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Abstract

Given a desired function for an effector, what is its appropriate shape? This thesis addresses
the problem of designing the shape of a rigid end effector to perform a given manipulation
task. It presents three main contributions: First, it describes the contact kinematics of an
effector as the product of both its shape and its motion, and assumes a fixed motion model
to explore the role of shape in satisfying a certain manipulation task. Second, it formulates
that manipulation task as a set of constraints on the geometry of contact between the
effector and the world. Third, it develops tools to transform those contact constraints
into an effector shape for general 1-DOF planar mechanisms and general 1-DOF spatial
mechanisms, and discusses the generalization to mechanisms with more than one degree of
freedom.

We describe the case studies of designing grippers with invariant grasp geometry, grip-
pers with improved grasp stability, and grippers with extended grasp versatility. We further
showcase the techniques with the design of the fingers of the MLab hand, a three-fingered
gripper actuated with a single motor, capable of exerting any combination of geometrically
correct enveloping or fingertip grasps of spherical, cylindrical, and prismatic objects of
varying size.
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Figure 1: Effectors whose shape is relevant to their mechanical function: (a) hexapod robot
“RHex”, (b) sickle, (c) crab pincer, (d) manual gripper “Grip’n Grab”, (e) claw crane, (f)
cockroach antennae, (g) prosthetic hook, (h) prosthetic leg, and (i) rock-climbing cam.

1 Introduction

“... that form ever follows function. This is the law.”

— Louis Sullivan, The Tall Office Building Artistically Considered.

Robotic hands, and end effectors in general, play a privileged role in the manipulation
chain. They contact the world. That role gives them an advantageous position to convey
function and contribute to a solution to the manipulation problem, either by means of their
actions or by means of their design. In this thesis we look at effector shape as a design freedom
and explore its possible role in expressing effector function.

The connection between effector function and effector shape is ubiquitous in manipulation
and all of robotics (Figure 1). Although most of the applications developed in this thesis are
in the context of robotic hands, the intended scope is larger. We will make use of the term
end effector, or simply effector, to refer to a hand or one of its fingers, or a foot, or a tool, or
in general any surface meant to contact the world.

Effector shape plays an important role in determining the reaction of an object to contact
and has the potential to express mechanical intelligence, yet the design of effector shape has
been relatively neglected compared to other areas of manipulator design research. Particularly
significant is the prolonged interest in transforming actuation into carefully planned motion by
using mechanical devices such as cams, linkages, or gears. In this thesis, instead, we assume a
fixed motion or actuation for a mechanism and study the role of shape in producing mechanical
intelligence. We start motivating the relevance of shape to manipulation by describing the
mechanics of rock-climbing cams, a simple but functional device that served as inspiration for
this thesis.
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(a) (b)

Figure 2: (a) Spring loaded cam for rock-climbing. The device uses the wedge effect to trans-
form pulling force Fp into magnified friction force Ff . (b) Static force diagram of contact
mechanics between cam and wall, for a given wall width 2d.

1.1 Example: Rock-Climbing Cam

A spring loaded rock-climbing cam, Figure 1i, is a device used to secure anchor points in cracks
in the rock face. As illustrated in Figure 2a, the device uses the mechanical advantage of the
wedge effect to convert pulling force Fp into magnified friction force Ff .

The condition for static equilibrium—zero torque at the rotation center c—applied to the
force diagram in Figure 2b yields a relation between the friction force, the coefficient of friction
of the wall µ, and the contact angle β:

r · Ff cosβ = r · FN sinβ

[Ff ≤ µFN ] FN tanβ ≤ µFN
β ≤ tan−1 µ (1)

which illustrates that the contact angle β is a particularly relevant factor to the design of
rock-climbing cams. Leaving aside the details of how to chose the optimal β (which in practice
has a strong experimental component) for this discussion it is enough to note that planning
for a specific value of β is critical in the design of rock-climbing cams.

For a known wall width 2d, it is rather straightforward to impose a given contact angle β.
The shape of the cam can adapted to follow the desired tangent v at the desired contact point
p. That condition, however, is only for a specific wall width d, and cracks in the rock face are
not of a fixed width.

To avoid carrying a large collection of cams—one for each crack size—the question arises of
whether it is possible for a single cam to satisfy that contact pattern for different wall widths,
that is, if it is possible for the contact pattern to be invariant with the size of the crack, and
preserve the contact angle β while the cam opens and closes adapting to different wall widths.

The short answer is yes. Each wall width in Figure 3 imposes a different tangential contraint
on the shape of the cam. The key observation that leads to this thesis is that those tangential
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Figure 3: Invariant loading pattern for different wall widths. The cam must satisfy the tangents
vi for different wall widths di.

Figure 4: A cam following a logarithmic spiral yields invariant contact geometry with respect
to the width of the crack.
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constraints can be integrated to obtain the shape of the cam. In this thesis we show how to
formulate and solve the problem in a more general setting. We will see in Section 6.1.1 that,
for the specific case of the rock-climbing cam, the solution is a logarithmic spiral (Figure 4).

It is interesting to notice that logarithmic spirals have been used for decades in the design
of climbing cams. The invention of the modern rock-climbing cam is attributed to Raymond
Jardine [31], who used a logarithmic spiral, with camming angle β = 13.5◦.

The climbing cam is an inspirational exercise of making use of shape at the service of
simplicity and robustness. There is no required sensing or control involved in its operation.
The details to achieve a functional contact geometry with the wall are worked out by the
“mechanical intelligence” of its design. The main question we explore in this thesis is how to
formalize that principle and apply it to other domains.

1.2 Shape and Simple Hands

This thesis also grew out of our interest in simple hands, focused on enveloping grasps of
objects with uncertain pose and shape [40, 62, 63, 41, 49, 50].

The traditional approach to grasping uses knowledge of object geometry and grasp me-
chanics to plan for contact points. We refer to that approach as “putting the fingers in the
right place”, illustrated in Figure 5a. In this context, the details of phalange shape are of little
consequence, since usually only the tip of the finger is involved in the grasp. The adaptation
to variations in object shape and pose is achieved through active control of several actuators
per finger.

(a) “Putting the fingers in the right place” (b) “Letting the fingers fall where they may”

Figure 5: Two different approaches to grasping: (a) The hand uses knowledge of object geom-
etry and grasp mechanics to plan for contact points. (b) The hand closes with the expectation
that the details of hand/object interaction will be worked out automatically.

Simple hands, often with one actuator per finger, or even one actuator driving several
fingers, lack the necessary complexity to realize planned contact formations. For hands like the
prosthetic hook in Figure 1g, the crab pincer in Figure 1c, or the manual gripper in Figure 1d,
the job of gracefully adapting to shape and pose variations may fall on mechanical attributes
other than kinematic complexity, such as compliance or underactuation, or, as explored in this
thesis, on finger shape.
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(a) (b)

Figure 6: (a) MLab Hand grasping spheres of varying size with invariant contact geometry.
(b) Set of contacts used to design the fingers. They enable the MLab Hand to grasp spheres
of varying size both in enveloping and fingertip configuration.

Simple hands adapt to varying shapes and poses by the emergent interaction of hand with
object. We can refer to this approach by “letting the fingers fall where they may”, illustrated
in Figure 5b. Hollerback [30] describes it as “the details work themselves out as the hand and
object interact rather than being planned in advance”. In this context, the actual forms of the
phalanges and the palm become important.

If it is the case that phalange form is important, what principles should guide its design?
It depends on context—the specific application, the hand design philosophy, and in particular
on the function assigned to the fingers. In this thesis we explore possible roles of fingers in
producing “mechanical intelligence”, including adaptation to variations in object shape and
pose (Section 6.2), improvement of the stability of a grasp (Section 7.2), and extension of the
versatility of a gripper (Section 8.2). Figure 6 shows a motivating example of how the fingers
of grippers can be designed for a purpose. Their curved phalanges yield geometrically correct
fingertip and enveloping grasps of spheres of varying size. We will approach the problem in
greater detail in Section 8.2 with the design of the fingers of the MLab Hand.
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1.3 Shape and Mechanical Function

The goal of this thesis is to develop techniques to synthesize shape for the purpose of some
manipulation task, or mechanical function. The starting point of the thesis is that manipulation
task, which we will assume is described as set of constraints to the geometry of contact between
the effector and the rest of the world.

In practice, we will specify a set of contacts in the workspace that the effector should
reproduce when driven by its actuator, and develop techniques to integrate those contacts into
an effector shape.

The basic idea of using contacts to represent a mechanical function is illustrated in Figure 7,
with the task of pushing a disk along a given path. In an idealized frictionless quasistatic
world, an effector should contact the disk with a contact normal along the path tangent as in
Figure 7b. In the presence of friction or perturbations, the disk would surely deviate from the
desired path. In that case, the “corrective” contacts shown in Figure 7c are chosen to stabilize
its motion. Examining these additional corrective contact constraints would allow one to reject
a point pusher, or a flat pusher, and instead choose a cupped shape.

Figure 7: An example task represented by a set of contact constraints. (a) The goal is to
move the disk from A to B along the given path. (b) For the disk to follow the path, the
effector must push it along the path tangent, which gives a continuum of contact constraints.
(c) We can add extra “corrective” constraints to make the push robust to perturbations, such
as friction.
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Reducing a desired function to contact constraints is quite common in manipulation, for
example is used to characterize the rigidity of a grasp, or to explain the stability of an object
at rest on a table. The power of the representation lies within the assumption that once the
task is described as a set of geometric contact conditions, we can forget about the task itself,
and the rest of the world. We just need to design a mechanism or a control algorithm capable
of contacting as specified.

1.4 Contributions

The main contribution of this thesis is to formalize the shape synthesis problem as one of
satisfying a pattern of contacts. In particular:

• We describe an effector as the product of its shape and its motion (Section 3). First, we
represent the effector motion, independently of the shape attached to it, by a vector field
in W × T , cartesian product space of the workspace and the mechanism configuration
space. Then, assuming a fixed motion model, we explore the role of shape in satisfying
a certain mechanical purpose.

• We assume the desired mechanical purpose is represented by a set of constraints on
the geometry of contact between the effector and the rest of the world, and formulate
conditions for the effector to satisfy them (Section 4).

• We then use the formalizations of shape, motion, and contact constraint to formulate the
shape synthesis problem (Section 5).

In the second part of this thesis we particularize the formulation to planar rotational
joints (Section 6), general 1-DOF planar actuation (Section 7), and general 1-DOF spatial
actuation (Section 8). We use those case studies to describe approaches and issues in solving
the shape synthesis problem, and to illustrate three principles to guide the design of finger form:
grasp invariance with respect to variations in object shape and/or pose, improvement of grasp
stability, and extending grasp versatility. We finish in Section 9 discussing limitations of the
proposed formulation, possible extensions to the multi-DOF case, and other future directions.

2 Related Work

There is a long history of using mechanical design in place of online computation, especially
in that period before computers were available. The principle of replacing computation with
mechanical design has been called “mechanical intelligence” (Ulrich [74]), “hard automation”
(Canny and Goldberg [13]) “morphological computation” (Pfeifer and Iida [53]) or “adaptive
mechanics” (Gosselin [25]), as further developed in Figure 8.

Mechanisms such as cams, linkages, or gears have been used for centuries to synthesize
motion (Hartenberg and Denavit [28], Paul [51], Shigley and Uicker [68], McCarthy [42]) or
to compute (Svoboda [69]). One notable application is the design of kinematic and passive-
dynamic mechanisms to produce walking machines (Raibert [54], McGeer [43], Collins et al.
[15], Gomes and Ruina [24]), which dates back at least to the 18th century, with a walking
device based on Chebyshev’s linkage to transform rotational motion into approximate straight-
line motion (Lucas [38]). In an example particularly pertinent to the present work, McGeer
[43] examines foot shape and the resulting evolution of contact between foot and ground.
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Figure 8: Different instantiations of the principle to replace online computation by mechanical
design: (a) Mechanical intelligence of the UPenn Hand (precursor to the Barrett Hand [1]).
Ulrich [74] designs a three fingered robotic hand with reduced kinematic complexity. Each
finger has two degrees of freedom, but is driven by a single motor. When in contact, a clutch
mechanism disengages the proximal phalange to facilitate enveloping grasps. (b) Canny and
Goldberg [13] illustrate the concept of hard automation with an example of an assembly plan
“compiled” into a mechanism (figure adapted from [23]). (c) Morphological computation of
Puppy, a robotic quadruped developed by Pfeifer and Iida [53] that locomotes with no sensory
feedback (figure adapted from [53]). (d) Adaptive mechanics of the Sarah Hand [35] (precursor
to the RobotIQ gripper [58]). Rubinger et al. [64] design an underactuated robotic hand that
passively adapts to the shape and size of an object.

Perhaps most relevant to this thesis is the desire to build simple yet capable robotic hands,
where compliance and underactuation take care of shape adaptation which in turn reduces
the need for complex mechanics and controls (Hirose and Umetani [29], Ulrich et al. [75, 74],
Rubinger et al. [64], Laliberte and Gosselin [35], Dollar and Howe [18, 20], Birglen et al. [5],
Mason et al. [62, 41], Odhner et al. [47], Ciocarlie et al. [14]).

In this thesis, rather than actuation or compliance, we target the shape of a mechanism
as conveyor of mechanical intelligence. In general, shape alone is not enough to solve a ma-
nipulation problem, however, it is a “cheap” design freedom with potential benefits both in
terms of simplicity and robustness. The circular leg design by Moore et al. [45] for the robotic
hexapod Rhex (Saranli et al. [66]) is a clear example of shape, in combination with compliance,
servicing simplicity. Robustness is also a potential benefit of shape design, as illustrated in
Section 1.1 with the design of rock climbing-cams shaped to provide sufficient grip over a wide
range of crack widths.

In the contexts of grasping and robotic hands, shape has rarely played an important role.
The most common approach is to rely on grasp planners to choose fixed contact points based
on precise knowledge of object shape and pose. Even when sliding or rolling contacts are
modeled, they are seldom exploited to design functional phalanx shape.

Dollar and Howe [19] reviewed the designs of 20 compliant and underactuated robotic
hands, all of which used cylindrical or flat straight fingers and with no cited principle to guide
the designs of their shapes. Theobald et al. [70] is one of the first exceptions, with a gripper
with curved fingers designed to enable autonomous rock acquisition. More recently, Kragten
et al. [34] considered curving the contact area of distal phalanges to improve the stability of
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precision grasps. Lynch et al. [39] studied the roles of hand shape and motion in dynamic
manipulation.

Automation, and in particular applications like part feeding and assembly, raised interest
in shape synthesis. Traps, fences and chamfers are examples of mechanical features where
physical interaction and the reaction to contact can be planned in advance and hard-coded in
the design of the mechanism. Redford and Boothroyd [55], Boothroyd et al. [7], and [56] are
pioneering works in systematically approaching the problems of part feeding and part orienting.
Boothroyd and Dewhurst [6] presents a comprehensive collection of early mechanical feeding
and orienting techniques.

Berretty et al. [3] analyzed the interaction between objects and traps to automate the design
of vibratory bowl feeders. With a similar goal Berretty et al. [2], Peshkin and Sanderson [52]
and Wiegley et al. [77] worked on the design of fences to reorient parts moving in a conveyor
belt. Brokowski et al. [9] proposed adding curved tails to the end of those fences, and showed
that their shape was key to control the resulting uncertainty in the pose of the reoriented part.
The technique they used to design the tails of fences resembles the approach to shape design
in this thesis. Still in the context of part feeding, Zhang and Goldberg [78] systematized the
design of the phalanges of a parallel jaw gripper to passively align parts in the vertical plane,
and Whitney et al. [76] designed curved chamfers to simplify the assembly of rigid parts.

The goal of producing general purpose motion with cams and gears also lead to the study
of shape. Reuleaux [57] introduced in the 19th century the concept of kinematic pair as
an attempt to abstract motion constraints between contacting bodies. For ideal joints such
as prismatic or revolute (lower pairs), shape is of little consequence. But for pairs where
contact is maintained between curved surfaces like in the case of cams or gears (higher pairs),
shape plays a key role. Several works in the early 90s approached the problem of qualitative
shape understanding for kinematic pairs (Joskowicz [32], Joskowicz and Addanki [33], Faltings
[21], Forbus et al. [22]), with the goal of modeling the effect that small alterations to the shape of
the contacting bodies had to their respective configuration spaces (Lozano-Perez [36]). Gupta
and Jakiela [26] designed kinematic pairs by sweeping a fixed shape along a predefined path
and numerically “carving” the other shape. Inspired by applications such as vibratory bowl
feeders and part mating, Caine [11, 12] studied the design of shape from motion constraints.

In Caine’s work, as in most previous work described in this section, shape synthesis is
understood as the inverse of the motion planning problem1. A desired mechanical interaction
between two bodies is specified by voiding regions on their relative configuration spaces. Shape
synthesis is approached then as an effort to invert those constraints imposed on the motion of
an object. In contrast, this thesis represents mechanical function as a collection of geometric
contact constraints. Rather than constraining the relative free motions between two bodies,
we specify where and how they should contact each other.

Using contact rather than motion constraints has important implications. It is more difficult
to represent dynamic tasks, since contacts are localized and static constraints, but the problem
becomes more tractable, specially in 3D. Contacts constraints are represented by vectors, while
motion contraints are regions of the configuration space, which are higher dimensional and more
complex to represent.

Contact kinematics, the study of how the contact location between two objects changes
with their motions, is then key for this thesis, in particular to understand how they affect

1Noted by Lozano-Perez [37].
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(a)

(b)

Figure 9: (a) Three actuation mechanisms and (b) three effector shapes contacting an object
at a given point. The expected reaction of the object to that contact varies both with the
motion and the shape of the effector.

mechanical function. Cai and Roth [10] studied the motion of the contact point between two
objects that roll-slide on each other and Montana [44] provided a more formal approach to the
same problem. We will assume all that as a given here, and focus on the synthesis problem.

3 End Effectors: Shape and Motion

The kinematic behavior of an end effector is determined, in part, by its motion and its shape.
As illustrated in Figure 9, both shape and motion have an impact in that kinematic function.
In this section we formalize the model of an effector, and introduce the concepts of motion
field, motion orbit, and orbit space.

The respective contributions of shape and motion to the function of an effector are inter-
twined. The suitability of a shape depends on motion, and vice versa. In this thesis we assume
a fixed given effector motion and address the shape synthesis problem.

We make two simplifying assumptions on the effector:

• The effector is rigid. There is no compliance on the shape of the effector nor on the
actuation mechanism.
• The effector actuation is via a 1-DOF smooth mechanism in a planar or spatial workspace.

We make no assumptions on the object, other that it is possible to describe the desired task
as a set of contacts. We formally define now the concept of effector:

Let W = Rd be the workspace of the effector, with d = 2 (planar mechanisms) or d = 3
(spatial mechanisms). The effector is driven by a 1-DOF mechanism, whose space of configu-
rations T = [tmin, tmax] is parametrized by t the motion parameter. Without loss of generality,
we assume that 0 ∈ T .

The shape of the effector is a smooth manifold of dimension (d − 1) rigidly attached to
the driving mechanism, i.e., a smooth curve for the planar case or a smooth surface for the
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spatial case. Let s ∈ S = [smin, smax] or (u, v) ∈ U × V = [umin, umax] × [vmin, vmax] be the
shape parameters mapping the effector shape for the planar and spatial cases. For simplicity
of notation, and unless noted otherwise, we will use s ∈ S to refer indistinctively both to the
planar and spatial cases. We define then:

Definition 1 (Effector). An effector E is a smooth map from shape and motion parameters
to workspace points E : S × T 7→ W, where for a fixed t, E(·, t) parametrizes with unit speed
a rigid transformation of the curve or surface E(s, 0).

E describes the motion (parametrized by t) of a rigid manifold (parametrized by s) as
actuated by the mechanism, so that E(s, t0) maps S to the effector shape inW at configuration
t0. For simplicity, we will refer by shape to the curve or surface E(s, 0).

3.1 Motion Field

The motion field is a representation of the motion imposed by a mechanism. Given an effector
E(s, t) whose shape lies at p at configuration t0, i.e., p ∈ E(S, t0), we define the velocity vp
imposed by the mechanism to the effector particle lying at p by differentiating E(s, t) with
respect to the motion parameter t and holding the shape parameter s fixed. The construction is
illustrated in Figure 10. Note that vp is independent of the shape of the effector (we differentiate
with respect to t), and that it can be defined for any p ∈ W and any t ∈ T , since we can always
come up with a shape that attached to the effector crosses p for configuration t.

Figure 10: Given a point p in the workspace and a configuration of a mechanism t0, we define
the motion field M at (p, t0) as the tangent to the trajectory α(p,t0) that a particle would
follow if attached to any effector passing through p at configuration t0 driven by that same
mechanism.

For reasons that will become apparent later, it is important to consider the velocity vp
imposed by the effector at p in the extended space W× T , cartesian product of the workspace
and the mechanism configuration space. We define then:

Definition 2 (Motion Field). Motion field M of a mechanism at a workspace point p ∈ W
and configuration t is the vector field representing the direction of imposed effector motion:

M : W × T → T (W × T )

(p, t) 7→ (vp, 1) =
(
∂E(s,t)
∂t , 1

)
where E is an effector such that E(s, t) = p, and where T (W × T ) is the tangent bundle of
W × T .
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t = π
4 t = 3π

4 t = −π
4

Figure 11: Motion field for three mechanisms: (top) rotational joint, (middle) Hoekens linkage,
and (bottom) elliptic trammel. Columns are slices t = π

4 , t = 3π
4 , and t = −π

4 of the motion
field. Note that slices t = const are the motion field of a rotational joint. The location of the
rotation center of that joint is known as the instantaneous center of rotation. Note also that
the motion field of a revolute joint is invariant with t.

Note that the last component ofM(p, t) is always 1. This reflects the fact that the effector
is continuously actuated by a 1-DOF mechanism. Figure 11 shows the motion fields of three
different planar actuation mechanisms: a rotational joint, a Hoekens linkage, and an elliptic
trammel. There is no conceptual difference between the motion fields of planar and spatial
mechanisms, except that they live on spaces of different dimension. In Section 8 we will see
examples of motion fields for spatial mechanisms.

In the following subsections we see that the motion fieldM partitions the spaceW×T into
disjoint motion orbits. Those motion orbits will constitute the domain of influence of contact
constraints.

3.2 Motion Orbits

In differential geometry, the flow Φ of a smooth vector field V on a manifold N is defined, for
every point q ∈ N , as the trajectory that a particle at q would describe following an integral

13



t = π
4 t = 3π

4 t = −π
4

Figure 12: Motion orbits for three mechanisms: (top) rotational joint, (middle) Hoekens link-
age, and (bottom) elliptic trammel. The figure shows the projection of the motion orbits to the
workspace W for three different initial mechanism configurations: t = π

4 , t = 3π
4 and t = −π

4 .
Note that the motion orbits of a rotational joint are invariant with t.

curve of V . Let ΦM be the flow of the motion field M:

ΦM : (W × T )× R → W × T
((p, t), u) 7→ ΦM((p, t), u)

(2)

where ΦM((p, t), ·) is the unique integral curve of M passing through (p, t). Intuitively, the
motion flow ΦM describes the trajectory in W × T followed by an effector particle positioned
at p when the mechanism starts at configuration t. We define the associated motion orbit as:

Definition 3 (Motion Orbit). The motion orbit of a point (p, t) ∈ W × T , under the motion
flow ΦM, is the set Φ(p,t) = {ΦM((p, t), u) : u ∈ R}.

Note that, for the case of 1-DOF effectors, the projections of the motion orbits fromW×T
to the workspace W are also known as the coupler curves of the mechanism [28]. Figure 12
shows those projections for three initial values of the motion parameter t and three different
mechanisms: a rotational joint, a Hoekens linkage, and an elliptic trammel. Again, there is no
conceptual difference between the motion orbits of planar and spatial mechanisms. In Section 8
we will see an example for a spatial mechanism.
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3.3 Space of Orbits

In this section we study the structure of the set of motion orbits, which will later be used
in Section 4 to formalize contact constraints. Recall now that motion orbits are the integral
curves of the motion field M, and that they are defined for all (p, t) ∈ W × T .

It is always the case for a smooth non-vanishing vector field that its integral curves define
a 1-dimensional foliation of the space. Intuitively, a foliation is a decomposition of the space
into “parallel” subspaces of smaller dimension, like decomposing a plane into parallel lines, or
3D space into parallel planes. In particular, a 1-dimensional foliation is a decomposition of the
space into non-intersecting curves.

In our case,M is a never-vanishing smooth vector field, since the last component is constant
equal to 1 and the mechanism is smooth by assumption. Hence, the set of motion orbits
decomposes the space W × T into the union of non-intersecting curves. This allows us to
define an equivalence relationship ∼, where two points in W × T are equivalent, if and only if
they share the same motion orbit:

(p, t1) ∼ (q, t2) ⇐⇒ Φ(p,t1) = Φ(q,t2) (3)

The space of orbits is then defined as:

Definition 4 (Orbit Space). The orbit space is the quotient space O = (W × T ) /∼ where
each element in O is representative of all points equivalent to each other.

For the purpose of visualization, we chose a single point from each class to represent it.
When chosen properly, those representative points form a lower dimensional subspace or section
inW×T easy to visualize. Sections that are transversal to the motion flow ΦM and are crossed
once and only once by each motion orbit are specially appropriate.

An example is the set {t = t0} through which all orbits are guaranteed to cross once and
only once, since they are strictly monotonic in t. The section {t = 0} is a natural choice, given
that in Section 3 we refer by effector shape to the curve E(·, 0), using t = 0 as the reference
mechanism configuration. Note also that the section {t = 0}, i.e. the setW×{0}, is pointwise
equivalent to W. Hence we can think of the effector shape as a curve or surface both in the
workspace W or in the orbit space O.

The characterization of shape and motion in this section leads us in Section 4 to the
argument that the domain of influence of contact constraints are entire motion orbits. This
will allow us to transport contact constraints to a single mechanism configuration (the orbit
space) and overcome the difficulty posed by not knowing a priori for what configuration of the
effector should a contact constraint be satisfied.

4 Contact Constraints

In this section we formalize contact constraints and define operations on them. For simplicity
of exposition we will only refer here to first order contact constraints, that is, we will match
the tangents of object and effector. In Section 9.2 we discuss how in a very similar fashion,
when required by the task, we can also impose higher order contact constraints, for example to
the curvature of the effector. Optionally, as illustrated in Figure 7c, we can also approximate
higher order constraints by combining first order ones.
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We will represent contact constraints indistinctively by their contact normals η or their
corresponding tangent spaces ω. A representation in terms of contact normals will be more
apt to formulate the problem because they give a common notation for the 2D and 3D cases.
Tangent vectors and tangent planes, however, will be more readily used to describe applications
and implementations.

We begin with the definition of two types of constraints. Given a point p in the workspace
and a desired contact normal η:

Definition 5 (Contact Constraint). A contact constraint (p, η) ∈ R2 × S1 (or in R3 × S2

for spatial constraints) is satisfied by an effector E(s, t) if there are t0 ∈ T and s0 ∈ S (or
(u0, v0) ∈ S for spatial constraints) such that:

E(s0, t0) = p and η · ∂E(s, t0)

∂s

∣∣∣∣
s=s0

= 0

or

E(u0, v0, t0) = p and

 η · ∂E(u,v0,t0)
∂u

∣∣∣
u=u0

= 0

η · ∂E(u0,v,t0)
∂v

∣∣∣
v=v0

= 0

Definition 6 (Shape Constraint). A shape constraint ((p, t0), η) ∈ (R2 × T ) × S1 (or in
(R3 × T ) × S2 for spatial constraints) is satisfied by an effector E(s, t) if at configuration t0
there is s0 ∈ S (or (u0, v0) ∈ S for spatial constraints) such that:

E(s0, t0) = p and η · ∂E(s, t0)

∂s

∣∣∣∣
s=s0

= 0

or

E(u0, v0, t0) = p and

 η · ∂E(u,v0,t0)
∂u

∣∣∣
u=u0

= 0

η · ∂E(u0,v,t0)
∂v

∣∣∣
v=v0

= 0

A contact constraint is satisfied if there is any configuration of the effector that is consis-
tent with the desired normal. A shape constraint specifies a particular configuration of the
effector. Thus there is a very simple relation between contact and shape constraints: A con-
tact constraint (p, η) is satisfied if and only if at least one of the shape constraints in the set
{((p, t), η) : t ∈ T} is satisfied.

4.1 Constraint Propagation

As mentioned earlier, the main challenge in enforcing contact constraints is not knowing for
what configuration of the effector each constraint should be satisfied. It is easier, however, to
enforce shape constraints. They include a specific effector configuration. Then, to enforce a
contact constraint (p, η) we will look at it as the whole set of shape constraints it represents,
and follow the recipe:

1. Transform the set of shape constraints {((p, t), η) : t ∈ T} so they all apply to the same
effector configuration, t = 0; and

2. make sure one of them is satisfied.
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(a) (b)

Figure 13: (a) Moving frame for a Hoekens linkage between configurations t1 = π
2 and t2 = −π

2 .
The moving frame changes as if rigidly attached to the mechanism. (b) The propagation of
the tangential constraint η1 at point (p1, t1) to η2 at point (p2, t2) is so that the constraint is
held invariant in the moving frame (η2 = P(p1,t1)→(p2,t2)(η1)).

To transform a shape constraint is to find an equivalent shape constraint for a different
mechanism configuration. To formalize the idea we first derive an expression for equivalent
constraints. We will use the terms moving frame and fixed frame to refer to coordinate frames
rigidly attached respectively to the effector and to the workspace, as in Figure 13a.

Consider two equivalent points (p1, t1) ∼ (p2, t2) in the extended spaceW×T of an effector
(defined in Section 3.3). By definition, equivalent points share the same orbit, and therefore
the same effector particle crosses both p1 at configuration t1, and p2 at t2. The normals η1

and η2 of the effector at those two points must be identical in the moving frame, since the
effector, by assumption is rigid. We will say that the constraints ((p1, t1), η1) and ((p2, t2), η2)
are equivalent, that is an effector satisfies one iff it satisfies the other.

By constraint propagation we mean the process that transforms constraint ((p1, t1), η1) into
the equivalent constraint ((p2, t2), η2), which, by construction, is defined between any pair of
equivalent points (Figure 13b). We note by P(p1,t1)→(p2,t2)(·) the function that maps normal η1

to normal η2. In general we will propagate all shape constraints to configuration t = 0.
An important consequence of constraint propagation is that an effector satisfies a shape

constraint ((p, t), η) if and only if it satisfies any of the shape constraints propagated within
the same orbit:

((p, t), η) ⇔
{

((q, t′), P(p,t)→(q,t′)(η))
}

(q,t′)∈Φ(p,t)
(4)

Then, we say the domain of influence of a shape constraint is the entire motion orbit it
represents. We can only impose one constraint per motion orbit.

4.2 Constraint Locus

In this section we find a representation of contact constraints in orbit space independent of
the configuration of the mechanism. By definition, a contact constraint (p, η) is satisfied if
and only if one of the shape constraints {((p, t), η) : t ∈ T} is satisfied. Following (4), each
shape constraint is satisfied if and only if its propagation to t = 0 is satisfied. Consequently, a
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(a)

(b)

Figure 14: Example constraint locus for three contact constraints and three mechanisms:
(left) rotational joint, (center) Hoekens linkage, and (right) elliptic trammel. (a) The shape
constraint ((p, t), η) is propagated to ((pt, 0), ηt) at slice t = 0 through a motion orbit. (b) The
constraint locus is generated by repeating the process for all possible values of t.

contact constraint is fully represented in orbit space O by a set of propagated constraints. We
call that set of propagated constraints, the constraint locus:

Definition 7 (Constraint Locus). Let (p, η) be a contact constraint, ηt = P(p,t)→(pt,0)(η) the
propagation of ((p, t), η) to t = 0 through the motion orbit Φ(p,t), and (pt, 0) the corresponding
point in W × T where the constraint gets propagated. The constraint locus of (p, η) is the set
L(p,η) = {((pt, 0), ηt) : t ∈ T}

Intuitively, we can think of the constraint locus as the pre-image of the constraint by the
mechanism, i.e., the set of points in the workspace that, if they were to belong to the shape of
the effector for t = 0, they would eventually cross p as the mechanism advances.

The constraint locus represents the contact constraint for all possible mechanism configu-
rations. From a practical point of view, to satisfy a contact constraint, we need to construct
its locus and choose an effector shape that, attached to the mechanism for t = 0, crosses the
locus consistently with the propagated constraints. Figure 14 shows examples of constraint
locus of three different contact constraints and three mechanisms.

Note that, as illustrated in Figure 14, the locus of a constraint does not follow the natural
evolution of a mechanism motion orbit. The following proposition relates the shapes of locus
and orbits:

Proposition 1 (Orbit vs. Locus). The locus of a contact constraint in orbit space is equal to
the orbit of the constraint induced by the inverted mechanism2.

2The inverse of a mechanism is obtained by exchanging moving and fixed reference frames.
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Proof. Let A : T −→ SE(2) be the mechanism map for the effector. We represent A(t) as an
homogenous matrix so that point (p, 0) is mapped to (A(t) · p, t). The orbit associated with a
constraint is the set Φ = {(A(t) · p, t) : t ∈ T} and its locus L = {(q, tq) : A(tq) · q = p}. Then,
for every point q ∈ L, we have:

A(tq) · q = p ⇔ q = A−1(tq) · p

that is, q is in the locus induced by A if and only if q is in the orbit induced by A−1, the
inverted mechanism.

5 Shape Synthesis: Formulation

We have now all the machinery in place to formulate the shape synthesis problem. We first
recall the key concepts:

• An effector is a map E(s, t) : S × T 7→ W describing the motion (parametrized by t)
of a rigid curve (parametrized by s) or surface (parametrized by (u, v)) driven by a
mechanism.

• The shape of the effector is the curve E(s, 0), describing the contact surface of the effector
for configuration t = 0 of the mechanism.

• The motion of the effector is captured by a vector fieldM(p, t) inW×T that determines
the direction of motion to follow by a particle at p rigidly attached to the mechanism for
configuration t.

• Motion orbits are the integral curves of M, the trajectories followed by particles of the
effector as actuated by the mechanism. Assuming smoothness of the mechanism, motion
orbits never intersect each other in the extended space W × T .

• The orbit space O of the effector is a one-to-one representation of the set of motion orbits.
Our choice of orbit space is the slice t = 0 of W × T . The shape of the effector can be
described as a curve or surface α in O.

• A shape constraint ((p, t), η) is an imposition on the effector to locally comply with η
at location p and configuration t. It propagates along motion orbits while being held
invariant in the moving frame. It is satisfied iff its propagation to O is satisfied, and it
is represented in O as a point.

• A contact constraint (p, η) is an imposition on the effector to locally comply with ω at
location p of the workspace for an unspecified configuration of the mechanism. It is sat-
isfied iff any of the shape constraints in {((p, t), η)}t∈T are satisfied, and it is represented
in O as a locus of constraints L(p,η).

• An effector E(s, t) locally satisfies a constraint (p, η) if and only if its shape, described
as a curve or surface in O, crosses the locus L(p,η) consistent with the constraint.

The shape synthesis problem formulates as:
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Problem 1 (Shape for Contact). Let M be the motion field of an effector, {(pi, ηi)}i=1...N a
set of contact constraints, and L(pi,ηi) the corresponding loci in O. Find a curve (for planar
effectors) or surface (for spatial effectors) α in O that crosses all loci consistently.

Note that loci described by different contact constraints may intersect each other. The
points of the orbit space O where they intersect will likely induce inconsistent constraints if
α crosses them. To find a complete solution, we must find a shape that is consistent with all
loci, and without any inconsistencies. If there are no inconsistent constraints, by construction
the effector induced by the shape α locally satisfies all constraints.

The approach to propagate constraints allows us to express them in the reference pose of
the effector at t = 0, even without knowing at which pose t each constraint will be enforced.
The key is the use of the extended space W × T .

6 Case Study: Planar Rotational Joints

Rotational joints are one of the most widely used driving mechanisms. They are analyzed in
depth by Rodriguez and Mason [59, 60]. They are also a particularly simple and illustrative
example for the shape synthesis problem.

What makes rotational joints particularly simple? First, by construction, the instantaneous
center of rotation of a rotational joint is constant, and as a consequence, its motion field and
motion orbits are invariant with respect to the configuration of the mechanism. See Figure 11
and Figure 12 for examples. Second, we will see that for rotational joints, orbits and locus
follow the same path. These will simplify the problem enough to allow us to find analytic
solutions and give guarantees of existence of those solutions.

We mentioned in Section 4.1 that one of the main challenges to impose a contact constraint
is that we do not know a priori what configuration of the mechanism the effector should satisfy
it. However, since in this case motion orbits are invariant with the mechanism configuration, so
will be the conditions for constraint satisfaction. To better illustrate it consider the following
example problem (Figure 15):

Scale-invariant contact problem: Given an object shape in the plane, p a point in
the boundary of the object, and c the location of the finger’s revolute joint, find
the finger shape that makes contact at p despite the scaling of the object.

A solution to the scale-invariant contact problem would yield a finger shape that preserves the
contact location as well as the contact normal with the scale of the object. As a consequence,
and most importantly, many properties governing the mechanics of the interaction between
effector and object would also be preserved. To solve it, we apply the two-step procedure
induced in Section 5: First we construct the loci of the set of contact constraints; and second
we find a curve consistent with it. Both steps become simpler in the case of rotational joints.

The locus of a contact constraint is constructed by propagating the constraint to all pos-
sible mechanism configurations along corresponding motion orbits. Note that, in the case of
a rotational joint, motion orbits are concentric circles invariant to the configuration of the
mechanism. We construct the loci by repeating the process to all constraints.

Proposition 1 in Section 4.2 shows that the locus of a constraint induced by a mechanism
follows a motion orbit of the inverted mechanism. Given that the inverted mechanism of a
rotational joint is the same rotational joint operating in reverse, locus and orbit follows the same
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Figure 15: The scale-invariant contact problem: What finger shape actuated by a rotational
joint from c contacts the disk at p and yields invariant contact geometry with respect to the
scale of a disk?

Figure 16: (a) The locus of one contact constraint propagated by a rotational joint is equivalent
to the parallel transport of that constraint along a circular arc. (b) Loci of the set of imposed
contraints in the scale-invariant contact problem. It produces a smooth vector field F . (c)
Integral curve of the resultant vector field. (d) By construction, the integral curve is a solution
to the scale-invariant contact problem.
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trajectory. In practice, to construct the locus of a constraint we will do the parallel transport
of the constraint along a circular orbit while preserving the angle between the constraint vector
and the orbit, as illustrated in Figure 16a. In Figure 16b the process is applied to all contacts
to generate the loci.

In this section we pay special attention to the case where the set of imposed constraints
forms a 1-dimensional continuous set. We call contact curve C to the trace of the base location
of the constraints in that set, for example to the segment connecting p to the base of the disks
in Figure 15. We are interested in characterizing under what conditions that 1-dimensional set
of contraints uniquely determine the solution to the shape synthesis problem.

Let r(·) : C 7→ R+ be the function that maps points along the contact curve to their
corresponding distance to the center of rotation c. For the problem to have a solution, we
have to make sure that imposed constraints are consistent with each other, i.e., that we are
not asking the shape to follow two different tangents at the same point. In practice, we avoid
inconsistent constraints by imposing them at different distances from the rotation center, that
way they will be propagated along different concentric circles and never contradict each other.

More formally, we define a proper problem as one where the distance map r(·) is strictly
monotonic, and where the set of constraints change smoothly along the contact curve. Under
those conditions the parallel transport of the set of constraints yields a smooth vector field
F defined in an annulus in the plane (Figure 16b). Note that the parallel transport along
concentric arcs is a continuous and differentiable operation.

As illustrated in Figure 16c and Figure 16d, an integral curve of that vector field F sat-
isfies all constraints and solves the scale-invariant problem. The existence of that solution is
guaranteed by the theorem of existence and uniqueness of maximal integral curves [72]:

Theorem 1 (Existence and Uniqueness of Maximal Integral Curves). Let X be a smooth
vector field on an open set U ∈ Rn+1 and let p ∈ U . Then there exists a unique and maximal
integral curve α(t) of X such that α(0) = p.

6.1 Closed Form Solutions

The construction in the previous section, along with numerical integration, yields a solution
to the shape synthesis problem for planar rotational joints. In this section we are interested in
finding the analytical expression of the finger shape. As in the previous section, we will assume
that the constraints are distributed along a 1-dimensional set, or contact curve C. Besides, we
will restrict the analysis to the case where:

• the contact curve C is a line and,
• the contact vector V is constant along the contact curve.

We will see in Section 6.2 that this includes the interesting cases of designing effectors with
invariant contact properties with respect to the scale or the pose of the object, or any linear
combination of both.

Let (x, y) and (r, θ) be the cartesian and polar coordinates in the planar workspace W.
The shape of the finger is the solution to the system of first order differential equations:

ẋ = Fx
ẏ = Fy

(5)

22



where F = (Fx,Fy) is the vector field constructed in the previous section. Identity (6) relates
the derivatives of cartesian and polar coordinates:

dy

dx
=
r′ sin θ + r cos θ

r′ cos θ − r sin θ
(6)

where r′ = dr
dθ . We can then rewrite the cartesian system (5) as the single polar differential

equation:
Fy
Fx

=
r′ sin θ + r cos θ

r′ cos θ − r sin θ
(7)

Without loss of generality we normalize the geometry of the problem and suppose that the
center of rotation c lies on the X axis, and the contact curve C is parallel to the Y axis. Let
now β be the constant angle between C and the contact vector V. Depending on the relative
location of c and C, there are three cases to analyze:

i. The rotation center c lies on top of C.
ii. The rotation center c is at finite distance from C.
iii. The rotation center c is at infinity, i.e. the finger translates rather than rotates.

6.1.1 Case I: Rotation Center On the Contact Curve

In this case the distance between the center of rotation of the finger c and the contact curve
C is zero. Note that the rock-climbing cam example in Section 1.1 falls into this case, since
the contact constraints in Figure 3 have constant direction, and are distributed along a linear
segment. We will show now that, indeed, the solution is a logarithmic spiral.

For the purpose of analysis, we place the origin of coordinates at c and the axis Y along
the contact curve, as in the diagram in Figure 17a.

In this case, (7) becomes:

Fy
Fx

= tan
(
β + θ +

π

2

)
=
r′ sin θ + r cos θ

r′ cos θ − r sin θ
(8)

Solving (8) for r′ yields:

r′ =
dr

dθ
= −r tanβ (9)

Equation (9) is a linear homogeneous ordinary differential equation with general solution:

r (θ) = C e−θ tanβ (10)

The solution to the invariant contact problem for case I is a logarithmic spiral with pitch
π
2 +tan−1 (cotβ), which we could have anticipated from Figure 17a where we see that the angle
between the contact vector and the radial line (line from origin to the finger) is constant. This
is characteristic of logarithmic spirals and gives them their scale-invariant properties [71], as
we will further see in Section 6.2.

Note that when the angle β reaches one of the limit values ±π
2 , the logarithmic spiral

degenerates into a straight line, caused by the contact vector becoming parallel to the contact
line.

23



(a) Case I (b) Case II

Figure 17: Normalized diagrams of the contact geometry for shape synthesis problem when
the contact curve C is a segment and the contact vector is constant along it. (a) Diagram for
Case I: the parallel transport of the contact vector along an arc with center c gives F(x, y), the
direction of the vector field at (x, y). Note that the output angle α is β + θ + π

2 . (b) Diagram
for Case II: the parallel transport of the contact vector along an arc with center c gives F(x, y),
the direction of the vector field at (x, y). Note that the output angle α is β + θ + γ.
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6.1.2 Case II: Rotation Center at Finite Distance from Contact Curve

In this case the rotation center c is at finite distance from the contact curve C. Without loss
of generality we scale the geometry of the problem again so that the distance is unity. As in
the previous case, we place the origin of coordinates at c. Now the contact line is vertical and
crosses the X axis at (1, 0), as in the diagram in Figure 17b. Equation (7) becomes:

Fy
Fx

= tan (β + θ + γ) = tan

[
β + θ + cos−1

(
1

r

)]
=
r′ sin θ + r cos θ

r′ cos θ − r sin θ
(11)

After some trigonometric algebra (11) can be solved for r′ as:

r′ =
dr

dα
= r · cosβ −

√
r2 − 1 sinβ

sinβ +
√
r2 − 1 cosβ

(12)

Equation (12) is a separable differential equation of the form dr
dθ = g(r), which can be

solved as θ(r) =
∫
dθ =

∫
1
g(r)dr, with the change of variables t→

√
r2 − 1:

θ(r) =

∫
1

r
· sinβ +

√
r2 − 1 cosβ

cosβ −
√
r2 − 1 sinβ

dr =

=

∫
t

t2 + 1
· (sinβ + t cosβ)

(cosβ − t sinβ)
dt =

= −
∫

1

t2 + 1
+

cosβ

sinβt− cosβ
dt =

= − tan−1 (t)− ln (| sinβt− cosβ|)
tanβ

(13)

As illustrated in Figure 18, (13) yields the β-parametrized family of spirals:

θ(r) = − tan−1
(√

r2 − 1
)
−

ln
(
| sinβ

√
r2 − 1− cosβ|

)
tanβ

+ C (14)

The solution is valid for all possible values of β except when tanβ = 0, in which case a similar
derivation yields the solution:

θ (r) = − tan−1
(√

r2 − 1
)

+
√
r2 − 1 + C (15)

6.1.3 Case III: Rotation Center at Infinity

In this case the center of rotation c is located at infinity, equivalent to a translating or prismatic
finger. The vector field F is in this case generated by the parallel transport of the set of
contacts along parallel lines oriented with the direction of translation. The obtained vector
field is independent of the direction of translation. F is constant across the entire plane and
oriented with β except in the singular case when the direction of translation is parallel to the
contact line. In that case the vector field is only defined on top of the contact line, and the
problem is ill-defined.

The integral curve of the induced vector field F is in this case a line segment aligned
with the constant contact vector V, yielding straight fingers. In the degenerate situation of
the direction of translation being aligned with the contact line, the solution only exists if the
contact vector is also aligned with the contact line, in which case the integral curve is also a
straight line segment.
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6.1.4 Family of Solutions

Here we summarize the family of closed form solutions to the scale-invariant contact problem
for the cases where the contact curve is a line, and the contact vector is constant along it.
Figure 18 illustrates the solutions for cases I, II, and III, for different values of β. Note that
the vector fields obtained with β and β + π have the same magnitude and opposite direction,
hence it suffices to analyze the range

[
π
2 ,−

π
2

]
. Note also that Figure 18 shows a long section

of the spiral. However, for practical reasons, the actual shape of the effector would be just a
small portion.

In cases I and II, the integral curve of the vector field is a spiral, with the exception of
a few degenerate situations where the integral curve is a line segment or a circle. We make
special note of case I with β = 0 where the contact vector is perpendicular to the contact line.
This produces an impractical circular finger that only meets one of the constraints, while, at
the same time, does not violate any of the rest. In case III, we always obtain a line segment.

6.2 Application: Grasp Invariance

In this section we introduce grasp invariance, a principle to guide the design of finger shape
to accommodate variations over shape and/or pose of an object. In the following subsections,
we describe three example applications of the principle: A gripper yielding invariant contact
geometry with respect to the scale of an object (Section 6.2.1); a gripper yielding invariant
contact geometry with respect to the location of an object (Section 6.2.2); and a pick-up tool
designed to grab objects from a flat surface (Section 6.2.3).

6.2.1 Scale-Invariant Grasping

The solution to the scale-invariant contact problem in Figure 16 yields a finger with invariant
contact geometry for a disk of varying size. Two such fingers add up to a gripper whose
equilibrium grasps are geometrically invariant with scale. Suppose we aim for an equilateral
triangular grasp between two fingers and a palm. Figure 19a shows the corresponding contact
curve C and contact vector. After normalizing the geometry of the problem as in Section 6.1,
we get the diagram in Figure 19b. The solution belongs to the family of spirals in Case II in
Section 6.1.2, where the center of rotation is at finite distance from the contact line.

The contact curve, the contact vector, and the form of the finger depend on the object O
and the type of contact we aim for. Hence, the form of the finger depends on the task to solve.
For the specific example of a disk and the triangular grasp in Figure 15a, we can construct a
scale-invariant gripper by combining two identical but symmetric fingers as in Figure 21a.

6.2.2 Pose-Invariant Grasping

Here we aim to design a hand whose grasps are invariant with respect to the location of a
given object rather than its scale. Suppose again that we want to grasp a disk of a given size
with a triangular grasp, against a planar palm. Now, the disk can be located anywhere along
the palm, and we want the grasp geometry to be invariant with respect to that displacement.
Figure 20a shows the corresponding contact curve C and contact vectors, and Figure 20b the
normalized diagram. Since the rotation center is at finite distance from the contact line, the
solution belongs to the family of spirals in Case II in Section 6.1.2.
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Case I Case II Case III

β = π
2

β = π
4

β = 0

β = −π
4

β = −π
2

Figure 18: Plots show the contact curve (vertical bold line), the rotation center (grey dot), and
the finger solution (grey curves) for different values of β. The finger always crosses the lower
half of the contact curve with constant angle β. Case I: Rotation center on the contact curve.
Case II: Rotation center at finite distance from the contact curve. Case III: Rotation center
at infinity.
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(a) (b)

Figure 19: (a) Contact curve C and contact vector defining the fingers of a scale-invariant
gripper. (b) Corresponding normalized diagram with contact angle β.

(a) (b)

Figure 20: (a) Contact curve C and contact vector defining the fingers of a pose-invariant
gripper. (b) Corresponding normalized diagram with contact angle β.
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Again, the contact curve, the contact vector, and consequently the form of the finger depend
on the object O and the type of contact desired. In Figure 21b two identical but symmetric
fingers compose a pose-invariant gripper.

6.2.3 Pick-up Tool

Suppose now we are to design a gripper with two rigid fingers to pick up an object from the
ground. The object needs to slide along the length of the fingers while it is being lifted, similar
to Trinkle and Paul’s work on dexterous manipulation with sliding contacts [73]. Because of
the critical role that contact geometry plays in the sliding motion, complex lift plans can be
simplified if the contact geometry between finger and object were to be invariant during the
lifting motion. With that in mind, we can use the grasp invariance principle to find the finger
shape that preserves a contact geometry suitable for the sliding motion. Figure 22 shows a
gripper designed to such task.

7 Case Study: General 1-DOF Planar Actuation

The previous section shows the derivation of exact solutions for rotating and prismatic fingers
in the plane. In this section we detail the process for planar effectors driven by more complex
mechanisms such as linkages (Rodriguez and Mason [61]). We also discuss how to find numer-
ical/approximate solutions when analytical ones are not available (Section 7.1), and describe
an example application to derive fingers that improve the stability of a grasp (Section 7.2).

The formulation of the shape synthesis problem in Section 5 is independent of the driving
mechanism. The process to synthesize the shape of an effector follows the same steps as in
the case of planar rotational joints: First we construct the loci of the set of constraints and
then we find a curve consistent with them. The implementation of both steps is however more
involved in the general case than for rotational joints.

Figure 11 and Figure 12 show the motion field and motion orbits for a linkage and an
elliptic trammel. In this case both motion field and orbits depend on the configuration of the
mechanism t, and so will do the process to transport constraints. Consequently, the locus of
a constraint when projected to the orbit space, follows a trajectory different than a motion
orbit. In the following section we describe an approximate method to construct the locus of a
constraint, and how to integrate the loci to find the shape of the effector.

7.1 Approximate Solutions

A contact constraint (p, η) is an imposition on the effector to locally comply with η at location
p ∈ W for an unspecified configuration of the mechanism. The contact constraint is represented
in orbit space O as a locus of constraints L(p,η) = {((pt, 0), ηt) : t ∈ T}, where each ((pt, 0), ηt)
is the shape constraint corresponding to propagate η to configuration t = 0 through the motion
orbit that crosses p at configuration t.

This means that to construct the locus of a contact constraint, we need to propagate it
through infinite motion orbits, each yielding a point in the locus. In practice, since we are
working in low dimension—dimension of workspaceW is 2 or 3 and the actuation dimension of
the driving mechanism is 1—we can discretize the configuration space of the mechanism and
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Figure 21: (a) The solution to the scale-invariant contact problem in Figure 19b yields a finger
with invariant contact geometry for a disk of varying size. Two such opposing fingers add
up to a gripper whose equilibrium grasps (triangular grasp in the figure) are geometrically
invariant with the scale of the disk. (b) Analogously we derive the shape of the fingers that
yield equilibrium grasps geometrically invariant with respect to the location of the disk.
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Figure 22: Gripper designed to pick up disks from the ground. The shape of the fingers is
design to provide an invariant contact geometry with the disk’s lifting motion.

construct a discretized version of the locus. The process is illustrated in Section 7.2 with the
example task of designing the phalanges of fingers to improve the stability of a grasp.

Once the loci of all contact constraints is constructed, as in Figure 25a, the second step
is to find a curve that is compliant with it. We showed in Section 6 that for the case of a
rotational joint and a proper problem, the locus of different contact constraints never cross
each other, since they follow concentric circles. In that case, we guarantee not imposing
inconsistent constraints by making sure that the distance map to the rotation center r(·) is
strictly monotonic. For other mechanisms, that is harder to guarantee.

Following Proposition 1 in Section 4.2, the locus of a constraint follows the motion orbits
of the inverted mechanism, which never cross each other in the extended space W×T but can
cross each other, and in fact most often do, in their projection to orbit space. If it is the case
that the locus cross each other, the propagation of constraints do not define a vector field, and
the integral curve might not be defined.

In practice, we find an approximate solution by either first approximating the resulting loci
by a vector field and then finding an integral curve, or by choosing a suitable starting point and
limit the integration until when inconsistent constraints are being imposed. In the following
section we show an example where we use a combination of both. We start by constructing
only the part of the locus that we care about (the range of motion of the mechanism that we
are interested in), and then we approximate the resulting distribution by a vector field. Note
also that, for convenience, we will use in the implementation tangent vectors ω rather than
contact normals η.

7.2 Application: Grasp Stability

We apply now the shape synthesis process to derive fingers for a two-fingered planar gripper
to improve the stability of a grasp of a disk. We will compare the process for fingers driven by
linkages and rotational joints.

To characterize the stability of an equilibrium grasp, we consider the energetic model of
stability for a compliant simple gripper described in Mason et al. [41], similar to Hanafusa and
Asada [27]. Every suitable hand-pose/object-pose configuration induces some level of grasp
energy, supplied by motors and stored in springs. Assuming some dissipative forces, stable
configurations of hand/object correspond to minima in that potential energy distribution.
The shape of the potential energy in a neighborhood of a stable pose determines how stable
it is. That way, sharp narrow wells are less susceptible to be degraded by noise than broad
shallow wells, and hence represent more stable grasps.
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Figure 23: The diagram illustrates the actuation/compliance scheme used to model
hand/object interaction. Units are dimensionless throughout the analysis so that the diameter
of the disk is 1, the radius of the palm is 1, the constant of finger springs is kf = 1, and when
closing the hand, the motor is driven to a stall torque τm = 1.

We model the actuation of the two-fingered planar gripper as a constant torque source
τm compliantly coupled with springs to both fingers (Figure 23), providing a potential energy
Um = τm · t, where t is the motor position or actuation parameter. The rest position of the
fingers when the actuator is at t is θ(t). Under compressing forces, each finger provides a
potential Ui = kf (θi−θ(t))2/2, where kf is the spring constant of the finger and θi is the finger
angle. The total energy of a grasp can then be computed as:

U = Um +
2∑
i=1

Ui = τm · t+
2∑
i=1

1

2
kf (θi − θ(t))2 (16)

The shape of the potential energy U depends on the finger-object contact geometry. By
choosing different contact locations for different object poses, we can affect the shape of that
potential energy and improve the stability. Figure 24a shows a few selected contact points for
different locations of a disk, each contact point constituting a contact constraint to satisfy. To
increase the stability of a grasp we chose contact points such that:

• Give a stable contact geometry for the desired stable configuration (i.e., central grasp).
• If the object deviates to the left of the stable grasp, the left finger should contact at a

new location where it is easy for the finger to push it back to the center and viceversa
for the right finger.
• If the object deviates to the right of the stable grasp, the left finger should contact at a

new location where it is difficult or impossible for the finger to push the object further
away from the center, and viceversa for the right finger.

The problem of choosing contact constraints is key to the mechanics manipulation, but is not
the focus of this thesis. For the rest of this section, we assume that we are given the set of
desired constraints in Figure 24b.

As per the formalization of the shape synthesis problem in Section 5 we transform the set
of contact constraints into their corresponding loci in the orbit space. Figure 25 shows the loci
for a finger actuated by a rotational joint and a finger actuated through a Hoekens linkage.
To find a solution, we approximate the set of constraints by a vector field and integrate it
numerically to find an integral curve. The obtained curve results in an effector that complies
with the imposed constraints and sharpens the potential energy wells of the central equilibrium
grasp relative to straight fingers (Figure 26).
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(a) (b)

Figure 24: (a) We chose contact points with the disk so that the left finger can easily push
the disk only when it is to the left of the central stable pose. Opposite for the right finger.
(b) Denser collection of the contact constraints imposed to the shape of the left finger. That
collection is the input to the shape synthesis problem.
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Figure 25: Side by side comparison of the process to design fingers to improve the stability
of a grasped disk, when the fingers are actuated by (a) a Hoekens linkage or (b) a rotational
joint. The top row shows the loci induced by the constraints in Figure 24. The middle row
shows a solution shape of the effector. It was computed numerically by approximating the loci
as a vector field and finding an integral curve. The bottom row shows the resulting effectors.
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Figure 26: Comparison between the grasp energy induced by fingers designed for a Hoekens
linkage (solid line), designed for a rotational joint (dotted line), and straight fingers with a
rotational joint (dashed line). To enable the comparison, in each case we have zeroed the
energy of the grasp configuration with minimal energy.

Note that Figure 25 shows two different effector shapes actuated by two different mecha-
nisms and produce the same contact pattern with the object. To some degree, this illustrates
the importance of shape. The selection of shape is critical to the final interaction of the effector
with the object, even to the point where, with the appropriate shape, a complex mechanism
like a linkage can be “emulated” with a simpler rotational joint.

8 Case Study: General 1-DOF Spatial Actuation

In this section we discuss differences and similitudes in the shape synthesis problem between
the planar and spatial cases. The most consequential difference is that, in the spatial case, the
shape of the effector is a surface while in the planar case is a curve:

• One one hand, this makes the problem more complex. Tangent vectors become tangent
planes, which are more difficult to impose and integrate than vectors.

• One the other hand, it opens the door to a larger utilization of shape. It gives us the
opportunity to extract more functionality out it.

We showed in Section 4.1 that the domain of influence of contact constraints are motion
orbits. Combined with the need to avoid inconsistent constraints, it implied that for 1-DOF
planar effectors we could only impose a 1-dimensional family of constraints. That is the case
for all examples described so far, from the rock-climbing cam in Section 1 to the grippers in
Section 6 and Section 7. In particular, we have seen that in the case of rotational joints, for
the solution to be fully and uniquely determined, the 1-dimensional set of contacts must be
imposed at strictly monotonic distances from the location of the rotational joint.

The spatial case is analogous. If we want to avoid inconsistent constraints, we can only
impose one contact per motion orbit. A surface in 3D, however, is fully determined by a 2-
dimensional set of tangent planes, rather than a 1-dimensional set of tangent vectors. We will
see in Section 8.2 that this means we will be able to impose more constraints. In practice, we
will benefit from it by using different “facets” of the finger for different purposes.

Constraint propagation works the same way as in the planar case. The formalization of the
motion model of an effector, described in Section 3, is independent of the workspace dimension.
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(a) (b) (c)

Figure 27: Motion model of a spatial rotational joint. (a) Rotational joint in a 3 dimensional
workspace. (b) The motion field is constant along the axis of rotation. As in the planar
case, the motion field is independent of the configuration of the mechanism t. (c) The motion
orbits projected to the workspace are concentric circles in R3. Notice that now there is a
two-dimensional set of motion orbits.

The motion field M of a mechanism for a workspace point p and mechanism configuration t

is defined as the direction of imposed effector motion, M(p, t) =
(
∂E(s,t)
∂t , 1

)
, which now is of

higher dimension than in the planar case, but as illustrated in Figure 27a and Figure 28a, still
has the form of a vector field.

Also analogous to the planar case, motion orbits are the integral curves of the flow of the
motion field, that is, the trajectories inW×T followed by possible effector particles. Figure 27b
and Figure 28b show the projection of those motion orbit to the workspace for two examples
of spatial actuators.

In the following sections we will see ideas of how to handle tangential surface constraints,
specially in the integration step of the shape synthesis problem (Section 8.1) and an application
to design the fingers of the MLab Hand (Section 8.2).

8.1 Spatial Integration

In the formulation the shape synthesis problem, we have represented contact constraints
by the normals we expect the effector to provide. Using contact normals η is convenient
formulation-wise. We do not need to make distinctions between the planar and spatial cases.
Implementation-wise, however, it will be more convenient to represent contact constraints as
tangents vectors or planes.

In the case of a spatial effector, this means representing each contact as two independent
vectors spanning the corresponding tangent plane. A set of desired contact constraints then
induces two independent vector fields, one for each tangent direction. For the surface of the
effector to be a solution, it must be tangent to both.

The construction of the loci is identical to the planar case, except that we must repeat
the process twice, once for each vector defining the tangent plane. In the simpler case of
spatial rotational joints, where motion orbits never cross in the workspace, the loci of a set of
constraints is represented in the orbit space by two vector fields defined in a cylindrical annulus
oriented with the axis of the rotational joint.
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t = 0

t = π
4

t = 3π
4

t = −pi
4

Figure 28: Motion model of a double rotational joint. This example mechanism composes in
series two rotational joints with orthogonal axis. We assume both rotations are synchronized
(so that overall is a 1-DOF mechanism), the second with twice the angular velocity of the first
one. (left) Motion field for 4 different configurations: t = 0, t = π

4 , t = 3π
4 , and t = −π

4 . Note
that it is dependent on the configuration t. (right) Corresponding motion orbits.
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The integration step involves finding a surface that complies with those two vector fields.
While it is pretty straightforward to find an integral curve of a vector field, from an integration
perspective, it is a bit more involved in the spatial case.

Let L(pi,ηi) be the loci of a set of normal constraints. Assuming there are no inconsistent
constraints, L(pi,ηi)(p) is a vector representing a contact normal at p. Let α(u, v) = E(u, v, 0)
be a parametrization of the surface of the effector in orbit space for (u, v) ∈ [umin, umax] ×
[vmin, vmax]. In a general, α must satisfy:

∂α

∂u
· L(pi,ηi)(α(u, v)) = 0

∂α

∂v
· L(pi,ηi)(α(u, v)) = 0

(17)

a system of two first-order partial differential equations (PDEs) with two independent param-
eters u and v. Although it is possible to solve the system using standard techniques for PDEs,
in Section 8.2 we use a simpler but more restricted implementation: First, we represent the
loci L(pi,ηi) of contact normals by a couple of independent vector fields Lu and Lv both orthog-
onal to L(pi,ηi). We then parametrize the solution along the integral curves of Lu and Lv, in
which case the integration becomes analogous to the planar case, where we can approximate
the surface solution by iterative 1-dimensional integration of Lu or Lv along those preferred
directions.

8.2 Application: Grasp Versatility and the MLab Hand

“Many robotic hands have been designed and a number have been built.”

— Nathan Ulrich, Grasping with Mechanical Intelligence [74].

The MLab hand is a simple gripper designed in the context of the Simple Hands project in
the Manipulation Lab at Carnegie Mellon University. Several prototypes have been produced
(Figure 29) and extensively used in different applications, including bin-picking, haptic sensing,
and general purpose in-hand manipulation. The goal of the hand is to explore the tradeoff
between simplicity and generality in robotic hands (Mason et al. [41]), and to design a simple,
inexpensive, robust, and functional gripper.

One of the main reasons to study simple hands is that, being simpler, we can gain a better
understanding of the principles guiding the design and control of robotic hands. The Mlab hand
is designed following a “let the fingers fall where they may” approach to grasping, where the
grasp process is passively controlled by the mechanics of grasp stability and is continuously
informed by learned stochastic models of haptic sensing. Several features of the hand have
been studied and optimized. In this section we describe efforts in the design of the shape of
its phalanges.

For the purpose of this thesis, it is enough to know that its design follows these guidelines:

• A flat low-friction palm. Low friction produces a small number of stable poses for a
general object within the hand.
• Three fingers arranged symmetrically around a palm, and compliantly coupled to a single

actuator. The actuation model approximates the model depicted in Figure 23.
• Deliberately shaped phalanges.
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Figure 29: Series of prototypes of the MLab Hand. In Section 8.2 we show examples of fingers
designed for P3 and P3.5.

The main goal in this section is to explore the role of the rigid fingers of the MLab Hand
as contacting surfaces to provide good grasps for a wide variety of objects and grasp types.
In particular we will show that, although the gripper is driven by a single actuator, it can
accomodate most grasp types identified in grasp taxonomies, and reproduce a large fraction of
the most common grasps used by other more complex hands. Section 8.2.1 gives a brief intro-
duction to grasp taxonomies and how they inform hand design. Section 8.2.2 and Section 8.2.3
show examples of plannar and spatial fingers derived for the MLab Hand.

8.2.1 Grasp Taxonomies

Robotic hand design has been dominated in the last decades by three different principles [41]:
anthropomorphism, in-hand manipulation, and grasp taxonomies.

Anthropomorphism aims directly at emulating the human hand. Humans are skilled ma-
nipulators; surely part of that skill must come from the mechanism itself. There are several
reasons why replicating the human is a good idea, including the impressive manipulation ca-
pabilities of humans, and the anthropic nature of environments where robots need to operate.
The downside is that it often yields complex designs difficult to use and understand.

In-hand manipulation is the process of controlled repositioning of an object in the hand,
often using its fingers. The design of robotic hands to enable general purpose in-hand manip-
ulation follow from knowledge of the mechanics of manipulation, for example by advising on
practical requirements like the number and location of contacts needed to stably manipulate
an object, or the amount of control needed over each one of them (Okada [48], Salisbury and
Craig [65], Brock [8], Bicchi et al. [4]).

Finally, grasp taxonomies describe “distinctively” different hand configurations commonly
used to hold and use objects. Robotic hand designs informed by human grasp taxonomies try
to reproduce the poses and contact configurations taken by humans rather than directly its
mechanical structure. Several grasp taxonomies have been produced over the years (Schlesinger
[67], Cutkosky [16], Napier and Tuttle [46]).
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Figure 30: Examples of fingertip vs. enveloping grasps (columns) and prismatic vs. circular
grasps (rows).

Most taxonomies identify two broad classes of grasps: enveloping and fingertip grasps
(Figure 30). In enveloping grasps, larger parts of the surface of the hand (mostly finger and
palm) are in contact with the object to provide a more firm or powerful grasp. Fingertip
grasps, on the other hand, are usually achieved with the fingertips of the fingers to provide a
more controlled and accessible grip. Both types are used for very different tasks, and a general
purpose hand should be capable of both.

Another useful characterization commonly seen in grasp taxonomies, orthogonal to the
distinction between enveloping and fingertip grasp, is the distinction between circular and
prismatic grasps [16] (Figure 30). Circular grasps are adequate for spherical and disk shaped
objects, and prismatic grasps are adequate for cylindrical and prismatic objects. While the
enveloping/fingertip characterization refers mostly to the location of the object in the hand,
the circular/prismatic distinction refers to its shape.

Inspired by those characterizations, we will demonstrate the techniques developed in this
thesis by designing fingers to recreate those grasp types. In particular, we will design the shape
of the phalanges of the MLab Hand to accomodate geometrically correct grasps of spheres,
cylinders, and prisms of varying size both in enveloping and fingertip configurations.
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Figure 31: Set of imposed contacts. They will enable the hand to grasp spheres of varying size
both in enveloping and fingertip configurations.

8.2.2 Fingers of the MLab Hand: Planar Example

Before designing the 3D shape of the fingers of the MLab Hand in the following section, here we
show a simpler and easier to visualize example where we derive fingers to accomodate grasps
of spheres of varying size both in enveloping and fingertip configurations. The fingers need to
satisfy a 1-dimensional set of geometric constraints. Consequently, it is enough to look at the
fingers as actuated by planar rotational joints and simply design the curved profile along their
length.

The problem is described more precisely in Figure 31. We impose contact constraints so
that the hand is capable of providing geometrically correct grasps of spheres (disks in the plane)
of varying size both in fingertip and enveloping configuration. There are multiple options to
chose how and where to grasp the targeted spheres. The only restriction is to chose contacts
so that the induced constraints are imposed at monotonically increasing distances from the
rotation center, which will guarantee the existence of solution.

The combination of all those constraints defines the shape of the finger. It is key to notice
that we use two different regions of the finger surface to provide different grasp types (distal
part of the phalange for fingertip grasps and proximal part for enveloping grasps). This is
something we will further exploit in the following section. In this case the proximal and distal
sections of the finger are used to provide geometrically invariant grasps of spheres respectively
in enveloping and fingertip configurations.

Figure 32 illustrates the generation and integration of the loci of the imposed constraints,
as well as the final shape. In Figure 33 we see the MLab hand grasping differently sized spheres
accordingly to the planed contact geometry.
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Figure 32: We find a solution by constructing the loci of the set of constraints in Figure 31
and integrating the resulting vector field.
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Figure 33: Fingertip and enveloping grasps of differently sized spheres.

8.2.3 Finger of the MLab Hand: Spatial Example

We proceed now to design the 3D shape of the fingers of the MLab Hand. The desired
functionality is described in Figure 34 in terms of the set of surface contacts we want the hand
to recreate.

The goal is for the hand to be able to grasp spheres and cylinders of varying size both
in enveloping and fingertip configurations, as well as two-fingered pinch grasps of prisms of
different size. These are described in Figure 34 with illustrative examples of the resulting
grasps and the set of surface contacts imposed to yield the desired grasp geometry. As in the
planar example in Section 8.2.2 we chose the constraints so that they do not interfere with
each other. In practice, this means that different regions of the finger surface will provide the
necessary contacts for the different grasp types. Those surface “patches” are shown overlaid
on top of the final finger design in Figure 36.

Figure 35 shows the loci induced by the set of contact constraints in Figure 34, as well
as the shape resulting from integrating it. Figures 37, 38, and 39 show some examples of the
resulting grasps of the MLab Hand. In particular they show how the contact geometry changes
with the scale of the object, for the example cases of enveloping grasps of spheres, fingertip
grasps of cylinders, and pinch grasps of prisms. In all cases, the obtained contact geometry is
in accordance with the planned one.
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Circular
fingertip
grasp

Circular
enveloping
grasp

Prismatic
fingertip
grasp

Prismatic
enveloping
grasp

Pinch
grasp

Figure 34: Five grasp types that we want the MLab Hand to execute: fingertip and enveloping
grasps of spheres of varying size, fingertip and enveloping grasps of cylinders of varying size,
and pinch grasps of prisms of varying size. The first column shows an example of the resulting
grasp we want to enable. The second and third columns show the side and top view of the
set of imposed contacts, each a dupla of orthogonal vectors spaning the correspondent tangent
plane.
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Figure 35: Loci induced by the set of constraints in Figure 34. We integrate the loci to obtain
the shape of the phalanges of the MLab hand, better illustrated in Figure 36. The bottom row
show the rear, top, and side views of the loci and surface solution.
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Figure 36: Integrated finger shape, ready to be attached to the MLab Hand. The figure
illustrates three views of the different contact regions in the surface of the finger. From left to
right, top to bottom, the regions correspond to: (green) fingertip grasps of cylinders; (yellow)
fingertip grasps of spheres; (black) pinch grasps of prisms; (red) enveloping grasps of cylinders;
and (blue) enveloping grasps of spheres. The central patches for grasping spheres follow the
same profile as the solution to the planar case in Figure 32. The patches are singled out for
visualization purposes, but they emerge from a single integration of the set of all constraints
in Figure 34. Their location in the finger can be manually tunned when defining the desired
contacts.

Figure 37: Enveloping grasps of spheres of radius 0.75in, 1.125in, and 1.5in. The radius of the
palm is 2in.

46



Figure 38: Fingertip grasps of cylinders of radius 0.125in, 0.25in, and 0.5in. The radius of the
palm is 2in.

Figure 39: Two-finger pinch grasps of prisms of side length 0.25in, 0.5in, and 1in. The radius
of the palm is 2in.
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9 Discussion

This thesis is an exploration of shape as a design freedom. Several are the reasons that motivate
the study of shape:

• Shape is relevant to manipulation. It plays a key role in determining the reaction to
contact. In particular, in this thesis, we are interested in the role played by shape in
determining contact geometry, and how that can be used to guide the interaction between
effector and object;

• Shape is cheap. It can be used to increase the capabilities of simple effectors without
increasing their complexity or needs for control. Alongside other mechanical attributes
like compliance or underactuation, it can convey mechanical intelligence. From a fabrica-
tion perspective, the uprise of additive manufacturing and rapid prototyping techniques,
makes it simple and inexpensive to fabricate 3D complex geometries on demand;

• Shape is unavoidable. Design choices have consequences, and when designing a mecha-
nism we are always forced to chose a shape. We might as well take an informed decision.

In this thesis we address the problem of synthesizing shape of an effector to accomplish
a certain mechanical purpose or task. Most previous work, in part inspired by automation
applications like part orienting or assembly, represent mechanical purpose by constraining at
will the set of relative configurations between two objects. In that context, shape synthesis can
be seen as the inverse of the motion planning problem, where the synthesized shape is meant
to void the undesired motion freedoms of an object. In contrast, in this thesis, we represent
mechanical purpose directly by imposing a desired reaction to contact between effector and
object. The mechanical purpose of an effector is encoded in the contacts and forces that is
capable of producing. The main contribution of this thesis is to formalize the problem of
synthesizing a shape driven by a given mechanism to produce a desired set of contacts.

We look at an effector as the combination of a driving mechanism and a rigidly attached
shape. We represent the motion of the effector by a set of motion orbits, or integral curves of a
vector fieldM inW×T representing the direction of imposed effector motion. In turn, motion
orbits allow us to formalize constraint propagation, the process to transform contact constraints
to different mechanism configurations. Constraint propagation yields a representation of con-
tact constraints independent of the mechanism configuration, the locus of a constraint, which
allows us to overcome the challenge of having to enforce contact contraints for an undetermined
configuration of the mechanism.

We illustrate developed techniques with three case studies: planar rotational joints; general
1-DOF planar actuation; and general 1-DOF spatial actuation. We use those case studies to
introduce three different principles to guide the design of the phalanges of robotic hands:
invariance of contact geometry with respect to the scale or pose of an object; improved grasp
stability for a given object and grasp; and increased grasp versatility of a robotic hand. We
finally showcase the tools with the design of the fingers of the MLab hand, a simple gripper with
three fingers compliantly coupled to a single actuator capable of exerting geometrically correct
three-fingered grasps of spherical and cylindrical objects or varying size both in fingertip and
enveloping configuration, and two-fingered pinch grasps of prismatic objects of varying size.

We will finish now by discussing some limitation of the formulation, as well as some promis-
ing future directions, including the multi-DOF case.
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9.1 Multi-DOF Case

The case of mechanisms with more than one degree of freedom is considerably more difficult
to address. The configuration space of 1-DOF mechanism is very simple. It is 1-dimensional,
and can only be traversed forwards or backwards. The multi-DOF case, however, poses a very
interesting challenge: there are infinite many ways to go from configuration A to configuration
B, and each one yielding a different contact pattern with the environment. The challenge and
the opportunity is that now design and planning are note separable problems. We cannot
design a shape for the effector without knowing what plan the effector is going to follow to
move from A to B. Likewise, the selection of a plan must be informed by the shape attached
to the effector. The design space is larger, which complicates the problem but at the same
enlarges the set of problems with solution.

The multi-DOF case is important. Most robotic hands have fingers with more than one
phalange, either individually actuated or with some sort of compliant coupling scheme between
them. In both cases it would be interesting to have a principled way to undersand the effects of
shape in object interaction. The multi-DOF case is also interesting in the context of locomotion.
Legs, even simple models, have more than one degree of freedom. It would be interesting to
understand the combined effects of gait and foot shape in the interaction with the terrain.

Figure 40: Human running gait. Adapted from Decker et al. [17].

The formalization in this thesis of the 1-DOF case suggests a generalization to the multi-
DOF case. For simplicity of notation, we will focus on the 2-DOF case. The configuration
space of the mechanism is now parametrized by t1 and t2. At each point p in the workspace
there are two privileged directions in which the mechanism can advance, one corresponding to
each degree of actuation. The motion field becomes a distribution of dimension 2:

M : (p, (t1, t2)) 7→
〈(

∂E(s, t1, t2)

∂t1
, (1, 0)

)
,

(
∂E(s, t1, t2)

∂t2
, (0, 1)

)〉
We use a similar argument than in the 1-DOF case to show that the integral surfaces of the

distribution foliate W × T . Now, equivalent to motion orbits we have 2-dimensional surfaces
that represent all points inW×T reachable by a point in the surface of the effector. Constraint
propagation and the locus of a constraint are defined the same way: constraints propagate along
those reachable surfaces as held invariant in a frame moving with the mechanism.

In that locus, now a two dimensional set, constraints are represented for all possible con-
figurations of the mechanism. A solution to the problem is still a curve or surface that crosses
all loci consistently. However, the challenge and the opportunity is that now inconsistent con-
straints are not necessarily an issue, since we might have the freedom to chose a motion plan
to avoid them, for example when designing the shape of a foot and the gate followed by the
leg driving it.
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9.2 Limitations and Future Directions

This thesis begins from the premise that we can represent mechanical function by providing a
set of contacts. Although common in manipulation this might not always be sufficient. The
direction and location of the contact force is important, but being able to produce a given
contact normal, does not mean the effector will be able to exert enough force.

Friction is also critical to fully understand the reaction to contact. We could consider
replacing the imposed contact normals by friction cones, to find shape solutions that satisfy
the desired functionality but within the bounding conditions that yield stick/slip as desired.

There are also manipulation tasks, specially those involving large motions, which are not
easily specified in terms of contacts. A more complete approach to design for the purpose
of manipulation would need to reason within a common formulation both about contact and
motion constraints.

For simplicity of exposition, when talking about contacts, we have referred only to matching
the tangets of object and effector. However, to guarantee a compatible interaction, we might
also want to constraint their relative curvatures. We can either approximate higher order
constraints by a combination of first order ones, or directly impose a curvature constraint in a
very similar fashion to tangential constraints: (p, κ) ∈ R2×R is satisfied by an effector E(s, t)
if there are t0 ∈ T and s0 ∈ S (or (u0, v0) ∈ S) such that:

E(s0, t0) = p and
∂2E(s, t0)

∂s2

∣∣∣∣
s=s0

= κ

The curvature is defined in the local coordinates of a curve, hence it is invariant to constraint
propagation. If a problem is specified both in terms of tangential and curvature constraints,
the loci will contain them both, and both should be considered in the integration step.

Finally, it is important to note that matching the tangent and curvature of object and
effector might not even guarantee proper interaction. Both are local conditions that ensure that
locally both surfaces will be compatible. However other sections of the effector or object might
produce collision before reaching the imposed contact, as would often happen in concavities.

In general, guaranteeing global compatibility between object and effector is a very chal-
lenging problem that require global information for collision checking, that would prevent the
closed form solutions obtained in this thesis. A more suitable strategy would be to turn the
problem into an optimization formulation, and include in the optimization process other me-
chanical attributes, such as the parameters of the driving mechanism (location of rotation
center or link lengths of linkage) and the freedom, if any in the description of the problem
(location and direction of the desired contacts).
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