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Abstract 

This thesis explores the potential of a concurrent physical and digital modeling 

environment. Inspired by constructionist notions of embodied cognition in design, a novel 

interface for design modeling is presented where designers can take advantage of the affordances 

of both physical and digital modeling environments, and work back and forth between the two. 

Using Processing, along with the Kinect depth sensor, the system uses depth data read from a 

physical modeling space to produce an enhanced digital representation in real time. The result is 

a proof-of-concept concurrent physical and digital modeling environment where users can design 

by moving and stacking wooden blocks in a physical space, which is represented (and enhanced) 

digitally as a “voxel space.” Crucially, the system combines design affordances specific to each 

media: while the physical space offers tactile and embodied forms of design interaction, the 

digital space offers different views and parametric editing capabilities —as well as save 

configuration, and the capacity to perform basic analyses. Following a short review of 

experimental computational and tangible interaction design interfaces, the thesis discusses the 

system's implementation, its limitations, and next steps.   
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Chapter 1. Introduction 

As children, we often think of creativity as being something hands-on and playful. 

However, as adults in a digital age, the design and creativity process became something more 

restricted behind the digital tools that dominate the profession and market place.  

The advent of computer aided design and modeling software were breakthroughs that 

helped to transform and reshape the entire design and engineering industries. There are many 

strengths to digital modeling tools, including but not limited to… 

• Drawing accuracy  

• Encapsulation of data within different components 

• Capability to create realistic renderings through texture mapping 

• Performance and contextual simulation  

• Navigation from different views on the same screen 

• Saving and preserving data 

With these computational advantages simplifying many processes while improving 

drawing accuracy, there is a shift in which we’re moving away from physically prototyping 

things with our hands to directly drawing on the digital screen.  However, what are some benefits 

to conventional physical modeling that many of us seem to be moving away from? 

One major strength to physical models is that users can touch them directly. The 

affordance offered by the shape and materiality of graspable objects arouses our natural 

intuitions and desire to touch and play. For many, getting our hands moving can help fuel 

creativity and quickly generate ideas without focusing on unnecessary details.  
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This is supported by Constructionism’s underlying idea of “learning-by-making,” where 

the “learner is consciously engaged in constructing a public entity, whether it's a sand castle on 

the beach or a theory of the universe” (Papert, Harel, “Constructionism”). This concept as coined 

by Seymour Papert, who published his work tilted “Constructionism” in 1991. He was largely 

inspired by Swiss psychologist Jean Piaget’s theory on the nature of knowledge; Piaget believes 

that people actively construct “robust system of belief” through their experience with their world. 

His main argument was that as learners, we can understand things better after we construct them 

ourselves. Take the example of children, they might enjoy learning things like math more if they 

could apply that knowledge to activities such as building physical models.  

According to Papert, “building and playing with castles of sand, families of dolls, houses of 

Lego,” all have a quality of "learning-richness"(Papert, Harel, “Constructionism”).  Papert tried 

to reproduce this quality of richness by designing many “construction materials” for children. 

One notable experience for him was seeing students freely practicing their imaginative fantasies 

with a soap sculpting project in an art class. He wondered why a traditional math class that uses 

“instructionist” method of education (learning through teacher’s demonstration and doing 

problem sets), cannot be more like the art classes, where kids can construct something personal 

and meaningful. One example of Papert’s legacy work is the Lego Mindstorms product line, 

which links software and hardware to allow kids to customize and build programmable robots.  

The first iteration of this work was called the LEGO TC LOGO, where children are engaged 

with 3 types of constructionist learning: 

1. By building structures from LEGO pieces 

2. By creating computer programs to control the LEGO pieces 

3. By constructing knowledge in their minds from step 1 and 2.  
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Figure 1: the Lego Mindstorms Kit1 

In addition, Papert’s theory of the learning environment separates the “planners” from the 

“tinkerers.” The “planners” are those who maximize workflow efficiency by planning everything 

out in advance and get to work. In contract, the “tinkerers,” like to “engage in a sort of ‘dialogue’ 

with their construction. This involves not necessarily having a solid plan all along, but rather, 

making incremental improvements by doing something first, stepping back to reflect, and then 

deciding on what to do next. Papert argues that the traditional schooling system tends to structure 

and formal, thus favoring the learning style of the “planners.” I believe this is also evident even 

outside of school, where the typical work flow thrives on structure and schedule. However, 

creative work cannot necessarily be forced out of a structured environment, and as Papert 

asserted, forcing the “tinkerers” to work like “planners” is like forcing left-handed people to 

write with their righthand (Papert & Turkle, 1992).   

                                                      
1 Lego Mindstorms. Digital image. Https://www.lego.com. Web. 
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Another benefit of physical models is that many people can look and interact with one 

model at the same time from different angles. It is also inviting because it is a way of 

communicating with other people who may or may not be design experts; not only to colleagues, 

but also to clients. In the interview article “Why Do Architects Make Models?” conducted by 

Elisabetta Bono, Architect and educator Jan Schevers support this point with his account, “we 

have quite a lot of people coming into the office, and I always know that if I’m in front of my 

iMac, drawing something, everybody will sort of ‘leave me alone’. But if I’m working on a 

model, suddenly people will come up to me and ask questions about a project. I feel that I’m 

more open to say: ‘Where should this column be placed and why’, or: ‘That part is not working 

because . . .’” (20). In addition, Schevers also points out that he likes taking pictures of physical 

models because it easily allows us to study lighting. In rendering software, it often takes a certain 

amount of competency and expertise to generate realistic and accurate lighting renderings, 

whereas physical models are already situated in the natural environment (Scheyers 21).    

Connecting to the idea of the natural environment, could there also be a difference in how 

we interpret size and scale between physical and digital models? A group of students and 

researchers at Osaka University in Japan explored this topic in their research, “Spatial 

Understanding Between Physical and Virtual Models.” In the study, 24 participants were told to 

reason about spatial relationships using physical and virtual models. The models replicated an 

anonymous city and were built to scale in their respective realms. As defined in their paper, 

“spatial reasoning” refers to the “ability to understand the shape, size, location, and texture of an 

object or space.” The participants were asked to judge and compare size, height and scale of 

various elements in the models. The findings indicated that physical models allowed participants 

to make better judgements in both a quicker and more accurate manner (Sun, Lei, et al 34).  
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Figure 2: Spatial Reasoning Experiment with Physical and Digital Models2 

 

                                                      
2 Sun, Lei, et al; the experiment concludes that we can reason about spatial relationships quicker and more 
accurately through physical models versus digital models. 
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In a quick recap, here are just a few relative advantages of physical models: 

• Affordance 

• Can help to quickly generate concepts without fussing over details 

• Inviting for conversation 

• Many people can interact with it at the same time 

• Situated in the natural environment 

• Allow for users to quickly understand overall formation and see the big picture 

Often, the benefits of both physical and digital modeling can help to complement the 

other’s shortcomings. It is ideal for architectural designers to use both mediums during their 

design process. However, the workflow between them is segmented. For example, in 

architectural studios, we often follow a sequential “waterfall” design process where we first 

develop conceptual low-fidelity physical model to generate ideas, and then move on to work 

with digital modeling to refine the details, and then, along with final digital renderings, building 

a finished high fidelity physical model to present the final design idea. In the field of software 

development and user experience design, the waterfall model is often criticized for being too 

rigid to account for the ever-changing design and development needs, especially after conducting 

user-testing. Instead, the current trend is to adopt an agile based model to develop a system 

through fast incremental cycles to improve design and development iteratively, making 

backtracking possible and inexpensive.  

Could this agile, iterative approach to applied to the architectural design process, at least 

in the conceptual stage, by merging physical and digital modeling? One trending approach to 

integrate aspects of the real world to the digital worlds is to create immersive experience through 

virtual reality with haptic feedback; but I was more interested in examining a different approach 
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on the other side of the spectrum, where many have explored the idea of taking advantages of the 

affordance properties of tangible objects to simultaneously operate on the digital.  
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Chapter 2. Building Background 

This section catalogues a few particularly inspiring academic literatures and case studies that 

explore various ideas on conjointly working with the physical objects and digital information. 

 

2.1 Literature Review: The Architecture Machine 

Nicholas Negroponte’s 1970 book, “the Architecture Machine,” marked one of the first 

visions of computer aided and participatory design. Negroponte envisioned a common language 

between the designer and the machine so that one does not need to be an expert to use the 

computer aided design system (9). Traditionally, design process started with 2D and then 

extrapolated to 3D. But at the time of the book, Negroponte already observed a trend (that’s still 

evident today) where 2D information is being extracted from the 3D computer drawing. 

Negroponte critiqued that the formation of 3D model at an early stage “unconsciously implies 

the form of final solution.” As such, this design process is limited by predefined elements, it is 

computerized, not a dialogue (13).  

Alternatively, Negroponte brought up the idea of a “machine intelligence,” where 

machines can become design partners with the humans. As mentioned in the book 

“Computational Design Thinking,” Negroponte imagined as process where the “collaboration of 

human and machine is a circular event,” and this could allow a “designer-machine unity” that 

“provokes a dialogue and the dialogue promotes a stronger designer-machine unity” (Achim & 

Ahlquist 78).  
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2.1.1 Case Study: SEEK/Blocksworld 

 

  

Figure 3: “Blocks” in SEEK3 

The SEEK (Blocksworld) project signified one of Negroponte’s (and the Architecture Machine 

Group that was under his direction) attempts to explore machine intelligence. As the name 

suggests, it is a metal-block based “city” inhabited by gerbils. The machine gerbils are placed 

inside of a 5’ x 8’ glass box full of cubes as their environment. There is a computer extended by 

mechanical arm that makes sure the blocks remain in their original positions despite the constant 

disruptions caused by the moving gerbils. As the gerbils moves around knocking and pushing 

blocks, the machine is in a continuous loop to react to these unpredictable changes; this includes 

being able to recognize which blocks have shifted positions, and correct it in two ways: in a 

block has shifted from a grid cell, straighten it; if a block is on the floor and touching another 

block, stack it on top of another block.  

 

                                                      
3 “1969-70 - SEEK - Nicholas Negroponte (American)." Cyberneticzoo.com. N.p., 30 Dec. 2011. Web. 15 May 
2017.  
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Figure 4: SEEK in Exhibition4 

 

SEEK attempts to predict the randomness, and unpredictable nature of the world. In such ways, 

the computer can eventually become intelligent problem solvers, and thus worth of being noted 

as “collaborative partners” with the designer.  

 

2.2 Literature Review: Tangible Bits: Towards Seamless Interfaces between People, 

Bits and Atoms 

In 1997, Hiroshi Ishii, a professor at MIT’s Media Lab, along with his PhD student Brygg 

Ullmer, co-authored the paper “Tangible Bits: Towards Seamless Interfaces between People, 

                                                      
4 “1969-70 - SEEK - Nicholas Negroponte (American)." Cyberneticzoo.com. N.p., 30 Dec. 2011. Web. 15 May 
2017.  
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Bits and Atoms.” The paper is often referenced as one of the pioneered publications on the field 

of Tangible User Interfaces.  

The concept of Tangible User Interface (TUIs) calls for interaction designers to go 

beyond the dominant, but restrictive GUI model bonded by the computer monitor displays, 

keyboard and mouse. Instead, we can aim to embrace the duality between the realms of the 

physical world and the cyberspace (or “bits and atoms”) by allowing users to process and 

manipulate digital information through direct haptic interaction with graspable physical objects 

(to control digital information that pertains to them). The “physical embodiment of GUI,” as well 

as the coupling of physical and digital spaces, seek to take advantage of “human senses and skills 

people have developed through a lifetime of interaction with the physical world” (Ishii, Brygg 8).  

 

2.2.1 Case Study: MetaDESK (Tangible Geospace) 

For Ishii and Ullmer, the metaDESK signifies one of their first attempts at fulfilling the 

vision of “bridging the gaps between both cyberspace and the physical environment” by bringing 

tangibility to digital information (Ishii, Brygg 4). The metaDESK enables physical instruments to 

serve as tangible interfaces to many types and forms of graphical information.  
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Figure 5: Tangible Geospace on metaDESK5 

One application of the metaDESK as demonstrated is the Tangible Geospace. This 

project uses models of MIT’s Great Dome and the Media Lab as physical handles that users can 

hold on to control and manipulate graphical map of the MIT campus. An additional component is 

the “active LENS,” where users can move around to see a simultaneous 3D representation of a 

particular building space.  

The metaDESK is one of the first exploration of using graspable objects to sense and 

respond to physical stimuli, thereby becoming physical embodiments of digital information. This 

project becomes a prototype to “break free” from “the image of the computer as a monitor, 

keyboard, and pointer-endowed terminal.   

 

                                                      
5 Ullmer, Brygg, and Hiroshi Ishii. “The MetaDESK.” Proceedings of the 10th Annual ACM Symposium on User 

Interface Software and Technology - UIST '97, 1997, doi:10.1145/263407.263551. 
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2.2.2 Case Study: URP 

In another example, Hiroshii Ishii and John Underkoffler’s 1999 tool URP daps in the 

field of urban planning through the projection architectural elements. The URP application is 

based on an I/O bulb infrastructure, and serve as an example of “luminous-tangible interaction,” 

where physical objects are coupled with visual information projected into them in real time 

reflecting the manipulation from each user interaction (Ishii & Underkoffler). In this project, 

physical architectural forms and models are placed onto a “workbench,” and based on these 

forms, useful information such as shadows, proximities, reflections, wind and visual space are 

calculated and projected onto the “workbench.”  

 

Figure 6: Urp - combining physical architectural elements with digital analysis 6 

This project is significant because while MetaDESK allowed for physical objects to act as 

controllers, this tool allows digital and physical interfaces to be coupled to visually present 

                                                      
6 "I/O Bulb and Luminous Room." Tangible Media Group. N.p., n.d. Web. 15 May 2017. 
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information and analysis. The intend is for urban planners to gain computational and analytical 

powers of a computer through a natural interface. 

 

2.3 Case Study: A Dynamic Physical Model Based on A 3D Digital Model  

 

In a more recent example, “A Dynamic Physical Model Based on a 3D Digital Model for 

Architectural Rapid Prototyping” was a 2015 publication by Tomohiro Fukuda, Toshiki 

Tokuhara, and Nobuyoshi Yabuki of Osaka University. In its core, the study recognized that 

“both a physical model and a 3D digital model are three-dimensional visualization media to 

study space and shapes in a design and presentation process in the architectural and urban 

planning fields; however, they both have distinct strengths and limitations” (Fukuda, Tomohiro, 

et al 9).  The best way to rectify this difference is by creating and using both physical and digital 

models conjointly. One way is to update both models back and forth. However, this task is not 

only time-consuming and costly, but also hard to respond and adapt quickly to frequent design 

changes. As such, the researchers have developed a “dynamic physical model system for volume 

simulation of buildings or a city based on 3D digital models” (9).  

While the researchers mentioned many previous works involving previous studies on 

“architectural and urban presentation systems that combined physical models and 3D digital 

models” through technologies such as laser pointer, VR, LCD projections, there were still a few 

major challenges that the researchers hope to resolve in their research: 

1) A system that synchronizes a physical model with a 3D digital model.  
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2) A system that represents a physical model at an urban scale, and individual buildings of 

various sizes and heights rapidly.  

The proposed system is a take on a dynamic modeling system that synchronizes physical 

model with 3D model for volume simulation of buildings or city. a hardware based module 

consists of 105 (15x7) rods in a grid. A software extracts information from 3D data and can then 

control and lift the rods to different height based on its calculation, using a stepper motor.  

 

Figure 7: Case Study - Prototype System Physical Appearance7 

                                                      
7,8,9 Fukuda, Tomohiro, et al. “A Dynamic Physical Model Based on a 3D Digital Model for Architectural Rapid 
Prototyping.” Automation in Construction, vol. 72, 2016, pp. 9–17., doi:10.1016/j.autcon.2016.07.002. 
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Figure 8: Case Study – 3D digital model representation8 

 

 

Figure 9: Case Study – Physical representation based on digital model9 

To use the system, users will need to input a 3D BIM model software application and 

select the desired scale. Based on this information, the software will then calculate the height of 

each rod to be raised to represent and reflect a volume.  
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2.4 Observation and Reflection 

 

Reflecting on these theoretical framework and case studies, it’s easy to recognize the 

desire for many to connect the physical and digital worlds through synchronized interactions.  

Negroponte’s SEEK sought ways to present the machine as an interactive design partner 

by helping to manage a “chaotic” micro-world of cubes. The gerbils inhabiting the cube world 

represented unpredictable interactors (like humans in the real world), and in this process, we can 

see potential for programs to “understand” spatial configurations and manifest that knowledge in 

helping to construct (and reconstruct) a physical world. Going back to his vision, the machine 

can transform from a “yes-man” to a decision-making partner. While this study was focused on 

having the machine follow a pre-determined template to act in an uncontrolled environment, the 

cubes units mostly served as triggers whose displacement caused the computer to act. There 

could be potential to explore how the machine can be a helpful partner in a more intentioned 

design environment, where the cubes go beyond to serve as design interactors to help us make 

decisions to create something completely new. 

Ishii’s projects inspired many others to create tangible user interfaces that not only as 

physical controllers, but also be coupled with digital interfaces to present useful information. 

These work echoes particularly aspects of Mark Weiser’s 1991 vision of “ubiquitous 

computing,” where computing can appear anywhere in our lives, and our interaction with 

computers can be both intuitive and unnoticeable; but different from Weiser’s vision, the use of 

big computational pads/boards transform physical objects into “GUI-style metaphors”.  As 

summarized in Tangible Bits, these projects were more about “awakening richly-afforded 

physical objects, instruments, surfaces, and spaces to computational mediation” (Ishii & Ullmer). 
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In the Dynamic Physical Model for Architectural Prototyping, the concept of 

synchronized prototyping modeling environment was presented. In their case, the synchronized 

modeling process went one direction from digital to physical because a software model must be 

first be finished, imported, and calculated for the physical model to be constructed. The physical 

model then merely becomes a realization of a digital representation, not something with its own 

identity that we can interact with.   

Could there be another way to create this synchronized rapid prototyping environment by 

applying the concept of human-computer dialogue, as well as having a tangible user interface to 

couple digital information to physical objects? For example, instead of having to import a 

software model to construct a physical representation, can we synchronize the creation of a 

digital model from a physical configuration? If so, could this help us to have a more iterative 

design interaction where we can go back and forth between the two media? Would this allow us 

to simultaneously benefit from the advantages of physical and digital modeling?  
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Chapter 3. Hypothesis 

If physical objects can serve as interfaces to their own digital representations, we would be able 

to benefit from the complementary values of physical and digital modeling by working 

concurrently and iteratively between both media. This would bring tangibility to digital data 

while allowing us to take advantages of both physical and digital affordances.    
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Chapter 4.  Research Question 

What kind of design processes can be enabled by a low-fidelity hybrid modeling environment 

that’s distributed across physical objects and digital representations?  

 

4.1 My Vision 

To help test my hypothesis and assist my research, there were two early goals that underlined my 

project: 

1. To prototype a modeling system that allows us to have a “conversation” between the 

physical and digital media by working back and forth amongst them  

2. To experiment with tangible modular cubes in a structured gridded system that can be 

stacked and moved around, and at the same time, the digital representation of shapes and 

positions of the cubes would be reflected on a virtual modeling environment 

In such ways, the tangible cubes can serve as interfaces to their own digital representations, we 

would be able to benefit from the complementary values of physical and digital modeling by 

working concurrently and iteratively to physically configure the cubes while editing and 

performing basic analysis in the digital environment.  
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Chapter 5. Method 

This chapter documents my prototyping journey marked by a selection of prototypes and various 

technologies used before coming to my final prototype. I experimented with series of sensing 

technologies including the Arduino MPU, fiducial markers, and the Microsoft Kinect’s depth 

sensor. I chose Processing as my software programming platform due to its ease of use and 

arrays of readily available libraries. 

 

5.1 IMU Sensing: Arduino MPU 9250 

The first experiments conducted was using an IMU sensor called MPU 9250. IMUs are inertia 

measurement unit sensors used commonly in electronic gadgets (i.e. smartphones, wearables, 

game controllers).  

 

 

Figure 10: Orientation of Axes of Sensitivity and Polarity for Accelerometer and 

Gyroscope, Orientation of Axes of Sensitivity for Compass 10 

                                                      
10,11 "MPU-9250 Product Specification" InvenSense. Web. 16 January 2017. 
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The MPU 9250 is a type of IMU and an 9-axis (gyroscope, accelerometer, magnetometer) sensor 

from InvenSense.11 The gyroscope measures rotation with respect to an axis, the accelerometer 

measures change in velocity, and the magnetometer measures magnetic fields. Working together, 

these sensors can help to report forces, angular rates, and the magnetic fields, allowing us to 

track positions based on rotational movements.  

 

 

Figure 11: MPU to Arduino hook-up guide12 

 

                                                      
 
12 “SparkFun IMU Breakout - MPU-9250.” Learn at SparkFun Electronics, learn.sparkfun.com/tutorials/mpu-9250-
hookup-guide. Accessed 14 February 2017. 
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5.1.1 My Prototype 

 

 

Figure 12: MPU to Arduino hook-up 

Following the hook up guide and with the help of Arduino’s MPU9250 library, I was able to read 

the values from the sensors, and map these values to yaw, pitch and roll degrees on a pre-drawn 

box on the screen. The idea was then to embed the sensor into a physical cube, and then its 

rotation will be seemingly mirrored by its digital representation (the pre-drawn box).  
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Figure 13: Mapping MPU Data to Digital Representation 

 

5.1.2 Advantages and Limitation 

In order to track the movement and rotation of each physical “cube”, each geometric unit would 

require separate sets of MPU sensor and wireless transmitters embedded within. The advantage 

of this is that we can receive data for each unit of “cube.” We don’t have to limit these data to 

merely positional, but also add more sensors to make each cube unit interactive. This idea is 

similar to the concept of “cookie scale computing,” demonstrated in David Merrill’s Sifteo 

cubes, where we can interact with groups of small pieces of computational devices (that can also 

communicate with one another) at once13.  

                                                      
13,14 Sifteo. "Sifteo Cubes." YouTube. YouTube, 22 Nov. 2012. Web. 16 May 2017. 
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Figure 14: Sifteos, the “Toys That Can Talk to Each Other” 14 

However, there are also a few disadvantages to this type of technology. One example is 

IMU sensor’ accumulation error. The sensor works by integrating acceleration to calculate 

velocity and position, therefore, any small measurement errors will become accumulated and 

thus lead to increasing inaccuracy in the calculation of positioning. As such, additional tracking 

assistances, such as a GPS, must be used to accurately track positional change (Goodrich, 

“LiveScience”). 

Although there are a lot of potential for further exploration of this idea as an example of 

cookie scale computing, I wanted to focus on investigating the interaction potentials of a fusion 

modeling environment and developing a prototype quickly and at a relatively cheaper cost. Thus, 

I began to consider other technologies that may help to deploy this system in a quicker and 

cheaper manner. 
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5.2 Fiducial/AR Markers 

 

 

Figure 15: Fiducial Markers on Cubes 

The second prototype was experimented by using Augmented Reality marker tracking. 

The library I used was the NyARToolkit library for Processing.  

Augmented Reality combines the physical and virtual worlds through computer vision by 

fusing data together to overlaying digital information on top of the real world. One way to do this 

is through marker based recognition. A “marker” image was pre-defined, and later recognized by 

the camera, the computer then can calculate its position and orientation, allowing us to overlay 

with desired graphics or information.  

How do AR markers work? 

AR markers are usually square, marked with uniquely defined black patterns in the 

center, and surrounded by contrasting light (usually white-colored) padding. The software, such 

as a library, searches through each frame of a given captured camera view for square markers. If 

a square marker is found, then the software tries to match and identify the square’s embedded 

pattern to something known or pre-defined pattern in memory, if successful, the software will 

then calculate the position and orientation of the markers relative to camera. With this 
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information, we can create a computer graphics model with position and orientation as an offset 

based on the position and orientation of the camera, all in real time. 

 

Figure 16: Flowchart - How AR Markers Works15 

                                                      
15 "About the Traditional Template Square Marker." ARToolKit. N.p., n.d. Web. 6 March 2017. 
https://artoolkit.org/documentation/lib/exe/fetch.php?cache=&media=diagram.jpg 

https://artoolkit.org/documentation/lib/exe/fetch.php?cache=&media=diagram.jpg
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5.2.1 My Prototype 

 

 

Figure 17: AR Marker Prototype Set-up 

 

   

Figure 18: Mapping Shape to Markers in AR 

For this prototype, I cut out 5 pre-defined markers recognizable by the NyARToolkit 

library and taped them to 5 corresponding 1.5in cubes. In Processing, the library can help us to 

recognize the marked cubes on the screen, and we can even draw different primitive geometries 

onto the place of the marker. 



- 33 - 
 

 

 

Figure 19: Digital Representations of Makers in Model Space 

 

5.2.2 Advantages and Limitation 

Like the MPU sensor, the marker based system provided positional tracking of desired 

objects in real time, including rotational changes. Although using computer vision, the markers 

enables it to eliminate noise data such as hands and other background objects on screen, allowing 

us to get a clear and desirable view of the model space. 

There were three main limitations of the Marker based system. First, the marker data can 

be easily interrupted if the computer’s perception of the markers is disturbed (i.e. covered by 

hand or another object). Secondly, tracking results are affected by lighting conditions; glare spots 

and shadows can easily disrupt tracking of the markers. Finally, the markers were not very good 

at recognizing depth. For example, moving a marker-tracked cube away from the camera caused 

the cube to become smaller only because the marker appeared to be smaller to the camera, not 
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because a change in depth was recognized. In other words, the markers were being tracked on a 

relatively shallow x-y centric basis, without knowledge of relative and absolute depth 

information.   
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5.3 Final Prototype - Kinect Depth Tracking 

To better track object positions in a 3D space, I decided to consider depth sensing technologies. 

The final prototype uses the Microsoft Kinect’s depth sensor to track cubes on a gridded physical 

plane, and maps that information to voxel representations in the digital space. 

 

5.3.1 Kinect and Voxel 

 

Figure 20: Microsoft Kinect16 

Kinect is a depth camera that takes computer vision to go beyond just RGB pixels. It uses 

infrared light technology to record where things are in space.  

                                                      
16 Microsoft Kinect. Digital image. Microsfot. N.p., n.d. Web. 
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Figure 21: Microsoft Kinect V2 Specifications17 

The Kinect has a regular RGB camera as well as a 3D Depth Sensor and a microphone. In this 

project, I mainly used its 3D depth sensing feature. The depth sensor emits infrared light to 

create a depth image that captures where things are in space. Unlike a traditional RGB camera, 

which presents how things look like by capturing light and displaying them through colored 

pixels, the depth camera can store information on where each pixel is located at in a 3D space 

(Borestein 2).  

                                                      
17 Valoriani, Matteo. “Programming with Kinect V2.” 3 June, 2015 Microsoft PowerPoint file.  
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Figure 22: Voxel Representations18 

Voxel, commonly described as a “3D pixel”, is a value on a regular spaced grid in a three-

dimensional space. Like a pixel, which has x and y coordinates, a voxel has x, y and z 

coordinates. With depth information captured with the Kinect, we can then we can reconstruct a 

3D model of what the Kinect “sees” by mapping data points to virtual voxel points, and even 

manipulate the model and reference different views. 

  

                                                      
18 "Scientific Visualization: Volume Surface Rendering." Scientific Visualization - Project 1 Report - Richie Zirbes. 
N.p., n.d. Web. 16 May 2017. 
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5.3.2 The Set-up 

The underlying concept is to convert depth data from physical space to voxel representation in 

digital space. Reference the steps in the process figure below: 

 

Figure 23: Depth to Voxel - Mapping Process 

1) Cubes in physical space 

2) Top view of cubes from Kinect’s perspective 

3) Kinect’s depth data as represented by color  

4) Boxes are drawn inferred from depth data in voxel space  

5) Digital representations of cubes in physical space 

  



- 39 - 
 

The physical set-up 

 

  

Figure 24: Physical Set-up 

 

The Kinect is hung 3 feet from the table and looks down, its viewport cropped to an 

evenly gridded modeling space that fits exactly ten 2 inch cubes horizontally and vertically. The 

Kinect then loops through the cropped viewport and surveys the center points of each voxel in 

digital space. If it senses a height taller than the distance from the table, then at least one cube 

must have been placed on the point surveyed; we can infer the height (or how many cubes are 

stacked) based on this depth data, and as a result, the drawing space turns on the corresponding 

voxels, and we can define the geometry that we would like placed onto that voxel.   
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The Basic Algorithm: 

 

Figure 25: Fundamental Algorithm for Prototype 
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5.3.3 Exploration of Interaction 

With the set-up ready, I began building various features to explore and enhance user interaction 

and experience this concurrent modeling environment 

The User Interface 

The user interface was created with the G4P library in Processing. 

 

Figure 26: The User Interface 
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Concurrent modeling environment  

First and foremost, the prototype allowed users to move and stack the cubes orthogonally in the 

x, y and z directions and these changes were reflected in the digital space.   

 

Figure 27: User Stacks Cubes While Editing the Geometric Representation 
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multiple points of view  

 

Figure 28: Multiple Points of Views 

 

Like most 3D modeling software, we can offer perspective views that can rotate about the 

x, y, and z axis, as well as plan view, left, right, front and back elevations.  The brightness of the 

color in the plan and elevations indicate how close or far away it is from the view of the 

“camera” – the brighter the color, the closer the object from that particular viewpoint. These 

different viewpoints get updated in real time with user interactions. 
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Abstraction of Geometric Representations  

 

Figure 29: 4 Primitive Representations (Cubes, Spheres, Cones, tubes) 
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The interface offers 4 basic primitives to quickly allow for the change of geometric 

representation on the digital screen. The physical object becomes merely an interactor, 

encouraging the experimentation of formations with different shapes 

 

Editable Geometric Representation  

 

 

Figure 30: User working back and forth between physical and digital modeling 

In additional to primitive 3D shapes, the system has a simple prototype for shape editing ability, 

where users can slide a bar to explore basic parametric manipulations. This was built on the idea 

that users can work back and forth between the two media, playing around with the configuration 

of the cubes in physical space, while editing shapes in the digital space 
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Figure 31: Slide Bar Allows for Users to Edit Parametric Shape That Expands Beyond Its 

Respective Voxel Constraint 

 

Saving Configurations  

In the physical context, quickly generating many prototypes means we either have to generate 

many models with different objects, or reuse material by losing a certain configuration to 

recreate another. In software modeling, we can save configurations and even preserve and revert 

to previous states through version control tools.  With the save feature in my prototype, we can 

save configurations before rearranging physical objects and editing geometric forms. The saved 

configuration immediately pops up as a new window, allowing for quick comparisons. 
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Figure 32: Saved Configuration Pops Up as a New window for Easy Comparison 

 

Representing the abstraction of time through color  

Another possibility is to track how long we have placed down certain objects, and represent this 

information by changing the color of the geometric forms in the digital space. The potential of 

this feature is that we can distinguish newly placed objects from older ones, to differentiate the 

temporary movements and noise data from the permanent and intentional. We can also take this 

concept further to map brightness of the colors to reflect the time for which each unit of 

geometry was placed.  

 

Figure 33: Newly Placed Block Has a Different Color than the Older Blocks Until After 2 

Seconds 
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Failed experiment – physical objects as global manipulators  

  

Figure 34: Unsuccessful Attempt – Physical Objects as Global Interactors 

 

In addition, I also spent some time experimenting using the cubes as global interactors. 

The concept and (the naïve algorithm employed) was to simply draw a line between each cube. 

The length of the line can be calculated to represent distance between each pair of cubes. The 

enclosed space between the lines can then calculate the area formed by the cubes. The vision was 

to be able to update these lines and corresponding enclosures in real time along with movement 

of each cube. Although the naïve algorithm worked well for the first 3 stationary cubes shown in 

Figure 34, as soon as the number of cubes increased, there are cubes being stacked, or noise data 

from user’s hand came into the space, the system becomes overwhelmed and crash. Perhaps 

future exploration of the project can dive into building a more robust algorithm to account for 

these factors.      
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5.4 Discussion 

Our Code Lab cohort had the opportunity to display and showcase our thesis work in Most 

Wanted Art Gallery in Pittsburgh, and we became a part of the Pittsburgh Cultural Trust’s 

monthly Gallery Crawl event. From there, we had the perfect chance to demo our projects to a 

range of gallery crawlers consisted of local Pittsburghers, students and even travelers, and 

thereby both test and observe their interaction with our projects. I will base my discussion on the 

observation of around 30 user interactions that I’ve witnessed. Most of them did not know 

anything about my work.  

5.4.1 Benefits of the set-up 

Due to Kinect’s depth capturing capabilities, it is not sensitive to lighting conditions; as a result, 

the lighting conditions had insignificant effect on the prototype. Even though the final display 

was set up in the basement of an art gallery without abundant lighting, this did not affect the 

performance of the system.  
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Figure 35: Project Set-up in Most Wanted Art Gallery, PA 

5.4.2 Observation of User Interaction 

When users approached my system, everyone’s first action was to touch the cubes. 

Relating to Hiroshi Ishii’s arguments, people seemed more comfortable using their natural senses 

through playing with physical affordances offered by the cubes; despite the computer and mouse 

being placed in juxtaposition. There was also an observable difference between children and 

adults…while the children immediately went to play with the cubes, the adults appeared more 

cautious and carefully surveyed the set-up before attempting to move the cubes around.  The 

children merely enjoyed playing with the physical cubes and seeing the mirroring digital 
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representations, but the adults tried to understand how the system worked, and tested its limits by 

moving things around to find the “boundaries” and making various configurations to what works 

and what doesn’t. It was through playing with the physical objects that they learned about how 

the system worked, what it was, and what the limitations were. 

 

Figure 36: Multiple People Playing with The Cubes at Once 

Echoing the idea of constructionism, it turns out that similar ideas involving playfulness 

and learning were also presented in 1800s by famous German educationalist name Freidrich 

Froebel.    
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Froebel was a believer of innate productivity and creativity of humans, and he appealed 

to developing an educational environment that involved the direct use of materials because it 

allows children to be creative and become aware of the environment as the same time. As such, 

he developed the Frobel gifts, play material to be given to children.  

 

Figure 37: Froebel Blocks19 

This set of toys influenced world renowned architect Franklin Lloyd Wright, who attributed to 

learning of the geometry of architecture through childhood play with these blocks (Brosterman 

13). 

  

                                                      
19 “Friedrich Froebel (Fröbel).” Infed.org, 7 Jan. 2013, infed.org/mobi/fredrich-froebel-frobel/. Accessed 14 May 
2017. 
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5.4.3 Contribution 

Relating back, the main contribution of my project is a modeling environment that 

enables users to manipulate a design representation concurrently via tangible and digital 

representations, all while taking advantages of each representation with their own affordances. 

The physical context supports aggregation, stacking, removal, combination. The digital context 

supports basic geometric representations and editing, semantic modeling, camera space rotation 

and viewpoints, and visual analysis (by implementing a timer that allowed virtual geometries to 

change color based on how long ago they were placed). 

 

5.4.4 Limitation 

Relating to the playfulness and testing-the-limits traits displayed in many users, it’s no 

surprise that the gridded system at the physical context had many limitations. Besides those who 

were already familiar with my project, first-time users mostly did not want to follow the grid that 

was drawn, they wanted to break the rules. In addition, many experimented with stacking up very 

creative configurations (such as rotating the rubes, stacking with overhangs) to test my program 

and push it limits, the program is currently too rigid and not robust enough to support these types 

of configurations.   
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Figure 38: Users Did Not Want to Follow the Grids 

 

Figure 39: User Pushing the Limits of the System with a More Complex Configuration 
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In addition, the physical cubes currently only serve as inputs to the digital model space to 

communicate orthogonal location in space, but the digital model cannot communicate with the 

cubes; thus, the interaction in this front is limited.   

Lastly, the system cannot distinguish between temporary movement (from humans) 

versus movement of physical cubes. The noise data from movement of human hands were 

fascinating to some, but also distracted many others. I observed one man who flinched when he 

first tried to touch the cubes after seeing the noise data appearing in digital model (he thought he 

had broken the system). Although there were recommendations to remedy this by using colors 

and timer, the shortcoming was still that our hands must be away from the physical model space 

in order for us to see the accurate digital representations.  

 

5.4.5 Next Steps and future potentials 

This project can benefit from more formal task oriented testing, especially to explore 

producing work in both digital and physical realms. The observations I made at the Art Gallery 

were interesting, but as an art installation, people were significantly more attracted to the element 

of “play” embodied in the presentation and set-up itself. Although I told many about the editing 

abilities in the digital space, most people were more interested in playing and stacking the cubes 

while seeing the digital representation on the screen, than figuring out what the buttons and slider 

bars were doing in the model space.   

In addition, there are several improvements that can be made. For example, we can use 

the learnings from early prototypes that used fiducial markers and physical computing, and 

combine these technologies would allow for us to have a more robust program.  
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Employing markers and physical sensors to be added to the cubes can help with both 

tracking accuracy as well as tracking additional positional movements such as rotation and 

flipping of the cubes while eliminating noise data from user’s movements. Another benefit is that 

we can then able to identify each cube as individual elements, and thereby take advantages of 

object oriented programming, and open up possibilities of a physical realization of the MVC 

framework to allow elements of physical and digital model space to engage in a two-way 

conversation. For example, what if clicking on a particular cube in digital space cause the 

corresponding physical cube to light up or vibrate? 

Finally, the ideas and concepts taken from this project can be applied to malleable 

physical objects in future studies. We can take user manipulation to go beyond merely spatial 

movement to also include the recognition of object deformation. 
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5.5 Conclusion 

In conclusion, my thesis prototyped a low-fidelity modeling system that distributes across 

physical and digital media. It enables real-time interaction of tangible objects and digital 

primitives. It offers direct physical affordance to cyberspace geometrics, allows for geometric 

manipulations for users to work directly and back and forth between the two realms, multiple 

digital views and perspectives, a “save” feature to quickly capture and preserve various 

configurations, as well as a simple visual analysis of time using color. Based on a limited number 

of informal user interactions observed, the system appears to offer the complementary benefits of 

both physical and digital modeling. However, more formal user-testing can be conducted to gain 

data-driven and quantifiable data.  

As a low-fidelity prototype, there exist some shortcomings with robustness and freedom 

of user interaction, which can be further improved in future works by adding other technologies 

such as fiducial markers and physical computing. Lastly, I hope that the ideas and methods 

presented in this thesis can serve as an inspiration and base springboard to other studies to allow 

for concurrent works in physical and digital spaces in higher fidelity prototypes.  
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