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Abstract

This thesis analyzes two types of phase transition models, namely the Cahn-Hilliard
model and the Becker—Doéring model. In the Cahn—Hilliard setting, this thesis estab-
lishes a second-order I'-convergence result for the mass-constrained Cahn—Hilliard
energy. This is obtained using a new variant of the Polya—Szegd inequality, along
with some new regularity results for the isoperimetric function. For the Becker—
Doring model, decay rates towards equilibrium are proved for certain broad classes
of subcritical data. This is obtained by using new linear stability estimates and
semigroup extension results, along with some classical interpolation inequalities.
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Chapter 1

Introduction

This thesis consists of the study of two (very different) phase transition problems.
Accordingly the thesis is divided into two discrete parts.

The first part studies the Cahn—Hilliard energy, which represents a microscopic
theory for the formation of phase boundaries. This will be studied primarily using
variational methods. The work given here is mostly contained in the two papers [73]
and [83], although some results have been streamlined and improved here compared
to the versions given in those papers.

The second part studies the Becker-Doéring model, which represents a mean field
theory of the nucleation of a phase transition. This was studied using semigroup
theory and PDE methods. Some of the results presented here are contained in the
paper [81].

1.1 Cahn—Hilliard Theory of Phase Transitions

The first part of this thesis will be concerned with the asymptotic expansion by
I"-convergence of the Cahn—Hilliard or Modica—Mortola functional, and some appli-
cations of the same. This functional is given by (see [63, [78 [101])

F(u) ::/QW(U)+52|VU|2dx, we HY(Q), (1.1.1)

subject to the mass constraint

/ﬂuda;:m. (1.1.2)

Here 2 C R™ is an open, bounded set, W : R — [0,00) is a double-well potential
and € > 0.

The Cahn-Hilliard functional is one mathematical representation of the “ener-
getic” cost of a phase transition in a material. Here {2 represents some physical
domain (i.e. the limits of our material), and ¢ is a regularizing parameter, which
turns out to be the approximate width of transition layers. The phase is represented
by u, and W represents the potential energy of a given phase. In some cases u
is called an Order Parameter, because it represents the relative order of a given
phase. This model has been used to represent certain simple phase transitions, such
as liquid-liquid phase transitions [I08] [28] and antiphase boundaries [6]. The mass
constraint is particularly relevant in the case of certain liquid phase transition prob-
lems, while other types of boundary conditions are more relevant in other situations.

Oftentimes phase transition energies are more appropriately modeled by consid-
ering vector-valued u [55], anisotropic gradient terms [90], higher-order terms [53] or
contact energies [79]. With the exception of a few simple preliminary results for the

7



8 CHAPTER 1. INTRODUCTION

anisotropic case, this thesis does not attempt to address these issues. However, the
energy considered here is still a relevant toy model that gives reasonable intuition
towards the more complicated cases.

As € — 0, minimizers of this energy approach sharp transition layers. One
appropriate way to study this convergence is through I'-convergence (see Section.
In the interest of proving such a I'-convergence result, define F. : L'(2) — (—oc0, o]
by

F, if w e H'(Q2) and (1.1.2)) hold
Fo(u) _{ (u) ifue H(Q) an olds, (1.1.3)

RS otherwise in L'(€).

An asymptotic expansion by I'-convergence essentially seeks to find an appropri-
ate sort of Taylor expansion for the energy, namely

Form FO 4 er® 4 270 4

The notion of I'-convergence only requires that this expansion hold in an appropriate
limiting sense; for precise definitions see Section

The T-limit F®) of order 1 (see and (2.4.2)), which in this case is simply
the I'-limit of e 71 7., has been characterized by Carr, Gurtin and Slemrod [31] for
n = 1 and by Modica [78] and Sternberg [I0I] for n > 2 (see also [62], [80]), and is
known to be, under appropriate assumptions on 2 and W,

o (1.1.4)
00 otherwise in L'(€2),

F ) {%W P({u=a};Q) ifue BV(Q;{a,b}) and holds,
u) =

where P(+; ) is the perimeter in Q (see Section [2.1)), a, b are the wells of W and the
constant cyy is given by

cw = /b WY2(s) ds. (1.1.5)

The recovery sequence used to obtain this result is given by functions of the form

wle) == (),

where 2z is the solution to the Cauchy problem

{z’(t) = VWD)  forteR (1.1.6)

z(0) = ¢, z(t) € [a, ],

with ¢ being the central zero of W’. The function z solving this Cauchy problem
will also play a crucial role in the analysis performed in this thesis. It is easy to see
that ue — sgn, , odp, where

a ift <0,
sgn, (t) :== {b £ 0 (1.1.7)

In light of this I'-convergence result, it is natural to study the family U; of
minimizers of the functional F(). Observe that u belongs to U if and only if
u € BV (Q;{a,b}) and the set {u = a} is a solution of the classical partition problem,
namely, if it solves

min{P(E;Q): E C Q Borel, L"(F) = v,,}, (1.1.8)
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where
L bLM () —m
e b—a
The properties of minimizers of have been studied by Griiter [60] (see also
[58, 75, [103]), who showed that when 2 is bounded and of class C?, minimizers E of
exist, have constant generalized mean curvature kg, intersect the boundary
of Q2 orthogonally, and their singular set is empty if n < 7, and has dimension of at
most n — 8 if n > 8. By way of convention, here kg is the average of the principal
curvatures taken with respect to the outward unit normal to OF.
Furthermore, in studying the partition problem, which is closely linked to the
problem of minimizing F., a natural construct is the isoperimetric function or
isoperimetric profile (see, e.g., [96]), given by

(1.1.9)

Za(v) ;= inf{P(F;Q) : E C Q Borel, L"(F) =0}, ve€]0,L"(Q)]. (1.1.10)

Throughout this work it will be helpful to consider an L'-localized version of
this function. Namely, given a measurable set Ey C €2 with mass v, (see (1.1.8) and

(1.1.9)) and 6 > 0, we define (see (6.1.3]))
Ig’EO(r) =inf{P(E,Q): E C Q Borel, L"(E) =r, a(E, Ep) < 0}, (1.1.11)

where

a(E, Ey) = min{L"(E \ Eo), £L"(E \ E)}. (1.1.12)

A natural question, and really the starting point of the work of this thesis, is how
to appropriately characterize the I-limit of order 2, written F3), of F.. The first
example of asymptotic development by I'-convergence of order 2 for functionals of
the type was studied by Anzellotti and Baldo in [13], who considered the case
in which n = 1, the wells of W are not points but non-degenerate intervals and the
mass constraint ([1.1.2)) is replaced by a Dirichlet condition. Subsequently Anzellotti,
Baldo and Orlandi [14] studied in arbitrary dimension, in the case in which
W has only one well (W (s) = s?) and again with Dirichlet boundary conditions in
place of .

In dimension n = 1, this problem has been extensively studied by a variety of
authors, see e.g. [31],[59], [18]. Prior to the work in this thesis, the only work in the
case n > 2 was given by Dal Maso, Fonseca, and Leoni in [41]. In that work, for a
potential W satisfying

for all s € R and
W(s) = C[1 — s|'T4 (1.1.13)

near s = 1, for some ¢ € (0, 1), and under the assumption that
u =1 on 0f, (1.1.14)

in addition to (T.1.2)), it was shown that F2) = 0. More generally, this was proved in
the case in which &2 [, |Vu|? dz is replaced by €2 [, ®*(Vu) dz, with ® : R — [0, o0)
an arbitrary norm. The Dirichlet condition played a crucial role in the proof
in [41] since it permitted the use of classical symmetrization techniques in H}(€2) to
reduce the problem to the radial case. Moreover, the behavior of W near the wells
(see (L.1.13)) did not allow for C? potentials W. The work of [41] left open several
important questions, namely the characterization of F(2) when

e the Dirichlet condition (|1.1.14]) is not imposed,
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e W is of class C?,
e IV is not even.

The first part of this thesis addresses all of these questions, by characterizing the
second order I'-limit under fairly general conditions. In particular, in the case where

W is C2, the following theorem is given in Chapter |§| (see Theorems 6.1.3)).

Theorem 1.1.1. Assume that Q satisfies (6.1.1)), m satisfies (6.1.2) and W € C?

satisfies hypotheses (5.1.4)-(5.1.7). Assume that u is an L'(Q)-local minimizer of
the functional F) (see (1.1.4)). Finally, assume that, for some § > 0, Ig’EO is
differentiable at v,,, with Ey = {u = a}.Then

[-lim inf F, (u) = - lim sup F. (u)

251 )
N mﬁi + 2(csym + ewu)(n — Dy P({u = a}; Q),

where "
- _ (1)
€
and .
Fs(l) (U)) _ Ei'w)

In particular, if I is differentiable at v, then

2¢%,(n — 1)?
cy(n = 1) 2/43 + 2(Csym + cw ) (n — Dk, P({u = a}; Q)

PO = e

if u is a global minimizer of F and F® (u) = oo otherwise in L*(12).

In this theorem, , is the constant mean curvature of the set {u = a},

Csym :—/W(z(t))tdt,
R

where z is the solution to the Cauchy problem (|1.1.6]), and 7, € R is a constant such

that
P({u= i) [ =(t =) ~seoas(t)di = b,

with sgn, ;, as defined in (1.1.7).

The previous theorem assumes that Zg or Ig’EO is differentiable at v,,. The
validity of this assumption has only been previously considered in the case where {2
is convex. In that case, it is known that Zq is concave [103]. However, many of the
techniques in [I03] generalize to the present setting. In particular, in Chapter {4} it
is proven that

e T is differentiable at all but countably many points.

° Ig’EO is differentiable at v,,, if Ey is an isolated local volume-constrained perime-
ter minimizer, for § small enough.

The proof of Theorem [1.1.1| uses an adaptation of the Polya—Szeg6 inequality,
applicable to functions irrespective of boundary conditions, namely Theorem [3.3.4
The techniques used in the proof of this theorem are largely standard, but are
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included in Chapter [3] for clarity. A specific form of this inequality was previously
used to study optimal constants for certain classes of Poincaré inequalities [34].

Using this rearrangement inequality, the problem of proving theorem [I.1.1] is
reduced to the careful analysis of a one dimensional problem. This is conducted in
Chapter [5] Much of the analysis here leans on classical tools, such as those used in
[41] and [102].

Finally, these tools are combined in Chapter [] to prove the main theorems.

One of the primary motivations for studying the asymptotic expansion of F. is
to understand the motion of solutions of the underlying gradient flow.

In particular, one may study the slow motion of solutions to the nonlocal Allen—
Cahn equation with Neumann boundary conditions, namely,

Opue = e2Au. — W' (u) +eXe in Q x [0, 00),

% =0 on 99 x [0, 00), (1.1.15)
Ua = UO,E on Q X {O}

Here ug . is the initial datum, and A, is a Lagrange multiplier that renders solutions
mass—preserving, to be precise

1 /
Ae = »SE”(Q)/QW (ue) dz.

In some references this is also called the mass-conserving Allen—Cahn equation.

This equation is precisely the L? mass-constrained gradient flow of the energy
. It was introduced by Rubinstein and Sternberg [97] to model phase separa-
tion after quenching of homogeneous binary systems (e.g., glasses or polymers). An
important property of this equation is that the total mass [, ue(x,t) dz is preserved
in time. It can be shown that when ¢ — 0" the domain € is divided into regions
in which wu,. is close to a and to b, and that the interfaces between these regions as
e — 0T evolve according to a nonlocal volume—preserving mean curvature flow.

In the past thirty years a significant effort has been given to the study of the
asymptotic slow motion of solutions of the Allen—Cahn equation

Opue = 2 Aue — W' (ue) (1.1.16)
and the Cahn—Hilliard equation
Opue = —A(e2Aue — W' (ug)). (1.1.17)

These equations are precisely the rescaled gradient flows of the unconstrained energy
. In dimension n = 1 the theory of slow motion was first developed in the
seminal papers of Carr and Pego [32], [33] and Fusco and Hale [56]. In particular,
Carr and Pego [32] studied the slow evolution of solutions of when n =1,
using center manifold theory. They provided a system of differential equations which
precisely describes the motion of the position of the transition layers (cf. Section
3 in [32]); such a result was formally derived by Neu [84], see also [33]. A similar
approach has been recently adopted by several authors to extend these ideas to a
more general setting, by studying the slow manifolds inherent to the dynamics of
these equations, see [89] and the references therein.

Subsequently, Bronsard and Kohn [25] introduced a new variational method to
study the behavior of solutions of the Allen—Cahn equation . They observed
that the motion of solutions of this equation, subject to either Neumann or Dirichlet
boundary conditions in an open, bounded interval 2 C R, could be studied by
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exploiting the gradient flow structure of (1.1.16]) . The key tool in their paper is a
careful analysis of the asymptotic behavior of the unconstrained energy

F(u) :=/ %W(u) +SIVulds, ue HY(Q).
Q

Specifically, they prove that if {v.} converges in L!(Q2) to a function v € BV (£2; {a, b})
with exactly N jumps, then, for any k > 0,

FW(v,) > New — Cpe (1.1.18)

for ¢ sufficiently small and some Cy > 0. They then applied (|1.1.18)) to prove that
(cf. Theorem 4.1 in [25]) if the initial data ug. of the equation (1.1.16) converges in
LY(2) to the jump function v, and up ¢ are energetically “well-prepared”, that is,

Fg(l)(u()ﬁ) < Ncw + CQSk
for some Cy > 0, then for any M > 0,
sup  ||uc(t) —v||pn = 0ase— 0T,

0<t<Me—k

Subsequently, Grant [59] improved the estimate ((1.1.18]) to
FM(v.) > New — Cre (1.1.19)

for € small, and some C7,Cy > 0, which in turn gives the more accurate slow motion
estimate
_ +
sup [|lue(t) —vl|pr - 0ase—0
0<t<MeCe!
for some C' > 0. Finally, Bellettini, Nayam and Novaga [19] gave a sharp version of
Grant’s second—order estimate by proving

=2

N
ds, d€
FO(0) > New — 20462 3 e+ 90 k2 3 o=t
k=1 k=1

=
S;di

N . N
3 _ 3oy dp 3 _
—|—/§+IB+§ e 2 = —|—/§_ﬂ_§ e 2 =
k=1 k=1

ZN sy d4f ZN _ga_df
+ o0 e P + o0 e P
k=1 k=1

as € — 07, where a4, k4, B+ are constants depending on the potential W and dg is
the distance between the k—th and the (k + 1)—th transitions of v.. This last work
gives a variational validation of [32], [33]. Indeed, the sharp energy estimate allows
the authors to (formally) recover the ODE describing the motion of transition points.

The situation in higher dimensions is not as clearly understood. This is due to
the possibility of curvature effects. One still suspects that if initial data ug. ap-
proximates the function u = axp, + bxgg, with Ep a local minimizer of F (1) then
the solutions to ([1.1.15]) will still exhibit slow motion. However, it is generally not
clear at what time scale curvature effects, which are absent when n = 1, may come
into play. Much of the work in this setting has addressed the motion of phase “bub-
bles”, namely solutions approximating a spherical interface compactly contained in
Q. For example, Bronsard and Kohn [26] utilize variational techniques to analyze



1.2. BECKER-DORING EQUATIONS 13

radial solutions u yaq of the Allen-Cahn equation. They prove that u. aq Separates
(1 into two regions where u; ;aq = +1 and u. roq = —1 and that the interface moves
with normal velocity equal to the sum of its principal curvatures. In [44], Ei and
Yanagida investigate the dynamics of interfaces for the Allen—Cahn equation, where
Q is a strip-like domain in R%2. They show that the evolution is slower than the
mean curvature flow, but faster than exponentially slow. This suggests that esti-
mates of the type (1.1.19) cannot be expected to hold in higher dimensions. In
the Cahn-Hilliard case, Alikakos, Bronsard and Fusco [3] use energy methods and
detailed spectral estimates to show the existence of solutions of supporting
almost spherical interfaces, which evolve by drifting towards the boundary with ex-
ponentially small velocity. Other related works include [2], [4] and [5]. Most of these
works require significant machinery, and often focus only on the existence of slowly
moving solutions.

Using Theorem [1.1.1} it is possible to give precise asymptotics for the energy
(1.1.3)). In particular, estimates of the form ((1.1.18]) can be obtained in the case
k = 1. The techniques from [25] can then be applied to obtain the following result,

see Theorem [7.0.1]

Theorem 1.1.2. Assume that §) satisfies (6.1.1)), m satisfies (6.1.2)) and W satisfies

hypotheses (5.1.4)-(5.1.7). Assume that u is an L'(Q)-local minimizer of the func-
tional F (see (T.1.4) ). Finally, assume that, for some § > 0, Ig’ED is differentiable
at vy, with Eg = {u = a}. Assume that up. € L*>(Q) satisfy

upe — w in L(Q) ase — 0"

and
FV (g ) < FO(u) + Ce

for some C > 0. Let u. be a solution to (1.1.15)). Then, for any M >0

sup  ||uc(t) —ulp2 — 0 as e — 0.
0<t<Me—1

The proof of this theorem, which uses exactly the same techniques as those in
[25], are found in Chapter

1.2 Becker—Doring Equations

The second part of this thesis considers the Becker—Doring equations, namely the
following (infinite) system of differential equations

%Ci(w () — B, i=23,...,
d o (1.2.1)
—c(t) = —J(t) — A(8),
790 = () = L0
where the J; can be written as
Jz(t) = a;C1 (t)Ci(t) — bi+1cl-+1 (t), (1.2.2)

and where {a;},{b;} are fixed, positive sequences, known as the coagulation and
fragmentation coefficients respectively.

Becker—Doéring systems form a subclass of the more general coagulation frag-
mentation equations. In typical physical applications the ¢; represent the discrete
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distribution function of particles of size i, and the evolution given by rep-
resents the mean field approximation of the evolution of the distribution function
¢i. In particular, J;(t) represents the net rate that particles of size i and size 1
either join to form particles of size 7 + 1, or conversely are emitted by spontaneous
breakup. Thus we are primarily interested in positive solutions, whose first moment
is preserved in time, meaning that

o
¢ >0, > ici(t)=m(t)=m foralt>0. (1.2.3)
=1

The Becker-Déring equations are used to model reactions in various physical set-
tings, such as vapor condensation, phase separation in alloys, and crystallization.
This model was first proposed in [17], and was modified to the form we are consid-
ering in [27],[93]. A good mathematically-oriented review can be found in [99].

The well-posedness and convergence properties of the Becker—Doring equations
have been well-studied. In particular, Ball, Carr and Penrose [16] demonstrated
the existence of “mass”-preserving, non-negative solutions to this system, namely
solutions of satisfying (1.2.3). A later work [71] established well-posedness
(including uniqueness) for any initial data with finite first moment, namely the
space where the “mass” is well-defined. Ball et al. [I6] also demonstrated that as
t — oo solutions must converge to some equilibrium {Q;}, where {Q;} is uniquely
determined by m. Furthermore, they prove the existence of a value mg such that if
m < ms then the convergence to {Q;} is strong. On the other hand, if m > m, then
there is a loss of mass to oo, and the convergence is only weak. Any initial data
satisfying m < my is called subcritical, while data satisfying m > ms is supercritical.

The second part of this thesis seeks to quantify the trend to equilibrium in the
subcritical case (m < my). Specifically, the goal is to establish uniform, local rates
of convergence to equilibrium in spaces with polynomial moments.

To begin, define the detailed balance coeflicients, a sequence {QZ}, by the equa-
tions

Q1 =1, Qiai = Qit1biy1, i=1,2,... (1.2.4)
The equilibrium solution @; of ([1.2.1)) can be written as
Qi = Qil’, (1.2.5)

where the parameter ( is related to the mass m in the subcritical regime through

the equation
oo

D iQi = m.

i=1
It is straightforward to show that mg is linked to the radius of convergence (; of the
power series with coefficients Q;.

One motivation for studying the Becker—-Déring equations is that they serve
as a suitable prototype of more general coagulation-fragmentation equations with
detailed balance. Indeed, one suspects that many of the interesting phenomenon
that occur for the Becker—Doring equations may be typical of other systems with
detailed balance.

Convergence to equilibrium was proven by Ball, Carr and Penrose [16] using an
entropy functional. Specifically, they prove that the quantity

Vic) = iq <log ; - 1) (1.2.6)

i=1 g
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is weak-* continuous and that V(c(t)) is strictly decreasing.

Later, Jabin and Niethammer [65] proved an entropy dissipation inequality which
gives a uniform dissipation rate for regular data. In particular, they proved that if
the initial data decays exponentially fast, then the solution converges to equilibrium
with a rate bounded by e=Ct"% in the mass-weighted space.

In a recent work, Caiiizo and Lods [30] improved this bound to e~“*. They do
so by observing that the Becker—-Doring equations have a type of symmetric
structure. In particular, if one writes the Becker—Doéring equations in terms of a
perturbation of the equilibrium solution

then the mass constraint ((1.2.3) may be expressed as

> Qiihi =0, (1.2.8)
i=1

and the original equation in the abstract quasilinear form

d
@h O(h1(t))h.

Following Canizo and Lods, the linear operator ©(g) may be expressed as
O(g) = L+ gE, (1.2.9)

where L and = are both linear operators, given in weak form by requiring that for
all {¢;} in a suitable space of test sequences,

ZQZ Lh)igy = ZaZQQl (h1 + hi = hi1)(dip1 — ¢ — d1),  (1.2.10)

Z Qi(Eh)i¢i = Z aiQiQ1 hi(pit1 — di — ¢1).
i=1

=1

If one considers an ¢? space weighted by Q; then L is clearly symmetric. Addi-
tionally, if {¢;} is a solution of and {h;} is determined by it follows
that h; € [-1,00) and that ) Q;ih; = 0. It is then natural to define the Hilbert
space H by

oo 1/2
H = ¢ {hi} : [Pl = (Z Qih%> < 00, ZQiihi =0
i=1

with the induced norm || ||z = || - [|r2(,) and inner product (-, -)g. Caiiizo and Lods
demonstrated that the linear part (L ) of the Becker—Doring equations has a good
spectral gap in H, or precisely that for some constant A, > 0 the following holds,
independent of h:

(h, Lh) g ZaZQZQl(hl + hi = hig1)? < =Aelh, W) . (1.2.11)
=1

A key point is that the mass constraint (1.2.8]) precludes the null vector h; = i. De-
tailed quantitative estimates of . can then be obtained using Hardy’s inequality—
see [30] for details.
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Canizo and Lods then utilized a priori bounds from [65] to control the non-linear
term and establish a rate of convergence to equilibrium. More precisely, defining the
Banach space

Y77 = {{hz} : ||h||£1(Qie77i) = ZQZGWVM < 00, ZQﬂhz = 0} , O0<n<l,
=1

with the induced norm || - [ly, = [| - [|s1(Q,eni), they prove that for 0 < n < 7, given
initial data in Yj then the solution must converge at a uniform exponential rate in
Y,. A key technical aspect of their proof was an operator decomposition technique
from [61], which permits an extension of the spectral gap of L from H to Y. It
is important here to recall that the space H is continuously embedded in Y, for
n > 0 sufficiently small, precisely because the ); are exponentially decaying, see
Proposition [8:1.2}

The goal here is to study the trend to equilibrium in spaces with only polynomial
moments. To this end, define the Banach spaces

X = {{hi} Pl @iy = Y Qii*lhil < o0, D Quihi = 0} , k>1,
=1

(1.2.12)
with norm || - [|x, = [ - [lo1(@,i#)- The main result of the second part of the thesis is
as follows:

Theorem 1.2.1. Let (h;(t)) defined by represent the deviation from equi-
librium of a solution (c;(t)) to the Becker-Déring equations (see Definition [8.1.1]).
Assume that the model coefficients in satisfy — below. Let ki
and ko be real numbers satisfying k1 > 0 and ko > k1 + 2. Then there exist positive
constants O, iy, Cky iy 0 that if [[R(0)||x,,,, < Ok, k, then we have that

(N1, < Chaa (148 T VNR(0) [,y for all t > 0.

This result is proven by first obtaining detailed estimates on the semigroup gen-
erated by L in the spaces X by using new dissipation estimates, together with the
spectral gap estimate , the operator decomposition result from [61] and in-
terpolation techniques from Engler’s work on travelling wave stability [46]. This is
the subject of Chapter

Subsequently, Chapter [ addresses the question of non-linear stability and con-
vergence rates. The issue of non-linear stability is addressed using evolution families
and an extension of the operator decomposition result. Subsequently, convergence
rates are obtained by combining the linear decay results with the non-linear stability
results, and using Duhamel’s formula.



Chapter 2

Preliminaries

This chapter collects many of the necessary preliminaries for the results of this thesis.
The results in this chapter are for the most part classical, and are not the original
work of the author. They are included here in the interest of making this thesis
self-contained, with citations to sources where proofs may readily be found.

By way of notation, given a non-empty set £ C R™, E°, E and E° will represent
the interior, closure and complement of E respectively. Also, L™ and H"* are the m-
dimensional Lebesgue and Hausdorff measures, respectively, see [51] for appropriate
definitions. The constant w,, := L™(B(0,1)). Also, given two Banach spaces Y, Z,
let £(Y, Z) denote the space of bounded linear operators from Y to Z and L(Y) =
LY,Y).

2.1 Geometric Measure Theory and Isoperimetric Prob-
lems

This section deals with a variety of standard definitions and results from geometric
measure theory. Standard sources for this material include [12] 48] [109].
This section begins by recalling the definition of functions of bounded variation.

Definition 2.1.1. Let Q C R™ be an open set. The space of functions of bounded
variation BV () is the space of all functions u € L'(Q) such that for alli=1,...,n
there exist finite signed Radon measures Dyu : B(Q) — R such that

/ua(bd:n:—/qbdDiu
o Oz Q

for all ¢ € C§°(Y). The measure D;u is called the weak, or distributional, partial
derivative of u with respect to z;. In addition, for any function u € BV (Q), the total
variation |Du| of the measure Du, which is also called the variation measure of u,
is a finite measure and satisfies the formula

| Du|(2) = sup {/Qudivqﬁdx c € Co(GRY), [8lcamn) < 1} < 0.

The measure Du turns out to have additional structural properties (see, e.g.
[48]). Specifically, one can decompose

Du = VuLl" + Ju+ Cu,

where Vu is an L(§) function, where Ju takes support on a set of dimension (n—1)
and Cu is singular with respect to L™ and has support on a set of dimension greater

17
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than (n — 1). Furthermore, the measure Ju can be written as
Ju = (uy —u_ ), H 1Sy, (2.1.1)
where

us(z) :=inf{t € [—o0,00] : {z € Q: u(x) > t} has 0 density at =},
u_(x) :=sup{t € [—o0,00] : {x € Q:u(z) < t} has 0 density at =},
Du(B(z,r))

Vu(x) = 71‘1_1’{%) W for x in Supp(Du),

and where S, is precisely the set where uy # u_. The set S, is called the jump
set of u. The existence of the function v, is guaranteed Du a.e. by the Besicovitch
derivation theorem (see e.g. [4§]).

The first important property of BV functions is that they form a compact subset
of L'. This can be found in, e.g., Section 5.2 in [48] or Theorem 13.35 in [72].

Proposition 2.1.2. Let Q C R™ be an open set with Lipschitz boundary. Assume
that uy, € BV (), and that

Sup [kl By (e) < oo
Then there exist a subsequence uy; and a function u € BV (Q) satisfying
Ug; — uin LY(Q) Duy, X Du.

Another important property is the fact that the total variation is lower semicon-
tinuous.

Proposition 2.1.3 (Proposition 4.29 and 4.30 [75]). Let  C R™ be an open set.
Given a sequence of Radon measures py, — p supported on Q, then the following
inequality holds for any open A C Q:

1l(4) < Timinf |y (A).

On the other hand, if px — p and |ug|(Q) = | (Q) < oo then || = |p|.

Certain standard calculus rules apply for functions in BV (£2). For example, the
following chain rule is a special case of a more general chain rule given in Proposition
1.2 in [I0] , see also [11].

Proposition 2.1.4. Let Q C R"™ be an open set. Given a function u € BV () and
a Lipschitz function f : R — R satisfying f(0) = 0 then the function v := fowu is
an element of BV () and

Ju = (f(us) — f(u-))vulSu,
Cv = f'(w)Cu, Vv=f(u)Vu,

where u here is an appropriately chosen representative (namely u must coincide with
u4 at any point where uy and u_ coincide).

Remark 2.1.5. The previous properties of BV functions continue to hold when all
of the integrals in the norm are modified with a continuous weighting factor n. Some
useful details in this regard can be derived from results in [100)].

One natural application of the total variation is to give a suitable definition of
the perimeter of a wide class of sets.
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Definition 2.1.6. Let E C R" be a Lebesgue measurable set and let 2 C R™ be an
open set. The perimeter of E in §, denoted P(E;Q), is the variation of xg in €,
that is,

P(E;Q) := |[Dxg|(§2) = sup {Z/ﬂ@dl)m i € Co(SsRY), |[@lloyamrn) < 1} :
i=1

The set E is said to have finite perimeter in  if P(E; Q) < oo, or in other words if

XE € BV(Q). If Q =R", it is standard to write P(E) := P(E;R").

Given a set E of finite perimeter we may naturally define a normal vector via

o DX(B)
r—0 |Dxg|(By(x))’

DxEg

_7|DXE| (x) =

x € supp(Dyp)-

(2.1.2)
Again, by the Besicovitch theorem this object is well-defined for |D, | a.e. .

vp(r) = V() =

Definition 2.1.7. The reduced boundary of E, denoted by 0*E, is the set of all
points in supp(|Dxg|) where equation (2.1.2) holds.

Moreover, by the structure theorem for sets of finite perimeter, (see, e.g., [48],
Theorem 2, (iii), page 205), if E has finite perimeter in R™, then for any Borel set
F CcR",

P(E;F)=H""Y0*ENF).

This is somewhat natural in light of .

The next theorem presents the coarea formula, which is a cornerstone of geo-
metric measure theory. A proof for Lipschitz functions can be found in [48], while a
proof for Sobolev functions can be found in [76], and was originally given by Federer
[49).

Theorem 2.1.8. Let u € WP(Q), with p > 1, and Q C R™ an open set. Then for
any g € LY(Q), we have that

9(2)|Vu(z)| dz = g(z) dH Y (z) ds.
i Lo

The next theorem is the isoperimetric inequality. This problem has a very old
history (dating back to the Greeks), but was first proved up to modern standards
by Steiner. His proof can be found in [75], Chapter 14.

Theorem 2.1.9. Let E C R", n > 2, be a set of finite perimeter. Then either E or
R™\ E has finite Lebesque measure and

-1
wp "

min{£"(E), L"(R"\ E)}"= < P(E), (2.1.3)

n

where equality holds if and only if E is a ball.

A similar inequality holds in bounded domains, and can be found in [77], Corol-
lary 3.2.1 and Lemma 3.2.4, see also [37] and [I].

Proposition 2.1.10. Let Q C R" be bounded, connected and Lipschitz. Then there
exists a constant C' > 0 such that for any E C Q

n—1
n .

P(E;Q) > Cmin{L™(E), L (Q\E)}
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#-

Figure 2.1: An example of Ky and Kye.

2.2 Anisotropic Extensions of the Perimeter Function

This section will extend the results of the previous section, namely the central re-
sults of geometric measure theory, to the anisotropic case. Anisotropic energies are
common in materials science problems, particularly in relation to crystals [64] [107].
Most of these results correspond very closely to those in the classical, isotropic case,
albeit with more involved proofs. Because these results are not as well-known, this
section will give precise references wherever possible.

Throughout this section ¥ : R™ — [0,00) will be a convex function which is
positively 1-homogeneous, meaning that, for £ € R and = € R",

U(te) = [t|V(x). (2.2.1)
Furthermore, for simplicity this work will assume that W satisfies
Cilz| < ¥(z) < Colz| (2.2.2)
and that WU is scaled so that the set Ky := {2z : U(z) < 1} satisfies
L Ky) = wy.

Some references call ¥ the gauge of the set K. The support function of K, which is
denoted by ¥°(z) is given by

U°(z) := sup ({, ).
141¢7

It is straightforward to show that W° is also a convex, 1-homogeneous function and
that ¥ and ¥° are polar to each other. It is then natural to define

Kygo :={x: ¥°(x) < 1}.

The convex sets Ky and Kgo are in fact polar to each other. The study of support
functions and polars is central to convex analysis, see Sections 13-15 in [94] for a
complete treatment.

Example 2.2.1. Suppose that V(z) = % > ||, namely W is a rescaled €' norm.
Then Ky is the rescaled unit ball, W° is the {>° norm and Kgo is the £°° unit ball

(see Figure[2.1)).

With these definitions in hand it is possible to define an anisotropic version of
the BV norm.
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Definition 2.2.2. For any open set Q C R", given u € BV (), we define the total
variation with respect to the gauge ¥ by

| Du|g (€2) := sup {/ udivdr : ¢ € CH(QRY), d(z) € Kyeo for all x € Q} .
Q

Similarly, given a set with finite perimeter we define the perimeter with respect to
the gauge ¥ via
Py(B: Q) == [Dxlu(Q).

When ¥(z) = |z| it is clear that these definitions coincide with the usual total
variation and perimeter. If a function u € BV () then, due to equation ,
|Duly () < oco. Similarly if u € LY(Q) and |Dul|y(Q) < oo then u € BV(Q).

The following theorem can be found in [9].

Theorem 2.2.3. Given a function u € BV (), the total variation with respect to
the gauge W permits the following integral representation:

/Q‘I’ (ul;m dDu(z) = | Duly ().

Furthermore, a type of coarea formula holds, namely

Dule () = /qu,({u > 5}:Q)ds,

and a version of the structure theorem holds, specifically
Py(E;Q) = / U(vg)dH" .
O*E
Remark 2.2.4. If u € WH(Q) then in fact we have that

/ U (Du) dzx = |Duly(Q2).
Q

An appropriate version of the isoperimetric inequality also holds. This is known
as the Wulff problem, and was completely treated in the setting of sets of finite
perimeter by Fonseca [52] and Fonseca and Miiller [54], see also [106] for earlier
work.

2.3 Properties of Perimeter Minimizers and First and
Second Variation Formulas

This section reviews some of the classical theory of volume-constrained perimeter
minimizers. The definitions here are mostly classical, and all of them can be found
in Chapter 17 of [75]. The first step is to define a suitable class of variations of sets.

Definition 2.3.1. Let Q C R™ be open. A one-parameter family {f;}; of diffeo-
morphisms of R is a smooth function

(z,t) € R" X (—€,¢) — f(t,x) =: fr(x) e R, € >0,
such that f; : R™ — R" is a diffeomorphism of R™ for each fized |t| < €. In

particular, {fi}y<c s called a local variation in Q if it defines a one-parameter
family of diffeomorphisms such that
folx) =z for all x € R",
{r eR": fi(z) #2x} CCQ forall0 < |t| <e.
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It follows from the previous definition that given a local variation { f;} ;< in €,
then
EAf (E)ccQ forall ECR"™

Moreover, one can show that there exists a compactly supported smooth vector field
V € C°(;R™) such that the following expansions hold uniformly on R",

fi(x) =z +V(z)+ 0, Vfi(z)=1d+tVV(z)+ O(t?), (2.3.1)
and V satisfies
_oh
ot
Definition 2.3.2. The smooth vector field V in (2.3.1)) is called initial velocity of
{/fi}i<e-
The following result establishes an explicit expression, given in terms of the initial

velocity V, for the first variation of the perimeter of a set E, with respect to local
variations {f;}s<c in €2, that is, a formula for

V(x) (z,0) xeR"

2| PE;0).

Theorem 2.3.3 (First Variation of Perimeter). Let Q C R"™ be open, E a set of
locally finite perimeter and { fi}y<e a local variation in Q. Then

P(f,(E); Q) = P(E; Q) + t/a*E divpVdH"™ ' + O(#), (2.3.2)

where V' is the initial velocity of { fi} <. and divgV : 0*E — R, defined by
divgV(z) ;== divV —vg(z) - VV(2)vg(z), z € O'E, (2.3.3)

is a Borel function called the boundary divergence or tangential divergence of V' on
E.

In light of the form of the first variation, it is natural to seek a suitable version of
the divergence theorem. The version given here requires that surfaces possess some
classical regularity, and can be found in [75], Theorem 11.8 and equation 11.14.

Theorem 2.3.4. Let M C R" be a C?-hypersurface with boundary T'. Then there
exists a normal vector field Hyy € C(M;R™) to M and a normal vector field v €
CHT; 8" 1) to T such that for every V € CH(R";R")

/ divy VdH ! = / V- HydH ' + / (V- vfDyaH" 2,
M M T

where Hyy is the mean curvature vector to M and divy;V is the tangential diver-
gence of V on M, defined by (2.3.3). Furthermore, v - vy = 0.

In light of this divergence theorem, the formula (2.3.2]) suggests that volume-
constrained perimeter minimizers will necessarily have constant mean curvature.
That is precisely the content of the next theorem.

Theorem 2.3.5 (Constant Mean Curvature). Let 2 C R™ be an open set and let
Ey C Q be a volume-constrained perimeter minimizer in the open set Q). Then there
exists Ag € R such that

/ divgVdH" ™ = )\0/ (V-vp)dH™™ ' for all V € C°(;R™).
O*FE O*E
Ao

In particular, Ey has distributional mean curvature in ) constantly equal to ;7% .
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It turns out that surfaces with constant mean curvature enjoy regularity proper-
ties much like those of minimal surfaces. In particular, the following theorem holds,
see e.g. [58], [60].

Theorem 2.3.6. Let 2 C R"™ be a bounded domain of class C*>%, and let Eq C €
be a volume-constrained local perimeter minimizer. Then the set 0Ey N <) can be
decomposed into two sets dEy N = Reg(0Fy) U Sing(OEy) such that

e The set Sing(OEy) is empty for n < 7, it is finite for n = 8 and has dimension
of at most n — 8 forn > 8.

e The set Reg(0Ey) N can be locally represented as an analytic surface of
constant mean curvature Kg,.

e The set Reg(0Fy)NAQ can be locally represented as a C*% surface of constant
mean curvature kg, which intersects 0SY orthogonally.

The next goal will be to characterize the second variation. In order to do so, it
is necessary to consider the signed distance function of a set E.

Proposition 2.3.7. Let Q C R" be open and E C Q open with C? boundary. Then
there exists an open set ' with Q N OE C ' C Q such that the signed distance
function dg : R - R of E,

i E) R"\ E
dp(z) = 4 U@ 0E) ifz €R"\ B, (2.3.4)
—dist(x,0F) ifx € E,
satisfies dp € C*(€Y).

The previous result allows one to define a vector field Ny € C'(€;R") and a
tensor field A € C°(€Y; Sym(n)) via

NE = VdE, AE = AdE on QI.

In particular, one can show that for every x € QN JOFE there exist r > 0, vector fields
{m}}Z] € CY(B,(x); S"1), and functions {xp,}}—1 C C°(B,(z)) such that {r,}}'_;
is an orthonormal basis of T,0FE for every y € B,.(z) NOE, {m,}}_1 U{Ng(y)} is an
orthonormal basis of R" for every y € B,(z), and

n—1
Ap(y) = kn()h(y) @ T(y) for all y € By ().
h=1

Definition 2.3.8. Let Q C R" be open and let E C Q with C? boundary. For any
y € By(x) NOFE, then Ag(y) seen as symmetric tensor on Ty0E @ T,0F s called
second fundamental form of OF at y, while {m,}}_1 C S*" ' NT,0F and {kp}7_]
are called the principal directions and the principal curvatures of OF at y.

For any matrix 9% the Frobenius norm, which will be denoted here by |91, is

defined via
M= Y a2, (2.3.5)
i g

Proposition 2.3.9. Let Q C R" be open and let E C Q with C? boundary. The
scalar mean curvature s of the C?~hypersurface QN OE is locally representable as

n—1
ra(y) = (nl_l) S kn(y) for ally € By(x) N OE,
h=1
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while the second fundamental form satisfies

n—1

Ap(y)2 =3 (ka(y))* for ally € B,(z) N OE.
h=1

We are now in the position to state the following.

Theorem 2.3.10 (Second Variation of Perimeter). Let @ C R™ be open, let E be
an open set such that DENQ is C?, ¢ € C(Q), and let { fi} <. be a local variation
associated with the normal vector field V = (Ng € C}(;R™). Then

d2
dt? t:oP(ft(E);Q) - /8E ’vEC‘Q + ((n — I)QKQE — ‘AEP) C2d7-[n_17

where V¢ :=V({ — (vg - V{)vg denotes the tangential gradient of ( with respect to
the boundary of E.

Using the characterization of the first and second variation, it is possible to
obtain the following estimate on level sets of the distance function.

Lemma 2.3.11. Suppose that Ey C §2 is a volume-constrained perimeter minimizer
in Q. Define the function n(s) = H" *({dp(x) = s}), where dg is the signed
distance function (see (2.3.4]) ). Then n is twice differentiable at zero and satisfies
n(0) = P(E; ),
1'(0) = (n— DrpP(E; Q)
n"(0) = (n = 1)*kp P(E; Q)

— / |Ap, |?dH" ™ — / Vor, - Aavor, dH" 2,
OEy OEyNoN

where kg is the mean curvature of E. Furthermore, the function n is bounded.

Remark 2.3.12. A careful proof of the fact that this function is twice differentiable
at 0 can be found in [73]. The formulas given here can be found in [103]. The fact
that n is bounded comes from [8§].

Remark 2.3.13. If one instead considers
¢(r) = P({dg, < s(r)}; Q) where L"({dg, < s(r)}) =1,
and sets o = L"(Ey) then the previous formulas become
¢(ro) = P(Eo; ),
¢'(r0) = Ky (n — 1),

(b//(r ) _ _f&EO |AE0|2dH”_1 —+ fanﬂaﬂ VoK, 'AQVBEO d/Hn_Q
’ P(Eo,Q)z .

This computation can be found, for example, in [105)].

Finally, there is a significant rigidity in constant mean curvature surfaces. One
way to study this is to consider the following definition:

Definition 2.3.14. A set Ey C  is called a (A, po) perimeter minimizer in ) if
P(Ey; By(0)) < P(E; By(z)) + ALY (ByAE),

for all p < po and all measurable E satisfying
EqAE CC By(x) N Q. (2.3.6)
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In particular, any volume-constrained perimeter minimizer is a (A, pg) minimizer
for A chosen appropriately (see Example 21.3 in [75]). The following result char-
acterizes a sort of rigidity of a family of (A, pg) perimeter minimizers, see Theorem
26.6 in [75].

Theorem 2.3.15. Suppose that a sequence {Ey} of (A, po) minimizers in § con-
verges in LY(Q) to a (A, po) minimizer Ey. Then the sets in fact converge in C7,
for any v < 1/2.

2.4 TI'-Convergence and Asymptotic Expansion

This section reviews the well-established theory of I'-convergence and asymptotic
expansion by I'-Convergence.

First, the following definition of I'-convergence is standard and can be found in
[40], [21].

Definition 2.4.1. Let X be a metric space and let {F:} be a family of functions,
where Fe : X — R for any e > 0. The family of functions {F.} is said to I'-converge
to Fo : X — R if the following two criteria are satisfied:

o For any x. — x in X it follows that Fo(x) < liminf, o+ Fo(z.).

o For any x € X there exists a sequence . — = so that limsup,_,g+ Fe(z:) <

Fo(z).
By way of notation, I'-convergence will sometimes be written F LN Fo.

Remark 2.4.2. The notion of I'-convergence in a metric space can be stated equiv-
alently in terms of the functions
I-liminf F.(z) ;= supliminf inf F.(y)
r>0 =0t yeB(z,r)
[-limsup F.(x) :=suplimsup inf F.(y).
>0 e—0t YEB(z7)
These two functions are always lower semicontinuous (see Proposition 6.8 in [40]).

It is also clear that I'-liminf . < I'-limsup F., with equality of the two functions
precisely when F. T'-converges.

This definition was first given by De Giorgi in [42]. This definition is primarily
motivated by seeking minimal conditions which guarantee the convergence of minima
and minimizers of a family of functionals. This notion will be made more precise by
Theorem [2.4.5 which is sometimes called the fundamental theorem of I'-convergence.
In stating that theorem, the following definitions are used.

Definition 2.4.3. A function F : X — R is called coercive if the closure of the set
{F <t} is compact in X for anyt € R.

Definition 2.4.4. A family of functions {F.}, with F. : X — R, is called equi-
coercive if the following holds for any family {x.}:

sup Fe(ze) < 00 = {xc} is precompact in X.
€

Theorem 2.4.5. Let X be a metric space and let {F:} be a family of functions,
where Fz : X — R for any e > 0. Suppose that the family {F.} is equicoercive and

that F. L Fo (see Definition . Then the following two properties hold:
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o Fy attains its infimum and satisfies miny Fy = lim._,q infx F-.

o If, for e, — 0%, the sequence xy, satisfies Fe, (xx) = infx Fz, + o(1), then up
to a subsequence (not relabeled) xy, converges to some x* which is a minimizer

Of ]'-0.

One useful point of view is that Fy provides a type of selection criteria on min-
imizers for the functionals F., or in other words by studying the minimizers of Fy
it is possible to deduce information about the minimizers of F. (if they exist), in at
least an asymptotic sense. In other words, any minimizing sequences of the F. that
converges must converge to a minimizer of Fy.

It is, however, important to note that minimizers of Fy do not necessarily corre-
spond to limits of minimizers of the F.. A simple example is instructive.

Example 2.4.6 ([22] Remark 2.6). Let X = [0,1] and F. = ex®. Then F. - 0,
which s minimized at any x € X, but F¢ is only minimized at x = 0.

The following very specific case provides a framework where this phenomenon
cannot occur, and was first given in [104], see also [69] and [22].

Proposition 2.4.7. Let X be a metric space and let {F.} be a family of functions,
where Fz : X — R for any € > 0. Suppose that, for all ¢ > 0, F is coercive (see
and lower semicontinuous. Also suppose that the family {F.} is equicoercive,

and that F; LI Fo (see Definitions |2.4.1| and |2.4.4I) . Suppose furthermore that
T € X 1s a strict local minimizer of Fo. Then there exists a sequence x. — T which
are local minimizers of F. for all ¢ sufficiently small.

It is clear that Example is somewhat artificial: if one divides by ¢ (which
does not affect the minimization problem) then all the confusion disappears. This
suggests the need to derive a sort of expansion of the functionals in terms of I'-
convergence.

One method for producing such an expansion is known as the asymptotic devel-
opment by I'-convergence. This was first introduced in [13].

Definition 2.4.8. Let X be a metric space and let {F.} be a family of functions,
where F, : X — R for any e > 0. We say that an asymptotic development of order
k

Fo=FO 4 e o b r®) 4ok
holds if there exist functions F® : X - R, i =0,1,...,k, such that the functions

’ (i-1) _ (i—1)
F === lngf (2.4.1)

are well-defined and

FO) = }‘(i), (2.4.2)
where .7-"5(0) = Fe.

One major aim of carrying out such an asymptotic expansion is that it may
provide additional selection criteria for limits of minimizers. This is summarized in
the following proposition.
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Proposition 2.4.9. Let F) be an asymptotic development of order k of a family
of functions {F:}. Define

U; := {minimizers of FV}.

It then follows that '
FO =00 in X\Uj_1,

and that
{limits of minimizers of F.,,} C U, C --- C Uy, (2.4.3)
with
inf 7., = inf FO 4 g, inf FO 4.4 &k inf 7R 4 o(eh)
for every sequence e, — 0T, provided inf F) < oo for all i =0, ..., k.

Simple examples show that each of the inclusions in may be strict (see
[13]). Thus asymptotic development by I'-convergence provides a selection criteria
for minimizers of F(©). Some other works that describe asymptotic development via
I'-convergence include [23], [50].

2.5 Semigroups and Evolution Families

This section outlines some classical results for “solving” linear problems of the form

d
—u=At)u, u(0)=1u’ (2.5.1)
dt
when u takes values in some Banach space X and A(t) is an unbounded linear
operator. These results mostly come from [91].

The first step is to consider the problem when A does not depend on t. This

case is the subject of semigroup theory.

Definition 2.5.1. A family {S(t)};c(0,00) with elements in L(X), with X a Banach
space, is called a strongly continuous semigroup if it satisfies

Il
~

S0 ,
S(t)S(s) =S(t+s) forallt,s>0,
lim S(t)x =z for all x € X.

t—0

A linear operator A : D(A) — R is called the generator of S if

Ap = lig 2T =2

t—0+ t ’
where D(A) C X is the subspace of X for which the limit exists.

Another name for a strongly continuous semigroup is a C'0 semigroup. This work
will use the word “semigroup” in place of “C0 semigroup” for brevity.
A semigroup will satisfy equation (2.5.1]) in the sense that

d
%S(t)x = AS(t)x

for all x € D(A) (see, e.g., Theorem 2.4 in [91]). When A is the generator of a

semigroup S(t), it is customary to write S(t) = e’
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The following proposition gives a characterization of generators of semigroups,
see Theorem 1.5.3 in [91]. By way of definition, the resolvent set of a linear operator
A, namely the set of A € C such that (A — AI) has a bounded inverse R(\; A), will
be denoted by p(A).

Proposition 2.5.2. A linear operator A : dom(A) C X — X, with domain
of definition dom(A), is the infinitesimal generator of a semigroup et satisfying
||| < Me“t if and only if

e A is closed and dom(A) is dense in X.

o The set p(A) contains the ray (w,o0) and

M

[R(A; A" < G—wp

for A > w.

In general the previous condition is difficult to verify. One particular case where
this is possible is when ||S(¢)|| < 1 for all £. In this case the semigroup is called a
semigroup of contractions. The following definition and proposition give a charac-
terization of semigroups of contractions.

Definition 2.5.3. Let x € X, with X a Banach space. Define
J(x):={z" € X*: (", 2)x x = 2]} = [|l="]%- } - (2.5.2)

A linear operator A with domain of definition dom(A) C X is called dissipative if
for every x € dom(A) there exists an x* € J(x) such that

(z*, AJC>X*’X <0.

The next result is known as the Lumer—Phillips Theorem, see e.g. [45] Theorem
11.3.15. It links semigroups of contractions with dissipative operators.

Proposition 2.5.4. The following are equivalent for a densely-defined, dissipative
operator A:

1. The range of (A — X ) is dense for some \ > 0.

2. A is closable and its closure (also denoted by A) generates a contraction semi-
group.

The next result will provide a dissipation estimate in later analysis for two sym-
metric operators. It can be found in [66], Theorem 4.12.

Proposition 2.5.5. Suppose that A is a self-adjoint operator on a Hilbert space X,
with (Az,x) < 0. Suppose that B is a symmetric operator on X with ||Bx| < ||Ax||.
Then

(A+B)z,z) <0.

Another common avenue for proving that a linear operator generates a semigroup
is to use perturbation theory. The following perturbation result is given in Theorem
3.1.1 in [91].

Proposition 2.5.6. Suppose that A is the gemerator of a semigroup satisfying
e < Mye®t, and that B is a bounded operator. Then A+ B generates a semi-
group satisfying ||eATB?|| < Myew2t,
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Finally, the following proposition gives some information on the inhomogeneous
case, and can be found in Corollary 4.2.2 in [91].

Proposition 2.5.7. Suppose that f € L1(0,T, X), with X a Banach space. Suppose
that A is the generator of a semigroup et on X. Then the initial value problem

d
%ZL‘:A{L‘-F](, z(0)=x0€ X

has at most one solution. If it has a solution, then

t
z(t) = ey —I—/ M3 £ (s) ds.
0

In the previous proposition, the integral is naturally meant in the sense of
Bochner integrals. Some basic references on Bochner integrals and their proper-
ties include [24] and [43].

All of the previous results are in the autonomous case, namely the case where A
is independent of time in . The following definition treats the time dependent
case.

Definition 2.5.8. Given a Banach space X, a two-parameter family {U (t, s) }o<s<i<T»
with T € (0, 00], taking values in L(X), is called an evolution family if

U(s,s) =1,
Ut U, s) = Ult5),
(t,s) — Ul(t,s)x is continuous for all x € X.

A family of linear operators {A(t)}icio,m, satisfying Y C dom(A(t)) for all t €
[0,T] and for some dense Y C X, is said to generate an evolution family U if

ot
EU(t’ S)xli=s = A(s)x,
gU(t, s)x = —=Ul(t,s)A(s)x,

ds
forallz eY.

The results for the construction of such operators and their properties generally
have complicated statements, primarily because the domain of A may vary in time.
For this reason, some of the results here are stated in terms of the spaces X4y,
which were defined in , and which are the only spaces where these results
will be used in this work.

To begin, it is important to understand how evolution families are related to the
solution of . The following proposition answers this question in a classical
context, see Theorem 5.4.2 in [91].

Proposition 2.5.9. Suppose that, for some k > 0, {A(t)}ier is the generator of
an evolution family U in X1y on the interval I = [0,T), with T = oo permitted.
Furthermore, suppose that for some h € C(I; Xo1x) (N CH(I; X144) we have that

d
h = A(Dh(1)

is satisfied in X14x,. Then it must be that U(t,0)h(0) = h(t).
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The next two propositions give specific situations where an evolution family can
be constructed from a family of linear operators { A(¢)}. The first proposition comes
from Corollary 5.4.7 and 5.4.8 in [91].

Proposition 2.5.10. Let X be a Banach space and let I = [0,T), with T = oo
permitted. Suppose that, for any fived t € I, A(t) is the generator of a semigroup
{Sa)(8)}s>0 which satisfies

1Sa@ ()l exy < e forall s >0,

where X is independent of t. Also suppose that dom(A(t)) = D is independent of t
and that for all € D we have that A(t)x is C' in X. Then the family of operators
{A(t) }ter generates an evolution family U on X which satisfies

U $)llex) < e A=) for0<s<t<T.

Furthermore for xo € D we have that x(t) := U(t,0)xq is the unique solution of the
non-autonomous Cauchy problem

d
ax(t) = A(t)z(), z(0) = xo.

The next proposition is a direct application of Theorem 5.3.1 in [91].

Proposition 2.5.11. Let I = [0,T), with T = oo permitted, and suppose that a
family of linear operators { A(t) }rer satisfies the following for all t € I.

1. A(t) generates a contraction semigroup on Xiy.
2. A(t) generates a contraction semigroup on Xoyy.

3. A(t) is a bounded operator from Xoik to Xiyk, and the map t — A(t) is
continuous from I to L(Xojk, X1+k)-

Then { A(t) }ter generates an evolution family Vx, ., satisfying [[Vx, (£, )| c(xp. ) <
1.

The following is Lemma 5.4.5 in [91].

Proposition 2.5.12. Let U(t, s) be an evolution system on a Banach space X sat-
isfying ||U(t,s)|| < M. Let B(t) be a strongly continuous family of bounded linear
operators on X . Then there exists a unique evolution family V (t, s) of bounded linear
operators on X such that

V(t,z)r =U(t,s)r + / V(t,r)B(r)U(r,s)xdr.

Remark 2.5.13. Proposition readily implies that if A(t) is the generator of
an evolution family U, then A(t) + B(t) is the generator of an evolution family V.

2.6 Other Preliminaries

The following lemma is a slight modification of Proposition 1 in [39]. This thesis
will use this lemma in studying rearrangement operators. This lemma is particularly
noteworthy because it does not make any assumptions about linearity or continuity.
The proof is included here for convenience.
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Lemma 2.6.1. Let M and N be measure spaces and let C C LY (M) be a closed
under V, meaning that if f,g € C then fV g € C. Let 3 be a mapping from
C — LY(M) which satisfies

/imf—/nB(f) fordll f € C.

Then the following are equivalent:
(i) f,g€C and f <g = 3(f) < 3(9)-
(it) Ju(3(f) =3(9)" < Jyp(f = 9)" forall f,g € C.

(iti) [y |3() =39 < Joy |f — gl for all f,g € C.
Proof. 1f we have (i) then 3(f) < 3(fV g), and thus

/ (3(F) = 3(9))* < / 3(FVe) - 3(0)
N n

:/gm(f\/g)—gz/m(f—g)ﬁ

[ 1350 =36)1= [ 30 -36)" + [ (30— 30"
N N N

<[u-or+ [@-nr= [ 17-4l

which gives (iii). If we have (iii), and f,g € C, with g < f, then we use the identity
25T = |s| + s to show that

which is (ii). If we have (ii) then

2 /ﬂ (3(9) — 3())* = /‘n 13(9) — 3(f)] + /m 3(0) - 3(/)

S/m\g—flJr/mg—fZO,

which in turn implies that 3(g) < 3(f) a.e., which is (i). This concludes the proof.
O

The next proposition is a C' touching result, which originated in the study of
Hamilton-Jacobi equations. The statement and proof can be found in [47], p. 584.

Proposition 2.6.2. Assume that u : R — R is a continuous function, which is
differentiable at xg. Then there exists a function v € C1(RY) such that u(x) = v(xo)
and u — v has a strict local maximum at xg.

Remark 2.6.3. By considering —u it is clear that mazimum can be replaced with
minimum in the statement of the previous lemma.

The next result gives a sufficient condition for a function to be concave, and can
be found in Lemma 2.7 in [103].

Proposition 2.6.4. Let f : I — R be a lower semicontinuous function defined on
an interval 1 and suppose f is locally concave in the sense that its graph admits
a local upper support line in a neighborhood of any point on the graph. Then f is
concave.
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Part 1

Cahn—Hilliard Energy
Asymptotics and Slow Motion
Bounds
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Chapter 3

Generalized Rearrangement of
Functions on a Bounded Domain

This chapter studies a novel type of rearrangement of a function f : Q — R, with
Q) C R™. Before introducing this new type of rearrangement, it is useful to review
the definition and properties of the classically-studied spherically decreasing rear-
rangement (see e.g. [67, [68]). The spherically decreasing rearrangement is defined
as follows: Given any positive, L' function u, we define the distribution function
ou(s) := L"({u > s}). Then define

gu(t) :=sup{s € R: gyu(s) > wnt"},

where wy, is the measure of the unit ball in R”, and define uv*, the spherically de-
creasing rearrangement, via

u (@) := gu(|a])-
This rearrangement is constructed using a simple approach: level sets of of u are
rearranged into balls centered at the origin.

The spherically decreasing rearrangement has several important properties. First,
the very definition of u* readily implies that u* and u are equimeasurable, meaning
that £"({u* > s}) = L"({u > s}) for almost every s. From this property, it is
straightforward to show that [ (u)dz = [ (u*)dx, for any Borel function .

Second, this rearrangement is order preserving, meaning that if « > v then u* >
v*. This property, along with equimeasurability, implies [39] that the rearrangement
operator is a contraction on LP spaces, meaning that

lu* —v*||r < ||u—v|Le. (3.0.1)

Figure 3.1: Rearranging the level sets of w.

35
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Second, if w € WP, then u* will be in WP and
™ lwre < [lullwre (3.0.2)

This is known as the Pdélya—Szeg6 inequality. The proof of this is classical, see e.g.
[67] [72]. This inequality has been used to study the symmetries of solutions to
certain elliptic problems[67], as well as to establish comparison principles [I05]. The
present interest lies in the fact that the Polya—Szeg6 inequality permits the reduc-
tion of functional problems in n-dimensions to simpler weighted, one-dimensional
problems.

For example, in [41], Dal Maso, Fonseca, and Leoni use the spherically decreasing
rearrangement to study I'-limits of the Cahn—Hilliard functional in a domain
when both a mass constraint and a Dirichlet condition are imposed. The Dirichlet
condition is crucial in their analysis because it enables the use of the Pdlya—Szegd
inequality, which subsequently reduces the problem to a one-dimensional problem.

In light of equations and , a natural question is the smoothness of
the rearrangement operator. It turns out that the operator is not smooth on W1?
[7]. This is essentially due to the non-local nature of the rearrangement. However,
the operator is actually continuous on fractional Sobolev spaces [7].

The proof of the Pélya Szegd inequality uses relatively simple tools. Specifically,
it uses the coarea formula , the isoperimetric inequality , and some
simple properties of the decreasing rearrangement in one dimension, namely .

The following section presents a natural extension of this proof to the setting of
a bounded domain. This extension is independent of boundary conditions, and is
hence well-suited to Neumann problems. In particular, the extension that we present
here is very well-suited to studying sharp interface problems. A specialized version
of the results presented here was used by Cianchi et. al. [34] [38] to study sharp
bounds on a class of Poincaré constants.

3.1 Definition of the Rearrangement
This section assumes that
QCR" bounded and open with £™(Q2) = 1.

Furthermore, this section considers a continuous function Z : R — R, which
satisfies the following assumptions

Z(v) =0 for v e R\(0,1), (3.1.1)
Z(v) > Cmin{v,1 — v} = for v € (0,1). (3.1.2)

Next, a measurable function u : €2 — R is said to have Z comparable level sets if
P({u> s} Q) > Z(L"({u > s})).
In particular, if Z = Zg, where Zq is the Isoperimetric Function of €2, given by
Io :=inf{P(E;Q): EC Q,L"(E) = v},

then any measurable function v will have Z comparable level sets. Furthermore, if {2
is connected and Lipschitz then Zg will satisfy (3.1.1]) and (3.1.2)) due to Proposition
2110
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This section considers the general function Z because in subsequent sections it
will be necessary to consider certain modifications of the isoperimetric function Zg.
For example, in some settings it will be necessary to consider either an L' localized
version of Zq or a smoothed version of the same.

Next, define a function Vg as a solution to the following Cauchy problem:
d
£V9(t) =Z(Val(t), Va(0)=1/2. (3.1.3)

Since 7 is bounded and continuous, the Cauchy problem admits a global
solution Vg : R — [0, 1]. It follows from inequality that there is a 77 > 0 so
that 0 < Vo(t) for =11 <t < 0 and Vo(—T") = 0. Similarly there exists a 75 > 0 so
that Vo (t) < 1 for all ¢ < Ty and Vi (T2) = 1. Define

I := (—Tl,TQ). (314)

In what follows for y € R” let y = (v/,y,) € R*" ! x R. Next, define a set
Q* C R™, which will be a type of rearrangement of €, via

OF = {y T oyn € 1, Z// S Bn—l((),r(yn))} )
where for t € I,

1/(n=1)
r(t) := <I(V9(t))> and wy,_1 := L"(B,_1(0,1)).

Wn—1
Note that the definition of r(t) implies that
LY (B 1 (0,7(1))) = T(Va(t)) (3.15)

for all t € I.
The following lemma motivates the choice of the Cauchy problem ((3.1.3)).

Lemma 3.1.1. For any t € I the following equalities hold:
Va(t) = L2 N {yn < t}), (3.1.6)
T(Va(t)) = P({yn < 1}:27). (3.17)

Proof. Equation (3.1.6)) is proved by using Fubini’s theorem, equation (3.1.5)), the
Cauchy problem (3.1.3)), the fundamental theorem of calculus, and the fact that
Va(—=T1) = 0, in that order:

LM N {y, < t}) = . H'HQ* N {yy = s}) ds

- /t I(Va(s)) ds

-7
=Va(t) — Va(=T1) = Vu(t).
Equality (3.1.7) follows immediately from equation (3.1.5)) and Definition[3.1 O

Now given any measurable function u : Q@ — R, define the distribution function
ou(s) := L"({u > s}) and the following function:

gu(t) :==sup{s € R: g,(s) > Va(t)}.

Here g, is essentially an inverse of g, with respect to Vq. Next, define a function
u* : * — R as follows:

U*(ylvyn) = gu(yn) (3.1.8)
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3.2 Fundamental Properties of the Rearrangement

The first important property of the rearranged function u* is that it is equimeasur-
able with w.

Lemma 3.2.1. Let u : Q2 — R be a measurable function. Then the functions u*
and u are equimeasurable, meaning that o, = oy+. This implies that for any Borel
function ¥ : R — R,

[otwde= [ werdn= [ wia)zvm

assuming that the previous integrals are well-defined. In particular the LP norms of
u and u* are preserved.

Proof. First note that, by standard arguments, o, is decreasing and right continuous
and that g, is decreasing and left continuous (see, e.g., [72], p. 478).
Let h(t) := sup{s: gu(s) > t}. Since g, is decreasing it follows that

Ou* (t) = 'Cn({y € 0" gu(yn) > t})
=L"({y € " 1 yn < h()}) = Va(h(1)),

where the last equality uses Lemma [3.1.1
We then claim that Vo (h(t)) = ou(t). To see this observe that since Z > 0 in
(0,1), by (3.1.3) we have that Vg is strictly increasing and of class C! in I. Hence:

Va(h(t)) = Va(sup{s : gu(s) > t}) = sup{Va(s) : gu(s) >t}
— sup{Va(s) : sup{r : 0u(r) > Va(s)} > 1}
— sup{p s sup{r : 0u(r) > p} > 1},

For every p such that sup{7 : 0,(7) > p} > t, there exists 7 > ¢ such that
0u(7) > p. But since g, is decreasing we have that g,(t) > 0,(7) > p, which then
shows that

Va(h(t)) < ou(t).

Now if Vo (h(t)) < ou(t), then Vo(h(t) < ou(t) — € for some € > 0. By equation

(3.2) this implies that
supq{s : gu(s) > ou(t) — e} < t.
S

By the right continuity of g, for some d > 0 we have that o,(t + 0) > ou(t) — €,
which violates the previous inequality. This then implies that g, (t) = 0.+ (t) for all
t, which is the desired conclusion.

To see the integral equality stated, we note that (see, e.g., Theorem B.61 in [72]):

[ otuadn = [ wdonts) = [ wedoets) = [ vt @)ay

This concludes the proof.
O

The next proposition states that the rearrangement is a type of contraction,
and in particular is a contraction on LP spaces. The proof of this theorem is a
straightforward adaptation of a similar result from [39]. There are several other
possible proofs, using either simple functions or the Reisz rearrangement inequality,
see e.g. Chapter 6 in [72].
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Proposition 3.2.2. Suppose that j : [0,00) — [0,00) is convex with j(0) = 0.
Suppose that

/Qj(|u1])da:,/ﬂj(|u2|)dx <00, U,Ug € Ll(Q).

Then

[ it =iy < [ (s = wl)de.

In particular, the rearrangement operator is a contraction on LP, meaning that

[ul — usllLraey < llur — uz2llze(q)-

Proof. First, since j' is a function of bounded variation, we may write, for r > 0,

i = [ deds= [ [ e+ o ds
0

o (3.2.1)
=rj (0" sdj'(t) = rj' (0" r—t)Tdj'(t).
—j<o>+/0/tdd]<t> g<o>+/< 0 di'(t)

Next, for n € LY(Q), define K(n) := (n + ug)* — u}. Since u < v implies that
u* < v*, we immediately have that if u < v then K(u) < K(v). We also deduce,
using Lemma that

K(n)dy=/

(n+uz) —ugdx = / ndx. (3.2.2)
Q Q

Q*

By Lemma |2.6.1| we then have that
/*(K(ﬁl) — K(n2))Tdy < /9*(771 — o) du.
Now, we note that K (t) =t for any ¢ € R. Thus, for any ¢ > 0,
| -t ay< [ -t ay

Since j is convex, dj’(t) is a positive measure. Thus after integrating with respect
to dj’(t), and using (3.2.1)) and (3.2.2)), we have that

| iwmyay < [ o aa.

for any n € L'(£2) such that the right hand side is finite. If we set n = u1 Vug —ug =
(u; — ug)™ this implies that

[t vy s dy < [ it - w)) de,

Hence, by using monotonicity of the rearrangement, (-)* and j, we find that

[ it =wyyay < [t v —wdy< [ (o - e

Switching u; and us and summing then completes the proof.
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Corollary 3.2.3 (Hardy-Littlewood Inequality). Let u,v € L?(2). Then

/uvdxﬁ/ u v* dy.
Q *

Proof. By Proposition we have that
/ [U*]2 + [U*]Q —u'vtdy = / [u* — U*]Q dy < /[u — 0]2 dr = / u? + 0% —wvdr.
* * Q Q

By then using Lemma on the function ¥ (s) = s? we thus have that

/ u*v*dyZ/uvda:,
* Q

as desired. ]

The next lemma states a basic property of the rearrangement operator: namely
that it commutes with increasing functions. This will later be used to prove that
the rearrangement operator preserves absolute continuity.

Lemma 3.2.4. Let u :  — R be measurable. Let H : R — R be an increasing
function. Then the following holds L™ a.e.:

In particular, given s1 < sa, let Trg, 5,(s) := (s A s1) V s2,5 € R. Then the following
equality holds L™ a.e.:
Trs s (u) = (Tr81,82 (u)"

Proof. Fix any t € R, and let @ = {s: H(s) > t}. Since H is an increasing function
the set @ will either take the form [A, c0) or (A, 00). Thus we may write

L"({H (u®) > a}) = L"({u” € Q}).
Due to Lemma [3.2.1 we have that
L'({u" € Q}) = L"({u € Q}).
In turn by the definition of Q,
L{u e Q}) = L*({H(u) > a}).
Again applying Lemma [3.2.1] we have that
LU({H (u) > a}) = L*"({[H (w)]" > a}).

This implies that H(u*) and [H(u)]* are equimeasurable. By the definition of the
rearrangement and since H is increasing, it is evident that both functions are only
functions of y,, and are decreasing in y,. We will let ui(s) := H(u*)(0,s) and
ug(s) == [H(u)]*(0, s). It suffices to show that u; and ug are equal L' a.e.. Suppose
that they are not. Then, since monotone functions are differentiable a.e., there exists
a value s* at which both w; and wug are continuous and so that wu;(s*) # wua(s*).
Since both functions are monotone, this implies that £1({s € I : ui(s) > ua(s*)}) #
LY{s € I : us(s) > ua(s*)}). However, this contradicts the fact that H(u*) and
[H(u)]* are equimeasurable. This concludes the proof.

O
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Remark 3.2.5. Lemmas - notably do not assume any special properties
on u. They are simple consequences of the construction of Q* and u*. In particular,
these lemmas do not require that u have I comparable level sets. This fact will be
used later in studying the anisotropic case.

The next lemma is a straightforward analog of the isoperimetric inequality.

Lemma 3.2.6. Given u € BV (Q) with Z comparable level sets, for any t € R the
following must hold:
P{u* > t}; Q") <P({u > t}; Q).

Proof. As g, is a decreasing function (see (3.1)), we note that the set {u* > ¢}
is actually a set of the form {y, < s}. By Lemma we have that Vo(s) =
L N {yn < s}) = ou(t). By then recalling that v and u* are equimeasurable

(see Lemma [3.2.1)) and by Lemma we have the following;:

P({u" > t};Q") = Z(0u(t))
=Z(ou(t)) < P({u >t} Q),

where we have used the fact that u has Z comparable level sets. This concludes the
proof. ]
3.3 A Podlya—Szego Inequality

This section proves an analog of the Pdélya—Szegd inequality. The first two lemmas,
which are of independent interest, are preliminary to that goal.

Lemma 3.3.1. Suppose that uw € BV () has Z comparable level sets. Then u* €
BV (Q*) and the following inequality holds:

/I T(Va(s))d|Dgal(s) = | Du*|(27) < [Dul ().

Proof. By Lemma we have that u* € L'(Q*). By (3.1) and by the fact that g,
is decreasing, it follows that g, € BVec(I) (see, e.g., Theorem 7.2 in [72]).

Moreover by the definition of u* (see (3.1, (3.1.5), (3.1), and Lemma [3.2.1)) we

can write the following:

D) =sup{ [ o/ m)dDg) ) 6 € Cu(@). Il <1

— sup / / O ) dy' | d(Dgu)(ym) - & € Co(2), l6llcy < 1
1 Bn—1(0,r(yn))

~ up { [ 20 0) dDa) ) £ € Co~T,7), [y < 1}

I
= [ T dDg. ).
Next we utilize the coarea formula and Lemma [3.2.6] as follows:

| Du*|(Q) :/RP({U* > th 0" dt < /RP({u>t};Q) dt = | Du|(Q).

This proves the desired lemma. O
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Lemma 3.3.2. Suppose that u € WY1 (Q) has T comparable level sets. Then u* €
WLl(Q*),

Proof. By (3.1.8) it suffices to show that g, is absolutely continuous on any sub-
interval [to, 1] compactly contained in I. Fix € > 0, and let ¢ be small enough such
that for any measurable £ C 2 with £"(E) < J the following holds (see (3.1.2])):

/ Vuldo < e min T(Va(t).

tE[to,tl]
Now consider any finite collection of non-overlapping subintervals (ag, b) of [to, 1],
satisfying

N 5

b —ap) < .
;( k k) < maxte[tmtl]I(VQ(t))

The following estimate holds by (3.1.3)), (3.1.6]), (3.1), (3.1.8]), Lemma and
B3):

(=

e ( {x e Q:gulbe) <ulz) < gu(ak:)}>
k=1

L"{y € O : gu(br) < u™(y) < gular)})

I
= I+
Mz

(Vg(bk) VQ(CLk)) < max 7 VQ

k - ak
tE(to,t1]

k::l

=
Il
—

Next, set s := gu(br) and sy := gy(axr) and let v := Try, 4, u. By applying
Lemma, Lemma, above and the fact that the pointwise variation of a
monotone function is bounded by its total variation (see Theorem 7.2 in [72]) we
obtain

min Z(Vo(t))|gu(ar) — gu(br)]
te(to,t1]

b
< / T(Va(t)) d| Dga (t) = /I T(Va()) d|D(Tray 0y 90)| (1)

ag

= |Dv*|(Q) < | Do|(Q) = Vul da.

/{gu(bk)<u<gu(ak)}

We then find the following:

win Z(Vo(0) Y lgu(a) — 9u(00)| < | Vu] da
Uk{gu(bk)<u<gu(ak)}

tE[to tl

< min (Z(Va(t)))e,

t€(to,t1]

where we have used (3.3)) and (3.3). This implies that g, is absolutely continuous
on [tg,t1], as claimed.
U

The next lemma gives an identity relating to the level sets of functions. It can
be found in [35]; the proof is included here for completeness.

Lemma 3.3.3. For u € WHL(Q) there exists a representative of u such that the
following equality holds for all s1 < ss:

/ / |Vu(z)|"tdH" Vds = L"({x € Q: u(x) € (s1,52), Vu(z) # 0}).
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Proof. Let H. := (¢ + |Vu|)~!. By the coarea formula, Theorem we find that

H.|Vu|dx :/ H.|Vu|dx

{s1<u<sa}

52
= / / H.dH" 'ds.
s1 Ju~1(s)

By noting that H. — |Vu|~! monotonically in the set {Vu # 0}, we find that (3.3.3)
holds. O

/{51 <u<sz, Vu#0}

The following theorem is the main result of this section, namely an analog of the
Polya—Szeg6 inequality.

Theorem 3.3.4. Suppose that u € WHYP(Q) for 1 < p < oo, and that u has T
comparable level sets. Then u* € WP(Q*) and furthermore:

/\gupI(VQ)ds:/ ]Vu*|pdy§/ |Vul|P de.
1 Q* Q

Proof. Lemmas [3.3.1] and immediately give this inequality if p = 1. For p > 1
we can still apply the previous lemmas to show that u* € W11(Q*), because € has
finite measure.

Next we note that the following equality holds (by using the coarea formula):

ou(t) = L({u > 1N {Vu = 0})+/:O/{ . V|t dH " ds = fR(1)+ fA(E).

(3.3.1)
Clearly f3' is absolutely continuous, and f{* is decreasing. Thus p,, is differentiable
for a.e. t, with:

ol (t) < — / V|~ dH™ L (3.3.2)
{u=t,Vu#0}

Next we claim that (following [35]) for a.e. ¢:

%f}‘* () = %E”({u* >} N {Vu* = 0}) = 0.

To establish this claim, we first note that for any open interval J we have the
following;:

1 / 3.
£1(gu()) < /J 104 d

By approximating measurable sets with disjoint open intervals we can then establish
that

£ (gu({g, = 0}) < / gl [ds = 0.

{g:,=0}

Following [36] we then find that:

L (u*({Vu* = 0}) = L1 (gu({g, = 0})) = 0.

Thus there exists a Borel set Fy in R so that £1(Fy) = 0 and so that u*({Vu* =
0}) C Fp.
We then claim that for any Borel set B in R we have that

IDfI(B) = L™((w*)"H(B) N {Vu" = 0}).
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To see this, we first note that f}”* is right continuous and decreasing. We then have
that

D |((t1,t2)) = fi° (1) — Hm 1" (t2)

— L({u* > 61} N {Vu* = 0}) — lim £({u* > t} N {Vu* = 0})
= L > ) N {Vut = 0}) — LM({u* >t} N {Vu* = 0})
= L"((u*) " ((t1, t2)) N {Vu* = 0}).

As both [Df{*"| and £"((u*)~1(-) N {Vu* = 0}) are Borel measures, and as they are
equal on open intervals, they must be equal on all Borel sets. This and the fact that
uw*({Vu* = 0}) C Fp immediately give that

DS (R\Fp) = L™((u") " (R\Fp) N {Vu* = 0}) = L"(#) =0,
which proves ({3.3]). Utilizing (3.3.1)) this then immediately implies that for a.e. ,

oh(t) = — / V|~ dH™ L (3.3.3)
{u*=t,Vu*#0}

By the coarea formula we can write the following:

| ovepar= [ VP dy
o Q*N{Vur£0}

= / / (VP dH" ! dt.
R J{u*=t}N{Vu*£0}

By we know that Vu*(y) = (0, ¢/, (yn)) € R"! x R. Since g, is decreasing we
have that the set {u* = t} is a set of the form {y : y, € [t1,t2], ¥ € Bn-1(0,7(yn))},
for some t1 < to with possibly t1 = 9. If 1 = t5 then clearly Vu* is constant on the
set {u* = t}. If t; # to then g/, is zero on the set (¢1,t2), and is either zero at t1,to
or is undefined. Since Vu* is constant on level sets of u* (where it’s defined) we can
then write

H Y {uw* =ty N {Vu* #0}))?
0* R (f{u*:t}m{vu*;ﬁo} |Vu*[~tdHr—1)p

By (3.3.3) we have that

P({u* > t}; Q*)P
Vu* P dy = / dt.
fwwran= [ S
Next we utilize Lemma [3.2.1] and Lemma [3.2.6] to find that
P tl:- Q)P
[ wepae [P0,
* R

(= ()P

Next (3.3.2)) gives

P({u> t}; Q)
Vu* P dy < / dt.
/* | ‘ R <f{u:t} \Vu|_1 den—l)p—l

Jensen’s inequality on f(s) = s~ (=1 then implies that

/ ]Vu*|pdy§// |Vu|P~ dH" ! at,
Q* R J{u=t}

which after applying the coarea formula gives the desired result.
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Remark 3.3.5. This section has considered a rearrangement of the function u, via
the decreasing function g, : I — R. Howewver, all of the arguments would hold for an
increasing rearrangement f,. Indeed, in the case when I is symmetric, e.g. T = Iq,
it is straightforward to show that fy,(t) := gy(—t). In any case, for the increasing
rearrangement f, the following relations still hold:

/ D(Fu() T (Vit)) dt = / (o) da,

1 Q

/ FLOPIValt)) dt < / Vul? d.
I Q

This section focuses on the decreasing rearrangement because that is the standard
convention chosen in the literature involving rearrangement. However, subsequent
chapters will use the increasing rearrangement f, of u in because of the conventions
in the literature on phase transitions.

The following corollary is the motivation for our development of the rearrange-
ment in this section, and is a simple application of Lemma and Theorem

Corollary 3.3.6. Let u € HY(Q2), and let u have T comparable level sets. Then the
following inequality holds:

/ W(u) + 2| Vul? dz > /(W(fu) + (I (V) dt.
Q 1

Moreover

/Q wdz — /1 FZ(Veo) dt.

3.4 Anisotropic Extension

This section briefly considers an extension of the previous result to the anisotropic
case. In the case where @ = R™ this problem was previously considered in [g].
For the most part, the proofs for the anisotropic case are identical to the isotropic
case covered in the previous sections, with only minor modifications. Abbreviated
versions of the proofs are included for completeness.

In this section, let ¥ : R™ — [0,00) be a convex function that is positively
homogeneous of degree one (see (2.2.1))). A measurable function u : @ — R is said
to have (Z, V) comparable level sets if

Py({u>s};Q) > T(L"({u > s})),

where the definition of Py is given in (2.2.2). Next, define u* and Q* as in Sec-
tion [3.1] By Remark we have that Lemmas - still hold. The main
question in the anisotropic case is now whether an appropriate extension of the
Polya—Szeg6 inequality still holds. The first step is to establish the relevant isoperi-
metric inequality. The following proposition is a consequence of the definition of a
function having (Z, ¥) comparable level sets.

Proposition 3.4.1. Given u € BV (Q) with (Z,¥) comparable level sets, for any t
the following must hold:

P({u* > t}; Q) < Py({u > t}; Q).
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Proof. As in the proof of Lemma we remark that the set {u* > t} is actually
a set of the form {y, < s}. By Lemma (see Remark , we have that
Va(s) = LY N {yn < s}) = ou=(t). As u and u* are equimeasurable (see Lemma

3.2.1) and by Lemma which both apply due to Remark we have the

following;:

P({u® > 1};9Q%) = Z(ou-(1))

Z(ou(t)) < Py({u > t}; ),

where we have used the fact that v has (Z, ¥) comparable level sets. This concludes
the proof. 0

Following the isotropic case, it is possible to compare the BV norm of u and u*
by using the coarea formula and Proposition [3.4.1

Proposition 3.4.2. Suppose that uw € BV () and that u has (Z,¥) comparable level
sets. Then u* € BV (Q*) and

/II(VQ(S))d!Dgu!(S) = |[Du*|(22%) < |Dulw(9).
Proof. As in the proof of Lemma [3.3.1] we have that

Du|(97) = /1 T(Va(yn)) d|Dgul(m).

Then by using the coarea formula, see Theorems [2.1.8] and [2.2.3] and Proposition
[B.4.1]it follows that

DU |(QF) = /RP({U* > 107 dt < /qu,({u > 1):Q)dt = |Dule(9).

O]

Proposition 3.4.3. Given u € WHH(Q) with (Z,V) comparable level sets, it follows
that u* € Wh(Q*).

Proof. Following the proof of Lemma it suffices to show that g, is absolutely
continuous. Using the same notation as in the proof of Lemma we find that

min Z(Vo(t))|gu(ar) — gu(br)]

tElto,t1]
bk
< [ Z0a@) dDal® = [ TR dID(Tr 010
ag
= |Dv*|(Q%) < |Dv|y(Q) < C/ |Vu|dz.
{gu(bk)<u<gu(ak)}
where we have used Proposition and the fact that ¥ is bounded, see equation
(2.2.2). The result then follows as in the proof of Lemma O

With these tools in hand it is now possible to give the anisotropic version of the
Polya—Szeg6 inequality.

Theorem 3.4.4. Suppose that u € W1P(Q) for 1 < p < oo and that u has (Z, V)
comparable level sets. Then u* € WIP(Q*) and furthermore:

/|g;ypz(vg)ds:/ \Vu*]pdygflll(wu])pdx. (3.4.1)
I Q* Q
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Proof. As in the proof of Theorem [3.3:4] by applying Lemma [3.4.3] it is clear that
u* € WHP(Q*). It only remains to prove the inequality .

To prove the inequality , we first remark that the argument between equa-
tions and still holds in the present case. This is because the argument
only relies on equimeasurability and properties of monotone functions. This then
implies that, for a.e. t,

/ |Vu*|"taH ! > / V|t dH™ L. (3.4.2)
{u*=t,Vu*#0} {u=t,Vuz#0}

By the coarea formula and the fact that «* has constant gradient along level sets we
may write

P({u* > t}; Q)P
Vu*|P dy = / dt.
/Q* ’ | R (f{u*:t}m{Vu*;éO} ‘Vu*\_l d?-l”_l)p_l

This, along with Proposition and Equation (3.4.2)) implies that

. Q)P
/ VulP dy < / Poltu> 1590,

By Holder’s inequality we have that

Vu _ U(Vu)? O\ _ O\
U — cm"1§</ dH"™ 1) / Vu| L dH ! .
/ut < ‘vu’ ) u=t ‘VU’ u=t | |

Next, by Theorem [2.2.3] we have that

/ut‘p @Z,) aH"™! = Py({u >t} ).

Thus by combining the previous three equations, and after applying the coarea
formula, the desired inequality is established, namely

P
/ |Vu\pdy§// ¥(Vu) dt:/\I’(Vu)pdac.
Q* R Ju=t |VU| Q
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Chapter 4

Properties of the Isoperimetric
Function

The main results of the first part of this thesis require that the isoperimetric function,
or perhaps a localized version of the same, be differentiable at some point of interest.
This chapter will establish the validity of such a statement in a variety of situations.

The first natural question is whether the function Ig’EO (defined by (1.1.11)) is
continuous. This is answered affirmatively by the following proposition.

Proposition 4.0.1. Let Q satisfy (6.1.1), and let Ey C Q be a volume-constrained
local perimeter minimizer in Q with ro :== L™(Ey). Then for any § > 0 the function
Ig’EO is continuous.

Proof. By the lower semicontinuity of the perimeter function, BV compactness, and
the fact that the constraint o(E, Eg) < § is closed in L', it is clear that for any
r € (0,1) there exists a minimizer of the minimization problem,

min{P(E;Q) : a(E, Ey) < §,L"(E) =1}, (4.0.1)

which defines Z?Z’EO (see and (1.1.12))). Again, by the lower semicontinuity
of the perimeter function, we have that Ig’EO must be lower semicontinuous.

Now for any fixed » € (0,1), a minimizer E, of must be a volume-
constrained perimeter minimizer inside Ey N 2 and Q\Ey, and thus JFE, must be
be a.e. smooth inside those sets (see Theorem . Suppose that a(Ey, E,) =
L"(Eo\E;). Then pick any smooth vector field V' compactly supported in Q\Fy
which satisfies faE,« V - vg, dH" 1 # 0 (such a vector field clearly exists given
the smoothness of E,). Perturbations with initial velocity V' will still satisfy the
a(-, Ey) < 6§, because V = 0 in Ey. Furthermore, the perimeter will vary smoothly
along these perturbations, and the volume will not be stationary (because |, op, V-
vg, dH" 1 # 0). Hence, by considering the the perimeter of perturbations along V'
we have that Ig’EO is touched from above by a smooth function near r. This read-
ily implies that Igz’EO is continuous at r. A similar argument holds if a(Fy, E,) =
L"(E\Eyp). As r was arbitrary the proposition is proved. O

In order to prove differentiability, one needs more precise arguments. The follow-

ing lemma is a straightforward combination of Theorem and Remark [2.3.13

Lemma 4.0.2. Let Q satisfy (6.1.1), and let Ey C Q be a volume-constrained local
perimeter minimizer in Q with ro := L"(Ey). Then OEy is a surface of constant
mean curvature Kg,, which intersects the boundary of 1 orthogonally. Moreover,

49
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there exists a meighborhood I of ro and a family of sets {ET}T constructed via a

normal perturbation of Ey (see Theorem (2.3.10)}), satisfying
LYE,) =r, lim |E,AFEy| =0,

=70
and such that the function
r (r) = P(E;Q), forrel,

18 smooth. Moreover, the function ¢ satisfies

do(r
¢(ro) = P(Eo; ), qZSﬁ ) = rpg,(n — 1), (4.0.2)
r=rg
and
d¢(r) _ Jowy [AB? AR + [45 no0 Vor, - Aavar, dH" 2
d7"2 r=rg o P(EO, Q)Z ;

where Ag, and Agq are the second fundamental forms, see Definition [2.5.8
The first step is to prove that Ig’EO is semi-concave under appropriate conditions.

Lemma 4.0.3. Let Q) satisfy , and let Ey C Q be a volume-constrained local
perimeter minimizer in Q with ro :== L™(Ey). Let 6 > 0, and let I,, CC [0, L™(82] be
an open interval containing ro. Suppose that for every r € I, at least one minimizer
E,. of the problem

min{P(E;Q) : L"(E) =r, a(E, Ey) <4}

satisfies
a(Ey, Ey) <. (4.0.3)

Then the local isoperimetric function Ig’EO s semi—concave in I,,, that is, there
exists a constant C' > 0 such that

r s IOE () — Or? (4.0.4)
is a concave function in I, .

Proof. By Proposition we have that Ig’EO is continuous. By (4.0.3) we have
that £, must be a local volume-constrained perimeter minimizer for every r € I,,,.

Thus by Lemma applied to E,, for any r € I,,, there exists a smooth function
¢r and a constant 6, > 0 depending on 7 such that

dr(s) > IS0 (s) for all s € (r — 6,7+ 6,),  ¢r(r) = P(Ep; Q) = I35 (r), (4.0.5)

and
d* ¢y (s)  Jop AP AN+ g o VE, - Aave, dH"T? (4.0.6)
ds? s=r N P(E,,«; Q)2 ’ e
where we recall that |Ag, | is the Frobenius norm, see equation ([2.3.5)).
Let Cq := max |Aq(z)|. Then we have
€N
/ vg, - Aqup, dH" 2| < CQ/ v - va, dH" 2. (4.0.7)
OE,NOS OE,NO




o1

Since Q is of class C%?, we can locally express 90 as the graph of a function of class
C?® and, in turn, we can locally extend the normal to the boundary vq to a C1®
vector field. Thus, using a partition of unity, we may extend the vector field Cqrq
to a vector field V € C}(R™; R"™) satisfying

Voo <C, [[VV]oo £C (4.0.8)

for some constant C' > 0. We then apply the divergence theorem (see Theorem
2.3.4) with M = (8E,) N Q and T’ = E, N N to find that

CQ/ vo v dH" 2 = / divg, VdH" ! - V- kpvodH"!
OE,NIN O, OFr (4.0.9)

< CP(E Q) +C / PP

OFE

where in the last inequality we have used (2.3.3) and (4.0.8)). Moreover, we recall
that (see Proposition [2.3.9)) for every x € QN IE,,

n—1 n—1
A, W =D ke @) ke () =Y kne(y) forally e B.(x)NIE,
P h=1

(4.0.10)
where kg, are the principal curvatures of E,.. Thus, using (4.0.10)), if we consider
the principal curvatures rp . as a vector in R"~! then we have that

Clkg,| < Vn —1C|Ag,| < max{(n —1)C?, |Ag,|*}. (4.0.11)

In turn, putting together (4.0.6)), (4.0.7)), (4.0.9) and (4.0.11)), we get

d2¢7~(8) - faEr ’AEJZ dH" ! + CP(E,; Q) + faET max{(n — 1)C?, ’AEJZ} dH" !
ds? s=r P(E,«; Q)2
o CP(E; Q) + (n— 1)C?P(E,; Q)
- P(E,;Q)? '
Denote

my = miAZg’EO(s), my :=C + (n — 1)C? < o0,
SEITO

and notice that
miAIgEO (s) > min Zg(s) > 0

SEI’!‘O SEI’V‘O
where the last inequality follows from Proposition |2.1.10, From (4.0.6) we have that
d%¢,(s) mo
—. 4.0.12
d82 s=r  mq ( )
Thus by (4.0.5) for any r we can find a ¢, > 0 so that for s € (r — §,,7 + d,),
5,E ma o ma o
T2 0 _ _“ < - =
3E0(s) = 2 < 00 () — T2
m
= én(s) — m—Q((s — )% 4 257 — 12 (4.0.13)
1
= — 29y —
]
where ¥(s) = ¢(s) — 24(s — r)? is a concave function on (r — &.,7 + 4,) by

(4.0.12)). The estimate (4.0.13)) allows us to apply Proposition and conclude

E . . 5,0 - .
that Zg,°(s) — %32 is a concave function on ;. In turn, Z; ™ is semi-concave on

Iy . O
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Corollary 4.0.4. Under the assumption (6.1.1), the function Zq is differentiable at
all but countably many points in [0, 1].

Proof. By setting ¢ large enough we have that Ig’EO = Zq, and that (4.0.3) is always
satisfied. Thus Zq is semi-concave on any [; CC [0,1]. Since convex functions are
differentiable at all but countably many points, Zg, is as well. O

Corollary 4.0.5. Under the assumptions of Lemma the local isoperimetric
function Ig’EO is locally Lipschitz in I,,. Furthermore, for all J,, CC I,, for all

r € Jpy, the values kg, (n — 1) belong to the supergradient ofIg’EO, and hence
kg, | < L, (4.0.14)

where L is the Lipschitz constant of Ig’EO in Jr.

Proof. Thanks to (4.0.3) in Lemma 4.3, for any r € I, there exists a volume—
constrained local perimeter minimizer FE, such that

I3 (r) = P(E;Q), L(B) =7, a(Ey, Bo) < 6.

By Lemma [4.0.2] applied to E,, in particular from (4.0.2), we have that kg, (n — 1)
belongs to the supergradient of Ig’E(’. From (4.0.4) we know that the mapping

T Ig’EO (r) — Cr? is concave, and hence locally Lipschitz. In turn, Ig’EO is locally

Lipschitz in I,. Finally, as kg, (n — 1) is in the supergradient of a locally Lipschitz
function, there exists a constant L > 0 so that (4.0.14) holds on J,, (see Theorem
9.13 in [95]). O

We can now state one of the main results of this chapter.

Theorem 4.0.6. Let Ey C Q be an isolated local volume-constrained perimeter
minimizer in Ey. Then, for § small enough, Ig’EO is differentiable at L™(Ep).

Proof. By assumption, Ej is the unique minimizer of the problem
min {P(E;Q) : E C Q Borel, L"(E) =r, a(E, Ep) <}, (4.0.15)

for r = ry and for some fixed 0 < § small enough.
Let I be a neighborhood of ry (to be fixed later) and consider a sequence {7y} sat-
isfying ry, — ro as k — oo. Let E,, be a minimizer of the problem (4.0.15)) for r = 4.

Step 1. Lemma [2.3.11] along with the definition of Ig’EO naturally implies that
o < ¢ (4.0.16)

for some C' > 0 and, in turn, by BV compactness, there exists a subsequence of
{E,.} (not relabeled) such that

E,. — E*in L}(Q) as k — oo, (4.0.17)

for some measurable set E* such that xg- € BV (Q) and L™"(E*) = ry.
We notice that since a(E*, Ey) < § and L"(E*) = ro, by lower semi-continuity
of the perimeter (see [48]), and Proposition we have that

P(E*;Q) <liminf P(E,,;Q) = lim iang’EO (rr) < lim supIg’Eo (rg)

Tk
k—ro0 k—ro0 k—00

< I35 (rg) = P(Ey; Q) < P(E*; Q).
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By uniqueness of (4.0.15) for r = rg, E* = Ey, and so (4.0.17)) reads

E,, — Eyin LY(Q) as k — oco. (4.0.18)

Thanks to (4.0.18]), we obtain
Oé(Ef,.k,E()) < (5,

for k big enough. In turn, this implies that there exists an open neighborhood I,
of rg as in Lemma m Hence, Ig’EO is semiconcave on I,,,, and by Corollary
we have that Ig’EO is locally Lipschitz in I,.

Step 2. Fix an open neighborhood J,, := (rg — R,79 + R) CC I, of ro, and let
L be the associated Lipschitz constant of Zg’EO in J,, (see Corollary @ . Let k
be large enough so that r, € J,,. Let z9 € Q, po > 0. We claim that E,, is a
(A, po)—perimeter minimizer (see Definition with

A:maX{L,w 20},

5" R
where L is the Lipschitz constant in Corollary and C > 0 is as in Step 1.
Because of (2.3.6), we know that P(E,,; B,(x0)) — P(E;By(x0)) = P(Er;Q) —
P(E; ), and thus it suffices to prove that
P(E,;Q) < P(E;Q)+ AL"(E, AE). (4.0.19)
We divide the proof of (4.0.19)) into three cases. If
a(Ey, F) <6 and L"(E) € Jy,,

then by our choice of L (see Corollary , we have

P(E,,; Q) = I5%(E,,) < T (L"(E)) + L|L™(Ey,) — L™(E))|
< P(E;Q) + L|C"(Ey,) — L"(E))|
< P(E;Q) + LL"(E,, AE),

and (4.0.19) is proved in this case.

If instead E is such that
Oz(Eo, E) > 0,

then by (4.0.18)),

L'(E,,AE) > LY(EyAE) — L(E,, AEg) > g (4.0.20)

for k sufficiently large. Moreover, by (4.0.16)) and (4.0.20),

P(E,;Q) <C< %E"(ETICAE) < ?E”(ErkAE) + P(E;Q),
so that (4.0.19)) follows from our choice of A.

Finally, if
LYE) ¢ Jrg,
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then for ri, € (ro — R/2,79 + R/2) we have that

LYE, AE) >

2| 5

i

and so (4.0.19) follows as in the previous case.

Step 3. Fix zy € QN JEp, and choose t > 0 such that B(z9) CC 2 and
0Ey N Bt(ZO) = graph(uo),

for some regular function uy. By the theory of (A, pg) minimizers (see Theorem 26.6
in [75]), choosing pg smaller if needed, it follows that for any sequence of points
z € OF,, such that z; — 29 € Q2N OEy, then for k large enough z;, € QN O*E,,
and

lim vg, (zx) = vg,(20), (4.0.21)
k—o00 k
uniformly on B,(zp). In turn, by (4.0.18]), for k£ big enough
OE,, N B(zo) = graph(ug),

for some functions ug. In particular, by equation (26.52) in [75], we obtain

Vug — Vg, in C*7(Q),
for all v € (0,1/2).

Step 4. Since 0F,, is a surface of constant mean curvature, uj, solves

Vuk .
V| ————— | = ki in B¢(zp),
( 1+ |VUk|2> " +(%0)

where Ky, is the mean curvature of OF,,. By standard Schauder estimates (see e.g.

[57]) and (4.0.21)), it follows that

lukllc2a s, (z0)) < crlrr] < C, (4.0.22)

where B/ /2(20) is the (n — 1)-dimensional ball and the uniform bound on the cur-
vatures comes from Corollary

Step 5. By Rellich-Kondrachov compactness theorem and by a bootstrapping ar-
gument on (4.0.22]), we deduce that there exists a subsequence of {ry}, not relabeled,

and @ € W™( 1/2(2())) such that

Uy, — U in Wm’z(Bé/Q(zo))
for all m > 0. It follows from (4.0.18]), that necessarily o = ug.

Step 6. By properties of concave functions, (Ig’Eo)’ (r) = Lr 4 3(r), where 3 is
a decreasing function. In particular, Ig’EO must have a left and right derivative at
ro, and if 7 1 ro then K, — (I?Z’EO)’_ (with an analogous result for i | ro). The
convergence result from Step 5 implies that the left and right derivatives of Ig’EO

at ro must be equal to k9. This implies that Ig’EO is differentiable at rg, which
completes the proof.
O
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Remark 4.0.7. This chapter has proved that the differentiability assumption holds
i two important cases: For global volume-constrained perimeter minimizers up to
a.e. mass m, and for isolated volume-constrained perimeter minimizers. It is also
possible to prove differentiability in certain other cases, for erample when Eqy is a
ball compactly contained in 2, see [83] for details.
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Chapter 5

Weighted 1D Functional
Problem

5.1 Assumptions and Notation

This chapter will be concerned with a weighted, one-dimensional functional problem.
By way of notation, L} will represent the space LP(I;R,n), where p > 1 and n > 0
is some measurable function on I. Here, and throughout this chapter,

I:=(-T,T)

for some positive T.
Similarly, BV}, to be the space BV (I;R,n) with weight 7, meaning that

lollsv, = / [o(t)|n(t) dt + / n(t) d|Dv|(t).

For v € BV}, the weighted total variation of the derivative will be denoted by

Duly(E) = [ ey Do) (5.1.1)

Here H% will be the analogous weighted version of H'.
This chapter considers the mass-constrained Cahn—Hilliard functional in one di-
mension, with an integral weight 7. Precisely, this chapter studies the functional

Go(v) = /I (W) +2()2)ndt, e H., (5.1.2)

subject to the constraint that

/vndtzme <a/ndt,b/ndt>. (5.1.3)
I I I

Here G. is extended to all of L}7 by setting G.(v) := 0 ifv € L%\H% or if
fails. Chapter introduces the theory of the unweighted version of this functional
in n dimensions, and the results and definitions from that chapter will be used freely
throughout this chapter.

The results in this chapter, and accordingly in subsequent chapters, require the
following assumptions on W : R — [0, 00):

o7
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W is of class C?(R\{a,b}) and has precisely two zeros at a < b,  (5.1.4)
W”(S) W//(S)
li =1i =/ 1 1.
sgré |S — a]q_l SE}% |S — b|q—1 = 0’ q < (07 ]’ (5 5)
W' has exactly 3 zeros at a < c < b, W"(c) <0, (5.1.6)
l‘ir‘ninf [W'(s)] > 0. (5.1.7)
S|—00

Most of these assumptions are standard (see [63]). In the case where ¢ = 1 it is
evident that ¢ is simply W”(a). In particular, ¢ = 1 when W (s) = 3(s? —1)2, which
is the classical Cahn-Hilliard potential (see, e.g., [28]). While the analysis in this
chapter does not require identical limits at a and b in , that case is not dealt
with for clarity of presentation.

Remark 5.1.1. In view of (5.1.4)-(5.1.7), there must exist an L > 0 and T > 0 so
that

W(s) > L|s| (5.1.8)

for all |s| > T.

Remark 5.1.2. In view of (5.1.4)) and (5.1.5)) if follows from de I’Hépital’s rule that

W (s) 1

lim ———— =i = 5.1.9

afs —a[T0 S s g(l+q)’ (519)
W'(s) W'(s) 14

i =1 = —. 5.1.10

soa (s —a)|ls —als! ey (s—b)|s—bl~l ¢ ( )

In turn, by (5.1.4)), there exist ci,c2 > 0 such that ¢2(b — s)!77 < W(s) <
3(b—s)1*4 for all s € [“52,b]. It follows that the solution z of the Cauchy problem
(1.1.6) satisfies

2

(b= =)y 7 - L0 to>] b

" 2
< |o—st) s - S5
forallt >ty >0if0<g<1and
(b— z(tg))e~2t7t0) < b — 2(t) < (b— 2(t))e~ 1t (5.1.11)

for all t > ty > 0 for ¢ = 1, where [-]; denotes the positive part. In particular, in
the case 0 < ¢ < 1, since z(0) = ¢, there exists a constant

1—gq 1—¢q

<b;a>2 02(12— q) =T <b;a>2 01(12— q)

z2(t)=0b for all t > t. (5.1.12)

IN

such that

Similar estimates hold near a, so that z(t) = a for all t <t, < 0 when 0 < g < 1.
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Furthermore, the results in this chapter assume that 7 satisfies the following
assumptions:

neCYI), n>0inl, (5.1.13)
di(t+T)" " <nt) <dg(t+T)" tfor t € (=T, -T +t*],  (5.1.14)
d3(T — )71 < q(t) < dy(T — )™t for t € [T —t*,T), (5.1.15)

( )

dsn(t)

5.1.16
min{T —¢,t + T}

' (t)] < fortel,

for some constants dy,...,ds > 0, n1,ny € N and t* > 0.

Remark 5.1.3. Two important weights are covered in under these assumptions.
The unweighted case n = 1 can be recovered by taking ny =ne =1 and d; = 1 for
i = 1,...,4, while the radial weight n(t) = (T + t)"~! can be obtained by taking
ni=mn,no =1, dp =do =1 and appropriate d3 and dy.

Previously, this functional has been studied in a few special settings. Whenn =1
this is simply the one dimensional Cahn—Hilliard functional, which was studied in
detail in [31], and was subsequently studied by [25, 59, [18]. The radial case, when
n = ¢r™ 1 has been studied by a variety of authors, including [87, 26, 41]. Finally,
the general weighted case was studied in [70]. In that work Kurata and Shibata
studied a very different question, namely monotonicity properties of minimizers of
the Cahn-Hilliard energy when the domain € is a curved strip in R2.

The aim in this chapter is to study second-order I'-limits in the general weighted
case. This is motivated by the generalized Polya—Szegé inequality established in
Chapter In that chapter the weight 7 is given by Zq(Vq), which does not typi-
cally have any closed form, but generally will satisfy assumptions —.
In Chapter [6] the Polya—Szegd result will be combined with the results from this
chapter to establish a second-order I'-limit result for the Cahn—Hilliard functional
in n dimensions. This follows the framework used in the radial case in [4I], and in
many ways the analysis here is similar.

5.2 Zero and First-Order I'-limit of G.

The first step is to establish the zeroth-order I'-limit of the functional G.

Theorem 5.2.1. Assume that W satisfies hypotheses (5.1.4)-(5.1.7)) and that n sat-
isfies hypotheses (5.1.13))-(5.1.16). Then the family {G.} T'-converges to GO in L,17,

where
GO (p) = {f[ v)ndt ifve L) and [;vndt=m

otherwise in L}].

Proof. For the liminf inequality assume that v. — v in L,ll. By utilizing Fatou’s
lemma along with (5.1.4]) we have that

lim inf G¢( >hm1nf/W Ve ndt>/W )n dt.

e—0t e—0t

For the limsup inequality, we begin by assuming that v is bounded and satisfies
(5.1.3) (the case where v does not satisfy is trivial). Let ¢s be the standard
mollifier, let v be v extended to all of R by zero and consider v, := ¢s_ * U, where we
select 0 so that ||v — 175||L71] = 0(1) and so that

/(17;)277 dt < Ce™!
I
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We then select d. € R so that ve := 0. + de satisfies (5.1.3)). It is evident that
d. = o(1). Finally, by the Lebesgue dominated convergence theorem we have that

lim an )ndt = /W )n dt,

e—0t

which gives the desired result for v bounded. Now if v € L}] and | yondt = m we
can construct a sequence {vx} of truncations of v, so that W (vg) < W(vky1) (see
(5.1.6)) and so that [; vgndt = m. Since the I'-limsup is lower semicontinuous (see
Remark ), by applying the Lebesgue monotone convergence theorem we have
that

I'-limsup G (v )<hm1an lim sup G¢(v) <hm1nf/W vg)ndt = /W )n dt,

k—oo
(5.2.1)

which concludes the proof.
O

By considering a measurable function taking values at a, b and satisfying (5.1.3)),
it is clear that inf G(©) = 0, and thus

GO () = =G (v) = /1 <W£”) +6|v’|2> n dt (5.2.2)

for all v € H, satisfying (5.1.3), and Gl )( ) = oo otherwise in L717. The next result
deals with compactness and utlhzes arguments from [55].

Proposition 5.2.2. Let v, € H% be such that sup, G(l)(vs) < 0o. Then up to a
subsequence v, — v € C in Ll, where

C := {v € BV, (I; {a,b}) : v satisfies (5.1.3)}. (5.2.3)

Proof. We first show that {v.} is uniformly bounded in L}7 and equi-integrable. This

is since, by applying ,
/l . lve|ndt < L~ /W ve)ndt < CeGW(v,) < Ce,
ve|>
which, in turn, implies that
/ |ve|ndt < T/ ndt + Ce.
E E

As [ ;ndt < oo and using the fact that any finite collections of L}7 functions in L1
is equi-integrable, we obtain that the sequence {v.} is bounded in L1 and equ1—
integrable.

Next, define

t
Wi(s) := min{W(s),K}, ®(t):= / Wi(s) ds, (5.2.4)
where K := max,c[, ) W (s). Using Young’s inequality, and the fact that 0 < Wy <

W we have that
/ W2 (v Wlndt < GO (v,) < C.
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Utilizing the chain rule (see Proposition [2.1.4)), we find that

/\(@1 owv:) |ndt < C.
I

Furthermore, as ®; is Lipshitz and ®;(a) = 0, we have that ®; o v, is uniformly
bounded in L717' This then implies, by BV compactness, that, up to a subsequence,
not relabeled,

Piov. — v in L}7

for some function © € BV, It is easy to show, using (5.1.6)), that ®; has a continuous
inverse. This implies that, up to a subsequence, v. must converge pointwise to
vi= <I>f1(z7). Thus, up to a subsequence, the v, converge in L,ll to v. Using Fatou’s

lemma and the fact that sup, al (ve) < 00, it must be W(v(t)) =0 for ae. t € I,
or, in other words, that v € L}7(I; {a,b}) by (5.1.4). As © € BV}, this implies that
v € BV,(I;{a,b}). The L}7 convergence of the v, then implies that v satisfies ([5.1.3]).
This concludes the proof.

O

The first main theorem of this section characterizes the first-order I'-limit of G..

Theorem 5.2.3. Assume that W satisfies (5.1.4)-(5.1.7)) and thatn satisfies (5.1.13])-
(5.1.16). Then the family {Ggl)} I'-converges to the functional

2c .
GW(y) = o [Dvly (1) ifve Q, |
o0 otherwise in L717,

(5.2.5)

where cyy 1s the constant given in (1.1.5) and C defined in (5.2.3)).
By definition (5.1.1)), it is immediate that

[Doly = (b—a) Y n(t),

where t; are the locations of jumps of the function v. It is not surprising that
Proposition and Theorem are completely analogous to classical results
(e.g.[78,101]) in the unweighted, higher-dimensional case.

Proof. We first characterize the I'-lim sup. Specifically, given a v € C, we construct
a family of functions v, that converge in L}7 to v satisfying

limsup G (v.) < GV (v). (5.2.6)
e—0t

To begin with, we assume that v is of the form

_Ja ift € [tog, tops1),
v(t) = .
b  otherwise,

where —T =ty <t; < --- <tony =T. Define

t—11 ift e [to,tl),

—min{t — tog, topr1 — t}  if t € [tog, togs1), and k > 1,

min{t — tok+1, tog42 — t} ifte (t2k+1, t2k+2], and k < N — 1,
t—ton—1 ifte [tQN_l,tQN).

ft) =
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Observe that f is the signed distance function (see (2.3.4)) of the set E :={t € I :
v(t) = a}, where we naturally are considering OF relative to I, not R. We note that
v(t) = sgn, ,(f(t)), where sgn, ; is the function given in (1.1.7). Thus the goal is to
(1)

construct smooth approximations of the function sgn, ; that make the energy Ge
small.

One possible approximation comes from the construction in [78]. Although the
argument is almost identical, it is included here for completeness. Consider the

Pe(s) = /: ({%)1/2 dr, (5.2.7)

function

and define the constant

Since W > 0, equation (|5 gives
0<é& < (b—a)/?

Note that ¢, is strictly increasing and differentiable. Now define ¢ : [0,&] —
[a,b] to be the inverse of ¢. on the interval [a,b]. By the fundamental theorem of
calculus and the inverse function theorem ¢. will satisfy the equation

egL(t) = (e + W (e=(t)'*.

Next, extend ¢, to be equal to a for t < 0 and b for ¢t > £.. Note that for all t € R
we have that ¢.(t) < sgn,;(t) and that ¢.(t+¢.) > sgn, ,(t). Thus as v € C we can
find a 7. € (0,&;) that gives

/cbe )+ 72)n(t) dt = m.

Define v.(t) := ¢o(f(t) + 7). As {v:} converges to v pointwise and |v:| < C we
have that v. — v in L,li. We then examine the energy associated with v., when ¢ is

sufficiently small that transition layers do not overlap or leave I:
2N—1

6 = 3 / e W (Be(0))) it + (t — 7o) (— 1)) de

2N—-1

> [ 2+ W) 2okt + ¢ (1 a

IN

2N—-1

e
<Y supln(t+ (s =) (D)) s (0.6} [ 2+ Wion0) o0y
k=1
2N—-1

b
= > swp{nlty + (s —)(-1)*) : s € (0,55)}/ 2(e + W (s))'/% ds.

k=1

Thus taking the limit as ¢ — 0" we find that

2N—1
limsup G (v,) < 2ew Z =GW(v).
e—0t he1

The cases where v has a finite number of jump points, but starting or ending at dif-
ferent values than we assumed are analogous. Reasoning as in ([5.2.1)), by noting that
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functions with a finite number of jumps can approximate elements of C arbitrarily
well in BV}, and as the I'-lim sup is lower semicontinuous, we then have ([5.2.6)).
Next we will establish our I'-liminf. Assume that v. — v in L717. By Proposition

if v ¢ C then liminf, o+ Ggl) = 00, and there is nothing to prove. We claim
that for any sequence {v.} that converges in L,l7 to some v € C the following inequality
holds:

liminf GM (v,) > GW (v). (5.2.8)

e—0t

To establish this inequality we use Young’s inequality, the chain rule (see Proposition

2.1.4) and lower semicontinuity of || - || gy, (see Proposition and Remark [2.1.5))
and the definition (5.2.4]) as follows:

liminf G (v,) > lim inf/(51W1(Ua) +e(vl)?)n dt

e—0t e—=0t Jr

> liminf2/ (@1 0 ve)|ndt > 2/nd!D<I>1(v)]
I I

e—0t

26W

—2 [napa@)| = ;% [d o= )
I —ajs

Here we have used the fact that ®; o v. converges to ®; o v in L,l7 (because ®; is

Lipschitz), and the fact that ®; o v = ® o v, where ¢ := fj W1/2(8) ds. This proves
the claim. n

The fundamental theorem of I'-convergence (Theorem [2.4.5)), which applies due
to Proposition then establishes the following corollary.

Corollary 5.2.4. Under the hypotheses of Theorem if ve are minimizers of
Ggl) then, up to a subsequence, they converge in L}7 to v which is a minimizer of
GW . Furthermore the v. will satisfy the following

lim GM(v.) = GM ().

13
e—0t

The remainder of this section will be devoted to proving two theorems that will
be important in later analysis. First, select ¢y so that

vo(t) == sgngp(t — to)

satisfies (5.1.3)). By (5.1.13) it is clear that to is uniquely determined. In general, v
is not a global minimizer of GV However, it is the case that v is an isolated local
minimizer of G in L717.

Theorem 5.2.5. Assume that W satisfies (5.1.4)-(5.1.7) and that n satisfies (5.1.13])-

(5.1.16)). Then there exists § > 0 such that vy is an isolated d-local minimizer of
G in Ly, that is, there is no vy € C (see (5.2.3) ), with 0 < |lvy — ”OHL}] < 6§ such
that

GW(vy) < GM (wy).

Proof. Assume by contradiction that such v; exists. By continuity of n, for every
€ > 0 there is t. > 0 such that

In(t) —n(to)] <€ (5.2.9)



64 CHAPTER 5. WEIGHTED 1D FUNCTIONAL PROBLEM

for all t € [tg — te, to + te]. Let My := max|n’| + 1 and fix

dinin(to) dsnan(to)
2d2M0 ’ 2(14‘]\40 ’

where t*,n1,n2 and the constants d;,7 = 1...4 are given in (5.1.14) and (5.1.15).
Then define

1
0<ry < min{Qt*,T—to,T-f-to, (5.2.10)

Iy = [—T + 9, T — ‘Co],

and fix
0<e < min{n}in n,n(to)/2}
0

in (5.2.9) and let t., be the corresponding t..
Step 1: We claim that v; has a jump at some t; € B(tg,t,). If not, then either

v] = a in B(tg, te,) or v1 = b in B(tp,te ). Assume that v = a in B(tg,te,). Then

by EZ9).

0> |vy —wvoln dt > (b— a)n(to)

€1
B(to,te;) 2

where we used the fact that 0 < e; < n(top)/2. Since the case v1 = b gives an identical

estimate, the claim follows provided

t
0<d<(b— a)n(20)t61.

Step 2: We claim that v; has no jump other than ¢; in Iy. Indeed, assume that
there is a second jump ty # t; in Ip. Then by (5.2.9) and Step 1,

G (v1) > 2ew (n(t1) + n(t2))
> 2w (n(to) — €1 + min n) > 2ewn(to) = G (vy),

where in the last inequality we used the fact that 0 < €; < minyz, 7. This is impossible
since we are assuming that G (v1) < GM (vy).

Step 3: We claim that v1 jumps from a to b at t1. Suppose not, and suppose that
tl < t(]. Then

t
0> / |v —wvoln dt > (b— a)n(20)t€1,
B(to,tél)

which again leads to a contradiction if § is chosen small enough. The case t; > tg is
analogous.
Step 4: We claim that t; = tg. Indeed, if t; > tg, then

—T+rvo t1 T
0—/(1}1—1)0)77 dt—/ (v1 —a)n dt+/ (a—0b)n dt+/ (v1 —b)n dt,
I -T to T

which implies, as the last two terms are negative, that there must be a jump ¢3 that
belongs to (=T, —T + ty), with

0< M0 -0t < [Co-amars -0 [ nas oo 9T,
(5.2.11)

where in the last equality we used :5.1.14;, in conjunction with (5.2.10). By the
mean value theorem and inequality (5.2.11)), for some 6 € (tg,t1),
n(t1) = n(to) +n'(0)(t1 — to) > n(to) — Mo|t1 — tol

2Modo
> nl(ty) —
= n(to) n11(to)

(T + tg)nl .
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Hence by (5.2.10)),

GW (v1) > 2ew (n(t1) + n(ts))

2Modo
> 2cwn(ty) — 2cw
(o) n1n(to)

> 2en(to) = G (vy),

(T + t3)™ + 2cwdy (T + t3)™ !

which violates our assumption. The case t; < tg is analogous. This proves that ¢; =
to, and so G (v1) > 2ewn(to) = GM(vg), which implies that G (v1) = GM(vy).
In particular, v; has no jumps in I'\Iy. But then v; = vy, which is a contradiction.
This completes the proof. ]

Although v is a local minimizer for GV, In general vy may not be a global
minimizer without further assumptions on 7 (e.g., = constant). However, in certain
cases it will be important to study a type of second-order asymptotic development of

G. where in the definition of G\¥ (see (2.4.1)) in place of inf G we take G (vy).
This in fact corresponds to studying the second-order asymptotic development of
the localized functional

J.(v) = Ge(v) if [lo —wollzy <6, (5:212)
‘ ' 00 otherwise. o

The following theorem gives a limsup inequality. It also does not require the
same regularity results on 1 as most of the other theorems in this chapter.

Theorem 5.2.6. Assume that W satisfies (5.1.4)-(5.1.7)), and that n : I — [0,00)
is measurable, bounded, differentiable at ty, n(ty) > 0 and

In(t) = n(to) — 1'(to)(t — to)| = o([t — to) (5.2.13)

for some constant C' > 0 and for all t in a neighborhood of ty. Then there exists a
sequence {v:} converging to vy in L,li so that

(1) .
limn sup Ge(ve) — 2ewn(to)

e—0t €

< 21/ (to) (Tocw + Csym)

A2 .
ety fimdsifa=1,
0 ifq <1,

(5.2.14)

where ey and csym are given by (1.1.5), , 7o 15 determined by the equation

o [imdt  ifg=1
n(to) / (o(s — 70) — sgnp) ds = 4 W@ Jrndt Fa=1 (5.2.15)
R ' 0 ifq <1,
where z is the solution to (L.1.6) and Ao is defined by
21’ (to)ew
Ay = —————. 5.2.16
(b~ aynlio) (5:2:10)
Proof. Step 1: Assume g = 1. Define z.(t) := z(*=2) and then define
A
0e(t) = 2a(t —emn) — 20 (5.2.17)

W”(a) ’
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where 7. is selected so that (5.1.3) is satisfied. We first claim that

lim 7. = 7. (5.2.18)

e—0t

To this end, we can write, via (5.1.3)),

/vgndt:/vondt:
I I

/(ze(t o) — (b — o))t /(sgna’b(t o) — 2 (t— o)) d
I I

In turn this implies that

e / ) (5.2.19)
wra) S
After the change of variables s = % we can write the right-hand side as
T—tg o\
€ 0
E/Tto (seng p(s) — z(s — 70))n(es +to) ds + Wi(a) / dt. (5.2.20)
By our choice of 7y (via ((5.2.15))) and (L.1.7) this is equal to
T—tg
e [0 Gaman(s) = 2(s = ) nes + o) — n(to)) ds
(5.2.21)

—T—t
0 oo

_617(150)/_ : (a—z(s—TO))ds—en(to)/T(b—z(s—To))ds.

—tg

By (5.2.13) there exists a Ry > 0 such that |n(t) —n(to)| < (|7 (to)| +1)|t — to| for all
t € B(tg, Rp). Since n is bounded by assumption, we thus have for all t € I\ B(to, Ryp),

||"7||oo’

In(t) —n(to)| <2[nfl <2 — to).

Hence for all ¢ € I we have that |n(t) — n(to)| < Cy|t — to| for some C;, > 0. Thus,

using (5.1.11)), the first term in (5.2.21]) can be bounded by

T—tg

2(b — a)e el n(es + to) — n(to)| ds < 2(b — a)C'n52/ el ds.
R

—T—tg
By (5.1.11)) we know that the last two terms of are bounded from above by
(b a) HnH e %, where T := min(T —t9, T +ty) > 0. Hence, the right-hand side
of is bounded from above by Ce? for all € > 0 sufficiently small.

NOW assume that the 7. do not converge to 7p. Assume without loss of generality
that for some subsequence (not relabeled) the 7. < 79 — ko for some kg > 0 the case

where 7. > 79 + ko is similar). Since z is increasing (see (1.1.6) - ), by (5.2.19) and
what we just proved,

t—eTe
Ce? > /(25(t —eTe) — ze(t —emo))n(t) dt > inf 77/ / 2L (s)dsdt
I B(to+eto,kie) Jt

B(to +e70,k1 6)

—E&T0
t E(To ko
>  inf n/ / eI/ W(z(e1(s — tg)) ds dt
B(t0+5707k15) B(t0+€7’0,k1€) t—eT1o
> 2k1koe  inf W(z(t)) inf 7,

teB(0,k1+ko) B(to+eTo,ki€)
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where 0 < k1 < 1 and where we have used the facts that n is continuous at ¢y and
that 7(to) > 0. Since z(0) = ¢, by taking ko and k; sufficiently small we can assume
that 2(t) € B(c, min{%%, %5¢}) for all t € B(0, ko + k1). In turn the right-hand side
of the previous inequality is bounded from below by C'e for some C; > 0. This is a
contradiction, which proves our claim.

Next we prove . We will write R, := Cie|logel, with Ck > 0 to be chosen

later. We then write

Ggl)(ve) — 2ewn(to)
&

=1 (/ (e "W (ve) + e(v))*)n dt — 20W77(t0)>
B(to,Re)

+ / (e72W (ve) + (vL)?)n dt.
I\B(to,Re)

(5.2.22)
First we examine the second term, namely the tail integral. We first note that by
(5.1.11)) and the fact that the 7. — 7 we then have that

a
b— Zg(t — ETE) < 7601(1+‘T0|)€Clck < 5k

for t € [tg+ R, T] and for & small, provided Cj > 2%. Similarly, z.(t —er.) —a < &*
for t € [-T,to — Rc]. Thus for ¢t € I\ B(to, R:) we have that

|ze(t — em2) — wo(t)] < &F (5.2.23)

which in turn implies, after recalling (5.2.17)), that, for k large,

)\2 2
(0:(t) — v9)? < —=0°

< e T CeMt! (5.2.24)

for all t € I\ B(tg, R:) and for some fixed C' > 0.
We then fix v > 0. By (5.1.9)) there exists s, such that

W(s) < (W;(a) + 7) (s — a)? (5.2.25)
for all s with |s —a| < s, and
W(s) < (VV;@ + 7) (s — b)? (5.2.26)

for all s with |s —b] < s,. By (p.2.24), (5.2.25) and (5.2.26) we then have for ¢
sufficiently small that

/ W(ve)ndt < <
I\B(t()»RE)

On the other hand, using (|1.1.6), (5.2.23), (5.2.25)), and ([5.2.26)),

(L)) = W (zelt 7)) < Sy(aelt 4 e72) — vo(1))? < C%2

W// (a)

+ ’y) 82)\%W’/(a)2/ndt + O,
1

5
for t € I\B(to, R:). After taking limits (first as ¢ — 07 and then as v — 07) we
thus find that

)\2
limsup/ e 2W (v) 4+ (vL)H)ndt < 9 /ndt. 5.2.27
msu I\B(to,RE)( (ve) + (v)7) 2 (a) J, ( )
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Next we estimate the energy in the region B(tg, R;). We will define s5 := v.(to —
R.) and s5 := v:(to + R:). Note that by (5.2.24)), s] = a+ O(e) and s§ = b+ O(e).
Thus recalling the definition of ¢y, (1.1.5)), and (5.1.9), we find that

w = / 2 W2(s)ds + O(e?) = / WH2(v.)ol dt + O(?),
sii? B(tO»RS)

where we have used the change of variables s = v.(¢). Thus we have that

/ (67 W (ve) + £(v))2)n dt — 2enn(to)
B(to,Re)

= /B( n )(5_1/2W1/2(U€) - 51/21)(/5)2,,7 + Wl/Q(UE)U;(277 _ 2?7(t0)) dt + 0(62).
to,Re

(5.2.28)
We now estimate the terms on the right-hand side of (5.2.28). Recalling the fact
that |[WY2(sy) — W/2(s3)| < Cls — sg for all s1,59 € [a —1,b+ 1] (see (5.1.4) and
(5.1.5)), it follows from (1.1.6]), (5.2.17)), and the boundedness of 1, that

/ (2w 2 () — V2 pdt < e / (W2 (0 (1)) — WY (2o (t — e72))) 2 (t) dt
B(tO7R5)

B(tO,Rg)
< 051/ (E)\O)Qndt < Ce?|loge]
N B(to,r.) \W"(a) N .
(5.2.29)
Next we will use ([1.1.6]), (5.2.13) and (5.2.17)) to obtain:
2 [ WVl - ntto)) de
B(to,RE)
2 [ W) (to) (e~ 1) + ol — to])
B(t(),RS)
=20 [ W)L (¢~ t0) + ]t~ tolo(1)
B(to,Rs)
Changing variables to s = t*t‘%m we can then write
2 [ Wl - )
B(to,RE)
= 277'(150)5/ WY2(2(s) — MW" (a) " e)2 (s) (12 + 5) ds
B(re,Ck|logel)
+eo(1) / WY2(2(s) — MW" (a) " e)2/(s)|s + 72| ds (5.2.30)
B(re,Ck|logel)

= 217 (to)e / WY2(2(s) — AW (a) " e)2 () (7= + ) ds + o(£5,2.31)
B(7<,Ck|logel)

where in estimating ([5.2.30) we have used that 2’ decays exponentially, and thus the
integral on that line is uniformly bounded. We remark that, by (1.1.5) and (6.1.6))

and (5.2.18]), the integral on the right-hand side of (5.2.31)) converges to

AWl/Z(z(s))z’(s)(To + s)ds = Tocw + Csym.-
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By then combining estimates (5.2.22), (5.2.27)), (5.2.28)), (5.2.29), (5.2.31)), to find
that

GO ) — 2ewn(to) _ ., 23
] < 2/(t o) £ 0 t,
lari%gp . <21/ (to) (Tocw + Csym) + W (a) /177

which is the desired conclusion.

Step 2: The case ¢ < 1 is simpler since by (5.1.12)) the function z in (|1.1.6]
satisfies z(t) = b for t > t, and z(t) = a for t < t,. We define v.(t) := 2z.(t — e72).
Then the second term in the right-hand side of ([5.2.19]) should be replaced by 0,

while (5.2.20)) becomes

ty+T70
6/t (sgng 4(s) — z(s — 70))n(es + to) ds.

at+T0

In turn, in (5.2.21) the first integral is over [t, + To,tp + 70|, while the other two
integrals vanish. Using the regularity of n near ¢ty we can bound the integral in the
new (5.2.21)) by 2(b — a)Cye?(tp — to). We can continue as before to conclude that
Te — T0-

By (1.1.5) and (1.1.6), in place of ([5.2.22)) we now have

Ggl)(vs) — QCwT](tO) _ 1 /to+ere+6tb ,
7

W2 (v ()L (8) (n(t) — n(to)) dt.
€ o+teTe+ety

Using (5.2.13)) and the fact that 7. — 79, the right-hand side can be bounded from
above by

to+eTe+ety

<2:7/(0) | W20, (0)0L(8) (¢ — to) di + o(1)

0teTe+ety

=21 (to) b Wl/Q(z(s))z’(s)(s—i—Tg) ds + o(1),

la

where we have used a change of variables s = =%0=¢"= and where the error term

in the Taylor formula, namely (5.2.30)), still has a uniformly bounded integral, this
time because both the integrand and the interval of integration are bounded. It now
suffices to let € — 0.

O

5.3 Local Minimizers of G,

This section proves the existence of certain types of local minimizers of G. and
studies their qualitative properties. In the next subsection these properties will
permit a characterization of the second-order asymptotic development of the family
Je defined in . The following proposition is based on an argument from [69)
(see also [22]). The proof is included for completeness.

Proposition 5.3.1. Assume that W satisfies (5.1.4)-(5.1.7) and that n satisfies
(5.1.13))-(5.1.16)). Then for all € > 0 there exists a global minimizer vs of the func-

tional J.. Furthermore, the functions v. must converge to vy in L,17, and thus for
e small enough v. is a local minimizer of G.. Additionally, the following equality
holds:

lim JM(v.) = GY (vg). (5.3.1)

e—0t
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Proof. First we prove the existence of a global minimizer. Fix € > 0 and suppose
that {fx} is a minimizing sequence in the sense that

lim J.(fx) = inf J.(v) < 0.
k—o00 v

In particular, || fr — Uo||L1 < ¢ for all k sufficiently large. By (5.2.2) and 5.2.12 it
follows that {f}} is bounded in L7. Since {f} is bounded in L; by and
a diagonal argument, we may ﬁnd a function v, € H}! n.loc such that fi, = vl in L2

and fr — ve in L77 loes and pointwise a.e.. By Fatou s lemma and the weak lower
semi-continuity of the L2 norm, we then have, provided that v, € H% (see (5.1.2))),
that

Ge(ve) < h]gn inf Ge(fx) = inf J-(v)
—00 v

and that ||v: — o] 3 < 6. Thus it remains to show that v. € L%. Since v, is locally
absolutely continuous, by Holder’s inequality, for —T < t < =T + t* we have

g 2
vZ(t)n(t) = n(t) (Ue(—T +t*) — /t vl (s) ds)
—T+t* 1/2(4 2
< 2(E)oR(=T + ) + 2n(t) ( / v;<s>zl/2§s§ ds)
T+t T4t
< 2n(t)o2 (=T + ) + 2n(t) /t (1) / [l (s)>n(s) ds
<2037+ + 292 [ o))

where we have used the fact that if t < s < —=T+¢* then n(s) > g;n(t) (see ((5.1.14])).
By integrating in ¢ over (=T, —T + t*) we observe that v. € Lz(( T,-T+1t%)). A
similar estimate can be obtained on the interval (7" —¢*,T). On the other hand, by
, we have that n > 19 > 0 in [T +t*, T —t*], and thus v. € L2((=T+t*,T —
t*)), which then implies that v. € L%, as desired. This establishes the existence of a
global minimizer, v..

By Theorem we know that there exists a sequence {7, } converging to vy in
L, with Ggl)(ﬁs) — GW(vg). In particular |7, — Uo||L,17 < ¢ for e sufficiently small.
Since v, is a global minimizer of J. we then know that G¢(v:) < G.(7.) for £ small.
Thus

lim sup G (v.) < limsup G (5,) < G (wy).
e—0t e—0t
By Propositionwe then have that (up to a subsequence, not relabeled), v. — ©
in Ll, with © € C and with |0 — vo|[z2 < §. By again applying Theorem we
find that !
G (5) < liminf GM(v,) < limsup G (v,) < GW(wy). (5.3.2)

e—0t e—0+

Theorem then implies that o = vg, which along with (5.3.2)) implies (5.3.1)).

As v, — vg in L,l7 we then have that the v, must be local minimizers of G, for e
sufficiently small. This completes the proof. O

In light of the fact that the global minimizers of J; are local minimizers of G
for e sufficiently small it is possible to identify the Euler—Lagrange equations.
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Theorem 5.3.2. Under the hypotheses of Proposition the sequence {v.} of
global minimizers of the functionals J. will satisfy the following Fuler—Lagrange
equations (for e sufficiently small):

262(oL(H)(8)) — W (v (D))n(t) = X (2), (5.3.3)

where A\. € R. Moreover the Lagrange multipliers \. satisfy
lim A = Ay, 5.3.4
i Ae =20 >34

where Ao s the number given in (5.2.16)).

Proof. Reasoning somewhat as in the proof of step 4 in [41] we have that v. € C?([)
and satisfies . Next, we will prove , namely the limit of the Lagrange
multipliers A.. The argument here follows [74], with the necessary adaptations to
the weighted setting.

To prove , fix some ¢ € C2°(1). We multiply the Euler—Lagrange equations

by ¥vl and integrate to obtain
EXe /1 poindt = /] (262 (v + vin') = W' (ve)n)you, dt.
Integrating by parts, we find that
e / Yulndt = / (W (ve) — e20P) () + 262 (vl)*n/ dt. (5.3.5)
By Theorem mland Propositlion [.3.1] we know that

lim [ (e W (ve) + e())?)ndt = 2ewn(to).

e—=0t Jr

Furthermore, as in the proof of ((5.2.8)), by lower semicontinuity

e—0t

lim inf 2 / W (02) ol dt = lim jnf 2 / (®(v.))|[ndt > 2ewn(te),  (5.3.6)
I e I
where we recall that ®(t) := f; W1/2(s) ds. These together give the following:

0 <lim sup/(sl/ZWI/Q(Ug) - 51/2(”2))277 dt

e—=0t JI
= lim sup/(51W(v5) +e(v))? — 2W Y2 (v |l )ndt < 0.
e—=0t JI

We thus have that e 1/2W1/2(v.) — e'/2[v| goes to zero in L??. Moreover, the liminf
in (5.3.6) is actually a limit and equality holds, so that

lim | W) |0l ndt = ewn(to). (5.3.7)

e—=0t Jr

Additionally, we can write the following:

lim /|€1W(v5) —e(vl)?|nat
I

e—0t
— lim /‘5_1/2W1/2(115)—51/2\v;\ ‘5_1/2W1/2(v5)+61/2\vé\ ndt
e—=0t J1
1/27171/2 121,71\ 12
. — /
<, (f v =) )

) 1/2
X </ (s_l/zwl/g(vg) —1—61/2\@;\) ndt)
I

9 1/2
< lim C (/ (72w /2(we) — /210l ndt) — 0,
I
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where we have used Holder’s inequality in the first inequality, Young’s inequality
and the boundedness of Ggl)(va) in the second. By we can deduce that
e W (v:) — e(vl)? goes to zero in Li (I). Thus by dividing by e, and
recalling that 1 is compactly supported in I, we obtain

lim A / Yulndt = lim 2 / e(vl)?n/+p dt.
I I

e—0t e—0t

We then use the L? convergence shown above to estimate the following

i | [t = W2l dt\

e—=0* | J1

= lim | [ e2pl|(eV20l] — e V2PW Y2 (0) )y dt
e—=01 | J1 c c

i\ 2 1/2 1/2
< lim </e(v;)2 () ndt) (/(51/2|v;| — e V2w 2(u)) 2 dt) =0,
e—0t I n T
where we have used the fact that an, is uniformly bounded, since 1 has compact

support in 1.
Thus we can write the following;:

lim A5/¢véndt: lim 2/W1/2(v€)|vé|n/1/zdt. (5.3.8)
e—0t I e—=0t I

We know that v/ £ | = Dvg = (b—a)ds, and W2 (v )v LY T = D(®ovg) = ey by,
both in (Co(1))’. In turn, WY2(v)vinL [T = ewn(to)ds,. In view of (5.3.7), it
follows from Proposition 4.30 in [75] that W/2(v.)[vl|nL [T = eyn(to)ds,. Hence,

/ /
: 1/2 I T 1/2 r, _ n'(to)
Jim [ W lathf e = Jim [ Wl e = cwntto) T i)

We thus take limits in (5.3.8]) to find that

lm A (b — a)i(to)n(to) = 20 (to)ew(to).

e—0t
This then gives the desired conclusion, namely that (5.3.4]) holds.

0

The next step is to establish tight bounds on the functions v., as well as a
Neumann condition.

Theorem 5.3.3. Under the hypotheses of Proposition for alle > 0 sufficiently
small the minimizers ve of J. satisfy

a: <ve(t) <b.,, tel, (5.3.9)
vL(=T) = v(T) = 0, (5.3.10)

€

where a. < c. < bz are the only zeros of W' + A.e. Moreover

ae = a — M|V (g 0) V9N 4 o(£19), (5.3.11)
ce =c—AW"(c) e+ o(e), (5.3.12)
be = b — M| A9V (g )99 o(e1/9), (5.3.13)

where £ is given in ((5.1.5)).
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Proof. By hypothesis (5.1.7)), [W’(s)| > wo > 0 for all |s| > C. Since W’ has only
three zeros at a, b, c and is strictly monotonic in a ball centered at each of these
points with radius (o > 0 (see and - ), by taking wy smaller we can
assume that |W'(s)| > wo for all s € R\ (B(a, o) U B(c, (o) U B(b, ). By (5.3.4),
leAe| < wp/2 for all € > 0 small. Hence W’ + €. has only three zeros

ae < be < ¢, (5.3.14)
for all € > 0 small. Furthermore by (5.1.6)) and (5.1.10) we can derive the explicit

forms in -.

Next, consider the open set U := {t € I : v-(t) < ar}. We claim that U, is empty.
Indeed, if not, let I. be a maximal subinterval of U, and since W/ (v:) +eX. < 0
for all t € I, by we have that (v.(t)n(t)) < 0 for all t € I.. Since n > 0
on I by , this implies that v, has at most one zero in I.. Hence there
exist lim, it ve(t) = - and lim, L7 ve(t) = Le, where t., T, are the left and right
endpoints of I, respectively. Note that /., L. could be infinite if one of the endpoints
is =T or T. Consider inf;_ v.. If there exists s, € I2 such that v.(s;) = inf7. ve, then
vL(s:) = 0 and v”(sc) > 0. This is impossible, as (v.n)’ < 0 on I.. Thus it follows
that inf;_ v, is either ¢, or L.. Assume first that inf; v, = ¢.. By the definition of
1. it cannot be that /. = a., but then, by the maximality of I., necessarily t. = —T.
By for all t1,to € I, with t1 < to:

to

2620 (ta)n(ta) — 2620 (t1)n(t1) = / (W' (ve(8)) + exe)n(s) ds. (5.3.15)
t1

Since W' (ve(t)) + eAe < 0 for all ¢ € I, the integral foT(W’(ve(s)) +eX)n(s)ds is

well-defined in RU{—oc0}. Hence, letting t; — =T in (5.3.15)), it follows that there

exists

lim ol(t)n(t) = M. € RU {o0}. (5.3.16)

t——T%+
Assume, for the sake of contradiction, that M. # 0. Then by (5.1.14)) and (5.3.16)),
[L(t)] > Co(T + t)~™* for all t € (=T, —T + 4.), for some J. > 0. It would then
follow that

—T+3. —T+0¢
/ [l [>n dt > dl/ CHT + )™ dt = 0o
-T -T

if ny > 2. On the other hand, if n; = 1 then v.(—=T) = 0, since v, is a minimizer.
Thus in both cases we must have that M, = 0. In turn, letting t; — =7 in
it follows that v.(t) < 0 for all ¢ € I., which contradicts the fact that ¢, = inf}_ v..
Using a similar argument we can exclude the case that L, = inf;_v.. This proves
that I, and in turn Ug, is empty. Thus v. > a. in I. Similarly, we can show that
Ve < b in 1.

It remains to prove the Neumann boundary condition . If n; = 1 then
this comes from the minimality of v.. When n; > 2, since v, is bounded by what we
just proved, it follows that the integral on the right-hand side of is bounded
for all t € I. Hence as in the first part of the proof we can conclude that the limit M,

in (5.3.16]) exists and must be zero. Hence letting t; — —T" in (5.3.15]) we obtain
t
2280l (0)nt) = [ (W/(02) 4 Ace)ns) d.

-T

Using again the fact that v, is bounded, along with (5.1.4) and (5.1.14]), we have
that

0 < 2e%vl(t) /d2T+s)”1 1ds—§d2(T—|—t) 0
1M1

|_d1(T+t”1 I
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ast — —T7T. A similar estimate holds near 7. This completes the proof. O

The following theorem specifies the qualitative behavior of v., which are global
minimizers of J.. Despite the fact that v. — vy € L,l] by Proposition ve need
not be increasing. Indeed in the radial case n(t) = (t + 7)™ !, on an unbounded
domain and for n large, Ni [86] has shown that all positive solutions of
approach b. as ¢ — oo in an oscillatory way. The presence of possible oscillations
makes the analysis significantly more involved. However, the overall idea of the proof
is the same as the proof of Theorem

Fix

11
0; € ( ) i=1,2, (5.3.17)

ni’ni—l

where n; are the exponents given in ((5.1.14)) and (5.1.15). Let £ € N and define

O.:={t € [-T +c(n)e?, T — c(nz)e®] : ac + ¥ <w.(t) <b. —e*Y,  (5.3.18)
with ¢(n;) := 0 if n; = 1 and 1 otherwise.

Theorem 5.3.4. Assume that W satisfies —, and that n satisfies —
. Let v be a minimizer of J.. Write Iy := [-T + vo,T — vo], with tg > 0
a constant to be defined. Then for & sufficiently small in and for all € > 0
sufficiently small the following properties hold:

1. Te := O-N Iy has exactly one component [T5, T, with v-(T5) = ac + € and
ve(T5) = be — ek, Moreover, there exists 0 < v; < tg so that T'. C B(tg,ty).

2. For every fixed €, the points in I'. where v. = c. are at most distance Ce apart,
for some C > 0 independent of ¢.

3. Fort € (=T,Tf) we have that v-(t) € |ac,ac + €*) evcept on a set of nL!
measure o(¢). Similarly for t € (T5,T) we have that v-(t) € (b — ¥, be] except
on a set of nL* measure o(¢).

The proof of this theorem requires a number of preliminary results. Let tg > 0
be chosen as in (5.2.10). As v — vg in L}?, by selecting a subsequence, it is safe to
assume that v.(t) — vo(t) for £! a.e. t € I. Hence, given

1
0<p< 3 min{c —a,b — ¢}, (5.3.19)
there exists €, > 0 such that
lve(T1) —a| < p, |ve(T2) —al <p, |v(T3)—b] <p, |ve(Ta)—0b] <p (5.3.20)

for all 0 < € < ¢, sufficiently small and some 171 € (=T,-T + ), T> € (=T +
2tg,to —vo), T3 € (to +to, T — 2vg) and Ty € (T — o, T). Fix ¢ > 0 sufficiently small
so that (5.3.20f) holds.

The first two lemmas are adapted from [102].

Lemma 5.3.5. Let sg,s1 > 0 be such that a- + sg < ¢cc < be — 81 for alle > 0
sufficiently small. Fiz any such . Let I. C I be a non-empty mazximal interval such
that a. + so < ve(t) < b. — s1 for all t € I.. Then there exists t. € I. such that
Ve(te) = ce.
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Proof. If not, then either a. + sop < ve(t) < cc for all t € I. or c. < v-(t) < be — 1
for all ¢t € I.. Consider the second case. Then W'(v.(t)) +eX. < 0 for all t € I,
and so by we have that (v.(¢t)n(t))’ <0 for all t € I.. Let t € I. be the point
of minimum of v, in I.. Reasoning as in the proof of , we have that ¢ cannot
belong to I., and so t € I.. If t € I, then necessarily, v.(f) = c., which contradicts
the fact that c. < v.(t) < b. — s1 for all ¢ € I.. it follows that £ € {~T,T}. We can
now continue as in the proof of to exclude this possibility. ]

Lemma 5.3.6. Let p be as in (5.3.19) and suppose that I is a mazximal subinterval
of the set {t € [T + c¢(ny)e?, T — c(n2)e%] : v.(t) > ¢+ p}. Then there exists a
w > 0 such that we have the following estimate for allt € I.:

be —ve(t) < 2(be —c— p)efud(tJS)E’l.
In addition an analogous bound holds for the set {t € [T + c¢(ny)e?, T — c(ny)e%] :
ve(t) < c— p}.

Here d(t, E) is the distance from ¢ to the set E' and E€ is the complement of E

(see Section [2.1)).

Proof. First, we claim that there exists a p such that for any s € [c¢ + p,b] the
following inequality holds

—(W'(s) +eXe) > 2p*(be — s). (5.3.21)

If ¢ = 1 in (5.1.5)), then also by ((5.1.4) we have that W € C?(R). Since W”(b) > 0
by continuity we have that W”(s) > 2u? > 0 for all s € B(b, Ry), for some u # 0,

and Ry > 0. It follows from ([5.3.14)) that

be
W'(s)+ el = —/ W"(r)dr < —2u*(b: — s)

s

for all s € B(b, R1), with s < b.. Using the fact that W’ + eX. < 0 in (ce, b:) (see
Theorem [5.3.3)), and by taking p smaller, if necessary, we can assume that

W'(s) 4+ el < —2p2(be — 5)

for all s € [c+ p,b:]. Note that pu depends upon p but not on . On the other
hand, if 0 < ¢ < 1 then since limg_,, W (s) = oo by , we can still assume that
W”(s) > u? > 0 near b. Hence we can continue as before to conclude that
holds even in this case. This proves the claim.

Write I, = [t1,t2] and define

B(t) = (be — ve(tr))e P 4 (b — g (ty) e (27D (5.3.22)

with p fixed by ([5.3.21]). We note that ¢ satisfies the following differential inequality:

2
(@) = Syom+ L (=0 = ve(t))e T (b — (1)) 20

1 n
< = <u2 + 6‘##) ¢n.

22
If ny > 1in (5.1.14)), then ¢(n1) =1 in (5.3.18) and so by (5.1.16)),

/
n(t) t+7T




76 CHAPTER 5. WEIGHTED 1D FUNCTIONAL PROBLEM

for all t € [T 4 £%,0] and all € sufficiently small. On the other hand, if ny = 1 in

(6.1.14), then c(n1) = 0 in (5.3.18) and so by (5.1.13) and (5.1.15), n(t) > no > 0
for all t € [-T,0]. Thus,

@] maxhy| _
n(t) Mo
for all ¢ € [-T,0] and all ¢ sufficiently small. Similar inequalities hold in [0,7 —
¢(n2)e%]. Thus in I,

(¢'n) < 2e72%¢m. (5.3.23)
We then set ¢(t) := b, — v.(t) and using (5.3.3)) and ([5.3.21)) we have that
(g'n)' = —e2(W'(v:) + eXe)n > 2> °gn. (5.3.24)

We define U := g — ¢. By (5.3.22)), (5.3.23) and (5.3.24)), for £ small we have the
following;:

U) > 2eUn,
U(t1) <0, U(ta) <0.
The maximum principle implies that U < 0 for all ¢ € I.. Thus

be—v2(t) < (be—va(t1))e HETE (b —p(to))e M0 < o(ho—c—p))ere ALIE),
(5.3.25)
which is the desired result. O

Corollary 5.3.7. Let p be as in (5.3.19) and let
Ag = {t € [-T + ¢(n)e?, T — ¢(n2)e®] : ac +e* < w.(t) < c—p},
B.:={t € [-T + ¢(n)e”, T — c(n2)e®] : ¢+ p < w.(t) < b — ).

Then for any maximal interval I. contained in A, U Be,
diam I. < Ce|loge|

for all € > 0 sufficiently small and for some constant C > 0 depending only on W,
k, p, p, where p is given in Lemma[5.3.6]

Proof. Assume (t1,t2) = I2 C B.. By Lemma we have that for t = trQFLZ:

1

eb < b —v.(t) < 2(be — ¢ — p)e_“Q_l(trtl)s_ ,
which implies that —% (2 — t1)e~! > kloge — log 2(b. — ¢ — p), that is,
0<ty—t; <2u tkelloge| +2utelog2(b. — ¢ — p).

This shows that diam I. < Ce|loge|. The proof for the case I. C A. is similar, and
we omit it. O

The next lemma is quoted from [102], which gives estimates on the size of certain
sets. In what follows given a set E and s > 0 define the set

Ef:={x eR":d(z,F) < s} (5.3.26)

Lemma 5.3.8. Given a measurable set A C R", for all numbers 0 < s1 < sy we
have that
n S92 n
L£UA%) o (22
L‘n(Asl) - S1

where we are using the notation ((5.3.20]).
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The next step is to establish an estimate on the derivative of v..

Lemma 5.3.9. There exists a constant C > 0 such that
WL(t)| < Ce™t
forallt € 1.

Proof. By (b.3.3)) and the fact that v.(—=T) =0,

262! (t)n(t) = / (W' (e(5)) + r)n(s) ds
-7

for every t € I. In light of (5.1.13))-(5.1.14) we know that that there exist constants
c1,c2 > 080 that ¢ (T + )"~ < n(t) < co(T +t) L for all t € [T, T — t*]. Since
ve is bounded by (5.3.9)), this implies that

21 c [ ¢ ' 1
< — < e
2 lee(0)] < n(t) /—T n(s) ds < a(T+t)ym-t /—T 2T + ) @
_ G +1)
Cc1Nnq

for all t € (=T, T —t*). Using a similar argument in (—7"+¢*,7T), we conclude that
2wl (t)| < Cmin{T +t,T — t}

for all t € I. By (5.3.3)), ve satisfies

/
26207 (t) + 2627]((;) vL(t) = W (ve(t)) + el
Using (5.1.16), (5.3.9) and the previous inequality we get
n'(t)

260! (t)] <

2620l (t)| + C < C.

n(t)
Next we use a classical interpolation result. Let ¢ € I and consider ¢t; € I with

|t — t1| = €. By the mean value theorem v.(t) — v-(t1) = v.(0)(t — t1) and so by the
fundamental theorem of calculus

vl(t) = vl(0) +/9 v (s) ds = ve(t) = ve(h) +/0 v (s) ds.

t—11

Again by (5.3.9)) it follows that

¢ c C
! "

|U€(t)| S c +sup ‘UsHt - 9’ < . + 5*26.

This concludes the proof. -

With these lemmas it is now possible to prove Theorem|[5.3.4] By way of notation,
for every measurable subset £ C I and for every v € H% satisfying ||v — wvol| £y <96

and (5.1.3) we define the localized energy

0w E) = [

E

<iW(v) + a(v’)2> n dt. (5.3.27)

Figure [5.1] gives a visual representation of the notation used in the following proof.
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Figure 5.1: Important intervals and points for the proof of Theorem m

Symbol | Definition Characteristics

O. (5.3.18) Step 1 proves that £1(O.) = o(1).

Iy [T + vo, T — vo] (see statement
of Theorem ’m‘)

Jo [T + 2vp, T — 2v¢] (see Step 2)

I [to —t,t0 + ﬂ (see (]5332]))

I A maximal subinterval of O, | Existence proved in Step 3, uniqueness,
which intersects B(to,t1/2) endpoint values and width estimate in

Step 4.

13,15 (5.3.39)

15,13 The first and last time in I'. | Step 3 proves that these are O(e) distance
where v, = ¢, (see Step 3) apart.

13 The last point to the left of I'. | Step 5 proves that ¢z, if it exists, must be

where v-(t5) =c—p

in [T, T + c(n1)e™].

Figure 5.2: Explanations of some of the notation in the proof of Theorem m
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Proof of Theorem[5.3.]. By Theorem there exists 0. converging to vy in L}7
such that

Ggl)(va) = Js(l)(va) < Js(l)(f)a) < Ggl)(’&e) < G(l)(UO) +Ce= 20W77(t0) + Ce,

(5.3.28)
where we have used the fact that v, is a minimizer of J.. We fix
[ n(to) nlto) [T 1/ min{c_,c} .
_— 3.2
0<e < Inm{ 5 2ew ). W%(s) ds, e ming o, (5.3.29)
where )
C
c_ = / WY2(s) ds, ¢y = / W2(s) ds. (5.3.30)
a C
By the continuity of 7 there exists t¢, > 0 so that
In(t) —n(to)| < e (5.3.31)
for all t € [tg — t¢,, to + t,|. Pick t > 0 so that
I = [to — %t + ‘E] cl, (5.3.32)
and let
= n}inn > 0. (5.3.33)
1
Choose t1 so that
0 < vy < min{r,,,t}. (5.3.34)
Fix  so that ;
0<6<(cma—p Tl (5.3.35)

2
Step 1: We claim that £1(O.) = o(1) (see (5.3.18))). Define the set

D.:=0.Nnv- ([c—p,c+p]}).

By Lemma [vl| < Coe™?!, and so, using the notation in (5.3.26), (D.)* C
v ([e — 2p, ¢+ 2p]), provided 0 < I < pCyt. In turn

Ly < | 1t
{e—2p<ve<c+2p}
-1 T—602
< 20 +802 + ( min W> / W (ve) dt (5.3.36)
[e=2p,c+2p] —T+eb1
T—e%2
< el 6% 4 O (7MY 4 gma(na) / W (ve)n dt
—T+e%

< 591 +502 +C (51—91(711—1) + 81—02(77,2—1)) ’

where we have used (5.1.4), (5.1.13)-(5.1.15), (5.3.19) and ([5.3.28]).
Next we claim that

0. C (D.)¢Mosel G [—T, =T + ¢(ny)e®™ + Ce|loge|] U [T — c(n2)e? — Ce|loge|, T1.

(5.3.37)
Indeed, as O, = A, U B. U D,, it suffices to consider ¢ € A,, as the case t € B,
is analogous. Let I. be the maximal subinterval of A, containing . By Corollary
diam I. < Ce|loge|. If I. intersects D., then d(t, D.) < diam I. < Cel|loge].
Otherwise, since reasoning as in the proof of and Lemma it cannot
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happen that v, takes the value b, — ¥ at both endpoints of I, it follows that one of
the endpoints of I. is —T + c(n1)e?* or T — ¢(ng)e?, say, —T + c(n1)e?. Thus

d(t,[-T, =T + c¢(n1)e?]) < Ce|loge|.

This proves (5.3.37)).
By Lemma [5.3.8 and ([5.3.36]) we have that

£H(D)C195) < Clogel £1((D.)') < Cllogz] (1 + £ 4 1= 4 1-0almD))

Hence by (5.3.37)) we have that
L£Y0,) < % 4% + Celloge| + L ((D.) Mozl
< Cl| 10g£| (691 + 592 + 51791(n171) + 61792(@71)) ’

where C] > 0 is independent of tg.

Step 2: We claim if I, is a maximal subinterval of the set O, (see ) that
intersects the interval Jy := [T + 2tvo,T — 2vg], then I. is contained in Iy for all
€ > 0 sufficiently small, with

LYI.) < Celloge]. (5.3.38)

The first part of the claim, namely, that I. C Iy, follows immediately from Step 1.
Lemma then implies that I. N D, # (). Reasoning as in the proof of
but using the fact that n > 19 > 0 in Iy we find that £'((I. N D.)®) < Ce. Again
due to the fact that I. C Iy, reasoning as in the proof of we can show that
I. C (I. N D.)¢elsel Using Lemma [5.3.8 once more gives (5.3.33).

Step 3: We claim that there exist t5, t5 € B(to,t1/2) such that

w(B) Se—p () Zc+p (5.3.39)

provided € > 0 is sufficiently small. Indeed, if ¢{ does not exist, then ¢ — p < v. in

B(to,t1/2), and so by (5.2.9),
52/ |ve — vo|n dtz(c—a—p)n(to)tl,
Blto,c1/2) 2

where we used ([5.3.29)). This contradicts (5.3.35). Hence the t in (5.3.39) exists,

and with a similar argument we can prove the existence of t5.

Since v, is continuous, by the intermediate value theorem it will take all values
between ¢ — p and c+ p in B(tp,t1/2). Let I' be a maximal subinterval of O, inter-
secting B(tg,t1/2) such that v-(T'Z) D [¢— p, c] and let '} be a maximal subinterval
of O. intersecting B(tg,t1/2) such that v.(T'F) D [e,c + p]. By Step 1, for € small
enough, both intervals are contained in the interval I; given by .

We claim that either v.(I'2) = [ac + ¥, b. — ] or v(T'F) = [ac + ¥, b — ).
Indeed, if this is not the case, then by the maximality of I'; and 'Y, Lemma
and the definition of O, (see ) ve = a. + ¥ at both endpoints of I'; and
ve = b, — € at both endpoints of I'S. Let t. € T be such that v.(t.) = ¢. Hence,
by (5.3.27)), (5.3.33)), Young’s inequality and a change of variables,

JW (v T7) > 2771/ W2 (ve)[ol] dt
rs

—on, / WY2(0.) o | dt + 21 / WY2(0.) o] dt
Lo N(=Tte] Lo n(te,T)

> 4771/ . WY2(s) ds > dc_my — Celatd)/2a, (5.3.40)
as+¢€
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where we have used (5.3.30) and the fact that
as+5k

by (5.1.9) and (5.3.9) where here C is independent of vg. A similar inequality holds
for JE1 (ve; TF) with the only difference that c_ should be replaced by c;. Hence,

also by (5.2.9) and (5.3.28),
2ewn(te) + Ce > JW (0 T7) + JW (0 TF) > dew (n(ty) — e1) — Celat3)/2a,

which gives
Ce > Q(U(to) — 261)Cw.

This contradicts provided ¢ is sufficiently small. This proves the claim.
We denote by I'. a maximal subinterval of O, intersecting B(tg,t1/2) such that
ve(T2) = [ac + ¥, b, — ).

First we claim that v. takes the values a. + ¥ and b, — ¢
I'c. If not then reasoning as in we would have

k¥ on the endpoints of

JW (05 T2) > deyym — Cela3)/2

which is a contradiction. Next let 5 and tj be the first time and last time in I'; that
ve equals c¢.. We claim that
t; —t5 < Cae, (5.3.41)

for some constant Cy > 0 independent of vy, for all € sufficiently small. Indeed, if
ve(t) € [c — p,c+ p] for all t € [t5,t]], then by (5.2.9)),

77(t0) € € .
t; —t min W,
p (%) min

and so (|5.3.41)) follows from (|5.3.28)), where all the constants appearing are indepen-
dent of typ. On the other hand if there exists ° € [t5,t]] such that |v.(°) — c| > p,

say, vz(t°) > ¢+ p, then by Young’s inequality, Step 1, ([5.3.29)), (5.3.31]) and a change
of variables we get

T (vs; [15,83]) = 71

ct+p
IO 5,65 > 250 [ w25y s - cctarrn,

Furthermore, by again reasoning as in (5.3.40)), and using the fact that v. takes the
values a. + ¥ and b, — €* on the endpoints of I'. we have that
bgfsk
T (0 D[, 85]) > 2m / W2(s) ds > 2epm — CTT9/20, (5.3.4)

ac+ek

with C independent of tg.

Hence, by (5.2.9), (5.3.28), and (5.3.42),
2ewn(to) + Ce = I (ves T\ [85, 5]) + T (ves [85, 15)
c+p
> 2ew (n(to) — 1) +n(to) / WL/2(s) ds — Celat3)/2a,

which gives

c+p
Ce > 77(?50)/ Wl/Q(S) ds — 2cyer,
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which contradicts (5.3.29)), provided ¢ is sufficiently small. The case where v, (#°) <
c — p is analogous.

Step 4: We claim that for all € > 0 sufficiently small, 'z is the only maximal
subinterval of the set O, that intersects the interval Jy defined in Step 2. Indeed,
assume that there exists another maximal subinterval I, of O, that intersects Jp.
By Step 1, I. C Iy and holds. In view of Lemma there exists t. € I,
such that v.(t;) = c.. Since I is a maximal interval of O, at one of the endpoints it
attains either the value a. + €* or b, — €*. In the first case, reasoning as in ,
we get

Ce
Js(l)(vs;lg) > 2H}in77/ W1/2(v€)\vé\ dt > QH}iH’I’]/ WI/Z(S) ds

c Ie a5+5k
> 2c_ n}inn —Cle—ce| — Celat3)/2q.

A similar inequality holds in the second case, with ¢y in place of ¢_. Hence, by

$.29), (:3.25), and by (5.3.42),
2ewn(to) + Ce > Je(l)(Us; L)+ Ja(l)(UES I.)
> 2cw Hrlinn + 2min{c_, c; } H}inn —Ce

> 2cw (n(to) — €1) + 2min{c_, c4 } H}inn —Ce,
0

which gives
Ce > 2min{c_,c4} H}inn — 2cwer,
0

which contradicts provided ¢ is sufficiently small.

This proves that I'; is the only maximal subinterval of O, that intersects Jy. In
view of it follows that v, takes the value a. + € on its left endpoint of T’
and b, — €* on the right endpoint. Indeed, if v. takes the value b, — €* at the left
endpoint of I'; then since v.(T3) < a + p by , then I'; could not be the only
maximal subinterval of O, intersecting Jy. At this point we have established parts
(i) and (ii) of our theorem.

Next we show that

LY(T,) < Csellogel, (5.3.43)

for some constant C3 > 0 independent of tg. By Step 1, and the fact that I'.
intersects B(to,t1/2), we have that I'. C B(to, 1) for e sufficiently small, where t;
is given in . By and , we have that n > n; > 0 on I';, with
71 independent of vy. The argument in Step 2 then implies .

Step 5: We claim that v. < ¢ — p in [T + c(n1)e?, =T + 2t]. We first consider
the case where n; > 1 in . Suppose the claim does not hold. By ,
ve(T1) < a + p for e sufficiently small and where T3 € (—=T,—T + ty). By the
intermediate value theorem there exists a point in (77, =7 + 2tg) where v takes the
value ¢ — p. Since =T + e < T for e sufficiently small, we have that v. takes the
value ¢ — p in [T + &%, —T + 2vg]. Let t§ be the last time in [T + &%, T + 2¢(]
such that v.(tf) = ¢ — p. We claim that

|t5 — to| < Ca(elloge| + (T +t5)™), (5.3.44)

for some C4 > 0 independent of tg, where we recall that 5 and t§ are the first time
and last time in I'c that v, equals c.. If t§ < ¢y < t7, then this follows from ([5.3.41)).
Assume next that ¢y < t5. Then from (5.1.3),

to t5 T
0= /I(Us —vo)n dt = / (ve —a)n dt—i—/ (ve —b)n dt+/ (ve — b)n dt. (5.3.45)

=T to tg
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By (5.2.9),
tE
t
to T ’
= / (ve —a)n dt+/ (ve — b)n dt.
-T t5

We now estimate the two terms on the right-hand side of (5.3.46). By (5.3.9) and
(5.3.13),

T
/ (ve — b)n dt < |be — b]2T maxn < Ce'/9, (5.3.47)

t3

where C' is independent of vg. We decompose the interval [T, ¢y] as follows
[T, to] = [T, t5]U[t5, =T +2vo] U([—T'+2¢0, to] \I'c ) U([—T +2v0, to]NT:), (5.3.48)

and estimate the integrals over each of these subintervals. By (5.1.14), (5.3.9)), and
(5.3.13),

ts £
/ (ve — a)y dt < (b — a)ds / (T + 8" dt < 2(b— a)do(T + )™, (5.3.49)
-T -T

Let Q. := [t§, —T + 2to] N O.. Since v.(t§) = ¢ — p, we have that ¢t € Q.. Since
t£ is the last time in [T + €%, —T + 2t¢] such that v. takes the value ¢ — p, and
since, by Step 4, v.(—T + 2tg) < a. + €F for € small, it must be that v. < ¢ — p in
(t5, —T + 2vp]. By Corollary we get that

L£YQ.) < Celloge], (5.3.50)
with C independent of tg. Thus by (5.1.13]) and (5.3.9),
/ (ve —a)n dt < Celloge] (5.3.51)

g

with C independent of ty. On the other hand, since v, < a.+¢* in [tg, =T +2t0] \ Qe,
by (5.3.9) and (5.3.11)),

—T+2vg
/ (0. — a)y dt < |ag + & — a|d2/ (T+ M de < Ceie,
[tg,—T+2t0]\ Qe -7
(5.3.52)
with C' independent of ty. Since the set O, intersects the interval Jy only in I'; by
Step 3, and as ty < t§, we have that v. < a. + € in [=T 4 2tg, o] \ Te. Hence, by

(5.3.9) and (5.3.11]),

/ (ve — a)n dt < |az 4+ €F — a|2T maxn < Cel/9, (5.3.53)
[7T+2t0,t0]\F€

with C' again independent of vg. Again by Step 3, [—1'+2tg, to] e = [to—t1,to]NT .
Hence, by (5.3.9) and (5.3.43)),

/ (ve —a)n dt < Ce|loge], (5.3.54)
[toftl,to]ﬂrg

for C independent of ty. Combining the inequalities ([5.3.46), (5.3.47)), (5.3.48),
6-349), (5.3.50), (5:3.51), (5.352), (5.3.53) and (5.3.54) gives

t
77(20)(19 — ¢o)(t5 —to) < Celloge| +2(b — a)da(T + t5)™,
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with C' independent of tg, which implies (5.3.44]) in the case to < t5.

It remains to prove ([5.3.44]) in the case tj < to. Then (/5.3.45)) should be replaced
by

T t to T
O:/ (ve —vo)n dt:/ (ve —a)n dt—i—/ (ve —a)n dt+/ (ve — b)n dt
-T -7 ts to
and (5.3.46) by

77(t0) € T f
0< ?(cE —a)(tp —t3) < (ve —a)n dt < (b —wv)n dt + (a —v:)n dt.

ti to =T

to

By (5.3.9) and (/5.3.11)),

t
/ (a —vo)n dt < |a— a|2T < Ce'/1,
-7

with C independent of vyg. The integral ftf(b — ve)n dt can be estimated as in the
case tg < t5. We omit the details. Hence, we have shown that holds in all
cases.

Since t5 € I';, by (5.3.43) and ({5.3.44]), it follows that for any ¢ € I,

[t —to| < |t —t5] + [t5 — to| < Cs(elloge| + (T'+15)™),
where C5 > 0 is independent of vy. In turn, by the mean value theorem

(to) +1'(0)(t — to) > n(to) — Molt — tol
t

n(t) =mn
> n(to) — CsMo(e|loge| + (T + t5)™),

where we recall that My = max || + 1. Hence, also by (5.3.42)) we get

J (02 Te) 2 2ew ming — CeH2 > 2eyn(ty) — Co(el loge| + (T +15)™)

with Cg > 0 independent of vg. On the other hand, since v.(¢5) = ¢ — p, there exists
a maximal subinterval S. of ). that contains ;. As argued just before (5.3.50)), it
must be that v-(S:) D [a- + ¥, ¢ — p], and so reasoning as in (5.3.40), by (5.1.14),

which can be applied since 2tg < t* by (5.2.10)) and (5.3.50)) holds,

p
JW (v:;5.) > 2miny W2(s) ds
Se actek

c—p
> 2d1 (T + tg)”l_l/ W/2(s) ds,
a-+p

for € > 0 small enough. Combining these last two estimates, it follows from ({5.3.28)|)
that

2ewn(te) + Ce > JW (v T2) + JW (02:.82) > 2ewn(to) — Co(e|loge| + (T + t£)™)

+2dy (T + t5)™ ! /
a+p

c—

p
W2(s) ds,

which gives

c—p
Celloge| > (T +tg)™ ! (2d1 W2(s) ds — Cs(T + t‘g)) .

a+p
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Since —T 4 % < tz < =T + 2, by taking
dy [“°
0<t< 1/ W2 (s) ds,
Co Jatp

we get a contradiction, since 61(n; — 1) < 1 by (5.3.17)).
Finally we consider the case where n; = 1. In this case we can use energy

estimates, as in Step 4, the fact that n > C' > 0 on [T, =T+ 2t¢], and Lemmam
to show that v.(t) < ac + ¥ on the interval [T, —T + 2ty]. We omit the details.
Step 6: Finally, we prove the last claim in our theorem. We write I'. = [T}, T5].
By the remark at the end of Step 5, in the case ny = 1 we are already done, so we
only need to consider the case n; > 1. In view of Step 5 we can use the barrier
method in Lemma m to show that for ¢ € [T + %, T¥]

[0 (t) — | < e ALITHLTTD

This clearly implies that v (t) € [a., a-+¢¥) for all t € (=T +e% +2ku~e|logel, T¥).
Using (5.1.14)) we then estimate the 7 measure of the remaining set as follows:

—T4e%14+2kp1e|loge| ds
/ ndt < —= (% + Ce|loge|)™ < Cemb
-7 n

Since n161 > 1 by (5.3.17)), then we have the desired estimate. Thus the result holds
to the left of T7. We can use the same argument to the right of 75 to obtain the
desired result. O

5.4 Second-Order I'-limit
This section is devoted to proving the lim inf counterpart of Theorem [5.2.6

Theorem 5.4.1. Assume that W satisfies (5.1.4)-(5.1.7)) and thatn satisfies (5.1.13])-
(5.1.16|) and let vy and ve be given in Theorems|5.2.5 and|5.3. 1| respectively. Then

(1) _
Lo G ) — 2awn(to)

> 21 (t
oo - = 4l ( 0)(TOCW + Csym)

32 , (5.4.1)
+ {2W’9(a) Jrnds ifq=1,

0 if ¢ < 1.

Note that Theorems and together provide a second-order asymptotic
development by I'-convergence for the functionals J. defined in (5.2.12)). To prove
Theorem [5.4.1] it is convenient to rescale the functionals G.. Define

Be~!
He(w) ::/Al (W (w(s)) + (w'(5))*)e(s) ds (5.4.2)

for all w € H%E((Ae_l, Be™1)) such that

Be 1 5 Be1
[, s @nds <2 [ () -smgs)ns)ds =0, (5.43)
Ae—1 € Ae—1

where A = —T —tyg, B=T — tg and

1:(s) == n(to + €5). (5.4.4)
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Observe that s is obtained by shifting our variables so that ¢y moves to zero and
scaling by 7!, which in view of implies that minimizers of H. are precisely
rescaled versions of minimizers of J.. Thus it is natural to study the behavior of
minimizers w. of H.. The first step is to prove a bound on the locations where
We = C¢, in the region close to t = 0.

Lemma 5.4.2. Let w. be a minimizer of H., and let 7. € B(0,t1e™ ) satisfy
we(7e) = ¢e, with v1 as in Theorem (i). Then we have that

|Te| < C
for all € > 0 sufficiently small and for some constant C > 0 independent of €.

Proof. This proof essentially combines the mass constraint with the exponential
decay to obtain the desired bounds.

Let s be the first time in [—t1e7 1, v1e71] so that w.(s§) = ¢ — p, and s§ be the
last time in [—t1e7 !, v171] so that we(s7) = ¢ + p. Then let s5 and s§ be the first
and last times in [—t1e7!, t1e7!] where w. takes the value c.. We note that such
points exist by Theorem [5.3.4] (i). Furthermore, by Theorem [5.3.4] (ii) we know that
85— s5 < C and that —t1e7! < s§ < 55 < s§ < s§ < vy~ 1. Furthermore, using the
same argument from the proof of we know that w.([s], s§5]) = [c — p, ce], and
that w.([s§, s3]) = [ce, ¢+ p]. We can then estimate the following:

1

€
(s5—s7) inf n inf W< / ’ W (we)neds < C.
B(to,r1)  (c—p,ctp) 5§

This, along with a similar estimate for sj — s§, then implies that sj — s7 < C. Thus
if we can prove that the s are bounded above and that the s are bounded below
then we are done.

Suppose, for the sake of contradiction that the sj are not bounded above. By
taking a subsequence as necessary we may assume that sj — oo.

By (5.3.9) and Lemma we have the following bounds
0 < we(s) —ae <2(c—p—a)e P51l for s € [—rie71, 5], (5.4.5)
0<be —we(s) <2(be —c— ple 575D for s e [s5,r1e ] (5.4.6)

By our mass constraint (5.4.3) we can write:

1

Be! s1
0= / (we — sgn, p)ne ds = / (we — sgn, )10 ds (5.4.7)
Ae—1 Ae—1

83 Be1
+ / (we — sgn, ,)ne ds + / (we —sgn, )1 ds.
S

£ 1>
1 Sa

We will estimate these terms to obtain a contradiction. By ([5.3.9)) and the fact that
0 < 57 — s§ < C we have that

€

Sa
T
SE

1

<C.

We can also calculate

51
/A 1 (we — sgng p)ne ds
—

€ £

51

51
= / (we — az)n-ds + / (ae — sgn, p)ne ds.
Ae—1 Ae—1 ’
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By (5.4.5) we have that

£ £

51 51
OS/ (wa_aa)nedsg2(C_P_a€)maxn/
tla—l

—T1€

e~ Hs=sil gg <C,

—1

whereas by Theorem [5.3.4] (iii) and (5.3.9) we know that

1

—T1E™
/ (we — ag)ne ds

Ae—1

< Cefl 4 0(1).

Furthermore as a. = a + O(e'/?) by Theorem we may estimate that

1-g
<(Cea .

0
/ (ae — sgnq 5)7e ds

Ae—1

A similar argument, and the fact that 0 < s{ < sj shows that

Be~1
/ (we —sgn, ) ds| < C.
53

Now as s{ — oo we then have that

> lim inf = 00. (5.4.8)

e—0t+ B(to,r1)

lim
e—0t

Combining (A7)~ (5-48) gives

n /1(a€—b)ds
0

55
/wrwwm%
0

lim
e—0t

= OQ.

Be~ !
/A 1 (we — sgna’b)ng ds
—

This violates the mass constraint. Thus we must have that the s{ are bounded
above.
A similar argument shows that sj is bounded below. As 7. € (s7, s7) and s§—s] <
C, we then have that |7.| < C, which is the desired conclusion.
O

The next step is to prove that the functions w,. necessarily converge.

Lemma 5.4.3. Let w. be as in Lemma . Then (up to a subsequence, not
relabeled) {w.} converges weakly in H'((—1,1)) for everyl € N to the profile wo(s) :=
z(s — 10), where 7o is determined by (5.2.15). Moreover, the family {w.} is bounded
in L®((Ae~t, Be71)).

Proof. Throughout this proof we let w. be associated with its extension by constants
outside of [Ae™!, Be~!]. The fact that the family {w.} is uniformly bounded in
L>®(R) follows immediately from Lemma [5.3.9] Furthermore, we have that the w,
are bounded in L>(R) by (5.3.9). After a diagonalization argument, this implies
that for some wy € HL _(R),

we — wo in HL (R). (5.4.9)

By (5.3.3)) and (5.3.10) we have that

2(weme)’ — W' (we)ne = eAene  on (Agila Bgil)a
wl(Ae™1) = wl(Be™t) = 0.
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Hence for every ¢ € C2°(R) for € small enough we find that

Be—1

Be1
/ 2win.¢ + W' (we)n.¢ds = —/ EXeT ds.
Ae—1 Ae—1

Letting ¢ — 0 and using (5.4.4)) and (5.4.9)) gives
[ 2ubntto)df + W won(to)ods =0,
R
which then shows that w satisfies the differential equation
2w = W' (wp). (5.4.10)

Furthermore, by (5.3.9) we know that a < wg < b, which by (5.4.10|) implies that
lwi| < C. Also, by (5.3.1) and the fact that H.(w.) = J:(v:), where v, is a minimizer
of Jg,

l l
n(to) / g+ (o) ds < i [ (4 W (we)meds < Jim He(uwe) = 2ewn(t)

e—0 J_; e—0t

for every [ € N, and thus
tto) | (ut)? + W(wo) ds < 2ewn(to) (5.4.11)
R

This combined with the fact that |w(| < C (by (5.4.10)) implies that lim,_, 4o w((s) =
0. By then using ([5.4.5)) and (5.4.6]) along with Lemma we have that lim,_, o, wo(s) =
a, and that lims_, o wg(s) = b. Thus by integrating (5.4.10)) we find that

(wp)? = W (wp). (5.4.12)

We next claim that wg is increasing. Suppose not. Then by ([5.4.12)) there exists
critical points t; < tg of wg, with wy(t1) = b and wy(t2) = a. This then implies, by
Young’s inequality, ((5.4.11f) and a change of variables that

6ewn(to) < 2ewn(to).

This is impossible and thus wg is increasing. Moreover, by , , and
Lemma up to a subsequence, 7. — 79 with wg(79) = ¢. This then implies that
wo(s) = z(s — 79), where z is the solution of the Cauchy problem (L.1.6)).

The only thing left to prove is that 7y is determined by equation . To
this end, fix [ large enough that (s, s3) C (—I,1) for all £, where s and s are as in
the proof of Lemma Then by the mass constraint we have that

Be! l
0= / (we — sgn, p)ne ds = / (we — sgn,, ;)1 ds
Ae—1 1
-1

1 t1E
+ / (we — ae + az —sgn, ,)n: ds + / (we — be + be — sgn, ;). ds
l

—t1671
—rye ! Be1
+ / (we — ae + az —sgn, ,)ne ds + / (we — be + be — sgn, )1 ds.
Ae—1 rye—1

By the definitions of s and sj it must be that v. < ¢— p in the interval [—tje ™!, —I]
and v, > ¢+ p in the interval [I,t;e~!]. Hence by (5.3.9) and (5.3.25) we have that

—1

T1€ o0
0< / (be —we)neds < 2 ((bg —we(l)) + (be — ws(tls_l)) maxn/ e M ds
l 0

< C(bs - ws(l) + 5k)v
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where in the last inequality we have used ([5.3.18]) and Theorem m Similarly, we
have

—1
0< / (we — ag)n-ds < Clwe(—1) — as + Ek).

—tpe-1

By (5.3.9) we can write:

-1 to
[ e = snaaneds = <AA a0 [ e (et

Be—1 T
/ (b — sgnyp)ne ds = —/\eIAsII/q_l(Q/f)l/q’fl/q_l/ ndt+o("/71).
l

to

Furthermore by Theorem along with (5.3.9) we have that

—tlé‘*l
/ (we — ag)n-ds = o(1),

Ae—1

Be™!
/ (be — we)neds = o(1).

1e71

Utilizing these estimates, and taking ¢ — 0 we find that

l
0= nt0) | wn —sgn, ds = ool /)10 Tim V11 [
=l 7 e—0t I
+ O(|a — wo(=1)|) + O(|b — wo (1))

Taking [ to infinity, and using (5.1.5)) then implies that

o [inds ifg=1
o) [ 00— sgny s = { P i a1
. 7 0 ifg <1,

which then implies that 79 has the desired form. This completes the proof.
O

Using the previous lemmas it is possible to derive a second-order liminf inequality,
which immediately implies Theorem [5.4.1

Lemma 5.4.4. Let {w.} be minimizers of the functionals {H.}. Then we have the
following:

He(we) — 2ewn(to)

lim inf > 20 (to) (Tocw + Csym) (5.4.13)
e—0t €
A2 .
i QW/(/)(a) f] n(s)ds if =1,
0 if g <1,

where ¢y, Csym, To, Ao are given by (1.1.5)), (6.1.6]), (5.2.15) and (5.3.4) respectively.

Proof. Fix k to be a large integer. By (.4.5) and (5.4.6) and the fact that s
and sj are bounded we can find I. € (s5,t1e!) such that b, — w.(l.) < & and

we (1) — a. < ¥ for € > 0 sufficiently small. Recall that by Corollary we can
take

le < C|logel. (5.4.14)
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By (5.4.2) we can compute

H_ (w:) — 2ewn(to)
€

le le
_— / (W2 () — w!)?n. ds + 267! / W2 (we (e — n(to)) ds
—le —le

le
e /[A 1 Bem I\ (<le le) (W (we) + (wl)*) e ds + &' 2n(to) < W2 (w.)wl ds — ew
e S,ber —leyle

1

le
> 9o / Wyl (e = n(to)) ds

le
+e7t / W (we)ne ds + e 12n(to) (/ W2 (w )l ds — Cw> .
[Ae=1,Be=1\(—lc,lc) —le

We will examine the individual terms. The last term goes to zero as

671

le
W2 (w)w' ds — Cw‘ <e !

wa(ls) b
/ W1/2(T)dr—/ W1/2(r)dr

we(—le)

,ls

be b
<eg ! / W1/2(7“) dr —/ WI/Q(T) dr| 4+ CeF1
Qe a
S
< Ce_l/ t2 dt +CeP1 = o(1), (5.4.15)
0

where we have used (1.1.5), (5.1.9) and (5.3.9).
For s € [le, Be~'] N {w. > b. — "} by the mean value theorem we can write

W (we(s)) = W (be) + W'(¢) (we(s) — be),

where (. € [we(s),b:]. By (5.1.10) and (5.3.13) for such s we then have that

(W (C)I(be — we(s)) < Cl¢e — b|7(be — we(s))
< C(|Ge = be|? + [be — b]7)(be — we(s))
< C(e + e)eb < ekt

Thus we can write, after applying (5.1.9), part (iii) of Theorem (5.3.13)), and
(5.4.14]),

Be~1 Be~1
g1 / W (we)n. ds > e "W (be) / ne ds + O 1)
le le

_ 1 4 _ pll+gq 0 _ p|l+g -1 g o k—1
- (“1+®wa b1+ + o b — b )><5 / mﬁ+0(lyﬂ>+0@ )

to

1/q| )\ |1 +1/a T
= (q(l —|F j)ﬁl/q + o(l)) (51/q1 / ndt+ 0(51/q| 10g5\)> + O(skil).

to
An analogous bound will hold on the interval [Ae~!, —I.]. Hence

A

2
lim 5—1/ W (o) ds = { 7@ Jyndt—ifq= Y5.4.16)
e—0% [Ae=1, Be=1]\(~l L) 0 if ¢ < 1.

)
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In considering the first term, by using (5.4.5), and for M large enough, on the
interval [—I., —M] it follows that

W2 (we)| < W2 (we) = W (ae)| + (W (ac)]

(1+q)

< [W(we) — W(as)|1/2 + ‘Wl/Q(as” < Ce ClsHtMl y Ce 20,

A similar bound holds on [M, [.]. Then using (5.1.13)), along with Lemma and
Theorem [5.3.3] it follows that

le
/ W2 (we ) (s — n(to) — 1 (to)es) ds
e

-M 1 g M I -

< o(1) <C/ |s| (e‘C's+M' +5W) ds—l—C’/ ysyds+c/ B (e—CIS—Ml +5Tq) ds>
—le M M

= o(1).

Thus we find that:

le le
lim 2e71 W2 (w)wl (n. — n(to)) ds = 20 (to) lim W2(w)wls ds.

e—0t 1. e—=0t J .

Now for any fixed [ by (5.4.9) and the fact that wo(s) = z(s — 79), we can write

l l
lim Wl/z(ws)wésds:/ W2 (wo)whs ds

e—=0t J g 1

_ / T W ()2 ()t 4 70)

l—T9
=10P(2(l — 10)) — 70P(2(—=1 — 70)) + / WY2(2(1))2 (£t dt,
—l—70
where we recall that ®(s) = [7 W12(r) dr. Furthermore we can establish the fol-
lowing bound using (5.1.9), (5.4.6) and Lemma [5.4.3}

le
/ WY2(w)wls ds

le
< C’/ |b—w€|1#sds
l l

1+q

o0
< b= pl'E o b [ e HH D5
!
provided [ > sj. Thus we can write

le
lim W2 (w)w's ds = 10®(2(1 — 10)) — 70®(2(—1 — 70))

e—=0+ J .

= 1/2 / _liay
+/ WH=(z(s))2' (s)sds + O(le” 2 #).

—l—79

Taking [ to oo, combined with ((5.4.15)) and ([5.4.16|) gives the desired claim, namely,
(15.4.13]). O

The proof of Theorem [5.4.1] is now straightforward.

Proof of Theorem [5.4.1. By changing variables it is immediate that H (w.) = oS (ve).
Lemma then immediately implies ([5.4.1)). This concludes the proof. O
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Chapter 6

Characterization of a
Second-Order ['-Limit

6.1 Main Results

This chapter uses tools from the previous two chapters to prove an asymptotic
expansion of order 2 by I'-convergence of the functionals ([1.1.3)). In particular, the
goal is to prove Theorems and

These theorems are proven under the same assumptions on the potential W
that were given in Chapter [5, namely —. Some remarks regarding the
consequences of those assumptions can be found in Chapter [f

The theorems in this chapter also assume that @ C R", n < 7, is an open,
connected, bounded set with

LM(Q)=1 and 0Qis of class C*%, &€ (0,1]. (6.1.1)

The restriction to n < 7 is necessary to guarantee classical regularity of minimizers
of the problem [58, 160% [75], 103], while the assumption that £*(Q2) = 1 is
for simplicity (the general case follows by a scaling argument). It is likely that
the results would still hold in dimension n > 7, with appropriate modifications to
accomodate the loss of classical regularity, but for simplicity this thesis only focuses
on the classical setting.

Another assumption is that the mass m in satisfies

a<m<b, (6.1.2)

where a, b are the wells of W. This assumption is natural because it imposes a phase
transition, while other choices of mass would not.

Finally, given a measurable set Ey C © with mass v, (see (1.1.8)) and (1.1.9))
and § > 0, define the local isoperimetric function of parameter § about the set Ey
to be

2F0 (r) := inf{P(E,Q) : E C Q Borel, L"(E) = r,o(Eq, E) < 8}, (6.1.3)

where
Oz(El, Ez) = min{ﬁ"(El \ EQ), £n(E2 \ El)} (6.1.4)
for all Borel sets Fq, F5 C ().

Remark 6.1.1. When § is sufficiently large then I;;’EO (r) = Zq. Thus in the theo-

rems one may safely replace Ig’EO with Lo, which is precisely the case considered in
175).

93
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The main technical assumption in the theorems given here is that Ig’EO be dif-
ferentiable at v,, = l};’zz (see (1.1.9))). In Chapter 4| it was demonstrated that this
assumption is rather generic, in the sense that it will hold for all but countably
many m, see Corollary It was also demonstrated that the assumption holds
for isolated local volume-constrained perimeter minimizers, see Theorem [4.0.6

After giving these assumptions, it is now possible to state the two main results.

Theorem 6.1.2. Assume that Q) satisfies , m satisfies and W satisfies
hypotheses — with ¢ = 1. Assume that u is an L'(Q)-local minimizer
of the functional FV (see ) Finally, assume that, for some § > 0, Ig’EO is
differentiable at v,,, with Ey = {u = a}. Then

-lim inf F. (u) = - lim sup Fx (u)

_2¢,(n—1)? L
— mmz + 2(csym + cwTw) (n — )k, P({u = a}; Q),

(6.1.5)

where )
- _ (1)
€
and .
FO (w) = eiw)

In particular, if L is differentiable at v, then

2¢2,(n —1)2
cw(n—1) 253 + 2(csym + cwu)(n — 1)k, P{u = a}; Q)

PO = e ar

if u is a global minimizer of FV) and F® (u) = oo otherwise in L*(Q).

In this theorem, &, is the constant mean curvature of the set {u = a},

Coym 1= / W (2(t))t dt, (6.1.6)
R

where z is the solution to the Cauchy problem (|1.1.6]), and 7, € R is a constant such
that
2ew (n —1)

mﬁ;u, (6.1.7)

P{u=a}i®) [ 2(t~m) —sgug(0)dt =
R
with sgn, , as defined in ([1.1.7).

In the case ¢ = 1, W is approximately quadratic near the wells, and thus the
solution of the Cauchy problem approaches a and b as t - —oo and oo
respectively, see . On the other hand, when W is subquadratic near the
wells, that is, when ¢ < 1 in , then the solution reaches a and b in finite
time, see . The analysis is thus somewhat difference in this case, but a
similar theorem still holds.

Theorem 6.1.3. Assume that Q) satisfies (6.1.1)), m satisfies (6.1.2) and W satisfies

hypotheses (5.1.4)-(5.1.7) with q € (0,1). Assume that u is an L*(Q)-local minimizer
of the functional FV) (see (L14)). Finally, for some § > 0, assume that Ig’EO is
differentiable at v,,, with Ey = {u = a}. Then

I-lim inf F (u) = I-lim sup F; (u)

(6.1.8)
= 2(csym + cwTy)(n — 1)k, P({u = a}; Q).
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where D
- _ (1)
€
and ()
=(w
FO(w) = 72

In particular, if Lo s differentiable at v, then
FO(u) = 2(coym + ewa)(n — 1)k P({u = a}; Q)
if u is a global minimizer of F and F® (u) = oo otherwise in L*(1).

Here now 7, is a constant such that
/ 2(t — Tu) — sgn, (t) dt = 0. (6.1.9)
R

Note that (6.1.8) and (6.1.9) correspond to the case W”(a) = oo in (6.1.5) and
(6.1.7) respectively.

Remark 6.1.4. In both of these theorems the fact that F®(u) = oo for u that

are not global minimizers of FU) is trivial given [2.4.1) and ([2.4.2). This fact is
summarized in Proposition [2.4.9

A crucial hypothesis in these results is that the local isoperimetric function (see

definition ((1.1.10)) be differentiable at the point v,, given by (1.1.9)). In particular
the differentiability of Ig’EO at v, implies that (see [75])

(TS0 (o) = (n — 1)k, (6.1.10)

However, differentiability of Ig’E“ must fail whenever the mean curvature of min-
imizers of the L!'-restricted partition problem is not uniquely determined.
For example, if ) is a square in R?, it can be shown that there exists a value of
vy, for which there are two minimizers of , one being a line segment and the
other being an arc of a circle. This implies that Zg, is not differentiable at an appro-
priately chosen value, see Figure However, the competing minimizers given in
Figure are actually L' isolated minimizers, and thus the theorems of this section
should still apply, by using I%EO instead of Zg. Discussion of various cases where
the assumption of differentiability can be proven were given in chapter [4

Without assuming the differentiability of the local isoperimetric function Ig’EO
at vy, one can only conclude that (n — 1)k, € [(Ig’EO)’_ (0m), (Ig’EO)'JF(Um)], where
(Ig’EO)’_ , (ISKS)’EO)’Jr are the left and right derivatives of Ig’EO, which must exist as I%EO
is semi-concave, see Chapter [, Whether this situation can possibly persist as § — 0
is not clear. One could hope that the rigidity of constant mean curvature surfaces
gives some traction on the problem, but so far no results have been obtained.

If this theorem continues to hold in the case where Ig’EO is not differentiable,
then this theorem gives a new selection criteria on limits of minimizers of F.. In
particular, when W is symmetric about “T'H’ then surfaces with larger magnitude
mean curvature are energetically favored (see Corollary below).

A heuristic explanation for the terms in (6.1.5)) may prove helpful. Critical points
ue of (1.1.1]) subject to (1.1.2) satisfy the Neumann problem

2eAue = %W’(ue) + A, inQQ,
% =0 on 01},
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1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 6.1: Tq, for the domain ©Q = @5, the cube in R?. When Zq is not differentiable
there are two competing sets minimizing the perimeter, as shown.

where v is the outward unit normal to J€Q and A. is a Lagrange multiplier that
accounts for the constraint (1.1.2)). In [74], Luckhaus and Modica proved that if

0 < a < band {u:} is a sequence of non-negative minimizers of (1.1.1)), ,
uniformly bounded in L>°(Q) and converging in L'(2) to a minimizer of F(), then

A= Ay = 26”1’)(71_1)@. (6.1.11)
—a

2

Thus the first term in equation (6.1.5) can be written as #}t(a) Our proofs
suggest (see (5.2.17))) that minimizers u. of the energy E. will in fact be of the form

ue(:v) ~ <d(x, {U Ea}) ETu) . V[ﬁ}:(z) ' (6112)
It turns out that the first term in equation is linked to a small vertical shift
in the bulk values of minimizers, namely the second term in . The 7, term in
is caused by the shift inside z in the first term of , which essentially
pushes the transition layer “outward” along curved surfaces. We note that the
horizontal shift caused by 7, and the vertical shift in the bulk must be in some sense
balanced so that the mass constraint is satisfied.

The term involving cesym may be thought of as a penalty for directional asym-
metry. If the profiles are symmetric this term disappears entirely. This term is of
order ¢ for any ¢ that we consider.

In the case where W is symmetric about (b+a)/2, then the function z in
is odd, and so the constants cgym and 7, simplify to give the following:

Corollary 6.1.5. In addition to the assumptions above, suppose that W is symmet-
ric about (b+a)/2, and that Iq is differentiable at v,,. Then for u minimizing F)
we have that

2¢2.(n—1)2 o o
FO(u) = _m“u ifq=1,
0 if g < 1.

Remark 6.1.6. A straightforward calculation shows that in the case of the Cahn—
Hilliard potential W (s) = (1 — s%)? the second-order T-limit takes the form

(TL —9 1)2 ,‘{i_

Following the approach of [41], the next section will prove the main results. Of
course, much of the work has already been done in Chapters [3] and

FO(u) = —
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6.2 Proof of Main Results

The first step, is to connect the definition of the local isoperimetric function (6.1.3)
with the topology of L' convergence. This in turn will connect the L! topology
used for the I'-convergence results with the notion of Z-comparable level sets from

Chapter

Proposition 6.2.1. Let 2 C R™ be an open set, Fy C ) be a Borel set and let
VE, = aXE, + bxg,c. Then
a(Eg,{u<s}) <6 (6.2.1)

for all w € L*(Y) such that

llu —veyllr < (b—a)d, (6.2.2)
and for every s € R, where « is the number given in .
Proof. Fix 6 > 0 and for s € R define Fs := {x € Q: u(x) < s}. If s € (—1,1), then

by (622)

2(52/ u—vE0|d$+/ |u — v, |dx
FS\EO EO\FS

> (1—=98)L"(Fs\ Eo) + (1+s)L™(Eo \ Fs) > 2a(Eo, Fs),
so that (6.2.1)) is proved in this case. If s > 1, again by (/6.2.2)),

20 > / |lu —vg,|de > (14 s)L"(Eo \ Fs) > 2a(Ey, Fy).
EO\FS

The case s < —1 is analogous. O

Corollary 6.2.2. Fiz § > 0 and Ey C Q Borel. Given a family of functions
LY(Q
Ug ———(—)—> up = axg, + bxg, then for e sufficiently small the inequality

a(Eg,{u<s}) <6
18 satisfied. In particular, if T = Ié Eo
has T comparable level sets.

, then for ¢ sufficiently small the function u

Finally, the next result is an elementary result about touching a function from
below.

Proposition 6.2.3. Suppose that 1 : [0,1] — [0,00) is a continuous function, which
is differentiable at v, and which satisfies

Z(v) > Cymin{v,1 — t)}nT_1 for allv € [0,1]. (6.2.3)

Then there exists a function T* € C*((0,1)) satisfying:

I>7">0 in(0,1), (6.2.4)

Z(om) = T (0m), () (0m) = (T) (0m), (6.2.5)

T*(b) = Cov"n for all v € (0,5) (6.2.6)
Z*(v) = Ch(1 — v) e for allv e (1—46,1)

for some Cy >0 and 0 < § < 1.
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Proof. Proposition [2.6.2] gives the construction of such a function in a neighbor-
n—1 n—1

hood of v,,. By then using the functions %U » and %(1 —v) = , and patching

appropriately the result follows. ]

These lemmas are then applied to obtain the main results of this chapter.

Proof of main results: Theorem[6.1.4 and|[6.1.5. Step 1: limsup inequality. Let
u be a local minimizer of 7). Then u must be of the form ax g + byge. Define

n(t) :=H"1{z : dp(z) = t}). (6.2.7)

By Lemma [2.3.11] we have that 7 satisfies the assumptions of Theorem Let v
be the one-dimensional function constructed in Theorem [5.2.6, using 1 chosen via
(6.2.7)). Define u.(x) := v-(dg(x)). By the coarea formula for Lipschitz functions
we have that

FE2 ) = (W 00) + et P o s dp(o) = ) e = 2enn(0))
Applying Theorem then proves that the I'-lim sup has the desired form.

Step 2: liminf inequality. Let u = axg, + bxgg be a local minimizer of FO,
and let u. — u in LY(Q). We claim that 7 = I?Z’EO satisfies the assumptions of
Lemma The fact that Z satisfies follows from the fact that I;;’EO > Tq
and Proposition By assumption, 7 is differentiable at v, and fact that 7 is
continuous will be proved in Proposition [£.0.1], and thus the claim holds.

Now, set Z = I*, wrth Z* as in Lemma [6.2.3] Note that u. has Z comparable
level sets by Corollary 2[ and the fact that 7 < IQEO. Thus, applying corollary
3.3.6| implies that, for € sufﬁcnently small,

Fu) z [+ EEAT Vo)t m= [ wedo= [ f.700)ar

where Vi, and f,, are defined in Section 3 (see , @ and Remark and
where I is defined by the support of Z(Vg), see @ . By making an appropriate
shift in coordinates, from this point forward we will assume that I = (=7, 7).

We then set n := Z*(Vq). This n will satisfy all of the assumptions in Section
4. Indeed, since Vo > 0 in (—7,00) and Vo(=T) = 0, by (6.2.6) and (3.1.3),
Vo(t) = [Co/n(t + T)]" near —T, and so n = Cy[2 (t + 7)™~ 1, Wthh shows that
and hold for ¢ close to —T'. Usrng similar reasoning, we have that

n(t) = CH2(T — ¢)]"~! and thus (5.1.15) and (5.1.16) hold close to T'. Since I* €
C’1 (0,1), by (3.1.3) we have that Vo € C2 ( ), and in turn 77 e Ct (I). Thus

loc loc loc

5.1.13)) is satisfied. Finally, since Z* > 0 in (0,1) we have by (6.2.4) that n > 0 in
I , and thus (5.1.16)) holds on any compact subset of I by uniform continuity.

Next observe that since u € BV (€, {a,b}) and holds, by Lemma we
have that f, only takes the values a and b and f] fundt = fQ wdr = m. Since f,
is increasing, this implies that f,(t) = sgn, ,(t — to) for some to € I and all t € I.
It follows from Theorem that f, is a local minimizer of the functional G
defined in . Moreover, by Lemma we have that u. — u in L1(Q2) implies
that f,. — fu in L717(I ). Hence, || fu. — full 1 < 0 for all e sufficiently small, where
0 > 0 is the number given in Theorem (with vg = fy). In turn choosing v, to
be minimizers of the function J. defined in , by Corollary we have that

]:E(UE) Z Gs(fus) = (fu ) - (Us) (628)
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Since [; fundt = m, it follows from the fact that (see (6.1.1)) and Lemma (3.2.1)

| = L) = / n dt (6.2.9)
I
and (3.1.3) that
bh— to to 4
o = ™ £ ({u = a)) = / ndt = / D yodt = Volto).  (6.2.10)
b —a -T _T dt

In turn, by (623),
1(to) = Zo(om) = Za(om) = P({u = a};Q),
which shows that 71 (u) = G (f,). Hence by (6.2.8) we have that

FO () = M us) = FO(w) > I (we) = T (£.) — T ().

9 3

By applying Lemma [5.4.4] we thus have that

A ifg=1
lim inf 2 (us) > 20 (to) (Tocw + Csym) + {éwwa) =5 (6.2.11)

e—0t

if g <1,

where we have used (6.2.9). By (3.1.3) we have that n'(t) = (Zg,) (Va(t))n(t), and
so by (6.1.10), (6.2.5) and (6.2.10)),

7 (to) = Zo(om)Za(om) = (n — )iy P({u = a}; Q).

In turn by (6.1.11f) and (5.2.16)),

2(n — Dew
A= ——"Ky=A 6.2.12
and so by ([5.2.15)) the number 7 coincides with the number 7, in (6.1.7]). Combining
6.2.11)-(6.2.12) gives

A2 .
sooi—  if g =1,
lim inf ]:5(2)(%) > 2(Tyew + Csym)(n — 1)ky P({u = a}; Q) + { 2W"(@) ha
e—0F 0 if ¢ < 1.

This completes the proof. O
Remark 6.2.4. The analysis for the liminf problem (ie using the rearrangement
induced by Ig’EO) in fact implies that for any ue satisfying ||ue — u|| < (b —a)d then
the following bound holds

FY(u) > FO(u) - Ce.

Remark 6.2.5. In many settings in materials science it is natural to consider an
anisotropic enerqy of the form

Fe(u) =

otherwise.

{fQ W(u) +e*¥2(Vu)dz  forue H'(Q), [udz =m



100 CHAPTER 6. SECOND-ORDER T'-LIMIT

Here U is a non-negative convex, 1-homogeneous function, and W is a double-well
potential. It is well-known [90] that

00 otherwise.

—r L {CWPw({u =a}) ifue BV(Q{a,b}), [fude=m

In light of Theorem|[3.4.4 the rearrangement techniques used in this thesis are still
valid in this case. However, some of the other aspects of the present work, such as
the differentiability of the isoperimetric function and the construction of appropriate
recovery sequences, are not as obviously extendable to the anisotropic case. This is
the subject of current investigations.



Chapter 7

Slow Motion for Non-Local
Allen—Cahn Equation

This chapter utilizes the energy asymptotics from the previous chapter to obtain slow
motion bounds on the gradient flows associated with the energy . Recall that
the L?-constrained gradient flow of is the non-local Allen—Cahn equation,
which is given by

atua = 52Au€ — W’(UE) + 8)\5 in Q) x [0, OO),
% =0 on 99 x [0, 00), (7.0.1)

14

Us = UQ e on Q x {0}.

Here ug . is the initial datum, and A, is a Lagrange multiplier that renders solutions
mass—preserving, to be precise

1 /
Ae = EE”(Q)/QW (ue) d.

The main goal of this chapter is to prove the following main result.

Theorem 7.0.1. Assume that Q satisfies (6.1.1), m satisfies (6.1.2)) and W satisfies
hypotheses -. Assume that u is an L*(Q2)-local minimizer of the func-
tional FO) (see (L.1.4)). Finally, assume that, for some & > 0, I;;’ED is differentiable
at vy, with Ey = {u = a}. Assume that up. € L*(Q) satisfy

upe — u in L'(Q) ase — 0T (7.0.2)
and
FV g ) < FO(u) + Ce (7.0.3)
for some C > 0. Let u. be a solution non-local Allen—Cahn equation, namely ((7.0.1]).
Then, for any M >0

sup  ||ue(t) —ullp2 — 0 as e — 0F. (7.0.4)
0<t<Me—1

Remark 7.0.2. The assumption that upe € L™ and the fact that él)(uo,e) < 00
is sufficient to guarantee that solutions to the equation (7.0.1)) exists. Results to this
effect can be found in Theorem 1.1.1 of [85].

Remark 7.0.3. The assumption (7.0.3) is a standard assumption in this theory, and
such initial data is sometimes called “energetically well-prepared.” The assumption

on I%EO 1s the non-standard assumption in this case, and was at least partially
addressed in Chapter [}

101
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The proof for this theorem is largely identical to that in [25]. It is included for
completeness. The first step is to prove the following auxiliary result.

Proposition 7.0.4. Under the assumptions of Theorem there exist two pos-
itive constants k1 and ko, not depending on €, such that

k1€_2
/ Byuue (1) 22 dt < Kye?,
0

where ug is the solution of (7.0.1]).

Proof. Since u, is a solution to the gradient flow, for any 7' > 0 we have
T
FO (o) = PO 1) = [ 100l ds, (705)
0

which shows that t — .Fg(l)(ua)(t) is decreasing and ||0yuc||3. is integrable. Given &
as in the assumptions, then by (7.0.2]),

||luoe —ul[pr <6

for ¢ sufficiently small. Now suppose that there exists 7. > 0 small enough that

T:
/ Ovuc(8)|| 1 dt < 5. (7.06)
0

Then,

T
By (1) dt

= [Jue(Tz) — U0,e
Ll

T:
52 [ o0l e > \ .
0

0

so that
ue(Tz) — ullpr < [lue(Te) — woellzr + [|uoe — ul[pr < 26

and, in particular, if § is small enough then by Theorems [6.1.2] and |6.1.3| (see also

Remark ,

FO (ug(T2)) > F(u) = C(r)e. (7.0.7)
By (7.0.3) and (7.0.7) together with (7.0.5),

T
| lowa(s) e ds = 70 w0 — D (ue(2)
0

(7.0.8)
< eFW(u) 4+ Ce? —eFW(u) < Ce2.
In turn, by Hoélder’s inequality we get
T. 2
</ ||O¢ue (t)]| 11 dt> < CT.e?,
0
so that
1 (" ?
T. > 2 </o || Opue (t)]| 1 dt> . (7.0.9)

In order to conclude the proof, we need to make sure that it is always possible
to choose 7. as in (7.0.6)) and that T, > kje~2 for some k; > 0. We argue as follows:
suppose first that

/ Hatus(t)HLl dt > 6.
0
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Then by continuity we can choose 7T, > 0 such that

T:
/ Byuc(8)| |1 dt = 5,
0

and for such a choice of T, (7.0.9) gives

52

T.> —
Ce?

Thus, by (7.0.8),
kie—2
/ ||0puc(8)])32 ds < Ce? =: koe?, (7.0.10)
0
for 52
kl = E

On the other hand, if
| o)l de < 5,
0
then ([7.0.8)) must hold for all 7. > 0, and (7.0.10)) holds true in this case as well. [

With this proposition in hand, the proof of the main result is relatively straight-
forward.

Proof of Theorem [7.0.1. Let ki,ks be as in Proposition [7.0.4] and rescale u. by
setting @ (x,t) = uc(x,e~1t). Proposition applied to u. reads

k1€71
[ 10 Ol < e,
and, in turn, by Hélder’s inequality, for 0 < M < kie~ !,
M
/ 1001 ()| 1 dt < M2 (ko) V2. (7.0.11)
0
For any 0 < s < M, by the properties of the Bochner integral (see e.g. [43]) we have

/ Byl (t) dt
0

i (s) — ol 11 = \

< [ 1oty
L1 0
M

< / Bsiic ()] 11 dt,
0

and thus u
sup |[iie(s) — ol < / 10y ()| 1 - (7.0.12)
0<s<M 0
On the other hand, by (7.0.2)),
||ti0,e — umy|lpr — 0 as e — 0T, (7.0.13)

Putting together (7.0.11)), (7.0.12) and (7.0.13)) leads to

sup || (t) — ug,|lpn — 0ase — 0T,

0<s<M
which implies the desired result ((7.0.4)). O

Remark 7.0.5. This result can also be extended to global minimizers of the Cahn—
Hilliard energy, using a simpler argument. See [85] for details.
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Part 11

Decay Estimates for the
Becker—Doring Equations
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Chapter 8

Stability Estimates for the
Becker—Doring Equations

This chapter establishes various stability estimates for the Becker—Doring equations.
These estimates will be stated in terms of sequence spaces with polynomial moments,
and satisfying a zero mean condition, see Definition (1.2.12)).

8.1 Definitions, Assumptions and Previous Results

This section states all of the necessary assumptions for the theorems of this part
of the thesis. It also quotes all of the external results about the Becker—Doring
equations that will be necessary for the results presented here.

It will be necessary to assume the following on the model coefficients:

a; >C1 >0 for all i > 1, (8.1.1)
lim 24— g, (8.1.2)
1—00 Uy

a1
Jim 3t = € (0, 00) (8.1.3)
a;, b; < Coi for all ¢ > 1, (8.1.4)

with a;, b; as in (1.2.1]) and (1.2.2)), and where C, C5 are fixed constants, independent
of 7.

This part of the thesis will only consider solutions (¢;(t)) of the Becker—Déring
equations with some fixed, subcritical mass, meaning that for some ¢ < (s,

the @; defined by (1.2.5)) will satisfy

i Qii=m = izcz(t)
i=1 i=1

Using (1.2.4), (1.2.5)), (8.1.2) and (8.1.3), it is immediate that

lim Qétl = g <1 (8.1.5)

This naturally implies that the @Q); are exponentially decaying.
Also, by (8.1.3), it follows that

CLZ(C + 5) = ai(Ql + 5) < b;, for all i > NC’ (816)

107
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for some 6 > 0 and N that are fixed and independent of 7, but possibly dependent
on (. The assumptions given here are fairly standard, and versions of them can be
found in [15, [30} [65]. Specifically, in [15] Ball and Carr made the assumption that

a;¢ < b;

for i > N, and for all ¢ < (s. In that work, this assumption was made in order
to guarantee that V(c(t,)) converges to the minimum value of V, where V' is given
by (1.2.6). In their work, coefficients were required to be O(i/log(i)), but this was
subsequently relaxed in [98].

One of the primary advantages to the ¢! estimates given here is that they connect
convergence to equilibrium in a quantitative way with inequality . Specifically,
inequality arises naturally in attempting to establish dissipation estimates,
thus motivating the analytical need for such assumptions. More importantly, (8.1.6))
is satisfied by many of the relevant physical models. For example, one physically-
motivated form of the model coefficients is (see [92])

a=i% bi=a(G+=). a1, pel0l), g>0.

For this model we have
by — Qia; > (¢ — C)ay,

which naturally implies that assumption is only satisfied in the subcritical
setting.

Following [16], a solution to the Becker-Déring equations is defined in the fol-
lowing way:

Definition 8.1.1. A function (¢;(t)) is a solution to the Becker—Déring equations
on [0,T) if

1. Zfil ilci| < oo for allt €[0,T).
2. For all i we have that ¢;(t) is continuous in time, and non-negative.

3. The following equations are satisfied (and well-defined)

Cl'(t) = Cl(O) +/0 (Ji_l(S) - Jl(s)) dS, ) > 2,

e (0) — /0 <J1(3)+ZJZ-(3)> ds.
=1

The following well-posedness result gives a simplified version of Theorem 2.2 in
[16] and Theorem 2.1 in [71].

Proposition 8.1.2. Assume that {a;},{b;} satisfy assumptions (8.1.1)-(8.1.4). Let

{cg} be a positive sequence with finite first moment. Then there exists a unique

solution {c;(t)} to the Becker-Ddiring equations satisfying c;(0) = c?.

)
[y
—~

~+~
S~—

I

The following stability estimate, which can be found in the proof of Theorem 2.2
and Proposition 2.4 in [16], will prove convenient later in the analysis.

Proposition 8.1.3. Let {c¢;} be a solution to the Becker—Déring equations, and let
{hi} be defined by (1.2.7). Suppose that h(0) € X1, withk > 0. Then ||h(t)|x,,, <
17(0)||x,,,Ce™t for some C and K independent of h.
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Using the fact that the @; are exponentially decaying, the following result is
straightforward to prove, and can be deduced from Equation (3.2) in [30]. The
proof is included for convenience.

Proposition 8.1.4. The space H is continuously embedded in'Y, for n > 0 suffi-
ciently small.

Proof. One can estimate using Cauchy-Schwarz

0o 00 1/2 / « 1/2
> Qe < (Z Qie%i> (Z Qﬂﬁ) .
i=1 i=1 i=1

As long as Czﬁ < 1 then by (8.1.5)) it follows that

s

[2lly, < Cllhlla
O

The next result comes from [30] (Corollary 2.11 and Theorem 3.5), and concerns
the semigroup generated by L, defined by ((1.2.10))

Proposition 8.1.5. For some A\, > 0, the operator L generates a contraction semi-
group et on H satisfying

”eLtHL(H) <e Mt forallt > 0.

Furthermore, for n > 0 sufficiently small there exist constants M and A, > 0 so that
the operator L generates a semigroup on Y, satisfying

”eLtHc(Y,,) < Me ™t for allt > 0.

At one point some more fine estimates will be needed on the operator L in the
space H. Given fixed N, define A to be a diagonal operator given by

(Ah)i = —oihi,  05:= Qia; + b;, (8.1.7)
define S to be the operator
(Sh)i == bihi—11gis N1y + aiQ1hip11s Ny

and K := L — A — S. In the proof of Lemma [9.1.2] we will use the following facts
(see Proposition 2.10 and Corollary 2.11 in [30]).

Proposition 8.1.6. Assuming (8.1.1)-(8.1.4), the operator L given by (1.2.10) sat-

isfies the following properties:
1. L is self-adjoint in £2(Q;), with domyz(,)(L) = domyz g,y (A) = 2(Qio?).
2. For some A > 0 we have that (h, Lh)g < —A.||h||% for all h € H N {*(Qi0?).

3. L=A+S+ K, where K is compact on (*(Q;), S is symmetric, and for N
large enough S satisfies |Sh||p2q,) < OIAL| 2, for all h € 2(Qi07), where
6 <1.
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8.2 Linearized Stability Estimates in X;

This section establishes stability estimates for the semigroup generated by the op-
erator L, in the space X;. As stated in the preliminaries, the reader is reminded
that the term “semigroup” always refers to a strongly continuous semigroup of linear
operators.

The goal will be to use some recent operator decomposition techniques to derive
uniform bounds on e’* in X;. This technique was first developed by Gualdani,
Mischler and Mouhot [61] to study the Boltzmann equation, and was previously
applied to the Becker-Doring equations by Canizo and Lods [30]. The following
proposition is one instance of this technique, as given in [30]. The proof is much the
same, with the natural extension to the non-autonomous case.

Proposition 8.2.1 (Extension Principle). Let Z C Y be Banach spaces, with Z con-
tinuously embedded into Y. Let I = [0,T) with T = oo permitted, and let {A(t)}rer
and {B(t) }ier be families of linear operators on'Y . Suppose that

1. {A(t) + B(t)}ier generates an evolution family U on Z, satisfying
1U7 (¢, $ziz) < Mze 2(t=3) for0<s<t<T,
for some Ay € R.

2. B(t) is “regularizing,” meaning that B(-) € C(I; L(Y, Z)), and that | B(t)||z(v,z) <
Mpg, uniformly fort e I.

3. {A(t) }rer generates an evolution family V on'Y, satisfying
IV (t,8)|l vy < Mye (=9 for0<s<t<T,
for some Ay € R, with Ay < A\z.
Then {A(t) + B(t)}ter generates an evolution family UY on'Y with bound
1UY (£, 8)|| vy < Mye 2 (=9) for0<s<t<T. (8.2.1)

Proof. Since B(t) is bounded and continuous in ¢, Remarkimplies that {A(t)+
B(t)}+cr generates an evolution family on Y. Thus the goal is to prove (8.2.1)).

Using Duhamel’s formula, see Proposition and Remark we can
write the evolution family generated by A(t) 4+ B(t) as follows:

UY (t,s)h(s) = V(t,s)h(s) +/ UY (t,7)(B(r)V (r, s)h(s)) dr.
We then estimate
1T (¢, $)h(s)ly < Mye ™ |h(s)|ly +/ IUY (#,7) B(r)V (r, s)h(s) ||y dr.

As B maps from Y to Z we can replace UY with UZ inside the integral, and
then estimate using the decay estimate in Z to infer

t
U2, ) h(s)]ly < MveAY(”)Hh(S)\YJr/ Mze 20D B(r)V (r, s)h(s) | 2 dr.
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Using our bounds on B and V' we obtain

1T (¢, )h(s)lly < Mye ™I h(s)]ly

t
+ 1) [y My Mz Mpe ™ (=) / e~z )t=r) g

S

< Mye )| n(s) |y,
which is the desired result. O

Remark 8.2.2. When A and B are constant in time this reduces to a statement
about semigroups, and indeed in that case the statement and proof are found in [30)].
This section only uses the proposition to prove bounds on the semigroup elt, but
Section |9.1] uses it in the case of evolution families.

It is important that the previous result is valid when Ay = 0, meaning that the
result applies to semigroups which are only stable.

Next, recall that the operator L is determined by the weak form (|1.2.10). Now
write

L=A+B,
with the operator A determined via the weak form

ZQi(Ah)i¢i = Z QiQ1ai(h; — hit1)(Piy1 — di — ¢1)
- P (8.2.2)

—Qn-1Qran_1hn(dN — dN—1 — 1),

where N is some fixed integer satisfying N > N¢ + 1, with N¢ given in (8.1.6). The
domain of definition for both A and L is initially taken to be the set of sequences
with finite support that satisfy ([1.2.8), namely having zero “mass”.

Remark 8.2.3. Note that if one sets ¢; = i then one gets zero, implying that A and
B both map into the space of sequences with zero mass. In particular, the operators
A, B and L all take values in the spaces Y, and Xj, which incorporate the zero-mass
constraint.

The first step is to give an elementary bound on L and =, which indicates a
minimal size for the domain of the closure of these operators. It will be shown
that B is bounded, which in turn means that this also gives information about the
domain of the closure of A.

Lemma 8.2.4. For any m > 0, and for some constant Cy, the following bound holds
IRl X 1 < CnllhllXosr 1DAIX1 4 < Ol Xos-

Proof. We only show the estimate for L, as the estimate for = is essentially identical.
We simply estimate

LR x1s, = Y Qi(Lh)si" ™ sgn(Lh);

=1
<D Qil@Qu A bi)hil3(i + 1) 4 3| Yy QiQuai(i + 1)1
i=1 =1
<CY Qi hl,
=1

where we have used (8.1.4) and the exponential decay of the @;. This proves the
lemma. O
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In order to use the extension principle, Proposition [8:2.1] one must prove that
B is “regularizing.” (Recall H C Y, C X;.)

Lemma 8.2.5. The operator B is a bounded operator from Xy to H.

Proof. We compute in weak form:

ZQz Bh ¢Z - Z Qleaz T z+1)(¢z+1 ¢z - (251)

=1

+ Z QiQraih1(div1 — ¢i — ¢1)

+ Qn-1Qian—1hN—1(pN — ON—1 — $1)
= Bl (h’a ¢) + BQ(hv ¢) + B3(ha ¢)

By the Cauchy-Schwarz inequality, the fact that 0 < ¢ < Q;/Qi+1 < C < o by
(8.1.5), and the equivalence of finite dimensional norms,

1/2

12 /N
|By(h, )| < C (Z Qz@) (Z @h?) < C||o||w||hllx,-
=1

Furthermore,

o 1/2 / s 1/2
| Ba(h, ¢)| < Clhal (Z Qm?) (Z Qmﬁ?) < Cllrlix, Nl
t=1

i=1

Similarly, |Bs(h,¢)| < C|h|x,||¢||z. By taking the supremum over ¢ € H with
llollzr < 1, we obtain the desired result, ||Bh||g < C||h||x,- O

The next step is to show that A, or more precisely its closure, generates a con-
traction semigroup on X;p. This will be proved by showing that A is dissipative and
applying the Lumer—Phillips theorem, see Definition and Proposition [2.5.4

By way of notation, when X = ¢1(Q;w;) and ||| x = Y2y Qiw;|h;| define

(sgn(h), ¢) x= x = Z Qiw;pisgn(h;) .

i=1
By the definition of J (), namely (2.5.2)), it is clear that if (sgn(h), Ah)x- x < 0 for
all A in the domain of definition of A then A is dissipative.

Proposition 8.2.6. The operator A given by (8.2.2)) is dissipative on X;.

Proof. Rearranging our sum and using (|1.2.4)) to say Q;Q1a; = Q;1+1bit+1, we find
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that

— Z iQuaihi((i + 1)sgn(his1) — isgn(hy) — sgn(hn)))
=N
Z Qibihi(isgn(h;) — (i — 1)sgn(hi—1) —sgn(hy))
Z i (Quai(i + 1)(sgn(hisa) — sgn(h)) + bii — 1)(sgn(hi1) - sgn(hi)) )

+ Z Qilhil(@iQ1 — bi) + sgn(hn) Y Qihi(bi — Quas)
i=N i=N
= El + E2 + E37
Because h;(sgn(h;+1) — sgn(h;)) < 0, we see F; < 0. Furthermore, by (8.1.6) we
have that

Ey + B3 = 22Qi\hz‘\(aiQ1 —b;) <0.

i=N
sgn(h1)7#sgn(h;)
This readily implies that A is dissipative (see Definition [2.5.3)). O

Remark 8.2.7. In the case where a; ~ i and a;Q1 — b; > i for all i > 1, the
previous estimate with N =1 gives

(sgn(h), Ah)x-x <2 Qilhil(a:Q1 — bi)

=N
sl ()

< AZQM i = ——ZQl\h |i

sgn(hn#sgn(h )

< —Z|n
< ~Zlnlx,

where we have used . This implies that A has a spectral gap in X1, and hence,
by using the operator decomposition result, that L has a spectral gap in X1. This type
of result, namely exponential decay in X1 when a; ~ i, was obtained using entropy
dissipation estimates in [29].

With the dissipation estimate in hand, it is now possible to show that the closure
of A indeed generates a semigroup.

Lemma 8.2.8. The closure of A (which we also denote by A), generates a contrac-
tion semigroup on Xi.

Proof. We know that H C Xj, and that H is dense in X;. By Proposition [8.1.5]
we know that L generates a contraction semigroup on H. As B is bounded on H,
we know that the closure in H of A = L — B generates a semigroup on H with
bound Me“t, see Proposition m Proposition implies that for A > 0 large
enough A — AT is invertible on H. Thus the range of (the closure in H of) A — A\
contains H, and thus the range of A— AI is dense in X;. Because A is dissipative by
Proposition the Lumer—Phillips theorem, namely Theorem then implies
that A generates a contraction semigroup on Xj. O
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By combining Proposition [8.1.5] Proposition [8.2.1] Lemma [:2.5 and Lemma
the following is immediate.

Theorem 8.2.9. The closure of L generates a semigroup et on X wuniformly
bounded in time:
HeLtHz:(Xl) <M for all t > 0.

It is natural to question the sharpness of these dissipation bounds. The following
theorem demonstrates a limited type of sharpness of the bounds from Theorem [8.2.9

Theorem 8.2.10. Suppose, in addition to (8.1.1)-(8.1.4), that lim; . % = 0, for
some « € (0,1), and that a; —a;—1 = o(1). Then the operator L has an approximate

eigenvalue at 0 in Xi. In other words, there exists a sequence with ||hj||x, =1 but
”thHX1 —0.

Proof. Define

0 ifi< Ny,
hi=1 i NI <i< Ny,
0 if No <1,

where N1 < Ns are constants to be determined. Clearly

0 ~ N2
D QidF | =Y i
i=1

i=N,
Furthermore, for N1 < i < Ny

Qi(Lh)ii* = i*Q; (bi(ﬁi—l — i) + aiQ1(hip1 — hi))
_ -1, (i Qﬂ'_) (Qii_ ))
b (az‘ <Qz‘—1(i —1) )+ Qiv1(i+1) !

N 010 1 b 1

iy 101 +1

_ (b 4 1— - -1

e (az‘< * b; < +z—1>>+Ql (aiQ1< Z+1> >>
. b; Qj— aq

= k1 (ai—lQl = bi +bit1 — a1 — z++11 b'(ilQll) )

As a; —a;—1 = o(1) and @ — 0, and by (8.1.3), for any § > 0, we can find an
N7 so that

<

&

Qi(Lh)gi* < %15

for N1 < i < Ns.
Next, for any ¢ > 1,

Qil(Lh)i|i* = i* Qi |bi(hi—1 — hi) + a;Q1(hiv1 — hy)

b; Qit B a;Q1 Qit B
z<Qz1(Z—1) 1>+ i <Qi+1(i+1) 1)‘

where we have used the fact that % — 0 and (8.1.5), and where C' is independent
of i,Nl, and NQ.
Last, for ¢ = 1,

ik

Qu(Lh | = | aiQiQu(hiyr — hy)

i=1

No ]
<Y <o, - M),
1
i=N1
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with C' independent of Ny, N3, and where we have used the fact that & — 0.
Thus we find that

[e'¢) N2
> Qi(Lh)i* <6 > it ONFrOTt oyt
i=1 i=Ni
where we have made C' larger as necessary to absorb the ¢ = 1 term.
Thus if we set No = 2/N7, we find that

‘m >0 Qi |hl _
Ni—voo 37021 Qui*|(Lh)i|
By constructing two of these pulses, one negative and one positive with non-overlapping

support, and then adding together scaled versions of the same so that the mass con-
straint is satisfied, we obtain the desired result. This completes the proof.

O]

Some sharper estimates for lower bounds on the decay are a subject of current
investigation [82].

8.3 Algebraic Decay Estimates

This section proves algebraic decay estimates for e*. The key tool is an interpolation
result, which is a slight modification of Theorem 2.1 in [46]. In that case the result
was used to study convergence properties of travelling waves.

Theorem 8.3.1. Let n € (0,1) and ki,k2 € R with 0 < k1 < ka. Let {S(t)}+>0 be
a family of linear operators on X1 which for any t > 0 satisfies

ISWullx, < Mlullx,, — [S@ully, < Me™ully, . (8.3.1)

where u is an arbitrary element of the appropriate spaces, M is a fixed positive
constant and A, > 0. Then the operators S(t) necessarily are bounded from X1y,
to X141k, and satisfy

IS #ullx,,,, < CA+8)" % ju|lx,,,  for all u € X1k, and t >0,
where C' depends on ki, kg, M and ).

Proof. The proof is very similar to that found in [46], with modifications necessary,
however, to handle the mass constraint and weighted norm on X;.
1. Consider K : R x X; — R defined by

K(s,u) (Ju = vllx, +e[vlly,)-

= inf
vEYy
In interpolation theory [20] this is known as a modified K-functional. For fixed s,
K(s,-) is a norm. Clearly K(s,u) is increasing in s and bounded above by ||u||x,.
Furthermore, we claim that K is absolutely continuous in s. Indeed, if we define
K(5,u) := K(log 3,u), then K (-,u) can be written an the infimum of affine functions,
and thus must be concave. This readily implies that K (s, u) is absolutely continuous
in s.
We begin by proving upper and lower bounds on K. First, we get the lower
bound

K(s,u)>> Qi inf (|Ju; — vli + e )) = Qiluwil(i At (8.3.2)
=1 i=1
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For the upper bound, observe z A eT"* = g for all z > 0 if and only if s > s, :=
—1 —logn. Thus for s > s,

oo
K(s,u) < |lullx, = Y Qiluil (i A e**7)
i=1

so that K(s,u) = |Ju||x, in this case. Suppose now that s < s,. Then 1/n € {x :
eST® <z} = [2_,24] C (0,00). Let j(s) be the least integer greater than or equal
to z4, and define the sequence vs(u) by

u; for i < j(s),

’Us(u)i = (Q”)il Z Qkkuk’ for i = j(S),
k>j(s)

0 for i > j(s).

In particular note that > ;2 Qsivs(u); = 0, so vs(u) € Y,,. Writing j = j(s), we then
find

K(s,u) < Jlu—wvs(u)lx, +€[os(u)lly,

= ZQzZuz +ZQZZ’uz’+€ ZQz ‘uz|+e ZQZ“M

i>7 >
st & i1 i
(2-1- ; )ZQMUH-{-ZQZES gl
i=j i=1

Now, j~lestm < z;les+’7(z++1) = ¢, and i > j implies i = i A e*T". Furthermore,
whenever 1 <14 < z_ we have 7" < 5T~ = 2z < 1/np <i/n= (i Ne*T")/n. By
these estimates we find that with C' = max{2+¢€",1/n} we have that for any s € R,

IN

K(s,u) < CY_ Qiluil(i Aestm). (8.3.3)
=1

2. In the next step, for r > 0 we set

e’ for s > 0,
(1—s)""t fors<0,

and define the norm

*W:AK@wm@@

We claim that || - ||+, is equivalent to the norm in X;i,. By (8.3.2) and (8.3.3)), it
suffices to show there exist C_, C; > 0 independent of ¢ such that

C_(1+4)" < /(i AeTTh,(s)ds < Oy (144)" fori > 1. (8.3.4)
R

To show this, we first bound the part of the integral over s € [0, 00), finding that

1 g/ (i AeSTMe 5 ds < i < (144). (8.3.5)
0
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For the part over s € (—o0, 0], after changing variables twice via § = —s, 0 = § — 0,
we have

0 oo
/ (i AT (1 —s)"~ 1ds<z/ (LAe 5 (1 +3) " 1ds
0

—0o0
ne 0
z/ (1+3)" 1ds+i/ e " (1+ni+o) tdo
0 0
< Ci(1+ni)" <O +i)Hr.

This establishes the upper bound in .

To get the lower bound, choose I, so large that 7 > I, implies ni — logi > %m’.
For i < I, we have (1+41)""! < (1+ I,,)"™!, hence we get the lower bound in
with C_ = (1+ I,;,)~'~" by using (8.3.). For i > I, we find

0 o
/ (i AeM)(1—s)" " ds = Z/ (LAe sm=losty(1 4 5)7 1 d3
0

—0o0

ni/2
Zi/ 7 ds > C(1+4).
0

Thus || - ||« is equivalent to || HXHT
3. Now, let H,(t) := [ hp(7)d7. We claim that, for fixed 0 < k1 < k2,

Hk1 (S + t) < CHkQ(S)(l + t)klib

for all s € R, and for ¢ > 0. To prove the claim, we first note that

Hi (5) e s for s > 0,
S) =
M 1+% for s < 0,

and furthermore, for s < 0, we have that

< Hy(s) < (k1 +1)(1 —s)M

) 8.3.6
kr+1 — k1 ( )

We then consider separate cases. First, if s > 0,
Hy (s +1) = e ) < Ce™* (1 4+ t) k2 = CHy, (s)(1 4 t)F k2,
Next suppose that s <0 < s+ t. Then

Hp(s+1) =e ) <C(1 4 s+ 1)7k
(1— s)k2
(14+t—s(s+1t))k

<C+t)7*H,(s),
where we have used (8.3.6). Finally, in the case that ¢ < —s, we note that because
k1 — ko <0,

(1= (s+t)F < (1—s)" < (1—s)k2(1+ )P,

In light of (8 - this proves the claim.
4. Next, we use assumption (8.3.1)) to estimate

K(s,5(t)u) < inf (IIS(t)u = S(t)vllx, +e|SE)vlly,)

< M;gf (lu = vllx, + e |v]ly, )

= MK (s — \t,u).
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We remark that for u € Y, we have that 0 < K(s,u) < |lul|x, A e®|ully,, and thus
for u € Y, we have that H,(s)K(s,u) goes to zero as s — Fo0o. Thus we may use
integration by parts, and our previous estimates, to obtain the following for any
u € Yy:

IS®ullxrs, <€ [ Ko S(e)wh (5)ds
<C/K — Agt, ), () ds
_c/ (s,u) Hy, (5 + At) ds
< C(1 +t)f*2 / %{(s,u)H@(s) ds
:c<1+t)k1k2/RK(s,u)hk2(s) ds

= CL+ )" ullr, < CL+ O lullx,,,, -

Because Y;, is dense in Xq4y,, we have the desired inequality. This completes the
proof. O

It is natural to apply this theorem to the semigroup generated by et

Corollary 8.3.2. Provided 0 < ki < ko, the semigroup e’* generated by the operator
L satisfies

||6Ltu||X1+k1 <C(1+ t)_(kZ_kl)HuHXthQ Jor alluw € Xyqp,,

where C' depends on ki1 and ko, but not on u ort.

Proof. This follows directly from Proposition Theorem Theorem [8.3.1
O

At this point in the analysis it is not clear whether the semigroup e’* can be
defined on the space Xj. This is addressed by Corollary [9.1.8]



Chapter 9

Decay Rates for the
Becker—Doring Equations

The goal of this chapter is to prove Theorem (1.2.1)). First, non-linear stability
results, namely Theorem will be established using the theory of evolution
families. This will be combined with the linearized decay rates of the previous

chapter to prove Theorem (|1.2.1)).

9.1 Stability estimates in X}

This section proves stability estimates for O(g), and some associated semigroup
results. These estimates are very similar to those proved in the space X;. These
estimates are primarily technical in nature, in the sense that they are used to deduce
existence of the necessary evolution families. It is probably possible to use these
results to derive well-posedness and stability results like those given in Proposition
but that is not the aim of this work.

The main goal is to prove the following theorem.

Theorem 9.1.1. Let {c;} be a solution to the Becker—Déring equations (see Defini-

tion , and let {h;} be determined by (1.2.7)). Assume that the model coefficients
in (1.2.2)) satisfy (8.1.1)-(8.1.4). Fiz k > 2. Then given any e > 0 there exists § > 0

such that if ||h(0)||x,,, <0 then ||h(t)|x,,, <& for allt > 0.

The general strategy is to derive bounds on the evolution family U (¢, s) generated
by ©(h1(t)) when hy is small. The first step is to establish bounds in H directly
using dissipation estimates. Consequently, it is possible to establish stability bounds
on U(t, s) in X, by using the extension principle from Proposition This then
immediately implies Theorem

9.1.1 Non-linear Stability in H

The following lemma gives a local, non-linear stability estimate in the space H.

Lemma 9.1.2. Suppose that g(t) € C1(I;R), for I = [0,T) with T possibly infi-

nite. Suppose furthermore that the model coefficients in (1.2.2)) satisfy (8.1.1)-(8.1.4)).

Then there exist 0 and X\ > 0 such that if |g(t)| < dg then {O(g(t))}ier generates
an evolution family Uy in H on the interval I with bound

1Un (s $)| ey < e =9 for0<s<t<T.

The central tools in proving this lemma are Propositions [2.5.10] and [8.1.6]

119



120 CHAPTER 9. DECAY RATES

Proof. We first claim that the following spectral gap estimate holds as long as g is
sufficiently small: For some Ag > 0,

(O(g)h, hyg < —Am||hl% for all h € H N%(Q,0).

To prove this inequality, we recall (1.2.9) and use Proposition to estimate

(©(9)h,h)g = (1 —&)Lh,h) g + e(Kh, h)p2(q,) + (92 + (A + S))h, h)2(q,)
—(L = )AllhllFr + el Kll ez IRl + ((9Z + e(A + ), B2 (q)-

(Here, note that Ah, Sh and Kh belong to £?(Q;) but perhaps not to the zero-mass

subspace H.) We select ¢ small enough that % > ellK|lz2(q,)) As S is A-
bounded with A-bound € < 1 we have that S is relatively bounded (with relative
bound smaller than one) by IQﬁA. Because S is symmetric, Proposition implies

that Lo
<<S+< + )A)h,h> <0
2 2(Qs)

(©(g9)h,h) i < —@th%{ + <<51 —
. ||h||H+ZQ1< i
SRURLE |huH+Z@ (-2 o + Doz w2 ) )

< —“;)Cnhn%{ SICACE
=1

where we have used the assumptions (8.1.2)) and (8.1.5]) and the fact that > >° _1 Qzai is
finite. By (8.1.7) there exists a dy > 0 S0 that if \g\ < 0p then (a;C|Q1g|—e15%0;) <
0. Thus if |g| < dg we deduce that

Thus we can estimate

:) h, h>€2(Qi)

—0
oih? + Qiaighi(hit1 — hi — hl))

—0
o; + aiCng|> h?

1—¢)A
O,y <~ T2 ity = Amlhl,

which proves the claim.

We observe, from the previous estimates, that indeed |[Zh[lx = [Zh[/z2q,) <
C||AR||2(q,)- This implies that S + ¢g= (and also S + g= + K) is relatively bounded
by A with relative bound strictly less than one, as long as |g| < 7, where perhaps
we have made dy smaller.

We then claim that this implies that (A — ©(g)) is invertible on £2(Q;) for some
A > 0. First, since A is diagonal, it is clear that (A — A) is invertible for any A > 0
with (A — A)~! = diag(\ + 0;)~!. We note that if (I — (S + ¢g= + K)(A — A)71) is
invertible for some A > 0, then (A — O(g)) is invertible at that same A, with

A=0(@) ' =A =N~ (S+EE+K)A-A)"H

Recall that I — W is invertible for any linear operator satisfying ||W|| < 1. Thus if
we can prove that ||(S 4+ ¢= + K)(A — A)7!|| < 1, then the claim must hold true.
To prove this, we estimate, for h € £2(Q;), and for some 6 < 1,

IS + 9=+ K)A = )" hlleg) < OIAN = D)1l + CION = M) hlleg,),
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where we have used the fact that (S + g= + K) is relatively bounded with constant

less than one. We then remark that A(A — A)~! = diag — x15- This implies that
[A(A = A)~1|| <1 for all A > 0. On the other hand, ||[(A — A)~!|| < A~ for A > 0.
This implies that ||(S +¢=+ K)(A—A)7Y| < 1 for A > 0 large enough. This proves

the claim.

Now, since ©(g) holds the zero mass subspace of £2(Q;) invariant, we have that
(A —0O(g)) is invertible on H for some A > 0. Thus by the Lumer-Phillips theorem,
O(g) generates a semigroup in H as long as |g| < dg. Furthermore, by the relative
bound it is clear that domy(6(g)) = domyz(,)(O(g)) N H = domyp(g,)(A) N H =
EQ(QlO'?) NnH.

Now, as g(t) is C! it is clear that for v € £2(Q;0?) we have that ©(g(t)))v is in
CY(I; H). We then directly apply Proposition to obtain the desired result. [

9.1.2 Non-linear Stability in X,

The main goal of this subsection is to prove the following lemma.

Lemma 9.1.3. Suppose that g(t) € C*(I;R), for I = [0,T) with T possibly infinite.

Suppose furthermore that the model coefficients in (1.2.2)) satisfy (8.1.1)-(8.1.4) and
that k > 0. Then there exists a 0y such that if |g(t)| < 0y then {O(g(t))}rer generates

an evolution family Ux, , (t,s) in X1 on the interval I with bound

1Uxy 40, (8 )y yn) < M,

where My, is independent of s,t and the particular choice of g.

This lemma is proved using Proposition [8.2.1} in conjunction with the stability
in H established in the previous subsection. To begin, define the operator A(g) in
weak form by

D Qi(A(gh)igi =Y QiQuai(hi — hiy1 + ghi)(dir1 — ¢i — d1)
- P (9.1.1)

— QN1Qran—1hN(dN — dn—1 — ¢1)
where N is a constant, greater than N¢ + 1, to be determined. Define B(g) :=

O(g) — A(9g)-
The next proposition establishes the dissipativity of A(g).

Proposition 9.1.4. Under the assumptions of Lemma([9.1.5, and if N in (9.1.1) is
chosen large enough, then there exists a constant 6 so that if |g| < O then

(sgn(h), A(g)h>X{‘+k,X1+k <0 forallhe Xoig.

Proof. With w; = i'™* and using ¢; = w;sgn(h;) in (9.1.1)), we compute, as in the
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proof of Proposition [8:2.6]
<Sgn(h)v A(g)h>Xf+k,X1+k

= > Qihi(Quawiga(sn(hisa) = sgn(h) + biwi-1(sgn(hi-1) — sgn(hi)))
i=N

+ Z Qilhi| (@i Q1 (wiy1 — w;) + bi(wi—1 — wy))

=N
+ sgn(h1) Z Qihi(bi — Q1a;)
i—N
+g Z QihiQuai(wit1sgn(hit1) — wisgn(h;) — sgn(hy))
=N

=: By + By + E3 + Ejy.

First we estimate Es, written as

> W; — Wi—
By = Qilhi|(wit1 —w;) (%Ql - b¢1> :

Wit1 — Wi
=N i+1 i

Wi —Wi—1
Wi+1—W;

By choosing N sufficiently large we can make the ratio
1. Thus we apply (8.1.6]) to find that

arbitrarily close to

By < —=C ) Qilhilai(wip1 — wy).
i=N

We next calculate
oo
B3 <> Qilhil(bi + Quai).
i=N

Recalling (8.1.3)), and using that w;+1 — w; — oo since k > 0, we thus have, for N
sufficiently large,

[e.e]
Ey+ E3 < =C ) Qilhilai(wis1 — wi).
i=N

Because h;(sgn(hi+1) —sgn(h;)) < 0, we infer F; < 0. Thus, in the case g > 0 we
estimate

o0
E\+E4 < Es<|g| Z QiQ1ailhi|(wit1 —w; + 1)
i=N

< Clgl > Qilhila;(wipr — w;).

=N

For g < 0 we find that

Ey+ Es < ZQi\hi\sz‘(—?’wiH — g(wit1 + w;))
i>N
sgn(h;)#sgn(hit1)

+1g1 D QilhilQua, (9.1.2)
i=N
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When |g| < 1 we have that the first term in (9.1.2) is negative. This then readily
implies that for N sufficiently large and for |g| sufficiently small we have that

(sgn(h), A(9)h) xy, X1 < —C Z Qi(wit1 — wj)ai|h;| <0,
i=N

which completes the proof. O
The next step is to prove that {A(g(¢))} indeed generates an evolution family.

Lemma 9.1.5. Suppose that the assumptions of Lemmal9.1.5 are satisfied. Suppose
furthermore that
l9(t)| < min{dx, Ok41,0m}, (9.1.3)

where 0y, is given in Proposition[9.1.4 and o in Lemma[9.1.2. Then for N chosen

as in Proposition the family {A(g(t))}ter generates an evolution family Vi,
on the interval I =[0,T) in the space X14k, which for 0 < s <t < T satisfies

HVX1+]C (t7 S)Hl:(X1+k) S 1

Proof. We claim that {A(g(t))}ier satisfies the assumptions of Proposition
By and Proposition we have that A(g(t)) is dissipative on X7, and
Xoty. For fixed t € I, by (9.1.3), ©(g(t)) generates a semigroup on H (as established
in the proof of Lemma[9.1.2). As B(g(t)) is a bounded operator on H, it then must
be that A(g(t)) generates a semigroup on H. This then implies that for some large,
positive real A we must have that the range of A(g(t)) — A contains H. Thus the
range of A(g(t)) — A is dense in Xj 4y and Xoyp. As in the proof of Lemma
this implies that A(g(t)) generates a semigroup on Xjy; and Xs,x, and thus the
first two assumptions are satisfied.

Next, as g(t) is C! and by , the third assumption is necessarily satisfied.
Thus we may apply Proposition which proves the lemma. O

The next result follows from a computation as in Lemma the proof is
omitted.

Lemma 9.1.6. Under the assumptions of Lemma the operator B(g(t)) is
uniformly bounded from X1 to H, with a bound that depends only on d, and not on
g ort.

With these tools it is possible to prove Lemma |9.1.3

Proof of Lemma[9.1.3 In light of Lemmas and this follows from Propo-
sition R2.7] O

Remark 9.1.7. We note that the bound My is not dependent on the particular
function g(t), and only on its bound 0. This is because of the independence on g(t)
in the bounds obtained in lemmas|9.1.9 and|9.1.60

It is important that the previous lemma is independent of the choice of g(t).
Using Lemma the following is elementary.

Proposition 9.1.8. The operator L generates a semigroup on the space Xiy, for
any k > 0.

Proof. Applying Lemma when g = 0, that is for F(g) = F(0) = L, gives
the desired result when £ > 0. The result when k¥ = 0 was already established in
Theorem [8.2.91 O
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It is now possible to prove Theorem [9.1.1}

Proof of Theorem [9.1.1 Let M}, be the uniform bound in the space X given in
Lemma [0.1.3l Set

_ @ min{dx_2, 6k_1, 0k, Okt 1,07, €Q7 '}

0 2M,,

Now, let {h;} correspond to a solution of the Becker-Déring equations, with [|2(0)|x,., <
4. By Lemma and as k > 2 we know that hy is C'. By Lemma we thus
know that {©(h1(t))}ies generates an evolution family U on Xy o) and Xy iy

on the (non-empty) interval I such that |hq(t)] < min{dx_2,k_1,0k, Ox+1,0m}. As

k > 2, by Lemma we know that the conditions of Proposition [2.5.9]are satisfied

in X4 (4—9), and thus U(t,0)h(0) = h(t) for all t € I.

The uniform bounds from Lemmathen imply that [|A(t)|x,,, < Mgl|h(0)|x,,,

on the interval I. Our choice of ¢ immediately implies that I = [0,00) and that

Ih(t)|lx,,, <e/2, which completes the proof. O

9.2 Non-linear Decay Rates

This section will prove the main theorem. The first step is to justify the use of
Duhamel’s formula.

Lemma 9.2.1. Assume that (c;(t)) is a solution of the Becker—Déring equations
and (hi(t)) is defined by (1.2.7)), and let k > 0. If h(0) € X34k then the following is
satisfied (strongly) in Xy4:

d
—h = Lh + h1Eh. 9.2.1
a + ( )

In particular, if h(0) € X3y then we have that the following is satisfied in Xy :
t
h(t) = eLth(O) —I—/ eL(tfs)hl(s)Eh(s) ds, (9.2.2)
0

where et is the semigroup generated by L on X1, (see Proposition .

Proof. Because h(0) € X3 by Proposition and Lemma we have that
Lh+ h1=h is bounded in X5y on any finite interval. Because each h; is continuous
by definition , it must be that Lh + h;=h is measurable in Xo . We claim
that in X, we have that

h(t) = h(0) + /O t Lh(s) + h1(s)Eh(s) ds. (9.2.3)

Indeed, the right hand side of the equation is well-defined, and must match the
coordinate-wise integrals from definition This implies that h(t) is locally
Lipschitz in Xo . As also holds in Xj,; we thus have that h(¢) must be
differentiable in Xjj. This implies ((9.2.1)).

Again by Proposition we know that hiZh € L'((0,T); X14x). Proposition

then implies (9.2.2)). O

Next, it is necessary to derive a specialized version of Gronwall’s inequality.
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Lemma 9.2.2. Let u(t) be a positive, continuous function on [0,00). Suppose that
u satisfies

u(t) < Co(141)~ /01 (14t —s) "u(s)ds. (9.2.4)

Furthermore, suppose that v > 1 and that C is small enough that
~ t
01/ (It—s)"(1+8) "ds < 0(1+1)" (9.2.5)
0

for some 8 < 1 and for allt > 0. Then we must have that

Proof. Let v(t) = u(t)(1+t)". Then we have that
~ t ~
v(t) < Cy+ (14 t)r/ Ci(l+t—s)""(1+s) "v(s)ds.
0

This then readily implies that for any 7" > 0,

[vllco,r) < Co+0llvlleor)-

Thus for allt > 0

which establishes the desired result.
O

Remark 9.2.3. Note that for any r > 1 one can find a C1 > 0 such that (9.2.5) is
satisfied. This is because

t t/2
/ (1+5)_T(1+ts)_Tds:2/ (I+s)"(1+t—s)"ds
0 0

t - t/2
32(14—) / (1+s)"ds
2 0

27’+1
< (1+t)"

—r—1

Thus if C1 < (r — 1)2="*+D then we have that (9.2.5)) is satisfied.

Remark 9.2.4. The dependence on the constant C is critical in the previous proof.
Indeed, if fooo C1(1+45)""ds > 1 then it is possible to show that for some u(t) = ¢ > 0
the inequality is satisfied. Thus decay estimates can only be obtained if Cy is
sufficiently small.

It is now possible to prove the main result.

Proof of Theorem [1.2.1 Recall that we have assumed that 0 < ky < k2 — 2. By
Lemma [9:2.7] we know that the equation

h(t) = e"*h(0) + / t et =) hy ($)Th(s) ds
0
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is satisfied in Xj4,, where et is the semigroup generated by L. By Corollary
we can thus estimate

1(®)x40, < OO+ ER(0)]1x,,
e /ot B ()[ITA(s)|x,, (1 + ¢ —5)~F2R17D ds.
By Lemma we know that I' is bounded from Xj,1; to Xj,, and thus
1RO x14x, < CL+8)FTYRO0)|1x, 4,
#0 [ IS s (14 £ ) b s
It is then immediate that
(O x14x, < C(L+8)FYRO0)|1x, 4,
+Coup ()]s, /Ota 1= gty ()] ds.
We then use a crude bound to obtain
(O x140, < CL+8)ETDYRO) |1, 4,

t
+ Csup [[A(7)lx, 1, /0 (14t —s)" "D )n(s)|x, ,, ds,

By Theorem for any € > 0 we can choose 0y, 1, small enough to guarantee that
t
IR x1 48, < C(l—i—t)—(k‘z—kl—l)Hh(O)HXI+k2 +s/0 (1+1t—s)—(k:Q—k:l—1)Hh(s)HXHk1 ds,

where we have additionally used that (14 )~®*2=k1) < (1 4 ¢)=(ke=F=1) Ag by >
k1 + 2, by applying Lemma (whose conditions will be satisfied for & small due
to Remark , we then find that

1ROl x14, < CL+ 1)~ R0)]x,

which is the desired result. O
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