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Abstract
We consider two applications of recursive functionals. The first application con-

cerns Gödel’s theory T , which provides a rudimentary foundation for the formaliza-
tion of mathematics. T can be understood as a theory of the simply-typed lambda
calculus that is extended to include the constant 0N, the successor function S, and
the operator Rτ for primitive recursion on objects of type τ . It is known that the
functions from non-negative integers to non-negative integers that can be defined in
this theory are exactly the <ε0-recursive functions of non-negative integers. But it
is not well-known which functionals of arbitrary type can be defined in T . We show
that when the domain and codomain are restricted to pure closed normal forms, the
functionals of arbitrary type that are definable in T are exactly those functionals that
can be encoded as <ε0-recursive functions of non-negative integers. This result has
many interesting consequences, including a new characterization of T .

The second application is concerned with the question: “When can a model
of a physical system be regarded as computable?” We provide the definition of a
computable physical model to answer this question. The connection between our
definition and Kreisel’s notion of a mechanistic theory is discussed, and several ex-
amples of computable physical models are given, including models which feature
discrete motion, a model which features non-discrete continuous motion, and non-
deterministic models such as radioactive decay. We show how computable physi-
cal models on effective topological spaces can be formulated with recursive func-
tionals in the theory of type-two effectivity (TTE). Various common operations on
computable physical models are described, such as the operation of coarse-graining
and the formation of statistical ensembles. The definition of a computable physical
model also allows for a precise formalization of the computable universe hypothe-
sis—the claim that all the laws of physics are computable.
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Preface

The word functional, when used as a noun, does not have a precise, universally agree-upon mean-
ing. It has generally been used to describe a function whose domain is itself a set of functions,
but the question of what sorts of functions are allowed in the domain, and the question of what
sorts of operations may be performed on inputs taken from that domain, have varied from author-
to-author and from context-to-context. A recursive functional, in the sense used by Rogers [33],
is a partial recursive function that takes a function variable f as input. A recursive functional
can then be thought of, informally, as a computer program that is allowed to give inputs to f and
to observe the corresponding outputs of f , regardless of whether or not f is itself a computable
function.

There is a long history of applications of functionals to the foundations of mathematics.
Indeed, functionals played an important role in Russell’s theory of types [36], in Church’s lambda
calculus [10], and in the combinatory logics of Schönfinkel [37] and Curry [11]. Functionals
were also central to Gödel’s Dialectica interpretation [20]. Gödel demonstrated that the theorems
of intuitionistic arithmetic can be interpreted as equations between primitive recursive functionals
of finite type in a theory that he denoted by the letter T . We study the class of primitive recursive
functionals that are definable in T in Chapter 1, using terminological and notational conventions
similar to reference [2]. In particular, we use serif Latin letters to denote terms in the theory T .
Additionally, with only a few exceptions, we use sans-serif Latin letters as type constants and
Greek letters as type variables.

Recursive functionals have also been used in applications to the foundations of physics—
most notably in the context of Kreisel’s definition of a mechanistic theory [25]. Kreisel’s def-
inition provides one way to interpret the claim that a physical model is computable. But in
Chapter 2, we provide an alternate definition that utilizes recursive functions, rather than re-
cursive functionals. Although the two definitions are quite different in character, we show that
models which satisfy Kreisel’s definition can be interpreted as models which satisfy our defini-
tion. Throughout Chapter 2, we use terminological and notational conventions similar to refer-
ence [33], supplemented by reference [31] for topological content. With only a few exceptions,
we use lower-case Latin letters to denote numbers and points, we use upper-case Latin letters to
denote sets, and we use Greek letters to denote functions.

Both chapters are self-contained and can be read independently.

ix
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Chapter 1

The Definability of Functionals in Gödel’s
Theory T

1.1 Introduction
For the formalization of his Dialectica interpretation of intuitionistic arithmetic, Gödel [20] in-
troduced the theory T . It was later shown [15, 22, 23] that T can be formalized as an exten-
sion of the simply-typed lambda calculus.1 In this formalization, the terms of the theory T are
simply-typed lambda terms with ground type N, extended to include the constants 0NN, SN→N,
and R

τ→(τ→N→τ)→N→τ
τ for each type τ . We use superscripts to denote the types of terms, freely

omitting the superscript when the type of a term can be deduced from its context. The formulas
of T are equations between terms, with formulas of the following forms taken as axioms for each
type τ

Rτ AB 0N = A

Rτ AB (SC) = B (Rτ AB C)C

where A, B, and C are metavariables for terms of types τ , τ → N→ τ , and N, respectively. The
rules of inference of T are the rules of βη-conversion and the rules of substitution of equality.
For any terms A and B in the language of T , we write T ` A = B to denote that the equation
A = B is provable in T . We say that a term is a βηT -normal form if and only if that term is a
βη-normal form which, for each type τ , contains no subterms of the form Rτ AB C. Since T is
strongly normalizing and has the Church-Rosser property [2], T ` A = B if and only if A and
B have the same βηT -normal forms.2

The closed terms of type N in the language of T are called numerals. Each numeral has a

1Readers unfamiliar with the simply-typed lambda calculus should consult reference [2].
2Gödel did not clearly define equality between higher-type terms in T . He only required that equality “be

understood as intensional or definitional equality” [21]. Most formalizations of T in the simply-typed lambda
calculus take equality to mean βT -equality, omitting η-conversion as a rule of inference. But we require βηT -
equality for Curry’s pairing function in Section 1.3 and for the Statman Reducibility Theorem in Section 1.6. This
formalization of T is not uncommon (see reference [2], for example). A survey of several different commonly-used
formalizations of equality in T is contained in reference [1].
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βηT -normal form
n︷ ︸︸ ︷

S (S (· · · (S 0N) · · · ))

where the successor function S is applied n many times to 0N, and we abbreviate any such term
as n.

A function f from βηT -normal forms of types σ1, σ2, . . . , σn to βηT -normal forms of type τ
is said to be definable in T if and only if there is a closed term F σ1→σ2→···→σn→τ in the language
of T such that T ` F Aσ11 Aσ22 . . . Aσnn = Bτ whenever f A1A2 . . . An = B is true. For
example, because the constant RN denotes the operation of primitive recursion, every primitive
recursive function of non-negative integers is definable in T , using the numerals n to represent
the non-negative integers n. Indeed, it has been shown [23, 26, 39, 41] that the closed terms of
type N → N → · · · → N in the language of T define exactly the <ε0-recursive functions of
non-negative integers. We will demonstrate that when the βηT -normal forms of types σ and τ
are restricted to be pure closed βη-normal forms (that is, closed normal forms that do not contain
any of the constants), then the functionals of type σ → τ that are definable in Gödel’s theory T
are precisely those functionals of one argument whose graphs are <ε0-recursive sets. This result
can naturally be extended to functionals of more than one argument.

1.2 Examples of Primitive Recursion in T
Every primitive recursive function is definable in T . For example, addition, multiplication, and
predecessor are defined as follows.

AddN→N→N = λxN .RN x (λa
NbN. S a)

MultN→N→N = λxN.RN 0N (λa
NbN.Add a x)

PredN→N = RN 0N (λaNbN. b)

We write A+B and A×B as abbreviations for AddAB and MultAB, respectively. We define

MonusN→N→N = λxN.RN x (λa
NbN.Pred a)

and we write A−· B as an abbreviation for MonusAB. Note that for all non-negative integers
m and n, if m ≥ n then

T ` m−· n = m− n

Otherwise, if m < n then

T ` m−· n = 0

We write |A−B| as an abbreviation for (A−· B) + (B−· A).
The conditional function is defined as

CondN→N→N→N = λxNyN.RN x (λa
NbN. y)

2



For each non-negative integer n, if n = 0 then

T ` CondxN yN n = x

Alternatively, if n 6= 0 then

T ` CondxN yN n = y

Functionals can also be defined by primitive recursion. For example, the summation func-
tional is given by

SumN→(N→N)→N = λxNfN→N.RN 0N
(
λaNbN. a+ (f b)

)
(Sx)

It is common practice to write
∑n

i=0 F i as an abbreviation for SumnF , where i is a dummy
variable. Similarly, a functional for bounded maximization is given by

Max
N→(N→N)→N
≤ = λxNfN→N.RN 0N

(
λaNbN.Cond b a (f b)

)
(Sx)

Note that for each closed term FN→N in the language of T and for each non-negative integer n,
if m is the largest non-negative integer less than or equal to n such that T ` F m = 0, then

T ` Max≤ nF = m

Otherwise, if no such m exists, then

T ` Max≤ nF = 0

Division can be defined in terms of bounded maximization.

DivN→N→N = λxNyN.Max≤ x
(
λaN. (a× y)−· x

)
We write bA/Bc as an abbreviation for DivAB.

1.3 Examples of Pairing Functions in T
A variant of Cantor’s pairing function [7] can be defined as follows

PN→N→N
0 = λxNyN.

⌊(
x×

(
x+ 3

)
+ y ×

(
y + 1

)
+ 2× x× y

)
/2
⌋

We write 〈A,B〉 as an abbreviation for P0AB. For each non-negative integer n there is exactly
one pair of non-negative integers m1 and m2 such that

T ` 〈m1,m2〉 = n

And since 2m1 ≤ m1(m1 +3) and 2m2 ≤ m2(m2 +1) for all non-negative integers m1 and m2,
it follows from the definition of P0 that m1 ≤ n and m2 ≤ n. (In fact, if m1 6= 0 then m1 < n
and m2 < n.) Therefore, if we define

PN→N
1 = λzN. Sum z

(
λyN.Max≤ z

(
λxN.

∣∣z − 〈x, y〉∣∣))
PN→N
2 = λzN. Sum z

(
λxN.Max≤ z

(
λyN.

∣∣z − 〈x, y〉∣∣))
3



then

T ` P1 〈m1,m2〉 = m1

T ` P2 〈m1,m2〉 = m2

for each pair of non-negative integers m1 and m2.
Now, note that for each type τ there is a non-negative integer n and there are types τ1,

τ2, . . . , τn such that τ = τ1 → τ2 → · · · → τn → N. Given any two types

σ =σ1 → σ2 → · · · → σm → N

τ =τ1 → τ2 → · · · → τn → N

we define

σ × τ = σ1 → σ2 → · · · → σm → τ1 → τ2 → · · · → τn → (N→ N→ N)→ N

Moreover, for each pair of types σ and τ , there are pure closed terms Dσ→τ→σ×τ
0,σ,τ , Dσ×τ→σ

1,σ,τ , and
Dσ×τ→τ

2,σ,τ such that

T ` D1,σ,τ (D0,σ,τ x
σ yτ ) = x

T ` D2,σ,τ (D0,σ,τ x
σ yτ ) = y

Reference [3] provides explicit definitions for these terms. D0,σ,τ is commonly known as Curry’s
pairing function. We write {Aτ11 , Aτ22 } as an abbreviation for D0,τ1,τ2 A

τ1
1 A

τ2
2 , and we write

{Aτ11 , Aτ22 , . . . , Aτnn } as an abbreviation for the term

{Aτ11 , {Aτ22 , {. . . , {A
τn−1

n−1 , A
τn
n } . . .}}}

of type τ1 × τ2 × · · · × τn. Note that for each type τ = τ1 × τ2 × · · · × τn such that n > 1, and
for each positive integer i ≤ n, there is a pure closed term Dτ→τi

i,τ1,τ2,...,τn
such that

T ` Di,τ1,τ2,...,τn {xτ11 , xτ22 , . . . , xτnn } = xi

Now, for each type σ = σ1 → σ2 → · · · → σm → N such that m > 0, define

0σσ = λxσ11 x
σ2
2 . . . xσmm . 0N

and for each type τ define

Consτ→(N→τ)→N→τ
τ = λxτyN→τ .Rτ x (λa

τ . y)

We write [Aτ0, A
τ
1, . . . , A

τ
n] as an abbreviation for the term

Consτ A0 (Consτ A1 (· · · (Consτ An 0N→τ ) · · · ))

of type N → τ , which we use to represent a list of terms of type τ . Note that for each non-
negative integer i ≤ n,

T ` [xτ0, x
τ
1, . . . , x

τ
n] i = xi

4



1.4 Enumerating Pure Closed βη-Normal Forms
Let FV(A) denote the set of free variables in the term A.

Lemma 1.4.1. If Aτ is a pure βη-normal form, then one of the following three conditions must
hold.

1. Aτ is a variable.
2. Aτ is of the form λBσ1 . Cσ2 , where τ = σ1 → σ2 and C is a pure βη-normal form with

free variables in the set {B} ∪ FV(A).
3. Aτ is of the form

Bσn→σn−1→···→σ1→τ Cσn
n C

σn−1

n−1 · · · Cσ1
1

whereB is a member of FV(A) and Cn, Cn−1, . . . , C1 are pure βη-normal forms with free
variables in the set FV(A).

Proof. Any term Aτ must either be a variable, be of the form λBσ1 . Cσ2 with τ = σ1 → σ2, or
be of the form Dσ1→τ

1 Cσ1
1 . Condition 1 and condition 2 follow immediately from the first two

cases. In the third case, if Aτ = Dσ1→τ
1 Cσ1

1 and Aτ is a βη-normal form, then Dσ1→τ
1 must either

be a variable or of the form Dσ2→σ1→τ
2 Cσ2

2 . Therefore, by induction, Aτ must be of the form

Bσn→σn−1→···→σ1→τ Cσn
n C

σn−1

n−1 · · · Cσ1
1

for some positive integer n, where B is a variable. Condition 3 immediately follows.

If τ = N, then we define σ to be a subtype of τ if and only if σ = N. Otherwise, if
τ = τ1 → τ2, then we define σ to be a subtype of τ if and only if σ is a subtype of τ1, σ is a
subtype of τ2, or σ = τ .

Lemma 1.4.2. If Bσ is a subterm of a pure closed βη-normal form Aτ , then σ is a subtype of τ
and the type of each free variable in B is a subtype of τ .

Proof. The proof is by induction on the depth of each subterm B in A. Suppose that Aτ is a
pure closed βη-normal form. As the base case, note that if Bσ = Aτ then σ = τ is a subtype
of τ and B has no free variables because A is closed. As the inductive hypothesis, suppose that
Bσ is a subterm of Aτ with σ a subtype of τ and with the type of each member of FV(B) a
subtype of τ . Since A is a pure βη-normal form, B is a pure βη-normal form and B satisfies
one of the three conditions in Lemma 1.4.1. In particular, if B satisfies condition 1, then B has
no subterms except for itself. Alternatively, if B satisfies condition 2, then Bσ = λCσ1 . Dσ2

with σ = σ1 → σ2, and the free variables of D are members of {Cσ1} ∪ FV(B). But because
σ = σ1 → σ2 is a subtype of τ , σ1 and σ2 are subtypes of τ . So, the type of D is a subtype of τ
and the type of each free variable in D is a subtype of τ . Finally, if B satisfies condition 3, then

Bσ = Cσn→σn−1→···→σ1→σDσn
n D

σn−1

n−1 · · · Dσ1
1

WhereCσn→σn−1→···→σ1→σ is a variable. But becauseC is a free variable ofB, it follows from the
inductive hypothesis that σn → σn−1 → · · · → σ1 → σ is a subtype of τ , as are σ1 and σ1 → σ.

5



Hence, the type of D1 is a subtype of τ , as is the type of the subterm C DnDn−1 · · · D2. Of
course, the free variables of these subterms are members of FV(B), so the types of the free
variables in these subterms are subtypes of τ .

For each type τ there is an algorithm [4] for enumerating the pure closed βη-normal forms
of type τ . In fact, the algorithm can be implemented within T . In other words, for each type τ
there is a closed term EN→τ

τ in the language of T such that for each pure closed term Aτ ,

T ` Eτ pA
τq = Aτ

where pAτq is a numeral that encodes the βη-normal form of Aτ . We rely on Lemma 1.4.2 to
encode pure closed βη-normal forms as follows.

Let Aτ be a pure closed βη-normal form where each occurrence of λ in A binds a distinct
variable. Let τ1, τ2, . . . , τn be all the subtypes of τ , and let τ1 = τ . We define pAτq recursively
in terms of an encoding function Encτ . In particular,

pAτq = Encτ (0N→τ1 , 0N→τ2 , . . . , 0N→τn , A)

For each positive integer i ≤ n, let Xi be the empty list 0N→τi or let

Xi = [V τi
0,τi
, V τi

1,τi
, . . . , V τi

mi,τi
]

be a list of variables, where mi is some non-negative integer. We use ~X to denote the sequence

X1, X2, . . . , Xn

and we use ~XV,j to denote the sequence

X1, X2, . . . ,Consτj V Xj, . . . , Xn

that is obtained from ~X by appending the variable V of type τj to the list Xj . Define

Encτ ( ~X,B
τi) =


〈
0, j
〉

if B = Vj,τi〈
j,
〈
Encτ ( ~X,C),Encτ ( ~X,D)

〉〉
if B = Cτj→τi Dτj〈

n+ 1,Encτ ( ~XC,j, D)
〉

if B = λCτj . Dτk

where X1, X2, . . . , Xn contain the free variables of types τ1, τ2, . . . , τn that occur in B. Note
that Encτ is defined in the metalanguage, not within the theory T itself.3

Constructing a procedure to enumerate pure closed βη-normal forms of type τ is now a matter
of inverting the encoding. That is, given a numeral 〈j, k〉 together with the lists X1, X2, . . . , Xn,
we wish to find a pure term Bτi such that T ` Encτ ( ~X,B

τi) = 〈j, k〉. Since k might itself
be an encoding for a subterm or a pair of subterms, this procedure depends recursively on the
enumeration of the subterms of Bτi . But Cantor’s pairing function possesses the property that

3It is also worth mentioning that if Bτi is a variable, then its encoding
〈
0, j
〉

is a sort of de Bruijn index [12] for
the variable. In particular, j is the number of λ-abstractions of type τi that contain Bτi within their scopes, but that
are themselves within the scope of the λ-abstraction which binds Bτi .
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if T ` 〈j, k〉 = l, then k < l whenever j 6= 0. That is, it suffices to use a course-of-values
recursion, where the computation of the term encoded as 〈j, k〉 depends on the list of all those
potential subterms whose encodings are strictly less than 〈j, k〉. This approach also requires a
simultaneous recursion over all of the types τ1, τ2, . . . , τn, because a subterm of Bτi might not
itself be of type τi.

Hence, for each type τ , a decoding function Decτ can be defined as follows

DecN→N→υ
τ = λxN.RN→υ 0N→υ

(
λaN→υbN.

Consυ
(
λxN→τ11 xN→τ22 . . . xN→τnn . {B1,τ ,B2,τ , . . . ,Bn,τ}

)
a
)
(Sx)

where

υ = (N→ τ1)→ (N→ τ2)→ · · · → (N→ τn)→ τ1 × τ2 × · · · × τn

In this case, Bi,τ denotes the term of type τi encoded by the numeral b, with free variables chosen
from the lists x1, x2, . . . , xn. Specifically, we define

Bτii,τ =
(
λpN1 p

N
2 . [J0,i,τ , J1,i,τ , . . . , Jn+1,i,τ ] p1

)
(P1 b) (P2 b)

for each positive integer i ≤ n, where J0,i,τ , J1,i,τ , . . . , Jn+1,i,τ compute the inverses for each of
the separate cases in the definition of Encτ . In particular, we define Jτi0,i,τ = xi p2. And for each
positive integer j ≤ n, if there exists a positive integer k ≤ n such that τk = τj → τi, then we
define

Jτij,i,τ =
(
Dk,τ1,τ2,...,τn

(
a (b−·

S (P1 p2))x1 x2 . . . xn
)) (

Dj,τ1,τ2,...,τn

(
a (b−· S (P2 p2)) x1 x2 . . . xn

))
Otherwise, if no such k exists, then we define Jj,i,τ = 0τi . Similarly, if there exist positive
integers j ≤ n and k ≤ n such that τi = τj → τk, then we define

Jτin+1,i,τ = λyτj .
(
Dk,τ1,τ2,...,τn

(
a (b−· S p2) x1 x2 · · · (Consτj y xj) · · · xn

))
Otherwise, if no such j and k exist, then we define Jn+1,i,τ = 0τi .

Finally, for each type τ we define

EN→τ
τ = λxN.D1,τ1,τ2,...,τn

(
Decτ x 0 0N→τ1 0N→τ2 · · · 0N→τn

)
and it immediately follows that

T ` Eτ pA
τq = Aτ

for each pure closed termAτ . Of course,4 there are numerals l that do not encode any pure closed
βη-normal form of type τ , and in that case,

T ` Eτ l = 0τ

4Since we have chosen an encoding where no two distinct numerals encode the same pure closed βη-normal
form, there must be some numerals that do not encode any pure closed βη-normal form of type τ if τ has only
finitely many pure closed βη-normal forms. For example, λxN. x is the only pure closed βη-normal form of type
τ = N→ N.
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1.5 Consistent Sets of Functional Equations
Consider any <ε0-recursive set of equations of the form

F Aσ1 = Bτ
1

F Aσ2 = Bτ
2 (1.5.1)

F Aσ3 = Bτ
3

...

where F is unknown and where, for each positive integer i, Ai and Bi are closed terms. We
will say that such a set of equations is consistent if and only if the set contains no two equations
F A = B and F C = D where A and C have the same βηT -normal forms and where B and D
have distinct βηT -normal forms. We say that a set of equations of the form (1.5.1) is satisfied
by some closed term F in the theory T if and only if there is a closed term in the language of T
such that each of the equations in (1.5.1) is provable in T when that term is substituted for F .

Lemma 1.5.1. Every consistent <ε0-recursive set of equations of the form (1.5.1) is satisfied by
a closed term F in the theory T if σ = N and τ = N.

Proof. F is a <ε0-recursive function of non-negative integers, and therefore is satisfied by a
closed term in T . See references [4, 23].

Lemma 1.5.2. Every consistent <ε0-recursive set of equations of the form (1.5.1) is satisfied by
a closed term F in the theory T if σ = N and if, for each positive integer i, Bi is a pure closed
term.

Proof. Given a consistent <ε0-recursive set of equations

F AN
1 = Bτ

1

F AN
2 = Bτ

2

F AN
3 = Bτ

3

...

where Bi is a pure closed term for each positive integer i, consider the set of equations

GAN
1 = pBτ

1q

GAN
2 = pBτ

2q

GAN
3 = pBτ

3q
...

Note that this is a consistent <ε0-recursive set of equations of the form (1.5.1) where Ai and
pBiq are of type N for each positive integer i. By Lemma 1.5.1 there is a closed term G in T
which satisfies this set of equations. But then F is satisfied by the closed term λxN. Eτ (Gx) in
T .
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1.6 The Statman Reducibility Theorem
The following theorem asserts that each type τ is βη-reducible to the type (N → N → N) →
N→ N.

Statman Reducibility Theorem. For each type τ there exists a pure closed term Mτ of type
τ → (N→ N→ N)→ N→ N such that for all pure closed terms Aτ and Bτ

T ` Mτ A = Mτ B

if and only if

T ` A = B

Proof. See references [4, 40].

In fact, in the context of the theory T we can prove a somewhat stronger statement.

Lemma 1.6.1. For each type τ there exists a closed term Nτ→N
τ in the language of T such that

for all pure closed terms Aτ and Bτ

Nτ A = Nτ B

if and only if

A = B

Proof. The type (N → N → N) → N → N is the type of binary trees [4]. That is, it can be
shown by Lemma 1.4.1 that every pure closed βη-normal form of type (N→ N→ N)→ N→ N
is of the form λxN→N→NyN. AN, where the free variables of AN are members of the the set
{xN→N→N, yN}. But again by Lemma 1.4.1, it must be the case that either AN = yN or AN is
of the form xN→N→NCNDN, where the free variables of CN and DN are members of the the set
{xN→N→N, yN}. But this same argument applies to the subterms C and D themselves. Hence, A
is a binary tree with leaves y and branching nodes x. Furthermore, each tree A can be encoded
as a distinct numeral ‖A‖ by letting ‖y‖ = 0, and by letting ‖xC D‖ = S

〈
‖C‖, ‖D‖

〉
.

Now, for each type τ define

Nτ→N
τ = λxτ .Mτ→(N→N→N)→N→N

τ x
(
λcNdN. S 〈c, d〉

)
0

By the Statman Reducibility Theorem, for any two distinct βη-normal forms Aτ and Bτ , Mτ A
and Mτ B must have distinct βη-normal forms of type (N→ N→ N)→ N→ N. Then,

T ` Nτ A = Mτ A
(
λcNdN. S 〈c, d〉

)
0

T ` Nτ B = Mτ B
(
λcNdN. S 〈c, d〉

)
0

Therefore, Nτ A and Nτ B have distinct βηT -normal forms. Namely, the βηT -normal form of
Nτ A is the numeral assigned to the tree Mτ A, and the βηT -normal form of Nτ B is the numeral
assigned to the tree Mτ B.
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This result can be immediately applied to solve sets of equations of the form (1.5.1).

Theorem 1.6.2. Every consistent <ε0-recursive set of equations of the form (1.5.1) is satisfied
by a closed term F in the theory T if, for each positive integer i, Ai and Bi are a pure closed
terms.

Proof. Given a consistent <ε0-recursive set of equations of the form (1.5.1), where Ai and Bi

are pure closed terms for each positive integer i, substitute λxσ. GN→τ (Nσ x) for F . Then, by
β-reduction we obtain the following consistent <ε0-recursive set of equations which is also of
the form (1.5.1).

G (Nσ A
σ
1 ) = Bτ

1

G (Nσ A
σ
2 ) = Bτ

2

G (Nσ A
σ
3 ) = Bτ

3

...

It follows from Lemma 1.5.2 that this system has a solution G in the theory T . Hence, the
original system is solved by the closed term

F σ→τ = λxσ. G (Nσ x)

in the theory T .

1.7 Some Consequences of Theorem 1.6.2
Theorem 1.6.2 has several consequences.

Corollary 1.7.1. Any <ε0-recursive function from pure closed βη-normal forms of type σ to
pure closed βη-normal forms of type τ is definable in Gödel’s theory T .

Proof. Given any <ε0-recursive function from pure closed βη-normal forms of type σ to pure
closed βη-normal forms of type τ , the function is determined uniquely by a consistent <ε0-
recursive set of equations of the form (1.5.1). Hence, by Theorem 1.6.2, the function is definable
in T .

A numeration of a set is a surjective function ν from the non-negative integers to that set. Let
ντ denote an effective numeration of the pure closed βη-normal forms of type τ . For example,
if Aτ is any one pure closed βη-normal form, then for all non-negative integers n and all pure
closed βη-normal forms B we could define

ντ (n) =

{
B if T ` Eτ n = B

A if T ` Eτ n = 0τ

An Eršov morphism (see references [16, 17, 45]) from νσ to ντ is a function f from pure closed
βη-normal forms of type σ to pure closed βη-normal forms of type τ such that there is a recursive
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function g with f ◦ νσ = ντ ◦ g. We say that the Eršov morphism f from νσ to ντ is given by g.
Theorem 1.6.2 can be phrased as a theorem about Eršov morphisms, rather than a theorem about
consistent sets of equations.

Corollary 1.7.2. Every Eršov morphism from νσ to ντ that is given by a <ε0-recursive function
is definable in Gödel’s theory T .

Consider the theory of simply-typed lambda calculus with ground type o and with βη-equality,
extended to include all primitive recursive consistent sets of equations of the form

FiA
σ
1,i = Bτ

1,i

FiA
σ
2,i = Bτ

2,i

FiA
σ
3,i = Bτ

3,i

...

where Aj,i and Bj,i are pure closed terms for all positive integers i and j, and Fσ→τi is a new
constant that is unique to the ith such set of equations. We call this theory F .

Corollary 1.7.3. The functions of pure closed βη-normal forms that are definable in T are
exactly those functions of pure closed βη-normal forms that are definable in F .

Proof. For each non-negative integer n, let

ñ(τ→τ)→τ→τ

stand for the term

λf τ→τxτ .

n︷ ︸︸ ︷
f (f (· · · (f x) · · · ))

with f applied n many times to x. Note that if we identify N with the type (o → o) → o → o,
then ñN is the Church numeral for n, and ñ(τ→τ)→τ→τ is a higher-type analog of the numeral for
each type τ higher than N. The successor function for Church numerals is

SN→N
F = λcNf o→oxo. f (c f x)

Now, for each type τ the theory F includes the consistent primitive-recursive set of axioms

F
N→(τ→τ)→τ→τ
iτ

1̃N = 1̃(τ→τ)→τ→τ

F
N→(τ→τ)→τ→τ
iτ

2̃N = 2̃(τ→τ)→τ→τ

F
N→(τ→τ)→τ→τ
iτ

3̃N = 3̃(τ→τ)→τ→τ

...

where Fiτ is a constant unique to this set of axioms. Define

H(τ→N→τ)→τ×N→τ×N
τ = λxτ→N→τyτ×N.

{
x (D1,τ,N y) (D2,τ,N y), SF (D2,τ,N y)

}
11



for each type τ . It immediately follows that the term

λaτbτ→N→τcN.D1,τ,N

(
Fiτ×N

c (Hτ b) {a, 0̃N}
)

in the language of F computes Rτ→(τ→N→τ)→N→τ
τ . Hence, any function that is definable in the

theory T is also definable in the theory F .
Conversely, any function that is definable in F is also definable in T , since the functions Fi

are definable in T by Theorem 1.6.2.
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Chapter 2

The Computable Universe Hypothesis

2.1 Introduction
A common way to formalize the concept of a physical model is to identify the states of the
system being modeled with the members of some set S, and to identify each observable quantity
of the system with a function from S to the real numbers.1 For example, a simple model of
planetary motion, with the Earth moving in a circular orbit and traveling at a uniform speed, is
the following.

Model 2.1.1 (Simple Planetary Motion). Let S be the set of all pairs of real numbers (t, a)
such that a = 360

(
t − btc

)
, where btc denotes the largest integer less than or equal to t. The

angular position of the Earth, measured in degrees, is given by the function α(t, a) = a. The
time, measured in years, is given by the function τ(t, a) = t.

If we wish, for example, to compute the position of the Earth after 2.25 years, we ask: “For which
states (t, a) does τ(t, a) = 2.25?” There is only one such state, namely (2.25, 90). Therefore,
the position of the Earth after 2.25 years is α(2.25, 90) = 90 degrees. We say that the model is
faithful if and only if the values of the observable quantities in the model match the values that
are physically observed.

Church and Turing hypothesized that the functions which are effectively computable by hu-
mans are exactly the recursive functions.2 There have been several attempts [19, 34, 42, 50, 51]
to extend the Church-Turing thesis to physics, hypothesizing that the laws of physics are, in some
sense, computable. But given an arbitrary physical model, it has not been clear exactly how one
determines whether or not that model is to be regarded as computable. To date, the best attempt
at providing such a definition has been Kreisel’s notion of a mechanistic theory [25]. Kreisel
suggested the following.

Kreisel’s Criterion. The predictions of a physical model are to be regarded as computable if
and only if every real number which is observable according to the model is recursive relative to

1A more detailed account of this formalism is available in reference [35].
2Readers unfamiliar with the definition of a recursive function or related terminology, such as uniformity, should

consult reference [33]. The original justifications for identifying the effectively computable functions with the
recursive functions can be found in references [9, 43, 44].
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the data uniformly.

But many seemingly innocuous models have failed to satisfy Kreisel’s criterion. For example, the
simple model of planetary motion (Model 2.1.1) fails because given a real number representing
the time t, there is no effectively computable procedure which determines the corresponding
angle a when a is near the discontinuity at 360 degrees. Models which intuitively seem to have
computable predictions often fail to satisfy Kreisel’s criterion because discontinuities in their
formalisms prevent the models’ predictions from being regarded as computable, despite the fact
that there are no discontinuities in the actual physical phenomena being modeled [32].

Rather than using Kreisel’s criterion to prove that the predictions of established models are
computable, an alternate approach is to supply a restrictive formalism which guarantees that the
predictions of models expressible in that formalism are computable. This has been the approach
taken in references [19, 34, 50, 51]. But difficulties have been encountered expressing important
established models in these formalisms. For example, Rosen [34] was unable to describe radioac-
tive decay in the formalism that he had proposed, and work is ongoing to describe established
physical models in other computable formalisms.

It is the goal of this chapter to provide a general formalism for describing physical models
whose predictions are computable, and to show that the computable formalisms studied by previ-
ous authors are special cases of our general formalism. In particular, we show in Section 2.15 that
among the members of a large class of physical models, each physical model satisfying Kreisel’s
criterion has a corresponding model in our formalism. We also avoid some of the difficulties
which, for example, prevented the simple model of planetary motion (Model 2.1.1) from being
regarded as computable, as will be seen in Section 2.4. Our approach also avoids the difficulty
that Rosen encountered with radioactive decay, as will be seen in Section 2.6.

2.2 Computable Physical Models

The central problem is that physical models use real numbers to represent the values of observ-
able quantities, but that recursive functions are functions of non-negative integers, not functions
of real numbers. To show that a model is computable, the model must somehow be expressed
using recursive functions. Careful consideration of this problem, however, reveals that the real
numbers are not actually necessary in physical models. Non-negative integers suffice for the
representation of observable quantities because numbers measured in laboratory experiments
necessarily have only finitely many digits of precision. For example, measurements of distances
with a measuring stick will always be non-negative integer multiples of the smallest division on
the measuring stick. So, we suffer no loss of generality by restricting the values of all observ-
able quantities to be expressed as non-negative integers—the restriction only forces us to make
the methods of error analysis, which were tacitly assumed when dealing with real numbers, an
explicit part of each model.

Non-negative integers are not only sufficient for the description of direct physical measure-
ments, but are also sufficient for encoding more complex data structures—allowing us to define
recursive functions on those data structures. For example, a pair of two non-negative integers x
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and y can be encoded as a single non-negative integer 〈x, y〉 using Cantor’s pairing function

〈x, y〉 = 1

2
(x2 + 2xy + y2 + 3x+ y)

A pair 〈x, y〉 of non-negative integers will also be called a length two sequence of non-negative
integers. A triple (or equivalently, length three sequence) of non-negative integers x, y, and z
can be encoded as 〈〈x, y〉, z〉, and so on. We write 〈x, y, z〉 as an abbreviation for 〈〈x, y〉, z〉. An
integer i can be encoded as a non-negative integer ζ(i) using the formula

ζ(i) =

{
−2i− 1 if i < 0

2i if i ≥ 0

And a rational number a
b

in lowest-terms with b > 0 can be encoded as a non-negative integer
ρ(a

b
) using the formula

ρ
(a
b

)
= ζ
(
(sgn a)2ζ(a1−b1)3ζ(a2−b2)5ζ(a3−b3)7ζ(a4−b4)11ζ(a5−b5) · · ·

)
where a = (sgn a)2a13a25a37a411a5 · · · is the prime factorization of the integer a, and similarly
for b. We write (q ; r) as an abbreviation for the pair of rational numbers

〈
ρ(q), ρ(r)

〉
.

Historically, authors who have wished to restrict themselves to physical models whose predic-
tions are computable have chosen from among a handful of formalisms. For example, Zuse [51]
and Fredkin [19] have formalized their models as cellular automata, with each cell of an au-
tomaton representing a discrete unit of space and each step of computation in the automaton
representing a discrete unit of time. Wolfram [50] has formalized his models in a variety of com-
putational systems, including cellular automata, but has favored network systems for a model of
fundamental physics. In each of these cases, the states of a physical system are represented by the
states of a computational system (for example, a cellular automaton or a network system) which
can be encoded as non-negative integers using the techniques just described. The resulting set of
non-negative integers is a recursive set, and the observable quantities of the system are recursive
functions of the members of that set. This immediately suggests the following definition.

Definition 2.2.1. A computable physical model of a system is a recursive set S of states with a
total recursive function φ for each observable quantity of the system. φ(s) is the value of that
observable quantity when the system is in state s.

So, in a computable physical model the set S is a set of non-negative integers, and each ob-
servable quantity is a function from non-negative integers to non-negative integers. The models
considered by Zuse, Fredkin, and Wolfram are necessarily special sorts of computable physical
models, and the set of all computable physical models is a proper subset of all physical models.
In order to avoid all ambiguity, we insist that observable quantities be defined operationally [6]
in computable physical models, so that, for example, if there were an observable quantity cor-
responding to time, then that observable quantity would be the time as measured with a specific
conventionally-chosen clock in a specific conventionally-chosen reference frame.

An immediate consequence of the definition of a computable physical model is that we can
give a precise formal counterpart to the informal claim that all the laws of physics are computable.
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Computable Universe Hypothesis. The universe has a recursive set of states U . For each
observable quantity, there is a total recursive function φ. φ(s) is the value of that observable
quantity when the universe is in state s.

By a distinguishable system, we mean any system for which there is an observable quantity
φ such that φ(s) = 1 when the system exists in the universe, and such that φ(s) = 0 otherwise.
For example, if the system being studied is the orbit of the Earth, then φ(s) = 0 when state s
corresponds to a time before the formation of the Earth, and φ(s) = 1 when the Earth exists and
is orbiting the Sun. Note that the set of states s in U for which φ(s) = 1 is itself a recursive set
whenever U and φ are recursive. So, the computable universe hypothesis implies that computable
physical models are sufficient for modeling any distinguishable system in the universe—the set
of states of that distinguishable system is the set of all members s of U for which φ(s) = 1, and
the observable quantities of the distinguishable system are necessarily a subset of the observable
quantities of the universe.

2.3 Discrete Planetary Motion
As a first example of a computable physical model, consider the following model of planetary
motion.

Model 2.3.1 (Discrete Planetary Motion). Let S be the set of all pairs
〈
(r ; s), (p ; q)

〉
such that

r =
i

10
− 1

100
p = 360

(
r − brc

)
s =

i+ 1

10
+

1

100
q = 360

(
s− bsc

)
for some integer i between−20000 and 20000. The angular position of the Earth, represented as
a range of angles measured in degrees, is given by the function α

〈
(r ; s), (p ; q)

〉
= (p ; q). The

time interval, measured in years, is given by the function τ
〈
(r ; s), (p ; q)

〉
= (r ; s).

This is a discrete model. That is, the position of the Earth in its orbit is not an exact real
number, such as 90 degrees, but is instead an interval, such as (68.4 ; 111.6) representing a range
of angles between 68.4 degrees and 111.6 degrees.3 Similarly, time is measured in discrete
intervals of length 0.12 years. The earliest time interval in the model is near the year −2000
and the latest time interval is near the year 2000. Moreover, this model is faithful—it is in exact
agreement with all observations.

There are ten possible measurements for the angular position of the Earth in Model 2.3.1:

(32.4 ; 75.6) (68.4 ; 111.6) (104.4 ; 147.6) (140.4 ; 183.6) (176.4 ; 219.6)

(212.4 ; 255.6) (248.4 ; 291.6) (284.4 ; 327.6) (320.4 ; 3.6) (356.4 ; 39.6)

These are the intervals obtained by dividing the 360 degrees of the circle into ten equal intervals
of 36 degrees each, then extending each interval by exactly 3.6 degrees on both sides, bringing

3We use decimal numbers to represent exact rational numbers. For example, 68.4 is to be understood as an
abbreviation for 684

10 .
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the total length of each interval to 43.2 degrees. Therefore, consecutive intervals overlap by
7.2 degrees (there is also overlap in consecutive time intervals), and this serves an important
purpose. The Earth’s orbit is not, in reality, a perfect circle, and the Earth does not spend an
equal amount of time in each of the intervals. But because the eccentricity of the Earth’s orbit
contributes to, at most, only about a 2 degree deviation [18] from the simple model of planetary
motion (Model 2.1.1), the overlap of these intervals is more than adequate to conceal evidence
of the eccentricity, ensuring that this discrete model is faithful. Also note that the overlap is a
realistic feature of all known instruments which measure angles, since each such instrument has
only a limited accuracy. If angles were measured with a protractor, for example, the accuracy
might be limited by the thickness of the lines painted on the protractor, which divide one reading
from another. For example, if the lines are 7.2 degrees thick, then it might not be possible
to distinguish a reading of (32.4 ; 75.6) from a reading of (68.4 ; 111.6) if the quantity being
measured is somewhere on that line (that is, if the quantity is somewhere between 68.4 and 75.6
degrees). The accuracy of measuring instruments is discussed in greater detail in Section 2.9.

2.4 Non-Discrete Continuous Planetary Motion
Many commonly-studied computable physical models are discrete, but non-discrete continuous
models are also possible. For example, a non-discrete continuous computable physical model of
planetary motion is the following.

Model 2.4.1 (Non-Discrete Continuous Planetary Motion). Let S be the set of all pairs
〈
(r ; s),

(p ; q)
〉

such that

r =
i

10n
− 1

10n+1
p = 360

(
r − brc

)
s =

i+ 1

10n
+

1

10n+1
q = 360

(
s− bsc

)
for some integer i and some positive integer n. The angular position of the Earth, represented as
a range of angles measured in degrees, is given by the function α

〈
(r ; s), (p ; q)

〉
= (p ; q). The

time interval, measured in years, is given by the function τ
〈
(r ; s), (p ; q)

〉
= (r ; s).

Like the discrete model, angular position and time are measured in intervals, but in this case
the intervals are not all the same length. In particular, there are arbitrarily small intervals for
the observable quantities of position and time, meaning that these quantities may be measured to
arbitrary precision. This feature of Model 2.4.1 allows us to speak about real-valued positions
and times, despite the fact that the values of observable quantities in the model are all non-
negative integers, not real numbers.

This is because a real number is not the result of a single measurement, but is instead the
limit of a potentially-infinite sequence of measurements. Suppose, for example, that we wish
to measure the circumference of a circle whose diameter is exactly one meter. Measured with
unmarked metersticks, we measure the circumference to be 3 meters. If the sticks are marked
with millimeters, then we measure the circumference to be about 3.141 meters. And if they are
marked with micrometers, then we measure a circumference of about 3.141592 meters. If we
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continue this process indefinitely with increasingly precise measuring instruments, then in the
infinite limit we approach the real number π.

More formally, for each real number x there is an infinite sequence of nested intervals
(a0 ; b0), (a1 ; b1), (a2 ; b2), . . . that converges to x. Given such a sequence, the function φ such
that φ(n) = (an ; bn) for each non-negative integer n is said to be an oracle for x. Note that there
is more than one distinct sequence of nested intervals converging to x, and therefore more than
one oracle for each x. Of particular importance is the standard decimal oracle ox for the real
number x. By definition, ox(n) = (an ; bn), where

an =

⌊
10n+1x

⌋
10n+1

− c

10n+1
bn =

⌊
10n+1x

⌋
+ 1

10n+1
+

c

10n+1

for each non-negative integer n, and where the accuracy factor c is a positive rational number
constant. We say that x is a recursive real number if and only if ox is a recursive function. Note
that not all real numbers are recursive [43].

Now, returning to Model 2.4.1, suppose that we are asked to find the position of the Earth
at some real-valued time t. Suppose further that we are given the oracle ot with accuracy factor
c = 1

10
. Note that as we increase n, the values ot(n) are increasingly precise measurements of the

time t in Model 2.4.1. Therefore, for each n there is some state
〈
ot(n), (pn ; qn)

〉
in the set S of

Model 2.4.1. Because S is a recursive set, and because there is exactly one state corresponding to
each time measurement, the function ε such that ε(n) = (pn ; qn) is a recursive function relative
to the oracle ot. In fact, if ot(n) = (rn ; sn), then

ε(n) =
(
360
(
rn − brnc

)
; 360

(
sn − bsnc

))
for each non-negative integer n. And since the sequence of intervals (r0 ; s0), (r1 ; s1), (r2 ; s2), . . .
converges to t, it immediately follows that the sequence of intervals ε(0), ε(1), ε(2), . . . converges
to a = 360

(
t − btc

)
whenever t is not an integer. In other words, ε is an oracle for the angular

position a.
But in the case that t is an integer,

ε(n) =
(
360− 36

10n+1
;
396

10n+1

)
for all non-negative integers n, and (356.4 ; 39.6), (359.64 ; 3.96), (359.964 ; 0.396), . . . is the
resulting sequence. In the standard topology of the real numbers an interval (x ; y) should have
x < y, so the question of whether or not this sequence converges to a point a in that standard
topology cannot be meaningfully answered. But if we are willing to abandon the standard topol-
ogy of the real numbers, then we may conventionally define this sequence to converge to a = 0.
In fact, this definition is tantamount to establishing the topology of a circle of circumference 360
for all angles a.4 Of course, this definition is justified since the readings after 360 on a measuring
instrument for angles are identified with those readings after 0. In other words, angles really do
lie in a circle.

4A basis for this topology is represented by the set of all possible angle measurements. In particular, if x < y
then (x ; y) represents the set of all real numbers a such that x < a < y, and if x > y then (x ; y) represents the set
of all real numbers a such that 0 ≤ a < y or x < a < 360.
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So, given the oracle ot for a real-valued time t, Model 2.4.1 allows us to compute an oracle ε
for the angular position a of the Earth at that time. These predictions are in complete agreement
with the predictions of the simple model of planetary motion (Model 2.1.1). In fact, imposing
the appropriate topology on the space of angles a, the mapping from t to a in Model 2.4.1 is
continuous. The same mapping is discontinuous in the standard topology of the real numbers,
which leads Kreisel’s criterion to fail for Model 2.1.1. The formulation of computable physical
models on effective topological spaces is discussed in greater detail in Sections 2.11 through
2.15.

2.5 Coarse-Graining

Observable quantities in computable physical models are defined operationally. This means that
each observable quantity is defined so as to correspond to a specific physical operation, such as
the operation of comparing a length to the markings on a meterstick (where the meterstick itself
is constructed according to a prescribed operation). This is problematic for the non-discrete
continuous model of planetary motion (Model 2.4.1) because, for example, arbitrary precision
angle measurements are made with a single observable quantity in the model. That is, to assert
that a model such as Model 2.4.1 is faithful, one must assert that there exists an operation which
is capable of measuring angles to arbitrary precision. It is not known whether or not such an
operation actually exists. And although the point is somewhat moot, since Model 2.4.1 is clearly
not faithful, it raises the question of whether this is an accidental feature of Model 2.4.1, or
whether it is a feature common to all non-discrete continuous computable physical models.

A more practical alternative to Model 2.4.1 might introduce an infinite sequence of observ-
able quantities α1, α2, α3, . . . , each with finitely many digits of precision, and each more pre-
cise than its predecessor in the sequence. In this case, given a state s, the values α1(s), α2(s),
α3(s), . . . would form a sequence of intervals converging to a real number representing the angu-
lar position of the Earth in that state. But a computable physical model has only countably many
states, and there are uncountably many real numbers in the interval (0 ; 360). Therefore, there
must be some real number position in the interval (0 ; 360) that the Earth never attains.5 That is,
a computable physical model of this alternative form is not continuous in the intended topology.

Rather than considering arbitrary precision measurements, let us introduce just one additional
level of precision into the discrete model of planetary motion (Model 2.3.1).

5In particular, this is a real number constructed by diagonalizing over those real numbers which are associated
with each of the countably many states.
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Model 2.5.1. Let S be the set of all quadruples
〈
(r1 ; s1), (r2 ; s2), (p1 ; q1), (p2 ; q2)

〉
such that

r1 =
i

10
− 1

102
p1 = 360

(
r1 − br1c

)
s1 =

i+ 1

10
+

1

102
q1 = 360

(
s1 − bs1c

)
r2 =

j

102
− 1

103
p2 = 360

(
r2 − br2c

)
s2 =

j + 1

102
+

1

103
q2 = 360

(
s2 − bs2c

)
for some integers i and j with 10i ≤ j ≤ 10i+9. The angular position of the Earth, represented
as a range of angles measured in degrees with a low-precision measuring instrument, is given by
the function

α1

〈
(r1 ; s1), (r2 ; s2), (p1 ; q1), (p2 ; q2)

〉
= (p1 ; q1)

The angular position of the Earth, represented as a range of angles measured in degrees with a
high-precision measuring instrument, is given by the function

α2

〈
(r1 ; s1), (r2 ; s2), (p1 ; q1), (p2 ; q2)

〉
= (p2 ; q2)

The time interval, measured in years by a low-precision measuring instrument, is given by the
function

τ1
〈
(r1 ; s1), (r2 ; s2), (p1 ; q1), (p2 ; q2)

〉
= (r1 ; s1)

The time interval, measured in years by a high-precision measuring instrument, is given by the
function

τ2
〈
(r1 ; s1), (r2 ; s2), (p1 ; q1), (p2 ; q2)

〉
= (r2 ; s2)

Note that if the high-precision observable quantities α2 and τ2 are ignored, then the predic-
tions of Model 2.5.1 agree exactly with the predictions of Model 2.3.1.6 The process of removing
observable quantities from a model to obtain a new model with fewer observable quantities is
called coarse-graining. But while Model 2.3.1 is faithful, Model 2.5.1 is not faithful—physical
measurements do not agree with the values of the observable quantities α2 and τ2 because the
orbit of the Earth is not a perfect circle.

A traditional conception of science regards all physical models as inexact approximations
of reality, and holds that the goal of science is to produce progressively more accurate mod-
els whose predictions more closely match observations than the predictions of previous models.
That conception of science is reasonable when the values of observable quantities are real num-
bers, since the real numbers predicted by physical models are never exactly the same as the real
numbers ‘measured’ in the laboratory. But when non-negative integers are used for the values of
observable quantities, then an alternate conception of science is possible.

In this alternate conception there exist faithful models that are in exact agreement with re-
ality, but perhaps only for a small subset of all physically observable quantities. For example,

6But it should be noted that the model obtained by omitting α2 and τ2 from Model 2.5.1 is not identical to
Model 2.3.1. In particular, for each state in Model 2.3.1, there are ten indistinguishable states in the model obtained
by omitting α2 and τ2 from Model 2.5.1. That is, these models are not isomorphic. See Section 2.10.
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Model 2.3.1 is faithful, but only predicts the angular position of the Earth to within 43.2 degrees,
and only for a limited range of times. The goal of science is then to produce more refined models.
That is, the goal of science is to discover faithful models which have larger sets of observable
quantities, and are therefore capable of predicting increasing numbers of facts.

2.6 Radioactive Decay

Given non-negative integers x and y, let β(x, y) be the length y sequence composed of the first
y bits in the binary expansion of x. For example β(13, 6) = 〈0, 0, 1, 1, 0, 1〉. Now suppose that a
single atom of a radioactive isotope, such as nitrogen-13, is placed inside a detector at time t = 0.
We say that the detector has status 1 if it has detected the decay of the isotope, and has status
0 otherwise. The history of the detector at time t is the length t sequence of bits corresponding
to the status of the detector at times 1 through t. For example, if the isotope decays sometime
between t = 2 and t = 3, then the history of the detector at time t = 5 is 〈0, 0, 1, 1, 1〉. The
following computable physical model models the status of the detector as a function of time.

Model 2.6.1 (Radioactive Decay). Let S be the set of all pairs
〈
t, β(2n − 1, t)

〉
where n and t

are non-negative integers such that n ≤ t and t 6= 0. The history of the detector is given by the
function η〈t, h〉 = h, and the time, measured in units of the half-life of the isotope, is given by
the function τ〈t, h〉 = t.

This is a model of the many-worlds interpretation [13] of radioactive decay. Suppose that
one asks, “What will the status of the detector be at time t = 3?” There are four states 〈t, h〉 such
that τ〈t, h〉 = 3, namely

〈
3, 〈0, 0, 0〉

〉 〈
3, 〈0, 0, 1〉

〉 〈
3, 〈0, 1, 1〉

〉 〈
3, 〈1, 1, 1〉

〉
In three of these states, the detector has status 1, and in one state it has status 0. If we assume
that each state of the system is equally likely, then there is a 3

4
probability that the detector will

have status 1 at time t = 3. But if we ask, “If the detector has status 1 at time t = 1, then what
will its status be at time t = 3?” The answer is “1”, since 〈t, h〉 =

〈
3, 〈1, 1, 1〉

〉
is the only state

such that τ〈t, h〉 = 3 and such that the status of the detector at time 1 is 1. These results are in
agreement with conventional theory.

2.7 Ensembles of Physical Models

Suppose that a planet orbits a distant star and that we are uncertain of the planet’s orbital period.
In particular, suppose that we believe its motion is faithfully described by either the discrete
model of planetary motion (Model 2.3.1) or by the following computable physical model.
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Model 2.7.1. Let S be the set of all pairs
〈
(r ; s), (p ; q)

〉
such that

r =
i

10
− 1

100
p = 360

(
n

10
− 1

100
−
⌊ n
10
− 1

100

⌋)
s =

i+ 1

10
+

1

100
q = 360

(
n+ 1

10
+

1

100
−
⌊n+ 1

10
+

1

100

⌋)
for some integer i between −20000 and 20000, and such that n = bi/4c. The angular position
of the planet, represented as a range of angles measured in degrees, is given by the function
α
〈
(r ; s), (p ; q)

〉
= (p ; q). The time interval, measured in Earth years, is given by the function

τ
〈
(r ; s), (p ; q)

〉
= (r ; s).

Note that this model is similar to Model 2.3.1, except that the orbital period of the planet is 4
Earth years, rather than 1 Earth year.

If for each of the two models we are given a rational number expressing the probability that
that model is faithful, then a statistical ensemble of the models may be constructed. For example,
if Model 2.3.1 is twice as likely as Model 2.7.1, then a corresponding statistical ensemble is the
following. Note that this statistical ensemble is itself a computable physical model.

Model 2.7.2 (Ensemble of Models). Let S be the set of all triples
〈
(r ; s), (p ; q), j

〉
such that

r =
i

10
− 1

100
p = 360

(
n

10
− 1

100
−
⌊ n
10
− 1

100

⌋)
s =

i+ 1

10
+

1

100
q = 360

(
n+ 1

10
+

1

100
−
⌊n+ 1

10
+

1

100

⌋)
for some integer i between −20000 and 20000, where j = 0, 1, or 2, and where

n =

{
i if j = 0 or 1
bi/4c if j = 2

The angular position of the planet, represented as a range of angles measured in degrees, is
given by the function α

〈
(r ; s), (p ; q), j

〉
= (p ; q). The time interval, measured in Earth years,

is given by the function τ
〈
(r ; s), (p ; q), j

〉
= (r ; s).

Since Model 2.3.1 is twice as likely as Model 2.7.1, there are two states,
〈
(r ; s), (p ; q), 0

〉
and〈

(r ; s), (p ; q), 1
〉

in the ensemble for each state
〈
(r ; s), (p ; q)

〉
in Model 2.3.1, and there is one

state
〈
(r ; s), (p ; q), 2

〉
in the ensemble for each state

〈
(r ; s), (p ; q)

〉
in Model 2.7.1. Note that

the index j in each state
〈
(r ; s), (p ; q), j

〉
of the ensemble is not observable.

Now, if we ask for the position of the planet during the time interval (0.29 ; 0.41), for example,
there are three possible states

〈
(r ; s), (p ; q), j

〉
in the ensemble such that

τ
〈
(r ; s), (p ; q), j

〉
= (0.29 ; 0.41)

namely 〈
(0.29 ; 0.41), (104.4 ; 147.6), 0

〉〈
(0.29 ; 0.41), (104.4 ; 147.6), 1

〉〈
(0.29 ; 0.41), (356.4 ; 39.6), 2

〉
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Since the planet’s angular position is (104.4 ; 147.6) for two of these three states, the position
measurement (104.4 ; 147.6) has a probability of 2

3
. Similarly, because the planet’s angular po-

sition is (356.4 ; 39.6) for one of the three states, the position measurement (356.4 ; 39.6) has a
probability of 1

3
. These probabilities are a direct reflection of our uncertainty about which of the

two underlying physical models, Model 2.3.1 or Model 2.7.1, is the true faithful model. In par-
ticular, because Model 2.3.1 has been deemed twice as likely as Model 2.7.1, the position of the
planet in Model 2.3.1, namely (104.4 ; 147.6), has twice the probability of the position predicted
by Model 2.7.1, namely (356.4 ; 39.6).

It is important to note that there is no observable quantity corresponding to probability in
Model 2.7.2. Instead, probability is a mathematical tool used to interpret the model’s predictions.
This sort of interpretation of an ensemble of models is appropriate whenever the ensemble is
composed from all possible models which could describe a particular system, with the number
of copies of states of the individual models reflecting our confidence in the predictions of those
models. See reference [24] for a more detailed account of this subjectivist interpretation of
probability in physics.

Ensembles may be constructed in other circumstances as well, and we may refer to such
ensembles as non-statistical ensembles of physical models. Non-statistical ensembles of physical
models are commonplace in the sciences. For example, they result whenever a constant, such
as an initial position, is left unspecified in the statement of a model. That model can then be
used to describe any member of a family of systems, each of which may have a different value
for the constant. But most importantly, when a non-statistical ensemble of physical models is
constructed, no claims as to the likelihood of one value of the constant, as compared to some
other value of the constant, are being made. In fact, this is the defining characteristic of a non-
statistical ensemble of models. Non-statistical ensembles can be useful because they provide a
convenient way to collect together sets of closely-related models.

2.8 Incompatible Measurements

A pair of measurements is said to be simultaneous if and only if they are both performed while the
system is in a single state. An essential feature of quantum mechanical systems is that there may
be quantities which are not simultaneously measurable. For example, the measurement of one
quantity, such as the position of a particle, might affect the subsequent measurement of another
quantity, such as the particle’s momentum. Such measurements are said to be incompatible. It
is natural to ask whether computable physical models can be used to describe systems which
feature incompatible measurements.

Discrete quantum mechanical systems are often formalized as follows [14, 46]. The quantum
mechanical state of a system is a normalized vector v in some normed complex vector space
V . Typically, V is a Hilbert space and v is a wave function. For each quantum mechanical
measurement there is a corresponding set B = {v1, v2, v3, . . .} of normalized basis vectors for
V . Each member of B corresponds to a possible value of the measurement. Because B is a basis
for V , v = a1v1 + a2v2 + a3v3 + · · · for some complex numbers a1, a2, a3, . . .. If the system is
in quantum mechanical state v and no two members of B correspond to the same measurement
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value,7 then the probability that the measurement will have the value corresponding to vn is
|an|2. In this case, if the actual value which is measured is the value corresponding to vn, then
the quantum mechanical state of the system immediately after that measurement is vn. The state v
is said to have collapsed to vn. During the time between measurements, the quantum mechanical
state of a system may evolve according to a rule such as Schrödinger’s equation.

Consider, for example, the problem of measuring the components of the spin of an isolated
electron. In this case, V is the set of all vectors (a, b) such that a and b are complex numbers,
where the norm ‖(a, b)‖ is defined to be

√
|a|2 + |b|2. A quantum mechanical measurement

of the z component of the electron’s spin has two possible values, −1
2
~ and +1

2
~. The basis

vectors corresponding to these values are (0, 1) and (1, 0), respectively. The quantum mechanical
measurement of another component of the electron’s spin, lying in the xz plane at an angle
of 60 degrees to the z axis, also has two possible values, −1

2
~ and +1

2
~. The basis vectors

corresponding to these values are
(
−1

2
,
√
3
2

)
and

(√
3
2
, 1
2

)
, respectively. So, for example, if the

spin component in the z direction is measured to have a value of +1
2
~ at time t = 0, then since

(1, 0) = −1

2

(
−1

2
,

√
3

2

)
+

√
3

2

(√3
2
,
1

2

)
there is a

∣∣√3
2

∣∣2 = 3
4

probability that if the 60-degree electron spin component is measured at
time t = 1, then that component will also have a value of +1

2
~.

Supposing that the 60-degree electron spin component is measured to have a value of +1
2
~ at

time t = 1, a similar line of reasoning implies that if the spin’s z component is measured at time
t = 2, then there is a

∣∣1
2

∣∣2 = 1
4

probability that the value of that measurement will be −1
2
~, since

(√3
2
,
1

2

)
=

1

2
(0, 1) +

√
3

2
(1, 0)

Therefore, if the z component of the electron’s spin is measured at time t = 0, followed by a mea-
surement of the 60-degree spin component at time t = 1, and followed by another measurement
the z component at time t = 2, then the values of the two measurements of the z component need
not be the same. Indeed, the quantum mechanical state of the system does not change between
times t = 0 and t = 1, or between times t = 1 and t = 2, but the measurement of the 60-degree
spin component at time t = 1 disturbs the system and can potentially change the value of any
subsequent measurement of the z component.8 That is, measurement of the electron’s 60-degree
spin component is incompatible with measurement of its z component.

Let us formalize this system as a computable physical model. The system is composed of the
electron, the apparatus used to make the quantum mechanical measurements, and the researcher

7Alternatively, if vn1 , vn2 , vn3 , . . . are distinct basis vectors corresponding to the same measurement value, then
the probability of measuring the value is |an1 |2 + |an2 |2 + |an3 |2 + · · · . If that value is actually measured, then the
state of the system immediately after the measurement is the normalization of an1

vn1
+ an2

vn2
+ an3

vn3
+ · · · .

See reference [28].
8In this case, the quantum mechanical state of the system does not change between measurements because the

electron is isolated. For example, the electron is free from external electromagnetic fields or other influences that
might cause its spin to precess.
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who chooses which components to measure.9 We assume that the quantum mechanical state of
the electron is (1, 0) at time t = 0, and that the researcher makes subsequent quantum mechanical
measurements of the electron’s spin components at times 1 and 2. When a quantum mechanical
measurement is performed, a record is made (perhaps in the researcher’s notebook) of the value
of this measurement and of the component that was measured. We construct the computable
physical model of this system from the point of view of an agent who observes only this recorded
history and the time.

Model 2.8.1 (Electron Spin Measurement). Let S be the set of all triples 〈t, h, j〉 such that

t = 1

h = (0 ;+1)

j = 0

or
t = 1

h = (60 ;−1)
j = 1

or
t = 1

h = (60 ;+1)

j = 2 +m

or

t = 2

h =
〈
(0 ;+1), (0 ;+1)

〉
j = 5

or

t = 2

h =
〈
(0 ;+1), (60 ;−1)

〉
j = 6

or

t = 2

h =
〈
(0 ;+1), (60 ;+1)

〉
j = 7 +m

or

t = 2

h =
〈
(60 ;−1), (0 ;−1)

〉
j = 10

or

t = 2

h =
〈
(60 ;−1), (0 ;+1)

〉
j = 11 +m

or

t = 2

h =
〈
(60 ;−1), (60 ;−1)

〉
j = 14

or

t = 2

h =
〈
(60 ;+1), (0 ;−1)

〉
j = 15 + n

or

t = 2

h =
〈
(60 ;+1), (0 ;+1)

〉
j = 24 +m

9We refrain from asking questions about the probability with which the researcher chooses which components
to measure. That is, this model describes a non-statistical ensemble of researchers.
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or

t = 2

h =
〈
(60 ;+1), (60 ;+1)

〉
j = 27 +m

for some integers m and n with 0 ≤ m ≤ 2 and 0 ≤ n ≤ 8. The time is given by the function
τ〈t, h, j〉 = t. The history is given by the function η〈t, h, j〉 = h. A history is a chronological
sequence of records, with the leftmost record being the oldest. Each record is a pair (a ; b) of
rational numbers, where a is the angle from the z axis, measured in degrees, of a component of
the electron’s spin, and where b is the value of that component, measured in units of 1

2
~.

Note that each state 〈t, h, j〉 has a distinct index j, which we will use to identify that particular
state.

Model 2.8.1 corresponds to the quantum mechanical system in the following sense. First, the
quantum mechanical state of the system at time t corresponds to a set of states in the computable
physical model. For example, if the researcher decides to measure the 60-degree component of
the electron’s spin at time t = 1, then the quantum mechanical state of the system is represented
by the set of states with indices 1 through 4. Assuming that the states in the set are equally likely,
there is a 3

4
probability that this component will have a measured value of +1

2
~, for example.

Immediately after the measurement is made, the quantum mechanical state collapses, becoming
either the set of states with indices 2 through 4, or the singleton set containing only the state
with index 1. The collapse occurs because the information provided by the quantum mechanical
measurement allows us to identify the state of the system more precisely, eliminating those states
which disagree with the measurement result.10 The quantum mechanical state then evolves to a
new set of states at time t = 2. For example, if the measured value of the 60-degree electron spin
component is +1

2
~ at time t = 1, and if the researcher plans to measure the 0-degree electron

spin component (that is, the z component) at time t = 2, then the quantum mechanical state
immediately before that measurement at time t = 2 is the set of states with indices 15 through
26.

Computable physical models similar to Model 2.8.1 can be constructed for quantum mechan-
ical systems which satisfy the following criteria.

1. There is a set of possible measurements {m0,m1,m2, . . . ,mi, . . .} indexed by non-negative
integers i.

2. Every discrete time step, one measurement from this set is performed.

3. The possible values of each measurement mi are identified with non-negative integers.

4. If φ(i, n, t, h) is the probability that the measurement with index i has the value n, given
that the measurement is performed at time step t and that h =

〈
(i1 ;n1), . . . , (it−1 ;nt−1)

〉
is the history of past measurements and their values, then φ(i, n, t, h) is a rational number.

5. If there is no measurement with index i or if the non-negative integer n does not correspond
to a value of the measurement with index i, then φ(i, n, t, h) = 0.

10For a more detailed discussion of this ensemble interpretation of the collapse of a quantum mechanical state,
see reference [5].
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6. For each choice of non-negative integers i, t, and h, there are only finitely many non-
negative integers n such that φ(i, n, t, h) > 0.

7. φ is a recursive function.
If a quantum mechanical system satisfies these criteria, then we can determine whether or not

s =
〈
t,
〈
(i1 ;n1), (i2 ;n2), . . . , (it ;nt)

〉
, j
〉

is in the set S of states of the corresponding computable physical model as follows. First, if
t = 0, then s is not in S. Next, let h1 = 0 and for each positive integer k with 1 < k ≤ t, let

hk =
〈
(i1 ;n1), (i2 ;n2), . . . , (ik−1 ;nk−1)

〉
Now we perform the following calculations for each positive integer k ≤ t. If φ(ik, nk, k, hk) =
0, then s is not in S. Otherwise, there must be finitely many non-negative integers n such that the
probability φ(ik, n, k, hk) is greater than zero. Since probabilities must sum to 1, those values for
n may be found exhaustively by calculating φ(ik, 0, k, hk), φ(ik, 1, k, hk), φ(ik, 2, k, hk), and so
on, until the the sum of these probabilities reaches 1. Let dk be the least common denominator
of these rational probabilities, and let ak be the unique positive integer such that

φ(ik, nk, k, hk) =
ak
dk

If j < a1a2 · · · at, then s is in S. Otherwise, s is not in S.

2.9 The Accuracy of Measuring Instruments
An important feature of the discrete model of planetary motion (Model 2.3.1) is that the intervals
representing time and angle measurements overlap. The amount of overlap between adjacent
intervals is determined by the accuracy of the corresponding measuring instrument. The intro-
duction of overlapping intervals is motivated by an argument such as the following.

If Model 2.3.1 were constructed using disjoint, non-overlapping intervals, then the states〈
(r ; s), (p ; q)

〉
of that model would be given by

r = i/10 p = 360
(
r − brc

)
s = (i+ 1)/10 q = 360

(
s− bsc

)
where i is an integer. In particular,

〈
(0.2 ; 0.3), (72 ; 108)

〉
and

〈
(0.3 ; 0.4), (108 ; 144)

〉
would

be two such states, with (r ; s) representing the state’s time interval, measured in years, and
with (p ; q) representing the corresponding interval of angular positions for the Earth, measured
in degrees. According to this model, if the position of the Earth is measured at time t = 0.298
years, then t is within the interval (0.2 ; 0.3), and the state of the system is

〈
(0.2 ; 0.3), (72 ; 108)

〉
.

Therefore, according to this model, the position of the Earth should be between 72 and 108
degrees. Indeed, the simple model of planetary motion (Model 2.1.1) predicts that the angular
position of the Earth at time t = 0.298 years should be 360

(
0.298 − b0.298c

)
≈ 107 degrees.

But the true position of the Earth in its orbit deviates from Model 2.1.1. In this case, the true
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position of the Earth at time t = 0.298 years is about 109 degrees,11 which is outside the interval
(72 ; 108). Therefore, if the discrete model were constructed using disjoint, non-overlapping
intervals, then the model would fail when t = 0.298 years.

But the discrete model of planetary motion (Model 2.3.1) was constructed using overlapping
intervals. In particular,〈

(0.19 ; 0.31), (68.4 ; 111.6)
〉 〈

(0.29 ; 0.41), (104.4 ; 147.6)
〉

are two states in Model 2.3.1. Note that at time t = 0.298 years, Model 2.3.1 could be in either
of these two states. Furthermore, any pair of real-valued time t and angle a measurements which
satisfy ∣∣a− 360

(
t− btc

)∣∣ < 7.2

fall within the time and angle intervals of some common state of Model 2.3.1. Since |a −
360
(
t− btc

)
| is at most 2 degrees [18] for all physically observed angles a measured at times t,

Model 2.3.1 is faithful.
It is important to point out, though, that Model 2.3.1 is faithful only if the results of measure-

ments are uncertain when they occur within the region of overlap. For example, at time t = 0.306
years, two results of a time measurement are possible, (0.19 ; 0.31) and (0.29 ; 0.41), and an ob-
server cannot be certain which of these intervals is the value of the measurement. The actual
angular position of the Earth at time t = 0.306 years is about 112 degrees, so (104.4 ; 147.6) is
the only possible result of a position measurement. Since〈

(0.19 ; 0.31), (104.4 ; 147.6)
〉

is not one of the states of Model 2.3.1, the observer is expected to realize, in retrospect, after mea-
suring the angular position, that the true time measurement must have been (0.29 ; 0.41). After
providing a model for the phenomenon of accuracy, we will be able to reformulate Model 2.3.1
so that the results of measurements no longer possess this sort of ambiguity.

But first, note that the accuracy of a measuring instrument, by definition, can only be quanti-
fied relative to some other, more precise quantity. For example, the argument above, concerning
accuracy in Model 2.3.1, makes frequent reference to exact real-valued angles and times. Indeed,
even when we express an angle measurement as an interval, such as (68.4 ; 111.6), we are im-
plying that it is possible to distinguish an angle of 68.4 degrees from an angle of 111.6 degrees,
and that other angles lie between those two values. In principle, though, it is possible to describe
the accuracy of a measuring instrument in a purely discrete manner, without any mention of real
numbers. For example, let us consider an instrument for measuring distances in meters, with the
value of a measurement represented as an integer number of meters. The accuracy of this mea-
suring instrument can be quantified relative to a second instrument which measures distances in
decimeters.

Presumably, the phenomenon of accuracy results from our inability to properly calibrate mea-
suring instruments. Although there are many different underlying causes of calibration error, it

11This is assuming that time is measured in anomalistic years, with each year beginning at perihelion passage.
During the course of a year, the position of the Earth is the true anomaly, measured relative to that perihelion passage.
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suffices to consider only one such cause for a simple model of this phenomenon. We will sup-
pose that when we measure a distance in meters, that we have difficulty aligning the measuring
instrument with the origin, so that sometimes the instrument is aligned a decimeter too far in the
negative direction, and at other times a decimeter too far in the positive direction. Hence, there
are two different physical models for the measurement. In one model the instrument is mis-
aligned in the negative direction, and in the other model it is misaligned in the positive direction.
Since we do not know which of these two models describes any one particular measurement, it
is appropriate to combine them in the following statistical ensemble.

Model 2.9.1. Let S be the set of all triples
〈
ζ(m), ζ(d), ζ(i)

〉
such that

m =
⌊d+ i

10

⌋
where d is an integer, and where i = −1 or +1. The distance, measured in meters, is given by
the function

µ
〈
ζ(m), ζ(d), ζ(i)

〉
= ζ(m)

The same distance, measured in decimeters, is given by the function

δ
〈
ζ(m), ζ(d), ζ(i)

〉
= ζ(d)

Note that the function ζ was defined in Section 2.2. Also note that the index i in each state〈
ζ(m), ζ(d), ζ(i)

〉
represents the calibration error, which is either−1 decimeter or +1 decimeter.

Model 2.9.1 is a computable physical model.
A measurement of d decimeters in Model 2.9.1 can be interpreted as corresponding to an

interval of
(
d
10
; d+1

10

)
meters. Note that a measurement of 9 decimeters (corresponding to an

interval of (0.9 ; 1.0) meters), for example, is possible in two distinct states of the model:〈
ζ(0), ζ(9), ζ(−1)

〉 〈
ζ(1), ζ(9), ζ(+1)

〉
Similarly, a measurement of 10 decimeters (corresponding to an interval of (1.0 ; 1.1) meters) is
possible in the states〈

ζ(0), ζ(10), ζ(−1)
〉 〈

ζ(1), ζ(10), ζ(+1)
〉

Hence, a measurement of 0 meters overlaps with a measurement of 1 meter on the intervals
(0.9 ; 1.0) and (1.0 ; 1.1). And in general, a measurement of m meters overlaps with a measure-
ment of m + 1 meters on the intervals (m + 0.9 ;m + 1.0) and (m + 1.0 ;m + 1.1). Therefore,
a measurement of m meters in Model 2.9.1 can be understood as corresponding to an interval of
(m− 0.1 ;m+ 1.1) meters, with adjacent intervals overlapping by 0.2 meters.

Of course, this interpretation of Model 2.9.1 presumes that decimeters can be measured with
perfect accuracy. A more realistic computable physical model can be constructed by supposing
that decimeter measurements can also be misaligned, for example, by −1 centimeter or +1 cen-
timeter. Note that centimeters are treated as unobserved, purely theoretical constructions in this
model—there is no observable quantity for centimeter measurements.
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Model 2.9.2. Let S be the set of all quintuples
〈
ζ(m), ζ(d), ζ(c), ζ(i), ζ(j)

〉
such that

m =
⌊c+ 10i

100

⌋
d =

⌊c+ j

10

⌋
where c is an integer, i = −1 or +1, and j = −1 or +1. The distance, measured in meters, is
given by the function

µ
〈
ζ(m), ζ(d), ζ(c), ζ(i), ζ(j)

〉
= ζ(m)

The same distance, measured in decimeters, is given by the function

δ
〈
ζ(m), ζ(d), ζ(c), ζ(i), ζ(j)

〉
= ζ(d)

As an important application, the model of accuracy described in this section can be used to
reformulate the discrete model of planetary motion (Model 2.3.1).

Model 2.9.3. Let S be the set of all quintuples
〈
(r ; s), (p ; q), ζ(i), ζ(j), ζ(k)

〉
such that

m =
⌊k + i

10

⌋
n =

⌊k + j

10

⌋
r =

m

10
− 1

100
p = 360

(
n

10
− 1

100
−
⌊ n
10
− 1

100

⌋)
s =

m+ 1

10
+

1

100
q = 360

(
n+ 1

10
+

1

100
−
⌊n+ 1

10
+

1

100

⌋)
for some integers m and n, for some integer k between −200000 and 200000, and where i = −1
or +1, and j = −1 or +1. The angular position of the Earth, represented as a range of angles
measured in degrees, is given by the function

α
〈
(r ; s), (p ; q), ζ(i), ζ(j), ζ(k)

〉
= (p ; q)

The time interval, measured in years, is given by the function

τ
〈
(r ; s), (p ; q), ζ(i), ζ(j), ζ(k)

〉
= (r ; s)

Note that like Model 2.3.1, this model is faithful. But the faithfulness, in this case, no longer
requires that the results of some measurements be uncertain. Instead, given any particular mea-
surement, the state of the system is uncertain. For example, there are 40 distinct states s such
that τ(s) = (0.29 ; 0.41).

In contrast to Model 2.3.1, consider what happens if Model 2.9.3 is used to explain measure-
ments taken at time t = 0.306 years. Associated with each state〈

(r ; s), (p ; q), ζ(i), ζ(j), ζ(k)
〉

in Model 2.9.3 is an integer k, intended to represent the time interval ( k
100

; k+1
100

) during which
the system is in that state. At time t = 0.306 years, k = 30, and the system could be in one of
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the following four states:〈
(0.19 ; 0.31), (68.4 ; 111.6), ζ(−1), ζ(−1), ζ(30)

〉〈
(0.29 ; 0.41), (68.4 ; 111.6), ζ(+1), ζ(−1), ζ(30)

〉〈
(0.19 ; 0.31), (104.4 ; 147.6), ζ(−1), ζ(+1), ζ(30)

〉〈
(0.29 ; 0.41), (104.4 ; 147.6), ζ(+1), ζ(+1), ζ(30)

〉
Like Model 2.3.1, two time measurements are possible, (0.19 ; 0.31) or (0.29 ; 0.41). And since
the actual angular position of the Earth at time t = 0.306 years is about 112 degrees, the measured
position of the Earth is (104.4 ; 147.6) degrees at that time. Unlike Model 2.3.1, this position
measurement is compatible with either time measurement, since〈

(0.19 ; 0.31), (104.4 ; 147.6), ζ(−1), ζ(+1), ζ(30)
〉〈

(0.29 ; 0.41), (104.4 ; 147.6), ζ(+1), ζ(+1), ζ(30)
〉

are both states of Model 2.9.3.

2.10 Isomorphism Theorems
Given a physical model with a set S of states and a set A = {α1, α2, α3, . . .} of observable
quantities, we write (S,A) as an abbreviation for that model.12

Definition 2.10.1. Two physical models (S,A) and (T,B) are isomorphic if and only if there
exist bijections φ : S → T and ψ : A → B such that α(s) = ψ(α)

(
φ(s)

)
for all s ∈ S and all

α ∈ A.

Intuitively, isomorphic physical models can be thought of as providing identical descriptions of
the same system.13

Given any particular computable physical model (S,A), there are many different models
which are isomorphic to (S,A). The following two theorems provide some convenient forms for
the representation of computable physical models. Let πni be the projection function that takes a
length n sequence of non-negative integers and outputs the ith element of the sequence. That is,
πni 〈x1, x2, . . . , xn〉 = xi for any positive integer i ≤ n.

Theorem 2.10.2. If A is a finite set, then the computable physical model (S,A) is isomorphic to
some computable physical model whose observable quantities are all projection functions.

Proof. Given a computable physical model (S,A) with A = {α1, α2, . . . , αn}, let (T,B) be the
computable physical model such that

T =
{ 〈
α1(s), α2(s), . . . , αn(s), s

〉 ∣∣ s ∈ S }
12In the interest of generality, the definition of a computable physical model places no restrictions on the set A

except that its members must be total recursive functions. Some authors prefer to restrict their attention to finite
sets A. For example, see reference [8]. Other authors may prefer to restrict their attention to observable quantities
computed by programs which belong to a recursively enumerable set.

13Rosen [35] defined a weaker notion of isomorphism. Physical models that are isomorphic in Rosen’s sense are
not necessarily isomorphic in the sense described here.
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and let B be the set of projection functions {πn+1
1 , πn+1

2 , . . . , πn+1
n }. By construction, (T,B) is

a computable physical model isomorphic to (S,A).

Theorem 2.10.3. If S is an infinite set, then the computable physical model (S,A) is isomorphic
to some computable physical model whose set of states is the set of all non-negative integers. If
S has n elements, then the computable physical model (S,A) is isomorphic to some computable
physical model whose set of states is {0, 1, . . . , n− 1}.

Proof. By definition, if (S,A) is a computable physical model, then S is a recursive set. It
immediately follows that S is recursively enumerable. In particular, if S is infinite, then let T be
the set of non-negative integers and there is a bijective recursive function ψ from T to S. If S
has n elements, then there is a bijective recursive function ψ from T = {0, 1, . . . , n − 1} to S.
Now, given A = {α1, α2, α3, . . .}, let B = {α1 ◦ψ, α2 ◦ψ, α3 ◦ψ, . . .}, where α ◦ψ denotes the
composition of the functions α and ψ. By construction, (S,A) is isomorphic to (T,B).

Although Theorem 2.10.3 implies that any computable physical model (S,A) is isomorphic
to a computable physical model (T,B) where T is a set of consecutive non-negative integers
beginning with zero, there is no effective procedure for constructing a program that computes
the characteristic function of T , given a program for computing the characteristic function of S
when S is a finite set. That is, Theorem 2.10.3 does not hold uniformly.

Definition 2.10.4. A non-negative integer physical model is a pair (S,A) where S is a set of
non-negative integers and where each member of A is a partial function from the non-negative
integers to the non-negative integers. S is the set of states of the model, and A is the set of
observable quantities of the model.

Note that if α is an observable quantity of a non-negative integer physical model (S,A),
then α might be undefined for some inputs. The non-negative integer physical models form a
more general class of objects than the computable physical models. In particular, a computable
physical model is a non-negative integer physical model whose set of states is a recursive set and
whose observable quantities are total recursive functions.

Theorem 2.10.5. A non-negative integer physical model (S,A) is isomorphic to some com-
putable physical model if S is a recursively enumerable set and if each member of A is a partial
recursive function whose domain includes all the members of S.

Proof. Given a non-negative integer physical model (S,A), note that the construction of the
computable physical model (T,B) in the proof of Theorem 2.10.3 only requires that S be a
recursively enumerable set and that each member of A be a partial recursive function whose
domain includes all the members of S. Therefore, any such non-negative integer physical model
(S,A) is isomorphic to the computable physical model (T,B).

Let φ be any partial recursive function and let S be the largest set of consecutive non-negative
integers beginning with zero such that φ(s) is defined for each s ∈ S. Let A be the set {πm1 ◦
φ, πm2 ◦φ, . . . , πmm◦φ} for some non-negative integerm. By Theorem 2.10.5, (S,A) is isomorphic
to a computable physical model. We say that any such computable physical model is determined
by φ.
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Theorem 2.10.6. Every computable physical model with finitely many observable quantities is
isomorphic to a computable physical model determined by a partial recursive function.

Proof. Let (S,A) be a computable physical model with A = {α1, α2, . . . , αm}, and let T , B,
and ψ be defined as in the proof of Theorem 2.10.3. We will show that (T,B) is determined
by a partial recursive function φ. Now, if S has only n states, then let φ(i) be undefined for all
non-negative integers i ≥ n. Otherwise, define

φ(i) =
〈
α1(ψ(i)), α2(ψ(i)), . . . , αm(ψ(i))

〉
By construction, (T,B) is determined by φ.

A physical model (S,A) is said to be reduced if and only if for each pair of distinct states s1
and s2 in S, there exists an α ∈ A with α(s1) 6= α(s2).

Theorem 2.10.7. If (S,A) and (T,B) are isomorphic physical models and (S,A) is reduced,
then (T,B) is also a reduced physical model.

Proof. Let (S,A) and (T,B) be isomorphic physical models and let (S,A) be reduced. Since
(S,A) and (T,B) are isomorphic, there exist bijections φ : S → T and ψ : A → B such that
α(s) = ψ(α)

(
φ(s)

)
for all s ∈ S and all α ∈ A. Now suppose that t1 and t2 are distinct states

in T . Because φ is a bijection, φ−1(t1) and φ−1(t2) are distinct states in S. But S is reduced, so
there must exist an α ∈ A such that α

(
φ−1(t1)

)
6= α

(
φ−1(t2)

)
. Furthermore,

α
(
φ−1(t1)

)
= ψ(α)

(
φ
(
φ−1(t1)

))
= ψ(α)(t1)

and
α
(
φ−1(t2)

)
= ψ(α)

(
φ
(
φ−1(t2)

))
= ψ(α)(t2)

Hence, there exists a β ∈ B such that β(t1) 6= β(t2), namely β = ψ(α). We may conclude that
the physical model (T,B) is reduced.

An epimorphism from a physical model (S,A) to a physical model (T,B) is a pair of func-
tions (φ, ψ) such that φ is a surjection from S to T and ψ is a bijection from A to B, where
α(s) = ψ(α)

(
φ(s)

)
for all s ∈ S and all α ∈ A. Two physical models (S1, A1) and (S2, A2)

are said to be observationally equivalent if and only if there are epimorphisms from (S1, A1) to
(T,B) and from (S2, A2) to (T,B), where (T,B) is some reduced physical model.

Theorem 2.10.8. If (S1, A1) and (S2, A2) are isomorphic physical models, then (S1, A1) and
(S2, A2) are observationally equivalent.

Proof. Define an equivalence relation on S2 so that r ∈ S2 is related to s ∈ S2 if and only if
α(r) = α(s) for all α ∈ A2. Let T be the corresponding set of equivalence classes of S2. For each
α ∈ A2, define a function α′ so that if s ∈ t ∈ T , then α′(t) = α(s). Let B = {α′ | α ∈ A2 }.
By construction, (T,B) is a reduced physical model. Also note that there is an epimorphism
(φ, ψ) from (S2, A2) to (T,B). Namely, φ is the function that maps each member of S2 to its
corresponding equivalence class in T , and ψ is the function that maps each α ∈ A2 to α′ ∈ B.
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Now suppose that (S1, A1) and (S2, A2) are isomorphic. By definition, there are bijections
φ′ from S1 to S2 and ψ′ from A1 to A2 such that α(s) = ψ′(α)

(
φ′(s)

)
for all s ∈ S1 and all

α ∈ A1. Since (φ, ψ) is an epimorphism from (S2, A2) to (T,B), it immediately follows that
(φ ◦ φ′, ψ ◦ψ′) is an epimorphism from (S1, A1) to (T,B). We may conclude, by definition, that
(S1, A1) and (S2, A2) are observationally equivalent.

Intuitively, two physical models are observationally equivalent when they both make the
same observable predictions. For example, as was discussed in Section 2.5, the model obtained
by omitting the observable quantities α2 and τ2 from Model 2.5.1 is observationally equivalent
to the discrete model of planetary motion (Model 2.3.1). Moreover, if a physical model (S1, A1)
is faithful, and if (S1, A1) is observationally equivalent to (S2, A2), then (S2, A2) is also faithful.

It is important to note that the converse of Theorem 2.10.8 does not hold. That is, observation-
ally equivalent models are not necessarily isomorphic. Consider, for example, the computable
physical models

(
{0, 1}, {α}

)
and

(
{0, 1, 2}, {β}

)
where α(s) = s for all s ∈ {0, 1} and where

β(s) = bs/2c for all s ∈ {0, 1, 2}. These models are not isomorphic because {0, 1} and {0, 1, 2}
have different cardinalities. Yet, they are observationally equivalent, since both models have a
single observable quantity whose only possible values are 0 and 1. Physical models that are
isomorphic must not only make the same observable predictions, but must also have the same
structure. The models

(
{0, 1}, {α}

)
and

(
{0, 1, 2}, {β}

)
have different structures because, as-

suming that the states are equally likely, they both give different answers to the question, “What
is the probability that the observable quantity has value 0?”

2.11 Oracles and Effective Topologies
Given any set X , we can impose a topology on X . Let B be a basis for this topology. The
members of B are said to be basis elements. We say that a set Lx ⊆ B is a local basis for a point
x ∈ X if and only if the following two conditions hold.

1. For each L ∈ Lx, x is a member of L.

2. For each B ∈ B with x ∈ B, there exists an L ∈ Lx with L ⊆ B.
Note that every point x ∈ X has a local basis. For example, the set

Lx = {B ∈ B | x ∈ B }

of all basis elements that contain x is a local basis for x.
If the basis B is countable, then each basis element can be encoded as a non-negative integer.

In that case, choose some encoding and let ν(n) be the basis element encoded by n. We allow
for the possibility that a basis element may be encoded by more than one non-negative integer.
(That is, ν is not necessarily an injection.) The domain of ν, denoted domB ν, is the set of all
non-negative integers n such that ν(n) ∈ B. For any function φ : A→ B and any set C ⊆ A, let
φ(C) = {φ(c) | c ∈ C} denote the image of C under φ. We let N denote the set of non-negative
integers.

Definition 2.11.1. A function φ : N→ domB ν is said to be an oracle for a point x, with basis B
and coding ν, if and only if ν

(
φ(N)

)
is a local basis for x.
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An oracle φ for x is complete if and only if every n ∈ domB ν such that x ∈ ν(n) is a member
of φ(N). An oracle is said to be nested if and only if ν

(
φ(n+ 1)

)
⊆ ν

(
φ(n)

)
for all n ∈ N.

A pair (B, ν) is said to be an effective topology if and only if B is a countable basis for a
T0 topology and ν is a coding for B. Effective topologies were first introduced in the theory
of type-two effectivity [27, 48]. In accordance with that theory, we use an oracle for x, with a
basis B and coding ν, as a representation of the point x in an effective topology (B, ν). Because
effective topologies are T0, no two distinct points are ever represented by the same oracle.

Of special interest are effective topologies where the subset relation

{ 〈b1, b2〉 | ν(b1) ⊆ ν(b2) & b1 ∈ domB ν & b2 ∈ domB ν }

is a recursively enumerable set.14 In particular, if (B, ν) has a recursively enumerable subset
relation, then

domB ν = { b | ν(b) ⊆ ν(b) & b ∈ domB ν }
is also a recursively enumerable set.

Theorem 2.11.2. Let φ be an oracle for x in an effective topology (B, ν) with a recursively
enumerable subset relation. Then there exists a complete oracle ψ for x in (B, ν) that is recursive
relative to φ uniformly.

Proof. Suppose that φ is an oracle for x in an effective topology (B, ν) with a recursively enu-
merable subset relation. Since ν

(
φ(N)

)
is a local basis for x, it follows that for each b ∈ domB ν,

x ∈ ν(b) if and only if there exists an n ∈ N such that ν
(
φ(n)

)
⊆ ν(b). Hence,{

b ∈ domB ν
∣∣ (∃n ∈ N)

[
ν
(
φ(n)

)
⊆ ν(b)

] }
is the set of encodings of all basis elements that contain x. But this set is recursively enumerable
relative to φ because (B, ν) has a recursively enumerable subset relation. Therefore, there exists
a function ψ : N→ domB ν, recursive relative to φ, such that ν

(
ψ(N)

)
is this set. By definition,

ψ is a complete oracle for x.

Theorem 2.11.3. Let φ be an oracle for x in an effective topology (B, ν) with a recursively
enumerable subset relation. Then there exists a nested oracle ψ for x in (B, ν) that is recursive
relative to φ uniformly.

Proof. Suppose that φ is an oracle for x in an effective topology (B, ν) with a recursively enumer-
able subset relation. Note that for each pair of basis elements B1 and B2 such that x ∈ B1 ∩B2,
there exists a basis element B3 with x ∈ B3 ⊆ B1 ∩ B2, by the definition of a basis. Therefore,
since ν

(
φ(N)

)
is a local basis for x, there must exist an m ∈ N such that

x ∈ ν
(
φ(m)

)
⊆ B3 ⊆ B1 ∩B2

Now define ψ : N→ domB ν recursively, relative to φ, as follows. Let ψ(0) = φ(0) and for each
n ∈ N let ψ(n+ 1) = φ(m) for some m ∈ N such that

ν
(
φ(m)

)
⊆ ν

(
ψ(n)

)
∩ ν
(
φ(n+ 1)

)
14An effective topology with a recursively enumerable subset relation is an example of a computable topology, as

defined in reference [48]. Not all computable topologies have recursively enumerable subset relations.
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We can find m recursively given ψ(n) and φ because the subset relation for (B, ν) is recursively
enumerable, and the set of all m ∈ N such that

ν
(
φ(m)

)
⊆ ν

(
ψ(n)

)
& ν

(
φ(m)

)
⊆ ν

(
φ(n+ 1)

)
is therefore recursively enumerable relative to φ. We may conclude that ψ is nested because

ν
(
ψ(n+ 1)

)
⊆ ν

(
ψ(n)

)
∩ ν
(
φ(n+ 1)

)
⊆ ν

(
ψ(n)

)
for all n ∈ N, and that ψ is an oracle for x because x ∈ ν

(
ψ(0)

)
= ν

(
φ(0)

)
and

x ∈ ν
(
ψ(n+ 1)

)
⊆ ν

(
ψ(n)

)
∩ ν
(
φ(n+ 1)

)
⊆ ν

(
φ(n+ 1)

)
for all n ∈ N.

Define ι(a ; b) to be the set of all real numbers x such that a < x < b, and let I be the set of
all ι(a ; b) such that a and b are rational numbers with a < b. The members of I are said to be
rational intervals. Note that I is a basis for the standard topology of the real numbers. Indeed,
the oracles for real numbers that were introduced in Section 2.4 were nested oracles with basis I
and coding ι. Another commonly-used basis for the standard topology of the real numbers is the
set I10,c of decimal intervals with accuracy factor c, where c is a positive rational number, and
where I10,c is defined to be the set of all ι(a ; b) such that

a =
m

10n
− c

10n
b =

m+ 1

10n
+

c

10n

for some integer m and some positive integer n. We call n the number of digits of precision of
(a ; b).

Note that both (I, ι) and (I10,c , ι) have recursively enumerable subset relations. The follow-
ing theorem asserts that if φ is an oracle for a real number x with basis I and coding ι, then there
exists an oracle ψ for x with basis I10,c and coding ι that is recursive relative to φ uniformly.

Theorem 2.11.4. Let (A, ν) and (B, ν) be effective topologies with recursively enumerable sub-
set relations such that B ⊆ A, and such that A and B are bases for the same topology. If φ is an
oracle for x in (A, ν), then there exists an oracle ψ for x in (B, ν) that is recursive relative to φ
uniformly.

Proof. Suppose that (A, ν) and (B, ν) are effective topologies as described in the statement of
the theorem, and that φ is an oracle for a point x in (A, ν). By definition,

x ∈ ν
(
φ(n)

)
for every n ∈ N. And because ν

(
φ(n)

)
is an open set, it is a union of basis elements from B.

Hence, there must exist a B ∈ B such that

x ∈ B ⊆ ν
(
φ(n)

)
36



But ν
(
φ(N)

)
is a local basis for x, and B is a basis element in A, so there exists an m ∈ N such

that x ∈ ν
(
φ(m)

)
⊆ B. Therefore, we have that for each n ∈ N there exist B ∈ B and m ∈ N

such that
x ∈ ν

(
φ(m)

)
⊆ B ⊆ ν

(
φ(n)

)
Now, since (B, ν) has a recursively enumerable subset relation, domB ν is a recursively enumer-
able set. Then, because (A, ν) also has a recursively enumerable subset relation, the set{

〈m, b〉
∣∣ ν(φ(m)

)
⊆ ν(b) ⊆ ν

(
φ(n)

)
& m ∈ N & b ∈ domB ν

}
is recursively enumerable relative to φ, for any n ∈ N. Therefore, there is a function ψ : N →
domB ν, recursive relative to φ, such that ψ(n) = b for all n ∈ N, where

ν
(
φ(m)

)
⊆ ν(b) ⊆ ν

(
φ(n)

)
for some m ∈ N. But this function ψ is an oracle for x in (B, ν), because

x ∈ ν
(
φ(m)

)
⊆ ν

(
ψ(n)

)
⊆ ν

(
φ(n)

)
for all n ∈ N.

2.12 Basic Representations of Sets
Definition 2.12.1. Let (B, ν) be an effective topology on a set X , and let A be any subset of
X . We say that a set R of non-negative integers is a basic representation of A in the effective
topology (B, ν) if and only if the following two conditions hold.

1. R ⊆ domB ν

2. x ∈ A if and only if there exists a local basis Lx for x with Lx ⊆ ν(R).

Note that condition 2 of the definition ensures that no two distinct sets in (B, ν) have the same
basic representation. Note further that if R is a basic representation of A, then {A ∩ ν(r) |
r ∈ R } is a basis for the subspace topology on A, and this is an effective topology with coding
λr
[
A ∩ ν(r)

]
.

In an effective topology we use basic representations to represent sets of points, but not all
sets of points have basic representations. For example, there are 22

ℵ0 many sets of real numbers,
but since a basic representation is a set of non-negative integers, there are at most 2ℵ0 many basic
representations. Nevertheless, many commonly-studied sets have basic representations.15

15In the effective topology (I, ι), the set of rational numbers does not have a basic representation, but the set of
irrational numbers has the basic representation

R =
{(m

n!
;
m+ 1

n!

) ∣∣∣ m ∈ Z & n ∈ N
}

where Z denotes the set of integers. It is tempting to conjecture that the sets with basic representations in an
effective topology (B, ν) are exactly the Gδ sets, but there is a trivial counterexample to this conjecture if the
effective topology is not T1.
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Theorem 2.12.2. Let A be a set in an effective topology (B, ν).
1. If A is an open set, then A has a basic representation.
2. If A is a closed set, then A has a basic representation.

Proof. Suppose that A is an open set in the effective topology (B, ν) and let

R = { r ∈ domB ν | ν(r) ⊆ A }

Clearly, R ⊆ domB ν and if x /∈ A then there does not exist a local basis Lx for x with Lx ⊆
ν(R), since no member of ν(R) contains x. Alternatively, if x ∈ A then, by the definition of
a basis, for each basis element B1 that contains x there exists some basis element B2 such that
x ∈ B2 ⊆ B1 ∩ A. That is, if x ∈ A then for each basis element B1 with x ∈ B1, there exists
a basis element B2 ∈ {B ∈ B | x ∈ B ⊆ A } with B2 ⊆ B1. It immediately follows that
Lx = {B ∈ B | x ∈ B ⊆ A } is a local basis for x and Lx ⊆ ν(R). By definition, R is a basic
representation of A.

Now, if A is a closed set in (B, ν), then let

R = { r ∈ domB ν | A ∩ ν(r) 6= ∅ }

Clearly, R ⊆ domB ν and if x ∈ A then there exists a local basis Lx for x with Lx ⊆ ν(R).
Namely, Lx is the set of all basis elements that contain x. Alternatively, if x /∈ A, then since A is
closed, every local basis Lx for x contains a basis element that does not intersect A. Therefore,
Lx * ν(R). We may conclude, by definition, that R is a basic representation of A.

Although we use a basic representation R to represent a set of points in an effective topology,
the following theorem demonstrates that there is, in general, no effective procedure (relative to
R) for finding oracles for those points. Nevertheless, if we restrict our attention to certain special
classes of basic representations R, then effective procedures do exist. See Section 2.15.

Theorem 2.12.3. Let B be a countable basis for the standard topology of Rn and let ν be a
coding for the basis. Then there does not exist a partial recursive function φ satisfying the
condition that for every singleton set {x} ⊆ Rn and for every basic representation Rx of {x} in
the effective topology (B, ν), the function λm

[
φ(Rx,m)

]
is an oracle for x in (B, ν).

Proof. Let (B, ν) be an effective topology as in the statement of the theorem and suppose, as an
assumption to be shown contradictory, that there exists a partial recursive function φ satisfying
the condition that for every singleton set {x} ⊆ Rn and for every basic representation Rx of {x}
in the effective topology (B, ν), the function λm

[
φ(Rx,m)

]
is an oracle for x in (B, ν). Now

consider any two distinct points x ∈ Rn and y ∈ Rn, and let Rx be a basic representation of {x}
in (B, ν). Since the standard topology of Rn is T1, there must exist a non-negative integer k such
that φ(Rx, k) is defined and

y /∈ ν
(
φ(Rx, k)

)
Next, choose a program for computing φ. Note that since the computation for φ(Rx, k) has only
finitely many steps, only finitely many non-negative integers are tested for membership in Rx

during the course of the computation. Let C be the collection of all i ∈ N such that i ∈ Rx

and such that i is tested for membership in Rx during the course of the computation of φ(Rx, k).
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Similarly, let D be the collection of all i ∈ N such that i /∈ Rx and such that i is tested for
membership in Rx during the course of the computation of φ(Rx, k).

Now, choose any oracle ψ for y in (B, ν). Note that ψ(N) is a basic representation for {y} in
(B, ν). And because C and D are finite sets,

Ry =
(
ψ(N) ∪ C

)
−D

is also a basic representation for {y} in (B, ν). It follows that φ(Rx, k) = φ(Ry, k), because
whenever i is tested for membership in Rx during the course of the computation of φ(Rx, k),
i ∈ Rx if and only if i ∈ Ry. Therefore,

y /∈ ν
(
φ(Rx, k)

)
= ν

(
φ(Ry, k)

)
But by the definition of φ, λm

[
φ(Ry,m)

]
is an oracle for y. Hence,

y ∈ ν
(
φ(Ry, k)

)
This is a contradiction, so the assumption must be false. The partial recursive function φ does
not exist.

2.13 Basic Representations of Physical Models
Let R be the set of all real numbers. For any two sets A and B, let A × B = { (a, b) | a ∈
A & b ∈ B } be the Cartesian product of A with B. We write Ak to denote the set formed by
taking the Cartesian product of A with itself k many times. For example, A3 = (A × A) × A.
As with Cantor’s pairing function, (a, b, c) is an abbreviation for ((a, b), c), and so on. Similarly,
we define the Cartesian projection function $n

i so that$n
i (x1, x2, . . . , xn) = xi for each positive

integer i ≤ n.
A physical model (S,A) with finitely many observable quantities is said to be in normal form

if and only if S ⊆ Rn and A = {$n
1 , $

n
2 , . . . , $

n
n}.

Theorem 2.13.1. The following two conditions hold for any physical model (S,A) with finitely
many observable quantities.

1. (S,A) is observationally equivalent to a physical model in normal form.
2. (S,A) is isomorphic to a physical model in normal form if and only if (S,A) is a reduced

physical model.

Proof. Begin by noting that if (T,B) is a physical model in normal form, and if t1 6= t2 for
any t1 ∈ T and t2 ∈ T , then $n

i (t1) 6= $n
i (t2) for some positive integer i ≤ n. Therefore,

by definition, every physical model in normal form is a reduced physical model. It immediately
follows from Theorem 2.10.7 that if a physical model (S,A) is isomorphic to a physical model
in normal form, then (S,A) is a reduced physical model.

To prove condition 1, suppose that (S,A) is a physical model such thatA = {α1, α2, . . . , αn}.
Define

T =
{ (
α1(s), α2(s), . . . , αn(s)

) ∣∣ s ∈ S }
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and let B = {$n
1 , $

n
2 , . . . , $

n
n}. Note that (T,B) is a physical model in normal form. Also note

that the function φ : S → T given by

φ(s) =
(
α1(s), α2(s), . . . , αn(s)

)
is a surjection, and that αi(s) = $n

i

(
φ(s)

)
for all s ∈ S and all positive integers i ≤ n. There-

fore, there is an epimorphism from (S,A) to the reduced physical model (T,B). Trivially, there
is also an epimorphism from (T,B) to itself. We may conclude that (S,A) is observationally
equivalent to (T,B).

To prove condition 2, consider the special case where (S,A) is a reduced physical model.
Because (S,A) is reduced, we have that if s1 6= s2 for any s1 ∈ S and s2 ∈ S, then there
exists a positive integer i ≤ n such that αi(s1) 6= αi(s2). This implies that if s1 6= s2 then
φ(s1) 6= φ(s2). Hence, φ is an injection. Since φ is also a surjection, φ is a bijection. Therefore,
if (S,A) is a reduced physical model, then (S,A) and (T,B) are isomorphic. We have already
proved the converse, that if (S,A) is isomorphic to a physical model in normal form, then (S,A)
is a reduced physical model. Hence, condition 2 holds.

The notion of a basic representation of a set can be generalized so that we may speak of
basic representations of physical models in normal form. Given a physical model (S,A) in
normal form with A = {$n

1 , $
n
2 , . . . , $

n
n}, we may choose sets X1, X2, . . . , Xn such that

$n
i (S) ⊆ Xi ⊆ R for each positive integer i ≤ n, and we may impose effective topologies

(B1, ν1), (B2, ν2), . . . , (Bn, νn) on these sets.16 Define

(B1, ν1)⊗ (B2, ν2)⊗ · · · ⊗ (Bn, νn)

to be the effective topology with basis B such that

B = {B1 ×B2 × · · · ×Bn | B1 ∈ B1 & B2 ∈ B2 & · · · & Bn ∈ Bn }

and with coding ν such that

ν〈a1, a2, . . . , an〉 = ν1(a1)× ν2(a2)× · · · × νn(an)

We call (B, ν) the effective product of (B1, ν1), (B2, ν2), . . . , (Bn, νn). Note that S is a set of
points in the effective topology (B, ν). A physical model (R,H) is said to be a basic represen-
tation of the physical model (S,A) if R is a basic representation of S in the effective topology
(B, ν) and if H is the set {πn1 , πn2 , . . . , πnn} of projection functions.

For example, the non-discrete continuous computable physical model of planetary motion
(Model 2.4.1) is a basic representation of the simple model of planetary motion (Model 2.1.1).
In particular, Model 2.4.1 is obtained by imposing the effective topology (I10,c , ι) on the time
in Model 2.1.1, where c = 1

10
, and by imposing the effective topology described in Footnote 4

on the angular position in Model 2.1.1. The product of these topologies is the topology for the
surface of a cylinder. The states of Model 2.1.1 are a spiral path on the surface of that cylinder,
and the set of states of Model 2.4.1 is a basic representation of the path.

16If (S,A) is faithful, then the bases for these topologies are uniquely determined by the physical operations used
to measure each of the observable quantities. For example, if an observable quantity is an angle measurement, then
the corresponding topology is the topology of a circle, and each basis element corresponds to a particular reading on
the instrument that is used to measure angles. The idea that basis elements correspond to the values of measurements
appears to have originated with reference [49].
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2.14 Data and Predictions
In order to make predictions, we are often interested in finding the set of all states of a physical
model which could account for a given collection of simultaneous measurements. That is, given
a physical model (S,A) with A = {α1, α2, α3, . . .}, and given real numbers x1, x2, . . . , xk, we
are interested in the set

P = { s ∈ S | α1(s) = x1 & α2(s) = x2 & · · · & αk(s) = xk }

In this context, the real numbers x1, x2, . . . , xk are said to be the data, and P is the corresponding
set of states predicted by the model.

The following theorem shows that if we are given a basic representation of a physical model
(S,A) in normal form, together with complete oracles for the real numbers x1, x2, . . . , xk, then
there is an effective procedure for finding a basic representation of the set P , provided that the
underlying topology is T1. (This is rather weak requirement, since almost all topologies with
practical applications in the sciences are T1.)

Theorem 2.14.1. Let (S,A) be a physical model in normal form with A = {$n
1 , $

n
2 , . . . , $

n
n}

and let (R,H) be a basic representation of (S,A) in a T1 effective topology

(B, ν) = (B1, ν1)⊗ (B2, ν2)⊗ · · · ⊗ (Bn, νn)

If k ≤ n and φ1, φ2, . . . , φk are complete oracles for x1, x2, . . . , xk in the effective topologies
(B1, ν1), (B2, ν2), . . . , (Bk, νk), then there is a basic representation of

P = { s ∈ S | $n
1 (s) = x1 & $n

2 (s) = x2 & · · · & $n
k (s) = xk }

in (B, ν) that is recursively enumerable relative to R, φ1, φ2, . . . , φk uniformly.

Proof. Let the variables be defined as in the statement of the theorem and note that the set

Q =
{
r ∈ R

∣∣ (∀ i ∈ {1, 2, . . . , k})(∃m ∈ N
)[
πni (r) = φi(m)

] }
is recursively enumerable relative to R, φ1, φ2, . . . , φk uniformly. (In fact, Q is recursively
enumerable relative to ξ, φ1, φ2, . . . , φk uniformly, where ξ is a function that merely enumerates
the members of R.) We claim that Q is a basic representation of P in (B, ν). Since Q ⊆ R ⊆
domB ν, it suffices to prove that s ∈ P if and only if there exists a local basis Ls for s with
Ls ⊆ ν(Q). Or equivalently, it suffices to prove that s ∈ P if and only if there exists an oracle ψ
for s with ψ(N) ⊆ Q.

Suppose s ∈ P . Because R is a basic representation of S in (B, ν), there is an oracle
ψ for s in (B, ν) such that ψ(N) ⊆ R. Moreover, for each positive integer i ≤ k, the set
νi
(
πni
(
ψ(N)

))
is a local basis for $n

i (s) = xi. And since φi is a complete oracle for xi, we have
that πni

(
ψ(N)

)
⊆ φi(N). Hence, if r = ψ(l) for some l ∈ N, then there exists an m ∈ N such

that πni (r) = φi(m). Therefore, by the definition of Q, ψ(N) ⊆ Q.
Conversely, suppose that ψ is an oracle for some point s in (B, ν), and that ψ(N) ⊆ Q. Then,

for each positive integer i ≤ k, we have that πni
(
ψ(N)

)
⊆ φi(N). Of course, νi

(
πni
(
ψ(N)

))
is a local basis for $n

i (s) because ν
(
ψ(N)

)
is a local basis for s. And by the definition of φi,
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νi
(
φi(N)

)
is a local basis for xi. Hence, a local basis for $n

i (s) is a subset of a local basis for
xi in the effective topology (Bi, νi). But because (B, ν) is a T1 effective topology, (Bi, νi) is also
T1. In a T1 topology, local bases for any two distinct points z1 and z2 must contain basis elements
B1 and B2, respectively, such that z2 /∈ B1 and z1 /∈ B2. Therefore, since a local basis for $n

i (s)
is a subset of a local basis for xi, it must be the case that $n

i (s) = xi. We may conclude, by the
definition of P , that s ∈ P .

A set S ⊆ Rn is said to be the graph of a function ψ : Rk → Rn−k, if and only if

S = { (x1, . . . , xk, xk+1, . . . , xn) ∈ Rn | ψ(x1, . . . , xk) = (xk+1, . . . , xn) }

And we say that a physical model (S,A) is induced by a function ψ : Rk → Rn−k if and
only if (S,A) is in normal form and S is the graph of ψ. Therefore, if (S,A) is induced by
ψ : Rk → Rn−k and we are given k real numbers x1, x2, . . . , xk as data, then the corresponding
set of states predicted by (S,A) is a singleton set P = {s}. Namely,

s = (x1, x2, . . . , xk, xk+1, . . . , xn)

where xk+1, xk+2, . . . , xn are the real numbers uniquely determined by the equation

ψ(x1, x2, . . . , xk) = (xk+1, xk+2, . . . , xn)

It then follows from Theorem 2.14.1 that given complete oracles for x1, x2, . . . , xk in the standard
topology of R, and given a basic representation R of (S,A) in the standard topology of Rn, there
is an effective procedure (relative to the given oracles and R) for finding a basic representation
of {s}. But by Theorem 2.12.3 there is, in general, no effective procedure for finding an oracle
for s. In the next section we describe a special class of basic representations for which such an
effective procedure does exist.

2.15 Kreisel’s Criterion
A common way to interpret Kreisel’s criterion is to say that a physical model (S,A) satis-
fies Kreisel’s criterion on Rk if and only if (S,A) is induced by a function ψ : Rk → Rn−k

for some positive integer n > k, and for each positive integer j ≤ n − k there is a par-
tial recursive function κj such that if φ1, φ2, . . . , φk are nested oracles for real numbers x1,
x2, . . . , xk in the effective topology (I, ι), then κj(φ1, φ2, . . . , φk,m) is defined for all m ∈ N
and λm

[
κj(φ1, φ2, . . . , φk,m)

]
is a nested oracle for $n−k

j

(
ψ(x1, x2, . . . , xk)

)
in (I, ι). Note by

Theorem 2.11.4 that the effective topology (I, ι) in this statement can be replaced, without loss
of generality, with any effective topology (B, ι) that has a recursively enumerable subset relation
and such that B ⊆ I is a basis for the standard topology of the real numbers.

Practical computer models that use multiple-precision interval arithmetic [30] provide exam-
ples of physical models satisfying Kreisel’s criterion. Typically, such models are induced by a
function ψ : Rk → Rn−k where, for each positive integer j ≤ n− k, there is a recursive function
ξj such that if the data x1, x2, . . . , xk lie within the intervals (a1 ; b1), (a2 ; b2), . . . , (ak ; bk)
respectively, then $n−k

j

(
ψ(x1, x2, . . . , xk)

)
lies within the interval

ξj
(
(a1 ; b1), (a2 ; b2), . . . , (ak ; bk)

)
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In such a case, the partial recursive function κj in Kreisel’s criterion is given by

κj(φ1, φ2, . . . , φk,m) = ξj
(
φ1(m), φ2(m), . . . , φk(m)

)
We are now prepared to state the following theorem, which holds uniformly.

Theorem 2.15.1. If a physical model satisfies Kreisel’s criterion on Rk, then the model has a
basic representation that is isomorphic to a computable physical model.

Proof. Suppose that (S,A) is a physical model satisfying Kreisel’s criterion on Rk. In par-
ticular, suppose that (S,A) is induced by a function ψ : Rk → Rn−k, and for each positive
integer j ≤ n − k suppose there is a partial recursive function κj such that if φ1, φ2, . . . , φk
are nested oracles for real numbers x1, x2, . . . , xk in the effective topology (I10,c , ι), then
κj(φ1, φ2, . . . , φk,m) is defined for all m ∈ N and λm

[
κj(φ1, φ2, . . . , φk,m)

]
is a nested oracle

for $n−k
j

(
ψ(x1, x2, . . . , xk)

)
in (I10,c , ι), where c is a positive rational number.

Let I = domI10,c ι. Then, for each interval u ∈ I with midpoint p and with d digits of
precision, define the partial recursive function σu so that

σu(l) =

{
op(l) if l < d

undefined if l ≥ d

for each l ∈ N, where op is the standard decimal oracle described in Section 2.4. Note that for
each x ∈ R and each m ∈ N, σox(m)(l) = ox(l) for all non-negative integers l ≤ m. Now, for
each positive integer j ≤ n−k, choose a program to compute κj and let κj(σu1 , σu2 , . . . , σuk ,m)
be undefined if for some positive integer i ≤ k and some l ∈ N the program calls σui(l) in the
course of the computation and σui(l) is undefined. Note that given u1, u2, . . . , uk, the set of
all m ∈ N such that κj(σu1 , σu2 , . . . , σuk ,m) is defined is a recursively enumerable set, since
for each m we can follow the computation and test whether or not σui(l) is defined whenever
σui(l) is called by the program, for any i and l. Let R be the set of all 〈u1, u2, . . . , un〉 such
that ui ∈ I for each positive integer i ≤ k, and such that uk+j = κj(σu1 , σu2 , . . . , σuk ,m) for
some m ∈ N if j ≤ n − k is a positive integer. Note that R is also recursively enumerable. Let
H = {πn1 , πn2 , . . . , πnn}. We claim that (R,H) is a basic representation of (S,A).

As a brief digression from the proof, suppose that 〈u1, u2, . . . , un〉 ∈ R and note that for
each positive integer i ≤ k, if xi ∈ ι(ui) then there exists a nested oracle φi for xi in (I10,c , ι)
such that φi(m) = σui(m) for all m ∈ N where σui(m) is defined. And since for each
positive integer j ≤ n − k we have that λm

[
κj(φ1, φ2, . . . , φk,m)

]
is a nested oracle for

xk+j = $n−k
j

(
ψ(x1, x2, . . . , xk)

)
, it follows that

xk+j ∈ ι
(
κj(φ1, φ2, . . . , φk,m)

)
= ι
(
κj(σu1 , σu2 , . . . , σuk ,m)

)
= ι(uk+j)

for some m ∈ N. Hence, given any 〈u1, u2, . . . , un〉 ∈ R, if xi ∈ ι(ui) for each positive integer
i ≤ k, then xk+j = $n−k

j

(
ψ(x1, x2, . . . , xk)

)
∈ ι(uk+j) for each positive integer j ≤ n− k.

Now, returning to the proof of Theorem 2.15.1, let

(B, ν) =
n factors︷ ︸︸ ︷

(I10,c , ι)⊗ (I10,c , ι)⊗ · · · ⊗ (I10,c , ι)
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and note that the basis of (B, ν) is a basis for the standard topology of Rn. Note that because
(S,A) satisfies Kreisel’s criterion, the function ψ which induces (S,A) is continuous. And since
continuous real functions have closed graphs, the set S is closed in the standard topology of Rn.
Because S is closed, to prove that R is a basic representation of S in (B, ν), it suffices to show
that for each r ∈ R there exists an x ∈ S with x ∈ ν(r), and that for each x ∈ S there is a local
basis Lx for x with Lx ⊆ ν(R).

By the definition of R, if r = 〈u1, u2, . . . , un〉 ∈ R then for each positive integer j ≤ n− k,

uk+j = κj(σu1 , σu2 , . . . , σuk ,m)

for some m ∈ N. So, if pi is the midpoint of the interval ui for each positive integer i ≤ k , then

uk+j = κj(op1 , op2 , . . . , opk ,m)

And by Kreisel’s criterion λm
[
κj(op1 , op2 , . . . , opk ,m)

]
is an oracle for$n−k

j

(
ψ(p1, p2, . . . , pk)

)
.

Therefore, for each r ∈ R there exists an (x1, x2, . . . , xn) ∈ S with (x1, x2, . . . , xn) ∈ ν(r).
Namely, xi = pi for each positive integer i ≤ k and

xk+j = $n−k
j

(
ψ(p1, p2, . . . , pk)

)
for each positive integer j ≤ n− k.

Now suppose that (x1, x2, . . . , xn) is an arbitrary member of S. Again, by Kreisel’s cri-
terion, for each positive integer j ≤ n − k, the function λm

[
κj(ox1 , ox2 , . . . , oxk ,m)

]
is an

oracle for xk+j . But for each m ∈ N and each positive integer i ≤ k, the computation for
κj(ox1 , ox2 , . . . , oxk ,m) has only finitely many steps, and so the oracle oxi can only be called
finitely many times during the course of the computation. Hence, for each m ∈ N there ex-
ists a non-negative integer li for each i ≤ k, such that for any non-negative integer l′i ≥ li, if
ui = oxi(l

′
i) then κj(σu1 , σu2 , . . . , σuk ,m) is defined and

κj(σu1 , σu2 , . . . , σuk ,m) = κj(ox1 , ox2 , . . . , oxk ,m)

Of course, for each positive integer j ≤ n− k the interval

uk+j = κj(ox1 , ox2 , . . . , oxk ,m)

can be made arbitrarily small by choosing a suitably large value of m, and for each positive
integer i ≤ k the interval ui can be made arbitrarily small by choosing a suitably large value
of l′i. Furthermore, by definition, 〈u1, u2, . . . , un〉 ∈ R. It immediately follows that for each
x = (x1, x2, . . . , xn) ∈ S there is a local basis Lx for x such that Lx ⊆ ν(R). We may conclude
that (R,H) is a basic representation of (S,A). And since R is recursively enumerable, it follows
from Theorem 2.10.5 that (R,H) is isomorphic to a computable physical model.

A physical model (S,A) that satisfies Kreisel’s criterion on Rk is uniquely determined by the
functions κ1, κ2, . . . , κn−k. Moreover, the proof of Theorem 2.15.1 describes an effective proce-
dure for finding a basic representation of (S,A), given programs for computing κ1, κ2, . . . , κn−k.
Let Kk,n,c be the collection of all basic representations of physical models that are constructed
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from physical models satisfying Kreisel’s criterion according to the procedure in the proof of
Theorem 2.15.1, where c is the positive rational number which appears in that proof. An im-
mediate question is whether there exists an effective procedure for the inverse operation. That
is, given a basic representation in Kk,n,c, is there an effective procedure for constructing partial
recursive functions κ1, κ2, . . . , κn−k? In the proof of the following theorem, we show that the
answer is “Yes.” Therefore, for every physical model satisfying Kreisel’s criterion on Rk, there
is a computable physical model that may be used in its place, to predict the values of observable
quantities given the data.

Theorem 2.15.2. If (R,H) ∈ Kk,n,c and if ψ : Rk → Rn−k is the function whose graph has
basic representation R, then there exist partial recursive functions κ1, κ2, . . . , κn−k such that
if φ1, φ2, . . . , φk are nested oracles for real numbers x1, x2, . . . , xk in the effective topology
(I10,c , ι), then for each positive integer j ≤ n−k, κj(φ1, φ2, . . . , φk,m) is defined for allm ∈ N
and λm

[
κj(φ1, φ2, . . . , φk,m)

]
is a nested oracle for $n−k

j

(
ψ(x1, x2, . . . , xk)

)
in (I10,c , ι).

Proof. Suppose that (R,H) ∈ Kk,n,c and that ψ : Rk → Rn−k is the function whose graph has
basic representation R. Note by the proof of Theorem 2.15.1 that R is recursively enumerable.
Now, given any oracles φ1, φ2, . . . , φk for real numbers x1, x2, . . . , xk in (I10,c , ι), it follows
from Theorem 2.11.2 that there are complete oracles φ′1, φ

′
2, . . . , φ′k for x1, x2, . . . , xk in

(I10,c , ι), such that φ′1, φ
′
2, . . . , φ′k are recursive relative to φ1, φ2, . . . , φk uniformly. Let xk+1,

xk+2, . . . , xn be the real numbers uniquely determined by the equation

ψ(x1, x2, . . . , xk) = (xk+1, xk+2, . . . , xn)

Then by the proof of Theorem 2.14.1,

Q =
{
〈u1, u2, . . . , un〉 ∈ R

∣∣ (∀ i ∈ {1, 2, . . . , k})(∃m ∈ N
)[
ui = φ′i(m)

] }
is a basic representation of

{
(x1, x2, . . . , xn)

}
in

(B, ν) =
n factors︷ ︸︸ ︷

(I10,c , ι)⊗ (I10,c , ι)⊗ · · · ⊗ (I10,c , ι)

And sinceR is recursively enumerable, the setQ is recursively enumerable relative φ1, φ2, . . . , φk
uniformly.

Now, since xi ∈ ι
(
φi(m)

)
for each positive integer i ≤ k, it follows from the definition of Q

that xi ∈ ι(ui) for each 〈u1, u2, . . . , un〉 ∈ Q. But recall from the proof of Theorem 2.15.1 that
R has the property that if xi ∈ ι(ui) for each positive integer i ≤ k, then xj ∈ ι(uk+j) for each
positive integer j ≤ n− k. Hence,

(x1, x2, . . . , xn) ∈ ν〈u1, u2, . . . , un〉

for each 〈u1, u2, . . . , un〉 ∈ Q. It immediately follows from the definition of a basic repre-
sentation that ν(Q) is a local basis for the point (x1, x2, . . . , xn). Therefore, for any function
κ : N → R such that κ(N) = Q, the function κ is an oracle for (x1, x2, . . . , xn) in (B, ν). And
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since Q is recursively enumerable relative to φ1, φ2, . . . , φk uniformly, κ is recursive relative to
φ1, φ2, . . . , φk uniformly. So, if we define

κj(φ1, φ2, . . . , φk,m) = πnk+j
(
κ(m)

)
for each positive integer j ≤ n−k and for eachm ∈ N, then κj is partial recursive, κj(φ1, φ2, . . . ,
φk,m) is defined for all m ∈ N, and λm

[
κj(φ1, φ2, . . . , φk,m)

]
is a nested oracle for

$n−k
j

(
ψ(x1, x2, . . . , xk)

)
= xk+j

in (I10,c , ι).
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