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ABSTRACT

Mobile robots that encounter people on a regular basis must react to them in some
way. While traditional robot control algorithms treat all unexpected sensor readings
as objects to be avoided, we argue that robots that operate around people should
react socially to those people, following the same social conventions that people
use around each other.

This thesis presents our COMPANION framework: a Constraint-Optimizing
Method for Person–Acceptable NavigatION. COMPANION is a generalized frame-
work for representing social conventions as components of a constraint optimiza-
tion problem, which is used for path planning and navigation. Social conventions,
such as personal space and tending to the right, are described as mathematical cost
functions that can be used by an optimal path planner. These social conventions
are combined with more traditional constraints, such as minimizing distance, in a
flexible way, so that additional constraints can be added easily.

We present a set of constraints that specify the social task of traveling around
people. We explore the implementation of this task first in simulation, where we
demonstrate a robot’s behavior in a wide variety of scenarios. We also detail how
a robot’s behavior can be changed by using different relative weights between the
constraints or by using constraints representing different sociocultural conventions.
We then explore the specific case of passing a person in a hallway, using the robot
Grace. Through a user study, we show that people interpret the robot’s behavior ac-
cording to human social norms, and also that people ascribe different personalities
to the robot depending on its level of social behavior.

In addition, we present an extension of the COMPANION framework that is
able to represent joint tasks between the robot and a person. We identify the con-
straints necessary to represent the task of having a robot escort a person while trav-
eling side-by-side. In simulation, we show the capability of this representation to
produce behaviors such as speeding up or slowing down to travel together around
corners, as well as complex maneuvers to travel through narrow chokepoints and
return to a side-by-side formation.

Finally, we present a newly designed robot, Companion, that is intended as
a platform for general social human–robot research. Companion is a holonomic
robot, able to move sideways without turning first, which we believe is an important
social capability. We detail the design and capabilities of this new platform.

As a whole, this thesis demonstrates both a need for, and an implementation
and evaluation of, robots that navigate around people according to social norms.
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Chapter 1

Introduction

Mobile robots that encounter people on a regular basis must react to them in some
way. Traditional robot control algorithms for path planning and obstacle avoidance
treat all unexpected sensor readings identically: as objects that must be avoided.
For a mobile robot that operates near and with people, however, these traditional
methods may not follow human social norms. Even a simple convention, such as
passing oncoming people in a hallway by moving to the right side, might not be
honored by a naı̈ve obstacle avoidance algorithm. However, people generally per-
ceive robots—particularly assistive robots, which must move around people—as
human-like, even when the robots are non-anthropomorphic (e.g., Siino and Hinds,
2004). When such robots behave counter to what is socially expected, breakdowns
in human–robot interaction occur (e.g., Mutlu and Forlizzi, 2008). While some
algorithms have been developed to produce various particular social behaviors
around people, they typically do so in a local, reactive way, which may not re-
sult in socially correct behavior overall. Such algorithms also are not generally
extensible to other situations or additional social conventions.

To address these issues, we have developed a navigational framework for hu-
man–robot physical social tasks, such as navigating through crowds or waiting in
line. We call our framework COMPANION: a Constraint-Optimizing Method for
Person–Acceptable NavigatION. COMPANION is a generalized framework for
representing social conventions as components of a constraint optimization prob-
lem. Social conventions, such as personal space and tending to the right, are de-
scribed as mathematical cost functions. These costs are then used in path planning
along with more typical task-related metrics, such as the shortest distance.

A key aspect of the COMPANION framework is that social conventions are
addressed as part of a global path-planning problem. We argue that people do not
apply social conventions in rigid ways, as would be achieved by treating conven-
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1. Introduction

tions as reactive behaviors. Rather, people consider global optimality, trading off
different conventions according to the particular situation and their personal pref-
erences. By modeling social conventions as part of a global optimization problem,
the COMPANION framework can produce very human-like behaviors.

Our approach is unique in that it is capable of expressing an arbitrary number
of social conventions, it explicitly accounts for these conventions in the planning
phase, and it is intended to produce socially acceptable, human-like paths.

1.1 Motivation

In recent years, several commercial robots have been designed for deployment in
hospitals and office buildings, typically to act as couriers for medications, paper-
work, and the like. As more of these robots being used daily, researchers are able
to study how people interact with the robots—as well as how people expect the
robots to behave. An ethnographic study of the introduction of the Pyxis HelpMate
robot in a California hospital by Siino and Hinds (2004) found that people most
often thought of the robot as human-like, even before the physical robot arrived
at the hospital. Many of the hospital workers maintained that viewpoint after the
robot was in operation, despite its non-human-like appearance and behavior (Siino
and Hinds, 2005). A similar study by Mutlu and Forlizzi (2008) investigated the
Aethon TUG robot’s use in a Pennsylvania hospital. One of their key findings was
that many people felt “disrespected” by the robot because it failed to follow human
social norms. Some of the robot’s more egregious errors, according to the study’s
authors, included:

• failing to yield to oncoming people;

• stopping in the middle of the hallway for minutes at a time, while calculating
alternate routes; and even

• colliding with people.

One of the main goals of our research is to improve the functionality of such
courier-type robots by designing robot behaviors that mimic people’s expectations.
Doing so allows people to feel a sense of common ground (Clark, 1996) with a
robot; that is, people will be able to draw on their knowledge of how other peo-
ple behave when they are interacting with a robot. In particular, we believe that
if such robots were able to navigate according to human social norms—such as
yielding the right of way and respecting personal space—then they will be better
accepted by the people around them. This will allow both the robots and the people
to accomplish their jobs more smoothly and efficiently. We hope that our research
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will encourage development of more robots with primarily social purposes, such
as escorting people through hallways. Since such tasks are defined by social con-
ventions, a robot that does not adhere to social norms may perform poorly or fail
to complete its task.

1.2 General approach

In general, our research approach is to study human–human interaction through
both literature and direct observations, look for similarities in behaviors across
different people and interaction tasks, and use design principles to apply these
behaviors to human–robot interaction. We then analyze the robot’s behavior in
human studies and use the results to further inform our design.

Throughout our work, we argue that robots should behave according to human
social principles. Such social conventions are effortlessly used by people every day
to interact with each other. We believe that, if a robot follows the same conventions,
people will be able to have similarly understandable interactions with the robots.
However, we also acknowledge that people may have very different expectations of
how robots should behave. We address this issue by not only developing methods
of having robots behave according to social norms, but also by studying how people
interpret and react to such behaviors.

In particular, our interest is in spatial social interactions. We have studied var-
ious spatial social conventions as discussed in the literature (Chapter 2), and we
have performed our own observational studies where the literature was found to be
lacking (Chapter 3). We developed mathematical models of the human behavior,
in such a way as to allow a robot to follow similar conventions when navigating
through hallways (Chapter 4). We analyzed the behaviors both in simulation and
in a controlled user study (Chapter 5), referring to psychological methods for anal-
ysis. Finally, we drew on those works to extend the model to the specific task of
escorting a person side-by-side (Chapter 6). In addition, we used these results to
inform the design of a new robot intended for these types of social tasks (Chap-
ter 7).

1.3 Thesis statement

Thesis: Human social conventions for movement can be represented as a set of
mathematical cost functions. Robots that navigate according to these cost func-
tions are interpreted by people as being socially correct.

The first part of this statement states that we can model human behavior for
various social tasks according to mathematical functions. We support this with
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our navigational framework, COMPANION, and its use in both general hallway
navigation and in side-by-side escorting. The second part of this thesis statement
argues that people will interpret a robot’s behavior as social if it navigates accord-
ing to these cost functions. This both verifies that the cost functions do model
human social conventions and also establishes that people interpret the behaviors
of a robot in a way similar to how they interpret the behaviors of other people.

1.4 Contributions

This thesis provides four main contributions. First and foremost is our naviga-
tional framework, COMPANION, which is designed to produce robot behaviors
that adhere to human social conventions. In addition, we provide results, both in
simulation and in user studies with a physical robot, from our implementation of
the framework in the particular situation of hallway navigation. Furthermore, we
provide an extension to the framework that allows the robot to plan joint paths for
escorting a person while traveling side-by-side. Finally, we introduce the Compan-
ion robot, a holonomic robot specifically designed for social human–robot interac-
tion.

1.4.1 The COMPANION framework (Chapter 4)

We have designed a framework for social robot navigation, which we call COM-
PANION: a Constraint-Optimizing Method for Person–Acceptable NavigatION.
The framework is composed of a set of mathematical constraints and objective
functions that model human social conventions, such as avoiding people’s personal
space and tending to the right side of hallways, as well as task-based constraints,
such as minimizing distance. The various functions are combined under a single
heuristic path planner. By using a global, optimal path planner, the framework is
able to produce results that accurately model human behavior.

Chapter 4 introduces the framework and defines a set of constraints that we
believe are sufficient for producing robot behavior that models human social norms.
In particular, we define cost functions for each of the following conventions:

• Minimizing the distance traveled to a goal, to conserve energy;

• Avoiding obstacles;

• Keeping a safety buffer around obstacles;

• Avoiding people, including keeping out of their personal space;

• Protecting the robot’s own “personal” space;
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• Tending to the right when passing people;

• Keeping a default velocity, so as not to expend extra energy;

• Facing the direction of travel, but allowing for sidestepping obstacles as peo-
ple do; and

• Maintaining forward inertia, rather than zig-zagging repeatedly, which is
both inefficient and socially awkward.

We argue that these constraints will produce social robot behavior in tasks that
require passive social interaction, such as traveling through hallways, where the
robot will encounter people and must react to—but not directly interact with—
them. For tasks that require additional levels of interaction, additional constraints
must be added, as discussed in Chapter 6.

Furthermore, we argue that the COMPANION framework can be used to create
a range of socially acceptable behavior using different relative weights between
the constraints. That is, though different sets of weights will produce different
behaviors, we argue that socially acceptable behaviors will result from any number
of such sets.

Finally, Chapter 4 discusses details of the framework’s implementation within
the context of a complete navigational system.

1.4.2 Hallway navigation results (Chapter 5)

Chapter 5 presents an analysis of the COMPANION framework for simple hall-
way navigation scenarios. The analysis is composed of two main sections: results
from simulation (Section 5.1) and results from a user study on a physical robot
(Section 5.2).

In simulation, we demonstrate many different scenarios of the robot navigating
to various goals in the presence of people. We discuss how the resulting behaviors
follow human social norms, and we further describe how the behaviors can be
altered to produce different social “personalities,” such as extremely deferential
(always moving to the right out of a person’s way) or more aggressive (continuing
to face a person while passing).

We describe a user study designed to understand the behavior of the COM-
PANION framework on a physical robot, in a controlled hallway navigation task.
Twenty-seven participants walked past a robot while it either attempted to observe
social norms or merely avoided hitting the person. We show that people rated the
robot as having more socially appropriate movement when it attempted to observe
social norms, including tending to the right of the hallway and respecting their
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personal space. However, we also note that people felt that the robot was overly
deferential in its method of avoiding them, and we discuss ways to change the
robot’s behavior to make it be more (or less) social.

1.4.3 Side-by-side results (Chapter 6)

In Chapter 6, we extend the COMPANION framework for joint human–robot path-
planning. We focus on the task of escorting someone while traveling side-by-side.
We describe the necessary modifications to the COMPANION framework to plan
joint paths in general as well as the specific constraints needed to perform the
escorting task.

The extension to the COMPANION framework is based on our argument that
generating a joint plan for both the robot and the person will produce robot behav-
ior that smoothly adheres to the social conventions of tasks such as side-by-side
escorting. To extend the framework to such joint activities, we define the con-
cepts of joint goals, joint actions, and joint constraints, all of which we argue are
necessary for planning paths for both a robot and a person.

For the specific case of side-by-side escorting, we define two additional con-
straints: remaining near a person and keeping a preferred angle to that person.
Finally, we present the results from several simulated scenarios that demonstrate
the resulting escorting behavior, including behaviors around corners and through
chokepoints. We argue that these joint plans produce socially appropriate escorting
behavior.

1.4.4 The Companion robot (Chapter 7)

The final contribution of this thesis is a new platform for social robot research: the
Companion robot (see Figure 1.1). Chapter 7 discusses the rationale for developing
a new robot as well as the details of the robot’s design.

Our research on social navigation and the COMPANION framework has in-
dicated the importance of sideways maneuvers, such as the human behavior of
sidestepping around obstacles. In contrast to most robots used in human–robot in-
teraction research, the Companion robot is based on a holonomic platform, which
allows it to move sideways without having to turn first. Furthermore, we detail
the design of the robot’s body, which is intended to better support human–robot
social interaction by giving the robot a more “friendly” appearance. The robot’s
head displays a graphical face to provide a focus for face-to-face interactions. We
expect Companion to be a versatile platform for future social robotics research.

6
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Figure 1.1: The Companion robot.

This chapter also discusses the interdisciplinary nature of the design of Com-
panion. The author’s contribution to the robot is that of team leader, both driving
the design effort and making key design decisions.

1.5 Summary

This thesis presents a case for mobile robots that behave according to human social
norms. We detail the framework we developed, COMPANION, which provides
a method for representing human social norms as constraints on a robot’s path
planning and navigation. We present an evaluation of the system for the task of
hallway navigation, with results demonstrated both in simulation and in a user
study. Furthermore, we extend the COMPANION framework to the joint task of
side-by-side escorting, and we present results from simulations. Finally, we present
a new robotic platform for use in similar social human–robot interaction research,
the Companion robot. As a whole, this thesis demonstrates both a need for, and an

7



1. Introduction

implementation and evaluation of, robots that navigate around people according to
social norms.
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Chapter 2

Related Work

The overall goal of this research is to create robots that interact with people in
socially acceptable ways. As such, this thesis draws on work from many fields,
including human and social psychology, robot navigation, and human–robot col-
laboration. Here we present some of the most relevant research.

2.1 Human social navigation

As we are interested in social human–robot interaction, one key aspect is how
people behave. We therefore draw on research from the fields of psychology and
sociology, which we can then extend to robot behavior.

When two people walk together, they coordinate their movements with each
other while observing many social conventions, such as what distance to keep from
each other and how to indicate when to turn or stop. Despite the complexity of such
interpersonal coordination, very little research has been done to determine exactly
what people do and what social conventions they follow (Ducourant et al., 2005;
Marsh et al., 2006).

One aspect of social conventions for spatial interaction that has been widely
studied is the idea of personal space, or proxemics (Hall, 1966, 1974; Mishra, 1983;
Aiello, 1987; Burgoon et al., 1989). According to Hall (1966), people maintain
different culturally defined interpersonal distances from each other, depending on
the type of interaction and the relationship between the people. Specifically, Hall
differentiated between four different “zones” as follows:

• Intimate: from close physical contact to about 0.5 m apart

• Personal: friendly interaction at “arm’s length,” 0.5–1 m
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Figure 2.1: The approximate shape of a person’s personal space. Frontal distance
is the greatest, while rear distance is smallest.

• Social: business interaction, 1–4 m

• Public: speaking to a crowd, more than 4 m away

For this thesis, we are particularly interested in the zone of personal space, as
it is a culturally defined zone of “spatial insulation” that people maintain around
themselves and others (Burgoon et al., 1989). Research has indicated that the shape
of personal space is asymmetric for both approach distances (Ashton and Shaw,
1980) and standing in line (Nakauchi and Simmons, 2000); the approximate shape
of personal space is shown in Figure 2.1. The exact size of personal space is not
constant and differs across cultures and familiarity groups (Baxter, 1970; Burgess,
1983). Furthermore, the size and shape of personal space changes based on walk-
ing speed, foreknowledge of obstacles’ movements, and other mental tasks being
performed while walking (Gérin-Lajoie et al., 2005). In addition, the size of per-
sonal space tends to be smaller between people performing a cooperative task than
a competitive one (Burgoon et al., 1989). The violation of personal space leads to
discomfort and misunderstandings (Watson, 1970). Because personal space is such
an important aspect of how people interact with each other, we take it to be one of
the primary social conventions that a robot should respect when interacting with
people.

When people interact with each other, the interaction may take the form of an
intentional, focused interaction, such as a conversation, or it may be non-intimate,
or even adversarial. Examples of non-intimate social interactions include how
crowds gather (McPhail and Wohlstein, 1986) and what social conventions are used
when pedestrians pass each other, such as moving to one side, smiling, or ignoring
the passing person (Wolfinger, 1995; Patterson et al., 2002). In America, as well as
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many other Western cultures, the typical convention employed when passing others
is to walk on the right side of a hallway or sidewalk (Whyte, 1988; Bitgood and
Dukes, 2006). As with personal space, we have identified this “pass on the right”
tendency as a key social convention that a robot should also respect. Most of these
studies investigated these interactions from an individual’s standpoint, rather than
attempting to understand joint actions between two or more people. In contrast,
Ducourant et al. (2005) studied how people attempt to break or maintain inter-
personal distance when facing each other in an adversarial situation. This work
verified that people mutually influence each other in such a situation, which we
believe also applies to non-adversarial interactions.

Most studies of human interaction, however, have examined focused interac-
tions, when two or more people intentionally engage in face-to-face conversations.
For example, Kendon and Ferber (1990) studied the individual actions people per-
form when greeting one another, such as waving or nodding one’s head. Studies of
people involved in conversation have shown that conversational partners uninten-
tionally become entrained and mimic each others’ posture (Shockley et al., 2003;
Richardson et al., 2005). A large body of research has examined how people form
and maintain common ground, the shared knowledge and suppositions between
conversational partners (Clark and Brennan, 1991; Clark, 1996). Clark (1996) di-
vides common ground into three components:

• Initial common ground. Initial common ground includes all of the back-
ground facts and assumptions made by the participants. Knowledge of soci-
etal conventions fall into this category.

• Current state of the joint activity. Each participant has a mental representa-
tion of the state of the conversation, including what each believes the other
knows.

• Public events so far. This category includes both historical events that each
partner may be expected to know as well as the history of their joint activity
up to the current state.

While the idea of common ground has traditionally been applied only to con-
versational interactions, recent research has begun to extend the concept to any type
of joint activity. In particular, successful joint activity requires not only common
ground, but also the ability to predict and to direct the other’s actions (Klein et al.,
2005; Sebanz et al., 2006). Additional research has provided insight into how peo-
ple automatically predict many aspects of what others are going to do (Frith and
Frith, 2006). We extend common ground theory to human–robot interactions; in
particular, we argue that a robot’s physical behavior can be used to build common
ground with people by demonstrating a shared knowledge of social conventions.
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A final related area of psychology research is on efficiency, in terms of both
economy of movement and collaborative effort. People are remarkably efficient
at minimizing energy expenditure in their physical actions (Sparrow and Newell,
1998). For example, studies conducted in malls indicate that people determine
which side of the corridor they walk on and which direction they turn at intersec-
tions based on minimizing the required number of steps they must take (Bitgood
and Dukes, 2006). Even in conversation people attempt to minimize effort, as de-
scribed by the Principle of Least Collaborative Effort:

The principle of least collaborative effort: In conversation, the partic-
ipants try to minimize their collaborative effort—the work that both
do from the initiation of each contribution to its mutual acceptance.
(Clark and Brennan, 1991, p.226)

Klein et al. (2005) extends this concept by arguing that any time two people
begin a collaborative process they not only attempt to minimize their joint effort
but also enter a “basic compact,” a tacit agreement that they will do so. Each person
can thus assume that the other will put forth the required effort to collaborate. We
apply this idea to people who are walking together: once two people begin to
walk with the intention of walking together, each can assume that the other will
continually take the necessary actions to maintain their partnership. Gilbert (1990)
terms the state of such people a “plural subject” to indicate their mutual obligations
to each other.

2.2 Social robot planning and navigation

A second area of research related to this thesis is the topic of robot navigation, both
for local and global obstacle avoidance, and for specific tasks involving human
interaction.

2.2.1 Local obstacle avoidance

A mobile robot must be able to avoid obstacles in its environment, and many dif-
ferent algorithms for obstacle avoidance have been developed. Many times, unex-
pected obstacles (e.g., obstacles not appearing in a map) are handled only in a lo-
cally reactive manner. Traditional algorithms for local obstacle avoidance include
the Artificial Potential Field method (Khatib, 1986) and its extension, the Vector
Histogram approach (Borenstein and Koren, 1989). In both of these methods, ob-
stacles exert a virtual force on the robot, which allows the robot to avoid collisions.
However, these methods treat all unexpected obstacles as static (non-moving), and
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they do not account for vehicle dynamics. Obstacle avoidance algorithms that do
account for vehicle dynamics, such as how quickly the robot can accelerate or
decelerate, include the Dynamic Window Approach (Fox et al., 1997), the Cur-
vature Velocity Method (Simmons, 1996), the Lane-Curvature Method (Ko and
Simmons, 1998), and LaValle and Kuffner’s randomized kinodynamic planning
using Rapidly-exploring Random Trees (RRTs) (1999). Algorithms that account
for obstacles that may be moving over time include the Velocity Obstacle approach
(Fiorini and Shiller, 1998); Partial Motion Planning (Laugier et al., 2005), which
uses RRTs to find the best partial path to a goal within some time period; and
Reflective Navigation (Kluge, 2003). Finally, several approaches consider both
vehicle dynamics and dynamic obstacles, including Castro et al.’s use of Veloc-
ity Obstacles within the robot’s Dynamic Window (2002), Foka and Trahanias’s
predictive navigation (2003), and Owen and Montano’s planning in velocity space
(2005). A summary of these methods is shown in Table 2.1. While any of these
algorithms can be used to produce varying degrees of safe and effective obstacle
avoidance, none of them explicitly account for the pre-established social conven-
tions that people use when moving around each other. Furthermore, such local
avoidance behaviors do not account for global goals, and thus often produce glob-
ally sub-optimal behavior.

2.2.2 Global planning

Global path planners are used to determine possible paths through a known envi-
ronment, and generally operate independently of local obstacle avoidance. Two
main types of planners are currently used: heuristic search algorithms and random-
ized planners. Heuristic search algorithms, most notably A* (Hart et al., 1968),
can find optimal paths, but typically do not run fast enough to replan in real time,
as the robot receives new sensory data. Many variations on A* exist in order to im-
prove replanning time, typically by saving and reusing portions of the search tree.
Lifelong Planning A* (LPA*) (Koenig et al., 2004) can rapidly replan when the
environment changes, but only when planning from the same start state, and thus
cannot be used for a moving robot. The replanning algorithms D* (Stentz, 1994)
and D* Lite (Koenig and Likhachev, 2002) allow the start state to change, but do
so by planning in reverse—from the goal state to the robot’s current position. This
works in many cases, but not with dynamic obstacles—the robot has no way of
knowing where the dynamic obstacles will be at the time it reaches the goal, so the
state of the world when the robot reaches the goal is unknown.

In contrast, Real-Time Adaptive A* (RTAA*) (Koenig and Likhachev, 2006)
and Generalized Adaptive A* (GAA*) (Sun et al., 2008) both plan forward, from
start to goal, and allow for changing action costs. RTAA* handles only increasing

13



2. Related Work
Vehicle

D
ynam

ic
Social

A
lgorithm

R
eference

D
ynam

ics
O

bstacles
C

onventions
A

rtificialPotentialField
K

hatib
(1986)

N
o

N
o

N
one

V
ectorH

istogram
s

B
orenstein

and
K

oren
(1989)

N
o

N
o

N
one

D
ynam

ic
W

indow
(D

W
)

Fox
etal.(1997)

Y
es

N
o

N
one

C
urvature

V
elocity

M
ethod

(C
V

M
)

Sim
m

ons
(1996)

Y
es

N
o

N
one

L
ane-C

urvature
M

ethod
(L

C
M

)
K

o
and

Sim
m

ons
(1998)

Y
es

N
o

N
one

R
andom

ized
K

inodynam
ic

Planning
L

aV
alle

and
K

uffner(1999)
Y

es
N

o
N

one

V
elocity

O
bstacle

(V
O

)
Fioriniand

Shiller(1998)
N

o
Y

es
N

one

PartialM
otion

Planning
L

augieretal.(2005)
Y

es
Y

es
N

one

R
eflective

N
avigation

K
luge

(2003)
N

o
Y

es
N

one

C
om

bined
D

W
and

V
O

C
astro

etal.(2002)
Y

es
Y

es
N

one

Predictive
N

avigation
Foka

and
Trahanias

(2003)
Y

es
Y

es
N

one

V
elocity

Space
Planning

O
w

en
and

M
ontano

(2005)
Y

es
Y

es
N

one

M
odified

L
C

M
O

livera
and

Sim
m

ons
(2002)

Y
es

N
o

Passing
on

the
right

Person
Passage

Pacchierottietal.(2005a,b)
N

o
Y

es
Passing

on
the

right

H
um

an-A
w

are
N

avigation
Sisbotetal.(2006)

N
o

N
o

V
isibility

to
people

L
ine-standing

N
akauchiand

Sim
m

ons
(2000)

N
o

N
o

Standing
in

line

D
ynam

icalsystem
s

A
lthaus

etal.(2004)
N

o
N

o
E

ntering
a

group

Table
2.1:

Sum
m

ary
of

som
e

relevantrobotnavigationalalgorithm
s,including

w
hether

they
explicitly

accountfor
vehicle

dynam
ics

ordynam
ic

obstacles
as

w
ellas

w
hatsocialconventions

they
im

plem
ent.

14
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costs, such as an obstacle perceived where the previous search assumed free space,
and thus it is unable to handle dynamic obstacles. GAA*, in contrast, allows for
action costs to increase or decrease; however, it typically performs worse than A*
when a large number of costs change between searches (Sun et al., 2008).

A different approach to real-time replanning uses randomization, rather than
exhaustive search. One common approach is to use Rapidly-exploring Random
Trees (RRTs) (LaValle, 1998; LaValle and Kuffner, 1999), which are designed to
explore the environment quickly. RRTs typically find some path to the goal, but
not necessarily an optimal path. Methods exist to bias RRTs heuristically to find
the goal state more rapidly and partially account for path cost (e.g., Urmson and
Simmons, 2003). However, despite biasing, RRTs do not find smooth or optimal
paths. While the generated paths can be post-processed to yield smoother paths,
doing so may eliminate legitimate avoidance maneuvers around moving obstacles.
Because we believe that people take optimal paths whenever possible, we reject
such probabilistic planners in favor of A*.

An alternate method of improving search speed and results involves modifying
the search space, such as done in Quadtree and Framed-Quadtree planners (Yahja
et al., 1998), as well as other planners that use quadtree-like hierarchical decompo-
sitions of space (Fujimura and Samet, 1989). Quadtrees are irregularly-sized grids
formed by recursively subdividing regions into four quadrants until each region
is either free of obstacles or is the smallest allowed resolution. In sparse maps,
quadtrees reduce the memory requirements (and thus search time) over regular
grids. However, paths found with quadtrees are usually sub-optimal as compared
to regular grids, particularly in large areas of free space. Framed Quadtrees create
more optimal paths by modifying the quadtree data structure, but at the expense
of greater memory requirements. In particular, framed quadtrees perform poorly
when the world is generally known in advance. However, in our work, we typically
assume that the robot has access to a map of the environment. To improve search
speed, we use a variable grid that does not rely on the environmental structure; this
is described in Chapter 4.

2.2.3 Social navigation

A number of methods have been developed to allow robots to navigate around
people in specific, typically non-generalizable, tasks. Some of these tasks include
tending toward the right side of a hallway, particularly when passing people (Oliv-
era and Simmons, 2002; Pacchierotti et al., 2005a,b), standing in line (Nakauchi
and Simmons, 2000), and approaching people to join conversational groups (Al-
thaus et al., 2004). Museum tour guide robots are often given the capability to
detect and attempt to handle people who are blocking their paths (Burgard et al.,
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1999; Thrun et al., 1999). Algorithms developed for the robot Grace allowed it
to navigate a conference hall, ride an elevator, and stand in line to register for a
conference (Simmons et al., 2003). Prassler et al. (2002) demonstrated a robotic
wheelchair that can follow next to a person, but their method does not account for
social cues the human might use nor allow for any social interaction. Sviestins
et al. (2007) have begun investigating how a robot might adapt its speed when trav-
eling next to a person, but they have obtained mixed results even in a controlled
laboratory setting. In contrast, this thesis presents a generalized framework for in-
tegrating multiple social conventions into a robot’s behavior, thus producing more
natural and understandable robot movement.

Several groups have begun to address questions relating to planning complete
paths around people, rather than relying on solely reactive behaviors. Shi et al.
(2008) discusses a method for a robot to change its velocity near people. While
this method begins to address ideas of planning around people, it does not di-
rectly consider social conventions. In contrast, the Human–Aware Motion Planner
(HAMP) (Sisbot et al., 2007) considers the safety and reliability of the robot’s
movement as well as “human comfort,” which attempts to keep the robot in front
of people and visible at all times. However, the paths that the planner generates
may be very unnatural due to its attempts to stay visible to people. In contrast,
we are proposing a more general framework for representing spatial social tasks,
which we believe will allow our work to address a wider range of social situations.
Furthermore, we focus on behaviors that are not only aware of people but also
socially acceptable to people.

2.2.4 People tracking

Extending any navigational algorithm to account for people requires the ability
to identify and track which sensor readings correspond to people. Many different
ways of identifying and tracking people have been proposed, including using vision
for color-blob tracking (Schlegel et al., 1998), using vision to track faces (Siden-
bladh et al., 1999), and various laser-based methods (Castro et al., 2004; Kluge
et al., 2001b; Schulz et al., 2003; Topp and Christensen, 2005; Cui et al., 2006), in-
cluding our own particle-filter-based technique (Gockley et al., 2007). All of these
methods have various benefits and shortcomings. All camera-based methods suf-
fer when exposed to variable lighting conditions, and face-tracking methods work
only when the person is facing the robot, which is not necessarily the case in social
human–robot interaction. Methods that use a laser rangefinder typically cannot ac-
curately differentiate between people and other objects. Perhaps more promising
are multi-sensor methods that combine information from both a camera and a laser
rangefinder (Kleinehagenbrock et al., 2002; Kobilarov et al., 2006; Michalowski
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and Simmons, 2006). Other researchers have investigated the use of radio tags to
track people (Bianco et al., 2003; Kanda et al., 2003), but these methods do not
provide very accurate position information and also require instrumenting the per-
son with sensors. However, the focus of this thesis is not on the sensing problem as
such, and so we will rely as much as possible on these existing identification and
tracking methods.

An additional aspect of understanding how a robot should navigate around peo-
ple involves learning people’s behaviors. Several approaches have been proposed,
though the typical method is to use off-line learning techniques to build a map of
“common” destination points for people in the environment, and then use this map
to augment both on-line person-tracking and navigation (e.g., Bennewitz et al.,
2003, 2005; Bruce and Gordon, 2004; Foka, 2005; Kanda et al., 2009; Ziebart
et al., 2009). While we do not currently implement any of these methods, a com-
plete robotic system may greatly benefit from the better person-prediction these
methods afford.

2.3 Social human–robot collaboration

Since we are interested in socially collaborative tasks, such as walking together
side-by-side, a final related area of research is the field of human–robot collabora-
tion. However, unlike our work, human–robot collaboration research has typically
focused on conversational-type interaction with a stationary robot (e.g., Trafton
et al., 2005; Hoffman and Breazeal, 2004; Sidner and Dzikovska, 2002). Ikeura
et al. (1994) investigated cooperative object manipulation between a person and a
robotic arm, and found that for that type of physical collaboration people preferred
for the robot to behave in a human-like manner.

Forming common ground between a person and a robot can also be viewed
as a collaborative activity. As with the human psychological literature, much of
the work on forming common ground in human–robot interaction focuses on con-
versational dialog (e.g., Powers et al., 2005; Li et al., 2006). Our own prior work
shows that some degree of common ground can be formed through the robot’s use
of emotional expressions (Gockley et al., 2006). Stubbs et al. (2006) describes
how problems in grounding between people and robots can hinder human–robot
collaboration, reinforcing the need for successful grounding processes. Finally,
Klein et al. (2005) discusses some of the steps necessary to extend the idea of com-
mon ground theory to joint activity between agents, such as creating agents that act
predictably and signal their intentions.

Other research on socially collaborative robots includes areas such as shared
attention based on gaze tracking (Kozima et al., 2003; Yamato et al., 2004) and
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perspective-taking (Trafton et al., 2005). While either of these aspects of interac-
tion may be necessary for a fully competent social system, they are not a focus of
this thesis. Somewhat more relevant is research into behavior recognition, particu-
larly regarding typical behaviors in public environments (Kluge et al., 2001a). For
example, a robot that is traveling side-by-side with a person may need to differ-
entiate between behaviors such as the person stopping to talk with a friend versus
stopping because he is feeling ill. However, such recognition is beyond the scope
of this research.

2.4 Summary

Many research areas are relevant to social robot navigation. Essential to our ap-
proach is research on how people interact with each other, particularly when walk-
ing. We use the descriptions of human social conventions as a basis for our imple-
mentations of social robot behaviors. Furthermore, we use the theory of common
ground to provide rationale for making robots behave in human-like ways. Work
on robot navigation demonstrates the lack of research in having robots react to
people as social entities, rather than inanimate obstacles. While the HAMP archi-
tecture begins to address this idea, it assumes that people will be wary of the robot,
and thus requires the robot to remain “visible” when navigating around people.
In contrast, we argue that the robot should behave in a social manner, which will
allow people to understand it implicitly. Finally, work in social human–robot col-
laboration reinforces the idea that common ground can be formed through a robot’s
behaviors, and that grounding is necessary for collaboration—including traveling
with people—to occur smoothly.
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Chapter 3

Background and Preparatory
Work

This thesis will present the COMPANION framework for person–acceptable robot
navigation. However, several studies we performed prior to developing the COM-
PANION framework served as a foundation for the research. In particular, we
designed a laser-based person-tracking system, analyzed two person-following be-
haviors for a mobile robot, and studied how people walk in pairs. These studies are
described below.

3.1 Person tracking

For a robot to behave socially around people, it must be able to track people who
may be moving (or stationary) in unknown, potentially dynamic, indoor environ-
ments. While our tracker is similar to that of Topp and Christensen (2005), we
present the details of our particular implementation here. Briefly, each scan from
the laser is segmented into person-sized blobs, which are tracked using individual
particle filters (Arulampalam et al., 2002) for each blob. The basic algorithm we
use is as follows:

1. Since the robot—and hence the laser—may be moving, the particles being
tracked are first transformed into the robot’s current frame of reference. Up-
dating the old information into the new frame is preferable to working in
absolute coordinates, as odometry errors are not compounded over time.

2. The laser scan is next divided into segments. Adjacent points in the scan are
considered part of the same segment if they are less than 10 cm apart.
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3. Segments that contain any points further away than some threshold for track-
ing (we use 3.5 m) are discarded.

4. Segments with a width (straight-line distance between the two endpoints)
that is greater than 60 cm or less than 5 cm are discarded, as such measure-
ments are unlikely to correspond to people.

5. Remaining segments that are greater than 20 cm are classified as a potential
person. Smaller segments may be individual legs, and so we perform rudi-
mentary clustering of these potential legs. If two such “leg” segments are
separated by less than 40 cm, they are classified as a single person. If no
second leg is close enough to some segment, that segment is considered a
potential person by itself.

6. All potential persons are tracked with a standard particle filter algorithm, us-
ing one filter for each person and 100 particles per filter. We use a Brownian
(random) model of movement to predict where each segment might travel,
as we found that any more sophisticated motion model could not account as
well for a person’s sudden stops or turns. Each filter is assigned to the closest
potential person within 40 cm of the filter’s center, and a new filter is created
for any potential person that is more than 40 cm away from any unassigned
filter.

7. Filters may be unassigned for up to 5 cycles of the tracker, after which they
are removed. Allowing filters to remain unassigned helps to account for short
occlusions, such as a person walking quickly past the person or object being
tracked.

This tracking method, unlike most vision-based trackers (which typically track
faces; see Section 2.2.4), is relatively robust to the person’s orientation; people can
be tracked walking toward, away from, or past the robot. As such, this method
can be used to track people in front of the robot, for following behind them (as dis-
cussed below), or to track people next to the robot, for side-by-side accompaniment
or escorting.

An example laser scan with identified objects marked is shown in Figure 3.1.
Note that this method of tracking identifies any “person-sized” objects as people,
including objects such as chairs and garbage cans. However, without the use of
additional sensors, such as vision, differentiating between a stationary person and
similarly shaped inanimate objects is nearly impossible. Since we wish to track
even people who are not moving, we chose to allow the tracker to identify other
objects as people. Truly social interaction with people will require a more robust
method that can distinguish people from inanimate objects; however, we currently
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Figure 3.1: A sample scan from the laser range-finder, taken in a hallway, and
overlaid with samples from the person tracker. The center-most samples (labeled A)
correspond to the person being tracked and followed; the leftmost samples (labeled
B) correspond to clutter in a doorway.

favor false positives (identifying something inanimate as a person) over false neg-
atives (failing to track an actual person).

3.2 Person-following

As a first step toward developing robots that can accompany people in socially
acceptable ways, we investigated social perceptions of a robot’s movement as it
followed behind a person (Figure 3.2), as a social assistant robot might when pass-
ing through doorways or navigating around obstacles. We designed and tested two
modes of person-following to determine which is more natural and socially ac-
ceptable. Participants in a pilot study agreed that the robot’s behavior was more
human-like when the robot always drove toward the person (i.e., in the direction
of the person’s current location), rather than when it followed the person’s exact
path. Furthermore, this “direction-following” method was rated as better matching
people’s expectations for the robot’s behavior. This finding demonstrates that peo-
ple may expect robots to behave according to human social conventions, such as
minimizing travel distance. This study is described below and can also be found
in Gockley et al. (2007).
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Figure 3.2: The robot, Grace, following a person down a hallway.

3.2.1 Design approach

We designed this study to investigate social behaviors for robots that allow people
to feel comfortable in the robot’s presence and understand the robot’s intentions.
The factors we considered in designing person-following behaviors for our robot
included:

• Personal space: People determine how close they should be to one another
according to societal conventions regarding personal space (Hall, 1966). The
robot should always remain at a socially appropriate distance.

• Reliability: The robot and its sensors must be capable of tracking a person
with a high degree of reliability in order to remain useful and not frustrate
the person.

• Safety: The robot must ensure the person’s safety at all times; in particular,
the robot must maintain enough space between itself and the person so as to
avoid collisions.

Finally, we considered the robot’s human-likeness. In particular, we asked:
to what extent should the robot’s behavior match that of a human in the same
situation? While it is clearly desirable for the robot to behave according to people’s
expectations, people may not expect a machine-like robot to act according to social
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Figure 3.3: The LCD screen with graphical face used on the robot, shown here
with a speech bubble that echos what the robot says (“Keep going!”).

conventions. For this study, we designed the robot’s behaviors to test this “human-
likeness” factor.

3.2.2 Hardware

Our research platform for this work was Grace (Simmons et al., 2003), an RWI
B21 base with an LCD “head” mounted on top, as shown in Figure 3.2. With the
head, the robot is roughly human-height. The robot uses one primary sensor, a
SICK LMS200 scanning laser range-finder, mounted approximately 40 cm above
the ground. The robot can move at speeds of up to 90 cm/s, but we tend to limit
the speed to no more than 70 cm/s due to safety concerns.

The robot’s LCD screen is used to display an expressive, graphical face (Fig-
ure 3.3), which has been shown to encourage human interaction with the robot
(Bruce et al., 2002). The robot is capable of speech via a synthesized voice and a
text-to-speech system. The robot’s face automatically lip-syncs with the speech.

In order for Grace to track people, we used the tracking method described
above (Section 3.1).

3.2.3 Different person-following behaviors

To test different levels of “human-likeness” in person-following, we designed and
evaluated two robot behaviors. The simplest method is to have the robot always
attempt to drive directly toward the person’s location. From general observations,
we suspect that this is how people most often follow other people. This method
often results in the follower cutting corners and generally not following in the ex-
act footsteps of the leader. The second method, then, is to have the robot attempt
to follow the exact path that the person took. While this method may not be the
most human-like method, we hypothesized that it may better match people’s ex-
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pectations for a machine-like robot. For example, if a person is leading a robot
somewhere, any step in the person’s path may be taken for reasons that the robot
does not know (such as avoiding obstacles the robot is unable to sense), and thus
following the person’s exact path may be the more appropriate behavior. Using the
person-tracker described above, we have implemented both of these methods.

In both methods, the robot begins to follow a person as soon as someone is
detected within 125 cm of the robot, in a cone of ±0.5 radians, as measured from
the average location of a particle filter’s samples. The robot then attempts to remain
a constant distance (120 cm, ±10 cm) from the tracked person. This is achieved
through a simple feedback control loop based on two factors. First, a proportional
controller works to minimize the error between the robot’s current distance from
the person and its desired position. Secondly, the change in range error over time
is used to reduce oscillations. Specifically, if the robot begins to fall further behind
the person (i.e., the range error is increasing), then the robot’s velocity is increased
based on the error; if the robot is too close and getting closer, then the velocity is
similarly decreased. The robot stops if the distance to the person drops below 90
cm. The robot’s maximum velocity is capped at 70 cm/s, due to safety concerns.

For this work, the distance at which the robot tried to follow is held constant,
and is designed to keep the robot just outside of one’s personal space. As several
studies have found, the appropriate distance may vary according to an individual’s
personality traits (Walters et al., 2005; Gockley and Matarić, 2006). We chose the
value of 120 cm as a comfortable distance for the experimenter; we have not tested
the person-following with different distances at this time.

The two person-following methods differ in how they select the robot’s direc-
tion of travel. These differences, as well as social aspects of the robot’s behavior,
are discussed in the following sections.

Direction-following

In this method of following a person, the robot simply attempts to drive in the
direction of the tracked person’s current position. This is combined with the un-
derlying obstacle avoidance control system by setting these goal directions using
the Curvature-Velocity Method (CVM) (Simmons, 1996). With this method, the
robot is able to follow the person through doorways and around corners without
collisions.

It is interesting to note that person-following and most obstacle avoidance
methods are fundamentally at odds, since following a person requires the robot
to drive straight toward something that would normally be interpreted as an ob-
stacle. To convince the Curvature-Velocity method to follow a person, we weight
the CVM parameters to strongly favor the goal direction over the preferred dis-
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tance from obstacles and the preferred maximum speed. That is, the robot will
favor going slowly close to obstacles (such as the person) as long as its heading is
correct. However, this trade-off is not ideal, and we address the need for integrat-
ing obstacle avoidance and social conventions with our COMPANION framework
(Chapter 4).

Path-following

In this more sophisticated approach, the robot attempts to follow the path that
the person took as closely as possible, such as switching to the opposite side of
the hallway at a certain location and driving around corners with the same cur-
vature as the person’s travel. Path-following is achieved in much the same way
as direction-following, except that the robot’s goal direction is chosen according
to the Pure Pursuit path-following algorithm (Coulter, 1992). At each tracker cy-
cle, the person’s location is stored, building a history of the person’s path. The
robot’s goal point is selected as the point at which the person was at the desired
distance from their current position (that is, 120 cm behind the person). As with
direction-following, the CVM method is used to integrate obstacle avoidance with
the person-following behavior.

In addition, the robot’s goal direction is constrained such that the robot will
never intentionally turn to a point at which it can no longer track the person. This
is necessary because the robot does not have a full 360-degree sensor coverage, but
means that the robot may not always follow the person’s exact path, particularly if
the person walks in a tight circle around the robot.

3.2.4 Performance

The two person-following algorithms differ most noticeably when guiding the
robot around corners: the direction-following approach results in the robot round-
ing corners much more so than the person does, whereas the robot explicitly at-
tempts to follow the same curvature as the person when using the path-following
approach. This distinction can be seen in Figure 3.4.

We present here the results from several trial runs with each person-following
algorithm. Trials were performed both at the robot’s maximum speed and at slower
speeds.

Procedure

All trials took place in office building hallways, with varying amounts of clutter.
While other people occasionally passed by the robot, no occlusions were permitted
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Figure 3.4: Paths of the person and the robot around corners, for each of the two
approaches. The robot drastically cuts corners when not following the person’s
exact path. Note that each path shown is roughly 15 m in length.

between the robot and the person it was following. In order to analyze the technical
performance of the robot, a single person led the robot for all trials. Care was taken
to make the person’s behavior as consistent as possible across trial runs, though
obviously no two runs with either algorithm were identical. The person had prior
knowledge of the robot’s person-following behavior and did not attempt to “trick”
the robot with sudden changes in movement patterns.

Results

Four trials with each approach were run at relatively high speeds. Each approach
was run for a total of about 30 minutes (5-10 minutes per trial) and covered a total
traversal of over 1 kilometer, with average speeds of close to the maximum allowed
speed of the robot, 70 cm/s. On average, the robot was able to track the person over
a distance of about 30 meters (1 minute) before an error in tracking occurred. Both
approaches had a furthest distance between tracking errors of over 160 meters (over
3.5 minutes). Using an analysis of variance (ANOVA), no significant difference
was found between the two approaches in terms of the distance or time between
tracking errors (distance F [1, 65] = 0.79, p = 0.3; time F [1, 65] = 0.27, p = 0.6).
In all cases of tracker failure, the robot was able to re-acquire the person within
moments of the person re-approaching the robot.

The tracking performed considerably better when the robot moves more slowly.
When the person traveled at speeds of about 45 cm/s, the robot was able to follow
for over 320 meters (over 10 minutes) before tracker failure, using each of the
methods. During these slower traversals, the robot was able to remain approxi-
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mately 130 cm (SD 25 cm) from the person (recall that the goal distance was 120
cm). Again, both person-following behaviors performed equivalently from a tech-
nical perspective.

3.2.5 User acceptance

While the above results demonstrate the technical performance of the robot, one
of our main interests is in how people perceive the different robot behaviors. We
performed a pilot study to explore whether people preferred one person-following
method over another.

Procedure

This study was performed during an informal gathering and had 10 adult partici-
pants (8 males, 2 females), including students, staff, and faculty members. Though
all participants were experienced with robotics, few had advance knowledge of the
nature of the study. Participants were asked to observe the robot’s behavior as it
followed the experimenter around the lab for several minutes. They then answered
a short questionnaire on the robot’s behavior, including whether the behavior met
their expectations, how natural the behavior was, and how appropriate the robot’s
following and stopping distances were. This process was done once for each of the
two person-following algorithms. To ensure that all participants viewed identical
behaviors of the robot, all participants viewed both conditions as a single group; as
such, conditions were not counter-balanced.

The robot followed the experimenter for about 50 m with each behavior. On
average, the robot remained approximately 1.5 m from the experimenter during
each trial. The experimenter stopped and started several times during each person-
following method, so that participants could observe the robot’s behavior both
while moving and while stopped.

Results

Due to the within-subjects nature of this study, we analyzed the survey responses
using paired t-tests across trials. Average responses and t-values for each question
are given in Table 3.1.

Although the two behaviors were very similar, participants noticed their differ-
ences. Participants were asked to rate the robot’s behavior according to whether it
met their expectations, on a scale of 1 (“not at all”) to 7 (“very much”), and how
natural the behavior was, on a scale of 1 (“not at all” to 7 (“human-like”). As shown
in Table 3.1, participants rated the robot’s behavior as significantly more natural
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Table 3.1: Average responses to the survey questions, with standard deviations
given in parentheses. All questions were asked on scales of 1–7. N = 10.

Following Behavior Paired
Question Direction Path t

Met expectations (not 5.0 3.7 -4.33*
at all—very much) (0.94) (0.95)
Natural (not at all— 4.0 2.9 -3.97*
human-like) (1.15) (0.88)
Following distance 3.0 2.9 −0.43
(too close—too far) (0.94) (1.29)
Stopping distance 4.9 5.4 1.86
(too close—too far) (1.20) (1.71)

* significant at p < 0.01

and human-like in the direction-following condition. In addition, participants felt
that the direction-following robot behaved more according to their expectations.
Notably, none of the participants rated the path-following behavior as better than
the direction-following behavior on either of these questions. Furthermore, the
answers to these two questions were highly correlated (r = 0.80, p < 0.0001),
indicating that participants expected the robot’s behavior to be human-like, despite
the robot’s non-anthropomorphic shape.

Participants were also asked whether the robot followed and stopped at ap-
propriate distances from the experimenter. They rated the distances on a scale
of 1 (“too far away”) to 7 (“too close”). Overall, participants felt that the robot
stayed a little too far away from the experimenter while moving (overall mean
2.95, SD 1.10), but stopped at an appropriate distance (overall mean 5.15, SD
1.46). There were no significant differences in participants answers across the two
person-following behaviors.

3.2.6 Discussion

Quantitatively, the two methods of person-following were equivalent: the behav-
iors did not differ in laser tracking performance, and both allowed the robot to
follow smoothly behind a person. The primary difference between the two behav-
iors occurred at corners, when the direction-following behavior caused the robot
to curve much more gently than the person, given sufficient space to do so. If the
following were to occur in narrow corridors, the differences between the behaviors
would lessen, as obstacle avoidance would constrain the robot’s movement.
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Qualitatively, however, people indicated that the direction-following behavior
was significantly more human-like and more closely matched their expectations
than when the robot follows the person’s path. Several participants commented
that, when performing path-following, the robot did not appear to react “quickly
enough” to the person’s turns (since the robot turned at the location where the
person turned, rather than at the same time as the person), which may help explain
this finding.

To date, we have performed only the small pilot study as described above.
Obviously, many caveats apply to this sort of study, as the participants were all
familiar with robots and most likely had very different expectations of robotic be-
havior than non-roboticists. However, while the participant population may have
influenced the exact values of the survey questions, we expect that the relative
differences between the different robot behaviors would be similar across other
populations, as well. A further shortcoming of this study is that it analyzed only
people’s third-person observations of the robot’s behaviors, and thus the results
may not capture the full spectrum of people’s preferences. However, while peo-
ple’s in situ experiences of a robot’s behavior are clearly valuable, such testing is
difficult to perform and evaluate when the robot’s behavior occurs strictly behind—
and thus out of sight of—the person.

3.2.7 Summary

This study focused on one particular aspect of human–robot social interaction: a
robot that follows behind a person. By implementing two different methods of
person-following, we were able to analyze the robot’s behavior in both a quantita-
tive and a qualitative way. We found that when the robot followed the person more
loosely, cutting corners when possible, observers of the robot felt that it behaved
more human-like and, importantly, better matched their expectations. From this,
we form the more general hypothesis that robots should follow human social norms
for navigation, both when following behind a person (for which the norm seems to
be minimizing the distance to the person, rather than keeping to the person’s fixed
path) and for other, more general, human–robot encounters.

3.3 Social aspects of walking together

From our research on person-following, we believe that robots should observe hu-
man social norms for navigation. However, as discussed in Section 2.1, many of
these norms are poorly understood. For example, when two people walk together,
they coordinate their movements with each other while observing many social con-
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ventions, such as what distance to keep from each other and how to indicate when
to turn or stop. Furthermore, if either partner fails to use or respond to such con-
ventions, the interaction becomes difficult and awkward. Despite the complexity of
such interpersonal coordination, extremely little research has been done to deter-
mine exactly what people do and what social conventions they follow (Ducourant
et al., 2005). To provide a basis for our research, we performed an observational
study of how older adults in a local retirement community walk together, using
ethnographic methodologies borrowed from social anthropology. These results can
also be found in Gockley (2007).

3.3.1 Procedure

Observations took place at a local retirement community. Investigators used an
ethnographic approach that involved making observations as unobtrusively as pos-
sible while seated, standing, or walking within 20 feet of participants (investigators
were somewhat conspicuous by virtue of their younger age in comparison to the
community residents). Genders of the participants and observation locations were
documented. Observations were made of pairs of people regarding:

1. what route they took, including stops;

2. the relative ages of the walking companions (e.g., two older adults, one older
adult and one staff person, etc.);

3. how the companions positioned themselves relative to each other;

4. whether either person had any obvious disabilities, including walker use;

5. what each person was holding or carrying;

6. whether one person was leading or escorting the other (if so, who was in
which role); and

7. the amount of social interaction, both between the two walkers and any in-
teractions with people outside of the pair.

Residents and staff received prior notice of the study through the community’s
weekly newsletter, and the experimenter willingly explained the nature of the study
when requested during observations. To protect residents’ privacy, no personally
identifying information was collected and no photographs were taken.
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Table 3.2: Number of walking pairs observed, separated by situation (escorting or
social), with typical interpersonal distances for each situation. 54 pairs observed.

Escorting
Leader Follower Count Typical interpersonal distances (m)

Side-to-side Front-to-back
Resident Resident 4 0.3–0.5 ≤ 0.3 *
Resident Non-resident 1 ≤ 0.3 1.0 *

Non-resident Resident 14 ≤ 0.3 ≤ 0.3 *
Non-resident Non-resident 5 0.3–0.5 varied †

Social
Pairing Count Typical interpersonal distances (m)

Side-to-side Front-to-back
Both residents 15 ≤ 0.3 0’

Both non-residents 7 0.3–0.5 varied †
Resident with non-resident 8 0–0.5’ varied †

* Directly side-by-side or leader in front.
†Partners within each pair did not maintain a consistent distance.

3.3.2 Results

Observations were performed in three-hour blocks on 4 days, for a total of 12 hours.
Data was collected on 54 pairs of people. The situational breakdown of people can
be seen in Table 3.2.

Escorting behaviors

We observed several behaviors specific to escorting situations, including gestures,
physical contact, and body movements to indicate direction.

• Gestures and physical contact. In escorting situations, the leader often used
gestures or physical contact to indicate the intended direction. We observed
five instances of the leader pointing toward a destination, and four instances
of the leader using physical contact—a hand on the follower’s arm, shoulder,
or back—to direct the follower.

• Body movements. Intuitively, we suspect that leaders use movement into or
out of their partner’s personal space in order to indicate turns along the path.
Unfortunately, these movements are subtle and difficult to detect in this sort
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of observational study. We observed several instances, typically involving
a non-resident leading a resident, where the leader appeared to speed up
on outside turns and slow down on inside turns, allowing the follower to
maintain a constant speed. In addition, we observed one instance where
such body movements failed to properly convey a turn; the leader began to
turn a corner by moving away from the follower, but the follower did not
immediately correct her movement. Rather, once the pair had separated to
about 1.5 m between them, the leader turned to the other, gestured, and said,
“This way.” Here, a failure in leading via body movements was corrected
with a gesture and spoken command.

Interpersonal distances

Table 3.2 lists the typical distances maintained between walking partners. These
distances were estimated by the observers from a distance (typically from across
the room), and thus should not be considered absolute measurements. All distances
(both side-to-side and front-to-back) between companions were highly variable—
not just across different pairs of people, but also within individual pairs as they
walked. However, we can note that pairs consisting of two residents walking so-
cially or of a non-resident and a resident in an escorting situation tended to maintain
much closer side-to-side distance (0.5 m or less) than most other types of pairs. In
addition, either partner’s use of a walker or cane did not appear to have an impact
on their interpersonal distance.

Obstacles and bottlenecks

We observed four main behaviors when pairs encountered obstacles (e.g., another
person or object in the way) or chokepoints (narrowing of the passageway):

1. Simultaneous movement. Both partners simultaneously move to the side.
This behavior was observed only once; both partners were able-bodied and
had sufficient space in the hallway to avoid the obstacle.

2. Speed increase. One partner speeds up to pass the other and proceeds first
(observed 8 times). This behavior occurred primarily in social accompani-
ment situations, and in particular occurred when one partner was able-bodied
but the other was not, in which case the able-bodied partner proceeded first.

3. Speed decrease. One partner slows down and allows the other to proceed
ahead. This behavior was observed 12 times, in the following situations:
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• When both partners were able-bodied, the partner closest to the obsta-
cle fell behind while the other partner proceeded straight ahead.

• When a more able-bodied person was leading a less able-bodied fol-
lower, the able-bodied leader slowed down, allowing the other to pass,
and often used physical contact (such as a hand on the other’s shoulder)
to continue guiding the other from behind.

• This behavior was also observed in social accompaniment situations
between an able-bodied and a less able-bodied person, in which case
the able-bodied person slowed down to let the other pass first.

4. Separation. The partners pass on opposite sides of the obstacle. The retire-
ment community’s common room has a central lounge area with multiple
chairs and couches surrounded by several structural columns. In several
cases, when partners were walking together through this area, they would
separate and pass on opposite sides of a column or chair before returning
to side-by-side travel. This behavior was observed three times and only oc-
curred in this common area around inanimate objects; no partners were seen
separating within a restricted hallway or around a person.

Unexpected stops

We observed five instances of one partner stopping suddenly—to speak to a pass-
erby or to search through a bag—without the other partner’s prior knowledge. In
each of these cases, the other partner continued on for 0.5–2.5 m before stopping,
then turned to face the stopped partner. Generally, the other person did not reverse
direction, but rather waited in place for the first to resume walking.

Social interaction

In general, partners who were conversing with each other tended to look forward,
with occasional glances toward the other partner. However, more detailed observa-
tions (such as video coding) may be necessary to fully understand the use of gaze
in such situations.

Gender differences

We are not currently able to report on gender differences due to a heavy bias to-
ward women in both the residents and the staff. Of the 54 pairs observed, only 15
contained at least one male partner, and only three of those pairs were both male.
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3.3.3 Summary

We performed an observational study of how older adults walk together in pairs.
From this study, we can derive some specific conventions that people obey when
walking in pairs, such as how far apart they walk from each other and how they
signal where they are going. We argue that all of these rules can be defined as
mathematical constraints on the partners’ movements.

An obvious question regarding this research is whether it generalizes to loca-
tions and populations other than this particular retirement community. Obviously,
we cannot state conclusively that it does, without further research. However, from
our own casual observations of people in day-to-day life, we anticipate that the con-
ventions we listed above do generalize (at least to American populations). In our
COMPANION framework (Chapter 4), we implement such conventions as flexible
mathematical formulae, which can easily be adjusted to different situations. While
conventions such as interpersonal distances and speeds are likely influenced by the
relative ages, social status, relationship, and so on, between the two partners, these
can all be modeled by additional societal constraints within the COMPANION
framework (see Chapter 8).

3.4 Summary

In this chapter, we presented several aspects of research that we performed prior to
developing the COMPANION framework (which is described in detail in the next
chapter).

We developed a person-tracking system that relies only on the robot’s laser
range-finder for detecting and tracking people. The system uses particle filters to
track “person-sized” segments in a laser scan, and is able to handle short occlu-
sions.

By studying people’s reactions to a robot that follows behind a person, we
found that people prefer the robot to follow as if it were human. In particu-
lar, the behavior rated more human-like (“direction-following” rather than “path-
following”) was also rated as better matching people’s expectations for the robot’s
behavior. Since people are better able to understand and react to a robot’s move-
ments if it behaves according to their expectations, this study provides preliminary
evidence that people expect robots to move in a human-like manner. This finding
aligns with other recent studies on human–robot social interaction (e.g., Mutlu and
Forlizzi, 2008).

In order to better understand some of the social norms people use, we per-
formed an observational study of people walking together. We collected data on
people escorting one another, as well as walking together socially. From this, we
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3.4. Summary

were able to enumerate many of the conventions used in each situation. In particu-
lar, we quantified interpersonal distances (which were shown to be highly variable)
and behaviors around obstacles and chokepoints. These conventions were utilized
in the development of methods for a robot to escort a person side-by-side (see
Chapter 6) and in the design of a new robot for social human–robot interaction
(see Chapter 7).
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Chapter 4

Approach

Our approach to social robot navigation is the COMPANION framework: a Con-
straint-Optimizing Method for Person-Acceptable NavigatION. In this chapter, we
argue two main points: that appropriate social behavior requires optimal global
planning for obstacle avoidance, rather than locally reactive behaviors, and that
social behaviors can be represented as a relatively small number of mathematical
cost functions, which can be used for planning. This chapter discusses these points
as well as details of our implementation of the framework. The COMPANION
framework was first introduced in Kirby et al. (2009a), but is expanded on here.

4.1 Optimal global planning

As people walk around each other, they account for social conventions, such as
avoiding people’s personal space, while also trying to optimize their task require-
ments, such as traveling the least possible distance to their goals. While other
researchers have implemented social conventions as reactive behaviors (see dis-
cussion in Section 2.2.3), we believe that these trade-offs between task goals and
social conventions occur at a global level. Consider the following example:

Scenario 1. Consider walking down an office hallway and encountering some-
one walking toward you. In the United States, social convention dictates that you
should move to the right side of the hallway; the other person will do similarly,
thus allowing you to pass each other without incident. However, suppose instead
that your goal is an office down an intersecting hallway to your left. You may
now choose to walk across the hallway in front of the oncoming person, effectively
passing them on the left of the corridor.
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Neither of the behaviors described in the above scenario are anti-social, and
both behaviors allowed the person to reach his or her goal. Instead, this scenario
presented a personal trade-off between social conventions and what we might call
“task conventions,” such as the desire to reach a goal in as little time as possible.
While it may seem that we could enumerate all possible scenarios in order to define
a set of reactive behaviors, this quickly becomes infeasible, given the myriad ways
that different conventions may interact with each other. Rather, we argue that,
for a robot to navigate in a human-like manner, it must account for human social
conventions not just at a reactive level, but at a global planning level. That is, social
human behavior cannot be fully represented by a hybrid approach in which reactive
avoidance maneuvers are performed without consideration of the overall goal, but
simply perturb a given path. To further demonstrate this point, consider this second
scenario:

Scenario 2. Consider again walking down an office hallway, but this time noticing
a large crowd ahead. If you were in a great rush to reach your goal, you might
simply maneuver straight through the crowd. However, you may also choose to
take a longer path, along a side-corridor, and thus avoid interrupting the group
despite the larger distance you must now travel.

If social conventions were purely reactive behaviors, then this complex behav-
ior—choosing an entirely different path to the goal—would never occur. By con-
sidering social and task conventions together at a global level, then, we can better
model human behavior. At a global scope, the robot can consider each convention
as a constraint that must be optimized. Furthermore, since the robot may not know
exactly what people in the environment will do at each instant, the robot must con-
tinually re-plan its path, so that it will properly react to people’s movements in a
global manner.

Thus, to produce human-like navigation in a mobile robot, the robot must use a
fast global planner that is capable of optimizing among multiple constraints (that is,
multiple social and task conventions). As discussed in Section 2.2.2, most global
path planning algorithms fall into two categories: either heuristic search algorithms
or randomized planners. Because we require the ability to optimize a cost function,
we have chosen to use the heuristic planner A* with a cost function that accounts
for both task and social conventions, expressed as mathematical costs.

The basic A* algorithm to find a path from start state sstart to end state sgoal
is presented in Algorithm 4.1. The algorithm relies on a cost function between
two states (cost(s1, s2)) and a heuristic function (h(s)) to estimate the expected
remaining cost to goal. A* is guaranteed to find the optimal path (given the cost
function) as long as the heuristic is admissible, meaning that it never over-estimates
the cost to the goal. The time complexity of A* depends on the quality of the
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4.1. Optimal global planning

Algorithm 4.1 Basic A* algorithm to find an optimal path from start state sstart to
end state sgoal, given cost function cost(si, sj) and heuristic function h(si).

1: g(sstart)← 0;
2: OPEN← priority queue containing sstart;
3: CLOSED← empty set;
4: while OPEN 6= ∅ do
5: s← state from OPEN with lowest f(s);
6: if s == sgoal then
7: Reconstruct path in reverse from sgoal to sstart with parent links;
8: return Path;
9: end if

10: add s to CLOSED;
11: for all sn ∈ neighbors of s do
12: c← g(s) + cost(s, sn);
13: if sn ∈ OPEN and g(sn) > c then
14: Remove old sn from OPEN;
15: end if
16: if sn 6∈ OPEN and sn 6∈ CLOSED then
17: g(sn)← c;
18: f(sn)← g(sn) + h(sn);
19: Add sn to OPEN;
20: parent(sn)← s;
21: end if
22: end for
23: end while
24: return No path.

heuristic, but in general the number of nodes expanded is at least polynomial in the
length of the solution and the size of the state space; with a sub-optimal heuristic,
the growth is exponential (Russell and Norvig, 2003).

For typical shortest-distance path planning, the cost function used by A* is
the distance between two states, and the heuristic function is a rough estimate of
remaining distance to the goal. In order to account for multiple costs, we use a
weighted linear combination of individual costs, i.e.:

cost(s1, s2) =
∑
i

wi · ci(s1, s2) (4.1)
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where each individual cost ci has an associated weight wi. Each cost may also
have an associated heuristic function, which may be weighted similarly1:

h(s) =
∑
i

wi · hi(s) (4.2)

The exact cost functions and weights used are addressed in Section 4.2 and Sec-
tion 4.3, respectively. Computing the costs for each constraint adds an additional
overhead to the time complexity of A*.

Note that we use the phrase “global planning” to underscore the goal-directed-
ness of the resulting robot movement, as distinct from purely reactive, behavior-
based systems. Our method allows a robot to respond to obstacles in an intentional
way, given some goal. That goal, however, is understood to be relatively short-
term—such as between two offices on the same floor of a building, or from an
office to an elevator. In this document, we demonstrate paths planned to goals on
the order of 10–20 meters away. We assume that, if longer paths are needed, a
higher level planner would be used to supply waypoints to our planning system.
This assumption is necessary due to the computational difficulties of path planning
in real-time. The robot must react to changes in people’s behaviors, and it can only
do so in a global way if the path planner executes in a matter of milliseconds. As
we will discuss in Section 4.4 below, such rates can be difficult to achieve with this
system, particularly over long distances.

A final note must be made regarding the definition of “optimal.” In typical path-
planning, optimal paths are those which minimize the travel distance. However,
optimality can easily be extended to minimizing (or even maximizing) any arbitrary
cost function. In this thesis, we consider paths optimal if they minimize the given
cost function, even though these paths are typically not shortest-distance paths (see,
for example, Figure 4.1). Furthermore, note that we implement the search on an
8-connected grid with discretized actions (see Section 4.4), which may not produce
paths that are optimal if measured over a continuous space. However, discretization
is necessary for tractability.

4.2 Constraints

Constraints and objective functions are related mathematical concepts. Constraints
limit the allowable range of a variable (e.g., “x is constrained to be less than
100”). Constraints may be hard or soft: hard constraints provide an absolute limit,
whereas soft constraints allow a variable to pass a given limit, but at an associated

1In fact, as long as each weight in the heuristic function is less than or equal to the corresponding
weight in the cost function, the heuristic remains admissible.
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4.2. Constraints

Figure 4.1: While this robot’s path may be sub-optimal with regard to distance,
perhaps its optimality may be measured by a “flair” function. Comic is distributed
under the Creative Commons License; image courtesy Willow Garage.

cost. A cost or objective function is a mathematical function that can be opti-
mized—that is, maximized or minimized. Soft constraints and objective functions
can be mathematically transformed into each other (Williams, 1999); in the follow-
ing, we will use the terms interchangeably.

We have identified a small set of constraints as particularly important for social
behavior in hallway situations, as shown in Table 4.1. The first three, minimiz-
ing distance and two aspects of obstacle avoidance, relate to the task of traveling
to a goal, whereas the person avoidance, personal space for both people and the
robot, and tending to the right all relate to the social aspects of traveling around
people. Three further constraints—default velocity, facing the direction of travel,
and inertia—can be understood as both task and social conventions, because fail-
ing to observe them is both inefficient (task-related) and socially awkward (social
conventions).

In the following, cost functions for each constraint are expressed in terms of
s1, s2, and a, where s1 and s2 are world states, containing the robot’s position
(si.x, si.y, si.θ) and velocity (si.vx, si.vy, si.vθ) as well as the positions and veloc-
ities of people in the environment, and a is the action that moves the robot from
s1 to s2. Actions consist of the desired velocity triplet (a.vx, a.vy, a.vθ) as well as
an execution time (a.t). Not all constraints rely on all aspects of the world state;
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4.2. Constraints

a summary of influencing factors is shown in Table 4.2. The following sections
describe each of the constraints in detail.

4.2.1 Minimize Distance

When walking to some goal, people tend to choose paths that minimize their en-
ergy expenditure (Sparrow and Newell, 1998; Bitgood and Dukes, 2006), taking
shortcuts when available (Whyte, 1988). At some level, people plan to take the
shortest possible path to their destination. Thus, one part of the robot’s objective
function should be to minimize the overall path length to the goal. This cost is
computed by finding the distance traveled between two states, as follows:

cdistance(s1, s2, a) =
√

(s2.x− s1.x)2 + (s2.y − s1.y)2 (4.3)

Distance is also used as a heuristic function for the A* planner; that is:

hdistance(s) =
√

(sgoal.x− s.x)2 + (sgoal.y − s.y)2 (4.4)

This heuristic can be improved by initializing the minimum distance to the goal
from any point via a wavefront propagation algorithm, which is a simple method
for pre-computing the shortest distance to a goal from any point on a map.

4.2.2 Obstacle Avoidance

When navigating through an environment, a robot must avoid obstacles in some
way. In particular, the robot has a hard constraint against collisions with static
obstacles in the world. This is a standard constraint in robot path-planning algo-
rithms. To quickly compute collisions on the path between two states, we employ
the Bresenham Line Algorithm (Bresenham, 1965) on the robot’s map of its envi-
ronment. Actions that would produce a collision are discarded. All static obstacles
are assumed to be represented in the map. In our experiments, the map of the en-
vironment is learned in advance, but it could be continually updated as the robot
moves and detects new (non-human) obstacles.

4.2.3 Obstacle Buffer Space

In addition to hard obstacle avoidance, the robot also attempts to keep from travel-
ing too close to static obstacles. It does this by incurring a cost when it approaches
obstacles. While this cost is primarily for the robot’s safety, it also mimics human
behavior. The cost varies according to the robot’s speed and direction. The cost for
each point on the map is computed by considering a two-dimensional Asymmetric
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4.2. Constraints

(a) Robot (red circle) approaching some ob-
stacles (blue squares).

(b) Robot approaching obstacles, with
Gaussian cost function centered over the
robot.

Figure 4.2: Computing the obstacle buffer cost, for a robot driving at 1.0 m/s at a
30◦ angle. The cost for the robot to be in this state is the maximum value of the
Gaussian function intersecting any obstacle. If there are no obstacles, the cost for
the state is 0.

Gaussian function centered over the robot. The Asymmetric Gaussian function, as
we define in Appendix A, is composed of two halves of 2D Gaussian functions: an
elliptical function in one direction, and a different ellipse in the opposite direction.
For the obstacle buffer space, we define σ = v in the direction of the robot heading
(where v is the robot’s velocity), and σ = v/6 to the side (and behind). The cost is
the highest value of this Gaussian intersecting any obstacle in the environment. Ad-
ditionally, since the Gaussian function rapidly approaches zero, obstacles that are
far away from the robot can be ignored completely. This function gives a high cost
for driving quickly directly toward an obstacle, and lower costs for driving slowly,
particularly along the side of obstacles, such as along hallways. These particular
values of σ were chosen so that the robot would begin incurring costs within a 2-
second time window of obstacles to the front. See Figure 4.2 for a visual depiction
of how this cost is computed.

The obstacle buffer cost is computed in advance, according to obstacles known
on the map, and is computed for a discrete set of possible angles and velocities.
Figure 4.3 shows the cost regions and various speeds and directions of the robot,
for a simple hallway environment (which is used in Chapter 5). To compute the cost
of traveling between states s1 and s2, we again use the Bresenham Line Algorithm
in order to sum the costs for each discrete cell on the map that such a transition
causes the robot to pass through.
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(a) Map of a simple environment,
composed of intersecting hallways.
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(b) Obstacle buffer costs for the simple map
shown in (a), for the robot traveling at a ve-
locity of 0.3 m/s at θ = 0 (i.e., to the right).
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(c) Obstacle buffer cost region for the sim-
ple map shown in (a), for the robot traveling
at a velocity of 1.0 m/s at θ = 3π/4 (i.e.,
toward the upper left-hand corner).

Figure 4.3: Obstacle buffer cost regions for two robot velocities and directions,
where the shading corresponds to the cost of encountering that spot on the map. For
a faster speed (c), the cost regions cover a larger portion of the map. Furthermore,
the robot’s direction of travel influences the width of the cost region, so that the
robot incurs a higher cost when driving directly toward an obstacle rather than
along side one.
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4.2.4 Person Avoidance

While certain circumstances may arise in which a robot may be allowed to contact
a person, the robot must never plan a path that would attempt to drive through a
person at any point in time. In planning, this can be achieved by rejecting robot
actions that would cause the robot’s path and the person’s path to intersect.

To implement this constraint, we consider the rectangular swaths that a person
and the robot would each cover during one timestep. If the swaths collide, then
the constraint is violated. The robot’s width is assumed to be known; people are
assumed2 to have a width of 30 cm. While fairly narrow, this width will prevent
the robot from planning a path that directly intersects with someone while not
discounting paths that approach a person very closely. This computation is done
for each person in the environment.

Note that this constraint may actually not be desired in some situations, par-
ticularly if the robot’s prediction of people’s paths is overly naı̈ve. For example,
our current implementation naı̈vely assumes that stationary people will remain sta-
tionary, and moving people will always continue at the same speed and direction.
Thus, if a person is standing in the middle of a hallway and the robot cannot fit on
either side, the robot will attempt to find a path through an alternate hallway, or
will declare failure, rather than assume the person might shift out of its way. Fur-
thermore, we might want the robot to be able to nudge against people in a highly
crowded environment, which again would require that the robot reason about peo-
ple moving in response to it. As such reasoning about people is beyond the scope
of this research, we use the hard person-avoidance constraint to provide a level of
safety to the robot’s behaviors.

4.2.5 Personal Space

As discussed in Section 2.1, personal space, or more broadly proxemics, is the
“bubble” of space that people attempt to keep around themselves and others (Hall,
1966; Ashton and Shaw, 1980; Aiello, 1987). The shape of personal space is
asymmetric—greatest to the front of a person—but its exact size is not constant
and differs across cultures and familiarity groups (Baxter, 1970). Furthermore, the
size of personal space can change based on walking speed as well as other fac-
tors (Gérin-Lajoie et al., 2005).

Some attempts have been made to measure the robotic equivalent of personal
space (e.g., Nakauchi and Simmons, 2000; Walters et al., 2005). In general, these
studies have found that people tend to keep a similar space around a robot as if

2The actual width of a person could be used if it were sensed reliably.
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it were human, so the constraint to our planner should also respect human-like
tendencies.

The personal space constraint can be modeled as an Asymmetric Gaussian
function (see Appendix A). This function is our own formulation to model the
shape of personal space as defined in the literature; we are unaware of any pre-
existing mathematical formula for personal space. We align the cost function to
the person’s heading; that is, θ = θp. In this direction, the variance of the Gaussian
function is set to:

σh = max(2v, 1/2) (4.5)

where v is the person’s velocity. The variances to the side and rear are given as:

σs =
2
3
σh (4.6)

σr =
1
2
σh (4.7)

This cost function was designed to roughly match the personal space kept in the
United States, as described in Section 2.1. In particular, the cost is greatest in front
of a person, and least behind. Since personal space tends to have the same basic
shape (if not size) across cultures, modifying this cost to be more appropriate in
another culture requires only a scaling of σh.

Figure 4.4 shows the cost function for a person moving along the positive Y-
axis, with a velocity of 1.0 m/s. A special case is for a stationary person, for which
we force the cost to be symmetric, as shown in Figure 4.5. This is because the
robot cannot currently detect a stationary person’s orientation reliably. With better
sensing technology, this special case would not be necessary.

To compute the cost cpersonal−space(s1, s2, a) between two states, we compute
an approximate integral of the value of the Gaussian function over time (see Ap-
pendix A for details). The cost is summed for each person in the environment.

4.2.6 Robot “Personal” Space

As mentioned above, personal space can be described as the space people keep
around themselves as well as others. That is, people not only avoid entering the
personal space of others but also try to keep their own personal space free. Cur-
rently, we use the same formula for the robot’s “personal” space as we do for human
personal space, but with the size and orientation of the function dependent on the
robot’s velocity and facing rather than the person’s. If future research indicates that
people prefer a different amount of space between themselves and a robot, the cost
function can be grown or shrunk accordingly. The cost is summed for each person
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Figure 4.4: Personal space cost for a person moving at 1.0 m/s along the positive
Y-axis (up).
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Figure 4.5: Personal space cost for a stationary person. The cost function is sym-
metric because the robot cannot reliably detect a stationary person’s orientation.
Note the difference in scale from Figure 4.4; the personal space of a stationary
person is smaller than that of a moving person.
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in the environment. Since people far from the robot would incur an infinitesimal
cost, in practice the robot can ignore any person beyond some distance threshold
when computing the total cost.

4.2.7 Pass on the Right

When approaching a person who is traveling in the opposite direction, people typi-
cally avoid collision by moving to one particular side. In the United States, people
tend to move to their right (Bitgood and Dukes, 2006). This tendency can be mod-
eled by adding a region of increased cost to the right-hand side of people in the
environment. In a head-on encounter, this will cause the robot to prefer to stay to
its right (the person’s left). Modeling this convention in this way also accounts for
the tendency of people to pass a slower-moving person headed in the same direc-
tion on the left. As with personal space, the convention to pass on the right can
be modeled as an Asymmetric Gaussian function, as shown in Figure 4.6. For this
constraint, the parameters of the Asymmetric Gaussian function are given as:

θ = θp −
π

2
(4.8)

σh = 2.0 (4.9)

σs =
1
4

(4.10)

σr = 0.01 (4.11)

where θp is the heading of the person.
The small σr allows the function to remain smooth (though smoothness is not

strictly necessary). Note that this cost is dependent only on the person’s orien-
tation, not on their velocity, and is designed to reach well across most hallway
environments. However, no cost is incurred for a stationary person, as our own ob-
servations have indicated that people tend to the right only when passing someone
who is moving. The cost is summed for each person in the environment.

To modify this constraint for cultures that pass on the left, the cost function
merely needs to be rotated by 180◦, that is, θ = θp + π/2 (as we will show in
Section 5.1.3).

4.2.8 Default Velocity

To navigate around moving obstacles, the robot should be able to modify its speed
when appropriate—for example, so that the robot can slow down when an obsta-
cle unexpectedly moves into its path, rather than quickly swerving out of the way.
However, people tend to keep a set pace, as this minimizes their energy expendi-
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Figure 4.6: Tend-to-the-right cost for a person moving along the positive Y-axis
(up). The person is centered at (0,0). The robot can freely pass on the person’s left,
but incurs a cost for traveling on the person’s right.

ture (Sparrow and Newell, 1998). Similarly, the robot should prefer to keep a con-
stant velocity. Changes to the default velocity should result in a cost to the robot,
such that the robot would have a cost trade-off between slowing down versus trav-
eling a greater distance around an obstacle or person. We model this objective as
proportional to the absolute difference between the chosen velocity and the default
velocity; that is, both increases and decreases in speed incur a cost, and greater
changes cause greater costs. This cost is computed according to the following
equation:

cvelocity(s1, s2, a) = a.t
∣∣v0
x − a.vx

∣∣ (4.12)

where v0
x is the desired forward velocity. The cost is scaled by the time to

execute the action, so that if actions can have variable execution times (as they do
when a variable grid is used; see Section 4.4), the cost will also differ. Because
of the time scaling, this cost is typically small, and thus may require a higher
weighting in the overall objective function to cause a significant change in the
planner’s behavior. Since moving quickly over one grid cell requires less time than
moving slowly the same distance, this function tends to prefer speed increases over
speed decreases. However, this tends to be balanced by other constraints that cost
more at faster speeds, such as the “obstacle buffer” and “robot ‘personal’ space”
constraints.
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4.2.9 Face Direction of Travel

Humans are able to sidestep around obstacles without changing their facing. While
not all robots (such as common differential-drive robots) are capable of sideways
movements, those that are should be able to take advantage of this type of holo-
nomic3 movement. However, just as people do not typically sidestep for extended
periods of time—such as down entire hallways—the robot should incur a cost for
sideways maneuvers. For people, this behavior results from a kinematic expense to
stepping sideways (that is, walking forward requires less energy); even if the same
is not true for a robot, sideways movement over long distances is also socially
awkward.

As with the “default velocity” constraint, this cost can be modeled as propor-
tional to the difference from a default velocity. In this case, we consider only the
velocity in the sideways (y) direction, and wish to keep that velocity at 0:

cfacing(s1, s2, a) = a.t |a.vy| (4.13)

In addition, this cost is also scaled by the action time, resulting in generally
small costs per action.

Unfortunately, most robots that are used in human–robot interaction research
are non-holonomic, and thus cannot produce this human-like sidestepping behav-
ior. The identification of this constraint led to our development of a new robot for
human–robot interaction studies (see Chapter 7).

4.2.10 Inertia

The inertia constraint is similar to the “default velocity” constraint, except that it
applies to rotational velocity. Again, just as people prefer to move in a straight line,
the robot also should prefer to keep the same heading, rather than turning.

cinertia(s1, s2, a) = |α| (4.14)

where α is the normalized difference in angle between states s1 and s2 (that is,
−π < α ≤ pi). On an 8-connected grid with discretized actions, the magnitude of

3Technically, the term “holonomic” relates to degrees of freedom versus degrees of control. In
this document, we focus on robots that move in a single plane (e.g., a floor), and assume that the
robots have three degrees of freedom (x, y, and θ). In this context, a holonomic robot can control
all three degrees of freedom instantaneously, while a non-holonomic robot typically has only two
degrees of control—usually forward and turning, but not sideways (y) movements. Thus, in this
document, we tend to use the term “holonomic” to imply “sideways-capable,” even though this is an
over-simplification.
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turning is not changed with different action execution times; as a result, this cost is
not scaled by time.

4.3 Weighting the constraints

All of the constraints given above must be combined into a single objective func-
tion. As discussed in Section 4.1, we use a linear combination in which each
constraint has an associated weight. In this section, we will discuss this weighting.

Social conventions are tendencies toward a particular type of behavior; they
are not hard rules. Individual people vary widely in their particular behaviors. We
argue that the COMPANION framework can be used to create a range of socially
acceptable behavior using different relative weights between the constraints given
in the previous section. That is, though different sets of weights will produce dif-
ferent behaviors, we argue that socially acceptable behaviors will result from any
number of such sets. The resulting behavioral differences resulting form differ-
ent weightings can be interpreted as different “personalities,” as we will discuss in
Section 5.1.2.

Some weights can be determined analytically, given a desired behavior. For ex-
ample, consider the “face direction of travel” and “inertia” constraints. The relative
weighting of these two constraints will determine whether the robot will sidestep
a static obstacle or turn in an arc around it, as shown in Figure 4.7. Driving on an
arc around the obstacle requires two 45◦ turns, given an 8-connected grid. Since
the “inertia” cost is equal to the radians turned, such a maneuver will represent a
constant cost of winertia · π/2. Keeping a constant heading while sidestepping the
obstacle incurs a cost relative to the distance moved sideways. If the robot moves s
meters to the side, then this cost is wfacing · s. Suppose we want the robot to move
sideways for a maximum of 1 meter, and turn to face travel for longer stretches.
We thus want the following inequality to hold:

s · wfacing <
π

2
winertia for s < 1 (4.15)

s · wfacing >
π

2
winertia otherwise (4.16)

Thus, the relative weights of winertia = wfacing · π/2 will satisfy the above equa-
tions. Note, though, that setting the weights in this way will not force the robot
to move sideways for 1 meter in all cases, particularly when the robot is moving
around a person. This is due to additional constraints that rely on the robot’s head-
ing, such as the robot’s “personal space.” In particular, the robot may prefer a turn
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(a) Driving
on an arc.

(b)
Sidestep-
ping.

Figure 4.7: Two ways of navigating around an obstacle: keeping the same heading
while sidestepping (b), or always facing the direction of travel while driving in an
arc around the obstacle (a). Arrows on the paths indicate the direction the robot is
facing and are drawn every 40 cm.

that keeps a person out of its space, even if the cost of moving sideways is less than
the cost from turning.

We can compute similar relationships between other constraints to determine
particular behaviors. For example, the relative weights between the “shortest dis-
tance” and the “obstacle buffer” costs will determine how close the robot will ap-
proach corners when turning. However, such a relationship is more complicated
than that shown above, due to the more complicated mathematical form of the
“obstacle buffer” cost, and also because “obstacle buffer” cost varies according to
the robot’s speed, adding an additional dependency on the “default velocity” con-
straint. Defining all such relationships is beyond the scope of this research, as our
goal is to produce generally social behavior, rather than specifically model one par-
ticular behavior. Section 5.1.2 demonstrates some examples of how different con-
straint weights can be selected to produce desired behaviors. General relationships
between constraints can be seen in Table 4.2; any constraints with overlapping in-
fluences will interact with each other. Desired weights could be learned from a
training set composed of tele-operated robot data, but that is beyond the scope of
this research (see Chapter 8).

Note that the use of a weighted linear combination of constraints precludes a
ranked preference ordering. To some extent, preferences can be encoded in the
weights; more highly ranked constraints should have greater weights than those
ranked lower. However, the COMPANION framework does not support fully dis-
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joint constraints, in which only one of several constraints can hold. As we have not
identified any such disjoint social conventions, we do not consider this a limitation
of the framework.

4.4 Implementation details

We have implemented the COMPANION framework using the Carnegie Mellon
Robot Navigation Toolkit (CARMEN4). CARMEN provides drivers for many com-
mon research robots and sensors, as well as a complete simulation environment.
We replaced the built-in path planner and navigator with our own implementation,
written primarily in C++.

The remainder of this section discusses specific aspects of our implementation.

4.4.1 Search space

A* searches over a discrete state space, so one key design decision is the imple-
mentation of that state space. Clearly, the state space contains the state of the robot,
including its x-y position and orientation. Since we allow the robot to travel at dif-
ferent speeds, its velocity (in x, y, and θ) must also be contained in the state space.
In addition, the state space must contain some representation of people’s locations
relative to the robot, and the connectivity between states must be defined. These
two design aspects are detailed below.

Representing people

A key tenet of the COMPANION framework is that people cannot be treated as
static obstacles: the robot must react to people’s dynamic movements through
time. A common approach to planning with dynamic obstacles is to add time
to the state space, effectively adding another dimension to the search space (e.g.,
Fraichard, 1999). Unfortunately, this adds a great deal more complexity to the
search. Some approaches to managing this complexity include using random plan-
ners (e.g., Zucker et al., 2007) or reducing the available action space (e.g., the
“canonical trajectories” of Fraichard, 1999). In contrast, our approach is to include
the dynamic obstacles (e.g., people), if present, in the state space. This yields sev-
eral benefits over the state-time representation. To understand why, note that the
A* planner, with an admissible heuristic, does not need to examine a state more
than once; if it encounters a previously examined state, the new path to that state is
guaranteed to be more costly than the one found initially. Adding time to the state

4CARMEN is available online via http://carmen.sourceforge.net
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space greatly decreases the chances of A* encountering the same state (at the same
time) more than once, thus greatly increasing the search time. Adding dynamic
obstacles to the state space results in more overlap. In addition, if the planner is
allowed to ignore obstacles behind it or moving rapidly away from it (since such
obstacles are unlikely to affect the robot’s path), the state space can be simplified
further. This allows the planner to consider dynamic obstacles with less complexity
than a state-time space search entails, while also not limiting the robot’s available
actions.

Obstacles are assumed to move in continuous space, even though planning
occurs on a grid. To account for this, two world states are considered the same if
the robot is in the same state (position, orientation, and velocity) and if all dynamic
obstacles are “close enough” to the same positions. We allow “close enough” to
vary with the obstacles’ distance from the robot. Thus, when obstacles are far from
the robot, their positions are considered more coarsely.

Action space

We discretize searching on an 8-connected grid. However, to account for some
aspects of vehicle dynamics, not all adjacent states are reachable from any given
state. We allow the following actions: straight, forward left turn, forward right turn,
stop, sideways left, forward sideways left, sideways right, and forward sideways
right. These are shown in Figure 4.8. The first three actions may be executed at
any of three speeds: the default speed (for which we typically use 0.5 m/s), a faster
speed (0.75 m/s), and a slower speed (0.25 m/s). All actions are not available at
multiple speeds to keep the action space tractable. This yields a total of 14 actions
at each state. Note, though, that path execution (that is, robot navigation) occurs at
a finer granularity (see Section 4.4.4).

4.4.2 Real-time search techniques

Robots that operate in the real world need to respond rapidly to changes in the
environment. A plan to the robot’s goal, generated at the robot’s starting location,
quickly becomes invalidated as the environment changes or the robot receives new
information. A challenge in mobile robots, then, is replanning paths as quickly
as possible. Especially challenging are environments with dynamic obstacles and
obstacles with associated costs, such as personal space around people, buffer zones
around dangerous vehicles, or rough terrain. Because sensors are imperfect, robots
navigating in dynamic environments must replan whenever they receive new sen-
sory data in order to ensure a safe, low-cost path.
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(a) Non-holonomic actions.
Each of these three actions
may be executed at any of
three speeds (e.g., default,
faster, and slower).

(b) Holonomic actions; none
of these actions changes the
robot’s orientation. Each
of these actions may be ex-
ecuted at only the default
speed.

Figure 4.8: Non-holonomic (a) and holonomic (b) actions available to the planner.

As discussed in Section 4.1, we use the heuristic planner A* (Hart et al., 1968)
to produce optimal paths, according to the given cost function. However, A* alone
typically cannot run repeatedly in real-time, which is necessary for a mobile robot
operating in the real world. While many variants of A* have been developed to
operate in real-time (e.g., D*; Stentz, 1994), none are capable of replanning for a
moving robot amongst dynamic obstacles, particularly when those obstacles have
associated costs (e.g., personal space). In order to run our planner in real-time,
we modify the search space in various ways. Our primary modification involves
the use of a variable search grid; others include limiting the action space, ignoring
people behind the robot, and searching on a gradient to the goal. Each method is
described below.

All of these modifications present trade-offs between search time and optimal-
ity; the use of any may result in sub-optimal paths as compared to the un-modified
results. However, if the modifications allow the planner to run rapidly enough,
only the first action of any single plan will be executed. Thus, the modified plan-
ner may still produce optimal behavior from a navigational perspective, even if the
individual plans are not globally optimal. Even if the first action of a faster planner
differs from the optimal plan, such sub-optimal behavior may be acceptable in or-
der to have the robot react rapidly to incoming sensor data. As computer processor
power improves or newer A* approaches are developed, such modifications may
become unnecessary.

Variable grid

Heuristic path planners rely on predictive heuristics, such as the remaining distance
to the goal, in order to guide the search. Poor heuristics can cause the search to
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examine more nodes than necessary. Costs associated with dynamic obstacles (e.g.,
people) are difficult for heuristic planners because these factors typically do not
have useful predictive heuristics. Thus, when a heuristic planner encounters such
an obstacle, it must expand a large number of nodes in order to find an optimal
path. Unfortunately, heuristic planners such as A* typically have a run-time that is
worse than linear in the number of nodes expanded. Reducing the number of nodes
the search must expand thus improves the search time.

Our approach (Kirby et al., 2009b) is to modify the search space used by the
A* planner. In this way, the planner can be used unchanged. In particular, rather
than performing the entire search on a regular grid, as most planning algorithms
do, we decrease the resolution of the search further from the robot. That is, only
the areas near the robot are searched carefully; areas further from the robot are
searched more coarsely. Because this results in many fewer search nodes, planning
can occur rapidly. New plans can thus be generated repeatedly as the robot moves,
so that the robot will always have a fine-grained path defined for its next action.

This method is related to hierarchical decompositions of space, such as quad-
tree-based approaches (as described in Section 2.2.2). Our particular approach uses
a variable grid that is composed of regions of regular grids of decreasing resolution,
spanning outward from the robot’s position, as shown in Figure 4.9. The key idea
behind this method is that, if the search can be done quickly enough, then the
robot can regenerate plans at each timestep (as it gets new sensor information).
Thus, the plan needs to be at a high resolution only near the robot; a rough path
is sufficient further from the robot, because the robot will generate a new plan
before reaching those areas. Our approach differs from other hierarchical planners
in that the grid does not remain static between searches; rather, the grid changes
as the robot moves, keeping the finest-resolution cells centered over the robot’s
position. In addition, by using an implicit representation of the changing grid cells,
our approach does not require any additional memory over a typical A* search.

An important aspect of using a variable grid is that action costs may need to
scale in relation to the grid size. For example, the “shortest distance” cost must
be the actual distance between two grid cells, and thus a larger cost at larger cells.
Similarly, the “default velocity” cost is scaled by the travel time, so that larger cells
incur larger costs. However, not all costs need to scale; for example, the “inertia”
cost relates to the absolute change in heading angle, which does not change at a
coarser grid.

Additional design challenges in implementing the variable-grid-cell planner
include selecting the grid variations, handling the boundaries between resolutions,
and aligning the grid, which we discuss below.
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Figure 4.9: A variable grid used for planning. The grid resolution decreases with
the distance from the robot (blue circle). Shown are three grid sizes: the finest
resolution is close to the robot (within the green circle), next greater is between the
green and red circles, and the greatest resolution is furthest away from the robot.

Selecting the grid variations One design consideration with this approach is
how to select the grid variations: what resolutions to use, and at what distances to
change the resolution. Close to the robot, the planner should use the finest reso-
lution available (e.g., the map resolution). The distance at which the planner can
switch to a coarser resolution is dependent primarily on the speed of the robot; the
planner should always be able to provide a detailed path for several timesteps. Fur-
ther away from the robot, a coarser resolution will yield faster path computation,
as long as the grid cells are not allowed to be overly large for the environmental
conditions.

Furthermore, we must consider obstacles within each grid cell. At the finest
resolution available (near the robot), each cell is either occupied or free. However,
at coarser resolutions, a grid cell may be only partially free, and partially filled
with obstacles. One approach for handling obstacles would be to declare a cell
that contains any obstacles to be completely blocked, but this may result in planner
failure if even small obstacles appear as large blockades in coarser resolutions. Our
approach is to check for obstacle collisions on the straight-line path between grid
cell centers, as described in Section 4.2.2.

Dense environments present difficulties for planning on larger grid cell sizes.
For example, suppose that the robot will need to navigate through a 1-meter-wide
doorway close to the goal. If the grid cell size near the doorway is fairly large
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Figure 4.10: A plan generated on the variable grid. Since plans are generated
between node centers, a “straight” path may appear to have turns in it.

(say, 0.6 m or 0.8 m), then planning between cell centers may not find a free path
through the doorway. This shortcoming can be avoided entirely if one has sufficient
a priori knowledge of the environment and tailors the grid cell size accordingly.
Unfortunately, this may not always be possible. In more complex environments, it
may be necessary to perform sub-searches on some of the larger grid cells before
declaring them impassable due to obstacles, perhaps using a method similar to the
Framed Quadtree approach (Yahja et al., 1998). Since our approach assumes that
the robot has a map of the environment (which typically results in poor perfor-
mance by Framed Quadtrees), one could pre-label obstacle-dense regions on the
map that should always be searched at a fine resolution. An alternative approach is
to probabilistically estimate the passability of coarser cells, based on their obstacle
density.

Resolution boundary challenges An implementation challenge in variable-grid
planning is handling the boundaries between resolutions. The primary difficulty
involves determining what actions occur at the boundaries, as illustrated by Fig-
ure 4.10. However, this challenge can easily be overcome by assuming that the
robot will always generate a new plan before it reaches a section of the path that
uses a larger grid cell size.

Because actions late in the planned path are assumed never to be executed,
the actions across resolution boundaries need only be approximate. Before the
robot reaches any of the approximate actions on the plan, it will have generated
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a new plan with high-resolution initial actions. This can be guaranteed by simply
having the navigation algorithm stop the robot if too much time has elapsed since
generating the last plan.

Actions within each section of the grid should move the robot to a neighboring
cell of the same resolution. As long as the coarser-resolution sections are integer
multiples of the initial grid resolution, computing the within-section actions is triv-
ial. At the boundaries between resolutions, though, actions will not necessarily
move the robot to the center of the next grid cell. However, if we assume that the
actions are only approximate, as mentioned previously, the path can be aligned to
the grid by simply rounding the position to the center of the nearest grid cell. This
allows planning to continue on a discrete grid.

Since we are able to approximate the robot’s location to a grid cell of any
resolution and we are able to compute each cell’s occupancy on the fly, we are able
to keep the variable grid implicitly defined over the given fine-grained map. That
is, the variable grid incurs no additional memory requirements over the map itself.

Aligning the grid Since the grid is implicitly defined, the robot can overlay its
own grid with an arbitrary frame of reference. We consider three notable reference
frames: the global map frame, which is fixed to the map definition; the environment
frame, which may vary throughout the environment (e.g., if hallways are not all
at right angles to each other); and the robot’s frame, which changes as the robot
moves. For hallway travel, a reference frame that does not align with the hallway
results in crooked paths, as shown in Figure 4.11.

Ensuring that the robot always plans on a properly aligned grid could be ac-
complished by hand-labeling alignment on a map, or by attempting to compute the
hallway alignment automatically, as needed. Another method is simply to align the
grid to the robot’s position and orientation. This will periodically generate paths
such as shown in Figure 4.11(b). However, since the robot is generating new plans
continually, if the robot is turning, then each new path will have a slightly different
grid alignment. Thus as the robot sweeps through a turn, it will eventually com-
pute the straight-line path down the hallway. In the absence of other obstacles, this
straight-line path will have the lowest cost, causing the robot to continue straight
down the hallway. Thus, in most cases, the robot will eventually align itself to the
hallway, typically as the robot executes the first turn in its path.

Other speed improvements

Additional improvements result from further reducing the search space in various
ways. We have designed three simple search space reductions that may be benefi-
cial for current real-time operation:
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(a) Map, environment, and grid all aligned. (b) Grid aligned to map, but not environment.

Figure 4.11: Examples of how the grid alignment influences possible paths the
robot might take. Aligning the grid to the hallway (a) produces the shortest path.
In (b), the robot cannot choose a path straight down the corridor, because the grid
is misaligned.

• Limit action space at coarser resolutions. As discussed above, we allow for
14 possible actions at each state (Section 4.4.1). That is, for each state exam-
ined, as many as 14 additional states are added to the search tree. However,
if the search operates rapidly enough, the actions far from the robot can be
considered approximate; the robot will always generate a new plan before
executing actions that occur late in the path. We can thus greatly reduce
the action space—for example, eliminating velocity changes and sideways
maneuvers—further from the robot. One way to implement this is to use the
full action set only at the smallest grid resolution, near the robot, and to use
a minimal action set (e.g., only the three actions of forward, left turn, and
right turn) at any larger resolutions.

• Ignore people behind the robot. During planning, the robot must predict
people’s future movements over time. As the robot searches for a plan, it
may search states in which the robot has driven past a person. If that person is
now behind and moving away from the robot, then the robot can reasonably
assume that its future path will not depend on that person in any way, and can
thus drop the person from the states searched outwards from that point. Since
we treat people, rather than time, as part of the state space (see Section 4.4.1),
dropping people in this manner can greatly reduce the search space and,
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thus, improving the search speed. This method is particularly useful for
robots with a limited sensor range, as people need to be considered only
from the point at which they are detected until the point at which the robot
passes them. However, this method can occasionally result in the planner
computing awkward paths in which the robot drives away from the person,
in order to eliminate him from the search space, before continuing on toward
the goal.

• Search on a gradient to the goal. Finally, the search speed can be improved
by imposing a hard constraint on the robot’s direction of travel, such that
it must always drive along a gradient toward the goal. In particular, at the
start of each search, we can use a wavefront propagation algorithm from
the goal outward to find the shortest distance path from any point on the
map. By limiting how much the robot’s path can deviate from the distance
gradient, we remove from the search space any states in which the robot is
driving away from the goal. Note that if the deviation is limited to zero (that
is, the robot must follow the gradient), then the other constraints will have
minimal (if any) impact on the path. Furthermore, if the limited deviation
is sufficiently high so as to allow travel in the opposite direction of travel,
then this constraint will have no effect. Rather, the threshold must be set to
a value in between these extremes.

Note that this method violates the argument presented above for global path
planning (see Section 4.1), as it forbids the robot to seek out an alternate,
significantly longer path to the goal. Because the gradient constraint is
formed from the shortest distance to the goal, this method resembles a hy-
brid planning approach, in which a path is planned first according to task
constraints (shortest distance) and then perturbed by social conventions. As
previously discussed, this does not fully model people’s behaviors. How-
ever, this method is a reasonable temporary measure to improve the speed of
the search in lieu of faster processing speeds. In addition, this approach may
be useful in environments that are known not to have alternate routes, such
as in enclosed hallways.

4.4.3 Laser-based person-tracking

The person-tracking method used in this implementation is similar to that described
in Section 3.1. However, we modified the tracker in two key ways: first, to use a
map of the environment, and second, to better smooth the tracked velocities.
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Algorithm 4.2 Pure Pursuit path-following algorithm, from Coulter (1992).

1: Determine the current location of the vehicle.
2: Find the path point closest to the vehicle.
3: Find the goal (look-ahead) point.
4: Transform the goal point to vehicle coordinates.
5: Calculate the curvature and request the vehicle to set the steering to that cur-

vature.
6: Update the vehicle’s position.

Map-based tracking

For this work, we make the simplifying assumption that the robot has an accurate a
priori map of the environment, which is necessary for global path planning.5 The
robot uses the map to match a given laser scan to its location in the environment.
Non-matching segments of scans are segmented into person-sized blobs, which are
tracked continuously using particle filters.

Velocity smoothing

Because several of the social constraints in our framework depend on the person’s
direction of travel, the robot needs to have an accurate estimation of the person’s
velocity. We do this by performing a linear least-squares regression on the person’s
tracked position over time. In planning, the robot uses the most current estimation
of the person’s velocity to predict his or her future location.

4.4.4 Navigation

Plans are generated rapidly, and the robot must be able to navigate along the paths
as they change. Due to both odometry slippage and nuances of the localization
algorithm, the robot is not guaranteed to remain precisely on the path at any given
time—in fact, the robot will almost never be located exactly on the path’s discrete
grid. To keep the robot following the plan as closely as possible, then, we use
the Pure Pursuit path-following algorithm (Coulter, 1992), which guides the robot
back onto the path if it strays or if a new path is planned. The basic algorithm is
given as Algorithm 4.2.

Line 3 of the Pure Pursuit algorithm computes a look-ahead point some dis-
tance ahead of the robot on the path, toward which the robot is then commanded to

5This could be generalized by having the robot run a simultaneous localization and mapping
(SLAM) algorithm.
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steer. In our implementation, we use a constant look-ahead of 0.75 m. However,
if the path curves around an obstacle, the look-ahead will cause the robot to clip
the corner, potentially causing a collision. We thus consider all of the points be-
tween the robot’s location and the look-ahead point on the path, in comparison to
the straight line connecting those two points. If any point along the path deviates
more than 0.20 m from the line, that point is used as the look-ahead. Once the
look-ahead point has been found, we compute the necessary curvature to steer the
robot toward that point.

The basic Pure Pursuit algorithm computes only the desired steering angle to
some look-ahead point, but does not explicitly provide a means of computing a
desired velocity. Though the plans we generate include the desired velocity at
each state, the given action may not lead the robot correctly along the path (e.g., if
the localization places the robot at a point other than one of the path waypoints).
Furthermore, for holonomic robots, the navigation method must consider whether
the desired action to some state is to move along an arc or to drive sideways. We
make this decision based on the desired action associated with the robot’s closest
point on the path. If that action does not have any sideways movement (i.e., vy =
0), then the robot is commanded to drive along an arc with the action’s specified
vx, and the corresponding vθ, according to the formula:

curvature =
vθ
vx

(4.17)

If, instead, the action has a non-zero sideways velocity, the robot is commanded
to drive on the straight-line path toward the look-ahead point, with the action’s
desired velocities scaled to produce the appropriate angle.

Each plan is followed until a new plan is received. Since the planner typically
runs as fast as new sensor data is received, the navigator will always have a high-
resolution action to follow.

4.5 Summary

In this chapter, we have introduced the COMPANION framework: a Constraint-
Optimizing Method for Person–Acceptable NavigatION. The framework is based
on two key points:

• Appropriate social behavior requires global planning through the environ-
ment; and
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• Social behaviors can be represented by constraining the path planner to min-
imize a set of mathematical cost functions (that represent social and task
conventions).

Global planning is necessary to model human-like behavior. For example, de-
spite social conventions such as “tend to the right side of a hallway when passing
oncoming people,” people often move to the left side of a hallway in anticipation
of a left-hand turn. We argue for the use of an optimal heuristic planner, such as
A*, rather than using locally reactive obstacle avoidance.

We define a set of constraints (in the forms of hard limits and of cost func-
tions) that represent the task of traveling through hallways while observing social
conventions. These constraints include:

• Minimizing the distance traveled to conserve energy while traveling to a
goal;

• Avoiding obstacles;

• Keeping a safety buffer around obstacles;

• Avoiding people, including keeping out of their personal space;

• Protecting the robot’s own “personal” space;

• Tending to the right when passing people;

• Keeping a default velocity, so as not to expend extra energy;

• Facing the direction of travel, but allowing for sidestepping obstacles as peo-
ple do; and

• Maintaining forward inertia, rather than zig-zagging.

These constraints are combined into a single objective function by adding the
weighted cost of each constraint. The weights can be determined by a number of
methods, and we argue that socially appropriate behavior can be achieved with a
wide variety of constraint weights.

Finally, this chapter discussed some of the particular details and compromises
to consider when implementing the COMPANION framework for real-time plan-
ning and execution. These include the representation of state space for the search,
several methods aimed at improving the speed of the planning, and details on other
components required to run the framework in a complete robot system (namely
person-tracking and navigation). The next chapter details the behavior of the im-
plemented system in both simulated and real robot studies.
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Chapter 5

Hallway Interactions

Chapter 4 introduced the COMPANION framework for person–acceptable naviga-
tion and discussed details of its implementation. In this chapter, we present several
key results showing the COMPANION system operating in hallway environments.
We present results both in simulation (Section 5.1) and in user studies with the
robot Grace (Section 5.2). These results show that the framework is capable of
producing socially acceptable paths.

5.1 Simulations

To understand the behavior of the COMPANION framework in the context of hall-
way interactions, we ran a large test suite of simulated scenarios. Obviously, there
are an infinite number of possible situations; here, we present only a limited num-
ber that demonstrate the system’s behavior.

Unless specified otherwise below, trials were run using all constraints defined
in Section 4.2, with the weights shown in Table 5.1. For these scenarios, all con-
straints were given integer weights from 1 to 3. The “personal space,” “robot
‘personal’ space,” and “pass on the right” constraints were each given a weight
greater than the similar buffer around obstacles; that is, we allowed the robot to
move closer to static obstacles than to people. The robot’s “personal” space was
weighted more highly than the standard “personal space” constraint, which can be
interpreted as letting the robot be less willing to have people directly in front if it
than for it to be directly in front of people; this was done in the interest of safety.
Finally, the remaining three costs—“default velocity,” “face the direction of travel,”
and “inertia”—were each given a weight of 2, to produce smoother overall paths.
Different sets of constraint weights are addressed in Section 5.1.2 below.
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Table 5.1: Constraint weights used in the objective function. In addition, the hard
constraints of avoiding obstacles and people were used.

Constraint Name Weight (wc)
Minimize distance 1

Obstacle buffer 1
Personal space 2
Robot space 3
Pass on right 2

Default velocity 2
Face travel 2

Inertia 2

In general, the various methods discussed in Section 4.4 for improving search
speed were not used in the simulation experiments. That is, all searches were
performed on a constant grid of 10 cm by 10 cm squares; all actions were available
at each search step; people were never eliminated from the state space, regardless of
their distance from the robot; and we did not limit the search space with a direction
gradient. In most cases, each experiment was performed only once, as the path
planner produces deterministic results. Only when probabilistic elements, such as
localization and person-tracking, are added, such as in Section 5.1.5, must the path
planner be run repeatedly to understand the full system behavior.

The robot being simulated has a circular base, 45 cm in diameter, and is ca-
pable of holonomic movement. This matches the specifications of the Companion
robot, described in Chapter 7, which was under development at the time of these
experiments. The computer used for the simulations contained a dual-core Pentium
processor with a 3.4GHz clock speed and 2GB of RAM, and ran the Ubuntu Linux
operating system (version 8.04).

5.1.1 Head-on encounters

Here we present a set of scenarios in which the robot must navigate an intersection
of two hallways. We use an artificial environment with well-defined, symmetric,
straight walls, as this provides a better visual understanding of the robot’s behavior.
The environment is 10 m by 10 m, with two intersecting hallways; the main hallway
is 3 m wide, and the intersecting hallway is 2 m. To establish a base case, we
simulated the robot planning a path to each of three goals: a right turn, a left turn,
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(a) Goal requiring the robot to turn right (b) Goal requiring the robot to turn left

(c) Goal straight ahead of the robot

Figure 5.1: Paths planned for the robot to each of three goals in a simple environ-
ment with no people present. The robot (blue circle) begins centered in the lower
part of the hallway; the goals are shown in yellow. The environment is 10 m by 10
m, and the hallways are 3 m and 2 m wide.
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Table 5.2: Search statistics for paths planned for the robot to each of three goals in
a simple environment with no people present.

Goal location Path length Path cost Search time Nodes searched
Right 7.77 m 10.95 0.12 s 4175
Left 7.89 m 11.07 0.13 s 4185

Straight 8.00 m 8.00 0.008 s 81

or straight ahead. These paths can be seen in Figure 5.1. Note that each goal is
comprised of both location and orientation; that is, the robot must also face right at
the right-turn goal, and so on. Statistics for these searches are shown in Table 5.2.
The larger search space and time for the “left” and “right” conditions are due to the
need to search around a corner in each case; similarly, the path costs are higher in
these conditions due to the turns (thus incurring inertia costs), as well as obstacle
buffer costs near the corners. The slight asymmetry between the left- and right-
turn goals is due to alignment on the 10 cm grid cells. In these scenarios, the only
actions used are forward and turning maneuvers at a constant speed.

To understand the planner’s behavior in simple head-on encounters, we intro-
duced a single person into the environment. The person began facing the robot
with one of three starting locations:

• The left of the hallway with respect to the robot (i.e., the right with respect
to the person);

• Centered in the hallway; or

• The right of the hallway with respect to the robot (i.e., the left with respect
to the person).

These locations are shown in Figure 5.2. Furthermore, the person moved at one of
three speeds (slower than, faster than, or the same speed as the robot). The person
locations were chosen so that the robot could physically pass on either side of the
person in all cases. Each person location and speed combination was used with
each of the three robot goals, yielding 27 possible scenarios. Pictorial results from
all scenarios are presented in Appendix B; here we present statistics and some key
aspects.

In all cases, the robot’s plan required it to move out of the way of the person,
keeping a minimum of 0.41 meters away (average 1.13 m), as measured robot-
center to person-center (as both robot and person have width, the actual free space
between them would be smaller—on average about 0.75 m side-to-side). In 18 out
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Figure 5.2: Three possible starting locations for the person. Note that the location
names are given with respect to the robot’s starting location and orientation (bottom
of the hallway, facing up), rather than with respect to the person’s orientation.

of 27 cases (67%), the robot stayed to the person’s left; that is, the robot stayed to its
own right in the hallway, which corresponds to “typical” human social behavior.
In the remaining 9 cases (33%), the robot crossed to the person’s right (i.e., the
robot moved to the left of the hallway). These cases occurred under the following
situations:

• The robot must turn left, and has sufficient time to make the turn before
encountering the person—2 cases;

• The robot must turn (right or left), but a person is traveling quickly toward
the robot on the “wrong” side of the hallway (i.e., on the robot’s right)—4
cases;

• The robot must travel straight, but a person is traveling toward the robot on
the “wrong” side of the hallway—3 cases.

In the cases where the robot moved to the left of the hallway, it also kept a
greater side-to-side distance to the person (minimum 0.70 m, mean 1.22 m). In-
tuitively, all of these cases correspond to “reasonable” social behavior: either the
robot crosses to the left side in advance of a turn, as people often do (Bitgood and
Dukes, 2006), or the robot moves to its left in reaction to the person moving along
the “wrong” side of the hallway.

Two interesting cases are shown in Figure 5.3. These two scenarios are mirror
images of each other; in Figure 5.3(a), the robot’s goal requires a right turn, and the
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(a) Goal requiring a right turn, with a person
to the robot’s right.

(b) Goal requiring a left turn, with a person to
the robot’s left.

Figure 5.3: The two scenarios pictured here are mirrored. In both cases, the person
is moving at 0.3 m/s. Because of the asymmetric “tend to the right” constraint, the
robot’s paths differ markedly. The points at which the robot and person are closest
on the path are marked.

person is traveling on the robot’s right; while in Figure 5.3(b), both the goal and the
person are on the robot’s left. In both, the person is traveling at 0.3 m/s. However,
the paths generated are not symmetrical, due to the “tend to the right” constraint.
That is, the robot keeps to the right side of the hallway, despite the option for a
shorter path, which would put the robot to the socially “wrong” side of the person.
Of further interest in Figure 5.3(b) is that the actions the robot chooses to shift to
the right side of the hallway are sideways holonomic moves, rather than turns.

Another interesting behavior can be seen in Figure 5.4. In this situation, the
robot’s goal is on the right, and a person is walking on the robot’s left at a speed
of 0.5 m/s. As the robot approaches the person, it plans a 45◦ turn toward the goal,
at a point slightly earlier than would allow the robot to pass the hallway corner
safely. It then keeps the same orientation but moves straight up the hallway—
that is, driving sideways—for approximately one-half meter, during which time it
passes the person. This behavior is due to the “robot ‘personal’ space” constraint.
The robot prefers to drive along a sideways angle for a short distance rather than
let the person enter the robot’s “personal” space. This is similar to a person angling
her shoulders away from someone as they pass each other.

Figures 5.5 and 5.6 indicate how the paths generated around people differ from
the baseline paths (which were shown in Figure 5.1). These graphs aggregate the
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(a) Overall path. (b) Passing the person: the robot is angled to-
ward the goal but is driving straight along the
hallway.

Figure 5.4: An interesting holonomic behavior. The robot turns and drives straight
at a 45◦ angle, then keeps the same orientation but drives sideways, straight up the
hallway, for a brief period before continuing along to the goal.

27 cases according to either the goal location, the person’s location, or the person’s
speed. From Figure 5.5, which shows the change in path length as a ratio versus
baseline, we see that all conditions caused about the same increase in path length.
Interesting to note is that two cases actually caused the robot to take a slightly
shorter path than the baseline; this is because the robot chose to travel closer to
the hallway corner to avoid the person, incurring a larger obstacle buffer cost but a
shorter overall path.

Figure 5.6 shows the change in actions selected versus the baseline cases. The
actions are grouped by type: changes in vx, changes in vy, and changes in vθ,
which correspond to the “default velocity,” “face direction of travel,” and “inertia”
constraints, respectively. The largest changes were sideways maneuvers (changes
in vy), particularly when the goal was straight ahead. With respect to the per-
son’s location in the hallway, the robot typically avoided a person on its left us-
ing more sideways maneuvers than velocity changes or turns, whereas other peo-
ple were avoided with all three possible types of actions. In general, the robot
planned to side-step people on the left (socially expected) side, while it preferred
to drive quickly out of the way of people centered or on the right. Similarly, the
robot avoided slower moving people with primarily sideways maneuvers, but used
a combination of different actions to avoid faster people.
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Figure 5.5: Ratio of path length required to travel around a person versus optimal
path to goal with no person. Error bars indicate minimum and maximum values.
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Figure 5.6: Change in types of actions due to planning around a person, versus
optimal path to goal with no person. Error bars indicate minimum and maximum
values.
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Table 5.3: Search times and node expansions required for the 27 test cases using
different speed-improving techniques. Techniques include: variable grid (VG),
reducing the action space (ActReduce), ignoring people behind the robot (Ignore),
and searching on a gradient (Gradient).

Search techniques
Search Time (s) Nodes Searched

Min Max Avg Min Max Avg

None 7.33 134.2 61.4 52,324 463,357 253,730
Variable Grid (VG) 0.11 4.13 1.03 1037 35,135 10,901
VG + ActReduce 0.06 2.71 0.65 1031 29,650 9524

VG + Ignore 0.08 2.46 0.80 1024 23,303 8789
VG + Gradient 0.06 0.75 0.25 905 7864 2995

All 0.05 0.30 0.12 889 4770 2068

On average, these plans required searching 253, 730 nodes (minimum 52, 324,
maximum 463, 357), with search times averaging over to one minute (mean 61.4 s,
minimum 7.33 s, maximum 134.2 s). Obviously, these search times are unaccept-
able for real-time navigation. However, by implementing the various techniques
discussed in Section 4.4.2, the search times can be reduced drastically. Table 5.3
shows the results of implementing the different speed-improvement techniques.
Simply implementing a variable grid resulted in a large speed improvement, but
with searches still requiring 1 s on average. Adding any or all of the additional
techniques—reducing the action space at larger grid cells, ignoring people behind
the robot, and searching only on a gradient toward the goal—provided additional
speed increases. With all techniques, even the slowest search ran in under one-half
of one second. See Appendix B for the difference in results between the default
and the faster searches. In general, the paths planned using these techniques were
similar (though not identical) to the optimal paths, particularly with respect to the
first actions, as desired.

5.1.2 Alternate constraint weights

As discussed in Chapter 4, different behaviors can be achieved by altering the
relative weights between the different constraints.

Changing the constraint weightings can be viewed as changing the robot’s “per-
sonality.” For example, by increasing the weight of the “tend to the right” con-
straint, the robot becomes deferential almost to the point of awkwardness, taking
overly long paths to avoid passing a person while on the left side of a hallway. As
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a second example, changing the relative weights of the velocity-based constraints
can reduce similar deferential behavior by causing the robot to prefer side-stepping
around people, rather than turning toward the wall. Both of these examples are fur-
ther described below.

Always tending to the right

Greatly increasing the weight of the “tend to the right” constraint will cause the
robot to have a much greater tendency to stay to the right of the hallway when
passing a person, even if the space is narrow. All 27 scenarios from the previous
section were run a second time, using the weights listed in Table 5.1 except for the
“tend to the right” constraint, which was given a weight of 10.

With this weighting, all 27 cases resulted in the robot staying to the right to
pass the person. Figures 5.7 and 5.8 demonstrate two of these cases. In Figure 5.7,
we see a case where the robot initially (using the weights from Table 5.1) chose to
move left to avoid a person traveling on the right side. That is, both parties traveled
on the socially “incorrect” side of the hallway. By increasing the weight on the
“tend to the right” constraint, the robot instead chose to stay to the right of the
hallway, despite incurring higher costs from the “personal space,” “robot ‘personal’
space,” and “obstacle buffer” constraints. Figure 5.8 shows a case where the robot
could easily turn in front of the person to get to the goal, but doing so caused the
robot to pass the person on the left side of the hallway. Increasing the “tend to the
right” weight caused the robot to take a significantly longer path to prevent this
situation.

Sidestepping versus turning

As a second example of the effects of the constraint weights, consider the three
constraints of “default velocity,” “face direction of travel,” and “inertia.” Together,
these place constraints on the robot’s three velocities (vx, vy, and vθ, respec-
tively). Given the weights of these three constraints as defined in Table 5.1, the
robot may turn away from an approaching person, such as demonstrated in Fig-
ure 5.9(a), which may appear awkward. If we reduce the cost of the “face direction
of travel” constraint relative to the other two (e.g., by setting wfacing = 1 and
winertia = wdefault−v = 3), we force the robot to side-step the person instead, as
shown in Figure 5.9(b). As we will argue in Section 5.2, this may be an important
modification for a robot to be seen as socially appropriate.
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(a) Initial constraint weights (b) Increased tend-to-right

Figure 5.7: The path shown in (b) differs from that in (a) because it was generated
with a higher weight on the “tend-to-the-right” constraint. Path (b) is also shorter
than (a), but causes the person and robot to intrude further on each other’s personal
space.

(a) Initial constraint weights (b) Increased tend-to-right

Figure 5.8: Although the robot has space to turn in front of the person in this
scenario (a), increasing the weight for the “tend-to-the-right” constraint results in
the robot going far out of its way to keep to the “socially correct” side of the person
(b).

78



5.1. Simulations

(a) Initial constraint weights: the robot turns
when moving away from the person.

(b) Decreased face-travel and increased in-
ertia and default-velocity: the robot always
faces straight down the hallway, moving side-
ways to avoid the person.

Figure 5.9: By changing the relative weights of the “face direction of travel,” “in-
ertia,” and “default velocity” constraints, the robot can be made to always side-step
a person, rather than turning to drive around. The areas outlined in red highlight
this difference.

5.1.3 Different cultural norms

As discussed in Chapter 2, many human social conventions are culturally defined.
The constraints defined in Chapter 4 are all intended to match the conventions used
in the United States.

One such convention that differs across cultures is that of which side of the
hallway people prefer when passing others. Figure 5.10 shows how the “pass on
the right” constraint would need to be modified to represent preferring to pass on
the left side, instead. Quite simply, the cost is mirrored; the Gaussian cost function
is aligned to the person’s left, θp + π/2.

Figure 5.11 shows an example of how paths differ between the “pass on the
right” and “pass on the left” constraints. These two paths use the same constraints
and weights, except Figure 5.11(a) uses the “pass on the right” constraint while
Figure 5.11(b) uses the “pass on the left” version. As expected, the two paths are
mirrored.

Other ways in which social conventions vary across cultures, such as different-
ly-sized personal space or different use of gaze, are addressed in Appendix C.
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(a) Pass on the right (b) Pass on the left

Figure 5.10: Constraints for preferring to pass a person on the right versus on the
left. In each case, the cost function displayed is for a person centered at (0,0) and
moving along the positive Y-axis (up).

(a) Passing on the right (b) Passing on the left

Figure 5.11: Passing a person on the right versus on the left. In Figure (a), the
robot adheres to the “pass on the right” constraint. In Figure (b), that is replaced
with a mirrored “pass on the left” constraint. The resulting paths are mirror images
of each other.
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5.1.4 Other examples

While the set of trials presented above describes a wide range of the robot’s behav-
ior in head-on encounters, we present here some additional examples that demon-
strate its behavior in other situations, namely, overtaking a slower person and nav-
igating around crowds.

Overtaking a slower person

Consider the case where the robot must overtake a person who is heading in the
same direction, but at a slower speed than the robot (0.2 m/s versus the robot’s 0.5
m/s). This situation is demonstrated in Figure 5.12. The constraints used are those
given in Table 5.1. For people on the right or centered in the hallway, the robot
plans a path to the left, around the person, as is the social norm in human–human
interaction. However, if the person is traveling up the left side of the hallway, the
robot stays to the right, where there is sufficient space to pass.

Crowd navigation

We now present some results of the planner’s behavior around multiple people.
Because additional people increase the size of the state space significantly, these
paths were planned using the variable grid described in Section 4.4.2. The con-
straints used were the same as given in Table 5.1.

These tests use the more complex office-style map shown in Figure 5.13(a).
Consider the scenario in which the robot begins in the lower left-hand corner of the
map, and must plan a path to an office door near the top right. Initially, no people
are visible; the optimal path is shown in Figure 5.13(b). We simulate the results of
the robot detecting various people after it enters the center corridor.

Figure 5.14 shows some example paths planned around two people. Both of
these represent minor deviations from the initial path.

• In Figure 5.14(a), the robot detects two stationary people who are facing each
other (perhaps having a conversation). Though the robot would fit between
the two, it chooses the narrower opening between the wall and the pair, rather
than incur a cost from passing through both of the people’s personal space
zones. Since the people are stationary, the “pass on the right” constraint is
not relevant in this case.

• In Figure 5.14(b), one of the two people from the previous encounter is mov-
ing toward the robot. The robot is able to plan a complex path around both
people. For the person who is moving, the robot avoids his personal space
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(a) Person on the right of the hallway (b) Person centered in the hallway

(c) Person on the left of the hallway

Figure 5.12: Paths planned for the robot overtaking a single person, who is headed
in the same direction as the robot but at a slower speed (0.2 m/s). As with human
social conventions, the robot prefers to pass the person on the left, except in the
case of the person who is already on the left side.
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(a) A simplified office environment.

(b) A path within the office environment.

Figure 5.13: An office map and a path through the environment. This environment
is 20 m by 20 m, and all hallways are 3 m wide.
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(a) A path around two stationary people; the robot avoids
the overlapping personal space region between them.

(b) A path around one moving person and one stationary
person.

Figure 5.14: Paths planned around two people in the environment.
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(a) People clustered on the left of the hallway; the robot
passes on the right.

(b) People clustered on the right of the hallway; the robot
chooses a longer path around to the goal.

Figure 5.15: Paths taken to avoid a slow-moving group of people. In (b), the cost
of taking a longer route is less than that of passing four people on the left side of
the hallway.
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and stays to the right side of the hallway. For the stationary person, the robot
moves to the left side of the hallway to avoid his personal space.

Finally, in the scenario in Figure 5.15, the robot encounters a large, slow-
moving group of people.

• In Figure 5.15(a), the group is primarily on the left side of the hallway (with
respect to the robot), so the robot passes the group on the right.

• In Figure 5.15(b), however, the group is primarily on the right of the hallway.
Rather than pass next to this group (i.e., using the same path found in Fig-
ure 5.14(a)), which would incur a “tend to the right” cost for each of the four
people, the robot instead chooses a much longer path that completely avoids
the people. While this path is longer, note that it is still optimal according to
the planning framework.

5.1.5 Navigation

All of the above examples show statically planned trajectories. The paths shown
will be the robot’s actual trajectory only if the person (or people) do not deviate
from their trajectories and if the robot’s kinematics allow it to follow the planned
trajectory exactly. In practice, both of these assumptions are likely false. Thus, we
wish to test the complete system of planning, navigation, and people-tracking. To
simulate this repeatably, we would need a “social person” simulator. Instead, we
present the scenario of two social robots encountering each other. If each robot
behaves according to human social norms, then we would expect that the overall
behavior should be that of two people encountering each other.

Using CARMEN, we ran two complete simulations of separate robots in the
same environment. By linking the simulations, each robot was able to detect
the other robot as though it were a person in the environment. Unfortunately,
CARMEN cannot currently handle holonomic movements (the localization model
fails1), so we reduced the action set available to the robot to only non-holonomic
actions (see Section 4.4.1). In addition, we used the variable grid described in Sec-
tion 4.4.2. However, we allowed all actions to be used at all grid sizes, and we did
not force the search to follow the shortest-distance gradient. Since the planner still
ran in sub-real-time, the simulator was run at 1/10th real time.

Since no holonomic actions were used, we removed the “face direction of
travel” constraint. Additionally, we reduced the weight of the “inertia” constraint

1CARMEN’s localization model, which is derived from Eliazar and Parr (2004), assumes that
sideways movements occur from slippage only.
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(a) Before the robots detect each other. (b) Shortly after detection.

(c) After each robot starts to move out of
the way.

(d) While passing each other.

Figure 5.16: Running two simulators against each other, from the perspective of the
top robot (blue; second robot in orange). Both are using the same set of constraints
and weights. Neither robot is aware of the other’s planned path or desired goal.
The second robot is detected and tracked as if it were a person, and is predicted to
continue along straight trajectories, without regard for obstacles. Because the top
robot assumes the other will not move out of its way, it initially chooses a longer
path to stay away (b). Once each robot begins to move away, however, the robot
determines that it can safely pass the other with less deviation from its own path
(c).
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(a) Before the robots detect each other. (b) Shortly after detection.

(c) After each robot starts to move out of
the way.

(d) While passing each other.

Figure 5.17: Running two simulators against each other, from the perspective of
the bottom robot (blue; second robot in orange). Both are using the same set of
constraints and weights. Neither robot is aware of the other’s planned path or
desired goal. The second robot is detected and tracked as if it were a person, and
is predicted to continue along straight trajectories, without regard for obstacles.
Because the bottom robot assumes the other will not move out of its way, it initially
chooses a longer path to stay away (b). Once each robot begins to move away,
however, the robot determines that it can safely pass the other with less deviation
from its own path (c).
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Figure 5.18: Actual trajectories taken by a simulated robot that started at the top
of the map and drove toward the bottom, encountering a second robot near the
hallway intersection. In the majority of trials, the robot moved to its right to avoid
the other (as is socially expected). 100 paths in total.

Figure 5.19: Actual trajectories taken by a simulated robot that started at the bottom
of the map and drove toward the top, encountering a second robot near the hallway
intersection. In the majority of trials, the robot moved to its right to avoid the other
(as is socially expected). 100 paths in total.
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to 1, as it was no longer competing with the “face direction of travel” constraint.
Otherwise, the constraints used are those given in Table 5.1.

The scenario we used was of two robots at opposite ends of a corridor, as
shown in Figures 5.16 (first robot) and 5.17 (second robot). Neither robot has
knowledge of the other’s path or goal. The two simulated robots were directed to
switch places. As the simulated lasers had a detection range of only 6 m (equivalent
to a Hokuyo URG laser), the robots were not able to detect each other until both
had traveled part of the way through the corridor (see Figures 5.16(b) and 5.17(b)).
At this first detection, each robot assumes that the other will not yield, and thus
plans a large path deviation around the other. However, once each robot begins to
move (Figures 5.16(c) and 5.17(c)), both robots are able to reduce their avoidance
maneuvers.

This scenario was run 100 times. In 81 of the trials, both robots moved to
their respective right sides, passing each other in the typical human-like way. In 18
trials, both robots moved to their left sides. In the remaining trial, both robots failed
to properly detect the other, resulting in a collision. The trial-to-trial differences
resulted from several probabilistic elements in the complete system: namely, the
localization and the person-tracking modules. In particular, the person-tracking
module does not always compute the accurate heading of the detected person (or
other robot, in this case), which can result in one robot beginning to move to the left
rather than right—which, if correctly detected by the other robot, causes it to also
move left. The complete sets of paths taken by the robots are shown in Figure 5.18
(top robot) and Figure 5.19 (bottom robot).

5.2 User study

The simulation results presented above demonstrate that the COMPANION frame-
work produces paths that observe the conventions, as we defined them. We also ran
a user study to verify whether the paths are seen by people as socially appropriate.
We tested the robot’s behavior under the social conventions described in Chapter 4
in comparison to a “non-social” behavior produced by the same framework using
only task-based constraints.

Our hypotheses included the following:

H1 Participants will perceive a difference between the two robot behaviors and
will more highly rate the “social” behavior on scales of human-likeness and
adhering to social conventions.

H2 Participants will feel more empowered with respect to the “social” robot be-
havior, since the “non-social” behavior will approach them more closely.
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Figure 5.20: The robot Grace, as used in the hallway navigation study.

H3 Participants will demonstrate higher positive affect and lower negative affect
with respect to the “social” behavior versus the “non-social” behavior.

5.2.1 Implementation details

For this study, we used the robot Grace, which was described in Section 3.2.2 and
is shown in Figure 5.20. Grace is a B21 robot built by RWI. We added an additional
on-board computer to the robot to perform the path-planning; the computer runs a
quad-core Pentium processor at 2.4 GHz and contains 4 GB of RAM. The robot’s
base has only two degrees of freedom (forward translational velocity and rotational
velocity); as such, the robot is not capable of instantaneous sideways movement.2

Thus, for social behavior, we used the same set of constraints used in running
two simulations against each other (Section 5.1.5, and repeated in Table 5.4). To
produce a “non-social” behavior, the social conventions of “personal space,” “robot
‘personal’ space,” and “pass on the right” were removed (that is, their respective
weights set to zero). Since the hard person-avoidance constraint was still used, the
robot’s “non-social” behavior was to move out of a person’s way only if the person
did not do so first, and to keep on a straight-line path otherwise.

In order to run the user study in real-time, we used several of the techniques
described in Section 4.4.2. In particular, we used a variable search grid as defined

2Though we had already begun design of the holonomic robot Companion (see Chapter 7), the
new robot was still in progress at the time this study was run.
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Table 5.4: Constraint weights used on the robot Grace. The hard constraints of
avoiding obstacles and people were also used.

Weight
Constraint Name Social Non-social

Minimize distance 1 1
Obstacle buffer 1 1
Personal space 2 0
Robot space 3 0
Pass on right 2 0

Default velocity 2 2
Face travel 0 0

Inertia 1 1

Table 5.5: Variable search grid sizing for use on Grace.

Distance from Robot Cell Dimensions
less than 1 m 0.1× 0.1 m

between 1 and 3 m 0.3× 0.3 m
greater than 3 m 0.6× 0.6 m

in Table 5.5, as well as requiring the search to follow a gradient toward the goal.
Throughout the course of the user study, these techniques allowed the robot to
generate a plan in under 0.2 s for 99.1% of its searches (15, 232 searches performed
in total; average time 0.02 s, maximum 1.77 s, SD 0.05 s). Only 5 paths required
more than 1 second to plan, and in each case the tracker had mistakenly reported
additional people in the environment.

Through pre-testing, we found that the person-tracking method described in
Section 4.4 performed quite poorly in a real environment. In particular, since the
tracker computes a person’s speed and direction based on the change in position
over time, the tracking has a hysteresis of 1–2 seconds. Since the laser has a lim-
ited detection range (roughly 8 meters for the SICK LMS), when the robot and
person are moving toward each other, the person tracker typically cannot compute
the person’s speed and direction quickly enough for the robot to react as it would
with perfect sensing. However, as the sensor problem is beyond the scope of this
research, we configured the planner to use the computed position and speed of
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Figure 5.21: Map view of the user study setup. In the first trial, the robot began
at point 1 while the participant began at point 2; these positions were reversed for
the second trial. The hallway is approximately 2.3 m wide, and the two points are
approximately 7 m apart. A camera filmed each trial from behind the participant.

the person, but to assume that the person was traveling straight down the hallway.
Since the “personal space” and “pass on the right” constraints are heavily depen-
dent on position and direction, this assumption allowed the robot to better react to
people despite the poor sensing.

5.2.2 Procedure

Participants were drawn from Carnegie Mellon University and the surrounding
community, and were recruited through a combination of fliers, online bulletin
boards, and word-of-mouth. They received candy in return for participation; no
monetary incentive was provided. Participants were required to be 18 years of age,
or older.

We used a within-subjects design, where each participant experienced both the
“social” and the “non-social” robot behaviors, as described above. The order of
trials was counterbalanced to minimize order bias. All participants were initially
shown the robot driving away from them as it traveled to its initial position. Each
trial required the participant to walk past the robot twice, down and back in a
single hallway, which is approximately 2.3 m wide. The basic experimental setup
is shown in Figure 5.21. Participants were asked to walk “however [they] feel the
most comfortable.” Additionally, they were asked to walk somewhat slowly, at a
similar speed as the robot. As a safety precaution, participants were shown the
location of the robot’s “emergency stop” buttons and instructed on their use.

Participants were asked to complete a variety of surveys, including the Posi-
tive and Negative Affect Schedule (PANAS, see Table 5.6; Watson et al., 1988),
which assesses a person’s general emotional levels; the Self-Assessment Manikin
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Table 5.6: The Positive and Negative Affect Schedule (PANAS). Participants were
asked to “indicate to what extent you feel this way right now, that is, at the present
moment” on a scale of 1–5, for each of the following items. From Watson et al.
(1988).

interested* irritable†
distressed† alert*
excited* ashamed†
upset† inspired*
strong* nervous†
guilty† determined*
scared† attentive*
hostile† jittery†
enthusiastic* active*
proud* afraid†

* Positive Affect scale
† Negative Affect scale

scales (SAM, see Figure 5.22; Bradley and Lang, 1994; Bethel et al., 2009), which
assess a person’s emotional reactions toward a robot; and several survey questions
intended to determine how people understood the robot’s behaviors in a social con-
text (see Table 5.7). The PANAS was administered three times (before interacting
with the robot and after each trial), while all other survey questions were admin-
istered twice, once per condition (after each trial). Additionally, participants were
given a free-response question to solicit comments on each robot behavior.

5.2.3 Results

A total of 27 people participated in this study (12 male and 15 female). Ages ranged
from 18–35 years (mean 25.7). Participants had a wide range of self-reported prior
robotics experience (mean 4.7, SD 1.95, on a scale of 1–7).

Figures 5.23 and 5.24 depict typical encounters with the robot, in the “non-
social” and “social” conditions, respectively. In the “non-social” condition, the
robot typically remained closer to the center of the hallway, only narrowly avoiding
the person. In contrast, in the “social” condition, the robot typically turned away
from the participant and drove closer to the wall. However, while these behaviors
were common, we observed a great deal of variation between trials. In addition,
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(a) Valence

(b) Arousal

(c) Dominance

Figure 5.22: Images used for the Self-Assessment Manikin (SAM). Each image
was presented twice for each scale, and participants were instructed to “mark the
appropriate circle under each drawing that most closely reflects your feelings.”
From Bradley and Lang (1994).

several participants behaved counter to typical social norms, such as maintaining a
straight path toward the robot or walking down the left side of the hallway.

We analyzed each set of survey questions for condition effects (that is, result-
ing from the “social” versus the “non-social” behaviors), as well as for effects of
gender and experience with robots.

Positive and Negative Affect

Participants completed the Positive and Negative Affect Schedule (PANAS) three
times: as a pre-test before encountering the robot, and after each robot behavior
condition (“social” and “non-social”). Positive Affect (PA) and Negative Affect
(NA) are distinct dimensions of mood; PA relates to social satisfaction and pleas-
ant events while NA relates to subjective stress and unpleasant events. The two
measures are generally uncorrelated, meaning that a person can have both PA and
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(a) (b)

(c) (d)

(e) (f)

Figure 5.23: Participant walking past the robot in the “non-social” condition. Since
the participant moves slightly to her right, the robot travels straight down the hall-
way with minimal deviation. The robot remains centered in the hallway and nearly
touches the participant when they pass. The complete paths of the robot and person
are overlaid in blue (dashed) and red (solid), respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.24: Participant walking past the robot in the “social” condition. The robot
turns toward its right (c), allowing more space between itself and the participant as
they pass, and the robot approaches the wall more closely than in the “non-social”
condition. The participant’s path remains nearly straight. The complete paths of
the robot and person are overlaid in blue (dashed) and red (solid), respectively.
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Table 5.7: Survey questions asked of each participant after each robot behavior.
All questions were asked on a 7-point scale from “Not at all” to “Very much.”
Bold-faced words were in the original, but scale titles were not included. N = 27.

General Robot Behavior Scale Cronbach’s alpha = 0.85
1 How human-like did the robot behave?
2 How social was the robot’s behavior?
3 How safe did you feel around the robot?
4 How natural was the robot’s behavior?
5 How comfortable did you feel near the robot?

Robot Movement Scale Cronbach’s alpha = 0.76
6 How well did the robot’s movements adhere to human social norms?
7 How well did the robot respect your personal space?
8 How well could you anticipate the robot’s movements?
9 How much did you have to get out of the robot’s way??

? scale reversed for analyses

NA—the measures are not simply opposites of a single scale. The PANAS was
used to determine whether participants’ general mood states changed after each
encounter with the robot.

One-way analyses of variance (ANOVAs) of Positive Affect and Negative Af-
fect by Condition showed no significant difference (PA F = 0.46, p > 0.1; NA
F = 0.68, p > 0.1). Across all surveys, participants averaged a score of 2.85 in PA
and 1.17 in NA, on scales of 1–5. That is, participants were generally enthusiastic
(average PA) and minimally stressed (low NA).

Self-Assessment Manikin

The Self-Assessment Manikin (SAM) was administered after the robot encounter
in each condition. The SAM is designed to measure three scales: valence, arousal,
and dominance, each with respect to the robot. ANOVAs were run on each scale
to look for differences between the two robot behavior conditions, the order of
the trials, and the interaction between condition and order. No significant effects
were found on any SAM scale (all p > 0.1). Across both conditions, participants
averaged a valence of 6.27, arousal of 3.50, and dominance of 5.81, on scales of 1–
9 (with 9 representing the highest value). That is, participants had medium levels
of valence and dominance with low arousal.
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Figure 5.25: Results for the General Robot Behavior scale versus robot condition:
p > 0.1 (errorbars indicate ±1 std err).

Social Scales

Participants were given the nine questions, shown in Table 5.7, after their encounter
with the robot in each condition. For analysis, we grouped the survey questions
into two scales: the first measuring the overall robot behavior, and the second mea-
suring more specific questions regarding the robot’s movement. Both scales sur-
passed the commonly-used 0.7 level of reliability (Cronbach’s alpha).3 Each scale
response was computed by averaging the results of the survey questions compris-
ing the scale. ANOVAs were run on each scale to look for differences between the
two robot behavior conditions, the order of the trials, and the interaction between
condition and order.

On the “General Robot Behavior” scale, no effects were significant (all p >
0.1). The average rating on this scale was 4.80 for the “social” behavior and 4.50
for the “non-social” behavior, on a scale of 1–7. This is shown in Figure 5.25.

Analysis of the “Robot Movement” scale indicated a significant effect of be-
havior condition (F = 9.76, p = 0.015). Neither trial order nor the interaction
of order and condition were significant (both p > 0.1). The average rating for the
“social” behavior was higher than that of the “non-social” behavior (4.99 versus
4.14, on a scale of 1–7). This is shown in Figure 5.26.

Though the “Robot Movement” scale has high reliability, indicating that all
four questions relate to a single measure, we wanted to understand which partic-
ular questions had the most influence on scale response. As such, we further an-
alyzed the four individual survey questions that comprise the “Robot Movement”

3Cronbach’s alpha is a measure used to determine how reliably a set of questions measures a
single dimension. Values less than 0.7 imply that the scale is measuring more than one thing; higher
levels indicate that the questions are essentially asking about the same thing, so the items can be
combined for analysis.
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Figure 5.26: Results for the Robot Movement scale versus robot condition: p =
0.015 (errorbars indicate ±1 std err).
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Figure 5.27: Results for “How well did the robot respect your personal space?”
versus robot condition: p = 0.0003 (errorbars indicate ±1 std err). Participants
felt the “social” robot better respected their personal space.

scale. As with the complete scale, an ANOVA was run on each question to look
for differences between the two robot behavior conditions, the order of the trials,
and the interaction between condition and order. For the first question, “How well
did the robot’s movements adhere to human social norms,” the average response
across all results was 4.27, with no significant effects (all p > 0.1). The third
question, “How well could you anticipate the robot’s movements,” also showed no
significant effects (all p > 0.1), with an average response of 4.79 across conditions.

For the question, “How well did the robot respect your personal space,” the “so-
cial” behavior was rated significantly higher than the “non-social” behavior (5.59
versus 3.78, on a scale of 1–7; F = 15.37, p = 0.0003). There were no main or
interaction effects of the trial order. The results from this question are shown in
Figure 5.27.

The question, “How much did you have to get out of the robot’s way,” also
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Figure 5.28: Results for “How much did you have to get out of the robot’s way?”
versus robot condition: p = 0.0006 (errorbars indicate ±1 std err). People did not
feel they had to move as far away when the robot was trying to be social.

showed a significant effect due to condition, with participants feeling they had to
move further away from the “non-social” robot (3.26 versus 1.70; F = 13.27,
p = 0.0006). This result is shown in Figure 5.28. No main or interaction effects
from the trial order were found.

Additionally, we analyzed the social survey questions for effects of gender and
robot experience. Gender effects were tested with one-way ANOVAs for each sur-
vey question, and no significant effects were found (all p > 0.1). Since robot
experience was measured on a continuous scale, its effects were tested using linear
regression for each social survey question. Two significant effects were found. Par-
ticipants’ ratings of how natural the robot’s behavior was significantly decreased
with greater experience (F = 5.69, p = 0.02); see Figure 5.29. In addition, par-
ticipants with greater robot experience felt they had to move further away from the
robot (F = 7.96, p = 0.0067); see Figure 5.30. Finally, participants’ ratings of
how well the robot respected human social norms decreased with robot experience,
with marginal significance (F = 3.04, p = 0.087). No other significant effects of
robot experience were found (all other p > 0.1).

Participant Comments

Each questionnaire provided several blank lines for comments immediately fol-
lowing the social scales. While we did not explicitly codify and analyze these
comments, they may provide more insight into the robot’s behaviors.

Comments on the “Non-social” behavior: Sixteen participants provided com-
ments on the “non-social” behavior. Many of the comments reflect the close dis-
tance the robot often left when passing the person, such as:
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Figure 5.29: Best-fit line for “How natural was the robot’s behavior?” versus ex-
perience with robots: p = 0.02. Dotted lines represent 95% confidence intervals.
In general, people with more robot experience rated the robot as less natural.
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Figure 5.30: Best-fit line for “How much did you have to get out of the robot’s
way?” versus experience with robots: p = 0.0067. Dotted lines represent 95%
confidence intervals. In general, people with more robot experience felt they had
to move further away from the robot.
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• “It felt this time like the robot came at me for a moment before turning and
continuing down the hallway.”

• “I didn’t feel that the robot gave me enough space to walk on my side of the
hallway.”

• “Robot acted like I would expect a slightly hostile/proud human (male?) to
act regarding personal space—coming close to making me move without
actually running into me.”

• “The robot came much closer to me than humans usually do.”

• “It seemed obvious that the robot won’t give me way.”

Note that four of the comments on this behavior indicated that participants
felt that the robot did, in fact, adhere to human social conventions for hallway
encounters. For example, one participant wrote: “Passing in these trials felt very
natural.” Three out of the four participants who left similar comments saw the
“non-social” behavior first.

Comments on the “Social” behavior: Thirteen participants left comments on
the “social” behavior. Many of these comments indicated that participants felt the
robot respected their personal space, but did not do so in a way that they expected,
such as:

• “Sometimes it swerves away more than a person would, but that might be
better since it’s very large and heavy.”

• “I felt that the robot obeyed social conventions by getting out of my way and
passing me on the right. However, it seemed to turn away from me quite
suddenly, which was very slightly jarring.”

• “The robot seemed cold when moving away.”

• “I think the robot gave me too much space.” (emphasis in original)

• “It felt like the robot went very close to the wall...which a human wouldn’t
do as much (except maybe a very polite human...)”

• “It was really cool how it got out of my way.” (emphasis in original)
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5.2.4 Discussion

Hypothesis H1, which stated that participants will perceive a difference between
the two robot behaviors and would rate the “social” robot more highly on social
scales was shown to be generally correct. In particular, participants rated the
robot’s movements as better respecting their personal space and requiring them
to move less out of the way when the robot was attempting to be socially correct.
However, the ratings of human-likeness and other general social measures did not
differ across the two behaviors. One possible explanation for this is that partici-
pants considered the robot as a whole for these questions; since the same robot was
used, its overall human-likeness remained the same, despite a different movement
pattern.

From participants’ comments, we can infer that, while the “social” behavior
did observe social conventions such as personal space, it did not do so in the same
way that people do. Participants used terms such as “jarring” and “cold” to describe
this behavior. We believe that this can be primarily explained by the fact that the
robot used in this study is non-holonomic, and thus physically unable to move in
ways that people do. In particular, for the robot to move to the side of the hallway,
it must turn toward the wall (e.g., Figure 5.24(c)), rather than shifting sideways as
a person might. Since this causes the robot to turn its face away from people, it
is seen as less social. The “non-social” robot behavior, despite driving extremely
close to participants, nevertheless does not turn its face as far away from them. We
believe that this further demonstrates the ability of the COMPANION framework
to produce different robot “personalities.”

We were unable to prove hypotheses H2 and H3, regarding participants’ affect
and empowerment toward the robot. Participants felt equally dominant toward the
robot in each behavior; in all cases people felt slightly above the mid-point of the
dominance scale. That is, people felt slightly dominant toward the robot itself, but
the robot’s behavior had no influence on this feeling. Furthermore, participants’
emotional states did not change after any encounters with the robot.

Finally, we noted several effects relating to prior robot experience. One effect
was that participants with more experience tended to rate the robot as less natural
and less in line with human social norms. We believe that this may be because
people with more experience with robots are more likely to think of the robots as
machines, while less experienced people may be more likely to anthropomorphize
the robot. Additionally, participants with greater experience tended to feel they had
to move further away from the robot. We suspect this is due to the fact that most
existing robots tend not to avoid people, so experienced roboticists expected that
they needed to move out of the robot’s way; people less familiar with robots would
have no such expectations.
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5.3 Summary

In this chapter, we have presented the behavior of the COMPANION framework in
multiple hallway scenarios, both in simulation and on a physical robot.

In simulation, we have described a wide variety of scenarios that help to un-
derstand the behavior of the COMPANION framework in hallway navigation. We
have demonstrated that the use of mathematical cost functions can produce robot
behavior that mimics human social norms. Additionally, we have shown how these
behaviors can be modified by using alternate constraint weights, and how simple
modifications to individual constraints can produce behaviors appropriate for other
cultures.

In a user study, we verified that people do interpret the robot’s behavior accord-
ing to human social norms. However, though people felt the robot respected their
personal space when it moved out of the way, they described the robot’s method of
doing so as “jarring.” Participants also ascribed personality to both of the robot’s
behaviors; in particular, when the robot attempted to move according to social
norms, it was either “cold” or “overly polite;” when it merely avoided running into
people, it was “hostile” or “proud.” Since the two robot behaviors differed only
according to the constraints they used, the tendency of participants to ascribe dif-
ferent human-like personalities to the two behaviors supports our hypothesis that
different constraint weights produce different types of socially-acceptable behav-
iors. Neither behavior was perceived as particularly anti-social.

Finally, we argue that the “jarring” behavior of the robot when it avoided par-
ticipants’ personal space arose from the non-holonomic nature of the robot used
in the study. As we identified in Chapter 4, the ability to side-step obstacles is
an important human behavior. A robot that is unable to perform such maneuvers
cannot produce behaviors that are viewed as quite as human-like as a robot that
is able to move sideways. This finding does not imply that non-holonomic robots
cannot produce social behavior—the robot used in our study produced social be-
havior, if not optimally so—nor do we advocate the necessity of, for example,
walking humanoid robots to produce truly human-like movement. Rather, we ar-
gue that holonomic actions are a significant part of human social movement, and a
robot that is capable of such actions (such as the Companion robot, introduced in
Chapter 7) should make use of them.
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Chapter 6

Side-by-Side Escorting

The previous chapters have discussed the COMPANION framework in the context
of a robot operating independently. This chapter focuses on an extension to the
basic framework that allows a robot to navigate jointly with a person, particularly
for the case of traveling side-by-side with a person, for the purpose of leading him
somewhere.

6.1 Motivation

Beyond just navigating around people, we are interested in situations where a robot
must travel with a person. We consider the following hypothetical scenarios as
motivation for this focus:

Scenario 3 (A smart shopping cart). Alice checks out her SmartCart as she enters
the grocery store. She enters her shopping list, and the cart immediately plans the
optimal path through the store. The cart begins driving autonomously through the
aisles, stopping whenever it encounters an item on Alice’s list. The cart gracefully
navigates around the other shoppers and continually watches that Alice is still
following. When Alice remembers an item she forgot to place on her list, she turns
around to return to the necessary aisle. The cart notices this, and switches into
intelligent following mode. When space allows, the cart travels next to Alice in
order to remain within her field of view and provide assurance that it is following
her correctly, though it falls behind her as necessary to allow other shoppers to
pass. Once Alice has retrieved her forgotten item, she pushes the cart forward,
putting it back into leading mode. The cart replans its path for the remaining
items, and continues on its way.
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Scenario 4 (A hospital and nursing home assistant). Bill has recently entered the
assisted living retirement home, and he has made little effort to interact with the
other residents. He has trouble finding his way around but is too embarrassed to
ask for help. Noticing his withdrawal from other people, the home’s staff sends
the robotic assistant to his room to ask him if he would like to visit with other
residents. Bill agrees, and the robot leads him to the common social room, where
he can interact with others. Along the way, the robot travels by Bill’s side and
chats with him about other activities available in the retirement home.

Current robotic systems have been used with people in the context of accom-
panying residents in nursing homes (Montemerlo et al., 2002) or guiding tours in
museums (Thrun et al., 1999; Nourbahksh et al., 2003). Unlike our hypothetical
scenarios, existing technology requires people to follow behind the robot at all
times, as in the following:

• In an assisted living facility, a robot can travel to residents’ rooms and guide
them to appointments, or even just accompany them while they walk for
exercise. Residents must follow behind the robot (Montemerlo et al., 2002).
However, our own observations indicate that people in such an environment
tend to walk side-by-side (see Section 3.3).

• In various museums, robots can lead groups of people (Thrun et al., 1999;
Nourbahksh et al., 2003). Such systems assume that a group will follow
behind the robot. Furthermore, these robots cannot perform personalized,
one-on-one tours.

These systems, and others like them, are currently the status quo for human–
robot interaction. In each case, the robot plans its own path of travel without regard
for how the person is to travel; the person is always assumed to follow behind
the robot. However, when two people walk together, they enter a collaborative
process, attempting to minimize not only their own but also each other’s required
effort (Klein et al., 2005). To model this behavior, we use the concept of joint
planning, as described in the next section.

6.2 General approach

We argue that, if a robot plans a path that accounts for joint behavior, then its use
of social conventions will allow the person to understand the robot and walk along
with it. That is, the social conventions of walking together will provide common
ground between the robot and the person. In that way, walking next to the robot
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will require only a person’s prior knowledge of the conventions of walking with
another person, rather than additional knowledge of the robot’s conventions.

From our observations of people walking together (Section 3.3), we know that
people use various physical behaviors as cues for joint travel—such as moving
closer or further away to indicate a turn, or speeding up to pass through a choke-
point first. We believe that, by planning for joint behaviors, the robot can be made
to display such appropriate social cues. We make the assumption that the person is
a willing participant in the social interaction; that is:

• The person agrees to participate in the joint behavior, and is thus not adver-
sarial; and

• The person will also be attempting to move in socially appropriate ways.

By assuming that the person will move with the robot in socially appropriate
ways, the robot can approximate the cost of the person’s behaviors as well as its
own behavior costs. The robot can thus plan joint behaviors by attempting to min-
imize both its own effort and the approximate effort of the person. The resulting
path for the robot may cost more than the optimal path planned for the robot in-
dividually; the differences between the two paths result from accommodating the
person’s social desires, and represent the social cues that the robot may give the
person. Even though the robot’s approximation of the person’s costs is unlikely to
be perfect, as long as the planner is able to run repeatedly in real-time, the robot
will continually react to the person’s movements.

As presented in the previous chapters, the basic COMPANION framework al-
lows a robot to plan paths for itself only, traveling around any people. For the
robot to plan to travel with a particular person, all aspects of the path planning
must account for the person as well as the robot. We thus extend the COMPAN-
ION framework for joint planning by introducing the concepts of joint goals, joint
actions, and joint constraints.

6.2.1 Joint goals

Definition 6.1. A joint goal is the desired final world state, including the desired
goals of both the robot and a particular person.

The path planner must have a desired goal state in order to compute a path. The
simplest form of a joint goal state would be for the robot to reach its goal location,
with the person within some pre-defined region around the robot’s goal. Since we
are interested in side-by-side travel, we further restrict the goal state such that the
person must be by the robot’s side.
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The goal may be task-specific in other ways, as well. For example, consider a
museum tour-guide robot that can best describe various exhibits if the person is in
a particular location with respect to each exhibit. If the goal state is defined to have
the person in a particular position, then the planner can compute the best path for
the robot that will encourage the person to end in that location.

6.2.2 Joint actions

Definition 6.2. A joint action between a robot and a person is composed of an
action to be taken by the robot as well as an action to be taken by the person, both
for the same length of time.

For robot path planning, we defined 14 actions (see Section 4.4.1): straight,
forward left turn, and forward right turn, each at three speeds; stop; and the holo-
nomic actions of sideways left, forward sideways left, sideways right, and forward
sideways right. To perform joint planning, the robot must also plan for where the
person might go. Currently, we assume only three possible person actions: straight,
forward left turn, and forward right turn. Ideally, the robot will want to match the
person’s speed. However, we currently make the simplifying assumption that the
person travels only at the robot’s default speed (0.5 m/s).1 A joint action is com-
posed of one robot action and one person action, so the planner has a total of 42
available actions. While in theory the person could perform at least as many ac-
tions as the robot, the addition of more actions quickly becomes intractable. If the
planner is, as before, assumed to run repeatedly in real-time, the use of only a few
possible human actions should still produce social paths for the robot.

6.2.3 Joint constraints

Definition 6.3. A joint constraint is a function representing the cost of the robot
and a person transitioning from one state to another via a joint action.

The robot should plan paths that attempt to minimize the joint cost, that is, the
path costs for both the robot and the person. To do so, the robot must consider
what costs the person might incur in addition to its own costs. One approach to
this is the concept of “reflective navigation” (Kluge, 2004); this would mean that
the robot considers the costs to the person to arise from the same constraints and
weights as its own costs. That is, the robot could consider each person action as if
it were its own, and determine the cost from its own constraints.

1The planner could adjust the robot’s default speed to the tracked speed of the person, for exam-
ple.
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However, rather than use the same set of constraints for the person and robot,
we define separate constraints that relate to the person of interest, so that the new
constraints could be weighted differently from the robot costs. Since we are con-
sidering only straight and turning actions for the person, we need to define two new
person-related constraints:

• Minimize the person’s distance traveled; and

• Reduce the number of turns the person makes (i.e., inertia).

Additionally, the robot must consider hard obstacle avoidance for the person,
so that it does not plan paths requiring the person to walk through walls or through
other people. Currently, we do not consider other social conventions for the per-
son, such as avoiding other’s personal space or tending to the right. This is done
to simplify computation, though future work may indicate the necessity of such
constraints.

Finally, we make one additional change to the “tend to the right” constraint
given in Section 4.2. Since that constraint models passing people, it must be ig-
nored for the person with whom the robot is traveling. This is done as a special
case within the constraint; the person traveling with the robot produces no cost
region associated with the “tend to the right” constraint. Note that if this change
were not made, the robot would demonstrate a strong preference for remaining on
the person’s left.

6.3 Constraints for side-by-side escorting

While the extended COMPANION framework for joint path planning allows the
robot to plan a joint path to a goal, it does not place any constraints on the relative
positions of the robot and the person. In order to encourage the robot to travel next
to the person, as would be the case for socially escorting the person, we must define
additional task-specific constraints. In particular, we define two constraints for
side-by-side escorting: walking with a person, and remaining next to the person.
That is, the two constraints define the preferred distance and angle, respectively,
between the robot and the person.

6.3.1 Walk with a person

As discussed in Chapter 4, the robot and all people in the environment each have
a personal space (or “robot space”) zone around them, which will tend to keep the
robot a fairly large distance away from all people. For the robot to walk with a
person, then, we can define a constraint that acts as a spring between the robot and
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the person, which will act in concert with the personal spaces to maintain a socially
appropriate separation.

To walk with a person, then, the robot should try to keep some preferred dis-
tance dp between itself and the person. We do this by defining a “walk with a per-
son” cost that increases linearly with the distance between the robot and the person,
for distances greater than dp. For dp = 1 m, this cost is shown in Figure 6.1. This
cost is 0 for distances under dp because the “personal space” and “robot ‘personal’
space” constraints already provide a repelling force between the robot and person.
We currently keep the preferred distance a constant value, but note that Sviestins
et al. (2007) hypothesizes that the preferred distance should actually decrease with
faster speeds.

Because the “walk with” constraint is intentionally defined as a competing
force against the “personal space” and “robot ‘personal’ space” constraints, the
relative weights of all three constraints must be balanced to achieve the desired
robot behavior. In particular, we want that the three constraints combine to form
a trough of low-cost actions when the robot and the person are the preferred dis-
tance apart. We start with the weights given to the personal space constraints as
discussed in Chapter 5 and given in Table 5.1. That is, we let the “personal space”
wps = 2 and the “robot ‘personal’ space” wrps = 3. We find that a distinct low-
cost trough occurs when the “walk with” constraint weightwww is equal to the sum
of the personal space constraint weights; that is:

www = wps + wrps (6.1)

If the robot and person are traveling side-by-side (with the same heading), this
cost can be seen in two dimensions in Figure 6.2. Expanding this visualization to
three dimensions, so that the person can be at any position relative to the robot,
yields the cost regions shown in Figure 6.3.

As with many other constraints given in Chapter 4, this cost is scaled by the
length of time for each given (joint) action.

6.3.2 Side-by-side

From Figure 6.3, we see that the largest region of low cost results from the person
remaining in the U-shaped region to the side or behind the robot. However, for
side-by-side escorting, we want the robot to prefer to keep the person to its side,
rather than behind. We do this with the addition of the “side-by-side” constraint,
which adds a cost proportional to the relative angle between the robot and person.
In particular, we define two angles: αr−p, the angle from the front of the robot to
the person’s position, and αp−r, the angle from the front of the person to the robot’s
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Figure 6.1: Different views of the “walk with a person” constraint, shown as the
cost of the relative position between the person and the robot, with the robot cen-
tered at (0,0).

113



6. Side-by-Side Escorting

Figure 6.2: 2D view of the weighted constraints of “personal space” (w = 2),
“robot ‘personal’ space” (w = 3), and “walk with a person” (w = 5), as well as
their sum. This is shown for the robot and person directly side-by-side, with the
same heading, and each traveling at 0.5 m/s.

position. In the desired side-by-side positioning, these angles will be αr−p = 0 and
αp−r = π/2, or vice versa. Both angles are necessary for the cases where the robot
and person are not facing the same direction, as shown in Figure 6.4. The cost for
each angle is the absolute difference from the desired angle:

cα =
{
|α+ π/2| if −π < α < 0
|α− π/2| if 0 < α < π

(6.2)

The “if” clause simply allows the person to be to the robot’s right or left, with equal
cost.

The cost css is the sum of these costs times the action time (a.t):

css = (cαr−p + cαp−r) · a.t (6.3)

This cost could trivially be changed to represent a different preferred angle
between the robot and person. For example, if the preferred position has the robot
in front of the person, the preferred angles are αr−p = π and αp−r = 0.
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Figure 6.3: The result of adding the weighted constraints of “personal space” (w =
2), “robot ‘personal’ space” (w = 3) and “walk with a person” (w = 5), shown
as the cost of the relative position between the person and the robot. The robot
is centered at (0,0) and both the person and robot are heading at 0.5 m/s along
the positive Y-axis (“up”). The lowest cost region is largest when the person is
positioned to either side of, or behind, the robot (shaded).
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Figure 6.4: A robot (left) and a person (right). Because they are not facing the
same direction, the person is next to the robot (with respect to the robot), but the
robot is not next to the person (with respect to the person).

6.4 Heuristics

By definition, the escorting constraints incur cost with each step that the robot
and person take together. As discussed in Section 4.4.2, the A* search relies on
predictive heuristics to find paths through cost regions. Individually, none of the
“personal space,” “robot ‘personal’ space,” or “walk with” constraints afford useful
heuristics. Together, however, the three constraints have a minimum instantaneous
cost. Since the “side-by-side” constraint adds additional cost when the robot and
person are not directly next to each other, we can use the 2D side-by-side cost
function shown in Figure 6.2, from which we can see that this minimum cost is
approximately 0.5.

Since the cost is dependent on travel time, we must further approximate the
remaining time needed for the robot and person to reach the goal. Since the person
is assumed to keep a constant speed, we can estimate the time-to-goal tg based
on the Euclidean distance remaining divided by the person’s speed. Thus, the
predictive heuristic should be approximately 0.5tg.

In practice, we over-estimate the heuristic by using a cost of 0.7tg. Though
0.7 is greater than the true minimum value, it affords a faster search time, and we
know that the sub-optimality of the resulting paths are bounded (e.g., Chakrabarti
et al., 1987). We found that this over-estimation is necessary in part due to the
use of a variable grid, which resulted in planner not always being able to align the
robot and person at the optimal distance apart (due to the coarseness of the grid).
Thus, the true minimum cost actions are typically not available. The variable grid
is necessary due to the extremely large state space.
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Table 6.1: Constraints and their weights used in the objective function for side-by-
side escorting. The first set of constraints are described in Chapter 4; the remaining
constraints are specific to joint planning. The hard constraints of avoiding obstacles
and people are also used.

Constraint Name Weight (wc)
Minimize distance 1

Obstacle buffer 1
Personal space 2
Robot space 3
Pass on right 2

Default velocity 2
Face travel 2

Inertia 2
Minimize person’s distance 1

Person’s inertia 1
Walk with a person 5
Stay side-by-side 1

6.5 Escorting in simulation

To understand the behavior of the joint path-planner, we present several scenarios
here. We use the constraint weighting given in Table 6.1. These are the same
weights used in Section 5.1.1, for robot-only path planning, but with the addition of
the joint constraints given above. Furthermore, all paths shown here were produced
using a variable grid (see Section 4.4.2), both to improve search time and because
more complex searches become intractable given the extremely large state space.
The hardware used to produce these results was also that used in Section 5.1.1.

We first address the simple case of a goal straight ahead, down a single hallway.
Two examples are shown in Figure 6.5. In Figure 6.5(a), the robot and person begin
at the optimal distance of 1 m apart, so the resulting plan simply requires both the
robot and person to travel straight at a constant speed. In Figure 6.5(b), however,
the robot and person begin only 0.5 m apart. Since the robot’s goal is straight
ahead of it, the robot assumes the person will take the initiative to move further
away. However, since the person moving on a diagonal takes longer than the robot
moving straight, two actions require the robot to drive more slowly, to allow the
person to catch up.

Figure 6.6 shows examples of paths that require left- or right-turns, with the
robot on the inside or outside of the turn, respectively. On the inside turn (to the
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(a) Robot and person start 1 m apart (b) Robot and person start 0.5 m apart

Figure 6.5: Joint plans for a robot and a person with the goal straight ahead. In (a),
the robot and person start at the best distance apart, so both simply travel straight.
In (b), the robot and person start too close to each other. Since the robot’s goal is
straight ahead, the best plan is for the person to move slightly further away. The
two points marked with asterisks indicate segments where the robot drives more
slowly, to allow the person to catch up.

left, Figure 6.6(a)), the robot plans to slow down, allowing the person to travel the
longer distance around. On the outside turn (to the right, Figure 6.6(b)), the robot
plans to travel faster around the turn, so that it remains next to the person at all
times. Each of these plans required less than 0.4 seconds to generate.

This framework can also handle cases where the person does not follow the
robot’s planned joint path. Figure 6.7 shows a scenario where the person has lagged
behind the robot and drifted toward the right side of the hallway. Since, as before,
the robot is assumed to be able to replan rapidly, the plan it produces at this step
is for the robot to move sideways, toward the person’s location. Even though this
increases the robot’s path length, it reduces the cost of the “walk with” constraint.
Because the person is far behind the robot, this path is lower cost than if the robot
were to wait for the person to move back into position; this is in contrast to Fig-
ure 6.5(b) when the robot and person begin too close to each other. This plan took
approximately 30 seconds to generate.

Finally, consider the case where the goal requires the person and robot to travel
through a chokepoint, that is, through a narrow section of the hallway, such as a
doorway. Such a scenario is shown in Figure 6.8, in which the chokepoint appears
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(a) Goal to the left, with the robot on the in-
side of the turn.

(b) Goal to the right, with the robot on the
outside of the turn.

Figure 6.6: Joint plans for the robot and a person that require turning left (a) or
right (b). The robot plans to slow down on the inside turn and speed up around the
outside turn, so that it remains side-by-side and at the preferred distance from the
person. The person is assumed to maintain a constant speed.

Figure 6.7: Joint plans for the robot and a person, where the person starts at a non-
optimal location. The robot begins by moving sideways, closer to the person, even
though its shortest path would be to drive straight to the goal.
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Figure 6.8: A joint plan for the robot and a person that requires that both pass
through a narrow chokepoint (e.g., a doorway) in the hallway. In this plan, the
robot speeds up (1) to pass the person and drive through the chokepoint first (2).
The robot remains a short distance in front of the person for much of the remainder
of the walk, slowing down to allow the person to catch up near the goal (3). Note
that the hallway is approximately 20 m long.

approximately 4 m ahead of the robot and person, while the goal is about 15 m
away. In this environment, the robot and person cannot pass through the chokepoint
side-by-side. Instead, the robot plans to increase its speed so that it may pass
through the chokepoint ahead of the person. Eventually, the robot reduces its speed
so that the person is able to catch up. This plan required 99 seconds to compute,
generating nearly 4 million states.

6.6 Summary

In this chapter, we have presented an extension to the COMPANION framework
to allow for joint human–robot paths, and we have presented the specific imple-
mentation of side-by-side escorting. The extension relies on the notion of social
conventions as common ground between the robot and person, so that if the robot
presents socially correct movement cues, the person will react appropriately. We
defined the concepts of joint goals, joint actions, and joint constraints, so that the
robot can plan paths that attempt to minimize both its own and also the person’s
expected path costs.

For the specific task of side-by-side escorting, we introduced two additional
constraints: a cost corresponding to the distance between the robot and the person,
and a cost corresponding to the relative angle between them. These costs, com-
bined with joint path planning, allow for plans in which the robot speeds up or
slows down appropriately around corners or through chokepoints.

In simulation, we have demonstrated the ability of the framework to find joint
plans for a robot and a person traveling together. The planned paths model social
behaviors such as having the robot slow down when on the inside of a turn and
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speed up on the outside. In addition, the planner is able to handle situations when
the side-by-side constraint cannot be maintained, such when the robot and person
must pass through a chokepoint that is only wide enough for one at a time.

Unfortunately, the joint planning currently cannot execute in real-time: while
some simple plans are produced quickly, planning a path through a narrow choke-
point requires nearly two minutes. This is due to the enormous state space—since
the planner must consider a person’s position and orientation along with the robot’s
position, orientation, and velocity, the state space has 9 dimensions. Furthermore,
each state may have as many as 42 unique successor states. Since both the size
of the state space and the number of successors are factors in the time complex-
ity of the planning algorithm, real-time planning is difficult to achieve. Further-
more, since A* stores all generated nodes in memory, planning in such a high-
dimensional state space can easily overwhelm a computer’s resources (Russell and
Norvig, 2003). The solution to faster planning may require either a different type
of basic path planner or simply faster computer processors; such approaches will
be addressed in Chapter 8.

Despite the current planning speed limitations, we believe that the joint plan-
ning extension to COMPANION is an extremely powerful framework. It allows
for the robot to consider an interaction partner as a social entity. Since social con-
ventions are encoded directly into the path planner, we believe that the robot will
automatically present the necessary cues for joint movements.
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Chapter 7

Companion Robot Design

In addition to the theoretical COMPANION framework, implementation, and re-
sults presented in the previous chapters, the final contribution of this thesis is a new
platform for social robotics research. This chapter details the design process and
final robot, which we call Companion.

The Companion robot has two main components: a holonomic mobile base
(Section 7.1) and a fiberglass outer shell (Section 7.2). While both components
were designed concurrently, we will discuss each in turn.

The design of the Companion robot was a highly collaborative process. The
author’s role in this process was that of team leader, coordinating team members
and defining the desired capabilities of the robot. The author drove the design effort
and was the primary decider in design choices.

7.1 Holonomic base design

The base of the robot consists of those components necessary for motion: wheels,
motors, batteries, electronics, and sensors. In this section, we present our rationale
for, and final design of, a new robot base.

7.1.1 Rationale

The overall goal of this research is to design methods for robots to navigate around
people in social ways. Our approach is to model robotic behavior on human social
norms, so that people may apply their knowledge of these conventions to their
interactions with the robots. However, humans are able to maneuver themselves in
far more complex ways than most mobile robots. In particular, the vast majority of
commercially available robots used in human–robot interaction research are non-
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holonomic. In this context, a non-holonomic robot is capable of moving forwards
and driving along arcs, but is not capable of instantaneously moving sideways.

We believe that this capability to side-step is an important aspect of human
social navigation. In designing the COMPANION framework (see Chapter 4), we
represented this capability as a preference for facing the direction of travel, creating
a trade-off between sideways movement versus turning. When we identified this
constraint, we began the design of a holonomic robot, which would be capable
of sideways movements. The new robot was not yet completed when we ran the
user studies presented in Chapter 5, and the results we obtained using Grace—
a non-holonomic robot—further demonstrated to us the importance of holonomic
movements for social robots. In particular, while participants felt Grace avoided
their personal space, they also felt that her manner of doing so was awkward and
even jarring. We believe that this response was due to Grace’s turning away to
drive around people; a robot that could shift sideways without turning may be seen
as much more social.

7.1.2 Design Process

The Companion robot began as a small base designed by Botrics, LLC, as a 3-
wheeled holonomic version of their Obot d100 robot.1 However, as the body design
became more ambitious (see Section 7.2), we determined that the existing base
would not be sufficient. Since we still desired a holonomic robot, and were unable
to find a suitable platform available commercially, we redesigned the Obot robot
base to support the following design criteria:

• Max 30 kg robot weight, including base, batteries, and shell;

• 1.5-2.0 m/s maximum velocity (e.g., fast walking speed);

• Support continuous acceleration (e.g., repeated stops and starts);

• 3-6 hours of driving time.

We defined the given speed and driving time as a result of the author’s intent to
use Companion in various human–robot interaction studies, including the side-by-
side escorting discussed in Chapter 6. To do so, the robot must be able to keep pace
with a typical human walker, preferably with the ability to speed ahead if necessary
(such as around corners). The extended battery life is extremely beneficial to such
user studies.

1The Botrics Obot robot: http://botrics.com/products/obot/
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7.1.3 Final design

The final design of the base is shown in Figure 7.1. The base is comprised of
three 1/4”-thick aluminum plates, each 45 cm in diameter. The upper-most plate
provides a mounting surface for a computer, sensors, and various electronics. This
plate is supported above the center plate using aluminum rods topped with Sor-
bothane R© rubber shock-mounts (not shown). The center plate provides space for
four lithium polymer batteries and chargers, as shown in Figure 7.2. Finally, the
bottom-most plate holds the three motors and wheels, as shown in Figure 7.3.

The robot base is a modified Killough platform (Pin and Killough, 1994). This
design utilizes omniwheels, as shown in Figure 7.4, rather than active steering
(like a car) or differential drive (like many commercial research robots). Each
omniwheel is driven around its major axis of rotation, but has rollers that allow for
sideways slippage. The wheels are arranged around the base at 120◦ intervals, as
shown in Figure 7.5.

With this wheel setup, the robot can instantaneously achieve any arbitrary
translational and rotational velocity, within the physical limits of the motors. In
particular, to achieve a given translational velocity |V | in the θ direction (relative
to the front of the robot) and rotational velocity ψ̇, the rotational velocity of each
wheel must be set to:

w1 =
|V |
2r

(
− sin θ +

√
3 cos θ

)
+
ψ̇d

r
(7.1)

w2 =
|V |
r

sin θ +
ψ̇d

r
(7.2)

w3 =
|V |
2r

(
− sin θ −

√
3 cos θ

)
+
ψ̇d

r
(7.3)

where r is the radius of one wheel, d is the distance from the center of the robot to
the center of each wheel, and wi is the rotational velocity in radians per second of
wheel i. For the Companion robot, r = 0.06 m and d = 0.155 m.

The electronics for the base are composed of five custom-built boards, designed
by David Bromberg and Brian Kirby. The boards, as mounted on the robot, are
shown in Figure 7.6. The main board controls communications and power distri-
bution between the on-board computer and the rest of the robot hardware. This
board allows for AC or DC (battery) power and automatically switches to battery
charging when plugged into AC. In addition, the main board allows for simultane-
ous communication to the three motor controllers. Each motor is controlled by a
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(a) Isometric view

(b) Side view, with dimensions

Figure 7.1: Two views of the Companion robot base rendered in SolidWorks. The
top plate provides a mounting surface for the robot computer, electronics, and hous-
ing frame. The upper level holds the batteries and chargers, while the lower level
contains the motors and wheels; through-holes (visible in (a)) allow cables to be
run between the levels.
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Figure 7.2: Top-down view of the robot base, with the top plate removed. This level
holds the lithium polymer batteries and smart chargers. A through-hole allows for
cable connections between the levels.

Figure 7.3: Top-down view of the robot base, with the top two plates removed.
This level supports the three motors and three omniwheels, arranged symmetrically
around the base.
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Figure 7.4: An omniwheel produced by the Kornylak Corporation. The wheel as
shown is composed of two separate omniwheels, each with three rollers. Com-
bined, the wheel can provide sideways slippage over a full 360◦ rotation.

120

+X

+Y

2

3 1

Figure 7.5: The layout of the three-wheel omniwheel drive. The wheels are at
a 120◦ offset from each other. Each wheel is driven along the direction of the
red arrows, and can freely slip in the direction perpendicular to its corresponding
arrow. Wheel 2 corresponds to the front of the robot.
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dedicated digital motor driver, made by ADVANCED Motion Controls.2 (see the
parts list in Table 7.1). To reduce the footprint, the drivers are manufactured with
banks of pin connectors, and so require a separate interface board in order to have
standard connectors (such as a serial port). While AMC makes such a board, we
required a smaller footprint, and so designed our own interface boards. The robot
uses three such boards, one per motor. Finally, a small daughter board provides
three power switches (robot power, computer power, and computer on/off), as well
as a small LCD screen and several LEDs that can be used for status outputs. The
status board is mounted on a pole above the base for easier access.

High-level control of the robot is achieved with a standard mini-ITX desktop
computer. In particular, Companion’s computer, made by Portwell Technology,3

runs on a quad-core Pentium processor at 2.4 GHz, with 4 GB of RAM. In addition,
the computer uses a DC-input power supply, so that it can be run off batteries. The
computer connects to the robot electronics via USB. Finally, the computer also
runs the robot’s primary sensors, two Hokuyo URG scanning laser rangefinders,
mounted at the front and rear of the robot. The URG lasers each have a 240◦ field
of view with 0.36◦ resolution, approximately 6 m range, and scanning rate of 10
Hz. The URG lasers are situated so that the robot can produce a 360◦ sensor sweep.

A parts list can be found in Table 7.1. The assembled robot base is shown in
Figure 7.7.

7.2 Housing design

Although the base alone is a functional autonomous robot, we wanted to design a
physical “body” for the robot, for both aesthetic and functional reasons—in par-
ticular, since the purpose of the robot is interaction with moving people, the robot
needs to be easily visible. Early in the process, we defined the following design
criteria as desirable for a social robot:

• The body of the robot should have a more organic shape than is typical of
most research robots, which are often likened to cylindrical trash cans.

• The robot should be tall enough to be noticeable when it is amongst standing
people, but it should not feel intimidating to its interaction partners.

• The robot’s body should not suggest skills beyond its capabilities, such as
hands on a robot that cannot grasp.

2ADVANCED Motion Controls: http://www.a-m-c.com AMC provided a discount on
the motor drivers under their University Outreach program.

3American Portwell Technology: http://www.portwell.com/index.htm
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7.2. Housing design

(a) Power switches and small
LCD for status outputs.

(b) Motor controller interface board.
The large black component is the AMC
driver.

(c) Main board for power distribution and serial communications.

Figure 7.6: Custom designed circuit boards for the Companion robot.

• The robot should have face, to be a locus of interaction.

• Finally, the robot’s body should have a distinct front, back, and sides, to
provide orientation for human companions.

These criteria were drawn primarily from the team’s own experiences with
human–robot interaction research.

7.2.1 Early design sketches

The preliminary design work was done by Scott Smith, an undergraduate design
student at Carnegie Mellon University. While he initially sketched a wide variety of
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7. Companion Robot Design

(a) Front view. Visible on the top plate are
the front-mounted laser and the computer.
To the left of the computer is the power sup-
ply.

(b) Rear view. The rear-facing laser is cen-
tered in the image; behind that is the main
robot board. The power switch / LCD board
is mounted on the 80/20 pole.

Figure 7.7: Front and back views of the completed Companion robot base. On
the center of the top plate is a large 80/20 pole, primarily used for mounting the
housing.

body designs, we selected the basic form shown in Figure 7.8. These sketches also
show an early idea of a simple face display, using fixed LEDs. During the time that
these sketches were produced, we also performed an informal survey to determine
a preferred height for the robot. The survey used full-sized cardboard cut-outs of
various heights; participants were simply asked which height they would prefer for
an interactive mobile robot. The general opinion was for the robot to be approx-
imately 4.5’ (1.4 m) tall, making it shorter than most adults but taller than most
children.

Concurrent with the design of the shell was the decision to utilize an LCD to
display a graphical face, rather than the fixed LED features shown in the early
sketches. Such fixed features can convey only minimal expressions (such as color
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7.2. Housing design

Figure 7.8: Early design sketches for Companion by Scott Smith.

changes) that are often difficult to understand. A graphical face, in contrast, is
capable of a much wider range of expressions. Graphical faces are also easily
changed, allowing for more experimentation with the robot. (Note that we focused
our design on non-mechanical faces. Though a mechanical face may in some cases
be more compelling than either a fixed-display or a graphical face, such a face is
composed of many moving parts, and is thus difficult both to create and to main-
tain.) However, rather than rely on the “head in a monitor” type display as used by
Grace (see Figure 3.3 in Chapter 3), we instead selected a small monitor that could
be mounted inside a more organically-shaped head. In particular, we selected a
10.4” LCD manufactured by CMO4 (part number G104x1-L01). This LCD panel
has a very high contrast ratio (1200:1) and wide viewing angle (±88◦ in all direc-
tions), which allows the face to be seen well from all sides. We purchased the LCD
with a mounting bracket and electronics from Industrial Electronic Displays, Inc.5

for $425. The choice of display set a minimum size for the robot’s head, which
is reflected in the majority of sketches. Figure 7.9 depicts an exploration of some
simple emotive facial expressions.

As we explored options for materials, we followed the lessons learned from the
Snackbot robot design (Lee et al., 2009), planning to reduce weight by replacing
parts of the hard shell with soft fabric, as shown in Figure 7.10. This began to
make the separation between the robot’s torso and base parts more apparent. To
simplify the design even further, we chose to make the base and torso completely

4CMO, now Chimei InnoLux: http://www.chimei-innolux.com/opencms/cmo/
index.html?__locale=en

5Industrial Electronic Displays: http://www.industrialdisplays.com
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7. Companion Robot Design

Figure 7.9: Ideas for a simplistic face display for Companion; by Scott Smith.

Figure 7.10: Early design sketches for Companion, resulting from the decision to
take away some of the hard shell and replace it with fabric (around the sides); by
Scott Smith.

separate pieces, reducing much of the bulk of the shell. A CAD model of this
design is shown in Figure 7.11. This design was carved out of a solid blue foam
material and informally shown to colleagues. The overwhelming response was that
the head was too large, resembling either a space helmet or the top of a bowling
pin. The head size was scaled back in the final design, as discussed below.

7.2.2 Final design

In response to comments about the robot’s head size, undergraduate design students
Josh Finkle and Erik Glaser redesigned the head, resulting in the model show in

134



7.2. Housing design

(a) Front view (b) Side view (c) “Dressed”

Figure 7.11: CAD model of a late version of the Companion housing. The space
between the torso and base is meant to be covered with fabric, as shown in (c).
Design by Scott Smith.

Figure 7.12. This model was taken to a local manufacturer, Outlaw Performance,
Inc., that created fiberglass forms from the foam models. The production costs
were $11,000 to generate molds based on the foam models, and $1000 for the set
of three fiberglass body pieces. Additional body pieces can be manufactured from
the existing molds, should damage occur.

Color options for the shell were limited to a set of pre-mixed colors available
from the manufacturer. We selected a light teal color (“seafoam”) because it was
bright (and thus visible), but not obtrusively so (such as a safety-cone orange might
be).

The base housing piece contains internal fiberglass ledges that sit flush on the
top plate of the robot base. The base piece is then secured with bolts directly to the
plate. The back of the base piece can be removed to access the robot’s batteries,
as shown in Figure 7.13. The torso and head pieces mount to a long pole of 80/20
extruded aluminum.6 To mount the torso, mechanical engineer Roni Cafri designed

680/20 Inc: http://www.8020.net/
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7. Companion Robot Design

(a) (b)

Figure 7.12: Final model of the housing for Companion cut from blue foam, by
Josh Finkle and Erik Glaser. While the torso is not meant to sit directly on the
base, (b) is intended to give an idea of the overall robot shape.

an armature from sheet metal; the torso fiberglass fits snugly over the armature, and
is secured with Velcro R© strips. This mount is shown in Figure 7.14.

The completed robot (other than fabric coverings) is shown in Figure 7.15. In
keeping with the desire for an organic shape, fabric will be used to cover the area
between the torso and base, as well as the neck. A suitable fabric is still under
research, though we anticipate the use of a micro-mesh to allow air flow around
the electronics. A simple mock-up with cotton muslin is shown in Figure 7.15(b).

7.3 Summary

The Companion robot is a new platform for social robotics research. Its key fea-
tures include a holonomic base and a fiberglass housing. The robot was designed
to support social navigation—moving around people in socially acceptable ways.
The design process was lead by the author, in order to best support the research
directions of this thesis. The author oversaw all aspects of the robot’s development
and drove the design decisions.

The base of the robot is capable of producing fast movements in any direction,
similar to people’s abilities. Since it can move sideways as well as forwards and on
arcs, it can side-step around obstacles without having to turn, which is an important
behavior socially, as we showed in our user studies with Grace (Chapter 5).

The robot’s body was designed through an iterative process involving several
design students. The final housing design is composed of three pieces: a head, a

136



7.3. Summary

(a) Base housing piece mounted to the
robot.

(b) Open battery access panel on the
base.

Figure 7.13: The robot body piece that covers the base of the robot.

Figure 7.14: The mounting mechanism for the torso body piece is composed of
a sheet-metal armature that fits onto the 80/20 pole. The mount was designed by
Roni Cafri.
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7. Companion Robot Design

(a) Electronics exposed (b) Mock-up of fabric cover-
ing

Figure 7.15: The Companion robot, with the fiberglass body mounted and elec-
tronics exposed. During operation, the components on the base will be covered
with fabric. The completed height is approximately 4’8” (1.4 m).
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torso, and a base. All pieces were formed in fiberglass by a local manufacturer.
Space was left between the pieces to reduce weight and manufacturing effort, as
well as to incorporate fabric coverings into the design. The robot’s head holds an
LCD panel for displaying a graphical face, which can serve as a locus of interac-
tion.

Several aspects of the robot are still under development. Firmware for the
custom circuit boards is still being refined by the author: the circuitry can sense a
number of features of the robot’s state (such as power usage and remaining battery
life) that are not currently being reported in a meaningful way. These features
need to be communicated to the robot’s on-board computer so that it can react
appropriately to events like low batteries or stalled motors. Furthermore, we need
to either extend CARMEN or migrate to a different robot control framework in
order to support the robot’s holonomic capabilities.7

Many avenues of research will be available for exploration with the Compan-
ion robot. In particular, we intend to use Companion for further research on the
COMPANION framework (see Chapter 8). It can additionally be used for face-
to-face interaction research, as well as many other forms of social human–robot
interaction.

7.4 Acknowledgements

The Companion project was a collaboration between many people, including the
author, faculty members Jodi Forlizzi and Reid Simmons; research staff members
Brian Kirby, Ben Brown, and Greg Armstrong; design students Scott Smith, Josh
Finkle, and Erik Glaser; electrical engineering student David Bromberg; and me-
chanical engineer Roni Cafri. Companies involved in the robot design and man-
ufacture include Botrics, LLC (consulting on the base design), Advanced Motion
Controls (educational discount for the motor controllers), and Outlaw Performance
(shell manufacturing).

Finally, the Companion project drew funding from numerous sources, includ-
ing NSF CNS grant #0709077 to Sara Kiesler, an NPRP grant from the Qatar
National Research Fund,8 an NSF IGERT Graduate Research Fellowship, and the
Quality of Life Technology Center in Pittsburgh, PA.

7Recall from Section 5.1.5 that the motion model used by CARMEN’s localization module does
not support sideways maneuvers.

8A copy of the robot’s head is being used as part of a robotic receptionist on the Carnegie Mellon
campus in Qatar.
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Chapter 8

Future Work

The contributions of this thesis, including the COMPANION navigational frame-
work, its extension to joint path planning, and the Companion robot, are all in-
tended as foundational work for future social human–robot interaction research. In
this chapter, we address current limitations of the work, as well as several direc-
tions for further research.

8.1 Limitations of the current work

The focus of this thesis has been on the integration of human social conventions
in robot path planning, in the form of the COMPANION framework. However,
the current implementation of the framework has several limitations that must be
addressed before the framework can be used as part of a complete system. In par-
ticular, the primary limitations relate to real-time operation and to person tracking.

8.1.1 Real-time planning

In order to be used in real-time planning and navigation, the COMPANION frame-
work needs to be able to generate new paths whenever new sensory information is
received—which is typically several times per second. However, the current imple-
mentation of the framework achieves such rates only at the expense of optimality,
using the techniques described in Section 4.4.2. Furthermore, even with such tech-
niques, the joint planning extension runs several orders of magnitude too slowly
for real-time use.

Several methods may be useful in improving the run-time of the COMPANION
framework. For example, the A* search can be made to execute more rapidly with
the use of parallelization techniques on multi-core processors (e.g., Cvetanovic and
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Nofsinger, 1990). The search itself may also be better optimized with the use of
state lattices instead of an 8-connected grid (Pivtoraiko et al., 2009). Furthermore,
though we initially rejected randomized planners because they do not produce opti-
mal paths (see Section 4.1), the increase in speed that can be obtained from random
planners may be worth the reduction in optimality. Finally, we note that computer
processor speeds have increased rapidly over time, and continued hardware ad-
vances may result in real-time execution of even the current implementation.

An alternate approach to improving the search speed is to relax the require-
ment for global planning. In Section 4.1, we argue that the robot must react to
all obstacles (including people) in an intentional, goal-directed manner. To a large
extent, such behavior can be achieved by using a fast, high-level planner (that per-
haps considers only static obstacles) in order to provide very short-term goals to the
COMPANION planner. This method may fail to provide optimality over greater
distances, such as when the globally optimal path requires a significantly different
path than the shortest-distance path (such as described in Section 5.1.4). However,
the resulting behavior may sufficiently adhere to human social norms for accepta-
ble robot navigation.

8.1.2 Person detection and tracking

Another limitation of the COMPANION framework is the current state of person
detection and tracking. Since a key tenet of the framework is that people must be
treated as social entities (rather than just obstacles), the robot must be able to accu-
rately detect where people are in the environment. Unfortunately, the laser-based
tracking system we currently employ (see Section 4.4.3) performs quite poorly in
practice. The tracker could be improved in many ways, most notably by using a
multi-sensor approach to better determine the locations of people in the environ-
ment. That is, while a laser provides fairly accurate range readings, determining
which readings correspond to people is difficult. By combining the laser ranges
with, for example, a vision system that detects people by shape, the tracker could
achieve greater accuracy.

In addition, the path planner must predict people’s future trajectories in order
to plan optimal paths around them. While the current method of assuming straight-
line travel does result in socially acceptable behavior, we expect that the behavior
could be improved with better trajectory prediction. One method of better predic-
tion is to learn likely trajectories in a given environment (e.g., Kanda et al., 2009;
Ziebart et al., 2009). Furthermore, the robot may be able to employ a type of re-
flective navigation (Kluge and Prassler, 2004) to predict how people may change
their trajectories based on the robot’s actions.
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8.2 Additional on-robot experiments

While this thesis has presented a wide range of results from simulations, the actual
behavior of a physical robot was addressed in only a single scenario (Section 5.2).
This resulted from many factors, most notably the difficulties in running the com-
plete system in real-time and limited resources for user trials. Once the hurdle of
real-time operation has been addressed (Section 8.1), more on-robot experiments
can be run. In particular, interesting user studies include (but are certainly not
limited to):

• a behavioral analysis of the robot in situations beyond the head-on encounter,
such as overtaking a person or navigating through crowds;

• a mapping of constraint weights to robot “personalities;”

• user preferences for different robot behaviors in different situations, such as
different environments.

Furthermore, the experiment presented in this thesis was performed with the
robot Grace, rather than the new Companion robot (Chapter 7). This was done
for multiple reasons—primarily because the Companion robot was not yet opera-
tional, and additionally due to the need to re-write CARMEN’s localization mod-
ule to support holonomic movements, which was beyond the scope of this thesis.
However, an obvious direction for future research is to run user studies with Com-
panion. Beyond the research topics listed above, further research could compare
the differences between Grace and Companion, particularly relating to people’s
perceptions of the robot’s behaviors.

8.3 Learning constraint weights

In all of the results presented in this thesis, the weights assigned to each constraint
were assigned by hand. While we have sought to address ways in which the robot’s
behavior changes due to different weights, future research could further quantify
these changes. In particular, one interesting avenue of research could involve ap-
plying machine learning to the constraint weighting problem. We imagine that the
robot could be tele-operated to produce social behavior according to an operator’s
preferences. The paths produced by the operator could then be used as training
data to learn a set of constraint weights that would produce similar behavior. That
is, the problem of computing constraint weights based on a desired behavior could
be treated as an “inverse reinforcement learning” problem (Ng and Russell, 2000).
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8.4 Additional constraints

While we have argued that the constraints presented in this thesis produce socially
acceptable behavior, we acknowledge that people do employ many additional so-
cial conventions when walking around others. For example, people change their
behaviors according to whether another person is a friend or stranger, their rela-
tive social status, gender, and so on. Many of these behaviors can be represented
in the COMPANION framework, with the requirement that the robot be able to
detect such relationships. In addition, conventions that correspond to other capa-
bilities, such as speech or gaze, could be added to the framework. Future research
could work both to identify (and implement) interesting social conventions and to
understand when their use may be beneficial to human–robot interaction.

8.5 Additional tasks

We believe that the COMPANION framework, particularly with the joint planning
extension, can represent a wide variety of social situations. Future research could
identify and implement different social tasks as well as seek to understand the
limits of what the framework can represent. Some tasks that we think could be
represented with COMPANION include side-by-side following, standing in line,
and entering and exiting elevators.

8.5.1 Side-by-side following

The task of following someone side-by-side is similar to the side-by-side escorting
task presented in Chapter 6, but with the roles reversed. The constraints for travel-
ing side-by-side—“walk with a person” and “remain side-by-side”—are the same,
whether the robot is leading or following. However, when following rather than
leading, the final goal is unknown to the robot. Instead, the robot must dynamically
predict its desired goal location based on the person’s movements. The robot will
need to estimate the person’s location at some point in the near future, probably
on the order of 1–2 meters ahead (though the optimal distance likely depends on
travel speed and other factors, and is a subject for further research). Additional
constraints might be necessary for the robot to react properly to cues from the per-
son (such as verbal directions). As long as the robot is able to predict a relatively
likely future location of the person, the COMPANION framework should generate
social paths for following next to a person.
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8.5.2 Standing in line

Another socially-guided task that a robot may need to execute is that of waiting in a
line, which we also believe can be represented in the COMPANION framework. In
this case, the goal is typically the counter at the front of the line, but the robot must
be constrained to remain in line. In particular, the planner will need the addition
of a hard “stay in line” constraint that denies movement around the line. The line
itself would need to be tracked in some way in order to compute the sides of the line
as well as the end of the line, where the robot may enter. The existing “personal
space” and “robot ‘personal’ space” constraints will allow the robot to maintain
proper spacing in the line.

Note that for this task, the robot may need to have some model of how peo-
ple move in a line—under the current person-prediction model, stationary people
(such as those waiting in line) are assumed to remain stationary, so if the robot is
forbidden from leaving the line, and the people are assumed not to move, the path
planner will declare failure to plan to the goal. If the robot assumes that people will
require some set amount of time at the front of the line and then move away, the
planner should be able to generate trajectories of the form “remain stopped until a
person finishes, then move forward.”

Interestingly, if the “stay in line” constraint is formed as a soft rather than
hard constraint, it may allow the robot to cut in line, if either a large enough gap is
detected between people (so the “personal space” constraint cost is not overwhelm-
ing) or if the line moves much more slowly than the robot had predicted. Whether a
particular line allows such behavior tends to be culturally defined (Norman, 2009).

8.5.3 Elevator etiquette

Another task that may be represented in the COMPANION framework is that of
riding an elevator. Elevator etiquette (at least in the United States) dictates that
people who are already on the elevator should have the opportunity to exit before
any additional people enter. However, a person wishing to enter the elevator cannot
wait indefinitely for people who might exit, as the elevator doors remain open for
only a short while. Once inside the elevator car, people tend to stand around the
edges, facing the door. Standing in front of the door, either while outside the
elevator waiting to enter or while riding inside, is considered rude, as it may block
others’ access to the elevator door—unless a person intends to exit the elevator at
the next floor, in which case standing by the door indicates his plan.

As with the “standing in line” task, most of the conventions for riding an el-
evator arise from the already-defined constraints of “personal space” and “robot
‘personal’ space.” An additional constraint relating to the cost of various positions
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and orientations within the elevator car will likely be necessary—relying on per-
sonal space alone, the lowest-cost positions may have the robot facing the wall, so
that its back is toward others on the elevator. Since facing the wall is considered
rather anti-social, we would need to define a cost function that favors facing the
elevator door.

The main difficulty in representing this task in the COMPANION framework
arises from the need to model people’s behaviors. In particular, the robot may need
a probabilistic model of how people enter and exit elevators (Broz et al., 2008).
The planner will need to be modified to search in a probabilistic space; that is,
the planner should find paths that have low expected cost. Such a planner should
generate plans in which the robot waits before getting onto an elevator until the
probability of anyone trying to exit the elevator is low.

8.6 Summary

In this chapter, we have presented several limitations to the current implementation
of the COMPANION framework, namely, the need for improved search speed and
person tracking. These limitations result from the implementation only, and are not
fundamental to the overall framework. As a result, we believe that the COMPAN-
ION framework, as well as the Companion robot, provide an excellent foundation
for future research.

Some areas that are particularly interesting for future exploration include per-
forming more on-robot experiments (particularly with Companion), ways of learn-
ing constraint weights that produce particular behaviors, and researching additional
social conventions that may be represented as constraints. Furthermore, we believe
that a wide variety of other social tasks, beyond hallway navigation and escorting
people, can be represented in the COMPANION framework. We have suggested
several tasks, including side-by-side following, standing in line, and entering and
exiting elevators. Future research could work toward implementing these and other
tasks. Finally, future work could seek to define and understand the limit of what
types of tasks can and cannot be represented in the COMPANION framework.
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Chapter 9

Conclusions

This thesis has argued that human social conventions for movement can be repre-
sented as mathematical cost functions, and that robots that navigate according to
these cost functions are interpreted by people as being socially correct. To support
this claim, we developed the COMPANION framework, implemented the task of
navigating through hallways, demonstrated this behavior in both simulation and in
user studies, and extended the framework to the task of escorting someone while
remaining side-by-side. Finally, we support future social robotics research with a
new platform, the holonomic Companion robot.

The first contribution of this thesis is the COMPANION framework: a Con-
straint-Optimizing Method for Person–Acceptable NavigatION. By studying how
people navigate around each other, we formulated a key set of social and task-
related conventions, represented as mathematical constraints. In particular, we ar-
gued that the norms used for general social navigation include:

• Minimizing the distance traveled;

• Avoiding static obstacles;

• Keeping a safety buffer around obstacles;

• Avoiding people, including keeping out of their personal space;

• Protecting the robot’s own “personal” space;

• Tending to the right when passing people;

• Keeping a default velocity, so as not to expend extra energy;

• Facing the direction of travel, but allowing for side-stepping obstacles; and
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• Maintaining forward inertia.

Drawing on psychological descriptions of human behavior, each of these social
norms was described according to a mathematical cost function. The various func-
tions are weighted and combined into a single objective function, which is then
used for optimal path planning. This path-planning framework supports the first
part of our thesis statement, that social conventions for movement can be repre-
sented as mathematical cost functions, and represents the primary contribution of
the thesis.

The second contribution of this thesis is an implementation and analysis of the
COMPANION framework for hallway navigation tasks. In simulation, we showed
that this set of constraints does result in behavior that mimics social norms. Since
the constraints are applied to a global path planning problem, the resulting be-
haviors model the flexible ways that people adhere to social conventions, such as
generally tending to the right side of hallways, except when turning left or when
another person is in the way. We further showed how different behaviors can be
produced by changing the weights of the constraints used, or by modifying the
constraints to match conventions of other cultures.

Using the robot Grace, we demonstrated that the robot’s behavior, when plan-
ning under the COMPANION framework, was interpreted according to human so-
cial norms. The robot was seen as generally more social, particularly regarding
personal space zones, when it navigated according to all of the social conventions
we identified. We showed that participants ascribed different personalities to the
same robot depending on its behaviors. These results support the second part of
our thesis statement, that robots that navigate according to the cost functions we
defined for social conventions are interpreted by people as being socially correct.

In addition, we have contributed an extension to the COMPANION framework,
designed for joint tasks between a robot and a person. By generating plans that
assume both the robot and the person will follow social norms, the paths created for
the robot inherently account for the conventions used in joint tasks. We discussed
the necessary changes to the path planner in order to allow such joint planning.
Furthermore, we identified the constraints necessary for an escorting task, where
the robot is expected to guide a person to a goal while remaining by his or her
side. We demonstrated that this approach works to produce behaviors such as
speeding up or slowing down when going around corners, as well as traveling
through narrow doorways where the robot must move in front of the person. This
work presents further support for our statement that social conventions—including
conventions for joint behaviors—can be represented as mathematical cost functions
used in path planning.
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Finally, to support the theoretical COMPANION framework and results, we
have also contributed the Companion robot, a new platform for social human–robot
interaction research. We detailed the design process of the robot, including both
the electro-mechanical base and the fiberglass housing. Companion is a holonomic
robot, able to move sideways without having to turn first. We believe this to be an
important feature for robots that travel around people, because turning aside while
passing a person is considered impolite. All aspects of the Companion design
process were intended to support social interaction research, and we expect it to be
an invaluable resource for future work.

The COMPANION framework and Companion robot are designed as founda-
tional work for future social human–robot interaction research. We have suggested
several interesting directions for future work, including additional experiments,
other social conventions, and other social tasks. We believe that the findings we
have presented in this thesis represent only a small portion of the potential of this
research.

Overall, our research has demonstrated the need for robots that operate around
people to behave according to human social norms. The COMPANION framework
is a representation of these norms in a manner that can be utilized by a robot’s
path planner to produce socially acceptable behavior around people. While much
research remains, we believe that this work will be greatly beneficial to future
robots, as well as the people who work with them.
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Gérin-Lajoie, M., Richards, C. L., and McFadyen, B. J. (2005). The negotiation
of stationary and moving obstructions during walking: Anticipatory locomotor
adaptations and preservation of personal space. Motor Control, 9(3):242–269.

Gilbert, M. (1990). Walking together: a paradigmatic social phenomenon. Midwest
Studies in Philosophy, 15:1–14.

Gockley, R. (2007). Developing spatial skills for social robots. In Proceedings
of the AAAI Spring Symposium on Multidisciplinary Collaboration for Socially
Assistive Robotics, pages 15–17, Palo Alto, CA.

Gockley, R., Forlizzi, J., and Simmons, R. (2006). Interactions with a moody
robot. In Proceedings of Human-Robot Interaction, pages 186–193, Salt Lake
City, Utah.

Gockley, R., Forlizzi, J., and Simmons, R. (2007). Natural person-following be-
havior for social robots. In Proceedings of Human–Robot Interaction, pages
17–24, Arlington, VA.
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Appendix A

Asymmetric Gaussian Integral
Function Definition

Several of the constraints given in Chapter 4 refer to an “Asymmetric Gaussian”
function, which we define here. This function is our own formulation to model the
shape of several human social conventions, such as personal space.

A standard 1-dimensional Gaussian function is defined in terms of its mean µ
and variance σ:

f(x) = e−
(x−µ)2

2σ2 (A.1)

In two dimensions, the mean is the center of the function (x0, y0), and the
variance is represented by two values, σx and σy:

f(x, y) = e
−

„
(x−x0)2

2σ2
x

+
(y−y0)2

2σ2
y

«
(A.2)

A typical 2-dimensional Gaussian function is symmetric along both the x and
y axes. We generate a 2-dimensional Asymmetric Gaussian by composing two
such functions with shared σx and differing σy values. This reduces the symmetry
of the function to only one axis. Furthermore, we allow the function to have an
arbitrary rotation, so that it is not necessarily aligned to the x and y axes. We use
the following notation:

θ rotation of the function
σh variance along the θ direction
σs variance to the sides (θ ± π/2 direction)
σr variance to the rear (−θ direction)

Since the two functions share the value for σs along their joining axis, the
overall Asymmetric Gaussian function is continuous and smooth.
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A. Asymmetric Gaussian Integral Function Definition

Algorithm A.1 Algorithm to compute the value at (x, y) of an Asymmetric Gaus-
sian function centered at (xc, yc), with a rotation of θ and variances of σh, σs, and
σr.

1: α← atan2(y − yc, x− xc)− θ + π/2;
2: Normalize α;
3: σ ← (α ≤ 0 ? σr : σh);
4: a← (cos θ)2/(2σ2) + (sin θ)2/(2σ2

s);
5: b← sin(2θ)/(4σ2)− sin(2θ)/(4σ2

s);
6: c← (sin θ)2/(2σ2) + (cos θ)2/(2σ2

s);
7: return exp(−(a(x− xc)2 + 2b(x− xc)(y − yc) + c(y − yc)2));

Algorithm A.1 details the computation of the value of an arbitrarily rotated
Asymmetric Gaussian at some point (x, y). Lines 1 through 3 compute the nor-
malized angle of the line running in the σs direction; that is, α points along the
side of the function, and −π < α ≤ π. Line 3 determines in which of the two 2D
Gaussian functions the point of interest, (x, y), is located. If α = 0, the point of
interest falls directly to the side of the function center, and thus relies only on σs.

Figure A.1 depicts various views of one such Asymmetric Gaussian cost func-
tion. The function shown is centered at (0, 0), has a rotation of θ = π/6, and has
variances σh = 2.0, σs = 4/3, and σr = 1.0. The maximum cost is 1.0 at the
center of the function.

The Asymmetric Gaussian function represents a continuous cost function, but
it must be discretized for use in the A* search. To further complicate matters,
during one timestep, typically both the center of the Gaussian function moves (e.g.,
the location of the person), as does the robot’s location. The true solution would
be to integrate the (moving) function over time, but such an integral is intractable
for real-time search. Instead, we approximate the integral by sampling the values
at k intervals, multiplying each sample by 1/k times the timestep. For k → ∞,
this approximation approaches the true integral. For speed of computation, we use
k = 4.
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Figure A.1: Various views of an Asymmetric Gaussian function centered at (0, 0),
rotated by θ = π/6, and having variances σh = 2.0, σs = 4/3, and σr = 1.0.
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Appendix B

Simulation Results for Hallway
Navigation

The following images represent the paths planned in the simulations described in
Section 5.1.1. To summarize, the experiment was run as a set of 3 goal x 3 person
location x 3 person speed simulations (27 possible scenarios). The 10 m by 10 m
environment contained two hallways: a 3 m wide main corridor and a 2 m wide
corridor that intersected the first at right angles. The robot and person each began
in the main corridor, approximately 8 m apart. The robot always began in the same
location and orientation, with a preferred speed of 0.5 m/s. The three possible goals
were: a right turn down the intersecting hallway, a left turn down the intersecting
hallway, or straight ahead. The person began either 0.5 m to the left of the robot
(i.e., on the right of the hallway from the person’s perspective), centered in the
hallway (aligned with the robot), or 0.5 m to the right of the robot (i.e., on the left
of the hallway from the person’s perspective), and traveled at a constant speed of
either 0.3 m/s, 0.5 m/s, or 0.7 m/s.

In the following images, the robot is depicted as a blue circle, the goal as a
yellow circle, and the person as an orange circle. In each set of images, the first
image (a) depicts the path as planned on a constant grid (cells 10 cm on a side),
using the constraints and weights given in Table B.1. Overlaid on these images is
the positions of the robot and the person when they are closest to each other on the
paths. The second image in each set (b) was planned using the same constraints
and weights, but with the addition of the speed improvement methods described in
Section 4.4, namely:

• The size of the grid varied, becoming increasingly coarse further from the
robot. The cell sizes used are given in Table B.2.
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B. Simulation Results for Hallway Navigation

Table B.1: Constraint weights used in the objective function. In addition, the hard
constraints of avoiding obstacles and people were used.

Constraint Name Weight (wc)
Minimize distance 1

Obstacle buffer 1
Personal space 2
Robot space 3
Pass on right 2

Default velocity 2
Face travel 2

Inertia 2

Table B.2: Variable search grid sizing.

Distance from Robot Cell Dimensions
less than 1 m 0.1× 0.1 m

between 1 and 3 m 0.3× 0.3 m
greater than 3 m 0.6× 0.6 m

• At distances beyond the smallest grid sizing (that is, beyond 1 m), the action
space was reduced to only forward, left turn, and right turn.

• Once the search identified a state in which the robot had passed the person,
the person was dropped from searches outward from that state.

• A shortest-distance gradient was imposed on the search such that the robot
could not deviate from the gradient by more than a fixed amount at each step.

Arrows along the paths represent the robot’s (or person’s) heading, and are
drawn every 40 cm along the paths on the constant grid, or at a minimum of 40 cm
(or at each path step, whichever is larger) on the variable grid.

Refer to Section 5.1.1 for statistics regarding all paths.
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B. Simulation Results for Hallway Navigation

(a) Constant grid

(b) Variable grid

Figure B.1: Path planned for a goal requiring the robot to turn right down a hallway.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.2: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s right. One person (orange circle)
is traveling down the left of the hallway at a speed of 0.3 m/s. Figure (a) depicts
the path planned on a constant grid, with the closest point between the robot and
person marked. Figure (b) shows the whole path planned on a variable grid.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.3: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s right. One person (orange circle)
is traveling down the left of the hallway at a speed of 0.5 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.4: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s right. One person (orange circle)
is traveling down the left of the hallway at a speed of 0.7 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
The robot moves further to the right than in Figure B.3 due to the larger personal
space of the faster-moving person.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.5: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s right. One person (orange circle)
is traveling down the center of the hallway at a speed of 0.3 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.6: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s right. One person (orange circle)
is traveling down the center of the hallway at a speed of 0.5 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
The robot moves close to the wall to avoid the person.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.7: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s right. One person (orange circle)
is traveling down the center of the hallway at a speed of 0.7 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
The robot moves close to the wall to avoid the person, turning much sooner in the
path than in Figure B.6.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.8: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s right. One person (orange circle)
is traveling down the right of the hallway at a speed of 0.3 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
The robot turns in front of the person, but comes extremely close to the corner of
the walls.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.9: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s right. One person (orange circle)
is traveling down the right of the hallway at a speed of 0.5 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
The robot moves to the left of the hallway rather than travel closely to both the
person and the right wall.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.10: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s right. One person (orange circle)
is traveling down the right of the hallway at a speed of 0.7 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
As with Figure B.9, the robot passes on the left, but moves out of the person’s way
sooner.
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B. Simulation Results for Hallway Navigation

(a) Constant grid

(b) Variable grid

Figure B.11: Path planned for a goal requiring the robot to turn left down a hallway.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.12: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s left. One person (orange circle) is
traveling down the left of the hallway at a speed of 0.3 m/s. Figure (a) depicts the
the path planned on a constant grid, with the closest point between the robot and
person marked. Figure (b) shows the whole path planned on a variable grid.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.13: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s left. One person (orange circle) is
traveling down the left of the hallway at a speed of 0.5 m/s. Figure (a) depicts the
the path planned on a constant grid, with the closest point between the robot and
person marked. Figure (b) shows the whole path planned on a variable grid.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.14: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s left. One person (orange circle) is
traveling down the left of the hallway at a speed of 0.7 m/s. Figure (a) depicts the
the path planned on a constant grid, with the closest point between the robot and
person marked. Figure (b) shows the whole path planned on a variable grid.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.15: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s left. One person (orange circle)
is traveling down the center of the hallway at a speed of 0.3 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
Because the person is moving slowly, the robot is able to cut across to the left of
the hallway before they pass each other.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.16: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s left. One person (orange circle)
is traveling down the center of the hallway at a speed of 0.5 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
Because the person is moving faster than in Figure B.15, the robot instead takes a
longer path on the right of the hallway.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.17: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s left. One person (orange circle)
is traveling down the center of the hallway at a speed of 0.7 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
As with Figure B.16, the robot moves to the right to pass the fast-moving person.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.18: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s left. One person (orange circle) is
traveling down the right of the hallway at a speed of 0.3 m/s. Figure (a) depicts the
the path planned on a constant grid, with the closest point between the robot and
person marked. Figure (b) shows the whole path planned on a variable grid.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.19: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s left. One person (orange circle)
is traveling down the right of the hallway at a speed of 0.5 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
Unlike Figure B.16, the robot moves left rather than squeeze between the person
and the wall on the right.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.20: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) on the robot’s left. One person (orange circle)
is traveling down the right of the hallway at a speed of 0.7 m/s. Figure (a) depicts
the the path planned on a constant grid, with the closest point between the robot
and person marked. Figure (b) shows the whole path planned on a variable grid.
Unlike Figure B.17, the robot moves left rather than squeeze between the person
and the wall on the right.
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B. Simulation Results for Hallway Navigation

(a) Constant grid

(b) Variable grid

Figure B.21: Path planned for a goal requiring the robot to drive straight past an
intersection in the hallway.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.22: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) straight ahead of the robot. One person (orange
circle) is traveling down the left of the hallway at a speed of 0.3 m/s. Figure (a)
depicts the the path planned on a constant grid, with the closest point between the
robot and person marked. Figure (b) shows the whole path planned on a variable
grid. On the variable grid, the robot’s path does not turn at all due to the size of the
cells.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.23: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) straight ahead of the robot. One person (orange
circle) is traveling down the left of the hallway at a speed of 0.5 m/s. Figure (a)
depicts the the path planned on a constant grid, with the closest point between the
robot and person marked. Figure (b) shows the whole path planned on a variable
grid. On the variable grid, the robot’s path does not turn at all due to the size of the
cells.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.24: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) straight ahead of the robot. One person (orange
circle) is traveling down the left of the hallway at a speed of 0.7 m/s. Figure (a)
depicts the the path planned on a constant grid, with the closest point between the
robot and person marked. Figure (b) shows the whole path planned on a variable
grid.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.25: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) straight ahead of the robot. One person (orange
circle) is traveling down the center of the hallway at a speed of 0.3 m/s. Figure (a)
depicts the the path planned on a constant grid, with the closest point between the
robot and person marked. Figure (b) shows the whole path planned on a variable
grid.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.26: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) straight ahead of the robot. One person (orange
circle) is traveling down the center of the hallway at a speed of 0.5 m/s. Figure (a)
depicts the the path planned on a constant grid, with the closest point between the
robot and person marked. Figure (b) shows the whole path planned on a variable
grid.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.27: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) straight ahead of the robot. One person (orange
circle) is traveling down the center of the hallway at a speed of 0.7 m/s. Figure (a)
depicts the the path planned on a constant grid, with the closest point between the
robot and person marked. Figure (b) shows the whole path planned on a variable
grid. On the constant grid, the robot passes extremely close to the person; because
the person is moving quickly, the robot trades off a briefly high cost from personal
space with taking a short path. In contrast, on the variable grid with reduced action
space, the robot must incur high inertia costs to avoid hitting the person, and thus
also accepts the longer path rather than incur personal space costs.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.28: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) straight ahead of the robot. One person (orange
circle) is traveling down the right of the hallway at a speed of 0.3 m/s. Figure (a)
depicts the the path planned on a constant grid, with the closest point between the
robot and person marked. Figure (b) shows the whole path planned on a variable
grid. The robot moves left rather than travel close to both the person and the wall
on the right.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.29: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) straight ahead of the robot. One person (orange
circle) is traveling down the right of the hallway at a speed of 0.5 m/s. Figure (a)
depicts the the path planned on a constant grid, with the closest point between the
robot and person marked. Figure (b) shows the whole path planned on a variable
grid. The robot moves left rather than travel close to both the person and the wall
on the right.
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B. Simulation Results for Hallway Navigation

(a) Constant grid, with closest encounter marked

(b) Variable grid

Figure B.30: Statically planned paths for the robot (blue circle at bottom) traveling
at 0.5 m/s to a goal (yellow circle) straight ahead of the robot. One person (orange
circle) is traveling down the right of the hallway at a speed of 0.7 m/s. Figure (a)
depicts the the path planned on a constant grid, with the closest point between the
robot and person marked. Figure (b) shows the whole path planned on a variable
grid. As with Figure B.23, on the variable grid, the robot’s path does not turn at all
due to the size of the cells.
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Appendix C

Cross-Cultural Social Differences

This thesis focuses on implementing human social conventions on a robot. In par-
ticular, it focuses on implementing the social conventions typically found in the
United States, where personal space is large, people tend to walk on the right side
of hallways, and cutting in front of others is often acceptable. While some mention
has been made when describing the constraints to discuss necessary changes for
use in other cultures (see Section 4.2), this appendix seeks to address, in a more
general way, what kinds of social conventions differ across cultures. Focus is made
on the differences between North American and Arabic social conventions primar-
ily due to connections with the Carnegie Mellon University campus in Qatar.

C.1 Social Conventions

Interactions between people are governed by culturally-specific social conventions.
These conventions regulate how close people stand near each other (termed “prox-
emics”), how they look at each other, how they gesture, and how they speak to each
other.

C.1.1 Proxemics

The study of how people arrange themselves in space when interacting with each
other was coined “proxemics” by Hall (1966). For North American cultures, Hall
defined four proxemic zones: the intimate zone, which typically involves close
contact; the personal zone, roughly an arm’s length away, where people stand for
face-to-face interaction; the social zone, which is further out and used for business
interactions; and finally the public zone, which begins roughly 4 meters away from
a person and is used for public speaking. Personal space, in particular, serves
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as both protection for sensory information during an interaction (e.g., how much
one sees and smells of the interaction partner), as well as communication between
interactors, helping to define the type of interaction as well as the relationship
between the participants (Aiello and Thompson, 1980).

For different cultures, these zones of interaction are often of different sizes.
In particular, a distinction can be made between “contact” versus “non-contact”
cultures (Hall, 1966; Watson, 1970; Aiello and Thompson, 1980). Non-contact
cultures, which include North American, Asian, Indian, Northern and Western Eu-
ropean, typically maintain interaction distances similar to those given above. In
contrast, in contact cultures, such as Arabic, Latin, and Southern European, people
typically interact at a much closer distance. Contact cultures tend to have a much
greater tolerance for crowding in public spaces than do non-contact cultures; where
North Americans may instinctively form lines in crowded shops, Arabs may push
close in a large crowd (Feghali, 1997).

In many cultures, these interpersonal distances also relate to how well the inter-
actors know each other. For example, in both Arab and North American cultures,
people tend to keep strangers further away than friends (Sanders et al., 1985), and
strangers sitting on public benches tend to keep similar distances across different
cultures (Mazur, 1977). Gender can also influence interpersonal distances; some
research has found that Arab females tend to keep male friends further away than
female friends (Sanders et al., 1985).

If people of different cultures attempt to interact using their own proxemic
behavior, “proxemic interference” may occur. This may lead to both discomfort
and misunderstanding (Watson, 1970).

C.1.2 Gaze and Orientation

Different cultures not only maintain different interpersonal distances, but also tend
to employ different body orientations. While North Americans tend to stand at
angles to each other and look away while talking, Arab interactions involve direct
body orientation and direct eye contact (Watson and Graves, 1966; Feghali, 1997).
In such contact cultures, the American practice of avoiding direct eye contact is
considered impolite (Watson, 1970).

C.1.3 Gestures

People of all cultures tend to gesture while talking. Some cultural-specific gestures,
such as the American “OK” sign, can be offensive in other cultures (Safadi and
Valentine, 1990). However, some types of gestures appear to be similar across
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various cultures, such as head movements for each item in a list, and gestures
(including head movements) for pointing (McClave et al., 2007).

C.1.4 Speech

An important part of speech is language. While English certainly has different
dialects (consider American English versus British English), English speakers are
generally able to understand each other. However, this is not necessarily the case
with Arabic dialects, which have wide variability and speakers of one Arabic di-
alect may not be able to understand speakers of another (Feghali, 1997).

Beyond the language used, different cultures rely on different assumptions
about another person’s knowledge and expectations of a conversation. This is re-
ferred to as the context of the speech: high context relies on physical context (such
as knowledge assumed to be internalized by the interactors), while low context is
much more explicit in the spoken message. Arabic society is high context while
Western societies are low context (Feghali, 1997).

Furthermore, the quality of speech, such as volume and rate, varies across cul-
tures. In particular, Arabs tend to speak quickly and loudly as compared to North
Americans (Watson and Graves, 1966; Feghali, 1997).

C.2 Implications for Robots

These differences in cultural conventions must be addressed when designing robots
to interact with people of multiple cultures or even simply a culture other than the
one in which the robot is designed. The following implications should be used
as general guidelines for designing such robots. However, it is important to note
that no conclusive evidence exists for the assumption that a robot should observe
the same conventions as people; people may have very different expectations for
robots, and a robot that attempts to behave in a human-like manner may not be
ideal. Our work, however, does indicate that a robot that follows physical social
conventions is easily understood by people.

A robot that speaks must be able to speak in the same language as the people
to whom it is speaking. While this may seem obvious, the robot may need to
adaptively change its primarily language in countries where many different dialects
are spoken. A robot in an Arabic culture should speak faster and louder than a robot
interacting with Westerners. Similarly, a robot that gestures or understands gestures
must use culturally-specific models of gesture meaning, as similar gestures may
have radically different meanings in different cultures.
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Mobile robots need to account for different treatment of space in different cul-
tures. In contact cultures, such as Arabic society, the robot may need to approach
people more closely and interact with a more direct body orientation than it would
in non-contact cultures. However, this may raise safety concerns; a robot that is
capable of physically harming a person should perhaps keep a greater distance than
would be typical for the culture.

Due to differing conceptualizations of public space, robots situated in contact
cultures may need to have better handling of large groups. While people in non-
contact cultures may instinctively line up to interact with a social robot, people in
contact cultures may be more likely to attempt to interact with the robot as a large
group (Feghali, 1997).

C.3 Conclusions

Developers of social robots need to be aware of the culture for which their robots
are intended. As this appendix has discussed, social conventions vary across cul-
tures, and behaviors that are proper in one culture may be awkward or impolite in
others.

However, little research has been done to date regarding social robots across
cultures. One existing computational model simulates difference in proxemics and
gaze for virtual agents to interact as Anglo American, Spanish, or Arabic (Jan et al.,
2007), and may be a reasonable starting point for a more complete model for social
robots.
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