs into a single STRL expres-

sion.
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3.3.3 Space-Time Request Language Examples

Simple constraints

Suppose a GPU job arrives to run on a 4-node cluster in Fig. 2.1. We have 4 nodes, with M1,M2

with a GPU and M3,M4—without. A GPU job takes 2 time units to complete on GPU nodes and

3 time units otherwise. The framework AM supplies a value function vG() that maps completion

time to value. A default internal value function can be used, if not specified (as done in our

experiments). For each start time s in [S,Deadline]—the interval extracted from the Rayon

RDL expression, we have the following choices:

nCk({M1,M2}, k = 2, s, dur = 2, vG(s+ 2))

nCk({M1,M2,M3,M4}, k = 2, s, dur = 3, vG(s+ 3))

The first choice represents getting 2 GPU-enabled nodes, and completing in 2 time units with

a start time s. The second choice captures all 2-combinations of nodes and represents running

anywhere with a slower runtime of 3 time units. The STRL Generator combines these choices

with a max operator, ensuring that the higher-value branch is chosen during optimization. A

choice of {M1,M2}, for instance, will equate to the selection of the left branch, as visually

represented in Fig. 3.4(a), if vG(s + 2) > vG(s + 3). TetriSched subsequently combines such

expressions for all pending jobs with a top-level sum operator to form the global optimization

expression on each scheduling cycle.

Combinatorial Constraints

Anti-affinity jobs that prefer their tasks to be distributed thinly across failure domains exemplify

soft combinatorial constraints. A STRL expression for a more generalized version of the Avail-

ability job in Fig. 2.1 is shown in Fig. 3.4(b). The STRL expression for this type of job consists

of a max expression with two branches corresponding to having up to k = 1 or k = 2 servers

per rack. This limit is job-specific and is expected to depend on the maximum number of ser-

vice instances the job can tolerate losing at any given point in time. To quantify the value of
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max

nCk({M1,M2},k=2,s,dur=2, vG(s+2))

nCk({M1,M2,M3,M4},k=2,s,dur=3, vG(s+3))
(a) GPU

max

sum

scale1

barrier(u=k’) barrier(u=k’)

LnCk(R1,k=1,s,dur,vA(s+d))

LnCk(R2,k=1,s,dur,vA(s+d))

sum

LnCk(R1,k=2,s,dur,vA(s+d))

LnCk(R2,k=2,s,d,vA(s+d))

scale2

(b) Availability

Figure 3.4: STRL expression examples for jobs shown in Fig. 2.1 demonstrating simple and
combinatorial soft constraints.

availability, users specify value degradation as a function of availability. This function is used to

determine the scaling factors for each of the two main branches. Within each branch, we have a

sum operator that sums up the number of servers aggregated across all racks (used as an example

of a failure domain here). The barrier operator ensures that the total number of servers aggre-

gated across all racks is at least the requested k′. The LnCk (linear “n Choose k”) leaf nodes

correspond to each rack and limit how many servers can come from any given rack to k. The

translation from k′ to job’s budget is performed in the scale operator along with value attenuation

due to respective availability degradation.

43



3.4 Deriving STRL from YARN Jobs

3.4.1 Deriving STRL from YARN jobs

This subsection explains and demonstrates how STRL is derived from YARN-managed jobs.

YARN applications are written by supplying an ApplicationMaster (AM). It understands enough

about the application structure to request resource containers at the right time, in the right quan-

tity, in the right sequence, as well as with the right capabilities.1 It is, therefore, fitting for

such frameworks to supply the finer-granularity near-term information about submitted jobs to

supplement coarser-granularity longer-term reservation information and trigger the correspond-

ing STRL plugin to generate STRL expressions for managed job types. The AM then specifies

whether it’s an SLO or a best-effort job.

For example, suppose the GPU job in §3.3.3 (Fig. 3.4(a)) arrives with a deadline=3 time units

(Fig. 2.1). Then, its AM-specified RDL [10] expression would be:

Window(s=0, f=3, Atom(b=〈16GB,8c〉, k=2, gang=2, dur=3)),

where the inner Atom() specifies a reservation request for a gang of 2 b-sized containers for a

duration of 3 time units, and the Window() operator bounds the time range for the Atom() to

[0; 3].2 The resulting STRL expression then becomes

max(nCk({M1, M2, M3, M4},k=2, s=0, dur=3, v=1),

max(nCk({M1, M2}, k=2, s=0, dur=2, v=1),

nCk({M1, M2}, k=2, s=1, dur=2, v=1)))
The inner max composes all feasible start-time options for the job’s preferred placement on

GPU-nodes. The outer max composes all allocation options on preferred resources with a less

preferred allocation anywhere ({M1, M2, M3, M4}). AM-specified performance slowdown fac-

tor is used to determine dur, while the range of start times comes from RDL-specified [s; f ].

As discussed in §2.4.1, estimates for different placement options can be learned by production

1MapReduce framework AM is a prime example of this.
2Please refer to [10] for complete RDL specification.
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cluster systems (e.g., Perforator [18]) over time for recurring production jobs. For some jobs,

analytical models show accurate results across varying input sizes [76], and a number of systems

have implemented a combination of performance modeling and profiling [20, 60]. Runtimes for

unknown applications can be inferred from slowdown factors induced by heterogeneity [15, 16]

coupled with initial estimates learned from clustering similar jobs (work in progress). In our ex-

perimental TetriSched/YARN stack, information about estimated runtimes and deadlines comes

from reservation requests submitted by the ApplicationMaster to Rayon [10].

3.5 STRL Preemption Support

For TetriSched, we also need a language primitive that enables us to capture the cost associ-

ated with preempting a currently used space-time allocation. We introduce a new preemption

primitive, KillnCk, that captures two-dimensional space-time preemption options. Its generality

enables jobs to declaratively specify equivalence sets of resources and the quantity that can be

preempted from that set. For example, suppose that a job currently holds GPU and non-GPU

resources, where GPU nodes are used for tightly coupled non-elastic compute-intensive activity.

The job can specify that preempting anything from the GPU equivalence set is very expensive,

while preempting non-GPU resources is a lot cheaper. Thus, KillnCk can encode O(
(
n
k

)
) possi-

ble k-sized preemption options from an equivalence set of n nodes with as few as 1-2 KillnCk

primitives.

3.5.1 Preemption cost functions

We must inform the scheduler about the cost associated with preempting a given job. We model

the cost of preemption as a function of time c(t) (Fig. 3.5). For a given job, c(t) is defined only

in the range specified by the KillnCk interval [startp; finishp]. The job can only be preempted

within this interval of time. SLO jobs are modeled to have the highest cost of preemption,
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Figure 3.5: Internal TetriSched preemption cost functions for SLO and BE jobs.

while best-effort jobs—the lowest. The initial value of c(t): is empirically chosen to impose

strict initial priority among jobs. For example, the initial value for SLO jobs admitted by the

admission control system is set to 1000× the initial value of best effort jobs. We add a small ε to

ensure that jobs already running cannot be preempted by equally valued pending jobs.

3.5.2 Preemption STRL Primitives

Formally, TetriSched preemption STRL primitives include:

1. A “kill n Choose k” expression of the form:

KillnCk(equivalence set, k, startp, finishp, c). It is the main in situ preemption prim-
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itive used to represent a choice of any k resources out of the specified equivalence set for

preemption, where startp marks the earliest possible time when preemption is allowed,

and finishp marks the last opportunity to preempt this job – typically its expected com-

pletion time.

2. A linear “kill n Choose k” expression of the form:

LinearKnCk(equivalence set, k, startp, finishp, c). It is a variant useful for encoding

willingness to preempt up to but not exceeding k nodes from an n-sized equivalence set of

nodes. The cost of preemption c is sized linearly with the number of nodes chosen by the

solver to be preempted. This preemption STRL primitive is ideal for elastic jobs that can

make progress with a smaller footprint, such as MapReduce jobs.
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Chapter 4

Mixed Integer Linear Programming

Formulation

A canonical MILP instance consists of three main components: decision variables—the un-

knowns the solver attempts to provide an answer for, constraints—linear inequalities based on

decision variables that must be satisfied by the solver, and an objective function—a linear func-

tion on decision variables optimized by the solver. The tree structure of STRL algebraic expres-

sions lends itself nicely to a recursive MILP generation algorithm. Starting from the root of the

expression, we gradually (a) create new decision variables as needed for each node of the tree,

(b) construct various types of constraints (e.g., to enforce the semantics of STRL operators), and

(c) recursively construct an objective function doing a depth first traversal of the STRL tree.

We associate a binary decision variable I with each branch of the tree to allow the solver to

cut or include entire subtrees. Setting an indicator variable to 1 for one of the MAX operator’s

children, for instance, effectively chooses a placement option encoded by that child. To capture

the quantity of resource allocation from individual equivalence sets, we use partition decision

variables. A given partition variable P t
p encodes the amount of resource a solver will allocate

from partition p at time t for duration dur of the nCk primitive processed. Constraints then build

on indicator variables I and partition variables P t
p to construct two main types of constraints. De-
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mand constraints ensure that the sum of P t
p over all partitions p that make up a given equivalence

set equals to the requested k nodes. Supply constraints ensure that the sum of all partition vari-

ables P t
p do not exceed capacity cap(p, t) of partition p at time t. Lastly, the objective function

for nCk is the value associated with the placement option it encodes, multiplied by the indicator

variable I that governs the flow of value up from this primitive. It helps to visualize the objective

function as the flow of value from its primitive leafs up the tree and aggregated at the root. On

its way up, the flow is modified by various operators that channel the maximum flow, minimum

flow, or aggregate flow from its children.

4.1 Automatic MILP Generation

TetriSched automatically compiles pending job requests in the STRL language into a Mixed Inte-

ger Linear Programming (MILP) problem, which it solves using a commercial solver. The power

from using the MILP formalism is twofold. First, by using the standard MILP problem formu-

lation, we reap the benefit from years of optimization research that is built into commercial (and

open-source) MILP solvers. Second, using MILP allows us to simultaneously schedule multiple

queued jobs. Traditional schedulers consider jobs one at a time, typically in a greedy fashion that

optimizes the job’s placement. However, without any information about what resources other

queued jobs desire, greedy schedulers can make suboptimal scheduling decisions.

TetriSched makes batch scheduling decisions at periodic intervals. At each scheduling cycle,

it aggregates pending jobs using a STRL SUM expression, and solves the global scheduling

problem. In our experiments, we aggregate all pending jobs, but TetriSched has the flexibility

of aggregating a subset of the pending jobs to reduce the scheduling complexity. Thus, it can

support a spectrum of scheduling batches of jobs from greedy one at a time scheduling to global

scheduling.

Once it has a global STRL expression, TetriSched automatically compiles it into a MILP

problem with a single recursive function (Algorithm 2). Recall from §3.3 that STRL expressions
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are expression trees composed of STRL operators and leaf primitives. There are three key ideas

underlying TetriSched’s MILP generation algorithm.

First, we adopt the notion of binary indicator variables I for each STRL subexpression to

indicate whether the solver assigns resources to a particular subexpression. Thus, our recursive

generation function gen(e, I) takes in an expression e and indicator variable I that indicates

whether resources should be assigned to e. This makes it easy, for example, to generate the

MILP for the MAX expression, which carries the semantics of “or”. For a MAX expression, we

add a constraint, where the sum of the indicator variables for its subexpressions is less than 1,1

since we expect resources to be assigned to at most one subexpression.

Second, we find that the recursion is straightforward when the generation function returns

the objective of the expression. At the top level, the return from the global STRL expression

becomes the MILP objective function to maximize. Within the nested expressions, returning the

objective also helps for certain operators, such as SUM and MIN. When compiling the SUM

expression, the objective returned is the sum of the objectives returned from its subexpressions.

When recursively compiling the MIN expression, objectives returned by its subexpressions help

create constraints that implement MIN’s “AND” semantics. We create a variable V , representing

the minimum value, and for each subexpression we add a constraint that the objective returned

is greater than V . As the overall objective is maximized, this forces all subexpressions of MIN

to be at least V -valued.

Third, the notion of equivalence sets (discussed in §3.1.1) greatly simplifies the complexity

of the MILP generation as well as the MILP problem itself. We group resources into equiva-

lence sets and only track the quantity of resources consumed from each. Thus, we use integer

“partition” variables to represent the number of resources desired in an equivalence set. We gen-

erate these partition variables at the leaf nCk and LnCk expressions, and use them in two types

of constraints: demand constraints and supply constraints. Demand constraints ensure the nCk

1Since the MAX expression itself may not be assigned any resources, depending on its indicator variable I , the
constraint actually uses I instead of 1.
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and LnCk leaf expressions get their requested number of resources, k. Supply constraints ensure

that TetriSched stays within capacity of each equivalence set at all times. We discretize time and

track integral resource capacity in each equivalence set for each discretized time slice.

4.2 MILP Generation Example

Suppose 3 jobs arrive to run on a cluster with 3 machines {M1, M2, M3} (Fig. 4.1):

1. a short, urgent job requiring 2 machines for 10s with a deadline of 10s:

nCk({M1, M2, M3}, k=2, start=0, dur=10, v=1)

2. a long, small job requiring 1 machine for 20s with a deadline of 40s:

max(nCk({M1, M2, M3}, k=1, start=0, dur=20, v=1),

nCk({M1, M2, M3}, k=1, start=10, dur=20, v=1),

nCk({M1, M2, M3}, k=1, start=20, dur=20, v=1))

3. a short, large job requiring 3 machines for 10s with a deadline of 20s:

max(nCk({M1, M2, M3}, k=3, start=0, dur=10, v=1),

nCk({M1, M2, M3}, k=3, start=10, dur=10, v=1))

In this example, we discretize time in 10s units for simplicity and consider time slices 0,

10, 20, and 30. Note that, the only way to meet all deadlines is to perform global scheduling

with plan-ahead. Without global scheduling, jobs 1 and 2 may run immediately, preventing job 3

3

1

2

0 10 20 30 40

M1

M2

M3

Figure 4.1: Requested job shapes, deadlines, and final order.
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Algorithm 2: MILP generation algorithm
1 gen: (STRL expression tree, indicator var)→ objective function
2 func gen(expr, I):
3 switch expr :
4 case nCk(partitions, k, v, start, dur)
5 foreach x in partitions :
6 Px := integer variable // Create partition variable per partition in equiv set
7 for t := start to start+ dur :
8 Add Px to used(x, t) // Add partition variable to used to track supply constraints
9 Add constraint

∑
x Px = k ∗ I // (Demand) Ensure this node gets k nodes if chosen

10 return v ∗ I // Return value if chosen, i.e., I=1
11 case LnCk(partitions, k, v, start, dur)
12 foreach x in partitions :
13 Px := integer variable // Create a partition variable per partition in equiv set
14 for t := start to start+ dur :
15 Add Px to used(x, t) // Add partition variable to used to track supply constraints
16 Add constraint

∑
x Px ≤ k ∗ I // (Demand) Ensure this node gets up to k nodes

17 return v ∗
∑

x
Px

k
// Return scaled value based on the number of allocated nodes

18 case sum(e1, ..., en)
19 for i := 1 to n :
20 Ii := binary variable // Create indicator variable for each branch
21 fi = gen(ei, Ii)
22 Add constraint

∑
i Ii ≤ n ∗ I // Ensure that no branches are chosen if I = 0

23 return
∑

i fi
24 case max(e1, ..., en)
25 for i := 1 to n :
26 Ii := binary variable // Create indicator variable for each branch
27 fi = gen(ei, Ii)
28 Add constraint

∑
i Ii ≤ I // Ensure that at most one branch is chosen

29 return
∑

i fi
30 case min(e1, ..., en)
31 V := continuous variable // Create variable representing min value
32 for i := 1 to n :
33 fi = gen(ei, I) // Choose branches based on the same indicator variable I
34 Add constraint V ≤ fi // Ensure V is less than the min value
35 return V // Given the constraints, maximizing V makes V equal to the min value
36 case scale(e, s)
37 return s * gen(e, I) // Scale the objective function by s
38 case barrier(e, v)
39 f = gen(e, I)
40 Add constraint v ∗ I ≤ f // Ensure the child expression meets barrier constraint
41 return v ∗ I // Barrier caps the value at v
42 I := binary variable // Dummy indicator variable
43 f = gen(expr, I)
44 foreach x in partitions :
45 for t := now to now + horizon :

// (Supply) Add supply constraints to ensure usage ≤ avail resources
46 Add constraint

∑
P∈used(x,t) P ≤ avail(x, t)

47 solve(f , constraints)
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from meeting its deadline. Without plan-ahead, we may either schedule jobs 1 and 2 immediately,

making it impossible to meet job 3’s deadline, or we may schedule job 3 immediately, making it

impossible to meet job 1’s deadline.

TetriSched performs global scheduling by aggregating the 3 jobs with a STRL SUM expres-

sion. It then applies our MILP generation function to the SUM expression, which generates 3

indicator variables, I1, I2, and I3, that represent whether it is able to schedule each of the 3 jobs.

It then recursively generates the variables and constraints for all jobs in the batch. Note that

variables are localized to the subexpression where they are created, and constraints are added to

a global constraints list. Thus, the algorithm names variables in the context of a subexpres-

sion, but, for clarity, in this example, we name variables more descriptively with globally unique

names.

For the first job, represented by the above nCk expression, we create a partition variable

P1,s0, representing the amount of resources consumed by job 1 at time 0. Since there is only

one partition in this example, {M1,M2,M3}, we omit the partition subscript. This partition

variable is used in a demand constraint P1,s0 = 2I1, indicating that job 1 needs 2 machines if

it is scheduled (i.e., I1 = 1). For the second job, we have a more complicated scenario with 3

options to choose from. We can start executing the job at time 0, 10, or 20. This is represented

by the max expression, which is translated into 3 indicator variables corresponding to each of

these options I2,s0, I2,s10, and I2,s20.

Since we only want one of these options, the generation function adds the constraint I2,s0 +

I2,s10 + I2,s20 ≤ I2. We use I2 rather than 1 since the second job may not be selected to be run

(i.e., I2 = 0). For each of these 3 options, we recursively create partition variables P2,s0, P2,s10,

and P2,s20 and the corresponding constraints P2,s0 = 1I2,s0, P2,s10 = 1I2,s10, and P2,s20 = 1I2,s20,

representing the 1 machine that job 2 consumes in each option. For the third job, we have

similar indicator variables I3,s0 and I3,s10, and partition variables P3,s0 and P3,s10, and constraints

P3,s0 = 3I3,s0, P3,s10 = 3I3,s10, and I3,s0 + I3,s10 ≤ I3. After the recursion, we add supply
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constraints, representing the cluster capacity of 3 machines over time (see genAndSolve in

Algorithm 2). For time 0, we add the constraint P1,s0+P2,s0+P3,s0 ≤ 3. For time 10, we add the

constraint P2,s0 + P2,s10 + P3,s10 ≤ 3. Note that this constraint contains the term P2,s0 because

job 2 has a duration of 20s, and if it starts at time 0, it needs to continue running at time 10. For

time 20, we add the constraint P2,s10 +P2,s20 ≤ 3. For time 30, we add the constraint P2,s20 ≤ 3.

Solving this MILP produces the optimal solution (Fig. 4.1) of running job 1 immediately, running

job 3 at time 10, and running job 2 at time 20.

4.3 Preemption Support

In Algorithm 3 we describe the MILP generation algorithm for KillnCk— the main preemption

primitive that declaratively captures the cost associated with preempting a currently running

job. Intuitively, the indicator variable I controls the contribution of a given KillnCk primitive

to supply constraints and the overall objective function. As expected, the objective function

term contributed is negative and reflects preemption cost. The partition variable Px captures the

amount of resource that will be preempted from the specified equivalence set. The equivalence

set itself is constructed from the set of nodes currently occupied by the node. Thus, the supply

constraint effectively contributes a negative amount of resource capacity to the corresponding

vertical slice of resource space-time, if chosen. This has the desired effect of returning resources

to the available pool, if the indicator variable I was chosen by the solver to equal to 1. Lastly,

the demand constraint enforces the all-or-nothing semantics of preemption. We make sure that

the number of tasks preempted is exactly the number of tasks in this job.

Finally, the Mixed Integer Linear Program portion contributed by KillnCk is recursively com-

bined with MILP contributions from other parts of the aggregate STRL expression. It results in

a single canonical MILP instance that includes contributions from all preemptible jobs as well as

all pending jobs. The result of the MILP solver is a simultaneous determination of how much to

preempt from each of the running jobs and which pending jobs to schedule instead—all done in
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Algorithm 3: MILP generation: preemption primitive
1 gen: (expr , indicator var)→ objective function
2 func gen(expr, I):
3 switch expr :
4 case KillnCk(partitions, k, startp, finishp, c)
5 foreach x in partitions :
6 Px := integer variable // Create partition variable
7 for t := startp to finishp :

// (Supply) Track usage
8 Add −1 ∗ Px to used(x, t)

// (Demand) Ensure this node
// gets k servers if chosen

9 Add constraint
∑

x Px = k ∗ I
10 return −1 ∗ c ∗ I // Return value if chosen

// Main function
11 I := binary variable // Create indicator variable
12 f = gen(expr, I)
13 foreach x in partitions :
14 for t := now to now + horizon :

// (Supply) Ensure usage ≤ avail resources
15 Add constraint

∑
P∈used(x,t) P ≤ avail(x, t)

16 solve(f , constraints)

a single scheduler cycle.

4.4 Preemption MILP Generation Example

This section illustrates TetriSched’s simultaneous cost/benefit consideration of preemption and

placement with a simple example. Consider a small heterogeneous cluster and these 3 jobs:

job 1, a best effort job, arrives and starts running at time 0. Job 2, an MPI job, can run in

20s if scheduled on the same rack or in 30s otherwise. Job 3, a GPU job, can run in 20s if

scheduled on GPU nodes or in 30s otherwise. Jobs 2 and 3 are SLO jobs arriving at t=10 with

a deadline at t=35. There are three options, all shown in Fig. 4.2. First, SLO jobs 2,3 may

wait for their respective preferred resources to become available (Fig. 4.2(a)). Second, they may

be scheduled on available resources as soon as possible (Fig. 4.2(b)), taking a performance hit
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Figure 4.2: Three jobs on a small heterogeneous cluster: 2 GPU machines (m1 and m2) on rack 1 and
2 non-GPU machines on rack 2. Job 1 (pink) arrives at t=0 and has no deadline (best effort). Job 2 (green)
and Job 3 (blue) arrive at t=10 and have a deadline of t=35, indicated by the vertical red line; they also
run faster if using preferred resources (both tasks on same rack for job 2, both tasks on GPU machines
for job 3). TetriSched is able to meet all deadlines only with preemption. If jobs 2,3 wait for preferred
resources or run on suboptimal allocation, they fail to meet their deadline. Deadline can be met only if job
1 is preempted.

and missing their deadline. Third, the scheduler may preempt the half-done best-effort job and

simultaneously place SLO jobs 2,3 (Fig. 4.2(c)). This third option is the only way their deadlines

can be met.

It’s worth noting that the probability of the best-effort job to be scheduled “inconveniently”

is surprisingly high. The probability of the BE job breaking rack locality is

P (BE job breaks rack locality) = 1− 2(
4
2

) =
2

3

At the time when jobs 2,3 arrive at t=10, the resulting STRL expressions will be as follows.

• Running job1: e1 =

KillnCk({m2, m3}, k=2,startp=10,finishp=10,c=11)

• Pending MPI job2: e2 =
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max(nCk({m1, m2}, k=2,start=10,dur=20,v=100),

nCk({m3, m4}, k=2,start=10,dur=20,v=100),

nCk({m1,m2,m3,m4}, k=2,start=20,dur=20,v=1))

• Pending GPU job3: e3 =

max(nCk({m1, m2}, k=2,start=10,dur=20,v=100),

nCk({m1,m2,m3,m4}, k=2,start=20,dur=20,v=1))

Thus, the resulting STRL expression to be maximized will be: sum(e1, e2, e3). The MILP

Compiler will then call the recursive MILP translation function gen(sum(e1, e2, e3)) (Alg. 3,

line 2). As the algorithm recurses down the expression tree to its leaves, it will process the

killnCk primitive (line 4). Finally, the solver will determine that the highest possible value for

this expression is 100 + 100 − 11, where the negative term is contributed by the KillNck return

call (line 10 in Alg. 3) and reflects the cost of preempting the running best-effort job. Upon

completion of jobs 2,3 at t=30, the best-effort job is rescheduled again.
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Chapter 5

Architecture and Implementation

To achieve our design goals and instantiate our theoretical building blocks in a real system, we’ve

built the TetriSched core and integrated it with a popular open-source resource management

framework, called YARN. YARN is widely deployed, including at Microsoft, and commercially

supported by Cloudera and Hortonworks. Hadoop YARN has a thriving open-source community,

with very active development in trunk.

This chapter describes the architecture, key components, and key enabling features of TetriSched.

Our system artifact works in tandem with YARN’s default reservation system [10] responsible for

admission control. TetriSched continuously reevaluates its own space-time schedule separately

from the reservation plan to adapt to system and job specification imperfections. TetriSched

leverages information about expected runtimes and deadline SLOs supplied to Rayon [10] via

reservation requests, as well as its own heterogeneity-awareness and plan-ahead, to maximize

SLO attainment, while efficiently using available cluster resources. Instead of the common

greedy job placement in cluster schedulers today, TetriSched makes a global placement decision

for all pending jobs simultaneously, translating their resource requests to an internal algebraic

expression language that captures heterogeneity considerations and available time information

for each job.
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Figure 5.1: TetriSched system architecture

5.1 End-to-end system architecture

Fig. 5.1 shows the major components of our scheduling system stack and how they interact.

Framework ApplicationMasters initially submit reservation requests for SLO jobs. Best-effort

jobs can be submitted directly to YARN’s ResourceManager without a reservation. We imple-

ment a proxy scheduler that plugs into YARN’s ResourceManager in Fig. 5.1 and forwards job

resource requests asynchronously to TetriSched. Its first entry-point is the STRL Generator that

uses framework-specific plugins to produce STRL expressions used internally to encode space-

time resource requests. To construct STRL expressions, The STRL Generator combines the

framework-specified reservation information, such as runtime estimates, deadlines, and the pri-

ority signal (e.g., accepted vs. rejected reservations), with ApplicationMaster-specified job type

to construct STRL expressions.

Resource requests are subsequently managed by TetriSched, which fires periodically. At

each TetriSched cycle, all outstanding resource requests are aggregated into a single STRL ex-

pression and converted into an MILP formulation by the STRL Compiler. Solving it produces

the job schedule that maps tasks for satisfied jobs to cluster nodes. This allocation decision is

asynchronously communicated back to the ResourceManager (Sec. 5.3). YARN RM then takes

over the job’s lifecycle management. Specifically, as YARN NodeManagers heartbeat in, they

are checked against the allocation map our proxy scheduler maintains and are assigned to Appli-

cationMasters to which they were allocated by TetriSched. Thus, we provide a clear separation
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of resource allocation policy from cluster and job state management, leaving the latter to YARN.

We discuss the integration of TetriSched in the YARN framework in Sec. 5.3.

5.2 Scheduler Core

The scheduler core is responsible for: STRL aggregation, STRL to MILP compilation, MILP

optimization, result extraction, and various optimizations to expedite the core scheduling cycle.

TetriSched core is a standalone scheduling server for algebraic scheduling that allocates re-

sources in accordance with STRL expressions submitted as resource requests. The scheduler

core manages its view of cluster resources and their attributes. This enables YARN’s Resource-

Manager to compile appropriate equivalence sets for each resource request based on the resource

attributes of interest to a particular ApplicationMaster asking for an allocation. Thus, scheduler

core clients specify their resource requests in the form of algebraic STRL expressions—the only

interface the scheduler core understands by design. Submission of these STRL expressions can

occur at the following interesting points in time:

1. when the job enters the pending state, requesting resources

2. when the job enters a different stage of execution, and a set of preferred resources changes

3. when the resource consumer to relinquish resources to save on the cost of their allocation

4. when additional resources are needed

The scheduler core fires the allocation algorithm either at regular intervals or in the event-

driven fashion. In either case, it will only execute when there is at least a single pending job

OR an updated STRL expression to be scheduled. Having thus accumulated a non-empty set

of utility functions, the scheduler can either globally or greedily perform the assignment of re-

sources in a way that (globally or greedily) attempts to maximize the overall value of cluster

resources. The return result of such an assignment is the resource allocation matrix, such that its

D [i, j] component represents the number of schedulable units allocated from equivalence set j
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to scheduler core client i.

The scheduler’s primary function is to produce space-time schedules for currently queued

jobs. On each scheduling cycle, TetriSched aggregates STRL expressions with the SUM oper-

ator (§3.3.2) and assigns cluster resources so as to maximize the aggregated STRL expression

value extracted from shared cluster resources (see §3.2 for intuition and detail). Value functions

are a general mechanism that can be used in a variety of ways [68, 70], such as to apply job

priorities, enforce budgets, and/or achieve fairness. The configurations in this paper use them to

encode deadline sensitivity and priority differences (Sec. 6.2.2, Fig. 6.1), producing the desired

effects of (a) prioritizing SLO jobs, while (b) reducing completion times for best-effort jobs. The

aggregated STRL SUM expression is automatically converted into an MILP problem (§4) by the

STRL Compiler and solved online by an off-the-shelf IBM CPLEX solver at each cycle. Solver

complexity is discussed and evaluated in Sec. 7.4.3.

5.2.1 Plan-ahead

One of TetriSched’s novel features enabled by its support for space-time soft constraints is its

ability to consider and choose deferred placements when it’s beneficial to do so. We refer to this

ability as “plan-ahead”. Plan-ahead allows TetriSched a much wider range of scheduling options.

This is particularly important for the scheduler to know whether it should wait for preferred re-

sources (in contrast to never waiting [66] or always waiting [81]). Planning to defer placement

too far into the future, however, is computationally expensive and may provide diminishing re-

turns. Indeed, an increased plan-ahead interval leads to more job start time choices (see Fig. 2.1)

and, correspondingly, larger MILP problem sizes. On each cycle, only the jobs scheduled to

start at the current tick are extracted from the schedule and launched. The remaining jobs are

re-considered at the next cycle. Thus, placements deferred far into the future are less likely to

hold as decisions are reevaluated on each scheduling cycle.

To support plan-ahead, no changes to the scheduling algorithm were needed. Instead, we

62



leverage the expressivity of STRL expressions and construct them for all possible job start-times

in the plan-ahead window. Since we quantize time, the resulting size of the algebraic expression

is linear in the size of the plan-ahead window. A job’s per-quantum replicas are aggregated into

a single expression by the STRL Generator. The STRL Generator performs many possible opti-

mizations, such as culling the expression growth when the job’s estimated runtime is expected to

exceed its deadline.

5.2.2 Global scheduling

The declarative algebraic nature of our STRL language combined with automatically compiling

the resulting aggregate expression to a single MILP problem instance enables a unique feature of

TetriSched to simultaneously consider many job’s constraints at the same time. We refer to this

feature as global scheduling. As we’ll see in the evaluation chapter, the ability to side-step the

inherent ordering of ANY greedy scheduling solution and, instead, reduce ALL pending requests

to a single mathematical optimization problem empirically produces significant advantages, par-

ticularly for heterogeneous workloads.

Here, I develop some mathematical intuition for why scheduling with constraints is hard.

Scheduling a job can itself be viewed as an algebraic operation that mutates cluster space-time.

It can be proven under simplifying assumptions that scheduling unconstrained jobs with known

runtime estimates and resource quantity demands is (a) commutative and (b) associative. Indeed,

considering unconstrained jobs A, B, and C in any order for placement yields the same result

in terms of cluster space-time allocation. Any order will yield the same total footprint shape

(how many resources for how long). Scheduling constrained jobs, however, loses this desirable

property. With 4 machines (two with a GPU) and two jobs A and B asking for 2 machines each

(B preferring GPU), the order of scheduling them matters. Indeed, scheduling the unconstrained

job A has a high probability (= 5
6
) of occupying at least 1 GPU node, causing job B to wait.

Scheduling B first followed by A results in a better schedule, higher instantaneous utilization,
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and both jobs completing simultaneously — a different space-time footprint shape. Clearly,

even the simplest constraints in just a subset of jobs [56, 57] cause the scheduling operator to

lose its commutativity. Placement constraints thus necessitate careful consideration of all known

preferences simultaneously in order to achieve the best space-time shape possible. This is a

new challenge for datacenters that requires new solutions that transcend shuffling job orders or

quantity allocation within the same envelope of aggregate space-time load on the cluster.

It is worth noting that, contrary to popular belief, even if all job order permutations are

considered, it is still possible, for ANY order, to make arbitrarily bad decisions for job Ji that

negatively affect subsequent jobs Ji+1, Ji+2, ..., Jn. Only simultaneous consideration of all pend-

ing jobs ensures their optimal constraint resolution. This simultaneity proves to be particularly

helpful when we consider preemption.

5.2.3 In Situ Preemption

TetriSched leverages its combination of declarative STRL resource requests and MILP formu-

lation to support what we call “in situ preemption”. TetriSched’s in situ preemption leverages

the same STRL building blocks and naturally plugs in to the cyclical aggregation of STRL ex-

pressions and global consideration of pending jobs for placement. Preemption is enabled on a

per-job basis. When it’s enabled, each running job is represented as a STRL expression using one

of the two preemption primitives defined in §3.5.2. This STRL primitive, if chosen, contributes

negative value to the aggregate STRL expression (thus making it costly to preempt), while simul-

taneously contributing negative demand on resource capacity for the occupied set of resources

through the specified preemption interval (§4.3). As the overall STRL expression is optimized,

the qualitative outcome of mixing preemptible jobs together with pending jobs is simultaneous

consideration of running jobs for preemption and pending jobs for placement. As a result, the

solver will determine the best candidates to preempt, if necessary, in order to accommodate the

best candidates for placement.
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Furthermore, A simple extension to our MILP compilation algorithm for preemption makes

it possible to simultaneously re-consider a preempted job for re-placement in the same cycle as

it’s being preempted. This is desirable particularly in scenarios when there are deadline jobs that

have loose deadlines, can be rescheduled, and still finish in time, while accommodating a more

urgent SLO job. In the absence of this feature, the urgent job could be dropped (e..g, by the

reservation system) or, if admitted to the best-effort queue, it could miss its deadline due to lack

of resources for execution.

5.2.4 Greedy scheduling with preemption

TetriSched’s preemption mechanism enables simultaneous consideration of pending jobs for al-

location and running jobs for preemption. We leverage this simultaneity in our implementation

of TetriSched’s greedy mode. In greedy mode, TetriSched maintains two priority queues, one

for SLO jobs and one for best effort. On each scheduling cycle, TetriSched selects the next SLO

job in FCFS order and combines its STRL request with preemption STRL expressions for pre-

emptible running jobs. The resulting expression’s value is then maximized through the MILP

solver. This achieves the desired effect of prioritizing SLO jobs for placement with simultane-

ous consideration of all preemptible running jobs for preemption. Given that the BE jobs’ cost

functions are significantly less than the value of an SLO job expected to complete by the dead-

line, this typically results in BE job preemption in favor of pending SLO jobs during periods of

transient overloads or difficult to satisfy constraints (i.e., effective transient overloads).

Furthermore, a continuum of resource request aggregation is possible, starting from the more

typical single job at a time greedy scheduling on one end of the spectrum to the full global

scheduling mode (TetriSched’s default)) that considers all pending jobs at once. This feature

offers a tuning knob that unlocks the tradeoff between scheduling quality and scheduling latency,

useful in environments with short jobs, where scheduling latency is more critical.
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5.2.5 Handling Runtime Mis-Predictions

Under-Estimates

Under-estimates can cause significant SLO violations in time-aware schedulers that depend on

estimate accuracy. Once the scheduler detects that an under-estimate occurs, it has a choice to

kill it [10] or to optimistically let it complete [70]. The latter was shown to significantly improve

SLO attainment, but we have found that it must be kept in check because there can be large under-

estimates. On every cycle, TetriSched performs the cost/benefit analysis to determine whether an

under-estimated job should be allowed to continue. Given a near-perfect estimate, the best choice

is to increase a job’s expected runtime minimally and let it finish. For large under-estimates, how-

ever, it is ideal to discover and react quickly. We, therefore, implement an exponential backoff

policy that increments the expected runtime T̂ by 2t cycles, starting with t = 0 incremented on

each cycle. This achieves the desired effect of hysteresis in the system. TetriSched reacts to mi-

nor under-estimates with minor runtime estimate corrections. As it learns that the under-estimate

is more significant, it updates the runtime by progressively longer increments.

The effect of such exponentially longer increments is three-fold. First, it increases the win-

dow of opportunity for the scheduler to preempt this job, effectively growing finishp in Alg. 3.

Second, given monotonically decreasing value functions for SLO jobs that reach zero past dead-

line, larger runtime estimate increments will eventually surpass the deadline, either triggering a

kill event or increasing the probability of preemption by other jobs. Third, increased estimates

cost more space-time in the scheduler’s plan-ahead window. Running jobs always create an op-

portunity cost, which pending jobs may outweigh. Increased estimated space-time increases the

probability that there exists a set of smaller jobs that may occupy the same amount of space-time

and offer higher value for it. The combined effect is progressively increasing the likelihood that

an under-estimated job will be either killed or preempted, achieving the desired effect of prun-

ing vastly under-estimated jobs that may inappropriately consume valuable resources. In other

words, TetriSched evaluates the net benefit of preemption of the remaining estimated space-time
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area of the late job. The key insight is that this remaining estimated space-time has a direct bear-

ing on the scheduler’s decision to preempt. Indeed, if a job is nearing completion, the benefit of

preempting this job is far less significant, as the amount of space-time that frees is small relative

to jobs with a much bigger estimate of remaining time to completion.

Over-Estimates

In §5.2.5 above, we mention the possibility of SLO jobs’ termination when their T̂ is expected to

exceed the deadline. To avoid unnecessary termination of jobs due to over-estimates, including

over-estimates arising from adjusted under-estimates, TetriSched changes the job’s value func-

tion to have a linearly decaying slope past the deadline, instead of the sharp drop to zero. The

resulting effect is that over-estimated jobs may continue to run while their expected completion

time exceeds the deadline. As the actual runtime nears the deadline, the job’s preemption cost

decreases, increasing the probability of preemption in favor of higher valued jobs. This naturally

creates the desired effect of reducing resources spent on jobs that are increasingly expected to

miss their deadline. With higher probability of the latter, the job’s diminishing cost of preemption

increases the probability of preemption and resource reclamation for higher valued jobs.

5.2.6 MILP Solver

The internal MILP model can be translated to any MILP backend. We use IBM CPLEX in our

current system prototype. Given the complexity and size of MILP models generated from STRL

expressions (hundreds of thousands of decision variables on a 1000 node simulated cluster with

hundreds of jobs), the solver is configured to return “good enough” solutions within 10% of the

optimal after a certain parameterizable period of time (set to 4s in our real cluster experiments).

Furthermore, as the plan-ahead window shifts forward in time with each cycle, we cache solver

results to serve as a feasible initial solution for the next cycle’s solver invocation. As the plan-

ahead window shifts forward in time with each cycle, the space-time schedule from the previous
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step becomes a feasible initial solution to prime the MILP solver. We find this optimization to be

quite effective.

5.3 YARN Integration

For ease of experimentation and adoption, we integrate TetriSched with the widely popular,

active, open source YARN [71] framework. YARN uses containers to represent resource bundles.

Containers are used to encapsulate tasks of a job, which typically consists of multiple such tasks.

Examples include MapReduce map tasks, MPI tasks, Apache web server instances, etc. We add

a Proxy Scheduler that interfaces with the TetriSched daemon via a narrow Apache Thrift RPC

interface. The interface is responsible for

1. Adding jobs to the TetriSched’s pending queue with information about their type, deadline,

estimated runtime, and the resource request.

2. Communicating allocation decisions to YARN’s ResourceManager. YARN’s RM stores

TetriSched decisions in a lookup table and matches up heartbeating NodeManagers with

the jobs they were allocated to serve.

3. Signaling job completion to TetriSched. This information is reported by the NodeMan-

agers to the ResourceManager on a heartbeat. The RM then triggers an RPC call to the

Scheduler to update its internal cluster state.

TetriSched makes allocation decisions based on thus provided information and its own view of

cluster node availability it maintains.
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Chapter 6

Experimental Setup

6.1 Simulation

We performed extensive simulation studies to evaluate TetriSched’s schedules and those of com-

peting approaches to handling placement constraints.

6.1.1 Cluster Configuration

Simulation allows us to study scheduling at much larger scale than we otherwise could. The

results reported are all for a simulated cluster of N = 1000 servers spread across 25 racks: 10

racks each with 25 GPU-enabled servers, 5 racks with 40 servers, 5 racks with 60 servers, and

5 racks with 50 servers running an HDFS store. So, 25% of the cluster has GPU-accelerators,

25% of the cluster has HDFS local storage, and 50% of the cluster is generic, spanning 10 racks.

Throughout our experiments, we keep this cluster composition constant and vary the workload

composition to study the effect of spacial and temporal imbalances induced.
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6.1.2 Simulated Workload Types

In simulation, we experiment with four prototypical workload types: Unconstrained, GPU, MPI,

HA (high availability), and HDFS.

Unconstrained: Unconstrained is the most primitive type of job that has no placement pref-

erence and derives the same amount of benefit from an allocation of any k servers. It can be

represented with a single “n Choose k” primitive, choosing k servers from the whole cluster

serving as the equivalence class.

GPU: GPU preference is an example of a simple soft constraint. In addition to the SLO

parameters above, users specify that they want k GPU-enabled servers. If the k servers are not

all GPU-enabled, then we assume the job is slowed down by a slowdown factor. This translates

into a STRL MAX expression with two branches corresponding to k GPU-enabled servers and

k servers anywhere (see Fig. 3.4(a)). Recall that the max expression carries the semantics of

an “OR” operator. This pattern is repeated for each possible start time within the configured

scheduling horizon window. The utility is calculated based on the start time, estimated duration,

and user sensitivity to delay. TetriSched is responsible for evaluating these options in space-time

to determine the best way to schedule pending jobs. Note that “GPU” here is representative of

any arbitrary accelerator or machine attribute, such that performance benefit is achieved iff all k

allocated machines have it.

MPI: Rack locality is a prime example of a combinatorial constraint. For instance, MPI

workloads are known to run faster when their communicating tasks are co-located within the

same locality (latency) domain. Here, users request k servers on the same rack and slow down if

their allocated servers are on different racks. This translates into a STRL MAX expression with

a branch per rack plus an additional branch for a placement anywhere in the cluster. Note that a

“rack” could refer to any statically or dynamically determined locality domain.

HA (High Availability): Rack anti-locality is another contrasting example of a combina-

torial constraint. Workloads that care about distributing servers across failure domains benefit
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from this type of constraint. We describe the STRL expression for it in Fig. 3.4(b) and its accom-

panying text in §3.3.3. HA jobs are noteworthy as they combine two objectives: queueing delay

and availability.

HDFS: The last example explores flexibility in both the number of servers requested and

the type of resources consumed. In this example, jobs are able to consume fewer servers at the

cost of running longer. Similarly to GPU jobs, HDFS jobs prefer to run on HDFS storage nodes

where there is data locality. However, these jobs are able to extract partial benefit if some, but

not all, of the tasks are on HDFS nodes. The STRL expression for this job consists of a max

expression across a collection of HDFS/non-HDFS combinations. Each of these combinations

is handled by a min expression, carrying the semantics of an “AND” operator. Intuitively, we

perform a selection of the maximum-value pair (p, q), where p is the number of HDFS storage

nodes and q is the number of non-HDFS nodes.

6.1.3 Workload Configuration

We now describe the pertinent parameters that affect our simulated cluster workload.

Definition of ρ: An important parameter that affects the impact of scheduling is load (ρ).

In our simulation experiments, we adjust the job arrival rate (λ) to match a desired load (ρ).

Formally, ρ is defined as

load = ρ =
λE[W ]

N

whereE[W ] is the average work per job andN is the cluster size. The work per job (W = S∗K)

is defined as the size of the space-time rectangle consumed by executing the job, which is the

job duration (S) multiplied by the number of servers requested (K). Since a job may be flexible

in S and K based on what resources it consumed and how many it consumed, we take S and K

to refer to the optimal placement as indicated by the hard constraint. This implies that a non-

optimal placement may increase the effective load on the system, if the job is slowed down. We

define slowdown in Table 6.2.
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Workload Mix GPU HDFS HA Unconstrained
W1 25% 25% 0% 50%
W2 25% 25% 50% 0%
W3 50% 0% 50% 0%
W4 100% 0% 0% 0%

Table 6.1: Workload compositions used in results section.

Workload Composition: Our simulated workloads are often composed of a heterogeneous

mixture of job types. We experiment with many different proportions of workload types, as

well as a broad range of settings of the other parameters. Table 6.1 shows the compositions

used in our results section. Going from workload mix W1 to W4, the relationship of workload

composition to resource composition becomes increasingly less balanced. For W1, at full load,

we expect all three present job types to fit within their preferred spacial partitions, leaving no

spatial imbalance. As we’ll see in Sec. 7.1, TetriSched still outperforms alternatives through

better handling of temporal imbalances caused by uncorrelated bursts in each workload type.

W2 fits GPU and HDFS jobs to preferred resources, if HA jobs can fit on generic racks. This

can happen when HA job sizes do not require spreading over more than the generic racks or if

the scheduler exploits HA jobs’ spatial flexibility to put more of the tasks on each generic rack.

W3 is designed such that both GPU and HDFS jobs spill over to non-preferred resources at loads

exceeding ρ = 0.5. Lastly, W4 is the least spatially balanced of all.

Job parameters: Workloads can also vary in their budgets, penalties, and deadlines. Unless

otherwise stated, we set the budget as the job duration multiplied by the number of servers re-

quested, which corresponds to the space-time rectangle consumed by the job. We fix the penalty

to be equal to the budget [20]. We set the desired completion time to be the job duration, if the job

runs on optimal resources. This indicates to the scheduler that we would like our results ASAP.

We set the deadline to be two times the job duration, if the job runs on non-optimal resources

plus the desired completion time. Thus, it is possible to extract positive value from jobs even if

they are running on non-optimal resources, assuming they are quickly scheduled.
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High availability jobs are unique in that they care about availability as well as queueing delay.

We set the parameters so that the job would get full value if it runs with up to one server per rack.

Under the flexible placement policy, a job is able to sacrifice availability to run with up to two

servers per rack, but it suffers a loss in utility as a result. This availability vs utility tradeoff is

configurable by the user. In our experiments, we configured the parameters so that running on up

to two servers per rack yields a 10% loss in utility. We set the desired queueing delay to prefer

starting ASAP, but these two parameters can be tuned by the user to prefer increased availability

or reduced queueing delay.

Traces: We generate traces based on load, workload composition, job type, and burstiness.

The trace file for each contributing workload type is generated independently. The traces in-

clude arrival time, estimated job duration, and the number of servers requested. Arrival times are

generated based on each workload type’s load and an inter-arrival squared coefficient of vari-

ation parameter (C2
A), which controls the burstiness of the arrival sequence (Table 6.2). Setting

C2
A = 1 yields a Poisson process, and higher values of C2

A yield burstier arrivals. To target an

interesting range of job durations, we use a shifted exponential distribution with a minimum of

five times the scheduling period and a mean of ten times the scheduling period. The number of

servers per job varies based on job type and is bounded so that any given resource request, in

isolation, can be satisfied by any one of the compared scheduling policies. Of course, real users

may be unaware of the system configuration and may set a hard constraint that can’t be satisfied

even in isolation, but such ill-behaved jobs would penalize the hard constraint policy more than

the others.

6.1.4 Availability Calculation

To evaluate consideration of placement tradeoffs across multiple failure domains (e.g., racks)

for availability-sensitive jobs, we need a mechanism to quantify the relative impact of correlated

failures. To do this, we developed a Monte Carlo-based simulation to estimate the availability
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E[T] Mean response time (completion time − arrival time)
Unavailability Fraction of job downtime (1 - availability)
Dropped jobs Fraction of jobs that have exceeded deadlines
ρ Cluster load
C2

A Burstiness of job arrivals
Slowdown Factor speed difference between running a job on preferred resources vs. non-

preferred
Plan-ahead Amount of time into the future that policies can plan schedules for.

Table 6.2: Metrics and parameters used in results section.

of a job given its server placement. In this simulation, we assume that servers as well as server

racks independently fail for a configurable percentage of time. A job is considered temporarily

unavailable any time k or more of its tasks are simultaneously unavailable. We picked k = 3 as

it seemed reasonable for the number of servers in our high availability jobs.

Job unavailability (Table 6.2) is then defined as the average percentage of time that a given

simulated HA job is unavailable (i.e., 1− availability). To approximate job unavailability, the

simulator randomly selects failure times and computes the job unavailability. This process is

repeated 10,000 times for each high availability job, and the resulting unavailability is then av-

eraged across all high availability jobs within a trace. We have found this to produce stable

results (error bars on Fig. 7.3(c) provide indirect support for that). Thus, the differences in avail-

ability between compared scheduling policies can be attributed to differences in their respective

effectiveness.

To quantify the utility change associated with different levels of availability, a user is able

to specify a discount factor as a function of unavailability. In our experiments, we use a basic

function form of log10(
1

unavailability
), which has an asymptote at 0. This makes it increasingly

more valuable to have lower unavailability (i.e., each additional “9” of availability has a big

impact on the discount factor). We take this basic function form and scale it so that a placement

yielding up to one machine per rack (roughly 10−5 unavailability in our setup) corresponds to no

utility attenuation (i.e., scaling factor = 1.0). We also scale the curve so that having two machines

per rack (roughly 3 ∗ 10−4 unavailability, given our experimental configuration) has a discount
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factor of 0.9.

6.2 Real Cluster

In addition to a series of simulation experiments, we conduct a series of real cluster experiments

with TetriSched integrated in YARN to evaluate TetriSched’s ability to schedule homogeneous

and heterogeneous mixes of SLO and best effort jobs derived from production traces and from

synthetic workloads. Hadoop YARN is chosen due to its increasing popularity as a mature open

source resource management platform gaining both commercial support as well as adoption in

large-scale production clusters, such as at Microsoft. We integrated TetriSched with the latest

distribution of YARN at the time of the prototype development. We evaluate the performance of

our Rayon/TetriSched stack relative to the mainline YARN Rayon/CapacityScheduler(CS) stack.

6.2.1 Cluster Configuration

We conduct experiments with two different cluster configurations: a 256-node real cluster (RC256)

and an 80-node real cluster (RC80). For RC256, the experimental testbed [24] consists of 257

physical nodes (1 master + 256 slaves in 8 equal racks), each equipped with 16GB of RAM and

a quad-core processor. RC80 is a subset of RC256 and is, therefore, a smaller, but similarly

configured, 80-node cluster.

We maintain and use a single copy of YARN throughout an experiment, changing only the

scheduler and workload for comparison experiments. We configure YARN with default queue

settings and, generally, make YARN CS as informed and comparable to TetriSched as possible.

First, we enable the Rayon reservation system. Second, we enable container preemption in

CapacityScheduler, so that the scheduler can preempt running tasks to enforce Rayon capacity

guarantees for reserved jobs. This gives a significant boost in terms of its ability to meet its

capacity guarantees, particularly when the cluster is heavily loaded.
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Workload SLO BE Unconstrained GPU MPI
GR SLO 100% 0% 100% 0% 0%
GR MIX 52% 48% 100% 0% 0%
GS MIX 70% 30% 100% 0% 0%
GS HET 75% 25% 0% 50% 50%

Table 6.3: Workload compositions used in results section.

6.2.2 Workload Composition

Workloads are often composed of a mixture of job types as the jobs vary in their preferences

and sensitivity to deadlines. Table 6.3 shows the workload compositions used for experiments

reported in this paper.

Load

Cluster load can be defined in one of the following three ways.

1. effective load—the actual work completed using cluster resources normalized by the total

available cluster space-time capacity. This is often referred to as cluster utilization and is

a factor ρe ∈ [0; 1].

2. offered load—the total amount of ground truth work submitted to the cluster scheduler

normalized by the available cluster space-time capacity. This is a factor that can exceed

1. Ground truth work is calculated as the amount of cluster space-time a job will consume

if it’s allocated preferred resources. We use this definition for simulation experiments and

label it ρ (introduced in §6.1.3).

3. perceived load—the total amount of estimated work submitted to the cluster scheduler and

normalized by the available cluster space-time capacity. This is work perceived by the

scheduler and can significantly deviate from offered load due to runtime mis-estimation.

In our real cluster experiments, we report effective load ρe. In cases where real cluster exper-

iments vary the extent of runtime mis-estimation, we report ρe statistic for the mis-estimate of

zero. In simulation experiments, where the load is directly controlled as one of the experimental
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control parameters, we report on the offered load ρ.

Heterogeneity

For experiments with heterogeneous workloads, we use a set of job types that exemplify typical

server-type and server-set preferences in production datacenters [15, 44, 59]. These preferences

are captured with STRL, and corresponding STRL expressions are generated by the STRL Gen-

erator. For our heterogeneous mixes, we use three fundamentally different preference types:

Unconstrained, GPU, and MPI.

Unconstrained: Unconstrained is the most primitive type of placement constraint. It has

no preference and derives the same amount of benefit from an allocation of any k servers. It can

be represented with a single “n Choose k” primitive, choosing k servers from the whole cluster

serving as the equivalence set.

GPU: GPU preference is a simple and common [56, 59] example of a non-combinatorial

constraint. A GPU-type job prefers to run each of k tasks on GPU-labeled nodes. Any task

placed on a sub-optimal node runs slower (Fig. 3.4(a)).

MPI: Rack locality is an example of a combinatorial constraint. Workloads such as MPI are

known to run faster when all tasks are scheduled on the same rack. In our experiments, an MPI

job prefers to run all k tasks on the same rack, while it is agnostic to which particular rack they

are scheduled on. If the tasks are spread across different racks, all tasks are slowed down.

Deadline Sensitivity

Our workloads are composed of 2 classes of jobs: Service Level Objective (SLO) jobs with

deadlines and Best Effort (BE) jobs with preference to complete faster. An SLO job is defined

to be accepted iff its reservation requested was accepted by the Rayon reservation system—used

for both Rayon/CS and Rayon/TetriSched stacks. Otherwise, we refer to it as an SLO job without

reservation (SLO w/o reservation). A job is defined as a best-effort(BE) job iff it never submitted
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Figure 6.1: Internal value functions for SLO and BE jobs.

a reservation request to Rayon. In our experiments, a value function v(t) encodes the sensitivity

to completion time and deadlines (Fig. 6.1). Best-effort v(t) is a linearly decaying function

with a starting value set to the same positive constant throughout all experiments. SLO v(t) is

a constant function up to a specified deadline, where the constant is 1000x the BE constant for

accepted SLO and 25x for SLO w/o reservation, prioritizing them accordingly.

6.2.3 Evaluation metrics, parameters, policies

Throughout this paper, four main metrics of success are used: (a) accepted SLO attainment,

defined as the percentage of accepted SLO jobs completed before their deadline; (b) total SLO

attainment, defined as the percentage of all SLO jobs completed before their deadline; (c) SLO

attainment for SLO jobs w/o reservation, defined as the percentage of SLO jobs w/o reservation

completed before their deadline; (d) mean latency, defined as the arithmetic mean of completion

time for best-effort jobs.

We vary two main experimental parameters: estimate error and plan-ahead. Estimate error

is the amount of mis-estimation added to the actual runtime of the job. Positive values correspond

to over-estimation, and negative mis-estimate corresponds to under-estimation. It exposes sched-

uler robustness to mis-estimation handling. Plan-ahead is the interval of time in the immediate

future considered for deferred placement of pending jobs. Increased plan-ahead translates to in-
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TetriSched TetriSched with all features
TetriSched-NH TetriSched with No Heterogeneity

(soft constraint awareness)
TetriSched-NG TetriSched with No Global scheduling
TetriSched-NP TetriSched with No Plan-ahead

Table 6.4: TetriSched configurations with individual features disabled.

creased consideration of scheduling jobs in time and generally improves space-time bin-packing.

TetriSched cycle period is set to 4s in all experiments.

We experiment with four different TetriSched configurations (Table 6.4)) to evaluate benefits

from (a) soft constraint awareness, (b) global scheduling, and (c) plan-ahead by having each

of these features individually disabled (Sec. 7.4.2). TetriSched-NG policy derives benefit from

TetriSched’s soft constraint and time-awareness, but considers pending jobs one at a time. It

organizes pending jobs in 3 FIFO queues in priority-order: top priority queue with accepted

SLO jobs, medium-priority with SLO jobs without a reservation, and low-priority with best-

effort jobs. On each scheduling cycle, TetriSched-NG picks jobs from each queue, in queue

priority order. TetriSched-NH policy disables heterogeneity-awareness at STRL generation stage

by creating STRL expressions that draw k containers from only one possible equivalence set :

the whole cluster. It uses the specified slowdown to conservatively estimate job’s runtime on a

(likely) sub-optimal allocation.

6.2.4 Workload Generation

We use a synthetic generator based on Gridmix 3 to generate MapReduce jobs that respect the

runtime parameter distributions for arrival time, job count, size, deadline, and task runtime. In

all experiments, we adjust the load to utilize near 100% of the available cluster capacity.

SWIM Project (GR SLO, GR MIX): We derive the runtime parameter distributions from

the SWIM project [8, 9], which includes workload characterizations from Cloudera, Facebook,

and Yahoo production clusters. We select two job classes (fb2009 2 and yahoo 1) with sizes
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that fit on our RC256 cluster. The GR MIX workload is a mixture of SLO (fb2009 2) and

BE (yahoo 1) jobs. The GR SLO workload is composed solely from SLO jobs (fb2009 2) to

eliminate interference from best-effort jobs.

Synthetic (GS MIX, GS HET): To isolate and quantify sources of benefit, we use synthetic

workloads to explore a wider range of parameters. We evaluate our synthetic workloads on

our smaller RC80 cluster. The GS MIX workload is a mixture of homogeneous SLO and BE

jobs. The GS HET workload is a mixture of heterogeneous SLO jobs with varying placement

preferences and homogeneous BE jobs.
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Chapter 7

Experimental Evaluation

In this chapter we validate both the practicality and the benefit of supporting declarative space-

time soft constraints in cluster schedulers. The high level takeaway is that the flexibility of

understanding and leveraging placement preferences both in terms of space (types and sets of re-

sources) and time (when to start and finish) simultaneously allows a scheduler to exploit better in-

formation about each job’s concerns and needs in both dimensions. As illustrated in Fig. 7.1, nei-

ther dimension alone is sufficient, with TetriSched outperforming the best space-only (alsched)

and time-enhanced non-soft (Hard) options by 33% and 58%,1 respectively. The three pairs of

bars in Fig. 7.1 show the utility for schedulers that ignore constraints entirely (None), sched-

ulers that accommodate hard constraints only (Hard), and schedulers that accommodate soft

constraints (“Flexible”).

This chapter is divided into two main parts: simulation and real system validation. We es-

tablish the benefit of space-time soft constraints first. In Sec. 7.1, we establish and empirically

demonstrate that soft constraints improve the overall cluster scheduling quality, particularly as

the heterogeneous cluster load increases. In Sec. 7.2, we add the temporal dimension, extend-

ing soft constraints to the two-dimensional cluster resource space-time. This is accomplished

1As we’ll see in Section 7.2, TetriSched can outperform these other options by 3x or more under certain condi-
tions.
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Figure 7.1: Better guidance leads to better scheduling. The three bar pairs correspond to schedulers that

ignore constraints (None), that consider only hard constraints (Hard), and that consider soft constraints

as well (Flexible). In each pair, the left bar exploits runtime estimates to plan ahead, while the right

bar does not. The best option, by far, is tetrisched, which combines soft constraints with plan-ahead.

Detailed explanation of how this data was measured and of the parameters used is provided in Sec. 6; the

key parameters (for reference) are: workload mix=W2, plan-ahead=15min, slowdown=3, load ρ = 0.8,

burstiness C2
A = 8, defined in Table 6.2.

with TetriSched’s feature called plan-ahead (§5.2.1). Plan-ahead enables simultaneous consider-

ation of all two-dimensional resource allocations, given job runtime estimates and possible job

deadlines. Plan-ahead is shown to bring significant benefits in Sec. 7.2. We vary (a) the inter-

arrival burstiness and (b) the strength of resource preference (slowdown) to show their effect.

We transition to the second part of the evaluation chapter with a simulation study of TetriSched’s

sensitivity to runtime mis-estimation in Sec. 7.3.

Part two of this chapter focuses on the real system validation of our hypothesis. Sec. 7.4.1

focuses on the effect of runtime mis-estimation on scheduler performance in a real 256-node

cluster. We demonstrate dramatic improvement in the number of jobs that satisfy their deadline

SLO when scheduled with TetriSched as compared to YARN’s default stack, particularly when

job runtimes are under-estimated (Fig. 7.9(a)). We explore and separate the sources of this benefit

in Sec. 7.4.2. The key Fig. 7.14(a) highlights the advantages of both space-time soft constraints

and global scheduling for heterogeneous workload mixes in one graph. The takeaway result
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Figure 7.2: TetriSched outperforms Hard and None as cluster load(ρ) increases. Graphs

7.2(a), 7.2(b), and 7.2(c) correspond to workload compositions in Table 6.1 with a Poisson inter-arrival

process (C2
A = 1) and schedulers using 15-minute plan-ahead.

is that each of our stated contributions improves the quality of scheduling decisions and must

be used collectively for best performance. Sec. 7.4.3 concludes this chapter with a study of

TetriSched’s scalability in our real cluster.

Different workloads and systems used between different sections are carefully defined in §6

and explicitly stated for each set of results. Using a variety of cluster and workload composi-

tions allows us to sweep a broader range of the parameter space, showing broader applicability

of TetriSched’s ideas. Note, though, that results for different workloads cannot be directly com-

pared.

7.1 Spatial Preference Handling

In this section we illustrate the benefits of handling placement preferences as soft constraints.

Fig. 7.2 compares utility as a function of load (ρ) for the 3 workloads in Table 6.1. Workloads

W2, W3, and W4 were chosen to create a progressively unbalanced load contribution coming

from GPU, HDFS, and Availability jobs relative to the composition of the simulated cluster,

configured to have 25% GPU nodes, 25% HDFS nodes, and 50% generic nodes. In all 3 of

these figures, we see that None does worse than TetriSched. This is because None does
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not consider what resources the workloads want; it treats all resources as equal and assigns them

blindly, which causes the workload to run less efficiently.

When load is low, Hard performs similarly to TetriSched as there are enough resources

to give most jobs their preferences. However, at higher loads when there is contention for re-

sources, Hard is unable to consider alternative choices and is forced to wait. TetriSched

performs much better since it is able to reason about these alternative choices when making

scheduling decisions.

As we move from Fig. 7.2(a) to Fig. 7.2(b) to Fig. 7.2(c), the workload composition becomes

more unbalanced, making it harder to find preferred resources. As a result, Hard starts dropping

in utility at even lower loads. When the workload composition is unbalanced, Hard can actually

do worse than None since it is restricted to only giving preferred resources, whereas None uti-

lizes all resources albeit in a blind fashion. However, TetriSched is superior in all 3 scenarios

since it can intelligently decide to use alternative resources when there is a resource imbalance.

7.1.1 Under the hood

What makes TetriSched yield higher utility in Fig. 7.2(a)? Fig. 7.3 shows the underlying

metrics that affect the difference in utility. First, In Fig. 7.3(a), we see that the average response

time, E[T ], (defined in Table 6.2) of TetriSched exceeds that of Hard for all but the highest

load. Fig. 7.3(b) reveals that the utility difference is due to Hard dropping significantly more

jobs. Recall that Hard will always cause jobs to wait for preferred resources, if not immediately

available. When resources become available, Hard picks the youngest jobs to place on preferred

resources as they have the highest value. As older jobs eventually reach their response time

deadlines, they are dropped. Hard thus achieves good response times at the expense of dropped

jobs when the load is high. TetriSched matches or exceeds the response time performance

of Hard, but manages to drop a lot fewer jobs by exploiting the availability tradeoff for HA

jobs (see Fig. 7.3(c)). Note that this tradeoff only occurs at high load when the cluster is most
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Figure 7.3: Under TetriSched more jobs meet the completion time SLO, while maintaining
a response time comparable to Hard. Availability is reduced in preference to dropping jobs.
None does worse on all metrics. Same setup as Fig. 7.2(a).

contended.

7.1.2 Effect of Slowdown

Slowdown (see Table 6.2) is an important factor that affects the relative performance comparison

of the three spatial preference handling policies. For slowdowns as low as 1.1, None performs

well (see Fig. 7.4(a)), since it doesn’t suffer much from failing to prioritize preferred resources

in the schedules it produces. As the slowdown increases, None starts performing increasingly

worse, as the penalty for missing preferred resources increases with the slowdown factor on

the x-axis. It thus passes Hard on its downward trend. Indeed, simply waiting for preferred

resources becomes a reasonable scheduling policy when the benefits of doing so are orders of

magnitude. TetriSched continues to outperform both of these policies, including and espe-

cially at all the intermediate slowdown values in this range (Fig. 7.4(a)). Lastly, slowdown affects

TetriSched mean response time, E[T ], as well. Note that in Fig. 7.4(b) TetriSched actu-

ally surpasses Hard with respect to E[T ], particularly at slowdown factors of 3 or less.

85



1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000
ut

ili
ty

tetrisched
hard
none

(a) utility

1.11.5 3.0 5.0 10.0
slowdown

10

15

20

25

30

35

E[
T]

tetrisched
hard
none

(b) mean response time

Figure 7.4: Utility and response time as function of slowdown. Workload is same as Fig. 7.2(a)
at load (ρ = 0.7).

7.1.3 Handling Temporal Imbalance

In the perfectly choreographed match between resources and jobs, where each workload type

can fit in its preferred cluster partition at full load, we expect the Hard policy to perform well

(Fig. 7.5). It would, in fact, resemble the static partitioning allocation policy, with job sizes for

each workload type carefully tuned to fit the corresponding partition on average. The key, how-

ever, is that job arrivals can be bursty and create transient temporal imbalances. Fig. 7.5 shows

that spacial flexibility-aware scheduling policy handles such imbalances better than the alterna-

tives. At low loads, temporal imbalances are absorbed by spare capacity in each of the preferred

partitions, as each is overprovisioned. As load increases, however, TetriSched outperforms

Hard and None, as transient overload is allowed to spill over into potentially available spare

capacity in non-preferred partitions.

Lastly, we examine the effect of raising the priority of the “picky” jobs in this W1 mix. Re-

call that budget is the maximum utility a job can extract from running on the cluster. Relative

budget differences, therefore, translate into relative job importance, as the scheduler favors jobs

that yield higher utility. In Fig. 7.5(a), all jobs have the same budget. We increase the budget
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Figure 7.5: TetriSched leverages spacial flexibility, outperforming Hard and None through
better handling of temporal imbalances. Increased importance of picky jobs leads to increased
differential in performance, following Amdahl’s Law.

for “picky” jobs by 2x in Fig. 7.5(b) and by 10x in 7.5(c) . As a result, TetriSched achieves

higher relative gains when unconstrained jobs are less important than jobs with spacial prefer-

ences. Indeed, relative gains here are governed by Amdahl’s Law—as the fraction of utility from

“picky” jobs increases, so does the benefit of soft constraints.

7.2 Benefit of Plan-ahead

A major feature of TetriSched is its ability to plan ahead in time, using future resource availability

estimates as well as job delay sensitivity information. This section quantifies the benefit from the

plan-ahead feature and shows that it is an important differentiator between TetriSched and

alsched – the two policies that understand spacial flexibility.

Fig. 7.6 plots utility for TetriSched, Hard, and None as slowdown increases from 1.1

to 10. TetriSched without plan-ahead (Fig. 7.6(a),7.6(e),7.6(i),7.6(m)), positioned in the first

column of Fig. 7.6, represents the alsched system, which only understands soft constraints.

We see that alsched starts making bad placement decisions relative to Hard at progressively

higher slowdown factors because it does not understand the concept of waiting for preferred

resources. As we go horizontally across this 4x4 grid, however, we see that TetriSched is
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Figure 7.6: Time-aware scheduling is essential as slowdown increases. These graphs correspond
to the W2 mix with a load (ρ = 0.7), horizontally varied plan-ahead, and vertically varied
burstiness (C2

A). We see that plan-ahead becomes even more important as the level of burstiness
increases, particularly at high slowdowns. In fact, utility in this figure improves by a factor of
upto 2.4x in going from no plan-ahead (alsched) to 15 min plan-ahead (TetriSched).
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Figure 7.7: This graph shows factors of improvement for the TetriSched policy over
alsched as a function of cluster load (ρ) and plan-ahead windows.

able to leverage plan-ahead to avoid this mistake and outperform both Hard and None, as the

plan-ahead window increases from none to 15 min.

A natural question to ask is just how far ahead to plan. In Fig. 7.6(c) it may appear that

a smaller plan-ahead window of 5 minutes might be sufficient. However, we also discovered

that the positive effect of plan-ahead is significantly amplified by workload burstiness. As the

temporal imbalance created by burstier workloads exerts more pressure on the cluster’s scarce

preferred resources, it becomes evermore important to leverage job runtime estimates and plan

ahead pending job placement, instead of falling back to secondary options instantaneously. As we

vertically trace Fig. 7.6(a),7.6(e),7.6(i),7.6(m), we observe a drop for alsched both in absolute

utility and relative to Hard. The same downward trend can be observed, in fact, for any of the

four subfigure columns of Fig. 7.6. Plan-ahead helps TetriSched handle this increasing temporal

imbalance, however, illustrated with a gradually improving relative performance, as we horizon-

tally scan any of the 4 subfigure rows. Fig. 7.7 highlights the factors of improvement TetriSched

achieves from plan-ahead. Specifically, the highest factor difference for TetriSched between

Fig. 7.6(p) and Fig. 7.6(m) is plotted in Fig. 7.7(b) as 2.4x (ρ = 0.7), and we see even higher
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Figure 7.8: Effect on utility as users are more erroneous about duration estimates. TetriSched
is robust to error in duration estimates. The average error is kept constant so that load (ρ = 0.7)
remains constant. Percent error is calculated as the root mean square error divided by the average
duration. This experiment uses the W2 mix with some burstiness (C2

A = 4).

factors of improvement for higher loads.

7.3 Sensitivity to duration mis-estimation

Users are unlikely to provide perfectly accurate guidance to the scheduler. This section evalu-

ates the effect of inaccurate job duration estimates. Given that TetriSched uses plan-ahead,

inaccurate job duration estimates could lead to bad scheduling decisions. But, somewhat to

our surprise, we found that TetriSched’s efficacy is robust to such inaccuracy. As expected,

we found a qualitative correlation between situations for which plan-ahead matters the most

and the utility drop-off as a function of inaccuracy (quantified as the coefficient of variance of

root-mean-squared-error, or CV(RMSE)). In other words, duration estimate inaccuracies affect

TetriSched only in cases where plan-ahead matters the most. But, the utility drop-off is small

as we increase the coefficient of variance by as much as 0.8 of the mean job duration, which cor-

responds to 80% error on average. It’s worth mentioning that perturbed runtime estimates could
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deviate by as much as 3.4x. Figure 7.8 plots utility as a function of CV(RMSE). The dropoff in

utility is insignificant until the CV(RMSE) of 0.6. none is least affected as it extracts the least

benefit from plan-ahead, oblivious to benefits of preferred resources altogether. Utility difference

for TetriSched was observed to be within 10-15% of perfect runtime estimates across a large

range of workload parameters.

7.4 End-to-end evaluation on a real cluster

This section validates TetriSched, including its robustness to runtime estimate inaccuracy, the

relative contributions of its primary features, and its scalability on a real cluster. The results

show that TetriSched outperforms the Rayon/CapacityScheduler stack, especially when imper-

fect information is given to the scheduler, in terms of both production job SLO attainment and

best effort job latencies. Each of TetriSched’s primary features (soft constraints, plan-ahead, and

global scheduling) is important to its success, and it scales well to sizable clusters in practice.

7.4.1 Sensitivity to runtime estimate error

Fig. 7.9 compares TetriSched with Rayon/CS on the 256-node cluster, for different degrees of

runtime estimate error. TetriSched outperforms Rayon/CS at every point, providing higher SLO

attainment and/or lower best effort jobs latencies. TetriSched is particularly robust for the most

important category—accepted SLO jobs (those with reservations)—satisfying over 95% of the

deadlines even when runtime estimates are half of their true value.

When job runtimes are under-estimated, the reservation system will tend to accept more jobs

than it would with better information. This results in reservations terminating before jobs com-

plete, resulting in transfer of accepted SLO jobs into the best-effort queue in Rayon/CS. Jobs in

the best-effort queue then consist of a mixture of incomplete accepted SLO jobs, SLO jobs with-

out reservations, and best-effort jobs. This contention results in low levels of SLO attainment and
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Figure 7.9: Rayon/TetriSched outperforms Rayon/CapacityScheduler stack, meeting more deadlines
for SLO jobs (with reservations and otherwise) and providing lower latencies to best effort jobs. Clus-
ter:RC256 Workload:GR MIX. Rayon/TetriSched ρe = 0.97, Rayon/CS ρe = 0.93.

high best effort job latencies. In contrast, Rayon/TetriSched optimistically allows scheduled jobs

to complete if their deadline has not passed,, adjusting runtime under-estimates upward when

observed to be too low. It reevaluates the schedule on each TetriSched cycle (configured to 4s),

adapting to mis-estimates by constructing a new schedule based on the best-known information

at the time.

When runtimes are over-estimated, both schedulers do well for accepted SLO jobs. TetriSched

satisfies more SLOs for jobs without reservations, because it considers those deadlines explicitly

rather than blindly inter-mixing them, like the CapacityScheduler. Rayon/CS also suffers huge
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increases in best effort job latencies, because of increased pressure on the best-effort queue from

the following main sources:

1. the number of SLO jobs without reservations increases with the amount of over-estimation;

2. the deadline information for any SLO jobs in the best-effort queue is lost, causing resources

to be wasted on SLO jobs that cannot finish by their deadline. In contrast, TetriSched

avoids scheduling such jobs. Additional resource contention arises from increased use

of preemption used by YARN to guarantee capacity allocated to reservation queues for

accepted SLO jobs.

3. the reservation system is in a higher state of flux due to over-estimation. As over-estimate-

based reservations are released early, temporarily available capacity causes more best-

effort jobs to be started. However, these jobs often don’t complete before the next SLO job

with a reservation arises, triggering preemption that wastes time and resources.

To isolate the behavior of SLO jobs, without interference from best-effort jobs, we repeated

the experiment with only SLO jobs; Fig. 7.10 shows the results. Now, the only jobs in the

best-effort queue are (1) SLO jobs without reservations and (2) accepted SLO jobs with under-

estimated runtimes. The results are similar, with Rayon/TetriSched achieving higher SLO attain-

ment overall and maintaining ≈100% SLO attainment for accepted SLO jobs.

7.4.2 Sources of benefit

This section explores how much benefit TetriSched obtains from each of its primary features, via

synthetically generated workloads exercising a wider set of parameters on an 80-node cluster.

As a first step, we confirm that the smaller evaluation testbed produces similar results to those

in Sec. 7.4.1 with a synthetic workload that is similar (homogeneous mix of SLO and best-

effort jobs). As expected, we observe similar trends (Fig. 7.11), with TetriSched outperforming

Rayon/CS in terms of both SLO attainment and best-effort latencies. The one exception is at

50% under-estimation, where TetriSched experiences 3x higher mean latency than Rayon/CS.

93



-20.0 -10.0 0.0 10.0 20.0
Estimate Error(%)

0
10
20
30
40
50
60
70
80
90

100
SL

O
 A

tt
ai

nm
en

t(
%

) Rayon/CS TetriSched

(a) all SLO jobs

-20.0 -10.0 0.0 10.0 20.0
Estimate Error(%)

0
10
20
30
40
50
60
70
80
90

100

SL
O

 A
tt

ai
nm

en
t(

%
) Rayon/CS TetriSched

(b) accepted SLO jobs

-20.0 -10.0 0.0 10.0 20.0
Estimate Error(%)

0
10
20
30
40
50
60
70
80
90

100

SL
O

 A
tt

ai
nm

en
t(

%
) Rayon/CS TetriSched

(c) SLO w/o reservation

Figure 7.10: Rayon/TetriSched achieves higher SLO attainment for production-derived SLO-only
workload due to robust mis-estimation handling. Cluster:RC256 Workload:GR SLO. Rayon/TetriSched
ρe = 0.97, Rayon/CS ρe = 0.87.

The cause is that TetriSched schedules 3x more best-effort jobs (120 vs. 40), expecting to finish

them with enough time to complete SLO jobs on time. Since TetriSched doesn’t use preemption,

best-effort jobs run longer, causing other best-effort jobs to accumulate queuing time, waiting

for 50%-underestimated jobs to finish.

Soft constraint awareness. TetriSched accepts and leverages job-specific soft constraints.

Fig. 7.12 shows that doing so allows it to better satisfy SLOs and robustly handle runtime

estimate errors, for a heterogeneous workload mixture of synthetic GPU and MPI jobs com-

bined with unconstrained best-effort jobs. This can be seen in the comparison of TetriSched to
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Figure 7.11: Synthetically generated, unconstrained SLO + BE workload mix achieves higher SLO at-
tainment and lower latency with Rayon/TetriSched. Cluster:RC80 Workload:GS MIX. Rayon/TetriSched
ρe = 0.93, Rayon/CS ρe = 0.919.

TetriSched-NH, which is a version of our scheduler with soft constraint support disabled. The

key takeaway is that the gap between Rayon/TetriSched and TetriSched-NH is entirely attributed

to TetriSched’s support for soft constraints on heterogeneous resources. The gap is significant:

2-3x the SLO attainment (Fig. 7.12(a)). Disabling soft constraint support can even be seen re-

ducing the performance of TetriSched-NH below Rayon/CS as over-estimation increases (Fig-

ures 7.12(a) and 7.12(b)). While both Rayon/CS and TetriSched-NH are equally handicapped by

lack of soft constraint awareness, over-estimation favors Rayon/CS, as the job is started earlier

in its reservation interval, increasing the odds of timely completion. TetriSched-NH on the other
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Figure 7.12: TetriSched derives benefit from its soft constraint awareness—a gap between TetriSched
and TetriSched-NH. Cluster: RC80, Workload: GS HET. Rayon/TetriSched ρe = 0.90, Rayon/CS ρe =

0.79.

hand suffers from its lack of preemption when small best-effort jobs are scheduled at the cost

of harder to schedule over-estimated SLO jobs. (Preemption in a TetriSched-like scheduler is an

area for future work.)

Global scheduling. To evaluate the benefits (here) and scalability (Sec. 7.4.3) of TetriSched’s

global scheduling, we introduce TetriSched-NG, our greedy scheduling policy (Sec. 6.2.3). It

uses TetriSched full MILP formulation, but invokes the solver with just one job at a time, po-

tentially reducing its time complexity. Fig. 7.13 compares TetriSched with a version using the

greedy policy, referred to as TetriSched-NG, finding that global scheduling significantly increases
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Figure 7.13: TetriSched benefits from global scheduling—a gap between TetriSched and TetriSched-
NG. TetriSched-NG explores the solution space between Rayon/CS and TetriSched by leveraging soft
constraints & plan-ahead, but not global scheduling. Cluster:RC80, Workload:GS HET. Load: Fig. 7.12.

SLO attainment. Global scheduling accounts for the gap of up to 36% (at 50% over-estimate)

between TetriSched and TetriSched-NG (Fig. 7.13(a)). TetriSched’s global scheduling policy is

particularly important for bin-packing heterogeneous jobs, as conflicting constraints can be si-

multaneously evaluated. We note that even TetriSched-NG outperforms Rayon/CS in both SLO

attainment (Fig. 7.13(a)) and best-effort job latency (Fig. 7.13(d)), showing that greedy policies

using TetriSched’s other features are viable options if global scheduling latency rises too high.

Plan-ahead. Fig. 7.14 evaluates TetriSched and TetriSched-NG (with greedy scheduling

instead of global), as a function of the plan-ahead window. (Note that the X-axis is plan-
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Figure 7.14: TetriSched benefits from adding plan-ahead to its soft constraint awareness and global
scheduling. Cluster:RC80 Workload:GS HET. Load: same as in Figures 7.12 and 7.13.

ahead window, not estimate error as in previous graphs.) When plan-ahead = 0 (i.e., plan-

ahead is disabled), we see that, despite having soft constraint awareness and global schedul-

ing, Rayon/TetriSched performs poorly for this heterogeneous workload. We refer to this policy

configuration as TetriSched-NP (Sec. 6.2.3), which emulates the behavior of alsched [66]—our

previous work. As we increase plan-ahead, however, SLO attainment increases significantly for

TetriSched, until plan-ahead≈100s.

Summary. Fig. 7.12–7.14 collectively show that all three of TetriSched’s primary features

must be combined to achieve the SLO attainment and best-effort latencies it provides. Removing
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any one of soft constraint support, global scheduling, or plan-ahead significantly reduces its

effectiveness.

7.4.3 Scalability

Global re-scheduling can be costly, as bin-packing is known to be NP-Hard. Because TetriSched

reevaluates the schedule on each cycle, it is important to manage the latency of its core MILP

solver. The solver latency is dictated by the size of the MILP problem being solved, which is

determined by the number of decision variables and constraints. Partition variables are the most

prominent decision variables (Sec. 4) for TetriSched, as they are created per partition per cycle

for each time slice of the plan-ahead window. Thus, in Fig. 7.15, we focus on the effect of

the plan-ahead window size on the cycle (Fig. 7.15(b)) and solver (Fig. 7.15(a)) latencies. The

cycle latency is an indication of how long the scheduler takes to produce an allocation decision

during each cycle. The solver latency is the fraction of that latency attributed to the MILP

solver alone. For the global policy, the solver latency is expected to dominate the total cycle

latency for complex bin-packing decisions, as is seen in Fig. 7.15(c). The difference between

cycle and solver latency is attributed to construction of the aggregate algebraic expression for

pending jobs—overhead of global scheduling—and translating solver results into actual resource

allocations communicated to YARN.

Fig. 7.15(b) reveals a surprising result: despite increasing the MILP problem size, increased

plan-ahead can actually decrease cycle latency for the greedy policy. This occurs because

scheduling decisions improve with higher plan-ahead (Sec. 7.4.2), reducing the number of pend-

ing jobs to schedule—another factor contributing to the size of the MILP problem. As expected,

we can clearly see that the greedy policy (TetriSched-NG) decreases cycle and solver latency

relative to global (TetriSched).

The combination of multiple optimization techniques proved effective at scaling TetriSched’s

MILP implementation to MILP problem sizes reaching hundreds of thousands of decision vari-
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Figure 7.15: TetriSched scalability with plan-ahead.

ables [68]. Optimizations include extracting the best MILP solution after a timeout, seeding

MILP with an initial feasible solution from the previous cycle (Sec. 5.2.6), culling STRL expres-

sion size based on known deadlines, culling pending jobs that reached zero value, and most im-

portantly, dynamically partitioning cluster resources at the beginning of each cycle to minimize

the number of partition variables (§3.1.2)—all aimed at minimizing the resulting MILP problem

size. Our simulation experiments in §7 show that TetriSched scales effectively to a 1000-node

simulated cluster, across varied cluster loads, inter-arrival burstiness, slowdown, plan-ahead, and

workload mixes. When we scale a simulation to a 10000-node cluster, running the GS HET

workload scaled to maintain the same level of cluster utilization as in Fig. 7.13),
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TetriSched exhibits a similar cycle latency distribution with insignificant degradation in schedul-

ing quality. Even greater scale and complexity may require exploring solver heuristics to address

the quality-scale tradeoff.
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Chapter 8

Aramid: Impact in Production

To broaden the impact of our space-time soft constraint ideas, we collaborated with Microsoft on

adapting a subset of them in YARN, as part of the next generation resource reservation framework

called Aramid. The purpose of this work was to demonstrate that it is not necessary to fully

replace an existing resource management infrastructure already in place in order to leverage

some of the main ideas we propose with TetriSched. This technology transfer, in the process of

being open sourced, also serves as the on-ramp to adopting a greater set of ideas and, ultimately

implementing full support for our main contribution—space-time soft constraints—at the scale

of a production cluster.

To accomplish this, we borrow two main TetriSched features: (1) heterogeneity-awareness

and (2) soft constraints.

8.1 Heterogeneity in production

We describe three real scenarios and cumulative data from ten corporate datacenters to illustrate

challenges.

CPU chipset impact on job runtime: This example was exposed by real user complaints re-

garding job runtime inconsistencies for a production Spark job. Figure 8.1 shows completion
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Figure 8.1: Runtime of a production Spark job on different CPUs (i.e., hardware architecture).
The three boxplots represent 5 runs of this recurring job on CPU1 machines, 5 runs on CPU2 machines,

and the 10 runs collectively.

times for a production batch Spark job on two generations of (nominally very comparable) CPUs

that co-exist in one of Microsoft’s large clusters. The left (white) and middle (black) rectangles

represent the 25th to 75th percentiles of completion time on each of the two machine genera-

tions, for a number of runs of that job. The right (gray) rectangle shows the same percentiles

when the job is scheduled on a randomly chosen set of machines, which would be the case in

a system not explicitly aware of heterogeneity. The higher variation of the latter case induces

production customers to conservatively over-reserve resources (lowering utilization) to manage

risk of missed deadlines.

FPGA and Torus network for index serving: An important class of applications arises from

hardware-acceleration technologies, where, e.g., a search-engine index can run on either stan-

dard CPUs or much more efficiently on FPGA-equipped nodes [54]. The FPGA machines are

organized in a dedicated network. For example, in [54], every node in half a rack (48 machines)

is directly connected by a network torus with peak bandwidth of 20Gbps. The FPGA-based solu-

tion requires “gang scheduling” of eight machines (i.e., allocations at multiples of eight) as eight

FPGAs operating together as pipeline to serve each user query. In Fig. 8.2 we show that effi-

104



0"

0.5"

1"

1.5"

2"

CPU" FPGA"
across"tori"

FPGA"
within"
torus"

normalized+throughput+

Figure 8.2: Normalized throughput achieved by index-serving services on different hardware
configurations. This empirical data highlights the effect of interconnect topology on perfor-
mance. Placement on FPGA alone yields similar performance to generic CPU resources. Only
torus-local computation achieves 1.95× throughput.

ciency gains can be substantial if both node and network heterogeneity are accounted for: 1.95×

greater throughput on the same number of machines1. If the allocation uses FPGAs without ac-

counting for networking (e.g., an allocation of eight FPGAs, but four in each torus), the speedup

obtained from specialized hardware is negligible. Another important aspect of this workload is

its diurnal pattern with a peak-to-valley of over 3×. Any time-agnostic solution would be forced

to over-provision significantly.

GPU and Infiniband for DeepLearning: The Yahoo! production DeepLearning pipeline [12]

runs on heterogeneous Hadoop clusters with both standard CPU nodes connected via Ethernet top

of rack switches and nodes equipped with 8xGPUs that communicate via RDMA over 100GBPs

Infiniband. Data preprocessing for the pipeline can take place at any node, with a combination

of Hadoop/Spark jobs, while the Caffe-based learning phase is much better served by the spe-

1This and other information regarding the Catapult project are derived from [54] and personal communications
with its authors.
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Figure 8.3: Number of samesets (i.e., groups of nodes with an identical set of accounted at-
tributes, also—partitions) for each of ten Microsoft data centers.

cialized hardware—measurements [7, 27] show that Caffe runs 8–17× faster on GPUs than on

regular CPUs. This scenario demonstrates the need to support pipelines that require different

hardware in different phases of their execution.

Modern datacenters have substantial heterogeneity. We describe three specific examples of

datacenter heterogeneity for concreteness, but modern datacenters exhibit a wide range of node

heterogeneity. Figure 8.3 shows the number of samesets in each of ten Microsoft datacenters.

(Recall that a “sameset” is a collection of homogeneous nodes within a heterogeneous cluster.)

Each datacenter has 500–3000 distinct node types, as defined by physical and logical attributes

of significance to jobs. While some of the samesets are small, some consist of 1000s of nodes,

and all must be considered by a system servicing complex mixes of jobs with diverse constraints,

preferences, and SLOs.
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8.2 Aramid Architecture

We combine the time-varying capacity guarantees introduced by YARN’s state-of-the-art reser-

vation system [10] with TetriSched’s declarative expression of cluster resource space. Specifi-

cally, we borrow TetriSched’s heterogeneity-awareness and adapt the notion of space-time soft

constraints it introduces. The end result—a system called Aramid—enables users to request

cluster capacity guarantees on given types of resources, with declared ordinal preferences, and

with variable demand specification over time.

Thus, we take the next stop in the historical evolution and enrichment of YARN’s queue

semantics. Initially (YARN[71] circa 2013 and earlier queue-based schedulers), YARN queues

carried the semantics of infinite constant capacity guarantee, i.e. c(t) = const. Rayon [10]

advanced the state of the art circa 2014 by making queues c(t) 6= const—a significant departure.

With Aramid, we now take the next logical step, developing the notion of space-time capacity

guarantees by vectorizing YARN queue capacity guarantee as follows:

c(t) = ~c(t) =



cp1(t)

cp2(t)

. . .

cpn(t)


(8.1)

, where cpi(t) is queue capacity guaranteed at time = t from partition pi.

As such, Aramid consists of the following principal architectural components (also shown in

Fig. 8.4).

Language compiler translates time-varying resource demands specified with arbitrary boolean

expressions on machine attributes. The compiler module converts these boolean expressions to

a disjunction (an OR) of samesets. In Fig. 8.5, boolean expressions on machine attributes (e.g.,

CPU1) are shown in their equivalent disjunctive normal form (DNF) efficiently produced by the

language compiler. It can be shown that any arbitrary boolean expression can always be reduced
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Figure 8.4: Conceptual view of Aramid’s Architecture

to a DNF on samesets. This simplifies the design and implementation of the reservation plan and

agent.

Reservation plan stores resource allocations across samesets and over time. The above compi-

lation step allows us to track resources on a per-sameset basis. A key optimization enabled by

the language compiler is to track resources only for “active” samesets (i.e., non-empty sets of

one or more homogeneous machines). We find that, as cluster sizes scale, the number of active

samesets remains small. This is a well contained number (<3000 samesets) even for our largest

data center (Fig. 8.3). Reservation plan scalability is confirmed in §8.4.

LowCost placement agent allocates resource capacity across samesets within the specified

time window of each reservation request. LowCost—the placement algorithm used—takes into

account user allocation preferences. Placement decisions are driven by a configurable cost func-

tion that guides the search in the solution space. We chose a particular instantiation of that cost

function which “balances” the load within and across samesets. This translates to smoother ca-

pacity allocations over time, which improves acceptance for future jobs with stricter requirements
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and minimizes preemption of running containers. LowCost is described in detail in [11].

Optimized PlanFollower synchronizes the state of the reservation plan with the state of the

underlying scheduler. It operates in a cyclic fashion. At each cycle, it takes a slice of all cur-

rently allocated reservations in the Plan and configures the underlying scheduler to honor those

guarantees. Since this is done on a per-sameset basis, this module is a potential source of scala-

bility challenges, which we successfully resolve by relaxing the unnecessary strong consistency

guarantees inside YARN ResourceManager’s queue maintenance logic.

Label-Aware Scheduler, configured by the PlanFollower, enforces allocated capacity guaran-

tees on the right resource samesets. It manages the lifecycle of active jobs, cluster machines,

their dynamically changing attributes and capacities. All sameset capacity and dynamic attribute

changes are pulled periodically by the Planfollower and propagated to the Reservation Plan. Jobs

are submitted directly to the scheduler with a reservation id acquired from the reservation agent

and execute within the envelope of that reservation’s guaranteed capacity. It is important to em-

phasize that this capacity potentially varies both over time and in the types of resources a job is

guaranteed access to, in strict accordance with the user-specified HRDL expression.

8.3 HRDL

In this section, we first illustrate the Heterogeneous Reservation Definition Language (HRDL),

by means of two examples, and then provide a formalization for it.

8.3.1 Example 1: Spark Job with allocation preference

We use the Spark job of Figure 8.1, which requires 80 containers each with 16GB and 8cores for

1 hour, if this reservation is mapped to machines of type “CPU1”, or for 1.5 hours if it mapped

to “CPU2” machines; a third option is to map the reservation to a mix of the two CPUs, where

the minimum lease duration will be determined by the slower CPU (hence, 1.5 hours). While the
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job can run on all three combinations above, it prefers to use the first option as its actual runtime

is faster (hence, for example, less likely to stumble due to failures). The job also has some time

flexibility, with a deadline of three hours from the submission time.

We use a script-like syntax and capture the above constraints in the following HRDL expres-

sion rd as follows:

b = <16GB,8core>; // container size

h = 80; // degree of parallelism;

g = 80; // min parallelism (gang);

l1 = 1hr; // min lease duration;

w1 = 80container/hours // total work to place

q1 = "CPU1"; // node-label expression

a1 = ATOM(b,g,h,l1,w1,q1); //atomic expression

l2 = 1.5hr;

w2 = 120container/hours // total work to place

q2 = "CPU2";

a2 = ATOM(b,g,h,l2,w2,q2);

q3 = "CPU1 or CPU2";

a3 = ATOM(b,g,h,l2,w2,q3);

p = P ANY(a1,a2,a3); // preferential ANY

s = now(); // start time

d = s + 3hr; // deadline

rd = WINDOW(p,s,d); // time window

The example highlights how the user can specify the time window for resource allocation

(via the WINDOW predicate), how the system could choose amongst a rank-ordered list of alloca-
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Figure 8.5: HRDL Compiler translates arbitrary attribute-based boolean expressions into a union
of a subset of partitions.

tion alternatives (via the P ANY predicate), and precise choices of parameters for an individual

allocation (via the ATOM predicate).

8.3.2 HRDL Formalization

We develop HRDL by extending Rayon’s resource definition language described in [10]. Our

extensions enable users to explicitly specify heterogeneity in resource needs as well as ordinal

allocation preferences. For the sake of completeness, we provide a formalization of the language

from [10], adapted to include the novel extensions.

An HRDL expression can be:

An atomic expression of the form ATOM(b,g,h,l,w,q), where: b is a multi-dimensional

bundle of resources2 (e.g., <2GB RAM, 1 core>) representing the “unit” of allocation (i.e.,

container), h is the maximum number of containers the job can leverage in parallel, g is the

minimum number of parallel containers required by the job; a valid allocation of capacity at a

time quanta is either 0 containers or a number of containers in the range [g, h]. l is the minimum

lease duration of each allocation; each allocation must persist for at least l time steps, and w is

2This matches YARN containers [71] and multi-resource vectors in [21].
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the threshold of work necessary to complete the reservation (expressed as container hours); the

expression is satisfied iff the sum of all its allocations is equal to w. The last parameter q encodes

heterogeneity. It is an arbitrary boolean expression of labels (e.g., “(CPU1 or CPU2) and

!ENV1”), and bounds this atom to be satisfied over a certain set of machines, i.e., the ones which

carry a set of labels matching this expression.

A choice expression of the form ANY(e1, . . . , en). It is satisfied if any one of the expressions

ei is satisfied.

A preferential choice expression of the form:

P ANY(e1, . . . , en). It is satisfied if any one of the expressions ei is satisfied. In particular,

considering resource heterogeneity, order matters, and the planning system is asked to satisfy the

ei with the lowest index i possible.

A union expression of the form ALL(e1, . . . en). It is satisfied if all the expressions ei are

satisfied.

A dependency expression of the form ORDER(e1, . . . , en). It is satisfied if for all i the

expression ei is satisfied with allocations that strictly precede all allocations of ei+1.

A window expression of the form WINDOW(e,s,f), where e is an expression and [s, f) is

a time duration interval. This bounds the time range for valid allocations of e.

We note that in the items above, each ei can be an atomic expression, or, more gener-

ally, could nest other operators. For example, extending example 2, one may have ORDER(c,

P ANY(m1,m2)), where m1 and m2 represent two different alternatives for running the ML-

stage, say on FPGA or or regular machines – for longer duration).

It is easy to see that HRDL allows users to express completely malleable jobs such as MapRe-

duce (by setting g = 1 and l = 1) and very rigid jobs such as MPI computations requiring

uninterrupted and concurrent execution of all their tasks (by setting g = h and l = w/h). The

WINDOW operator allows to constrain the interval of validity for any sub-expression. Its natural

application is to express completion deadlines. Users can represent complex pipelines and DAGs
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of jobs in RDL using the ORDER, ALL. The ANY operator allows one to express alternative op-

tions to satisfy a single reservation.

The key extensions we provide are the ability to constrain each ATOM to a specific set of ma-

chines, and the ability to impose a ranking order among alternative options via the new operator

P ANY. These syntactic extensions, albeit small, substantially increase the expressivity of the

language.

Given a set of HRDL expressions which arrive online, the role of the planning phase is to

examine if and how to accommodate each request. We next describe the underlying algorithms

for making these decisions.

8.4 Aramid: Experimental Evaluation

Finally, we validate Aramid with production-derived workloads both on two physical clusters

(a 265-node and a 2700-node production cluster) and in simulation. Recall that the two major

goals were (a) to validate TetriSched’s space-time soft constraint ideas in production and (b) to

perform validation at production scale and with production or production-derived workloads.

First, we show that the combination of heterogeneity-awareness and allocation preference

support yields 43% more goodput on production-derived cluster workloads on a real cluster (Fig. 8.6).

Second, we conduct thorough scalability tests in simulation as well as on a 2700-node production

cluster (§8.4.4).

8.4.1 Experimental Setup

We now describe the systems we compare, metrics of success, workloads, and cluster configura-

tions.

As our baseline, we use a recent version of Apache Hadoop YARN [71] (trunk as of July

2015). Aramid’s best configuration (Aramid-LowCost) is then compared against alternative
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SLO
attainment Goodput Best-effort capacity

Base-Greedy 99.58% 100.00% 21.95%
Aramid-LowCost 99.99% 143.51% 26.08%
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Figure 8.6: Aramid-LowCost achieves higher goodput, near perfect SLO attainment, and uses
less resources on a 265-node cluster with Prod1 workload.

Base-Greedy YARN [71], with Greedy [10]
Base-LowCost YARN [71], with LowCost algorithm
Aramid-Greedy Aramid, with label-aware Greedy
Aramid-LowCost* Aramid, with label-aware LowCost

Table 8.1: Systems compared for Aramid evaluation.

Aramid and baseline configurations in Table 8.1.

Throughout our experiments we compare the above systems according to the five metrics

described in Table 8.2. These metrics combined provide insight into the system’s predictability,

and efficiency (work delivered / used resources).

Unless otherwise specified, our experiments are based on a workload trace derived from a

Success Metrics

SLO attainment percentage of jobs receiving all
of the resource they reserved

Goodput sum of good work performed (cpu-hours)
Acceptance count of accepted reservations
Best-effort Capacity resources left to best-effort jobs
Preemption potentially preempted containers

Table 8.2: Aramid success metrics
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Prod1 Workload

framework class freq. % avg avg alloc.
duration parall. pref.

MR/TEZ
S 7% 73 1.5

noneM 15% 156 19
L 0.6% 2778 469

SPARK

S 39.8% 173 2.6

soft
M 14.52% 605 18
L 7.8% 1400 88

XL 4% 6300 510
XXL 8.6% 24570 1000

MPI - 1.56% 7800 400 hard

Table 8.3: Prod1: composition of a production workload extracted from a 4k cluster.

4k-node cluster at Microsoft. We refer to it as Prod1 and describe its key characteristics in

Table 8.3.

We categorize the jobs in this workload in 9 classes based on framework (MapReduce/Tez,

Spark, MPI) and job size. We then extract several key statistical distributions: job arrival times,

workload frequency, job parallelism, job duration, and allocation preference type.

Reservation deadline data was not readily available. Nevertheless, based on conversations

with internal users and cluster operators, we choose the deadline to be normally distributed

around 1.5 times the duration of the job. We determine the relative execution runtimes across

heterogeneous labels based on job profiling (e.g., Figure 8.1). We then use standard Hadoop

tools (Gridmix [64]) to generate thousands of reservation and job submissions, driven by the

above distribution parameters.

8.4.2 Comparing with the State of the Art

In this section, we compare our system (Aramid-LowCost) with a state-of-the-art baseline (Base-

Greedy) running on a real cluster.

265-nodes cluster run. To measure the effect of heterogeneity- and preference-awareness HRDL

provides in Aramid, we ran a long experiment on a 265-node cluster with the Prod1 workload,
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and report on 4h of steady-state execution. Figure 8.6 shows that Aramid-LowCost achieves 43%

higher goodput, while leaving slightly more capacity for best effort jobs and matching baseline’s

SLO attainment. The Base-Greedy baseline is not heterogeneity-aware. Thus, it ignores MPI

class placement constraints, scheduling those jobs anywhere. Further, Base-Greedy does not

support allocation preferences. Therefore, it is forced to conservatively estimate job runtimes

in order to retain good SLO attainment. Aramid, however, represented by Aramid-LowCost in

Fig. 8.6, understands both heterogeneity and allocation preferences. It, thus, accommodates con-

straints specified by both the MPI and SPARK workload classes and is able to draw much tighter

reservation envelope around jobs, as it controls explicitly on which type of nodes they will run.

The SLO attainment results in Fig. 8.6 are equivalent (Aramid-LowCost achieves a marginal ad-

vantage). However, resource efficiency results are overwhelmingly in favor of Aramid-LowCost.

Aramid delivers 43.5% higher goodput with about 4% less resources. This increased efficiency,

translates in higher ROI for large production clusters.

8.4.3 Benefit from heterogeneity awareness and ordinal preferences

First, a substantial amount of performance benefit comes from support for heterogeneity- and

preference-awareness in Aramid. We confirm this with the following two simulation experi-

ments. First, we repeat the real cluster experiment in Fig. 8.6 and obtain consistent results for

Base-Greedy and Aramid-LowCost. In this run, we also simulate Base-LowCost and Aramid-

Greedy, finding that the Prod1 workload (as opposed to [8, 9]) has little flexibility—most jobs are

rigid gangs. This bounds possible algorithmic gains. Most of improvement comes from HRDL

expressivity.

Second, we explore the potential of HRDL when faced with even more heterogeneity, by

simulating the FPGA index-serving workload sharing a heterogeneous cluster with our Prod1

workload. We simulate a 2700 node cluster with 1632 FPGA host nodes connected via tori (as

in [54]) and 1068 regular nodes. Such a cluster composition is sufficient to accommodate a
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Figure 8.7: Aramid achieves higher goodput, accepts more reservations into the plan, and leaves
a comparable amount of best effort capacity.

heterogeneity-unaware Base-LowCost (which is less efficient and needs more nodes). We auto-

matically3 derive HRDL expressions from the production traces used for [54] for both Aramid-

LowCost and Base-LowCost and scale them to fit this simulated cluster.

Results (Fig. 8.7) indicate that HRDL-enabled Aramid-LowCost accepts up to 3.5× more

reservations than the LowCost-enabled baseline and increases cluster goodput by up to 50%,

while leaving a comparable amount of capacity for best effort jobs. The ability of HRDL to

model preferences, allows us to pick the preferred hardware for the serving workload, as well as

for the Spark jobs in Prod1 whenever possible, but also spill over to less desired hardware when

needed, thereby packing the cluster more tightly.

3By means of tooling available internally at Microsoft.
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Figure 8.8: Scalability metrics for large scale real cluster run (on 2700 nodes)

8.4.4 Aramid scalability and practicality

In this subsection, we confirm Aramid’s scalability both on a real cluster and simulation.

Aramid scales to 2700 nodes. Lastly, we validate Aramid’s scalability to target production

clusters, by running it live on a large production cluster with tens of labels on 2700 machines,

scheduling almost 100k concurrent containers through the ResourceManager. We run a sustained

8 hours experiment, with hundreds of reservation submissions per hour. We measure the system

performance both as perceived by the user (not shown), and as observed by instrumented system

components (Fig. 8.8).

The key takeaway of this experiment is three-fold. First, we demonstrate that Aramid is

able to sustain high load on a large cluster. Second, we show that Aramid can achieve high

plan utilization. Third, we confirm that user-facing latencies are in-line with production clus-

ter user expectations. We see up to 900 concurrent reservations in the plan, with up to 270 of

them active throughout the 8hr run. At peak, aggregate guaranteed capacity exceeds the 92TB of

container memory, reaching maximum plan capacity. The system remains responsive through-

out the experiment with reservation submission latencies within 10sec. Internally, we measure

the key PlanFollower latency. It is one of the most loaded components of the system, as it per-
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Figure 8.9: Aramid scales linearly up to 3000 samesets. Submitted HRDL expressions randomly
choose and permute X/2 samesets, increasing load on the LowCost placement agent and space
requirements in the Plan.

forms |reservation| ∗ |samesets| operations per its cycle, while synchronizing the plan with

core scheduler data structures (§8.2). Despite the load, the Planfollower latency is well below

its configured 1sec cycle period. Our implementation derives benefit from improved scheduler

locking mechanisms and outperforms our initial implementation by an order of magnitude in the

number of concurrent reservations and two orders of magnitude in worst-case cycle latency.

Aramid scales to 3000 samesets. In simulation, we stress test Aramid’s LowCost placement

agent and the reservation plan (Fig. 8.4)—its core algorithmic components. In Fig. 8.9, we

submit 10k reservations for each data point and report average reservation submission times.

We sweep 100 to 3000 sameset range to match our data center (Fig. 8.3). Submitted HRDL

expressions randomly choose and permute X/2 samesets to progressively increase the load on

the LowCost placement agent and the space complexity of the Plan. We definitively conclude

that Aramid scales linearly up to our target datacenter sameset counts.
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8.5 Other Impact

Our work was featured in a recent presentation [2] by Raghu Ramakrishnan, CTO for Data and

Technical Fellow at Microsoft. Anecdotally, some of the biggest and most immediate impact

was perceptual—proving that the latest advancements in MILP solver implementation, multi-

core machines, and our in-house MILP compiler optimizations make it possible to use MILP for

online cluster scheduling at single-digit second granularity.
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Chapter 9

Discussion and Future Work

9.1 Lessons Learned

This section lays out a number of high-level takeaways that arise from this dissertation work and

have broader implications.

First, we successfully demonstrate and have received anecdotal confirmation from industry

researchers that, contrary to prior intuitions, it is possible and practical to use traditionally heavy-

weight machinery of optimization engines for sizable clusters to schedule jobs at a single-digit

second scheduling granularity. Doing so is useful for jobs that are tens of seconds or minutes

in estimated duration. Mixed Integer Linear Programming (MILP) problems, in particular, are

often NP-Hard. As a result, the use of MILP formulation for scheduling was largely reserved for

offline resource allocation in the past. Advances in multicore technology, larger RAM, and better

scalability of MILP optimization engines, such as the IBM CPLEX solver we use, coupled with

optimization techniques we develop (§5.2.6) have created a possibility for online schedulers to

leverage MILP as well.

Second, we find that our scheduler can be surprisingly robust to runtime mis-estimation.

Foremost, this stems from the scheduler’s cyclical re-evaluation of the optimal mapping of jobs

to cluster resources. Continuous re-evaluation helps adapt to unpredictable cluster events—both
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related to hardware and software—and take corrective action that maintains a global schedule

based on the latest available cluster state snapshot and formed projections.

Third, heterogeneity in both hardware and software causes scheduling to lose its desired

properties of commutativity and associativity. Indeed it can be shown under simplifying assump-

tions that scheduling unconstrained jobs with known runtime estimates and resource quantity

demands is (a) commutative and (b) associative. Any order of placement will yield the same re-

sult in terms of cluster space-time allocation. Only capacity supply and demand need to be con-

sidered. Heterogeneity breaks these properties and engenders and exponentially large space of

placement options. It is no longer about aggregate capacity allocation. Even the simplest forms

of heterogeneity (§2.1) create the need to differentiate between capacity drawn from resource

pools of different types. More complex forms of heterogeneity (e.g., combinatorial heterogene-

ity) differentiate between different subsets of resources, even when they are of the same type.

The takeaway is that heterogeneity (as defined in §2.1) extends beyond capacity differences and

resource attribute differences. The ambiguity of the “heterogeneity” term (which we clarify in

§2.1) may have masked the extent of the challenge it poses for production clusters—a challenge

for which prior scheduling solutions were insufficient.

Fourth, as was shown in §7.4.2, TetriSched’s ability to perform “global scheduling” is es-

sential for heterogeneous cluster scheduling with soft constraints. We expressly distinguish

TetriSched’s ability to perform orderless scheduling from other scheduling techniques that per-

form batching and re-ordering of jobs in a pending queue. When dealing with heterogeneous

jobs, specifically with soft constraints, it can be shown that any order of jobs may produce sub-

optimal results. Only simultaneous consideration of all pending jobs’ constraints guarantees

optimal arbitration of their constraints. Doing so also obviates the need to order jobs to be con-

sidered for placement.
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9.2 When is impact greatest?

The impact of our work for a given environment is governed by a number of factors. First, the ex-

tent and the complexity of heterogeneity plays a key role. In purely homogeneous environments,

existing solutions will be as effective. In heterogeneous environments however, more benefit

from TetriSched is derived with increased percentage of cluster space-time demand that comes

with placement constraints. As expected, the benefit for hybrid mixes of constrained and uncon-

strained workloads is proportional to the fraction of total demand that explicitly differentiates

between different types and sets of resources.

Second, jobs with soft constraints, namely, those that have a number of admissible placement

options of varying degree of fitness, benefit from STRL’s ability to capture those constraints

declaratively. We quantify the benefit extracted from TetriSched’s soft constraint awareness in

§7.1. In cluster environments where jobs have exclusively hard constraints or no constraints

whatsoever, the expressive power of STRL would be underutilized and reduced to the use of

language primitives (§3.3.1) alone. Jobs with soft constraints benefit from the full spectrum of

STRL’s expressivity by using the language operators (§3.3.2) as well.

Third, even in environments with heterogeneity and soft constraints, the relative merit asso-

ciated with different placement options plays an important role. If the relative merit difference is

insignificant (see §7.1.2), the difference between scheduler outcomes also becomes insignificant

and approaches the behavior of simpler scheduling policies (e.g., None). Indeed, in Fig. 7.4,

both the aggregate value and the mean response time for TetriSched approaches that of a much

simpler None scheduling policy for minimal slowdown factors on the x-axis. The same effect

can be observed by looking at Fig. 7.6. As the slowdown factor increases, so does the gap be-

tween the None policy and TetriSched. At the other extreme of the relative merit continuum,

excessively large benefit associated with certain placement options can effectively be treated as

a hard constraint. TetriSched’s benefit of comprehending soft constraints is the highest when the

relative merit of alternative placement options are between 1.5x and 5x.
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Fourth, as demonstrated in Fig. 7.6, workloads with increased inter-arrival burstiness benefit

from TetriSched’s ability to plan ahead the most. The reason for this is that burstier workloads

can create transient overload for all or a part of cluster resources (e.g., machines with an FPGA

could be experiencing the highest load when web search index is recomputed). These transient

overloads could intuitively be visualized as ripples in the cluster resource space-time. TetriSched

can “smooth out” these ripples in space by letting the excess load “spill over” onto suboptimal

placement options. TetriSched can further smooth out the transient overload in time by consider-

ing a fraction of the pending load for deferral, leveraging jobs’ declaratively specified flexibility

in the time dimension.

Fifth, not surprisingly, load is a significant contributing factor affecting the utility of proposed

mechanisms. As discussed in §7.1 (Fig. 7.2), lower load reduces the need for more advanced

scheduling solutions simply because the cluster is over-provisioned enough to accommodate im-

perfect allocation decisions. Specifically, we found that with ρ < 0.5 the difference between

TetriSched and Hard is insignificant. Increasing ρ, however, quickly creates a significant sepa-

ration between them. We study the effect of partial partition load further by looking at scheduler

performance as we offer progressively unbalanced workload in Fig. 7.2. This confirms our intu-

ition that, even when the aggregate load is low, finer granularity load on individual resource par-

titions still plays an important role, as some partitions may dynamically become more contended

than others. Such unbalanced workloads (relative to the composition of the cluster) significantly

benefit from the ability of TetriSched to smooth out transient overloads, widening the scope of

TetriSched’s effectiveness.

There are limitations to what STRL can express, and we view this as a great opportunity

for future work (§9.3). STRL expressions, by design, operate on resource subsets. Recall that,

mathematically, we model a soft constraint as a function that maps arbitrary resource subsets

to R. Resource subsets are declaratively specified using any one of the family of resource at-

tribute description languages. As such, resource subsets can be specified only as a function of
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resource attributes. They cannot be specified based on the property of pending jobs. Once a

job is scheduled, its unique identifier may serve as an attribute of the set of resources occupied.

Before that, however, any preferences that wish to express a relationship between pending jobs

cannot be specified and serviced in a single cycle. Nevertheless, the expressiveness of STRL and

its implementation in TetriSched is general enough to apply in a variety of resource management

contexts, including non-systems scenarios, such as serving bids for a heterogeneous fleet of cars

or drones.

9.3 Future Work

9.3.1 Cloud Federation and Brokerage

A growing number of Infrastructure-as-a-Service (IaaS) providers competing on the resource

spot market presents an interesting opportunity to leverage all of them simultaneously, serving

as a proxy to the customers who just want to run their jobs. The extent of heterogeneity in the

offerings of each such provider(e.g., Amazon, Google, and Microsoft as the biggest players)

necessitates a principled general way of capturing this heterogeneity in a unified fashion across

providers and scheduling jobs against a set of thus abstracted resources. TetriSched’s approach is

well-positioned as a significant step in this direction with its ability to quantify and express a large

number of placement options succinctly with STRL. Some open challenges include handling

dynamic changes in the value or cost of those placement options, particularly in the context of

spot market price variation.

9.3.2 Probabilistic Scheduling

There are several sources of non-determinism in our model. First, at scale, machines have a

greater probability of downtime, making equivalence sets more fluid and capacity constraints

more probabilistic, especially as we consider jobs for deferral further into the future. Second,
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job runtimes themselves are subject to mis-estimation, even when we run exactly the same job

on exactly the same set of resources with no interference. This calls for a probability-centric

formulation of the scheduling problem, where value is calculated probabilistically instead of

deterministically. We’ve introduced one ad hoc approach aimed in this direction with our mech-

anism for over-estimate handling. Namely, instead of a sharp drop-off in a job’s utility function

at the deadline point, we simply lower the expected value of the job linearly with time past the

deadline. But, casting the value calculation in a more explicitly probabilistic framework would

make it possible to rest both resource unavailability and job runtime mis-estimation handling

onto the same mathematical scaffolding of probabilistic value estimation.

9.3.3 Increased plan-ahead window

Currently, TetriSched must limit the plan-ahead window to avoid excessive MILP solver time

(or solution quality degradation due to an early solver interrupt). But, it should be possible to

increase the window of resource space-time over which we bin-pack cluster jobs. Doing so

would require a mechanism for more carefully identifying specific points of interest in time,

when the scheduler should trigger its core STRL aggregation, MILP formulation, and MILP

solution engine. Intuitively, if the state of the cluster is identical between two points in time,

there’s no need to recompute the schedule. It’s an extreme example that rarely happens in a large

cluster. However, focusing on the delta change in the cluster between two time points could yield

a much smaller MILP formulation and scale better with faster achievable scheduling latency.

9.3.4 Managing heterogeneous fleet of resources

More generally, the conceptual contributions of this work lend themselves very nicely to any

context where a set of heterogeneous resources must be allocated, and consumers have explicit

or implicit preferences over those resources. In the new era of autonomous vehicles and drones,

their management and allocation is reminiscent of the cluster resource management context we
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focus on in this dissertation. Furthermore, the time granularity of fleet allocation decisions is

such that it can easily tolerate several seconds of solver latency spent arriving at an optimal

allocation solution.

9.3.5 Fairness in a heterogeneous context

There are two problems with fairness as it’s commonly defined. First, it focuses on counting

resource consumption, instead of the higher-level objectives of resource consumers and their

satisfaction. Proportional allocation of resources may not, in general, lead to proportionally

satisfied consumers. Indeed, intuitively, given a mix of coconut and bananas, fairness will not

be achieved by proportionally dividing each pool of fruit, if some people are allergic to coconut,

some prefer bananas, and some are indifferent, as long as they get some fruit. It would be

achieved only if (a) all fruit were the same or (b) all persons were indifferent. Defining fairness

calls for a more nuanced modeling approach that captures and normalizes this heterogeneity.

We believe that defining fairness for environments with soft and combinatorial constraints is an

interesting question for future work that uses utility to quantify fairness across diverse users with

declaratively specified preference structures over a heterogeneous pool of resources.

Second, it’s typically defined as an instantaneous property of resource distribution, lacking

any notion of time. The following example illustrates how it creates a problem. Two jobs ask for

3 nodes each for 2 time units on a 4 node cluster with a deadline in 4 time units. Clearly, both jobs

can meet their deadline if serialized. Further, any sequential execution of these jobs is intuitively

fair, since both get the same amount of cluster space-time. However, viewed through the lens of

instantaneous fairness, such allocations can be perceived as unfair, since it dictates that resources

be shared equally when both jobs have pending demand. Honoring that would result in both

jobs sharing the cluster simultaneously. If such coscheduling causes interference (likely), jobs

may miss their deadlines, violating their higher-level objectives. Indeed, instantaneous fairness

can hurt performance unnecessarily as it tends to maximize the number of tenants simultane-
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ously sharing resources and, therefore, interference. Extending the definition of fairness into the

2D cluster space-time—the notion we introduce in this dissertation—is a generalization of the

traditional instantaneous approach to quantifying fairness.
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Chapter 10

Conclusion

This dissertation validates the hypothesis that it is possible and beneficial to explicitly express

(i.e., declare) jobs’ spatiotemporal resource placement preferences in cluster execution environ-

ments that exhibit complex heterogeneity and dynamicity. The result is a general-purpose space-

time soft constraint scheduling framework that enjoys an expanded, two degrees of freedom view

of cluster space-time and a wider selection of declared allocation options with varying degrees

of preference.

We address the challenge of scheduling for such heterogeneous environments directly, aiming

to provide a highly general, extensible, and widely applicable framework for expressing, com-

prehending, and leveraging declarative space-time soft constraints. The key insight of this work

is the simultaneity of considering and leveraging exponentially many choices in the space-time

state of the cluster to choose better schedules that maximize the aggregate efficiency of pending

jobs. To do so, we design a Space-Time Request Language (see STRL in §3)—the main theo-

retical contribution of this work—along with the language compiler that automatically translates

STRL expressions to the intermediate representation in the form of a canonical Mixed Integer

Linear Programming problem formulation. These two theoretical contributions form the foun-

dation for the system we architect, called TetriSched, that instantiates a list of our conceptual

contributions: (a) declarative soft constraints, (b) space-time soft constraints, (c) combinatorial
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constraints, (d) orderless global scheduling, and (e) in situ preemption.

We demonstrate that these ideas can be applied in the context of cluster resource manage-

ment, effectively capturing a variety of job types and their preferences specified over a range of

resource types. We empirically validate that space-time soft constraints improve resource allo-

cation decisions both in terms of a normalizing currency of utility, when jobs’ objectives are not

directly comparable, as well as in terms of concrete systems metrics, such as completion time

SLOs, deadlines met, and best-effort latency.

TetriSched is designed from first principles to be highly general and, therefore, applicable in a

variety of other resource management contexts. First, we adapt some of the ideas in collaboration

with Microsoft as we design and implement a heterogeneity-aware resource reservation system

called Aramid with support for ordinal placement preferences (a subset of the expressivity of soft

constraints), targeting deployment in production clusters at Microsoft scale (see §8). A range of

practical considerations there restricts the generality of space-time soft constraints that could be

reasonably and widely deployed in a single release. A sequence of steps, forming an adoption

on-ramp is, therefore, preferred, and we’ve taken the first significant step with Aramid. Second,

TetriSched ideas found applications in the context of execution thread placement on manycore

Network-on-Chip processors, such as Tilera’s TilePro64 [67]. Third, space-time soft constraints

may even find application outside the realm of computer systems altogether. The notion of

flexible preferences in terms of types of resources, readily available resource usage duration

estimate, and flexibility of resource access start time is directly applicable to fleet management,

e.g., short-term car rentals, such as the (currently manual) reservation-based service offered by

ZipCar today.
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