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Abstract

SELF-HEALING CIRCUITS USING STATISTICAL ELEMENT SELECTION

by

Gokce Keskin

Doctor of Philosophy in Electrical and Computer Engineering

Carnegie Mellon University

Professor Lawrence T. Pileggi, Chair

Process variations in advanced CMOS process nodes limit the benefits of scaling for ana-

log designs. In the presence of increasing random intra-die variations, mismatch becomes

a significant design challenge in circuits such as comparators. In this dissertation, the sta-

tistical element selection (SES) methodology that was first proposed in [1] is analyzed in

detail and extended to accommodate a broader spectrum of circuits and systems. SES relies

on choosing a subset of selectable circuit elements (e.g., input transistors in a comparator)

to achieve the desired specification (e.g., offset). Silicon results from a 65nm bulk CMOS

test chip demonstrate that it can achieve an order of magnitude better matching than both

redundancy and simple scaling given the same core circuit area. To demonstrate its efficacy,

we applied SES to enable a novel flash ADC topology in 45nm SOI CMOS that operated

at 1GS/s and achieved 4.6bits of ENOB with a figure of merit of 160fJ/step. SES is also

applied to an array of microelectromechanical resonators to improve the expected yield of

RF MEMS filters.
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Chapter 1

Introduction

Continuous advancement of CMOS process technology over the past four decades has

made inexpensive integrated circuit products with significant processing capabilities an ev-

eryday reality. Cost pressures have resulted in substantial integration of analog and digital

blocks on the same die, forcing analog designers to adapt to processes that were built for

digital systems. As we rapidly approach the physical limits of scaling, one of the major

challenges for analog circuits has been to ensure consistently high yield in the presence of

increasing variability in these nanoscale CMOS processes.

In this thesis, a new methodology for analog circuits that is based on statistical element

selection (SES) is described and applied to practical applications. SES is a post manufac-

turing calibration step to accommodate large-scale process variations. It exploits inherent

random variations to improve the matching of transistors and to increase yield for matching-

critical circuits such as comparators. A subset of k elements is selected among an identically

laid out set of N elements to provide the best matching performance. As the number of

available subsets among a set of N elements increases exponentially (2N − 1), it is possible

to achieve impressive matching performance with near-minimum size unit elements. The

elements might be individual transistors, pairs of transistors, or passive components. A

methodology is presented to determine the appropriate (N, k) numbers and the size of the
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unit element to ensure that a desired matching specification is met. Measurement results

from two CMOS test chips support model predictions.

In Chapter 2, major sources of CMOS manufacturing variations and their effect on analog

circuits are described. Various calibration methods published in the literature to alleviate

the effects of these variations are reviewed. The focus of the review is flash ADCs.

In Chapter 3, the details of SES methodology are described and modeling results for

three separate case studies are presented:

• A comparator array intended for an 8-bit flash ADC with a traditional reference lad-

der based architecture, where the offsets of comparators are calibrated to achieve the

required spec. The final goal of this research direction is to build high resolution, high

speed ADCs within feasible power and area requirements for traditional architectures.

• A self-referenced 6-bit flash ADC that exploits the features of SES to calibrate offset

values to the desired reference voltages without the need for a reference ladder. Fur-

thermore, comparators are laid out in a restricted layout fabric that has also been used

for digital and memory circuits on the same IC to demonstrate the full utility of SES

for implementing analog circuits with deeply scaled digital CMOS processes.

• A microelectromechanical systems (MEMS) based resonator array where SES is used to

accommodate variations in the array to build a filter. MATLAB modeling and circuit

simulations results demonstrate the efficacy of SES for such systems. The results

demonstrate that RF bandpass filters/mixer-filters can be reliably implemented using

highly varying MEMS resonators with the use of an SES methodology.

Chapter 4 presents the details and measurement results of test runs for the first two case

studies. The first study is manufactured in 65nm bulk CMOS, and the second in 45nm SOI

CMOS.

Finally, Chapter 5 presents future research directions.
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Chapter 2

Background

Manufacturing variations are a significant problem for both digital and analog circuits

in advanced CMOS process nodes and they are expected to grow in importance with each

new generation. In this chapter, major variation sources are discussed and previous work on

alleviating the effects of variation in analog to digital converters is described.

2.1 Process Variations

Process variations in modern CMOS nodes can generally be classified into two areas,

systematic and random. Many of the dominant systematic variations can be predicted and

addressed by using careful circuit design and layout techniques. Random variations are

unpredictable and can cause significant mismatch among devices. It is the latter variability

that is actually exploited by the SES approach to tune the circuits after manufacturing.

2.1.1 Systematic Variations

Systematic variations can be broadly classified into two sub-groups[7]:

• Across-field effects that are caused by lithography or etching processes. Location of

the die on the wafer can lead to a systematic shift in device parameters, for example
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due to a problem in focus or the lens in the manufacturing equipment. All devices in

the same vicinity are affected the same way due to these effects.

• Layout dependent effects that result in different characteristics of identical devices in

the same vicinity in the wafer. An example is variation due to the well proximity effect

where threshold voltage of a MOS device close to an n-well can be different from an

identical MOS device far away from n-wells.

Polysilicon gate pitch has a significant systematic impact on actual gate length since it is

highly dependent on the surrounding poly lines in modern CMOS processes[8]. The common

practice in minimizing this systematic effect is to use constant poly pitch and to add dummy

poly lines where necessary. Matching poly lines also need to have the same orientation.

Fig. 2.1 shows an example of a bad layout where the two devices on the top have different

poly surroundings. This causes a systematic mismatch in the actual gate lengths of the two

devices. Bottom layout shows how this problem can be corrected. Recommended poly pitch

is generally noted on most process manuals for optimal matching of devices, and addition of

one or two dummy poly lines from the edges is generally enough.

Figure 2.1: Good and Bad Layout Styles to Control Systematic Poly Variation

Well proximity effect is another layout dependent effect where threshold voltage of devices

close to wells are systematically different from devices far away from them. This difference
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is mainly due to the scattering of ions from the photoresist that covers the wells during ion

implantation. Scattered ions fall on the close-by devices, changing the doping. Matching-

critical devices should either share the same well surroundings or should be placed sufficiently

far from wells.

Stress effects are also a major source of layout dependent systematic variation. Shallow

trench isolation (STI) used in CMOS processes create a mechanical stress on the devices and

uneven diffusion layers can introduce mismatch in device characteristics [9, 10]. Intentionally

introduced stress methods to improve electron/hole mobility are also mostly dependent on

layout and can introduce systematic offsets. Placement of the active (diffusion) layer with

respect to the well edges must be adjusted to make sure that the same stress is applied to

identical devices.

Systematic sources of variation are widely known by analog designers and can be overcome

by careful layout techniques. Matching-critical devices are laid out in close proximity in the

die and common-centroid layout is employed. Fig. 2.2 shows such a layout where devices

Ma and Mb are split into two pieces and arranged in a fully symmetrical configuration to

overcome any systematic gradient effect in x or y axes. The surroundings of the devices

should also be as identical as possible.

Restricted design rules with fixed gate lengths, high regularity in diffusion, poly and

metal layers, single poly orientation and lithography solutions such as double patterning

and optical proximity correction are already proposed techniques to alleviate the systematic

effects in leading edge CMOS processes[6, 11]. Although these methods are mainly discussed

for logic gates and memories, analog designs will ultimately need to use the same rules for

highly integrated CMOS chips.

2.1.2 Random Variations

Random variations are due to unpredictable and unrepeatable sources of variation in

manufacturing. Random dopant fluctuation (RDF) in the transistor channel is an example
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Figure 2.2: Common Centroid Style Layout

of this type of variation [12]. Channel dopants are used to adjust the threshold voltage

of MOS devices to the desired value and can be on the order of tens of dopant atoms in

modern short channel devices (Fig. 2.3). Small variation in the number of atoms, their

location in the channel or impurities can lead to significant threshold voltage variation in

the device. Several new technologies such as undoped channels, high-k metal gates, thin SOI

and FinFETs are being evaluated, but tens of millivolts of variation in threshold voltage is

still expected [13–17].

Figure 2.3: Random Dopant Fluctuations and Line Edge Roughness

Another source of random variation is line edge roughness (LER). Microscopic deviations

in the poly line forming the gate can lead to uneven channel length across the width of the
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device (Fig. 2.3). These variations can lead to an effective difference in the conductance

constant (β = µCox
W
L

) and adversely affect matching.

Random sources of variation cannot be alleviated by following restricted design rules.

Increasing the device size to average out the random variations improves matching only by

1/
√
WL [18]. This poor return with increasing device size (and hence total area and power)

is problematic for many analog circuits, such as comparators in analog to digital converters

(ADCs), current sources in digital to analog converters (DACs), matching of passives. In the

next section, various post-manufacturing calibration techniques published in the literature

will be described. The focus of this review is flash ADC architectures that place tight

matching requirements.

2.2 Previous Work

Device matching is a particularly important factor for the performance of flash ADCs.

As shown in Fig. 2.4, for an N bit flash ADC, 2N − 1 comparators are connected in parallel

to generate a thermometer code that quantizes the analog input voltage. A resistive ladder

is used to generate the reference voltages corresponding to each least significant bit (LSB)

for the comparators. Each of the comparators should have less than ±0.5LSB input offset

voltage (preferably much less) for correct operation of the ADC. The thermometer code is

later converted to N bit binary by digital processing.

The main advantage of the flash ADCs is their speed: Since the analog input is converted

to digital in parallel, they are among the fastest type of data converters. Unfortunately, the

number of comparators rises exponentially with the resolution for a flash ADC; i.e., a 1-bit

increase in resolution will require doubling of the number of comparators. This leads to

doubling of the power and area consumed by the comparators. Moreover, one-bit increase

in resolution tightens the comparator matching requirements by 2×, since LSB is halved.

To achieve this requirement by simple sizing based on the well known Pelgrom’s model
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Figure 2.4: Basic Flash ADC Architecture

[18], we would need to increase the comparator sizing by roughly 4×; further adding to

the power/area penalty. Moreover, increased input capacitance of the comparators puts

significant pressure on keeping the same sampling rate. In many cases, power hungry input

sampling switches and preamplifiers might be required in order to keep the same sampling

rate.

Various offset calibration methods have been proposed to alleviate the prohibitive increase

in the power/area requirements with increasing resolution of the flash ADCs. In [19], the

input is first sampled using a track-and-hold (THA) amplifier. Then, a differential amplifier

with resistive loads amplifies the difference between the input and the reference voltage.

This preamplifier is followed by a comparator. For offset calibration, the reference ladder

has been modified to generate voltages at each LSB/3 interval (as opposed to one full LSB),

and the input to the preamplifiers can be connected to a window of ±15 of these references.

Hence, the offset can be tuned to ±5LSB by connecting to a voltage within this window.

Each preamplifier-comparator combination is calibrated during startup, and the fully digital

calibration circuitry is integrated on the die. The calibration circuit sets the analog input to

a known reference, and then finds the correct offset by adjusting the reference voltage to the

preamplifier until the output of the preamplifier-comparator combination toggles between

digital 0 and 1.
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Comparator redundancy has been employed in the past to improve the parametric yield

of the flash ADCs. Adding redundant comparators increases the probability that the offset

of at least one of them will be low enough to be used in the ADC. Both redundancy and

reordering of comparators (assigning comparators with high offsets to other reference levels)

have been applied in [20]. Up to four redundant elements are needed to ensure negligible

decrease in signal to noise and distortion ratio.

Digital to analog converter (DAC) based calibration has also been proposed. In [21],

digitally controlled calibration currents are added to the outputs of the comparators to

compensate for mismatches in transistors. Redundancy is employed to eliminate comparators

with very high offsets that cannot be calibrated with the DAC.

In a number of flash ADCs, the reference ladder has been eliminated and the references

are built-in to the comparators. In [2], comparator thresholds have been adjusted by adding

extra capacitors to one of the internal nodes (Fig. 2.5a). The size of the added MOS

capacitor (P4) is adjusted for each comparator so that the offset is systematically shifted to

the desired trip-point. Furthermore, mismatched currents are added to the output branches

(via N2 devices) to cancel the undesired random offset resulting from device mismatches.

Control knobs cal+ and cal− are connected to discrete levels in a 12-level reference ladder.

The outputs of the comparators are passed through digital logic to correct for bubble errors

in thermometer code to binary conversion.

Fig. 2.5b shows another built-in offset method that makes use of stacked PMOS devices

with different widths to introduce systematic offset [3]. Redundant comparators are added

to compensate for the random offset component. For a 6-bit single-ended flash ADC, 127

comparators are used; but the achieved effective number of bits (ENOB) is only 5.05. Thus,

the amount of required redundancy is significant.

Van der Plas describes another self-referenced comparator with systematic trip-point

shift and random offset calibration [4]. Systematic shift is achieved by adding an inten-

tional mismatch in the width of the input devices which introduces a slight imbalance in

9



(a) [2] (b) [3]

Figure 2.5: Configurable Comparators in [2, 3]

discharge currents of the differential branches (Fig. 2.6). Random offsets are then canceled

by selectively adding extra MOS capacitors to these branches.

Figure 2.6: Configurable Comparator in [4]

Weaver’s flash ADC depends much more heavily on random offsets, generated by inherent

mismatch, for the built-in references [5]. This “stochastic” flash ADC uses the linear region

in the cumulative distribution function (CDF) of the random offset distribution as the full

scale input range. By dividing the comparators in two groups and using different reference

voltages for each group, two CDFs are attained with a systematic shift in between (Fig.

2.7). The input full scale range is then used as the midpoint of this transfer function, where
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linearity is greatest. The outputs of the comparators are added in the digital domain. In this

6-bit ADC, a total of 1152 comparators have been used to get the desired linearity (ENOB

is a little less than 5.5), indicating that a significant amount of redundancy is required.

Figure 2.7: Linearity Enhancement by Combining CDFs in [5]

A summary of results for these recent flash ADCs is given in Table 2.1.

Table 2.1: Summary of Results for Recent Flash ADCs

Reference Technology Resolution (bits) Sampling Rate (MS/s) Power (mW) ENOB FoM (pJ/step)
[19] 65nm CMOS 6 800 12 5.63 0.303
[20] 250nm CMOS 6 400 150 5 11.72
[2] 90nm CMOS 5 1750 2.2 4.7 0.05
[3] 180nm CMOS 6 0.4 1.66× 10−3 5.05 0.125
[4] 90nm CMOS 4 1250 2.5 3.7 0.16
[5] 180nm CMOS 6 8 0.631 5.29 2.02

2.3 Summary

This section introduced the basic sources of variation in modern CMOS processes. Sys-

tematic variations can be mostly overcome by careful layout, but analog circuits will still

need to conform to the restricted design rules being introduced in the leading edge processes.

Random variations are much more difficult to overcome and can adversely affect matching.

Many critical analog circuits, such as comparators, are susceptible to mismatches that cause

undesired input offsets.
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Flash ADCs are widely used in low to medium resolution applications. Despite their high

speed, they suffer from mismatches since many parallel comparators with tight matching

requirements are needed. Several recently proposed digital calibration techniques to address

this issue were discussed in this chapter.
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Chapter 3

Statistical Element Selection

3.1 Basics

Statistical Element Selection (SES) was recently proposed to alleviate the problems

caused by extreme variability in advanced CMOS processing nodes [1]. The basic concept

is to use N identically laid-out elements for a given circuit block (e.g., branches of input

transistors in a comparator) and use one subset among the 2N − 1 available subsets such

that the chosen subset will satisfy the desired specification (e.g., input offset voltage).

In order to understand the main difference between scaling, redundancy and SES, consider

the differential amplifier in Fig. 3.1. N pairs of input NMOS transistors are labeled as

M1a\M1b through MNa\MNb. Each pair has its own tail NMOS transistor with gates tied

to digital control signals Sel1 through SelN . Each pair can be turned on or off as desired

by Sel < 1 : N >. Each transistor has different characteristics due to the manufacturing

variations, and the mismatches between the pair transistors result in non-ideal effects such

as input offset voltage.

In scaling, all branches from 1 to N are selected. All signals Sel < 1 : N > are connected

to the same line during the design phase. The averaging effect introduced by the selection

of all mismatched branches results in a lower amount of effective variation, and yields an
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Figure 3.1: SES Based Differential Amplifier

improvement of 1/
√
N in matching standard deviation[18]. No calibration is done after

manufacturing.

For previous work that has been referred to as redundancy, branches are grouped into

predetermined identical blocks during the design phase. Only one block can be selected at

a time during post-manufacturing calibration. For example, assume that each pair in Fig.

3.1 forms one block, for a total of N blocks. Among the available N combinations, the one

with the best offset specification is selected. If N/2 branches form one block, there are only

2 combinations to select from during calibration.

SES is an extension of redundancy. Rather than grouping the branches into predeter-

mined blocks, each pair is allowed to be individually selected. This is essentially a finer grain

redundancy that must be carefully designed based on the statistical parameter models and

the different methods that can be used for efficient digital selection of the “elements.” If a

total of N/2 pairs is desired, the selection can be made among the
(
N
N/2

)
subsets that can

be formed using the control signals. This is a significantly larger search space than redun-

dancy. If N = 16 and 8 pairs form one block, only two blocks are available for selection in

redundancy. If any subset of size 8 can be selected (SES), 12870 combinations are available.

If the subset size is not constrained to N/2, any subset among 2N − 1 can be selected. This

exponential increase in the number of combinations results in a significant improvement in
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finding a low offset combination.

Input offset voltage (Vos) of the differential amplifier in Fig. 3.1 is defined as the Vin =

Vin+−Vin− at which the output branch currents (Iout+,Iout−) are equal. If all the transistors

in the circuit are perfectly matched, Vos = 0. In practice, mismatch in threshold voltage (Vth)

and conductance constant (β = µCox
W
L

) of transistors result in unequal currents through

the branches of the pairs when an equal voltage is applied to both Vin terminals. If the input

offset of ith input pair is Vos,i and the transconductances of all pairs are the same, then the

input offset voltage of the differential amplifier is [22]:

Vos =
1

N
×

N∑
i=1

Vos,i (3.1)

If we consider the case that only a subset of the N pairs is chosen, the resulting input

offset voltage is:

Vos =
1∑N
i=1 ki

×
N∑
i=1

kiVos,i (3.2)

where ki = 1 if the ith pair is chosen, and ki = 0 otherwise.

Vth mismatch generally dominates β mismatch and we can write Vos,i = ∆Vth,i [23].

Systematic sources of variation and gradient variations can be minimized by using a fully

symmetrical layout and closely spaced transistors. In addition, if the input transistors are

the dominant source of mismatch, the Vos,i distribution is centered at 0 and can be estimated

as a gaussian normal distribution with N (0, σos,i
2). Using Eq. 3.2, we can determine that the

input offset voltage of the amplifier is N (0, σos
2) where σos =

σos,i√∑N
i=1 ki

. This follows a close

resemblance to the result found in [18], where matching of MOS devices in close proximity

has been shown to improve by 1/
√
Area.

σos,i can be determined from Monte Carlo Spice simulations for the given circuit. The

easiest method to improve matching, and hence achieve a desired input offset specification

with an arbitrarily large probability, is to increase the size of input transistors. This could

be done by increasing width and/or length of each device or by adding more branches in
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parallel. Unfortunately, the 1/
√
Area relationship makes “select all” method (sizing) very

costly in terms of area and power.

In redundancy, the selectable element is duplicated a given number of times and the best

is chosen among them. As an example, consider the circuit on Fig. 3.1 where only one

element is selected at a time so that the best selection among N available can be done after

manufacturing (N times redundancy). As will be seen in the following sections, this method

significantly increases the probability that at least one good redundant element will satisfy

the given input offset specification. Statistical Element Selection (SES) takes the redundancy

concept one step further: If any subset among all available elements in the circuit is allowed

to be selected, a large space of 2N − 1 combinations can be used. This exponential increase

in search space in SES partly forms its strength over both sizing and redundancy.

SES can be applied to a variety of circuits such as current sources, differential amplifiers

and comparators where matching is critical. It can also be applied to passive element match-

ing in capacitors and resistors. One specific application is flash analog-to-digital converters,

where a large number of comparators with tight input offset specification is required.

As in all circuit designs, the main goal in SES is to achieve a target specification such as

input offset voltage with arbitrarily high probability (e.g., 99.5%) with lowest possible power

and area. The basic parameters to determine are:

• Total number of selectable elements (N)

• The number of elements selected (k)

• Size of each element

• Total number of sets among
(
N
k

)
that will be tried, determining calibration time

Since different circuits and applications require different trade-offs among these param-

eters, a methodology to determine the values of the basic parameters is needed. In this

chapter, a Monte Carlo based methodology to determine the values of these parameters will

be described for three different applications:
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1. A comparator array in 65nm bulk CMOS, intended for use in an 8-bit Flash ADC

design

2. A self-referenced 6-bit Flash ADC in 45nm SOI CMOS

3. A MEMS resonator array intended to be used as a filter

3.2 Methodology

3.2.1 Comparator Array in 65nm Bulk CMOS

3.2.1.1 Modeling

Flash ADCs are fast, low-to-medium resolution data converters specifically suited for

high-speed applications. The basic structure of a Flash ADC is shown in Fig. 3.2. For

an N-bit converter, 2N − 1 comparators are connected in parallel to the same analog input

voltage. Each comparator is also connected to a unique reference voltage to compare the

analog input. Ideally, the input offset voltage for each comparator is zero, and the imme-

diate output of the array is a thermometer code. A digital computation block converts the

thermometer code to N-bit digital output. Since high speed operation is desired, latch type

Figure 3.2: Basic Flash ADC Architecture

comparators with positive feedback (resembling sense amplifiers [24]) are commonly used
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in Flash ADCs. Better noise immunity can be achieved by using a fully differential analog

input and the reference voltage as shown in Fig. 3.3. Cross-coupled inverter pairs (tran-

sistors 1 through 4) provide positive feedback, whereas pre-discharge transistors (labeled 5

through 8) reset the comparator before the evaluate phase. An SR-latch typically follows

the latch-type comparator to preserve the outputs through the reset phase and the outputs

are kept stable through the full clock cycle [22, 25]. Inverters or buffers can be inserted after

the comparator to reduce kickback charge from the SR-latch. One or more preamplification

stages might be inserted directly following the analog inputs since the comparators generally

have high input offset voltage and excessive kickback [26]. Track and hold amplifiers (THA)

can be used before the preamplifiers to ease clock timing requirements [19, 27]. In the fol-

lowing discussion, no preamplifiers are assumed to be used before the comparators, but the

methodology is not affected by this assumption.

Figure 3.3: Latch Type Comparator

Fig. 3.4 shows a latch type SES-based comparator where the dark sections are replicated

N times. Assume that each selectable element on Fig. 3.4 has an offset distribution that

follows normal N (0, σos,i) and only one element among the N is selected. The probability
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that this element has an absolute offset smaller than a given specification spec is :

psuccess = erf(
spec

σos,i ×
√

2
) = 1− pfail (3.3)

pfail denotes the probability that this element will fall out of the given offset specification

Figure 3.4: SES-based Latch Type Comparator

(spec). To ensure good linearity of the ADC, spec should be less than ± 0.5LSB. Since the

offset of each element is independent, one can calculate the probability that each and every

one of the available N elements will fall out of the desired offset specification as:

pfail,total = (pfail)
N (3.4)

This is a classical example of redundancy. Let us now consider that all N elements are

chosen. In this case, the offset distribution follows N (0, σos,i/
√
N). The probability that

the offset is within spec (denoted by pfail,N) can be calculated simply by substituting σos,i

in Eq. 3.3 with σos = σos,i/
√
N . This is a classical example of Pelgrom type sizing to reduce

variability and results in lower failure probability than using only one element.

Redundancy and Pelgrom-type sizing are the two extremes for SES. Rather than selecting

one at a time (redundancy), or all at once (sizing), k elements among N are selected at a

time (1 ≤ k ≤ N). Fig. 3.5, generated using 1 × 106 Monte Carlo samples in MATLAB,
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shows the failure probability (pfail,total) as k is varied when N = 20, σos,i = 1 and offset

specification (spec) is 10−2. In other words, we are trying to achieve an absolute offset less

than 1/100th of the standard deviation of each element, a very ambitious target. pfail for

each element can be calculated from Eq. 3.3 using σos,i = 1 and spec = 10−2. The leftmost

Figure 3.5: Failure Probability for N = 20, σos,i = 1, spec = 10−2

point in the contour shows the case of redundancy, where we have 20 independent subsets

of only one element each (k = 1). The failure probability at this point in the contour can

be calculated simply by pfail,total = (pfail)
20. The rightmost point corresponds to the case

where we have only one subset of 20 elements (select all elements, k = N = 20). Probability

of failure for this subset, pfail, can be calculated from Eq. 3.3 again, with spec = 10−2

and σos,i = 1/
√

20; because we know that standard deviation decreases by 1/
√
Area. The

failure probability at the right end of the contour is simply pfail,total = pfail, since there is

only one subset of size 20. This point corresponds to Pelgrom-type sizing (k = N = 20).

Clearly, orders of magnitude of improvement in failure probability is achievable compared to

both redundancy and Pelgrom-type sizing if we allow k to be anywhere between these two

extremes; i.e. 1 < k < 20.

Minimum failure probability is observed when k = 4; however, this may not be the
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optimum point when one considers that 16 unused elements are contributing to the parasitics.

In the comparator example, this would slow down the circuit. In most cases it is desirable to

minimize the number of unused elements, or simply maximize the k/N ratio while achieving

the required offset specs.

Fig. 3.6 shows the plots when both N and k are varied. Each blue contour corresponds to

a different N value (1 < N < 20), and the x-axis shows how many elements (k) are selected

among N (k ≤ N). As the previous case, each selectable element follows N (0, 1) and

spec = 10−2. A good way to visualize the improvement in failure probability is to look at a

vertical line at a given k (shown for k = 10), and determine the intersection points between

this line and each contour. We increase N until we reach the failure probability target

pfail,total (shown for pfail,total = 10−2). In this example, target is reached when N = 18. One

can select any N above 18, but at the expense of increasing the number of unused elements.

Fig. 3.6 helps us answer the following question: Given a fixed element size (µelement = 0

Figure 3.6: Failure Probability for N = 1 to 20, σos,i = 1, spec = 10−2

and σelement = 1) and an offset specification (spec = 10−2 for Fig. 3.6), what are the

possible (N, k) pairs that will satisfy a given failure probability specification pfail,total? A

MATLAB script can search through the data, find the appropriate (N, k) pairs, and produce
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the highest k/N ratio for each k. In Fig. 3.6, these points have been marked with circles for

each k where the pfail,total specification can be met. Although not fully monotonic due to the

discrete nature of the problem, we observe higher k/N ratios as k increases. In other words,

red circles to the right have, in general, better utilization of elements compared to the ones

on the left. It should be noted that any deviation from monotonicity with increasing k is

small.

Fig. 3.7 shows a comparison of the three methods as N is varied. Each selectable element

offset is assumed to follow a unit normal distribution N (0, 1) with spec = 2×10−2. Only half

of all elements are allowed to be selected for SES (k = N/2). For redundancy, each element

forms one block (N redundant blocks). Dramatic improvement in success probability can be

seen with SES compared to both redundancy and scaling.

Figure 3.7: Comparison of SES, Redundancy and Scaling

Although the previous scenario is informative, it might not be completely realistic. In

most cases, designers are not restricted to choose a fixed element size; they can choose

among fewer but larger elements (e.g., µelement = 0, σelement = σos,i < 1). For the comparator

example, assume that all transistors in the replicated section have a minimum length (L).

Consider the following two cases:
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• Case 1: N1 total elements; in each element, all the transistors have width W1, giving

a standard deviation of σ1. We are selecting k1 elements among N1.

• Case 2: N2 total elements; in each element, all the transistors have width W2, giving

a standard deviation of σ2. We are selecting k2 elements among N2.

For a fair comparison, assume that the total area in two cases is the same, i.e. N1×W1 =

N2×W2, ignoring routing area and the storage for configuration bits. We want to determine

which case has better resource utilization (has higher k/N ratio). In order to achieve this

goal, we first regenerate the plot in Fig. 3.6 for different σelement/spec ratios to normalize it

to spec. Fig. 3.8 shows these individual plots forming the slices of a “decision cube.” Using

the decision cube, the designer can evaluate tradeoffs between differing element sizes for a

given spec. Each slice of the cube corresponds to a different element size.

Figure 3.8: Decision Cube

The decision cube is built only once for a predetermined range of σelement/spec ratios

(where spec is the offset specification). Each σelement/spec plot forms one slice of the cube.

Since the cube is built on the normalized values (the σelement/spec ratio), it only needs to

be built once. The same cube can be used for different designs with different resolutions or

process technologies. In most practical applications, desired σelement/spec ratios would be
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from 10−1 to 10−3. An arbitrary number of slices can be formed between these points, but

100 slices are generally enough to converge on a decision of (N, k, σ) triplets that will satisfy

the failure probability (pfail,total) target. A simple design recipe is:

1. Specify the offset specification spec.

2. Specify the failure probability target pfail,total for each comparator. For example, if

we would like to find a configuration that will satisfy the spec 99.5% of the time,

pfail,total = 5× 10−3.

3. Specify the offset standard deviation (σelement,i) for each type of selectable element.

For example, assume that the basic selectable element is a single transistor. The first

selectable element type could be a transistor with width W1 with standard deviation

σelement1, and the second selectable element type could be W2 with standard deviation

σelement2. These values can be determined by running circuit simulations for the design

in the given process technology.

4. Calculate the ratio σelement,i/spec for each selectable element type.

5. Input the results in steps 2 and 4 to a MATLAB script. For each selectable element type

(σelement,i), the script will produce all the (N, k) pairs that will satisfy the requirements

in steps 1 and 2 using the cube in Fig. 3.8. Since the decision cube is pre-built, this is

an efficient process step.

6. Now choose between the (N, k, σelement,i) triplets that satisfy the requirements in steps

1 and 2 for the specific application. We have observed that in many cases, selecting

half the total available elements (k = N/2) results in a good trade-off between resource

utilization and the number of configuration bits.

The choice between (N, k, σ) triplets that satisfy target pfail,total is highly dependent on

the requirements of the specific application. Consider the differential amplifier in Fig. 3.9
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where the input transistors are replicated N times. Assume that each input transistor has

transconductance gm, parasitic drain to bulk capacitance Cp and that Cp is the dominant

capacitance at the output nodes. If k pairs are selected and transistor output impedance

is assumed to be infinite, low frequency gain of the amplifier can be calculated as kgmRL.

Bandwidth is 1
RLNCp

. Gain bandwidth product (GBW) is then given as:

GBW = Gain×Bandwidth = kgmRL ×
1

RLNCp
=

k

N
× gm
Cp

(3.5)

Figure 3.9: Differential Amplifier

Static power consumption can be approximated as kVDDIb, where Ib is the current con-

sumption of each selected branch. (N, k, σ) triplets satisfying the pfail,total for offset can

be obtained by following the previously described design recipe. The choice among these

triplets can be made by considering the requirements of the target application:

• For an application where GBW is the important factor, highest k/N ratio among the

valid triplets should be chosen. Increasing device width W (decreasing σ) does not

yield much benefit since both gm ≈ µnCox
W
L

∆Vgs and Cp ≈ WCjunc (ignoring drain

junction sidewall capacitance) are linearly dependent on W [28].
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• For high gain, triplets with high k values can be chosen. Another option is to increase

device width W to increase gm, and hence look at slices with lower σ/spec.

• N can be decreased for the highest bandwidth. Reducing W (high σ/spec slices) will

also help.

• To minimize the static power consumption, k should be decreased.

• If the storage area of the configuration bits needs to be small, triplets with smaller N

should be chosen. A design with larger elements (smaller σ/spec) will require smaller

N to achieve the same pfail,total, and will have smaller storage penalty.

The decision cube in Fig. 3.8 assumes that all available subsets are searched for a given

set of N elements. If there is enough processing power available to perform an intelligent

search, it is possible to search through all 2N − 1 available combinations. An easier but

less optimal option is a greedy search, where random combinations are uploaded to the

differential amplifer until a successful combination is found. We can limit the number of

trials to ensure that calibration time is not very long at the expense of a lower probability

of finding a good combination. The maximum allowable trials can be added as a fourth

dimension to the decision cube on Fig. 3.8, allowing the designer to evaluate the calibration

time trade-off in addition to the (N, k, σelement) triplets.

3.2.2 6-Bit Flash ADC in 45nm SOI CMOS

3.2.2.1 Basics

In the 65nm comparator array example, the comparators have reference inputs (Vref±)

that are generated by a precise on-die resistor ladder. The input offset of each comparator

needs to be as close to 0LSB as possible to accurately compare the inputs to the reference

inputs, and the modeling in the previous section considered this fact. SES was used to select

a good combination among the subsets of each comparator.
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Several recent Flash ADCs in the literature eliminate the reference resistor network com-

pletely and use built-in offsets of the comparators as the reference voltages [2–5, 29]. It is

indeed possible to calibrate the input offset of each comparator using SES to the desired

reference voltages. In this case, mismatch variations actually help in the design of the ADC.

Consider the N -bit Flash ADC architecture in Fig. 3.10. Each clocked comparator in the

array is only connected to the input differential voltage, and the outputs of the comparators

are connected to a digital backend consisting of a 1’s counter (Wallace Tree Adder). The

offsets of the comparators are calibrated to the desired 2N−1 reference voltages, rather than

to 0LSB target in the previous case.

Figure 3.10: N Bit Flash ADC with Built-in Reference

Due to the structure of the digital backend, the comparators need not be ordered. As

shown in Fig. 3.11 for a 6-bit Flash ADC, any comparator can fill any bin (reference voltage)

in the full scale range. A few redundant comparators can be added for better coverage of the

bins in the range. The bins have the centers at the desired reference voltages with a width

of 1LSB (±0.5LSB from the center of the bin).

The full scale range (FSR) of the ADC with built-in references would ultimately be

limited by the amount of variation in the comparator design: The higher the mismatch

variations, the wider the FSR. To widen the FSR, the comparator schematic in Fig. 3.12 is

used. In this schematic, 12 identical selectable elements (controlled by Sel < 1 : 12 >) are
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Figure 3.11: Bins in a 6-bit Flash ADC

used for “fine tuning” of the offset, similar to the case in the 8-bit ADC design. There are two

additional “coarse tuning” branches (controlled by Sel < 13 : 14 >) that can sink current

to systematically shift the mean of the offset distribution. Assuming that 6 elements are

chosen among 12, each comparator has 924 different offset we can select from. Considering

that the coarse knobs can also be turned on, a total of 2772(924× 3) different offsets can be

achieved per comparator using SES. Since any comparator is allowed to fill any bin in the

FSR, many combinations are available to build a self-referenced flash ADC.

The effect of the coarse tuning knobs can be seen on Fig. 3.13. The input offset distri-

bution of the comparator with both coarse knobs turned off is centered at 0. Minimum and

maximum achievable offset (approximately ±3σoffset) limits the full scale range. Using the

coarse knobs, the mean of the distribution can be shifted and hence a wider FSR can be

achieved.

3.2.2.2 Modeling

Consider the self-referenced flash ADC architecture in Fig. 3.10. Our goal in this chapter

is to determine the number of elements (N) in each comparator in Fig. 3.12, the amount of

shift the coarse tuning knobs introduce (Λ)and the size (offset) of each element (σelement) so
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Figure 3.12: Self-referenced Flash ADC Comparator

that all the bins in the ADC can be filled with 99.5% probability. In the analysis below, a

6-bit Flash ADC implementation is chosen as a demonstration.

SES based self-referenced ADC modeling is significantly different from the more con-

ventional 8-bit ADC design described previously. For the 8-bit design, post-manufacturing

calibration of each comparator is independent from each other and all the offsets are targeted

to 0LSB. This independence allows to build a decision cube for each comparator and calculate

the success probability of the chip easily by assuming independence among the comparators.

For the self-referenced design, the comparators need to be assigned to bins with the other

comparators in mind, the allocation should be done in the global level. Considering this

dependence among the comparators, a new method is applied for the 6-bit Flash ADC:

1. Determine the number of comparators in the ADC design. For a 6-bit ADC, 26−1 = 63

comparators are required.
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Figure 3.13: Coarse Tuning to Increase Full Scale Range

2. Determine a value for the number of redundant comparators (R) that are allowed in

the design.

3. Determine a value for N , the number of selectable elements in each comparator. The

offset standard deviation of each element is (σelement).

4. Determine a value for Λ, the amount of shift that the coarse knobs introduce.

5. Determine a value for the full scale range (FSR), normalized to σelement.

6. Run a Monte Carlo analysis in MATLAB for the ADC with N +R comparators, each

element having an offset distribution of N (0, σelement). Determine if all the bins in

the ADC can be filled by using these comparators. From the results, calculate the

probability that at least one successful configuration will be found with the given R,N ,

Λ and FSR.

7. Repeat the Monte Carlo run for a set of different values for R, N , λ and FSR.

The pseudo code for the described method is:

R = [r1 · · · ri]
N = [n1 · · ·nj]
Λ = [λ1 · · ·λk]
FSR = [fsr1 · · · fsrt]
for all r in R do

for all n in N do
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for all λ in Λ do
for all fsr in FSR do

Run Monte Carlo analysis for the ADC, calculate the success probability.
end for

end for
end for

end for

For the 6-bit ADC in consideration, only half of the total available elements are allowed to

be chosen (k = N/2). It is possible to extend the methodology by extending it to other k

values (1 ≤ k ≤ N) similar to the 8-bit ADC case. For 6-bit ADC the chosen range of values

are:

0 ≤ R ≤ 5

8 ≤ N ≤ 16

0 ≤ Λ ≤ 2σelement

1.5σelement ≤ FSR ≤ 6.5σelement

For each of the cases above, 104 Monte Carlo runs have been performed. In each run,

all the available subset offsets for each comparator are computed. A heuristic algorithm is

used to check if all the bins in the FSR can be filled (the bin width is ±0.5LSB from the

center of the bin). The algorithm runs through all the comparators (with all their subsets)

to fill the Bin 1 on Fig. 3.11. The first comparator found to fill the bin is assigned to Bin 1,

and that comparator is marked “no longer available”. The algorithm then skips to Bin 63

and repeats the process. Bins are filled from the edges to the center and the order of the bin

filling in this example is [1, 63, 2, 62, · · · , 32]. If at any time during the process a bin cannot

be filled with any remaining comparator, that Monte Carlo run is marked as a failure.

The simulated probability of finding a good configuration (i.e. filling of all the bins) for

the 6-bit ADC is given in the z-axis on Fig. 3.14. In this figure, no coarse tuning is applied

and no redundants are included (Λ = 0, R = 0).

From Fig. 3.14, it is clear that the maximum achievable FSR is approximately 2.5σelement

to 3σelement for a reasonable product yield. As the number of selectable elements increases,
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Figure 3.14: Simulated Success Probability for 6-Bit ADC, Λ = 0, R = 0, 8 ≤ N ≤ 16

a significant increase in success probability is observed; but the FSR is still limited. This

is expected, since the minimum/maximum achievable offsets (and hence the bounds of the

FSR) are limited by the amount of variation.

Fig. 3.15 shows the same plot when 2 redundant comparators are added to the design.

Addition of even a small number of redundant comparators increases the success probability

significantly, but does not have a big impact on FSR. The fundamental limit of variation is

still existent. This observation is in fact unconventional: More mismatch variation is actually

desired by this application to increase the FSR.

Fig. 3.16 shows a comparison of the success probability when the coarse knobs are added

with different amounts of shift they introduce. A clear increase in achievable FSR is noted

when the shift amount is increased. It is important to note that when the shift amount is

increased beyond a certain level, the success probability for the 6-bit ADC decreases for low

FSR values. This is mainly due to the fact that the distributions overlap less in 3.13, making
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Figure 3.15: Simulated Success Probability for 6-Bit ADC, Λ = 0, R = 2, 8 ≤ N ≤ 16

it harder to fill the tight bins with low FSR values. However, this is not a big concern since

higher FSR values are generally desired.

Finally, Fig. 3.17 shows the plots when 5 redundant comparators are added to the de-

sign. Success probability increases significantly with the relatively few additional redundant

comparators. It should be noted that any unused comparators in the design can be turned

off easily by turning off all the elements shown in Fig. 3.12, hence they have minimal impact

on the total power consumption. Based on the modeling results, the comparators in the

actual silicon implementation are chosen to have 12 elements with Λ ≈ 1.5σelement.

The results of the described methodology allows the designer to determine the most

suitable design choice among the various available trade-offs (N,R,Λ, FSR). The process

can be applied to different self-referenced ADC designs as the target application requires,

such as a different ADC resolution. The available subset space can be limited if an application

requires a maximum calibration time constraint.
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Figure 3.16: Simulated Success Probability for 6-Bit ADC, Λ = 0 to 2σelement, R = 0, 8 ≤
N ≤ 16
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Figure 3.17: Simulated Success Probability for 6-Bit ADC, Λ = 0 to 2σelement, R = 5, 8 ≤
N ≤ 16
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3.2.3 SES Based MEMS Resonator Array

3.2.3.1 Basics

Microelectromechanical systems (MEMS) based resonators can achieve very high quality

factors (Q > 1000), a characteristic highly desirable for (RF) systems [30]. The ultimate

goal is to integrate these resonators in standard CMOS process to be used as on-chip channel

select or band-pass filters, or mixer-filters. Unfortunately, these high-Q systems are prone

to manufacturing tolerances and even a few tenths of a percent variation in center frequency

can throw the resonator out of the desired filter band.

A simple block diagram of a superheterodyne RF receiver is shown in Fig. 3.18, where a

MEMS resonator is used as a mixer-filter. As an example, consider a Personal Communica-

tions Service (PCS) signal at fPCS = 1.9GHz received through the antenna and filtered using

a band-pass filter (BPF). The signal is then amplified by the low noise amplifier (LNA). The

MEMS resonator mixes the LNA output with the near-1.9GHz local oscillator (LO) signal

fLO, resulting in a low frequency output at |fPCS − fLO|. Resonant frequency (fRES) of the

MEMS device must be at |fPCS−fLO|: The sharp frequency response (Q = 2π×fRES

Bandwidth
) of the

resonator rejects all frequencies outside a narrow band of fRES, hence the name mixer-filter.

The output is then converted to the digital domain using an ADC, and the baseband output

is sent to a digital signal processor (DSP). In today’s commercial communicaton systems,

transistors and LC filters are used for on-chip mixing and filtering operations instead of

MEMS devices. This is in part due to the large variation in fRES with manufacturing. In

addition, antenna and the BPF are generally off-chip components because of the difficulty

in integrating them on the CMOS die.

As a further improvement of this concept, the MEMS device could potentially be placed

right after the antenna, replacing the costly off-chip BPF. The desired band or channel would

then be filtered by the resonator and amplified by an LNA on the die [30]. It is possible

to use the MEMS resonator as a mixer-filter to downconvert the input signal(Fig. 3.19).
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Figure 3.18: Superheterodyne Receiver Architecture

However, excessive insertion loss of MEMS devices and tight signal to noise ratio (SNR)

requirements might limit the feasibility of putting the resonator earlier in the receiver chain

than the LNA.

Figure 3.19: RF Receiver Architecture with On-die Channel/Band Filtering

In most CMOS-compatible MEMS resonators, electrostatic drives are used to convert

electrical inputs to a mechanical resonance. The mechanical resonance induces a change in

capacitance at the output node, inducing an electrical output current. Due to the losses in

the energy conversion, high insertion losses are prevalent. This is problematic for RF systems

where the received signal power is generally very low. Electrically parallel and mechanically

coupled arrays of resonators have previously been proposed to increase the effective resonator

gain and improve the SNR of the systems [30–34]. One advantage of mechanical coupling
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is to pull the frequencies of the individual resonators together to compensate for process

variations. The net result is similar to the Pelgrom type sizing in transistors: Standard

deviation of the resonant frequency of N mechanically coupled resonators is 1/
√
N of the

standard deviation the individual resonators (σfRES ,array =
σfRES,individual√

N
)[34]. However,

mechanical coupling can introduce other modes of resonance to the array, resulting in a

frequency response with many unacceptable peaks [32].

Another way of compensating for variations in the resonant frequency is to tune the

DC bias or polarization voltages (Vdc) that many MEMS devices require [33]. However,

sensitivity of fRES to Vdc is generally low and tens of volts of Vdc change might be required

to compensate for process variations. In the case of multiple resonators in an array, fine

tuning of each resonator with Vdc can quickly become infeasible.

Given the similarity of the problem in MEMS devices to the previously described tran-

sistor based case studies, it is clear that SES can be very beneficial in the case of an array of

MEMS resonators with large-scale process variations. Consider an array of identical, electri-

cally parallel MEMS resonators shown in Fig. 3.20. Assume that among the N resonators

in the array, at least k need to be selected to have enough gain as dictated by the RF system

design. Due to the manufacturing variations, not all of the resonators will have the same

center frequency. Selected resonators should fall within a small frequency band, close to the

bandwidth of one resonator, so that the combined electrical response does not have large

ripples(Fig. 3.21). Undesired resonators in the array can be turned off via Vdc (not shown).

Combined electrical output can then be amplified and further processed on the chip. The

array can be used as a filter or mixer-filter as previously described.

If a larger filter bandwidth is required as in a band-pass filter, the approach of binning

the resonators can be extended as shown in Fig. 3.22. The band of interest can be sliced

into several bins, each bin covering a frequency range of approximately the bandwidth of

each resonator. Among all the available resonators in the array, the bins can be filled one

by one until each bin has enough resonators for the gain requirement as dictated by the
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Figure 3.20: Electrically Parallel Resonator Array

Figure 3.21: Frequency Binning of Resonators

RF architecture. This approach requires a global consideration of the available resonators,

similar to the 6-bit ADC design problem. In the following section, an adaptation of the

SES methodology will be described for a MEMS resonator array intended to be used as a

filter/mixer-filter.

3.2.3.2 Modeling

In this section, our design process is described for a filter/mixer-filter consisting of an

array of nonideal MEMS resonators. A basic square frame resonator described in [35] is

used as the building block of the array, however, the methodology is not dependent on the

resonator choice.
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Figure 3.22: Frequency Binning of Resonators in a Large Band

Resonators are modeled in Cadence Virtuoso design environment using existing verilogA

NODAS modules in the CMU MEMS laboratory [36]. Minor modifications are made to

NODAS library modules to add process (global) and mismatch (local) variations. Due to the

lack of rigorous existing characterization data for the resonators, estimated variation values

are used for various mechanical properties such as Young’s modulus, width and thickness.

A block diagram describing the filter design flow is shown in Fig. 3.23. A square frame

resonator is built in Cadence using NODAS mechanical beam verilogA modules. Estimated

variation parameters are used to run Cadence Monte Carlo simulation for one square frame

resonator and the resonant frequency (fRES), gain (GRES) and quality factor (Q) for each

run are extracted. Results are fed into MATLAB to build an RLC equivalent circuit of the

resonator with a transfer function given as [37]:

TF (s) =
sC

LCs2 + sRC + 1
=

s/L

s2 + sR
L

+ 1
LC

=
s/L

s2 + 2ζωns+ ω2
n

(3.6)

where ωn = 2πfRES = 1√
LC

and ζ = 1
2Q

= R
2

√
C
L

. The gain of the system at resonance is

|TF |s=j2πfRES
= 1/R. Monte Carlo simulations in Cadence are run separately for process and

mismatch variations to identify the relative importance of each type of variation. RLC values

calculated in MATLAB are assumed to follow a joint (multivariate) normal distribution with
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a probability density function (pdf):

N (µ,Σ) =
1

(2π)3/2|Σ|1/2
e−

1
2

(x−µ)′Σ−1(x−µ) (3.7)

where µ is the vector of mean (nominal) values and Σ is the covariance matrix for RLC

values.

Figure 3.23: MEMS Filter Design Flow

Desired filter bandwidth (BW ), bin spacing(∆) in the bandwidth, filter gain (Gfilter)

and calculated nominal RLC values are used to find a good “bin profile” in MATLAB using

Monte Carlo simulations. The bin profile is the number of resonators assigned to each bin in

the bandwidth as shown in Fig. 3.24. If all bins in the bandwidth have the same number of

resonators, peaks are observed at the edges of the filter response. This is due to the abrupt

cut-off of resonators at the filter edges, and the lack of negating effect of resonators in nearby

bins. In order to prevent these peaks, a staggered decrease of resonators from center of the

band to the edges is used (Fig. 3.24). If the output of the resonators in the red shaded edge

bins is inverted, a sharper skirt roll-off can be achieved (shown in the red response curve on
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Fig. 3.24). In MATLAB, a good bin profile is found using the following methodology:

1. Given BW and ∆, find the center frequency for each bin. Calculate the RLC values for

each bin using the mean Q and GRES data from the Cadence Monte Carlo simulations

and Eq. 3.6. fRES for each bin is the center frequency of each bin.

2. Determine a set of values for the maximum number of resonators allowed in each bin

(Nmax). Nmax directly affects filter gain Gfilter.

3. Determine the number of bins at the edges that can have fewer than Nmax resonators.

The profile is constrained to be symmetrical around the midpoint of the filter band-

width. Only a monotonic increase of resonators per bin is allowed from the edges to

the center of the filter bandwidth. Bins at the farthest edge of the filter are allowed to

have inverted responses for sharper stopband roll-off.

4. Build a random bin profile based on the given constraints. Find the frequency response

of the filter with this bin profile based on the RLC values found in step 1. Calculate

an error value for the profile based on the flatness of the frequency response in the

passband and the attenuation in the stopband. Error value is lower if the response is

flat in passband, and attenuation is high in the stopband.

5. Repeat step 4 T times and select the “best bin profile” with the smallest error. T

can be increased to find more optimal designs, or a brute force approach by searching

through all possible bin profiles can be used.

Simulated annealing can also be used for the bin profile optimization. We have found

empirically that T ≈ 1000 yields acceptable results for this project. The best bin profile for

a set of different N values is found using the above approach.

The final step in completing the filter design is the Monte Carlo simulations in MATLAB.

The following steps are executed for each Monte Carlo run:
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Figure 3.24: MEMS Filter Bin Profile

1. Create Ni ≤ Nmax resonators for each bin in the bandwidth. Ni is the number of

resonators for bin i, as dictated by the best bin profile. The resonators are defined

by the equivalent RLC model in Eq. 3.6. Variations are added using Eq. 3.7. Mean

values for L and C are adjusted for each bin, since they define the resonant frequency

fRES. Each resonator among Ni has different fRES, Q,GRES parameters due to the

added variations.

2. Create Nextra extra resonators for each bin. These are redundant resonators to ensure

good statistical success probability that all of the bins in the bandwidth will be filled.

They are generated in the same way as the resonators in the previous step (Fig. 3.25).

3. Determine if all the bins in the bandwidth can be filled as the best bin profile dictates.

Note that some of the resonators will not be used. If all the bins can be filled, the

frequency response of the filter is computed. If the filter gain (Gfilter) has less than

±1dB ripple in the passband (to ensure good passband characteristics), the Monte

Carlo run is counted as a success.

Fig. 3.26 shows the results of 104 MATLAB Monte Carlo simulations for a MEMS

filter/mixer-filter designed for a 10MHz − 10.1MHz passband. Bin spacing (∆) is chosen
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Figure 3.25: Bin Profile with Extra Added Resonators

as 3kHz for a square frame resonator with a mean Q of 2000. Several curves are generated

for different Nmax values.

Results in Fig. 3.26 are obtained using only mismatch (local) variations turned on. Esti-

mated process (global) variations result in a resonant frequency standard deviation (σfRES
)

of more than 350kHz, a value larger than the entire passband. This requires a large number

of backup bins filled with resonators extending far out from the edges of the passband and

would make SES infeasible. Fortunately, process variations can be alleviated in the mixer-

filter operation by shifting the LO frequency (fLO) to compensate for the global fRES shift.

Phase locked loops with a wide tuning range make this trade-off possible [38]. σfRES
due to

mismatch is 25kHz.

Based on the results on Fig. 3.26, 90% success probability can be achieved for Nmax = 8

and Nextra = 12. Based on the given BW and ∆ values, a total of 618 resonators are

required to guarantee the 90% success probability, among which 210 are used. The designed

square frame resonator has an area of approximately 200µm × 200µm and a total die area

of approximately 25mm2 is required to accommodate all resonators. Although the required

area is large, several important points need to be considered:
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Figure 3.26: Expected Success Probability for the MEMS Filter (Only Mismatch Variations
Turned On)

• The analysis assumes a basic square frame resonator with fRES ≈ 10MHz. Other

resonator designs with smaller area (with generally higher fRES) can reduce the area

penalty significantly.

• The value of Nmax is highly dependent on Gfilter and the system SNR requirements.

Based on a specific application and a different resonator design, Nmax can be lower.

• Mismatch variation values used in the analysis are estimated values and can be pes-

simistic. A test run in the TSMC 0.35µm process has been completed by colleagues

in CMU MEMS laboratory to collect statistical variation data. Results from this run

will ultimately be used to better estimate the scale of variations that can be expected

from a commercial scale CMOS process.

• Even with the large area, potential cost savings from removing the off-chip BPF in Fig.
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3.19 can be significant if resonators are integrated on the same die with baseband RF

circuits. A stacked two-chip solution can also be considered with MEMS mixer-filters

and the rest of the RF baseband integrated on the same package.

3.2.3.3 Simulation Results

A Cadence Monte Carlo simulation has been performed to observe the improvement in

the MEMS filter array with and without SES. A block diagram of the simulation steps is

shown in Fig. 3.27.

Figure 3.27: Simulation Setup for the MEMS Filter

An array of 618 resonators, as modeled with verilogA, form a schematic design based

on the results obtained from the previous section. 10 resonators are connected to one tran-

simpedance amplifier to amplify the output of the resonators. LO input is set at 1V DC,

and RF input is set at 1V AC. Vp is set to 20V DC for all resonators (all on) and a Monte

46



Carlo analysis is run with 1 sample. Resonant frequency (fRES) of each resonator is stored

in a data file. The file is read into MATLAB and a selection based on the best bin profile

is performed. The selection data is then used to modify the Vp of each resonator and the

same Monte Carlo analysis is run in Cadence. For comparison to SES, the same simulation is

repeated when there are 8 resonators in each bin and all of them are turned on (no selection).

Results are shown in Fig. 3.28. For the SES array, magnitude variation in the passband

is lower and the attenuation in the stopband is higher. Phase response is also considerably

smoother.

3.3 Summary

The basics of the Statistical Element Selection methodology were introduced in this

chapter. SES relies on selecting a subset of identically laid-out, small elements to achieve a

desired specification. Its application to three different circuits were described in detail and

simulation results were presented.

Simulation results show that SES can achieve orders of magnitude matching improvement

compared to both redundancy and sizing. This is partially due to the vast number of subsets

available even with small number of elements. A decision cube was built to aid in the design

of SES-based flash ADCs with a traditional reference ladder based architecture.

SES also allowed us to benefit from the random variations to build a 6-bit, self-referenced

flash ADC where input offsets were calibrated to the desired reference levels. Design steps

to estimate the product yield, determine the number of selectable elements and the element

size were described.

As a further extension of the concept, a filter consisting of an array of MEMS resonators

were described. SES was used to find the number of required resonators to achieve a given

product yield. Circuit simulations were performed to measure the MEMS filter response

with and without the application of SES.
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Figure 3.28: Comparison of Magnitude and Phase for the MEMS Filter with SES and without
SES
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Chapter 4

Design Details and Silicon Results

4.1 Comparator Array in 65nm Bulk CMOS

4.1.1 Test Chip Architecture

A test chip consisting of comparators in 65nm bulk CMOS was designed and fabricated in

order to verify the modeling results. The comparator in Fig. 3.4 with 32 selectable elements

has been used as the basic building block, out of which 16 are chosen. Each die includes 255

comparators, intended to be used for an 8-bit ADC (Fig. 4.1, [22]). The architecture of the

test chip and the timing diagram for calibration is given in Fig 4.2.

The number of available selectable elements, the subset size and the size of each element

have been determined by using the methodology in the previous section. Maximum allowed

calibration steps per comparator is chosen as 10,000. The full scale range (FSR) of the

intended 8-bit ADC is 1V, giving a least significant bit (LSB) of 3.9mV. A comparator is

defined as “within the specification” if at least one combination among the 10,000 steps

results in an input offset voltage amplitude smaller than 0.5LSB. The design point is chosen

so that all 255 comparators will be within the specification with 99.5% probability. During

the design of the comparator, transistors in the shared block are sized such that their effect

on the overall offset is much smaller than the replicated transistors. The offset distribution of
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Figure 4.1: Die Photo of 65nm Test Chip

the comparator was obtained by running a Monte Carlo simulation during the design phase.

Threshold voltage mismatch in the input transistors (∆Vth,in) and the shared transistors

(∆Vth,shared) were noted for each run. Using an approach similar to [39], a linear offset

model was built from the Monte Carlo simulation results:

Offset = (a×∆Vth,in) + (b×∆Vth,shared) (4.1)

The sizes of the transistors in the replicated section are increased until their effect on

the offset is much smaller than the input transistors (b� a). The total width of the shared

transistors is comparable to the sum of the widths of the replicated transistors.

There are 8160 (= 255× 32) select flip-flops that store the configuration bits for the 255

comparators. The differential output (2 bits) of each comparator is stored in 2 scan flip-

flops, yielding a total of 510 output scan flip-flops. In order to find the input offset of each

comparator, the timing diagram on Fig. 4.2 needs to be examined. In region 1, configuration

bits are scanned into the select flip-flops by using Scan In input and running Select Clk. Scan

Enable is held low during this period. After all the selection bits are scanned in, Core Clk

for the latch type comparator is run a few times to allow the outputs of the comparators
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Figure 4.2: Comparator Array Test Chip Architecture

to settle and clear any metastability in the latches(region 2). Comparator outputs are then

loaded to the output scan flip-flops, which are subsequently put into scan mode by raising

Scan Enable (region 3). The differential output for each comparator is then read from Scan

Out by toggling Scan Clk. The inputs (Vin+/−) are swept in small steps and the outputs of

the comparators are read for about 50 times through the output scan chain. At each input

step, the number of times that each comparator outputs a value of 1 is noted. The input

voltage vs. number of 1’s curve is then fitted to a Gaussian cumulative distribution function,

whose mean is used as the input offset voltage of the comparator for the given configuration.
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4.1.2 Test Setup

The test setup for the measurements is shown on Fig. 4.3 [22]. The setup is automated

using built-in MATLAB toolboxes on the PC. Keithley 2400 sourcemeters with high precision

are used for input voltages, and Agilent E3648A DC sources are used to supply the power

to the core, I/Os, and the voltage references for the resistor ladder on the die. Core power

supply is set at 0.8V and both ends of the resistor ladder are set at 0.4V. The chip is bonded

in a QFN package and connected to a PC board using a compatible socket. Using the test

socket, packaged die can be changed easily for statistical data collection.

Figure 4.3: Measurement Setup

Only a maximum of 10,000 calibration steps per comparator is allowed among more than

600× 106 available combinations for each comparator. Since it is not possible to go through

each of the 10,000 combinations per comparator due to measurement time constraints, the

following method is applied to find the best sets:

1. Randomly determine 10,000 subsets of size k = 16 that each comparator can be con-

figured to. These are the same for all comparators.
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2. Determine a number of these subsets (X among 10,000) to be loaded to each compara-

tor. Store these subsets in a selection matrix:

SelX×N =



S1,1 S1,2 · · · S1,N

S2,1 S2,2 · · · S2,N

...
...

. . .
...

SX,1 SX,2 · · · SX,N


Each row of the matrix contains the configuration bits for each of the N = 32 elements.

If element e of subset s is selected, Ss,e = 1, and 0 otherwise. The sum of each row is

k = 16.

3. Measure the offset of each subset in the selection matrix and store it in a measured

offset vector:

MOX×1 =



mo1

mo2

...

moX


4. Find the estimated offset of each element in each comparator using the least squares

solution in MATLAB:

ION×1 =
1

k
· (SelX×N)−1 ·MOX×1 (4.2)

5. Using the estimated offsets of each element, in MATLAB find the T best subsets among

the 10,000 subsets that are predicted to have less than 0.5LSB offset.

6. Upload the T subsets for each comparator to the test chip, and record the measured

offset for each trial. For each comparator, select the subset that gives the lowest

measured offset.
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4.1.3 Measurement Results

A 65nm bulk CMOS test chip consisting of 255 comparators was fabricated. Comparator

offsets from 13 different die (3315 comparators) were measured and calibrated using the

methodology described above.

Figure 4.4 shows the histograms before and after SES has been applied to the compara-

tors. The top plot shows the offset histogram when all 32 laid out elements are turned on

(no selection). The bottom plot shows the resulting histogram after SES has been applied

to find the best subset among 10,000 allowable for each comparator. Subset size is k = 16.

Close to two orders of magnitude is improvement in σoffset is observed, from 11.21mV to

0.35mV.

Figure 4.4: Measured Offset Histograms Before and After SES (3315 comparators)
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Figure 4.5 shows the histograms for 2X and 4X redundancy as applied to the comparators.

For 2X redundancy, 32 elements in each comparator are divided into two blocks of 16 (the

first 16, and the last 16). The block with the lower offset is selected. For 4X redundancy,

32 elements are divided into four blocks of 8 elements, and the lowest offset combination

among the 4 is selected. Although improvement is observed compared to select all (32/32),

redundancy lags significantly behind SES in terms of performance. Redundancy results are

collected from a smaller test sample of 5 die (1275 comparators).

Figure 4.5: Measured Offset Histograms for Redundancy (1275 comparators)

Success probability, defined as the number of comparators that have less than ±0.5LSB

offset, is 15% for “select all”(32/32). Success probability for 2X and 4X redundancy is 25%

and 28%, respectively. SES gets 99.5% success for select 16 over 32 as expected by modeling.
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Fig. 4.6 shows the SES success probability and 95% confidence intervals as N is varied

from 16 to 32. k = N/2 for each N . Number of tested comparators is 3315. Success

probability increases almost monotonically with increasing N , and above 98% success is

observed for all cases.

Figure 4.6: Measured Success Probability for SES, N = 16 to 32 (3315 Comparators)

Fig. 4.7 shows standard deviation of the minimum measured offset data from one die (255

comparators) for N = 14 and 1 ≤ k ≤ 14. In this test, two branches in Fig. 3.4 form one

selectable element: Branches controlled by Sel < 1 : 2 > form element1, Sel < 3 : 4 > form

element2, and so on. Branches Sel < 27 : 28 > form the last selectable element, element14,

and the last four branches are always turned off. For each k value, all the subsets of size

k (total
(
N
k

)
subsets) are loaded consecutively to the chip and the offset is measured. The

subset with the minimum offset among
(
N
k

)
is chosen and its value noted for each of the 255

comparators. The plot shows the standard deviation of the minimum offset from the 255

points for each k value. The measured results validate the overall type of expected curve on

Fig. 3.5 with a minimum occuring at k = 4.
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Figure 4.7: Measured Offset Standard Deviation Contour, N = 14 (255 comparators)
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4.2 6-Bit Flash ADC in 45nm SOI CMOS

4.2.1 Test Chip Architecture

The architecture of the 6-bit ADC closely follows the 8-bit design shown on Fig. 4.2.

The major differences are the number of comparators (68 comparators instead of 255) and

the lack of Vref signals in the 6-bit design. Total active die size, excluding decoupling, is

0.2mm × 0.2mm. Fig. 4.8 shows a die photo of the fabricated ADC. In addition to the

coarse knobs, only 6 of the 12 identical elements are allowed to be chosen.

Figure 4.8: 6-bit ADC Die Photo

A basic layout diagram of the ADC is given on Fig. 4.9. Comparators are split into two

equal halves and the input and clock signals are routed in the center using an H-tree routing

in top metal layers. Direction of the Scan In and Scan Clk signals are shown in the diagram.

Each comparator block consists of:

• SES based comparator on Fig. 3.12. Standard floating body transistors in SOI tech-

nology are used. Input NMOS transistors (M1-M2) are near minimum size and have

higher threshold than the latch, precharge and clock transistors (M3-M14) to increase

their effect on the input offset.
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• An SR-latch following the comparator.

• An AND gate following the SR-latch to disable the comparator output (5 unused

comparators are turned off).

• 15 D-type flip flops forming a section of the select scan chain in Fig. 4.2: 12 for branch

selection, 2 for coarse tuning knobs, and 1 for disabling comparator output.

• 2 scan flip-flops to store the outputs of the comparator (output flip-flops in Fig. 4.2).

Figure 4.9: Layout Diagram of the 6 Bit ADC

Comparator outputs are added using a Wallace Tree adder, followed by a ripple carry

adder. A subsampler follows the final 6-bit output because the I/O pad speed is limited
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to approximately 250MHz. A simple schematic of the subsampler (digital clock divider) is

given in Fig. 4.10, where a division ratio of 2, 4 or 8 can be used to subsample the outputs.

Full speed output can also be used to output from the pads.

Figure 4.10: Digital Clock Divider (Subsampler)

As process scaling continues, restricted layout rules become more common in CMOS

circuits to improve the printing of critical dimensions. Dense memory circuits, such as

SRAMs, have become one of the first to adopt regular layouts. Fig. 4.11 shows die images for

different process nodes for Intel Corporation [6]. Single poly orientation has been introduced

while moving from 90nm to 65nm, and fixed poly pitch for logic has been introduced at 45nm.

Logic layout rules have become tighter and started to resemble SRAMs at 45nm. Regularity

was also introduced in less critical layers such as Metal1. For future nodes, analog circuits

on the same CMOS die will also be required to follow similar restricted rules to control

systematic variability.

(a) 90nm SRAM (b) 65nm SRAM (c) 45nm SRAM (d) 45nm Logic

Figure 4.11: Process Scaling for Intel Corporation [6]

60



SES allowed us to build an almost digital ADC with near minimum size devices. No

resistors or capacitors were used, except for decoupling. Fig. 4.12 shows a section (two

selectable elements) of the extremely regular layout style used in the comparator. The

layout fabric constrains the active (RX), poly (PC) and Metal1 through Metal3 (M1 to

M3) layer widths and spacings. The same layout fabric was used for SRAM memory and

digital standard cells in the same 45nm run by colleagues at CMU. The design is compatible

with future digital CMOS processes where tight layout design rules are expected for extreme

regularity.

Figure 4.12: Section of Regular Comparator Layout for 6-bit ADC
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4.2.2 Test Setup

Test setup for the self-referenced design is similar to the comparator array test chip and

a diagram is given on Fig. 4.13. An Agilent N5181A source is used for analog input. The

analog input is converted to differential mode by using 180◦ phase shift splitter(Mini Circuits

ZFSCJ-2-1-S). Bias-T’s are used to add the common mode voltage (Vcm) and the inputs are

terminated on the board using 50Ω resistors. Agilent 81134A pulse pattern generator is used

as the clock source and the digital outputs are measured using the logic analyzer. The clock

source and the analog input source are connected to the same reference 10MHz frequency

(not shown).

During calibration, the Keithley 2400 sources are swept around Vcm to find the input

offset voltage of the comparators while the analog inputs (N5181A) are set to 0. During

dynamic testing, Keithley sources are set to Vcm as the analog input is applied. The logic

analyzer is triggered by the clock source (81134A) to capture the 6-bit digital output from the

chip. The trigger frequency is adjusted according to the subsampling ratio used in testing.

The chip is packaged in a QFN 44 pin package but not soldered to the test board. A

high speed compression mount test socket from Emulation Technologies (ET2300C) is used.

Inputs are delivered via SMA connectors.

4.2.3 Measurement Results

Differential and integral nonlinearity (DNL and INL) plots for the ADC are shown in

Fig. 4.14. There are no missing codes due to the inherent architecture of the ADC. All the

measurements are performed at Vdd = 0.85V and Vcm = 0.45V . Full scale range (VFS) is

300mV peak to peak.

Fig. 4.15 shows the FFT magnitude plot of the ADC output for fS = 500MS/s and

fin = 243.1MHz. The output is subsampled on the die with a ratio of 4, and the input

signal folds into ≈ 7MHz. The highest harmonic (3rd) is 35dB below the carrier.

Fig. 4.16 shows the Spurious Free Dynamic Range (SFDR), Signal to Noise and Dis-
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Figure 4.13: Test Setup for 6-bit ADC

tortion Ratio (SINAD) and Signal to Noise Ratio (SNR) plots of the ADC output for

fS = 500MS/s. The ADC achieves a maximum SINAD of 29.3dB, yielding an ENOB

of 4.6bits. SFDR is significantly higher, remaining above 35dB throughout the input range.

Static power consumption is 0.085mW , and total power consumption at fin = 243MHz is

1.9mW . Using FoM = Power
2ENOB×fS

, a figure of merit of 157fJ/step is achieved.

A MATLAB simulation using the DNL and INL data in Fig. 4.14 yields an ENOB of

5.3bits. Loss of another 0.7bits in measurement can be attributed to other noise sources in the

ADC including comparator noise, power supply noise and clock jitter. The main component

among these is thought to be the power supply noise. In order to measure the sensitivity

of input offset voltage (Vos) to Vdd, 100 Monte Carlo Spectre simulations are performed for

Vdd = 0.85V and the input offset voltage is noted for each run. The simulation is repeated

for Vdd = 0.84V and Vdd = 0.86V with the same seed to the random number generator. The
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Figure 4.14: DNL and INL plot for the ADC

Table 4.1: Mean difference of input offset voltage with respect to Vdd

Vdd : 0.85V → 0.84V Vdd : 0.85V → 0.86V
Both coarse knobs OFF < 0.5mV < 0.5mV
Positive coarse knob ON −3.7mV 3.9mV
Negative coarse knob ON 3.9mV −3.9mV

difference in the offsets for each run is calculated, and means of the difference in offsets are

noted in Table 4.1. Results are shown when both of the coarse knobs are turned off, and

when either one is turned on. When the coarse knob to introduce positive shift is turned

on, 10mV decrease in Vdd results in a mean decrease of 3.7mV in offsets (i.e., the amount of

introduced systematic shift decreases, moving the mean of the distribution closer to zero).

Similarly, 10mV increase in Vdd increases the introduced systematic offset by 3.9mV (offsets

move further away from zero). Thus, a peak-to-peak change of close to 8mV of offsets is

observed when Vdd changes by 20mV . Given that LSB ≈ 5mV , significant degradation in

ENOB can be expected. Measured offsets, as Vdd is changed from 0.84V to 0.86V , closely

track the values in Table 4.1.
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Fig. 4.17 shows the FFT plot of the ADC output at fS = 1000MS/s and fin =

497.1MHz. Fig. 4.18 shows the dynamic test results for fS = 1000MS/s. Low frequency

SINAD and SFDR are 28.5dB and 38dB, respectively. Power at fin = 243MHz is 3.5mW,

and FoM = 160fJ/step.
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Figure 4.15: FFT Magnitude Plot for fS = 500MS/s and fin = 243.1MHz

Figure 4.16: Dynamic Test Results for fS = 500MS/s
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Figure 4.17: FFT Magnitude Plot for fS = 1000MS/s and fin = 497.1MHz

Figure 4.18: Dynamic Test Results for fS = 1000MS/s
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4.3 Summary

In this chapter, measurement results from two separate CMOS designs were presented.

Measurement results clearly demonstrate the feasibility of SES.

The first design was manufactured in 65nm bulk CMOS and consists of a comparator

array intended for an 8-bit flash ADC with a traditional reference ladder architecture. Data

showed that with sizing, only 15% of the comparators met the desired offset specification

(±0.5LSB). Redundancy improved this to 28% when 4 redundant blocks were used, while

keeping the total area equivalent to sizing. SES achieved better than 99.5% success proba-

bility with the same die area. For redundancy and SES, area required for the storage bits

have not been considered since this is dependent on the chosen storage technology.

The second design is a self-referenced 6-bit flash ADC that was manufactured in 45nm

SOI CMOS. The comparators were laid out in a restricted pattern to be compatible with the

tight design rules expected in future CMOS processes. The ADC achieved 1GS/s sampling

rate with up to 28.5dB SINAD and 38.5dB SFDR. Power consumption was almost fully

dynamic at 3.5mW (fin = 243MHz), resulting in an FoM of 160fJ/step. High sensitivity of

the comparator to power supply noise, especially when systematic offset knobs were turned

on, caused degradation in SINAD.
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Chapter 5

Conclusions and Future Work

Process variations in advanced CMOS process nodes limit the benefits of scaling for

analog designs. In the presence of increasing random intra-die variations, mismatch becomes

a significant design challenge. Many critical analog circuits, such as comparators in flash

ADCs, are susceptible to mismatches that cause undesired input offsets.

In this dissertation, the basics of the Statistical Element Selection methodology were

introduced in detail. SES is a post-manufacturing calibration step that relies on selecting

a subset of identically laid-out, small elements to achieve a desired specification, such as

input offset voltage. Its application to three different circuits were described. Simulation

and measurement results were presented.

The first circuit is a comparator array in 65nm bulk CMOS intended to be used in a

traditional reference ladder based flash ADC architecture. Steps in the SES methodology

were described and a decision cube was built to aid in the design of the ADC. Measure-

ment results showed that only 15% of the comparators met the desired offset specification

(±0.5LSB) with sizing. Redundancy improved this to 28% when 4 redundant blocks were

used, while keeping the total area equivalent to sizing. SES achieved better than 99.5%

success probability with the same die area. For redundancy and SES, area required for the

storage bits were not considered since this is dependent on the chosen storage technology.
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An 8-bit ADC was designed by a colleague using this methodology and achieved 1.5GS/s

sampling rate with an FoM of 0.42pJ/step [22].

SES also allowed us to benefit from the random variations to build a 6-bit, self-referenced

flash ADC where input offsets were calibrated to the desired reference levels. Design steps to

estimate the product yield, determine the number of selectable elements and the element size

were described. The comparators were laid out in a restricted pattern to be compatible with

the tight design rules expected in future CMOS processes. The ADC was manufactured

in 45nm SOI CMOS and achieved 1GS/s sampling rate with up to 28.5dB SINAD and

38.5dB SFDR. Power consumption was almost fully dynamic at 3.5mW (fin = 243MHz),

resulting in an FoM of 160fJ/step. High sensitivity of the comparator to power supply noise,

especially when systematic offset knobs were turned on, caused degradation in SINAD.

This work can benefit from a better comparator design with less sensitivity to the power

supply noise (PSN). Coarse tuning knobs can be replaced with MOS capacitors with select

switches, similar to [2]. The test socket can be eliminated and the package directly soldered

to the printed circuit board to reduce parasitic inductance and PSN. Assuming the PSN issue

is resolved, the architecture has the potential to be scaled to higher sampling frequencies.

Since power consumption is almost fully dynamic, similar FoM results can be expected.

6-bit ADC measurement data was collected from only one die. Measurement results from

other die can yield valuable information about the average ENOB that can be expected using

SES. A future version of this chip can integrate calibration circuitry on the die to speed up

the calibration process.

As a further extension of the concept, a filter consisting of an array of MEMS resonators

was described. SES was used to find the number of required resonators to achieve a given

product yield. Circuit simulations were performed to measure the MEMS filter response

with and without the application of SES. Results showed clear improvement of the filter

response, both in magnitude and phase, when SES was used.

Simulations were performed on estimated variation models for the resonators. Measure-
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ment results from a test run to gather statistical data about resonators are crucial. This

will help guide further research about the feasibility of SES for MEMS resonators. Other

resonator styles with possibly higher gain and smaller area can also be investigated. A com-

plete RF system can be built and the results can be compared to the expected simulation

results to demonstrate the feasibility of the concept in silicon.
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