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Abstract

This thesis analyzes two types of phase transition models, namely the Cahn–Hilliard
model and the Becker–Döring model. In the Cahn–Hilliard setting, this thesis estab-
lishes a second-order Γ-convergence result for the mass-constrained Cahn–Hilliard
energy. This is obtained using a new variant of the Pòlya–Szegő inequality, along
with some new regularity results for the isoperimetric function. For the Becker–
Döring model, decay rates towards equilibrium are proved for certain broad classes
of subcritical data. This is obtained by using new linear stability estimates and
semigroup extension results, along with some classical interpolation inequalities.
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Chapter 1

Introduction

This thesis consists of the study of two (very different) phase transition problems.
Accordingly the thesis is divided into two discrete parts.

The first part studies the Cahn–Hilliard energy, which represents a microscopic
theory for the formation of phase boundaries. This will be studied primarily using
variational methods. The work given here is mostly contained in the two papers [73]
and [83], although some results have been streamlined and improved here compared
to the versions given in those papers.

The second part studies the Becker-Döring model, which represents a mean field
theory of the nucleation of a phase transition. This was studied using semigroup
theory and PDE methods. Some of the results presented here are contained in the
paper [81].

1.1 Cahn–Hilliard Theory of Phase Transitions

The first part of this thesis will be concerned with the asymptotic expansion by
Γ-convergence of the Cahn–Hilliard or Modica–Mortola functional, and some appli-
cations of the same. This functional is given by (see [63, 78, 101])

Fε(u) :=

∫
Ω
W (u) + ε2|∇u|2 dx, u ∈ H1(Ω), (1.1.1)

subject to the mass constraint ∫
Ω
u dx = m. (1.1.2)

Here Ω ⊂ Rn is an open, bounded set, W : R → [0,∞) is a double-well potential
and ε > 0.

The Cahn–Hilliard functional is one mathematical representation of the “ener-
getic” cost of a phase transition in a material. Here Ω represents some physical
domain (i.e. the limits of our material), and ε is a regularizing parameter, which
turns out to be the approximate width of transition layers. The phase is represented
by u, and W represents the potential energy of a given phase. In some cases u
is called an Order Parameter, because it represents the relative order of a given
phase. This model has been used to represent certain simple phase transitions, such
as liquid-liquid phase transitions [108] [28] and antiphase boundaries [6]. The mass
constraint is particularly relevant in the case of certain liquid phase transition prob-
lems, while other types of boundary conditions are more relevant in other situations.

Oftentimes phase transition energies are more appropriately modeled by consid-
ering vector-valued u [55], anisotropic gradient terms [90], higher-order terms [53] or
contact energies [79]. With the exception of a few simple preliminary results for the
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8 CHAPTER 1. INTRODUCTION

anisotropic case, this thesis does not attempt to address these issues. However, the
energy considered here is still a relevant toy model that gives reasonable intuition
towards the more complicated cases.

As ε → 0, minimizers of this energy approach sharp transition layers. One
appropriate way to study this convergence is through Γ-convergence (see Section 2.4).
In the interest of proving such a Γ-convergence result, define Fε : L1(Ω)→ (−∞,∞]
by

Fε(u) :=

{
Fε(u) if u ∈ H1(Ω) and (1.1.2) holds,

∞ otherwise in L1(Ω).
(1.1.3)

An asymptotic expansion by Γ-convergence essentially seeks to find an appropri-
ate sort of Taylor expansion for the energy, namely

Fε ≈ F (0) + εF (1) + ε2F (2) + . . .

The notion of Γ-convergence only requires that this expansion hold in an appropriate
limiting sense; for precise definitions see Section 2.4.

The Γ-limit F (1) of order 1 (see (2.4.1) and (2.4.2)), which in this case is simply
the Γ-limit of ε−1Fε, has been characterized by Carr, Gurtin and Slemrod [31] for
n = 1 and by Modica [78] and Sternberg [101] for n ≥ 2 (see also [62], [80]), and is
known to be, under appropriate assumptions on Ω and W ,

F (1)(u) :=

{
2cW P({u = a}; Ω) if u ∈ BV (Ω; {a, b}) and (1.1.2) holds,

∞ otherwise in L1(Ω),
(1.1.4)

where P(·; Ω) is the perimeter in Ω (see Section 2.1), a, b are the wells of W and the
constant cW is given by

cW :=

∫ b

a
W 1/2(s) ds. (1.1.5)

The recovery sequence used to obtain this result is given by functions of the form

uε(x) = z

(
dE(x)

ε

)
,

where z is the solution to the Cauchy problem{
z′(t) =

√
W (z(t)) for t ∈ R,

z(0) = c, z(t) ∈ [a, b],
(1.1.6)

with c being the central zero of W ′. The function z solving this Cauchy problem
will also play a crucial role in the analysis performed in this thesis. It is easy to see
that uε → sgna,b ◦dE , where

sgna,b(t) :=

{
a if t ≤ 0,

b if t > 0.
(1.1.7)

In light of this Γ-convergence result, it is natural to study the family U1 of
minimizers of the functional F (1). Observe that u belongs to U1 if and only if
u ∈ BV (Ω; {a, b}) and the set {u = a} is a solution of the classical partition problem,
namely, if it solves

min{P(E; Ω) : E ⊂ Ω Borel, Ln(E) = vm}, (1.1.8)
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where

vm :=
bLn(Ω)−m

b− a . (1.1.9)

The properties of minimizers of (1.1.8) have been studied by Grüter [60] (see also
[58, 75, 103]), who showed that when Ω is bounded and of class C2, minimizers E of
(1.1.8) exist, have constant generalized mean curvature κE , intersect the boundary
of Ω orthogonally, and their singular set is empty if n ≤ 7, and has dimension of at
most n − 8 if n ≥ 8. By way of convention, here κE is the average of the principal
curvatures taken with respect to the outward unit normal to ∂E.

Furthermore, in studying the partition problem, which is closely linked to the
problem of minimizing Fε, a natural construct is the isoperimetric function or
isoperimetric profile (see, e.g., [96]), given by

IΩ(v) := inf{P(E; Ω) : E ⊂ Ω Borel, Ln(E) = v}, v ∈ [0,Ln(Ω)]. (1.1.10)

Throughout this work it will be helpful to consider an L1-localized version of
this function. Namely, given a measurable set E0 ⊂ Ω with mass vm (see (1.1.8) and
(1.1.9)) and δ > 0, we define (see (6.1.3))

Iδ,E0

Ω (r) := inf{P (E,Ω) : E ⊂ Ω Borel, Ln(E) = r, α(E,E0) ≤ δ}, (1.1.11)

where
α(E,E0) := min{Ln(E \ E0),Ln(E0 \ E)}. (1.1.12)

A natural question, and really the starting point of the work of this thesis, is how
to appropriately characterize the Γ-limit of order 2, written F (2), of Fε. The first
example of asymptotic development by Γ-convergence of order 2 for functionals of
the type (1.1.1) was studied by Anzellotti and Baldo in [13], who considered the case
in which n = 1, the wells of W are not points but non-degenerate intervals and the
mass constraint (1.1.2) is replaced by a Dirichlet condition. Subsequently Anzellotti,
Baldo and Orlandi [14] studied (1.1.1) in arbitrary dimension, in the case in which
W has only one well (W (s) = s2) and again with Dirichlet boundary conditions in
place of (1.1.2).

In dimension n = 1, this problem has been extensively studied by a variety of
authors, see e.g. [31],[59], [18]. Prior to the work in this thesis, the only work in the
case n ≥ 2 was given by Dal Maso, Fonseca, and Leoni in [41]. In that work, for a
potential W satisfying

W (s) = W (−s)

for all s ∈ R and
W (s) = C|1− s|1+q (1.1.13)

near s = 1, for some q ∈ (0, 1), and under the assumption that

u = 1 on ∂Ω, (1.1.14)

in addition to (1.1.2), it was shown that F (2) = 0. More generally, this was proved in
the case in which ε2

∫
Ω |∇u|2 dx is replaced by ε2

∫
Ω Φ2(∇u) dx, with Φ : Rn → [0,∞)

an arbitrary norm. The Dirichlet condition (1.1.14) played a crucial role in the proof
in [41] since it permitted the use of classical symmetrization techniques in H1

0 (Ω) to
reduce the problem to the radial case. Moreover, the behavior of W near the wells
(see (1.1.13)) did not allow for C2 potentials W . The work of [41] left open several
important questions, namely the characterization of F (2) when

• the Dirichlet condition (1.1.14) is not imposed,
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• W is of class C2,

• W is not even.

The first part of this thesis addresses all of these questions, by characterizing the
second order Γ-limit under fairly general conditions. In particular, in the case where
W is C2, the following theorem is given in Chapter 6 (see Theorems 6.1.2, 6.1.3).

Theorem 1.1.1. Assume that Ω satisfies (6.1.1), m satisfies (6.1.2) and W ∈ C2

satisfies hypotheses (5.1.4)-(5.1.7). Assume that u is an L1(Ω)-local minimizer of

the functional F (1) (see (1.1.4)). Finally, assume that, for some δ > 0, Iδ,E0

Ω is
differentiable at vm, with E0 = {u = a}.Then

Γ- lim inf F̃ε(u) = Γ- lim sup F̃ε(u)

=
2c2
W (n− 1)2

W ′′(a)(b− a)2
κ2
u + 2(csym + cW τu)(n− 1)κu P({u = a}; Ω),

where

F̃ε(w) :=
F (1)
ε (w)−F (1)(u)

ε

and

F (1)
ε (w) =

Fε(w)

ε
.

In particular, if IΩ is differentiable at vm then

F (2)(u) =
2c2
W (n− 1)2

W ′′(a)(b− a)2
κ2
u + 2(csym + cW τu)(n− 1)κu P({u = a}; Ω)

if u is a global minimizer of F (1) and F (2)(u) =∞ otherwise in L1(Ω).

In this theorem, κu is the constant mean curvature of the set {u = a},

csym :=

∫
R
W (z(t))t dt,

where z is the solution to the Cauchy problem (1.1.6), and τu ∈ R is a constant such
that

P({u = a}; Ω)

∫
R
z(t− τu)− sgna,b(t) dt =

2cW (n− 1)

W ′′(a)(b− a)
κu,

with sgna,b as defined in (1.1.7).

The previous theorem assumes that IΩ or Iδ,E0

Ω is differentiable at vm. The
validity of this assumption has only been previously considered in the case where Ω
is convex. In that case, it is known that IΩ is concave [103]. However, many of the
techniques in [103] generalize to the present setting. In particular, in Chapter 4, it
is proven that

• IΩ is differentiable at all but countably many points.

• Iδ,E0

Ω is differentiable at vm if E0 is an isolated local volume-constrained perime-
ter minimizer, for δ small enough.

The proof of Theorem 1.1.1 uses an adaptation of the Polyà–Szegő inequality,
applicable to functions irrespective of boundary conditions, namely Theorem 3.3.4.
The techniques used in the proof of this theorem are largely standard, but are
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included in Chapter 3 for clarity. A specific form of this inequality was previously
used to study optimal constants for certain classes of Poincaré inequalities [34].

Using this rearrangement inequality, the problem of proving theorem 1.1.1 is
reduced to the careful analysis of a one dimensional problem. This is conducted in
Chapter 5. Much of the analysis here leans on classical tools, such as those used in
[41] and [102].

Finally, these tools are combined in Chapter 6 to prove the main theorems.
One of the primary motivations for studying the asymptotic expansion of Fε is

to understand the motion of solutions of the underlying gradient flow.
In particular, one may study the slow motion of solutions to the nonlocal Allen–

Cahn equation with Neumann boundary conditions, namely,
∂tuε = ε2∆uε −W ′(uε) + ελε in Ω× [0,∞),
∂uε
∂ν = 0 on ∂Ω× [0,∞),

uε = u0,ε on Ω× {0}.
(1.1.15)

Here u0,ε is the initial datum, and λε is a Lagrange multiplier that renders solutions
mass–preserving, to be precise

λε =
1

εLn(Ω)

∫
Ω
W ′(uε) dx.

In some references this is also called the mass-conserving Allen–Cahn equation.
This equation is precisely the L2 mass-constrained gradient flow of the energy

(1.1.3). It was introduced by Rubinstein and Sternberg [97] to model phase separa-
tion after quenching of homogeneous binary systems (e.g., glasses or polymers). An
important property of this equation is that the total mass

∫
Ω uε(x, t) dx is preserved

in time. It can be shown that when ε → 0+ the domain Ω is divided into regions
in which uε is close to a and to b, and that the interfaces between these regions as
ε→ 0+ evolve according to a nonlocal volume–preserving mean curvature flow.

In the past thirty years a significant effort has been given to the study of the
asymptotic slow motion of solutions of the Allen–Cahn equation

∂tuε = ε2∆uε −W ′(uε) (1.1.16)

and the Cahn–Hilliard equation

∂tuε = −∆(ε2∆uε −W ′(uε)). (1.1.17)

These equations are precisely the rescaled gradient flows of the unconstrained energy
(1.1.1). In dimension n = 1 the theory of slow motion was first developed in the
seminal papers of Carr and Pego [32], [33] and Fusco and Hale [56]. In particular,
Carr and Pego [32] studied the slow evolution of solutions of (1.1.16) when n = 1,
using center manifold theory. They provided a system of differential equations which
precisely describes the motion of the position of the transition layers (cf. Section
3 in [32]); such a result was formally derived by Neu [84], see also [33]. A similar
approach has been recently adopted by several authors to extend these ideas to a
more general setting, by studying the slow manifolds inherent to the dynamics of
these equations, see [89] and the references therein.

Subsequently, Bronsard and Kohn [25] introduced a new variational method to
study the behavior of solutions of the Allen–Cahn equation (1.1.16). They observed
that the motion of solutions of this equation, subject to either Neumann or Dirichlet
boundary conditions in an open, bounded interval Ω ⊂ R, could be studied by
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exploiting the gradient flow structure of (1.1.16) . The key tool in their paper is a
careful analysis of the asymptotic behavior of the unconstrained energy

F (1)
ε (u) :=

∫
Ω

1

ε
W (u) +

ε

2
|∇u|2dx, u ∈ H1(Ω).

Specifically, they prove that if {vε} converges in L1(Ω) to a function v ∈ BV (Ω; {a, b})
with exactly N jumps, then, for any k > 0,

F (1)
ε (vε) ≥ NcW − C1ε

k (1.1.18)

for ε sufficiently small and some C1 > 0. They then applied (1.1.18) to prove that
(cf. Theorem 4.1 in [25]) if the initial data u0,ε of the equation (1.1.16) converges in
L1(Ω) to the jump function v, and u0,ε are energetically “well–prepared”, that is,

F (1)
ε (u0,ε) ≤ NcW + C2ε

k

for some C2 > 0, then for any M > 0,

sup
0≤t≤Mε−k

||uε(t)− v||L1 → 0 as ε→ 0+.

Subsequently, Grant [59] improved the estimate (1.1.18) to

F (1)
ε (vε) ≥ NcW − C1e

−C2ε−1
(1.1.19)

for ε small, and some C1, C2 > 0, which in turn gives the more accurate slow motion
estimate

sup
0≤t≤MeCε−1

||uε(t)− v||L1 → 0 as ε→ 0+

for some C > 0. Finally, Bellettini, Nayam and Novaga [19] gave a sharp version of
Grant’s second–order estimate by proving

F (1)
ε (vε) ≥ NcW − 2α+κ

2
+

N∑
k=1

e−α+
dεk
ε − 2α−κ

2
−

N∑
k=1

e−α−
dεk
ε

+ κ3
+β+

N∑
k=1

e−
3α+

2

dεk
ε + κ3

−β−

N∑
k=1

e−
3α−

2

dεk
ε

+ o

(
N∑
k=1

e−
3α+

2

dεk
ε

)
+ o

(
N∑
k=1

e−
3α−

2

dεk
ε

)

as ε→ 0+, where α±, κ±, β± are constants depending on the potential W and dεk is
the distance between the k–th and the (k + 1)–th transitions of vε. This last work
gives a variational validation of [32], [33]. Indeed, the sharp energy estimate allows
the authors to (formally) recover the ODE describing the motion of transition points.

The situation in higher dimensions is not as clearly understood. This is due to
the possibility of curvature effects. One still suspects that if initial data u0,ε ap-
proximates the function u = aχE0 + bχEc0 , with E0 a local minimizer of F (1), then
the solutions to (1.1.15) will still exhibit slow motion. However, it is generally not
clear at what time scale curvature effects, which are absent when n = 1, may come
into play. Much of the work in this setting has addressed the motion of phase “bub-
bles”, namely solutions approximating a spherical interface compactly contained in
Ω. For example, Bronsard and Kohn [26] utilize variational techniques to analyze
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radial solutions uε,rad of the Allen–Cahn equation. They prove that uε,rad separates
Ω into two regions where uε,rad ≈ +1 and uε,rad ≈ −1 and that the interface moves
with normal velocity equal to the sum of its principal curvatures. In [44], Ei and
Yanagida investigate the dynamics of interfaces for the Allen–Cahn equation, where
Ω is a strip–like domain in R2. They show that the evolution is slower than the
mean curvature flow, but faster than exponentially slow. This suggests that esti-
mates of the type (1.1.19) cannot be expected to hold in higher dimensions. In
the Cahn–Hilliard case, Alikakos, Bronsard and Fusco [3] use energy methods and
detailed spectral estimates to show the existence of solutions of (1.1.17) supporting
almost spherical interfaces, which evolve by drifting towards the boundary with ex-
ponentially small velocity. Other related works include [2], [4] and [5]. Most of these
works require significant machinery, and often focus only on the existence of slowly
moving solutions.

Using Theorem 1.1.1, it is possible to give precise asymptotics for the energy
(1.1.3). In particular, estimates of the form (1.1.18) can be obtained in the case
k = 1. The techniques from [25] can then be applied to obtain the following result,
see Theorem 7.0.1.

Theorem 1.1.2. Assume that Ω satisfies (6.1.1), m satisfies (6.1.2) and W satisfies
hypotheses (5.1.4)-(5.1.7). Assume that u is an L1(Ω)-local minimizer of the func-

tional F (1) (see (1.1.4)). Finally, assume that, for some δ > 0, Iδ,E0

Ω is differentiable
at vm, with E0 = {u = a}. Assume that u0,ε ∈ L∞(Ω) satisfy

u0,ε → u in L1(Ω) as ε→ 0+

and
F (1)
ε (u0,ε) ≤ F (1)(u) + Cε

for some C > 0. Let uε be a solution to (1.1.15). Then, for any M > 0

sup
0≤t≤Mε−1

||uε(t)− u||L2 → 0 as ε→ 0+.

The proof of this theorem, which uses exactly the same techniques as those in
[25], are found in Chapter 7.

1.2 Becker–Döring Equations

The second part of this thesis considers the Becker–Döring equations, namely the
following (infinite) system of differential equations

d

dt
ci(t) = Ji−1(t)− Ji(t), i = 2, 3, . . . ,

d

dt
c1(t) = −J1(t)−

∞∑
i=1

Ji(t),
(1.2.1)

where the Ji can be written as

Ji(t) = aic1(t)ci(t)− bi+1ci+1(t), (1.2.2)

and where {ai}, {bi} are fixed, positive sequences, known as the coagulation and
fragmentation coefficients respectively.

Becker–Döring systems form a subclass of the more general coagulation frag-
mentation equations. In typical physical applications the ci represent the discrete
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distribution function of particles of size i, and the evolution given by (1.2.1) rep-
resents the mean field approximation of the evolution of the distribution function
ci. In particular, Ji(t) represents the net rate that particles of size i and size 1
either join to form particles of size i + 1, or conversely are emitted by spontaneous
breakup. Thus we are primarily interested in positive solutions, whose first moment
is preserved in time, meaning that

ci ≥ 0,

∞∑
i=1

ici(t) = m̃(t) ≡ m̃ for all t ≥ 0. (1.2.3)

The Becker–Döring equations are used to model reactions in various physical set-
tings, such as vapor condensation, phase separation in alloys, and crystallization.
This model was first proposed in [17], and was modified to the form we are consid-
ering in [27],[93]. A good mathematically-oriented review can be found in [99].

The well-posedness and convergence properties of the Becker–Döring equations
have been well-studied. In particular, Ball, Carr and Penrose [16] demonstrated
the existence of “mass”-preserving, non-negative solutions to this system, namely
solutions of (1.2.1) satisfying (1.2.3). A later work [71] established well-posedness
(including uniqueness) for any initial data with finite first moment, namely the
space where the “mass” is well-defined. Ball et al. [16] also demonstrated that as
t → ∞ solutions must converge to some equilibrium {Qi}, where {Qi} is uniquely
determined by m̃. Furthermore, they prove the existence of a value m̃s such that if
m̃ < m̃s then the convergence to {Qi} is strong. On the other hand, if m̃ > m̃s then
there is a loss of mass to ∞, and the convergence is only weak. Any initial data
satisfying m̃ < m̃s is called subcritical, while data satisfying m̃ > m̃s is supercritical.

The second part of this thesis seeks to quantify the trend to equilibrium in the
subcritical case (m̃ < m̃s). Specifically, the goal is to establish uniform, local rates
of convergence to equilibrium in spaces with polynomial moments.

To begin, define the detailed balance coefficients, a sequence {Q̃i}, by the equa-
tions

Q̃1 = 1, Q̃iai = Q̃i+1bi+1, i = 1, 2, . . . (1.2.4)

The equilibrium solution Qi of (1.2.1) can be written as

Qi = Q̃iζ
i, (1.2.5)

where the parameter ζ is related to the mass m̃ in the subcritical regime through
the equation

∞∑
i=1

iQi = m̃.

It is straightforward to show that m̃s is linked to the radius of convergence ζs of the
power series with coefficients Q̃i.

One motivation for studying the Becker–Döring equations is that they serve
as a suitable prototype of more general coagulation-fragmentation equations with
detailed balance. Indeed, one suspects that many of the interesting phenomenon
that occur for the Becker–Döring equations may be typical of other systems with
detailed balance.

Convergence to equilibrium was proven by Ball, Carr and Penrose [16] using an
entropy functional. Specifically, they prove that the quantity

Ṽ (c) :=
∞∑
i=1

ci

(
log

ci

Q̃i
− 1

)
(1.2.6)
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is weak-∗ continuous and that Ṽ (c(t)) is strictly decreasing.
Later, Jabin and Niethammer [65] proved an entropy dissipation inequality which

gives a uniform dissipation rate for regular data. In particular, they proved that if
the initial data decays exponentially fast, then the solution converges to equilibrium
with a rate bounded by e−Ct

1/3
in the mass-weighted space.

In a recent work, Cañizo and Lods [30] improved this bound to e−Ct. They do
so by observing that the Becker–Döring equations (1.2.1) have a type of symmetric
structure. In particular, if one writes the Becker–Döring equations in terms of a
perturbation of the equilibrium solution

ci = Qi(1 + hi), (1.2.7)

then the mass constraint (1.2.3) may be expressed as

∞∑
i=1

Qiihi = 0, (1.2.8)

and the original equation (1.2.1) in the abstract quasilinear form

d

dt
h = Θ(h1(t))h.

Following Cañizo and Lods, the linear operator Θ(g) may be expressed as

Θ(g) = L+ gΞ, (1.2.9)

where L and Ξ are both linear operators, given in weak form by requiring that for
all {φi} in a suitable space of test sequences,

∞∑
i=1

Qi(Lh)iφi =
∞∑
i=1

aiQiQ1(h1 + hi − hi+1)(φi+1 − φi − φ1), (1.2.10)

∞∑
i=1

Qi(Ξh)iφi =
∞∑
i=1

aiQiQ1 hi(φi+1 − φi − φ1).

If one considers an `2 space weighted by Qi then L is clearly symmetric. Addi-
tionally, if {ci} is a solution of (1.2.1) and {hi} is determined by (1.2.7) it follows
that hi ∈ [−1,∞) and that

∑
Qiihi = 0. It is then natural to define the Hilbert

space H by

H :=

{hi} : ‖h‖`2(Qi) :=

( ∞∑
i=1

Qih
2
i

)1/2

<∞,
∑

Qiihi = 0

 .

with the induced norm ‖ ·‖H = ‖ ·‖`2(Qi) and inner product 〈·, ·〉H . Cañizo and Lods
demonstrated that the linear part (L) of the Becker–Döring equations has a good
spectral gap in H, or precisely that for some constant λc > 0 the following holds,
independent of h:

〈h, Lh〉H = −
∞∑
i=1

aiQiQ1(h1 + hi − hi+1)2 ≤ −λc〈h, h〉H . (1.2.11)

A key point is that the mass constraint (1.2.8) precludes the null vector hi = i. De-
tailed quantitative estimates of λc can then be obtained using Hardy’s inequality—
see [30] for details.
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Cañizo and Lods then utilized a priori bounds from [65] to control the non-linear
term and establish a rate of convergence to equilibrium. More precisely, defining the
Banach space

Yη :=

{
{hi} : ‖h‖`1(Qieηi) :=

∞∑
i=1

Qie
ηi|hi| <∞,

∑
Qiihi = 0

}
, 0 < η < 1,

with the induced norm ‖ · ‖Yη = ‖ · ‖`1(Qieηi), they prove that for 0 < η < η̄, given
initial data in Yη̄ then the solution must converge at a uniform exponential rate in
Yη. A key technical aspect of their proof was an operator decomposition technique
from [61], which permits an extension of the spectral gap of L from H to Yη. It
is important here to recall that the space H is continuously embedded in Yη for
η > 0 sufficiently small, precisely because the Qi are exponentially decaying, see
Proposition 8.1.2.

The goal here is to study the trend to equilibrium in spaces with only polynomial
moments. To this end, define the Banach spaces

Xk :=

{
{hi} : ‖h‖`1(Qiik) :=

∞∑
i=1

Qii
k|hi| <∞,

∑
Qiihi = 0

}
, k ≥ 1,

(1.2.12)
with norm ‖ · ‖Xk = ‖ · ‖`1(Qiik). The main result of the second part of the thesis is
as follows:

Theorem 1.2.1. Let (hi(t)) defined by (1.2.7) represent the deviation from equi-
librium of a solution (ci(t)) to the Becker–Döring equations (see Definition 8.1.1).
Assume that the model coefficients in (1.2.2) satisfy (8.1.1)-(8.1.4) below. Let k1

and k2 be real numbers satisfying k1 > 0 and k2 > k1 + 2. Then there exist positive
constants δk1,k2 , Ck1,k2 so that if ‖h(0)‖X1+k2

< δk1,k2 then we have that

‖h(t)‖X1+k1
≤ Ck1,k2(1 + t)−(k2−k1−1)‖h(0)‖X1+k2

for all t ≥ 0.

This result is proven by first obtaining detailed estimates on the semigroup gen-
erated by L in the spaces Xk by using new dissipation estimates, together with the
spectral gap estimate (1.2.11), the operator decomposition result from [61] and in-
terpolation techniques from Engler’s work on travelling wave stability [46]. This is
the subject of Chapter 8.

Subsequently, Chapter 9 addresses the question of non-linear stability and con-
vergence rates. The issue of non-linear stability is addressed using evolution families
and an extension of the operator decomposition result. Subsequently, convergence
rates are obtained by combining the linear decay results with the non-linear stability
results, and using Duhamel’s formula.



Chapter 2

Preliminaries

This chapter collects many of the necessary preliminaries for the results of this thesis.
The results in this chapter are for the most part classical, and are not the original
work of the author. They are included here in the interest of making this thesis
self-contained, with citations to sources where proofs may readily be found.

By way of notation, given a non-empty set E ⊂ Rm, E◦, Ē and Ec will represent
the interior, closure and complement of E respectively. Also, Lm and Hm are the m-
dimensional Lebesgue and Hausdorff measures, respectively, see [51] for appropriate
definitions. The constant ωn := Ln(B(0, 1)). Also, given two Banach spaces Y,Z,
let L(Y,Z) denote the space of bounded linear operators from Y to Z and L(Y ) =
L(Y, Y ).

2.1 Geometric Measure Theory and Isoperimetric Prob-
lems

This section deals with a variety of standard definitions and results from geometric
measure theory. Standard sources for this material include [12, 48, 109].

This section begins by recalling the definition of functions of bounded variation.

Definition 2.1.1. Let Ω ⊂ Rn be an open set. The space of functions of bounded
variation BV (Ω) is the space of all functions u ∈ L1(Ω) such that for all i = 1, . . . , n
there exist finite signed Radon measures Diu : B(Ω)→ R such that∫

Ω
u
∂φ

∂xi
dx = −

∫
Ω
φdDiu

for all φ ∈ C∞0 (Ω). The measure Diu is called the weak, or distributional, partial
derivative of u with respect to xi. In addition, for any function u ∈ BV (Ω), the total
variation |Du| of the measure Du, which is also called the variation measure of u,
is a finite measure and satisfies the formula

|Du|(Ω) = sup

{∫
Ω
udivφdx : φ ∈ C0(Ω;Rn), ||φ||C0(Ω;Rn) ≤ 1

}
<∞.

The measure Du turns out to have additional structural properties (see, e.g.
[48]). Specifically, one can decompose

Du = ∇uLn + Ju+ Cu,

where ∇u is an L1(Ω) function, where Ju takes support on a set of dimension (n−1)
and Cu is singular with respect to Ln and has support on a set of dimension greater

17
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than (n− 1). Furthermore, the measure Ju can be written as

Ju = (u+ − u−)νuHn−1bSu, (2.1.1)

where

u+(x) := inf{t ∈ [−∞,∞] : {x ∈ Ω : u(x) > t} has 0 density at x},
u−(x) := sup{t ∈ [−∞,∞] : {x ∈ Ω : u(x) < t} has 0 density at x},

νu(x) := lim
r→0

Du(B(x, r))

|Du|(B(x, r))
for x in supp(Du),

and where Su is precisely the set where u+ 6= u−. The set Su is called the jump
set of u. The existence of the function νu is guaranteed Du a.e. by the Besicovitch
derivation theorem (see e.g. [48]).

The first important property of BV functions is that they form a compact subset
of L1. This can be found in, e.g., Section 5.2 in [48] or Theorem 13.35 in [72].

Proposition 2.1.2. Let Ω ⊂ Rn be an open set with Lipschitz boundary. Assume
that uk ∈ BV (Ω), and that

sup
k
‖uk‖BV (Ω) <∞.

Then there exist a subsequence ukj and a function u ∈ BV (Ω) satisfying

ukj → u in L1(Ω) Dukj
∗
⇀ Du.

Another important property is the fact that the total variation is lower semicon-
tinuous.

Proposition 2.1.3 (Proposition 4.29 and 4.30 [75]). Let Ω ⊂ Rn be an open set.

Given a sequence of Radon measures µk
∗
⇀ µ supported on Ω, then the following

inequality holds for any open A ⊂ Ω:

|µ|(A) ≤ lim inf
k
|µk|(A).

On the other hand, if µk
∗
⇀ µ and |µk|(Ω)→ |µ|(Ω) <∞ then |µk| ∗⇀ |µ|.

Certain standard calculus rules apply for functions in BV (Ω). For example, the
following chain rule is a special case of a more general chain rule given in Proposition
1.2 in [10] , see also [11].

Proposition 2.1.4. Let Ω ⊂ Rn be an open set. Given a function u ∈ BV (Ω) and
a Lipschitz function f : R → R satisfying f(0) = 0 then the function v := f ◦ u is
an element of BV (Ω) and

Jv = (f(u+)− f(u−))νubSu,
Cv = f ′(u)Cu, ∇v = f ′(u)∇u,

where u here is an appropriately chosen representative (namely u must coincide with
u+ at any point where u+ and u− coincide).

Remark 2.1.5. The previous properties of BV functions continue to hold when all
of the integrals in the norm are modified with a continuous weighting factor η. Some
useful details in this regard can be derived from results in [100].

One natural application of the total variation is to give a suitable definition of
the perimeter of a wide class of sets.
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Definition 2.1.6. Let E ⊂ Rn be a Lebesgue measurable set and let Ω ⊂ Rn be an
open set. The perimeter of E in Ω, denoted P(E; Ω), is the variation of χE in Ω,
that is,

P(E; Ω) := |DχE |(Ω) = sup

{
n∑
i=1

∫
Ω
φidDiu : φ ∈ C0(Ω;Rn), ||φ||C0(Ω;Rn) ≤ 1

}
.

The set E is said to have finite perimeter in Ω if P(E; Ω) <∞, or in other words if
χE ∈ BV (Ω). If Ω = Rn, it is standard to write P(E) := P(E;Rn).

Given a set E of finite perimeter we may naturally define a normal vector via

νE(x) := −νχE (x) = − DχE
|DχE |

(x) = − lim
r→0

DχE(Br(x))

|DχE |(Br(x))
, x ∈ supp(DχE ).

(2.1.2)
Again, by the Besicovitch theorem this object is well-defined for |DχE | a.e. x.

Definition 2.1.7. The reduced boundary of E, denoted by ∂∗E, is the set of all
points in supp(|DχE |) where equation (2.1.2) holds.

Moreover, by the structure theorem for sets of finite perimeter, (see, e.g., [48],
Theorem 2, (iii), page 205), if E has finite perimeter in Rn, then for any Borel set
F ⊂ Rn,

P(E;F ) = Hn−1(∂∗E ∩ F ).

This is somewhat natural in light of (2.1.1).
The next theorem presents the coarea formula, which is a cornerstone of geo-

metric measure theory. A proof for Lipschitz functions can be found in [48], while a
proof for Sobolev functions can be found in [76], and was originally given by Federer
[49].

Theorem 2.1.8. Let u ∈ W 1,p(Ω), with p ≥ 1, and Ω ⊂ Rn an open set. Then for
any g ∈ L1(Ω), we have that∫

Ω
g(x)|∇u(x)| dx =

∫
R

∫
{u=s}

g(x) dHn−1(x) ds.

The next theorem is the isoperimetric inequality. This problem has a very old
history (dating back to the Greeks), but was first proved up to modern standards
by Steiner. His proof can be found in [75], Chapter 14.

Theorem 2.1.9. Let E ⊂ Rn, n ≥ 2, be a set of finite perimeter. Then either E or
Rn \ E has finite Lebesgue measure and

min{Ln(E), Ln(Rn \ E)}n−1
n ≤ ω

−1/n
n

n
P(E), (2.1.3)

where equality holds if and only if E is a ball.

A similar inequality holds in bounded domains, and can be found in [77], Corol-
lary 3.2.1 and Lemma 3.2.4, see also [37] and [1].

Proposition 2.1.10. Let Ω ⊂ Rn be bounded, connected and Lipschitz. Then there
exists a constant C > 0 such that for any E ⊂ Ω

P(E; Ω) ≥ C min{Ln(E),Ln(Ω\E)}n−1
n .
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KΦ KΦ◦

Figure 2.1: An example of KΨ and KΨ◦ .

2.2 Anisotropic Extensions of the Perimeter Function

This section will extend the results of the previous section, namely the central re-
sults of geometric measure theory, to the anisotropic case. Anisotropic energies are
common in materials science problems, particularly in relation to crystals [64, 107].
Most of these results correspond very closely to those in the classical, isotropic case,
albeit with more involved proofs. Because these results are not as well-known, this
section will give precise references wherever possible.

Throughout this section Ψ : Rn → [0,∞) will be a convex function which is
positively 1-homogeneous, meaning that, for t ∈ R and x ∈ Rn,

Ψ(tx) = |t|Ψ(x). (2.2.1)

Furthermore, for simplicity this work will assume that Ψ satisfies

C1|x| ≤ Ψ(x) ≤ C2|x| (2.2.2)

and that Ψ is scaled so that the set KΨ := {x : Ψ(x) ≤ 1} satisfies

Ln(KΨ) = ωn.

Some references call Ψ the gauge of the set K. The support function of K, which is
denoted by Ψ◦(x) is given by

Ψ◦(x) := sup
ξ∈KΨ

〈ξ, x〉.

It is straightforward to show that Ψ◦ is also a convex, 1-homogeneous function and
that Ψ and Ψ◦ are polar to each other. It is then natural to define

KΨ◦ := {x : Ψ◦(x) ≤ 1}.

The convex sets KΨ and KΨ◦ are in fact polar to each other. The study of support
functions and polars is central to convex analysis, see Sections 13-15 in [94] for a
complete treatment.

Example 2.2.1. Suppose that Ψ(x) = 1√
n

∑
i |xi|, namely Ψ is a rescaled `1 norm.

Then KΨ is the rescaled unit ball, Ψ◦ is the `∞ norm and KΨ◦ is the `∞ unit ball
(see Figure 2.1).

With these definitions in hand it is possible to define an anisotropic version of
the BV norm.
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Definition 2.2.2. For any open set Ω ⊂ Rn, given u ∈ BV (Ω), we define the total
variation with respect to the gauge Ψ by

|Du|Ψ(Ω) := sup

{∫
Ω
udivφdx : φ ∈ C1

0 (Ω;Rn), φ(x) ∈ KΨ◦ for all x ∈ Ω

}
.

Similarly, given a set with finite perimeter we define the perimeter with respect to
the gauge Ψ via

PΨ(E; Ω) := |DχE |Ψ(Ω).

When Ψ(x) = |x| it is clear that these definitions coincide with the usual total
variation and perimeter. If a function u ∈ BV (Ω) then, due to equation (2.2.2),
|Du|Ψ(Ω) <∞. Similarly if u ∈ L1(Ω) and |Du|Ψ(Ω) <∞ then u ∈ BV (Ω).

The following theorem can be found in [9].

Theorem 2.2.3. Given a function u ∈ BV (Ω), the total variation with respect to
the gauge Ψ permits the following integral representation:∫

Ω
Ψ

(
Du

|Du|

)
dDu(x) = |Du|Ψ(Ω).

Furthermore, a type of coarea formula holds, namely

|Du|Ψ(Ω) =

∫
R

PΨ({u > s}; Ω) ds,

and a version of the structure theorem holds, specifically

PΨ(E; Ω) =

∫
∂∗E

Ψ(νE) dHn−1.

Remark 2.2.4. If u ∈W 1,1(Ω) then in fact we have that∫
Ω

Ψ(Du) dx = |Du|Ψ(Ω).

An appropriate version of the isoperimetric inequality also holds. This is known
as the Wulff problem, and was completely treated in the setting of sets of finite
perimeter by Fonseca [52] and Fonseca and Müller [54], see also [106] for earlier
work.

2.3 Properties of Perimeter Minimizers and First and
Second Variation Formulas

This section reviews some of the classical theory of volume-constrained perimeter
minimizers. The definitions here are mostly classical, and all of them can be found
in Chapter 17 of [75]. The first step is to define a suitable class of variations of sets.

Definition 2.3.1. Let Ω ⊂ Rn be open. A one-parameter family {ft}t of diffeo-
morphisms of Rn is a smooth function

(x, t) ∈ Rn × (−ε, ε) 7→ f(t, x) =: ft(x) ∈ Rn, ε > 0,

such that ft : Rn → Rn is a diffeomorphism of Rn for each fixed |t| < ε. In
particular, {ft}|t|<ε is called a local variation in Ω if it defines a one-parameter
family of diffeomorphisms such that

f0(x) = x for all x ∈ Rn,
{x ∈ Rn : ft(x) 6= x} ⊂ ⊂ Ω for all 0 < |t| < ε.
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It follows from the previous definition that given a local variation {ft}|t|<ε in Ω,
then

E∆ft(E) ⊂⊂ Ω for all E ⊂ Rn.

Moreover, one can show that there exists a compactly supported smooth vector field
V ∈ C∞c (Ω;Rn) such that the following expansions hold uniformly on Rn,

ft(x) = x+ V (x) +O(t2), ∇ft(x) = Id + t∇V (x) +O(t2), (2.3.1)

and V satisfies

V (x) =
∂ft
∂t

(x, 0) x ∈ Rn.

Definition 2.3.2. The smooth vector field V in (2.3.1) is called initial velocity of
{ft}|t|<ε.

The following result establishes an explicit expression, given in terms of the initial
velocity V , for the first variation of the perimeter of a set E, with respect to local
variations {ft}|t|<ε in Ω, that is, a formula for

d

dt

∣∣∣
t=0

P(ft(E); Ω).

Theorem 2.3.3 (First Variation of Perimeter). Let Ω ⊂ Rn be open, E a set of
locally finite perimeter and {ft}|t|<ε a local variation in Ω. Then

P(ft(E); Ω) = P(E; Ω) + t

∫
∂∗E

divEV dHn−1 +O(t2), (2.3.2)

where V is the initial velocity of {ft}|t|<ε and divEV : ∂∗E → R, defined by

divEV (x) := divV − νE(x) · ∇V (x)νE(x), x ∈ ∂∗E, (2.3.3)

is a Borel function called the boundary divergence or tangential divergence of V on
E.

In light of the form of the first variation, it is natural to seek a suitable version of
the divergence theorem. The version given here requires that surfaces possess some
classical regularity, and can be found in [75], Theorem 11.8 and equation 11.14.

Theorem 2.3.4. Let M ⊂ Rn be a C2–hypersurface with boundary Γ. Then there
exists a normal vector field HM ∈ C(M ;Rn) to M and a normal vector field νMΓ ∈
C1(Γ;Sn−1) to Γ such that for every V ∈ C1

c (Rn;Rn)∫
M

divMV dHn−1 =

∫
M
V ·HMdHn−1 +

∫
Γ
(V · νMΓ )dHn−2,

where HM is the mean curvature vector to M and divMV is the tangential diver-
gence of V on M , defined by (2.3.3). Furthermore, νMΓ · νM = 0.

In light of this divergence theorem, the formula (2.3.2) suggests that volume-
constrained perimeter minimizers will necessarily have constant mean curvature.
That is precisely the content of the next theorem.

Theorem 2.3.5 (Constant Mean Curvature). Let Ω ⊂ Rn be an open set and let
E0 ⊂ Ω be a volume-constrained perimeter minimizer in the open set Ω. Then there
exists λ0 ∈ R such that∫

∂∗E
divEV dHn−1 = λ0

∫
∂∗E

(V · νE)dHn−1 for all V ∈ C∞c (Ω;Rn).

In particular, E0 has distributional mean curvature in Ω constantly equal to λ0
n−1 .
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It turns out that surfaces with constant mean curvature enjoy regularity proper-
ties much like those of minimal surfaces. In particular, the following theorem holds,
see e.g. [58], [60].

Theorem 2.3.6. Let Ω ⊂ Rn be a bounded domain of class C2,ᾱ, and let E0 ⊂ Ω
be a volume-constrained local perimeter minimizer. Then the set ∂E0 ∩ Ω can be
decomposed into two sets ∂E0 ∩ Ω = Reg(∂E0) ∪ Sing(∂E0) such that

• The set Sing(∂E0) is empty for n ≤ 7, it is finite for n = 8 and has dimension
of at most n− 8 for n > 8.

• The set Reg(∂E0) ∩ Ω can be locally represented as an analytic surface of
constant mean curvature κE0.

• The set Reg(∂E0)∩∂Ω can be locally represented as a C2,ᾱ surface of constant
mean curvature κE0 which intersects ∂Ω orthogonally.

The next goal will be to characterize the second variation. In order to do so, it
is necessary to consider the signed distance function of a set E.

Proposition 2.3.7. Let Ω ⊂ Rn be open and E ⊂ Ω open with C2 boundary. Then
there exists an open set Ω′ with Ω ∩ ∂E ⊂ Ω′ ⊂ Ω such that the signed distance
function dE : Rn → R of E,

dE(x) :=

{
dist(x, ∂E) if x ∈ Rn \ E,
−dist(x, ∂E) if x ∈ E,

(2.3.4)

satisfies dE ∈ C2(Ω′).

The previous result allows one to define a vector field NE ∈ C1(Ω′;Rn) and a
tensor field AE ∈ C0(Ω′; Sym(n)) via

NE := ∇dE , AE := ∆dE on Ω′.

In particular, one can show that for every x ∈ Ω∩∂E there exist r > 0, vector fields
{τh}n−1

h=1 ⊂ C1(Br(x);Sn−1), and functions {κh}n−1
h=1 ⊂ C0(Br(x)) such that {τh}n−1

h=1

is an orthonormal basis of Ty∂E for every y ∈ Br(x)∩ ∂E, {τh}n−1
h=1 ∪ {NE(y)} is an

orthonormal basis of Rn for every y ∈ Br(x), and

AE(y) =
n−1∑
h=1

κh(y)τh(y)⊗ τh(y) for all y ∈ Br(x).

Definition 2.3.8. Let Ω ⊂ Rn be open and let E ⊂ Ω with C2 boundary. For any
y ∈ Br(x) ∩ ∂E, then AE(y) seen as symmetric tensor on Ty∂E ⊗ Ty∂E is called
second fundamental form of ∂E at y, while {τh}n−1

h=1 ⊂ Sn−1 ∩ Ty∂E and {κh}n−1
h=1

are called the principal directions and the principal curvatures of ∂E at y.

For any matrix M the Frobenius norm, which will be denoted here by |M|, is
defined via

|M| :=
√∑

i

∑
j

|Mij |2. (2.3.5)

Proposition 2.3.9. Let Ω ⊂ Rn be open and let E ⊂ Ω with C2 boundary. The
scalar mean curvature κE of the C2–hypersurface Ω ∩ ∂E is locally representable as

κE(y) =
1

(n− 1)

n−1∑
h=1

κh(y) for all y ∈ Br(x) ∩ ∂E,
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while the second fundamental form satisfies

|AE(y)|2 =
n−1∑
h=1

(κh(y))2 for all y ∈ Br(x) ∩ ∂E.

We are now in the position to state the following.

Theorem 2.3.10 (Second Variation of Perimeter). Let Ω ⊂ Rn be open, let E be
an open set such that ∂E∩Ω is C2, ζ ∈ C∞c (Ω), and let {ft}|t|<ε be a local variation
associated with the normal vector field V = ζNE ∈ C1

c (Ω;Rn). Then

d2

dt2

∣∣∣
t=0

P(ft(E); Ω) =

∫
∂E
|∇Eζ|2 +

(
(n− 1)2κ2

E − |AE |2
)
ζ2dHn−1,

where ∇Eζ := ∇ζ − (νE · ∇ζ)νE denotes the tangential gradient of ζ with respect to
the boundary of E.

Using the characterization of the first and second variation, it is possible to
obtain the following estimate on level sets of the distance function.

Lemma 2.3.11. Suppose that E0 ⊂ Ω is a volume-constrained perimeter minimizer
in Ω. Define the function η(s) := Hn−1({dE(x) = s}), where dE is the signed
distance function (see (2.3.4)). Then η is twice differentiable at zero and satisfies

η(0) = P(E; Ω),

η′(0) = (n− 1)κE P(E; Ω),

η′′(0) = (n− 1)2κE P(E; Ω)

−
∫
∂E0

|AE0 |2 dHn−1 −
∫
∂E0∩∂Ω

ν∂E0 ·AΩν∂E0 dHn−2,

where κE is the mean curvature of E. Furthermore, the function η is bounded.

Remark 2.3.12. A careful proof of the fact that this function is twice differentiable
at 0 can be found in [73]. The formulas given here can be found in [103]. The fact
that η is bounded comes from [88].

Remark 2.3.13. If one instead considers

φ(r) := P ({dE0 ≤ s(r)}; Ω) where Ln({dE0 ≤ s(r)}) = r,

and sets r0 = Ln(E0) then the previous formulas become

φ(r0) = P (E0; Ω),

φ′(r0) = κE0(n− 1),

φ′′(r0) = −
∫
∂E0
|AE0 |2 dHn−1 +

∫
∂E0∩∂Ω ν∂E0 ·AΩν∂E0 dHn−2

P (E0; Ω)2
.

This computation can be found, for example, in [103].

Finally, there is a significant rigidity in constant mean curvature surfaces. One
way to study this is to consider the following definition:

Definition 2.3.14. A set E0 ⊂ Ω is called a (Λ, ρ0) perimeter minimizer in Ω if

P (E0;Bρ(x0)) ≤ P (E;Bρ(x)) + ΛLn(E0∆E),

for all ρ < ρ0 and all measurable E satisfying

E0∆E ⊂⊂ Bρ(x) ∩ Ω. (2.3.6)
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In particular, any volume-constrained perimeter minimizer is a (Λ, ρ0) minimizer
for Λ chosen appropriately (see Example 21.3 in [75]). The following result char-
acterizes a sort of rigidity of a family of (Λ, ρ0) perimeter minimizers, see Theorem
26.6 in [75].

Theorem 2.3.15. Suppose that a sequence {Ek} of (Λ, ρ0) minimizers in Ω con-
verges in L1(Ω) to a (Λ, ρ0) minimizer E0. Then the sets in fact converge in C1,γ,
for any γ < 1/2.

2.4 Γ-Convergence and Asymptotic Expansion

This section reviews the well-established theory of Γ-convergence and asymptotic
expansion by Γ-Convergence.

First, the following definition of Γ-convergence is standard and can be found in
[40], [21].

Definition 2.4.1. Let X be a metric space and let {Fε} be a family of functions,
where Fε : X → R for any ε > 0. The family of functions {Fε} is said to Γ-converge
to F0 : X → R if the following two criteria are satisfied:

• For any xε → x in X it follows that F0(x) ≤ lim infε→0+ Fε(xε).

• For any x ∈ X there exists a sequence xε → x so that lim supε→0+ Fε(xε) ≤
F0(x).

By way of notation, Γ-convergence will sometimes be written Fε Γ−→ F0.

Remark 2.4.2. The notion of Γ-convergence in a metric space can be stated equiv-
alently in terms of the functions

Γ- lim inf Fε(x) := sup
r>0

lim inf
ε→0+

inf
y∈B(x,r)

Fε(y)

Γ- lim supFε(x) := sup
r>0

lim sup
ε→0+

inf
y∈B(x,r)

Fε(y).

These two functions are always lower semicontinuous (see Proposition 6.8 in [40]).
It is also clear that Γ- lim inf Fε ≤ Γ- lim supFε, with equality of the two functions
precisely when Fε Γ-converges.

This definition was first given by De Giorgi in [42]. This definition is primarily
motivated by seeking minimal conditions which guarantee the convergence of minima
and minimizers of a family of functionals. This notion will be made more precise by
Theorem 2.4.5, which is sometimes called the fundamental theorem of Γ-convergence.
In stating that theorem, the following definitions are used.

Definition 2.4.3. A function F : X → R is called coercive if the closure of the set
{F ≤ t} is compact in X for any t ∈ R.

Definition 2.4.4. A family of functions {Fε}, with Fε : X → R, is called equi-
coercive if the following holds for any family {xε}:

sup
ε
Fε(xε) <∞ =⇒ {xε} is precompact in X.

Theorem 2.4.5. Let X be a metric space and let {Fε} be a family of functions,
where Fε : X → R for any ε > 0. Suppose that the family {Fε} is equicoercive and

that Fε Γ−→ F0 (see Definition 2.4.4). Then the following two properties hold:
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• F0 attains its infimum and satisfies minX F0 = limε→0 infX Fε.

• If, for εk → 0+, the sequence xk satisfies Fεk(xk) = infX Fεk + o(1), then up
to a subsequence (not relabeled) xk converges to some x∗ which is a minimizer
of F0.

One useful point of view is that F0 provides a type of selection criteria on min-
imizers for the functionals Fε, or in other words by studying the minimizers of F0

it is possible to deduce information about the minimizers of Fε (if they exist), in at
least an asymptotic sense. In other words, any minimizing sequences of the Fε that
converges must converge to a minimizer of F0.

It is, however, important to note that minimizers of F0 do not necessarily corre-
spond to limits of minimizers of the Fε. A simple example is instructive.

Example 2.4.6 ([22] Remark 2.6). Let X = [0, 1] and Fε = εx2. Then Fε Γ−→ 0,
which is minimized at any x ∈ X, but Fε is only minimized at x = 0.

The following very specific case provides a framework where this phenomenon
cannot occur, and was first given in [104], see also [69] and [22].

Proposition 2.4.7. Let X be a metric space and let {Fε} be a family of functions,
where Fε : X → R for any ε > 0. Suppose that, for all ε > 0, Fε is coercive (see
2.4.3) and lower semicontinuous. Also suppose that the family {Fε} is equicoercive,

and that Fε Γ−→ F0 (see Definitions 2.4.1 and 2.4.4) . Suppose furthermore that
x̃ ∈ X is a strict local minimizer of F0. Then there exists a sequence xε → x̃ which
are local minimizers of Fε for all ε sufficiently small.

It is clear that Example 2.4.6 is somewhat artificial: if one divides by ε (which
does not affect the minimization problem) then all the confusion disappears. This
suggests the need to derive a sort of expansion of the functionals in terms of Γ-
convergence.

One method for producing such an expansion is known as the asymptotic devel-
opment by Γ-convergence. This was first introduced in [13].

Definition 2.4.8. Let X be a metric space and let {Fε} be a family of functions,
where Fε : X → R for any ε > 0. We say that an asymptotic development of order
k

Fε = F (0) + εF (1) + · · ·+ εkF (k) + o(εk)

holds if there exist functions F (i) : X → R, i = 0, 1, . . . , k, such that the functions

F (i)
ε :=

F (i−1)
ε − infX F (i−1)

ε
(2.4.1)

are well-defined and

F (i)
ε

Γ−→ F (i), (2.4.2)

where F (0)
ε := Fε.

One major aim of carrying out such an asymptotic expansion is that it may
provide additional selection criteria for limits of minimizers. This is summarized in
the following proposition.
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Proposition 2.4.9. Let F (i) be an asymptotic development of order k of a family
of functions {Fε}. Define

Ui := {minimizers of F (i)}.

It then follows that
F (i) ≡ ∞ in X\Ui−1,

and that
{limits of minimizers of Fεm} ⊂ Uk ⊂ · · · ⊂ U0, (2.4.3)

with
inf Fεm = inf F (0) + εm inf F (1) + · · ·+ εkm inf F (k) + o(εkm)

for every sequence εm → 0+, provided inf F (i) <∞ for all i = 0, . . . , k.

Simple examples show that each of the inclusions in (2.4.3) may be strict (see
[13]). Thus asymptotic development by Γ-convergence provides a selection criteria
for minimizers of F (0). Some other works that describe asymptotic development via
Γ-convergence include [23], [50].

2.5 Semigroups and Evolution Families

This section outlines some classical results for “solving” linear problems of the form

d

dt
u = A(t)u, u(0) = u0 (2.5.1)

when u takes values in some Banach space X and A(t) is an unbounded linear
operator. These results mostly come from [91].

The first step is to consider the problem when A does not depend on t. This
case is the subject of semigroup theory.

Definition 2.5.1. A family {S(t)}t∈[0,∞) with elements in L(X), with X a Banach
space, is called a strongly continuous semigroup if it satisfies

S(0) = I,

S(t)S(s) = S(t+ s) for all t, s ≥ 0,

lim
t→0

S(t)x = x for all x ∈ X.

A linear operator A : D(A)→ R is called the generator of S if

Ax = lim
t→0+

S(t)x− x
t

,

where D(A) ⊂ X is the subspace of X for which the limit exists.

Another name for a strongly continuous semigroup is a C0 semigroup. This work
will use the word “semigroup” in place of “C0 semigroup” for brevity.

A semigroup will satisfy equation (2.5.1) in the sense that

d

dt
S(t)x = AS(t)x

for all x ∈ D(A) (see, e.g., Theorem 2.4 in [91]). When A is the generator of a
semigroup S(t), it is customary to write S(t) = eAt.
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The following proposition gives a characterization of generators of semigroups,
see Theorem 1.5.3 in [91]. By way of definition, the resolvent set of a linear operator
A, namely the set of λ ∈ C such that (A− λI) has a bounded inverse R(λ;A), will
be denoted by ρ̃(A).

Proposition 2.5.2. A linear operator A : dom(A) ⊂ X → X, with domain
of definition dom(A), is the infinitesimal generator of a semigroup eAt satisfying
‖eAt‖ ≤Meωt if and only if

• A is closed and dom(A) is dense in X.

• The set ρ̃(A) contains the ray (ω,∞) and

‖R(λ;A)n‖ ≤ M

(λ− ω)n
for λ > ω.

In general the previous condition is difficult to verify. One particular case where
this is possible is when ‖S(t)‖ ≤ 1 for all t. In this case the semigroup is called a
semigroup of contractions. The following definition and proposition give a charac-
terization of semigroups of contractions.

Definition 2.5.3. Let x ∈ X, with X a Banach space. Define

J (x) :=
{
x∗ ∈ X∗ : 〈x∗, x〉X∗,X = ‖x‖2X = ‖x∗‖2X∗

}
. (2.5.2)

A linear operator A with domain of definition dom(A) ⊂ X is called dissipative if
for every x ∈ dom(A) there exists an x∗ ∈ J (x) such that

〈x∗, Ax〉X∗,X ≤ 0.

The next result is known as the Lumer–Phillips Theorem, see e.g. [45] Theorem
II.3.15. It links semigroups of contractions with dissipative operators.

Proposition 2.5.4. The following are equivalent for a densely-defined, dissipative
operator A:

1. The range of (A− λI) is dense for some λ > 0.

2. A is closable and its closure (also denoted by A) generates a contraction semi-
group.

The next result will provide a dissipation estimate in later analysis for two sym-
metric operators. It can be found in [66], Theorem 4.12.

Proposition 2.5.5. Suppose that Λ is a self-adjoint operator on a Hilbert space X,
with 〈Λx, x〉 ≤ 0. Suppose that B is a symmetric operator on X with ‖Bx‖ ≤ ‖Λx‖.
Then

〈(Λ +B)x, x〉 ≤ 0.

Another common avenue for proving that a linear operator generates a semigroup
is to use perturbation theory. The following perturbation result is given in Theorem
3.1.1 in [91].

Proposition 2.5.6. Suppose that A is the generator of a semigroup satisfying
‖eAt‖ ≤ M1e

ω1t, and that B is a bounded operator. Then A + B generates a semi-
group satisfying ‖e(A+B)t‖ ≤M2e

ω2t.
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Finally, the following proposition gives some information on the inhomogeneous
case, and can be found in Corollary 4.2.2 in [91].

Proposition 2.5.7. Suppose that f ∈ L1(0, T,X), with X a Banach space. Suppose
that A is the generator of a semigroup eAt on X. Then the initial value problem

d

dt
x = Ax+ f, x(0) = x0 ∈ X

has at most one solution. If it has a solution, then

x(t) = eAtx0 +

∫ t

0
eA(t−s)f(s) ds.

In the previous proposition, the integral is naturally meant in the sense of
Bochner integrals. Some basic references on Bochner integrals and their proper-
ties include [24] and [43].

All of the previous results are in the autonomous case, namely the case where A
is independent of time in (2.5.1). The following definition treats the time dependent
case.

Definition 2.5.8. Given a Banach space X, a two-parameter family {U(t, s)}0≤s≤t≤T ,
with T ∈ (0,∞], taking values in L(X), is called an evolution family if

U(s, s) = I,

U(t, r)U(r, s) = U(t, s),

(t, s) 7→ U(t, s)x is continuous for all x ∈ X.

A family of linear operators {A(t)}t∈[0,T ], satisfying Y ⊂ dom(A(t)) for all t ∈
[0, T ] and for some dense Y ⊂ X, is said to generate an evolution family U if

∂+

∂t
U(t, s)x|t=s = A(s)x,

∂

∂s
U(t, s)x = −U(t, s)A(s)x,

for all x ∈ Y .

The results for the construction of such operators and their properties generally
have complicated statements, primarily because the domain of A may vary in time.
For this reason, some of the results here are stated in terms of the spaces X1+k,
which were defined in (1.2.12), and which are the only spaces where these results
will be used in this work.

To begin, it is important to understand how evolution families are related to the
solution of (2.5.1). The following proposition answers this question in a classical
context, see Theorem 5.4.2 in [91].

Proposition 2.5.9. Suppose that, for some k ≥ 0, {A(t)}t∈I is the generator of
an evolution family U in X1+k on the interval I = [0, T ), with T = ∞ permitted.
Furthermore, suppose that for some h ∈ C(I;X2+k)

⋂
C1(I;X1+k) we have that

d

dt
h = A(t)h(t)

is satisfied in X1+k. Then it must be that U(t, 0)h(0) = h(t).
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The next two propositions give specific situations where an evolution family can
be constructed from a family of linear operators {A(t)}. The first proposition comes
from Corollary 5.4.7 and 5.4.8 in [91].

Proposition 2.5.10. Let X be a Banach space and let I = [0, T ), with T = ∞
permitted. Suppose that, for any fixed t ∈ I, A(t) is the generator of a semigroup
{SA(t)(s)}s≥0 which satisfies

‖SA(t)(s)‖L(X) ≤ e−λs for all s ≥ 0,

where λ is independent of t. Also suppose that dom(A(t)) ≡ D is independent of t
and that for all x ∈ D we have that A(t)x is C1 in X. Then the family of operators
{A(t)}t∈I generates an evolution family U on X which satisfies

‖U(t, s)‖L(X) ≤ e−λ(t−s) for 0 ≤ s ≤ t < T.

Furthermore for x0 ∈ D we have that x(t) := U(t, 0)x0 is the unique solution of the
non-autonomous Cauchy problem

d

dt
x(t) = A(t)x(t), x(0) = x0.

The next proposition is a direct application of Theorem 5.3.1 in [91].

Proposition 2.5.11. Let I = [0, T ), with T = ∞ permitted, and suppose that a
family of linear operators {A(t)}t∈I satisfies the following for all t ∈ I.

1. A(t) generates a contraction semigroup on X1+k.

2. A(t) generates a contraction semigroup on X2+k.

3. A(t) is a bounded operator from X2+k to X1+k, and the map t 7→ A(t) is
continuous from I to L(X2+k, X1+k).

Then {A(t)}t∈I generates an evolution family VX1+k
satisfying ‖VX1+k

(t, s)‖L(X1+k) ≤
1.

The following is Lemma 5.4.5 in [91].

Proposition 2.5.12. Let U(t, s) be an evolution system on a Banach space X sat-
isfying ‖U(t, s)‖ ≤ M . Let B(t) be a strongly continuous family of bounded linear
operators on X. Then there exists a unique evolution family V (t, s) of bounded linear
operators on X such that

V (t, x)x = U(t, s)x+

∫ t

s
V (t, r)B(r)U(r, s)x dr.

Remark 2.5.13. Proposition 2.5.12 readily implies that if A(t) is the generator of
an evolution family U , then A(t) +B(t) is the generator of an evolution family V .

2.6 Other Preliminaries

The following lemma is a slight modification of Proposition 1 in [39]. This thesis
will use this lemma in studying rearrangement operators. This lemma is particularly
noteworthy because it does not make any assumptions about linearity or continuity.
The proof is included here for convenience.
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Lemma 2.6.1. Let M and N be measure spaces and let C ⊂ L1(M) be a closed
under ∨, meaning that if f, g ∈ C then f ∨ g ∈ C. Let Z be a mapping from
C → L1(N) which satisfies∫

M
f =

∫
N
Z(f) for all f ∈ C.

Then the following are equivalent:

(i) f, g ∈ C and f ≤ g =⇒ Z(f) ≤ Z(g).

(ii)
∫
N(Z(f)− Z(g))+ ≤

∫
M(f − g)+ for all f, g ∈ C.

(iii)
∫
N |Z(f)− Z(g)| ≤

∫
M |f − g| for all f, g ∈ C.

Proof. If we have (i) then Z(f) ≤ Z(f ∨ g), and thus∫
N

(Z(f)− Z(g))+ ≤
∫
N
Z(f ∨ g)− Z(g)

=

∫
M

(f ∨ g)− g =

∫
M

(f − g)+,

which is (ii). If we have (ii) then∫
N
|Z(f)− Z(g)| =

∫
N

(Z(f)− Z(g))+ +

∫
N

(Z(g)− Z(f))+

≤
∫
M

(f − g)+ +

∫
M

(g − f)+ =

∫
M
|f − g|,

which gives (iii). If we have (iii), and f, g ∈ C, with g ≤ f , then we use the identity
2s+ = |s|+ s to show that

2

∫
N

(Z(g)− Z(f))+ =

∫
N
|Z(g)− Z(f)|+

∫
N
Z(g)− Z(f)

≤
∫
M
|g − f |+

∫
M
g − f = 0,

which in turn implies that Z(g) ≤ Z(f) a.e., which is (i). This concludes the proof.

The next proposition is a C1 touching result, which originated in the study of
Hamilton-Jacobi equations. The statement and proof can be found in [47], p. 584.

Proposition 2.6.2. Assume that u : Rd → R is a continuous function, which is
differentiable at x0. Then there exists a function v ∈ C1(Rd) such that u(x0) = v(x0)
and u− v has a strict local maximum at x0.

Remark 2.6.3. By considering −u it is clear that maximum can be replaced with
minimum in the statement of the previous lemma.

The next result gives a sufficient condition for a function to be concave, and can
be found in Lemma 2.7 in [103].

Proposition 2.6.4. Let f : I → R be a lower semicontinuous function defined on
an interval I and suppose f is locally concave in the sense that its graph admits
a local upper support line in a neighborhood of any point on the graph. Then f is
concave.
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Chapter 3

Generalized Rearrangement of
Functions on a Bounded Domain

This chapter studies a novel type of rearrangement of a function f : Ω → R, with
Ω ⊂ Rn. Before introducing this new type of rearrangement, it is useful to review
the definition and properties of the classically-studied spherically decreasing rear-
rangement (see e.g. [67, 68]). The spherically decreasing rearrangement is defined
as follows: Given any positive, L1 function u, we define the distribution function
%u(s) := Ln({u > s}). Then define

gu(t) := sup{s ∈ R : %u(s) > ωnt
n},

where ωn is the measure of the unit ball in Rn, and define u∗, the spherically de-
creasing rearrangement, via

u∗(x) := gu(|x|).
This rearrangement is constructed using a simple approach: level sets of of u are
rearranged into balls centered at the origin.

The spherically decreasing rearrangement has several important properties. First,
the very definition of u∗ readily implies that u∗ and u are equimeasurable, meaning
that Ln({u∗ > s}) = Ln({u > s}) for almost every s. From this property, it is
straightforward to show that

∫
ψ(u) dx =

∫
ψ(u∗) dx, for any Borel function ψ.

Second, this rearrangement is order preserving, meaning that if u ≥ v then u∗ ≥
v∗. This property, along with equimeasurability, implies [39] that the rearrangement
operator is a contraction on Lp spaces, meaning that

‖u∗ − v∗‖Lp ≤ ‖u− v‖Lp . (3.0.1)

{u > s} {u∗ > s}

Figure 3.1: Rearranging the level sets of u.

35
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Second, if u ∈W 1,p, then u∗ will be in W 1,p and

‖u∗‖W 1,p ≤ ‖u‖W 1,p (3.0.2)

This is known as the Pólya–Szegő inequality. The proof of this is classical, see e.g.
[67] [72]. This inequality has been used to study the symmetries of solutions to
certain elliptic problems[67], as well as to establish comparison principles [105]. The
present interest lies in the fact that the Pólya–Szegő inequality permits the reduc-
tion of functional problems in n-dimensions to simpler weighted, one-dimensional
problems.

For example, in [41], Dal Maso, Fonseca, and Leoni use the spherically decreasing
rearrangement to study Γ-limits of the Cahn–Hilliard functional (1.1.1) in a domain
when both a mass constraint and a Dirichlet condition are imposed. The Dirichlet
condition is crucial in their analysis because it enables the use of the Pólya–Szegő
inequality, which subsequently reduces the problem to a one-dimensional problem.

In light of equations (3.0.1) and (3.0.2), a natural question is the smoothness of
the rearrangement operator. It turns out that the operator is not smooth on W 1,p

[7]. This is essentially due to the non-local nature of the rearrangement. However,
the operator is actually continuous on fractional Sobolev spaces [7].

The proof of the Pólya Szegő inequality uses relatively simple tools. Specifically,
it uses the coarea formula (2.1.8), the isoperimetric inequality (2.1.3), and some
simple properties of the decreasing rearrangement in one dimension, namely (3.3.2).

The following section presents a natural extension of this proof to the setting of
a bounded domain. This extension is independent of boundary conditions, and is
hence well-suited to Neumann problems. In particular, the extension that we present
here is very well-suited to studying sharp interface problems. A specialized version
of the results presented here was used by Cianchi et. al. [34] [38] to study sharp
bounds on a class of Poincaré constants.

3.1 Definition of the Rearrangement

This section assumes that

Ω ⊂ Rn bounded and open with Ln(Ω) = 1.

Furthermore, this section considers a continuous function I : R → R, which
satisfies the following assumptions

I(v) = 0 for v ∈ R\(0, 1), (3.1.1)

I(v) ≥ C min{v, 1− v}n−1
n for v ∈ (0, 1). (3.1.2)

Next, a measurable function u : Ω→ R is said to have I comparable level sets if

P({u > s}; Ω) ≥ I(Ln({u > s})).

In particular, if I = IΩ, where IΩ is the Isoperimetric Function of Ω, given by

IΩ := inf{P(E; Ω) : E ⊂ Ω,Ln(E) = v},

then any measurable function u will have I comparable level sets. Furthermore, if Ω
is connected and Lipschitz then IΩ will satisfy (3.1.1) and (3.1.2) due to Proposition
2.1.10.



3.1. DEFINITION OF THE REARRANGEMENT 37

This section considers the general function I because in subsequent sections it
will be necessary to consider certain modifications of the isoperimetric function IΩ.
For example, in some settings it will be necessary to consider either an L1 localized
version of IΩ or a smoothed version of the same.

Next, define a function VΩ as a solution to the following Cauchy problem:

d

dt
VΩ(t) = I(VΩ(t)), VΩ(0) = 1/2. (3.1.3)

Since I is bounded and continuous, the Cauchy problem (3.1.3) admits a global
solution VΩ : R → [0, 1]. It follows from inequality (3.1.2) that there is a T1 > 0 so
that 0 < VΩ(t) for −T1 < t < 0 and VΩ(−T ) = 0. Similarly there exists a T2 > 0 so
that VΩ(t) < 1 for all t < T2 and VΩ(T2) = 1. Define

I := (−T1, T2). (3.1.4)

In what follows for y ∈ Rn let y = (y′, yn) ∈ Rn−1 × R. Next, define a set
Ω∗ ⊂ Rn, which will be a type of rearrangement of Ω, via

Ω∗ :=
{
y : yn ∈ I, y′ ∈ Bn−1(0, r(yn))

}
,

where for t ∈ I,

r(t) :=

(I(VΩ(t))

ωn−1

)1/(n−1)

and ωn−1 := Ln−1(Bn−1(0, 1)).

Note that the definition of r(t) implies that

Ln−1(Bn−1(0, r(t))) = I(VΩ(t)) (3.1.5)

for all t ∈ I.
The following lemma motivates the choice of the Cauchy problem (3.1.3).

Lemma 3.1.1. For any t ∈ I the following equalities hold:

VΩ(t) = Ln(Ω∗ ∩ {yn < t}), (3.1.6)

I(VΩ(t)) = P({yn < t}; Ω∗). (3.1.7)

Proof. Equation (3.1.6)) is proved by using Fubini’s theorem, equation (3.1.5), the
Cauchy problem (3.1.3), the fundamental theorem of calculus, and the fact that
VΩ(−T1) = 0, in that order:

Ln(Ω∗ ∩ {yn < t}) =

∫ t

−T1

Hn−1(Ω∗ ∩ {yn = s}) ds

=

∫ t

−T1

I(VΩ(s)) ds

= VΩ(t)− VΩ(−T1) = VΩ(t).

Equality (3.1.7) follows immediately from equation (3.1.5) and Definition 3.1.

Now given any measurable function u : Ω → R, define the distribution function
%u(s) := Ln({u > s}) and the following function:

gu(t) := sup{s ∈ R : %u(s) > VΩ(t)}.

Here gu is essentially an inverse of %u with respect to VΩ. Next, define a function
u∗ : Ω∗ → R as follows:

u∗(y′, yn) := gu(yn). (3.1.8)
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3.2 Fundamental Properties of the Rearrangement

The first important property of the rearranged function u∗ is that it is equimeasur-
able with u.

Lemma 3.2.1. Let u : Ω → R be a measurable function. Then the functions u∗

and u are equimeasurable, meaning that %u = %u∗. This implies that for any Borel
function ψ : R→ R,∫

Ω
ψ(u) dx =

∫
Ω∗
ψ(u∗) dy =

∫
I
ψ(gu)I(VΩ) dt,

assuming that the previous integrals are well-defined. In particular the Lp norms of
u and u∗ are preserved.

Proof. First note that, by standard arguments, %u is decreasing and right continuous
and that gu is decreasing and left continuous (see, e.g., [72], p. 478).

Let h(t) := sup{s : gu(s) > t}. Since gu is decreasing it follows that

%u∗(t) = Ln({y ∈ Ω∗ : gu(yn) > t})
= Ln({y ∈ Ω∗ : yn < h(t)}) = VΩ(h(t)),

where the last equality uses Lemma 3.1.1.
We then claim that VΩ(h(t)) = %u(t). To see this observe that since I > 0 in

(0, 1), by (3.1.3) we have that VΩ is strictly increasing and of class C1 in I. Hence:

VΩ(h(t)) = VΩ(sup{s : gu(s) > t}) = sup{VΩ(s) : gu(s) > t}
= sup{VΩ(s) : sup{τ : %u(τ) > VΩ(s)} > t}
= sup{ρ : sup{τ : %u(τ) > ρ} > t}.

For every ρ such that sup{τ : %u(τ) > ρ} > t, there exists τ > t such that
%u(τ) > ρ. But since %u is decreasing we have that %u(t) ≥ %u(τ) > ρ, which then
shows that

VΩ(h(t)) ≤ %u(t).

Now if VΩ(h(t)) < %u(t), then VΩ(h(t) < %u(t) − ε for some ε > 0. By equation
(3.2) this implies that

sup
s
{s : %u(s) > %u(t)− ε} ≤ t.

By the right continuity of %u for some δ > 0 we have that %u(t + δ) > %u(t) − ε,
which violates the previous inequality. This then implies that %u(t) = %u∗(t) for all
t, which is the desired conclusion.

To see the integral equality stated, we note that (see, e.g., Theorem B.61 in [72]):∫
Ω
ψ(u(x)) dx =

∫
R
ψ(s) d%u(s) =

∫
R
ψ(s) d%u∗(s) =

∫
Ω∗
ψ(u∗(y)) dy.

This concludes the proof.

The next proposition states that the rearrangement is a type of contraction,
and in particular is a contraction on Lp spaces. The proof of this theorem is a
straightforward adaptation of a similar result from [39]. There are several other
possible proofs, using either simple functions or the Reisz rearrangement inequality,
see e.g. Chapter 6 in [72].
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Proposition 3.2.2. Suppose that j : [0,∞) → [0,∞) is convex with j(0) = 0.
Suppose that ∫

Ω
j(|u1|) dx,

∫
Ω
j(|u2|) dx <∞, u1, u2 ∈ L1(Ω).

Then ∫
Ω∗
j(|u∗1 − u∗2|) dy ≤

∫
Ω
j(|u1 − u2|) dx.

In particular, the rearrangement operator is a contraction on Lp, meaning that

‖u∗1 − u∗2‖Lp(Ω∗) ≤ ‖u1 − u2‖Lp(Ω).

Proof. First, since j′ is a function of bounded variation, we may write, for r > 0,

j(r) =

∫ r

0
j′(s) ds =

∫ r

0

∫ s

0
dj′(t) + j′(0+) ds

= rj′(0+) +

∫ r

0

∫ r

t
ds dj′(t) = rj′(0+) +

∫ ∞
0

(r − t)+ dj′(t).

(3.2.1)

Next, for η ∈ L1(Ω), define K(η) := (η + u2)∗ − u∗2. Since u ≤ v implies that
u∗ ≤ v∗, we immediately have that if u ≤ v then K(u) ≤ K(v). We also deduce,
using Lemma 3.2.1, that∫

Ω∗
K(η) dy =

∫
Ω

(η + u2)− u2 dx =

∫
Ω
η dx. (3.2.2)

By Lemma 2.6.1 we then have that∫
Ω∗

(K(η1)−K(η2))+ dy ≤
∫

Ω∗
(η1 − η2)+ dx.

Now, we note that K(t) = t for any t ∈ R. Thus, for any t > 0,∫
Ω∗

[K(η)− t]+ dy ≤
∫

Ω
[η − t]+ dy

Since j is convex, dj′(t) is a positive measure. Thus after integrating with respect
to dj′(t), and using (3.2.1) and (3.2.2), we have that∫

Ω∗
j(K(η)) dy ≤

∫
Ω
j(η) dx,

for any η ∈ L1(Ω) such that the right hand side is finite. If we set η = u1∨u2−u2 =
(u1 − u2)+ this implies that∫

Ω∗
j((u1 ∨ u2)∗ − u∗2) dy ≤

∫
Ω
j((u1 − u2)+) dx.

Hence, by using monotonicity of the rearrangement, (·)+ and j, we find that∫
Ω∗
j((u∗1 − u∗2)+) dy ≤

∫
Ω∗
j((u1 ∨ u2)∗ − u∗2) dy ≤

∫
Ω
j((u1 − u2)+) dx.

Switching u1 and u2 and summing then completes the proof.
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Corollary 3.2.3 (Hardy-Littlewood Inequality). Let u, v ∈ L2(Ω). Then∫
Ω
uv dx ≤

∫
Ω∗
u∗v∗ dy.

Proof. By Proposition 3.2.2 we have that∫
Ω∗

[u∗]2 + [v∗]2 − u∗v∗ dy =

∫
Ω∗

[u∗ − v∗]2 dy ≤
∫

Ω
[u− v]2 dx =

∫
Ω
u2 + v2 − uv dx.

By then using Lemma 3.2.1 on the function ψ(s) = s2 we thus have that∫
Ω∗
u∗v∗ dy ≥

∫
Ω
uv dx,

as desired.

The next lemma states a basic property of the rearrangement operator: namely
that it commutes with increasing functions. This will later be used to prove that
the rearrangement operator preserves absolute continuity.

Lemma 3.2.4. Let u : Ω → R be measurable. Let H : R → R be an increasing
function. Then the following holds Ln a.e.:

H(u∗) = [H(u)]∗.

In particular, given s1 < s2, let Trs1,s2(s) := (s∧ s1)∨ s2, s ∈ R. Then the following
equality holds Ln a.e.:

Trs1,s2(u∗) = (Trs1,s2(u))∗.

Proof. Fix any t ∈ R, and let Q = {s : H(s) > t}. Since H is an increasing function
the set Q will either take the form [A,∞) or (A,∞). Thus we may write

Ln({H(u∗) > a}) = Ln({u∗ ∈ Q}).

Due to Lemma 3.2.1 we have that

Ln({u∗ ∈ Q}) = Ln({u ∈ Q}).

In turn by the definition of Q,

Ln({u ∈ Q}) = Ln({H(u) > a}).

Again applying Lemma 3.2.1 we have that

Ln({H(u) > a}) = Ln({[H(u)]∗ > a}).

This implies that H(u∗) and [H(u)]∗ are equimeasurable. By the definition of the
rearrangement and since H is increasing, it is evident that both functions are only
functions of yn, and are decreasing in yn. We will let u1(s) := H(u∗)(0, s) and
u2(s) := [H(u)]∗(0, s). It suffices to show that u1 and u2 are equal L1 a.e.. Suppose
that they are not. Then, since monotone functions are differentiable a.e., there exists
a value s∗ at which both u1 and u2 are continuous and so that u1(s∗) 6= u2(s∗).
Since both functions are monotone, this implies that L1({s ∈ I : u1(s) ≥ u2(s∗)}) 6=
L1({s ∈ I : u2(s) ≥ u2(s∗)}). However, this contradicts the fact that H(u∗) and
[H(u)]∗ are equimeasurable. This concludes the proof.
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Remark 3.2.5. Lemmas 3.1.1 - 3.2.4 notably do not assume any special properties
on u. They are simple consequences of the construction of Ω∗ and u∗. In particular,
these lemmas do not require that u have I comparable level sets. This fact will be
used later in studying the anisotropic case.

The next lemma is a straightforward analog of the isoperimetric inequality.

Lemma 3.2.6. Given u ∈ BV (Ω) with I comparable level sets, for any t ∈ R the
following must hold:

P({u∗ > t}; Ω∗) ≤ P({u > t}; Ω).

Proof. As gu is a decreasing function (see (3.1)), we note that the set {u∗ > t}
is actually a set of the form {yn < s}. By Lemma 3.1.1 we have that VΩ(s) =
Ln(Ω∗ ∩ {yn < s}) = %u∗(t). By then recalling that u and u∗ are equimeasurable
(see Lemma 3.2.1) and by Lemma 3.1.1 we have the following:

P({u∗ > t}; Ω∗) = I(%u∗(t))

= I(%u(t)) ≤ P({u > t}; Ω),

where we have used the fact that u has I comparable level sets. This concludes the
proof.

3.3 A Pólya–Szegő Inequality

This section proves an analog of the Pólya–Szegő inequality. The first two lemmas,
which are of independent interest, are preliminary to that goal.

Lemma 3.3.1. Suppose that u ∈ BV (Ω) has I comparable level sets. Then u∗ ∈
BV (Ω∗) and the following inequality holds:∫

I
I(VΩ(s))d|Dgu|(s) = |Du∗|(Ω∗) ≤ |Du|(Ω).

Proof. By Lemma 3.2.1 we have that u∗ ∈ L1(Ω∗). By (3.1) and by the fact that gu
is decreasing, it follows that gu ∈ BVloc(I) (see, e.g., Theorem 7.2 in [72]).

Moreover by the definition of u∗ (see (3.1), (3.1.5), (3.1), and Lemma 3.2.1) we
can write the following:

|Du∗|(Ω∗) = sup

{∫
Ω∗
φ(y′, yn)d(Dgu)(yn) : φ ∈ C0(Ω∗), ‖φ‖C0 ≤ 1

}
= sup

{∫
I

(∫
Bn−1(0,r(yn))

φ(y′, yn) dy′

)
d(Dgu)(yn) : φ ∈ C0(Ω∗), ‖φ‖C0 ≤ 1

}

= sup

{∫
I
I(VΩ(yn))ψ(yn) d(Dgu)(yn) : ψ ∈ C0(−T, T ), ‖ψ‖C0 ≤ 1

}
=

∫
I
I(VΩ(yn)) d|Dgu|(yn).

Next we utilize the coarea formula and Lemma 3.2.6 as follows:

|Du∗|(Ω∗) =

∫
R

P({u∗ > t}; Ω∗) dt ≤
∫
R

P({u > t}; Ω) dt = |Du|(Ω).

This proves the desired lemma.
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Lemma 3.3.2. Suppose that u ∈ W 1,1(Ω) has I comparable level sets. Then u∗ ∈
W 1,1(Ω∗).

Proof. By (3.1.8) it suffices to show that gu is absolutely continuous on any sub-
interval [t0, t1] compactly contained in I. Fix ε > 0, and let δ be small enough such
that for any measurable E ⊂ Ω with Ln(E) < δ the following holds (see (3.1.2)):∫

E
|∇u| dx ≤ ε min

t∈[t0,t1]
I(VΩ(t)).

Now consider any finite collection of non-overlapping subintervals (ak, bk) of [t0, t1],
satisfying

N∑
k=1

(bk − ak) ≤
δ

maxt∈[t0,t1] I(VΩ(t))
.

The following estimate holds by (3.1.3), (3.1.6), (3.1), (3.1.8), Lemma 3.2.1 and
(3.3):

Ln
(

N⋃
k=1

{x ∈ Ω : gu(bk) < u(x) < gu(ak)}
)

=

N∑
k=1

Ln({y ∈ Ω∗ : gu(bk) < u∗(y) < gu(ak)})

≤
N∑
k=1

(VΩ(bk)− VΩ(ak)) ≤ max
t∈[t0,t1]

I(VΩ(t))

N∑
k=1

(bk − ak) ≤ δ.

Next, set s1 := gu(bk) and s2 := gu(ak) and let v := Trs1,s2 u. By applying
Lemma 3.2.4, Lemma 3.3.1 above and the fact that the pointwise variation of a
monotone function is bounded by its total variation (see Theorem 7.2 in [72]) we
obtain

min
t∈[t0,t1]

I(VΩ(t))|gu(ak)− gu(bk)|

≤
∫ bk

ak

I(VΩ(t)) d|Dgu|(t) =

∫
I
I(VΩ(t)) d|D(Trs1,s2 gu)|(t)

= |Dv∗|(Ω∗) ≤ |Dv|(Ω) =

∫
{gu(bk)<u<gu(ak)}

|∇u| dx.

We then find the following:

min
t∈[t0,t1]

I(VΩ(t))
∑
|gu(ak)− gu(bk)| ≤

∫
⋃
k{gu(bk)<u<gu(ak)}

|∇u| dx

≤ min
t∈[t0,t1]

(I(VΩ(t)))ε,

where we have used (3.3) and (3.3). This implies that gu is absolutely continuous
on [t0, t1], as claimed.

The next lemma gives an identity relating to the level sets of functions. It can
be found in [35]; the proof is included here for completeness.

Lemma 3.3.3. For u ∈ W 1,1(Ω) there exists a representative of u such that the
following equality holds for all s1 < s2:∫ s2

s1

∫
u−1(s)

|∇u(x)|−1 dHn−1 ds = Ln({x ∈ Ω : u(x) ∈ (s1, s2),∇u(x) 6= 0}).
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Proof. Let Hε := (ε+ |∇u|)−1. By the coarea formula, Theorem 2.1.8, we find that∫
{s1<u<s2, ∇u6=0}

Hε|∇u| dx =

∫
{s1<u<s2}

Hε|∇u| dx

=

∫ s2

s1

∫
u−1(s)

Hε dHn−1 ds.

By noting that Hε → |∇u|−1 monotonically in the set {∇u 6= 0}, we find that (3.3.3)
holds.

The following theorem is the main result of this section, namely an analog of the
Pólya–Szegő inequality.

Theorem 3.3.4. Suppose that u ∈ W 1,p(Ω) for 1 ≤ p ≤ ∞, and that u has I
comparable level sets. Then u∗ ∈W 1,p(Ω∗) and furthermore:∫

I
|g′u|pI(VΩ) ds =

∫
Ω∗
|∇u∗|p dy ≤

∫
Ω
|∇u|p dx.

Proof. Lemmas 3.3.1 and 3.3.2 immediately give this inequality if p = 1. For p > 1
we can still apply the previous lemmas to show that u∗ ∈ W 1,1(Ω∗), because Ω has
finite measure.

Next we note that the following equality holds (by using the coarea formula):

%u(t) = Ln({u > t}∩{∇u = 0})+

∫ ∞
t

∫
{u=s,∇u6=0}

|∇u|−1 dHn−1 ds =: fu1 (t)+fu2 (t).

(3.3.1)
Clearly fu2 is absolutely continuous, and fu1 is decreasing. Thus %u is differentiable
for a.e. t, with:

%′u(t) ≤ −
∫
{u=t,∇u6=0}

|∇u|−1 dHn−1. (3.3.2)

Next we claim that (following [35]) for a.e. t:

d

dt
fu
∗

1 (t) =
d

dt
Ln({u∗ > t} ∩ {∇u∗ = 0}) = 0.

To establish this claim, we first note that for any open interval J we have the
following:

L1(gu(J)) ≤
∫
J
|g′u| ds.

By approximating measurable sets with disjoint open intervals we can then establish
that

L1(gu({g′u = 0})) ≤
∫
{g′u=0}

|g′u| ds = 0.

Following [36] we then find that:

L1(u∗({∇u∗ = 0})) = L1(gu({g′u = 0})) = 0.

Thus there exists a Borel set F0 in R so that L1(F0) = 0 and so that u∗({∇u∗ =
0}) ⊂ F0.

We then claim that for any Borel set B in R we have that

|Dfu∗1 |(B) = Ln((u∗)−1(B) ∩ {∇u∗ = 0}).
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To see this, we first note that fu
∗

1 is right continuous and decreasing. We then have
that

|Dfu∗1 |((t1, t2)) = fu
∗

1 (t1)− lim
t→t−2

fu
∗

1 (t2)

= Ln({u∗ > t1} ∩ {∇u∗ = 0})− lim
t→t−2

Ln({u∗ > t} ∩ {∇u∗ = 0})

= Ln({u∗ > t1} ∩ {∇u∗ = 0})− Ln({u∗ ≥ t2} ∩ {∇u∗ = 0})
= Ln((u∗)−1((t1, t2)) ∩ {∇u∗ = 0}).

As both |Dfu∗1 | and Ln((u∗)−1(·)∩ {∇u∗ = 0}) are Borel measures, and as they are
equal on open intervals, they must be equal on all Borel sets. This and the fact that
u∗({∇u∗ = 0}) ⊂ F0 immediately give that

|Dfu∗1 |(R\F0) = Ln((u∗)−1(R\F0) ∩ {∇u∗ = 0}) = Ln(∅) = 0,

which proves (3.3). Utilizing (3.3.1) this then immediately implies that for a.e. t,

%′u∗(t) = −
∫
{u∗=t,∇u∗ 6=0}

|∇u∗|−1 dHn−1. (3.3.3)

By the coarea formula we can write the following:∫
Ω∗
|∇u∗|p dy =

∫
Ω∗∩{∇u∗ 6=0}

|∇u∗|p dy

=

∫
R

∫
{u∗=t}∩{∇u∗ 6=0}

|∇u∗|p−1 dHn−1 dt.

By (3.1.8) we know that ∇u∗(y) = (0, g′u(yn)) ∈ Rn−1×R. Since gu is decreasing we
have that the set {u∗ = t} is a set of the form {y : yn ∈ [t1, t2], y′ ∈ Bn−1(0, r(yn))},
for some t1 ≤ t2 with possibly t1 = t2. If t1 = t2 then clearly ∇u∗ is constant on the
set {u∗ = t}. If t1 6= t2 then g′u is zero on the set (t1, t2), and is either zero at t1, t2
or is undefined. Since ∇u∗ is constant on level sets of u∗ (where it’s defined) we can
then write ∫

Ω∗
|∇u∗|p dy =

∫
R

(
Hn−1({u∗ = t} ∩ {∇u∗ 6= 0})

)p
(
∫
{u∗=t}∩{∇u∗ 6=0} |∇u∗|−1 dHn−1)p−1

dt.

By (3.3.3) we have that∫
Ω∗
|∇u∗|p dy =

∫
R

P({u∗ > t}; Ω∗)p

(−%′u∗(t))p−1
dt.

Next we utilize Lemma 3.2.1 and Lemma 3.2.6 to find that∫
Ω∗
|∇u∗|p dy ≤

∫
R

P({u > t}; Ω)p

(−%′u(t))p−1
dt.

Next (3.3.2) gives∫
Ω∗
|∇u∗|p dy ≤

∫
R

P({u > t}; Ω)p

(
∫
{u=t} |∇u|−1 dHn−1)p−1

dt.

Jensen’s inequality on f(s) = s−(p−1) then implies that∫
Ω∗
|∇u∗|p dy ≤

∫
R

∫
{u=t}

|∇u|p−1 dHn−1 dt,

which after applying the coarea formula gives the desired result.
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Remark 3.3.5. This section has considered a rearrangement of the function u, via
the decreasing function gu : I → R. However, all of the arguments would hold for an
increasing rearrangement fu. Indeed, in the case when I is symmetric, e.g. I = IΩ,
it is straightforward to show that fu(t) := gu(−t). In any case, for the increasing
rearrangement fu the following relations still hold:∫

I
ψ(fu(t))I(VΩ(t)) dt =

∫
Ω
ψ(u) dx,∫

I
|f ′u(t)|pI(VΩ(t)) dt ≤

∫
Ω
|∇u|p dx.

This section focuses on the decreasing rearrangement because that is the standard
convention chosen in the literature involving rearrangement. However, subsequent
chapters will use the increasing rearrangement fu of u in because of the conventions
in the literature on phase transitions.

The following corollary is the motivation for our development of the rearrange-
ment in this section, and is a simple application of Lemma 3.2.1 and Theorem 3.3.4.

Corollary 3.3.6. Let u ∈ H1(Ω), and let u have I comparable level sets. Then the
following inequality holds:∫

Ω
W (u) + ε2|∇u|2 dx ≥

∫
I
(W (fu) + ε2(f ′u)2)I(VΩ) dt.

Moreover ∫
Ω
u dx =

∫
I
fuI(VΩ) dt.

3.4 Anisotropic Extension

This section briefly considers an extension of the previous result to the anisotropic
case. In the case where Ω = Rn this problem was previously considered in [8].
For the most part, the proofs for the anisotropic case are identical to the isotropic
case covered in the previous sections, with only minor modifications. Abbreviated
versions of the proofs are included for completeness.

In this section, let Ψ : Rn → [0,∞) be a convex function that is positively
homogeneous of degree one (see (2.2.1)). A measurable function u : Ω → R is said
to have (I,Ψ) comparable level sets if

PΨ({u > s}; Ω) ≥ I(Ln({u > s})),

where the definition of PΨ is given in (2.2.2). Next, define u∗ and Ω∗ as in Sec-
tion 3.1. By Remark 3.2.5 we have that Lemmas 3.1.1 - 3.2.4 still hold. The main
question in the anisotropic case is now whether an appropriate extension of the
Pólya–Szegő inequality still holds. The first step is to establish the relevant isoperi-
metric inequality. The following proposition is a consequence of the definition of a
function having (I,Ψ) comparable level sets.

Proposition 3.4.1. Given u ∈ BV (Ω) with (I,Ψ) comparable level sets, for any t
the following must hold:

P({u∗ > t}; Ω∗) ≤ PΨ({u > t}; Ω).
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Proof. As in the proof of Lemma 3.2.6, we remark that the set {u∗ > t} is actually
a set of the form {yn < s}. By Lemma 3.1.1 (see Remark 3.2.5), we have that
VΩ(s) = Ln(Ω∗ ∩ {yn < s}) = %u∗(t). As u and u∗ are equimeasurable (see Lemma
3.2.1) and by Lemma 3.1.1, which both apply due to Remark 3.2.5, we have the
following:

P({u∗ > t}; Ω∗) = I(%u∗(t))

= I(%u(t)) ≤ PΨ({u > t}; Ω),

where we have used the fact that u has (I,Ψ) comparable level sets. This concludes
the proof.

Following the isotropic case, it is possible to compare the BV norm of u and u∗

by using the coarea formula and Proposition 3.4.1.

Proposition 3.4.2. Suppose that u ∈ BV (Ω) and that u has (I,Ψ) comparable level
sets. Then u∗ ∈ BV (Ω∗) and∫

I
I(VΩ(s)) d|Dgu|(s) = |Du∗|(Ω∗) ≤ |Du|Ψ(Ω).

Proof. As in the proof of Lemma 3.3.1, we have that

|Du∗|(Ω∗) =

∫
I
I(VΩ(yn)) d|Dgu|(yn).

Then by using the coarea formula, see Theorems 2.1.8 and 2.2.3, and Proposition
3.4.1 it follows that

|Du∗|(Ω∗) =

∫
R

P({u∗ > t}; Ω∗) dt ≤
∫
R

PΨ({u > t}; Ω) dt = |Du|Ψ(Ω).

Proposition 3.4.3. Given u ∈W 1,1(Ω) with (I,Ψ) comparable level sets, it follows
that u∗ ∈W 1,1(Ω∗).

Proof. Following the proof of Lemma 3.3.2, it suffices to show that gu is absolutely
continuous. Using the same notation as in the proof of Lemma 3.3.2, we find that

min
t∈[t0,t1]

I(VΩ(t))|gu(ak)− gu(bk)|

≤
∫ bk

ak

I(VΩ(t)) d|Dgu|(t) =

∫
I
I(VΩ(t)) d|D(Trs1,s2 gu)|(t)

= |Dv∗|(Ω∗) ≤ |Dv|Ψ(Ω) ≤ C
∫
{gu(bk)<u<gu(ak)}

|∇u| dx.

where we have used Proposition 3.4.2 and the fact that Ψ is bounded, see equation
(2.2.2). The result then follows as in the proof of Lemma 3.3.2.

With these tools in hand it is now possible to give the anisotropic version of the
Pòlya–Szegő inequality.

Theorem 3.4.4. Suppose that u ∈ W 1,p(Ω) for 1 ≤ p ≤ ∞ and that u has (I,Ψ)
comparable level sets. Then u∗ ∈W 1,p(Ω∗) and furthermore:∫

I
|g′u|pI(VΩ) ds =

∫
Ω∗
|∇u∗|p dy ≤

∫
Ω

Ψ(|∇u|)p dx. (3.4.1)
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Proof. As in the proof of Theorem 3.3.4, by applying Lemma 3.4.3 it is clear that
u∗ ∈W 1,p(Ω∗). It only remains to prove the inequality (3.4.1).

To prove the inequality (3.4.1), we first remark that the argument between equa-
tions (3.3.1) and (3.3.3) still holds in the present case. This is because the argument
only relies on equimeasurability and properties of monotone functions. This then
implies that, for a.e. t,∫

{u∗=t,∇u∗ 6=0}
|∇u∗|−1 dHn−1 ≥

∫
{u=t,∇u6=0}

|∇u|−1 dHn−1. (3.4.2)

By the coarea formula and the fact that u∗ has constant gradient along level sets we
may write ∫

Ω∗
|∇u∗|p dy =

∫
R

P({u∗ > t}; Ω)p

(
∫
{u∗=t}∩{∇u∗ 6=0} |∇u∗|−1 dHn−1)p−1

dt.

This, along with Proposition 3.4.1 and Equation (3.4.2) implies that∫
Ω∗
|∇u|p dy ≤

∫
R

PΨ({u > t}; Ω)p

(
∫
{u=t}∩{∇u6=0} |∇u|−1 dHn−1)p−1

dt.

By Hölder’s inequality we have that∫
u=t

Ψ

( ∇u
|∇u|

)
dHn−1 ≤

(∫
u=t

Ψ(∇u)p

|∇u| dHn−1

)1/p(∫
u=t
|∇u|−1 dHn−1

)1−1/p

.

Next, by Theorem 2.2.3 we have that∫
u=t

Ψ

( ∇u
|∇u|

)
dHn−1 = PΨ({u > t}; Ω).

Thus by combining the previous three equations, and after applying the coarea
formula, the desired inequality is established, namely∫

Ω∗
|∇u|p dy ≤

∫
R

∫
u=t

Ψ(∇u)p

|∇u| dt =

∫
Ω

Ψ(∇u)p dx.
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Chapter 4

Properties of the Isoperimetric
Function

The main results of the first part of this thesis require that the isoperimetric function,
or perhaps a localized version of the same, be differentiable at some point of interest.
This chapter will establish the validity of such a statement in a variety of situations.

The first natural question is whether the function Iδ,E0

Ω (defined by (1.1.11)) is
continuous. This is answered affirmatively by the following proposition.

Proposition 4.0.1. Let Ω satisfy (6.1.1), and let E0 ⊂ Ω be a volume-constrained
local perimeter minimizer in Ω with r0 := Ln(E0). Then for any δ > 0 the function

Iδ,E0

Ω is continuous.

Proof. By the lower semicontinuity of the perimeter function, BV compactness, and
the fact that the constraint α(E,E0) ≤ δ is closed in L1, it is clear that for any
r ∈ (0, 1) there exists a minimizer of the minimization problem,

min{P (E; Ω) : α(E,E0) ≤ δ,Ln(E) = r}, (4.0.1)

which defines Iδ,E0

Ω (see (1.1.11) and (1.1.12)). Again, by the lower semicontinuity

of the perimeter function, we have that Iδ,E0

Ω must be lower semicontinuous.

Now for any fixed r ∈ (0, 1), a minimizer Er of (4.0.1) must be a volume-
constrained perimeter minimizer inside E0 ∩ Ω and Ω\E0, and thus ∂Er must be
be a.e. smooth inside those sets (see Theorem 2.3.6). Suppose that α(E0, Er) =
Ln(E0\Er). Then pick any smooth vector field V compactly supported in Ω\E0

which satisfies
∫
∂Er

V · νEr dHn−1 6= 0 (such a vector field clearly exists given
the smoothness of Er). Perturbations with initial velocity V will still satisfy the
α(·, E0) ≤ δ, because V ≡ 0 in E0. Furthermore, the perimeter will vary smoothly
along these perturbations, and the volume will not be stationary (because

∫
∂Er

V ·
νEr dHn−1 6= 0). Hence, by considering the the perimeter of perturbations along V

we have that Iδ,E0

Ω is touched from above by a smooth function near r. This read-

ily implies that Iδ,E0

Ω is continuous at r. A similar argument holds if α(E0, Er) =
Ln(Er\E0). As r was arbitrary the proposition is proved.

In order to prove differentiability, one needs more precise arguments. The follow-
ing lemma is a straightforward combination of Theorem 2.3.6 and Remark 2.3.13.

Lemma 4.0.2. Let Ω satisfy (6.1.1), and let E0 ⊂ Ω be a volume-constrained local
perimeter minimizer in Ω with r0 := Ln(E0). Then ∂E0 is a surface of constant
mean curvature κE0, which intersects the boundary of Ω orthogonally. Moreover,
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there exists a neighborhood I of r0 and a family of sets {Êr}r constructed via a
normal perturbation of E0 (see Theorem 2.3.10), satisfying

Ln(Êr) = r, lim
r→r0

|Êr∆E0| = 0,

and such that the function

r 7→ φ(r) := P (Êr; Ω), for r ∈ I,

is smooth. Moreover, the function φ satisfies

φ(r0) = P (E0; Ω),
dφ(r)

dr

∣∣∣
r=r0

= κE0(n− 1), (4.0.2)

and

d2φ(r)

dr2

∣∣∣
r=r0

= −
∫
∂E0
|AE0 |2 dHn−1 +

∫
∂E0∩∂Ω ν∂E0 ·AΩν∂E0 dHn−2

P (E0; Ω)2
,

where AE0 and AΩ are the second fundamental forms, see Definition 2.3.8.

The first step is to prove that Iδ,E0

Ω is semi-concave under appropriate conditions.

Lemma 4.0.3. Let Ω satisfy (6.1.1), and let E0 ⊂ Ω be a volume-constrained local
perimeter minimizer in Ω with r0 := Ln(E0). Let δ > 0, and let Ir0 ⊂⊂ [0,Ln(Ω] be
an open interval containing r0. Suppose that for every r ∈ Ir0 at least one minimizer
Er of the problem

min{P (E; Ω) : Ln(E) = r, α(E,E0) ≤ δ}

satisfies
α(Er, E0) < δ. (4.0.3)

Then the local isoperimetric function Iδ,E0

Ω is semi–concave in Ir0, that is, there
exists a constant C > 0 such that

r 7→ Iδ,E0

Ω (r)− Cr2 (4.0.4)

is a concave function in Ir0.

Proof. By Proposition 4.0.1, we have that Iδ,E0

Ω is continuous. By (4.0.3) we have
that Er must be a local volume-constrained perimeter minimizer for every r ∈ Ir0 .
Thus by Lemma 4.0.2 applied to Er, for any r ∈ Ir0 there exists a smooth function
φr and a constant δr > 0 depending on r such that

φr(s) ≥ Iδ,E0

Ω (s) for all s ∈ (r − δr, r + δr), φr(r) = P (Er; Ω) = Iδ,E0

Ω (r), (4.0.5)

and

d2φr(s)

ds2

∣∣∣
s=r

= −
∫
∂Er
|AEr |2 dHn−1 +

∫
∂Er∩∂Ω νEr ·AΩνEr dHn−2

P (Er; Ω)2
, (4.0.6)

where we recall that |AEr | is the Frobenius norm, see equation (2.3.5).

Let CΩ := max
x∈∂Ω

|AΩ(x)|. Then we have∣∣∣∣∫
∂Er∩∂Ω

νEr ·AΩνEr dHn−2

∣∣∣∣ ≤ CΩ

∫
∂Er∩∂Ω

νΩ · νΩ, dHn−2. (4.0.7)
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Since Ω is of class C2,α, we can locally express ∂Ω as the graph of a function of class
C2,α and, in turn, we can locally extend the normal to the boundary νΩ to a C1,α

vector field. Thus, using a partition of unity, we may extend the vector field CΩνΩ

to a vector field V ∈ C1
c (Rn;Rn) satisfying

‖V ‖∞ ≤ C, ‖∇V ‖∞ ≤ C (4.0.8)

for some constant C > 0. We then apply the divergence theorem (see Theorem
2.3.4) with M = (∂Er) ∩ Ω and Γ = ∂Er ∩ ∂Ω to find that

CΩ

∫
∂Er∩∂Ω

νΩ · νΩ dHn−2 =

∫
∂Er

divErV dHn−1 −
∫
∂Er

V · κErνΩ dHn−1

≤ CP (Er; Ω) + C

∫
∂Er

|κEr | dHn−1,

(4.0.9)

where in the last inequality we have used (2.3.3) and (4.0.8). Moreover, we recall
that (see Proposition 2.3.9) for every x ∈ Ω ∩ ∂Er,

|AEr(y)|2 =

n−1∑
h=1

κh,Er(y)2, κEr(y) =

n−1∑
h=1

κh,Er(y) for all y ∈ Br(x) ∩ ∂Er

(4.0.10)
where κh,Er are the principal curvatures of Er. Thus, using (4.0.10), if we consider
the principal curvatures κh,Er as a vector in Rn−1 then we have that

C|κEr | ≤
√
n− 1C|AEr | ≤ max{(n− 1)C2, |AEr |2}. (4.0.11)

In turn, putting together (4.0.6), (4.0.7), (4.0.9) and (4.0.11), we get

d2φr(s)

ds2

∣∣∣
s=r
≤
−
∫
∂Er
|AEr |2 dHn−1 + CP (Er; Ω) +

∫
∂Er

max{(n− 1)C2, |AEr |2} dHn−1

P (Er; Ω)2

≤ CP (Er; Ω) + (n− 1)C2P (Er; Ω)

P (Er; Ω)2
.

Denote
m1 := min

s∈Ir0
Iδ,E0

Ω (s), m2 := C + (n− 1)C2 <∞,

and notice that
min
s∈Ir0

Iδ,E0

Ω (s) ≥ min
s∈Ir0

IΩ(s) > 0

where the last inequality follows from Proposition 2.1.10. From (4.0.6) we have that

d2φr(s)

ds2

∣∣∣
s=r
≤ m2

m1
. (4.0.12)

Thus by (4.0.5) for any r we can find a δr > 0 so that for s ∈ (r − δr, r + δr),

Iδ,E0

Ω (s)− m2

m1
s2 ≤ φr(s)−

m2

m1
s2

= φr(s)−
m2

m1
((s− r)2 + 2sr − r2)

=: ψ(s)− m2

m1
(2sr − r2),

(4.0.13)

where ψ(s) = φr(s) − m1
m2

(s − r)2 is a concave function on (r − δr, r + δr) by
(4.0.12). The estimate (4.0.13) allows us to apply Proposition 2.6.4 and conclude

that Iδ,E0

Ω (s)− m2
m1
s2 is a concave function on Ir0 . In turn, Iδ,E0

Ω is semi–concave on
Ir0 .
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Corollary 4.0.4. Under the assumption (6.1.1), the function IΩ is differentiable at
all but countably many points in [0, 1].

Proof. By setting δ large enough we have that Iδ,E0

Ω = IΩ, and that (4.0.3) is always
satisfied. Thus IΩ is semi-concave on any I1 ⊂⊂ [0, 1]. Since convex functions are
differentiable at all but countably many points, IΩ is as well.

Corollary 4.0.5. Under the assumptions of Lemma 4.0.3, the local isoperimetric
function Iδ,E0

Ω is locally Lipschitz in Ir0. Furthermore, for all Jr0 ⊂⊂ Ir0, for all

r ∈ Jr0, the values κEr(n− 1) belong to the supergradient of Iδ,E0

Ω , and hence

|κEr | ≤ L, (4.0.14)

where L is the Lipschitz constant of Iδ,E0

Ω in Jr0.

Proof. Thanks to (4.0.3) in Lemma 4.3, for any r ∈ Ir0 there exists a volume–
constrained local perimeter minimizer Er such that

Iδ,E0

Ω (r) = P (Er; Ω), Ln(Er) = r, α(Er, E0) < δ.

By Lemma 4.0.2 applied to Er, in particular from (4.0.2), we have that κEr(n− 1)

belongs to the supergradient of Iδ,E0

Ω . From (4.0.4) we know that the mapping

r 7→ Iδ,E0

Ω (r)− Cr2 is concave, and hence locally Lipschitz. In turn, Iδ,E0

Ω is locally
Lipschitz in Ir0 . Finally, as κEr(n− 1) is in the supergradient of a locally Lipschitz
function, there exists a constant L > 0 so that (4.0.14) holds on Jr0 (see Theorem
9.13 in [95]).

We can now state one of the main results of this chapter.

Theorem 4.0.6. Let E0 ⊂ Ω be an isolated local volume-constrained perimeter
minimizer in E0. Then, for δ small enough, Iδ,E0

Ω is differentiable at Ln(E0).

Proof. By assumption, E0 is the unique minimizer of the problem

min {P (E; Ω) : E ⊂ Ω Borel, Ln(E) = r, α(E,E0) ≤ δ} , (4.0.15)

for r = r0 and for some fixed 0 < δ small enough.
Let I be a neighborhood of r0 (to be fixed later) and consider a sequence {rk} sat-

isfying rk → r0 as k →∞. Let Erk be a minimizer of the problem (4.0.15) for r = rk.

Step 1. Lemma 2.3.11, along with the definition of Iδ,E0

Ω naturally implies that

Iδ,E0

Ω ≤ C (4.0.16)

for some C > 0 and, in turn, by BV compactness, there exists a subsequence of
{Erk} (not relabeled) such that

Erk → E∗ in L1(Ω) as k →∞, (4.0.17)

for some measurable set E∗ such that χE∗ ∈ BV (Ω) and Ln(E∗) = r0.
We notice that since α(E∗, E0) ≤ δ and Ln(E∗) = r0, by lower semi-continuity

of the perimeter (see [48]), and Proposition 4.0.1, we have that

P (E∗; Ω) ≤ lim inf
k→∞

P (Erk ; Ω) = lim inf
k→∞

Iδ,E0

Ω (rk) ≤ lim sup
k→∞

Iδ,E0

Ω (rk)

≤ Iδ,E0

Ω (r0) = P (E0; Ω) ≤ P (E∗; Ω).
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By uniqueness of (4.0.15) for r = r0, E∗ = E0, and so (4.0.17) reads

Erk → E0 in L1(Ω) as k →∞. (4.0.18)

Thanks to (4.0.18), we obtain

α(Erk , E0) < δ,

for k big enough. In turn, this implies that there exists an open neighborhood Ir0
of r0 as in Lemma 4.0.3. Hence, Iδ,E0

Ω is semiconcave on Ir0 , and by Corollary 4.0.5,

we have that Iδ,E0

Ω is locally Lipschitz in Ir0 .

Step 2. Fix an open neighborhood Jr0 := (r0 − R, r0 + R) ⊂⊂ Ir0 of r0, and let

L be the associated Lipschitz constant of Iδ,E0

Ω in Jr0 (see Corollary 4.0.5). Let k
be large enough so that rk ∈ Jr0 . Let x0 ∈ Ω, ρ0 > 0. We claim that Erk is a
(Λ, ρ0)–perimeter minimizer (see Definition 2.3.14) with

Λ = max

{
L,

2C

δ
,
2C

R

}
,

where L is the Lipschitz constant in Corollary 4.0.5 and C > 0 is as in Step 1.
Because of (2.3.6), we know that P (Erk ;Bρ(x0)) − P (E;Bρ(x0)) = P (Erk ; Ω) −
P (E; Ω), and thus it suffices to prove that

P (Erk ; Ω) ≤ P (E; Ω) + ΛLn(Erk∆E). (4.0.19)

We divide the proof of (4.0.19) into three cases. If

α(E0, E) ≤ δ and Ln(E) ∈ Jr0 ,

then by our choice of L (see Corollary 4.0.5), we have

P (Erk ; Ω) = Iδ,E0

Ω (Erk) ≤ Iδ,E0

Ω (Ln(E)) + L |Ln(Erk)− Ln(E))|
≤ P (E; Ω) + L |Ln(Erk)− Ln(E))|
≤ P (E; Ω) + LLn(Erk∆E),

and (4.0.19) is proved in this case.

If instead E is such that

α(E0, E) > δ,

then by (4.0.18),

Ln(Erk∆E) ≥ Ln(E0∆E)− Ln(Erk∆E0) ≥ δ

2
, (4.0.20)

for k sufficiently large. Moreover, by (4.0.16) and (4.0.20),

P (Erk ; Ω) ≤ C ≤ 2C

δ
Ln(Erk∆E) ≤ 2C

δ
Ln(Erk∆E) + P (E; Ω),

so that (4.0.19) follows from our choice of Λ.

Finally, if

Ln(E) /∈ Jr0 ,
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then for rk ∈ (r0 −R/2, r0 +R/2) we have that

Ln(Erk∆E) ≥ R

2
,

and so (4.0.19) follows as in the previous case.

Step 3. Fix z0 ∈ Ω ∩ ∂E0, and choose r > 0 such that Br(z0) ⊂⊂ Ω and

∂E0 ∩Br(z0) = graph(u0),

for some regular function u0. By the theory of (Λ, ρ0) minimizers (see Theorem 26.6
in [75]), choosing ρ0 smaller if needed, it follows that for any sequence of points
zk ∈ ∂Erk such that zk → z0 ∈ Ω ∩ ∂E0, then for k large enough zk ∈ Ω ∩ ∂∗Erk
and

lim
k→∞

νErk (zk) = νE0(z0), (4.0.21)

uniformly on Br(z0). In turn, by (4.0.18), for k big enough

∂Erk ∩Br(z0) = graph(uk),

for some functions uk. In particular, by equation (26.52) in [75], we obtain

∇uk → ∇u0, in C0,γ(Ω),

for all γ ∈ (0, 1/2).

Step 4. Since ∂Erk is a surface of constant mean curvature, uk solves

div

(
∇uk√

1 + |∇uk|2

)
= κk in Br(z0),

where κk is the mean curvature of ∂Erk . By standard Schauder estimates (see e.g.
[57]) and (4.0.21), it follows that

||uk||C2,γ(B′
r/2

(z0)) ≤ c1|κk| ≤ C, (4.0.22)

where B′r/2(z0) is the (n − 1)–dimensional ball and the uniform bound on the cur-
vatures comes from Corollary 4.0.5.

Step 5. By Rellich–Kondrachov compactness theorem and by a bootstrapping ar-
gument on (4.0.22), we deduce that there exists a subsequence of {rk}, not relabeled,
and ũ ∈Wm,2(B′r/2(z0)) such that

urj → ũ in Wm,2(B′r/2(z0))

for all m > 0. It follows from (4.0.18), that necessarily ũ = u0.

Step 6. By properties of concave functions, (Iδ,E0

Ω )′(r) = Lr + Z(r), where Z is

a decreasing function. In particular, Iδ,E0

Ω must have a left and right derivative at

r0, and if rk ↑ r0 then κrk → (Iδ,E0

Ω )′− (with an analogous result for rk ↓ r0). The

convergence result from Step 5 implies that the left and right derivatives of Iδ,E0

Ω

at r0 must be equal to κ0. This implies that Iδ,E0

Ω is differentiable at r0, which
completes the proof.
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Remark 4.0.7. This chapter has proved that the differentiability assumption holds
in two important cases: For global volume-constrained perimeter minimizers up to
a.e. mass m, and for isolated volume-constrained perimeter minimizers. It is also
possible to prove differentiability in certain other cases, for example when E0 is a
ball compactly contained in Ω, see [83] for details.
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Chapter 5

Weighted 1D Functional
Problem

5.1 Assumptions and Notation

This chapter will be concerned with a weighted, one-dimensional functional problem.
By way of notation, Lpη will represent the space Lp(I;R, η), where p ≥ 1 and η ≥ 0
is some measurable function on I. Here, and throughout this chapter,

I := (−T, T )

for some positive T .

Similarly, BVη to be the space BV (I;R, η) with weight η, meaning that

‖v‖BVη :=

∫
I
|v(t)|η(t) dt+

∫
I
η(t) d|Dv|(t).

For v ∈ BVη, the weighted total variation of the derivative will be denoted by

|Dv|η(E) =

∫
E
η(t) d|Dv|(t). (5.1.1)

Here H1
η will be the analogous weighted version of H1.

This chapter considers the mass-constrained Cahn–Hilliard functional in one di-
mension, with an integral weight η. Precisely, this chapter studies the functional

Gε(v) :=

∫
I
(W (v) + ε2(v′)2)η dt, v ∈ H1

η , (5.1.2)

subject to the constraint that∫
I
vη dt = m ∈

(
a

∫
I
η dt, b

∫
I
η dt

)
. (5.1.3)

Here Gε is extended to all of L1
η by setting Gε(v) :=∞ if v ∈ L1

η\H1
η or if (5.1.3)

fails. Chapter 1.1 introduces the theory of the unweighted version of this functional
in n dimensions, and the results and definitions from that chapter will be used freely
throughout this chapter.

The results in this chapter, and accordingly in subsequent chapters, require the
following assumptions on W : R→ [0,∞):
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W is of class C2(R\{a, b}) and has precisely two zeros at a < b, (5.1.4)

lim
s→a

W ′′(s)

|s− a|q−1
= lim

s→b

W ′′(s)

|s− b|q−1
:= ` > 0, q ∈ (0, 1], (5.1.5)

W ′ has exactly 3 zeros at a < c < b, W ′′(c) < 0, (5.1.6)

lim inf
|s|→∞

|W ′(s)| > 0. (5.1.7)

Most of these assumptions are standard (see [63]). In the case where q = 1 it is
evident that ` is simply W ′′(a). In particular, q = 1 when W (s) = 1

2(s2− 1)2, which
is the classical Cahn–Hilliard potential (see, e.g., [28]). While the analysis in this
chapter does not require identical limits at a and b in (5.1.5), that case is not dealt
with for clarity of presentation.

Remark 5.1.1. In view of (5.1.4)-(5.1.7), there must exist an L̂ > 0 and T̂ > 0 so
that

W (s) ≥ L̂|s| (5.1.8)

for all |s| > T̂ .

Remark 5.1.2. In view of (5.1.4) and (5.1.5) if follows from de l’Hôpital’s rule that

lim
s→a

W (s)

|s− a|1+q
= lim

s→b

W (s)

|s− b|1+q
=

`

q(1 + q)
, (5.1.9)

lim
s→a

W ′(s)

(s− a)|s− a|q−1
= lim

s→b

W ′(s)

(s− b)|s− b|q−1
=
`

q
. (5.1.10)

In turn, by (5.1.4), there exist c1, c2 > 0 such that c2
1(b − s)1+q ≤ W (s) ≤

c2
2(b− s)1+q for all s ∈ [a+b

2 , b]. It follows that the solution z of the Cauchy problem
(1.1.6) satisfies

[
(b− z(t0))

1−q
2 − (1− q)c2

2
(t− t0)

] 2
1−q

+

≤ b− z(t)

≤
[
(b− z(t0))

1−q
2 − (1− q)c1

2
(t− t0)

] 2
1−q

+

for all t ≥ t0 ≥ 0 if 0 < q < 1 and

(b− z(t0))e−c2(t−t0) ≤ b− z(t) ≤ (b− z(t0))e−c1(t−t0) (5.1.11)

for all t ≥ t0 ≥ 0 for q = 1, where [·]+ denotes the positive part. In particular, in
the case 0 < q < 1, since z(0) = c, there exists a constant

(
b− a

2

) 1−q
2 2

c2(1− q) ≤ tb ≤
(
b− a

2

) 1−q
2 2

c1(1− q)

such that

z(t) ≡ b for all t ≥ tb. (5.1.12)

Similar estimates hold near a, so that z(t) ≡ a for all t ≤ ta < 0 when 0 < q < 1.
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Furthermore, the results in this chapter assume that η satisfies the following
assumptions:

η ∈ C1(I), η > 0 in I, (5.1.13)

d1(t+ T )n1−1 ≤ η(t) ≤ d2(t+ T )n1−1 for t ∈ (−T,−T + t∗], (5.1.14)

d3(T − t)n2−1 ≤ η(t) ≤ d4(T − t)n2−1 for t ∈ [T − t∗, T ), (5.1.15)

|η′(t)| ≤ d5η(t)

min{T − t, t+ T} for t ∈ I, (5.1.16)

for some constants d1, . . . , d5 > 0, n1, n2 ∈ N and t∗ > 0.

Remark 5.1.3. Two important weights are covered in under these assumptions.
The unweighted case η ≡ 1 can be recovered by taking n1 = n2 = 1 and di = 1 for
i = 1, . . . , 4, while the radial weight η(t) = (T + t)n−1 can be obtained by taking
n1 = n, n2 = 1, d1 = d2 = 1 and appropriate d3 and d4.

Previously, this functional has been studied in a few special settings. When η ≡ 1
this is simply the one dimensional Cahn–Hilliard functional, which was studied in
detail in [31], and was subsequently studied by [25, 59, 18]. The radial case, when
η = crn−1 has been studied by a variety of authors, including [87, 26, 41]. Finally,
the general weighted case was studied in [70]. In that work Kurata and Shibata
studied a very different question, namely monotonicity properties of minimizers of
the Cahn–Hilliard energy when the domain Ω is a curved strip in R2.

The aim in this chapter is to study second-order Γ-limits in the general weighted
case. This is motivated by the generalized Pòlya–Szegő inequality established in
Chapter 3. In that chapter the weight η is given by IΩ(VΩ), which does not typi-
cally have any closed form, but generally will satisfy assumptions (5.1.13)-(5.1.16).
In Chapter 6 the Pòlya–Szegő result will be combined with the results from this
chapter to establish a second-order Γ-limit result for the Cahn–Hilliard functional
in n dimensions. This follows the framework used in the radial case in [41], and in
many ways the analysis here is similar.

5.2 Zero and First-Order Γ-limit of Gε

The first step is to establish the zeroth-order Γ-limit of the functional Gε.

Theorem 5.2.1. Assume that W satisfies hypotheses (5.1.4)-(5.1.7) and that η sat-
isfies hypotheses (5.1.13)-(5.1.16). Then the family {Gε} Γ-converges to G(0) in L1

η,
where

G(0)(v) :=

{∫
IW (v)η dt if v ∈ L1

η and
∫
I vη dt = m,

∞ otherwise in L1
η.

Proof. For the lim inf inequality assume that vε → v in L1
η. By utilizing Fatou’s

lemma along with (5.1.4) we have that

lim inf
ε→0+

Gε(vε) ≥ lim inf
ε→0+

∫
I
W (vε)η dt ≥

∫
I
W (v)η dt.

For the lim sup inequality, we begin by assuming that v is bounded and satisfies
(5.1.3) (the case where v does not satisfy (5.1.3) is trivial). Let φδ be the standard
mollifier, let ṽ be v extended to all of R by zero and consider ṽε := φδε ∗ ṽ, where we
select δε so that ‖v − ṽε‖L1

η
= o(1) and so that∫

I
(ṽ′ε)

2η dt ≤ Cε−1.
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We then select dε ∈ R so that vε := ṽε + dε satisfies (5.1.3). It is evident that
dε = o(1). Finally, by the Lebesgue dominated convergence theorem we have that

lim
ε→0+

∫
I
W (vε)η dt =

∫
I
W (v)η dt,

which gives the desired result for v bounded. Now if v ∈ L1
η and

∫
I vη dt = m we

can construct a sequence {vk} of truncations of v, so that W (vk) ≤ W (vk+1) (see
(5.1.6)) and so that

∫
I vkη dt = m. Since the Γ-lim sup is lower semicontinuous (see

Remark 2.4.2 ), by applying the Lebesgue monotone convergence theorem we have
that

Γ- lim supGε(v) ≤ lim inf
k→∞

Γ- lim supGε(vk) ≤ lim inf
k→∞

∫
I
W (vk)η dt =

∫
I
W (v)η dt,

(5.2.1)
which concludes the proof.

By considering a measurable function taking values at a, b and satisfying (5.1.3),
it is clear that inf G(0) = 0, and thus

G(1)
ε (v) = ε−1Gε(v) =

∫
I

(
W (v)

ε
+ ε|v′|2

)
η dt (5.2.2)

for all v ∈ H1
η satisfying (5.1.3), and G

(1)
ε (v) =∞ otherwise in L1

η. The next result
deals with compactness, and utilizes arguments from [55].

Proposition 5.2.2. Let vε ∈ H1
η be such that supεG

(1)
ε (vε) < ∞. Then up to a

subsequence vε → v ∈ C in L1
η, where

C := {v ∈ BVη(I; {a, b}) : v satisfies (5.1.3)}. (5.2.3)

Proof. We first show that {vε} is uniformly bounded in L1
η and equi-integrable. This

is since, by applying (5.1.8),∫
|vε|>T̂

|vε|η dt ≤ L̂−1

∫
I
W (vε)η dt ≤ CεG(1)

ε (vε) ≤ Cε,

which, in turn, implies that∫
E
|vε|η dt ≤ T̂

∫
E
η dt+ Cε.

As
∫
I η dt < ∞ and using the fact that any finite collections of L1

η functions in L1
η

is equi-integrable, we obtain that the sequence {vε} is bounded in L1
η and equi-

integrable.

Next, define

W1(s) := min{W (s),K}, Φ1(t) :=

∫ t

a
W

1/2
1 (s) ds, (5.2.4)

where K := maxs∈[a,b]W (s). Using Young’s inequality, and the fact that 0 ≤ W1 ≤
W we have that

2

∫
I
W

1/2
1 (vε)|v′ε|η dt ≤ G(1)

ε (vε) ≤ C.
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Utilizing the chain rule (see Proposition 2.1.4), we find that∫
I
|(Φ1 ◦ vε)′|η dt ≤ C.

Furthermore, as Φ1 is Lipshitz and Φ1(a) = 0, we have that Φ1 ◦ vε is uniformly
bounded in L1

η. This then implies, by BV compactness, that, up to a subsequence,
not relabeled,

Φ1 ◦ vε → ṽ in L1
η

for some function ṽ ∈ BVη. It is easy to show, using (5.1.6), that Φ1 has a continuous
inverse. This implies that, up to a subsequence, vε must converge pointwise to
v := Φ−1

1 (ṽ). Thus, up to a subsequence, the vε converge in L1
η to v. Using Fatou’s

lemma and the fact that supεG
(1)
ε (vε) < ∞, it must be W (v(t)) = 0 for a.e. t ∈ I,

or, in other words, that v ∈ L1
η(I; {a, b}) by (5.1.4). As ṽ ∈ BVη, this implies that

v ∈ BVη(I; {a, b}). The L1
η convergence of the vε then implies that v satisfies (5.1.3).

This concludes the proof.

The first main theorem of this section characterizes the first-order Γ-limit of Gε.

Theorem 5.2.3. Assume that W satisfies (5.1.4)-(5.1.7) and that η satisfies (5.1.13)-

(5.1.16). Then the family {G(1)
ε } Γ-converges to the functional

G(1)(v) =

{
2cW
b−a |Dv|η(I) if v ∈ C,
∞ otherwise in L1

η,
(5.2.5)

where cW is the constant given in (1.1.5) and C defined in (5.2.3).

By definition (5.1.1), it is immediate that

|Dv|η = (b− a)
∑

η(ti),

where ti are the locations of jumps of the function v. It is not surprising that
Proposition 5.2.2 and Theorem 5.2.3 are completely analogous to classical results
(e. g. [78, 101]) in the unweighted, higher-dimensional case.

Proof. We first characterize the Γ-lim sup. Specifically, given a v ∈ C, we construct
a family of functions vε that converge in L1

η to v satisfying

lim sup
ε→0+

G(1)
ε (vε) ≤ G(1)(v). (5.2.6)

To begin with, we assume that v is of the form

v(t) =

{
a if t ∈ [t2k, t2k+1),

b otherwise,

where −T = t0 < t1 < · · · < t2N = T . Define

f(t) :=


t− t1 if t ∈ [t0, t1),

−min{t− t2k, t2k+1 − t} if t ∈ [t2k, t2k+1), and k ≥ 1,

min{t− t2k+1, t2k+2 − t} if t ∈ (t2k+1, t2k+2], and k < N − 1,

t− t2N−1 if t ∈ [t2N−1, t2N ).
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Observe that f is the signed distance function (see (2.3.4)) of the set E := {t ∈ I :
v(t) = a}, where we naturally are considering ∂E relative to I, not R. We note that
v(t) = sgna,b(f(t)), where sgna,b is the function given in (1.1.7). Thus the goal is to

construct smooth approximations of the function sgna,b that make the energy G
(1)
ε

small.
One possible approximation comes from the construction in [78]. Although the

argument is almost identical, it is included here for completeness. Consider the
function

φ̃ε(s) :=

∫ s

a

(
ε2

ε+W (r)

)1/2

dr, (5.2.7)

and define the constant
ξε := φ̃ε(b).

Since W ≥ 0, equation (5.2.7) gives

0 ≤ ξε ≤ (b− a)ε1/2.

Note that φ̃ε is strictly increasing and differentiable. Now define φε : [0, ξε] →
[a, b] to be the inverse of φ̃ε on the interval [a, b]. By the fundamental theorem of
calculus and the inverse function theorem φε will satisfy the equation

εφ′ε(t) = (ε+W (φε(t)))
1/2.

Next, extend φε to be equal to a for t < 0 and b for t > ξε. Note that for all t ∈ R
we have that φε(t) ≤ sgna,b(t) and that φε(t+ ξε) ≥ sgna,b(t). Thus as v ∈ C we can
find a τε ∈ (0, ξε) that gives∫

I
φε(f(t) + τε)η(t) dt = m.

Define vε(t) := φε(f(t) + τε). As {vε} converges to v pointwise and |vε| < C we
have that vε → v in L1

η. We then examine the energy associated with vε, when ε is

sufficiently small that transition layers do not overlap or leave I:

G(1)
ε (vε) =

2N−1∑
k=1

∫ ξε

0

(
ε(φ′ε(t))

2 + ε−1W (φε(t))
)
η(tk + (t− τε)(−1)k+1) dt

≤
2N−1∑
k=1

∫ ξε

0
2(ε+W (φε(t)))

1/2φ′ε(t)η(tk + (t− τε)(−1)k+1) dt

≤
2N−1∑
k=1

sup{η(tk + (s− τε)(−1)k+1) : s ∈ (0, ξε)}
∫ ξε

0
2(ε+W (φε(t)))

1/2φ′ε(t) dt

=

2N−1∑
k=1

sup{η(tk + (s− τε)(−1)k+1) : s ∈ (0, ξε)}
∫ b

a
2(ε+W (s))1/2 ds.

Thus taking the limit as ε→ 0+ we find that

lim sup
ε→0+

G(1)
ε (vε) ≤ 2cW

2N−1∑
k=1

η(tk) = G(1)(v).

The cases where v has a finite number of jump points, but starting or ending at dif-
ferent values than we assumed are analogous. Reasoning as in (5.2.1), by noting that
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functions with a finite number of jumps can approximate elements of C arbitrarily
well in BVη, and as the Γ-lim sup is lower semicontinuous, we then have (5.2.6).

Next we will establish our Γ-lim inf. Assume that vε → v in L1
η. By Proposition

5.2.2 if v /∈ C then lim infε→0+ G
(1)
ε = ∞, and there is nothing to prove. We claim

that for any sequence {vε} that converges in L1
η to some v ∈ C the following inequality

holds:

lim inf
ε→0+

G(1)
ε (vε) ≥ G(1)(v). (5.2.8)

To establish this inequality we use Young’s inequality, the chain rule (see Proposition
2.1.4) and lower semicontinuity of ‖ · ‖BVη (see Proposition 2.1.3 and Remark 2.1.5)
and the definition (5.2.4) as follows:

lim inf
ε→0+

G(1)
ε (vε) ≥ lim inf

ε→0+

∫
I
(ε−1W1(vε) + ε(v′ε)

2)η dt

≥ lim inf
ε→0+

2

∫
I
|(Φ1 ◦ vε)′|η dt ≥ 2

∫
I
η d|DΦ1(v)|

= 2

∫
I
η d|DΦ(v)| = 2cW

b− a

∫
I
η d|Dv| = G(1)(v0).

Here we have used the fact that Φ1 ◦ vε converges to Φ1 ◦ v in L1
η (because Φ1 is

Lipschitz), and the fact that Φ1 ◦ v = Φ ◦ v, where Φ :=
∫ t
aW

1/2(s) ds. This proves
the claim.

The fundamental theorem of Γ-convergence (Theorem 2.4.5), which applies due
to Proposition 5.2.2, then establishes the following corollary.

Corollary 5.2.4. Under the hypotheses of Theorem 5.2.3 if vε are minimizers of

G
(1)
ε then, up to a subsequence, they converge in L1

η to v which is a minimizer of

G(1). Furthermore the vε will satisfy the following

lim
ε→0+

G(1)
ε (vε) = G(1)(v).

The remainder of this section will be devoted to proving two theorems that will
be important in later analysis. First, select t0 so that

v0(t) := sgna,b(t− t0)

satisfies (5.1.3). By (5.1.13) it is clear that t0 is uniquely determined. In general, v0

is not a global minimizer of G(1). However, it is the case that v0 is an isolated local
minimizer of G(1) in L1

η.

Theorem 5.2.5. Assume that W satisfies (5.1.4)-(5.1.7) and that η satisfies (5.1.13)-
(5.1.16). Then there exists δ > 0 such that v0 is an isolated δ-local minimizer of
G(1) in L1

η, that is, there is no v1 ∈ C (see (5.2.3)), with 0 < ‖v1 − v0‖L1
η
≤ δ such

that

G(1)(v1) ≤ G(1)(v0).

Proof. Assume by contradiction that such v1 exists. By continuity of η, for every
ε > 0 there is rε > 0 such that

|η(t)− η(t0)| ≤ ε (5.2.9)
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for all t ∈ [t0 − rε, t0 + rε]. Let M0 := max |η′|+ 1 and fix

0 < r0 < min

{
1

2
t∗, T − t0, T + t0,

d1n1η(t0)

2d2M0
,
d3n2η(t0)

2d4M0

}
, (5.2.10)

where t∗, n1, n2 and the constants di, i = 1 . . . 4 are given in (5.1.14) and (5.1.15).
Then define

I0 := [−T + r0, T − r0],

and fix
0 < ε1 < min{min

I0
η, η(t0)/2}

in (5.2.9) and let rε1 be the corresponding rε.
Step 1: We claim that v1 has a jump at some t1 ∈ B(t0, rε1). If not, then either
v1 ≡ a in B(t0, rε1) or v1 ≡ b in B(t0, rε1). Assume that v1 ≡ a in B(t0, rε1). Then
by (5.2.9),

δ ≥
∫
B(t0,rε1 )

|v1 − v0|η dt ≥ (b− a)
η(t0)

2
rε1 ,

where we used the fact that 0 < ε1 < η(t0)/2. Since the case v1 ≡ b gives an identical
estimate, the claim follows provided

0 < δ < (b− a)
η(t0)

2
rε1 .

Step 2: We claim that v1 has no jump other than t1 in I0. Indeed, assume that
there is a second jump t2 6= t1 in I0. Then by (5.2.9) and Step 1,

G(1)(v1) ≥ 2cW (η(t1) + η(t2))

≥ 2cW (η(t0)− ε1 + min
I0

η) > 2cW η(t0) = G(1)(v0),

where in the last inequality we used the fact that 0 < ε1 < minI0 η. This is impossible
since we are assuming that G(1)(v1) ≤ G(1)(v0).
Step 3: We claim that v1 jumps from a to b at t1. Suppose not, and suppose that
t1 ≤ t0. Then

δ ≥
∫
B(t0,rε1 )

|v1 − v0|η dt ≥ (b− a)
η(t0)

2
rε1 ,

which again leads to a contradiction if δ is chosen small enough. The case t1 > t0 is
analogous.
Step 4: We claim that t1 = t0. Indeed, if t1 > t0, then

0 =

∫
I
(v1 − v0)η dt =

∫ −T+r0

−T
(v1 − a)η dt+

∫ t1

t0

(a− b)η dt+

∫ T

T−r0
(v1 − b)η dt,

which implies, as the last two terms are negative, that there must be a jump t3 that
belongs to (−T,−T + r0), with

0 <
η(t0)

2
(b− a)(t1 − t0) ≤

∫ t1

t0

(b− a)η dt ≤ (b− a)

∫ t3

−T
η dt ≤ d2(b− a)

(T + t3)n1

n1
,

(5.2.11)
where in the last equality we used (5.1.14), in conjunction with (5.2.10). By the
mean value theorem and inequality (5.2.11), for some θ ∈ (t0, t1),

η(t1) = η(t0) + η′(θ)(t1 − t0) ≥ η(t0)−M0|t1 − t0|

≥ η(t0)− 2M0d2

n1η(t0)
(T + t3)n1 .
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Hence by (5.2.10),

G(1)(v1) ≥ 2cW (η(t1) + η(t3))

≥ 2cW η(t0)− 2cW
2M0d2

n1η(t0)
(T + t3)n1 + 2cWd1(T + t3)n1−1

> 2cW η(t0) = G(1)(v0),

which violates our assumption. The case t1 < t0 is analogous. This proves that t1 =
t0, and so G(1)(v1) ≥ 2cW η(t0) = G(1)(v0), which implies that G(1)(v1) = G(1)(v0).
In particular, v1 has no jumps in I\I0. But then v1 = v0, which is a contradiction.
This completes the proof.

Although v0 is a local minimizer for G(1), In general v0 may not be a global
minimizer without further assumptions on η (e.g., η ≡ constant). However, in certain
cases it will be important to study a type of second-order asymptotic development of

Gε where in the definition of G
(2)
ε (see (2.4.1)) in place of inf G(1) we take G(1)(v0).

This in fact corresponds to studying the second-order asymptotic development of
the localized functional

Jε(v) :=

{
Gε(v) if ‖v − v0‖L1

η
≤ δ,

∞ otherwise.
(5.2.12)

The following theorem gives a lim sup inequality. It also does not require the
same regularity results on η as most of the other theorems in this chapter.

Theorem 5.2.6. Assume that W satisfies (5.1.4)-(5.1.7), and that η : I → [0,∞)
is measurable, bounded, differentiable at t0, η(t0) > 0 and

|η(t)− η(t0)− η′(t0)(t− t0)| = o(|t− t0|) (5.2.13)

for some constant C > 0 and for all t in a neighborhood of t0. Then there exists a
sequence {vε} converging to v0 in L1

η so that

lim sup
ε→0+

G
(1)
ε (vε)− 2cW η(t0)

ε
≤ 2η′(t0)(τ0cW + csym)

+

{
λ2

0
2W ′′(a)

∫
I η ds if q = 1,

0 if q < 1,

(5.2.14)

where cW and csym are given by (1.1.5), (6.1.6), τ0 is determined by the equation

η(t0)

∫
R

(z(s− τ0)− sgna,b) ds =

{
λ0

W ′′(a)

∫
I η dt if q = 1,

0 if q < 1,
(5.2.15)

where z is the solution to (1.1.6) and λ0 is defined by

λ0 :=
2η′(t0)cW

(b− a)η(t0)
. (5.2.16)

Proof. Step 1: Assume q = 1. Define zε(t) := z( t−t0ε ) and then define

vε(t) := zε(t− ετε)−
λ0ε

W ′′(a)
, (5.2.17)
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where τε is selected so that (5.1.3) is satisfied. We first claim that

lim
ε→0+

τε = τ0. (5.2.18)

To this end, we can write, via (5.1.3),∫
I
vεη dt =

∫
I
v0η dt = m.

In turn this implies that∫
I
(zε(t− ετε)− zε(t− ετ0))η dt =

∫
I
(sgna,b(t− t0)− zε(t− ετ0))η dt

+
ελ0

W ′′(a)

∫
I
η dt.

(5.2.19)

After the change of variables s = t−t0
ε we can write the right-hand side as

ε

∫ T−t0
ε

−T−t0
ε

(sgna,b(s)− z(s− τ0))η(εs+ t0) ds+
ελ0

W ′′(a)

∫
I
η dt. (5.2.20)

By our choice of τ0 (via (5.2.15)) and (1.1.7) this is equal to

ε

∫ T−t0
ε

−T−t0
ε

(sgna,b(s)− z(s− τ0))(η(εs+ t0)− η(t0)) ds

− εη(t0)

∫ −T−t0
ε

−∞
(a− z(s− τ0)) ds− εη(t0)

∫ ∞
T−t0
ε

(b− z(s− τ0)) ds.

(5.2.21)

By (5.2.13) there exists a R0 > 0 such that |η(t)−η(t0)| ≤ (|η′(t0)|+ 1)|t− t0| for all
t ∈ B(t0, R0). Since η is bounded by assumption, we thus have for all t ∈ I\B(t0, R0),

|η(t)− η(t0)| ≤ 2‖η‖∞ ≤ 2
‖η‖∞
R0
|t− t0|.

Hence for all t ∈ I we have that |η(t) − η(t0)| ≤ Cη|t − t0| for some Cη > 0. Thus,
using (5.1.11), the first term in (5.2.21) can be bounded by

2(b− a)ε

∫ T−t0
ε

−T−t0
ε

e−c1|s||η(εs+ t0)− η(t0)| ds ≤ 2(b− a)Cηε
2

∫
R
e−c1|s||s| ds.

By (5.1.11) we know that the last two terms of (5.2.21) are bounded from above by
(b−a)
c1
‖η‖∞ε2e−

c1T1
ε , where T1 := min(T − t0, T + t0) > 0. Hence, the right-hand side

of (5.2.19) is bounded from above by Cε2 for all ε > 0 sufficiently small.
Now assume that the τε do not converge to τ0. Assume without loss of generality

that for some subsequence (not relabeled) the τε ≤ τ0−k0 for some k0 > 0 (the case
where τε ≥ τ0 + k0 is similar). Since z is increasing (see (1.1.6)), by (5.2.19) and
what we just proved,

Cε2 ≥
∫
I
(zε(t− ετε)− zε(t− ετ0))η(t) dt ≥ inf

B(t0+ετ0,k1ε)
η

∫
B(t0+ετ0,k1ε)

∫ t−ετε

t−ετ0
z′ε(s) ds dt

≥ inf
B(t0+ετ0,k1ε)

η

∫
B(t0+ετ0,k1ε)

∫ t−ε(τ0−k0)

t−ετ0
ε−1
√
W (z(ε−1(s− t0)) ds dt

≥ 2k1k0ε inf
t∈B(0,k1+k0)

√
W (z(t)) inf

B(t0+ετ0,k1ε)
η,
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where 0 < k1 < 1 and where we have used the facts that η is continuous at t0 and
that η(t0) > 0. Since z(0) = c, by taking k0 and k1 sufficiently small we can assume
that z(t) ∈ B(c,min{ c−a2 , b−c2 }) for all t ∈ B(0, k0 + k1). In turn the right-hand side
of the previous inequality is bounded from below by C1ε for some C1 > 0. This is a
contradiction, which proves our claim.

Next we prove (5.2.14). We will write Rε := Ckε| log ε|, with Ck > 0 to be chosen
later. We then write

G
(1)
ε (vε)− 2cW η(t0)

ε
= ε−1

(∫
B(t0,Rε)

(ε−1W (vε) + ε(v′ε)
2)η dt− 2cW η(t0)

)

+

∫
I\B(t0,Rε)

(ε−2W (vε) + (v′ε)
2)η dt.

(5.2.22)
First we examine the second term, namely the tail integral. We first note that by
(5.1.11) and the fact that the τε → τ0 we then have that

b− zε(t− ετε) ≤
b− a

2
ec1(1+|τ0|)εc1Ck ≤ εk

for t ∈ [t0 +Rε, T ] and for ε small, provided Ck ≥ 2 k
c1

. Similarly, zε(t−ετε)−a < εk

for t ∈ [−T, t0 −Rε]. Thus for t ∈ I\B(t0, Rε) we have that

|zε(t− ετε)− v0(t)| ≤ εk (5.2.23)

which in turn implies, after recalling (5.2.17), that, for k large,

(vε(t)− v0)2 ≤ λ2
0ε

2

W ′′(a)2
+ Cεk+1 (5.2.24)

for all t ∈ I\B(t0, Rε) and for some fixed C > 0.
We then fix γ > 0. By (5.1.9) there exists sγ such that

W (s) ≤
(
W ′′(a)

2
+ γ

)
(s− a)2 (5.2.25)

for all s with |s− a| ≤ sγ , and

W (s) ≤
(
W ′′(a)

2
+ γ

)
(s− b)2 (5.2.26)

for all s with |s − b| ≤ sγ . By (5.2.24), (5.2.25) and (5.2.26) we then have for ε
sufficiently small that∫

I\B(t0,Rε)
W (vε)η dt ≤

(
W ′′(a)

2
+ γ

)
ε2λ2

0W
′′(a)−2

∫
I
η dt+O(εk+1).

On the other hand, using (1.1.6), (5.2.23), (5.2.25), and (5.2.26),

(v′ε(t))
2 =

1

ε2
W (zε(t+ ετε)) ≤

C

ε2
(zε(t+ ετε)− v0(t))2 ≤ Cε2k−2

for t ∈ I\B(t0, Rε). After taking limits (first as ε → 0+ and then as γ → 0+) we
thus find that

lim sup
ε→0+

∫
I\B(t0,Rε)

(ε−2W (vε) + (v′ε)
2)η dt ≤ λ2

0

2W ′′(a)

∫
I
η dt. (5.2.27)
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Next we estimate the energy in the region B(t0, Rε). We will define sε1 := vε(t0−
Rε) and sε2 := vε(t0 +Rε). Note that by (5.2.24), sε1 = a+O(ε) and sε2 = b+O(ε).
Thus recalling the definition of cW , (1.1.5), and (5.1.9), we find that

cW =

∫ sε2

sε1

W 1/2(s) ds+O(ε2) =

∫
B(t0,Rε)

W 1/2(vε)v
′
ε dt+O(ε2),

where we have used the change of variables s = vε(t). Thus we have that∫
B(t0,Rε)

(ε−1W (vε) + ε(v′ε)
2)η dt− 2cW η(t0)

=

∫
B(t0,Rε)

(ε−1/2W 1/2(vε)− ε1/2v′ε)
2η +W 1/2(vε)v

′
ε(2η − 2η(t0)) dt+O(ε2).

(5.2.28)
We now estimate the terms on the right-hand side of (5.2.28). Recalling the fact
that |W 1/2(s1)−W 1/2(s2)| ≤ C|s1− s2| for all s1, s2 ∈ [a− 1, b+ 1] (see (5.1.4) and
(5.1.5)), it follows from (1.1.6), (5.2.17), and the boundedness of η, that∫
B(t0,Rε)

(ε−1/2W 1/2(vε)− ε1/2v′ε)
2η dt ≤ ε−1

∫
B(t0,Rε)

(W 1/2(vε(t))−W 1/2(zε(t− ετε)))2η(t) dt

≤ Cε−1

∫
B(t0,Rε)

(
ελ0

W ′′(a)

)2

η dt ≤ Cε2| log ε|.

(5.2.29)

Next we will use (1.1.6), (5.2.13) and (5.2.17) to obtain:

2

∫
B(t0,Rε)

W 1/2(vε)v
′
ε(η − η(t0)) dt

= 2

∫
B(t0,Rε)

W 1/2(vε(t))v
′
ε(t)(η

′(t0)(t− t0) + o(|t− t0|)) dt

= 2η′(t0)

∫
B(t0,Rε)

W 1/2(vε(t))v
′
ε(t) ((t− t0) + |t− t0|o(1)) dt.

Changing variables to s = t−t0−ετε
ε we can then write

2

∫
B(t0,Rε)

W 1/2(vε)v
′
ε(η − η(t0)) dt

= 2η′(t0)ε

∫
B(τε,Ck| log ε|)

W 1/2(z(s)− λ0W
′′(a)−1ε)z′(s)(τε + s) ds

+ εo(1)

∫
B(τε,Ck| log ε|)

W 1/2(z(s)− λ0W
′′(a)−1ε)z′(s)|s+ τε| ds (5.2.30)

= 2η′(t0)ε

∫
B(τε,Ck| log ε|)

W 1/2(z(s)− λ0W
′′(a)−1ε)z′(s)(τε + s) ds+ o(ε),(5.2.31)

where in estimating (5.2.30) we have used that z′ decays exponentially, and thus the
integral on that line is uniformly bounded. We remark that, by (1.1.5) and (6.1.6)
and (5.2.18), the integral on the right-hand side of (5.2.31) converges to∫

R
W 1/2(z(s))z′(s)(τ0 + s) ds = τ0cW + csym.
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By then combining estimates (5.2.22), (5.2.27), (5.2.28), (5.2.29), (5.2.31), to find
that

lim sup
ε→0+

G
(1)
ε (vε)− 2cW η(t0)

ε
≤ 2η′(t0) (τ0cW + csym) +

λ2
0

2W ′′(a)

∫
I
η dt,

which is the desired conclusion.

Step 2: The case q < 1 is simpler since by (5.1.12) the function z in (1.1.6)
satisfies z(t) ≡ b for t ≥ tb and z(t) ≡ a for t ≤ ta. We define vε(t) := zε(t − ετε).
Then the second term in the right-hand side of (5.2.19) should be replaced by 0,
while (5.2.20) becomes

ε

∫ tb+τ0

ta+τ0

(sgna,b(s)− z(s− τ0))η(εs+ t0) ds.

In turn, in (5.2.21) the first integral is over [ta + τ0, tb + τ0], while the other two
integrals vanish. Using the regularity of η near t0 we can bound the integral in the
new (5.2.21) by 2(b − a)Cηε

2(tb − ta). We can continue as before to conclude that
τε → τ0.

By (1.1.5) and (1.1.6), in place of (5.2.22) we now have

G
(1)
ε (vε)− 2cW η(t0)

ε
= ε−1

∫ t0+ετε+εtb

t0+ετε+εta

W 1/2(vε(t))v
′
ε(t)(η(t)− η(t0)) dt.

Using (5.2.13) and the fact that τε → τ0, the right-hand side can be bounded from
above by

≤ 2ε−1η′(t0)

∫ t0+ετε+εtb

t0+ετε+εta

W 1/2(vε(t))v
′
ε(t)(t− t0) dt+ o(1)

= 2η′(t0)

∫ tb

ta

W 1/2(z(s))z′(s)(s+ τε) ds+ o(1),

where we have used a change of variables s = t−t0−ετε
ε , and where the error term

in the Taylor formula, namely (5.2.30), still has a uniformly bounded integral, this
time because both the integrand and the interval of integration are bounded. It now
suffices to let ε→ 0+.

5.3 Local Minimizers of Gε

This section proves the existence of certain types of local minimizers of Gε and
studies their qualitative properties. In the next subsection these properties will
permit a characterization of the second-order asymptotic development of the family
Jε defined in (5.2.12). The following proposition is based on an argument from [69]
(see also [22]). The proof is included for completeness.

Proposition 5.3.1. Assume that W satisfies (5.1.4)-(5.1.7) and that η satisfies
(5.1.13)-(5.1.16). Then for all ε > 0 there exists a global minimizer vε of the func-
tional Jε. Furthermore, the functions vε must converge to v0 in L1

η, and thus for
ε small enough vε is a local minimizer of Gε. Additionally, the following equality
holds:

lim
ε→0+

J (1)
ε (vε) = G(1)(v0). (5.3.1)
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Proof. First we prove the existence of a global minimizer. Fix ε > 0 and suppose
that {fk} is a minimizing sequence in the sense that

lim
k→∞

Jε(fk) = inf
v
Jε(v) <∞.

In particular, ‖fk − v0‖L1
η
≤ δ for all k sufficiently large. By (5.2.2) and (5.2.12) it

follows that {f ′k} is bounded in L2
η. Since {fk} is bounded in L1

η, by (5.1.13) and
a diagonal argument, we may find a function vε ∈ H1

η,loc such that f ′k ⇀ v′ε in L2
η

and fk → vε in L1
η,loc, and pointwise a.e.. By Fatou’s lemma and the weak lower

semi-continuity of the L2
η norm, we then have, provided that vε ∈ H1

η (see (5.1.2)),
that

Gε(vε) ≤ lim inf
k→∞

Gε(fk) = inf
v
Jε(v)

and that ‖vε − v0‖L1
η
≤ δ. Thus it remains to show that vε ∈ L2

η. Since vε is locally
absolutely continuous, by Hölder’s inequality, for −T < t < −T + t∗ we have

v2
ε(t)η(t) = η(t)

(
vε(−T + t∗)−

∫ −T+t∗

t
v′ε(s) ds

)2

≤ 2η(t)v2
ε(−T + t∗) + 2η(t)

(∫ −T+t∗

t
v′ε(s)

η1/2(s)

η1/2(s)
ds

)2

≤ 2η(t)v2
ε(−T + t∗) + 2η(t)

∫ −T+t∗

t

1

η(s)
ds

∫ −T+t∗

t
|v′ε(s)|2η(s) ds

≤ 2η(t)v2
ε(−T + t∗) + 2

d2

d1
t∗
∫
I
|v′ε(s)|2η(s) ds,

where we have used the fact that if t < s < −T+t∗ then η(s) ≥ d1
d2
η(t) (see (5.1.14)).

By integrating in t over (−T,−T + t∗) we observe that vε ∈ L2
η((−T,−T + t∗)). A

similar estimate can be obtained on the interval (T − t∗, T ). On the other hand, by
(5.1.13), we have that η ≥ η0 > 0 in [−T +t∗, T −t∗], and thus vε ∈ L2((−T +t∗, T −
t∗)), which then implies that vε ∈ L2

η, as desired. This establishes the existence of a
global minimizer, vε.

By Theorem 5.2.3 we know that there exists a sequence {ṽε} converging to v0 in

L1
η with G

(1)
ε (ṽε) → G(1)(v0). In particular ‖ṽε − v0‖L1

η
≤ δ for ε sufficiently small.

Since vε is a global minimizer of Jε we then know that Gε(vε) ≤ Gε(ṽε) for ε small.
Thus

lim sup
ε→0+

G(1)
ε (vε) ≤ lim sup

ε→0+

G(1)
ε (ṽε) ≤ G(1)(v0).

By Proposition 5.2.2 we then have that (up to a subsequence, not relabeled), vε → ṽ
in L1

η, with ṽ ∈ C and with ‖ṽ − v0‖L1
η
≤ δ. By again applying Theorem 5.2.3 we

find that

G(1)(ṽ) ≤ lim inf
ε→0+

G(1)
ε (vε) ≤ lim sup

ε→0+

G(1)
ε (vε) ≤ G(1)(v0). (5.3.2)

Theorem 5.2.5 then implies that ṽ = v0, which along with (5.3.2) implies (5.3.1).
As vε → v0 in L1

η we then have that the vε must be local minimizers of Gε, for ε
sufficiently small. This completes the proof.

In light of the fact that the global minimizers of Jε are local minimizers of Gε
for ε sufficiently small it is possible to identify the Euler–Lagrange equations.
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Theorem 5.3.2. Under the hypotheses of Proposition 5.3.1 the sequence {vε} of
global minimizers of the functionals Jε will satisfy the following Euler–Lagrange
equations (for ε sufficiently small):

2ε2(v′ε(t)η(t))′ −W ′(vε(t))η(t) = ελεη(t), (5.3.3)

where λε ∈ R. Moreover the Lagrange multipliers λε satisfy

lim
ε→0+

λε = λ0, (5.3.4)

where λ0 is the number given in (5.2.16).

Proof. Reasoning somewhat as in the proof of step 4 in [41] we have that vε ∈ C2(I)
and satisfies (5.3.3). Next, we will prove (5.3.4), namely the limit of the Lagrange
multipliers λε. The argument here follows [74], with the necessary adaptations to
the weighted setting.

To prove (5.3.4), fix some ψ ∈ C∞c (I). We multiply the Euler–Lagrange equations
(5.3.3) by ψv′ε and integrate to obtain

ελε

∫
I
ψv′εη dt =

∫
I
(2ε2(v′′εη + v′εη

′)−W ′(vε)η)ψv′ε dt.

Integrating by parts, we find that

ελε

∫
I
ψv′εη dt =

∫
I
(W (vε)− ε2v′2ε )(ηψ)′ + 2ε2(v′ε)

2η′ψ dt. (5.3.5)

By Theorem 5.2.3 and Proposition 5.3.1 we know that

lim
ε→0+

∫
I
(ε−1W (vε) + ε(v′ε)

2)η dt = 2cW η(t0).

Furthermore, as in the proof of (5.2.8), by lower semicontinuity

lim inf
ε→0+

2

∫
I
W 1/2(vε)|v′ε|η dt = lim inf

ε→0+
2

∫
I
|(Φ(vε))

′|η dt ≥ 2cW η(t0), (5.3.6)

where we recall that Φ(t) :=
∫ t
aW

1/2(s) ds. These together give the following:

0 ≤ lim sup
ε→0+

∫
I
(ε−1/2W 1/2(vε)− ε1/2(v′ε))

2η dt

= lim sup
ε→0+

∫
I
(ε−1W (vε) + ε(v′ε)

2 − 2W 1/2(vε)|v′ε|)η dt ≤ 0.

We thus have that ε−1/2W 1/2(vε)− ε1/2|v′ε| goes to zero in L2
η. Moreover, the liminf

in (5.3.6) is actually a limit and equality holds, so that

lim
ε→0+

∫
I
W 1/2(vε)|v′ε|η dt = cW η(t0). (5.3.7)

Additionally, we can write the following:

lim
ε→0+

∫
I
|ε−1W (vε)− ε(v′ε)2|η dt

= lim
ε→0+

∫
I

∣∣∣ε−1/2W 1/2(vε)− ε1/2|v′ε|
∣∣∣ ∣∣∣ε−1/2W 1/2(vε) + ε1/2|v′ε|

∣∣∣ η dt
≤ lim

ε→0+

(∫
I

(
ε−1/2W 1/2(vε)− ε1/2|v′ε|

)2
η dt

)1/2

×
(∫

I

(
ε−1/2W 1/2(vε) + ε1/2|v′ε|

)2
η dt

)1/2

≤ lim
ε→0+

C

(∫
I

(
ε−1/2W 1/2(vε)− ε1/2|v′ε|

)2
η dt

)1/2

= 0,
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where we have used Hölder’s inequality in the first inequality, Young’s inequality

and the boundedness of G
(1)
ε (vε) in the second. By (5.1.13) we can deduce that

ε−1W (vε) − ε(v′ε)
2 goes to zero in L1

loc(I). Thus by dividing (5.3.5) by ε, and
recalling that ψ is compactly supported in I, we obtain

lim
ε→0+

λε

∫
I
ψv′εη dt = lim

ε→0+
2

∫
I
ε(v′ε)

2η′ψ dt.

We then use the L2 convergence shown above to estimate the following

lim
ε→0+

∣∣∣∣∫
I
(ε(v′ε)

2 −W 1/2(vε)|v′ε|)η′ψ dt
∣∣∣∣

= lim
ε→0+

∣∣∣∣∫
I
ε1/2|v′ε|(ε1/2|v′ε| − ε−1/2W 1/2(vε))η

′ψ dt

∣∣∣∣
≤ lim

ε→0+

(∫
I
ε(v′ε)

2

(
η′ψ

η

)2

η dt

)1/2(∫
I
(ε1/2|v′ε| − ε−1/2W 1/2(vε))

2η dt

)1/2

= 0,

where we have used the fact that ψη′

η is uniformly bounded, since ψ has compact
support in I.

Thus we can write the following:

lim
ε→0+

λε

∫
I
ψv′εη dt = lim

ε→0+
2

∫
I
W 1/2(vε)|v′ε|η′ψ dt. (5.3.8)

We know that v′εL1bI ∗⇀ Dv0 = (b−a)δt0 and W 1/2(vε)v
′
εL1bI ∗⇀ D(Φ◦v0) = cW δt0 ,

both in (C0(I))′. In turn, W 1/2(vε)v
′
εηL1bI ∗

⇀ cW η(t0)δt0 . In view of (5.3.7), it

follows from Proposition 4.30 in [75] that W 1/2(vε)|v′ε|ηL1bI ∗⇀ cW η(t0)δt0 . Hence,

lim
ε→0+

∫
I
W 1/2(vε)|v′ε|η′ψ dt = lim

ε→0+

∫
I
W 1/2(vε)|v′ε|η

η′

η
ψ dt = cW η(t0)

η′(t0)

η(t0)
ψ(t0).

We thus take limits in (5.3.8) to find that

lim
ε→0+

λε(b− a)ψ(t0)η(t0) = 2η′(t0)cWψ(t0).

This then gives the desired conclusion, namely that (5.3.4) holds.

The next step is to establish tight bounds on the functions vε, as well as a
Neumann condition.

Theorem 5.3.3. Under the hypotheses of Proposition 5.3.1, for all ε > 0 sufficiently
small the minimizers vε of Jε satisfy

aε ≤ vε(t) ≤ bε, t ∈ I, (5.3.9)

v′ε(−T ) = v′ε(T ) = 0, (5.3.10)

where aε < cε < bε are the only zeros of W ′ + λεε. Moreover

aε = a− λε|λε|1/q−1(q/`)1/qε1/q + o(ε1/q), (5.3.11)

cε = c− λεW ′′(c)−1ε+ o(ε), (5.3.12)

bε = b− λε|λε|1/q−1(q/`)1/qε1/q + o(ε1/q), (5.3.13)

where ` is given in (5.1.5).
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Proof. By hypothesis (5.1.7), |W ′(s)| ≥ w0 > 0 for all |s| ≥ C. Since W ′ has only
three zeros at a, b, c and is strictly monotonic in a ball centered at each of these
points with radius ζ0 > 0 (see (5.1.5) and (5.1.6)), by taking w0 smaller we can
assume that |W ′(s)| ≥ w0 for all s ∈ R \ (B(a, ζ0) ∪B(c, ζ0) ∪B(b, ζ0)). By (5.3.4),
|ελε| ≤ w0/2 for all ε > 0 small. Hence W ′ + ελε has only three zeros

aε < bε < cε, (5.3.14)

for all ε > 0 small. Furthermore by (5.1.6) and (5.1.10) we can derive the explicit
forms in (5.3.11)-(5.3.13).

Next, consider the open set Uε := {t ∈ I : vε(t) < aε}. We claim that Uε is empty.
Indeed, if not, let Iε be a maximal subinterval of Uε, and since W ′(vε) + ελε < 0
for all t ∈ Iε by (5.3.3) we have that (v′ε(t)η(t))′ < 0 for all t ∈ Iε. Since η > 0
on I by (5.1.13), this implies that v′ε has at most one zero in Iε. Hence there
exist limt→t+ε vε(t) = `ε and limt→T−ε vε(t) = Lε, where tε, Tε are the left and right
endpoints of Iε, respectively. Note that `ε, Lε could be infinite if one of the endpoints
is −T or T . Consider infIε vε. If there exists sε ∈ I◦ε such that vε(sε) = infIε vε, then
v′ε(sε) = 0 and v′′ε (sε) ≥ 0. This is impossible, as (v′εη)′ < 0 on Iε. Thus it follows
that infIε vε is either `ε or Lε. Assume first that infIε vε = `ε. By the definition of
Iε it cannot be that `ε = aε, but then, by the maximality of Iε, necessarily tε = −T .
By (5.3.3) for all t1, t2 ∈ Iε, with t1 < t2:

2ε2v′ε(t2)η(t2)− 2ε2v′ε(t1)η(t1) =

∫ t2

t1

(W ′(vε(s)) + ελε)η(s) ds. (5.3.15)

Since W ′(vε(t)) + ελε < 0 for all t ∈ Iε, the integral
∫ t2
−T (W ′(vε(s)) + ελε)η(s) ds is

well-defined in R∪{−∞}. Hence, letting t1 → −T+ in (5.3.15), it follows that there
exists

lim
t→−T+

v′ε(t)η(t) = Mε ∈ R ∪ {∞}. (5.3.16)

Assume, for the sake of contradiction, that Mε 6= 0. Then by (5.1.14) and (5.3.16),
|v′ε(t)| ≥ C0(T + t)−n1+1 for all t ∈ (−T,−T + δε), for some δε > 0. It would then
follow that ∫ −T+δε

−T
|v′ε|2η dt ≥ d1

∫ −T+δε

−T
C2

0 (T + t)−n1+1 dt =∞

if n1 ≥ 2. On the other hand, if n1 = 1 then v′ε(−T ) = 0, since vε is a minimizer.
Thus in both cases we must have that Mε = 0. In turn, letting t1 → −T+ in (5.3.15)
it follows that v′ε(t) < 0 for all t ∈ Iε, which contradicts the fact that `ε = infIε vε.
Using a similar argument we can exclude the case that Lε = infIε vε. This proves
that Iε, and in turn Uε, is empty. Thus vε ≥ aε in I. Similarly, we can show that
vε ≤ bε in I.

It remains to prove the Neumann boundary condition (5.3.10). If ni = 1 then
this comes from the minimality of vε. When ni ≥ 2, since vε is bounded by what we
just proved, it follows that the integral on the right-hand side of (5.3.15) is bounded
for all t ∈ I. Hence as in the first part of the proof we can conclude that the limit Mε

in (5.3.16) exists and must be zero. Hence letting t1 → −T+ in (5.3.15) we obtain

2ε2v′ε(t)η(t) =

∫ t

−T
(W ′(vε) + λεε)η(s) ds.

Using again the fact that vε is bounded, along with (5.1.4) and (5.1.14), we have
that

0 ≤ 2ε2|v′ε(t)| ≤
C

d1(T + t)n1−1

∫ t

−T
d2(T + s)n1−1 ds =

Cd2

d1n1
(T + t)→ 0
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as t→ −T+. A similar estimate holds near T . This completes the proof.

The following theorem specifies the qualitative behavior of vε, which are global
minimizers of Jε. Despite the fact that vε → v0 ∈ L1

η by Proposition 5.3.1, vε need
not be increasing. Indeed in the radial case η(t) ≡ (t + T )n−1, on an unbounded
domain and for n large, Ni [86] has shown that all positive solutions of (5.3.3)
approach bε as t → ∞ in an oscillatory way. The presence of possible oscillations
makes the analysis significantly more involved. However, the overall idea of the proof
is the same as the proof of Theorem 5.2.5.

Fix

θi ∈
(

1

ni
,

1

ni − 1

)
, i = 1, 2, (5.3.17)

where ni are the exponents given in (5.1.14) and (5.1.15). Let k ∈ N and define

Oε := {t ∈ [−T + c(n1)εθ1 , T − c(n2)εθ2 ] : aε + εk ≤ vε(t) ≤ bε − εk}, (5.3.18)

with c(ni) := 0 if ni = 1 and 1 otherwise.

Theorem 5.3.4. Assume that W satisfies (5.1.4)-(5.1.7), and that η satisfies (5.1.13)-
(5.1.16). Let vε be a minimizer of Jε. Write I0 := [−T + r0, T − r0], with r0 > 0
a constant to be defined. Then for δ sufficiently small in (5.2.12) and for all ε > 0
sufficiently small the following properties hold:

1. Γε := Oε ∩ I0 has exactly one component [T ε1 , T
ε
2 ], with vε(T

ε
1 ) = aε + εk and

vε(T
ε
2 ) = bε − εk. Moreover, there exists 0 < r1 < r0 so that Γε ⊂ B(t0, r1).

2. For every fixed ε, the points in Γε where vε = cε are at most distance Cε apart,
for some C > 0 independent of ε.

3. For t ∈ (−T, T ε1 ) we have that vε(t) ∈ [aε, aε + εk) except on a set of ηL1

measure o(ε). Similarly for t ∈ (T ε2 , T ) we have that vε(t) ∈ (bε− εk, bε] except
on a set of ηL1 measure o(ε).

The proof of this theorem requires a number of preliminary results. Let r0 > 0
be chosen as in (5.2.10). As vε → v0 in L1

η, by selecting a subsequence, it is safe to
assume that vε(t)→ v0(t) for L1 a.e. t ∈ I. Hence, given

0 < ρ <
1

2
min{c− a, b− c}, (5.3.19)

there exists ερ > 0 such that

|vε(T1)− a| < ρ, |vε(T2)− a| < ρ, |vε(T3)− b| < ρ, |vε(T4)− b| < ρ (5.3.20)

for all 0 < ε ≤ ερ sufficiently small and some T1 ∈ (−T,−T + r0), T2 ∈ (−T +
2r0, t0− r0), T3 ∈ (t0 + r0, T − 2r0) and T4 ∈ (T − r0, T ). Fix ε > 0 sufficiently small
so that (5.3.20) holds.

The first two lemmas are adapted from [102].

Lemma 5.3.5. Let s0, s1 > 0 be such that aε + s0 < cε < bε − s1 for all ε > 0
sufficiently small. Fix any such ε. Let Iε ⊆ I be a non-empty maximal interval such
that aε + s0 < vε(t) < bε − s1 for all t ∈ Iε. Then there exists tε ∈ Iε such that
vε(tε) = cε.
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Proof. If not, then either aε + s0 ≤ vε(t) < cε for all t ∈ Iε or cε < vε(t) ≤ bε − s1

for all t ∈ Iε. Consider the second case. Then W ′(vε(t)) + ελε < 0 for all t ∈ Iε,
and so by (5.3.3) we have that (v′ε(t)η(t))′ < 0 for all t ∈ Iε. Let t̃ ∈ Iε be the point
of minimum of vε in Iε. Reasoning as in the proof of (5.3.9), we have that t̃ cannot
belong to Iε, and so t̃ ∈ ∂Iε. If t̃ ∈ I, then necessarily, vε(t̃) = cε, which contradicts
the fact that cε < vε(t) < bε − s1 for all t ∈ Iε. it follows that t̃ ∈ {−T, T}. We can
now continue as in the proof of (5.3.9) to exclude this possibility.

Lemma 5.3.6. Let ρ be as in (5.3.19) and suppose that Iε is a maximal subinterval
of the set {t ∈ [−T + c(n1)εθ1 , T − c(n2)εθ2 ] : vε(t) ≥ c + ρ}. Then there exists a
µ > 0 such that we have the following estimate for all t ∈ Iε:

bε − vε(t) ≤ 2(bε − c− ρ)e−µd(t,Icε)ε−1
.

In addition an analogous bound holds for the set {t ∈ [−T + c(n1)εθ1 , T − c(n2)εθ2 ] :
vε(t) ≤ c− ρ}.

Here d(t, E) is the distance from t to the set E and Ec is the complement of E
(see Section 2.1).

Proof. First, we claim that there exists a µ such that for any s ∈ [c + ρ, bε] the
following inequality holds

−(W ′(s) + ελε) ≥ 2µ2(bε − s). (5.3.21)

If q = 1 in (5.1.5), then also by (5.1.4) we have that W ∈ C2(R). Since W ′′(b) > 0
by continuity we have that W ′′(s) ≥ 2µ2 > 0 for all s ∈ B(b, R1), for some µ 6= 0,
and R1 > 0. It follows from (5.3.14) that

W ′(s) + ελε = −
∫ bε

s
W ′′(r) dr ≤ −2µ2(bε − s)

for all s ∈ B(b, R1), with s < bε. Using the fact that W ′ + ελε < 0 in (cε, bε) (see
Theorem 5.3.3), and by taking µ smaller, if necessary, we can assume that

W ′(s) + ελε ≤ −2µ2(bε − s)

for all s ∈ [c + ρ, bε]. Note that µ depends upon ρ but not on ε. On the other
hand, if 0 < q < 1 then since lims→bW

′′(s) =∞ by (5.1.5), we can still assume that
W ′′(s) ≥ µ2 > 0 near b. Hence we can continue as before to conclude that (5.3.21)
holds even in this case. This proves the claim.

Write Iε = [t1, t2] and define

φ(t) := (bε − vε(t1))e−µ(t−t1)ε−1
+ (bε − vε(t2))e−µ(t2−t)ε−1

(5.3.22)

with µ fixed by (5.3.21). We note that φ satisfies the following differential inequality:

(φ′η)′ =
µ2

ε2
φη +

µ

ε
η′
(
−(bε − vε(t1))e−µ(t−t1)ε−1

+ (bε − vε(t2))e−µ(t2−t)ε−1
)

≤ 1

ε2

(
µ2 + ε

|η′|
η
µ

)
φη.

If n1 > 1 in (5.1.14), then c(n1) = 1 in (5.3.18) and so by (5.1.16),

ε
|η′(t)|
η(t)

≤ εd5

t+ T
≤ d5ε

1−θ1 ≤ µ
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for all t ∈ [−T + εθ1 , 0] and all ε sufficiently small. On the other hand, if n1 = 1 in
(5.1.14), then c(n1) = 0 in (5.3.18) and so by (5.1.13) and (5.1.15), η(t) ≥ η0 > 0
for all t ∈ [−T, 0]. Thus,

ε
|η′(t)|
η(t)

≤ εmax |η′|
η0

≤ µ

for all t ∈ [−T, 0] and all ε sufficiently small. Similar inequalities hold in [0, T −
c(n2)εθ2 ]. Thus in Iε,

(φ′η)′ ≤ 2ε−2µ2φη. (5.3.23)

We then set g(t) := bε − vε(t) and using (5.3.3) and (5.3.21) we have that

(g′η)′ = −ε−2(W ′(vε) + ελε)η ≥ 2ε−2µ2gη. (5.3.24)

We define U := g − φ. By (5.3.22), (5.3.23) and (5.3.24), for ε small we have the
following:

(U ′η)′ ≥ 2ε−2µ2Uη,

U(t1) ≤ 0, U(t2) ≤ 0.

The maximum principle implies that U ≤ 0 for all t ∈ Iε. Thus

bε−vε(t) ≤ (bε−vε(t1))e−µ(t−t1)ε−1
+(bε−vε(t2))e−µ(t2−t)ε−1 ≤ 2(bε−c−ρ))e−µε

−1d(t,Icε),
(5.3.25)

which is the desired result.

Corollary 5.3.7. Let ρ be as in (5.3.19) and let

Aε := {t ∈ [−T + c(n1)εθ1 , T − c(n2)εθ2 ] : aε + εk ≤ vε(t) ≤ c− ρ},
Bε := {t ∈ [−T + c(n1)εθ1 , T − c(n2)εθ2 ] : c+ ρ ≤ vε(t) ≤ bε − εk}.

Then for any maximal interval Iε contained in Aε ∪Bε,

diam Iε ≤ Cε| log ε|

for all ε > 0 sufficiently small and for some constant C > 0 depending only on W ,
k, µ, ρ, where µ is given in Lemma 5.3.6.

Proof. Assume (t1, t2) = I◦ε ⊂ Bε. By Lemma 5.3.6 we have that for t = t1+t2
2 :

εk ≤ bε − vε(t) ≤ 2(bε − c− ρ)e−µ2−1(t2−t1)ε−1
,

which implies that −µ
2 (t2 − t1)ε−1 ≥ k log ε− log 2(bε − c− ρ), that is,

0 ≤ t2 − t1 ≤ 2µ−1kε| log ε|+ 2µ−1ε log 2(bε − c− ρ).

This shows that diam Iε ≤ Cε| log ε|. The proof for the case Iε ⊂ Aε is similar, and
we omit it.

The next lemma is quoted from [102], which gives estimates on the size of certain
sets. In what follows given a set E and s > 0 define the set

Es := {x ∈ Rn : d(x,E) ≤ s} (5.3.26)

Lemma 5.3.8. Given a measurable set A ⊂ Rn, for all numbers 0 < s1 < s2 we
have that

Ln(As2)

Ln(As1)
≤ Cn

(
s2

s1

)n
,

where we are using the notation (5.3.26).
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The next step is to establish an estimate on the derivative of vε.

Lemma 5.3.9. There exists a constant C > 0 such that

|v′ε(t)| ≤ Cε−1

for all t ∈ I.

Proof. By (5.3.3) and the fact that v′ε(−T ) = 0,

2ε2v′ε(t)η(t) =

∫ t

−T
(W ′(vε(s)) + ελε)η(s) ds

for every t ∈ I. In light of (5.1.13)-(5.1.14) we know that that there exist constants
c1, c2 > 0 so that c1(T + t)n1−1 ≤ η(t) ≤ c2(T + t)n1−1 for all t ∈ [−T, T − t∗]. Since
vε is bounded by (5.3.9), this implies that

2ε2|v′ε(t)| ≤
C

η(t)

∫ t

−T
η(s) ds ≤ C

c1(T + t)n1−1

∫ t

−T
c2(T + s)n1−1 ds

=
Cc2
c1n1

(T + t)

for all t ∈ (−T, T − t∗). Using a similar argument in (−T + t∗, T ), we conclude that

ε2|v′ε(t)| ≤ C min{T + t, T − t}

for all t ∈ I. By (5.3.3), vε satisfies

2ε2v′′ε (t) + 2ε2 η
′(t)

η(t)
v′ε(t) = W ′(vε(t)) + ελε.

Using (5.1.16), (5.3.9) and the previous inequality we get

2ε2|v′′ε (t)| ≤
∣∣∣∣η′(t)η(t)

∣∣∣∣ 2ε2|v′ε(t)|+ C ≤ C.

Next we use a classical interpolation result. Let t ∈ I and consider t1 ∈ I with
|t− t1| = ε. By the mean value theorem vε(t)− vε(t1) = v′ε(θ)(t− t1) and so by the
fundamental theorem of calculus

v′ε(t) = v′ε(θ) +

∫ t

θ
v′′ε (s) ds =

vε(t)− vε(t1)

t− t1
+

∫ t

θ
v′′ε (s) ds.

Again by (5.3.9) it follows that

|v′ε(t)| ≤
C

ε
+ sup |v′′ε ||t− θ| ≤

C

ε
+
C

ε2
ε.

This concludes the proof.

With these lemmas it is now possible to prove Theorem 5.3.4. By way of notation,
for every measurable subset E ⊂ I and for every v ∈ H1

η satisfying ‖v − v0‖L1
η
≤ δ

and (5.1.3) we define the localized energy

J (1)
ε (v;E) :=

∫
E

(
1

ε
W (v) + ε(v′)2

)
η dt. (5.3.27)

Figure 5.1 gives a visual representation of the notation used in the following proof.
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−T Tt0

I0

J0

I1

I

bε

c+ ρ

cε

c− ρ

aε

tε5 tε1

tε3 tε4

tε2

Γε

Figure 5.1: Important intervals and points for the proof of Theorem 5.3.4

Symbol Definition Characteristics

Oε (5.3.18) Step 1 proves that L1(Oε) = o(1).

I0 [−T + r0, T − r0] (see statement
of Theorem 5.3.4)

J0 [−T + 2r0, T − 2r0] (see Step 2)

I1 [t0 − r̂, t0 + r̂] (see (5.3.32))

Γε A maximal subinterval of Oε
which intersects B(t0, r1/2)

Existence proved in Step 3, uniqueness,
endpoint values and width estimate in
Step 4.

tε1, t
ε
2 (5.3.39)

tε3, t
ε
4 The first and last time in Γε

where vε = cε (see Step 3)
Step 3 proves that these are O(ε) distance
apart.

tε5 The last point to the left of Γε
where vε(t

ε
5) = c− ρ

Step 5 proves that tε5, if it exists, must be
in [−T,−T + c(n1)εθ1 ].

Figure 5.2: Explanations of some of the notation in the proof of Theorem 5.3.4.
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Proof of Theorem 5.3.4. By Theorem 5.2.6 there exists ṽε converging to v0 in L1
η

such that

G(1)
ε (vε) = J (1)

ε (vε) ≤ J (1)
ε (ṽε) ≤ G(1)

ε (ṽε) ≤ G(1)(v0) + Cε = 2cW η(t0) + Cε,
(5.3.28)

where we have used the fact that vε is a minimizer of Jε. We fix

0 < ε1 < min

{
η(t0)

2
,
η(t0)

2cW

∫ c+ρ

c
W 1/2(s) ds,

min{c−, c+}
2cW

min
I0

η

}
, (5.3.29)

where

c− :=

∫ c

a
W 1/2(s) ds, c+ :=

∫ b

c
W 1/2(s) ds. (5.3.30)

By the continuity of η there exists rε1 > 0 so that

|η(t)− η(t0)| ≤ ε1 (5.3.31)

for all t ∈ [t0 − rε1 , t0 + rε1 ]. Pick r̂ > 0 so that

I1 := [t0 − r̂, t0 + r̂] ⊂ I, (5.3.32)

and let
η1 := min

I1
η > 0. (5.3.33)

Choose r1 so that
0 < r1 < min{rε1 , r̂}. (5.3.34)

Fix δ so that

0 < δ < (c− a− ρ)
η(t0)

2
r1. (5.3.35)

Step 1: We claim that L1(Oε) = o(1) (see (5.3.18)). Define the set

Dε := Oε ∩ v−1
ε ([c− ρ, c+ ρ]}).

By Lemma 5.3.9, |v′ε| ≤ C0ε
−1, and so, using the notation in (5.3.26), (Dε)

lε ⊂
v−1
ε ([c− 2ρ, c+ 2ρ]), provided 0 < l ≤ ρC−1

0 . In turn

L1((Dε)
lε) ≤

∫
{c−2ρ≤vε≤c+2ρ}

1 dt

≤ εθ1 + εθ2 +

(
min

[c−2ρ,c+2ρ]
W

)−1 ∫ T−εθ2

−T+εθ1
W (vε) dt (5.3.36)

≤ εθ1 + εθ2 + C
(
ε−θ1(n1−1) + ε−θ2(n2−1)

)∫ T−εθ2

−T+εθ1
W (vε)η dt

≤ εθ1 + εθ2 + C
(
ε1−θ1(n1−1) + ε1−θ2(n2−1)

)
,

where we have used (5.1.4), (5.1.13)-(5.1.15), (5.3.19) and (5.3.28).
Next we claim that

Oε ⊂ (Dε)
Cε| log ε| ∪ [−T,−T + c(n1)εθ1 + Cε| log ε|] ∪ [T − c(n2)εθ2 − Cε| log ε|, T ].

(5.3.37)
Indeed, as Oε = Aε ∪ Bε ∪ Dε, it suffices to consider t̃ ∈ Aε, as the case t̃ ∈ Bε
is analogous. Let Iε be the maximal subinterval of Aε containing t̃. By Corollary
5.3.7, diam Iε ≤ Cε| log ε|. If Iε intersects Dε, then d(t̃, Dε) ≤ diam Iε ≤ Cε| log ε|.
Otherwise, since reasoning as in the proof of (5.3.9) and Lemma 5.3.5 it cannot



80 CHAPTER 5. WEIGHTED 1D FUNCTIONAL PROBLEM

happen that vε takes the value bε− εk at both endpoints of Iε, it follows that one of
the endpoints of Iε is −T + c(n1)εθ1 or T − c(n2)εθ2 , say, −T + c(n1)εθ1 . Thus

d(t̃, [−T,−T + c(n1)εθ1 ]) ≤ Cε| log ε|.
This proves (5.3.37).

By Lemma 5.3.8 and (5.3.36) we have that

L1((Dε)
Cε| log ε|) ≤ C| log ε|L1((Dε)

lε) ≤ C| log ε|
(
εθ1 + εθ2 + ε1−θ1(n1−1) + ε1−θ2(n2−1)

)
.

Hence by (5.3.37) we have that

L1(Oε) ≤ εθ1 + εθ2 + Cε| log ε|+ L1((Dε)
Cε| log ε|)

≤ C1| log ε|
(
εθ1 + εθ2 + ε1−θ1(n1−1) + ε1−θ2(n2−1)

)
,

where C1 > 0 is independent of r0.
Step 2: We claim if Iε is a maximal subinterval of the set Oε (see (5.3.18)) that
intersects the interval J0 := [−T + 2r0, T − 2r0], then Iε is contained in I0 for all
ε > 0 sufficiently small, with

L1(Iε) ≤ Cε| log ε|. (5.3.38)

The first part of the claim, namely, that Iε ⊂ I0, follows immediately from Step 1.
Lemma 5.3.5 then implies that Iε ∩ Dε 6= ∅. Reasoning as in the proof of (5.3.36)
but using the fact that η ≥ η0 > 0 in I0 we find that L1((Iε ∩Dε)

Cε) < Cε. Again
due to the fact that Iε ⊂ I0, reasoning as in the proof of (5.3.37) we can show that
Iε ⊂ (Iε ∩Dε)

Cε| log ε|. Using Lemma 5.3.8 once more gives (5.3.38).
Step 3: We claim that there exist tε1, tε2 ∈ B(t0, r1/2) such that

vε(t
ε
1) ≤ c− ρ, vε(t

ε
2) ≥ c+ ρ (5.3.39)

provided ε > 0 is sufficiently small. Indeed, if tε1 does not exist, then c − ρ < vε in
B(t0, r1/2), and so by (5.2.9),

δ ≥
∫
B(t0,r1/2)

|vε − v0|η dt ≥ (c− a− ρ)
η(t0)

2
r1,

where we used (5.3.29). This contradicts (5.3.35). Hence the tε1 in (5.3.39) exists,
and with a similar argument we can prove the existence of tε2.

Since vε is continuous, by the intermediate value theorem it will take all values
between c−ρ and c+ρ in B(t0, r1/2). Let Γ−ε be a maximal subinterval of Oε inter-
secting B(t0, r1/2) such that vε(Γ

−
ε ) ⊃ [c−ρ, c] and let Γ+

ε be a maximal subinterval
of Oε intersecting B(t0, r1/2) such that vε(Γ

+
ε ) ⊃ [c, c + ρ]. By Step 1, for ε small

enough, both intervals are contained in the interval I1 given by (5.3.32).
We claim that either vε(Γ

−
ε ) = [aε + εk, bε − εk] or vε(Γ

+
ε ) = [aε + εk, bε − εk].

Indeed, if this is not the case, then by the maximality of Γ−ε and Γ+
ε , Lemma 5.3.5

and the definition of Oε (see (5.3.18)) vε = aε + εk at both endpoints of Γ−ε and
vε = bε − εk at both endpoints of Γ+

ε . Let tε ∈ Γ−ε be such that vε(tε) = c. Hence,
by (5.3.27), (5.3.33), Young’s inequality and a change of variables,

J (1)
ε (vε; Γ−ε ) ≥ 2η1

∫
Γ−ε

W 1/2(vε)|v′ε| dt

= 2η1

∫
Γ−ε ∩(−T,tε]

W 1/2(vε)|v′ε| dt+ 2η1

∫
Γ−ε ∩(tε,T )

W 1/2(vε)|v′ε| dt

≥ 4η1

∫ c

aε+εk
W 1/2(s) ds ≥ 4c−η1 − Cε(q+3)/2q, (5.3.40)
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where we have used (5.3.30) and the fact that∫ aε+εk

a
W 1/2(s) ds ≤ C|a− aε − εk|(q+3)/2 ≤ Cε(q+3)/2q

by (5.1.9) and (5.3.9) where here C is independent of r0. A similar inequality holds

for J
(1)
ε (vε; Γ+

ε ) with the only difference that c− should be replaced by c+. Hence,
also by (5.2.9) and (5.3.28),

2cW η(t0) + Cε ≥ J (1)
ε (vε; Γ−ε ) + J (1)

ε (vε; Γ+
ε ) ≥ 4cW (η(t0)− ε1)− Cε(q+3)/2q,

which gives
Cε ≥ 2(η(t0)− 2ε1)cW .

This contradicts (5.3.29) provided ε is sufficiently small. This proves the claim.
We denote by Γε a maximal subinterval of Oε intersecting B(t0, r1/2) such that
vε(Γε) = [aε + εk, bε − εk].

First we claim that vε takes the values aε + εk and bε − εk on the endpoints of
Γε. If not then reasoning as in (5.3.40) we would have

J (1)
ε (vε; Γε) ≥ 4cW η1 − Cε(q+3)/2

which is a contradiction. Next let tε3 and tε4 be the first time and last time in Γε that
vε equals cε. We claim that

tε4 − tε3 ≤ C2ε, (5.3.41)

for some constant C2 > 0 independent of r0, for all ε sufficiently small. Indeed, if
vε(t) ∈ [c− ρ, c+ ρ] for all t ∈ [tε3, t

ε
4], then by (5.2.9),

J (1)
ε (vε; [tε3, t

ε
4]) ≥ ε−1 η(t0)

2
(tε4 − tε3) min

[c−ρ,c+ρ]
W,

and so (5.3.41) follows from (5.3.28), where all the constants appearing are indepen-
dent of r0. On the other hand if there exists t̃ε ∈ [tε3, t

ε
4] such that |vε(t̃ε) − c| ≥ ρ,

say, vε(t̃
ε) ≥ c+ρ, then by Young’s inequality, Step 1, (5.3.29), (5.3.31) and a change

of variables we get

J (1)
ε (vε; [tε3, t

ε
4]) ≥ 2

η(t0)

2

∫ c+ρ

c
W 1/2(s) ds− Cε(q+3)/2q.

Furthermore, by again reasoning as in (5.3.40), and using the fact that vε takes the
values aε + εk and bε − εk on the endpoints of Γε we have that

J (1)
ε (vε; Γε\[tε3, tε4]) ≥ 2η1

∫ bε−εk

aε+εk
W 1/2(s) ds ≥ 2cW η1 − Cε(q+3)/2q, (5.3.42)

with C independent of r0.
Hence, by (5.2.9), (5.3.28), and (5.3.42),

2cW η(t0) + Cε ≥ J (1)
ε (vε; Γε\[tε3, tε4]) + J (1)

ε (vε; [tε3, t
ε
4])

≥ 2cW (η(t0)− ε1) + η(t0)

∫ c+ρ

c
W 1/2(s) ds− Cε(q+3)/2q,

which gives

Cε ≥ η(t0)

∫ c+ρ

c
W 1/2(s) ds− 2cW ε1,
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which contradicts (5.3.29), provided ε is sufficiently small. The case where vε(t̃
ε) ≤

c− ρ is analogous.
Step 4: We claim that for all ε > 0 sufficiently small, Γε is the only maximal
subinterval of the set Oε that intersects the interval J0 defined in Step 2. Indeed,
assume that there exists another maximal subinterval Iε of Oε that intersects J0.
By Step 1, Iε ⊂ I0 and (5.3.38) holds. In view of Lemma 5.3.5 there exists tε ∈ Iε
such that vε(tε) = cε. Since Iε is a maximal interval of Oε at one of the endpoints it
attains either the value aε + εk or bε − εk. In the first case, reasoning as in (5.3.40),
we get

J (1)
ε (vε; Iε) ≥ 2 min

Iε
η

∫
Iε

W 1/2(vε)|v′ε| dt ≥ 2 min
Iε

η

∫ cε

aε+εk
W 1/2(s) ds

≥ 2c−min
Iε

η − C|c− cε| − Cε(q+3)/2q.

A similar inequality holds in the second case, with c+ in place of c−. Hence, by
(5.2.9), (5.3.28), and by (5.3.42),

2cW η(t0) + Cε ≥ J (1)
ε (vε; Γε) + J (1)

ε (vε; Iε)

≥ 2cW min
Γε

η + 2 min{c−, c+}min
Iε

η − Cε

≥ 2cW (η(t0)− ε1) + 2 min{c−, c+}min
I0

η − Cε,

which gives
Cε ≥ 2 min{c−, c+}min

I0
η − 2cW ε1,

which contradicts (5.3.29) provided ε is sufficiently small.
This proves that Γε is the only maximal subinterval of Oε that intersects J0. In

view of (5.3.20) it follows that vε takes the value aε + εk on its left endpoint of Γε
and bε − εk on the right endpoint. Indeed, if vε takes the value bε − εk at the left
endpoint of Γε then since vε(T2) < a+ ρ by (5.3.20), then Γε could not be the only
maximal subinterval of Oε intersecting J0. At this point we have established parts
(i) and (ii) of our theorem.

Next we show that
L1(Γε) ≤ C3ε| log ε|, (5.3.43)

for some constant C3 > 0 independent of r0. By Step 1, and the fact that Γε
intersects B(t0, r1/2), we have that Γε ⊂ B(t0, r1) for ε sufficiently small, where r1
is given in (5.3.34). By (5.3.33) and (5.3.34), we have that η ≥ η1 > 0 on Γε, with
η1 independent of r0. The argument in Step 2 then implies (5.3.43).
Step 5: We claim that vε < c − ρ in [−T + c(n1)εθ1 ,−T + 2r0]. We first consider
the case where n1 > 1 in (5.1.14). Suppose the claim does not hold. By (5.3.20),
vε(T1) < a + ρ for ε sufficiently small and where T1 ∈ (−T,−T + r0). By the
intermediate value theorem there exists a point in (T1,−T + 2r0) where vε takes the
value c− ρ. Since −T + εθ1 < T1 for ε sufficiently small, we have that vε takes the
value c− ρ in [−T + εθ1 ,−T + 2r0]. Let tε5 be the last time in [−T + εθ1 ,−T + 2r0]
such that vε(t

ε
5) = c− ρ. We claim that

|tε3 − t0| ≤ C4(ε| log ε|+ (T + tε5)n1), (5.3.44)

for some C4 > 0 independent of r0, where we recall that tε3 and tε4 are the first time
and last time in Γε that vε equals cε. If tε3 ≤ t0 ≤ tε4, then this follows from (5.3.41).
Assume next that t0 < tε3. Then from (5.1.3),

0 =

∫
I
(vε− v0)η dt =

∫ t0

−T
(vε− a)η dt+

∫ tε3

t0

(vε− b)η dt+

∫ T

tε3

(vε− b)η dt. (5.3.45)
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By (5.2.9),

0 <
η(t0)

2
(b− cε)(tε3 − t0) ≤

∫ tε3

t0

(b− vε)η dt (5.3.46)

=

∫ t0

−T
(vε − a)η dt+

∫ T

tε3

(vε − b)η dt.

We now estimate the two terms on the right-hand side of (5.3.46). By (5.3.9) and
(5.3.13), ∫ T

tε3

(vε − b)η dt ≤ |bε − b|2T max η ≤ Cε1/q, (5.3.47)

where C is independent of r0. We decompose the interval [−T, t0] as follows

[−T, t0] = [−T, tε5]∪[tε5,−T+2r0]∪([−T+2r0, t0]\Γε)∪([−T+2r0, t0]∩Γε), (5.3.48)

and estimate the integrals over each of these subintervals. By (5.1.14), (5.3.9), and
(5.3.13),∫ tε5

−T
(vε − a)η dt ≤ (bε − a)d2

∫ tε5

−T
(T + t)n1−1 dt ≤ 2(b− a)d2(T + tε5)n1 . (5.3.49)

Let Qε := [tε5,−T + 2r0] ∩ Oε. Since vε(t
ε
5) = c − ρ, we have that tε5 ∈ Qε. Since

tε5 is the last time in [−T + εθ1 ,−T + 2r0] such that vε takes the value c − ρ, and
since, by Step 4, vε(−T + 2r0) ≤ aε + εk for ε small, it must be that vε < c − ρ in
(tε5,−T + 2r0]. By Corollary 5.3.7, we get that

L1(Qε) ≤ Cε| log ε|, (5.3.50)

with C independent of r0. Thus by (5.1.13) and (5.3.9),∫
Qε

(vε − a)η dt ≤ Cε| log ε| (5.3.51)

with C independent of r0. On the other hand, since vε ≤ aε+εk in [tε5,−T+2r0]\Qε,
by (5.3.9) and (5.3.11),∫

[tε5,−T+2r0]\Qε
(vε − a)η dt ≤ |aε + εk − a|d2

∫ −T+2r0

−T
(T + t)n1−1 dt ≤ Crn1

0 ε1/q,

(5.3.52)
with C independent of r0. Since the set Oε intersects the interval J0 only in Γε by
Step 3, and as t0 < tε3, we have that vε ≤ aε + εk in [−T + 2r0, t0] \ Γε. Hence, by
(5.3.9) and (5.3.11),∫

[−T+2r0,t0]\Γε
(vε − a)η dt ≤ |aε + εk − a|2T max η ≤ Cε1/q, (5.3.53)

with C again independent of r0. Again by Step 3, [−T+2r0, t0]∩Γε = [t0−r1, t0]∩Γε.
Hence, by (5.3.9) and (5.3.43),∫

[t0−r1,t0]∩Γε

(vε − a)η dt ≤ Cε| log ε|, (5.3.54)

for C independent of r0. Combining the inequalities (5.3.46), (5.3.47), (5.3.48),
(5.3.49), (5.3.50), (5.3.51), (5.3.52), (5.3.53) and (5.3.54) gives

η(t0)

2
(b− cε)(tε3 − t0) ≤ Cε| log ε|+ 2(b− a)d2(T + tε5)n1 ,
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with C independent of r0, which implies (5.3.44) in the case t0 < tε3.
It remains to prove (5.3.44) in the case tε4 < t0. Then (5.3.45) should be replaced

by

0 =

∫ T

−T
(vε − v0)η dt =

∫ tε4

−T
(vε − a)η dt+

∫ t0

tε4

(vε − a)η dt+

∫ T

t0

(vε − b)η dt

and (5.3.46) by

0 <
η(t0)

2
(cε − a)(t0 − tε4) ≤

∫ t0

tε4

(vε − a)η dt ≤
∫ T

t0

(b− vε)η dt+

∫ tε4

−T
(a− vε)η dt.

By (5.3.9) and (5.3.11),∫ tε4

−T
(a− vε)η dt ≤ |a− aε|2T ≤ Cε1/q,

with C independent of r0. The integral
∫ T
t0

(b − vε)η dt can be estimated as in the
case t0 < tε3. We omit the details. Hence, we have shown that (5.3.44) holds in all
cases.

Since tε3 ∈ Γε, by (5.3.43) and (5.3.44), it follows that for any t ∈ Γε,

|t− t0| ≤ |t− tε3|+ |tε3 − t0| ≤ C5(ε| log ε|+ (T + tε5)n1),

where C5 > 0 is independent of r0. In turn, by the mean value theorem

η(t) = η(t0) + η′(θ)(t− t0) ≥ η(t0)−M0|t− t0|
≥ η(t0)− C5M0(ε| log ε|+ (T + tε5)n1),

where we recall that M0 = max |η′|+ 1. Hence, also by (5.3.42) we get

J (1)
ε (vε; Γε) ≥ 2cW min

Γε
η − Cε(q+3)/2q ≥ 2cW η(t0)− C6(ε| log ε|+ (T + tε5)n1)

with C6 > 0 independent of r0. On the other hand, since vε(t
ε
5) = c− ρ, there exists

a maximal subinterval Sε of Qε that contains tε5. As argued just before (5.3.50), it
must be that vε(Sε) ⊃ [aε + εk, c − ρ], and so reasoning as in (5.3.40), by (5.1.14),
which can be applied since 2r0 < t∗ by (5.2.10) and (5.3.50) holds,

J (1)
ε (vε;Sε) ≥ 2 min

Sε
η

∫ c−ρ

aε+εk
W 1/2(s) ds

≥ 2d1(T + tε5)n1−1

∫ c−ρ

a+ρ
W 1/2(s) ds,

for ε > 0 small enough. Combining these last two estimates, it follows from (5.3.28)
that

2cW η(t0) + Cε ≥ J (1)
ε (vε; Γε) + J (1)

ε (vε;Sε) ≥ 2cW η(t0)− C6(ε| log ε|+ (T + tε5)n1)

+ 2d1(T + tε5)n1−1

∫ c−ρ

a+ρ
W 1/2(s) ds,

which gives

Cε| log ε| ≥ (T + tε5)n1−1

(
2d1

∫ c−ρ

a+ρ
W 1/2(s) ds− C6(T + tε5)

)
.
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Since −T + εθ1 ≤ tε5 ≤ −T + 2r0, by taking

0 < r0 <
d1

C6

∫ c−ρ

a+ρ
W 1/2(s) ds,

we get a contradiction, since θ1(n1 − 1) < 1 by (5.3.17).
Finally we consider the case where n1 = 1. In this case we can use energy

estimates, as in Step 4, the fact that η ≥ C > 0 on [−T,−T +2r0], and Lemma 5.3.5
to show that vε(t) < aε + εk on the interval [−T,−T + 2r0]. We omit the details.
Step 6: Finally, we prove the last claim in our theorem. We write Γε = [T ε1 , T

ε
2 ].

By the remark at the end of Step 5, in the case n1 = 1 we are already done, so we
only need to consider the case n1 > 1. In view of Step 5 we can use the barrier
method in Lemma 5.3.6 to show that for t ∈ [−T + εθ1 , T ε1 ]

|vε(t)− aε| ≤ Ce−µε
−1d(t,{−T+εθ1 ,T ε1 })

This clearly implies that vε(t) ∈ [aε, aε+ε
k) for all t ∈ (−T+εθ1 +2kµ−1ε| log ε|, T ε1 ).

Using (5.1.14) we then estimate the η measure of the remaining set as follows:∫ −T+εθ1+2kµ−1ε| log ε|

−T
η dt ≤ d2

n1
(εθ1 + Cε| log ε|)n1 ≤ Cεn1θ1

Since n1θ1 > 1 by (5.3.17), then we have the desired estimate. Thus the result holds
to the left of T ε1 . We can use the same argument to the right of T ε2 to obtain the
desired result.

5.4 Second-Order Γ-limit

This section is devoted to proving the lim inf counterpart of Theorem 5.2.6.

Theorem 5.4.1. Assume that W satisfies (5.1.4)-(5.1.7) and that η satisfies (5.1.13)-
(5.1.16) and let v0 and vε be given in Theorems 5.2.5 and 5.3.1 respectively. Then

lim inf
ε→0+

G
(1)
ε (vε)− 2cW η(t0)

ε
≥ 2η′(t0)(τ0cW + csym)

+

{
λ2

0
2W ′′(a)

∫
I η ds if q = 1,

0 if q < 1.

(5.4.1)

Note that Theorems 5.2.6 and 5.4.1 together provide a second-order asymptotic
development by Γ-convergence for the functionals Jε defined in (5.2.12). To prove
Theorem 5.4.1 it is convenient to rescale the functionals Gε. Define

Hε(w) :=

∫ Bε−1

Aε−1

(W (w(s)) + (w′(s))2)ηε(s) ds (5.4.2)

for all w ∈ H1
ηε((Aε

−1, Bε−1)) such that∫ Bε−1

Aε−1

|w(s)−sgna,b(s)|ηε(s) ds ≤
δ

ε
,

∫ Bε−1

Aε−1

(w(s)−sgna,b(s))ηε(s) ds = 0, (5.4.3)

where A = −T − t0, B = T − t0 and

ηε(s) := η(t0 + εs). (5.4.4)
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Observe that s is obtained by shifting our variables so that t0 moves to zero and
scaling by ε−1, which in view of (5.4.3) implies that minimizers of Hε are precisely
rescaled versions of minimizers of Jε. Thus it is natural to study the behavior of
minimizers wε of Hε. The first step is to prove a bound on the locations where
wε = cε, in the region close to t = 0.

Lemma 5.4.2. Let wε be a minimizer of Hε, and let τε ∈ B(0, r1ε
−1) satisfy

wε(τε) = cε, with r1 as in Theorem 5.3.4 (i). Then we have that

|τε| ≤ C

for all ε > 0 sufficiently small and for some constant C > 0 independent of ε.

Proof. This proof essentially combines the mass constraint with the exponential
decay to obtain the desired bounds.

Let sε1 be the first time in [−r1ε−1, r1ε
−1] so that wε(s

ε
1) = c− ρ, and sε4 be the

last time in [−r1ε−1, r1ε
−1] so that wε(s

ε
4) = c + ρ. Then let sε2 and sε3 be the first

and last times in [−r1ε−1, r1ε
−1] where wε takes the value cε. We note that such

points exist by Theorem 5.3.4 (i). Furthermore, by Theorem 5.3.4 (ii) we know that
sε3 − sε2 ≤ C and that −r1ε−1 < sε1 < sε2 ≤ sε3 < sε4 < r1ε

−1. Furthermore, using the
same argument from the proof of (5.3.9) we know that wε([s

ε
1, s

ε
2]) = [c− ρ, cε], and

that wε([s
ε
3, s

ε
4]) = [cε, c+ ρ]. We can then estimate the following:

(sε2 − sε1) inf
B(t0,r1)

η inf
(c−ρ,c+ρ)

W ≤
∫ sε2

sε1

W (wε)ηε ds ≤ C.

This, along with a similar estimate for sε4 − sε3, then implies that sε4 − sε1 ≤ C. Thus
if we can prove that the sε1 are bounded above and that the sε4 are bounded below
then we are done.

Suppose, for the sake of contradiction that the sε1 are not bounded above. By
taking a subsequence as necessary we may assume that sε1 →∞.

By (5.3.9) and Lemma 5.3.6 we have the following bounds

0 < wε(s)− aε ≤ 2(c− ρ− aε)e−µ|s−s
ε
1| for s ∈ [−r1ε−1, sε1], (5.4.5)

0 < bε − wε(s) ≤ 2(bε − c− ρ)e−µ(s−sε4) for s ∈ [sε4, r1ε
−1]. (5.4.6)

By our mass constraint (5.4.3) we can write:

0 =

∫ Bε−1

Aε−1

(wε − sgna,b)ηε ds =

∫ sε1

Aε−1

(wε − sgna,b)ηε ds (5.4.7)

+

∫ sε4

sε1

(wε − sgna,b)ηε ds+

∫ Bε−1

sε4

(wε − sgna,b)ηε ds.

We will estimate these terms to obtain a contradiction. By (5.3.9) and the fact that
0 < sε4 − sε1 ≤ C we have that∣∣∣∣∣

∫ sε4

sε1

(wε − sgna,b)ηε ds

∣∣∣∣∣ ≤ C.
We can also calculate∫ sε1

Aε−1

(wε − sgna,b)ηε ds

=

∫ sε1

Aε−1

(wε − aε)ηε ds+

∫ sε1

Aε−1

(aε − sgna,b)ηε ds.
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By (5.4.5) we have that

0 ≤
∫ sε1

−r1ε−1

(wε − aε)ηε ds ≤ 2(c− ρ− aε) max η

∫ sε1

−r1ε−1

e−µ|s−s
ε
1| ds ≤ C,

whereas by Theorem 5.3.4 (iii) and (5.3.9) we know that∣∣∣∣∣
∫ −r1ε−1

Aε−1

(wε − aε)ηε ds
∣∣∣∣∣ ≤ Cεk−1 + o(1).

Furthermore as aε = a+O(ε1/q) by Theorem 5.3.3, we may estimate that∣∣∣∣∫ 0

Aε−1

(aε − sgna,b)ηε ds

∣∣∣∣ ≤ Cε 1−q
q .

A similar argument, and the fact that 0 < sε1 < sε4 shows that∣∣∣∣∣
∫ Bε−1

sε4

(wε − sgna,b)ηε ds

∣∣∣∣∣ ≤ C.
Now as sε1 →∞ we then have that

lim
ε→0+

∣∣∣∣∫ sε1

0
(aε − sgna,b)ηε ds

∣∣∣∣ ≥ lim
ε→0+

inf
B(t0,r1)

η

∣∣∣∣∫ sε1

0
(aε − b) ds

∣∣∣∣ =∞. (5.4.8)

Combining (5.4.7)–(5.4.8) gives

lim
ε→0+

∣∣∣∣∣
∫ Bε−1

Aε−1

(wε − sgna,b)ηε ds

∣∣∣∣∣ =∞.

This violates the mass constraint. Thus we must have that the sε1 are bounded
above.

A similar argument shows that sε4 is bounded below. As τε ∈ (sε1, s
ε
4) and sε4−sε1 ≤

C, we then have that |τε| ≤ C, which is the desired conclusion.

The next step is to prove that the functions wε necessarily converge.

Lemma 5.4.3. Let wε be as in Lemma 5.4.2. Then (up to a subsequence, not
relabeled) {wε} converges weakly in H1((−l, l)) for every l ∈ N to the profile w0(s) :=
z(s− τ0), where τ0 is determined by (5.2.15). Moreover, the family {w′ε} is bounded
in L∞((Aε−1, Bε−1)).

Proof. Throughout this proof we let wε be associated with its extension by constants
outside of [Aε−1, Bε−1]. The fact that the family {w′ε} is uniformly bounded in
L∞(R) follows immediately from Lemma 5.3.9. Furthermore, we have that the wε
are bounded in L∞(R) by (5.3.9). After a diagonalization argument, this implies
that for some w0 ∈ H1

loc(R),

wε ⇀ w0 in H1
loc(R). (5.4.9)

By (5.3.3) and (5.3.10) we have that{
2(w′εηε)

′ −W ′(wε)ηε = ελεηε on (Aε−1, Bε−1),

w′ε(Aε
−1) = w′ε(Bε

−1) = 0.
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Hence for every φ ∈ C∞c (R) for ε small enough we find that∫ Bε−1

Aε−1

2w′εηεφ
′ +W ′(wε)ηεφds = −

∫ Bε−1

Aε−1

ελεηεφds.

Letting ε→ 0 and using (5.4.4) and (5.4.9) gives∫
R

2w′0η(t0)φ′ +W ′(w0)η(t0)φds = 0,

which then shows that w0 satisfies the differential equation

2w′′0 = W ′(w0). (5.4.10)

Furthermore, by (5.3.9) we know that a ≤ w0 ≤ b, which by (5.4.10) implies that
|w′′0 | ≤ C. Also, by (5.3.1) and the fact that Hε(wε) = Jε(vε), where vε is a minimizer
of Jε,

η(t0)

∫ l

−l
(w′0)2+W (w0) ds ≤ lim

ε→0

∫ l

−l
((w′ε)

2+W (wε))ηε ds ≤ lim
ε→0+

Hε(wε) = 2cW η(t0)

for every l ∈ N, and thus

η(t0)

∫
R

(w′0)2 +W (w0) ds ≤ 2cW η(t0). (5.4.11)

This combined with the fact that |w′′0 | ≤ C (by (5.4.10)) implies that lims→±∞w
′
0(s) =

0. By then using (5.4.5) and (5.4.6) along with Lemma 5.4.2 we have that lims→−∞w0(s) =
a, and that lims→∞w0(s) = b. Thus by integrating (5.4.10) we find that

(w′0)2 = W (w0). (5.4.12)

We next claim that w0 is increasing. Suppose not. Then by (5.4.12) there exists
critical points t1 < t2 of w0, with w0(t1) = b and w0(t2) = a. This then implies, by
Young’s inequality, (5.4.11) and a change of variables that

6cW η(t0) ≤ 2cW η(t0).

This is impossible and thus w0 is increasing. Moreover, by (5.3.12), (5.4.9), and
Lemma 5.4.2, up to a subsequence, τε → τ0 with w0(τ0) = c. This then implies that
w0(s) = z(s− τ0), where z is the solution of the Cauchy problem (1.1.6).

The only thing left to prove is that τ0 is determined by equation (5.2.15). To
this end, fix l large enough that (sε1, s

ε
4) ⊂ (−l, l) for all ε, where sε1 and sε4 are as in

the proof of Lemma 5.4.2. Then by the mass constraint (5.4.3) we have that

0 =

∫ Bε−1

Aε−1

(wε − sgna,b)ηε ds =

∫ l

−l
(wε − sgna,b)ηε ds

+

∫ −l
−r1ε−1

(wε − aε + aε − sgna,b)ηε ds+

∫ r1ε−1

l
(wε − bε + bε − sgna,b)ηε ds

+

∫ −r1ε−1

Aε−1

(wε − aε + aε − sgna,b)ηε ds+

∫ Bε−1

r1ε−1

(wε − bε + bε − sgna,b)ηε ds.

By the definitions of sε1 and sε4 it must be that vε ≤ c−ρ in the interval [−r1ε−1,−l]
and vε ≥ c+ ρ in the interval [l, r1ε

−1]. Hence by (5.3.9) and (5.3.25) we have that

0 ≤
∫ r1ε−1

l
(bε − wε)ηε ds ≤ 2

(
(bε − wε(l)) + (bε − wε(r1ε−1)

)
max η

∫ ∞
0

e−µs ds

≤ C(bε − wε(l) + εk),
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where in the last inequality we have used (5.3.18) and Theorem 5.3.4. Similarly, we
have

0 ≤
∫ −l
−r1ε−1

(wε − aε)ηε ds ≤ C(wε(−l)− aε + εk).

By (5.3.9) we can write:∫ −l
Aε−1

(aε − sgna,b)ηε ds = −λε|λε|1/q−1(q/`)1/qε1/q−1

∫ t0

−T
η dt + o(ε1/q−1),∫ Bε−1

l
(bε − sgna,b)ηε ds = −λε|λε|1/q−1(q/`)1/qε1/q−1

∫ T

t0

η dt+ o(ε1/q−1).

Furthermore by Theorem 5.3.4 along with (5.3.9) we have that∫ −r1ε−1

Aε−1

(wε − aε)ηε ds = o(1),∫ Bε−1

r1ε−1

(bε − wε)ηε ds = o(1).

Utilizing these estimates, and taking ε→ 0 we find that

0 = η(t0)

∫ l

−l
w0 − sgna,b ds− λ0|λ0|1/q−1(q/`)1/q lim

ε→0+
ε1/q−1

∫
I
η dt

+O(|a− w0(−l)|) +O(|b− w0(l)|).

Taking l to infinity, and using (5.1.5) then implies that

η(t0)

∫
R
w0 − sgna,b ds =

{
λ0

W ′′(a)

∫
I η ds if q = 1,

0 if q < 1,

which then implies that τ0 has the desired form. This completes the proof.

Using the previous lemmas it is possible to derive a second-order liminf inequality,
which immediately implies Theorem 5.4.1.

Lemma 5.4.4. Let {wε} be minimizers of the functionals {Hε}. Then we have the
following:

lim inf
ε→0+

Hε(wε)− 2cW η(t0)

ε
≥ 2η′(t0)(τ0cW + csym) (5.4.13)

+

{
λ2

0
2W ′′(a)

∫
I η(s) ds if q = 1,

0 if q < 1,

where cW , csym, τ0, λ0 are given by (1.1.5), (6.1.6), (5.2.15) and (5.3.4) respectively.

Proof. Fix k to be a large integer. By (5.4.5) and (5.4.6) and the fact that sε1
and sε4 are bounded we can find lε ∈ (sε2, r1ε

−1) such that bε − wε(lε) < εk and
wε(−lε)− aε < εk for ε > 0 sufficiently small. Recall that by Corollary 5.3.7 we can
take

lε < C| log ε|. (5.4.14)
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By (5.4.2) we can compute

Hε(wε)− 2cW η(t0)

ε

= ε−1

∫ lε

−lε
(W 1/2(wε)− w′ε)2ηε ds+ 2ε−1

∫ lε

−lε
W 1/2(wε)w

′
ε(ηε − η(t0)) ds

+ ε−1

∫
[Aε−1,Bε−1]\(−lε,lε)

(
W (wε) + (w′ε)

2
)
ηε ds+ ε−12η(t0)

(∫ lε

−lε
W 1/2(wε)w

′
ε ds− cW

)
≥ 2ε−1

∫ lε

−lε
W 1/2(wε)w

′
ε(ηε − η(t0)) ds

+ ε−1

∫
[Aε−1,Bε−1]\(−lε,lε)

W (wε)ηε ds+ ε−12η(t0)

(∫ lε

−lε
W 1/2(wε)w

′
ε ds− cW

)
.

We will examine the individual terms. The last term goes to zero as

ε−1

∣∣∣∣∫ lε

−lε
W 1/2(wε)w

′
ε ds− cW

∣∣∣∣ ≤ ε−1

∣∣∣∣∣
∫ wε(lε)

wε(−lε)
W 1/2(r) dr −

∫ b

a
W 1/2(r) dr

∣∣∣∣∣
≤ ε−1

∣∣∣∣∫ bε

aε

W 1/2(r) dr −
∫ b

a
W 1/2(r) dr

∣∣∣∣+ Cεk−1

≤ Cε−1

∫ ε1/q

0
t

1+q
2 dt+ Cεk−1 = o(1), (5.4.15)

where we have used (1.1.5), (5.1.9) and (5.3.9).

For s ∈ [lε, Bε
−1] ∩ {wε ≥ bε − εk} by the mean value theorem we can write

W (wε(s)) = W (bε) +W ′(ζε)(wε(s)− bε),

where ζε ∈ [wε(s), bε]. By (5.1.10) and (5.3.13) for such s we then have that

|W ′(ζε)|(bε − wε(s)) ≤ C|ζε − b|q(bε − wε(s))
≤ C(|ζε − bε|q + |bε − b|q)(bε − wε(s))
≤ C(εqk + ε)εk ≤ Cεk+1.

Thus we can write, after applying (5.1.9), part (iii) of Theorem 5.3.4, (5.3.13), and
(5.4.14),

ε−1

∫ Bε−1

lε

W (wε)ηε ds ≥ ε−1W (bε)

∫ Bε−1

lε

ηε ds+O(εk−1)

= ε−1

(
`

q(1 + q)
|bε − b|1+q + o(|bε − b|1+q)

)(
ε−1

∫ T

t0

η dt+O(| log ε|)
)

+O(εk−1)

=

(
q1/q|λε|1+1/q

(1 + q)`1/q
+ o(1)

)(
ε1/q−1

∫ T

t0

η dt+O(ε1/q| log ε|)
)

+O(εk−1).

An analogous bound will hold on the interval [Aε−1,−lε]. Hence

lim
ε→0+

ε−1

∫
[Aε−1,Bε−1]\(−lε,lε)

W (wε)ηε ds =

{
λ2

0
2W ′′(a)

∫
I η dt if q = 1,

0 if q < 1.
(5.4.16)
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In considering the first term, by using (5.4.5), and for M large enough, on the
interval [−lε,−M ] it follows that

|W 1/2(wε)| ≤ |W 1/2(wε)−W 1/2(aε)|+ |W 1/2(aε)|

≤ |W (wε)−W (aε)|1/2 + |W 1/2(aε)| ≤ Ce−C|s+M | + Cε
(1+q)

2q .

A similar bound holds on [M, lε]. Then using (5.1.13), along with Lemma 5.3.9 and
Theorem 5.3.3, it follows that∣∣∣∣ε−1

∫ lε

−lε
W 1/2(wε)w

′
ε(ηε − η(t0)− η′(t0)εs) ds

∣∣∣∣
≤ o(1)

(
C

∫ −M
−lε

|s|
(
e−C|s+M | + ε

1−q
2q

)
ds+ C

∫ M

−M
|s| ds+ C

∫ lε

M
|s|
(
e−C|s−M | + ε

1−q
2q

)
ds

)
= o(1).

Thus we find that:

lim
ε→0+

2ε−1

∫ lε

−lε
W 1/2(wε)w

′
ε(ηε − η(t0)) ds = 2η′(t0) lim

ε→0+

∫ lε

−lε
W 1/2(wε)w

′
εs ds.

Now for any fixed l by (5.4.9) and the fact that w0(s) = z(s− τ0), we can write

lim
ε→0+

∫ l

−l
W 1/2(wε)w

′
εs ds =

∫ l

−l
W 1/2(w0)w′0s ds

=

∫ l−τ0

−l−τ0
W 1/2(z(t))z′(t)(t+ τ0) dt

= τ0Φ(z(l − τ0))− τ0Φ(z(−l − τ0)) +

∫ l−τ0

−l−τ0
W 1/2(z(t))z′(t)t dt,

where we recall that Φ(s) =
∫ s
a W

1/2(r) dr. Furthermore we can establish the fol-
lowing bound using (5.1.9), (5.4.6) and Lemma 5.4.3:∣∣∣∣∫ lε

l
W 1/2(wε)w

′
εs ds

∣∣∣∣ ≤ C ∫ lε

l
|b− wε|

1+q
2 s ds

≤ C(|bε − c− ρ|
1+q

2 + |bε − b|
1+q

2 )

∫ ∞
l

e−
1+q

2
µ(s−sε4)s ds,

provided l > sε4. Thus we can write

lim
ε→0+

∫ lε

−lε
W 1/2(wε)w

′
εs ds = τ0Φ(z(l − τ0))− τ0Φ(z(−l − τ0))

+

∫ l−τ0

−l−τ0
W 1/2(z(s))z′(s)s ds+O(le−

1+q
2
µl).

Taking l to ∞, combined with (5.4.15) and (5.4.16) gives the desired claim, namely,
(5.4.13).

The proof of Theorem 5.4.1 is now straightforward.

Proof of Theorem 5.4.1. By changing variables it is immediate thatH(wε) = G
(1)
ε (vε).

Lemma 5.4.4 then immediately implies (5.4.1). This concludes the proof.
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Chapter 6

Characterization of a
Second-Order Γ-Limit

6.1 Main Results

This chapter uses tools from the previous two chapters to prove an asymptotic
expansion of order 2 by Γ-convergence of the functionals (1.1.3). In particular, the
goal is to prove Theorems 6.1.2 and 6.1.3.

These theorems are proven under the same assumptions on the potential W
that were given in Chapter 5, namely (5.1.4)-(5.1.7). Some remarks regarding the
consequences of those assumptions can be found in Chapter 5.

The theorems in this chapter also assume that Ω ⊂ Rn, n ≤ 7, is an open,
connected, bounded set with

Ln(Ω) = 1 and ∂Ω is of class C2,α̂, α̂ ∈ (0, 1]. (6.1.1)

The restriction to n ≤ 7 is necessary to guarantee classical regularity of minimizers
of the problem (1.1.8) [58, 60, 75, 103], while the assumption that Ln(Ω) = 1 is
for simplicity (the general case follows by a scaling argument). It is likely that
the results would still hold in dimension n > 7, with appropriate modifications to
accomodate the loss of classical regularity, but for simplicity this thesis only focuses
on the classical setting.

Another assumption is that the mass m in (1.1.2) satisfies

a < m < b, (6.1.2)

where a, b are the wells of W . This assumption is natural because it imposes a phase
transition, while other choices of mass would not.

Finally, given a measurable set E0 ⊂ Ω with mass vm (see (1.1.8) and (1.1.9))
and δ > 0, define the local isoperimetric function of parameter δ about the set E0

to be

Iδ,E0

Ω (r) := inf{P (E,Ω) : E ⊂ Ω Borel, Ln(E) = r, α(E0, E) ≤ δ}, (6.1.3)

where
α(E1, E2) := min{Ln(E1 \ E2),Ln(E2 \ E1)} (6.1.4)

for all Borel sets E1, E2 ⊂ Ω.

Remark 6.1.1. When δ is sufficiently large then Iδ,E0

Ω (r) = IΩ. Thus in the theo-

rems one may safely replace Iδ,E0

Ω with IΩ, which is precisely the case considered in
[73].

93
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The main technical assumption in the theorems given here is that Iδ,E0

Ω be dif-
ferentiable at vm = b−m

b−a (see (1.1.9)). In Chapter 4 it was demonstrated that this
assumption is rather generic, in the sense that it will hold for all but countably
many m, see Corollary 4.0.4. It was also demonstrated that the assumption holds
for isolated local volume-constrained perimeter minimizers, see Theorem 4.0.6.

After giving these assumptions, it is now possible to state the two main results.

Theorem 6.1.2. Assume that Ω satisfies (6.1.1), m satisfies (6.1.2) and W satisfies
hypotheses (5.1.4)-(5.1.7) with q = 1. Assume that u is an L1(Ω)-local minimizer

of the functional F (1) (see (1.1.4)). Finally, assume that, for some δ > 0, Iδ,E0

Ω is
differentiable at vm, with E0 = {u = a}. Then

Γ- lim inf F̃ε(u) = Γ- lim sup F̃ε(u)

=
2c2
W (n− 1)2

W ′′(a)(b− a)2
κ2
u + 2(csym + cW τu)(n− 1)κu P({u = a}; Ω),

(6.1.5)

where

F̃ε(w) :=
F (1)
ε (w)−F (1)(u)

ε

and

F (1)
ε (w) =

Fε(w)

ε
.

In particular, if IΩ is differentiable at vm then

F (2)(u) =
2c2
W (n− 1)2

W ′′(a)(b− a)2
κ2
u + 2(csym + cW τu)(n− 1)κu P({u = a}; Ω)

if u is a global minimizer of F (1) and F (2)(u) =∞ otherwise in L1(Ω).

In this theorem, κu is the constant mean curvature of the set {u = a},

csym :=

∫
R
W (z(t))t dt, (6.1.6)

where z is the solution to the Cauchy problem (1.1.6), and τu ∈ R is a constant such
that

P({u = a}; Ω)

∫
R
z(t− τu)− sgna,b(t) dt =

2cW (n− 1)

W ′′(a)(b− a)
κu, (6.1.7)

with sgna,b as defined in (1.1.7).

In the case q = 1, W is approximately quadratic near the wells, and thus the
solution of the Cauchy problem (1.1.6) approaches a and b as t → −∞ and ∞
respectively, see (5.1.11). On the other hand, when W is subquadratic near the
wells, that is, when q < 1 in (5.1.10), then the solution reaches a and b in finite
time, see (5.1.12). The analysis is thus somewhat difference in this case, but a
similar theorem still holds.

Theorem 6.1.3. Assume that Ω satisfies (6.1.1), m satisfies (6.1.2) and W satisfies
hypotheses (5.1.4)-(5.1.7) with q ∈ (0, 1). Assume that u is an L1(Ω)-local minimizer

of the functional F (1) (see (1.1.4)). Finally, for some δ > 0, assume that Iδ,E0

Ω is
differentiable at vm, with E0 = {u = a}. Then

Γ- lim inf F̃ε(u) = Γ- lim sup F̃ε(u)

= 2(csym + cW τu)(n− 1)κu P({u = a}; Ω).
(6.1.8)
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where

F̃ε(w) :=
F (1)
ε (w)−F (1)(u)

ε

and

F (1)
ε (w) =

Fε(w)

ε
.

In particular, if IΩ is differentiable at vm then

F (2)(u) = 2(csym + cW τu)(n− 1)κu P({u = a}; Ω)

if u is a global minimizer of F (1) and F (2)(u) =∞ otherwise in L1(Ω).

Here now τu is a constant such that∫
R
z(t− τu)− sgna,b(t) dt = 0. (6.1.9)

Note that (6.1.8) and (6.1.9) correspond to the case W ′′(a) = ∞ in (6.1.5) and
(6.1.7) respectively.

Remark 6.1.4. In both of these theorems the fact that F (2)(u) = ∞ for u that
are not global minimizers of F (1) is trivial given (2.4.1) and (2.4.2). This fact is
summarized in Proposition 2.4.9.

A crucial hypothesis in these results is that the local isoperimetric function (see
definition (1.1.10)) be differentiable at the point vm given by (1.1.9). In particular

the differentiability of Iδ,E0

Ω at vm implies that (see [75])

(Iδ,E0

Ω )′(vm) = (n− 1)κE0 . (6.1.10)

However, differentiability of Iδ,E0

Ω must fail whenever the mean curvature of min-
imizers of the L1-restricted partition problem (6.1.3) is not uniquely determined.
For example, if Ω is a square in R2, it can be shown that there exists a value of
vm for which there are two minimizers of (1.1.8), one being a line segment and the
other being an arc of a circle. This implies that IΩ is not differentiable at an appro-
priately chosen value, see Figure 6.1. However, the competing minimizers given in
Figure 6.1 are actually L1 isolated minimizers, and thus the theorems of this section
should still apply, by using Iδ,E0

Ω instead of IΩ. Discussion of various cases where
the assumption of differentiability can be proven were given in chapter 4.

Without assuming the differentiability of the local isoperimetric function Iδ,E0

Ω

at vm one can only conclude that (n − 1)κu ∈ [(Iδ,E0

Ω )′−(vm), (Iδ,E0

Ω )′+(vm)], where

(Iδ,E0

Ω )′−, (Iδ,E0

Ω )′+ are the left and right derivatives of Iδ,E0

Ω , which must exist as Iδ,E0

Ω

is semi-concave, see Chapter 4. Whether this situation can possibly persist as δ → 0
is not clear. One could hope that the rigidity of constant mean curvature surfaces
gives some traction on the problem, but so far no results have been obtained.

If this theorem continues to hold in the case where Iδ,E0

Ω is not differentiable,
then this theorem gives a new selection criteria on limits of minimizers of Fε. In
particular, when W is symmetric about a+b

2 then surfaces with larger magnitude
mean curvature are energetically favored (see Corollary 6.1.5 below).

A heuristic explanation for the terms in (6.1.5) may prove helpful. Critical points
uε of (1.1.1) subject to (1.1.2) satisfy the Neumann problem{

2ε∆uε = 1
εW

′(uε) + Λε in Ω,
∂uε
∂ν = 0 on ∂Ω,
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Figure 6.1: IΩ for the domain Ω = Q2, the cube in R2. When IΩ is not differentiable
there are two competing sets minimizing the perimeter, as shown.

where ν is the outward unit normal to ∂Ω and Λε is a Lagrange multiplier that
accounts for the constraint (1.1.2). In [74], Luckhaus and Modica proved that if
0 < a < b and {uε} is a sequence of non-negative minimizers of (1.1.1), (1.1.2),
uniformly bounded in L∞(Ω) and converging in L1(Ω) to a minimizer of F (1), then

Λε → Λu :=
2cW (n− 1)

b− a κu. (6.1.11)

Thus the first term in equation (6.1.5) can be written as Λ2
u

2W ′′(a) . Our proofs

suggest (see (5.2.17)) that minimizers uε of the energy Eε will in fact be of the form

uε(x) ≈ z
(
d(x, {u = a})− ετu

ε

)
− Λuε

W ′′(a)
. (6.1.12)

It turns out that the first term in equation (6.1.5) is linked to a small vertical shift
in the bulk values of minimizers, namely the second term in (6.1.12). The τu term in
(6.1.5) is caused by the shift inside z in the first term of (6.1.12), which essentially
pushes the transition layer “outward” along curved surfaces. We note that the
horizontal shift caused by τu and the vertical shift in the bulk must be in some sense
balanced so that the mass constraint is satisfied.

The term involving csym may be thought of as a penalty for directional asym-
metry. If the profiles are symmetric this term disappears entirely. This term is of
order ε for any q that we consider.

In the case where W is symmetric about (b+a)/2, then the function z in (1.1.6)
is odd, and so the constants csym and τu simplify to give the following:

Corollary 6.1.5. In addition to the assumptions above, suppose that W is symmet-
ric about (b+ a)/2, and that IΩ is differentiable at vm. Then for u minimizing F (1)

we have that

F (2)(u) =

{
− 2c2W (n−1)2

W ′′(a)(b−a)2κ
2
u if q = 1,

0 if q < 1.

Remark 6.1.6. A straightforward calculation shows that in the case of the Cahn–
Hilliard potential W (s) = 1

2(1− s2)2 the second-order Γ-limit takes the form

F (2)(u) = −(n− 1)2

9
κ2
u.

Following the approach of [41], the next section will prove the main results. Of
course, much of the work has already been done in Chapters 3 and 5.
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6.2 Proof of Main Results

The first step, is to connect the definition of the local isoperimetric function (6.1.3)
with the topology of L1 convergence. This in turn will connect the L1 topology
used for the Γ-convergence results with the notion of I-comparable level sets from
Chapter 3.

Proposition 6.2.1. Let Ω ⊂ Rn be an open set, E0 ⊂ Ω be a Borel set and let
vE0 = aχE0 + bχE0

c. Then
α(E0, {u ≤ s}) ≤ δ (6.2.1)

for all u ∈ L1(Ω) such that

‖u− vE0‖L1 ≤ (b− a)δ, (6.2.2)

and for every s ∈ R, where α is the number given in (6.1.4).

Proof. Fix δ > 0 and for s ∈ R define Fs := {x ∈ Ω : u(x) ≤ s}. If s ∈ (−1, 1), then
by (6.2.2),

2δ ≥
∫
Fs\E0

|u− vE0 | dx+

∫
E0\Fs

|u− vE0 |dx

≥ (1− s)Ln(Fs \ E0) + (1 + s)Ln(E0 \ Fs) ≥ 2α(E0, Fs),

so that (6.2.1) is proved in this case. If s ≥ 1, again by (6.2.2),

2δ ≥
∫
E0\Fs

|u− vE0 |dx ≥ (1 + s)Ln(E0 \ Fs) ≥ 2α(E0, Fs).

The case s ≤ −1 is analogous.

Corollary 6.2.2. Fix δ > 0 and E0 ⊂ Ω Borel. Given a family of functions

uε
L1(Ω)−−−−→ u0 = aχE0 + bχE0 then for ε sufficiently small the inequality

α(E0, {u ≤ s}) ≤ δ

is satisfied. In particular, if I = Iδ,E0

Ω , then for ε sufficiently small the function u
has I comparable level sets.

Finally, the next result is an elementary result about touching a function from
below.

Proposition 6.2.3. Suppose that Î : [0, 1]→ [0,∞) is a continuous function, which
is differentiable at vm and which satisfies

Î(v) ≥ C1 min{v, 1− v}n−1
n for all v ∈ [0, 1]. (6.2.3)

Then there exists a function I∗ ∈ C1((0, 1)) satisfying:

Î ≥ I∗ > 0 in (0, 1), (6.2.4)

Î(vm) = I∗(vm), (Î)′(vm) = (I∗)′(vm), (6.2.5)

I∗(v) = C0v
n−1
n for all v ∈ (0, δ) (6.2.6)

I∗(v) = C0(1− v)
n−1
n for all v ∈ (1− δ, 1)

for some C0 > 0 and 0 < δ < 1.
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Proof. Proposition 2.6.2 gives the construction of such a function in a neighbor-

hood of vm. By then using the functions C1
2 v

n−1
n and C1

2 (1 − v)
n−1
n , and patching

appropriately the result follows.

These lemmas are then applied to obtain the main results of this chapter.

Proof of main results: Theorem 6.1.2 and 6.1.3. Step 1: limsup inequality. Let
u be a local minimizer of F (1). Then u must be of the form aχE + bχEc . Define

η(t) := Hn−1({x : dE(x) = t}). (6.2.7)

By Lemma 2.3.11 we have that η satisfies the assumptions of Theorem 5.2.6. Let vε
be the one-dimensional function constructed in Theorem 5.2.6, using η chosen via
(6.2.7). Define uε(x) := vε(dE(x)). By the coarea formula for Lipschitz functions
we have that

F (2)
ε (uε) =

1

ε

(∫
R

(ε−1W (vε(t)) + ε(v′ε)
2)Hn−1({x : dE(x) = t}) dt− 2cW η(0)

)
.

Applying Theorem 5.2.6 then proves that the Γ-lim sup has the desired form.

Step 2: liminf inequality. Let u = aχE0 + bχEc0 be a local minimizer of F (1),

and let uε → u in L1(Ω). We claim that Î = Iδ,E0

Ω satisfies the assumptions of

Lemma 6.2.3. The fact that Î satisfies (6.2.3) follows from the fact that Iδ,E0

Ω ≥ IΩ

and Proposition 2.1.10. By assumption, Î is differentiable at vm, and fact that Î is
continuous will be proved in Proposition 4.0.1, and thus the claim holds.

Now, set I = I∗, with I∗ as in Lemma 6.2.3. Note that uε has I comparable
level sets by Corollary 6.2.2 and the fact that I ≤ Iδ,E0

Ω . Thus, applying corollary
3.3.6 implies that, for ε sufficiently small,

Fε(uε) ≥
∫
I
(W (fuε) + ε2(f ′uε)

2)I∗(VΩ) dt, m =

∫
Ω
uε dx =

∫
I
fuεI∗(VΩ) dt,

where VΩ and fu are defined in Section 3 (see (3.1.3), (3.1.8) and Remark 3.3.5) and
where I is defined by the support of I(VΩ), see (3.1.4). By making an appropriate
shift in coordinates, from this point forward we will assume that I = (−T, T ).

We then set η := I∗(VΩ). This η will satisfy all of the assumptions in Section
4. Indeed, since VΩ > 0 in (−T,∞) and VΩ(−T ) = 0, by (6.2.6) and (3.1.3),
VΩ(t) = [C0/n(t + T )]n near −T , and so η = Cn0 [ 1

n(t + T )]n−1, which shows that
(5.1.14) and (5.1.16) hold for t close to −T . Using similar reasoning, we have that
η(t) = Cn0 [ 1

n(T − t)]n−1 and thus (5.1.15) and (5.1.16) hold close to T . Since I∗ ∈
C1

loc(0, 1), by (3.1.3) we have that VΩ ∈ C2
loc(I), and in turn η ∈ C1

loc(I). Thus
(5.1.13) is satisfied. Finally, since I∗ > 0 in (0, 1) we have by (6.2.4) that η > 0 in
I, and thus (5.1.16) holds on any compact subset of I by uniform continuity.

Next observe that since u ∈ BV (Ω, {a, b}) and (1.1.2) holds, by Lemma 3.2.1 we
have that fu only takes the values a and b and

∫
I fuη dt =

∫
Ω u dx = m. Since fu

is increasing, this implies that fu(t) = sgna,b(t − t0) for some t0 ∈ I and all t ∈ I.

It follows from Theorem 5.2.5 that fu is a local minimizer of the functional G(1)

defined in (5.2.5). Moreover, by Lemma 3.2.2 we have that uε → u in L1(Ω) implies
that fuε → fu in L1

η(I). Hence, ‖fuε − fu‖L1
η
≤ δ for all ε sufficiently small, where

δ > 0 is the number given in Theorem 5.2.5 (with v0 = fu). In turn choosing vε to
be minimizers of the function Jε defined in (5.2.12), by Corollary 3.3.6 we have that

Fε(uε) ≥ Gε(fuε) = Jε(fuε) ≥ Jε(vε). (6.2.8)
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Since
∫
I fuη dt = m, it follows from the fact that (see (6.1.1) and Lemma 3.2.1)

1 = Ln(Ω) =

∫
I
η dt (6.2.9)

and (3.1.3) that

vm =
b−m
b− a = Ln({u = a}) =

∫ t0

−T
η dt =

∫ t0

−T

d

dt
VΩ dt = VΩ(t0). (6.2.10)

In turn, by (6.2.5),

η(t0) = I∗Ω(vm) = IΩ(vm) = P({u = a}; Ω),

which shows that F (1)(u) = G(1)(fu). Hence by (6.2.8) we have that

F (2)
ε (uε) =

F (1)
ε (uε)−F (1)(u)

ε
≥ J

(1)
ε (vε)− J (1)(fu)

ε
= J (2)

ε (vε).

By applying Lemma 5.4.4 we thus have that

lim inf
ε→0+

F (2)
ε (uε) ≥ 2η′(t0)(τ0cW + csym) +

{
λ2

0
2W ′′(a) if q = 1,

0 if q < 1,
(6.2.11)

where we have used (6.2.9). By (3.1.3) we have that η′(t) = (I∗Ω)′(VΩ(t))η(t), and
so by (6.1.10), (6.2.5) and (6.2.10),

η′(t0) = I ′Ω(vm)IΩ(vm) = (n− 1)κu P({u = a}; Ω).

In turn by (6.1.11) and (5.2.16),

λ0 =
2(n− 1)cW

(b− a)
κu = Λu, (6.2.12)

and so by (5.2.15) the number τ0 coincides with the number τu in (6.1.7). Combining
(6.2.11)-(6.2.12) gives

lim inf
ε→0+

F (2)
ε (uε) ≥ 2(τucW + csym)(n− 1)κu P({u = a}; Ω) +

{
Λ2
u

2W ′′(a) if q = 1,

0 if q < 1.

This completes the proof.

Remark 6.2.4. The analysis for the liminf problem (ie using the rearrangement

induced by Iδ,E0

Ω ) in fact implies that for any uε satisfying ‖uε − u‖ ≤ (b− a)δ then
the following bound holds

F (1)
ε (uε) ≥ F (1)(u)− Cε.

Remark 6.2.5. In many settings in materials science it is natural to consider an
anisotropic energy of the form

Fε(u) =

{∫
ΩW (u) + ε2Ψ2(∇u) dx for u ∈ H1(Ω),

∫
Ω u dx = m

∞ otherwise.
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Here Ψ is a non-negative convex, 1-homogeneous function, and W is a double-well
potential. It is well-known [90] that

ε−1Fε Γ−→
{
cWPΨ({u = a}) if u ∈ BV (Ω; {a, b}),

∫
Ω u dx = m

∞ otherwise.

In light of Theorem 3.4.4 the rearrangement techniques used in this thesis are still
valid in this case. However, some of the other aspects of the present work, such as
the differentiability of the isoperimetric function and the construction of appropriate
recovery sequences, are not as obviously extendable to the anisotropic case. This is
the subject of current investigations.



Chapter 7

Slow Motion for Non-Local
Allen–Cahn Equation

This chapter utilizes the energy asymptotics from the previous chapter to obtain slow
motion bounds on the gradient flows associated with the energy (1.1.3). Recall that
the L2-constrained gradient flow of (1.1.3) is the non-local Allen–Cahn equation,
which is given by

∂tuε = ε2∆uε −W ′(uε) + ελε in Ω× [0,∞),
∂uε
∂ν = 0 on ∂Ω× [0,∞),

uε = u0,ε on Ω× {0}.
(7.0.1)

Here u0,ε is the initial datum, and λε is a Lagrange multiplier that renders solutions
mass–preserving, to be precise

λε =
1

εLn(Ω)

∫
Ω
W ′(uε) dx.

The main goal of this chapter is to prove the following main result.

Theorem 7.0.1. Assume that Ω satisfies (6.1.1), m satisfies (6.1.2) and W satisfies
hypotheses (5.1.4)-(5.1.7). Assume that u is an L1(Ω)-local minimizer of the func-

tional F (1) (see (1.1.4)). Finally, assume that, for some δ > 0, Iδ,E0

Ω is differentiable
at vm, with E0 = {u = a}. Assume that u0,ε ∈ L∞(Ω) satisfy

u0,ε → u in L1(Ω) as ε→ 0+ (7.0.2)

and
F (1)
ε (u0,ε) ≤ F (1)(u) + Cε (7.0.3)

for some C > 0. Let uε be a solution non-local Allen–Cahn equation, namely (7.0.1).
Then, for any M > 0

sup
0≤t≤Mε−1

||uε(t)− u||L2 → 0 as ε→ 0+. (7.0.4)

Remark 7.0.2. The assumption that u0,ε ∈ L∞ and the fact that F (1)
ε (u0,ε) < ∞

is sufficient to guarantee that solutions to the equation (7.0.1) exists. Results to this
effect can be found in Theorem 1.1.1 of [85].

Remark 7.0.3. The assumption (7.0.3) is a standard assumption in this theory, and
such initial data is sometimes called “energetically well-prepared.” The assumption
on Iδ,E0

Ω is the non-standard assumption in this case, and was at least partially
addressed in Chapter 4.

101
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The proof for this theorem is largely identical to that in [25]. It is included for
completeness. The first step is to prove the following auxiliary result.

Proposition 7.0.4. Under the assumptions of Theorem 7.0.1, there exist two pos-
itive constants k1 and k2, not depending on ε, such that∫ k1ε−2

0
||∂tuε(t)||2L2 dt ≤ k2ε

2,

where uε is the solution of (7.0.1).

Proof. Since uε is a solution to the gradient flow, for any T > 0 we have

F (1)
ε (u0,ε)−F (1)

ε (uε(T )) = ε−1

∫ T

0
||∂tuε(s)||2L2 ds, (7.0.5)

which shows that t 7→ F (1)
ε (uε)(t) is decreasing and ||∂tuε||2L2 is integrable. Given δ

as in the assumptions, then by (7.0.2),

||u0,ε − u||L1 ≤ δ

for ε sufficiently small. Now suppose that there exists Tε > 0 small enough that∫ Tε

0
||∂tuε(t)||L1 dt ≤ δ. (7.0.6)

Then,

δ ≥
∫ Tε

0
||∂tuε(t)||L1 dt ≥

∣∣∣∣∣∣∣∣∫ Tε

0
∂tuε(t) dt

∣∣∣∣∣∣∣∣
L1

= ||uε(Tε)− u0,ε||L1 ,

so that
||uε(Tε)− u||L1 ≤ ||uε(Tε)− u0,ε||L1 + ||u0,ε − u||L1 ≤ 2δ

and, in particular, if δ is small enough then by Theorems 6.1.2 and 6.1.3 (see also
Remark 6.2.4),

F (1)
ε (uε(Tε)) ≥ F (1)

0 (u)− C(κ)ε. (7.0.7)

By (7.0.3) and (7.0.7) together with (7.0.5),∫ Tε

0
||∂tuε(s)||2L2 ds = εF (1)

ε (u0,ε)− εF (1)
ε (uε(Tε))

≤ εF (1)(u) + Cε2 − εF (1)(u) ≤ Cε2.

(7.0.8)

In turn, by Hölder’s inequality we get(∫ Tε

0
||∂tuε(t)||L1 dt

)2

≤ CTεε2,

so that

Tε ≥
1

Cε2

(∫ Tε

0
||∂tuε(t)||L1 dt

)2

. (7.0.9)

In order to conclude the proof, we need to make sure that it is always possible
to choose Tε as in (7.0.6) and that Tε ≥ k1ε

−2 for some k1 > 0. We argue as follows:
suppose first that ∫ ∞

0
||∂tuε(t)||L1 dt > δ.
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Then by continuity we can choose Tε > 0 such that∫ Tε

0
||∂tuε(t)||L1 dt = δ,

and for such a choice of Tε, (7.0.9) gives

Tε ≥
δ2

Cε2
.

Thus, by (7.0.8), ∫ k1ε−2

0
||∂tuε(s)||2L2 ds ≤ Cε2 =: k2ε

2, (7.0.10)

for

k1 :=
δ2

C
.

On the other hand, if ∫ ∞
0
||∂tuε(t)||L1 dt ≤ δ,

then (7.0.8) must hold for all Tε > 0, and (7.0.10) holds true in this case as well.

With this proposition in hand, the proof of the main result is relatively straight-
forward.

Proof of Theorem 7.0.1. Let k1, k2 be as in Proposition 7.0.4, and rescale uε by
setting ũε(x, t) = uε(x, ε

−1t). Proposition 7.0.4 applied to ũε reads∫ k1ε−1

0
||∂tũε(t)||2L2 dt ≤ k2ε,

and, in turn, by Hölder’s inequality, for 0 < M < k1ε
−1,∫ M

0
||∂tũε(t)||L1 dt ≤M1/2(k2ε)

1/2. (7.0.11)

For any 0 < s < M , by the properties of the Bochner integral (see e.g. [43]) we have

||ũε(s)− u0,ε||L1 =

∣∣∣∣∣∣∣∣∫ s

0
∂tũε(t) dt

∣∣∣∣∣∣∣∣
L1

≤
∫ s

0
||∂tũε(t)||L1 dt

≤
∫ M

0
||∂tũε(t)||L1 dt,

and thus

sup
0≤s≤M

||ũε(s)− u0,ε||L1 ≤
∫ M

0
||∂tũε(t)||L1 dt. (7.0.12)

On the other hand, by (7.0.2),

||ũ0,ε − uE0 ||L1 → 0 as ε→ 0+. (7.0.13)

Putting together (7.0.11), (7.0.12) and (7.0.13) leads to

sup
0≤s≤M

||ũε(t)− uE0 ||L1 → 0 as ε→ 0+,

which implies the desired result (7.0.4).

Remark 7.0.5. This result can also be extended to global minimizers of the Cahn–
Hilliard energy, using a simpler argument. See [83] for details.
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Part II

Decay Estimates for the
Becker–Döring Equations
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Chapter 8

Stability Estimates for the
Becker–Döring Equations

This chapter establishes various stability estimates for the Becker–Döring equations.
These estimates will be stated in terms of sequence spaces with polynomial moments,
and satisfying a zero mean condition, see Definition (1.2.12).

8.1 Definitions, Assumptions and Previous Results

This section states all of the necessary assumptions for the theorems of this part
of the thesis. It also quotes all of the external results about the Becker–Döring
equations that will be necessary for the results presented here.

It will be necessary to assume the following on the model coefficients:

ai > C1 > 0 for all i ≥ 1, (8.1.1)

lim
i→∞

ai+1

ai
= 1, (8.1.2)

lim
i→∞

ai
bi

=:
1

ζs
∈ (0,∞) (8.1.3)

ai, bi ≤ C2i for all i ≥ 1, (8.1.4)

with ai, bi as in (1.2.1) and (1.2.2), and where C1, C2 are fixed constants, independent
of i.

This part of the thesis will only consider solutions (ci(t)) of the Becker–Döring
equations (1.2.1) with some fixed, subcritical mass, meaning that for some ζ < ζs,
the Qi defined by (1.2.5) will satisfy

∞∑
i=1

Qii = m̃ =
∞∑
i=1

ici(t).

Using (1.2.4), (1.2.5), (8.1.2) and (8.1.3), it is immediate that

lim
i→∞

Qi+1

Qi
=

ζ

ζs
< 1. (8.1.5)

This naturally implies that the Qi are exponentially decaying.

Also, by (8.1.3), it follows that

ai(ζ + δ) = ai(Q1 + δ) ≤ bi, for all i > Nζ , (8.1.6)
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for some δ > 0 and Nζ that are fixed and independent of i, but possibly dependent
on ζ. The assumptions given here are fairly standard, and versions of them can be
found in [15, 30, 65]. Specifically, in [15] Ball and Carr made the assumption that

aiζ ≤ bi

for i > N̂ , and for all ζ < ζs. In that work, this assumption was made in order
to guarantee that Ṽ (c(tn)) converges to the minimum value of Ṽ , where Ṽ is given
by (1.2.6). In their work, coefficients were required to be O(i/ log(i)), but this was
subsequently relaxed in [98].

One of the primary advantages to the `1 estimates given here is that they connect
convergence to equilibrium in a quantitative way with inequality (8.1.6). Specifically,
inequality (8.1.6) arises naturally in attempting to establish dissipation estimates,
thus motivating the analytical need for such assumptions. More importantly, (8.1.6)
is satisfied by many of the relevant physical models. For example, one physically-
motivated form of the model coefficients is (see [92])

ai = iα, bi = ai

(
ζs +

q

i1−µ

)
, α ∈ (0, 1], µ ∈ [0, 1], q > 0.

For this model we have
bi −Q1ai ≥ (ζs − ζ)ai,

which naturally implies that assumption (8.1.6) is only satisfied in the subcritical
setting.

Following [16], a solution to the Becker–Döring equations is defined in the fol-
lowing way:

Definition 8.1.1. A function (ci(t)) is a solution to the Becker–Döring equations
on [0, T ) if

1.
∑∞

i=1 i|ci| <∞ for all t ∈ [0, T ).

2. For all i we have that ci(t) is continuous in time, and non-negative.

3. The following equations are satisfied (and well-defined)

ci(t) = ci(0) +

∫ t

0
(Ji−1(s)− Ji(s)) ds, i ≥ 2,

c1(t) = c1(0)−
∫ t

0

(
J1(s) +

∞∑
i=1

Ji(s)

)
ds.

The following well-posedness result gives a simplified version of Theorem 2.2 in
[16] and Theorem 2.1 in [71].

Proposition 8.1.2. Assume that {ai}, {bi} satisfy assumptions (8.1.1)-(8.1.4). Let
{c0
i } be a positive sequence with finite first moment. Then there exists a unique

solution {ci(t)} to the Becker–Döring equations satisfying ci(0) = c0
i .

The following stability estimate, which can be found in the proof of Theorem 2.2
and Proposition 2.4 in [16], will prove convenient later in the analysis.

Proposition 8.1.3. Let {ci} be a solution to the Becker–Döring equations, and let
{hi} be defined by (1.2.7). Suppose that h(0) ∈ X1+k, with k ≥ 0. Then ‖h(t)‖X1+k

≤
‖h(0)‖X1+k

CeKt for some C and K independent of h.
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Using the fact that the Qi are exponentially decaying, the following result is
straightforward to prove, and can be deduced from Equation (3.2) in [30]. The
proof is included for convenience.

Proposition 8.1.4. The space H is continuously embedded in Yη for η > 0 suffi-
ciently small.

Proof. One can estimate using Cauchy-Schwarz

∞∑
i=1

Qie
ηi|hi| ≤

( ∞∑
i=1

Qie
2ηi

)1/2( ∞∑
i=1

Qih
2
i

)1/2

.

As long as ζe2η

ζs
< 1 then by (8.1.5) it follows that

‖h‖Yη ≤ C‖h‖H

The next result comes from [30] (Corollary 2.11 and Theorem 3.5), and concerns
the semigroup generated by L, defined by (1.2.10)

Proposition 8.1.5. For some λc > 0, the operator L generates a contraction semi-
group eLt on H satisfying

‖eLt‖L(H) ≤ e−λct for all t ≥ 0.

Furthermore, for η > 0 sufficiently small there exist constants M and λη > 0 so that
the operator L generates a semigroup on Yη satisfying

‖eLt‖L(Yη) ≤Me−ληt for all t ≥ 0.

At one point some more fine estimates will be needed on the operator L in the
space H. Given fixed N , define Λ to be a diagonal operator given by

(Λh)i = −σihi , σi := Q1ai + bi , (8.1.7)

define S to be the operator

(Sh)i := bihi−11{i>N+1} + aiQ1hi+11{i>N}.

and K := L − Λ − S. In the proof of Lemma 9.1.2 we will use the following facts
(see Proposition 2.10 and Corollary 2.11 in [30]).

Proposition 8.1.6. Assuming (8.1.1)-(8.1.4), the operator L given by (1.2.10) sat-
isfies the following properties:

1. L is self-adjoint in `2(Qi), with dom`2(Qi)(L) = dom`2(Qi)(Λ) = `2(Qiσ
2
i ).

2. For some λc > 0 we have that 〈h, Lh〉H ≤ −λc‖h‖2H for all h ∈ H ∩ `2(Qiσ
2
i ).

3. L = Λ + S + K, where K is compact on `2(Qi), S is symmetric, and for N
large enough S satisfies ‖Sh‖`2(Qi) ≤ θ‖Λh‖`2(Qi) for all h ∈ `2(Qiσ

2
i ), where

θ < 1.
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8.2 Linearized Stability Estimates in X1

This section establishes stability estimates for the semigroup generated by the op-
erator L, in the space X1. As stated in the preliminaries, the reader is reminded
that the term “semigroup” always refers to a strongly continuous semigroup of linear
operators.

The goal will be to use some recent operator decomposition techniques to derive
uniform bounds on eLt in X1. This technique was first developed by Gualdani,
Mischler and Mouhot [61] to study the Boltzmann equation, and was previously
applied to the Becker–Döring equations by Canizo and Lods [30]. The following
proposition is one instance of this technique, as given in [30]. The proof is much the
same, with the natural extension to the non-autonomous case.

Proposition 8.2.1 (Extension Principle). Let Z ⊂ Y be Banach spaces, with Z con-
tinuously embedded into Y . Let I = [0, T ) with T =∞ permitted, and let {A(t)}t∈I
and {B(t)}t∈I be families of linear operators on Y . Suppose that

1. {A(t) +B(t)}t∈I generates an evolution family UZ on Z, satisfying

‖UZ(t, s)‖L(Z) ≤MZe
−λZ(t−s) for 0 ≤ s ≤ t < T,

for some λZ ∈ R.

2. B(t) is “regularizing,” meaning that B(·) ∈ C(I;L(Y,Z)), and that ‖B(t)‖L(Y,Z) <
MB, uniformly for t ∈ I.

3. {A(t)}t∈I generates an evolution family V on Y , satisfying

‖V (t, s)‖L(Y ) ≤MV e
−λY (t−s) for 0 ≤ s ≤ t < T,

for some λY ∈ R, with λY < λZ .

Then {A(t) +B(t)}t∈I generates an evolution family UY on Y with bound

‖UY (t, s)‖L(Y ) ≤MY e
−λY (t−s) for 0 ≤ s ≤ t < T. (8.2.1)

Proof. Since B(t) is bounded and continuous in t, Remark 2.5.13 implies that {A(t)+
B(t)}t∈I generates an evolution family on Y . Thus the goal is to prove (8.2.1).

Using Duhamel’s formula, see Proposition 2.5.12 and Remark 2.5.13, we can
write the evolution family generated by A(t) +B(t) as follows:

UY (t, s)h(s) = V (t, s)h(s) +

∫ t

s
UY (t, r)(B(r)V (r, s)h(s)) dr.

We then estimate

‖UY (t, s)h(s)‖Y ≤MV e
−λY (t−s)‖h(s)‖Y +

∫ t

s
‖UY (t, r)B(r)V (r, s)h(s)‖Y dr.

As B maps from Y to Z we can replace UY with UZ inside the integral, and
then estimate using the decay estimate in Z to infer

‖U(t, s)Y h(s)‖Y ≤MV e
−λY (t−s)‖h(s)‖Y +

∫ t

s
MZe

−λZ(t−r)‖B(r)V (r, s)h(s)‖Z dr.
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Using our bounds on B and V we obtain

‖UY (t, s)h(s)‖Y ≤MV e
−λY (t−s)‖h(s)‖Y

+ ‖h(s)‖YMVMZMBe
−λY (t−s)

∫ t

s
e−(λZ−λY )(t−r) dr

≤MY e
−λY (t−s)‖h(s)‖Y ,

which is the desired result.

Remark 8.2.2. When A and B are constant in time this reduces to a statement
about semigroups, and indeed in that case the statement and proof are found in [30].
This section only uses the proposition to prove bounds on the semigroup eLt, but
Section 9.1 uses it in the case of evolution families.

It is important that the previous result is valid when λY = 0, meaning that the
result applies to semigroups which are only stable.

Next, recall that the operator L is determined by the weak form (1.2.10). Now
write

L = A+B ,

with the operator A determined via the weak form

∞∑
i=1

Qi(Ah)iφi :=

∞∑
i=N

QiQ1ai(hi − hi+1)(φi+1 − φi − φ1)

−QN−1Q1aN−1hN (φN − φN−1 − φ1),

(8.2.2)

where N is some fixed integer satisfying N ≥ Nζ + 1, with Nζ given in (8.1.6). The
domain of definition for both A and L is initially taken to be the set of sequences
with finite support that satisfy (1.2.8), namely having zero “mass”.

Remark 8.2.3. Note that if one sets φi = i then one gets zero, implying that A and
B both map into the space of sequences with zero mass. In particular, the operators
A, B and L all take values in the spaces Yη and Xk which incorporate the zero-mass
constraint.

The first step is to give an elementary bound on L and Ξ, which indicates a
minimal size for the domain of the closure of these operators. It will be shown
that B is bounded, which in turn means that this also gives information about the
domain of the closure of A.

Lemma 8.2.4. For any m ≥ 0, and for some constant Cm the following bound holds

‖Ξh‖X1+m ≤ Cm‖h‖X2+m ‖Lh‖X1+m ≤ Cm‖h‖X2+m .

Proof. We only show the estimate for L, as the estimate for Ξ is essentially identical.
We simply estimate

‖Lh‖X1+m =

∞∑
i=1

Qi(Lh)ii
1+m sgn(Lh)i

≤
∞∑
i=1

Qi(aiQ1 + bi)|hi|3(i+ 1)1+m + 3|h1|
∞∑
i=1

QiQ1ai(i+ 1)1+m

≤ C
∞∑
i=1

Qii
2+m|hi|,

where we have used (8.1.4) and the exponential decay of the Qi. This proves the
lemma.



112 CHAPTER 8. STABILITY ESTIMATES

In order to use the extension principle, Proposition 8.2.1, one must prove that
B is “regularizing.” (Recall H ⊂ Yη ⊂ X1.)

Lemma 8.2.5. The operator B is a bounded operator from X1 to H.

Proof. We compute in weak form:

∞∑
i=1

Qi(Bh)iφi =

N−2∑
i=1

QiQ1ai(hi − hi+1)(φi+1 − φi − φ1)

+

∞∑
i=1

QiQ1aih1(φi+1 − φi − φ1)

+QN−1Q1aN−1hN−1(φN − φN−1 − φ1)

=: B1(h, φ) +B2(h, φ) +B3(h, φ).

By the Cauchy-Schwarz inequality, the fact that 0 < c ≤ Qi/Qi+1 ≤ C < ∞ by
(8.1.5), and the equivalence of finite dimensional norms,

|B1(h, φ)| ≤ C
(
N−1∑
i=1

Qiφ
2
i

)1/2(N−1∑
i=1

Qih
2
i

)1/2

≤ C‖φ‖H‖h‖X1 .

Furthermore,

|B2(h, φ)| ≤ C|h1|
( ∞∑
i=1

Qia
2
i

)1/2( ∞∑
t=1

Qiφ
2
i

)1/2

≤ C‖h‖X1‖φ‖H .

Similarly, |B3(h, φ)| ≤ C‖h‖X1‖φ‖H . By taking the supremum over φ ∈ H with
‖φ‖H ≤ 1, we obtain the desired result, ‖Bh‖H ≤ C‖h‖X1 .

The next step is to show that A, or more precisely its closure, generates a con-
traction semigroup on X1. This will be proved by showing that A is dissipative and
applying the Lumer–Phillips theorem, see Definition 2.5.3 and Proposition 2.5.4.

By way of notation, when X = `1(Qiwi) and ‖h‖X =
∑∞

i=1Qiwi|hi| define

〈sgn(h), φ〉X∗,X :=
∞∑
i=1

Qiwiφisgn(hi) .

By the definition of J (x), namely (2.5.2), it is clear that if 〈sgn(h), Ah〉X∗,X ≤ 0 for
all h in the domain of definition of A then A is dissipative.

Proposition 8.2.6. The operator A given by (8.2.2) is dissipative on X1.

Proof. Rearranging our sum and using (1.2.4) to say QiQ1ai = Qi+1bi+1, we find
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that

〈sgn(h), Ah〉X∗1 ,X1

=

∞∑
i=N

QiQ1aihi((i+ 1)sgn(hi+1)− i sgn(hi)− sgn(h1)))

−
∞∑
i=N

Qibihi(i sgn(hi)− (i− 1)sgn(hi−1)− sgn(h1))

=
∞∑
i=N

Qihi

(
Q1ai(i+ 1)(sgn(hi+1)− sgn(hi)) + bi(i− 1)(sgn(hi−1)− sgn(hi))

)
+

∞∑
i=N

Qi|hi|(aiQ1 − bi) + sgn(h1)

∞∑
i=N

Qihi(bi −Q1ai)

=: E1 + E2 + E3,

Because hi(sgn(hi±1) − sgn(hi)) ≤ 0, we see E1 ≤ 0. Furthermore, by (8.1.6) we
have that

E2 + E3 = 2
∞∑
i=N

sgn(h1) 6=sgn(hi)

Qi|hi|(aiQ1 − bi) ≤ 0 .

This readily implies that A is dissipative (see Definition 2.5.3).

Remark 8.2.7. In the case where ai ∼ i and aiQ1 − bi > λ̄i for all i ≥ 1, the
previous estimate with N = 1 gives

〈sgn(h), Ah〉X∗,X ≤ 2
∞∑
i=N

sgn(h1)6=sgn(hi)

Qi|hi|(aiQ1 − bi)

≤ −λ̄
∞∑
i=N

sgn(h1) 6=sgn(hi)

Qi|hi|i = − λ̄
2

∞∑
i=1

Qi|hi|i

≤ − λ̄
2
‖h‖X ,

where we have used (1.2.8). This implies that A has a spectral gap in X1, and hence,
by using the operator decomposition result, that L has a spectral gap in X1. This type
of result, namely exponential decay in X1 when ai ∼ i, was obtained using entropy
dissipation estimates in [29].

With the dissipation estimate in hand, it is now possible to show that the closure
of A indeed generates a semigroup.

Lemma 8.2.8. The closure of A (which we also denote by A), generates a contrac-
tion semigroup on X1.

Proof. We know that H ⊂ X1, and that H is dense in X1. By Proposition 8.1.5
we know that L generates a contraction semigroup on H. As B is bounded on H,
we know that the closure in H of A = L − B generates a semigroup on H with
bound Meωt, see Proposition 2.5.6. Proposition 2.5.2 implies that for λ > 0 large
enough A − λI is invertible on H. Thus the range of (the closure in H of) A − λI
contains H, and thus the range of A−λI is dense in X1. Because A is dissipative by
Proposition 8.2.6, the Lumer–Phillips theorem, namely Theorem 2.5.4, then implies
that A generates a contraction semigroup on X1.
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By combining Proposition 8.1.5, Proposition 8.2.1, Lemma 8.2.5 and Lemma
8.2.8 the following is immediate.

Theorem 8.2.9. The closure of L generates a semigroup eLt on X1 uniformly
bounded in time:

‖eLt‖L(X1) ≤M for all t ≥ 0.

It is natural to question the sharpness of these dissipation bounds. The following
theorem demonstrates a limited type of sharpness of the bounds from Theorem 8.2.9.

Theorem 8.2.10. Suppose, in addition to (8.1.1)-(8.1.4), that limi→∞
ai
iα = 0, for

some α ∈ (0, 1), and that ai− ai−1 = o(1). Then the operator L has an approximate
eigenvalue at 0 in X1. In other words, there exists a sequence with ‖hj‖X1 = 1 but
‖Lhj‖X1 → 0.

Proof. Define

h̃i =


0 if i < N1,

1
iQi

if N1 ≤ i ≤ N2,

0 if N2 < i,

where N1 < N2 are constants to be determined. Clearly

∞∑
i=1

Qii
k|h̃i| =

N2∑
i=N1

ik−1.

Furthermore, for N1 < i < N2

Qi(Lh̃)ii
k = ikQi

(
bi(h̃i−1 − h̃i) + aiQ1(h̃i+1 − h̃i)

)
= ik−1ai

(
bi
ai

(
Qii

Qi−1(i− 1)
− 1

)
+Q1

(
Qii

Qi+1(i+ 1)
− 1

))
= ik−1ai

(
bi
ai

(
−1 +

ai−1Q1

bi

(
1 +

1

i− 1

))
+Q1

(
bi+1

aiQ1

(
1− 1

i+ 1

)
− 1

))
= ik−1

(
ai−1Q1 − bi + bi+1 − aiQ1 −

bi+1

i+ 1
+
ai−1Q1ai
bi(i− 1)

)
As ai − ai−1 = o(1) and ai

iα → 0, and by (8.1.3), for any δ > 0, we can find an
N1 so that

Qi(Lh)ii
k ≤ ik−1δ

for N1 < i < N2.
Next, for any i > 1,

Qi|(Lh̃)i|ik = ikQi

∣∣∣bi(h̃i−1 − h̃i) + aiQ1(h̃i+1 − h̃i)
∣∣∣

= ik
∣∣∣∣bii
(

Qii

Qi−1(i− 1)
− 1

)
+
aiQ1

i

(
Qii

Qi+1(i+ 1)
− 1

)∣∣∣∣
≤ Cik+α−1,

where we have used the fact that ai
iα → 0 and (8.1.5), and where C is independent

of i,N1, and N2.
Last, for i = 1,

|Q1(Lh̃)1| =
∣∣∣∣∣
∞∑
i=1

aiQiQ1(h̃i+1 − h̃i)
∣∣∣∣∣

≤ C
N2∑
i=N1

ai
i
≤ C(N2 −N1),
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with C independent of N1, N2, and where we have used the fact that ai
iα → 0.

Thus we find that

∞∑
i=1

Qi(Lh̃)ii
k ≤ δ

N2∑
i=N1

ik−1 + CNk+α−1
1 + CNk+α−1

2 ,

where we have made C larger as necessary to absorb the i = 1 term.
Thus if we set N2 = 2N1, we find that

lim
N1→∞

∑∞
i=1Qii

k|h̃i|∑∞
i=1Qii

k|(Lh̃)i|
=∞.

By constructing two of these pulses, one negative and one positive with non-overlapping
support, and then adding together scaled versions of the same so that the mass con-
straint is satisfied, we obtain the desired result. This completes the proof.

Some sharper estimates for lower bounds on the decay are a subject of current
investigation [82].

8.3 Algebraic Decay Estimates

This section proves algebraic decay estimates for eLt. The key tool is an interpolation
result, which is a slight modification of Theorem 2.1 in [46]. In that case the result
was used to study convergence properties of travelling waves.

Theorem 8.3.1. Let η ∈ (0, 1) and k1, k2 ∈ R with 0 < k1 < k2. Let {S(t)}t≥0 be
a family of linear operators on X1 which for any t > 0 satisfies

‖S(t)u‖X1 ≤M‖u‖X1 , ‖S(t)u‖Yη ≤Me−ληt‖u‖Yη , (8.3.1)

where u is an arbitrary element of the appropriate spaces, M is a fixed positive
constant and λη > 0. Then the operators S(t) necessarily are bounded from X1+k2

to X1+k1 and satisfy

‖S(t)u‖X1+k1
≤ C(1 + t)−(k2−k1)‖u‖X1+k2

for all u ∈ X1+k2 and t ≥ 0,

where C depends on k1, k2,M and λη.

Proof. The proof is very similar to that found in [46], with modifications necessary,
however, to handle the mass constraint and weighted norm on X1.

1. Consider K : R×X1 → R defined by

K(s, u) = inf
v∈Yη

(‖u− v‖X1 + es‖v‖Yη).

In interpolation theory [20] this is known as a modified K-functional. For fixed s,
K(s, ·) is a norm. Clearly K(s, u) is increasing in s and bounded above by ‖u‖X1 .
Furthermore, we claim that K is absolutely continuous in s. Indeed, if we define
K̃(s̃, u) := K(log s̃, u), then K̃(·, u) can be written an the infimum of affine functions,
and thus must be concave. This readily implies that K(s, u) is absolutely continuous
in s.

We begin by proving upper and lower bounds on K. First, we get the lower
bound

K(s, u) ≥
∞∑
i=1

Qi inf
v∈R

(|ui − v|i+ es+ηi|v|) =

∞∑
i=1

Qi|ui|(i ∧ es+ηi) . (8.3.2)
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For the upper bound, observe x ∧ es+ηx = x for all x ≥ 0 if and only if s ≥ sη :=
−1− log η. Thus for s ≥ sη,

K(s, u) ≤ ‖u‖X1 =
∞∑
i=1

Qi|ui|(i ∧ es+ηi) ,

so that K(s, u) = ‖u‖X1 in this case. Suppose now that s < sη. Then 1/η ∈ {x :
es+ηx ≤ x} = [z−, z+] ⊂ (0,∞). Let j(s) be the least integer greater than or equal
to z+, and define the sequence vs(u) by

vs(u)i :=


ui for i < j(s),

(Qii)
−1

∑
k≥j(s)

Qkkuk for i = j(s),

0 for i > j(s).

In particular note that
∑∞

i=1Qiivs(u)i = 0, so vs(u) ∈ Yη. Writing j = j(s), we then
find

K(s, u) ≤ ‖u− vs(u)‖X1 + es‖vs(u)‖Yη

=

∣∣∣∣∣∣
∑
i>j

Qiiui

∣∣∣∣∣∣+
∑
i>j

Qii|ui|+ es
j−1∑
i=1

Qie
ηi|ui|+ es

Qje
ηj

Qjj

∣∣∣∣∣∣
∞∑
i=j

Qiiui

∣∣∣∣∣∣
≤
(

2 +
es+ηj

j

) ∞∑
i=j

Qii|ui|+
j−1∑
i=1

Qie
s+ηi|ui| .

Now, j−1es+ηj ≤ z−1
+ es+η(z++1) = eη, and i ≥ j implies i = i ∧ es+ηi. Furthermore,

whenever 1 ≤ i ≤ z− we have es+ηi ≤ es+ηz− = z− ≤ 1/η ≤ i/η = (i ∧ es+ηi)/η. By
these estimates we find that with C = max{2 + eη, 1/η} we have that for any s ∈ R,

K(s, u) ≤ C
∞∑
i=1

Qi|ui|(i ∧ es+ηi) . (8.3.3)

2. In the next step, for r > 0 we set

hr(s) :=

{
e−s for s ≥ 0,

(1− s)r−1 for s ≤ 0,

and define the norm

‖u‖∗,r :=

∫
R
K(s, u)hr(s) ds .

We claim that ‖ · ‖∗,r is equivalent to the norm in X1+r. By (8.3.2) and (8.3.3), it
suffices to show there exist C−, C+ > 0 independent of i such that

C−(1 + i)1+r ≤
∫
R

(i ∧ es+ηi)hr(s) ds ≤ C+(1 + i)1+r for i ≥ 1. (8.3.4)

To show this, we first bound the part of the integral over s ∈ [0,∞), finding that

1 ≤
∫ ∞

0
(i ∧ es+ηi)e−s ds ≤ i ≤ (1 + i)1+r . (8.3.5)
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For the part over s ∈ (−∞, 0], after changing variables twice via s̃ = −s, σ = s̃− ηi,
we have∫ 0

−∞
(i ∧ es+ηi)(1− s)r−1 ds ≤ i

∫ ∞
0

(1 ∧ e−s̃+ηi)(1 + s̃)r−1 ds̃

= i

∫ ηi

0
(1 + s̃)r−1 ds̃+ i

∫ ∞
0

e−σ(1 + ηi+ σ)r−1 dσ

≤ Ci(1 + ηi)r ≤ C(1 + i)1+r .

This establishes the upper bound in (8.3.4).
To get the lower bound, choose Iη so large that i > Iη implies ηi − log i ≥ 1

2ηi.
For i ≤ Iη we have (1 + i)r+1 ≤ (1 + Iη)

r+1, hence we get the lower bound in (8.3.4)
with C− = (1 + Iη)

−1−r by using (8.3.5). For i > Iη, we find∫ 0

−∞
(i ∧ es+ηi)(1− s)r−1 ds = i

∫ ∞
0

(1 ∧ e−s̃+ηi−log i)(1 + s̃)r−1 ds̃

≥ i
∫ ηi/2

0
s̃r−1 ds̃ ≥ C(1 + i)1+r .

Thus ‖ · ‖∗,r is equivalent to ‖ · ‖X1+r .
3. Now, let Hr(t) :=

∫∞
t hr(τ)dτ . We claim that, for fixed 0 < k1 < k2,

Hk1(s+ t) ≤ CHk2(s)(1 + t)k1−k2

for all s ∈ R, and for t ≥ 0. To prove the claim, we first note that

Hk1(s) =

{
e−s for s ≥ 0,

1 + (1−s)k1−1
k1

for s < 0,

and furthermore, for s < 0, we have that

(1− s)k1

k1 + 1
≤ Hk1(s) ≤ (k1 + 1)(1− s)k1

k1
. (8.3.6)

We then consider separate cases. First, if s ≥ 0,

Hk1(s+ t) = e−(s+t) ≤ Ce−s(1 + t)k1−k2 = CHk2(s)(1 + t)k1−k2 .

Next suppose that s < 0 ≤ s+ t. Then

Hk1(s+ t) = e−(s+t) ≤ C(1 + s+ t)−k2

= C
(1− s)k2

(1 + t− s(s+ t))k2
≤ C(1 + t)−k2Hk2(s) ,

where we have used (8.3.6). Finally, in the case that t < −s, we note that because
k1 − k2 < 0,

(1− (s+ t))k1 ≤ (1− s)k1 ≤ (1− s)k2(1 + t)k1−k2 .

In light of (8.3.6) this proves the claim.
4. Next, we use assumption (8.3.1) to estimate

K(s, S(t)u) ≤ inf
v∈Yη

(‖S(t)u− S(t)v‖X1 + es‖S(t)v‖Yη)

≤M inf
v∈Yη

(‖u− v‖X1 + es−ληt‖v‖Yη)

= MK(s− ληt, u).
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We remark that for u ∈ Yη we have that 0 ≤ K(s, u) ≤ ‖u‖X1 ∧ es‖u‖Yη , and thus
for u ∈ Yη we have that Hr(s)K(s, u) goes to zero as s → ±∞. Thus we may use
integration by parts, and our previous estimates, to obtain the following for any
u ∈ Yη:

‖S(t)u‖X1+k1
≤ C

∫
R
K(s, S(t)u)hk1(s) ds

≤ C
∫
R
K(s− ληt, u)hk1(s) ds

= C

∫
R

∂K

∂s
(s, u)Hk1(s+ ληt) ds

≤ C(1 + t)k1−k2

∫
∂K

∂s
(s, u)Hk2(s) ds

= C(1 + t)k1−k2

∫
R
K(s, u)hk2(s) ds

= C(1 + t)k1−k2‖u‖∗,k2 ≤ C(1 + t)k1−k2‖u‖X1+k2
.

Because Yη is dense in X1+k2 , we have the desired inequality. This completes the
proof.

It is natural to apply this theorem to the semigroup generated by eLt.

Corollary 8.3.2. Provided 0 < k1 < k2, the semigroup eLt generated by the operator
L satisfies

‖eLtu‖X1+k1
≤ C(1 + t)−(k2−k1)‖u‖X1+k2

for all u ∈ X1+k2,

where C depends on k1 and k2, but not on u or t.

Proof. This follows directly from Proposition 8.1.5, Theorem 8.2.9, Theorem 8.3.1.

At this point in the analysis it is not clear whether the semigroup eLt can be
defined on the space Xk. This is addressed by Corollary 9.1.8.



Chapter 9

Decay Rates for the
Becker–Döring Equations

The goal of this chapter is to prove Theorem (1.2.1). First, non-linear stability
results, namely Theorem 9.1.1, will be established using the theory of evolution
families. This will be combined with the linearized decay rates of the previous
chapter to prove Theorem (1.2.1).

9.1 Stability estimates in Xk

This section proves stability estimates for Θ(g), and some associated semigroup
results. These estimates are very similar to those proved in the space X1. These
estimates are primarily technical in nature, in the sense that they are used to deduce
existence of the necessary evolution families. It is probably possible to use these
results to derive well-posedness and stability results like those given in Proposition
8.1.3, but that is not the aim of this work.

The main goal is to prove the following theorem.

Theorem 9.1.1. Let {ci} be a solution to the Becker–Döring equations (see Defini-
tion 8.1.1), and let {hi} be determined by (1.2.7). Assume that the model coefficients
in (1.2.2) satisfy (8.1.1)-(8.1.4). Fix k > 2. Then given any ε > 0 there exists δ > 0
such that if ‖h(0)‖X1+k

< δ then ‖h(t)‖X1+k
< ε for all t ≥ 0.

The general strategy is to derive bounds on the evolution family U(t, s) generated
by Θ(h1(t)) when h1 is small. The first step is to establish bounds in H directly
using dissipation estimates. Consequently, it is possible to establish stability bounds
on U(t, s) in X1+k by using the extension principle from Proposition 8.2.1. This then
immediately implies Theorem 9.1.1.

9.1.1 Non-linear Stability in H

The following lemma gives a local, non-linear stability estimate in the space H.

Lemma 9.1.2. Suppose that g(t) ∈ C1(I;R), for I = [0, T ) with T possibly infi-
nite. Suppose furthermore that the model coefficients in (1.2.2) satisfy (8.1.1)-(8.1.4).
Then there exist δH and λ > 0 such that if |g(t)| < δH then {Θ(g(t))}t∈I generates
an evolution family UH in H on the interval I with bound

‖UH(t, s)‖L(H) ≤ e−λ(t−s) for 0 ≤ s ≤ t < T.

The central tools in proving this lemma are Propositions 2.5.10 and 8.1.6.

119
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Proof. We first claim that the following spectral gap estimate holds as long as g is
sufficiently small: For some λH > 0,

〈Θ(g)h, h〉H ≤ −λH‖h‖2H for all h ∈ H ∩ `2(Qiσi).

To prove this inequality, we recall (1.2.9) and use Proposition 8.1.6 to estimate

〈Θ(g)h, h〉H = 〈(1− ε)Lh, h〉H + ε〈Kh, h〉`2(Qi) + 〈(gΞ + ε(Λ + S))h, h〉`2(Qi)

≤ −(1− ε)λc‖h‖2H + ε‖K‖L(`2(Qi))‖h‖2H + 〈(gΞ + ε(Λ + S))h, h〉`2(Qi).

(Here, note that Λh, Sh and Kh belong to `2(Qi) but perhaps not to the zero-mass

subspace H.) We select ε small enough that (1−ε)λc
2 > ε‖K‖L(`2(Qi)). As S is Λ-

bounded with Λ-bound θ < 1 we have that S is relatively bounded (with relative
bound smaller than one) by 1+θ

2 Λ. Because S is symmetric, Proposition 2.5.5 implies
that 〈(

S +

(
1 + θ

2

)
Λ

)
h, h

〉
`2(Qi)

≤ 0.

Thus we can estimate

〈Θ(g)h, h〉H ≤ −
(1− ε)λc

2
‖h‖2H + 〈

(
ε

1− θ
2

Λ + gΞ

)
h, h〉`2(Qi)

= −(1− ε)λc
2

‖h‖2H +

∞∑
i=1

Qi

(
−ε1− θ

2
σih

2
i +Q1aighi(hi+1 − hi − h1)

)

≤ −(1− ε)λc
2

‖h‖2H +

∞∑
i=1

Qi

(
−ε1− θ

2
σih

2
i +
|Q1g|

2
ai(4h

2
i + h2

i+1 + h2
1)

)

≤ −(1− ε)λc
2

‖h‖2H +
∞∑
i=1

Qi

(
−ε1− θ

2
σi + aiC|Q1g|

)
h2
i ,

where we have used the assumptions (8.1.2) and (8.1.5) and the fact that
∑∞

i=1Qiai is
finite. By (8.1.7) there exists a δH > 0 so that if |g| < δH then (aiC|Q1g|−ε1−θ

2 σi) <
0. Thus if |g| < δH we deduce that

〈Θ(g)h, h〉H ≤ −
(1− ε)λc

2
‖h‖2H =: −λH‖h‖2H ,

which proves the claim.
We observe, from the previous estimates, that indeed ‖Ξh‖H = ‖Ξh‖`2(Qi) ≤

C‖Λh‖`2(Qi). This implies that S + gΞ (and also S + gΞ +K) is relatively bounded
by Λ with relative bound strictly less than one, as long as |g| < δH , where perhaps
we have made δH smaller.

We then claim that this implies that (λ−Θ(g)) is invertible on `2(Qi) for some
λ > 0. First, since Λ is diagonal, it is clear that (λ− Λ) is invertible for any λ > 0
with (λ − Λ)−1 = diag(λ + σi)

−1. We note that if (I − (S + gΞ + K)(λ − Λ)−1) is
invertible for some λ > 0, then (λ−Θ(g)) is invertible at that same λ, with

(λ−Θ(g))−1 = (λ− Λ)−1(I − (S + gΞ +K)(λ− Λ)−1)−1.

Recall that I −W is invertible for any linear operator satisfying ‖W‖ < 1. Thus if
we can prove that ‖(S + gΞ +K)(λ− Λ)−1‖ < 1, then the claim must hold true.

To prove this, we estimate, for h ∈ `2(Qi), and for some θ < 1,

‖(S + gΞ +K)(λ− Λ)−1h‖`2(Qi) ≤ θ‖Λ(λ− Λ)−1h‖+ C‖(λ− Λ)−1h‖`2(Qi),
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where we have used the fact that (S + gΞ +K) is relatively bounded with constant
less than one. We then remark that Λ(λ − Λ)−1 = diag − σi

λ+σi
. This implies that

‖Λ(λ − Λ)−1‖ ≤ 1 for all λ > 0. On the other hand, ‖(λ − Λ)−1‖ < λ−1 for λ > 0.
This implies that ‖(S+ gΞ +K)(λ−Λ)−1‖ < 1 for λ > 0 large enough. This proves
the claim.

Now, since Θ(g) holds the zero mass subspace of `2(Qi) invariant, we have that
(λ−Θ(g)) is invertible on H for some λ > 0. Thus by the Lumer-Phillips theorem,
Θ(g) generates a semigroup in H as long as |g| < δH . Furthermore, by the relative
bound it is clear that domH(Θ(g)) = dom`2(Qi)(Θ(g)) ∩ H = dom`2(Qi)(Λ) ∩ H =
`2(Qiσ

2
i ) ∩H.

Now, as g(t) is C1 it is clear that for v ∈ `2(Qiσ
2
i ) we have that Θ(g(t)))v is in

C1(I;H). We then directly apply Proposition 2.5.10 to obtain the desired result.

9.1.2 Non-linear Stability in X1+k

The main goal of this subsection is to prove the following lemma.

Lemma 9.1.3. Suppose that g(t) ∈ C1(I;R), for I = [0, T ) with T possibly infinite.
Suppose furthermore that the model coefficients in (1.2.2) satisfy (8.1.1)-(8.1.4) and
that k > 0. Then there exists a δk such that if |g(t)| < δk then {Θ(g(t))}t∈I generates
an evolution family UX1+k

(t, s) in X1+k on the interval I with bound

‖UX1+k
(t, s)‖L(X1+k) ≤Mk,

where Mk is independent of s, t and the particular choice of g.

This lemma is proved using Proposition 8.2.1, in conjunction with the stability
in H established in the previous subsection. To begin, define the operator A(g) in
weak form by

∞∑
i=1

Qi(A(g)h)iφi :=
∞∑
i=N

QiQ1ai(hi − hi+1 + ghi)(φi+1 − φi − φ1)

−QN−1Q1aN−1hN (φN − φN−1 − φ1) ,

(9.1.1)

where N is a constant, greater than Nζ + 1, to be determined. Define B(g) :=
Θ(g)−A(g).

The next proposition establishes the dissipativity of A(g).

Proposition 9.1.4. Under the assumptions of Lemma 9.1.3, and if N in (9.1.1) is
chosen large enough, then there exists a constant δk so that if |g| < δk then

〈sgn(h), A(g)h〉X∗1+k,X1+k
≤ 0 for all h ∈ X2+k.

Proof. With wi = i1+k and using φi = wisgn(hi) in (9.1.1), we compute, as in the
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proof of Proposition 8.2.6,

〈sgn(h), A(g)h〉X∗1+k,X1+k

=
∞∑
i=N

Qihi

(
Q1aiwi+1(sgn(hi+1)− sgn(hi)) + biwi−1(sgn(hi−1)− sgn(hi))

)
+
∞∑
i=N

Qi|hi|(aiQ1(wi+1 − wi) + bi(wi−1 − wi))

+ sgn(h1)

∞∑
i=N

Qihi(bi −Q1ai)

+ g
∞∑
i=N

QihiQ1ai(wi+1sgn(hi+1)− wisgn(hi)− sgn(h1))

=: E1 + E2 + E3 + E4.

First we estimate E2, written as

E2 =

∞∑
i=N

Qi|hi|(wi+1 − wi)
(
aiQ1 − bi

wi − wi−1

wi+1 − wi

)
.

By choosing N sufficiently large we can make the ratio wi−wi−1

wi+1−wi arbitrarily close to

1. Thus we apply (8.1.6) to find that

E2 ≤ −C
∞∑
i=N

Qi|hi|ai(wi+1 − wi).

We next calculate

E3 ≤
∞∑
i=N

Qi|hi|(bi +Q1ai).

Recalling (8.1.3), and using that wi+1 − wi → ∞ since k > 0, we thus have, for N
sufficiently large,

E2 + E3 ≤ −C
∞∑
i=N

Qi|hi|ai(wi+1 − wi).

Because hi(sgn(hi±1) − sgn(hi)) ≤ 0, we infer E1 ≤ 0. Thus, in the case g ≥ 0 we
estimate

E1 + E4 ≤ E4 ≤ |g|
∞∑
i=N

QiQ1ai|hi|(wi+1 − wi + 1)

≤ C|g|
∞∑
i=N

Qi|hi|ai(wi+1 − wi).

For g < 0 we find that

E1 + E4 ≤
∑
i≥N

sgn(hi)6=sgn(hi+1)

Qi|hi|Q1ai(−2wi+1 − g(wi+1 + wi))

+ |g|
∞∑
i=N

Qi|hi|Q1ai (9.1.2)
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When |g| < 1 we have that the first term in (9.1.2) is negative. This then readily
implies that for N sufficiently large and for |g| sufficiently small we have that

〈sgn(h), A(g)h〉X∗1+k,X1+k
≤ −C

∞∑
i=N

Qi(wi+1 − wi)ai|hi| ≤ 0,

which completes the proof.

The next step is to prove that {A(g(t))} indeed generates an evolution family.

Lemma 9.1.5. Suppose that the assumptions of Lemma 9.1.3 are satisfied. Suppose
furthermore that

|g(t)| < min{δk, δk+1, δH}, (9.1.3)

where δk is given in Proposition 9.1.4 and δH in Lemma 9.1.2. Then for N chosen
as in Proposition 9.1.4, the family {A(g(t))}t∈I generates an evolution family VX1+k

on the interval I = [0, T ) in the space X1+k, which for 0 ≤ s ≤ t < T satisfies

‖VX1+k
(t, s)‖L(X1+k) ≤ 1.

Proof. We claim that {A(g(t))}t∈I satisfies the assumptions of Proposition 2.5.11.
By (9.1.3) and Proposition 9.1.4 we have that A(g(t)) is dissipative on X1+k and
X2+k. For fixed t ∈ I, by (9.1.3), Θ(g(t)) generates a semigroup on H (as established
in the proof of Lemma 9.1.2). As B(g(t)) is a bounded operator on H, it then must
be that A(g(t)) generates a semigroup on H. This then implies that for some large,
positive real λ we must have that the range of A(g(t)) − λ contains H. Thus the
range of A(g(t)) − λ is dense in X1+k and X2+k. As in the proof of Lemma 8.2.8,
this implies that A(g(t)) generates a semigroup on X1+k and X2+k, and thus the
first two assumptions are satisfied.

Next, as g(t) is C1 and by (8.1.4), the third assumption is necessarily satisfied.
Thus we may apply Proposition 2.5.11, which proves the lemma.

The next result follows from a computation as in Lemma 8.2.5, the proof is
omitted.

Lemma 9.1.6. Under the assumptions of Lemma 9.1.5, the operator B(g(t)) is
uniformly bounded from X1 to H, with a bound that depends only on δk, and not on
g or t.

With these tools it is possible to prove Lemma 9.1.3.

Proof of Lemma 9.1.3. In light of Lemmas 9.1.5 and 9.1.6 this follows from Propo-
sition 8.2.1.

Remark 9.1.7. We note that the bound Mk is not dependent on the particular
function g(t), and only on its bound δk. This is because of the independence on g(t)
in the bounds obtained in lemmas 9.1.5 and 9.1.6.

It is important that the previous lemma is independent of the choice of g(t).
Using Lemma 9.1.3, the following is elementary.

Proposition 9.1.8. The operator L generates a semigroup on the space X1+k, for
any k ≥ 0.

Proof. Applying Lemma 9.1.3 when g ≡ 0, that is for F (g) = F (0) = L, gives
the desired result when k > 0. The result when k = 0 was already established in
Theorem 8.2.9.
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It is now possible to prove Theorem 9.1.1.

Proof of Theorem 9.1.1. Let Mk be the uniform bound in the space X1+k given in
Lemma 9.1.3. Set

δ =
Q1 min{δk−2, δk−1, δk, δk+1, δH , εQ

−1
1 }

2Mk
.

Now, let {hi} correspond to a solution of the Becker–Döring equations, with ‖h(0)‖X1+k
<

δ. By Lemma 9.2.1 and as k > 2 we know that h1 is C1. By Lemma 9.1.3 we thus
know that {Θ(h1(t))}t∈I generates an evolution family U on X1+(k−2) and X1+k

on the (non-empty) interval I such that |h1(t)| ≤ min{δk−2, δk−1, δk, δk+1, δH}. As
k > 2, by Lemma 9.2.1 we know that the conditions of Proposition 2.5.9 are satisfied
in X1+(k−2), and thus U(t, 0)h(0) = h(t) for all t ∈ I.

The uniform bounds from Lemma 9.1.3 then imply that ‖h(t)‖X1+k
≤Mk‖h(0)‖X1+k

on the interval I. Our choice of δ immediately implies that I = [0,∞) and that
‖h(t)‖X1+k

≤ ε/2, which completes the proof.

9.2 Non-linear Decay Rates

This section will prove the main theorem. The first step is to justify the use of
Duhamel’s formula.

Lemma 9.2.1. Assume that (ci(t)) is a solution of the Becker–Döring equations
and (hi(t)) is defined by (1.2.7), and let k ≥ 0. If h(0) ∈ X3+k then the following is
satisfied (strongly) in X1+k:

d

dt
h = Lh+ h1Ξh. (9.2.1)

In particular, if h(0) ∈ X3+k then we have that the following is satisfied in X1+k:

h(t) = eLth(0) +

∫ t

0
eL(t−s)h1(s)Ξh(s) ds, (9.2.2)

where eLt is the semigroup generated by L on X1+k (see Proposition 9.1.8).

Proof. Because h(0) ∈ X3+k by Proposition 8.1.3 and Lemma 8.2.4 we have that
Lh+ h1Ξh is bounded in X2+k on any finite interval. Because each hi is continuous
by definition (8.1.1), it must be that Lh + h1Ξh is measurable in X2+k. We claim
that in X2+k we have that

h(t) = h(0) +

∫ t

0
Lh(s) + h1(s)Ξh(s) ds. (9.2.3)

Indeed, the right hand side of the equation is well-defined, and must match the
coordinate-wise integrals from definition 8.1.1. This implies that h(t) is locally
Lipschitz in X2+k. As (9.2.3) also holds in X1+k we thus have that h(t) must be
differentiable in X1+k. This implies (9.2.1).

Again by Proposition 8.1.3 we know that h1Ξh ∈ L1((0, T );X1+k). Proposition
2.5.7 then implies (9.2.2).

Next, it is necessary to derive a specialized version of Gronwall’s inequality.
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Lemma 9.2.2. Let u(t) be a positive, continuous function on [0,∞). Suppose that
u satisfies

u(t) ≤ C̃2(1 + t)−r +

∫ t

0
C̃1(1 + t− s)−ru(s)ds. (9.2.4)

Furthermore, suppose that r > 1 and that C1 is small enough that

C̃1

∫ t

0
(1 + t− s)−r(1 + s)−r ds ≤ θ(1 + t)−r (9.2.5)

for some θ < 1 and for all t > 0. Then we must have that

u(t) ≤ C̃2

1− θ (1 + t)−r.

Proof. Let v(t) = u(t)(1 + t)r. Then we have that

v(t) ≤ C̃2 + (1 + t)r
∫ t

0
C̃1(1 + t− s)−r(1 + s)−rv(s) ds.

This then readily implies that for any T > 0,

‖v‖C(0,T ) ≤ C̃2 + θ‖v‖C(0,T ).

Thus for all t ≥ 0

v(t) ≤ C̃2

1− θ ,

which establishes the desired result.

Remark 9.2.3. Note that for any r > 1 one can find a C̃1 > 0 such that (9.2.5) is
satisfied. This is because∫ t

0
(1 + s)−r(1 + t− s)−r ds = 2

∫ t/2

0
(1 + s)−r(1 + t− s)−r ds

≤ 2

(
1 +

t

2

)−r ∫ t/2

0
(1 + s)−r ds

≤ 2r+1

r − 1
(1 + t)−r.

Thus if C̃1 < (r − 1)2−(r+1) then we have that (9.2.5) is satisfied.

Remark 9.2.4. The dependence on the constant C̃1 is critical in the previous proof.
Indeed, if

∫∞
0 C̃1(1+s)−rds > 1 then it is possible to show that for some u(t) ≡ c > 0

the inequality (9.2.4) is satisfied. Thus decay estimates can only be obtained if C̃1 is
sufficiently small.

It is now possible to prove the main result.

Proof of Theorem 1.2.1. Recall that we have assumed that 0 < k1 < k2 − 2. By
Lemma 9.2.1 we know that the equation

h(t) = eLth(0) +

∫ t

0
eL(t−s)h1(s)Γh(s) ds
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is satisfied in X1+k1 , where eLt is the semigroup generated by L. By Corollary 8.3.2
we can thus estimate

‖h(t)‖X1+k1
≤ C(1 + t)−(k2−k1)‖h(0)‖X1+k2

+ C

∫ t

0
|h1(s)|‖Γh(s)‖Xk2

(1 + t− s)−(k2−k1−1) ds.

By Lemma 8.2.4 we know that Γ is bounded from Xk2+1 to Xk2 , and thus

‖h(t)‖X1+k1
≤ C(1 + t)−(k2−k1)‖h(0)‖X1+k2

+ C

∫ t

0
|h1(s)|‖h(s)‖X1+k2

(1 + t− s)−(k2−k1−1) ds.

It is then immediate that

‖h(t)‖X1+k1
≤ C(1 + t)−(k2−k1)‖h(0)‖X1+k2

+ C sup
τ
‖h(τ)‖X1+k2

∫ t

0
(1 + t− s)−(k2−k1−1)|h1(s)| ds.

We then use a crude bound to obtain

‖h(t)‖X1+k1
≤ C(1 + t)−(k2−k1)‖h(0)‖X1+k2

+ C sup
τ
‖h(τ)‖X1+k2

∫ t

0
(1 + t− s)−(k2−k1−1)‖h(s)‖X1+k1

ds.

By Theorem 9.1.1 for any ε > 0 we can choose δk1,k2 small enough to guarantee that

‖h(t)‖X1+k1
≤ C(1+t)−(k2−k1−1)‖h(0)‖X1+k2

+ε

∫ t

0
(1+t−s)−(k2−k1−1)‖h(s)‖X1+k1

ds,

where we have additionally used that (1 + t)−(k2−k1) ≤ (1 + t)−(k2−k1−1). As k2 >
k1 + 2, by applying Lemma 9.2.2 (whose conditions will be satisfied for ε small due
to Remark 9.2.3), we then find that

‖h(t)‖X1+k1
≤ C(1 + t)−(k2−k1−1)‖h(0)‖X1+k2

,

which is the desired result.
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Lifshitz-Slyozov-Wagner equations. J. Statist. Phys., 106(5-6):957–991, 2002.

[72] Giovanni Leoni. A first course in Sobolev spaces, volume 105 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI,
2009.

[73] Giovanni Leoni and Ryan Murray. Second-Order Γ-limit for the Cahn–Hilliard
Functional. Arch. Ration. Mech. Anal., 219(3):1383–1451, 2016.

[74] Stephan Luckhaus and Luciano Modica. The Gibbs-Thompson relation
within the gradient theory of phase transitions. Arch. Rational Mech. Anal.,
107(1):71–83, 1989.

[75] Francesco Maggi. Sets of finite perimeter and geometric variational problems,
volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, Cambridge, 2012. An introduction to geometric measure theory.
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