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Abstract

In this thesis, we consider the use of the sparse grid combination technique
with �nite di�erence methods to solve parabolic partial di�erential equations.
Convergence results are obtained in L2 for arbitrary dimensions via Fourier
analysis arguments under the assumption that the initial data lies in the
Sobolev space H4

mix. Numerical results are presented for model problems and
for problems from the �eld of option pricing.
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Introduction

Since Black and Scholes [BS73] introduced a partial di�erential equation
(PDE) governing the arbitrage-free price of a plain vanilla option in 1973,
the numerical solution of PDE has become an important topic in mathe-
matical �nance. Arbitrage-free pricing soon expanded to include derivatives
depending on the value of more than one underlying quantity. Among these
derivatives are equity basket options on multiple stocks and interest rate
derivatives.

For the particular case of interest rate derivatives, the underlying stochastic
variable is not a single value, such as a stock price, or even a �nite set of values
but instead is a continuum of values in the form of a yield curve. Various
methods are employed in practice to reduce the number of stochastic variables
in the problem to a �nite number n. We can then use standard martingale
techniques to price derivatives with payo�s of the form f( ~Xt), where ~Xt is an
n-dimensional stochastic state process and f : Rn → R is a function giving
the dependence of the payo� on the state process. The martingale pricing
formula gives the price Vt of the derivative paying o� at time T as

Vt =
1

Dt

Ẽt[f( ~XT )DT ] (1)

at time t, where Dt is the discount process.

Several means are available to the practitioner for calculating this quan-
tity:

1. Analytical or semi-analytical methods

2. Monte Carlo
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3. Numerical Solution of the partial di�erential equation obtained by the
Feynman-Kac theorem using �nite di�erence methods.

Analytical methods are available for only a handful of carefully chosen prob-
lems. For instance, the price of a simple caplet, under the assumption of
lognormal forward rate dynamics, is given in closed form by Black's formula
[Bla76]. More complex problems may only be solved by Monte Carlo methods
or by numerical methods for PDE.

Each method has advantages and disadvantages. Monte Carlo methods are
intuitive and applicable to a wide range of problems. They are, however,
limited by their speed of convergence. The central limit theorem shows that
we should expect a convergence rate of O( 1√

N
), where N is the number of

sample paths.

On the other hand, �nite di�erence methods for the solution of PDE are much
quicker. When N is the number of grid points in a �nite di�erence mesh in
each coordinate direction, we should expect a convergence rate of O( 1

N2 ) in
the L2 norm. However, a serious disadvantage of numerical PDE methods
is the so-called �curse of dimensionality,� a term coined by Richard Bellman
[Bel61]. Depending on computational resources, conventional �nite di�erence
methods are limited to problems of perhaps three or four dimensions. This
is because the number of grid points in a �nite di�erence discretization in-
creases exponentially of order Nd. In �ve dimensions, if we choose a uniform
discretization with N = 27 = 128 subdivisions in each coordinate direction,
storing the values at each grid point in double-precision format requires 256
GB, far exceeding the amount of memory addressable on 32-bit hardware
and even exceeding the 192 GB limit imposed by 64-bit Windows 7.

In the 1990s, a class of numerical methods called sparse grid methods were
developed which mitigate the di�culties of solving high-dimensional PDE.
The number of grid points in a sparse grid discretization increases at a rate
of O(N(logN)d−1), a signi�cant improvement over the O(Nd) rate of con-
ventional discretizations. Also, sparse grid methods are known to achieve
a convergence rate of O( 1

N2 (logN)d−1) in the L2 norm. While this is a de-
crease in accuracy from the O( 1

N2 ) rate of conventional methods, it may be
a necessary trade-o� to bring a problem into the realm of tractability.

In this work, we focus on a particular implementation of sparse grid methods
known as the sparse grid combination technique. The combination technique
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approximates the solution of a PDE by a linear combination of conventional
�nite di�erence (or �nite element) solutions while retaining the complexity
and accuracy of other sparse grid methods. Our principal aim is to clarify
the convergence properties of the sparse grid combination technique applied
to parabolic PDE, particularly when the technique is used in tandem with
�nite di�erence methods. In Chapter 2, we discuss di�erent algorithms for
solving parabolic PDE using the sparse grid combination technique and then,
in Chapter 3, we prove convergence results for one of these algorithms.

The convergence proofs we give are attractive because of their familiarity.
We use conventional Fourier analysis�based arguments to prove convergence
in the L2 norm. Existing proofs, which often depend on recursive arguments
or Sobolev space techniques, are less intuitive. An interesting result of our
approach is that the logarithmic factor (logN)d−1 from the O( 1

N2 (logN)d−1)
convergence rate disappears in the case of the heat equation without mixed
derivatives, indicating that it is some artifact of alignment with the grid.
Other published proofs do not reveal this.

Finally, in Chapter 4, we give some numerical results for the algorithms
described in Chapter 2 applied to basic model problems with constant coef-
�cients. In Chapter 5, we apply the combination technique to the pricing of
derivative securities with multiple underlying sources of risk, culminating in
an application to the LIBOR market model in Chapter 6.
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Chapter 1

Parabolic equations and �nite

di�erence methods

Finite di�erence methods are techniques for the numerical solution of par-
tial di�erential equations. We restrict attention to the study of parabolic
equations, which are equations of the form

ut = Lu, (1.1)

where L is a negative-de�nite second-order elliptic operator.

The prototypical example of parabolic equations is the heat equation

ut = uxx + uyy. (1.2)

We usually know the value of u at some time t, often t = 0, and wish to
�nd the solution at some time T > 0. In this case, we solve the initial value
problem

ut = uxx + uyy R2 × [0, T ]

u(x, y, 0) = u0(x, y).
(1.3)

Because we are solving on a computer, we must also truncate R2 to a bounded
domain Λ := [−L,L]2 in the spatial variables, so that the problem we solve
is

ũt = ũxx + ũyy Λ× [0, T ]

ũ(x, y, t) = w(x, y, t) ∂Λ× [0, T ]

ũ(x, y, 0) = u0(x, y).

(1.4)
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Finite di�erence methods proceed by discretizing space and time with a rect-
angular mesh over the domain and then replacing the derivatives in the equa-
tion by discrete di�erence quotients. A linear algebraic equation is thus ob-
tained for each point in the mesh where the value of the PDE is unknown.
Together, these equations form a system of equations, the solution of which
gives an approximate solution to the continuous problem at each point in the
mesh.

Let's establish some notation which we use throughout. For problems in
two spatial dimensions we use the variables (x, y, t) and denote the mesh
spacing in these directions by ∆x, ∆y, and ∆t. For problems in d spatial
dimensions we use the variables (x1, . . . , xd, t) and write x = (x1, . . . , xd) to
refer to the vector of spatial variables. We denote the spatial mesh spacings
by ∆xi. Often, the coordinates of the grid points are dyadic, in which case
it is convenient to write the mesh spacings in terms of

hi := 2−i. (1.5)

We use multi-index notation when referring to grids. When l = (l1, . . . , ld),
the grid Ωl is the grid with spacings (2−l1 , . . . , 2−ld) in each coordinate direc-
tion. When there is no chance of confusion, we sometimes write (l1, . . . , ld),
rather than Ωl to refer to the corresponding grid Ωl. Since we are deal-
ing with parabolic equations, which have an additional time dimension, it is
sometimes appropriate to use (l1, . . . , ld) to refer to a grid in space-time. In
this case, the spatial spacings are (2−l1 , . . . , 2−ld) and the time spacing ∆t is
given separately.

1.1 Fourier transform

The initial value problem (1.3) may be solved analytically by Fourier analysis.
Given a function u : Rd × [0, T ] → R, we write û(ξ1, . . . , ξd, t) to denote the
Fourier transform of u in the spatial variables:

û(ξ1, . . . , ξd, t) :=
1

(2π)d/2

∫
Rd

e−iξ·xu(x, t) dx. (1.6)

Under this convention, the inverse transform is

u(x, t) :=
1

(2π)d/2

∫
Rd

eiξ·xû(x, t) dx. (1.7)
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We write ξ to denote the vector (ξ1, . . . , ξd), so that the Fourier transform
is û(ξ, t). When u is the solution to (1.3), the following lemma states how
û(ξ, t) evolves as a function of t.

Lemma 1. Let u : R2 × [0, T ] → R solve the initial value problem (1.3).
Then the Fourier transform û of u satis�es

û(ξ, t) = eq(ξ)tû0(ξ), (1.8)

where q(ξ) = −(ξ2
1 + ξ2

2).

Proof. We �rst take the Fourier transform of the partial di�erential equation
(1.3) only in the spatial variables to get

ût = q(ξ)û.

Solving the above equation gives

û(ξ, t) = eq(ξ)tû0(ξ).

1.1.1 Truncation and interpolation operators

One issue that arises with �nite di�erence methods is how to compare func-
tions de�ned on the grid with functions de�ned on the entire domain. Since
a grid has Lebesgue measure 0 in R2, a function u ∈ L2(R2) cannot be sim-
ply be evaluated at the grid points. To this end, we de�ne the truncation
operator τ and the interpolation operator σ.

De�nition 1. Let u ∈ L2(R2). Then the truncation operator τ applied to u
is

τu(x) =
1

2π

∫ π/∆x

−π/∆x

∫ π/∆y

−π/∆y
eix·ξû(ξ) dξ2 dξ1,

for every x ∈ ∆xZ×∆yZ, where û(ξ) is the Fourier transform of u.

The utility of the truncation operator is that it removes all Fourier modes
from u which cannot be accurately resolved on the grid with spacings ∆x
and ∆y.

For mapping functions on the grid to functions in L2(R2), we de�ne the
interpolation operator.

13



De�nition 2. Let v ∈ L2(∆xZ ×∆yZ). Then the interpolation operator σ
applied to v is

σv(x) =
1

2π

∫ π/∆x

−π/∆x

∫ π/∆y

−π/∆y
eix·ξv̂(ξ) dξ2 dξ1,

for every x ∈ R2, where v̂(ξ) is the Fourier transform of v, that is,

v̂(ξ) =
1

2π

∑
x∈∆xZ×∆yZ

e−ix·ξv(x)∆x∆y.

Thus, the interpolation operator allows us to compare a function u ∈ L2(R2)
with a grid function v ∈ L2(∆xZ × ∆yZ) in a natural two-part process.
One part of the process entails comparing u with the extension σv of v to
the plane, while the other part entails showing that the Fourier modes of u
which are not resolved on the grid are su�ciently small.

1.2 Ampli�cation factors

Consider an initial value problem

ut = Lu Rd × [0, T ]

u(x, 0) = u0(x)
(1.9)

for some second-order, constant-coe�cient elliptic operator L. Let time be
discretized into N steps of length ∆t, so that T = N∆t. For n = 0, . . . , N ,
let un denote a grid function that is the �nite di�erence solution of (1.9) at
time step n. Then ûn(ξ) denotes the Fourier transform of un at wave number
ξ.

When a standard �nite di�erence scheme is used, such as the fully implicit
or Crank-Nicolson method, we �nd that evolution of the Fourier transform
ûn(ξ) of the �nite di�erence solution at wave number ξ is decoupled from
other wave numbers. That is,

ûn+1(ξ) = g(ξ)ûn(ξ) (1.10)
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for some g which is called the ampli�cation factor. Since the ampli�cation
factor depends on the discretization, we shall de�ne

g∆x,∆y(ξ) := ampli�cation factor for grid with spacings ∆x and ∆y,
(1.11a)

gi,j(ξ) := g2−i,2−j(ξ) = ampli�cation factor for grid Ωi,j, (1.11b)

for �nite di�erence grids in R2. It will be clear from the context, and by
whether the subscripts are integers, which of the above two de�nitions is
implied. For �nite di�erence grids in Rd, we write

gl(ξ) := ampli�cation factor for grid Ωl. (1.12)

The ampli�cation factor also implicitly depends on the chosen �nite di�erence
scheme. Although the choice of scheme is not indicated by the notation,
we make it clear when necessary. We now present standard results for the
ampli�cation factor g∆x,∆y(ξ) when the chosen scheme is the fully implicit
method.

1.2.1 Heat equation

First, we consider the heat equation

ut = uxx + uyy. (1.13)

To keep the notation simple, we restrict to two spatial dimensions. We denote
the values of the �nite di�erence solution of Equation (1.13) by uki,j, where
i, j, and k are the indices of the grid point in the x, y, and t directions. The
discretization of Equation (1.13) by the fully implicit method is then

uk+1
i,j − uki,j

∆t
=
uk+1
i+1,j − 2uk+1

i,j + uk+1
i−1,j

∆x2
+
uk+1
i,j+1 − 2uk+1

i,j + uk+1
i,j−1

∆y2
. (1.14)

By the Fourier inversion formula, with I =
√
−1,

uki,j =
1

2π

∫ π/∆x

−π/∆x

∫ π/∆y

−π/∆y
eI(i∆xξ1+j∆yξ2)ûk(ξ) dξ2 dξ1. (1.15)
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Substituting Equation (1.15) into (1.14) gives

1

2π

∫ π/∆x

−π/∆x

∫ π/∆y

−π/∆y
eI(i∆xξ1+j∆yξ2)ûk+1(ξ) dξ2 dξ1

=
1

2π

∫ π/∆x

−π/∆x

∫ π/∆y

−π/∆y
eI(i∆xξ1+j∆yξ2)ûk(ξ)×(

1 + ∆t
2 cos(ξ1∆x)− 2

∆x2
+ ∆t

2 cos(ξ2∆y)− 2

∆y2

)
dξ2 dξ1.

Assuming u ∈ L2(∆xZ × ∆yZ), uniqueness of the Fourier transform im-
plies

ûk+1(ξ) = ûk(ξ)

(
1 + ∆t

(
2 cos(ξ1∆x)− 2

∆x2
+

2 cos(ξ2∆y)− 2

∆y2

))
. (1.16)

Therefore, the ampli�cation factor g∆x,∆y(ξ) is

g∆x,∆y(ξ) = 1 + ∆t

(
2 cos(ξ1∆x)− 2

∆x2
+

2 cos(ξ2∆y)− 2

∆y2

)
. (1.17)

1.2.2 Heat equation with a mixed derivative term

We now introduce a mixed derivative term into the PDE and repeat the
same analysis. Again, we restrict the exposition to two dimensions. We
consider

ut = uxx + uxy + uyy. (1.18)

We discretize Equation (1.18) using the fully implicit method and the four-
point stencil for uxy:

uk+1
i,j − uki,j

∆t
=
uk+1
i+1,j − 2uk+1

i,j + uk+1
i−1,j

∆x2
+
uk+1
i,j+1 − 2uk+1

i,j + uk+1
i,j−1

∆y2

+
uk+1
i+1,j+1 + uk+1

i−1,j−1 − uk+1
i+1,j−1 − uk+1

i−1,j+1

4∆x∆y
. (1.19)
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Repeating the procedure from the last section, we obtain the ampli�cation
factor

g∆x,∆y(ξ) = 1 + ∆t

(
2 cos(ξ1∆x)− 2

∆x2
+

2 cos(ξ2∆y)− 2

∆y2

−sin(ξ1∆x) sin(ξ2∆y)

∆x∆y

)
.

(1.20)

1.2.3 Heat equation in d dimensions

For the heat equation

ut =
d∑
i=1

uxixi (1.21)

on Rd, Equation (1.17) extends as one would expect. We have

g∆x1,...,∆xd(ξ) = 1 +
d∑
i=1

∆t

(
2 cos(ξi∆xi)− 2

∆x2
i

)
. (1.22)
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Chapter 2

Sparse grid combination

technique

Because of the curse of dimensionality, conventional �nite di�erence methods
are not suitable for the problem of pricing derivatives with high-dimensional
underlying state processes. This problem may be partially tamed by a class
of methods known as sparse grid methods. Sparse grids are useful tools
for this purpose because they reduce the number of degrees of freedom of
the problem while su�ering only a small degradation in accuracy. To be
precise, if N is the number of grid points in one coordinate direction, sparse
grid discretizations includeO(N(logN)d−1) grid points, whereas conventional
discretizations include O(Nd) grid points. Sparse grid methods converge at
a rate of O(N−2(log(N))d−1) in the L2 norm, whereas conventional methods
converge at a rate of O(N−2) in the L2 norm.

Sparse grids were originally introduced for the solution of partial di�erential
equations by Zenger [Zen91] and Griebel [Gri91] in the early 1990s. An
excellent overview of the �eld was produced by Bungartz and Griebel [BG04],
and a succinct tutorial can be found in [Gar06].

Perhaps the most straightforward implementation of sparse grid methods for
PDE is the sparse grid combination technique, proposed originally by Griebel,
Schneider, and Zenger [GSZ90]. The combination technique involves solving
the PDE on particular conventional �nite di�erence (or �nite element) grids
and taking a well-chosen linear combination of these solutions as the solu-
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Figure 2.1: These six plots show the points included in the sparse grid dis-
cretization at levels 2 through 7 for d = 2. Each of these points are included
in at least one of the sparse grids at that level.

tion to the problem. This solution retains the advertised convergence rate
of sparse grid methods. The constituent conventional grids are typically
anisotropic, that is, the mesh spacing di�ers in each coordinate direction.
The advantage of this method is that the problem can be solved on each of
the constituent grids using standard solvers. The only novel operation in the
sparse grid combination technique is the step of taking linear combinations of
these solutions. In addition, the technique is parallelizable. Much of the lit-
erature pertaining to sparse grids focuses on this parallelizability property of
the sparse grid combination technique [GT10, BHPS12, Dan11, Gri92].

Let us introduce some notation so that we may be more precise. We �x a
multi-index l = (l1, . . . , ld) ∈ Nd and consider, in the d-dimensional unit cube
[0, 1]d, an anisotropic but otherwise conventional grid Ωl = Ωl1,...,ld having
uniform mesh spacing hi = 2−li in each coordinate direction i ∈ {1, . . . , d}.
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For each multi-index l, we de�ne the quantity

|l|1 :=
d∑
i=1

li.

We consider an elliptic PDE on [0, 1]d and de�ne ul : [0, 1]d → R to be the
conventional �nite di�erence solution to the PDE on grid Ωl, extended to
[0, 1]d by interpolation. We de�ne a positive integer n to be the level of the
sparse grid solution, which we use as a proxy for mesh re�nement. Increasing
the level n should give a more accurate solution to the problem. Then the
sparse grid combination solution is the following linear combination:

ucn :=
d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|l|1=n−q

ul. (2.1)

Figure 2 shows an illustration for d = 2 of the grid points which are included
in the sparse grid discretization at levels 2 through 7.

Generalizations of the combination technique have since been developed
[HGC07]. Sparse grid methods have been applied to option pricing prob-
lems in �nance [BBNS12, Kra07, Bla04, Rei04, LO06, LO08, RW07].

2.1 Previous work

Theoretical error bounds for the sparse grid combination technique have been
studied by a number of authors. In their seminal paper, Griebel, Scheieder,
and Zenger [GSZ90] show that a su�cient condition for the two-dimensional
sparse grid combination technique to achieve its advertised convergence rate
is the existence of a so-called �error splitting� of the form

u∆x,∆y − u = C1(∆x)∆x2 + C2(∆y)∆y2 + C(∆x,∆y)∆x2∆y2 (2.2)

at each point (x, y), where |C1(∆x)|, |C2(∆y)|, and |C(∆x,∆y)| are bounded
by some B > 0 independently of the grid spacings ∆x and ∆y. Assuming
that Equation (2.2) holds, the pointwise error satis�es

u− ucn = u−

(
n−1∑
i=1

ui,n−i −
n−2∑
i=1

ui,n−i−1

)
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=
n−1∑
i=1

(u− ui,n−i)−
n−2∑
i=1

(u− ui,n−i−1)

=
n−1∑
i=1

C1(hi)h
2
i + C2(hn−i)h

2
n−i + C(hi, hn−i)h

2
ih

2
n−i

−
n−2∑
i=1

C1(hi)h
2
i + C2(hn−i−1)h2

n−i−1 + C(hi, hn−i−1)h2
ih

2
n−i−1,

where C1, C2, and C depend on the point (x, y). We now �nd that most terms
with C1 and C2 are canceled, while the terms with C accumulate:

= C1(hn−1)h2
n−1 + C2(hn−1)h2

n−1

+

(
n−1∑
i=1

C(hi, hn−i)h
2
n −

n−2∑
i=1

C(hi, hn−i)h
2
n−1

)

= h2
n

(
4C1(hn−1) + 4C2(hn−1) +

n−1∑
i=1

C(hi, hn−i)−
n−2∑
i=1

4C(hi, hn−i)

)
.

Finally, using the fact that |C1(∆x)|, |C2(∆y)|, and |C(∆x,∆y)| are uni-
formly bounded in (∆x,∆y) by some B > 0,

|u− ucn| ≤ h2
n

(
4B + 4B +

n−1∑
i=1

B +
n−2∑
i=1

4B

)
= h2

n (4B + 4B + (n− 1)B + (n− 2)4B)

= h2
n (5n− 1)B

= h2
n

(
5 log2(h−1

n )− 1
)
B

= O(h2
n log2(h−1

n )).

The error splitting (2.2) depends on the particular equation being solved, and
much of the subsequent work on the sparse grid combination technique has
focused on establishing such error splittings for various model problems.

Bungartz et al. [BGRZ94] show the existence of an error splitting for the
following boundary value problem for the Laplace equation

∆u = 0 (x, y) ∈ Ω := [0, 1]× [0, 1]
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u =

{
g(x) : (x, y) ∈ ∂Ω, y = 0
0 : (x, y) ∈ ∂Ω, y > 0,

whenever g satis�es certain regularity assumptions.

P�aum & Zhou [PZ99] prove the convergence of the combination technique
for general elliptic equations in two dimensions and for the Poisson equation
in higher dimensions under certain assumptions on the equation's coe�cients.
More recently, Reisinger [Rei13] provided a framework for the veri�cation of
the required error splitting for both elliptic and parabolic equations.

Two common features pervade earlier approaches. First, most authors in-
voke a discussion of hierarchical tensor-product bases and the �hierarchi-
cal surplus�. This is certainly a useful framework for analyzing sparse grid
methods, but it comes at the expense of being jargonistic and unfamiliar to
researchers outside of the sparse grid community. We direct the reader to
[BG04] to learn more about the hierarchical basis as it pertains to sparse
grids.

Second, earlier papers have the common feature that semi-discretizations of
the original problem are used as an intermediate step in the analysis. Such
constructs do not arise in our arguments.

Instead, we use Fourier analysis to obtain convergence estimates in the L2

norm. Combinatorial arguments are needed to manipulate the terms com-
prising the L2 error, but we bypass any discussion of the �hierarchical surplus�
or semi-discretized problems.

2.2 A derivation of the sparse grid combination

weights

We now give a derivation of the weights used to linearly combine the solutions
ul in Equation (2.1). We sometimes abuse terminology slightly by speaking
of the weight on a grid Ωl, in which case we mean the weight used to combine
the corresponding solution ul. To motivate the following argument, suppose
we are taking a linear combination of two solutions u1 and u2, both of which
approximate the exact solution u of some problem, with weights a1 and
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a2:
a1u1 + a2u2.

Since each of u1 and u2 approximate u, it would be unreasonable to expect
an arbitrary linear combination, such as 3u1 + 2u2, to approximate u as well.
Naturally, this particular linear combination would better approximate 5u.
Thus, it seems reasonable to impose the requirement

a1 + a2 = 1.

We may use this argument to derive the weights used in the sparse grid com-
bination technique. We base our derivation on the following principle.

Principle 1 (Pointwise sum of weights is one). If a point x belongs to at
least one sparse grid Ωl, the sum of the weights on all grids which include x
must be one.

This principle may be considered an extension of a result presented by
Reisinger [Rei13, p. 561], which states that a necessary condition for con-
sistency of the combination technique is that the sum of all the weights is
one. However, whereas Reisinger's condition provides one linear constraint
on the weights of the combination technique, Principle 1 �xes all the weights
uniquely. To show this, it will help to �nd a rule for characterizing when a
grid point belongs to a grid Ωm.

Lemma 2. For each grid point x which belongs to at least one sparse grid,
there is a multi-index lmin such that x ∈ Ωm if and only if m ≥ lmin.

Proof. First note that the coordinates of a point x belonging to a grid Ωl on
[0, 1]d must satisfy

xi =
ki
2li

for some ki = 0, . . . , 2li ,

for each i ∈ {1, . . . , d}. If ki has a power of 2, say 2αi , in its prime factor-
ization, we can cancel it from both the numerator and the denominator to
show that

xi =
ki
2li

=
k′i2

αi

2l
min
i 2αi

=
k′i

2l
min
i

for some k′i and some index lmin
i := li − αi for each i ∈ {1, . . . , d}. Thus,

there is a coarsest grid Ωlmin in {Ωl : l ∈ Nd} which contains x. A grid which
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is coarser than Ωlmin in any coordinate direction does not contain the point

x. That is, if mi < lmin
i for some i ∈ {1, . . . , d} then x /∈ Ωm.

We now show that if m ≥ lmin then x ∈ Ωm. In that case, we have m =
lmin + (p1, . . . , pd) for some integers pi ≥ 0 and so

xi =
k′i

2l
min
i

=
k′i2

pi

2l
min
i 2pi

=
k′i2

pi

2mi

for each i ∈ {1, . . . , d}. Therefore, x ∈ Ωm.

2.2.1 The case d = 2

We now have the tools to derive the weights of the sparse grid combination
technique. Let's �rst consider the case d = 2. We now show that the weight
on the grid Ωl is +1 when |l|1 = ` and −1 when |l|1 = `− 1.

First, the weight on a grid Ωl must be +1 when |l|1 = ` because we can �nd
a point in Ωl for which Ωl is the coarsest grid containing x. Since any grid
with |l|1 = `− 1 is coarser and does not contain x, Ωl is the only grid in the
combination technique which contains x. Principle 1 thus requires that the
weight on Ωl be +1.

When |l|1 = ` − 1, we can again �nd a point x for which Ωl is the coarsest
grid containing x. This time, however, the grids with multi-indices (l1, l2 +1)
and (l1 + 1, l2) also contain x and are included in the combination solution.
We have already determined that these grids must have a weight of +1.
Therefore, Principle 1 requires that Ωl have a weight of −1. See Figure 2.2.1
for an illustration of the two-dimensional case.

2.2.2 The case d > 2

We can use Principle 1 to derive the weights of the sparse grid combination
technique when d > 2 as well, but it is a bit more involved, since the geometry
is more complex. Recall from Equation (2.1) that, for a �xed dimension d
and level n, the weight on a grid Ωl with |l|1 = n− q is

(−1)q
(
d− 1

q

)
,

24



Figure 2.2: Each dot represents a grid Ωl1,l2 in the sparse grid combination
technique for d = 2. For any grid, we can �nd x such that the grid is the
coarsest grid containing x. By Lemma 2, grids containing x lie outside of
an L-shaped boundary. Principle 1 requires that the sum of the weights on
these grids be one.
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which is a function of the integer q.

Theorem 3. Assume that Principle 1 holds. Then the weight used on grid
Ωl in the level-n sparse grid combination technique is

(−1)q
(
d− 1

q

)
,

where q is such that |l|1 = n− q.

Proof. We prove this formula by induction on q. First, the formula is true
when q = 0 because we can �nd a point x on a grid Ωl with |l|1 = n such
that Ωl is the only grid in the level-n combination solution which contains x.
By Principle 1, the weight must be 1 = (−1)0

(
d−1

0

)
.

Now we prove that the formula is true for q = k, assuming that it holds
when q < k. That is, we wish to prove that the weight w on a grid Ωl with
|l|1 = n− k is

w = (−1)k
(
d− 1

k

)
.

We know there exists a grid point x ∈ Ωl such that Ωl is the coarsest grid
containing x. By Principle 1, the sum of the weights on grids which contain
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x is one:

1 = w +
k−1∑
q=0

(weight on Ωm, |m|1 = n− q)

 ∑
Ωm containing x
|m|1=n−q

1

 .

To �nd the second factor inside the summation, recall that any grid Ωm which
contains x has

m = l + (p1, . . . , pd),

where pi ≥ 0. Therefore,

|m|1 = |l|1 + |(p1, . . . , pd)|1
(n− q) = (n− k) + |(p1, . . . , pd)|1

|(p1, . . . , pd)|1 = k − q
p1 + . . .+ pd = k − q.

Thus, the second factor inside the summation is given by the answer to the
question �How many ways can one place k − q balls into d bins?�. This
is a familiar problem from combinatorics which has the answer

(
(d−1)+k−q

k−q

)
.

Therefore,

1 = w +
k−1∑
q=0

(
(−1)q

(
d− 1

q

))(
(d− 1) + k − q

k − q

)

w = 1−
k−1∑
q=0

(−1)q
(
d− 1

q

)(
d− 1 + k − q

k − q

)
.

Now, we wish to show

w = (−1)k
(
d− 1

k

)
.

But this is equivalent to showing

1 =
k∑
q=0

(−1)q
(
d− 1

q

)(
d− 1 + k − q

k − q

)

1 =
k∑
q=0

(−1)q
(
y

q

)(
y + k − q
k − q

)
(y := d− 1).

This is the statement of Lemma 15 in the appendix. This completes the
proof by induction.
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2.3 Three methods for the solution of parabolic

equations

The sparse grid combination technique, while initially formulated for ellip-
tic PDE, has also been applied to parabolic PDE [BRSZ94, Rei04, Rei13].
One of the contributions of this section is to clarify some of the subtleties
involved in the implementation of the sparse grid combination technique for
parabolic equations. There are at least three distinct algorithms, which we
now describe.

2.3.1 Elliptic method

The sparse grid combination technique has its roots in the solution of ellip-
tic partial di�erential equations, such as Laplace's and Poisson's equation.
Therefore, one may apply Rothe's method to solve a parabolic equation,
discretizing �rst in time and then in space with the sparse grid combina-
tion technique. To be precise, consider an initial value problem consisting of
Equation (1.1) with an initial condition at t = 0:

ut = Lu Rd × [0, T ]

u(x, 0) = u0(x).
(2.3)

Discretizing the preceding problem in time by, say, the fully implicit method
with time step ∆t yields a sequence of elliptic problems

un+1 − un

∆t
= Lun+1, (2.4)

where un : Rd → R approximates the exact solution u(., tn) at time t =
tn = n∆t. For each of the above problems, un+1 is unknown and un is data.
An approximate solution to Equation (2.3) may then be obtained by solving
the sequence of problems in Equation (2.4) by the sparse grid combination
technique at some level `.

We shall call the preceding method the elliptic method or the elliptic sparse
grid combination technique, since it involves solving an elliptic problem by
the sparse grid combination technique at each time step.
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Figure 2.3: Diagram of the elliptic method, level 4. An elliptic problem
in the spatial coordinates is solved at each time step using the sparse grid
combination technique.

t

2.3.2 Parabolic method

We can also solve the Equation (2.3) by another permutation of the above
steps. Fix some sparse grid level ` and temporal mesh spacing ∆t. De�ne ul
to be the conventional �nite di�erence solution of Equation (2.3) on a grid
with spatial mesh spacings ∆xi = 2−li for i ∈ {1, . . . , d} and temporal mesh
spacing ∆t. An approximate solution to Equation (2.3) may be obtained by
combining the solutions ul according to Equation (2.1).

We shall call the preceding method the parabolic method or the parabolic
sparse grid combination technique. While it appears that the parabolic
method is only a small permutation of the elliptic method, the consequences
on the run time of the algorithm are signi�cant. Recall that the solutions
ul in each step of the elliptic method are interpolated at points in [0, 1]d

which are not contained in Ωl. Consequently, at each time step of the elliptic
method, a non-negligible amount of interpolation must be performed.

On the other hand, calculating the solution uc` by the parabolic method for
a given x ∈ Rd at t = T requires interpolation from grid values at t = T
but not at intermediate time steps prior to t = T . Thus, when the solution
is only needed at the �nal time, which is frequently the case in �nance, the
parabolic method o�ers an advantage.

2Grids Ωl with l = (1, 2) and (2, 1) are also included in this combination but are omitted
to not clutter the diagram.
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Figure 2.4: Diagram of the parabolic method, level 4. The parabolic equation
is solved on each sparse grid and combined at the end. 2

t
t

t

t

2.3.3 Space-time method

Finally, a parabolic equation can be solved by the sparse grid combination
technique using a �space-time� approach where the temporal dimension is
included along with the spatial dimensions in the sparse grid discretization.
This is the approach of Reisinger in [Rei13, p. 556]. Reisinger notes that
this approach is not viable for use with explicit schemes, since the sparse
grid combination technique imposes relationships between the temporal and
spatial grid spacings which violate the stability constraint associated with
such schemes.

2.3.4 Summary of the three methods

We have presented three methods for the solution of parabolic PDE using
a sparse grid combination technique. It is sometimes the case that authors
are not explicit about which of the above methods they use, perhaps because
they are unaware of the alternatives. Furthermore, it is not evident that
there is a single canonical method which stands out as being the sparse grid
combination technique. On the one hand, the sparse grid combination tech-
nique arose as a method for the solution of elliptic PDE, and much of the
theory that exists has been developed for elliptic PDE, suggesting that the
elliptic method is the natural approach. Although it is not always explicit,
some authors seem to indicate that they are using the simpler-to-implement
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Figure 2.5: Diagram of the space-time method. Time is treated no di�erently
from the spatial coordinates and is included in the sparse grid discretization.

t

parabolic method. To complicate the matter further, other authors, e.g.
Reisinger [Rei13], choose to combine time and space into a space-time dis-
cretization.

Henceforth, we set aside the space-time method and focus on the parabolic
method and the elliptic method, both of which treat the temporal and spatial
dimensions separately.
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Chapter 3

Convergence of the elliptic sparse

grid combination technique

This chapter culminates in a proof that the level-` elliptic sparse grid com-
bination solution converges to the exact solution u of the d-dimensional heat
equation at a rate of O(h2

` log(h−1
` )d−1) in the L2 norm, given that the initial

condition u0 has enough regularity (a notion which we shall make precise).
We �rst consider the Cauchy problem for the heat equation in two spatial
dimensions:

ut = uxx + uyy R2 × [0, T ]

u(x, y, 0) = u0(x, y).
(3.1)

We then extend this result to the heat equation with a mixed derivative
term and to the heat equation on a bounded domain with periodic boundary
conditions. Finally, we prove the result for the Cauchy problem for the heat
equation on Rd for d ≥ 2.

We assume that the constituent sparse grid problems are solved by the fully
implicit �nite di�erence method. Recall that the sparse grid combination
solution is a linear combination of solutions ul with |l|1 = ` − q for q ∈
{0, . . . , d−1}. Each of these grids are rectangular with spacings ∆xi = hli =
2−li in the spatial dimensions and ∆t in the temporal dimension. Across all
such grids, ∆t is �xed to be

∆t = ρ2−2(`−1),
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for some ρ > 0. All equations considered in this section will be well-posed in
the forward direction, so that the data is given at time t = 0. We consider
the solution at time tn = n∆t where 0 < tn ≤ T for some time horizon
T > 0.

3.1 Preliminaries

First, we give some preliminary de�nitions.

3.1.1 Function spaces

We use multi-index notation for partial derivatives. If k = (k1, . . . , kd), then
partial derivatives are denoted by

Dku =
∂|k|1u

∂xk11 . . . ∂xkdd
.

We measure the order of a partial derivative by the following quantities:

|k|1 =
d∑
i=1

ki,

|k|∞ = max
i∈{1,...,d}

ki.

The Sobolev space Hs is de�ned as follows:

‖u‖2
Hs :=

∑
|k|1≤s

∣∣Dku
∣∣2
2

:=
∑
|k|1≤s

∫
R2

∣∣Dku
∣∣2 dx,

Hs := {u : R2 → R : ‖u‖Hs <∞}.

Furthermore, the Sobolev space Hs
mix is de�ned as follows:

‖u‖2
Hs
mix

:=
∑
|k|∞≤s

∣∣Dku
∣∣2
2

=
∑
|k|∞≤s

∫
R2

∣∣Dku
∣∣2 dx,
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Hs
mix := {u : R2 → R : ‖u‖Hs

mix
<∞}.

For example, if u ∈ H1
mix then ∂2u

∂x∂y
is in L2, but if u ∈ H1 then ∂2u

∂x∂y
is not

necessarily in L2.

3.1.2 Partitioning of the frequency domain

Since the following proofs involve integration in the frequency domain

{(ξ1, . . . , ξd) ∈ Rd},

we �nd it useful to notate particular subsets of Rd. In R2, we de�ne

Ai,j := [0, 2iπ]× [0, 2jπ] (3.2a)

Bi,j := Ai,j \

((
i−1⋃
m=1

Am,j

)⋃(
j−1⋃
n=1

Ai,n

))
(3.2b)

A` :=
`−1⋃
i=1

Ai,`−i =
`−1⋃
i=1

(
`−i⋃
j=1

Bi,j

)
. (3.2c)

See Figures 3.1, 3.2, and 3.3. More generally, in Rd, we de�ne

Al := [0, 2l1π]× . . .× [0, 2ldπ] (3.3a)

Bl := Al \

 ⋃
m s.t. mi≤li and
mi<li for some i

Am

 (3.3b)

A` :=
⋃
|l|1=`

Al =
⋃
|l|1≤`

Bl, (3.3c)

where l = (l1, . . . , ld) is a multi-index.

33



Figure 3.1: The sets Ai,j ⊂ R2
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Figure 3.2: The sets Bi,j ⊂ R2
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Figure 3.3: The set A` ⊂ R2 when ` = 4
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3.2 Heat equation on R2

In the following theorem, we write vtn to denote the grid function which is
the elliptic sparse grid combination solution of (3.4).

Theorem 4. If the initial value problem

ut = uxx + uyy R2 × [0, T ]

u(x, y, 0) = u0(x, y)
(3.4)

is approximated by the elliptic sparse grid combination technique at level `,
in which the constituent sparse grids are solved by the fully implicit method,
and the initial function is τu0, then for each time T there exists a constant
CT independent of u0 such that

‖u(tn, ·)− (σvtn)(.)‖2 ≤ CTh
2
`‖u0‖H4

mix
(R2) (3.5)

for each tn = n∆t with 0 < tn ≤ T , where σ is the interpolation operator.

Note that the time tn is �xed here and the . is a placeholder for the spatial
variables x and y. We postpone the proof of the theorem until we establish
two preliminary lemmas.

Lemma 5. When the heat equation is solved by the fully implicit method,
the ampli�cation factor g∆x,∆y(ξ), as de�ned in Equation (1.11a), satis�es

e∆tq(ξ) − g∆x,∆y(ξ)

= ∆t

(
1

2
∆tµt|ξ|4 −

1

12
ξ4

1∆x2α(ξ1,∆x)− 1

12
ξ4

2∆y2α(ξ2,∆y)

)
,

(3.6)

at every point ξ = (ξ1, ξ2) ∈ R2, where

α(., .) ∈ (−1, 1), µt ∈ (0, 1)

and
q(ξ) = −(ξ2

1 + ξ2
2).

Proof. By Taylor's theorem, we can write e−∆t|ξ|2 as

e−∆t|ξ|2 =: f(∆t) = f(0) + f ′(0)∆t+
1

2
f ′′(η)∆t2
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for some η ∈ (0,∆t) where

f ′(∆t) = −|ξ|2e−∆t|ξ|2 ,

f ′′(∆t) = |ξ|4e−∆t|ξ|2 .

Therefore,

e−∆t|ξ|2 = 1−∆t|ξ|2 +
1

2
∆t2|ξ|4e−η|ξ|2 .

If we take µt := e−η|ξ|
2 ∈ (0, 1),

e−∆t|ξ|2 = 1−∆t|ξ|2 +
1

2
∆t2|ξ|4µt. (3.7)

We can write cos(ξ1∆x) as

cos(ξ1∆x) =: f(∆x)

= f(0) + f ′(0)∆x+
1

2
f ′′(0)∆x2 +

1

6
f ′′′(0)∆x3 +

1

24
f ′′′′(η)∆x4

for some η ∈ (0,∆x), where

f ′(∆x) = −ξ1 sin(ξ1∆x)

f ′′(∆x) = −ξ2
1 cos(ξ1∆x)

f ′′′(∆x) = ξ3
1 sin(ξ1∆x)

f ′′′′(∆x) = ξ4
1 cos(ξ1∆x).

Therefore,

cos(ξ1∆x) = 1− 1

2
ξ2

1∆x2 +
1

24
cos(ξ1η)ξ4

1∆x4

2 cos(ξ1∆x)− 2 = −ξ2
1∆x2 +

1

12
cos(ξ1η)ξ4

1∆x4.

For some α(., .) ∈ (−1, 1),

2 cos(ξ1∆x)− 2

∆x2
= −ξ2

1 +
1

12
ξ4

1∆x2α(ξ1,∆x). (3.8)

The ampli�cation factor g∆x,∆y is then

g∆x,∆y = 1 + ∆t

(
2 cos(ξ1∆x)− 2

∆x2
+

2 cos(ξ2∆y)− 2

∆y2

)
(3.9)
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= 1 + ∆t

(
−ξ2

1 +
1

12
ξ4

1∆x2α(ξ1,∆x)− ξ2
2 +

1

12
ξ4

2∆y2α(ξ2,∆y)

)
.

(3.10)

Subtracting Equations (3.7) and (3.9) gives

e∆tq(ξ) − g∆x,∆y(ξ)

= ∆t

(
1

2
∆tµt|ξ|4 −

1

12
ξ4

1∆x2α(ξ1,∆x)− 1

12
ξ4

2∆y2α(ξ2,∆y)

)
.

(3.11)

Lemma 6. The bound∣∣∣∣∣
`−1∑
i=1

1Ai,`−i
gi,`−i(ξ)−

`−2∑
i=1

1Aj,`−j−1
gj,`−j−1(ξ)

∣∣∣∣∣ ≤ 1 + 8∆t (3.12)

holds for all ξ = (ξ1, ξ2) ∈ R2.

Proof. Denote

b(ξ) =
`−1∑
i=1

1Ai,`−i
gi,`−i(ξ)−

`−2∑
i=1

1Ai,`−i−1
gi,`−i−1(ξ).

Since

gi,j(ξ) = 1 + ∆t

(
2 cos(ξ12−i)− 2

2−2i
+

2 cos(ξ22−j)− 2

2−2j

)
,

we can write

b(ξ) = 1A`
+ ∆t

`−1∑
i=1

1Ai,`−i

(
2 cos(ξ12−i)− 2

2−2i
+

2 cos(ξ22−(`−i))− 2

2−2(`−i)

)

−∆t
`−2∑
i=1

1Ai,`−i−1

(
2 cos(ξ12−i)− 2

2−2i
+

2 cos(ξ22−(`−i−1))− 2

2−2(`−i−1)

)

= 1A`
+ ∆t

`−1∑
i=1

1Ai,`−i
(α1(i) + α2(`− i))

−∆t
`−2∑
i=1

1Ai,`−i−1
(α1(i) + α2(`− i− 1)) ,
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Figure 3.4: Each black dot represents a grid Ωl1,l2 in the sparse grid combi-
nation at level 5. Each grid introduces a term α1(.) and a term α2(.). Left:
All terms α1(.) cancel from b(ξ) on B1,1 except α1(` − j) = α1(4). Right:
All terms α2(.) cancel from b(ξ) on B1,1 except α2(`− i) = α2(4).

α1(`− j)

1

1

2

2

3

3

4

4

l1

l2

α2(`− i)

1

1

2

2

3

3

4

4

l1

l2

where

αj(i) :=
2 cos(ξj2

−i)− 2

2−2i
.

We can re-express b(ξ) using the mutually disjoint sets Bi,j. Recall that
Bk,l ⊂ Ai,j if and only if k ≤ i and l ≤ j. We see that all terms α.(.) from the
above summations cancel except for two. See Figure 3.2 for an illustration
of this cancellation. This leaves

b(ξ) = 1A`
+ ∆t

`−i∑
i=1

i−1∑
j=1

1Bi,j
(α1(`− j) + α2(`− i)) .

Due to the indicator functions, we have b(ξ) = 0 outside of A`. For ξ ∈
A`, b(ξ) is 1 plus a negative quantity inside the summation, so b(ξ) < 1.
Furthermore, b(ξ) cannot be too negative. The quantity α1(`− j) +α2(`− i)
can be no less than −8. So |b(ξ)| ≤ 1 + 8∆t.

We now present the proof of Theorem 4. We use the de�nition

∆ij := eq(ξ)∆t − gi,j(ξ). (3.13)

Proof of Theorem 4. To estimate the norm ‖u(x, tn) − σvtn(x)‖2, we must
�rst derive an expression for u(x, tn) − σvtn(x). For each time tn ∈ [0, T ],
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we may express the exact solution of the heat equation as the inverse of its
Fourier transform, given by Equation (1.8). That is,

u(x, tn) =
1

2π

∫
R2

eix·ξeq(ξ)tnû0(ξ) dξ, (3.14)

where q(ξ) = −(ξ2
1 + ξ2

2).

The elliptic sparse grid solution, extended to R2 by the interpolation opera-
tor, is

(σvtn)(x) =
1

2π

∫
R2

eixξ

(
`−1∑
i=1

1Ai,`−i
gi,`−i(ξ)−

`−2∑
j=1

1Aj,`−j−1
gj,`−j−1(ξ)

)n

û0(ξ) dξ.

(3.15)

By subtracting Equations (3.14) and (3.15), we obtain

u(x, tn)− (σvtn)(x)

=
1

2π

∫
R2

eixξ

(
eq(ξ)tn −

(
`−1∑
i=1

1Ai,`−i
gi,`−i(ξ)−

`−2∑
j=1

1Aj,`−j−1
gj,`−j−1(ξ)

)n)
û0(ξ) dξ.

By Parseval's theorem,

‖u(x, tn)− (σvtn)(x)‖2
2

=

∫
R2

∣∣∣∣∣eq(ξ)tn −
(
`−1∑
i=1

1Ai,`−i
gi,`−i(ξ)−

`−2∑
j=1

1Aj,`−j−1
gj,`−j−1(ξ)

)n∣∣∣∣∣
2

û0(ξ)2 dξ.

We now show that if we take a := eq(ξ)∆t and

b :=
`−1∑
i=1

1Ai,`−i
gi,`−i(ξ)−

`−2∑
i=1

1Ai,`−i−1
gi,`−i−1(ξ),

we have
|an − bn| ≤ n|a− b|e8tn . (3.16)

This holds because

an − bn = (a− b)
n−1∑
i=0

an−i−1bi
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|an − bn| = |a− b|

∣∣∣∣∣
n−1∑
i=0

an−i−1bi

∣∣∣∣∣ .
Since |a| ≤ 1 and Equation (3.12) holds, we can bound the summation by∣∣∣∣∣

n−1∑
i=0

an−i−1bi

∣∣∣∣∣ ≤
n−1∑
i=0

|a|n−i−1|b|i

≤ n(1 + 8∆t)n

= n

(
1 +

8tn
n

)n
≤ ne8tn .

Now using the relation |an − bn| ≤ n|a− b|e8tn ,

‖u(x, tn)− (σvtn)(x)‖2
2

=

∫
A`

∣∣∣∣∣eq(ξ)tn −
(
`−1∑
i=1

1Ai,`−i
gi,`−i(ξ)−

`−2∑
j=1

1Aj,`−j−1
gj,`−j−1(ξ)

)n∣∣∣∣∣
2

û0(ξ)2 dξ

+

∫
R2\A`

|eq(ξ)tnû0(ξ)|2 dξ

≤ Ω1(h`) + Ω2(h`),

where

Γ(ξ) :=

∣∣∣∣∣
`−1∑
i=1

1Ai,`−i
(eq(ξ)∆t − gi,`−i(ξ))−

`−2∑
j=1

1Aj,`−j−1
(eq(ξ)∆t − gj,`−j−1(ξ))

∣∣∣∣∣
2

Ω1(h`) := e16tnn2

∫
A`

Γ(ξ)û0(ξ)2 dξ

Ω2(h`) :=

∫
R2\A`

|eq(ξ)tnû0(ξ)|2 dξ.

In order to show that ‖u(x, tn)−(σvtn)(x)‖2 = O(h2
`), we prove the equivalent

statement ‖u(x, tn) − (σvtn)(x)‖2
2 = O(h4

`). Now we look at the rate of
convergence of the terms Ω1(h`) and Ω2(h`).
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3.2.1 Rate of convergence of Ω1(h`)

The quantity Γ(ξ), which is found in the integrand of Ω1, contains six distinct
terms, which have as a factor one of the following polynomials in ξ1 and ξ2:

1. ξ8
1

2. ξ8
2

3. |ξ|4ξ4
1

4. |ξ|4ξ4
2

5. ξ4
1ξ

4
2

6. |ξ|8

We shall denote each of these six terms Γξ81 , Γξ82 , Γ|ξ|4ξ41 , Γ|ξ|4ξ42 , Γξ41ξ42 , and
Γ|ξ|8 . We need only calculate Γξ81 , Γ|ξ|4ξ41 , Γξ41ξ42 , and Γ|ξ|8�analysis of Γξ82 and
Γ|ξ|4ξ42 follow by symmetry. The quantity Γ(ξ), as the square of a di�erence
of two terms, may be expressed as

Γ(ξ) =

(
`−1∑
i=1

1Ai,`−i
∆i,`−i

)2

+

(
`−2∑
j=1

1Aj,`−j−1
∆j,`−j−1

)2

− 2

(
`−1∑
i=1

1Ai,`−i
∆i,`−i

)(
`−2∑
j=1

1Aj,`−j−1
∆i,`−j−1

)

=
`−1∑
i=1

`−1∑
j=1

1Ai,`−i
1Aj,`−j

∆i,`−i∆j,`−j

+
`−2∑
i=1

`−2∑
j=1

1Ai,`−i−1
1Aj,`−j−1

∆i,`−i−1∆j,`−j−1

− 2
`−1∑
i=1

`−2∑
j=1

1Ai,`−i
1Aj,`−j−1

∆i,`−i∆j,`−j−1.

(3.17)

Note that each of the above terms contains the product of two factors which
are de�ned in Equation (3.13). For the sake of more concise notation, we
de�ne

αi,j := α(ξi, hj). (3.18)
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When we multiply two such factors for arbitrary grids of multi-index (i, j)
and (m,n) we get

∆i,j∆m,n = (eq(ξ)∆t − gi,j(ξ))(eq(ξ)∆t − gm,n(ξ))

= ∆t2
(

1

2
ρh2

`−1µt|ξ|4 −
1

12
ξ4

1h
2
iα(ξ1, hi)−

1

12
ξ4

2h
2
jα(ξ2, hj)

)
×
(

1

2
ρh2

`−1µt|ξ|4 −
1

12
ξ4

1h
2
mα(ξ1, hm)− 1

12
ξ4

2h
2
nα(ξ2, hn)

)
= ∆t2

(
1

144
(ξ8

1α1,iα1,mh
2
i+m

+ ξ4
1ξ

4
2(α1,iα2,nh

2
i+n

+ α1,mα2,jh
2
j+m) + ξ8

2α2,jα2,nh
8
j+n)

− 1

24
µtρh

2
`−1|ξ|4(ξ4

1α1,ih
2
i + ξ4

2α2,jh
2
j)

− 1

24
µtρh

2
`−1|ξ|4(ξ4

1α1,mh
2
m + ξ4

1α1,nh
2
n)

+
1

4
ρ2h4

`−1µ
2
t |ξ|8

)
.

(3.19)

Now we substitute this expression into the formula for Γ(ξ) and then substi-
tute Γ(ξ) into the formula for Ω1(h`). Note the presence of the terms Γξ81 ,
Γξ82 , Γ|ξ|4ξ41 , Γ|ξ|4ξ42 , Γξ41ξ42 , and Γ|ξ|8 in Equation (3.19). Now we can write

Ω1(h`) = e16tnn2∆t2
∫
A`

(
Γξ81 + Γξ82 + Γ|ξ|4ξ41 + Γ|ξ|4ξ42 + Γξ41ξ42 + Γ|ξ|8

)
û0(ξ)2 dξ

= e16tnt2n

∫
A`

(
Γξ81 + Γξ82 + Γ|ξ|4ξ41 + Γ|ξ|4ξ42 + Γξ41ξ42 + Γ|ξ|8

)
û0(ξ)2 dξ

≤ e16tnt2n

∫
A`

(
|Γξ81 |+ |Γξ82 |+ |Γ|ξ|4ξ41 |+ |Γ|ξ|4ξ42 |+ |Γξ41ξ42 |+ |Γ|ξ|8|

)
û0(ξ)2 dξ,

where we have used the fact that tn = n∆t.

We now show that Ω1(h`) = O(h4
`). In the following subsections, we use the

fact that if ξ ∈ Bi,j then ξ1 ∈ [2i−1π, 2iπ] for i > 1 and ξ2 ∈ [2j−1π, 2jπ] for
j > 1. Therefore,

2i ≤ 2

π
ξ1
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2j ≤ 2

π
ξ2,

when i, j > 1 so that

2i ≤ 2(1 +
1

π
ξ1)

2j ≤ 2(1 +
1

π
ξ2),

for i, j ≥ 1.

Terms of type ξ8
i

First, we examine terms of type ξ8
1 :

Γξ81 =
`−1∑
i=1

`−1∑
j=1

1Ai,`−i
1Aj,`−j

1

144
ξ8

1α1,iα1,jh
2
i+j

+
`−2∑
i=1

`−2∑
j=1

1Ai,`−i−1
1Aj,`−j−1

1

144
ξ8

1α1,iα1,jh
2
i+j

− 2
`−1∑
i=1

`−2∑
j=1

1Ai,`−i
1Aj,`−j−1

1

144
ξ8

1α1,iα1,jh
2
i+j

=
1

144
ξ8

1

`−1∑
i=1

`−i∑
j=1

1Bi,j
h2

2`−2jα
2
1,`−j

=
1

144
h4
`ξ

8
1

`−1∑
i=1

`−i∑
j=1

1Bi,j
24jα2

1,`−j

≤ 1

144
h4
`ξ

8
1(1 +

1

π
ξ2)4.

Therefore, for some constant C1,∫
A`

|Γξ81 |û0(ξ)2 dξ ≤
∫
A`

1

144
h4
`ξ

8
1(1 +

1

π
ξ2)4û0(ξ)2 dξ

≤ 1

144
h4
`

∫
A`

ξ8
1(1 +

1

π
ξ2)4û0(ξ)2 dξ
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≤ 1

144
C1h

4
`‖u0‖2

H4
mix

(R2).

Due to the symmetry of the problem, the above argument may be repeated,
with ξ1 replaced with ξ2 and C1 replaced with some constant C2, to show∫

A`

|Γξ82 |û0(ξ)2 dξ ≤ 1

144
C2h

4
`‖u0‖2

H4
mix

(R2).

Terms of type |ξ|4ξ4
i

Next, we examine terms of type |ξ|4ξ4
1 :

Γ|ξ|4ξ41 = − 1

24
ρh2

`−1µt

(
`−1∑
i=1

`−1∑
j=1

1Ai,`−i
1Aj,`−j

(h2
jα1,j|ξ|4ξ4

1 + h2
iα1,i|ξ|4ξ4

1)

+
`−2∑
i=1

`−2∑
j=1

1Ai,`−i−1
1Aj,`−j−1

(h2
jα1,j|ξ|4ξ4

1 + h2
iα1,i|ξ|4ξ4

1)

−2
`−1∑
i=1

`−2∑
j=1

1Ai,`−i
1Aj,`−j−1

(h2
jα1,j|ξ|4ξ4

1 + h2
iα1,i|ξ|4ξ4

1)

)

= − 1

24
ρh2

`−1µt|ξ|4ξ4
1

`−1∑
i=1

`−i∑
j=1

1Bi,j
2h2

`−jα1,`−j

= − 1

12
ρh2

`−1h
2
`µt|ξ|4ξ4

1

`−1∑
i=1

`−i∑
j=1

1Bi,j
22jα1,`−j

= −1

3
ρh4

`µt|ξ|4ξ4
1

`−1∑
i=1

`−i∑
j=1

1Bi,j
22jα1,`−j

|Γ|ξ|4ξ41 | ≤
1

3
ρh4

`µt|ξ|4ξ4
1(1 +

1

π
ξ2)2.

Therefore, for some constant C3,∫
A`

|Γ|ξ|4ξ41 |û0(ξ)2 dξ ≤
∫
A`

1

3
ρh4

`µt|ξ|4ξ4
1(1 +

1

π
ξ2)2û0(ξ)2 dξ
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=
1

3
ρh4

`µt

∫
A`

|ξ|4ξ4
1(1 +

1

π
ξ2)2û0(ξ)2 dξ

≤ 1

3
ρh4

`µtC3‖u0‖2
H4
mix

(R2).

Similarly, for some constant C4,∫
A`

|Γ|ξ|4ξ42 |û0(ξ)2 dξ ≤ 1

3
ρh4

`µtC4‖u0‖2
H4
mix

(R2).

Terms of type ξ4
1ξ

4
2

Next, we examine terms of type ξ4
1ξ

4
2 :

Γξ41ξ42 =
`−1∑
i=1

`−1∑
j=1

1Ai,`−i
1Aj,`−j

1

144
(h2

i+`−jα1,iα2,`−jξ
4
1ξ

4
2 + h2

`−i+jα2,`−iα1,jξ
4
1ξ

4
2)

+
`−2∑
i=1

`−2∑
j=1

1Ai,`−i−1
1Aj,`−j−1

1

144
(h2

i+`−j−1α1,iα2,`−j−1ξ
4
1ξ

4
2

+ h2
`−i−1+jα2,`−i−1α1,jξ

4
1ξ

4
2)

− 2
`−1∑
i=1

`−2∑
j=1

1Ai,`−i
1Aj,`−j−1

1

144
(h2

i+`−j−1α1,iα2,`−j−1ξ
4
1ξ

4
2

+ h2
`−i+jα2,`−iα1,jξ

4
1ξ

4
2)

=
1

144
ξ4

1ξ
4
2

`−1∑
i=1

`−i∑
j=1

1Bi,j
h2

2`−i−jα1,`−iα2,`−j

=
1

144
h4
`ξ

4
1ξ

4
2

`−1∑
i=1

`−i∑
j=1

1Bi,j
22(i+j)α1,`−iα2,`−j

|Γξ41ξ42 | ≤
1

144
h4
`ξ

4
1ξ

4
2(1 +

1

π
ξ1)2(1 +

1

π
ξ2)2.

Therefore, for some constant C5,∫
A`

|Γξ41ξ42 |û0(ξ)2 dξ ≤
∫
A`

1

144
h4
`ξ

4
1ξ

4
2(1 +

1

π
ξ1)2(1 +

1

π
ξ2)2û0(ξ)2 dξ
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=
1

144
h4
`

∫
A`

ξ4
1ξ

4
2(1 +

1

π
ξ1)2(1 +

1

π
ξ2)2û0(ξ)2 dξ

≤ 1

144
h4
`C5‖u0‖2

H4
mix

(R2).

Terms of type |ξ|8

Finally, we examine terms of type |ξ|8:

Γ|ξ|8 =
`−1∑
i=1

`−1∑
j=1

1Ai,`−i
1Aj,`−j

1

4
ρ2h4

`−1µ
2
t |ξ|8

+
`−2∑
i=1

`−2∑
j=1

1Ai,`−i−1
1Aj,`−j−1

1

4
ρ2h4

`−1µ
2
t |ξ|8

− 2
`−1∑
i=1

`−2∑
j=1

1Ai,`−i
1Aj,`−j−1

1

4
ρ2h4

`−1µ
2
t |ξ|8

=
1

4
ρ2h4

`−1µ
2
t |ξ|8

(
`−1∑
i=1

`−1∑
j=1

1Ai,`−i
1Aj,`−j

+
`−2∑
i=1

`−2∑
j=1

1Ai,`−i−1
1Aj,`−j−1

−2
`−1∑
i=1

`−2∑
j=1

1Ai,`−i
1Aj,`−j−1

)

= 4ρ2h4
`µ

2
t |ξ|8

`−1∑
i=1

`−i∑
j=1

1Bi,j
.

Therefore, for some constant C6,∫
A`

|Γ|ξ|8|û0(ξ)2 dξ ≤
∫
A`

4ρ2h4
`µ

2
t |ξ|8û0(ξ)2 dξ

= 4ρ2h4
`µ

2
t

∫
A`

|ξ|8û0(ξ)2 dξ

≤ 4ρ2h4
`µ

2
tC6‖u0‖2

H4
mix

(R2).
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Figure 3.5: The sets C1(h`) and C2(h`).

C1(h`)

C2(h`)

π
h

π
h

ξ1

ξ2

ξ1ξ2 = π2

h`−1

Conclusion

In summary,

Ω1(h`) ≤ e16tnt2n

∫
A`

(
|Γξ81 |+ |Γξ82 |+ |Γ|ξ|4ξ41 |+ |Γ|ξ|4ξ42 |+ |Γ|ξ|4ξ41 |+ |Γ|ξ|8|

)
û0(ξ)2 dξ

= e16tnt2n

(
1

144
C1h

4
`‖u0‖2

H4
mix

(R2) +
1

144
C2h

4
`‖u0‖2

H4
mix

(R2) +
1

3
ρh4

`µtC3‖u0‖2
H4
mix

(R2)

+
1

3
ρh4

`µtC4‖u0‖2
H4
mix

(R2) +
1

144
h4
`C5‖u0‖2

H4
mix

(R2) + 4ρ2h4
`µ

2
tC6‖u0‖2

H4
mix

(R2)

)
.

Therefore, Ω1(h`) = O(h4
`) when u0 ∈ H4

mix(R2).
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3.2.2 Rate of convergence of Ω2(h`)

De�ne C1(h`) := {(ξ1, ξ2) : ξ1ξ2 ≥ π2

h`−1
} and C2(h`) := R2 \C1(h`)\A`. Then

R2 \ A` ⊂ C1(h`) ∪ C2(h`). See Figure 3.5.

Since |eq(ξ)tn| ≤ 1, we have

Ω2(h`) =

∫
R2\A`

|eq(ξ)tnû0(ξ)|2 dξ

≤
∫
R2\A`

|û0(ξ)|2 dξ

≤
∫
C1(h`)

|û0(ξ)|2 dξ +

∫
C2(h`)

|û0(ξ)|2 dξ.

On the domain C1(h`) we have 1 ≤ ξ1ξ2h`−1

π2 and thus 1 ≤ ξ41ξ
4
2h

4
`−1

π8 . Therefore,
we have for the �rst term:∫

C1(h`)

|û0(ξ)|2 dξ ≤ 1

π8
h4
`−1

∫
C1(h`)

ξ4
1ξ

4
2 |û0(ξ)|2 dξ

≤ 16

π8
h4
`

∥∥∥∥ ∂4u0

∂x2∂y2

∥∥∥∥2

2

.

For the second term, we have ξ1 ≥ π
h`

or 1 ≤ ξ1h`
π

and thus 1 ≤ ξ41h
4
`

π4 and,

similarly, 1 ≤ ξ42h
4
`

π4 :∫
C2(h`)

|û0(ξ)|2 dξ

=

∫ ∞
π/h`

∫ π2/h`ξ1

0

|û0(ξ)|2 dξ2 dξ1 +

∫ ∞
π/h`

∫ π2/h`ξ2

0

|û0(ξ)|2 dξ1 dξ2

≤ 1

π4
h4
`

(∫ ∞
π/h`

∫ π2/h`ξ1

0

ξ4
1 |û0(ξ)|2 dξ2 dξ1 +

∫ ∞
π/h`

∫ π2/h`ξ2

0

ξ4
2 |û0(ξ)|2 dξ1 dξ2

)

≤ 1

π4
h4
`

(∥∥∥∥∂2u0

∂x2

∥∥∥∥2

2

+

∥∥∥∥∂2u0

∂y2

∥∥∥∥2

2

)
.
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Adding the two parts of Ω(h`) then gives

Ω2(h`) ≤
∫
C1(h`)

|û0(ξ)|2 dξ +

∫
C2(h`)

|û0(ξ)|2 dξ

≤ h4
`

(
16

π8

∥∥∥∥ ∂4u0

∂x2∂y2

∥∥∥∥2

2

+
1

π4

∥∥∥∥∂2u0

∂x2

∥∥∥∥2

2

+
1

π4

∥∥∥∥∂2u0

∂y2

∥∥∥∥2

2

)
.

In summary, Ω2(h`) = O(h4
`) when u0 ∈ H4

mix(R2). Thus,

‖u(x, tn)− (σvtn)(x)‖2
2 = Ω1(h`) + Ω2(h`)

= O(h4
`) +O(h4

`)

= O(h4
`)

when u0 ∈ H4
mix(R2) and so ‖u(x, tn)− (σvtn)(x)‖2 = O(h2

`).
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3.3 Heat equation with mixed derivatives on

R2

We now repeat the preceding analysis for the Cauchy problem for the heat
equation with a mixed derivative term:

ut = uxx + uxy + uyy R2 × [0, T ]

u(x, y, 0) = u0(x, y).
(3.20)

We choose this equation because it is representative of the class of well-
scaled parabolic equations. We must repeat Lemma 5, this time for Equation
(3.20).

Lemma 7. When the heat equation is solved by the fully implicit method,
the ampli�cation factor g∆x,∆y(ξ), as de�ned in Equation (1.11b), satis�es

e∆tq(ξ) − g∆x,∆y(ξ) = ∆t

(
1

2
∆tµt(|ξ|2 + ξ1ξ2)2 +

1

36
ξ3

1ξ
3
2β(ξ1,∆x)β(ξ2,∆y)∆x2∆y2

−∆x2(
1

6
ξ2ξ

3
1β(ξ1,∆x) +

1

12
ξ4

1α(ξ1,∆x))

−∆y2(
1

12
ξ4

2α(ξ2,∆y) +
1

6
ξ1ξ

3
2β(ξ2,∆y))

)
(3.21)

at every point ξ = (ξ1, ξ2) ∈ R2, where

α(., .) ∈ (−1, 1), β(., .) ∈ (−1, 1), µt ∈ (0, 1)

and
q(ξ) = −(ξ2

1 + ξ2
2 + ξ1ξ2).

Proof. By Taylor's theorem, we can write e∆tq(ξ) as

e−∆t(|ξ|2+ξ1ξ2) =: f(∆t) = f(0) + f ′(0)∆t+
1

2
f ′′(η)∆t2

for some η ∈ (0,∆t) where

f ′(∆t) = −(|ξ|2 + ξ1ξ2)e−∆t(|ξ|2+ξ1ξ2),

f ′′(∆t) = (|ξ|2 + ξ1ξ2)2e−∆t(|ξ|2+ξ1ξ2).
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Therefore,

e−∆t(|ξ|2+ξ1ξ2) = 1−∆t(|ξ|2 + ξ1ξ2) +
1

2
∆t2(|ξ|2 + ξ1ξ2)2e−η(|ξ|2+ξ1ξ2).

If we take µt := e−η(|ξ|2+ξ1ξ2) ∈ (0, 1),

e−∆t(|ξ|2+ξ1ξ2) = 1−∆t(|ξ|2 + ξ1ξ2) +
1

2
∆t2(|ξ|2 + ξ1ξ2)2µt. (3.22)

From Equation 3.8 we have

2 cos(ξ1∆x)− 2

∆x2
= −ξ2

1 +
1

12
ξ4

1∆x2α(ξ1,∆x). (3.23)

By Taylor's theorem, we can write sin(ξ1∆x) as

sin(ξ1∆x) =: f(x) = f(0) + f ′(0)∆x+
1

2
f ′′(0)∆x2 +

1

6
f ′′′(η)∆x3

for some η ∈ (0,∆x), where

f ′(∆x) = ξ1 cos(ξ1∆x)

f ′′(∆x) = −ξ2
1 sin(ξ1∆x)

f ′′′(∆x) = −ξ3
1 cos(ξ1∆x).

Therefore, for some β(., .) ∈ (−1, 1),

sin(ξ1∆x) = ξ1∆x− 1

6
ξ3

1 cos(ξ1η)∆x3

sin(ξ1∆x)

∆x
= ξ1 −

1

6
ξ3

1 cos(ξ1η)∆x2

sin(ξ1∆x)

∆x
= ξ1 −

1

6
ξ3

1β(ξ1,∆x)∆x2.

Multiplying two such factors gives

sin(ξ1∆x) sin(ξ2∆y)

∆x∆y
= (ξ1 −

1

6
ξ3

1β(ξ1,∆x)∆x2)(ξ2 −
1

6
ξ3

2β(ξ2,∆y)∆y2)

= ξ1ξ2 −
1

6
ξ2ξ

3
1β(ξ1,∆x)∆x2 − 1

6
ξ1ξ

3
2β(ξ2,∆y)∆y2
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+
1

36
ξ3

1ξ
3
2β(ξ1,∆x)β(ξ2,∆y)∆x2∆y2.

The ampli�cation factor g∆x,∆y is then

g∆x,∆y(ξ) = 1 + ∆t

(
2 cos(ξ1∆x)− 2

∆x2
+

2 cos(ξ2∆y)− 2

∆y2
− sin(ξ1∆x) sin(ξ2∆y)

∆x∆y

)
= 1 + ∆t

(
−ξ2

1 +
1

12
ξ4

1∆x2α(ξ1,∆x)− ξ2
2 +

1

12
ξ4

2∆y2α(ξ2,∆y)

− ξ1ξ2 +
1

6
ξ2ξ

3
1β(ξ1,∆x)∆x2 +

1

6
ξ1ξ

3
2β(ξ2,∆y)∆y2

− 1

36
ξ3

1ξ
3
2β(ξ1,∆x)β(ξ2,∆y)∆x2∆y2

)
.

(3.24)

Subtracting Equations (3.22) and (3.24) gives

e∆tq(ξ) − g∆x,∆y(ξ) = ∆t

(
1

2
∆tµt(|ξ|2 + ξ1ξ2)2

+
1

36
ξ3

1ξ
3
2β(ξ1,∆x)β(ξ2,∆y)∆x2∆y2

−∆x2(
1

6
ξ2ξ

3
1β(ξ1,∆x) +

1

12
ξ4

1α(ξ1,∆x))

−∆y2(
1

12
ξ4

2α(ξ2,∆y) +
1

6
ξ1ξ

3
2β(ξ2,∆y))

)
=: ∆t (Φ1∆t

+ Φ2(∆x)∆x2 + Φ3(∆y)∆y2

+ Φ4(∆x,∆y)∆x2∆y2
)
,

(3.25)

where we have de�ned Φi, i ∈ {1, 2, 3, 4}, for convenience of notation.

Now we state the convergence theorem for the heat equation with mixed
derivatives.

Theorem 8. If the initial value problem

ut = uxx + uxy + uyy R2 × [0, T ]

u(x, y, 0) = u0(x, y)
(3.26)
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is approximated by the elliptic sparse grid combination technique at level `,
in which the constituent sparse grids are solved by the fully implicit method,
and the initial function is τu0, then for each time T there exists a constant
CT independent of u0 such that

‖u(tn, ·)− (σvtn)(.)‖2 ≤ CTh
2
` log2(h−1

` )‖u0‖H4
mix

(R2) (3.27)

for each tn = n∆t with 0 < tn ≤ T .

Proof. As in Theorem 4, we can write

‖u(x, tn)− (σvtn)(x)‖2
2 = Ω1(h`) + Ω2(h`),

where Ω1(h`) and Ω2(h`) have the same de�nition. Since the domain has
the same geometry, Ω2(h`) still has the convergence rate of O(h4

`) when u0 ∈
H4

mix(R2). The equation-speci�c part is Ω1(h`), which we proceed to analyze.
As before, the term Γ(ξ) inside Ω(h`) can be expanded to

Γ(ξ) =
`−1∑
i=1

`−1∑
j=1

1Ai,`−i
1Aj,`−j

(eq(ξ)n∆t − gni,`−i(ξ))(eq(ξ)n∆t − gnj,`−j(ξ))

+
`−2∑
i=1

`−2∑
j=1

1Ai,`−i−1
1Aj,`−j−1

(eq(ξ)n∆t − gni,`−i−1(ξ))(eq(ξ)n∆t − gnj,`−j−1(ξ))

− 2
`−1∑
i=1

`−2∑
j=1

1Ai,`−i
1Aj,`−j−1

(eq(ξ)n∆t − gni,`−i(ξ))(eq(ξ)n∆t − gnj,`−j−1(ξ)).

For the heat equation with mixed derivatives, the analogue of Equation (3.19)
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is

(eq(ξ)∆t − gi,j(ξ))(eq(ξ)∆t − gm,n(ξ))

= ∆t2
(
Φ1ρh

2
`−1 + Φ2(i)h2

i + Φ3(j)h2
j + Φ4(i, j)h2

i+j

)
×(

Φ1ρh
2
`−1 + Φ2(m)h2

m + Φ3(n)h2
n + Φ4(m,n)h2

m+n

)
= ∆t2

(
Φ2

1ρ
2h4

`−1 + Φ2(i)Φ2(m)h2
i+m

+ Φ3(j)Φ3(n)h2
j+n + Φ4(i, j)Φ4(m,n)h2

i+j+m+n

+ Φ1ρh
2
`−1(Φ2(i)h2

i + Φ2(m)h2
m) + Φ1ρh

2
`−1(Φ3(j)h2

j + Φ3(n)h2
n)

+ Φ1ρh
2
`−1(Φ4(m,n)h2

m+n + Φ4(i, j)h2
i+j)

+ Φ2(i)Φ3(n)h2
i+n + Φ2(m)Φ3(j)h2

j+m + Φ2(i)Φ4(m,n)h2
i+m+n

+Φ2(m)Φ4(i, j)h2
m+i+j + Φ3(j)Φ4(m,n)h2

j+m+n + Φ3(n)Φ4(i, j)h2
n+i+j

)
.

(3.28)

Now we substitute this expression into the formula for Γ(ξ) and then substi-
tute Γ(ξ) into the formula for Ω1(h`). After this, our work entails determining
the convergence rate of each of the terms which comprise Ω1(h`). We have

Ω1(h`) = e16tnn2∆t2
∫
A`

(Γ1 + Γ2 + . . .) û0(ξ)2 dξ

= e16tnt2n

∫
A`

(Γ1 + Γ2 + . . .) û0(ξ)2 dξ

≤ e16tnt2n

∫
A`

(|Γ1|+ |Γ2|+ . . .) û0(ξ)2 dξ.

Since the terms are quite similar to those in the proof for the heat equation,
we focus only on the novel terms:

Γ1 =
`−1∑
i=1

`−1∑
j=1

1Ai,`−i
1Aj,`−j

Φ2(i)Φ4(j, `− j)h2
`+i

+
`−2∑
i=1

`−2∑
j=1

1Ai,`−i−1
1Aj,`−j−1

Φ2(i)Φ4(j, `− j − 1)h2
`+i−1

− 2
`−1∑
i=1

`−2∑
j=1

1Ai,`−i
1Aj,`−j−1

Φ2(i)Φ4(j, `− j − 1)h2
`+i−1
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Γ2 =
`−1∑
i=1

`−1∑
j=1

1Ai,`−i
1Aj,`−j

Φ4(i, `− i)Φ4(j, `− j)h2
2`

+
`−2∑
i=1

`−2∑
j=1

1Ai,`−i−1
1Aj,`−j−1

Φ4(i, `− i− 1)Φ4(j, `− j − 1)h2
2`−2

− 2
`−1∑
i=1

`−2∑
j=1

1Ai,`−i
1Aj,`−j−1

Φ4(i, `− i)Φ4(j, `− j − 1)h2
2`−1

Convergence of Γ1

The summation is over pairs of grids (Ωi,j,Ωm,n). For each pair (m,n), all
terms Φ2(i)Φ4(m,n)h2

i+m+n cancel except for one due to o�setting of adjacent
grids. The term which remains in each case has i = `− 1. Figure 3.2 again
provides a good visualization. Hence, the number of terms grows like the
number of combined grids, which is 2`− 3 = 2 log2(h−1

` )− 3 = O(log2(h−1
` )),

and so we have ∫
A`

|Γ1|û0(ξ)2 dξ = O(h4
` log2(h−1

` )).

Convergence of Γ2

The summation is over pairs of grids (Ωi,j,Ωm,n). Each term Φ4(i, j)Φ4(m,n)
is distinct and not canceled out by any other term. Hence, the number
of terms grows like the square of the number of combined grids, which is
(2`− 3)2 = O(log2(h−1

` )2), and so we have∫
A`

|Γ2|û0(ξ)2 dξ = O(h4
` log2(h−1

` )2).
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Conclusion

The convergence rate of Ω1(h`) is now limited by the last term. We have
Ω1(h`) = O(h4

` log(h−1
` )2) when u0 ∈ H4

mix(R2), and so we have the result

‖u(x, tn)− (σvtn)(x)‖2 = O(h2
` log(h−1

` ))

when u0 ∈ H4
mix(R2) for the heat equation with a mixed derivative term.
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3.4 Heat equation on a periodic domain in R2

We now give a proof of the convergence of the elliptic sparse grid combination
technique for an initial-boundary value problem for the heat equation with
periodic boundary conditions. We need some notation for Fourier series
which, being tangential to the main course of this work, can be found in the
appendix.

Theorem 9. If the initial-boundary value problem

ut = uxx + uyy [−π, π]2 × [0, T ]

u(x, y, 0) = u0(x, y)

u(−π, y, t) = u(π, y, t)

u(x,−π, t) = u(x, π, t)

(3.29)

is approximated by the elliptic sparse grid combination technique at level `,
in which the constituent sparse grids are solved by the fully implicit method,
and the initial function is τu0, then for each time T there exists a constant
CT independent of u0 such that

‖u(tn, .)− (σvtn)(.)‖2 ≤ CTh
2
`‖u0‖H4

mix
([−π,π]2) (3.30)

for each tn = n∆t with 0 < tn ≤ T .

Proof. Let {û(ξ, tn)}∞ξ1,ξ2=−∞ denote the Fourier coe�cients of u(x, tn). For
each time tn ∈ [0, T ], we may write the exact solution of the heat equation
by inverting its Fourier transform. That is,

u(x, tn) =
∞∑

ξ1=−∞

∞∑
ξ2=−∞

eix·ξû(ξ, tn)

=
∞∑

ξ1=−∞

∞∑
ξ2=−∞

eix·ξetnq(ξ)û0(ξ),

(3.31)

where q(ξ) = −(ξ2
1 + ξ2

2).

The elliptic sparse grid solution, extended to [−π, π]2 by the interpolation
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operator σ, is

(σvtn)(x) =
∞∑

ξ1=−∞

∞∑
ξ2=−∞

eix·ξ

(
`−1∑
i=1

1Ai,`−i
gi,`−i(ξ)−

`−2∑
j=1

1Aj,`−j−1
gj,`−j−1(ξ)

)n

û0(ξ).

(3.32)

By subtracting Equations (3.31) and (3.32), we obtain

u(x, tn)− (σvtn)(x) =

∞∑
ξ1=−∞

∞∑
ξ2=−∞

eix·ξ

(
etnq(ξ) −

(
`−1∑
i=1

1Ai,`−i
gi,`−i(ξ)−

`−2∑
j=1

1Aj,`−j−1
gj,`−j−1(ξ)

)n)
û0(ξ).

By Parseval's theorem, and the discrete analogue of Lemma 6,

‖u(x, tn)− (σvtn)(x)‖2 =

∞∑
ξ1=−∞

∞∑
ξ2=−∞

∣∣∣∣∣etnq(ξ) −
(
`−1∑
i=1

1Ai,`−i
gi,`−i(ξ)−

`−2∑
j=1

1Aj,`−j−1
gj,`−j−1(ξ)

)n∣∣∣∣∣
2

û0(ξ)

≤ e16tnn2Ω1(h`) + Ω2(h`)

where

Γ(ξ) :=

∣∣∣∣∣
`−1∑
i=1

1Ai,`−i
(eq(ξ)∆t − gi,`−i(ξ))−

`−2∑
j=1

1Aj,`−j−1
(eq(ξ)∆t − gj,`−j−1(ξ))

∣∣∣∣∣
2

Ω1(h`) :=
∞∑

ξ1=−∞

∞∑
ξ2=−∞

Γ(ξ)û0(ξ)

Ω2(h`) :=
∞∑

ξ1=−∞

∞∑
ξ2=−∞

1R2\A`
|eq(ξ)tnû0(ξ)|2.

Again, we have de�ned Γ(ξ) to be the factor inside the summation which
multiplies û0(ξ)2. Now we look at the rate of convergence of the terms Ω1(h`)
and Ω2(h`).
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3.4.1 Rate of convergence of Ω1(h`)

Since Equations (3.17) and (3.19) still hold, the quantity Γ(ξ) is notationally
the same as in Theorem 4, aside from the di�erent de�nitions of the sets Ai,j.
Therefore, we still have

|Γξ81 | ≤
1

144
h4
`ξ

8
1(1 + ξ2)4

|Γξ82 | ≤
1

144
h4
`ξ

8
2(1 + ξ1)4

|Γ|ξ|4ξ41 | ≤
1

3
ρh4

`µt|ξ|4ξ4
1(1 + ξ2)2

|Γ|ξ|4ξ42 | ≤
1

3
ρh4

`µt|ξ|4ξ4
2(1 + ξ1)2

|Γξ41ξ42 | ≤
1

144
h4
`ξ

4
1ξ

4
2(1 + ξ1)2(1 + ξ2)2

|Γ|ξ|8| ≤ 4ρ2h4
`µ

2
t |ξ|8.

(3.33)

There are only two considerations which di�er from Theorem 4. First, the
polynomials in ξ1 and ξ2 at the end of each line of Equation (3.33) are slightly
di�erent. This is because we now have if ξ ∈ Bi,j then ξ1 ∈ {2i−1, . . . , 2i} for
i > 1 and ξ2 ∈ {2j−1, . . . , 2j} for j > 1. Therefore,

2i ≤ 2ξ1

2j ≤ 2ξ2

when i, j > 1 so that

2i ≤ 2(1 + ξ1)

2j ≤ 2(1 + ξ2)

for i, j ≥ 1. Hence, the factor of 1
π
has disappeared.

Second, the sets Bi,j now overlap, but counting the same point multiple times
only adds to the right-hand side of the expressions in Equation (3.33), so the
inequality is preserved. Now we �nish showing that each term of Ω1(h`)
converges to zero at the desired rate.
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Terms of type ξ8
i

For some constants C1 and C2,

∞∑
ξ1=−∞

∞∑
ξ2=−∞

|Γξ81 |û0(ξ)2 ≤
∞∑

ξ1=−∞

∞∑
ξ2=−∞

(
1

144
h4
`ξ

8
1(1 + ξ2)4

)
û0(ξ)2

=
1

144
h4
`

∞∑
ξ1=−∞

∞∑
ξ2=−∞

ξ8
1(1 + ξ2)4û0(ξ)2

≤ 1

144
C1h

4
`‖u0‖2

H4
mix

([−π,π]2)

and

∞∑
ξ1=−∞

∞∑
ξ2=−∞

|Γξ82 |û0(ξ)2 ≤ 1

144
C2h

4
`‖u0‖2

H4
mix

([−π,π]2).

Terms of type |ξ|4ξ4
i

For some constants C3 and C4,

∞∑
ξ1=−∞

∞∑
ξ2=−∞

|Γ|ξ|4ξ41 |û0(ξ)2 ≤
∞∑

ξ1=−∞

∞∑
ξ2=−∞

(
1

3
ρh4

`µt|ξ|4ξ4
1(1 + ξ2)2

)
û0(ξ)2

=
1

3
ρh4

`µt

∞∑
ξ1=−∞

∞∑
ξ2=−∞

|ξ|4ξ4
1(1 + ξ2)2û0(ξ)2

≤ 1

3
ρh4

`µtC3‖u0‖2
H4
mix

([−π,π]2)

and

∞∑
ξ1=−∞

∞∑
ξ2=−∞

|Γ|ξ|4ξ42 |û0(ξ)2 ≤ 1

3
ρh4

`µtC4‖u0‖2
H4
mix

([−π,π]2).
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Terms of type ξ4
1ξ

4
2

For some constant C5,
∞∑

ξ1=−∞

∞∑
ξ2=−∞

|Γξ41ξ42 |û0(ξ)2 ≤
∞∑

ξ1=−∞

∞∑
ξ2=−∞

(
1

144
h4
`ξ

4
1ξ

4
2(1 + ξ1)2(1 + ξ2)2

)
û0(ξ)2

=
1

144
h4
`

∞∑
ξ1=−∞

∞∑
ξ2=−∞

ξ4
1ξ

4
2(1 + ξ1)2(1 + ξ2)2û0(ξ)2

≤ 1

144
h4
`C5‖u0‖2

H4
mix

([−π,π]2).

Terms of type |ξ|8

Finally, for some constant C6,
∞∑

ξ1=−∞

∞∑
ξ2=−∞

|Γ|ξ|8 |û0(ξ)2 ≤
∞∑

ξ1=−∞

∞∑
ξ2=−∞

(
4ρ2h4

`µ
2
t |ξ|8

)
û0(ξ)2

= 4ρ2h4
`µ

2
t

∞∑
ξ1=−∞

∞∑
ξ2=−∞

|ξ|8û0(ξ)2

≤ 4ρ2h4
`µ

2
tC6‖u0‖2

H4
mix

([−π,π]2).

Conclusion

In summary,

Ω1(h`) ≤
∞∑

ξ1=−∞

∞∑
ξ2=−∞

(
|Γξ81 |+ |Γξ82 |+ |Γ|ξ|4ξ41 |+ |Γ|ξ|4ξ42 |+ |Γ|ξ|4ξ41 |+ |Γ|ξ|8|

)
û0(ξ)2

≤ h4
`

(
1

144
C1‖u0‖2

H4
mix

([−π,π]2) +
1

144
C2‖u0‖2

H4
mix

([−π,π]2)

+
1

3
ρµtC3‖u0‖2

H4
mix

([−π,π]2) +
1

3
ρµtC4‖u0‖2

H4
mix

([−π,π]2)

+
1

144
C5‖u0‖2

H4
mix

([−π,π]2) + 4ρ2µ2
tC6‖u0‖2

H4
mix

([−π,π]2)

)
.

Therefore, Ω1(h`) = O(h4
`) when u0 ∈ H4

mix([−π, π]2).
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3.4.2 Rate of convergence of Ω2(h`)

De�ne C(h`) := {(ξ1, ξ2) ∈ Z2 : ξ1ξ2 ≥ 1
h`−1
}. Then R2 \ A` ⊂ C(h`).

Since |eq(ξ)tn| ≤ 1, we have

Ω2(h`) :=
∞∑

ξ1=−∞

∞∑
ξ2=−∞

1R2\A`
|eq(ξ)tnû0(ξ)|2

≤
∞∑

ξ1=−∞

∞∑
ξ2=−∞

1R2\A`
|û0(ξ)|2

≤
∞∑

ξ1=−∞

∞∑
ξ2=−∞

1C(h`)|û0(ξ)|2.

On the domain C(h`) we have 1 ≤ ξ1ξ2h`−1 and thus 1 ≤ ξ4
1ξ

4
2h

4
`−1. Therefore,

Ω2(h`) ≤ h4
`−1

∞∑
ξ1=−∞

∞∑
ξ2=−∞

1C(h`)ξ
4
1ξ

4
2 |û0(ξ)|2

≤ 16h4
`

∥∥∥∥ ∂4u0

∂2x∂2y

∥∥∥∥2

2

.

So we have Ω2(h`) = O(h4
`) when u0 ∈ H4

mix([−π, π]2). Thus,

‖u(x, tn)− (σvtn)(x)‖2
2 = Ω1(h`) + Ω2(h`)

= O(h4
`) +O(h4

`)

= O(h4
`)

when u0 ∈ H4
mix([−π, π]2) and so ‖u(x, tn)− (σvtn)(x)‖2 = O(h2

`).
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3.5 Heat equation on Rd, d ≥ 2

We now repeat Theorem 4 for the Cauchy problem for the d-dimensional
heat equation:

ut =
d∑
i=1

uxixi Rd × [0, T ]

u(x, 0) = u0(x)

(3.34)

The proof of the theorem depends on the following two lemmas, which are
the d-dimensional analogues of Lemma 5 and Lemma 6.

Lemma 10. When the heat equation is solved by the fully implicit method,
the ampli�cation factor g`(ξ), as de�ned in Equation (1.12), satis�es

e∆tq(ξ) − g`(ξ) = ∆t

(
1

2
∆tµt|ξ|4 −

1

12

d∑
i=1

ξ4
i ∆x

2
iα(ξi,∆xi)

)
(3.35)

at every point ξ = (ξ1, . . . , ξd) ∈ Rd, where

α(., .) ∈ (−1, 1), µt ∈ (0, 1)

and

q(ξ) = −
d∑
i=1

ξ2
i .

Lemma 11. The bound∣∣∣∣∣∣
d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|l|1=`−q

1Al
gl(ξ)

∣∣∣∣∣∣ ≤ 1 + 4d∆t (3.36)

holds for all ξ = (ξ1, ξ2) ∈ Rd.

Now we state and prove the convergence theorem for the d-dimensional heat
equation.
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Theorem 12. If the initial value problem

ut =
d∑
i=1

uxixi Rd × [0, T ]

u(x, 0) = u0(x)

(3.37)

is approximated by the elliptic sparse grid combination technique at level `,
in which the constituent sparse grids are solved by the fully implicit method,
and the initial function is τu0, then for each time T there exists a constant
C = C(T, d) independent of u0 such that

‖u(tn, ·)− (σvtn)(.)‖2 ≤ Ch4
`‖u0‖H4

mix
(Rd) (3.38)

for each tn = n∆t with 0 < tn ≤ T .

Proof. For each time tn ∈ [0, T ], we may express the exact solution of the
heat equation as the inverse of its Fourier transform, that is

u(x, tn) =
1

(2π)d/2

∫
Rd

eix·ξeq(ξ)tnû0(ξ) dξ, (3.39)

where q(ξ) = −
∑d

i=1 ξ
2
i = −|ξ|2.

By linearity, we have for the sparse grid solution:

(σvtn)(x) =
1

(2π)d/2

∫
Rd

eix·ξ

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|l|1=`−q

1Al
gl(ξ)

n

û0(ξ) dξ

(3.40)

By subtracting Equations (3.39) and (3.40), we obtain

u(x, tn)− (σvtn)(x)

=
1

(2π)d/2

∫
A`

eix·ξ

eq(ξ)tn −
d−1∑

q=0

(−1)q
(
d− 1

q

) ∑
|l|1=`−q

1Al
gl(ξ)

n û0(ξ) dξ

+
1

(2π)d/2

∫
Rd\A`

eix·ξeq(ξ)tnû0(ξ) dξ.
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In order to show that ‖u(x, tn)−(σvtn)(x)‖2 = O(h2
`), we prove the equivalent

statement ‖u(x, tn)− (σvtn)(x)‖2
2 = O(h4

`). By Parseval's theorem,

‖u(x, tn)− (σvtn)(x)‖2
2

=

∫
A`

∣∣∣∣∣∣eq(ξ)tn −
d−1∑

q=0

(−1)q
(
d− 1

q

) ∑
|l|1=`−q

1Al
gl(ξ)

n∣∣∣∣∣∣
2

û0(ξ) dξ

+

∫
Rd\A`

|eq(ξ)tnû0(ξ)|2 dξ

≤ Ω1(h`) + Ω2(h`),

where

Ω1(h`) := e8dtnn2

∫
A`

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|l|1=`−q

1Al
(eq(ξ)∆t − gl(ξ))

2

û0(ξ) dξ

=: e8dtnn2

∫
A`

Γ(ξ)û0(ξ)2 dξ

Ω2(h`) :=

∫
Rd\A`

|eq(ξ)tnû0(ξ)|2 dξ.

As we did in the proof of Theorem 4, we have de�ned Γ(ξ) to be the factor
in the integrand of Ω1(h`) which multiplies û0(ξ)2. Now we look at the rate
of convergence of the terms Ω1(h`) and Ω2(h`).
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3.5.1 Rate of convergence of Ω1(h`)

First, we expand Γ(ξ):

Γ(ξ) =

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|l|1=`−q

1Al
(eq(ξ)∆t − gl(ξ))

2

=
d−1∑
p=0

d−1∑
q=0

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
×∑

|k|1=`−p

1Ak
(eq(ξ)∆t − gk(ξ))

∑
|l|1=`−q

1Al
(eq(ξ)∆t − gl(ξ))

=
d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
×

1Ak
1Al

(eq(ξ)∆t − gk(ξ))(eq(ξ)∆t − gl(ξ))

(3.41)

The four consecutive summation symbols look intimidating, but they sim-
ply iterate over all pairs (Ωk,Ωl) of sparse grids which are combined in the
sparse grid combination technique at level `. Each of the terms inside the
summation contains the product of two factors which are given in Equation
(3.35). When we multiply two such factors for arbitrary grids of multi-index
k = (k1, . . . , kd) and l = (l1, . . . , ld) we get(

e∆tq(ξ) − gk(ξ)
) (
e∆tq(ξ) − gl(ξ)

)
= ∆t

(
1

2
ρh2

`−1µt|ξ|4 −
1

12

d∑
i=1

ξ4
i h

2
ki
αi,ki

)
×

∆t

(
1

2
ρh2

`−1µt|ξ|4 −
1

12

d∑
i=1

ξ4
i h

2
li
αi,li

)

=
1

144
(
d∑
i=1

ξ4
i h

2
ki
αi,ki)(

d∑
i=1

ξ4
i h

2
li
αi,li)

− 1

24
ρh2

`−1µt|ξ|4
(

d∑
i=1

ξ4
i h

2
ki
αi,ki +

d∑
i=1

ξ4
i h

2
li
αi,li

)
+

1

4
ρ2h4

`−1µ
2
t |ξ|8
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=
d∑
i=1

1

144
ξ8
i h

2
ki+li

αi,kiαi,li

+
d∑
i=1

i−1∑
j=1

1

72
ξ4
i ξ

4
j (h

2
ki+lj

αi,kiαj,lj + h2
kj+li

αj,kjαi,li)

−
d∑
i=1

1

24
ρh2

`−1µt|ξ|4ξ4
i

(
h2
ki
αi,ki + h2

li
αi,li
)

+
1

4
ρ2h4

`−1µ
2
t |ξ|8.

From the last equality, we see that Γ(ξ) contains four types of terms in its
expansion. These are terms of the following types:

1. ξ8
i for i ∈ {1, . . . , d}

2. ξ4
i ξ

4
j for i, j ∈ {1, . . . , d} with j < i

3. |ξ|4ξ4
i for i ∈ {1, . . . , d}

4. |ξ|8

We label these terms Γξ8i , Γξ4i ξ4j , Γ|ξ|4ξ4i , and Γ|ξ|8 . Therefore, we can write

Ω1(h`) =

∫
A`

(
d∑
i=1

Γξ8i +
d∑
i=1

i−1∑
j=1

Γξ4i ξ4j +
d∑
i=1

Γ|ξ|4ξ4i + Γ|ξ8|

)
dξ

≤
∫
A`

(
d∑
i=1

|Γξ8i |+
d∑
i=1

i−1∑
j=1

|Γξ4i ξ4j |+
d∑
i=1

|Γ|ξ|4ξ4i |+ |Γ|ξ8||

)
dξ.

We look at the terms Γξ8i , Γξ4i ξ4j , Γ|ξ|4ξ4i , and Γ|ξ|8 as piecewise functions of ξ

due to the presence of the indicator 1Ak
1Al

in Equation (3.41). Therefore,

throughout the following analysis, we �x a set Bm ⊂ Rd. Then the only
terms from Equation (3.41) which are nonzero on Bm are those for which

m ≤ k ∧ l.

In the following subsections, we use the fact that if ξ ∈ Bm then ξi ∈
[2mi−1π, 2miπ] for mi > 1. Therefore,

2mi ≤ 2

π
ξi
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for mi > 1. And so

2mi ≤ 2(1 +
1

π
ξi)

for mi ≥ 1.

We now show that Ω1(h`) = O(h4
`).

Terms of type ξ8
i

First, we look at Γξ8i , that is, terms of type ξ8
i for i ∈ {1, . . . , d}. These terms

are

Γξ8i =
d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
1Ak

1Al

1

144
ξ8
i h

2
ki+li

αi,kiαi,li

=
1

144
ξ8
i

d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
1Ak

1Al
h2
ki+li

αi,kiαi,li .

Again, note that the four summations iterate over all pairs (Ωk,Ωl) of sparse
grids which are combined in the sparse grid combination technique at level
` and that, on the set Bm, only those terms above for which m ≤ k ∧ l are
nonzero. To deduce the value of Γξ8i on Bm, our work now entails counting

the terms h2
ki+li

αi,kiαi,li . We shall see that the coe�cient (−1)p+q
(
d−1
p

)(
d−1
q

)
is chosen precisely so that all except one of the terms cancel.

Now, we proceed to calculate the coe�cient of h2
ki+li

αi,kiαi,li on Bm for all
possible values of ki and li. We momentarily ignore all factors before the
four summations since they are constant across all sets Bm, but we will bring
them back into our analysis at the end. We �x r, s ∈ N and count the terms
h2
r+sαi,rαi,s. Then the coe�cient of h2

r+sαi,rαi,s on Bm must be

∑
Pairs of grids (Ωk,Ωl)

with m≤k∧l,
ki=r, li=s

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
,
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where p and q satisfy |k|1 = `− p and |l|1 = `− q. Now we must enumerate
the grids in the above summation. We can expand this as

d−1∑
p=0

(# of grids Ωk with |k|1 = `− p and ki = r)×

d−1∑
q=0

(# of grids Ωl with |l|1 = `− q and li = s)(−1)p+q
(
d− 1

p

)(
d− 1

q

)
.

The �rst summation symbol above represents iteration over Ωk. We only
iterate over grids having ki = r. We count the number of such grids and
then multiply this by the number of grids Ωl having li = s.

Finally, to get a useful expression, we must make sense of the two factors
which represent the number of grids. Note that m ≤ k so we must have

k = m+ (p1, . . . , pd),

where pi ≥ 0. Therefore,

|k|1 = |m|1 + |(p1, . . . , pd)|1
`− p = |m|1 + |(p1, . . . , pd)|1

|(p1, . . . , pd)|1 = `− p− |m|1
d∑
i=1

pi = `− p− |m|1.

But we have �xed ki = r so pi = r−mi. Subtracting pi from both sides gives

d∑
j=1
j 6=i

pj = `− p− |m|1 − (r −mi).

Thus, the number of grids Ωk with |k|1 = ` − p and ki = r is given by the
answer to the question �How many ways can one place `−p−|m|1− (r−mi)
balls into d− 1 bins?�. By a similar argument, the number of grids Ωl with
|l|1 = `−q and li = s is given by the answer to the question �How many ways
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can one place `− p− |m|1− (s−mi) balls into d− 1 bins?�. Both quantities
can be written with a binomial coe�cient as

=
d−1∑
p=0

(
(d− 2) + (`− p− |m|1 − (r −mi))

`− p− |m|1 − (r −mi)

)
×

d−1∑
q=0

(
(d− 2) + (`− q − |m|1 − (s−mi))

`− q − |m|1 − (s−mi)

)
(−1)p+q

(
d− 1

p

)(
d− 1

q

)

=
d−1∑
p=0

(
(Ki + d− 2)− p− r

Ki − p− r

)
×

d−1∑
q=0

(
(Ki + d− 2)− q − s

Ki − q − s

)
(−1)p+q

(
d− 1

p

)(
d− 1

q

)
,

where we have de�ned
Ki := `− |m|1 +mi

to simplify the notation.

It remains to determine the value of this sum. We use Equation (A.7) twice.
The above double sum is then

=
d−1∑
p=0

(
(Ki + d− 2)− p− r

d− 2

)
×

d−1∑
q=0

(
(Ki + d− 2)− q − s

d− 2

)
(−1)p+q

(
d− 1

p

)(
d− 1

q

)

=
d−1∑
p=0

(
(Ki + d− 2)− p− r

d− 2

)(
d− 1

p

)
(−1)p×

d−1∑
q=0

(−1)q
(

(Ki + d− 2)− q − s
d− 2

)(
d− 1

q

)

=
d−1∑
p=0

(
(Ki + d− 2)− p− r

d− 2

)(
d− 1

p

)
(−1)p

(
Ki − s− 1

−1

)
,

where we have used Equation (A.7) to reduce the sum over q to a single
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binomial coe�cient. Since(
Ki − s− 1

−1

)
=

{
1 : Ki − s− 1 = −1

0 : otherwise,

we must have s = Ki for the quantity to be nonzero. Henceforth, �x s = Ki.
In that case, the quantity reduces to

=
d−1∑
p=0

(−1)p
(
d− 1

p

)(
(Ki + d− 2)− p− r

d− 2

)

=
d−1∑
p=0

(−1)p
(
d− 1

p

)(
(Ki + d− 2− r)− p

d− 2

)
=

(
Ki − r − 1

−1

)
,

where we have used Equation (A.7) to reduce the sum over p to a single
binomial coe�cient. Since(

Ki − r − 1

−1

)
=

{
1 : Ki − r − 1 = −1

0 : otherwise,

we conclude that h2
r+sαi,rαi,s has a coe�cient of 0 except when r = s = Ki.

In this case, the term is h2
2Ki
α2
i,Ki

. Therefore, we can write

Γξ8i =
1

144
ξ8
i

∑
|m|1≤`

1Bmh
2
2Ki
α2
i,Ki

=
1

144
ξ8
i

∑
|m|1≤`

1Bmh
2
2(`−|m|1+mi)

α2
i,Ki

=
1

144
h4
`ξ

8
i

∑
|m|1≤`

1Bmh
2
2(−|m|1+mi)

α2
i,Ki

=
1

144
h4
`ξ

8
i

∑
|m|1≤`

1Bm

d∏
j=1
j 6=i

24miα2
i,Ki
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≤ 1

144
h4
`ξ

8
i

d∏
j=1
j 6=i

16(1 +
1

π
ξi)

4,

where we have used the fact that 0 ≤ α2
i,Ki
≤ 1.

Therefore, for some constant C1,∫
A`

|Γξ8i |û0(ξ)2 dξ ≤
∫
A`

1

144
h4
`ξ

8
i

d∏
j=1
j 6=i

16(1 +
1

π
ξi)

4û0(ξ)2 dξ

≤ 1

144
h4
`

∫
A`

ξ8
i

d∏
j=1
j 6=i

16(1 +
1

π
ξi)

4û0(ξ)2 dξ

=
1

144
C1h

4
`‖u0‖2

H4
mix

(Rd).

Terms of type ξ4
i ξ

4
j

Next, we look at Γξ4i ξ4j , that is, terms of type ξ4
i ξ

4
j for i, j ∈ {1, . . . , d} with

i 6= j. These terms are

Γξ4i ξ4j =
d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
1Ak

1Al

× 1

72
ξ4
i ξ

4
j (h

2
ki+lj

αi,kiαj,lj + h2
kj+li

αj,kjαi,li)

=
1

72
ξ4
i ξ

4
j

d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
1Ak

1Al

× (h2
ki+lj

αi,kiαj,lj + h2
kj+li

αj,kjαi,li).

Our work now entails counting the terms h2
ki+lj

and h2
kj+li

which are part of
the sum on Bm. By symmetry, we can immediately halve our work and write

=
1

36
ξ4
i ξ

4
j

d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
1Ak

1Al
h2
ki+lj

αi,kiαj,lj .
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We �x r, s ∈ N and count the terms h2
r+sαi,rαj,s. The coe�cient of h2

r+sαi,rαj,s
on Bm must be ∑

Pairs of grids (Ωk,Ωl)
with m≤k∧l
ki=s, lj=r

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
,

where p and q satisfy |k|1 = `− p and |l|2 = `− q. We may expand this as

d−1∑
p=0

(# of grids Ωk such that |k|1 = `− p and ki = r)×

d−1∑
q=0

(# of grids Ωl such that |l|1 = `− q and lj = s)(−1)p+q
(
d− 1

p

)(
d− 1

q

)

=
d−1∑
p=0

(
(d− 2) + (`− p− |m|1 − (r −mi))

`− p− |m|1 − (r −mi)

)
×

d−1∑
q=0

(
(d− 2) + (`− q − |m|1 − (s−mj))

`− q − |m|1 − (s−mj)

)
(−1)p+q

(
d− 1

p

)(
d− 1

q

)

=
d−1∑
p=0

(
(Ki + d− 2)− p− r

Ki − p− r

)
×

d−1∑
q=0

(
(Kj + d− 2)− q − s

Kj − q − s

)
(−1)p+q

(
d− 1

p

)(
d− 1

q

)
.

It remains to determine the value of this sum. Applying Equation (A.7) twice
gives

=
d−1∑
p=0

(
(Ki + d− 2)− p− r

d− 2

)(
d− 1

p

)
(−1)p×

d−1∑
q=0

(−1)q
(

(Kj + d− 2)− q − s
d− 2

)(
d− 1

q

)

=
d−1∑
p=0

(
(Ki + d− 2)− p− r

d− 2

)(
d− 1

p

)
(−1)p

(
Kj − s− 1

−1

)
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=

(
Kj − s− 1

−1

) d−1∑
p=0

(−1)p
(
d− 1

p

)(
(Ki + d− 2)− p− r

d− 2

)
=

(
Kj − s− 1

−1

)(
Ki − r − 1

−1

)
=

{
1 : Kj − s− 1 = −1 and Ki − r − 1 = −1

0 : otherwise,

=

{
1 : s = Kj, r = Ki

0 : otherwise,

Thus, we have found that h2
r+sαi,rαj,s has a coe�cient of 0 except when

r = Ki and s = Kj. Now we can write

Γξ4i ξ4j =
1

36
ξ4
i ξ

4
j

∑
|m|1≤`

1Bmh
2
Ki+Kj

αi,Ki
αj,Kj

=
1

36
ξ4
i ξ

4
j

∑
|m|1≤`

1Bmh
2
2(`−|m|1)+mi+mj

αi,Ki
αj,Kj

=
1

36
h4
`ξ

4
i ξ

4
j

∑
|m|1≤`

1Bmh
2
−2|m|1+mi+mj

αi,Ki
αj,Kj

=
1

36
h4
`ξ

4
i ξ

4
j

∑
|m|1≤`

1Bm

d∏
k=1
k 6=i,j

24mkαi,Ki
αj,Kj

|Γξ4i ξ4j | ≤
1

36
h4
`ξ

4
i ξ

4
j

d∏
k=1
k 6=i,j

16(1 +
1

π
ξk)

4.

Therefore, for some constant C2,∫
A`

|Γξ4i ξ4j |û0(ξ)2 dξ =

∫
A`

1

36
h4
`ξ

4
i ξ

4
j

d∏
k=1
k 6=i,j

16(1 +
1

π
ξk)

4û0(ξ)2 dξ

=
1

36
h4
`

∫
A`

ξ4
i ξ

4
j

d∏
k=1
k 6=i,j

16(1 +
1

π
ξk)

4û0(ξ)2 dξ
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≤ 1

36
C2h

4
`‖u0‖2

H4
mix

(Rd).

Terms of type |ξ|4ξ4
i

Next, we look at Γ|ξ|4ξ4i , that is, terms of type |ξ|4ξ4
i for i ∈ {1, . . . , d}. These

terms are

Γ|ξ|4ξ4i =
d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q×(
d− 1

p

)(
d− 1

q

)
1Ak

1Al

1

24
ρh2

`−1µt|ξ|4ξ4
i

(
h2
ki
αi,ki + h2

li
αi,li
)

=
1

24
ρh2

`−1µt|ξ|4ξ4
i

d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q×(
d− 1

p

)(
d− 1

q

)
1Ak

1Al

(
h2
ki
αi,ki + h2

li
αi,li
)

=
1

12
ρh2

`−1µt|ξ|4ξ4
i

d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
1Ak

1Al
h2
ki
αi,ki

=
1

12
ρh2

`−1µt|ξ|4ξ4
i

d−1∑
p=0

∑
|k|1=`−p

(−1)p
(
d− 1

p

)
1Ak

h2
ki
αi,ki

×
d−1∑
q=0

∑
|l|1=`−q

(−1)q
(
d− 1

q

)
1Al

=
1

12
ρh2

`−1µt|ξ|4ξ4
i

d−1∑
p=0

∑
|k|1=`−p

(−1)p
(
d− 1

p

)
1Ak

h2
ki
αi,ki .

We prove the last equality in the following lemma, which we shall recall again
in the next subsection.

Lemma 13. For all d ≥ 2,

d−1∑
q=0

∑
|l|1=`−q

(−1)q
(
d− 1

q

)
1Al

= 1A`
. (3.42)
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Proof. Fix a multi-index m. Due to the de�nition of the sets Al and A`,
each side of the equality is 0 whenever x ∈ Bm and |m|1 > `. Otherwise, the
problem reduces again to the counting of grids. By Equation (A.7),∑

Grids Ωl

with m≤l

(−1)q
(
d− 1

q

)

=
d−1∑
q=0

(# of grids Ωl with |l|1 = `− q)(−1)q
(
d− 1

q

)

=
d−1∑
q=0

(
(d− 1) + (`− q − |m|1)

`− q − |m|1

)
(−1)q

(
d− 1

q

)

=
d−1∑
q=0

(
(d− 1) + (`− q − |m|1)

d− 1

)
(−1)q

(
d− 1

q

)
=

(
`− |m|1

0

)
= 1.

Our work now entails counting the terms h2
ki
αi,ki which are part of the sum

on Bm. Fix a multi-index m and n ∈ N. The coe�cient of h2
nαi,n on Bm

must be ∑
Grids Ωk

with m≤k
and ki=n

(−1)p
(
d− 1

p

)
,

where p and q satisfy |k|1 = `− p and |l|1 = `− q. We can expand this as

d−1∑
p=0

(# of grids Ωk with |k|1 = `− p and ki = n)(−1)p
(
d− 1

p

)

=
d−1∑
p=0

(−1)p
(

(d− 2) + (`− p− |m|1 − (n−mi))

`− p− |m|1 − (n−mi)

)(
d− 1

p

)
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=
d−1∑
p=0

(−1)p
(

(Ki + d− 2)− p− n
d− 2

)(
d− 1

p

)
=

(
Ki − n− 1

−1

)
= 1

when n = Ki and 0 otherwise. Therefore,

Γ|ξ|4ξ4i =
1

12
ρh2

`−1µt|ξ|4ξ4
i

×
d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
1Ak

1Al
h2
ki
αi,ki

=
1

12
h2
Ki
αi,Ki

ρh2
`−1µt|ξ|4ξ4

i

=
1

12
h2
`−|m|1+mi

αi,Ki
ρh2

`−1µt|ξ|4ξ4
i

=
1

3
h2
−|m|1+mi

αi,Ki
ρh4

`µt|ξ|4ξ4
i

=
1

3

d∏
j=1
j 6=i

24mjαi,Ki
ρh4

`µt|ξ|4ξ4
i .

Taking the absolute value,

|Γ|ξ|4ξ4i | ≤
1

3

d∏
j=1
j 6=i

24mjρh4
`µt|ξ|4ξ4

i

≤ 1

3

d∏
j=1
j 6=i

16(1 +
1

π
ξj)

4ρh4
`µt|ξ|4ξ4

i .

Therefore, for some constant C3,∫
A`

|Γ|ξ|4ξ4i |û0(ξ)2 dξ ≤
∫
A`

1

3

d∏
j=1
j 6=i

16(1 +
1

π
ξj)

4ρh4
`µt|ξ|4ξ4

i û0(ξ)2 dξ
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≤ 1

3
ρh4

`µt

∫
A`

d∏
j=1
j 6=i

16(1 +
1

π
ξj)

4|ξ|4ξ4
i û0(ξ)2 dξ

≤ 1

3
ρh4

`µtC3‖u0‖2
H4
mix

(Rd).

Terms of type |ξ|8

Finally, we look at Γ|ξ|8 , that is, terms of type |ξ|8. These terms are

Γ|ξ|8 =
d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
1Ak

1Al

1

4
ρ2h4

`−1µ
2
t |ξ|8

=
1

4
ρ2h4

`−1µ
2
t |ξ|8

d−1∑
p=0

∑
|k|1=`−p

d−1∑
q=0

∑
|l|1=`−q

(−1)p+q
(
d− 1

p

)(
d− 1

q

)
1Ak

1Al

=
1

4
ρ2h4

`−1µ
2
t |ξ|8

d−1∑
p=0

∑
|k|1=`−p

(−1)p
(
d− 1

p

)
1Ak

2

=
1

4
ρ2h4

`−1µ
2
t |ξ|8

∑
|m|1≤`

1Bm .

Taking the absolute value,

|Γ|ξ|8| ≤
1

4
ρ2h4

`−1µ
2
t |ξ|8.

Therefore, for some constant C4,∫
A`

|Γ|ξ|8|û0(ξ)2 dξ ≤
∫
A`

1

4
ρ2h4

`−1µ
2
t |ξ|8û0(ξ)2 dξ

≤ 1

4
ρ2h4

`−1µ
2
t

∫
A`

|ξ|8û0(ξ)2 dξ

≤ 1

4
ρ2h4

`−1µ
2
tC4‖u0‖2

H4
mix

(Rd).
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Conclusion

In summary,

Ω1(h`) ≤
∫
A`

(
d∑
i=1

|Γξ8i |+
d∑
i=1

i−1∑
j=1

|Γξ4i ξ4j |+
d∑
i=1

|Γ|ξ|4ξ4i |+ |Γ|ξ8||

)
dξ

≤
d∑
i=1

1

144
C1h

4
`‖u0‖2

H4
mix

(Rd) +
d∑
i=1

i−1∑
j=1

1

36
C2h

4
`‖u0‖2

H4
mix

(Rd)+

d∑
i=1

1

3
ρh4

`µtC3‖u0‖2
H4
mix

(Rd) +
1

4
ρ2h4

`−1µ
2
tC4‖u0‖2

H4
mix

(Rd)

= d
1

144
C1h

4
`‖u0‖2

H4
mix

(Rd) +
d(d− 1)

2

1

36
C2h

4
`‖u0‖2

H4
mix

(Rd)+

d
1

3
ρh4

`µtC3‖u0‖2
H4
mix

(Rd) +
1

4
ρ2h4

`−1µ
2
tC4‖u0‖2

H4
mix

(Rd).

Therefore, Ω1(h`) = O(h4
`) when u0 ∈ H4

mix(Rd).

3.5.2 Rate of convergence of Ω2(h`)

De�ne C1(h`) = {(ξ1, . . . , ξd) : ξ1ξ2 . . . ξd ≥ πd

h`−d
} and C2(h`) = Rd \ C1(h`) \

A`. It is clear by de�nition of C1(h`) and C2(h`) that Rd \ A` ⊂ C1(h`) ∪
C2(h`).

Since |eq(ξ)tn| ≤ 1, we have

Ω2(h`) =

∫
Rd\A`

|eq(ξ)tnû0(ξ)|2 dξ

≤
∫
Rd\A`

|û0(ξ)|2 dξ

≤
∫
C1(h`)

|û0(ξ)|2 dξ +

∫
C2(h`)

|û0(ξ)|2 dξ.

On the domain C1(h`) we have 1 ≤ (ξ1ξ2...ξd)h`−d

πd and thus 1 ≤ (ξ41ξ
4
2 ...ξ

4
d)h4`−d

π4d .
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Therefore, we have for the �rst term:∫
C1(h`)

|û0(ξ)|2 dξ ≤ 1

π4d
h4
`−d

∫
C1(h`)

(ξ4
1ξ

4
2 . . . ξ

4
d)|û0(ξ)|2 dξ

≤
(

2

π

)4d

h4
`

∥∥∥∥ ∂2du0

∂x2
1∂x

2
2 . . . ∂x

2
d

∥∥∥∥2

2

Now we look at the second term. The structure of the set C2(h`) is less clear
in d dimensions than it was in 2 dimensions. Let's de�ne the auxiliary sets

C2,i(h`) := {(ξ1, . . . , ξd) : ξi ≥
π

h`
}.

Then following lemma gives us enough information about C2(h`) to �nish
the proof of the theorem.

Lemma 14. If ξ = (ξ1, . . . , ξd) ∈ C2(h`) then ξ ∈ C2,i(h`) for some i ∈
{1, . . . , d}. That is,

C2(h`) ⊂
d⋃
i=1

C2,i(h`).

Proof. Fix ξ ∈ C2(h`). Suppose, for the sake of contradiction, that ξi <
π
h`

for all i ∈ {1, . . . , d}. We proceed by showing that ξ must lie in A`, thus
contradicting ξ ∈ C2(h`). To show this, it is su�cient to �nd one Al ⊂ A`
such that ξ ∈ Al.

Since ξ ∈ C2(h`) we must have that ξ /∈ C1(h`). Therefore, ξ1ξ2 . . . ξd <
πd

h`−d
. Also, since ξi <

π
h`

for all i ∈ {1, . . . , d}, we have ξ ∈ A(`−1,...,`−1).

Furthermore, there must be some Al ⊂ A(`−1,...,`−1) which contains ξ and is
smallest in the sense that if k = (k1, . . . , kd) has ki < li for at least one i,
then ξ /∈ Ak. Then we can also say ξ ∈ Bl.

Now, it is su�cient to show that |l|1 ≤ `. This implies that ξ ∈ Bl ⊂ A` and
then we are done. Since ξ ∈ Bl we have, for each coordinate, 2li−1π ≤ ξi.
Taking the product over all i,

d∏
i=1

2li−1π = 2|l|1−dπd
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≤ ξ1 . . . ξd

≤ πd

h`−d

≤ πd2`−d.

Stringing the inequalities together gives 2|l|1−dπd ≤ πd2`−d and so |l|1 ≤ `.

Now, by the preceding lemma, we have the inequality∫
C2(h`)

|û0(ξ)|2 dξ ≤
d∑
i=1

∫
C2,i(h`)

|û0(ξ)|2 dξ

≤ 1

π4
h4
`

d∑
i=1

∫
C2,i(h`)

ξ4
i |û0(ξ)|2 dξ

≤ 1

π4
h4
`

d∑
i=1

∥∥∥∥∂2u0

∂x2
i

∥∥∥∥2

2

.

Adding the two parts of Ω2(h`) then gives

Ω2(h`) ≤
∫
C1(h`)

|û0(ξ)|2 dξ +

∫
C2(h`)

|û0(ξ)|2 dξ

≤ h4
`

((
2

π

)4d ∥∥∥∥ ∂2du0

∂x2
1∂x

2
2 . . . ∂x

2
d

∥∥∥∥2

2

+
1

π4

d∑
i=1

∥∥∥∥∂2u0

∂x2
i

∥∥∥∥2

2

)
.

In summary Ω2(h`) = O(h4
`) when u0 ∈ H4

mix(Rd). Thus,

‖u(x, tn)− (σvtn)(x)‖2
2 = Ω1(h`) + Ω2(h`)

= O(h4
`) +O(h4

`)

= O(h4
`)

when u0 ∈ H4
mix(Rd) and so ‖u(x, tn)− (σvtn)(x)‖2 = O(h2

`).
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Chapter 4

Numerical results for

constant-coe�cient equations

We now present some numerical results for the parabolic method applied to
the solution of constant-coe�cient equations of the form

ut +
d∑

i,j=1

aij
∂2u

∂xi∂xj
+

d∑
i=1

bi
∂u

∂xi
= 0 (4.1)

in d-dimensional space, where (aij) is a real, positive de�nite d×d matrix and
(bi) is a real d-vector. Constant-coe�cient equations make useful test cases
because analytic solutions are available by means of Fourier analysis. Note
that Equation (4.1) is now of backward parabolic type, so that the problem is
only well-posed when solved backwards from some terminal time t = T . We
choose this convention to be consistent with option-pricing problems from
�nance, which are naturally backward parabolic.

We begin with the simplest example of (4.1), the heat equation in Rd. We
then allow aij 6= 0 for i 6= j and later bi 6= 0 to show that the presence of
cross-derivative and drift terms in the PDE does not hamper the convergence
of the parabolic method.

Our goal is to compare the parabolic method with both its sparse grid coun-
terpart, the elliptic method, and the conventional Crank-Nicolson method.
We look at the rate of convergence of the error at the midpoint of the mesh
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Level Error Ratio Mean ratio

1 1.0

2 0.5 2 2

3 0.1 5
√

2× 5 ≈ 3.16

Table 4.1: Example of mean ratio

and the run time of the methods. We de�ne the spatial mesh spacing for the
level-` Crank-Nicolson solution to be 2−(`−(d−1)) in each coordinate direction,
which is the smallest among the mesh spacings of all sparse grids at level `.
Thus, it is the coarsest conventional mesh which contains all sparse grids in
the level-` combination.

We present results for dimensions 2, 4, and 6. The results for each dimension
are presented in order of increasing mesh re�nement. We give the percent
error in the approximate solution at the midpoint of the mesh. To assess
the rate of convergence, we calculate the running mean error ratio. This is
the geometric mean of the ratios of the errors at successive mesh re�nement
levels. In table headings, we call this quantity the mean ratio. For example,
suppose approximate solutions are calculated at levels 1 through 3, with
respective errors 1.0, 0.5, 0.1. Table 4.1 demonstrates the calculation of
the mean ratio. The mean ratio serves as a device to evaluate the rate of
convergence. When quadratic convergence is observed, the mean ratio should
converge to 4. When linear convergence is observed, the mean ratio should
converge to 2.

Throughout this chapter, we take

[0, 2π]d × [0, 1]

as the domain and

u(x1, . . . , xd, T ) = cos(x1 + . . . xd)

as the terminal condition. The boundary conditions are set to be 2π-periodic
so that the exact solution can be recovered by the inverse Fourier trans-
form.
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4.1 Implementation details

The following results were obtained using a code written in C++. Although
sparse grid methods are popular for their ease of parallelization, discussion
of load balancing is beyond the intent of this work, and our results were
obtained by single-threaded execution.

We use the Crank-Nicolson method for time discretization and �x the time
step

∆t = 2∆xmin,

where ∆xmin is the smallest spatial mesh spacing used in the sparse grid
discretization. The ratio 2 was chosen to avoid Crank-Nicolson oscillations
(see [Smi85, p. 122]).

Systems of equations were solved by the iterative Biconjugate Gradient Sta-
bilized (BiCGSTAB) method, except when the matrix is tridiagonal, in which
case we use the Thomas algorithm. For each system of equations Ax = b,
the stopping criterion used for the BiCGSTAB algorithm was to stop when
‖Ax − b‖∞ < 5 × 10−11. We refer the reader to [Saa03, p. 244] for de-
tails on the BiCGSTAB algorithm. Note that the matrix is tridiagonal for
two-dimensional sparse grids Ωl when either l1 = 1 or l2 = 1. These are
the same grids which are the most time-consuming for the iterative solver,
since the mesh spacing in the other coordinate direction must consequently
be very �ne. Matrices were stored in compressed sparse row format [Saa03,
p. 92].

4.2 Heat equation

The simplest example of Equation (4.1) is the heat equation:

ut +
∂2u

∂x2
1

+ . . .+
∂2u

∂x2
d

= 0. (4.2)

Table 4.2 presents a comparison of the results of the parabolic method and
the conventional Crank-Nicolson method. Table 4.3 presents a comparison
of the results of the parabolic method and the elliptic method.
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Parabolic method Crank-Nicolson method

d maxi Level Pct. error at Mean Total Pct. error at Mean Total

Ni (π, . . . , π) ratio time (s) (π, . . . , π) ratio time (s)

2 2 2 45.542300 0.00 45.542300 0.00

2 4 3 7.974991 5.71 0.02 10.438467 4.36 0.01

2 8 4 1.181201 6.21 0.08 2.548872 4.23 0.05

2 16 5 0.095842 7.80 0.34 0.633407 4.16 0.37

2 32 6 0.025662 6.49 1.54 0.158113 4.12 4.41

2 64 7 0.018806 4.75 7.14 0.039513 4.10 40.83

2 128 8 0.007798 4.24 32.16 0.009877 4.08 478.39

2 256 9 0.002724 4.01 147.15

2 512 10 0.000874 3.89 646.50

4 2 4 107.272117 0.06 107.272117 0.06

4 4 5 1.109096 96.72 0.84 20.919431 5.13 0.62

4 8 6 3.602137 5.46 8.88 4.909603 4.67 20.44

4 16 7 1.362523 4.29 66.86 1.208130 4.46 1496.61

4 32 8 0.352762 4.18 389.21

4 64 9 0.070389 4.33 1942.78

6 2 6 182.122227 1.31 182.122227 1.32

6 4 7 36.188627 5.03 26.59 30.100689 6.05 36.00

6 8 8 13.470628 3.68 294.75

Table 4.2: Comparison of parabolic and Crank-Nicolson methods, heat equa-
tion (4.2).
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Parabolic method Elliptic method

d maxi Level Pct. error at Mean Total Pct. error at Mean Total

Ni (π, . . . , π) ratio time (s) (π, . . . , π) ratio time (s)

2 2 2 45.542300 0.00 45.542300 0.00

2 4 3 7.974991 5.71 0.02 13.574913 3.35 0.02

2 8 4 1.181201 6.21 0.07 4.581978 3.15 0.09

2 16 5 0.095842 7.80 0.33 1.500749 3.12 0.43

2 32 6 0.025662 6.49 1.54 0.470608 3.14 2.42

2 64 7 0.018806 4.75 7.11 0.142169 3.17 16.58

2 128 8 0.007798 4.24 36.55 0.041728 3.21 121.58

2 256 9 0.002724 4.01 168.26 0.011982 3.25 789.90

2 512 10 0.000874 3.89 694.63

4 2 4 107.272117 0.06 107.272117 0.06

4 4 5 1.109096 96.72 0.87 39.906062 2.69 1.07

4 8 6 3.602137 5.46 8.19 17.422180 2.48 20.87

4 16 7 1.362523 4.29 64.19 7.402381 2.44 772.02

4 32 8 0.352762 4.18 381.58

4 64 9 0.070389 4.33 1804.27

6 2 6 182.122227 1.32 182.122227 1.44

6 4 7 36.188627 5.03 30.32 79.294021 2.30 56.02

6 8 8 13.470628 3.68 329.56 39.382476 2.15 6524.34

Table 4.3: Comparison of parabolic and elliptic methods, heat equation (4.2).

87



4.3 Di�usion equation with unit diagonal

Next, we present results for the di�usion equation

ut +
d∑

i,j=1

aij
∂2u

∂xi∂xj
= 0, (4.3)

which is precisely Equation (4.1) with the drift coe�cients bi set to 0. We
take

(aij) =


1 −0.06 −0.02 −0.02 −0.06 −0.02

−0.07 1 −0.01 −0.02 0.00 −0.06
−0.02 −0.01 1 0.11 0.13 −0.13
−0.02 −0.01 0.12 1 −0.02 −0.09
−0.07 0.00 0.15 −0.02 1 −0.05
−0.03 −0.06 −0.13 −0.09 −0.05 1

 ,

which was randomly generated so that its eigenvalues lie in [0.5, 1.5] and its
diagonal elements aii are 1. The elements of the preceding matrix have been
rounded to the second decimal place for presentation in this paper.

Table 4.4 presents a comparison of the results of the parabolic method and
the conventional Crank-Nicolson method. Table 4.5 presents a comparison
of the results of the parabolic method and the elliptic method.

4.4 Heat equation with non-zero drift

Next, we present results for the equation

ut +
∂2u

∂x2
1

+ . . .+
∂2u

∂x2
d

+
d∑
i=1

bi
∂u

∂xi
= 0, (4.4)

which is precisely Equation (4.1) with diagonal di�usion matrix (aij). We
take

b =


−0.11
0.15
−0.10
−0.15
0.05
−0.09

 ,
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Parabolic method Crank-Nicolson method

d maxi Level Pct. error at Mean Total Pct. error at Mean Total

Ni (π, . . . , π) ratio time (s) (π, . . . , π) ratio time (s)

2 2 2 34.574188 0.00 34.574188 0.00

2 4 3 5.097704 6.78 0.02 7.729290 4.47 0.01

2 8 4 0.416154 9.11 0.08 1.875116 4.29 0.05

2 16 5 0.108418 6.83 0.34 0.465210 4.20 0.37

2 32 6 0.080125 4.56 1.55 0.116080 4.15 4.33

2 64 7 0.033284 4.01 7.54 0.029006 4.12 51.62

2 128 8 0.011634 3.79 36.86 0.007251 4.10 532.04

2 256 9 0.003737 3.69 168.80

2 512 10 0.001141 3.63 700.40

4 2 4 102.665044 0.07 102.665044 0.07

4 4 5 1.516067 67.72 0.86 20.074562 5.11 0.61

4 8 6 2.986756 5.86 8.10 4.715660 4.67 17.37

4 16 7 1.040094 4.62 60.64 1.160690 4.46 1489.16

4 32 8 0.221544 4.64 371.96

4 64 9 0.023604 5.34 1939.62

6 2 6 97.414360 1.31 97.414360 1.32

6 4 7 14.574647 6.68 26.38 16.671662 5.84 36.30

6 8 8 4.648685 4.58 293.79

Table 4.4: Comparison of parabolic and Crank-Nicolson methods, di�usion
equation with unit diagonal (4.3).
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Parabolic method Elliptic method

d maxi Level Pct. error at Mean Total Pct. error at Mean Total

Ni (π, . . . , π) ratio time (s) (π, . . . , π) ratio time (s)

2 2 2 34.574188 0.00 34.574188 0.00

2 4 3 5.097704 6.78 0.02 9.360147 3.69 0.02

2 8 4 0.416154 9.11 0.08 2.389173 3.80 0.09

2 16 5 0.108418 6.83 0.33 0.023611 11.36 0.42

2 32 6 0.080125 4.56 1.52 0.635800 2.72 2.56

2 64 7 0.033284 4.01 7.42 0.620680 2.23 17.98

2 128 8 0.011634 3.79 37.52 0.456587 2.06 123.52

2 256 9 0.003737 3.69 173.48 0.299811 1.97 804.04

2 512 10 0.001141 3.63 723.87

4 2 4 102.665044 0.06 102.665044 0.07

4 4 5 1.516067 67.72 0.85 38.237027 2.68 1.06

4 8 6 2.986756 5.86 8.14 13.180542 2.79 19.92

4 16 7 1.040094 4.62 61.71 1.176185 4.44 778.40

4 32 8 0.221544 4.64 376.67

4 64 9 0.023604 5.34 1796.32

6 2 6 97.414360 1.36 97.414360 1.39

6 4 7 14.574647 6.68 29.12 41.343939 2.36 56.40

6 8 8 4.648685 4.58 320.27

Table 4.5: Comparison of parabolic and elliptic methods, di�usion equation
with unit diagonal (4.3).
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where the elements have b have been randomly generated and rounded to
the second decimal place for presentation in this paper. Table 4.6 presents
a comparison of the results of the parabolic method and the conventional
Crank-Nicolson method. Table 4.7 presents a comparison of the results of
the parabolic method and the elliptic method.
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Parabolic method Crank-Nicolson method

d maxi Level Pct. error at Mean Total Pct. error at Mean Total

Ni (π, . . . , π) ratio time (s) (π, . . . , π) ratio time (s)

2 2 2 45.601829 0.00 45.601829 0.00

2 4 3 7.829846 5.82 0.02 10.452772 4.36 0.01

2 8 4 1.091988 6.46 0.08 2.552396 4.23 0.05

2 16 5 0.059489 9.15 0.35 0.634284 4.16 0.37

2 32 6 0.038316 5.87 1.62 0.158332 4.12 4.60

2 64 7 0.022865 4.57 7.92 0.039568 4.10 48.03

2 128 8 0.009037 4.14 38.05 0.009891 4.08 524.48

2 256 9 0.003089 3.94 170.64

2 512 10 0.000980 3.83 691.53

4 2 4 110.061682 0.06 110.061682 0.06

4 4 5 0.584260 188.38 0.89 21.419973 5.14 0.62

4 8 6 3.902218 5.31 8.23 5.023601 4.68 17.49

4 16 7 1.437905 4.25 62.77 1.235955 4.47 1474.96

4 32 8 0.362881 4.17 381.44

4 64 9 0.069148 4.37 1916.44

6 2 6 187.193572 1.26 187.193572 1.29

6 4 7 38.730570 4.83 27.07 30.781708 6.08 36.43

6 8 8 14.112716 3.64 296.93

Table 4.6: Comparison of parabolic and Crank-Nicolson methods, heat equa-
tion with drift (4.4).
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Parabolic method Elliptic method

d maxi Level Pct. error at Mean Total Pct. error at Mean Total

Ni (π, . . . , π) ratio time (s) (π, . . . , π) ratio time (s)

2 2 2 45.601829 0.00 45.601829 0.00

2 4 3 7.829846 5.82 0.02 14.436439 3.16 0.02

2 8 4 1.091988 6.46 0.08 5.767463 2.81 0.10

2 16 5 0.059489 9.15 0.35 2.551510 2.61 0.43

2 32 6 0.038316 5.87 1.59 1.252419 2.46 2.56

2 64 7 0.022865 4.57 7.38 0.669192 2.33 17.26

2 128 8 0.009037 4.14 39.37 0.375170 2.23 125.30

2 256 9 0.003089 3.94 180.09 0.214132 2.15 799.39

2 512 10 0.000980 3.83 717.01

4 2 4 110.061682 0.06 110.061682 0.06

4 4 5 0.584260 188.38 0.90 42.451481 2.59 1.08

4 8 6 3.902218 5.31 8.21 19.842669 2.36 20.92

4 16 7 1.437905 4.25 64.21 9.515864 2.26 783.39

4 32 8 0.362881 4.17 386.02

4 64 9 0.069148 4.37 1858.70

6 2 6 187.193572 1.27 187.193572 1.34

6 4 7 38.730570 4.83 26.57 84.616034 2.21 50.06

6 8 8 14.112716 3.64 289.43

Table 4.7: Comparison of parabolic and elliptic methods, heat equation with
drift (4.4).
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Chapter 5

Applications to option pricing:

Black-Scholes model

We now apply the techniques of the previous chapter to the pricing of options
on multiple risky assets under the multidimensional Black-Scholes model. Let
{S(i)

t }di=1 be a collection of d risky assets satisfying

dS
(i)
t = rS

(i)
t dt+ σiS

(i)
t dW

(i)
t , i ∈ {1, . . . , d}, (5.1)

where W is Brownian motion under the risk-neutral measure P̃ with correla-
tion matrix ρ. Given a payo� function p : Rd → R, the price V of a derivative
security paying p(ST ) at time T satis�es the problem

∂V

∂t
+

1

2

d∑
i,j=1

ρijσiσjsisj
∂2V

∂si∂sj
+

d∑
i=1

rsi
∂V

∂si
− rV = 0, (0,∞)d × (0, T ),

V (s, T ) = p(s).
(5.2)

By Fichera theory, no boundary condition is required on the near boundary.
Since we are solving on a computer, we must impose an arti�cial bound-
ary condition on a far boundary. Choice of the location and data for the
arti�cial boundary have been considered for the multidimensional Black-
Scholes equation by Kangro and Nicolaides [KN00], who found that imposing
V (s, t) = p(s) on an arti�cial boundary which is 4 times the strike price pro-
duces reasonable results.
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We consider a model with risk-free interest rate r = 0.09 and 5 risky assets
having the following volatilities σ and correlations ρ. The correlation matrix
ρ was taken to be the identity matrix since we have already shown that the
introduction of correlation does not degrade the convergence of the parabolic
method.

σ =


0.318
0.243
0.212
0.180
0.130

 ρ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (5.3)

5.1 Monte Carlo simulation

Having previously established the bene�ts of the parabolic method over the
elliptic and full grid methods, we compare the parabolic method to Monte
Carlo simulation, which is the only practical alternative for high-dimensional
problems. For the multidimensional Black-Scholes model, the risk-neutral
distribution of the underlying asset prices at time T is known explicitly; it
is not needed to discretize the stochastic di�erential equation (SDE) (5.1) to
perform a Monte Carlo simulation. However, it is usually the case that if the
distribution of the asset prices is known explicitly, Monte Carlo simulation
or PDE methods are not needed to determine the price anyway. Thus, we
believe the most just comparison is made by discretizing the SDEs in the
Monte Carlo simulation by Euler's method, since that would have to be done
in realistic situations.

5.1.1 Choice of ∆t

We must choose a suitable time step ∆t for the discretization of the SDEs.
An unnecessarily small time step yields a small time discretization error but
makes the method of simulation seem slower than it need be. A balance must
be struck. We choose the time step ∆t so that the time discretization error is
of the same order of magnitude as the standard error of the simulation.

Note that ∆t should be a function of the number N of simulation paths.
When increasing N , we must increase the number of time steps so that the
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time discretization error remains of the same order as the standard error of
the simulation. Monte Carlo theory suggests that ∆t should be proportional
to 1√

N
. Therefore, for a simulation with N paths, we take

∆t = κ
1√
N

(5.4)

for some constant of proportionality κ.

To choose κ we priced an at-the-money European call option expiring at
T = 1 on an asset St which satis�es

dSt = σ(t)St dWt, S0 = 1,

for various choices of σ : [0, 1] → [0, 1]. We priced each option with a
continuous-time simulation having N = 1,000,000 paths, using a single ran-
dom draw for each path, and observed the standard error of the simula-
tion. Then we priced each option with a discrete-time simulation having
N = 1,000,000 paths and various numbers of time steps. Thus, we could as-
certain the number of time steps needed so that the error of the discrete-time
simulation is near the standard error of the continuous-time simulation. We
found that 500 time steps were needed to cover several reasonable choices of
σ. Therefore, κ must be 2:

∆t =
1

500

√
1,000,000

N
=

2√
N
. (5.5)

5.2 A note about non-smooth data

It is well known that non-smooth data degrades the rate of convergence of
numerical methods for PDE. This is true even for conventional methods, but
is more pronounced in the case of sparse grid methods. In option-pricing
problems, the data is rarely, if ever, a smooth function. Instead, the data
usually has a discontinuous derivative (e.g., standard call and put options)
or is discontinuous itself (e.g., digital options).

Rates of convergence of the Crank-Nicolson method for one- and two-dimensional
problems with non-smooth data have been reviewed by Pooley, Vetzal, and
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Forsyth [PVF03], who found that�denoting the spatial mesh spacing by
h�O(h2) convergence can be obtained when the Crank-Nicolson method is
augmented in two ways. First, one of several smoothing techniques is ap-
plied to the data. Second, the time-stepping method of Rannacher [Ran84]
is employed, by which Crank-Nicolson steps are preceded by a small number
of steps of the fully implicit method. Among the smoothing techniques dis-
cussed by the authors is one introduced by Tavella and Randall [TR00], who
propose that the grid be constructed so that any discontinuities in the data
(or its derivatives) lie midway between adjacent grid points. Another of the
smoothing techniques discussed is a technique of Heston and Zhou [HZ00] by
which the data is averaged in some neighborhood of the grid point, instead
of simply evaluated at the grid point.

It has been recognized that the same di�culties persist for the sparse grid
combination technique when the data are not smooth. For the case of the
basket call option, Leentvaar and Oosterlee [LO08] propose coordinate trans-
formations by which the grid is aligned with the points of non-di�erentiability
in the payo� max(

∑d
i=1 µiSi−K, 0). The proposed transformations take ad-

vantage of the structure of this particular payo� function by setting the
�rst transformed variable to x1 =

∑d
i=1 µiSi, so that all points of non-

di�erentiability are aligned with the grid. The method is not extensible
to arbitrary payo�s.

5.3 Portfolio of European call options

We price a portfolio of d European call options on assets {S(i)
t }di=1 having

strikes {Ki}di=1 for d = 2, 3, 4, 5. Each option is weighted in the portfolio by
a weight µi. Thus, the payo� is

p(S
(1)
T , . . . , S

(d)
T ) = µ1 max(S

(1)
T −K1, 0) + . . .+ µd max(S

(d)
T −Kd, 0). (5.6)

We take (Ki) = (1, 2, 1, 1, 1.25), (µi) = (1, 2, 1, 3, 2), and (S
(i)
0 ) = (1, 1, 1, 1, 1).

See Figure 5.1.

This example has a few advantages. First, we can easily compute the exact
solution by the Black-Scholes formula. Second, it is typical of many exam-
ples of options in that it has a piecewise linear payo� and is continuous but
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Figure 5.1: The payo� (5.6) for d = 2.
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not di�erentiable. Third, it is interesting from a practical viewpoint. The
points of nonsmoothness of its payo� are not constrained to a single hyper-
plane.

Tables 5.1, 5.2, 5.3, and 5.4 compare the percent error of the parabolic
method with the percent error of simulation for dimensions d = 2, 3, 4, and 5
respectively. For each dimension we calculate the parabolic method results
up through level 12. We see that the accuracy of the parabolic method sur-
passes that of simulation by level 12 for dimensions d = 2, 3, 4. Simulation is
more accurate than the level 12 solution for d = 5, but, given the observed
convergence rate of the parabolic method, it can be seen that the parabolic
method will surpass simulation at a subsequent level. Calculating further
levels should be easier with the superior hardware that would be used in
practice.

We observe that the level at which the accuracy of the parabolic method
surpasses simulation increases with increasing dimension. This limits the
practicality of the method for very high dimensional problems. For dimen-
sions d = 2, 3, 4, and 5 the method appears to provide a useful alternative
to simulation. The parabolic method has the advantage that all levels lower
than a given level can be computed with a fraction of additional e�ort. This
shows which digit the sequence of approximate solutions has stabilized at.
Since the result from Monte Carlo simulation is random, it does not share
this quality.
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Monte Carlo results

Paths 50,000

Run time (s) 155

Pct. Error 0.1144

d maxi Level Percent Ratio Total

Ni error of errors time (s)

2 2 2 100.1986 0.01

2 4 3 134.7256 0.74 0.03

2 8 4 33.2592 4.05 0.08

2 16 5 13.3117 2.50 0.22

2 32 6 2.9543 4.51 0.61

2 64 7 0.5872 5.03 1.69

2 128 8 0.1428 4.11 4.72

2 256 9 0.0354 4.04 13.21

2 512 10 0.0088 4.04 44.19

2 1024 11 0.0022 4.05 154.13

Table 5.1: Portfolio of call options, d = 2 (Equation (5.6)). Left: Monte
Carlo simulation results. Right: Parabolic method results.

Monte Carlo results

Paths 190,000

Run time (s) 1352

Pct. Error 0.5202

d maxi Level Percent Ratio Total

Ni error of errors time (s)

3 2 3 1.3504 0.02

3 4 4 118.8457 0.01 0.07

3 8 5 46.7422 2.54 0.32

3 16 6 30.1112 1.55 1.24

3 32 7 11.5237 2.61 4.11

3 64 8 3.0355 3.80 12.91

3 128 9 0.6037 5.03 39.82

3 256 10 0.1432 4.21 125.06

3 512 11 0.0353 4.06 398.51

3 1024 12 0.0090 3.94 1346.78

Table 5.2: Portfolio of call options, d = 3 (Equation (5.6)). Left: Monte
Carlo simulation results. Right: Parabolic method results.
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Monte Carlo results

Paths 180,000

Run time (s) 1164

Pct. Error 0.2619

d maxi Level Percent Ratio Total

Ni error of errors time (s)

4 2 4 45.9008 0.03

4 4 5 69.8628 0.66 0.12

4 8 6 89.4865 0.78 0.50

4 16 7 4.4726 20.01 2.15

4 32 8 26.9241 0.17 8.42

4 64 9 9.9436 2.71 29.40

4 128 10 2.7260 3.65 103.79

4 256 11 0.5151 5.29 365.00

4 512 12 0.1189 4.33 1273.92

Table 5.3: Portfolio of call options, d = 4 (Equation (5.6)). Left: Monte
Carlo simulation results. Right: Parabolic method results.

Monte Carlo results

Paths 380,000

Run time (s) 3853

Pct. Error 0.2327

d maxi Level Percent Ratio Total

Ni error of errors time (s)

5 2 5 63.5985 0.08

5 4 6 61.1610 1.04 0.41

5 8 7 157.5310 0.39 2.45

5 16 8 99.8259 1.58 11.47

5 32 9 3.2644 30.58 49.43

5 64 10 14.7043 0.22 196.22

5 128 11 2.7305 5.39 822.05

5 256 12 0.5541 4.93 3755.25

Table 5.4: Portfolio of call options, d = 5 (Equation (5.6)). Left: Monte
Carlo simulation results. Right: Parabolic method results.
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Chapter 6

Applications to option pricing:

LIBOR market model

Market models are a class of interest rate models whose distinguishing feature
is that they directly describe market-observable interest rates. This is in
contrast to earlier models which give the evolution of an instantaneous short
rate or a collection of instantaneous forward rates, both of which are not
quoted in the market. Among the class of market models are the LIBOR
market model (LMM), introduced in 1997 separately by Brace, Gat¡rek, and
Musiela [BGM97] and by Miltersen, Sandmann, and Sondermann [MSS97],
and the swap market model of Jamshidian [Jam97].

In this chapter we apply the sparse grid combination technique to the solution
of a partial di�erential equation for the pricing of interest rate derivatives
under the LMM. The number of spatial dimensions of the PDE is exactly
the number of forward LIBOR rates upon which the payo� of the derivative
depends. We look at the ratchet caplet, a caplet whose strike is a functional
of LIBOR rates which have already reset.

6.1 Setup

Let T0 < . . . < TN+1 ≤ T indicate a set of dates with �xed tenor δ = Tn+1−Tn
0 before a �nite trading horizon T . We denote by B(t, T ) the price at time t
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Figure 6.1: The tenor structure of the LIBOR market model.

of a zero-coupon bond which pays 1 at time T . We denote by L(t, Tn, Tn+1)
the simple rate of interest which can be locked in at time t for borrowing over
the interval [Tn, Tn+1] by trading in zero-coupon bonds maturing at times Tn
and Tn+1. The absence of arbitrage implies (see [Shr04, p. 436]) that

1 + δL(t, Tn, Tn+1) =
B(t, Tn)

B(t, Tn+1)
. (6.1)

We can unambiguously write Lnt := L(t, Tn, Tn+1). Figure 6.1 illustrates this
setup.

Let PTn+1 denote the Tn+1-forward measure, i.e., the risk-neutral measure
corresponding to the numéraire B(t, Tn+1). By de�nition, asset prices dis-
counted by the numéraire are martingales. Therefore, Equation 6.1 demands
that Lnt be a martingale under the Tn+1-forward measure. We assume that
Lnt has lognormal dynamics under the Tn+1-forward measure. If W n+1 is
Brownian motion under PTn+1 and σn(t) : [0, Tn]→ [0,∞) is a deterministic
volatility function, then we assume

dLnt = Lnt σn(t) dW n+1
t , 0 ≤ t ≤ Tn.
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In order to price more complicated securities which depend on multiple for-
ward rates we need to consider all LIBOR rates under a single measure.
For this purpose, we model all rates under the terminal measure PTN+1 , the
forward measure associated with the �nal maturity. The terminal measure
is the natural forward measure for the given time horizon since rates of all
maturities can be modeled. However, only the LIBOR rate L(t, TN , TN+1) is
a martingale under this measure. The forward rates which reset prior to TN
have nonzero drifts under the terminal measure. An application of Girsanov's
theorem gives the drifts in explicit form, as a functional of the LIBOR rates.
We have

dLnt
Lnt

= −
N∑

k=n+1

δσk(t)L
k
t

1 + δLkt
σn(t) dt+ σn(t) dWt, 0 ≤ t ≤ Tn, (6.2)

where Wt = (W 1
t , . . . ,W

N+1
t ) is a Brownian motion under PTN+1 . The calcu-

lation of the drifts is detailed in the appendix.

6.2 Ratchet caplets

A ratchet caplet is a special kind of caplet for which the strike depends on
the values of already-reset forward LIBOR rates. To be concrete, let T0 be
the reset date of the �rst caplet so that T1, ..., TN are the payment dates.
Then the payment of a ratchet caplet with notional P at time TN+1 is

Pδ(LNTN −KN)+,

where

KN = β(aLN−1
TN−1

+ bKN−1 + c)+,

K1 = 0,

for constants β, a, b, c ∈ R �xed by the contract.

We will call a ratchet caplet for which the strike depends on a single previously-
reset LIBOR rate a simple ratchet caplet. A simple ratchet caplet with no-
tional P on the interval [TN , TN+1] pays

Pδ(LNTN − β(aLN−1
TN−1

+ c)+)+
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Figure 6.2: Payo� structure and pricing of a simple ratchet caplet.

at time TN+1, which is precisely a ratchet caplet with b = 0. Figure 6.2
shows the payo� in the context of the tenor structure described earlier. Note
that the ratchet caplet lacks the closed-form pricing formula of a regular
caplet.

6.3 The LIBOR market model PDE

There is scant literature covering implementations of the LIBOR market
model using partial di�erential equations. One of the �rst papers to ap-
pear on the topic was by Pietersz in 2002 [Pie02]. Pietersz invokes the
Feynman-Kac theorem to derive one- and two-dimensional PDEs for pric-
ing caplets and simple ratchet caplets. The paper did not discuss numerical
methods. In 2004, Blackham applied sparse grid methods to the solution of
the LIBOR market model PDE with success for three- and four-dimensional
products. More recently in 2011, two papers by Pascucci, Suárez-Taboada,
and Vázquez [PSTV11] and Suárez-Taboada and Vázquez [STV12] give a
numerical method for the solution of the ratchet cap problem by means of
PDE.
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6.3.1 Derivation

We now derive the partial di�erential equation governing the price of a deriva-
tive security under the LIBOR market model. Consider an interest rate
derivative with price Ct at time t whose payo� CT at time T is a functional
of the LIBOR rates {LiT}Ni=0. As a tradable asset, its price discounted by
the zero-coupon bond expiring at time T must be a martingale under the
terminal measure PT :

Πt ,
Ct

B(t, T )
= ET [CT |Ft]

By the Markov property, we can write

Πt = u(L1
t , . . . , L

N
t , t)

for some function u. Upon taking the di�erential of Πt and using the fact
that Πt must have zero drift, we see that u must satisfy

∂u

∂t
+

1

2

N∑
i,j=1

ρij(t)σi(t)σj(t)LiLj
∂2u

∂Li∂Lj
+

N∑
i=1

µi(t)Li
∂u

∂Li
= 0, (6.3)

where

µi(t) = −

(
N∑

k=i+1

δLk(t)

1 + δLk(t)
ρik(t)σk(t)

)
σi(t).

See the appendix for a discussion of how to impose boundary conditions so
that the problem is well-posed.

6.4 Results

We now present results for the pricing of ratchet caplets by solution of Equa-
tion (6.3). We consider a setup of N + 1 quarterly (δ = 0.25) LIBOR rates
{L(t, Ti, Ti+1)}Ni=0. We take T0 = 0.25.

We now detail our choice of volatility and correlation structure. For the
volatility σn(t) of the forward LIBOR rate L(t, Tn, Tn+1) we use parametric
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linear-exponential volatilities (see [Reb12, p. 167]). That is,

σn(t) =

{
(a+ b(Tn − t)) exp(−c(Tn − t)) + d 0 ≤ t < Tn,
0 t ≥ Tn,

for which we take
a = 0.2, b = 0.05,
c = 2, d = 0.18.

For the instantaneous correlations ρij(t) we choose the constant-in-time para-
metric form

ρij(t) = exp(−β|Ti − Tj|),

for which we take β = 0.2 (see [Reb12, p. 177]).

We use the following parameters for the ratchet caplet payo�:

Ka = 0.09

Kb = 1

Kc = 0.03

Kβ = 0.3

We now present results for the pricing of a ratchet caplet by solution of
Equation (6.3). Tables 6.1, 6.2, 6.3, and 6.4 present the results of Monte
Carlo simulation and the parabolic method side-by-side for dimensions d =
2, 3, 4, and 5 respectively. The superior relative performance of the parabolic
method can be seen for lower dimensions. For d = 2 we observe that 4 digits
have stabilized in the parabolic method results in 1154 seconds, while sim-
ulation still has a standard error of approximately 0.0005 after nearly two
hours. Furthermore, the standard error is only a probabilistic estimate and
cannot be interpreted in the same way as the stabilization of digits in the
parabolic method results. On the other hand, it appears that the mesh re�ne-
ment level at which the accuracy of the parabolic method surpasses that of
simulation is again increasing with increasing dimension. From the sequence
of parabolic method, results it appears that simulation and the parabolic
method are likely comparable in accuracy during the given time frame for
d = 4. We expect the accuracy of the parabolic method to surpass simulation
with further run time. For d = 5 it appears that simulation is likely more
accurate during the given time frame. With further run time we expect the
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Monte Carlo results

Paths 20,000

Run time (s) 1092

Price 0.687634

Standard error 0.001769

d maxi Level Price Total

Ni time (s)

2 2 2 0.972359 0.0

2 4 3 0.698168 0.1

2 8 4 0.697712 0.2

2 16 5 0.676337 0.5

2 32 6 0.687294 1.4

2 64 7 0.687744 3.5

2 128 8 0.687844 9.9

2 256 9 0.687841 27.5

2 512 10 0.687681 86.6

2 1024 11 0.687615 296.4

2 2048 12 0.687602 1154.6

Table 6.1: Ratchet caplet, d = 2. Left: Monte Carlo simulation results.
Right: Parabolic method results.

parabolic method to be comparable to simulation, with the additional ad-
vantage that it produces a sequence of deterministic approximations rather
than a standard error with a probabilistic interpretation.
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Monte Carlo results

Paths 50,000

Run time (s) 4861

Price 0.518863

Standard error 0.001213

d maxi Level Price Total

Ni time (s)

3 2 3 0.887213 0.1

3 4 4 0.532552 0.2

3 8 5 0.539096 0.8

3 16 6 0.536725 2.8

3 32 7 0.512493 9.4

3 64 8 0.513775 29.9

3 128 9 0.516846 95.1

3 256 10 0.517044 312.5

3 512 11 0.518271 1155.1

3 1024 12 0.518913 4865.1

Table 6.2: Ratchet caplet, d = 3. Left: Monte Carlo simulation results.
Right: Parabolic method results.

Monte Carlo results

Paths 57,000

Run time (s) 7561

Price 0.471529

Standard error 0.001199

d maxi Level Price Total

Ni time (s)

4 2 4 0.860781 0.1

4 4 5 0.479322 0.6

4 8 6 0.489794 2.8

4 16 7 0.494195 11.5

4 32 8 0.481053 42.0

4 64 9 0.465453 145.7

4 128 10 0.464663 523.3

4 256 11 0.465955 1878.2

4 512 12 0.466705 7654.6

Table 6.3: Ratchet caplet, d = 4. Left: Monte Carlo simulation results.
Right: Parabolic method results.
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Monte Carlo results

Paths 32,000

Run time (s) 3406

Price 0.457042

Standard error 0.001663

d maxi Level Price Total

Ni time (s)

5 2 5 0.852376 0.4

5 4 6 0.461833 2.9

5 8 7 0.467954 16.0

5 16 8 0.480882 68.9

5 32 9 0.474478 267.3

5 64 10 0.459596 990.1

5 128 11 0.450715 3511.1

Table 6.4: Ratchet caplet, d = 5. Left: Monte Carlo simulation results.
Right: Parabolic method results.
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Appendix A

Combinatorial identities

Since the weight in the sparse grid combination technique includes a binomial
coe�cient, we require a few identities involving binomial coe�cients. These
are frequently called combinatorial identities. A useful tabulation of such
identities is [Gou72].

Recall that the binomial coe�cient is de�ned as(
n

k

)
=

n!

k!(n− k)!
, (A.1)

for non-negative integers n and k ≤ n. Some of our arguments make use
of the fact that binomial coe�cients can be extended to arbitrary complex
numbers x, y ∈ C in a natural way. The binomial coe�cient is then de�ned
as (

x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
, (A.2)

where Γ is the gamma function.

A consequence of allowing non-integer arguments is that(
x

−1

)
=

{
1 : x = −1

0 : otherwise.
(A.3)

One of the most basic identities for the binomial coe�cient is the symmetry
formula (

n

k

)
=

(
n

n− k

)
, (A.4)
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which we frequently invoke without explicit mention. Another basic identity
is (

−x
n

)
= (−1)n

(
x+ n− 1

n

)
. (A.5)

There are also a variety of summation formulas which we need. The Chu-
Vandemonde convolution formula is(

s+ t

n

)
=

n∑
k=0

(
s

k

)(
t

n− k

)
, (A.6)

which holds for all s, t ∈ C and non-negative integers n. We also need

n∑
k=0

(−1)k
(
n

k

)(
x− k
r

)
=

(
x− n
r − n

)
. (A.7)

The following identity arises in the heuristic derivation of the sparse grid
combination weights.

Lemma 15. For all integers y ≥ 1 and 0 ≤ k ≤ y,

1 =
k∑
q=0

(−1)q
(
y

q

)(
y + k − q
k − q

)
. (A.8)

Proof. We have (
−x
n

)
= (−1)n

(
x+ n− 1

n

)
and the Chu-Vandermonde identity(

s+ t

n

)
=

n∑
k=0

(
s

k

)(
t

n− k

)
,

which holds for all s, t ∈ C and non-negative integers n. Applying the �rst
identity with n = k − q and x = y + 1 shows that(

y + k − q
k − q

)
= (−1)k−q

(
−y − 1

k − q

)
.
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Therefore, the sum becomes

k∑
q=0

(−1)q
(
y

q

)(
y + k − q
k − q

)

= (−1)k
k∑
q=0

(
y

q

)(
−y − 1

k − q

)
= (−1)k

(
−1

k

)
= (−1)k(−1)k

= 1,

where we have used the Chu-Vandermonde identity to reduce the sum to(−1
k

)
.
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Appendix B

Fourier series

While the Fourier transform is the appropriate tool for studying initial value
problems (on an unbounded domain), we turn to Fourier series for studying
problems on a bounded domain [−π, π]2 ⊂ R2. We try our best to make
sure that the notation for Fourier series parallels that which we have de�ned
for the Fourier transform on R2. To this end, we use ξ1 and ξ2 to represent
integers.

The Fourier coe�cients of a 2π-periodic function u : R2 → R are de�ned
as

û(ξ1, ξ2) :=
1

4π2

∫ π

−π

∫ π

−π
e−i(ξ1x+ξ2y)u(x, y) dx dy

for all ξ1, ξ2 ∈ Z. The inverse transformation is then

u(x, y) =
∞∑

ξ1=−∞

∞∑
ξ2=−∞

ei(ξ1x+ξ2y)û(ξ1, ξ2).

Integration by parts implies that the Fourier coe�cients of ∂u
∂x

are:

∂̂u

∂x
(ξ1, ξ2) =

1

4π2

∫ π

−π

∫ π

−π
e−i(ξ1x+ξ2y)ux(x, y) dx dy

= iξ1
1

4π2

∫ π

−π

∫ π

−π
e−i(ξ1x+ξ2y)u(x, y) dx dy + e−i(ξ1x+ξ2y)u(x, y)|x=π

x=−π

115



= iξ1û(ξ1, ξ2)

Furthermore, we still have Parseval's theorem:

∞∑
ξ1=−∞

∞∑
ξ2=−∞

|û(ξ1, ξ2)|2 =
1

4π2

∫ π

−π

∫ π

−π
u(x, y) dx dy

B.1 Truncation and interpolation operators

We now de�ne the analogue of truncation and interpolation operators for
Fourier series.

De�nition 3. Let u ∈ L2([−π, π]2). Then the truncation operator τ applied
to u is

τu(x) =

π/∆x∑
ξ1=−π/∆x

π/∆y∑
ξ2=−π/∆y

ei(ξ1x+ξ2y)û(ξ1, ξ2)

for every x ∈ ∆xZ×∆yZ, where û(ξ) is the Fourier transform of u.

De�nition 4. Let v ∈ L2(∆xZ ×∆yZ). Then the interpolation operator σ
applied to v is

σv(x) =

π/∆x∑
ξ1=−π/∆x

π/∆y∑
ξ2=−π/∆y

ei(ξ1x+ξ2y)v̂(ξ1, ξ2)

for every x ∈ R2, where v̂(ξ1, ξ2) is the Fourier transform of v.

B.2 Partitioning of the frequency domain

We �nd it useful to notate particular subsets of the frequency domain Z2, as
we did for R2. We de�ne

Ai,j := {0, . . . , 2i} × {0, . . . , 2j} (B.1a)

bi :=

{
{0, 1, 2} i = 1
{2i−1, . . . , 2i} i ≥ 2

(B.1b)
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Figure B.1: The sets Ai,j ⊂ Z2. Purple dots indicate overlap of the sets A1,3

and A3,2.

2

2

4

4

8

8

A1,3

A3,2

ξ1

ξ2

Bi,j := bi × bj (B.1c)

A` :=
`−1⋃
i=1

Ai,`−i =
`−1⋃
i=1

(
`−i⋃
j=1

Bi,j

)
. (B.1d)

The sets Bij are no longer disjoint, but instead share boundary values with
adjacent sets. See Figures B.1, B.2, and B.3.
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Figure B.2: The sets Bi,j ⊂ Z2 are no longer disjoint.
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Figure B.3: The set A` ⊂ Z2 when ` = 4.
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Appendix C

LIBOR market model

In this appendix we present some calculations pertaining to the LIBOR mar-
ket model.

C.1 Calculation of drifts under the terminal

measure

We know that the LIBOR rate Lnt is driftless under the forward measure
PTn+1 associated with the time Tn+1. We would also like to calculate the
drift of Lnt under other forward measures, especially the terminal measure.
We proceed by calculating the Radon-Nikodym derivative dPi+1

dPi which relates
adjacent forward measures.

The forward measures are de�ned by the fact that discounted asset prices
are martingales. That is, for an asset A, we have

A0

Bi(0)
= Ei[

At
Bi(t)

|F0]

and
A0

Bi+1(0)
= Ei+1[

At
Bi+1(t)

|F0].
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Multiplying the �rst equation by Bi(0)
Bi+1(0)

and multiplying the right hand side

by Bi+1(t)
Bi+1(t)

gives

A0

Bi+1(0)
= Ei[

Bi(0)

Bi+1(0)

Bi+1(t)

Bi(t)

At
Bi+1(t)

|F0].

Comparing this with the second equation, we �nd that the Radon-Nikodym
derivative process is

Zt =
Bi(0)

Bi+1(0)

Bi+1(t)

Bi(t)
=

Bi(0)

Bi+1(0)
(1 + δLit).

Taking the di�erential of Zt, we get

dZt =
Bi(0)

Bi+1(0)
δdLit =

Bi(0)

Bi+1(0)
δσi(t)L

i
tdW

i+1(t) =
Zt

1 + δLit
δσi(t)L

i
tdW

i+1(t).

Therefore, Girsanov's theorem gives the following relationship between Brow-
nian motions under PTi and PTi+1 :

dW i(t) = dW i+1(t)− δσi(t)L
i
t

1 + δLit
dt.

Iterating this process, we get

dLit
Lit

= −
N∑

k=i+1

δσk(t)L
k
t

1 + δLkt
σi(t) dt+ σi(t) dW

N+1
i (t),

where WN+1(t) is a correlated N -dimensional Brownian motion under the
terminal measure.

C.2 Boundary conditions which guarantee well-

posedness for the LIBOR market model

PDE

We now discuss how to impose boundary conditions so that the problem
is well-posed. We turn to Fichera theory to answer this question [Ole71].
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Consider second-order linear equations of the following general form:

m∑
i,j=1

aij(y)uyiyj +
m∑
i=1

bi(y)uyi + c(y)u = f(y).

Working within this framework, we take m = N + 1 and make the identi�-
cation

(L1, . . . , LN , t) = (y1, . . . , yN , yN+1).

Let n be the inward-oriented normal to ∂Ω. Let Σ3 be the portion of ∂Ω
where nTAn > 0. On ∂Ω \ Σ3, we de�ne the Fichera function:

h(y) =
m∑
i=1

[
bi(y)−

m∑
j=1

(aij(y))yj

]
ni

For Equation 6.3, the Fichera function becomes

h(y) =
N∑
i=1

[
yiµi(yN+1)−

m∑
j=1

ρij(t)σi(t)σj(t)yi

]
ni + nN+1 (C.1)

=
N∑
i=1

[< negative number >] yini + nN+1. (C.2)

Now consider the domain Ω = [0, T ] × [0,M ]N . Its boundary ∂Ω may be
viewed as a collection of hyperplanes {yi = 0} for i = 1 . . . N+1 and {YN+1 =
T} and {yi = M} for i = 1 . . . N . The boundary can also be decomposed as
∂Ω = Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3, where

Σ0 = {y : h(y) = 0}
Σ1 = {y : h(y) > 0}
Σ2 = {y : h(y) < 0}.

Fichera theory dictates that we impose an exogenous boundary condition
on Σ2 ∪ Σ3. We proceed to identify which hyperplanes of ∂Ω belong to
Σ2 ∪ Σ3.
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Consider �rst the hyperplanes {yi = 0} for i = 1 . . . N + 1. The inward-
oriented normal on the surface is ei. We have that eTi Aei = 0 on {yi = 0}
so it belongs to ∂Ω \ Σ3. The Fichera function is non-negative on these
hyperplanes, so no exogenous boundary 0 need be imposed.

Now consider the hyperplanes {yi = M} for i = 1 . . . N . The inward-oriented
normal on the surface is −ei. On this hyperplane, (−ei)TA(−ei) does not
vanish, so it belongs to Σ3. Thus, we impose a far boundary condition
g : Σ3 → R on these hyperplanes.

Now consider the hyperplane {yN+1 = T}. The inward-oriented normal is
−eN+1. Since the equation is parabolic, eTN+1AeN+1 = 0 here. Furthermore,
the Fichera function is negative so the hyperplane belongs to Σ2. Thus, we
impose a terminal condition here.

In summary, the three-rate ratchet caplet pricing problem can be written as
follows:

Find u : [0,M ]3 × [0, T ]→ R such that

0 =
∂u

∂t
+

1

2

3∑
i,j=1

ρij(t)σi(t)σj(t)LiLj
∂2u

∂Li∂Lj

−
3∑
i=1

(
3∑

k=i+1

δLk(t)

1 + δLk(t)
ρik(t)σk(t)

)
σi(t)Li

∂u

∂Li

u(L1, L2, L3, T ) = (L3 −K3(L1, L2))+

u = g on Σ3
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