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Abstract

Just as conventional mechatronic systems rely on switches and relays, machines

that are soft and elastically deformable will require compliant materials that can sup-

port field-controlled reconfiguration. In this dissertation, I present several novel ap-

proaches to shape programmability that primarily rely on condensed soft matter and

are stimulated by electric or magnetic fields. I begin with electric-field-driven meth-

ods for achieving shape programmability of elastomer-based systems. These include

dielectric elastomer actuators and electrostatic beams that undergo extreme stretch.

Classical theories in elasticity and electrostatics are used to examine the mechanical

responses and instabilities of these soft, hyperelastic systems. Such modeling tech-

niques are also used to examine another switching mode based on the snap through

behavior of a buckled ferromagnetic beam under magnetic load. I will then discuss

a unique approach to shape programmability that is based on electrochemistry and

exploits the coalescence and separation of anchored liquid metal drops. In this case,

electrical signals under 10V are utilized to manipulate surface energies and transition

between bi-stable states. Experiments and Surface Evolver simulations show that

oxidation and reduction on opposing poles of the coalesced drops create an interfacial

tension gradient that eventually leads to limit-point instability. Theory derived from

bipolar electrochemistry and vertical electrical sounding predicts droplet motion and

separation based on geometry and bath conductivity, facilitating the optimization of

reconfigurable devices using this phenomenon. I conclude with the application of the

bi-stable droplets to a simple toggle switch capable of changing circuit conductivity

by over three orders of magnitude.
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Chapter 1

Introduction

In recent years, the engineering community has taken an interest in developing soft

and stretchable electronics, actuators, and sensors. Devices fabricated with compli-

ant materials offer many benefits over those created with rigid materials like metals,

silicon, and hard plastics. In particular, this technology strives to expand functional-

ity, to increase durability, and to mimic or comply with biology - characteristics that

pair particularly well with co-robotics, medical equipment, and wearable electronics.

Mechanical “impedance matching” can prevent injuries during human-machine inter-

action, while the soft, stretchable nature prevents wearable devices from interfering

with movement and can allow for life-like motions when actuated. As these devices

become increasingly complex, there is need for “programmable” materials which can

reconfigure and change system functionality, particularly for electrical switching and

tuning.

1.1 Materials for Stretchable Electronics

A key objective in developing stretchable circuits and switches/relays is to replace

rigid materials with soft alternatives (fig. 1.1). Mechanical properties of human

biological tissue, such as muscle (elastic modulus ∼10 kPa), provide a reasonable

1



Figure 1.1: Rigidity/viscosity distribution of materials and devices. The left side
represents the distribution of liquids and the right side represents the distribution
of solids. Directly above the scale are engineering type materials, including water,
natural rubber, polypropylene (PP), and steel. Magnetorheological fluid (MR fluid)
is also included in its unactivated and activated states (Credit: [7]). Directly below
the scale are biological materials, including blood, fat, skin, muscle, ligament, and
bone. Value ranges were taken from literature [8–12]. It should be noted that these
material constants are approximations as biology often exhibits viscoelasticity and
anisotropy. Values varied widely based on factors such as testing method, strain
rate, and subject age. The top right image is a conventional microelectromechanical
switch (credit: Analog Devices and [13]). The top left and top center image represent
alternative soft-matter switching technologies from this work.
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benchmark that reflects the application areas described above. Elastic polymers

(elastomers) and gels are commonly employed as structural materials for soft-matter

engineering due to their hyperelasticity (often displaying strains over 100%) and low

elastic moduli (< 1 MPa). Additionally, fluids may be utilized as they conform and

flow, preventing significant changes in the overall mechanical properties of the host

system. However, desirable qualities in mechanical compliance are often (without

further material customization, as discussed below) accompanied by poor electrical

conductivity. Some degree of stretchability has been achieved with traditional rigid

metals and silicon by applying thin films in serpentine or “wavy” patterns on elas-

tomeric substrates [14, 15]. Geometry limits strain on the films while the entire body

can undergo tensile strains on the order of 100%. However, because the film ma-

terial is not truly stretchable, there is an increased risk of failure through plastic

deformation, fracture, or mechanical-mismatch-induced delamination. Instead, soft

electronics can be achieved by applying conductive materials which are inherently

stretchable.

1.1.1 Conductive Polymers

One method for creating stretchable circuits is to utilize conductive elastomers that

consist of conductive particles loaded into a polymer matrix (fig. 1.2). In contrast to

wavy electronics and similar technologies, conductive rubbers are inherently soft and

can bond extremely well with surrounding elastomer. Carbon black [16], exfoliated

graphite [17, 18], carbon nanotubes [19, 20], and silver micro- and nano- particles

[16] are just a few examples of fillers chosen to create soft-matter electronics such as

sensors and electrodes. It should be noted, however, that because a significant volume

of filler must be used to achieve percolation for electrical conductivity (varying from

case to case based on factors such as particle shape [20]), the particles can have an

adverse effect on the physical properties of the bulk material. Specifically, the elastic

3



Figure 1.2: Examples of stretchable electronics. (a) Conductive polydimethylsilox-
ane (PDMS) composed of carbon black embedded in elastomer to create a tactile
sensor [6]. (b) Eutectic gallium-indium (EGaIn) embedded in silicone to create a
capacitive grid [21]. (c) EGaIn interfaced with anisotropic conductive elastomer to
create a tactile sensor [26]. (d) Conventional surface mount chips interfaced with
conductive silver PDMS. Credit: Alexi Charalambides (Soft Materials Laboratory).
(e) Conventional surface mount chips interfaced with liquid metal traces [27].

modulus tends to increase with filler concentration, and the material often develops

increased viscoelastic behavior. Furthermore, electrical conductivity is limited and

will often fluctuate undesirably, sometimes failing altogether, with factors such as

excessive forces and humidity [21]. Typical conductivity values include 104 S-m−1 for

high concentrations of silver in polydymethylsiloxane (PDMS) [16] and 101 S-m−1 for

carbon black in PDMS [16] as compared to 5.96*107 S-m−1 for copper. Blends of

conductive polymers such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

(PEDOT:PSS) [22–24] or polyaniline (PANI) [25] offer high conductivity (∼105) and

strains over 100%. PEDOT:PSS also provides high transparency, though it tends to

be more rigid (∼ 1 GPa) and inelastic [24]. PANI is not transparent, but maintains

a modulus of ∼700 kPa [25].
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1.1.2 Liquid Metal

Another compelling option is liquid conductors. In particular, liquid-phase metals

have attracted a lot of attention in the soft robotics and sensors community. The

benefit of liquid metal is high conductivity and robustness as it can flow within

channels without losing connection despite large deformations, as shown in fig. 1.2.

While early designs made use of mercury [28], researchers have most recently turned

towards gallium alloys because of their low toxicity. Eutectic gallium-indium (EGaIn)

and Galinstan, a gallium-indium-tin alloy, are common choices and are only about 20

times less conductive than copper [29]. In addition, when exposed to oxygen these

gallium alloys tend to form a thin skin of gallium oxide which provide structural

integrity and increase stickiness and wettability [30]. These liquid metals have already

been successfully employed stretchable devices such as curvature sensors [31] and

antennae [32]. With the development of these soft electronics, numerous methods

for patterning and depositing liquid metal architectures have been explored. This

includes injection-based techniques [31–33], microcontact printing [34], direct writing

[35, 36], and liquid metal embedded elastomers (LMEE) [37–39]. I, with colleagues,

have also explored liquid metal stencil lithography [21], CO2 laser patterning [6],

interfacing with anisotropic conductors [26], and selective wetting to copper traces

[27].

1.2 Programmable Structures

Functionality beyond stretchable wiring and sensing can be achieved with the im-

plementation of programmable structures. Conventionally, programmable structures

may refer to modular robots [40–42] which use rigid materials. Rather than having

a fixed design and purpose like traditional robots, these devices are capable of re-

arranging themselves to achieve new capabilities and to produce a wide variety of

5



Figure 1.3: Programmable structures. (a) Modular robot. Inset: A single module.
Credit: [40]. (b) Self-folding origami designs using shape-memory composite. Credit:
[43]. (c) Particle jamming gripper. Credit: [45].

locomotion methods (fig. 1.3a). This has been accomplished by developing multi-

ple relatively simple robotic modules that physically and electrically interact. Each

module may contain joints, actuators, and/or sensors, contributing to shape change,

such as extension [41], and locomotion, such as rolling and walking [40]. Approach-

ing the materials level, recent developments in tunable origami structures has also

contributed to increasing the programmability of rigid systems. Self folding systems

(fig. 1.3b) typically use shape memory polymer [43] or shape memory alloy [44] to

fold into new structures [43] or to do mechanical work [44].

1.2.1 Rigidity Tuning

Moving towards soft programmable materials, phase changes and microparticle in-

teraction can be leveraged for tunable properties, such as rigidity, though do not

necessarily involve shape change. Magnetorheological fluids, generally consisting of

ferrous micro-particles suspended in a liquid such as oil, can effectively increase in
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viscosity with the application of a magnetic field. This behavior is caused by the

alignment of the ferrous particles as they orient themselves within the field. The

major application for this technology is damping and clutching [46–48], though it

has also been applied to rigidity tuning [49]. Electrorheological fluid functions sim-

ilarly, though with the application of an electric field [46, 50, 51]. A more dramatic

change in rigidity takes place during particle jamming [45], where “flowing” granules

in an air-tight bladder become “solid” as a vacuum is introduced (fig. 1.3c). Prior to

jamming, the bladder can conform to a wide variety of objects. After applying the

vacuum, the bladder becomes locked in whatever shape it currently holds, allowing

it to grasp enclosed objects.

1.2.2 Shape Change

Other tunable soft materials allow for shape morphing, often accompanied by changes

in rigidity. Liquid crystal elastomers, for example, exhibit various strains depending

on how their molecules are ordered. The application of heat or light can trigger the

transition between nematic and isotropic reversibly, allowing for muscle-like behav-

ior [52–55]. While usually presented as actuators [52–54], liquid crystal elastomers

have also been applied as a transforming surface [55]. Hydrogels can exhibit similar

behavior, swelling due to factors such as heat and solution concentration. As with

liquid crystals, hydrogels are often marketed as actuator material, though they can

be used for transitioning between material shapes [56] and continuously manipulating

a surface profile [57].

1.2.3 Soft Actuators

In particular, this work focuses on programming the shape of soft condensed mat-

ter with the goal of achieving switch/relay behavior. The key difference between

shape programmability and actuation is that the former performs very little work.
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This allows for low energy activation and high efficiency. However, the methods to

achieve shape programmability and the methods to achieve actuation for work are

not mutually exclusive.

Pneumatic Actuators

When considering potential manipulation methods for soft reconfigurable devices,

it is also useful to consider methods of actuation used for existing soft machines.

The most popular method is pneumatic. In general, air is used to inflate pockets

(PneuNets) within elastomer bodies or to simply expand a balloon-like structure (fig.

1.4). Examples include crawling robots [58], rolling robots [59], and tentacles [60].

McKibben actuators are also popular and make use of meshed inextensible cords to

control actuation [61, 62]. McKibben actuators are commonly referred to as artificial

muscles and have been applied to wearable orthotic devices [63]. Pneumatic actuators

have the benefit of large, fast deformations, but are limited by the need for bulky

hardware and/or compressed air.

Shape Memory Alloy Actuators

Shape memory alloy (SMA), such as nickel-titanium (Nitinol), is another popular

material for actuation that changes shape and rigidity in response to phase transitions

[64, 65]. For most SMA actuators, there is a twinned martensite phase at room

temperature, and the material can then be deformed easily. Once heated, however,

a highly ordered austenite phase develops, and the material returns to some pre-

programmed shape. Conveniently, Joule heating can be used through the material

itself to induce this transformation. Applications of SMAs have included rolling robots

[66] and bio-mimetic fins [67]. Like pneumatics, SMAs can produce large deformation.

While they do not require high voltages or bulky hardware, they are relatively slow

and are not energy efficient nor inherently soft.
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Figure 1.4: Examples of soft actuators. Left: Pneumatically actuated joint (un-
published). Center: Shape memory alloy actuator. Credit: Xiaonan Huang (Soft
Materials Laboratory). Right: Curved dielectric elastomer actuator. Credit: Carmel
Majidi (Soft Materials Laboratory).
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Ionic Polymer-Metal Composite Actuators

Ionic polymer-metal composites (IPMCs) are created by layering a polymer electrolyte

between to metallic electrodes - an anode and a cathode. When charges are applied,

ions migrate to the appropriate electrode causing an asymmetric swelling within the

polymer and forcing the device to bend. Subsequent diffusion of ions causes the

IPMC to gradually relax [65, 68]. These actuators have been used for grippers [68],

fins [68], and robotic legs [69]. It should be noted that IPMCs can also act as sensors

[68]. IPMCs have the benefit of low actuation voltage and bi-directional motion by

switching anode and cathode, but application is limited by low work density, low

strains, poor electromechanical coupling, and the need to remain hydrated.

Dielectric Elastomer Actuators

Lastly, dielectric elastomer actuators (DEAs), consisting of a soft dielectric layer

sandwiched between two compliant electrodes, are an area of interest for researchers

in soft-matter-engineering. An example is shown in fig. 1.4. When a large potential is

applied across the electrodes, electrostatic “Maxwell Stress” compresses the dielectric

layer, causing expansion in the transverse directions [65, 70, 71]. Theory is further

discussed in Chapter 2. Dielectric elastomer actuators have been used to create robots

capable of walking [72], arm wrestling [73], and peristaltic motion [74]. DEAs have

the benefit of high efficiency and fast actuation. Drawbacks include the requirement

of a high voltage source and the possibility of dielectric breakdown or arcing.

1.2.4 Liquid Metal Electrochemistry

A more recent development has been the electrochemical manipulation of gallium-

indium (fig. 1.5) in electrolytic solutions. In general, these methods fall into two

categories: continuous electrowetting (CEW) and oxide-driven spreading. The former

is a result of electrocapillarity, following the Young-Lippmann equation, and allows
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Figure 1.5: Continuous electrowetting and oxide-induced liquid metal spreading in
30% (weight per volume) NaOH. Left: Continuous electrowetting in NaOH solution.
Right: Oxidation of EGaIn in 1% (weight per volume) NaOH. Black scale bars are 5
mm.
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for the locomotion of liquid metal droplets [75] or the movement of surrounding fluid

[76]. In contrast, the latter is a result of dramatic decreases in effective interfacial

tension as oxide grows, behaving like a surfactant [77]. This has been used to direct

GaIn through particular channels and exhibits fingering instabilities under certain

conditions [77]. These methods are further discussed in Chapter 4.

1.3 Presented Work & Objectives

Electronics with soft and stretchable physical properties have increased in popularity

with the rise of robotics, wearable technology, and bio-mimetic machines. As an

alternative to wavy electronics, conductive rubbers and liquid metal alloys have been

used to create truly all-soft-matter circuits. Although advances have already been

published on pressure-sensing skins [78], soft, pneumatic robots [58], and artificial

octopus arms [79], these devices are generally tethered to rigid hardware that handle

most of the electrical and, in the case of the pneumatic robot, actuating functionality.

This may be undesirable for some applications, such as a fully untethered artificial

octopus, and so effort has been invested in developing elastic electronic components

such as wires [80], capacitors [81], inductors [81], and diodes [82]. However, there is a

lack of designs for physically reconfigurable components that maintain a soft-bodied

nature. In particular, I aim to develop devices that are

� Constructed of soft, condensed matter for use in stretchable electronics.

� Capable of low-energy shape programmability for the purpose of achieving

electrical switching and reconfiguration.

� Activated by low voltages (<10V) for use with standard microcontrollers

and power supplies.
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Thesis Overview:

Chapter 2: Given its previous success, efficiency, and excellent scaling, I begin by

looking at electrostatic devices. My first contribution is the modeling of a curved

actuator consisting of a prestretched DEA attached to an unstrained polydimethyl-

siloxane (PDMS) substrate. The DEA itself is constructed of a PDMS dielectric layer

and a pair EGaIn electrodes that were applied using a simple stencil lithography

fabrication technique. When actuated, the DEA relieves some of the residual strain

within the body, causing it to flatten out. Given electromechanical instabilities and

the chance of dielectric breakdown under high voltages, it is important to understand

the behavior of these devices. I present a simple plane strain model and solve for

the bending angle as a function of voltage using energy minimization and a Neo-

Hookean constitutive law. When this approach fails to capture the experimentally

measured response of the actuator, I introduce a specialized elastic shell theory that

produces predictions in much stronger agreement with experimental data. Next, I

report MEMS-inspired work for fabricating and modeling an electrostatic cantilever

for all-soft-matter electronics. To begin, small angle beam approximations are used

in conjunction with parallel plate theory to derive a fourth order governing equa-

tion for the cantilever shape as a function of dimensions, material properties, and

applied voltage. Prototype beams are created to operate on the millimeter scale

and are composed of carbon-filled conductive PDMS (cPDMS) created with carbon

black. A novel fabrication method is utilized which consists of patterning layers of

PDMS, cPDMS, and sacrificial poly(acrylic acid) layers with a CO2 laser. Strong

agreement is shown between experimental pull-in values and theory, supporting the

use of traditional beam and electrostatic equations with stretchable materials.

Chapter 3: A fixed-fixed beam is studied next to further examine field-induced

deformation of a millimeter-scale elastic element. Specifically, the behavior of the

beam when simultaneously under extreme stretch and electrostatic actuation is of
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interest. The beam is modeled as a Cosserat directed rod with an extensible arc

length. By assuming small bending strains, an effective flexural rigidity can be defined

based on the spatial cross-sectional area and the slope of the stress-strain curve. A

fourth-order ordinary differential equation can then be produced which is essentially

the Euler-Bernoulli beam equation with an additional correction term for axial forces.

To verify the theory, centimeter scale silicone beams are stretched and placed under

point load. With a 3-parameter Ogden constitutive model, the theory agrees well

with the experimental values even for strains of 200%. The theory is then used to

model the behavior of an electrostatic fixed-fixed beam under various stretches. The

results indicate that an electrostatic fixed-fixed beam could remain functional under

large stretches without extreme voltage variation. Complimenting the above work,

I examine the case of pre-buckled beams under distributed load. A Raleigh-Ritz

approach is applied, using two shape functions, and a simplified analytic model is

derived. The theory is then applied to the case of a magnetic load and compared to

experimental values with good qualitative agreement. The bi-stable behavior allows

for on/off toggling of a soft-matter circuit when a critical magnetic load is reached

and rapid temporary switching when sub-critical load is applied.

Chapter 4: Lastly, I examine the manipulation of liquid metals in electrolytic

solutions. By introducing oxidative currents directly to the liquid metal, oxide grows

on its surface, lowering the effective interfacial tension. This effect is leveraged to

cause spreading and coalescence of neighboring droplets that are anchored to copper

pads. Separation is then achieved by applying current across the coalesced drops. A

bipolar electrochemical phenomenon results in the growth of oxide on the anodic pole

and reduction on the cathodic pole, creating an interfacial tension gradient. If the

gradient is substantial enough, the droplets separate to minimize the total energy of

the system. This problem is examined with Surface Evolver simulations and bipolar

electrochemistry theories, resulting in equations capable of predicting the onset of

14



droplet motion and the critical current required for droplet separation. The system is

applied to create a simple bi-stable switch capable changing conductivity by 3 orders

of magnitude. Further, the device can function on less than 10V.

Chapter 5: This dissertation concludes with a section discussing possible future

directions. Soft lithographic techniques and new methods for patterning liquid metals

may allow the miniaturization of DEA and electrostatic beam type switches to MEMS

scales. Obstacles such as adhesion and contact resistance are further discussed. The

manipulation of liquid metal also holds further promise. Challenges include maintain-

ing droplet coalescence during stretching, gravitational influences, and gas formation

at electrodes. However, using pH-neutral solutions, catered channel and pad geome-

tries, miniaturization, and the use of alternating currents may overcome these and

improve the overall functionality.
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Chapter 2

Field-Responsive Fixed-Free

Elastomer Beams

I begin by examining voltage-controlled deflection of elastomer beams that have one

end fixed and the other end free. The first section presents an approach that incorpo-

rates a dielectric elastomer actuator (DEA), which has been popular within the soft

robotics community. Specifically, I model the actuation of a pre-curved DEA beam

that could be used to create and break electrical connections within a soft circuit.

The second section presents a method inspired by the electrostatic cantilevers used

in microelectromechanical systems (MEMS). Theoretical models of both examples

are presented, and predictions are compared to experimental measurements. The

experimentally-validated theories furnish relationships between material properties,

geometry, applied voltage, and flexural response that can inform design and highlight

limitations of these architectures.
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2.1 Response of a Dielectric Elastomer Actuator

Embedded with Liquid Gallium-Indium Elec-

trodes [1, 2]

Dielectric elastomer actuators (DEAs) represent a promising alternative to conven-

tional actuator technologies for powering soft bio-inspired robots, assistive wearable

technologies, and other systems that depend on mechanical “impedance matching”

with soft biological tissue. In contrast to electrical motors and hydraulics, DEAs can

be made entirely out of soft elastic materials and fluids and remain functional un-

der extreme bending and stretching. Moreover, they operate with very little electrical

power and can exhibit as much as 90% efficiency of electrical energy input to mechan-

ical work output [65, 70]. While there have been significant improvements since early

studies in the late 1990s, progress in DEA performance and robotics implementation

continues to depend on advancements in materials selection, design, and predictive

theoretical modeling of the underlying elasticity and electromechanical coupling.

Here, we introduce a DEA composed of liquid-phase gallium-indium (GaIn) alloy

electrodes embedded between layers of poly(dimethylsiloxane) (PDMS)[83]. In con-

trast to existing DEA designs, which contain inextensible (but flexible) frames [84],

springs [85], or solid electrodes [86], the mechanics of the GaIn-embedded composite

is governed entirely by the elasticity of the surrounding PDMS elastomer. Moreover,

we observe that the cHomposite forms a saddle-shape and exhibits a relationship be-

tween longitudinal bending curvature and voltage that cannot be predicted with a

classical bending beam model (see e.g. Sect. 4.2.2 of [87]). Instead, we use a kinemat-

ically parameterized shell theory and use the Rayleigh-Ritz technique for minimum

potential energy to estimate the shape of the DEA at static equilibrium. We find that

the theoretical predictions are in strong agreement with experimental measurements

(without the aid of data fitting) so long as we allow for negative Gaussian curvature
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(K < 0). In addition to furnishing an accurate prediction for the GaIn-PDMS com-

posite, we are confident that this modeling approach can be extended to other DEA

materials and designs.

DEAs are composed of a soft insulating elastomer film coated with conductive

fluid or rubber electrodes. Applying a potential difference Φ to the electrodes induces

an electrostatic pressure (Maxwell stress) on the embedded dielectric layer. As with

a capacitor, nearly no current is drawn by the DEA, and thus very little power is

expended. The dielectric is frequently created with a soft elastomer, such as acrylic-

based VHB tape (3MTM) or PDMS. DEA designs include diaphragms [88], bimorphs

[70, 89], rolls [70, 90], and reinforced planar stacks [91, 92] and exhibit a variety of of

motions, load capacities, and electromechanical coupling.

A central challenge in DEA development is the selection of “stretchable” elec-

trodes that do not constrain the elastic deformation of the embedded dielectric layer

[93]. Typically, the surfaces of the dielectric are coated with metallic particles [94],

graphite powder [70], carbon fibers [70], carbon black [92], or carbon grease [90, 95].

Alternatively, DEAs may comprise conductive electrode materials such as electrolytic

elastomers (hydrogels) [96] or electrodes made conductive by direct filling with con-

ductive particles [89] or through low-energy ion implantation [88]. Fabrication meth-

ods include include spraying, stamping, printing, laser-cutting and spin-coating, or

creating thin-film metal trace electrodes of copper, silver or gold using electroplating,

sputtering, evaporation and patterning with photolithography [93]. While carbon

based electrodes are relatively cheap and easy to fabricate, they have inherently high

electrical resistivity and are often grainy and inconsistent at thinner layer thicknesses.

In contrast, thin film metallic electrodes are highly conductive and easily patterned,

but add to the stiffness of the DEA and require clever fabrication to undergo stretch-

ing (eg. pre-buckling and wavy electronics[97]).

Liquid-phase GaIn alloys represent a promising alternative to existing carbon
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based and solid electrode materials [98, 99]. Like carbon grease, it does not inter-

fere with the mechanics of the surrounding elastomer and remains conductive during

stretching. However, it exhibits 3-6 orders of magnitude lower electrical resistance,

with a conductivity only 1/20th that of conventional copper wiring. Liquid GaIn has

already been used for soft and stretchable wiring [80], sensors [100], and electronics

[101]. Microfluidic channels of liquid alloy are typically produced with replica molding

and needle injection using techniques adapted from “soft” lithography and microflu-

idics [29]. However, DEAs require a thin film coating of liquid alloy that cannot be

produced using needle injection. Instead, they must be produced with techniques like

laser machining[6], masked deposition[102], or stencil lithography[21, 103].

The dielectric in a DEA is typically modeled as an incompressible elastic solid

subject to a Maxwell stress σM = εrε0E
2, where ε0 is the permittivity of free space,

εr is a dielectric constant, and E is the electric field strength [70, 104–106]. Recently,

researchers have examined dynamics [107], resonance [108, 109], and failure of thin

film dielectrics [110, 111] and the effect of viscoelasticity on electric instabilities and

fracture [112]. In most cases, the elastomer in a DEA undergoes elastic strains and

bending curvatures that are beyond the scope of linearized theories for elastic plates

and shells. Instead, we must use a non-classical shell theory that treats the elas-

tomer as an incompressible hyperelastic solid. For moderate stretch, we can model

the PDMS layers with a NeoHookean constitutive law that only requires a single co-

efficient of elasticity [113]. For larger strains, we must use a Mooney-Rivlin[114, 115],

Ogden[116], or any other model that allows for nonlinear elasticity with two or more

coefficients.
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2.1.1 Experimental Methods

Stencil Lithography [21]

Many methods exist for embedding liquid metal within elastic polymers. Channels

can be created by using soft lithography techniques [32, 33] or by casting elastomers

within 3D printed molds [31]. The liquid alloy can then be injection-filled, though

care must be taken to allow paths for air to escape. Recently, gallium-indium (GaIn)

circuits [117] and 3D structures have been produced by depositing individual liquid

droplets with microcontact printing [34], direct writing [35, 36], and micro-transfer

[118].

Here, we present a fabrication method based on stencil lithography. A mask is

used to selectively deposit liquid metal on a substrate before encasing it in elastomer.

This has been performed with both 3D printed masks [119] and copper masks [103].

Contributing to this class of fabrication techniques, we found that generic printer

paper also works well as a stencil. While GaIn easily wets to various elastomers, it

resisted adhering to paper. Selective wetting and clean liquid metal placement can

thus be achieved via inexpensive, easily handled material. It should be noted that the

lyophobic nature of paper has been independently discovered by other groups [120]

and has been explained in terms of Caussie’s law and surface texturing [121]. Recently,

PDMS has been textured to mimic paper physically by molding and nanoparticle

coating and by chemical reaction with acids to create a surface less wettable by GaIn

alloys [121].

Fig. 2.1 from provides some examples of stencil lithography fabrication: a capac-

itive grid and a planar capacitor. Masks were created with printer paper which was

patterned with a CO2 laser engraver (VLS3.50, Universal Laser Systems). The mask

was placed on a silicone elastomer substrate. The tackiness of the silicone rubber

helps keep the mask in place throughout fabrication. A pen with an silicone rubber
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Figure 2.1: Stencil lithography [21]. Top Left: Using an silicone rubber-tipped pen
to apply eutectic gallium-indium (EGaIn) over a paper mask. Top Right: Removing
the paper mask. Bottom Left: Safely pouring uncured elastomer over exposed EGaIn
traces. Bottom Right: Small features for a planar capacitor achieved with CO2 laser
cut printer paper stencil lithography.
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Figure 2.2: Illustration of DEA layer components during fabrication showing (i)
encapsulated electrodes and compliant electrode layers, (ii-iv) straining of DEA com-
posite and bonding to an initially unstrained substrate polymer layer and (v) curved
configuration of released actuator with picture of actual device. Inset: Lower edge
highlighting the negative Gaussian curvature.

tip was used to pick up and apply liquid metal, though scrap pieces of rubber work

well, too. Because eutectic gallium-indium (EGaIn) wets more strongly to the elas-

tomer than to the paper, minimal liquid metal transfers to the mask, requiring little

to no cleanup after the mask is removed. Thanks to the structural strength of EGaIns

oxide skin, the encasing elastomer could simply be poured on the existing structures.

Using laser-cut printer paper, we have achieved conductive traces approximately

250 µm wide. The limiting factor has been paper thickness and the singeing of the

paper during cutting, which can create rough edges. Further, for small devices, the

mask may consist of strips of paper which can easily be folded, ripped, or misaligned.

This may be remedied by finding an alternate mask material or by using paper in

conjunction with a more rigid supporting layer. Regardless, the stencil lithography

method with the use of paper has been demonstrated as a quick and low-cost means

to create functional soft-matter electronics and was used in the following section to

fabricated electrodes for a DEA.
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Actuator Fabrication and Testing

The GaIn-PDMS composite is produced using the steps presented in fig. 2.2 [83]. The

design and fabrication were primarily performed by Lauren Finkenauer of the Soft

Materials Laboratory (PI: C. Majidi). The PDMS dielectric layer (SYLGARD®184;

Dow Corning) is first applied on a flat substrate using a 5 µm resolution thin film

applicator (ZUA 2000 Universal Applicator, Zehntner GmbH). After curing on a hot

plate, eutectic GaIn (EGaIn, ≥ 99.99%; Sigma-Aldrich) electrodes are manually de-

posited using an elastomeric blotter and laser-patterned (VLS3.50, Universal Laser

Systems) stencil[21]. After deposition, the mask is carefully removed and an encapsu-

lating layer of PDMS is applied over the exposed liquid electrodes. Before this sealing

step, a thin strip of adhesive-backed conductive paper (3MTM Fabric Tape CN-3490)

is placed in contact with each patterned liquid metal electrode for eventual interfac-

ing with external electronics. Following another cure on the hot plate, the composite

PDMS-EGaIn-PDMS film is carefully peeled and flipped in order to expose the other

side of the dielectric layer, and a second set of electrodes is applied in the same way.

The pre-strain required for inducing curvature is achieved by manually stretching the

DEA by 6% and allowing it to naturally adhere to a substrate. Lastly, a thicker layer

of PDMS elastomer is applied over the stretched DEA. The sealing layer, dielectric

layer (separating the embedded electrodes), and substrate layer have thicknesses of

H1 = 163 µm, H2 = 85 µm, and H3 = 490 µm, respectively.

The resulting curved DEA (fig. 2.3) is connected to a 10 kV high voltage trans-

former (Q101-5, EMCO High Voltage Corporation) via conductive paper leads and

placed on an isolated substrate. A high voltage probe (PR 28A HV DMM Probe,

B&K Precision) attenuates by 1000× the voltage across the actuator for real-time

recording via an Arduino UNO R3 microcontroller with a custom MATLAB GUI

interface. Recorded footage of the device actuating as the voltage is slowly (≈0.02

Hz) ramped up and down from 0.0 − 5.0 kV is evaluated using a video analysis
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Figure 2.3: Side view of soft-matter PDMS-GaIn DEA composite during testing.

and modeling software (Tracker; http://physlets.org/tracker/). We extract data on

deformation (bending) as a function of time by monitoring the changing beam tip

deflection with the aid of the automated object tracking tool. The voltage can then

be interpolated and correlated with the Tracker output based on time stamps for a

complete description of actuation in response to voltage.

2.1.2 Theory

In its natural (i.e. mechanically isolated, stress-free) state, each PDMS layer of the

DEA is a right rectangular prism with length Li, width Wi, and thickness Hi as shown

in fig. 2.4. As illustrated in fig. 2.2, the index i ∈ {1, 2, 3} identifies the layer (layer

1 – sealing layer; layer 2 – dielectric layer coated with electrodes on the top and

bottom surfaces; layer 3 – thick elastomer substrate). In order to induce residual

bending curvature in the DEA, layers 1 and 2 have dimensions L1 = L2 < L3 and

W1 = W2 ≥ W3. To assemble the DEA, layers 1 and 2 are bonded together and
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Figure 2.4: (a) Actuator cross-section with dimensions before assembly (electrodes
marked by black lines shown only for illustrative purposes and are not included in
the thickness dimensions). (b) Actuator cross-section after assembly.

then stretched so that they share the same length and width as layer 3. When the

third layer is bonded, the composite deforms in order to relieve the residual strains in

the pre-stretched layers. In general, this deformation involves changes in the width,

length, and bending curvature(s) of the composite. Moreover, the shape of the DEA

at static equilibrium changes when electrical voltage Φ is applied to the electrodes.

Fig. 2 shows the direction of beam deflection with applied voltage Φ, which results

in a changing ϑ (defined as half of the arc angle θ̄ shown in fig. 2.4). We observe

that in addition to bending about its intermediate (width-wise) axis, the GaIn-PDMS

composite also bends in the opposite direction about its major (length-wise) axis to

form a saddle-like shape. Pure bending (zero Gaussian curvature, i.e. K = 0 and

saddle-like deformation (K < 0) are examined separately in the following subsections.

In both cases, the bending curvature about the intermediate axis decreases as the

applied voltage Φ increases.
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Model I: Pure Bending

One method for modeling the device is to simplify the kinematics by ignoring saddle

formations and assuming a plane strain condition. Under this description, each layer

is of equal width W regardless of deformation. The result is pure bending where the

DEA curls into a circular arc with an inner radius of ρ and an arc angle of θ̄ (see

fig. 2.4). Alternatively, the inner radius can be described in terms of curvature κ

and length `. Furthermore, the liquid metal electrodes are assumed to be infinitely

thin, and a NeoHookean constitutive model is employed for the PDMS elastomer.

(NeoHookean is deemed appropriate because strains are less than 10%.) The strain

energy density shown below can be determined with the three principal stretches (λi)

and a material coefficient of elasticity C1 = Y/6, where Y is the Young’s modulus for

uniaxial loading.

ψ = C1(λ2
1 + λ2

2 + λ2
3 − 3). (2.1)

We define λθ, λn, and λz as principal stretches. The symbol λθ refers to the

stretch along the the arc length (eθ), λn to the width (en), and λz to the thickness

(ez). Incompressibility dictates that the product of these three stretch values must

be equal to 1, and so the plane strain condition implies λn = 1 and λz(z) = 1/λθ.

The stretch λθ(z) can be quantified as `(1 + κz)/Li, where z the position of material

radially from the inner surface. The elastic strain energy Ω can then be determined

by plugging the stretch values into the NeoHookean energy density equ. (2.1) and

integrating over the unstrained, material volume: Ω = Ω1 + Ω2 + Ω3.

ψi = C1

{(
`

Li
(1 + κz)

)2

+

(
`

Li
(1 + κz)

)−2

− 2

}
(2.2)
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Ω1 =

∫ H1

0

ψ1WL1 dz (2.3)

Ω2 =

∫ H1+H2

H1

ψ2WL2 dz (2.4)

Ω3 =

∫ H1+H2+H3

H1+H2

ψ3WL3 dz. (2.5)

Equivalently, the stretch λθ(z) can be quantified as θ̄(ρ+z)/Li. As before, λn = 1

and λz(z) = 1/λθ. Because the elastomer is incompressible, the elastic strain energy

can be calculated by integrating over the dimensions in the final configuration, where

hi refers to the deformed thickness of each layer which can be determined based on

the stretch definitions and the actuator geometry (See Appendix A.1).

ψi = C1

{(
θ̄(ρ+ z)

Li

)2

+

(
θ̄(ρ+ z)

Li

)−2

− 2

}
(2.6)

Ω1 =

∫ h1

0

ψ1(ρ+ z)Wθ̄ dz (2.7)

Ω2 =

∫ h1+h2

h1

ψ2(ρ+ z)Wθ̄ dz (2.8)

Ω3 =

∫ h1+h2+h3

h1+h2

ψ3(ρ+ z)Wθ̄ dz. (2.9)

For the electrostatic energy, the electric field as a function of ρ can be determined

using Maxwell’s equations. To begin, we assume no charge builds within the elas-

tomer, so the divergence of the electric field (gradient of the potential ϕ) is known

to be zero between and outside the electrodes. The result is the following differential

equation with respect to z: ϕ,zz + (1/(ρ + z))ϕ,z = 0. Furthermore, we can describe

the potential at the electrodes as Φ/2 and −Φ/2, where Φ is the applied voltage drop.

The change in potential with respect to z is assumed to be negligible outside of the

electrodes. This boundary value problem yields the following solution for the electric
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field:

E =
Φ

(ρ+ z) ln [(ρ+ h1 + h2)/(ρ+ h1)]
. (2.10)

The electrostatic contribution Uφ to the total potential energy is

Uφ = −
∫ h1+h2

h1

1

2
εrε0E

2(ρ+ z)θ̄(W − 2b)dz , (2.11)

which corresponds to an “electrical enthalpy.” Here, ε0 = 8.85 × 10−12F/m is the

vacuum permittivity and εr again is the relative electrical permittivity (i.e. dielectric

constant). Also, the dimension b (0.75 µm) represents the width of the PDMS border

in the plane of the liquid GaIn electrodes. Electrostatic energy can also be approx-

imated by assuming that the electrodes form a parallel plate capacitor. The width

of this capacitor is We, the electrode separation h2, and the length is approximated

as `D = L2λθ where λθ is evaluated at z = h1 + h2/2. The capacitance C is then

determined and used to calculate Uφ:

C ≈ εrε0We`D
h2

(2.12)

Uφ = −1

2
CΦ2 = −εrε0We`DΦ2

2h2

. (2.13)

Lastly, at static equilibrium, the combined energy Π = Ω+Uφ must be minimized

with respect to the free kinematic parameters ρ and θ̄. Note that {ρ, θ̄} and {`, κ}

are geometrically related and can be interchanged. This can be performed numeri-

cally with a multivariable optimization or by finding the solution to the two linearly

independent equations ∂Π/∂ρ = 0 and ∂Π/∂θ̄ = 0. For the work presented here, the

combination of current volume strain energy and Maxwell’s solution and the combi-

nation of material volume strain energy and capacitor approximation result in nearly

equivalent results.
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Figure 2.5: (a) DEA composite deforms to form a saddle-like geometry. (b) Defor-
mation in the eθ − ez plane shows bending with radius ρθ = κθ

−1 in the longitudinal
direction. (c) Deformation in the eφ− ez plane shows bending with radius ρφ = κφ

−1

in the width-wise direction. (d) Position of a point x within a saddle surface S.
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Model II: Saddle-Like Deformation

In practice, we observe that the DEA deforms into a saddle-like shape (see fig. 2.2

inset) with negative Gaussian curvature K = −κθκφ, where κθ and κφ are the princi-

pal curvatures along the length (eθ) and width (eφ), respectively. In order to examine

the dependency of {κθ, κφ} on Φ, we consider three representations (placements) of

the elastic layers. In the natural placement, each layer is isolated and has dimensions

{Li,Wi, Hi}. In the reference placement the pre-stretched layers (1 & 2) are bonded

to the thick substrate (layer 3) and the composite relaxes into a rectangular prism of

length ` and width w. Here, each point has Euclidean coordinates {X, Y, Z} where

the tangent bases {eX , eY , eZ} are oriented along the composite length, width, and

thickness, respectively. Lastly, in the current placement, the composite deforms such

that the top of layer 1 (sealing layer) forms a saddle surface S1 with dimensions {`, w}

and principal curvatures {κθ, κφ} as defined below. Here, each point has “inverted”

spherical coordinates {θ, φ, z} and the coordinate lines have tangent (covarient) vec-

tors {eθ, eφ, ez}. The coordinates {θ, φ, z} along with the arcangles {θ̄, φ̄} and radii

of curvature ρθ = κθ
−1 and ρφ = κφ

−1 for the S1 centerlines are defined in fig. 2.5.

Assuming that points in the eX−eZ and eY −eZ planes of the reference placement

remain plane, the eθ − eφ surfaces in the reference placement form saddles S. For

each z, S has centerlines with arcangles θ̄ = κθ` and φ̄ = κφw and radii of curvature

ρθ + z and ρφ − z. The coordinate lines along the eθ and eφ directions have total

lengths of `θ = {(ρθ + z) + (1 − cosφ)(ρφ − z)}θ̄ and wφ = (ρφ − z)φ̄, respectively.

Referring to fig. 2.5, a point in S has a position

x = x(θ, φ, z) = (ρθ + ρφ)eρθ(θ) + (ρφ − z)eρφ(θ, φ) , (2.14)

where eρθ = sin θeX + cos θeZ and eρφ = sinφeY − cosφeρθ.
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For each z, the saddle surface S has an area (see Appendix A.2) of

a(z) =

{
[ρθ + ρφ]φ̄− 2 (ρφ − z) sin

(
φ̄

2

)}
θ̄(ρφ − z) . (2.15)

Each layer of the composite is assumed to be incompressible and so the final thick-

nesses hi can be estimated by dividing the initial volume by the final area of its top

surface: hi ≈ WiLiHi/ai, where a1 = a(0), a2 = a(h1), and a3 = a(h1 + h2). The

final layer thicknesses hi are only approximations because they are calculated using

the area of the top surface rather than mid-plane of each layer. Moreover, the exact

layer thickness will be non-uniform since the principal stretch λθ in the eθ direction

increases with |φ|. Nonetheless, the above approximations are used since it allows the

thickness to be estimated explicitly by calculating a1, h1, a2, ... , h3 in sequence.

Each layer is treated as a hyperelastic solid with principal stretches {λθ, λφ, λz} in

the {eθ, eφ, ez} directions and a strain energy density ψ = ψ(λθ, λφ, λz). The stretches

λθ and λφ are calculated by dividing the arclength of each convecting coordinate line

by its original length in the natural placement: λθ(φ, z) = `θ/Li and λφ(z) = wφ/Wi,

where i = 1, 2, and 3 for z ∈ [0, h1), [h1, h1 + h2), and [h1 + h2, h1 + h2 + h3],

respectively. Incompressibility implies λz = 1/λθλφ and that the total elastic strain

energy Ω =
∑3

i=1 Ωi can be calculated by integrating ψ in the current placement

where now Ωi are evaluated as follows:

Ω1 =

∫ h1

0

∫ φ̄/2

−φ̄/2
ψ`θ(ρφ − z) dφ dz (2.16)

Ω2 =

∫ h1+h2

h1

∫ φ̄/2

−φ̄/2
ψ`θ(ρφ − z) dφ dz (2.17)

Ω3 =

∫ h1+h2+h3

h1+h2

∫ φ̄/2

−φ̄/2
ψ`θ(ρφ − z) dφ dz . (2.18)

For a pre-strain of <10% in layers 1 and 2, we expect only moderate stretches at

31



static equilibrium. Therefore, we again treat the composite as a NeoHookean solid

and let

ψ = 2C1

(
λθ

2 + λφ
2 +

1

λθ
2λφ

2 − 3

)
, (2.19)

where C1 = Y/6 is the coefficient of elasticity as before.

When voltage Φ is applied, the DEA has a total potential energy Π = Ω + Uφ,

where Uφ is the electrical enthalpy. Since the electrodes are surrounded by a border

that is b = 0.75 mm wide, the final area is approximately χa2, where χ = (W2 −

2b)(L2 − 2b)/W2L2 . In the current placement (i.e. saddle-shape configuration),

the capacitance between the two electrodes is estimated as C ≈ χεrε0a2/h2 and the

electrical enthalpy is

Uφ = −1

2
CΦ2 = −χεrε0a2Φ2

2h2

. (2.20)

Lastly, the unknown kinematic parameters {w, `, κθ, κφ} are determined by mini-

mizing the total potential energy Π. This may be accomplished either by perform-

ing a multivariable optimization or finding the solution to the stationary conditions

∂Π/∂w = ∂Π/∂` = ∂Π/∂κθ = ∂Π/∂κφ = 0. While both approaches are valid, nu-

merical minimization is more convenient since it eliminates the additional step of

calculating the partial derivatives of Π.

2.1.3 Results and Discussion

Results from the experiments and theory are presented in fig. 2.6. The grey dots cor-

respond to experimental measurements collected from a single DEA sample and the

dash-dot curve are theoretical predictions from the simplified pure bending model.

The pure bending theory (Model I) overestimates the angle of deflection by approx-

imately 9o. Furthermore, it exaggerates the change ∆ϑ in arcangle ϑ = θ̄/2 as a

function of applied voltage Φ. This is most likely because the plane strain assump-

tion underestimates the final thickness of the dielectric, causing an overestimate of
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Figure 2.6: Comparison of experimental measurements and theoretical predictions
for the arcangle ϑ = θ̄/2 as a function of applied voltage Φ: (gray dots) experimental
data collected from repeated measurements on a single DEA sample; (dash-dot) the
theoretical prediction based on Model I; (solid) prediction from Model II assuming
uniaxial pre-stretch; (dashed) prediction with Model II assuming plane strain pre-
stretch.
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the electrostatic component of the potential (particularly at higher strains and volt-

ages). The lack of saddle formation may also play a role in the misrepresentation of

∆ϑ since the effective area moment of inertia is underestimated.

The thin shell presented (Model II) predictions, represented by the solid curve

with circular markers, that are in much stronger agreement with the experimental

measurements. These predictions correspond to a uniaxial pre-stretch of layers 1 &

2 during the DEA assembly. As discussed above, the two layers are first bonded

together and stretched so that they share the same width and length of layer 3. For

pure uniaxial loading, the two layers stretch by an amount λ̂X = L3/L1 = L3/L2 in

the eX direction and λ̂Y = λ̂Z = λ̂
−1/2
X in the eY and eZ directions. This requires an

initial width W1 = W2 = W3/λ̂Y = W3

√
L3/L1. We use the term “uniaxial” since the

elastomer is under uniaxial stress during pre-stretch with the condition σY = σZ = 0

implying λ̂Y = λ̂Z .

The theoretical prediction appears to be in strong agreement with the experi-

mental measurements (without the aid of data fitting). While the resulting observed

change in bending curvature is less than has been demonstrated by other unimorph

type DEAs [94], our device both takes into account saddling due to pre-stretch and

also displays no obvious degradation of the electrode material throughout testing

(though a much more extensive study is necessary to verify this claim). However,

the theory suggests that even greater bending can be achieved by imposing a “plane

strain” loading condition during pre-stretch. To accomplish this, layers 1 & 2 should

be constrained such that λ̂Y = 1 during pre-stretch. Theoretical predictions based on

this case where W1 = W2 = W3 are presented by the dashed curve in fig. 2.6. This

prediction preserves the dependency of ∆ϑ on Φ but increases the absolute angle of

deflection by approximately 7o. The greater bending angle is attributed to a dra-

matic reduction in transverse curvature (see fig. 2.7), which allows for almost pure

bending deformation. Here, “plane strain” refers to the constraint that strain only
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Figure 2.7: Comparison of predicted bending curvatures κθ (black) and κφ (grey) in
the eθ − ez and eφ − ez planes: (solid) uniaxial pre-stretch; (dashed) plane strain
pre-stretch.

in the eX − eZ plane. However, this could also be interpreted as a “plane stress”

assumption where stress is restricted to the eX − eY plane (i.e. σZ = 0).

Fig. 2.7 compares curvatures in the two bending planes of the saddle-shaped

DEA. For uniaxial pre-stretch, the bending curvatures in the eθ − ez (open circles)

and eφ−ez (open triangles) planes are approximately κθ ∼ 84-93 m−1 and κφ ∼ 32-39

m−1, respectively. This relatively high degree of negative Gaussian curvature can be

explained by the Poissons effect as the actuator bends. Although the DEA layer is

generally in tension while the initially unstrained layer is in compression, the uniaxial

pre-stretch results in an approximately constant width with respect to z (κφ ≈ 0) if

κθ is forced to zero by some external moment. However, as the beam bends, material

towards the inner surface experiences more compression and width expansion, causing

the saddle formation (κφ > 0). Unlike an external moment, which lengthens the

DEA layer but shortens its width, electrostatic pressure during actuation leads to

an increase in both width and length. As a result of the width expansion, actuation

induces an increase in κφ.

For plane strain pre-stretch, bending in the eθ − ez plane (filled circles) is greater
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(κθ ∼ 97-107 m−1), however the curvature in the eφ − ez plane (filled triangles) is

almost negligible (κφ ∼ 0.5-5 m−1). Unlike the uniaxial case, one would expect a

negative κφ to form if κθ were reduced to zero by an external moment; due to the

plane strain, the DEA layer would attempt to contract to a smaller width than the

initially unstrained layer. As the beam bends, the inner material experiences the

same phenomenon described for the uniaxial case, favoring a more positive κφ. At

equilibrium under no voltage, the negative κφ caused by the plane strain and the

positive κφ caused by the beam bending nearly cancel out. As with the uniaxial

case, actuation with an applied voltage tends to increase the DEA width, further

increasing κφ in the positive direction.The minimal saddling in the plane strain pre-

stretch case explains why its 0 voltage predictions are similar to those of the pure

bending model. The saddling has the greatest effect on the effective area moment of

inertia in comparison to overall width or thickness.

The theoretical predictions presented in figs. 2.6 and 2.7 are obtained for geome-

tries and materials constants based on the experimental DEA sample: L1 = L2 = 20

mm, L3 = 1.06L1 = 21.2 mm, W3 = 6.5 mm, b = 0.75 mm, H1 = 163 µm, H2 = 85

µm, and H3 = 490 µm. The Young’s modulus, E = 1 MPa, was determined through

tensile tests with an Instronr materials testing system (Model 4467; Instron) and is

similar to values found in the literature [122–126]. A dielectric constant εr = 2.72

is reported in the product data sheet of the materials supplier (Dow Corning, Inc.).

The double integrals for computing Ωi are performed in MATLAB R2016b using an

adaptive Simpson quadrature (dblquad) and Π is minimized for {w, `, κθ, κφ} using a

direct simplex search method (fminsearch). Complete code for Model I and Model II

can be found in Appendices B and C, respectively.

Fig. 2.8 shows the reversible switching of a liquid metal circuit using a curved

DEA to create and break electrical contacts. This demo was prepared by Lauren

Finkenauer of the Soft Materials Laboratory and is described in greater detail within
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Figure 2.8: Demonstration of a circuit open and closed by a curved DEA switch.
Credit: Lauren Finkenauer [83].
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[83]. The implementation here reflects the feasibility of using these actuators as

switching elements.

2.1.4 Concluding Remarks

I have introduced an entirely soft DEA that contains no rigid or inextensible materials.

It is composed of PDMS embedded with a liquid-phase GaIn alloy. After assembly,

the GaIn-PDMS spontaneously deforms into a saddle-shape that changes curvature

when voltage is applied to the liquid electrodes. This shape is accurately predicted

with an elastic shell theory based on the principle of minimum potential energy and

hyperelastic constitutive model. Since the materials undergo only moderate strains

(< 10%), good agreement between theory and experiment can be achieved with a

NeoHookean constitutive law, which only requires a single coefficient of elasticity.

In general, DEAs with large pre-stretch and bending curvature should be modeled

with a more accurate nonlinear constitutive law. However, even in these cases, the

proposed 4-parameter kinematic representation for a saddle-shaped shell with nega-

tive Gaussian curvature is sufficient for predicting the shape at static equilibrium for

prescribed pre-stretches and voltage. While we focused on two types of pre-stretch

(so-called uniaxial and plane strain loading), the theory is sufficiently general for any

biaxial loading condition on the dielectric layer prior to bonding and release.

High energy efficiency is perhaps the most appealing characteristic of dielectric

elastomer actuators. In soft MEMS, these devices could create and break electrical

connections with nearly zero power consumption. However, relatively high voltages

are required, particularly because the dielectric layer must be compressed. Further-

more, there is no inherent pull-in instability as seen in traditional electrostatic MEMS

switches, such as cantilever and fixed-fixed beams. This can be seen as either a pro

or a con depending on the application, though, for switching, DEAs lack the extra

force that exists just after pull-in could be detrimental. This study has provided in-

38



sight into the importance of accurate modeling - both with regards to hyperelasticity

and with regards to kinematic approximations. Furthermore, the stencil lithography

rapid prototyping described in this chapter expands the range of methods with which

liquid metal films can be patterned.

2.2 Soft-Matter Electrostatic Cantilevers

To further decrease the required voltage for actuation, we examine the possibility of

using an electrostatic cantilever beam (fig. 2.9). Unlike the DEA in the previous sec-

tion, the device presented here makes use of an air gap, eliminating the extra voltage

required to compress an elastomer dielectric layer while maintaining the high energy

efficiency and low current usage. This resembles traditional microelectromechnical

systems (MEMS) (see Appendix D) and may be subject to pull-in instability. The

design can be relatively simple, and the actuation is rapid, even at the length scale

used for the prototypes here. Electrostatic switches generally consist of a station-

ary pull-in electrode which is charged and attracts a floating fixed-free [127, 128] or

fixed-fixed beam [129]. This actuation can be used to directly complete a connec-

tion [127, 128] or to form a capacitor [129]. The work presented here focuses on

electrostatic pull-in of rubber beams for eventual application to a soft-matter switch.

Theory is discussed and compared with good agreement to experimental studies.

2.2.1 Theory

A rectangular cantilever beam with a length of L, thickness of H, and width of W

is considered. It is expected that, as the beam deflects, the electrostatic force will

increase as the distance between it and the pull-in electrode decreases. One method

to estimate the cantilever deformation due to electrostatic forces is to apply small

angle beam bending approximations. In conjunction with this, the electric field is
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Figure 2.9: The electrostatic cantilever beam visualization. The lines and arrows
under the beam represent the electromagnetic field.
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assumed to project orthogonally from the pull-in electrode to the cantilever. Fig.

2.9 is a visualization of the beam with the assumed electric field and expected force

distribution. With small angles, the system can be modeled as a series of dx by W

parallel plate capacitors, ignoring fringing fields. The value of one of these capacitors

is

δC =
ε0εWdx

D + y(x)
, (2.21)

where ε0 is the permittivity of free space, ε is the relative permittivity of air (∼1),

and D is the initial gap between the cantilever and the pull-in electrode. The position

along the beam is indicated with x and y(x) is the location in the bending direction.

The potential energy of each capacitor as a function of applied voltage Φ is

U =
1

2
δCΦ2. (2.22)

Deriving this potential energy with respect to y(x) provides the force (2.23) from each

capacitor.

dF =
ε0WΦ2dx

2(D + y(x))2
. (2.23)

The distributed load q along the beam as a function of y(x) is dF/dx. Small angle

beam theory states that this load is proportional to the fourth order differentiation

of y(x) with respect to x. The final governing equation is thus

EIy′′′′ = −q = − ε0Φ2W

2(D + y(x))2
, (2.24)

where E is the elastic modulus of the cantilever and I is the moment of inertia. By

imparting boundary conditions, this equation can be solved numerically to acquire

a beam shape for given dimensions and voltages. In this case, the four boundary
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conditions the following:

y(0) = 0, (2.25)

y′(0) = 0, (2.26)

M(L) = y′′(L) = 0, (2.27)

v(L) = y′′′(L) = 0. (2.28)

In addition to zero displacement and slope at the base of the beam, both the

internal moment M and the shear stress v at the end of the beam are zero. Similar

approaches to modeling this problem can be found in the literature, sometimes using

methods such as finite differencing [130]. In particular, we are interested in the voltage

at which electrostatic forces overcome elastic restoring forces, causing the beam to

spontaneously collapse into the pull-in electrode. This is known as the pull-in voltage

(ΦPI). In general, assumptions are made regarding the equivalent spring constants

[131] or beam shape [132] to acquire a close-formed solution. [132] makes the following

assumption for the beam shape as a function of tip position y(x):

y(x) ≈
(x
L

)2

y(L). (2.29)

A closed-form solution for the beam tip position as a function of voltage can then

be acquired. When plotted, the pull-in voltage can be found where the system is

semi-stable. [132] approximates this voltage (assuming a rectangular cross-section)

as

ΦPI(x) ≈

√
18EID3

5ε0L4W
=

√
3EH3D3

10ε0L4
. (2.30)

Despite the additional approximations, (2.30) provides insight into the key metrics

for designing a simple electrostatic cantilever.
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2.2.2 Beam Fabrication

In order to test the electrostatic theory, our goal was to fabricate prototype fixed-

fixed beams on millimeter scale in length outside of the cleanroom. Again, we turn to

MEMS, where sacrificial and release layers enable tiny, delicate structures to be fabri-

cated. However, to avoid harsh developing chemicals that could damage elastomers or

otherwise be inconvenient, we opt for water-soluble materials. Three options include

polyacrylic acid (PAA) [133], polyvinyl alcohol (PVA) [133, 134], and gelatin [135].

For the work presented here, we used PAA.

Poly(dimethylsiloxane) (PDMS) (Sylgard 184) was chosen as the structural mate-

rial for the device because it offers a low modulus, it is easy to spin coat or mold, and

it is well-documented in the literature. Further, extensive research has been invested

in creating conductive PDMS (cPDMS) by loading it with carbon black [6, 16], carbon

nanotubes [19], exfoliated graphite [18], and silver micro-particles [16]. The PDMS

and cPDMS can be bonded easily, making them ideal for this project. Carbon black

was chosen as the conductive filler for the samples constructed in this paper because

of its low cost and ease of use.

Fig. 2.10 demonstrates the process used to fabricate the fixed-free beams experi-

mentally tested in this work. To prepare the substrate from step i in 2.10, 11 g of 10:1

PDMS was poured on a 3.5” x 3.5” stainless steel sheet and allowed to cure for over 2

hours on a hotplate at 75◦C. Afterwards, 10.5 g of 20:1 PDMS was mixed with 1.85 g

of carbon black (Alfa Aesar Carbon black 100% compressed, 45527) to create a 15%

weight ratio of cPDMS. Mixing was performed for 1 minute in a centrifugal mixer

(Thinky) without the debubbling step. The mixture is pasty and had be applied with

a thin film applicator (ZUA 2000 Universal Applicator, Zehntner GmbH), creating a

layer of about 600 microns in thickness. This, too, was cured on a hotplate at the

same temperature for over 2 hours. Finally, PAA was applied. PAA can be applied

with a thin film applicator or with a spin coater directly to a PDMS or conductive

43



Figure 2.10: PAA fabrication steps for suspended cPDMS beams. i) Coat PAA on
cPDMS/PDMS surface after oxygen plasma treatment. ii) Pattern through the PAA
(and cPDMS if desired). iii) Fill in trenches with PDMS as anchors. iv) Coat with an
additional layer of cPDMS. v) Pattern outlines for releasing beams and for allowing
water to reach the PAA. vi) Submerge in water to dissolve PAA and remove from
metal plate. vii) Laser pattern or manually cut out the structures. viii) Remove from
substate. b) Some cantilever examples. c) A fixed-fixed beam on a dogbone body.
All scale bars represent 3 mm.

PDMS (cPDMS) substrate. However, given the 30% aqueous solution, pouring about

8 g of the solution on the cPDMS surface and allowing it to spread was adequate.

Because the PAA solution is aqueous, it is helpful to treat the elastomer surface

with oxygen plasma turn it from hydrophobic to hydrophilic. We used an SPI Plasma

Prep III in atmosphere at 30W for about 45 seconds. The mechanism behind this

is the replacement of methyl groups with polar silanol groups and has been widely

researched [136–140]. The water was allowed to evaporate on the hotplate (same

temperature) for over 2 hours. After the PAA hardens , it can be patterned with the

CO2 laser.

A CO2 laser (VLS3.50, Universal Laser Systems) was used to pattern through the

PAA into the PDMS/cPDMS substrate (ii). Around 5 raster passes at 70% power,

100% speed, 1000 PPI, and highest quality (lowest throughput) were required with
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the HPDFO lens. It should be noted that the cPDMS is particularly messy to ablate

and had to frequently be wiped/rinsed clean with isopropyl alcohol. PDMS was then

filled into the patterned areas (iii) to act as insulating anchor points for the conductive

beams. Curing was done on the hotplate at 75◦C for over 2 hours.

For step iv, the same cPDMS recipe described above was used to create a second

batch, which was again applied with the thin-film applicator and cured with the same

parameters. The CO2 laser was again used to pattern this surface (v), though only

until the PAA layer (careful not to damage the cPDMS layers underneath. This

patterning step outlines the beams and other structures which will be released. It

also allows access points for water to reach the PAA. After patterning, the entire

body was submerged in water (overnight) to allow PAA to dissolve (vi). Finally,

the components can be cut out with the CO2 laser or by hand (vii) with a blade

and peeled off the substate (viii). The ordering of vi through viii were sometimes

rearranged depending on the types of samples created. The samples were rinsed

thoroughly with water and isopropyl alcohol and allowed to dry.

2.2.3 Results and Discussion

Using the process described above, cPDMS electrostatic cantilevers were fabricated at

lengths of approximately 2, 2.5, 3, 3.5, 4, and 4.5 mm. For each length, 3 widths were

fabricated: averaging 0.46, 0.94, and 1.43 mm. Due to uneven surfaces (particularly

hotplates) and other fabrication imperfections, beam thickness ranged from around

0.104 mm to 0.233 mm, and air gap height ranged from around 0.310 to 0.626 mm.

To account for this when comparing to theoretical values, equ. (2.30) was rearranged

to acquire a new function dependent solely on length:

Φ̂PI =
10ε0Φ2

PI

3EH3D3
=

1

L4
(2.31)
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Figure 2.11: Pull-in results. Sequences (a) (∼4.676 mm long, 0.899 mm wide) and (b)
(∼2.213 mm long, 1.004 mm wide) show images of beams before voltage was applied,
just prior to pull-in, just after pull-in, and after pull-in at 0V. The plot (c) compares
experimental results to theory. Widths of 0.46 (circles), 0.94 (triangles), and 1.43 mm
(crosses) are plotted separately. The theory from equ. (2.31), 1/L4, is plotted as a
solid line. Numeric results are plotted as a dashed line.

Pull-in experiments were performed by quasi-statically increasing the voltage

(Stanford Research Systems, PS375) applied across the cantilever and the pull-in

substrate by 10V increments. This was continued until the beam snapped down or

exhibited a spark 6 times for each beam. Sample images are shown in fig. 2.11a,b.

Note that the spark shown in fig. 2.11b occurs after pull-in has initiated (also see lit-

erature on Paschen’s law and related phenomena on sparks [141, 142]). Prior to each

trial (6 times per beam), images were taken to collect data on air gap height. The

voltages and other beam data were plotted as the left side of equ. (2.31) and theory

was plotted as the right side. The elastic modulus of the cPDMS was determined to

be about 840 kPa based on tensile data from an Instron (Model 5969).

The numeric and analytic predictions (see Appendix E for MATLAB 2016b code)

for pull-in were very similar, only deviating slightly at short beam lengths where small

angle approximations begin to suffer. Both tended to underestimate the required volt-

age, though agreement with experimental data was still strong. Conductive polymers

rely on conductive paths of particles, which could lead to deviation from theory if

areas of no conductivity exist. Further, conductive rubbers (and cured elastomers in
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general) tend to vary in stiffness based on factors such as age and curing temperature.

These factors all introduce deviations into the system. However, it seems apparent

that, especially at short beam lengths, the wider beams require less voltage for pull-in.

This is most likely due to fringing electric fields. The theory assumes electric fields

only pass directly between the beam and the substrate, but in reality, field lines lead

off the sides and top, as well. These fringing fields have a large impact for beams that

are smaller width-wise. Additional material testing, simulation, and pull-in data is

included in Appendix F.

This study has shown that for deformations with small strains, traditional beam

mechanics and electrostatic theories can be applied to devices constructed of con-

ductive rubbers. While this is useful for designing devices and predicting behavior,

cPDMS has other characteristics which limit its use in soft electronics. In particular,

the low conductivity (0.7 Ω-m) is not sufficient for the most switching applications.

According to [13], it is generally considered a failure for a MEMS switch when the

contact resistance rises above 5 Ω. While this level of conductivity may not be needed

for all applications, it is a useful benchmark.

One solution for the high resistance may be to replace the carbon black with a

more conductive alternative. PDMS with silver micro-particles has been reported

[16] providing resistivity as low as 0.0001 Ω-m, though concentrations of about 86%

were required. Similar conductivities were shown for spray-on carbon nanotubes [78].

Another option is eutectic gallium-indium, a liquid allow with a resistivity of about

2.9*10−7 Ω-m [29].

Adhesion has presented another potential obstacle. Typical direct contact switches

do not suffer from this issue [13]. However, in the case of the elastic materials used

in this paper, the same low modulus which allows for lower pull-in voltages creates

a greater possibility for permanent stiction. Careful adhesion modeling, such as that

presented in [143], may provide a geometry which can solve this problem. Alterna-
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tively, an antagonistic electrode could be placed on the opposite side of the beam

to oppose adhesion. A similar problem would present itself if an EGaIn design were

implemented where the surface tension, amplified by EGaIn’s oxide layer, would be

of concern.

2.2.4 Conclusions

This study focuses on understanding the mechanics behind creating electrostatically

actuated switches composed entirely of soft-matter. A simple theory was derived and

solved numerically to compare with experimental results and a closed-form approxi-

mation found in the literature. While the comparison was favorable, there was room

for design, fabrication, and theoretical improvement to further miniaturize the devices

and address concerns with adhesion. Further, while the cPDMS was acceptable for

electrostatic actuation, it failed to meet requirements for completing circuits due to

high resistances. Additional information on fabrication is reported in Appendices G

and H. Future work will focus on implementing materials with higher conductivities.

Additionally, cantilever beams have the benefit of being free from the influence bulk

material stretch or compression. However, behavior under hyperelastic stretch and

compression is of interest in the context of soft MEMS, and so fixed-fixed beams will

be examined as they can be tested while placed under axial stress. This will have the

added benefit of paving the way for stretchable diaphragms that can act as pumps

and valves.
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Chapter 3

Manipulation of Hyperelastic and

Buckled Fixed-Fixed Structures

The previous chapter considered the case of fixed-free devices under the manipulation

of electrostatic loading. Here, we instead consider fixed-fixed elastomer beams with

the target of creating a more robust soft electrical switch that responds to field stim-

ulation. Although pull-in requirements will be increased with respect to the fixed-free

condition, analyzing this case expands the variety of possible device designs for factors

such as resonant frequency. Furthermore, a fixed-fixed design has a higher tolerance

for internal stresses formed during fabrication and for deformation of the host body;

these two factors may cause a fixed-free beam to develop excessive gap distances or to

unintentionally contact the pull-in electrode, whereas a second fixed end would help

to maintain the desired off-state shape. For the sake of generality, we consider cases

where the device is either stretched or compressed. The first section discusses the

behavior of fixed-fixed beams under hyperelastic stretch, concluding with a discus-

sion on the effect of this stretch on possible electrostatic devices. The second section

considers a soft ferromagnetic beam that buckles under compression and changes its

buckled deflection in response to magnetic field.
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3.1 Nonlinear Deflection of a Fixed-Fixed Elas-

tomer Beam under Extreme Stretch [3]

In chapter 2, Euler-Bernoulli beam equations with Hooke’s law were adequate for

describing cantilever behavior, but these models are insufficient when deformations

are large or when significant strains are involved. While cantilever beams have the

benefit of isolation from outside forces, fixed-fixed beams under large stretches have

the potential to exhibit interesting behavior. Here one must utilize more rigorous

elastic rod theories (see Appendix I) combined with hyperelastic constitutive laws.

When considering incompressible, isotropic materials, one of the earliest and most

commonly used hyperelastic constitutive relations was proposed by Mooney in 1940

[114] and further discussed by Rivlin in 1948 [115]. Materials that follow this model

are commonly referred to as Mooney-Rivlin solids, and their energy density can be

described in terms of the first and second invariants of the left Cauchy stretch tensor

and two material constants:

ψ = C1(λ2
1 + λ2

2 + λ2
3 − 3) + C2(λ−2

1 + λ−2
2 + λ−2

3 − 3) (3.1)

In the above relation, λi represent the principle stretches and C1 and C2 are coeffi-

cients of elasticity.

Perhaps the most popular constitutive law in hyperelasticity, due to its simplicity,

is Neo-Hookean, which Treloar introduced using statistical mechanics in 1943 and

1944 [144, 145] and later compared to work by Rivlin [113]. The energy density of

a Neo-Hookean solid is described as Mooney-Rivlin material where C2 is set to 0 in

(3.1). C1 is often set to E/6, where E is Young’s Modulus, to coincide with Hooke’s

Law when the strain is small. A more general constitutive equation was described by

Ogden in 1972 [116]. The energy density of the Ogden solid can also be determined
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with principle stretches and material constants:

ψ =
N∑
m=1

µm
αm

(λαm1 + λαm2 + λαm3 − 3) (3.2)

The above constitutive laws are common and frequently compared [146, 147].

3.1.1 Theory

The model in this paper takes a similar approach to previous work examining Cosserat

curves with hyperelastic constitutive laws [148]. In particular, I use a small-on-large

theory, where the initial pre-stretch is substantial and nonlinear, and the subsequent

deflection is minimal, allowing for linearization and small angle approximations (about

the large pre-stretch condition) to simplify the theory further. The model is then

compared to experimental data for stretched beams under point loads. This model

describes an incompressible, isotropic beam under a fixed force pre-stretch and planar

loading conditions. Later, adjustments are made to accommodate fixed end positions.

Specifically, we will focus an initially straight fixed-fixed beam and loading which is

normal to the direction of pre-stretch (fig. 3.1). The theory is based upon the

condition that the beam is thin relative to its length and that deflections are small,

resulting in minimal bending strains.

Derivation of Governing Equation

The above conditions give rise to several important assumptions. First, the defor-

mation is dominated by axial stress, tangent to the length of the beam. Second,

the cross-section is affected by the overall lengthening of the beam but not by the

bending strains such that the cross-section remains perpendicular to the centerline of

the beam. The bending moment at any cross-section can then be approximated with

the curvature, the spatial area moment of inertia, and an effective elastic modulus.
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The effective modulus assumes that the axial stress-strain curve is linear for the small

changes in strain induced by bending. Finally, we assume that that that the strain

along the centerline remains constant along the length of beam and is only influenced

by the pre-stretch loading (the planar loading conditions do not lengthen the beam).

This assumption is valid only for small deflections. Given the above assumptions, we

can break the problem into three conditions: 1) the initial configuration, 2) the ref-

erence configuration during pre-stretch, and 3) the final spatial configuration during

deflection.

In the initial configuration, the beam has a length L, thickness H, and a width

W . In both the the reference and final configurations, the centerline length becomes

l, the thickness becomes h, and the width becomes w. For the pre-stretches, we define

λt = l/L (along the length), λn = h/H (along the thickness), and λz = w/W (along

the width). Incompressibility dictates that the Jacobian, J = λtλnλz, must be equal

to 1, so λn = λz = 1/λt. Again, take note that λt describes the only stretch due to

pre-stretch and can be large compared to any additional strain due to bending. The

fixed force pre-stretch and lack of cross-sectional deformation during bending means

that the cross-section is identical between the reference and final configurations and

that the center-line length of the beam does not change between these states. Axial

stress due to bending can be superimposed on the pre-stretch by adding κy, where y

is the distance from the center-line in the n direction. These assumptions lead to the

following stretch tensor:

B = (λt − κy)et ⊗ et +
1√
λt
en ⊗ en +

1√
λt
ez ⊗ ez. (3.3)

The principal stresses are defined using the same nomenclature as the stretch: σt,

σn, and σz. Using the stretches above, it is easy to determine the associated stress

52



Figure 3.1: Model diagram with constant stretching force F and arbitrary loading
q.
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by using hyperelastic constitutive equations of the form

σi = λi
∂ψ

∂λi
− P. (3.4)

Here, W is an energy density function, which will depend on the choice of hyperelastic

constitutive model – such as Mooney-Rivlin (3.1) or Ogden (3.2) – and P is a hydro-

static pressure associated with incompressibility. Since the beam is only subject to

axial load and electrostatic body forces, the surfaces are traction free, which implies

σn ≈ σz ≈ 0. The condition set by (2.4) makes it easy to solve for the unknown

hydrostatic pressure, P . For a Ogden material, one finds that

σt =
N∑
m=1

µm(λαmt − λ−0.5αm
t ). (3.5)

The equivalent elastic modulus, E∗, is determined by taking the derivative of the

tangential stress with respect to the tangential stretch. For an Ogden material,

E∗ =
dσt
dλt

=
N∑
m=1

µm(αmλ
αm−1
t − αm

2
λ−0.5αm−1
t ). (3.6)

This equivalent elastic modulus is useful for estimating changes in stress when small

strains are applied to a beam already stretched by λt. We use it here to simplify the

expressions for axial force and moment within the beam:

σ = σ(λt, κ) ≈ σt − E∗κy, (3.7)

F ≈
∫ H/(2

√
λt)

−H/(2
√
λt)

σ
W√
λt
dy = σt

WH

λt
, (3.8)

54



Figure 3.2: Spatial free body diagram of a beam section of length ∆s.

M ≈ −
∫ H/(2

√
λt)

−H/(2
√
λt)

σy
W√
λt
dy = E∗κ

H3W

12λ2
t

. (3.9)

Note that these integrals must be performed in the final configuration. From (3.9),

we can define the effective area moment of inertia in the reference configuration: I∗ =

(H3W )/(12λ2
t ). One might notice that this is essentially the normal area moment of

inertia for a rectangular beam modified with the stretch value to pull it from the initial

to reference/current configuration. Analogous to Euler-Bernoulli theory, curvature

can then be calculated as

κ =
dθ

ds
=

M

I∗E∗
. (3.10)

Next, we can isolate out an infinitesimally long line segment of the beam and per-

form force and moment balances. Due to the significant forces cause by the length-

ening of the beam, one must apply the balance laws in the spatial configuration

(Eulerean description), as shown in fig. 3.2, even if deflections are small. The force

caused by lengthening is given by (3.8). By balancing the forces in the y-direction,
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one finds that

dV

ds
= −q(s). (3.11)

The moment balance results in

∆M − F∆s sin(θ) + V∆s cos(θ) +O(∆s2) = 0. (3.12)

In the limit as ∆s→ 0, it becomes clear that

dM

ds
= F sin(θ) + V cos(θ). (3.13)

Combining (3.13) with (3.10), one acquires the following second order differential

equation:

d2θ

ds2
=

F

I∗E∗
sin(θ) +

V

I∗E∗
cos(θ). (3.14)

With the definition of two boundary conditions, such as θ(s = 0) = θ(s = l) = 0

for a fixed-fixed beam, this equation can be solved numerically. Alternatively, this

equation can be further adjusted by assuming small deflection angles. In this case we

retrieve an expression very similar Timoshenko’s differential equation for describing

a column being deflected while under compression (see equation (1-5) in [149]).

d4y

dx4
=

F

I∗E∗
d2y

dx2
− q

I∗E∗
. (3.15)

Numerical Analysis

As mentioned above, the equ. (3.14) and (3.15) assume that the horizontal pre-stretch

force remains constant. However, for many situations, including the experiments

described in this paper, a fixed end position must be enforced. In this case, the
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beam lengthens as it is deflected. To simplify this phenomenon, we assume that any

increase in length is spread equally throughout the beam, effectively increasing the

pre-stretch by some amount δ. The new pre-stretch value, λf = λt + δ, thus refers

to the overall axial stretch in the final configuration with fixed ends. The distance δ

can be adjusted numerically such that the appropriate final beam length is achieved

to satisfy the fixed end position condition.

Equ. (3.14) is in terms of s and θ, where ds remains constant for each infinitesimal

line segment. When solved, the x-direction end-to-end distance of the final configura-

tion is shorter than that of the reference configuration (in contrast to what would be

expected for a fixed force condition). To achieve the fixed end condition, the reference

length is increased (by δ) to lf = λfL such that the final configuration end-to-end

distance contracts to l = λtL under the applied load (also see Appendix K.1). Since

lf describes the overall length under the fixed position condition, the force F , effec-

tive modulus E∗, and final width w and height h are all in terms of λf instead of λt,

and (3.14) is solved for s ranging from 0 to lf . Essentially, we want to satisfy the

isoperimetric constraint

l =

∫ lf

0

√
1−

(
dy

ds

)2

ds. (3.16)

In the case of (3.15), the simplification into terms of x rather than s forces the curve

to have fixed end positions because dx (rather than ds) remains constant for each

infinitesimal line segment. However, it does not account for the stretching required

to maintain this fixed position condition. The same occurs with Euler-Bernoulli beam

theory. To compensate for the additional stretching, the reference length is increased

to lf (also see Appendix K.2). Again, the force, effective modulus, and final width

and height must be calculated in terms of λf instead of λt. However, because (3.15)

forces the end positions to remain constant, the differential equation should still be
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solved for x ranging from 0 to l (not lf ). When solved, the overall length in the final

configuration is equal to the new reference length, lf :

lf =

∫ l

0

√
1 +

(
dy

dx

)2

dx. (3.17)

Due to the complexity of the governing equations and of the methods for achieving

fixed end positions, it is easiest to acquire the solutions numerically. In this work, the

numerical analysis was performed using MATLAB R2016b. The differential governing

equation was solved using bvp4c, and δ was solved for using fsolve using the above

two equations. For the point load experiments presented here, the solutions from

equ. (3.14) and equ. (3.15) were nearly identical. Only results from equ. (3.15) is

presented here, with the code for both included in Appendix M.

3.1.2 Experimental Methods

The following experiment was designed to test the accuracy of the theory developed

above. In particular, we aim to verify the “correcting” term, Fy′′/(I∗E∗) from (3.15).

To accomplish this, a rubber beam is stretched and subjected to a point load. No

distributed load is assumed, and the force versus displacement curve is recorded for

comparison to the theory.

Ecoflex 0030 (Smooth-On, Inc.), a two-part silicone rubber, was studied as the

hyperelastic material for the following tests. After thoroughly mixing, the uncured

elastomer was cast into a 100 mm x 20 mm x 4 mm 3D printed (Objet24, Stratasys

Ltd.) molds, degassed, and cured. For testing purposes, flat 3D printed plates were

adhered (Loctiter Super Glue Gel Control) to the ends, allowing the beam to be

secured with a pin and clamp without compressing and deforming the elastomer, as

seen in fig. 3.3. The same pin and clamp system was used to secure the elastomer

for material characterization and for the deflection tests. A 70 mm x 20 mm x 4 mm
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Figure 3.3: Top: Overall setup. Bottom left: Flat plates adhered to Ecoflex beam.
Bottom right: Clamping and pinning setup.
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Figure 3.4: Top: 7 mm deflection at 250% stretch. Bottom: 7 mm deflection at 102%
stretch. (Scales differ in each image.)

section of Ecoflex 0030 was left exposed between the secured ends. Three separate

samples were tested.

Material characterization was performed using an Instron tensile tester (33R 4442)

in order to acquire a stress versus stretch curve. To test the theory for deflection un-

der extreme stretches, the ends of the beams were secured to translating blocks. A

3D printed wedge raised and lowered with a vertical stage to impart point loads,

monitored by a scale (L-600, Escali Corp). Displacements were tracked with a dig-

ital dial gauge from 0 mm to 7 mm. The translating blocks were adjusted to test

samples under stretches from 100% to 300%. fig. 3.4 Indentation data was gath-

ered by analyzing photographs of deflected beams with a software called Tracker

(http://physlets.org/tracker/).

3.1.3 Results and Discussion

Fig. 3.5 shows the true stress versus stretch for Ecoflex 0030. The data is an average

taken from three samples for the purpose of determining parameters for hypereleastic

constitutive models. Neo-Hookean (elastic modulus of E = 50kPa)fails to capture a

slight softening effect as the stretch approaches 150% and the more extreme strain

hardening at stretches above 250%. Mooney-Rivlin and Ogden models were fit to

the data using MATLAB’s fittype and fit functions. Mooney-Rivlin ({C1, C2} set as

{6882, 1451} Pa) follows the softening behavior, improving the accuracy until 200%
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Figure 3.5: Instron data compared to Neo-Hookean, Mooney-Rivlin, and Ogden con-
stitutive models for Ecoflex 0030. See Appendix J.

but again failing to demonstrate significant hardening. The curve is captured well

by a 3-parameter Ogden model ({α1, α2, α3} set as {1.214,−8.1327, 16.9936} and

{µ1, µ2, µ3} set as {22889,−956.2, 2.6390 ∗ 10−5} Pa). Fewer or more parameters

could be used to increase or decrease the accuracy of the model. One might notice

that because the theory only focuses on uniaxial strain, the Instron data (which was

also uniaxial) could be used numerically with the theory in place of a hyperelastic con-

stitutive law. It is also important to note that a true material characterization should

at least include additional equibiaxial testing. As discussed in [150], multiple optimal

fitting parameters may work for either axial and biaxial, but only certain values will

work well for both simultaneously. Despite this, only uniaxial characterization was

required here since experiments introduced mainly axial loading.

The experimental results are compared with theory in fig. 3.6. As expected, the

Neo-Hookean model (not plotted in fig. 3.6 for the sake of brevity) fails to capture the

behavior completely, especially at stretches of 150% or greater. Mooney-Rivlin im-

proves the accuracy up to about 200% stretch. The Ogden model, however, provides
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Figure 3.6: Left: Mooney-Rivlin compared to measured data. Right: Ogden com-
pared to measured data.

theoretical results which compare well to the experiments, even at larger stretches.

At low pre-stretches (< 105%) the force versus vertical displacement curve features a

positive curvature. This is associated with the beam bending aspect of the theory. At

greater pre-stretches, the curve is nearly linear, indicating a more membrane-like re-

sponse associated with the correcting factor of the theory. Essentially, as pre-stretch

is increased, we see a transition between a beam bending and a membrane response.

Larger vertical displacements would more prominently feature this transition even at

low pre-stretches, although a more robust theory would have to be developed for this

case since small angle assumptions would no longer be valid.

Although the theory with the Ogden constitutive model shows strong agreement

with the experimental data, it generally overestimates forces, particularly at large

stretches. Some error could be expected as changing humidity and temperature have

an effect on the rigidity of elastomers, though this is expected to be minimal. Error

in the experimental setup, such as deformation of the end clamps or flexing of the

scale, is expected to be greater at larger pre-stretches due to the increasing forces and

could contribute to the observed discrepancy. However, even at high pre-stretches,

the forces are small and would not have a large enough impact on the testing structure
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Figure 3.7: Left: Indentation at 200% pre-stretch and 7 mm vertical displacement.
Right: Plot for indentation as a function of pre-stretch at 7 mm displacement.

to explain what is observed. The most likely culprit is the indentation formed at the

point of contact between the point load wedge and the elastomeric beam.

Fig. 3.7 provides an example and a set of data for indentation at various pre-

stretches at a vertical displacement of 7 mm. At low pre-stretches, there is too little

force to cause a significant indentation. Pre-stretch between 150% and 200% results in

the greatest indentation. Despite the continued increase in force, the impact decreases

at higher stretches and appears to level off as 300% stretch is approached. This is

evidently due to the strain hardening of the elastomer. Contact mechanics could be

included in the theory to account for the indentation. To get a quick approximation

of the effect of the indentation, we instead take the Ogden theory value at vertical

displacement yd = 7mm − yind, where yind is the average indentation distance. Fig.

3.8, showing force as a function of pre-stretch at max displacement, includes the

adjustments for the effects at the contact. The adjusted Ogden theory effectively

bound the experimental data, showing great agreement with the theory.

3.1.4 Application to Electrostatic Beams

Modeling has been performed for electrostatic actuation of a fixed-fixed beam. To

accomplish this, the equations defined above 3.14 and 3.15 are applied with the elec-
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Figure 3.8: Measured force as a function of pre-stretch when vertical displacement
is fixed at 7 mm. The grey solid line is Neo-Hookean theory, the grey dashed line
is Mooney-Rivlin, the black dotted line is Ogden, and the black solid line is Odgen
adjusted based on the average measured indentation.
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trostatic forces defined in Chapter 2. Specifically,

q = − ε0Φ2w

2(d+ y(x))2
. (3.18)

Simulations were run for an Ecoflex 0030 beam of length L =700 µm, width

W =500 µm, and height H =50 µm. The initial height between the beam and pull-in

electrode was D =50 µm. MATLAB 2016b code is included in Appendix N, and an

example re-formulation is shown in Appendix L. These dimensions were chosen as

they would be the approximate dimensions achieved using the fabrication methods

described previously. The simulations presented here assumed that the ends were not

fixed (fixed force F applying longitudinal stretch). Simulations for fixed ends showed

nearly the same results for the given dimensions. (Alternative dimensions and simula-

tions are reported in Appendix O.) Also, note that the electrostatic force distribution

is calculated based current configuration width (w) and gap (d). Electrostatic forces

were calculated as though the beam were entirely conductive. Simulations have in-

dicated that varying the width of the beam has no significant bearing on the pull-in

voltage, regardless of pre-stretch. Indifference to width is characteristic of electro-

static beams. Also noteworthy is the displacement of the center of the beam just

before pull-in is reached. At least for the dimensions tested here, this value remains

nearly constant (∼2/5d) even at pre-stretches ranging from 100% to 300%. This is

demonstrated in fig. 3.9, where the beam described above is actuated at various

pre-stretches. Here, the dimension d remained constant regardless stretch (d = D).

Fig. 3.10 demonstrates how the pull-in voltage changes as a function of pre-stretch.

When d is held constant regardless of pre-stretch (d = D), the pull-in voltage increases

but begins to level off around 300%. As the beam is stretched, the flexural rigidity

increases, requiring additional voltage to cause pull-in. However, increased stretch

also tends to increase the surface area over which electrostatic forces accumulate. The
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Figure 3.9: Pull-in data from MATLAB simulations for d = D. Each line represents
the same beam at a different pre-stretch value. The pull-in voltage/displacement is
marked by black rectangles.
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Figure 3.10: Pull-in voltage as a function of pre-stretch for when dimension d remains
constant (d = D) and for when dimension d changes with pre-stretch (d = D/

√
λt).

balancing of these forces causes the leveling off of pull-in values. When d is allowed

to decrease with pre-stretch (d = D/
√
λt), the pull-in voltage actually decreases after

some stretch value. The decrease of d supplies the extra electrostatic force required to

make this happen when compared to the constant d scenario. The sharp increase in

pull-in voltage at the beginning is, again, an indicator of the transition from bending

to membrane behavior. Experimentally, we could expect to see either case depending

on how the sample is fabricated. In any case, this data suggests that it may be

beneficial to fabricated fixed-fixed electrostatic beams that are pre-stretched (when

the rest of the body is relaxed). Any additional stretch will result in little change

or a decrease in pull-in voltage. Furthermore, there may exist an optimal elastomer

which has the appropriate stress-strain curve such that the pull-in voltage can remain

nearly constant.
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The fabrication methods performed so far in this document (see Chapter 2) gen-

erally result in structures as small as 1000s of microns in length and 100s of microns

in thickness. When testing fixed-fixed cPDMS beams on this scale, we generally saw

arcing prior to any pull-in instability. In contrast, traditional MEMS, such as those

shown in [13] are often an order of magnitude smaller in scale. Future work will

include developing equivalently sized soft switches. Before proceeding, it is wise to

check the scaling laws. From 3.19 found in [132], it is easy to see that pull-in voltage

scales linearly with size. Furthermore, linear beam theory indicates that the effect of

gravity on the cantilever vanishes at small scales. Both of these points are supported

with our own simulations based on equations above and provide more incentive to

shrink the devices.

ΦPI(x) ≈

√
18EID3

5ε0L4W
=

√
3EH3D3

10ε0L4
. (3.19)

Simulations for scaling has been performed for the fixed-fixed beam design. Like

the cantilever, the effect of gravity vanishes at small scales. Additionally, as indicated

by fig. 3.11, pull-in voltage roughly scales linearly with size. This data seems to

indicate that, regardless of stretch, these electrostatic beams scale favorable when

shrunk in size. It should be noted that the smaller scale would not solve correctly

when using the governing equation in terms of y and x. Instead, the equation in

terms of θ and s was used. The reason for this simulation failure at smaller sizes is

not clear, but the likely culprit is numeric limitations within MATLAB.

3.1.5 Concluding Remarks

We have presented a theory that combines rod theory with hyperelastic constitutive

models to predict the behavior of pre-stretched beams under various loading condi-

tions. The simplest form of the theory includes a beam bending term and a correction
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Figure 3.11: Position of the center of a beam as a function of voltage. Left: 700 µm
x 500 µm x 50 µm fixed-fixed beam. The gap is held constant at 50 µm regardless
of stretch (d = D). Elastic behavior is that of Ecoflex 0030. Right: Same setup with
dimensions scaled down by 10 times. The legends represent input pre-stretch values.

69



term accounting for longitudinal forces. We specify that this theory is specifically for

small deflections and small angles and shows good agreement between the model and

point load experimental data. The model successfully captures a gradual transition

from beam bending behavior to a membrane response. Furthermore, we show that

much of the error can be accounted for by the indentation at the point of contact.

Future work may examine this in the context of contact mechanics, though it will

not be necessary for the current goal of applying this theory to electrostatic pull-in of

hyperelastic beams. When applied to electrostatic pull-in, we see interesting behavior

indicating that fabricating a pre-stretched beam may be the best option when fabri-

cating an easy to use device. Further miniaturization of these beams is necessary for

truly testing these theories on electro-mechanical coupling. Regardless, the second

regime that is of interest for these devices is the condition of compression. In this

case, the buckling of the beams must be considered.

3.2 Instabilities of Buckled Ferroelastomer Beams

[4]

3.2.1 Introduction

Wearable computing and soft bio-inspired robotics depend on elastically deformable

electronics that match the mechanical properties of natural biological tissue [151, 152].

Stretchable circuit wiring and “artificial skin” sensing is currently accomplished with

soft elastomer composites[153], soft microfluidics[80], and a variety of determinis-

tic architectures involving wavy patterns and microscale geometries[154]. The latter

approach typically exploits elastic instabilities such as buckling and wrinkling[151].

In addition to stretchable electronics, these elastic instabilities have also been used

for adhesion and wetting control[155–157], shape-programmable origami[158, 159],
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valves for manipulating fluid flow[160], reversible fluidic encapsulation[161], and elas-

tocapillary snapping[162]. The dynamic loss of elastic stability and beam snapping

has provided opportunities for pneumatic actuation[163], voltage-controlled dielectric

elastomer actuators[1, 164], and the control of optical properties through snapping mi-

crolens structures[165]. Moreover, buckling and snap-through govern dynamic elasto-

morphological coupling in a variety of biological mechanisms. These include morpho-

genesis of the Volvox embryo[166], catapult-like ejection of fern sporangia[167], and

the thigmonastic movement of the Venus flytrap (Dionea plants)[168]. For these en-

gineered and biological systems, elastic instabilities have a central role in enabling

stretchable functionality or reducing the energetic barrier for achieving dramatic

changes in shape or morphology.

In this section, I show the ability to exploit elastic instability for physically recon-

figurable soft electronics. This is accomplished with a soft elastic switching element

(fig. 3.12a) that undergoes a buckling instability in response to an external magnetic

field (fig. 3.12b). The switch is composed of a pre-buckled ferromagnetic elastomer

beam that reversibly controls the electrical conductivity between a source and drain

electrode. External magnetic field is used to induce either temporary deflection or

snap-through between bistable states, allowing for two modes of electrical switching

behavior. We examine both through a combination of experimental observations and

theoretical modeling based on elastic beam theory and variational techniques. The

theory furnishes stability criteria that not only inform switch design but also allows

us to predict the influence of subsequent stretch and external mechanical loading on

switch response.

This work builds on previous studies on snap-through buckling instabilities [169–

174] as well as the magneto-elastostatics of so-called magnetorheological (MR) elas-

tomers. MR elastomers are composed of a dispersion of ferromagnetic microparticles

(typically Fe, Ni, Co, or their alloys) suspended in an elastomeric matrix[175–179].
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Figure 3.12: a) Model of the bilayered ferroelastomeric beam in a pre-buckled state
b) Doubly clamped bistable ferroelastic beam undergoing snap through (left to right)
from one stable configuration to the other under the influence of an increasing external
magnetic field. c) Demonstration of a soft, flexible switch by magnetically snapping
a ferroelastomer beam to open and close a circuit, as illustrated by turning on and
off an LED. The schematics show the open and closed circuit states. d) Conductance
(G) of the circuit as the beam is snapped in and out of a closed configuration.
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In this study, a prismatic strip of MR elastomer is coated with a layer of elastomer

embedded with a percolating network of Ag-coated Ni microparticles. This conduc-

tive layer functions as a “gate” electrode that controls electrical connectivity between

a pair of “source” and “drain” leads. The influences of composition on the magnetic,

electrical, and mechanical properties of both the ferromagnetic and conductive elas-

tomer composites are well understood[180–183]. There has also been growing interest

in applying ferromagnetic elastomers for soft robotic sensing and actuation. This

includes flexural elements for bending actuation, magnetically-powered origami, and

a crawling soft robot cable of field-activated “self-locomotion” [184].

We begin by presenting the methods for fabricating an MR elastomer composite

and field-activated switch in which the composite beam forms reversible electrical

contact with a pair of source/drain leads (fig. 1c,d). The leads are composed of

liquid-phase eutectic gallium-indium (EGaIn) alloy sealed with an anisotropically

conductive “z-film” elastomer that is only conductive through its thickness [185].

The response of the ferromagnetic beam to external magnetic field is found to be in

reasonable agreement with theoretical predicitions based on elastic rod theory and

principle of minimum potential energy. In particular, the theory can be used to

predict the proximity of the magnet at which snap-through instability occurs. The

following work was done in collaboration with Vivek Ramachandran and Michael D.

Bartlett (then part of the Soft Materials Laboratory).

3.2.2 Experimental

The swiching element shown in fig. 1a is composed of two layers of elastomer compos-

ite. The top layer is a 80 µm thick strip of polydimethylsiloxane (PDMS) elastomer

(Sylgard 184; 10:1 base-to-catalyst ratio; Dow Corning) embedded with 70% w/w Fe

microparticles (spherical, diameter <10µm; Alfa Aesar). The bottom layer is 30 µm

thick and composed of PDMS embedded with 85% w/w Ag-coated Ni microparticles

73



(∼15µm; Potters Industries). Both layers are prepared by shear mixing the uncured

PDMS and microparticles with a stirring rod for 5 minutes. The Fe-PDMS layer is

deposited using a thin-film applicator (ZUA 2000; Zehntner Testing Instruments).

The elastomer is then partially cured at 70OC for 20 minutes. Next, a layer of Ag-Ni-

PDMS is deposited over the Fe-PDMS film and the composite is then fully cured at

70OC for 90 minutes. The composite sheet is patterned into strips using a CO2 laser

(VLS 3.50; Universal Laser Systems). Each strip has total dimensions of t = 110µm

(thickness), L0 = 15.4 mm (length), and b = 5 mm (width). It is assumed that the

dispersion of the particles is random but statistically uniform throughout the volume.

Both layers are ferromagnetic and only the Ag-Ni-PDMS layer is electrically conduc-

tive. The Fe-PDMS layer functions as the magnetically-powered actuator layer while

the Ag-Ni-PDMS is used as the gate electrode for electrical switching.

Switch Fabrication

The layup and fabrication method of the switch is presented in fig. 3.13. First,

we prepare a thin film substrate of PDMS (300 µm) and allow it to cure at 70◦ C.

Next, we lay down green masking tape (LaserTape; IKONICS Imaging Inc.) that is

patterned with a CO2 laser and deposit a thin film of liquid-phase eutectic gallium-

indium alloy (EGaIn, 99.99% pure; Sigma-Aldrich). Removing the masking tape

leaves behind 4 mm wide EGaIn traces that will function as a pair of source/drain

electrodes. To prevent leakage, these liquid electrodes are sealed with a layer of Ag-Ni-

PDMS conductive elastomer. Prior to curing, laser-patterned squares of conductive

non-woven fabric (3M CN-3490) are placed on the surface of the elastomer, directly

above the lead terminals. These will function as contact pads that make reversible

electrical contact with the Ag-Ni-PDMS layer of the composite beam.

To prevent electrical conductivity between the elastomer-embedded EGaIn elec-

trodes, a magnetic field is applied as the Ag-Ni-PDMS seal cures. This is accom-
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Figure 3.13: Layup and fabrication method for the switch implementation. i. Cre-
ated PDMS substrate; ii. Lay down mask; iii. Apply GaIn and remove mask; iv.
Apply uncured PDMS with microparticles; v. Before curing, place conductive fabric
contacts; vi. Cure on magnet for particle alignment; vii. Attach PDMS posts to the
substrate with Sil-Poxy; viii. Stretch the body and attach the beam to the PDMS
posts with Sil-Poxy; ix. Release after Sil-Poxy has properly bonded.
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plished by placing the sample above a permanent magnet (NdFeB; K&J Magnetics,

Inc.) while it cures in an oven for 45 minutes at 70◦C. The magnetic field causes the

Ag-coated Ni particles to self-assemble into vertically aligned columns. This results

in an anisotropically conductive “z-film” elastomer that is only conductive through

its thickness (ez). A coin cell battery holder (BU2032SM-HD-G, Digi-Key Electron-

ics Inc.) and LED (DEV-10754 ROHS, LilyPad LED Micro - Red, Sparkfun Inc.) is

mounted to the surface of the Ag-Ni-PDMS seal during curing. After the seal is cured,

the substrate is stretched and bonded to the ferroelastomer switch. The switch itself

is composed of the ferroelastomer strip supported by two vertical PDMS posts. The

posts are bonded to the pre-stretched substrate using a silicone adhesive (Sil-Poxy;

Smooth-On Inc.). Once the beam is bonded firmly onto the posts, the substrate is

released and the beam undergoes compression and buckling.

Critical Magnet Distance for Snap-Through

Snap-through occurs when the vertical distance d between the supports of the ferroe-

lastic beam and the surface of an external magnet (2”x2”x1/4” NdFeB magnet; K&J

Magnetics, Inc.) reaches a critical value dcr. This critical separation is determined

by vertically lowering the magnet towards the beam, which is initially buckled away

from it. The magnet is mounted on to the travel head of a materials testing system

(Instron 5969) and is lowered at a rate of 10 mm/min. The dcr values are measured

from a video analysis and modeling software (Tracker; http://physlets.org/tracker/)

of video recordings of the beam as it transitions from one stable state to the other.

3.2.3 Principles & Theory

The snap-through instability demonstrated in fig. 3.12 can be explained by an analytic

model based on elastic rod theory and the principal of minimum potential. Referring

to fig. 3.14, the beam is initially straight with the supports separated by the natural
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Figure 3.14: Beam deformation is described by pure bending.
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Figure 3.15: Variation in the magnetic force density f of the permanent magnet with
vertical distance y from the testing face to the point of measurement, β = 550 N
·m−3/2 is the fitting parameter. Inset: Zoomed-in region focusing on the distances in
which snap-through generally occurred.

length L0 of the beam. Next, the separation is reduced to ` < L0, which causes the

beam to compress and buckle. From this pre-buckled reference state, the deflection

of the beam is controlled with an external force-inducing field (eg. gravitational,

magnetic, electrostatic). At each point in the beam, this field exerts a force density

f = fez, where ez is the unit vector along the beam’s minor axis and f has units of

N/mm3. When the field source is located at a nominal distance y above the supports,

the force density is expected to scale with yn, i.e. f = βyn, where β is a fitting

parameter associated with the choice of the field source. In this study, a magnet is

centered a distance d above the beam supports, has a N/S orientation aligned with

the beam’s minor axis (ez), and the force density is measured to scale as y−3/2 (fig.

3.15). The value for β was determined to be 550 N ·m−3/2 based on snap-through

results. Fig. 3.15 demonstrates how this value fits with direct measurements of the

distributed load (see Appendix P). Although the overall fit is not perfect, the region

of interest where snap-through occurs is in good agreement.
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Kinematics

Prior to buckling, the beam has a natural length L0, width b, thickness t, and cross-

sectional area A0 = bt. The variable x ∈ [0, L0] represents the axial coordinate in the

Lagrangian (natural, undeformed) description. Although the beam is composed of

two layers, it is convenient to treat it as a uniform elastic rod with uniform density ρ,

Young’s modulus E, and flexural rigidity D = Ebt3/12. Referring to fig. 3.14, beam

deformation is descibed by pure bending, during which the arclength L0 remains fixed

and cross-sectional elements along the beam have a vertical deflection w = w(x). For a

given end-to-end separation `, it is convenient to define a horizontal stretch λ̂ := `/L0.

In this way, λ̂ and w(x) can be related by the following isoperimetric constraint:

λ̂ =
`

L0

=
1

L0

∫ L0

0

√
1− w2

,x dx . (3.20)

The clamped-clamped supports also prevent vertical displacement and rotation at the

ends:

w(0) = w,x(0) = w(`) = w,x(`) = 0 . (3.21)

The subscript ,x denotes the derivative w.r.t. the coordinate x.

We restrict w to approximations of the form w ≈ α1φ1 +α2φ2. Here, {φ1, φ2} are

linearly independent basis functions and {α1, α2} are the corresponding weighting

coefficients. For the basis functions, we selected mode shapes that are in qualitative

agreement with experimentally observed deflections (see Appendix Q):

φ1 =
1

2

{
1− cos

(
2πx

L0

)}
, (3.22)

φ2 =
4

3
√

3
sin

(
2πx

L0

){
1− cos

(
2πx

L0

)}
. (3.23)

Substituting this approximation for w into (3.20) yields a relationship between the

unknown coefficients α1 and α2.

79



Potential Energy

In general, the load per unit length (ft) and total potentially energy (U) associated

with the external force-inducing fields have the form

ft =
∑
ξ

qξ(d− w)pξ , (3.24)

U =
∑
ξ

∫ L0

0

qξ
pξ + 1

(d− w)pξ+1dx . (3.25)

Here, qξ is the coefficient of the field load which is dependent on the flexural and

material properties of the beam, d is the distance between the source of the field and

the beam mid-plane, and pξ describes the dependency between the force density and

the distance between the source and each point on the beam. For our system, the

beam is subject to only gravitational and magnetic loading. The coefficient of the

gravitational load can be represented as qg = ρA0g, where ρ = kρm + (1− k)ρe is the

average specific density of the composite and g is the gravitational acceleration. Here,

k is the mass fraction of the ferromagnetic particles and ρm and ρe are the specific

density of the particles and elastomer, respectively. The coefficient of the magnetic

load is defined as qm = βA0, which is independent of the beam deflection. For the

gravitational load and the magnetic load, the values of pg and pm are 0 and −3/2,

respectively.

At static equilibrium, the elastic deformation of the beam is determined by ex-

tremizing the total potential energy functional Π = Π(λ,w). The potential Π is

composed of the elastic strain energy (from bending), and the energy associated with

gravity and magnetic field.

Π =

∫ L0

0

{
1

2
Dw2

,xx + qgw −
2qm

(d− w)1/2

}
dx . (3.26)

To obtain an approximate solution for w, we first apply the isoperimetric constraint
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in order to eliminate α1 and express w and Π only in terms of α2. Next we determine

the value of α2 at which Π is stationary (i.e. dΠ/dα2 = 0. Lastly, we compute

the second variation (d2Π/dα2
2 to determine whether the solution is stable (i.e. Π

is locally minimized). Numerical solutions are obtained in MATLAB (R2016b; The

Mathworks, Inc.) and an analytic approximation is obtained by performing Taylor

series expansions on (3.20) and Appendix Q).

Approximation

To obtain an approximate scalar function for the potential Π ≈ Π(α1, α2), we sub-

stitute the expression for w = w(α1, α2) into (3.26) and perform a Taylor series

expansion (see Appendix Q):

Π ≈ Dπ4

L3
0

(α2
1 +

320

27
α2

2) +
L0qgα1

2

−L0qm
d3/2

{
α1

2
+

1

288d

(
81α2

1 + 80α2
2

)
+

5α1

1152d2

(
45α2

1 + 112α2
2

)}
. (3.27)

Next, α1 is estimated from a Taylor series approximation of the unilateral constraint

(3.20):

α̃1 = ±2

{(
L0

π

)2

(1− λ̂)− 32

27
α2

2

}1/2

. (3.28)

For our analysis, the beam is initially buckled away from the source of the magnetic

field and therefore, we consider the beam to have a negative value of α̃1.

Substituting (3.28) in (3.27), we obtain Π = Π̃(α2), which must be locally convex

at stable equilibrium. In the absence of magnetic and gravitational load, d2Π̃∗/dα2
2 ≈

128π4EI/9L3
0 > 0, which implies that the buckled shape α1 = α̃1, α2 = 0 is elastically

stable. However, applying an increasing magnetic loading in the direction opposite of

the deflection will cause the second variation to decrease until the stability criterion
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is no longer satisfied. Of particular interest is the critical separation of the magnet

from the midplane (dcr) at which snap-through occurs. This is obtained by finding

the solution of d to the condition d2Π̃∗/dα2
2 = 0:

−32π

27

qm
d3/2

(1− λ̂)−1/2 +
19

9

qm
d3/2

L0

d

−65

18

qm
πd3/2

(
L0

d

)2

(1− λ̂)1/2

+
32

27

Ebt3π4

L3
0

+
32π

27
qg(1− λ̂)−1/2 = 0 . (3.29)

3.2.4 Results

To understand the behavior of the bistable beam as it changes configuration from

one stable state to the other after undergoing snap-through, it helps to examine the

following cases separately: (i) deflection under low magnetic loading, and (ii) snap-

through instability. For this analysis (see fig. 3.16), we used the following system

parameters: ρm = 8000 kg. m−3, ρe = 965 kg. m−3, k = 0.8, E = 5.0 MPa (see

Appendix R), β = 550 N ·m−3/2, qm = 0.303 mN m1/2, L0 = 15.4 mm, b = 5 mm,

t = 110 µm, and λ̂ = 0.9. In fig. 3.16, the curve corresponding to the numerical

solution was generated by solving (3.20) in MATLAB (R2013a; The Mathworks,

Inc.) using the native integral and fsolve functions (see Appendix S). In contrast, the

curve corresponding to the analytical solution was generated from the approximation

for α1 given in (3.28). Corresponding values for qm and d are provided in the figure

caption.

Sub-critical load

Prior to introducing the magnet, the beam is observed to either deflect up or down

and adopt the first mode shape φ1 (i.e. α2 = 0). This corresponds to the conven-

tional bifurcation instability associated with compressive preload and buckling. Next,
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Figure 3.16: Numerical (blue) and analytical (black) results for the relative variation
in the potential energy along the “valley” under a) sub-critical magnetic load (d
= 25 mm) and b)post-critical magnetic load (d = 18 mm), with local and global
minima indicated (numerical (red dot) and analytical (green dot) ). The value of the
coefficient of magnetic load is qm = 0.303 mN m1/2.
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Figure 3.17: a) Critical distance dcr versus λ̂ = `/L0 and b) critical non-dimensional
magnetic loading Q̃m := qmL0/EA0dcr

3/2 versus λ̂ = `/L0for the analytical model
(solid) and experimental calculations (markers).

suppose that a magnet is placed on the side opposite the direction of deflection. Ac-

cording to the approximate theory the beam will not deflect from its pre-buckled

state so long as d > dcr. However, in practice we observe a modest decrease in am-

plitude |α1| due to the elastic compressibility of the magnetically loaded beam. Such

deformation is reversible and the beam will spring back to its original deflection when

the magnet is removed. As described below in Sec. 3.2.4, this sub-critical loading

can be exploited for a high frequency relay in which electrical contact between the

source/drain electrodes is only temporarily broken when a magnet is applied. It is

important to recognize that for such applications, the theory will need to be modified

to account for the unilateral contact with the electrodes.

Post-critical load

Again suppose that the beam is initially deflected away from the magnet. As the

magnet is brought closer to the beam, d will eventually reach the critical separation

dcr necessary to induce a snap-through instability. During snap-through, α2 becomes

non-zero and the beam exhibits a linear combination of the first and second bending

modes. Referring to fig. 3.16b, these transitional values of α1 and α2 correspond to

the path along which the decrease in Π is steepest. An analogous behavior is observed
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in the study of diatomic molecules, where such a transition is referred to as the lowest-

energy pathway or intrinsic reaction coordinate (IRC) curve [186]. These correspond

to physical “transition states” or configurations that the beam momentarily adopts

as it approaches its stable state.

Fig. 3.17a shows the dependency of dcr on λ̂ = `/L0 for the analytical model. We

also consider the influence of λ̂ on the non-dimensionalized critical magnetic load,

Q̃m :=
qmL0

EA0dcr
3/2

(3.30)

where the material parameters and dimensions are prescribed (see fig. 3.17b). For

given beam dimensions (L0, A0), elastic modulus E, and magnet distance d, it follows

that stretching the beam from its buckled state (thereby decreasing the compression

and consequently, increasing λ̂) reduces the magnetic load required to induce snap-

through instability. Also, a more rigid beam (i.e. larger EA0/L0) will require a

greater nominal load qm/dcr
3/2. As shown in fig. 3.17b, the curve intersects the x-axis

at λ̂ = 1. This arises from the assumption that the rod is inextensible/incompressible

and only undergoes flexural deformation.

Switch Implementation

A principle feature of the pre-buckled ferroelastomer switch is its ability to exhibit

either reversible or snap-through responses when subject to magnetic loading (fig.

3.18a). When snapping between the two stable configurations, we demonstrate the

ability to reversibly switch between closed and open circuit states. In this case,

the magnetic field is only necessary for switching. However, when a low oscillatory

magnetic field is applied, the beam exhibits temporary and reversible deformation. In

this case, removing the field causes the beam to spring back to its original deflection.

This response corresponds to a higher frequency switching mode that rapidly oscillates
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Figure 3.18: a) Schematic representation of the three states during fast switching. b)
Experimental data showing fast switching between the stable-closed and reversible-
open states for 1 s followed by a snap through transition to the stable-open configu-
ration. Normalized by G0 = 2.44 ∗ 10−6 S. c) FFT of the data in part b showing the
strong peak at 10 Hz switching frequency.
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between an open and closed circuit. This fast switching behavior is demonstrated in

fig. 3.18b, where the switch is activated with a sub-critical magnetic field. After

one second of reversible switching, the magnetic field is increased such that d < dcr.

This causes snap-through to the permanently open circuit. By taking a Fast Fourier

Transform (FFT) of the conductivity data (fig. 3.18c), we see a strong peak at

10 Hz, which corresponds to the magnetically-controlled switching frequency. This

frequency was limited by our experimental setup, and further investigated into the

limits of the high frequency switching could be explored by varying geometry and

material parameters.

3.2.5 Discussion

In this work, we demonstrate an implementation of a switching element in a flexible

circuit by utilizing the buckling instabilities of a bistable ferroelastomer beam. For

a given set of material and dimensional properties, the behaviour of the beam is

studied for a variety of magnetic loading conditions. Depending upon the operational

requirements of the switch, there are certain considerations that need to be accounted

for while designing and fabricating the beam for the switching element. For example,

the elastic modulus E of the beam is influenced by the volume fraction of rigid

microparticles and the modulus of the elastomer matrix. In particular, it follows from

(3.29) that dcr decreases with modulus. This is consistent with physical observation

– more rigid beams are more resistant to snap-through instability.

It is also expected that as λ̂ decreases, the amount of magnetic load required to

induce snap-through also increases for the same nominal gap. This is supported by

the experimental results shown in fig. 3.17 and suggests that a switch will become

less resistant to snap-through as the buckling induced compression is reduced. When

the non-dimensional magnetic load exceeds Q̃m, the beam will undergo snap-through.

Below this value, the deflection is reversible, i.e. the beam will return to its original
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shape when the magnetic field is removed. This has important implications when

selecting thresholds for the magnetic loads used to excite reversible and permanent

switching responses.

The pre-buckled ferroelastomer beam bears some resemblance to switch designs

used in the microelectromechanical systems (MEMS). In MEMS, actuation schemes

can broadly be classified into the following categories: electrostatic, piezoelectric,

thermomechanical, and electromagnetic. Despite its immense popularity and low

power consumption, electrostatic actuation requires high pull-in voltages and gener-

ally results in small displacements. Alternatively, thermomechanical loading is capa-

ble of generating large displacements with high forces, but its power requirements are

correspondingly large for slow response rates. Piezoelectric actuation is promising

but required rigid materials that are no capable of being strtetchable. In contrast,

electromagnetic actuators are capable of rapidly producing adequate forces and dis-

placements with relatively low mechanical work input and can be produced with soft

materials. Here, we show that such low power functionality can be accomplished with

bistability and the use of a permanent magnet.

3.2.6 Conclusion

I have introduced a soft reconfigurable electrical contact that utilizes magneto-flexural

coupling and snap-through instability. This switch is composed of a pre-buckled fer-

roelastomer strip that deforms in response to an external magnetic field. It exploits

snap-through mechanics in order to transition between an open and closed-circuit

configuration. For low magnetic loads, there is a second switching mode – the cir-

cuit is only temporarily opened when field is applied and returns to being closed

when field is removed. The switch response is explained with an analytic model de-

rived by applying the Rayleigh-Ritz method to examine the static equilibrium of a

ferromagnetic elastic rod. A key result of this analysis is a stability criterion that
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relates a non-dimensional critical magnetic load for snap-through Q̃m with the ratio

λ̂ = `/L0 of the support separation and beam length. Despite the success shown

here and in the previous sections, electrostatic and magnetic actuation have limita-

tions which make them less practical for switch implementation. Particularly at the

scales presented in this work, the former still require hundreds of volts and the later

requires power-hungry electromagnets or bulky magnets (which then have to be ac-

tuated). Approaching the problem from a new angle, the next chapter discusses an

electrochemical solution to soft-matter switching.
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Chapter 4

Field-controlled electrical switch

with liquid metal [5]

The devices shown in the previous sections required high voltages for electrostatic

actuation or bulky/power-hungry field sources for magnetic actuation. Furthermore,

stiction, capillary forces, and other surface energies may be detrimental to many soft

switches due to scaling. However, these surface phenomena can be leveraged for

liquid-based systems to achieve actuation. The most prevalent is electrowetting on

dielectric, but more recently the application of voltages to liquid metal droplets in

electrolytic solution has emerged as a unique method for reconfiguration at voltages

often below 10V [75, 77, 187, 188]. Here, we apply such manipulation to create a

bistable switch. The first section discusses the driving factors and provides a theory

for prediction system behavior. Second, the phenomena is applied to multiple droplets

in a single bath and to a switching circuit.

4.1 Coalescence and Separation of Liquid Metal

Coalescence and separation of liquid droplets are typically governed by fluidic insta-

bilities that arise under static [189, 190] (e.g. liquid bridge separation) or hydro-
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dynamic [191–194] (Rayleigh instability) conditions. While much is already known

about their role in fluid mechanics (e.g. capillary bridges, continuous jets, droplet-to-

droplet impacts), there has been relatively little study of how these instabilities can

be harnessed to control droplet interactions in electrochemical systems. Of special

interest is the reversible coalescence and separation of liquid droplets through elec-

trowetting or electrochemistry under voltages of ∼1-10V. Such an ability could enable

field-programmable microfluidics that can be directly operated with conventional mi-

croelectronics and power supplies. Moreover, it provides an opportunity to further

explore the interplay between interfacial tension, geometry, and fluidic instabilities

through spatial control of interfacial energies.

Several examples of digital microfluidics and liquid-based switches exist in the

literature, though most demand high voltages for conventional electrostatic techniques

[195–199] or activate under outside influences such as environmental corrosion of

oxide [200]. Referring to fig. 4.1, low-voltage-controlled coalescence and separation is

accomplished with a pair of liquid metal (LM) droplets immersed in a basic aqueous

electrolytic solution. The droplets are anchored to copper pads (referred to as the

gate and drain) via alloying. Voltages are applied at these electrodes as well as at

two outer copper pads (referred to as the counter and gate) to achieve switching

behavior. Like traditional field-effect transistors, on/off states can be manipulated

with the input of electric fields, and a gate-source threshold voltage must be met

to achieve off-to-on switching (coalescence). In contrast to transistors, this system

involves the physical reconfiguration of LM contacts rather than the rearrangement of

electrons and holes, and separation requires a fourth (counter) electrode that likewise

has gate-source-counter voltage requirements. Conductance between the source and

drain changes by over 3 orders of magnitude depending on whether or not the droplets

are coalesced.

The LM is a eutectic Ga-In (EGaIn) alloy, which forms a Ga2O3 surface oxide in
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Figure 4.1: Overview of the “liquid metal transistor”. Top image: Layout of key
electrodes, including the counter (C), the source (S), the drain (D), and the gate (G).
The source and source are wetted with EGaIn. The inset plots refer to the input
voltage (relative to the source at ∼0.85V) to achieve coalescence and separation.
Bottom plot: The measured equivalent conductance across the source and drain,
varying by over 3 orders of magnitude depending on whether or not drops are coalesced
(bottom left) or separate (bottom right).
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aqueous basic environments when placed under an oxidative potential. When such a

potential is applied directly to the source electrode (relative to the gate), the associ-

ated LM spreads, contacts, and coalescences with the neighboring droplet (fig. 4.2a).

On the other hand, a voltage applied across the gate and counter causes separation

under the influence of an oxide-controlled gradient in interfacial tension (fig. 4.2b).

The latter involves two stages – geometrically-constrained droplet deformation during

electrochemical oxidation (fig. 4.2c) followed by capillary bridge separation. This flu-

idic instability corresponding to a limit-point in the locus of solutions to the governing

Laplace equ. (fig. 4.2d). Such solutions represent the critical point of an energy func-

tional (Π) that accounts for both the interfacial gradient and the incompressibility of

the fluid.

This unique approach to controlling liquid droplet interactions builds on new in-

sights in EGaIn electrochemistry and LM-fluid interactions. When immersed in a 1M

NaOH(aq) solution, voltage-controlled (<10V) oxidation leads to a dramatic decrease

in effective interfacial tension [77]. Under gravity, the droplet will flatten, which we

harness here to bring the droplets closer together and ultimately coalesce. Previously,

these and similar low-voltage electrochemical methods for manipulating LM have been

studied for achieving drastic surface area changes [201–203], device reconfiguration

[187, 204], tunable antennas [205], and light valving [206]. While LM droplet coales-

cence has been studied in water with reductive voltages [202] and in NaOH solution

without applied current (spontaneous coalescence) [207], this work focuses on the

controlled use of oxidative potentials to achieve this goal. Furthermore, the method

for separation harnesses a novel electro-capillary instability driven by oxide-induced

interfacial tension gradients that has not before been demonstrated in the literature.

In addition to providing experimental evidence and insights into these interface phe-

nomena, we show how such field-controlled droplet interactions can be used for gated

logic. This “liquid metal transistor” (Fig. 4.1) represents the first demonstration of
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Figure 4.2: Summary of droplet coalescence and separation behavior. A) An oxidative
potential is applied at the source electrode while the gate is negative. This causes
spreading of the source EGaIn. Contact and coalescence occur between the source
and drain. Positions A, B, M, and N are relevant for equ. (4.2). B) A positive voltage
is applied at the counter relative to the gate. Oxidation occurs on the anodic pole of
the EGaIn and reduction occurs on the cathodic pole, causing a gradient of interfacial
tension which eventually makes the system unstable. C) Droplet and bridge height as
a function of current when voltage is applied across the counter and gate electrodes.
Blue (hD) is the drain side, red (hS) is the source side, and black (hB) is the bridge.
D) Heights of LM over the source and drain pads. The green curve follows the heights
when drops are separated (limited by volume), and the black curve follows the heights
when the drops are coalesced and as current is applied across the outer electrodes.
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a reversible, bistable fluidic switch that conducts DC electricity and can be operated

with low voltage (<10V). Although not practical as a replacement for solid-state tran-

sistors, it nonetheless demonstrates the ability to create field-programmable fluidics

that are controlled by conventional electrical circuitry.

4.1.1 LM interfacial tension

The phenomena in fig. 4.1 and 4.2 are governed by underlying principles of LM

interfacial tension and electrochemistry. In an oxygenated environment, droplets

of EGaIn form a self-passivating Ga2O3 skin[30]. When removing the oxide in a

bath of NaOH(aq) or HCl(aq), the liquid metal becomes a Newtonian fluid with

high interfacial tension (γ∗ ∼ 0.5 J/m2). In this reduced state, a droplet of EGaIn

will equilibrate into an energetically stable shape (volume Γ [m3]) that minimizes

a free energy potential Π [J] subject to geometric constraints. Of special interest

here is the case when the droplet wets the surface of a copper electrode through

metallic alloying – this alloyed region remains of constant area and interfacial energy.

The EGaIn-NaOH solution interface S [m2] is then the only surface relevant for

calculating potential energy. The equilibrium shape Γ corresponds to a critical point

of the energy functional

Π =

∮
S

γ dA+

∫
Γ

(ρG − ρS)gz dV, (4.1)

which accounts for interfacial and gravitational energy while remaining subject to

the isoperimetric constraint
∫

Γ
dV ≡ V . Here, γ is the interfacial tension at the

LM-solution interface, ρG is EGaIn density, ρS is surrounding solution density, g is

gravitational acceleration, z is the height of a point inside the droplet, and V is the

prescribed fluid volume.

The surface oxide is restored when a voltage (Φ) that exceeds the oxidative poten-
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Figure 4.3: Comparison of Surface Evolver surface tension gradient simulation (plot-
ted as solid lines) to experimental photos (plotted as circular points). a) No gradient.
b) Just prior to separation. c) Just after separation.

tial (ΦO) is applied across the LM-solution interface. This occurs during coalescence

(figs. 4.2a). Oxide deposition lowers the interfacial tension, which can be roughly

approximated by the scaling γ ∼ γ∗e−Φ/ΦO . In addition to drastically lowering the

tension, surface oxidation increases with greater proximity to the counter electrode

due to increased current flow. This results in an interfacial tension gradient and spa-

tial dependency γ = γ(X; Φ), where X ∈ S represents the coordinates of points at

the LM-solution interface. Substitution into equ. (4.1) results in a Dirichlet energy

functional that can be minimized using computational techniques. We utilize Sur-

face Evolver[208], which uses a gradient descent method to solve this functional and

has previously been used to study liquid metal solder[209–211]. For our problem,

γ(X; Φ) must be input manually since the software does not model voltage gradients

or electrochemical interactions.

When brought into contact, EGaIn droplets wetted to two separate electrodes

can coalesce and form a stable liquid bridge. For the configuration shown in fig. 4.2,
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this requires adequate fluid volume for a given center-to-center electrode spacing s

and pad diameter D. To initiate contact, an oxidative potential is applied between

one of the droplets and the gate electrode, located opposite the neighboring droplet.

This voltage drop causes the oxidizing droplet to preferentially spread towards the

gate and thus towards the neighboring EGaIn wetted to the drain pad. Once the

two droplets are in nominal contact, they coalesce under the influence of interfacial

tension. With the oxidative potential switched off and in the presence of NaOH

solution, oxide will be removed and the interfacial tension will increase, though this

process can be hastened with a brief (≤ 1s) reductive potential applied directly to

the metal droplet.

Gradients in interfacial tension can also be induced by applying a current across

the EGaIn from two outer electrodes that are not in direct contact with the LM (fig.

4.2b). Oxidation and reduction occur on the anodic and cathodic poles of the metal,

respectively, once a critical end-to-end (point M to point N in fig. 4.2b) voltage drop

(∆Φp) is achieved. Beyond this point, the levels of oxidation and reduction can be

tuned by adjusting the applied potential. This phenomenon is referred to as bipolar

electrochemistry[212, 213]. It is not limited to liquid metal and has largely been

studied with solid metals for creating janus and striped particles[214], generating

motion via gas production[215], and growing gradients of material[216, 217]. This

bipolar redox has been previously observed with GaIn as a growth of gallium oxide

on the anodic pole, though it typically behaves as a hindrance to droplet motion

[75, 218] and pumping [76].

Since the experiments were performed in a bath, the voltage drop (∆Φ) from

M to N and the current (I) across the outer electrodes are related by the following

impedance law:

∆Φ =
I

2πσ

(
1

`AM
− 1

`BM
− 1

`AN
+

1

`BN

)
. (4.2)

This model accounts for Faradaic impedances at the electrodes, caused by mass trans-
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Figure 4.4: Sample layout and general testing bath. (a) Electrode orientation and
dimensions. (b) Testing bath.

port and electron transfer [219]. Here, σ is the solution conductivity and `ij for

i ∈ A,B and j ∈ M,N represent the distances between the outer electrodes (A,B)

and an intermediate pair of points (M , N), as marked in fig. 4.2b. This approach is

adapted from techniques in geophysics to interpret vertical electrical sounding data

[220–222] (also used for measuring resistivity of semiconductor germanium [223]).

With equ. (4.2), one can predict the required current to achieve the necessary poten-

tial drop ∆Φ for a specific level of bipolar redox. The use of current also avoids any

ambiguities related to the dramatic voltage drops near the electrode interfaces due to

Faradaic impedances.

4.1.2 Methods

Sample Layout and Fabrication

Test samples were fabricated on standard copper clad board (0.5 oz. FR4) using a

commercial UV laser patterning system (LPKF, ProtoLaser U3). As seen in fig. 4.4,

samples are symmetric and consist of two outer rectangular pads of dimensions L x

W and two inner circular pads of diameter D. Note that the two circular pads are

silver/gray due to alloying with GaIn. Conductive pathways leading away from the

electrodes were insulated with Sil-Poxy (Smooth-On) or Loctite Quick Set Epoxy.

Standard wiring was soldered to copper contact pads (also insulated with adhesive)
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for interfacing with external electronics. The base design comprised the following

dimensions: D = 5.642 mm (pad surface area of 25 mm2), W = 1.5 mm, L = 5.642

mm, G = 0.5 mm, and length from A to B lAB = 19 mm. Two droplets of GaIn from

an 18G dispensing needle and one drop from a 25G needle, amounting to a volume of

approximately 51 mm3 (droplet volume methods are described in Appendix T), were

used for the base design. Parametric testing consisted of varying only lAB (outer

electrode separation) and scaling the entire device (including GaIn volume) while

keeping the NaOH weight to volume concentration constant at 1%. When testing for

NaOH concentration effects, the base dimensions were used.

Testing baths were constructed out of four 25 x 75 mm and one 50 x 75 mm glass

slides. Sil-Poxy or Loctite Epoxy was used to adhere and seal the edges, forming a

box (fig. 4.4) suitable for taking side profile videos and images without distortion.

The FR4 samples were adhered to 50 x 75 glass slides, allowing a snug fit in the baths,

preventing twisting. A 2” x 1” x 0.25” streak plate (United Scientific) was used as a

spacer between the bottom of the bath and the sample (preventing poor alignment

due to sealant along the edges of the box). Binder clips were used to pin the sample in

place. To create the appropriate solution concentration of sodium hydroxide, NaOH

pellets (BDH9292, VWR) were added to deionized water (3190K731 , McMaster-

Carr), mixed, and allowed to dissolve.

Droplet Control and Electrical Monitoring

For the characterization experiments, an Arduino UNO R3 microcontroller was used

in conjunction with three shields (see fig. 4.5). Voltage was supplied by a dual DC

power supply (Hewlett Packard) and controlled (Vin) with a Power Digital to Analog

Converter (DAC) Shield (Visgence, Inc.). Second, an Extended Analog to Digital

Converter (ADC) Shield (Mayhew Labs) was used to measure voltages (A#). Lastly,

a custom shield was designed and fabricated to provide additional control and signal
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conditioning. The custom shield contains 3 solid state relays (SSR#) (CS128, Coto

Technology) for directing voltage application to 3 of the 4 electrodes (Counter C,

Source S, Drain D, and Gate G) associated with the liquid metal switch (the gate is

always grounded). To acquire data on current, the voltage across a 1 ohm shunt resis-

tor (R4) was amplified by an instrumentation amplifier (IA) (AD623BRZ-R7, Analog

Devices Inc.). The associated gain could be adjusted during testing with a digital

rheostat (AD5270BRMZ-100, Analog Devices Inc.). The DAC, ADC, and rheostat

were all controlled using serial peripheral interface (SPI) communication through the

Arduino. Simple digital signals (d#) from the Arduino controlled the chip (LTC1859,

Linear Technology) associated with the Extended ADC Shield allowed for 16-bit res-

olution and a range of ±10V but was limited by an internal input resistance of 42kΩ

for unipolar measurements and 31kΩ for bipolar. As a result, a quad operation ampli-

fier (op amp) buffer (AD8244BRMZ, Analog Devices Inc.) was added to the custom

shield to produce low impedance outputs, thus avoiding measurement inaccuracies

due to voltage divider effects within the ADC. The entire system was controlled with

a custom MATLAB graphical user interface.

Voltage was first applied to the source electrode (∼2.5V) to induce spreading and

coalescence (while the gate was always grounded). In most cases, a brief (∼1 sec)

reductive voltage (∼-3V) was applied to the source electrode to hasten the removal

of oxide immediately after coalescence. This was especially useful for low NaOH con-

centrations (0.1% or 0.5%) but was detrimental to successful coalescence at higher

concentrations (5%) as the snap back motion was rapid enough to cause separation.

Next, the voltage applied to the counter was increased in approximately 0.1V in-

crements every second until the droplets separated or until the upper limit of the

equipment (∼8.5V for ±10V input to the DAC) was reached. After, the voltage ap-

plied to the counter was reduced to 0V. The voltages applied at all 4 electrodes and

the supplied currents were recorded at 250Hz.
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Figure 4.5: Top: Photographs of the Arduino and three shields. Bottom: Simplified
circuit diagram of the custom shield. SSR Solid state relay. B Quad op amp buffer.
IA Instrumentation amplifier. d# Digital input from Arduino. A# Voltage to be
measured. R1-3 330Ω current limiting resistors. R4 1Ω shunt resistor. C Counter
electrode. S Source electrode. D Drain electrode. G Gate electrode.
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Figure 4.6: Raw voltage and current readings. The gray areas indicate times when
spreading and brief reduction is occurring for the coalescence process. Left: Voltage
as a function of time for the counter (C), source (S), drain (D), and gate (G). Right:
Current as a function of time for the system. The inset is a zoomed-in plot for a
current spike.

An example of time versus voltage and time versus current is shown in fig. 4.6.

The voltage of the source and drain are initially below 0V due to the difference

in electrode potential between EGaIn and copper. Oxidation for coalescence and

reduction for oxide removal correspond to the first spikes in the plots. Afterwards,

the counter electrode increases steadily in voltage. At approximately 2.1V, electrolysis

begins across the counter and gate. Next, droplet movement initiates, though there

is clear indication in the electrical data. Instead, data from profile videos must be

used to determine motion timestamps. While coalesced, the source and drain are

approximately equipotential. After separation at a counter electrode voltage of 6.6V

and a supplied current of 50.9 mA, the source and drain voltage diverge due to the

significant NaOH resistance now separating them. This feature was used to automate

the detection of droplet separation.

Current across the 1 ohm shunt resistor is also plotted in fig. 4.6. From this

data, the onset of electrolysis across the counter and gate electrodes can be detected.

This data is correlated with voltage data and video data to extract critical currents

for movement and separation. There are also spikes and approximately exponential
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decays in current that can be identified, indicating the presence of capacitive effects.

Since these spikes were not observed when replacing the sample/NaOH bath with

resistors, it can be concluded that the capacitance is a result of the formation of a

double layer at the surface of the liquid metal. Changing potential rapidly causes a

current spike as the double layer capacitor discharges.

4.1.3 Results

Experimental and theoretical results are presented in figs. 4.3 and 4.7. The analysis

suggests that the kinetics of oxide growth/removal and droplet motion are influenced

by geometry (V , s, D), electrical stimulation (Φ, I) and the electrolytic concentration.

Following Faraday’s electrochemical laws, greater current increases the oxide growth

rate while the solution simultaneously etches away the oxide layer. Current can

most easily be adjusted by changing the applied potential, although pad geometry

and EGaIn volume can also have an impact. Additionally, the NaOH concentration

influences the impedance relationship since it dictates the solution conductivity (σ).

Understanding these relationships is important for controlling droplet interaction.

In the case of coalescence, if Φ is too small, the LM droplet deformation may be

insufficient to induce contact. With too much potential, the oxide growth will be

excessive, either providing mechanical resistance to droplet deformation or preventing

coalescence even after contact. Also, adequate time is required to allow the droplet to

spread and make contact. If the spreading period is too long, the liquid metal might

make unwanted contact with the outer electrodes or undergo viscous fingering.

To separate the droplets, a voltage is applied across the counter and gate elec-

trodes. First, we observe (fig. 4.3a) that movement does not initiate until a critical

current value Ip (corresponding to ∆Φp) (also see Appendix U). This behavior is rem-

iniscent of electrolysis onset and runs counter to continuous electrowetting (discussed

below), which theoretically should have no critical value. We next observe that the
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Figure 4.7: Results concerning droplet separation. Experimental data for movement
onset Ip (circular) and separation Ic (square) are plotted as points. Theoretical values
for movement (solid black) and separation (dashed black) are plotted as lines. The
grey points are effective conductivity values fit with a functions (grey lines). Data is
reported as a function of outer electrode (gate and counter) separation, overall scale,
and NaOH concentration.
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coalesced drop shifts towards the grounded gate, which in this case is acting as the

cathode (fig. 4.3b,c). This is, again, in contrast to what is typically seen in continuous

electrowetting, during which EGaIn droplets in an NaOH solution move towards the

anode[75, 218]. Thus, we conclude that bipolar electrochemistry and oxidation must

be the driving factor in our experiments. Oxide growth on the anodic pole (facing

the gate/cathode) causes the a dramatic lowering of interfacial tension in the affected

area while reduction on the cathodic pole (facing the counter/anode) causes interfa-

cial tension to remain high. To minimize the energy of the system, the liquid metal

shifts to lower the surface area of the cathodic pole while the area of the anodic pole

grows. Alternatively, this behavior can be explained with the Young-Laplace equa-

tion, maintaining a constant change in pressure by increasing the mean curvature

where interfacial tension is low and decreasing the curvature where interfacial tension

is high. If the interfacial tension gradient is sufficient, it becomes more energetically

advantageous to have separate drops, breaking the bridge (at Ic and ∆Φc).

To further understand the influence of the interfacial tension gradient on a set

of coalesced drops, we ran simulations with Surface Evolver. Our simulation begins

with droplets coalesced and in an equilibrium configuration, as seen experimentally.

A linear surface energy gradient is then applied, decreasing a normalized surface ten-

sion from γ̂ = 1 on one side (M) to 1 − χ on the other (N) (γ̂ = γ̂(x, χ)). As χ

increases, the volume shifts towards the side with lower surface energy. At a critical

value χc, the liquid separates into two droplets. As seen in fig. 4.3, the simulation

is qualitatively very similar to what we observe experimentally. The gradient χ rep-

resents the constant slope of the imposed surface energy gradient as a function of

x (distance from end to end). Experimentally, a supplied current I (or voltage Φ)

produces a particular interfacial tension gradient that, while certainly not linear, can

be compared qualitatively to χ. Thus, the critical current Ip corresponds to χp = 0

for the onset of bipolar electrochemistry, and the critical value Ic corresponds to χc
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for droplet separation. Ip is approximated experimentally by observing the onset of

droplet motion. Ic and χc mark the limit-point instability of the system in which the

bridge formation is unsustainable.

Reasonable agreement between theory and experiment is also demonstrated in

fig. 4.7, which compares predictions from the bipolar electrochemistry model (using

equ. (4.2)) with measurements taken during droplet separation. The plots show

the effective conductivity and the electrical current supplied to the bath to initiate

droplet motion and to cause separation as a function of outer electrode separation

(`AB), length scale (scaling pad dimensions, distances, and GaIn volume, but not

bath volume), and NaOH concentration. The onset of droplet motion as a metric

for bipolar electrolysis onset assumes that movement only occurs when the interfacial

tension has been significantly changed by the growth of oxide – an approximation

that overestimates current required for bipolar electrolysis since low levels of redox

may occur prior to detected motion. Critical values ∆Φp=0.165V and ∆Φc=0.72V

were determined experimentally for the reference configuration of outer electrode

separation 19 mm, scale 1, and 1% NaOH. These two critical values were used to

create curves predicting the movement and break current, respectively.

The distance between the electrodes affects the response of the liquid metal to

potential. For example, as the outer electrodes are further separated, the required

critical currents for movement and droplet breaking both increase. This is well ex-

plained by the theory: the current must flow through a greater length of solution,

decreasing the overall electric field strength. Thus, a greater current must be supplied

across the counter and gate electrodes to reach the critical ∆Φ. Like outer electrode

separation, increasing scale increases distances, thus increasing the required currents

for both movement and separation. It was also assumed that bipolar electrolysis and

separation occurs at the same ∆Φp and ∆Φc, regardless of NaOH concentration. (This

is particularly over-simplified for ∆Φc since concentration influences both electrolysis
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rate and the non-voltage induced reduction rate of gallium oxide, thus influencing

the interfacial tension gradient.) As indicated by equ. (4.2), a decrease in resistivity

should result in an equal increase in required current. (Additional data on power

usage and Surface Evolver script are included in Appendices X and Y).

4.1.4 Discussion

The results presented in figs. 4.3 and 4.7 show that applied electrical current, geome-

try, and electrolytic concentration all have an important role in motion and separation

of the coalesced EGaIn droplets. In addition to providing validation for the underly-

ing principles related to equs. (4.1) and (4.2), the experimental measurements suggest

that a “LM transistor” could be tailored to respond to a prescribed electric input. For

example, closer outer electrodes and smaller scales result in a lower required current

for droplet separation.

The effective conductivities reported in fig. 4.7 account for boundary effects due

to finite bath size. Experiments were performed in baths of dimensions 50x75x∼17

mm, but equ. (4.2) assumes an infinite half space of uniform conductivity. Thus, con-

ductivity measurements (Appendix V) do not account for areas of essentially infinite

resistance and underestimate the true value. However, these effective conductivities

coupled with equ. (4.2) more accurately describe the voltage distribution within the

bath. Linear fits were applied to the outer electrode separation and NaOH concentra-

tion conductivity data, while a cubic polynomial was fitted to the scale conductivity

data (see Appendix V.)

There is also a key difference between the two critical voltage drops ∆Φp and ∆Φc.

∆Φp is geometry-invariant in the sense that, regardless of outer electrode separation

or scale, it should always mark the onset of bipolar electrolysis. The voltage distri-

bution between the endpoints does not influence the fact that redox occurs. On the

other hand, ∆Φc is a less accurate approximation because separation is dependent
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on the voltage distribution between the endpoints. The same ∆Φc may be reached

for multiple geometries, but the voltage distribution will differ for each, resulting

in differing areas oxidation and reduction and differing interfacial tension gradients.

In other words, separation occurs when an adequate interfacial tension gradient is

achieved, and ∆Φc provides an approximation for when this gradient is reached.

Experimental deviation from theory was minor and generally explicable. Limita-

tions in our testing circuit (<10V and <100 mA) prevented droplet breaking at the

pad distances greater than 23 mm. Moreover, it is still clear from the top plot in

fig. 4.7 that the theory (which uses critical voltage drops tailored for a separation

of 19 mm) diverges from experimental values at larger electrode separations. Rate

effects could be the cause, although experiments were designed to be quasi-static

(voltage increased at 0.1 V/s). Alternatively, deviation could be due to the inter-

ference of bubbles and turbulence (electrolysis or Marangoni-flow-induced) at close

proximity to the electrodes. Geometry could thus influence behavior in ways that are

not captured by the basic bipolar electrochemistry formula. We speculate that the

geometric influences which caused deviation in the electrode separation are nearly

proportionate with dimension, allowing the theory to predict the behavior better

with scale. However, separation does not occur reliably at small scales (0.5×) or

large scales(≥1.25×). At smaller scales, the primary reason is interference of bubbles

that block current flow. At larger scales the reasoning is less clear, though an upper

limit for separation current appears to be the cause (see Appendix W). Separation

also fails to occur at low NaOH concentrations (1%), where the ions were insufficient

to reach the required interfacial tension gradient. At higher concentrations (5%),

separation would occur at currents beyond the range of our testing circuit.

It should be noted that an alternative mechanism for inducing gradients in interfa-

cial tension is through electrocapillarity, which follows the Young-Lippmann equation

for relating γ and Φ. This effect has been used to cause fluid motion through so-called
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“continuous electrowetting” (CEW) and the Marangoni effect[76]. Assuming that the

LM droplet is equipotential (due to its high conductivity), there exists a variation

of voltage across the drop due to the relatively low conductivity of the surrounding

solution. As suggested by the Young-Lippmann equation, a gradient in interfacial

tension develops along the liquid metal, resulting in a forces that can either move

the droplet or the surrounding electrolytic solution. Originally, this phenomenon was

applied to manipulate mercury slugs [224, 225]. More recently, it has been examined

for EGaIn [75, 218] and applied to microfluidic pumping [76] and mixing [226]. For

gradients induced by electrocapillarity, EGaIn droplets immersed in NaOH(aq) move

towards the anode (positively charged electrode) and the surrounding fluid is pushed

in the opposite direction[75, 218]. While also of general interest, electrocapillarity

does not achieve the same dramatic interfacial tension change as oxide growth, which

can reach interfacial energies of nearly zero J/m2, as discussed in the literature [227].

Further, as discussed above, our experiments indicate that although it occurs simul-

taneously with bipolar electrolysis, electrocapillarity is not the driving mechanism in

this work.

4.2 Demos and Applications

4.2.1 Simultaneous Control of Multiple Droplets

In this demonstration, I show how multiple sets of drops can be manipulated in a single

bath of solution. Three sets of electrodes are arranged to share a single grounded

gate electrode, as shown in fig. 4.8. A set of droplets can be coalesced and separated

independently or simultaneously with other pairs of droplets. While the input current

for a single pair does influence neighboring liquid metal, it is not sufficient to change

the bistable state. Note that, for this demo, there is no electrical connection (ignoring

NaOH solution) between the droplets and that they are electrically floating during
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Figure 4.8: 3 droplet manipulation. (a) Rendering of pad and liquid metal orientation.
(b) Sample images from video with timestamps. Showing simultaneous control. (c)
Circuit for activating counter electrodes for separation. (d) Circuit for activating
source electrodes for coalescence.

separation. There is a fundamental limitation to maintaining multiple pairs in a

bath if the pairs are electrically connected, such as linking the source of one pair to

the drain of another to create an AND gate, then the inputs to one would influence

the other. For example, in the case described above, if the source were anodized

to spread and coalesce, the drain of the second pair would also spread and possibly

coalesce. Careful arrangements, multiple gate electrodes (rather than a single shared

electrode), and isolated baths could overcome many of these challenges.

The circuitry used to control multiple droplets is shown in fig. 4.8c,d. The key

components are NPN transistors and P-Channel MOSFETs. The transistors act

as level shifters between the Arduino UNO R3 microcontroller (which applies input

signals to d#) and the MOSFTETs. As stated above, the central gate electrode was

continuously grounded, and the drain electrodes were floating. Fig. 4.8c represents
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the circuit for controlling a single counter electrode and fig. 4.8d represents the

circuit for controlling a single source electrode. The only difference is the addition of

a series 120 ohm resistor, which serves to decrease the voltage applied to the source

electrode. This is done because spreading and coalescence requires a lesser voltage

than separation. The input voltage to the circuit was 16V.

4.2.2 Liquid Metal Transistor

An attractive application for the controlled coalescence and separation of LM is the

creation of an electrically-controlled switch. Given the requirements on voltage be-

tween source and gate electrodes to achieve spreading and coalescence, we liken this

behavior to that of a transistor. The circuit diagram for the liquid metal transistor

data is shown in fig. 4.9. The system can be viewed as a high side switch where the

source is tied to an input voltage Vin, and the drain is then connected to the load a

10 ohm resistor in addition to a 1 ohm shunt resistor (for current readings) in this

example. In the off-state when the droplets are separated, current must pass from

the gate LM to the NaOH solution to the drain LM, resulting in a high resistance.

When coalesced in the on-state, the drain and source are essentially shorted by the

LM bridge.

The gate input consists of an N-channel MOSFET (N10L26) with an associated

PNP transistor (C9015) for level shifting. When activated by a digital signal from an

Arduino R3 microcontroller, a negative voltage VG is applied to the gate electrode

of the liquid metal switch. Current flows from the source to the gate, resulting in

oxidation, spreading, and droplet coalescence. Similarly, the counter input consists

of a P-channel MOSFET (15P10PL) and an NPN transistor (BC547C), allowing the

application of a positive voltage VC to the counter electrode. Current flows from

the counter to the source/drain to the gate, causing droplet separation. The diode

attached to the drain prevents the unintentional spreading of the LM of that pad
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Figure 4.9: Circuit diagrams and data for liquid metal transistor. (a) Overall setup
for controlling the liquid metal transistor, including the gate input, counter input,
and the LM transistor, itself. (b) The circuit assumed when calculating the drain-
source resistance (as marked in red). (c) The current-voltage curve associated with
liquid metal on the source and drain.
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during gate activation.

As with the general droplet testing described above, voltages (A0, A1, A2, A3)

were monitored with the Extended ADC Shield. Rather than the AD8244BRMZ, the

signals were buffered with voltage followers created with quad op amps (LM324M).

The current was again tracked with the voltage difference across the 1 ohm resistor

by using an instrumentation amplifier (AD623). To simplify the calculation of source-

drain resistance, the circuit is simplified to fig. 4.9b. Thus, the results (fig. 4.10)

contain features as a result of the signals from gate and counter electrodes.

An important byproduct of the LM-NaOH-LM interface is the role of electrolysis.

In particular, if Vin is too large, the surface will become more electrochemically active

as redox increases. fig. 4.9c captures this behavior is a current-voltage relationship for

the drain and source with LM (not including the diode or load). The feature around

0.6V seems to coincide with the onset of significant oxide growth, creating additional

resistance and lowering the current, but this aspect requires further study. For the

transistor, electrolysis results in a decrease in off-state resistance (higher off-state

leakage current). If the input voltage is sufficiently high, bubbles (hydrogen) will form

on the drain electrode and the source electrode will grow oxide and begin spreading

(see fig. 4.10), possibly causing unintentional coalescence. Given this information,

testing focused on input voltages between 0.75V and 1V high enough to overcome

the forward voltage of the diode (∼0.7V) and low enough to avoid excessive redox.

Note that adjusting the control electronics and replacing the standard diode with a

Schottky diode (forward voltage of ∼0.3V) could improve the off-state resistance.

As shown in fig. 4.10, the on-state allows a current of 12.5 mA with a conductivity

of ∼2 Siemens (less than an Ohm) while the off-state limits current to about 0.1 mA

with a conductivity of ∼3x10−4 Siemens (several kilo-Ohms). The features in current

and conductivity are a result of current from the counter/gate during coalescence

and separation. During spreading for coalescence, current would flow from drain to
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Figure 4.10: General LM transistor behavior. Left: Plots for electrode voltage, output
current, and effective conductivity versus time. Electrode voltages including gate
(magenta), counter (black), source (red), and drain (blue). Top right: Droplet states
associated with the shaded regions of the plots. States include separated, spreading,
coalesced, and separating. Bottom right: Off-state output resistance and off-state
leakage current as a function of input voltage. The inset shows bubbling on the
drain and unintentional spreading of the source due to electrolysis across these two
electrodes.
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gate (negative in this case) if it were not for the diode. As a result, the current

drops to nearly zero and the measuring circuitry has difficulty determining a value

for resistivity and conductivity. The off-state output resistance and leakage current

are also reported. As expected, the resistance falls and the current rises as the input

voltage increases and electrolysis becomes more substantial. The feature at ∼1.25V

is reminiscent of the feature showin in the I-V curve in fig. 4.9. Again, this appears

to be caused by the onset of significant oxide growth. The voltage is shifted from

∼0.6V to ∼1.25V by the forward voltage of the diode.

There is a significant difference between this liquid metal transistor and the the-

ory discussed for the majority of this paper. Bipolar electrodes (and the samples

compared to theory in this paper) are floating in the sense that no charge is applied

directly to them. However, for this LM transistor, the source and drain are directly

tied to Vin during droplet separation. During bipolar electrolysis, oxidation and re-

duction are equal in terms of charge transfer on either side of the electrode charge

in must equal charge out. In this case, however, the direct tie to a voltage source

provides an alternative route for charges. Depending on the voltages at the source,

gate, and counter, oxidation, reduction, or some ratio of both can occur across the

liquid metal. In other words, tying the source to a voltage input gives control over

the level of oxidation and reduction across the liquid metal. This is why a negative

voltage was required for the gate electrode rather than simply using ground as in

other experiments. The situation is elucidated by table 4.1.

For this experiment, the source voltage (Vin or VS) was kept constant as well as

the difference between the counter and gate voltages. The potential of the counter

and gate were increased progressively while attempting to separate the droplets (held

at the source potential VS) with up to 2 seconds of current flow. When the gate and

counter were too high, reduction was excessive and the droplets failed to separate.

Likewise, oxidation was excessive and prevented separation when the gate and counter
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Table 4.1: Table for adjusting the ratio between source, counter, and gate during
droplet separation. The images above represent separation attempts with excess
reduction (left) and excess oxidation (left).
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were to low. In some cases (marked “maybe”) separation succeeded and failed in the

same trial. We can also look at the following ratio: (VS −VG +E0)/(VC −VG), where

E0 is 1.23V for the electrode potential difference between the copper and GaIn. There

is a narrow region from approximately 0.511 to 0.541 where separation is possible a

range of about 0.2V in this case. It turns out that the ratio for the floating electrode

case falls on the lower end of the range, around 0.512. The implication is that the

bipolar electrolysis provides an approximately optimal level of oxidation and reduction

for droplet separation. Furthermore, the theories presented in this paper are still

applicable for this liquid metal transistor. As a side note, it is not known why the

ratio does not fall exactly on 0.5 for equal oxidation and reduction. Possible reasons

include voltage divider effects due to oxide growth and bubbles or changing electrode

potentials as oxidation occurs.

4.3 Summary and Outlook

In this chapter, I presented a fluidic electrical switch that reversibly changes its elec-

trical conductivity by three orders of magnitude in response to moderate applied

voltage (∼1-10V). This “liquid transistor” is the first soft-matter electrical switch

that operates with voltages similar to that of conventional solid state transistors.

LM droplet separation is controlled by a novel fluidic instability that is driven by

a field-controlled gradient in interfacial tension and has not before observed in flu-

idic electrowetting or LM droplet manipulation. Experimental measurements are in

good agreement with theoretical predictions based on fluid mechanics and bi-polar

electrochemistry. In addition to explaining the observed electro-capillary behavior,

the theory can inform the design of physically-reconfigurable liquid metal electronics.

Potential applications include field-programmable gate arrays, reconfigurable anten-

nas, and non-volatile memory storage devices that are mechanically soft and highly
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deformable. Such advancements could accelerate further progress in the emerging

field of LM-based soft microfluidic electronics.

I have demonstrated the controlled coalescence and separation of anchored LM

droplets with the application of electric fields and explained the phenomena. Dra-

matic decreases in LM interfacial tension under direct oxidation enable droplet contact

and coalescence. Separation, however, is driven by bipolar electrochemical interac-

tions that induce an oxide gradient and manipulate the interfacial energy between

the LM and the electrolytic solution, leading to instabilities. Potential applications

of this bistable response include soft-matter switches, reconfigurable electronics, and

analogs of solid state circuits in liquid environments. The work presented here pri-

marily focuses on quasi-static behavior, where the limit-point instability is governed

by interfacial tension. However, rapid pulses of current introduce inertial effects. In

principle, cyclic voltage inputs could be used at the natural frequency of the coalesced

drops to further decrease separation voltage and to avoid bubbling at the gate and

counter electrodes. Furthermore, typical fluidic phenomena such as Rayleigh insta-

bilities could be leveraged to achieve shape programmability within LM circuits. A

truly predictive Surface Evolver simulation could be designed with precise relation-

ships between current input, reaction rates (oxidation and reduction, both electrical

and solution-induced), and effective interfacial tension. This is, however, beyond the

scope of the work presented here, which instead shows predictions for a variety of

designs based on a single set of experimentally gathered critical values (∆Φp and

∆Φc).

One area that requires further study is device lifetime. Although the current

system is limited by the corrosion of the copper electrodes during oxidation, this

could be remedied with more inert electrodes, such as gold. The lifetime would then

likely be limited by chemical interactions of gallium. In particular, NaOH slowly

converts gallium to gallates like [Ga(OH)4]−, eventually causing the liquid metal to
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lose its eutectic/near-eutectic point [76]. HCl solution is also commonly used with

gallium-indium, but would likewise slowly produce gallium chloride [228]. Given this

information, further investigation into alternative solutions is warranted.

The onset of LM motion and trends for droplet separation can be predicted with

theories from bipolar electrochemistry. Although particularly useful for informing

switch design and establishing a general understanding of electrocapillary behavior,

more can be learned on the behavior of LM under the influence of applied potentials.

Particularly, the proximity of the outer electrodes to the LM droplets appears to have

an impact on the bipolar electrochemistry, which is not captured by the theory re-

ported in this paper. Furthermore, models capturing the dynamics of the electrolytic

solution (with Marangoni flows and bubbles due to electrolysis) and their interaction

with the geometry could produce new and further optimized designs for reconfigurable

circuits.

Neutral pH electrolyte baths also present interesting possibilities. In the work

presented here, basic NaOH solution was used because the dramatic spreading (par-

ticularly for coalescence) is not seen in neutral baths. Instead, oxide rapidly grows

too thick, indicating that the competition between electrochemical oxidation and ox-

ide removal through bath chemistry is required [77]. However, if coalescence could

be achieved in a neutral bath, the shape would be held by the ever-present oxide

layer even at sub-critical volumes of LM. With a sub-critical volume, merely reducing

the drops would cause separation as surface area is essentially minimized. In this

case, no bipolar electrochemistry or interfacial tension gradient would be required for

separation. The above improvements, along with bubble-reducing techniques such

specialized electrodes [229, 230], can improve feasibility of these reconfigurable LM

microfluidics. Channels could also be used to manipulate the electric field strength.

Droplets placed in a narrow channel could increase the required voltage bias due to

the higher electrical resistance. Higher resistance can also be achieved with lower
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NaOH percents at the cost of higher voltage requirements, slower oxide growth, and

slower overall behavior of the system. These trade-offs reflect the importance of fur-

thering our understanding of these systems in order to optimize designs for varying

applications in soft-matter electronics and shape-programmable media.
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Chapter 5

Conclusions and Future Research

As the fields of soft robotics and wearable devices continue to advance, researchers

search for methods to expand functionality of stretchable electronics. Existing soft ac-

tuators and recent developments in liquid metal electrochemistry provide techniques

and inspiration for developing new active devices which meet my proposed goals:

Create devices (i) constructed of soft, condensed matter for integration in stretch-

able electronics; (ii) capable of low-energy shape programmability for the purpose

of achieving electrical switching and reconfiguration; (iii) activated by low voltages

(<10V) for use with standard microcontrollers and power supplies. I have explored

the electromechanical coupling of a curved DEA, modeled the field-driven deforma-

tion of cantilever and fixed-fixed beams under extreme stretch and compression, and

created a liquid metal switch activated by low-voltage-induced oxide growth.

Curved cantilever DEAs were fabricated with a PDMS dielectric and liquid metal

electrodes. In an effort to predict actuation behavior under high voltages, the elas-

tomer body was modeled as a Neo-Hookean solid and the electrical enthalpy was

calculated. Modeling as pure bending (plain-strain) proved to be inadequate as some

energy was dissipated into the transverse direction, causing a saddle-like deformation.

Instead, a shell theory was introduced, showing strong agreement with experimental
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results and reflecting the importance of capturing all (or most) deformation modes.

When considering electrostatic cantilever beams created with cPDMS, traditional

beam bending and electrostatics theories were sufficient for modeling device behav-

ior, which only included small strains. I developed a novel technique leveraging raster

ablation with a CO2 laser and sacrificial layers of poly(acrylic acid) to create millime-

ter scale beams with thicknesses and gap heights on the order of hundreds of microns.

Mechanics theory for the manipulation of a hyperelastic beam under extreme

stretch was presented and compared to experimental point load tests with great

agreement. When simulating electrostatic load, results showed that the additional

surface area created by stretch could overcome the additional stresses, maintaining

or possibly decreasing the pull-in voltage. On the opposite end of the spectrum,

the beams could be compressed. This condition was modeled with a Raleigh-Ritz

technique and energy minimization. Although the buckled condition has the added

benefit of having bistable conditions, further buckling increases the required load to

reach the instability. Given this information, it may be beneficial to construct a soft

MEMS beam under pre-stretch. This could result in a more constant pull-in voltage

(or magnetic load) and would prevent buckling behavior, which would greatly increase

the required input.

A liquid metal switch was fabricated and operated, showing the ability to change

the effective conductivity by over three orders of magnitude. The device operates on

electrochemically grown oxide layers, which lower the effective interfacial energy of

GaIn. Direct growth causes drop spreading and coalescence, and bipolar electrochem-

istry causes an oxide gradient which splits them apart. Surface Evolver simulations

further validate the theory that a interfacial energy gradient can cause such an in-

stability, and electrochemical theory allows for the prediction of required currents for

operation. These theories also provide insights which could direct future prototype

designs, including the use of channels and proximity of electrodes.
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Table 5.1: Summary of switch performances. The asterisk indicates the use of a rigid
substrate.

123



In table 5.1, I review the switches covered in this work based on how well they

accomplished the original goals. DEAs and electrostatic beams were entirely elastic

and low energy (∼100 J/kg DEA activation and ∼10−1 J/kg electrostatic cantilever

activation), though operating voltages were still at least 100V. Magnetic beams were

similarly soft and could achieve lower voltages, but they required bulky permanent

magnets or power-hungry electromagnets. Finally, the electrochemical manipulation

of droplets achieved all three goals (bistable states with ∼103 J/kg activation), though

the substrate was rigid (this is discussed further below). Future endeavors include

testing devices under actual stretch. Although functionality may be inferred from

theory, none of those constructed here were tested under strains. Furthermore, various

switching metrics such as off-state impedance, off-state capacitance, and bandwidth

require deeper exploration. Below, I make additional suggestions for possible future

research directions. Most of these build on the discoveries presented in this document

and further approach the creation of a true stand-alone device for integration in a

soft-matter circuit.

5.1 Recommendations for Future Research

5.1.1 Electrostatic Devices

Electrostatics, as demonstrated in MEMS, provides excellent efficiency for creating

reconfigurable devices such as switches. Further, they scale well, allowing required

voltages to decrease as overall device size is reduced. For the cantilevers presented in

this work, beam lengths were on the scale of millimeters, though the low modulus of

the rubber material kept required voltages as low as 100V. While this still requires

a specialized high voltage supply or transformer, the voltage requirements could be

reduced significantly by scaling down the devices. Specifically, reducing the size by

10 times would reduce the required voltage by approximately 10 times. This is true
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as well for the fixed-fixed case, even under stretch. Given these factors, the next step

would be to develop fabrication techniques for further miniaturization.

Soft Microfabrication Background

Microscale actuators and electronics are typically produced in a cleanroom setting us-

ing lithographic techniques. When it comes to soft materials, the counterpart is “soft

lithography,” a procedure that typically utilizes a mater or negative mold produced

with photolithography [231, 232]. Generally, this master is used to cast something

like PDMS in order to create a stamp. Because the master can be reused to create

multiple stamps, the process is relatively cheap. PDMS stamps can be used for micro-

contact printing [232, 233] or replica molding [232]. Alternatively, rather than using

the casted PDMS (or other elastomer) as a stamp, it can be used directly for creat-

ing microfluidic channels [234]. In the field of soft-matter engineering, microfluidic

channels are often filled with liquid metal alloys to create electronic parts [33, 235].

Despite its popularity, soft lithography generally is not used to fabricate beams, such

as those described in this document, and has remained limited to microfluidics and

membranes.

Perhaps the closest existing work related to our goal is work out of Dr. Bergbre-

iter’s lab at University of Maryland [89, 236]. In [236], researchers develop all-soft-

matter thermal actuators: a chevron actuator, a heatuator, and a bilayer thermal

actuator using cPDMS (with carbon black) and PDMS. In [89], the same lab used

MRTV 9, an elastomer from Insulcast, and conductive MRTV 9 (MRTV 9 mixed

with carbon black) to fabricate dielectric elastomer actuators. In both cases, the

devices were around 500 microns in length - larger than our desired goal, but the fab-

rication process is still of interest. The fabrication procedure follows that of silicon-

on-insulator (SOI). To begin, bare silicon undergoes deep reactive ion etching. The

trenches are then filled with conductive elastomer which is allowed to cure. After-
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wards, a second round of deep reactive ion etching is performed to create trenches for

the non-conductive elastomer. After filling and curing, the entire wafer is attached

to a handle wafer with bonding agent. When forced from the fabrication wafer, the

handle wafer brings the elastomer device along thanks to the bonding agent. Rinsing

with a solvent eliminates the agent, releasing the final product. This process provides

a unique freedom of design which could be beneficial to the research proposed in this

document.

Nanoscribe

One rapid alternative fabrication method is direct laser writing. Carnegie Mellon’s

MEMS Chem Lab has obtained a Nanoscribe machine, which is capable of this type of

prototyping. The mechanism behind this technology is based on two-photon absorp-

tion [237, 238] and is described on the Nanoscribe website. In short, many UV-curable

polymers can also be cured when two near-infrared photons are simultaneously ab-

sorbed. The Nanoscribe applies this via laser to selectively cure a small region, called

a voxel. This technology has been used to create metamaterials [239] and structures

for cell growth [240]. Additionally, its artistic capability to create Eiffel Towers on

the order of 100 µm in height are shown off online and in magazines.

The Nanoscribe website also describes creating direct-written molds for casting

PDMS. These molds can be used similar to those in soft lithography for creating

stamps or microfluidic channels. Some preliminary tests have been performed for

casting PDMS over Nanoscribe-created structures. Fig. 5.1 shows some results. It

should be noted that this was performed while a mirror was misaligned. We have

been told that this resulted in only being able to access 40% of the usual laser power.

The machine has since been recalibrated.

Perhaps more promising than creating molds with the Nanoscribe is the possibility

of directly writing elastomer material. Our lab has already been exploring UV-curable
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Figure 5.1: Strain gauge mold created with Nanoscribe’s photoresist. The total
length is approximately 150 microns and the channel height is approximately 2 mi-
crons. (Imaged with Zygo Profilometer)
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Figure 5.2: Left: Transparency mask on uncured Loctite 3108. Center: Resulting
structure after exposure to UV light. Right: Close-up of 500 µm channels.

elastomers in the development of freeze-casting techniques [241]. Another application

of UV-curable elastomer has been so-called “benchtop polymer MEMS” [242]. Follow-

ing the instructions provided (http://www.smela.umd.edu/polymer-mems/benchtop.

html), some simple channels for a strain gauge (Fig. 5.2) have been fabricated in

their recommended material, Loctite 3108. The hope is that this type of UV-curable

material will also work well with the Nanoscribe. While relatively soft and flexible

compared to traditional materials, these UV polymers are often more rigid than non-

UV counterparts such as PDMS. It would be beneficial to find softer alternatives for

use with the Nanoscribe. Further, creating conductive material using fillers could

be problematic as some level of transparency is required for thorough UV curing. It

should be noted that some success has been achieved with liquid crystal elastomers

and the Nanoscribe [243]. This is encouraging and shows that it may be possible to

directly write stretchable MEMS structures.

Integration of Gallium-Indium

The application of gallium-indium alloys to soft MEMS presents the possibility of

maintaining high conductivity, robustness, and softness. As stated previously, using

soft lithography to create microfluidic channels to fill with liquid metal is a popular

choice, but this method is not particularly conducive to free standing structures such

as beams. Alternatives such as stencil lithography [21] or freeze casting [241] have

not yet been developed to produce features fine enough. The microcontact printing
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developed in our lab [34] is also too large in scale, though our micro-transfer deposition

[118] has been able to produce 2 micron line widths of liquid metal. This technique

uses soft lithography to create a PDMS stamp with channels. These channels are

filled with gallium-indium ally, and by pressing the stamp against another surface,

liquid metal can be transferred. An alternative method is by selectively wetting liquid

metal to rubbers sputtered with various metals [244], achieving features as small as

10 microns. While these methods produce features at a satisfactory scale, it could be

challenging to apply it to free standing beams and other MEMS designs. As such,

this is still very much an open problem.

5.1.2 Electrochemical Manipulation of Liquid Metal

Oxide-driven manipulation of liquid metal allows for large deformations under inputs

of less than 10V. In the study reported here, we uniquely apply this phenomenon

to achieve bistable coalescence and separation of anchored GaIn droplets. While

switching is successfully achieved, there is room for improvement. In particular,

further miniaturization and fabrication on stretchable substrates is desirable.

Miniaturization and Bubble Prevention

Miniaturization would be beneficial for several reasons. Two important aspects are

the decrease in required currents and the decrease of inertial effects. With regards

to the former, the theoretical and experimental work both indicated the decrease in

current required for separation as scale was reduced. This translates to a decrease

in power requirements, creating a more efficient switch. Regarding reduced inertial

effects, gravity would have less of an impact on spreading behavior and the shifting

direction of the liquid metal. Because surface forces become dominant at these scales,

interfacial-energy-driven actuation should still function. As a result, a liquid metal

switch could possibly function correctly regardless of orientation and direction of

129



applied accelerations. The primary problem that has to be addressed in this case

is the bubble formation due to electrolysis. For the work in Chapter 4, a bath was

used, allowing bubbles to easily escape. However, at the smallest scales, bubbles still

interfered by clinging to the gate and counter electrodes.

Bubble formation is also a significant obstacle in the field of electroosmotics and

electrokinetics, where bubble formation inhibits pump flows. Researchers have de-

vised several methods which could be useful to us for overcoming this limitation. One

method is to apply alternating currents (AC). [245] used a particular input which re-

sulted in zero net charge current. Another method is to use consumable electrodes

such as Ag/Ag2O [246] that allow for functionality below 1.23V (electrolysis onset

of water) or conjugated polymer electrodes which oxidize/reduce in place of water

[230]. Palladium presents option since it has a high hydrogen permeability. When

used in conjunction with AC signals, hydrogen produced and stored during reduction

is consumed during oxidation [229].

AC offers an interesting possibility for liquid metal acting as a bipolar electrode. It

is well known that the electrolysis onset of water is around 1.23V. However, based on

experiments in Chapter 4, bipolar electrolysis across the liquid metal initiates at end-

to-end voltages as low as 0.165V, and separation occurs around 0.75V. In principle,

an AC current (rather than DC, as done in Chapter 4) could be applied across the

droplets at voltages below 1.23V, avoiding bubble formation. Normally, the lack

of electrolysis prevents significant current flow. However, because of the capacitive

behavior of the electric double layer, AC signals would produce significant current

flows. This same concept was used in [247] to create “ionic cables.” Essentially, a

sub 1.23V AC signal would not produce reactions at the gate or cathode, but current

would flow through the solution producing a sufficient electric field to cause bipolar

electrolysis across the liquid metal.
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Figure 5.3: Testing with a chromium/gold sputtered sample. Gold lifts off the left
electrode as it is oxidized.

Stretchable Substrate

To effectively integrate into other soft matter devices, the rigid PCBs used for fab-

rication in Chapter 4 would have to be replaced with elastomer alternatives. The

challenge is then finding a way to properly anchor the droplets. One possibility is

constructing neighboring chambers with finite volume. GaIn could bridge from one

to the other through a channel or opening, but the entirety of the liquid metal could

never fit in a single chamber. Alternatively, thin layers of metal could be applied to

the surface of the rubber, acting as anchor points. Sputtered gold and other met-

als have (as noted previously [244]) already been used in conjunction with GaIn on

PDMS surfaces. In fact, I am working with Kadri Bugra Ozutemiz (Soft Materials

Laboratory) to develop a method to create “liquid metal PCBs.” As shown in fig.

fig:CondMat of Chapter 1 and as reported in [27], we are able to integrate surface

mount packages, including land grid array (LGA) and quad flat no-leads (QFN), into

robust stretchable circuits. However, there are challenges associated with this process,

particularly when involving electrochemical reactions.

For a preliminary test, I applied titanium/gold and chromium/gold to a glass

surface and patterned the test structures presented in Chapter 4. The titanium and

chromium acted as adhesion layers for gold, which prefers not to remain attached

to anything. The titanium sample failed when applying GaIn in NaOH. The surface

forces simply peeled the gold off the substrate. In the case of the chromium, everything
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Figure 5.4: Surface Evolver simulation of droplets under 0% (left), 9% (center), and
10% (right) strain.

worked well until current was applied. In particular, the gold on the counter electrode

lifted off (see fig. 5.3). I believe that the chromium underneath was oxidized and

consumed by the NaOH solution, compromising the adhesion of the gold. More work

has to be done to further understand what processes are occurring and what materials

are best suited. It is possible that rather than chromium as an adhesion layer, some

other material, such as a monolayer capable of adhering to metals, would be optimal.

Another aspect is the behavior of bridging liquid metal when placed under stretch.

It is rather intuitive that under enough stretch (lengthwise), two coalesced drops such

as those presented in this work would separate. In fact, a quick simulation with

Surface Evolver shows that the standard setup used in Chapter 4 would experience

instability at around 123 % stretch (see fig. 5.4). Specialized pad geometries or the

addition of channels could alleviate this issue. Alternatively, the system could be

isolated from strain using stiffer surrounding polymers, similar to the methods used

in [248].

5.2 Conclusion

Soft electronics has accelerated in recent years, producing functional circuits com-

prised of wavy metallic traces, conductive rubbers, and room-temperature liquid

alloys. Significant effort has been placed in creating passive circuitry and sensors,

though active devices such as relays and transistors are still lacking in the domain.
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In particular, there is a need for low energy shape programmability in soft matter de-

vices. The contributions contained in this work provide a step towards creating truly

soft and stretchable devices capable of reconfiguring for switching or tuning purposes.

The approaches include DEAs, electrostatic/magnetic beams, and electrochemically

manipulated liquid metal. Experiments demonstrate feasibility and validate theories

which predict device behavior. Future research can focus on applying these theories

to optimize designs, particularly with focus on miniaturization for efficiency and ease

of integration in soft matter electronics. Soft machines and wearable technology may

incorporate a combination of traditional electronics, stretchable interconnects, and

- with this work as a foundation - soft, physically reconfigurable devices to create

systems that are bio-compatible, mechanically robust, and multi-functional.
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Appendix A

Extra DEA Geometry

A.1 Pure Bending Current Thicknesses

Prior to deformation, a layer has a length-wise cross-sectional area of a0, as shown

in A.1. After deformation, the body takes the shape the area marked by area a1.

Because this is a plain strain bending scenario (width remains constant), it is known

that a1 = a0, thus leading to the following:

0.5(r + h)2θ̄ − 0.5r2θ̄ = LH, (A.1)

Figure A.1: Geometry and relevant areas before and after deformation.
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0.5θ̄h2 + θ̄rh− LH = 0, (A.2)

h = −θ̄r ±

√
θ̄

2
r2 + 2θ̄LH

θ̄
. (A.3)

In this case, only the additive option results in a real number. To calculate

the thicknesses of various layers, the proper r must be substituted. For example,

calculating the thickness of h3 requires that r = ρ+h1 +h2. Alternatively, the initial

thickness can be calculated as:

H =

∫ r+h

r

dr

λz
=

∫ r+h

r

θ̄r

L
dr =

θ̄

2L
[(r + h)2 − r2], (A.4)

where λz = L/(θ̄r). Simplifying further results in the same solution as equ. (A.3).

A.2 Saddle Deformation Surface Area

The area of the surface S is calculated by first determining the lengths of the coordi-

nate lines `θ and wφ. The length wφ is labeled in A.2, and `θ is determined by rotating

point p about θ (into and out of the page across the total arc θ̄). Thus, `θ = R1θ̄

and wφ = R2φ̄, where R1 = (ρθ + z) +R2 −R2cos(φ) and R2 = ρφ − z. We can then

determine that

`θ = {(ρθ + z) + (1− cosφ)(ρφ − z)}θ̄ (A.5)

and

wφ = (ρφ − z)φ̄. (A.6)

An infinitesimal width can be described as dwφ = (ρφ − z)dφ̄, and surface area

can then be determined by integrating this value along the lengths `θ:
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Figure A.2: Dimensions relevant for calculating coordinate line lengths and surface
area.

a(z) = 2

∫ φ̄/2

0

`θdwφ =

{
[ρθ + ρφ]φ̄− 2 (ρφ − z) sin

(
φ̄

2

)}
θ̄(ρφ − z) . (A.7)
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Appendix B

Pure Bending DEA MATLAB
Code

%% pure bending.m
% This code determines the deformation of a DEA composite undergoing ...

pure
% bending (plain strain)

syms Y bt r z L1 L2 L3 C1 W b H1 H2 H3 V er e0

%% Inputs
type1 = 0; % 0 - Current condition strain energy integrals, 1 - ...

Unstrained integrals
type2 = 0; % 0 - Maxwell's equation energy, 1 - Capacitor approximation

Vtrange = 0:100:5000; % Range of voltage inputs (V)
angle = ones(length(Vtrange),1); % Allocate space for results

Yv = 1e6; % Elastic modulus (Pa) (PDMS ~1 MPa)

L1v = 20e-3; % Length of undeformed layer 1 (m)
L2v = L1v; % Length of undeformed layer 2 (m) (same as layer 1)
L3v = L1v*1.06; % Length of undeformed layer 3 (m)

bv = 0.75e-3; % Width of border surrounding the electrodes (m)

H1v = 163e-6; % Height (thickness) of undeformed layer 1 (m)
H2v = 85e-6; % Height of undeformed layer 2 (m)
H3v = 490e-6; % Height of undeformed layer 3 (m)

Wv = 6.5e-3; % Width of undeformed layers (m)

erv = 2.72; % Dielectric constant
e0v = 8.85e-12; % Vacuum permittivity

%% Get energy functions
if type1 == 0
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[f1,f2] = symbolic solving current; % Current condition strain ...
energy integral

f1 = subs(f1,[Y L1 L2 L3 b H1 H2 H3 W e0 er],[Yv L1v L2v L3v bv ...
H1v H2v H3v Wv e0v erv]); % Maxwell

f2 = subs(f2,[Y L1 L2 L3 b H1 H2 H3 W e0 er],[Yv L1v L2v L3v bv ...
H1v H2v H3v Wv e0v erv]); % Capacitor

else
[f1,f2] = symbolic solving unstrained; % Unstrained condition ...

strain energy integral
f1 = subs(f1,[Y L1 L2 L3 b H1 H2 H3 W e0 er],[Yv L1v L2v L3v bv ...

H1v H2v H3v Wv e0v erv]); % Maxwell
f2 = subs(f2,[Y L1 L2 L3 b H1 H2 H3 W e0 er],[Yv L1v L2v L3v bv ...

H1v H2v H3v Wv e0v erv]); % Capacitor

end

%% Convert symbolic into matlab functions
if type2 == 0

fun = matlabFunction(f1,'Vars',{V [bt r]});
else

fun = matlabFunction(f2,'Vars',{V [bt r]});
end

%% Minimum energy solving
options=optimset('MaxFunEvals',10000,'MaxIter',10000,'TolFun',1e-12,...

'TolX',1e-12); % Options for fminsearch
i=0;
for Vt = Vtrange

i = i + 1;
sol = fminsearch(@(x)fun(Vt,x),[1 .1],options);
angle(i) = sol(1)/2*180/pi; % Convert angles to degrees

end

%% Plot data
plot(Vtrange/1000,angle)
xlabel('Voltage (kV)')
ylabel('Actuator Angle (deg)')

%% symbolic solving current.m
% The function describing the potential energy of the pure bending ...

DEA can
% be expressed analytically. This function pulls out the necessary ...

MATLAB
% functions to minimize numerically.
%
% This version integrates across the current volume to calculate strain
% energy.

function [f1,f2] = symbolic solving current
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syms Y bt r z L1 L2 L3 C1 W b H1 H2 H3 h1 h2 h3 V er e0

% Assumptions
assume(r>0)
assume(h1>0)
assume(h2>0)
assume(h3>0)

C1 = Y/6; % Material constant (Y is elastic modulus)

% Stretches
lam1 = bt*(r + z)/L1; % Stretch of layer 1
lam2 = bt*(r + z)/L2; % Stretch of layer 2
lam3 = bt*(r + z)/L3; % Stretch of layer 3

% Current thicknesses in terms of r, by, and given values
% Note: It is easier to set assumptions on h1 h2 h3 and substitute the
% below values later.
h1s = (-r*bt + sqrt(2*L1*H1*bt+rˆ2*btˆ2))/bt; % ...

Deformed layer 1 thickness
h2s = (-(r+h1)*bt + sqrt(2*L2*H2*bt+(r+h1)ˆ2*btˆ2))/bt; % ...

Deformed layer 2 thickness
h2s = subs(h2s,h1,h1s);
h3s = (-(r+h1+h2)*bt + sqrt(2*L3*H3*bt+(r+h1+h2)ˆ2*btˆ2))/bt; % ...

Deformed layer 3 thickness
h3s = subs(h3s,h2,h2s);
h3s = subs(h3s,h1,h1s);

% Energy density functions (Neo-Hookean)
psi1 = C1*(lam1ˆ2+lam1ˆ(-2)-2); % Strain energy density function of ...

layer 1
psi2 = C1*(lam2ˆ2+lam2ˆ(-2)-2); % Strain energy density function of ...

layer 2
psi3 = C1*(lam3ˆ2+lam3ˆ(-2)-2); % Strain energy density function of ...

layer 3

% Strain energy
U1 = int(psi1*(r+z)*W*bt,z,0,h1); % Strain energy of layer 1
U2 = int(psi2*(r+z)*W*bt,z,h1,h1+h2); % Strain energy of layer 2
U3 = int(psi3*(r+z)*W*bt,z,h1+h2,h1+h2+h3); % Strain energy of layer 3
U1 = subs(U1,[h1 h2 h3],[h1s h2s h3s]);
U2 = subs(U2,[h1 h2 h3],[h1s h2s h3s]);
U3 = subs(U3,[h1 h2 h3],[h1s h2s h3s]);

% Electrical enthalpy - Using Maxwell's equations
E = V/((r+z)*log((r+h1+h2)/(r+h1))); % Electric field
Uel1 = -int(0.5*er*e0*Eˆ2*(r+z)*bt*(W-2*b),z,h1,h1+h2); % Energy
Uel1 = subs(Uel1,[h1 h2 h3],[h1s h2s h3s]);

% Electrical enthalpy - Capacitor approximation
lamt = bt*(r + h1 + h2/2)/L2; % Stretch at halfway through dielectric
lD = L2*lamt; % Length at halfway through dielectric
C = er*e0*(W-2*b)*lD/h2; % Capacitance
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Uel2 = -0.5*C*Vˆ2; % Energy
Uel2 = subs(Uel2,[h1 h2 h3],[h1s h2s h3s]);

f1 = U1 + U2 + U3 + Uel1; % Function with Maxwell's
f2 = U1 + U2 + U3 + Uel2; % Function with capacitor

%% symbolic solving unstrained.m
% The function describing the potential energy of the pure bending ...

DEA can
% be expressed analytically. This function pulls out the necessary ...

MATLAB
% functions to minimize numerically.
%
% This version integrates across the unstrained volume to calculate ...

strain
% energy.

function [f1,f2] = symbolic solving unstrained

syms Y l k bt r z L1 L2 L3 C1 W b H1 H2 H3 h1T h2T V er e0 h1 h2 h3

% Assumptions
assume(k>0)
assume(H1>0)
assume(H2>0)
assume(H3>0)
assume(h1T>0)
assume(h2T>0)

C1 = Y/6; % Material constant (Y is elastic modulus)

% Stretches
lam1 = l/L1*(1+k*z); % Stretch of layer 1
lam2 = l/L2*(1+k*z); % Stretch of layer 2
lam3 = l/L3*(1+k*z); % Stretch of layer 3

% Current thicknesses in terms of r, by, and given values
% Note: It is easier to set assumptions on h1 h2 h3 and substitute the
% below values later.
h1s = (-r*bt + sqrt(2*L1*H1*bt+rˆ2*btˆ2))/bt; % ...

Deformed layer 1 thickness
h2s = (-(r+h1)*bt + sqrt(2*L2*H2*bt+(r+h1)ˆ2*btˆ2))/bt; % ...

Deformed layer 2 thickness
h2s = subs(h2s,h1,h1s);
h3s = (-(r+h1+h2)*bt + sqrt(2*L3*H3*bt+(r+h1+h2)ˆ2*btˆ2))/bt; % ...

Deformed layer 3 thickness
h3s = subs(h3s,h2,h2s);
h3s = subs(h3s,h1,h1s);

% Energy density functions (Neo-Hookean)
psi1 = C1*(lam1ˆ2+lam1ˆ(-2)-2); % Strain energy density function of ...

layer 1
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psi2 = C1*(lam2ˆ2+lam2ˆ(-2)-2); % Strain energy density function of ...
layer 2

psi3 = C1*(lam3ˆ2+lam3ˆ(-2)-2); % Strain energy density function of ...
layer 3

% Strain energy
U1 = int(psi1*W*L1,z,0,H1); % Strain energy of layer 1
U2 = int(psi2*W*L2,z,H1,H1+H2); % Strain energy of layer 2
U3 = int(psi3*W*L3,z,H1+H2,H1+H2+H3); % Strain energy of layer 3

% Electrical enthalpy - Using Maxwell's equations
E = V/((r+z)*log((r+h1+h2)/(r+h1))); % Electric field
Uel1 = -int(0.5*er*e0*Eˆ2*(r+z)*bt*(W-2*b),z,h1,h1+h2); % Energy
Uel1 = subs(Uel1,[h1 h2 h3],[h1s h2s h3s]);

% Electrical enthalpy - Capacitor approximation
lamt = bt*(r + h1 + h2/2)/L2; % Stretch at halfway through dielectric
lD = L2*lamt; % Length at halfway through dielectric
C = er*e0*(W-2*b)*lD/h2; % Capacitance
Uel2 = -0.5*C*Vˆ2; % Energy
Uel2 = subs(Uel2,[h1 h2 h3],[h1s h2s h3s]);

f1 = U1 + U2 + U3 + Uel1; % Function with Maxwell's
f2 = U1 + U2 + U3 + Uel2; % Function with capacitor

kre = 1/r; % Curvature in terms of radius
lre = r*bt; % Length in terms of radius and angle theta bar

% Functions in terms of radius and angle
f1 = subs(f1,[k l],[kre lre]);
f2 = subs(f2,[k l],[kre lre]);
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Appendix C

Saddle Deformation MATLAB
Code

%% saddle.m
% This code solves for the deformation of a saddle-shaped DEA under a
% prescribed range of voltages.
%
% Uses energy minimization

global E L1 L2 L3 W1 W2 W3 b H1 H2 H3 V eps

%% Inputs

Type = 0; % 0 -- Uniaxial pre-stretch, 1 -- Plain strain pre-stretch

n = 20; % Number of voltages to test
Vs = linspace(0,5e3,n); % Input voltage range (V)

E = 1e6; % Elastic modulus (Pa) (PDMS ~1 MPa)

L1 = 20e-3; % Length of undeformed layer 1 (m)
L2 = L1; % Length of undeformed layer 2 (m) (same as layer 1)
L3 = L1*1.06; % Length of undeformed layer 3 (m)

b = 0.75e-3; % Width of border surrounding the electrodes (m)

H1 = 163e-6; % Height (thickness) of undeformed layer 1 (m)
H2 = 85e-6; % Height of undeformed layer 2 (m)
H3 = 490e-6; % Height of undeformed layer 3 (m)

W1 = 6.5e-3; % Width of undeformed layer 1 (m)
W2 = W1; % Width of undeformed layer 2 (m)
% Width of undeformed layer 3
if Type == 0

W3 = W1/sqrt(L3/L1); % Uniaxial (m)
else
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W3 = W1; % Plain strain (m)
end

eps = 2.72*8.85e-12; % Dielectric constant times vacuum permittivity

%% Setup for iterations
% Initial guesses for solver (note that these get updated)
ktheta0 = 100; % Curvature in theta direction
L0 = L1*1.03; % Length in theta direction
kphi0 = 100; % Curvature in phi direction
w0 = W3*1.03; % Length in phi direction

% Allocate space for solutions
ktheta = ones(n,1); % Curvature in theta direction
L = ones(n,1); % Length in theta direction
kphi = ones(n,1); % Curvature in phi direction
w = ones(n,1); % Length in phi direction

%% Iterate through voltages
for i = 1:n

V = Vs(i); % Voltage input

x0 = [ktheta0 L0 kphi0 w0]; % Initial guesses
options=optimset('Display','iter','TolFun',1e-10); % Options for ...

fminsearch
x = fminsearch(@potential,x0,options); % Minimum energy search

% Extract
ktheta(i) = x(1); % Curvature in theta direction
L(i) = x(2); % Length in theta direction
kphi(i) = x(3); % Curvature in phi direction
w(i) = x(4); % Length in phi direction

ktheta0 = ktheta(i); % Curvature in theta direction
L0 = L(i); % Length in theta direction
kphi0 = kphi(i); % Curvature in phi direction
w0 = w(i); % Length in phi direction

end

%% Plot the results
theta = (ktheta.*L/2)*(180/pi); % Calculate angle theta

figure(1); hold on
plot(Vs*1e-3,theta,'k--');
xlabel('Voltage (kV)')
ylabel('(Half) Angle of Deflection (deg)')

figure(2); hold on
plot(Vs*1e-3,ktheta,'k-o',Vs*1e-3,kphi,'k-ˆ');
xlabel('Voltage (kV)')
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ylabel('Curvature (mˆ{-1})')
legend('\kappa {\theta} (axial)','\kappa {\phi} (transverse')

%% potential.m
% Calculates the potential energy of the saddle DEA based on 4 parameter
% inputs.

function y = potential(x)

global L1 L2 L3 W1 W2 W3 b H1 H2 H3 V eps ktheta L kphi w

ktheta = x(1); % Curvature in theta direction
L = x(2); % Length in theta direction
kphi = x(3); % Curvature in phi direction
w = x(4); % Length in phi direction

%bt = ktheta*L; % theta bar (arc angle)
bp = kphi*w; % phi bar (arc angle)

%% Approximate layer thicknesses
a1 = get area(0); % Calculating the area at z = 0
h1 = W1*L1*H1/a1; % Approximate h1 based on a1

a2 = get area(h1); % Calculating the area at z = h1
h2 = W2*L2*H2/a2; % Approximate h2 based on a2

a3 = get area(h1+h2); % Calculating the area at z = h1 + h2
h3 = W3*L3*H3/a3; % Approximate h3 based on a3

%% Integrate to calculate potential energy
U1 = dblquad(@density1,0,h1,-bp/2,bp/2); % Strain energy ...

layer 1
U2 = dblquad(@density2,h1,h1+h2,-bp/2,bp/2); % Strain energy ...

layer 2
U3 = dblquad(@density3,h1+h2,h1+h2+h3,-bp/2,bp/2); % Strain energy ...

layer 3

chi = (W2 - 2*b)*(L2 - 2*b)/(W2*L2); % Scaling for electrode size
Uel = -eps*chi*a2*Vˆ2/(2*h2); % Electrical enthalpy

y = U1 + U2 + U3 + Uel; % Total energy

%% get area.m
% Calculates the area of the saddle shape at some z position.

function a = get area(z)

global ktheta L kphi w

bt = ktheta*L; % theta bar (arc angle)
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bp = kphi*w; % phi bar (arc angle)

rt = 1/ktheta; % rho theta (theta radius)
rp = 1/kphi; % rho phi (phi radius)

a = ((rt + rp)*bp - 2*(rp-z)*sin(bp/2))*bt*(rp-z); % Area

%% density1.m
% Potential energy density (Neo-Hookean) of layer 1

function y = density1(z, phi)

global E L1 W1 ktheta L kphi w

bt = ktheta*L; % theta bar (arc angle)
bp = kphi*w; % phi bar (arc angle)

rt = 1/ktheta; % rho theta (theta radius)
rp = 1/kphi; % rho phi (phi radius)

Ltheta = ((rt+z) + (1-cos(phi))*(rp-z))*bt; % theta arc length
wphi = (rp-z)*bp; % phi arc length

lt = Ltheta/L1; % Stretch in theta direction
lp = wphi/W1; % Stretch in phi direction

psi = (E/3)*(lt.ˆ2 + lp.ˆ2 + (lt.*lp).ˆ(-2) - 3); % Energy density ...
(Neo-Hookean)

y = psi.*Ltheta.*(rp-z); % Geometry components for integral

%% density2.m
% Potential energy density (Neo-Hookean) of layer 2

function y = density2(z, phi)

global E L2 W2 ktheta L kphi w

bt = ktheta*L; % theta bar (arc angle)
bp = kphi*w; % phi bar (arc angle)

rt = 1/ktheta; % rho theta (theta radius)
rp = 1/kphi; % rho phi (phi radius)

Ltheta = ((rt+z) + (1-cos(phi))*(rp-z))*bt; % theta arc length
wphi = (rp-z)*bp; % phi arc length

lt = Ltheta/L2; % Stretch in theta direction
lp = wphi/W2; % Stretch in phi direction

psi = (E/3)*(lt.ˆ2 + lp.ˆ2 + (lt.*lp).ˆ(-2) - 3); % Energy density ...
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(Neo-Hookean)

y = psi.*Ltheta.*(rp-z); % Geometry components for integral

%% density3.m
% Potential energy density (Neo-Hookean) of layer 3

function y = density3(z, phi)

global E L3 W3 ktheta L kphi w

bt = ktheta*L; % theta bar (arc angle)
bp = kphi*w; % phi bar (arc angle)

rt = 1/ktheta; % rho theta (theta radius)
rp = 1/kphi; % rho phi (phi radius)

Ltheta = ((rt+z) + (1-cos(phi))*(rp-z))*bt; % theta arc length
wphi = (rp-z)*bp; % phi arc length

lt = Ltheta/L3; % Stretch in theta direction
lp = wphi/W3; % Stretch in phi direction

psi = (E/3)*(lt.ˆ2 + lp.ˆ2 + (lt.*lp).ˆ(-2) - 3); % Energy density ...
(Neo-Hookean)

y = psi.*Ltheta.*(rp-z); % Geometry components for integral
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Appendix D

Further MEMS Background

While stretchable semiconductor technology may be difficult to achieve, MEMS is a

field which can easily contribute to soft-matter engineering and provide a starting

point for designing stretchable activated devices. MEMS devices are generally on the

scale of hundreds of microns or smaller, and have been designed for tasks such as

actuation [249] and acceleration [250], orientation [251], and pressure [252] sensing.

Work has also been invested in developing MEMS for energy harvesting [253]. All of

these designs have the potential to contribute to soft and stretchable equivalents.

Another popular area of MEMS is switching. These switches are widely used for

radio-frequency circuits, offering low insertion loss and, thanks to the use of air gaps,

low off-state capacitances [13]. Piezoelectric [254], electromagnetic [255], and thermal

[256, 257] MEMS switches have been created, but electrostatic is currently the most

common. Electrostatic switches generally consist of a stationary pull-in electrode

which is charged and attracts a floating fixed-free [127, 128] or fixed-fixed beam [129].

This actuation can be used to directly complete a connection [127, 128] or to form a

capacitor [129].

While MEMS can inspire new stretchable electronic devices, novel uses of soft ma-

terials can have an impact on and improve MEMS. In fact, hyperelastic components
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have already been integrated into MEMS for sensing [258], actuation [259], and energy

storage [126]. PDMS is a popular choice due to low costs, optical transparency, and

ease of use, though it is also common for biological microfluidic devices because of its

gas permeability [258, 260]. In general, as is the case with the aforementioned exam-

ples, soft materials are used in conjunction with rigid metals and silicon. However,

there are a instances of all polymer and fluid MEMS style devices in the literature,

including pressure sensors [19] and thermal [236] and electrostatic [89] actuators. Soft

lithography techniques and the micro-molding described for the actuators [89, 236]

could be valuable assets for future fabrication.

While MEMS can inspire new stretchable electronic devices, novel uses of soft ma-

terials can have an impact on conventional MEMS. In fact, hyperelastic components

have already been integrated into MEMS for sensing [258], actuation [259], and energy

storage [126]. PDMS is a popular choice due to low costs, optical transparency, and

ease of use, though it is also common for biological microfluidic devices because of its

gas permeability [258, 260]. In general, as is the case with the aforementioned exam-

ples, soft materials are used in conjunction with rigid metals and silicon. However,

there are a instances of all polymer and fluid MEMS style devices in the literature,

including pressure sensors [19] and thermal [236] and electrostatic [89] actuators. Soft

lithography techniques and the micro-molding described for the actuators [89, 236]

could be valuable assets for future fabrication.
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Appendix E

Electrostatic Cantilever MATLAB
Code

%% CantileverIterate.m
%
% This code iterates over length values to and tracks the pull-in ...

voltage
% of a rectangular cantilever beam.
%
% Used with ElectroCantilever.m

%% Input values
LRange = 0.002:0.0005:0.005; % Range of lengths (m)
PhiRange = 1:2000; % Range of voltage (V)

W = 0.001; % Width (m)
H = 0.0002; % Thickness (m)
D = 0.0003; % Gap (m)
E = 840000; % Elastic modulus (Pa)
I = W*Hˆ3/12; % Moment of inertia (mˆ4)
eps = 8.85*10ˆ-12; % Vacuum permittivity

%% Prep values
endposition = ones(length(PhiRange),1); % Allocate space for end ...

position data
PIs = ones(length(LRange),1); % Allocate space for pull-in ...

voltages
EPs = ones(length(LRange),1); % Allocate space for pull-in ...

positions
j = 1; % Index for L values

%% Iterate over lengths and voltages
for L = LRange
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solinit = bvpinit(linspace(0,L,20),[0,0,0,0]); % Initial guess ...
for beam solution (flat)

i = 1; % Index for endposition

for Phi = PhiRange
try

[x,ysol,solinit] = ...
ElectroCantilever(Phi,L,W,D,E,I,eps,solinit);

endposition(i) = ysol(1,end);
% Plots the beam deflections. Only enable for small ...

LRange and VRange
% figure(j + 1)
% plot(x*1000,ysol(1,:)*1000)
% hold on

catch
endposition(i) = NaN;
break

end
i = i + 1; % Increase index

end

% Uncomment if plotting beam deflections
% xlabel('x (mm)')
% ylabel('y (mm)')
% title(['Deflection -- Length: ',num2str(L*1000),' mm'])
% legend(num2str(PhiRange(1:i-1)'))

% Find pull in point based on curvature
loc = find(diff(diff(endposition(1:i-1)))>0,1,'first')+1;
if isempty(loc) % If curvature never positive, assume last value ...

is PI
loc = i-1;

end
PIs(j) = PhiRange(loc); % Store pull-in voltage
EPs(j) = endposition(loc); % Stores position at pull-in

% Plot end position as a function of voltage with pull in point
figure(1)
plot(PhiRange(1:i-1),endposition(1:i-1)*1000,'linewidth',2)
hold on
j = j + 1;

end

% Pull in position and labels for position vs voltage plot
plot(PIs,EPs*1000,'ˆk','MarkerFaceColor', 'k')
xlabel('Voltage (V)')
ylabel('Tip Deflection (mm)')
legend(strcat(num2str(LRange'*1000),' mm'))
set(gca,'fontsize',14)

% Plot pull-in voltage as a function of beam length
figure
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plot(LRange*1000,PIs,'linewidth',2)
xlabel('Length (mm)')
ylabel('Pull-In Voltage (V)')
set(gca,'fontsize',14)

% Plot modified pull-in voltage term as a function of beam length
figure
plot(LRange*1000,(10*eps*PIs.ˆ2)/(3*E*Hˆ3*Dˆ3)/1000ˆ4,'linewidth',2)
xlabel('Length (mm)')
ylabel('(10\epsilon 0\Phi P Iˆ2)/(3EHˆ3Gˆ3) (mmˆ-ˆ4)')
set(gca,'fontsize',14)

%% ElectroCantilever.m
%
% This code solves for the deformation of a cantilever beam under
% electrostatic loading.
%
% Used in conjunction with CantileverIterate.m
%
% Governing equations:
% y'''' = - q/(IE)
% q = -eps*Phiˆ2*W/(2(D+y(x))ˆ2)
%
% Governing equation as system of first order ODEs:
% y1' = y2 (= y')
% y2' = y3 (= y'')
% y3' = y4 (= y''')
% y4' = -eps*Vˆ2*W/(2*(D+y1)ˆ2) (= -eps*Vˆ2*W/(2(D+y)ˆ2))
%
% Boundary conditions:
% y(1) = 0
% y'(1) = 0
% M(end) = y''(end) = 0
% v(end) = y'''(end) = 0
%

function [x,ysol,sol] = ElectroCantilever(Phi,L,W,D,E,I,eps,solinit)

x = linspace(0,L,100); % Values for x

% Boundary value problem solver
sol = bvp4c(@(x,y)mat4ode(x,y,eps,Phi,E,I,W,D),@mat4bc,solinit);

ysol = deval(sol,x); % Extract Solution

% Governing equation (system of first order ODEs)
function dydx = mat4ode(~,y,eps,Phi,E,I,W,D)

dydx = [y(2) y(3) y(4) -(eps*Phiˆ2*W)/(2*E*I*(D+y(1))ˆ2)];
end

% Boundary conditions
function res = mat4bc(ya,yb)
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res = [yb(4) ya(2) yb(3) ya(1)];
end

end
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Appendix F

Extra Cantilever Data

F.1 cPDMS True Stress vs Strain

The 15% cPDMS used for electrostatic cantilever experimentation was characterized

on an Instron tensile tester (model 5969). The data from two dogbone samples is

reported in fig. F.1. Both samples were approximately 4.4 mm wide and consisted

Figure F.1: Data from Instron tensile tests for two dog-bone samples of 15% cPDMS
(red - 0.2 mm thick, blue - 0.22 mm thick). Top left inset: magnification of first 120%
stretch. Bottom right inset: image from testing.
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Figure F.2: Tip deflection as a function of applied voltage. The legend indicates the
beam length. The black triangles mark the location of pull-in.

of about 50 mm exposed between the testing clamps. One sample was 0.2 mm thick

and the second was 0.22 mm. Before stretching to failure, each sample under went

3 stretches to 120% (shown in the figure inset). All tests were performed at a rate

of 10 mm/min. The both samples failed after stretching over 3 times their original

length. Based on the first 7% strain during the failure cycle, the 0.2 mm thick sample

had an elastic modulus of 896 kPa and the 0.22 mm thick sample had 793 kPa. For

theoretical purposes, the modulus was assumed to be 840 kPa.

F.2 Cantilever Numerical Simulation

Fig. F.2 is an example output from the numeric code for determining pull-in of

an electrostatic cantilever. As voltage increases, the displacement at the end of the

beam increases. Eventually, pull-in occurs and the solver becomes unstable. These

simulations were run for a beam of width 1 mm, thickness 0.2 mm, air gap 0.3 mm,

and elastic modulus 840 kPa.
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Figure F.3: Comparison of 3 sets of experimental results to theory. Widths of 0.46
(circles), 0.94 (triangles), and 1.43 mm (crosses) are plotted separately. Set 1 is
plotted in red, set 2 in blue, and set 3 in black. The theory, 1/L4, is plotted as a solid
line. Numeric results are plotted as a dashed line.

F.3 Additional Pull-In Data

Fig. F.3 is extra data from electrostatic cantilever experiments. A total of three

sets of experimental data (each containing 6 values for each beam) were taken. The

first set, in particular, appears to be an outlier. We suspect there may have been

additional capacitive effects introduced by leads contacting part of the metal test

stand. Set 2 and 3 display very similar results. Since we were most confident in the

setup during set 3, that data was reported in the main document.
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Appendix G

Extra Fabrication with PAA

For testing purposes, I coated a thin layer (about 60 µm) of PAA (Sigma-Aldrich,

523925) on a metallic plate. After hardening in an oven or on a hot plate, the PAA

can be ablated away using raster or vector settings on a CO2 laser engraver. Multiple

passes may be needed. This essentially creates a mold on which we can cast PDMS

or elastomers. As long as the elastomer is thick enough to avoid tearing, it can be

Figure G.1: Top left: PAA on a metallic plate after partially ablating away a pattern.
Top right: A series of ridges in PDMS after peeling away from the PAA mold. Bottom:
Profile measurements (Alicona Optical Profilometer) of the ridges. The height of each
ridge is approximately 60 µm.
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Figure G.2: Fabrication of free hanging PDMS structures with PAA. a) Fabrication
process similar to that presented in chapter 2. b) A bulk fabrication of beams and
other structures. c) Star shaped cantilevers. d) Rectangular cantilevers. e) Defor-
mation of a free hanging structure with tweezers. f) Undeformed structure. All scale
bars represent 3 mm.

simply peeled away from the metal and PAA. Fig. G.1 shows a sample of partially

laser patterned PAA and the resulting PDMS sample. The fabrication method here

provides an additional way to fabricated parts such as microfluidic channels and

membranes. Only a single metallic plate is required since the laser has little effect

on its surface and the PAA can be washed off with water when a new mold must be

created. While the fabrication process described above may be useful, the true goal

was to create free standing structures. One option is to create membranes with the

method above and bond them to stretchable substrates via oxygen plasma or some

other technique. However, it would be beneficial to avoid tedious bonding steps if

possible.

The fabrication presented in fig. G.2a is nearly identical to that presented in

chapter 2. The primary difference is the lack of a second layer of cPDMS. Instead,

step iii is replaced with iii.b, which simply coats the entire surface with regular PDMS.
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Figure G.3: Preliminary fixed-fixed beams fabricated using PAA.

Similar laser settings were used for patterning the structures. Fig. G.2 also shows

some sample structures, demonstrating the resolutions capable with a CO2 laser and

PAA sacrificial layers. These processes for creating suspended bodies could be easily

extended to created manual electrical switches that do not require the conductivity

of the human body for activation, as required by devices in [6].

Using materials different from those presented in chapter 2 could also allow for

the creation of fixed-fixed hyperelastic electrostatic beams. Because cPDMS tends to

be extremely viscoelastic, it would be best to avoid it as a material for the actuating

beam (particularly when experiencing large changes in stretch). Instead, for testing

purposes, ordinary PDMS can be used in conjunction with eutectic gallium-indium

(EGaIn). An example is shown in Fig. G.3, where the beam was manually coated

with EGaIn on its top surface using a scrap piece of elastomer. This fabrication

method has not yet been perfected, and testing of the electrostatic beams has not

yet been performed. An alternate material which may be tested in the future work

is EGaIn-PDMS composites [37].
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Appendix H

Signal Cantilever Beams

The following work was performed with the goal of creating a functional electrostatic

cantilever switch. As shown in Fig. H.1, the cantilever beam contains of two cPDMS

traces. One is a grounded electrode which is parallel to a stationary pull-in electrode.

The second trace carries the signal. When the stationary electrode is charged, the

beam deforms, causing the signal carrying trace to make contact with a conductive

pad on the body of the device. This completes the circuit. It was hoped that, after

releasing the charge, the beams elastic restoring force would return the device to its

original, off-state position.

Figure H.1: Device with approximate dimensions. The light grey is PDMS and the
dark grey is cPDMS. Left: Actuation functionality (not to scale). Right: Top view
of beam (drawn to scale).
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H.1 Method

H.1.1 Rapid Prototyping for Soft-Matter Electronics [6]

The following research for rapid prototyping with a CO2 laser was lead by Tong Lu of

the Soft Materials Laboratory. While reliable, many existing methods for soft-circuit

fabrication typically require photolithography or customized printing hardware and

can be costly and time consuming. An exception is the method presented in [261]

in which a commercial excimer laser (wavelength, λ = 248 nm) is used to produce

molds for casting cPDMS. Another approach is stencil lithography, which has been

recently applied to liquid GaIn [103, 119, 262] and is discussed in Chapter 2. However,

although it is rapid and inexpensive, stencil lithography can only be used to produce

a limited range of circuit geometries.

CO2 laser ablation has been previously used to produce microfluidic channels in

PMMA [263] and PDMS [264]. Polymers are typically patterned through a combi-

nation of vaporization and the displacement of molten polymer. Molten polymer is

displaced when the pressure of the escaping vapor (recoil force) exceeds the surface

tension of the liquid. We introduce a method for producing soft-matter electronic

circuits by patterning thin films of cPDMS and liquid-phase EGaIn alloy with a CO2

laser (10.6 µm wavelength). This rapid prototyping approach to fabrication elimi-

nates the need for photolithography or customized printing hardware. Moreover, we

demonstrate the ability to laser-pattern EGaIn through a mechanism that exploits

the unique moldability of the liquid alloy. After the excess EGaIn and elastomer are

removed, the patterned film is sealed in additional PDMS.

Patterning of cPDMS is essentially a three step process. First, we coat cPDMS on

a metallic surface via spin coater or thin-film applicator. After curing, patterns can be

cut with the CO2 laser, and excess material can be peeled away. The metallic surface

is not easily affected by the CO2 laser, making it an appropriate work substrate.
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Finally, the exposed conductive traces can be coated in PDMS. After curing and any

additional cuts to shape the final product, we peel the entire film up (PDMS and

cPDMS joined together). This process was used to create the beams described in this

chapter and is described in more depth in [6].

In contrast to elastomers, liquid-phase GaIn metal alloys cannot be ablated with

a CO2 laser. As with other metals, EGaIn would require a high-energy UV radiation

source for photochemical ablation. Instead, we postulate that EGaIn is removed with

the same liquid metal expulsion mechanisms used in CO2 laser beam welding (LBW)

[265]. However, whereas stainless steel, titanium, and other solid metals require a high

power to initiate melting (>1 kW for CO2 lasers), GaIn alloys are already molten at

room temperature and, as with molten polymer, can be displaced by pressure from

the vapor escaping the PDMS beneath. If GaIn is applied as a sufficiently thin

layer (around 20 µm or less), the heat generated from the laser will be enough to

vaporize underlying elastomer. The pressure from the vaporized elastomer exceeds

the surface tension of the GaIn, allowing the vapor to puncture the liquid metal film.

The surface tension of GaIn alloys includes a surface oxide of Ga2O3 that prevents the

liquid from flowing back into the laser-patterned region. In other words, this property

of “moldability” enabled by the oxide skin [29, 98, 101, 266] allows the liquid to retain

its shape after it has been patterned. Since they have both low fluidic viscosity and a

high surface tension, GaIn alloys can simultaneously behave like a solid and a liquid

at sub-millimeter length scales. This unique combination of properties enables the

rare ability to pattern a metal alloy with an inexpensive laser engraving system that

operates at relatively high wavelengths (10.6 µm) and low power (1-30 W).

To pattern thin films of liquid EGaIn alloy, we begin by spin coating a layer of

PDMS on a brass cutting sheet. Next, we use an elastomeric roller to deposit a 10-20

µm thin layer of EGaIn; a minimum thickness of 10 µm has been measured with opti-

cal profilometry (Zygo NewView 7300 Optical Profilometer). An extra layer of PDMS
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Figure H.2: Samples [6]. a,b) PDMS embedded with laser-patterned inclusions of
EGaIn. c,d) Large area sample. e) Miniaturized features: 2 mm 2 mm squares
spaced 0.25, 0.5, and 1 mm apart; concentric rings with diameters of 1.5, 3, and 5
mm and widths of 0.25, 0.35, and 0.5 mm, respectively; circles with diameters of 0.5,
1, 1.5, and 2 mm; rectangular strips with widths of 0.3, 0.7, and 1 mm. f) LED circuit
containing laser-patterned (Ag/Ni)cPDMS and EGaIn.

is spun-coated on the GaIn alloy and cured before patterning the alloy and underlying

PDMS substrate with a CO2 laser. This extra layer of PDMS serves to prevent the

EGaIn from oxidizing and getting coated in debris during laser-patterning. Next, we

remove the excess material and seal the patterned circuit. After the sealing layer has

cured, we peel the circuit from the brass cutting sheet. This approach to EGaIn pat-

terning exploits the alloys liquid state and strong surface tension, which allows it to

hold its shape after being cut with a CO2 laser. The samples presented in Figs. H.2a-

e demonstrate the versatility of this approach to rapidly pattern liquid GaIn with

millimeter-scale resolution over a large area. Fig. H.2f presents an integrated circuit

composed of laser-patterned EGaIn and conductive elastomer electrodes (NuSil R-

2637) used to mount an LED and connect the circuit to an external power supply.

This sample demonstrates the ability to pattern multiple conductive materials and

maintain conductivity. This prototyping technique has not yet been applied to the

active soft MEMS described in this document, but it my prove useful in the future.
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Figure H.3: Beam fabrication process.

H.1.2 Beam Fabrication

The cPDMS recipe and the beam fabrication method (Fig. H.3) were derived from [6],

which is described above. To create the cPDMS, 1.85 g of carbon black (SigmaAldrich,

Inc), 10.5 g of 20:1 PDMS (Sylgard 184, Dow Corning, Inc), and at least 13 g of

hexane (SigmaAldrich, Inc) were combined in a small sealed cup. This resulted in

cPDMS with 15% carbon by weight. The hexane decreased the viscosity, aiding in the

dispersion of carbon particles and facilitating subsequent spin coating or spreading

with a thin film applicator. A magnetic stirrer (Isotemp, Fisher Scientific, Inc) was

used to mix the uncured conductive elastomer for at least 3 hours at 700 rpm.

A thin brass sheet served as the substrate for spinning thin layers of polymer.

Before spin coating the cPDMS, mold release (Ease Release 200, Mann Release Tech-

nologies, Inc) was applied to the surface of the brass. The mold release is unnecessary

but may prevent tearing as the device is peeled off the substrate. The first spin cycle

was set at 1000 rpm for 9 seconds. For best results with the cPDMS, the uncured

polymer was placed on the spinning sheet during this first cycle. The second cycle

was set at 2000 rpm for 20 seconds. The cPDMS could then be cured on a hot plate

(Isotemp, Fisher Scientific, Inc) at 85oC for about 45 minutes.

After fully curing the cPDMS, a laser engraver (VLS3.50, Universal Laser Systems,

Inc) was used to cut out the shapes for the pull-in electrode and the signal path. The
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Figure H.4: Fabricated signal beams.

laser, set at about 3% power and 5% speed, is capable of ablating thin layers of PDMS

and cPDMS without significantly singing the surrounding area, but its wavelength is

too large to affect the brass. Multiple passes were performed in some cases to ensure

a clean cut. Afterwards, the surrounding cPDMS was removed manually, leaving

behind the electrode and signal path.

10:1 PDMS spun on top of the cPDMS traces using the same two spin settings.

This was cured on the hot plate at 85oC for about 45 minutes. Two sets of samples

were created. For second set, another layer of 10:1 PDMS was added using the same

process. The first set of samples were approximately 100 µm thick and the second

set were about 140 µm. The laser engraver was then used to cut through the PDMS

layer around the cPDMS traces, forming the beam and the connection points. After

manually removing the surrounding PDMS, the beams were carefully peeled up by

hand with the use of tweezers and razors. Sample final signal beams can be seen in

Fig. H.4.
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Figure H.5: Actuation of a signal beam. The voltages are 0 V, 165 V, 254 V, and
268 V.

H.1.3 Experimental Setup

To test actuation, the beams were clamped (Fig. H.5) at one end to a 4 mm thick

block of PDMS. The block of PDMS had a thin coating of cPDMS which functioned

as the stationary pull-in electrode. A thin ( 350 µm) layer of PDMS acts as an

insulator between the beam and the surface, also providing the initial distance, d.

A high voltage power supply (6209B, Hewlett-Packard, Inc) was used to ground the

beam while applying charges to the stationary surface.

H.2 Results

The signal path on the beam, unfortunately, provided a resistance of 10s to 100s

of mega-ohms. This made testing for completed circuits impractical. Specifically,

cPDMS samples (170 µm by 9.5 mm cross-section) demonstrated a lengthwise (be-

tween 24 and 84 mm) resistivity of 0.7 Ω-m. Further, the value through the thickness

was about 3000 Ω-m. For reference, the resistivity of copper is 1.7*10−8 Ω-m. At

the moment, it is unclear why the resistivity through the thickness differs, though it

could be due to percolation probabilities at small length scales.

Although this level of resistivity is unacceptable for completing circuits, it is suit-
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able for electrostatics where little to no current is required. Despite initial curvatures

due to residual stresses, actuation could typically be achieved in less than 300 V for

beam lengths of 5 mm or longer. Figure H.5 demonstrates the actuation of a signal

beam. The initial curvature is evident in the upper left image, where 0 V is applied.
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Appendix I

Rod Theory History

The following elastic rod history is described in greater detail within Antman’s Non-

linear Problems of Elasticity [267]. By 1732, initial work by Bernoulli and Euler

resulted in a set of inextensible beam equations defined based on moment balance

and Hooke’s law. The internal bending moment of a beam undergoing planar deflec-

tions was shown to vary linearly with curvature. Euler expanded the elastica theory

and included force balance in 1771 and 1774. With this theory, large deformations

can be considered as long as strains remain small. It was not until the mid-1800s that

St. Venant accounted for twist and scholars such as Kirchhoff and Love contributed

to the understanding of strains. A thorough source for the work up until this point

is A Treatise on the Mathematical Theory of Elasticity by Love [268]. What we now

refer to as directors were introduced by the Cosserat brothers in work from 1907 and

1909. With this directed model, each point along the curve of the beam is defined

with a set of deformable vectors.

Most models today take a directed rod approach, particularly after 1958 when

Ericksen and Truesdell [269] dedicated a paper to the Cosserat brothers. Their paper

clarifies and builds on work by the Cosserats and other scholars regarding rod and

shell stress and strain theory. In a paper from 1966, Green and Laws created a general

191



theory for rods [270], and the theory was further developed by Green, Naghdi, and

Wenner based on three-dimensional continuum mechanics in 1974 [271, 272]. Since

then, these theories have been widely applied to helical wires [273], self-contacting

elastic rods [274], and loop formation [275].
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Appendix J

Ecoflex 0030 Tensile Data

Fig. J.1 displays tensile data (Instron, 33R 4442) from three separate beams. After

the first loading, the second and third settle out on a particular path. This behavior

is known as the Mullins effect [276]. Data was taken from the third set for each beam

and averaged to acquire the curve used for fitting constitutive models in Chapter 3.

Figure J.1: Instron data from 3 separate Ecoflex 0030 beams (each of dimension 70
mm x 20 mm x 4 mm). The first loading (unloading was not included) is shown in
red. The second is blue, and the third is black.
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Appendix K

Visualization for Fixed End

Algorithms

The following describes the algorithms for maintaining beam ends which maintain

fixed positions. Specifically, these represent the process for point load (centered).

They can be extended to distributed loads and other conditions.

K.1 Solving for θ(s)

This algorithm (fig. K.1) is used for

d2θ

ds2
=

F

I∗E∗
sin(θ) +

V

I∗E∗
cos(θ). (K.1)

Additional stretch is applied to the beam until the deformed beam (under point load)

has the same end to end length as the reference condition. The beam bending is

solved with MATLAB’s bvp4c and the comparison of the beam center was performed

with fsolve.
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Figure K.1: Process for acquiring fixed end positions when solving for θ(s).
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Figure K.2: Process for acquiring fixed end positions when solving for y(x).

K.2 Solving for y(x)

This algorithm (fig. K.2) is used for

d4y

dx4
=

F

I∗E∗
d2y

dx2
− q

I∗E∗
. (K.2)

Additional stretch is applied to the beam until the beam length before and after

point load are identical. The beam bending is solved with MATLAB’s bvp4c and the

comparison of the beam length was performed with fsolve.
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Appendix L

BVP Re-Formulation for MATLAB

MATLAB’s BVP4C requires that the problem be described as a system of 1st or-

der ODEs. Below, I describe the process for obtaining these equations based on the

stretched fixed-fixed beam governing equations. Here we consider electrostatic load-

ing. This can be extended to the cantilever beams, different loading conditions, and

other examples.

We begin with the governing equation:

d2θ

ds2
=

F

I∗E∗
sin(θ) +

V

I∗E∗
cos(θ). (L.1)

We also note that:

dV

ds
= −q(s) (L.2)

and that

q = − ε0Φ2w

2(d+ y)2
. (L.3)

In this case, q is in terms of y, but the rest of the governing equation is in terms
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of θ. To handle this case, we apply

y =

∫ s

0

sin(θ)ds. (L.4)

With the Second Fundamental Theorem of Calculus, we know that

y′ = sin(θ). (L.5)

With the above, we have all the information required to define a system of 1st

order ODEs describing the governing equation. To start, we define that f1 = θ,

f3 = V , f4 = y, and

f ′1 = θ′ = f2, (L.6)

f ′2 = θ′′ =
F

I∗E∗
sin(f1) +

f3

I∗E∗
cos(f1), (L.7)

f ′3 = −q =
ε0V

2w

2(f + f4)2
, (L.8)

f ′4 = sin(f1) = y′. (L.9)

To accompany these four 1st order ODEs, we require four boundary conditions.

With the fixed-fixed beam problem definition, we define:

f1(0) = θ(0) = 0, (L.10)

f1(lf ) = θ(lf ) = 0, (L.11)

f4(0) = y(0) = 0, (L.12)

f4(lf ) = y(lf ) = 0. (L.13)

This system of equations can be plugged into BVP4C to reach a numeric solution.
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Below are posted the 1st order ODEs and boundary conditions when solving for

d4y

dx4
=

F

I∗E∗
d2y

dx2
− q

I∗E∗
. (L.14)

1st order ODES, after setting g1 = y:

g′1 = y′ = g2, (L.15)

g′2 = y′′ = g3, (L.16)

g′3 = y′′′ = g4, (L.17)

g′4 = y′′′′ =
F

I∗E∗
d2y

dx2
− q(g1)

I∗E∗
. (L.18)

Boundary conditions:

g1(0) = y(0) = 0, (L.19)

g1(l) = y(l) = 0, (L.20)

g2(0) = y′(0) = 0, (L.21)

g2(l) = y′(l) = 0. (L.22)
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Appendix M

Fixed-Fixed Point Load MATLAB
Code

%% PointLoadIterate.m
% Iterates through a point load being applied to a hyperelastically
% stretched beam. Can assume beam has fixed ends in terms of ...

position or
% can assume that a constant force F is stretching the beam.
%
% Currently approximating Ecoflex 0030

%% Beam dimensions, conditions, and properties
% Currently assumed to be rectangular cross-section...
W = 0.02; % Beam width (m)
H = 0.004; % Beam thickness (m)
L = 0.07/2; % Beam length (m) (/2 because load at center of beam)

fix = 0; % 0-Constant force F (constant stretch, lam), 1-Ends are ...
fixed.

type1 = 1; % 0-Deflection d is varied (only for y(x) solver), ...
1-Point load is varied

type2 = 0; % 0-y(x) solver, 1-theta(s) solver
model = 3; % 0-NeoHookean, 1-Mooney-Rivlin, 2-2 Param Ogden, 3-3 ...

Param Ogden

%% Iteration inputs
lambda trange = [1 1.02 1.05 1.1 1.25 1.5 2 2.5 2.75 3]; % Input ...

stretch range

% Note - if these meshes aren't fine enough, the solver will have ...
trouble

% finding a solution when considering the fixed end case. (Extra stretch
% delta appears to be causing instabilities)
drange = 0:0.00025:0.007; % Deflection range (m)
Loadrange = 0:0.001:0.6; % Load range (N) (note this is ...

halved for each half of the beam)
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dlimit = 0.007; % Limit in deflection when varying load.
Loadlimit = 0.6; % Limit in load when varying deflection.

%% Constitutive equations
% Total stretch (delta is additional stretch due to fixed ends)
lambda f = @(lambda t,delta) lambda t + delta;

if model == 0 % Neo-Hookean
% Material constants
alpha1 = 2;
E = 50000; % Elastic moduls (Pa)
C1 = E/6;
mu1 = C1*alpha1;

% Stress as a function of stretch: sigma = f(lam)
sigma t = @(lambda t,delta) ...

mu1*(lambda f(lambda t,delta).ˆ(alpha1) -...
lambda f(lambda t,delta).ˆ(-0.5*alpha1));

% Effective modulus as a function of stretch: effective E = ...
sigma t'(lam) = effE(lam)

effE = @(lambda t,delta) ...
mu1*(alpha1*lambda f(lambda t,delta).ˆ(alpha1-1) + ...
0.5*alpha1*lambda f(lambda t,delta).ˆ(-0.5*alpha1-1));

elseif model == 1 % Mooney-Rivlin
% Material constants
alpha1 = 2;
alpha2 = -2;
C1 = 6.8824e+03;
C2 = 1.4509e+03;
mu1 = C1*alpha1;
mu2 = C2*alpha2;

% Stress as a function of stretch: sigma = f(lam)
sigma t = @(lambda t,delta) ...

mu1*(lambda f(lambda t,delta).ˆ(alpha1) -...
lambda f(lambda t,delta).ˆ(-0.5*alpha1)) + ...
mu2*(lambda f(lambda t,delta).ˆ(alpha2) - ...
lambda f(lambda t,delta).ˆ(-0.5*alpha2));

% Effective modulus as a function of stretch: effective E = ...
sigma t'(lam) = effE(lam)

effE = @(lambda t,delta) ...
mu1*(alpha1*lambda f(lambda t,delta).ˆ(alpha1-1) + ...
0.5*alpha1*lambda f(lambda t,delta).ˆ(-0.5*alpha1-1)) + ...
mu2*(alpha2*lambda f(lambda t,delta).ˆ(alpha2-1) + ...
0.5*alpha2*lambda f(lambda t,delta).ˆ(-0.5*alpha2-1));

elseif model == 2 % 2 Param Ogden
% Material constants
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alpha1 = 2.2083;
alpha2 = 10.9755;
mu1 = 1.3111e+04;
mu2 = 0.0968;

% Stress as a function of stretch: sigma = f(lam)
sigma t = @(lambda t,delta) ...

mu1*(lambda f(lambda t,delta).ˆ(alpha1) -...
lambda f(lambda t,delta).ˆ(-0.5*alpha1)) + ...
mu2*(lambda f(lambda t,delta).ˆ(alpha2) - ...
lambda f(lambda t,delta).ˆ(-0.5*alpha2));

% Effective modulus as a function of stretch: effective E = ...
sigma t'(lam) = effE(lam)

effE = @(lambda t,delta) ...
mu1*(alpha1*lambda f(lambda t,delta).ˆ(alpha1-1) + ...
0.5*alpha1*lambda f(lambda t,delta).ˆ(-0.5*alpha1-1)) + ...
mu2*(alpha2*lambda f(lambda t,delta).ˆ(alpha2-1) + ...
0.5*alpha2*lambda f(lambda t,delta).ˆ(-0.5*alpha2-1));

elseif model == 3 % 3 Param Ogden
% Material constants
alpha1 = 1.2140;
alpha2 = -8.1327;
alpha3 = 16.9936;
mu1 = 2.2889e+04;
mu2 = -956.2478;
mu3 = 2.6390e-05;

% Stress as a function of stretch: sigma = f(lam)
sigma t = @(lambda t,delta) ...

mu1*(lambda f(lambda t,delta).ˆ(alpha1) -...
lambda f(lambda t,delta).ˆ(-0.5*alpha1)) + ...
mu2*(lambda f(lambda t,delta).ˆ(alpha2) - ...
lambda f(lambda t,delta).ˆ(-0.5*alpha2)) + ...
mu3*(lambda f(lambda t,delta).ˆ(alpha3) - ...
lambda f(lambda t,delta).ˆ(-0.5*alpha3));

% Effective modulus as a function of stretch: effective E = ...
sigma t'(lam) = effE(lam)

effE = @(lambda t,delta) ...
mu1*(alpha1*lambda f(lambda t,delta).ˆ(alpha1-1) + ...
0.5*alpha1*lambda f(lambda t,delta).ˆ(-0.5*alpha1-1)) + ...
mu2*(alpha2*lambda f(lambda t,delta).ˆ(alpha2-1) + ...
0.5*alpha2*lambda f(lambda t,delta).ˆ(-0.5*alpha2-1)) + ...
mu3*(alpha3*lambda f(lambda t,delta).ˆ(alpha3-1) + ...
0.5*alpha3*lambda f(lambda t,delta).ˆ(-0.5*alpha3-1));

end

%% Other functions
% Effective area moment of inertia
effI = @(lambda t,delta) W*Hˆ3/12/lambda f(lambda t,delta)ˆ2;
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% Effective horizontal force at ends
F = @(lambda t,delta) ...

sigma t(lambda t,delta)*W*H/lambda f(lambda t,delta);

%% Setup for iterations
if type1 == 0 % Varying d

Load = ones(length(drange),length(lambda trange)).*NaN; % ...
Allocate space for shear force (N)

else % Varying V
Load = ones(length(Loadrange),length(lambda trange)).*NaN; % ...

Allocate space for shear force (N)
end

d = Load; % Allocate space for displacement (mm)
j = 1; % Index for lambda t

%% Iterate over stretches and deflections
for lambda t = lambda trange

%%%% Intial guesses which are updated by numeric solutions
if type2 == 0 % y(x) solver

solinit = bvpinit(linspace(0,L*lambda t,10),[0 0 0 0]); % ...
Initial guess for beam solution (flat)

else % theta(s) solver
solinit = bvpinit(linspace(0,L*lambda t,10),[0 0]); % ...

Initial guess for beam solution (flat)
end
deltainit = 0; % Initial guess for additional stretch due to ...

deflection

%%%% Varying d
if type1 == 0

d(:,j) = drange;
if type2 == 0 % y(x) solver

for i = 1:length(drange)
disp(['Stretch: ',num2str(lambda t),', d: ...

',num2str(drange(i)),' mm'])
[x,y,solinit,deltainit,Load(i,j)] = PointLoad y d(L, ...

lambda t, drange(i), solinit, deltainit, ...
lambda f, effE, effI, F, fix);

y = y(1,:);
if Load(i,j) > Loadlimit % Limit in load

break
end
% Plots the beam deflections. Only enable for small ...

drange/Loadrange and lambda trange
% figure(j+1)
% plot(x,y)
% hold on

end
else % theta(s) solver
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error('Varying d only available for y(x) solver (type1 = ...
0)')

end

%%%% Varying V
else

Load(:,j) = Loadrange;
for i = 1:length(Loadrange)

disp(['Stretch: ',num2str(lambda t),', Load: ...
',num2str(Loadrange(i)),' N'])

if type2 == 0 % y(x) solver
[x,yfin,solinit,deltainit] = PointLoad y V(L, ...

lambda t, Loadrange(i)/2, solinit, deltainit, ...
lambda f, effE, effI, F, fix);

y = yfin(1,:);
if d(i,j) > dlimit % Limit in deflection

break
end

else % theta(s) solver
[s,thetafin,solinit,deltainit] = ...

PointLoad theta V(L, lambda t, Loadrange(i)/2, ...
solinit, deltainit, lambda f, effE, effI, F, fix);

n = length(s);
ds = s(2)-s(1);
x = tril(ones(n,n))*(cos(thetafin(1,:)))'*ds; % ...

Approximate x
y = tril(ones(n,n))*(sin(thetafin(1,:)))'*ds; % ...

Approximate y
if d(i,j) > dlimit % Limit in deflection

break
end

end
d(i,j) = -y(end);
% Plots the beam deflections. Only enable for small ...

drange/Loadrange and lambda trange
% figure(j+1)
% plot(x,y)
% hold on

end
end

% Uncomment if plotting beam deflections
% xlabel('x (mm)')
% ylabel('y (mm)')
% title(['Stretch: ',num2str(lambda t)])
% if type1 == 0
% legend(num2str(drange'))
% else
% legend(num2str(Loadrange'))
% end
% set(gca,'fontsize',14)
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% Plots load (shear force) as a function of deflection
figure(1)
plot(d(:,j)*1000,Load(:,j),'k')
hold on
j = j + 1;

end

% Label for results plot
xlabel('Deflection (mm)')
ylabel('Force (N)')
legend(num2str(lambda trange'))
axis([0 8 0 0.6])
set(gca,'fontsize',14)

%% PointLoad y V.m
%
% This code solves for the deformation of a fixed-fixed beam under a ...

point
% load (generally centered). The function is solved in terms of y. The
% input is shear force (applied point load) V.
%
% Used in conjunction with PointLoadIterate
%
% Governing equations:
% y'''' = F/(effE*effI)*y''' - q/(effE*effI)
% [FOR q = 0: y'''' = F/(effE*effI)*y''']
%
% Governing equation as system of first order ODEs:
% y1' = y2 (= y')
% y2' = y3 (= y'')
% y3' = y4 (= y''')
% y4' = F/(effE*effI)*y3 (= F/(effE*effI)*y''')
%
% Boundary conditions:
% y(1) = 0
% y'(1) = 0
% y'(end) = 0
% y'''(end) = V/(eff*effI)
%
% Fixed ends condition:
% During deflection, fixed ends causes an additional stretch of delta.
% Deformed beam length bl = L*lambda f
%

function [x,yfin,solfin,deltafin] = ...
PointLoad y V(L,lambda t,V,solinit,delta,lambda f,effE,effI,F,fix)

x = linspace(0,L*lambda t,1000); % Values for x
options = optimset('TolFun',1e-8, 'TolX',1e-8); % Options for fsolve

% Boundary value problem solver
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sol = @(lambda t,delta) bvp4c(@(x,y)fourode(x, y, F(lambda t,delta), ...
effI(lambda t,delta), effE(lambda t,delta)), ...
@(ya,yb)fourbc(ya,yb,V,effI(lambda t,delta), ...
effE(lambda t,delta)), solinit);

if fix == 1
% Solves such that fixed ends condition is met (solves for ...

required delta)
deltafin = fsolve(@(delta)beamlength(sol(lambda t,delta),x)- ...

L*lambda f(lambda t,delta),delta,options);
else

% Assumes constant force (F and lam constant [delta = 0] with ...
deformation)

deltafin = 0;
end

% Pulls out final solutions
solfin = sol(lambda t,deltafin);
yfin = deval(solfin,x);

% Governing equation (system of first order ODEs)
function dydx = fourode(~,y,F,effI,effE)

dydx = [y(2);y(3);y(4);F/effI/effE*y(3)];
end

% Boundary conditions
function res = fourbc(ya,yb,V,effI,effE)

res = [ya(1);ya(2);yb(2);yb(4)-V/(effI*effE)];
end

% Calculating the length of the deformed beam
function bl = beamlength(sol,x)

y = deval(sol,x);
bl = sum(sqrt(diff(y(1,:)).ˆ2+diff(x).ˆ2));

end

end

%% PointLoad y d.m
%
% This code solves for the deformation of a fixed-fixed beam under a ...

point
% load (generally centered). The function is solved in terms of y. The
% input is displacement d.
%
% Used in conjunction with PointLoadIterate
%
% Governing equations:
% y'''' = F/(effE*effI)*y''' - q/(effE*effI)
% [FOR q = 0: y'''' = F/(effE*effI)*y''']
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%
% Governing equation as system of first order ODEs:
% y1' = y2 (= y')
% y2' = y3 (= y'')
% y3' = y4 (= y''')
% y4' = F/(effE*effI)*y3 (= F/(effE*effI)*y''')
%
% Boundary conditions:
% y(1) = 0
% y(end) = -d
% y'(1) = 0
% y'(end) = 0
%
% Fixed ends condition:
% During deflection, fixed ends causes an additional stretch of delta.
% Deformed beam length bl = L*lambda f
%

function [x,yfin,solfin,deltafin,V] = PointLoad y d(L, lambda t, d, ...
solinit, delta, lambda f, effE, effI, F, fix)

x = linspace(0,L*lambda t,1000); % Values for x
options = optimset('TolFun',1e-12, 'TolX',1e-12); % Options for fsolve

% Boundary value problem solver
sol = @(lambda t,delta) bvp4c(@(x,y)fourode(x, y, F(lambda t,delta), ...

effI(lambda t,delta), effE(lambda t,delta)), ...
@(ya,yb)fourbc(ya,yb,d), solinit);

if fix == 1
% Solves such that fixed ends condition is met (solves for ...

required delta)
deltafin = fsolve(@(delta)beamlength(sol(lambda t,delta),x)- ...

L*lambda f(lambda t,delta),delta,options);
else

% Assumes constant force (F and lam constant [delta = 0] with ...
deformation)

deltafin = 0;
end

% Pulls out final solutions
solfin = sol(lambda t,deltafin);
yfin = deval(solfin,x);

% The shear force is the applied load (for point load case)
V = yfin(4,end)*effI(lambda t,deltafin)*effE(lambda t,deltafin)*2; % ...

Calculate shear force (~y'''*effI*effE). Doubled for each half ...
of beam.)

% Governing equation (system of first order ODEs)
function dydx = fourode(~,y,F,effI,effE)

dydx = [y(2);y(3);y(4);F/effI/effE*y(3)];
end
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% Boundary conditions
function res = fourbc(ya,yb,d)

res = [ya(1);yb(1)+d;ya(2);yb(2)];
end

% Calculating the length of the deformed beam
function bl = beamlength(sol,x)

y = deval(sol,x);
bl = sum(sqrt(diff(y(1,:)).ˆ2+diff(x).ˆ2));

end

end

%% PointLoad theta.m
% This code solves for the deformation of a fixed-fixed beam under a ...

point
% load (generally centered). The function is solved in terms of ...

theta. The
% input is shear force (applied point load) V.
%
% Used in conjunction with PointLoadIterate
%
% Governing equations:
% theta'' = F/(effE*effI)*sin(theta) + V/(effE*effI)*cos(theta)
%
% Governing equation as system of first order ODEs:
% theta1' = theta2 (= theta')
% theta2' = F/(effE*effI)*sin(theta1) + V/(effE*effI)*cos(theta1)
% (= F/(effE*effI)*sin(theta + V/(effE*effI)*cos(theta)))
%
% Boundary conditions:
% theta(1) = 0
% theta(end) = 0
%
% Fixed ends condition:
% During deflection, fixed ends causes an additional stretch of delta.
% Deformed beam center midpoint = L*lambda t
%

function [sfin,thetafin,solfin,deltafin] = PointLoad theta V(L, ...
lambda t, V, solinit, delta, lambda f, effE, effI, F, fix)

s = @(lambda t,delta) linspace(0,L*lambda f(lambda t,delta),1000); % ...
Values for s (note these depend on the new delta value)

options = optimset('TolFun',1e-11, 'TolX',1e-11); % Options for fsolve

% Boundary value problem solver
sol = @(lambda t,delta) ...

bvp4c(@(s,theta)fourode(s,theta,F(lambda t,delta), ...
effI(lambda t,delta), effE(lambda t,delta),V), ...
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@(thetaa,thetab)twobc(thetaa,thetab), ...
solinitNu(solinit,L,lambda f(lambda t,delta)));

if fix == 1
% Solves such that fixed ends condition is met (solves for ...

required delta)
deltafin = ...

fsolve(@(delta)midpoint(sol(lambda t,delta),s(lambda t,delta)) ...
-L*lambda t,delta,options);

else
% Assumes constant force (F and lam constant [delta = 0] with ...

deformation)
deltafin = 0;

end

% Pulls out final solutions
sfin = s(lambda t,deltafin);
solfin = sol(lambda t,deltafin);
thetafin = deval(solfin,sfin);

% Governing equation (system of first order ODEs)
function dthetadx = fourode(~,theta,F,effI,effE,V)

dthetadx = [theta(2);F/(effE*effI)*sin(theta(1)) + ...
V/(effE*effI)*cos(theta(1))];

end

% Boundary conditions
function res = twobc(thetaa,thetab)

res = [thetaa(1);thetab(1)];
end

% Calculating the x position of the middle of the beam
function midp = midpoint(sol,s)

theta = deval(sol,s);
ds = s(2)-s(1);
n = length(s);
x = tril(ones(n,n))*(cos(theta(1,:)))'*ds; % Approximate x
midp = x(end)-x(1);

end

% Create new intial guess by stretching the previous solution
function solinit = solinitNu(solinit,L,lambda f)

xs = solinit.x;
solinit.x = solinit.x*(L*lambda f/xs(end)*1.000001); % A bit ...

of extra stretch to account for numerical inaccuracies ...
(I think...)

end

end
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Appendix N

Fixed-Fixed Electrostatic Load
MATLAB Code

%% ElectrostaticLoadIterate.m
% Iterates through an electrostatic load being applied to a
% hyperelastically stretched beam. Can assume beam has fixed ends in ...

terms
% of position or can assume that a constant force F is stretching ...

the beam.
%
% Currently approximating Ecoflex 0030

%% Beam dimensions and conditions
% Currently assumed to be rectangular cross-section...
% W = 0.5*10ˆ-3; % Beam width (m)
% H = 0.01*10ˆ-3; % Beam thickness (m)
% L = 0.7*10ˆ-3; % Beam length (m)
% D = 0.1*10ˆ-3; % Gap height (m)
W = 0.5*10ˆ-3; % Beam width (m)
H = 0.05*10ˆ-3; % Beam thickness (m)
L = 0.7*10ˆ-3; % Beam length (m)
D = 0.05*10ˆ-3; % Gap height (m)

fix = 0; % 0-Constant force F (constant stretch, lam), 1-Ends are ...
fixed.

fixd = 1; % 0-d is not fixed, 1-d is fixed (d = D)
type1 = 0; % 0-y(x) solver, 1-theta(s) solver
model = 3; % 0-NeoHookean, 1-Mooney-Rivlin, 2-2 Param Ogden, 3-3 ...

Param Ogden

%% Iteration inputs
lambda trange = [1 1.01 1.02 1.03 1.05 1.07 1.1 1.15 1.2 1.25 1.3 ...

1.4 1.5 1.75 2 2.25 2.5 2.75 3]; % Input stretch range

% Note - if these meshes aren't fine enough, the solver will have ...
trouble
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% finding a solution when considering the fixed end case. (Extra stretch
% delta appears to be causing instabilities)
Phirange = 0:0.2:12000; % Load range (V)

%% Constitutive equations
% Total stretch (delta is additional stretch due to fixed ends)
lambda f = @(lambda t,delta) lambda t + delta;

if model == 0 % Neo-Hookean
% Material constants
alpha1 = 2;
E = 50000; % Elastic moduls (Pa)
C1 = E/6;
mu1 = C1*alpha1;

% Stress as a function of stretch: sigma = f(lam)
sigma t = @(lambda t,delta) ...

mu1*(lambda f(lambda t,delta).ˆ(alpha1) -...
lambda f(lambda t,delta).ˆ(-0.5*alpha1));

% Effective modulus as a function of stretch: effective E = ...
sigma t'(lam) = effE(lam)

effE = @(lambda t,delta) ...
mu1*(alpha1*lambda f(lambda t,delta).ˆ(alpha1-1) + ...
0.5*alpha1*lambda f(lambda t,delta).ˆ(-0.5*alpha1-1));

elseif model == 1 % Mooney-Rivlin
% Material constants
alpha1 = 2;
alpha2 = -2;
C1 = 6.8824e+03;
C2 = 1.4509e+03;
mu1 = C1*alpha1;
mu2 = C2*alpha2;

% Stress as a function of stretch: sigma = f(lam)
sigma t = @(lambda t,delta) ...

mu1*(lambda f(lambda t,delta).ˆ(alpha1) -...
lambda f(lambda t,delta).ˆ(-0.5*alpha1)) + ...
mu2*(lambda f(lambda t,delta).ˆ(alpha2) - ...
lambda f(lambda t,delta).ˆ(-0.5*alpha2));

% Effective modulus as a function of stretch: effective E = ...
sigma t'(lam) = effE(lam)

effE = @(lambda t,delta) ...
mu1*(alpha1*lambda f(lambda t,delta).ˆ(alpha1-1) + ...
0.5*alpha1*lambda f(lambda t,delta).ˆ(-0.5*alpha1-1)) + ...
mu2*(alpha2*lambda f(lambda t,delta).ˆ(alpha2-1) + ...
0.5*alpha2*lambda f(lambda t,delta).ˆ(-0.5*alpha2-1));

elseif model == 2 % 2 Param Ogden
% Material constants
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alpha1 = 2.2083;
alpha2 = 10.9755;
mu1 = 1.3111e+04;
mu2 = 0.0968;

% Stress as a function of stretch: sigma = f(lam)
sigma t = @(lambda t,delta) ...

mu1*(lambda f(lambda t,delta).ˆ(alpha1) -...
lambda f(lambda t,delta).ˆ(-0.5*alpha1)) + ...
mu2*(lambda f(lambda t,delta).ˆ(alpha2) - ...
lambda f(lambda t,delta).ˆ(-0.5*alpha2));

% Effective modulus as a function of stretch: effective E = ...
sigma t'(lam) = effE(lam)

effE = @(lambda t,delta) ...
mu1*(alpha1*lambda f(lambda t,delta).ˆ(alpha1-1) + ...
0.5*alpha1*lambda f(lambda t,delta).ˆ(-0.5*alpha1-1)) + ...
mu2*(alpha2*lambda f(lambda t,delta).ˆ(alpha2-1) + ...
0.5*alpha2*lambda f(lambda t,delta).ˆ(-0.5*alpha2-1));

elseif model == 3 % 3 Param Ogden
% Material constants
alpha1 = 1.2140;
alpha2 = -8.1327;
alpha3 = 16.9936;
mu1 = 2.2889e+04;
mu2 = -956.2478;
mu3 = 2.6390e-05;

% Stress as a function of stretch: sigma = f(lam)
sigma t = @(lambda t,delta) ...

mu1*(lambda f(lambda t,delta).ˆ(alpha1) -...
lambda f(lambda t,delta).ˆ(-0.5*alpha1)) + ...
mu2*(lambda f(lambda t,delta).ˆ(alpha2) - ...
lambda f(lambda t,delta).ˆ(-0.5*alpha2)) + ...
mu3*(lambda f(lambda t,delta).ˆ(alpha3) - ...
lambda f(lambda t,delta).ˆ(-0.5*alpha3));

% Effective modulus as a function of stretch: effective E = ...
sigma t'(lam) = effE(lam)

effE = @(lambda t,delta) ...
mu1*(alpha1*lambda f(lambda t,delta).ˆ(alpha1-1) + ...
0.5*alpha1*lambda f(lambda t,delta).ˆ(-0.5*alpha1-1)) + ...
mu2*(alpha2*lambda f(lambda t,delta).ˆ(alpha2-1) + ...
0.5*alpha2*lambda f(lambda t,delta).ˆ(-0.5*alpha2-1)) + ...
mu3*(alpha3*lambda f(lambda t,delta).ˆ(alpha3-1) + ...
0.5*alpha3*lambda f(lambda t,delta).ˆ(-0.5*alpha3-1));

end

%% Other functions
% Effective area moment of inertia
effI = @(lambda t,delta) W*Hˆ3/12/lambda f(lambda t,delta)ˆ2;
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% Effective horizontal force at ends
F = @(lambda t,delta) ...

sigma t(lambda t,delta)*W*H/lambda f(lambda t,delta);

% Final width for electrostatics
w = @(lambda t,delta) W/sqrt(lambda f(lambda t,delta));

% Reference (pre-stretched) gap dimensions for electrostatics
if fixd == 0

d = @(lambda t) D/sqrt(lambda t);
else

d = @(lambda t)D;
end

%% Setup for iterations
Phi = ones(length(Phirange),length(lambda trange)).*NaN; % Allocate ...

space for shear force (N)

md = Phi; % Allocate space for midpoint displacement (mm)
j = 1; % Index for lambda t
PIs = ones(length(lambda trange),1); % Allocate space for pull-in ...

voltages
EPs = ones(length(lambda trange),1); % Allocate space for pull-in ...

positions

%% Iterate over stretches and deflections
for lambda t = lambda trange

%%%% Intial guesses which are updated by numeric solutions
solinit = bvpinit(linspace(0,L*lambda t,20),[0 0 0 0]); % ...

Initial guess for beam solution (flat)
deltainit = 0; % Initial guess for additional stretch due to ...

deflection

%%%% Varying Phi
Phi(:,j) = Phirange;
for i = 1:length(Phirange)

disp(['Stretch: ',num2str(lambda t),', Phi: ...
',num2str(Phirange(i)),'V'])

try
if type1 == 0 % y(x) solver

[x,yfin,solinit,deltainit] = Electrostatic y(L, w, ...
d(lambda t), lambda t,Phirange(i),solinit, ...
deltainit, lambda f, effE, effI, F, fix);

y = yfin(1,:);
else

[s,thetafin,solinit,deltainit] = ...
Electrostatic theta(L, w, d(lambda t), lambda t, ...
Phirange(i), solinit, deltainit, lambda f, effE, ...
effI, F, fix);

n = length(s);
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ds = s(2)-s(1);
x = tril(ones(n,n))*(cos(thetafin(1,:)))'*ds; % ...

Approximate x
y = tril(ones(n,n))*(sin(thetafin(1,:)))'*ds; % ...

Approximate y
end
md(i,j) = y(end/2);
if i > 1

if md(i,j)>md(i-1,j) % Ends if beam starts moving ...
upwards
break

end
end

catch
break

end
% Plots the beam deflections. Only enable for small Phirange ...

and lambda trange
% figure(j+1)
% plot(x,y)
% hold on

end

% Uncomment if plotting beam deflections
% xlabel('x (mm)')
% ylabel('y (mm)')
% title(['Stretch: ',num2str(lambda t)])
% legend(num2str(Phirange'))
% set(gca,'fontsize',14)

% Find pull in point based on curvature (this sometimes fails)
loc = find(diff(diff(md(1:i-1,j)))>0,1,'first')+1;
if isempty(loc) % If curvature never positive, assume last value ...

is PI
loc = i-1;

end
PIs(j) = Phi(loc,j); % Store pull-in voltage
EPs(j) = md(loc,j); % Stores position at pull-in

% Plots load (voltage) as a function of deflection
figure(1)
plot(Phi(:,j),md(:,j)*1000,'--')
hold on
j = j + 1;

end

% Pull in position and labels for position vs voltage plot
plot(PIs,EPs*1000,'ˆk','MarkerFaceColor', 'k')
xlabel('Voltage (V)')
ylabel('Deflection (mm)')
legend(num2str(lambda trange'))
set(gca,'fontsize',14)
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% Plot pull-in voltage as a function of beam length
figure
plot(lambda trange,PIs,'--','linewidth',2)
xlabel('Stretch')
ylabel('Pull-In Voltage (V)')
set(gca,'fontsize',14)

%% Electrostatic y.m
% This code solves for the deformation of a fixed-fixed beam ...

electrostatic
% loading. The function is solved in terms of y. The input is voltage.
%
% Used in conjunction with ElectrostaticLoadIterate.m
%
% Governing equations:
% y'''' = F/(effE*effI)*y''' - q/(effE*effI)
% [FOR q = (eps*Phiˆ2*w)/(2*effE*effI*(d+y)ˆ2)]
%
% Governing equation as system of first order ODEs:
% y1' = y2 (= y')
% y2' = y3 (= y'')
% y3' = y4 (= y''')
% y4' = F/(effE*effI)*y3 - (eps*Phiˆ2*w)/(2*effE*effI*(d+y1)ˆ2)
% (= F/(effE*effI)*y'''- (eps*Phiˆ2*w)/(2*effE*effI*(d+y)ˆ2))
%
% Boundary conditions:
% y(1) = 0
% y'(1) = 0
% y(end) = 0
% y'(end) = 0
%
% Fixed ends condition:
% During deflection, fixed ends causes an additional stretch of delta.
% Deformed beam length bl = L*lambda f
%

function [x,yfin,solfin,deltafin] = Electrostatic y(L, w, d, ...
lambda t, Phi, solinit, delta, lambda f, effE, effI, F, fix)

x = linspace(0,L*lambda t,1000); % Values for x
options = optimset('TolFun',1e-13, 'TolX',1e-13); % Options for fsolve

% Boundary value problem solver
sol = @(lambda t,delta) bvp4c(@(x,y)fourode(x, y, F(lambda t,delta), ...

effI(lambda t,delta), effE(lambda t,delta), Phi, ...
w(lambda t,delta), d), @(ya, yb)fourbc(ya, yb), solinit);

if fix == 1
% Solves such that fixed ends condition is met (solves for ...

required delta)
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deltafin = fsolve(@(delta)beamlength(sol(lambda t, delta), ...
x)-L*lambda f(lambda t, delta), delta, options);

else
% Assumes constant force (F and lam constant [delta = 0] with ...

deformation)
deltafin = 0;

end

% Pulls out final solutions
solfin = sol(lambda t,deltafin);
yfin = deval(solfin,x);

% Governing equation (system of first order ODEs)
function dydx = fourode(~, y, F, effI, effE, Phi, w, d)

eps = 8.85*10ˆ-12;
dydx = [y(2); y(3); y(4); F/effI/effE*y(3) - ...

(eps*Phiˆ2*w)/(2*effE*effI*(d+y(1))ˆ2)];
end

% Boundary conditions
function res = fourbc(ya,yb)

res = [ya(1);ya(2);yb(1);yb(2)];
end

% Calculating the length of the deformed beam
function bl = beamlength(sol,x)

y = deval(sol,x);
bl = sum(sqrt(diff(y(1,:)).ˆ2+diff(x).ˆ2));

end

end

%% Electrostatic theta.m
% This code solves for the deformation of a fixed-fixed beam ...

electrostatic
% loading. The function is solved in terms of theta. The input is ...

voltage.
%
% Used in conjunction with ElectrostaticLoadIterate.m
%
% Governing equations:
% theta'' = F/(effE*effI)*sin(theta) + V/(effE*effI)*cos(theta)
% q = dV/ds = (eps*Phiˆ2*w)/(2*effE*effI*(d+y)ˆ2)
% y = int(sin(theta),s,0,L*lambda f) -> dy/ds = sin(theta)
%
% Governing equation as system of first order ODEs:
% fun1' = fun2 (= theta')
% fun2' = F/(effE*effI)*sin(fun1) + fun3/(effE*effI)*cos(fun1)
% (= F/(effE*effI)*sin(theta) + V/(effE*effI)*cos(theta)))
% fun3' = q = (eps*Phiˆ2*w)/(2*effE*effI*(d+fun4)ˆ2)
% fun4' = sin(fun1)
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%
% Boundary conditions:
% fun1(1) = 0 (theta(1) = 0)
% fun1(end) = 0 (theta(end) = 0)
% fun4(1) = 0 (y(1) = 0)
% fun4(end) = 0 (y(end) = 0)
%
% Fixed ends condition:
% During deflection, fixed ends causes an additional stretch of delta.
% Deformed beam endpoint endp = L*lambda t
%

function [sfin,thetafin,solfin,deltafin] = Electrostatic theta(L, w, ...
d,lambda t, Phi, solinit, delta, lambda f, effE, effI, F, fix)

s = @(lambda t,delta) linspace(0,L*lambda f(lambda t,delta),1000); % ...
Values for s (note these depend on the new delta value)

optionsbvp = bvpset('RelTol',1e-8,'AbsTol',1e-8,'NMax',2500); % ...
Options for bvp4c

options = optimset('TolFun',1e-13, 'TolX',1e-13); % Options for fsolve

% Boundary value problem solver
sol = @(lambda t,delta) bvp4c(@(s,theta)fourode(s, theta, ...

F(lambda t,delta), effI(lambda t,delta), effE(lambda t,delta), ...
Phi, w(lambda t,delta),d), @(funa,funb)fourbc(funa,funb), ...
solinitNu(solinit,L,lambda f(lambda t,delta)), optionsbvp);

if fix == 1
% Solves such that fixed ends condition is met (solves for ...

required delta)
deltafin = fsolve(@(delta)(endpoint(sol(lambda t,delta), ...

s(lambda t,delta))-L*lambda t),delta,options);
else

% Assumes constant force (F and lam constant [delta = 0] with ...
deformation)

deltafin = 0;
end

% Pulls out final solutions
sfin = s(lambda t,deltafin);
solfin = sol(lambda t,deltafin);
thetafin = deval(solfin,sfin);

% Governing equation (system of first order ODEs)
function dthetadx = fourode(~,fun,F,effI,effE,Phi,w,d)

eps = 8.85*10ˆ-12;
dthetadx = [fun(2); ...

F/(effE*effI)*sin(fun(1))+fun(3)/(effE*effI)*cos(fun(1)); ...
-(eps*Phiˆ2*w)/(2*(d+fun(4))ˆ2); sin(fun(1))];

end

% Boundary conditions
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function res = fourbc(funa,funb)
res = [funa(1);funb(1);funa(4);funb(4)];

end

% Calculating the x position of the middle of the beam
function endp = endpoint(sol,s)

theta = deval(sol,s);
ds = s(2)-s(1);
n = length(s);
x = tril(ones(n,n))*(cos(theta(1,:)))'*ds; % Approximate x
endp = x(end)-x(1);

end

% Create new intial guess by stretching the previous solution
function solinit = solinitNu(solinit,L,lambda f)

xs = solinit.x;
solinit.x = solinit.x*(L*lambda f/xs(end)*1.000001); % A bit ...

of extra stretch to account for numerical inaccuracies ...
(I think...)

end

end
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Appendix O

Additional Electrostatic Load Data

Fig. O.1 demonstrates the simulated deflection vs voltage behavior of an Ecoflex

0030 beams of length L =700 µm, width W =500 µm, and height H =10 µm. The

initial height between the beam and pull-in electrode was D =100 µm. The applied

pre-stretch force, F , remains constant. Fig. O.2 shows the same beam under the

condition of fixed end positions (F increases as the beam deflects). In particular, the

fixed ends condition changes the behavior of the beam under low stretches (∼100%),

Figure O.1: Assuming the pre-stretch force remains constant. Pull-in data from
MATLAB simulations for d = D/

√
λt on the left and d = D on the right. Each line

represents the same beam at a different pre-stretch value. The pull-in voltage/dis-
placement is marked by black rectangles.
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Figure O.2: Assuming the end positions remain constant. Pull-in data from MATLAB
simulations for d = D/

√
λt on the left and d = D on the right. Each line represents

the same beam at a different pre-stretch value. The pull-in voltage/displacement is
marked by black rectangles.
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Figure O.3: Pull-in voltage as a function of pre-stretch for when dimension d remains
constant (d = D) (solid) and for when dimension d changes with pre-stretch (d =
D/
√
λt) (dashed). Black is for the fixed force condition and grey is for the fixed end

position condition. On the right, a zoomed in region of low stretch values, highlighting
the difference between fixed force and fixed ends.

increasing the pull-in voltage. This is a result of the beam undergoing the change

from beam bending to membrane type behavior over the course of deflect. This is

further reflected in fig. O.3, which shows a substantial difference between the fixed

force and fixed position pull-in voltages when stretch values are small. This difference

diminishes as pre-stretch increases.
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Appendix P

Magnetic Field Measurement

The force Fm = Fmez due to the external magnetic field causes a pre-buckled beam

to snap-through from one stable configuration to another. As shown in fig. P.1, the

magnet is centered a distance d above the beam supports and has a N/S orientation

aligned with the beam’s minor axis (ez). The magnetic force at this nominal distance

is expected to scale with y−3/2, i.e. Fm = βF/y
3/2, where y = d−w and βF is a fitting

Figure P.1: A magnet is placed a distance d above the beam supports. The length `
corresponds to the horizontal distance between the supports.
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parameter associated with the choice of permanent magnet. Since the width of the

magnet is over 2× greater than L0 and y, we assume that βF is uniform along the

length of the beam. Therefore, the only variation in Fm is due to the vertical beam

deflection w.

For this study, we used a 2”x2”x1/4” NdFeB magnet (K&J Magnetics, Inc.) that

was mounted to the travel head of a materials testing system (Instron 5969). The

magnetic force Fm was measured for prescribed values of y using a 10 N load cell

and a ferromagnetic sample of volume V = 12.205 mm3, with the same composition

as the beam. As expected, the magnetic force Fm due to the field was measured

to approximately scale as βF/y
3/2, where βF is a proportionality constant obtained

curve fitting. Field was measured below the center of the 50.8 mm wide magnet.

To use this result for beams of different cross-sections, we define the magnetic force

density f as the magnetic force Fm divided by the volume of ferromagnetic material

V to obtain f = fez. Note that f = Fm/V , so β = βF/V . Reasonable fitting against

snap-through values was obtained with β = 550 N·m−3/2. thus we calculate that βF

= 6.7128*10−6 N·m3/2.
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Appendix Q

Buckled Beam Potential and Basis

Functions

The potential Π is composed of the elastic strain energy (from bending), and the

energy associated with gravity and magnetic field.

Π =

∫ L0

0

{
1

2
Dw2

,xx + qgw −
2qm

(d− w)1/2

}
dx . (Q.1)

We approximate w using a pair of linearly independent basis functions φ1 and φ2: w ≈

αφ1+α2φ2 and w,xx ≈ α1φ
′′
1 +α2φ

′′
2 . We consider the following basis functions that are

in qualitative agreement with the deflection modes that we observe experimentally.

φ1 =
1

2

{
1− cos

(
2πx

L0

)}
, (Q.2)

φ2 =
4

3
√

3
sin

(
2πx

L0

){
1− cos

(
2πx

L0

)}
.

Differentiating φ1 and φ2 twice with respect to x , we obtain:
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φ
′′

1 =
1

2

(
2π

L0

)2

cos

(
2πx

L0

)
, (Q.3)

φ
′′

2 =
4

3
√

3

(
2π

L0

)2{
2 sin

(
4πx

L0

)
− sin

(
2πx

L0

)}
.

The Taylor series expansion of {1− (w/d)}n about w/d = 0 up to order 3 is expressed

as:

(
1− w

d

)n
≈1 +

n

1!

(
−w
d

)
+
n(n− 1)

2!

(
−w
d

)2

+
n(n− 1)(n− 2)

3!

(
−w
d

)3

.

(Q.4)

Substituting (Q.2) and (Q.3) in (Q.1), employing (Q.4), and dropping the terms in

Π which are independent of α1 and α2:

Π ≈ Dπ
4

L3
0

(
α2

1 +
320

27
α2

2

)
+
L0qgα1

2

− L0qm
d3/2

{
α1

2
+

1

288d

(
81α2

1 + 80α2
2

)
+

5α1

1152d2

(
45α2

1 + 112α2
2

)}
) .

(Q.5)

This analytic expression approximates the numerical calculation of the potential en-

ergy better for higher values of λ̂ i.e., λ̂ → 1. For lower values of λ̂ and subcritical

distances (d < dcr), as shown in fig. Q.1, the numerical model predicts the symmetric

bifurcation of the local minimum at α1 = α∗1, α2 = 0, to two local minima having

non zero α2 values. As shown in the inset, the analytic model does not capture the

bifurcation. This artifact might point to the possiblity of the beam being capable of

possessing effective mode-shapes with non-zero α2 values at equilibrium. This is also

captured in fig. Q.2, where the numeric solution includes an inflection point, indicat-

ing the onset of non-zero α2 prior to snap through. Note that the numeric solution

only works until around λ̂ = 0.8 because the basis functions become undefined when
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Figure Q.1: Numerical (blue) and analytical (black) results for the relative variation in
the potential energy along the “valley” under sub-critical magnetic load with local and
global minima indicated; numerical (red dot) and analytical (green dot) for λ̂ = 0.85
at a separation d = 20.5 mm.

Figure Q.2: Numeric (blue line), analytic (black line), and experimental (black cir-
cles). The blue x markers indicate where the second basis function became non-zero
prior to snap-through in the numeric solution.
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Figure Q.3: Least Squares fit of the two parameter representation for the deflection
w of the beam undergoing snap through (left to right) from one stable configuration
to the other under the influence of an increasing external magnetic field. The approx-
imate beam shape is indicated by the solid yellow line and the actual beam shape is
traced by the red dots.
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used in conjunction with the isoperimetric constraint. Lastly, fig. Q.3 shows the least

squares fitting of the two parameter representation of the beam deflection w to the

video data for λ̂ = 0.9 as the beam transitions from being buckled downward initially,

undergoing snap-through to being buckled upwards ultimately.
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Appendix R

Magnetic Composite Tensile Data

Fig. R.1 is tensile data to determine the Young’s modulus of the magnetic beam

composite. The samples were approximately 51x10x0.13 mm in dimension. Testing

was performed on an Instron (model 5969) at 10 mm/min.

Figure R.1: Tensile data (blue) for magnetic composite beam - an average of 3 sam-
ples. The red line is a fit for Young’s modulus.
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Appendix S

Buckled Beam Magnetic Load
MATLAB Code

%% AnalyticBeamEquOnly.m
%
% Only uses the analytic equation to solve for critical snap-through
% distance.
%

%% Primary inputs

lamrange = 0.99:-0.01:0.5; % Buckle stretch range

%% Allocate space for outputs

d NU = zeros(1,length(lamrange)); % Numeric snap distance
d AN = d NU; % Analytic snap distance
d AN2 = d NU; % Analytic snap distance version 2
k NU = d NU; % Numeric number of mins prior to ...

snap
k AN = d NU; % Analytic number of mins prior ...

to snap

%% Input dimensions, properties, etc...

L0 = 15.4e-3; % Initial beam length (m)
w = 5e-3; % Beam width (m)
h = 0.11e-3; % Beam thickness (m)

I = w*hˆ3/12; % Area moment of inertia (mˆ4)
A = w*h; % Cross-sectional area (mˆ2)

E = 5e6; % Beam modulus (Pa)

g = 9.81; % Gravity (m/sˆ2)
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%% Density

k = 0.8; % Weight fraction of particles ...
(filler)

rhom = 8000; % Density of iron (kg/mˆ3)
rhoe = 965; % Density of PDMS (kg/mˆ3)

rhoeff = 1/((k/rhom) + ((1-k)/rhoe)); % Effective Density of mix

%% Load distributions

beta = 550; % Magnetic coefficient (N-mˆ(-3/2)
pm = -1.50; % Magnetic exponent
qm = beta*A; % Magnetic load (N-mˆ(1/2))

qg = rhoeff*A*g; % Gravitational load (N/m)

j = 1;

%% Iterate through lambda values

for lam = lamrange

% Assuming a2 = 0 in analytic model
d AN2(j) = fsolve(@(d)-32*pi/27*qm/dˆ(3/2)*(1-lam)ˆ(-1/2) + ...

19/9*qm/(dˆ(3/2))*L0/d ...
- 65/18*qm/(pi*dˆ(3/2))*(L0/d)ˆ2*(1-lam)ˆ(1/2)...
+ 32/27*E*w*hˆ3*piˆ4/L0ˆ3 + 32*pi/27*qg*(1-lam)ˆ(-1/2),...
10ˆ-3);

j = j + 1;

end

%% Plot results

figure
plot(lamrange,d AN2*1000)

xlabel('$\hat{\lambda}$','Interpreter','Latex', ...
'FontSize',18,'FontName','Times New Roman')

ylabel('$d {cr}$ (mm)','Interpreter','Latex', ...
'FontSize',18,'FontName','Times New Roman')

%% MagneticBeamPotential.m
%
% Plots potential energy as a function of a1 and a2 (alpha 1 and ...

alpha 2).
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%
% Calls MagneticBeam Numeric.m and MagneticBeam Analytic.m
%

%% Primary inputs

lam = 0.9; % Buckle stretch
d = 25*1e-3; % Nominal gap (m)

%% Input dimensions, properties, etc...

L0 = 15.4e-3; % Initial beam length (m)
w = 5e-3; % Beam width (m)
h = 0.11e-3; % Beam thickness (m)

I = w*hˆ3/12; % Area moment of inertia (mˆ4)
A = w*h; % Cross-sectional area (mˆ2)

E = 5e6; % Beam modulus (Pa)

g = 9.81; % Gravity (m/sˆ2)

%% Density

k = 0.8; % Weight fraction of particles ...
(filler)

rhom = 8000; % Density of iron (kg/mˆ3)
rhoe = 965; % Density of PDMS (kg/mˆ3)

rhoeff = 1/((k/rhom) + ((1-k)/rhoe)); % Effective Density of mix

%% Load distributions

beta = 550; % Magnetic coefficient (N-mˆ(-3/2)
pm = -1.50; % Magnetic exponent
qm = beta*A; % Magnetic load (N-mˆ(1/2))

qg = rhoeff*A*g; % Gravitational load (N/m)

%% Define range of alphas (weighting coefficients) and ell to test

al1 max = L0/2*(1.4-lamˆ2); % Approximate maximum alpha 1
al2 max = al1 max*0.8; % Approximate maximum alpha 2

% Use an odd number of values (to fall on zero)
a1range = linspace(-al1 max,al1 max,301); % Range of alpha1 to test
a2range = linspace(-al2 max,al2 max,301); % Range of alpha2 to test

ell = lam*L0; % Final end-to-end distance
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%% Calculate energy

% Numeric
[a1sNU, a2sNU,PisNU] = ...

MagneticBeam Numeric(L0,ell,d,I,E,qg,qm,pm,a1range,a2range);
% Analytic approximation
[a1sAN, a2sAN,PisAN] = ...

MagneticBeam Analytic(L0,lam,d,I,E,qg,qm,pm,a1range,a2range);

%% Prepare results

% Scale data
a1sNU = a1sNU*1e3; % Convert to mm
a2sNU = a2sNU*1e3; % Convert to mm
PisNU = PisNU*1e3; % Convert to mJ
a1sAN = real(a1sAN)*1e3; % Convert to mm
a2sAN = real(a2sAN)*1e3; % Convert to mm
PisAN = PisAN*1e3; % Convert to mJ

% Remove extra values (where alpha ranges went too far)
PisNU(logical([abs(a2sNU(1:2,:)) < ...

max(max(a2sNU))*0.1;zeros(2,length(a2sNU))])) = NaN;
PisNU(logical([zeros(2,length(a1sNU));abs(a1sNU(3:4,:)) < ...

max(max(a1sNU))*0.1])) = NaN;
PisAN(logical([abs(a2sAN(1:2,:)) < ...

max(max(a2sAN))*0.1;zeros(2,length(a2sAN))])) = NaN;
PisAN(logical([zeros(2,length(a1sAN));abs(a1sAN(3:4,:)) < ...

max(max(a1sAN))*0.1])) = NaN;

% Shift analytic solution to align with numeric
loc1 = find(abs(a2sNU) < 10ˆ-7);
loc2 = find(abs(a2sAN) < 10ˆ-7);
PiDiff = max(PisNU(loc1)) - max(PisAN(loc2));
if ~isnan(PiDiff)

PisAN = PisAN + PiDiff;
end

%% Find local/global mins

[~,locs3] = findpeaks(-PisNU(3,:));
[~,locs4] = findpeaks(-PisNU(4,:));
[~,locs5] = findpeaks(-PisAN(3,:));
[~,locs6] = findpeaks(-PisAN(4,:));

%% Plot results

% Numeric
figure(1)
plot3(a1sNU(1,:),a2sNU(1,:),PisNU(1,:))
hold on
plot3(a1sNU(2,:),a2sNU(2,:),PisNU(2,:))
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plot3(a1sNU(3,:),a2sNU(3,:),PisNU(3,:))
plot3(a1sNU(4,:),a2sNU(4,:),PisNU(4,:))

plot3(a1sNU(3,locs3),a2sNU(3,locs3),PisNU(3,locs3),'*')
plot3(a1sNU(4,locs4),a2sNU(4,locs4),PisNU(4,locs4),'*')

xlabel('\alpha 1 (mm)')
ylabel('\alpha 2 (mm)')
zlabel('\Pi (mJ)')
title('Numeric (solid) vs Analytic (dash)')

figure(2)
plot(a2sNU(4,:),PisNU(4,:))
hold on
plot(a2sNU(4,locs4),PisNU(4,locs4),'*')

xlabel('\alpha 2 (mm)')
ylabel('\Pi (mJ)')
title('Numeric (solid) vs Analytic (dash)')

% Analytic
figure(1)
plot3(a1sAN(1,:),a2sAN(1,:),PisAN(1,:),'--')
hold on
plot3(a1sAN(2,:),a2sAN(2,:),PisAN(2,:),'--')
plot3(a1sAN(3,:),a2sAN(3,:),PisAN(3,:),'--')
plot3(a1sAN(4,:),a2sAN(4,:),PisAN(4,:),'--')

plot3(a1sAN(3,locs5),a2sAN(3,locs5),PisAN(3,locs5),'*')
plot3(a1sAN(4,locs6),a2sAN(4,locs6),PisAN(4,locs6),'*')

figure(2)
plot(a2sAN(4,:),PisAN(4,:),'--')
hold on
plot(a2sAN(4,locs6),PisAN(4,locs6),'*')

%% MagneticBeamSnap.m
%
% Determines critical distance for snap-through of a buckled ...

magnetic beam
% over a range of buckle stretch values.
%
% Calls MagneticBeam Numeric.m and MagneticBeam Analytic.m
%

%% Primary inputs

lamrange = 0.99:-0.01:0.5; % Buckle stretch range
drange = 37*1e-3:-0.1e-3:0; % Nominal gap (m) range

%% Allocate space for outputs
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d NU = zeros(1,length(lamrange)); % Numeric snap distance
d AN = d NU; % Analytic snap distance
d AN2 = d NU; % Analytic snap distance version 2
k NU = d NU; % Numeric number of mins prior to ...

snap
k AN = d NU; % Analytic number of mins prior ...

to snap

%% Input dimensions, properties, etc...

L0 = 15.4e-3; % Initial beam length (m)
w = 5e-3; % Beam width (m)
h = 0.11e-3; % Beam thickness (m)

I = w*hˆ3/12; % Area moment of inertia (mˆ4)
A = w*h; % Cross-sectional area (mˆ2)

E = 5e6; % Beam modulus (Pa)

g = 9.81; % Gravity (m/sˆ2)

%% Density

k = 0.8; % Weight fraction of particles ...
(filler)

rhom = 8000; % Density of iron (kg/mˆ3)
rhoe = 965; % Density of PDMS (kg/mˆ3)

rhoeff = 1/((k/rhom) + ((1-k)/rhoe)); % Effective Density of mix

%% Load distributions

beta = 550; % Magnetic coefficient (N-mˆ(-3/2)
pm = -1.50; % Magnetic exponent
qm = beta*A; % Magnetic load (N-mˆ(1/2))

qg = rhoeff*A*g; % Gravitational load (N/m)

j = 1;

for lam = lamrange

%% Define range of alphas (weighting coefficients) and ell to test

al1 max = L0/2*(1.4-lamˆ2); % Approximate maximum alpha 1
al2 max = al1 max*0.8; % Approximate maximum alpha 2
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% Use an odd number of values (to fall on zero)
a1range = linspace(-al1 max,al1 max,301); % Range of alpha1 to test
a2range = linspace(-al2 max,al2 max,301); % Range of alpha2 to test

ell = lam*L0; % Final end-to-end distance
i = 1; % Index

for d = drange

disp(['lambda: ',num2str(lam),', d: ',num2str(d)])

%% Calculate energy

% Numeric
if lam >= 0.8

[a1sNU, a2sNU,PisNU] = ...
MagneticBeam Numeric(L0,ell,d,I,E,qg,qm,pm,a1range, ...
a2range);

else
a1sNU = ones(4,length(a1range))*NaN;
a2sNU = a1sNU;
PisNU = a1sNU;

end
% Analytic approximation
[a1sAN, a2sAN,PisAN] = ...

MagneticBeam Analytic(L0,lam,d,I,E,qg,qm,pm,a1range,a2range);

%% Prepare results

% Scale data
a1sNU = a1sNU*1e3; % Convert to mm
a2sNU = a2sNU*1e3; % Convert to mm
PisNU = PisNU*1e3; % Convert to mJ
a1sAN = real(a1sAN)*1e3; % Convert to mm
a2sAN = real(a2sAN)*1e3; % Convert to mm
PisAN = PisAN*1e3; % Convert to mJ

% Remove extra values (where alpha ranges went too far)
PisNU(logical([abs(a2sNU(1:2,:)) < ...

max(max(a2sNU))*0.1;zeros(2,length(a2sNU))])) = NaN;
PisNU(logical([zeros(2,length(a1sNU));abs(a1sNU(3:4,:)) < ...

max(max(a1sNU))*0.1])) = NaN;
PisAN(logical([abs(a2sAN(1:2,:)) < ...

max(max(a2sAN))*0.1;zeros(2,length(a2sAN))])) = NaN;
PisAN(logical([zeros(2,length(a1sAN));abs(a1sAN(3:4,:)) < ...

max(max(a1sAN))*0.1])) = NaN;

% Shift analytic solution to align with numeric
loc1 = find(abs(a2sNU) < 10ˆ-7);
loc2 = find(abs(a2sAN) < 10ˆ-7);
PiDiff = max(PisNU(loc1)) - max(PisAN(loc2));
if ~isnan(PiDiff)

PisAN = PisAN + PiDiff;
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end

%% Find local/global mins (in upper portion of curve)

[~,locs3] = findpeaks(-PisNU(3,:));
[~,locs4] = findpeaks(-PisNU(4,:));
[~,locs5] = findpeaks(-PisAN(3,:));
[~,locs6] = findpeaks(-PisAN(4,:));

%% Record local min count and find snap-through

k NU(j) = max([k NU(j),length(locs4)]); % Number of numeric mins
k AN(j) = max([k AN(j),length(locs6)]); % Number of analytic ...

mins

% If there is no local min, snap through has occurred
if isempty(locs4)

if ~isnan(PiDiff)
d NU(j) = max([d NU(j),d]);

else
d NU(j) = NaN;

end
end
if isempty(locs6)

d AN(j) = max([d AN(j),d]);
break

end

i = i +1 ;

end

% Assuming a2 = 0 in analytic model
d AN2(j) = fsolve(@(d)-32*pi/27*qm/dˆ(3/2)*(1-lam)ˆ(-1/2) + ...

19/9*qm/(dˆ(3/2))*L0/d ...
- 65/18*qm/(pi*dˆ(3/2))*(L0/d)ˆ2*(1-lam)ˆ(1/2)...
+ 32/27*E*w*hˆ3*piˆ4/L0ˆ3 + 32*pi/27*qg*(1-lam)ˆ(-1/2),...
d AN(j));

drange = drange(find(drange == max([d NU,d AN])):end);
j = j + 1;

end

%% Plot results

plot(lamrange,d NU*1000)
hold on
plot(lamrange,d AN*1000,'--')
plot(lamrange,d AN2*1000,'-.')
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plot(lamrange(k NU>1),d NU(k NU>1)*1000,'o') % a2~=0 before snapping
plot(lamrange(k AN>1),d AN(k AN>1)*1000,'o') % a2~=0 before snapping

xlabel('$\hat{\lambda}$','Interpreter','Latex', ...
'FontSize',18,'FontName','Times New Roman')

ylabel('$d {cr}$ (mm)','Interpreter','Latex', ...
'FontSize',18,'FontName','Times New Roman')

legend('Numeric', 'Analytic \Pi', 'Analytic Equation', 'Numeric ...
\alpha 2 != 0')

%% MagneticBeam Numeric.m
%
% Numerically minimizes energy to solve beam shape based on magnetic ...

load
% and dimensions.
%
% Runs 4 quadrants (positive/negative a1 and a2) in order to have higher
% resolution.
%

function [a1s, a2s,Pis] = ...
MagneticBeam Numeric(L0,ell,d,I,E,qg,qm,pm,a1range,a2range)

options2 = ...
optimset('TolFun',1.0e-12,'TolX',1.0e-12,'FunValCheck','on', ...
'Display','off');

a1s = ones(4,length(a1range)); % Allocate space for a1 values
a2s = a1s; % Allocate space for a2 values
Pis = a2s; % Allocate space for energy values

% Prepare for calculating derivative of w
xx = linspace(0,L0,1001);
phi1 x = 0.5*(2*pi/L0)*(sin(2*pi*xx/L0)); % ...

Derivative of first shape function
phi2 x = (4/3ˆ1.5)*(2*pi/L0)*(cos(2*pi*xx/L0) - cos(4*pi*xx/L0)); % ...

Derivative of second shape function

%% Iterate a1 values
% Positive a2 values
for i = 1:length(a1range)

a1 = a1range(i); % Set alpha 1

% Potential energy
Pi exact = ...

@(a2)(integral(@(x)Lagrangian(x,a1,a2,L0,d,E,I,qm,qg,pm), ...
0,L0));

% Problem is undefined when dw/dx>1. Find a valid initial guess.
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for a2 0 = -a2range
w x = a1*phi1 x + a2 0*phi2 x; % Derivative of w
if max(w x.ˆ2)<1

break % Use first acceptable a2 value as initial ...
point for fsolve

end
end

% Solve isoperimetric constraint to get alpha 2
try % fsolve may fail (if dw/dx<1)

a2sol = fsolve(@(a2)get a(a1,a2,L0,ell),a2 0,options2);
a1s(1,i) = a1; % Store a1
a2s(1,i) = a2sol; % Store a2
Pis(1,i) = Pi exact(a2sol); % Store energy

catch
a1s(1,i) = NaN; % Store a1
a2s(1,i) = NaN; % Store a2
Pis(1,i) = NaN; % NaN if a2 is not defined

end

end

% Negative a2 values (based on symmetry)
a1s(2,:) = a1s(1,:);
a2s(2,:) = -a2s(1,:);
Pis(2,:) = Pis(1,:);

%% Iterate a2 values
% Positive a1 values
for i = 1:length(a1range)

a2 = a2range(i); % Set alpha 2

% Potential energy
Pi exact = ...

@(a1)(integral(@(x)Lagrangian(x,a1,a2,L0,d,E,I,qm,qg,pm), ...
0,L0));

% Problem is undefined when dw/dx>1. Find a valid initial guess.
for a1 0 = -a1range

w x = a1 0*phi1 x + a2*phi2 x; % Derivative of w
if max(w x.ˆ2)<1

break % Use first acceptable a2 value as initial ...
point for fsolve

end
end

% Solve isoperimetric constraint to get a1
try % fsolve may fail (if dw/dx<1)

a1sol = fsolve(@(a1)get a(a1,a2,L0,ell),a1 0,options2);
a1s(3,i) = a1sol; % Store a1
a2s(3,i) = a2; % Store a2
Pis(3,i) = Pi exact(a1sol); % Store energy
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catch
a1s(3,i) = NaN;
a2s(3,i) = NaN;
Pis(3,i) = NaN;

end

end

% Negative a1 values
for i = 1:length(a1range)

a2 = a2range(i); % Set alpha 1

% Potential energy
Pi exact = ...

@(a1)(integral(@(x)Lagrangian(x,a1,a2,L0,d,E,I,qm,qg,pm), ...
0,L0));

if ~isnan(a1s(3,i)) % fsolve may fail (if dw/dx<1)
a1sol = -a1s(3,i); % Get alpha 2 (based on symmetry)
a1s(4,i) = a1sol; % Store a1
a2s(4,i) = a2; % Store a2
Pis(4,i) = Pi exact(a1sol); % Store energy

else
a1s(4,i) = NaN;
a2s(4,i) = NaN;
Pis(4,i) = NaN;

end

end

%-- Lagrangian (energy summation)
function lagr = Lagrangian(x,a1,a2,L0,d,E,I,qm,qg,pm)

phi1 = 0.5*(1 - cos(2*pi*x/L0)); % Basis function 1
phi1 xx = 0.5*((2*pi/L0)ˆ2)*cos(2*pi*x/L0); % Second derivative

phi2 = (4/3ˆ1.5)*sin(2*pi*x/L0).*(1 - cos(2*pi*x/L0)); ...
% Basis function 2

phi2 xx = (4/3ˆ1.5)*((2*pi/L0)ˆ2)*(-sin(2*pi*x/L0) + ...
(2*sin(4*pi*x/L0))); % Second derivative

w = a1*phi1 + a2*phi2; % Beam shape
w xx = a1*phi1 xx + a2*phi2 xx; % Second derivative

% Bending + gravitational + magnetic energy
lagr = 0.5*E*I*w xx.ˆ2 + qg*w - 2*qm./(((d - w).ˆ(-pm - 1)));

%-- Isoperimetric constraint -> res should be 0
function res = get a(a1,a2,L0,ell)

% Integrate ds (in terms of x) to get ell hat
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ell hat = integral(@(x)get ds(x,a1,a2,L0),0,L0);
res = (ell hat - ell);

%-- Find ds in terms of x
function ds = get ds(x,a1,a2,L0)
% Note: ds = sqrt(1 - (dw/dx)ˆ2)*dx

% Derivatives of basis functions
phi1 x = 0.5*(2*pi/L0)*(sin(2*pi*x/L0));
phi2 x = (4/3ˆ1.5)*(2*pi/L0)*(cos(2*pi*x/L0) - cos(4*pi*x/L0));

% Derivative of beam shape
w x = a1*phi1 x + a2*phi2 x;

ds = sqrt(1 - w x.ˆ2);

%% MagneticBeam Analytic.m
%
% Uses an analytic approximation of energy to solve beam shape based on
% magnetic load and dimensions.
%
% Runs 4 quadrants (positive/negative a1 and a2) in order to have higher
% resolution.
%

function [a1s, a2s,Pis] = ...
MagneticBeam Analytic(L0,lam,d,I,E,qg,qm,pm,a1range,a2range)

a1s = ones(4,length(a1range)); % Allocate space for a1 values
a2s = a1s; % Allocate space for a2 values
Pis = a2s; % Allocate space for energy values

%% Iterate a1 values
% Positive a1 values
for i = 1:length(a1range)

a1 = a1range(i); % Set alpha 1

% Potential energy
Pi app = @(a)((-L0*qm*((a(1)/2) + ((1/(288*d))*( ...

(81*(a(1)ˆ2)) + ...
(80*(a(2)ˆ2)) )) + ((5*a(1)/(1152*(dˆ2)))*( ...

(45*(a(1)ˆ2)) + ...
(112*(a(2)ˆ2)) )) )/(dˆ(-pm))) + (L0*qg*a(1)/2) + ...
(E*I*piˆ4*(27*a(1)ˆ2 + 320*a(2)ˆ2)/(27*L0ˆ3)) - ...
(2*L0*qm/dˆ0.5)) ;

% Solve isoperimetric constraint to get alpha 2
a2 = (3/(8*pi))*(((-1.5*(piˆ2)*(a1ˆ2)) + (6*(L0ˆ2)*(1 - ...

lam)))ˆ0.5);
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a1s(1,i) = a1; % Store a1
a2s(1,i) = a2; % Store a2
Pis(1,i) = Pi app([a1,a2]); % Store energy

end

% Negative a2 values (based on symmetry)
a1s(2,:) = a1s(1,:);
a2s(2,:) = -a2s(1,:);
Pis(2,:) = Pis(1,:);

%% Iterate a2 values
% Positive a2 values
for i = 1:length(a1range)

a2 = a2range(i); % Set alpha 2

% Potential energy
Pi app = @(a)((-L0*qm*((a(1)/2) + ((1/(288*d))*( ...

(81*(a(1)ˆ2)) + ...
(80*(a(2)ˆ2)) )) + ((5*a(1)/(1152*(dˆ2)))*( ...

(45*(a(1)ˆ2)) + ...
(112*(a(2)ˆ2)) )) )/(dˆ(-pm))) + (L0*qg*a(1)/2) + ...
(E*I*piˆ4*(27*a(1)ˆ2 + 320*a(2)ˆ2)/(27*L0ˆ3)) - ...
(2*L0*qm/dˆ0.5)) ;

% Solve isoperimetric constraint to get alpha 1
a1 = (2/(3*pi))*(((-(32/3)*(piˆ2)*(a2ˆ2)) + (9*(L0ˆ2)*(1 - ...

lam)))ˆ0.5);

a1s(3,i) = a1; % Store a1
a2s(3,i) = a2; % Store a2
Pis(3,i) = Pi app([a1,a2]); % Store energy

end

% Negative a2 values
for i = 1:length(a1range)

a2 = a2range(i); % Set alpha 2

% Potential energy
Pi app = @(a)((-L0*qm*((a(1)/2) + ((1/(288*d))*( ...

(81*(a(1)ˆ2)) + ...
(80*(a(2)ˆ2)) )) + ((5*a(1)/(1152*(dˆ2)))*( ...

(45*(a(1)ˆ2)) + ...
(112*(a(2)ˆ2)) )) )/(dˆ(-pm))) + (L0*qg*a(1)/2) + ...
(E*I*piˆ4*(27*a(1)ˆ2 + 320*a(2)ˆ2)/(27*L0ˆ3)) - ...
(2*L0*qm/dˆ0.5));

a1 = -a1s(3,i); % Get alpha 1 (based on symmetry)

242



a1s(4,i) = a1; % Store a1
a2s(4,i) = a2; % Store a2
Pis(4,i) = Pi app([a1,a2]); % Store energy

end
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Appendix T

GaIn Volume Creation and

Measurement

Precise volumes of GaIn were produced by quasi-statically dispensing droplets into

a bath of 1% W/V NaOH solution (fig. T.1). This was performed with a Harvard

Apparatus syringe pump (PHD 2000) and dispensing needles (C-U Innovations) of

various gauge, ranging from 14G to 27G. While varying the flowrate with a single

needle produces a range of droplet volumes, we found that quasi-static production

was more repeatable. The volume of an individual drop is determined by the compe-

tition between gravitational and surface tension forces. The instability point, when

the droplet falls, can be approximated with 2πRγ = (ρG − ρs)V g, where γ is the

GaIn/solution interfacial tension, R is the inner radius of the syringe, ρG is the den-

sity of GaIn, ρS is the density of the solution, V is the volume of the GaIn droplet,

and g is gravitational acceleration. This equation is referred to as Tates law and is

commonly used to determine surface tension values [277–279].

After creating repeatable droplets, the actual volume had to be determined. Im-

ages were taken with an optical stereoscope to extract values for droplet diameter.

Assuming spherical droplets was insufficient due to the substantial volume and den-
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Figure T.1: Left: Setup for creating repeatable GaIn volumes. Left inset: Profile of
GaIn droplet deposited from a deposition needle. Right: Schematic laying out the
forces governing droplet volume.
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Figure T.2: Left: Comparison of experimental images to Surface Evolver results.
The small droplet is approximately 7.3 mm3 and the large droplet is 39.8 mm3,
according to Surface Evolver. The small cap and large cap are 7.8 mm3 and 37.8
mm3, respectively. Right: Experimental results (points) for creating droplet volumes
based on needle inner diameter (ID) compared to simplified theory based on weight
and surface tension (line). Flowrates: 0.2 mm ID 100 µL/min, 0.25 to 0.41 mm ID
250 µL/min, 0.51 to 0.84 mm ID 500 µL/min, 1.19 to 1.55 mm ID 1000 µL/min.

sity. Instead, experimental measurements were compared to simulated results from

Surface Evolver, taking γ as 500 mJ/m2, ρG as 6.25 g/cm3, and ρS as 1 g/cm3. The

comparison and results from trials with varying needle diameter are reported in fig.

T.2. The theory described above generally overestimates the experimental results

by about 20%, likely due the approximation that separation occurs at the tip of the

needle. Several groups have applied corrections to Tates law [278, 279], increasing

prediction accuracy, but none were used for this study since measured values were

sufficient. In most cases, desired volumes of liquid metal were produced by combining

two or more droplets from a single or multiple needles.
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Appendix U

Visual Droplet Monitoring and

Image Analysis

Visual data was required for determining the onset of droplet deformation and to

quantify the system behavior. Top-down videos provided information on bridge width,

but profile videos proved to be more informative by more clearly indicating the shift of

mass during droplet separation. Profile videos of droplet deformation were recorded

through a stereo microscope (Carton SPZT 50) with a Pentax K3 digital SLR. The

overall setup is shown in U.1a. To acquire a profile view of the liquid metal, a 1st

surface mirror was placed at approximately 45◦, and the sample was backlit to increase

contrast. The experiment could then be magnified and viewed live on a computer

monitor through an HDMI connection. In most cases, 4 videos were taken for every

10 tests on the 1st, 2nd, 5th, and 10th.

To quantify data from video recordings, frames (15 per second) were systematically

processed (fig. U.1b-f) using MATLABs (2016b) Image Processing Toolbox. First

frames were extracted, cropped, and straightened. The images were then converted

to greyscale (rgb2gray), followed by a conversion to black and white with a specified

luminance threshold. Irrelevant objects such as bubbles separated from the main
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Figure U.1: (a) Experimental setup. (b) Cropping and straightening of video. (c)
Thresholding to acquire a black and white image. (d) Removal of bubbles and ex-
traneous pixels with morphological functions. (e) Identification of top surface in red.
(f) Fitting of polynomial curve and identification of min and max points. Pad edges
are marked with magenta.

body were removed using a filter for connected pixels (bwareaopen), and bubbles

attached to the surface of the liquid metal could be removed using morphological

dilation followed by erosion (combined into one MATLAB function: imclose). The

top surface of the droplet could then be identified and points could be extracted.

Finally, a polynomial curve was fitted (polyfit) to the extracted points to smooth any

roughness due to pixilation and to facilitate the extraction of minimum and maximum

liquid metal height values.

A number of approaches were taken to determine the onset of droplet motion.

First, the motion of points of interest (such maximum height locations) along the

profile could be tracked. Plots such as those shown in fig. 4.3 of Chapter 4 could

be used to approximate when and at what current input the liquid metal begins to

shift. Alternatively, the polynomial profile curve can be compared to a reference. The

profile under zero deformation works as a useful reference (green line in lower image
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Figure U.2: Methods for determining droplet motion. The arrows in the plots ap-
proximate where motion begins. (Top left) R squared value for comparing the non-
deformed (green line) and deformed (blue line) shapes. (Top middle) Hausdorff
distance associated with the same two curves. (Top right) Change in pixel area,
indicated by the area shaded in red.

of fig. U.2) for most comparisons. The deformed profile (blue line in lower image

of fig. U.2) can then be compared to the reference using root mean square (RMS)

distance, coefficient of determination R2, or Hausdorff distance [280]. Tracking the

area of a particular section of the profile (such as that shaded in red in fig. U.2)

can also provide information for determining timestamps coinciding with movement.

However, deviations due to bubbles and changing light conditions caused noise that

made it difficult to locate small deformations, particularly impacting samples with

slower responses (large outer electrode separation, low NaOH concentration, etc.). As

a result, the most reliable and repeatable method was visual inspection of the videos

or video frames. Syncing camera data with voltage/current data from the electronic

setup allowed for the determination of current

249



Appendix V

NaOH Conductivity

Conductivity of a material is usually determined using Ohms law. However, the elec-

trochemical interface of bulk solution and electrodes complicates the system [219],

Wang2016]. A single electrochemical cell, consisting of solution and two electrodes,

is approximated as a circuit in fig. V.1a. At each interface, an electric double layer

forms which behaves like a capacitor (C). A Faradaic impedance, involving mass and

electron transport, is represented as a component (Z) in parallel. It should be noted

that while the bulk resistance R follows Ohms law, the Faradaic impedance does

not. Finally, the electrode potential is represented with U. To calculate the solution

conductivity, the resistance R is required, but the interface effects interfere. In many

cases, conductivity measurements are taken by applying alternating currents and sim-

plifying the circuit to a single capacitor and a single resistor in series. However, given

that all experiments were performed with direct current, a direct current approach

[281] was taken, as seen in fig. V.1b. If the electrodes and probes are all the same

material, the equivalent circuit can be simplified to fig. V.1c. The electrode poten-

tials then cancel each other out, simplifying the problem. The resistance R2 is then

a function of the current I and the potential difference ∆Φ, which can be determined

directly with the two probes. The conductivity is then a function of the measured
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resistance and dimensions of the solution and electrodes.

Theoretical modeling with the given geometry was non-trivial due to the fact

that a bath and co-planar electrodes were used rather than a simple tube filled with

solution and 4 copper electrodes. With this in mind, equations from vertical electrical

sounding (VES) were used, as described in the main document. Equation (4.2) can

be rearranged to solve for the conductivity. Test electrodes (examples shown in

fig. V.2) were used to gather the necessary data. All samples were created with

the same FR4 board, laser patterning techniques, and sealing/insulating methods as

described previously. The most general design (fig. V.2a) was created to match the

dimensions used for the parametric testing of liquid metal bipolar electrochemistry.

However, instead of having a source and drain pad, copper pads were placed where

the outer edges of liquid metal would be located. As with the bipolar electrochemistry

testing, these sample dimensions were adjusted, scaled, and tested in various NaOH

concentrations. Typical testing procedure involved increasing the voltage in steps of

0.1 V/sec across the outer electrodes while recording current and the voltage between

the two inner probes. Plotting the difference voltage difference between the probes

versus current reveals a linear increase, starting from 0V at 0 mA. This information

is then plugged into equation (2) along with dimensions to determine conductivity.

In bipolar electrochemistry, it is generally assumed (though often ignored) that

the bipolar electrode (liquid metal in this case) will influence the electric field [213].

Specifically, the high conductivity of the electrode results in a decrease in electric

field strength across its physical area. This is a result of the high conductivity and

near-equipotential of the electrode. In order to test this, the designs in fig. V.2b and

c were implemented to measure the potential difference in the same relative locations

as fig. V.29a (the outer edge of liquid metal). In fig. V.2c, liquid metal is included.

Fig. V.2b is identical except for the lack of liquid metal. Any large influence of the

bipolar electrode should appear as a difference in measured conductivity. However,

251



Figure V.1: Electrochemical circuitry. (a) A simple electrode-electrode-electrolyte
system. (b) The general approach for determining solution conductivity using direct
current. (c) The circuit equivalent of (b).
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Figure V.2: Various testing pads for determining conductivity and their experimental
output. (a) Pad design for use with theory (plotted in blue). (b) Arcs for comparison
to samples with liquid metal (plotted in red). (c) Arcs with liquid metal to simulate
actual experimental conditions (plotted in green).

as shown by the plot in fig. V.2, there was no significant difference. Given this

information, the influence of the liquid metal conductivity was not considered during

theoretical calculations. If a narrow tube were used instead of a bath, however, the

liquid metal (then taking up a sizeable cross-sectional area) could have a far larger

impact and would possibly have to be included for theoretical accuracy.

Although the VES approach provided a good measurement for “effective” con-

ductivity, the finite dimensions of the bath caused inaccuracies with regards to the

“true solution” conductivity. The smaller bath resulted in underestimations in solu-

tion conductivity, particularly when large outer electrode separations were used. This

is due to the fact that the conductivity deeper into the solution (and further from

the electrodes) has a larger impact when the electrode separation is increased. When

separations are large, the conductivity outside the bath (essentially zero) has a larger

influence. The conductivities measured in the small bath (“effective” conductivities)

were used for the bipolar electrolysis onset and droplet separation theory in order to

remain self-consistent. The following fits were used in conjunction with experimental
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Figure V.3: Conductivity tests in various bath sizes. (Left) Small bath. (Right)
Large bath. (Below) Approximated current paths (solid lines) and equipotential lines
(dotted lines) for each situation.

conductivity data:

GOES = −0.0986(lAB − 1.5) + 6.5094, (V.1)

GSC = 5.263X3
scale − 19.1416X2

scale + 22.3067Xscale − 3.6195, (V.2)

GC = 4.2069C + 0.4475, (V.3)

where GOES, GSC , and GC are the conductivities (S/m) for outer electrode separa-

tion, length scale, and NaOH concentration, respectively. lAB is the outer electrode

separation (mm), Xscale is the length scale, and C is the weight per volume concentra-

tion of NaOH. No particular constraints were applied during fitting. The length scale

curve is nonlinear because bubble production decreases effective conductivity at small

scales (bubbles block electrodes) and finite bath size limits effective conductivity at

large scales. A max effective conductivity then falls somewhere around a scale of 1.

Measurements were taken in a larger bath (125 mm diameter by 65 mm height,

PYREX 3140-125) to gauge the difference in behavior, as seen in fig. V.3. The

results for both baths are compared to values from EXW Foxboro, Massachusetts

(http://myweb.wit.edu/sandinic/Research/conductivity%20v%20concentration.pdf).
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Figure V.4: Comparison between conductivity measurements in the small (blue
points) and large (red points) baths. Values from literature are reported as a black
line. Data is shown for (left) outer electrode separation, (center) scale, and (right)
NaOH concentration.

The outer electrode separation plot in fig. V.4 emphasizes how the small bath results

in underestimated conductivity. Even in the larger bath, bubble interference causes

an under approximation when the scale is small. In general, however, this method

appears to overestimate conductivity, particularly as scale is increased in the large

bath. This is likely because the theory assumes point sources while the true pads

are rectangular. The average distance from all points on the outer electrodes to the

center of the probes (smaller pads of copper) is greater than the distance from center

to center. This results in an inflated value for conductivity.

255



Appendix W

Progressive Decrease of Voltage for

Droplet Separation

This experiment was implemented with the same circuitry and methods as the general

testing described above. However, instead of increasing the voltage during separation,

the ∼9V was immediately applied and decreased by 0.1V per second. Of particular

interest were the larger scales, such as x1.25, where successful separation only occurred

in 11 out of 20 attempts during parametric testing. The plots shown in fig. W.1 are

for a x1.25 sample. In the first 9 trials, no separation occurred. However, from trial 10

onwards, the LM droplets successfully separated. During the 14th trial, separation

occurred with a counter electrode voltage of 6.72V and a current of 68.0 mA. On

the 15th trial, the test process was reverted to the original method of increasing

voltage until separation. Interestingly, separation occurred at a voltage of 6.85 and

a current of 69.5 mA. The proximity of the values between these two trials indicates

that there is a narrow region in which separation occurs. It is unclear why an upper

limit exists, though it could be a result of countering surface tension effects from

continuous electrowetting.

This data also suggests that the solution, electrodes, or liquid metal are somehow
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Figure W.1: Plots for voltage (blue counter, red source, yellow drain, purple gate)
and applied current of a x1.25 scale sample. Left column: The 1st trial. Middle
column: The 14th trial. Right column: The 15th trial, increasing voltage and current
instead of decreasing.
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being altered during testing. While this was kept to a minimum during experimen-

tation by limiting testing cycles, using fresh NaOH solution, and testing on multiple

PCB electrodes, it is an aspect that needs further exploration. It should be noted

that after excessive testing, copper electrodes are consumed, likely the result of cop-

per oxidation followed by corrosion by the NaOH solution. Inert platinum or gold

electrodes would be preferential for future experiments and prototyping.

The same experiment was performed on a scale x1 sample. The very first sample

separated with a voltage of 8.02V and a current of 73.0 mA. By the third trial,

separation occurred immediately at 9.41V and 90.4 mA. Note that separation on the

upward ramp generally required about 50.9 mA for separation. We conclude that

increasing the scale decreases the upper limit for separation. At a scale of x1.5, there

is no window for successful switching. The reason for this behavior is unclear, but the

fact that scaling down the device does not suffer from this limitation is promising.

It should be noted that, as shown in fig. W.2, initial simulations with Surface

Evolver indicate that increasing the scale increases the interfacial tension gradient

required for separation. At larger scales, the dominance of gravitational forces prevent

separation as the droplets simply flatten under their own weight. In fact, separation

failed in the simulations at x1.5 due to excessive spreading which led to an instability.

At smaller scales, the gravitational forces vanish, and the required gradient appears

to level out.
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Figure W.2: Surface Evolver results for scale verses interfacial tension gradient, χ,
required for separation.
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Appendix X

Droplet Separation Power

Requirements

Of particular interest in fig. X.1 are the power requirements. A number of approaches

can be taken to improve efficiency. According to experimental results, decreasing

outer electrode separation drives down both voltage and current. Essentially, current

has to flow through less solution as gaps are decreased. However, as electrodes are

placed in closer proximity, interference from bubbling and turbulence at the outer

electrodes could become an obstacle. Scale has a similar effect on power. Interest-

ingly, voltage requirements remain nearly constant until a scale of 0.5. The constant

voltage requirements is a result of the electric field scaling approximately inversely

with distance (distance decreases, electric field increases, and voltages stay constant).

However, bubble formation drastically increases resistance and voltage requirements

at small scales. Finally, decreased NaOH concentration decreases power, as well.

Again, voltage requirements remain fairly constant, this time due to the constant

dimensions. The drawback here is that lower concentrations leads to slower overall

functionality (both separation and coalescence). At 0.1%, separation failed altogether

due to apparent lack of ionic species (lack of conductivity).
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Figure X.1: Data for voltage, current, and power requirements for droplet separation
under various outer electrode separations, length scales, and NaOH concentrations.
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Appendix Y

Surface Evolver Script for Droplet

Separation

The following scripts were used to simulate droplet separation, determine droplet

volume based on diameter, and determine droplet volume based on cap height when

alloyed to a circular pad. These scripts should run properly by simply entering

“start” into the command line. To produce STL files, command code was stored

in C:/Evolver/extra/. The code (file name: stl.cmd) is shown below (credit: Ken

Brakke):

// stl.cmd

// Surface Evolver command to produce STL format text file from

// surface.

// Evolver command line usage:

// read "stl.cmd"

// stl >>> "filename.stl"

// Programmer: Ken Brakke, brakke@susqu.edu,

// http://www.susqu.edu/brakke

stl := {

local mag,inx;

printf "solid\n";

foreach facet ff do
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{ mag := sqrt(ff.x^2+ff.y^2+ff.z^2);

printf "facet normal %f %f %f\n",ff.x/mag,ff.y/mag,ff.z/mag;

printf " outer loop\n";

for ( inx := 1 ; inx <= 3 ; inx += 1 )

printf " vertex %f %f %f\n",ff.vertex[inx].x,

ff.vertex[inx].y,ff.vertex[inx].z;

printf " endloop\n";

printf " endfacet\n";

};

printf "endsolid\n";

}

Y.0.1 Droplet Separation

// Simulation for separation of liquid metal droplets

// Normalization notes: 10=10x smaller (mm to cm)

// 2.821=2.821mm radious

// 1=1x larger

PARAMETER sc = 10/(2.821*1.0) // Scaling factor

PARAMETER gap = 0.1772 // Normalized gap (0.05 cm)

PARAMETER rad = 1 // Normalized radius (0.2821 cm)

PARAMETER hi = 0.4 // Normalized height

PARAMETER chi = 0 // Initial surface tension gradient

#define TENS 1 // Normalized surface tension

// (500 mJ/m^2)

gravity_constant (980*sc)/500 // Normalized gravity (980 cm/s^2)

// Boundary for droplet 1

boundary 1 parameter 1

x1: rad*cos(p1) - gap/2 - rad

x2: rad*sin(p1)

x3: 0

// Boundary for droplet 2

boundary 2 parameter 1

x1: rad*cos(p1) + gap/2 + rad

x2: rad*sin(p1)

x3: 0

// Constraint for substrate (can’t pass through substrate)

constraint 1 nonnegative

formula: z+0.00001
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//----Surface tension gradients----//

// If coalesced, apply gradient across entire surface

quantity vtens energy method facet_scalar_integral global

scalar_integrand: (body_count == 1)*-chi*(x+0.5892*sc)/(2*0.5892*sc)

// If separated, apply separate gradient for each drop

quantity vtens1 energy method facet_scalar_integral global

scalar_integrand: (body_count == 2)*((x < 0)*-chi*(x+0.5892*sc)/

(2*0.5892*sc)+(x > 0)*-chi*(x-0.025*sc)/(2*0.5892*sc))

//----Surface tension gradients----//

vertices

1 5*pi/4 boundary 1 fixed

2 7*pi/4 boundary 2 fixed

3 1*pi/4 boundary 2 fixed

4 3*pi/4 boundary 1 fixed

5 7*pi/4 boundary 1 fixed

6 5*pi/4 boundary 2 fixed

7 3*pi/4 boundary 2 fixed

8 1*pi/4 boundary 1 fixed

9 rad*cos(5*pi/4)-gap/2-rad rad*sin(5*pi/4) hi constraint 1

10 rad*cos(7*pi/4)+gap/2+rad rad*sin(7*pi/4) hi constraint 1

11 rad*cos(1*pi/4)+gap/2+rad rad*sin(1*pi/4) hi constraint 1

12 rad*cos(3*pi/4)-gap/2-rad rad*sin(3*pi/4) hi constraint 1

edges

1 1 5 boundary 1 fixed

2 5 8 boundary 1 fixed

3 8 4 boundary 1 fixed

4 4 1 boundary 1 fixed

5 6 2 boundary 2 fixed

6 2 3 boundary 2 fixed

7 3 7 boundary 2 fixed

8 7 6 boundary 2 fixed

9 5 6 constraint 1

10 7 8 constraint 1

11 1 9 constraint 1

12 2 10 constraint 1

13 3 11 constraint 1

14 4 12 constraint 1

15 9 10 constraint 1

16 10 11 constraint 1

17 11 12 constraint 1
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18 12 9 constraint 1

faces

1 1 9 5 12 -15 -11 color blue density TENS constraint 1

2 -12 6 13 -16 color red density TENS constraint 1

3 7 10 3 14 -17 -13 color blue density TENS constraint 1

4 11 -18 -14 4 color red density TENS constraint 1

5 -10 8 -9 2 density TENS constraint 1

6 15 16 17 18 density TENS constraint 1

bodies

1 1 2 3 4 5 6 volume 2.2718 density 5.25/sc^3

read

// New command: start

// Begins iterating for a solution

start:={U; // Toggle conjugate gradient method

u; // Equiangulate

V 100; // Vertex averaging 100x

u; // Equiangulate

g 250; // Iterate 250 times

V 100; // Vertex averaging 100x

u; // Equiangulate

r; // Refine

r; // Refine

refine edges where on_boundary 1 or on_boundary 2;

refine edges where on_boundary 1 or on_boundary 2;

ii := 0; // Index

jj := 0; // Index

tval := min(edge,length); // Value for removing tiny edges

Vval := min(edge,length)^2/1.3; // Value for weeding out small

// triangles

// Iterate through gradients

for (chi:= 0; chi < 0.8; chi+=0.01)

{

old := 1000; // Filler for older energy

dif := old-total_energy; // Energy difference

// Iterate until the the difference in energy is sufficiently small

while (dif > 10^-8) do {

ii := ii + 1; // Increase index

jj := jj + 1; // Increase index
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// Occasionally run the following mesh tailoring

if (ii > 500) then {u;V 5;ii := 0;};

if (jj > 20) then { O;o; O;w Vval; t tval;O;o; O;K 0.1;

O;o; jj := 0; rebody;};

old:=total_energy;

exec sprintf "printf \"%f\t%f\\n\" >> \"testwrite.txt\"",

clock,total_energy; // Print energy

g; // Iterate once

dif:=abs(old-total_energy); // Calculate energy difference

};

u; // Equiangulate

V 10; // Vertex averaging 10x

// Prepare for stl writing

exec sprintf "read \"C:/Evolver/extra/stl.cmd\"";

// Write stl file

exec sprintf "stl >>> \"Chi_%d.stl\"", chi*1000;

};

}

r

r

s

q

Y.0.2 Droplet on Surface

// Simulation for liquid drop on a surface

PARAMETER sc = 1/0.0002 // Scaling factor

PARAMETER VT = 0.0002 // Initial volume

PARAMETER VT2 = 1 // Normalized volume VT*sc

#define TENS 1 // Normalized surface tension (500 mJ/m^2)

gravity_constant (980*sc^(1/3))/500 // Normalized gravity

// (980 cm/s^2)

// Constraint for substrate (can’t pass through substrate)

constraint 1 nonnegative

formula: z-0.00001

vertices

1 0.0 0.0 0.0 constraint 1

2 1.0 0.0 0.0 constraint 1

3 1.0 1.0 0.0 constraint 1
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4 0.0 1.0 0.0 constraint 1

5 0.0 0.0 1.0 constraint 1

6 1.0 0.0 1.0 constraint 1

7 1.0 1.0 1.0 constraint 1

8 0.0 1.0 1.0 constraint 1

edges /* given by endpoints and attribute */

1 1 2 constraint 1

2 2 3 constraint 1

3 3 4 constraint 1

4 4 1 constraint 1

5 5 6 constraint 1

6 6 7 constraint 1

7 7 8 constraint 1

8 8 5 constraint 1

9 1 5 constraint 1

10 2 6 constraint 1

11 3 7 constraint 1

12 4 8 constraint 1

faces /* given by oriented edge loop */

1 1 10 -5 -9 density TENS constraint 1

2 2 11 -6 -10 density TENS constraint 1

3 3 12 -7 -11 density TENS constraint 1

4 4 9 -8 -12 density TENS constraint 1

5 5 6 7 8 density TENS constraint 1

6 -4 -3 -2 -1 density TENS constraint 1

bodies /* one body, defined by its oriented faces */

1 1 2 3 4 5 6 volume VT2 density 5.25/sc

read

// New command: start

// Begins iterating for a solution

start:={U; // Toggle conjugate gradient method

u; // Equiangulate

V 100; // Vertex averaging 100x

u; // Equiangulate

g 250; // Iterate 250 times

V 100; // Vertex averaging 100x

u; // Equiangulate

r; // Refine

r; // Refine

r; // Refine

r; // Refine
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ii := 0; // Index

tval := min(edge,length); // Value for removing tiny edges

Vval := min(edge,length)^2/2; // Value for weeding out small

// triangles

// Iterate through volumes

for (VT:= 0.0002; VT < 0.05; VT+=0.0002)

{

sc:=1/VT; // New scaling factor

G (980*sc^(1/3))/500; // New scaled gravity

set body[1].density 5.25/sc; // New scaled density

u; // Equiangulate

V 10; // Vertex averaging 10x

g 100; // Iterate 10x

u; // Equiangulate

V 10; // Vertex averaging 10x

old := 1000; // Filler for older energy

dif:=old-total_energy; // Energy difference

// Iterate until the the difference in energy is sufficiently small

while (dif > 10^-9) do {

ii := ii + 1; // Increase index

// Occasionally run the following mesh tailoring

if (ii > 1000) then { w Vval; t tval; o; O; u; V; ii := 0; rebody;};

old:=total_energy;

exec sprintf "printf \"%f\t%f\\n\" >> \"testwrite.txt\"",

clock,total_energy; // Print energy

g; // Iterate once

dif:=abs(old-total_energy); // Calculate energy difference

};

// Prepare for stl writing

exec sprintf "read \"C:/Evolver/extra/stl.cmd\"";

// Write stl file

exec sprintf "stl >>> \"Vol_%d.stl\"", VT*10000;

};

}

s

q

Y.0.3 Droplet on Pad

// Simulation liquid metal drop on a single pad

// Normalization notes: 10=10x smaller (mm to cm)

// 2.821=2.821mm radious
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// 1=1x larger

PARAMETER sc = 10/(2.821*1.0) // Scaling factor

PARAMETER rad = 1 // Normalized radius (2.821 mm)

PARAMETER hi = 0.01 // Normalized height

PARAMETER VT = 0.01 // Normalized volume

#define TENS 1 // Normalized surface tension

// (500 mJ/m^2)

gravity_constant (980*sc)/500 // Normalized gravity (980 cm/s^2)

// Boundary for pad

boundary 1 parameter 1

x1: rad*cos(p1)

x2: rad*sin(p1)

x3: 0

// Constraint for substrate (can’t pass through substrate)

constraint 1 nonnegative

formula: z+0.00001

vertices

1 1*pi/4 boundary 1 fixed

2 3*pi/4 boundary 1 fixed

3 5*pi/4 boundary 1 fixed

4 7*pi/4 boundary 1 fixed

5 rad*cos(1*pi/4) rad*sin(1*pi/4) hi constraint 1

6 rad*cos(3*pi/4) rad*sin(3*pi/4) hi constraint 1

7 rad*cos(5*pi/4) rad*sin(5*pi/4) hi constraint 1

8 rad*cos(7*pi/4) rad*sin(7*pi/4) hi constraint 1

edges

1 1 2 boundary 1 fixed

2 2 3 boundary 1 fixed

3 3 4 boundary 1 fixed

4 4 1 boundary 1 fixed

5 5 6 constraint 1

6 6 7 constraint 1

7 7 8 constraint 1

8 8 5 constraint 1

9 1 5 constraint 1

10 2 6 constraint 1

11 3 7 constraint 1

12 4 8 constraint 1
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faces /* given by oriented edge loop */

1 1 10 -5 -9 density TENS constraint 1

2 2 11 -6 -10 density TENS constraint 1

3 3 12 -7 -11 density TENS constraint 1

4 4 9 -8 -12 density TENS constraint 1

5 5 6 7 8 density TENS constraint 1

//6 -4 -3 -2 -1 density TENS constraint 1

bodies /* one body, defined by its oriented faces */

1 1 2 3 4 5 volume VT density 5.25/sc^3

read

// New command: start

// Begins iterating for a solution

start:={U; // Toggle conjugate gradient method

u; // Equiangulate

V 100; // Vertex averaging 100x

u; // Equiangulate

g 250; // Iterate 250 times

V 100; // Vertex averaging 100x

u; // Equiangulate

r; // Refine

r; // Refine

r; // Refine

quadratic; // Using quadratic mesh

refine edges where on_boundary 1;

ii := 0; // Index

tval := min(edge,length); // Value for removing tiny edges

Vval := min(edge,length)^2/2; // Value for weeding out small

// triangles

// Iterate through volumes

for (VT:= 0.01; VT < 4; VT+=0.01)

{

set body[1].target VT; // Change volume

u; // Equiangulate

V 10; // Vertex averaging 10x

g 100; // Iterate 100x

u; // Equiangulate

V 10; // Vertex averaging 10x

old := 1000; // Filler for older energy

dif:=old-total_energy; // Energy difference

// Iterate until the the difference in energy is sufficiently small
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while (dif > 10^-10) do {

ii := ii + 1; // Increase index

// Occasionally run the following mesh tailoring

if (ii > 300) then { w Vval; t tval; o; O; u; V; ii := 0; rebody;};

old:=total_energy;

exec sprintf "printf \"%f\t%f\\n\" >> \"testwrite.txt\"",

clock,total_energy; // Print energy

g; // Iterate once

dif:=abs(old-total_energy); // Calculate energy difference

};

// Prepare for stl writing

exec sprintf "read \"C:/Evolver/extra/stl.cmd\"";

// Write stl file

exec sprintf "stl >>> \"Vol_%d.stl\"", VT*100;

};

}

s

q
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