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Abstract 

A systematic investigation is presented into the microstructural and micromechanical 

influences on ductile damage nucleation with an emphasis on grain boundaries in 

polycrystals. Microstructures obtained from experiments on copper polycrystals are 

characterized using Electron Backscatter Diffraction (EBSD) and near-field High-Energy 

Diffraction Microscopy (nf-HEDM) and the occurrence of damage is compared with 

micromechanical values obtained using an elasto-viscoplastic model based on the Fast-

Fourier Transform (EVPFFT). The model produces full-field solutions for the stress and 

strain in voxelized polycrystalline microstructures. In order to resolve the fields onto 

interfaces, local Cartesian moments of the polycrystalline grain structure are used to 

extract the normals of grain boundaries and the tangents of triple junctions directly from 

the voxelized microstructure. Thus projecting the stress yields a parameter with potential 

significance, i.e. the grain boundary surface tractions. We identify “traction hotspots”, i.e. 

regions with tractions that are significantly above the mean, for the case of uniaxial 

tension. These show correlations with the angle between the grain boundary normal and 

the loading axis, a trend that some experiments also show when boundaries that nucleated 

voids are analyzed using EBSD, though differences present between the simulation and 

experiment hint that further criteria are needed.  Nf-HEDM was used to record 

microstructure images of a polycrystalline sample before and after it undergoes damage. 

The damage locations in the post-shocked image are mapped onto the pre-shocked image, 

allowing stress and strain values from the EVPFFT model in the regions that eventually 

nucleated damage to be correlated with the locations of the void. The unexpected result 

was that differences in plastic work across boundaries correlated with voids, whereas 
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quantities such as triaxiality and normal forces across boundaries did not. 
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Chapter 1: Introduction 
     Predicting the conditions determining material failure is one of the most fundamental 

challenges in Materials Science. One important failure mechanism for ductile materials 

undergoing dynamic loading conditions is void nucleation, growth and coalescence[1, 2]. 

In the first stage, under appropriate driving forces, void nuclei reach a size large enough 

to become stable and eventually sustain growth. At this nucleation phase of damage the 

influence of the material’s microstructure can be very strong. Growth occurs when the 

volume of stable voids increases driven by stress triaxiality[2], which reaches high values 

under the dynamic loading conditions considered in this work. Coalescence occurs when 

voids grow enough such that stress and strain concentrations in the surrounding material 

start overlapping and further increasing, promoting neighboring voids to join together[1]. 

It is at this stage in the process where ultimate failure of the material is initiated. The 

ability to predict how much a given microstructure is more or less vulnerable to damage 

nucleation and growth constitutes an important contribution to the emerging field of 

computational materials design that would enable the discovery and development of new 

processes and/or materials with higher resistance to damage.  

     The determination of whether or not voids will nucleate and grow in specific locations 

requires identifying what microstructural features are conducive or unfavorable to 

damage initiation. Damage nucleation is a local event so in order to make accurate 

predictions the microstructural features considered must be resolved to as close to the 

scale of the damage as possible. To do so, this work uses an elasto-viscoplastic Fast 

Fourier Transform-based (EVPFFT) model[3] to associate parameters calculated from the 

model with void nucleation in single-phase copper polycrystals. The more common way 
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of modeling the mechanical response of meso-scale materials is through Finite Element 

Methods (FEM)[4-7] but we use the EVPFFT model due to its faster runtime[8] and 

because it can be applied directly to microstructure images without any meshing 

beforehand.  

     The main focus of this work is on grain boundary surface traction, which is defined as 

the projection of the local Cauchy stress tensor onto the grain boundary surface and is 

equivalent to the load experienced on a grain boundary interface. Furthermore, the grain 

boundary surface traction can be separated into two components, a normal component of 

traction and a shear component of traction. These components represent tractions 

perpendicular and tangent to the grain boundary surface, respectively. The hypothesis is 

as follows: “Void nucleation in shock-loaded copper polycrystals is dependent on 

extreme values of grain boundary surface tractions.” We investigate this by comparing 

trends in the boundary information, in particular the grain boundary plane in relation to 

the loading axis though other parameters are considered, between boundaries that 

experience extreme surface tractions in the model and boundaries on which voids 

nucleated in an experimental study on the shock-loading of copper polycrystals. What we 

show is that, while the kinds of grain boundaries that experience the extreme values of 

surface tractions have qualitative correlations the with kinds of boundaries that actually 

void in experiments, there are enough differences to suggest that further parameters are 

needed to predict void nucleation. To validate these qualitative correlations and explore 

the influence of other parameters, we perform a direct comparison between simulation 

results and experimentally measured voids using new data acquired from near-field High-

Energy Diffraction Microscopy (nf-HEDM), which can measure three-dimensional data 
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non-destructively. The comparison reveals that surface tractions do not correlate with 

where voids occur but instead that parameters describing the contrasts in plasticity across 

the grain boundary do correlate. These results are presented in Lieberman et al[9].  

     In order to properly characterize the mechanical responses of metals, plastic 

deformation of the metal must be considered. Plastic deformation in metals occurs 

primarily through the movement of dislocations, which are defects in the crystal lattice, 

through said lattice. This movement is dictated by slip systems, which are particular 

combinations of slip plane and slip direction (i.e. Burgers vector) in the crystal structure 

that offer the easiest (i.e. least work done) route[10]. Copper has a Face-Centered Cubic 

(FCC) crystal structure and the slip systems are well understood for this structure. 

However, to complicate matters, most metals we would consider for these analyses are 

polycrystalline in nature; thus they have many grains each with a particular orientation, as 

well as differing neighbor grains, that lead to heterogeneous distributions of mechanical 

responses throughout the material. To understand the origin of failure, which is a highly 

local event, the internal response of a material must be studied[11, 12]. In this work we use 

the EVPFFT model to quantify this internal response in voxelized microstructure images, 

in particular to calculate the local Cauchy stress tensors in the vicinity of grain 

boundaries so that the grain boundary surface tractions can be calculated.  

     The various backgrounds on void nucleation, crystallography, near-field High-Energy 

Diffraction Microscopy and shock loading are covered in Chapter 2. A description of the 

history and derivations of the EVPFFT model is covered in Chapter 3. To calculate the 

grain boundary surface tractions, we need not only the stress tensor but also the grain 

boundary surface normal. Because the EVPFFT model works on voxelized images, a 
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special algorithm, developed by Lieberman et al.[13], was used to calculate the surface 

normals directly and it is covered in Chapter 4. In Chapter 5, based on the ability to 

calculate the surface tractions, we next analyze the microstructural effects that relate the 

surface traction hot spots and compare the results to experiments to identify correlations 

with grain boundary damage. In Chapter 6 we perform a comparison between the 

EVPFFT simulation results and grain boundary voids generated by a shock loading 

experiment and imaged using nf-HEDM. The conclusions from this work as well as 

suggestions for future work are discussed in Chapter 7. 
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Chapter 2: Background 

2.1: Background on Voids 

     There are two primary reasons why understanding void formation and growth is 

important[14]. The end result of voids growing and coalescing to failure of the material 

through accumulative damage but also as the amount and size of voids increase in the 

material is that the load-carrying capacity is decreased. This modifies the macroscopic 

stress-strain behavior, which, for example, is known as the tertiary stage of creep. Voids 

are known to play a role in the failure of a wide variety of materials, ranging from many 

polymers[15] to various types of metals such as steel[16, 17] and copper[18]. Void nucleation 

can occur through a number of different mechanisms depending on both the nature of the 

materials microstructure (i.e. presence of secondary phases, texturing of the polycrystal) 

and the nature of the imposed conditions (i.e. loading type and rate, temperature). One 

such example is that under high temperature creep conditions, the primary mechanism by 

which voids nucleate and growth is diffusion of vacancies to grain boundaries[19, 20] as 

well as the effects of grain boundary sliding[20-22], which also cause movement of 

vacancies and dislocations at the interface. Another extensively studied example, which 

is investigated here, is the nucleation of voids at grain boundaries caused by shock 

loading of the material[23-28]. An example of voids nucleated at grain boundaries induced 

by shock loading is shown in Fig. 2-1.  

     There are many different material characteristics that one could to investigate for a 

microstructural influence on void nucleation in polycrystals, so we review the available 

literature to provide a starting point. There are many cases of experiments that show that 
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the interfaces in a material have a significant connection to the nucleation of damage. 

Damage around inclusions in ductile materials[29] are a good example. 

 

Figure 2-1. Example of voids nucleated at grain boundary and triple point due to shock loading; taken from 

Christy et al.[27] 

Such particulates can lead to damage in two different ways, which are particle cracking 

and interface fracture/decohesion as shown in Fig. 2-2. Note that even in a simple 

explanatory diagram of these effects, the morphology of the two voids depends on the 

alignment of the particles with the stress system. 
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Figure 2-2. Void evolution in material with particulates; (a) initial state, (b) void nucleation, (c) void growth, (d) 

void coalescence; taken from Chen et al.[29] 

Gurland[17] showed that for the case of uniaxial loading of spheroidized 1.05% C steel, a 

common characteristic of the cementite particles that cracked was that their longest axis 

was parallel to the loading direction, confirming the relevance of the shape shown on the 

left in Fig. 2-2. Another interesting feature observed in Gurland’s work is the angle of the 

cracks in the sample relative to the different loading directions but this will be covered in 

more detail in Section 5. Beremin[30] studied ductile fracture of A508 Steel at elongated 

MnS inclusions. The results of this work showed that any particle fractures only occurred 

when the loading direction was aligned with the long direction of the inclusion but when 

the load was along the transverse it was interface decohesion that was most common. 

Both these experiments show that the relationship between loading conditions and 

interface inclination plays a role in damage nucleation. With respect to void nucleation in 

the absence of particulates, however, cracking is eliminated as a void nucleation 

mechanism since that is specifically related to the failure of brittle particulates and we 

must seek other mechanisms. 

    When voids nucleate in the absence of particulates, the primary location is at grain 

boundaries. Work by Hull and Rimmer[31] shows a morphological significance for grain 

boundary damage, more specifically that grain boundaries transverse (perpendicular) to 

the loading direction fail more frequently, which relates to tension across the boundary. 

Works by Field et al.[32], Diard et al.[33], Fensin et al.[34], and Yang et al.[35] utilized 

multiple two-dimensional micrographs of damaged materials to show that damage 

preferentially occurs on interfaces with specific relationships to the principal loading 

directions. The nature of the relationship depends, however, on the type of loading (e.g. 
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fatigue versus shock). The relative plastic response of the crystals surrounding voids is 

another feature that has been associated with damage initiation by Wright et al.[36], Bieler 

et al.[37, 38], Semiatin et al.[39], Escobedo et al.[25, 26] and Yang et al.[35], although this 

response was linked to several different parameters such as Schmid factor, Taylor factor,  

and qualitative hardness; also the number of void sites studied was limited. Work has also 

been done on the relationship between Σ3 boundaries, which are associated with twinning 

in many metals, and damage initiation. Escobedo et al.[25], Fensin et al.[40, 41] and Yang et 

al.[35] have shown that the Σ3 boundary tends to be resistant to void formation under 

shock loading conditions. In contrast, works by Boettner[42] and Knorr[43] have shown that 

Σ3 boundaries tend to be the most vulnerable to crack initiation and growth under fatigue 

loading conditions. The latter, however, appears to be linked to the tendency for slip to 

accumulate on slip systems that run parallel to the twin boundary[44].    

2.2: Crystal Orientation and Heterogeneity 

     Polycrystalline materials such as those that are considered in this work are known for 

their anisotropic and heterogeneous behavior. Such behavior is due to the many different 

crystal orientations. To characterize such materials, it is important to understand how 

these crystal orientations are differentiated, how they relate to each other and how they 

affect the micromechanical behavior of the material. A single crystal orientation is 

quantified using three independent values that describe the rotation between two physical 

frames of reference, the crystal reference frame and the sample reference frame[45]. These 

three values are commonly represented by Euler angles, which are angles that describe 

three rotations about three axes that bring the sample frame coordinate system into 

coincidence with the crystal frame coordinate system. All crystal orientation information 
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in this work is described using the Bunge convention of Euler angles. In this convention, 

the first angle (ϕ1) is a rotation about the sample Z-axis, the second angle (Φ) is a rotation 

about the new X-axis generated by the first rotation and the third angle (ϕ2) is a rotation 

about the new Z-axis generated by the second rotation. While Euler angles are a useful 

and concise descriptor of crystal orientations, it is often convenient to convert the 

information into other forms more suitable for mathematical manipulation. The most 

common form Euler angles are converted to is that of the orientation matrix and the 

conversion equation for Bunge Euler angles is described by: 

 

One use for the orientation matrix is in determining the misorientation between two 

grains and is defined as the rotation to bring one grain’s crystal coordinate system into 

coincidence with another grain. Simple misorientation between two crystals is calculated 

by applying a rotation from one crystal to the sample reference frame followed by a 

rotation from that sample reference frame to the other crystal, which is represented by the 

orientation of matrix from one grain being multiplied by the inverse of the other grains 

orientation matrix. However, the presence crystal symmetry means that there are many 

equivalent misorientations that can be determined between two crystals. To choose 

amongst these equivalent rotations, the pair of crystal symmetry operators is chosen that, 

when applied to each crystal, produces the smallest misorientation angle. The 

misorientation and subsequent angle are calculated as follows: 

 

g =

�

�
cos �1 cos �2 � sin �1 sin �2 cos� sin �1 cos �2 + cos �1 sin �2 cos� sin �2 sin�

� cos �1 sin �2 � sin �1 cos �2 cos � � sin �1 sin �2 + cos �1 cos �2 cos � cos �2 sin�
sin �1 sin� � cos �1 sin� cos�

�

�

(2.1)

�gij = Oi
cga(Oj

cgb)
�1 (2.2)

�mis = min
�i,j

arccos
�
0.5[�gij

11 + �gij
22 + �gij

33 � 1]
�
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The orientation matrices for the two grains are represented by ga and gb while the 

symmetry operators applied to both crystals are represented by Oc
i and Oc

j. For the cubic 

crystal structure of copper there are 24 unique symmetry operators for the proper 

rotations. 

     Crystal orientation and symmetry also has a significant effect on the elastic and plastic 

micromechanical properties of polycrystals. Crystal symmetry influences the anisotropy 

of each individual crystal while the differences in crystal orientation within a sample lead 

to heterogeneity of mechanical responses. The elastic properties of a material are 

represented by the stiffness tensor, which relative to the crystal reference frame takes the 

following form in cubic crystals[10]: 

 

This form is known as the Voigt representation of the stiffness tensor, which may also be 

represented by a 4th rank tensor. The reduction of this matrix to 3 independent variables 

from 36 results from the application of crystal symmetry operators. The plastic properties 

of a material are controlled by much more complicated processes but relate to crystal 

orientation through the symmetric Schmid tensors[10], of which there are one of each for 

each slip system in a given crystal structure and are calculated by 

 

where s and n are the slip direction and slip plane normal for slip system α, both of which 

are represented in the crystal reference frame.  

CCC =

�

�������

C11 C12 C12 0.0 0.0 0.0
C12 C11 C12 0.0 0.0 0.0
C12 C12 C11 0.0 0.0 0.0
0.0 0.0 0.0 C44 0.0 0.0
0.0 0.0 0.0 0.0 C44 0.0
0.0 0.0 0.0 0.0 0.0 C44

�

�������
(2.3)

m�
ij =

1

2
(s� � n� + n� � s�) (2.4)
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     However, stress and strain fields are represented in the sample reference frame and 

thus the elastic and plastic tensors must be (axis-)transformed in order for calculations 

involving them to be performed. The transformation (a.k.a. passive rotation) utilizes the 

inverse of the orientation matrix, to pass from crystal to sample frame, as follows: 

 

where a is the inverse of the orientation matrix. Thus the heterogeneity of the crystal 

orientations within a polycrystalline structure is translated to heterogeneity in the 

micromechanical responses. 

2.3: Near-field High-Energy Diffraction Microscopy 

     A way of measuring three-dimensional microstructures is necessary to perform a 

proper comparison between experimental and simulated meso-scale data. The most 

common method of obtaining three-dimensional orientation maps is through the use of 

electron backscatter diffraction surface measurements combined with serial sectioning of 

the sample so that multiple surface measurements can be made through the thickness of 

the sample and then stacked to create a three-dimensional image[46, 47]. However, this 

method is destructive to the sample because it requires material to be removed to prepare 

a polished surface for measurement. Therefore it cannot be used to compare volumes of 

the same sample at multiple states. Thus for this work we use a technique developed by 

Suter et al.[48, 49] called near-field High-Energy Diffraction Microscopy (nf-HEDM), 

which can measure three-dimensional crystallographic orientation maps non-

destructively. This technique has been used to study a variety of phenomena, from 

micromechanical trends in polycrystals[50, 51] to the evolution of grain boundaries during 

m�
ij = aikajlmkl

C �
ijkl = aimajnakpalqCmnpq (2.5)
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annealing[52]. Within this work, aside from using data collected via this technique to 

perform direct comparisons between simulation and experiments, we also use the three-

dimensional nature of the data to validate new techniques in the analysis of grain 

boundaries.  

     Nf-HEDM relies on the measurement and analysis of high-energy synchrotron X-rays 

that are diffracted through the sample. The data presented in this work were collected at 

Advanced Photon Source (APS) beam line 1-ID-B at Argonne National Laboratory. The 

X-ray beam is tailored to reach the sample as a monochromatic planar beam that is about 

1.2 mm wide and thus encompasses the full width of a 1 mm wide sample. The vertical 

position of the sample means that the illuminated layer is effectively a cross-section of 

the material. The energy of the beam must be sufficient to penetrate the sample and have 

measurable intensity on the detector. For copper, a beam energy of ~64 keV is sufficient 

and commonly used. While the beam is referred to as planar, it does have a finite 

thickness associated with it, which is about 2 µm. However, both to avoid overlapping 

scans of the same region as well as for time efficiency, the sections scanned along the 

height of the sample are 2 to 4 µm apart. A drawback to this beam height and section 

spacing is that the resolution in this direction is limited compared to other techniques 

such as focused ion beam instruments with EBSD[46, 47] and it has resulted in difficulties 

with performing in depth analyses of grain boundary characteristics[53-55]. These planar X-

rays scatter by interacting with the atoms composing the crystal structure of the sample, 

thus diffracting at angles dictated by Bragg’s Law. Of order 100 diffraction peaks are 

collected and indexed for each location in a given section measurement in the sample, 

which provides high accuracy of order 0.1° in the orientation determination. The sample 
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is rotated around an axis perpendicular to the beam plane in at most 1° intervals up to a 

total of 180° and at each angle, the detector screen is placed at two different offsets from 

the sample along the beam direction. The translation of the detector screen, which ranges 

from 5 to 15 mm from the sample, allows for the path of each diffracted beam to be 

traced back to its spatial location within the sample. The spatial tracking of the diffraction 

peaks leads to an in-plane pixel resolution that is of order 1.5 to 5 microns. Both the 

rotation of the sample and the use of two detector distances are necessary for determining 

the spatial point-of-origin of the diffraction peaks as well as the crystal orientation at that 

point. The rotation generates multiple signals from a given point-of-origin by inducing 

diffraction from multiple crystallographic planes as the crystal is rotate. The two detector 

distances are needed to generate uniquely identifiable diffraction peaks from a single 

point-of-origin. Fig. 2-3 demonstrates the necessity of multiple detector distances. 

Multiple points-of-origin could generate diffraction peaks at the same spot on a single 

detector, but as the distance is changed this intersection would not be maintained. Once 

these processes are complete for a single section, the sample is translated along the 

rotation axis so that the process can be repeated on another section of the sample. The 

resulting data is then processed to remove background and random scattering signals so 

that the diffraction signals from the sample can be focused on and orientation 

reconstruction can begin.  
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Figure 2-3. Image of the planar radiation beam diffraction from the sample onto the detector set at multiple 

distances[48].  

    To perform the reconstruction of the crystal orientations from the diffracted signal 

information, the experimental parameters such as the distance between the sample and 

detector have to be established. These parameters are found using a calibration sample 

that has as few grains as possible. For each set of parameters the orientations are 

reconstructed, hence fewer orientations is preferred, and the set that produces the greatest 

confidence is selected via a Monte Carlo optimization of the parameters. Each 

illuminated section is represented as triangular elements on a regular grid within the  

scanned section; they are effectively voxels because each section represents a slice 

through the volume of the sample. Orientation reconstruction is achieved by performing a 

forward modeling method on the diffraction signal data at each voxel. The forward 

modeling method works by simulating the diffraction response for every orientation that 

is unique with respect to crystal symmetry. A requirement to do this is that experimental 

parameters must be calculated by optimizing them for a sample with known results 
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before working with the intended sample. The measured diffraction peaks are compared 

to the set of simulated ones for each orientation and the ratio between the number of 

matched peaks and the total number of usable peaks for that orientation is used as a 

measure of the confidence of the result. A diffraction peak, whether measured or 

simulated, is considered usable if it appears at multiple detector distances. The measured 

and simulated peaks observed over all the rotations and detector distances, are matched 

based on their location on the detector. The peaks are treated as binary in nature, either 

present or not; the intensities of the peaks are not currently used as part of the confidence 

measurement. The orientation that has the highest confidence is assigned to the particular 

voxel and this process is repeated at each voxel. The forward modeling method can be 

done independently for each voxel for best accuracy or can utilize nearest neighbor 

information to accelerate the registration process. The orientation resolution from the 

forward modeling method output is 0.1° or lower depending on the exact method used. 

Once the forward modeling method is complete for each section, these layers are stacked 

together to make a three-dimensional orientation map of the sample[49]. 

2.4: Shock Loading and Spallation 

     Gas-driven plate impact experiments are one of many kinds of shock loading 

conditions. A gas-driven gun launches a plate at a sample such that the surfaces of the 

impact plate and sample are parallel. To ensure that the impact plate does not warp from 

the force of the launch, a polymer foam block with high compressive stiffness but very 

low density is attached to the back face of the plate. This experiment is used to produce a 

planar shock wave in a material under conditions in which the impact plate velocity and 

angle are more controlled as compared to explosive-driven shock experiments. By 
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applying a shock wave to a polycrystalline metal, elasto-plastic near-uniaxial strain 

occurs at high rates[56]. A material undergoing shock loading experiences varying strain 

rates over the duration of the wave propagation. The highest strain rate occurs on the 

arrival of the initial compressive wave and is usually in the range of 106 per second but 

can go up to 109 per second depending on the loading conditions. It is at this range of 

strain rates that the effects of micro-inertia within the material begin to have significant 

effects. The nature of the uniaxial strain, which is a combination of deformation in a 

single direction while the lateral directions do not deform and causes the hydrostatic 

stress to reach very high levels. However, the deformation is not purely hydrostatic; 

deviatoric stress and strains are generated that result in plastic deformation and, at high 

enough shock levels, defect generation within the material[56]. The heterogeneity of a 

polycrystalline material, via elastic and plastic anisotropy, results in significant local 

variance in the levels of deviatoric stress. The high hydrostatic stress combined with the 

still present but smaller deviatoric stress results in very high stress triaxiality under this 

loading condition.  

     When the hydrostatic stress is sufficiently large then the wave may be approximated 

as passing through the material as it would a fluid. This approximation is the basis for the 

equations developed by Rankine and Hugoniot to describe the behavior of shock waves 

in a material[56, 57]. Additional assumptions of this approximation are that the wave 

propagation is one-dimensional and that the wave front is perfectly sharp such that it 

represents a discontinuity in pressure, density and temperature. These equations can 

further be applied to the case of impact between two materials where one is at rest (i.e. 

the sample) and the other has a set velocity (i.e. the impact plate). When this situation 
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occurs, compressive waves are generated heading out from the impact plane in both the 

plate and the sample. These waves generate the same initial pressure but have different 

velocities depending on the equations of state for the two materials. All these parameters 

can be generated from the impact velocity if the equations of state are known. For copper, 

of course, well-established equations of state are available. If the impact plate and the 

sample are of the same material, then the impact velocity is split evenly between the 

waves in the impact plate and sample. 

     Damage events in shock loading conditions take the form of void nucleation, growth 

and coalescence to the point at which the sample separates perpendicular to the shock 

direction at which point spallation[57] has occurred. Spallation occurs at a specific “plane” 

within the material that is dictated by the shock properties and geometry of the sample 

and impact plate, though in practice damage occurs over a range of the thickness around 

the “plane”. The compressive waves generated at the impact plane propagate outward 

towards the far sides of the sample and impact plate. When the waves reach these free 

surfaces (or if a polymer foam is present behind the impact plate, its density is so low that 

it is approximate to a free surface), a release wave is reflected back towards the impact 

plane. The release, or rarefaction, waves are tensile in nature and work to unload the 

compression induced by the initial shock wave. When the release waves from the free 

surfaces reach each other, they have released the compressive state of the material and 

thus create a net tensile effect. It is this tensile pulse that causes spallation of the material 

and the plane where this tensile pulse is generated is known as the spallation plane. When 

the tensile pulse is great enough to initiate damage but is not sufficient to develop 
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coalescence and separation of the sample it is called “incipient” spallation, a state that is 

useful for analyzing damage nucleation events[57].  

     The location of the spallation “plane” can be closely approximated before performing 

the experiment by controlling the thickness of the impact plate and sample in the shock 

direction[56, 57]. If the impact plate and sample are of the same material and the thickness 

of the impact plate is half that of the sample then the tensile peak will be generated 

halfway through the thickness of the sample. If the impact plate and sample are different 

materials then the spallation “plane” may still be estimated by calculating the 

approximate shock wave velocities in each material to determine where the release waves 

will intersect for given impact plate and sample thicknesses. Plots of the shock wave 

front positions vs. time are used to illustrate how this planning is done. The velocities of 

the shock waves are known through the equations of state for the materials of the impact 

plate and sample. Thus this plot can be generated by using the velocity to find the 

position of the wave front at a given time relative to the impact plane while also taking 

into account the geometry of the experimental setup as shown in Fig. 2-4 for a case where 

the sample and impact plate are the same material. If the materials are different, the 

interaction of the wave with the impact surface must also be taken into account. 
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Figure 2-4. Plot of shockwave front position over time for Cu-Cu experiment. At time 0 the impact generates 

compressive waves that move outward toward the free surfaces (red). Rarefaction waves (light blue) reflect off 

of those surfaces and intersect in the sample to produce a tensile pulse and possibly cause void nucleation. 

     Within Fig. 2-4 the position axis begins at the free surface of the impact plate, with the 

vertical blue line (at 0.36 mm) representing the impact surface and the vertical purple line 

(at 1.085 mm) representing the free surface of the sample. The red lines represent 

compressive waves while the light blue lines represent release waves, which intersect to 

produce the tensile pulse near the midpoint of the sample as predicted. From this we see 

that the tensile pulse and initial spall will all occur within half of a microsecond of impact 

for these sample sizes and impact velocity. For this setup the predicted strain rate will 

also be on the order of 105 per second as determined by the known equations of state for 

copper. Also of note is that Fig. 2-4 shows a representation of the rarefaction fan. In 

actual experiments, a fan of release waves is generated when a compressive wave hits a 

free surface due to the heterogeneity of the material and the surfaces. These fans interact 
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to produce a tensile pulse that is a distribution in space and as well as time around the 

tensile peak; this will be shown in more detail in Chapter 6.       

     The description of plate impact behavior assumes that the shock wave is one-

dimensional but in actual experiments this is not truly the case due to the impact plate and 

sample having finite sizes perpendicular to the shock direction and these sizes possibly 

not matching. To prevent radial release waves from influencing the mechanical state of 

the sample, the sample is encased in rings of material with similar shock impedances 

referred to as momentum trap rings. The purpose of these rings is that any radial waves 

generated by the impact spend the duration of the shock wave propagating through the 

rings and thus do not reach the sample itself until after the shock wave has reached its full 

effect, allowing for a recovered sample to only show the effects of the shock wave[58]. 

The diameter of these rings is determined based on the diameter and thickness of the 

sample, i.e. the diameter of the rings must be sufficiently large to keep the radial waves in 

them for the time it takes for the shock wave interactions to propagate through the sample 

thickness.  
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Chapter 3: Elasto-Viscoplastic Fast Fourier Transform Formalism 
     In this work we use an elasto-viscoplastic model that utilizes Fast Fourier Transforms 

(FFT) to solve for the local results of stress and strain within the volume being simulated. 

This kind of ‘full-field’ modeling is most commonly run with a Finite Element Method 

(FEM) formalism. One such example is in this case by Bronkhorst et al[6], who used a 

FEM model to analyze the local deformation behavior of tantalum. The reason that we do 

not use the FEM formalism is to avoid potential difficulties with meshing large and 

complicated structures. The issue of meshing is completely avoided with the FFT 

formalism because it operates directly on an image. Images of microstructure data 

obtained from a variety of means (i.e. EBSD, nf-HEDM, etc.) can be input directly into 

the model. An added benefit is that the FFT model is that it has been shown to be at least 

an order of magnitude faster than commercial FEM codes on microstructures of similar 

resolution[8, 59], especially when using crystal plasticity as the material model. 

     The FFT formalism began with the works of Suquet and Moulinec[60], who developed 

the model to solve for the local linear elastic mechanical responses of a heterogeneous 

material, in particular a two material composite. To begin, they establish what is known 

as a ‘Fourier Grid’ for their microstructure information, which represents a regularly 

spaced sampling of the materials properties on a regular grid of points in two or three 

dimensions. At each of these points a constitutive equation that relates stress and strain is 

solved. The local responses of the heterogeneous medium are found using Green’s 

function method; the key result of this path is that the resulting Green’s equation solution 

is a convolution integral which would be time consuming to solve numerically. A 

convolution integral in real space is, however, a point-wise product in Fourier space, thus 

Fourier transforms are used to speed up the algorithm. The Green’s function method is 
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used with periodic boundary conditions and iteratively solves for stress equilibrium while 

maintaining strain compatibility conditions. In particular, a mathematical path developed 

by Mura[61] is used to solve for the Green’s operator in Fourier space. 

     However, the model in that original form had a particular weakness: the number of 

iterations until convergence scaled linearly with the ratio between the Young’s moduli of 

the two phases. Thus convergence is not guaranteed in some cases where the ratio is 

infinite such as where one part is a void or a rigid inclusion and more complex systems 

are difficult to run. To circumvent this limitation, Michel et al[62] developed an 

augmented Lagrangian method for the iteration scheme, where the key difference is that 

it adjusts both the stress and strain fields in each iteration. With this procedure, material 

structures that have high contrast in properties through the volume can be completed in 

more reasonable times. The next step in this method came when Lebensohn[63, 64] adapted 

this formalism to be run on polycrystalline structures for the cases of pure elasticity and 

pure viscoplasticity, connecting to the original concept by considering individual grains 

to be separate components of a composite whose effective modulus is compute from the 

average plastic response. Later an elasto-viscoplastic model was developed using 

infinitesimal strain theory to capture the elastic to plastic transition[3]. 

     The elasto-viscoplastic FFT model uses a combined elastic and viscoplastic 

constitutive equation that incorporates Hooke’s Law and an Euler implicit time 

discretization as shown by 

 

where εtotal is the total strain tensor split into the elastic strain tensor εe and the plastic 

strain tensor εp, C-1 is the compliance tensor, σ is the full Cauchy stress tensor, εp,t is the 

���total(x) = ���e(x) + ���p(x) = CCC�1(x) : ���(x) + ���p,t(x) + �̇̇�̇�p(x,���)�t (3.1)
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total plastic strain tensor up to time t and  is the plastic strain rate tensor. The last is 

defined by the viscoplastic constitutive equation 

 

where  is a reference shear rate, Nα is the total number of slip systems, mα is the 

symmetrized sample-frame Schmid tensor for slip system α, σ’ is the deviatoric stress 

tensor, τα is the critical resolved shear stress for slip system α, and n is the rate sensitive 

exponent. This equation is solved at each grid point by adjusting the stress state until the 

sum of the strain rates become equal to that required to satisfy the global system. As 

indicated by the presence of the Δt component in (3.1), this model operates off of 

incremental  applications of boundary conditions with subsequent incremental 

calculations of local response, which conforms to infinitesimal strain theory. 

     The model works by solving for local responses to a macroscopically applied 

condition. One begins by expressing inhomogeneous local values as a deviation from the 

response of a homogeneous reference material as shown by 

 

where C0 is the stiffness tensor of the homogeneous reference material (in this works’ 

case just the volume average of the local stiffness tensors), ϕij
 is the polarization field, 

which describes the local deviation from the average stress, and uk,l is the displacement 

gradient tensor, from which the strain tensor is calculated from infinitesimal strain theory 

as: 
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The condition of stress equilibrium is maintained in this model in the form of σij,j(x)=0 

and when that condition is applied to the second line of (3.3) then the result is 

  

which is an inhomogeneous differential equation that can be solved using Green’s 

function method for a periodic volume with an applied global strain E!" = 𝜀!"(𝑥)  . The 

result is the following auxiliary problem given by 

 

where Gkm(x) is the Green’s function operator associated with the displacement field 

uk(x), δ is either the unit impulse function associated with the polarization field ϕij or the 

Dirac delta function. According to the Green’s function method, the solution to the 

auxiliary problem in (3.6) is given by the convolution integral 

 

In Fourier space the convolution integral becomes just a product of the transformed 

functions, resulting in 

 

where k is a point in frequency space, 𝚪! is the Green’s operator in Fourier space and ^ 

indicates the Fourier transformed version of the variable. The Green’s operator in Fourier 

space is given by 

 

where Gik(𝑘) is solved using a method from Mura[61] where there is a relationship 

between G(𝑘) and an acoustic tensor A’ defined as  

�kl(x) = (uk,l(x) � ul,k(x))/2 (3.4)
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where C0 is the homogeneous reference material stiffness tensor. This holds true except 

in the case of the origin point in Fourier space; in this special case the value of 𝚪! is set to 

be just the inverse of C0. 

     So at this point we have a way to resolve the local strain tensors based on some 

applied global strain and a guess for the local stress states. The next step is to iterate this 

process to connect the local stress states to the local strain states using the constitutive 

equations and the augmented Lagrangian method. For the elasto-viscoplastic formalism, a 

modified form of (3.8) is used as shown 

 

where λi(x) is the guess for the local stress tensor at step i, 𝒆𝒊(x) is the fluctuation of the 

local strain tensor from the global average at step i and ei+1 is the total local strain tensor 

at step i +1. Note that from here on strain as the symbol e refers to strain derived from the 

Green’s function method while ε will refer to strain derived from the constitutive 

equations (3.1 and 3.2). The augmented Lagrangian method seeks the nullification of a 

residual term at each material point in the volume. For this section, contracted Voigt 

notation for symmetric tensors is used; for example the stress goes from σij to σk and 

stiffness goes from Cijkl to Ckl where k,l ∈1:6. The resulting residual equation now 

appears as 

 

where Rk is the residual and ε is calculated from σ and the initial σ is guessed to be the 

same as λ. For each subsequent iteration, the new σ is calculated from (3.12) using a 

Newton-Raphson (NR) solution scheme as shown 
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where the index j tracks the NR iteration. The Jacobian in (3.13) is calculated from 

(3.12), taking into account the constitutive equation (1), shown as 

 

where δkl is the Kronecker delta, C0 is the volume average stiffness tensor, C!"!! is the 

local compliance tensor and the derivative is the tangent compliance tensor derived from 

the constitutive relation (3.2). An approximation of the tangent compliance can be 

calculated if the dependence of the critical resolved shear stress τ when taking the 

derivative is neglected, primarily because that dependence depends on the hardening law 

being used at the time. The resulting approximation is shown as 

 

Once the NR calculation is completed, the new stress obtained is used as the new input 

for the Green’s function method λ(i+1). There is an optional step that allows the 

application of mixed boundary conditions, with the addition of stress to the already 

present strain boundary conditions. This additional step occurs in between iteration steps 

and the calculation takes the form of a correction to the strain based on a difference in 

stress as shown 

 

where Σ is the stress boundary condition tensor, the inverse C0 is the volume average 

compliance tensor and a is a tensor indicating which components of stress conditions 

need to be followed by having a value of 1 for those components and 0 for the rest. 
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     These iterations are continued until the average l2-norm of the difference between 

previous stress and strain and new stress and strain tensors is below some threshold that 

in this work is held to be 10-6. Once this condition is achieved the calculation of the local 

responses derived from the applied boundary conditions is complete. From here there are 

two updates to the microstructure that the applied deformation induces. The first update is 

for the lattice reorientation associated with each material point, which is dictated by the 

equation shown 

 

where 𝛚(x) is the local lattice reorientation, 𝛚(x) is the local rigid body rotation rate and 

𝛚𝒑(x) is the local plastic rotation. The local rigid body rotation is defined by 

 

where vi,j is the local velocity gradient (the time derivative of the displacement gradient). 

The local plastic rotation is defined by  

 

where 𝛾!(x) is the local shear rate on slip system α (defined in 3.2) and βα(x) is the local 

antisymmetric Schmid tensor for slip system α, which is defined as 

 

where sα is the slip direction and nα is the slip plane normal. The second update is for the 

local critical resolved shear stress (CRSS) at each material point via hardening. In this 

work a Voce-type hardening model is used. The primary CRSS update formula is based 

on the amount of slip on each slip system: 
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where 𝛾! is the shear rate of slip system β, hαβ is a hardening matrix that dictates how 

different slip systems harden each other (when α=β it is self-hardening, when α≠β it is 

latent hardening) and the leading derivative is derived from the modified Voce hardening 

law[65] 

 

where τ0, τ1, θ0 and θ1 which are the initial CRSS, a value that when added to τ0 is the 

back-extrapolated threshold stress, the initial hardening rate and the asymptotic hardening 

rate respectively. All these Voce parameters are determined empirically by determining 

what hardening parameters cause the stress-strain curve result of the elasto-viscoplastic 

model to fit an experimental stress-strain curve. Finally, the term Γ is the integral of 

accumulated net shear on all the slip systems.  

     From the constitutive equation (3.2), we know that the local fields depend on both the 

current local orientation and local CRSS. However, the update of these properties 

depends on the results of the local field calculations. Thus, to accurately predict the 

deformation history of the material these values must evolve in tandem, which in this 

model is performed explicitly for each boundary condition increment. The size of this 

increment is limited by the numerical iterative method by which the local 

micromechanical values are calculated. If the increment of the applied conditions is too 

large, the iterative method may not be able to converge upon a solution. Such a problem 

is not unique to this model but is inherent in many numerical methods. The elastic to 

plastic transition is often the limiting factor for the extent of increment that will lead to 
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convergence. For most cases in the EVPFFT model, the largest strain increment that can 

be applied while still ensuring convergence is 10-4. Aside from limits on the boundary 

condition increment, there are also limits on how many increments can be applied while 

still accurately predicting the micromechanical responses. The Fourier transform method 

may only be performed on a microstructure grid that has uniform spacing between points, 

an assumption of which may be reasonable at lower levels of deformation but as strain 

increases the results will less accurately reflect material behavior. This limitation can be 

resolved through the use of dual-grid[66] or particle-in-cell[63, 67] adaptions of the EVPFFT 

model. 
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Chapter 4: Grain Boundary Normal Calculation Technique 

4.1: Motivation 

Grain boundaries can be characterized at the mesoscale by five parameters; three of these 

parameters specify the misorientation, which is the transformation that brings the crystal 

lattices of the grains on either side of the boundary into coincidence. The other two 

specify the unit vector that is locally normal to the grain boundary plane. These 

components are combined to produce a five-dimensional (5-D) grain boundary character. 

One method of visually representing the grain boundary character is to utilize grain 

boundary character distributions (GBCD) over the space of (3-parameter) misorientation 

and (2-parameter) grain boundary normal. These are generally visualized as stereographic 

projections of the density of interface orientations with respect to crystal axes for a 

particular misorientation of interest. The misorientation components are rather easily 

calculated because of the many ways grain crystallographic orientations can be found, 

such as electron backscatter diffraction (EBSD). There are a number of reasons as to why 

exact grain boundary normals are difficult to obtain. First, three-dimensional (3-D) 

information is required and this is expensive and time-consuming to acquire. The most 

common methods for getting three-dimensional microstructure information are serial-

sectioning combined with EBSD measurements, which is a destructive technique[47], and 

the recently introduced non-destructive near-field high-energy diffraction microscopy 

(nf-HEDM)[48]. Both methods result in a series of two-dimensional (2-D) images that can 

then be aligned to form a 3-D image. However, the GB normals are still not easily 

obtained from this stack of 2-D images, due to the lack of information on the actual 

boundary inclination. The microstructure image obtained from EBSD or nf-HEDM is 
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similar to any other digital image; it consists of a grid of discrete points that does not 

explicitly include surfaces that would be needed to provide information on GB topology. 

At best, boundaries are known to lie between neighboring sets of points that belong to 

two different grains as shown in Fig. 4-1. However, the detailed boundary position in 

between the sampled points is not directly known. 

 

Figure 4-1. An image for two grains, where each corner of the cubic grid of lines represents a measured 

orientation point in the material. If all eight vertices of the cube agree in their orientation, the cube can be 

identified as belonging to that grain and is colored appropriately. If the eight vertices are not all in agreement, 

the volume must be associated with the grain boundary and is left vacant. 

    Requiring actual 3-D information can be avoided by using stereological methods to 

derive general plane normal distributions[68, 69]. However, information on individual 

boundaries cannot be obtained using stereology. Surface reconstruction, i.e. the method 

of generating surface information from a set of discrete points representing a shape, is 

required in order to define the missing GB information in 3-D data. This constitutes a 

difficult problem and many different techniques have been proposed aiming at solving it. 

For example, Dey and Goswami[70] developed a technique for surface reconstruction 

utilizing intersecting Delaunay balls to determine the surfaces. Hoppe et al.[71] and Mitra 

and Nguyen[72] generated surface information by fitting tangent planes to some specified 

number of local points. A similar method was developed by Ivasishin[73] who combined it 
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with a 3-D Monte-Carlo model. A technique by Moore and Warren[74] utilized 

polynomial fitting to develop polyhedral surfaces. Among surface reconstruction 

techniques, the most common and widely accepted way of approximating the GB 

surfaces is to generate a surface mesh from voxelized microstructure images. Different 

variants of this methodology have been proposed. One of the most used algorithms for 

developing a surface mesh from image data is the ‘marching cubes’ method[75], which is 

used in many software programs including the one utilized in this work, known as 

Dream.3D[76]. 

     As with general surface reconstruction, the most common technique for grain 

boundary characterization is based upon developing an explicit surface mesh. However, 

there are also other methods that do not explicitly generate this mesh but still calculate 

surface information[77-79]. However, since the EVPFFT model works directly on a 

voxelized image, the previously described techniques cannot generate GB normals that 

are directly compatible with the local Cauchy stress tensors generated by the model and 

thus cannot be used to calculate grain boundary surface tractions, necessitating a 

technique that generates surface normals directly from the voxelized image. The 

methodology proposed by Ivasishin et al.[73] is one of the few cases of GB normals 

calculated directly from 3-D integer grid-based data. However, this technique was not 

validated against experimental microstructures. Another example of GB information 

inferred from voxelized images is that of Chandross et al.[80], who, however, focused on 

obtaining dihedral angles at triple lines. A method proposed by Chou and Gholinia[81] is 

another similar method calculating from voxelized images, in particular the part of the 
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method involving calculations over local spherical region of the image, but this technique 

calculates the surface normals relative to each voxel face. 

     To properly analyze tractions from the EVPPFT model, we develop a new method 

based on the gradients of binary indicator fields determined from the voxelized image 

data. We validate this technique by comparing the surface normals determined by the 

new technique with those calculated from a surface mesh with triangular elements, 

obtained using Dream.3D, on a synthetically generated microstructure. Based on the 

analysis of these synthetic cases, the method is further utilized to obtain the GBCD of a 

pure nickel 3-D microstructure image obtained by nf-HEDM in Section 3.4. These results 

are compared to the GBCD previously determined by Hefferan[53, 82, 83] for the same 

microstructure, but using a different surface reconstruction technique that instead utilizes 

the Computational Geometry Algorithms Library (CGAL) package. CGAL is software 

that is used to model surfaces for many applications ranging from Materials Science to 

Geology to Biology[84-86], to mention a few examples. Its algorithm is based on Delaunay 

refinement. 

4.2: Cartesian Moment Method 

     A technique is presented here that can approximate grain boundary plane normals 

directly from 3-D microstructure data through the use of first order Cartesian moments. 

The equation for finding general Cartesian moments of arbitrary order[87, 88] is 

 

The order of a moment is determined by the sum of its indexes, represented here by the 

non-negative integers o, p and q. The function w(r) is a weighting function that depends 
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upon the position r = (xi, yj, zk) within the volume of interest S.  The weight is often taken 

to be simply 1 for all points within S, but more generally it can be specified to have a 

range of values depending on the particular application. The function f(r) is a scalar field 

that will be used as the indicator function. Some examples of scalar fields that can be 

used as indicator functions are composition, misorientation angle or von Mises equivalent 

stress. In this work, we use a binary indicator function. Such functions, which can adopt 

values of 0 or 1, are used to establish which points are part of the object of interest and 

which are not.  For our present application, we know to which grain each voxel belongs, 

so we define an integer function h(r) that returns the grain number for that location.  The 

indicator function f(r) is then defined as the delta function between the desired grain 

number m and the actual grain number h(r): f(r) = δ(m,h(r)). The function is 1 if the grain 

numbers match, and zero otherwise, and this would select out the volume elements 

belonging to grain m.  Typically, the origin of the coordinate frame is selected as the 

center of position of the object of interest and the resulting evaluations define the central 

moments.  Moment invariants can then be calculated from the central Cartesian moments 

of such binary indicator function, and these in turn can be used to characterize the shape 

of the object in a variety of ways[87, 88]. 

     A related moment formulation can be used to define the local derivatives of the 

indicator function and provides a formal way of defining the edges and surfaces of an 

object[89-91]. Here, in particular, we are interested in calculating the surface normal of the 

grains, which are parallel to the gradient of the grain number indicator function[92-94]. 

Because the data is present on a regularly spaced grid, the gradients can be defined by the 

least-square formulations given in (4.2)[95-97]. 
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Here, in order to simplify the notation, we have shifted the origin to the center of the 

voxel of interest and define it to have the (i,j,k) indices of (0,0,0).  The summations over 

(i,j,k) are within a region S which is used to evaluate the derivative. That defines a 

neighborhood about that central voxel, where the indices define the positions of the other 

voxels relative to it.  The specifics of the weighting function w(r) will be discussed in 

further detail below.  For the regularly spaced grid, the distance vector is defined as: 

 

Here, we emphasize that it is not required that the grid spacings (Δx, Δy, Δz) in the three 

different directions be equivalent.  This is especially convenient as both the experimental 

data (EBSD, nf-HEDM) and results of the Fourier Transform-based simulations often 

have this attribute.  The derivative evaluations can then be reduced to a somewhat 

simpler computational form shown in the second set of equalities in (4.2). 

     The numerators of the first set of equalities in (4.2) are seen to be the first order 

Cartesian moments within the neighborhood, and that these are proportional to the 

components of the gradient of f(r), with the proportionality depending upon the definition 

of w(r)[89, 90]. We note that the use of this formulation requires that w(r) and the definition 

of the neighborhood S be symmetric about the origin in addition to the data being present 
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on a regularly spaced grid. More complex formulations must be utilized if these 

conditions are not met. Our formulations can be further simplified by treating the indices 

in the three directions equivalently.  This can be achieved by requiring the weighting 

function to be simply a function of the sum of the squares of the indices, reducing its 

dependence from a vector to a scalar quantity. A similar constraint on the definition of 

the neighborhood S is adopted as shown in (4.4) and (4.5). 

 

Under these conditions, the summations in the denominators in the second equalities of 

(4.2) become equivalent, and that is designated as the quantity W.  This also enforces an 

equivalent statistical treatment of the gradient evaluation that is independent of the 

direction and specific axes orientation.  The resulting formulations can then be simplified 

as in (4.6), where the scaled first order moments µopq are defined.  

 

As mentioned above, here we are interested in the direction of surface normal and do not 

need to know the magnitude of the gradient.  Consequently, these vector components can 

then normalized by the vector magnitude to generate a unit vector whose direction is the 

surface normal.  Relationships for higher order derivatives could be similarly defined 

from the higher order moments to evaluate the grain surface curvature and triple junction 

characteristics, and those will be discussed in subsequent work. 
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     Here, we just utilize first order Cartesian moments and in three dimensions these have 

indexes of 100, 010 and 001 for the x, y and z directions, respectively. The origin of the 

calculation volume is located at the center of the voxel found to be part of the surface of 

the shape, defining (i,j,k) = (0,0,0).  Then the gradient components represent a vector that 

is in the same direction as the normal vector to that surface. Here, because we know the 

identities of the grains to which each voxel belongs, we designate the surface voxels as 

simply being those for which at least one of the six face-sharing neighbor voxels belongs 

to a different grain.  For evaluations centered on voxels located internally to the grain, 

small gradients that point towards the surface would arise if the voxel is sufficiently close 

to the surface. This is of significance only if the grain identities and surface points are not 

known a priori, but does not impact the current study. 

     In the present case of analyzing grain structure, the binary indicator function requires 

special consideration since there is the possibility of a point having nearest-neighbor 

points belonging to more than one different grain. Such points are designated triple points 

in the case of a total of three grains, or quad points in the case of four grains. Thus, to 

properly describe the surface at and near these points, the binary indicator function is 

modified be such that the points that are in the same central grain m are assigned a value 

of 0, the points in the one special neighboring grain n hold a value of 1, and all other 

points are also assigned a value of 0.  Therefore, we modify the definition of the indicator 

function as follows: for defining the surface normal of a cell belong to a grain of type m 

with respect to a second grain of type n, f(r) = δ(n,h(r)). Therefore for each point with l 

unique grain numbers among its nearest neighbors, there will be l-1 unique binary 

indicator functions, as shown in Fig. 4-2. By having multiple binary indicator functions at 
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a single triple point, we ensure that each vector calculated represents the surface between 

two grains. The points other than point 10 above that are highlighted by boxes show how 

regular grain boundary voxels near triple points will only be influenced by the single 

neighboring grain with no contribution from the nearby but not adjacent third grain. 

   

Figure 4-2. Example of the two indicator functions generated at point 10, which is the point in grain ID 9 that is 

at a triple point. The left figure shows the grid with the grain ID number in the center, and the point number 

(small font) in the bottom left corner of each cell. The middle and right figures show the two different indicator 

functions associated with point number 10, the first being between grains 9 and 2, and the second being between 

grains 9 and 4 (boundaries circled by dotted line). The point numbers highlighted by boxes are those that would 

use the kind of shape function presented in the image, showing that points that are not directly associated with 

triple lines are also affected by this, depending on the neighborhood size. 

     The three variants of the moment calculation that we will test are primarily different in 

terms of the weighting function w(r) utilized in (4.2) and (4.6). The first variant studied 

here is inspired by techniques used in the general image processing literature, which 

utilize a Gaussian weighting function or kernel, 𝑤 𝒓 = exp  [−(𝑖! + 𝑗! + 𝑘!)/𝜆!], to 

effectively smooth the discrete data to a continuous function[90, 91, 98]. The derivatives of 

that smoothed function can then be readily calculated and used to identify edges, corners 

and similar features. Similar calculation has been performed with the Deriche filter[89], 

another function often used to smooth discrete data. For this kernel, the value of λ defines 

the radius within which the data has significant weighting (i.e., the weight is < 1/e 
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beyond that radius). To define the computational neighborhood S as described in (4.5), 

we use a value of s determined for when the weighting function decreases below a 

somewhat arbitrary value of 10-5. Beyond that radius, we set w(r) = 0. Hence, the values 

of λ and s are interrelated:  𝑠 = (𝜆/2)ln  (10!!). The values of λ that are tested in this 

work are √3, √6 and √9, which result in s values of 5.88, 8.48 and 10.18 respectively. Of 

particular significance for the Gaussian weighting function is that there exists a general 

lower limit of λ = √2 which generates a smooth function from regularly spaced discrete 

data[90, 98], and that neither adds nor subtracts extrema (minima, maxima, inflection 

points) to the raw discrete data. Somewhat larger values then add a level of smoothing to 

the data, which is desirable for data containing noise or uncertainties. Smaller values of λ 

could be used to define the local derivatives at the grid points themselves, but these could 

not be used for general points in space. Because there is a level of noise/uncertainty in 

this data, the comparison will start at √3, which was sufficient to filter that uncertainty, 

but did not noticeably remove any extrema. For the rest of this work this variant will be 

referred to as the Gaussian Weighting (GW) variant.  

     The second variant treats every point within some specified cut-off radius, l, as having 

equal weighting. That is, w(r)=1 for (i2 + j2 + k2) ≤ l2 and w(r)=0 for (i2 + j2 + k2) > l2.  

This method will be tested with values of l being √3, √6 and √9.  Because of this hard-cut 

on the radius, the neighborhood S can be defined to have this same radius s = l. A 

comparison of the difference in weighting between these two variants is shown in Fig. 4-

3. Both of these approaches strive to define an spherically symmetric neighborhood over 

which to define the moments/gradients.  Many earlier approaches are based on cubic 

neighborhoods, which add some bias for alignment of the gradients along the axis 
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directions[90, 91, 98]. The GW method deprecates the contribution of more distant neighbor 

cells with respect to the primary nearest neighbors as a function of distance, enhancing 

the locality of the measure despite the large neighborhood.  The second variant treats all 

included points equally, smoothing the data more broadly within that footprint. For the 

rest of this work this second variant will be referred to as the Non-scaling, Equal 

Weighing (NEW) variant. By increasing the values of (λ, l) and increasing the volume 

included in the evaluation, one basically biases the results towards smoother and flatter 

surfaces, while decreasing those values enhances errors due to noise and the discrete 

nature of the data. The unknown factor is how much smoothing is required to suppress 

those errors without smoothing the true structure too far towards a planar surface. 

(a)  (b)  

Figure 4-3. Normalized weighting factor relative to a central point using (a) GW with λ=√6 and (b) NEW with 

l=√6. 

     The third variant also treats every point within some cut-off radius l as having equal 

weighting, but the value of l is allowed to vary. Specifically, the value of l is determined 

as being the distance to the nearest triple junction or quad point, but its value cannot go 

below a fixed minimum value, lmin. The value of this minimum will be varied for the 

different test cases and is set to values of √3, √6 and √9 so that these results can be 

compared to the second variant. The purpose of the adaptable, scaling neighborhood is to 
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smooth out the larger boundary areas while preserving accuracy near the surface 

discontinuities (i.e. triple junctions). For the rest of this work, this variant will be referred 

to as the Scaling, Equal-Weighting (SEW) variant. All distance values for these three 

variants are evaluated and the results compared against an independent calculation of 

surface normals. 

 (a)  (b)   

(c)  (d)   

Figure 4-4. Surface normals for (a) a sphere using the NEW variant and l equal to √3, (b) a sphere using the 

second variant and l equal to half the radius, (c) a cube using the NEW variant and l equal to half the edge 

length and (d) a cube using the SEM variant and a minimum lmin of √3. All vector arrows colored by divergence 

angle using the same color scale as shown. The cubes show how scaling limits the smoothing of sharp edges. 

     To highlight the effect of the size of the neighborhood, Fig. 4-4 shows the divergence 

angle between calculated normals and true normals for a sphere and a cube using 

different variants. The divergence angle is defined as the angle that exists between the 

surface normals generated by this technique and the surface normals they are being 

compared against. The equation to calculate the divergence angle is:  
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Here, 𝑣! and 𝑣!  are the two surface normals being compared. For the first sphere (Fig. 4-

4a), the NEW variant is used as the method of smoothing with l = √3.  These results 

highlight the issue of discretization (i.e. stair-stepping); by representing a smooth sphere 

as a collection of cubes, the approximate surface is inherently rough, especially where it 

does not align well with the mesh, and errors are made in the surface normal calculations. 

For the value of l = √3, the result is an average divergence angle of ~21°. The result can 

be improved on by utilizing a larger value of l to achieve greater smoothing. For the 

second sphere (Fig. 4-4b), l is set to half the radius of the sphere, which results in a 

dramatically smaller average divergence angle of ~1°. Even if the sphere size is 

increased, a sufficiently large l will calculate the correct surface normals due to the high 

symmetry of a sphere. However, the penalty for using such a large footprint is illustrated 

for the first cube (Fig. 4-4c). Here, the NEW variant is used with l set to half the cube 

edge length, and the average divergence angle is found to be ~14°, where there is an 

excessive rounding of the cube corners. For the second cube (Fig. 4-4d), the third variant 

is used with the edges of the cube treated as triple points, which results in greater 

accuracy close to the edges of the cube. Setting the value of lmin to √3, the average 

divergence angle decreases to ~1°. The size of the cube can then increase freely as long 

as the value of l is controlled such that it does not extend beyond the corners. These test 

cases emphasize that one should keep the neighborhood as small as possible in order to 

avoid these corner-rounding effects, albeit that smaller neighborhoods can increase the 

level of error arising from stair-steps. The SEW variant was constructed as a compromise 

between these factors as well as a way of scaling with different grain sizes. However, the 

�div = cos�1

�
�vT · �vC

��vT ���vC�

�
(4.7)



 43 

location of the edges/triple junction must be known to use the third variant of the 

technique because they are utilized to determine lmin and such information may not 

always be available. 

4.3: Mesh Comparison  

     One method to evaluate these approaches is to generate a surface mesh of a 

microstructure image and compare the surface normals from the mesh to those found by 

the proposed technique for the same image. To do this, the synthetic microstructure 

shown in Fig. 4-5 is used. It was generated using MBuilder[99, 100] and it has 860 grains 

discretized onto a 128x128x128 voxel grid. A triangular surface mesh for this 

microstructure is generated using the Dream.3D software package with a marching cubes 

algorithm and smoothed with a Laplacian smoothing algorithm for 40 iterations. Some 

conversion steps are needed in order to obtain a one-to-one comparison between the 

surface normals of the mesh and those of the proposed technique. First, all the nearby 

nodes to a given grain boundary voxel are identified, then the surface normals of the 

triangle elements which include those nodes are averaged with a weighting based on the 

triangle area. In particular the triangle elements used in the averaging are only those that 

are associated with the same grain boundary number pair as those of the grain boundary 

voxel. Thus if the grain boundary voxel is on a triple line, then two vectors from the 

triangle mesh will be generated for both possible grain number pairs.  
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Figure 4-5. The synthetic microstructure used to validate the grain boundary normal technique. 

     The angle between this approximated surface normal from the mesh and the surface 

normal calculated by our techniques represents a measure of how different the two sets of 

normal vectors are, with a value of 0˚ indicating complete agreement between them. 

Here, we use this angle as a measure of the accuracy of the technique with the aim being 

to find conditions that minimize the angles. For each of the nine cases described in 

Section 4.2, we determined the divergence angle for each grain boundary surface normal 

calculated from the image. The probability distribution of the divergence angles for each 

test case is shown in Fig. 4-6, with the results split between grain boundary voxels with a 

distance to the nearest triple point of one or less, and those with a distance greater than 

one. We make this distinction because there are greater uncertainties about the surface 

normals near triple junctions, due to both resolution related issues as well as difficulties 

that both our currents techniques and surface meshing techniques might have in that 

vicinity. These probability distributions show that, for each model variant, one can 

identify a preferred setting that results in the lowest average divergence angle for voxels 

that have a triple point distance greater than one. We also note that these lowest average 
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divergence angles are fairly close to each other. These conditions are λ=√3 for the GW 

variant, l=√6 for the NEW, and lmin=√6 for the SEW variants. Also, we observe that the 

distributions for voxels that have a triple line distance less than or equal to one are 

reasonably insensitive to the choice of technique used, although the divergence angle is 

generally larger for points on triple lines than the other points. For completeness, we also 

characterized λ=√2 for the GW variant, but those results were of lower quality than for 

λ=√3. 
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Figure 4-6. Probability distributions of the nine test cases, with the data separated into voxels with a triple point 

distance of one or less (blue) and voxels with a triple point distance greater than one (red). The average 

divergence angle of the red curve is displayed on each graph. The GW variant is represented by (a), (b) and (c) 

for λ=√3, √6 and √9 respectively. The NEW variant is represented by (d), (e) and (f) for l =√3, √6 and √9 

respectively. The SEW variant is represented by (g), (h) and (i) for lmin=√3, √6 and √9 respectively. 
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Figure 4-7. Grain boundary normals for a particular grain are shown for the scaling, equal-weighting model 

variant with lmin=√6 (left) and for the normals from the mesh (right), with the mesh itself also shown (center). 

The vectors are colored by the number of nearest-neighbor grains. 

     The grain boundary normal vectors generated from the mesh and from the scaling, 

equal-weighting variant for a particular grain are shown in Fig. 4-7, along with the 

underlying triangular mesh. The images show that both cases reflect relatively smooth 

surfaces away from the triple junctions. However, for the grain boundary normals 

approximated from the mesh, there is great variation in the normals at the triple junctions. 

This is likely due to irregularities in the mesh smoothing in these areas, which can be 

seen in the center image of Fig. 4-7. These irregularities are reflected in the higher 

divergence angles measured on voxels in these areas. From these results we can conclude 

that, at least for this microstructure, all three variants of the technique, for at least one 

value of (λ, l, lmin), are reasonably accurate at determining grain boundary normal vectors 

when compared to those from the standard method based on triangular surface meshes.  

4.4: GBCD Comparison 

     Next, we compare our normal vector approximations to those obtained from a state-of-

the-art meshing algorithm applied to an experimentally measured 3D microstructure. The 

comparison is statistical in that we compare grain boundary normal distributions rather 
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than point-by-point values as above. This comparison is carried out for two specific 

misorientations, thus displaying two-dimensional subspaces of the complete, five-

parameter GBCD. The normals are shown in crystallographic coordinates, with each 

normal appearing twice, once for each of the neighboring crystals.  

     The sample used is pure nickel while the measurement was performed by Hefferan et 

al.[53, 82, 83] using nf-HEDM[48, 101]. The nf-HEDM reconstruction yields a set of triangular 

voxels (in this case 1.2 micron side length equilateral triangles) in each of a set of 71 

measured 2-D sections that are spaced in 4 micron intervals perpendicular to the section 

planes. This structure was interpolated onto a cubic lattice, as shown in Fig. 4-8a. The 

grain boundaries were meshed using a weighted Delaunay triangulation method 

developed by S.F. Li[102]. It utilizes algorithms available in the Computational Geometry 

Algorithms Library (CGAL)[103] package with adaptations influenced by Boltcheva et 

al.[104] to preserve important features, such as triple lines and quad points. The resulting 

mesh of this Ni microstructure is shown in Fig. 4-8b. 

(a) (b)  

Figure 4-8. (a)Pure nickel microstructure from Hefferan et al.[53, 82, 83] has a resolution of 1000 x 1000 x 71 points 

with spacing of 1.2x1.2x4 µm. (b) Surface mesh generated for this image. In both case, the false color is based on 

randomly assigned grain number ID’s. 

Using the meshed boundaries, Hefferan[53, 83] displayed the normal distributions for two 

specific crystallographic misorientations, denoted as the Σ3 (60° rotation around the 
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<111> axis) and Σ9 (38.94° rotation around the <110> axis) boundaries. To generate the 

GBCD, the grain boundary surface normals are transformed into the crystallographic 

reference frame of their respective grains and then represented as a stereographic 

projection of the rotated vectors, with only the grain boundary points that have the 

misorientations of interest being included. Before rendering the vectors as a stereographic 

projection, the vectors are first transformed into spherical coordinates and then binned by 

10° intervals. The bins are then normalized such that they are expressed as multiples of 

random density. The values of (λ, l, lmin) found in Section 4.3 that resulted in the greatest 

accuracy for each variation of the technique are used to generate GBCD from the nf-

HEDM images. The Σ3 grain boundary character distributions generated from the surface 

meshing and the three variants of the technique are shown in Fig. 4-9. 

 

(a) (b)  
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(c) (d)  

Figure 4-9. Σ3 GBCD (a) from Hefferan et al.[53, 83], (b) the GW variant of the proposed model with λ=√3, (c) the 

second variant (NEW) with l=√6 and (d) the SEWvariant with lmin=√6. The strong peak in the upper right 

quadrant is associated with coherent twin boundaries, which are very common in most annealed fcc metals such 

as the Ni studied here. 

     What we see from these GBCD is that each model variant shows a very similar 

distribution shape but the primary difference is in the spread and peak of the 

distributions. The GBCD that is closest to Hefferan’s Σ3 baseline, in terms of peak value, 

is obtained with the SEW variant, followed by the GW variant with the NEW variant 

being the least accurate. To quantify this comparison, Fig. 4-10 shows these same 

projections but colored by the value of the difference between with respect to Hefferan’s 

GBCD. The largest absolute difference calculated in each case is 104.5 MRD for the GW 

variant, 143.6 MRD for the NEW variant and 50.9 MRD for the SEW variant; these 

results are also shown in Table 4-1.  
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Figure 4-10. Difference in MRD values for Σ3 boundaries between Hefferan’s GBCD and the GBCD from (left) 

the GW variant, (center) the NEW variant and  (right) the SEW variant. 

 

Difference in Σ3 

GBCD (MRD) 

Difference in Σ9 

GBCD (MRD) 

GEW 104.5 2.03 
NEW 143.6 2.80 
SEW 50.9 2.16 

Table 4-1: Peak Difference in MRD between the GBCD from Hefferan and the GBCD generated by the three 

variants for both Σ3 and Σ9 boundaries. 

In particular, the largest difference for the SEW variant is not located at the standard Σ3 

GBCD peak, as it is for the other two. The Σ9 grain boundary character distributions 

generated from the surface meshing and the three versions of the technique are shown in 

Fig. 4-11.  
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(a) (b)  

(c) (d)  

Figure 4-11. Σ9 GBCD (a) from Hefferan et al.[53, 83], (b) the first variant (GW) of the proposed model with λ=√3, 

(c) the NEW variant with l=√6 and (d) the SEW variant with lmin=√6. 

Again the different variants of the technique show general agreement on the shape of the 

distribution but here there are more differences when compared to the Σ9 baseline in that 

the peaks do not exactly line up, though they are all on the same <110> tilt profile, and 

the secondary shapes in the distributions are also slightly different but occur in the same 

positions in the plot. Again, the differences between the GBCD from Hefferan and the 

GBCD from this technique are shown in Fig. 4-12. The largest absolute difference 

calculated in each case is 2.03 MRD for the GW variant, 2.80 MRD for the NEW variant 
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and 2.16 MRD for the SEW variant. These results are also shown in Table 4-1. The NEW 

variant is the most different from Hefferan’s GBCD and is also farther from the other two  

 

 

Figure 4-12. Difference in MRD values for Σ9 boundaries between Hefferan’s GBCD and the GBCD from (left) 

the first variant (GW), (center) the second variant (NEW) and  (right) the third variant (SEW). 

variants, which are themselves quite similar in their differences compared to Hefferan’s. 

Overall, the Σ9 GBCD from the technique have greater relative differences to Hefferan’s 

Σ9 GBCD, than for the Σ3 GBCD, though the magnitudes are smaller. In general, the 

GBCD obtained from the SEW variant exhibits the best agreement with Hefferan’s. The 

explanation for why the SEW variant is favored here while in Section 4.3 all three had 

similar accuracy is that the resolution of the nf-HEDM sample (71×106 voxels) is greater 

than that of the synthetic microstructure (~2×106 voxels) and this particular variant has a 

consistent smoothing effect with increasing resolution while the other two are indifferent 

to resolution changes. 

4.5: Triple Junction Line Vectors 

     While the above technique, presented in Lieberman et al.[13], can define the grain 

boundary surface normals, it does not describe the triple junctions themselves as distinct 
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structures and thus a separate technique must be found. As Fig. 1-1 shows, damage can 

nucleate specifically on triple junctions so being able to analyze them as features separate 

from the grain boundary plane is useful. Accordingly, in order to analyze the triple 

junctions in addition to grain boundaries, we propose a technique that calculates the triple 

junction line vector using certain special properties of second order Cartesian moments as 

described by Lichter and Dubowsky[105]. Following the properties of the general 

Cartesian moment equation shown in (4.1), the second order Cartesian moments consist 

of six distinct values. These values are used to construct a diagonalizable symmetric 

matrix as shown 

 

where Λ is a diagonal matrix composed of the eigenvalues of the second order Cartesian 

moment matrix and P is a matrix whose columns are the eigenvectors of the moment 

matrix. In this instance, a different variation of the discrete Cartesian moment equation is 

used as shown 

 

For this technique the weighting function and volume of interest S are defined by the GW 

variant. If the indicator function used in the moment equation is representative of some 

object in space, the eigenvectors will correspond to the principal axes of that object while 

the eigenvalues are proportional to the relative magnitudes of size of the shape along the 

corresponding axes.  

     To make use of these properties, the triple junctions are expressed as voxelized 

shapes, each uniquely defined as the set of voxels that among their first nearest neighbors 
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have the same three grain numbers. While in continuous three-dimensional space a triple 

junction is a one-dimensional feature, it becomes a cylindrical voxelized shape in a 

discrete three-dimensional space. These cylinders have a single major principal axis and 

two non-unique minor principal axes. Thus the largest eigenvalue of the second order 

Cartesian matrix for a cylinder corresponds to the eigenvector that represents the major 

principal axis of that cylinder. When applied to a triple junction shape, this major 

principal axis is parallel to the triple junction line vector. An example of the results of 

this technique applied to a single triple junction is shown in Fig. 4-13. By using the two 

techniques of quantifying the grain boundary surface normals and triple junction tangent 

vectors we are able to analyze the morphological influence in void nucleation as well as 

calculate the surface tractions on these two features. 

 

Figure 4-13. A set of voxels for a single triple line between three grains, determined by the number of unique 

grains amongst nearest neighbors. At each point of the triple line a local tangent vector is calculated and shown 

as an arrow glyph. 

4.6: Discussion 

     The proposed technique based on the use of first order Cartesian moments to calculate 

a voxelized field of grain boundary normals has been shown to compare favorably to 
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normals found using surface meshing. When locally comparing the grain boundary 

normals obtained by the proposed technique to those from a triangular mesh, the greatest 

differences are found near the triple junctions and quad points, regions which are known 

to have inconsistencies with the smoothing due to most algorithms allowing triple 

junction nodes less freedom of positioning than other grain boundary nodes. Elsewhere 

the differences between the mesh normals and the normals generated by the technique are 

on average less than 3˚. Differences between the different variants of the technique 

appear when tested on the higher resolution nf-HEDM sample. The scaling, equal-

weighting (SEW) variant is the one having the most success at replicating the GBCDs 

produced by Hefferan[53], which is reasonable considering that this variant is the only one 

to scale with resolution changes. This allows the smoothing to increase with increasing 

resolution and match the results of surface mesh smoothing that is indifferent to 

resolution. Thus the scaling, equal-weighting (SEW) variant is the best choice if one 

assumes that the boundaries being considered are smooth. However, if the above does not 

hold or the triple junction or other surface edge information is not known, then the 

Gaussian weighting (GW) variant, which had the next best success at replicating the 

GBCD, would be a viable option as well. We note that all of the methods exhibited 

higher divergence near the triple lines in the first surface mesh comparison in part 

because of a combination of an effective high curvature at the corners and the inability to 

recognize the transition between two different neighboring grains, which should give rise 

to a discontinuity in this simple definition of a surface normal. The addition of higher 

order moments/derivatives should improve the descriptions near the triple junctions. The 

properties of second order Cartesian moments are used to generate vectors that run 
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tangent to triple lines along various points of the triple junction and thus any relationship 

between triple junction morphology and damage nucleation may also be analyzed.  
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Chapter 5: Surface Traction Analysis 

5.1: Simulation Setup 

     To analyze patterns associated with extreme values of surface tractions we must 

establish a statistically significant number of observations across different cases. We 

achieve this by performing EVPFFT simulations on multiple microstructure images and 

with multiple loading conditions. For this work, we ran the series of simulations on a 

microstructure that was generated using the software package MBuilder[99, 100]. The grain 

structure is the same as the one shown in Fig. 4-5. The microstructure is composed of 866 

relatively equiaxed grains, with the general sizes following a log-normal distribution as 

shown in Fig. 5-1.  

 

Figure 5-1. Log distribution of the grain sizes from the microstructure shown in Fig. 3-7, showing a nearly log-

normal distribution. 

Each grain has a single orientation that was assigned to it by the MBuilder package. By 

generating ten different randomizations of the orientation assignment, we produce ten 

microstructure images that will produce different local responses with the same grain 
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morphology. These orientations are expressed as Bunge Euler angles as described in 

Section 2.2. The orientation distribution of these grains is represented by an inverse pole 

figure relative to the [001] direction as shown in Fig. 5-2. Generating this inverse pole 

figure involves taking a chosen sample space vector (in this case [001]) and rotating the 

vector by the orientation on each point microstructure grid combined with each cubic 

crystal symmetry variation. The resulting vectors then undergo stereographic projection 

onto a 2D plane and a single cubic fundamental zone is selected for the plot. The inverse 

pole figure for this microstructure shown in Fig. 5-2 shows that the orientation 

distribution is not random but in fact has a 100  texture, though the intent was for it to 

be random.   

 

Figure 5-2 Inverse pole figure relative to the [001] direction for the microstructure shown in Fig. 4-5. 

     Initially we consider three different loading conditions: uniaxial tension along the z-

axis, uniaxial compression along the z-axis and pure shear over the x-z plane. The 

EVPFFT model accepts these conditions as an applied velocity gradient (with additional 
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stress conditions as necessary). For uniaxial tension a velocity gradient of 1 s-1 is applied 

in the z-direction while the stress in the x and y-directions is held to 0 MPa, for uniaxial 

compression a velocity gradient of -1 s-1 is applied in the z-direction while the stress in 

the x and y-directions is held to 0 MPa and for pure shear a velocity gradient of 1 s-1 is 

applied as a shear strain along the xz-plane (represented as simultaneous shears in the x-

direction along the z-plane and in the z-direction along the x-plane). These rates are 

applied via an incremental time step of 0.0001 s for 200 increments; thus for example the 

case of uniaxial tension results in a total strain of 0.02 in the z-direction, equivalent to 2 

% elongation. The material selected for the model is pure copper; thus the microstructure 

has a face-centered cubic (FCC) crystal structure and the plasticity equations are 

calculated over the 12 111 110  slip systems. The hardening model used with these 

slip systems is the Voce hardening model shown in Chapter 3. To simulate the elastic 

response of a copper polycrystal, stiffness tensor constants were obtained from 

literature[10] and to simulate the plastic response, Voce hardening parameters are acquired 

by determining what values will result in a response from the model that fit a stress-strain 

curve that was experimentally measured during uniaxial tension of a pure copper 

polycrystal sample. The stiffness tensor and Voce hardening parameters used in the 

model are shown in Equations 5.1 and 5.2: 

 

CCC =

�

�������

168.4 121.4 121.4 0.0 0.0 0.0
121.4 168.4 121.4 0.0 0.0 0.0
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0.0 0.0 0.0 0.0 0.0 75.4

�

�������
GPa (5.1)

�0 = 45, �1 = 30, �0 = 800, �1 = 130 (5.2)
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Once these properties and microstructure are entered into the model and the conditions 

are run to completion, the information that is output is the local Cauchy stress tensor, the 

local total strain tensor and the local orientation in Bunge Euler angles along with things 

that were constant throughout such as the grain identification numbers, all for each point 

of the microstructure grid. The results for von Mises equivalent stress and total von Mises 

equivalent strain for these three cases are displayed in Fig. 5-3 and 5-4 respectively. With 

the information given by the model, the local grain boundary surface tractions may be 

calculated and then thresholded for extreme values. The values that lie above the 

threshold are then analyzed for patters relating to other micromechanical values or 

microstructural features.  

(a)  

(b) (c)  
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Figure 5-3. Coloring of the microstructure points by von Mises stress (MPa) for (a) uniaxial tension, (b) uniaxial 

compression and (c) pure shear. 

(a)  

(b) (c)  

Figure 5-4. Coloring of the microstructure points by total von Mises strain (MPa) for (a) uniaxial tension, (b) 

uniaxial compression and (c) pure shear. 

5.2: Traction Extreme Value Thresholding 

     The results are then run through a post-processing program to calculate the grain 

boundary surface normals as described in Chapter 4 and subsequently the grain boundary 

surface tractions. The calculation of a grain boundary surface traction and its two 

components follows the equations as shown 
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where σij(x) is the local Cauchy stress tensor, 𝑛!"(x) is the local surface normal vector, Tn 

is the normal component of traction and Ts is the shear component of traction. A 

graphical representation of the relationship between these components is shown in Fig. 5-

5.  These values are calculated for each point that is considered a grain boundary point, 

which in this case will be points that have among their first nearest neighbors a point 

from a different grain. The normal component of traction and the magnitude of the shear 

component of traction vector are shown on the grain boundary points in Fig. 5-6 and 5-7. 

The specific coloring scale chosen for Fig. 5-6 highlights the dichotomy of the normal 

component of traction results between positive and negative values, which give indication 

of the direction of the traction. Similarly, note that the scalar display of the shear 

component of traction vector in Fig. 5-7 does not indicate the direction of the traction. 

 

Figure 5-5. Demonstration of the relationship between the general traction vector and the normal and shear 

components of traction. 

�Ti(x) = �ij(x)n̂j(x)

Tn(x) = �T (x) · n̂(x) (5.3)

�T s(x) = �T (x) � Tn(x)n̂(x)
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(a)  

(b) (c)  

Figure 5-6. Coloring of the grain boundary points by the normal component of traction (MPa) for (a) uniaxial 

tension, (b) uniaxial compression and (c) pure shear. 

     Our interest is in determining which value of grain boundary surface traction 

components can be considered “extreme values”. To do this, we use a method developed 

by Donegan et al.[106] to determine a threshold value the points above which will be 

considered extreme values. This method involves an analysis of the data that exceeds a 
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(a)  

(b) (c)  

Figure 5-7. Coloring of the grain boundary points by the shear component of traction (MPa) for (a) uniaxial 

tension, (b) uniaxial compression and (c) pure shear. 

chosen threshold and is known as the peaks-over-threshold approach, with the key point 

being that if an appropriate threshold was selected then the data above the threshold 

converge to the generalized Pareto distribution. The generalized Pareto distribution is a 

probability distribution family that is described by three parameters: scale (σ), shape(ξ) 

and location (µ). In this case the location parameter is analogous to the threshold. 

Donegan showed that if the points above a chosen threshold really do converge to the 

generalized Pareto distribution then an increase in the location parameter/threshold 

should not cause a change in the shape or scale parameters[106].  
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     A threshold choice plot can be used to check this for a given set of data by plotting the 

shape and scale parameters against varying threshold choices, thus reasonable threshold 

choices can be found in regions of the plot which show relatively constant trends. 

Another plot that can be used to identify thresholds is the mean residual life plot, which 

tracks the average excess of values above the threshold value. When the mean residual 

life plot has a linear trend, the points above threshold converge to the generalized Pareto 

distribution. Thus the general method for determining a threshold is to generate both sets 

of plots for a given dataset and identify a threshold that is in both a constant region of the 

threshold choice plots and a linear region of the mean residual life plot. Donegan et al. 

also noted that the Pickands-Balkema-de Haan theorem indicates that data above a 

threshold converges to the generalized Pareto distribution as the threshold approaches the 

right end of the overall distribution. Thus for the case where multiple thresholds could 

satisfy the already stated criterion, the largest threshold should be selected. An example 

of the use of these plots for threshold selection in this work is shown in Fig. 5-8 for the 

case of uniaxial tension. We use this technique to determine extreme value thresholds for 

both the normal and shear components of traction. For the normal component of traction 

the positive extreme value thresholds found are 225 MPa for the case of uniaxial tension, 

90 MPa for the case of uniaxial compression and 175 MPa for the case of pure shear.  For 

the magnitude of the shear component of traction vector the extreme value thresholds 

found are 140 MPa for the case of uniaxial tension, 140 MPa for the case of uniaxial 

compression and 150 MPa for the case of pure shear.   
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Figure 5-8. Threshold choice plots and mean residual life plot for the tail of the normal component of traction 

distribution for uniaxial tension; red line indicates threshold choice. 

5.3: Results of Hot Spot Analysis 

     With this information we identify the set of points that constitute extreme values and 

collect various parameters on these points, which from here on will be labeled ‘hot spot’ 

points. The parameters of interest are the von Mises equivalent stress, the von Mises 

equivalent strain, the hydrostatic stress, the local crystal orientation and the angle 

between the grain boundary surface normal and the sample directions. The von Mises 

equivalent stress and strain are represented by the equations shown 

 

where 𝜎′ and 𝜀′ are the deviatoric stress and strain tensors. The hydrostatic stress is the 

average of the trace of the Cauchy stress tensor represented by the equation p=(1/3)Σσii. 
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Plots of these three factors against the normal and shear component of traction hotspot 

points are shown in Fig. 5-9 for normal component hot spots under uniaxial tension, Fig. 

5-10 for shear component hot spots under uniaxial tension, Fig. 5-11 for normal 

component hot spots under uniaxial compression, Fig. 5-12 for shear component hot 

spots under uniaxial compression, Fig. 5-13 for normal component hot spots under pure 

shear and Fig. 5-14 for shear component hot spots under pure shear. The angle from the 

grain boundary surface normal to the three principal sample directions is calculated via 

dot product of the normal vector with the sample direction vectors. The sample directions 

are designated as the normal direction (ND) for the z-axis, the rolling direction (RD) for 

the x-axis and the transverse direction (TD) for the y-axis. Distribution plots of the angle 

from surface normal to the normal direction (which is also the loading direction) for 

normal component and shear component hot spots for the case of uniaxial tension are 

shown in Fig. 5-15. The same information for the case of uniaxial compression is shown 

in Fig. 5-16. For the case of pure shear loading conditions, measuring the angle to a 

single direction is insufficient due to the unique nature of the loading conditions. Thus 

distribution plots of the angle from the surface normal to all three sample directions are 

shown in Fig. 5-17 for the normal component hot spots and in Fig. 5-18 for the shear 

component hot spots. 
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(a)  

(b)  

(c)  

Figure 5-9. Plots and trend lines of (a) von Mises stress and (b) strain as well as (c) hydrostatic stress for the 

normal component hot spots under uniaxial tension. 
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(a)  

(b)  

(c)  

Figure 5-10. Plots and trend lines of (a) von Mises stress and (b) strain as well as (c) hydrostatic stress for the 

shear component hot spots under uniaxial tension. 
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(a)  

(b)  

(c)  

Figure 5-11. Plots and trend lines of (a) von Mises stress and (b) strain as well as (c) hydrostatic stress for the 

normal component hot spots under uniaxial compression. 
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(a)  

(b)  

(c)  

Figure 5-12. Plots and trend lines of (a) von Mises stress and (b) strain as well as (c) hydrostatic stress for the 

shear component hot spots under uniaxial compression. 
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(a)  

(b)  

(c)  

Figure 5-13. Plots and trend lines of (a) von Mises stress and (b) strain as well as (c) hydrostatic stress for the 

normal component hot spots under pure shear. 
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(a)  

(b)  

(c)  

Figure 5-14. Plots and trend lines of (a) von Mises stress and (b) strain as well as (c) hydrostatic stress for the 

shear component hot spots under pure shear. 
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(a)  

(b)  

Figure 5-15. Distribution plots of the angle to normal direction for the (a) normal and (b) shear component hot 

spots under uniaxial tension along with the plot of the angle from all surface normals to the normal direction. 

(a)  
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(b)  

Figure 5-16. Distribution plots of the angle to normal direction for the (a) normal and (b) shear component hot 

spots under uniaxial compression. 

(a)  

(b)  
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(c)  

Figure 5-17. Distribution plots of the angle from the surface normals of normal component hot spots under pure 

shear to the (a) normal direction (z-axis), (b) rolling direction (x-axis) and (c) transverse direction (y-axis). 

(a)  

(b)  
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(c)  

Figure 5-18. Distribution plots of the angle from the surface normals of shear component hot spots under pure 

shear to the (a) normal direction (z-axis), (b) rolling direction (x-axis) and (c) transverse direction (y-axis). 

     Applying these thresholds to this microstructure results in a possibly limited dataset 

where the resulting points make up less than 2 % of the total set of grain boundary points 

and come from a limited number of boundaries in the given microstructure. To ensure 

that the data being considered is statistically significant, particularly for comparison with 

experimental results that contain many more grains than this test microstructure, a greater 

number of microstructures are run through the model under uniaxial tension loading 

conditions. The same grain structure as that shown in Fig. 4-7 is used in all the cases to 

maintain the same morphology while the orientations assigned to each grain are randomly 

reassigned; this process is used nine times for a total of ten microstructures. Distribution 

plots of the angles from normal vector to the normal direction from all ten 

microstructures are shown in Fig. 5-19 for both normal and shear component hot spots. 

We use the orientations from the grain boundary points that constitute the hot spots from 

all ten microstructures to generate inverse pole figures relative to the loading axis; these 

are shown in Fig. 5-20. Similarly, we use the orientations on both sides of the grain 

boundaries that constitute the hot spots from all ten microstructures to generate 
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misorientation angle distributions, which are shown in Fig. 5-21 for normal and shear 

component hot spots.  

(a)  

(b)  

Figure 5-19. Distribution plots of the angle to normal direction for the (a) normal and (b) shear component hot 

spots from all ten microstructures, all under uniaxial tension. 
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Figure 5-20. Inverse pole figures from the crystal orientations of the normal (top) and shear (bottom) component 

hot spots from all ten microstructures, all under uniaxial tension. 
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(a) (b)  

Figure 5-21. Misorientation angle distribution from the grain boundary points that make up the (a) normal and 

(b) shear component hot spots from all ten microstructures, all under uniaxial tension. 

5.4: Discussion 

     Considering just the normal component hot spots under all three loading conditions as 

shown in Fig. 5-9, 5-11 and 5-13 (parts a and c), there appears to be a general positive 

trend between the normal component of traction and both the von Mises stress and the 

hydrostatic stress but it is not a particularly strong correlation. The important thing to 

take from this result is that both factors taken from the stress tensor show a trend here, 

indicating that both do contribute to the normal component of stress. By contrast, the 

shear component hot spots under all three loading conditions do not trend with 

hydrostatic stress, despite using the full stress tensor, but actually seem to trend more 

strongly with von Mises stress than the normal components do. This indicates that the 

normal component hot spots have some relationship with hydrostatic stress, which 

represents a dilatational stress effect. Such an effect is related to void growth and 

possibly void nucleation; it is this sort of relationship that is investigated further in the 

experiment on the shocked copper. Similarly, while we note the relationship between the 

shear component hot spots and von Mises equivalent stress, an experimental comparison 

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Misorientation Angle (Degrees)

Vo
lu

m
e 

Fr
ac

tio
n

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Misorientation Angle (Degrees)

Vo
lu

m
e 

Fr
ac

tio
n



 82 

has not yet been identified. Neither the normal component hot spots nor the shear 

component hot spots show any sort of trend with von Mises equivalent strain. Work by 

Rollett et al.[107] has found that von Mises stress hot spots in a pure viscoplastic FFT 

model tend to be associated with grain boundaries, reinforcing the connection seen here. 

     The first observation to make about the spatial trends for the normal component of 

traction is that it has a duality in its result. We interpret a positive normal component of 

traction as being a tensile load on the interface while a negative normal component is a 

compressive load on the interface. When we look at the results in Fig. 5-6, it shows that 

the normal component values have a range that extends from positive to negative and in 

particular that individual grain boundaries appear to be either fully positive or fully 

negative. Looking between the different loading cases, there are trends in the inclination 

of the boundaries with respect to the stress system in terms of tensile versus compressive 

loads. The largest positive normal components appear to be on boundaries that are 

perpendicular to loading axis in the case of applied uniaxial tension while for the case of 

uniaxial compression it appears that the only positive normal components are on 

boundaries that are parallel to the loading direction. The case of pure shear loading 

conditions does appear to have a trend for positive and negative normal components, one 

that likely conforms to some sort of 45˚ angle trend similar to shear banding. The main 

contrast is that some of the boundaries following that trend are positive while some are 

negative; it is apparent that the boundaries that are aligned roughly perpendicular to the 

(+x, +z) axis have positive normal components while those aligned roughly perpendicular 

to the (+x, -z) axis have negative normal components as seen in Fig. 5-6c. The shear 

component of traction magnitude shows trends that are to first order the inverse of those 
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shown for the normal component. For the cases of uniaxial tension and compression 

(which show strong similarity to each other) the larger shear components appear to avoid 

boundaries that are perpendicular to the sample axes while for the case of pure shear 

loading conditions it is on these same boundaries that the largest shear components are 

concentrated. 

     The measurements of the angles from the boundary normal can quantify these 

observations. From the normal component hot spot angles for applied uniaxial tension 

shown in Fig. 5-15a, we see that there is a strong preference for smaller angles, with a 

maximum from 10˚ to 20˚, which equates with highly loaded boundaries that are closer to 

perpendicular to the loading direction. By contrast, the same measurement shown in Fig. 

5-16a for applied uniaxial compression shows a strong preference for larger angles, with 

a maximum from 80˚ to 90˚, which equates with preferring boundaries that are close to 

parallel with the loading direction. The interesting thing is that while in the case of 

uniaxial compression the normal component hot spots cluster at one extreme of the angle 

range, while in the case of uniaxial tension they do not appear to be exactly 

perpendicular. The explanation is the differences in the overall distribution of angles to 

the normal direction, which are predominantly at higher angles, an expected phenomenon 

in a three dimensional case. To understand this expectation, consider a discrete point 

sphere with any arbitrary axis drawn through it; there will be more points for the 

circumference of the sphere at the ‘equator’ than at the ‘poles’ relative to this axis. Thus, 

for the uniaxial tension normal component hot spots there are more results in the 10˚-20˚ 

bin than the 0˚-10˚ bin because overall there are more boundary points that fall in to those 

bins (as seen in Fig. 5-15a), while for the uniaxial compression normal component hot 
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spots the range of bins over which the points are dominant are together relatively constant 

on the overall distribution (as seen in Fig. 5-16a). The normal component hot spots are in 

very different places for the case of pure shear loading conditions; from Fig. 5-17 we see 

that the hot spots prefer to be on boundaries that are perpendicular to the xz-plane due to 

the predominance of large angles relative to the transverse direction. Within the xz-plane 

the hot spots concentrate on boundaries that are located around 40˚-50˚ to the normal and 

rolling directions; however this can be deceiving since while all the hot spots are on 

boundaries that are around that angle range, not all boundaries around that angle range 

have the possibility of being hot spots due to the arrangement of positive and negative 

normal component boundaries as mentioned in the previous paragraph.  

     The differences between loading conditions for boundaries preferred by normal 

component hot spots follow trends that are also seen in experiments. Gurland subjected 

spheroidized 1.05% C steel cylindrical samples to both uniaxial tension loading and 

torsion loading and measured the angle of cracks in cementite particles and measured the 

angle from the crack traces to the long axis of the sample[17]. What he found was that the 

crack traces that formed under uniaxial tension tended to be oriented 90˚ to the long axis 

and under torsion tended to be oriented 45˚ to the long axis as shown in Fig. 5-22.  
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(a) (b)  

Figure 5-22. Plot of the angle from crack trace to the cylinder long axis for (a) uniaxial tension loading and (b) 

torsion loading; taken from Gurland[17]. 

Recall from Fig. 2-2 that the situation of particle cracking involves crack traces that are 

perpendicular to the long axis of the particle and parallel to the voids that form due to 

interface decohesion. The concept of the crack trace being at 90˚ to the loading axis 

means that the crack plane is perpendicular to the loading axis and thus that plane normal 

would be 0˚. In general, what Gurson and this work observe is that many potential 

damage planes tend to be oriented perpendicular to the direction of principal tensile 

loading axes; applied shear is equivalent to a tensile load on the body at 45˚ to the plane 

the shear is applied on. 

     The shear component hot spots for the cases of both uniaxial tension and compression 

show a preference for boundaries inclined around 40˚-50˚ to the loading axis as shown in 

Fig. 5-15b and 5-16b. While the effect of the overall angle distribution might affect the 

bin heights around the peak, the location of the peak at the 40˚-50˚ bin will not change. 

The shear component hot spots for the case of pure shear loading again appear to be 

primarily on boundaries that are parallel to the transverse direction as revealed by Fig. 5-
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18c. Within the xz-plane, Fig. 4-18 shows that the shear component hot spots under pure 

shear prefer boundaries that are perpendicular to either the normal or rolling directions. 

We see again that the 10˚-20˚ bin has a higher value than the 0˚-10˚ bin for the same 

reason as before with the normal component hot spots. 

     When looking at the grain orientations around boundaries from Fig. 5-20, normal 

component hot spots show an increased tendency for those grains to have their <111> 

crystal direction orientated parallel to the loading direction; the shear component hot 

spots instead tend to favor the <101> crystal direction though there is a presence of 

directions all along the <101>-<111> symmetry line. The differences between Fig. 5-20 

and Fig. 5-2 show that the textures seen where normal and shear traction hot spots occur 

is different than the texture of the overall microstructure. The misorientation angle 

distribution shown in Fig. 5-21 fits very closely the misorientation angle distribution 

expected for a cubic polycrystal with randomly oriented grains, which is known as the 

Mackenzie curve[108]. Being close to fitting the Mackenzie curve is another indicator that 

perhaps the crystallographic nature of the grain boundary itself might not be as 

significant in determining void nucleation.  

     Though the determination of the hot spot thresholds does not relate to any physical 

phenomena, we aim to analyze the connection between large traction concentrations and 

damage by limiting the comparisons to only those statistically extreme values. The 

principal analysis of these results is comparing the measurements from the normal 

component hot spots to similar measurements made in an experiment by Fensin et al.[34] 

on the shock loading of copper polycrystals. In their work, the samples were oxygen-free, 

high-conductivity polycrystalline copper which was fully annealed and was subjected 
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shock loading by being struck by quartz flyer plates with a velocity of 130 m/s, leading to 

a peak tensile stress within the microstructure estimated to be 1.3 GPa. Cross-sectional 

EBSD images of the deformed/damaged samples were taken and the angle from the 

shock direction to the grain boundary trace from all boundaries was measured; one of the 

EBSD images as well as an example of measuring the angle is shown in Fig. 5-23. The 

rules of stereology were used to allow the two-dimensional EBSD images to be able to 

appropriately analyze the grain boundaries, which are three-dimensional features. 

Stereology accomplishes this by using a sufficiently large number of randomly oriented 

two-dimensional slices of a three-dimensional material. 

     The distribution of the angles measured from all boundaries and just from those that 

nucleated voids is shown in Fig. 5-24a. To perform this comparison, we use the data 

obtained from the ten generated microstructures so that we have a larger normal 

component hot spots since there is a large number of voided boundaries in the actual 

sample. We ran these microstructures under uniaxial tension because it is an 

approximation of the type of strain mode experienced by shock loading conditions.  
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Figure 5-23. EBSD image of the cross-section of a copper polycrystal sample after shock loading (a) and a 

magnified image showing how the grain boundary trace angle is measured (b); taken from Fensin et al.[34] 

(a) (b)  

Figure 5-24. Plot of the angle distribution of (a) voided grain boundary traces (taken from Fensin et al[34]) and of 

(b) normal component hot spot boundary traces. 
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Figure 5-25. Distribution plot of the angle from the normal to loading axis for normal component hot spots 

under uniaxial tension normalized by the overall angle distribution. 

     While the angle distribution we show in Fig. 5-19a is fundamentally what we want to 

compare with the distribution in Fig. 5-24a, some adjustments must be made so that the 

data is truly comparable. First the raw angle distribution for the normal component hot 

spots is normalized by the angle distribution for the whole microstructure, creating Fig. 

5-25. The next change is to recognize that the initial angle measured from this work is 

from the normal while the angle measured from the shock loading experiment is the 

complement of that angle and was the angle from the grain boundary trace; Fig. 5-24b 

shows the normalized Fig. 5-25 as the complement angle and with the bin size used in 

Fig. 5-24a. In comparing these two angle distributions, we see that there is very strong 

similarity between the distributions; both of them show strong trends towards a 90˚ angle 

that represent boundaries that are perpendicular to the loading/shock direction. Such a 

trend indicates that the original hypothesis, which stated that void nucleation in shock-

loaded copper polycrystals is dependent on extreme values of grain boundary surface 

tractions, is a reasonable expectation for the evidence presented up to this point. In order 
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for a boundary to fail and a void to nucleate a sufficient stress must be placed on it and 

the normal component of traction represents a measure of that.  

     However, a closer inspection of this comparison indicates that there may be additional 

factors that go along with the normal component of traction in characterizing the 

nucleation of voids. Comparing the normalized volume fraction of the plots in Fig. 5-24, 

it appears that the normal component hot spots trend more sharply to 90˚ than the voided 

boundaries from the shock loaded copper experiment. The normal component hot spots 

have a greater volume fraction in the 45˚-90˚ while in the 0˚-45˚ bins the voided 

boundaries have more presence. Such differences are indicative of other factors that 

influence the nucleation of voids at grain boundaries. These factors should represent the 

ability for a given grain boundary to resist damage and thus different grain boundaries 

may nucleate voids under different amounts of load. For example, a grain boundary could 

have a very high normal component of traction but not nucleate a void if it has a high 

resistance to damage, which would explain why the 67.5˚-90˚ bin for the normal 

component hot spots is much higher, and similarly a grain boundary could have a 

comparatively low normal component of traction yet still nucleate a void if it has a low 

resistance to damage, which would explain why the 0˚-22.5˚ bin for the voided grain 

boundaries is much higher.  

     An example of this idea of grain boundary damage resistance is presented in works by 

Fensin et al.[40, 41] that used molecular dynamics simulations to investigate possible grain 

boundary properties that might correlate with void nucleation. Shock loading conditions 

were simulated on a copper bicrystal with grain boundaries conforming to certain known 

coincident site lattice (CSL) arrangements. The load experienced by the boundaries that 
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led to failure was recorded and compared against common parameters associated with the 

grain boundary itself. The parameters considered were grain boundary energy, excess 

volume, energy of separation, which is the difference between the grain boundary energy 

and the energy of the two free surfaces created by its separation, and excess energy, 

which is the energy increase in the system due to plasticity. What they found is that none 

of the first three parameters correlated with the grain boundary failure load while the final 

one correlated positively with increasing failure load. This appears to indicate that the 

grain boundary resistance to damage may depend more on the grain boundary response to 

plastic deformation and not on basic descriptive parameters of grain boundary character. 

To take into account these new observations, the hypothesis is revised to read: “Void 

nucleation in shock-loaded copper polycrystals is dependent on extreme values of grain 

boundary surface tractions as well as measures of a grain boundaries resistance to 

damage.” To investigate these this new hypothesis, we perform a direct comparison 

between experimentally measured voids and micromechanical factors generated using 

crystal plasticity modeling in the following chapter. 
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Chapter 6: Correlation of Shock-Induced Porosity with 
Micromechanical Factors via Simulation 

6.1: Shock Loading Experiment and Image Processing 

     To investigate microstructural properties influencing damage initiation, this work 

utilizes the results of a unique experiment performed by Bingert et al.[109] and analyzed by 

Menasche et al. [55], whose goal was to obtain 3-D images of a material in which incipient 

spall occurred. In this experiment, a 99.997% pure polycrystalline copper sample was 

machined into a 1.2 mm diameter cylinder of height 2.42 mm. This sample was then 

characterized using nf-HEDM over a height of 0.704 mm. The sample was machined 

down to a 0.725 mm tall piece centered about the characterized section. This sample was 

then embedded into two copper polycrystal radial momentum traps and impacted by a 

copper flyer plate at 300 ms-1. The experimental setup involved placing the ringed sample 

onto the front of a pipe that was slightly larger in diameter than the nf-HEDM 

characterized sample; thus when the target was impacted the sample alone is stripped 

from the momentum trapping rings and soft-captured. The velocity was specifically 

selected such that the sample was recovered while causing incipient spall voids. The 

recovered sample was then characterized using both nf-HEDM and X-ray tomography. 

The end result was a pair of 3-D orientation maps of the same volume as the copper 

sample both before the experiment and after the plate impact had produced voids within 

the sample. Computed tomography also provided 3-D images of the porosity distribution. 

The tomography provided higher spatial resolution of the voids compared to the nf-

HEDM reconstruction process. 

     Menasche et al.[55] analyzed the experiment by mapping the voids characterized from 

the deformed sample onto the microstructure measured from the undeformed sample. 
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First, a technique was developed to map the voids identified via tomography in the post-

shocked sample to the corresponding nf-HEDM image. This was achieved by aligning 

larger-scale surface features present in both sample images. Next, the nf-HEDM images 

of the sample both undeformed and deformed were aligned with each other through the 

use of rotations and affine transformations. The purpose of this was to account for 

differences in sample alignment of the two measurements, as well as for the plastic 

deformation experienced by the sample as a result of the shock loading. This plastic 

deformation also made registration between the two nf-HEDM datasets more difficult 

because defect accumulation and crystal rotation results in larger uncertainty in crystal 

orientation. The final result was that it was possible to identify certain regions within the 

nf-HEDM image of the undeformed sample as having developed voids in the deformed 

sample. 

     Using the orientation field of the undeformed sample obtained by Menasche et al.[55] 

as the input of a micromechanical simulation, this work analyzes the local response of the 

material in the regions developing porosity. A full-field crystal plasticity model that 

utilizes Fast Fourier Transforms (FFT) to solve the micromechanical governing 

equations[3, 63] is used to determine the local micromechanical fields under shock loading 

conditions, as described in the following section.  Menasche et al. found that (see Table 

6-1) of the 485 measured voids, 332 occurred at grain boundaries. Of those 332 grain 

boundary voids, 196 occurred on grain boundary planes, 126 occurred on triple junctions 

and 10 occurred on higher-order intersection points. Thus, grain boundaries regions will 

be the particular focus of our analysis because of the predominance of voids forming at 

those features. Moreover, a number of micromechanical fields can be investigated at 
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grain boundaries with the available modeling tools. Some of the fields that are unique to 

boundaries require the ability to quantitatively evaluate the interface normals. Novel 

techniques utilizing Cartesian moments are used to generate such values from the discrete 

microstructure images obtained by nf-HEDM. 

6.2: Approximation of Shock Loading Conditions in EVPFFT 

     The presently available numerical implementation of the EVPFFT model cannot 

directly consider shock loading conditions. Therefore, we use the output of finite element 

(FE) simulations that model such conditions to provide input to the EVPFFT code. Here 

we use macro- and meso-scale FE simulations of the type reported by Bronkhorst et al.[6, 

110]. As mentioned previously, the spall plane is a region of high tensile stress cause by 

wave interactions and it is the effect of this tensile pulse that is considered in this work. 

In order to simulate microstructural effects of shock loading with EVPFFT, we need to 

obtain from FE simulations time-evolving strain-rate boundary conditions and Voce 

hardening parameters. For this, a FE simulation including a damage model described 

elsewhere[110] was run for polycrystalline copper under shock loading conditions, to the 

point in time where the model predicted that damage initiation occurred. The sample 

geometry and loading type in this simulation represented the experiment by Bingert et 

al.[109]. This FE model predicted the time after impact at which void nucleation began, 

0.15 µs, as well as the peak stresses at the spallation plane, in the shock and radial 

directions, 944.77 MPa and 894.5 MPa, respectively as shown in Fig. 6-1a. Such values 

of stress indicate a large hydrostatic stress component with an overall tensile plastic 

response. Assuming a constant stress rate from 0 to the peak stress tensor, and 

discretizing the time from 0 to 0.15 µs in 299 steps, the strain rate at each time step was 
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obtained. Fig. 6-1b shows the resulting diagonal strain components as a function of time. 

The resulting sequence of strain rates was applied directly as the boundary conditions for 

the EVPFFT simulation. The Voce hardening parameters were calibrated so as to 

reproduce the stress-strain response predicted by the FE model for polycrystalline copper. 

The result of this fit is shown in Fig. 6-1c for the deviatoric and mean components of the 

stress. The root mean square error between the FE and EVPFFT models for the von 

Mises stress-strain response is 1.31 % with the Voce hardening parameters being τ0 = 

4.688, τ1 = 0.6984, θ0 = 34.1 and θ1 = 34. 

     Overall, this method of approximation assumes that the loading conditions taken from 

the macro-scale model at the location of peak stress occurs homogeneously throughout 

the entire EVPFFT simulation volume. The copper sample that was recorded had a 

thickness of 0.725 mm as described in Section 6.1.  Of that sample, 0.256 mm of it is 

utilized for the EVPFFT simulation, with the middle of it representing the peak stress 

location in the macro-scale model. Comparing such a length to the peak width in Fig. 6-

1(a), the variance in stress across that length is small and thus an approximation of 

homogeneous boundary conditions is acceptable for simulation that moment of the tensile 

peak. There are also other aspects of shock loading that cannot currently be simulated in 

EVPFFT. The compressive wave that precedes the tensile pulse cannot be simulated 

without a kinematic hardening model, which allows for proper hardening behavior in any 

kind of cyclical or sequential loading. What are lost from this part of the shock response 

are possible heterogeneous stress or defect concentrations that occur ahead of the tensile 

pulse. Nevertheless the compressive wave should not nucleate damage and is considered 

to be unimportant here. Another aspect of heterogeneity that is not accounted for is the 



 96 

elastic compressibility of the material, which is not necessarily linear and could change 

the density of the material heterogeneously and thus affect the equation of state as well. 

However, in this experiment the loading results in smaller strain rates that diminish the 

effects of this phenomenon. The EVPFFT simulation also does not yet take into account 

effects from micro-inertia, though it may not play a large role in the micromechanical 

response of this sample before void nucleation. The strain rates present during the tensile 

pulse in this experiment are not known to generate large effects from micro-inertia and 

thus they likely will not be significantly present during void nucleation. Also, most 

experimental evidence shows that micro-inertia plays its most significant role in the 

growth or collapse of voids after they have formed and thus might not be greatly involved 

in the nucleation stage[111, 112]. 

 (a)  
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(b) (c)  

Figure 6-1. The (a) stress distribution at time of nucleation in the macro-scale model, (b) strain history recorded 

from the FE simulation and applied to the EVPFFT simulation and the (c) strain-strain plots for the crystal 

plasticity FE simulation and the EVPFFT simulation applied the hardening parameters to fit. 

6.3: Simulation Set-up 

     The approximation of shock loading conditions described previously is applied to the 

voxelized microstructure image of the undeformed sample. For this, a unit cell must be 

properly constructed to perform the simulation. The rectangular grid of the nf-HEDM 

image has voxel dimensions of 768 x 768 x 64 where the inter-voxel spacing is 2 µm in 

the x- and y-directions and 4 µm in the z-direction. The resulting image is shown in Fig. 

6-2(a). The next step is to construct a prismatic unit cell by embedding the nf-HEDM 

microstructure into a periodic polycrystalline unit cell. The purpose of this is two-fold: a) 

to represent the presence of the momentum trap rings used in the experiment, which were 

also polycrystalline copper with the same grain size, and b) provide the geometry and 

periodicity required by the EVPFFT model to operate upon. The polycrystalline 

microstructure surrounding the measured Cu sample was numerically generated using the 

Dream.3D[76] software package, and consists of randomly oriented FCC grains with an 

average grain size equivalent to that of the nf-HEDM microstructure. The combined 

microstructure image is shown in Fig. 6-2(b). 
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 (a)  

(b)  

Figure 6-2. Orientation map of undeformed copper polycrystalline sample (a) measured via nf-HEDM that was 

(b) embedded in random copper polycrystal. 

     After applying the boundary conditions described in Section 6.2, the EVPFFT model 

gives the values of: Cauchy stress tensor, strain tensor, plastic strain rate tensor, updated 

orientation, Taylor factor and accumulated plastic energy density fields, for each voxel in 

the microstructure image. From the stress and strain tensors, their von Mises equivalents 

are obtained. Furthermore, with the mean stress also extracted from the stress tensor, the 

stress triaxiality (mean stress/von Mises stress) can be readily calculated. The Taylor 
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factor is a scalar parameter that describes the ability of a given grain with a specific 

crystallographic orientation to accommodate the deformation to which it is subjected. 

Here the Taylor factor is calculated locally as follows[10]: 

 

where 𝛾!(𝑥) is the local shear rate on slip system s, Ns is the total number of slip systems 

and 𝜀!"(𝑥) is the local von Mises equivalent strain rate.  In what follows, the analysis is 

performed on the Taylor factor field calculated at the final step of the simulation. The 

accumulated plastic work density represents the time integration of the rate of plastic 

work. This rate is calculated at each step of the EVPFFT simulation and is given by the 

following equation:  

 

Using the grain boundary normal calculation technique described previously, along with 

the stress fields generated by the model, the grain boundary surface traction as well as its 

components are calculated according to Equation 5.3. Similar tractions can be calculated 

for the triple junctions, but this requires an additional step. The triple junction vector 

technique generates vectors that are tangent to the feature of interest rather than 

perpendicular, which is needed to describe a surface traction. Since a triple junction is a 

one-dimensional feature, there is not a unique perpendicular direction to it. Therefore, we 

choose to use the perpendicular vector that results in the largest normal component of 

traction as the one that represents the surface traction for the triple junctions: 

 

M(x) =
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Ẇ p(x) = ���(x) : �̇��p(x) (6.2)
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0���360
{�ij(x)(Rjk(�)t̂k(x))} (6.3)
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where 𝑡! is one of the two unused principal axes (calculated from the eigenvectors of the 

second order moment matrix) that is perpendicular to the triple junction line vector, and 

Rθjk applies a rotation, θ, around the triple junction line vector.   

6.4: Registration 

     Mapping the locations of the voids onto the undeformed sample image requires the 

tomographic image of the voids. However, although the resolution of the tomographic 

image in the x- and y- directions is the same as the nf-HEDM image, the z-resolution of 

the tomography image is 1.5 µm rather than 4 µm. The alignment established by 

Menasche et al.[55] between the tomography of the deformed sample and the nf-HEDM of 

the undeformed sample allows voxels in both images to be measured by a unified set of 

coordinates established from the sample geometry. In order to register the void voxels 

measured by the tomography to the nf-HEDM image, we identify the nf-HEDM voxels 

that overlap the same physical space as the void voxels of the tomography. However, the 

difference in z-resolution between the images means that some voids will not be 

distinguishable from each other when they are registered to the nf-HEDM image, thus 

causing discrepancies in the void counts from Menasche et al.[55].  After the voids are 

rendered in the undeformed sample image (see Fig. 6-3), 447 voids are identified in the 

microstructure, with 308 of them being located on grain boundaries. Of those 308 grain 

boundary voids, 156 are located on grain boundary planes, 99 are located on triple 

junctions and 53 are located on higher order intersection points.  
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Type of Interface Menasche et al. This work 

Total Voids 485 447 

All Interface Voids 332 (68.5 %) 308 (68.9 %) 

Grain Boundary Plane 196 (40.4 %) 156 (34.9 %) 

Triple Junction 126 (26.0 %) 99 (22.2 %) 

Higher-Order Interface 10 (2.1 %) 53 (11.9 %) 
Table 6-1: Distribution of voids at grain boundary features from Menasche et al.[55] and from this work. 

As shown in Table 6-1, while the overall ratio of grain boundary voids to total voids is 

the same as in Menasche et al.[55], the breakdown of grain boundary voids is different. 

This is most extreme for the higher order intersection points and is due to the difference 

in z-resolution between the tomography and nf-HEDM image. The grain boundary 

classification of the voids is determined by counting the number of unique grains that are 

found in the set of voxels representing each void as well as the nearest neighbors of those 

void voxels. These additional voxels are considered to ensure that an accurate description 

of the region is accounted for. For example, there are cases where a void occurred on a 

grain boundary but grew preferentially into one grain versus the other; such a void may 

only be directly represented by voxels belonging to a single grain.  
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Figure 6-3. The voxels representing voids formed in shock loading, in black, are displayed within the 

transparent orientation map of the nf-HEDM of the undeformed microstructure, viewed along the shock 

direction. Note that the voids form an annulus with varying density of voids around the ring. 

     To determine the influence of the different micromechanical fields described above on 

void initiation, discrete probability distributions of these fields are plotted for both all 

grain boundary voxels and for the grain boundary voxels associated with voids. The set 

of voxels representing the grain boundaries of the overall microstructure are limited to 

those within a certain sub-volume of the image both to represent the spallation region 

from the experiment and because of potential localization issues discussed in Menasche 

et al.[55]. This sub-volume is the set of voxels within layers 212 to 583 along the x-axis 

and 191 to 572 along the y-axis and is displayed in Fig. 6-4. The full length of the z-axis 

is included in this sub-volume. These dimensions correspond to the farthest extent at 

which the voids exist within the microstructure. Outside this region no voids were 

detected in the tomography. The set of voxels included in the analysis on grain boundary 

developing voids is limited to voxels that are identified as being grain boundary voxels. 

Within that set, a voxel is considered a part of the void analysis if it is labeled as a void 

voxel from the tomography information or is a neighbor to such a voxel. 
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Figure 6-4. The sub-volume, which is a part of Fig. 6-3, that is used in the analysis of the void locations shown in 
black. 

6.5: Comparison Between Distributions: Hellinger Distance 

     In order to compare distributions of micromechanical fields for the full set of grain 

boundary voxels (“full” distributions) versus the corresponding distributions restricted to 

those voxels that developed porosity after the shock (“restricted” distributions) we 

quantify the difference between distributions using the Hellinger distance[113], which is 

calculated as: 

 

where U and V are discrete probability distributions, ui and vi are the probability values 

for the ith bin of U and V respectively and k is the total number of bins in the probability 

distribution. The reciprocal square root of two in the pre-factor ensures that the Hellinger 

distance has a range of zero to one, which sets apart from similar measures of probability 

distribution distances such as the Bhattacharyya distance or the Kullback-Leibler 

divergence that do not have an upper limit for how different two distributions can be. 
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Over this range, a value of zero indicates that the two distributions are identical while a 

value of one indicates that there is zero overlap between the two distributions.  

     Next we evaluate correlations of porosity with micro-mechanical response. The 

simplest micromechanical fields relevant to this comparison are mean stress, von Mises 

stress, von Mises strain and stress triaxiality, which are directly calculated from the stress 

and strain tensors predicted by the EVPFFT model at every point in the material. The 

number of discrete bins used to generate the probability distributions is the largest 

number of bins that can be used while maintaining a psuedo-continuous trend from one 

bin to the next for the grain boundary void distributions, due to their smaller number of 

data points. 

6.6: Results 

     The comparisons of the distributions of these fields are shown in Fig. 6-5. The violin 

plots display a smoothed representation, reflected with respect to the horizontal axis, of 

the discrete probability distribution with a boxplot displayed within. The edges of the 

grey boxplot correspond to the first and third quartiles, the black line shows the 1.5 

interquartile range limits; the combination of solid circle and vertical line represents the 

median while the crossed circle represents the mean. The Hellinger distances for these 

fields are 0.082 for the hydrostatic stress, 0.068 for the von Mises stress, 0.075 for the 

von Mises strain, and 0.062 for the stress triaxiality. Consistent with these low values, 

there is no significant difference in the medians or spreads between the distributions; the 

most notable difference is how the upper tails of the stress triaxiality distributions differ. 

Note that as described in Section 2.4, the triaxiality for this approximation of shock 

loading is quite large as compared to a typical tensile test. 
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(a) (b)  

(c) (d)  

Figure 6-5. Violin plots of the distributions of (a) mean stress, (b) von Mises stress, (c) von Mises strain and (d) 

stress triaxiality for both the overall set of grain boundaries and for the grain boundaries at the void locations. 

     The next field distributions considered are those associated grain boundary features, 

namely the normal component of the surface tractions and grain boundary inclination 

angles. For the surface traction distributions, values from both the grain boundary planes 

and the triple junction lines are represented together in Fig. 6-6, where the Hellinger 

distance is 0.066, which is negligible. 

     The grain boundary inclination angles are relative to the shock direction and have 

been separated between those for grain boundary planes and those for triple junctions as 
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shown in Fig. 6-7 and have Hellinger distances of 0.036 and 0.024 respectively, also 

negligibly different. Violin plots were not used because of the difficulty in rendering 

distributions that have finite set limits. None of these factors show much difference in the 

distributions for grain boundaries vicinal to pores versus those for all boundaries; 

likewise, the Hellinger distances are also small.  

 

Figure 6-6. Violin plots comparing surface normal tractions for all grain boundaries and for the grain 

boundaries where voids are located. 

(a) (b)  

Figure 6-7. Comparison between all grain boundaries and grain boundaries developing porosity for: (a) the 

grain boundary plane normal inclination to shock direction and for (b) the triple junction tangent vector 

inclination to shock direction. 
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Next, the local Taylor factor and plastic work are used to describe the contrast in plastic 

response of the grains on both sides of a boundary by finding the greatest absolute 

difference in the local values on both sides. The resulting distribution comparisons are 

shown in Fig. 6-8. The distributions of the Taylor factor difference have a Hellinger 

distance of 0.276 while the distributions of the plastic work difference have a Hellinger 

distance of 0.326. These values are well above zero and are noticeably larger than for any 

of the other distributions compared previously. There is also a noticeable difference 

between the medians for both micromechanical indicators with the entirety of the grain 

boundaries producing voids distributions being shifted to higher values compared to the 

full distributions. Differences in von Mises equivalent stress and strain were also 

observed and showed similar but weaker trends to the differences in Taylor factor and 

plastic work. Given the obvious connections between all these factors, only the 

differences in Taylor factor and plastic work are presented to avoid redundancy. 

 (a) (b)  

Figure 6-8. Violin plots of the distributions of (a) difference in Taylor factor and (b) difference in plastic work 

across a grain boundary for both the overall set of grain boundaries and for the grain boundaries at the void 

locations. 
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     Further granularity can be obtained by sub-dividing the distributions considered above 

based on the character of the grain boundaries involved. As described previously, there is 

particular interest in Σ3 grain boundaries in copper polycrystals, thus the distributions 

shown previously are separated into distributions for Σ3 boundaries and for all other 

boundaries. For this analysis, the boundaries that are counted as Σ3 are those that are 

within 5° of rotation of the specific Σ3 misorientation of a 60° around a <111> crystal 

axis. The data are separated into distributions for the two different grain boundary types, 

which are then further separated into plots for void boundaries and for all boundaries, 

with the difference in Taylor factor shown in Fig. 6-9 and the difference in plastic work 

in Fig. 6-10.  

(a) (b)  

Figure 6-9. Violin plots for difference in Taylor factor partitioned by grain boundary type into sets for Σ3 

boundaries and all other boundaries and separately displayed for (a) the voids on grain boundaries and for (b) 

the set of all grain boundaries. 
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(a) (b)  

Figure 6-10. Violin plots for difference in plastic work partitioned by grain boundary type into sets for Σ3 

boundaries and all other boundaries and separately displayed for (a) the grain boundaries developing porosity 

and for (b) all grain boundaries. 

For the difference in Taylor factor, the Hellinger distance between Σ3 boundaries and all 

other boundaries is 0.182 for the grain boundary void voxels and 0.136 for all grain 

boundary voxels. For the difference in plastic work, the Hellinger distance between Σ3 

boundaries and all other boundaries is 0.151 for the restricted distribution and 0.12 for the 

full distribution. For both distributions the Σ3 boundaries are shifted towards slightly 

larger values, which can be interpreted as an indication of this special boundary type 

being associated with greater plasticity differences for voiding. Another way of analyzing 

the significance of grain boundary type is to calculate Hellinger distances between the 

full and restricted distributions for the two grain boundary groups, rather than between 

the grain boundary groups within the full and restricted distributions separately, as shown 

previously. The resulting Hellinger distances, along with those found before the 

separation by grain boundary character, are shown in Table 6-2. Both forms of 

comparison show that Σ3 boundaries with voids have slightly greater differences than the 

other boundaries. A  
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Voids vs. Overall Combined Σ3 Boundaries Other Boundaries 

Taylor Factor Difference 0.276 0.287 0.262 

Plastic Work Difference 0.323 0.334 0.313 
Table 6-2: Hellinger Distances between Void and Overall Distributions by GB Character 

 

6.4: Discussion 

     While the predicted stress and strain distributions shown in Fig. 6-5 have no 

correlations with the subsequent occurrence of void nucleation at grain boundaries, Fig. 

6-8 indicates that the more elaborate measures of the mechanical response at the 

boundaries do. In effect, two-point correlation measures (differences in Taylor factor and 

plastic work), point to significant microstructural effects whereas one-point ones do not. 

There is also no correlation between grain boundary inclination to the shock direction and 

void nucleation as shown in Fig. 6-7, a result that is in contradiction to what has been 

found in other experiments mentioned previously and requires a change to the previous 

considerations given to the normal component of traction. However, the particular size 

and scale of the sample and experiment might explain the different observations. Given 

that stress triaxiality already has been connected to damage processes in previous studies, 

in particular by McClintock[114] and by Rice and Tracey[115], it is surprising that no 

correlation exists in this data set, Fig. 6-5(d). However, it cannot be determined if this is 

due to void nucleation or void growth, and it is the former that stress triaxiality is most 

closely associated with, e.g., in the necks of tensile samples. Note that stress triaxiality 

has been a useful quantity within macro-scale analyses of porosity evolution but it is not 

clear how physically meaningful stress triaxiality is at the length scales of the single 

crystal. In other words, the results presented here show that, while high triaxiality may 
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assist void formation, especially where fracture of second phase particles initiates 

voiding, e.g. Maire et al.[116], local variations at the microstructure scale do not explain 

specific occurrences of voids. 

     The most interesting results presented above are those corresponding to differences in 

Taylor factor and plastic work across the boundaries. The differences between the full 

and restricted distributions is greater than for any other micromechanical fields, and not 

just a difference in shape but also a large difference in medians as well. What this implies 

is that damage tends to occur preferentially on grain boundaries that are interfaces 

between crystals that have a greater contrast in plastic response. As the material deforms, 

these highly contrasted grain pairs begin to experience greater differences in local stress 

and strain that eventually leads to incompatibility that promotes damage. Previous 

experimental works[25, 26, 35-39] have found potential relationships between differences in 

Taylor factor and damage by measuring orientations, but differences in plastic work were 

not explored in this context, because micromechanical simulations are required to obtain 

this information. Taylor factor is a variable that can change with strain as the crystals 

rotate and harden with deformation, while plastic work is an accumulated value; despite 

this difference, the distributions of these magnitudes are comparable in this case, because 

relatively small plastic strains were involved.  

     While there is a clear difference between grain boundaries that developed voids and 

those that do not, the separation is not absolute; there are boundaries in other parts of the 

microstructure with similar contrast in plastic properties where no damage was found. 

One possible explanation is that the presence of damage depends on other factors in 

addition to plasticity contrast, such as the stress factors analyzed previously (i.e. von 
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Mises stress and surface traction) or grain boundary character. These potential additional 

influences might only become revealed with in situ measurements that describe the order 

in which the voids nucleated. Another aspect to consider is that the EVPFFT model, like 

many crystal plasticity models, does not incorporate the influence of the grain boundary 

structure on the mechanical response. Roters et al.[117] showed that the effects of not 

considering such influences can be large by comparing models with various levels of 

grain boundary mechanics to bicrystal experiments. One example of such an influence is 

slip transmission; works by Bieler et al. [7, 38] discuss many of the influences of slip 

transmission on micromechanics.  

     In general, the Σ3 boundaries on which voids occurred are shifted towards slightly 

higher differences in Taylor factor and plastic work when compared to both the rest of 

the grain boundaries as well as the Σ3 boundaries that did not develop damage. Such 

shifts hint at the elevated resistance to damage of Σ3 boundaries, which is also shown in 

other studies. However, the shifts seen in the present analysis are quite small and further 

statistical analysis is needed to confirm if it is significant. These results do, however, 

agree with what was observed by Menasche et al.[55] on this same data set, who found 

that there is no significant difference in the occurrence of damage on Σ3 boundaries 

versus other boundary types, a trend that was also observed when considered here on the 

nf-HEDM image. However, the influence of grain boundary structure on the 

polycrystalline mechanical response is not yet sufficiently understood and therefore not 

yet implemented in EVPFFT, which precluded evaluation of its effect on the 

micromechanical field distributions in this instance.  
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Chapter 7: Conclusions & Future Work 

7.1: Conclusions 

     To investigate mechanical parameters that may be associated with void nucleation we 

initially investigated correlations between grain boundary surface traction hot spots and 

other micromechanical values and microstructure features with the hypothesis that 

damage is connected to extreme values of surface tractions. To do this, an elasto-

viscoplastic Fast Fourier Transform-based simulation was used to determine the local 

micromechanical fields within a copper polycrystal. A technique for quantifying surface 

normals from discrete images was developed so that the surface tractions could be 

calculated. Multiple microstructures have uniaxial tension, uniaxial compression and pure 

shear simulated on them and the resulting data is combined with extreme value theory to 

identify which parts of the microstructure may be described as surface traction hot spots. 

We observed that the normal component traction hot spots showed some correlation with 

hydrostatic stress while shear component traction hot spots did not, which indicated a 

greater importance for the normal component since hydrostatic stress is often associated 

with void nucleation. Both forms of surface traction hot spots also showed particular 

correlations with grain boundary inclination to the principal loading directions. The 

normal component hot spots occurred at boundaries that were perpendicular/parallel to 

the principal loading directions while the shear component hot spots occurred at 

boundaries that inclined 45° to the principal loading directions. When observing trends in 

void occurrence from experimental measurements in literature, the preferred grain 

boundary inclination is perpendicular to the tensile principal axis, indicating that the 

normal component of traction has the greater potential to be associated with void 
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nucleation. However, in these experimental observations there were differences in the 

trends for grain boundary inclination that show the normal component of traction on its 

own may not be sufficient to predict void nucleation and that grain boundary properties 

may also play a role. 

     We then made use of newly available experimental data on shock loaded 

polycrystalline copper to perform a more direct analysis on determining the factors 

important to void nucleation. By utilizing near-field high-energy diffraction microscopy 

as well as X-ray tomography, we were able to access a three-dimensional microstructure 

image while knowing where within the microstructure voids will eventually form due to 

shock loading. To perform a simulation in comparison to the experimental data, we 

developed a method of approximating the shock loading conditions using the quasi-static 

EVPFFT model. To determine any connection between the simulation results and the 

presence of voids, the distributions for any given factor are generated for the parts of 

grain boundaries that develop voids and for the rest of the grain boundaries. These 

distributions are then compared and quantified against each other. The result was that 

basic micromechanical factors as well as the surface traction and grain boundary 

inclination angles did not correlate with the occurrence of voids. Instead, it was two-point 

correlations across the grain boundary, namely difference in Taylor factor and difference 

in plastic work that correlated with damage. The grain boundaries that produced voids 

had higher values of these parameters than the rest of the microstructure. Past work[25, 26, 

35-39] has also identified influences due to difference in plastic response at the grain 

boundary but neither fully quantified such factors nor performed the analysis on as large 

a data set as this work. The conclusion is therefor that the original hypothesis on the role 
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of surface tractions in void nucleation is incorrect. However, these analyses also 

demonstrated that factors relating to the difference in mechanical behavior across the 

grain boundary are important. 

7.2: Future Work 

     Clearly the current data set could be subjected to a more rigorous statistical analysis. 

The current analysis could, e.g., be quantified further by applying a principal component 

analysis to it. Furthermore, to reinforce the significance of the findings, random synthetic 

void sets could be generated and analyzed to ensure that the results associated with the 

real voids are unique; in particular, this would be important for determining the 

significance for the observations made for the Σ3 boundaries. Beyond the currently 

existing data, the first consideration must be the inclusion and development of more grain 

boundary mechanics in the micromechanical simulation. In particular, the mechanics of 

slip transmission across the grain boundary appear to be important for improving the 

accuracy of the mechanical fields in the vicinity of grain boundaries. There are several 

different hypotheses about how slip interacts with grain boundaries that could be tested. 

One possible method of implementing these grain boundary mechanics would be by 

adding slip transmissibility information to strain-gradient plasticity models that are being 

incorporated to the FFT-based formalism. The technique to characterize grain boundaries 

and triple junctions has many possible uses in material science, particularly in research 

pertaining to grain boundary energy and grain growth. Utilizing these techniques to 

calculate the dihedral angles between grain boundaries around a triple junction would be 

a relatively simple endeavor and would be useful for the aforementioned research areas. 
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     From that point there are two paths that may be explored in continuing this work. One 

path is to continue to utilize the data generated by the polycrystalline copper shock 

loading experiment. To do so, the ability of the micromechanical model to approximate 

the shock loading conditions must be improved. To start, the macro-scale model utilized 

previously should be run with conditions that more closely mirror those of the 

experiment. The EVPFFT model could also undergo a number of changes to improve its 

ability to approximate shock loading. The simplest and yet most critical is to incorporate 

a kinematic hardening mode into the model so that the compressive and tensile effects of 

the shock loading can both be applied to the copper microstructure. By including the 

compressive part of the shock loading, the influences of crystal hardening and 

reorientation caused by the compressive wave can be accounted for. Another feature that 

can be included is the mechanics of micro-inertia, under dynamic loading, which when 

applied changes the stress equilibrium equation mentioned in Chapter 3 to depend on the 

mass acceleration within the material and thus effects the mathematics of the model itself. 

The possibility of spatially complex loading conditions, such as those found in shock 

loading and seen in Fig. 6-1a, must also be explored though there is not yet any precedent 

of it being applied to a model like the EVPFFT. Beyond just the data from this 

experiment, further shock loading experiments on these small, HEDM-compatible 

samples is necessary so that the difference in grain boundary inclination trends observed 

between this experiment and standard shock loading experiments may be explored. 

     The other path is to instead perform another experiment with a loading condition that 

is closer to the EVPFFT model’s current capabilities. The Advanced Photon Source, 

where the nf-HEDM measurements are performed, is capable of performing quasi-static 
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loading experiments within the beam-line apparatus[50, 118]. Thus a quasi-static experiment 

may be performed with the same goal of identifying voids in a deformed nf-HEDM 

image and tracing them back to the original sample measurement. Even beyond that, 

because the experiment can be performed in-situ multiple images may be recorded during 

the course of the deformation process. Instead of only comparing an initial image to a 

final, deformed and damaged image, the voids can be tracked as they appear. Such in situ 

data would allow for a much more detailed analysis of the void nucleation events, which 

could possibly identify the role surface tractions might play in nucleation. Another 

possibility is that, rather than determining where in the microstructure voids nucleate (in 

the sense of site-saturated nucleation) as this work investigated, it may be more 

interesting to determine the order in which they nucleate (in the sense of continuous 

nucleation). 

     Once both these paths have been pursued, one can then use the information gained 

from the in-situ measurements of damage nucleation to try and predict the damage 

nucleation events under shock loading conditions. Whether these predictions prove 

accurate or not will be greatly informative about the similarities and differences between 

the mechanisms of void nucleation under quasi-static and dynamic loading. Increased 

experimental ability to measure dynamic loading events, achieved via faster rates of 

imagining in new beam lines, will also greatly improve the ability to characterize damage 

nucleation. Another possible direction is to explore the roles surface tractions may play in 

other areas of interest, such as fatigue damage or crack nucleation/growth. 
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