
Spatial, Temporal and Spatio-temporal

Correspondence for

Computer Vision Problems
Feng Zhou

CMU-RI-TR-14-18

September 24

The Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Fernando De la Torre (Chair)

Martial Hebert

Jeff Schneider

Anand Rangarajan (University of Florida)

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Robotics

Copyright c� 2014 Feng Zhou

	

Thesis

Spacial, Temporal and Spatio-temporal
Correspondence for Computer Vision

Problems

Feng Zhou

Submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the field of Robotics

ACCEPTED:

Fernando De la Torre September 24, 2014
Thesis Committee Chair Date

Reid Simmons September 24, 2014
Program Chair Date

APPROVED:

Andrew W. Moore September 29, 2014
Dean Date

	

Keywords: Correspondence Problem, Temporal Alignment, Graph Matching, Dynamic Time

Warping, Quadratic Assignment Problem, Trajectory Matching

	

Abstract

Many computer vision problems, such as object classification, motion estima-

tion or shape registration rely on solving the correspondence problem. Existing al-

gorithms to solve spatial or temporal correspondence problems are usually NP-hard,

difficult to approximate, lack flexible models and mechanism for feature weight-

ing. This proposal addresses the correspondence problem in computer vision, and

proposes two new spatio-temporal correspondence problems and three algorithms

to solve spatial, temporal and spatio-temporal matching between video and other

sources. The main contributions of the thesis are:

(1) Factorial graph matching (FGM). FGM extends existing work on graph match-

ing (GM) by finding an exact factorization of the affinity matrix. Four are the ben-

efits that follow from this factorization: (a) There is no need to compute the costly

(in space and time) pairwise affinity matrix; (b) It provides a unified framework

that reveals commonalities and differences between GM methods. Moreover, the

factorization provides a clean connection with other matching algorithms such as

iterative closest point; (c) The factorization allows the use of a path-following op-

timization algorithm, that leads to improved optimization strategies and matching

performance; (d) Given the factorization, it becomes straight-forward to incorporate

geometric transformations (rigid and non-rigid) to the GM problem.

(2) Canonical time warping (CTW). CTW is a technique to temporally align

multiple multi-dimensional and multi-modal time series. CTW extends DTW by

incorporating a feature weighting layer to adapt different modalities, allowing a more

flexible warping as combination of monotonic functions, and has linear complexity

(unlike DTW that has quadratic). We applied CTW to align human motion captured

with different sensors (e.g., audio, video, accelerometers).

(3) Spatio-temporal matching (STM). Given a video and a 3D motion capture

model, STM finds the correspondence between subsets of video trajectories and the

motion capture model. STM is efficiently and robustly solved using linear program-

ming. We illustrate the performance of STM on the problem of human detection in

video, and show how STM achieves state-of-the-art performance.

iv

Acknowledgments

My foremost thanks go to my advisor, Prof. De la Torre, for his adequate support

and guidance to enable the thesis to be completed. I’m thankful for the freedom he

gave me to pursue a variety of topics. I’ve learned a tremendous amount from him

during my journey, and I’m eternally grateful and in debt for his guidance, support,

and patience with me along the way.

I would also like to thank Martial Hebert, Jeff Schneider, Anand Rangarajan for

their interests in my work and for serving on my committee. I appreciate the time

they set aside for me and am thankful for the invaluable discussions and comments

regarding this work.

Over the years I’ve been fortunate to have being working with my colleagues

from Human Sensing Lab at CMU: Dong Huang, Vincent Chu, Xuehan Xiong, Ri-

cardo Silveira Cabral, Jayakorn Vongkulbhisal, Ada Zhang, Ekaterina Spriggs, Ze-

hua Huang, Shitong Yao, Francisco Vicente; and to my former colleagues: Zengyin

Zhang, Javier Hernandez, Tomas Simon, Yunfeng Zhu, Xuelei Hu, Caikou Chen,

Ying Chen. They made the Human Sensing Lab a fun and exciting place to work.

Thanks for providing help in research related discussions during numerous coffee,

lunch, and dinner breaks.

This work was funded by the Quality of Life Technology (QoLT) center. Thanks

to all QoLT members for interesting discussions and highly appreciated feedback

during research meetings and mutual visits.

Last but not least, I want to thank my parents and my wife for years of support

and encouragement.

vi

Contents

1 Introduction 1

1.1 Challenges . 3

1.2 Our contributions . 4

1.3 Organization . 6

2 Spatial Matching 7

2.1 Introduction . 7

2.2 Previous work on graph matching . 9

2.3 Previous work on ICP . 15

2.4 Factorized graph matching (FGM) . 17

2.5 A unified framework for graph matching . 19

2.6 A path-following algorithm . 24

2.7 Deformable graph matching (DGM) . 31

2.8 Experiments . 34

2.9 Conclusions . 43

3 Temporal Matching 45

3.1 Introduction . 45

3.2 Previous work . 47

3.3 Canonical time warping (CTW) . 51

3.4 Generalized canonical time warping (GCTW) 54

3.5 Experiments . 61

vii

3.6 Conclusions . 76

4 Spatio-temporal Matching 77

4.1 Introduction . 77

4.2 Related work . 78

4.3 Trajectory-based video representation . 80

4.4 Learning spatio-temporal bilinear bases . 81

4.5 Spatio-temporal matching (STM) . 83

4.6 Experiments . 89

4.7 Conclusion . 97

5 Conclusion 99

5.1 Spatial matching . 99

5.2 Temporal matching . 100

5.3 Spatio-temporal matching . 101

6 Future work 103

6.1 Dense correspondence . 103

6.2 Learning for matching . 104

6.3 Fine-grained recognition . 105

Bibliography 109

viii

List of Figures

1.1 Thesis outlines and contributions. Given the various structural representations

(e.g., tree, graph, string and spatio-temporal trajectories) of images and videos,

this thesis addresses three correspondence problems: (a) Spatial matching be-

tween features of images; (b) Temporal alignment of multi-modal sequences;

and (c) Spatio-temporal matching between feature trajectories extracted from 2-

D video and 3-D motion capture sequences. Images credited to [5, 44, 117, 130,

146, 198, 208]. 2

2.1 Matching two human bodies with 5 and 4 features using FGM. FGM simul-

taneously estimates the correspondence and a smooth non-rigid transformation

between shapes. FGM is able to factorize the 20⇥ 20 pairwise affinity matrix as

a Kronecker product of six smaller matrices. The first two groups of matrices of

size 5 ⇥ 16 and 4 ⇥ 10 encode the structure of each of the graphs. The last two

matrices encode the affinities for nodes (5⇥ 4) and edges (16⇥ 10). 8

2.2 An example GM problem. (a) Two synthetic graphs. (b) The 1

st graph’s inci-

dence matrices G1 and H1, where the non-zero elements in each column of G1

and H1 indicate the starting and ending nodes in the corresponding directed edge,

respectively. (c) The 2

nd graph’s incidence matrices G2 and H2. (d) The node

affinity matrix Kp and the edge affinity matrix Kq. (e) The node correspondence

matrix X and the edge correspondence matrix Y. (f) The global affinity matrix K. 11

ix

2.3 Statistics of K computed for the graphs extracted from three real image datasets

used in the experiments. The histograms in the top row illustrate the ratio be-

tween the rank and the dimension of K. The histograms in the bottom row show

the ratio between the minimum and the maximum eigenvalues of the K. For

the last two datasets (columns), we test K with zero values on the diagonal as

well. The top and bottom rows indicate that all the computed K are full-rank and

indefinite respectively. 18

2.4 An MRF example. Labeling four nodes (red circles) with three labels (blue

boxes). Similar to GM, the pairwise affinity matrix K can be factorized into

six smaller matrices. 23

2.5 The number of variables and constraints in the LP relaxation of the stereo dis-

parity problem as a function of the size of the image. Image was taken from [210]. 25

2.6 An example of using the path-following algorithm for optimizing the GM prob-

lem. (a) The comparison of the objectives during the optimization with respect

to the change of ↵. (b) The comparison of using FW and MFW for optimizing

J↵(X) at two instances of ↵. (c) The change of the elements of X as ↵ ! 1,

where each curve corresponds a xij . 28

2.7 Eight possible shapes of the parabola f(⌘) = a⌘2 + b⌘ and the corresponding

optimal step sizes ⌘⇤ = argmax⌘2[0,1] f(⌘). 30

2.8 Comparison between ICP and DGM for aligning shapes for several initial val-

ues of rotation and scale parameters. (a) Examples of initializations for different

angles and scales. (b) Objective surfaces obtained by ICP for different initializa-

tions. (c) Objective surfaces obtained by DGM. 35

2.9 Comparison of GM methods on synthetic datasets. (a) Performance as a function

of the outlier number (nout). (b) Performance as a function of the edge noise (�).

(c) Performance as a function of the density of edges (⇢). 38

x

2.10 Comparison of GM methods on the CMU house datasets. (a) An example pair

of frames with the correspondence generated by our method, where the blue

lines indicate incorrect matches. (b) Performance of several algorithms using 30

nodes. (c) Performance using 25 nodes. 40

2.11 Comparison of GM methods for the car and motorbike dataset. (a) An example

pair of car images with the correspondence generated by our method, where

the blue lines indicate incorrect matches. (b) An example pair of motorbike

images. (c) Performance as a function of the outlier number for the car images.

(d) Performance as a function of the outlier number for the motorbike images. . . 40

2.12 Comparison between DGM and ICP on the UCF shape datasets. (a-b) Two exam-

ple pairs of shapes aligned using DGM. The red shape (left) is a rotated version

of the blue one (right) by 2
3⇡ and 20 random outliers were added. (c-d) Matching

performance as a function of the initial rotations. (e-f) Matching performance as

a function of the number of outliers. 42

2.13 Comparison between DGM and GM methods for aligning non-rigidly deformed

shapes. (a) An example of two fishes, where the red one is generated by a non-

rigid transformation from the blue one. (b) Accuracy. (c) Results of GM meth-

ods, where the green and black lines indicate correct and incorrect correspon-

dence respectively. 43

3.1 Temporal alignment of sequences recorded with different sensors of three sub-

jects kicking a ball. 46

3.2 An example of DTW for aligning time series. (a) Two 1-D time series (nx = 7

and ny = 8) and the optimal alignment between samples computed by DTW. (b)

Euclidean distances between samples, where the red curve denotes the optimal

warping path (l = 9). (c) DP policy at each pair of samples, where the three

arrow directions, #,&,!, denote the policy, ⇡(·, ·) 2 {[1, 0], [1, 1], [0, 1]}, re-

spectively. (d) A matrix-form interpretation of DTW as stretching the two time

series in matrix products. (e) Warping matrix Wx. (f) Warping matrix Wy. . . . 50

xi

3.3 Approximating temporal warping using monotonic bases. (a) Five common

choices for monotonic bases. (b) An example of time warping XW(Qa) 2

R1⇥70 of 1-D time series X 2 R1⇥50. (c) The warping matrix. (d) The warping

function Qa is a linear combination of three basis functions including a constant

function (q1) and two monotonically functions (q2 and q3). 54

3.4 An example of using Gauss-Newton for solving the sub-sequence alignment

problem. (a) Two 1-D sequences. (b) The Gauss-Newton optimization proce-

dure, the longer red sequence is warped to match the shorter blue sequence. (c)

The contour of the objective function (Ja as defined in Eq. 3.13) with respect to

the weights of two bases. (d) Warping function (p) as a combination of a lin-

ear function (q1) and a constant function (q2) used for scaling and translation

respectively. 60

3.5 Comparison between Gauss-Newton and variants of DTW for temporal align-

ment. (a) An example of two 1-D time series and the alignment results calculated

using the ground truth, DTW, DTW constrained in the Sakoe-Chiba band (DTW-

SC), DTW constrained in the Itakura Parallelogram band (DTW-IP), DTW op-

timized in a multi-level scheme (FastDTW) and Gauss-Newton (GN). (b) Com-

parison of different warping paths. GN-Init denotes the initial warping used for

GN. SC-Bound and IP-Bound denote the boundaries of SC band and IP band

respectively. (c) Alignment errors. (d) Computational costs. 61

3.6 Comparison of temporal alignment algorithms on the synthetic dataset. (a) An

example of three synthetic time series generated by performing a random spatio-

temporal transformation of a 2-D latent sequence Z and adding Gaussian noise

in the 3

rd dimension. (b) The alignment results. (c) Mean and variance of the

alignment errors. (d) Mean and variance of the computational cost (time in sec-

onds). 66

xii

3.7 Comparison of temporal alignment algorithms for aligning multi-feature video

data. (a) An example of three aligned videos by GCTW. The top three sequences

are the original frames after background subtraction, while the bottom three are

the binary images, the Euclidean distance transforms and the solutions of the

Poisson equation. (b) The alignment results. (c) Comparison of time warping

paths. (d) Mean and variance of the alignment errors. 67

3.8 Activity classification. In (a-c), we computed the metric between videos us-

ing different features: binary images {Xi}i and Euclidean distance transforms

{Yj}j . In (d-f), we computed the metric between video {Xi}i and motion

capture data {Yj}j . (a)(d) DTW distance matrices. A darker color indicates

a smaller distance. (b)(e) GCTW distance matrices. (c)(f) Mean and standard

deviation of the classification error. 68

3.9 Comparison of temporal alignment algorithms for aligning facial expression se-

quences between different people. (a) An example of two smiling expression se-

quences aligned by GCTW. The features of the two sequences are computed as

the 18 landmark coordinates of the mouth given by a face tracker. (b) Alignment

results. The position that corresponds to the peak of the expression is indicated

by points on the curves in the top row. (c) Comparison of time warping paths.

The position that corresponds to the peak of the expression is indicated by the

intersection of the two dashed lines. (d) Alignment errors. 72

3.10 Aligning two large-scale motion capture sequences using GCTW. (a) A coarse-

to-fine strategy for improving the optimization performance of GCTW. (b) The

first row shows the first principal components of the original sequences for three

levels of the temporal pyramids. The second row corresponds to the aligned

sequences using GCTW. (c) Key frames of similar body poses aligned by GCTW. 73

xiii

3.11 Locating and aligning similar sub-sequences of four walking motion capture sig-

nals. (a) Original features of four mocap walking sequences. (b) Alignment

achieved by mDTW. mDTW tries to align the sequences end-to-end and it has

to stretch some parts of the sequences (flat lines indicated by arrows). (c) Align-

ment by GCTW. GCTW efficiently aligns the sub-sequences and also finds the

boundaries of the sub-sequences containing similar motions. (d) Key frames

aligned by GCTW. 74

3.12 Example of aligning multi-modal sequences. (a) Accelerometer. (b) Projection

onto the first principal component for the motion capture data, video and ac-

celerometers respectively. (c) GCTW. (d) Key frames aligned by GCTW. Notice

that the similar hand gestures have been aligned. From the top to bottom, we

show mocap data, video, and accelerometer data respectively. 75

4.1 Detection and tracking of humans in three videos using spatio-temporal matching

(STM). STM extracts trajectories in video (gray lines) and selects a subset of

trajectories (a) that match with the 3D motion capture model (b) learned from

the CMU motion capture data set. Better viewed in color. 78

4.2 Example of feature trajectories and their responses. (a) Geometrical configura-

tion of 14 body joints shared across 3D datasets. (b) Dense trajectories extracted

from a video segment. (c) Feature response maps for 4 joints (see bottom-right

corner). 81

4.3 Spatio-temporal bilinear model learned from the CMU motion capture dataset.

(a) Top: All the motion capture segments randomly selected from a set of kicking

sequences. Bottom: The segments are spatially aligned via Procrustes alignment.

(b) Clustering motion capture segments into 4 temporal clusters. (c) The bilinear

bases estimated from the 3rd cluster. Left: top-2 shape bases (si) where the shape

deformation is visualized by black arrows. Top: top-3 DCT trajectory bases (tj).

Bottom-right: bilinear reconstruction by combining each pair of shape and DCT

bases (tjsTi). 84

xiv

4.4 Clustering motion capture segments into four clusters for different datasets. (a)

CMU motion capture dataset [39]. (b) Berkeley MHAD dataset [140]. (c) Hu-

man3.6M dataset [91]. (d) CMU MAD dataset [89]. 85

4.5 Comparison of human pose estimation on the CMU motion capture dataset. (a)

Original motion capture key-frames in 3D with 50 outliers that were syntheti-

cally generated. (b) Results of the greedy approach and our method on four 2D

projections. (c) Mean error and std. for each method and action as a function of

the number of outliers. (d) Mean error and std. for each camera view. (e) Mean

error and std. for all actions and cameras. 90

4.6 Comparison of human pose estimation on the Berkeley MHAD dataset. (a) Re-

sult of [209] and our method on three actions of two views, where the 3D re-

construction estimated by our method is plotted on the right. (b) Errors for each

action. (c) Errors for each camera view. (d) Errors of each joint. (e) Errors with

respect to the segment length (n). (f) Errors with respect to the bases number

(ks and kt). (g) Errors with respect to the regularization weights (�a and �s). (h)

Time cost of each step. 93

4.7 Comparison of human pose estimation on the Human 3.6M dataset. (a) Result

of [209] and our method on three actions of two views, where the 3D reconstruc-

tion estimated by our method is plotted on the right. (b) Errors for each action.

(c) Errors for each camera view. (d) Errors of each joint. 94

4.8 Comparison of human pose estimation on the CMU MAD dataset. (a) Top: Ac-

tion id of two sequences. Bottom: Result of [209] and our method on two actions,

where the 3D reconstruction estimated by our method is plotted on the right. (b)

Errors for each action. (c) Errors of each joint. 96

6.1 Examples of learning graph models for matching. (a-b) Learned graph model

for two generic objects [44]. (c) Learned graph models for a specific object

(faces) [226]. 105

6.2 Examples of similar species for fine-grained recognition. (a) Two species of

birds [194]. (b) Two species of dogs [122]. 106

xv

xvi

List of Tables

2.1 Different relaxations on the constraints for GM. 14

2.2 Parameterization of three geometrical transformations in 2-D space, where T ,

⌧(·), and (·) denote the parameter set, transformation function, constraint set

and penalization function respectively. 16

3.1 Comparison of temporal alignment algorithms as a function of degrees-of-freedom

and complexity. l is the length of warping path. LS(n), QP (n) and eig(n) de-

note the complexity of solving a least-squares of n variables, a QP of n variables

and a generalized eigenvalue problem with two n-by-n matrices, respectively. . . 65

xvii

xviii

Notation

X Bold capital letters denote a matrix.

x Bold lower-case letters denote a vector.

x Non-bold letters denotes a scalar.

xij or [X]ij Scalar in the ith row and jth column of the matrix X.

1m⇥n 2 Rm⇥n Matrix containing value one.

0m⇥n 2 Rm⇥n Matrix containing value zero.

In 2 Rn⇥n Identity matrix.

|X| Determinant of the square matrix X.

kxkp = p

p

P

i |xi|p p-norm of the vector x.

kXkF =

p

tr(XTX) Frobenious norm of the matrix X.

vec(X) Vectorization of the matrix X.

diag(x) A diagonal matrix whose diagonal elements are x.

X �Y Hadamard products of matrices.

X⌦Y Kronecker products of matrices.

{i : j} A list of integers, {i, i+ 1, · · · , j � 1, j}.

[X1; · · · ;Xn] Vertical concatenation of matrices.

[

)
i
Xi] Diagonal concatenation of matrices.

X† Moore-Penrose pseudo-inverse of matrix X.

eigd(A,B) Top d eigenvectors V that solve the generalized eigenvalue problem AV

= BV⇤, where ⇤ denote the eigenvalues.

xix

xx

Chapter 1

Introduction

In the last decade, the amount of data captured by various visual sensors (e.g., hand-held camera,

smart-phone, Kinect, Google Glass, GoPro) has been growing exponentially. It has thus become

increasingly important to develop effective and efficient systems that can understand massive

amounts of images, videos and depth data. To detect and recognize spatial objects or tempo-

ral events from these data, most existing methods build upon the popular bag-of-words (BoW)

representation [109, 139, 177]. Although the technique is relatively simple and easy to under-

stand, BoW achieves great success, for example, in classifying natural images and videos, such

as feature films [109], broadcast sports [158], and YouTube [121]. However, BoW-type methods

lack the fundamental mechanisms to enforce spatial or temporal consistency across images and

videos. When classifying spatial objects or temporal events with complex internal structures,

it is not always possible to construct BoW-type vectors that capture important discriminative

information between object classes or human activities.

In recent research, these difficulties led to the use of richer representations, which encode

object features and the structural relationships between them. The middle column in Fig. 1.1

summarizes several popular structural representations of images and videos. For instance, tree-

like representations have been widely used to describe the geometrical configuration of human

bodies [68, 208] and faces [228] due to the efficiency in inference. For objects with more com-

plicated structures, graphs [44, 117] are more commonly used to encode the spatial arrangement

of features. Because of the monotonicity in time, temporal video and motion capture sequences

1

Tree

String / Time Series

Graph

Spatio-Temporal Trajectories

Chapter 2

Chapter 3

Chapter 4

Spatio-Temporal Matching

Spatial Matching

Temporal Matching

Data Structures Our ContributionsOrganization

(a)

(b)

(c)

Figure 1.1: Thesis outlines and contributions. Given the various structural representations

(e.g., tree, graph, string and spatio-temporal trajectories) of images and videos, this thesis ad-

dresses three correspondence problems: (a) Spatial matching between features of images; (b)

Temporal alignment of multi-modal sequences; and (c) Spatio-temporal matching between fea-

ture trajectories extracted from 2-D video and 3-D motion capture sequences. Images credited

to [5, 44, 117, 130, 146, 198, 208].

2

are usually encoded as strings or multi-dimensional time series [5]. But interpreting videos that

show complex human activities requires reasoning about the spatio-temporal arrangement of

body parts tracked over video [130, 198].

Once a structural representation has been constructed, a natural question arising is the estab-

lishment of the correspondence between two instances which optimally aligns their structures. In

the past decade, various correspondence models have been proposed to address a wide range of

computer vision problems, including shape matching [18, 129], object categorization [61, 114],

feature tracking [95], symmetry analysis [85], video synchronization [200], action detection [93]

and recognition [29, 75]. It has also been shown that current BoW-typed models can be greatly

improved [38, 61, 114] when knowing the correspondence between images. In addition to being

useful for computer vision, establishing correspondence is a crucial step in many other pattern

recognition problems, such as kernelized sorting [147], protein alignment [215] to speech recog-

nition [148].

1.1 Challenges

Although extensive studies have been done, solving correspondence problems in computer vision

is still challenging for several reasons.

Optimizing combinatorial problems. Correspondence problems involve optimization over

discrete variables with combinatorial constraints. In general, correspondence problems are of-

ten NP-hard and exact solutions are infeasible. Therefore, the main body of the past research

has focused on devising more accurate and faster algorithms to approximate these problems.

Nevertheless, approximating correspondences by relaxing the combinatorial constraints is still

challenging in many cases when objective is non-convex or discontinuous.

Handling geometrical constraints. Many correspondence problems in computer vision nat-

urally require global constraints among nodes. For instance, given two sets of coplanar points

in two images, the matching between points should be constrained by an affine transformation.

Similarly, when matching human bodies between 2D video and 3D motion capture data, the

transformation needs to be constrained as perspective projection. However, solving correspon-

3

dence problems under global geometrical constraints result to mixed-integer programming and

existing algorithms are prone to local optima.

Selecting important features. Correspondence problems are complicated in unconstrained

cases due to the large variance in subject’s physical characteristics, motion style and camera

configuration. In addition, the problems can be further complicated when matching between

multi-modal data (e.g., video, image, motion capture, accelerometer, depth data). However, ex-

isting correspondence methods lack a feature selection mechanism to select important features

that accommodate for subject variability and take into account the difference in the dimension-

ality of the signals.

1.2 Our contributions

In this thesis, we focus on three important correspondence problems (the right column in Fig. 1.1)

in computer vision: matching spatial features between images, matching temporal frames be-

tween multi-modal sequences (e.g., video, mocap), and matching spatio-temporal feature tra-

jectories between 2-D video and 3-D mocap sequence. We describe these problems in detail

below.

Spatial matching. Finding correspondences between spatial features is essential for de-

tecting and recognizing objects from images. When the spatial configuration of an object is

represented as a graph (Fig. 1.1a), the problem of spatial matching can be formalized as graph

matching [48]. However, graph matching is a classical combinatorial problem [124], and the

computational complexity of existing methods limits the permissible size of input graphs in prac-

tice. This thesis presents factorized graph matching (FGM), a novel framework for interpreting

and optimizing graph matching problems. This work reveals a general factorization to decouple

any type of graph matching problem into small-scale components. Based on this factorization,

we develop an efficient and accurate technique that improves state-of-the-art algorithms in graph

matching.

Temporal matching. Temporal matching of temporal signals is a fundamental step in many

applications such as activity recognition [97] and human motion synthesis [88]. Major chal-

4

lenges for aligning human motion include: (1) introducing a feature selection to compensate for

the differences in subjects’ physical characteristics, motion styles and speed of actions; and (2)

allowing alignment between different features (e.g., video and mocap). For instance, how can

we solve for the temporal correspondence between the frames of a video, the samples of motion

capture data and the accelerometer signal from different people kicking a ball (Fig. 1.1b)? This

thesis present canonical time warping (CTW), which combines canonical correlation analysis

with dynamic time warping to simultaneously align two signals in time while performing feature

selection. Using CTW, we are able to address the difficulty of aligning human actions from video,

motion capture data, or video and motion capture data under camera view or style changes. We

further show how to generalize CTW to align multiple sequences and develop a more efficient

algorithm that reduces the quadratic complexity incurred by conventional time warping method

to a linear complexity.

Spatio-temporal matching. Detecting and tracking humans in videos have been long-

standing problems in computer vision. Most successful approaches (e.g., deformable parts mod-

els [69, 208]) rely heavily on discriminative models to build appearance detectors for body joints

and generative models to constrain possible body configurations. While these 2D models have

been successfully applied to images (and with less success to videos), a major challenge in gen-

eralizing these models to handle different camera views. In order to achieve view-invariance,

these 2D models typically require a large amount of training data across views, which is diffi-

cult to gather and time-consuming to label. Unlike existing 2D models, this thesis formulates

the problem of human detection in videos as spatio-temporal matching (STM) between a 3D

motion capture model and trajectories in videos. Our algorithm estimates the camera view and

selects a subset of tracked trajectories that matches the motion of 3D model (see Fig. 1.1c for an

example). The STM is efficiently solved with linear programming, and it is robust to tracking

mismatches, occlusions and outliers. To the best of our knowledge, we are the first to solve the

correspondence between video and 3D motion capture data for human pose detection.

5

1.3 Organization

The remainder of this dissertation is structured as follows. In Chapter 2, we propose the method

of factorized graph matching and quantitatively evaluate its performance in comparison with

state-of-the-art graph matching methods. In Chapter 3, we propose and quantitatively evaluate

the method of canonical time warping for aligning multi-modal sequences. In Chapter 4, we

propose a spatial-temporal matching technique for human detection in videos. In Chapter 5 and

Chapter 6, we summarize our contributions and discuss future work, respectively.

6

Chapter 2

Spatial Matching

2.1 Introduction

Graph matching (GM) plays a central role in many computer science problems, ranging from

shape matching in 2-D [18] and 3-D [129], object categorization [61, 114], feature tracking [95],

symmetry analysis [85], action recognition [29, 75], kernelized sorting [147] to protein align-

ment [215]. In computer vision, GM has been primarily used to find correspondences between

two sets of features extracted from images. Unlike conventional matching methods such as

RANSAC [71, 182] and iterative closest point (ICP) [21, 219], GM incorporates pairwise node

interactions which are important features when matching structural objects (e.g., human bodies).

Fig. 2.1 illustrates an example of matching two graphs, where the nodes are image locations re-

turned by a body part detector. Matching the graphs using only similarity between nodes (i.e.,

features) might lead to undesirable results because some features of nodes (e.g., hands, feet)

are likely to be similar. GM adds pairwise information between nodes (e.g., length of the limbs,

orientation of edges) that constraints the problem and typically better correspondences are found.

Although extensive research has been done for decades, there are still two main challenges in

solving GM. (1) Mathematically, GM is formulated as a quadratic assignment problem (QAP) [124].

Unlike the linear assignment problem, which can be efficiently solved with the Hungarian algo-

rithm [34], the QAP is known to be NP-hard. Therefore, the main body of research in GM

has focused on devising more accurate algorithms to solve it approximately. Nevertheless, ap-

7

Figure 2.1: Matching two human bodies with 5 and 4 features using FGM. FGM simultaneously

estimates the correspondence and a smooth non-rigid transformation between shapes. FGM is

able to factorize the 20 ⇥ 20 pairwise affinity matrix as a Kronecker product of six smaller

matrices. The first two groups of matrices of size 5⇥ 16 and 4⇥ 10 encode the structure of each

of the graphs. The last two matrices encode the affinities for nodes (5⇥ 4) and edges (16⇥ 10).

proximating GM by relaxing the combinatorial constraints is still a challenging problem. This

is mainly because the objective function is in general non-convex and thus existing methods

are prone to local optima. (2) Many matching problems in computer vision naturally require

global constraints among nodes. For instance, given two sets of coplanar points in two images,

the matching between points under orthographic projection should be constrained by an affine

transformation. Similarly, when matching the deformations of non-rigid objects between two

consecutive images, that deformation is typically smooth in space and time. Existing GM al-

gorithms do not constrain the nodes of both graphs to a given geometric transformation (e.g.,

similarity, affine or non-rigid).

In order to address these issues, this chapter presents factorized graph matching (FGM), a

novel framework for optimizing and constraining GM problems. The key idea behind FGM is a

closed-form factorization of the pairwise affinity matrix that decouples the local graph structure

of the nodes and edge similarities. This factorization is general and can be applied to both

undirected and directed graphs. For instance, consider the matching of the two human bodies

shown in Fig. 2.1. The body configurations are represented by two directed graphs with 5 and

4 features, and 16 and 10 edges respectively. Conventional GM algorithms need to construct

a large pairwise affinity matrix (20-by-20 in this case). Whereas FGM only requires six small

matrices to be computed. In our example (Fig. 2.1), the first two binary matrices are of dimension

5-by-16 and the second two of dimensions 4-by-10 and describe the local structure of the first

8

and second graph. The last two matrices are of dimensions 5-by-4 and 16-by-10, and they encode

the similarity between nodes and edges respectively.

Using this factorization has four benefits: First, there is no need to compute the expensive (in

space and time) affinity matrix, which scales quartically with the number of features. Second,

it provides a unified view of many GM methods, which allows to understand the commonalities

and differences between them. It also connects GM methods with the classical Iterative Closest

Point (ICP) algorithms, and provides a pairwise generalization of ICP. Third, it allows the use

of a path-following algorithm, that leads to improved optimization strategies and matching per-

formance. Fourth, it is easy to add global geometric constraints because we have decoupled the

local structure for the nodes in each graph. We illustrate the benefits of FGM in synthetic and

real matching experiments on several benchmark databases.

The structure of the chapter is organized as follows. Section 2.2 and section 2.3 review re-

lated work in GM and ICP respectively. Section 2.4 introduces the factorization of the pairwise

affinity matrix. Section 2.5 discusses a unified taxonomy among various GM algorithm as well as

the connection between ICP and Markov random field (MRF) using the factorization. Section 2.6

derives a path-following algorithm from the factorization for optimizing GM. Section 2.7 extends

GM problems by introducing global geometrical constraints between graphs. Section 2.8 com-

pares FGM with state-of-the-art methods on several benchmark datasets. Preliminary versions

of this chapter were published in [222, 224].

2.2 Previous work on graph matching

2.2.1 Definition of GM

We denote a graph with n nodes and m directed edges as a 4-tuple G = {P,Q,G,H}. The fea-

tures for nodes and edges are specified by P = [p1, · · · ,pn] 2 Rd
p

⇥n and Q = [q1, · · · ,qm] 2

Rd
q

⇥m respectively, where dp and dq are the dimensionality of the features. For instance, pi could

be a 128-D SIFT histogram extracted from the image patch around the ith node and qc could be

a 2-D vector that encodes the length and orientation of the cth edge. The topology of the graph is

encoded by two node-edge incidence matrices G,H 2 {0, 1}n⇥m, where gic = hjc = 1 if the cth

9

edge starts from the ith node and ends at the jth node. Fig. 2.2a illustrates two synthetic graphs,

whose edge connection between nodes is encoded by the binary matrices shown in Fig. 2.2b-c.

In our previous work [222], a simpler representation of graph was adopted and valid only for

undirected graphs. This representation is more general and applicable for both undirected and

directed graphs. Directed graphs typically occur when the edge features are asymmetrical such

as the angle between an edge and the horizontal line.

Given a pair of graphs, G1 = {P1,Q1,G1,H1} and G2 = {P2,Q2,G2,H2}, we compute

two affinity matrices, Kp 2 Rn1⇥n2 and Kq 2 Rm1⇥m2 , to measure the similarity of each node

and edge pair respectively. More specifically, pi1i2 = �p(p
1
i1
,p2

i2
) measures the similarity be-

tween the ith1 node of G1 and the ith2 node of G2, and qc1c2 = �q(q
1
c1
,q2

c2
) measures the similarity

between the cth1 edge of G1 and the cth2 edge of G2. For instance, Fig. 2.2d illustrates an example

pair of Kp and Kq for the two synthetic graphs.

Given two graphs and the associated affinity matrices, the problem of GM consists in finding

the optimal correspondence X between nodes, such that the sum of the node and edge compati-

bility is maximized:

Jgm(X) =

X

i1i2

xi1i2
p
i1i2

+

X

i1 6=i2,j1 6=j2
g1
i1c1

h1
j1c1

=1

g2
i2c2

h2
j2c2

=1

xi1i2xj1j2
q
c1c2 , (2.1)

where X 2 ⇧ is constrained to be a one-to-one mapping, i.e., ⇧ is the set of partial permutation

matrices:

⇧ = {X|X 2 {0, 1}n1⇥n2
,X1n2 1n1 ,X

T1n1 = 1n2}. (2.2)

The inequality in the above definition is used for the case when the graphs are of different sizes.

Without loss of generality, we assume n1 � n2 throughout the rest of the chapter. For in-

stance, the matrix X shown in the top row of Fig. 2.2e defines the node correspondence shown

in Fig. 2.2a.

To be concise in notation, we encode the node and edge affinities in a symmetrical matrix

10

(c)

(a)

(e)(d)
(b)

(f)

1

2

3 4

a

b c

1 1 4
10 3 2
2 9 3
1 2 8
a b c

1

2

3

4

5 2 4 1
9 4 8 5
3 10 2 9
4 1 5 2
8 5 9 4
2 9 3 10

1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

1

2

3

4

1 0 0 0
0 1 1 0
0 0 0 1

a

b

c

0 0 0
1 0 0
0 1 0
0 0 1
a b c

1

2

3

4

0 0 1 0
1 0 0 1
0 1 0 0

a

b

c

0 0 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 0

1

2

3

4

0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

1 0 0 0 0 5 0 0 0 0 0 0
0 10 0 0 4 0 9 0 0 0 0 0
0 0 2 0 0 8 0 3 0 0 0 0
0 0 0 1 0 0 2 0 0 0 0 0
0 4 0 0 1 0 0 0 0 2 0 0
5 0 8 0 0 3 0 0 1 0 4 0
0 9 0 2 0 0 9 0 0 5 0 10
0 0 3 0 0 0 0 2 0 0 9 0
0 0 0 0 0 1 0 0 4 0 0 0
0 0 0 0 2 0 5 0 0 2 0 0
0 0 0 0 0 4 0 9 0 0 3 0
0 0 0 0 0 0 10 0 0 0 0 8
1a 2a 3a 4a 1b 2b 3b 4b 1c 2c 3c 4c

1a
2a
3a
4a
1b
2b
3b
4b
1c
2c
3c
4c

Figure 2.2: An example GM problem. (a) Two synthetic graphs. (b) The 1

st graph’s incidence

matrices G1 and H1, where the non-zero elements in each column of G1 and H1 indicate the

starting and ending nodes in the corresponding directed edge, respectively. (c) The 2

nd graph’s

incidence matrices G2 and H2. (d) The node affinity matrix Kp and the edge affinity matrix Kq.

(e) The node correspondence matrix X and the edge correspondence matrix Y. (f) The global

affinity matrix K.

K 2 Rn1n2⇥n1n2 , whose elements are computed as follows:

i1i2,j1j2 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

p
i1i2

, if i1 = j1 and i2 = j2,

q
c1c2 , if i1 6= j1 and i2 6= j2 and

g

1
i1c1

h

1
j1c1

g

2
i2c2

h

2
j2c2

= 1,

0, otherwise,

where the diagonal and off-diagonal elements encode the similarity between nodes and edges

respectively.

Using K, GM can be concisely formulated as the following quadratic assignment problem

(QAP) [124]:

max

X2⇧
Jgm(X) = vec(X)

TK vec(X). (2.3)

2.2.2 Advances on GM

As a generic problem for matching structural data, GM has been studied for decades in computer

science and mathematics [48]. Early works [49, 144, 187] on GM often treated the problem as

11

a special case of (sub)graph isomorphism, where the graphs are binary and an exact matching

between nodes and edges is of interest. Nevertheless, the stringent constraints imposed by exact

matching are too rigid for real applications in computer vision. Modern works focus on finding

an inexact matching between graphs with weighted attributes on nodes and edges. Due to the

combinatorial nature, however, globally optimizing GM is NP-hard. A relaxation of the per-

mutation constraints (Eq. 2.2) is necessary to find an approximation to the problem. Based on

the approximation strategy, previous work can be broadly categorized in three groups: spectral

relaxation, semidefinite-programming (SDP) relaxation and doubly-stochastic relaxation. See

Fig. 2.1 for a summary of previous relaxations of GM.

The first group of methods approximates the permutation matrix with an orthogonal one1,

i.e., XTX = I. Under the orthogonal constraint, optimizing GM can be solved in closed-form

as an eigen-value problem [35, 167, 170, 188]. However, these methods can only work for the

Koopmans-Beckmann’s QAP [105], a special case of QAP (See Section 2.5 for more details).

In order to handle more complex problems in computer vision, Leordeanu and Hebert [112]

proposed to approximate Eq. 2.3 by relaxing X to be of unit length, i.e., k vec(X)k22 = 1. In

this case, the optimal X can be efficiently computed as the leading eigen-vector of K. Cour et

al. [51] incorporated an additional affine constraints to solve a more general spectral problem,

hence finding better approximations to the original problem.

As a general tool for approximating combinatorial problems, SDP was also used to approx-

imate GM. In [165, 183], the authors reformulated the objective of GM by introducing a new

variable Y 2 Rn1n2⇥n1n2 subject to Y = vec(X) vec(X)

T . SDP approximates GM by relax-

ing the non-convex constraint on Y as a convex semi-definite one, Y � vec(X) vec(X)

T ⌫ 0.

After computing Y using SDP, the correspondence X can be approximated by a randomized

algorithm [183] or a winner-take-all strategy [165]. The main advantage of using SDP is its

theoretical guarantees [76] to find a polynomial time 0.879 approximation to many NP-hard

problems. However, in practice it is often too expensive to use SDP approaches because the new

variable Y squares the problem size.

The majority of methods relax X 2 D to be a doubly stochastic matrix, the convex hull of

1Mathematically, all the columns of an orthogonal matrix are lying on the Stiefel manifolds [154].

12

the permutation matrices:

D = {X|X 2 [0, 1]

n1⇥n2
,X1n2 1n1 ,X

T1n1 = 1n2}. (2.4)

Under this constraint, optimizing GM can be treated as a non-convex quadratic programming

problem and various strategies have been proposed to find a local optima. Almohamad and

Duffuaa [9] approximated the quadratic cost using linear programming. Zaslavskiy et al. [214]

employed a path-following strategy to approach the non-convex quadratic programming prob-

lem. Recently, Liu et al. [123] extended the path-following algorithm for matching asymmetri-

cal adjacency matrices in more general problems. However, these works are only applicable to

Koopmans-Beckmann’s QAP and it is unclear how to apply it to the more general Lawler’s QAP

problem [110]. Gold and Rangarajan [77] proposed the graduated assignment algorithm to iter-

atively solve a series of linear approximations of the cost function using Taylor expansions. Its

convergence has been recently studied and improved in [180] with a soft constrained mechanism.

Van Wyk and Van Wyk [191] proposed to iteratively project the approximate correspondence ma-

trix onto the convex domain of the desired integer constraints. Leordeanu et al. [115] proposed

an integer projection algorithm to optimize the objective function in an integer domain. Torresani

et al. [184] designed a complex objective function which can be efficiently optimized by dual de-

composition. In addition to the optimization-based work, probabilistic frameworks were shown

to be useful for interpreting and solving GM problems. Egozi et al.. [62] presented a probabilistic

interpretation of the spectral matching algorithm [112], which is a maximum-likelihood estimate

of the assignment probabilities. Zass and Shashua [216] proposed a convex relative-entropy error

that emerges from a probabilistic interpretation of the GM problem. Inspired by the PageRank

algorithm [141], Cho et al.. [43] introduced a random-walk algorithm to approximate GM prob-

lem. More recently, Suh et al. [178] proposed to use sequential Monte Carlo sampling to improve

the robustness of GM methods.

In addition to the efforts on devising better approximations for Eq. 2.3, there are three ad-

vances in GM methods leading to improved results: learning the pair-wise affinity matrix [37,

116], incorporate high-order features [41, 60, 216], and progressive mechanism [42]. First, it has

been shown that a better K for GM can be learned in an unsupervised [116] or a supervised [37]

leading to improved results. Second, it has also been noticed that the matrix K encoding the pair-

13

tr(XTA1XA2) + tr(KT

p

X) vec(X)

TK vec(X)

(Koopmans-Beckmann’s QAP) (Lawler’s QAP)

Spectral

Relaxation

Umeyama [188]

Scott & Longuet-Higgins [167]

Shapiro & Brady [170]

Caelli & Kosinov [35]

Leordeanu & Hebert [112]

Cour et al. [51]

SDP

Relaxation

Torr [183]

Schellewald & Schnörr [165]

Doubly-

stochastic

Relaxation

Almohamad & Duffuaa [9]

Zaslavskiy et al. [214]

Liu et al. [123]

Gold & Rangarajan [77]

Tian et al.. [180]

Van Wyk & Van Wyk [191]

Leordeanu et al. [115]

Torresani et al. [184]

Egozi et al.. [62]

Zass & Shashua [216]

Cho et al. [43]

Suh et al. [178]

Ours

Table 2.1: Different relaxations on the constraints for GM.

wise geometry is susceptible to scale and rotation differences between sets of points. In order to

make GM invariant to rigid deformations, [41, 60, 216] extended the pairwise matrix K to a ten-

sor that encodes high-order geometrical relations. However, a small increment in the order of re-

lations leads to a combinatorial explosion of the amount of data needed to support the algorithm.

Therefore, most of high-order GM methods can only work on very sparse graphs with no more

than 3-order features. In addition, it is unclear on how to extend high-order methods to incorpo-

rate non-rigid deformations. Third, the performance of GM methods in real applications is often

limited by the initial construction of graphs. To resolve this issue, Cho and Lee [42] proposed

a progressive framework which combines probabilistic progression of graphs with matching of

graphs. The algorithm re-estimates in a Bayesian manner the most plausible target graphs based

on the current matching result, and guarantees to boost the matching objective at the subsequent

graph matching.

14

2.3 Previous work on ICP

2.3.1 Definition of ICP

Given two sets of points, P1 = [p1
1, · · · ,p1

n1
] 2 Rd⇥n1 and P2 = [p2

1, · · · ,p2
n2
] 2 Rd⇥n2 ,

iterative closest point (ICP) algorithms (e.g., [21, 219]) aim to find the correspondence and the

geometric transformation between points such that the sum of distances is minimized:

min

X2⇧,T 2
Jicp(X, T) =

X

i1i2

xi1i2kp1
i1 � ⌧(p

2
i2)k

2
2 + (T), (2.5)

where X 2 {0, 1}n1⇥n2 denotes the correspondence between points. Depending on the problem,

X denotes either a one-to-one or many-to-one matching. In this chapter, we consider a one-to-

one matching between points and X is thus constrained to be a permutation matrix i.e., X 2 ⇧,

where⇧ is defined as Eq. 2.2. ⌧(·) : Rd ! Rd denotes a geometric transformation parameterized

by T . The transformation is softly penalized by the function (·) and constrained within the set

 . The parameterization of ⌧(·), T , (·) and can vary according to the requirement of the

problem. Fig. 2.2 lists the parameterization of three common transformations in 2-D space:

similarity, affine and RBF non-rigid transformation.

Similarity transformation: Given a point p 2 R2 or a point set P 2 R2⇥n, its similarity

transformation is computed as ⌧(p) = sRp+ t or ⌧(P) = sRP+ t1T
n , where s 2 R, R 2 R2⇥2

and t 2 R2 denote the scaling factor, rotation matrix and translation vector respectively. In

addition, the rotation matrix R 2 has to satisfy the constraints = {R|RTR = I2, |R| = 1}.

Affine transformation: Given a point p 2 R2 or a point set P 2 R2⇥n, its affine transfor-

mation is computed as ⌧(p) = Vp + t or ⌧(P) = VP + t1T
n , where V 2 R2⇥2 and t 2 R2

denote the affine matrix and translation vector respectively.

RBF non-rigid transformation: The RBF non-rigid transformation is one of the most pop-

ular non-rigid transformation widely used in image registration [47, 135]. The parameterization

of the transformation depends on the choice of the basis points. In our experiments, the ba-

sis points were chosen as the nodes of the second graph, i.e., P2 = [p2
1, · · · ,p2

n2
] 2 R2⇥n2 .

Given a point p 2 R2 or a point set P 2 R2⇥n, the transformation is computed as a dis-

placement shifted from its initial position, i.e., ⌧(p) = p + W�(p) or ⌧(P) = P + WLp,

where W 2 R2⇥n2 is the weight matrix and �(p) = [�1(p), · · · ,�n2(p)]
T 2 Rn2 denotes

15

Similarity Affine RBF Non-rigid

T

s 2 R
V 2 R2⇥2

t 2 Rd

W 2 R2⇥nR 2 R2⇥2

t 2 R2

⌧(p) sRp+ t Vp+ t p+W�(p)

⌧(P) sRP+ t1T

n

VP+ t1T

n

P+WL
p

 (T) 0 0 �

w

tr(WL
p

WT

)

RTR = I2
; ;

|R| = 1

Table 2.2: Parameterization of three geometrical transformations in 2-D space, where T , ⌧(·),

 and (·) denote the parameter set, transformation function, constraint set and penalization

function respectively.

the n2 displacement functions corresponding to the basis points. Each displacement function,

�i(p) = exp(�kp�p2
i

k22
�2
w

), is computed as a RBF between p and the basis p2
i with the bandwidth

�w. Lp = [�(p2
1), · · · ,�(p2

n2
)] 2 Rn2⇥n2 is the RBF kernel defined on all the pairs of basis

points. Following [135], we regularize the transformation by penalizing the non-smoothness of

the displacement field defined by W. More specifically, the regularization term is computed as,

 (T) = �w tr(WLpW
T
), where �w � 0 controls the trade-off between the objective and the

regularization term.

2.3.2 Advances on ICP

In the past decade, ICP has been widely used to solve correspondence problems in image, shape,

and surface registration [190, 229] due to its simplicity and low computational complexity. ICP

methods can be broadly classified by the type of deformation they recover as rigid [21, 219] or

non-rigid [47, 135].

A major limitation of ICP methods is that they are highly sensitive to the initialization. There

have been various strategies proposed to address this issue [160]. One common choice is to in-

16

troduce structural information into the registration schemes [30, 64, 129]. For instance, Belongie

et al.. [17] proposed shape context, a robust shape representation for finding correspondence

between deformed shapes. Advanced optimization scheme can also be employed to improve

the performance of ICP. For instance, Chui and Rangarajan [47] proposed to combine soft-

assignment [152] with deterministic annealing for non-rigid point registration. This work has

been recently extended in [135] for both rigid and non-rigid registration. The most closely re-

lated work to our method is the statistical approach [52, 127, 220], where a binary neighborhood

graph is used for guiding the ICP minimization for finding better correspondence. Unlike exist-

ing ICP algorithms, the proposed FGM introduces pairwise constraints that makes the matching

problem less prone to local minima.

Alternatively, RANSAC [71] type of algorithms have been widely used to find reliable corre-

spondences between two or more images in the presence of outliers. RANSAC estimates a global

relation that fits the data, while simultaneously classifying the data into inliers and outliers. Un-

like RANSAC-type of algorithms, FGM is able to efficiently model non-rigid transformations

and large rigid transformations.

2.4 Factorized graph matching (FGM)

This section proposes a novel factorization of the pairwise affinity matrix K. As we will see in

the following sections, this factorization provides a light-weight representation for GM problems,

allows a unification of GM methods, elaborates a better optimization strategy and makes it easy

to add geometric constraints to GM. This factorization is the main contribution of the chapter.

The pairwise affinity matrix K plays a central role in GM because it encodes all the first-order

and second-order relations between graphs. Two properties of K, full-rankness and indefinite-

ness, pose key challenges to conventional GM methods such as spectral methods [51, 112] and

gradient-based ones [43, 115, 191, 216]. Fig. 2.3 illustrates an empirical study on a thousand of

Ks computed from three realistic benchmark datasets in Section 2.8. The first row of Fig. 2.3

shows that the ratio between the rank and the dimension of K equaled to one, i.e., K was a

full-rank matrix in all the experiments. This fact explains why the spectral methods [51, 112]

17

Houses Cars Motorbikes

#
g

r
a

p
h

 p
a

ir
s

#
g

r
a

p
h

 p
a

ir
s

#
g

r
a

p
h

 p
a

ir
s

#
g

r
a

p
h

 p
a

ir
s

#
g

r
a

p
h

 p
a

ir
s

#
g

r
a

p
h

 p
a

ir
s

0 0.5 1 1.5 2
0

200

400

600

−0.7 −0.6 −0.5 −0.4
0

50

100

−0.7 −0.6 −0.5 −0.4
0

20

40

60

−0.7 −0.6 −0.5 −0.4
0

10

20

30

with−diagonal
zero−diagonal

0 0.5 1 1.5 2
0

50

100

150

200

0 0.5 1 1.5 2
0

100

200

300

(a) (b)

Figure 2.3: Statistics of K computed for the graphs extracted from three real image datasets used

in the experiments. The histograms in the top row illustrate the ratio between the rank and the

dimension of K. The histograms in the bottom row show the ratio between the minimum and the

maximum eigenvalues of the K. For the last two datasets (columns), we test K with zero values

on the diagonal as well. The top and bottom rows indicate that all the computed K are full-rank

and indefinite respectively.

usually perform worse than others. This is because the spectral methods employ the rank-one

approximation of K which inevitably leads to loss in accuracy. The second row of Fig. 2.3

shows that K was an indefinite matrix because the ratio between its maximum and minimum

eigenvalues was smaller than�0.4 in the experiments. The indefiniteness of K indicates that the

maximization of vec(X)

TK vec(X) is a non-convex problem and thus the gradient-based meth-

ods [43, 115, 191, 216] is prone to local optima. Instead of treating K as a black box, we analyze

and propose a factorization that decouples the structure of K. To the best of our knowledge,

this work is the first to propose a closed-form factorization for K and its applications to GM

problems.

To illustrate the intuition behind the factorization, let us revisit the synthetic problem shown

in Fig. 2.2. Notice that K 2 Rn1n2⇥n1n2 (Fig. 2.2f) is composed by two types of affinities:

the node affinity (Kp) on its diagonal and the pairwise edge affinity (Kq) on its off-diagonals.

Without the diagonal, K is a sparse block matrix with three unique structures: (1) K is composed

by n2-by-n2 smaller blocks Kij 2 Rn1⇥n1 . (2) Some of the Kijs are empty if there is no edge

connecting the ith and jth nodes of G2. In other words, these empty blocks can be indexed by

G2H
T
2 , i.e., Kij = 0 if [G2H

T
2]ij = 0. (3) For the non-empty blocks, Kij can be computed in a

closed form as G1 diag(k
q
c)H

T
1 , where c is the index of the edge connecting the ith and jth nodes

of G2, i.e., g2ic = h2
jc = 1. Based on these three observations, and after some linear algebra, it can

18

be shown that K can be factorized exactly as:

K = diag(vec(Kp)) + (G2 ⌦G1) diag(vec(Kq))(H2 ⌦H1)
T
. (2.6)

This factorization decouples the graph structure (G1, H1, G2 and H2) from the similarity (Kp

and Kq). It is important to notice that our factorization significantly differs from the one proposed

in our previous work [222] in two aspects: (1) Eq. 2.6 is proposed for more general graphs

composed by directed edges while [222] can be only applied for simpler graphs with undirected

edges; (2) Unlike [222], Eq. 2.6 separates Kp and Kq in two independent terms. This separation

enables us to introduce geometric transformations on Kp and Kq for GM problems.

Eq. 2.6 is the key contribution of this work. Previous work on GM explicitly computed the

computationally expensive (in space and time) K, which is of size O(n2
1n

2
2). On the contrary,

Eq. 2.6 offers an alternative framework by replacing K with six smaller matrices, which are of

size O(n1m1 + n2m2 + n1n2 +m1m2). For instance, plugging Eq. 2.6 into Eq. 2.3 leads to an

equivalent objective function:

Jgm(X) = tr

⇣

KT
pX

⌘

+ tr

⇣

KT
q (G

T
1 XG2 �HT

1 XH2
| {z }

Y

)

⌘

, (2.7)

where Y 2 {0, 1}m1⇥m2 can be interpreted as a correspondence matrix for edges, i.e., yc1c2 = 1

if both nodes of cth1 edge in G1 are matched to the nodes of cth2 edge in G2. For instance, Fig. 2.2d

illustrates the node and edge correspondence matrices for the matching defined in Fig. 2.2a.

2.5 A unified framework for graph matching

In past decades, a myriad of GM methods have been proposed for solving a variety of applica-

tions. Previous GM methods varied in their objective formulations and optimization strategies.

Although much effort [32, 36, 48, 166] has been made on comparing GM methods, a mathemati-

cal framework to connect the various GM methods in a coherent manner is lacking. This section

derives a unified framework to cast many GM methods using our proposed factorization.

Beyond the unification of GM methods, we show that a close relation exists between GM

and ICP objectives. This insight allows us to augment GM problems with additional geometrical

constraints that are necessary in many computer vision applications. Moreover, we extend ICP

19

to incorporate pair-wise constraints. Finally, we show (using the factorization) the connection

between GM and Markov random field (MRF) methods.

2.5.1 Unification of GM methods

Eq. 2.3 summarizes one of the most important GM problems studied in recent research on com-

puter vision [43, 51, 62, 77, 112, 115, 165, 180, 183, 184, 191, 216]. However, the way of

formulating GM is not unique. In other applications [9, 35, 49, 144, 188, 214], the goal of GM

was alternatively formulated as:

max

X2⇧
tr(KT

pX) + tr(A1XA2X
T
), (2.8)

where the main difference from Eq. 2.3 is in the second term, which measures the edge com-

patibility as the linear similarity between two weighted adjacency matrices A1 2 [0, 1]n1⇥n1 and

A2 2 [0, 1]n2⇥n2 , given the permutation X. In this case, the topology of a graph is defined by a

weighted adjacency matrix, A 2 [0, 1]n⇥n, where each element, aij , indicates the soft connectiv-

ity between the ith and the jth nodes.

GM can be formulated as the classical QAP, that has been well studied in the literature of

operation research since the 40

0s. In operation research literature [124], Eq. 2.3 and Eq. 2.8 are

known as Lawler’s QAP [110] and Koopmans-Beckmann’s QAP [105] respectively. Please refer

to Fig. 2.1 for a taxonomy of previous GM works in computer vision from a QAP perspective.

Roughly speaking, Lawler’s QAP is more general than Koopmans-Beckmann’s QAP because

it has 1
2n

2
1n

2
2 free variables in K compared to 1

2n
2
1 +

1
2n

2
2 free variables in A1 and A2. In fact,

Koopmans-Beckmann’s QAP can always be represented as a special case of Lawler’s QAP if we

assume K = A2 ⌦A1. In this particular Lawler’s QAP, the edge feature has to be a 1-D scalar

(i.e., qc = aij) and the edge similarity has to be linear (i.e., qc1c2 = hq1
c1
,q2

c2
i). This special

QAP can be limited when representing the challenging matching problem encountered in real

cases. However, Lawler’s QAP considers more general similarity measures including non-linear

Gaussian kernels, which take the linear similarity as an instance.

In general, it is unclear on how to understand the commonalities and differences between

these two types of GMs. In the following, we will propose a simple and clean connection that

exists using the proposed factorization. Observe that Kq can always be factorized (e.g., SVD) as

20

Kq = UVT , where U 2 Rm1⇥c and V 2 Rm2⇥c. Taking advantage of the low-rank structure of

Kq, Eq. 2.7 can be re-formulated2 as follows:

Jgm(X)

= tr

⇣

KT
pX

⌘

+ tr

⇣

(UVT
)

T
(GT

1XG2 �HT
1XH2)

⌘

= tr

⇣

KT
pX

⌘

+ tr

⇣

(

c
X

i=1

uiv
T
i)

T
(GT

1XG2 �HT
1XH2)

⌘

= tr

⇣

KT
pX

⌘

+

c
X

i=1

tr

⇣

diag(ui)G
T
1XG2 diag(vi)H

T
2X

TH1

⌘

= tr

⇣

KT
pX

⌘

+

c
X

i=1

tr

⇣

A1
iXA2

iX
T
⌘

, (2.9)

where A1
i = G1 diag(ui)H

T
1 2 Rn1⇥n1 and A2

i = G2 diag(vi)H
T
2 2 Rn2⇥n2 can be interpreted

as adjacency matrices for the two graphs. Eq. 2.9 reveals that c, the rank of the edge affinity

matrix Kq, is a key characteristic of GM methods. If c = 1, Lawler’s QAP downgrades to the

Koopmans-Beckmann’s QAP. In other cases when c > 1, solving Lawler’s QAP can be cast as a

joint optimization of c Koopmans-Beckmann’s QAPs.

Despite its importance, the relation between Eq. 2.3 and Eq. 2.8 has been rarely explored in

the literature of GM. In fact, many GM methods can benefit from this connection. Consider the

special case when the node affinity matrix Kp is empty and the edge affinity matrix Kq = uvT

has a rank-1 structure. According to the factorization, we can conclude K = A2 ⌦ A1, where

A1 = G1 diag(u)H
T
1 and A2 = G2 diag(v)H

T
2 . In this case, the spectral matching algo-

rithm [112] can be more efficiently computed as eig(K) = eig(A2)⌦eig(A1), where eig(K) de-

notes the leading eigen-vector of K. In addition, we can use Umeyama’s spectral algorithm [188]

to find the approximate solution by maximizing tr(A1XA2X
T
) subject to XXT

= I.

2.5.2 Connections between GM and ICP

To connect ICP with GM methods, we denote the node affinity matrix as, Kp(T) 2 Rn1⇥n2 ,

where each element, pi1i2(T) = �kp1
i1
� ⌧(p2

i2
)k22, encodes the negative Euclidean distance

2The equation, tr((uvT

)

T

(A �B)) = tr(diag(u)A diag(v)BT

), always holds for arbitrary u 2 Rm, v 2 Rn

and A,B 2 Rm⇥n.

21

between nodes. Using this short notation, the original ICP objective (Eq. 2.5) can be concisely

reformulated as:

Jicp(X, T) = � tr

⇣

Kp(T)

TX
⌘

+ (T). (2.10)

Eq. 2.10 reveals a clean connection between the ICP and GM objective (Eq. 2.7). Given the

transformation (T), minimizing Jicp over X is equivalent to maximize the node compatibility in

Eq. 2.7. This optimization can be cast as a linear matching problem, which can be efficiently op-

timized by the Hungarian algorithm if X is a one-to-one mapping or the winner-take-all manner

if X is a many-to-one mapping. In general, however, the joint optimization over X and T is non-

convex, and no-closed form solution is known. Typically, some sort of alternated minimization

(e.g., EM, coordinate-descent) is needed to find a local optima.

2.5.3 Connections between GM and MRF

Beyond GM problems, pairwise constraints have been popular in formulating other types of

matching problems. Among them, Markov random field (MRF) is perhaps the most well-studied

one and it plays a key role in obtaining binary solutions to many applications [179] such as stereo,

image stitching and segmentation.

Given n1 nodes and n2 labels, MRF problems consist in finding the optimal labeling matrix

X 2 � that defines a many-to-one mapping from nodes to labels, i.e.:

� = {X|X 2 {0, 1}n1⇥n2
,X1n2 = 1n1}. (2.11)

For instance, Fig. 2.4 illustrates a simple MRF problem, where four nodes need to be assigned

to three labels.

The goal of MRF problems often reduces to optimizing an energy function that depends on

how well the labels agree with the nodes (first-order potentials) as well as on how well pairs of

labels at connected nodes agree with each other (second-order potentials). Similar to GM, all

the relations between nodes and labels can be summarized in a pairwise affinity matrix, K 2
Rn1n2⇥n1n2 , whose diagonal and off-diagonal elements encode the first-order and second-order

potentials respectively. Following the previous work [50, 113, 155], the general MRF can be

22

Figure 2.4: An MRF example. Labeling four nodes (red circles) with three labels (blue boxes).

Similar to GM, the pairwise affinity matrix K can be factorized into six smaller matrices.

formalized as a similar QAP as follows:

max

X2�
Jmrf (X) = vec(X)

TK vec(X), (2.12)

Two general differences exist between GM and MRF. First, GM finds a one-to-one mapping

(Eq. 2.2) between the nodes of two graphs. In GM, the order of the two graphs is usually not

important because the permutation constraint (Eq. 2.2) is symmetric. However, MRF assigns

labels to nodes and it optimizes an asymmetrical many-to-one mapping (Eq. 2.11) between nodes

and labels. Each node has to be associated with only one label, while each label is allowed to

accept multiple nodes. Second, the two graphs to be matched in GM are used to describe two

similar instances. In practice, the nodes in both graphs are sparsely connected. However, MRF

matches between two types of graphs, the graph of nodes and the graph of labels. Consider the

task of labeling four image pixels in Fig. 2.4 as an example. On one hand, the node graph is a

sparse planar grid of image pixels, where eight edges connect neighbor pixels. On the other hand,

the label graph is fully connected by six edges. This is because the labels are three independent

states. Any combination of two labels is possible to label a pair of pixels.

Although it is originally designed for GM problems, our factorization (Eq. 2.6) can be applied

to model and understand MRF problems as well. For instance, the 12-by-12 K modeling the

problem shown in Fig. 2.4 can be decomposed into six components. In particular, G1 and H1

are two 4-by-8 binary matrices, encoding the node-edge incidence of the node graph. G2 and

H2 are two 3-by-6 binary ones, describing the fully connected label graph. Kp and Kq are used

to encode the first-order and second-order potentials respectively.

23

Despite the similarity between MRFs and GMs, some of the methods originally designed for

MRFs (e.g., graph cuts, belief propagation, linear programming and dual decomposition) cannot

be directly extended for solving GMs:

Graph cuts and belief propagation. Graph cuts [25, 103] and belief propagation [203] are

among the most popular tools for approximating MRFs. Due to their quadratic complexity in

the number of discrete states, however, neither graph cuts nor belief propagation is suitable for

solving practical GMs problems, where the state number of each node (i.e., number of nodes in

the other graph) can be much larger.

Linear programming. Linear programming (LP) methods [204, 210] approximate MRFs

by introducing a new variable Y = vec(X)

T
vec(X) to rewrite MRF’s objective (Eq. 2.12) in a

linear form. As shown in Fig. 2.5, however, such reformulation often leads to a quadratic explo-

sion of the variable and constraints. And even the most advanced LP solver (e.g., CPLEX [145])

can only handle very small graphs.

Dual decomposition. Instead of optimizing the primal objective of MRFs, some meth-

ods [102, 195] turns to solve the dual because of the theoretical guarantee in convergence. In

particular, Komodakis et al. [104] introduced a dual-decomposition (DD) [20] framework that

yields optimal solution in many practical computer vision problems [98]. More recently, Tor-

resani et al. [185] applied the similar DD idea to GMs by decomposing original problem into

several easier sub-problems. Despite its accuracy in approximation, this method still suffers

from some practical issues when dealing with GMs. For instance, the graph used in [185] is very

sparse because the complexity of solving each sub-problems is O(nmn
) where n and m are the

numbers of nodes and edges of decomposition respectively. In addition, the performance of DD

is largely affected by the quality of the decomposition of the original problem.

2.6 A path-following algorithm

This section presents a path-following algorithm for approximating the GM problem. Tradition-

ally, Eq. 2.3 is approached by a two-step scheme: (1) solving a continuously relaxed problem

and (2) rounding the approximate solution to a binary one. This procedure has at least two lim-

24

Figure 2.5: The number of variables and constraints in the LP relaxation of the stereo disparity

problem as a function of the size of the image. Image was taken from [210].

itations. First, the continuous relaxation is non-convex and prone to local optima. Second, the

rounding step will inevitably cause accuracy loss because it is independent of the cost function.

Inspired by [128, 137, 214], we address these two issues using a path-following algorithm by

iteratively optimizing an interpolation of two relaxations. This new scheme has three theoret-

ical advantages: (1) The optimization performance is initialization-free; (2) The final solution

is guaranteed to converge to an integer one and therefore no rounding step is needed; (3) The

iteratively updating procedure resembles the idea of numerical continuation methods [8], which

have been successfully used for solving nonlinear systems of equations for decades.

2.6.1 Convex and concave relaxation

To employ the path-following algorithm, we need to find a convex and concave relaxation of

Jgm(X). Fortunately, the factorization (Eq. 2.6) offers a simple and principal way to derive these

approximations. To do that, let’s first introduce an auxiliary function:

Jcon(X) =

c
X

i=1

tr

⇣

A1
i
T
XXTA1

i

⌘

+ tr

⇣

A2
iX

TXA2
i
T
⌘

.

25

As we know, a permutation matrix3 X 2 ⇧ is also an orthogonal one, satisfying XXT
= XTX =

I. Therefore, Jcon(X) = � is always a constant,

� =

c
X

i=1

tr

⇣

A1
i
T
A1

i

⌘

+ tr

⇣

A2
iA

2
i
T
⌘

,

if X is a permutation matrix.

Introducing into Jgm(X) the constant term, 1
2Jcon(X), yields two equivalent objectives:

Jvex(X) = Jgm(X)� 1

2

Jcon(X) = tr

⇣

KT
pX

⌘

� 1

2

c
X

i=1

kXTA1
i �A2

iX
T k2F , (2.13)

Jcav(X) = Jgm(X) +

1

2

Jcon(X) = tr

⇣

KT
pX

⌘

+

1

2

c
X

i=1

kXTA1
i +A2

iX
T k2F . (2.14)

The above two functions achieve the same value up to a constant difference �
2 as Jgm(X) with

respect to any permutation and orthogonal matrix. However, the orthogonal constraint XTX = I

on X is not a convex constraint. Therefore, we further relax X to be a doubly-stochastic matrix,

X1 1,XT1 = 1. Under this constraint, the problems of maximizing Jvex(X) and Jcav(X) are

convex and concave respectively. This is because their Hessians,

r2
XJvex(X) = �

c
X

i=1

(I⌦A1
i �A2

i ⌦ I)T (I⌦A1
i �A2

i ⌦ I),

r2
XJcav(X) =

c
X

i=1

(I⌦A1
i +A2

i ⌦ I)T (I⌦A1
i +A2

i ⌦ I),

are always negative and positive semi-definite, respectively.

2.6.2 A path-following strategy

The main challenge of approximating GM comes from its non-convex objective and the combi-

natorial constraints. Inspired by [128, 137, 214], we optimize Eq. 2.3 by iteratively optimizing a

series of the following convex-concave problems [213]:

max

X2D
J↵(X) = (1� ↵)Jvex(X) + ↵Jcav(X), (2.15)

where ↵ 2 [0, 1] is a tradeoff between the convex relaxation and the concave one.

The advantages of the path-following algorithm over conventional GM algorithms are three-

fold: (1) The algorithm starts with a convex problem when ↵ = 0. Because the problem is
3We need to introduce dummy selection variables if the two graphs are of different sizes.

26

convex, a numerical optimizer can find the global optimal solution independently of the initial-

ization. (2) When ↵ = 1 (at the end of the iterations) the problem is concave. It has been

well-studied [87, 157] that any local optima of a concave optimization problem must lie at the

extreme point of the constraint set. According to the Birkhoff-von Neumann theorem [193], all

the doubly-stochastic matrices (X 2 D) form the Birkhoff polytope, whose vertices are precisely

the permutation matrices (X 2 ⇧). Therefore, the converged solution is guaranteed to be binary

and no further discrete rounding step is needed. (3) By smoothly increasing ↵ from ↵ = 0 to

↵ = 1, the path-following algorithm is more likely to find better local optima than gradient-based

method.

To have a better understanding, we provide an example of optimizing GM using this strategy

in Fig. 2.6. The graphs to be matched are extracted from one pair of car images used in the

experiment (See Section 2.8.4). Fig. 2.6a plots the real GM objective (Jgm) and the objective

(J↵) to be optimized with respect to the change of ↵. The convex (Jvex) and concave (Jcav)

components are also plotted. Overall, four observations can be concluded looking at this figure.

First, J↵ equals to Jvex and Jcav when ↵ = 0 and ↵ = 1 respectively. Second, the curves of Jvex
and Jcav are monotonically decreasing and increasing as ↵ ! 1. This is because as ↵ increases,

the concave part gets more control than the concvex part to direct the optimization of J↵. Third,

the curve of J↵ intersects Jgm at ↵ =

1
2 . This is true due to the fact that the following equation

holds:

J↵(X) = Jgm(X) + (↵� 1

2

)Jcon(X), (2.16)

by plugging Eq. 2.13 and Eq. 2.14 into Eq. 2.15. At last, when the algorithm converges at ↵ = 1,

the gap between Jgm and the two relaxations is a constant �
2 . This is because X turns to be a

permutation matrix (Fig. 2.6c) and the equation, Jcon(X) = �, always holds at ↵ = 1.

2.6.3 Sub-problem optimization

For a specific ↵, we optimize J↵(X) using the Frank-Wolfe’s algorithm (FW) [73, 92], a simple

yet powerful method for constrained nonlinear programming. Unlike gradient-based methods

that require a projection onto the constraint, FW algorithm efficiently updates the solution by

automatically staying in the feasible set.

27

(c)(a) (b)

#iterations

ob
je

ct
iv

e
va

lu
e

0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1

0 50 100
22.15

22.16

22.17

22.18

0 50 100
77.90

77.91

77.92

77.94

FW
MFW

#iterations

FW
MFW

0.05 0.20 0.35 0.50 0.80 1.00

−50

0

50

100

150

200

250

300

350

ob
je

ct
iv

e
va

lu
e

ob
je

ct
iv

e
va

lu
e

Figure 2.6: An example of using the path-following algorithm for optimizing the GM problem.

(a) The comparison of the objectives during the optimization with respect to the change of ↵. (b)

The comparison of using FW and MFW for optimizing J↵(X) at two instances of ↵. (c) The

change of the elements of X as ↵! 1, where each curve corresponds a xij .

Given an initial X0, FW successively updates the solution as X⇤
= X0+⌘Y until converged.

At each step, it needs to compute two components: the optimal direction Y 2 D and the optimal

step size ⌘ 2 [0, 1].

To compute Y, we solve the following linear programming problem:

max

Y2D
tr

⇣

rJ↵(X0)
T
(Y �X0)

⌘

, (2.17)

whose objective is the first-order approximation of J↵(X) at the point X0. The gradientsrJ↵(X0)

can be efficiently computed using matrix operation as follows:

rJ↵(X) = rJgm(X) + (↵� 1

2

)rJcon(X),

rJgm(X) = Kp +H1(G
T
1 XG2 �Kq)H

T
2 +G1(H

T
1 XH2 �Kq)G

T
2 ,

rJcon(X) = 2

⇣

G1(H
T
1 H1 �UUT

)GT
1 +G2(H

T
2 H2 �VVT

)GT
2

⌘

X.

Similar to [115, 214], we adopt the Hungarian algorithm to efficiently solve this linear program-

ming.

Once the gradient is computed, the line search for the optimal ⌘ can be found in closed form.

28

More specifically, the optimal ⌘ is the maximum point of the following parabola:

J↵(X0 + ⌘Y) = a⌘

2
+ b⌘

| {z }

f(⌘)

+const, (2.18)

where a = agm + (↵ � 1
2)acon and b = bgm + (↵ � 1

2)bcon are the 2

nd and 1

st order coefficients

respectively. In addition, we can compute the components of agm, bgm, acon and bcon as follows:

agm = tr

⇣

KT
q (G

T
1 YG2 �HT

1 YH2)

⌘

,

bgm = tr

⇣

KT
pY

⌘

+ tr

⇣

KT
q (G

T
1 XG2 �HT

1 YH2 +GT
1 YG2 �HT

1 XH2)

⌘

,

acon = tr

⇣

(UUT
)

T
(GT

1 YYTG1 �HT
1 H1)

⌘

+ tr

⇣

(VVT
)

T
(GT

2 YYTG2 �HT
2 H2)

⌘

,

bcon = 2 tr

⇣

(UUT
)

T
(GT

1 XYTG1 �HT
1 H1)

⌘

+ 2 tr

⇣

(VVT
)

T
(GT

2 XYTG2 �HT
2 H2)

⌘

.

It is well-known that the optimum point of the parabola must be one of the three points,

⌘⇤ 2 {0, 1,� b
2a}. A straightforward way to obtain the optimal ⌘⇤ is to compute J↵(X0 + ⌘Y)

at each point and pick the one yielding the largest value. In fact, it is more efficient to choose

⌘⇤ based on the geometry of the parabola. Fig. 2.7 illustrates the eight possible configurations of

the parabola and the corresponding optimal step sizes.

2.6.4 Other implementation details

A similar path-following strategy was proposed in [214] and its performance over the state-of-

the-art methods has been therein demonstrated for solving the less general GM problem (i.e.,

tr(KT
pX) + tr(A1XA2X

T
)). After exhaustive testing this strategy for solving the most general

GM problem (i.e., vec(X)

TK vec(X)), we empirically found that results can be improved using

the following the following two steps:

Convergence: Although the FW algorithm is easy to implement, it converges sub-linearly.

To get faster convergence speed while keeping its advantages in efficiency and low memory cost,

we adopt a modified Frank-Wolfe (MFW) [74] to find a better searching direction Y by a convex

combination of previously solutions. In the experiments, we used the directions computed in 10

previous steps. Fig. 2.6b compares MFW with the original FW for two values of ↵. As we can

see, MFW converges much faster than FW.

29

Figure 2.7: Eight possible shapes of the parabola f(⌘) = a⌘2+b⌘ and the corresponding optimal

step sizes ⌘⇤ = argmax⌘2[0,1] f(⌘).

Local vs global: Although the path-following strategy returns an integer solution by smoothly

tracking the local optima in a convex space, it does not guarantee to obtain the global optimal

solution of the non-convex objective function. An important reason is that at each step, it lo-

cally optimizes over J↵(X) instead of the global one Jgm(X). It is possible that J↵(X) increases

while Jgm(X) decreases. In order to escape from this phenomenon, we keep increasing the

global score of Jgm(X) during the optimization by discarding the bad temporary solution that

worsens the score of Jgm(X) and computing an alternative one by applying one step of FW for

optimizing Jgm(X). This refinement is analogous to the usage of FW in [115].

Algorithm 10 summarizes the work-flow of our algorithm. The initial X can be an arbi-

trary doubly stochastic matrix. The complexity of our algorithm can be roughly calculated as

O
�

T (⌧hun + ⌧r + ⌧�) + ⌧svd
�

, where T is the number of iterations for the FW, and ⌧svd = m1m
2
2

is the cost of computing the SVD of Kq. The Hungarian algorithm can be finished in ⌧hun =

max(n3
1, n

3
2). The gradient of rJ↵ and the line search of � incur the same computational cost,

⌧r = ⌧� = m1m2.

30

Algorithm 1: A path-following algorithm
input : Kp, Kq, G1, H1, G2, H2, �, X0

output: X

1 Initialize X to be a doubly stochastic matrix;

2 Factorize Kq = UVT ;

3 for ↵ = 0 : � : 1 do Path-following

4 if ↵ = 0.5 and Jgm(X) < Jgm(X0) then

5 Update X X0;

6 Optimize Eq. 2.15 via MFW to obtain X⇤;

7 if Jgm(X⇤
) < Jgm(X) then

8 Optimize Eq. 2.3 via one step of FW to obtain X⇤;

9 Update X X⇤;

10

2.7 Deformable graph matching (DGM)

GM has been widely used as a general tool in matching point sets with similar structures. In

many computer vision applications, it is often required that the matching between two sets is

constrained by a geometric transformation. It is unclear how to incorporate geometric constraints

into GM methods. This section describes an extension of GM, called deformable graph matching

(DGM), that incorporates rigid and non-rigid transformations into graph matching.

2.7.1 Objective function

To simplify the discussion and to be consistent with ICP, we compute the node feature of each

graph G = {P,Q,G,H} simply as the node coordinates, P = [p1, · · · ,pn] 2 Rd⇥n. Similarly,

the edge features Q = [q1, · · · ,qm] 2 Rd⇥m are computed as the coordinate difference between

the connected nodes, i.e., qc = pi � pj , where gic = hjc = 1. In this case, the edge feature can

be conveniently computed in a matrix form as, Q = P(G�H).

Suppose that we are given two graphs, G1 = {P1,Q1,G1,H1} and G2 = {P2,Q2,G2,H2},

31

and a geometrical transformation defined on points by ⌧(·). Similar to ICP, we compute the

node affinity Kp(T) 2 Rn1⇥n2 and the edge affinity Kq(T) 2 Rm1⇥m2 as linear functions of the

Euclidean distance4, i.e.:

p
i1i2

(T) = �kp1
i1 � ⌧(p

2
i2)k

2
2,

q
c1c2(T) = � � k (p1

i1 � p1
j1)

| {z }

q1
c1

� (⌧(p2
i2)� ⌧(p

2
j2))

| {z }

⌧(q2
c2

)

k22, (2.19)

where � is chosen to be reasonably large to ensure that the pairwise affinity is greater than zero.

Recall that the factorization (Eq. 2.6) reveals that the goal of GM (Eq. 2.7) is similar to

ICP (Eq. 2.10). In order to make GM more robust to geometric deformations, DGM aims to

find the optimal correspondence X as well as the optimal transformation T such that the global

consistency can be maximized:

max

X2⇧,T 2
Jdgm(X, T) = tr

⇣

Kp(T)

TX
⌘

+ � tr

⇣

Kq(T)

TY
⌘

� (T), (2.20)

where � � 0 is used to balance between the importance of the node and edge consistency. Similar

to ICP, (T) and are used to constrain and penalize the transformation parameter. Eq. 2.20

extends ICP by adding the transformation. In particular, if � = 0, solving DGM is equivalent to

ICP. In other case when � > 0 and T is known, solving DGM is identical to a GM problem.

2.7.2 Optimization

Due to the non-convex nature of the objective, we optimize Jdgm by alternatively solving the

correspondence (X) and the transformation parameter (T). The initialization is important for the

performance of DGM. However, how to select a good initialization is beyond the scope of this

chapter and we simply set the initial transformation as an identity one, i.e., ⌧(p) = p.

Optimizing Eq. 2.20 consists of alternation between optimizing for the correspondence and

the geometric transformation. Given the transformation T , DGM is equivalent to a traditional

4In addition to the linear affinity, there are other choices for defining the similarity between nodes and edges.

For instance, the edge similarity could be computed as a RBF kernel. Due to the non-linearity of RBF, we might

not have a closed-form solution for computing the transformation. But we could adopt Fitzgibbon’s method [72] to

optimize the transformation with respect to a linear approximation of the cost function.

32

GM problem. To find the node correspondence X, we adopt the path-following algorithm by

optimizing Eq. 2.15.

Given the correspondence matrix X, the optimization over the transformation parameter T is

similar to ICP. The main difficulty lies in the fact that the transformation parameter T appears not

only in the node affinity Kp(T), but also in the edge affinity Kq(T). After some linear algebra,

however, it can be shown that for certain choices of transformations in 2-D (e.g., similarity, affine,

RBF non-rigid), the parameter can be computed in closed-form.

Similarity transformation: According to the definition in Eq. 2.19, the similarity trans-

formation of the edge feature is ⌧(q) = sRq or ⌧(Q) = sRQ. Since the translation t only

affects the node feature, the optimal t⇤ can be computed as follows once the optimal scalar s⇤

and rotation R⇤ are known:

t⇤ = ¯p1 � s

⇤R⇤
¯p2, where ¯p1 =

P1X1n2

1Tn1
X1n2

,

¯p2 =
P2X

T1n1

1Tn1
X1n2

.

After centerizing the data, ¯P1 = P1 � ¯p11
T
n1

and ¯P2 = P2 � ¯p21
T
n2

, it can be shown that the

optimal rotation and scaling can be achieved at:

R⇤
= U diag(1, · · · , |UVT |)VT

,

s

⇤
=

tr(⌃)

tr

⇣

1n1⇥2(
¯P2 � ¯P2)XT

⌘

+ �q tr

⇣

1m1⇥2(Q2 �Q2)YT
⌘

,

where U⌃VT
=

¯P1X¯PT
2 + �qQ1YQT

2 is computed by SVD.

Affine transformation: After applying the transformation, the edge feature becomes ⌧(q) =

Vq or ⌧(Q) = VQ. Similar to the similarity transformation, the optimal translation is dependent

on the optimal affine matrix V⇤:

t⇤ = ¯p1 �V⇤
¯p2, where ¯p1 =

P1X1n2

1Tn1
X1n2

,

¯p2 =
P2X

T1n1

1Tn1
X1n2

.

After centerizing all the data, we can compute the optimal affine transformation:

V⇤
= AB�1

,

where A =

¯P1X¯PT
2 + �qQ1YQT

2 , B =

¯P2 diag(X
T1n1)

¯PT
2 + �qQ2 diag(Y

T1m1)Q
T
2 .

Non-rigid transformation: According to the definition in Eq. 2.19, the non-rigid transfor-

mation of the edge feature is ⌧(qc) = qc +W(�(pi)� �(pj)), where edge qc connects between

33

point pi and pj . In matrix form, we can show that ⌧(Q) = Q+WLq, where Lq = Lp(G�H).

Plugging the definition of ⌧(P) and ⌧(Q) in Jdgm yields:

Jdgm(W) = tr

n⇣

2PT
1 WLp � 1n1⇥2(2P2 �WLp +WLp �WLp)

⌘

XT
o

+ �q tr

n⇣

2QT
1 WLq � 1m1⇥2(2Q2 �WLq +WLq �WLq)

⌘

YT
o

� �w tr(WLpW
T
).

Setting the gradient of the above objective to zero yields the optimal weight matrix W as:

W⇤
= AB�1

,

where A = P1X�P2 diag(X
T1n1) + �qQ1Y(G2 �H2)

T � �qQ2 diag(Y
T1m1)(G2 �H2)

T
,

B = Lp diag(X
T1n1) + �wIn2 + �qLq diag(Y

T1m1)(G2 �H2)
T
.

2.7.3 Comparison with ICP

It is well known that the performance of ICP algorithms largely depends on the effectiveness

of the initialization step. In the following example, we empirically illustrate how by adding

additional pairwise constrains, DGM is less sensitive to the initialization. Fig. 2.8a illustrates

the problem of aligning two fish shapes under varying values for the initial rotation and scale

parameters. As shown in Fig. 2.8b, ICP gets trapped into a local optima if the orientation gap is

larger than 1
3⇡ (the error should be 0). Similarly, DGM fails for large orientation gap after two

iterations (the left column of Fig. 2.8c). However, as the number of iterations increasing, DGM is

able to match shapes with very large deformation in rotation and scales. After 24 iterations, DGM

ultimately finds the optimal matching for all the initializations (the right column of Fig. 2.8c).

This experiment shows that adding pairwise constraints can make the ICP algorithm more robust

to the problem of local optima.

2.8 Experiments

This section reports experimental results on four benchmark datasets and compares FGM to sev-

eral state-of-the-art methods for GM and ICP. In the first three experiments, we test the perfor-

mance of using the path-following algorithm for optimizing GM problems. In the last experiment

34

2 iterations (DGM) 4 iterations (DGM) 8 iterations (DGM) 24 iterations (DGM)

(c)

(a) (b)
−1 0 1

−1

0

1

−1 0 1

−1

0

1

−2 −1 0 1

−1

0

1

0.25

1.5

3
4

−120

−60

0

0.25

1.5

3
4

−120

−60

0

0.25

1.5

3
4

−120

−60

0

0.25

1.5

3
4

−120

−60

0

0.25

1.5

3
4

−120

−60

0

24 iterations (ICP)

scale

angle angle angle angle

scale

scale

scale

angle
scale

Figure 2.8: Comparison between ICP and DGM for aligning shapes for several initial values of

rotation and scale parameters. (a) Examples of initializations for different angles and scales. (b)

Objective surfaces obtained by ICP for different initializations. (c) Objective surfaces obtained

by DGM.

we add a known geometrical transformation between graphs and compare with ICP algorithm on

the problem of matching rigid and non-rigid shapes.

2.8.1 Baselines and evaluation metrics

In the experiment, we compared against seven state-of-the-art algorithms.

Graduated assignment (GA): GA [77] performs gradient ascent on a relaxation of Eq. 2.3

driven by an annealing schedule. At each step, it maximizes a Taylor expansion of the non-

convex QP around the previous approximate solution. The accuracy of the approximation is

controlled by a continuation parameter, �t+1 ↵�t �max. In all experiments, we set ↵ =

1.075, �0 = .5 and �max = 200.

Spectral matching (SM): SM [112] optimizes a relaxed problem of Eq. 2.3 that drops the

35

affine constraints and introduces a unit-length constraint on X, that is:

max

X
Jgm(X), s. t. k vec(X)k22 = 1.

The globally optimal solution of the relaxed problem is the leading eigenvector of K.

Spectral matching with affine constraints (SMAC): SMAC [51] adds affine constraints to

the SM problem maximizing:

max

X
Jgm(X), s. t. A vec(X) = b and k vec(X)k22 = 1.

The solution is also an eigenvalue problem.

Integer projected fixed point method (IPFP): IPFP [115] can take any continuous or dis-

crete solution as inputs and iteratively improve the solution. In our experiments, we implemented

two versions: (1) IPFP-U, which starts from the same initial X as our method; (2) IPFP-S, which

is initialized by SM.

Probabilistic matching (PM): PM [216] designs the following convex objective function

that can be globally optimized by applying the Sinkhorn’s algorithm [176]:

min

X2D
S(YkX),

where S(·) denotes the relative entropy error based on the Kullback-Leibler divergence and Y 2

Rn1⇥n2 is calculated by marginalizing K.

Re-weighted random walk matching (RRWM): RRWM [43] introduces a random walk

view on the problem and obtains the solution by simulating random walks with re-weighting

jumps enforcing the matching constraints on the association graph. We fixed its parameters

↵ = 0.2 and � = 30 in all experiments.

Concave optimization (CAV): Concave optimization was firstly used by Maciel and Costeira [128]

for optimizing GM. Compared to conventional iterative optimization method, concave optimiza-

tion is guaranteed to converge at an integer solution and no further rounding step is needed.

Similar to [128], we implemented CAV by employing the Frank-Wolfe algorithm to iteratively

optimizing the concave relaxation (Eq. 2.14) of GM. To demonstrate the benefit of the path-

following procedure, CAV was initialized by solving the same convex relaxation (Eq. 2.13) as

FGM. The main difference between CAV and FGM is that the latter employs a path-following

strategy to iteratively improve the result.

36

Factorized graph matching (FGM): We implemented two versions of our method, FGM-

U for undirected graphs with only symmetric edge features and FGM-D for directed graphs

with either symmetric or asymmetric edge features. FGM-U was first proposed in [222], which

contains a similar factorization to Eq. 2.6. The main difference between FGM-U and FGM-D

(this work) is that the former factorization can only be used for undirected graphs with symmetric

edge features. In contrast, FGM-D can handle both undirected and directed graphs. To be able

to use FGM-U for matching graphs with directed edges, we converted the directed edges to

undirected edges. For each pair of undirected edges, we computed the new edge affinity as the

average value of the original affinity between the directed edges. The parameters for our method

were fixed to � = 0.01 in all experiments.

We used existing code from the author’s websites for all methods. Notice that all methods

except CAV, FGM-U and FGM-D need a post-processing step to discretize X. To make a fair

comparison, we applied the Hungarian algorithm to make this discretization. The code was

implemented in Matlab on a laptop platform with 2.4G Intel Core 2 Duo and 4G memory. FGM-

U and FGM-D were able to obtain the solution within a minute for graphs with 50 nodes.

We evaluated both the matching accuracy and the objective score for the comparison of per-

formance. The matching accuracy,

acc =

tr(XT
algXtru)

tr(1n2⇥n1Xtru)
,

is calculated by computing the consistent matches between the correspondence matrix Xalg given

by algorithm and ground-truth Xtru. The objective score,

obj =

Jgm(Xalg)

Jgm(Xours)
,

is computed as the ratio between the objective values of our method (FGM-D) and other algo-

rithms.

2.8.2 Synthetic dataset

This experiment performed a comparative evaluation of GM algorithms on randomly synthesized

graphs following the experimental protocol of [43, 51, 77]. For each trial, we constructed two

identical graphs, G1 and G2, each of which consists of 20 inlier nodes and later we added nout

37

ob
je

ci
tv

e
ra

tio
(a) (c)(b)

ac
cu

ra
cy

#outliers #outliers

ac
cu

ra
cy

edge noise edge noise densitydensity

GA PM SM SMAC IPFP−U IPFP−S RRWM CAV FGM−U FGM−D

0.00 0.04 0.08 0.12 0.16 0.20
0

0.2

0.4

0.6

0.8

1

0.00 0.04 0.08 0.12 0.16 0.20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.0 0.8 0.6 0.4
0

0.2

0.4

0.6

0.8

1

1.0 0.8 0.6 0.4
0.4

0.5

0.6

0.7

0.8

0.9

1

ob
je

ci
tv

e
ra

tio

ob
je

ci
tv

e
ra

tio

ac
cu

ra
cy

0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.9: Comparison of GM methods on synthetic datasets. (a) Performance as a function of

the outlier number (nout). (b) Performance as a function of the edge noise (�). (c) Performance

as a function of the density of edges (⇢).

outlier nodes in both graphs. For each pair of nodes, the edge was randomly generated according

to the edge density parameter ⇢ 2 [0, 1]. Each edge in the first graph was assigned a random

edge score distributed uniformly as q1c ⇠ U(0, 1) and the corresponding edge q2c = q1c + ✏ in the

second graph was perturbed by adding a random Gaussian noise ✏ ⇠ N (0, �2
). Notice that the

edges had direction and the edge feature was asymmetrical. The edge-affinity matrix Kq was

computed as kq
c1c2

= exp(� (q1
c1

�q2
c2

)2

0.15) and the node-affinity Kp was set to zero.

The experiment tested the performance of GM methods under three parameter settings. For

each setting, we generated 100 different pairs of graphs and evaluated the average accuracy and

objective ratio. In the first setting (Fig. 2.9a), we increased the number of outliers from 0 to

20 while fixing the noise � = 0 and considering only fully connected graphs (i.e., ⇢ = 1). In

the second case (Fig. 2.9b), we perturbed the edge weights by changing the noise parameter

� from 0 to 0.2, while fixing the other two parameters nout = 0 and ⇢ = 1. In the last case

(Fig. 2.9c), we verified the performance of matching sparse graphs by varying ⇢ from 1 to 0.3.

Under varying parameters, it can be observed that in most cases, our method, FGM-D, achieved

the best performance over all other algorithms in terms of both accuracy and objective ratio.

RRWM and CAV are our closest competitors. FGM-U did not achieve comparatively good

results because it solved an undirected approximation of the original problem. Initialized by the

same convex solution as FGM-D, however, CAV performed worse than FGM-D due to the lack

of the robust path-following strategy.

38

2.8.3 House image dataset

The CMU house image sequence [1] was commonly used to test the performance of graph match-

ing algorithms [37, 43, 60, 184]. This dataset consists of 111 frames of a house, each of which has

been manually labeled with 30 landmarks. We used Delaunay triangulation to connect the land-

marks. The edge weight qc was computed as the pairwise distance between the connected nodes.

Due to the symmetry of distance-based feature, the edge was undirected. Given an image pair,

the edge-affinity matrix Kq was computed by kq
c1c2

= exp(� (q1
c1

�q2
c2

)2

2500) and the node-affinity Kp

was set to zero. We tested the performance of all methods as a function of the separation between

frames. We matched all possible image pairs, spaced exactly by 0 : 10 : 90 frames and computed

the average matching accuracy and objective ratio per sequence gap. Fig. 2.10a demonstrates an

example pair of two frames.

We tested the performance of graph matching methods under two scenarios. In the first

case (Fig. 2.10b) we used all 30 nodes (i.e., landmarks) and in the second one (Fig. 2.10c) we

matched sub-graphs by randomly picking 25 landmarks. It can be observed that in the first case

(Fig. 2.10b), IPFP-S, RRWM, CAV, FGM-U and FGM-D almost obtained perfect matching of

the original graphs. As some nodes became invisible and the graph got corrupted (Fig. 2.10c), the

performance of all the methods degraded. However, FGM-U and FGM-D consistently achieved

the best performance. The results demonstrate the advantages of the path-following algorithm

over other state-of-the-art methods in solving general GM problems. In addition, it is interesting

to notice that FGM-U and FGM-D performed similarly in both cases. This is because FGM-U

can be considered as a special case of FGM-D when the graph consists of undirected edges.

2.8.4 Car and motorbike image dataset

The car and motorbike image dataset [2] was created in [116]. This dataset consists of 30 pairs

of car images and 20 pairs of motorbike images taken from the PASCAL challenges. Each pair

contains 30 ⇠ 60 ground-truth correspondences. We computed for each node the feature, pi, as

the orientation of the normal vector to the contour. We adopted the Delaunay triangulation to

build the graph. In this experiment, we considered the most general graph where the edge was

39

0 30 60 90

0.4

0.6

0.8

1

0 30 60 90

0.4

0.6

0.8

1

0 30 60 90

0.4

0.6

0.8

1

0 30 60 90

0.4

0.6

0.8

1

(c)(b)(a) baseline baseline baseline baseline
ac

cu
ra

cy

ob
je

ci
tv

e
ra

tio

ac
cu

ra
cy

ob
je

ci
tv

e
ra

tio

GA PM SM SMAC IPFP−U IPFP−S RRWM CAV FGM−U FGM−D

Figure 2.10: Comparison of GM methods on the CMU house datasets. (a) An example pair of

frames with the correspondence generated by our method, where the blue lines indicate incorrect

matches. (b) Performance of several algorithms using 30 nodes. (c) Performance using 25 nodes.

(d)(c)

ac
cu

ra
cy

(a)

(b)

#outliers #outliers #outliers #outliers

ob
je

ci
tv

e
ra

tio

ac
cu

ra
cy

ob
je

ci
tv

e
ra

tio

GA PM SM SMAC IPFP−U IPFP−S RRWM CAV FGM−U FGM−D

0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20
0.2

0.4

0.6

0.8

1

0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20
0.2

0.4

0.6

0.8

1

Figure 2.11: Comparison of GM methods for the car and motorbike dataset. (a) An example pair

of car images with the correspondence generated by our method, where the blue lines indicate

incorrect matches. (b) An example pair of motorbike images. (c) Performance as a function of

the outlier number for the car images. (d) Performance as a function of the outlier number for

the motorbike images.

40

directed and the edge feature was asymmetrical. More specifically, each edge was represented

by a couple of values, qc = [dc, ✓c]
T , where dc was the pairwise distance between the connected

nodes and ✓c was the angle between the edge and the horizontal line. Thus, for each pair of

images, we computed the node affinity as kp
ij = exp(�|pi � pj|) and the edge affinity as kq

c1c2
=

exp(�1
2 |dc1 � dc2 | � 1

2 |✓c1 � ✓c2 |). Fig. 2.11a and Fig. 2.11b demonstrate example pairs of car

and motorbike images respectively. To test the performance against noise, we randomly selected

0 ⇠ 20 outlier nodes from the background. Similarly, we compared FGM-D against nine state-

of-the-art methods. However, we were unable to directly use FGM-U to match directed graphs.

Therefore, we ran FGM-U on an approximated undirected graph, where we computed the feature

of the new undirected edge as the average value of the original affinities between the directed

edges.

As observed in Fig. 2.11c-d, the proposed FGM-D consistently outperformed other methods

on both datasets. Based on similar path-following strategy, however, FGM-U was unable to

achieve the same accuracy because the graph consisted of directed edges and FGM-U was only

applicable to undirected edges. It is worth to point that CAV performed not very well compared

to FGM-D although it solved the same initial convex problem and optimized the same concave

relaxation at the final step. This result as well as the previous experiment clearly demonstrated the

path-following algorithm used by FGM-D provided a better optimization strategy than existing

approaches. Finally, it is important to remind the reader that without the factorization proposed

in this work it is not possible to apply the path-following method to general graphs.

2.8.5 Fish and character shape dataset

The UCF shape dataset [47] has been widely used for comparing ICP algorithms. In our ex-

periment, we used two different templates. The first one has 91 points sampled from the outer

contour of a tropical fish. The second one consist of 105 points sampled from a Chinese char-

acter. For each template, we designed two series of experiments to measure the robustness of

an algorithm under different deformations and outliers. In the first series of experiments, we

rotated the template with a varying degree (between 0 and ⇡). In the second set of experiments,

a varying amount of outliers (between 0 and 20) were randomly added into the bounding box of

41

(c) (e)
0

0

0.2

0.4

0.6

0.8

1

ac
cu
ra
cy

ac
cu
ra
cy

0 7 13 20
0

0.2

0.4

0.6

0.8

1

0
0

0.2

0.4

0.6

0.8

1

rotation #outliers

ac
cu
ra
cy

ac
cu
ra
cy

#outliers

(a)

(b) (d) (f)

0 7 13 20
0

0.2

0.4

0.6

0.8

1

ICP CPD DGM

rotation

Figure 2.12: Comparison between DGM and ICP on the UCF shape datasets. (a-b) Two example

pairs of shapes aligned using DGM. The red shape (left) is a rotated version of the blue one

(right) by 2
3⇡ and 20 random outliers were added. (c-d) Matching performance as a function of

the initial rotations. (e-f) Matching performance as a function of the number of outliers.

template. For instance, Fig. 2.12a-b illustrate two pairs of example shapes with 20 outliers. We

repeated the random generation 50 times for different levels of noise and compared DGM with

the standard ICP algorithm and the coherent point drifting (CPD) [135]. The ICP algorithm was

implemented by ourselves and CPD implementation was taken from the authors’ website. We

initialized all the algorithms with the same transformation, i.e., ⌧(p) = p. In DGM, Delaunay

triangulation was employed to compute the graph structure. Recall that DGM simultaneously

computes the correspondence and the rotation.

As shown in Fig. 2.12c-d, the proposed DGM can perfectly match the shapes across all the

rotations without outliers, whereas both ICP and CPD get trapped in the local optimal when the

rotation is larger than 2
3⇡. When the number of outliers increases, DGM can still match most

points under large rotation at 2
3⇡. In contrast, ICP and CPD drastically failed in presence of

outliers and large rotations (Fig. 2.12e-f).

In addition to a similarity transform, DGM can also incorporate non-rigid transformations in

GM. Similar to the rigid case described in the main submission, we synthesized the non-rigid

42

SM RRWM

FGM-D DGM
−2 −1 0 1 2
−2

−1

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1

SM RRWM FGM-D DGM

(a)

(b) (c)

Figure 2.13: Comparison between DGM and GM methods for aligning non-rigidly deformed

shapes. (a) An example of two fishes, where the red one is generated by a non-rigid transforma-

tion from the blue one. (b) Accuracy. (c) Results of GM methods, where the green and black

lines indicate correct and incorrect correspondence respectively.

shape from the UCF shape dataset [47]. To generate the nonrigid transformation, we followed

a similar setting in [135], where the domain of the point set was parameterized by a mesh of

control points. The deformation of the mesh was modeled as an spline-based interpolation of the

perturbation of the control points. We repeated the random generation 50 times. For instance,

Fig. 2.13a illustrates a synthetic pair of graphs.

We compared DGM with other two state-of-the-art GM methods: SM [112] and RRWM [43].

In addition, we tested the performance of our algorithm (FGM-D) only using the path-following

algorithm for computing the correspondence but without estimating the transformation. As

shown in Fig. 2.13b-c, FGM-D performed better than the other two GM methods. This is due

to the path-following algorithm that is more accurate in optimizing GM problems. In addition,

DGM significantly improved FGM-D by estimating the transformation.

2.9 Conclusions

This chapter proposes factorized graph matching (FGM), a new framework for better optimizing

and understanding GM problems. The key idea of FGM is a novel factorization of the pairwise

43

affinity matrix into six smaller components. Four main benefits follow from factorizing the

affinity matrix. First, there is no need to explicitly compute the costly affinity matrix. Second, it

allows for a unification of GM methods as well as provides a clean connection with existing ICP

algorithms. Third, the factorization enables the use of path-following algorithms that improve

the performance of GM methods. Finally, it becomes easier to incorporate global geometrical

transformation in GM.

In the chapter we have illustrated the advantages of factorizing the pair-wise affinity matrix

of typical graph matching problems. The most computationally consuming part of the algorithm

is the large number of iterations needed for FW method to converge when J↵ is close to a convex

function. Therefore, more advanced techniques (e.g., conjugate gradient) can be used to speedup

FW. In addition, we are currently exploring the extension of this factorization methods to other

higher-order graph matching problems [41, 60, 216] as well as learning parameters for graph

matching [37, 116].

44

Chapter 3

Temporal Matching

3.1 Introduction

Temporal alignment of multiple time series is an important problem with applications in many

areas such as speech recognition [148], computer graphics [31], computer vision [40], and bio-

informatics [3]. In particular, alignment of human motion from sensory data has recently re-

ceived increasing attention in computer vision and computer graphics to solve problems such

as curve matching [168], temporal clustering [227], tele-rehabilitation [205], activity recogni-

tion [97] and motion synthesis [88, 142]. While algorithms for aligning time series have been

commonly used in computer vision and computer graphics, a relatively unexplored problem has

been the alignment of multi-dimensional and multi-modal time series that encode human motion.

Fig. 3.1 illustrates the main problem addressed by this chapter: how can we efficiently find the

temporal correspondence between (1) frames of a video, (2) samples of motion capture data and

(3) samples of 3-axis accelerometers of different subjects performing a similar action?

The alignment of multi-dimensional, multi-modal time series of human motion poses sev-

eral challenges. First, there is typically a large variation in the subjects’ physical characteristics,

motion style and speed performing the activity. Second, large changes in view point also compli-

cate the correspondence problem [192]. Third, it is unclear how existing techniques can be used

to align sets of time series that have different modalities (e.g., video and motion capture data).

While there is extensive literature on time series alignment [82], standard extensions of dynamic

45

time warping (DTW) or Bayesian networks are not able to align multi-modal data.

To address these problems, this chapter proposes generalized canonical time warping (GCTW),

a technique to temporally align multi-modal time series of different subjects performing sim-

ilar activities. GCTW is a spatio-temporal alignment method that temporally aligns two or

more multi-dimensional and multi-modal time series by maximizing the correlation across them.

GCTW can be seen as an extension of DTW or canonical correlation analysis (CCA). To ac-

commodate for subject variability and take into account the difference in the dimensionality

of the signals, GCTW uses CCA as a measure of spatial correlation. GCTW extends DTW

by incorporating a feature weighting mechanism to provide greater importance to more highly

correlated features and align signals of different dimensionality. It also extends DTW by pa-

rameterizing the warping path as combination of monotonic functions, providing more accurate

alignment and faster optimization strategies. Unlike exact approaches based on DTW, which

have quadratic cost, GCTW uses a Gauss-Newton algorithm that has linear complexity in the

length of the sequence. Preliminary versions of this chapter were published in [221, 223].

Video

Motion Capture

Accelerometers

Figure 3.1: Temporal alignment of sequences recorded with different sensors of three subjects

kicking a ball.

46

3.2 Previous work

3.2.1 Temporal alignment

This section discusses prior work on alignment of time series in the context of computer graphics,

computer vision and data mining.

In the literature of computer graphics, temporal alignment of human motion has been com-

monly applied to solve problems such as content modeling [26], and motion blending [31]. Hsu et

al.[88] proposed iterative motion warping, a robust method that finds a spatio-temporal warping

between two instances of motion captured data. Shapiro et al.[169] used independent component

analysis to separate motion data into visually meaningful components called style components.

In comparison, our method solves a more general problem of aligning human motion from multi-

modal time series.

In the context of computer vision, temporal alignment of video captured with different cam-

eras and view points has been a topic of interest. Rao et al. [153] aligned trajectories of two

moving points using constraints from the fundamental matrix. Junejo et al.[97] adopted DTW

for synchronizing human actions with view changes based on a view-invariant descriptor. Wang

and Wu [199] proposed a discriminative method to align two action sequences and measure

their matching score. In comparison, our method simultaneously estimates the optimal spa-

tial transformation and temporal correspondence to align video sequences. Recently, Gong and

Medioni [78] extended our CTW approach to incorporate more complex spatial transformations

through manifold learning. Nicolaou et al. [138] proposed a probabilistic extension of CTW for

fusing multiple continuous expert annotations in tasks related to affective behavior. These works

show the flexibility of our framework for aligning various types of sequential data.

In the field of data mining, there have been several extensions of DTW to align time series that

differ in the temporal and spatial domain. Keogh and Pazzani [99], for example, used derivatives

of the original signal to improve alignment with DTW. Listgarten et al.[119] proposed continuous

profile models, a probabilistic method for simultaneously aligning and normalizing sets of time

series in bio-informatics. Unlike these works, which were originally designed for aligning 1-

D time series, our work addresses the more challenging problem of aligning multi-modal and

47

multi-dimensional time series.

In the literature of manifold alignment, Ham et al. [83] aligned manifolds of images in a

semi-supervised manner. The prior knowledge of pairwise correspondences between two sets

was used to guide the graph embedding. Wang and Mahadevan [196] aligned manifolds based

on an extension of the Procrustes Analysis (PA). A main benefit of this approach is that PA

learns a mapping generalized for out-of-sample cases. However, these models lack a mechanism

to enforce temporal continuity.

3.2.2 Canonical correlation analysis (CCA)

CCA [10] is a technique to extract common features from a pair of multi-variate data. Given two

sets of n variables, X = [x1, · · · ,xn] 2 Rd
x

⇥n and Y = [y1, · · · ,yn] 2 Rd
y

⇥n, CCA finds the

linear combinations of the variables in X that are most correlated with the linear combinations of

the variables in Y. Assuming zero-mean data (
P

i xi =
P

j yj = 0), CCA finds a combination

of the original features that minimizes the sum of the distances between samples:

min

{V
x

,V
y

}2�
Jcca = kVT

xX�VT
y Yk2F + �(Vx) + �(Vy), (3.1)

where Vx 2 Rd
x

⇥d and Vy 2 Rd
y

⇥d denote the low-dimensional embeddings (d min(dx, dy))

for X and Y respectively. �(·) is a regularization function that penalizes the high-frequency of

the embedding matrices:

�(V) =

�

1� �kVk
2
F , (3.2)

In order to avoid the trivial solution of VT
xX and VT

y Y being zero, CCA decorrelates the

canonical variates (columns of VT
xX and VT

y Y) by imposing the orthogonal constraint as:

� =

n

{Vx,Vy}
�

�

�

VT
x

⇣

(1� �)XXT
+ �I

⌘

Vx = I,VT
y

⇣

(1� �)YYT
+ �I

⌘

Vy = I
o

. (3.3)

where � 2 [0, 1] is a weight to trade-off between the least-square error and the regularization

terms. In the case of insufficient samples where the covariance matrices (XXT or YYT) are sin-

gular, a positive regularization term �I is necessary to avoid over-fitting and numerical stability.

48

Optimizing Eq. 3.1 has a closed-form solution in terms of a generalized eigenvalue problem, i.e.,

[Vx;Vy] = eigd(A,B), where:

A =

2

4

0 XYT

YXT 0

3

5 ,B = (1� �)

2

4

XXT 0

0 YYT

3

5

+ �I.

See [53] for a unification of several component analysis methods and a review of numerical

techniques to efficiently solve generalized eigenvalue problems.

In computer vision, CCA has been used for matching sets of images in problems such as

activity recognition from video [101] and activity correlation from cameras [125]. Recently,

Fisher et al.[70] proposed an extension of CCA with parameterized warping functions to align

protein expressions. The learned warping function is a linear combination of hyperbolic tan-

gent functions with non-negative coefficients, ensuring monotonicity. Similarly, Shariat and

Pavlovic [171] imposed monotonic constraints on CCA using non-negative least squares for ac-

tivity recognition tasks. However, these methods were unable to deal with feature weighting.

3.2.3 Dynamic time warping (DTW)

Given two time series, X = [x1, · · · ,xn
x

] 2 Rd⇥n
x and Y = [y1, · · · ,yn

y

] 2 Rd⇥n
y , DTW [148]

aligns X and Y such that the sum of the distances between the aligned samples is minimized:

min

{p
x

,p
y

}2
Jdtw =

l
X

t=1

kxpx
t

� ypy
t

k22, (3.4)

where l � max(nx, ny) is the number of indices used to align the samples. The optimal l

is automatically selected by the DTW algorithm. The warping paths, px 2 {1 : nx}l and

py 2 {1 : ny}l, denote the composition of alignment in frames. The ith frame in X and the jth

frame in Y are aligned if there exists pxt = i and pyt = j at some step t.

In order to find a polynomial time solution, the warping paths must satisfy three constraints:

 =

n

{px,py}
�

�

�

px 2 {1 : nx}l and py 2 {1 : ny}l, (3.5)

Boundary: [px1 , p
y
1] = [1, 1] and [pxl , p

y
l] = [nx, ny],

Monotonicity: t1 � t2) pxt1 � pxt2 and pyt1 � pyt2 ,

Continuity: [pxt , p
y
t]� [pxt�1, p

y
t�1] 2 {[0, 1], [1, 0], [1, 1]}

o

.

49

1 2 3 4 5 6 7 8 9

1
2
3
4
5

1
2
3
4
5

1 2 3 4 5 6 7 8

1
2
3
4
5

1
2
3
4
5

(a)

(d)

(b) (c)

(e) (f)

0 9 4 16 9 16 1 9
9 0 1 1 0 1 4 0
4 1 0 4 1 4 1 1
4 1 0 4 1 4 1 1
16 1 4 0 1 0 9 1
1 4 1 9 4 9 0 4
9 0 1 1 0 1 4 0
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

Figure 3.2: An example of DTW for aligning time series. (a) Two 1-D time series (nx = 7 and

ny = 8) and the optimal alignment between samples computed by DTW. (b) Euclidean distances

between samples, where the red curve denotes the optimal warping path (l = 9). (c) DP policy

at each pair of samples, where the three arrow directions, #,&,!, denote the policy, ⇡(·, ·) 2

{[1, 0], [1, 1], [0, 1]}, respectively. (d) A matrix-form interpretation of DTW as stretching the two

time series in matrix products. (e) Warping matrix Wx. (f) Warping matrix Wy.

The choice of step size in the continuity constraint is not unique. For instance, replacing the step

size by {[2, 1], [1, 2], [1, 1]} can avoid the degenerate case in which a single frame of one sequence

is assigned to many consecutive frames in the other sequence. See [148] for an extensive review

on several DTW’s modifications to control the warping paths.

Although the number of possible ways to align X and Y is exponential in nx and ny, dynamic

programming (DP) [19] offers an efficient approach with complexity of O
�

nxny

�

to minimize

Jdtw using Bellman’s equation:

J⇤
(pxt , p

y
t) = min

⇡(px
t

,py
t

)
kxpx

t

� ypy
t

k22 + J⇤
(pxt+1, p

y
t+1),

where the cost-to-go value function, J⇤
(pxt , p

y
t), represents the cost remaining starting at tth

step using the optimum policy ⇡⇤. The policy function, ⇡(·, ·) : {1 : nx} ⇥ {1 : ny} !

{[1, 0], [0, 1], [1, 1]}, defines the deterministic transition between consecutive steps, [pxt+1, p
y
t+1] =

50

[pxt , p
y
t] + ⇡(pxt , p

y
t). Once the policy queue is known, the alignment steps can be recursively se-

lected by backtracking, pxl = nx and pyl = ny.

Fig. 3.2a shows an example of DTW for aligning two 1-D time series. Fig. 3.2b illustrates the

Euclidean distance of each pair of samples. To compute the optimal warping path, DP efficiently

enumerates all possible steps as in Fig. 3.2c from the upper-left corner to the bottom-right one.

At the end, the optimal alignment (denoted as the red curve) can be computed by iteratively

tracing back along the arrows.

Given two sequences of length nx and ny, exact DTW has a computational cost in space

and time of O(nxny). In practice, various modifications [148] on the step size, local weights

and global constraints (e.g., the Sakoe-Chiba and Itakura Parallelogram bands [148]) have been

proposed to speed up the DTW computation as well as to better control the possible routes of

the warping paths. In recent work [45, 86, 161], a multi-scale searching scheme has been shown

to effectively generate a speedup from one to three orders of magnitude, compared to the classic

DTW algorithm. More recently, Rakthanmanon et al. [149] have shown that DTW for mining

1-D sub-sequences can be scaled up to very large datasets using early-abandoning and cascading

lower bounds. However, most of these works are originally designed for 1-D time series. In

comparison, our method can be applied to deal with more general multi-dimensional sequences

and align signals of different dimensionality.

3.3 Canonical time warping (CTW)

DTW lacks a feature weighting mechanism and thus it cannot be directly used for aligning multi-

modal sequences (e.g., video and motion capture) with different features. To address this issue,

this section presents CTW, a unified framework that combines DTW with CCA.

51

3.3.1 Least-squares formulation for DTW

In order to have a compact and compressible energy function for CTW, it is important to note

that the original objective of DTW (Eq. 3.4) can be reformulated in matrix form as

min

{p
x

,p
y

}2
Jdtw = kXWx �YWyk2F , (3.6)

where X 2 Rd⇥n
x and Y 2 Rd⇥n

y denote the two time series to be aligned. Wx = W(px) 2

{0, 1}nx

⇥l and Wy = W(py) 2 {0, 1}ny

⇥l are two binary warping matrices (Fig. 3.2e-f) associ-

ated with the warping paths by a non-linear mapping,

W(p) : {1 : n}l ! {0, 1}n⇥l, (3.7)

which sets wp
t

,t = 1 for any step t 2 {1 : l} and zero otherwise. These warping matrices

Wx and Wy can only replicate (possibly multiple times) samples of the original sequences X

and Y. Fig. 3.2d illustrates the fact that the DTW alignment in Fig. 3.2a can be equivalently

interpreted as stretching the two time series X and Y by multiplying them with the warping

matrices Wx and Wy, respectively as shown in Fig. 3.2e-f. Note that Eq. 3.6 is very similar to

CCA’s objective (Eq. 3.1). CCA applies a linear transformation to combine the rows (features),

while DTW applies binary transformations to replicate the columns (time).

3.3.2 Objective function of CTW

In order to accommodate for differences in style and subject variability, add a feature selection

mechanism, and reduce the dimensionality of the signals, CTW adds a linear transformation

(Vx 2 Rd
x

⇥d and Vy 2 Rd
y

⇥d) as in CCA to the least-square form of DTW (Eq. 3.6). More-

over, this transformation allows alignment of temporal signals with different dimensionality (e.g.,

video and motion capture). In a nutshell, CTW combines DTW and CCA by minimizing:

min

{V
x

,V
y

}2�,{p
x

,p
y

}2
Jctw = kVT

xXWx �VT
y YWyk2F + �(Vx) + �(Vy), (3.8)

where Vx 2 Rd
x

⇥d and Vy 2 Rd
y

⇥d parameterize the spatial transformation and project the

sequences into the same low-dimensional coordinate system. Constrained by Eq. 3.5, Wx and

52

Wy warp the signal in time to maximize the temporal correlation. Similar to CCA, �(·) is a

regularization term (Eq. 3.2) for Vx and Vy. In addition, the projections satisfy the constraints,

� =

n

{Vx,Vy}
�

�

�

VT
x

⇣

(1� �)XWxW
T
xX

T
+ �I

⌘

Vx = I,VT
y

⇣

(1� �)YWyW
T
y Y

T
+ �I

⌘

Vy = I
o

,

where � 2 [0, 1] is to trade-off between the least-square error and the regularization term.

Eq. 3.8 is the main contribution of this chapter. CTW is a clean extension of CCA and DTW

to align two signals in space and time. It extends previous work on CCA by adding temporal

alignment and on DTW by allowing a feature selection and dimensionality reduction mechanism

for aligning signals of different dimensions.

3.3.3 Optimization of CTW

Optimizing Jctw is a non-convex optimization problem with respect to the warping matrices and

projection matrices. We take a coordinate-descent approach that alternates between solving the

temporal alignment using DTW, and computing the spatial projections using CCA.

Given the warping matrices, the optimal projection matrices are the leading d generalized

eigenvectors, i.e., [Vx;Vy] = eigd(A,B), where:

A =

2

4

0 XWxW
T
y Y

T

YWyW
T
xX

T 0

3

5

,B = (1� �)

2

4

XWxW
T
xX

T 0

0 YWyW
T
y Y

T

3

5

+ �I.

In most experiments, we initialized CTW by setting Wx and Wy to the warping that uni-

formly aligns the sequences, i.e., all the non-zero values in Wx and Wy are on their diagonals,

i.e., the warping paths are computed as

px = round(linspace(1, nx, l))
0, (3.9)

where round(·) and linspace(·) are MATLAB functions. But CTW can be initialized by any

other time warping method such as DTW or iterative motion warping (IMW) [88]. The dimen-

sion d can be selected to preserve a certain amount (e.g., 90%) of the total correlation. Once

the spatial transformation is computed, the temporal alignment is computed using standard ap-

proaches for DTW. Alternating between these two steps (spatial and temporal alignment) mono-

tonically decreases Jctw. Jctw is bounded below and the proposed algorithm will converge to a

point.

53

3.4 Generalized canonical time warping (GCTW)

In the previous section, we described CTW to align two multi-modal sequences with different

features. However, CTW has three main limitations inherited from DTW: (1) The exact com-

putational complexity of DTW for multi-dimensional sequences is quadratic both in space and

time; (2) CTW and its extensions address the problem of aligning two sequences, but it is unclear

how to extend it to the alignment of multiple sequences; (3) The temporal alignment is computed

using DTW, which relies on DP to find the optimal path. In some problems (e.g., sub-sequence

alignment) the warping path provided by DP is too rigid (e.g., the first and the last samples have

to match).

1 10 30 50(n) 70(l)

(b)

Logarithm

(a)

Polynomial Hyperbolic tangentExponential I-spline

(c) (d)

10 30 50 70(l)

10

30

50(n)

1 70(l)

1

50(n)

Figure 3.3: Approximating temporal warping using monotonic bases. (a) Five common choices

for monotonic bases. (b) An example of time warping XW(Qa) 2 R1⇥70 of 1-D time series

X 2 R1⇥50. (c) The warping matrix. (d) The warping function Qa is a linear combination of

three basis functions including a constant function (q1) and two monotonically functions (q2 and

q3).

To address these issues, this section proposes GCTW, an efficient technique for spatio-

temporal alignment of multiple time series. To accommodate for subject variability and to take

into account the difference in the dimensionality of the signals, GCTW uses multi-set canonical

54

correlation analysis (mCCA). To compensate for temporal changes, GCTW extends DTW by in-

corporating a more efficient and flexible temporal warping parameterized by a set of monotonic

basis functions. Unlike existing approaches based on DP with quadratic complexity, GCTW ef-

ficiently optimizes the time warping function using a Gauss-Newton algorithm, which has linear

complexity.

3.4.1 Objective function of GCTW

Given a collection of m time series, {Xi}mi=1, GCTW aims to seek for each Xi = [xi
1, · · · ,xi

n
i

] 2
Rd

i

⇥n
i , a low-dimensional spatial embedding Vi 2 Rd

i

⇥d and a non-linear temporal transforma-

tion Wi = W(pi) 2 {0, 1}ni

⇥l parameterized by pi 2 {1 : ni}l, such that the resulting sequence

VT
i XiWi 2 Rd⇥l is well aligned with the others in the least-squares sense. In a nutshell, GCTW

minimizes the sum of pairwise distances:

min

{V
i

}
i

2�,{p
i

}
i

2
Jgctw =

m
X

i=1

m
X

j=1

1

2

kVT
i XiWi �VT

j XjWjk2F +

m
X

i=1

⇣

�(Vi) + (pi)

⌘

, (3.10)

where �(Vi) = m�/(1 � �)kVik2F is the regularization function penalizing the irregularity of

the spatial transformation Vi. � 2 [0, 1] is a trade-off parameter between the least-square error

and the regularization term. Following the multi-set canonical correlation analysis (mCCA) [84],

GCTW constrains the spatial embeddings as:

� =

n

{Vi}i
�

�

�

m
X

i=1

VT
i

⇣

(1� �)XiWiW
T
i X

T
i + �I

⌘

Vi = I
o

.

 (·) and (·), defined in the following sections, are used to respectively regularize and constrain

the temporal transformation pi.

To be concise in the notation, let us consider a single sequence X 2 Rd⇥n and its temporal

warping, p 2 {1 : n}l. While the possible composition of the temporal warping path, p, is

locally enforced by the original DTW constraints (Eq. 3.5), the global shape of any valid p must

correspond to a monotonic and continuous trajectory in matrix W 2 {0, 1}n⇥l starting from the

upper-left corner and ending at the bottom-right one. Recall that any positive combination of

monotonic trajectories is guaranteed to be monotonic. GCTW parameterizes the warping path p

as a linear combination of monotonic functions, that is:

p ⇡
k

X

c=1

acqc = Qa, (3.11)

55

where a 2 Rk is the non-negative weight vector and Q = [q1, · · · ,qk] 2 [1, n]l⇥k is the basis set

composed of k pre-defined monotonically increasing functions. Fig. 3.3a illustrates five common

choices for qc, including (1) polynomial (axb), (2) exponential (exp(ax + b)), (3) logarithm

(log(ax + b)), (4) hyperbolic tangent (tanh(ax + b)) and (5) I-spline [151]. Similar work by

Fisher et al. [70] also used hyperbolic tangent functions as temporal bases, and the weights

were optimized using a non-negative least squares algorithm. However, GCTW differs in three

aspects: (1) GCTW allows aligning multi-dimensional time series that have different features,

while [70] can only align one-dimensional time-series; (2) GCTW uses a more efficient eigen

decomposition to solve mCCA and quadratic programming for optimizing the weights; and (3)

GCTW uses a family of monotonic functions that allow for a more general warping (e.g., sub-

sequence alignment), and constraints to regularize the solution.

To approximate the DTW constraints (Eq. 3.5) on the warping path p, we alternatively impose

the following constraints on the weights a.

Boundary conditions: We enforce the position of the first frame, p1 = q(1)a � 1, and the

last frame, pl = q(l)a n, where q(1) 2 R1⇥k and q(l) 2 R1⇥k to be the first and last rows

of the basis matrix Q respectively. In contrast to DTW, which imposes a tight boundary (i.e.,

p1 = 1 and pl = n), GCTW allows p to index a sub-part of X. This relaxation is useful in

solving the more general problem of sub-sequence alignment. For instance, Fig. 3.4 illustrates

an example of matching a shorter 1-D sequence (blue) to a sub-sequence of the longer one (red).

In this sub-sequence alignment problem, GCTW models the time warping p as a combination of

a linear basis q1 and a constant one q2.

Monotonicity: We enforce t1 t2) pt1 pt2 by constraining the sign of the weight:

a � 0. Note that constraining the weights is a sufficient condition to ensure monotonicity but it

is not necessary. See [150, 156, 206] for in-depth discussions on monotonic functions.

Continuity: To approximate the hard constraint on the step size, GCTW penalizes the cur-

vature of the warping path using a temporal regularization term,
Pl

t=1 krq(t)ak22 ⇡ kFlQak22
where Fl 2 Rl⇥l is the 1

st order differential operator.

In summary, we constrain the warping path in Eq. 3.10 adding the following constraints on

56

a,

 (a) = ⌘kFlQak22, = {a | La b}, where L = [�Ik;�q(1)
;q(l)

] and b = [0k;�1;n] (3.12)

Therefore, given a basis set of k monotone functions, all feasible weights belong to a polyhedron

in Rk parameterized by L 2 R(k+2)⇥k and b 2 Rk+2. For instance, Fig. 3.3d illustrates an

example of a warping function (solid line) as a combination of three monotone functions (dotted

lines).

3.4.2 Optimization of GCTW w.r.t. spatial basis

Minimizing Jgctw (Eq. 3.10) is a non-convex optimization problem with respect to the temporal

transformation and the spatial projection. We optimize GCTW by alternating between solving for

the time warping using an efficient Gauss-Newton algorithm (discussed in the following section),

and computing the spatial transformation using mCCA.

Assuming the time warping is fixed, mCCA computes the optimal {Vi}i using a generalized

eigen decomposition as [V1; · · · ;Vm] = eigd(A,B), where:

A =

2

6664

0 · · · X1W1WT

m

XT

m

...
. . .

...

X
m

W
m

WT

1 XT

1 · · · 0

3

7775
,B = (1� �)

2

6664

X1W1WT

1 XT

1 · · · 0

...
. . .

...

0 · · · X
m

W
m

WT

m

XT

m

3

7775
+ �I.

These steps monotonically decrease Jgctw, and because the function is bounded below, the

alternating scheme will converge to a critical point.

3.4.3 Optimization of GCTW w.r.t. temporal weights

By relaxing the warping path to be a linear combination of monotonic paths, Eq. 3.11 provides a

new model for temporal alignment and new methods for optimizing it. Given k basis functions,

Q 2 Rl⇥k, optimizing Eq. 3.10 with respect to the warping paths {pi}i can be written as:

min

{a
i

}
i

Ja =

m
X

i=1

m
X

j=1

1

2

kVT
i XiW(Qai)

| {z }

Z(a
i

)

�VT
j XjW(Qaj)

| {z }

Z(a
j

)

k2F +

m
X

i=1

⌘kFlQaik22, s. t. Liai bi, 8i,

(3.13)

57

where W(·) is a non-linear mapping function defined in Eq. 3.7. Li and bi are used to constrain

the monotonicity and boundary of the time warping for each sequence. To shorten in notation,

we denote each term VT
i XiW(Qai) 2 Rd⇥l as Z(ai).

A direct optimization of Ja is difficult due to the non-linear function W(·). Inspired by the

Lucas-Kanade framework for image alignment [126], we approximate the temporal alignment

problem using a Gauss-Newton (GN) method. More specifically, GN iteratively updates the

weights ˆai ai + �i by minimizing a series of first-order Taylor approximations of Ja centered

at each term Z(ai) given the initial ai, where �i 2 Rk denotes the increment of the weight ai.

To better understand the approximation, let us first focus on, zt(ai) 2 Rd, the tth column of

Z(ai) = [z1(ai), · · · , zl(ai)], which can be rewritten as,

zt(ai) = [VT
i XiW(Qai)]t = VT

i Xi[W(Qai)]t, (3.14)

where [·]t denotes the tth column of a matrix. According to the definition of W(·) in Eq. 3.7,

[W(Qai)]t 2 {0, 1}n is a binary vector with only one non-zero element located at q(t)ai, where

q(t) 2 R1⇥k is the tth row of Q. In other words, zt(ai) is a replication of q(t)ath
i column of the

signal VT
i Xi, i.e., zt(ai) = [VT

i Xi]q(t)a
i

. Following [126], we approximate zt(ai + �i) as,

zt(ai + �i) ⇡ zt(ai) +r(VT
i Xi)|q(t)a

i

@q(t)ai
@ai

�i, (3.15)

where r(VT
i Xi)|q(t)a

i

2 Rd denotes the row-wise gradient1 of the signal VT
i Xi around column

q(t)ai. The term, @q(t)ai/@ai = q(t) 2 R1⇥k is the Jacobian of the time warping.

Putting together the approximations of each column of Z(ai + �i) using Eq. 3.15 yields:

vec

⇣

Z(ai + �i)
⌘

⇡ vi +Gi�i,where vi = vec

⇣

Z(ai)
⌘

,Gi =

2

6

6

6

4

r(VT
i Xi)|q(1)a

i

q(1)

...

r(VT
i Xi)|q(l)a

i

q(l)

3

7

7

7

5

. (3.16)

Plugging Eq. 3.16 in Eq. 3.13 yields:

Ja ⇡
m
X

i=1

m
X

j=1

1

2

kvi +Gi�i � vj �Gj�jk22 +
m
X

i=1

⌘kFiQ(ai + �i)k22. (3.17)

1The gradient is independently computed for each row of VT

i

X
i

.

58

Minimizing Eq. 3.17 with respect to all the weight increments � = [�1; · · · ; �m] 2 Rmk

yields a quadratic programming problem:

min

�

1

2

�TH� + fT�, s. t. L� b� La, (3.18)

whose components are computed as follows:

H =

2

6664

mGT

1 G1 + ⌘QTFT

1 F1Q · · · �GT

1 G
m

...
. . .

...

�GT

m

G1 · · · mGT

m

G
m

+ ⌘QTFT

m

F
m

Q

3

7775
,

f =

2

6664

GT

1 (mv1 �
P

i

v
i

) + ⌘QTFT

1 F1Qa1

...

GT

m

(mv
m

�
P

i

v
i

) + ⌘QTFT

m

F
m

Qa
m

3

7775
, a =

2

6664

a1

...

a
m

3

7775
,b =

2

6664

b1

...

b
m

3

7775
,L =

2

6664

L1 · · · 0

...
. . .

...

0 · · · L
m

3

7775
.

Note that the objective function of Eq. 3.18 is convex. Fig. 3.4 illustrates an example of

aligning two 1-D time series (Fig. 3.4a) using this approach. To achieve sub-sequence alignment,

we model the time warping path p as a combination of a linear basis q1 and a constant one q2

(Fig. 3.4d). As shown in Fig. 3.4b, Gauss-Newton takes three steps to find the optimal warping

parameter in a 2-D space (Fig. 3.4c).

In most experiments, we initialized ai by uniformly aligning the sequences (see GN-Init curve

in Fig. 3.5b). However, better results can be achieved by using a more sophisticated method. The

length of the warping path l is usually set to be l = 1.1max

m
i=1 ni. The computational complexity

of the algorithm is O(dlmk +m3k3
).

3.4.4 Comparison with other DTW techniques

As discussed in [148, 161], there are various techniques that have been proposed to accelerate

and improve DTW. For instance, the Sakoe-Chiba band (DTW-SC) and the Itakura Parallelogram

band (DTW-IP) reduce the complexity of the original DTW algorithm to O(�nxny) by constrain-

ing the warping path to be in a band of a certain shape, where � < 1 is the size ratio between the

band and the original search space of DTW. However, using a narrow band (a small �) cuts off

potential warping space, and may lead to a sub-optimal solution. For instance, Fig. 3.5a shows an

example of two 1-D time series and the alignment results calculated by different algorithms. The

results computed by DTW-SC and DTW-IP are less accurate than the ones computed using our

59

1st step (initial) 2nd step 3rd step (converged)original

warping function basis
1 300 500 1 300 1 300 1 300

1 300

1

500

1 300

1

500

1 300

1

500

(c) (d)

(a) (b)

Figure 3.4: An example of using Gauss-Newton for solving the sub-sequence alignment problem.

(a) Two 1-D sequences. (b) The Gauss-Newton optimization procedure, the longer red sequence

is warped to match the shorter blue sequence. (c) The contour of the objective function (Ja

as defined in Eq. 3.13) with respect to the weights of two bases. (d) Warping function (p) as a

combination of a linear function (q1) and a constant function (q2) used for scaling and translation

respectively.

proposed Gauss-Newton (GN). This is because both the SC and IP bands are over-constrained

(Fig. 3.5b). Alternatively, instead of constraining the warping path, exhaustive DTW search can

be approximated in a multi-level scheme. For instance, Salvador and Chan [161] introduced Fast-

DTW by recursively projecting a solution from a coarser resolution and refining the projected

solution in a higher resolution. Although the coarse-to-fine framework could largely reduce the

search space, the solution is not exact. See Table. 3.1 for a detailed comparison.

To provide a quantitative evaluation, we synthetically generated 1-D sequences at 15 scales.

For DTW-SC, we set the bandwidth to be � = 0.1, which is common in practical applications.

For FastDTW, we recursively shrink the sequence length in half from the finest level to the

coarsest one. We then propagated the DTW solution from coarse to fine with radius r = 5. For

GN, we varied k to be 5, 8, 12 to investigate the effect of the number of bases. For each scale,

we randomly generated 100 pairs of sequences. The error was computed using Eq. 3.20 and

shown in Fig. 3.5c-d. DTW obtains the lowest error but takes the most time to compute. This is

because DTW exhaustively searches the entire parameter space to find the global optima. DTW-

SC, DTW-IP and FastDTW all need less time than DTW because they search a smaller space.

60

103 104 105

0

10

20

30

40

1 100 200

1

100

200

(b)(a) (c) (d)
sequence
length

seconds

sequence
length

100 200

−5
0
5

10

100 200

−5
0
5

10

0 100 200

−5
0
5

10

100 200

−5
0
5

10

100 200

−5
0
5

10

100 200 300 400

−5
0
5

10

DTW-SC DTW-IP

FastDTW GN

Input DTW

50 70 90 110

10

30

50

Truth
DTW
DTW−SC
DTW−IP
DTW−Fast
GN
GN−Init
SC−Bound
IP−Bound

error

3800 4700

0
1
2
3
4
5

103 104 105
10−4

10−3

10−2

10−1

100

101

102

DTW
DTW−SC
DTW−IP
FastDTW
GN (5)
GN (8)
GN (12)

DTW
DTW−SC
DTW−IP
FastDTW
GN (5)
GN (8)
GN (12)

Figure 3.5: Comparison between Gauss-Newton and variants of DTW for temporal alignment.

(a) An example of two 1-D time series and the alignment results calculated using the ground

truth, DTW, DTW constrained in the Sakoe-Chiba band (DTW-SC), DTW constrained in the

Itakura Parallelogram band (DTW-IP), DTW optimized in a multi-level scheme (FastDTW) and

Gauss-Newton (GN). (b) Comparison of different warping paths. GN-Init denotes the initial

warping used for GN. SC-Bound and IP-Bound denote the boundaries of SC band and IP band

respectively. (c) Alignment errors. (d) Computational costs.

Empirically, DTW-SC is the least accurate compared to DTW-IP and FastDTW for our synthetic

dataset. GN is most computationally efficient because it has linear complexity in the sequence

length. Moreover, increasing the number of bases monotonically reduces the error.

3.5 Experiments

This section compares CTW and GCTW against state-of-the-art methods for temporal alignment

of time series in seven experiments. In the first experiment, we compared the performance of

CTW and GCTW against DTW, DDTW[99], and IMW [88] in the problem of aligning synthetic

time series of varying complexity. In the second experiment, we aligned videos of different

subjects performing a similar activity; each video is represented using different types of visual

features. In the third experiment, we showed how GCTW and CTW can be applied to provide

a metric useful for activity recognition. In the fourth experiment, we aligned facial expressions

across subjects on videos with naturally occurring facial behavior. In the fifth experiment, we

showed how GCTW can be applied to large-scale alignment. We aligned approximately 50, 000

frames of motion capture data of two subjects cooking the same recipe. In the sixth experiment,

61

we showed how GCTW can be used to localize common sub-sequences between two time se-

ries. The last experiment shows how GCTW is able to align three sequences of different subjects

performing a similar action recorded with different sensors (motion capture data, accelerometers

and video). In the first four experiments, the ground truth was known and we provided quan-

titative evaluation of the performance. In the others, we evaluated the quality of the alignment

visually.

3.5.1 Evaluation methods

In the experiments, we compared CTW and GCTW with several state-of-the-art methods for

temporal alignment of time series. Below, we provide a brief description of the techniques that

we used for comparison.

DTW and mDTW: DTW is solved using a standard dynamic programming algorithm that

minimizes Eq. 3.4. To evaluate the performance of temporal alignment of multiple sequences,

we extended the concept of Procrustes analysis [59] to time series. That is, given m (> 2) time

series, multi-sequence DTW (mDTW) seeks for a set of warping paths {pi}i that minimizes:

min

{p
i

2 }
i

Jmdtw =

m
X

i=1

m
X

j=1

1

2

kXiWi �XjWjk2F = m

m
X

i=1

kXiWi �
1

m

m
X

j=1

XjWjk2F . (3.19)

Based on the above fact, mDTW alternates between independently solving for each pi using an

asymmetrical DTW and updating the mean sequence 1
m

Pm
j=1 XjWj by averaging {XiWi}i.

DDTW and mDDTW: In order to make DTW invariant to translation, derivative dynamic

time warping (DDTW) [99] uses the derivatives of the original features and minimizes:

min

{p
x

,p
y

}2
Jddtw = kXFT

n
x

Wx �YFT
n
y

Wyk2F ,

where Fn
x

and Fn
y

are the 1

st order differential operators. To align multiple sequences, multi-

sequence DDTW (mDDTW) extends DDTW in the Procrustes framework similar to Eq. 3.19.

IMW and mIMW: Similar to CTW, iterative motion warping (IMW) [88] alternates between

time warping and spatial transformation to align two sequences. Assuming the same number of

spatial features between X 2 Rd⇥n
x and Y 2 Rd⇥n

y , IMW translates and re-scales each feature

in X independently to match with Y. Written in a simple matrix form, IMW minimizes:

min

p
x

2 ,A
x

,B
x

Jimw = k(X �Ax +Bx)Wx �Yk2F + �akAxF
T
n
x

k2F + �bkBxF
T
n
x

k2F ,

62

where Ax,Bx 2 Rd⇥n
x are the scaling and translation parameters respectively. �a and �b are

the weights for the least-square error and the regularization terms. The regularization terms are

used to enforce a smooth change in the columns of Ax and Bx. In the experiments, we set them

to be �a = �b = 1. IMW takes a coordinate-descent approach to optimize the time warping,

scaling and translation. Given the warping matrix Wx, the optimal spatial transformation can

be computed in closed-form. To align multiple sequences, we extended IMW to multi-sequence

IMW (mIMW) in the Procrustes framework similar to mDTW (Eq. 3.19).

mCTW: CTW was originally proposed to align two multi-modal sequences. We extended

CTW to multi-sequence CTW (mCTW) for aligning multiple time series using the Procrustes

analysis framework. mCTW optimizes the same objective (Eq. 3.10) as GCTW does. The main

difference between mCTW and GCTW comes from the temporal alignment step. mCTW alter-

nates between warping each time series using asymmetric DTW and updating the mean sequence,

while GCTW uses Gauss-Newton for jointly optimizing over all weights of the bases.

Table. 3.1 compares temporal alignment methods in terms of the number of variables as well

as the computational complexity. The comparison is divided into two cases, one for alignment of

two sequences and another for alignment of more than two sequences. In the first case, given two

time series, X 2 Rd⇥n
x and Y 2 Rd⇥n

y , DTW and DDTW require the same complexity O(nxny)

for finding the optimal l-length warping path. IMW additionally solves d least-squares problems

for each row of Ax and Bx independently. Similarly, CTW relies on DTW to optimize the time

warping, resulting in a complexity of O(nxny) in both space and time. However, CTW uses CCA

to accommodate the different in number of feature by solving a generalized eigen-decomposition

of two (dx + dy)-by-(dx + dy) matrices. CTW has fewer variables than IMW and thus is less

likely to overfit the data. Compared to CTW, GCTW has the same complexity for computing

the spatial embedding. The main advantage of GCTW is its Gauss-Newton component, which

optimizes a small-scale QP with 2k variables for the time warping.

In the second case, given m sequences, {Xi 2 Rd
i

⇥n
i}mi=1, a direct generalization of the DTW

is infeasible due to the combinatorial explosion of possible warpings, incurring a complexity of

O(

Qm
i=1 ni). In the experiment, mDTW is used as an approximation of the exact DTW optimiza-

tion. However, mDTW and other DTW-based methods (mDDTW, mIMW and mCTW) still have

63

quadratic complexity. Instead, GCTW approximates the combinatorial problem of time warping

as a continuous optimization that can be more efficiently optimized by solving a small-scale QP

with mk variables.

3.5.2 Evaluation metrics

For all experiments, we used the normalized distance from the ground-truth as a metric for the

error. More specifically, let us denote the alignment result of m sequences by a set of time

warping paths, Palg = [palg
1 , · · · ,palg

m] 2 Rl
alg

⇥m, where palg
i 2 Rl

alg is the time warping path

for the ith sequence. To evaluate the error of the time warping paths given by different methods,

we computed their difference from the ground-truth path, Ptru = [ptru
1 , · · · ,ptru

m] 2 Rl
tru

⇥m,

where the number of warping steps (lalg and ltru) could be different. To better understand the

error, let us consider each warping path P 2 Rl⇥m as a curve in Rm with l points (rows of P). For

instance, Fig. 3.7c and Fig. 3.9c compare the warping paths as 3-D and 2-D curves respectively.

The error can be hence defined as the normalized distance between the curves Palg and Ptru,

error =

1

2

⇣

dist(Palg,Ptru) + dist(Ptru,Palg)

⌘

, where dist(P1,P2) =
1

l1l2

l1
X

i=1

l2
min

j=1
kp(i)

1 � p
(j)
2 k2.

(3.20)

The term, min

l2
j=1 kp

(i)
1 � p

(j)
2 k2, measures the shortest distance between the point p(i)

1 and any

point on the curve P2, where p
(i)
1 2 R1⇥m and p

(j)
2 2 R1⇥m are the ith row of P1 and jth row of

P2 respectively.

3.5.3 Aligning synthetic sequences

In the first experiment, we synthetically generated spatio-temporal signals (3-D in space and

1-D in time) to evaluate the performance of mCTW and GCTW. As shown in Fig. 3.6a, the

signals were a randomly generated by spatially and temporally transforming a latent 2-D spi-

ral, Z 2 R2⇥l, l = 300 as X = [(Z + b1T
)M; eT] 2 R3⇥n, where U 2 R2⇥2 and b 2 R2

were a randomly generated projection matrix and translation vector respectively. To synthesize

the temporal distortion, a binary selection matrix M 2 {0, 1}l⇥n was generated by randomly

choosing n l columns from the identity matrix Il. The third spatial dimension e 2 Rn was

64

Method
Degree-of-Freedom Complexity O(·)

Embedding Warping Embedding Warping

Two-sequence

alignment

X 2 Rd

x

⇥n

x

Y 2 Rd

y

⇥n

y

DTW � 2l � n
x

n
y

DTW-SC � 2l � �n
x

n
y

DTW-IP � 2l � �n
x

n
y

FastDTW � 2l � r(n
x

+ n
y

)/2

DDTW � 2l � n
x

n
y

IMW 2dn
x

2l dLS(2n
x

) n
x

n
y

CTW d(d
x

+ d
y

) 2l eig(d
x

+ d
y

) n
x

n
y

GCTW d(d
x

+ d
y

) 2k eig(d
x

+ d
y

) QP (2k)

Multi-sequence

alignment

{X
i

2 Rd

i

⇥n

i}
i

DTW � ml � ⇧
i

n
i

mDTW � ml � l
P

i

n
i

mDDTW � ml � l
P

i

n
i

mIMW 2l
P

i

d
i

ml
P

i

d
i

LS(2l) l
P

i

n
i

mCTW d
P

i

d
i

ml eig(
P

i

d
i

) l
P

i

n
i

GCTW d
P

i

d
i

mk eig(
P

i

d
i

) QP (mk)

Table 3.1: Comparison of temporal alignment algorithms as a function of degrees-of-freedom

and complexity. l is the length of warping path. LS(n), QP (n) and eig(n) denote the complex-

ity of solving a least-squares of n variables, a QP of n variables and a generalized eigenvalue

problem with two n-by-n matrices, respectively.

added with a zero-mean Gaussian noise. In this experiment, mCTW and GCTW were compared

with mDTW, mDDTW and mIMW for aligning three time series. The ground-truth alignment

was known and the performance of each method was evaluated in terms of the alignment errors

defined in Eq. 3.20. We repeated the above process 100 times with random numbers. In each

trial, we studied three different initialization methods for mCTW and GCTW: uniform alignment

for mCTW-U and GCTW-U as in Eq. 3.9, mDTW for mCTW-D and GCTW-D, and mIMW for

mCTW-I and GCTW-I. The subspace dimensionality for CCA d was selected to preserve 90%

of the total correlation. In this case, we have sufficient samples (l = 300) in 3-D space, and the

regularization weight � was set to zero. For GCTW, we selected three hyperbolic tangent and

three polynomial functions as monotonic bases (upper-right corner in Fig. 3.6b).

Figs. 3.6 illustrates a comparison of the previously described methods for aligning multiple

65

100 300 500 700 900
0

10

20

30

40

Original

(a)
50 100 150

z

y

x

mDTW

50 100 150 200 250 300

z

y

x

mDDTW

50 100 150 200 250 300

z

y

x

mIMW

50 100 150 200 250 300

z

y

x

50 100 150 200 250 300

y

x

mCTW-U GCTW-U

50 100 150 200 250 300

y

x

(d)frame frame frame frameframe (b)

error

x

y

z

x

y

frame

x

y

z

x

y

z

x

y

z

bases

x

y

(c)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

mD
TW

mD
DT
W
mI
MW

GC
TW
-D

mC
TW
-D

mC
TW
-U

mC
TW
-I

GC
TW
-U

GC
TW
-I

mDTW
mDDTW
mIMW
mCTW
GCTW

seconds

#frames

Figure 3.6: Comparison of temporal alignment algorithms on the synthetic dataset. (a) An ex-

ample of three synthetic time series generated by performing a random spatio-temporal trans-

formation of a 2-D latent sequence Z and adding Gaussian noise in the 3

rd dimension. (b) The

alignment results. (c) Mean and variance of the alignment errors. (d) Mean and variance of the

computational cost (time in seconds).

time series. Fig. 3.6b shows the spatio-temporal warping estimated by mDTW, mDDTW, mIMW,

mCTW-U and GCTW-U. Fig. 3.6c shows the alignment errors (Eq. 3.20) for 100 randomly gen-

erated time series. Both mDTW and mDDTW performed poorly in this case since they do not

have a feature weight mechanism to adapt the spatial transformation of the sequences. mIMW

warps sequences towards others by translating and re-scaling each frame in each dimension.

Moreover, mIMW has more parameters (2l
P

i di) than mCTW and GCTW (d
P

i di), and hence

mIMW is more prone to over-fitting. Furthermore, mIMW tries to fit the noisy dimension (3rd

spatial component), biasing alignment in time, whereas both mCTW and GCTW had a feature

selection mechanism that effectively canceled out the third dimension. Among all the initializa-

tions, the ones initialized by uniform alignment (mCTW-U and GCTW-U) and mIMW (mCTW-I

and GCTW-I) achieved the best results. However, mCTW and GCTW always improved the per-

formance in comparison with the initializations. Compared to mCTW, GCTW achieved better

performance when aligning more than two sequences because GCTW jointly optimizes over

all the possible time warpings for each time series, while mCTW takes a greedy approach by

warping each sequence towards the mean sequence independently.

Fig. 3.6d evaluates the computational cost of each method with respect to the average se-

66

frame frame frame frame
10 20 30 40

z

y

x

mDTW

10 20 30 40

z

y

x

mDDTW

10 20 30 40

z

y

x

mIMW

10 20 30 40

z

y

x

mCTW

10 20 30 40

z

y

x

GCTW

(a)
mDTW mDDTWmIMW GCTWmCTW

(b)

Binary
Euclidean
Poisson

(d)

(c)

frame

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

bases

error

20
40

20

40

10

20

30

40

Truth
mDTW
mDDTW
mIMW
mCTW
GCTW

0

0.01

0.02

0.03

0.04

0.05

Figure 3.7: Comparison of temporal alignment algorithms for aligning multi-feature video data.

(a) An example of three aligned videos by GCTW. The top three sequences are the original

frames after background subtraction, while the bottom three are the binary images, the Euclidean

distance transforms and the solutions of the Poisson equation. (b) The alignment results. (c)

Comparison of time warping paths. (d) Mean and variance of the alignment errors.

quence length. mIMW was the most computationally intensive method because it solves a least-

square problem for each feature dimension. mCTW was more expensive than DTW-based meth-

ods because of the additional computation to solve CCA. As expected, GCTW was the most

efficient.

3.5.4 Aligning videos with different features

In the second experiment, we used mCTW and GCTW to align video sequences of different

people performing a similar action. Each video was encoded using different visual features.

The video sequences were taken from the Weizmann database [80], which contains nine peo-

ple performing ten actions. To represent dynamic videos, we subtracted the background (the

top three rows in Fig. 3.7a) and computed three popular shape features (the bottom three rows

of Fig. 3.7a) for each 70-by-35 re-scaled mask image, including (1) binary image, (2) Euclidean

distance transform [132], and (3) solution of Poisson equation [79]. In order to reduce the dimen-

sion of the feature space (2450), we picked the top 123 principal components that preserved 99%

of the total energy. We randomly selected three sequences and manually labeled their temporal

correspondence as ground-truth. We repeated the process 10 times. All methods were initial-

67

ized with uniform alignment. For GCTW, we used five hyperbolic tangent and five polynomial

functions as the monotonic bases.

Fig. 3.7d shows the error for 10 randomly generated sets of videos. Neither mDTW nor

mDDTW was able to align the videos because they were not able to handle alignment of signals

of different dimensions. mIMW registered the top three components well in space; however,

it overfitted the data and also computed a biased time warping path. In contrast, mCTW and

GCTW warped the sequences accurately in both space and time.

3.5.5 Activity Classification

0

0.1

0. 2

0.3

0.8

(c)

error

(b)

0

0.05

0.1

0.15

0.2

DTW DDTW IMW CTW GCTW

error

(a)

(e)(d) (f)

DTW DDTW IMW CTW GCTW

Walk Run Jump Walk Run Jump

W
al
k

R
un

Ju
m
p

W
al
k

R
un

Ju
m
p

W
al
k

R
un

Ju
m
p

W
al
k

R
un

Ju
m
p

Walk Run Jump Walk Run Jump

DTW

DTW GCTW

GCTW

Figure 3.8: Activity classification. In (a-c), we computed the metric between videos using dif-

ferent features: binary images {Xi}i and Euclidean distance transforms {Yj}j . In (d-f), we

computed the metric between video {Xi}i and motion capture data {Yj}j . (a)(d) DTW distance

matrices. A darker color indicates a smaller distance. (b)(e) GCTW distance matrices. (c)(f)

Mean and standard deviation of the classification error.

The previous section illustrated how to align multi-feature videos. This section explores the

use of CTW and GCTW as distance metrics between time series. In particular, we evaluated

68

different methods for recognizing action in videos having different features, and between videos

and motion capture data. The distance metrics were used in combination with a nearest neighbor

classifier.

In our first experiment, given a training set of videos of a subject performing an activity

recorded with different visual features (e.g., binary silhouette, distance transform) {Xi}i, our

goal is to find the testing video {Yj}j that contains similar activity. We took 24 sequences from

the Weizmann dataset [80]: 8 people performed three actions (walking, running and jumping).

We repeated our experiments 10 times. In each trial, we randomly split the 24 sequences into two

disjoint sets of 12 sequences used for training and testing respectively. The training sequences

{Xi}i were represented using the binary silhouette (see left columns of Fig. 3.8a-b as examples)

while the testing ones {Yj}j were encoded with the Euclidean distance features (see top rows

of Fig. 3.8a-b as examples). Given a pair of sequences, Xi 2 Rd
x

⇥n
x

i and Yj 2 Rd
y

⇥n
y

j , we

computed the distance between videos using different methods: DTW, DDTW, IMW, CTW and

GCTW. The warping path for each method is denoted as Walg
x
i

2 Rn
x

i

⇥l and Walg
y
j

2 Rn
y

j

⇥l.

In order provide a fair comparison with DTW, DDTW and mIMW (that cannot compute

distances between different features), we computed a pair of projection matrices, Vx 2 Rd
x

⇥d

and Vy 2 Rd
y

⇥d for them. To do that, we took a subset of 1/3 of the training sequences encoded

with both features {Xtr
i } and {Ytr

i }, and uniformaly aligned each pair of sequences of the same

label. The aligned frames were concatenated in two matrices Xtr and Ytr, and the projections

Vx and Vy were computed by CCA optimizing Eq. 3.1. Recall that the projection matrices were

fixed for DTW, DDTW and IMW during testing, but for CTW and GCTW they were optimized

by the algorithms. Then, the distance between each pair of sequences was then computed as

dist(Xi,Yj) =
1

lalg
kVT

xXiW
alg
x
i

�VT
y YjW

alg
y
j

kF , (3.21)

where the alignment step lalg was used to normalize the distance. Given the distance computed in

Eq. 3.21, classification for a test sequence was done finding the closest to the training sequence.

The overall classification error was averaged over all testing sequences.

Fig. 3.8a-b display the 12-by-12 distance matrices computed by DTW and GCTW respec-

tively. Each element in the matrices encodes the distance between a training sequence (row) and

a testing sequence (column). We re-ordered the rows and columns of the matrices so that the

69

sequences containing the same activities were grouped in consecutive rows and columns. We

then divided the matrix into nine 4-by-4 blocks (yellow lines), where the block in the ith row and

jth column contains the distances between the training sequences of the ith action and the testing

data of the jth action, where i, j 2 {walk, run, jump}. Darker color denotes smaller distance.

Ideally, if the distance would be able to capture perfectly the activity, the matrix will be perfect

with zeros (black color) in the diagonal blocks and higher values (white color) elsewhere.

From Fig. 3.8a, we can see that the DTW distance values in the first and last row of blocks

were smaller than the blocks in the middle row. That is, DTW cannot encode well the distance

of running. In comparison, Fig. 3.8b shows that GCTW captured better the distance between

actions. Fig. 3.8c shows the nearest-neighbor classification error using different distances. Over-

all, CTW and GCTW achieved lower errors than others due to their feature selection in aligning

videos with different features.

In the second example, we recognized actions from motion capture sequences {Yj}j given

a training set containing of videos with different visual features {Xi}i. From the Weizmann

dataset [80] we selected 24 videos of three actions (walking, running and jumping). From the

CMU motion capture database we selected 30 sequences of subjects performing the same three

actions (walking, running and jumping). For the mocap data Y, we computed the quaternions

for the 20 joints that describe the body configuration, while each video frame X was encoded

as a binary silhouette feature. The experimental setting was similar to the previous experiments.

We divided all sequences into two disjoint sets used for training and testing respectively. We

classified each testing motion capture sequence as the label of the video X in the training set with

the smallest distance (Eq. 3.21). As shown in Fig. 3.8f, GCTW achieved the lowest classification

error compared to other methods. This was because our GCTW distance captures between multi-

modal similarity between actions in videos.

3.5.6 Aligning facial expression sequences

In the fourth experiment, we compared CTW and GCTW in the task of aligning unscripted facial

expression sequences. The facial videos were taken from the RU-FACS database [16], which

contains digitized videos of 29 young adults. They were recorded during an interview (approxi-

70

mately two-minutes long) in which they either lied or told the truth in response to an interviewer’s

questions. Pose orientation was mostly frontal with small to moderate out-of-plane head motion.

The action units (AUs) in this database have been manually coded, and we randomly cropped

video segments containing AU12 (smiling) for our experiments. Each event of AU12 is coded

at its peak position. We used a person-specific active appearance model [131] to track 66 land-

marks on the face. For the alignment of AU12, we used only the 18 landmarks that correspond to

the outline of the mouth. See Fig. 3.9a for example frames aligned by GCTW where the mouth

outlines are plotted.

The performance of CTW and GCTW were compared with DTW, DDTW and IMW. We ini-

tialized IMW, CTW and GCTW using the same uniform warping. Fig. 3.9b shows the alignment

result obtained by different methods, where the three dimensions correspond to the first three

principal components of the original signals. As an approximate ground-truth, the position of the

peak frame of each AU12 event is indicated as the red and blue points on the curves in Fig. 3.9b

and the intersection of the two dashed lines in Fig. 3.9c. As we can see from Fig. 3.9b-c, the two

peaks in the low-dimensional projection found by CTW and GCTW are closer to the manually

labeled peak than the ones in the original space used for DTW and DDTW. Finally, the distance

between the peak point and the warping path is computed to quantitatively measure the perfor-

mance. Fig. 3.9d shows the average error as the distance normalized by the sequence lengths

over 20 random repetitions, where CTW and GCTW achieved better performance.

3.5.7 Aligning large-scale motion capture sequences

This experiment illustrates the benefits of using GCTW for aligning two large-scale motion cap-

ture sequences. The two sequences were taken from the CMU-Multimodal Activity Dataset [54],

which contains multi-sensor recordings (video, audio, motion capture data and accelerometers)

of naturalistic behavior of 40 subjects cooking five different recipes. The two sequences used in

this experiment contain 44387 and 48724 frames respectively of two subjects cooking brownies.

See Fig. 3.10c for several key-frames of these two sequences. For each motion capture frame,

we computed the quaternions of the four joints on the right hand, resulting in a 12-D feature

vector that describes the body configuration. In this experiment, we only tested the performance

71

0

0.02

0.04

0.06

0.08

DTW DDTW IMW CTW GCTW

(a) (d)(b)

(c)

DTW DDTW IMW CTW GCTW

error

bases

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

frame frame frame frameframe

20 40 60

50

100

150

200

50 100 150 200

z

y

x

50 100 150 200 250

z

y

x

50 100 150 200 250

z

y

x

50 100 150 200

z

y

x

50 100 150 200 250

z

y

x

Truth
DTW
DDTW
IMW
CTW
GCTW

Figure 3.9: Comparison of temporal alignment algorithms for aligning facial expression se-

quences between different people. (a) An example of two smiling expression sequences aligned

by GCTW. The features of the two sequences are computed as the 18 landmark coordinates of

the mouth given by a face tracker. (b) Alignment results. The position that corresponds to the

peak of the expression is indicated by points on the curves in the top row. (c) Comparison of

time warping paths. The position that corresponds to the peak of the expression is indicated by

the intersection of the two dashed lines. (d) Alignment errors.

of GCTW on aligning large-scale sequences, and we did not optimize GCTW over its spatial

component. We used five polynomial functions and five tanh(·) functions as monotonic bases

for the time warping function (upper-right corner in Fig. 3.10b).

To avoid local minima in the alignment, we used a temporal coarse-to-fine strategy for the

Gauss-Newton optimization in GCTW. As shown in Fig. 3.10a, the coarse-to-fine strategy pro-

ceeds in two steps: (1) In the pre-processing step, we obtained a three-level pyramid for each

time series by recursively applying Gaussian smoothing with � = 200. For instance, the first

row of Fig. 3.10b illustrates the two sequences in three levels, where the ones in the first level

correspond to the original signals, while the ones in the third level contain less detailed but much

smoother signals. (2) In the optimization step, GCTW was first used to align the two sequences

on the third level instead of the first level. The computed time warping result was then used to

initialize GCTW on the second level. We repeated the same procedure to compute the final time

warping result of the original sequences on the first level.

For this large-scale example, DTW was too slow and expensive to compute. However,

72

Original

GCTW

(a) (b) (c)

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

1 2 3 1 2 3 1 2 3

1 2 3

level 3

level 2

smooth

level 1

level 1 level 2 level 3

smooth

init

init

Coarse-to-Fine

frame frame frame

bases

Figure 3.10: Aligning two large-scale motion capture sequences using GCTW. (a) A coarse-to-

fine strategy for improving the optimization performance of GCTW. (b) The first row shows the

first principal components of the original sequences for three levels of the temporal pyramids.

The second row corresponds to the aligned sequences using GCTW. (c) Key frames of similar

body poses aligned by GCTW.

GCTW was able to efficiently find the temporal correspondence between the sequences in just a

few seconds using Matlab on a regular laptop with a 2.5GHz Intel CPU. Since the ground-truth

is unknown, we qualitatively evaluated GCTW by showing the aligned key frames in Fig. 3.10c.

Although the two subjects spent different amounts of time and followed different procedures in

cooking, GCTW was able to align similar body poses.

3.5.8 Detection and alignment of similar sub-sequences

A major problem of DTW-type techniques when aligning long sequences is that they require

an exact matching between the first frame and the last one, see boundary conditions (Eq. 3.5).

These boundary conditions are impractical and very restrictive when only a subset of the input

sequence is similar to the sequence to be aligned. Fig. 3.11 illustrates this problem: how can we

align four motion capture signals composed by different walking cycles? This problem is related

to sub-sequence DTW [181] and temporal commonality discovery [46]. A major limitation of

these methods is its inability to handle multiple sequences. This experiment shows how can we

use GCTW for multiple sub-sequence alignment in the context of aligning motion capture data.

We selected four walking sequences from the CMU motion capture database. For each mo-

tion capture frame, we computed the quaternions for 14 joints on the body, resulting in a 42-D

feature vector that describes the human pose. Fig. 3.11a illustrates the first three principal com-

73

(d)(a)

Original

(b)

mDTW

(c)

GCTW

100 200 300 400 500

z

y

x

200 400 600

z

y

x

−200 0 200 400 600

z

y

x

frame frame frame

common
sub-sequences

bases

Figure 3.11: Locating and aligning similar sub-sequences of four walking motion capture signals.

(a) Original features of four mocap walking sequences. (b) Alignment achieved by mDTW.

mDTW tries to align the sequences end-to-end and it has to stretch some parts of the sequences

(flat lines indicated by arrows). (c) Alignment by GCTW. GCTW efficiently aligns the sub-

sequences and also finds the boundaries of the sub-sequences containing similar motions. (d)

Key frames aligned by GCTW.

ponents of the walking sequences. To allow for sub-sequence alignment, the warping path in

GCTW is represented by a combination of a constant function and a linear one as the monotonic

bases (see upper-left corner of Fig. 3.11c). Both GCTW and the baseline mDTW method are

initialized by uniformly aligning the sequences.

A visual comparison between mDTW and GCTW is illustrated in Fig. 3.11. Without any

manual cropping, most of the conventional DTW-based methods, such as mDTW, aligned the

sequences by matching the first and the last frame, which results in incorrect alignments (see

Fig. 3.11b). Some parts (noted by arrows) of the sequences with fewer cycles have to be stretched

into flat lines in order to match the other sequences with more cycles. Unlike conventional DTW-

based methods built on dynamic programming, GCTW uses the Gauss-Newton method, which

allows for a more flexible time warping. By incorporating a constant function in the set of bases,

GCTW can naturally be generalized to deal with the sub-sequence alignment problem across

multiple sequences. As shown in Fig. 3.11c-d, GCTW is not only able to align the sequences

in time, but also locate the boundaries of the sub-sequences that contain similar motions. This

experiment demonstrates the benefits of GCTW in controlling the warping path.

74

(d)(b)
frame

(c)
frame

(a)

50 100 150 200 250

50 100 150 200 250 300

Motion capture Video Accelerometer

bases

Figure 3.12: Example of aligning multi-modal sequences. (a) Accelerometer. (b) Projection onto

the first principal component for the motion capture data, video and accelerometers respectively.

(c) GCTW. (d) Key frames aligned by GCTW. Notice that the similar hand gestures have been

aligned. From the top to bottom, we show mocap data, video, and accelerometer data respec-

tively.

3.5.9 Aligning multi-modal sequences

The last experiment evaluates CTW and GCTW in the task of aligning multi-modal sequences

recorded with different sensors. We selected one motion capture sequence from the CMU motion

capture database, one video sequence from the Weizmann database [80], and we collected an

accelerometer signal of a subject performing jumping jacks. Some instances of the multi-modal

data can be seen in Fig. 3.12d. Note that, to make the problem more challenging, the two subjects

in the mocap (top row) and video (middle row) sequences are performing the same activity, but

in the accelerometer sequence (bottom row) the subject only moves one hand and not the legs.

Even in this challenging scenario, GCTW is able to solve for the temporal correspondence that

maximizes the correlation between signals. For the mocap data, we computed the quaternions for

the 20 joints. In the case of the Weizmann dataset, we computed the Euclidean distance transform

as described earlier. The X, Y and Z axis accelerometer data was collected using an X6-2 mini

USB accelerometer (Fig. 3.12a) at a rate of 40Hz. GCTW was initialized by uniformly aligning

the three sequences. We used five hyperbolic tangent and five polynomial functions as monotonic

bases. Fig. 3.12b shows the first components of the three sequences projected separately by PCA.

As shown in Fig. 3.12c, GCTW found an accurate temporal correspondence between the three

sequences. Unfortunately, we do not have ground-truth for this experiment. However, visual

inspection of the video suggests that the results are consistent with human labeling. Fig. 3.12d

shows several frames that have been put in correspondence by GCTW.

75

3.6 Conclusions

This chapter proposes CTW and GCTW, two new techniques for spatio-temporal alignment of

multiple multi-modal time series. CTW extends DTW by adding a feature selection mechanism

and enabling alignment of signals with different dimensionality. CTW extends CCA by adding

temporal alignment and allowing temporally local projections. To improve the efficiency of

CTW, allow a more flexible time-warping, and align multiple sequences, GCTW extends CTW

by parameterizing the warping path as a combination of monotonic functions. Inspired by exist-

ing work on image alignment, GCTW is optimized using coarse-to-fine Gauss-Newton updates,

which allows for efficient alignment of long sequences.

Although CTW and GCTW have shown promising preliminary results, there are still unre-

solved issues. First, the Gauss-Newton algorithm used in GCTW for time warping converges

poorly in areas where the objective function is non-smooth. Second, both CTW and GCTW are

subject to local minima. The effect of local minima can be partially alleviated using a temporal

coarse-to-fine approach as in the case of image alignment. In future work, we also plan to explore

better initialization strategies. Third, although the experiments show good results using manu-

ally designed bases, we plan to learn a set of monotonic bases that are adapted to the particular

alignment problem. Alternatively, a trivial extension by kernealizing the approach is expected to

improve the temporal alignment error.

76

Chapter 4

Spatio-temporal Matching

4.1 Introduction

Human pose detection and tracking in videos have received significant attention in the last few

years due to the success of Kinect cameras and applications in human computer interaction

(e.g., [172]), surveillance (e.g., [22]) and marker-less motion capture (e.g., [201]). While there

have been successful methods that estimate 2D body pose from a single image [13, 63, 69, 90,

209], detecting and tracking body configurations in unconstrained video is still a challenging

problem. The main challenges stem from the large variability of people’s clothes, articulated

motions, occlusions, outliers and changes in illumination. More importantly, existing extensions

of 2D methods [69, 209] cannot cope with large pose changes due to camera view change. A

common strategy to make these 2D models view-invariant is to gather and label human poses

across all possible viewpoints. However, this is impractical, time consuming, and it is unclear

how the space of 3D poses can be uniformly sampled. To address these issues, this chapter pro-

poses to formulate the problem of human body detection and tracking as one of spatio-temporal

matching (STM) between 3D models and video. Our method solves for the correspondence be-

tween a 3D motion capture model and trajectories in video. The main idea of our approach is

illustrated in Fig. 4.1.

Our STM algorithm has two main components: (1) a spatio-temporal motion capture model

that can model the configuration of several 3D joints for a variety of actions, and (2) an efficient

77

(a)
(b)

(a)
(a) (b)(b)

Figure 4.1: Detection and tracking of humans in three videos using spatio-temporal matching

(STM). STM extracts trajectories in video (gray lines) and selects a subset of trajectories (a) that

match with the 3D motion capture model (b) learned from the CMU motion capture data set.

Better viewed in color.

algorithm that solves the correspondence between image trajectories and the 3D spatio-temporal

motion capture model. Fig. 4.1 illustrates examples of how we can rotate our motion capture data

model to match the trajectories of humans in video across several views. Moreover, our method

selects a subset of trajectories that corresponds to 3D joints in the motion capture data model

(about 2 � 4% of the trajectories are selected). As we will illustrate with the Berkeley MHAD

database [140], the Human3.6M database [91] and Multi-modal action dataset (MAD) [89], the

main advantage of our approach is that it is able to cope with large variations in viewpoint and

speed of the action. This property stems from the fact that we use 3D models.

The structure of the chapter is organized as follows. Section 4.2 reviews related work in hu-

man detection and 3D human pose estimation. Section 4.3 introduces a trajectory-based video

representation. Section 4.4 discusses a spatio-temporal bilinear shape model. Section 4.5 illus-

trates the main idea of STM. Section 4.6 compares STM with state-of-the-art methods on several

benchmark datasets. Preliminary version of this chapter was published in [225].

4.2 Related work

This section reviews related works in human detection in video and 3D human pose estimation.

78

4.2.1 Human detection in video

A review of the literature on people tracking is well beyond the scope of this paper. We focus

our attention here on the work most similar in spirit to ours. Many early approaches [27, 56, 57,

96, 159, 173] were based on simple appearance models (e.g., silhouettes) and performed tracking

using stochastic search with kinematic constraints. However, silhouette extraction becomes unre-

liable because of complex backgrounds, occlusions, and moving cameras. Moreover, stochastic

search in these high-dimensional spaces is notoriously difficult.

Facilitated by the advances in human detection methods [13, 69, 90, 162, 209], tracking by

detection has been a focus of recent work. For instance, Andriluka et al. [11, 12] combined the

initial estimate of the human pose across frames in a tracking-by-detection framework. Sapp et

al. [163] coupled locations of body joints within and across frames from an ensemble of tractable

sub-models. Wu and Nevatia [207] propose an approach for detecting and tracking partially

occluded people using an assembly of body parts. Such tracking-by-detection approaches are

attractive because they can avoid drift and recover from errors. The most similar work to ours

are the recent fusion method by stitching together N-best hypotheses from frames of a video.

Burgos et al. [33] merged multiple independent pose estimates across space and time using a

non-maximum suppression. Park and Ramanan [143] generated multiple diverse high-scoring

pose proposals from a tree-structured model and used a chain CRF to track the pose through the

sequence. Compared to these methods, our work enforces temporal consistency by matching

video trajectories to a spatio-temporal 3D model.

4.2.2 3D human pose estimation

Our method is also related to the work on 3D human pose estimation. Conventional methods

rely on discriminative techniques that learn mappings from image features (e.g., silhouettes [4])

to 3D pose with different priors [65, 189]. However, many of them require an accurate image

segmentation to extract shape features or precise initialization to achieve good performance in

the optimization. Inspired by recent advances in 2D human pose estimation, current works focus

on retrieving 3D poses from 2D body part positions estimated by the off-the-shelf detectors [69,

79

162, 209]. For instance, Sigal and Black [174] learned a mixture of experts model to infer 3D

poses conditioned on 2D poses. Simo-Serra et al. [175] retrieved 3D poses from the output of 2D

body part detectors by a robust sampling strategy. Ionescu et al. [90] reconstructed 3D human

pose by inferring over multiple human localization hypotheses on images. Inspired by [211], Yu

et al. [212] recently combined human action detection and a deformable part model to estimate

3D poses. Compared to our approach, however, these methods typically require large training

sets to model the large variability of appearance of different people and viewpoints.

4.3 Trajectory-based video representation

In order to generate candidate positions for human body parts, we used a trajectory-based rep-

resentation of the input video. To be robust to large camera motion and viewpoint changes,

we extracted trajectories from short video segments. The input video is temporally split into

overlapped video segments of length n frames (e.g., n = 15 in all our experiments).

For each video segment, we used [198] to extract trajectories by densely sampling feature

points in the first frame and track them using a dense optical flow algorithm [66]. The output of

the tracker for each video segment is a set of mp trajectories,

P =

2

6

6

6

4

p1
1 · · · p1

m
p

...

pn
1 · · · pn

m
p

3

7

7

7

5

2 R2n⇥m
p ,

where each pi
j 2 R2 denotes the 2D coordinates of the jth trajectory in the ith frame. Notice that

the number of trajectories (mp) can be different between segments. Fig. 4.2b illustrates a video

segment with densely extracted feature trajectories.

Compared to the sparser KLT-based trackers [130, 133], densely tracking the feature points

guarantees a good coverage of foreground motion and improves the quality of the trajectories in

the presence of fast irregular motions. Compared to the various spatio-temporal descriptors (e.g.,

STIP [108], Cuboids [58]), trajectories capture more local motion information of the video. see

[197] for a review.

To evaluate a pseudo-likelihood of each trajectory belonging to a 3D joint, we applied a

80

11

10
9

14

12

13

8

2
1

7

6

4

3

5
10

9

11

14

13

12

2
1

6

8

7

3

4

5

10

11

14

9

12

13

1
2

8

7

3

64

5

PARSE CMU MHAD Human3.6M

1
23

4

5
6

7

8

9
10

11
12

13

14
(a)

used
not used (b) (c)

head (1) right hand (5)

left hand (11) right foot (8)

MAD

10
11

9

14

13

12

1
2

6

7

8

3

4

5

Figure 4.2: Example of feature trajectories and their responses. (a) Geometrical configuration of

14 body joints shared across 3D datasets. (b) Dense trajectories extracted from a video segment.

(c) Feature response maps for 4 joints (see bottom-right corner).

state-of-the-art body part detector [209] independently on each frame. We selected a subset of

mq = 14 body joints (Fig. 4.2a) that are common across several datasets including the PARSE

human body model [209], CMU [39], Berkeley MHAD [140], Human3.6M [91] motion capture

datasets and CMU MAD Kinect dataset [89].

For each joint c = 1 · · ·mq in the ith frame, we computed the SVM score aicj for each tra-

jectory j = 1 · · ·mp by performing an efficient two-pass dynamic programming inference [143].

Fig. 4.2c shows the response maps associated with four different joints. The head can be eas-

ily detected, while other joints are more ambiguous. Given a video segment containing mp

trajectories, we then computed a trajectory response matrix, A 2 Rm
q

⇥m
p , whose element

acj =

Pn
i=1 a

i
cj encodes the cumulative cost of assigning the jth trajectory to the cth joint over

the n frames.

4.4 Learning spatio-temporal bilinear bases

There exists a large body of work that addresses the representation of time-varying spatial

data in several computer vision problems (e.g., non-rigid structure from motion, face anima-

tion), see [30]. Common models include learning linear basis vectors independently for each

frame [28] or discrete cosine transform bases independently for each joint trajectory [6]. Despite

its simplicity, using a shape basis or a trajectory basis independently fails to exploit spatio-

81

temporal regularities. To have a low-dimensional model that exploits correlations in space and

time, we parameterize the 3D joints in motion capture data using a bilinear spatio-temporal

model [7].

Given a set of 3D motion capture sequences of different lengths, we randomly select a large

number (> 200) of temporal segments of the same length, where each segment denoted by Q,

Q =

2

6

6

6

4

q1
1 · · · q1

m
q

...

qn
1 · · · qn

m
q

3

7

7

7

5

2 R3n⇥m
q ,

contains n frames and mq joints. For instance, Fig. 4.3a shows a set of motion capture segments

randomly selected from several kicking sequences.

To align the segments, we apply Procrustes analysis [81] to remove the 3D rigid transfor-

mations. In order to build local models, we cluster all segments into k groups using spectral

clustering [136]. The affinity between each pair of segments is computed as,

ij = exp

⇣

� 1

�2
(kQi � ⌧ij(Qj)k2F + kQj � ⌧ji(Qi)k2F)

⌘

,

where ⌧ij(·) denotes the similarity transformation found by Procrustes analysis when aligning

Qj towards Qi. The kernel bandwidth � is set to be the average distance from the 50% closest

neighbors for all Qi and Qj pairs. As shown in the experiments, this clustering step improves the

generalization of the learned shape models. For instance, each of the 4 segment clusters shown

in Fig. 4.3b corresponds to a different temporal stage of kicking a ball. Please refer Fig. 4.4 for

more examples of temporal clusters.

Given a set of l segments1, {Qi}li=1, belonging to each cluster, we learn a bilinear model [7]

such that each segment Qi can be reconstructed using a set of weights Wi 2 Rk
t

⇥k
s minimizing,

min

T,S,{W
i

}
i

l
X

i=1

kQ(TWiS
T
)�Qik2F , (4.1)

where the columns of T 2 Rn⇥k
t and S 2 R3m

q

⇥k
s contain kt trajectories and ks shape bases

respectively. In the experiment, we found choosing the value of kt and ks that preserve 95%

1To simplify the notation, we do not explicitly specify the cluster membership of the motion capture segment

(Q
i

) and the bilinear bases (T and S).

82

energy of the singular values, produced consistently good results. Q(·) is a linear operator2 that

reshapes any n-by-3mq matrix to a 3n-by-mq one, i.e.,

Q
⇣

2

6

6

6

4

q1T
1 · · · q1T

m
q

...

qnT
1 · · · qnT

m
q

3

7

7

7

5

⌘

=

2

6

6

6

4

q1
1 · · · q1

m
q

...

qn
1 · · · qn

m
q

3

7

7

7

5

, 8 qi
j 2 R3.

Unfortunately, optimizing Eq. 4.1 jointly over the bilinear bases T, S and their weights

{Wi}i is a non-convex problem. To reduce the complexity and make the problem more track-

able, we fix T to be the discrete cosine transform (DCT) bases (Top of Fig. 4.3c). Following [7],

the shape bases S can then be computed in closed-form using the SVD as,

[TT†Q�1
(Q1); · · · ;TT†Q�1

(Ql)] = U⌃ST . (4.2)

For example, the left part of Fig. 4.3c plots the first two shape bases si learned from the 3

rd

cluster of segments shown in Fig. 4.3b, which mainly capture the deformation of the movements

of the arms and legs.

4.5 Spatio-temporal matching (STM)

This section describes the objective function and the optimization strategy for the STM algo-

rithm.

4.5.1 STM’s Objective

Given the mp trajectories P 2 R2n⇥m
p extracted from an n-length video segment, STM aims to

select a subset of mq trajectories that best fits the learned spatio-temporal 3D shape structure (T

and S) projected in 2D. More specifically, the problem of STM consists in finding three variables:

(1) a binary correspondence matrix X 2 {0, 1}mp

⇥m
q under the many-to-one constraint XT1 =

1; (2) the weights W 2 Rk
t

⇥k
s of the bilinear 3D model; and (3) a set of 3D-2D weak perspective

2Q(Q) can be written in matrix form as
�

(1
n⇥m

q

⌦ I3) � (Q⌦ 13)
�

(I
m

q

⌦ 13) for any Q 2 Rn⇥3m
q .

83

(b) (c)

Cluster 1 Cluster 3

Cluster 2 Cluster 4All Segments
(After Alignment)

Shape Bases

DCT Bases

Reconstruction

(a)

All Segments
(Before Alignment)

Figure 4.3: Spatio-temporal bilinear model learned from the CMU motion capture dataset. (a)

Top: All the motion capture segments randomly selected from a set of kicking sequences. Bot-

tom: The segments are spatially aligned via Procrustes alignment. (b) Clustering motion capture

segments into 4 temporal clusters. (c) The bilinear bases estimated from the 3

rd cluster. Left:

top-2 shape bases (si) where the shape deformation is visualized by black arrows. Top: top-3

DCT trajectory bases (tj). Bottom-right: bilinear reconstruction by combining each pair of shape

and DCT bases (tjsTi).

projections3 R 2 R2n⇥3n, b 2 R2n, where the rotation needs to satisfy the orthogonal constraints,

 =

n

R =

2

6

6

6

4

✓1R1 · · · 0

...

0 · · · ✓nRn

3

7

7

7

5

�

�

�

RT
i Ri = I2 8 i

o

. (4.3)

In a nutshell, STM aims to solve the following problem

min

X,W,R,b
kRQ(TWST

) + b1T �PXk1 + �a tr(AX)

+ �skTW⌃�1k1 + �okGPX�G0P0X0k1, (4.4)

s. t. X 2{0, 1}mp

⇥m
q , XT1 = 1,R 2 ,

3R = [

)
i

✓

i

R
i

] 2 R2n⇥3n is a block-diagonal matrix, where each block contains the rotation R
i

2 R2⇥3 and

scaling ✓
i

for each frame. Similarly, b = [b1; · · · ;bn

] 2 R2n is a concatenation of the translation b
i

2 R2 for each

frame.

84

Cluster 1 Cluster 4Cluster 2 Cluster 3Cluster 1 Cluster 3 Cluster 4

G
re

et
in

g

W
al

k
P

ai
r

(c)

(b)

Ju
m

p

S
it

(a)

W
al

k

S
w

in
g

All Segments Cluster 2

L
A

rm
 S

w
ip

e
to

 R

(d)B
as

ke
tb

al
l S

ho
ot

All Segments

Figure 4.4: Clustering motion capture segments into four clusters for different datasets. (a) CMU

motion capture dataset [39]. (b) Berkeley MHAD dataset [140]. (c) Human3.6M dataset [91].

(d) CMU MAD dataset [89].

where the objective is composed by four terms. (1) The first term measures the error between

the selected trajectories PX 2 R2n⇥m
q and the bilinear reconstruction Q(TWST

) projected in

2D using R and b. The error is computed using the l1 norm instead of the Frobenious norm,

because of its efficiency and robustness. (2) Given the trajectory response A 2 Rm
q

⇥m
p , the

second term measures the appearance cost of the trajectories selected by X and weighted by �a.

(3) The third term weighted by �s penalizes large weights TW 2 Rn⇥k
s of the shape bases,

where the singular value ⌃ 2 Rk
s

⇥k
s computed in Eq. 4.2 is used to normalize the contribution

of each basis. (4) To impose temporal continuity on the solution, the fourth term weighted by

�o penalizes the l1 distance between the reconstruction for the current segment PX and the

previous one P0X0, where G 2 {0, 1}2no

⇥2n and G0 2 {0, 1}2no

⇥2n0 are two selection matrices

that select the overlapped no frames between PX and P0X0 respectively. In our experiment, the

regularization weights �a, �s and �o are estimated using cross-validation.

85

Optimizing Eq. 4.4 is a challenging problem4, in the following sections we describe an effi-

cient coordinate-descent algorithm that alternates between solving X,W and R,b until conver-

gence. The algorithm is initialized by computing X that minimizes the appearance cost tr(AX)

in Eq. 4.4 and setting Q(TWST
) to be the mean of the motion capture segments.

4.5.2 Optimizing STM over X and W

Due to the combinatorial constraint on X, optimizing Eq. 4.4 over X and W given R and b is

a NP-hard mixed-integer problem. To approximate the problem, we relax the binary X to be a

continuous one and reformulate the problem using the LP trick5 [94] as,

min

X,W,U,V
U

s

,V
s

,U
o

,V
o

1T
(U+V)1+ �a tr(AX) + �s1

T
(Us +Vs)1+ �o1

T
(Uo +Vo)1, (4.5)

s. t. X 2 [0, 1]mp

⇥m
q ,XT1 = 1,

RQ(TWST
) + b1T �PX = U�V, U,V � 0,

TW⌃�1
= Us �Vs, Us,Vs � 0,

GPX�G0P0X0
= Uo �Vo, Uo,Vo � 0,

where U,V 2 R2n⇥m
q and Us,Vs 2 Rn⇥k

s are four auxiliary variables used to formulate the l1

problem as linear programming. The term RQ(TWST
) is linear in W and we can conveniently

re-write this expression using the following equality as:

vec

⇣

RQ(TWST
)

⌘

= (Im
q

⌦R) vec

⇣

Q(TWST
)

⌘

= (Im
q

⌦R)⇧Q vec(TWST
) = (Im

q

⌦R)⇧Q(S⌦T)

| {z }

Constant

vec(W),

4Although there are some works that can remove the explicit optimization over rotation by computing the Lapla-

cian matrix [129], it is difficult to use it in our work because the Laplacian matrix is not invariant to 3D-2D

projection.
5Given an LP problem with absolute value in the objective, e.g., min

x

kxk, we can equivalently solve,

min

x,u,v

u+ v, by introducing two positive auxiliary variables u, v � 0 with the constraint x = u� v.

86

where ⇧Q 2 {0, 1}3nmq

⇥3nm
q is a permutation matrix that re-orders the elements of a 3nmq-

D vector as,

⇧Q vec

⇣

2

6

6

6

4

q1
1 · · · q1

m
q

...

qn
1 · · · qn

m
q

3

7

7

7

5

⌘

= vec

⇣

2

6

6

6

4

q1T
1 · · · q1T

m
q

...

qnT
1 · · · qnT

m
q

3

7

7

7

5

⌘

.

After solving the linear program, we gradually discretize X by taking successive refinements

based on trust-region shrinking [94].

4.5.3 Optimizing STM over R and b

If X and W are fixed, optimizing Eq. 4.4 with respect to R and b becomes an l1 Procrustes

problem [186],

min

R,b
kRQ+ b1T �PXk1, s. t. R 2 , (4.6)

where Q = Q(TWST
). Inspired by the recent advances in compressed sensing, we approximate

Eq. 4.6 using the augmented Lagrange multipliers method [118] that minimizes the following

augmented Lagrange function:

min

L,E,µ,R,b
kE�PXk1 + tr

⇣

LT
(RQ+ b1T � E)

⌘

+

µ

2

kRQ+ b1T � Ek2F , s. t. R 2 ,

(4.7)

where L is the Lagrange multiplier, E is an auxiliary variable, and µ is the penalty parameter.

Eq. 4.7 can be efficiently approximated in a coordinate-descent manner. First, optimizing Eq. 4.7

with respect to R and b is a standard orthogonal Procrustes problem,

min

R,b
kRQ+ b1T � (E� L

µ
)k2F , s. t. R 2 ,

which has a close-form solution using the SVD. Second, optimizing Eq. 4.7 with respect to E

can be efficiently found using absolute value shrinkage [118] as,

E = PX� S 1
µ

(PX�RQ� b1T � L

µ
),

87

where S�(p) = max(|p|��, 0) sign(p) is a soft-thresholding operator [118]. Third, we gradually

update L L+µ(RQ+b1T �E) and µ ⇢µ, where we set the incremental ratio to ⇢ = 1.05

in all our experiments.

4.5.4 Fusion

Given a video containing an arbitrary number of frames, we solved STM independently for each

segment of n frames (n = 15 in our experiments). Recall that we learned k bilinear models (T

and S) from different clusters of motion capture segments (e.g., Fig. 4.3b) in the training step.

To find the best model for each segment, we optimize Eq. 4.4 using each model and select the

one with the objective.

After solving STM for each segment, we need to aggregate the local solutions to generate

the global one. Specifically, how to generate the coordinate ¯Pi 2 R2⇥m
q at ith frame from

the selected trajectories {PcXc}c of lc segments overlapped at ith frame. In the following, we

explore two ways to compute ¯Pi.

Averaging. The first solution is to average the coordinates of the selected trajectories {PcXc}c
overlapped at i,

¯Pi
=

1

lc

X

c

Pi
c

c Xc, (4.8)

where Pi
c

c 2 R2⇥m
p encodes the trajectory coordinates at the ithc frame within the cth segment

and ic the local index of the ith frame in the original video.

Winner-Take-All. In the second way, we evaluate the objective value (Eq. 4.4) of each local

solution {PcXc}c marginalized at the overlapped frame i, i.e.,

Jc = k
⇥

RQ(TWST
) + b1T �PX

⇤

i
c

k1 + �ak
⇥

AX
⇤

i
c

k1 + �sk
⇥

TW⌃�1
⇤

i
c

k1, (4.9)

where the operator [·]i
c

is to take the rows of a matrix associated to ithc frame. Once the Jcs for

each segment are computed, we pick the one c⇤ = argminc Jc with the minimum objective value

as the final solution ¯Pi
= P

i⇤
c

c⇤Xc⇤ .

88

4.6 Experiments

This section compares STM against several state-of-the-art algorithms for body part detection

in synthetic experiments on the CMU motion capture dataset [39], and real experiments on the

MHAD [140], the Human3.6M [91] and the MAD [89] datasets.

For each dataset, the 3D motion capture model was trained from its associated motion capture

sequences. The 3D motion capture training data is person-independent, and it does not contains

samples of the testing subject. Notice that the annotation scheme is different across datasets

(Fig. 4.2a). We investigated four different types of 3D models for STM: (1) Generic models:

STM-G1 and STM-G4 were trained using all sequences of different actions with k = 1 and

k = 4 clusters respectively. (2) Action-specific models: STM-A1 and STM-A4 were trained

independently for each action from each dataset. In testing, we assumed we know what action

the subject was performing. As before, STM-A1 and STM-A4 were trained with k = 1 and

k = 4 clusters respectively. In addition to the different choices of 3D models, we also testified

the effect of using different fusion methods. The postfix notations, -AVE and -WTA stand for

using the averaging and winner-take-all methods in the fusion step respectively.

4.6.1 CMU motion capture dataset

The first experiment validated our approach on the CMU motion capture dataset [39], from which

we selected 5 actions including walking, running, jumping, kicking, golf swing. For each action,

we picked 8 sequences performed by different subjects. For each sequence, we synthetically

generated 0 ⇠ 200 random trajectories as outliers in 3D. Then we projected each sequence (with

outliers included) onto 4 different 2D views. See Fig. 4.5a for examples of the 3D sequences as

well as the camera positions. To reproduce the response of a body part detector at each frame,

we synthetically generate a constant-value response region centered at the ground-truth location

with the radius being the maximum limb length over the sequence. The response value of the

jth feature trajectory for the cth body part at ith frame is considered to be aicj = �1 if it falls

in the region or 0 otherwise. Our goal is to detect the original trajectories and recover the body

structure.

89

(a) (b)
Walkerror

#outliers

Camera 1error

#outliers

Runerror

#outliers

Camera 2error

#outliers

(c)

Jump

#outliers

error

Camera 3error

#outliers(d)

Kickerror

#outliers

Camera 4error

#outliers

Swing

All

error

#outliers

error

#outliers(e)

Camera 1
Camera 2

Camera 4

Camera 3

Camera 1 Camera 2 Camera 3 Camera 4

STM-A4-WTA

Ground Truth
Greedy

Camera 1
Camera 2

Camera 4

Camera 3

Walk

Kick

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0.

0.

0.

0.

0 50 100 150 200
0

2

4

6

8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Greedy
STM-G1-AVE
STM-G4-AVE
STM-A1-AVE
STM-A4-AVE
STM-A1-WTA
STM-A4-WTA

Figure 4.5: Comparison of human pose estimation on the CMU motion capture dataset. (a)

Original motion capture key-frames in 3D with 50 outliers that were synthetically generated. (b)

Results of the greedy approach and our method on four 2D projections. (c) Mean error and std.

for each method and action as a function of the number of outliers. (d) Mean error and std. for

each camera view. (e) Mean error and std. for all actions and cameras.

90

We quantitatively evaluated our method with a leave-one-out scheme, i.e., each testing se-

quence was taken out for testing, and the remaining data was used for training the bilinear model.

For each sequence, we computed the error of each method as the percentage of incorrect detec-

tions of the feature points compared with the ground-truth position averaged over frames. To the

best of our knowledge, there is no previous work on STM in computer vision. Therefore, we

implemented a greedy baseline that selects the optimal feature points with the lowest response

cost without geometrical constraints.

Fig. 4.5b shows some key-frames for the greedy approach, our method and the ground truth

using the STM-A4-WTA for detecting the kicking actions across four views. As can be ob-

served, STM is able to select the trajectories more precisely and it is more robust than the greedy

approach. Fig. 4.5c-d quantitatively compare our methods with the greedy approach on each

action and viewpoint respectively. Our method consistently outperforms the greedy approach

for detection and tracking in presence of outliers. In addition, the STM-A1-AVE model ob-

tains lower error rates than STM-G1-AVE because STM-A1-AVE is an action-specific model,

unlike STM-G1-AVE which is a generic one. By increasing the number of clusters from one

to four, the performance of STM-G4-AVE and STM-A4-AVE clearly improves from STM-G1-

AVE and STM-A1-AVE respectively. This not surprising because the bilinear models trained on

a group of similar segments can be represented more compactly (fewer number of parameters)

and generalize better in testing. In addition, using the winner-take-all method (STM-A1-WTA

and STM-A4-WTA) in the fusion step can further improve the performance compared to the

averaging approaches (STM-A1-AVE and STM-A4-AVE). This is because the winner-take-all

method picks the best local solution at the overlapped region, yielding more robust solution in

the case when a large number of outliers exist.

4.6.2 Berkeley multi-modal human action dataset (MHAD)

In the second experiment, we tested the ability of STM to detect humans on the Berkeley multi-

modal human action database (MHAD) [140]. The MHAD database contains 11 actions per-

formed by 12 subjects. For each sequence, we took the videos captured by 2 different cameras as

shown in Fig. 4.6a. To extract the trajectories from each video, we used [198] in sliding-window

91

manner to extract dense trajectories from each 15 frames segment. The response for each trajec-

tory was computed using the SVM detector score [209]. The bilinear models were trained from

the motion capture data associated with this dataset.

To quantitatively evaluate the performance, we compared our method with two baselines: the

state-of-the-art image-based pose estimation method proposed by Yang and Ramanan [209], and

the two recent video-based methods designed by Park and Ramanan [143] and Burgos et al. [33]

that merge multiple independent pose estimates across frames. We evaluated all methods with

a leave-one-out scheme. The error for each method is computed as the pixel distance between

the estimated and ground-truth part locations. Notice that a portion of the error is due to the

inconsistency in labeling protocol between the PARSE model [209] and the MHAD dataset.

Fig. 4.6b-d compare the error to localize body parts of our method against [33, 143, 209]. Our

method largely improves the image-based baseline [209] for all actions and viewpoints. Com-

pared to the video-based method [33], STM achieves lower errors for most actions except for

“jump jacking”, “bending”, “one-hand waving” and “two-hand waving”, where the fast move-

ment of the body joints cause much larger error in tracking feature trajectories over time. Among

the four STM models, STM-A4-AVE performs the best because the clustering step improves the

generalization of the bilinear model. In this experiment, however, we found taking the average

coordinates of the local solutions in fusion steps (STM-A1-AVE and STM-A4-AVE) yielded

lower error than the ones (STM-A1-WTA and STM-A4-WTA) using the winner-take-all mecha-

nism. This is because the noise (e.g., drifting and missing point) generated in the dense tracking

step can be mitigated by the averaging step. As shown in Fig. 4.6d, the hands are the most

difficult to accurately detect because of their fast movements and frequent occlusions.

Fig. 4.6e-g investigate the three main parameters of our system, segment length (n), number

of bases (ks and kt) and the regularization weights (�a and �s). According to Fig. 4.6e, a segment

length is beneficial for “jump jacking” because the performance of the tracker [198] is less stable

for fast-speed action. In contrast, using a larger window improves the temporal consistency

in actions such as “throwing” and “standing up”. Fig. 4.6f shows the detection error of STM

using different number of shape (ks) and trajectories (kt) bases for the first subject. Overall,

we found the performance of STM is not very sensitive to small change in the number of shape

92

10

20

30

40

1. Head 2. Neck 3. R Shou. 4. R Elbow 7. R Knee6. R Hip 8. R Foot 9. L Shou. 11. L Hand10. L Elbow5. R Hand 12. L Hip 13. L Knee 14. L Foot

(d)

error

(h)

 seconds0 500 1000 1500 2000

Learning

Tracking

Response

Optimize X, W

Optimize R, b

2244

42

6

123

385

error

(e)

error

segment length (n)
(f)

error

5 10 15 20 25
14

15

16

17

(g)

Jump Jack
Throw
Stand Up

102 103 104 105

102103104105

18
19
20

6
10

14
18

22

6
8

10
12

14

16

17

18

Yang & Ramanan STM-A4-AVE STM-A4-AVE Yang & Ramanan STM-A4-AVE STM-A4-AVE
Ju

m
p

U
p

S
it

D
ow

n

Jump Up Jump Jack Bend Punch One-hand
Wave

Two-hand
Wave

Clap Throw Sit Down Stand Up
(b)

Sit Down
Stand Up

(a)

(c)
Camera 1 Camera 2All

errorerror

P
un

ch

Camera 1 Camera 2

STM-G1-AVE

STM-A1-AVE
STM-A4-AVE

STM-G4-AVE

Yang & Ramanan

Burgos et al.
Park & Ramanan

STM-A1-WTA
STM-A4-WTA

5

15

25

35

45

55

10

20

30

40

Figure 4.6: Comparison of human pose estimation on the Berkeley MHAD dataset. (a) Result

of [209] and our method on three actions of two views, where the 3D reconstruction estimated

by our method is plotted on the right. (b) Errors for each action. (c) Errors for each camera view.

(d) Errors of each joint. (e) Errors with respect to the segment length (n). (f) Errors with respect

to the bases number (ks and kt). (g) Errors with respect to the regularization weights (�a and �s).

(h) Time cost of each step.

93

bases because the contribution of each shape basis in STM (Eq. 4.4) is by their energies (⌃). In

addition, using a number (e.g., 5) of trajectory bases can lower the performance of STM. This

result demonstrates the effectiveness of using dynamic models over the static ones (e.g., a PCA-

based model can be considered as a special case of the bilinear model when kt = 1). Fig. 4.6g

plots the cross-validation error for the first subject, from which we pick the optimal �a and �s.

20

30

40

50

60

Yang & Ramanan STM-A4-AVE STM-A4-AVE Yang & Ramanan STM-A4-AVE STM-A4-AVE

W
a
lk

(a)

1. Head 2. Neck 3. R Shou. 4. R Elbow 7. R Knee6. R Hip 8. R Foot 9. L Shou. 11. L Hand10. L Elbow5. R Hand 12. L Hip 13. L Knee 14. L Foot

(d)

Camera 1 Camera 2All

errorerror

error

Camera 1 Camera 2

Yang & Ramanan

STM-G1-AVE

STM-A1-AVE

STM-A4-AVE

Burgos et al.

STM-G4-AVE

20

30

40

50

60

5

15

25

35

45

55

65

75

Direction Greeting Phone Talk Sit SmokeSit Down Photo Take Wait Walk Walk Dog Walk Pair

(b) (c)

Figure 4.7: Comparison of human pose estimation on the Human 3.6M dataset. (a) Result

of [209] and our method on three actions of two views, where the 3D reconstruction estimated

by our method is plotted on the right. (b) Errors for each action. (c) Errors for each camera view.

(d) Errors of each joint.

Our system was implemented in Matlab on a PC with 2GHz Intel CPU and 8GB memory.

The codes of [33, 209] were downloaded from authors’ webpages. The linear programming in

Eq. 4.5 was optimized using the Mosek LP solver [134]. Fig. 4.6f analyzes the computational

cost (in seconds) for tracking the human pose in a sequence containing 126 frames. The most

computationally intensive part of the method is calculating the response for each joint and each

94

frame using [209]. Despite a large number of candidate trajectories (mp ⇡ 700) per segment,

STM can be computing in about 8 minutes.

4.6.3 Human3.6M dataset

In the last experiment, we selected 11 actions performed by 5 subjects from the Human3.6M

dataset [91]. Compared to the Berkeley MHAD dataset, the motions in Human3.6M were per-

formed by professional actors, that wear regular clothing to maintain as much realism as possible.

See Fig. 4.7a for example frames.

As in the previous experiment, our methods were compared with two baselines [33, 209] in a

leave-one-out scheme. The bilinear models were trained from the motion capture data associated

with this dataset. Fig. 4.6b-c show the performance of each method on localizing body part for

each action and viewpoint respectively. Due to the larger appearance variation and more complex

motion performance, the overall error of each method is larger than the one achieved on the

previous Berkeley MHAD dataset. However, STM still outperforms both the baselines [33, 209]

for most actions and viewpoints. If the action label is known a priori, training action-specific

models (STM-A1-AVE and STM-A4-AVE) achieves better performance than the ones trained

on all actions (STM-G1-AVE and STM-G4-AVE).

4.6.4 CMU multi-modal action dataset (MAD)

In the last experiment, we test our method on the CMU multi-modal action detection (MAD)

dataset [89]. Unlike MHAD and H3M datasets where each sequence contains only one action,

MAD contains 40 sequences of 20 subjects (2 sequences per subject) performing 35 activities in

each of the sequences. Therefore, this experiment can more closely reveal the performance of

different human pose estimation methods in real applications. The length of each sequence is

around 2 � 4 minutes (4000 � 7000 frames). The 2D and 3D coordinates of 14 joints for each

frame was recorded using the Microsoft Kinect sensor in an indoor environment. The 35 actions

include full-body motion (e.g., run, crouch, jump), upper-body motion (e.g., throw, basketball

dribble, baseball swing), and lower-body motion (e.g., kick). Each subject performs all the 35

95

(a)

1. Head 2. Neck 3. R Shou. 4. R Elbow 7. R Knee6. R Hip 8. R Foot 9. L Shou. 11. L Hand10. L Elbow5. R Hand 12. L Hip 13. L Knee 14. L Foot

(c)

error

error

1. Run 2. Crouch 3. Jump 4. Walk 6. L Arm

Swipe to L

5. Jump

Side-Kick

(b)

Yang & Ramanan STM-A4-AVE STM-A4-AVE Yang & Ramanan STM-A4-AVE STM-A4-AVE

7. L Arm

Swipe to R

8. L Arm

Wave

9. L Arm

Punch

10. L Arm

Dribble

11. L Arm

Point

12. L Arm

Throw

13. L Arm

Swing

14. L Arm

Receive

15. L Arm

Back Receive

16. L Leg

 Kick to Front

17. L Leg

Kick to L

18. R Arm

Swipe to L

19. R Arm

Swipe to R

20. R Arm

Wave

21. R Arm

Punch

22. R Arm

Dribble

23. R Arm

Point

24. R Arm

Throw

25. R Arm

Swing

26. R Arm

Receive

27. R Arm

Back Receive

28. R Leg

 Kick to Front

29. R Leg

Kick to R

30. Cross

Arms

31. Shoot 32. Both Arms

Point to Screen

33. Both Arms

 Point to Both

34. Both Arms

Point to R

35. Both Arms

Point to L

0. Null

Class

All

0 1000 2000 3000 4000 5000
0
15

35

0 1000 2000 3000 4000
0
15

35
action id action id

frame frame

error

error

2
9
.
R

 L
e
g
 K

ic
k
 t
o
 R

8
.
L
 A

rm
 W

a
v
e

10
20
30
40

5
10
15
20

5
10
15
20

5
10
15
20

STM-G1-AVE

STM-A1-AVE

STM-A4-AVE

STM-G4-AVE

Yang & Ramanan

Burgos et al.

Park & Ramanan

STM-A1-WTA

STM-A4-WTA

Figure 4.8: Comparison of human pose estimation on the CMU MAD dataset. (a) Top: Action

id of two sequences. Bottom: Result of [209] and our method on two actions, where the 3D

reconstruction estimated by our method is plotted on the right. (b) Errors for each action. (c)

Errors of each joint.

activities continuously, and the segments between two actions are considered the null class (i.e.,

the subject is standing). Fig. 4.8a show some example frames and frame labels for two sequences.

As in the previous experiment, our methods were compared with three baselines [33, 143,

209] in a leave-one-out scheme. The bilinear models were trained from the Kinect data associated

with this dataset. Fig. 4.8b shows the performance of each method on localizing body part

for each action. Fig. 4.8c shows the error of each joint. Compared to the baselines [33, 143,

209], STM achieved lower error in most joints, especially the hand and elbow which had larger

movements than others. If the action label is known a priori, training action-specific models

(STM-A1-AVE and STM-A4-AVE) achieves better performance than the ones trained on all

actions (STM-G1-AVE and STM-G4-AVE). Similar to previous results, the averaging fusion

96

step (STM-A1-AVE and STM-A4-AVE) performed better than the winner-take-all (STM-A1-

WTA and STM-A4-WTA).

4.7 Conclusion

This chapter presents spatio-temporal matching (STM), a robust method for detection and track-

ing human poses in videos by matching video trajectories to a 3D motion capture model. STM

matches trajectories to a 3D model, and hence it provides intrinsic view-invariance. The main

novelty of the work resides in computing the correspondence between video and motion capture

data. Although it might seem computationally expensive and difficult to optimize at first, using

an l1-formulation to solve for correspondence results in an algorithm that is efficient and robust

to outliers, missing data and mismatches. We showed how STM outperforms state-of-the-art

approaches to object detection based on deformable parts models in the Berkeley MHAD [140],

the Human3.6M [91] and the CMU MAD [89] datasets.

A major limitation of our current approach is the high computational cost for calculating the

joint response, which is computed independently for each frame. In future work, we plan to

incorporate richer temporal features [198] to improve the speed and accuracy of the trajectory

response. Also, we are solving STM independently for each segment (sub-sequence), which

might result in some discontinuity in the estimation of the pose; a straight-forward improvement

could be made by imposing consistency between overlapping segments.

97

98

Chapter 5

Conclusion

In this dissertation, we focuses on solving correspondence problems in computer vision. In

particular, we have developed three techniques that address the problems of spatial matching,

temporal matching and spatio-temporal matching respectively. In the following, we conclude

with a summary of our contributions and limitations.

5.1 Spatial matching

Finding spatial correspondence between image features is an essential task in recognizing actions

from images and videos. Graph matching is one of the most robust methods for solving feature

matching problem in computer vision. However, the computational complexity of existing meth-

ods limits the permissible size of input graphs in practice. In Chapter 2, we propose factorized

graph matching (FGM), a new framework for better optimizing and understanding graph match-

ing (GM) problems. The key idea of FGM is a novel factorization of the pairwise affinity matrix

into six smaller components. Four main benefits follow from factorizing the affinity matrix. First,

there is no need to explicitly compute the costly affinity matrix. Second, it allows for a unifica-

tion of GM methods as well as provides a clean connection with existing iterative closest point

algorithms. Third, the factorization enables the use of path-following algorithms that improve

the performance of GM methods. Finally, it becomes easier to incorporate global geometrical

transformation in GM.

99

We have illustrated the advantages of factorizing the pair-wise affinity matrix of typical graph

matching problems. The most computationally consuming part of the algorithm is the large

number of iterations needed for FW method to converge when J↵ is close to a convex func-

tion. Therefore, more advanced techniques (e.g., conjugate gradient) can be used to speedup

FW. In addition, we are currently exploring the extension of this factorization methods to other

higher-order graph matching problems [41, 60, 216] as well as learning parameters for graph

matching [37, 116].

5.2 Temporal matching

Temporal alignment of time series is a fundamental step in many applications such as activity

recognition or synthesis human motions. Major challenges to align human motion include: (1)

introducing a feature selection to compensate for subjects’ physical characteristics, different mo-

tion styles and speed of actions. (2) allowing alignment between different features (e.g., video

and mocap). Chapter 3 proposes canonical time warping (CTW) and generalized canonical time

warping (GCTW), two new techniques for aligning multiple multi-modal time series. CTW ex-

tends dynamic time warping (DTW) techniques by adding a feature selection mechanism and

enabling alignment of signals with different dimensionality. CTW extends canonical correlation

analysis (CCA) by adding temporal alignment and allowing temporally local projections. To im-

prove the efficiency of CTW, allow a more flexible time-warping, and align multiple sequences,

GCTW extends CTW by parameterizing the warping path as a combination of monotonic func-

tions. Inspired by existing work on image alignment, GCTW is optimized using coarse-to-fine

Gauss-Newton updates, which allows for efficient alignment of long sequences.

Although CTW and GCTW have shown promising preliminary results, there are still unre-

solved issues. First, the Gauss-Newton algorithm used in GCTW for time warping converges

poorly in areas where the objective function is non-smooth. Second, both CTW and GCTW are

subject to local minima. The effect of local minima can be partially alleviated using a temporal

coarse-to-fine approach as in the case of image alignment. In future work, we also plan to explore

better initialization strategies. Third, although the experiments show good results using manu-

100

ally designed bases, we plan to learn a set of monotonic bases that are adapted to the particular

alignment problem.

5.3 Spatio-temporal matching

Finding correspondence between spatio-temporal features tracked over video is an essential

task in recognizing temporal events from videos. Chapter 4 presents spatio-temporal match-

ing (STM), a robust method for detection and tracking human poses in videos by matching

video trajectories to a 3D motion capture model. STM matches trajectories to a 3D model,

and hence it provides intrinsic view-invariance. The main novelty of the work resides in com-

puting the correspondence between video and motion capture data. Although it might seem

computationally expensive and difficult to optimize at first, using an l1-formulation to solve for

correspondence results in an algorithm that is efficient and robust to outliers, missing data and

mismatches. We showed how STM outperforms state-of-the-art approaches to object detection

based on deformable parts models in the Berkeley MHAD [140], the Human3.6M [91] and the

CMU MAD [89] datasets.

A major limitation of our current approach is the high computational cost for calculating the

joint response, which is computed independently for each frame. In future work, we plan to

incorporate richer temporal features [198] to improve the speed and accuracy of the trajectory

response. In addition, we are interested in extending this work to more robustly deal with outliers

and occlusions in more challenging cases.

101

102

Chapter 6

Future work

We have proposed in this dissertation a new graph matching method for finding the correspon-

dence between spatial features, a new temporal matching approach for aligning multi-modal

sequences with different features, and a spatio-temporal framework for matching video trajec-

tories and 3D models. While these methods have produced promising results, solving matching

problems in computer vision is still challenging. In this chapter, we discusses some potential

ideas for future work.

6.1 Dense correspondence

In Chapter 2, we have presented an efficient graph matching method for finding correspondence

between two sets of feature points. To match n points, graph matching method typically needs

to build a huge affinity matrix, K 2 Rn2⇥n2 , to encode node and edge similarities. Although

our factorization idea can avoid the most expensive construction of K, it still needs to compute

a pair of node and edge affinity matrices, Kp 2 Rn⇥n and Kq 2 Rm⇥m, where m is the number

of edges. Due to its quadratic complexity, graph matching is still too cumbersome to solve

the dense correspondence problems. For instance, the optical flow [14] and stereo matching

problems [164, 179] consists of assigning optimal discrete state to each pixel of an image with

pairwise constraints (e.g., local smoothness). Given a 400-by-300 image of normal size, the

number of nodes could reach 120, 000, which is far beyond the capacity of most graph matching

103

method.

To address the dense correspondence problems, we usually resort to more efficient algorithms

with linear complexity in the number of nodes such as, belief propagation [203], graph cuts [24],

dynamic programming [68], linear programming [195], and randomized approaches [15]. How-

ever, traditional dense correspondence methods only consider relatively simple geometric defor-

mations (e.g., 1D disparity for stereo matching and 2D translations for optical flow). Based on

SIFT features, SIFTFlow [120] can robustly aligns complex scene pairs containing larger spa-

tial differences. More recently, DeepFlow [202] handles the large translations in optical flow by

using the deep network. When complex deformations exist, however, the above methods might

still fail.

Allowing for more complex and non-rigid deformation, graph matching can benefit a vari-

ety of applications relying on dense correspondence methods. To scale up the graph matching

method to handle tens of thousands of nodes, however, we need to improve the robustness and

computational complexity of the current methods. Recently, there has been some efforts towards

this goal. For instance, Cho and Lee [42] proposed a progressive framework to update candidate

matches based on pair-wise geometric relationships between new matches and the current graph

matching result. However, it tends to introduce many outliers because the current graph match-

ing result might be noisy. Furthermore, its computational complexity is high because exploring

the full matching space is required. One of my future goal is to integrate outlier detection and

node clustering into graph matching with less computational cost.

6.2 Learning for matching

In this dissertation, we have presented several efficient and accurate approximations to approach

the NP-hard graph matching, temporal alignment and the spatial-temporal matching problems.

Although we can develop accurate approximation to these problems, a natural question still needs

to be addressed for many tasks: how can we learn better parameters and models to improve the

matching performance? For instance, how can we set the regularization weights in the objectives

of graph matching (Eq. 2.7) and spatio-temporal matching (Eq. 4.4)? How can we obtain a better

104

(a) (b) (c)

Figure 6.1: Examples of learning graph models for matching. (a-b) Learned graph model for two

generic objects [44]. (c) Learned graph models for a specific object (faces) [226].

graph model for a target object (e.g., the bird in Fig. 6.1a) to match?

To tackle this issue, two groups of methods have been proposed. In the first group, people

have addressed the problem of learning a set of parameters that characterize similarity functions

using a training set, such that the estimated optimal match on a test pair of graphs agrees with the

best match. For instance, it has been shown that a better objective function for graph matching

can be learned in either supervised [37] or unsupervised [116] manner. The other group of

research aimed at learning a graph model instead of a better matching function. As shown in

Fig. 6.1a-b, Cho et al. [44] proposed an effective scheme to parameterize a graph model, and

learned its structure and parameters for visual object category matching. In a recent work [226],

we have shown how we can learn a better graph model for matching a more specific object: faces.

In this work, the local graph structure of each facial landmark is represented by a set of weights

of other landmarks (Fig. 6.1c).

In the future, we will attempt to learn more sparse representations of graphs to balance be-

tween the matching performance and the complexity of graph. We hope this will lead us to more

efficient construction of graph structure for a target class.

6.3 Fine-grained recognition

Fine-grained recognition concerns recognizing subordinate object classes, such as distinguishing

different breeds of dogs [100, 122], species of birds [194], models of cars [106]. These tasks

105

(a) (b)

Northern FlickerRed Bellied Woodpecker Beagle Basset Hound

Figure 6.2: Examples of similar species for fine-grained recognition. (a) Two species of

birds [194]. (b) Two species of dogs [122].

yield a great deal of information for a human user and can thus add tremendous value to society.

Fine-grained recognition is challenging because fine grained labels are much harder to acquire.

In addition, there are much fewer discriminative features compared to categorization at the basic

level. Distinguishing a bird from a hand-grove is easy because there are plenty of helpful visual

cues. As shown in Fig. 6.2, however, the difference between two species of woodpeckers (e.g.,

Northern Flicker and Red Bel-lied Woodpecker) or dogs (e.g., Beagle and Basset Hound) can be

very subtle and only a few key features matter.

To tackle the challenge of feature selection, current methods can be divided into two groups:

(1) One approach is applying specialized domain knowledge. For instance, Kumar et al. [107]

built LeafSnap, a visual recognition system for automatic plant species identification. This ap-

proach yield great success, but demands from the researcher a deep understanding of the specific

domain. (2) Another direction is including the crowd in the loop by having humans either label or

propose parts and attributes. For instance, Farrell et al. [67] used poselets [23] as a part localiza-

tion scheme for fine-grained categorization tasks. Zhang et al. [217, 218] proposed deformable

part descriptors, using DPM part boxes as the building block for pose-normalized representations

for fine-grained categorization task. More recently, Deng et al. [55] introduced Bubbles, a online

game reveals discriminative features humans use. These approaches can potentially reduce the

burden of domain specific engineering.

Following the previous work, one of my future direction is to introduce graph matching for

106

improving the performance in fine-grained object recognition. To distinguish the subtle dif-

ferences between similar objects, we need to design more expressive spatial models than the

traditional bags of features [177] and their variants [111]. Tree-based spatial models such as pic-

torial structure [68, 69, 209] have been proved to be very effective in different domains including

human pose estimation. However, the tree-like structures are sometimes insufficient to express

the subtle variance of object shapes and poses. In the future, I plan to explore an efficient and

effective graph matching method to capture the detailed structural difference and help improving

the performance and accuracy in fine-grained object recognition.

107

108

Bibliography

[1] CMU/VASC Image Database. http://vasc.ri.cmu.edu//idb/html/motion/house/index.html.

[2] Car and motorbike image database.

[3] J. Aach and G. M. Church. Aligning gene expression time series with time warping algo-

rithms. Bioinformatics, 17(6):495–508, 2001.

[4] A. Agarwal and B. Triggs. Recovering 3d human pose from monocular images. IEEE

Trans. Pattern Analysis and Machine Intelligence, 28(1):44–58, 2006.

[5] J. K. Aggarwal and M. S. Ryoo. Human activity analysis: A review. ACM Computer

Survey, 43(3):16, 2011.

[6] I. Akhter, Y. Sheikh, S. Khan, and T. Kanade. Trajectory space: A dual representation for

nonrigid structure from motion. IEEE Trans. Pattern Analysis and Machine Intelligence,

33(7):1442–1456, 2011.

[7] I. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh. Bilinear spatiotemporal basis

models. ACM Trans. Graphics, 31(2):17, 2012.

[8] E. L. Allgower and K. Georg. Introduction to Numerical Continuation Methods. SIAM,

2003.

[9] H. A. Almohamad and S. O. Duffuaa. A linear programming approach for the weighted

graph matching problem. IEEE Trans. Pattern Analysis and Machine Intelligence, 15(5):

522–525, 1993.

[10] T. W. Anderson. An introduction to multivariate statistical analysis. Wiley-Interscience,

2003.

109

[11] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and people-

detection-by-tracking. In Proc. IEEE Conf. Computer Vision and Pattern Recognition,

2008.

[12] M. Andriluka, S. Roth, and B. Schiele. Monocular 3d pose estimation and tracking by

detection. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2010.

[13] M. Andriluka, S. Roth, and B. Schiele. Discriminative appearance models for pictorial

structures. Int’l J. Computer Vision, 99(3):259–280, 2012.

[14] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database and

evaluation methodology for optical flow. Int’l J. Computer Vision, 92(1):1–31, 2011.

[15] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. PatchMatch: a random-

ized correspondence algorithm for structural image editing. ACM Trans. Graphics, 28(3),

2009.

[16] M. S. Bartlett, G. C. Littlewort, M. G. Frank, C. Lainscsek, I. Fasel, and J. R. Movellan.

Automatic recognition of facial actions in spontaneous expressions. J. Multimedia, 1(6):

22–35, 2006.

[17] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape

contexts. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(4):509–522, 2002.

[18] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low dis-

tortion correspondences. In Proc. IEEE Conf. Computer Vision and Pattern Recognition,

2005.

[19] D. P. Bertsekas. Dynamic programming and optimal control. Athena Scientific, 1995.

[20] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[21] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Trans. Pattern

Analysis and Machine Intelligence, 14(2):239–256, 1992.

[22] O. Boiman and M. Irani. Detecting irregularities in images and in video. Int’l J. Computer

Vision, 74(1):17–31, 2007.

[23] L. D. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose

110

annotations. In Proc. IEEE Int’l Conf. Computer Vision, 2009.

[24] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow al-

gorithms for energy minimization in vision. IEEE Trans. Pattern Analysis and Machine

Intelligence, 26(9):1124–1137, 2004.

[25] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph

cuts. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001.

[26] M. Brand and A. Hertzmann. Style machines. In ACM SIGGRAPH, pages 183–192, 2000.

[27] C. Bregler and J. Malik. Tracking people with twists and exponential maps. In Proc. IEEE

Conf. Computer Vision and Pattern Recognition, 1998.

[28] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3d shape from image

streams. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2000.

[29] W. Brendel and S. Todorovic. Learning spatiotemporal graphs of human activities. In

Proc. IEEE Int’l Conf. Computer Vision, 2011.

[30] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Numerical geometry of non-rigid

shapes. Springer, 2008.

[31] A. Bruderlin and L. Williams. Motion signal processing. In ACM SIGGRAPH, pages

97–104, 1995.

[32] H. Bunke. Graph matching: Theoretical foundations, algorithms, and applications. In

Proc. Int’l Conf. Vision Interface, 2000.

[33] X. Burgos, D. Hall, P. Perona, and P. Dollár. Merging pose estimates across space and

time. In Proc. British Machine Vision Conference, 2013.

[34] R. Burkard, M. DellAmico, and S. Martello. Assignment Problems. SIAM, 2009.

[35] T. Caelli and S. Kosinov. An eigenspace projection clustering method for inexact graph

matching. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(4):515–519, 2004.

[36] T. S. Caetano, T. Caelli, D. Schuurmans, and D. Augusto. Graphical models and point

pattern matching. IEEE Trans. Pattern Analysis and Machine Intelligence, 28(10):1646–

1663, 2006.

111

[37] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola. Learning graph

matching. IEEE Trans. Pattern Analysis and Machine Intelligence, 31(6):1048–1058,

2009.

[38] B. Caputo and L. Jie. A performance evaluation of exact and approximate match kernels

for object recognition. Electronic Letters on Computer Vision and Image Analysis, 8(3):

15–26, 2009.

[39] Carnegie Mellon University Motion Capture Database. http://mocap.cs.cmu.edu.

[40] Y. Caspi and M. Irani. Aligning non-overlapping sequences. Int’l J. Computer Vision, 48

(1):39–51, 2002.

[41] M. Chertok and Y. Keller. Efficient high order matching. IEEE Trans. Pattern Analysis

and Machine Intelligence, 32(12):2205–2215, 2010.

[42] M. Cho and K. M. Lee. Progressive graph matching: Making a move of graphs via

probabilistic voting. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2012.

[43] M. Cho, J. Lee, and K. M. Lee. Reweighted random walks for graph matching. In Proc.

European Conf. Computer Vision, 2010.

[44] M. Cho, K. Alahari, and J. Ponce. Learning graphs to match. In Proc. IEEE Int’l Conf.

Computer Vision, 2013.

[45] Selina Chu, Eamonn Keogh, David Hart, and Michael Pazzani. Iterative deepening dy-

namic time warping for time series. In Proc. SIAM Int’l Conf. Data Mining, 2002.

[46] W.-S. Chu, F. Zhou, and F. De la Torre. Unsupervised temporal commonality discovery.

In Proc. European Conf. Computer Vision, 2012.

[47] H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid registration.

Computer Vision and Image Understanding, 89(2-3):114–141, 2003.

[48] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pattern

recognition. Int’l J. Pattern Recognition and Artificial Intelligence, 18(3):265–298, 2004.

[49] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algorithm

for matching large graphs. IEEE Trans. Pattern Analysis and Machine Intelligence, 26

112

(10):1367–1372, 2004.

[50] T. Cour and J. Shi. Solving Markov random fields with spectral relaxation. In Proc. Int’l

Conf. Artificial Intelligence and Statistics, 2007.

[51] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. In Proc. Neural Information

Processing Systems, 2006.

[52] A. D. J. Cross and E. R. Hancock. Graph matching with a dual-step EM algorithm. IEEE

Trans. Pattern Analysis and Machine Intelligence, 20(11):1236–1253, 1998.

[53] F. De la Torre. A least-squares framework for component analysis. IEEE Trans. Pattern

Analysis and Machine Intelligence, 34(6):1041–1055, 2012.

[54] F. De la Torre, J. K. Hodgins, J. Montano, and S. Valcarcel. Detailed human data ac-

quisition of kitchen activities: the CMU-multimodal activity database (CMU-MMAC).

Technical Report RI-TR-08-22, CMU, 2009.

[55] J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for fine-grained recogni-

tion. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013.

[56] J. Deutscher and I. D. Reid. Articulated body motion capture by stochastic search. Int’l J.

Computer Vision, 61(2):185–205, 2005.

[57] J. Deutscher, A. Blake, and I. D. Reid. Articulated body motion capture by annealed

particle filtering. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2000.

[58] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-

temporal features. In ICCV VS-PETS, 2005.

[59] I. L. Dryden and K. V. Mardia. Statistical shape analysis. Wiley, 1998.

[60] O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce. A tensor-based algorithm for high-

order graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence, 33(12):

2383–2395, 2011.

[61] O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for object categorization.

In Proc. IEEE Int’l Conf. Computer Vision, 2011.

[62] A. Egozi, Y. Keller, and H. Guterman. A probabilistic approach to spectral graph match-

113

ing. IEEE Trans. Pattern Analysis and Machine Intelligence, 35(1):18–27, 2013.

[63] M. Eichner, M. Jesús, A. Zisserman, and V. Ferrari. 2d articulated human pose estimation

and retrieval in (almost) unconstrained still images. Int’l J. Computer Vision, 99(2):190–

214, 2012.

[64] A. Elad and R. Kimmel. On bending invariant signatures for surfaces. IEEE Trans. Pattern

Analysis and Machine Intelligence, 25(10):1285–1295, 2003.

[65] A. M. Elgammal and C.-S. Lee. Inferring 3d body pose from silhouettes using activity

manifold learning. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2004.

[66] G. Farnebäck. Two-frame motion estimation based on polynomial expansion. In SCIA,

2003.

[67] R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S. Davis. Birdlets: Sub-

ordinate categorization using volumetric primitives and pose-normalized appearance. In

Proc. IEEE Int’l Conf. Computer Vision, 2011.

[68] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. Int’l

J. Computer Vision, 61(1):55–79, 2005.

[69] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan. Object detec-

tion with discriminatively trained part-based models. IEEE Trans. Pattern Analysis and

Machine Intelligence, 32(9):1627–1645, 2010.

[70] B. Fischer, V. Roth, and J. Buhmann. Time-series alignment by non-negative multiple

generalized canonical correlation analysis. BMC Bioinformatics, 8(10), 2007.

[71] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting

with applications to image analysis and automated cartography. Communications of ACM,

24(6):381–395, 1981.

[72] A. W. Fitzgibbon. Robust registration of 2d and 3d point sets. Image Vision Computing,

21(13-14):1145–1153, 2003.

[73] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logis-

tics Quarterly, 3(1-2):95–110, 1956.

114

[74] M. Fukushima. A modified Frank-Wolfe algorithm for solving the traffic assignment prob-

lem. Transp. Res. Part B: Methodological, 18(2):169–177, 1984.

[75] U. Gaur, Y. Zhu, B. Song, and A. Roy-Chowdhury. A “string of feature graphs model” for

recognition of complex activities in natural videos. In Proc. IEEE Int’l Conf. Computer

Vision, 2011.

[76] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–

1145, 1995.

[77] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE

Trans. Pattern Analysis and Machine Intelligence, 18(4):377–388, 1996.

[78] D. Gong and G. G. Medioni. Dynamic manifold warping for view invariant action recog-

nition. In Proc. IEEE Int’l Conf. Computer Vision, 2011.

[79] L. Gorelick, M. Galun, E. Sharon, R. Basri, and A. Brandt. Shape representation and

classification using the Poisson equation. IEEE Trans. Pattern Analysis and Machine

Intelligence, 28(12):1991–2005, 2006.

[80] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as space-time

shapes. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(12):2247–2253, 2007.

[81] J. C. Gower and G. B. Dijksterhuis. Procrustes problems. Oxford University Press, 2004.

[82] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Compu-

tational Biology. Cambridge University Press, 1997.

[83] J. Ham, D. Lee, and L. Saul. Semisupervised alignment of manifolds. In Proc. Int’l Conf.

Artificial Intelligence and Statistics, 2005.

[84] M. A. Hasan. On multi-set canonical correlation analysis. In Proc. Int’l Joint Conf. Neural

Networks, 2009.

[85] J. Hays, M. Leordeanu, A. A. Efros, and Y. Liu. Discovering texture regularity as a higher-

order correspondence problem. In Proc. European Conf. Computer Vision, 2006.

[86] A. Heloir, N. Courty, S. Gibet, and F. Multon. Temporal alignment of communicative

115

gesture sequences. J. Visualization and Computer Animation, 17(3-4):347–357, 2006.

[87] R. Horst and P. M. Pardalos. Handbook of Global Optimization. Kluwer, 1995.

[88] E. Hsu, K. Pulli, and J. Popovic. Style translation for human motion. ACM Trans. Graph-

ics, 24(3), 2005.

[89] D. Huang, Y. Wang, S. Yao, and F. De la Torre. Sequential max-margin event detectors.

In Proc. European Conf. Computer Vision, 2014.

[90] C. Ionescu, F. Li, and C. Sminchisescu. Latent structured models for human pose estima-

tion. In Proc. IEEE Int’l Conf. Computer Vision, 2011.

[91] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6M: Large scale datasets

and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pat-

tern Analysis and Machine Intelligence, 2014.

[92] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proc.

Int’l Conf. Machine Learning, 2013.

[93] H. Jiang and D. R. Martin. Finding actions using shape flows. In Proc. European Conf.

Computer Vision, 2008.

[94] H. Jiang, M. S. Drew, and Z.-N. Li. Matching by linear programming and successive

convexification. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(6):959–975,

2007.

[95] Hao Jiang, Stella X. Yu, and David R. Martin. Linear scale and rotation invariant match-

ing. IEEE Trans. Pattern Analysis and Machine Intelligence, 33(7):1339–1355, 2011.

[96] S. X. Ju, M. J. Black, and Y. Yacoob. Cardboard people: A parameterized model of artic-

ulated image motion. In Proc. IEEE Int’l Conf. Automatic Face and Gesture Recognition,

1996.

[97] I. N. Junejo, E. Dexter, I. Laptev, and P. Pérez. View-independent action recognition from

temporal self-similarities. IEEE Trans. Pattern Analysis and Machine Intelligence, 33(1):

172–185, 2011.

[98] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim,

116

B. X. Kausler, J Lellmann, N. Komodakis, and C. Rother. A comparative study of modern

inference techniques for discrete energy minimization problems. In Proc. IEEE Conf.

Computer Vision and Pattern Recognition, 2013.

[99] E. J. Keogh and M. J. Pazzani. Derivative dynamic time warping. In Proc. SIAM Int’l

Conf. Data Mining, 2001.

[100] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei. Novel dataset for fine-grained

image categorization. In CVPR Workshop on Fine-Grained Visual Categorization, 2011.

[101] T. K. Kim and R. Cipolla. Canonical correlation analysis of video volume tensors for ac-

tion categorization and detection. IEEE Trans. Pattern Analysis and Machine Intelligence,

31:1415–1428, 2009.

[102] V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization.

IEEE Trans. Pattern Analysis and Machine Intelligence, 28(10):1568–1583, 2006.

[103] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts?

IEEE Trans. Pattern Analysis and Machine Intelligence, 26(2):147–159, 2004.

[104] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond via

dual decomposition. IEEE Trans. Pattern Analysis and Machine Intelligence, 33(3):531–

552, 2011.

[105] T. C. Koopmans and M. Beckmann. Assignment problems and the location of economic

activities. Econometrica, 25(1):53–76, 1957.

[106] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained

categorization. In ICCV Workshop on 3D Representation and Recognition, 2013.

[107] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. John, I. C. Lopez, and J. V. B.

Soares. LeafSnap: A computer vision system for automatic plant species identification.

In Proc. European Conf. Computer Vision, 2012.

[108] I. Laptev. On space-time interest points. Int’l J. Computer Vision, 64(2-3):107–123, 2005.

[109] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions

from movies. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2008.

117

[110] E. L. Lawler. The quadratic assignment problem. Management Science, 9(4):586–599,

1963.

[111] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching

for recognizing natural scene categories. In Proc. IEEE Conf. Computer Vision and Pattern

Recognition, 2006.

[112] M. Leordeanu and M. Hebert. A spectral technique for correspondence problems using

pairwise constraints. In Proc. IEEE Int’l Conf. Computer Vision, 2005.

[113] M. Leordeanu and M. Hebert. Efficient MAP approximation for dense energy functions.

In Proc. Int’l Conf. Machine Learning, 2006.

[114] M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local appearance: Category recog-

nition from pairwise interactions of simple features. In Proc. IEEE Conf. Computer Vision

and Pattern Recognition, 2007.

[115] M. Leordeanu, M. Hebert, and R. Sukthankar. An integer projected fixed point method

for graph matching and MAP inference. In Proc. Neural Information Processing Systems,

2009.

[116] M. Leordeanu, R. Sukthankar, and M. Hebert. Unsupervised learning for graph matching.

Int’l J. Computer Vision, 95(1):1–18, 2011.

[117] H. Li, E. Kim, X. Huang, and L. He. Object matching with a locally affine-invariant

constraint. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2010.

[118] Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier method for exact recov-

ery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.

[119] J. Listgarten, R. M. Neal, S. T. Roweis, and A. Emili. Multiple alignment of continuous

time series. In Proc. Neural Information Processing Systems, 2005.

[120] C. Liu, J. Yuen, and A. Torralba. SIFT flow: Dense correspondence across scenes and

its applications. IEEE Trans. Pattern Analysis and Machine Intelligence, 33(5):978–994,

2011.

[121] J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from videos in the wild. In

118

Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009.

[122] J. Liu, A. Kanazawa, D. W. Jacobs, and P. N. Belhumeur. Dog breed classification using

part localization. In Proc. European Conf. Computer Vision, 2012.

[123] Z. Liu, H. Qiao, and L. Xu. An extended path following algorithm for graph-matching

problem. IEEE Trans. Pattern Analysis and Machine Intelligence, 34(7):1451–1456, 2012.

[124] E. M. Loiola, N. M. De Abreu, P. O. Boaventura, P. Hahn, and T. M. Querido. A survey

for the quadratic assignment problem. Eur. J. Oper. Res., 176(2):657–690, 2007.

[125] C. C. Loy, T. Xiang, and S. Gong. Time-delayed correlation analysis for multi-camera

activity understanding. Int’l J. Computer Vision, 90(1):106–129, 2010.

[126] B. Lucas and T. Kanade. An iterative image registration technique with an application to

stereo vision. In Proc. Int’l Joint Conf. Artificial Intelligence, 1981.

[127] B. Luo and E. R. Hancock. A unified framework for alignment and correspondence.

Computer Vision and Image Understanding, 92(1):26–55, 2003.

[128] J. Maciel and J. Costeira. A global solution to sparse correspondence problems. IEEE

Trans. Pattern Analysis and Machine Intelligence, 25(2):187–199, 2003.

[129] D. Mateus, R. Horaud, D. Knossow, F. Cuzzolin, and E. Boyer. Articulated shape match-

ing using Laplacian eigenfunctions and unsupervised point registration. In Proc. IEEE

Conf. Computer Vision and Pattern Recognition, 2008.

[130] P. Matikainen, M. Hebert, and R. Sukthankar. Trajectons: Action recognition through the

motion analysis of tracked features. In ICCVW, 2009.

[131] I. Matthews and S. Baker. Active appearance models revisited. Int’l J. Computer Vision,

60(2):135–164, 2004.

[132] C. R. Maurer, R. Qi, and V. V. Raghavan. A linear time algorithm for computing exact

Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans.

Pattern Analysis and Machine Intelligence, 25(2):265–270, 2003.

[133] R. Messing, C. J. Pal, and H. A. Kautz. Activity recognition using the velocity histories

of tracked keypoints. In Proc. IEEE Int’l Conf. Computer Vision, 2009.

119

[134] Mosek. http://www.mosek.com/.

[135] A. Myronenko and X. B. Song. Point set registration: Coherent point drift. IEEE Trans.

Pattern Analysis and Machine Intelligence, 32(12):2262–2275, 2010.

[136] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm.

In Proc. Neural Information Processing Systems, pages 849–856, 2001.

[137] K. M. Ng. A continuation approach for solving nonlinear optimization problems with

discrete variables. PhD thesis, Stanford University, 2002.

[138] M. A. Nicolaou, V. Pavlovic, and M. Pantic. Dynamic probabilistic CCA for analysis of

affective behavior and fusion of continuous annotations. IEEE Trans. Pattern Analysis

and Machine Intelligence, 36(7):1299–1311, 2014.

[139] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories

using spatial-temporal words. Int’l J. Computer Vision, 79(3):299–318, 2008.

[140] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy. Berkeley MHAD: A comprehen-

sive multimodal human action database. In IEEE Workshop on Applications on Computer

Vision (WACV), pages 53–60, 2013.

[141] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: bringing

order to the web. Technical report, Stanford, 1998.

[142] W. Pan and L. Torresani. Unsupervised hierarchical modeling of locomotion styles. In

Proc. Int’l Conf. Machine Learning, 2009.

[143] D. Park and D. Ramanan. N-best maximal decoders for part models. In Proc. IEEE Int’l

Conf. Computer Vision, 2011.

[144] M. Pelillo. Replicator equations, maximal cliques, and graph isomorphism. Neural Com-

putation, 11(8):1933–1955, 1999.

[145] ILOG CPLEX: High performance software for mathematical programming and optimiza-

tion. http://www.ilog.com/products/cplex/.

[146] H. Pirsiavash and D. Ramanan. Steerable part models. In Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 2012.

120

[147] N. Quadrianto, A. J. Smola, L. Song, and T. Tuytelaars. Kernelized sorting. IEEE Trans.

Pattern Analysis and Machine Intelligence, 32(10):1809–1821, 2010.

[148] L. Rabiner and B. Juang. Fundamentals of speech recognition. Prentice Hall, 1993.

[149] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista, M. Brandon West-

over, Q. Zhu, J. Zakaria, and E. J. Keogh. Searching and mining trillions of time series

subsequences under dynamic time warping. In Proc. ACM Conf. Knowledge Discovery

and Data Mining, 2012.

[150] J. O. Ramsay. Estimating smooth monotone functions. J. Royal Statistical Society: Series

B Statistical Methodology, 60, 1998.

[151] J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer, 2nd edition,

2005.

[152] A. Rangarajan, H. Chui, and F. L. Bookstein. The softassign Procrustes matching algo-

rithm. In IPMI, 1997.

[153] C. Rao, A. Gritai, M. Shah, and T. Fathima. View-invariant alignment and matching of

video sequences. In Proc. IEEE Int’l Conf. Computer Vision, 2003.

[154] T. Rapcsák. On minimization on Stiefel manifolds. European J. Operational Research,

143(2):365–376, 2002.

[155] P. D. Ravikumar and J. D. Lafferty. Quadratic programming relaxations for metric labeling

and Markov random field MAP estimation. In Proc. Int’l Conf. Machine Learning, 2006.

[156] T. Robertson, F. T. Wright, and R. L. Dykstra. Order restricted statistical inference. Wiley,

1988.

[157] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1996.

[158] M. D. Rodriguez, J. Ahmed, and M. Shah. Action mach: a spatio-temporal maximum

average correlation height filter for action recognition. In Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 2008.

[159] K. Rohr. Incremental recognition of pedestrians from image sequences. In Proc. IEEE

Conf. Computer Vision and Pattern Recognition, 1993.

121

[160] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Proc. Int’l Conf.

3D Vision, 2001.

[161] S. Salvador and P. Chan. Toward accurate dynamic time warping in linear time and space.

Intelligent Data Analysis, 11(5):561–580, 2007.

[162] B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation. In

Proc. European Conf. Computer Vision, 2010.

[163] B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with stretchable models. In

Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2011.

[164] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. Int’l J. Computer Vision, 47(1-3):7–42, 2002.

[165] C. Schellewald and C. Schnörr. Probabilistic subgraph matching based on convex relax-

ation. In EMMCVPR, 2005.

[166] C. Schellewald, S. Roth, and C. Schnörr. Evaluation of convex optimization techniques for

the weighted graph-matching problem in computer vision. In DAGM-Symposium, 2001.

[167] G. Scott and H. Longuet-Higgins. An algorithm for associating the features of two images.

Biological Sciences, 244(1309):21–26, 1991.

[168] T. B. Sebastian, P. N. Klein, and B. B. Kimia. On aligning curves. IEEE Trans. Pattern

Analysis and Machine Intelligence, 25(1):116–125, 2003.

[169] A. Shapiro, Y. Cao, and P. Faloutsos. Style components. In Proc. Graphics Interface,

pages 33–39, 2006.

[170] L. S. Shapiro and M. Brady. Feature-based correspondence: an eigenvector approach.

Image Vision Computing, 10(5):283–288, 1992.

[171] S. Shariat and V. Pavlovic. Isotonic CCA for sequence alignment and activity recognition.

In Proc. IEEE Int’l Conf. Computer Vision, 2011.

[172] J. Shotton, R. B. Girshick, A. W. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore,

P. Kohli, A. Criminisi, A. Kipman, and A. Blake. Efficient human pose estimation from

single depth images. IEEE Trans. Pattern Analysis and Machine Intelligence, 35(12):

122

2821–2840, 2013.

[173] H. Sidenbladh, M. J. Black, and D. J. Fleet. Stochastic tracking of 3d human figures using

2d image motion. In Proc. European Conf. Computer Vision, 2000.

[174] L. Sigal and M. J. Black. Predicting 3d people from 2d pictures. In AMDO, 2006.

[175] E. Simo-Serra, A. Ramisa, G. Alenyà, C. Torras, and F. Moreno-Noguer. Single image 3d

human pose estimation from noisy observations. In Proc. IEEE Conf. Computer Vision

and Pattern Recognition, 2012.

[176] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic

matrices. American Mathematical Society, 35(2):876–879, 1964.

[177] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in

videos. In Proc. IEEE Int’l Conf. Computer Vision, 2003.

[178] Y. Suh, M. Cho, and K. M. Lee. Graph matching via sequential Monte Carlo. In Proc.

European Conf. Computer Vision, 2012.

[179] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. F.

Tappen, and C. Rother. A comparative study of energy minimization methods for Markov

random fields with smoothness-based priors. IEEE Trans. Pattern Analysis and Machine

Intelligence, 30(6):1068–1080, 2008.

[180] Y. Tian, J. Yan, H. Zhang, Y. Zhang, X. Yang, and H. Zha. On the convergence of graph

matching: Graduated assignment revisited. In Proc. European Conf. Computer Vision,

2012.

[181] P. Tormene, T. Giorgino, S. Quaglini, and M. Stefanelli. Matching incomplete time series

with dynamic time warping: an algorithm and an application to post-stroke rehabilitation.

Artificial Intelligence in Medicine, 45(1), 2009.

[182] P. H. S. Torr. Geometric motion segmentation and model selection. Phil. Trans. Royal

Society of London A, 356:1321–1340, 1998.

[183] P. H. S. Torr. Solving Markov random fields using semidefinite programming. In Proc.

Int’l Conf. Artificial Intelligence and Statistics, 2003.

123

[184] L. Torresani, V. Kolmogorov, and C. Rother. Feature correspondence via graph matching:

Models and global optimization. In Proc. European Conf. Computer Vision, 2008.

[185] L. Torresani, V. Kolmogorov, and C. Rother. A dual decomposition approach to feature

correspondence. IEEE Trans. Pattern Analysis and Machine Intelligence, 35(2):259–271,

2013.

[186] N. Trendafilov. On the l1 Procrustes problem. Future Generation Computer Systems, 19

(7):1177–1186, 2004.

[187] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23:31–42, 1976.

[188] S. Umeyama. An eigendecomposition approach to weighted graph matching problems.

IEEE Trans. Pattern Analysis and Machine Intelligence, 10(5):695–703, 1988.

[189] R. Urtasun, D. J. Fleet, and P. Fua. 3d people tracking with Gaussian process dynamical

models. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2006.

[190] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. A survey on shape correspon-

dence. Computer Graphics Forum, 30(6):1681–1707, 2011.

[191] B. J. van Wyk and M. A. van Wyk. A POCS-based graph matching algorithm. IEEE

Trans. Pattern Analysis and Machine Intelligence, 26(11):1526–1530, 2004.

[192] A. Veeraraghavan, A. Srivastava, A. K. Roy Chowdhury, and R. Chellappa. Rate-invariant

recognition of humans and their activities. IEEE Trans. Image Processing, 18(6):1326–

1339, 2009.

[193] J. Von Neumann. A certain zero-sum two-person game equivalent to the optimal assign-

ment problem. Contributions to the Theory of Games, 2:5–12, 1953.

[194] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD birds-

200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technol-

ogy, 2011.

[195] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. MAP estimation via agreement on

trees: message-passing and linear programming. IEEE Trans. Information Theory, 51

(11):3697–3717, 2005.

124

[196] C. Wang and S. Mahadevan. Manifold alignment using Procrustes analysis. In Proc. Int’l

Conf. Machine Learning, 2008.

[197] H. Wang, M. Ullah, A. Kläser, I. Laptev, and C. Schmid. Evaluation of local spatio-

temporal features for action recognition. In Proc. British Machine Vision Conference,

2009.

[198] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary

descriptors for action recognition. Int’l J. Computer Vision, 103(1):60–79, 2013.

[199] J. Wang and Y. Wu. Learning maximum margin temporal warping for action recognition.

In Proc. IEEE Int’l Conf. Computer Vision, 2013.

[200] O. Wang, C. Schroers, H. Zimmer, M. H. Gross, and A. Sorkine-Hornung. Videosnapping:

interactive synchronization of multiple videos. ACM Trans. Graphics, 33(4):77, 2014.

[201] X. K. Wei and J. Chai. VideoMocap: modeling physically realistic human motion from

monocular video sequences. ACM Trans. Graphics, 29(4), 2010.

[202] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: Large displacement

optical flow with deep matching. In Proc. IEEE Int’l Conf. Computer Vision, 2013.

[203] Y. Weiss and J. Pearl. Belief propagation: technical perspective. Communications of ACM,

53(10):94, 2010.

[204] T. Werner. A linear programming approach to max-sum problem: A review. IEEE Trans.

Pattern Analysis and Machine Intelligence, 29(7):1165–1179, 2007.

[205] J. M. Winters and Y. Wang. Wearable sensors and telerehabilitation. IEEE Engineering

in Medicine and Biology Magazine, 22(3):56–65, 2003.

[206] I. W. Wright and E. J. Wegman. Isotonic, convex and related splines. Annals of Statistics,

pages 1023–1035, 1980.

[207] B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by

Bayesian combination of edgelet based part detectors. Int’l J. Computer Vision, 75(2):

247–266, 2007.

[208] Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In

125

Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2011.

[209] Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts.

IEEE Trans. Pattern Analysis and Machine Intelligence, 35(12):2878–2890, 2013.

[210] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief propa-

gation - an empirical study. J. Machine Learning Research, 7:1887–1907, 2006.

[211] A. Yao, Juergen Gall, and L. J. Van Gool. Coupled action recognition and pose estimation

from multiple views. Int’l J. Computer Vision, 100(1):16–37, 2012.

[212] T.-H. Yu, T.-K. Kim, and R. Cipolla. Unconstrained monocular 3d human pose estimation

by action detection and cross-modality regression forest. In Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 2013.

[213] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15

(4):915–936, 2003.

[214] M. Zaslavskiy, F. R. Bach, and J.-P. Vert. A path following algorithm for the graph match-

ing problem. IEEE Trans. Pattern Analysis and Machine Intelligence, 31(12):2227–2242,

2009.

[215] M. Zaslavskiy, F. R. Bach, and J.-P. Vert. Global alignment of protein-protein interaction

networks by graph matching methods. Bioinformatics, 25(12):1259–1267, 2009.

[216] R. Zass and A. Shashua. Probabilistic graph and hypergraph matching. In Proc. IEEE

Conf. Computer Vision and Pattern Recognition, 2008.

[217] N. Zhang, R. Farrell, F. N. Iandola, and T. Darrell. Deformable part descriptors for fine-

grained recognition and attribute prediction. In Proc. IEEE Int’l Conf. Computer Vision,

2013.

[218] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. D. Bourdev. PANDA: Pose aligned

networks for deep attribute modeling. In Proc. IEEE Conf. Computer Vision and Pattern

Recognition, 2014.

[219] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces. Int’l

J. Computer Vision, 13(2):119–152, 1994.

126

[220] Y. Zheng and D. S. Doermann. Robust point matching for nonrigid shapes by preserving

local neighborhood structures. IEEE Trans. Pattern Analysis and Machine Intelligence,

28(4):643–649, 2006.

[221] F. Zhou and F. De la Torre. Canonical time warping for alignment of human behavior. In

Proc. Neural Information Processing Systems, 2009.

[222] F. Zhou and F. De la Torre. Factorized graph matching. In Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 2012.

[223] F. Zhou and F. De la Torre. Generalized time warping for alignment of human motion. In

Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2012.

[224] F. Zhou and F. De la Torre. Deformable graph matching. In Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 2013.

[225] F. Zhou and F. De la Torre. Spatio-temporal matching for human detection in video. In

Proc. European Conf. Computer Vision, 2014.

[226] F. Zhou, J. Brandt, and Z. Lin. Exemplar-based graph matching for robust facial landmark

localization. In Proc. IEEE Int’l Conf. Computer Vision, 2013.

[227] F. Zhou, F. De la Torre, and J. K. Hodgins. Hierarchical aligned cluster analysis for tempo-

ral clustering of human motion. IEEE Trans. Pattern Analysis and Machine Intelligence,

35(3):582–596, 2013.

[228] X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in

the wild. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2012.

[229] B. Zitová and J. Flusser. Image registration methods: a survey. Image Vision Computing,

21(11):977–1000, 2003.

127

	1 Introduction
	1.1 Challenges
	1.2 Our contributions
	1.3 Organization

	2 Spatial Matching
	2.1 Introduction
	2.2 Previous work on graph matching
	2.3 Previous work on ICP
	2.4 Factorized graph matching (FGM)
	2.5 A unified framework for graph matching
	2.6 A path-following algorithm
	2.7 Deformable graph matching (DGM)
	2.8 Experiments
	2.9 Conclusions

	3 Temporal Matching
	3.1 Introduction
	3.2 Previous work
	3.3 Canonical time warping (CTW)
	3.4 Generalized canonical time warping (GCTW)
	3.5 Experiments
	3.6 Conclusions

	4 Spatio-temporal Matching
	4.1 Introduction
	4.2 Related work
	4.3 Trajectory-based video representation
	4.4 Learning spatio-temporal bilinear bases
	4.5 Spatio-temporal matching (STM)
	4.6 Experiments
	4.7 Conclusion

	5 Conclusion
	5.1 Spatial matching
	5.2 Temporal matching
	5.3 Spatio-temporal matching

	6 Future work
	6.1 Dense correspondence
	6.2 Learning for matching
	6.3 Fine-grained recognition

	Bibliography

