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Abstract

With the rapid growth of world-wide information accessibility, cross-language

information retrieval (CLIR) has become a prominent concern for search engines.

Traditional CLIR technologies require special purpose components and need high

quality translation knowledge (e.g. machine readable dictionaries, machine trans-

lation systems) and careful tuning to achieve high ranking performance. However,

with the help of a neural network architecture, it’s possible to solve CLIR problem

without extra tuning or special components. This work proposes a bilingual training

approach, a neural CLIR solution allowing automatic learning of translation relation-

ships from noisy translation knowledge. External sources of translation knowledge

are used to generate bilingual training data then the bilingual training data is fed

into a kernel based neural ranking model. During the end-to-end training, word em-

beddings are tuned to preserve translation relationships between bilingual word pairs

and also tailored for the ranking task. In experiments we show that the bilingual

training approach outperforms traditional CLIR techniques given the same external

translation knowledge source and it’s able to yield ranking results as good as that of

a monolingual information retrieval system.

In experiments we investigate the source of e↵ectiveness for our neural CLIR ap-

proach by analyzing the pattern of trained word embeddings. Also, possible methods

to further improve performance are explored in experiments, including cleaning train-

ing data by removing ambiguous training queries, exploring whether more training

data will improve the performance by learning the relationship between training

dataset size and model performance, and investigating the a↵ect of English queries’

text-transform in training data. Lastly, we design an experiment that analyzes the
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quality of testing query translation to quantify the model performance in a real

testing scenario where model takes manually written English queries as input.
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1

Introduction

With the rise of the Internet, data and documents within wold-wide became accessi-

ble to people in di↵erent countries. People are more and more interested in exploring

the contents that are not written in their native language. Information retrieval (IR)

task that involves in document and queries in di↵erent languages is referred to as

cross-lingual information retrieval (CLIR) [1]. On the other hand, a IR task where

user tries to retrieve documents written in the same language with query is called

mono-lingual information retrieval (MLIR).

The most significant advantage of CLIR over a MLIR is that CLIR is able to

provide much more thorough retrieval result. In MLIR, documents retrieved must

be in the same language with query, therefore the result is limited in one language.

While in CLIR, documents written in languages other than query language can be

retrieved. This can be very helpful in scenario where recall rate is valued, like

scientific, medical or technical search.

CLIR tasks require translation between di↵erent language pairs. The challenge

of CLIR lies in how to resolve ambiguity so that high quality translation result that

maximizes retrieval accuracy can be obtained. Each term can have multiple choice of
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translation in another language. Resolving ambiguity refers to the process of choosing

best translation candidate. Ambiguity happens at both single term translation and

phrase translation. Phrase translation has been shown to be especially problematic

[4]. The reason for this is that terms may have di↵erent translation when they are

used individually and used in phrase, like “deep learning”. Failure to identify or

translate phrase properly will result in translation error that have serious a↵ect on

retrieval accuracy.

Traditional CLIR approaches spend great e↵ort on mitigating the a↵ect of trans-

lation ambiguity. State-of-the-art traditional CLIR system can be nearly as e↵ective

as monolingual systems[5]. However, building such system takes non-trivial work.

Complex procedure and careful tuning are required in such process. Another limita-

tion in traditional CLIR is that once failed to eliminate translation error, problematic

translation will cause damage in retrieval quality seriously. This is because trans-

lation results are used directly in retrieval tasks, for example, translate queries into

the same language with documents then use translated queries to conduct search

on documents. Once problematic translation is given, it’s directly used in retrieval

process can cast huge a↵ect on retrieval quality.

In this work, we proposed a neural CLIR approach, which addresses the above

two limitations in traditional CLIR works. Traditional CLIR approaches are built

on word-based ranking models, like BM25 [20] and Indri [22]. Such models can

only consider exact-match between words, like “Apple” equals “Apple”. On the

other hand, a neural ranking model can learn soft-match [2] from training data,

like “Apple” is related to “iPhone”, “iMac”. Soft-Match allows a neural ranking

model to capture and use a lot more relevant evidence than a traditional word-based

ranking model does. Our work tries to extend the concept of soft-match from a

monolingual scenario to bilingual scenario, like “Apple” is related to “˘ú” (apple),

“K:” (phone). By switching to a neural architecture, now CLIR can be treated as
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a machine learning problem. This avoids a lot manual tuning process when pursuing

a higher performance. Also, it allows the model to be more robust to translation

error because now translation results are used in training data instead of queries.

The neural ranking model can learn how to use translation results in a way that

maximize the ranking accuracy.

A neural CLIR approach is consist of two components: bilingual training data and

neural ranking model. Bilingual training data we used is a Chinese, English bilingual

search log generated from a monolingual Chinese search log by using machine trans-

lation to translated Chinese queries to English. The neural ranking model we used

is a kernel-based neural ranking model (K-NRM) [2]. In K-NRM, words are repre-

sented with word embeddings and during the end-to-end training of K-NRM word

embeddings for both English term and Chinese term can be represented and trained

in the same vector space. This allows the word embeddings between a Chinese term

and English term be be comparable and their embedding similarity can be used as

soft-mach signals. During ranking, learned soft-matches are used to determine the

relevance score for a bilingual query, document pair.

Our experiment results show that neural CLIR approach can reach the perfor-

mance of a monolingual retrieval system. We also compared the performance of

traditional CLIR approach on neural ranking model with that of a neural ranking

model trained with bilingual training data and found that given the same translation

knowledge source, bilingual training data gives better performance than tradition

CLIR approach on the same neural ranking model.

In experiments we investigate the source of e↵ectiveness for our neural CLIR ap-

proach by analyzing the pattern of trained word embeddings. Also, possible methods

to further improve performance are explored in experiments, including cleaning train-

ing data by identifying and removing ambiguous training queries, exploring whether

more training data will improve the performance by learning the relationship be-
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tween training dataset size and model performance, and investigating the a↵ect of

English queries’ text-transform in training data. Lastly, we design an experiment

that analyzes the quality of testing query translation to quantify the model perfor-

mance in a real testing scenario where model takes manually written English queries

as input.

The remaining part of which work is organized in the following way. Section 2

introduces related work about traditional CLIR approaches and a newly emerging

field, neural ranking, that this work is based on. Section 3 gives a detailed intro-

duction of this work’s contribution, a neural CLIR approach. Section 4 introduces

the experiment methodologies, including dataset used in experiment, metrics used in

results evaluation, retrieval methods as well as translation approaches tested in ex-

periments. Section 5 shows experiment settings and designs for CLIR on traditional

retrieval models while section 6 includes experiments about CLIR on neural ranking

models. Conclusions from this work are discussed in section 7.
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2

Related work

This section gives an introduction about the design choices and approaches of previ-

ous work in traditional CLIR. Mechanisms used in traditional CLIR approaches to

improve performance is also discussed. Last, newly emerging technologies like word

embedding and neural ranking are introduced for their potentiality in providing new

CLIR solutions.

2.1 Translation strategy

Mono-lingual Information retrieval tasks rank documents based on their similarity

to a specific query. CLIR tasks require capturing such similarity across language

boundaries. In CLIR systems, queries might be written in one language while doc-

uments are written in another. To measure the similarity between such bilingual

query and document pairs, translation from current source language to a target lan-

guage is required. There are four strategies for translation in CLIR based on whether

the query or document is translated: use untranslated query to match untranslated

document in another language, translate query to match the language of document,

translate document to match the language of query, and translate both query and
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document into a common representation.

The first one is often used as a lower bound for CLIR system performance for

that in a CLIR system without any kind of translation, only terms sharing the same

representation in both query language and document language can be matched. Any

translation approach should improve that baseline performance because the common

vocabulary between query set and document set is enlarged.

The second strategy is often referred to as “query translation” while the third

strategy is referred to as “document translation”. The former approach translates

the query from current source language to the target language that document is

written in at retrieval time while the latter one translates every document in the

corpus to the query language at indexing time.

The most significant advantage of query translation method over document trans-

lation method is its high computation e�ciency and flexibility. Compared with doc-

ument, queries tend to be very short. Also, the cost of extending a query translation

based system to support another language pair is negligible compared with a doc-

ument translation based system. Query translation module can be added easily to

existing IR system. Another advantage is memory e�ciency. The space required by

document translation is linear to the number of languages involved in the CLIR task,

while query translation translate query on the fly and doesn’t require extra space.

However, translation for queries will su↵er a penalty in accuracy for the lack

of context information. Queries are usually shown as phrase and lacking complete

sentence structure, therefore they are more susceptible to translation error like ambi-

guity. In Oard [11], experiments comparing the performance of document translation

and query translation in CLIR tasks have been done on TREC-6 CLIR SDA/NZZ

collection, which is a German collection designed specially for CLIR experiment. Ex-

periment results showed that machine-translation based document translation out-

performed machine-translation based query translation by 6% in precision for short
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queries and 40% for long queries. According to the result, document translation

works especially well when length of queries are long. Note that the improvement of

document translation in long queries is largest is that in this experiment setting, long

queries are generally harder than short queries based on the monolingual experiment

result.

Except for translation accuracy, another feature that makes document translation

attractive is its ability to support interactive multilingual applications. It supports

the scenario where user want to browse through retrieval result in the query language.

Query translation systems can’t support such service as good as the ones based on

document translation for that machine translation on large content is very time

consuming and users are expecting short response time from IR systems.

Even though document translation has the advantage of better performance

gained from higher translation accuracy and convenience of demonstrating retrieved

document in target language, it’s unrealistic in most of the applications for the com-

putation and space e�ciency issues. Especially for web search environment, where

the amount of corpus is inestimable and new content is being created every moment.

With the rapidly update of indexed content, it’s impractical to translate and store

all updated contents. Also, it’s unrealistic to apply document translation on such

large volumes of data. However web search has a strong demand for CLIR capability

for its world-wide distribution and transnational nature. Compared with document

translation, query translation fits the demand of web search perfectly well. Query

translation based methods exhibit high e�ciency and flexibility that suits the task

well. The intense demand for CLIR in web search made query translation become

the most popular translation strategy in recent decades. Therefore, this work will

be focus on query translation techniques and document translation won’t be further

discussed in this work.

7



2.2 Translation Approach

While translation strategy states the problem of what to translate, translation ap-

proach focuses on how to translate. Commonly used translation approaches can be

divided into text translation and term vector translation based on the resources used

for translation. Text translation refers to the process of translating text from source

language to target language with machine translation systems, while term vector

translation is defined as the process of mapping each term in source language to all

of its definitions in target language, like dictionary-based translation.

2.2.1 Machine translation

Machine translation has been an extensively studied subfield of artificial intelligence

and natural language processing. This allows machine translation based IR systems

to exploit the result of machine translation related research studies and wide range

of commercial products.

With sophisticated machine translation system involved, text translation has sev-

eral advantages over term vector translation. The first advantage is that machine

translation resolves ambiguity directly during translation by analyzing structures in

source and target language. Another advantage is that machine translation is capa-

ble of translating words that are not included in the dictionary and such translation

is called transliteration [13]. For example, rule-based machine translation first de-

tects the semantic and syntactic structures of source language and convert them

to corresponding structures in target language. After aligning the source and tar-

get language, terms can be mapped directly. However, machine translation can be

impractical for large collections for that it’s generally computationally expensive [14].

Another concern when using machine translation for CLIR is that in query trans-

lation the text used for translation is usually short. As discussed before, machine
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translation has been proven to be e↵ective when applied on document translation.

However, due to the requirement in short response time and limitation in computa-

tion/space resources, query translation is preferred in most of the scenarios. Com-

pared with documents, queries are short and usually can’t form complete sentences.

Structure detection and context analysis is typically more di�cult on queries. As a

result, the capacity of machine translation based approaches is weaken by the limited

length of queries. According to the experiment result in Oard [11], the performance

of machine-translation based query translation lies between that of simple dictionary

based approach and dictionary based approach with linguistic processing. For long

queries, machine-translation based query translation outperforms dictionary based

approaches. This result implies the possibility of improving long query performance

by using machine translation techniques.

2.2.2 Dictionary based translation

As for term vector translation, dictionary based translation is the most commonly

used approach.Dictionary based translation is a special translation approach that

mainly used in IR task. Unlike machine translation which gives the final multi-word

translation result, dictionary based translation gives a list of translation candidates

terms for each term being translated. This suits the IR task well because IR sys-

tems use a bag-of-words representation of documents and word sequences are not

considered if not specified in query. Dictionary based translation requires a bilingual

dictionary in machine readable format. As the source of translation capacity, quality

of bilingual dictionary largely determines the performance of CLIR system.

Obtain bilingual dictionary The first issue is how to obtain a bilingual dictionary

that specifically suits IR task. Bilingual dictionaries in machine readable format

are more and more accessible. But such dictionaries are still designed for human
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readers and tend to contain a lot of contextual words that are not suitable for IR

task. This type of dictionary is called “bilingual general language dictionaries”.

Bilingual general language dictionaries is consist of di↵erent fields like pronunciation,

examples, definitions or encyclopedic definitions.The only information CLIR tasks

need is the the direct translation for each term. Such bilingual dictionary that

contains a list of equivalent translations for each source language term is defined

as “bilingual thesaurus”. In this work, if there is no specific notation, “bilingual

dictionary” is referring to “bilingual thesaurus”.

Previous work shows that an automatic filtering process can be used in generating

bilingual thesaurus from general language dictionary [1]. First, fields that not con-

taining direct translation information was filtered out, like pronunciation, example

and etymology. The fields used for translation extraction are those contains defini-

tions. Then, stop words and repeat words are removed and the left words are used

as translation terms. Such simple automatic filtering results in a noisy set of trans-

lation term. For example, French term “radiation” has English translation terms:

disbarring, expulsion, radiation, striking, register, loss, license, practice, medicine.

An ideal translation term set picked manually should only contains radiation, ex-

pulsion and disbarring. In this example, noisy translation words like “medicine”,

“license” will lead to a twisted result in retrieval tasks. Such noisy translation set

is considered as a source of error in CLIR process. From the experiment result in

Hull [1], a system based on automatically built dictionary can only reach 60% of

average precision of the monolingual baseline. Although there is a significant gap

in performance between queries translated from automatically generated dictionary

and monolingual baseline, other experiments shows that there can be dramatic im-

provement in performance with certain improvement on the dictionary. Bases on

experiment result, with noisy translation terms manually removed, the performance

can be improved to 68%; with phrase translation capacity added to the dictionary,
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the performance can be improved to 90%. This result of Hull [1] indicates that dic-

tionary based query translation is a feasible approach for CLIR task and that the

performance of built CLIR system is highly depended on the quality of the bilingual

dictionary used. With an ideal bilingual dictionary (noise-free translation terms,

multi-word phrase are correctly handled), CLIR system can be almost as good as a

monolingual system.

Resources other than general bilingual dictionaries can be used to generate bilin-

gual thesaurus. The simple direct translation filtering strategy described in Hull [1]

can be further extended with more complex rules and filtering can be done on doc-

ument collections in target language, which is more domain related. A “hypernym-

hyponym extraction” on Japanese and US patents was proposed in Nanba [15] to

automatically constructing Japanese-US bilingual thesaurus. Such method relies on

detection of patterns like “A such as B” to identify a hypernym-hyponym pair “A”

and “B”. Extracted hypernym-hyponym pairs in English and Japanese are aligned

with citation analysis techniques and finally construct a bilingual thesaurus.

Reduce translation error for dictionary based translation To achieve a better perfor-

mance in CLIR task, it’s important to first figure out the source of translation error.

Previous work shows that the translation error in CLIR process is mainly caused by

three factors [4].

Adding extraneous terms to the query The first is adding extraneous terms to the

query. Irrelevant terms may be introduced in translation process due to noisy trans-

lation set, like described in previous section. Such error can be reduced by a large

extent with a carefully constructed bilingual dictionary. While another source of

extraneous terms is that common terms usually have multiple definitions. This type

of error can’t be eliminated during dictionary construction phase for that term trans-
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lation is ambiguous naturally: terms may have di↵erent senses in di↵erent context.

For terms with multiple candidate translation terms, several selection strategies have

been explored by previous work.

The most straight forward strategy is simply keeping every candidate (every word

strategy). Every word strategy has been more commonly implemented. Studies has

been done on how to cut down on number of translations selected to improve trans-

lation quality. Filtering strategy based on part of speech (POS) analysis has been

used to reduce ambiguity [4]. This method exploits the POS tag for each possible

translation provide by the bilingual dictionary. Queries in source language are first

tagged with a part of speech tagger and when selecting translation candidates, only

the candidate with the same POS tag will be selected. Experiment results shows

that translation using POS to disambiguate outperforms word-by-word translation

without disambiguation attempt by 22% in terms of average precision.

Another intuitive strategy is to pick a single word when there are several candi-

dates available (single word strategy). A simple random selection approach can be

used for this purpose. Experiments in Oard [11] compared the every word strategy

and random selection strategy. Result indicates that a random single word strategy

is no worse than every word strategy: random single word approach can reach 98%

of the performance of every word approach. This result points out that seeking im-

provement over arbitrary choice may be as meaningful as seeking e�cient ways to

cut down number of translations selected.

External resources other than bilingual dictionary can be helpful when trying

to select the best candidate. Parallel corpus can be used to support disambiguation

methods [4]. Parallel corpus is defined as a set of documents and their translations in

one or more other languages. The disambiguation is proceeded in the following way:

first, retrieve top 30 documents by running original query on source language corpus.

Then corresponding 30 documents in parallel target language set are collected and
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top 5,000 terms are scored based on Rocchio ranking [23]. All candidate translation

terms are ranked by their scores and the one with highest score will be chosen as

the best translation. If none of the candidates appears in top 5,000 terms, then no

disambiguation is performed and every word strategy will be used.

Failure to translate terminologies The second source of translation error is failure

to translate terminologies. Dictionary is often considered as a “shallow but broad”

translation source, therefore terminologies for a specific field may be not covered very

well in a general dictionary. This kind of error referred to as “out-of-vocabulary”

(OOV) error.

OOV terms can be divided into nine categories [16]: named entities, general vo-

cabulary (words that are expected to be found in a comprehensive monolingual dic-

tionary), newly formed words, alternative spellings, domain-specific terminology, ab-

breviations, loan words (words absorbed from another language with minor spelling

changes), transcribed sounds and the last one - an undecidable category for any

terms that can’t be assigned in any category with certainty.

Among all those nine categories, named entities and domain-specific terminology

are considered the most important. Name entities play an important role in IR

task for that they take a large percentage of daily queries. Another factor that

makes named entity translation an crucial topic is that named entities take up the

largest share among all missing terms. Distribution of the out-of-vocabulary words

in the CLEF 2000 collection was given in Demner-Fushman [16] and the distribution

shows that named entities take up about 50% of missing terms. To handle name

entity translation, the most commonly used approach for languages sharing the same

writing system is to keep terms untranslated. For those don’t share the same writing

system, a phonetic translation has been proven to be helpful.

Domain-specific terminology is also considered an important category. Those
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terms have decisive a↵ects in IR system for that they are highly specific for a search

task. The second reason is that unlike other categories whose coverage increases

as the size of dictionary increased, coverage for domain-specific terminologies barely

change as dictionary size increases.To improve the coverage of domain-specific ter-

minologies, domain specific dictionaries are required.

Simple lexical processing like stemming can be used to reduce OOV error. Bilin-

gual dictionaries usually contain several morphological variants for a term. However

there may be the possibility that the variant we are looking for is absent. In this

case, applying the same stemming rule on both dictionary terms and query terms

then try to match them again will allow certain absent variants to be matched. Oard

[11] explored the e↵ectiveness of stemming approach. Stemming is proceeded in the

following steps: The first step is trying to find exact match for query term in dic-

tionary. If exact match is not find, every word in dictionary as well as query term

will be stemmed then try to match again. If still fails, query term will be remained

unchanged. However, the experiment result shows that such method doesn’t work

well: average precision drops after stemming is applied. Precision drops because of

the mismatch caused by stemming. In some scenarios, di↵erent variants represent

di↵erent information needs. Therefore, stemming should be used extra carefully as

an approach to help with OOV error for that inappropriate stemming may introduce

ambiguity.

Failure to translate multi-word phrases The third is failure to translate multi-word

phrases or translating them poorly. Translation for a multi-word phrase can di↵er a

lot from translation for each individual term inside the phrase.

To handle multi-word phrase properly, the first step is to detect them. In Balles-

teros [4] a detection approach based on POS sequence analysis is used. First, queries

are tagged by POS tagger. Then sequence of nouns and adjective-noun pairs are
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considered as phrase. Phrase will be translated with strategy that is di↵erent from

individual term. Ballesteros [4] proposed an approach adopting co-occurrence statis-

tics for disambiguate phrase translation. This approach is based on the assumption

that correct translation terms for phrases will tend to co-occur more in target lan-

guage corpus while incorrect translation terms will not co-occur. It consists of the

following steps: first, a potential translation candidate list is obtained for each query

term from a bilingual dictionary. The lists are filtered and only candidates having the

same POS tag with query term is left. Then if a phrase is detected, for any two con-

tinuous terms in the phrase, all possible pairs {a,b} are generated by picking “a” from

the first term’s translation list and picking “b” from the second term’s translation

list. The next step is to infer the best {a,b} pair by using co-occurrence statistics.

The quality of {a,b} pair is measured by a metric called “net co-occurrence”. Net

co-occurrence is calculated with the following formula:

em a, b max

n

ab

En a, b

n

a

n

b

, 0 (2.1)

n

a

and n

b

are total number of occurrence for a and b in the corpus while n
ab

represent

the times a and b fall into the same text window with a pre-defined length. En a, b

is defined by nanb
N

. N is the total number of text windows in the corpus, which can

be calculated with total length of corpus / window size. This metric reward rare

co-occurrence by normalizing over the total number of occurrence of a and b.

After all possible pairs a, b have been assigned a score, the pair with highest

score will be selected as the final translation. A notable advantage of this approach

is that it doesn’t require comparable or parallel corpora. It’s conducted on the

monolingual corpus that will be searched on.

Another way to translate phrase is to use direct translation resources like a phrase

translation table or phrase dictionary. Compared with statistic based method which
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can be applied on any multi-word phrase, coverage of phrase dictionary based ap-

proach is limited. However, translations that found in a phrase dictionary are more

accurate than translations obtained by co-occurrence statistics. For compositional

phrases, both phrase dictionary and co-occurrence based method are able to provide

correct translation. But for non-compositional phrases, phrase dictionary tend to

provide much better translation than co-occurrence method does [4].

Query expansions Besides error type specific approaches, query expansion has

been proven to be helpful in improving dictionary based translation. Query expan-

sion refers to the process of expanding original query with popular terms from highly

ranked retrieved documents. For example, original query “CMU” gets documents

about “CMU application”, “CMU CS” and “CMU location”. The first two docu-

ments are ranked higher therefore used for query expansion. Terms “application”

and “CS” are selected, therefore we’ll have an expanded query “CMU application

CS”. Compared with the original query, expanded query is more specific and less

ambiguous.

Query expansion can be applied before translation, after translation or both. Pre-

vious work has shown that pre-translation expansion enhanced precision for that it

provides a stronger based for translation, while post-translation expansion increases

recall and reduce ambiguity by de-emphasizing irrelevant translation [17].

Mikolov [6] implemented pre-translation expansion on the parallel corpus. First,

query in source language was used to retrieve top 20 documents on source language

corpus. Then top 5 source terms will be used to expand the query. After expansion,

query is translated and used for retrieval on target language corpus.

Post-translation expansion can be done by pseudo relevance feedback. Pseudo

relevance feedback is a commonly used approach to improve retrieval performance.

It’s done by first retrieve top ranked documents with original query and then use
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most frequent terms in retrieved top ranked documents to expand the original query.

2.3 Neural ranking model

Sate-of-the-art traditional CLIR system is capable of achieving the same accuracy

with monolingual IR systems [5]. However, building a high performance CLIR system

takes complex work.

For dictionary based CLIR systems, the first challenge is to find a proper bilingual

dictionary in machine-readable format. Well-known, high quality dictionaries like

Oxford dictionaries are usually limited by copyright issues. While free dictionaries

which can be used online or available for download are usually in low quality, with

a low coverage terms or nonstandard translations. Another limitation of dictionary

based translation is that dictionary usually have a low coverage in certain type of

entities: name entities, newly created terms and phrases. Name entities that refers

to real-world objects, such as persons, locations, organization, products .etc [18],

such as “George Bush”, “Carnegie Mellon University”. Those name entities are

usually not included in dictionaries. Similarly, newly created terms are also hardly

covered in a standard dictionary. The third type, phrases, need to be first identified

and then translated with phrase table, which also faces a challenge in coverage.

The second problem for a dictionary based CLIR system is ambiguity. To resolve

ambiguity, a CLIR system adapts mechanisms like concurrence analysis to choose

better translation candidate during translation [4]. Also, query expansion is used to

further resolved ambiguity in CLIR tasks [17]. All those procedure takes non-trivial

work to build and time to run.

Machine translation based CLIR systems also have several limitations. First,

since machine translation is studied as independent field, machine translation systems

are used as “black box” in CLIR tasks. In a query translation case, a query in source

language is fed to the machine translation system and translated query in target
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language is given by the translation system. Unlike the dictionary bases translation

where we can see the translation candidate list and make di↵erent strategies to

choose candidates, a machine translation system doesn’t provide us much freedom

for tuning and adjusting. Another problem in using machine translation system for

CLIR is that those systems are computationally expensive. Translation large corpus

may take a long time.

Neural ranking, as a newly emerging subfield in IR field, brings opportunities to

break the limitations in traditional CLIR systems. Many limitations in traditional

CLIR system lies in the underlying ranking models. Traditional ranking models

uses exact matches signals as relevance evidence, like query contains term “Apple”

is related to document contains term “Apple”, while neural ranking is able to use

soft-match signals, like term “Apple” is related to term “iPhone”. Exact-match

can be considered as boolean signal because it’s either a “match” or “not match”,

while soft-match is a real value which means a word pairs can have di↵erent relevance

levels. With soft-match, we’ll be able to express the word pairs’ relevance relationship

with a level between “match” and “not match”. This gives the model a lot more

freedom in learning and ranking. In neural ranking model, soft-match is achieved

by representing words with word embeddings. In the next section, we’ll give an

introduction about word embeddings and also discuss how to extend the concept of

soft-match to a bilingual scenario by using bilingual word embeddings.

Word embedding

Before word embedding, commonly used text representation technique is “one-hot

encoding”. In one-hot-encoding representation, each word is represented by a large

vector of size of vocabulary and only the bit corresponding to the represented word

is one while all the other bits are zeros. Such representation is sparse and makes no

assumption about word similarity. Compared with one-hot encoding, word embed-

18



ding is a dense, continuous representation for words. Each word is associated with

a real-valued vector. Distance between words’ embeddings reflect can reflect certain

similarities. This is feature enables soft-matches between document and query in IR

tasks. Traditional IR models only consider exact match. Now with word embeddings

it’s possible to quantize similarity between words by a real-valued number.

A traditional approach of training word embedding is neural probabilistic lan-

guage model. The learning objective is to maximize the possibility of the next word

after observing a window of previous words. Such probability is calculated by assign-

ing a score to each possible words in the vocabulary and takes the form of soft-max

to change score into a possibility value. This requires the calculation of soft-max for

the whole vocabulary which can be very expensive for large corpus. A more e�cient

way to train word embeddings is to maximize the possibility of assigning real word

as target word given previous words by negative sampling [6], like the word2vec.

Both training approaches can obtain word embeddings that encode contextual infor-

mation, which means words will have similar embeddings if they are surrounded by

similar context.

For CLIR tasks, we want word embeddings to encode translation relationships.

To achieve this goal, we can use bilingual word embeddings that preserve similarity

across language boundaries and further tailor it for retrieval task by training it

with the corpus we want to conduct search task on. Pre-trained bilingual word

embeddings based on other corpus can be used in CLIR task to preserve translation

relationships. Such bilingual word embeddings can be trained e�ciently by extending

the model of word2vec. By merging and shu✏ing a bilingual document pair in a

comparable corpora, a single “pseudo-bilingual” document can be created [3]. Then

use such pseudo-bilingual document to train the word2vec model and the trained

word embeddings will be bilingual. Such bilingual word embeddings can be used

directly for query translation. For example, English word “Apple” will be considered
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similar to Chinese word for apple by word embeddings. However, such method

requires large bilingual comparable corpora, which takes time to collect and process.

Therefore this approach will not be explored in this work.

Unlike bilingual word embeddings which are rare and di�cult to obtain, mono-

lingual embeddings are much more common and widely used. If we can align mono-

lingual embeddings between di↵erent language pairs to make them comparable, we’ll

be able to exploit the high-quality pre-trained monolingual embeddings trained on

large scale datasets. The alignment between two languages can be achieved by using

a small set of bilingual translation pairs [8]. The idea is based on the fact that di↵er-

ent language spaces share similar similarity relationship among words. Monolingual

embeddings for di↵erent languages are like maps for the same country but with dif-

ferent rotation angles [8]: describing the same entity similarity relationship but each

is rotated in di↵erent angles. Therefore, by randomly picking a small set of words

and aligning them, the whole vector space for each language will be aligned. The

aligned monolingual vectors are comparable: English word embedding for “mom”

will have high cosine similarity with the corresponding Chinese word embedding. In

this work, we’ll use aligned pre-trained monolingual embeddings for Chinese and En-

glish in experiments to explore the e�ciency of pre-trained embeddings in bilingual

IR task.

Both of the approaches above generate pre-trained embeddings. By pre-trained

embeddings we mean they are trained on corpus other than the corpus we can to

search on. Such pre-trained embeddings only preserve translation relationships but

no relevance evidence. Previous work shows that word embeddings tailored locally for

IR task can greatly improve the retrieval performance. Trainable word embeddings

that adjusted based on user click feedback is shown to be an important source of

e↵ectiveness [2]. Therefore pre-trained word embeddings may not be the optimal

choice if used in CLIR tasks without modification. To use them in CLIR, further
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adjustment based on local corpus is needed.

A third approach to obtain bilingual word embeddings is to train a neural ranking

model on a bilingual training dataset, so that the model can learn bilingual word em-

beddings that encode both translation relationship and relevance evidence. This can

be achieved by initializing word embeddings with pre-trained bilingual embeddings

and adjust them based on training data or initializing word embeddings randomly

and allow a neural ranking model to learn bilingual word embeddings by itself.

Kernel-based neural ranking model

After having words represented with word embeddings, now it’s possible to capture

soft-match signals. However, exact matches are strong signals for relevance while

soft-match are considered weak signals for relevance. Such weak signal has to be

processed extra carefully when considered as relevance evidence. For example, when

using word embeddings to derive word pair similarity, “London” and “Milan” may

be considered similar because they appear in similar context and therefore tend to

have similar word embeddings. However document with “Milan” won’t satisfy user’s

information need about “London”. Therefore the key lies in how to combine weak

signals to produce accurate evidence for relevance.

Many current neural ranking models are designed to solve the problem of soft-

match and we use the kernel-based neural ranking model (K-NRM) [2], which is the

recent state-of-the-art. In the K-NRM, a set of kernels is used to capture di↵erent

types of word pair similarities. For example, the strongest similarity level is consid-

ered as exact match and there can be other relevance levels for soft-matches. The

result produced by kernel layer will be fed into a ranking layer as features for gen-

erating ranking scores. K-NRM model is proven to beat the feature-based ranking

model and state-of-the-art neural ranking model by 65% as shown in experiment

across di↵erence scenarios. This work will adopt K-NRM as neutral ranking model
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and explore e↵ectiveness of di↵erent CLIR solutions. Detailed information about

K-NRM will be introduced in section 4.
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3

A neural CLIR approach

A neural approach for CLIR is proposed in this section. Our neural CLIR approach

tries to give a CLIR solution based on neural architecture by extending the cap-

ture of soft-match signals [2] in monolingual terms to the bilingual scenario. This

approach is consist of two components: bilingual training data that providing trans-

lation knowledge and the underlying neural ranking model, the K-NRM, that learns

bilingual soft-match signals from training data.

This neural CLIR approach addresses two largest limitations in traditional CLIR:

need careful tuning for high performance and a↵ected seriously by training data.

First, by solving CLIR problem in a neural architecture, performance can be opti-

mized via learning. Components that require manual tuning are much less compared

with building a high-performance traditional CLIR system. Second, neural CLIR

approach is more robust to translation errors compared with traditional CLIR ap-

proaches. The most commonly used translation strategy in traditional CLIR is query

translation, which means that translation result will be used as queries directly. In

this framework, a low quality translation component will lead to low quality trans-

lation results, and low quality translation results will result in bad queries. If initial
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queries are in poor quality, so will be the initial ranking. When initial ranking is in

low quality, traditional approaches to improve initial ranking like query expansion

won’t help since the source of expansion terms are too noisy. On the other hand,

instead of using in queries, neural CLIR approach uses translation results in training

data. In this way, model can learns how to use translation knowledge by capturing

the translation relationships as soft-match signals. This freedom in using translation

knowledge gives the model the ability to yield better performance compared with a

traditional CLIR system using the same translation knowledge source.

The remaining part of this chapter is organized in the following way: first bilingual

training data used in neural CLIR is introduced, then a brief introduction is given

to K-NRM, the underlying neural ranking model for this approach.

3.1 Bilingual training data

Bilingual training data can be as a source of translation knowledge by neural ranking

model and allows the trained model to take target language query directly as input,

which is di↵erent from query based translation approach where only target langue

can be used as input for ranking module. An example of bilingual training data is

shown in Figure 3.1. In Figure 3.1, to generate bilingual training data, queries in

monolingual source language training data are translated into target language with

machine translation system or other translation approach, while documents remain

unchanged.

Bilingual training data approach has several advantages compared with tradi-

tional translation approaches.

The first is that bilingual data approach can tailor translation knowledge specif-

ically for IR task while traditional approaches only use translation knowledge but

make no modification to it. For traditional retrieval model, translation knowledge

from external source (e.g. dictionary, embedding) is used directly for query transla-
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Figure 3.1: Sample of monolingual and bilingual training data.

tion and feedback from retrieval result won’t be reflected on translation knowledge.

On the other hand, for bilingual data approach, translation knowledge can be en-

coded implicitly in training data. Model trained with such data will be able to

learn both translation and relevance relationship between term pairs. For example,

traditional approach knows that “Apple” means a fruit in Chinese based on given

translation knowledge. For bilingual data approach, if we provide the model a data

entry indicating that English word “Apple” is related to a Chinese document talks

about product of Apple the company, the model will able to learn that “Apple” is

related to not only “˘ú” (apple) but also words like “K:” (phone), “5⌘” (com-

puter), “l¯” (company), etc. Those smilier relationships learned by the model

contains not only translation knowledge but also relevance evidence.

The second advantage is that neural ranking is more robust with low quality

translation knowledge. Traditional approach directly uses translation knowledge for

query translation. Therefore the initial quality of translated query largely decides

the accuracy of ranking. Even though the initial ranking can be improved by query

expansion, the extend of such improvement is very limited if a poorly translated

initial query is given. For bilingual training data approach, translation results are

used as training data. Therefore the translation failure of single item may not a↵ect

the final learning result as long as the translation errors are independent and not
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frequent.

3.2 Neural ranking model

Neural ranking model used in this work is a newly published kernel based neural

ranking model (K-NRM) [2]. K-NRM is an interaction based neural ranking model.

In K-NRM, words are represented with word embeddings initialized randomly and for

each query and document pair, a translation matrix representing word-level similarity

is calculated. Then a set of kernels with di↵erent weights are used to extract di↵erent

similarity features from the translation matrix and those features are combined by a

learning-to-rank layer to produce the final score. During training, word embeddings

and kernel weights will be modified to minimize the pari-wise training loss.

K-NRM is consist of four layers: embedding layer, translation layer, kernel pool-

ing layer and a learning to rank layer.

For a query with n terms, q = q
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Then translation layer will calculate a translation matrix where each element

is the cosine similarity of a query word embedding and document word embedding

pair. Translation matrix is in dimension n m and each element is defined in the

following way:

M

ij

cos v

qi , vdj (3.2)

The translation matrix is fed into the kernel-pooling layer. A set of kernels
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extract features that can be used for ranking from the translation matrix.

The kernels used in kernel-pooling layer is RBF kernel:
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For each kernel, word embedding similarity values close to its mean µ

k

will get

a higher score. Therefore, a set of kernel with di↵erent µ

k

will be able to capture

di↵erent types of soft-match signals. For example, if µ 1 and � 0, the kernel

will be equivalent to exact match. If µ 0.5, the kernel will calculate a score based

on how many document, query term pair has a word embedding similarity close to

0.5.

The output of kernel-pooling layer is a set of ranking features, representing how

well the query and document matches in terms of di↵erent types of soft-matches.

Those ranking features are fed into a learning to rank layer and a final score is

calculated with them.

A complete K-NRM model can be described as:
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Note that every component of K-NRM is di↵erentiable, which allows the model
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to be trained end-to-end. Both kernel weights and word embeddings will be updated

during training. Kernel’s weight decides its responsibility. A kernel with positive

weight is responsible of collection positive relevance evidence indicating a higher

ranking, like “Apple” and “iPhone”. While a kernel with negative weight is collect-

ing negative relevance evidence indicating a lower ranking, like “Apple” and “IBM”.

The larger absolute value a kernel’s weight is, the more important it is during rank-

ing because it contain word pairs a↵ect ranking scores the most. Kernels can be

interpreted at bins for that each kernel is responsible of collecting soft-match signals

from term pairs falling into its range (bin). Word embeddings will be tailored during

training and lead to migration of word pairs may from one bin to another.

The concept of word pair similarities can be extended to a CLIR scenario easily

for that query, document word pairs q
i

and d

j

in K-NRM don’t have to be in same

language as long as their word embeddings are in the same vector space [8]. If proper

training data is given, the model will be able to learn word embeddings for terms

in di↵erent languages that are in the same vector space and comparable to each

other. We call such word embeddings “bilingual word embedding” when there are

two languages involved. Similarity of bilingual word embeddings can be used as soft-

match signals just like monolingual word embeddings because they are comparable.

This is what we want to achieve in our neural CLIR approach, to allow K-NRM learn

bilingual word embeddings by training the model with bilingual training data.
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4

Experimental methodology

This chapter gives an introduction for dataset, ranking models and translation ap-

proaches used in experiments of this work.

Two datasets are used in this work. One is search log dataset (Sogou-Log dataset)

containing initial ranking for each query and the other one is a larger, cleaner dataset

(SogouT-16 B) built for research purpose. In experiments, we hope to mimic the

situation where user inputs English queries to retrieve Chinese document. Ideally,

a CLIR system based on dictionary based query translation approach, which was

the state-of-the-art CLIR approach, should be used to generate initial ranking from

SogouT-16 B dataset then use neural CLIR to do the reranking. To guarantee the

quality of initial ranking, neural CLIR was experimented on the Sogou-Log dataset

reranking initial result produced by a monolingual system, which is a flaw in the

experimental methodology of this work. Hopefully, in future work high quality initial

ranking from a CLIR system can be obtained on SogouT-16 B dataset and this flaw

can be fixed.

To compare neural CLIR approach with approaches in previous works, this work

tests di↵erent combinations of ranking models and translation approaches. Ranking
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models used for experiments in this work including traditional ranking model (BM25)

and neural ranking model (K-NRM). The translation approaches include dictionary

based translation, machine translation and bilingual training data approach designed

specifically for neural ranking model.

This chapter is organized in the following way: first two datasets are introduced.

Then di↵erent ranking models are discussed in retrieval methods section. In the

last section, di↵erent translation methods are covered and possible combinations of

retrieval methods with translation methods are also discussed in the last section.

4.1 Dataset

To evaluate the CLIR approaches in di↵erent scenarios, two di↵erent datasets are

used in this work. The first one is Sogou-Log dataset, a search log sampled from

sogou.com, the third largest largest commercial search engine in China. It provides a

closer simulation to a real web search environment. The second one is SogouT-16 B

dataset. It’s a large Chinese dataset provided by sogou for academic study purpose.

It’s larger and more well-organized compared with the search log data. Detailed

descriptions for each dataset are in the following sections.

4.1.1 Sogou-Log dataset

A search log sampled from sogou.com with 96,229 distinct queries.In the search

log, each query has the following information: documents displayed by sogou.com,

user clicks, dwell time and a relevance score given by sogou search engine. Query,

document pair and relevance score will be used as training and testing data for the

model, while user clicks and dwell time will be used for relevance judgment. Since

our model takes pairwise learning to rank loss, each training data sample includes

query, positive document and negative document. Statistical data about Sogou-Log

dataset is shown in Table 4.1 [2]. The most frequent 1,000 queries are used as test
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Training Testing
Queries 95,229 1,000

Documents per query 12.7 30.5
Search Sessions 31,201,876 4,103,230
Vocabulary Size 165,877 19,079

Table 4.1: Statistical data of Sogou-Log dataset.

data and the remaining 95,229 queries are used as training data.

Since this search log is not a well-organized dataset with manually generated

relevance judgement, we need to infer testing labels based on click log. Two methods

for calculating relevance scores are used in this experiments: Testing-SAME and

Testing-DIFF [2]. Testing-SAME calculates relevance scores using DCTR, which is

the same click model used for generating training data. While Testing-DIFF uses

TACM [9], a state-of-the-art click model for relevance judgement. TACM takes

both user clicks and dwell time, and it has been proven to be a good estimation of

expert labels on Sogou-Log dataset [9]. In this work, the system is evaluated using

both Testing-SAME and Testing-DIFF. Note that Testing-DIFF is considered to be

more important because it provides a closer estimation to gold standard labels than

Testing-SAME.

4.1.2 SogouT-16 B dataset

SogouT-16 dataset contains 1.17B Web pages sampled from indexed documents of

sogou.com. The SogouT-16 requires 81TB before compression. Processing such

large corpus requires considerable computation resources. Therefore in this work

we’ll use the subset of sogouT-16 dataset, which is referred to as “Category B”.

The category B dataset takes 1.5 TB before compression, comprised by 177,936,163

unique URLs from 818,182 domains.The test collection for this dataset contains 50

manually picked Chinese queries and relevance judgments for those 50 queries. An

example for document is shown in Figure 4.1.
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Figure 4.1: Sample of SogouT-16 dataset]

4.2 Evaluation metrics

4.2.1 NDCG

NDCG is the short for Normalized Discounted Cumulative Gain. It evaluate the

quality of a ranking by awarding highly ranked relevant documents [19]. It’s calcu-

lated by the following formula:

NDCG@k Z

k

k

i 1

2Ri 1

log 1 i

(4.1)

R

i

is the relevance of document at rank i. It can be a multi-valued relevance value,

like 0 (non-relevant), 1 (relevant), 2 (every relevant). However, in our Sogou-Log

dataset, the relevance judgement is generated with user click, where there are only 0

(not clicked so non-relevant) and 1 (clicked so relevant). Z
k

is a factor to normalize

the score so that a perfect ranking has NDCG 1 at k [19].

4.2.2 MRR

MRR is the short for Mean Reciprocal Rank. This metric only care about the

position of the first relevant document in a ranking. It’s calculated by 1 / rank of

first relevant document [19]. This metric is helpful especially in web search ranking

evaluation because in web search scenario user usually have limited patience when

browsing retrieved results and don’t care about recall. It’s important to have the
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first relevant document ranked at a high position so that user can find their search

target quickly before giving up browsing.

4.3 Retrieval methods

This work will study CLIR on both traditional word-based ranking model and neural

ranking model.

4.3.1 Word-based ranking model

Word-based ranking model used in experiment is BM25 model with default param-

eters. For query with terms q
1

, q

2

, . . . q

n

, the BM25 score for a document D is calcu-

lated by the following formula:

score D,Q

n

i 1

log
N df

qi 0.5

df

qi 0.5

f q

i

, D k

1

1

f q

d

, D k

1

1 b b

D

avgdl

(4.2)

where N is the total number of documents in corpus, df
qi is the number of documents

that contain query term q

i

in corpus, f q

i

, D is the term frequency for q
i

in document

D, D is the length of document D in words and avgdl is the average length of all

document in the index. k
1

and b are tunable parameters. In the experiment default

parameter setting k

1

1.2, b 0.75.

4.3.2 Neural ranking model

Neural ranking model used in this experiments of work is a kernel based neural

ranking model (K-NRM). Details about K-NRM is introduced in Section 3.2.

4.4 Translation Methods

This work mimics a scenario where English speaker uses English query to conduct

search on a Chinese corpus and related Chinese documents are returned.
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Traditional retrieval model Neural ranking model
Dictionary based translation 3 3
Machine translation 3 3
Bilingual training data 7 3
Table 4.2: Retrieval models and translation approaches. The feasibility of di↵erent
combinations of retrieval models and translation approaches are shown in this table.

Under this scenario, we tested the e↵ectiveness of three translation approaches on

two retrieval models. Involved retrieval models has been described in the previous

section. Three translation approaches studied in this work are: dictionary based

translation, machine translation and bilingual training data.

As shown in Table 4.2, dictionary based query translation can be used in both

traditional ranking model and neural ranking model. Dictionary based translation

and machine translation are both query translation based approaches. Query transla-

tion based approaches requires no change in existing monolingual IR system. Queries

are translated into target language by a separate translation module before being fed

into the IR system build on target language corpus, which means the IR system is

still performing monolingual IR.

Bilingual training data is designed specifically for neural ranking model. It uses

training data containing both source language and target language and no explicit

mapping relationship from source langue to target langue is needed by the model. In

other words, the model doesn’t need to know “Apple” and “˘ú” is a translation

pair and the model will learn translation relationship by itself. But for word-based

traditional ranking models, only word level match is considered. As a result, source

language term must be mapped explicitly to target language term, like the query

based translation approach does. Therefore, bilingual data can’t be used by a tradi-

tional model as source of translation knowledge.
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4.4.1 Dictionary based translation

Dictionary based translation involves in translation source language content in a

word-by-word manner. Each source language term is looked up in a bilingual dic-

tionary and a list of translation candidates in target language will be given by the

dictionary. For example English term “target” may get a list of Chinese words “Ó⌥”

(goal), “vP” (shooting target), ”˘∆” (aim). Those candidates may have di↵erent

part-of-speech or with di↵erent meanings if the word for translation is polysemous.

Dictionaries used in this work are wiki dictionary and Baidu translation API. The

size of Chinese-English wiki dictionary is 7.9G, containing common Chinese and En-

glish words. But it lacks information for most of the name entities like organizations

and celebrities. To engage the coverage for name entity translation, Baidu trans-

lation API is used. Di↵erent from Google translation API which provides machine

translation functionality, Baidu translation API provides word-by-word translation.

Once obtained the translation candidate list, a target language query can be

generated using the list. This can be done by building a nested query with all

candidates for a term connected operator “OR” and di↵erent terms connected with

“AND”.

For example, English query “new target” has two query terms therefore there are

two candidate lists. Term “new” has a list of “∞Ñ” (latest), “∞úÑ” (fresh),”�¡

Ñ” (not seen before) and term “target” has “Ó⌥” (goal), “vP” (shooting target),

”˘∆” (aim). Therefore for English query “new target”, the generated Chinese query

will be:

(∞ÑOR ∞úÑOR �¡Ñ) AND (Ó⌥OR vPOR ˘∆)

4.4.2 Machine translation

Machine translation needs the involvement of machine translation systems. The

machine translation system used in this work is Google translation API. Unlike
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dictionary based translation where a list of translation candidate is given for each

source language term, machine translation give a single phrase as result for the whole

source language entry.

Two translation directions are used in this work: English to Chinese and Chinese

to English. English to Chinese translation is used when machine translation is used

as a query translation technique. For example, English query “new target” will get

a translation result “∞ÑÓ⌥”. Chinese to English translation is used in generating

bilingual training data, where Chinese queries in training data are translated into

English ones. In this case we will have Chinese query “∞ÑÓ⌥” translated into

English query “new target”.

4.4.3 Manual translation

Since the goal in testing is to mimic the scenario where English speaker inputs

manually written English queries, ideally we should use manually translated English

queries in testing. However, due to the large number of testing data, it’s di�cult

to translate them manually. Therefore, in the experiments we generate the English

testing queries using a machine translation system.

There might be a performance gap between real testing scenario and our current

experiment setting. This performance gap is caused by the gap between manually

translated English queries and machine translated ones. We’ll try to quantify this

performance gap in experiment “Testing query translation quality” of Section 6.
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5

CLIR on traditional ranking model

In this experiment section, we want to simulate the scenario where user uses English

queries to retrieve Chinese documents. English queries are translated from Chinese

queries with machine translation or manual translation, depending on the query set

size of di↵erent dataset. Collection used for retrieval tasks are consist of monolingual

Chinese documents.

This group of experiments are conducted on sougouT dataset. Input are 50

English queries manually translated from 50 Chines queries provide by the dataset.

The purpose of this experiment group is to build a translingual baseline using query

translation on traditional retrieval model. Retrieval model used here is BM25 with

default parameter settings.

5.1 Monolingual baseline

In monolingual experiment, original Chinese queries are directly used as input. Since

documents in corpus are in HTML format, multiple fields can be extracted when

building index. In this experiment we want to investigate e↵ectiveness for di↵erent

fields and select strongest fields as our foundation for subsequent experiments.
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When building the index, we used five fields of documents [21]: body, title,

headings, strong and url.

Body field consists of paragraph tags (p tag) and anchor tags (a tag) of HTML

file.

Title field is extracted directly from title tag.

Heading field contains h1 to h6 tags.

Strong field is extracted from strong tag.

Url field is extracted from url tag.

In this section, we conducted search on di↵erent fields and compare the per-

formance with the NACSIS Test Collections for IR (NTCIR) baseline on the same

dataset. The goal for our monolingual experiments is to obtain a similar performance

as the NTCIR baseline [21]. In this section, Chinese monolingual experiments are

conducted on di↵erent fields of the index.

The first experiment uses all fields with the same weight for each field and the final

score of a document is calculated by summing up all BM25 scores of each field. The

following experiments use one field at a time. For example, the “Body” experiment

used only the BM25 scores of the body field, while “Title” experiment used only the

BM25 score of the title field.

Results

Experiment results in Table 5.1 show that title field alone yields the best performance

and there is a significant gap between the performance of title and other fields. The

main problem we found when using other fields is that the recall is very low, which

means many relevant documents can’t be retrieved. Since our system uses BM25,

documents with a high term frequency is preferred. However, in the index there

are many similar documents from a same website with a very high term frequency

and those document will dominate retrieval result. For example, a query “€X·
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Experiments NDCG@10 MAP@1000 Recall@1000
NTCIR baseline 0.5961 0.4689 0.91

All fields 0.3358 0.1340 0.45
Body 0.2223 0.0769 0.33
Title 0.5851 0.4364 0.85

Heading 0.2257 0.0463 0.24
Strong 0.1622 0.0207 0.07
URL 0.0163 0.0012 0.01

Table 5.1: Results of monolingual baseline for traditional ranking model. Di↵erent
fields are used in each experiment. (dataset: SogouT-16 B)

oQ” (hiring information website) will retrieve documents from the same website

for di↵erent locations, like “v∆Q-≥⌫€X·o” (Ganji.com - Hebei (City name)

hiring information), “v∆Q-)%€X·o” (Ganji.com - Tianjin (City name)

hiring information) ... etc. Those document are very similar and with a very high

term-frequency. If no explicit diversification mechanism is implemented, retrieval

results will be dominated by those similar documents, which will result in a low

recall.

Using Title field helps the most in this problem based on our experiment re-

sults. Therefore following experiments are conducted only on title fields and the

performance of “Title” monolingual experiment is used as monolingual baseline for

following bilingual experiments. Another advantage of using title field is that it’s

highly computational e�cient compared with longer body field or using all fields.

5.2 Dictionary based query translation

This group contains bilingual experiments with English queries as input to retrieve

Chinese documents. A dictionary based query translation is implemented in the

following way.

Dictionary used in this experiment is wiki dictionary [24]. Each query term is

looked up in the dictionary and all equivalent translations are concatenated with
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OR operator. For an original query “a b”, the translated query is in the format of

(a
1

OR a

2

OR a

3

. . . ) AND (b
1

OR b

2

OR b

3

. . . ), where a

1

OR a

2

OR a

3

... are

translations terms for original query term a and b

1

OR b

2

OR b

3

. . . are translation

terms for term b. If no translation result is found in the dictionary, query term will

be left unchanged.

The BM25 model used in this experiment is implemented using Lucene, a free and

open-source information retrieval software library 1. In Lucene BM25, OR operator

and AND operator are both implemented by summing up sub-scores. The di↵erence

is that AND operator will eliminate documents that don’t contain terms connected

by it, which means its a Boolean AND. For example, for query “iPhone AND Apple”,

the score for document 1 “iPhone on sale - Apple” is calculated by summing up BM25

score of “iPhone” and “Apple”. On the other hand, document 2 “iMAC on sale -

Apple” will not be retrieved for that it doesn’t contain term “iPhone”. Situation

will be slightly di↵erent for OR operator: for query “iPhone OR Apple” will retrieve

both document 1 and 2. The score for document 1 is calculated by summing up

BM25 score of “iPhone” and “Apple”, which is in the same way AND operator does,

while document 2 will get a score equal to the BM25 score of “Apple” for that it’s

the only query term is contains.

To explore the e↵ect of query expansion on dictionary based translation, the

following experiments are conducted.

Pre-translation query expansion

To implement pre-translation query expansion on our experiment dataset, we use co-

occurrence statistics [4] obtained from WordNet, a large lexical database of English

[25].

Pre-translation query expansion is done in the following way. First, a set of

1
Apache lucene - welcome to apache lucene,” https://lucene.apache.org/.
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synonym is get for each query term from WordNet based on co-occurrence statistics.

Then all synonyms are concatenated with OR operator. Expanded queries are in

the format of (a
1

OR a

2

OR a

3

. . . ) AND (b
1

OR b

2

OR b

3

. . . ), where a

1

OR a

2

OR a

3

. . . are synonyms for query term a and b

1

OR b

2

OR b

3

. . . are synonyms

for query term b. The expanded query and original query will be translated with

dictionary translation process just described. Expanded query and original query

will be combined with AND operator and used for retrieval.

Post-translation query expansion

Post-translation query expansion is implemented with Rocchio’s pseudo feedback

algorithm [26]. The expanded query is generated based on following formula.

q

expanded

↵ q

original

� q

learned

(5.1)

where ↵ is weight factor for original query and � is weight for query learned in rele-

vance feedback. q
learned

is generated in this way: Each term in top ranked document

is assigned a score of tf idf then terms with high scores are selected for learned

query with tf idf score as term weights.

Pre & Post-translation query expansion

Both pre-translation query expansion and post-translation query expansion are used

in this experiment. Initial query is first expanded with WordNet terms, and expanded

query is used to obtain a set of initial retrieval result. Then the expanded query in

first step is further expanded by adding popular terms selected from initial retrieval

result. The final query that has been expanded twice will be used to get a final

ranking.
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Experiments NDCG@10 MAP@1000 Recall@1000
Monolingual Baseline (Title) 0.5851 0.4364 0.24

Bilingual
with

dictionary
based

translation

No query
expansion

0.1115 0.2124 0.26

Pre-translation
expansion

0.0433 0.0886 0.11

Post-translation
expansion

0.0519 0.0693 0.08

Pre&Post
translation
expansion

0.0264 0.0308 0.03

Table 5.2: Results of dictionary based translation CLIR approach on traditional
ranking model. (dataset: SogouT-16 B)

Results

Results in Table 5.2 shows that our dictionary based translation system doesn’t

work well here. One of the cause is that the bilingual dictionary we are currently

using is low in coverage for name entities and unpopular terms. Another problem

is that our current implementation is not capable of translating phrase. Dictionary

based phrase translation requires part of speech analysis for phrase identification and

special mechanism for phrase translation, like phrase table or terms’ co-occurrence

analysis [4]. Since the initial ranking produced by our dictionary based translation

system is in low accuracy, the query expansion fails to improve the performance

either but makes it even worse. Problem also exists in the query expansion phase.

During expansion, WordNet might provide terms that are o↵-topic in our retrieval

task and BM25 is too weak to combine them well.

What can be learned from this experiment is that it takes complex work to build

a high-performance dictionary based translation system. First of all, it’s hard to

find a high quality dictionary with a high coverage for name entities. Consider name

entities are very popular in web search queries, failing to translate name entities can

cause huge damage in the performance. Another concern is mentioned above, the
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phrase translation. Last but not least, dictionary based translation need to resolve

ambiguity in translations. Query expansion is a commonly used approach. However,

as shown in the experiment results in Table 5.2, query expansion can’t help in

improving performance when initial ranking is poor quality.

5.3 Word embedding based query translation

The goal of this experiment is to explore the e↵ectiveness of using word embeddings

as a dictionary-based translation approach. This can be achieved by finding the

closest or top n close Chinese terms for each English query term. Word embeddings

for Chinese and English terms are pre-trained monolingual embeddings aligned with

process described in [8].

Unlike dictionary based approach which is word-by-word translation, word em-

bedding based translation is able to pick best translation with whole query context

under consideration. Translation term is scored using the following formula:

score q

i

, t w

major

cosSimiarity q

i

, t

j i

w

context

cosSimiarity q

j

, t (5.2)

w

major

is the weight of the current query term q

i

for translation and w

context

is the

weight of query terms other than q

i

. w

major

is tuned to be su�ciently larger than

w

context

to avoid twisted translation.

After calculating scores for each query term, candidate translations are ranked

and selected based on its score. In this experiment we experimented with top 1,3,5

translation candidates used in translated query respectively.

Results

By checking the generated Chinese queries, we found that considering the context

when calculating similarity score does help in finding better translation candidates.

43



Experiments NDCG@10 MAP@1000 Recall@1000
Monolingual Baseline (Title) 0.5851 0.4364 0.24

Bilingual
with

embedding
based

translation

Top 1 translation
candidate used

0.0371 0.0683 0.08

Top 3 translation
candidate used

0.0459 0.0756 0.09

Top 5 translation
candidate used

0.0463 0.0635 0.08

Table 5.3: Results of embedding based translation CLIR approach on traditional
ranking model. (dataset: SogouT-16 B)

For example, when the context is not considered, for query “virtual machine”, English

term “machine” gets “:s™” (machine gun) as its top 1 translation candidate,

while the whole query “virtual machine” is considered, the top1 candidate is “°ó

:” (computer). However, from the results shown in Table 5.3 we can see that that

embedding based translation doesn’t work well either in CLIR. The main problem is

that trained word embeddings tend to have high similarity among terms appearing

in the similar context but there is no guarantee that the are close in meaning. For

example, the Chinese term closed to English term “luna” is “•ã�” (Pluto) for

that they are both astronomical objects, while the “�Æ” (moon) is ranked in the

back and the accurate translation “�ÆÑ” (luna) doesn’t even show up in top

10 candidates. Another problem is that bilingual embedding used is trained on

another corpus, this may also lead to the situation that the translation candidates

picked are not suitable for our dataset. However, most of the monolingual corpus

doesn’t have parallel corpus in another language to train bilingual embeddings. The

approach used in this experiment is to align two monolingual embedding in di↵erent

languages so that they are comparable [8]. The quality of aligned embedding is not

very satisfying considering our experiment result. If more e�cient ways for bilingual

embedding training can be applied on given dataset, the produced localized word

embeddings might be more suitable for IR task.
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6

CLIR on neural ranking model

The ability of capturing and using soft-mach signals enables neural ranking model

to provide CLIR solution other than query translation. To achieve this, we make the

model learn soft-mach signals between terms in di↵erent languages from bilingual

training data, which we call “bilingual training data approach”. In this section, we

first compare our bilingual training data approach with traditional query translation

based approaches by testing their performance on the same neural ranking model.

Then we conducted a series of experiments to explore the source of e↵ectiveness and

error of our bilingual training data approach, which means that the initial ranking

is performed by Sogou search engine using a monolingual query in target language.

The following part of this section is organized in the following way. The first part

will be focus on evaluating the performance of di↵erent CLIR approaches on neural

ranking model. A monolingual experiment is run on the neural ranking model as a

baseline. Performance gap between the monolingual baseline can show how much

accuracy is losing when handling the same job in bilingual environment. Then perfor-

mance of both traditional query based translation approaches (machine translation

and dictionary translation) and our bilingual training data approach on the same
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Scenario

Model

type

Experiment

Train Test

qry doc qry doc

Use ch qry to

retrieve ch doc

(Monolingual

experiment)

Trained

monolingual

Monolingual

baseline

ch ch ch ch

Use en qry to

retrieve ch doc

(Bilingual

experiment)

Query

translation

approaches

Dictionary

translation

ch ch en->ch ch

Machine

translation

ch ch en->ch ch

Trained

bilingual

Bilingual training

data approach

(Bilingual baseline)

en ch en ch

Table 6.1: Experiments in performance evaluation section.

neural ranking model, the K-NRM, will be evaluated and compared. The second

part of this section will be focus on exploring the possible source of e↵ectiveness and

error in bilingual training data approach.

Experiment in this section are conducted on Sogou-Log dataset. To train neural

ranking model, an initial ranking should be used as training data and then the trained

neural ranking model will be used to rerank the initial ranking. Ideally, we should use

the ranking result produced by our traditional CLIR system on SogouT-16 B dataset,

which has been described in Section 5. However, due to the fact that performance of

our traditional CLIR system is not good enough to provide a su�ciently good initial

ranking, we decide perform the training and reranking on Sogou-Log dataset.

6.1 Performance evaluation

Experiments designed for performance evaluation are described in Table 6.1.

There are two scenarios we want to test in this section: user uses Chinese query to

retrieve Chinese documents (monolingual experiment) and user uses English query

to retrieve Chinese documents (bilingual experiment).

Among the three bilingual experiments, the “Dictionary translation” experiment
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and “Machine translation” experiment are query translation based approaches. In

those two experiments, English testing queries are translated into Chinese with dif-

ferent translation approaches. The last experiment is our bilingual training data ap-

proach. Note that previous three experiments, “Monolingual baseline” experiment,

“Dictionary translation” experiment and “Machine translation” experiment are all

training with monolingual training data, which means the document and query in

training data are both in Chinese. On the other hand, the “bilingual training data

approach” experiment used bilingual training data where queries are in English and

documents are in Chinese. This allows the trained model to handle bilingual input

with English queries and Chinese queries directly without query translation.

Since subsequent experiments will be focus on studying and improving the bilin-

gual training data approach, “bilingual training data approach” experiment result

here will be used as a bilingual baseline in subsequent experiments.

Those four experiments will be introduced in more detail respectively in the

following sections.

6.1.1 Monolingual baseline

The goal of CLIR is to obtain result as good as that of a monolingual IR system.

Thus, the first step is to obtain a monolingual baseline serving as a measurement for

CLIR. By comparing the accuracy of monolingual result and bilingual result on the

same dataset, we will be able to measure how much accuracy is lost in bilingual IR

process.

The training data used in monolingual baseline are generated from sogou search

log data described in dataset section. Queries and documents are all in Chinese

in both training and testing data. 1,000 head queries are used in testing data and

91,313 queries are used in training. All tail queries with frequency <50 have already

been removed from training data. Corrupted queries that can’t be decoded are also
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removed. The training data is shu✏ed so that the same training queries are not

next to each others. Shu✏ing training data has been proven to improve the model

accuracy [2].

6.1.2 Query translation based approaches

To figure out how well traditional CLIR approaches work on neural ranking model,

two most common approaches are experimented. By comparing this group of ex-

periments with the following bilingual training data experiments, we will be able

to verify whether tailored translation knowledge gained from bilingual training data

outperforms the static translation knowledge used by traditional approaches in IR

tasks.

This set of experiments are trying to simulate the scenarios where user typing

in English queries and hope Chinese documents to be retrieved. Ideally, to mimic

actual user behavior, the test queries should be generated manually. But consider

the large amount of work, the test queries are translated with machine translation

and manually corrected part of the bad translations. More analysis about the quality

of those translations can be found in test queries translation section.

In this scenarios, user type into English queries and those English queries are

translated by a translation module. Therefore what the neural ranking model sees

is still Chinese queries and the model doesn’t have to be capable of processing any

English data, neither in training phase nor testing phase.

During the training, the model is trained with the same monolingual Chinese

training data used in monolingual baseline. For testing, 1,000 English queries are

translated into Chinese with a translation module. Two di↵erent translation ap-

proach are experimented: dictionary-based translation and machine translation.
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Dictionary-based translation The English query is translated into Chinese query with

word-by-word dictionary based translation. Baidu translation API that provides

word-by-word translation service, is used for translation [27]. The reason is that

for such web search log dataset, a considerable number of queries involve in name

entities which is covered better in online dictionary resources. Baidu translation API

returns the most popular used translation for a term. Previous work shows that in

dictionary based translation, using a randomly chosen single candidate can be almost

as good as using all translation candidates [11]. Therefore we consider using the most

popular term will provide a performance close enough to using every candidate.

Machine translation Google translation API, a text sequence based machine trans-

lation system, is used for query translation in this experiment [28]. The webpage

access of Google translation API has a limitation of 5,000 characters. When the

amount of data needed to be translated is large, the API is called in a program so

that query number is no longer a limitation.

6.1.3 Bilingual baseline

This experiment used bilingual data for training. The bilingual training data is gen-

erated by machine translation without other processing or filtering. This experiment

will be a baseline for following experiments that are aiming at analyzing the source

of e↵ectiveness and error for bilingual training data approach. Also, it can be com-

pared with traditional translation approach to show which approach is a better fit

in neural ranking environment.

In a standard monolingual setting, training data contains Chinese queries and

Chinese document pairs while bilingual training data used in this experiment con-

tains English queries and Chinese document document. English queries in bilingual

training data is generated by calling Google translation API on all Chinese queries
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in our monolingual training data.

Since now we have English queries in our training data, the original vocabulary

is enlarged. A fact worth noticing is that there is an overlap between Chinese vo-

cabulary and English vocabulary. This is because there are English terms in original

Chinese monolingual training data, like abbreviations (e.g. “WOW”), name entities

(e.g. “Bing”), commonly used terms (e.g. “game”, “make”) and some URLs (e.g.

“www.sogou.com”). Another source of vocabulary overlap is digits and punctuation

marks. In the setting of this experiment, separate vocabulary is used for English and

Chinese terms. This design decision is based on previous study that using separate

vocabulary for query and document won’t a↵ect the performance of K-NRM. With

this setting, the model will consider term, namely, “game” in Chinese document dif-

ferent from term “game” in English query. The main problem caused by separate

vocabulary is the lack of exact match for those overlap terms. The overlap terms are

those terms appear in both query and document. They are supposed to be consid-

ered as exact match by the model but now they are considered as di↵erent terms.

This separate vocabulary problem won’t a↵ect the performance seriously because

experiments shows that exact match doesn’t play an very important role with the

current experiment methodology due to the high quality of initial ranking. Exact

match related experiments will be discussed in subsequent sections.

As for the testing data, the same 1,000 English head queries translated with

Google translation API used in traditional query-translation experiment are also used

in this experiment. But it’s di↵erent from traditional query-translation experiment

for that those English queries are directly tested on the model while in traditional

query-translation experiment the model still sees Chinese queries.
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Experiment

Testing

SAME

Testing

DIFF

Testing

RAW

NDCG @1 @5 @10 @1 @5 @10 MRR

Monolingual

baseline

0.2706 0.3719 0.4310 0.3128 0.3624 0.4338 0.3500

Dictionary

translation

0.2163 0.3078 0.3802 0.2315 0.2914 0.3751 0.2776

Machine

translation

0.2405 0.3305 0.3956 0.2647 0.3212 0.4036 0.3089

Bilingual

baseline

0.2996 0.3813 0.4388 0.3382 0.3716 0.4446 0.3623

Table 6.2: Results of di↵erent CLIR approaches on neural model. CLIR approaches
include traditional CLIR approaches and bilingual training data approach (bilingual
baseline). (dataset: Sogou-Log)

6.1.4 Results

Query based translation approaches:

From Table 6.2 it can be seen that in this experiment machine translation out-

performs dictionary based approach by 10%. The reason that machine translation

based query translation performs better may lie in the vocabulary. During exper-

iments it’s found that when dictionary based translation is used, 16% of words in

1,000 translated testing queries are out-of-vocabulary, while this proportion is only

2% for machine translation based approach. This can be explained by the fact that

machine translation method is better at taking advantage of context and providing

more related translation terms while dictionary based translation provides the most

common translation which may not be a good fit in specific context. For exam-

ple, one English testing query “51 self-study net” is translated into “îA�(fifty

one) Íf(self-study) Q‹(network)” by the dictionary based translation approach.

In this translated query, “Q‹(network)” is not a proper translation here because

query “îA�(fifty one) Íf(self-study) Q‹(network)” will retrieve websites in-

troducing network knowledge like protocols, network architecture and so on, while

the actual search target is a homepage for a self-study network. However, dictionary
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based translation can’t tell which candidate, “Q‹(network)” or “QŸ(website)”,

is a better choice here. On the other hand, machine translation is able to obtain

Chinese translation “51 ÍfQ(website)”, which is the perfect translation for this

query.

A more general reason for the performance gap between machine translation sys-

tem and dictionary based translation system may be that today’s machine translation

systems are trained on large amount of data and also have better coverage on phrases

and name entities, which dictionary based system doesn’t have. Dictionary based

translation system used here is simple without ambiguity resolving techniques while

the machine translation system here is highly tuned to produce translation result it

has highest confidence on. Actually, it’s surprising that dictionary based translation

approach can work this well given how simple it is. A possible reason maybe we are

doing reranking in this experiment, which limits the lower boundary of how bad the

performance can be.

Another fact that worths noticing is that for traditional CLIR approaches, the

performance is highly relied on the external translation resources compared with

bilingual training approach. This is shown by the fact that in “machine translation”

experiment, the queries are translated using Google translation API while the same

API is used to generated bilingual training data in “bilingual training data approach”

experiment, but bilingual training data approach is able to get higher performance.

The reason is that for query translation based traditional CLIR approaches, trans-

lation result is directly used as queries. As a result, translation error will directly

a↵ect the quality of input query. On the other hand, in bilingual training approach

translation results are used in training data, then the neural ranking model learns

how to use those translated queries by capturing soft-match signals between an En-

glish query term and Chinese document term. Using translated queries in training

data is a much more careful way of using translation results compared with using
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them directly as queries in retrieval.

From the discussion above, we can find two general drawbacks for traditional

translation approach. The first one is that the final ranking accuracy is highly relied

on the translation accuracy because translated results are used as queries in retrieval

process while bilingual training data approach is more robust to translation errors

for that it’s capable of using translation results in training data and how to use them

is learned by the model. The second drawback is that CLIR system using traditional

translation approaches usually need extra tuning mechanisms, like query expansion

and linguistic processing to achieve high accuracy. Bilingual training data approach

can solve those two problem for that can tolerate low quality translation recourses

and also doesn’t need further processing to reduce translation error. From the result

in Table 6.2 we can see that even though bilingual baseline experiment uses the same

machine translation system as machine translation experiment does, it’s capable of

producing a result 20% better than that of machine translation experiment. Further

discussion about the e↵ectiveness of bilingual training approach will be coved in next

section.

Bilingual training data approach:

From Table 6.2 we can see that bilingual baseline has better performance than tra-

ditional translation approach, which supports the assumption that bilingual training

data can provide translation knowledge specificity tailored for IR task.

To figuring out the di↵erence between bilingual training process and monolingual

training process, we start analyzing the problem by distinguishing the di↵erence in

training and testing data.

The first observation is that compared with monolingual training process, bilin-

gual training process lacks exact match. In monolingual environment, same term

may appear in both query and document. However, in bilingual environment, even
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though an English query term has the same meaning with a Chinese document term,

they won’t be considered as the same term by the model because they are represented

by di↵erent term id.

The second di↵erence in that after translating Chinese to English, there are up-

percase terms and lowercase terms. The Google translation API treat every Chinese

phrase as short sentence, with the first letter in capital. Distinguishing uppercase

term and lowercase term might be helpful when uppercase term has special mean-

ings that it doesn’t have in lowercase form. But in other case, the meaningless “first

word starts with capital letter” might bring misleading information and let the model

consider a term’s uppercase format and lowercase format di↵erent even thought they

share the same meaning.

The third di↵erence is that di↵erent Chinese queries might have the same English

translation. As a result, the model will consider documents retrieved by di↵erent

Chinese queries to be relevant to the same English query. This might be a new

source of ambiguity in training, exacerbate the existing ambiguity problem in Chinese

queries.

Except performance, another factor should be considered is the computational

cost of translation. Translating 855,312 Chinese queries by calling Google translation

API takes over 20 hours. If less training data can be used to train the model, both

the translation time and training time will be reduced. Considering together with

the duplicate translation problem, it may be possible to reduce the size of training

data while improve the performance at the same time by cleaning the dataset with

certain rules.

All those issues covered in this discussion will be studied on separately in the

following experiments.
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6.2 Bin analysis

In our neural CLIR, translation relationship like “Apple” is related to “˘ú” (Apple)

as well as relevance relationship that “Apple” is related to “K:” (phone) is learned

by K-NRM and represented by learned word embeddings. Term pairs with di↵erent

word embedding similarities will be collected by di↵erent bins in a K-NRM model.

Bins have di↵erent responsibilities decided by its weight. Bins with positive weights

will contribute positive score to final ranking score because such bins contain word

pairs that are considered as strong relevance evidence. Similarly, bins with negative

weights contribute negative score to final score and contain word pairs that are

negative relevance evidence. Therefore, by analyzing the word pairs in bins of a

trained model we’ll be able to get some knowledge about what relevance evidence

the model has learned and what type of term pairs is considered important in ranking

by the model.

One type of bilingual word pairs we are especially interested in is translation

pair, such as (“Apple”, “˘ú” (Apple)). In a monolingual scenario, such word pairs

are exact-matches, which are considered as strong signal for relevance. However,

there won’t be any exact-match in bilingual testing because query and document are

using completely di↵erent vocabulary as we discussed in previous section, as shown

in Figure 6.1.

The same problem of lacking exact-match also exists in training data. Take

the data entry shown in Figure 6.1 for example, in monolingual environment the

ch term1 in query will share the same word embedding as ch term1 in document.

But in bilingual scenario, the embedding for en term1 and ch term1 are di↵erent.

Since exact-matches are important relevance signals, losing exact-matches in bilin-

gual scenario might be a source of error.

To verify the assumption above, experiments are designed to explore the e↵ec-
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Figure 6.1: Exact-match in monolingual and bilingual data. Shows comparison
between monolingual data and bilingual data in terms of exact-match. In bilingual
data, there is no exact-mach.

tiveness of exact-match in this training dataset. The first goal is to analyze the

contribution of exact match in monolingual environment quantitatively. Such result

showing percentage of accuracy decrease indicates the severity of lacking exact match

problem. The importance of exact-match in monolingual environment can give us

an estimation about how much performance we are potentially losing in a bilingual

environment where exact-match is missing.

The second goal of this experiment is to learn how the model treat translation

pairs. We’ll explore whether translation pairs have similar embeddings after learning

as well as how important they are during ranking.

The first goal of studying e↵ectiveness of exact match in monolingual environment

can be tested by disabling the exact-match kernel in a standard K-NRM. Recall that

in K-NRM, a set of kernels collect di↵erent types of soft-matches. The kernel used

here are RBF kernels described in Equation 3.3. A kernel with µ 1 and � 0 is

equivalent to performing exact-match. By removing that kernel form kernel-pooling

layer, we can disable exact-match in the model. Repeat the monolingual experiment

with this modified model will yield result that doesn’t have exact match e↵ect.

For the second goal, we are interested in how the K-NRM treat translation pairs

in a bilingual scenario. To achieve this, we need to observe the word similarity
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Experiment

Testing

SAME

Testing

DIFF

Testing

RAW

NDCG @1 @5 @10 @1 @5 @10 MRR

Monolingual

baseline

0.2706 0.3719 0.4310 0.3128 0.3624 0.4338 0.3500

Exact-match

disabled

0.2574

(-5%)

0.3620

(-3%)

0.4218

(-2%)

0.3233

(+3%)

0.3696

(+2%)

0.4407

(+2%)

0.3484

(-0.5%)

Table 6.3: Results of exact-match disabling experiment. Shows performance for a
monolingual model with exact-match disabled.

pattens of translation pairs assigned to the same bin in a trained model. Since the

role of a word pair played in ranking is decided by the bin it belongs to, we first need

to assign word pairs to proper bins.

The trained model used for this study is the one trained in bilingual baseline

experiment for that it has the best performance so far. Testing data used to generate

word pair is also the testing data used in bilingual baseline experiment. For each

English query en qry q

1

, q

2

, ...q

n

and Chinese document ch doc d

1

, d

2

, ...d

m

in testing data, we generate n m word pairs q

i

, d

j

for all i 1, n , j 1,m . Then

each word pair is assigned to its closest bin with the way described above.

After assigning testing query and document word pairs to their closest bins,

we’ll be able to analyze the pattern of each bin. By finding the bin that contain the

majority of translation pairs and look at the bin’s weight, we’ll be able to understand

how those translation pairs a↵ect the ranking.

Results

Table 6.3 shows the performance of monolingual training with exact-match disabled.

From the results we can see that exact-match doesn’t play an important role in this

experiment. This may because we are doing reranking of high-quality initial ranking

results. Since all entries in the initial ranking contain exact-match signal, it will make

exact-match signals less decisive in reranking. After knowing that losing exact-match
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won’t a↵ect ranking accuracy in the current experiment setting, the next problem

we want to address is how the model assign bins for translation pairs in bilingual

training process.

To further understand how translation knowledge is learned in bilingual training,

it’s meaningful to know about how word embeddings are learned in a monolingual

training process. We conducted the bin-assignment experiment on our monolingual

baseline so that we can compare the di↵erence of word embedding learning in bilin-

gual and monolingual environment. Table 6.4 shows the statistical data for 11 bins

from the model trained in bilingual and monolingual baseline experiment. By visu-

alizing the word pair counts in Figure 6.2 (a), we can see that the distribution of

word pairs across di↵erent bins are highly askew. Most of the word pairs are assigned

to bin 6 and bin 7 and this is a feature shared by both bilingual and monolingual

training process. Since most of word pairs fall into bin 6 and 7, it’s not surprising

that we find most of the translation pairs in them because most of the word pairs

are not important in ranking. Compared with large bins that include the word pairs

that are not important, we are more interested in those bins that contain word pairs

decisive in ranking. To further understand the e↵ectiveness of each bin, we need to

combine the results from the disabling-bin experiment.

Figure 6.2: Statistical data for bins in K-NRM. Visualization of bins’ statistical
information in Table 6.4. (a) shows the size of both bilingual and monolingual bins.
(b) shows the weight of each bilingual bin. (c) shows the absolute value of each
bilingual bin’s weight.
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Bin Bilingual Monolingual

ID mean weight size weight size

1 1 - 0.78 126 - 1.80 2,421

2 0.9 - 1.25 0 - 0.02 10

3 0.7 - 7.28 5 2.54 3

4 0.5 - 9.13 102 18.32 83

5 0.3 - 7.78 2,871 23.16 3,340

6 0.1 - 2.84 146,050 - 2.31 130,670

7 - 0.1 2.34 142,510 - 5.87 134,014

8 - 0.3 8.10 3,232 - 10.00 2,388

9 - 0.5 9.43 154 - 8.78 132

10 - 0.7 7.79 4 - 6.29 3

11 - 0.9 1.37 0 0.11 4

Table 6.4: Distribution of term pairs across kernel bins. Include the mean, weight
and size for both bilingual and monolingual systems. Size is defined by the number
of word pairs being assigned to a bin.

Figure 6.3: Performance of each individual bin in bilingual model. Achieved by
enabling one bin at a time and with all the other bins disabled.

Observing performance of individual bin helps in understanding each bin’s e↵ec-

tiveness. Figure 6.3 shows the performance of each individual bin with all the other

ones disabled. One observation is that the e↵ectiveness of a bin can be reflected

by the absolute value of its weight after training. Figure 6.2 (b), (c) visualizes the

weight of each bin and it can be seen that the absolute value of a bin’s weight and

its performance are consistent with each other. This indicates that we can use the

weight of a bin to tell it’s e↵ectiveness. The larger the absolute value, the more de-
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cisive that bin is in ranking. A positive weight means word pairs in this bin implies

a higher ranking for that they make positive contribution to the final scores while

similarly negative weight implies a lower ranking.

After building connections between bin’s e↵ectiveness and its weights, we are

able to find most important bins in the model. From Figure 6.2 (b) we can know

that the bin with largest positive weight is bin 9 and bin with smallest negative

weight is bin 4, which means bin 9 contains word pairs that give a query document

pair higher rankings while bin 4 contains word pairs indicating lower rankings. By

comparing word pairs in bin 4 and bin 9, a very interesting observation is that there

are many similar word pairs in bin4 and 9. Some typical word pair format including

(the, a Chinese location name), (weather,a Chinese location name) and (Illegal, a

Chinese location name). For example, bin 4 has word pairs (the, 53(Guiyang, a

city name)), (the, t⇢(Xingye, a city name)), while bin 9 has word pairs (the, o∑

G(Jingde, a city name)), (the,ƒÛ(yellow stone)), (the,Í!(Zigong, a city name)).

Those similar word pairs are assigned to two opposite bins, which is an important

sign showing that word pair similarities are not decided by translation relationship

or the e↵ect of translation relationship is negligible. Instead, word pair similarities

are decided largely by the preference shown in training data. This explains why

documents contain some locations are learned to be ranked higher than the other.

Another supportive evidence is that bin 9, which contains word pairs implying high

rankings, doesn’t contain any translation pair. Actually, most of the translation pairs

are assigned to bin 6 and 7. Their weights are much smaller compared with 4 and 9,

thus they are considered as noisy bins that can’t provide much helpful information in

ranking. This further implies that identifying translation pairs won’t helping much

in deciding final ranking.

All these evidences show that explicitly preserving translation relationship is

not the e↵ectiveness source of bilingual training approach. On the contrast, the
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e↵ectiveness comes from the fact that the constrain of word-by-word translation is

broken in the training process. For example, in bilingual training data the model

sees an entry with English query containing terms q

en

1

, q

en

2

and Chinese document

containing d

ch

1

, d

ch

2

, d

ch

3

. Let’s assume (qen
1

, d

ch

1

) is a translation pair, but for the

model it’s not aware of such constrain and it may learn that (qen
1

, d

ch

2

) has a high

similarity according to the training data it sees.

Based on the above discussion we can come to the conclusion that in a reranking

task, losing exact-match for translation pairs in bilingual training process won’t

decrease the performance, on the contrast, without such constrain the model is able

to learn word embeddings that are better at distinguishing similar documents and

obtain higher ranking accuracy. This can be interpret as a source of e↵ectiveness in

neural CLIR. It indicates that the model is capable of learning what is important

in ranking, which is a combination of relevance relationships (exact-matches) and

popularity relationships. In the current experiment setting, relevance relationships

is suppressed by reranking methodology which makes popularity dominate.

6.3 Uppercase lowercase

The Google translation API translated all phrase with the first term uppercase. For

example, query “Weather forecast video” has the first term starting with capital

letter but it’s not a proper noun. This feature makes the English term appears at

the the beginning of query di↵erent from the same term appears at other locations

while they should be considered identical. This uppercase-lowercase problem a↵ects

nearly all English queries because they are all translated in this way. Considering

the large coverage of this problem, it might a↵ect the performance seriously.

This set of experiments are designed to explore whether “distinguishing upper-

case term and lowercase term” brings e↵ectiveness or error. The first goal is to see

how will it a↵ect the performance if we eliminate the di↵erence between uppercase
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and lowercase letters. The second goal is to figure out whether it will be helpful if

this “first word starts with capital letter” phenomenon is eliminated.

The first experiment tries to convert all upper case words to lower case. By

converting every English word in that dataset to lower case, we can produce a new

bilingual data set with all English term being lowercase. The second experiment tries

to narrow down the range of “lowercase converting” by only doing converting on the

first word of query. In the first experiment every English word is converted into low-

ercase. Converting all words into lowercase could reduce the vocabulary size by 20%,

which may be helpful because we’ll have a denser data representation for training

data. But the drawback is also obvious: there are many English words that have

di↵erent meanings when they are in uppercase format compared with its lowercase

format. For example, the word “Apple” and “apple” have a slightly di↵erent mean-

ing because “Apple” is also refers to Apple the company. In this case, converting

“Apple” to lower case will introduce ambiguity in our learning process because now

“apple” and “Apple” are not distinguishable. To reduce the potential information

lost in lowercase converting, in this experiment we try to set a rule to distinguish

words describing name entities that shouldn’t be converted into lowercase. The rule

is defined as following: the first word of a query is converted to lowercase when

and only when the second word is in lowercase. For one-word query, no converting

is performed. This rule is based on the observation that name entities in query are

usually have multiple words. The only false negative case of this rule is where a single

word name entity appears at the beginning of the query, like “Jiangsu tra�c learning

network” and “Shenzhen weather”. By randomly checking 50 training queries, only

2 false negative are detected. This false negative rate maybe not be low enough to

be negligible, but considering the simpleness of the rule, this is an relatively e↵ective

way to do the converting. Using this rule, we can identify meaningless uppercase

words introduced by translation API. For example “The live video” will be converted
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Experiments

Testing

SAME

Testing

DIFF

Testing

RAW

NDCG @1 @5 @10 @1 @5 @10 MRR

Bilingual

baseline

0.2996 0.3813 0.43881 0.3382 0.3716 0.4446 0.3622

All to

lowercase

0.2650 0.3697 0.43437 0.3163 0.3660 0.4353 0.3436

First word

to lowercase

0.2772 0.3786 0.4364 0.3070 0.3599 0.4318 0.3471

Table 6.5: Results of lowercase converting experiment.

to “the live video” while no converting will be done on query “Hong Kong Jockey

Club information”.

Note that in all experiments, training and testing queries are processed in the

same way. If testing queries are in lower case, the second experiment can be per-

formed because upper-lower case information is lost in testing data and we can’t add

this information back without using name entity identification techniques.

Results

Results in Table 6.5 show that none of the lowercase converting attempts improves

the performance compared with bilingual baseline. This indicates that “Setting the

first English word in query to be uppercase” is actually a source of e↵ectiveness for

the bilingual training process. The thoughts behind this is that a word’s location

information is preserved in its uppercase format (uppercase indicating it’s the first

word in query) and such location information is helpful in ranking. This can be

observed by comparing the bilingual baseline performance with the “conditional first

word to lowercase” experiment. In experiments, we assume there are two types of

uppercase word: the first type is word in name entities and the second type is word

appear as the first word of a query. In bilingual baseline, we have both of those two

types of uppercase words, while in “conditional first word to lowercase” experiment,

we tries to preserve the first type and eliminate the second type. The decrease in
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performance after eliminating the second type of uppercase words indicating that

the location information “first word in query” may be a helpful factor in the ranking

process. A commonly seen case is that knowing a word’s location in the query can

provide information about whether it’s modified by an adjective. For example, word

“room” if appear in the middle of a sentence, it’s often following term “live” and used

as a phrase “live room”. When it appear at the beginning of the query as “Room”

it’s often referring to a more general concept. Even though the improvement brought

by such capacity of distinguishing minor term di↵erence is not very large (about 5%

in this experiment), it’s still a method worth trying considering its simple procedure.

Another interesting finding is that experiment “all to lowercase” outperforms ex-

periment “conditional first word to lowercase” in Testing-DIFF, which indicates that

setting all words to lowercase does help the model generalize better. But compared

with the information lost in such converting (name entity and location information),

the gain is still not large enough to improve the performance over the baseline.

6.4 Cleaning training dataset

The goal of this experiment set is to explore how to clean the dataset by identifying

and removing low quality training data. By observation the training dataset, we

found two signs for noisy training data.

The first sign is duplicate translation. Duplicate translation refers to the situation

where more than one di↵erent Chinese queries (ch q1, ch q2...) are translated into the

same English query (en q). This will introduce ambiguity into the training because

such training data will tell the model that documents related to ch q1, ch q2... are

now all related to en q, even though ch q1, ch q2... have di↵erent meanings.

There are several scenarios where this could happen.

The first type is multiple Chinese queries are name for the same entity but writ-

ten in di↵erent ways. Those terms are usually Chinese names therefore have no
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corresponding English translation. Google translation will translate those names by

Pinyin in this case. Since they have the same pronunciation, they will be translated

into the same English query. For example, Chinese query “€⌫ô” and “€Œô”

will both be translated into “Sheng Langxi”.

The second type is synonym. When there are several Chinese queries describing

the same concept or object, they will be translated into the same English query.

Abbreviations also belong to this category, like “⌫Æ” and “⌫¨Æ5'f” will

both be translated to “Beijing University of Posts and Telecommunications”.

The third type is English terms mixed in Chinese queries. For example, in mono-

lingual training dataset we have “LOL”, “Lol”, “lol”. They are all translated into

“lol” by the translation API.

Most of those duplicate translations are harmless because those Chinese queries

are considered as identical for users. However, it’s worth noticing that one important

reason that those Chinese queries are translated into the same English translation

is that they are very short. By checking the English queries that have multiple

corresponding Chinese queries we can see that they are usually short (no longer than

3 English words) and most of them are single word queries, like “⌦” (on), “(” (on),

“ÇU” (how), “�H” (how). It can be observed that many of those Chinese queries

are very ambiguous and don’t make much sense by themselves. The ambiguity lies

in Chinese queries are further enlarged after being mapped into the same English

query. Those queries usually have extremely long initial retrieve result list, which is

the second sign for noisy training data.

Long retrieved document list is also considered as source of noise because such

document list tend to cover a very diverse of topics and may provide confusing

knowledge to the model. For example, English query “all” has a document list

consist of content about “whole-wheat bread”, “complete edition” for some popular

novels, a video website with slogan “everyone is the director for his own life”, topics
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Statistics Value
average 15,499
minimum 3
maximum 579,738

standard deviation 76,158
Table 6.6: Statistical data for ambiguous queries’ document list lengths. Ambiguous
queries are defined as multiple Chinese queries with same English translation.

about “full-stack engineer”. Those problematic English query are usually the terms

that only be meaningful when considered with context. From the example we can see

that with such mixed document list, the learning can be very confusing for the model.

However, those terms are usually very popular terms that appear in a large number

of queries. Consider how serious the problem might be and how many queries they

are a↵ecting, duplicate translation queries is a problem should be addressed on.

Another reason for long documents list is personalization and localization in So-

gou search engine. Personalization and localization will give di↵erent user di↵erent

retrieval result based on their search history or location. For example, if a user search

“pizza”, he will get webpages about pizza store near by him or based on his prefer-

ence which can be inferred from his search history. Therefore di↵erent users will get

a di↵erent list of pizza stores. During training data generating, retrieved document

list for the same query will be merged into one. If that query has been personalized

or localized for di↵erent users, a long document list will be produced after merging.

This is also a case where we want those data entered to be removed because we want

the model to learn more relevance relationship instead of popularity factor decided

by personalization and localization.

After knowing about the two signs for noisy training data, we can use them as

filtering rules to identify noisy training data entries and remove them to clean our

training dataset. In this experiment, we user those two rules to filter the bilingual

training data used for baseline experiment.
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List length range
Number of

ambiguous queries
1 - 100 95
100 - 200 65
200 - 1,000 91
above 1,000 65

Table 6.7: Statistical data for ambiguous queries’s distribution. Shows di↵erent
document list ranges and how many ambiguous Chinese queries fall into that range.
A Chinese query is considered to be ambiguous if there are multiple Chinese queries
translated into the same English query.

First, we identify all Chinese queries with duplicate translations as ambiguous

queries that are potential candidates for removal. Then we decide which candidates

to remove by setting di↵erent threshold on document list length: if a Chinese query’s

document list exceeds that threshold length, its corresponding English query will be

removed from training data.

To find proper document length thresholds, distribution of document list length

could be a helpful source of information. Table 6.6 shows statistic information for

document list length of all Chinese queries. From Table 6.6 it can be seen that the

distribution is highly askew. We set length thresholds at 100, 200, 1,000 so that each

document list length range has a similar number of queries, as shown in Table 6.7.

After having the thresholds, we can remove ambiguous queries from training data.

The policy we used here is to remove the English query as long as one of its Chinese

translation has a document list exceeds length threshold. For example, English query

“all” has corresponding Chinese queries “h”,”˝”, “hË”, “@ ”, which all mean

“all” after translated into English. Chinese query “h” has a document list size of 507,

“˝” has a list size of 241, “hË“ has a size list of 146, “@ ” has a list size of “64”.

If the threshold is set to 200, English query “all” will be considered as ambiguous

and removed because it has two Chinese queries with list size larger than 200. The

removal condition is set to be “with one or more Chinese queries’ list length larger
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Threshold Training data size Percentage

No entry removed 8,553,124 100.00%

100 7,390,119 86.40%

200 7,408,823 86.62%

1,000 7,446,192 87.05%

Table 6.8: Training data sizes of cleaning training dataset experiments. Size is
measured by the number of (query, document) pairs. Percentage compared with
whole training dataset where no entry is removed is shown.

than threshold” rather than “all Chinese queries’s list length larger than threshold”

because as can be seen in the example, as long as one of the Chinese translation

is ambiguous, the English queries itself is ambiguous, even though not all Chinese

queries got a very large document list size. The fact is, when duplicate translation

happens, more ambiguity is introduced into the query. The duplicate English query

is more ambiguous than any of its Chinese queries. Therefore, the ambiguity of an

English query should be measured with its worst case Chinese query, which has the

longest document list.

With the above setting, we have three experiments, where the English queries

with any Chinese translation’s document list length larger than 100, 200 and 1,000 are

removed respectively. The training data size for each experiment is shown in Table

6.8. It can be seen that a considerable number of training data is missing compared

with baseline, which will make the results incomparable with baseline performance.

To evaluate the actual e↵ect of removing duplicate, a set of comparable experiments

is needed.

Another three experiments are conducted as control group. The training data

in these experiment is generated by randomly sampling training data samples from

bilingual baseline experiment so that they have same data amount with that in

experimental group. Therefore there are six experiments in total, including three

experimental groups and three control groups.

For the testing part, the same 1,000 testing queries used in bilingual baseline is
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used. All six experiments are tested with the same testing data so that comparable

results can be obtained.

Results

The experiment results are shown in Table 6.4. By comparing the control group

where data entries are randomly removed and experimental group where ambigu-

ous queries with long document list are removed, it can be seen that a document

length threshold at 100 makes a small improvement in performance while thresh-

old at 200, 1,000 decreases the performance slightly. Another way to look at the

results is comparing only among the experimental group. By making comparison

among experiment group results, it can be seen that training data size increases

while threshold increases, but the performance is decreasing. As threshold increases

from 100 to 10,000, more data entries are included but the performance is dropping.

This indicates that the newly introduced data entries are in low quality and bring

confusing knowledge to the learning process. In other words, training queries with

document list length larger than 100 are too ambiguous to provide helpful informa-

tion during training.

What revealed by results of this experiment is that it’s possible to clean training

dataset by removing ambiguous queries. Experiment with threshold 100 uses only

86.4% of the whole training dataset but it’s able to get nearly 99% of the performance

in Testing-DIFF evaluation. This indicates that 1,163,005 (13.6% of whole dataset)

data entries removed from the whole dataset are in low quality and didn’t provide

much helpful knowledge in learning process.

6.5 Training data size

Observation on how ranking performance changes with training data size can reveal a

lot of interesting information. If we can observe a increasing trend in performance as
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Experiment

Testing

SAME

Testing

DIFF

Testing

RAW

Remove qry with

doc list longer than

NDCG NDCG

MRR

@1 @5 @10 @1 @5 @10

100

Ambiguous

qry removed

0.2603 0.3656 0.4193 0.3280 0.3669 0.4389 0.3581

Randomly

removed

0.2276 0.3357 0.4015 0.2716 0.3357 0.4103 0.3112

200

Ambiguous

qry removed

0.2472 0.3599 0.4217 0.3096 0.3647 0.4341 0.3427

Randomly

removed

0.2575 0.3608 0.4190 0.3163 0.3571 0.4344 0.3424

1,000

Ambiguous

qry removed

0.2558 0.3713 0.4266 0.3134 0.3613 0.4330 0.3424

Randomly

removed

0.2602 0.3650 0.4250 0.3176 0.3632 0.4376 0.3494

No entry

removed

0.2996 0.3813 0.4388 0.3382 0.3716 0.4446 0.3623

Table 6.9: Results of cleaning dataset experiment. Shows performance of models
trained with ambiguous queries removed at di↵erent document list lengths and a
control group with same data amount but data entries are removed randomly.

training dataset size increases, we can then infer that more training data is possible

to improve the model’s performance. Another question we are interested in is the

robustness of model. If the performance is stable while training data size changes,

we’ll be able to use limited amount of training data to train a model with acceptable

performance. To explore those questions, we experimented with di↵erent training

data sizes in this section.

First, to figure out whether there is an increasing trend in performance as training

data size increases, we conducted four experiment with training data size 2,000,000,

4,000,000, 6,000,000 and 8,000,000.

The training data is generated by cutting bilingual training data used in baseline

experiment at di↵erent length. As shown in Figure 6.4, original training data in

divided into four partitions of size 2,000,000 and one last partition with size 533,124.

Each experiment uses di↵erent partitions. Experiment 1 uses containing data entry
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Figure 6.4: Training data generation for training data size experiments.

1 to 2,000,000, experiment 2 uses data entry 1 to 4,000,000, experiment 3 uses data

entry 1 to 6,000,000, experiment 4 uses data entry 1 to 8,000,000.

Besides the four experiments above, to further explore the robustness of bilingual

training process with small training dataset, we also tested the model performance

with training data size 500,000, 1,000,000, 1,500,000 and 2,000,000.

For testing data, the same 1,000 testing queries used in bilingual baseline is also

used here so that the result is comparable to the baseline experiment.

Results

The experiment result for di↵erent amounts of training data are shown in Table

6.10. To get a clearer view about the changing trend of performance, we can draw a

curve from those data as shown in Figure 6.5.

By observing the curve in Figure 6.5 (b), we can draw to the conclusion that

if more bilingual training data is given, the model will tend to yield better result.

From Figure 6.5 (b) we can see that there is a general growing trend in performance

as the amount of training data increases. To further understand the relationship
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Experiments

Testing-SAME Testing-DIFF Testing-RAW

NDCG NDCG

MRR

Data size @1 @5 @10 @1 @5 @10

500,000 0.1517 0.2494 0.3313 0.2064 0.2783 0.3693 0.2478

1,000,000 0.2075 0.3163 0.3898 0.2869 0.3334 0.4094 0.3106

1,500,000 0.2302 0.3290 0.3963 0.2784 0.3342 0.4146 0.3122

2,000,000 0.2414 0.3474 0.4087 0.2769 0.3388 0.4166 0.3175

4,000,000 0.2559 0.3479 0.4188 0.3062 0.3447 0.4244 0.3347

6,000,000 0.2509 0.3591 0.4203 0.3077 0.3588 0.4334 0.3460

8,000,000 0.2690 0.3553 0.4205 0.3008 0.3516 0.4262 0.3421

8,553,124 0.2997 0.3814 0.4388 0.3382 0.3717 0.4447 0.3623

Table 6.10: Results of training data size experiment.

Figure 6.5: Results of training data size experiment. Shows performance with dif-
ferent amounts of bilingual training data. X-axis: Number of data entries used in
training. Y-axis: NDCG@5-10 for Testing-DIFF, Testing-SAME and Testing-RAW.

between training data amount and performance, we are also interested in the growth

of vocabulary size. Figure 6.6 show how the vocabulary size changes with the training

data amount. It can be seen that the vocabulary growth follows Heap’s law but with

a more flat plateau region. This may be caused by a limited topic coverage of the

search log data.

By comparing Figure 6.5 (b) and Figure 6.6 we can see that the growing trend

of performance is not highly related to the growth of vocabulary size. There is a
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Figure 6.6: Vocabulary size for di↵erent training data amount. X-axis: Number of
data entries used in training. Y-axis: Vocabulary in number of appeared distinct
terms.

sharp increase in performance when the training data size grows from 8,000,000 to

8,553,124 while the vocabulary size only grows by 6 words during this period. To sum

up, as training data size increases, the changes in vocabulary size is very small while

there can be a burst increase in performance. This indicates that the improvement

in performance is not caused by learning new terms but by a finer tuning for word

embeddings of learnt terms.

A further conclusion is that larger training data can increase the ranking accuracy

and the training dataset doesn’t have to cover a wide range of vocabulary. Because

it’s highly possible that words that play a decisive role in ranking has already been

learnt in the beginning of learning.

Another concern other than improving performance by increasing training data

is the robustness of the model with small training dataset. By observing Figure 6.5

(a) we can see that the performance at small training data set is not very bad even

compared with the best result that can be achieved. From experiment results shown

in table 7 it can be calculated that with a training set of 2,000,000, we can get 80%,

91%, 93% of NDCG@1, NDCG@5 and NDCG@10 respectively in both Testing-DIFF
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and Testing-SAME. This indicates that the bilingual training process is robust even

with small amount of training data. The previous discussion that words playing a

decisive role in ranking has already been learnt in the beginning of learning, also

supports this result. For a training set of size 2,000,000, it’s only 20% of the whole

training data but 96% of whole vocabulary is already observed. There is a large terms

included in a small share of training data are su�cient for producing an acceptably

good results.

Another observation on small training data size experiment results shown in Fig-

ure 6.5 (a) is that there is a sharp increase from data size 5,00,000 to 1,000,000 and

performance stays stable after that. This further supports the conclusion that the

training process can be done with a small bilingual dataset. Because the ranking ac-

curacy rises rapidly to a relatively high standard after seeing a small share of training

data.

To sum up, increase amount of bilingual training data can increase the perfor-

mance but the improvement is slow and not linear to the data set size. There are

plateaus and small burst of increase could happen when training data size growing.

Such burst may be caused by appearance of new terms that are important for rank-

ing as more training data is seen. Besides, the model is robust with a small amount

of training data. A subset with size 20% of the whole training dataset can yield 80%

to 90% of the performance of a whole training dataset produces.

6.6 Testing query translation quality

Ideally, testing queries should be translated manually to mimic the real scenario

where a English native speaker is trying to retrieve Chinese document by inputting

English queries. However, due to the large amount of testing query, currently our

1,000 testing Chinese testing queries are generated with the same machine translation

system (Google translation API) used in bilingual training data generation.
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Since the bilingual training data is translated using the same machine translation

system, the vocabulary and expression tend to be more similar in our English training

and testing queries compared with real scenario. Clearly, there is a gap between

machine translation and real user input, which indicates a potential gap between

real scenario performance and current testing performance. To quantify this gap, we

conducted a group of experiments to analyze the quality of testing query translation.

To quantify query translation quality, the first step is to define categories for

di↵erent translation quality levels as well as rules to assign a query to a proper

category. As shown in Figure 6.7, we first divide Chinese queries into translatable and

untranslatable. Untranslatable here is defined as objects that may not been known by

English user and don’t have proper English translation, like unpopular websites that

don’t have o�cial English names, social network usernames and Chinese software,

game, book, manga names. The translatable queries are further dived into four

categories: “Good”, “Imperfect but acceptable”, “Bad, need correction” and “Not

correctly translated”. Two rules are used for deciding a category: whether target

content can be found with current translation and whether there is translation error.

Next we’ll define those two rules more clearly by giving explanation for those two

dimensions.

Figure 6.7: Categories of translation quality. Shows five categories for translated
query based on translation quality and rules for classification.

During translation, there might be some drifting from the target described in
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original query and the first rule is aiming at measuring such drifting. In experiments,

it’s decided by feeding the translated query into a large commercial search engine,

Google, to see whether the target described in original query can be found. For

example, a French movie with Chinese name “¬1Í✏” is translated into “Mad

love ceremony” which is the correct literal translation but the movie can’t be find

by query “Mad love ceremony” in Google for that its actual name is “Ceremonie

d’amour”. In this case where a large commercial search engine can’t find the target

described in original query, we consider this translation as “target content can’t be

found with current translation”. Note that name entities are especially sensitive to

such drifting, since a minor di↵erence from the well-known o�cial name can lead to

completely di↵erent search results.

The goal of the second rule is trying to classify query translations based on the

correctness of translation system. Note that after dividing queries based on the first

rule, we have two classes now and one class is obviously in better quality than the

other. To make sure categories are dividing translation quality evenly, we adopt

di↵erent definitions for translation error in each class. For the class that can’t find

target, a looser definition is used where translation error includes failure of name

entity translation, missing terms from original query and choosing wrong meaning in

polysemous word translation. On the other hand, for the class where target can be

found, the translation in this class tend to be in high quality therefore we use a more

strict definition for translation error here: besides the translation error just defined,

translations that are acceptable but can be improved are considered having minor

translation error. For example, query “ô·<✏” in translated into “Write letter

format” which is acceptable but a more natural way to write it is “Sample letters

formats”.

To define each type of translation more detailedly, failure of name entity trans-

lation refers to the situation where a name entity is translated in a word by word
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manner, for example, “✏n(Xiao Chao)” is a person’s name but it’s translated into

“Small tide”, which is a word by word translation for the name. What worth noticing

is a special case of name entity translation failure where a reasonable translation is

given but it’s di↵erent from the entity’s o�cial English name, for example, “»Å

�Ì”, which is a series television show, is translated into its literal meaning: “The

ultimate class”. However, the show has an o�cial English name “KO One”. Then

show can’t be found by the given translation but it’s not considered as a translation

error because there is no error in the translation in literal level. This type of drifting

error is measured by the first rule as described in the above paragraph. Missing

terms from original query refers to the situation where some query terms in original

query are not translated and missing in the given translation. For example, query

“qq fifòπ↵}(qq racing game o�cial download)” is translated into “qq o�cial

download” where the keyword “racing game” is missing. Such error usually happens

when the translation API encounters some expression it doesn’t understand. Inter-

estingly, since keywords are missing, those type of translations are mostly can’t be

found by commercial search engines. Choosing wrong meaning in polysemous word

translation usually result in translations that don’t make sense. One common exam-

ple is that Chinese term “Q” is usually translated into “network” while the correct

translation in most of the queries’ context should be “website”.

Figure 6.8 shows a complete view of how translatable queries are assigned to

the four categories. With rules and categories defined above, we go through each

translated English testing queries in order and assign it to a category based on the

rules. This process is repeated on 265 queries. Since no query is skipped in this

process, the size of each category can be considered as an estimation for the real

translation quality level distribution for the whole testing query set.

Now we have one category of untranslatable queries and four categories of trans-

latable queries. For category “Good” and “Imperfect but acceptable” and “untrans-
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Figure 6.8: Rules for translatable queries classification. Includes details for assigning
categories for translatable queries and example queries for each category.

latable queries”, we consider there are no gaps between those translations and real

scenario. The first two category are considered no gap because they are in relatively

good quality and the third category “untranslatable queries” is also considered no

gap for that in real testing scenario English users are not likely to search for objects

in those qureis. Because there is no gap for those three categories, no manual cor-

rection is done on them. We only care about bilingual performance and monolingual

performance of those queries. It’s done by testing Chinese queries and their English

translations in that category on trained models, which are our monolingual baseline

and bilingual baseline.

For category “Bad, need correction” and “Not correctly translated”, we assume

there is gap between those translations and real queries from an English native

speaker. Therefore, we created a list of corrected queries for those two categories

individually by manually correcting queries in them. Table 6.11 gives a complete

view for experiments in this section.
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Category Experiment
Description

Size OOVTrain Test

doc qry doc qry
qry

manually
corrected?

Good
monolingual ch ch ch ch 7

103

4/221

bilingual ch en ch en 7 4/222

Imperfect
but acceptable

monolingual ch ch ch ch 7
50

0/155

bilingual ch en ch en 7 4/159

Bad
need

correction

monolingual ch ch ch ch 7
46

0/133

bilingual ch en ch en 7 0/135

corrected bilingual ch en ch en 3 16/131

Not
translated
correctly

monolingual ch ch ch ch 7
38

0/124

bilingual ch en ch en 7 2/132

corrected bilingual ch en ch en 3 21/150

Untranslatable
monolingual ch ch ch ch 7

28

0/97

bilingual ch en ch en 7 1/97

Table 6.11: Experiments for translation quality analysis.

Results

Figure 6.9: Distribution of each translation quality category.

To quantify the performance gap between real scenario performance and current

testing performance, the first step is to look at is the distribution of each translation

quality category. From Figure 6.9 it can be observed that category “Good”, “Im-

perfect but acceptable” and “Untranslatable” take about 70% of all the translated

testing queries. For those three categories, we consider there is no gap between real

user input. This is because the “Good” category contains perfect translation while
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NDCG
Testing
SAME

Testing
DIFF

Testing
RAW

Experiments @1 @5 @10 @1 @5 @10 MRR

Good monolingual 0.2174 0.2945 0.3688 0.2350 0.2531 0.3346 0.2374

39% bilingual 0.1486 0.2451 0.3428 0.2311 0.2624 0.3578 0.2589

Imperfect but
acceptable

monolingual 0.2274 0.2968 0.3844 0.2030 0.2564 0.3316 0.2426

19% bilingual 0.1635 0.2945 0.3777 0.2464 0.2735 0.3331 0.2517

Bad,
need

correction
17%

monolingual 0.1479 0.2524 0.3487 0.2499 0.2521 0.3446 0.2462

bilingual 0.0664 0.2283 0.3166 0.1538 0.2220 0.3019 0.1980

corrected

bilingual

0.1723

+160%

0.2817

+23%

0.3463

+9%

0.1137

-26%

0.1957

-12%

0.2646

-12%

0.2046

Not
correctly
translated

14%

monolingual 0.1714 0.2885 0.3962 0.1912 0.1859 0.3348 0.2154

bilingual 0.0857 0.2571 0.3749 0.1864 0.2986 0.3934 0.2424

corrected

bilingual

0.0143

-83%

0.2572

0%

0.3122

-16%

0.1388

-25%

0.1742

-7%

0.2983

-24%

0.1556

Untranslatable
11%

monolingual 0.2000 0.2252 0.3346 0.1653 0.2305 0.3227 0.1991

bilingual 0.3051 0.3132 0.4042 0.1128 0.2246 0.3296 0.1960

Table 6.12: Results of di↵erent translation categories. Experiments where queries are
corrected are compared with the performance of uncorrected version. The percentage
of performance change should be estimating the performance gap between real user
input testing and our current machine translation testing.

“Imperfect but acceptable” category contains translations with acceptable flaws.

Translations in “Imperfect but acceptable” category are the ones might be writ-

ten di↵erently by English speaker but the current form is also able to find the object

user want to search. “Untranslatable” queries are the ones English users won’t input

because the objects described in those queries are not known by English speakers.

Therefore we consider these categories as proper estimations for real scenario input.

This distribution indicates that nearly 70% of the machine translated testing queries

don’t have gap between real user input, which means their testing results can reflect

the real performance of the model.

The remaining 30% of the translated testing queries belong to category “Bad,

need correction” and “Not correctly translated”. We mainly focus on quantifying

the performance gap created by these testing queries. Table 6.12 shows all experiment

results for testing queries translation quality analysis.

For those two categories, the gap between “bilingual” experiment and “corrected
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bilingual” gives an estimation for the gap created by these poorly translated queries.

It can be seen that in terms of Testing-DIFF, the performance of manual re-translated

(corrected) queries is generally worse than that of those machine translated testing

queries. A main reason for the gap is because when training and testing queries are

translated using the same machine translation system, the translation tend to be

similar for the same concept. This lead to a high overlap between the vocabulary

of training queries and testing queries. However, for real user inputs, English users

might user terms not seen during machine translation, especially for name entities.

For example, the French movie “¬1Í✏” has a literal translation of “Mad love

ceremony”, but its o�cial French name is “Ceremonie d’amour” and its o�cial En-

glish name is “Love Rites”. A English user is tend to search this target with query

“Love Rites” or “Ceremonie d’amour” rather than “Mad love ceremony”. Note that

term “Ceremonie”, “d’amour” and “Rites” are hardly to be encountered when ma-

chine translation is used. The first two are French terms therefore can’t get from a

translation process from Chinese to English. The third is an English term, however

it has a more frequently used synonym “ceremony”. By observing translation re-

sult, we found that machine translation systems tend to choose high frequency terms

when there are several equivalent candidates. As a result, real user input tends to

introduce more out-of-vocabulary (OOV) terms compared with machine translated

queries. The OOV column in Table 6.11 shows the number of OOV terms in each

experiment. A term is considered as OOV when it can’t be found in our training

vocabulary. Note that after manually correction, the number of OOV terms increases

dramatically.

Another point worth noticing is that in experiments involved in corrected trans-

lations, we also observe improvement occasionally. This illustrates another e↵ect

of manually corrected queries: it might bring improvement in translation quality,

which can lead to a better ranking result compared with corrupted machine trans-
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lated queries before correction. However, such e↵ect is unstable and relatively weak

compared with the negative e↵ect brought by OOV problem based on the general

situation that performance decreases after queries are corrected.
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7

Conclusion

For traditional CLIR, dictionary based query translation was “state-of-the-art” CLIR

approach. A well-tuned traditional CLIR can be almost as good as a monolingual

system in terms of performance[5]. However, building a well functional traditional

CLIR system takes a lot of work, like finding proper dictionary, solve coverage prob-

lem for phrases and name entities and resolve ambiguity.

This work proposed a neural architecture based CLIR approach, which is much

easier to build and more robust to translation errors. Our neural CLIR approach is

consist of two parts: bilingual training data and underlying neural ranking model,

K-NRM. K-NRM learns translation relationships from bilingual training data by

capturing soft-matches from bilingual term pairs and combine soft-matches to gen-

erate final score with a set of bins. Each bin has di↵erent responsibilities(capture

positive relevant evidence or negative relevant evidence) and di↵erent importance.

This gives the model a lot of freedom in capturing and utilizing translation knowl-

edge as bilingual soft-match signals so that the performance can be optimized, which

is considered as the source of e↵ectiveness for neural CLIR. Experiment results show

that bilingual training data approach can yield a better performance on K-NRM
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compared with other query translation based CLIR approaches even given the same

translation knowledge source.

Experiments also show that for reranking task, neural CLIR learns more of pop-

ularity than relevance signals. This might be caused by a flaw in our experiment

methodology: we are currently reranking initial ranking produced by a monolingual

system. Most documents for reranking contains the query term indicating a rele-

vance signal, which makes such relevance signal less decisive in ranking. However,

this also proves that model in neural CLIR is capable of learning decisive factor

in ranking. It leans a combination of relevance signal, which is suppressed by the

re-ranking methodology , and popularity, which is discovered by our system here.

Performance of neural CLIR can be further improved by cleaning training dataset

by removing ambiguous queries. Also, a rising trend in the curve describing how

performance changes with training data size indicates that more training data may

also help in improving performance.

Due to the large amount of testing queries, currently English testing queries are

generated by Google translation API from Chinese queries, while the real testing

scenario should be English user input queries written in English. We did a testing

query quality analysis experiment to quantify the a↵ect in performance brought by

the gap between machine translated English queries and real user input. Results

show that nearly 60% of translated queries are in relatively good quality and won’t

a↵ect real scenario performance and the remaining 40% queries might result in a 20%

gap in performance on average, which is mainly caused by out-of-vocabulary(OOV)

problem.

Normally, OOV problem can be mitigated by increasing size of training data

so that the vocabulary can be enriched. However, in this case, the OOV problem

is caused by a wording di↵erence in machine translation and real user input. For

example, a French movie is translated into “Mad love ceremony” by machine trans-
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lation while real user input is “Love Rites”. The term “Rites” will hardly be seen

even if we translate more training data with machine translation. Therefore, increas-

ing training data that translated by machine translation system might not help in

solving OOV problem here. Instead, including manually translated queries might

help in this case for that vocabularies that can’t be generated in machine translation

systems but used by real users can be included.

The next step of this work is to make use of the newly published version of K-NRM

that is able to handle phrases to further improve learning of translation relationship

[29]. This will give the neural CLIR approach a higher capability in dealing with

phrases and name entities, which are big challenges in web search environment.
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