Shape-Constrained Estimation
in High Dimensions

Min Xu

June 2015
CMU-ML-15-103

Machine Learning Department
School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
John Lafferty, Chair
Aarti Singh
Larry Wasserman
Ming Yuan (UW Madison)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright (© 2015 Min Xu

This research was funded in parts by the grants NSF 1IS1116740, ONR N000141210762, NSF
CCF0625879, and AFOSR FA95500910373

The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.



In memory of my grandfather.



Abstract

Shape-constrained estimation techniques such as convex regression or
log-concave density estimation offer attractive alternatives to traditional
nonparametric methods. Shape-constrained estimation often has an easy-
to-optimize likelihood, no tuning parameter, and an adaptivity property
where the sample complexity adapts to the complexity of the underlying
functions. In this dissertation, we posit that shape-constrained estima-
tion has an additional advantage in that they are naturally suited to the
high-dimensional regime, where the number of variables is large relative
to the number of samples.

In the first part of this dissertation, we study high dimensional convex
regression and demonstrate that convex regression surprisingly has the
additive faithfulness property, where the additive approximation is guar-
anteed to capture all relevant variables even if the underlying function
is not additive. We propose a practical variable selection procedure for
high dimensional convex regression based on this observation. The overall
work provides a practical smoothing-free semi-parametric generalization
of the Lasso.

We generalize our work on high dimensional convex regression to
discrete choice models, in which a consumer chooses between m items
x1, ..., Ty, With probability proportional to exp f(z;) for a utility function
f. We show that additive faithfulness applies also in this setting. We
accordingly adapt our method to the estimation of the utility function.

In the last part, we consider the problem of learning the orientation
pattern in additive shape-constraint models. Brute force search in this
problem requires times exponential in the dimensionality. We propose
a relaxation approach, based on trend filtering and motivated by our
identifiability analysis, that is computationally efficient and effective.
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CHAPTER 1

INTRODUCTION

Nonparametric estimation methods, such as kernel regression or random forest, are
flexible and powerful because of they impose weak assumptions on the underlying
function. Their disadvantages are that they require more time for computate and
more samples for estimate. Nonparametric methods are particularly vulnerable to
the curse of dimensionality. Their drawbacks are dramatically exacerbated when
the data is high-dimensional, i.e. when the dataset has a large number of variables
relative to the number of samples.

In parametric regression, stunning recent advances have shown that under a spar-
sity assumption, in which most variables are assumed to be uninformative, it is
tractable to identify the relevant variables and estimate the function as if the data
is low-dimensional. Some analogous results have followed for high-dimensional non-
parametric regression but there is still a large gap; there currently exist no method
for high-dimensional nonparametric regression that is as practical and theoretically
justifiable as parametric methods like the Lasso.

This thesis tackles the problem of high-dimensional nonparametric estimation
through shape constraints. Shape-constrained estimation has a rich history and
extensive research on topics such as convex or monotone regression and log-concave
density estimation. Shape-constraints differ from the usual smoothness assumptions
in several ways:

1. It is often possible to directly optimize the likelihood.
2. It is often free of tuning parameters, such as the bandwidth in kernel regression.

3. It exhibits adaptivity; the sample complexity can adapt to the complexity of
the underlying function to be learned. (Guntuboyina and Sen, 2013a; Cai and
Low, [2011)

In this thesis, we posit an additional advantage: that shape constraints
are naturally suited toward high-dimensional estimation.

We focus on monotone functions and convex/concave functions in this thesis, but
some of the analysis extends to higher orders of shape-constraints.

Shape-constraint assumptions arise naturally from real data. For example, the
income of a person is a increasing function of the education quality, the price of a
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house is a decreasing function of the neighborhood crime level. Estimation of con-
vex functions arises naturally in several applications. Examples include geometric
programming (Boyd and Vandenberghe, 2004), computed tomography (Prince and
Willskyl 1990), target reconstruction (Lele et al. [1992)), image analysis (Golden-
shluger and Zeevi, 2006) and circuit design (Hannah and Dunson, 2012). Other
applications include queuing theory (Chen and Yao, 2001) and economics, where it
is of interest to estimate concave utility functions (Meyer and Pratt], 1968). Util-
ity functions can be assumed concave because of the phenonmenon of diminishing
returns. Beyond cases where the shape-constraint assumption is natural, the shape-
constrained estimation can be attractive as a tractable, nonparamametric relaxation
of the linear model.

Shape-constrained estimation has a long history. Much of the earlier work on
isotonic regression is described by the classic “4B” text (Barlow et al., [1972)). Mair
et al. (2009) too provides a good history. Research into convex regression began in
the 1950s (Hildrethl 1954) for estimation of production and Engel curves. The earlier
works were focused on the univariate case and the least square estimator’s properties
were investigated by Hanson and Pledger| (1976)), Groeneboom et al.| (2001), Mammen
(1991)), and more.

Recently, there has been increased research activity on shape-constrained estima-
tion. |Guntuboyina and Sen| (2013b)) analyze univariate convex regression and show
surprisingly that the risk of the MLE is adaptive to the complexity of the true func-
tion. Seijo and Sen| (2011)) and [Lim and Glynn| (2012)) study maximum likelihood
estimation of multivariate convex regression and independently establish its consis-
tency. (Cule et al. (2010c) and Kim and Samworth| (2014]) analyze log-concave density
estimation and prove consistency of the MLE; the latter further show that log-concave
density estimation has minimax risk lower bounded by n=2/(¢+1 for d > 2, refuting a
common notion that the condition of convexity is equivalent, in estimation difficulty,
to the condition of having two bounded derivatives. Additive shape-constrained es-
timation has also been studied; [Pya and Wood| (2014)) propose a penalized B-spline
estimator while |(Chen and Samworth| (2014) show the consistency of the MLE.

1.1 Thesis Summary

Briefly, we study high dimensional convex regression in Chapter 2, convex utility
estimation for discrete choice model in Chapter 3, and shape-constraint pattern
selection for additive models in Chapter 4. Lastly, in Chapter 5, we discuss open
questions raised by the work in this thesis.
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Chapter 2

In Chapter 2 of the thesis, we give a practical procedure that performs variable
selection for high dimensional convex regression. Our main result is a population
level analysis showing that an additive projection can faithfully recover the set of
relevant variables of a possibly non-additive convex function under weak assumptions
on the underlying density; we refer to this phenonmenon as additive faithfulness.

Our estimation procedure is a two stage procedure where we fit an additive convex
function in the first stage and fit several decoupled univariate concave functions in the
second stage. The second concave fitting stage is un-intuitive and generally necessary
as shown in our theory. Our optimization method is a backfitting procedure where
each iteration is a quadratic program. It is computationally practical and effective
on both simulated and real data.

We also perform a finite sample analysis on our estimation procedure and prove
variable screening consistency. Whereas variable selection for general smooth func-
tions is impossible unless n = exp(s) (as proved by Comminges and Dalalyan
(2012))), we show that variable selection for convex regression is consistent even if
n = O(poly(s)) where n is the sample size and s is the number of relevant variables.

Chapter 3

Chapter 3 generalizes the work of Chapter 2 to the discrete choice model, which
is a more general form of the logistic loss. In discrete choice model, a consumer
chooses one of m items xy, ..., X, to purchase and decides on item x; with probability
proportional to exp f(x;) where f is a concave utility function.

We show that a form of additive faithfulness also holds in this setting and extend
our estimation procedure to the discrete choice model. We verify that our method
is effective in a real world dataset from a survey that we designed and conducted.

Chapter 4

Chapter 4 studies the problem of orientation pattern selection for an additive shape-
constraint model. More precisely, we fit Z?Zl fj where f; could be either monotone
increasing or decreasing.

We show in the d = 2 case that the problem is identifiable and that the correct
pattern can be recovered by minimizing the L; norm of the differences 377" |fi; —
fi+1,7]- This observation motivates an estimator where we use a L; of differences
regularization. This estimator can also be interpreted as the convex relaxation of
the computationally inefficient combinatorial search.
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1.2 Properties of Shape-Constrained Functions

We give some basic properties of monotone and convex/concave functions and then
describe simple estimation problems that involve these functions.

Monotonic Functions

A monotonic function from R to R is easy to visualize, but the notion of monotoncity
can actually be much more general.

Definition 1.2.1. Let C be a partially ordered set. A function f : C — R is
monotone increasing if f(x) > f(y) if z = y.

If C = RP, we can use the ordering that x >y if x; > y; for all j. f is monotone
under this ordering if and only if, for all j = 1, ..., p, for any fixed x_;, f(z;,x_;) is
a monotonic 1-dimensional function of ;. Another interesting example is if C' is a
directed acyclic graph.

Classic results in real analysis state that monotone functions have a countable
number of discontinuities and that every function of bounded variation can be written
as a sum of a monotone increasing and decreasing function.

Given finite samples, the MLE (assuming Gaussian error) of monotone regression
is a finite dimensional optimization even though the set of monotone functions is
infinite dimensional.

Definition 1.2.2. (LSE for Monotone Functions)
Suppose we have samples (X;,v;)i=1,.» where the X;’s are drawn from some distri-
bution on C. The least square estimator (LSE) is

min Z(fl — yi)2

fi i3
s.t. fi > f; for all (¢, 7) such that X; > X;

The well known Pool Adjacent Violator algorithm (PAVA), first described by
Ayer et al. (1955)) can efficiently solve this optimization, in time O(n logn) for totally
ordered X;’s. |[Dykstra (1981) provides generalizations of PAVA that apply to partially
ordered sets.

The estimated function is defined only on X; in the training set but interpolation
can be used to evaluate the estimated function on a general x.
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Convex Functions

Convex functions intuitively have a bowl-shaped graph. They have numerous equiv-
alent characterizations. We list three which are useful for us.

Definition 1.2.3. Let C' C R? be a convex set. f: C — R is convex if f(Ar+1(1—
Ny) < Af(z)+ (1= X)f(y) for all A € [0, 1] and for all z,y € C.

Equivalently, f is convex iff for every x € C|, there exists a subgradient V f(z) €
R? such that f(y) > f(z) + Vf(z)"(y — z).

If f is twice-differentiable, then f is convex iff the Hessian is positive semidefinite
for all x in the interior of C.

The first order characterization for one dimensional convex functions is particu-
larly simple; it says that the derivative must be non-decreasing. This simple obser-
vation is useful in reducing the computational complexity of many of our estimation
algorithms.

Convex functions are analytically nice because they are continuous on the interior
of the support and thus measurable. In fact, a classic result by Aleksandorov| (1939)
shows that convex functions are almost everywhere twice differentiable.

A useful well-known property of convex functions is that the sum of a convex
and a concave function can represent any function with a bounded second derivative
(Yuille and Rangarajan, 2003). This is analogous to how any function of bounded
variation can be written as the sum of an increasing and a decreasing function.

Proposition 1.2.1. Let h : R? — R be a twice-differentiable function with a bounded
second derivative. Then h = f + g where f is convex and g is concave.

Proof. The Hessian of h(x)+c39_, 27 is Hessian(h)+cly. Since the second derivative
of h is bounded, there exists a positive scalar ¢ such that f(z) = h(z) + ¢ X, 27 is
convex. Let g(z) = —cY9_, 27 and the claim follows.

Analogous to the case of monotone regression, the MLE for convex regression is
a finite dimensional optimization.

min 3y — )2

foBim =
st fy > fi 4 B (xy — z;)

where f3; is the p-dimensional subgradient vector at x;. This optimization is a
Quadratic Program and can be solved efficiently with interior point methods. Again,
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the estimated function is defined only on X; in the training set but we can evaluate
the estimated function on a general x with interpolation.

1.3 Background on High Dimensional Statistics

High dimensional data is, simply put, data with a large number of covariates—often
more than the number of samples. Statistical problems become challenging in this
regime and many classical methods fail entirely.

Let us first consider a linear model y = X with n samples and p covariates.
When p << n, the ordinary least square estimate Sors = (XTX) ' XTy forms a
good estimate of y. In the high dimensional regime where p is large, BOLS overfits;
its training error decreases as one uses more covariates. If p > n, B cannot even be
computed since X TX is non-invertible.

For high dimensional data, it is reasonable to assume that most of the covariates
are not predictive of the output and thus irrelevant. We formalize this assumption
mathematically by assuming that (3 is sparse—it has only s non-zero entries where
s << p. In the vocabulary of high-dimensional statistics, we say that p is the ambient
dimension.

If the relevant variables were known a priori, then the problem is easy because
we can ignore the irrelevant variables and put the problem in the low dimensional
regime; the challenge thus is variable selection—to identify the set .S of relevant vari-
ables. One approach is to search over the subsets—possibly using a greedy method
for computational efficiency—and score them with a criterion such as Mallows’s C,,
Akaike Information Criterion, or Bayesian Information Criterion, to achieve a good
balance of both low training error and low model complexity (Hastie et al., |2009).

Another approach shows that the Li-regularized M-estimator, also known as
lasso, is effective at producing a sparse estimator B whose non-zero entries approxi-
mate S. Astonishingly, it is also known that the lasso can consistently estimate the
parameters so long as “”10% — 0. In other words, the ambient dimension can be
exponential in the number of samples.

—~ 12
ﬁlasso = arggnln ﬁ Z(yz - X;rﬁ)2 + >\Hﬂ||1
=1

Figure 1.1: The lasso estimator. X is a tuning parameter that balances training error
and sparsity of the output [iusso-
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It is harder to adapt nonparametric models to the high dimensional setting. One
relatively easy case is the additive model, where the p-dimensional regression function
f(x) is assumed to decompose as a sum of p univariate functions y35_, f;(z;). In
this case, many researchers were able to derive nonparametric analogues of the lasso.
Ravikumar et al.| (2009)) for examples penalizes a sum of Ly norms of the component
functions:

n

min 1 Z <yi — i: f](xw)> + )\zp:

f smooth n, i1 = i1

In non-additive nonparametric regression, variable selection is a notoriously diffi-
cult problem. |Lafferty and Wasserman! (2008) develop a greedy procedure for adjust-
ing bandwidths in a local linear regression estimator, and show that the procedure
achieves the minimax rate as if the relevant variables were isolated in advance. But
the method only provably scales to dimensions p that grow logarithmically in the
sample size n, i.e., p = O(logn). This is in contrast to the high dimensional scaling
behavior known to hold for sparsity selection in linear models using ¢; penalization,
where n is logarithmic in the dimension p. Bertin and Lecué (2008]) develop an
optimization-based approach in the nonparametric setting, applying the lasso in a
local linear model at each test point. Here again, however, the method only scales
as p = O(logn), the low-dimensional regime. An approximation theory approach
to the same problem is presented in DeVore et al| (2011)), using techniques based
on hierarchical hashing schemes, similar to those used for “junta” problems (Mossel
et al., [2004). Here it is shown that the sample complexity scales as n > log p if one
adaptively selects the points on which the high-dimensional function is evaluated.

Comminges and Dalalyan| (2012) show that the exponential scaling n = O(log p)
is achievable if the underlying function is assumed to be smooth with respect to a
Fourier basis. They also give support for the intrinsic difficulty of variable selection
in nonparametric regression, giving lower bounds showing that consistent variable
selection is not possible if n < logp or if n < exp s, where s is the number of relevant
variables. Variable selection over kernel classes is studied by [Koltchinskii and Yuan
(2010).
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more flexible

—>
sparse linear sparse additive sparse general
model model nonparametric model

<€

more practical

Figure 1.2: A summary of the sparse models.

1.4 Notation

Indexing Convention

Unless otherwise stated, we let 7 index samples, 7, k index features. The variable p, d
will be used to represent the dimensionality and n the number of samples.
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random variable (possibly

X vector X
random vector)
vector x with k-th coordinate S C{1,...,p}, X restricted to
X_k XS . .
removed variables in §
x () i-th sample X sample mean

the j-th largest entry of a vec-

E[- |zx]  shorthand for E[- | X} = xy] () .

Lebesgue square integrable square integrable space w.r.t.

2 2

L space L(p) distribution P

1 all ones vector 1g vector 1 in set .S, 0 else

1£112 Lo(P): Ef(X)? (f, ) empirical  inner  product

Ly, f(X)g(X)

. f univari func-
I£12 empirical L2: % S (XG)? cl set of univariate convex func

tions
clL univariate convex function o additive function with p uni-
B bounded by B ! variate convex functions

Figure 1.3: Notations used in the dissertation




CHAPTER 2

HIGH DIMENSIONAL CONVEX REGRESSION

2.1 Introduction

In this chapter we study the problem of variable selection in multivariate convex
regression. Assuming that the regression function is convex and sparse, our goal is
to identify the relevant variables. We show that it suffices to estimate a sum of one-
dimensional convex functions, leading to significant computational and statistical
advantages. This is in contrast to general nonparametric regression, where fitting
an additive model can result in false negatives. Our approach is based on a two-
stage quadratic programming procedure. In the first stage, we fit an convex additive
model, imposing a sparsity penalty. In the second stage, we fit a concave function
on the residual for each variable. As we show, this non-intuitive second stage is in
general necessary. Our first result is that this procedure is faithful in the population
setting, meaning that it results in no false negatives, under mild assumptions on the
density of the covariates. Our second result is a finite sample statistical analysis of
the procedure, where we upper bound the statistical rate of variable screening con-
sistency. An additional contribution is to show how the required quadratic programs
can be formulated to be more scalable. We give simulations to illustrate our method,
showing that it performs in a manner that is consistent with our analysis.

While nonparametric, the convex regression problem is naturally formulated using
finite dimensional convex optimization, with no additional tuning parameters. The
convex additive model can be used for convenience, without assuming it to actually
hold, for the purpose of variable selection. As we show, our method scales to high
dimensions, with a dependence on the intrinsic dimension s that scales polynomially,
rather than exponentially as in the general case analyzed in Comminges and Dalalyan
(2012).

Related Work

Perhaps more closely related to the present work is the framework studied by Raskutti
et al.| (2012) for sparse additive models, where sparse regression is considered under
an additive assumption, with each component function belonging to an RKHS. An
advantage of working over an RKHS is that nonparametric regression with a sparsity-

10
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inducing regularization penalty can be formulated as a finite dimensional convex cone
optimization. On the other hand, smoothing parameters for the component Hilbert
spaces must be chosen, leading to extra tuning parameters that are difficult to select
in practice. There has also been work on estimating sparse additive models over a
spline basis, for instance the work of |Huang et al.| (2010)), but these approaches too
require the tuning of smoothing parameters.

Chapter Outline

In the following section we give a high-level summary of our technical results, includ-
ing additive faithfulness, variable selection consistency, and high dimensional scaling.
In Section we give a detailed account of our method and the conditions under
which we can guarantee consistent variable selection. In Section [2.4|we show how the
required quadratic programs can be reformulated to be more efficient and scalable.
In Section we give the details of our finite sample analysis, showing that a sample
size growing as n = O(poly(s) log p) is sufficient for variable selection. In Section
we report the results of simulations that illustrate our methods and theory. The full
proofs are given in a technical appendix.

2.2 Overview of Results

In this section we provide a high-level description of our technical results. The full
technical details, the precise statement of the results, and their detailed proofs are
provided in following sections.

Our main contribution is an analysis of an additive approximation for identifying
relevant variables in convex regression. We prove a result that shows when and how
the additive approximation can be used without introducing false negatives in the
population setting. In addition, we develop algorithms for the efficient implementa-
tion of the quadratic programs required by the procedure.

Faithful screening

The starting point for our approach is the observation that least squares nonpara-
metric estimation under convexity constraints is equivalent to a finite dimensional
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quadratic program. Specifically, the infinite dimensional optimization

n

minimize ;(Y; — f(xi)) (2.2.1)

subject to f:R? — R is convex

is equivalent to the finite dimensional quadratic program

n

minimize Y — £,)?
1.8 ;( £) (2.2.2)

subject to f; > fi + ﬁiT(xj —x;), for all 7, j.

Here f; is the estimated function value f(x;), and the vectors 3; € RY represent
supporting hyperplanes to the epigraph of f. See |Boyd and Vandenberghe| (2004),
Section 6.5.5. Importantly, this finite dimensional quadratic program does not have
tuning parameters for smoothing the function.

This formulation of convex regression is subject to the curse of dimensionality.
Moreover, attempting to select variables by regularizing the subgradient vectors f;
with a group sparsity penality is not effective. Intuitively, the reason is that all p
components of the subgradient §; appear in every convexity constraint f; > f; +
BT (x; — x;); small changes to the subgradients may not violate the constraints.
Experimentally, we find that regularization with a group sparsity penality will make
the subgradients of irrelevant variables small, but may not zero them out completely.

This motivates us to consider an additive approximation. As we show, this leads
to an effective variable selection procedure. The shape constraints play an essential
role. For general regression, using an additive approximation for variable selection
may make errors. In particular, the nonlinearities in the regression function may
result in an additive component being wrongly zeroed out. We show that this cannot
happen for convex regression under appropriate conditions.

We say that a differentiable function f depends on variable zy, if 0,, f # 0 with
probability greater than zero. An additive approximation is given by

p 2
iy = argmin{E(F(X) — = 3 /(X)) Efl(X) =0} (223)
P Y k=1

We say that f is additively faithful in case f; = 0 implies that f does not depend on
coordinate k. Additive faithfulness is a desirable property since it implies that an
additive approximation may allow us to screen out irrelevant variables.

Our first result shows that convex multivariate functions are additively faithful
under the following assumption on the distribution of the data.
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Definition 2.2.1. Let p(x) be a density supported on [0,1]P. Then p satisfies the
boundary flatness condition if for all j, and for all x_;,

Op(x—j | ;) _ 0%p(x—j|x;)
837]' 8%2
As discussed in Section [2.3] this is a relatively weak condition. Our first result is

that this condition suffices in the population setting of convex regression.

Theorem. (Theorem [2.3.1]) Let p(x) be a positive density supported on C' = [0, 1}?
that satisfies the boundary flatness property. If f is convex with a bounded second
derivative on an open set around C, then f is additively faithful under p.

=0 atz;=0and z; = 1.

Intuitively, an additive approximation zeroes out variable £ when, fixing x;, every
“slice” of f integrates to zero. We prove this result by showing that “slices” of convex
functions that integrate to zero cannot be “glued together” while still maintaining
convexity.

While this shows that convex functions are additively faithful, it is difficult to
estimate the optimal additive functions. The difficulty is that f; need not be a
convex function, as we show through a counterexample in Section It may be
possible to estimate f; with smoothing parameters, but, for the purpose of variable
screening, it is sufficient in fact to approximate f; by a conver additive model.

Our next result states that a convex additive fit, combined with a series of uni-
variate concave fits, is faithful. We abuse notation in the next theorem and let the
notation f;; represent convex additive components.

Theorem. (Theorem Suppose p(x) is a positive density on C' = [0, 1]? that
satisfies the boundary flatness condition. Suppose that f is convex and continuously
twice-differentiable on an open set around C. and that 0,, f, 0., p(x_x | zk), and
92 p(x_y | xy) are all continuous as functions on C. Define

(B0~ - X Ax0) : feect A =)

(2.2.4)
where C! is the set of univariate convex functions, and, with respective to f;’s from
above, define

2
gy = arg rx;in {E(f(X) — W= fa(Xw) — gk(Xk)> L g € -CY Egie(Xy) = 0},

k' £k
(2.2.5)
with -C! denoting the set of univariate concave functions. Then f; = 0 and gf = 0
implies that f does not depend on zy, i.e., 9,, f(x) = 0 with probability one.

AP ¥ = arg mi
{fk k=15 H g{fk}#
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This result naturally suggests a two-stage screening procedure for variable selec-
tion. In the first stage we fit a sparse convex additive model { fk} In the second
stage we fit a concave function g, to the residual for each variable having a zero
convex component fk If both fk = 0 and g = 0, we can safely discard variable x.
As a shorthand, we refer to this two-stage procedure as AC/DC. In the AC stage we
fit an additive convex model. In the DC stage we fit decoupled concave functions
on the residuals. The decoupled nature of the DC stage allows all of the fits to be
carried out in parallel. The entire process involves no smoothing parameters. Our
next result concerns the required optimizations, and their finite sample statistical
performance.

Optimization
Given samples (y;, X;), AC/DC becomes the following optimization.

n

p 2 p
(o}, = arg min 1z(yi—y—sz<xik>) A [l
k=1 k=1

{frectin i=1

i=1 k'#k

2
_ .1 _ ~
Vk, gr = arg min — » <yi 7= fo(Xiw) — gk(sz)> + Al gk oo
gkécl n

where y is the empirical mean of y. Our estimate of the relevant variables is S =
{k : |l fll > 0 or [[gell > 0}.

We present the optimization algorithms in Section [2.4] The convex constraints
for the additive functions, analogous to the multivariate constraints , are that
each component fi(-) can be represented by its supporting hyperplanes, i.e.,

fki’ Z sz + /Bkz(xkz’ — .ZU]%> fOI‘ all i, Z'/ (226)

where fi; = fr(z;) and By is the subgradient at point x;. While this apparently
requires O(n?p) equations to impose the supporting hyperplane constraints, in fact,
only O(np) constraints suffice. This is because univariate convex functions are char-
acterized by the condition that the subgradient, which is a scalar, must increase
monotonically. This observation leads to a reduced quadratic program with O(np)
variables and O(np) constraints.

Directly applying a QP solver to this optimization is still computationally ex-
pensive for relatively large n and p. We thus develop a block coordinate descent
method, where in each step we solve a sparse quadratic program involving O(n)
variables and O(n) constraints. This is efficiently solved using optimization packages
such as MOSEK. The details of these optimizations are given in Section [2.4]
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Finite sample analysis

In Section we analyze the finite sample variable selection consistency of AC/DC,
without assuming that the true regression function f, is additive. Our analysis
first establishes a sufficient deterministic condition for variable selection consistency,
and then considers a stochastic setting. Our proof technique decomposes the KKT
conditions for the optimization in a manner that is similar to the now standard
primal-dual witness method (Wainwright,, [2009).

We prove separate results that allow us to analyze false negative rates and false
positive rates. To control false positives, we analyze scaling conditions on the regular-
ization parameter A, for group sparsity needed to zero out irrelevant variables k € S¢,
where S C {1,...,p} is the set of variables selected by the AC/DC algorithm in the
population setting. To control false negatives, we analyze the restricted regression
where the variables in S¢ are zeroed out, following the primal-dual strategy.

Each of our theorems uses a subset of the following assumptions:

Al: Xg, Xge are independent.

A2: fp is convex with a bounded second derivative. Efo(X) = 0.

A3: || follo < sB and || f]|c < B for all k.

A4: The noise is mean-zero sub-Gaussian with scale ¢, independent of X.

A5: The density p(x) is bounded away from 0/co and satisfies the boundary flatness
condition.

In Assumption A3, f* = Yk f; denotes the optimal additive projection of fj in the
population setting.

Our analysis involves parameters o, and «_, which are measures of the signal
strength of the weakest variable:

ay = inf {E(f0<X) — F(X)) —E(fo(X) —f*(X))2}

B fECP :supp(f)STsupp(f*)

o= min {B(fo(X) ~ /(X)) ~ E(fo(X) ~ f*(X) - g (X))}
€8:g;#0

Intuitively, if a.y is small, then it is easier to make a false omission in the additive
convex stage of the procedure. If ar_ is small, then it is easier to make a false omission
in the decoupled concave stage of the procedure.

We make strong assumptions on the covariates in Al in order to make very
weak assumptions on the true regression function fy in A2; in particular, we do not
assume that fy is additive. Relaxing this condition is an important direction for
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future work. We also include an extra boundedness constraint to use new bracketing
number results (Kim and Samworth, 2014)).

Our main result is the following. Suppose assumptions A1-A5 hold. Let { ﬁ} be
any AC solution and let {gy} be any DC solution, both estimated with regularization

parameter A scaling as A = @(s&«/%logg np). Suppose in addition that

- | 87

a5 > cB? ngQ np (2.2.7)
_ | 80

ozz/a > c¢B* e log? 2np. (2.2.8)

where & = max(c, B) and ¢ is a constant dependent only on b, ¢;.
Then, for sufficiently large n, with probability at least 1 — %:

fot0orgr#0forallkesS
kaOandﬁk:OforallkgéS.

This shows that variable selection consistency is achievable under exponential
scaling of the ambient dimension, p = O(exp(cn)) for some 0 < ¢ < 1, as for linear
models. The cost of nonparametric estimation is reflected in the scaling with respect
to s = | S|, which can grow only as o(n*/%).

We remark that Comminges and Dalalyan (2012) show that, even with the
product distribution, under traditional smoothness constraints, variable selection is
achievable only if n > O(e®). Here we demonstrate that convexity yields the scaling

n = O(poly(s)).

2.3 Population Level Analysis: Additive
Faithfulness

For a general regression function, an additive approximation may result in a relevant
variable being incorrectly marked as irrelevant. Such mistakes are inherent to the
approximation and may persist even in the population setting. In this section we
give examples of this phenomenon, and then show how the convexity assumption
changes the behavior of the additive approximation. We work with C' = [0, 1]?
as the support of the distribution in this section but all of our results apply to
general hypercubes. We begin with a lemma that characterizes the components of
the additive approximation under mild conditions.
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Lemma 2.3.1. Let P be a distribution on C = [0, 1P with a positive density function
p(x). Let f: C — R be in L*(P). Let

fika 7f;a,U* =

argmin {E(f(X) =R s e (P BRI =0, k=1, ,p} .
k=1
With 1* = Ef(X),

filan) =E[f(0) — 2 fiX) o] — EF(X), (2.3.1)

k' £k
and this solution is unique.

Lemma follows from the stationarity conditions of the optimal solution.
This result is known, and criterion (2.3.1)) is used in the backfitting algorithm for
fitting additive models. We include a proof as our results build on it.

Proof. Let ff,..., f;, u* be the minimizers as defined; they exist since the set of mean
zero additive functions is a closed subspace of L?*(P). We first show that the optimal
pis p* = Ef(X) for any fi,..., fr such that Efi(Xy) = 0. This follows from the
stationarity condition, which states that p* = E[f(X) — >k fr(Xk)] = E[f(X)].
Uniqueness is apparent because the second derivative is strictly larger than zero and
strong convexity is guaranteed.

We now turn our attention toward the f;'s. It must be that f;; minimizes

min E(f(X) = p* — 3 fi(Xw) = fil X))’ (2.3.2)

T Kk
subject to Efx(Xy) = 0. Fixing x, we will show that the value

EI/(X) ~ 3 fo(Xe) o] - (2.3.3)

uniquely minimizes

min [ po(F00) — X flwe) — ) —pt) dxoe (234)

fk(xk) X_k k' #£k
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The first-order optimality condition gives us

/Xk p(x) fro(zr)dx_y :/ p(x)(f(x) = > filaw) — p')dx_y (2.3.5)

X—k K/ £k

p(xr) fu(zr) :/ p(zr)p(x—k | k) (f(x) — Z fr(zp) — p*)dx_p (2.3.6)

Xk k/7ék
filon) = [ px il o) (F0) = X fidaw) — )b (237)
X_k k'#£k
To prove uniqueness, suppose f =i, f] is another additive function that

achieves the same square error. Let v € [0, 1], consider E (f(X) — = (fF+u(f - f*)))2
as a function of v. The objective is strongly convex ifIE(f—f*)2, and so E(f— )2 =0
by the assumption that f* and f are both optimal solutions. By Lemma , we
conclude that E(f; — f])z = 0 as well and thus, f} = f; almost everywhere.

We note that E[f(X) — Y pzr fir(Xw)|zi] — Ef(X) has mean zero as a function

of xj, which shows that f;’s are feasible.
O

In the case that the distribution in Lemma [2.3.1| is a product distribution, the
additive components take on a simple form.

Corollary 2.3.1. Let p(x) be a positive density on C' = [0,1]P. Let p*, fif(zx) be
defined as in Lemma[2.3.1, Then p* = Ef(X) and f;(zy) = E[f(X) |z] — Ef(X)
and this solution is unique.

In particular, under the uniform distribution, f;(xy) / flog, x_g)dx_j —

/f(x)dx

Example 2.3.1. Using Corollary 2.3.1) we give two examples of additive unfaith-
fulness under the uniform distribution—where relevant variables are erroneously
marked as irrelevant under an additive approximation. First, consider the follow-
ing function:

f(z1,22) = sin(2mwzy) sin(27z2)  (egg carton) (2.3.8)

defined for (z1,z5) € [0, 1]% Then/ f(z1,x9)dxs = 0 and / f(z1,x9)dxy = 0 for

each x1 and z5. An additive approximation would set f; = 0 and fo = 0. Next,
consider the function
f(zq,29) = 129 (tilting slope) (2.3.9)
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defined for z; € [—1,1], 2o € [0,1]. In this case / f(z1,x9)dxy = 0 for each zy;
therefore, we expect f, = 0 under the additive appi"oximation. This function, for

every fixed s, is a zero-intercept linear function of x; with slope xs.

(a) egg carton (b) tilting slope

Figure 2.1: Two additively unfaithful functions. Relevant variables are zeroed out
under an additive approximation because every “slice” of the function integrates to
Zero.

In order to exploit additive models in variable selection, it is important to un-
derstand when the additive approximation accurately captures all of the relevant
variables. We call this property additive faithfulness. We first formalize the concept
that a multivariate function f does not depend on a coordinate x.

Definition 2.3.1. Let C'=[0,1]? and let f : C' — R. We say that f does not depend
on coordinate k if for all x_, f(zx,X_) is a constant as a function of zy. If f is
differentiable, then f does not depend on k if 0., f(zg, x_x) is 0 for all x_.

In addition, suppose we have a distribution P over C and the additive approxi-
mation

Jrow' = ?igf?iﬂ{EKf(X) - kil fi(Xk) — M)Q} r Efi(Xy) = 0}' (2.3.10)

We say that f is additively faithful under P if f; = 0 implies that f does not depend
on coordinate k.

Additive faithfulness is an attractive property because it implies that, in the
population setting, the additive approximation yields a consistent variable screening.
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Additive Faithfulness of Convex Functions

We now show that under a general class of distributions which we characterize below,
convex multivariate functions are additively faithful. To simplify presentation, we
restrict our attention to densities bounded away from 0/co, that is, 0 < inf p(x) <
sup p(x) < 0.

Definition 2.3.2. Let p(x) be a density supported on [0,1]". We say that p(x)
satisfies the boundary flatness condition if for all j, for all x_;, and for all z; €
[0,€) U (1 — €, 1] for some arbitrarily small € > 0, p(x_; | z;) is twice differentiable in

z;, that p(x_; | z;), ap(xayjmj), an(gg,ém) are bounded, and that

Op(x—j | ;) _ 0°p(x—j|x;)
ox; dx?

J

=0 atz; =0,z; =1 (2.3.11)

The boundary flatness condition intuitively states that two conditional densities
p(x_j|z;) and p(x_;|7}) are similar when x; and 2, are both close to the same
boundary point. It is thus much more general than product densities. Boundary
flatness is a weak condition because it affects only an e-small region around the
boundary; p(x_; | z;) can take arbitrary shapes away from the boundary. Boundary
flatness also allows arbitrary correlation structure between the variables (provided
p(x) > 0). In Section we give a detailed discussion of the boundary flatness
condition and show examples of boundary flat densities; in particular, we show that
any density supported on a compact set can be approximated arbitrarily well by
boundary flat densities.

The following theorem is the main result of this section.

Theorem 2.3.1. Let p(x) be a density supported on C' = [0,1]P and bounded away
from 0/oco that satisfies the boundary flatness property.
Suppose f is a convexr with a bounded second derivative on an open set containing

C, then f is additively faithful under p(x).

We let the domain of f be slightly larger than C' for a technical reason-it is so
we can say in the proof that the Hessian of f is positive semidefinite even at the
boundary of C.

We pause to give some intuition before we present the full proof. Suppose that
the underlying density is a product density first. We know from Lemma that
the additive approximation zeroes out k when, fixing x;, every “slice” of f integrates
to zero, but “slices” of convex functions that integrate to zero cannot be “glued
together” while still maintaining convexity. Since the behavior of the whole convex
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function is constrained by its behavior at the boundary, the same result holds even
if the underlying density is not a product density but merely resembles a product
density at the boundary, which is exactly the notion formalized by the boundary
flatness condition.

Proof. Fixing k and using the result of Lemma [2.3.1] we need only show that for
all oy, E[f(X) — S fu(Xw) | 2] — Ef(X) = 0 implies that f does not depend on
coordinate k, i.e., 0, f(x) = 0 for all x.

Let us use the shorthand notation that r(x_j) = > 2k fi () and assume with-
out loss of generality that p* = E[f(X)] = 0. We then assume that for all zy,

E[f(X) —r(X_g) |z = / p(x—k | 2p) (f(x) = r(x_1)) = 0. (2.3.12)

X_

p(x_k | zk

We let p/(x_j | zx) denote ap(xa‘f’“kl”) and p"(x_4 | 7y) denote === ) and likewise
k

fOI' f/(xkax—k) a’nd f//('rk7x—k)‘

We differentiate with respect to z, at xp = 0,1 under the integral. The detail
necessary to verify the validity of this operation is technical and given in Section [2.7
of the supplementary material.

/xk P (x| xk)(f(x) - r(x_k)> +p(x_p | 2e) [ (2, x_p)dx_1, = 0 (2.3.13)

/x_k P (x| 2) (f(x) = r(x—k)) + 20/ (x| zi) £ (2, X—i) + p(x_ | 25) £ (2p, X i) dx_f, = 0.
(2.3.14)

By the boundary flatness condition, we have that p”(x_y | zx) and p'(x_y | zx) are
zero at xp = 29 = 0. The integral equations then reduce to the following:

/x p(x_p |2 f' (2, x_g)dx_j, = 0 (2.3.15)

/ p(x g | 2) f" (2, x_1)dx_}, = 0. (2.3.16)
Xk

Because f is convex, f(zx,X_) must be a convex function of xy, for all x_j. Therefore,
for all x_, f”(z%,x_x) > 0. Since p(x_j | z}) > 0 by the assumption that p(x) is a
positive density, we have that Vx_g, f”(2%,x_;) = 0 necessarily.

The Hessian of f at (z{,x_;) then has a zero at the k-th main diagonal entry. A
positive semidefinite matrix with a zero on the k-th main diagonal entry must have
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only zeros on the k-th row and column; see proposition 7.1.10 of [Horn and Johnson
(1990). Thus, at all x_y, the gradient of f'(z9,x_;) with respect to x_; must be
zero. Therefore, f'(z9,x_;) must be constant for all x_. By equation [2.3.15 we
conclude that f/(z% x_;) = 0 for all x_;. We can use the same reasoning for the
case where x;, = z}. and deduce that f'(z},x_;) = 0 for all x_.

Because f(zx,X_x) as a function of xy is convex, it must be that, for all z;, € (0, 1)
and for all x_,

0= fl(ad,x 1) < flon,xp) < fla},x 1) =0 (2.3.17)

Therefore f does not depend on xy.
O

Theorem plays an important role in our finite sample analysis, where we
show that the additive approximation is variable screening consistent, even when the
true function is not additive.

Remark 2.3.1. We assume twice differentiability in Theorems to simplify the
proof. We expect, however, that this smoothness condition is not necessary—every
convex function can be approximated arbitrarily well by a smooth convex function.

Remark 2.3.2. In Theorem [2.3.1, we do not assume a parametric form for the
additive components; the additive approximations may not be faithful if we take a
parametric form. For example, suppose we approximate a mean-zero convex function
f(X) by a linear form X3. The optimal linear function in the population setting
is f* = 7 1Cov(X, f(X)) where ¥ is the covariance matrix. Suppose the X’s are
independent, follow a symmetric distribution, have unit variance, and suppose f(x) =
vt — E[X7], then ff = E[X; f(X)] = E[X} — XiE[X{]] = 0.

Boundary Flatness Examples

In this section, we give more examples of boundary flat densities (see Definition
and discuss extending the notion of boundary flatness to densities with a more general
support. We first start with an sufficient condition on the joint density that ensures
boundary flatness.

Example 2.3.2. Boundary flatness is satisfied if the joint density becomes flat at
the boundary. To be precise, let p(x) be a joint density bounded away from 0/co
with a bounded second derivative.
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Suppose also, for all 7,
Op,p(T5,X_j) = 8§jp(xj,x_j) =0 atz; =0,1,

It is then straightforward to show boundary flatness. One can first verify that the
derivatives of the marginal density p(x;) vanishes at z; = 0,1 and then apply the
p(@jx—j

quotient rule on (

oy to show that 0, p(x_;|;) = 6gjp(x_j |z;)=0at z; =0,1

as well.

The next example shows that any bounded density over a hypercube can be
approximated arbitrarily well by boundary flat densities.

Example 2.3.3. Suppose p.(x) is a bounded density over [¢,1 — €]? for some 0 <
€ < 1/2. Let g¢(x) be an arbitrary boundary flat density over [0, 1]” (one can take
the uniform density for instance). Define a mixture py(x) = Aq(x) + (1 — A)pe(x)
where 0 < A < 1, then p, (x) is boundary flat over [0, 1]P.

Now, let p(x) be a bounded density over [0, 1]7. Let p.(x) be the density formed
from truncating p(x) in [¢, 1 — €]?. The corresponding mixture p, (x) then approxi-
mates p(x) when A and e are both small.

Since py(x) remains boundary flat for arbitrarily small € and A, p(x) can be
approximated arbitrarily well (in L; for example) by boundary flat densities.

In our discussion so far, we have restricted ourselves to densities supported and
positive on the hypercube [0, 1]? to minimize extraneous technical details. It may be
possible to extend the analysis to densities whose support is a convex and compact
set so long as the marginal density p(z;) > 0 for all z; in the support. A rigorous
analysis of this however is beyond the scope of this paper.

It may also possible to extend similar result to densities with an unbounded
support, by using a limit condition limj,, | 8’)(%‘1'“) = 0. Such a limit condition
however is not obeyed by a correlated multivariate Gaussian distribution. The next
example shows that certain convex functions are not additively faithful under certain

multivariate Gaussian distributions.

Example 2.3.4. Consider a two dimensional quadratic function f(x) = x"Hx + ¢
Hyy Hip

) is positive definite and a Gaussian distribu-
Hiy Ha

with zero mean where H = (

tion X ~ N(0,%) where ¥ = (; ?) As we show in Section of the Appendix,
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the additive approximation has the following closed form.

. Ty — Tha?
fi(@) = (11_;4> o+
i T, — Tia?
i) = (B8 s+

Where Ty = Hyy + 2Hoa0 + Hoyp0?, Ty = Hoy + 2H 9a + Hy102, 1, ¢y are constants

such that f; and f5 both have mean zero. Let H = (126 §>’ then it is easy to check
that if a = —%, then f{ = 0 and additive faithfulness is violated, if o > %, then f;

is a concave function. We take the setting where @ = —0.5, compute the optimal
additive functions via numerical simulation, and show the results in Figure [2.2(a)-f;
is zero as expected.

Although the Gaussian distribution does not satisfy the boundary flatness con-
dition, it is possible to approximate the Gaussian distribution arbitrarily well with
distributions that do satisfy the boundary flatness conditions. We use the similar
idea as that of Example [2.3.3]

Example 2.3.5. Let X be as in Example with @ = —0.5 so that f; = 0.
Consider a mixture A\U[—(b + €),b + €]* + (1 — A\)N,(0, %) where N,(0,3) is the
density of a truncated bivariate Gaussian bounded in [—b, b]? and U[—(b+ €),b + €|?
is the uniform distribution over a square. The uniform distribution is supported over
a slightly larger square to satisfy the boundary flatness conditions.

When b is large, € is small, and A is small, the mixture closely approximates
the Gaussian distribution but is still additively faithful for convex functions. Fig-
ure [2.2(b)| shows the optimal additive components under the mixture distribution,
computed by numerical integration with b = 5,¢ = 0.3, A = 0.0001. True to our the-
ory, fr, which is zero under the Gaussian distribution, is nonzero under the mixture
approximation to the Gaussian distribution. We note that the magnitude Ef;(X;)?,
although non-zero, is very small, consistent with the fact that the mixture distribu-
tion closely approximates the Gaussian distribution.

Converse to Faithfulness

It is difficult to find natural conditions under which the opposite direction of additive
faithfulness holds—conditions implying that if f does not depend on coordinate k,
then f; will be zero in the additive approximation. Suppose, for example, that f is
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Optimal Additive Function for Gaussian Density Optimal Additive Function for Boundary-Flat Density
___component 1: f*1 ___component 1: 1“‘1
___component 2: f*2 ___component 2: 1"‘2
marginal density (scaled) marginal density (scaled)
-5 0 5 -5 5
support x support X
(a) Gaussian distribution (b) Mixture approximation

Figure 2.2: Optimal additive projection of the quadratic function described in Exam-
ple under both the Gaussian distribution described in Example and under
the approximately Gaussian mixture distribution described in Example 2.3.5 For
the mixture approximation, we used b = 5,¢ = 0.3, A = 0.0001 where the parameters
are defined in Example [2.3.5] This example shows the effect and the importance of
the boundary flatness conditions.

only a function of X, Xy, and that (X, X5, X3) follows a degenerate 3-dimensional
distribution where X3 = f(X1,Xs) — f*(X1) — f5(X32). In this case X3 exactly
captures the additive approximation error. The best additive approximation of f
would have a component f;(z3) = x3 even though f does not depend on z3.

The simplest case under which the converse holds as well is the product density.
In this case, if f does not depend on Xy, then E[f(X) — r(X_4)| Xi] = 0 for any
function r(X_g). In this section, we will generalize the product density into another
condition for which we can guarantee the converse.

Theorem 2.3.2. Let f be a function such that Ef(X) = 0. Let Sy be the set of
relevant variables of f. Let k ¢ Sy and suppose there exists k' € Sy such that Xy is
independent of Xg,_qy conditional on Xy Then, fi = 0.

Proof. Let r(xs,) = Skes, fe(zx) be the additive projection of f restricted to only
the relevant variables Sy. We will show that it is also in fact, the additive projection
of f without the variable restriction.

Suppose k ¢ Sy. Let k' € Sy be the variable such that X L Xg,_qry | Xp.
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Then,

:ﬂ@Efm—zﬂmqupq

J€So

—Ex, |E|/(X) - Zf(mek/} |Xk]

JE€So

The third equality follows because f(X) — Y ;es, f;(X;) is a function of Xg, only
and thus is independent of Xj when conditioned on Xj/. For the fourth equal-
ity, observe that Y cg, f; is the additive projection of f restricted on Sy and thus,
E[f(X) — Sjes f5(X;) [ Xi] = 0 by Lemma 2.3.1]

The theorem follows since this analysis holds for every k € .Sy, ]

There is an easier way to interprete the condition in Theorem [2.3.2| using the
language of graphical models. Let G be the conditional independence graph of X,
that is, for every j, X; L Xj | Xn(; for every &k not in the Graph neighborhood N(7)
of node X;. The condition in Theorem is equivalent to saying that for every
k ¢ Sp, there exists only one path in G that connects node X} to the set of nodes
Xs,- See figure [2.3] for a visual example.

Convex Additive Models

Although convex functions are additively faithful—under appropriate conditions—
it is difficult to estimate the optimal additive functions f;'s as defined in equa-
tion (2.3.10)). The reason is that f; need not be a convex function, as example [2.3.4
and example [2.3.5 show. It may be possible to estimate f; via smoothing, but we
prefer an approach that is free of smoothing parameters. Since the true regression
function f is convex, we approximate the additive model with a conver additive
model. We abuse notation and, for the rest of the paper, use the notation f; to
represent convex additive fits:

{fiYezr = argmin {E(f(X) - Zp: fk(Xk))2  fr €CHLEA(X) = 0} (2.3.18)
k=1

where C! is the set of univariate convex functions.
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Figure 2.3: A conditional independence graph that satisfies the condition in Theo-
rem [2.5.7)

If p(x) is a product density, then E[f(X) | 2] is convex in x; and the additive pro-
jection is simultaneously the convex additive projection. Thus, in this case, additive
faithfulness trivially holds for the convex additive projection. For a general boundary
flat density p(x) however, the additive projection need not be convex and we thus
cannot say anything about additive faithfulness of the convex additive projection.

Luckily, we can restore faithfulness by coupling the f;’s with a set of univariate
concave fits on the residual f — f*:

gi = argmin {E( £(X)~ Y f,j,(Xk/)—gk(Xk))2 g €-C' Egi(Xy) = 0. (233.19)
k' £k

Theorem 2.3.3. Suppose p(x) is a density on C' = [0,1]P bounded away from 0/oc
that satisfies the boundary flatness condition. Suppose that f is convex with a bounded
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second derivative on an open set around C'. Let f; and g; be as defined in equations

(2.3.18)) and (2.3.19)), then the f;’s and the gj’s are unique. Furthermore, fi = 0
and g; = 0 implies that 0., f(x) = 0, that is, f does not depend on xy.

Before we can prove the theorem, we need a lemma that generalizes Theo-

rem 2.3.11

Lemma 2.3.2. Suppose p(x) is a density on C = [0,1]P bounded away from 0/cc
satisfying the boundary flatness condition. Let f(x) be a convex function with a
bounded second derivative on an open set around C. Let ¢p(x_y) be a bounded function
that does not depend on x. Then, we have that the unconstrained univariate function

i = argminE | (£(X) = 6(X_1) — hi(X,))’] (2.3.20)

is given by hj(xx) = E[f(X) — ¢(X_1) | zx], and hj, = 0 implies that 9,, f(x) = 0.

Proof. In the proof of Theorem [2.3.1] the only property of r(x_j) we used was the fact
that 0,,r(x_) = 0. Therefore, the proof here is identical to that of Theorem m
except that we replace r(x_;) with ¢(x_). ]

Proof of theorem [2.5.5. Fix k. Let f; and g; be defined as in equation and
equation[2.3.19 Let ¢(x_) = Swr fi(xw). Bach f}; is convex and thus continuous
on (0,1). fi(zg) is defined at xp = 0, 1; thus, f;; must be bounded and ¢(x_j) is
bounded.

We have that

fii = argmin {B(r) Y fo(Xe) — £i)° : fr e CLER(X) =0f  (23.21)

Kk

gp = arg rr;in {E(f(X) — Z fi(Xp) — gk)2 D gr €-CH Egp(Xy) = 0} (2.3.22)
k' £k

Let us suppose that f;; = g; = 0. It must be then that
argmin E (f(X) — ¢(X_y,) — e(XF —m3))* =0

ceR
where m? = EX?; this is because c(zi — mj) is either convex or concave in zj
and it is centered, i.e. E[X? — mji| = 0. Since the optimum has a closed form

o Eloeo—erx eom)

Engm

, we deduce that

= E[(f(X) — ¢(X_1)) Xi] = E[E[f(X) — ¢(X_y) | Xx] X{] = 0
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We denote hj(zg) = E[f(X) — ¢(X_k) | xx]. f(x) and ¢(x_x) are both bounded
and so hj(z) is bounded as well. Therefore, hj, is square integrable and there exists
a fourier series s, (x)) convergent to hj in Ly. Since p(x) is bounded,

lim E (s,,(Xz) — hi (X)) — 0

n—oo

as well.
If we can show that Eh}(X})? = 0, we would apply Lemma and finish the
proof. So let us suppose for sake of contradiction that Ehj(X})? > 0.

Let 0 < € < 1 be fixed and let n be large enough such that E(s,(X})—hj(X}))? <
eBhy(Xy)2.

Since s, (zy) is twice-differentiable and has a second derivative bounded away
from —oo, there exist some positive scalar « such that s, (x;) + a(x? — m3) has a
non-negative second derivative and is thus convex.

Because we assumed f* = ¢g* = 0, it must be that

argminE(f(X) — (X_p) — (50 (Xk) + (X} — mi)))2 =0

ceR

This is because ¢(s,(zx) + a(z} —m})) is convex for ¢ > 0 and concave for ¢ < 0
and it is a centered function.
E[((X)~6(X_)) (3n(Xp) +a(xE-m2)))

E(sn(Xk)-i—a(XZ—mi))Q - O’ i

E[(f(X) ~ $(X_0) (5a(Xe) + a(X2 —m2))] = E[(F(X) — 6(X_4))s(X)]

= E|E[/(X) — 6(X_s) | XiJs(Xi)
=Eh(Xk)sn(Xk) =0

.
Again, ¢* =

where the first equality follows because E[(f(X) — ¢(X_x))(XZ —m})] = 0.

We have chosen s,, such that E(h}(X}) — s,(Xk))? < eERj(X)? for some € < 1.
This is a contradiction and therefore, Eh}(X};)?* = 0.

Now we use Lemma with ¢(x_x) = f(x) — Sk fir(xr) and conclude that
=0 and g; = 0 together imply that f does not depend on xy.
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Now we turn to uniqueness. Suppose for sake of contradiction that f* and f are
optimal solutions to and E(f — f*)2 > 0. f*+ A(f — f*) for any X € [0,1]
must then also be an optimal solution by convexity of the objective and constraint.
However, the second derivative of the objective E(f — f*— A(f — f*))? with respect to
X is 2E(f — f*)2 > 0. The objective is thus strongly convex and E(f* — )2 = 0. We
now apply Lemma by letting ¢ = fi — ﬁ; We conclude that E(f; — fk)z =0
for all k. The uniqueness of ¢* is proved similarly. O]

Estimation Procedure

Theorem [2.3.3| naturally suggests a two-stage screening procedure for variable selec-
tion in the population setting. In the first stage, we fit a convex additive model.

fivon £y = argmin E(f(X)—p— Y fk(Xk)>2 (2.3.23)
k=1

fro fp€CHH

where we denote Cj (-C3) as the set of one-dimensional convex (resp. concave)

functions with population mean zero. In the second stage, for every variable marked
as irrelevant in the first stage, we fit a univariate concave function separately on the
residual for that variable. For each k such that f; = 0:

gi = argminE(F(X) — " = ¥ fo(Xe) —au(X0)) (2324)

ng-Cé k'
We screen out S, any variable k that is zero after the second stage, and output S.
S¢={k: fi =0and g; = 0}. (2.3.25)

We refer to this procedure as AC/DC (additive convex/decoupled concave). The-
orem [2.3.3| guarantees that the true set of relevant variables Sy must be a subset of
S.

It is straightforward to construct a finite sample variable screening procedure,
which we describe in Figure . We use an /,/¢; penalty in equation
and an /., penalty in equation to encourage sparsity. Other penalties can
also produce sparse estimates, such as a penalty on the derivative of each of the
component functions. The || - ||, norm is convenient for both theoretical analysis
and implementation. R

After selecting the variable set S, one can refit a low-dimensional non-additive
convex function to build the best predictive model. If refitting is undesirable for
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AC/DC ALGORITHM FOR VARIABLE SELECTION IN CONVEX REGRESSION

Input: (x1,v1), ..., (Xn, Yn), regularization parameter \.

AC Stage: Estimate a sparse additive convex model:

n

. o 1 P 2 P
fiy oo fpo i = argmin — - (y —p—= fk(xik)) A [ fullo (2.3.26)
frofoeCd T iy k=1 k=1

DC Stage: Estimate concave functions for each k such that || fx||se = 0
. I . = 2
Jr = argmin — Z <y2 — - Z frr (i) — gk(xlk)) + | gk |l oo (2.3.27)
k/

ge-ct i

Output: Component functions { fk} and relevant variables S where

S¢ = {k: Ifl = 0 and gl = 0} (2.3.28)

Figure 2.4: The AC/DC algorithm for variable selection in convex regression. The
AC stage fits a sparse additive convex regression model, using a quadratic program
that imposes an group sparsity penalty for each component function. The DC stage
fits decoupled concave functions on the residuals, for each component that is zeroed
out in the AC stage.

whatever reason, the AC/DC outputs can also be used for prediction. Given a new
sample x, we let § = >, fk(xk) + >k gr(xx). Note that g = 0 for k such that i #0
in AC/DC. The next section describes how to compute this function evaluation.

The optimization in ([2.3.26) appears to be infinite dimensional, but it is equiv-
alent to a finite dimensional quadratic program. In the following section, we give
the details of this optimization, and show how it can be reformulated to be more
computationally efficient.
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2.4 Optimization

We now describe in detail the optimization algorithm for the additive convex re-
gression stage. The second decoupled concave regression stage follows a very similar
procedure.

Let bdsx; € R? be the covariate, let y; be the response and let ¢; be the mean zero
noise. The regression function f(-) we estimate is the sum of univariate functions
fr(+) in each variable dimension and a scalar offset p. We impose additional con-
straints that each function f(-) is convex, which can be represented by its supporting
hyperplanes, i.e.,

fi’k > fzk + sz($z’k - -Tzk) for all ia il = 1a s Ny (241)

where fir = fr(zy) is the function value and f is a subgradient at point x;.
This ostensibly requires O(n?p) constraints to impose the supporting hyperplane
constraints. In fact, only O(np) constraints suffice, since univariate convex functions
are characterized by the condition that the subgradient, which is a scalar, must
increase monotonically. This observation leads to the optimization

n

min ! Z( — = Zfzk) —i—)\Z“kaoo
k=1

subJect to forall k=1,.
fﬂ'k(l—i-l fﬂ'k k+ﬁ7‘(‘k ('xﬂ'k l+1)k_$ﬁk(l)k)7 fOI‘Z: 177n_1

Z Jie =10,
=1

Brp(i+1)k = Brpiye for i =1,...,n — 2.
(2.4.2)

Here f; denotes the vector f. = (fix, fa, - - - far)? € R™and {mx(1), 7x(2), ..., mx(n)}
are the indices in the sorted ordering of the values of coordinate k:

Tryk < Trp@k < 000 < Ty (nke (2.4.3)

We can solve for p explicitly as p = ﬁ ? 1Y = y. This follows from the KKT
conditions and the constraints Y; fir = 0.

The sparse convex additive model optimization in is a quadratic program
with O(np) variables and O(np) constraints. Directly applying a QP solver for f
and [ is computationally expensive for relatively large n and p. However, notice

that variables in different feature dimensions are only coupled in the squared error
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term (y; —p—S-%_; fir)?. Hence, we can apply the block coordinate descent method,
where in each step we solve the following QP subproblem for { fi, 5} with the other
variables fixed. In matrix notation, the optimization is

1 2
min —||rp — + A
T sBr vk 2n|| k kaQ Tk

such that Py fi, = diag(Prxs) Sk
Dy f < 0 (2.4.4)

— Yl < fi <l
1) =0

where 3, € R"! is the vector 8, = (B, - - ,ﬂ(n_l)k)T, and r, € R" is the residual
vector 7, = (y; — i— Xk firr)” . In addition, Py € R(™=1*" s o permutation matrix
where the i-th row is all zeros except for the value —1 in position (i) and the value
1 in position 7 (i 4 1), and Dy, € R=2*(=1) i another permutation matrix where
the i-th row is all zeros except for a value 1 in position m(7) and a value —1 in
position 7 (i + 1). We denote by diag(v) the diagonal matrix with diagonal entries
v. The extra variable 7, is introduced to impose the regularization penalty involving
the ¢, norm.

This QP subproblem involves O(n) variables, O(n) constraints and a sparse struc-
ture, which can be solved efficiently using optimization packages. In our experiments
we use MOSEK (www.mosek.com)). We cycle through all covariates k from 1 to p mul-
tiple times until convergence. Empirically, we observe that the algorithm converges
in only a few cycles. We also implemented an ADMM solver for (Boyd et al.,
2011)), but found that it is not as efficient as this blockwise QP solver.

After optimization, the function estimate for an input vector x is, according to
(2.4.1)),

f(a:) = Z ]?k(xk) +pu= Z m?X{ﬁk + sz(xk — szk)} + [ (2.4.5)
k=1 k=1

The univariate concave function estimation required in the DC stage is a straight-
forward modification of optimization (2.4.4)). It is only necessary to modify the linear
inequality constraints so that the subgradients are non-increasing: Br, (i+1)t < Bry(i)k-

Alternative Formulation

Optimization ([2.4.2)) can be reformulated in terms of the second derivatives. The al-
ternative formulation replaces the order constraints Sr, i+1)x = Br,i)x With positivity
constraints, which simplifies the analysis.


http://www.mosek.com/
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Define d, ;) as the second derivative: dr, (1)x = Bry(1)k: and dr, )k = Bry(irk
Brni—1)k for @ > 1. The convexity constraint is equivalent to the constraint that
Ary(iye = 0 for all ¢ > 1.

It is easy to verify that B, i = > j<i dr, )k and
Je(Tr i)k ka(%(i k) F Brei—1)6(Trg (i) — Ty (i—1)k)
J77Tk(1 + Zﬁﬂk xﬂk (G+1)k — Iﬂk(j)k)

7<i

_fk Ly, (1)k + Z Z dﬂk xﬂk(ﬂ+1) Iﬂk(j)k)

J<i j'<j

—fk Trp(Dk + Z d7rk Z Trp(j+1)k — xwk(j)k)

J’'<i z>]>g

xﬂ'k(l + Z dﬂk Iﬂk Dk — C("Wk(]’)k)'

j'<i

We can write this more compactly in matrix notation as

Je(w1r)
fk(w%) (961k - xwk(l)k>+ T (Ilk - xﬂk(n—l)k)—i- dﬂk(l)k
— “ e e + /’Lk
f (ﬂj‘ ) (xnk - xﬂ'k(l)k)-‘r T (xnk - xﬂ’k(nf