

Carnegie Mellon University
Department of Mathematical Sciences

Doctoral Dissertation

Some Results on
Classical Semantics and

Polymorphic Types

William J. Gunther

August 2015

Submitted to the Department of Mathematical Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematical Sciences

Dissertation Committee

Richard Statman, chair
Jeremy Avigad

Karl Crary
James Cummings

Abstract

In the first chapter we consider the simply typed λ-calculus over one ground
type with a discriminator δ which distinguishes terms, augmented addition-
ally with an existential quantifier and a description operator, all of lowest
type. First we provide a proof of a folklore result which states that a func-
tion in the full type structure of [n] is λδ-definable from the description
operator and existential quantifier if and only if it is symmetric. This proof
uses only elementary facts from algebra and a way to reduce arbitrary func-
tions to functions of lowest type via a theorem of Henkin. Then we prove
a necessary and sufficient condition for a function on [n] to be λδ-definable
without the description operator or existential quantifier, which requires a
stronger notion of symmetry.

In the second chapter, we consider the system Q0, extensively studied
by Andrews [And72, And02]. This system is an axiomatic system of higher-
order logic in the language of the simply typed lambda calculus, augmented
with equality operators over every type and a description operator. We
prove that the axiom of extensionality is independent from the other axioms
by constructing an explicit model.

In the third chapter, we consider the question of the typability of a
particular class of terms in system F, the polymorphic typed lambda calculus
of Girard [Gir72] and Reynolds [Rey74]. ω ≡ λx.xx is a classic example of
a term which is not typeable in the simply typed lambda calculus, but is
typable in (most) polymorphic systems, like system F. The question is if
MM has a type in system F is it true that ωM has a type in system F? All
terms which can be typed as inputs for ω require being typable with a free
leftmost path. We will prove that if M is a normal term whose type requires
a bound leftmost path, then the term MM is not strongly normalizing (thus
not typable in system F). We will then establish that the undecidability of
the question: given a normal term M typable in system F, is MM (or ωM)
typable in system F?

iii

Contents

Abstract iii

Acknowledgements vii

1 Survey of the lambda calculus 1

1.0.1 The untyped lambda calculus 1

1.0.2 The simply typed lambda calculus 6

2 Classical Definability 13

2.1 λδ-calculus and type theory 13

2.2 Henkin’s Theorem . 15

2.3 Symmetric iff λ-definable with δ, ∃, and ι 17

2.4 Super-symmetry and λδ-definablity 23

2.5 Conclusion and future work 26

3 Q0 and Extensionality 27

3.1 The type theory Q0 . 27

3.2 Semantics . 29

3.3 A model of Q0–Ext . 29

3.4 Conclusion and future work 33

4 Self application and polymorphism 35

4.1 Survey of system F . 35

4.2 Expansions . 38

4.3 A non-normalizing class . 40

4.4 Avoiding a bound leftmost path 44

4.5 Conclusion and future work 47

Bibliography 49

v

Index 53

Acknowledgements

This could not be completed without a lot of help from many people. I
would like to begin by thanking my advisor, Richard Statman, who helped
immeasurably, and whose advice and guidance over the last five years has
been invaluable. There are many other faculty and staff in the mathematics
department at Carnegie Mellon who taught and helped me over the years,
and who work to create the amazing environment here, such as Stella An-
dreoletti, Jeremy Avigad, James Cummings, and William Hrusa.

During my undergraduate experience at Virginia Tech and Rutgers Uni-
versity, Griff Elder and Samuel Coskey stand out as two teachers without
whom I would never found my fascination with mathematics and logic.

I am also very grateful for all of the graduate students who I have
spent time thinking about mathematics with, and whom I have learned so
much from, especially Emily Allen, Deepak Bal, William Boney, Lisa Espig,
Samantha Gottlieb, Brian Kell, Chistopher Lambie-Hanson, Paul McKen-
ney, Marla Slusky, and Brendan Sullivan.

Finally, and most importantly, I would like to thank my friends and
family; my parents, Elwood and Patricia Gunther, are owed a special thanks.
Without their support over these many years I would undoubtedly not have
been able to complete this work.

vii

viii

Chapter 1

Survey of the lambda
calculus

We begin with a rather terse introduction to the lambda calculus. For a
complete treatment of the lambda calculus see [Bar84] and [BDS13] for the
untyped and typed lambda calculus respective. Throughout the thesis, the
concepts from this section will used. We begin with an exploration of the
untyped lambda calculus, followed by the simply typed lambda calculus. We
will define the polymorphic lambda calculus, system F, in Section 4.1.

The lambda calculus is a formal system which seeks to capture func-
tions by way of abstraction and application. The lambda calculus was first
proposed by Church in in [Chu32] as a foundational system for mathemat-
ics. This foundational system was found to be inconsistent by Kleene and
Rosser in [KR35], proving a variation of Russell’s Paradox now called the
Kleene–Rosser Paradox.

After the inconsistency, the formal system of the untyped lambda cal-
culus was used to by Church to describe effective computations. This sys-
tem was used resolved Hilbert’s Entscheidungsproblem, the decision problem
[Chu36b].

1.0.1 The untyped lambda calculus

To begin, we have a countable collection of variables,

V = {x, y, z, x1, x2, . . .} .

1

2 CHAPTER 1. SURVEY OF THE LAMBDA CALCULUS

We define the set of terms of the lambda calculus, which we write Λ, induc-
tively as follows:

V ⊆ Λ, (variable)

if M,N ∈ Λ then (MN) ∈ Λ, and (application)

if M ∈ Λ and x ∈ V then (λx.M) ∈ Λ. (abstraction)

We write M ≡ N if M and N are syntactically identical.

Definition 1. If M is a term, we define the set of free variables of M ,
denoted FV(M), inductively as follows:

• if M ≡ y, then FV(M) = {y};

• if M ≡ PQ, then FV(M) = FV(P) ∪ FV(Q); and

• if M ≡ λx.P , then FV(M) = FV(P) \ {x}.
Every variable in M either appears free or is bound to some lambda.

Remark 1 (Variable conventions). We follow the convention set in [Bar84] to
identify terms as equal implicitly up to a change of bound variable. Formally,
this notion is called α-equivalence. Specifically, if λx.P is a part of a term
M , then, if you obtain a term N by changing this part to λy.P ′, where P ′

comes from replacing all the free instances of x in P with a fresh (that is,
completely unused in P) variable y, we say that M and N are α-equivalent.
Taking the transitive reflexive closure of terms under this relation, we get
the full notion of α-equivalence relation.

We consider α-equivalent terms to be equal on a syntactic level, so when
we are considering a term we are actually working with an equivalence class
or terms. For example, we would say λx.x ≡ λy.y. Because of this as-
sociation, we can allow ourselves to assume that all bound variables have
different names than free variables, each bound variable in appearing in a
term has a unique binding site with the same name.

Remark 2 (Notational conventions). To improve legibility, we will follow
typical conventions with regard to associativity; namely we will always as-
sociate applications to the left. Therefore, MNP will be written to mean
(MN)P .

We use the dot . after a binder in the fashion of Church’s dot notation
to remind the reader that the scope the variable is bound in is to be as large
as possible. Therefore, λx.MN will mean λx.(MN).

We also will write successive abstractions into one abstraction; so we will
write λxy.M instead of λx.λy.M .

3

For term variables, we will use lowercase Latin letters toward the end of
the alphabet. For arbitrary terms we will choose capital Latin letters toward
the middle of the alphabet.

Definition 2. We define the set of (one-hole) contexts, where a context
can be written as C[], inductively in the same way as a term except we
also allow a hole [] in the same place we allowed a variable in the definition
of the set Λ. If C[] is a context, then C [M] is the term that is obtained
by changing the hole to M .

To carefully define the semantics of function application, we first need a
formal notion of what a variable substitution is. This notion will be reused
for polymorphic types in Chapter 4.

Definition 3. If M and N are terms then we write M [x := N] to stand
for the capture-avoiding substitution of free instances of x for N in M .
Formally, this is an inductive definition:

• if M ≡ x, then M [x := N] ≡ N ;

• if M ≡ y (where y 6≡ x), then M [x := N] ≡ y;

• if M ≡ PQ, M [x := N] ≡ (P [x := N])(Q[x := N]); and

• if M ≡ λy.P , M [x := N] ≡ λy.P [x := N].

Definition 4. We call a term with no free variables closed, or a combi-
nator. We denote the set of such terms Λ∅.

The operational semantics of the lambda calculus will be modeled around
the following notion: λx.P is a function awaiting input which can be sub-
stituted for x in P . On a syntactic level, this semantics is realized by the
notion of β-reduction, which we will denote →β. This relation on terms is
defined as follows: if C[] is any one-hole context then

C [(λx.M)N]→β C [M [x := N]]

We write →→β to stand for the transitive, reflexive closure of →β, and we
write =β for the symmetric closure of this. Indeed, =β is an equivalence
relation called β-equality, or β-convertibility.

We will make use of another notion of reduction called η-reduction,
which we write →η and whose transitive, reflexive closure we write →→η.
The definition of this form of reduction is

C [λx.Mx]→η C [M] x /∈ FV(M)

4 CHAPTER 1. SURVEY OF THE LAMBDA CALCULUS

where C[] is any one-hole context. η-reduction gives us a weak notion of
extensionality. When we consider a notion of reduction where at any step
we can perform either an η reduction or a β reduction we will write →βη,
→→βη for the transitive, reflexive closure of →βη, and =βη for the symmetric
closure of →→βη.

Definition 5. We call the subterms which can be reduced redexes, short
for reducible expressions. In the event a term contains no subterms which
are redexes we call it a β-normal form, or βη-normal form, depending on
the notion of reduction we are considering. If the M is a term and M →→β N
for some term N in normal form, we call the term M normalizing. In the
event that there is no infinite reduction sequence such as

M →β M1 →β M2 →β · · ·

then we call the term M strongly normalizing.

It is an undecidable problem to determine for an arbitrary term M if it
is normalizing (or strongly normalizing) and also undecidable to determine
if two terms are convertible [Chu36b].

A classical result of the lambda calculus is the Church–Rosser theo-
rem, which is a result about βη-convertibility, and was proved by Church
and Rosser in [CR36]. It states if that M =βη N then there is a term P
such that M →→βη P and N →→βη P .

A similar property is the confluence of βη-reduction (also known as
the diamond property) which states that if M →→βη N and M →→βη P
then there is a term Q such that N →→βη Q and P →→βη Q. This is show in
Figure 1.1.

Because of the above properties, if a term normalizes, it as has a unique
normal form. Therefore, we can say the normal form of a term rather than a
normal form. Another consequence is that lambda calculus is consistent, in
that it is not true that for terms M and N we have M =βη N . In particular,
all distinct normal forms are not convertible to each other.

Some combinators

Some combinators are particularly important for encoding some data struc-
tures and make some appearances in this paper.

5

M

N N ′

P

Figure 1.1: The diamond property

Definition 6.

I := λx.x
S := λxyz.xz(yz)
K := λxy.x
ω := λx.xx

Definition 7. If X ⊆ Λ, then the applicative closure of X is the smallest
set containing X which is closed under applications; that is, if M and N are
in the applicative closure of X then MN is in the applicative closure of X.

We say that a set of combinators X is a combinatorially complete
for the lambda calculus for every term M with free variables from x1, . . . , xn
there is a combinator F from the applicative closure of X where we have
that Fx1 . . . xn =β M

It is known that {S,K} are combinatorially complete [Cur41].

Definition 8 (Church booleans). Consider the combinators:

True := λxy.x False := λxy.y

We use these to encode boolean values. We can then define particular com-
binators to do all boolean logic.

And := λxy.xyFalse

Or := λxy.xTruey

Not := λx.xFalseTrue

6 CHAPTER 1. SURVEY OF THE LAMBDA CALCULUS

Definition 9 (Church numerals [Chu32]). The Church numerals are an
encoding of the natural numbers. The Church numeral for n, which we will
write n is a function which iterates its first argument on the second n times;
that is

n = λfx. f(f(. . . f(fx) . . .)︸ ︷︷ ︸
n-many

)

So 0 ≡ λfx.x, 1 ≡ λfx.fx, 2 = λfx.f(fx), etc.

In [Kle35], Kleene showed the definability of arithmetic operators in the
lambda calculus using the Church numeral encoding, and proved their cor-
rectness. It is a classical theorem of Turing that the arithmetic functions
computed in the lambda calculus in this sense are the same as those com-
puted using Turing machines [Tur37].

Remark 3. The original system studied primarily by Church was called λI-
calculus. This contrasts with the system of λ-calculus most encountered
today, called the λK-calculus. In the λI-calculus, all bound variables must
appear at least once in the term they abstract.

For example, the term K would not be a term in the λI-calculus since
the y in λxy.x does not appear; neither would the numeral 0. Historically,
Church did sometimes consider λK-terms however, as he did in [Chu40].

The λI-calculus has some properties which the λK-calculus does not.
One such property is that a term is strongly normalizing if and only if it
is normalizing [Chu41]. This is not a property of the λK-calculus because
of terms like KI(ωω), where one could infinitely reduce ωω, but a reduction
could be done to arrive at a normal term:

KI(ωω)→β (λy.I)(ωω)→β I.

1.0.2 The simply typed lambda calculus

We wish to restrict the notion of function application to reflect the idea of
a domain and codomain of a function. For this we will associate each term
with a type which describes its behavior.

Define the set of simple types inductively as follows: begin with some
nonempty set of type variables a, b, c, a1, a2, a3, . . . which we call atomic
types or ground types. Often one has fixed, finite set of theses atomic
types which will correspond to different kinds of objects (for example, propo-
sitions, numbers). If α and β are types then α→ β is a type. We call such
types arrow types, and they’re meant to represent functions from things
of type α to things of type β.

7

(ax)
Γ, x : α ` x : α Γ `M : α→ β Γ ` N : α

(app)
Γ `MN : β

Γ, x : α `M : β
(abs)

Γ ` λx.M : α→ β

Figure 1.2: Deduction rules for the simply typed lambda calculus (Curry-
style typing)

Remark 4 (Notational conventions). In contrast to application of terms, we
associate → to the right. That is, α→ β → γ is parsed as α→ (β → γ).

For atomic types, we will use lowercase Latin letters toward the begin-
ning of the alphabet. For arbitrary types we will use lowercase Greek letters
toward the beginning of the alphabet.

There are two main ways to approach the assignment of types to terms,
called Curry-style typing and Church-style typing. In Church-style
typing, term variables (both free and bound) are all decorated with types
which control the types of the subterm that compose. The other approach,
which we use mostly in this thesis, is Curry-style typing, also called implicit
typing. Here, the terms of the simply typed lambda calculus are all terms
of the untyped lambda calculus, and the typing information is completely
external from the term.

A proper Curry-style typing of a term is a derivation in the style of
natural deductions. A context is a partial function Γ with finite support
from the set of term variables to the set of types. We think of (and write)
a context as a finite list

x1 : α1, . . . , xn : αn

where each xi is distinct. The derivation rules for deducing M : α, read as
M has type α, are shown in Figure 1.2.

Definition 10. We denote the collection of untyped lambda terms for which
have a type Λ→. If M ∈ Λ→ then we say that M is typable (in the simply
typed lambda calculus). Otherwise, if M ∈ Λ \ Λ→ we say that M is
untypable.

These rules are syntax directed, meaning given typable term M there
is one and only one rule that could have been applied last in every derivation

8 CHAPTER 1. SURVEY OF THE LAMBDA CALCULUS

of a type for M . So, for instance, if M is the term λx.x then the last rule
must have been an instance of the the abs rule.

Remark 5. There is a correspondence between the above type system and
intuitionist implicational logic. If all the terms are erased so only the types
remain then the derivations are exactly natural deduction proofs in this sys-
tem. Moreover, the terms act as a ‘certificate’ that describes the proof. The
relationship is an instance of the Curry–Howard isomorphism, which
relates systems of typed lambda calculus and logical systems [How80].

Definition 11. We say that a Curry-style system of typed lambda calculus
has the subject reduction property, also called preservation, if for any
M : α, if M →→β N then N : α.

We say it has subject expansion if for any M : α, if N →→β M then
N : α.

This simply typed lambda calculus has the subject reduction property,
due to Curry [Cur34, CFC74]. It does not have the subject expansion prop-
erty; for example, KIω →β I, but the KIω is itself untypeable.

To see why ω does not have a simple type, suppose it did and consider
the type of x in xx. This type must have some type α→ β since x appears
in an application in the functional position. But, then x must have type α,
but α and α→ β are distinct.

It is also the case that any term M which is typable has a normal form,
as proved first by Turing in a note published in [Gan80]. In fact, every term
is strongly normalizing, with the classical proof due to Tait in [Tai67].

In the light of the Curry–Howard isomorphism, subject reduction and
normalization give us operational semantics on proofs (at least in intuitionist
implicational logic), and a notion of a normal proof. These notions have very
deep connections to proof theory, where normal proofs yield cut-free proofs.
Therefore, the normalization result is actually a different form of the classical
cut-elimination theorem of Gentzen [Gen35].

Definition 12. The typability problem is: given a term M in the untyped
lambda calculus to determine if it is typable or not.

The inhabitation problem is: given a type α, is there a term M such
that M : α.

A type substitution is a map ? which maps type variables to types
which has finite support (that is, for all but finitely many types the map is
the identity).

9

α is the most general type or principal type for a term M if M : α
and for every β such that M : β there is a type substitution which sends α
to β.

Under the Curry–Howard isomorphism, this problem of inhabitation is
the same as provability in intuitionist implicational logic, which is decidable.

Typability is also decidable; the algorithm that gives a term a type
relies on an algorithm by Robinson [Rob65] solving the first-order unification
problem. Specifically, the Hindley–Milner algorithm can decide if a term is
typable, and if it is produce the most general type [Mil78, Hin69].

Remark 6. In Church-style typing, since it contains type information, every
term M has a unique type. In Curry-style typing, this is of course not
true. For example, I ≡ λx.x can be assigned both the type a → a and
(a→ a)→ (a→ a). We recover some form of this uniquicity in Curry-style
typing for simple types in the form of principal types.

There is a clear connection between Church-style and Curry-style typ-
ings. One can map a Church-style term M having type α into a term of the
untyped lambda calculus N by erasing all type decorations, as described in
[BDS13]. Then, it is provable that N : α in the Curry-style system.

Definition 13. We consider another normal form of a term called the long
normal form in the context of the typed lambda calculus with η-reduction.
We define what it means for M : α to be in long normal form by induction
on α.

If α is an atomic type, then M is is long normal form if and only if it is
of the form xM1 . . .Mm where each Mi is in long normal form.

If α = β → γ, then M is in long normal form if and only if it is of the
form λf .N where N is in long normal form.

Each simply typed term has a unique long normal form which one can
obtain by β-reductions and η-expansions.

Semantics

To perform a set theoretic interpretation of typed lambda calculus terms,
we first need the idea of a type structure. A type structure is a family of
nonempty sets M (α) where α is a type, such that M (α→ β) ⊆M (β)M (α),
where M (β)M (α) is the set of all functions from M (α) to M (β).. If the
above relation is taken as equality instead of subset we call it the full type
structure.

10 CHAPTER 1. SURVEY OF THE LAMBDA CALCULUS

More abstractly, we can have a family of sets M = {M (α) | α a type}
for each type α and a operation ·α→β as

·α→β : M (α→ β)×M (α)→M (β),

which replaces the normal semantics of function application above. That is,
in the case of a type structure, we have that members of M (α→ β) act on
members of M (α) by function application. In this scenario, ·α→β describes
the action of members of M (α→ β) on M (α).

We say that ·α→β is extensional if for any f, g ∈ M (α → β) then if
for every m ∈ M (α), f · m = g · m. In the event that this operation is
extensional, we call this a typed applicative structure. A type structure
is an example of an applicative structure where · is taken to be function
application.

Often we conflate the family of sets M with
⋃
α M (α) by saying f ∈M

to mean f ∈M (α) for some α.

Definition 14 (Friedman [Fri75]). A partial homomorphism is a partial
function ξ between type structures M and N over the same ground types
which has the following properties:

1. If f ∈M and ξ(f) ∈ N (α) then f ∈M (α).

2. If f ∈M (α→ β) then ξ(f) = g if and only if g is the unique element
of N (α→ β) such that for all x ∈ dom(ξ)∩M (α), we have g(ξ(x)) =
ξ(f(x))

Note, the uniqueness may not hold, making this map partial. In the
situations we will encounter, uniqueness will hold, and the map is total, and
we call the map a homomorphism. The essential property of a homomor-
phisms the above captures in the more general situation is that

ξ(f(x)) = ξ(f)(ξ(x)).

Also note that a homomorphism is completely determined by the map re-
stricted to the ground type.

An environment is a function φ which maps variables of type α to
members of M (α). An interpretation of terms subject to environment φ
is in a type structure is a function J·Kφ which maps typed terms to members
of M of appropriate type, such that

• JxKφ = φ(x) for any variables,

11

• JMNKφ = JMKφ (JNKφ),

• Jλx.MKφ = λλz.JMKφ[x:=z]

where φ[x := z] is the environment φ except x maps to z, and λλz.M is
function in our meta-language (commonly written as the function z 7→M).
Note that this function is unique (given φ), but if the type structure is not
full it is possible that Jλx.MKφ /∈M (α→ β).

This interpretation respects the semantics of βη-reduction. Namely, if
M and N are terms of the untyped lambda calculus where M, N : α and
M =βη N then JMKφ = JNKφ.

12 CHAPTER 1. SURVEY OF THE LAMBDA CALCULUS

Chapter 2

Classical Definability

2.1 λδ-calculus and type theory

We extend the simply typed lambda calculus over one ground type 0 with
a constant δ. This symbol will represent an equality operator. Adding such
an equality operator over all types would elicit the study of higher order
logic, which we discuss in Chapter 3. For our purposes, we are dealing with
first-order classical logic, and our equality symbol will be just for the ground
type 0.

To encode booleans in our logic, we will use the usual Church encoding
discussed in Definition 8. Notice that the types of booleans over a type α is
α→ α→ α. We will call this type boolα. For the remainder of this chapter,
we will use the notation αn → β to stand for the type

α→ · · · → α︸ ︷︷ ︸
n−many

→ β.

That is, the type which takes is n-many terms of type α and returns a term
of type β.

Definition 15. We add our constant δ : 0→ 0→ bool0 to our language, as
studied by Church in [Chu41]. We define δ-equivalence using the axiom

δxyuv =

{
u if x = y

v if x 6= y.

In [Sta00] it was proven that under βη-conversion, the equational conse-
quences of this axiom are exactly the same as from these rules:

13

14 CHAPTER 2. CLASSICAL DEFINABILITY

δMMUV = U (Reflexivity)

δMNUU = U (Identity)

δXY UV = δY XUV (Symmetry)

δXY XY = Y (Hypothesis)

P (δMN) = δMN(PTrue)(PFalse) (Monotonicity)

δMN(δMNUV)W = δMNUW (Stutter)

δMNU(δMNWV) = δ.MNUV (Stammer)

Definition 16. In addition to δ, in order to do first-order logic, we add
two other constants: a quantifier ∃ : (0→ bool0)→ bool0 and a description
operator ι : (0→ bool0)→ 0→ 0 defined by the rules,

∃M =

{
True if Mn = True for some n : 0

False otherwise,

and

ιMm =

{
n if Mn = True and n is unique such

m otherwise.

We will define a family of sets M n(α) to be the full type structure over
[n]; that is, where we have

M n(0) = {1, . . . , n} .
For the interpretation of a term in this model with environment φ we write
JMKnφ. We will write set-theoretic functions as lowercase Latin like f, g, h.

We have the following:

Theorem 1. Let M and N be terms of type α.

1. (Soundness) If M =βηδ N then for every n ∈ N and every φ we have
JMKnφ = JNKnφ.

2. (Completeness) If M 6=βηδ N then there is an n ∈ N and a φ such that
JMKnφ 6= JNKnφ.

Proof. Proof in Statman [Sta00]

Definition 17. We say that a function f ∈M is λδ-definable if there is a
closed term M in the λδ-calculus where JMKnφ is f .

We will also analyze define λδ-definablity in the system discussed about
with ∃ and ι.

2.2. HENKIN’S THEOREM 15

2.2 Henkin’s Theorem

We can say that, in some way, every function in the above semantics can be
represented in the λδ-calculus.

Theorem 2 ([Hen63]). Fix an environment φ, a natural number n, and a
type α. Then

1. There is a term δα : 0n → α → α → boolα such that for every
f, g, h, j ∈M n(α) we have

(JδαKnφ1 · · ·n)fghj =

{
h if f = g

j otherwise.

2. If f ∈M n(α) then there is a term F : 0n → α such that:

JF Knφ1 · · ·n = f

Proof. We do induction on the type α.

If α = 0, then define

δ0 = λx1 . . . xn.δ.

If f ∈M n(0) then f ∈ [n], so f = i where 1 ≤ i ≤ n. Then we can just
make F be the ith projection:

λx1 . . . xn.xi.

Suppose that α = β → γ. By induction, We have closed terms δβ and δγ
with the desired properties. Enumerate all elements of M n(β): m1, . . . ,mk.
By the induction hypothesis, we have representations M1, . . . ,Mk, closed
terms of type 0n → β such that JMiKnφ1 . . . n = mi for every i. So we define

δβ→γ = λx̄FG.
δγ x̄(F (M1x̄))(G(M1x̄)) ∧ δγ x̄(F (M2x̄))(G(M2x̄))

∧ · · · ∧ δγ x̄(F (Mkx̄))(G(Mkx̄)),

where x̄ is shorthand for x1 . . . xn and M∧N is AndMN (from Definition 6).
This is as desired.

Let f be a function in M n(β → γ). Note that f(mi) ∈ M n(γ) by
definition. Therefore, set pi = f(mi). By induction hypothesis, there are

16 CHAPTER 2. CLASSICAL DEFINABILITY

P1, . . . , Pk such that JPiKnφ1 . . . n = pi for every 1 ≤ i ≤ k. We define F by
doing cases on the input. That is

F = λx̄m.
If δβx̄m(M1x̄) then P1x̄ else

If δβx̄m(M2x̄) then P2x̄ else

· · ·
If δβx̄m(Mk−1x̄) then Pk−1x̄ else Pkx̄,

where “If M then N else P” is shorthand for MNP . This is as claimed.

The following is an easy corollary to Theorem 2 and to the completeness
result in Theorem 1.

Corollary 1. Take M,N : α1 → α2 → · · · → αk → 0 with all free variables
having type 0. If M 6=βηδ N then there some n and closed terms Fi : 0n → αi
such that

M(F1x̄) · · · (Fkx̄) 6=βηδ N(F1x̄) · · · (Fkx̄)

where x̄ includes all variables free in both M and N .

Proof. By soundness, for some φ and n we have JMKnφ 6= JNKnφ. Take x̄ to
be a sequence of length n of free variables of type 0, containing all the free
variables of M and N . Clearly Jλx̄.MKnφ 6= Jλx̄.NKnφ.

These are set-theoretic functions, therefore there are f1 ∈M n(α1), . . . ,
fk ∈M n(αk) such that

(Jλx̄.MKnφ1 . . . n)f1 . . . fk 6= (Jλx̄.NKnφ1 . . . n)f1 . . . fk.

By Henkin, all these fi have closed terms of type 0n → αi representing them;
denote those closed terms Fi. By soundness, the result follows.

Consider the set of terms of type α in the language of the λδ-calculus,
which we denote Λδ(α). Define the set T (α) by

T (α) := Λδ(α)/=βηδ.

That is, T (α) is the set of terms of type α modulo βηδ-equivalence. As
a consequence to Corollary 1 above we have that T is a typed applicative
structure. For each natural number n we consider a set of n free variables,
X = {x1, . . . , xn} of type 0. We can take the set of all terms M in T which
are λδ-definable from this set.

2.3. SYMMETRIC IFF λ-DEFINABLE WITH δ, ∃, AND ι 17

This is not necessarily a typed applicative structure. For we may have
two termsM1 andM2 which are not extensionally equal, but are with respect
to all terms λ-definable from X∪{δ}. That is, none of the witnesses that M1

and M2 are different are λ-definable from X ∪ {δ}. Therefore, we consider
only the equivalence classes formed by equality under δ restricted only to the
ground set X. So, if we have a M1 and M2 as above, we collapse them. We
call the resulting model the Gandy Hull of X ∪ {δ} in T . This is a typed
applicative structure, which we will denote by T n. For more information
on the Gandy Hull construction, see [BDS13].

Remark 7. There is a natural homomorphism (see Definition 14) between
T n and M n which is completely determined by a mapping of X to [n].
Further, we can consider some infinite models. For instance, we can define
M ω to be the full type structure in this language over the natural numbers;
so M ω(0) = N. We can then take the Gandy Hull of {1, 2, 3, . . .} ∪ δ in this
model and get a model M .

This model could be obtained another way. Fix a bijection from free
variables of type 0 and ω. Then one can build a corresponding homomor-
phism from T to M ω. The image is exactly M . These models are discussed
further in Statman [Sta82].

2.3 Symmetric iff λ-definable with δ, ∃, and ι

In this section, we will provide a proof of a folklore theorem giving necessarily
and sufficient conditions for a function being λδ-definable with ι and ∃. The
origin of this folklore theorem is murky; it was known to Robin Gandy in at
least the 1940s, and is not unlikely that it was known to Church before that.
There are few proofs in print, one being in [vBD01], but it is incomplete.
Here we present a novel proof only using some basic algebra and Theorem 2.

Definition 18. The symmetric group on n elements, which we denote
as Sn, is the subset of M n(0 → 0) which are bijections. These form a
group with the operation of composition. We call members of the group
permutations. We shall use lower case Greek letters in the middle of the
alphabet to denote permutations, like π, ρ, σ, τ .

Members of Sn act naturally on objects of type 0 by application. But,
we can lift this action to higher types. Consider π ∈ Sn. We define πα ∈
M n(α → α) by induction on α. If α = 0, then we just take π0(n) := π(n).
If α = β → γ then we define

πα(f) := πγ ◦ f ◦ π−1β

18 CHAPTER 2. CLASSICAL DEFINABILITY

Therefore, we have an action of Sn on our entire model M n, where π acts
on f : α by πα(f). For this action, we will write π · f .

Definition 19. If f ∈ M n, then we denote the stabilizer of f under this
action St(f); that is, St(f) is the set of all permutation which fix f , as in

St(f) := {π ∈ Sn | π · f = f} .

We call an f ∈ M n symmetric if St(f) = Sn, that is, if f is fixed under
the action by all permutations.

Remark 8. We can say that Sn acts on T n as well. Any permutation of
the free variables elicits an automorphism on the entire set T n (that is, a
bijective homomorphism from T n to T n). The converse, however, is false;
there are automorphisms of T n that do not come from permutations of the
variables.

For example, consider the automorphism f on T 4 elicited by the follow-
ing map on variables:

f(x1) = x1

f(x2) = x2

f(x3) = δx1x2x3x4

f(x4) = δx1x2x4x3.

This is a well-defined automorphism on T 4.
Later, we will consider particular members of Tn to be symmetric. When

we call F ∈ T n symmetric, we mean preserved under all automorphisms,
not just the “inner” automorphisms arising from permutations of variables.

Interestingly, the set of automorphisms is not the set of all permutations
on all distinct objects of type 0. In particular, there is no automorphism of
T 4 which sends

x1 7→ x1,

x2 7→ x2,

x3 7→ x3,

x4 7→ δx1x2x3x4.

This is because such an automorphism h would have

h(δx1x2x3x4) = δ(h(x1))(h(x2))(h(x3))(h(x4))

= δx1x2x3(δx1x2x3x4)

= δx1x2x3x4,

2.3. SYMMETRIC IFF λ-DEFINABLE WITH δ, ∃, AND ι 19

where the last equality is by the Stammer property; so h would not be a
bijection.

Theorem 3 (Folklore Thoerem). f ∈M n is symmetric if and only if it is
λ-definable from δ, ι, ∃
Proof. The right-to-left direction is straightforward. For δ, ι, and ∃ are all
symmetric, as are combinators S and K. As S and K form a basis for all
λ-terms, and λ-definable objects are closed under application, we have that
all λ-definable objects are indeed symmetric. The left-to-right direction will
constitute the majority of the remainder of this section.

At a high level, what we will do in this direction of the proof is begin
by study a particular class of functions at low type (0n → 0) which we
call regular functions. We’ll show that regular functions are easily definable
(in fact, just in the λδ-calculus) just using some algebraic properties of the
action of the symmetric group on these functions. Then, we’ll show that
an arbitrary symmetric function can be represented in terms of a set of
functions we called coordinate functions, which are all regular functions of
low type, ∃, and ι; this will complete the proof. To begin, however, we come
up with some notation so we can more easily analyze some of the algebraic
properties of these functions.

For each function f : 0n → α we associate a functional f+ : (0→ 0)→ α
such that, for all π : 0→ 0,

f+π = f(π1)(π2) . . . (πn).

A function f is said to be regular if for every g ∈M n(0→ 0) where g /∈ Sn
we have f+g = g(1).

For the present we will restrict our attention only on functions f : 0n →
0. Note that the action π · f in this case is

π · f = λλx̄.π
(
f(π−1x1) . . . (π

−1xn)
)
.

From this and the fact that St(f) is a subgroup, we have that π ∈ St(f) if
and only if

λλx̄.π−1
(
f(πx1) . . . (πxn)

)
= f. (†)

Fix f : 0n → 0 regular. We define a relation ∼f on Sn by

π ∼f σ ⇐⇒ π−1
(
f(π1) . . . (πn)

)
= σ−1

(
f(σ1) . . . (σn)

)
.

We restrict this this relation to be a right congruence by taking its right
congruence hull, which we denote ∼∗f , defined by

π ∼∗f σ ⇐⇒ ∀ρ ∈ Sn.πρ−1 ∼f σρ−1.

20 CHAPTER 2. CLASSICAL DEFINABILITY

Lemma 1. For f : 0n → 0 regular, and π ∈ Sn, the following are equivalent:

1. π ∈ St(f),

2. For all ρ ∈ Sn we have πρ ∼f ρ, and

3. π ∼∗f id.

Proof. ((1) =⇒ (2)). Take π ∈ St(f). By (†), we have

λλx̄.π−1
(
f(πx1) . . . (πxn)

)
= f.

Fix ρ ∈ Sn and apply ρ1, ρ2, . . . , ρn to the right, giving us

π−1
(
f
(
π(ρ1)

)
. . .
(
π(ρn)

))
= f(ρ1) . . . (ρn).

Then, applying ρ−1 to the left, gives us

ρ−1
(
π−1

(
f
(
π(ρ1)

)
. . .
(
π(ρn)

)))
= ρ−1

(
f(ρ1) . . . (ρn)

)
,

which implies that πρ ∼f ρ.
((2) =⇒ (3)). Take ρ ∈ Sn. We want to show that πρ−1 ∼f idρ−1.

The right hand side is of course just ρ−1, therefore this follows immediately
from (2).

((3) =⇒ (1)). By (†), it suffices to show that

λλx̄.π−1
(
f
(
πx1

)
. . .
(
πxn

))
= f.

By extensionality, it suffices to show the above holds after an arbitrary
application. Moreover, let us fix an arbitrary g : 0 → 0 (not necessarily in
Sn). The application of g(1) to the right of both sides, followed by g(2),
etc, up to g(n) is an arbitrary application as g is arbitrary, thus it suffices
to show that

π−1
(
f
(
π(g1)

)
. . .
(
π(gn)

))
= f(g1) . . . (gn).

If g /∈ Sn, then by regularly of f , both sides are exactly g(1). Otherwise,
set ρ := g, which is a member of Sn. By (3) (using the right congruence
property on ρ−1), we have that πρ ∼f ρ. This means that

ρ−1
(
π−1

(
f
(
π(ρ1)

)
. . .
(
π(ρn)

)))
= ρ−1

(
f(ρ1) . . . (ρn)

)

which is exactly what we wanted.

2.3. SYMMETRIC IFF λ-DEFINABLE WITH δ, ∃, AND ι 21

Let B be the set of equivalence classes of ∼∗f . For each B ∈ B, let
χB : 0n → bool0 denote its characteristic function; that is,

χ+
B(π) :=

{
True if π ∈ B
False otherwise.

By definition of the equivalence relation, if π and σ are in a block B then
π−1(f+π) = σ−1(f+σ) =: i, for some i. When f is given inputs correspond-
ing to a permutation in B, f is just the ith projection function. Thus, to
define f , we need only know which block the given input it in. So, f itself
is λδ-definable from the set {χB | B ∈ B} via the function

F = λx1 . . . xn.If χB1x1 . . . xn then xi1 else

If χB2x1 . . . xn then xi2 else

· · ·
If χBjx1 . . . xn then xij else x1,

where {B1, . . . Bj} = B and ik is the coordinate that f projects on block
Bk.

Lemma 2. If f is regular, symmetric of type 0n → 0 then f is λδ-definable.

Proof. As f is symmetric, by Lemma 1, there is only one block of the equiv-
alence class formed by ∼∗f since every π is in the stabilizer of f . As f
is λδ-definable from the set of blocks, we have that f is λδ-definable out-
right.

Now, consider arbitrary symmetric f : α1 → α2 → . . . → αk → 0. It
suffices, given the above, to show that f is definable from regular, symmetric
functions of type 0n → 0. Consider the set of lists

L = Λδ(α1)× · · · × Λδ(αk) = {〈f1, f2, . . . , fk〉 | fi : αi} .

For each list L = 〈f1, . . . , fk〉 in L we define a function cL : 0n → 0, which
we call the Lth coordinate function defined by:

cL = λλx1 . . . xn.

{
f(F1x1 . . . xn) . . . (Fkx1 . . . xn) if x1, . . . xk distinct

x1 otherwise,

where the Fi : 0n → αi are the terms from Theorem 2 corresponding to
fi. Each coordinate function is regular (by the cases defining it) and also
symmetric (as f is). So, each cL is λδ-definable. Thus we need only show

22 CHAPTER 2. CLASSICAL DEFINABILITY

that f is definable from its coordinate functions; however f is not definable
outright, but is with the use of ι and ∃. We begin by the remark that the
function alldiff : 0n → bool0 which returns True if all the first n inputs are
different, and False otherwise is λδ-definable by

alldiff := λx1 · · ·xn.
∧

1≤i<j≤n
δxixj

where
∧

is a contraction of ‘and’s parameterized by i and j which are defined
in terms of the And combinator from Definition 6. Now, we can define f as

f = λx1 . . . xk.ι
(
λz.∃y1 . . . yn.(alldiffy1 . . . yn)∧

∨

L∈L
L=〈F1,...Fk〉

(
δx1(F1y1 . . . yn) ∧ . . . ∧ δxk(Fky1 . . . yn)

∧ (δz(cLx1 . . . xk))
))

x1

where the
∨

is a contraction of ‘or’s parameterized by L, which is defined
in terms of the Or combinator from Definition 6.

Therefore we have that f is definable as each of the cL are definable and
we can substitute the definition for cL into the above term.

Theorem 4. Fix a function f ∈M n and A ⊆M n. Then if

⋂

g∈A
St(g)

 ⊆ St(f) (∗)

then f is λδ-definable from functions in A along with ι, ∃.

Proof. It’s easy to see that St(f) =
⋂

St(cL), where the cL are the coordinate
functions of f ; for, as f and its coordinate functions are definable from each
other, any permutation which fixes f must fix its coordinate functions, and
any which fixes all its coordinate functions fixes the function.

Therefore, it suffices that we prove the theorem only for f : 0n → 0
and, similarly, assume all g ∈ A be of type 0n → 0. We suppose that the
subset relation in (∗) holds. By Lemma 1, since St(g) is exactly the block
of the equivalence relation ∼∗g containing id that the set of left cosets of⋂
g∈A St(g) are a finer partition of Sn than the set of left cosets of St(f),

which are exactly the blocks of ∼∗f .

2.4. SUPER-SYMMETRY AND λδ-DEFINABLITY 23

Therefore, on any left coset of
⋂
g∈A St(g) we have that f behaves like a

projection operator, as the coset is entirely contained in a block of ∼∗f , which
in turn is contained in a block of ∼f . Thus, for any permutations π we can
identify the left coset of

⋂
g∈A St(g) that π is in. Indeed, f acts uniformly

on that block as a projection function, so we can make a definition similar
to the above definition of f by its blocks in ∼f .

2.4 Super-symmetry and λδ-definablity

Let us return our attention to the term model T , where members are terms
with possible free variables among x1, x2, We first state the following
result of Lauchli.

Theorem 5 ([Läu70]). There is a closed λδ-term F of type α if and only
if there is a symmetric F ∈ T (α) (recall: for terms in T (α), symmetric
means fixed under all automorphisms).

Proof. In Lauchli [Läu70], it is stated and proved in terms of intuitionist
logic: `I α if and only if there is an “invariant” function of type α.

Theorem 6. Any F ∈ T is λδ-definable if and only if it is symmetric.

Proof. It is easy to see that every element of T which is λδ-definable is
symmetric. To see why, note that any element is βηδ-equal to a closed
term, and closed terms are fixed under all automorphisms. We will just
prove the converse.

Let F ∈ T by symmetric; consider F to be of type α1 → · · · → αk → 0.
Write F as Gx1 . . . xn, where G is closed and free variables of F are among
x1, . . . , xn. By the proposition above, we can get a closed term H : α1 →
· · · → αk → 0, which has the long normal form

λy1 . . . yk.H ′,

where H ′ has type 0, and free variables only among y1, . . . yk. Consider

GH ′ . . . H ′︸ ︷︷ ︸
n times

.

This is a term of type α1 → · · · → αk → 0 which has free variables only
among y1, . . . yk. Thus the term

M := λy1 . . . yk.GH ′ . . . H ′︸ ︷︷ ︸
n many

y1 . . . yk : α1 → . . .→ αk → 0

24 CHAPTER 2. CLASSICAL DEFINABILITY

is a closed.
Recall that F is symmetric. Therefore

F = Gx1 . . . xn =βηδ Gy1 . . . yn,

for any variables y1, . . . , yn : 0. Thus, by a substitution, we have that
F =βηδ GY1 . . . Yn for any Y1, . . . , Yn : 0. Therefore, M =βηδ F and is
closed, thus is a λδ-definition of F .

Corollary 2. Let h : T → M be defined as xi 7→ i. This is called the
canonical homomorphism. A function f ∈M is λδ-definable if and only if
there is F ∈ h−1(f) symmetric.

Proof. Once again the forward direction is straightforward. For the back-
ward direction, we just apply the last theorem. By the last theorem, if
F ∈ h−1(f) is symmetric then it is λδ-definable by some closed term G.
h(G) = f and G is closed, therefore G is also a λδ-definition for f .

Definition 20. We call a homomorphism h : T n → Mm canonical if
xi 7→ i for all 1 ≤ i ≤ m.

We say that an F ∈ T n is super-symmetric if for every homomor-
phism φ : T n → T n, φ(F) is symmetric.

Theorem 7 ([GS14]). f ∈Mm is λδ-definable if and only if there is some
n > m and F ∈ T n super-symmetric such that for all canonical homomor-
phisms h : T n →Mm we have h(F) = f .

Proof. The left to right direction is trivial since f being λδ-definable gives
us a closed term which will satisfy all the requirements.

For the other direction, fix f ∈Mm of type α1 → α2 → · · · → αk → 0.
Suppose that n > m and F ∈ T n is super-symmetric where all homomor-
phisms h : T n →Mm have h(F) = f . Write F = F ′x1 . . . xj where F ′ is a
closed term.

The idea is as follows: we will do induction on the number of free vari-
ables on F , j. We will construct a new term M which has j−1 free variables
and still has the property that it is super-symmetric is sent to f under all
canonical homomorphisms. At the end of our construction, we will have
eliminated all free variables, and will have constructed a closed term M
which is sent to f under all canonical homomorphisms. But, as M will be
closed, M will be a λδ-definition for f .

To start the induction, if j = 1, then F = F ′x1. As n > m ≥ 1, we
know n > 1 so that xn 6= x1. F is super-symmetric, and therefore it is

2.4. SUPER-SYMMETRY AND λδ-DEFINABLITY 25

symmetric, so under the automorphism sending x1 to xn we know F ′x1 =
F ′xn. As n > m, we have freedom with our canonical homomorphism to
send xn anywhere; in particular for any 1 ≤ s ≤ m we can define canonical
homomorphism h where h(xn) = s. Therefore f = F ′s for all s. Therefore,
we may replace x1 in F by anything of type 0 and it would still be sent to
f through any canonical homomorphism.

By Theorem 5, there is a closed term G of type α1 → . . . αk → 0. We
can write F as

λz1 . . . zk.F ′x1z1 . . . zk
by doing η expansions. Then, replacing x1 to form the term

λz1 . . . zk.F ′(Gz1 . . . zk)z1 . . . zk,

we have a closed λδ-term which is equal to f .
If j > 1, then we wish to eliminate the variable xj . If j > m then we al-

ready have freedom to send xj to any number in a canonical homomorphism
h. Therefore, for every 1 ≤ s ≤ m, by picking a canonical homomorphism
which sends xj to s we have

f = h(F ′x1 . . . xj) = F ′1 . . . n(h(n+ 1)) . . . (h(j − 1))s.

As s is unrestricted, we can replace xj with anything of type 0 and the
above is still preserved. In particular, doing an η expansion of F gives us
F = λz1 . . . zk.F ′x1 . . . xjz1 . . . zk and then replaces xj we get

f = h(λz1 . . . zk.F ′x1 . . . xj−1(F ′x1 . . . x1z1 . . . zk)z1 . . . zk︸ ︷︷ ︸
M

).

Note that M has only j − 1 free variables. It remains to show that M is
super-symmetric. This, however, is not hard to see. Under the map xi 7→ x1
for all 1 ≤ i ≤ j we have that, since F is super-symmetric, F ′x1 . . . x1 is
symmetric, and therefore preserved under all automorphisms. Therefore, for
any homomorphism φ : T n → T n we will have φ(M) symmetric as φ(F)
was symmetric and M is just F with a free variable replaced by a symmetric
term.

If 1 < j ≤ m < n, we have by the symmetry of F , after applying the
automorphism which sends xj to xn, that

F = F ′x1 . . . xj−1xn.

Now, we have the freedom to send xn to anywhere under any canonical
homomorphism, and thus we can repeat what we did above to eliminate
xn.

26 CHAPTER 2. CLASSICAL DEFINABILITY

2.5 Conclusion and future work

In this chapter we have established a novel proof of a folklore theorem de-
scribing necessary and sufficient conditions to definablity of functions in
these finitary models in the λδ-calculus with ∃ and ι. In addition, we prove
necessary and sufficient conditions for definablity in the λδ-calculus by this
new notion of super-symmetry.

For future work, we’d like to find more natural conditions than super-
symmetry. In addition, a study of the automorphisms on T n would serve
to be interesting. As established, there are non-trivial automorphisms, and
they seem difficult to describe.

Chapter 3

Q0 and Extensionality

3.1 The type theory Q0

In Chapter 2, we discussed a system of type theory for first-order classical
logic in the simple typed lambda calculus based on the λδ-calculus. In this
chapter, we follow the direction of Andrews in [And02] to do higher-order
logic. This system is a refinement Church’s in [Chu40]. This system of
Church was refined by Henkin in [Hen63] and Andrews in [And63].

Definition 21 (Types of Q0). In the system Q0 we have two atomic types:
0 and bool. The type 0 represents the domain of individuals. The type
bool represents the domain of boolean values.

Definition 22 (Terms of Q0). Our language is the language of the simple
typed lambda calculus (see Section 1.0.2) augmented with some constants.
One constant is ι : (0→ bool)→ 0, which called the description operator;
the intended semantics are to match that of Definition 16.

Another is an equality operator, similar to δ from Definition 15, except
that it is a schema for each type α. We call these constants Qα : α→ α→
bool, where α is a type. When it is clear from context what type we are
considering, we will write Q instead of Qα.

In the above language, we will do higher-order logic. To that end, in
Figure 3.1 you can see all the usual logical symbols defined in terms of these
primitives.

On the aforementioned terms, we axiomatize our system. The axioms
are displayed in Figure 3.2.

Remark 9. In the formulation by Andrews [And02], the β-rule is replaced
by 5 other rules essentially representing the usual combinatory axioms of

27

28 CHAPTER 3. Q0 AND EXTENSIONALITY

Definition Meaning

Fα = Gα QαFG
Abool ⇐⇒ Bbool A = B

>bool Qbool = Qbool

∀xα.Abool (λxα.>) = (λxα.A)
⊥bool ∀xbool.x
¬Abool A ⇐⇒ ⊥

Abool ∧ Bbool (λGbool→bool→bool.G>>) = (λGbool→bool→bool.GAB)
Abool =⇒ Bbool A ⇐⇒ (A ∧ B)
Abool ∨ Bbool ¬((¬A) ∧ (¬B))
∃xα.Abool ¬(∀xα.¬A)

Figure 3.1: Definition of logical symbols in Q0.

((Gbool→bool>) ∧ (G⊥)) ⇐⇒ (∀xbool.Gx) (Excluded Middle)

(xα = yα)→ (Gα→boolx ⇐⇒ Gy) (Substutitivity of Equality)

(Fα→β = Gα→β) ⇐⇒ (∀xα.Fx = Gx) (Extensionality)

ι(QM0) = M (Description)

(λxα.Mβ)Nα = M [x := N] (β-rule)

Figure 3.2: The axioms of Q0.

3.2. SEMANTICS 29

lambda reduction and rules to allow α-renaming. Here, we prefer to just
give one rule based on substitution and take α-equivalence to be primitive
along with syntactic equality, as we did in our introduction to the lambda
calculus in Section 1.

Definition 23 (Provability in Q0). We define a notion of provability `
inductively. First we say that ` M for any instance M of an axiom in
Figure 3.2. Further, if ` M = N and ` C then ` C ′ where C ′ comes from
replacing a subformula M with N .

This system is conservative over sentences from first-order logic [And02].
Meaning, if φ is a first-order sentence which is translated into the system
Q0 using the suggestive notions from Figure 3.1 then ` φ according to the
definition above if and only if φ is a theorem of first-order logic. Therefore,
since provability in first order logic is undecidable [Tur36, Chu36a, Chu36b],
so is provability in Q0.

3.2 Semantics

For the semantics ofQ0 we take a type structure M where the type constants
are interpreted as:

M (0) = X where X is a set, and

M (bool) = {T, F} .

We interpret terms in the usual way, but for constants we do the follow-
ing:

JQα→α→boolKφ = characteristic function of equality on M (α)

Jι(0→bool)→0Kφ = any function that takes characteristic

functions of singleton to the member.

These semantics are sound and complete for the system Q0; for a proof,
see [And02].

3.3 A model of Q0–Ext

In this section, we prove the following.

Theorem 8 (Gunther, Statman). The axiom of extensionality is indepen-
dent of the other axioms of Q0.

30 CHAPTER 3. Q0 AND EXTENSIONALITY

Proof. To do this, we define a structure M as follows which satisfies the
axioms of Q0 but violates extensionality. We first describe the model in
which our terms our interpreted.

M (0) = N
M (bool) = {T, F}

M (α→ β) = N× {f : M (α)→M (β)}

We then interpret our terms in the following way:

JxKφ := φ(x)

JFα→βGαKφ := f(m, g) if JF Kφ = (n, f) and JGKφ = (m, g)

Jλx.MKφ := (0, λλz.JMKφ[x:=z])

JQα→α→boolK :=

(
1, λλx.

(
0, λλy.

{
T if x = y

F

))

Jι(0→bool)→0K :=

(
0, λλ(k, f).

{
0 if f−1({T}) = ∅
y for y = min(f−1({T}))

)
(‡)

where φ is an environment. In (‡), we are taking the minimum element of
a nonempty set of natural numbers which satisfy the predicate provided as
input. The choice of the minimum is arbitrary; any function which behaves
like the description operator as described in Section 3.2 would serve.

The intuition beyond this model is that we are adding fairly arbitrary
labels which discern members of the model which are extensionally equal.

Clearly if M is a term of type α then fix JMKφ ∈M (α) for any environ-
ment φ. We call the natural number in the first coordinate of the pair from
elements of M (α→ β) the label of the function.

We say ` M in Q0 if either 1) M is an axiom or 2) ` M = N and ` C,
then we can say ` C ′ where C ′ comes from replacing an instance of M with
N in C. We will show that if `M then JMKφ = T for any valuation of the
variables φ.

Let’s verify that this is a model for Q0-Ext. First we will verify it
models the axioms and the equality rule. Note that J>K = T and J⊥K =
F , and moreover logical connectives are all as expected. Since the logical
connectives work as expected, we will argue the truth of each inside the
model using the standard interpretation of logical connectives. For example,
if an axiom is A→ B, we can argue its truth by assuming JAKφ and proving
JBKφ.

3.3. A MODEL OF Q0–EXT 31

Excluded middle

((Gbool→bool>) ∧ (Gbool→bool⊥)) ⇐⇒ ((λxbool.Gbool→boolx) = (λx.>))

Suppose JGKφ = (n, g). g is a function from {T, F} to itself; therefore,
do cases on four possible values of g. Each case is straightforward. Notice,
the label on the term on the right-hand side is 0 for both terms.

Substutitivity of equality

(Xα = Y α)→ (Gα→boolX ⇐⇒ Gα→boolY)

Suppose JGKφ = (n, g), and assume JX = Y Kφ = T . Therefore, we have
JXKφ = JY Kφ, by the definition of J=Kφ. Therefore, g (JXKφ) = g (JY Kφ). So
JGX = GY Kφ = T .

Description

ι(QY 0) = Y

JQY Kφ = (0, χ{JY Kφ}), where χ{JY Kφ} is the characteristic function of

JY Kφ. By definition of JιKφ, the left-hand side of the above exactly JY Kφ.

β-reduction

(λx.M)N = M [x := N]

We do a familiar calculation:

J(λx.M)NKφ = (λλz.JMKφ[x:=z])JNKφ = JMKφ[x:=JNKφ].

Now, we need only show that JMKφ[x:=JNKφ] = JM [x := N]Kφ. We will be
explicit to show that the choices of labels to constants and abstractions will
not spoil this property. We do induction on the shape of M .

If M is a variable y 6≡ x then the left-hand side and right-hand side
above are both φ(y). If M is the variable x then the right and left-hand side
of the above are both JNKφ. If M is any constant then it is preserved under
any variable substitution.

If M is the term PQ then

JPQKφ[x:=JNKφ] = p(JQKφ[x:=JNKφ]) = p(JQ[x := N]Kφ)

where JP Kφ[x:=JNKφ] = JP [x := N]Kφ = (n, p). This is the same however as
JP [x := N]Q[x := N]Kφ, which is JM [x := N]Kφ as required.

32 CHAPTER 3. Q0 AND EXTENSIONALITY

If M ≡ λy.P then

Jλy.P Kφ[x:=JNKφ] = (0, λλz.JP Kφ[x:=JNKφ][z:=y])

= (0, λλz.JP [x := N]Kφ[z:=y])

= JM [x := N]Kφ

Equality Rule

Now we verify the equality rule. We show if for all valuations φ we have
JM = NKφ = T then we have JC = C ′Kφ = T for all valuations φ where C ′

is obtained from substituting an instance of M in C with N . This clearly
implies the result.

To do this we will do an induction on the shape of C. If C is a variable
which is the same as M then after the substitution we have M = N , and
we assumed this is evaluated to T . Similarly for constants.

If C is an application, then C ≡ PQ. If M is a subterm of P , then by
induction hypothesis we have that JP = P ′Kφ where P ′ is obtained from
substituting an instance of M with an instance of N . Therefore, JP Kφ =
JP ′Kφ = (n, p). So, JMKφ = p(JQKφ) = JP ′QKφ. Similarly if M is a subterm
of Q.

If C is an abstraction, then C ≡ λx.P , then the instance of M lives
in P . By induction hypothesis, for any valuation ψ we have JP Kψ = JP ′Kψ
where P ′ is obtained from substituting an instance of M for N in P . In
particular, the equality holds for any z which x is mapped to in φ. Therefore,
λλz.JP Kφ[x:=z] = λλz.JP ′Kφ[x:=z]. And since the label for both C and C ′ ≡
λx.P ′ is 0, the result follows.

Extensionality fails

Finally, we will show that this model fails to satisfy the extensionality axiom.
With some of the definitions in Figure 3.1 unwound, the extensionality axiom
is

(F = G) ⇐⇒ (λx.Fx = Gx) = (λx.>).

For this, we take F := Q andG := λx.Qx (where the type we are considering
Q over is unimportant). We will show that the left-hand side evaluates to
F but the right-hand side evaluates to T .

By the above verifications that this model satisfies the β-rule, we have
that ` Qx = (λy.Qy)x, and so it is easy to check that

J(λx.Qx = (λy.Qy)x) = (λx.>)Kφ = T.

3.4. CONCLUSION AND FUTURE WORK 33

However, JQKφ has label 1, but Jλx.QxKφ has label 0, therefore,

JQ = λx.QxK = F.

Note, this also shows that η-equivalence does not hold in this model.

3.4 Conclusion and future work

In this chapter we prove that extensionality is independent from the other
axioms of Q0. In future work, it would be nice to build a better model.
Attempts by the author to find a model where the Q equality schema was
interpreted non-uniformly proved unsuccessful. Similarly, it would be worth
investigating whether η is coupled with extensionality in Q0; in our model,
both fail, but typically, η is weaker than extensionality, which suggests an-
other model could be find where η succeeds and extensionality fails.

34 CHAPTER 3. Q0 AND EXTENSIONALITY

Chapter 4

Self application and
polymorphism

4.1 Survey of system F

System F is another type system which is polymorphic, meaning that a
term is actually given multiple types. Just as the simply typed lambda
calculus relates to intuitionistic implicational propositional logic, system F
relates to second-order intuitionistic propositional logic. In system F, the
assignment of types is described by variable parameters, and to get other
types one instantiates those parameters for other types (like a universally
quantified formula in logic).

For a detailed survey of system F, see the books of Girard [GTL89] and
Sørensen and Urzyczyn [SU06].

Definition 24. Formally, we define the set of types from F inductively as
follows: a is a type, where a is a type variable; if α and β are types then
α → β is a type; and if α is a type and a is a type variable then ∀a.α is a
type.

Remark 10. We assume that same notation conventions from Remark 1 for
this type binder as we do for the lambda binder. Namely, we will assume
α-equivalence for types on a syntactic level, that all bound type variables
have different names than free variables, and no two bound variables have
the same name. Again, the dot reminds us that bindings occur in the largest
scope possible.

We now define what it means for for a term M to have type α, written
M : α, in system F. Γ is an arbitrary context; that is, a finite partial function

35

36 CHAPTER 4. SELF APPLICATION AND POLYMORPHISM

(ax)
Γ, x : α ` x : α Γ `M : α→ β Γ ` N : α

(app)
Γ `MN : β

Γ, x : α `M : β
(abs)

Γ ` λx.M : α→ β

Γ `M : α a /∈ Γ (gen)
Γ `M : ∀a.α

Γ `M : ∀a.α β = α[a := γ]
(inst)

Γ `M : β

Figure 4.1: Deduction rules for system F (Curry-style typing)

from term variables to types from Definition 24. We can think of Γ as a finite
like of variable assignments x : α, where each variable is distinct. The rules
are given in Figure 4.1. In the rule (inst), we call the type β an instance
of α and the process instantiation.

As in the simply typed lambda calculus, we have presented the system
in the style of Curry-style typing, where terms live in the untyped lambda
calculus, as opposed to Church-style typing, where term decorations governs
types. Church-style typing is more complicated in system F than it is in
the simply typed case since partial type information may be insufficient to
reconstruct the type for the entire term [Pfe88]. Therefore, in a Church-style
approach of the system F, the terms convey addition type information, which
is done by introducing a type binder and making all type instantiations
explicit.

Even in a Curry-style typing system, there are other formulations that
could be given. For example, there is a syntax directed presentation where
the shape of the term corresponds to a unique rule that was used last. The
presentation in Figure 4.1 is clearly not syntax directed since the last two
rules, (inst) and (gen), do not depend at all on the shape of M , and be
used repeatedly to add and remove a quantifier on the type. This presenta-
tion, however, has the advantage that it mimics a standard presentations of
intuitionistic second-order propositional logic.

The Curry-style typed version of system F enjoys the subject reduction
property defined in Definition 11. In addition, it also satisfies the subterm
property; that is, if M is a term such that M : α for some α then for every
subterm M ′ of M there is a type α′ such that M ′ : α′.

System F was created by Girard [Gir72] and by Reynolds [Rey74] in-
dependently, the latter calling it the polymorphic lambda calculus. It was

4.1. SURVEY OF SYSTEM F 37

proved by Girard that all terms which have types in this system are nor-
malizing in the introductory work, which was expanded by Prawatz [Pra71]
into a proof of strong normalization.

There are many different systems of typed lambda calculus where a term
may be given more than one type, such as intersection typed systems. Sys-
tem F is different in that the family of types given to a term are all governed
by parameters. It is actually at the bottom of a entire hierarchy of paramet-
ric polymorphic systems also explored by Girard. The higher-order systems
allow quantification of higher-order type predicates.

It was proved by Wells [Wel99] that typability in system F is undecid-
able; that is, it is an undecidable problem given a term M in the untyped
lambda calculus to determine if there is a type α such that M : α. Type
inhabitation is also undecidable, and is an older result by Löb [Löb76] and
Gabbay [Gab74, Gab81]. This, along with the complexity of the strong nor-
malization proof, indicate a great deal of complexity of this system over that
of the simple types.

System F is more limited in its ability to type terms than non-parametric
polymorphic systems, such as intersection types. For example, as proved by
Giannini and Della Rocca [GDR88], not all strongly normalizing terms have
a type in system F. A classical example of such a term is 22K, where 2 is
the Church numeral from Definition 9. It’s a theorem of Reynolds that all
normal terms have types in system F. In fact, all normal forms have a type
in a much weaker system based on intuitionistic implicational logic with a
bottom type (with the elimination rule ex falso).

If α is a type of system F we can view α as a rooted binary tree, where
each node is decorated with a quantified (possibly empty) set of variables,
and each leaf is decorated with a possibly quantified type variable. An arrow
type is a branch where the left child is the input type and the right child is
the output type.

Using these binary trees, we can talk about a path from the root to a
node (or, usually, a leaf). We can also talk about the depth of a variable
or binding location of a variable in a type, which would correspond to its
depth in the tree. We can also describe the location of a variable or binding
location by its path from the root to the location. Here, we will be particular
interested in the leftmost path of a type: in particular, its depth and binding
location. The primary fact that we will use about depths and paths are that
any free variable a in a type α will have the same path for all β which are
instances of α. That is, you cannot change the location of a free variable in
a type by instantiation.

38 CHAPTER 4. SELF APPLICATION AND POLYMORPHISM

∀ab

∀c.c
∀d

d

a b

Figure 4.2: The type ∀ab.(∀c.c)→ (∀d.d→ a→ b)

Example 1. The type

∀ab.(∀c.c)→ (∀d.d→ a→ b)

would translate to the tree in Figure 4.2. Its leftmost path is the bound
variable c which is depth 1, and is bound at depth 1.

4.2 Expansions

Since system F types all normal terms but does not type all strongly nor-
malizing terms, it is necessarily true that system F is not closed under
β-expansions. We say that F permits M -expansions if for any N typable
in system F, if MN →β P and P has a type in system F then MN has a
type in system F. Our goal is an investigation of ω-expansions: that is, the
question if MM has a type, does ωM have a type?

There are no known terms M which act as counterexamples to terms
typable in system F being closed under ω-expansions, and this seems like a
difficult thing to resolve. If the answer is yes, it seems the proof will give a
uniform construction of the type of ω given a typing of MM and the shape
of M . Where this typing information would fit in is mysterious since system
F lacks most general types. If the answer is no, then such a term seems
difficult to construct since, on its face, being typed for being an argument
for ω gives less information than one would like, which we will now discuss.

The type of ω has one primary restriction: it must be of the form ∀ā.α
where the leftmost path of the type α is a variable in ā. To see why, consider
if the leftmost path was not bound at this level. Then, it would not be

4.2. EXPANSIONS 39

∀α

α

tp(x)

Figure 4.3: Shape of type of ω

possible to change the depth of this variable by instantiation, but in order
to apply x to x, the depth of the leftmost paths must differ by 1 in two
different instantiations of the type. This restriction is shown in Figure 4.3.
Since the leftmost path of ω must be bound at this depth, we can say that
terms M such that ωM has a type require that M can be typed with a free
leftmost path.

This realization of this restriction has some power in itself. For instance,
it supplies a fairly concise proof that ωω has no type in system F which does
not resort to the fact that ωω it not normalizing. It follows simply from the
fact that the type of the ω subterm in the argument position must be typed
with a leftmost path bound at depth 0 (which means, it must be typable
with a free leftmost path) which is impossible.

Note that there is nothing, a priori, restricting a term which requires the
leftmost variable be bound from being self-applied. This is because it could
be that there is a requirement that the variable is bound, but the binding
location could be flexible and vary in either instance. For example, consider
I ≡ λx.x which can be typed in the following ways:

I : (∀α.α)→ β

I : ((∀α.α)→ β)→ ((∀α.α)→ β).

Of course, II is typable in this way where both types of I have bound leftmost
path. But, ωI certainly does not have a type with either type of I above.

The remainder of the chapter will be to show that finding such a term
which is normal is not possible.

Theorem 9 (Gunther, Statman). If M is a normal term that requires a
bound leftmost path then MM does not have a type in system F. Further-
more, MM is not even strongly normalizing.

40 CHAPTER 4. SELF APPLICATION AND POLYMORPHISM

4.3 A non-normalizing class

We go on a brief diversion to explore some interesting normal terms which all
fail to normalize under self-application in the untyped lambda calculus. We
will then discuss the relationship between terms of this class and requiring
a bound leftmost path in system F.

For this we first develop the idea of an important variable. Consider a
normal combinator M . Then M ≡ λx.P .

Remark 11. Before establishing the definition of an important variable, it
is worth pointing out that important variables are not actually variables.
They are bound variables, and because we are associating terms up to α-
equivalence, we are actually talking about binding sites. Despite this, it
is very important that we be able to talk about binding sites easily, which
is is why we are conflating variable names with binding sites in the below
definitions and proofs.

Definition 25 (Important variable). We say that a variable z is important
if:

• z ≡ x where x is the outer bound variable, or

• P ≡ C [yλz.Q] where C is any one-hole context and y important.

Namely, the outer bound variable is important, this causes the importance of
other variables via application of that variable to the binding site of another.

Definition 26 (Influence tree). The collection of important variables can
be partially ordered by which variables cause other variable importance: we
say z ≤ y if y appears in the proof of the importance of z.

This partial order makes a rooted tree, where the root is the outer bound
variable x, and the child of a variable y are all variables z for which yλz.Q
is a subterm. We will call this tree the influence tree of a normal term.

Example 2. If M is the term

λx.xλy.y (λv.v)
(
yλz.z (λw.wy)

)

then its influence tree is given in Figure 4.4. Note, the important variables
w and y are applied to each other.

The motivation of this definition is it gives us a necessary condition for
strong normalization of a normal term self-applied.

4.3. A NON-NORMALIZING CLASS 41

v

w

z

y

x

Figure 4.4: Influence tree of a term.

Theorem 10 (Gunther, Statman). If M is a normal term with two impor-
tant variables applied to each other then MM is not strongly normalizing.

To prove this, we will prove that a class of terms in the untyped lambda
calculus is not strongly normalizing.

We say that a two place context P is eventually applicative if

• P [x, y] ≡ xy or P [x, y] ≡ yx, or

• P [x, y] ≡ xλz.Q[y, z], where Q is eventually applicative, or

• P [x, y] ≡ yλz.Q[x, z], where Q is eventually applicative.

Then we define a class of terms which we write C inductively as follows:

• λx.P [x, x] ∈ C if P is eventually applicative;

• λx.P [x, T] ∈ C if P is eventually applicative and T ∈ C ; and

• λx.P [T, x] ∈ C if P is eventually applicative and T ∈ C .

Note that every term M ∈ C has two important variables applied to each
other. Further, M is a term in the λI-calculus; that is, there are no bound
variables that do not appear in the term which is abstracted.

Lemma 3. If M,N ∈ C and P is eventually applicative then

P [M,N]→β Q[M ′, N ′]

where Q is eventually applicative and M ′, N ′ ∈ C .

Proof. This we do by cases on the context P and subcases on on term M
(or N).

First consider the case where P [x, y] ≡ xy (or, analogously, yx). Then we
have that P [M,N] ≡ MN . We now do subcases on M . If M ≡ λx.Q[x, x]

42 CHAPTER 4. SELF APPLICATION AND POLYMORPHISM

where Q is eventually applicative then MN →β Q[N,N], as required. Oth-
erwise, if M ≡ λx.Q[x, T] where Q is eventually applicative and T ∈ C
then MN →β Q[N,T], as required. M ≡ λx.Q[T, x] is analogous.

In the case where P [x, y] ≡ xλz.Q[y, z] then P [M,N] ≡ Mλz.Q[N, z].
This reduces to the previous case as M and λz.Q[N, z] are in C by using
the trivial eventually applicative context R[x, y] = xy.

In the case where P [x, y] ≡ yλz.Q[x, z] then P [M,N] ≡ Nλz.Q[M, z]
which similarly reduces to the first case.

Lemma 4. If M,N ∈ C then P [M,N] does not have a normal form, for
any eventually applicative context P .

Proof. Begin by noting, for any eventually applicative context P , P [M,N]
is never normal since all M,N ∈ C are abstractions.

Furthermore, by the Lemma 3 we have that P [M,N] →β Q[M ′, N ′]
which itself is not normal, and has the same property. This shows that
P [M,N] is not strongly normalizing as it has an infinite reduction strategy.

As P [M,N] is a λI-term, strong normalization and normalization coin-
cide (see Remark 3).

Lemma 5. If M,N ∈ C then MN does not that have a normal form.

Proof. Set P [x, y] :≡ xy and apply Lemma 4.

Now, we have the appropriate infrastructure to prove Theorem 10.

Proof of Theorem 10. Consider a term M with two important variables ap-
plied. Call these variables y and z. We can build a corresponding ‘skeleton
term’ M ′ from the influence tree of M and the binding order. This skeleton
term only has variables that are in the influence tree of M that are ancestors
of either y or z.

We build this skeleton term inductively as follows: M ≡ λx.P . If P =
C[xx] (so y ≡ z ≡ x) then the skeleton term is simply λx.xx.

Otherwise, P ≡ C[xλw.Q] where w is an important variable that is the
first bound important variable which is either an ancestor of z or y in the
influence tree of M . Then the skeleton term of M is λx.xλw.Q′ where
Q′ is the skeleton term of Q under the assumption that x and w are both
important.

Denote the skeleton term of M as M ′. Note that M ′ ∈ C , so M ′M ′ is not
normalizing by Lemma 5. All applications in M ′M ′ have a corresponding
application in MM , and furthermore, this correspondence continues after
any contractions. Therefore the infinite reduction sequence that exists in

4.3. A NON-NORMALIZING CLASS 43

a

tp(y)

tp(x)

{
n− 2

a

tp(y)

tp(x)

n

Figure 4.5: Depth of important variables leftmost path.

M ′M ′ can be emulated in MM , and so MM is not strongly normalizing, as
required.

So we have shown a class of normal terms whose self-application cannot
have types in system F (for lack of being strongly normalizing): those are
the normal terms which have two important variables applied to each other.
These terms actually fail syntactically to be well-typed for ω based on the
shape of their types in system F.

Theorem 11 (Gunther, Statman). If M is a normal term with two im-
portant variables applied then M cannot be typed in system F with a free
leftmost path.

Proof. Let M ≡ λx.P and suppose that there is a typing of M without a
bound leftmost path. Then the leftmost path of the type of x is free, and it
has some depth n which is fixed under all instantiations.

By a straightforward induction on the influence tree of the term, all
important variables must also have a free leftmost path.

We next claim that the parity the depth of the leftmost path of all the
important variables is the same as the parity of x. The idea of the proof is
in Figure 4.5. We can do induction on the influence tree, noting that if a
variable x causes the importance of y then the depth of the leftmost path of
y is exactly 2 less than the depth of the leftmost path of x, and these depths
are unaffected by other instantiations.

Therefore, since all important variables have a free leftmost path of the
same parity, it is not possible that they are ever applied to each other as
that would require a difference in leftmost path depth of exactly 1.

44 CHAPTER 4. SELF APPLICATION AND POLYMORPHISM

4.4 Avoiding a bound leftmost path

In the last section, we showed a class of normal combinators that requires a
bound leftmost path, and interestingly cannot be self-applied. We will now
show that those are exactly the normal terms that require a bound leftmost
path, thus completing the proof Theorem 9. We will do this by typing all
the other terms with a free leftmost path.

Theorem 12 (Gunther, Statman). If M is a normal combinator in which
no two important variables are applied then there is a typing of M which
has a free leftmost path.

Proof. We will inductively type M maintaining the following:

1. All unimportant variables will get type ⊥ := ∀a.a.

2. All important variables will get some type in this inductive class:

• a→ ⊥, and

• ∀b.(α→ b)→ ⊥ where α is in the class.

Call the complexity of a type in this class the length of the proof that the
type is in this class.

3. If z is an important variable with complexity n then we may alter the
typing of the term to give z a type with any complexity m ≥ n. This
allows important variables who are siblings in the influence tree to be
given the same type.

We initially assign to each leaf variable of the influence tree the type
a→ ⊥. If z is an leaf variable of influence tree then we have M ≡ C[λz.P],
where P is the entire term that z abstracts. We initially assign z type
a → ⊥, and will now verify that this is valid way to type z so that all the
invariants above are satisfied.

We claim we can type P to be one of the following: either ⊥ → · · · → ⊥
or ⊥ → · · · → ⊥ → α where α is the type of an important variable which is
either the type of z or one in which we can determine independently from
the type of z.

To see why, there are only 4 possibilities for the form of P : it is either
an important variable, an unimportant variable, an application, or an ab-
straction of an unimportant variable. In the case when it is an unimportant
variable, the type of P with be ⊥. If it is an important variable, it may be
z, which is given a type of the form above, or some other important variable

4.4. AVOIDING A BOUND LEFTMOST PATH 45

w. This variable w will be assigned some type α, which we will verify when
we assign a type for w that it will not require knowledge of the type of P to
properly type.

If it is an application, the P will be ⊥ if we fulfill our obligations in
typing all important variables since any application will either be between
unimportant variables (all given type ⊥) or an important variable with a
type in the above class and an unimportant variable (whose output can be
given type ⊥). Otherwise, it is an abstraction, in which case it is ⊥ → φ for
some φ where φ has the same kind of form as the possible types of P .

Further note, we can make the type of z as complex as we want as it is
never applied to anything other then a term of type ⊥; it is never applied to a
lambda as then it wouldn’t be a leaf important variable, and it is not applied
to an important variable as we are assuming no two important variables are
applied. Therefore it is either applied to an application or an unimportant
variable, which both have type ⊥.

Suppose, for induction, that we are typing an important variable z which
causes the importance of y1, y2, . . . , yn, which have been given the types
αy1 , αy2 , . . ., αyn . By induction using invariant 3, by taking the max of their
complexities, we can assume that they can all be typed with the same type,
η. Therefore, the terms that these variables abstract all look like

λyiw1 . . . wk.Pi : η → φi.

for some types φi. Then type

z : ∀c.(η → c)→ ⊥.

Note that z can accept any of these for input. Further note that this
type of z can be done without affecting the types of any of the important
variables already decided (after altering their complexity, of course), which
we were obligated to show from the base case where the term P was an
important variable.

All unimportant variables still have type ⊥, the type of any important
variables still satisfies invariant 2, and as we may increase the complexity
of η arbitrarily, we can increase the complexity of the type of z arbitrarily,
preserving the 3rd invariant.

It is not true that requiring a bound leftmost path is equivalent to the
term being self-applicable in system F. Consider the normal term

M ≡ λx.x(λuvw.vI)(λy.yωω)

46 CHAPTER 4. SELF APPLICATION AND POLYMORPHISM

The above typing construction gives us a typing of this term with a free
leftmost path since there are no two important variables applied. However,
MM is not strongly normalizing.

The problem of determining if a term is self-applicable, or if ωM has a
type for a normal term M is actually undecidable.

Theorem 13 (Gunther, Statman). The problem of deciding, given a normal
term M if MM has a type in system F is undecidable.

Proof. We will reduce this problem to deciding if a term has a type in
system F, which is undecidable by a result of Wells [Wel99]. Let N be an
arbitrary term. Every redex in N , . . . (λx.P)Q . . . can be transformed as
. . . z(λx.P)Q . . ., to create a new term N?. Note that N?I→→β N .

Consider the normal term

M ≡ λx.x(λuvw.vI)N?.

We have

MM →β M(λuvw.vI)N? →β (λuvw.vI)(λuvw.vI)N?N? →β N
?I→β N.

Therefore, if MM has a type then N has a type. It’s only left to show that
if N has a type then MM has a type. Let N : α, and let σI denote the
polymorphic type for I in system F: ∀a.a→ a.

First note, if N : α then we can type N? : σI → α. Then we can assign
the following type to M :

M :
(
∀a.a→ (σI → α)→ (σI → α)→ α

)
→ (σI → α)→ α.

Similarly, we can type M as

M :
((
∀a.a→ (σI → α)→ (σI → α)→ α

)
→ (σI → α)→ α

)
→ α,

since we can type

λuvw.vI : ∀a.a→ (σI → α)→ (σI → α)→ α.

So, MM is properly typed of type α.

Theorem 14 (Gunther, Statman). The problem of deciding, given a normal
term M if ωM has a type in system F is undecidable.

4.5. CONCLUSION AND FUTURE WORK 47

Proof. As above, we reduce this problem to typability of an arbitrary term
in system F. Let N be an arbitrary term, and again consider N? : σI → α.
Use the same M has above. As before, it’s clear that if ωM has a type then
N has a type.

Now, type the x in M as

x :
(
a→ (σI → α)→ (σI → α)

)
→ (σI → α)→ (σI → α)

and
λuvw.vI : a→ (σI → α)→ σI → α.

Then

M :
((
a→ (σI → α)→ (σI → α)

)
→ (σI → α)→ (σI → α)

)
→ σI → α

4.5 Conclusion and future work

In this chapter we explored a particular class of normal terms which are
typable in system F with a free leftmost path. We did this in the hope
that it gives us some insights in constructing counterexamples to the set of
typable terms in system F being closed under ω-expansions. Further, we
proved some relevant problems are undecidable.

For future work, it would be nice to extend this result to non-normal
terms. This is not straightforward as it seems that we’d need some kind of
generalization of important variables, or another approach all together. We
might also look at the original question in higher-order parametric polymor-
phic systems (e.g. Fω).

48 CHAPTER 4. SELF APPLICATION AND POLYMORPHISM

Bibliography

[And63] Peter Andrews. A reduction of the axioms for the theory of propo-
sitional types. Fundamenta Mathematicae, 52(3):345–350, 1963.
27

[And72] Peter B. Andrews. General models, descriptions, and choice in
type theory. Journal of Symbolic Logic, 37(2):385–394, 1972. iii

[And02] Peter B Andrews. An Introduction to Mathematical Logic and
Type Theory: To Truth Through Proof, volume 27. Springer Sci-
ence & Business Media, 2002. iii, 27, 29

[Bar84] Hendrik Pieter Barendregt. The lambda calculus, volume 3. North-
Holland Amsterdam, 1984. 1, 2

[BDS13] Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman.
Lambda calculus with types. Cambridge University Press, 2013. 1,
9, 17

[CFC74] Haskell B Curry, Robert Feys, and William Craig. Combinatory
Logic, volume 1. North-Holland, 1974. 8

[Chu32] Alonzo Church. A set of postulates for the foundation of logic.
Annals of mathematics, pages 346–366, 1932. 1, 6

[Chu36a] Alonzo Church. A note on the entscheidungsproblem. The journal
of symbolic logic, 1(01):40–41, 1936. 29

[Chu36b] Alonzo Church. An unsolvable problem of elementary number
theory. American journal of mathematics, pages 345–363, 1936.
1, 4, 29

[Chu40] Alonzo Church. A formulation of the simple theory of types. The
journal of symbolic logic, 5(02):56–68, 1940. 6, 27

49

50 BIBLIOGRAPHY

[Chu41] Alonzo Church. The calculi of lambda-conversion. Princeton Uni-
versity Press, 1941. 6, 13

[CR36] Alonzo Church and J Barkley Rosser. Some properties of con-
version. Transactions of the American Mathematical Society,
39(3):472–482, 1936. 4

[Cur34] Haskell B Curry. Functionality in combinatory logic. Proceed-
ings of the National Academy of Sciences of the United States of
America, 20(11):584, 1934. 8

[Cur41] Haskell B Curry. Consistency and completeness of the theory of
combinators. The Journal of Symbolic Logic, 6(02):54–61, 1941.
5

[Fri75] Harvey Friedman. Equality between functionals. In Logic Collo-
quium, pages 22–37. Springer, 1975. 10

[Gab74] Dov M Gabbay. On 2nd order intuitionistic propositional cal-
culus with full comprehension. Archive for Mathematical Logic,
16(3):177–186, 1974. 37

[Gab81] Dov M Gabbay. Semantical investigations in Heyting’s intuition-
istic logic, volume 148. Taylor & Francis, 1981. 37

[Gan80] Robin O Gandy. Proofs of strong normalization. In Haskell B
Curry, J Roger Hindley, and Jonathan Paul Seldin, editors, To
HB Curry: essays on combinatory logic, lambda calculus, and for-
malism, pages 457–477. Academic Press, 1980. 8

[GDR88] Paola Giannini and Simona Ronchi Della Rocca. Characterization
of typings in polymorphic type discipline. In Logic in Computer
Science, 1988. LICS’88., Proceedings of the Third Annual Sym-
posium on, pages 61–70. IEEE, 1988. 37

[Gen35] Gerhard Gentzen. Untersuchungen über das logische schließen. i.
Mathematische zeitschrift, 39(1):176–210, 1935. 8

[Gir72] Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupures de l’arithmétique dordre supérieur. PhD thesis, Univer-
sité Paris VII, 1972. iii, 36

[GS14] William Gunther and Richard Statman. Reflections on a theorem
of Henkin. In The Life and Work of Leon Henkin, pages 203–216.
Springer, 2014. 24

BIBLIOGRAPHY 51

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types,
volume 7. Cambridge University Press Cambridge, 1989. 35

[Hen63] Leon Henkin. A theory of prepositional types. Fundamenta Math-
ematicae, 52(3):323–344, 1963. 15, 27

[Hin69] Roger Hindley. The principal type-scheme of an object in combi-
natory logic. Transactions of the american mathematical society,
pages 29–60, 1969. 9

[How80] William A Howard. The formulae-as-types notion of construction.
In Haskell B Curry, J Roger Hindley, and Jonathan Paul Seldin,
editors, To HB Curry: essays on combinatory logic, lambda cal-
culus, and formalism, pages 479–490. Academic Press, 1980. 8

[Kle35] Stephen Cole Kleene. A theory of positive integers in formal logic.
part I. American journal of mathematics, pages 153–173, 1935. 6

[KR35] Stephen C Kleene and J Barkley Rosser. The inconsistency of cer-
tain formal logics. Annals of Mathematics, pages 630–636, 1935.
1

[Läu70] Hans Läuchli. An abstract notion of realizability for which intu-
itionistic predicate calculus is complete. Studies in Logic and the
Foundations of Mathematics, 60:227–234, 1970. 23

[Löb76] Martin H Löb. Embedding first order predicate logic in fragments
of intuitionistic logic. Journal of Symbolic Logic, pages 705–718,
1976. 37

[Mil78] Robin Milner. A theory of type polymorphism in programming.
Journal of computer and system sciences, 17(3):348–375, 1978. 9

[Pfe88] Frank Pfenning. Partial polymorphic type inference and higher-
order unification. In Proceedings of the 1988 ACM conference on
LISP and functional programming, pages 153–163. ACM, 1988. 36

[Pra71] Dag Prawitz. Ideas and results in proof theory. Studies in Logic
and the Foundations of Mathematics, 63:235–307, 1971. 37

[Rey74] John C Reynolds. Towards a theory of type structure. In Pro-
gramming Symposium, pages 408–425. Springer, 1974. iii, 36

52 BIBLIOGRAPHY

[Rob65] John Alan Robinson. A machine-oriented logic based on the reso-
lution principle. Journal of the ACM (JACM), 12(1):23–41, 1965.
9

[Sta82] Richard Statman. Completeness, invariance and lambda-
definability. Journal of Symbolic Logic, 47(1):17–26, 1982. 17

[Sta00] Richard Statman. Church’s lambda delta calculus. In Logic for
Programming and Automated Reasoning, pages 293–307. Springer,
2000. 13, 14

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the
Curry-Howard isomorphism, volume 149. Elsevier, 2006. 35

[Tai67] William W Tait. Intensional interpretations of functionals of finite
type I. The Journal of Symbolic Logic, 32(02):198–212, 1967. 8

[Tur36] Alan Mathison Turing. On computable numbers, with an appli-
cation to the entscheidungsproblem. J. of Math, 58(345-363):5,
1936. 29

[Tur37] Alan M Turing. Computability and λ-definability. The Journal
of Symbolic Logic, 2(04):153–163, 1937. 6

[vBD01] Johan van Benthem and Kees Doets. Higher-order logic. Handbook
of Philosophical Logic, 1:189–244, 2001. 17

[Wel99] Joe B Wells. Typability and type checking in system F are
equivalent and undecidable. Annals of Pure and Applied Logic,
98(1):111–156, 1999. 37, 46

Index

α-equivalence, 2
β-convertibility, 3
β-equality, 3
β-reduction, 3
η-reduction, 3

applicative closure, 5
arrow type, 6
atomic type, 6

canonical homomorphism, 24
capture-avoiding substitution, 3
Church’s dot notation, 2
Church–Rosser theorem, 4
Church-style typing, 7
closed term, 3
combinator, 3
combinatorially complete, 5
confluence, 4
consistency, 4
context, 35
context (derivation), 7
context (hole), 3
coordinate function, 21
Curry–Howard isomorphism, 8
Curry-style typing, 7

description operator, 14, 27
diamond property, 4

environment, 10

eventually applicative context, 41

free variable, 2
full type structure, 9

Gandy Hull, 17
ground type, 6

higher-order logic, 27
homomorphism, 10

implicit typing, 7
important variable, 40
individuals, 27
influence tree, 40
inhabitation, 8, 37
instantiation, 36
interpretation, 10

lambda calculus, 1
long normal form, 9

most general type, 9

normal form, 4
normalizing, 4

partial homomorphism, 10
permutation, 17
polymorphic type, 35
preservation, 8
principal type, 9

53

54 INDEX

redex, 4

regular function, 19

right congruence hull, 19

simple type, 6

strongly normalizing, 4

subject expansion, 8

subject reduction, 8, 36

substitution, 3

super-symmetric, 24

symmetric function, 18

symmetric group, 17

syntax directed, 7

typability, 8, 37

typable, 7

type, 6, 7

polymorphic, 35

type structure, 9

type substitution, 8

typed applicative structure, 10

untyped lambda calculus, 1

variable, 1

free, 2

	Title
	Abstract
	Contents
	Acknowledgements
	1 Survey of the lambda calculus
	1.0.1 The untyped lambda calculus
	1.0.2 The simply typed lambda calculus

	2 Classical Definability
	2.1 lambda-delta-calculus and type theory
	2.2 Henkin's Theorem
	2.3 Symmetric iff lambda-definable with delta, exists, and description
	2.4 Super-symmetry and lambda-delta-definablity
	2.5 Conclusion and future work

	3 Q0 and Extensionality
	3.1 The type theory Q0
	3.2 Semantics
	3.3 A model of Q0–Ext
	3.4 Conclusion and future work

	4 Self application and polymorphism
	4.1 Survey of system F
	4.2 Expansions
	4.3 A non-normalizing class
	4.4 Avoiding a bound leftmost path
	4.5 Conclusion and future work

	Bibliography
	Index

