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Abstract
Human cognition involves dynamic neural activities in distributed brain areas. For

studying such neural mechanisms, magnetoencephalography (MEG) and electroen-
cephalography (EEG) are two important techniques, as they non-invasively detect neu-
ral activities with a high temporal resolution. Recordings by MEG/EEG sensors can be
approximated as a linear transformation of the neural activities in the brain space (i.e.,
the source space). However, we only have a limited number sensors compared with the
many possible locations in the brain space; therefore it is challenging to estimate the
source neural activities from the sensor recordings, in that we need to solve the under-
determined inverse problem of the linear transformation. Moreover, estimating source
activities is typically an intermediate step, whereas the ultimate goal is to understand
what information is coded and how information flows in the brain. This requires fur-
ther statistical analysis of source activities. For example, to study what information is
coded in different brain regions and temporal stages, we often regress neural activities
on some external covariates; to study dynamic interactions between brain regions, we
often quantify the statistical dependence among the activities in those regions through
“connectivity” analysis.

Traditionally, these analyses are done in two steps: Step 1, solve the linear prob-
lem under some regularization or prior assumptions, (e.g., each source location being
independent); Step 2, do the regression or connectivity analysis. However, biases in-
duced in the regularization in Step 1 can not be adapted in Step 2 and thus may yield
inaccurate regression or connectivity results. To tackle this issue, we present novel
one-step methods of regression or connectivity analysis in the source space, where we
explicitly modeled the dependence of source activities on the external covariates (in
the regression analysis) or the cross-region dependence (in the connectivity analysis),
jointly with the source-to-sensor linear transformation. In simulations, we observed
better performance by our models than by commonly used two-step approaches, when
our model assumptions are reasonably satisfied.

Besides the methodological contribution, we also applied our methods in a real
MEG/EEG experiment, studying the spatio-temporal neural dynamics in the visual
cortex. The human visual cortex is hypothesized to have a hierarchical organization,
where low-level regions extract low-level features such as local edges, and high-level
regions extract semantic features such as object categories. However, details about
the spatio-temporal dynamics are less understood. Here, using both the two-step and
our one-step regression models in the source space, we correlated neural responses to
naturalistic scene images with the low-level and high-level features extracted from a
well-trained convolutional neural network. Additionally, we also studied the interac-
tion between regions along the hierarchy using the two-step and our one-step connec-
tivity models. The results from the two-step and the one-step methods were generally
consistent; however, the one-step methods demonstrated some intriguing advantages



in the regression analysis, and slightly different patterns in the connectivity analysis.
In the consistent results, we not only observed an early-to-late shift from low-level to
high-level features, which support feedforward information flow along the hierarchy,
but also some novel evidence indicating non-feedforward information flow (e.g., top-
down feedback). These results can help us better understand the neural computation
in the visual cortex.

Finally, we compared the empirical sensitivity between MEG and EEG in this
experiment, in detecting dependence between neural responses and visual features.
Our results show that the less costly EEG was able to achieve comparable sensitivity
with that in MEG when the number of observations was about twice of that in MEG.
These results can help researchers empirically choose between MEG and EEG when
planning their experiments with limited budgets.
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Chapter 1

Introduction

Understanding the neural mechanisms of human cognition is one of the major goals of neuro-
science. Many sophisticated cognitive processes involve highly dynamic neural activities dis-
tributed across many areas in the brain. For example, object and scene recognition can be ac-
curately accomplished in less than a second; such proficiency is achieved via information flow
across multiple areas in the visual cortex. To understand the neural computation in human cogni-
tion, we need to analyze the joint spatio-temporal neural activities, by examining what information
is coded at different temporal stages and spatial locations in the brain, and how activities at differ-
ent locations interact with each other to implement the information flow. Such analysis requires
non-invasive techniques that record neural activities with good temporal and spatial resolutions.

Among the currently available techniques, magnetoencephalography (MEG) and electroencephalog-
raphy (EEG) provide a high temporal resolution, which is necessary to capture fast neural dy-
namics. Unlike other popular techniques, such as functional magnetic resonance imaging (fMRI),
which measures slowly changing blood oxygen levels that are indirectly related to neural activities,
MEG and EEG measure magnetic field changes or scalp voltage changes that are directly induced
by neural electrical activities. Due to the short response time of the electromagnetic mechanism,
MEG/EEG can achieve a temporal resolution at the millisecond level, which is much better than
the temporal resolution of fMRI. However, the spatial resolution of MEG/EEG is limited by the
source localization problem—estimating the neural activities in the brain from the MEG/EEG sen-
sor recordings. If we know the true neural activities distributed in the brain space (termed as the
source space), the sensor recordings can be approximated as a pre-computed linear transformation
of the source activities. Solving the inverse of this linear problem is the key step in source local-
ization. However, because there are only a limited number of sensors compared with the many
possible locations in the source space, the linear problem is underdetermined, in that infinitely
many source activity patterns can yield the same sensor recordings. Therefore it is challenging to
achieve a good spatial resolution in MEG/EEG.

Nevertheless, a good temporal resolution is crucial for studying the spatio-temporal neural activi-
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ties during fast cognitive processes, such as high-level vision (e.g., object and scene recognition).
Therefore MEG and EEG are more useful tools than fMRI for this purpose. In this context, im-
proving the spatial inference in MEG/EEG becomes important. Many previous methods of source
localization solve the inverse problem and obtain estimates of source-space neural activities us-
ing different constraints, (e.g., constraints that encourage low variance, spatial sparsity, or spatio-
temporal contiguity). However, estimating the source activities is not necessarily the final goal;
researchers typically do further statistical analyses to answer their scientific questions. For exam-
ple, to understand whether some brain region is involved in coding certain information, one can
define external covariates to describe the information (e.g., whether a visual scene is indoor or
outdoor), and then test whether the neural response in this region is correlated with the covari-
ates; additionally, to gain insights about how information flows, one can estimate the statistical
dependence among the neural activities in different regions (also known as “functional connectiv-
ity”). In these scenarios, researchers traditionally use a two-step approach: Step 1, applying some
source localization method to estimate the source activities, and Step 2, running further analysis on
these estimates, such as regression analysis against the covariates, or connectivity analysis across
regions, in our two examples above.

The aforementioned two-step approach is intuitive, easy to implement, and could have given accu-
rate results if the source estimates were correct. However, the source localization problem is inher-
ently underdetermined. In the commonly used methods for Step 1, the constraints often represent
limited prior assumptions about the source activities, such as different source locations being inde-
pendent or only locally correlated without long-range cross-region dependence. These assumptions
create biases in the estimates of source activities, which can not be adjusted according to the anal-
ysis in Step 2. To tackle this issue, we promote an alternative one-step approach. In this approach,
we model the source activities according to the statistical analysis of interest (e.g. assuming depen-
dence on external covariates or assuming cross-region dependence), and incorporate such models
into the source localization problem, so we can directly fit these models from the sensor data in one
step. Although we still add constraints to the model and thus create biases, these constraints can
be chosen specifically according to the statistical analysis. Hence the one-step approach provides
more flexibility and may give better results than the two-step approach. Browsing the previous lit-
erature, we found only a few publications exploiting this one-step approach [Gramfort et al., 2012;
David et al., 2006; Fukushima et al., 2015], each of which has specific assumptions that only apply
in limited cases. In this thesis, we present new one-step methods for source-space regression and
connectivity analysis in MEG/EEG, which are based on arguably more general assumptions and
can be applied in a wide range of scenarios.

Moreover, we present real applications of these methods in studying the spatio-temporal neural
dynamics in high-level vision. By presenting naturalistic images of scenes to human participants,
and analyzing their dynamic neural responses in the source space, we were able to get some new
insights on what information is coded in different brain areas at different time stages, and how
information flows in the visual cortex.
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The thesis is organized in the following way. In Chapter 2 we briefly introduce some background
about MEG and EEG and review previous source localization methods. Next, we present three
major components of this thesis—our methodological contributions including models for one-step
source-space analyses, our scientific findings on the spatio-temporal dynamics in the visual cortex,
and finally an empirical comparison between MEG and EEG.

First, we introduce our methodological contribution, including one-step models for two types of
analyses, (1) regressing source activities on external covariates, which is used to understand what
information is coded in the spatio-temporal neural activities (Chapter 3), and (2) estimating depen-
dence of source activities across given regions of interest, which is used to characterize functional
connectivity in the brain (Chapter 4). We demonstrate the advantage of these methods using sim-
ulations or real-world applications.

Next, in Chapter 5, we present our scientific findings by applying the source-space analyses—both
the traditional two-step methods and our novel one-step methods—to explore neural dynamics in
the visual cortex. High-level vision, such as object and scene recognition, happens in a fast and
sophisticated manner, and the underlying neural computation has been of great interest in both
neuroscience and computer vision. It has been hypothesized that the visual cortex is organized
hierarchically from posterior to anterior parts. In this hypothesis, different areas code features of
visual inputs from low-level (e.g., local edges) to high-level (e.g., semantic labels such as “an-
imate” and “inanimate”), and information may flow both in a bottom-up feedforward direction
and a top-down feedback direction. However, besides such a vague description, details about the
spatio-temporal dynamics are less known. Here, we recorded neural responses using MEG and
EEG while human participants viewed naturalistic images of scenes, and then we characterized
the dependence between the spatio-temporal neural responses and the different levels of visual
features of the images, using source-space regression. Additionally, we also analyzed functional
connectivity between different regions along the hierarchy. Our results not only demonstrated a
clear pattern of feedforward information flow, but also gave novel evidence of non-feedforward
dynamics. These results can provide insights to understand the neural computation.

Finally, although MEG and EEG are similar in many ways, they differ in their mechanisms, instan-
tiation, and costs. As an additional empirical contribution, in Chapter 6 we provide a comparison
between MEG and EEG, in detecting the dependence between the neural representations of scene
images and the visual or semantic features of the images. MEG, which exploits expensive su-
perconducting devices, gave slightly better signals than EEG. However, EEG was able to achieve
comparable sensitivity to MEG, possibly with a larger number of observations but still much lower
cost. These findings may help researchers in selecting between MEG and EEG according to their
budgets. At the end, we summarize the conclusions and discuss future directions in Chapter 7.

Mathematical notations.
Before moving to the following chapters, we introduce general mathematical notations through out
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this thesis. Letters in the bold style (e.g. y,G andQ) denote vectors or matrices, and letters in the
regular italic style denote scalars. The identity matrix is always denoted by I . The fields of real
numbers and complex numbers are denoted by R and C respectively. Accordingly, a real-valued
matrix G of size m × n can be described as G ∈ Rm×n. The transpose of a real matrix G is
denoted by G′, and the Hermitian transpose of a complex matrix Φ is ΦH . For any real square
matrixQ, det(Q) and trace(Q) are used to denote the determinant and trace ofQ.

When indexing elements of vectors and matrices, we use the following notations. The ith element
in a vector y is written as y[i]. Similarly, the entry in the ith row and jth column of a matrix G
is written as G[i, j]; the ith row and the jth column are written as G[i, :] and G[:, j] respectively.
Following conventional definitions of norms, we define the L2 norm of a vector y as ‖y‖2 =√∑

i(y[i])2, and the L1 norm as ‖y‖1 =
∑

i |y[i]|. We also define the Frobenius norm of a matrix

G as ‖G‖F =
√∑

i,j(G[i, j])2. Finally, the notation N (y,Q) denotes a normal (or Gaussian)
distribution with mean y and covarianceQ.
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Chapter 2

Background and related work on source
localization in MEG/EEG

Magnetoencephalography (MEG) and electroencephalography (EEG) 1 are two widely used non-
invasive techniques to record neural activities in the brain. The typical settings of MEG and EEG
are shown in Figure 2.1. A MEG system typically has a helmet that includes a few hundred sensors.
The participant sits or lies with their head located in the helmet. There are usually two types of
sensors inside the helmet—the magnetometers, which measure the strength of the magnetic fields
near the scalp, and the gradiometers, which measure the planar or axial gradients of the magnetic
fields. An EEG system typically includes dozens of electrodes that are attached to a cap placed on
the scalp, with conductive gel filled between each electrode and the scalp. The system measures
voltages at different locations of the scalp in relation to some reference (e.g., some electrodes
attached behind ears). In this chapter, we introduce how MEG and EEG work biophysically,
and also briefly review related work on the source localization problem, which infers the neural
activities in the brain space from MEG/EEG recordings.

2.1 Signal sources of MEG and EEG recordings

MEG and EEG are based on similar principles; the sensors measure either magnetic field changes
outside the scalp (in MEG), or voltage changes on the scalp (in EEG), both of which are induced
by electric neural activities in the brain. The major contributing activities are from the pyramidal
cells in the cerebral cortex [Hamalainen et al., 1993]. As illustrated in Figure 2.2, pyramidal cells
have long apical dendrites, which align perpendicularly to the cortical surface. These cells receive

1By “EEG”, we only refer to the electroencephalography that measures scalp voltages in a non-invasive way.
Another technique, electrocorticography, is often called “intracranial EEG”. This technique measures voltages on
exposed cortical surfaces in an invasive way. Although it shares some similarities with EEG, we will not discuss it in
this thesis.
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(a) MEG (Elekta, www.elekta.com) (b) EEG (Biosemi, www.biosemi.com)

Figure 2.1: Typical settings of MEG and EEG

ion influxes through synapses from other input neurons, which can be excitatory and inhibitory.
Depending on the spatial distributions of the synapses on the dendrites and the cell body, as well
as different activation patterns of input neurons at a given time point, the concentrations of positive
and negative ions (or the density of electric charges) along the apical dendrite can be different,
creating an electric current [Buzsáki et al., 2012]. Because the apical dendrites in nearby pyramidal
cells align approximately in the same direction, when their activities are synchronized to some
degree, the integration of these currents gets large enough to generate both magnetic field changes
and scalp voltage changes that are detectable in MEG and EEG. These cortical synaptic currents
are the primary sources of MEG/EEG signals. Due to the fast electromagnetic mechanism, the
MEG and EEG recordings reflect the neural activities in an almost instantaneous way. Hence,
MEG and EEG have a high temporal resolution (as high as the millisecond level), and they are
well-suited for studying temporal dynamics of cortical activities.

Besides synaptic currents, action potentials along the axons can also induce magnetic field changes
or scalp voltage changes. However, their effects decay with distance faster than the effects of
synaptic currents, and therefore action potentials contribute much less to the sensed signals in MEG
or EEG [Hamalainen et al., 1993]. Subcortical structures and the hippocampus, which are deeper
and further away from the sensors, are also thought to contribute less to MEG/EEG recordings,
although Quraan et al. [2011] demonstrated that in optimal conditions given strong signals, one
may extract hippocampal activities from MEG recordings.

2.2 The forward model

At an arbitrary time point t, assume we know the electric current (denoted by ~jt(~r)) at any position
(denoted by a vector ~r) in the head. The magnetic field or the scalp voltage detected by one sensor
can be modeled as an integration (i.e., a linearly weighted combination) of the currents at all
positions, computed using Maxwell’s equations under a reasonable head model that describes the
shape, the electrical conductivity and the permeability of various tissues [Hamalainen et al., 1993;
Mosher et al., 1999]. Formally, assume we have n sensors. Let an n × 1 vector yt denote the
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Figure 2.2: Illustration of the biophysical basis of MEG and EEG

readings from the n sensors at the time point t, and let yt[i] denote the reading from the ith sensor
(i = 1, 2, · · · , n). From now on, we term this n-dimensional space the sensor space. We can
decompose the reading from the ith sensor as a signal generated by the source current integration,
plus some independent noise et[i], due to sensor fluctuations or other external noise. (Accordingly,
let the n × 1 vector et denote the noise in the n sensors.) Then we have the following forward
model

yt[i] =

∫
G(~r, i)~jt(~r)d~r + et[i] for i = 1, 2, · · · , n. (2.1)

The weights (denoted by G(~r, i)), describing the contribution of the current ~j(~r) at any given
location ~r to the ith sensor, are often termed the lead fields. It is worth noting that the lead fields
can be assumed static over time, given the head movement is accounted for in MEG and the EEG
electrodes are attached to the scalp firmly. The computation of the lead fields is known as forward
modeling, where various head models with different levels of simplification can be used. For
example, in a spherically symmetric head model, there are multiple spherical layers describing
the boundaries of different areas (the inner brain tissue plus the cerebrospinal fluid, the skull and
the scalp skin), each assumed to have a constant electrical conductivity; more realistically, the
geometry of the scalp and the skull of an individual participant can be constructed from structural
MRI, and the lead fields at discrete locations can be solved numerically using the boundary element
methods [Mosher et al., 1999].

Since the signal sources in both MEG and EEG are the neural activities in the brain, the two modal-
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ities have a lot of similarity in forward modeling. For example, they both have the following two
properties of the lead fields that are worth mentioning. First, two currents can have similar contri-
butions to the readings of sensors if they have close positions and similar orientations. Such spatial
correlations, along with the number and placement of the sensors, affect the spatial resolution of
localizing the source neural activities (see below, Section 2.3). Secondly, the magnitudes of the
lead fields decrease as the distance between the currents and the sensors increases; therefore, the
shallower currents that are closer to the scalp contribute more to the sensor readings than the deeper
currents in general. Despite the aforementioned similarity, there are also some differences in the
lead fields of MEG and EEG. For example, if we assume the head is a spherical volume conductor,
the MEG sensors can only detect the effects induced by tangential currents, not radial currents,
whereas the EEG sensors can detect the effects of both types of currents. In more realistic head
models based on the structural MRI, similar issues still exist. Additionally, the magnitudes of lead
fields in MEG fall off with distance more quickly than those in EEG, and as a result, MEG is less
sensitive to deeper brain activities than EEG [Hamalainen et al., 1993; Malmivuo, 2012]. More-
over, the lead fields of EEG can be inaccurate if incorrect conductivity values of scalps and skulls
are used in computing forward models, while the lead fields in EEG are less affected [Hamalainen
et al., 1993].

2.3 Source localization—solving the inverse problem

To estimate the source currents in the brain from MEG/EEG recordings, we need to solve the
inverse problem of the forward model. In other words, we need to estimate the source currents
given the sensor readings. There are only a few hundred sensors, but infinitely many patterns of
source currents can generate similar sensor readings, so the problem is inherently underdetermined.
In order to get a unique solution, additional assumptions and constraints are needed. However,
there are no perfect constraints that universally work for every research question. This challenging
inverse problem has been an important research topic in the field. Below, we briefly review some
prominent approaches in the literature.

Since the lead fields are assumed to be static, solving the inverse problem can be simplified as
solving for the instantaneous source currents at any time t. In each of the approach reviewed
below, we will start with methods for such cases, and then extend to methods that consider the
source currents as time series and exploit temporal constraints. It is also worth noting that for
simplification and identifiability, most approaches use an electric current dipole to represent the
continuously distributed currents in a unit area of the cortical surface or a unit volume in the brain.
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2.3.1 Equivalent dipole fitting

The first approach uses only a few “equivalent current dipoles” to approximate the integrated cur-
rents that contribute the most to the sensor readings. In an instantaneous setting at time t, each
dipole has six parameters to be solved: the three coordinates representing the position and the
dipole moment strength projected to three orthogonal basis directions. A further extension by
Scherg [1990] uses dipoles that have static positions but time-varying strengths. The orientations
can be fixed, as well as time-varying, if the dipoles are represented with three orthogonal com-
ponents. The number of free parameters is often smaller than the number of sensors, and can
be pre-defined using a principal component analysis of the sensor readings. The locations and
(time-varying) strengths of the dipoles are obtained by minimizing the sum of squared differences
between the sensor readings predicted from the dipoles and the observations. This step can often be
done empirically by searching over a spatial grid for the positions that explain the sensor variance
well, and then obtaining the (time-varying) dipole strengths with a least square regression. The
equivalent dipole approach, although intuitive, is mostly suited when we are interested in source
currents that are far apart and independent of each other. When several source regions have highly
correlated activities, the resulting equivalent dipoles can be misleading. Moreover, we often want
to study the distributed activities in large cortical areas, in which case the few equivalent dipoles
might not be the most reasonable representation.

2.3.2 Spatial filtering

A second approach is spatial filtering, where for any given location, the strengths of the current
dipole in three orthogonal basis directions are obtained by applying a linear spatial filter on the
sensor readings. Such filtering is repeated at each location on a discrete grid covering the volume
of the head, with the assumption that the source currents at different locations are linearly indepen-
dent. The filter for each location is designed to keep the contribution to sensor readings from this
location as much as possible, but to suppress contributions from all other locations. One commonly
used method is the linearly constrained minimum variance (LCMV) beamforming [Van Veen et al.,
1997], which optimizes the filter by minimizing filter output power (represented as the variance
of the filtered results), subject to a constraint that the projection of the theoretical true signal at
this location onto the filtered result is an identity matrix. This approach can also be applied on
the time-frequency components of the MEG/EEG data, exploiting the possible oscillatory struc-
ture of the time series [Dalal et al., 2008]. However, the independent assumption in the spatial
filtering approach is often wrong. In such cases, the source currents at different locations are esti-
mated in separate models, not jointly in one model, making it difficult to discuss the dependence
or connectivity of source activities between locations.
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2.3.3 Probabilistic modeling of distributed sources

In the third approach, the continuous head space is discretized as either a 3-dimensional grid cov-
ering the volume of the head, or a 2-dimensional mesh covering the cortical surfaces of the left
and right hemispheres, including the major contributing sources to the MEG/EEG signals. At each
point on the grid or the mesh, the continuously distributed currents within the unit volume or area
are represented by a current dipole. The orientation can be freely variable if the current dipole is
represented by three orthogonal components; however, the orientation is often assumed to be fixed,
perpendicular to the cortical surface, following the aligned direction of the local pyramidal cells.
We call the points on the grid or the mesh the source points hereafter. With an average spacing of
5 to 7 mm, there are usually m ∼ 103 to 104 source points. In the fixed-orientation case, the source
current dipoles at each time point can be characterized by a real-valued m-dimensional vector,
and we call this m-dimensional space the source space. Similarly, in the free-orientation case, the
source space is 3m-dimensional. With the discretization, the lead fields can be written as a matrix
G of size n ×m in the fixed-orientation case, or of size n × 3m in the free-orientation case. We
call this matrix the forward matrix. Let an m× 1 (or 3m× 1) vector Jt denote the source current
dipoles at time point t. The forward model in (2.1) can be written as

yt = GJt + et. (2.2)

That is, the n×1 sensor reading at time t, yt, is modeled as a linear projection of the source current
dipoles Jt plus the n × 1 sensor noise et. The noise term et is usually modeled as a multivariate
Gaussian variable with zero mean and covariance matrix Qe, ( i.e., et ∼ N (0,Qe)), independent
of Jt. The noise covariance Qe can be estimated from empty-room data, or recordings when the
participant is at resting state 2.

Because n � m, to solve for Jt, some constraints or an appropriate prior distribution need to be
assumed. A common prior is a Gaussian distribution with zero mean and an m × m covariance
matrixQJ (see Figure 2.3a for the graphical model). In this case, we have

Jt|QJ ∼ N (0,QJ)

yt|Jt,Qe ∼ N (GJt,Qe)
(2.3)

Let f(·) denote the probability density function in general. According to the Bayes’ rule,

f(Jt|yt,QJ ,Qe) ∝ f(yt|Jt,Qe)f(Jt|QJ)

If QJ is given, the estimate of Jt can by easily solved by maximizing the posterior probability

2From here on, the notation of many variables will be consistent throughout the thesis. The readers can always
refer to Table 2.1 to look up the meanings of the variables.
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Figure 2.3: Graphical models for the Bayesian methods

density f(Jt|yt,QJ ,Qe). This maximum a posteriori estimator Ĵt is

Ĵt =arg minJt((yt −GJt)
′Q−1e (yt −GJt) + J ′tQ

−1
J Jt)

=(G′Q−1e G+Q−1J )−1G′Q−1e yt

=QJG
′(GQJG

′ +Qe)
−1yt (2.4)

where the Woodbury matrix identity (G′Q−1e G+Q−1J )−1 = QJ −QJG
′(GQJG

′+Qe)
−1GQJ

is used to get (2.4). Note if we define M = QJG
′(GQJG

′ + Qe)
−1, then Jt is obtained by

applying the time-invariant linear operator M on yt (i.e. Ĵt = Myt). Such an estimate of Jt is
computationally simple and also flexible to incorporate different assumptions. Many commonly
used methods are in this framework, and we list a few below.

The first example is the minimum norm estimate (MNE, Hamalainen and Ilmoniemi [1994]), which
assumes thatQJ is an identity matrix multiplied by a positive scalar 1/λ. In the prior, each source
current dipole is independent of others, and all source points share the same variance 1/λ. Plugging
QJ = 1/λI in (2.4), we have a maximum a posteriori estimate Ĵt = G(G′G + λQe)

−1yt. If yt
and G can be pre-whitened, (i.e., left multiplied by Q−1/2e ), then we can assume the new Qe = I

and we can estimate Jt as

arg minJt(‖yt −GJt‖
2
2 + λ‖Jt‖22) = (G′G+ λI)−1G′yt = G′(GG′ + λI)−1yt

Thus the problem is reduced to a ridge regression or an L2-norm regularized regression in the
statistics literature. However, there is one issue with the MNE method—the source points that are
closer to the scalp are often emphasized because their corresponding columns in G have larger
norms. To alleviate such biases, some extensions of the MNE method, including the “dynamic
statistical parametric mapping” (dSPM, Dale et al. [2000]) and the “standardized low resolution
electromagnetic tomography” (sLORETA Pascual-Marqui [2002]), normalize the estimated source
current dipoles to unitless statistics, allowing easier comparisons among source points. The dSPM
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method assumes a null hypothesis yt = et, and computes a covariance matrix of Ĵt under this
null hypothesis (MQeM

′). It then divides Ĵt by the marginal standard deviations—the square
root of the diagonal entries in this covariance matrix—yielding the Z-statistics for testing the
null hypothesis (i.e., yt = et). The sLORETA method follows a similar idea but estimates the
covariance of Ĵt in a slightly different way.

A second example in the framework of (2.4) is the “low resolution electromagnetic tomography”
(LORETA, Pascual-Marqui et al. [1994]), where QJ is equivalent to the inverse of a Laplacian
matrix, which expresses spatial correlations between adjacent source points. In this way, the model
encourages spatially smooth solutions.

Thirdly, prior knowledge from functional magnetic resonance imaging (fMRI) can also be embed-
ded in QJ . For example, in the fMRI-weighted-minimum-norm estimation (fMNE, Liu and He
[2008]; Ahlfors and Simpson [2004]), weights determined by fMRI results are combined into the
variance of the source points (i.e., the diagonal of QJ ), to obtain spatial results that are consistent
with prior knowledge.

Besides the examples above, which use pre-determined QJ , more flexible hierarchical Bayesian
methods have been recently proposed (Figure 2.3b), where QJ is also a random variable with a
prior distribution. In the work by Mattout et al. [2006], Henson et al. [2011] and Wipf and Na-
garajan [2009], QJ is modeled as a linear combination of a set of basis covariance matrices, Cis,
(i.e., QJ =

∑
i γiCi, γi > 0). The Cis are usually used to capture the local covariance in

spatially grouped patches of source points. Additional Cis characterizing priors from fMRI or
anatomical knowledge can also be included. The hyperparameter γ = (γ1, · · · , γi, · · · ) can be
assumed to have a flat prior and can be estimated by maximizing the marginal likelihood. Such
a setting, known as the Gamma-MAP [Wipf and Nagarajan, 2009]—equivalent to automatic rele-
vance determination [Wipf and Nagarajan, 2008] in a more general sense—can often give solutions
where only a sparse set of patches are non-zero, but the estimates are locally smooth within the
patches. Such patterns provide good interpretability in many cases. The hyperparameter γ can
also be assumed to have some other prior distribution, allowing researchers to flexibly incorporate
other assumptions; in these cases, the hyperparameter can be estimated via variational or sampling
methods.

A second family of methods directly encourage sparsity by penalizing the L1 norms of the source
current dipoles, or a sum of L2 norms of grouped source current dipoles. An early implementation,
known as the minimum current estimate (MCE), was introduced by Matsuura and Okabe [1995].
Later, following the development of the regression models that induce structured sparsity in the
statistical literature (e.g., the “lasso” [Tibshirani, 1996] and “group lasso” [Friedman et al., 2010],
etc), more methods along this line have been proposed [Gramfort et al., 2012, 2013; Babadi et al.,
2014]. These methods are favorable not only because of the interpretability of the structured spar-
sity, but also because the solutions can be estimated with efficient convex optimization algorithms
or greedy methods. It is worth noting that although the implementation of these sparsity-inducing
methods might not be Bayesian, there are equivalent prior distributions (e.g., Laplace distribution)
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that can formulate the methods into a Bayesian framework. Therefore we still generally categorize
these methods as probabilistic models.

Many of the methods above (MNE, LORETA, fMNE) are applied to each instantaneous time point
separately. For the hierarchical Bayesian models where QJ needs to be estimated, data at dif-
ferent time points are often treated as independently and identically distributed (i.i.d.) samples
as well. Further improvements can be made by modeling the temporal smoothness or oscilla-
tory structure in the source neural activities. On the one hand, autoregressive models and Kalman
smoothing, which characterize local spatial and temporal dependence [Baillet and Garnero, 1997;
Galka et al., 2004; Lamus et al., 2012] have been shown to achieve better estimates than the instan-
taneous models, although the temporal stationary assumption in these methods is not necessarily
satisfied in practice. On the other hand, Gramfort et al. [2013] have introduced a time-frequency
decomposition of the source activities using the short-time Fourier transform, which is tolerant of
non-stationary data; along with a sparsity-inducing penalty, their method yields source solutions
that are both spatially sparse and temporally smooth with easily interpretable waveforms.

In additional to what we have reviewed above, recent work on source localization methods has also
been focused on integrating multiple brain imaging modalities together (e.g., combining MEG
and EEG with fMRI). Although some methods above do use fMRI results as priors, they are
asymmetric in the sense that the fMRI priors are not modeled with uncertainty. Ou et al. [2010]
and Henson et al. [2011] both proposed to model the MEG/EEG and fMRI recordings (of the same
task) symmetrically with Bayesian graphical models, allowing integration of the strengths while
still flexibly accounting for the uncertainty in each modality.

So far, we have introduced how MEG and EEG work, and reviewed a variety of methods for
source localization in MEG and EEG. As a short summary, given the underdetermined nature of
the source localization problem, one has to exploit additional assumptions to solve it. No single set
of assumptions can work uniformly well in recovering the true source activities under all possible
circumstances, and therefore when talking about which methods perform well, we should always
note whether the assumptions are empirically met in the context of applications. Among the three
approaches we have seen above, the third one, probabilistic modeling of distributed sources, allows
formulating the problem with concepts in statistical machine learning, and gives a lot of flexibility.
Hence we use this framework in this thesis. It is worth mentioning that there are some practical
issues in this framework. First, in defining the source space, we need to choose between a mesh
covering the cortical surfaces and a grid covering the volume of the head. In the former case, where
the orientations of the current dipoles are usually assumed to be perpendicular to the local surface,
we can focus on main sources of MEG and EEG signals—the activities of cortical pyramidal cells.
In the latter case, where the current dipoles have free orientations, we can possibly capture source
currents due to other neural activities. Secondly, even for a source space defined on the mesh, we
can still allow free orientations of current dipoles by adding two tangential basis directions besides
the main direction that is perpendicular to the cortical surface. Sometimes, we can assume a “loose-
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orientation”, where we penalize the magnitudes of components of source current dipoles along the
tangential directions more than those along the main directions. Thirdly, as mentioned above,
shallower source points, which are closer to the scalp, correspond to the columns in the forward
matrix G that have larger norms, resulting in a bias towards the shallower sources; therefore,
sometimes, a “depth compensation” can be applied, where we can choose a real value 0 < adepth <

1 and divide each column G[:, j] (j = 1 · · · ,m) by ‖G[:, j]‖adepth2 . However, all these choices
above are up to the user, depending on their assumptions. In the scientific applications in this thesis,
we are mainly interested in cortical activities, (i.e., activities of pyramidal cells perpendicular to
the cortical surface), so we define the source space as the mesh on the cortical surfaces and assume
fixed orientations of the current dipoles. In some cases, especially when analyzing real data other
than simulated data, we apply the depth compensation (adepth = 0.8). See the individual chapters
for more details.

The source localization methods aforementioned have focused on reconstructing the source ac-
tivities per se, leaving statistical analyses in the source space as the next step. Yet the actual
source-space statistical analyses—such as testing whether neural activities are correlated with be-
havior measurements in a task or analyzing dependence between regions—can also affect how we
constrain the source localization problem. In the following two chapters, we present our novel
methodological contribution—one-step source-space analyses with source localization embedded,
which is based on some ideas reviewed above.

Table 2.1: Notation list

Symbol Explanation
n number of sensors in MEG or EEG
m number of source points in the source space
yt n× 1 vector, the sensor readings at time t
Jt m× 1 vector, the source current dipoles at time t
et n× 1 vector, the sensor noise at time t
G n×m matrix, the forward matrix that projects source current dipoles to the sensor

space
T number of time points to be considered (in a trial)
Y n× T matrix, the sensor readings at T timepoints (in a trial), yt = Y [:, t]

J m× T matrix, the source current dipoles at T time points (in a trial), Jt = J [:, t]

E n× T matrix, the sensor noise at T timepoints (in a trial), et = E[:, t]

q number of trials to be considered
·(r) the superscript indicates that the variable is from the rth trial (r ∈ {1, 2, · · · , q}),

e.g. Y (r) and y(r)
t
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Chapter 3

One-step regression analysis in the source
space: a short-time Fourier transform
regression model

3.1 Motivation

MEG and EEG experiments are often designed to study the neural basis of perceptual or cognitive
functions. These studies are usually organized in trials, each of which contains a stimulus and/or
a behavioral response in a relevant task. Usually, there are two types of designs. In the first type,
the trials are organized into different conditions (e.g., an experimental condition, such as reading
words, and a control condition, such as reading non-word strings of letters), and each trial is
correspondingly assigned a categorical label indicating which condition it is in. In these cases, the
goal is to identify the neural activities that are different across the conditions (e.g., the activities that
are only involved in the experimental condition but not in the control condition), and one can apply
a two-sample t-test or analysis of variance for the purpose. In the second type, there can be one or
more continuous variables associated with each trial (for example, certain features of the presented
stimulus, or behavioral metrics such as reaction time), and the goal is to identify neural activities
that are correlated with these variables. In this context, one can regress the neural activities on
the variables and examine how well these variables explain or predict the neural data. In fact, the
analyses in the two cases above can both be unified into a regression framework, because in the
first type of design, if we represent the categorical condition labels as dummy variables, a t-test (or
analysis of variance) is the equivalent to a linear regression model. Hereafter, we mainly focus on
the regression framework and use the term covariates or regressors to denote either the categorical
labels or the continuous variables. Although many sophisticated regression models are available,
linear regression is the most commonly used because it is simple and easily interpretable, so below
we focus on linear regression analysis of MEG and EEG data.
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When analyzing MEG and EEG data using linear regression, we are interested in spatio-temporal
effects, that is, in what temporal windows and in what regions in the brain, the neural activity is
correlated with, or is well explained by the covariates. If we could observe the neural activity in the
source space (i.e., the electric current dipole) at each location and each time point, then we could
run an individual linear regression model for each time point and location, testing if a significant
amount of variance was explained by the covariates. However, as discussed in Chapter 2, we need
to solve the source localization problem to estimate the current dipoles. Traditionally, one can
use a two-step approach: 1. applying some source localization method (e.g., the minimum norm
estimate or MNE) to estimate the source current dipoles in each trial; 2. linearly regressing the
estimates at each location and time point on the covariates.

However, this two-step approach is limited for the following reason. To regularize the underde-
termined source localization problem, one has to add some constraints in Step 1, (e.g., penalizing
the squared L2 norm of the source current dipoles as in MNE), but these constraints can not be
customized for the regression in Step 2. For example, if we want the regression coefficients for
certain covariates to be spatially sparse, the regularization in Step 1 can not directly implement
such constraints.

To formally describe this, let us assume we have q trials in total, and let a q × p matrix X denote
the p-dimensional covariates. Using the notation in Chapter 2, we focus on a single time point t
for simplicity. Let y(r)

t be the n × 1 sensor recordings in the rth trial, J (r)
t be the corresponding

m × 1 source current dipoles, G be the n × m forward matrix, and e(r)t be the n × 1 Gaussian
sensor noise, with zero mean and covariance Qe (i.e. e(r)t ∼ N (0,Qe) ). We further assume
the ith source current dipole J (r)

t [i] has a linear relationship with the p-dimensional covariates
X[r, :], characterized by the regression coefficients At[i, :]. Then the regression coefficients at all
source points at time t can be written as an m × p matrix At. The residuals not explained by the
covariates are represented as m× 1 source-space noisew(r)

t ∼ N (0,QJn), with an m×m source
noise covariance matrixQJn . In the two-step framework, we have the following equations:

Step 1: y(r)
t = GJ

(r)
t + e

(r)
t (3.1)

Step 2: J (r)
t = At

m×p
X[r, :]′

p×1
+w

(r)
t

m×1
(3.2)

If we use the MNE method for source localization, then with the penalization parameter λ, we have

Ĵt
(r)

= arg min
J

(r)
t

(
(y

(r)
t −GJ

(r)
t )′Q−1e (y

(r)
t −GJ

(r)
t ) + λ‖J (r)

t ‖22
)

= G(G′G+ λQe)
−1y

(r)
t

(3.3)

Ât = arg minAt

(
q∑
r=1

(Ĵt
(r)
−AtX[r, :]′)′Q−1Jn (Ĵt

(r)
−AtX[r, :]′) + penalty(At)

)
(3.4)

Note that the penalty term that reflects our constraints on At in Equation (3.4) has no effect on
the source localization step in Equation (3.3). The constraints in Step 1 (e.g., the L2 penalty
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in Equation (3.3)) may penalize Ĵt
(r)

and consequently penalize Ât in a different way from we
want by using penalty(At) alone. In other words, the fixed constraints in Step 1 may introduce
additional biases other than what we intend to introduce. Alternatively, if we plug Equation (3.2)
into Equation (3.1), we have

y
(r)
t = GAtX[r, :]′ +Gw

(r)
t + e

(r)
t

Noticing that the covariance of the term (Gw
(r)
t + e

(r)
t ) is (Qe +GQJnG

′), we can directly solve
forAt in one step:

min
At

(
q∑
r=1

(y
(r)
t −GAtX[r, :]′)′(Qe +GQJnG

′)−1(y
(r)
t −GAtX[r, :]′) + penalty(At)

)
.

In this one-step approach, the constraints in penalty(At) are directly applied. It is also worth
noting that in practical applications of the two-step approach, the source localization methods in
Step 1 are usually the probabilistic methods that assume a fixed prior of the source current dipoles
and do not introduce sparsity (e.g., MNE), so that they can be applied uniformly to all trials. Other
methods that have sparsity-inducing constraints or hyper-parameters determined by the data, may
result in different non-zero structures or hyper-parameters for each trial. Therefore, it is difficult to
directly plug those methods in the two-step approach.

Given the limitations of the two-step approach, we propose to use the alternative one-step ap-
proach, which models the regression and the source localization problem jointly and allows flex-
ible penalties directly on the regression coefficients. We speculate that this approach can provide
more flexibility and give better results. In fact, there is some previous exploration along this line
in comparing MEG/EEG data between different task conditions (i.e., with categorical covariates)
[Gramfort et al., 2012]. Here we introduce a more general implementation of the one-step ap-
proach, built on a recent source localization model by Gramfort et al. [2013].

By using the short-time Fourier transform (STFT) to represent the time series of source current
dipoles, and by further applying a structured sparsity-inducing penalty on the time-frequency com-
ponents, Gramfort et al. [2013] were able to reconstruct source time series, which were sparse in
the spatial domain and the time-frequency domain. These reconstructed source time series are gen-
erally smooth but still have relatively sharp peaks corresponding to the evoked responses—it is easy
to interpret these “clean” waveforms in terms of timing and magnitudes of different peaks. Based
on this previous work, we propose a new short-time Fourier transform regression model (STFT-R).
Our model further represents the trial-by-trial variations of each time-frequency component as a
linear combination of the trial-by-trial covariates; it also imposes a hierarchical sparsity-inducing
penalty on the regression coefficients, instead of on the time-frequency components per se as in
Gramfort et al. [2013]. In this case, our STFT-R model yields regression coefficients that are
sparse in the source space and in the time-frequency domain and are likely to have similar “clean”
waveforms. Additionally, when there are regions of interest (ROIs) that we want to emphasize, the
hierarchical constraints can group the source points within each ROIs, and emphasize the ROIs by
using smaller penalties on these groups.
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Below we give a formal description of the STFT-R and corresponding optimization algorithms, and
then we compare the STFT-R with a common two-step approach that uses MNE in both simulations
and applications on real data.

3.2 Model

In this section, we introduce our STFT-R model and the related algorithms to solve for the regres-
sion coefficients. The code in Python is available at github.com/YingYang/STFT_R_git_
repo.

3.2.1 Short-time Fourier transform (STFT)

Our approach builds on the short-time Fourier transform (STFT) implemented in Gramfort et al.
[2013]. Given a time series a = (a1, a2, · · · , at, · · · , aT )′, where t = 1, · · · , T , a time step τ0 and
a window size T0, we define the STFT as

b(a, τ, ωl) =
T∑
t=1

atK(t− τ)e(−iωlt)

for ωl = 2πl/T0, l = 0, 1, · · · , T0/2 and τ = τ0, 2τ0, · · ·n0τ0 where n0 = T/τ0. Here i denotes the
unit imaginary number (i.e., i2 = −1). The real and imaginary parts of the basis functions (i.e.,
{K(t− τ)e(−iωlt)}Tt=1, for each τ and ωl) are sinusoidal functions of frequency ωl multiplied by a
window function K(t − τ) (e.g. half-cycle sine window, K(t − τ) = sin(π(t − τ + T0/2)/T0))
centered at time τ . Together, we have s = (T0/2 + 1) × n0 basis functions, and correspond-
ingly s time-frequency components (i.e., the b(a, τ, ωl)s). Concatenating the s components into a
complex-valued vector b ∈ Cs×1, and writing the basis functions {K(t−τ)e(−iωlt)}Tt=1 as columns
in an T × s complex-valued matrix Φ ∈ CT×s, we have

b′
1×s

= a′
1×T

Φ
T×s

With appropriate constants in the basis function, if we use ΦH to denote the Hermitian (or conju-
gate) transpose of Φ, then ΦΦH = I . Then the inverse short-time Fourier transform can be written
as

a′
1×T

= b′
1×s

ΦH

s×T
.

3.2.2 The short-time Fourier transform regression model (STFT-R)

In accordance with our notation in Table 2.1, let us assume we have n sensors, m source points,
T time points in each trial, and q trials together. Let Y (r) ∈ Rn×T be the sensor time series we
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observe in the rth trial, and G ∈ Rn×m be the forward matrix that projects the m-dimensional
source activity to the n-dimensional sensor space. As discussed in Section 3.2.1, let ΦH ∈ Cs×T

be s pre-defined STFT basis functions at different frequencies and time points. Let the q×pmatrix
X denote the p-dimensional covariates in the q trials, where X[r, k] is the kth covariate in the rth
trial, r = 1, · · · , q and k = 1, · · · , p. Note that X may include an additional all-one column to
represent the intercept, and besides this possible all-one column, we assume other columns have
zero means. Let the m × T matrix J (r) be the time series of m source points in the rth trial. We
assume that the time series of the ith source point is represented by s time-frequency components:
b
(r)
i ∈ C1×s (i.e., J (r)[i, :] = b

(r)
i ΦH). To embed the linear regression, we further assume that

each time-frequency component is a linear combination of the p covariates; that is, the jth time-
frequency component in the rth trial is b(r)i [j] =

∑p
k=1X[r, k]Z[i, j, k], where Z ∈ Cm×s×p is a

complex tensor denoting all the linear regression coefficients, and Z[i, j, k] denotes the coefficient
relating the jth time-frequency component of the source time series at the ith source point to the
kth column of the regressors. Therefore, the STFT-R model reads

Y (r)

n×T
= G

n×m

(
p∑

k=1

X[r, k]Z[:, :, k]
m×s

)
ΦH

s×T
+E(r)

n×T
r = 1, · · · , q.

We assume the sensor error E(r) has independently and identically distributed (i.i.d.) Gaussian
entries in each trial, with a zero mean and a constant variance. Also, it is worth noting that we as-
sume the time-frequency components (i.e., the b(r)i [j]s) can be perfectly explained by the covariates
with no residuals. These assumptions (i.i.d. sensor noise and perfect regression) are made mainly
for tractability, but they do not necessarily hold in real data. Such a model mismatch may cause
additional errors. However, we may be able to alleviate such effects. Note that the residuals in the
source space are essentially projected to the sensor space and can be absorbed in the E(r) term. If
the combined sensor and source noise in theE(r) term can be assumed temporally independent (or
“white”), we only need to consider the dependence across sensors. We can use the baseline sensor
recordings (before the stimulus onset), which include both the sensor noise and the projection of
the source-space noise, to estimate the noise covariance across sensors and pre-whiten the model;
in this way, E(r) in the new, whitened model will have i.i.d. entries. If there is strong temporal
dependence in the combined sensor and source noise, the model mismatch problem may have a
larger effect. This is a general issue for a lot of source localization methods, which we will discuss
later in Chapter 7.

To solve for the regression coefficientsZ, we minimize the sum of squared prediction errors across
the q trials, with a hierarchical penalty Ω on Z:

min
Z

(
q∑
r=1

1

2
‖Y (r) −G(

p∑
k=1

X[r, k]Z[:, :, k])ΦH‖2F + Ω(Z)

)
(3.5)
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where ‖ · ‖F is the Frobenius norm and

Ω(Z) = α
∑
l

wl

√√√√∑
i∈Al

s∑
j=1

p∑
k=1

|Z[i, j, k]|2 (3.6)

+ β
m∑
i=1

s∑
j=1

√√√√ p∑
k=1

|Z[i, j, k]|2 (3.7)

+ γ

m∑
i=1

s∑
j=1

p∑
k=1

√
|Z[i, j, k]|2. (3.8)

where | · | denote the absolute value of a complex number. The penalty Ω(Z) involves three terms
corresponding to the L2 norms of entries in Z in three levels of nested groups; each of the group
includes the entries ofZ under a square root symbol, and α, β and γ are tuning parameters for each
level. Because the L2 norm of a group is not differentiable when all entries in the group is zero,
this penalty can create nested non-zero patterns in the solution—if a larger group is completely
zero, all subgroups are zero, too. Figure 3.1 illustrates the three levels of groups on the tensor Z,
and a possible non-zero pattern.
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Figure 3.1: Illustration of the three levels in hierarchical penalty Ω(Z)

Suppose we are given several pre-defined regions of interest (ROIs). On the first level in (3.6),
each group under the square root symbol either consists of coefficients for all source points within
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one ROI, or coefficients for one single source point outside the ROIs. Counting them together, we
have Nα groups, denoted by Al, l = 1, · · · , Nα, where Nα is the number of ROIs plus the number
of source points outside any ROI. Such a structure encourages the source signals outside the ROIs
to be spatially sparse. By specifying the weights (wls) for the Nα groups, we can also make the
penalty on the coefficients for source points within the ROIs smaller than that on the coefficients
for source points outside the ROIs. If no ROI is pre-defined, coefficients corresponding to each
source point form a single group at this level (Nα = m) and we expect to see spatially sparse source
points to show non-zero coefficients in the results. On the second level, for each source point i,
the term (3.7) groups the p regression coefficients for the jth time-frequency component under the
square root symbol, inducing sparsity in the time-frequency domain. Finally, on the third level,
(3.8) adds a penalty on the absolute value of each Zijk to encourage sparsity on the p covariates
individually, for each time-frequency component of each source point.

3.2.3 Solving the STFT-R

3.2.3.1 The FISTA algorithm

As in the work by Gramfort et al. [2013], we also use the fast iterative shrinkage-thresholding
algorithm (FISTA, Beck and Teboulle [2009]) to solve (3.5). Let z be a vector obtained by con-
catenating all entries in Z, and let z1 be a vector of the same size as z. We also reorganize all
the nested groups in the penalty Ω(Z) = Ω(z) into an ordered list, {g1, g2, · · · , gN}, where each
gh (h = 1, 2, · · · , N ) denotes the set entries in one group, assuming there are N groups in total.
This ordered list is obtained by listing all the third level groups first, then the second level groups
and finally the first level groups, such that given h1 and h2 ∈ {1, 2, 3, · · · , N}, if h1 < h2, then
gh1 ⊂ gh2 or gh1 ∩ gh2 = ∅. We further denote the penalization parameter on each group gh by
λh, for h = 1, 2, · · · , N . For example, λh = αwl if gh is the lth group on the first level, λh = β

if gh is on the second level, and λh = γ if gh is on the third level. Let z|gh be the elements of z
in the group gh. In this context, we have Ω(z) =

∑N
h=1 λh‖z|gh‖2. In each iteration of the FISTA

algorithm, we need the proximal operator associated with the hierarchical penalty:

Prox(z1) = arg min
z

(
1

2
‖z − z1‖2 + Ω(z)) = arg min

z
(
1

2
‖z − z1‖2 +

N∑
h=1

λh‖z|gh‖2) (3.9)

As proved in Jenatton et al. [2011], (3.9) can be solved by composing the proximal operators for
the L2 norm penalty on each gh, following the order in the list; that is, initialize z ← z1, for
h = 1, · · ·N in the ordered list,

z|gh ←
{
z|gh(1− λh/‖z|gh‖2) if ‖z|gh‖2 > λh
0 otherwise
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If we define the sum-of-squares term in Equation (3.5) as

f(z) =
1

2

q∑
r=1

‖Y (r) −G

(
p∑

k=1

X[r, k]Z[:, :, k]

)
ΦH‖2F

the gradient of f(z) can be computed as

∂f

∂Z[:, :, k]
= −GT

q∑
r=1

X[r, k]Y (r)Φ +GTG(

q∑
r=1

X[r, k]

p∑
k1=1

Z[:, :, k1]X[r, k1])Φ
HΦ.

Let z0 and z1 be auxiliary variables of the same shape as z. Given a positive number L > 0, which
determines the step size, we define the proximal operator with respect to L and z1 − 1

L
∇f(z1) as

ProxL(z1) = arg min
z0

(
1

2
‖z0 − (z1 −

1

L
∇f(z1))‖2 +

1

L
Ω(z0))

If we fix the step size, L is set to the Lipschitz constant of the gradient∇f, computed with the power
iteration method used in Gramfort et al. [2013]. In this case, the FISTA algorithm is described
in Algorithm 1, where ζ and ζ0 are constants for accelerating convergence, and ← denotes the
operation of assigning the value on the right to the left variable.

Algorithm 1: The FISTA algorithm given the Lipschitz constant L
Data: L, f(z), Ω(z) = Ω(Z),
zini: initial value of z
Result: the optimal solution z
initialization: z0 ← zini; z1 ← z0; z ← z0; ζ ← 1; ζ0 ← 1;
while the difference of z in two iterations is larger than a pre-defined threshold do
z0 ← z ;
Compute∇f(z1);
Apply the proximal operator z ← ProxL(z1);
ζ0 ← ζ;

ζ ← 1+
√

4ζ20+1

2
;

z1 ← z + ζ0−1
ζ

(z − z0);
end

If we do not fix the step size, we can also use back-tracking [Beck and Teboulle, 2009] without
computing the Lipschitz constant (see Algorithm 2).
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Algorithm 2: The FISTA algorithm with back-tracking
Data: constant η > 1, f(z), Ω(z) = Ω(Z)

L0:initial value of L ,
zini: initial value of z
Result: the optimal solution z
initialization: z0 ← zini; z1 ← z0; z ← z0; ζ ← 1; ζ0 ← 1; L← L0;
while the difference of z in two iterations is larger than a pre-defined threshold do
z0 ← z;
Compute∇f(z1) and f(z1);
z ← ProxL(z1);
Compute diff← f(z)− f(z1)−∇f(z1)′(z − z1)− 1

2
L‖z − z1‖2;

while diff > 0 do
L← ηL ;
z ← ProxL(z1);
diff← f(z)− f(z1)−∇f(z1)′(z − z1)− 1

2
L‖z − z1‖2

end
ζ0 ← ζ ;

ζ ← 1+
√

4ζ20+1

2
;

z1 ← z + ζ0−1
ζ

(z − z0);
end

3.2.3.2 Active-set strategy

In practice, it may be time-consuming to solve the original problem in (3.5). Thus we derive
a greedy active-set strategy (Algorithm 3), based on the one introduced by Bach et al. [2011].
Consider a subset B of the Nα groups on the first level (B ⊂ {1, · · · , Nα}). We start with a union
of source points in the groups in B, denoted as J = ∪l∈BAl, and then we compute the solution
to a sub-problem that is constrained on J (i.e., the sub-problem contains only the source points
in J and the columns of G corresponding to J ). Next, we examine whether it is optimal for the
original problem, which contains all source points, by checking whether the Karush-Kuhn-Tucker
(KKT) conditions are met. If yes (within some tolerance), we accept the solution; otherwise, we
greedily add K groups to J and repeat the procedure (see Algorithm 3).
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Algorithm 3: Active-set strategy

initialization: choose initial J and initial value of Z;
compute the violation of the KKT conditions for each Al 6∈ J ;
while the total violation of the KKT conditions is larger than a pre-defined threshold do

add to J K of the remaining groups that have the largest violation;
compute a solution to the sub-problem constrained on J using FISTA;
compute the violation of the KKT conditions for each Al 6⊂ J ;

end

Below we derive the KKT conditions and describe how to quantify the violation of the KKT condi-
tions. Since the term f(z) is essentially a sum of squared errors of a linear problem, we can rewrite
it as f(z) = 1

2
||c−Bz||2. Here z again is a vector obtained by concatenating all entries in Z and

c is obtained by concatenating all entries in Y (1), · · · ,Y (q); B is a linear operator, such that the
entries inBz are equal to the concatenated entries inG(

∑p
k=1X[r, k]Z[:, :, k])ΦH , r = 1, · · · , q.

Note that although z and B have complex values, we can further rewrite the problem into a real-
valued problem by rearranging the real and imaginary parts of z andB. Without loss of generality,
we derive the KKT conditions assuming z, c and B are real-valued vectors and matrix. Again we
use {g1, · · · , gh, · · · , gN} to denote our ordered group set, and we use λh to denote the correspond-
ing penalty parameter on group gh. We also define diagonal matricesDh such that

Dh[l, l] =

{
1 if l ∈ gh
0 otherwise

∀h

Therefore, the non-zero elements of Dhz is equal to z|gh . With the new notation, we recast the
original problem into a standard formulation:

min
z

(
1

2
‖c−Bz‖22 +

∑
h

λh‖Dhz‖2) (3.10)

To better describe the KKT conditions, we introduce some auxiliary variables: u = Bz and
vh = Dhz. Then (3.10) is equivalent to

min
z,u,vh∀h

(
1

2
‖c− u‖22 +

∑
h

λh‖vh‖2)

subject to u = Bz, vh = Dhz, h = 1, 2, · · · , N.

The corresponding Lagrange function is

Lagrange(z,u,vh,µ, ξh) =
1

2
‖c− u‖22 +

∑
h

λh‖vh‖2 + µ′(Bz − u) +
∑
h

ξ′h(Dhz − vh)

where µ and ξhs are Lagrange multipliers, which have the same dimension as z. At the optimum,
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the following KKT conditions hold

∂

∂u
Lagrange = u− c− µ = 0 (3.11)

∂

∂z
Lagrange = B′µ+

∑
h

Dhξh = 0 (3.12)

∂

∂vh
Lagrange = λh∂‖vh‖2 − ξh 3 0,∀h (3.13)

where ∂‖ · ‖2 is the subgradient of the L2 norm. From (3.11) we have µ = u − c, then (3.12)
becomes B′(u − c) +

∑
hDhξh = 0. Plugging u = Bz in, we can see that the first term

B′(u− c) = B′(Bz − c) is the gradient of f(z) = 1
2
‖c−Bz‖22. For a solution z†, once we plug

in vh = Dhz
†, the KKT conditions become

∇f(z)z=z† +
∑
h

Dhξh = 0 (3.14)

λh∂‖Dhz
†‖2 − ξh 3 0,∀h (3.15)

In (3.15), we have the following according to the definition of subgradients

ξh = λh
Dhz

†

‖Dhz†‖2
if ‖Dhz

†‖2 > 0

‖ξh‖2 ≤ λh if ‖Dhz
†‖2 = 0

Therefore we can determine whether (3.14) and (3.15) hold by solving the following problem.

min
ξh

1

2
‖∇f(z)z=z† +

∑
h

Dhξh‖22

subject to ξh = λh
Dhz

†

‖Dhz†‖2
if ‖Dhz

†‖2 > 0

‖ξh‖2 ≤ λh if ‖Dhz
†‖2 = 0

which is a standard group lasso problem with no overlap. For h where ||Dhz
†||2 > 0, we plug in

ξh = λh
Dhz

†

‖Dhz†‖2
, and only solve for ξh where ||Dhz

†||2 = 0. We can use the coordinate descent
algorithm by focusing on each ξh at each iteration 1. We define 1

2
‖∇f(z)z=z† +

∑
hDhξh‖22 at the

optimum as a measure of violation of the KKT conditions.

1 It is worth noting that although ξh has the same length as z, only the elements in the group gh contribute to the
problem, so we assume all the elements of ξh outside the group gh are zero. For each h where ‖Dhz

†‖2 = 0, solving
for ξh is the same as solving

min
ξh
‖c0 +Dhξh‖22 such that ‖ξh‖22 ≤ λ2h

where c0 includes the terms related to the gradient and related to other hs. Let the Lagrange multiplier of this particular
problem be µ, we have the Lagrange function ||c0 +Dhξh||22 + µ(‖ξh‖22 − λ2h). Taking the gradient of this Lagrange
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Next, we consider how to add new groups to J greedily in the iteration of the active-set strategy.
ForAl 6⊂ J , we use the sum of squares in (∇f(z)z=z† +

∑
hDhξh) constrained to only the entries

corresponding toAl at the optimum as a measurement of violation and add the K groups that have
the largest violation to J for the next iteration.

3.2.4 Additional L2 regularization and bootstrapping

To obtain the standard deviations of the regression coefficients in Z, we can use bootstrapping.
However, regular bootstrapping does not work well for sparsity-inducing problems, due to the
non-differentiability at zero. Therefore, in addition to the original solution with the hierarchical
sparsity-inducing penalty (Ω(Z)), we can also compute an additional L2-regularized solution of
Z, where the zero entries ofZ learned in the sparsity-inducing solution are constrained to be zero,
and the penalty is the sum of squares of the non-zero entries in Z. The tuning parameters in both
the sparsity-inducing and the L2-regularized cases can be selected by minimizing cross-validated
prediction errors of the sensor data.

We use a data-splitting bootstrapping procedure. The data in all trials can be split into two halves;
using the first half of the trials, we obtain the sparse solution in the STFT-R model, and using the
second half of the trials, we compute anL2-regularized solution constrained on the non-zero entries
learned in the first half of the data. Next, we can do bootstrapping using the second half of the data
either in a non-parametric way or parametric way. In the non-parametric version, we can sample the
trials and the corresponding rows in X with replacement. In the parametric version, we can plug
in the learned L2-regularized estimate of Z to obtain residual sensor time series of each trial in the
second half of the data (R(r) = Y (r)−G(

∑p
k=1X[r, k]Z[:, :, k])ΦH). We rescale the residuals in

each trial by multiplying 1/(1−hr)0.5 where hr = X[r, :](X ′X)−1X[r, :]′ [Stine, 1985]. Then we
add re-sampled residuals back toG(

∑p
k=1X[k, r]Z[:, :, k])ΦH to obtain the bootstrapped samples

of sensor data. For each bootstrapped sample, we estimate the L2-regularized solution constrained
on the non-zero entries again. For each bootstrapped sample, the best L2 tuning parameter is again
determined by cross-validation.

3.3 Results

In this section, we compare the STFT-R model and a two-step source-space regression method
using the MNE. In this two-step method, we first obtain the source-space estimates using the MNE

function, we need ξh to satisfy

ξh|gh = (DT
hDh(1 + µ))−1(−DT

hc0) = (−Dhc0)/(1 + µ)

if ‖(−Dhc)‖2 < λh, then µ = 0, else, ‖(−Dhc)/(1 + µ)‖2 = λh; in other words, we shrink the −DT
hb to satisfy

the constraint.
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and apply the STFT on the estimated activity (i.e., the estimated time series) for each source point
and each trial; in the second step, we regress the STFT components across trials on the external
covariates (or regressors) to obtain the regression coefficients. Below, we denote this two-step
method by MNE-R. We applied both the STFT-R and the MNE-R and compare their performance
in learning the regression coefficients on simulated data and real data.

3.3.1 Simulations

The simulations were implemented using the MNE-python package in Python [Gramfort et al.,
2014]. This package provided a sample MEG dataset with n = 306 sensors, along with the
source space of a real human participant, which consisted of m = 7498 source points that were
perpendicular to the local cortical surface. The n × m forward matrix was also pre-computed in
the data set. Using the source space and the forward matrix, we simulated a simplified situation of
our application in studying the visual cortex in Chapter 5. We used four regions of interest (ROIs):
the left and right pericalcarine areas, which were in the posterior end of the brain and overlapped
with the early visual cortex, and two regions in the left and right lateral occipital areas (LO),
which were at a higher level than the early visual cortex in the posterior-to-anterior hierarchy of
the visual cortex, according to a well established hypothesis of the hierarchical organization of the
visual cortex [DiCarlo and Cox, 2007] (see Chapter 5 for details). Figure 3.2a shows the locations
of the four regions on the inflated bilateral cortical surfaces in lateral views (left EVC in red, right
EVC in magenta, left LO in blue and right LO in cyan).

We used two regressors, each of which independently followed a standard normal distribution. At
each time point, the activity in a source point within an ROI was generated as a linear combination
of the two regressors plus noise. The source points within the same ROI shared the same regression
coefficients. With T = 100 time points and a time step of 10 ms, the regression coefficients for each
regressor at all time points composed a time series; these time series of regression coefficients were
generated by applying an inverse STFT on two time-frequency components. The real parts of the
time-frequency components were random samples from a standard normal distribution multiplied
by 5, whereas the imaginary parts were 0. The EVC only had non-zero regression coefficients
for Regressor 1, concentrated within 300 to 500 ms, and the LO only had non-zero regression
coefficients for Regressor 2, concentrated within 500 to 700 ms, as shown in the first columns
of Figure 3.3, which plot the true time series of regression coefficients in each ROI and for each
regressor. The regression coefficients for source points outside of any ROIs were set to zero.

For each source point in each trial, besides the time series obtained by linearly combining the
regressors at this trial using the time series of the regression coefficients, we also added an inde-
pendently sampled noise time series—a T -dimensional Gaussian variable with a zero mean and a
covariance matrix with a radial basis function kernel. The marginal variance of such noise was set
to 0.1. The unit of the source-space activity was nanoampere meter. Finally, the 306-dimensional
sensor noise (independent at each time point) was added, using a sensor noise covariance matrix

27



(a) The four ROIs on the inflated bilateral cortical surfaces (left EVC in red, right EVC in magenta, left LO
in blue and right LO in cyan)
.

truth STFT-R MNE-R Reg1, Simu1

truth STFT-R MNE-R Reg2, Simu1

truth STFT-R MNE-R Reg1, Simu2

truth STFT-R MNE-R Reg2, Simu2

truth STFT-R MNE-R Reg1, Simu3

truth STFT-R MNE-R Reg2, Simu3

truth STFT-R MNE-R Reg1, Simu4

truth STFT-R MNE-R Reg2, Simu4

truth STFT-R MNE-R Reg1, Simu5

truth STFT-R MNE-R Reg2, Simu5

(b) The spatial patterns of the magnitudes of the true regression coefficients (the first two columns), and
of the estimates by the STFT-R model (the middle two columns) and by the MNE-R model (the last two
columns). Each row corresponds to one regressor (Reg1 or Reg2) in one simulation (Simu1, Simu2, etc)

Figure 3.2: The ROIs and the spatial patterns of the magnitudes of the regression coefficients28
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Figure 3.3: Time series of the regression coefficients within each ROI. The three columns from left to right
show the time series of the true regression coefficients and the estimates by the STFT-R and the MNE-R
respectively. In each plot, each curve corresponded to one source point.
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Figure 3.3: Time series of the regression coefficients within each ROI(continued)
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from the sample dataset. We simulated q = 50 trials and applied the STFT-R and the MNE-R
models on these data to learn the regression coefficients. For the STFT-R, on the first level, the re-
gression coefficients in the time-frequency domain at each source point composed a single group,
and the weights of all groups at this level were equal. A wide range of tuning parameters were
provided for selection via cross-validation in both models. After learning the regression coeffi-
cients in the time-frequency domain, we transformed them back to the time domain. We did not
compute further L2 regularized regression coefficients after applying the STFT-R model. No depth
compensation was applied in both models. The window size was 160 ms and the step size was
τ0 = 40 ms for the STFT.

We ran five independent simulations. We show the spatial patterns of the regression coefficients in
Figure 3.2b and the time series of estimated regression coefficients for the source points within each
ROI in Figure 3.3. To visualize the spatial patterns of the magnitudes of regression coefficients
for the truth and the estimates by the two models, we took the sum of the absolute values of
the regression coefficients across all the T time points for each source point and each regressor,
obtaining an m× 1 map for each regressor. We divided the m values by their maximum to rescale
the range of the map to 0 to 1. Figure 3.2b shows the results for each regressor in the 5 simulations,
on inflated bilateral cortical surfaces in lateral views, where the first two columns show the patterns
from the underlying truth, and the second two columns show the patterns by the STFT-R model and
the last two columns show the patterns by the MNE-R model. The STFT-R model yielded sparse
patterns. Compared with the true patterns, we can see that, in some cases, the identified source
points with non-zero coefficients were within the true ROIs (e.g., the identified source points within
the right LO for Regressor 2 in Simulation 1); however, there were also cases where the identified
source points were outside of (although not far from) the true ROIs (e.g., the identified source
points near the left LO for Regressor 2 in Simulation 1). In contrast, the patterns by the MNE-R
covered a large area of the visual cortex including the ROIs; from the patterns for Regressor 1 to
the patterns for Regressor 2, in the majority of the simulations, there appeared to be a shift from
the posterior end to the lateral sides, corresponding to the relative locations of the EVCs and the
LOs.

Figure 3.3 shows the time series of the regression coefficients in the 5 simulations. The three
columns from left to right show the time series of the true regression coefficients and the estimates
by the STFT-R and the MNE-R respectively. Each subplot corresponds to one ROI and one regres-
sor; each curve corresponds to one source point. Note that in the first column, all source points
within an ROI shared the same regression coefficients, so the curves merged into one curve. In the
second column, the non-zero curves correspond to the sparse source points with non-zero regres-
sion coefficients. Note that each source point represents a current dipole perpendicular to the local
cortical surface; the positive and negative signs only indicate the directions of the current dipoles.
Due to the folding of the cortical surface, the source points within one ROI could have opposite
orientations and the contribution to sensors from source points that have opposite directions may
cancel. As a result, the reconstructed source activity (or the corresponding regression coefficients)
by the STFT-R or the MNE-R could have opposite signs to the truth, as seen in the second and
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the third columns of Figure 3.3. Comparing the results by the STFT-R and the truth, we can see
that the high-frequency components that did not explain the sensor data well (i.e., noise) were at-
tenuated. In addition, during the periods in which we would expect the regression coefficients to
be zero, the STFT-R method typically recovered zero coefficients. In contrast, the results by the
MNE-R method were generally “spiky”. In this sense, the results by the STFT-R are better in the
sense that they look smooth, concentrated and “clean”.

It is worth noting that in the results by both methods, the regression coefficients in one ROI
“leaked” into another ROI or to source points outside of the ROIs. For example, the STFT-R
model failed to recover the non-zero regression coefficients in the EVC in Simulation 3, because it
falsely localized the regression effects to source points that were not in the ROIs. In another exam-
ple, the MNE-R results in the right LO for Regressor 1 was not zero but very similar to those in the
right EVC. This “spatial leak” can also be seen in the spatial patterns in Figure 3.2b—in the results
by the MNE-R, the recovered regression effects dispersed widely; in the results by the STFT-R,
although the patterns were sparse, there were also such leaks. Such effects are likely to be caused
by the spatial correlations between the columns in the forward matrix. In this sense, there may be
a fundamental limit of spatial resolution that affects both the STFT-R and the MNE-R models.

3.3.2 An application on real data: neural correlates of face-learning

We applied the STFT-R and the MNE-R methods on MEG data from a face-learning experiment
[Xu, 2013], to look for the spatio-temporal neural correlates of face-learning. In this experiment,
the participants learned to distinguish two categories of computer-generated faces, which varied in
their eye-size and mouth-width. In each trial, one face exemplar from one category was presented,
and the participants were instructed to report the category label. After their response, feedback
was provided; in this way, the participants learned the diagnostic features to categorize the faces in
an online manner. For each participant, 364 distinct exemplars in each of the two categories were
used, each presented once, resulting in 728 trials. In addition, an independent MEG experiment
was run to localize several face-sensitive regions, which are involved in face processing according
to the literature [Ishai, 2008; Pyles et al., 2013; Nestor et al., 2008, 2011]. These regions were
used as the ROIs that we emphasized in learning the STFT-R model, and we also focused on
the dependence between neural activity and behavioral learning within these regions, estimated
by both methods. Nine participants showed significant learning effects—the behavioral accuracy
went from 50% (i.e., chance) to at least 70%. We obtained the behavioral learning curves (as a
function of trial index) by modeling the behavioral responses (i.e., “correct” or not) using logistic
regression, for each face category and each participant.

We applied the STFT-R and the MNE-R to regress the spatio-temporal neural activity on the be-
havioral learning curve for each face category and each participant (the window size of STFT was
160 ms and the step size was τ0 = 40 ms); the regression coefficients (i.e., the “slope” coefficients)
represented the linear dependence of neural activity on the behavioral learning curve and thus were
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of our main interest. In the regression, an additional all-one column was used in the regressors; the
regression coefficient corresponding to this column represented the “intercept” or mean activity
across the learning session. In the first level of grouping in the STFT-R, the source points within
each ROI corresponded to one group, and the source points outside of the ROIs each corresponded
to an individual group. The first-level penalties on the groups corresponding to the face-sensitive
ROIs were set to zero, whereas the penalties on all other single-source-point groups were α. We
provided a wide range of candidate tuning parameters (α, β and γ for the STFT-R and λ for the
MNE-R) and selected the best ones via cross-validation.

Figure 3.4 shows the regression results in one ROI for one participant. The results were estimated
on trials for one face category. The upper row shows the linear dependence of neural activity
on the learning curve in the time-frequency domain, quantified by the sum of squared regression
coefficients across their real and imaginary parts and across the source points within the ROI,
divided by the bootstrapped standard deviation of the sum. The STFT-R pattern was sparse and
concentrated on the lower frequency, whereas the MNE-R pattern was dispersed. After learning
the regression coefficients in the time-frequency domain, we also transformed them back to the
temporal domain using an inverse STFT. These time series of slope coefficients are shown in the
lower row of Figure 3.4. Each curve with one color represents one source point 2. The shaded
bands are 95% confidence intervals at each time point, where an asymptotic normal distribution
was assumed without further corrections for multiple comparisons at multiple time points. The
time series of the slope coefficients by the STFT-R were smooth due to the sparsity in the time-
frequency domain. Moreover, we could see the clear peaks, concentrated on the time windows near
100 ms, 200 ms and in 300 to 500 ms. In contrast, the results by the MNE-R did not demonstrate
such “clean” patterns, due to the spiky noise at all time points.

For each participant, we ran a permutation test to examine whether the sum of squared slope
coefficients within a face-sensitive ROI at each time point was significantly different from zero.
The p-values of the permutation tests for trials in the two face categories were combined using
Fisher’s method [Fisher, 1925]. We use the negative logarithm of the p-values with base 10 to
quantify the significance of correlation between the neural activity and the behavioral learning
curve. The results by the STFT-R and the MNE-R were qualitatively consistent, but they did show
some difference. In Figure 3.5, we show the − log10(p-value)s in two ROIs where the difference
were easily seen. Each row represents one participant; a dark blue row indicates that the ROI was
not identified in the participant. In both the ROIs listed, the results by STFT-R were smooth; the
patterns indicated a window near 200 ms where the activities in the ROIs were correlated with
behavioral learning in most participants. In contrast, the results by the MNE-R were less smooth
and the temporal correlation patterns appeared more noisy.

2However, the colors in the results by the two methods did not necessarily match.
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Figure 3.4: Regression against the behavioral learning curve in a face-sensitive ROI in the right anterior
temporal lobe (aIT) for one example participant. Upper: the summarized regression effects in the time-
frequency domain. Lower: the time series of regression coefficients in each source point in the ROI.
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Figure 3.5: Regression of the source data in the ROIs: − log10(p-value) of the permutation tests, combined
across two categories using Fisher’s method in two example ROIs (left inferior occipital gyrus (IOG) and
left mid-fusiform gyrus (mFUS)). Each row represents one participant; a dark blue row indicates that the
ROI was not identified in the participant.

3.4 Discussion

In this chapter, we introduced a one-step source-space regression model, which represented the
source current dipoles as sparse time-frequency components that were linearly dependent on ex-
ternal covariates. As a result of the time-frequency sparsity in the STFT-R, when the regression
coefficients were transformed back to the time domain, the high-frequency components that did
not explain the sensor data well (i.e., noise) were attenuated. In addition, during the periods in
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which we would expect the regression coefficients to be zero (e.g., the baseline time window be-
fore the stimulus onset), the method typically recovered zero coefficients. The resulting waveforms
were generally smooth, concentrated in the time windows of interest, and thus “clean” and easy to
interpret. In contrast, it is difficult to impose such sparsity-inducing constraints on the regression
coefficients if we use a two-step approach, because, during the source localization step for each
trial, it is hard to guarantee that the non-zero patterns in different trials are the same. If we use a
constraint to force the non-zero patterns to be the same, biases due to this constraint may affect the
resulting regression coefficients in the second step, and moreover, such a model is already close to
a one-step method where we directly constrain the regression coefficients.

However, there are some limitations of the STFT-R model. First, we assume that the source-space
neural activity has a perfect linear relationship with the external covariates (or regressors) without
modeling additional residuals in the source space. In practice, there may be a model mismatch,
where this assumption does not hold. However, as mentioned above, if such residuals exist, they
are projected to the sensor space and can be absorbed in the sensor error term. We can alleviate this
model mismatch problem in the following way—first we estimate the covariance structure of the
errors in the sensor space in the baseline time window, which includes the original sensor errors and
the projected source-space errors, and secondly, we use this covariance structure for pre-whitening.
As a result, the errors in the sensor space in the pre-whitened data can be viewed as roughly i.i.d..
In addition, in most cases, we obtain the final scientific conclusions via statistical tests such as
a permutation test. The model-mismatch problem is also present in the permuted results (or the
control cases) as in the intact results; therefore our scientific conclusions are still likely to be
correct, despite some possible loss of statistical power due to the model mismatch. Secondly, we
assumed the sensor errors to be temporally independent; this assumption may also be violated in
real data. However, this model mismatch is a general issue in many existing source localization
methods, which also assume temporal independence in errors. We defer the related discussion in
Chapter 7. Nevertheless, similarly to the first issue, such a model mismatch is unlikely to yield
large errors in the final statistical conclusions, because it affects the permuted counterparts (or the
control condition) in a similar manner. Thirdly, in the STFT-R, we use a univariate regression
framework, where the activity at each source point is regressed on the external covariates. This
univariate regression framework is limited in the sense that joint relationship among source points
is not modeled. In future work, it will be intriguing to develop one-step models that relate the joint
activity of source points in each local brain region with the external covariates.

Finally, we discuss a fundamental issue in both the STFT-R model and the MNE-R model—the
limitation of spatial resolution due to the underdetermined nature of the source localization prob-
lem and the forward matrix. In simulations, we observed that sometimes there were “leaked”
regression effects in the estimates by the MNE-R, which were not in the ROIs where the true re-
gression coefficients were in. For the STFT-R, because of the spatial sparsity constraints, only a
few source points showed the regression effects, and they could be outside of the true ROIs as
well. Such spatial localization errors rise from the nature of the forward matrix, in which dif-
ferent columns corresponding to different locations are possibly correlated; the limited number
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of sensors also adds additional difficulty in spatially localizing the true sources. In other words,
there may be some fundamental limits in recovering the spatial locations of source activity (or re-
gression effects), and without additional information such as spatial priors, both the one-step and
two-step models can suffer from these limits. In some domains where the researchers have reliable
knowledge about the source locations, adding spatial priors may vastly improve the localization;
in the STFT-R, we have built in the option to emphasize certain ROIs, which allows incorporating
spatial priors, yet, it is restricted in the sense that we have to use ROIs with hard boundaries. In
future one-step methods, we can further improve the specification of spatial priors to allow more
flexibility.
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Chapter 4

One-step cross-region functional
connectivity analysis in the MEG/EEG
source space

4.1 Motivation

Neurons in different locations of the brain are often anatomically connected, and the joint dynamic
activities across brain regions are believed to underlie various perceptual and cognitive functions.
Recently, the neuroimaging community has focused on functional connectivity [Friston, 2011],
which describes the spatio-temporal statistical dependence across brain regions. Unlike anatom-
ical connectivity, which describes physical connections through axons and dendrites of neurons,
functional connectivity is more of a statistical model, obtained from observational data, and does
not necessarily reflect causal interactions. Nevertheless, functional connectivity is a good way of
describing the joint distribution of neural activities; it also serves as a neural marker of different
cognitive states and mental diseases [Carhart-Harris et al., 2015; Tian et al., 2006]. More impor-
tantly, if we model functional connectivity with built-in assumptions, for example, using dynamic
systems to describe how the activity in one region predicts later activities in other regions (e.g.,
using the concept of “effective connectivity” by Friston [2011]), we may be able to make candi-
date hypotheses about how information flows in the brain (or about causal interactions of activities
across regions), which can be further tested with experimental manipulations or interventions of
the neural system in animal studies.

Featuring a high temporal resolution at the millisecond level, MEG and EEG are well-suited tools
to record neural activities in human brains and estimate functional connectivity. However, the
challenging source localization problem needs to be solved. Typically researchers use a two-step
approach—first applying some source localization methods with generic assumptions (as described
in Chapter 2), and secondly learning the statistical dependence among the regional activities that
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are derived from the source estimates. Typically in the second step, some regions of interest (ROIs)
are defined, each covering some number of source points, and the representative activity for each
ROI is abstracted as a(n) (weighted) average of the estimated source current dipoles in the ROI.
Afterward, a variety of functional connectivity models can be used—for example, correlations
between pairs of regions, Gaussian graphical models that describe the dependence structure across
ROIs [Cribben et al., 2012], phase-locking values of the oscillatory time series in pairs of ROIs at
certain frequency bands [Lachaux et al., 1999], and Granger causality models that estimate how
well the history in one ROI predicts the activity in another ROI [Granger, 1988; Gow et al., 2008].

This two-step framework is easy to implement and allows flexible choices of functional connec-
tivity models in the second step; therefore, it is widely used. However, the typical regularization
or priors in the source localization step do not model the cross-region dependence that we are in-
terested in. For example, the popular L2-norm-based regularization such as the minimum norm
estimate (MNE [Hamalainen and Ilmoniemi, 1994]) assumes an independent prior distribution for
each source point; other models by [Pascual-Marqui et al., 1994; Galka et al., 2004; Mattout et al.,
2006; Long et al., 2011; Lamus et al., 2012] do consider temporal dependence of source current
dipoles as well as local (neighboring) spatial dependence, but they do not model the possibly long-
range dependence between regions. Biases due to these assumptions in the first step can not be
adjusted in the second step and thus may result in additional errors in the connectivity analysis.

An alternative framework is to solve the source localization problem and estimate functional con-
nectivity jointly in one step. Some previous methods have explored this direction. For example,
the dynamical causal modeling method (DCM [David et al., 2006]) assumes that there is a single
source current dipole in each of the pre-defined ROIs, and that only these current dipoles in the
defined ROIs contribute to the signals in the sensor data. In the DCM, the neural activities in the
ROIs are described by a complicated nonlinear dynamical system constrained by neurophysiolog-
ical knowledge, with time-invariant parameters describing how the current activities in the ROIs
are statistically dependent on those in the previous time step. Another method by Fukushima et al.
[2015] does not use pre-defined ROIs, but builds a time-invariant multivariate autoregressive model
to characterize the dependence across all source points. The coefficients in this high-dimensional
multivariate autoregressive model are regularized by a sparsity-inducing prior and more impor-
tantly constrained by structural white matter connectivity. In simulation studies, Fukushima et al.
[2015] demonstrated that their one-step model better reconstructed the source activities and the
dependence structure than several popular two-step methods, when their model assumptions rea-
sonably held.

Both the DCM and the method by Fukushima et al. [2015] are pioneering explorations demonstrat-
ing the possible advantage of the one-step framework. However, in order to regularize the problem,
they each have their own specific assumptions (e.g., complicated nonlinear models, time-invariant
dependence, the availability of accurate structural connectivity constraints, etc.), which may not
always be satisfied in practice. In this chapter, we propose novel one-step models that estimate
functional connectivity across pre-defined ROIs directly from the sensor recordings, using differ-

38



ent assumptions and formulations from those by David et al. [2006] and Fukushima et al. [2015].
We assume that we are given p ROIs, each encompassing multiple source points, and that each
ROI has a time-varying representative activity. We also assume that at each time point t, the cur-
rent dipole of each source point within an ROI is independently distributed as a Gaussian variable,
with a mean determined by the ROI activity and a variance that is shared across all source points
within the ROI. In addition, the source current dipoles outside any ROIs are also modeled as i.i.d.
Gaussian variables with a zero mean and a shared variance. Along with the forward projection
from the source space to the sensor space, we have a hierarchical probabilistic model linking the
ROI activities and the sensor observations at each time point. By specifying the dependence model
across ROIs with some parameters, and eliminating the source current dipoles (i.e., integrating
over all possible values of source current dipoles), we can estimate the dependence parameters
directly from the sensor data.

In Section 4.2, we first introduce a simplistic model at a fixed time point t, where the activities in the
p ROIs are represented as a multivariate Gaussian variable. In this case, the functional connectivity
across the ROIs is expressed in the covariance matrix of the Gaussian variable, which is estimated
from the sensor observations in multiple trials. Next, we extend the simplistic model further,
considering the joint spatio-temporal activity of the p ROIs at all time points in a trial. Again,
we model such a spatial-temporal activity as a large multivariate Gaussian variable, assuming
its covariance is a Kronecker product of a spatial covariance matrix and a temporal covariance
matrix. After estimating the two matrices, we mainly focus on the spatial covariance matrix, which
reflects the cross-region functional connectivity. The first model above focuses on the functional
connectivity at a single time point but does not consider temporal dependence; the second model
includes a description of temporal dependence, but it is mainly designed to characterize stationary
neural activities. In some cases, the functional connectivity can be highly dynamic (i.e., time-
varying). Thus in Section 4.3, we introduce a state-space model that represents the ROI activities
with a time-varying autoregressive model of order 1, which can capture non-stationary neural
activities and describe time-varying functional connectivity. The Python code of the three models
above can be found in github.com/YingYang/MEEG_connectivity.

Using simulations, we demonstrate that our models outperformed the two-step methods that exploit
the commonly used MNE, in cases where our model assumptions hold. However, in the scope of
this thesis, we have not included empirical comparisons with the other existing one-step methods
[David et al., 2006; Fukushima et al., 2015]. The assumptions in our models and in the other
existing one-step models differ in terms of whether there are pre-defined ROIs, whether source
points outside of the ROIs are modeled, whether the dependence structure is time-varying, and
so on. In fact, the assumptions in each method are more general than the others in some ways
but less general in other ways. Here, we do not claim that our model assumptions are universally
applicable, but we hope our models, as new methodological tools in the one-step framework, can
widen the range of options for researchers to choose from.
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4.2 One-step models of cross-region covariance

4.2.1 Cross-region covariance at a fixed time point

In this subsection, we simplify the problem by only focusing on the functional connectivity across
p given regions of interest (ROIs) at a fixed time point t, which is modeled as the covariance matrix
of the activity in the p ROIs across independently and identically distributed (i.i.d.) trials. More
specifically, we assume that each ROI contains some number of source points, and that within each
ROI, there is a one-dimensional latent variable representing the mean activity across the source
points within this ROI 1. Given this latent variable, the individual source current dipoles within the
ROI can be modeled as this mean activity of the ROI plus some additional random noise, which
we call source-space noise hereafter. Both the ROI latent variables and the source-space noise
are projected into the sensor space by the forward model in MEG or EEG, and the goal of our
one-step analysis is to estimate the cross-region covariance of the p-latent variables directly from
the multi-trial sensor observations.

4.2.1.1 Model formulation

We assume there are q i.i.d. observations at time t from q trials, and there are n sensors and
m source points covering the bilateral cortical surfaces. Let yt ∈ Rn denote the readings form
the n sensors at time t in an arbitrary trial. Correspondingly, let Jt ∈ Rm denote the electric
current dipoles at the m source points, among which each current dipole is perpendicular to the
local cortical surface. Let ut ∈ Rp denote the p latent variables of the p ROIs at time t in the
corresponding trial (i.e., ut[i] corresponds to the ith ROI (i = 1, · · · , p)). We assume the following
distribution of ut

ROI model: ut ∼ N (0,Qt). (4.1)

Here the zero-mean assumption can be met practically if we subtract off the sample mean across
trials from the sensor readings. The covariance matrix Qt represents the functional connectivity
among the regions at time t; therefore it is the main parameter of interest.

Let Ai be the set of indices of the source points in the ith ROI. For any l ∈ Ai, the electric current
dipole of the lth source point at time t in the trial, denoted by Jt[l], is modeled as the mean activity
across the source points in the ROI (i.e., the latent variable in the ROI), ut[i], plus a noise term,
wt[l], which is independent of ut[i]. Here, the vector wt ∈ Rm denotes the source-space noise
at all source points at time t. In addition, we assume that for all l ∈ Ai, wt[l]

i.i.d∼ N (0, σ2
i ); that

is, the source-space noise is independently distributed as a Gaussian variable for each source point

1The latent variable can also be extended to a more general case; see the model formulation below.
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within the ROI, with a zero mean and a variance term σ2
i , which is shared within the ROI.

Jt[l] = ut[i] +wt[l], wt[l] ∼ N (0, σ2
i ), for l ∈ Ai, (4.2)

Additionally, we denote the indices of sources points outside of any ROIs by A0 = {l,∀l /∈
∪pi=1Ai}. For each of these source points, we assume the electric current dipole at time t only
includes the i.i.d. source-space noise term, with a zero mean and a variance σ2

0 , which is shared by
all the source points in A0.

Jt[l] = wt[l], wt[l] ∼ N (0, σ2
0), for l ∈ A0. (4.3)

An illustration of the model is shown in Figure 4.1.

  

...

...

...
sensor space source space

Latent ROI activity (mean 
activity within each ROI)

sensor model source model ROI model

Figure 4.1: Illustration of the one-step cross-region covariance analysis at time point t, where the latent ac-
tivity (ut[i]) represents the mean activity across the source points within the ROI (Ai). Here, for simplicity,
we include two ROIs as an example.

Writing Equations (4.2) and (4.3) in a concise way, we have

source model: Jt = Lut +wt, wt ∼ N (0,QJn) (4.4)

where QJn is an m × m diagonal matrix and QJn [l, l] = σ2
i if l ∈ Ai, for l = 1, 2, · · · ,m and

i = 0, 1, 2, · · · , p. The matrix L is of size m × p, where L[l, i] represents the contribution of the
latent variable in the ith ROI to the lth source point. That is, if the lth source point is in the ith ROI,
L[l, i] = 1, otherwise L[l, i] = 0. In a simple toy example, if there are p = 2 ROIs and m = 7

source points, and A1 = {1, 2, 3};A2 = {4, 6};A0 = {5, 7}, then we have

L =



1 0

1 0

1 0

0 1

0 0

0 1

0 0
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andQJn = diag{σ2
1, σ

2
1, σ

2
1, σ

2
2, σ

2
0, σ

2
2, σ

2
0}.

We can also extend this model to a more general case, where L[l, i]s for all l ∈ Ai, l = 1, · · · ,m
for each i = 1, · · · , p can take any real values (even negative values) besides 1. In this case, each
source current dipole in an ROI is distributed with the mean (L[l, i]ut[i]). Such an extension can
more flexibly describe the contributions of the latent ROI activity to the source current dipoles,
especially because of the following reason. Here the source space is defined as a mesh covering
the cortical surfaces, where the current dipole at each source point is perpendicular to the local
surface. Due to the folding of the cortical surfaces, the current dipoles within an ROI can have
opposite orientations (e.g., on each side of a gyrus as shown in Figure 4.2). Now, if we define
the latent ROI activity as the average of the vector-valued current dipoles, where we do vector
summation including the orientations, instead of summing the scalar-valued dipoles constrained to
their orientations (as in the case with 0/1 entries in L), the inner products between the latent ROI
current dipole (the blue arrow in Figure 4.2) and the individual source current dipoles (the black
arrows in Figure 4.2) can vary across source points; for some source points, the inner products
can be negative. In this case, the contribution of the latent ROI activity to different source points
can be expressed in the real-valued entries of L (i.e., L[l, i]s for all l ∈ Ai, l = 1, · · · ,m for
each i = 1, · · · , p), and these entries can be learned from the data. Note that we still fix the
entries in L that correspond to the source points outside of each ROI to zero—L[l, i] = 0 if
l 6∈ Ai, l = 1, · · · ,m for each i = 1, · · · , p—as we assume that each source point can only belong
to at most one ROI and the ROIs do not overlap.

  

Figure 4.2: Illustration of the latent ROI activity (blue) and the current dipoles of individual source points
(black) in the extended case.

Finally, given Jt, the n-dimensional sensor readings in the trial follow the forward model below.

sensor model: yt = GJt + et (4.5)

whereG ∈ Rn×m is the forward matrix and et ∼ N (0,Qe) is the sensor noise, assuming the noise
covariance matrix Qe is pre-computed from empty-room recordings or baseline recordings (while
the participant is not doing relevant tasks).

As illustrated in Figure 4.1, putting together what we have described so far, we have the following
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hierarchical model relating the p-dimensional ROI latent activity ut to the sensor readings yt.

ut ∼ N (0,Qt)

(Jt|ut) ∼ N (Lut,QJn)

(yt|Jt) ∼ N (GJt,Qe)

(4.6)

Let f(·) denote the probability density function in general; we have

f(yt|ut) ∝
∫
f(yt|Jt)f(Jt|ut)dJt,

by integrating Jt out, we have

ut ∼ N (0,Qt)

(yt|ut) ∼ N (GLut,Qe +GQJnG
′).

(4.7)

In other words, the conditional distribution of (yt|ut) can be described as

yt = GLut + ηt

ηt ∼ N (0,Qe +GQJnG
′).

(4.8)

Note that the covariance of the new noise ηt in the sensor space is a sum of the sensor noise
covarianceQe and the projection of source-space noise covarianceGQJnG

′.

Similarly, by further integrating ut out, we have the marginal distribution of yt below.

f(yt) =

∫
f(yt|ut)f(ut)dut

yt ∼ N (0,Qe +GQJnG
′ +GLQtL

′G′) (4.9)

which shows a direct relationship between the cross-ROI covariance Qt and the sensor readings
yt. This provides us a way of solving forQt using maximum-likelihood estimation.

4.2.1.2 Parameter estimation

We have been using ut, Jt and yt to denote the corresponding variables in any arbitrary trial. In
the text below, we add the superscript ·(r) (e.g., y(r)

t ), when it is necessary to refer to these variables
specifically in the rth trial (r = 1, · · · , q).

In our model above,Qt andQJn (or σ2
i , i = 0, 1, · · · , p) are unknown parameters to be estimated,

and we are mainly interested in Qt. The sensor readings across all trials (i.e., y(r)
t s), G and Qe

are given. The weight matrix L can be a fixed “0/1” matrix as described, which is known, if the
ROI latent variable represents the mean activity across the source points within each ROI (i.e., the
mean of the scalar activities); in the extension where L[l, i]s for all l ∈ Ai, l = 1, · · · ,m for each
i = 1, · · · , p can be any real values, we can treatL as an unknown parameter. In the latter case, the
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problem can be unidentifiable without any penalization. We set L[l, i] = 0 if l 6∈ Ai, l = 1, · · · ,m
for each i = 1, · · · , p, and also add additional priors on the non-zero entries in L to encourage
spatial smoothness. Optional priors ofQt andQJn can be added to further regularize the problem.
Below we discuss how to solve for the unknown parameters (with the priors).

According to Equation (4.9), we can solve for the parameters Qt, QJn and L by minimizing
the negative log-likelihood of {y(r)

t }
q
r=1, which we denote by “nllh”, plus the penalty functions

corresponding to the negative logarithms of the probability density functions of the priors on Qt,
σis and L, which we denote by “Pen(Qt), Pen(σi) and Pen(L)”. Therefore, the objective function
to be minimized is

obj = nllh + Pen(Qt) +

p∑
i=0

Pen(σi) + Pen(L).

We use coordinate descent to alternate among the optimization for Qt, QJn and L. That is, we
optimize each θ ∈ {Qt,QJn ,L} in each iteration while fixing the other two parameters, until the
change of the objective function is small enough. Each θ is optimized with the gradient descent
algorithm with backtracking (Algorithm 4).

Algorithm 4: The gradient descent algorithm to minimize the objective function obj(θ) for
each θ with backtracking

Data: the objective function obj(θ), the gradient∇obj = ∂obj(θ)
∂θ

, an initial value of θ, a
positive scalar L0 that determines the step size, a scalar η > 1

Result: θ that yields the local minimum of obj(θ)

initialization: set θ to the initial value ;
while the difference of the objective between two iterations is not small enough do

L← L0;
while obj(θ − 1

L
∇obj) > obj(θ)− 1

2L
‖∇obj‖22 do

L← ηL;
end
θ ← θ − 1

L
∇obj;

end

Below we present the formulation negative log-likelihood and the corresponding gradients. The
negative log-likelihood of the multi-trial sensor data is

nllh = q log det(Qyt) +

q∑
r=1

(y
(r)
t )′Q−1yt (y

(r)
t ) = q log det(Qyt) + trace(Ỹ ′t ỸtQ

−1
yt )

Qyt = Qe +GQJnG
′ +GLQtL

′G′

= Qe +

p∑
i=0

σ2
i (G[:, l ∈ Ai]G[:, l ∈ Ai])′ +GLΓtΓ

′
tL
′G′

(4.10)
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where Ỹt ∈ Rq×n denotes the sensor data of all q trials at time t (i.e., Ỹt[r, :] = (y
(r)
t )′). In

addition, since Qt must be a positive definite matrix, we re-parametrize it using the Cholesky
decomposition Qt = ΓtΓ

′
t where Γt is a full rank p× p lower triangular matrix. The G[:, l ∈ Ai]

term in Equation (4.10) denotes the columns of G corresponding to the source points in Ai for
i = 0, 1, · · · , p. The gradient of the negative log-likelihood with respect to Γt, L and σis are listed
below (Equation (4.11)), and the derivations can be found in the Appendix (Section 4.5.1.2).

∂llh
∂Qyt

= qQ−1yt −Q−1yt Ỹ ′t ỸtQ−1yt

∂llh
∂Γt

= 2L′G′
∂llh
∂Qyt

GLΓt

∂llh
∂L

= 2G′
∂llh
∂Qyt

GLΓtΓ
′
t

∂llh
∂σi

= 2σitrace
(

(
∂llh
∂Qyt

)′(G[:, l ∈ Ai]G[:, l ∈ Ai]′)
)

(4.11)

We defer the formulation of Pen(L) and the optional penalty functions (Pen(Qt) and Pen(σi)), as
well as the corresponding gradients to the appendix (Section 4.5.1.3).

4.2.2 Cross-region covariance with Kronecker structure

In this section, we again assume that the p× 1 vector ut represents the latent activity of the p ROIs
at time t. However, we consider all of the T time points within a trial. Let U ∈ Rp×T denote the
ROI latent activity in an arbitrary trial, whereU = (u1,u2, · · · ,uT ). We concatenate the columns
ofU into a large (pT )-dimensional vectoru, and focus on its pT×pT covariance matrixQu across
trials, which reflects the spatio-temporal dependence across the p ROIs. We further assume that
Qu can be decomposed as a Kronecker product of a T ×T temporal covariance matrix (QT ), and a
static p× p spatial covariance matrix (QS) (i.e.,Qu = QT ⊗QS , where ⊗ denotes the Kronecker
product operator). Note that this assumption supposes that the spatial-temporal dependence among
the p ROIs can be represented by simply multiplying entries in the spatial covariance matrix and
the temporal covariance matrix, and the spatial correlation structure across ROIs is stationary over
time. The spatial covariance QS is of main interest. By modeling the temporal dependence,
we may utilize multiple time points instead of a single time point to better estimate the spatial
covariance. In practice, if the dependence between the ROIs is time-varying, we can segment the
time windows into short and relatively stationary windows before applying this model.

Let vec(·) denote the operation of concatenating columns in a matrix; then we have u = vec(U).
As mentioned above, we assume vec(U) ∼ N (0,Qu). Let J ∈ Rm×T be the m source current
dipoles at all T time points in the trial, and let Y ∈ Rn×T be corresponding sensor time series.
Given U , we assume a similar model as Equation (4.4), where vec(J) has a Gaussian distribution
around the mean vec(LU ), and with a covariance matrixQJT⊗QJn . HereQJT is a T×T temporal
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covariance matrix of the source-space noise, andQJn is defined as in Section 4.2.1. Together with
the forward model in Equation (4.5), we have

vec(U) ∼ N (0,QT ⊗QS)

vec(J)|vec(U) ∼ N (vec(LU ),QJT ⊗QJn)

vec(Y )|vec(J) ∼ N (vec(GJ), I
T×T
⊗Qe).

(4.12)

To further reduce the complexity of the model, we assume QJT = QT . That is, the temporal
covariance of the source-space noise is the same as the temporal covariance of the ROI latent
variables. Also, after pre-whitening (left multiplying Q−1/2e with Y , G and the sensor noise), we
can assume the new spatial covariance of the sensor noiseQe is transformed into an identity matrix
In×n. Below, let us still use G and Y to denote the pre-whitened forward matrix and sensor data.
Under these assumptions, we eliminate J and U and obtain the following marginal distribution
(see the derivations in the appendix in Section 4.5.2.1).

vec(Y ) ∼ N (0, I
T×T
⊗ I
n×n

+ ( I
T×T
⊗G)(QT ⊗QJn)( I

T×T
⊗G)′ + ( I

T×T
⊗GL)(QT ⊗QS)( I

T×T
⊗GL)′

= N (0, ( I
nT×nT

+QT ⊗ (GQJnG
′ +GLQSL

′G′))

(4.13)

Again, we can estimate QT and QS , as well as QJn and L, by maximizing the marginal log-
likelihood of the trial-by-trial sensor readings plus optional penalty terms representing priors on
the parameters. We denote the sensor observation at all T time points in the rth trial by Y (r)

hereafter (r = 1, · · · , q). Let QY = (I + QT ⊗ (GQJnG
′ + GLQSL

′G′). Then the negative
log-likelihood, denoted by nllhkron, is

nllhkron = q log det(QY ) +

q∑
r=1

vec(Y (r))′Q−1Y vec(Y (r))) (4.14)

The same priors in Section 4.2.1 can be used 2. Again, we can solve for the unknown parameters
using the coordinate descent method—alternating among the optimization for QT , QS , QJn and
L with the gradient descend algorithm (Algorithm 4). Re-parametrization of QT and QS with
Cholesky decompositions also applies here. The log-likelihood function and its gradients with
respect to each parameter can be effectively computed utilizing the Kronecker structure. We defer
the details to the Appendix in Section 4.5.2.2.

4.2.3 Comparison with a two-step approach using the MNE in simulations

Using simulated data, we compared our one-step models with a two-step method using the commonly-
used source localization method—the minimum norm estimate (MNE [Hamalainen and Ilmoniemi,

2We note that the Kronecker structure of Qu is non-identifiable in the sense that cQT ⊗ 1/cQS = QT ⊗QS , for
any non-zero real scalar c. We can use the priors defined forQt in Section 4.2.1 to regularizeQT andQS to alleviate
the effect of this issue.
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1994]). In Step 1, we obtained the minimum-norm estimate of Jt for each time point in each trial.
Given G,Qe, a prior Jt ∼ N (0, (1/λ)I), λ > 0 and the corresponding yt, the estimate was
Jt ← G′(GG′ + λQe)

−1yt. After Jt was estimated, we computed ut that represented the latent
activity in individual ROIs, according to Equation (4.4). Because we simulated the data, we knew
the true values ofL, so we plugged in the trueL to estimate the least square solution of ut, assum-
ing QJn was proportional to an identity matrix (no heteroskedasticity). This procedure was done
for each of the q trials. In Step 2, if we focused on a single time point t, we computed the covariance
of the estimated ut across trials, as an estimate ofQt; if we used the Kronecker assumption, based
on the estimated ut of all T time points across all trials, we obtained the maximum-likelihood
estimator of QT and QS (see the appendix in Section 4.5.2.4 for details). We label the two-step
procedure mneTrueL for the case with a single time point t, and mneTrueLKronecker for the case
with the Kronecker assumption.

We evaluated how well the one-step and the two-step methods were able to estimate the spa-
tial connectivity—how similar the estimated Qt (in the single-time-point case) or QS (in the
Kronecker-structured covariance case) was to the true spatial covariance. The MNE inherently
shrinks the estimates of Jt (and thus ut) toward zero, so the resulting Qt or QS might have a dif-
ferent scale from the truth. Therefore in the evaluation, we looked at the correlation matrix derived
from Qt or QS , such that the marginal variance of the latent activity in each ROI was normalized
to 1. The positive or negative signs in yt only represented the directions of source current dipoles,
so both positive and negative correlations between two ROIs were meaningful. Hence, we took
the absolute values of the entries in the correlation matrix, which we term the absolute correla-
tion matrix hereafter. In addition, typically we would not know the true L in practice. In the
single-time-point case, we could compute the absolute values of pairwise of correlations between
all source points in two different ROIs and then take the mean across the pairs, as a summary of
the correlations between the ROIs. We also computed the absolute correlation matrix in this way;
the results are labeled mnePairwise below.

We simulated 306-dimensional MEG sensor data according to our model assumptions, using the
forward model of a real brain. The source space included m ≈ 8000 source points covering
the cortical surfaces in the two hemispheres, and each source point was assigned an orientation
perpendicular to the local cortical surface. Six ROIs were used (p = 6), including the bilateral
orbitofrontal regions, the bilateral parahippocampal regions and the bilateral lateral occipital re-
gions in the ventral visual cortex. We randomly sampled the positive definite spatial covariance
matrix QS = VSDSV

′
S , where entries in the p × p matrix VS were i.i.d. samples from a standard

normal distribution, and entries in the diagonal p×pmatrixDS were i.i.d. samples from a Gamma
distribution (shape = 0.5, scale = 1.0). We set T = 5, and definedQT [i, j] = exp(−0.1(i− j)2) if
i 6= j andQT [i, i] = 1.01. We sampled q = 320 trials of vec(U), with a zero mean and the spatio-
temporal covarianceQT ⊗QS . For each time point t, we sampled Jt according to Equation (4.4),
where σ2

i s in QJn were i.i.d samples from a Gamma distribution (shape = 2, scale = 1). The rele-
vant (non-zero) entries in each column of the trueLmatrix (L[l ∈ Ai, i] for l = 1, · · · ,m and each
i = 1, · · · , p) were either 1 or -1, depending on whether the local orientation of the source point
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had a positive or negative dot product with the “principal” orientation in the ROI, which was the
first singular vector of all orientations in that ROI. The unit of the source activity was nanoamphere
meter (nAm). Finally, the sensor data was generated according to the forward model, where the
sensor noise covariance matrix Qe was from a real data set in MNE-Python. The forward matrix
G in the simulations was not normalized in any way to reduce depth bias in both the one-step and
the two-step methods.

When applying our one-step model, only a prior on L mentioned above was used (i.e., we did
not use priors on other parameters). See the appendix in Section 4.5.1.3 for details on the prior.
Multiple values of the tuning parameter λwere used in the two-step methods with the MNE. For the
one-step model at a fixed time point, as well as the two-step methods with the MNE at a fixed time
point (mneTrueL and mnePairwise), only data in the middle time point (t = 3) were used. For the
one-step Kronecker-structured covariance model and the two-step method mneTrueLKronecker,
data in all T = 5 time points were used. The initial value of QS in the one-step Kronecker model
was set as the estimate ofQt by the one-step single-time-point model.

Figure 4.3a shows the absolute correlation matrices obtained using our one-step methods, both
for a fixed time point (one-step t) and under the Kronecker assumption (one-step Kronecker), as
well as the absolute correlation matrices by the two-step MNE methods (mneTrueL, mnePairwise
and mneTrueLKronecker) in one example simulation. For the latter, we only show the results for
one λ value, but the results with other λ values were visually similar. The results by the one-step
methods were visually more similar to the truth than those by the two-step MNE methods.

To further quantify the similarity to the truth, we used two metrics. The first was the root mean
squared error (RMSE) of the absolute correlation matrix compared to the truth; the second was
the correlation of the concatenated upper triangular entries of the absolute correlation matrix (ex-
cluding the diagonal) between the estimates and the truth, which reflected how similar to the truth
the pairwise correlation pattern across ROIs was. The left column in Figure 4.3b shows the av-
eraged metrics across 5 independent simulations, where the error bars show the standard errors.
For mneTrueL, mnePairwise and mneTrueLKronecker, where multiple values of λ were used, only
the best metric across the different tuning parameters in each simulation was used to compute the
mean. The mean across simulations of the paired differences in the metrics between the two-step
methods and the one-step method in the single-time point case are also plotted in the right column.
So is the mean of the paired differences between the two versions of one-step methods (the Kro-
necker version versus the single-time-point version). The one-step methods yielded better metrics
(smaller RMSE and larger correlation with the truth) than the two-step methods in these simula-
tions. Compared with the one-step method for a fixed time point, the one-step method with the
Kronecker-structured covariance gave slightly better performance, by utilizing data from multiple
time points.
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(a) Visualization of absolute correlation matrices in one simulation. The axes are indices of ROIs.
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(b) Evaluation of the performance. In the left column, RMSE denotes the root mean squared error of the
absolute correlation matrices compared with the truth, and corr upper tri denotes the correlation of the
upper triangular entries of the absolute correlation matrices with the truth. Differences between all the
other methods and the one-step single-time-point method are shown in the right column. The error bars
denote standard errors across 5 independent simulations.

Figure 4.3: Simulation results: estimating the cross-region correlation matrix.

4.2.4 Analytical comparison with the two-step approach using the MNE

Here, we aim to give an intuitive explanation on why the one-step approach was better. For sim-
plicity, we consider the cross-region covariance at one single time point, and assume the covariance
of sensor noise Qe = I after pre-whitening. Let us also assume the latent activity of each ROI
represents the mean activity across source points in the ROI, (i.e. L is a known 0/1 matrix), and the
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true source activity is generated according to our model (Figure 4.1 and Equation (4.6)). Then the
marginal covariance of sensor data at time t across trials is cov(yt) = I+GQJnG

′+GLQtL
′G′

according to Equation (4.9).

If we use the two-step MNE method with a penalization parameter λ, then the estimated source
activity in the first step is Ĵt = (G′G + λI)−1G′yt. If L is known, we can further estimate
ut using the least square, ût = (L′L)−1L′Ĵt = (L′L)−1L′(G′G + λI)−1G′yt. In the second
step, we compute the empirical covariance of ût, which concentrates on the theoretical covariance
below

cov(ût) = (L′L)−1L′(G′G+ λI)−1G′cov(yt)G(G′G+ λI)−1L(L′L)−1

= (L′L)−1L′(G′G+ λI)−1G′(I +GQJnG
′ +GLQtL

′G′)G(G′G+ λI)−1L(L′L)−1

= (L′L)−1L′(G′G+ λI)−1G′G(G′G+ λI)−1L(L′L)−1 (4.15)

+ (L′L)−1L′(G′G+ λI)−1G′GQJnG
′G(G′G+ λI)−1L(L′L)−1 (4.16)

+ (L′L)−1L′(G′G+ λI)−1G′GLQtL
′G′G(G′G+ λI)−1L(L′L)−1 (4.17)

Let G = UGDGVG be the singular value decomposition of G; that is, UG has orthonormal
columns, VG has orthonormal rows, and DG is a diagonal matrix, whose dimension is the rank of
G. Then (G′G + λI)−1(G′G) = V ′GD̃GV , where the entries in DG are D̃G[i, i] = (DG[i,i])

2

(DG[i,i])2+λ
.

When λ is small, D̃G ≈ I and (G′G + λI)−1(G′G) ≈ I . In this case, the last term in cov(ût)

(i.e., (4.17)) is approximately Qt, yet the first two terms ((4.15) and (4.16)) are biases due to the
sensor noise covariance Qe = I and the source noise covariance QJn , which do not go to zero
even with an infinite number of observations. When λ is relatively large, the third term (4.17) is a
shrunken estimator of Qt depending on G and L, and the first two terms, although also shrunken,
can still make cov(ût) relatively far from the trueQt.

In contrast, if we use no additional priors, our one-step approach solves forQt by maximizing the
marginal likelihood of yt. If the number free parameters is not too large compared with the number
of sensors and if the global optimum is found, the one-step solution is a statistically consistent
estimator of Qt, and its efficiency is guaranteed by the Cramer-Rao bound [Wasserman, 2010].
Therefore, in our simulations, where the data was generated according to our source model, it was
not surprising that the one-step methods gave better results. The similar arguments apply to the
Kronecker-structured covariance case.

If our model assumptions about the latent ROI activity and the source activity are not met, the
advantage of the one-step methods may be reduced. Some violations of the assumptions may have
minor effects on the performance. For example, if all important ROIs are included, then we expect
our one-step models to give reasonable results even if Equation (4.4) is not exactly correct. Given
that L and σ2

i are allowed to vary, the models should be able to fit the data flexibly. In fact, in the
simulations in Section 4.2.3, the true L, which contained +1 and -1s, was hard to learn given our
prior on L, yet in our results, although the estimated entries in L was only weakly correlated with
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the truth (instead of being close to the truth), the one-step method still performed better than the
two-step methods in terms of estimating the correlation structure across ROIs.

However, we do think there are other assumptions that are critical for the good performance of
the one-step models. One of such assumptions is the correctness of ROI specification. If some
ROIs that generate the true source activity is not modeled, our one-step models may have difficulty
in even estimating the marginal connectivity of the included subset of ROIs. Assume there are p
ROIs that contribute to the data, but only the first p1 < p ROIs are included in fitting the one-step
models, and the remaining p2 = p−p1 ROIs are missing. For simplicity, let us consider the single-
time-point case. Let ut1 and ut2 be the latent activity in the included p1 ROIs and the missing p2
ROIs respectively. Similarly, we partition the covariance of ut in the following way.

Qt =

(
Qt11 Qt12

Qt21 Qt22

)
LetL1 andL2 be the corresponding columns inL for the p1 and p2 ROIs (i.e., L

m×p
= ( L1

m×p1
, L2
m×p2

)).

The covariance of the sensor data is

cov(yt) = Qe +GQJnG
′ +GL1Qt L

′G′

= Qe + σ2
0G[:, l ∈ A0]G[:, l ∈ A0]

′ +

p1∑
i=1

σ2
iG[:, l ∈ Ai]G[:, l ∈ Ai]′

+

p∑
i=p1+1

σ2
iG[:, l ∈ Ai]G[:, l ∈ Ai]′ (4.18)

+GL1Qt11L
′
1G
′

+G(L1Qt12L
′
2 +L2Qt21L

′
1 +L2Qt22L

′
2)G

′ (4.19)

If we only model the p1 ROIs, we replace the term (4.18) with
∑p

i=p+1 σ
2
0G[:, l ∈ Ai]G[:, l ∈ Ai]′,

which might not cause large errors if σ2
0 ≈ σ2

2 . However, we also miss the term (4.19). Missing this
term makes the marginal likelihood of sensor data incorrect, and the estimated covariance matrix
across the p1 included ROIs may be different from the true marginal covariance. In fact, only when
Qt12 andQt22 are close to zero, can the one-step results be close to the marginal covariance across
the p1 ROIs. In contrast, the two-step methods are less susceptible to missing ROIs, because they
do not rely on the pre-defined ROIs in the source localization step.

4.3 Cross-region dynamic connectivity: a state-space model

In many cases, we want to estimate the time-lagged dependence in the connectivity analysis, that
is, whether previous activity in a region can predict later activities in other regions. Such time-
lagged connectivity can help us to generate hypotheses about how information flows in a dynamic
way. However, the two one-step models we just introduced, which represent the connectivity with
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the covariance matrix across ROIs, are not designed to estimate time-lagged connectivity. The
one-step model in the single-time-point case (in Section 4.2.1) considers the covariance at a fixed
time point, ignoring time-lagged dependence. The second model we introduced (in Section 4.2.2)
considers the multidimensional activities in all ROIs at all T time points in a trial. In this case,
if the joint spatio-temporal covariance matrix can be estimated well with minimal constraints, it
can reflect time-lagged dependence; however, for tractability, we assumed a Kronecker structure
of the covariance, which limits the model’s ability to describe time-lagged dependence. Moreover,
in many cases, the brain activity during perceptual or cognitive tasks is not stationary, and the
spatio-temporal dependence across brain regions may vary with time. However, the two models
introduced in Section 4.2.1 and 4.2.2 are not designed to model time-varying connectivity. To
tackle these issues, in this section, we introduce a state-space model, where the state variable is the
ROI latent activityut. This state variable is represented by a time-varying linear dynamical system,
which can flexibly model non-stationary time-lagged connectivity. For simplicity, we assume that
the ROI latent activity ut represents the mean current dipoles of source points within individual
ROIs. In other words, we assume that the m × p matrix L is a pre-defined “0/1” matrix that
represents whether each source point is in or outside of each ROI, and we do not allow it to change
when fitting the model.

4.3.1 Model formulation

Assuming that across q i.i.d. trials, the ROI activity (i.e., the state variable) ut has a zero mean.
This assumption is practically met if we subtract the mean across trials from the sensor observa-
tions. We use a time-varying autoregressive model of order 1 to describe the dynamics of the state
variable ut, assuming at each time point t = 0, 1, · · ·T 3.

ROI model:
u0 ∼ N (0,Q0)

ut = Atut−1 + εt, εt ∼ N (0,Qε), for t = 1, · · · , T.
(4.20)

Here,Q0 is a p×p covariance matrix of ut at t = 0, and the p×pmatricesAts are the time-varying
autoregressive coefficients, which describe lagged dependence across ROIs. The p-dimensional
error term εt is independent of the past, with a mean zero and a covariance matrixQε.

At each time point t, the source model is the same as the one described in Equation (4.2) and Equa-
tion (4.3), or more concisely in Equation (4.4) (i.e., Jt = Lut +wt and wt ∼ N (0,QJn)); given
Jt, the sensor data yt is determined by the forward model (yt = GJt + et where et ∼ N (0,Qe)).
Together, as shown in Figure 4.4, our one-step state-space model includes the following conditional

3Here, slightly differently from the previous notation, we assume there are T + 1 time points in a trial and the time
index t starts at 0.
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distributions

u0 ∼ N (0,Q0)

(ut|ut−1) ∼ N (Atut−1,Qε)

(Jt|ut) ∼ N (Lut,QJn)

(yt|Jt) ∼ N (GJt,Qe)

and by eliminating Jt, we have the following time-varying state-space model

u0 ∼ N (0,Q0)

ut = Atut−1 + εt, εt ∼ N (0,Qε)

yt = GLut + ηt, ηt ∼ N (0,Qη) Qη = Qe +GQJnG
′ +GLQεL

′G′.

(4.21)

  

...

...

...
sensor space source space

state space (ROI means)

sensor model source model ROI model

Figure 4.4: Illustration of the state-space model of cross-region dynamic connectivity. There are two ROIs
in this example.

4.3.2 Fitting the parameters using the expectation-maximization (EM) al-
gorithm

In our time-varying state-space model (Equation (4.21)), Qe, G and L are given and fixed. We
observe the sensor data from q i.i.d. trials, denoted by {y(r)

t }
T,q
t=0,r=1, where the superscript ·(r)

corresponds to the rth trial. Given these, we need to estimate the unknown parameters, denoted by
θ = {{At}Tt=1,Q0,Qε, {σ2

i }
p
i=0}, where {σ2

i }
p
i=0 determines QJn (i.e., QJn [l, l] = σ2

i if l ∈ Ai).
Among the unknown parameters, we are mainly interested in {At}Tt=1, which describes the spatio-
temporal dependence.

Let f(·) denote probability density functions in general. We can obtain θ that maximizes the
log-likelihood of the sensor data—arg maxθ log f{y(r)

t }
T,q
t=0,r=1;θ, where {y(r)

t }
T,q
t=0,r=1 denotes the
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sensor time series across in all q trials. We can also add additional priors on θ to regularize the
problem. Here, because there can be many parameters in {At}Tt=1 when T is large, we add a prior

f(θ) = f({At}Tt=1) ∝ exp(−(λ0

T∑
t=1

‖At‖2F + λ1

T∑
t=2

‖At −At−1‖2F )),

where ‖ · ‖F is the Frobenius norm of a matrix. This prior shrinks the entries of in Ats and
also encourages temporal smoothness of Ats. The hyper parameters λ0 and λ1 can be either pre-
specified or empirically chosen to achieve the largest cross-validated log-likelihood of the sensor
data. Now our goal of parameter estimation is to maximize the objective function

log f({y(r)
t }

T,q
t=0,r=1;θ) + log f(θ).

The state-space frame work allows us to exploit the commonly-used expectation-maximization
(EM) algorithm [Shumway and Stoffer, 1982], which includes an E-step and an M-step in each
iteration. The E-M algorithm uses the expectation of

log f({y(r)
t }

T,q
t=0,r=1, {u

(r)
t }

T,q
t=0,r=1;θ) + log f(θ)

under the posterior distribution of {u(r)
t }

T,q
t=0,r=1 given {y(r)

t }
T,q
t=0,r=1, which is easy to compute, to

approximate the objective function. Below we briefly describe the procedure. More details are in
the appendix in Section 4.5.3.1.

In the E-step, given an estimate of the parameters (denoted by θ̃), we use the forward and backward
steps in the Kalman smoothing algorithm [Shumway and Stoffer, 1982] to obtain the posterior
mean ofut, u

(r)
t|T

def
= E(u

(r)
t |{y

(r)
τ }Tτ=0), the posterior covariance ofut,P

(r)
t|T

def
= cov(u

(r)
t |{y

(r)
τ }Tτ=0),

and the posterior cross covariance of ut and ut−1, P
(r)
(t,t−1)|T

def
= cov(u

(r)
t ,u

(r)
t−1|{y

(r)
τ }Tτ=0), for each

t in each trial r. Here E(·) and cov(·) denote the expectation and the covariance. More details are
in Appendix and [Shumway and Stoffer, 1982].

In the M-step, we maximize the expectation of log f({y(r)
t }

T,q
t=0,r=1, {u

(r)
t }

T,q
t=0,r=1;θ) + log f(θ),

with respect to the posterior distribution f̃ def
= f({u(r)

t }
T,q
t=0,r=1|{y

(r)
t }

T,q
t=0,r=1; θ̃). Let trace(·) and

det(·) denote the trace and the determinant of a matrix. Given results in the E-step based on θ̃, the
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M-step is equivalent to minimizing three objectives separately

min
θ

(−Ef̃ (log f({y(r)
t }

T,q
t=0,r=1, {u

(r)
t }

T,q
t=0,r=1;θ))− log f(θ))

≡ min
Q0

L1 + min
Qε,{At}Tt=1

L2 + min
{σ2
i }
p
i=0

L3.
(4.22)

L1(Q0) = q log det(Q0) + trace(Q−10 B0) whereB0 =
∑q

r=1
(P

(r)
0|T + u

(r)
0|T (u

(r)
0|T )′) (4.23)

L2(Qε, {At}Tt=1) = qT log det(Qε) + trace(Q−1ε
∑T

t=1
(B1t −AtB

′
2t −B2tA

′
t +AtB3tA

′
t))

+ log f({At}Tt=1) (4.24)

whereB1t =
∑q

r=1
(P

(r)
t|T + u

(r)
t|T (u

(r)
t|T )′), B2t =

∑q

r=1
(P

(r)
(t,t−1)|T + u

(r)
t|T (u

(r)
(t−1)|T )′, )

B3t =
∑q

r=1
(P

(r)
(t−1)|T + u

(r)
(t−1)|T (u

(r)
(t−1)|T )′)

L3({σ2
i }

p
i=0) = q(T + 1) log det(Qη) + trace(Q−1η B4), whereQη = Qe +GQJnG

′, (4.25)

andB4 =
∑q

r=1

∑T

t=0
[(y

(r)
t −Cu

(r)
t|T )(y

(r)
t −Cu

(r)
t|T )′ +CP

(r)
t|TC

′)]

The optimization for the three separate objectives is relatively easy.

• For L1, the analytical solution isQ0 ← (1/q)(B0).

• For L2, optimization for {At}Tt=1 and Qε can be done in alternations. Given {At}Tt=1, Qε

has the analytical solutionQε ← 1/(qT )
∑T

t=1(B1t −AtB
′
2t −B2tA

′
t +AtB3tA

′
t). Given

Qε, we use gradient descent with back-tracking line search [Boyd and Vandenberghe, 2004]
to solve for {At}Tt=1, where the gradients are ∂L2

∂At
= 2Q−1ε (−B2t +AtB3t) + 2Dt, Dt =

λ1(2At−At+1−At−1)+λ0At for t = 2, · · · , T −1,Dt = λ1(A1−A2)+λ0A1 for t = 1,
andDt = λ1(At −AT−1) + λ0At for t = T .

• ForL3, we can also use gradient descent to solve for σi, with the gradient ∂L3
∂σi

= trace(( ∂L3
∂Qη

)′ ∂Qη
∂σi

),

where ∂L3
∂Qη

= Q−1η −Q−1η B4Q
−1
η and ∂Qη

∂σi
= 2σiG[:, l ∈ Ai]G[:, l ∈ Ai]′. HereG[:, l ∈ Ai]

denotes the columns inG corresponding to source points in the ith region.

Because the E-M algorithm only guarantees to find a local optimum, we use multiple initializations,
and select the solution that yields the best objective function log f({y(r)

t }
T,q
t=0,r=1) + log f(θ) (see

the appendix on computing log f({y(r)
t }

T,q
t=0,r=1;θ)).

4.3.3 Simulation

We compared this one-step state-space model with a two-step procedure using the MNE. In the
first step, we obtained the MNE estimates of Jt; then we averaged the MNE estimates for the
source points within each ROI, at each time point and in each trial respectively, and treated the
averages as an estimate of the ROI means (ut). In Step 2, according to the autoregressive model
in Equation (4.20), we estimated Q0, {At}Tt=1 and Qε by maximizing the sum of log-likelihood
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(log f({u(r)
t }

T,q
t=0,r=1)) and the logarithm of the prior ( log f({At}Tt=1)); the maximization is very

similar to the optimization for L2 in the M-step. Details are deferred to the appendix (Sec-
tion 4.5.3.2).

We simulated MEG sensor data according to our model assumptions. The source space was defined
as m ≈ 5000 source points covering the bilateral cortical surfaces of a real brain, with 6.2 mm
spacing on average, and n = 306 sensors were used. The sensor noise covariance matrix Qe

was estimated from real data. Two bilaterally merged ROIs were used: the pericalcarine area
(ROI 1) and the parahippocampal gyri (ROI 2) (see Figure 4.5a). We generated the autoregressive
coefficients for T = 20 time points, where for each At, the diagonal entries were set to 0.5, and
the off-diagonal entries were generated as a Morlet function multiplied by a random scaler drawn
uniformly from the interval (−1, 1) (see Figure 4.5b for an example). The covariancesQ0 andQε

were random positive definite matrices, whose diagonal entries were a constant a. The variances of
source space noise {σ2

i }
p
i=0 were randomly drawn from a Gamma distribution (shape= 2 and scale=

1). We used two different values, a = 2 and a = 5, where the relative strength of the ROI means
compared with the variances of source-space noise ({σ2

i }
p
i=0) were different. Each simulation had

q = 200 trials, and 5 independent simulations for each a value were generated. The unit of the
source activity was nanoampere meter (nAm).

When running the two-step method with the MNE for each simulation, a wide range of values of the
penalization parameter (λ) were used. When fitting the state-space model, multiple initializations
were used, including one of the two-step MNE estimates. In the prior of {At}Tt=1, we set λ0 = 0

and λ1 = 0.1.

For the fitted parameters {At}Tt=1 and Qε, we defined the relative error as the Frobenius norm
of the difference between the estimate and the true parameter, divided by the Frobenius norm
of the true parameter (e.g., for the true Qε and the estimate Q̂ε, the relative error was ‖Q̂ε −
Qε‖F/‖Qε‖F ). For different estimates by the two-step MNE method with different values of λ, the
smallest relative error was selected for comparison. Figure 4.5c and 4.5d show the relative errors
and paired differences in relative errors between the two methods, averaged across the independent
simulations, for {At}Tt=1 and Qε. In these simulations, the state-space model yielded smaller
estimation errors than the two-step method with MNE.

It is worth noting that the in the two-step method with the MNE, although the estimated ut could
be correlated with the true ut in the simulations, the magnitudes were much smaller. For example,
Figure 4.5f shows the true ut (blue) in one trial in ROI 2 in one simulation (α = 5), as well as the
estimated ut by the two-step MNE method (red), and the posterior estimate of ut by the state-space
model (green). The estimates from the two-step method with MNE were very close to zero. This
could be due to the shrinkage effect of the L2 penalty with a relatively large penalization parameter
λ. However, using a smaller λ resulted in noisy estimations of ut, which were not correlated with
the true ut.

56



  

ROI 1ROI 2

right hemisphere

left hemisphere

A[:,1,1] A[:,2,2]

A[:,1,2]

A[:,2,1]

(a)

0 5 10 15 20

time index

−1.0

−0.5

0.0

0.5

1.0
A[:,1,1]

truth

ss

mne

0 5 10 15 20
−1.0

−0.5

0.0

0.5

1.0
A[:,1,2]

0 5 10 15 20
−1.0

−0.5

0.0

0.5

1.0
A[:,2,1]

0 5 10 15 20
−1.0

−0.5

0.0

0.5

1.0
A[:,2,2]

(b)

2 5
a

−1.0

−0.5

0.0

0.5

1.0

A
 e

rr
o
r

ss

mne

diff ss-mne

(c)

2 5
a

−1.0

−0.5

0.0

0.5

1.0

Q
 e

rr
o
r

(d)

2 5
a

−1.0

−0.5

0.0

0.5

1.0

A
 s

ca
le

 o
ff

 d
ia

g

ss

mne

diff ss-mne

(e)

0 5 10 15 20

time index

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

u
 i
n
 2

t
h
 R

O
I

1e−8

truth

ss

mne

(f)

Figure 4.5: Simulation results. (a), Illustration of the two ROIs. Here At[i1, i2] represents the dependence
of activity in ROI i1 on the one-step-back activity on ROI i2, for i1, i2 = 1, 2. (b), The autoregressive
coefficients {At}Tt=1 of T = 20 time points in one example simulation (a = 5). Here A[:, i1, i2] indicates
the time-varying coefficients in At[i1, i2], for i1, i2 = 1, 2. (The legend: truth (blue), true values; ss
(green), estimates by the state-space model; mne (red), estimates by the two-step MNE method.) (c) and (d),
Comparison of the state-space model (ss) with the two-step MNE method (mne) in relative errors of {At}Tt=1

(c) and Qε (d). The yellow and the red bars show the averaged relative errors across the simulations, by the
one-step state-space method and the two-step method with the MNE. The magenta bar shows the averaged
paired difference between the two methods . The error bars show standard errors across the simulations. (e),
The relative errors of AR coefficients after scaling, averaged within the off-diagonal entries and averaged
across the simulations. (f), Visualization of ut in ROI 2 in one trial from one simulation. (The legend: truth
(blue), true values; ss (green), estimates by the state-space model; mne (red), estimates by the two-step MNE
method.)
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Although the autoregressive (AR) coefficients (Ats) should not be very sensitive to the magnitudes
of ut, when the shrinkage effect is different for each ROI, the off-diagonal entries in Ats, which
describe the dependence between different ROIs, might be affected. In contrast, the diagonal
entries, which describe the dependence of the ROI activity on the one-step-back history of itself,
are unlikely to be affected by the magnitudes of the estimates. To give the two-step method with
MNE some advantage to correct for the shrinkage, we also computed a different measurement of
relative error. LetAt denote the true AR coefficients. For each pair of ROIs (i, j), we multiply the
estimate (Ât) with a scalar ρ, such that

∑T
t=1(At[i, j] − ρÂt[i, j])

2 was minimized, and then we
defined the relative error as √∑T

t=1(At[i, j]− αÂt[i, j])2∑T
t=1(At[i, j])2

.

We took the average of the relative error after such scaling, for the off-diagonal (i, j) pairs (i.e.
i 6= j) (Figure 4.5e), and still observed that the state-space model yielded smaller errors than the
two-step method with the MNE.

4.4 Discussion

In this chapter, we have presented novel one-step models to directly estimate functional connectiv-
ity across pre-defined ROIs from sensor data. Compared with a two-step method using the MNE
and the same connectivity formulation (either through the covariance matrix or an autoregressive
model), the one-step models gave better results than the two-step method on simulated data, where
the assumptions about the relationship between the ROI activity and source activity were reason-
ably met.

It is worth noting that there are several practical issues about the one-step models. First, since
the optimization problem is not necessarily convex, the algorithms introduced here only guarantee
local optima; in this context, it is important to use good initialization. For example, we can use
the solutions in the two-step methods in the initialization or use multiple random initial values.
Secondly, the optimization problem is more difficult than that in the two-step approach; as a result,
our current implementation of the one-step models was computationally slower than that of the
two-step method; we look forward to speed up the algorithms with parallel computing in future
work.

One limitation of the work here is that we did not compare with other one-step models [David
et al., 2006; Fukushima et al., 2015]. In future work, we plan to perform more comprehensive
empirical evaluations of the available one-step methods. Another issue is there can be violations
of our model assumptions in practice. First, given the ROI means, the noise on source points could
be spatially and temporally correlated, rather than independently distributed. Secondly, as dis-
cussed in Section 4.2.4, if we fail to include an important ROI, the connectivity estimates may be
inaccurate—the estimates may not even be equivalent to the estimates when this ROI is marginal-
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ized out, due to the underdetermined nature of source localization. Thirdly, the assumption that
source points within an ROI share a common mean is typically correct for small ROIs but could
be less accurate for larger ROIs, where the diverse activities of many source points might not be
well-represented by a one-dimensional latent activity. That being said, as long as the activity in
different source points within the ROI is not fully canceled, positive dependence effects of the kind
identified by our models would still be meaningful in the sense that they reflect some cross-region
dependence. To deal with the last two issues, one may divide the entire source space into suf-
ficiently small, non-overlapping ROIs, when applying our state-space model. In such cases, the
number of parameters can be large, and some sparsity-inducing regularization (such as the one in
[Fukushima et al., 2015]) can be applied. In ongoing and future work, we plan to explore this idea
and also address the effects of potential assumption violations.

4.5 Appendix

4.5.1 Appendix of Section 4.2.1

4.5.1.1 Eliminating the source current dipoles

Here we briefly derive the steps to get Equation (4.7) from Equation (4.6).

f(yt|ut) ∝
∫
f(yt|Jt)f(Jt|ut)dJt

∝
∫

exp(−1

2
((yt −GJt)′Q−1e (yt −GJt) + (Jt −Lut)′Q−1Jn (Jt −Lut)))dJt

Since the conditional distributions (f(yt|Jt) and f(yt|Jt)) are Gaussian distributions, the resulting
f(yt|ut) is also a Gaussian distribution, and we only need to find the mean and covariance terms
for yt. To do this, we consider the quadratic terms within the “exp”. We first complete the square
for Jt first, and then drop the terms related to Jt, for which the integral is a constant irrelevant to
yt. Finally by completing the square for yt, we have the covariance term (Qe +GQJnG

′) and the
mean termGLut.

(yt −GJt)′Q−1e (yt −GJt) + (Jt −Lut)′Q−1Jn (Jt −Lut)
=J ′t(G

′Q−1e G+Q−1Jn )Jt − 2(y′tQ
−1
e G+ u′tL

′Q−1Jn )Jt + y′tQ
−1
e yt + a term irrelvent to yt or Jt

=y′tQ
−1
e yt − (G′Q−1e yt +Q−1JnLut)

′(G′Q−1e G+Q−1Jn )−1(G′Q−1e yt +Q−1JnLut)

+(Jt − µ0)
′(G′Q−1e G+Q−1Jn )(Jt − µ0)(can be integrated out) + a term irrelvent to yt
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where u0 = (G′Q−1e G +Q−1Jn )−1(G′Q−1e yt +Q−1JnLut). Consider the first term that is relevant
to yt

y′tQ
−1
e yt − (G′Q−1e yt +Q−1JnLut)

′(G′Q−1e G+Q−1Jn )−1(G′Q−1e yt +Q−1JnLut)

=y′t(Q
−1
e −Q−1e G′(G′Q−1e G+Q−1Jn )−1GQ−1e )yt + y′tQ

−1
e G(G′Q−1e G+Q−1Jn )−1Q−1JnLut

+ a term irrelevant to yt
=y′t(Qe +GQJnG

′)−1yt + y′tQ
−1
e G(G′Q−1e G+Q−1Jn )−1Q−1JnLut (using matrix inversion lemma)

+ a term irrelevant to yt
=(yt − µ1)

′(Qe +GQJnG
′)−1(yt − µ1)

′ + a term irrelvent to yt

The covariance term is (Qe +GQJnG
′); the mean term is

µ1 = (Qe +GQJnG
′)Q−1e G(G′Q−1e G+Q−1Jn )−1Q−1JnLut

=(Qe +GQJnG
′)Q−1e G(QJn −QJnG

′(GQJnG
′ +Qe)

−1GQJn)Q−1JnLut

( expanding (G′Q−1e G+Q−1Jn )−1 using matrix inversion lamma)

=(Qe +GQJnG
′)
(
Q−1e GLut −Q−1e (GQJnG

′)(GQJnG
′ +Qe)

−1GLut
)

=(Qe +GQJnG
′)Q−1e (I − (GQJnG

′)(Qe +GQJnG
′)−1)GLut

=(Qe +GQJnG
′)Q−1e ((Qe +GQJnG

′)− (GQJnG
′))(Qe +GQJnG

′)−1GLut

( by plugging in I = (Qe +GQJnG
′)(Qe +GQJnG

′)−1)

=(Qe +GQJnG
′)Q−1e Qe(Qe +GQJnG

′)−1GLut

=GLut

Similar derivations also work to obtain Equation (4.9) from Equation (4.7).

4.5.1.2 Gradients of the negative log-likelihood function

Given the negative log-likelihood function defined in Equation (4.10), we prove the correctness of
the gradients in Equation (4.11). The first equation on ∂llh

∂Qyt
is easily obtained according to “the

matrix cookbook” [Petersen and Pedersen, 2008]. Next we consider ∂llh
∂Γt

. Let i, j, k, l, s and w be
indices of rows or columns of matrices. Using the chain rule of matrix derivatives in “the matrix
cookbook” [Petersen and Pedersen, 2008], we have

∂llh
∂Γt[s, w]

= trace
(

(
∂llh
∂Qyt

)′(
∂Qyt

∂Γt[s, w]
)

)
=
∑
i,j

(
∂llh
∂Qyt

)
[i, j]

∂Qyt[i, j]

∂Γt[s, w]
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Let C = GL; thenQyt = CΓtΓ
′
tC
′ + terms irrelvent to Γt.

Qyt[i, j] =
∑
k

(
∑
l

C[i, l](
∑
h

Γt[l, h]Γt[k, h])C[j, k]) + terms irrelvent to Γt

=
∑
k

∑
l

∑
h

C[j, k]C[i, l]Γt[l, h]Γt[k, h] + terms irrelvent to Γt

∂Qyt[i, j]

∂Γt[s, w]
= 2C[j, s]C[i, s]Γt[s, w] +

∑
k 6=s

C[j, k]C[i, s]Γt[k, w] +
∑
l 6=s

C[j, s]C[i, l]Γt[l, w]

=
∑
k

C[j, k]C[i, s]Γt[k, w] +
∑
l

C[j, s]C[i, l]Γt[l, w]

(merging the first term into the last two terms)

=
∑
k

C[j, k]C[i, s]Γt[k, w] +
∑
k

C[j, s]C[i, k]Γt[k, w]

(replacing l with k in the second term)

According to the chain rule, we have

∂nllh
∂Γt[s, w]

=
∑
ij

(
∂llh
∂Qyt

)
[i, j]

∂QY [i, j]

∂Γt[s, w]

=
∑
ij

(
∂llh
∂Qyt

)
[i, j]

∑
k

C[j, k]C[i, s]Γt[k, w] +
∑
ij

(
∂llh
∂Qyt

)
[i, j]

∑
k

C[j, s]C[i, k]Γt[k, w]

=
∑
ij

(
∂llh
∂Qyt

)
[i, j]

∑
k

C[j, k]C[i, s]Γt[k, w] +
∑
ji

(
∂llh
∂Qyt

)
[j, i]

∑
k

C[i, s]C[j, k]Γt[k, w]

(swapping i and j in the second term)

= 2
∑
ij

(
∂llh
∂Qyt

)
[i, j]

∑
k

C[j, k]C[i, s]Γt[k, w]

(merging the two terms, noticing that
(
∂llh
∂Qyt

)
is symmetric)

This term is equal to the (s, w) entry in 2C ′
(

∂llh
∂Qyt

)
CΓt, which is 2

∑
k

∑
i

∑
j C[i, s]

(
∂llh
∂Qyt

)
[i, j]C[j, k]Γt[k, w],

so we can verify that the following in Equation (4.11) holds

∂llh
∂Γt

= 2C ′
(
∂llh
∂Qyt

)
CΓt = 2L′G′

(
∂llh
∂Qyt

)
GLΓt

We can verify the gradient with respect to L in Equation (4.11) similarly. Let i, j, l, k, h, r, w and
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s be indices of rows and columns of matrices. We also note thatQt = ΓtΓ
′
t.

Qyt[i, j] =
∑
l

∑
k

∑
h

G[i, k]L[k, l]Qt[l, h]
∑
r

G[j, r]L[r, h] + terms irrelevant to L

∂Qyt[i, j]

∂L[s, w]
= 2G[i, s]Qt[w,w]G[j, s]L[s, w]

+
∑

r 6=s&h6=w

G[i, s]Qt[w, h]G[j, r]L[r, h] +
∑

k 6=s&l 6=w

G[i, k]Qt[l, w]G[j, s]L[k, l]

=
∑
rh

G[i, s]Qt[w, h]G[j, r]L[r, h] +
∑
kl

G[i, k]Qt[l, w]G[j, s]L[k, l]

(merging the first term into the last two terms)

=
∑
rh

G[i, s]Qt[w, h]G[j, r]L[r, h] +
∑
rh

G[i, r]Qt[h,w]G[j, s]L[r, h]

(replacing (k, l) with (r, h) in the second term)
∂llh

∂L[s, w]
=
∑
ij

(
∂llh
∂Qyt

)
[i, j]

∑
rh

G[i, s]Qt[w, h]G[j, r]L[r, h]

+
∑
ij

(
∂llh
∂Qyt

)
[i, j]

∑
rh

G[i, r]Qt[h,w]G[j, s]L[r, h]

=
∑
ij

(
∂llh
∂Qyt

)
[i, j]

∑
rh

G[i, s]Qt[w, h]G[j, r]L[r, h]

+
∑
ji

(
∂llh
∂Qyt

)
[j, i]

∑
rh

G[j, r]Qt[h,w]G[i, s]L[r, h]

(swapping i and j in the second term; noticing that
(
∂llh
∂Qyt

)
andQt are symmetric)

= 2
∑
ij

(
∂llh
∂Qyt

)
[i, j]

∑
rh

G[i, s]Qt[w, h]G[j, r]L[r, h]

This term is equal to the (s, w) entry in 2G′
(

∂llh
∂Qyt

)
GLQt, which is

2
∑
i,j,r,h

G[i, s]

(
∂llh
∂Qyt

)
[i, j]G[j, r]L[r, h]Qt[h,w],

so we can verify that the following in Equation (4.11) holds

∂llh
∂L

= 2G′
(
∂llh
∂Qyt

)
GLΓtΓ

′
t = 2G′

(
∂llh
∂Qyt

)
GLQt

Note that in the actual updates during gradient descent, there are entries in L that are fixed as zero
(L[l, i] = 0 if l 6∈ Ai, l = 1, · · · ,m for each i = 1, · · · , p). We only update L[l, i]s for all l ∈
Ai, l = 1, · · · ,m for each i = 1, · · · , p. Finally, the gradient with respect to σi in Equation (4.11)
is obtained by directly applying the chain rule.
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4.5.1.3 The penalty functions due to the priors on the parameters and the corresponding
gradients

Here, we describe the penalties due to the priors on Qt (or Γt), QJn (or each σ2
i ), and the non-

zero entries of L (i.e., L[l, i]s for all l ∈ Ai, l = 1, · · · ,m for each i = 1, · · · , p), as well as the
corresponding gradient terms.

1. We can use a Wishart prior onQt (Qt ∼ W(V0, ν0)), where the probability density function
is f(Qt) ∝ det(Qt)

(ν0−p−1)/2 exp(−1
2
trace(V −10 Qt)). Then we have

Pen(Γt) = −(ν0 − p− 1) log det(ΓtΓ
′
t) + trace(V −10 ΓtΓ

′
t),

∂Pen(Γt)

∂Γt

= 2
(
−(ν0 − p− 1)(ΓtΓ

′
t)
−1 + V −10

)
Γt.

We can also exploit an inverse Wishart prior on Qt (Qt ∼ W−1(V1, ν1)), which is the con-
jugate prior for Gaussian covariance matrices. The probability density function is f(Qt) ∝
det(Qt)

−(ν1+p+1)/2 exp(−1
2
trace(V1Q

−1
t )). Then we have

Pen(Γt) = (ν1 + p+ 1) log det(ΓtΓ
′
t) + trace(V1(ΓtΓ

′
t)
−1),

∂Pen(Γt)

∂Γt

= 2
(
(ν1 + p+ 1)I − (ΓtΓ

′
t)
−1V1

)
(ΓtΓ

′
t)
−1Γt.

2. For each σ2
i in QJn , we can apply either a Gamma prior or an inverse Gamma prior. In a

Gamma prior with the parameters α0 and β0, the probability density function is f(σ2
i ) ∝

(σ2
i )
α0−1 exp(−β0σ2

i ). The penalty and the corresponding gradient are

pen(σ2
i ) = 2(2(1− α0) log σi + βσ2

i ),
dpen(σ2

i )

dσi
= 4((1− α0)/σj + β0σj).

In an inverse Gamma prior with the parameters α1 and β1, the probability density function
is f(σ2

i ) ∝ (σ2
i )
−α1−1 exp(−β1/σ2

i ). The penalty and the corresponding gradient are

pen(σ2
i ) = 2(2(α1 + 1) log σi + β1/σ

2
i ),

dpen(σ2
i )

dσi
= 4((α1 + 1)/σj − β1/σ3

j ).

3. In each of the ith column in L, which corresponds to the ith ROI, we assume the non-zero
entries, denoted by L[l ∈ Ai, i], has a Gaussian prior with a zero mean and a covariance
matrix QLi , (i.e., L[l ∈ Ai, i] ∼ N (0,QLi)). The prior covariance matrix QLi encourages
correlations of source points that are spatially close and share similar orientations. The entry
in the l1th row and the l2th column inQLi is

QLi [l1, l2] = b0
(
~n′l1~nl2

)
exp(−a0‖~rl1 − ~rl2‖22)

63



where ~rl1 and ~rl2 are the coordinates of the source points in the source space corresponding
to the l1th and l2th elements in L[l ∈ Ai, i], and ~nl1 and ~nl2 are the unit vectors pointing to
the corresponding orientations. Here a0 and b0 are pre-defined hyper-parameters.

Pen(L) =

p∑
i=1

L[l ∈ Ai, i]′Q−1Li L[l ∈ Ai, i]
∂Pen(L)

∂L[l ∈ Ai, i]
= 2Q−1Li L[l ∈ Ai, i]

4.5.2 Appendix of Section 4.2.2

4.5.2.1 Derivation of the marginal distribution of sensor data in the Kronecker-structured
covariance case

Here we drive the steps to get the marginal distribution of Y in Equation (4.13) from the condi-
tional distributions in Equation (4.12). According to the definition of the Kronecker product, we
have

vec(GJ) =



∑m
k=1G[1, k]J [k, 1]∑m
k=1G[2, k]J [k, 1]

· · ·∑m
k=1G[n, k]J [k, 1]∑m
k=1G[1, k]J [k, 2]∑m
k=1G[2, k]J [k, 2]

· · ·∑m
k=1G[n, k]J [k, 2]

· · ·



=



G[1, 1] G[1, 2] · · · G[1,m] 0 0 · · · 0 · · ·
G[2, 1] G[2, 2] · · · G[2,m] 0 0 · · · 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

G[n, 1] G[n, 2] · · · G[n,m] 0 0 · · · 0 · · ·
0 0 · · · 0 G[1, 1] G[1, 2] · · · G[1,m] · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·





J [1, 1]

J [2, 1]

· · ·
J [n, 1]

J [1, 2]

J [2, 2]

· · ·
J [n, 2]

· · ·


= (I ⊗G)vec(J)

Similarly, vec(LU ) = (I ⊗ L)vec(U ). Applying the similar observations as those in Equa-
tions (4.6), (4.7) and (4.9) on vec(U), vec(J) and vec(Y ), we can eliminate J .

vec(Y )|vec(U) ∼ N (vec(GLU ), I ⊗Qe + (I ⊗G)(QJT ⊗QJn)(I ⊗G)′)
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Similarly, by eliminating U , we have

vec(Y ) ∼ N (0, (I ⊗Qe) + (I ⊗G)(QJT ⊗QJn)(I ⊗G)′ + (I ⊗GL)(QT ⊗QS)(I ⊗GL)′)

= N (0, I +QT ⊗ (GQJnG
′ +GLQSL

′G′))

where we assumeQe = I andQJT = QT .

4.5.2.2 Evaluation of the log-likelihood and the gradients for the Kronecker-structured co-
variance model

We derive the evaluation of the terms in the negative log-likelihood (nllnkron in Equation (4.14))
and the corresponding gradients, using the formulation in Stegle et al. [2011]. Let Q̃ = GQJnG

′+

GLQSL
′G′. Let the singular value decomposition of QT and Q̃ be QT = VTDTV

′
T , Q̃ =

VQ̃DQ̃V
′
Q̃

, where V ′TVT = VTV
′
T = I and V ′

Q̃
VQ̃ = VQ̃V

′
Q̃

= I . We also note that QY =

I +QT ⊗ Q̃. In the derivation below, we use the following equations a lot.

QY = (I +QT ⊗ Q̃) = (VT ⊗ VQ̃)(DT ⊗DQ̃ + I)(V ′T ⊗ V ′Q̃) (4.26)

Q−1Y = (I +QT ⊗ Q̃)−1 = (VT ⊗ VQ̃)(DT ⊗DQ̃ + I)−1(V ′T ⊗ V ′Q̃) (4.27)

The first term in nllhkron is proportional to the determinant of QY , which can be computed in the
following way.

log det(QY ) = log det(I +QT ⊗ Q̃)

= log det((VT ⊗ VQ̃)(DT ⊗DQ̃ + I)(V ′T ⊗ V ′Q̃) (Equation (4.26))

= log det(DT ⊗DQ̃ + I)

=
∑
i,j

log(DT [i, i]DQ̃[j, j] + 1) (becauseDT andDQ̃ are diagonal matrix)

The second term in nllhkron, the quadratic form, can be obtained in the following way, where Y (r)

denotes that sensor data in the rth trial.
q∑
r=1

vec(Y (r))′Q−1Y vec(Y (r))

=

q∑
r=1

vec(Y (r))′(VT ⊗ VQ̃)(DT ⊗DQ̃ + I)−1(V ′T ⊗ V ′Q̃)vec(Y (r)) (plugging in Equation (4.27))

=

q∑
r=1

vec(V ′
Q̃
Y (r)VT )′(DT ⊗DQ̃ + I)−1vec(V ′

Q̃
Y (r)VT ) (where vec(V ′

Q̃
Y (r)VT ) = (V ′T ⊗ V ′Q̃)vec(Y (r))

=

q∑
r=1

∑
i,j

((V ′
Q̃
Y (r)VT )[i, j])2(DT [i, i]DQ̃[j, j] + 1)−1

=
∑
i,j

(DT [i, i]DQ̃[j, j] + 1)−1
q∑
r=1

((V ′
Q̃
Y (r)VT )[i, j])2
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Next, we derive the gradients of the two terms in nllhkron with respect to the parameters. We re-
parametrize QT and QS with the Cholesky decomposition (i.e., QT = ΓTΓ′T and QS = ΓSΓ′S).
The gradient of the determinant term with respect to the (i, j) entry in ΓT is

∂ log det(QY )

∂ΓT [i, j]
= trace

(
Q−1Y

∂QY

∂ΓT [i, j]

)
=trace

(
(I +QT ⊗ Q̃)−1

∂

∂ΓT [i, j]
(I +QT ⊗ Q̃)

)
=trace

(
(VT ⊗ VQ̃)(DT ⊗DQ̃ + I)−1(V ′T ⊗ V ′Q̃)(

∂QT

∂ΓT [i, j]
⊗ Q̃)

)
(plugging in Equation (4.27))

=trace
(

(DT ⊗DQ̃ + I)−1(V ′T ⊗ V ′Q̃)(
∂QT

∂ΓT [i, j]
⊗ Q̃)(VT ⊗ VQ̃)

)
(rotating the terms within trace)

=trace
(

(DT ⊗DQ̃ + I)−1(V ′T
∂QT

∂ΓT [i, j]
VT )⊗ (V ′

Q̃
Q̃VQ̃)

)
=trace

(
(DT ⊗DQ̃ + I)−1(V ′T

∂QT

∂ΓT [i, j]
VT )⊗DQ̃)

)
( using V ′

Q̃
Q̃VQ̃ = DQ̃)

=
∑
lh

1/(DT [l, l]DQ̃[h, h] + 1)(V ′T
∂QT

∂ΓT [i, j]
VT )[l, l]DQ̃[h, h]

where l = 1 · · · , T and h = 1 · · · , n. The term ∂QT
∂ΓT [i,j]

is computed for each (i, j) in the follow-
ing way. Generally, for a positive definite matrix Q and its Cholesky decomposition Q = ΓΓ′,
Q[s, w] =

∑
k≤min(s,w) Γ[s, k]Γ[w, k], since Γ is a lower triangular matrix.

∂Q[s, w]

∂Γ[i, j]
=


0 if i 6= s, i 6= w

Γ[w, j] if i = s 6= w, j ≤ min(s, w)

Γ[s, j] if i = w 6= s, j ≤ min(s, w)

2Γ[w, j] if i = s = w, j ≤ min(s, w)

We compute ∂QT
∂ΓT [i,j]

accordingly.
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The gradient of the quadratic form term with respect to the (i, j) entry in ΓT is

∂

∂ΓT [i, j]
(

q∑
r=1

vec(Y (r))′Q−1Y vec(Y (r))

=−
q∑
r=1

vec(Y (r))′(I +QT ⊗ Q̃)−1
∂(I +QT ⊗ Q̃)

∂ΓT [i, j]
(I +QT ⊗ Q̃)−1vec(Y (r))

=−
q∑
r=1

vec(Y (r))′(VT ⊗ VQ̃)(DT ⊗DQ̃ + I)−1(V ′T ⊗ V ′Q̃)(
∂QT

∂ΓT [i, j]
⊗ Q̃)

(VT ⊗ VQ̃)(DT ⊗DQ̃ + I)−1(V ′T ⊗ V ′Q̃)vec(Y (r))

=−
q∑
r=1

vec(V ′
Q̃
Y (r)VT )′(DT ⊗DQ̃ + I)−1(V ′T

∂QT

∂ΓT [i, j]
VT ⊗ V ′Q̃Q̃VQ̃)(DT ⊗DQ̃ + I)−1vec(V ′

Q̃
Y (r)VT )

=−
q∑
r=1

vec(Ỹ (r))′(V ′T
∂QT

∂ΓT [i, j]
VT ⊗DQ̃)vec(Ỹ (r))

(where vec(Ỹ (r)) = (DT ⊗DQ̃ + I)−1vec(V ′
Q̃
Y (r)VT ))

The term vec(Ỹ (r)) = (DT ⊗DQ̃+I)−1vec(V ′
Q̃
Y (r)VT ) can be easily computed because (DT ⊗

DQ̃ + I) is diagonal. We also use the following trick to further simplify the computation.

(V ′T
∂QT

∂ΓT [i, j]
VT ⊗DQ̃)vec(Ỹ (r)) = vec(DQ̃Ỹ

(r)V ′T
∂QT

∂ΓT [i, j]
VT )

The gradient with respect to other unknown parameters ΓS,L and σ0, σ1, · · · , σp can be derived in
a similar way. Let θ denote any entry in ΓS or L of interest, or any σi, i = 0, 1, · · · , p.

∂ log det(QY )

∂θ
= trace

(
(DT ⊗DQ̃ + I)−1(DT ⊗ V ′Q̃

∂Q̃

∂θ
VQ̃)

)

=
∑
lh

1/(DT [l, l]DQ̃[h, h] + 1)DT [l, l](V ′
Q̃

∂Q̃

∂θ
VQ̃)[h, h]

∂

∂θ
(

q∑
r=1

vec(Y (r))′Q−1Y vec(Y (r))) = −
q∑
r=1

vec(Ỹ (r))′(DT ⊗ (V ′
Q̃

∂Q̃

∂θ
VQ̃)vec(Ỹ (r))

What remains is the derivation of ∂Q̃
∂θ

. When θ = σi, i = 0, 1, · · · , p,

∂Q̃

∂θ
=
∂GQJnG

′

∂σi
=

∂

∂σi
(σ2

iG[:, l ∈ Ai]G[:, l ∈ Ai]′) = 2σjG[:, l ∈ Ai]G[:, l ∈ Ai]′

Notice that Q̃ has the same form as Qyt in Section 4.5.1.2; therefore when θ is an entry in ΓS or
L, we can use what we derived in Section 4.5.1.2.
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When θ = ΓS[s, w], C = GL, we have

∂Q̃[i, j]

∂ΓS[s, w]
=
∂(CΓSΓ′SC

′)[i, j]

∂ΓS[s, w]
=
∑
k

C[j, k]C[i, s]ΓS[k, w] +
∑
k

C[j, s]C[i, k]ΓS[k, w]

= C[i, s]
∑
k

C[j, k]ΓS[k, w] +C[j, s]
∑
k

C[i, k]ΓS[k, w]

= C[i, s](CΓS)[j, w] + (CΓS)[i, w]C[j, s]

In matrix form, we have

∂Q̃

∂ΓS[s, w]
=


C[1, s]

C[2, s]

· · ·
C[n, s]

 ((CΓS)[1, w], (CΓS)[2, w], · · · , (CΓS)[n,w])

+


(CΓS)[1, w]

(CΓS)[2, w]

· · ·
(CΓS)[n,w]

 (C[1, s],C[2, s], · · · ,C[n, s])

= C[:, s]((CΓS)[:, w])′ + ((CΓS)[:, w])((C[:, s])′

When θ = L[s, w],

∂Q̃[i, j]

∂L[s, w]
=
∂(GLQSL

′G′)[i, j]

∂L[s, w]
=
∑
rh

G[i, s]QS[w, h]G[j, r]L[r, h] +
∑
rh

G[i, r]QS[h,w]G[j, s]L[r, h]

= G[i, s]
∑
h

(
∑
r

G[j, r]L[r, h])QS[w, h] +G[j, s]
∑
h

(
∑
r

G[i, r]L[r, h])QS[h,w]

= G[i, s](GLQS)[j, w] + (GLQS)[i, w]G[j, s]

∂Q̃

∂L[s, w]
= G[:, s]((GLQS)[:, w])′ + ((GLQS)[:, w])(G[:, s])′

4.5.2.3 Sampling from Kronecker-structured spatio-temporal covariance

Let U be a random p × T matrix, where vec(U) has a zero mean and a Kronecker-structured
covariance matrixQT ⊗QS . An easy way to generate such samples of U is

U0 ∼ N (0, I ⊗ I)

U = ΓSU0Γ
′
T

where ΓT and ΓS are from the Cholesky decomposition of QT and QS (QT = ΓTΓ′T and QS =

ΓSΓ′S).
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4.5.2.4 Maximum-likelihood estimate of the Kronecker-structured spatio-temporal covari-
ance

Given p × T multidimensional time series in q i.i.d trials, U (r), r = 1, · · · , q, which are sampled
from the distribution above (i.e., vec(U (r))s have a zero mean and a Kronecker-structured co-
variance, QT ⊗QS), we alternate between the following steps to obtain the maximum-likelihood
estimates of Q̂T and Q̂S .

Q̂T ← 1/(qp)

q∑
r=1

(U (r))′Q̂S

−1
U (r)

Q̂S ← 1/(qT )

q∑
r=1

U (r)Q̂T

−1
(U (r))′

4.5.3 Appendix of Section 4.3

4.5.3.1 Details on the E-M algorithm

Let f(·) denote probability density functions in general. We aim to obtain the set of parameters
θ = {{At}Tt=1,Q0,Qε, {σ2

i }
p
i=0} that maximizes the objective function log f({y(r)

t }
T,q
t=0,r=1;θ) +

log f(θ), where f(θ) denotes the prior on θ. In our case log f({y(r)
t }

T,q
t=0,r=1, {u

(r)
t }

T,q
t=0,r=1;θ) is

much easier to compute than log f({y(r)
t }

T,q
t=0,r=1;θ), and the E-M algorithm Shumway and Stoffer

[1982] utilizes this property. Below, we briefly introduce how it works. Let θ̃ denote an estimate
of θ. For a more succinct notation, let u† def

= {u(r)
t }

T,q
t=0,r=1 and y† def

= {y(r)
t }

T,q
t=0,r=1. Let f̃(u†) =

f(u†|y†; θ̃) be the posterior distribution of u† conditioned on observations y†, based on the current
estimate θ̃.

log f(y†;θ) + log f(θ)

=

∫
f̃(u†) log f(y†;θ)du† + log f(θ) = Ef̃ (log f(y†;θ)) + log f(θ)

=Ef̃ (log
f(y†,u†;θ)

f(u†|y†;θ)
) + log f(θ)

=Ef̃ (log f(y†,u†;θ)) + log f(θ)− Ef̃ (log f(u†|y†;θ))

This also holds for θ = θ̃.

log f(y†; θ̃) + log f(θ̃) = Ef̃ (log f(y†,u†; θ̃)) + log f(θ̃)− Ef̃ (log f̃(u†))
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Now consider the difference

(log f(y†;θ) + log f(θ))− (log f(y†; θ̃) + log f(θ̃)) (4.28)

=Ef̃ (log f(y†,u†;θ)) + log f(θ) (4.29)

−Ef̃ (log f(y†,u†; θ̃))− log f(θ̃) (4.30)

+Ef̃ (log
f̃(u†)

f(u†|y†;θ)
) (4.31)

In each iteration, given θ̃, we select the new θ that maximize the term (4.29). Because term
(4.30) is fixed given θ̃, and term (4.31) is the non-negative Kullback-Leibler distance between
f̃(u†) and f(u†|y†;θ), we are essentially maximizing a lower bound of the difference term (4.28).
Therefore, when it converges, term (4.31) goes to zero, and we reach a local maximum of the
objective function.

In each iteration, there are two steps: an E-step to compute f̃ or the expression for term (4.29)
given the current θ̃, and an M-step to maximize the term (4.29) and update θ.

If we only have a prior on {At}Tt=1, (i.e., f(θ) = f({At}Tt=1) ∝ exp(−(λ0
∑T

t=1 ‖At‖2F +

λ1
∑T

t=2 ‖At −At−1‖2F ))), then term (4.30) has the following form up to some constant

Ef̃ (log f(y†,u†;θ)) + log f(θ) (4.32)

=− 1

2
(q log det(Q0) + Ef̃ (

q∑
r=1

u
(r)
0

′
Q−10 u

(r)
0 ) (4.33)

− 1

2
(qT log det(Qε) + Ef̃ (

T∑
t=1

q∑
r=1

(u
(r)
t −Atu

(r)
t−1)

′Q−1ε (u
(r)
t −Atu

(r)
t−1)) + log f({At}Tt=1)

(4.34)

− 1

2
(q(T + 1) log det(Qη) + Ef̃ (

T∑
t=0

q∑
r=1

(y
(r)
t −Cu

(r)
t )′Q−1η (y

(r)
t −Cu

(r)
t )). (4.35)

where ′ denotes the transpose of a column vector or a matrix, and det(·) denotes the determinant
of a square matrix. To evaluate (4.33), (4.34), and (4.35), we need to compute the posterior mean
and covariance of ut, as well as the cross covariance of ut and ut−1 at each t for each trial (r =

1, 2, · · · , q) given θ̃:

u
(r)
t|T

def
= E(u

(r)
t |{y(r)

τ }Tτ=0),

P
(r)
t|T

def
= cov(u

(r)
t |{y(r)

τ }Tτ=0),

P
(r)
(t,t−1)|T

def
= cov(u

(r)
t ,u

(r)
t−1|{y(r)

τ }Tτ=0)

To compute these values, we use the forward and backward steps in the Kalman smoothing algo-
rithm Shumway and Stoffer [1982]. For simplicity, we drop the superscript (r) and the ·̃ symbol on
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θ̃. We define the following terms

ut|s
def
= E(ut|y0,y1, · · · ,ys),

Pt|s
def
= cov(ut|y0.y1, · · · ,ys),

P(t,t−1)|s
def
= cov(ut,ut−1|y0,y1, · · · ,ys).

In the forward step, we set u0|0 = Q0C
′(CQ0C

′ +Qη)
−1y0 and P0|0 = Q0 −Q0C

′(CQ0C
′ +

Qη)
−1CQ0. For t = 1, 2, · · · , T , we have

ut|(t−1) = Atu(t−1)|(t−1)

Pt|(t−1) = AtP(t−1)|(t−1)A
′
t +Q

Kt
def
= Pt|(t−1)C

′(CPt|(t−1)C
′ +Qη)

−1

ut|t = ut|(t−1) +Kt(yt −Cut|(t−1))
Pt|t = Pt|(t−1) −KtCPt|(t−1)

In the backward step, for t = T, T − 1, · · · , 1

Ht−1
def
= P(t−1)|(t−1)A

′
tP
−1
t|(t−1)

u(t−1)|T = u(t−1)|(t−1) +Ht−1(ut|T −Atu(t−1)|(t−1))

P(t−1)|T = P(t−1)|(t−1) +Ht−1(Pt|T − Pt|(t−1))H ′t−1

and with P(T,T−1)|T = (I −KTC)ATP(T−1)|(T−1), for t = T − 1, T − 2, · · · , 2, we have

P(t−1,t−2)|T = P(t−1)|(t−1)H
′
t−2 +Ht−1(P(t,t−1)|T −AtP(t−1)|(t−1))H

′
t−2.

If we denote the terms (4.33), (4.34), and (4.35) with L1, L2 and L3 respectively, then using the
posterior statistics above, we have

L1 = q log det(Q0) + Ef̃ (
q∑
r=1

(u
(r)
0

′
Q−10 u

(r)
0 )) = q log det(Q0) + trace(Q−10 B0)

L2 = qT log det(Qε) + Ef̃ (
T∑
t=1

q∑
r=1

(u
(r)
t −Atu

(r)
t−1)

′Q−1ε (u
(r)
t −Atu

(r)
t−1))]− log f({At}Tt=1)

= qT log det(Qε) + trace(Q−1ε

T∑
t=1

(B1t −AtB
′
2t −B2tA

′
t +AtB3tA

′
t))

+ λ0

T∑
t=1

‖At‖2F + λ1

T∑
t=2

‖At −At−1‖2F

L3 = q(T + 1) log det(Qη) + Ef̃ (
T∑
t=0

q∑
r=1

(yt(r)−Cu(r)
t )′Q−1η (yt(r)−Cu(r)

t )′)

= q(T + 1) log det(Qη) + trace(Q−1η B4)
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where

B0 =

q∑
r=1

(P
(r)
0|T + u

(r)
0|T (u

(r)
0|T )′)

B1t =

q∑
r=1

(P
(r)
t|T + u

(r)
t|T (u

(r)
t|T )′)

B2t =

q∑
r=1

(P
(r)
(t,t−1)|T + u

(r)
t|T (u

(r)
(t−1)|T )′)

B3t =

q∑
r=1

(P
(r)
(t−1)|T + u

(r)
(t−1)|T (u

(r)
(t−1)|T )′)

B4 =

q∑
r=1

T∑
t=0

[(y
(r)
t −Cu

(r)
t|T )(y

(r)
t −Cu

(r)
t|T )′ +CP

(r)
t|TC

′)]

In the M-step, each term was optimized either using the analytical solution or gradient descent
with back-tracking.

4.5.3.2 Solving for dynamic connectivity parameters when the state-variables are observed

Given {u(r)
t }

T,q
t=0,r=1, we solve for Q0, Qε and {At}Tt=1 by maximizing the log-likelihood plus the

logarithm of the prior, which is equivalent to minimizing

− log f({u(r)
t }

T,q
t=0,r=1)− log f({At}Tt=1)

∝q log det(Q0) + trace(Q−10

q∑
r=1

u
(r)
0 u

(r)
0

′
)

+qT log det(Qε) + trace(Q−1ε

T∑
t=1

q∑
r=1

(u
(r)
t −Atu

(r)
t−1)(u

(r)
t −Atu

(r)
t−1)

′)

+λ0

T∑
t=1

‖At‖2F + λ1

T∑
t=2

‖At −At−1‖2F

where the optimization procedure is similar to that in the M-step. Q0 has an analytical solution
Q0 ← (1/q)

∑q
r=1 u

(r)
0 (u

(r)
0 )′, and {At}Tt=1 andQε can be updated in alternations. Given {At}Tt=1,

Qε has an analytical solution Qε ← 1/(qT )
∑T

t=1

∑q
r=1(u

(r)
t − Atu

(r)
t−1))(u

(r)
t − Atu

(r)
t−1)

′, and
given Qε, {At}Tt=1 can be solved by gradient descent with backtracking line search, where the
gradient is

2Q−1ε (−
q∑
r=1

u
(r)
t (u

(r)
t−1)

′ +At

q∑
r=1

u
(r)
t−1(u

(r)
t−1)

′) + 2Dt
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and

Dt =


λ1(2At −At+1 −At−1) + λ0At for t = 2, · · · , T − 1;

λ1(A1 −A2) + λ0A1 for t = 1;

λ1(AT −AT−1) + λ0AT for t = T ;

4.5.3.3 Computing the spatio-temporal covariance of the ROI mean activity and evaluating
the marginal log-likelihood of sensor data

According to the auto-regressive model, given {At}Tt=1,Q0,Qε, we have

ut = Atut−1 + εt = (
1∏
τ=t

Aτ )u0 + εt +
t−1∑
j=1

(

t−j+1∏
τ=t

Aτ )εt−j

and the marginal covariance of ut for t = 1, · · · , T is

cov(ut) = (
1∏
τ=t

Aτ )Q0(
1∏
τ=t

Aτ )
′ +Qε +

t−1∑
i=1

(

t−j+1∏
τ=t

Aτ )Qε(

t−j+1∏
τ=t

Aτ )
′

where the in the product
∏t−j+1

τ=t , τ decreases from t to t − j + 1. To compute the marginal
covariance, it is convenient to first compute matrices Ãj,k =

∏j
τ=kAτ , j ≤ k, and then we have

cov(ut) = Ã1,tQ0Ã
′
1,t +Qε +

t−1∑
j=1

Ã(t−j+1),tQεÃ
′
(t−j+1),t.

Let Up×(T+1) = [u0,u1, · · · ,uT ] (where ut is of size p × 1); let vec(U) be the concatenation of
the columns ofU . Let the p(T +1)×p(T +1) matrix Σ denote the covariance matrix of (vec(U)).
This covariance can be computed as

Σ[tp+ 1 : (t+ 1)p, (t+ h)p+ 1 : (t+ h+ 1)p]

=cov(ut,ut+h)

=cov(ut,At+hAt+h−1 · · ·At+1ut)

=cov(ut)(
t+1∏

τ=t+h

Aτ )
′

=cov(ut)Ã
′
t+1,t+h

where by Σ[tp + 1 : (t + 1)p, (t + h)p + 1 : (t + h + 1)p], we mean the sub-matrix composed
of the consecutive rows from tp + 1 to (t + 1)p and the consecutive columns from (t + h)p + 1

to (t + h + 1)p (indices are 1-based). If needed, we can also compute the marginal correlation
between the mean of i1th ROI at time t1 and the mean of i2th ROI at time t2:

correlation(ut1 [i1],ut2 [i2]) =
Σ[t1p+ i1, t2p+ i2]√

Σ[t1p+ i1, t1p+ i1]Σ[t2p+ i2, t2p+ i2])
(4.36)
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Next, we discuss how to evaluate the objective function that contains the marginal likelihood of
the observed multi-trial sensor data and a prior term for the parameters (i.e., log f({y(r)

t }
T,q
t=0,r=1)+

log f(θ) ). Since log f(θ) is easy to compute, we mainly focus on evaluating− log f({y(r)
t }

T,q
t=0,r=1).

Let the n× (T +1) matrix Y = (y0,y1, · · · ,yT ) denote the sensor time series in an arbitrary trial.
Let vec(Y ) be a vector obtained by concatenating the columns in Y .

Let C̃ be an nT × pT block-diagonal matrix, where C̃[tn+ 1 : (t+ 1)n, tp+ 1 : (t+ 1)p] = C,
for t = 0, 1, · · · , T ; C̃[tn+ 1 : (t+ 1)n, tp+ 1 : (t+ 1)p] denotes the intersection of the sub-rows
(rows tn + 1 to (t + 1)n) and the sub-columns (columns tp + 1 to (t + 1)p). Similarly, let R̃ be
an nT × nT block diagonal matrix, where R̃[tn + 1 : (t + 1)n, tn + 1 : (t + 1)n] = Qη, for
t = 0, 1, · · · , T . Then we have

cov(vec(Y )) = C̃ΣC̃ ′ + R̃

and

− log f({y(r)
t }

T,q
t=0,r=1) ∝ q log det(cov(vec(Y ))) +

q∑
r=1

trace(cov(vec(Y ))−1vec(Y (r))vec(Y (r))′)

+ some constant irrelevant to the parameters

We use the following equations to facilitate the computation

cov(vec(Y ))−1 = R̃−1 − R̃−1C̃(Σ−1 + C̃ ′R̃−1C̃)−1C̃ ′R̃−1

log det(cov(vec(Y ))) = log det(Σ−1 + C̃ ′R̃−1C̃) + log det(Σ) + log det(R̃)
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Chapter 5

Exploring the spatio-temporal neural
dynamics in the human visual cortex

1

5.1 Introduction

Humans can effortlessly recognize objects and understand scenes. What computational processes
in the visual cortex result in such proficiency? Decades of research has indicated that the visual
cortex includes multiple functional brain areas, which have a topological mapping (i.e., “retino-
topy”) of the visual field [Engel et al., 1997]. Moreover, these areas are hypothesized to process
visual inputs in a hierarchical manner [DiCarlo and Cox, 2007]. As illustrated in Figure 5.1, at a
low level, neurons in the primary visual cortex (V1) at the posterior end of the brain have small re-
ceptive fields and extract low-level information such as local edge orientations [Hubel and Wiesel,
1968]. Neurons in the next level (V2) further process the V1 outputs and are sensitive to angles
and junctions [Ito and Komatsu, 2004], as well as textures [Freeman et al., 2013]. Such a structure
continues to next levels and diverges into two pathways [Mishkin et al., 1983]: a dorsal pathway
towards the parietal cortex, related to motion perception, visuospatial processing, attention and
action, and a ventral pathway towards the inferior temporal cortex, hypothesized as the neural
basis of recognizing “what” we see (e.g., object/face/scene recognition). In the middle and an-
terior regions in the ventral pathway, neurons in the inferior temporal cortex show selectivity to
complex shapes, invariance to scales and lighting, and encode semantic information of the visual
input [Tanaka, 1996]. For example, in humans, previous fMRI studies have identified an object-
selective functional area in the ventral pathway, the lateral occipital complex [Grill-Spector et al.,
1999], which have greater responses to objects than to other visual stimuli (such as meaningless

1The work in this chapter was in collaboration with Dr. Elissa Aminoff, who co-designed and co-ran the experi-
ments, ran the fMRI analysis, and gave important advice and help on the scientific interpretations.
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patterns) and encode information to distinguish different categories of objects. Similarly, in the
two pathways, at the levels that are higher than the early visual cortex, several scene-selective
regions have been identified, including the parahippocampal/lingual region (known as the parahip-
pocampal place area, “PPA”), the retrosplenial complex (“RSC”), and the occipital place area (also
referred as the transverse occipital sulcus, “TOS”) [Epstein et al., 1999; Epstein, 2008]. These re-
gions have greater responses to scenes than to other stimuli and encode scene categories and other
relevant semantic information (e.g., associations of objects in scenes [Aminoff and Tarr, 2015],
physical sizes of scenes [Park et al., 2015], etc.).

  

anterior

Dorsal 
pathway 

posterior

right medialventral view right lateral 
view

anterior

Ventral 
pathway 

Inferior temporal cortexInferior temporal  cortex

Retina input
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         V1 
Edges orientations,
Spatial frequencies, 
etc

... ...

         V2 
Angles, textures,
etc

...
...

Inferior temporal cortex 
Object/scene categories, 
semantic labels

Hierarchical structure along the ventral pathway 

Figure 5.1: Illustration of the hierarchical organization of human visual cortex (with the mapping of various
visual areas from Wandell et al. [2005]).

According to this hypothesis of hierarchical organization, from the posterior to the anterior parts
along the ventral pathway, neurons at each level of the hierarchy receive inputs from previous levels
and extract progressively higher-level information. Such a feedforward mechanism may be the key
computation to recognizing what we see. On the other hand, there are also top-down anatomical
connections between the areas along the inverse direction of the hierarchy, as well as connections
from the frontal and parietal lobes [Felleman and Van Essen, 1991]. These connections indicate
that there can be non-feedforward dynamics, such as top-down feedback, which can facilitate fast
recognition. Besides the studies cited above, there is extensive experimental evidence supporting
the hypothesis of hierarchical organization, from electrophysiology studies in primates and neu-
roimaging studies in humans (e.g., [Yamins et al., 2014; Cichy et al., 2016b; Aminoff et al., 2015]).
However, the hypothesis does not specify detailed dynamics in the visual cortex. For example, due
to complex connections among regions, information may flow along the feedforward or feedback
directions at different temporal stages, or even flow in a recurrent manner. Indeed, details of such
dynamics can be the key to proficient recognition.
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In order to better understand the information flow and thus build better computational models of
the visual cortex, we need to answer two questions on the joint spatio-temporal neural activities:
(1) what kind of information is extracted at different temporal stages and different brain locations
and (2) how neural activities in different areas interact with each other dynamically. To answer
these questions, we need to record dynamic neural activity in a non-invasive manner, especially
while humans are processing naturalistic visual scenes as they do in their daily life. In particular,
MEG and EEG provide millisecond-level temporal resolution, which is necessary for capturing
fast neural dynamics in object and scene recognition. In addition, using the source localization
techniques and the source-space analysis methods we developed, we can also get intermediate
spatial resolution from MEG and EEG. Therefore, to answer the two questions, we use MEG and
EEG to record dynamic neural responses, while human participants process a large number of
naturalistic scenes.

With regard to the first question—what kind of information is extracted at different temporal stages
and spatial locations, a straightforward analysis is to regress the spatio-temporal neural activity on
different candidate features that describe different levels of information. However, defining the
candidate features is non-trivial. Recently, in computer vision, a type of artificial neural network
model, known as convolutional neural networks (CNNs), has demonstrated a great capability of
learning diagnostic features for categorizing objects or scenes [Krizhevsky et al., 2012]. These
CNN models are inspired by the feedforward structure in the hypothesis of the hierarchical orga-
nization of the visual cortex. They typically have multiple layers with increasing receptive field
sizes; the first layer takes raw image inputs and the last layer outputs object or scene category la-
bels. The connections between layers are learned by minimizing labeling error on a large amount
of image data, and the layered structure inherently provides an operational definition of low-level
and high-level information. Features extracted in these CNNs have been shown to share significant
similarity with neural representations of objects and scenes [Yamins et al., 2014; Khaligh-Razavi
and Kriegeskorte, 2014; Cichy et al., 2016c,a].

Based on these observations, we answer Question (1) by using low- and high-level features from
a well-trained CNN and linearly regressing the neural responses at different locations and time
points on these features. Such a regression analysis can examine how well the neural responses are
explained by the features and yield a spatial-temporal profile of the linear dependence (which we
also call “correlation profile” hereafter) between neural responses and different features. Although
some recent MEG studies have also correlated neural activities with CNN features or other com-
puter vision features, these studies either focused only on recognizing isolated objects, restricted
to individual objects on blank backgrounds [Clarke et al., 2014; Cichy et al., 2016c], or focused
on specific properties of scenes, restricted to a small set of scene stimuli [Cichy et al., 2016a]. In
addition, the majority of these studies focused on the temporal patterns, but not the spatial pat-
terns (except Clarke et al. [2014]). To overcome these limitations, we recorded neural responses
to a relatively large number of naturalistic scenes in daily life and applied source-space regression
analysis models (including our novel STFT-R model), aiming to obtain detailed correlation profiles
between spatio-temporal neural activities and low- and high-level CNN features. Such profiles,
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which have not been documented so far to our knowledge, will be helpful for understanding the
information flow during scene and object recognition. In addition, because the low- and high-level
features from CNNs are defined operationally, features at different levels may share some com-
ponents in common, resulting in some difficulty in interpretation. Uniquely, we decomposed the
low- and high-level CNN features into three lower-dimensional groups, respectively representing
(i) the low-level features that are relevant to high-level features, (ii) the low-level features that are
roughly orthogonal to high-level features, and (iii) the high-level features that are roughly orthog-
onal to low-level features. By specifically comparing the spatio-temporal correlation profiles of
these three groups, we not only observed evidence for feedforward processing in the visual cortex,
but also found interesting evidence for non-feedforward processing, which could reflect top-down
feedback.

Question (2)—how neural activities in different areas interact with each other dynamically—is
more directly related to information flow in the brain. To address this question, we quantify the
functional connectivity, that is, statistical dependence, between different regions of interest. Al-
though functional connectivity is observational and does not directly translate into causal inter-
actions, analysis of functional connectivity, especially time-lagged functional connectivity, may
reveal directed interactions between regions at important time windows, which are helpful in gen-
erating candidate hypothesis of information flow for further causal tests (e.g., interventions of brain
areas in animal studies).

Previous work has suggested that functional connectivity between scene-selective regions and other
brain areas may play an important role in scene processing [Kveraga et al., 2011]. More specifi-
cally, a scene includes multiple objects that are contextually associated; strong contextual objects
(e.g., oven) may elicit neural responses related to the corresponding scenes (e.g., kitchen). Func-
tional MRI studies have shown that the scene-selective regions, and the medial prefrontal cortex
(mPFC), which is involved in episodic memory, have greater responses to strong-contextual ob-
jects (e.g., oven) than to weak-contextual objects (e.g., pen) [Bar and Aminoff, 2003]; these re-
gions together are hypothesized as a connected “contextual network” by Bar and Aminoff [2003].
Kveraga et al. [2011] observed higher synchronization of neural activity among regions in the con-
textual network and the early visual cortex, while human participants processed strong-contextual
objects than while they processed weak-contextual objects. This result indicates that interactions
among these regions (e.g., top-down influences) may facilitate associative processing when hu-
mans recognize scenes. To further explore whether this speculation is true, we analyzed func-
tional connectivity while our participants processed the naturalistic scene stimuli. Considering the
underdetermined nature of the source localization problem, we restricted the analysis to certain
functional regions of interest, including the object/scene-selective regions, the early visual cortex,
and regions in or near the mPFC in the “contextual network” dubbed by Bar and Aminoff [2003].
Using a time-lagged autoregressive model in Chapter 4, we specifically studied whether the earlier
activity in one region was able to predict later activities in other regions, among the aforemen-
tioned regions in the ventral visual pathway and the mPFC. Our results demonstrated leading and
lagged linear dependence of neural activities among some of these regions and provide insights on
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directions of information flow during naturalistic scene processing.

5.2 Materials and methods

5.2.1 Participants

Eighteen healthy adults (8 females, 1 left-handed, aged 18-30) participated in the MEG and fMRI
sessions, and fifteen of them (6 females, 1 left-handed, aged 20-30) participated in a following
EEG session. All participants gave written informed consent and were financially compensated for
their participation. All procedures followed the principles in the Declaration of Helsinki and were
approved by the Institutional Review Boards of Carnegie Mellon University and the University of
Pittsburgh.

5.2.2 Stimuli

The stimulus set presented in the MEG and EEG sessions included color images (photographs) of
181 scene categories (e.g.,“airport”,“beach”,“coffee shop”, etc). There were 2 exemplar images in
each category, resulting in 362 images in total. These images were obtained from the dataset of
the “Never Ending Imaging Learner” [Chen et al., 2013] 2, which were collected from the Internet.
The scene images varied in aspect ratios; the longer dimension between the width and the hight
was set to 500 pixels, and the images were placed in the center of a 600× 600 bounding box with
gray value = 135 (out of 255). Figure 5.2 shows two example images. The images (with the gray
bounding boxes) were presented roughly at a visual angle of 10◦ × 10◦ in MEG and 12◦ × 12◦ in
EEG.

In the fMRI session (see below), to define the scene-selective regions in the cortex, we also ran
a functional localizer experiment, in which a separate set of images were used. These images
included 60 color images from each of the three conditions: scenes, objects and phase-scrambled
pictures of the scenes. The scene images included outdoor and indoor scenes, which did not overlap
with the 362 stimuli images mentioned above. The objects used were weak contextual objects [Bar
and Aminoff, 2003]. The phase-scrambled pictures served as control stimuli of scenes; they were
generated by doing a Fourier transform of the scene images, scrambling the phases, and then doing
an inverse Fourier transform back to the pixel space. The images were presented at a visual angle
of 5.5◦ × 5.5◦.

2www.neil-kb.com
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5.2.3 Experimental procedure

The experimental procedures in the MEG, EEG and MRI sessions were all implemented using
Psychtoolbox 33 in MATLAB. The trial structure in the MEG/EEG sessions were described
in Figure 5.2. Before the stimulus presentation, the participants were asked to fixate their eyes
on a white “+” symbol (spanning 80 pixels) at the center of the screen. The gray value of the
screen was 180 (out of 255). We term this screen the fixation screen hereafter. Then one stimulus
image was presented at the center of the screen for 200 ms, which was short enough to reduce
artifacts due to saccades during stimulus presentation. The stimulus image was then followed
by the fixation screen lasting for a random duration until the onset of the next stimulus. This
duration was uniformly sampled from a (1600, 2100) ms interval independently in each trial. The
participants were asked to perform a “one-back” task —to respond when the current stimulus was
the same as the last presented one, by pressing a button on a glove pad using the right index finger
(MEG) or by pressing the “space” key on a keyboard (EEG). The participants were given 1500 ms
to respond after the stimulus onset.
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Figure 5.2: Illustration of the trial structure in the MEG/EEG sessions

Each MEG session included 6 to 12 runs; each run included 181 images, and every two runs
covered all 362 images. In each run, 10% of the images were immediately repeated once, and we
only analyzed data in the first presentation of each image. In total, there were 3 to 6 repetitions
of each image for most of the participants in the MEG session. For one participant, due to a
problem with acquisition, we only presented 2 repetitions of some images, and 4 repetitions of the
remaining images. Each EEG session included 6 runs; each run included all 362 images, and there
was a self-paced break between every 40 trials. Similarly, 10% of the images were immediately
repeated once, and there were 6 repetitions of each image for each participant.

In the fMRI session, a functional localizer experiment was run to independently define scene- and
object- selective regions in the brain. Most participants went through two runs of the localizer
experiment; yet two participants went through one run due to time limits. Each run started and

3 http://psychtoolbox.org/
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ended with a 12-second time window, during which a black fixation cross (“+”) was presented on a
gray background. Between the starting and ending fixation windows, there were twelve 14-second
to 16-second blocks, each of which had stimuli in one condition (either scenes or weak-contextual
objects or phase-scrambled scenes). There were four blocks per condition and three conditions in
total and there was a 10-second fixation time window between each two consecutive blocks. In
each block, 14 stimuli were presented in a row, with an 800 ms presentation duration and a 200 ms
inter-stimulus interval, with the exception that the first stimulus in each of the block other than the
first block was presented for 2800 ms, yielding 16-second blocks 4. Among the 14 stimuli, 12 were
unique images, and 2 were immediate repetitions of the previous image. Again, the participants
were instructed to do a one-back task — pressing a button on a glove pad with the right index
finger when they detected an immediate repetition.

5.2.4 Data acquisition

MEG and EEG. MEG data was collected using a 306-channel whole-head MEG system (Elekta
Neuromag, Helsinki, Finland) at the Brain Mapping Center at the University of Pittsburgh. The
MEG system had 102 triplets, each consisting of a magnetometer and two perpendicular gradiome-
ters. The recordings were acquired at 1 kHz, high-pass filtered at 0.1 Hz and low-pass filtered at
330 Hz. Four head position indicator (HPI) coils were placed on the scalp of each participant to
record the position of the head in relation to the MEG helmet. Empty room MEG recordings were
also collected in the same session, and used to estimate the covariance matrix of the sensor noise.
About a hundred points describing the shape of the head and the coordinates of the HPI coils on
the scalp were collected using a digitization device; these coordinates were later used in aligning
the head position in the MEG session with the structural MRI scan.

EEG data was collected using a 128-channel whole-head system (ActiveTwo, Biosemi, Amster-
dam, Netherlands) at the EEG laboratory of the Psychology Department at Carnegie Mellon Uni-
versity. The recordings were acquired at 512 Hz. The coordinates of the electrode holes on the
EEG cap, which the electrodes were plugged in, were collected using a digitization device. For a
subset of the participants, additional 100 coordinates describing the shape of the head with the cap
on were also collected using the same device. These coordinates were later used in aligning the
head position in the EEG session with the structural MRI scan.

For both MEG and EEG, electrooculogram (EOG) was monitored by recording muscle activity
above and below one eye and lateral to both eyes; electrocardiography (ECG) was recorded by
placing additional electrodes above the chest. The EOG and ECG recordings captured eye blinks

4The long presentation was due to a timing issue in the customized image presentation program. However, we
do not think this issue would have changed our results in defining the object/scene-selective regions, because in this
block design, the main effect is the difference of neural responses in different conditions, which should be robust to
variations in presentation durations of individual stimuli.
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and heartbeats, so that these artifacts could be removed from the MEG or EEG recordings after-
wards.

MRI. Magnetic resonance imaging (MRI) data was collected on a 3T Siemens Verio MR scanner at
the Scientific Imaging and Brain Research Center at Carnegie Mellon University using 32-channel
head coil. For each participant, a high resolution structural MRI scan was first acquired (T1-
weighted MPRAGE sequence, 1 mm × 1 mm × 1 mm, 176 sagittal slices, TR = 2300 ms, TE =
1970 ms, flip angle = 9◦, GRAPPA = 2, field of view = 256). In addition, functional MRI (fMRI)
data was also collected for the functional localizer experiment (T2∗ -weighted echo-planar imaging
multiband pulse sequence, 69 slices aligned to the AC/PC, in-plane resolution 2 mm × 2 mm, 2
mm slice thickness, no gap, TR = 2000 ms, TE = 30 ms, flip angle = 79 ◦, multi-band acceleration
factor = 3, field of view 192 mm, phase encoding direction A � P, ascending acquisition). A
fieldmap scan was also acquired to correct for distortion effects using the same slice prescription
as the echo-planar imaging scans (69 slices aligned to the AC/PC, in-plane resolution 2 mm × 2
mm, 2 mm slice thickness, no gap, TR = 724 ms, TE1 = 5 ms; TE2 = 7.46 ms, flip angle = 70◦,
field of view 192 mm, phase encoding direction A� P, interleaved acquisition).

5.2.5 Preprocessing of MEG/EEG data

Preprocessing of the raw MEG or EEG recordings included steps in the following pipeline. All
steps were implemented using the MNE-python[Gramfort et al., 2014] package in Python.

1. Filtering. The raw recordings (including MEG empty room recordings) were filtered with a
1− 110 Hz bandpass filter, which removed low-frequency drifts and higher frequency noise
(such as the oscillations generated by the head position indicator coils during head tracking).
Then the recordings were further filtered by a notch filter centered at 60 Hz to remove the
interference of the power line.

2. Removing artifacts due to eye blinks and heartbeats. Independent component analysis (ICA)
was used to decompose the recordings into multiple components, and when reconstructing
the data from the components, the ones highly correlated with eye blinks and heartbeats
(recorded by EOG and ECG) were removed.

3. Interpolation of bad channels. By manually inspecting the raw data, bad channels that had
extremely high or low variances or very frequent square-wave-like artifacts were marked,
and data in these channels was interpolated using neighbouring good channels.

4. Obtaining trial-by-trial data. In both MEG and EEG sessions, trial-by-trial recordings (also
referred as “epochs”) were obtained by segmenting the data from −100 ms to 900 ms with
respect to the “trigger” onset (the “stimulus onset” recorded in the acquisition system, de-
fined as 0 ms). For each trial, each channel, the mean across time points in the baseline
window (−100 to 0 ms) was subtracted from the recording at each time point. It is worth
noting that the timing here was recorded by the data acquisition devices. Yet the image
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presentation devices had additional delays. In MEG, the projector used for image presen-
tation had a constant delay for about 40 ms, and in EEG the LCD screen had a delay for
roughly about 20 ms. We shifted the time points back for 40 ms in MEG, and 20 ms for
EEG, such that the timing in MEG and EEG were roughly aligned. For MEG data, a signal
space projection (SSP) was applied to the epochs. The SSP constructed a low-dimensional
linear subspace characterizing the empty room noise (via principal component analysis), and
removed from the experimental MEG recordings the projection onto this subspace, so that
neural signals orthogonal to the principal components of empty room noise remained. The
EEG epochs were re-referenced to the average across all 128 channels, that is, the averaged
readings across channels was subtracted off from each channel at each time point.

5. Obtaining averaged neural responses to each image for each participant. To reduce the
computational cost for some of the analyses below, we down-sampled the trial-by-trial data
to 100 Hz sampling rate. The trials corresponding to the second presentation in immediate
repetitions might have lower signal strength due to adaptation, therefore they were removed
from further analysis. To remove outlier trials that had extreme large variations in each ses-
sion for each participant, we computed the difference between the maximum and minimum
of the recordings for each channel in each trial, and discarded the trials where the difference
was larger than 15 standard deviations plus the mean across all trials for at least one channel.
Finally, the data in the remaining trials that corresponded to the same image was averaged
within each session for each participant.

6. Removing data explained by nuisance covariates. Although our stimulus images were wrapped
in the same 600 × 600 pixel boxes, the widths and heights of the images varied. These
nuisance covariates that were irrelevant to the image contents could explain a significant
amount of variance in the MEG/EEG recordings. To alleviate such effects, we regressed the
MEG/EEG data against four covariates —image width, image height, area (width × hight)
and aspect ratio (width / height) —respectively at each time point for each sensor in each
participant. An all-one column was added in the regressors to remove the mean response
across all images as well. For each regression, the residuals were kept as new sensor data to
be analyzed.

5.2.6 Forward modeling

For each participant, based on the T1-weighted structural MRI scan, the outer skin surface of the
scalp and the inner and outer surfaces of the skull were computed using the watershed algorithm
[Ségonne et al., 2004] implemented in the Freesurfer software [Fischl et al., 2002] and the
MNE software. Additionally, the cortical surfaces that segmented the gray and white matter were
also computed using Freesurfer. The source space was defined as about 8000 distributed
“dipoles” (or source points) that pointed perpendicular to the cortical surface of both hemispheres.
The average spacing between source points was 4.9 mm, yielding 24 mm2 of cortical surface area
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per source point. Source points that were within 2.5 mm of the inner skull surface were excluded.

The digitized points that described the shape of the head in MEG were used for co-registration
with the structural MRI. In the co-registration, we solved for a rigid-body transformation that
minimized the sum of squared distances from the digitized points to the scalp surface, using an
interface implemented in MNE-C. Note that the optimization problem was not necessarily convex,
therefore no global minimum could be guaranteed. Yet, by manually adjusting initial values, the
solution for each participant looked reasonably good in our visual inspection. For EEG sessions,
similar distance minimization did not work well. This was possibly because the digitization device
could not penetrate the EEG cap to reach the scalp, leaving a few millimeters between the digitized
points and the scalp surface, such that many possible alignments could result in similar sums of
squared distances. In this case, an alignment that looked most visually reasonable was manually
selected for each participant. Due to the difference in the co-registration step between the MEG
and EEG sessions, the source-space analysis of our EEG data might be less reliable than that of
the MEG data.

For each participant, the forward matrix for each run in the MEG session and for the whole EEG
session was computed using the boundary element model implemented in MNE-C, after transform-
ing the MEG sensor locations or EEG electrode locations into the structural MRI space, based on
the alignment in the co-registration step above. For the MEG session, the forward matrices across
all runs were averaged for each participant.

5.2.7 Source-space regression analysis

To characterize how much the spatio-temporal neural activity was correlated with CNN features,
we regressed the neural responses in the source space against the features of the images, using both
the conventional two-step regression analysis, and our novel short-time Fourier transform regres-
sion (STFT-R) model in Chapter 3. In both cases, the noise covariance matrix Qe was estimated
from sensor recordings within the baseline time windows (-140 to -90 ms in MEG and -120 to
-70 ms in EEG) for each participant. For the two-step analysis, we used the dSPM source localiza-
tion method implemented in MNE-python to obtain unit-less source current dipole estimates for
each image. The penalization parameter was set to 1.0. For each participant, after the dSPM solu-
tions were obtained for each image, an ordinary least square regression was run for each time point
and each source point. The coefficient of determination (or R-squared), indicating the proportion
of variance explained by the regressors (CNN features) was used as the summarizing statistics to
characterize the correlation between the neural responses and the CNN features.

In the one-step analysis, we applied the short-time Fourier transform regression method [Yang
et al., 2014] introduced in Chapter 3, with the hierarchical sparsity-inducing penalty on the regres-
sion coefficients, which related time-frequency components of source activity to the regressors.
There were three levels of nested grouping in the sparsity-inducing penalty: the source point level,
the time-frequency level and the level of individual dimensions of the regressors. On the first level,

84



the regression coefficients for each source point formed a single group, on the second level, each
time-frequency component corresponded to a group, and on the third level, each dimension of the
regressors corresponded to one group as well. The penalization parameters of the penalty on the
three levels (i.e. α, β and γ in Chapter 3) were selected among a range of values via two-fold cross
validations for each participant respectively. The time step of the STFT was set to τ0 = 40 ms, and
the window length was 160 ms. Neural responses to all 362 images were used, and after fitting
the STFT-R models, the regression coefficients for each source point in the time-frequency domain
were transformed to the time domain for further statistical analysis.

5.2.8 Preprocessing of fMRI data and definition of regions of interest (ROIs)

The fMRI localizer data were preprocessed in SPM12 5. The preprocessing included an unwarp
transform to correct for geometric distortions using the fieldmap scan, a frame-by-frame transform
to correct for head motion combined with a transform to align with the structural MRI, and finally
spatial smoothing with an isotropic Gaussian kernel (where the full width at half maximum was
4 mm). The data in all localizer runs for each participant were concatenated, high pass filtered
with 0.0078125 Hz (a 128-second period), and then analyzed using a “general linear model” in a
block design. In this model, the time series at each voxel was essentially linearly regressed against
a design matrix, which included, in separate columns, the pre-defined canonical hemodynamic
response function convolved with the square-wave-like indicators of blocks for each stimulus con-
dition (scenes, weak contextual objects, and phase scrambled scenes). The design matrix also
included extra columns corresponding to nuisance covariates (e.g., the time series of parameters
in motion correction). An autoregressive model of order 1 (AR(1)) was used to account for the
temporal correlations of the residuals.

Scene/object selective regions were defined using the MarsBaR toolbox 6. For any voxel, let βscene

denote the regression coefficient for the scene condition, βobject for the weak-contextual object
condition, and finally βscramble for the phase-scrambled scene condition. The t-statistics of the
difference (βscene−1/2(βobject +βscramble)) was computed as the estimated difference divided by the
estimated standard deviation of the difference. Then the voxels where the t-statistics was above
a threshold were selected as scene-selective voxels. A customized threshold was set for each
participant, such that clusters of contiguous voxels above the threshold were identified within or in
the proximity of the parahippocampal gyrus, the retrosplenial cortex, and the transverse occipital
sulcus in each hemisphere. These clusters were labelled as the scene-selective ROIs, which were
the parahippocampal place area (PPA), the retrosplenial cortex (RSC) and the transverse occipital
sulcus (TOS). For the majority of the participants, the threshold was equal to the value where
the family-wise error rate was controlled at 0.05. For some individuals, if the threshold was too
stringent, we relaxed the threshold to a smaller value. Similarly, object-selective clusters in the

5http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
6http://marsbar.sourceforge.net/index.html
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lateral occipital cortex and the fusiform area (the lateral occipital complex or LOC) were also
identified in both hemispheres for each participant respectively, where the difference of interest
was βobject − βscramble.

The SUMA software was used to project these clusters of voxels to sets of vertices on the corti-
cal surfaces, so that they could be labelled in the source space in MEG/EEG. The mapped sets
of vertices were then manually examined, and the ones that had fuzzy boundaries or that were
anatomically off were corrected. Each remaining contiguous set was defined as one region of in-
terest (ROI). The ROIs that did not cover at least 10 source points were dilated until they could
cover 10 source points. Finally, the vertices in the LOC that were also in one of the scene-selective
ROIs (PPA, RSC or TOS) were removed from the LOC. See Figure 5.14 for the locations of the
ROIs in each participant.

Additionally, some anatomical ROIs were defined based on the parcellation of the structural MRI
by Freesurfer. These ROIs included the pericalcarine areas that covered the early visual cor-
tex (EVC) 7, and the medial orbitofrontal cortex (mOFC), which was roughly in or near the lo-
cation of the mPFC in the “contextual network” introduced by Bar and Aminoff [2003]. Here,
we use the mOFC as an approximation of the mPFC. Moreover, we also defined a larger ven-
tral visual ROI, as a union of the following regions in the “aparc” parcellation of anatomical
ROIs in Freesurfer: the entorhinal, fusiform, inferiortemporal, lateralocciptical, lingual and
parahippocampal regions and the temporal pole. We obtained the coordinates along the anterior
and posterior axis of the source points in this ventral visual ROI, segmented the range of the coor-
dinates into 3 sub-ranges of equal lengths, and finally partitioned the source points into 3 groups
corresponding to these sub-ranges. Hence, we had 3 sub-ROIs in the ventral visual cortex, named
as Vent 1, Vent 2 and Vent 3 from the posterior side to the anterior side, as shown in Figure 5.3.
Finally, each pair of the corresponding bilateral regions were merged into one ROI, resulting in the
bilateral PPA, RSC, TOS, LOC, EVC, mOFC and Vent 1, 2 and 3.

  

Vent 1 Vent 2 Vent 3

Figure 5.3: Illustration of the three ROIs in the ventral visual cortex from one example participant.

5.2.9 Extracting features of the images

We used a convolutional neural network called Alexnet [Krizhevsky et al., 2012] implemented
in the Caffe [Jia et al., 2014] software to extract features. This convolutional neural network

7the pericalcarine areas included mostly V1 but might also include some part of V2

86



was trained to classify images into 1000 object categories with 1.2 × 106 training samples and
5 × 104 validation samples in the ImageNet database [Deng et al., 2009; Russakovsky et al.,
2015]. Figure 5.4 shows the 8-layer architecture of Alexnet. The first 5 layers had convolutional
units. Each unit in these layers applied a dot product of a “kernel” weight matrix with the inputs
within a receptive field—for example, in Layer 1, each unit’s receptive field was 11 × 11 pixels
of the RGB channels of the raw image. Within each of the convolutional layers, there were a
number of sub-layers; for example, Layer 1 had 48 × 2 = 96 sub-layers. Units in each sub-layer
shared a “kernel” weight matrix, and therefore in such a convolutional architecture, the number
of parameters was much smaller than that of an all-to-all connected neural network with the same
number of units, yielding a more tractable model to train. After the convolution operation (dot
product), each unit then applied a rectified linear function f(x) = max(0, x) on the dot product
to generate the output. In Layer 1, 2, and 5, an additional normalization step was applied, where
in each location, the output of the unit in each sub-layer unit was normalized by a function of
the sum of squares of the responses in its neighbor sub-layers, including itself; a max-pooling
operation was also added after the normalization in these layers (see Krizhevsky et al. [2012] for
more details). Layer 6 and 7 were fully connected layers, each consisting of 2048×2 = 4096 units,
and Layer 8 was the final output layer with 1000 units, corresponding to the 1000 object categories.
We downloaded a version of pretrained Alexnet from the Caffe “model zoo”, and resized our
600× 600 images (with the gray box) to the input size, then collected responses of all the units in
each layer as our features. For Layer 1, 2 and 5, we used the responses before normalization and
max-pooling.
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increasing receptive fields

Layer 8 
1000 
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Figure 5.4: Structure of Alexnet. Note that the network was distributed on two graphics processing units
(GPUs), illustrated by the upper and lower rows for each Layer. In terms of extracted responses of the units,
we concatenated the responses of all the units in both the upper and lower parts together.

The 8-layer structure of Alexnet is feedforward; it naturally provides a progressive shift from
low-level to high-level features. Here we chose Layer 1 and Layer 7 as representatives of low-level
features and high-level (object-category-related) features. Layer 1 had the smallest receptive field
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and the convolutional “kernel” weight matrices were similar to 2-D Gaussian functions and Gabor
filters (see visualization in Krizhevsky et al. [2012]). Layer 7 was the last fully-connected hidden
layer before the output layer, which should represent important semantic information about the
images that facilitates object recognition. Here, we did not use Layer 8 because the 1000 category
labels in ImageNet might not align with the basic organization of object categories in humans.

We only had 362 images in the stimulus set, which was limited for analyzing the features per se
(e.g., comparing different layers). Therefore we created a set of extra images, from which we
also extracted features from the same layers. These extra images were from the same 181 scene
categories in the same dataset, including 6 exemplars per category, different from the stimulus
images (6× 181 = 1086 images in total); they had similar sizes (longest side = 500 pixels) as the
stimulus images, and were also centered in the same 600× 600 bounding boxes.

It is also worth noting that the nuisance covariates due to various widths and heights of the images
could also be correlated with the extracted CNN features. Therefore we regressed out the width,
height, area (width× hight) and aspect ratio (width / height) for the features extracted in each unit
across the union of the stimulus set and extra image set. Again, an all-one column was included in
the regression, which removed the mean across all images.

We also extracted simpler low-level features—the local contrast features—in the following
way. For each image resized to the input size of Alexnet, the patch within each 11×11 receptive
field in Layer 1 was converted to gray values (by averaging the values of the RGB channels), and
the contrast in the patch was defined as (xmax − xmin)/(xmax + xmin), where xmin and xmax were
the minimum and maximum of the gray values in the patch. The contrast values were concatenated
across all receptive fields, yielding a 55 × 55 = 3025-dimensional vector for each image. When
using these local contrast features as regressors in our analysis of neural data, linear projections
onto the nuisance covariates related to the widths and heights of the images were removed.

We observe that the low-level and high-level layers in AlexNet are both highly dependent on
the local contrast, which would naturally elicit strong neural responses in the visual cortex (see
Results in Section 5.3 below). To account for possible confounding effects, we regressed out the
first 160 principal components of local contrast features (explaining 90% of the variance in the
local contrast features) from the intact features in all layers in AlexNet, and took the residuals
as new features of interest. We term these new features local-contrast-reduced features hereafter.
Note that the local contrast features across both stimulus images and extra images were used in
the PCA to obtain the 160 principal components, and similarly the features in each layer across all
images went through the aforementioned regression.

5.2.10 Characterizing the common linear space of two feature sets

From Layer 1 to Layer 7, the units in AlexNet non-linearly transform the raw pixel inputs to
informative features related to object categories. However, this does not necessarily mean the fea-
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tures in Layer 1 and Layer 7 are completely orthogonal. There may still be some linear dependence
between the low-level Layer 1 and the much higher-level Layer 7. In this case, when we compared
the correlation of neural activity with the two layers, it would be more insightful to estimate how
much the correlation was due to the linearly dependent components between the two layers. Hence
we exploited the following canonical correlation analysis to extract the common linear components
between Layer 1 and Layer 7. Let matricesX1 (q×p1) andX2 (q×p2) denote two sets of features
of the same q images, extracted from p1 units in Layer 1 and p2 units in Layer 7 of Alexnet.
We assumed that the rows in X1 and X2 had zero means, which was empirically satisfied by sub-
tracting the sample mean across q images. To characterize the common linear space of the two
feature sets, we used canonical correlation analysis to find linear projections of each feature set
that maximized the Pearson correlations of the projected features of the two sets.

Because there were more units in the layers of AlexNet than the number of images (q < p1, p2),
we first used principal component analysis (PCA) to reduce the dimensions of both feature sets to
p < p1, p2. With the assumption that both X1 and X2 had zero mean, the PCA was implemented
using singular value decompositions,

X1
q×p1
≈ U1

q×p
D1
p×p

V T
1

p×p1
, X2

q×p2
≈ U2

q×p
D2
p×p

V T
1

p×p2

whereD1 andD2 were diagonal matrices, and U1, U2, V1 and V2 had orthonormal columns.

We used the projections of X1 and X2 onto the p orthogonal dimensions X̃1 = U1D1 and X̃2 =

U2D2 in the canonical correlation analysis, where linear weights W1 and W2 (both p × p) were
obtained as follows.

arg max
W1[:,i],W2[:,i]

corr(X†1[:, i],X†2[:, i]) whereX†1 = X̃1W1,X
†
2 = X̃2W2

subject to corr(W1[:, i],W1[:, j]) = 0 if i 6= j

corr(W2[:, i],W2[:, j]) = 0 if i 6= j

||X†1[:, i]||2 = ||X†2[:, i]||2 = 1

i, j = 1, · · · , p

The ith columns of W1 and W2, (W1[:, i] and W2[:, i]) were the weights that linearly combined
columns in X̃1 and X̃2, such that the combinations X†1[:, i] and X†2[:, i] had the highest corre-
lation. Different columns in W1 and W2 projected X̃1 and X̃2 onto orthogonal components.
This optimization problem was solved using the canoncorr function in MATLAB, which im-
plemented eigen decompositions of Σ11

−1/2Σ12Σ22
−1Σ21Σ11

−1/2, where Σ12 and Σ21 were cross
covariances of X̃1 and X̃2, and Σ11 and Σ22 were covariances of X̃1 and X̃2 respectively.

The solution yielded p orthogonal components in X†1 and X†2 , where the correlations between the
corresponding components in the two feature sets decreased from the 1st to the pth components.
To determine how many components to include in further analysis, we used cross validation error
in predicting one feature set from the other as a measurement of goodness. Assume we used
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the top pc components in the prediction, for each i = 1, · · · , pc, we learned a linear regression
X†2[:, i] ≈ aiX

†
1[:, i] + bi. Given new observations X̃new

1 , we predicted X̃new
2 using the following

pipeline.

X̃new
1

X†
1=X̃1W1

−−−−−−−−→ (X†1)new[:, 1 : pc]
linear mapping
−−−−−−−−→ prediction X̂†2[:, 1 : pc]

least square
−−−−−−−−→ prediction ˆ̃X2

The last arrow above involved solving the following least square problem

arg min ˆ̃X2
‖ ˆ̃X2W2[:, 1 : pc]− X̂†2[:, 1 : pc]‖2F

where ‖ · ‖F was the Frobenius norm. Setting this objective function’s gradient to zero, we got

ˆ̃X2 = (X̂†2[:, 1 : pc]W2[:, 1 : pc]
′)(W2[:, 1 : pc](W2[:, 1 : pc])

′)−1 = X̂†2[:, 1 : pc]VW2diag(1/DW2)U
′
W2

where UW2 , DW2 and V ′W2
were obtained from the singular value decomposition of W2[:, 1 : pc].

The prediction error was quantified as the squared Frobenius norm of the difference between the
prediction and the true X̃new

2 , divided by the squared Frobenius norm of the true value (i.e. the

error was ‖ ˆ̃X2−X̃new
2 ‖2F/‖X̃new

2 ‖2F ). Similarly, a symmetric procedure could be applied to predict
X̃1 from X̃1.

Noticing that selecting pc using only the 362 stimulus images might be restricted, we used the
1086 extra images for this purpose (see Figure 5.5). We obtained X̃1 and X̃2 from the union of
the extra images and stimulus images, and then we ran a leave-one-exemplar-out-in-each-category
(6-fold) cross validation only on the rows corresponding to the extra images, predicting X̃1 from
X̃2 and vice versa. The cross validation error was computed for different values of pc and used for
selecting the best value (see Results in Section 5.3).

After selecting the best pc, we applied W1[:, 1 : pc] and W2[:, 1 : pc] that were learned from the
rows corresponding to the extra images (X̃extra

1 and X̃extra
2 in Figure 5.5) on the rows corresponding

to the stimulus images (X̃stim
1 and X̃stim

2 ), obtaining the projections (X†1)stim[:, 1 : pc] and (X†2)stim[:

, 1 : pc]. LetX†1,2 (362×2pc) be the union of the columns in (X†1)stim[:, 1 : pc] and (X†2)stim[:, 1 : pc];
then there were pc correlated pairs in these columns. We reduced the dimension to pc using PCA
(singular value decomposition assuming zero mean), obtaining

X†1,2
362×2pc

≈ U1,2
362×pc

D1,2
pc×pc

V ′1,2
pc×2pc

,

where we callXc
def
= U1,2 the common components.

Finally we regressed Xc out from X̃stim
1 and X̃stim

2 separately, and used PCA (singular value de-
composition if assuming zero mean) to extract the pc-dimensional projections of the residual space
respectively for Layer 1 and Layer 7. For example, we have the following for Layer 1

Ur1
362×pc

Dr1
pc×pc

V ′r1
pc×pc

≈ (I −Xc(X
′
cXc)

−1X ′c)X̃
stim
1
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Figure 5.5: Illustration of separating the common and residual spaces of Layer 1 and Layer 7 features. The
superscript extra and stim denote the rows corresponding to the extra images and stimulus images respectively.

and we call Xr1
def
= Ur1 residual Layer 1. Similarly, we obtained residual Layer 7 (Xr2

def
= Ur2,

where Ur2Dr2V
′
r2 ≈ (I −Xc(X

′
cXc)

−1X ′c)X̃
stim
2 ).

Given how the common components, the residual Layer 1 and the residual Layer 7 were created,
we have the following intuitive interpretation. The common components are the linearly correlated
components between the low-level Layer 1 features and the high-level Layer 7 features. Since the
features in Layer 7 are highly relevant to the object-category labels, the common components rep-
resent the “object-category-relevant” low-level features. For example, these features may include
informative edges that formed the physical boundary of an object. In contrast, the residual Layer
1 represents components in Layer 1 features that were roughly orthogonal to higher-level semantic
information that is relevant to object categorization. The residual Layer 7 represents linear compo-
nents in Layer 7 that were roughly orthogonal to features in Layer 1; in other words, it represents
unique high-level features besides the low-level features.

We used the following measurement to quantify how much variance of the original Layer 1 and
Layer 7 features of the stimulus images (Xstim

1 and Xstim
2 ) were explained by the common compo-

nents (Xc), residual Layer 1 (Xr1) and residual Layer 7 (Xr2).

variance proportion = 1− ‖(I −X∗(X
′
∗X∗)

−1X ′∗)X0‖2F
‖X0‖2F

(5.1)

X0 = Xstim
1 orXstim

2 , X∗ = Xc orXr1 orXr2
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assuming bothX0 andX∗ had zero means.

5.2.11 Confidence intervals and statistical tests

Percentile confidence intervals After obtaining the statistics representing the regression effects
(e.g., R-squared, or sum of squared coefficients) for each time point, we obtain the group-averaged
time series across participants, for which the confidence intervals were obtained through bootstrap-
ping. We randomly re-sampled the statistics time series at participant level with replacement, and
used the (α0, 1 − α0/2) percentile confidence intervals of the bootstrapped sample [Wasserman,
2010]. The significance level α0 here was defined as 0.05/T/nstat, where T was the number of
time points in the time series, and nstat was the number of statistics time series considered (Bon-
ferroni correction).

Permutation-excursion tests When examining whether a time series of statistics is significantly
different from the null hypothesis in some time windows, it is necessary to correct for multiple
comparisons across different time points. Here, permutation-excursion tests [Maris and Oosten-
veld, 2007; Xu et al., 2011], were used to control the family-wise error rate and obtain a global
p-value for the time windows. In a one-sided test that examines whether some statistics were signif-
icantly larger than the null, we first identify clusters of continuous time points where the statistics
were above a threshold, and then took the sum within each of these clusters. Similarly, in each per-
mutation, the statistics of permuted data were thresholded, and summed within each of the detected
clusters. The global p-value for a cluster in the original, non-permuted case, was then defined as
the proportion of permutations where the largest summed statistics among all detected clusters was
greater than the summed statistics in the cluster from the non-permuted case. Specifically, to test
whether the mean time series of some statistics (e.g., R-squared in regression) across participants
were significantly larger than that in the baseline time window before the stimulus onset, we first
took the difference between the original time series and the temporal mean of the statistics within
the baseline time window, for each participant separately. Then across participants at each time
point, we used the t-statistics defined in the Student’s t-tests to examine if the group means of these
differences were significantly above zero in any time windows. Here the each permutation was im-
plemented by assigning a random sign to the difference time series for each subject. This test,
which we refer to as permutation-excursion t-test hereafter, was implemented in MNE-python,
where the number of permutations was set to 1024. The threshold of the t-statistics was equivalent
to an uncorrected p-value ≤ 0.05.

Other corrections of multiple comparisons Besides the permutation-excursion tests above, in
some cases, where the possible dependence structure was less easy to describe than that in adjacent
time points, we used other methods to correct for multiple comparisons, including the Bonferroni
criterion and the Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995] to control for
the false discovery rate.

Combining p-values of tests across individual participants In some cases (e.g., the connectivity
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analyses below), we ran statistical tests and obtained the p-value for each individual participant.
To combine these individual p-values and obtain a group-level p-value, we used the binomial test
[Darlington and Hayes, 2000]. Suppose we control the p-values for each participant at a level of
0.05. Under the null hypothesis (i.e., in all of the participants, the null hypotheses of the individual
tests are true), the p-values of each individual participant should be uniformly distributed, and the
probability of observing a p-value < 0.05 is 0.05. So we counted the number of participants who
showed a p-value smaller than 0.05, denoted as npos. Then we computed the group-level p-value
of the binomial test as the tail probability of Binomial(nparti, npos, 0.05), where nparti was the total
number of participants. Note that a significantly small group-level p-value indicates that at least
for one participant, the alternative hypothesis was likely true.

5.2.12 Source-space connectivity analysis

In the connectivity analysis, we focused on six ROIs, including the pericalcarine areas that mainly
covered the early visual cortex (EVC), an object-selective ROI (the lateral occipital complex,
LOC), three scene-selective ROIs (PPA, RSC and TOS), and the medial orbitofrontal cortex (mOFC),
which was roughly in or near the location of the mPFC in the “contextual network” introduced by
Bar and Aminoff [2003]. Each ROI was the union of the corresponding regions in the left and right
hemispheres (see Figure 5.14). We used the time-varying autoregressive (AR) model in Section 4.3
to describe the connectivity (i.e., the leading or lagged dependence across ROIs in the neural re-
sponses to the scene images). Besides our one-step state-space model, we also used a two-step
approach, where the dSPM estimation of source activity was obtained in the first step, and then
the time-varying AR coefficients were fitted on the mean activity across source points within each
ROI. The penalization parameter in the dSPM was set to the default value for a single trial in the
MNE-python software. The regularization parameters for the AR model was set to λ0 = 0 and
λ1 = 1.0 for both methods (see Section 4.3 for details). The models were fitted for each partici-
pant individually, and standard deviations of the AR coefficients were obtained by bootstrapping
the observations for 362 images (sampling the 362 observations with replacement). The sampling
indices were the same across participants. For the EM algorithm in our one-step model, we mainly
used the AR coefficients by the two-step method for initialization.

5.3 Results

As mentioned in the Introduction (Section 5.1), we aim to analyze the spatio-temporal neural
activity to address two questions: (1) what kind of information is extracted at different temporal
stages and different areas and (2) how neural activities in different areas interact with each other
dynamically.

First, we present results related to Question (1). We exploited features in different layers of
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AlexNet, which represented low-level and high-level information in the visual stimuli, and we
regressed the neural activities against these features. Before showing the regression results, we first
present analyses of the features from the low-level Layer 1 and the high-level Layer 7 per se. In
these analysis, we extracted the linearly dependent components between the two, as well as resid-
ual components in each layer, yielding three nearly orthogonal groups of regressors. These groups
can be intuitively interpreted as the low-level features that are relevant to high-level features, the
low-level features that are roughly orthogonal to high-level features and the high-level features that
are roughly orthogonal to low-level features. Using these groups as regressors, we computed time
series of statistics that described the linear dependence between neural activities and these groups,
which we call “correlation profiles” hereafter. We first present the temporal correlation profile in
the sensor space and then present the spatio-temporal correlation profiles in the source space from
both a traditional two-step method and our novel one-step STFT-R regression method. The results
from both the MEG and EEG analysis were similar to each other, yet the source-space results in
EEG appeared more noisy than in MEG, possibly because there were fewer sensors in EEG and
the locations of EEG sensors in relation to the scalp were less reliable (see Data acquisition in the
Methods section). In the following text, we mainly focus on the MEG results.

Secondly, we address Question (2) by presenting analyses of time-lagged functional connectivity
across six regions of interest (ROIs), which are important in scene processing. These regions in-
cluded the early visual cortex, the object/scene-selective regions and the medial orbital frontal cor-
tex, which was roughly in or near the location of the mPFC in the “contextual network” introduced
by Bar and Aminoff [2003]. We quantified the connectivity using a time-varying autoregressive
model of order 1 with both a two-step approach and our novel one-step state-space model in Chap-
ter 4; then we ran statistical analyses of the autoregressive coefficient at each time point for each
pair of ROIs. Because the source localization in our MEG data was better than that in our EEG
data, we only ran the analysis on the MEG data.

5.3.1 Canonical correlation analysis of features in Layer 1 and Layer 7

In this subsection, we present our analyses of the features from the low-level Layer 1 and the
high-level Layer 7. To characterize the common linear space between the two feature sets, we
used canonical correlation analysis to find linear projections of each feature set that maximized
the Pearson correlations of the projected features of the two sets. To determine the number of
CCA components (pc) needed, we computed the cross-validated errors when we used Layer 1 to
predict Layer 7 (and used Layer 7 to predict Layer 1) though the CCA components among the
extra images. Figure 5.6a shows the prediction errors for both prediction directions. When pc > 3,
the prediction errors were greater than 100%. In these cases, the Frobenius norm of the difference
between the predicted values and the true values was even larger than the Frobenius norm of the
true values; in other words, Layer 1 and Layer 7 did a poor job in predicting each other with pc > 3

CCA components.
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Figure 5.6: Canonical correlation analysis of features in Layer 1 and Layer 7. (a) and (b): cross-validated
errors of predicting the Layer 7 features using the Layer 1 features (blue) and vice versa (green), with
different pcs, computed among the extra images. (a) was obtained from the intact features; (b) was obtained
from the local-contrast-reduced features. (c) and (d): absolute values of correlations between each pair of
projections of the features of the stimulus images. The projections were obtained by applyingW1 andW2,
which were fitted from X̃extra

1 and X̃extra
1 , on X̃stim

1 and X̃stim
1 . (c) was obtained from the intact features; (d)

was obtained from the local-contrast-reduced features.

In additional to the prediction error, we also examined the Pearson correlation of the CCA com-
ponents for the stimulus images, which did not overlap with the extra images used in learning the
CCA. These correlations can be seen as the “validation correlation” in this data-split case. In other
words, after learning the CCA projections (W1 and W2) from the features in Layer 1 and 7 of the
extra images, we applied W1 and W2 on the features of the stimulus images, and computed the
correlation of the projections for each corresponding CCA component. Noticing that both posi-
tive and negative correlations were meaningful, we took the absolute values of the correlations.
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Figure 5.6c shows the absolute values of the correlations; the first 4 components had correlations
higher than 0.6, and the first 6 components had correlations higher than 0.4.

Considering the results in Figure 5.6a and 5.6c, we chose pc = 3 and pc = 6 in computing
the following three groups of features for the stimulus images: the common components as the
first pc principal components of the union of the pc CCA projections of the two layers, and the
residual Layer 1 and residual Layer 7 as the first pc principal components that were orthogonal
to the common components in the two layers (see the Methods part in Section 5.2.10). We further
examined how much variance each group could explain in the original features from Layer 1 and
Layer 7. The results are listed in Table 5.1 (first two blocks and first two columns). The proportions
of explained variance were all relatively small but reasonable considering the large dimensions of
the original features (≥ 103). Not surprisingly, the residual Layer 1 explained more variance of
Layer 1 than of Layer 7 and the residual Layer 7 explained more variance of Layer 7 than of Layer
1.

Table 5.1: Proportion of variance (%) of different features explained by the common components, residual
Layer 1 and residual Layer 7.

pc = 3 Layer 1
(intact)

Layer 7
(intact)

Local
contrast

Layer 1
(local-
contrast-
reduced
features)

Layer 7
(local-
contrast-
reduced
features)

residual Layer 1 5.8 2.3 8.7 2.8 1.5
residual Layer 7 1.4 10.1 2.0 1.2 8.9
common components 3.9 7.1 10.7 2.6 4.3
pc = 6

residual Layer 1 8.1 2.7 9.7 4.4 2.0
residual Layer 7 1.9 15.8 1.5 1.9 14.1
common components 6.6 10.8 18.6 4.5 6.8
pc = 6

residual Layer 1(local-contrast-reduced
features)

5.4 2.5 1.4 6.5 2.7

residual Layer 7(local-contrast-reduced
features)

1.7 13.3 1.0 1.9 15.6

common components(local-contrast-
reduced features)

4.6 8.1 1.3 5.6 9.5

It is worth noting that neurons in the lower-level visual cortex can have strong responses to high-
contrast stimuli. In order to describe visual features due to contrast, we extracted the local contrast
features, which represented the gray-value contrasts within the local receptive fields of Layer 1
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8. Although the local contrast features defined in this manner are mainly low-level features, they
may also contain some high-level information such as a (blurred) contour of an object. There-
fore, we also computed how much variance of the local contrast features could be explained by
the three groups—the common components, residual Layer 1 and residual Layer 7 (shown in Ta-
ble 5.1). Interestingly, the common components explained more variance of the local contrast than
the residual Layer 1 (when pc = 6, the proportion by the common components was almost twice
as that by residual Layer 1). This could be because image patches with high local contrast usually
contain important information about boundaries of objects and scenes in naturalistic photos and
thus these high-contrast patches contributed a lot to the common components, which were corre-
lated with both low-level and high-level features. In our regression analysis of the MEG and EEG
data, we observed that the local contrast had a very strong effect in explaining the MEG/EEG data
(see results in Section 5.3.2); this effect may confound our comparisons between the neural cor-
relations with the common components, the residual Layer 1 and the residual Layer 7. To reduce
the confounding effect, we regressed out the first 160 principal components of the local contrast
features (explaining 90% of the variance in the local contrast features) from the intact features in
each layer of AlexNet, and took the residuals as new features of interest 9. We term these new
features local-contrast-reduced features hereafter.

Using the local-contrast-reduced features, we again plotted the cross-validated prediction errors
(Figure 5.6b). The prediction errors increased with pc when pc > 10. The smallest prediction
error occurred at pc = 2 when we used Layer 1 to predict Layer 7, and at pc = 4 when we
used Layer 7 to predict Layer 1. Nevertheless, the error was smaller than 100% in at least one
prediction direction when pc ≤ 6. Consistent with these results, the absolute values of validation
correlations of the CCA components (in Figure 5.6d) were greater than 0.5 when pc ≤ 6. In terms
of choosing pc, which determined the dimensions of the common components, the residual Layer
1 and the residual Layer 7, we needed to choose pc ≤ 6 according to the cross-validation results;
however, using a very small number made little sense because visual information in naturalistic
images is usually rich and possibly requires a higher-dimensional description. As a result of the
trade-off, we used pc = 6 in our further analyses. The variance explained by the newly computed
common components, residual Layer 1 and residual Layer 7 based on the local-contrast-reduced
features is also listed in Table 5.1 (last block, last three columns). As designed, all of the three new
groups explained little variance in the local contrast features; the residual Layer 1 explained little
variance of Layer 7 and the residual Layer 7 explained little variance of Layer 1. The residual
Layer 1 explained slightly higher variance in Layer 1 than the common components did, but the
proportions were comparable (6.5% and 5.6%); the residual Layer 7 explained more variance in
Layer 7 than the common components did (15.6% and 9.5%).

8The nuisance covariates related to the widths and heights of the images were regressed out from the local contrast
features here.

9The PCA and regression were run using the data across both the stimulus images and the extra images.
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5.3.2 Sensor-space regression

In this subsection, to examine whether the features extracted from different layers in AlexNet

could explain the MEG and EEG data in the sensor space, we ran an ordinary least square re-
gression analysis at each sensor and each time point for each participant. In this way, we were
able to compare temporal profiles describing the linear dependence (which is equivalent to cor-
relations) between different features and the neural activities recorded in MEG and EEG. In the
regression, neural responses to all 362 images were used. Because the AlexNet features were
high-dimensional compared with the number of observations, we needed to avoid overfitting with
either dimension reduction or other regularization. Here, our main goal was to test whether a sig-
nificant amount of variance was explained by each layer; for computational simplicity, we used
principal component analysis (PCA) to reduce the dimensionality and included the first 10 princi-
pal components as regressors 10.

We used the first 10 principal components of both the intact features and the local-contrast-reduced
features from each layer as the regressors 11, and we quantified the correlation between neural
recordings and the regressors in each layer as the proportion of variance explained (i.e., R-squared).
For visualizing the overall effects, the R-squared were averaged across all sensors at each time
point for each participant, in the MEG and EEG sessions respectively. Figure 5.7 shows the re-
sults, where each curve represents the R-squared for each layer, averaged across all sensors and
further averaged across participants. The transparent bands show the confidence intervals obtained
by bootstrapping the observed R-squared time series at the participant level. The permutation-
excursion t-tests were used to test whether the averaged R-squared across sensors were greater
than the temporal average of that in the baseline time window (-140 to -40 ms in MEG, -120 to
-20 ms in EEG), during which the MEG/EEG recordings should be independent of the stimulus
images and thus the regressors. The significant time windows were identified where the p-values
of the permutation-excursion t-tests were smaller than 0.05/8. These significant windows are
marked by the colored segments under the curves in Figure 5.7. Note that these p-values were al-
ready corrected for the multiple comparisons at different time points; the denominator 8 was used
as a correction for the 8 tests corresponding to the 8 layers according to the Bonferroni criterion.

In Figure 5.7, the left column shows the results from using the intact features ((a) in MEG and (c)
in EEG), and the right column shows the results from using the local-contrast-reduced features
((b) in MEG and (d) in EEG). In both columns, we identified significant time windows (from
80 ms to at least 400 ms) for Layer 1 through Layer 7. In these windows, the variance explained
by the features was significantly greater than that in the baseline time windows. These results

10The choice of 10 was arbitrary; we expect similar results as long as the number of components is not too small
(e.g., 2 or 3) nor too large such that the regression models overfit.

11 In the case of intact features, the PCA was run only on the features corresponding to the 362 stimulus images.
In the case of local-contrast-reduced features, the PCA was run on the features across both the stimulus images and
the extra images, but the first 10 principal components corresponding only to the 362 stimulus images were used as
regressors.
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indicate that the neural responses recorded by MEG/EEG in these time windows were correlated
with the AlexNet features. In addition, all subplots appeared to show a pattern of early-to-late,
lower-level-to-higher-level shift, where lower-level layers explained a larger proportion of variance
before 150 ms, and higher-level layers, especially Layer 6 and 7, explained a larger proportion
of variance in later time windows (150 to at least 400 ms). This pattern is consistent with the
feedforward direction of information flow in the hypothesis of hierarchical organization. Layer 8
generally explained lower variance than the other seven layers in all of the subplots; no significant
time window was detected in Figure 5.7(b). This may be because the object categories represented
in Layer 8 did not align with the categories that human brains naturally use, or because the neural
activity coding object labels is generally weaker than the neural activity coding visual features.
Interestingly, although the proportion of variance explained by the principal components from the
intact features appeared higher than that by the principal components from the local-contrast-
reduced features, the early-to-late, lower-level-to-higher-level temporal patterns were much more
clear in the latter case. Such results suggest that using the local-contrast-reduced features may
help us to better separate the neural correlations with low-level and high-level features. Therefore,
from now on, we only present results with the local-contrast-reduced features; without specific
notes, “features” will refer to the local-contrast-reduced features.

The results above only showed us the temporal patterns. Next, we visualize spatially which sensors
demonstrated strong correlations with the AlexNet features, by showing the regression results on
a topological map of the sensor layout. For each sensor, and for each time point from 50 ms to
700 ms with a 50 ms step-size, we averaged the R-squared first over a 70-ms window centered at
the time point and then across all participants. Note that the same sensor could map to different
locations for different participants, due to individual variations in head sizes and the head locations
in the MEG helmet or the placement of the EEG cap on the scalp. Hence the results here is mainly
for visualizing the overall pattern. We defer more rigorous statistical comparisons of the spatio-
temporal correlation profiles to Section 5.3.3 on source-space analysis.

Figure 5.8a includes the topological heat maps of the averaged R-squared (proportion of variance
explained) for each MEG sensor by the first 10 principal components of the features in Layer 1,
3, 5 and 7. Similarly, Figure 5.8b shows the heat maps from EEG data. In both modalities, the
strongest regression effects were in the posterior sensors, which were close to the visual cortex.
From Layer 1 to Layer 7, we can see a shift of the correlation effects from early windows to late
windows, especially within 50 to 250 ms. For Layer 1 (and also Layer 3), it is interesting that after
the first transient peak at 100 ms, there appears to be a second peak at 300 to 350 ms, which is
more apparent in the MEG plots. This second peak was likely to be caused by the neural responses
to the disappearance of the stimuli at 200 ms—there was roughly a 80 to 100 ms delay from the
stimulus onset to the first peak, so there can be a similar delay in the responses to the disappearance
of images. Disappearance of an image causes changes in the visual input on the screen (e.g., an
image patch of green grass changes into a gray patch in the fixation screen), and neurons, especially
those in the low-level visual cortex, can respond to these changes of visual input. In this sense,
these neural responses are specific to the images and thus they can show correlations with the

99



0 200 400 600 800
time (ms)

4

2

0

2

4

6

8

10

%
 v

a
ri

a
n
ce

 e
x
p
la

in
e
d

Layer1
Layer2
Layer3
Layer4
Layer5
Layer6
Layer7
Layer8

(a) MEG, intact features
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(b) MEG, local-contrast-reduced features
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(c) EEG, intact features
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(d) EEG, local-contrast-reduced features

Figure 5.7: Proportion of variance explained by the first 10 principle components of the AlexNet features
in each layer, averaged across sensors.

features of the images 12.

In addition, we also obtained the topological heat maps for the three groups of decomposed
features—the common components, the residual Layer 1 and the residual Layer 7, which were
obtained from the canonical correlation analysis of the local-contrast-reduced features (pc = 6).
We note that the common components represent the low-level features that are correlated with the
high-level features in Layer 7. Since the features in Layer 7 are highly relevant to the outputs of

12We collected some preliminary data from three extra participants in EEG, where the stimuli were presented for
500 ms instead of 200 ms. In these preliminary data (not shown here), the second peak appeared to shift to around 600
ms, which validated our speculation to some degree.
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Figure 5.8: Topology maps of the proportion of variance explained by the features from Layer 1, 3, 5 and 7.
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AlexNet (i.e., the object-category labels), we term the common components the object-category-
relevant low-level features. In contrast, the residual Layer 1 represents low-level features that are
roughly orthogonal to the features in Layer 7 (i.e., roughly orthogonal to object-category-relevant
features). The residual Layer 7 represents high-level features that are roughly orthogonal to low-
level features; in other words, the components in the residual Layer 7 are object-category-relevant,
and they provide unique high-level information besides the low-level features. For comparison, we
also obtained the topological maps for the first 6 principal components of the local contrast fea-
tures. Figure 5.9a shows the corresponding MEG plots and Figure 5.9b shows the corresponding
EEG plots. In both the MEG and EEG results, we saw similar patterns. The residual Layer 1 had
an early peak near 100 ms, and the residual Layer 7 had correlation effects that were later, lasting
from 150 ms to 400 ms. The common components appeared to have two peaks, one centered at
100 ms, and a weaker one near 300 to 350 ms. Again, the latter one was possibly due to the neural
responses to the disappearance of stimuli. If we compare the two low-level groups (common com-
ponents and residual Layer 1) with the high-level group (residual Layer 7), we can again observe
the early-to-late, lower-level-to-higher-level shift, which is consistent with feedforward informa-
tion flow. The local contrast features had large correlation effects spanning from 100 to 400 ms,
with one early peak at 100 to 150 ms and a later peak near 300 to 350 ms, which was possibly due
to neural responses to the disappearance of stimuli.

As a short summary of the regression results in the sensor space, we observed an early-to-late,
lower-level-to-higher-level shift of the temporal correlation patterns, which supports feedfoward
information flow. When we decomposed the local-contrast-reduced features from Layer 1 and 7
into three roughly orthogonal groups of features—the common components, the residual Layer 1
and residual Layer 7, we observed an apparent temporal separation of the low-level and high-level
features (e.g., when comparing the residual Layer 1 and the residual Layer 7 or comparing the
common components and the residual Layer 7). In addition, the local contrast features explained
a larger proportion of variance in the neural data than the three groups derived from the local-
contrast-reduced features; this result suggests that if the local contrast features were not partialled
out from the AlexNet features, most of the correlation effects we observe could be due to the
local contrast features.
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Figure 5.9: Topology maps of the proportion of variance explained by the common components, the residual
Layer 1, residual Layer 7 and the local contrast features.
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5.3.3 Source-space regression

The regression results in the sensor space above only present temporal correlation profiles between
the neural activities and the features of the stimuli. In this subsection, we move into the source
space to examine the spatio-temporal correlation profiles. We applied two different methods in the
source-space regression analyses, the conventional two-step approach (source localization using
dSPM and then regression), and our one-step short-time Fourier transform regression (STFT-R)
model introduced in Chapter 3. Both methods were applied to the data from individual participants,
yielding the regression coefficients for each dimension of the features (regressors) at each time
point and each source point.

Based on these results, we can obtain a whole-brain map of the correlation effects or compare
the correlation effects in regions along the hierarchy of the visual cortex. In either case, it is
reasonable to aggregate the results across participants, for visualization or statistical tests on the
group level. In the first case—visualizing the whole-brain correlation effects across all participants
on the cortical surfaces, we mapped the source space of each participant onto a default template in
Freesurfer. It is worth noting that the spatio-temporal map of the regression coefficients given
by the STFT-R was spatially sparse; morphing and mapping such sparse patterns onto the template
may result in spurious patterns. Therefore, for visualizing the whole-brain maps, we only used
the two-step approach—we obtained the dSPM source solutions for each participant, morphed
the solutions into the template source space, computed the regression coefficients for each source
point, and finally averaged the R-squared statistics across the participants. In this way, we obtained
the whole-brain maps of the averaged R-squared statistics for the first 10 principal components for
each layer in AlexNet. Figure 5.10 shows the visualization at different time points from a ventral
view of the cortical surfaces, for Layer 1, 3, 5 and 7. It is worth noting that adjacent source points
usually contribute to the sensor recordings in a similar way (i.e., they correspond to correlated
columns in the forward matrix); as a result, L2-norm regularized methods like dSPM generally
have a spatial blurring effect, where an underlying single large current dipole can be reconstructed
as distributed current dipoles covering a large cortical area. Hence when we see strong effects (i.e.,
large averaged R-squared) in large areas, it could be due to either local large effects or genuinely
distributed effects. Having that in mind, now we look at the results in Figure 5.10 ((a) from MEG
and (b) from EEG). In the MEG plots, at 60 ms, the correlation effects localized in the posterior
end near the early visual cortex were strongest for Layer 1, and as we move to Layer 3, 5 and 7,
the regression effects gradually decreased; at 100 ms, the regression effects had large magnitudes
and spread over large areas of the ventral visual cortex; at 140 to 180 ms, the correlation effects
were stronger for Layer 3, 5 and 7 than for Layer 1, and the effects spread to more anterior regions
for Layer 5 and 7. This pattern is consistent with the feedforward information flow along the
hierarchy from posterior to anterior parts. In addition, near 300 to 350 ms, there was a second peak
of the correlation effects for most layers in the posterior parts near the low level visual cortex in
the hierarchy. As discussed in Section 5.3.2 on the sensor-space regression, this later peak had a
delay of roughly 100 ms from the disappearance of the stimuli at 200 ms, which was similar to
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the delay of the first peak from the stimulus onset; in this sense, the later peak could be due to the
correlation between the neural responses to the disappearance of the images and the features, as
the disappearance of the images caused image-specific changes in the visual input and neurons in
the visual cortex were likely to respond to such changes. The EEG results were similar to those in
MEG, yet the pattern differences between layers appear less obvious.
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Figure 5.10: Proportion of variance explained by different layers, computed from the dSPM source solutions
that were morphed into a common template and averaged across participants.
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In addition to using the features from each layer in AleNet, we also ran source-space regression
analyses against the three groups of features, the common components, the residual Layer 1 and
the residual Layer 7. We aim to run rigorous statistical tests to compare the correlation profiles
among these three groups, which represented the object-category-relevant low-level features, the
low-level features roughly orthogonal to high-level features, and the high-level features roughly
orthogonal to low-level features, respectively. For this purpose, instead of doing a whole-brain
analysis, where we needed to control for multiple comparisons at thousands of source points, we
focused on several representative ROIs along the hierarchy, including the pericalcarine areas that
covered the early visual cortex (EVC), the three partitions of the non-EVC ventral visual cortex
along the posterior to anterior axis (Vent 1, 2 and 3) and the object/scene-selective regions (LOC,
PPA, RSC and TOS). The corresponding regions in the left and right hemispheres were merged.
Note that the object/scene-selective regions might overlap with Vent 1 and 2. By aggregating the
correlation effects within each of these ROIs, we have fewer multiple comparisons and therefore
the statistical power can be boosted. Moreover, since these regions were defined individually
for each participant, we did not have to morph the individual source spaces onto the template.
Instead, we were able to apply both the two-step method and the STFT-R model for each individual
participant, to obtain summarizing statistics that described the correlation effects for each ROI in
each participant, and finally to test these statistics on the group level.

In the two-step approach, after obtaining the dSPM source estimates, we ran a linear regression
for each source point at each time point, using each of the three groups (the common components,
the residual Layer 1 and the residual Layer 7) as the regressors to obtain the R-squared statistics.
These time series of R-squared could have different magnitudes in different source points and
for different participants, so we further normalized these time series. For each source point, we
divided the R-squared values at each time point by the sum across all time points and all three
groups. Then we averaged these normalized values across the source points within each ROI. Note
that these normalized values reflect the relative correlation effects between the localized neural
activities and the three groups of regressors in the ROI, and thus they are the spatio-temporal
profiles of the correlation effects we will focus on hereafter. In the first column of Figure 5.11a,
we show the average of the normalized values across the participants for each group of regressors
in two representative ROIs, obtained from the MEG session. The transparent bands show 95%

confidence intervals, bootstrapped at the participant level and corrected for multiple comparisons
in all the time points and for the three groups of regressors using the Bonferroni criterion.

We describe the profiles of the correlation effects in the first column qualitatively, and then we
present rigorous pairwise comparisons between the three groups (the residual Layer 1, the residual
Layer 7 and the common components) in the last three columns. Besides contrasting the patterns
between the three groups within a region, we will also focus on the temporal changes of the corre-
lation effects. In addition, we qualitatively compare the profiles in the EVC at the low level of the
hierarchy and the profiles in the regions at higher levels than the EVC (e.g., LOC).

In the EVC (the first row), we can see that the residual Layer 1 and the common components
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(the blue and red curves)—corresponding to the low-level features roughly orthogonal to high-
level features and the low-level features that were object-category-relevant—had early transient
correlation effects within 60 to 120 ms, peaking near 100 ms. The correlation effects of the residual
Layer 7 (the green curve)—corresponding to the unique high-level features that were roughly
orthogonal to low-level features—increased later, starting roughly at 100 ms, peaking near 140 ms,
and lasting until at least 400 ms. In addition, the residual Layer 1 and the common components
both appeared to have a second peak near 300 ms 13, which was likely due to the neural responses
to the disappearance of the stimuli at 200 ms. However, interestingly, this second peak appeared
smaller and more transient for the residual Layer 1; the correlation effect lasted longer (until at
least 380 ms) for the common components (the red curve), which represented the object-category-
relevant low-level features, than for the residual Layer 1 (the blue curve), which represented the
low-level features roughly orthogonal to high-level features. This result indicates that the early
visual cortex, in this time window that was likely to include neural responses to the disappearance
of the stimuli, differentiated between the two groups of low-level features, showing a higher and
more temporally extended correlation effect with the object-category-relevant low-level features.
In contrast, in the LOC (second row), an object-selective region at a higher-level than the EVC
in the hierarchy, the early transient peaks of the regression effects for the low-level features (the
residual Layer 1 and the common components) were much smaller, whereas the magnitude of the
later peak for the high-level features (residual Layer 7) was similar to that in the EVC. Moreover,
we did not observe second peaks for the residual Layer 1 and the common components that were
as prominent as those in the EVC, which suggests that the neural responses corresponding to the
disappearance of the images were much smaller in the LOC.

As mentioned above, we did pairwise comparisons between the correlation effects of the residual
Layer 1, the common components and the residual Layer 7. In these comparisons, for each source
point, each time point and each participant, we computed the ratio of the R-squared value for each
regressor group to the sum of the R-squared values across the three groups. In this way, each time
point had comparable statistics that described the relative strength of the correlation effects for
each of the three regressor groups. Again, for each participant, we averaged these ratios across
the source points within each ROI. Then we took pairwise differences (residual Layer 1-common
components, residual Layer 7-residual Layer 1 and residual Layer 7-common components), and
examined whether the averaged differences across participants were significantly different from
zero in each ROI. The last three columns in Figure 5.11a show the mean differences across the
participants in the two ROIs. The transparent bands show the bootstrapped 95% confidence inter-
vals, corrected for the three comparisons at all the time points using the Bonferroni criterion. The
permutation-excursion t-tests were used to identify time windows where the two-sided p-values
were smaller than 0.05. Note that in this case, we only corrected for multiple comparisons in all
the time points. To further correct for the comparisons for different pairs and the multiple ROIs
14, we controlled the false discovery rate (FDR) at 0.05 using the Benjamini-Hochberg procedure.

13In the electronic version of this thesis, the reader can enlarge Figure 5.11a for a clear view of the transient peaks.
14Besides the EVC and LOC, we also analyzed the results in PPA, RSC and TOS, as well as Vent 1, 2 and 3. See
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(a) Regression results by the two-step dSPM method (MEG)
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(b) Regression results by STFT-R (MEG)

Figure 5.11: Regression in two ROIs in the source space. First column: averaged statistics of the regression
effects across participants (color code: blue: residual Layer 1; green: residual Layer 7; red: common
components). Second to fourth columns, pairwise differences among the three feature groups (color code:
cyan: residual Layer 7-residual Layer 1; yellow: residual Layer 1- common components; magenta, residual
Layer 7-common components). The transparent bands indicates bootstrapped confidence interval at the
participant level. Gray areas indicate time windows where the differences were significantly non-zero.

The gray boxes indicate the time windows that survived the correction, and the p-values of the
permutation-excursion t-tests (before the FDR correction) are marked. There appeared to be some
time windows that did not survive the correction, but in which we could visually observe some
possibly non-zero differences based on the confidence intervals (which were not corrected for
multiple ROIs). However, we were not able to claim that these windows had significantly non-zero
difference in the comparisons.

Next we review the comparisons between all pairs among the three groups of features (i.e., the
common components, the residual Layer 1 and the residual Layer 7). In the second column of
Figure 5.11a, the cyan plots show the differences between the correlation effects of the residual
Layer 7 (the unique high-level features) and the residual Layer 1 (the low-level features roughly
orthogonal to high-level features). In the EVC, we can see a negative peak roughly within 60 to

Figure 5.15 and Figure 5.16 in the Appendix (Section 5.5).
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100 ms, indicating that the correlation effect of the residual Layer 7 was smaller than that of the
residual Layer 1. After this time window, the difference became positive roughly from 120 ms
to 260 ms, indicating that the correlation effect of the residual Layer 7 was greater than that of
the residual Layer 1. These results are consistent with the patterns of the blue and green curves
in the first column, which demonstrated an early-to-late shift of the correlation effects from low-
level to high-level features. In the LOC, the difference showed a similar pattern to that in the
EVC, but the early negative difference was smaller and the later positive difference lasted longer,
corresponding to the profiles of the correlation effects in the first column. Our observations in this
comparison are generally consistent with feedforward information flow along the hierarchy. The
reader might have expected that the LOC, which is at a higher-level within the hierarchy than the
EVC, would show smaller correlation effects with low-level features than the effects observed in
our results. We speculate that because the columns in the forward matrix inherently have strong
spatial correlations, the reconstructed source solutions can be spatially blurred, and the correlation
effects with low-level features can “leak” from lower-level visual areas into the LOC. Moreover,
even without spatial blurring, the hierarchy can be gradual such that we may only observe small
relative differences between the correlation profiles in the EVC and the LOC.

In the third column, the yellow plots show the differences between the residual Layer 1 (the low-
level features roughly orthogonal to high-level features) and the common components (the object-
category-relevant low-level features). In the EVC, we observed a positive peak roughly from 60 to
80 ms, followed by a negative peak roughly from 120 to 180 ms; these patterns indicate an early-to-
late shift from the residual Layer 1 to the common components, which is reasonably consistent with
the pattern in the second column (residual Layer 7-residual Layer 1), given that the common com-
ponents were correlated with high-level features. Interestingly, we also observed another negative
time window near 300 to 380 ms, which were close to the second peaks of the correlation effects of
the residual Layer 1 and the common components starting near 300 ms in the first column. These
late peaks of the correlation effects were likely due to the neural responses to the disappearance
of the stimuli, and the negative difference in this time window verifies our observation in the first
column that the EVC showed higher and longer correlation effects with the common components
than with the residual Layer 1. Now let us consider what mechanisms can lead to such results.
When the images disappeared, the changes of the visual input might cause neural responses. Be-
cause these changes of visual inputs were image-specific, the corresponding neural responses were
likely to be correlated with features of the images. Therefore it was not surprising that the activity
in the EVC near 300 ms was correlated with the low-level features of the images, including the
common components and the residual Layer 1. However, the disappearance of the stimuli did not
add new information about image contents; thus the neural responses in the EVC were like a “re-
play” of the stimuli. We observed that the EVC showed higher and longer correlation effects with
the object-category-relevant low-level features than with the low-level features that were roughly
orthogonal to high-level features; this result is unlikely to be generated by pure feedforward in-
formation flow, because in that case, the correlation effect would have been similar for the two
groups of low-level features. Indeed, our result suggests that some non-feedforward process (e.g.,
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top-down feedback within the hierarchy) may help the EVC to separate the two groups of low-level
features, and mainly “replay” the object-category-relevant low-level features. In the LOC, there
were an early and a late negative windows, indicating that the correlation effect of the common
components was larger than that of the residual Layer 1. These results are consistent with the hy-
pothesis of the hierarchical organization, in that the LOC, being at a higher level in the hierarchy,
showed higher correlation effects with the object-category-relevant low-level features than with
the low-level features that were roughly orthogonal to high-level features.

In the fourth column, the magenta plots show the differences between the residual Layer 7 (the
unique high-level features) and the common components (the object-category-relevant low-level
features). In the EVC, we observed a negative window roughly from 60 to 100 ms, followed by a
positive window near 260 ms; such a pattern again showed an early-to-late, lower-level-to-higher-
level shift. There was a later negative window centered near 350 ms, corresponding to the late peak
at 300 to 380 ms of the red curve in the first column (i.e., the correlation effects of the common
components after the disappearance of the stimuli). In the LOC, we observed a negative window
centered around 100 ms and a positive window centered around 200 ms, but no later negative
window near 350 ms as the one in the EVC. The early-to-late shift was similar to that in the second
column; patterns in both the second and the fourth columns showed the differences between the
unique high-level features (the residual Layer 7) and low-level features (the common components
or the residual Layer 1), supporting feedforward information flow in the hierarchy.

Besides the EVC and the LOC, we also included results in the other ROIs (Vent 1, 2 and 3 and
the scene-selective ROIs); see Figure 5.15 (MEG) and Figure 5.16 (EEG) in the Appendix (Sec-
tion 5.5). In the MEG results in Figure 5.15, the correlation profiles in the Vent 1 were similar to
those in the EVC, possibly because the Vent 1 and the EVC were spatially close. However, the
relative differences in magnitude between the correlation effects of the unique high-level features
(residual Layer 7) and the two groups of low-level features (i.e., the common components and the
residual Layer 1) appeared smaller than those in the EVC. Vent 2 had smaller correlation effects in
general, and the pattern was more similar to that in the LOC. The correlation effects can be barely
seen in Vent 3, probably because the signal strength of visual responses in the anterior temporal
lobe was low. The patterns in the PPA, TOS and RSC were generally similar to those in the LOC,
Vent 1 and Vent 2. In the EEG results in Figure 5.16, we observed generally similar patterns to
those in MEG. However, the regression profiles were more noisy and the separation of profiles
between the three groups of regressors was less obvious. Nevertheless, in the EVC, the significant
negative difference between the residual Layer 1 and the common components in the third column
(yellow) was still observed within the time window of 300 to 350 ms, which was likely to include
neural responses to the disappearance of the stimuli.

In addition to the two-step approach of source-space regression analysis, we also applied our one-
step STFT-R model. In this method, instead of fitting a model for each group of regressors sepa-
rately, we concatenated the three groups of 6-dimensional regressors together into 18-dimensional
regressors. In this way, we were able to apply the same penalization parameters for each group of

110



regressors. The regression coefficients in the time-frequency domain were transformed back to the
time domain, resulting in a time series of regression coefficients for each source point and each
dimension of the regressors. Note that all columns in the regressors had zero mean and the same
L2 norm, such that after fitting the regression coefficients, the regressors that corresponded to the
regression coefficients with larger magnitudes explained the neural data better. We also note that
both positive and negative coefficients were meaningful, so we computed the sum of squares of
the fitted regression coefficients for each of the three feature groups, at each time point and each
source point. These sums of squares, which indicated the relative strength of the correlation effects
in the three groups, played a similar role as the R-squared values in the two-step approach. The
remaining normalization and statistical tests were the same as in the two-step approach mentioned
above, except that we replaced the R-squared values with the sums of squared coefficients. It is
also worth noting that because the STFT-R induced spatial sparsity, some source points within the
ROIs had zero regression coefficients; these source points were excluded when we computed the
average within each ROI.

Figure 5.11b shows the MEG results for the EVC and the LOC, where the color code was the same
as that in Figure 5.11a. We can see that the results were similar to those given by the two-step
approach, yet the STFT-R yielded much smoother profiles, and as a result, the detected windows
were relatively longer. Note that in the third column in the EVC, the negative difference between
the residual Layer 1 and the common components within 300 to 400 ms was robustly detected,
indicating that the EVC was able to differentiate the two types of low-level features in this time
window, which was likely to include neural responses to the disappearance of the stimuli. Results
in the other ROIs are shown in the supplementary figures in the appendix (Section 5.5, Figure 5.17a
(MEG) and Figure 5.17b (EEG)). Note that some ROIs only had non-zero source points for a few
participants (e.g., PPA and RSC in MEG, and the majority of ROIs in EEG); therefore, we did
not show results from those ROIs. In EEG, the profiles of the three groups were very similar, and
we were not able to detect any significant time windows in pairwise comparisons. The reason
could be that the learned coefficients were spatially very sparse; therefore we did not have enough
participants, for whom the ROI had non-zero source points, to obtain reliable comparison results.

As a summary, using the regression analyses in the source space, we obtained spatio-temporal
correlation profiles between neural activities and the three groups of features (the common com-
ponents, the residual Layer 1 and the residual Layer 7). By analyzing these profiles, we observed
progressive shifts from early to late time windows, from lower-level to higher-level features, and
from low-level regions to higher-level regions along the hierarchy. These results strongly support
feedforward information flow along the hypothesized hierarchy. More interestingly, we also ob-
served that in a time window that was likely to include neural responses to the disappearance of the
stimuli, the early visual cortex showed a higher correlation with the object-category-relevant low-
level features (the common components) than with the low-level features that were roughly orthog-
onal to high-level features (the residual Layer 1). This result suggests that some non-feedforward
process (e.g., top-down influences) might help the EVC to distinguish between the two types of
low-level features and mainly represent the object-category-relevant low-level features.
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5.3.4 Source-space connectivity analysis of the MEG data

In this section, we address Question (2)—how neural activities in different areas interact with each
other dynamically. When an image is presented on the screen, the neurons in the visual cortex
are hypothesized to extract information about the image and pass it on within the hierarchy. If
one brain region (ROI 1) passes information about the image to another brain region (ROI 2),
then the activity in ROI 1 is likely to show some statistical dependence with, or be able to predict
the later activity in ROI 2. Here we can use our one-step state-space model in Section 4.3 and
a corresponding two-step model that uses the dSPM method for source localization, to examine
whether the neural responses to the stimuli in one region were able to predict later neural responses
in other regions in our experiments. Such analysis can be viewed as an indirect way of inferring
possible information flow between regions. Although the dependence effect identified in this way
does not sufficiently mean direct information flow between the two regions, such analysis can
provide insights to form hypotheses of cross-region interactions, which can be tested in animal
studies where researchers perturb the hypothesized interactions. Due to the limited number of
observations (in our case, we only have neural responses to 362 images) and for tractability, we
constrain ourselves to linear autoregressive models of order 1 and focus on the autoregressive
coefficients for several pre-defined regions of interest.

Because our MEG data had more sensors and more reliable sensor locations in relation to the scalp
than the EEG data, the source localization in our MEG data was better; therefore, we only ran
the analysis on the MEG data. We focused on six regions of interest, including the early visual
cortex (EVC), the object/scene-selective regions at a higher-level than the EVC in the hypothe-
sized hierarchy (LOC, PPA, RSC and TOS), and the medial orbitofrontal cortex (mOFC), which
was roughly in or near the location of the mPFC in the “contextual network” introduced by Bar
and Aminoff [2003]. Note that during preprocessing, the mean response across all images was
already removed; thus we directly applied the connectivity models, which assumed zero mean
across observations, on the data. For each participant, we learned the time-varying autoregressive
coefficients ( {At}Tt=1) and also bootstrapped the 362 observations 15 times to obtain standard de-
viations of entries in {At}Tt=1. Then we computed a Z-score for each entry, defined as the fitted
value divided by the bootstrapped standard deviation. Afterward, we obtained a p-value from a
two-sided Wald test against the standard normal null distribution for each entry using its Z-score.
For visualization, we first took − log10 of the p-values for each participant at each time point, and
then took the average across the participants. Some of the p-values were extremely small; to avoid
getting infinitely large logarithms, we truncated the p-values to be at least 10−4.

Figure 5.12 shows the plots of the averaged− log10(p-values) for each pair of ROIs. The results for
each individual participant by the two-step method and our one-step state-space method are shown
in the Appendix (Section 5.5, Figure 5.18 and Figure 5.19). Each diagonal subplot corresponds
to the autoregressive (AR) coefficients that described the linear dependence of the ROI’s current
activity on its activity 10 ms ago. Each off-diagonal subplot corresponds to the AR coefficients
that described the lagged linear dependence between a pair of ROIs—for example, the subplot in
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the first row and the second column describes the linear dependence of the activity in the EVC
on the activity in the PPA 10 ms ago. In Figure 5.12, we observed strong self-dependence in the
diagonal subplots, especially after the stimulus onset (0 ms). This result indicates that the activity
in each ROI has strong temporal dependence. For lagged dependence between different ROIs (in
the off-diagonal subplots), the one-step method yielded stronger effects than the two-step method
for some of the ROI pairs, which can also be seen in the individual subplots (Figure 5.18 and
Figure 5.19).
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Figure 5.12: Mean − log10(p-value) across 18 participants in the source-space connectivity analyses, for
each pair of ROIs, blue (dSPM): the two-step method; green (ss): the one-step state-space method.

To identify in which time windows the dependence effects were significant, we ran binomial tests
[Darlington and Hayes, 2000] to combine the p-values across participants at each corresponding
time point and for each corresponding pair. Figure 5.13 shows the −log10 of the p-values from
the binomial tests, where the threshold at a level of 0.05 after the Bonferroni correction for all the
time points and all 6 × 6 pairs is indicated by the black lines. We are mainly interested in the
off-diagonal subplots, which show dependence effects across different ROIs.

The results by the two-step and the one-step methods were similar in the diagonal subplots and
some off-diagonal subplots. In other off-diagonal subplots, the one-step method yielded more
significant time points than the two-step method. In some of these subplots (e.g., PPA → EVC,
TOS→ EVC, LOC→ EVC), we can see the dependence effects by the one-step model were low
in the baseline time window before the stimulus onset and increased afterward; however, in other
subplots (e.g, RSC→ EVC, PPA→ RSC, RSC→ LOC), the dependence effects detected by the
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Figure 5.13: The − log10(p-value) values of the binomial tests, for each pair of ROIs. blue (dSPM): the
two-step method; green (ss): the one-step state-space method. Black lines indicate the Bonferroni threshold.

one-step method were high in the baseline time window before the appearance of the images, which
could be “false positives” in the sense that they were irrelevant to the image-specific information.
As discussed in Chapter 4, the one-step state-space model had specific assumptions about the ROIs
involved and about the distribution of source point activity given the ROI activity. Some of the
assumptions might not be perfectly met in the data here. Especially, we only included several ROIs
for tractability, but activities in missed regions could be incorrectly attenuated or assigned to other
ROIs. In contrast, the two-step method is more robust to ROI specification, yet the source estimates
by the dSPM could be incorrect due to ignoring the cross-region dependence. The underdetermined
nature of source localization and the spatial correlations in the forward matrix bring challenges to
both the one-step and the two-step methods, making it difficult to correctly separate activities in
ROIs that are spatially close (e.g., EVC and RSC, PPA and RSC, PPA and LOC). Given these
challenges, neither the one-step method nor the two-step method is universally better than the
other. The significant dependence effects detected only by one-step method might be a mix of
false discoveries and genuinely improved estimates. Based on these reasons, we view our results
here only as preliminary observations, and hope to further validate them with other neuroimaging
modalities (e.g., intra-cranial EEG). Below, we will mainly focus on the subplots where there
were relatively small (and insignificant) dependence effects in the baseline time window before
the stimulus onset.

Consistently in the results by both methods, we observed significant dependence effects above the
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Bonferroni threshold in the first column, (EVC → PPA, TOS, RSC and LOC), starting near 60
to 70 ms and peaking near 80 ms. This time window also corresponded to the initial activation
of the early visual cortex that was correlated with low-level features of the images (see the cor-
relation profiles in the EVC in Figure 5.15). The effects in this window could be consistent with
feedforward information flow from the early visual cortex to other higher-level regions.

In the symmetric positions, the first row, we also observed significant lagged dependence between
the object/scene selective regions and the EVC (PPA, TOS and LOC→ EVC), generally starting
at 70 to 80 ms and lasting to at least about 120 ms. Such dependence was identified mainly
by the one-step method, but the results by the two-step method also show insignificant trend in
some subplots (e.g., LOC→ EVC). Some of the effects detected in the above pairs by the one-step
method also appeared in later time windows (e.g., LOC→ EVC at 170 ms). Together, these effects
in the first row of off-diagonal subplots may reflect top-down interactions from the scene/object-
selective regions to the EVC, after the information is first passed in the feedforward direction.

In the other off-diagonal plots, we can see dependence effects peaking near 100 ms for TOS →
RSC, TOS → LOC, RSC → TOS, and LOC → RSC. These regions are all at a relative higher-
level than the EVC within the hierarchy, yet the order within these regions has not been clearly
established. The significant dependence effects near 100 ms may reflect either interactions among
these regions or common influences from other regions not modeled here. Interestingly, we also
observed some relatively late dependence at RSC → mOFC and nearly significant dependence
at mOFC→ PPA by the one-step model; such dependence could indicate some communications
between the mOFC and the scene-selective regions, which are possibly involved in contextual
processing and episodic memory.

5.4 Discussion

In this chapter, we aimed to address two questions on the information flow in the visual cortex:
(1) what kind of information is extracted in different temporal stages and different areas, and (2)
how neural activities in different areas interact with each other dynamically. To answer Question
(1), we regressed the neural responses on the features from different layers in AlexNet, and also
on three groups of features derived from Layer 1 and Layer 7. Specifically, we compared the
spatio-temporal correlation profiles of these three groups, which represented the object-category-
relevant low-level features (the common components), the low-level features roughly orthogonal
to high-level features (the residual Layer 1), and the unique high-level features that were roughly
orthogonal to low-level features (the residual Layer 7). Our results indicated an early-to-late shift
from lower-level features to higher-level features, consistent with feedforward information flow.
Moreover, by contrasting the correlation effects of the common components and the residual Layer
1, we found that in a time window that was likely to include neural responses to the disappearance
of the stimuli, the early visual cortex showed a higher and longer correlation effect with the com-
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mon components (the object-category-relevant low-level features) than with the residual Layer 1
(the low-level features roughly orthogonal to high-level features). This result indicates that some
non-feedforward processes, such as top-down influences, are likely to help the early visual cortex
to represent the two types of low-level features differently.

Note that some previous work in MEG also tried relating neural activities to features derived from
sophisticated computer vision models [Clarke et al., 2014; Cichy et al., 2016c,a]. However, the
majority of the previous work focused on the temporal patterns of correlations, and very few ex-
plored the joint spatio-temporal patterns. The temporal patterns in these previous studies showed
an early-to-late shift from lower-level to higher-level features, which is consistent with what we
found. Among the few studies that briefly looked at spatio-temporal patterns, Clarke et al. [2014]
showed correlations of neural activity with visual and semantic features in the source space using
a two-step approach (although the authors did not show the full time course in each region of in-
terest), which supported feedforward information flow as well. Additionally, Cichy et al. [2016d]
“fused” fMRI and MEG recordings, by comparing the representational similarity of visual objects
in the two imaging modalities without using external features; they observed an early-to-late shift
along the feedforward direction of the hierarchy in the visual cortex as well. The similar early-
to-late, lower-level-to-higher-level shift in our results is consistent with these previous findings.
Moreover, our study here provides more comprehensive spatio-temporal profiles to answer Ques-
tion (1), by using features derived from a more sophisticated computer vision model (AlexNet)
than the one in [Clarke et al., 2014] (see a comparison in [Yamins et al., 2014]), using a relatively
large number of naturalistic scene images (rather than single objects on a blank background in
[Clarke et al., 2014] and [Cichy et al., 2016d]), and using our novel decomposition of the features.
In addition, the consistency between the results given by the conventional two-step approach and
our novel one-step STFT-R method also reassures that our findings were robust to the source lo-
calization methods, which was another novel point in our work here. Finally, we also found some
novel evidence of non-feedforward processing in the early visual cortex, which is useful in building
better computational models of the visual cortex by incorporating recurrent structures.

To address Question (2)—how neural activities in different areas interact with each other dynam-
ically, we examined the time-lagged dependence across several ROIs along the hierarchy, using a
time-varying autoregressive model of order 1 in both the two-step framework and our novel one-
step framework. In the preliminary results of these dynamic connectivity analyses, we observed
leading and lagged linear dependence between the early visual cortex (EVC) and the object/scene-
selective regions at a higher level than the EVC. Such a dependence structure during the processing
of naturalistic scenes has not been described in previous literature to our knowledge. The depen-
dence can be viewed as indirect evidence of both feedforward and feedback interactions. Limited
by the observational nature of our experiments and the challenges of source localization, we could
not conclude about causal interactions. However, our novel results may provide some insights on
the dynamic connectivity in the visual cortex and help us build detailed hypotheses in terms of
timing and directions of cross-region interactions for further tests.
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In our analyses, we rigorously sought for evidence of feedforward and feedback information flow
along the hypothesized hierarchy of the visual cortex. However, we do admit that the nature of our
experiment is exploratory to a large extent. Below we discuss some issues in our experiments and
analyses and point out relevant future directions.

Neural responses to the disappearance of stimuli
In our experimental design, after 200 ms of presentation, the stimuli disappeared and the screen
switched back to a “+” on a gray background. This disappearance caused changes in the visual
input, which might drive neural responses in the early visual cortex. In fact, Liang et al. [2008]
characterized the magnitudes of responses to the disappearance of stimuli in cat V1, which were
comparable to the magnitudes of responses to the appearance of stimuli. In our analyses, although
the mean responses to the appearance and disappearance of all stimuli were subtracted from the
data during preprocessing, the image-specific responses (reflected in deviations from the mean)
could still be correlated with features of the images. This explained why we observed a late peak
of the correlation effects of the low-level features (the common components and the residual Layer
1) in the EVC near 300 ms (considering a 80 to 100 ms delay for the changes of visual input to
get to the EVC). However, the disappearance of stimuli should not be treated as equivalent to the
appearance of stimuli, because no additional semantic information is provided in these changes
of visual input. Consistently, the unique high-level features (the residual Layer 7) did not appear
to show an increase of correlation effects in response to the stimulus disappearance in our results.
To some extent, the responses to the disappearance of stimuli can be viewed as a “replay” of the
images. In our data, the early visual cortex showed a stronger and longer correlation effect with
the common components (the object-category-relevant low-level features) than with the residual
Layer 1 (the low-level features that were roughly orthogonal to high-level features), as if the early
visual cortex was guided to “replay” more of the low-level features that were related to semantic
information. If we assume the visual system only has feedforward processing, we expect to see
similar correlation effects for both groups of low-level features (as seen in the early correlation
effects near 100 ms in the first EVC plot of Figure 5.11a) instead of what we observed. Indeed,
some non-feedforward processes, such as feedback from the higher-level cortex to the EVC, or
lateral recurrent interactions of the neurons in the early visual cortex, explain our results better.

It is worth noting that the “replay” may evoke visual aftereffect perceived by the participants.
Hence our results also provide some insight to further test our speculation via behavioral exper-
iments. We hypothesize that if the participant could perceive some aftereffect after the stimulus
disappears, then the aftereffect should be mainly driven by the object-category-relevant low-level
features. We could design stimuli to manipulate the such features, and verify this hypothesis in
behavioral experiments.

We chose a short presentation duration (200 ms) to reduce artifacts of saccades, and did not use
any masks (e.g., white noise patterns) after the stimuli. Our findings related to the responses to the
disappearance of stimuli may be viewed as a result of design limitation, where the disappearance
of the images interfered with the intact dynamics of visual processing. However, due to this ar-
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guable limitation, our experiments also provided some novel observations about the visual system
in an unexpected way, which has not been discussed much in the literature as far as we know. In
future experiments, we can examine how the differential coding of the different types of low-level
features (common components and residual Layer 1) change if we vary the duration of stimulus
presentation.

Local contrast
In the canonical correlation analysis of the intact features from AlexNet, we observed that the
CCA components between Layer 1 and 7 appeared to show high correlations with local contrast
features. In fact, in our first attempt of data analysis, we did not partial out the local contrast
features when obtaining the three groups (the residual Layer 1, the common components and the
residual Layer 7). In that case, we found the correlation effects of the common components were
much higher than those of the residual Layer 1 and the residual Layer 7, due to the large the neural
correlation with the local contrast features. In this sense, the local contrast is a confounding factor.
Nevertheless, this confounding factor could be inherently included in the statistical regularities of
naturalistic images. Intuitively, local receptive fields with high contrasts often contain informa-
tive features about shapes and boundaries and are consequently related to semantic information.
Further tests of this hypothesis, which can be implemented with a large set of images, may help
us better understand the nature of naturalistic images. Moreover, in future experiments, to allevi-
ate the influences of this confounding factor, we can design new stimuli by adding high contrast
features that are less relevant to semantic information, for example, irregular shadow contours. It
would be interesting to study whether these high-contrast features are coded differently from the
genuinely informative high-contrast features (e.g., true physical edges or contours) in the human
visual cortex, as well as in a CNN trained on regular naturalistic photos. Moreover, we can also
use the generative neural networks [Goodfellow et al., 2014] to create stimuli that share some sim-
ilarity in local contrasts and other low-level features with naturalistic images but do not contain
objects.

Confounding factors in data-driven experiments
As mentioned above, when analyzing the correlation effects of the three group of features (the
residual Layer 1, the common components and the residual Layer 7), we discovered that local
contrast was a confounding factor. We reduced this confounding influence by regressing out from
the features the principal components that explained 90% of the variance in the local contrast.
However, there might be other similar factors inherently in the image statistical regularities, which
have strong a correlation with neural responses but are distributed unevenly across the three groups.
This is a limitation of using naturalistic visual stimuli, where the distribution of features could not
be designed. However, since the visual inputs in the world typically have a large dimensional and
complicated feature space, it is difficult to form good hypotheses that capture the space well from
scratch. We view our data-driven exploration here as an important initial step, which helps to make
new predictions for future hypothesis-driven experiments.

Choice of using AlexNet
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We used an 8-layer convolutional neural network (AlexNet), which was trained to classify im-
ages into 1000 object categories. However, the stimuli presented to the participants were natural-
istic images of scenes, and the participants were likely to do scene recognition and scene under-
standing during the experiment, although we did not explicitly instruct them to do so. In some
preliminary data analysis, which is not presented in this thesis, we used features derived from a
network of the same architecture as AlexNet, but trained to classify 250 scene categories [Zhou
et al., 2014b], many of which overlapped with the categories in our stimuli. In that case, the
neural correlation effects we observed were not significantly higher than those with features from
AlexNet, which was trained on object recognition. The reason may be that the features learned
in AlexNet have good transferability to other tasks, as suggested by Yosinski et al. [2014]; Huh
et al. [2016], possibly because these features well characterize the statistical regularities of the
visual world. Moreover, a scene contains many object elements, and thus scene understanding
may benefit from good mid-level and high-level representations of objects. Indeed, Zhou et al.
[2014a] showed that object detectors emerged in a convolutional neural network that was trained
to do scene classification. Therefore it is not surprising that object-category relevant features can
explain the neural data during scene processing.

Since the publication of AlexNet, deeper and more sophisticated convolutional neural networks
have been developed for more diverse vision tasks. Although it will be interesting to use features
from these new networks to explain neural data, we do not speculate the results will change quali-
tatively. On the one hand, as discussed above, the features in AlexNet are already very rich and
expressive. On the other hand, empirically, the number of images we can present in neuroimag-
ing studies are typically fewer than ∼ 103; limited by such numbers, it may be hard to see any
large advantage of more sophisticated networks. Given the evidence we found of non-feedforward
processing in the visual cortex, in future work, we think it is more intriguing to develop and use
non-feedforward neural networks, with built-in feedback according to the connectivity structure
in the brain. In this way, we can compare the dynamics of the network with the spatio-temporal
neural activity in the brain to better understand the information flow.

Limited number of observations
Here we only presented 362 scene images. Compared with the high-dimensional features given
by AlexNet, we did not have enough number of observations to fit large regression models that
included all dimensions in the features. In future work, it is important to vastly increase the number
of observations, by increasing data collection time, and maybe also slightly reduce the number of
image repetitions.

Limitations of the spatial resolution of MEG and EEG
It is worth noting that MEG and EEG are inherently limited by the underdetermined nature of the
source localization problem. We have a limited number of sensors, and moreover, the spatial cor-
relations in the columns of the forward matrix can cause spatial blurring effect in the reconstructed
source solutions. Both these factors add uncertainty in the localization. Although we have used
various methods in our analyses, both traditional two-step methods and our novel one-step models,
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there is likely a fundamental limit that affects both of them. Moreover, because of the “underde-
terminedness”, we had to exploit various assumptions in both the two-step and one-step models,
and the true neural activity might violate these assumptions. Therefore, although we have tried
our best to make reasonable assumptions while keeping the models tractable, we do admit there is
some possibility that the source-space results may deviate from the underlying truth. See Chap-
ter 7 for further discussion. We hope the future development of theories on source localization
and experimental work with intracranial recordings in patients and animals can further validate our
findings.

Comparison between the MEG and EEG results
MEG and EEG differ in their theoretical sensitivity (i.e., lead fields) and the empirical recording
systems. In the sensor-space regression, our results in MEG and EEG were similar, yet in the
regression analysis in the source space, the EEG results appeared more noisy, and the difference
in the correlation profiles of different feature groups were less obvious. Although the difference
in the theoretical sensitivity of MEG and EEG may contribute to the difference in the results, the
main reason is likely to be that the MEG system had more sensors or higher rank of the data, which
contributed to better source localization results. Additionally, in our EEG session, the locations of
the sensors were not very accurate due to the digitization system; such errors might also contribute
to the difference in results between MEG and EEG. In future work, it would be useful to quantify
the impact of such errors in a generic way.

As a summary, in this chapter, by applying source-space regression analysis and connectivity anal-
ysis, we explored the spatio-temporal neural dynamics in the human visual cortex while partic-
ipants processed naturalistic images of scenes. Our results indicate both feedforward and non-
feedforward information flow and provide useful insights for further understanding the computa-
tion in the visual cortex.

5.5 Appendix: supplementary figures
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(a) Participant 1 (b) Participant 2

(c) Participant 3 (d) Participant 4

(e) Participant 5 (f) Participant 6

(g) Participant 7 (h) Participant 8

(i) Participant 9 (j) Participant 10

(k) Participant 11 (l) Participant 12

(m) Participant 13 (n) Participant 14

(o) Participant 15 (p) Participant 16

(q) Participant 17 (r) Participant 18

Figure 5.14: Regions of interest in individual participants, visualized on inflated cortical surfaces. Each
subfigure, (from left to right) includes the left and right lateral view, ventral view and left and right medial
view of one participant. Color code: parahippocampal place area (PPA): red; transverse occipital sulcus
(TOS): yellow; retrosplenial cortex (RSC): magenta; lateral occipital complex (LOC): blue; early visual
cortex (EVC): green; medial orbitofrontal cortex (mOFC): cyan.
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Figure 5.15: The ROI regression results by the two-step dSPM method (MEG). First column: averaged
statistics of the correlation effects across participants (color code: blue: residual Layer 1; green: residual
Layer 7; red: common components). Second to fourth columns, pairwise differences among the three fea-
ture groups. (color code: cyan: residual Layer 7-residual Layer 1; yellow: residual Layer 1- common com-
ponents; magenta, residual Layer 7-common components). The transparent bands indicates bootstrapped
confidence interval at the participant level. Gray areas indicate time windows where the difference was
significantly non-zero.
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Figure 5.16: The ROI regression results by the two-step dSPM method (EEG). First column: averaged statis-
tics of the correlation effects across participants (color code: blue: residual Layer 1; green: residual Layer 7;
red: common components). Second to fourth columns, pairwise differences among the three feature groups.
(color code: cyan: residual Layer 7-residual Layer 1; yellow: residual Layer 1- common components; ma-
genta, residual Layer 7-common components). The transparent bands indicates bootstrapped confidence
interval at the participant level. Gray areas indicate time windows where the difference was significantly
non-zero.

123



−200 0 200 400 600 800 1000

time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
EVC

res Layer 1

res Layer 7

common

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.006

p = 0.014

EVC

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.008

EVC

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.036

EVC

−200 0 200 400 600 800 1000

time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Vent1

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.001

Vent1

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.043

p = 0.001

Vent1

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.003

p = 0.022

p = 0.015

Vent1

−200 0 200 400 600 800 1000

time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Vent2

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.001

Vent2

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

Vent2

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.001

Vent2

−200 0 200 400 600 800 1000

time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Vent3

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

Vent3

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

Vent3

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

Vent3

−200 0 200 400 600 800 1000

time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
LOC

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.001

p = 0.037

LOC

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.016

LOC

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.003

p = 0.028

LOC

−200 0 200 400 600 800 1000

time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
TOS

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

p = 0.002

p = 0.013

TOS

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

TOS

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

TOS

(a) MEG

−200 0 200 400 600 800 1000

time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
EVC

res Layer 1

res Layer 7

common

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

EVC

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

EVC

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

EVC

−200 0 200 400 600 800 1000

time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
LOC

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

LOC

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

LOC

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

LOC

−200 0 200 400 600 800 1000

time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
TOS

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

TOS

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

TOS

−200 0 200 400 600 800 1000

time (ms)

−0.4

−0.2

0.0

0.2

0.4

TOS

(b) EEG

Figure 5.17: The ROI regression results by the STFT-R. See the caption of Figure5.15 for detailed descrip-
tions.
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Figure 5.18: Individual − log10(p-values) from 18 participants by the two-step connectivity analysis.
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Figure 5.19: Individual − log10(p-values) from 18 participants by the one-step state-space connectivity
analysis.
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Chapter 6

Empirical comparison between MEG and
EEG

1

6.1 Motivation

Although MEG and EEG both measure signals that are induced by neural activity, the two modal-
ities differ in their sensitivity, due to the theoretical properties of their physical mechanisms. In
a simplistic case, if we assume the head is a spherical volume conductor, MEG does not detect
electric currents along the radial directions, while EEG is able to detect both radial and tangential
currents. In more realistic models of the head, there are also similar differences in the sensitivity.
Additionally, the magnitudes of the lead fields, which describe the contribution of electric currents
in the source space to the sensor recordings, falls off with increasing distance between sensors and
sources; such a fall-off effect is larger in MEG than in EEG. As a result, MEG is less sensitive to
deeper brain activity than EEG [Hamalainen et al., 1993; Malmivuo, 2012], yet for the shallower
currents, the MEG lead fields appear to provide a better spatial resolution [Mosher et al., 1993].
It is worth noting that the spatial resolution of MEG and EEG also depends on the accuracy of
forward models. Errors in the conductivity values of head tissues (e.g., scalps and skulls) may
result in large errors in the EEG lead fields; in contrast, the MEG lead fields are more robust to
such errors [Hamalainen et al., 1993].

In practice, there are more issues that cause differences in spatial resolution and signal quality be-
tween MEG and EEG. The first issue is the number of sensors. A typical MEG device is equipped
with as many as 306 sensors, including magnetometers, which measure magnetic field strength,

1The “stitching” section in this chapter was in collaboration with Dr. William Bishop, who introduced the idea and
provided MATLAB implementation of the factor analysis.
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and gradiometers, which measure spatial gradients of magnetic fields and thus provide additional
information. These sensors give high-dimensional recordings, which cover complementary aspects
of the source activities. In contrast, a typical EEG systems has fewer sensors (usually 64 to 128,
in some cases 256). Moreover, the scalp voltage measured by adjacent sensors are often highly
correlated. Therefore, the rank of EEG recordings is smaller than that in MEG. In this practi-
cal perspective, the spatial resolution of source localization is likely to be worse in a 128-sensor
EEG system than in a 306-sensor MEG system, simply because the “underdeterminedness” of the
source localization problem is even worse with the lower-rank EEG data. The second issue is the
signal quality (or noise level) of individual sensors. EEG electrodes are often affected by low-
frequency drifts, or noise in the reference, whereas MEG sensors, especially the gradiometers, are
less affected by such issues, providing better signal quality.

However, MEG requires expensive superconducting quantum interference devices (SQUIDs) to
pick up the weak magnetic field changes induced by neural activity, whereas EEG devices are
generally much cheaper. For example, our experimental cost per hour was $500 for MEG and
≤ $50 for EEG. In practice, researchers may have relatively tight budgets. In such cases, it is
worth evaluating how much extra sensitivity MEG provides. If we are not particularly interested
in source-space analysis, but mainly interested in whether the sensor-space data carry certain in-
formation in certain time windows (e.g., visual information in scene processing), can we use EEG
to achieve comparable sensitivity to that in MEG?

A few previous studies have compared the spatial resolution of MEG and EEG, in which the
number of sensors in the two modalities were often equated. These studies gave mixed results
depending on whether the study was based on simulations or empirical data, what forward models
were used and what source localization methods were used [Lopes da Silva et al., 1991; Liu et al.,
2002; Klamer et al., 2015]. The empirical data used in these cases were mostly from relatively
simple and well-understood behavioral tasks. Yet there has not been much empirical work on
comparing MEG and EEG data acquired with typical devices, in the context of studying complex
perceptual or cognitive tasks. In this chapter, we present an empirical comparison of MEG and
EEG in our scene-processing experiment in Chapeter 5. Particularly, we focus on neural responses
to individual scene images recorded in MEG and EEG. We first compare the signal quality, and
explore the similarity between the recordings in the two modalities. Secondly, we compare the
sensitivity of MEG and EEG in the sensor space, in testing whether the neural responses at different
time points show statistical dependence on visual or semantic features of the images. We note that
the empirical spatial resolution of the two modalities depends on the number of sensors (or the
rank of data); therefore, we expect the 306-sensor MEG data to yield better spatial resolution than
the 128-sensor EEG data in our case. In addition, as mentioned in Chapter 5, the measurement of
sensor locations in EEG was significantly worse than in MEG; this issue is also likely to undermine
the source-space analysis of EEG data as shown in Chapter 5. Therefore in this chapter, we restrict
our comparison in the sensor space.

Due to the theoretical properties of the lead fields of MEG and EEG, the two modalities are com-
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plementary, in the sense that if combined, MEG and EEG can provide more complete information
about the neural activity than used separately. Later in this chapter, we also explore this direction
in our scene-processing experiments. We combine the MEG/EEG recordings in a factor analysis
framework and explore the possibility of using both modalities but assigning overlapped subsets
of stimuli to each modality. Such a framework may help us obtain good experimental results from
the combined data with a smaller cost than using MEG alone.

6.2 Materials and methods

6.2.1 Experimental procedure and data

Details of the experimental procedure, data acquisition and preprocessing can be found in Chap-
ter 5, Section 5.2.5. Data from fifteen participants who finished both the MEG and EEG sessions
were used. The preprocessing of data in this chapter was the same as that in Chapter 5 for each
participant, with only one difference where trials corresponding to the same image presentation
were averaged. The number of repetitions for each image was not always equated between the
MEG and EEG sessions for each participant; for some images, there were q1 repetitions in MEG
and q2 repetitions in EEG, but q1 6= q2. In this case, unlike in Chapter 5, where all q1 (or q2) rep-
etitions were used in the average in the MEG (or EEG) session, only the first qmin = min(q1, q2)

repetitions were used to compute the averages for the MEG and EEG sessions separately, and the
extra ones were discarded. In this sense, the number of repetitions was matched between MEG
and EEG for each image.

6.2.2 Visual and semantic features of scene images

We examined whether the neural responses showed statistical dependence with two different sets
of features of the stimuli. The first set is a visual feature set, obtained from Layer 5 in AlexNet
2. We used the local-contrast-reduced features of Layer 5 as described in Chapter 5—where the
nuisance covariates relevant to image heights, widths, areas and aspect ratios, as well as the princi-
pal components explaining 90% of the variance of the local contrast features, were regressed out.
Then the first 10 principal components were defined as the visual feature set here 3.

2We note that from the results in Chapter 5, the first seven layers all explained a significant amount of variance in
the neural responses in the linear regression analysis (Figure 5.7 (b) and (d)); similarly, all these layers would show
significant dependence effects on the neural data in the tests in this chapter as well. Nevertheless, our main goal was
to examine the sensitivity of the tests here, not to compare the dependence effects between the layers. Therefore we
arbitrarily chose Layer 5 here. We expect to get similar results if other layers are used.

3The principal component analysis was run on the local-contrast-reduced features of the stimulus images and the
extra images, but only the principal components corresponding to the 362 stimulus images were included here.
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The second feature set included 0/1 semantic features that were used to organize scene categories
in the widely used SUN database of scene images [Xiao et al., 2010]. Among these features, there
were three coarse ones, “indoor’, “outdoor natural” and “outdoor man-made”; for each one, there
were 4 to 6 finer-grained features, such as “shopping and dining”, “workplace” and so on. In total,
there were eighteen such features, and we manually assigned 0/1 values corresponding to these
eighteen dimensions for each of the 362 stimulus images.

6.2.3 Non-parametric tests of dependence between multivariate variables

A commonly used approach to relating multivariate neural responses to external multivariate vari-
ables is the representational similarity analysis [Kriegeskorte et al., 2008]. In this approach (see
Figure 6.1), consider q multivariate neural responses to q stimuli, and also q external multivari-
ate variables corresponding to the same stimuli (e.g., features of the stimuli or neural responses
recorded in a different modality). A q × q representational similarity matrix (RSM) is created for
the neural responses (or the external variables), where each (i, j) entry in the RSM is defined as
the similarity between the multivariate neural responses (or external variables) corresponding to
the ith and jth stimuli. The similarity can be defined using various metrics; here, we use Pearson
correlation. After the RSMs for the neural responses and the external variables are obtained, the
lower triangular entries of the RSMs (excluding the diagonal), which denote the pairwise similarity
between the representations of the stimuli, are concatenated into two large vectors for the neural
responses and the external variables respectively. The Pearson correlation of the two concatenated
vectors is used as the testing statistic. Under the null hypothesis that the neural responses and
the external variables are independent, this statistic should follow a distribution with zero mean.
Permutations, where the correspondence of the neural responses to the stimuli is scrambled, can
be used to obtain an empirical null distribution and the p-value.

  

...

...

...

...

...

...

vectorize RSM

correlation

RSM

Neural responses External variables

Figure 6.1: Illustration of the representational similarity analysis.
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A similar test, which uses the Hilbert-Schmidt independence criterion (HSIC) [Gretton et al.,
2007], can be applied as well. In this test, the pairwise similarity (entries in the RSM) is defined
by a kernel function, and the similarity between the two kernel matrices is defined in a similar
form to the Pearson correlation in the representational similarity analysis. This HSIC test has good
asymptotic properties; the null distribution can be either approximated with analytical forms or
obtained by permutations. We used the implementation by Gretton et al. [2007] 4, which exploited
a radial-basis Gaussian kernel, where the kernel width was empirically selected based on distances
between a small sub-sample of the pairs in the multivariate data.

6.2.4 Quantifying the sensitivity of independence tests

After running the non-parametric independence tests (e.g., the HSIC tests) on the neural responses
and the visual or semantic features of the presented images, we defined the sharp ratio as the
observed testing statistic divided by the critical value at a level of 0.05 according to the empirical
null distribution obtained from permutations5. In the HSIC tests, the testing statistics were non-
negative, so the critical value was obtained in a one-sided manner.

To ideally quantify how sensitive the recordings in MEG and EEG were in detecting the depen-
dence between neural activities and external features, we could compute the statistical power of
the tests. However, since we do not know the true alternative distribution, it is not easy to do
power analysis. Instead, we use the sharp ratio as an empirical index of the sensitivity. The more
observations (images) we had in the test, the higher the sharp ratio would be. To quantify how the
sharp ratios vary with increasing numbers of observations, we sub-sampled 10%, 30%, 50%, 70%
and 90% of our 362 observations without replacement for 5 times (i.e., the number of sub-samples
were 36, 108, 181, 253 and 325). Then we computed the sharp ratio of each sub-sample set at each
time point, and took the average across the 5 independent sampling procedures. This procedure
was done for each participant in MEG and EEG respectively.

6.2.5 Combining MEG and EEG data using factor analysis

We also explored the possibility of combining (or “stitching”) the MEG and EEG recordings using
factor analysis. In this analysis, we still focused on examining the statistical dependence between
neural activities and visual or semantic features of the scene images. We considered two cases:
a case where the neural responses to all stimuli were observed in both MEG and EEG (the full-
observation case) and a case where neural responses to some stimuli were missing in MEG (the

4http://www.gatsby.ucl.ac.uk/˜gretton/indepTestFiles/indep.htm
5We note that if there was only a single test at a single time point, a sharp ratio greater than 1 means we could

reject the null hypothesis, concluding that the neural responses and the features had a significantly larger dependence
than chance. However, here we had multiple time points, so we could not make such conclusions without corrections
for multiple comparisons.
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missing-observation case). The latter case simulated an experimental design where a subset of
stimuli were presented in the MEG session and the full set of stimuli were presented in the EEG
session. We learned low-dimensional factors to combine the observations in MEG and EEG cor-
responding to the overlapped stimuli, and filled in the missing part in MEG using other EEG
observations. If for the same number of stimuli, the MEG data had higher sensitivity than the EEG
data, then we expected that the filled-in factors corresponding to all stimuli could yield higher sen-
sitivity than the EEG data alone, because they benefited from the MEG data corresponding to the
overlapped stimuli besides from the EEG data.

We used the factor analysis model implemented in [Bishop, 2015]. We had nMEG = 306 MEG
sensors and nEEG = 128 EEG sensors; together, we had nboth = nMEG+nEEG = 434 dimensions
of observations at each time point. The mean across the q = 362 observations was subtracted from
the data. Because the units and scales of the recordings varied across different groups of sensors
(including two groups of 102 MEG gradiometers measuring orthogonal gradients, one group of
102 MEG magnetometers, and one group of 128 EEG electrodes), we rescaled the data such that
the sum of variances within each of the sensor groups was the same. The observations at different
time points were treated as i.i.d. observations in computing the variances. The factor analysis
model learned nlatent = 70 latent factors, from the rescaled nboth-dimensional recordings, where
data at different time points were treated as i.i.d observations. In the full-observation case, the
responses at all time points to all 362 images were used, whereas in the missing-observation case,
the MEG responses at all time points were missing for 122 images (from 61 categories randomly
sampled from the 181 categories). In both cases, the factor analysis models were estimated using
the expectation-maximization algorithm (see Bishop [2015] for details). The number of latent
factors nlatents = 70 was selected because it was an “elbow point”, that is, the reconstruction
errors in MEG using increasing numbers of latent factors dropped sharply at this value of nlatents.

6.3 Results

6.3.1 Comparison of signal strength in MEG and EEG

We first focus on the relative strength of signals compared with noise in the MEG and EEG record-
ings. By “signals”, we mean the underlying neural responses to the stimulus images, and by
“noise”, we refer to the noise from different sources, including inherent sensor noise, physiolog-
ical artifacts such as eye movements, and the neural activities that are not directly involved in
processing the images. It is non-trivial to extract the pure “signals” in this context; as an approxi-
mation, we define the signals as the common responses to the stimulus images across participants,
up to some linear transformation. In other words, we use the cross-participant reliability, measured
in a leave-one-participant-out regression paradigm, as a measurement of signal strength.

For each participant, at each time point and for each sensor, we ran a regression analysis to predict
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the responses to the 362 images, using the corresponding responses in all the sensors at the same
time point from all the other participants. In such an analysis, the regression effect was further
quantified in a nested ten-fold cross-validation. For each fold, we used principal component anal-
ysis to reduce the high-dimensional regressors (from all the sensors in all the other participants) to
a few principal components, for the training and testing data together. We then trained an ordinary
least square linear regression model using the training data and computed the regression score—
the proportion of variance explained in the testing data—as one minus the mean squared prediction
error divided by the variance of the true observations. The regression score was averaged across
the ten folds for each sensor, each time point, and each participant.

In terms of how many principal components to use, there was a trade-off—too few components
would limit the linear model’s ability to explain the variance in the testing data, but too many
components would overfit. We were mainly interested in quantifying the highest proportion of
variance that can be explained by the other participants data; therefore, we took the maximum of
the regression score among those obtained by using various numbers of principal components (20,
40, 60 and 80), for each sensor, each time point, and each participant. Afterwards, the maximum
scores were averaged across participants.

The recordings in different sensors had different signal strength; for example, the posterior sen-
sors close to the early visual cortex had higher signal strength than other sensors (similar to what
we saw in Figure 5.8 in the regression on the AlexNet features). To visualize the overall signal
strength, we took the highest regression score (i.e., the maximum scores averaged across partici-
pants, as described above) across sensors at each time point. Figure 6.2 shows the results at each
time point for MEG and EEG respectively. There seems to be a small time lag between the two
modalities, possibly because the different delays in image presentation in MEG and EEG were not
perfectly corrected (see Section 5.2.5). Nevertheless, the highest proportion of variance explained
was about 28% in EEG and 32% in MEG. Although MEG had slightly higher proportions of vari-
ance explained at the majority of time points, the differences were small. In other words, the signal
strength in EEG was slightly smaller than, but comparable with that in MEG in this experiment.

6.3.2 Representational similarity between MEG and EEG recordings

Secondly, we tested whether the responses to the 362 stimulus images recorded in MEG and in
EEG at corresponding time points showed statistical dependence between each other, using the
representational similarity analysis. Figure 6.3 shows the Pearson correlation between the lower
triangular entries in the RSMs of the two modalities at each corresponding time point, averaged
across 15 participants. We also permuted the image indices 40 times in one modality, using the
same permutation sequences across participants. The transparent blue bands show the interval that
covered 95% of the permuted values at each time point; these bands are plotted mainly for visu-
alization as no correction for multiple comparisons was applied. We also used a more rigorous
two-sided excursion permutation test (see Section 5.2.11) to examine whether the mean Pearson
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Figure 6.2: The highest proportion of variance explained across sensors in the leave-one-participant-out
regression analysis at each time point.

correlations across participants were significantly greater than zero, where the multiple compar-
isons at all the time points were accounted for; we observed a significant time window from 60 to
450 ms after the stimulus onset (p-value < 0.025), where the MEG and EEG recordings showed
significant statistical dependence (or representational similarity) between each other. Note that this
window overlapped with the window identified in Chapter 5 (Figure 5.7), where the variance of
the MEG and EEG recordings were significantly explained by the AlexNet features.

6.3.3 Sensitivity of MEG and EEG in detecting dependence between neural
responses and external features

Thirdly, we compare the sensitivity of the MEG and EEG data in addressing one of our main
scientific questions—whether the neural activities code information about the visual or semantic
features of the stimulus images. Statistically, one can either use regression analysis (as we did
in Chapter 5), or use nonparametric dependence tests (e.g., the HSIC test or the representational
similarity analysis) to examine the statistical dependence between the neural activities and the
features. Here we used the HSIC test because it was computationally fast to implement. The visual
features we used here were derived from the features in Layer 5 of AlexNet; the semantic features
we used here were 0/1 features based on semantic labels of the scene categories (e.g., “indoor”,
“shopping and dining”, “outdoor-natural”, etc). There are other visual or semantic features, which
can be of interest; however, since our main goal was to compare the sensitivity of MEG and EEG,
we used these two particular feature sets as examples and expect the results to be similar with other
feature sets.

We aim to compare the sensitivity of MEG and EEG in detecting positive dependence between
neural activities and the visual or semantic features using the HSIC tests. Ideally, we could exam-
ine the statistical power of the tests, which is determined by the true alternative distributions and
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Figure 6.3: Representational similarity analysis between MEG and EEG. The figure shows the Pearson
correlation of the entries in the RSMs from MEG and EEG recordings at each time point, averaged across
15 participants. The transparent blue bands show the 95% intervals from 40 permutations without correction
for multiple comparisons. The transparent pink band shows the time interval where the mean Pearson
correlations across participants were significantly greater than zero (p-value < 0.025).

the noise level in each modality. However, while the null distributions can be obtained by permu-
tations, it is challenging to estimate the alternative distributions of the HSIC statistics, which are
needed in power analysis. In this context, we define the sharp ratio—the testing statistic divided by
the critical value in the null hypothesis at a level of 0.05—as an approximate measurement of the
sensitivity. The sharp ratio increases as the number of observations increases; here we computed
the sharp ratios for different numbers of observations (10%, 30%, 50%, 70% and 90%, or 36, 109,
181, 253 and 325 observations) at each time point in MEG and EEG separately (see Section 6.2.4
for more details).

The averaged sharp ratios across participants are shown in the first two plots of Figure 6.4a and
6.4d. In Figure 6.4a, where we tested the dependence between the neural activities and the visual
features, we observed that the sharp ratios were higher than the baseline window (i.e., before
0 ms) from around 80 ms to near 500 ms, in both MEG and EEG. As the number of observations
increased, the sharp ratios became larger. If we visually compare the MEG and EEG plots
in Figure 6.4a for the same number of observations, we see that MEG appeared to have larger
sharp ratios than EEG. For more rigorous comparisons, we computed the difference of sharp ratios
between MEG and EEG with 325 observations, for each participant respectively, at each time
point from 80 to 500 ms, where the sharp ratios were larger than the baseline. The last plot
in Figure 6.4c shows the averaged differences between MEG and EEG across participants. The
standard error of the averaged difference at each time point was also computed and used to plot the
(2.5%/43, 97.5%/43) confidence intervals (blue bands), assuming the averaged difference had a
normal distribution; note that the confidence intervals were based on the Bonferroni criterion in the
correction for multiple comparisons at 43 time points. In this plot, the sharp ratios in MEG were
significantly higher than those in EEG before 120 ms, and marginally higher at some time points
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near 350 ms. Nevertheless, the differences in the sharp ratios between MEG and EEG were not
large. If the number observations in EEG was large enough (e.g., 325) compared with that in MEG
(e.g., 181) as in Figure 6.4b, the sharp ratios in EEG were comparable with those in MEG at the
majority of the time points during 80 to 500 ms (at some time points, the sharp ratios in EEG were
even larger). For the test of dependence between the neural activities and the semantic features,
we saw similar results (Figure 6.4d, 6.4e and 6.4f ); interestingly, the sharp ratios in EEG appeared
even marginally larger than those in MEG with 325 observations near 200 ms in Figure 6.4f.

Together, these results indicate that in detecting statistical dependence between neural representa-
tions of images and the visual (or semantic) features of the images, EEG appeared to have slightly
smaller sensitivity than MEG, when there were the same the number of observations; however,
with a larger number of observations, EEG can achieve comparable sensitivity to that in MEG.

6.3.4 “Stitching” data between MEG and EEG in a factor analysis frame-
work

According to the results above, MEG and EEG recordings of neural activities share some rep-
resentational similarity; in addition, in detecting statistical dependence between neural responses
and external features (e.g., the visual or semantic features above), MEG appeared to have slightly
higher sensitivity. Next, we consider a setting where we are given a relatively large stimulus set, a
tight budget and access to both MEG and EEG. In this setting, we aim to study the statistical de-
pendence between the neural responses and the external features of the stimuli. A possible option
is to utilize both MEG and EEG and combine them in a sophisticated way. For example, we can
present a subset of stimuli in a relative short MEG session, and present all stimuli in a longer EEG
session. The total cost of the experiments can still be low because only a short MEG session is
included. Afterward, we can “stitch” the two modalities by learning common latent factors from
both modalities, even with some data missing in MEG; then we can run the statistical tests (e.g.,
HSIC tests) to examine the dependence between the latent factors and the external features. This
idea, borrowed from the “neural stitching” concept in [Bishop and Yu, 2014; Bishop, 2015], may
lead to higher sensitivity than using EEG alone, with a lower cost than using MEG alone.

Here we explore this possibility by simulating the setting. Consider a missing-observation case,
where the MEG responses to 122 of the 362 images were not observed, while the EEG responses
to all the images were observed. As a control, we also consider a full-observation case, where both
the MEG and EEG responses to all the images were observed. We learned nlatent = 70 latent fac-
tors for each case and computed the sharp ratios of the HSIC tests, sub-sampling different numbers
of observations from the latent factors in the same procedure as in Section 6.2.4. The results are
shown in the third (“FullLatents” for the full-observation case) and fourth (“PartMissingLatents”
for the missing-observation case) plots in Figure 6.4a and Figure 6.4d, for the visual features and
the semantic features respectively. In Figure 6.4c and 6.4f, we plotted the pairwise differences
between MEG, EEG, “FullLatents” and “PartMissingLatents”, averaged across participants when
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Figure 6.4: Sharp ratios in different modalities and with various numbers of observations, in the HSIC tests
with the visual features ((a), (b) and (c)), and the semantic features ((d), (e) and (f)). In (a) and (d), besides
MEG and EEG, the sharp ratios of the latent factors are also shown. “FullLatents” denote the latent factors
that were learned when all the MEG and EEG data were available in the full-observation case, whereas
“PartMissingLatents” denote the latent factors that were learned when some observations in MEG were
missing (i.e., the missing-observation case). In (b) and (e), the plots show the sharp ratios when there were
181 observations in MEG and 325 observations in EEG. In (c) and (f), the plots show the pairwise differences
of sharp ratios between MEG, EEG, “FullLatents” and “PartMissingLatents”, from 80 to 500 ms, with 325
observations. The differences were averaged across participants, and the blue bands show the confidence
intervals based on the standard errors of the averaged differences across participants, corrected for multiple
comparisons.
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there were 325 observations. The blue bands show confidence intervals after the Bonferroni correc-
tion. Although the sharp ratios of “PartMissingLatents” were no higher than those in ‘FullLatents”,
they appeared to be higher than those in EEG at least in some time windows, and they were also
comparable with (if not always higher than) those in MEG.

6.4 Discussion

In this chapter, we empirically compared the recordings in MEG and EEG in our scene processing
experiment. Although MEG appeared to give slightly better signal strength and higher sensitivity
in studying the dependence between the neural responses to images and external visual or semantic
features, EEG was not much worse. Moreover, in the dependence tests with external features, one
can possibly increase the sensitivity of EEG by acquiring more observations, with still a low cost.
For example, if we assume MEG sessions cost $500 per hour and EEG sessions cost $50, as in our
experiments, then doubling or tripling the EEG session length (thus the number of observations)
still costs less. Our results here may serve as informative resources when researchers design ex-
periments that are related to visual processing, and considerate choosing between the MEG and
EEG.

Theoretically, MEG and EEG have different sensitivity to source currents in different directions
and at different depths, so they each can provide some unique information about the source cur-
rents. However, the MEG and EEG recordings have statistical dependence between each other as
well, as confirmed by our results here and in Chapter 5. This is not surprising because the lead
fields of the two modalities may not be fully orthogonal. More importantly, the neural activities
during complex perceptual and cognitive processes can be distributed over large areas on the corti-
cal surfaces, covering different local normal directions and depth (due to the folding of the cortical
surfaces), and the distributed activities that are close on the cortical surfaces can be correlated to
some degree. The EEG and MEG recordings of such neural activities can be highly dependent on
each other.

Here we also explored the possibility of combining MEG and EEG recordings in the statistical
analysis of interest, even in cases where the MEG data were partly missing. Our results point in a
promising direction where one can assign stimuli to MEG and EEG sessions in a sophisticated way,
and “stitch” the data from the two modalities to obtain reasonably good sensitivity with a small
cost. The results given here are still preliminary and limited to the specific analysis. In future
work, we plan to provide a mathematically formulated “stitching” strategy, taking into account
the budget constraints and the sensitivity in relation to the number of stimuli (i.e., the number of
observations), such that researchers as users can easily apply it in their daily practice.

It is worth noting that our results here were empirical, in the context of studying visual processing
of scene images. Depending on the research questions, the advantages and weaknesses of using
MEG and EEG may vary, and further exploration on other research topics is needed. Interestingly,
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some work on decoding hand movement using MEG and EEG showed similar decoding accuracy
rates between the two modalities [Waldert et al., 2008], again indicating that EEG can be almost as
good as MEG in this context. Our results are also limited in the sense that we only used the HSIC
tests to examine whether there was dependence between the neural responses and the external
features. However, we expect to see similar results by other types of analyses, such as predicting
images features or image identities using the MEG/EEG recordings.

Another issue worth mentioning is that our analyses here were purely in the sensor space, where the
results can be due to the contribution of a few sensors; our results might not reflect the advantage
that MEG had more sensors or higher rank data, which is important in source localization or in
detecting subtle changes in neural activities at small spatial scales. In future work, we will explore
more diverse analyses (e.g., in the source space) that can be affected by the rank of data (or the
number of sensors) in MEG and EEG.
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Chapter 7

Discussion and future directions

This thesis has included three components: a methodological contribution about one-step source-
space analysis, a scientific contribution about the spatial-temporal dynamics in the visual cortex,
and an empirical comparison between MEG and EEG. Below, we summarize the major conclusions
and discuss related future directions for each component. Because there are a variety of generic
issues worth discussing in the first component, we allocate a larger space for it than for the other
two.

In the methodological contribution, we presented novel one-step models for source-space analyses
in MEG and EEG, which in our simulations outperformed the commonly used two-step methods
that apply L2-norm regularization in the source localization step (i.e., MNE). Our one-step models
focused on two types of analyses, (i) regression analyses, which estimated dependence between
neural activity and external covariates (e.g., stimulus features or behavioral metrics), and (ii) func-
tional connectivity analysis, which estimated statistical dependence among brain regions of interest
while participants performed experimental tasks.

In the one-step regression model (the STFT-R in Chapter 3), we represented the source neural ac-
tivities as time-frequency components, which were linear combinations of external covariates (re-
gressors). In this way, we directly related the regression coefficients in the time-frequency domain
in the source space to the sensor recordings. Moreover, we applied penalties to encourage sparsity
in the source space and the time-frequency domain. As a result of the time-frequency sparsity,
when the regression coefficients were transformed back to the time domain, the high-frequency
components that did not explain the sensor data well (i.e., noise) were attenuated. In addition, dur-
ing the periods in which we would expect the regression coefficients to be zero (e.g., the baseline
time window before the stimulus onset), the method typically recovered zero coefficients. The re-
sulting waveforms were generally smooth, concentrated in the time windows of interest, and thus
“clean” and easy to interpret. In contrast, it is difficult to impose such sparsity-inducing constraints
on the regression coefficients if we use a two-step approach.
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In the one-step connectivity models in Chapter 4, we focused on functional connectivity among
pre-defined regions of interest (ROIs). In a stationary setting, the functional connectivity was de-
scribed through the covariance matrix of the ROI activities; in a dynamic setting, the functional
connectivity was described through the time-varying autoregressive coefficients of the ROI activi-
ties. We assumed that the activity at each source point within an ROI had an independent normal
distribution conditioned on the latent ROI activity at each time point; more specifically, the ac-
tivity at each source point was centered around a mean, which was the latent ROI activity (or
some linearly weighted version of the latent ROI activity in Section 4.2), and the variance of each
source point was shared within that ROI. Similarly, we assumed that the activity at each source
point outside any ROIs followed an i.i.d normal distribution, with a zero mean and a common vari-
ance. By eliminating the source activities, we again built a direct relationship between the latent
ROI activities and the sensor data, so that we could directly estimate the covariance matrix or the
autoregressive coefficients from the sensor data. In simulations where the above ROI-to-source
model was correct, our one-step approaches gave more accurate connectivity estimates than the
two-step methods using MNE.

In sum, our results in the methodological contribution demonstrated some advantages of the one-
step approach. In future work, we can exploit the one-step framework in more sophisticated anal-
yses. For example, in the one-step framework, we can combine the regression and connectivity
analyses to jointly estimate both the correlation with external covariates and the connectivity in the
residuals, and we can also decode brain states using distributed neural activity in the source space.
In addition, we can incorporate prior knowledge from other imaging modalities (e.g., fMRI) in the
one-step framework.

Since the source localization problem is underdetermined, all models rely on some prior assump-
tions or constraints for tractability. It is worth noting that in our one-step approaches, additional
model assumptions were imposed as well (for example, the sparsity assumption in STFT-R, the
autoregressive assumption in the state-space connectivity model, and the mapping from the latent
ROI activities to the activities at all source points in the connectivity models). We do not think
that one-step approaches are always better than two-step approaches. If the model assumptions in
the one-step approach are severely wrong, then the one-step model may yield larger errors than a
two-step model. Indeed, the main advantage of the one-step framework is the flexibility of jointly
constraining all steps in the analysis, instead of using limited constraints for the source localization
step, which may sometimes undermine further connectivity or regression analysis.

Nevertheless, in practical uses, all model assumptions may be inaccurate to some degree. Some
violations of assumptions may be crucial, yielding less accurate scientific conclusions, while others
may be minor—they may reduce the power of the statistical tests, but strong effects may still be
detected, especially when the control or null condition also suffers from a similar model mismatch
problem. In this context, it is important to consider in what cases the model mismatch is likely to
cause inaccurate conclusions and in what cases its effects on the conclusions are minor. Below,
we discuss in detail the possible implications of several assumptions we considered and point out
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related future directions.

• The sparsity assumption In our STFT-R model, we assumed sparsity in different domains,
including the sparsity of active source points in the spatial domain and the sparsity of neural
activities and their correlation with external covariates in the time-frequency domain. The
assumption of spatial sparsity has been widely used, not only in the more recent probabilistic
models of source localization, but also in earlier methods such as equivalent dipole fitting.
However, to some degree, the spatial sparsity is more of a convenient approximation than a
justifiable assumption in the biological sense. For example, although the representation of a
particular visual object or a scene can be sparse on the neuronal level in a local cortical area
(e.g., within a millimeter), on a more coarse level (e.g., several to dozens of millimeters,
larger than the highest spatial resolution of fMRI/MEG/EEG), object or scene processing
recruits many large brain areas (see the Introduction in Section 5.1). In fact, distributed pro-
cessing (“connectionism”) has been one of the main theories in cognitive science [Fodor and
Pylyshyn, 1988]. In this sense, the sparsity assumption in the spatial domain is inaccurate
for many sophisticated cognitive processes.

However, practically, I think violations of the assumption of spatial sparsity only have minor
effects on the overall conclusions. For instance, a sparse activation pattern may approximate
a denser pattern by only representing the larger activations. Since there are tuning param-
eters that control the level of sparsity and we can select them via cross-validation, we can
empirically observe whether the activation is really spatially sparse. Even if we end up with
a pattern more sparse than the truth, it is likely that the non-zero source points are among
the true source points involved in the cognitive processes. With that being said, a concerning
issue is that the forward matrix G may lack the properties that guarantee the consistency
of source-point selection, such as the “irrepresentable condition” or the “restricted isometry
property” [Zhao and Yu, 2006], which essentially requires the possible correlations between
columns of the forward matrix to be small. In fact, the columns inG that correspond to spa-
tially close source points are correlated; such correlations can make it difficult to separate
source points that are spatially close. Moreover, if the true activation pattern is dense in a
large area, the detected sparse source points may not be located in the peaks of the true pat-
tern, but a few millimeters off in nearby locations. For future work, various alternative con-
straints can be used to remedy this issue. One possible direction is to use low-dimensional
latent factors to explain the general spatial correlation, but also use sparse patterns to capture
strong activations.

The sparsity in the time-frequency domain appears more justifiable in that the dynamic neu-
ral responses to stimuli are often concentrated at certain time windows and certain frequency
bands. While the sparsity assumption may be violated, similar arguments to those given
above can be applied in this domain as well. Hence the model mismatch problem is likely to
have a minor effect on the scientific conclusions in practice.

• Temporal independence of the sensor noise and source-space noise Throughout this the-
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sis, we have assumed that the sensor noise et in Equation (2.2) is temporally i.i.d. and the
covariance matrix can be pre-computed from a baseline time window or from empty-room
recordings. In the connectivity analysis, we assumed that within each ROI, the activity in
each source point was determined by the latent ROI activity plus a noise term. This source-
space noise was also assumed i.i.d. for different source points and across time. These as-
sumptions, especially the assumption of temporal independence can be violated in real data.

In our STFT-R model, the temporal dependence may result in some frequency components
across all time windows. However, if the sensor noise is stationary, this issue only has a
minor effect on the results for two reasons. First, the phases of the frequency components
that are due to the temporal dependence in the sensor noise are not likely to align with the
stimulus onset, and these components are not likely to be correlated with the regressors
either. Thus they are likely to cancel out. Secondly, in the statistical tests, we either compare
the regression coefficients in time windows after the stimulus onset with those in the baseline
time window (i.e., before the stimulus onset), or compare the regression coefficients with
permuted versions in the permutation tests. In these cases, the temporal dependence of noise
also affects the regression coefficients in the baseline window and the permutations, and
thus we should still be able to make correct conclusions from the statistical tests. In the time-
lagged connectivity analysis, the temporal dependence may have a larger effect (for example,
in over-estimating the autoregressive coefficients). Further empirical simulations are needed
to evaluate the effect, but again, the effect can be attenuated if we test the difference between
the estimates after the stimulus onset and those in the baseline window.

One important future direction is to model the spatio-temporal covariance structure of the
sensor noise and the source-space noise. Some previous work proposed to use a Kronecker
structure [Bijma et al., 2005], upon which more sophisticated models can be built. Another
issue is that the covariance matrix of the sensor noise is pre-computed and fixed. The er-
ror in this pre-estimation is not accounted for in source localization or in one-step models.
However, even in the typical source localization step (without doing regression or connec-
tivity analysis), simultaneously estimating the source activity of interest, the source-space
noise and the sensor noise is challenging, in terms of identifiability and tractability. Some
intuitive assumptions about the properties of the noise as well as a Bayesian formulation
incorporating the pre-computed noise covariance may help in this case.

• Short-range temporal dependence in connectivity analysis In the one-step state-space
model of dynamic connectivity in Chapter 4, we only assumed an autoregressive model of
order 1. This assumption was mainly chosen for tractability, but longer-term dependence
may exist in real data. In a simple case of two ROIs, if the true autoregressive model has
a higher order but the influence has only one direction (i.e., only ROI 1 predicts later ac-
tivity in ROI 2, not vice versa), then we should still be able to infer the influence in the
correct direction. However, further analyses are needed for more complicated cases. In fu-
ture work, we can use a higher-order autoregressive model and impose further regularization
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for tractability.

• pre-defined ROIs in connectivity analyses In our one-step connectivity models in Chap-
ter 4, we only considered a pre-defined set of ROIs and assumed that source points outside
any ROIs had zero mean. The connectivity results may depend crucially on the correctness
of this assumption. If we missed an important ROI, then we would have shrunken its activity
to zero and excluded it from the network. Because of the correlations among columns in the
forward matrix G, this might inaccurately assign the activity in this ROI to other ROIs, re-
sulting in inaccurate estimates of the connectivity. A remedy is to partition the entire source
space into many ROIs and model the connectivity among all of them, with further regular-
ization. Although this will increase the challenge of model fitting, it is an important direction
to explore in future work.

Besides what we mentioned above, another very important future direction is theoretical analyses
of the source localization problem, such as the fundamental limits or minimax rates based on the
biophysical properties of the forward matrixG. Advances in this line will provide valuable insights
in building both two-step and one-step models.

Finally, the computation of our one-step models was time-consuming, not only because the opti-
mization problems were harder than in the two-step methods, but also because we needed to do
model selection and bootstrapping (permutations) of the entire analysis pipeline. Therefore, in
future work, we need to scale and speed up the one-step models, especially by exploiting parallel
computing.

In our scientific contribution (Chapter 5), we applied source-space regression and connectivity
analyses (including both the two-step methods and our novel one-step models) to study the spatio-
temporal neural dynamics in human vision. Using MEG/EEG, we recorded neural responses to
images of naturalistic scenes. Additionally, we extracted low-level and high-level features of the
same images from a pre-trained feedforward convolutional neural network (AlexNet). By re-
gressing the source activities on features at different levels, we were able to describe what level
of features were coded at different temporal stages and spatial locations in the visual cortex. In
this analysis, we observed a strong early-to-late, lower-to-higher-level pattern, which is consistent
with feedforward information flow along the hierarchy of the ventral visual cortex. Moreover, we
compared the neural correlation with two groups of low-level features, one describing the compo-
nents that were highly correlated with high-level features (i.e., “object-category-relevant” low-level
components), and the other describing the components that were roughly orthogonal to high-level
features. We found that in a time window where the neural responses were likely corresponding
to the disappearance of the images, the early visual cortex showed a higher and longer correlation
with the “object-category-relevant” low-level components than with the the low-level components
that were roughly orthogonal to high-level features. This difference suggests there may be non-
feedforward influences (e.g., top-down feedback) that help the early visual cortex to separate those
two groups of low-level features. The results by the two-step method and our one-step STFT-R
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method were consistent, and the STFT-R again yielded “cleaner” time courses of regression effects,
due to the sparsity in the time-frequency domain. We also used time-varying connectivity analy-
sis to quantify time-lagged dependence between ROIs along the hierarchy; our results, from both
the two-step method and our novel one-step state-space model, suggested both leading and lagged
dependence between early visual cortex and higher-level scene/object-selective regions. Although
such statistical dependence does not necessarily mean causal interactions, the results can help us
build specific hypotheses about the timing of feedforward and feedback information flow for future
experimental tests. In sum, these explorations, which have not been done in previous literature to
our knowledge, provide very intriguing initial results that may help us better understand the vision
mechanisms in the brain. In future work, we can explicitly incorporate feedback connections in
computational models of the visual cortex and use similar experiments to validate and improve
these models.

In our empirical contribution (Chapter 6), using data from the experiments above, we also com-
pared the sensitivity of MEG and EEG in detecting dependence between neural responses and
stimulus features in the sensor space. Although MEG showed slightly higher sensitivity, the less
costly EEG was able to achieve comparable sensitivity with MEG when the number of observa-
tions was doubled. Moreover, our preliminary work showed some advantages of “stitching” the
two modalities together. We learned a factor analysis model to combine the EEG responses to a
full set of stimuli and the MEG responses to a subset of these stimuli; the “stitched” latent factors
demonstrated higher sensitivity compared to the EEG responses alone. These empirical results are
helpful for researchers with limited budgets to make the best usage of the two modalities. In future
work, we plan to make similar comparisons and apply the “stitching” idea on other experimental
analyses for other cognitive tasks.

Finally, another interesting future direction in MEG and EEG is active experimental design. For
example, in the context of learning dependence between neural activities and high-dimensional
features of stimuli (e.g., visual features of images), researchers often use randomly sampled stim-
uli, similar to what we did in Chapter 5. However, such random design may require a large number
of stimuli, resulting in high acquisition costs especially for MEG. In contrast, one can define an
objective metric of the dependence, and exploit an active learning paradigm that maximizes the
objective metric by selecting the next stimulus in the feature space based on previous observations
[Settles, 2010]. Moreover, in cases where the feature space is too complex, a similar paradigm can
be implemented where the candidate stimuli are organized on a graph that describes the between-
stimuli similarities [Ma et al., 2013]. In either way, we may be able to present fewer stimuli than
in a random design but obtain scientific results that are similarly reliable. We have started some
initial work along this line and I will continue further exploration after graduation.
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M., and Bar, M. (2011). Early onset of neural synchronization in the contextual associations
network. Proceedings of the National Academy of Sciences, 108(8):3389–3394.

Lachaux, J.-P., Rodriguez, E., Martinerie, J., Varela, F. J., et al. (1999). Measuring phase synchrony
in brain signals. Human brain mapping, 8(4):194–208.

Lamus, C., Hamalainen, M. S., Temereanca, S., Brown, E. N., and Purdon, P. L. (2012). A spa-
tiotemporal dynamic distributed solution to the meg inverse problem. NeuroImage, 63:894–909.

Liang, Z., Shen, W., Sun, C., and Shou, T. (2008). Comparative study on the offset responses of
simple cells and complex cells in the primary visual cortex of the cat. Neuroscience, 156(2):365–
373.

Liu, A. K., Dale, A. M., and Belliveau, J. W. (2002). Monte carlo simulation studies of eeg and
meg localization accuracy. Human brain mapping, 16(1):47–62.

Liu, Z. and He, B. (2008). fmri–eeg integrated cortical source imaging by use of time-variant
spatial constraints. NeuroImage, 39(3):1198–1214.

Long, C. J., Purdon, P. L., Temereanca, S., Desai, N. U., Hämäläinen, M. S., and Brown, E. N.
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