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Abstract

Enabling computers to understand human and animal behavior has the potential
to revolutionize many areas that benefit society such as clinical diagnosis, human-
computer interaction, and social robotics. Critical to the understanding of hu-
man and animal behavior, and any temporally-varying phenomenon in general, is
the capability to segment, classify, and cluster time series data. This thesis pro-
poses segment-based Support Vector Machines (Seg-SVMs), a framework for super-
vised, weakly-supervised, and unsupervised time series analysis. Seg-SVMs outper-
form state-of-the-art approaches by combining three powerful ideas: energy-based
structure prediction, bag-of-words representation, and maximum-margin learning.
Energy-based structure prediction provides a principled mechanism for concurrent
top-down recognition and bottom-up temporal localization. Bag-of-words represen-
tation provides segment-based features that tolerate misalignment errors and are
computationally efficient. Maximum-margin learning, such as SVM and Structure
Output SVM, has a convex learning formulation; it produces classifiers that are
discriminative and less prone to over-fitting.

In this thesis, we show how Seg-SVMs outperform state-of-the-art approaches for
segmenting, classifying, and clustering human and animal behavior in video and ac-
celerometer data of varying complexity. We illustrate these benefits in the problems
of facial event detection, sequence labeling of human actions, and temporal cluster-
ing of animal behavior. In addition, the Seg-SVMs framework naturally provides
solutions to two novel problems: early detection of human actions and weakly-
supervised discovery of discriminative events.
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Chapter 1

Introduction

“History is moving statistics and statistics is frozen history.”

– August Ludwig von Schlözer

Temporally-varying phenomena are all around us, from temperature and stock prices

to heart rates and human behavior. An important step to understand any of these

phenomena is to analyze its time series data, which are sequences of observations

through time.

Time series analysis has long been an important research topic, with a history of at

least 350 years [Klein, 1997]. Graunt [1662] studied the bills of mortality collected

over half a century. The main tool of Graunt was the Rule of Three, a
b

= c
d
, an

arithmetic technique of using three known values to solve for a fourth unknown

factor in a ratio relationship. Graunt used the Rule of Three to hypothesize and

verify temporal patterns. For example, Graunt noted from 1628 to 1662, 130,866

females and 139,782 males were christened. Using the Rule of Three, he simplified

the gender comparisons by stating that there were thirteen women to every fourteen

men. Also with this arithmetic, Graunt reduced the weekly mortality bills of 54 years

into several life tables, giving probabilities of survival to each age. After the work

of Graunt which analyzed ratio relationships, many other techniques such as first

difference, moving average, and correlation were used for time series analysis. More

recently, wavelet transform [Percival and Walden, 2000] and Kalman filter [Kalman,

1
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1960] were invented and applied to time series analysis. These techniques, however,

were developed before the age of powerful computers and affordable sensors. Most of

them were designed for single, low-dimensional time series and for low-level semantic

analysis such as estimating trends and computing seasonal variations. Nowadays,

with the widespread availability of personal computers and affordable sensors, many

more important temporally-varying phenomena can be studied. At the same time,

time series data are more complex. Classical problems become more challenging.

New problems emerge.

Recent methods for time series analysis are often based on extensions of dynamic

Bayesian networks. This approach, however, has several limitations due to the

requirement of a good hidden state model, the limited ability to model the null

class, and the complicatedness and expensiveness of learning and inference.

In this thesis, we study modern time series in the context of human and animal

behavior analysis. We propose segment-based SVMs (Seg-SVMs), a framework that

overcomes some limitations of existing approaches for segmenting, classifying, and

clustering time series. In particular, we address five important problems: event

detection, sequence labeling, early event detection, discriminative event detection,

and temporal clustering. Three of these problems have received little or no attention

in the computer vision literature. In the following, we will describe these problems

in details.

1.1 Event detection

One important problem of time series analysis is event detection, i.e., localizing and

recognizing the occurrences of temporal patterns that belong to some predefined

target classes. Examples of target event classes are human actions [Ke et al., 2005],

sport events [Efros et al., 2003, Xu et al., 2003], and facial expressions [Bartlett

et al., 2005, Lucey et al., 2006]. Figure 1.1 illustrates the task of smile detection

in a video. It is important to emphasize that event detection is different from and

harder than event recognition. Event detection in continuous time series involves

both localization and recognition. Given a time series, a detector system must
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Figure 1.1: Event detection is to localize all occurrences of an event of interest.
This figure illustrates smile detection – determining when the subject starts and
stops smiling.

localize the starts and the ends of target events and then recognize their classes.

Event recognition systems, such as those from Yamato et al. [1992], Brand et al.

[1997], Gorelick et al. [2007], Sminchisescu et al. [2005], and Laptev et al. [2008], only

need to classify pre-segmented subsequences that correspond to coherent events.

Because events are fundamental components of time series, event detection is an

important problem. It is a cornerstone in many applications, from video surveil-

lance [Piciarelli et al., 2008] and earthquake detection [Roberts et al., 1989] to mo-

tion analysis [Aggarwal and Cai, 1999] and psychopathology assessment [Cohn et al.,

2009].

Event detection has been extensively studied in the literature of computer vision.

The most popular approach is segment classification, which first selects candidate

segments and then uses a classifier to predict if the segments belong to a target

event class. To select candidate segments, some methods use low level cues such as

trajectories of moving objects [Liao et al., 2006, Piciarelli et al., 2008] and repeti-

tive motions [Polana and Nelson, 1994] while other methods use the sliding window

approach which considers all subwindows of certain sizes, e.g., [Efros et al., 2003,

Shechtman and Irani, 2007]. To detect events of different lengths, some adopt multi-

scale processing [Ke et al., 2005] while others use windows of multiple sizes [Bobick

and Davis, 1996, 2001]. In the extreme case, the window size could be one, and a

time series is treated as a collection of frames [Bartlett et al., 2005, Littlewort et al.,

2006, Lucey et al., 2006, Tian et al., 2005]. To classify candidate segments, many

pattern-recognition methods have been used, including template matching [Bobick

and Davis, 1996, 2001, Polana and Nelson, 1994, Shechtman and Irani, 2007], nearest

neighbor [Efros et al., 2003, Gorelick et al., 2007, Liao et al., 2006], SVMs [Cao et al.,

2004, Piciarelli et al., 2008, Pittore et al., 1999], boosting [Ke et al., 2005, Laptev
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and Perez, 2007, Nowozin et al., 2007, Smith et al., 2005], neural networks [Vassi-

lakis et al., 2002], and state-space models [Andrade et al., 2006, Bobick and Wilson,

1997, Hongeng and Nevatia, 2003]. Although segment classification has been widely

used for event detection, it has several limitations. First, this approach classifies

each candidate segment independently; it makes myopic decisions [Wang et al.,

2006] and requires post-processing (e.g., to handle overlapping detections). Second,

the segment classification approach often has difficulties for accurate localization of

event boundaries [Wang et al., 2006], due to the ineffective use of negative exam-

ples in training. Negative examples are segments that misalign with target events,

and they are either ignored (e.g., [Bobick and Wilson, 1997, Shechtman and Irani,

2007]) or required to be disjoint from the positive training examples (e.g., [Ke et al.,

2005, Laptev and Perez, 2007]). In both cases, segments that partially overlap with

positive examples are not used in training; those segments, however, are candidates

for inaccurate localization at test time.

In Chapter 3, we will address event detection using Segment-based SVMs (Seg-

SVMs). We show how the Seg-SVMs framework leads to an algorithm that does not

suffer from the aforementioned limitations of the segment classification approach.

1.2 Sequence labeling

Another important problem in time series analysis is sequence labeling, which factor-

izes a time series into a set of non-overlapping segments and assigns a class label to

each segment. Figure 1.2 shows an example of sequence labeling: a video is labeled

as a sequence of facial expressions. Sequence labeling is related to event detection

and it is often used for event detection. But these two problems are different. A

sequence labeling system assigns a unique semantic label to each frame, while an

event detection system may assign no or multiple labels.

Sequence labeling is an important problem of time series analysis. It has been shown

to be useful in a wide range of applications, from natural language processing [Ra-

biner, 1989] to office activity understanding [Brand and Kettnaker, 2000] and animal

behavior analysis [Oh et al., 2008].
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Figure 1.2: Sequence labeling factorizes a time series into a set of non-overlapping
segments and recognizes their classes. In this figure, a facial video is labeled as a
sequence of expressions.

Most existing techniques for sequence labeling are based on probabilistic hidden-

state models, and labeling a time series is equivalent to finding the sequence of

event labels that yields the highest probability. Brand and Kettnaker [2000] use

Hidden Markov Models (HMMs) [Rabiner, 1989] for understanding office activities.

Xu et al. [2003] use multi-layer HMMs [Rabiner, 1989] to analyze baseball and vol-

leyball videos. Oh et al. [2008] and Fox et al. [2009] use variants of Switching Linear

Dynamical Systems (SLDS) [Pavlovic and Rehg, 2000, Pavlovic et al., 2000] to an-

alyze human and animal behavior. Chang et al. [2009], Koelstra and Pantic [2008],

Shang and Chan [2009], Tong et al. [2007], Valstar and Pantic [2007] use Dynamic

Bayesian Networks (DBNs) for detecting facial events, while Laxton et al. [2007]

design a hierarchical structure based on DBNs to decompose complex activities. Al-

though these generative methods have been shown to be effective in their respective

scenarios, they have limited ability to model the null class (i.e., no event, unseen

event, or anything that we do not have a label for) due to the large variability of

the null class. Conditional Random Fields (CRFs) [Lafferty et al., 2001] are the

discriminative alternatives to HMMs, and they have been successfully used for a

number of applications such as detection of highlight events in soccer videos [Wang

et al., 2006]. CRFs, however, cannot model long-range dependencies between la-

bels [Sarawagi and Cohen, 2005], disabling the use of segment-level features. CRFs

can be extended to account for higher-order dependencies, but the computational

cost increases exponentially with the clique size. Semi-Markov CRFs [Sarawagi and

Cohen, 2005] have lower computational cost, but they also require short segment

lengths [Okanohara et al., 2006]. Nevertheless, CRF-based models, like HMMs or

any other hidden-state model, suffer the drawbacks of needing either an explicit

definition of the latent state of all frames, or the need to simultaneously learn a
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state sequence and state transition model that fits the data, resulting in a high-

dimensional minimization problem with typically many local minima.

In Chapter 4, we will show how Seg-SVMs can be used for sequence labeling, yielding

a convex discriminative learning formulation and an efficient segmentation-labeling

inference.

1.3 Early event detection

Apart from the classical problems of event detection and sequence labeling, this

thesis addresses three other important problems in time series analysis, which have

received little or no attention. One such problem is early event detection. A tem-

poral event has a duration, and by early detection, we mean to detect the event as

soon as possible, after it starts but before it ends. Figure 1.3 illustrates the early

detection of a smile.

The ability to make reliable and early detection of temporal events has many poten-

tial applications in a wide range of fields, ranging from security (e.g., pandemic

attack detection), environmental science (e.g., tsunami warning), to health-care

(e.g., risk-of-falling detection using wearable sensors) and robotics (e.g., affective

computing). As a concrete example, consider building a robot that can affectively

interact with humans. Arguably, a key requirement for such a robot is its ability

to accurately and rapidly detect human emotional states from facial expressions so

that appropriate responses can be made in a timely manner. This requires facial

events such as smiling and frowning to be detected even before they are complete;

otherwise, the responses would be out of synchronization.

Despite the importance of early detection, few machine learning formulations have

been explicitly developed for early detection. Most existing methods for event de-

tection are designed for offline processing. They have a limitation for processing

streaming data as they are trained to detect complete events only. But for early

detection, it is necessary to recognize partial events (as illustrated in Figure 1.3),

which, however, are ignored in the training process of existing event detectors.
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Figure 1.3: Can we detect a smile as soon as possible, even before it is complete?
This figure shows a stream of facial video. The blue vertical bar indicates the
current time; the frames on the right side of this vertical bar have not been observed
yet. In this example, the subject is smiling, and the smile hasn’t completed yet.
The red segment is the only part of the smile that has happened, and we need
to recognize it. Existing event detection methods, however, are not trained to
recognize incomplete events and thus are unable to make early reliable detection.
We address this problem in Chapter 5.

Little attention has been paid to early detection in the literature of computer vi-

sion. Davis and Tyagi [2006] addressed rapid recognition of human actions using

the probability ratio test. This is a passive method for early detection; it assumes

that a generative HMM [Rabiner, 1989] for an event class, trained in the usual way,

can also generate partial events. Similarly, Ryoo [2011] took a passive approach for

early recognition of human activities; he developed two variants of the bag-of-words

representation to address the computational issues, not the timeliness or the accu-

racy, of the detection process. Previous work on early detection exists in other fields,

but its applicability to computer vision is unclear. Neill et al. [2006] studied disease

outbreak detection. Their approach, like online change-point detection [Adams and

MacKay, 2007, Desobry et al., 2005], is based on locating points at which statistical

properties change. This technique, however, cannot be applied to detect temporal

events such as smiling and frowning, which must and can be detected and recognized

independently of the background. Brown et al. [1992] proposed a method, based

on an n-gram model, for predictive typing, i.e., predicting a word from previous

words. However, it is hard to apply their method to computer vision, which does

not have a well-defined language model. Early detection has also been studied in the

context of spam filtering, where immediate and irreversible decisions must be made

whenever an email arrives. Assuming spam messages were similar to one another,

Haider et al. [2007] developed a method for detecting batches of spam messages
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based on clustering. But events such as smiling or frowning cannot be detected and

recognized just by observing the similarity between constituent frames, because this

characteristic is neither requisite nor exclusive to our target events. It is important

to distinguish between forecasting and detection. Forecasting predicts the future

while detection interprets the present. For example, financial forecasting (e.g., Kim

[2003], Tay and Cao [2001]) predicts the next day’s stock index based on the current

and past observations. This technique cannot be directly used for early event detec-

tion because it predicts the raw value of the next observation instead of recognizing

the semantic class of the current and past observations. Perhaps, forecasting the

future is a good first step for recognizing the present, but this two-stage approach

has a disadvantage because the former may be harder than the latter. For example,

it is probably easier to recognize a partial smile than to predict when it will end or

how it will progress.

In Chapter 5, we will address the need of early detection and show how the Seg-SVMs

framework leads to a novel learning formulation for training temporal classifiers

specialized in detecting events as soon as possible.

1.4 Discriminative event detection

Another newly emerged problem in time series analysis is discriminative event de-

tection. Given two sets of time series that correspond to two different classes,

discriminative event detection aims at discovering time series segments that corre-

spond to the differences. Figure 1.4 shows an example: given a set of facial videos

of depressed people on the left and a set of normal people on the right, the goal is

to automatically discover the segments that correspond to depressed moments: the

behaviors that discriminate between these two sets of time series. It is important

to note that discriminative event detection is a weakly supervised learning problem;

examples of discriminative events are not provided in training.

Discriminative event detection is an important technique to be developed. First,

the ability to discover the differences between two sets of time series has many
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Figure 1.4: Discriminative event detection – localizing the segments that discrim-
inate between two sets of time series. This figure depicts a potential application
in understanding a psychological disorder. Given a set of depressed-people time
series (left) and a set of normal-people time series (right), can we automatically
discover the segments that correspond to the depressed behaviors? Note that these
behaviors are not exhibited continuously and that many behaviors such as talking
and smiling occur across both groups.

potential applications, such as finding the unique behavior patterns of psychological-

disorder patients. Second, discriminative event detection can be used as a subroutine

for a classification system, where the classification decision depends on whether a

discriminative event can be detected. This weakly-supervised learning approach

for time series classification alleviates the need for detailed human annotations;

collecting detailed labels for time series data is a time-consuming procedure, which

often introduces subjective biases.

Despite its foreseeable impact, discriminative event detection is an unexplored prob-

lem. The literature on weakly supervised or unsupervised localization and catego-

rization applied to time series is fairly limited and does not address discriminative

event detection. Zhong et al. [2004] detect unusual activities in videos by clustering

equal-length segments extracted from the video. The segments falling in isolated

clusters are classified as abnormal activities. Fanti et al. [2005] describe a system

for unsupervised human motion recognition from videos. Appearance and motion

cues derived from feature tracking are used to learn graphical models of actions

based on triangulated graphs. Niebles et al. [2008] tackle the same problem but

represent each video as a bag of video words, i.e. quantized descriptors computed at

spatial-temporal interest points. An EM algorithm for topic models is then applied
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to discover the latent topics corresponding to the distinct actions in the dataset. Lo-

calization is obtained by computing the maximum-a-posteriori topic of each word.

In Chapter 6, we will describe how Seg-SVMs can be used in the weakly-supervised

setting for detecting discriminative events.

1.5 Temporal clustering

Another important problem that is addressed in this thesis is temporal clustering.

Temporal clustering factorizes multiple time series into a set of non-overlapping

segments that belong to several clusters, as illustrated in Figure 1.5. Temporal

clustering is different from clustering time series (e.g., Liao [2005]), which refers

to the problem of grouping pre-segmented time series that correspond to coherent

events. Temporal clustering is an unsupervised problem and therefore is different

from the sequence labeling problem described in Section 1.2.

Temporal clustering is useful in its own right as a self-exploratory technique or as a

subroutine in more complex data-mining algorithms. It has been applied to learning

taxonomies of facial behavior [Zhou et al., 2010], speaker diarization [Fox et al.,

2009], discovering motion primitives [Guerra-Filho and Aloimonos, 2006, Vecchio

et al., 2003], and clustering human actions in video [Turaga et al., 2009].

Temporal clustering is a relatively unexplored problem. Few algorithms exist and

most of them are based on generative models such as extensions of Dynamic Bayesian

Networks [Fox et al., 2009], k-means [Robards and Sunehag, 2009] and spectral

clustering [Zhou et al., 2010]. These algorithms have several drawbacks due to the

limited ability to model the null class, the absence of a feature selection mechanism,

and the complicatedness and expensiveness (even intractability) of learning and

inference.

We will address the problem of unsupervised temporal factorization in Chapter 7.

We will show how the Seg-SVMs framework leads to Maximum Margin Tempo-

ral Clustering, a discriminative algorithm that simultaneously performs temporal

segmentation and learns a multi-class SVM for separating temporal clusters. We
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Figure 1.5: Temporal clustering – factorizing multiple time series into a set of
non-overlapping segments that belong to several clusters. Temporal clustering is a
self-exploratory technique for discovering semantic classes of events.

demonstrate our approach on several publicly available datasets and show that our

method consistently matches and often surpasses the performance of state-of-the-art

methods for temporal clustering.

1.6 Our contributions and approach

In this thesis, we propose Segment-based SVMs (Seg-SVMs), a machine learning

framework for time series analysis. We show how the same design principles can

be used to derive supervised, weakly-supervised, and unsupervised learning formu-

lations. We address five different important problems of time series analysis: event

detection, sequence labeling, early event detection, discriminative event detection,

and temporal clustering. Three of these five problems have received little or no

attention in the computer vision literature.

The Seg-SVMs framework combines three powerful ideas: energy-based structure

prediction [LeCun et al., 2006], bag-of-words representation [Blei et al., 2003, Lewis,

1998], and maximum-margin training [Schölkopf and Smola, 2002, Taskar et al.,

2003, Tsochantaridis et al., 2005, Vapnik, 1998]. The combination of these three

ideas yields numerous benefits. First, we use energy-based structure prediction
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(see [LeCun et al., 2006] for a tutorial) because detecting semantic events in con-

tinuous time series is inherently a structured prediction task. Given a time series,

the desired output is more than a binary label indicating the presence or absence

of target events. It must predict the locations of target events and their associated

class labels, and energy-based structure prediction provides a principled mechanism

for concurrent top-down recognition and bottom-up temporal localization. Second,

the Seg-SVMs framework models temporal events with the bag-of-words represen-

tation [Lewis, 1998]. This feature representation has been successfully used for doc-

ument classification [Blei et al., 2003], object recognition [Sivic et al., 2005, Zhang

et al., 2001], and scene categorization [Fei-Fei and Perona, 2005]. The bag-of-words

representation requires no state transition model, eliminating the need for detailed

annotation and manual definition of event dynamics. This representation can model

and detect events of different lengths, removing the necessity of multi-size templates

or multi-sale processing. The bag-of-words representation is not as rigid as template

matching or dynamic time warping; it tolerates errors in misalignment, and it is ro-

bust to the impreciseness of human annotation. Finally, our framework is based

on the maximum-margin training [Schölkopf and Smola, 2002, Taskar et al., 2003,

Tsochantaridis et al., 2005, Vapnik, 1998], which learns a discriminative model that

maximizes the separating margin between different event classes. Maximizing the

separating margin yields classifiers that are less prone to over-fitting [Vapnik, 1998].

Furthermore, the learning formulation of maximum-margin training is convex (for

supervised learning), simple and extendable.

1.7 Organization of this dissertation

The rest of this dissertation is organized as follows. The next chapter provides an

overview of our framework. Chapter 3 describes a supervised learning algorithm

for event detection. Chapter 4 proposes a supervised algorithm for sequence label-

ing. Chapter 5 addresses the need of early detection and derives a novel learning

formulation. The next two chapters present algorithms that require less human
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annotation. Chapter 6 introduces a weakly supervised algorithm to discover dis-

criminative events, and Chapter 7 develops an unsupervised method for temporal

factorization. Chapter 8 concludes and discusses several directions for future study.

Parts of this thesis have been published [Hoai and De la Torre, 2012a, Hoai et al.,

2011, Nguyen et al., 2009, 2010], one is under review for publication [Hoai and De

la Torre, 2012b].





Chapter 2

The Foundation of Seg-SVMs

“The whole structure of science gradually grows,

but only as it is built upon a firm foundation of past research.”

– Owen Chamberlain

The problems described in the previous chapter have similar goals. They all require

factorizing a time series into a set of non-overlapping segments and providing a label

to some or all segments. For event detection, the goal is to identify the segments that

correspond to target events. For sequence labeling, the goal is to recognize the event

class of every segment. For early event detection, the goal is to identify the segments

that correspond to either complete or partial target events. For discriminative event

detection, the goal is to identify the segments that distinguish between two sets of

time series. And for temporal clustering, the goal is to provide the same cluster

label to similar segments.

We formulate this common task as follows. Suppose there are m labels (i.e., m classes

or m clusters) and let Y = {1, · · · ,m} be the set of all labels. Let Z be the set of

all length-bounded intervals: Z = {z| z ∈ N
2, lmin ≤ len(z) ≤ lmax}, with lmin, lmax

are application specific parameters. Given a time series X, a legitimate labeling-

segmentation of X is a set of label-segment pairs (y1, z1), · · · , (yk, zk) ∈ Y × Z

of which all segments z1, · · · , zk are pairwise disjoint subintervals of [1, len(X)], as

15
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Figure 2.1: The common goal of our time series analysis problems – to factorize
a time series into a set of non-overlapping segments and assign a class/cluster label
to some or all segments. yt ∈ {1, · · · , m} is a class/cluster label, and zt consists of
two scalars for the start and the end of an event.
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Figure 2.2: Some time series analysis system is required to assign a class/cluster
label to every segment of a time series.

illustrated in Figure 2.1. Some additional application-specific constraints may apply,

for example:

1. k ≤ kmax, an application-specific bound on the number of segments, or

2. z1 ∪ z2 ∪ · · · ∪ zk = [1, len(X)], every segment of X must be labeled (Fig. 2.2).

Let LS(X) denote the set of all legitimate labeling-segmentations that satisfy appli-

cation specific constraints. Our goal is to learn g(X) a predictor function (e.g., event

detector) that inputs a time series and outputs a legitimate labeling-segmentation

corresponding to the desired output (e.g., the temporal extents and event classes of

target events).

2.1 Energy-based structure prediction

We propose to find the desired output with energy-based structure prediction (see Le-

Cun et al. [2006] for a tutorial). Energy-based structure prediction provides a prin-

cipled mechanism for concurrent top-down labeling and bottom-up localization. An

alternative approach is to use probabilistic models; however, probabilistic models
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have two major disadvantages [LeCun et al., 2006]: i) the normalization requirement

limits the choice of energy functions we can use, and ii) learning and inference may

be very complicated, expensive, or even intractable.

We define g(X) as the legitimate labeling-segmentation that yields the minimum

sum of energies:

g(X) := argmin
{(yt,zt)}∈LS(X)

∑

t

E(Xzt , yt). (2.1)

Here, for a segment z = [s, e], Xz denotes the segment of time series X extracted

from time s to time e inclusive. E(Xz, y) denotes the energy for assigning segment

Xz to label y. This energy function is defined for segments of time series, instead

of for individual frames or for the entire sequence. This has several benefits. First,

it reflects the goals of our problems, which are to localize temporal phenomena at

the segment level. Second, it provides a model for long-term dependency of labels,

and at the same time, it leads to an efficient labeling and segmentation inference.

Neither frame-based nor sequence-based models have both of these properties.

The parameters of the energy function E is a set of weight vectors {w1, · · · ,wm}, one

for each label class, and a scalar bias term b (i.e., negative of a threshold). The value

of the energy function E(Xz, y) depends on wT
y ϕ(Xz)+b and maxy′ 6=y wT

y′ϕ(Xz)+b,

with ϕ(Xz) denotes the feature vector for segment Xz. The feature function ϕ(·)

is application specific, and in general, it can be any function that satisfies two

conditions: i) the input can be time series segments of any length from lmin to

lmax, and ii) the output must always be a vector of a fixed dimension. This feature

function may also be implicitly defined as the feature mapping to a kernel space. In

this thesis, we propose to use the Bag-of-Words (BoW) representation; more details

are described in Section 2.3.
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2.2 Maximum-margin training

We propose to learn {w1, · · · ,wm, b}, the parameters of the energy function E(·, ·),

using maximum-margin training [Schölkopf and Smola, 2002, Vapnik, 1998]. Maximum-

margin training is a state-of-the-art machine learning tool, which controls the ca-

pacity of the classifier space by optimizing the margin. Maximum-margin training

permits the use of kernels. It leads to sparse solutions. It has a convex learning

formulation (for supervised learning), which is simple and extendable. Given a col-

lection of training time series X1, · · · ,Xn, we learn w1, · · · ,wm and b by optimizing:

minimize
{wj},b,{ξi}

1

2m

m∑

j=1

||wj ||
2 + C

n∑

i=1

ξi. (2.2)

Here
∑m

j=1 ||wj||
2 is inversely proportional to the margin, and ξi is a surrogate loss

of the prediction function g(·) on time series Xi. This surrogate loss, and the true

loss that it approximates, depends on the amount of annotation provided and several

other factors. C is the parameter that controls the tradeoff for a larger margin and

for a lower training loss. We will discuss this in more detail in subsequent chapters.

2.3 Bag-of-Words representation

Inspired by the success of the BoW representation [Lewis, 1998] for document clas-

sification [Blei et al., 2003], object recognition [Sivic et al., 2005, Zhang et al., 2001],

and scene categorization [Fei-Fei and Perona, 2005], we consider the feature vector

of a segment ϕ(Xz) as the histogram of temporal words. This representation has

several benefits. It requires no state transition model, eliminating the need for de-

tailed annotation and manual definition of event dynamics. This representation can

model events of different lengths, removing the necessity of multi-size templates.

BoW representation is not as rigid as template matching or dynamic time warping.

It tolerates errors in misalignment, and it is robust to the impreciseness of human

annotation.
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The BoW representation builds a temporal codebook by applying a clustering algo-

rithm to a set of local descriptors sampled from the training data [Leung and Malik,

2001, Sivic and Zisserman, 2003]. Each frame of a time series is associated with

a local descriptor, and subsequently is represented by the ID of the corresponding

codebook entry. Finally, the feature vector ϕ(Xz) is taken as the histogram of IDs

associated with the frames inside the interval z. More formally, let xt denote the

local descriptor associated with the tth frame of time series X, and suppose there

are d clusters (i.e., the size of temporal codebook). Let at ∈ Rd be the indicator

vector for the clustering assignment of xt:

at = [0, · · · , 0, 1, 0, · · · , 0]T . (2.3)

All but one entries of at are 0; the uth entry is 1, with u is the ID of the cluster that

xt is assigned to. The segment-level feature vector for time series segment X[s,e] is

defined as:

ϕ(X[s,e]) =
1

Z

e∑

t=s

at. (2.4)

Here Z is the normalization factor. The feature vector is an unnormalized histogram

if Z = 1 and a normalized histogram if Z = len([s, e]).

The BoW representation for a time series segment depends on local descriptors in-

side the segment but not their locations. However, this is different from totally

ignoring the dynamics or ordering of observation values. Local descriptors are not

necessarily the same as raw observation values. A local descriptor at a particular

time can be some statistics over a supporting subwindow or subvolume of observa-

tion values. Some examples of local descriptors are statistics of brightness gradi-

ents and optical flows over a video subvolume (STIP [Laptev and Lindeberg, 2003]

and Cuboid [Dollár et al., 2005]) and frequency-domain entropy and energy over a

several-second subwindow [Bao and Intille, 2004].

Despite its simplicity, BoW representation is powerful. Furthermore, BoW repre-

sentation can be extended in many ways. The rest of this section describes several

particular extensions.
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2.3.1 No or multiple local descriptors

The above formulation simplifies the presentation by assuming each frame is asso-

ciated with a local descriptor. This is, however, not a necessary requirement. For

BoW representation, a frame can be associated with zero, one, or multiple local de-

scriptors (e.g., STIP [Laptev and Lindeberg, 2003] and Cuboid [Dollár et al., 2005]).

The segment-level feature vector can still be computed using Eq. 2.4 above, with

the indication vector at is the histogram of codebook IDs at frame t.

2.3.2 Soft quantization

BoW representation can be defined based on soft quantization. Instead of assigning

each frame to a single cluster, a frame can be associated with multiple clusters,

weighted by the proximity from the frame to the cluster centers. Segment-level

feature vector can still be computed as in Eq. 2.4, but at is the proximity vector

instead of a binary indication vector. In other words, let c1, · · · , cd be the cluster

centers for the temporal codebook, at is defined as:

at = [k(xt, c1), · · · , k(xt, cd)]
T . (2.5)

Here k(·, ·) is a a function measuring the similarity between two local descriptors.

It is not necessary for c1, · · · , cd to be cluster centers; they can be representative

vectors that are obtained using methods that are different from clustering.

2.3.3 Multiple feature types

BoW representation can be defined for different feature types. For example, suppose

there are two types of local descriptors for every frame t: x
(1)
t and x

(2)
t . We can

build two different temporal codebooks, one for each feature type, and define clus-

ter indication/association vectors a
(1)
t ,a

(2)
t accordingly. The segment-level feature

vector can be computed using Eq. 2.4, with at is the concatenation of a
(1)
t and a

(2)
t ,

i.e., at =

[
a

(1)
t

a
(2)
t

]
.
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2.3.4 HMM-inspired feature

BoW representation can be extended to account for the interaction between pairs

of consecutive frames, just like HMMs. The segment-level feature vector can be

computed as before, using Eq. 2.4, with at is the concatenation of observation and

interaction vectors:

at =

[
aobs

t

aint
t

]
. (2.6)

Here aobs
t and aint

t are the observation and interaction vectors respectively. The

observation vector is the d × 1 indicator vector for soft quantization as defined

in Eq. 2.5; this is the pseudo probability for the local descriptor to belong to a

set of predefined states (c1, · · · , cd, cluster centers or representative vectors). The

interaction vector aint
t is a d2 × 1 vector defined as:

aint
t = aobs

t−1 ⊗ aobs
t

The ((u − 1)d + v)th entry of the interaction vector is the pseudo-probability for

transitioning from state v to state u at time t. The interaction vector at time t

depends on the observation vectors at time t and time t − 1.

2.3.5 Multiple event parts

BoW representation can be extended to preserve the relative order between the

parts of an event. This can be achieved by breaking a time series segment into

smaller subsegments and compute the BoW feature vector for each subsegments, as

for spatial object [Lazebnik et al., 2006]. The feature vector for the whole segment

is then the concatenation of the feature vectors of subsegments. For example, let v

be the midpoint of segment [s, e], we can define the segment-level feature vector as:

ϕ(X[s,e]) =
1

Z

[ ∑v
t=s at

∑e
t=v+1 at

]
. (2.7)





Chapter 3

Supervised Learning for Event

Detection

“You can’t defend. You can’t prevent.

The only thing you can do is detect and respond.”

– Bruce Schneier

In this chapter, we describe a supervised learning algorithm for event detection in

the Seg-SVMs framework. We assume the training data is fully annotated, i.e., the

starts and the ends of target events in training data are provided. We also assume

target events belong to a single class; thus, event recognition is unnecessary and

localization is the only job of the detector (to detect events from multiple classes,

we can learn a set of per-class detectors). We apply our method to detect facial

Action Units (AUs) [Ekman and Friesen, 1978] in video and show its advantages

over state-of-the-art approaches for AU detection.

3.1 Energy-based event detection

Our event detector is energy-based, as descried Eq. 2.1. Because there is only one

class of target events, the set of labels has a single element and the energy function

23



Chapter 3. Event detection 24

E(Xz, y) only depends on Xz. We shorten E(Xz, y) as E(Xz) and rename w1 as w

for brevity. The output of the detector g(·) on a time series X is:

g(X) := argmin
{zt}∈LS(X)

∑

t

E(Xzt). (3.1)

Thus the output of the event detector is a set of segments that minimizes the total

sum of energies. This set of segments is possibly empty, and if it is the case, we

report no detection. The energy of a segment is defined as the negative of the

detection score E(Xz) := −f(Xz), with the detection score defined as:

f(Xz) := wT ϕ(Xz) + b. (3.2)

If the energy function is given, the set of segments that minimizes the total sum

of energies can be found using an efficient dynamic programming algorithm, which

will be described in a subsequent chapter. We now describe the maximum-margin

learning formulation.

3.2 Maximum-margin learning for event detection

This section describes the maximum-margin learning formulation for event detec-

tion. For supervised learning, this is a special case of Max-Margin Markov Net-

works [Taskar et al., 2003] and SOSVM [Tsochantaridis et al., 2005].

Let the training time series be X1, · · · ,Xn ∈ X and their associated ground truth

annotations for the occurrence of the target events be z1, · · · , zn. We assume each

training sequence contains at most one event of interest, as we can always break a

training time series that contains several events into shorter subsequences of single

events. For an ideal detector, the ground truth event zi must be the segment that

has the lowest energy, i.e., the highest detection score:

zi = argmax
z∈Z

f(Xi
z). (3.3)
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Figure 3.1: Desired detection function – the target event must have the highest
detection score. During training, we learn the detection function by enforcing this
constraint.

This is illustrated in Figure 3.1. Furthermore, the highest detection score must be

positive, otherwise no detection would be reported. That requires:

f(Xi
zi) > 0. (3.4)

For the simplicity of presentation, let I be Z ∪ {∅}, the set of time intervals plus

the empty segment. We consider the empty segment has the detection score of zero:

f(X∅) := 0. The constraints in Eq. 3.3 and Eq. 3.4 are equivalent to:

zi = argmax
z∈I

f(Xi
z). (3.5)

Equivalently:

f(Xi
zi) > f(Xi

z) ∀z ∈ I, z 6= zi. (3.6)

This constraint can be required to be well satisfied by a margin. This margin is

adaptive and proportional to ∆(zi, z), the loss of the detector for outputting z when
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the desired output is zi. The constraint for an ideal detector becomes:

f(Xi
zi) ≥ f(Xi

z) + ∆(zi, z) ∀z ∈ I, z 6= zi. (3.7)

This constraint forces the score of Xi
zi to exceed the score of Xi

z by a margin

that is equal to the loss associated the mismatch between z and zi. This loss is

application dependent; it reflects the penalty for not outputting the desired output.

Two examples of this loss function are: ∆(zi, z) = 1 − len(zi∩z)
len(zi∪z)

and ∆(zi, z) =

len(zi \ z) + len(z \ zi). In Section 3.3.5, we describe the loss function used in our

experiments.

Each training time series leads to one constraint, and to learn the parameters (w, b)

of the detector, we can maximize the margin subject to all these constraints, i.e.,

minimize
w,b

1

2
||w||2 (3.8)

s.t. f(Xi
zi) ≥ f(Xi

z) + ∆(zi, z) ∀i,∀z ∈ I. (3.9)

As in the traditional formulation of SVM, the constraints are allowed to be violated

by introducing slack variables:

minimize
w,b,{ξi}

1

2
||w||2 + C

n∑

i=1

ξi, (3.10)

s.t. f(Xi
zi) ≥ f(Xi

z) + ∆(zi, z) − ξi ∀i,∀z ∈ I,

ξi ≥ 0 ∀i.

Here, C is the parameter controlling the trade-off between having a large margin

and less constraint violation. This formulation can be viewed as a special case of

Max-Margin Markov Networks [Taskar et al., 2003] and SOSVM [Tsochantaridis

et al., 2005].

This optimization problem is convex, but it has an exponentially large number of

constraints. A typical optimization strategy is constraint generation [Tsochantaridis

et al., 2005] that is theoretically guaranteed to produce a global optimal solution.

Constraint generation is an iterative procedure that optimizes the objective w.r.t.
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Figure 3.2: Left to right, evolution of an AU12 (involved in smiling), from onset,
peak, to offset.

a smaller set of constraints. The constraint set is expanded at every iteration by

adding the most violated constraint.

3.3 Experiments – Action Unit (AU) detection

AUs are parts of the Facial Action Coding System (FACS) [Ekman and Friesen,

1978], a comprehensive, anatomically-based system for measuring all visually dis-

cernible facial movement. FACS describes facial activity on the basis of 44 unique

AUs, as well as several categories of head and eye positions and movements. Any

facial event (e.g., a gesture, expression or speech component) may be a single AU

or a combination of AUs. For example, the felt, or Duchenne smile, is indicated by

movement of the zygomatic major (AU12, e.g., Fig. 3.2) and orbicularis oculi, pars

lateralis (AU6). Because of its descriptive power, FACS has become the state-of-

the-art in manual measurement of facial expression and is widely used in studies of

spontaneous facial behavior. Much effort in automatic facial image analysis seeks

to automatically recognize FACS action units [Littlewort et al., 2006, Pantic and

Rothkrantz, 2004, Tian et al., 2005, Tong et al., 2007].

This section describes experiments on two spontaneous datasets for AU detection.

Experiment 1 (Sec. 3.3.6) compares the performance of our method against state-

of-the-art methods on a large dataset of FACS coded video. In Experiment 2 (Sec.

3.3.7) we evaluate the generalization performance by testing on a dataset that was

not used for training.
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3.3.1 Related work on AU detection

AU detection from video is a challenging computer vision and pattern recognition

problem. Some of the most important challenges are to: (i) accommodate large

variability of in action units across subjects; (ii) train classifiers when relatively few

examples for each AU are present; (iii) recognize subtle AUs; (iv) and model the

temporal dynamics of AUs, which can be highly variable.

To address some of these issues, various approaches have been proposed. Static

approaches [Bartlett et al., 2005, Littlewort et al., 2006, Lucey et al., 2006, Tian

et al., 2005] pose AU detection as a binary- or multi-class classification problem using

different features (e.g., appearance, shape) and classifiers (e.g., Boosting, SVM).

The classifiers are typically trained on a frame-by-frame basis. For a given AU,

the positive class comprises a subset of frames between its onset and offset, and

the negative class comprises a subset of frames labeled as neutral or other AUs.

Dynamic approaches, such as modifications of dynamic Bayesian networks [Chang

et al., 2009, Koelstra and Pantic, 2008, Shang and Chan, 2009, Tong et al., 2007,

Valstar and Pantic, 2007] model the dynamics of the AU as transitions in a partially

observed state space.

Although static and dynamic approaches have achieved high performance on most

posed facial expression databases [Bartlett et al., 2005, Sun and Yin, 2008, Tian

et al., 2005], accuracy tends to be much lower in studies that test on non-posed facial

expressions [Bartlett et al., 2005, Littlewort et al., 2006]. Non-posed expressions are

challenging. They are less stereotypic, more subtle, more likely to co-occur with

other AUs, and more-often confounded by increased noise due to variation in pose,

out-of-plane head motion, and co-occurring speech. They also may be more complex

temporally. Segmentation into onset, one or more local peaks, and offset must be

discovered.

For non-posed facial behavior, static approaches may be more susceptible to noise

because independent decisions are made on each frame. Similarly, hidden state tem-

poral models suffer the drawbacks of needing either an explicit definition of the latent

state of all frames, or the need to simultaneously learn a state sequence and state
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transition model that fits the data, resulting in a high-dimensional minimization

problem with typically many local minima.

Our method has several benefits for AU detection: (1) all possible segments of the

video may be used for training; and (2) no assumptions are required about the

underlying structure of the action unit events (e.g., i.i.d.). Experimental results

confirm the benefits of our approach for AU detection.

3.3.2 Datasets and AU selection

Evaluations of performance for Experiment 1 were carried out on a relatively large

corpus of FACS coded video, the RU-FACS-1 [Bartlett et al., 2006] dataset. Recorded

at Rutgers University, subjects were asked to either lie or tell the truth under a false

opinion paradigm in interviews conducted by police and FBI members who posed

around 13 questions to the subjects. These interviews resulted in 2.5 minute long

continuous 30-fps video sequences containing spontaneous AUs of people of varying

ethnicity and sex. Ground truth FACS coding was provided by expert coders. Data

from 28 of the subjects was available for our experiments. In particular, we divided

this dataset into 17 subjects for training (97000 frames) and 11 subjects for testing

(67000 frames).

The AU for which we present results were selected by requiring at least 100 event

occurrences in the available RU-FACS-1 data, resulting in the following set of

AU: 1, 2, 12, 14, 15, 17, 24. Additionally, to test performance on AU combinations,

AU1+2 was selected due to the larger number of occurrences.

Experiment 2 tests generalization performance on the unrelated dataset Sayette1.

This dataset records subjects participating in a 3-way conversation to study the

effects of alcohol on social behavior. Video for 3 subjects was available to us (32000

frames). Only FACS codes for AU 6 and 12 were available.

1This is an in-progress data-collection.
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Figure 3.3: AAM tracking across several frames

3.3.3 Frame-level feature extraction

This section describes the feature extraction at a frame-level. The feature represen-

tation at the segment-level is described in Section 3.3.4.

Given a video sequence, we first track the facial features using a person-specific

AAM model [Matthews and Baker, 2004]. In this work, the AAM model used is

composed of 66 landmarks distributed along the top of the eyebrows, the inner and

outer lip outlines, the outline of the eyes, the jaw, and along the nose. Fig. 3.3

shows an example of AAM tracking of facial features in several frames from the

RU-FACS-1 [Bartlett et al., 2006] video dataset.

Appearance-based features have been shown to yield good performance on many

AUs [Bartlett et al., 2005, Lucey et al., 2009]. In this work we propose to use fixed-

scale-and-orientation SIFT descriptors [Lowe, 1999] anchored at several points of

interest at the tracked landmarks. Intuitively, the histogram of gradient orientations

calculated in SIFT has the potential to capture much of the information that is

described in FACS (e.g., the markedness of the naso-labial furrows, the direction

and distribution of wrinkles, the slope of the eyebrows). At the same time, the

SIFT descriptor has been shown to be robust to illumination changes and small

errors in localization.

After the facial components have been tracked in each frame, a normalization step

registers each image with respect to an average face. An affine texture transforma-

tion is applied to each image so as to warp the texture into this canonical reference

frame. This normalization provides further robustness to the effects of head motion.

Once the texture is warped into this fixed reference, SIFT descriptors are computed
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around the outer outline of the mouth (11 points for lower face AU) and on the

eyebrows (5 for upper face AU). Due to the large number of resulting features (128

by number of points), the dimensionality of the resulting feature vector was reduced

using PCA to keep 95% of the energy, obtaining 261 and 126 features for lower face

and upper face AU respectively.

3.3.4 Segment-level feature extraction

For segment-level feature vector, we use the soft-clustering approach defined in

Eq. 2.4 and Eq. 2.5. We use non-normalized histogram but learn a bias term that

scales with the segment length by appending the segment length to the feature vec-

tor, i.e., ϕ(Xz) := [ϕ(Xz); len(z)]. To incorporate the benefits of both statics and

dynamic approaches for AU detection, c1, · · · , cd are taken as the support vectors of

a frame-based SVM (Frm-SVM) trained to distinguish between individual positive

and negative frames. This method directly improves the performance of frame-

based SVM by relearning the weights to incorporate temporal constraints. To see

this, consider the score function of a frame-based SVM. For a frame xt of a time

series X, the SVM score is vT φ(xt) + b, here φ(·) is an implicit mapping of kernel

k(·, ·). The representer theorem [Vapnik, 1998] states that v can be expressed as a

linear combination of the support vectors:

v =

d∑

j=1

αjφ(cj). (3.11)

Thus the SVM score for frame xi is:

vT ϕ(xt) + b =

d∑

j=1

αjk(xt, cj) + b. (3.12)

Meanwhile, the decision function of the proposed learning formulation is:

wT ϕ(Xz) =
∑

t∈z

d∑

j=1

wjk(xt, cj) + wd+1len(z). (3.13)
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Observe the similarity between the decision function of frame-based SVM and the

decision function of segment-based SVM, Eq. 3.12 versus Eq. 3.13. In both cases,

we need to learn a weight vector that is associated with the similarity measurement

between a frame and the support vectors {cj}. Furthermore, ignoring the constant

threshold, the decision value of segment-based SVM is the sum of the decision values

of frame-based SVM at all frames inside the segment. The key differences between

frame-based SVM and this approach are: (i) frame-based SVM classifies each frame

independently while this approach makes a collective decision; (ii) this approach

incorporates temporal constraints during training and testing while frame-based

SVM does not.

3.3.5 Setup and evaluation

We compare our method against a frame-based SVM and dynamic methods using

HMM [Rabiner, 1989]. All methods use the same frame-level features described in

Sec. 3.3.3.

The frame-based SVM is trained to distinguish between positive (AU) negative

(non-AU) frames and uses a radial basis kernel k(x, z) = exp(−γ||x − z||2).

Our method is based on soft-clustering (Sec. 3.3.4). The cluster centers are chosen

to be the support vectors (SVs) of frame-based SVMs with a radial basis kernel.

Because for several AUs the number of SVs can be large (2000 − 4000), we apply

the idea proposed by Avidan [2003] to reduce the number of SVs for faster training

time and better generalization. However, instead of using a greedy algorithm for

subset selection, we use LASSO regression [Tibshirani, 1996]. In our experiments,

the sizes of the reduced SV sets ranges from 100 to 500 SVs. To take into account

the imbalance of positive and negative frames, we penalize false negative and false

positives differently and use: ∆(z, zi) = α · len(zi \ z) + β · len(z \ zi). Here α and

β are penalties for false negative and false positive frames respectively.

We compare the performance of our method with dynamic approaches using HMMs

which have been used with success in the facial expression literature [Koelstra and

Pantic, 2008, Valstar and Pantic, 2007]. In this experiment, we will limit ourselves
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to a basic generative HMM model where the observations for each state are modeled

as a Gaussian distribution using a full covariance matrix with ridge regularization

(i.e., Σ̂ = Σ + λI where I is the identity matrix), and consider the same feature set

used for all other experiments. Two different state mappings where tried resulting

in HMM2 and HMM4. HMM2 is a 2-state model, where state-0 corresponds to a

neutral face (no AU present) and state-1 corresponds to frames where the AU is

present. HMM4 is a 4-state model, where state-0 is mapped to neutral face frames,

state-1 corresponds to AU onset frames, state-2 corresponds to peak frames, and

state-3 corresponds to offset frames.

Following previous work [Bartlett et al., 2005], positive samples were taken to be

frames were the AU was present, and negative samples as frames were it was not.

To evaluate the performance, we report various measures: the area under the ROC,

the precision-recall values, and the maximum F1 score. the F1 score is defined

as: F1 = 2·Recall·Precision
Recall+Precision

, summarizing the trade-off between high recall rates and

accuracy among the predictions. In our case, the F1 score is a better performance

measure than the more common ROC metric because the latter is designed for

balanced binary classification rather than detection tasks, and fails to reflect the

effect of the proportion of positive to negative samples on classification performance.

Parameter tuning is done using 3-fold subject-wise cross-validation on the training

data. For the frame-based SVM, we need to tune C and γ, the scale parameter

of the radial basis kernel. For our method, we need to tune C only. The kernel

parameter γ of our method could also potentially be tuned, but for simplicity it was

set to the same γ used for the frame-based SVM. For HMM2 and HMM4, we need to

tune the the regularization parameter λ of the covariance matrix. For all methods,

we choose the parameters that maximize the average cross-validation ROC area.

3.3.6 Within dataset performance

Tab. 3.1 and Tab. 3.2 show the experimental results on the RU-FACS-1 dataset.

Using the ROC metric, our method appears comparable to frame-based SVM and

dynamic approaches. However, using the F1 measure, our method consistently

outperforms other approaches, achieving highest score on 7 out of 10 test cases.
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Table 3.1: Performance on the RU-FACS-1 dataset, ROC metric. Higher num-
bers indicate better performance, and best results are printed in bold.

Area under ROC

AU Frm-SVM HMM2 HMM4 Ours

1 0.86 0.85 0.83 0.86

2 0.79 0.71 0.62 0.81

6 0.89 0.92 0.92 0.91

12 0.94 0.94 0.95 0.94

14 0.70 0.70 0.69 0.68

15 0.90 0.86 0.85 0.90

17 0.90 0.76 0.85 0.87

24 0.85 0.83 0.67 0.73

1+2 0.86 0.67 0.77 0.89

6+12 0.95 0.98 0.98 0.96

Table 3.2: Performance on the RU-FACS-1 dataset, F1 metric. Higher numbers
indicate better performance, and best results are printed in bold.

Max F1 score

AU Frm-SVM HMM2 HMM4 Ours

1 0.48 0.43 0.39 0.59

2 0.42 0.42 0.18 0.56

6 0.50 0.62 0.63 0.59

12 0.74 0.76 0.77 0.78

14 0.20 0.18 0.12 0.27

15 0.50 0.26 0.25 0.59

17 0.55 0.38 0.28 0.56

24 0.15 0.18 0.05 0.08

1+2 0.36 0.31 0.31 0.56

6+12 0.55 0.64 0.63 0.62

As noted above, the F1 metric is better suited for imbalanced detection tasks. Using

this criterion, our method shows a substantial improvement over frame-based classi-

fication. To illustrate this point, consider Fig. 3.4 depicting the ROC and precision-

recall curves of AU12 and AU15. According to the ROC metric, our method and

frame-based SVM seem comparable. However, the precision-recall curves clearly
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Figure 3.4: ROCs and precision-recall curves for AU 12 and AU 15. Although
there is not a notable difference in the measured area under the ROC, precision-
recall curves show a substantial improvement for our method.

show the superior performance of our method over frame-based SVM. For example,

at 70% recall, the precision of frame-based SVM and our method are 0.79 and 0.87,

respectively. At 50% recall for AU15, the precision of frame-based SVM is 0.48

compared to 0.67, roughly 2
3 that of our method.
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3.3.7 Across dataset performance

In the second experiment we compared the generalization performance of frame-

based SVM and our method across datasets. Frame-based SVM and our method

are trained on RU-FACS-1, and tested on Sayette, an unrelated separate dataset.

Tab. 3.3 shows the ROC areas and the maximum F1 scores of both methods. As

shown, our method consistently outperforms frame-based SVM by a large margin for

all AU and their combination. Tab. 3.4 shows the precision values of both methods

at two typical recall values of interest. The precision values of our method are always

higher than those of frame-based SVM; in many cases the difference is as high as

50%.

Table 3.3: Performance on Sayette dataset. Frm-SVM and our method are
trained on the RU-FACS-1 dataset which is a completely separated from Sayette.

Area under ROC Max F1 score

AU Frm-SVM Ours Frm-SVM Ours

6 0.92 0.94 0.51 0.62

12 0.91 0.92 0.78 0.79

6+12 0.91 0.93 0.52 0.61

Table 3.4: Performance on Sayette dataset: precision values at recall values of
interest.

50% recall 70% recall

AU Frm-SVM Ours Frm-SVM Ours

6 0.49 0.60 0.36 0.54

12 0.91 0.95 0.83 0.87

6+12 0.44 0.56 0.30 0.53

3.4 Summary

In this chapter, we addressed supervised learning for event detection using the Seg-

SVMs framework and developed a method to detect facial Action Units (AUs) in
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video. As an energy-based structure predictor, our AU detector could detect multi-

ple target AUs simultaneously. Our detector improved frame-based SVMs by using

BoW representation with soft-clustering. Our detector was trained with SOSVM,

a supervised maximum-margin learning framework for structure prediction. We

performed experiments on two datasets, RU-FACS-1 and Sayette, and showed the

benefits of our approach compared with frame-based SVMs and HMMs, which are

state-of-the-art static and dynamic approaches for AU detection. In this chapter,

we trained a set of per-class detectors, assuming classes of target events can be

detected independently. This approach worked well for AUs. But in many other ap-

plications, knowledge about the presence or absence of a particular event imposes a

constraint on whether other events are present. In the next chapter, we will describe

an algorithm that incorporates this constraint in the detection process.





Chapter 4

Supervised Learning for

Sequence Labeling

“If you can’t explain it simply, you don’t understand it well enough.”

– Albert Einstein

Using the Seg-SVMs framework, this chapter develops a supervised learning algo-

rithm for sequence labeling, which simultaneously performs temporal segmentation

and event recognition in time series. A discriminative recognition model is trained

using labeled data with a multi-class SVM [Crammer and Singer, 2001] that max-

imizes the separating margin between classes. Once the model for all actions has

been learned, simultaneous segmentation and recognition is done efficiently using

dynamic programming, maximizing the SVM score of the winning class while sup-

pressing those of the non-maximum classes.

4.1 Energy-based sequence labeling

Our goal is to factorize a time series into a sequence of events and recognize their

classes. Suppose there are m classes of events. We will discuss how to learn the

detectors in Section 4.2, but assume for now that the detectors {wj}
m
j=1 have been

39
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learned. These detectors can be used independently to detect each class of target

events in turn. This works well for many applications as we showed in Chapter 3 for

AU detection. In many other applications, however, knowledge about the presence

or absence of a particular event constrains on those of any other events, just like

drinking and kissing do not occur together. This constraint can be incorporated in

the detection process. If a segment Xz is to be detected as an event of class ŷ, it

must be confidently recognized as class ŷ, i.e., the SVM score of class ŷ must exceed

the SVM score of any other class y by a large margin:

wT
ŷ ϕ(Xz) ≥ wT

y ϕ(Xz) + 1 ∀y 6= ŷ. (4.1)

This is equivalent to:

wT
ŷ ϕ(Xz) ≥ max

y 6=ŷ
wT

y ϕ(Xz) + 1. (4.2)

In the above constraints, wT
ŷ ϕ(Xz) and wT

y ϕ(Xz) are the SVM scores for assigning

segment Xz to classes ŷ and y respectively. We consider the energy for a segment-

label pair (Xz, ŷ) as a function of the recognition confidence. If Xz can be confidently

assigned to ŷ, i.e., Constraint 4.2 is satisfied, the energy should be zero. If Con-

straint 4.2 is not satisfied, the energy of (Xz, ŷ) is the amount of violation. Thus,

the energy for a segment-label pair is defined as:

E(Xz, ŷ) = max{max
y 6=ŷ

wT
y ϕ(Xz) + 1 − wŷϕ(Xz), 0}. (4.3)

As discussed in Eq. 2.1 in Chapter 2, joint segmentation and recognition can be

done by finding a legitimate segmentation that minimizes the sum of segment-label

energies:

minimize
{(yt,zt)}∈LS(X)

∑

t

E(Xzt , yt). (4.4)

Here LS(X) is the set of all legitimate segmentation and labeling of X that satisfies

z1 ∪ · · · ∪ zk = [1, len(X)].

What we propose is to maximize the difference between the SVM score of the winning
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Figure 4.1: Which segmentation is preferred, breaking time series AB at M
or N? Suppose there are only two classes, SVM scores of the first and second
class for corresponding segments are printed in red and blue, respectively. Our
segmentation criterion prefers to cut at N because the resulting segments can be
confidently classified. This figure is best seen in color.

class yt and that of any other class y 6= yt, filtering through the Hinge loss. The

idea is to seek a segmentation in which each resulting segment is assigned a class

label with high confidence. This is very different from what is proposed by Shi et al.

[2008], that maximizes the total SVM scores:

maximize
{(yt,zt)}∈LS(X)

∑

t

wT
yt

ϕ(Xzt) (4.5)

Different from the above formulation, our segmentation criterion, Eq. (4.4), requires

suppressing the non-maximum classes. To see the difference between these two

criteria, consider breaking a time series AB in Figure 4.1 at either M or N . For

simplicity, suppose there are only two classes, and the SVM scores of the first and

second class for some segments in Figure 4.1 are in printed in underlined red and

overlined blue, respectively. The segmentation criterion of Eq. (4.5) would prefer to

divide AB at M because it leads to higher total SVM scores of the winning classes

(total score of 3.5 = 2.0 + 1.5, 2.0 from segment AM and 1.5 from MB). On the

other hand, our segmentation criterion does not prefer to cut at M because it cannot

confidently classify the resulting segments. To see this, consider the segment AM ,

even though the SVM score of the winning class, class 1, is high, the SVM score

of the alternative, class 2, is also similarly high. Our proposed criterion seeks the

optimal segmentation that maximizes the difference between the SVM scores of the

winning class and the next best alternative, filtering through the robust Hinge loss.
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In theory, our segmentation criterion is preferred because it incorporates the con-

straint (4.2) in the optimization. Furthermore, as we will show in Subsection 4.2,

our segmentation criterion optimizes the same objective as that of the training for-

mulation. In Section 4.4, we will show the empirical benefits of our approach.

4.2 Maximum-margin learning for sequence labeling

We now describe how to learn w1, · · · ,wm, the parameters of the energy function.

Given a collection of training events X1, · · · ,Xn with known class labels y1, · · · , yn,

we learn the parameters of the energy function to minimize the total energy while

maximizing the separating margin:

minimize
wj

1

2m

m∑

j=1

||wj||
2 + C

n∑

i=1

E(Xi, yi). (4.6)

Here C is the parameter controlling the trade-off between a large margin and a small

total energy. This is equivalent to:

minimize
wj ,ξi≥0

1

2m

m∑

j=1

||wj||
2 + C

n∑

i=1

ξi (4.7)

s.t. (wyi − wy)
T ϕ(Xi) ≥ 1 − ξi ∀i, y 6= yi. (4.8)

This formulation for learning w1, · · · ,wm is a particular instance of multi-class

SVM [Crammer and Singer, 2001].

4.3 Dynamic programming algorithm for sequence la-

beling

Let s1, · · · , sk+1 denote the change points between z1, · · · , zk, i.e., zt = (st, st+1].

See Figure 4.2 for illustration. Let X(st,st+1] be Xzt , the segment of time series

X, taken from frame st + 1 to frame st+1 inclusive. For joint segmentation and
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(y1, z1) (yk, zk)

1 len(X)
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(yt, zt)

st st+1s2

Figure 4.2: Joint segmentation and recognition process – we need to find the
events’ boundary points s1, · · · , sk+1 and the class labels y1, · · · , yk.

recognition, we need to optimize Eq. 4.3, which is equivalent to:

minimize
k,st,yt,ξt≥0

k∑

t=1

ξt (4.9)

s.t. lmin ≤ st+1 − st ≤ lmax ∀t, s1 = 0, sk+1 = len(X),

(wyt − wy)
T ϕ(X(st,st+1]) ≥ 1 − ξt ∀t, y 6= yt.

Given the parameters {wj}
m
j=1, this optimization problem can be solved using a

dynamic programming algorithm, which makes two passes over the time series X.

In the forward pass, at frame u (1 ≤ u ≤ len(X)), it computes the best objective

value for segmenting and labeling truncated time series X(0,u] (ignoring frames from

u + 1 onward), i.e.

h(u) = min
k,st,yt,ξt≥0

k∑

t=1

ξt, (4.10)

s.t. lmin ≤ st+1 − st ≤ lmax ∀t, s1 = 0, sk+1 = u,

(wyt − wy)
T ϕ(X(st,st+1]) ≥ 1 − ξt ∀t, y 6= yt.

The forward pass computes h(u), as well as l(u), for u = 1, · · · , len(X) using the

recursive formulas:

h(u) = min
lmin≤l≤lmax

{ξ(u, l) + h(u − l)},

l(u) = argmin
lmin≤l≤lmax

{ξ(u, l) + h(u − l)}.
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Here ξ(u, l) denotes the slack value of segment X(u−l,u], i.e.

ξ(u, l) = max{0, 1 − (wŷ − wỹ)
T ϕ(X(u−l,u])}, (4.11)

where ŷ = argmax
y

wT
y ϕ(X(u−l,u]), and (4.12)

ỹ = argmax
y 6=ŷ

wT
y ϕ(X(u−l,u]). (4.13)

The backward pass of the algorithm finds the best segmentation for X, starting with

sk+1 = len(X) and using the backward-recursive formula:

st = st+1 − l(st+1).

Once the optimal segmentation has been determined, the optimal assignment of

class labels can be found using:

yt = argmax
y

wT
y ϕ(X(st,st+1]).

The total complexity for the forward and backward passes of this dynamic program-

ming algorithm is O(m(lmax − lmin + 1)len(X)). This is linear in the length of the

time series.

4.4 Experiments

This section describes experimental results on three standard datasets: honeybee

dancing [Oh et al., 2008], Weizmann [Gorelick et al., 2007], and Hollywood [Laptev

et al., 2008]. In all experiments we measured the joint segmentation-recognition

performance as follows. We ran our algorithm on long video sequences to find

the optimal segmentation and class labels. At that point, each frame was associated

with a particular class, and the overall frame-level accuracy against the ground truth

labels was calculated as the ratio between the number of agreements over the total

number of frames. This evaluation criterion is different from recognition accuracy of

algorithms that require pre-segmented video clips. As a consequence, our results here

are not directly comparable to some published numbers in the literature [Gorelick
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Figure 4.3: Honeybee dataset—trajectories of dancing bees. Each dance trajec-
tory is the output of a vision-based tracker. The segments are color coded; red,
green, and blue correspond to waggle, right-turn, and left-turn, respectively. This
figure is best seen in color.

et al., 2007, Laptev et al., 2008, Satkin and Hebert, 2010]. However, where available,

we included the previously reported results for reference.

4.4.1 Honeybee dataset

The honeybee dataset [Oh et al., 2008] contains video sequences of honeybees which

communicate the location and distance to a food source through a dance that takes

place within the hive. The dance can be decomposed into three different movement

patterns: waggle, right-turn, and left-turn. During the waggle dance, the bee moves

roughly in a straight line while rapidly shaking its body from left to right; the

duration and orientation of this phase correspond to the distance and the orientation

to the food source. At the endpoint of a waggle dance, the bee turns in a clockwise

or counterclockwise direction to form a turning dance. These turning dances often

shape like a capital C. The dataset consists of six video sequences with lengths

1058, 1125, 1054, 757, 609, and 814 frames, respectively.

The bees were visually tracked (Figure 4.4.a), and their locations and head angles

were recorded. The 2D trajectories of the bees in six sequences are shown in Fig. 4.3.

The frame-level feature vector was [x, y, sin(θ), cos(θ)], where (x, y) was the 2D

location of the bee and θ was the bee’s head angle. Once the sequence observations

were obtained, the trajectories were preprocessed as in Fox et al. [2009]. Specifically,

the trajectory sequences were rotated so that the waggle dances had head angle

measurements centered about zero radian. The sequences were then translated to

center at (0, 0), and the 2D coordinates were scaled to the [−1, 1] range. Aligning the

waggle dances was possible by looking at the high frequency portions of the head

angle measurements. Following the suggestion of Oh et al. [2008], the data was
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smoothed using Gaussian FIR pulse-shaping filter with 0.5dB bandwidth-symbol

time. Figure 4.4.b shows the correlation between the feature vectors and the labels.

Since the lengths of original waggle, right-turn, and left-turn sequences are quite

long, we further broke them down into smaller subsequences (maximum length 13)

to increase the number of training instances.

Following [Altun et al., 2003] and inspired by HMMs, we propose to use two types

of features, interactions between the observation vectors and the set of predefined

states as well as the transition between states of neighboring frames:

ϕ(Xz) =
∑

p∈z

[
φobs(Xp)

φint(Xp)

]
. (4.14)

Here φobs(Xp) and φint(Xp) are the observation and interaction feature vectors,

respectively. These feature vectors are computed as follows. First we build a dictio-

nary of temporal words by clustering the raw feature vectors from the time series

in the dataset. Let c1, · · · , cr denote the set of clustering centroids. We consider

φobs(Xp) as a r × 1 vector with the ith entry is φobs
i (Xp) = µ exp(−γ||Xp − ci||

2).

Intuitively, the ith entry of observation vector is the pseudo-probability that Xp

belongs to state i, which is proportional to how close Xp to the cluster centroid ci.

The scale factor µ is chosen such that the sum of the entries of φobs(Xp) is one. The

interaction feature vector φint(Xp) is defined as a r2 × 1 vector, with:

φint
(u−1)r+v(Xp) = φobs

u (Xp)φ
obs
v (Xp−1) ∀u, v = 1, · · · , r.

The above quantity is the pseudo-probability for transitioning from state v to state

u at time p. The interaction feature vector depends on both the observation vectors

of the frame Xp and the preceding frame Xp−1. In our experiment, we set r = 15.

Following Fox et al. [2009], Oh et al. [2008], we adopted the leave-one-out evaluation

strategy: training on five sequences and testing on the left-out sequence. Table 4.1

displays the experimental results of our method along with three state-of-the-art

methods. SLDS and PS-SLDS [Oh et al., 2008] are switching linear dynamical

system and parametric segmental switching linear dynamical system, respectively.

HDP-HMM [Fox et al., 2009] is the method combining hierarchical Dirichlet process
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Figure 4.4: a) Visual tracking: green + blue trajectory and the bounding box
for tracking. b) plots of the frame-level features [x, y, sin(θ), cos(θ)]. Red, green,
and blue correspond to waggle, right-turn, and left-turn, respectively. This is best
seen in color.

Table 4.1: Frame-level accuracy (%) on honeybee dataset. Our method achieved
similar and sometimes better results than state-of-the-art methods [Fox et al.,
2009, Oh et al., 2008]. Averaged over all six sequences, our method yielded the
best result.

Sequence 1 2 3 4 5 6 Mean
SLDS [Oh et al., 2008] 74.0 86.1 81.3 93.4 90.2 90.4 85.9

PS-SLDS [Oh et al., 2008] 75.9 92.4 83.1 93.4 90.4 91.0 87.7
HDP-HMM [Fox et al., 2009] 55.0 86.3 81.7 89.0 92.4 89.6 83.3

MaxScoreSeg 82.2 85.3 75.0 87.5 88.8 88.0 84.5
Ours 85.9 92.6 81.3 92.3 90.6 93.1 89.3

prior and HMM. Although all methods are supervised learning, the setting of HDP-

HMM is slightly different from those of the others. HDP-HMM requires knowing

the testing sequences (without labels) at training time. We also implemented MaxS-

coreSeg (c.f., Shi et al. [2008]), a variant of our proposed algorithm, that performed

temporal segmentation by maximizing the total SVM scores (Eq. 4.5) instead of

maximizing the assignment confidence (Eq. 4.4). The reported numbers in Table 4.1

are frame-level accuracy (%) measuring the joint segmentation-recognition perfor-

mance as described at the beginning of Section 4.4. As can be seen, our method

achieved similar or better results than state-of-the-art methods on all sequences, and

it had the best overall performance. Figure 4.5 displays side-by-side comparison of

the prediction result and the human-labeled ground truth.
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Figure 4.5: Automatic segmentation-recognition versus human-labeled ground
truth. The segments are color coded; red, green, and blue correspond to waggle,
right-turn, and left-turn, respectively. This figure is best seen in color.

(a) (b) (c) (d)

Figure 4.6: Weizmann dataset. (a): typical frames. (b)-(d): how frame-level
features are computed; (b) is an original frame, (c) is the binary mask, and (d) is
the Euclidean distance transform.

4.4.2 Weizmann dataset

The Weizmann dataset contains 90 video sequences (180 × 144 pixels, deinterlaced

50fps) of 9 people, each performing 10 actions: bend, jumping-jack (or shortly jack),

jump-forward-on-two-legs (jump), jump-in-place-on-two-legs (pjump), run, gallop-

sideways (side), skip, walk, wave-one-hand (wave1), and wave-two-hands (wave2).

Figure 4.6(a) displays several typical frames extracted from the dataset. Each video

sequence in this dataset only consists of a single action.

To evaluate the segmentation and recognition performance of our method, we per-

formed experiments on longer video sequences which were created by concatenating

existing single-action sequences. Specifically, we created 9 long sequences, each com-

posed of 10 videos for 10 different actions (each original video samples was used only

once). Following Gorelick et al. [2007], we extracted binary masks (Figure 4.6(c))
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Table 4.2: Performance on Weizmann dataset, confusion matrix for segmentation
and recognition of 10 different actions at frame level. The number at row R and
column C is the proportion of R class which is classified as C class. For example,
3% of the wave1 frames is misclassified as wave2 class. The average accuracy
is 87.7%.
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e1

w
av

e2

bend .85 .08 .05 .01 .00 .01 .00 .00 .00 .00

jack .00 .93 .00 .00 .04 .00 .01 .00 .01 .01

jump .00 .01 .88 .06 .04 .00 .00 .00 .00 .01

pjump .00 .01 .04 .85 .02 .00 .00 .00 .08 .00

run .00 .00 .03 .00 .93 .00 .00 .01 .03 .00

side .00 .03 .00 .03 .00 .90 .00 .01 .00 .03

skip .00 .00 .02 .00 .05 .00 .77 .03 .00 .13

walk .00 .00 .08 .00 .00 .00 .00 .88 .00 .04

wave1 .00 .00 .00 .00 .01 .00 .03 .00 .93 .03

wave2 .00 .02 .02 .00 .00 .00 .08 .02 .01 .85

and computed Euclidean distance transform (Figure 4.6(d)) for frame-level features.

We built a codebook of temporal words with 100 clusters using k-means. As in

the experiment for honeybee dataset, we measured the leave-one-out segmentation

and recognition performance. Table 4.2 shows the confusion matrix for segmen-

tation and recognition of 10 actions. Our method yielded the average accuracy

of 87.7%, aggregated over 9 sequences and 20 runs. Gorelick et al. [2007] reported

the recognition result of 97.8%. Unfortunately, their result and ours are not directly

comparable. Their method required pre-segmented video sequences and only mea-

sured the recognition performance. The variant of our method, MaxScoreSeg [Shi

et al., 2008], that performed temporal segmentation by maximizing the total SVM

scores (Eq. 4.5) obtained the average accuracy of 69.7%. This relatively low accu-

racy is due to the mismatch between the segmentation criterion and the training

objective, as explained in Section 4.1.

To evaluate the performance of the proposed method in the presence of the null
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Table 4.3: Weizmann dataset with the null class. Confusion matrix for seg-
mentation and recognition of five different actions: bend, jack, jump, pjump, and
run. The null class is the combination of all other classes. The average accuracy
is 93.3%.
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bend .96 .01 .01 .00 .00 .01

jack .00 .97 .00 .01 .00 .02

jump .00 .00 .88 .06 .04 .02

pjump .00 .00 .01 .98 .00 .01

run .00 .00 .01 .00 .91 .08

Null .01 .03 .00 .03 .03 .90

class, background clutter with large variability, we repeated the experiment consid-

ering the last five classes of actions (side, skip, walk, wave1, and wave2) as the null

class. Table 4.3 shows the confusion matrix for five actions and the null class. Our

method yielded the average accuracy of 93.3%, compared with 77.9% of MaxScore-

Seg. Figure 4.7 displays side-by-side comparison of the prediction result and the

human-labeled ground truth. Except for several cases, the majority of error occurs

at the boundaries between actions. Error at the boundaries does not necessarily

indicate the flaw of our method as human labels are often imperfect [Satkin and

Hebert, 2010].

4.4.3 Hollywood dataset

Hollywood dataset contains video samples of human action from 32 movies. Each

sample is labeled with one of eight action classes: AnswerPhone, HugPerson, Kiss,

SitDown, SitUp, GetOutCar, HandShake, and StandUp. The dataset is divided into

two disjoint subsets; the training set contains video clips from 12 movies and the

testing set contains the remaining clips. The total number of video samples in the

training and testing sets are 219 and 211, respectively. Here we selected the first
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Figure 4.7: Automatic segmentation-recognition versus human-labeled ground
truth for Weizmann dataset. The segments are color coded; red, cyan, magenta,
blue, green, and gray correspond to bend, jack, jump, pjump, run, and null classes,
respectively. This figure is best seen in color.

Figure 4.8: Typical frames from the Hollywood dataset.

four classes as actions to be recognized, and the others were considered as parts of

the null class.

Following Laptev et al. [2008], we detected space-time interest points and described

them using histogram of oriented (spatial) gradients (HOG). Features belong to the

same frame were combined together. A codebook of temporal words with 100 clus-

ters was constructed using k-means quantization. To evaluate the joint segmentation

and recognition performance, we created 30 long testing sequences by concatenating

eight randomly selected original video samples. The evaluation criterion was based

on frame-level accuracy as described at the beginning of Section 4.4. Our method

achieved the average accuracy of 42.24% (averaged over 30 sequences, repeated with

50 runs). As a reference, Laptev et al. [2008] reported the average recognition result

of 27% on this dataset with the same HOG features. Unfortunately, their result
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Table 4.4: Hollywood dataset—confusion matrix for AnswerPhone (AP), Hug-
Person (HP), Kiss (KS), SitDown (SD), and the null class (all other actions). The
average accuracy is 42.24%.

A
P

H
P

K
S

S
D

N
u
ll

AP .35 .14 .13 .22 .16

HP .08 .34 .20 .17 .22

KS .08 .10 .51 .11 .21

SD .09 .06 .14 .45 .27

Null .11 .07 .17 .19 .47

and ours are not directly comparable since their method required pre-segmented

video sequences and only measured the recognition performance. Furthermore, the

number of action classes in two experiments are different.

4.5 Summary

This chapter described a novel algorithm for simultaneous temporal segmentation

and recognition of temporal events, which used the proposed Seg-SVMs framework.

The recognition model was trained discriminatively using multi-class SVM, while

segmentation inference was done efficiently with dynamic programming. This al-

gorithm provides a principled technique for time series segmentation and event

recognition. Experimental validation on several human action datasets showed the

competitiveness of our algorithm against state-of-the-art methods. Though the pro-

posed method yielded encouraging results on standard datasets, its reliance on fully

labeled data for training inevitably limits its applicability to small training sets with

few event classes. In Chapter 7, we will remove this reliance on labeled data and

develop an unsupervised alternative.



Chapter 5

Supervised Learning for Early

Event Detection

“You may delay, but time will not.”

– Benjamin Franklin

This chapter addresses the need for early detection of temporal events using the

Seg-SVMs framework. This need arises in a wide spectrum of applications ranging

from disease outbreak detection to security and robotics applications. We derive

Max-Margin Early Event Detectors (MMED), a novel formulation for training event

detectors that recognize partial events, enabling early detection. MMED is based

on SOSVM [Tsochantaridis et al., 2005], but extends it to accommodate the nature

of sequential data. In particular, we simulate the sequential frame-by-frame data

arrival for training time series and learn an event detector that correctly classifies

partially observed sequences. Fig. 5.1 illustrates the main idea behind MMED:

partial events are simulated and used as positive training examples. It is important

to emphasize that we train a single event detector to recognize all partial events.

But MMED does more than augmenting the set of training examples. It trains a

detector to localize the temporal extent of a target event, even when the target event

has yet completed. This requires monotonicity of the detection function with respect

to the inclusion relationship between partial events; the detection score (confidence)

53
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Figure 5.1: We simulate the sequential arrival of training data and use partial
events as positive training examples. In this figure, the red segments indicate the
temporal extents of the partial events.

of a partial event cannot exceed the score of an encompassing partial event. MMED

provides a principled mechanism to achieve this monotonicity, which cannot be

assured by a naive solution that simply augments the set of training examples.

The learning formulation of MMED is a constrained quadratic optimization problem.

This formulation is theoretically justified. In Sec. 5.2.2, we discuss two ways for

quantifying the loss of a detector on streaming data. We prove, in both cases, the

objective of the learning formulation is to minimize an upper bound of the true loss

on the training data.

MMED has numerous benefits. First, MMED inherits the advantages of SOSVM,

including its convex learning formulation and its ability for accurate localization

of event boundaries. Second, MMED, specifically designed for early detection, is

superior to SOSVM and other competing methods with respect to the timeliness of

the detection. Experiments on datasets of varying complexity, from synthetic data

and sign language to facial expression and human action, showed that our method

often made faster detection while maintaining comparable or even better accuracy.

To the best of our knowledge, in the literature of computer vision, this is the first

learning formulation that is explicitly designed for early event detection.
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5.1 Energy-based early event detection

Early event detection requires realtime processing, and therefore, target events must

be detected sequentially. We propose a detection mechanism as follows. The detec-

tor reads from a stream of data and keeps a sequence of observations in its memory.

It continuously monitors for the happening of a target event. If a target event is

detected, the temporal extent of the event is returned. If a target event is recog-

nized complete, the detector’s memory is cleared and the process recurs to detect

the upcoming target event. Thus, at every single time step, the detector needs to

detect at most one target event.

Our early event detector is based on an energy model that is similar to the model

for offline detection, but it detects one event at a time. As in Chapter 3, we assume

target events belong to a single class and use E(Xz) in place of E(Xz, y) for brevity.

Let X be the time series correspond to the sequence of observations in the detector’s

memory. We find the segment of X that yields the minimum energy:

z∗ := argmin
z∈Z

E(Xz). (5.1)

We report z∗ as a partial or complete event of interest if the minimum energy is

negative and report no detection otherwise. Hence, the output of the detector on

X is defined as:

g(X) :=

{
z∗ if E(Xz∗) < 0

∅ otherwise
(5.2)

As for offline detection, Chapter 3, the energy of a segment is defined as the negative

of the detection score E(Xz) := −f(Xz), with the detection score defined as:

f(Xz) := wT ϕ(Xz) + b. (5.3)
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Recall I is Z ∪{∅} and the detection score of an empty segment is zero, f(X∅) = 0.

Thus the output of the detector on X can be conveniently expressed as:

g(X) = argmax
z∈I

f(Xz). (5.4)

5.2 Maximum-margin learning for early event detection

As shown in Section 3.2, SOSVM was used to train a detector to detect complete

events. SOSVM, however, does not train detectors to recognize partial events. Con-

sequently, using this method for early detection would lead to unreliable decisions as

we will illustrate in the experimental section. This section presents a novel learning

formulation that extends SOSVM to overcome this limitation.

5.2.1 Learning with simulated sequential data

Let the training time series be X1, · · · ,Xn ∈ X and their associated ground truth

annotations for the occurrence of target events be z1, · · · , zn. Here we assume each

training sequence contains at most one target event (we can always break a training

sequence of several events into shorter sequences of single events). To support early

detection of events in time series data, we propose to use partial events as positive

training examples (Fig. 5.1). In particular, we simulate the sequential arrival of

training data as follows. Suppose the length of Xi is li. For each time t = 1, · · · , li,

let zi
t be the part of event zi that has already happened, i.e., zi

t = zi ∩ [1, t], which

is possibly empty. Ideally, we want the output of the detector on time series Xi at

time t is the partial event zi
t, i.e.,

zi
t = g(Xi

[1,t]). (5.5)

Here, Xi
[1,t] is the subsequence of Xi from frame 1 to frame t, and g(Xi

[1,t]) is the

output of the detector on this subsequence. Substitute Eq. 5.4 into the above, we
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get an equivalent constraint:

zi
t = argmax

z∈I,z⊂[1,t]
f(Xi

z). (5.6)

To understand the differences between the requirement of early event detection and

that of offline event detection, compare the above constraint and the constraint in

Eq. 3.5, which, for convenience, is reprinted below:

zi = argmax
z∈I

f(Xi
z). (5.7)

There are key differences between Eq. 5.6 and Eq. 5.7. The Left Hand Side (LHS)

of Eq. 5.7 is the complete event, while the LHS of Eq. 5.6 is the partial event at

a particular time t. The Right Hand Side (RHS) of Eq. 5.7 is the output of the

detector on the entire sequence Xi while the RHS of Eq. 5.6 is the output of the

detector on the partially observed sequence Xi
[1,t], from frame 1 to frame t.

Eq. 5.6 is equivalent to:

f(Xi
zi

t
) ≥ f(Xi

z) ∀z ∈ I, z ⊂ [1, t]. (5.8)

This constraint requires the score of the partial event zi
t to be bigger than the score

of any other time series segment z which has been seen in the past, z ⊂ [1, t]. This

is illustrated in Fig. 5.2. Note that the score of the partial event is not required to

be bigger than the score of a segment in the future.

As for offline event detection, we enforce the above constraint to be well satisfied

by a margin. This margin is adaptive and proportional to ∆(zi
t, z), the loss of

the detector for outputting z when the desired output is zi
t. Hence, the desired

constraint is:

f(Xi
zi

t
) ≥ f(Xi

z) + ∆(zi
t, z) ∀z ∈ I, z ⊂ [1, t]. (5.9)

This constraint should be enforced for all t = 1, · · · , li, and each training time series

leads to a set of these constraints. To learn the parameters (w, b) for early detection,

we can maximize the margin subject to all these constraints, i.e.,
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Figure 5.2: From desire to constraint. The desired score function for early
event detection: the complete event must have highest detection score, and the
detection score of a partial event must be bigger than that of any segment that
ends before the partial event. To learn this function, we explicitly consider partial
events during training. At time t, the score of the truncated event (red segment) is
required to be bigger than the score of any segment in the past (e.g., blue segment);
however, it is not required to be bigger than the score of any future segment (e.g.,
green segment). This figure is best seen in color.

minimize
w,b

1

2
||w||2 (5.10)

s.t. f(Xi
zi

t
) ≥ f(Xi

z) + ∆(zi
t, z)

∀i,∀t = 1, · · · , li,∀z ∈ I, z ⊂ [1, t].



Chapter 5. Early event detection 59

0 α 1

1

β

µ

(

|zi
t
|

|zi|

)

|zi

t
|/|zi|

Figure 5.3: µ – a function to weigh the importance of partially observed events.
Here 0 and 1 correspond to the total absence and full completion of the event of
interest, respectively. µ(0) = µ(1) emphasizes that true rejection is as important
as true detection of the complete event. This is best seen in color.

As in the formulation of SOSVM, the constraints are allowed to be violated by

introducing slack variables, and we obtain the following learning formulation:

minimize
w,b,{ξi}

1

2
||w||2 + C

n∑

i=1

ξi, (5.11)

s.t. f(Xi
zi

t
) ≥ f(Xi

z) + ∆(zi
t, z) −

ξi

µ
(
|zi

t|
|zi|

)

∀i,∀t = 1, · · · , li,∀z ∈ I, z ⊂ [1, t], (5.12)

ξi ≥ 0 ∀i. (5.13)

In the above formulation, | · | denotes the length function, and µ
(
|zi

t|
|zi|

)
is a function

of the proportion of the event that has occurred at time t. µ
(
|zi

t|
|zi|

)
is a slack vari-

able rescaling factor and should correlate with the importance of rightly detecting at

time t whether the event zi has happened. µ(·) can be any arbitrary non-negative

function, and in general, it should be a non-decreasing function in (0, 1]. In our

experiments, we find the piece-wise linear function as depicted in Fig. 5.3 is a rea-

sonable choice. There, α and β are tunable parameters; µ(0) = µ(1) emphasizes

that true rejection when the event has not started is as important as true detection

when the event has completed. ∆(zi
t, z) is the loss function, for quantifying the

loss associated with outputting z at time t when the true truncated event is zi
t. A

possible and popular loss function is: ∆(zi
t, z) = 1−

2|zi
t∩z|

|zi
t|+|z|

if zi
t 6= z and 0 otherwise.
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Figure 5.4: Monotonicity requirement – the detection score (confidence) of a
partial event cannot exceed the score of an encompassing partial event. MMED
provides a principled mechanism to achieve this monotonicity.

This learning formulation is an extension of SOSVM. From this formulation, we

obtain SOSVM by not simulating the sequential arrival of training data, i.e., to set

t = li instead of t = 1, · · · , li in Constraint (5.12). The key idea of MMED is to

learn a single detector to recognize all partial events. But our method does more

than augmenting the set of training examples; it provides a principled mechanism

for enforcing monotonicity with respect to the inclusion relationship between partial

events, as illustrated in Figure 5.4. This monotonicity requirement cannot be assured

by a naive solution that simply augments the set of training examples.

For a better understanding of Constraint (5.12), let us break it into three cases: i)

t < si; ii) t ≥ si, z = ∅; iii) t ≥ si, z 6= ∅. Constraint (5.12) is the combination of
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the following constraints:

wT ϕ(Xi
z) + b ≤ −1 + ξi/µ(0) ∀i,∀z ⊂ [1, si), z 6= ∅, (5.14)

wT ϕ(Xi
zi

t
) + b ≥ 1 − ξi/µ

(
|zi

t|

|zi|

)
∀i,∀t ≥ si, (5.15)

wT ϕ(Xi
zi

t
) ≥ wT ϕ(Xi

z) + ∆(zi
t, z) − ξi/µ

(
|zi

t|

|zi|

)

∀i,∀t ≥ si,∀z ⊂ [1, t], z 6= ∅. (5.16)

Cases (i), (ii), (iii) lead to Constraints (5.14), (5.15), (5.16), respectively. To see this,

recall f(Xz) = wT ϕ(Xz) + b if z 6= ∅ and 0 otherwise. Furthermore, recall zi
t = ∅

for t < si and ∆(zi
t, z) = 1 if zi

t is different from z and either of them is empty.

Constraint (5.14) prevents false detection when the event has not started. Con-

straint (5.15) requires successful recognition of truncated events. Constraint (5.16)

trains the detector to localize the temporal extent of the events.

The proposed learning formulation Eq. (5.11) is convex, but it contains a large set

of constraints. Following Tsochantaridis et al. [2005], we propose to use constraint

generation in optimization, i.e., we maintain a smaller subset of constraints and

iteratively update it by adding the most violated ones. Constraint generation is

guaranteed to converge to the global minimum. In our experiments described in

Sec. 5.3, this usually converges within 20 iterations.

5.2.2 Loss function and empirical risk minimization

In Sec. 5.2.1, we have proposed a formulation for training early event detectors. This

section provides further discussion on what exactly is being optimized. First, we

briefly review the loss of SOSVM and its surrogate empirical risk. We then describe

two general approaches for quantifying the loss of a detector on streaming data. In

both cases, what Eq. (5.11) minimizes is an upper bound on the loss.

As previously explained, ∆(z, ẑ) is the function that quantifies the loss associ-

ated with a prediction ẑ, if the true output value is z. Thus, in the setting of



Chapter 5. Early event detection 62

offline detection, the loss of a detector g on a sequence-event pair (X, z) is quan-

tified as ∆(z, g(X)). Suppose the sequence-event pairs (X, z) are generated ac-

cording to some distribution P (X, z), the loss of the detector g is R∆
true(g) =

∫
X×I ∆(z, g(X))dP (X, z). However, P is unknown so the performance of g is de-

scribed by the empirical risk on the training data {(Xi, zi)}, assuming they are gen-

erated i.i.d according to P . The empirical risk is R∆
emp(g) = 1

n

∑n
i=1 ∆(zi, g(Xi)).

It has been shown that SOSVM [Tsochantaridis et al., 2005] minimizes an upper

bound on the empirical risk R∆
emp. In other words, if {ξ∗1, · · · , ξ∗n} is the optimal

solution of the slack variables in Eq. 5.11, then 1
n

∑n
i=1 ξi∗ is an upper bound on the

empirical risk R∆
emp.

Due to the nature of continual evaluation, quantifying the loss of an online detector

on streaming data requires aggregating the losses evaluated throughout the course of

the data sequence. Let us consider the loss associated with a prediction z = g(Xi
[1,t])

for time series Xi at time t as ∆(zi
t, z)µ

(
|zi

t|
|zi|

)
. Here ∆(zi

t, z) accounts for the

difference between the output z and true truncated event zi
t. µ

(
|zi

t|
|zi|

)
is the scaling

factor; it depends on how much the temporal event zi has happened. Two possible

ways for aggregating these loss quantities is to use the maximum or the average of

{∆(zi
t, g(Xi

[1,t]))µ
(
|zi

t|
|zi|

)
}. They lead to two different empirical risk functions for a

set of training time series:

R∆,µ
max(g) =

1

n

n∑

i=1

max
t

{
∆(zi

t, g(Xi
[1,t]))µ

(
|zi

t|

|zi|

)}
, (5.17)

R∆,µ
ave (g) =

1

n

n∑

i=1

mean
t

{
∆(zi

t, g(Xi
[1,t]))µ

(
|zi

t|

|zi|

)}
. (5.18)

In the following, we state and prove a proposition that establishes that the learning

formulation given in Eq. 5.11 minimizes an upper bound of the above two empirical

risk functions.

Proposition: Denote by ξ∗(g) the optimal solution of the slack variables in Eq. 5.11

for a given detector g, then 1
n

∑n
i=1 ξi∗ is an upper bound on the empirical risks

R∆,µ
max(g) and R∆,µ

ave (g).
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Proof : Consider Constraint (5.12) with z = g(Xi
[1,t]) and together with the fact

that f(Xi
g(Xi

[1,t]
)
) ≥ f(Xi

zi
t

), we have

ξi∗ ≥ ∆(zi
t, g(Xi

[1,t]))µ

(
|zi

t|

|zi|

)
∀t. (5.19)

Thus

ξi∗ ≥ max
t

{∆(zi
t, g(Xi

[1,t]))µ

(
|zi

t|

|zi|

)
}. (5.20)

Hence

1

n

n∑

i=1

ξi∗ ≥ R∆,µ
max(g) ≥ R∆,µ

ave (g). (5.21)

This completes the proof of the proposition.

5.2.3 Discussion – slack variable rescaling versus margin rescaling

This section describes an alternative formulation to Eq. 5.11 and then discusses the

advantages of of using Eq. 5.11.

Recall in Eq. 5.11, we use µ
(
|zi

t|
|zi|

)
to rescale the slack variable ξi to weight the

importance of rightly detecting the partial event at time t. An alternative approach

is the rescale the margin ∆(zi
t, z), which leads to the following formulation:

minimize
w,b,{ξi}

1

2
||w||2 + C

n∑

i=1

ξi, (5.22)

s.t. f(Xi
zi

t
) ≥ f(Xi

z) + ∆(zi
t, z)µ

(
|zi

t|

|zi|

)
− ξi

∀i,∀t = 1, · · · , li,∀z ∈ I, z ⊂ [1, t], (5.23)

ξi ≥ 0 ∀i. (5.24)
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It is possible to use the above formulation for early event detection. However, this

formulation has a disadvantage compared with the formulation proposed in Eq 5.11.

To see this disadvantage, consider the difference between these two formulations,

which lies at their constraints, Constraint (5.12) versus Constraint (5.23). Consider

these two constraints for a particular time series Xi and at a particular time t.

Both constraints adjust the original constraint, f(Xi
zi

t

) ≥ f(Xi
z) + ∆(zi

t, z), based

on the importance for recognizing the partial event at time t. The former reweigh

the original constraint, while the latter reweigh the margin. In reality, not every

event can be detected as soon as a small fraction of the event occurs; therefore, it is

important to reweigh the constraint and even to deactivate it. This can be achieved

using the former constraint, but not the latter. For example, the former allows us to

deactivate the constraint by setting the scaling factor µ
(
|zi

t|
|zi|

)
to 0, while the latter

does not.

5.3 Experiments

This section describes our experiments on several publicly available datasets of vary-

ing complexity.

5.3.1 Evaluation criteria

This section describes the criteria for evaluating the accuracy and timeliness of

detectors. We use the area under the ROC curve for accuracy comparison, F1-score

for evaluating localization quality, and Normalized Time to Detection (NTtoD) for

benchmarking the timeliness of detection.

ROC area: Consider testing a detector on a set of time series. The False Positive

Rate (FPR) of the detector is defined as the fraction of time series that the detector

fires before the event of interest starts. The True Positive Rate (TPR) is defined

as the fraction of time series that the detector fires during the event of interest.

A detector typically has a detection threshold that can be adjusted to trade off

high TPR for low FPR and vise versa. By varying this detection threshold, we can

generate the ROC curve which is the function of TPR against FPR. We use the area

under the ROC for evaluating the detector accuracy.
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AMOC curve: To evaluate the timeliness of detection we use Normalized Time

to Detection (NTtoD) which is defined as follows. Given a testing time series with

the event of interest occurs from s to e. Suppose the detector starts to fire at time

t. For a successful detection, s ≤ t ≤ e, we define the NTtoD as the fraction of

event that has occurred, i.e., t−s+1
e−s+1 . NTtoD is defined as 0 for a false detection

(t < s) and ∞ for a false rejection (t > e). By adjusting the detection threshold,

one can achieve smaller NTtoD at the cost of higher FPR and vice versa. For

a complete characteristic picture, we vary the detection thresh hold and plot the

curve of NToD versus FPR. This is referred as the Activity Monitoring Operating

Curve (AMOC) [Fawcett and Provost, 1999].

F1-score curve: The ROC and AMOC curves, however, do not provide a measure

for how well the detector can localize the event of interest. For this purpose, we pro-

pose to use the F1-scores. Consider running a detector on a times series. At time t

the detector output the segment z (empty segment for no detection) while the ground

truth (possibly) truncated event is z∗. The F1-score is defined as the harmonic mean

of precision and recall values: F1 := 2. Precision.Recall
P recision+Recall

,with Precision := |z∩z∗|
|z| and

Recall := |z∩z∗|
|z∗| . For a new test time series, we can simulate the sequential arrival

of data and record the F1-scores as the event of interest unroll from 0% to 100%.

We refer to this as the F1-score curve.

5.3.2 Synthetic data

We first validated the performance of MMED on a synthetically generated dataset of

200 time series, each contained one instance of the event of interest, signal 5.5(a).i,

and several instances of other events, signals 5.5(a).ii–iv. Some examples of these

time series are shown in Fig. 5.5(b). We randomly split the data into training and

testing subsets of equal sizes. During testing we simulated the sequential arrival of

data and recorded the moment that MMED started to detect the start of the event

of interest. With 100% precision, MMED detected the event when it had completed

27.5% of the event. For comparison, SOSVM required observing 77.5% of the event

for a positive detection. Examples of testing time series and results are depicted

in Fig. 5.5(b). The events of interest are drawn in green and the solid vertical red
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Figure 5.5: Synthetic data experiment. (a): time series were created by concate-
nating the event of interest (i) and several instances of other events (ii)–(iv). (b):
examples of testing time series; the solid vertical red lines mark the moments that
our method starts to detect the happening of the event of interest while the dash
blue lines are the results of SOSVM. This figure is best seen in color.

lines mark the moments that our method started to detect the happening of these

events. The dash vertical blue lines are the results of SOSVM. Notably, this result

reveals an interesting capability of MMED. For the time series in this experiment,

the change in signal values from 3 to 1 is exclusive to the target events. MMED was

trained to recognize partial events, it implicitly discovered this unique behavior, and

it detected the target events as soon as this behavior occurred. In this experiment,

we represented each time series segment by the L2-normalized histogram of signal

values in the segment (normalized to have unit norm). We used linear SVM with

C = 1000, α = 0, β = 1.

5.3.3 Auslan dataset – Australian sign language

This section describes our experiments on a publicly available dataset [Kadous, 2002]

that contains 95 Auslan signs, each with 27 examples. The signs were captured

from a native signer using position trackers and instrumented gloves; the location

of two hands, the orientation of the palms, and the bending of the fingers were

recorded. We considered detecting the sentence “I love you” in monologues obtained

by concatenating multiple signs. In particular, each monologue contained an I-

love-you sentence which was preceded and succeeded by 15 random signs. The
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I-love-you sentence was ordered concatenation of random samples of three signs:

“I”, “love”, and “you”. We created 100 training and 200 testing monologues from

disjoint sets of sign samples; the first 15 examples of each sign were used to create

training monologues while the last 12 examples were used for testing monologues.

The average lengths and standard deviations of the monologues and the I-love-you

sentences were 1836 ± 38 and 158 ± 6 respectively.

Previous work [Kadous, 2002] reported high recognition performance on this dataset

using Hidden Markov Models (HMMs) [Rabiner, 1989]. Following their success,

we implemented a continuous density HMM for I-love-you sentences. Our HMM

implementation consisted of 10 states, each was a mixture of 4 Gaussians. To use

the HMM for detection, we adopted a sliding window approach; the window size

was fixed to the average length of the I-love-you sentences.

Inspired by the high recognition rate of HMM, we constructed feature representa-

tion for SVM-based detectors (SOSVM and MMED) as follows. We first trained a

Gaussian Mixture Model of 20 Gaussians for the frames extracted from the I-love-

you sentences. Each frame was then associated with a 20 × 1 log-likelihood vector.

We retained the top three values of this vector, zeroing out the other values, to

create a frame-level feature representation. This is the soft quantization approach.

To compute the feature vector for a given window, we divided the window into two

roughly equal halves, the mean feature vector of each half was then calculated, and

the concatenation of these mean vectors was then used as the feature representation

of the window.

A naive strategy for early detection is to use truncated events as positive examples.

For comparison, we implemented Seg-[0.5,1], a binary SVM that used the first halves

of the I-love-you sentences in addition to the full sentences as positive training ex-

amples. Negative training examples were random segments that had no overlapping

with the I-love-you sentences.

We repeated our experiment 10 times and recorded the average performance. Re-

garding the detection accuracy, all methods except SVM-[0.5,1] performed similarly

well. The ROC areas for HMM, SVM-[0.5,1], SOSVM, and MMED were 0.97, 0.92,

0.99, and 0.99, respectively. However, when comparing the timeliness of detection,
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Figure 5.6: AMOC curves on Auslan and CK+ datasets; at the same false
positive rate, MMED detects target events sooner than the other methods. This
figure is best seen in color.

MMED outperformed the others by a large margin. For example, at 10% false posi-

tive rate, our method detected the I-love-you sentence when it observed the first 37%

of the sentence. At the same false positive rate, the best alternative method required

seeing 62% of the sentence. The full AMOC curves are depicted in Fig. 5.6(a). In

this experiment, we used linear SVM with C = 1, α = 0.25, β = 1.

5.3.4 Extended Cohn-Kanade dataset – facial expression

The Extended Cohn-Kanade dataset (CK+) [Lucey et al., 2010] contains 327 facial

image sequences from 123 subjects performing one of seven discrete emotions: anger,

contempt, disgust, fear, happy, sadness, and surprise. Each of the sequences contains

images from onset (neutral frame) to peak expression (last frame). We considered

the task of detecting negative emotions: anger, disgust, fear, and sadness.

We used the same representation as Lucey et al. [2010], where each frame uses the

canonical normalized appearance feature, referred as CAPP in Lucey et al. [2010].

For comparison purposes, we implemented two frame-based SVMs: Frm-peak was

trained on peak frames of the training sequences while Frm-all was trained using

all frames between the onset and offset of the facial action. Frame-based SVMs can
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be used for detection by classifying individual frames. In contrast, SOSVM and

MMED are segment-based. Since a facial expression is a deviation of the neutral

face, we represented each segment of an emotion sequence by the difference between

the end frame and the start frame. Even though the start frame was not necessary

a neutral face, this representation led to good recognition results.

We randomly divided the data into disjoint training and testing subsets. The train-

ing set contained 200 sequences with equal numbers of positive and negative ex-

amples. For reliable results, we repeated our experiment 20 times and recorded

the average performance. Regarding the detection accuracy, segment-based SVMs

outperformed frame-based SVMs. The ROC areas (mean and standard deviation)

for Frm-peak, Frm-all, SOSVM, MMED are 0.82 ± 0.02, 0.84 ± 0.03, 0.96 ± 0.01,

and 0.97 ± 0.01, respectively. Comparing the timeliness of detection, our method

was significantly better than the others, especially at low false positive rate which

is what we care about. For example, at 10% false positive rate, Frm-peak, Frm-

all, SOSVM, and MMED can detect the expression when it completes 71%, 64%,

55%, and 47% respectively. Fig. 5.6(b) plots the AMOC curves, and Fig. 5.7 dis-

plays some qualitative results. In this experiment, we used a linear SVM with

C = 1000, α = 0, β = 0.5.

5.3.5 Weizmann dataset – human action

As described in Section 4.4.2, the Weizmann dataset contains 90 video sequences of 9

people, each performing 10 actions. Each video sequence in this dataset only consists

of a single action. To measure the accuracy and timeliness of detection, we performed

experiments on longer video sequences which were created by concatenating existing

single-action sequences. We computed frame-level features and built a codebook of

100 temporal words as explained in Section 4.4.2.

Each action class took turn to be the subject of detection. We created 9 long video

sequences, each composed of 10 videos of the same person and had the event of

interest at the end of the sequence. We performed leave-one-out cross validation;

each cross validation fold trained the event detector on 8 sequences and tested it

on the leave-out sequence. For the testing sequence, we computed the normalized
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Figure 5.7: Disgust (a) and fear (b) detection on CK+ dataset. From left to
right of each sequence are the onset frame, the frame at which MMED fires, the
frame at which SOSM fires, and the peak frame. The number in each image is the
corresponding NTtoD.
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Figure 5.8: F1-score curves on Weizmann dataset; MMED provides better local-
ization for the event of interest, especially when the fraction of the event observed
is small. This figure is best seen in color.

time to detection at 0% false positive rate. This false positive rate was achieved

by raising the threshold for detection so that the detector would not fire before

the event started. We calculated the median normalized time to detection across 9

cross validation folds and averaged these median values across 10 action classes; the

resulting values for Seg-[1], Seg-[0.5,1], SOSVM, MMED are 0.16, 0.23, 0.16, and 0.10
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respectively. Here Seg-[1] was a segment-based SVM, trained to classify the segments

corresponding to the complete action of interest. Seg-[0.5,1] was similar to Seg-[1],

but used the first halves of the action of interest as additional positive examples. For

each testing sequence, we also generated a F1-score curve as described in Sec. 5.3.1.

Fig. 5.8 displays the F1-score curves of all methods, averaged across different actions

and different cross-validation folds. MMED significantly outperformed the other

methods. The superiority of MMED over SOSVM was especially large when the

fraction of the event observed so far was small. This was because MMED was

trained to detect truncated events while SOSVM was not. Though also trained with

truncated events, Seg-[0.5,1] performed relatively poor because it was not optimized

to produce correct temporal extend of the event. In this experiment, we used the

linear SVM with C = 1000, α = 0, β = 1.

5.4 Summary

This chapter addressed early event detection, a relatively unexplored problem in the

computer vision literature. We used Seg-SVMs to develop MMED, a temporal clas-

sifier specialized in detecting events as soon as possible. Moreover, MMED provides

localization for the temporal extent of the event in case it has begun. MMED is

based on SOSVM, but extends it to anticipate streaming data. During training, we

simulate the sequential arrival of data and train a detector to recognize incomplete

events. It is important to emphasize that we train a single event detector to recog-

nize all partial events. This contrasts to an approach that trains multiple detectors,

which lacks a principled mechanism for integrating multiple detection outputs. Our

method is particularly suitable for events which cannot be reliably detected by clas-

sifying individual frames; detecting this type of events requires pooling information

from a supporting window. Experiments on datasets of varying complexity, from

synthetic data, sign language to facial expression and human action, showed that

our method often made faster detection while maintaining comparable or even bet-

ter accuracy. Furthermore, our method provided better localization for the target
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event, especially when the fraction of the event seen so far was small. In this chap-

ter, we illustrated the benefits of our approach in the context of human behavior

analysis, but our approach can be applied to many other domains.



Chapter 6

Weakly Supervised Learning for

Discriminative Event Detection

“God grant me the serenity to accept the things I cannot change;

courage to change the things I can;

and wisdom to know the difference.”

– Reinhold Niebuhr

So far, our event detectors are trained on a large collection of examples manu-

ally annotated with the temporal locations of target events. The reliance on time-

consuming human labeling effectively limits the application of this approach to prob-

lems involving few event categories. Furthermore, the human selection of the event

locations introduces arbitrary biases (e.g., in terms of event boundaries) which may

be suboptimal for training the detector.

In this chapter, we use Seg-SVMs to develop a novel method for learning a discrim-

inative event detector from examples annotated with binary labels indicating the

presence of target events, but not their temporal locations. During training, our

method simultaneously localizes the most discriminative set of temporal segments

and learn an SVM to detect them, as illustrated in Fig. 6.1. We apply our method

to video and accelerometer data and discover discriminative patterns. We extend

73
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Figure 6.1: A framework for simultaneous localization of discriminative events
and training a detector to detect them.

our method to the spatial domain to discover objects that discriminate between two

image classes. We use the results of discriminative detection for classification and

achieve quantitative results similar and in many cases superior to those obtained

with full supervision.

6.1 Energy-based discriminative detection

This section describes an energy-based model for discriminative detection. Assume

there are two classes of time series, called positive and negative (we will discuss the

extension to the multi-class case in Section 6.3). Assume there is a class of events

that are unique to the positive class; each positive time series contains one or more

such event while negative time series contain no such event. Our goal is to discover

these discriminative events. We propose an energy-based model to discover these

events. Since there is one class of target events, we use E(Xz) instead of E(Xz, y)

to denote the energy of a segment, as in Chapter 3 and Chapter 5. We will return

to discuss how to learn the energy function E(·) and a detection threshold b, but

assume for now that the energy function and this threshold have been learned. The

energy function is used to detect a discriminative event in an unseen time series X

as follows. First, we find the segment that has the minimum energy:

z∗ = argmin
z∈Z

E(Xz). (6.1)

If E(Xz∗) < b, we report z∗ as the discriminative event and classify X as positive.

Otherwise, we declare no detection and classify X as negative.
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In the above, we assume the set of discriminative events are unique to the positive

class. For time series data, however, this clear-cut separation between positive and

negative classes does not always exist. In many cases, some negative time series

also contain some instances of such events, and what separate the positive class

from the negative class is the number of event occurrences. Thus, we propose to

make a weaker assumption and address a more general problem. The assumption is

each positive time series contains at least k̄ events while each negative time series

contains fewer than k̄ events. k̄ is an application-specific parameter. For k̄ = 1, we

get back the problem of clear separation between positive and negative classes. Our

goal is to localize this set of events in a time series and also use it for classification.

Let LS(X) be the set of all legitimate segmentations of X with k̄ or fewer segments;

we refer to such a segmentation as a k̄-segmentation. We propose to use an energy-

based model to achieve this goal as follows. Given an unseen testing time series X,

we first find the k̄-segmentation (i.e., k̄ or fewer segments) of X that minimizes the

total sum of energies.

{z∗t } := argmin
{zt}∈LS(X)

∑

t

E(Xzt). (6.2)

If the total sum of energies is smaller than the threshold, i.e.,
∑

E(Xz∗t
) < b, we

report {z∗t } as the set of events that discriminate the positive class from the negative

class, and we classify X as a positive time series. If the total sum of energies is not

smaller than the threshold, we classify X as a negative time series.

The energy of a segment, E(Xz), is taken as −wT ϕ(Xz).

6.2 Maximum-margin learning for discriminative detec-

tion

6.2.1 The learning objective

Given a set of positive training time series {X+i|i = 1, · · · , n+} and a set of negative

training time series {X−i|i = 1, · · · , n−}, we learn an SVM for joint detection and
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classification by solving the following constrained optimization:

minimize
w,b

1

2
||w||2, (6.3)

s.t. min
{zt}∈LS(X+i)

∑

t

E(X+i
zt

) ≤ b − 1 ∀i ∈ {1, · · · , n+}, (6.4)

min
{zt}∈LS(X−i)

∑

t

E(X−i
zt

) ≥ b + 1 ∀i ∈ {1, · · · , n−}. (6.5)

The constraints appearing in this objective reflect how we use the energy function

for detecting discriminative events, which was described in the previous section.

These constraints state that each positive time series must contain at least one set

of k̄-or-fewer intervals classified as positive, and that all sets of k̄-or-fewer intervals

in each negative time series must be classified as negative. The goal is then to

maximize the margin subject to these constraints. By optimizing this problem we

obtain the parameters w of the energy function and the threshold b.

For a k̄-segmentation, p, p = {zt} ∈ LS(X), let φ(X,p) denote
∑

t ϕ(Xzt). Use this

compact notation and recall that E(Xzt) = −wT ϕ(Xzt), the learning formulation

in Eq. 6.3 is equivalent to:

minimize
w,b

1

2
||w||2, (6.6)

s.t. max
p∈LS(X+i)

wT φ(X+i,p) + b ≥ 1 ∀i ∈ {1, · · · , n+}, (6.7)

max
p∈LS(X−i)

wT φ(X−i,p) + b ≤ −1 ∀i ∈ {1, · · · , n−}. (6.8)
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As in the traditional formulation of SVM, the constraints are allowed to be violated

by introducing slack variables:

minimize
w,b,{ξ+i},{ξ−i}

1

2
||w||2 + C

n+∑

i=1

ξ+i + C

n−∑

i=1

ξ−i, (6.9)

s.t. max
p∈LS(X+i)

wT φ(X+i,p) + b ≥ 1 − ξ+i ∀i ∈ {1, · · · , n+},

max
p∈LS(X−i)

wT φ(X−i,p) + b ≤ −1 + ξ−i ∀i ∈ {1, · · · , n−},

ξ+i ≥ 0 ∀i ∈ {1, · · · , n+},

ξ−i ≥ 0 ∀i ∈ {1, · · · , n−}.

Here, C is the parameter controlling the trade-off between having a large margin

and less constraint violation. This formulation is a particular instance of multiple

instance learning [Andrews et al., 2003, Dietterich et al., 1997].

6.2.2 Optimization

Our objective is non-convex. We propose optimization via a coordinate descent

approach that alternates between optimizing the objective w.r.t. parameters

(w, b, {ξ+i}, {ξ−i}) and finding the set of k̄ or fewer intervals of positive time series

{X+i} that maximize the SVM scores. Let obj(w, b, {ξ+i}, {ξ−i}) denote 1
2 ||w||2 +

C
∑

i ξ
+i + C

∑
i ξ

−i, the optimization objective. The optimization procedure for

obj(w, b, {ξ+i}, {ξ−i}) is provided in Algorithm 1 below.

The iterative process of the above algorithm is a special case of Concave-Convex pro-

cedure (CCCP) [Smola et al., 2005, Yuille and Rangarajan, 2002]. CCCP has been

proved theoretically to converge to a critical point. It has been shown empirically

to be an effective and efficient optimization procedure in the context of maximum

margin clustering [Zhao et al., 2008] and structural SVMs with latent variables [Yu

and Joachims, 2009].

Every iteration of Algorithm 1 requires optimizing the objective w.r.t. parameters

w, b, {ξ+i}, {ξ−i} while fixing the candidate set of discriminative events of positive

time series {X+i} (Eq. 6.10). Although this is a convex optimization problem,
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Algorithm 1 The optimization procedure for (6.9)

1: Initialize sets of discriminative events for positive time series {p̂+i}n+

i=1.
2: obj := +∞
3: repeat

4: cur obj := obj
5: Optimize for SVM parameters:

ŵ, b̂, ξ̂+i, ξ̂−i := argmin
w,b,{ξ+i},{ξ−i}

obj(w, b, {ξ+i}, {ξ−i}) (6.10)

s.t. wT φ(X+i, p̂+i) + b ≥ 1 − ξ+i ∀i,

max
p∈LS(X−i)

wT φ(X−i,p) + b ≤ −1 + ξ−i ∀i, (6.11)

ξ+i ≥ 0, ξ−i ≥ 0 ∀i.

6: Update the objective:

obj := obj(ŵ, b̂, ξ̂+i, ξ̂−i).

7: Find the set of k̄ or fewer intervals of positive time series that maximize SVM
scores:

p̂+i := argmax
p∈LS(X+i)

wT φ(X+i,p) ∀i. (6.12)

8: until cur obj − obj < ǫ //convergence

the cardinality of the set of k̄ or fewer intervals is very large. Therefore, special

treatment is required for constraints (6.11). We use constraint generation (i.e., the

cutting plane algorithm) to handle these constraints [Tsochantaridis et al., 2005].

Algorithm 2 outlines this optimization procedure.

Each iteration of Algorithm 2 minimizes a convex quadratic function subject to

manageable-size sets of linear constraints P−i (Line 3). These sets of constraints

are updated by adding the most violated constraints at every step (Line 7). The

algorithm terminates when the total constraint violation is smaller than a threshold

(as also used by Zhao et al. [2008]). Algorithm 2 is guaranteed to find the global op-

timum of (6.10). Like the Simplex algorithm, constraint generation has exponential

running time in the worst case; however, it often works well in practice.
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Algorithm 2 The optimization procedure for (6.10)

1: P−i := ∅ ∀i.
2: repeat

3: Optimize the quadratic program :

ŵ, b̂, ξ̂+i, ξ̂−i := argmin
w,b,{ξ+i},{ξ−i}

obj(w, b, {ξ+i}, {ξ−i})

s.t. wT φ(X+i, p̂+i) + b ≥ 1 − ξ+i ∀i,

wT φ(X−i,p) + b ≤ −1 + ξ−i ∀i,∀p ∈ P−i

ξ+i ≥ 0, ξ−i ≥ 0 ∀i.

4: tv := 0. //total violation
5: for all i ∈ {1, · · · , n−} do

6: Find the most violated constraints:

p̂−i := argmax
p∈LS(X−i)

ŵT φ(X−i,p) (6.13)

7: P−i := P−i ∪ {p̂−i}
8: tv := tv + min{ŵT φ(X−i, p̂−i) + b̂ − (−1 + ξ̂−i), 0}
9: until tv < δ //total violation is negligible

6.3 Multi-class extension

We now extend our formulation to handle multiple classes. Assume we are given a

set of training time series {Xi|i = 1, · · · , n} with corresponding class labels {yi|i =

1, · · · , n}. The label yi ∈ {1, · · · ,m} indicates that the time series Xi contains

target events of category yi. We learn an SVM for joint detection and classification

by solving the following constrained optimization:

minimize
{wj},{ξi}

1

2m

m∑

j=1

||wj ||
2 + C

n∑

i=1

ξi (6.14)

s.t. max
p∈LS(Xi)

wT
yiφ(Xi,p) ≥ max

p∈LS(Xi)
wT

y φ(Xi,p) + 1 − ξi ∀i∀y 6= yi,

ξi ≥ 0 ∀i.
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The constraints appearing in this objective state that for each time series Xi, the

detector of the correct class (yi) should output a classification score higher than

those produced by the detectors of the other classes. Here, {ξi} are slack variables,

and C is the parameter controlling the trade-off between having larger margin and

less constraint violation. The goal is then to maximize the margin subject to these

constrains. By optimizing this problem we obtain a multi-class SVM, i.e. parameters

(w1, · · · ,wm), that can be used for detection and categorization. Given a new

testing time series X, detection and categorization are done as follows. First, we

find the category ŷ and k̄-segmentation p̂ ∈ LS(X) yielding the maximum SVM

score:

ŷ, p̂ = argmax
y∈Y ,p∈LS(X)

wT
y φ(X,p). (6.15)

We report p̂ as the detected events of category ŷ for time series X.

6.4 Feature representation and localization algorithm

The above optimization requires at each iteration to localize the set of k̄ or fewer

intervals maximizing the SVM score in each time series (Eqs. 6.12 & 6.13). Thus, we

need a very fast localization procedure. In the this section we describe a represen-

tation of temporal signals and a novel efficient algorithm to address this challenge.

6.4.1 Feature representation

Time series can be represented by descriptors computed at spatial-temporal inter-

est points [Dollár et al., 2005, Laptev and Lindeberg, 2003, Niebles et al., 2008].

Sample descriptors from training data can be clustered to create a visual-temporal

vocabulary [Dollár et al., 2005]. Subsequently, each descriptor is represented by the

ID of the corresponding vocabulary entry and the frame number at which the point

is detected. Given a segment z of a time series X, we consider the feature vector

ϕ(Xz) as the histogram of visual-temporal words associated with interest points
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in z. Thus, for a k̄-segmentation p ∈ LS(X), the feature vector φ(X,p) is the

histogram of visual-temporal words associated with interest points in p.

Let Ci denote the set of words occurring at frame i. Let ai =
∑

c∈Ci
wc if Ci is non-

empty, and ai = 0 otherwise. ai is the weighted sum of words occurring in frame i

where word c is weighted by SVM weight wc. From these definitions it follows that

wT φ(X,p) =
∑

i∈p ai. For fast localization of discriminative patterns in time series

we need an algorithm to efficiently find the k̄-segmentation maximizing the SVM

score wT φ(X,p). Indeed, this optimization can be solved globally in a very efficient

way. The following section describes the algorithm. In the appendix, we prove the

optimality of the solution produced by this algorithm.

6.4.2 An efficient localization algorithm

Let n be the length of the time signal and I = {[s, e] : 1 ≤ s ≤ e ≤ n} ∪ {∅} be

the set of all subintervals of [1, n]. For a subset S ⊆ {1, · · · , n}, let h(S) =
∑

i∈S ai.

Maximization of wT φ(X,p) is equivalent to:

maximize
z1,...,zk̄∈I

k̄∑

j=1

h(zj) s.t. zi ∩ zj = ∅ ∀i 6= j. (6.16)

This problem can be optimized very efficiently using Algorithm 3 presented below.

Algorithm 3 Find best k̄ disjoint intervals that optimize (6.16)

Input: a1, · · · , an, k̄ ≥ 1.
Output: a set Z k̄ of best k̄ disjoint intervals.
1: Z0 := ∅.
2: for m = 0 to k̄ − 1 do

3: J1 := arg maxJ∈I h(J) s.t. J ∩ S = ∅ ∀S ∈ Zm.
4: J2 := arg maxJ∈I −h(J) s.t. J ⊂ S ∈ Zm.
5: if h(J1) ≥ −h(J2) then

6: Zm+1 := Zm ∪ {J1}
7: else

8: Let S ∈ Zm : J2 ⊂ S. S is divided into three disjoint intervals: S =
S− ∪ J2 ∪ S+.

9: Zm+1 := (Zm − {S}) ∪ {S−, S+}
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This algorithm progressively finds the set of m intervals (possibly empty) that max-

imize (6.16) for m = 1, · · · , k̄. Given the optimal set of m intervals, the optimal

set of m + 1 intervals is obtained as follows. First, find the interval J1 that has

maximum score h(J1) among the intervals that do not overlap with any currently

selected interval (line 3). Second, locate J2, the worst subinterval of all currently

selected intervals, i.e. the subinterval with lowest score h(J2) (line 4). Finally, the

optimal set of m+1 intervals is constructed by executing either of the following two

operations, depending on which one leads to the higher objective:

1. Add J1 to the optimal set of m intervals (line 6);

2. Break the interval of which J2 is a subinterval into three intervals and remove

J2 (line 9).

Algorithm 3 assumes J1 and J2 can be found efficiently. This is indeed the case. We

now describe the procedure for finding J1. The procedure for finding J2 is similar.

Let Zm denote the relative complement of Zm in [1, n], i.e., Zm is the set of intervals

such that the “union” of the intervals in Zm and Zm is the interval [1, n]. Since

Zm has at most m elements, Zm has at most m + 1 elements. Since J1 does not

intersect with any interval in Zm, it must be a subinterval of an interval of Zm.

Thus, we can find J1 as J1 = arg maxS∈Zm h(JS) where:

JS = arg max
J⊆S

h(J). (6.17)

Eq. (6.17) is a basic operation that is needed to be performed repeatedly: finding a

subinterval of an interval that maximizes the sum of elements in that subinterval.

This operation can be performed by Algorithm 4 below with running time complexity

O(n).

Note that the result of executing (6.17) can be cached; we do not need to recompute

JS for many S at each iteration of Algorithm 3. Thus the total running complexity

of Algorithm 3 is O(nk̄). Algorithm 3 guarantees to produce a globally optimal

solution for (6.16) (see Appendix A).
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Algorithm 4 Find the best subinterval

Input: a1, · · · , an, an interval [l, u] ⊂ [1, n].
Output: [sl, su] ⊂ [l, u] with maximum sum of elements.
1: b0 := 0.
2: for m = 1 to n do

3: bm := bm−1 + am. //compute integral image
4: [sl, su] := [0, 0]; val := 0. //empty subinterval
5: m̂ := l − 1. //index for minimum element so far
6: for m = l to u do

7: if bm − b
bm > val then

8: [sl, su] := [m̂ + 1;m]; val := bm − b
bm

9: else if bm < b
bm then

10: m̂ := m. //keep track of the minimum element

6.5 Experiments

This section describes our experiments on several time series datasets.

6.5.1 A synthetic example

The data in this evaluation consists of 800 artificially generated examples of binary

time series (400 positive and 400 negative). Some examples are shown in Fig. 6.2.

Each positive example contains three long segments of fixed length with value 1.

We refer to these as the foreground segments. Note that the end of a foreground

segment may meet the beginning of another one, thus creating a longer foreground

segment (see e.g. the bottom left signal of Fig. 6.2). The locations of the foreground

segments are randomly distributed. Each negative example contains fewer than

three foreground segments. Both positive and negative data are artificially degraded

to simulate measurement noise: with a certain probability, zero energy values are

flipped to have value 1. The temporal length of each signal is 100 and the length of

each foreground segment is 10. We split the data into separate training and testing

sets, each containing 400 examples (200 positive, 200 negative).
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Figure 6.2: What distinguishes the time series on the left from the ones on the
right? Left: positive examples, each containing three long segments with value 1
at random locations. Right: negative examples, each containing fewer than three
long segments with value 1. All signals are perturbed with measurement noise
corresponding to spikes with value 1 at random locations.

We evaluated the ability of our algorithm to discover automatically the discrim-

inative segments in these weakly-labeled examples. We trained our localization-

classification SVM by learning k̄-segmentations for values of k̄ ranging from 1 to 20.

Note that the algorithm has no knowledge of the length or the type of the pattern

distinguishing the two classes. Figure 6.3 summarizes the performance of our ap-

proach. Glob-SVM, traditional SVM based on the statistics of the whole signals,

yields an accuracy rate of 66.5%. Our approach provides much better accuracy than

Glob-SVM. Note that the performance of our method is relatively insensitive to the

choice of k̄, the number of discriminative time-intervals used for classification. It

achieves 100% accuracy when the number of intervals are in the range 3 to 7; it

works relatively well for other settings. When k̄ = 1, our method achieves the accu-

racy of only 77%; this reaffirms the need of using multiple intervals. When the value

of k̄ is too big, our algorithm essentially uses the statistics of the whole signals for

classification, and it behaves like Glob-SVM. In practice, we can use cross validation

to choose the appropriate number of segments.
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Figure 6.3: Classification performance on synthetic time series. For our method,
we show the accuracy obtained using different values of k̄, the maximum number
of discriminative time intervals allowed. Here Glob-SVM, traditional SVM based
on the global statistics of the signals, yields an accuracy rate of 66.5%, which does
not depend on k̄

6.5.2 Discriminative localization in human motion

For a qualitative evaluation, we collected some accelerometer readings of human

walking activity. A 40Hz 3-axis accelerometer was attached to the left arm of a

subject, and we collected a training set of 10 negative and 15 positive time series,

respectively. The negative samples recorded the normal walking activity of the

subject, while in each positive sample, the subject walked but fell twice during the

course the activity. Each time series contains 2000 frames; at 40Hz, this corresponds

to 50 seconds. Some examples of the time series in this dataset are shown in Fig. 6.4.

We obtained a temporal codebook of 20 clusters using k-means on frame-level ac-

celerometer vectors. Subsequently, each frame was represented by the ID of the

cluster that it belonged to. We trained our algorithm and localized k̄-segmentations

with values of k̄ varying from 1 to 10. In Fig. 6.5, we show the qualitative results for

discriminative localization in several time series that were not used in training. The

proposed method correctly discovered the discriminative segments (falling events)

for a wide range of k̄ values.
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Figure 6.4: Examples of accelerometer readings of human activity. Red, green,
blue correspond to three channels of a triaxial accelerometer. Negative samples
(c, d) recorded normal walking activity while positive samples (a, b) included the
falling events.

6.5.3 Mouse behavior

We now describe an experiment of mouse behavior recognition performed on a pub-

licly available dataset1. This collection contains videos corresponding to five distinct

mouse behaviors: drinking, eating, exploring, grooming, and sleeping. There are

seven groups of videos, corresponding to seven distinct recording sessions. Because

of the limited amount of data, performance is estimated using leave-one-group-out

cross validation. This is the same evaluation methodology used by Dollár et al.

[2005]. Fig. 6.6 shows some representative frames of the clips. Please refer to Dollár

et al. [2005] for further details about this dataset.

We represented each video clip as a set of cuboids [Dollár et al., 2005] which were

spatial-temporal local descriptors. From each video we extracted cuboids at interest

points computed using the cuboid detector [Dollár et al., 2005]. To these descriptors

we added cuboids computed at random locations in order to yield a total of 2500

points for each video (this augmentation of points was done to cancel out effects

due to differing sequence lengths). A library of 50 cuboid prototypes was created by

clustering cuboids sampled from training data using k-means. Subsequently, each

cuboid was represented by the ID of the closest prototype and the frame number at

which the cuboid was extracted. We trained our algorithm with values of k̄ varying

from 1 to 3. Here we report the performance obtained with the best setting for each

class.

1http://vision.ucsd.edu/∼pdollar/research/research.html
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Figure 6.5: Discriminative localization in human motion analysis. This figure
shows two examples of testing time series and the results for different values of k̄,
the number of segments in k̄-segmentations. The left sub-figures (a, c, e, g, i) show
the same time series, while the right subfigures (b, d, f, h, j) depict another time
series. k̄ is 1, 2, 3, 5, 10 for (a, b), (c, d), (e, f), (g, h), and (i, j) respectively.
Our method successfully discovers the discriminative patterns (falling events) for
a wide range of k̄ values.

A performance comparison is shown in Table 6.1. The second column shows the

result reported by Dollár et al. [2005] using a 1-nearest neighbor classifier on his-

tograms containing only words computed at spatial-temporal interest points. Glob-

NN is the result obtained with the same method applied to histograms including

also random points. Glob-SVM is the traditional SVM approach in which each video

is represented by the histogram of words over the entire clip. The performance is

measured using the F1 score which is defined as:

F1 =
2 · Recall · Precision

Recall + Precision
. (6.18)

Here we use this measure of performance instead of the ROC metric because the
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Figure 6.6: Example frames from the mouse videos.

Table 6.1: F1 scores: detection performance of several algorithms. Higher F1
scores indicate better performance.

Action Dollár et al. [2005] Glob-NN Glob-SVM Ours

Drink 0.63 0.58 0.63 0.67

Eat 0.92 0.87 0.91 0.91

Explore 0.80 0.79 0.85 0.85

Groom 0.37 0.23 0.44 0.54

Sleep 0.88 0.95 0.99 0.99

latter is designed for binary classification rather than detection tasks [Agarwal et al.,

2004]. Our method achieves the best F1 score on all but one action.

6.5.4 Multi-class categorization of cooking activity

This section explores the use of accelerometers for activity classification in the con-

text of cooking and preparing recipes in an unstructured environment. We per-

formed our experiments on the Carnegie Mellon University Multimodal Activity

(CMU-MMAC) database [De la Torre et al., 2008]. This collection contains multi-

modal measures of human subjects performing tasks involved in cooking five differ-

ent recipes: brownies, scrambled eggs, pizza, salad, and sandwich. Fig. 6.7a shows

an example of the data collection process, a subject is cooking scrambled eggs in

a fully operable kitchen. Although the database contains multimodal measures

(video, audio, motion capture, bodymedia, RFID, eWatch, IMUs), we only used

the accelerometer readings from the five wired Inertial Measurement Units (IMUs).

These 125Hz accelerometers are triaxial and attached to the waist and the limbs of
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(a)

!"#$

(b)

Figure 6.7: CMU-MMAC dataset. (a): data collection in action, a subject is
cooking scrambled egg in a fully operable kitchen. (b): locations of five wired
Inertial Measurement Units (IMUs); the accelerometer readings of these IMUs are
used for experiments in Section 6.5.4

.

the subjects as shown in Fig. 6.7b. We used the main dataset2 which contains data

of 39 subjects. We arbitrarily divided the data into disjoint training and testing

subsets: subjects with odd IDs were used for training and subjects with even IDs

were reserved for testing. The training and testing subsets contained 89 and 80

samples respectively.

Previous work in the literature [Bao and Intille, 2004] has achieved high accuracy

using acceleration data for classifying repetitive human activities such as walking,

running, and bicycling. However, CMU-MMAC dataset is far more challenging

because it was captured in an unstructured environment and the subjects were

minimally instructed. As a consequent, how a recipe was cooked varied greatly

from one subject to another. Moreover, the course of food preparation and recipe

cooking contains a series of actions, and most of them are not repetitive. Many

actions such as walking, opening the fridge, and turning on the oven are common

2http://kitchen.cs.cmu.edu/main.php
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for most recipes. More discriminative actions such as opening a brownie bag or

cracking an egg are often buried in a long chain of actions.

We adopted the feature representation proposed by Bao and Intille [2004]. In par-

ticular, we computed a feature vector every second. To compute the feature vector

at a specific time, we obtained a surrounding window of 1000 frames; at 125Hz,

this corresponds to 8 seconds. Mean, frequency-domain energy, frequency-domain

entropy, and correlation features were extracted from this supporting window, as

described in Bao and Intille [2004]. Every second of a time series was therefore

associated with a feature vector of 150 dimensions. The attributes of these features

vectors were scale-normalized to have maximum magnitude of 1. These normalized

feature vectors were clustered using k-means to obtain a codebook of 50 temporal

words. Subsequently, each second of the accelerometer data was represented by the

ID of the closest temporal word. Because the amount of time to prepare and cook

different recipes might differ, the histogram feature vector for a time series (either

computed globally or on the foreground segments) was normalized by the length of

the time series.

We implemented the multi-class categorization approach described in Section 6.3

combining with the multi-event localization method of Section 6.4. In our imple-

mentation, k̄, the number of time-intervals of k̄-segmentations, was set to 5. Ta-

ble 6.2 displays the confusion matrix of this proposed method for categorizing five

different recipes using accelerometer data. The mean accuracy is 52.2%. This is

significantly higher than the mean accuracy of Glob-SVM which is 42.4%, as shown

in Figure 6.8. The expected accuracy of a random classifier is 20%.

6.6 Extension to images

Our algorithm can be extended to the spatial domain, to discover image regions that

discriminate between two classes of images. This can be achieved by using the exact

learning formulation given in Eq. 6.9. However, X+i and X−i are images instead

of time series, and LS(X) is the set of all subwindows of image X. This section

describes some experiments on object localization and image classification.
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Table 6.2: Results on CMU-MMAC dataset: confusion matrix of the proposed
method for five different recipes. The mean accuracy is 52.2%, compared with
42.4% from the traditional SVM. A random classifier would yield an expected
accuracy of 20%.
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Brownie 68.8 6.2 6.2 0.0 18.8

Egg 25.0 31.2 12.5 12.5 18.8

Pizza 11.8 5.9 47.1 17.6 17.6

Salad 5.9 11.8 23.5 35.3 23.5

Sandwich 0.0 7.1 0.0 14.3 78.6
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Figure 6.8: The mean accuracies on CMU-MMAC dataset – our method signifi-
cantly outperforms Glob-SVM.

6.6.1 Experiments on car and face datasets

This subsection presents evaluations on two image collections. The first experiment

was performed on CMU Face Images, a publicly available dataset from the UCI

machine learning repository3. This database contains 624 face images of 20 people

with different expressions and poses. The subjects wear sunglasses in roughly half

3 http://archive.ics.uci.edu/ml/datasets/CMU+Face+Images
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(a)

(b)

Figure 6.9: Examples taken from (a) the CMU Face Images and (b) the street
scene dataset.

of the images. Our classification task was to distinguish between the faces with sun-

glasses and the faces without sunglasses. Some image examples from the database

are given in Fig. 6.9(a). We divided this image collection into disjoint training and

testing subsets. Images of the first 8 people were used for training while images of

the last 12 people were reserved for testing. Altogether, we had 254 training images

(126 with glasses and 128 without glasses) and 370 testing images (185 examples for

both the positive and the negative class).

The second experiment was performed on a dataset collected by us. Our collection

contains 400 images of street scenes. Half of the images contain cars and half of

them do not. This is a challenging dataset because the appearance of the cars in

the images varies in shape, size, grayscale intensity, and location. Furthermore, the

cars occupy only a small portion of the images and may be partially occluded by

other objects. Some examples of images from this dataset are shown in Fig. 6.9(b).

Given the limited amount of examples available, we applied 4-fold cross validation

to obtain an estimate of the performance.

Each image was represented by a set of 10,000 local SIFT descriptors [Lowe, 2004]

selected at random locations and scales. The descriptors were quantized using a

dictionary of 1,000 visual words obtained by applying hierarchical k-means [Nistér

and Stewénius, 2006] to 100,000 training descriptors.
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Table 6.3: Comparison results on the CMU Face and car datasets. Glob-NN : 10
nearest neighbor approach [Nistér and Stewénius, 2006]. Glob-SVM : SVM using
global statistics. Seg-SVM-FS [Lampert et al., 2008] requires bounding boxes of
foreground objects during training. Our method is significantly better than the
others, and it outperforms even the algorithm using strongly labeled data.

Dataset Measure Glob-NN Glob-SVM Seg-SVM-FS Ours

Faces
Acc. (%) 80.11 82.97 86.79 90.0

ROC Area n/a 0.90 0.94 0.96

Cars
Acc. (%) 77.5 80.75 81.44 84.0

ROC Area n/a 0.86 0.88 0.90

In order to speed up the learning, an upper constraint on the rectangle size was

imposed. In the first experiment, as the image size is 120 × 128 and the sizes

of sunglasses are relative small, we restricted the height and width of permissible

rectangles to not exceed 30 and 50 pixels, respectively. Similarly, for the second

experiment, we constrained permissible rectangles to have height and width no larger

than 300 and 500 pixels, respectively (c.f. image size of 600 × 800).

We compared our approach to several competing methods. Glob-SVM denotes a

traditional SVM approach in which each image is represented by the histogram of the

words in the whole image. Glob-NN is the method of Nistér and Stewénius [2006] in

the implementation of Vedaldi and Fulkerson [2008]. It uses a 10-nearest neighbor

classifier. We also benchmarked our method against Seg-SVM-FS [Lampert et al.,

2008], a fully supervised method requiring ground truth subwindows during training

(Seg stands for segment and FS stands for fully supervised). Seg-SVM-FS trains

an SVM using ground truth bounding boxes as positive examples and ten random

rectangles from each negative image for negative data.

Table 6.3 shows the classification performance measured using both the accuracy

rates and the areas under the ROCs. Note that our approach outperforms not only

Glob-SVM and Glob-NN (which are based on global statistics), but also Seg-SVM-

FS, which is a fully supervised method requiring the bounding boxes of the objects

during training. This suggests that the boxes tightly enclosing the objects of interest

are not always the most discriminative regions.
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Figure 6.10: Localization of sunglasses on test images.

Our method automatically localizes the subwindows that are most discriminative

for classification. Fig. 6.10 shows discriminative detection on a few face testing

examples. Sunglasses are the distinguishing elements between positive and nega-

tive classes. Our algorithm successfully discovers such regions and exploits them

to improve the classification performance. Fig. 6.11 shows some examples of car

localization. Parts of the road below the cars tend to be included in the detection

output. This suggests that the appearance of roads is a contextual indication for

the presence of cars. Fig. 6.12 displays several difficult cases where our method does

not provide good localization of the objects.

Glob-SVM, Seg-SVM-FS, and our proposed method require tuning of a single pa-

rameter, C, controlling the trade-off between a large margin and less constraint

violation. This parameter was tuned using 4-fold cross validation on training data.

The parameter sweeping was done exactly in the same fashion for all algorithms.

Optimizing (6.9) was an iterative procedure, where each iteration involved solv-

ing a convex quadratic programming problem. Our implementation4 used CVX, a

package for specifying and solving convex programs Grant and Boyd [2008a,b]. We

also used Ilog Cplex5 for quadratic programming. We found that our algorithm

generally converged within 100 iterations of coordinate descent.

4http://www.andrew.cmu.edu/user/minhhoan/downloads.html
5http://www-01.ibm.com/software/integration/optimization/ cplex-optimizer/
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Figure 6.11: Localization of cars on test images. Note how the road below
the cars is partially included in the detection output. This indicates that the
appearance of road serves as a contextual indication for the presence of cars.

!" #" $" %"

Figure 6.12: Difficult cases for localization. a, b: sunglasses are not clearly
visible in the images. c: the foreground object is very small. d: misdetection due
to the presence of the trailer wheel.

6.6.2 Experiments on Caltech-4

This subsection describes an experiment on the publicly available6 Caltech-4 dataset.

This collection contains images of different categories: airplanes side, cars brad,

faces, motorbikes side, and background clutter. We consider binary classification

tasks where the goal is to distinguish one of the four object classes (airplanes side,

cars brad, faces, and motorbikes side) from the background clutter class. In this

experiment, we randomly sampled a set of 100 images from each class for training.

The set of the remaining images was split into equal-size testing and validation sets.

The validation data was used for parameter tuning.

6http://www.robots.ox.ac.uk/∼vgg/data3.html
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Table 6.4: Results of binary classification between each of the four classes
of Caltech-4 and the background clutter class. Glob-NN, nearest neighbor ap-
proach [Nistér and Stewénius, 2006]. GlobS-VM : traditional SVM using global
statistics. Seg-SVM-FS [Lampert et al., 2008] is the SVM method that require
strongly labeled data during training. Results of Seg-SVM-FS for the Cars class
is displayed as n/a because of the unavailability of ground truth annotation.

Class Measure Glob-NN Glob-SVM Seg-SVM-FS Ours

Airplanes
Acc. (%) 89.74 96.05 89.40 96.05

ROC Area n/a 0.99 0.95 0.99

Cars
Acc. (%) 94.93 98.17 n/a 98.28

ROC Area n/a 1.00 n/a 1.00

Faces
Acc. (%) 59.83 88.70 86.78 89.57

ROC Area n/a 0.95 0.91 0.95

Motorbikes
Acc. (%) 76.80 88.99 84.67 87.81

ROC Area n/a 0.95 0.92 0.94

Table 6.4 shows the results of this experiment. Seg-SVM-FS, a method that re-

quires bounding boxes of the foreground objects for training, does not perform as

well as Glob-SVM which is based on global statistics from the whole image. This

result suggests that contextual information is very important for classification tasks

on this dataset. Indeed, it is easy to verify by visual inspection that the image

backgrounds here often provide very strong categorization cues (see e.g. the almost

constant background of the face images). As a result our method cannot provide

any significant advantage on this dataset. However note that, unlike Seg-SVM-FS,

our joint localization and classification does not harm the classification performance

as our algorithm automatically learns the importance of contextual information and

uses large subwindows for recognition.

6.7 Summary

In this chapter, we used the Seg-SVMs framework to develop a novel algorithm for

discriminative detection and classification from weakly labeled time series. Discrim-

inative detection was done using energy-based structure prediction, which sought
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a set of subsegments that minimizes the sum of energies; this was performed ef-

ficiently using the algorithm proposed in Subsection 6.4.2. To learn the energy

function for discriminative detection, we derived a maximum-margin learning for-

mulation, which was based on multiple instance learning. We further extended our

method to the spatial domain for discriminative object detection. We showed that

the joint learning of the discriminative regions and of the region-based classifiers led

to categorization accuracy superior to the performance obtained with supervised

methods relying on costly human ground truth data.





Chapter 7

Unsupervised Learning for

Temporal Clustering

“All truths are easy to understand once they are discovered;

the point is to discover them.”

– Galileo Galilei

In this chapter, we show how to use Seg-SVMs to develop an unsupervised learning

method for temporal factorization. This method is in contrast to the ones described

in previous chapters which require fully or weakly annotated data. This unsuper-

vised learning method is based on temporal clustering, which factorizes multiple

time series into a set of non-overlapping segments that belong to several temporal

clusters. It simultaneously determines the start and the end of each segment, and

learns a multi-class SVM to separate temporal clusters. Fig. 7.1 illustrates the key

idea of our method: divide each time series into a set of disjoint segments such that

each segment belongs to a cluster and the cluster separability is maximum using

the SVM margin as the measure of separability. Experiments on clustering human

actions and bee dancing motions show that our method consistently matches and

often surpasses the performance of state-of-the-art methods for temporal clustering.

99
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Figure 7.1: Temporal clustering: time series are partitioned into segments {zi
t}

and similar segments are grouped into classes (i.e., assigning a cluster label yi
t to

each segment zi
t). The objective is to maximize the margin for the separation

between clusters. Though this figure only illustrates the case of two classes, our
method is multi-class.

7.1 Energy-based temporal factorization

Our energy-based model for unsupervised factorization is the same as for the se-

quence labeling problem of Chapter 4. Given a time series X, let LS(X) be the

set of all legitimate segmentation and labeling of X of which the union of all seg-

ments is the entire time series X. We perform joint segmentation and clustering by

minimizing the sum of energies:

minimize
{(yt,zt)}∈LS(X)

∑

t

E(Xzt , yt). (7.1)

The energy of a segment-label pair is defined as:

E(Xz, y) = max{max
y′ 6=y

wT
y′ϕ(Xz) + 1 − wyϕ(Xz), 0}. (7.2)

Here w1, · · · ,wm are parameter vectors for m clusters. We return to discuss how

these parameters are learned in the next section. The above energy function reflects

our desire that: if a segment Xz is assigned to cluster y, the assignment must be

confidently made, i.e., the assignment score of cluster y must exceed the assignment

score of any other cluster y′ by a large margin:

wT
y ϕ(Xz) ≥ wT

y′ϕ(Xz) + 1 ∀y′ 6= y. (7.3)
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7.2 Maximum-margin learning for temporal clustering

In Chapter 4, we presented an algorithm that used multi-class SVM for supervised

learning. For unsupervised learning, we proposed to use Maximum Margin Cluster-

ing (MMC) [Xu et al., 2004, Zhao et al., 2008], which is unsupervised SVM. MMC,

however, suffers from the problem of cluster degeneration, even in the presence of

the cluster balancing constraint. To address this limitation, we propose to replace

the current balancing constraint by another that better regulates the cluster sizes.

Furthermore, we extend the formulation to temporal clustering.

7.2.1 Multi-class MMC

MMC [Xu et al., 2004] is a discriminative clustering algorithm that seeks a binary

partition of the data to maximize the classification margin of SVMs. Xu and Schu-

urmans [2005], Zhao et al. [2008] further extended MMC for the multi-class case.

Given a set of data points x1, · · · ,xn ∈ R
d, multi-class MMC simultaneously finds

the maximum margin hyperplanes w1, · · · ,wm ∈ R
d and the best cluster labels

y1, · · · , yn ∈ {1, · · · ,m} by optimizing:

minimize
wj ,yi,ξi≥0

1

2m

m∑

j=1

||wj ||
2 + C

n∑

i=1

ξi, (7.4)

s.t. wT
yi
xi − wT

y xi ≥ 1 − ξi ∀i, y 6= yi, (7.5)

− λ ≤ (wj − wj′)
T

n∑

i=1

xi ≤ λ ∀j, j′. (7.6)

Here wT
y xi is the confidence score for assigning data point xi to cluster y. Con-

straint (7.5) requires xi to belong to cluster yi with relatively high confidence, higher

than that of any other cluster by a margin. {ξi} are slack variables which allow for

penalized constraint violation, and C is the parameter controlling the trade-off be-

tween having a larger margin and having less constraint violation. Constraint (7.6)

is added aiming to attain the balance between clusters.
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The above MMC formulation has an inherent problem of a discriminative clustering

method which is cluster degeneration, i.e., many clusters are empty. MMC requires

every pair of clusters to be well separated by a margin. Thus every pair of clusters

leads to a constraint on the maximum size of the margin. As a result, MMC is biased

towards a model with fewer number of clusters because less effort for separation is

required. In the extreme case, MMC would create a single cluster if Constraint (7.6)

is not used, and therefore Constraint (7.6) is added to balance the cluster sizes.

Here λ is a tunable parameter of the balancing constraint. However, in practice,

it only works well if the number of allowable clusters is two, m = 2. For m > 2,

cluster degeneration still occurs very often. Furthermore, Constraint (7.6) is not

translation invariant. If the data is centralized at the origin, i.e. 1
n

∑n
i=1 xi = 0, the

constraint has no effect and becomes redundant. In the next subsection we propose

a modification to the MMC formulation to address this issue.

7.2.2 Membership requirement MMC

This section proposes Membership Requirement Maximum Margin Clustering (MR-

MMC), a modification to the MMC formulation to address the issue of cluster de-

generation:

minimize
wj ,yi

ξi≥0,βj≥0

1

2m

m∑

j=1

||wj ||
2 + C

n∑

i=1

ξi + C2

m∑

j=1

βj , (7.7)

s.t. ∀i : wT
yi

xi − wT
y xi ≥ 1 − ξi ∀y 6= yi, (7.8)

∀j : ∃ l different indexes i‘s : wT
j xi − wT

j′xi ≥ 1 − βj ∀j′ 6= j. (7.9)

The difference between MRMMC and the original MMC formulation lies at Con-

straint (7.9). In the essence, this is a soft constraint for requiring each cluster to

have at least l members; βj ’s are slack variables that allow for penalized constraint

violation. This new formulation has several advantages over the original one, as will

be shown in the experimental section.
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We propose to optimize the above using block coordinate descent, which alternates

between two steps: i) fixing {wj}, optimizes Eq. 7.7 over {yi}, {ξi}, {βj}, and the

l members xi’s for each cluster j; ii) fixing {yi} and the l members xi’s for each

cluster j, optimizes Eq. 7.7 over {wj}, {ξi}, and {βj}. This optimization algorithm

is simple to implement and is guaranteed convergent. It is effective when combining

with multiple restarts, as will be shown in the experiment section.

7.2.3 Maximum-margin temporal clustering

This section describes Maximum Margin Temporal Clustering (MMTC), an exten-

sion of MRMMC for temporal segmentation and clustering.

Given a collection of time series X1, · · · ,Xn, MMTC divides each time series into a

set of disjoint segments such that the separation between clusters of the segments is

maximum. In other words, we would like to find {(yi
t, z

i
t)}, a legitimate segmentation

and labeling of time series Xi, that lead to maximum cluster separation:

minimize
wj ,(yi

t,z
i
t)∈LS(Xi)

ξi
t≥0,βj≥0

1

2m

m∑

j=1

||wj||
2 + C

n∑

i=1

ki∑

t=1

ξi
t + C2

m∑

j=1

βj , (7.10)

s.t. ∀i, t : (wyi
t
− wy)

T ϕ(Xi
zi

t
) ≥ 1 − ξi

t ∀y 6= yi
t, (7.11)

∀j : ∃ l pairs (i, t) : (wT
j − wT

j′)ϕ(Xi
zi

t
) ≥ 1 − βj ∀j′ 6= j. (7.12)

Here wT
y ϕ(Xi

zi
t

) is the confidence score for assigning segment Xi
zi

t

to cluster y. Con-

straint (7.11) requires segment Xi
zi

t

to belong to cluster yi
t with relatively high con-

fidence, higher than that of any other cluster by a margin. {ξi
t} are slack variables

which allow for penalized constraint violation, and C is the parameter controlling

the trade-off between large margin and less constraint violation. Constraint (7.12)

requires each cluster to have at least l members; this is also a soft constraint as slack

variables {βj} are used.
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For unnormalized BoW feature, we have the additive property:

ϕ(Xi
zi

t
) =

∑

p∈zi
t

ϕ(Xi
p). (7.13)

Given Eq. (7.13), the left hand side of Constraint (7.12) is:

(wT
j −wT

j′)ϕ(Xi
zi

t
) = (wT

j − wT
j′)mean

p∈zi
t

{ϕ(Xi
p)}len(zi

t). (7.14)

For tractable optimization, we approximate the mean of {ϕ(Xi
p)} by a particular

instance ϕ(Xi
q) and len(zi

t) by lmax/2. Constraint (7.12) is then approximated by:

∀j : ∃ l′ index pairs (i, q) : (wT
j − wT

j′)ϕ(Xi
q)

lmax

2
≥ 1 − βj ∀j′ 6= j. (7.15)

Roughly speaking, Constraint (7.12) requires each cluster to have at least l segments,

while Constraint (7.15) requires each cluster to have at least l′ frames, with l′ =
lmax

2 l. Both constraints regulate the cluster sizes by putting requirements on the

cluster parameters wj. However, the latter does not depend on the segmentation.

The above problem can be solved using block coordinate descent that alternates

between the following two procedures:

(A) Given the current segmentation, update the clustering model, i.e., fixing {zi
t},

optimizing (7.10) w.r.t. {yi
t}, {wj}, {ξ

i
t}, and {βj}.

(B) Given the current clustering model, update the segmentation and cluster labels,

i.e., fixing {wj}, optimizing (7.10) w.r.t. {(yi
t, z

i
t)}, and {ξi

t}.

Note that {yi
t} and {ξi

t} are optimized in both procedures. Procedure (A) per-

forms MMC on a defined set of temporal segments. Procedure (B) updates the

segmentation and cluster labels while fixing the weight vectors of the clustering

model. Procedure (B) can be optimized efficiently using the dynamic programming

algorithm described in Section 4.3.
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7.3 Experiments

This section describes two sets of experiments. In the first set of experiments, we

compare the performance of MRMMC against MMC and other clustering algorithms

to illustrate the problem of unbalanced cluster. In the second set of experiments

we compare the performance of MMTC to state-of-the-art algorithms for the TC

problem on several time series datasets.

Our method has several parameters, and we found our algorithm robust to the

selection of these parameters. We set up the slack parameters C and C2 to 1 in our

experiments. For the experiments in 7.3.1, we set l = n
3m

where n is the number of

training samples and m is the number of classes. Similarly, for experiments in 7.3.2,

we set l′ =
P

ni

3m
where

∑
ni is the total lengths of all sequences and m is the number

of classes.

7.3.1 Clustering performance of MRMMC

We validated the performance of MRMMC on publicly available datasets from the

UCI repository1. This repository contains many datasets, but not many of them

have more than several classes and contain no categorical or missing attributes.

We selected the datasets that were used in the experiments of Zhao et al. [2008]

and added several ones to create a collection of datasets with diversified numbers

of classes. In particular, we used Wine, Glass, Segmentation, Digits, and Letters.

We compared our method against the MMC formulation of Zhao et al. [2008] and

k-means.

In our experiments, we set the number of clusters equal to the true number of classes.

To measure clustering accuracy, we followed the strategy used by Xu et al. [2004],

Zhao et al. [2008], where we first took a set of labeled data, removed the labels

and ran the clustering algorithms. We then found the best one-to-one association

between the resulting clusters and the ground truth clusters. Finally, we reported

the percentage of correct assignment. This is referred as purity in information

1http://archive.ics.uci.edu/ml/
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Table 7.1: Clustering accuracies (%) of k-means, MMC [Zhao et al., 2008], and
MRMMC on UCI datasets. For each dataset, results within 1% of the maximum
value are printed in bold. The second column lists the numbers of classes.

Dataset m k-means MMC MRMMC

Digit 3,8 2 94.7 96.6 96.6

Digit 1,7 2 100 100 100

Wine 3 95.8 95.6 96.3

Digit 1,2,7,9 4 87.4 90.4 90.5

Digit 0,6,8,9 4 94.8 94.5 97.6

Glass 6 43.5 46.1 48.8

Segmentation 7 59.0 40.0 66.1

Digit 0-9 10 79.2 36.5 85.1

Letter a-j 10 42.6 28.6 43.0

Letter a-z 26 27.3 10.9 33.8

theoretic measures [Meila, 2007, Tuytelaars et al., 2009]. Initialization was done

similarly for all methods. For each method and a dataset, we first ran the algorithm

with 10 random initializations on 1/10 of the dataset. We used the output of the

run with lowest energy to initialize the final run of the algorithm on the full dataset.

Table 7.1 displays the experimental results. As can be seen, our method consistently

outperforms other clustering algorithms. The MMC formulation by Zhao et al.

[2008] yields similar results to ours when the number of classes is two or three.

However, when the number of classes is higher, MMC performance is significantly

worse than ours; this is due to the problem of cluster degeneration.

7.3.2 Segmentation-clustering experiments

This section describes experimental results on several time series datasets. In all

experiments we measured the joint segmentation-clustering performance as follows.

We ran our algorithm to obtain a segmentation and cluster labels. At that point,

each frame was associated with a particular cluster, and we found the best cluster-

to-class association between the resulting clusters and the ground truth classes. The

overall frame-level accuracy was calculated as the percentage of agreement; this is

referred as purity in information theoretic measures [Meila, 2007, Tuytelaars et al.,
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Figure 7.2: Segmentation-clustering accuracy as a function of the number of
classes. MMTC outperforms kMSeg.

2009]. For comparison, we implemented kMSeg [Robards and Sunehag, 2009] a

generative counterpart of MMTC in which MRMMC is replaced by k-means.

7.3.2.1 Weizmann dataset

As described in Section 4.4.2, the Weizmann dataset contains 90 video sequences

of 9 people, each performing 10 actions. We extracted binary masks and computed

Euclidean distance transform for frame-level features. We built a codebook of tem-

poral words with 100 clusters using k-means, and the segment-level feature vector

was the histogram of temporal words in the segment.

Fig. 7.2 plots the frame-level accuracies as a function of the number of classes.

We computed the frame-level accuracy for m classes (2 ≤ m ≤ 10) as follows.

We randomly chose m classes out of 10 actions and concatenated video sequences of

those actions (with random ordering) to form a long video sequence. We ran MMTC

and kMSeg and reported the frame level accuracies as explained at the beginning of

Sec. 7.3.2. We repeated the experiment with 30 runs; the mean and standard error

curves are plotted in Fig. 7.2. As can be seen, MMTC outperformed kMSeg. In this

experiment, the desired number of clusters was set to the true number of classes.
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Figure 7.3: Sensitivity analysis – accuracy values when the desired number of
clusters varies around 10, the true number of classes.

The above experiment assumed the true number of classes was known, but this might

not be the case in reality. For sensitivity analysis, we performed an experiment where

we fixed the number of true classes but varied the desired number of clusters. For this

experiment, the evaluation criterion given at the beginning of Sec. 7.3.2 could not

be applied because there was no one-to-one mapping between the resulting clusters

and the ground truth classes. We instead used different performance criteria which

were based on the two principles: i) two frames that belong to the same class should

be assigned to the same cluster; and ii) two frames that belong to different classes

should be assigned to different clusters. Formally speaking, consider all pairs of

same-class video frames, let p1 be the percentage of pairs of which both frames were

assigned to the same cluster. Consider all pairs of different-class video frames, let

p2 be the percentage of pairs of which two frames were assigned to different clusters.

Let p3 be the average of these two values p3 = (p1 + p2)/2, which summarizes the

clustering performance. These criteria are referred as pair-counting measures [Meila,

2007]. Fig. 7.3 plots these values; the true number of classes is 10 while the desired

number of clusters varies from 2 to 15. As the number of clusters increases, p1

decreases while p2 increases. However, the summarized value p3 is not so sensitive

to the desired number of clusters.
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Table 7.2: Joint segmentation-clustering accuracy (%) on the honeybee dataset.
HDP-HMM-US results were published by Fox et al. [2009]. MMTC and kMSeg
results are averaged over 20 runs; the standard errors are also shown. Results
within 1% of the maximum values are displayed in bold. Our method achieves the
best or close to the best result on five out of six sequences, and it has the highest
average accuracy.

Sequence 1 2 3 4 5 6 Mean
HDP-HMM-US 45.0 42.7 47.3 88.1 92.5 88.2 67.3

kMSeg 51.5±.01 50.1±.15 46.7±.12 91.0±.07 91.7±.07 84.7±2.27 69.3±.45
MMTC 51.0±.56 66.6±2.39 48.3±.25 91.6±.16 91.2±.02 88.8±.07 72.9±.57

7.3.2.2 Honeybee dance dataset

As described in Section 4.4.1, the honeybee dataset [Oh et al., 2008] contains video

sequences of dancing honeybees. The bees were visually tracked, and their loca-

tions and head angles were recorded. The frame-level feature vector was [vx, vy,

sin(vθ), cos(vθ)], where (vx, vy) was the velocity vector and vθ was the angular ve-

locity of the bee’s head angle. The segment-level feature vector combines observation

and interaction features as described in Section 4.4.1.

Tab. 7.2 displays the experimental results of MMTC, kMSeg, and HDP-HMM-

US [Fox et al., 2009] the state-of-the-art unsupervised method for this dataset.

HDP-HMM-US is a non-parametric method combining hierarchical Dirichlet process

prior and a switching linear dynamical system. The reported numbers in Tab. 7.2 are

frame-level accuracy (%) measuring the joint segmentation-clustering performance

as described at the beginning of Sec. 7.3.2. For MMTC and kMSeg, we show both

the averages and standard errors of the results over 20 runs. For each honeybee

sequence, results within 1% of the maximum value are printed in bold. MMTC

achieves the best or close to the best performance on five out of six sequences, and

it has the highest overall accuracy. For several sequences, the results of our method

are close to those of the supervised methods, Table 4.1. Fig. 7.4 displays side-by-side

comparison of the prediction result and the human-labeled ground truth. In this

experiment, the coordinate descent optimization algorithm of MMTC required 34

iterations on average (for convergence).
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Figure 7.4: MMTC results versus human-labeled ground truth. Segments are
color coded; red, green, blue correspond to waggle, right-turn, left-turn, respec-
tively. This figure is best seen in color.

7.4 Summary

This chapter proposed MMTC, a novel Seg-SVMs algorithm for simultaneous seg-

mentation and clustering of time series. Clustering was performed using temporal

extensions of MMC for learning discriminative patterns whereas the inference over

the segments was done with dynamic programming. Experiments on several real

datasets in the context of human activity and honeybee dancing showed that our

discriminative clustering often led to segmentation-clustering accuracy superior to

the performance obtained with generative methods. Although the results presented

in the chapter exceeded state-of-the-art algorithms’, there are several open research

problems that need to be addressed in future work. First, currently, the number

of clusters is assumed to be known. In order to automatically select the optimal

number of clusters, criteria similar to Akaike Information Criterion or Minimum

Description Length could be added to the MMTC formulation. Second, MMTC

is susceptible to local minima, and although random initialization with multiple

restarts worked well, better initialization strategies or convex approximations to the

problem will be worth exploring in future work.



Chapter 8

Discussion and Conclusion

“Now this is not the end. It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.”

– Winston Churchill

We have presented Seg-SVMs, a segment-based framework for time series analysis,

and demonstrated its benefits in understanding various types of human and animal

behavior, from facial expression, hand gesture, human action to bee dance and

mouse activity. The development of the Seg-SVMs framework was driven by the

importance of detecting some temporal events of interest; these events of interest

may be the actions that belong to a predefined class, the activities that discriminate

between two different behaviors, or the motions that are repeatedly performed.

Our framework was designed to model and detect these events, which are typically

complex and buried in long chains of observations.

Although the current framework is applicable to and effective for a wide range

of important problems, it has limitations. This chapter describes several ways to

improve and extend the current framework.
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8.1 Limitation and Future Directions

8.1.1 Probabilistic Interpretation

Throughout this thesis, we have proposed to use energy-based structure prediction

for time series analysis. We have shown that energy-based structure prediction

provides a principled mechanism for concurrent top-down labeling and bottom-up

localization. An alternative approach is to use probabilistic models, which, however,

have several major disadvantages [LeCun et al., 2006]: i) the normalization require-

ment limits the choice of energy functions we can use, and ii) learning and inference

may be very complicated, expensive, or even intractable. Furthermore, probabilis-

tic models are not as flexible as energy-based models. In this dissertation, we have

shown the flexibility of energy-based models for incorporating additional constraints

to address novel applications. In contrast, it is unclear how to extend probabilistic

models to satisfy new demands. Take early event detection as an example, for early

detection, it is necessary for the detector to recognize partial events. For an energy-

based model, this can be achieved by requiring that the energy of a partial event is

lower than the energy of any past segment. For a probabilistic model, it is unclear

how to extend the learning formulation to train a detector to detect partial events.

Energy-based models, however, have a disadvantage. They do not provide a prob-

ability estimate, which is sometimes necessary. For the problems described in this

dissertation, it is merely necessary that the time series analysis system gives the

lowest energy to the correct answer; the energy of the correct answer is irrelevant,

as long as it is lower than the energies of other answers. However, the output of

time series analysis must sometimes be combined with that of another system, fed

into the input of another system, or presented to a human decision maker. But en-

ergies are uncalibrated (i.e., measured in arbitrary units), and therefore, combining

separately trained energy-based models is not straightforward. Calibrating energies

to permit such combinations can be done in a number of ways such as Platt scaling

or Gibbs distribution fitting. These methods, however, do not guarantee that the

calibrated energies are good probability estimates.
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8.1.2 Verification of what is discovered

We have demonstrated the ability of Seg-SVMs for discovering discriminative and

similar events, and in general, discovery ability is a crucial requirement for time

series analysis. However, it remains unclear how to verify what we discover, espe-

cially for a discriminative method like Seg-SVMs. One possible solution is to use

annotated data as we did in Chapter 7, but annotated data is not always available

for verification. Another possible solution is to integrate time series analysis into a

bigger system and measure the performance of whole system (e.g., in Chapter 6, we

used classification performance to benchmark discriminative detection). Another

possible direction is to derive a solution that is analogous to what has been done for

generative probabilistic models. For a generative probabilistic model, one can mea-

sure the fitness of the model in terms of probabilities. For a discriminative model,

we can possibly measure the degree of separation between different classes. But this

direction has not been well understood yet. It is a good subject for future study.

8.1.3 Constraint satisfaction

Seg-SVMs train a system for time series analysis by solving a constrained optimiza-

tion problem: the objective of the optimization is to maximize the margin while

the constraints are derived from the requirements for an ideal system. In general,

however, the set of constraints might be too stringent and no ideal system exists. In

this thesis, we allow for constraint violation by introducing slack variables and then

penalizing for the slackness. But the effects of non-satisfying constraints remain

unclear, especially with respect to the tradeoff between different types of require-

ments. Consider early detection as a concrete example, the decisions need to be

both reliable and timely. But not every event can be detected reliably and early,

even reliably alone. In this case, would it make sense to address early detection?

Would reliability is sacrificed for earliness? In this dissertation, we have shown

that the obtained detectors can make faster decisions while maintaining the same

or even better level of reliability. However, in general, there is no prior theoretical

guarantee that adding the timeliness constraints would not lower the reliability of
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the detectors. This limitation of the current framework is a good direction for future

study.

8.1.4 Inter-segment dependency

One limitation of Seg-SVMs is the ignorance of inter-segment dependency. Seg-

SVMs exploit within-segment causality constraint that the presence or absence of

a particular event constrains on those of any other events. Seg-SVMs assume that

the label of a segment can be recognized by classifying the constituent frames; the

frames outside the segment and the labels of other segments are irrelevant. In this

dissertation, we have shown the effectiveness of Seg-SVMs for a number of time series

analysis problems. However, in many domains, it might be beneficial to consider

inter-segment dependency (e.g., hand shaking is often followed by greeting, getting

in a car must be preceded by opening a car door). As such, a direction for future

study is to extend the current framework to account for inter-segment dependency.

8.1.5 Improvement with non-linear kernel

A possible improvement is to use a non-linear kernel for measuring similarity be-

tween time series segments. Non-linear kernels such as Intersection or Chi-square

kernels have been shown to outperform the linear kernel in scene categorization and

object detection. In this thesis, however, we deliberately avoided non-linear ker-

nels due to the implicitness of their feature maps. This implicitness prevents the

use of constraint generation in the optimization of SOSVMs. This has long been

a limitation of SOSVMs. However, recent work from Vedaldi and Zisserman [2010]

shed some light on a solution to this problem. They showed that non-linear kernels

can be approximated by some explicit feature maps. Thus, a non-linear SOSVM

can be approximated by a linear SOSVM in a transformed space, and the existing

optimization procedure with constraint generation can be used. This approach is

worth exploring in future work.
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8.1.6 Optimization

Another future direction is to investigate a better optimization strategy for weakly

supervised and unsupervised learning algorithms that have non-convex formulations.

Even though in our experiments, random initialization with multiple restarts worked

well, better initialization strategies (e.g., self-space learning [Kumar et al., 2010])

or convex approximations (e.g., Semi-Definite Programming relaxation [Xu et al.,

2004]) to the problem will be worth exploring in future work.

8.1.7 Beyond time series

Although the Seg-SVMs framework was developed for time series analysis, many

ideas presented in this dissertation can be extended to the spatial domain. The

weakly supervised learning algorithm can be used to discover discriminative im-

age regions, as shown in Chapter 6. The active approach for training early event

detectors can be generalized to detection of truncated objects. This would be in

contrast to the passive approach of Vedaldi and Zisserman [2009]. In Chapter 4, we

showed segmentation with non-maxima suppression worked better than maximizing

the SVM scores. This idea can be investigated for object detection.

In this thesis, we addressed event localization in time. This satisfied the goals of the

applications described in this dissertation, but it may not suffice for applications

in which events can happen at the same temporal locations but at different spatial

locations. A direction for future work is to extend this framework for detecting

spatio-temporal events, which requires localization in both time and space.

8.2 Conclusion

We presented segment-based SVMs (Seg-SVMs), a framework for time series anal-

ysis. Seg-SVMs were developed on three ideas: energy-based structure prediction,

bag-of-words representation, and maximum-margin training. We used Seg-SVMs to

address five important problems, three of which have received little or no attention
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in the computer vision literature. Specifically, we proposed fully-supervised learn-

ing algorithms for event detection, sequence labeling, and early event detection.

We introduced a weakly-supervised learning algorithm for discovering discrimina-

tive events and an unsupervised learning algorithm for temporal factorization. We

performed experiments on datasets of varying complexity and showed the advan-

tages of our algorithms over competing approaches. In this thesis, we demonstrated

the benefits of our framework for human and animal behavior understanding, but

we believe it can be applied to many other domains.



Appendix A

Global Optimality of

Algorithm 3

Algorithm 3 guarantees to produce a globally optimal solution for (6.16). Even

stronger, the set Zm = {Im
1 , · · · , Im

m} produced by the algorithm is the set of best

m intervals that maximize (6.16). This section sketches a proof by induction.

+) m = 1, this can be easily verified.

+) Suppose Zm is the set of best m intervals that maximize (6.16). We now prove

that Zm+1 is optimal for m+1 intervals. Assume the contrary, Zm+1 is not optimal

for m + 1 intervals. There exist disjoint intervals T1, · · · , Tm+1 such that:

m+1∑

i=1

h(Ti) >

m+1∑

i=1

h(Im+1
i ). (A.1)

Because the way we construct Zm+1 from Zm, we have:

m+1∑

i=1

h(Im+1
i ) =

m∑

i=1

h(Im
i ) + max{h(J1),−h(J2)},

where J1 = arg max
J∈I

h(J) s.t. J ∩ Im
i = ∅ ∀i, (A.2)

J2 = arg max
J∈I

−h(J) s.t. J ⊂ Im
i for an i. (A.3)
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This, together with (A.1), leads to:

max{h(J1),−h(J2)} <

m+1∑

i=1

h(Ti) −
m∑

i=1

h(Im
i ). (A.4)

Consider the overlapping between T1, · · · , Tm+1 and Im
1 , · · · , Im

m , there are two cases.

• Case 1: ∃j : Tj ∩ Im
i = ∅ ∀i. In this case, we have:

h(Tj) ≤ h(J1) <

m+1∑

i=1

h(Ti) −
m∑

i=1

h(Im
i ), (A.5)

⇒
m∑

i=1

h(Im
i ) <

∑

i=1,m+1,i6=j

h(Ti). (A.6)

This contradicts with the assumption that {Im
1 , · · · , Im

m} is the set of best m intervals

that maximize (6.16).

• Case 2: ∀j,∃i : Tj ∩Im
i 6= ∅. Since there are m+1 Tj ’s, and there are only m Im

i ’s,

there must exist one i s.t. Im
i intersects with at least two of Tj ’s. Suppose l, l1, l2

are indexes s.t. Tl1 ∩ Im
l 6= ∅ and Tl2 ∩ Im

l 6= ∅. Furthermore, suppose Tl1 , Tl2 are

consecutive intervals of Tj’s (Tl1 precedes Tl2 and there is no Tj in between). Let

Tl1 = [t−l1 , t
+
l1
], Tl2 = [t−l2 , t

+
l2
]. Consider the interval T = [t+l1 + 1, t−l2 − 1]. Because

Tl1 ∩ Im
l 6= ∅ and Tl2 ∩ Im

l 6= ∅, T must be a subinterval of Im
l , i.e. T ⊂ Im

l . Hence

− h(T ) ≤ −h(J2) <

m+1∑

i=1

h(Ti) −
m∑

i=1

h(Im
i ), (A.7)

⇒
m∑

i=1

h(Im
i ) < h(T ) +

m+1∑

i=1

h(Ti), (A.8)

⇒
m∑

i=1

h(Im
i ) < h(Tl1 ∪ T ∪ Tl2︸ ︷︷ ︸

an interval

) +
∑

i6=l1,l2

h(Ti). (A.9)

This contradicts with the assumption that {Im
1 , · · · , Im

m} is the best set of m intervals

that maximize (6.16).

Since both cases lead to a contradiction, Zm+1 must be the best set of m+1 intervals

that maximize (6.16). This completes the proof. �
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