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Abstract
A large scale mobile Cyber Physical System (CPS), which consists

of a large number of mobile devices interacting with each other and the
physical environment, is an integrated system of computation, networking
and physical processes. In recent years, CPSs have gradually transformed
how people interact with and control the physical world in many domains:
agriculture, transportation, health-care, manufacturing, energy, defense,
aerospace, buildings, etc.

A large scale mobile CPS understands the physical world by sensing
data to estimate the status of physical fields. This thesis focuses on two
major tasks of large scale mobile CPSs: field estimation and route
planning. The task of field estimation is to use sensing data of physical
fields to estimate two statuses: 1) physical field: a physical quantity,
represented by a number or tensor, that has a value for each point in
space and time, such as air pollution, temperature, moisture, noise, traffic,
etc; 2) system status: the conditions of the system’s mobile devices such
as location, mobility, sensing accuracy, etc. The task of route planning is
to design the routes for mobile devices in the system for data collection,
which guarantees field estimation to achieve application specific accuracy.

However, the real system faces two main challenges: lacking dense
coverage and lacking even distribution of data collection. A dense
coverage requires that the percentage of the overall space and time period
being sensed by the mobile devices in the system should exceed a minimum
number. An even distribution requires the information entropy of data
distribution over space and time should exceed a minimum number.
To improve the coverage and evenness of the data distribution, route
planning designs routes for mobile devices to make sure that they sense
data at designated locations and times. Since route planning relies on field
estimation, especially system status estimation (e.g. locations of mobile
devices), inaccuracy from field estimation deteriorates route planning
performance. In addition, many real-world systems are semi-controllable.
Only a fraction of total mobile devices follow the suggested routes from
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the system. This leads to two challenging problems: how to select mobile
devices for route planning and how to design routes for the selected
mobile devices.

The thesis presents a spatiotemporal relationship aided framework
for large scale mobile CPSs, which incorporates a new spatiotemporal
relationship analysis layer to address the challenges of lacking dense
coverage and lacking even distribution of data collection. By utilizing
the spatiotemporal relationships of physical field and system status in
the spatiotemporal relationship analysis layer , which are discussed in
Section 2, models and algorithms are designed to improve the performance
of major system tasks: field estimation (physical field and system status)
and route planning.

I deploy real testbed experiments and extensive simulations with
real world collected data to validate the system design. As a part of the
evaluation for uncontrolled to controlled motion aspects of our system, air
pollution sensors are deployed on the taxi-based testbed to collect data in
the city of Shenzhen for 2 years in collaboration with Tsinghua University.
In addition, a swarm of 8 micro aerial vehicles are deployed in an indoor
environment for autonomous navigation. The results show incorporating
the spatiotemporal relationship analysis layer can achieve 2.1× and 6×
error reduction on physical field and system status estimation and 3×
improvement on route planning. This illustrates the potential of the
spatiotemporal relationship analysis layer to improve the performance of
field estimation and route planning in large scale mobile CPSs.
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Chapter 1

Introduction

1.1 Large Scale Mobile Cyber Physical System

Cyber physical systems(CPSs) are smart systems that integrate the capabilities of
computation, communication, sensing and actuation. The embedded computers
in CPSs utilize these capabilities to monitor and control the physical world, while
the feedback from the physical world adversely affects the computation of CPSs [2].
In recent years, CPSs have gradually transformed how people interact with and
control the physical world in many critical areas, such as emergency response, city
management, smart manufacturing, defense and homeland security, aerospace, energy
supply and use, etc [3, 4]. The research of CPSs has aroused significant attention
all over the world. According to the President’s Committee of Advisors on Science
and Technology (PCAST), CPSs have been called a national research priority of the
United States [5]. By implementing CPSs to achieve just a one percent improvement
in efficiency, large amounts of cost can be saved: $30 billion in aviation sector fuel
costs, $66 billion in power generation, $63 billion in health care and $27 billion in
freight rail costs over a 15-year period [6]. In addition, CPSs are also listed as one
of the most important research areas in European Union Horizon 2020 Program [7].
It is estimated that German manufacturing will boost its gross value by 267 billion
euros by 2025 with the integration of CPSs [8].

Large scale mobile CPSs, which consist of a large number of mobile devices
interacting with the physical world, are a prominent subcategory of CPSs. Such
systems utilize the high mobility and large number of mobile devices to collect
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Figure 1.1: This figure shows two major tasks of CPSs: field estimation and route
planning. The task of field estimation consists of physical field estimation and system
status estimation. The task of route planning relies on the outputs from field estimation.
All tasks are supported by the spatiotemporal relationship analysis layer .

information over large space and time to understand the physical world.

An effective way to understand the physical world is to estimate the status of
physical fields. I focus on using sensing systems to achieve this estimation, hence it
is important to estimate the status of the system to ensure the operation of each
mobile device for sensing. Due to the mobility of the system, designing routes of
mobile devices is a useful way to make sure that mobile devices sense at designated
locations and times.

This thesis focuses on two major tasks of large scale mobile CPSs: field esti-
mation and route planning. The task of field estimation is to use sensing data of
physical field for estimation of two statuses: 1) physical field : a physical quantity,
represented by a number or tensor, that has a value for each point in space and time,
such as air pollution, temperature, moisture, noise, traffic, etc. The thesis focuses on
physical fields that continuously change over time and space; 2) system status : the
conditions of the mobile devices, which are related to the system operation, such as
location, mobility, sensing accuracy, etc. The task of route planning is to design the
routes for mobile devices in the system for data collection, which is necessary for
field estimation to achieve application specific accuracy. Knowing the system status
and physical field gives important information for designing routes. Therefore, the
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System Status
Estimation

What App to be used?

Figure 1.2: This figure shows an example of applying a mobile phone based CPS for
understanding human interests and behaviors. This is an implementation of estimating
system status since human beings have been regarded as an important component in the
loop of CPS. The mobile phones collect data from various Apps in order to record the users’
interests.

task of route planning relies on the outputs from field estimation.
Based on the system’s controllability over the routes of mobile devices, large scale

mobile CPSs can be categorized into three types: uncontrollable, controllable
and semi-controllable. The uncontrollable system has no control over the routes
of mobile devices. No mobile devices take route suggestions from the system. In
contrast, the controllable system has full control over the routes of mobile devices.
All mobile devices exactly follow the suggested routes from the system. The semi-
controllable system has partial control over the routes of mobile devices. Only a
fraction of total mobile devices follow the suggested routes from the system. It is
noticed that 1) field estimation is independent of the system type, since the type
only decides the system’s controllability over the routes of mobile devices, thus only
affecting route planning; 2) there is no route planning for the uncontrollable system,
since the uncontrollable system has no control over the routes of mobile devices.

1.2 Example Applications

In order to show the combinations of the system task and the system type, this
section introduces four application examples. Two examples are about system status
estimation and physical field estimation when the system does not control the routes
of mobile devices. Another two examples are about route planning for controllable
and semi-controllable systems. The system dispatches mobile devices to sense data,
which improves the accuracy of field estimation. The first and second estimate human
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Physical Field
Estimation

Figure 1.3: This figure shows an example of utilizing vehicle based CPS for urban air
pollution sensing. This is an implementation of estimating physical field. The vehicle based
CPS collects data to estimate real-time, fine-grained city-scale air pollution. It benefits
both residents and city administrations to understand air pollution in their immediate
environment.

behavior with mobile phone based CPS and air pollution with vehicle based CPS. The
third and fourth plan routes for controllable drone based CPS and semi-controllable
vehicle based CPS. The technique details of the four examples will be introduced in
Chapter 3, 4, 5 and 6 respectively.

1.2.1 System Status Estimation for Large Scale Mobile CPS

In recent years, human beings have been regarded an important components in the
loop of CPSs [9]. Human behaviors are regarded as an important system status to be
estimated in large scale mobile CPSs. Mobile phones are effective ways to understand
human behaviors since people spend over 4 hours a day on their mobile phones, which
collect various types of data from users [10]. Figure 1.2 shows an example of adopting
the mobile phone based CPS to estimate system status, i.e. understanding human
behavior and interest such as mobile application (App) usage pattern. Understanding
users’ mobile App usage pattern benefits a variety of commercial applications such
as precise bandwidth allocation, targeted advertisement, etc [11]. The details of
estimating system status for the large scale mobile phone based CPS can be found
in Chapter 3.

1.2.2 Physical Field Estimation for Large Scale Mobile CPS

Figure 1.3 gives an example of adopting vehicle based CPS to understand real-time
fine-grained urban information, including air pollution, noise, traffic condition etc.
Especially, air pollution has become a major public health crisis worldwide [12, 13].
According to the World Health Organization (WHO), every year more than 3 million
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Figure 1.4: This figure shows an example of applying a controllable drone based CPS
for urban rescue. In accordance with the needs of domain experts, the CPS is able to
autonomously navigate controlled mobile devices (drones) to a set of goal locations to
collect situational information, including the location and extent of the fire, location of the
survivors, and possible enter and exit routes.

deaths are linked to exposure to outdoor air pollution and 92% of the world’s
population lives in places where air pollution levels exceed WHO limits [14]. It
is beneficial for both residents and city administrations to understand air quality
in their immediate environment, with fine-grained temporal-spatial resolution and
large coverage [15, 16]. A feasible solution is to install air pollution sensors on cars,
especially taxis. When these taxis move around the city, sensors keep on collecting
data at different locations and times, which helps to estimate real-time fine-grained
city-scale air pollution [17, 18]. With such information, city managers are able to
understand pollution levels and pollution sources for further management, planning
and development, while residents can arrange their outdoor activity to reduce their
exposure risks (e.g. choosing the commute routes or housing with low pollution) [19].
The details of estimating physical field for large scale mobile CPS (vehicle based
CPS) can be found in Chapter 4.

1.2.3 Route Planning for Controllable Large Scale Mobile

CPS

Controllable drone based CPSs are used in hazard and harsh environments due to
their high agility and low cost. Figure 1.4 illustrates how to apply the controllable
drone based CPS in urban fire rescue. Before entering the fire scene, it is essential
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Figure 1.5: This figure shows an example of utilizing a semi-controllable vehicle based
CPS for more balanced data collection in crowdsensing. The vehicles are installed with
sensors to collect information over time and space. By actuating some vehicles to follow the
routes shown in red dotted lines, the vehicle fleet achieves more balanced sensing coverage
for data processing in crowdsensing.

for fire fighters to understand the situational information, including the location
and extent of the fire, location of the survivors, and possible enter and exit routes.
The drone based CPS is able to perform autonomous route planning and navigate
controlled micro aerial vehicles (MAVs), to a set of goal locations to collect the
key information [20]. The information collected not only helps increase the rescue
efficiency but also helps decrease the rescue risk. Route planning for controllable
CPSs depends on estimating a system status, i.e. the location of each device. The
details of estimating system status and route planning for the controllable large scale
mobile CPS (drone based CPS) can be found in Chapter 5.

1.2.4 Route Planning for Semi-controllable Large Scale Mo-

bile CPS

For the large scale mobile vehicle based CPS, it is possible to actuate some of the
vehicles if a reward is provided by the system and the driver is willing to accept
it. This makes vehicle based CPS semi-controllable and the route planning involves
both the system status and the physical field. Figure 1.5 demonstrates how to
design route planning to dispatch the semi-controllable vehicle based CPS to sense
data with dense coverage and even distribution for crowdsensing. Similar to the
application in Figure 1.3, sensors are installed on taxis to collect information over
different time and locations. As the left sub-figure shows, the data collected by the
vehicle based CPS is uneven since some areas get multiple taxis to collect redundant
information, while the other areas are not covered by any taxis. If some of the taxis
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can be actuated with low cost, i.e. following the routes shown as red dotted lines,
the new distribution of the taxi fleet enables much more balanced sensing coverage,
as shown in the right sub-figure. Consequently, the collected data motivates much
easier information processing. The route planning of such a semi-controllable CPS
depends on the estimation of system status (mobility prediction of each taxi) and
physical field (ride request distribution over the city). The details of estimating
system status & physical field and route planning for the semi-controllable large
scale mobile CPS (vehicle based CPS) can be found in Chapter 6.

1.3 Challenges: Sparse Coverage and Uneven Dis-

tribution

The goal of a CPS is to achieve accurate understanding of the physical world according
to its application requirements. The collected data from mobile devices in the system
should contain a sufficient amount of information for field estimation to achieve the
application specific accuracy. In addition, the accuracy of field estimation at different
locations and time periods should maintain an (application specific) consistent
accuracy level. Since this thesis focuses on physical fields that are continuously
changing over space and time, it is important to obtain data that 1) contains at
least the minimum amount of information to ensure application specific accuracy
and 2) contains a similar amount of information at different spaces and time periods
to ensure a consistent accuracy level that does not vary a lot.

Therefore, I define "good" data collection in this thesis with two components.
1) A dense coverage: the percentage of the overall space and time period being
sensed by the mobile devices in the system should exceed a minimum number. This
minimum number is calculated according to the application specific accuracy. 2)
An even distribution: the information entropy of data distribution over space
and time should exceed a minimum number. The minimum number is calculated
according to the application specific acceptable accuracy variance [21].

However, real systems face the problems of sparse coverage and uneven
distribution. This is because many mobile devices gather in the same areas to
sense redundant information and they also move frequently over time. Consequently,
based on the collected data, the field estimation using data-driven methods suffers
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from low accuracy due to an insufficient amount of information. In addition, the field
estimation using data-driven methods also shows variant accuracy due to fluctuating
amounts of sensed information over space and time. Chapter 3 correlates system
status from different devices through the same areas and time periods to form a
large dataset for model learning and system status estimation. Chapter 4 utilizes the
evolution of the physical field over space and time, which indicates the relationship
of values at adjacent areas and time periods, to help estimate the physical field.

To improve the coverage and evenness of the data distribution, route planning
designs the routes for mobile devices to make sure that they sense data at designated
locations and times. Since route planning relies on field estimation, especially system
status estimation (e.g. locations of mobile devices), inaccuracy from field estimation
deteriorates the performance of route planning. In addition, real-world systems are
semi-controllable. Only a fraction of total mobile devices follow the suggested routes
from the system. The problems of selecting which mobile devices should be actuated
in route planning and how to design routes for the selected mobile devices become
challenging. Chapter 5 improves system status estimation of individual devices at
their trajectory intersections according to similar radio signatures (physical field),
and adaptively plans the routes based on the quality of system status estimation
at different times and locations. Chapter 6 collaboratively utilizes vehicle mobility
(system status)) and ride requests (physical field) at adjacent areas and time periods
to calculate an optimal solution for route planning.

1.4 Research Statement

The thesis presents a spatiotemporal relationship aided framework for
large scale mobile CPSs to address the challenge of sparse coverage and
uneven distribution of data collection.

By utilizing the spatiotemporal relationships of physical field and system status,
which are discussed in Section 2, the spatiotemporal relationship analysis layer
improves the performance of major system tasks: field estimation (physical field and
system status) and route planning on three types of large scale mobile CPSs.

Three different types of spatiotemporal relationships are introduced in the spa-
tiotemporal relationship analysis layer . 1) The spatiotemporal relationship of physical
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field (ST-PHY): the evolution of the physical field over space and time, determined
by the law of physics, indicates the relationship of values at adjacent areas and time
periods, such as air pollution levels in a city across a day. 2) The spatiotemporal
relationship of system status (ST-SYS): system status changes continuously over
time and space for the same device and the system status of the same type of devices
may have similar values at the same areas and time periods. 3) The spatiotemporal
relationship connecting physical field and system status (ST-PHY-SYS): the physical
field and system status are interrelated through time and space because they both
react to the physical world.

Models and algorithms are designed based on the spatiotemporal relationship
aided framework for field estimation and route planning. Implementations of uncon-
trollable, controllable and semi-controllable large scale mobile CPSs are presented to
show how this framework works with different types of CPSs. Both real deployed
testbed experiments and extensive simulations with real world collected data are
adopted to validate the system design. As a part of the evaluation for uncontrolled
to controlled motion aspects of our system, air pollution sensors are deployed on the
taxi-based testbed to collect data in the city of Shenzhen for 2 years in collabora-
tion with Tsinghua University. In addition, a swarm of 8 micro aerial vehicles are
deployed in an indoor environment for autonomous navigation. The results show
incorporating the spatiotemporal relationship analysis layer can achieve 2.1× and 6×
error reduction on physical field and system status estimation and 3× improvement
on route planning. This illustrates the potential of the spatiotemporal relationship
analysis layer to make large scale mobile CPSs more intelligent on field estimation
and route planning.

1.5 Organization

The remainder of the thesis is organized as follows. We first introduce the spa-
tiotemporal relationship aided framework in Chapter 2. Then we discuss how the
spatiotemporal relationship analysis layer improves estimating system status and
physical field for large scale mobile CPSs in Chapter 3 and Chapter 4 respectively.
After that, in Chapter 5, I introduce how the spatiotemporal relationship analysis
layer helps route planning for the controllable large scale mobile CPS, which involves
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estimating system status. After that, I illustrate how the spatiotemporal relationship
analysis layer assists route planning for the semi-controllable large scale mobile CPS
in Chapter 6. The route planning depends on estimation of both system status and
physical field. Finally, we conclude the thesis in Chapter 7.
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Chapter 2

Solution Overview:
Spatiotemporal Relationship Aided
Framework for Large Scale Mobile
Cyber Physical Systems

To address the challenges of sparse coverage and uneven distribution, as described in
Section 1.3, we focus on how physical field and system status change across space
and time to improve the performance of field estimation and route planning. In this
thesis, the spatiotemporal relationship is defined as the relationship between values
at adjacent spatial and temporal points, which consists of three different types. 1)
The spatiotemporal relationship of physical field (ST-PHY): the evolution of the
physical field over space and time, determined by the laws of physics, indicates the
relationship of values at adjacent areas and time periods, such as air pollution levels
in a city across a day. 2) The spatiotemporal relationship of system status (ST-SYS):
system status changes continuously over time and space for the same device and the
system status of the same type of devices may have similar values at the same areas
and time periods. 3) The spatiotemporal relationship connecting physical
field and system status (ST-PHY-SYS): the physical field and system status
are interrelated through time and space because they both react to the physical
world.

The thesis presents a spatiotemporal relationship aided framework for large scale
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Figure 2.1: The figure shows the spatiotemporal relationship-aided CPS framework. The
newly designed spatiotemporal relationship analysis layer utilizes the 3 types of spatiotem-
poral relationships to improve the performance of field estimation and route planning,
which offers more informative and accurate understanding of the physical world for different
applications.

mobile CPS, which incorporates a new spatiotemporal relationship analysis layer ,
as shown in Figure 2.1. Along with the newly designed spatiotemporal relationship
analysis layer , the spatiotemporal relationship-aided large scale mobile CPS is
composed of one database, two cyber components dealing with cyber information: the
information estimation layer and the application layer , and two physical components
interacting with physical processes: the information sensing layer and the device
actuation layer .

• The information sensing layer collects data from the physical world with the
help of various sensors, such as temperature, moisture, sound, air pollution,
video, etc. The system deploys these sensors on a large number of mobile
devices, which helps acquire information over the temporal and spatial domain.
The collected data is stored in the database for further processing in the
information estimation layer .

• The information estimation layer preforms two important field estimation
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tasks with the collected data stored in the database: estimating physical
field and system status. Estimating the physical field gives the system
more information on the physical world„ which is used for further decision
making in the application layer and route planning in the device actuation layer .
Estimating system status enables the system to infer important information
about the system and maintain a good operational status, which helps route
planning in the device actuation layer . The estimated results are stored back
to the database.

• The device actuation layer actuates the mobile devices in the system according
to the estimated physical field and system status from the information estima-
tion layer . In this thesis, I focus on route planning, which dispatches mobile
devices to get better data collection. On the one hand, the field estimation
from the information estimation layer affects how the device actuation layer
dispatches large scale mobile devices. On the other hand, the dispatching
results from the device actuation layer affects how well the information sensing
layer can sense the physical world, thus affecting the field estimation in the
information estimation layer .

• The application layer utilizes the derived estimation stored in the database for
various high level purposes. The application layer holds the interface between
CPSs and human beings, which helps people better monitor and control the
physical world.

• The spatiotemporal relationship analysis layer first derives information from
either the raw sensed data by the information sensing layer or the estimated
results from the information estimation layer , both of which are stored in
the database. Then, the spatiotemporal relationship analysis layer utilizes
the spatiotemporal relationships of physical field and system status to further
process the information to improve the performance of field estimation or route
planning.

For the large scale mobile CPS, estimating the system status is essential to ensure
the system maintains a stable operation status. In recent years, human beings have
been regarded as one of the most important components in the loop of CPS [9].
Therefore, as part of the system, human behavior is regarded as a system status.
The challenge here is two-fold. 1) Human behavior is multifaceted and involves many
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factors of information. 2) The amount of data a single device can collect is limited
for model learning. To address these two challenges, the spatiotemporal relationship
of system status (ST-SYS), i.e. the similarity of human behaviors at same or close
temporal and spatial points, is utilized. The details can be found in Chapter 3.

In addition, estimating the physical field is another essential task of field es-
timation, which helps the system to understand the physical world based on the
sensing data. However, purely applying the traditional data-driven methods, es-
pecially machine learning methods, to estimate leads to inaccurate and unstable
estimation due to sparse coverage and uneven distribution. To address the challenge,
the evolution of physical fields over space and time (ST-PHY), determined by the law
of physics and described as a physics guided model, which indicates the relationship
of values at adjacent areas and time periods, is adopted to help estimate the physical
field. The spatiotemporal relationship between the physical field and the sensed
data is used to infer the values of the physical field when and where no data is
sensed, offering extra information for estimation. Knowing the (temporal and spatial)
correlation between nearby data points also prevents the system from being biased by
inaccurate data-driven estimation. Moreover, to ensure stable and accurate physical
field estimation, features such as the amount of data collection and the estimation
quality at different areas and times (ST-SYS) are used to adaptively switch between
the physics guided model and the data driven model. The details can be found in
Chapter 4.

The controllable system is able to dispatch mobile devices to key locations in
order to to collect more informative data to understand the physical process. Route
planning depends on the results of system status estimation, whose accuracy may be
low due to the limited capabilities of each individual device in sensing, computing,
and communication. In addition, the accuracy of the estimation on system status
may vary over time. To address the challenges, the spatiotemporal relationship
analysis layer improves the system status estimation of individual nodes at their
trajectory intersections according to similar radio signatures (ST-PHY-SYS). Based
on the quality of system status estimation at different times and locations (ST-SYS),
the system adaptively plans the routes. The details can be found in Chapter 5.

Compared to the controllable large scale mobile CPS, semi-controllable ones have
more challenges in route planning, since their route planning involves estimating both
system status and physical field. Along with the challenges of controllable large scale
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mobile CPSs, semi-controllable systems have to face the problem of selecting which
mobile devices should be actuated in route planning and how to design routes for the
selected mobile devices. When this is applied to cars, the system predicts the vehicles’
mobility to help the system to choose the "correct" vehicles to actuate (ST-PHY),
and the ride requests over the city to help lower the incentive cost (ST-SYS). The
system combines information of mobility of all the vehicles and the ride requests over
the city to calculate an optimal solution for route planning (ST-PHY-SYS). The
details can be found in Chapter 6.
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Chapter 3

Estimating System Status for
Large Scale Mobile CPS

This chapter introduces how to utilize spatiotemporal relationships to address the
challenge of sparse coverage and uneven distribution in system status estimation
(human App usage behavior prediction) as shown in Chapter 1. Estimating system
status is essential to ensure the system maintains a stable operation status. In
recent years, human beings have been regarded as an important components in the
loop of CPS [9]. I focus on estimating human behavior (system status) pattern,
where the system has no control over the route of human beings in this chapter.
The controllable and semi-controllable system will be discussed in Chapter 5 and 6
respectively.

Compared to traditional cyber or physical systems, the status of human beings is
more complex. Consequently, I need information from multiple domains to estimate
the system status, i.e. the human behavior. Therefore, according to Chapter 2,
the spatiotemporal relationship analysis layer figures out the interaction of these
influential factors through their spatiotemporal relationships (ST-SYS). In addition,
the amount of data collection from any single device is limited, while the behavior
patterns of different individuals may vary. Different human beings in the same place
and time show correlated data. The correlated dataset from all human beings in
the system is used for model learning and the data from each person is used for
personalized prediction. This ensures sufficient information for model learning and
keeps personalization for different individuals.
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In this chapter, multi-domain information (time, location, App usage, and App
type) is correlated through their spatiotemporal relationship (ST-SYS) to learn
human App usage patterns. The system also adopts App usage history from all
users to ensure sufficient data for model learning and App usage history from each
individual to generate the user profile for personalized prediction.

I first explain the problem in Section 3.1. Then I describe the data collection and
problem definition in Section 3.2. After that, I introduce the high level system design
in Section 3.3 and key algorithm design in Section 3.4. The evaluation is discussed
in Section 3.5. Finally, I discuss the related work in Section 3.6 and conclude the
section in Section 3.7.

3.1 Problem Overview

The smart device market has been showing continuous and rapid growth in the last
decade. Mobile phones alone show a projection of 2.53 billion worldwide users by
2020 [22]. These smart devices are mainly used with mobile Apps, which have project
revenues of around 189 billion US dollars by the year 2020 [23]. Currently, around
2.8 million and 2.2 million Apps have been developed and made available in Google
Play and Apple App Store respectively.

With this explosive growth of the mobile App market, accurately predicting
users’ App usage is essential for carriers, consumers and advertisers. Because the
projection of mobile data usage by 2021 is 48 exabytes per month, carriers will need
more accurate and dynamic bandwidth allocation schemes to increase bandwidth
utilization efficiency [11]. Predicting consumers’ App usage at specific times and
locations helps carriers understand consumers’ bandwidth needs more precisely for
smart bandwidth allocation. For consumers, App usage prediction information not
only helps better battery life prediction and management, but also accelerates App
launching. In addition, advertisers can recommend advertisements to the Apps that
users will most likely use given location and time.

Prior works have attempted to predict mobile App usage [24, 25, 26]. Church
et al. [27] summarized the challenges for mobile phone usage learning and analysis
and describe a series of studies and applications on mobile phone usage, including
App recommendation [28], launcher prediction [29], and battery management [30].
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Various prediction algorithms have been explored to achieve that goal. Kostakos
et al. [31] applied a Markov state transition model to predict the next screen
event. Xu et al. [32] proposed a multi-faceted approach to predict App usage.
The study focused on a small-scale dataset, posing a key challenge to understand
and predict App usage behavior over a large user population. Shin et al. [29]
predicted the App usage based on a personalized Naïve Bayes model for each user
profiled from the usage data from their phones. Since their prediction is based on
individual historical data and contextual information, it is limited by what a user
has already experienced. In addition, various algorithms and information types have
been explored for prediction and recommendation in different domains. Context
aware recommendation is achieved by using information about location, time, and
activity [33, 34, 35, 36, 37]. Context aware collaborative filtering and recurrent
neural network are proposed for activity recommendation, App recommendation, and
location prediction. In addition, Berkel et al. [38] looked into a different aspect of
smartphone usage by classifying usage gaps to identify the usage session. They also
use user profile information to achieve personalized recommendations for news, blogs,
Apps, and e-commerce items [39, 40, 41, 42, 43]. Until now, no research focuses on
personalized App usage prediction on a large scale population using both temporal
and spatial information.

The goal of this chapter is to consistently predict which App will be used given a
user’s time and location over a large scale user population. Despite the related work
mentioned before, challenges remain. i. Mobile App usage behavior is complicated.
What are the key factors that affect the prediction? It is also difficult to derive
the importance of these factors. ii. A user’s App usage preference is decided by
multiple factors and time-variance, which is difficult to describe. iii. A user’s data is
sparse on the spatial domain. One user only covers a limited number of locations.
Prediction is difficult if the user appears at a new location. Accurate prediction is
impossible without addressing these challenges.

I present CAP, a context-aware App-usage prediction system that handles the
aforementioned challenges. To address challenge i., I design a heterogeneous graph
embedding algorithm, which utilizes the the spatiotemporal relationship (ST-SYS)
to map time, location, App, and App type into one common latent space. The
embedding catches the relationships between App-location, App-time, and App-App
type. To address challenge ii., I design user profiles with users’ past App usage
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and trajectory, which are affected by a time decay factor, to describe the individual
dynamic preference. Finally, I adopt the history data of all users to construct a
heterogeneous graph for an individual user to generate personal preference, which
addresses challenge iii. and keeps my prediction personalized. My contributions are
listed as follows:

• I am the first to investigate the context-aware App-usage prediction problem
over a large user population. I consider context information (time & location),
attribute information (App & App type) and dynamic user preference.

• I find that the relationships between App-location, App-time, and App-App
type are essential to prediction and propose a heterogeneous graph embedding
algorithm to map them into one common comparable latent space. I propose a
user profile with personal App usage & trajectory history affected by a time
decay factor to achieve a personalized prediction. I extract both the common
attribution of all users and individual user dynamic preferences to ensure
sufficient training data without losing personalization.

• I evaluate my system through a large-scale real-world dataset, which includes
more than 6 million mobile App usage records from 1788 individual users. CAP
demonstrates a significant improvement in the prediction accuracy compared
to baselines.

3.2 Dataset and Problem Description

This subsection introduces the preliminaries of the mobile App usage prediction. I
first introduce the App usage record dataset used for prediction, including the data
collection and processing. Then, I formally define the prediction problem.

3.2.1 Data Collection and Processing

The App usage record dataset is collected with Deep Packet Inspection (DPI)
appliances [44], through China TeleCom, a major cellular network operator in
China [45]. It records the spatio-temporal information of mobile subscribers when
they access cellular network for App usage. Thus, the recorded locations are at
the granularity of cellular base station. In the dataset, each entry contains an
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anonymized user identification, timestamps of HTTP request or response, the length
of the packet, the domain visited and the user-agent field. The data is collected in
Shanghai, one of the largest cities in China.

I extract the information of what App is used for network requests. The HTTP
header captured by my DPI uses various fields to identify the Apps as they commu-
nicate with their host servers or third party services. The hosting servers need to
distinguish between different Apps in order to provide appropriate content. I there-
fore identify the App making a network request by inspecting those HTTP header
identifiers. I utilize a systematic framework for classifying network traffic generated
by mobile Apps: SAMPLES [46]. It uses constructs of conjunctive rules against the
App identifier found in a snippet of the HTTP header. The framework operates in
an automated fashion through a supervised methodology over a set of labeled data
streams. It has been shown to identify over 90% of these Apps with 99% accuracy on
average [46]. In order to obtain the labeled dataset, I crawled the 2000 most popular
Apps across Apple App Store (iOS Apps) and Google Play (Android Apps) and
applies SAMPLES to generate conjunctive rules to match each App’s network traffic.
I manually verify the correctness of the matched Apps, which achieves about 97%
accuracy. In addition, I first extract all cellular network connections for each App.
Then, to avoid the repetitive count of App sessions, I adopt density-based spatial
clustering of applications with noise (DBSCAN) to cluster the App sessions. Each
cluster is regarded as one session [47].

I also classify App types for attribute information. The App type indicates an
App’s functionality and attribute. Each App is categorized into at least one of the
nineteen App types, including game, video, news, social, E-shopping, finance, real
estate, tourism, daily service, education, therapy, baby caring, taxi, vehicle relevance,
music, map, reading, vogue, and office. I manually assign each App name an App
ID and each App type an App type ID for easy successive processing.

Dataset anonymization: It is worth pointing out that privacy issues of this dataset
are carefully considered, and I take measures to protect the privacy of these mobile
users. The App usage record dataset does not contain any personally identifiable
information. The user identities have been anonymized as a bit string and do
not contain any user meta-data. All the researchers are regulated by a strict non-
disclosure agreement and the dataset is located in a secure offline server. Relevant
privacy laws and institutional policies of both P.R. China and the United States are
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(a) Statistics of mobile App usage number in 7
days

(b) Statistics of mobile App usage region num-
ber in 7 days

Figure 3.1: This figure shows statistics of mobile App usage number and region number
in 7 days. Most users use fewer than 10 mobile Apps in in fewer than 20 regions. More
than 80% users use more than 1 mobile Apps.

strictly followed.

The App usage record dataset is able to support our research in terms of the
following aspects. First, each record reflects who uses what App at what location
and time. Although this dataset misses the App usage activities that are connected
through WiFi, these App usage activities lose the location information, which does
not reflect a user’s temporal-spatial App usage pattern. In addition, most App usage
activities involve network connections. Second, the dataset covers one week and
the whole metropolitan area of the city. This ensures a large temporal and spatial
information range, which shows how users’ App usage patterns are related to time
and location. For example, users tend to use food delivery Apps during lunch in
the office area. Third, the dataset includes 6 million App usage records from 1788
million users, which guarantees that I have enough data for my context-aware App
usage prediction research. Fourth,including the 2000 most popular Apps from the
Apple App Store (iOS Apps) and Google play (Android Apps) ensures that all the
most commonly used Apps can be predicted. Finally, a single cellular base station
covers multiple regions of different kinds, such as shopping malls, schools, offices etc.,
which indicate both semantics and geographical information. An individual user
usually goes to one typical region given one specific cellular base station. Therefore,
adopting cellular base station to infer individual preference is reasonable.
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Figure 3.2: Mobile App usage number of 1000 users at different time.

Dataset Characteristics: Figure 3.1 shows the statistics of number of mobile App
usage and regions covered by cellular base stations in a week. Most users use fewer
than 10 mobile Apps in a week and they use these mobile Apps in fewer than 20
regions. This shows that people focus on a limited number of mobile Apps and stay
in limited areas. However, more than 80% users use more than one mobile App.
Figure 3.2 shows mobile App usage by 1000 users at different times. Figure 3.3(a)
shows total mobile App usage by 1000 users checked every 10 minutes in one week.
Mobile App usage is highly correlated with the human activity pattern, in which
people use more Apps during daytime and fewer Apps at night. In addition, different
users show variant mobile App usage numbers and peak times. Figure 3.3(b) shows
that Apps of different types have different usage patterns in different location types.
All these observations illustrate the potential to predict users’ mobile App usage
pattern with context information (location and time). In addition, mobile App usage
is time-variant, user-variant and location-variant. As a result, it is necessary to figure
out a novel solution to do context-aware mobile App usage prediction.

3.2.2 Problem Description

In order to predict context-aware App usage patterns, i.e. what App a user will
use given the time and location, I first define the problem as follows. Let < be a
corpus of mobile user App usage records. I apply U , C, T , A, P to represent user
identity, location, time, App and App type respectively. I use a subscript to denote
the record id. For the kth record, it is a tuple < Uk, Ck, Tk, Ak, Pk >, where Uk and

23



(a) Temporal distribution of total mobile
App usage number with 10 minutes reso-
lution

(b) Apps of different types have different usage pat-
terns in different location types

Figure 3.3: This figure shows (a) total number of App used every 10 minutes in one week,
and (b) the usage of Apps at different types of locations.

Ck are user ID and cellular tower ID, while Tk, Ak and Pk are time, App ID and App
type ID. All records are sorted chronologically, with smaller k meaning earlier time.
I aim to correlate the mobile App usage pattern to time and location with <, which
consists of large amounts of App usage records. Given five different interconnected
factors, an effective and fast model is needed to accurately capture the cross-modal
correlation among C, T,A, P for each user.

Based on the App usage record dataset <, given a querying user u (Uk = u) with
the context of time Tk and connected cellular towers Ck (query q = (u, Tk, Ck)), my
system predicts top N mobile Apps the user u will probably use. The prediction
is based on the mobile App usage history of all users, i.e. all records in < with an
earlier time than Tk. The system outputs the top N most likely mobile Apps user u
will use. Instead of only applying user u’s own historical data, the system adopts
the history data of all users due to two reasons. Firstly, user u may not have large
amounts of historical data to figure out the mobile App usage pattern. Secondly, the
history data from only one user only contains a limited number of mobile Apps and
locations. This leads to a wrong prediction if a user appears at a new location or
uses a new mobile App.
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Figure 3.4: The figure shows the system architecture of spatiotemporal relationship
aided large scale mobile phone based CPS for system status estimation (personalized
context-aware App usage prediction).

3.3 System Design

This subsection introduces system design intuition for the large scale mobile phone
based CPS to address the challenges described in Section 3.1. Figure 3.4 shows the
high-level architecture of the large scale mobile phone based CPS. Users’ data is
collected through the information sensing layer and stored in the database. The
spatiotemporal relationship analysis layer gets users’ data from the database to learn
the users’ usage pattern and predict the App usage given a user’s location and time.

The detailed architecture of the spatiotemporal relationship analysis layer is
designed as Figure 3.5. First, all users’ history data is sent to the Representation
Learning module after the Pre-Processing module, which ensures a large amount and
high heterogeneity of information for model training. According to co-occurrence
detection and attribution detection, this module learns a heterogeneous graph
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Figure 3.5: This figure shows the architecture of the spatiotemporal relationship analysis
layer , which utilizes the spatiotemporal relationship (ST-SYS) of different influential factors
from different human beings to help the large scale mobile CPS (mobile phone based CPS)
for system status estimation (personalized App usage prediction).

embedding model to compare information from different dimensions. The learned
model is stored in the spatiotemporal relationship database. The Context-aware App-
usage Prediction module generates a user profile for each user based on the trained
model from the spatiotemporal relationship database, which is used for personalized
prediction.

Pre-Processing module prepares clean data for successive processing. As shown
in Figure 3.5, each App usage record includes an anonymous user ID U , a connected
cellular base station ID C, a time stamp T and an App ID A, which captures the
information of user identity, location, time and App usage. The module first removes
conflicting and redundant App usage records by checking the time stamp and cellular
base station ID. Then, I remove the records of the Apps used at all locations and
times. These Apps include wechat (Chinese WhatsApp), weibo (Chinese twitter) etc.
I remove them based on the following reasons: 1) A user can use them at any location
and any time, which is difficult to predict. 2) Adding records of these Apps does not
contain much useful information. 3) Other predictable Apps’ usage patterns will be
overwhelmed by a large amount of these unpredictable App records. In addition, the
App attribute dataset includes the information of App ID A and App type ID P ,
which capture the common attribution of Apps. Each App usage record is associated

26



with one App attribute record by matching the same App ID.

Representation Learning module gathers information of different dimensions from
all users’ historical data for training. This ensures both a large amount and high
heterogeneity of information for training. Information from different dimensions
is mapped into a latent space based on two kinds of relationships co-occurrence
and attribution. A heterogeneous graph-based learning method is designed to make
information from different dimensions comparable. The module outputs the trained
model and the embedded vectors in the latent space, both of which are stored in the
spatiotemporal relationship database. The details can be found in Section 3.4.1.

Context-aware App-usage Prediction module, based on the trained model stored
in the spatiotemporal relationship database, first adopts each user’s history data to
generate user profile to describe dynamic user preference in the user personalized
profile generation sub-module. The profile is based on two basic elements: a user’s
mobile App usage history and his/her past trajectory, both of which are affected
by a time decay factor. The personalized user profiles are expressed with vectors
in the latent space. This module then predicts what App a user will use given the
location C and time T . After that, the user profile matching sub-module matches the
personalized user profile vectors with history record vectors in the latent space from
spatiotemporal relationship database. Based on the matching scores, this module
outputs the top N predicted mobile Apps. The details can be founded in Section 3.4.2.

3.4 Algorithm Design

In order to make the information of time, location, App, and App type comparable and
figure out the importance and intersections of these factors, I adopt representational
learning technology to map the information into a common latent space. To be more
specific, I designed a graph-based embedding method, which provides the following
benefits. First, it preserves the direct occurrence interactions between factors, such
as time, location and App in the same App usage record. Second, it also keeps
indirect attribution interactions between records through Apps belonging to the
same App type. Finally, it lowers the dimension needed to represent these factors by
extracting two kinds of interactions. Take the App representation as an example.
Traditional one hot representation requires a vector of 2000 dimensions to represent
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Figure 3.6: This figure shows how I encode the co-occurrence and attribution relationships
and adopt graph-based joint embedding learning to map these relationships into one latent
space.

2000 Apps [48]. In contrast to this method, embedding first extracts direct and
indirect structures between the 2000 Apps given the users’ history App usage records
and the App attribute dataset. Then, the 2000 Apps are mapped into a latent space
of much lower dimension based on the learned interactions. In my case, only 20
dimensions are needed.

3.4.1 Representational Learning

High-quality embedding requires preserving both direct and indirect factor inter-
actions, which are defined as co-occurrence and attribution respectively. The co-
occurrence relationship captures the direct interaction between user, time, location
and App, i.e. who uses what App at what location and time. It preserves the
information where and when an App is used. The co-occurrence relationship happens
when two units show up in the same record. For example, Pre-Processed Data
module outputs a record with a time unit (e.g. 6:50 PM), a location unit (e.g.
cellular base station ID 272368) and an App (e.g. App ID 223). Two co-occurrence
relationships reflect direct spatial and temporal usage correlation: App-location and
App-time. The attribution reflects the indirect semantic interactions of these factors,
i.e. correlating time, locations and Apps from different App usage records based on
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similar App attribute, which is expressed by App type information. The attribution
relationship comes from the assumption that Apps belonging to the same type share
similar attribution and users tend to use Apps belonging to the same type.

I use bipartite graphs to encode the co-occurrence and attribution relationships for
further embedding learning, as shown in Figure 3.6. The graph has four different node
types which correlate to four factors, App, location, time and App type respectively.
The edges are constructed based on co-occurrence and attribution relationships.

App-Location Graph captures the spatial attribution of mobile App usage and is
denoted as GAC = (A ∪ C, εAC), where A and C represent the mobile App Id and
connected cellular base station ID. The edge εAC connects mobile App nodes and
cellular base station nodes. Edge weights wAC are set to the normalized co-occurrence
counts.

App-Time Graph captures the temporal attribution of mobile App usage and is
denoted as GAT = (A ∪ T, εAT ), where A and T represent the mobile App Id and
time. The edge εAT connects mobile App nodes and time nodes. Edge weights wAT
are set to the normalized co-occurrence counts.

App-App Type Graph captures the interactions of Apps with similar functions, i.e.
belonging to the same App type, which is denoted as GAP = (A ∪ P, εAP ). A and
P represent the mobile App Id and mobile App type Id. If a mobile App Ai ∈ Pj,
there is an edge εAiPj connecting mobile App node Ai and mobile App type node Pj .
In order to reflect the importance of different Apps, the TF-IDF is applied to derive
edge weights wAiPj [49]. I treat Apps as a bag of words and App types as documents.
I input counts of all Apps in all App types. Let ni,j be the count of the App i in the
App type j, then I calculate the term frequency TFi,j of the App i in the App type
j by TFi,j =

ni,j∑
k nk,j

. Let |P | be the total number of App types, and pj represent the

App type j, the IDF for App i will be IDFi = log |P |
1+|pj∈P :ai∈pj | . The final TF -IDF

value for the App i in the App type j is calculated as TF -IDFi,j = TFi,j × IDFi,
which is used as the weight of the edge in App-App type graph.

The three graphs above capture the temporal, spatial and semantic effect of users’
App usage respectively. Take the App-location graph as an example for interpretation.
If a mobile App Ai is often used in location Cj, the edge weight wAC is large. As a
result, given a target user u at location Cj, he/she will most likely use mobile App
Ai. These three graphs are embedded into a shared low dimensional latent space
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Rd, whose dimension is d. In the latent space, App, time, location, App type are
represented as ~a, ~c, ~t and ~p.

The goal of graph embedding learning is to represent the graph nodes in lower
dimension while preserving the structure. In addition, due to the heterogeneity of the
three graphs, I need to rank them in order of importance. I first model the emission
probability distribution of each node according to the latent embeddings and then
minimize the distance between the distributions and really observed distributions.
The joint training described in Algorithm 1 is designed to iteratively optimize the
overall loss function of three graphs.

Given a bipartite graph GXY = (X ∪ Y, εXY ), where X and Y are two sets of
nodes representing different information types and εXY is the set of edges connecting
them, the likelihood of generating node j given node i is defined as

p(j|i) =
exp(−uTj · vi)∑

k∈X
exp(−uTk · vi)

, (3.1)

where uj and vi are embedded vectors of node j in Y and i in X respectively. Each
node i has two different embedding vectors according to their function: vi when i acts
as given node and ui when i acts as emitted node. The true observed distribution of
generating node j given node i is defined as

p̂(j|i) =
wij
di
, (3.2)

where wij is the edge weight, di =
∑
k∈X

wik and node i belongs to type X.

Before minimizing the distance between the embedding-based distributions and
really observed distributions, I define the loss function for the graph GXY as

LXY =
∑
i∈X

diKL(p̂(·|i)||p(·|i)) +
∑
j∈Y

djKL(p̂(·|j)||p(·|j)), (3.3)

where node i and j belong to type X and Y respectively. KL() is Kullback-Leibler
divergence [50]. Since there are three different graphs in my system, the overall loss
function is derived as

L = LAT + LAC + LAP , (3.4)
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Algorithm 1: Joint training heterogeneous graph
1 Input: GAC , GAT , GAP , number of samples M , number of negative samples L
2 Output: App embedded vector ~a, location embedded vector ~c, time embedded

vector ~t and App type embedded vector ~p
3 while it ≤M do
4 sample an edge from εAC and draw L negative edges, update App and

location embedded vectors;
5 sample an edge from εAT and draw L negative edges, update App and time

embedded vectors;
6 sample an edge from εAP and draw L negative edges, update App and App

type embedded vectors;
7 end

where LAT , LAC and LAP represent loss function of App-location, App-time, and
App-App type graph.

Keep in mind that it is computationally expensive to optimize loss Eq. function 3.3
since calculating the likelihood p(j|i) requires sum over the entire set of node in
X. To address this problem, a negative sampling approach is adopted, in which I
sample multiple negative edges. The sampling is based on noisy distribution for each
edge [51]. Then, an asynchronous stochastic gradient (ASGD) algorithm is used for
optimization [52]. Since three graphs in my system are heterogeneous and cannot be
optimized simultaneously by merging all the edges together, I adopt a joint training
algorithm, as shown in Algorithm 1, to iteratively optimize the overall loss function
Eq. 3.4 to get d dimensional embedded vectors for App, time, location and App type
in the common latent space.

3.4.2 Context-aware App-usage Prediction

To achieve context-aware App-usage prediction, the system needs not only to embed
information from different spaces into one latent space, but also to generate a dynamic
user profile for each user to describe his/her dynamic preference. The profile should
also be mapped into the same latent space as App, location, time and App type for
prediction.

User profile generation: I generate the user profile based on two observations:
1) A user’s current App usage is related to his/her past App usage and the visited
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locations with high probability. 2) Recent App usage and visited locations should
play more important roles than old ones. Therefore, given a time τ and a user u, I
first extract his/her App usage records before τ , i.e. all records whose U = u and
T < τ . These records form a sub-set <uτ ⊂ <, which consists of records of (u, ti, ci, ai).
Then I define the profile of the user u at time τ as:

~uτ = β
∑

(u,~ci,τi)∈<uτ

e−(τ−τi)~ci + (1− β)
∑

(u,~ai,τi)∈<uτ

e−(τ−τi)~ai, (3.5)

where ~ai and ~ci are the embedded vectors of the App ai and the location ci in <uτ .
e−(τ−τi) is a time decay factor indicating that older data has less influence. β ∈ [0, 1]

is the coefficient to tune the importance of App usage history and trajectory history.
Given a query q = (u, τ, c), I first obtain the user u’s profile at time τ , expressed

as ~uτ . Then I compute scores of different possible mobile Apps aj as:

S(q, a) = ~uτ · ~aj, (3.6)

where ~aj is the embedded vector of mobile App aj and ~uτ is the user profile calculated
as Eq. 3.5. The above score not only captures the App usage preference, but also
captures the user history trajectory and considers the time decay effect. Based on
the score ranking of different mobile Apps, the system outputs N most possible
mobile App predictions.

3.5 Evaluation

In this section, I evaluate my system with real world-collected mobile App usage
data. I first introduce how I set up evaluation in Section 3.5.1. Then I analyze
the system performance in Section 3.5.2. The evaluation focuses on 1) comparing
the performance of my system with four different baselines and 2) investigating the
influence of key parameters in the system.

3.5.1 Evaluation Setup

Data Pre-Processing: The dataset used for evaluation contains more than 6
million mobile App usage logs from 1788 users in one week, April 19, 2016 - April
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26, 2016. These logs record who uses what App at what time and locations. Each
record includes an anonymous user ID, a connected cellular base station ID, a time
stamp and an App ID. Each App ID is associated with one or more App type IDs. I
sort the App usage records by ascending order of time. I use the first 80% of the
records as training data and the last 20% as ground truth for testing.

System Setting: I set the default embedding dimension d and importance
coefficient of user profile β as 20 and 0.5 respectively. I will also check how these
two key parameters affect system performance in Section 3.5.2.

Performance Metric: I adopt Accuracy@k to evaluate prediction accuracy [53].
Accuracy@k is the statistical result of all test predictions, which is calculated with
hit@k. The value of hit@k for a single prediction equals 1 if the ground truth App
appears in the top k predictions, or 0 if otherwise. The overall Accuracy@k is
calculated as the average over all test cases:

Accuracy@k =
#hit@k

|Rtest|
, (3.7)

where #hit@k and |Rtest| represent the number of hits in the whole test set and the
number of test cases.

Baselines: In order to illustrate the advantages of my system design, I compare
my CAP with the following baselines.

• Statistics (Sta): This method counts the users’ history of mobile App usage at
the same time then selects the most frequently used one. This is an intuitive
and direct method with time information for prediction.

• Pure Statistics (P-Sta): This method counts the users’ history of mobile App
usage and selects the most frequently used one. This is an intuitive and direct
method for prediction, which does not use time and location information.

• Graph based embedding (GE): This method adopts the graph-based embedding
in a recent work [53]. Besides the three graphs in my system, this section also
embeds App-App sequential relationships. In addition, this method also adopts
user profiles, but ones generated by APP usage history, current location, and
current time, i.e. without App time decay. By comparing this method with
my CAP, I can check the performance improvement against my embedding
method and user profile.
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Figure 3.7: This figure shows Accuracy@5
and Accuracy@10 from our CAP and base-
lines. My CAP performs best, achieving 84%
Accuracy@5 and 91% Accuracy@10. M-GE
and PRME rank second and third. Sta and
GE achieve low accuracy.

Figure 3.8: This figure shows the cumu-
lative distribution function (CDF) of Accu-
racy@5 for all methods. Only 10% of users
have Accuracy@5 less than 50% with our
CAP. On the contrary, all baselines have at
least 40% of users with Accuracy@5 less than
50%.

• Modified graph based embedding (M-GE): This method is a combinational
scheme, which takes the same embedding method as my system and same user
profile generation method as GE. By comparing this method with my CAP, I
can check the performance improvement against my user profile.

• Personalized Ranking Metric Embedding (PRME): This method jointly models
the sequential transition of App usage and user profile [54]. PRME utilizes one
sequential transition space and one user profile space [54].

3.5.2 Result Analysis

In order to compare my CAP with baselines, I plot Accuracy@5 and Accuracy@10 in
Figure 3.7. My CAP performs best, achieving 84% and 91% in terms of Accuracy@5
and Accuracy@10 respectively. M-GE and PRME rank second and third, both of
which achieve around 30% lower accuracy than CAP in terms of Accuracy@5. Sta
and GE achieve only 35% and 6% in terms of Accuracy@5 respectively. First, Sta
does not get high accuracy since the simple statistical method cannot handle the
cases when a user is going to open a new mobile App that does not show up in
his/her training set. For example, in the testing set, user 0067461 opens App 59 at
7:43 pm at cellular tower 336271. The App 59 has never been used by this user and
does not appear in the Sta prediction list. In contrast, the top 5 predictions from my
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Figure 3.9: This figure shows Accuracy@k
with different k values for all methods. Ac-
curacy of Sta does not improve with larger
k, while other methods illustrate increasing
trend. My CAP achieves ∼ 80% in terms
of Accuracy@3, which is higher than Accu-
racy@10 in terms of all other methods.

Figure 3.10: This figure shows the Accu-
racy@5 and Accuracy@10 with different user
profile importance coefficient β values using
my CAP. For both Accuracy@5 and Accu-
racy@10, the peak values show when β = 0.5.
The accuracy at β = 1 is much higher than
accuracy at β = 0.

CAP are App 179 59 241 125 144. This is because my CAP takes all users’ history
data and correlates App usage temporal, spatial and attribution characteristics
through hetergeneous graph embedding. Second, GE performs worst since it includes
App-App sequential relationship in embedding, which causes wrong connections.
This illustrates that adding wrong interactions between influential factors leads to
serious performance deterioration. In contrast, M-GE and PRME perform much
better than GE, proving that what App a user is going to use is not decided by
the previous used App, but instead by time and location. Third, the advantage of
my CAP over M-GE validates the effectiveness of my user profile. The time-decay
on both App usage and user’s trajectory history help extract the dynamic user
preference.

Figure 3.8 shows detailed statistics of Accuracy@5 for all methods. When using
my CAP to predict, more than 50% users achieve Accuracy@5 higher than 80%. This
proves that at least 50% of the users in my dataset are predictable, i.e. showing a
specific behavior pattern. On the contrary, all baselines have at least 40% predictions
with Accuracy@5 lower than 50%. This proves that my embedding scheme plus
user profile have a strong ability to limit large prediction errors. In contrast, the
inappropriate user profile from M-GE and inappropriate embedding scheme from
GE cause large prediction errors.

To further analyze the accuracy of different metrics for different methods, I plot
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Accuracy@k in Figure 3.9. The accuracy of Sta does not improve with larger k, while
other methods illustrate increasing trend. This is because Sta lacks the ability to
predict the mobile App usage at a location that a user has not visited or predict a
future mobile App usage that a user has not used. On the contrary, all the other
methods are able to achieve that based on the embedding scheme. This proves that
embedding enables prediction in both these scenarios. In addition, my CAP achieves
∼ 80% in terms of Accuracy@3, which is higher than Accuracy@10 for all other
methods. In other words, with only three candidates, CAP is able to outperform
other approaches with ten candidates. Only M-GE achieves similar accuracy in terms
of Accuracy@8, Accuracy@9, and Accuracy@10. This illustrates that to achieve
similar accuracy, my CAP requires a much smaller prediction list.

In order to illustrate how the user profile importance coefficient β in Eq.3.5 affects
my system performance, I plot the Accuracy@5 and Accuracy@10 with different
β values in Figure 3.10. For both Accuracy@5 and Accuracy@10, the peak values
show when β = 0.5. This means that in the optimal solution of user profile, App
usage and user’s trajectory history play equally important roles. This validates my
selection of user profile combination. In addition, accuracy at β = 1, when only the
user’s trajectory history is adopted, is much higher than accuracy at β = 0, when
only the user’s App usage history is adopted. This means that if only one factor can
be included to represent a user’s dynamic preference, his or her trajectory history is
more important. This is because mobile App usage is more related to location than
past usage.

Figure 3.11 shows how embedding dimension affects my system Accuracy@5 and
Accuracy@10. First, obviously, high embedding dimension leads to high accuracy.
Second, Accuracy@5 and Accuracy@10 saturates at 80 embedding dimensions, which
achieves 94% and 97% accuracy respectively. This means that 80 dimensions are
large enough to embed information. Third, the accuracy improvement shows an
obvious difference before and after 20 embedding dimensions. From 5 embedding
dimensions to 20 embedding dimensions, the prediction accuracy improves 56%
(from 28% to 84%) and 35% (from 56% to 91%) in terms of Accuracy@5 and
Accuracy@10 respectively. In contrast, from 20 embedding dimensions to 100
embedding dimensions, the prediction accuracy improves no large than 10% for
both Accuracy@5 and Accuracy@10. Considering the tradeoff between accuracy
and computing complexity, I adopt 20 embedding dimensions as the system default
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Figure 3.11: This figure shows Accuracy@5
and Accuracy@10 with different embedding
dimensions using my CAP.

Figure 3.12: This figure shows Accuracy@5
with different user’s data sparsity from dif-
ferent methods. More data help improve
accuracy for all methods. My CAP saturates
at 8000 with 92% Accuracy@5.

setting.
In order to show how a user’s data sparsity affects accuracy, I plot Accuracy@5

from different methods in Figure 3.12. More data helps improve accuracy for all
methods. This is because more history information gets better training, thus better
predictions. My CAP saturates at 8000, which achieves 92% Accuracy@5. This
illustrates that if all users have more than 8000 history records, my CAP can achieve
up to 92% accuracy with five prediction candicates. On the contrary, Sta, M-Ge and
GE saturate to get Accuracy@5 of ∼ 70%, ∼ 40% and ∼ 10%.

In order to check the prediction accuracy of different users with the system, I
plot Accuracy@5 with different user types in Figure 3.13. I classify users according
to how many App types they use in the whole dataset. All user types achieve more
than 70% in terms of Accuracy@5, which illustrates the robustness of the CAP on
predicting for different user types. The robustness comes from my dynamic user
profile, which includes the App usage and trajectory history.

Figure 3.14 shows Accuracy@5 and Accuracy@10 of different App type predictions
with my CAP. All App types achieve more than 70% in terms of Accuracy@5 and 80%
in terms of Accuracy@10. This illustrates the robustness of my CAP on predicting
different App types. Taxi App ranks highest since users take taxis at regular locations
and times, such as 8:00am from home, 3:00pm from school, 6:00pm from work etc.
Office App ranks at the lowest accuracy since people in Shanghai, a big city in China,
have high pressure on working and they could work at multiple time and locations.

In conclusion, this subsection evaluates the performance of my CAP and four
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Figure 3.13: This figure shows Accuracy@5
with different user types. I classify users ac-
cording to how many App types they use in
the whole dataset. All user types achieve
more than 70% in terms of Accuracy@5,
which illustrates the robustness of my CAP.

Figure 3.14: This figure shows Accuracy@5
and Accuracy@10 of different App type pre-
dictions with my CAP. All App types achieve
more than 70% in terms of Accuracy@5 and
80% in terms of Accuracy@10. Taxi App
ranks highest since users tend to take taxis
at regular locations and times.

baselines to show the advantages of my system design. First, the extracted three
interactions (App-time, App-location, App-App type) are proved to be valid on
App usage prediction. The interactions between the influential factors need to be
carefully designed. Adding App-App sequential interaction seriously deteriorate the
performance. Second, the heterogeneous graph embedding is proved to successfully
map the influential factors from different spaces into the same latent space and
figure out the importance of these factors, which help predict App usage. Finally,
the proposed user profile is shown to help improve the prediction accuracy by my
method’s accuracy improvement over M-GE.

3.6 Related Work

App Usage Behavior Modelling

Recent works have studied how users use mobile Apps by focusing on three aspects:
user interactions, network traffic, and energy drain [24, 25, 26]. Church et al.
summarized the challenges for mobile phone usage learning and analysis, as well as a
series of studies and applications on mobile phone usage [27]. Falaki et al. discover
immense diversity usage activities among users[24]. Another related work [55] reveals
that users can be identified through the sets of Apps they use. Other studies cluster
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mobile users according to their App usage records[56]. Moreover, users’ mobility
patterns can impact the way that the Apps are used [57]. Context such as location
and time are shown to have impact on App usage [29][58]. A multi-faceted approach
to predict App usage is developed in [32]. Most studies focus on small-scale datasets,
posing a key challenges to understand and predict the App usage behavior over a
large user population.

3.6.1 Recommendation Methods

Recommendation systems have been widely used and a wide range of approaches
have been proposed. Context-aware recommendation is achieved by using additional
information of location, time, and activity [33, 34, 35, 36, 37]. Zheng et al. and
Karatzoglou et al. presented collaborative filtering based recommendation algorithm
and use a large-scale user data pool to collaboratively filtering the like-minded users
at different locations or activities [33, 35]. Zhu et al. focused on the problem of
insufficient information from individual users by learning the common context-aware
preference of many users, and the context sensors they targeted are spatio sensors
such as GPS and accelerometer [34]. Kostakos et al. applied a Markov state transition
model to predict next screen event [31]. Based on our study, the both spatio and
temporal contextual information matters in the user behavior prediction. However,
these prior works mostly limited the contextual information to location and activity.
Zhao et al. [59] proposed a spatial-temporal latent ranking (STELLAR) method to
explicitly model the interactions among user, POI, and time. Liu et al. considered
both spatio and temporal contextual information and extended the RNN model
to Spatial Temporal Recurrent Neural Networks (ST-RNN) with a time-specific
transition matrices and a distance-specific transition matrices [37]. None of these
works focus on App usage patterns. Compared to these prior works, my system CAP
is able to project both context and attribute information into comparable spaces,
hence achieving a better integration.

Other than contextual information, user profile information is also used to
achieve personalized recommendation [39, 40, 41, 42, 43]. Rendle et al. presented
their Factorizing Personalized Markov Chains (FPMC) model that subsumes both
a common Markov chain and the normal matrix factorization model to profile the
user. However, these personalized recommendation largely depends on the personal
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profiling, which can be biased and may not capture the local trend of the App usage.
Liu et al. used a mobile Customized Content Service (m-CCS) to filter blog articles
to mobile users based on the trend of time-sensitive popularity of weblogs and the
users’ browsing logs to determine their interests [40]. Costa et al. monitors the users’
interaction and made recommendation based on the users’ friends, similar behavior
users, and the similarity between Apps [41]. Similarly, Bohmer et al. leveraged the
insights of users’ engagement with particular applications to achieve recommendation
[42]. Lin et al. presented PRemiSE, which takes into account potential influencers
on virtual social networks extracted from implicit feedbacks for recommendation
[43]. My work, compared to these prior works, allows better real-time modeling on
personal choice of the App usage by combining the spatial and temporal contextual
information in both group and individual level.

App similarity that is important for recommendation is calculate by graph [60] or
kernel function [61, 62], which is utilized in Ranking [63] and popularity [64] based
recommendation. When the user data is sparse, new challenges emerge. Problems
of data sparsity [65] and cold-start [66] have been studied by using specific Apps’
features of similarity. CAP handles the data sparsity by taking into account the
data from many users in both spatio and temporal contextual information. Other
recommendation has been done with a different focus from mine, which is privacy
and security awareness [67, 68, 69]. These works demonstrate the possibility of secure
aspects of recommendation systems like mine.

To summarize, none of the existing works focus on App usage prediction over a
large population using both temporal and spatial information. These works have not
explored the key influential factors & their interactions for App usage prediction,
nor have they investigated the appropriate method to extract the importance of this
information. In addition, the personalized factor of users has not been studied for
App usage prediction. CAP achieves real-time personalized App usage prediction for
multiple commercial applications as I discussed in Section 1. Context information
(time & location), attribute information (App & App type) and the dynamic user
preference are considered. I find that the relationships of App-location, App-time,
and App-App type are essential to prediction and propose a heterogeneous graph
embedding algorithm to map them into one common comparable latent space. I
propose a user profile with his/her App usage & trajectory history affected by
time decay factor, to achieve personalized prediction. I extract both the common
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attribution of all users and individual user dynamic preference to ensure sufficient
training data without losing personalization.

3.6.2 User Behavior Prediction

With the popularity of social networks, users leave a large volume of digital footprints
online. By analyzing re-post behavior in social networks, Lu et al. [70] predicted
the content dissemination trends. However, in traditional social networks, the user
behavior such as posting blogs, sharing photos and uploading videos, does not
necessarily reflect their daily activities. Location-based social networks (LBSNs),
where users can share their real-time activities by checking in at POIs, provide a
novel data source to study the collective behavior, and collective behavior analysis
in LBSNs has gained increasing popularity in academia. For example, Cheng et al.
[71] investigated 22 million checkins across 220,000 users and report a quantitative
assessment of human mobility patterns by analyzing the spatial, temporal, social,
and textual aspects associated with these footprints. Noulas et al. [72] conducted
an empirical study of geographic user activity patterns based on check-in data in
Foursquare. Cranshaw et al. [73] studied the dynamics of a city based on user
collective behavior in LBSNs. Wang et al. [74] investigated the community detection
and profiling problem using users’ collective behaviors in LBSNs. In addition, the
analysis of collective behavior in LBSNs can also enable various applications. For
example, by analyzing users’ check-in data in LBSNs, Yang et al.[75, 76] studied
the personalized location based services such as POI recommendation and search.
Sarwat et al. [77] introduced the Plutus framework that assists different POI (e.g.,
restaurants or shopping malls) owners in growing their business by recommending
potential customers. Yang et al. [78] studied the large-scale collective behavior by
introducing the NationTelescope platform to collect, analyze and visualize the user
check-in behavior in LBSNs on a global scale. However, traditional LBSN cannot
get access to mobile application data, so that predicting the App usage is a novel
contribution of this section.

Mobility prediction is also widely studied. Markov model and its variations are
common models to predict human mobility. Markov model [79, 80] consider the
probability to capture the unobserved characteristics between location transition,
i.e., Mathew et al. [81] cluster the locations from the trajectories and then train a
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Hidden Markov Model for each user. Considering the mobility similarity between
user group, Zhang et al. [82] propose GMove to share significant movement regularity
among users.Moreover, pattern-based methods [83, 84, 85] also utilized to predict the
mobility based on these popular patterns. All these mobility prediction techniques
only deal with the two dimensional location and time information. However, in
my context-aware App usage prediction, high-dimensional dataset are needed to be
considered, which is a much more challenging problem.

3.7 Conclusion

This chapter presents CAP, a context-aware personalized App usage prediction
system that takes both contextual information (location & time) and attribution
(App & App type) information into consideration. I find that the relationships
between App-location, App-time, and App-App type are essential to this prediction
and I utilize spatiotemporal relationship (ST-SYS) of different influential factors from
different human beings to design a heterogeneous graph embedding algorithm to map
them into one common comparable latent space. I design a personalized user profile
with his/her historical App usage and trajectory to describe individual dynamic
preferences. I evaluate my system based on a large-scale real-world dataset, which
includes more than 6 million mobile App usage records from 1788 individual users.
The evaluation validates 1) the designated three direct and indirect interactions
between influential factors of App usage, 2) adopting heterogeneous graph embedding
to map these influential factors and 3) the proposed user profile. The results show
that CAP achieves 35% higher accuracy than a related work method PRME in terms
of Accuracy@5. At the same time, prediction with three candidates using my CAP
achieves higher accuracy than prediction with ten candidates using all the other
baselines. All these results validate the effectiveness of applying the spatiotemporal
relationship (ST-SYS) on the large scale CPS for system status estimation.
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Chapter 4

Estimating the Physical Status for
Large Scale Mobile CPS

This chapter introduces how to utilize spatiotemporal relationships to address the
challenge of sparse coverage and uneven distribution in physical field estimation
(air pollution estimation), as described in Chapter 1. Besides the system status
estimation in Chapter 3, estimating the physical field is another essential task of field
estimation, which helps the system to understand a physical process based on the
sensing data. However, purely applying traditional data-driven methods, especially
machine learning methods, to estimate leads to bad and unstable performance. This
is because the performance of purely data-driven methods is highly biased by the data
collection and suffers from poor and unstable performance when the data collection
is insufficient and time-variant. Even with large scale mobile devices, the system is
still not able to guarantee that sufficient information is collected. Take the example
of vehicle based CPS, where most vehicles gather in the central areas where most
human activities happen, thus collecting redundant information. Thus the outskirts,
large parts of the city, are not well covered by the vehicle fleet. In addition, the high
mobility of devices means the spatial coverage changes over time, making physical
field estimation challenging for traditional data-driven methods.

To address the challenges, the evolution of the physical field over space and
time (ST-PHY in Chapter 2), determined by the laws of physics and described
as a physics guided model, is adopted to help estimate the physical field. The
physics guided model indicates the relationship of values at adjacent areas and time
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periods, introducing (temporal and spatial) interactions of the collected data and
offering extra information for physical field estimation. In addition, the ST-PHY
also prevents the estimation from being biased by the data collection. Moreover, to
ensure stable and accurate physical field estimation, features such as the amount of
data collection and the estimation quality at different areas and times (ST-SYS) are
used to adaptively switch between the physics guided model and the data driven
model. Another way to address the challenges are dispatching mobile devices to
collect data with dense coverage and even distribution, which will be discussed in
Chapter 5 (the controllable system) and Chapter 6 (the semi-controllable system).

The system introduces the temporal and spatial interaction of air dispersion with
a physics guided model (ST-PHY), which offers extra information when the sensing
coverage is very sparse. The system adaptively fuses the results from the physics
guided model and the data driven model based on features such as the amount of
data collection and the estimation quality at different areas and times (ST-SYS).
This guarantees the stability of the system even as the sensing coverage changes over
time and location.

I first motivate the problem in Section 4.1. Then Section 4.2 introduces the
technical background of the section. After that, I describe the system design in
Section 4.3 and algorithm design in Section 4.4. The evaluation is discussed in
Section 4.5. Finally, I introduce the related work in Section 4.6 and conclude the
section in Section 4.7.

4.1 Problem Overview

Air pollution has become a major public health crisis worldwide [12, 13]. According
to the World Health Organization (WHO), every year more than 3 million deaths
are linked to exposure to outdoor air pollution and 92% of the world’s population
lives in places where air pollution levels exceed WHO limits [14].

It is essential to provide fine-grained air pollution information in both time and
location to both residents and city managers (e.g. such as block level at every
hour) [86]. This information helps city managers to understand pollution and sources
for further management, planning and development [19]. In addition, an air pollution
map at block scale helps residents understand and reduce their exposure risks (e.g.
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choosing the commute routes or housing with low pollution) [15, 16].
Prior research has investigated using mobile sensing platforms to improve coverage

and resolution over static approaches [87, 88]. Sensors are installed on vehicle fleets,
especially taxis to collect air pollution data with improved cost, and mobility. To
obtain fine-grained air pollution maps with mobile collected data, there has been
two main approaches. The first is a physics guided approach, which adopt physical
principle to describe how air evolves over time and space [89, 90, 91]. Given the
equation of physical principle, these methods can calculate very high resolution
pollution maps. However, these approaches generally have low accuracy due to
1) difficulty to capture all possible factors that influence air pollution, such as
geographical information like buildings, pollution sources etc., and 2) inaccurate
empirical parameter assumption or estimation for dynamic urban environment. The
second approach is data driven, which uses sensed air pollution data and other
information (such as traffic, weather etc.) to derive air pollution maps using one or
more data-driven models [87, 88, 92, 93, 94]. The accuracy of these methods is high
when sufficient data is collected, but deteriorates when sensing coverage is sparse.
This limits the time and location where these approaches can be applied.

Major challenges: sparse and time-variant sensing coverage. (i.) Sparse
Sensing Coverage: Since most mobile sensing nodes like vehicles or taxis gather
around busy areas, it leaves large parts of the city not sensed at any given time.
Consequently, the data density for many parts of the city is insufficient. (ii.) Time-
variant Sensing Coverage: The sensed and non-sensed areas change significantly
over time due to uncontrollable movements of these mobile nodes. As a result, the
time-variance of sensing coverage leads to the unstable performance at different
times.

This chapter presents a physics guided and adaptive (PGA) approach to derive
an air pollution map with high spatial (block level) and temporal (hourly) resolution.
I utilize features such as the amount of data collection and the estimation quality at
different areas and times (ST-SYS) to design an adaptive system structure, which
combines the advantages of high resolution from a physics guided model and high
accuracy from a data driven model using a particle filter. To address the challenge of
sparse sensing coverage, the system infers information at the uncovered areas based
on the temporal and spatial relations of air dispersion with a physics guided model.
To address the challenge of time-variant sensing coverage, PGA adaptively selects
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combination information from either the physics guided model or data driven model
at different time and locations. The intuition here is the system weighs more on the
physics guided model during the period when data coverage is sparse and weighs
more on the data driven model during the period when data coverage is dense.

The main contributions of this section are:
• Reformulating a physics guided model for air dispersion state evolution estima-
tion and combining it with a data driven model.

• Proposing an adaptive scheme to correct estimate from a physics guided model
with estimation generated from a data driven model.

• Deploying and evaluating the system with Particle Filter structure on a large-
scale vehicular sensing platform for large-scale evaluation.

To evaluate the system, I deploy 29 taxis with low cost (∼ 1000 USD for each
device) air pollution sensing devices in the city of Shenzhen for 14 days, which collects
around 26.3 million data samples. The evaluation results show with resolution of
500 m by 500 m by 1 hour, my system achieves up to 5.0× and 2.1× reduction on
average error, as well as up to 8.0× and 3.7× improvement on stability, compared to
artificial neural network and another state-of-the-art combination approach [87]. To
achieve similar performance, my approach requires at least 5× less sensor deployment
than other approaches.

4.2 Physics Guided Background

This section provides background for two main techniques in this section: the physics
guided model and the system structure design. I first discuss advantages of adopting
a physics guided model to deal with the sparse sensing coverage problem. Then,
I introduce the background of a structure, based on what I design my system to
address time-variant sensing coverage problem.

4.2.1 Physics Guided Model

The physics guided model I build upon in this section describes how a physical field,
such as air particles, temperature etc., evolves over time and space. In particular, the
NavierâĂŞStokes equations describe the motion of viscous fluid substances [95, 96].
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Convectional diffusion equation is widely used to describe the transmission of particles
energy and other physical quantities including air dispersion [97, 98].

The convectionâĂŞdiffusion equation is a good fit for deriving a fine-grained air
pollution map. This is because it reveals the dynamics of the air evolution and
describes the relations of quantities at different times and locations [98]. These
relations help to infer air pollution information at the uncovered areas to derive
fine-grained air pollution map when the sensing coverage is too sparse.

The form of the convectionâĂŞdiffusion equation is shown in Equation 4.1. In the
equation, C[kg/m3] = C(x, y, z, t) is the gas (air pollutant) concentration at location
(x, y, z) and time t. S[kg/m3s] represents the environmental factor parameters. There
are two parameters in the equation: the wind velocity vector v = (vx, vy) [m/s] and
the diffusion coefficient K = diag(Kx, Ky, Kz) [m2/s], which is a diagonal matrix
with entries representing the turbulent eddy diffusivities [97].

In equation 4.1, the temporal changing rate of air pollution ∂C
∂t

consists of three
contributions. The first term ∇ · (K∇C) describes the pollutant flux caused by
diffusion. The second term ∇ · (vC) describes the pollutant flux caused by the
wind. The third contribution S describes the local creation or destruction of the air
pollution. Due to the continuity or conservation of air pollutants, I obtain the final
form as shown in Equation 4.1:

∂C

∂t
+∇ · (vC) = ∇ · (K∇C) + S. (4.1)

However, directly applying the model alone to obtain air pollution map is infeasible.
First, the equation is not computationally practical due to the differential form even
after discretization. The equation does not explicitly derive the current air pollution
C(t) given all C(τ), where τ < t. Second, the initial air pollution state is only
partially known due to the sparse sensing coverage. This will lead to aggregated bias
as time progresses. Finally, the environmental factors in the equation change over
time, which cannot be captured accurately in real time. The real time estimation
introduces errors, which propagate over time and space.

To integrate the physics guided model in my system, I first reformulate Equa-
tion 4.1 for air pollution state evolution estimation (discussed in Section 4.4.1). Then
I introduce a data-driven model to correct the estimation errors from the physics
guided model. These two models cooperate using a Particle Filter structure, which
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works with an adaptive scheme to deal with both sparse and time-variant sensing
challenges. I further describe the particle filter structure next, in Section 4.2.2 and
how I design adaptive scheme in Section 4.4.

4.2.2 Structure Design Background

PGA is built using a Particle Filter structure to combine the physics guided model
and the data driven model. Here I provide a brief background of the particle filter
approach that is relevant to my system.

Particle Filter Design: A Particle Filter is a sequential Monte Carlo method
for on-line state tracking, which works within a Bayesian framework and under
Markov assumption [99, 100]. It uses a finite number of elements to represent a
non-parametric probability density function (PDF) of the estimated state [101]. A
Particle Filter is a recursive filtering consisting of two stages: 1) state evolution
estimation which predicting next state PDF from the current estimate and 2)
estimate correction which corrects the prediction using new measurements.

The Particle Filter structure is particularly well suited for deriving an air pollution
map. First, the air pollution evolution fits the hidden Markov assumption since given
the pollution at previous time slot, the current pollution level only depends on the
pollution level in the previous time slot. Second, I can not use a simpler distribution
(e.g. Gaussian distribution) based on the experimentation results. Finally, similar
to the particle filter, I utilize a state evolution estimation (physical model) and
estimation correction (adaptively correct physical model with data model). The
details can be found in Section 4.4.

To design a Particle Filter, two probabilistic models should be available for state
evolution estimation and estimate correction [99]. If the state to be estimated at
time t is indicated by the vector yt, the model for state evolution estimation can
be denoted as

p(yt|yt−1, ut), (4.2)

where ut represents the cause of evolution from t− 1 to t. To be specific in deriving
an air pollution map, ut includes environmental factors at time t that causes the air
dispersion.

If the new measurement at time t is denoted by zt, the model for estimate
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correction is represented by
p(zt|yt). (4.3)

Since Particle Filter holds a Markov assumption, yt is conditionally independent from
yk when k < t− 1 once yt−1 is known. Similarly, the measurement zt is conditionally
independent from any other variables if yt is known. I do not have to know specific
distributions in Eq. 4.2 and Eq. 4.3.

The algorithm initializes with a set of N particles Y , representing the posterior of
yt−1. Given the latest ut and measurement zt, it generates a new set of N particles,
which represents an update of the posterior estimate for y at time t. The ith particle
in Yt, y[i]

t , provides the ith possible hypothesis about the state at time t [101].
Inadequacy of a Simple Particle Filters: A naive way to implement the

PGA system would be to directly use the physics guided model for state evolution
estimation, while the data driven model generates measurements from collected
data for estimate correction. The gas (air pollutant) concentration to be estimated
is yt, while the generated measurements are zt. ut is the new air pollution sources.

Directly applying the Particle Filter structure to combine the two models does
not necessarily guarantee performance improvement. This is because time-variant
sensing coverage causes the quality of data-driven model outputs to vary significantly
over time and location. When the collected data coverage is highly sparse, the
measurements generated by the data driven model is unreliable. As a result, correcting
the estimate with these measurements can deteriorate the overall performance.
Therefore, I present an adaptive model fusion structure to estimate the quality of
the results before the correction. The details of the adaptive scheme are described in
Section 4.4.

4.3 System Design

This section introduces how I design system architecture to address the key challenges
of the sparse sensing coverage and time-variant sensing coverage. Figure 4.1 shows
the high-level architecture of the vehicle based CPS for physical field estimation (air
pollution estimation). Air pollution information is collected through sensors on the
vehicles from the information sensing layer . The collected information is stored in
the database and processed in the information estimation layer . The information
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Figure 4.1: The figure shows the system architecture of spatiotemporal relationship
aided large scale vehicle based CPS for physical field esimation (city-scale fine-grained air
pollution estimation).

estimation layer adopts a data-driven model to infer the air pollution and stores the
results back to the database. The spatiotemporal relationship analysis layer adopts
both the raw data from the information sensing layer and the processed results from
the information estimation layer to improve the estimation results and sents the
results to the application layer . The detailed design of the spatiotemporal relationship
analysis layer is shown in Figure 4.2.

Pre-Processing Module: According to resolution requirement, the pre-processing
module discretizes the temporal and spatial domain into nlon by nlat congruent sub-
areas (xi, yj) and time slices tk. xi, yj, tk correspond to longitude, latitude and time
index respectively. The size of each sub-areas is ∆x×∆y and ∆x = ∆y = l. The
sub-areas and time slices combine to form the smallest of the system unit (xi, yj, tk),
which defines my pollution map resolution. When the cloud receives data from
mobile nodes, the pre-processing module puts them into different units. If multiple
data exists in the same unit, the system adopts the average value to represent that
unit for further processing. In order to reduce the computational complexity, rather
than using a centralized Particle Filter jointly estimating the air pollution of all
the sub-areas, I associate a Particle Filter to each sub-area. It is noticed that the
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Figure 4.2: This figure shows the architecture of the spatiotemporal relationship analysis
layer , which utilizes 1) spatiotemporal relationship of air pollution (ST-PHY) and 2) the
amount data collection and estimation quality at different areas and times (ST-SYS), to
help the large scale mobile CPS (vehicle based CPS) for physical field estimation (city-scale
fine-grained air pollution estimation).

particle filters at different sub-areas are not independently calculated. Instead they
interact with each other through the physics guided state evolution estimation, since
the temporal evolution of air pollution involves air exchange over spatial domain, as
shown in Eq. 4.1.

State Evolution Estimation: To address the sparse sensing coverage problem,
the system takes advantage of the spatial and temporal relations of air dispersion
shown in equation 4.1. The physics guided model allows the system to 1) obtain
high temporal-spatial resolution and 2) maintain air pollution field information
when the sensing coverage is very sparse. Since it is difficult to predict the next
state from the current estimate with this differential equation, I first reformulate
Equation 4.1 to a predictable form (C(t) = f (C(t− 1))). Then I integrate the
reformulated equation in the Particle Filter structure for state evolution estimation.
This module takes the estimation output at time slice tk−1 as input and applies the
reformulated form of the physics guided model to estimate the air pollution at at
time slice tk. In addition, before the state evolution estimation is conducted at each
time slice, the environmental factor parameters S are estimated from the collected
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data. The derived physics guided model and estimation from the model is stored in
the spatiotemporal relationship database. I further discuss the details of this module
in Section 4.4.1.

Adaptive Model Fusion: Due to the dynamics of the sensing coverage, neither
the physics guided model nor the data-driven model from the information estimation
layer can ensure the advantage over all the sub-areas and time slices. An adaptive
model fusion scheme is designed to fuse the results from two models to guarantee
that the system can choose the one with better accuracy. First, due to high required
resolution and limited number of vehicles, most sub-areas do not have real data
measurements. Therefore, I must generate data for estimate correction using the data-
driven model in the information estimation layer . Second, whether the generated
measurements have similar value as ground truth depends on whether there are
real collected data nearby (close in proximity and time). When the generated
measurements are near the real collected data, the generated measurements would
be similar to ground truth values, and vice versa. Correcting the estimation with
these generated measurements likely improve the accuracy. Third, since the vehicles
are mobile, these sparse locations change and thus PGA must make this adaptation
on-the-fly. Therefore, at different sub-areas and time slices, the system adaptively
decides to conduct or skip the estimate correction according to whether or not
the correction with generated measurements improves the performance. After the
adaptive model fusion, the system gives each sub-area a distribution representing
the possible values and their weights. Higher weights mean higher possiblilities.
The distribution not only represents the possible real air pollution value hypothesis
but also maintains an assessment of the likely accuracy of the estimate [102]. The
final pollution value of each sub-area is the weighted sum of the distribution. In
addition, the historical estimation results will be conveyed into the physics guided
state evolution estimation module for the next state estimation. I further discuss
the adaptive scheme in Section 4.4.2.

4.4 Algorithm Design

This subsection provides the algorithm description in the key modules in Figure 4.2:
state evolution estimation (physics guided model) and adaptive model fusion (data-
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driven & physics guided). These two modules are designed to address the two main
challenges in this section: the sparse sensing coverage and time-variant sensing
coverage problem respectively.

4.4.1 Reformulating the Physics Guided Model for State Evo-

lution Estimation

In order to address the challenge of sparse sensing coverage, I introduce extra
information from the temporal and spatial relations of air dispersion principle [97, 98].
To achieve this, I reformulate the physics guided model (shown in Equation 4.1), to
provide a state evolution estimation. This state evolution estimation allows the
system to infer physical values when (and where) the physical sensors is absent. This
approach bases the estimation on physical laws that limits potential errors, when
compared to a data-based approach, especially when the data samples are not a fair
representation of the underlying distribution [103]. In addition, since the original
physics guided model Equation 4.1 is expressed as a differential form, it must be
transferred into a predictable form (C(t) = f (C(t− 1))) for a state evolution model.

Assumptions: To make the model computationally efficient, I make the following
simplifying assumptions while still keeping temporal and spatial correlation: First, I
focus on the air pollution near the ground, thereby bypassing the altitude variations
in the air pollution field. Thus, I assume that C(x, y, z) ≡ C(x, y). This assumption
is valid for near ground concentrations when sub-area length (500m) is much greater
than altitude changes (<= 10m) [90]. Second, since the time resolution in my
application is one hour, and I evaluate the wind on a macro-scale (500m), I treat
the factor of wind as a whole within an hour, thus the wind vector is estimated
once every hour [90]. Third, different boundary conditions should be assumed in
different areas, which are only decided by the situation around the marginal area.
Since I apply my system in the center area of Shenzhen, China, whose boundaries
are flat land and ocean and no large boundries exist, I assume an open boundary
condition which fits the area I sense in my deployment and evaluation. For other
areas, the boundary condition needs to be modified for implementation. Finally,
the dispersion rate K in each direction is the same and independent of location, i.e.
Kx = Ky = Kc, where Kc is a constant. From my experiments, I observe that this
assumption have little impact on accuracy. It is easy to modify the corresponding
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model if environmental study suggests the need for more complex forms of Kx and
Ky. The changes will not affect the other parts of the algorithm [90].

It is noticed that the physics guided model only captures the major factors that
air pollution evolves over time and space. More detailed factors, such as buildings
in the area, small pollution sources like human beings, are impossible be included.
Therefore, a data-driven model is needed to capture more detailed information.

Equation Derivation: With above assumptions, I can rewrite Equation 4.1 as

∂C

∂t
+ vx

∂C

∂x
+ vy

∂C

∂y
= K(

∂2C

∂x2
+
∂2C

∂y2
) + S, (4.4)

where C is the gas (air pollutant) concentration. vx and vy denote wind velocity on
X and Y directions. K and S are diffusion coefficients and local creation/destruction
of air pollution. As mentioned in Section 4.2.1, the temporal changing rate of air
pollution ∂C

∂t
consists of three contributions. The first term vx

∂C
∂x

+ vy
∂C
∂y

describes
the pollutant flux caused by the wind. The second term K(∂

2C
∂x2

+ ∂2C
∂y2

) describes
the pollutant flux caused by diffusion. The third contribution S describes the local
creation or destruction of the air pollution.

While this model describes the physical properties of air dispersion with high
fidelity, it cannot be employed for the state evolution estimation. This is because
the model is illustrated in a continuous form while the data collected by the mobile
sensing system comes from discrete samples in space and time.

In order to achieve computational practicality while maintaining the fidelity of
the air diffusion process, I discretize Equation 4.4 on both temporal and spatial
domain. As described in section 4.3, the pre-processing module splits the overall
area into n_lat by n_lon congruent sub-areas and discretizes the time into equal
time slices. The size of each sub-areas is ∆x×∆y and ∆x = ∆y = l. Equation 4.4
can be rewritten as

∂C

∂t
= K

(
∂2C

∂x2
+
∂2C

∂y2

)
− vx

∂C

∂x
− vy

∂C

∂y
− C

(
∂vx
∂x

+
∂vy
∂y

)
+ S. (4.5)

For ease of the analysis and the application, the above model is discretized in the
spatial domain. The spatial discretization form of C is denoted as D and shown as
follows,
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D(1, 1) D(1, 2) ... D(1, nlat)

D(2, 1) D(2, 2) ... D(2, nlat)

... ... ... ...

D(nlon, 1) D(nlon, 2) ... D(nlon, nlat)


I use the finite difference to replace the partial differential with respect to x and

y in the above equation to yield to the following equation

∂D(i,j)
∂t

= K
{

1
∆x2

[D(i+ 1, j) +D(i− 1, j)− 2D(i, j)] + 1
∆y2

[D(i, j + 1) +D(i, j − 1)− 2D(i, j)]
}

−vx(i,j)
∆x

[D(i+ 1, j)−D(i, j)]− vy(i,j)

∆y
[D(i, j + 1)−D(i, j)]−

D(i, j)
{
vx(i+1,j)−vx(i,j)

∆x
+ vy(i,j+1)−vy(i,j)

∆y

}
+ S(i, j).

(4.6)
Then, I define a new nlon ·nlat by nlon ·nlat matrix A′, and I use A′((i1, j1), (i2, j2))

to denote A′((i1 − 1)nlat + j1, (i2 − 1)nlat + j2), ∀i1, i2 = 1, 2, · · · , nlon, j1, j2 =

1, 2, · · · , nlat. A′ is a sparse matrix with non-zero values at

A′((i, j), (i, j)) = −4K

l2
− 1

l
[vx(i+ 1, j)− 2vx(i, j) + vy(i, j + 1)− 2vy(i, j)]

A′((i, j), (i, j − 1)) = A′((i, j), (i− 1, j)) =
K

l2

A′((i, j), (i, j + 1)) =
K

l2
− vy(i, j)

l

A′((i, j), (i+ 1, j)) =
K

l2
− vx(i, j)

l
.

To get the corresponding discrete form expression, matrix D is reshaped to form
a nlon · nlat vector C ′, where

C ′((i− 1)nlat + j)D(i, j) ∀i = 1, 2, · · · , nlon, j = 1, 2, · · · , nlat.

Similarly, matrix S is reshaped to form a nlon. · nlat vector S ′. Then I could get:

dC ′(t)

dt
= A′C ′(t) + S ′, (4.7)

where C ′(t) is a n_lat · n_lon vector with its elements giving the air pollution
value at different sub-areas, and S ′ is a n_lat · n_lon vector discretized from S
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in equation 4.1. A′ is a n_lat · n_lon by n_lat · n_lon matrix representing the
dispersion dynamics, i.e., how the air pollution at different sub-areas influence each
other.

After the spatial discretization, I further discretize equation 4.7 on temporal
domain. Note that Equation 4.7 is an ordinary differential equation (ODE) [104]. I
solve the equation to obtain the relationship between C ′(t+ ∆t) and C ′(t):

d

dt
[exp(−tA′)C ′(t)] = exp(−tA′)

[
dC ′(t)

dt
−A′C ′(t)

]
= S ′ exp(−tA′)

exp(−(t+ ∆t)A′)C ′(t+ ∆t)− exp(−tA′)C ′(t) =

∫ t+∆t

t

S ′ exp(−τA′)dτ

exp(−∆tA′)C ′(t+ ∆t) = C ′(t) + exp(tA′)

∫ t+∆t

t

S ′ exp(−τA′)dτ

. Rearrange the above terms would give:

C ′(t+ ∆t) = exp(∆tA′)C ′ + [exp(∆tA′)− I]A′
−1
S ′. (4.8)

Denote A := exp(∆tA′), B := [exp(∆tA′)− I]A′−1, I get the final discrete space and
time air dispersion model characterized by the following equation:

C[k + 1] = AC[k] +BU [k], (4.9)

where k is the time slice index, and C[k] (n_lon by n_lat matrix) is the discretized
form of C ′(t). U [k] is the discretized form of S ′. The coefficient matrix A describes
the temporal and spatial correlation of the air pollution concentration while coefficient
matrix B reveals the effect of environmental factor U [k].

I apply particle filter on the elementwise representation of the matrix form
formula 4.9 for state evolution estimation:

C[k + 1]li,j = (AC[k])li,j + (BU [k])li,j + φ, (4.10)

where C[k + 1]li,j is the lth particle at sub-area (i, j) and (k + 1)th time slice. φ is
the noise of state evolution estimation, which is drawn from a distribution derived
from real measurement. I implemented my algorithm based on this.
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Figure 4.3: This figure shows detailed architecture of the adaptive model fusion scheme.
The system adaptively chooses to correct physics guided state evolution estimation with
generated measurement or not. The decision is based on comparing qualities of physics
guided state evolution estimation with generated measurement.

It is noticed that given a time slice k, the key parameters to be estimated are the
time-variant environmental factor, which is the U [k] in equation 4.10. In my system,
I use the air pollution measurement at and before time slice k to estimate the U [k]

through convex optimization [105, 106]. After U [k] is estimated, Eq. 4.10 is totally
decided and can be used to estimate the air pollution values at all sub-areas.

4.4.2 Adaptive Model Fusion Based on Quality Comparison:

In order to account for the time-variant sensing coverage, I design an adaptive model
fusion scheme. This subsubsection first introduces the structure of adaptive model
fusion scheme. Then I explain why and how I generate the measurements when no
sensing data is present for estimate correction. Finally, I discuss how the adaptive
decision is made.

Adaptive Model Fusion Architecture: In order to address the time-variant
sensing coverage problem, I design an adaptive model fusion scheme as shown in
Figure 4.3. The results of the state evolution estimation, which are stored in the
spatiotemporal relationship database, are fed into the estimate correction unit for
performance improvement. However, at any given time, with many more sub-areas
than mobile sensing nodes, many sub-areas are not sensed. I generate measurements
at these ”empty” sub-areas with (data driven) measurement generation unit. This
(data driven) measurement generation is performed in the information estimation
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layer and its results is stored in the database. However, estimate correction with
these generated measurements does not guarantee improved estimate performances.
This is because when the sub-area is physically located far from sub-areas with real
collected data, the generated measurement at the ”empty” sub-area can have large
difference from true value. As a result, conducting estimate correction at these
sub-areas and time slices will likely to cause performance deterioration.

Therefore, at each sub-area and time slice, the system first computes and compares
the quality of outputs from physics guided state evolution module and data driven
measurement generation unit. This is done at quality computation & comparison unit.
After that, the system decides to choose the outputs either before or after estimate
correction. How the system makes the decision will be explained in Section 4.4.2.

Data Driven Measurement Generation: Since most sub-areas are not sensed
at a given time slice, as unfilled squares, measurements for estimate correction at
these sub-areas are unavailable. As a result, the errors from the physics guided state
evolution estimation module could broadcast over time and space due to the model
approximation error and environmental factor estimate error.

Therefore, in order to make estimate correction possible at all sub-areas, I use
a data-driven method to generate the measurement at these empty sub-areas. My
system adopts an Artificial Neural Network(ANN) for measurement generation due
to its high capability to learn complex non-linear relationship [94, 107]. The details
of implementation of the ANN could be found in [87, 94].

After the measurements are generated, it is possible to correct the estimate at
each sub-area to get the new weight assignment [100] by

p(zt|yt) = fN,σs2(zt − yt[i]), (4.11)

where zt and yt represent generated measurement and state evolution estimation
output respectively. fN,σs2 is the density probability of data measurement noise,
which is obtained from experimentation. The Equation 4.11 needs to be discretized on
both temporal and spatial domain. After all weights have been computed, resampling
step [100] can take place to reassign the importance of particles according to their
similarities to new measurements.

Quality Computation & Comparison: A key problem from sparse and time-
variant sensing coverage is that consistently correcting estimates at all sub-areas

58



and time slices do not necessarily improve performance. This is because at some
sub-areas and time slices, the generated measurements have very large difference
from ground truth values. Using these low quality generated measurements to correct
the estimates only lead to performance deterioration.

As a result, my adaptive correction scheme chooses to correct the estimation
or not based on quality comparison to achieve the least error at each sub-area and
time slice. With adaptive correction, the system has two choices: 1) conducting the
correction with the generated data from the data driven model if the quality of the
generated data is higher than the quality of estimation or 2) skipping the correction
after estimation if the quality of the generated data is lower than the quality of
estimation.

I use entropy of the estimation distribution to estimate quality of state evolution
estimation [101, 108]. This is because entropy represents the number of bits required
for optimal encoding, which can be used as an indication of the uncertainty of
the estimation. I define entropy of physics guided state evolution estimate
distribution E[k]i,j at sub-area (i, j) and time slice k as

E[k]i,j = −
N∑
l=1

(
p[k]li,jlog2p[k]li,j

)
, (4.12)

where [k]li,j is probability of lth particle for state evolution estimation distribution at
sub-area (i, j) and time slice k, and N is the number of particles. The lower entropy
E[k]i,j indicates higher quality of state evolution estimation, and vice versa.

The quality of generated measurement can be inferred from the distance between
generated measurement and real sensed data. Usually, measurements generated by
sensed data from farther sub-areas cause higher errors. Therefore, I define sum of
M nearest neighbours’ distances at sub-area (i, j) and time slice k as

D[k]i,j =

(
M∑
m=1

√
(i− im[k])

2 + (j − jm[k])
2)

)/
M, (4.13)

where (im[k], jm[k]) represent the nearest M sensed data for sub-area (i, j) at time
slice k. Smaller D[k]i,j means smaller errors from measurement generation. If only n
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(n < M) nearest neighbours exist, D[k]i,j is calculated as:(
n∑

m=1

√
(i− im[k])

2 + (j − jm[k])
2 + (M − n) ∗Dmax

)/
M, (4.14)

where Dmax =
√
N2

lon +N2
lat, which is the diagonal line length of the area. Nlon

and Nlat are the discretized length of the map on longitude and latitude, as described
in Section 4.3. Here I select M = 8, since one sub-area has at most 8 adjacent
neighbors.

After calculating these two quality metrics at each sub-area (i, j) and time slice
k, the system normalizes them with α to keep them at same order of magnitude for
quality comparison. Based on the comparison result, the system chooses to conduct
estimate correction if E[k]i,j - α ∗D[k]i,j < 0 or skip the estimate correction if E[k]i,j

- α ∗D[k]i,j > 0.

α can be learned based on performance comparison of physics guided and data
driven models. Since I can get the range of E[k]i,j ∈ [0, log2N ] and D[k]i,j ∈
[
(
1 +
√

2
)/

2, Dmax], I can derive:

log2N/Dmax ≤ α ≤ 2(
√

2− 1)log2N. (4.15)

α is selected close to log2N/Dmax for bias towards the physics guided model, while α
is selected close to 2(

√
2− 1)log2N bias towards the data driven model. I calculate

errors when different α values are applied to the proposed adaptive model with
historical data. Then I select the α that gives the minimum error and use this α on
the adaptive model applied to the current data. The optimization of the value α can
be further obtained by mathematical derivation or optimization methods, which will
be investigated in my future work since this section only focuses on the concept of
adaptively combining two models.

4.5 Evaluation

In this section, I evaluate my system’s ability to address the challenges of sparse
sensing coverage and time-variant sensing coverage. As discussed in Section 1,
sparse sensing coverage leads to accuracy deterioration while time-variant sens-

60



Figure 4.4: The sensing hardware is deployed on the right side of the car’s trunk. It
is covered up when deployment is finished to prevent it being disturbed during vehicle
operation.

ing coverage leads to unstable accuracy. Therefore, I focus on accuracy (average
error) and stability (standard deviation of error) to validate system design with data
collected from city-scale deployment.

I first introduce how I deploy my system to collect data for evaluation in Sec-
tion 4.5.1. Then, I derive statistical analysis on sensing coverage in Section 4.5.2, to
illustrate the challenges of sparse sensing coverage and time-variant sensing
coverage. Finally, in Section 4.5.3, I validate that my system is capable of deal-
ing with the challenges of sparse sensing coverage and time-variant sensing
coverage with the improvement on accuracy and stability respectively.

4.5.1 Deployment & Experiment Setup

In order to evaluate my approach, I design a mobile sensing hardware platform for
city-scale air pollution data collection. I deploy the sensing hardware on 29 electric
taxis in an area of 256 km2 for 14 days.

Sensing Hardware: The sensing hardware is designed for vehicles to collect air
pollution data and transmit the data back to the cloud. The sensing hardware includes
four parts for different functions: sensing module, power module, communication
module and control module [109].

Sensing module is used to collect air pollution information. It includes a GPS
sensor to record location and time and concentration of 8 types of gases (CO, CO2, O3,
NO2, SO2, PM1, PM2.5, PM10). The air pollution data is sensed every second. The
other three parts work cooperatively to support the sensing module. Power module
contains a power management integrated circuit to stablize the vehicle’s electrical
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power and offers stable power support to the sensing module. Communication
module is responsible for all the transmissions between the sensing hardware and
the cloud through both 3G and WiFi. Control module, which is mainly composed
of a micro-controller, is capable of scheduling sensing, communication tasks in the
sensing hardware.

City-Scale Deployment: In order to achieve large scale deployment for system
evaluation, I deploy the sensing hardware on 29 electric taxis in the city of Shenzhen
for 14 days. Although I do not restrict the motion of the taxis, I define the sensed area
to the central business area, which covers 256 km2, from (113.8668◦E to 114.1538◦E

and 22.5150◦N to 22.58868◦N). This corresponds to the three most important
districts of the city: Luo Hu, Fu Tian and Nan Shan. During the deployment, around
26.3 million data samples are collected and transferred to the cloud.

The sensed area is very sparse within each time slice of 1 hour (1% − 15%

coverage), although around 100,000 data samples are collected. This is because taxi
routes cover overlapping areas.

For easy understanding, I transfer the longitude and latitude to kilometers and
set the left bottom point as the point of origin in my evaluation. I deploy the sensing
hardware in the taxi trunk and an air extracting device pumps air outside the electric
taxis into the sensing hardware, as shown in Figure 4.4.

Experiment Setup: Here I outline the experimental configuration, including
data description,system parameters, ground truth, performance metric, and baselines.

• Data Description: The data collected and transferred to cloud are formatted
as: record id, car id, time stamp, longitude, latitude, CO concentration, CO2

concentration , PM2.5 concentration, PM10 concentration, SO2 concentration,
NO2 concentration, O3 concentration. All the gas concentration is expressed
in parts-per million (PPM), which is a commonly used unit.

For simplicity but without loss of generality, I only focus on deriving CO

pollution map. This is because deriving pollution map for other gases are
similar and CO is identified as one of six key air pollutants by USA National
Ambient Air Quality Standards (NAAQS) as well as Chinese Ministry of
Environmental Protection [110]. In addition, CO is a toxic gas. Only 3 -
7 PPM CO leads to 14% increase in the rate of admission in hospitals of
non-elderly for asthma and 5 - 6 PPM CO causes significant risk of low birth
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Figure 4.5: The figure shows sub-areas being sensed in blue solid square and sub-areas
not being sensed in blank square within four different time slices. The red solid squares are
5 government-run air monitoring stations, which are used as ground truth. The temporal
resolution is 500m by 500m. The sensing coverage, i.e. the percentage of sub-areas being
sensed, changes significantly at different time and locations.

rate if exposed during last trimester[111, 112]. Therefore, CO values are of
particular importance for human health. At least less than 1 PPM estimation
error should be achieved. Even 1 PPM estimation error on CO may lead to
residents’ panic or ignorance on air pollution, that threatens their health.

• Testing Set: I adopt the measurements from all 5 national air pollution
monitoring stations within the experiment area as testing set [113]. These
national air pollution monitoring stations publish hourly air pollution data,
which is used as testing set of my experiment. As shown in red filled squared in
Figure 4.5, the 5 air monitoring stations include: Li Yuan, Hong Hu, Hua Qiao
Cheng, Nan You and Xi Xiang. These five monitoring stations are located at
the north-west, north-east, center, south-west and south-east of the experiment
area. For easy representation, I assign id 1 ∼ 5 to the south-east, north-east,
center, south-west and north-west stations respectively.

However, these 5 monitoring stations are not enough to evaluate my system
which claims high resolution and large scale. To address the problem of lacking
official air pollution monitoring station data, at each time slice, I also adopt
data from 40% of the sensed area data as testing set. For example, at time slice
k, 40sub − areas are sensed, I randomly select 16sub − areas as testing set,
while the rest sub− areas as training data. This guarantees the independence
between testing and training sets. Therefore, I have data from both government-
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run air pollution monitoring station and my mobile sensing platform as ground
truth.

• System Parameters: In the air quality application, I applied spatial reso-
lution of 500m by 500m, which correlates to block level scale. I set temporal
resolution as 1 hour, which is the same as most government run monitoring
stations [92]. The number of particles for Particle Filter is set to 100. This is
because for CO estimation, the common CO value ranges from 0 to 5 and 0.1
PPM resolution is good enough. At least 50 particles are needed and I use 100
particle for better accuracy. The α is set as 0.375. The value of α decides the
system bias more to the physics guided model of the data-driven model, which
can be calculated with the testing results in the past. I calculate errors when
different α values are applied to the proposed adaptive model with historical
data. Then I select the α that gives the minimum error in the historical data
testing, which is 0.375.

• Performance Metric: In order to measure the performance of my method, I
defined estimation absolute error Er[k]i,j at sub-area (i, j) and time slice k as

Er[k]i,j =
∣∣∣Cd[k]i,j −Cgt[k]i,j

∣∣∣, (4.16)

where Cd[k]i,j and Cgt[k]i,j are the derived value and ground truth at sub-area
(i, j) and time slice k respectively. This metric represents deviation between
the derived value and ground truth value.

I use the average value of Er[k]i,j over sub-areas and time slices as a measure-
ment of system accuracy and its standard deviation as a measure of the system
robustness. Smaller average values and standard deviations represent better
accuracy and higher robustness respectively.

• Baselines: In order to illustrate how my method, physics guided and adaptive
approach (PGA), improves performance compared to other existing methods, I
adopt the following methods as baselines:

Pure Physics Guided Model (PHY): This method is the physics guided model
I use in my method, which only relies on the temporal and spatial relations
from Equation 4.1. By comparing my method with this baseline, I can see the
improvement of integrating a data-driven model working with my adaptive
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Figure 4.6: This figure shows the averages and standard deviations of hourly sensing
coverage from my city-scale deployment.

model fusion scheme.

Pure Data Driven Model (ANN): The artificial neural network(ANN) method
is a network composed of simple elements called neurons, which is able to learn
complex relationships between inputs and outputs [107]. ANN is the data
driven model I use to generate measurement for the adaptive model fusion
in my method. By comparing my method with this baseline, I can see the
gain from integrating the physics guided model into Particle Filter structure
working with the adaptive model fusion scheme.

AirCloud: I derive the air pollution map with the method from a state-of-
the-art work AirCloud [87]. AirCloud is a combination of two data-driven
models, which adopts Artificial Neural Network for online sensor calibration
and Gaussian process to infer the air pollution values at locations where sensors
are not available. This work uses similar data source to infer air pollution as
my method. Therefore I adopt this state-of-the-art method as one important
baseline to compare.

4.5.2 Statistical Data Analysis

To illustrate that sensing coverage is sparse and changes over time and space through-
out my deployment, I plotted the hourly sensing coverage at 4 different time slices
of one day in Figure 4.5. At each time slice of an hour, the sensed sub-area is very
sparse despite a large number of samples. The sensed sub-areas at the center of the
city is denser because most human activities happen in the center area and taxis
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Figure 4.7: The figure shows the hourly air pollution map derived by my physics guided
and adaptive approach with the spatial resolution of 500m by 500m.

enter this area more frequently. The sensing coverage is sparser between 6:00am -
6:59am than at the other 3 time slices, because people rarely take taxi during this
time. This shows how human activities cause sparse and time-variant sensing
coverage.

For further analysis, I plotted the average and standard deviations of the hourly
sensing coverage in Figure 4.6, i.e. the percentage of sub-areas being sensed at each
hour. The averages and standard deviations are calculated across all the 14 days
of the deployment. First, due to overlapping taxi routes, all the average values
are less than 12%. Average hourly sensing coverage from 2:00am - 6:00am are
around 1%, which corresponds to decreasing taxi mobility due to decreasing human
activities during this period. Second, the average values vary from 0.2% - 12% over
time. Third, the standard deviations, which show the variances between days, are
between 0.5% - 4.8%, which are comparable to the average value range 0.2% - 12%.
These three observations demonstrate the scale of the challenges: sparse
and time-variant sensing coverage problems in deriving fine-grained air
pollution map.

4.5.3 System Performance

I compare my method with three baselines to illustrate the advantage of my method
design. I evaluate accuracy and stability to validate system design with data collected
from city-scale deployment.

Overall Performance: In order to illustrate the overall performance of my
method and the three baselines, I plotted the cumulative distribution function (CDF)
of average absolute errors in Figure 4.8. To compare how the fmy methods perform
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under different sensing coverage conditions, I plotted the results from 6:00am -
6:59am when the sensing coverage is very sparse (∼ 1%) at the top and the results
from 18:00am - 18:59am when the sensing coverage is relatively denser (∼ 10%) at
the bottom.

Four methods show consistent performance difference in both sub-figures. My
PGA performs best, AirCloud ranks second, ANN ranks third and PHY performs
worst. PHY’s low accuracy is due to its bad online parameter estimation which
brings a consistent and accumulating bias. AirCloud is better than ANN since
AirCloud is a combination of ANN and Gaussian Process, which takes advantage of
both methods (high resolution and high accuracy). My PGA performs best since my
adaptive scheme is able to choose model with better accuracy, which limits the error.
When data is sparse, PGA is biased to the physics guided model and when data is
dense, PGA is biased to the data driven model.

Given the absolute error, AirCloud show lower percentages during 6:00am -
6:59am than 18:00am - 18:59am, since performance of AirCloud rely on sensing
coverage. In contrast, my method does not show too much difference between two
sub-figures. The consistency comes from adopting physics guided model which
preserves the air pollution temporal and spatial relationship.

Figure 4.8(a) shows the real-world situation of very sparse sensing coverage.
Given absolute error < 1PPM , PHY, ANN and AirCloud only gets 0%, 56% and
56% respectively, while my method gets 89%. Furthermore, all of my estimation are
limited to 1.6PPM . In contrast, all three baselines have absolute error > 3.5PPM .

I believe that the improvement comes from the integrating the physics guided
model. AirCloud combines two data-driven models, which means that the limitation
of the data-driven model when the data is sparse cannot be relieved. On the other
hand, my PGA introduces the physics guided model to handle sparse sensing
coverage and time-variant sensing coverage, which shows a 4× reduction in
the error < 1PPM compared to the AirCloud.

I observe that my deployment is focused on the busy areas and the center area of
a city, which sometimes can achieve high sensing coverage as Figure 4.8(b). However,
for even large scale deployment, hourly 10% sensing coverage is really difficult to
achieve and 1% sensing coverage is a quite common number. At this condition, my
PGA shows significant improvement over the state-of-the-art method AirCloud, as
show in Figure 4.8(a).
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(a) Cumulative Distribution Function (CDF) of
Absolute Errors during 6:00-6:59.

(b) Cumulative Distribution Function (CDF) of
Absolute Errors during 18:00-18:59.

Figure 4.8: This figure shows cumulative distribution function (CDF) of absolute errors,
using my method and three baselines during 6:00-6:59 when sensing coverage is very sparse
(∼ 1%) and during 18:00-18:59 when sensing coverage is relatively denser(∼ 10%). At both
time, my method consistently shows performance advantages over three baselines.

Performance VS. Time: In order to check how four methods perform over
time, I plot daily average and standard deviations of relative error at the top and
bottom in Figure 4.9. Each average and standard deviation value is obtained from
24 hours of the day and all ground truth locations, which involves both temporal
and spatial statistics.

First, my PGA achieves 0.30PPM − 0.59PPM absolute error, which are lower
than PHY and ANN. To be specific, my method has up to 13.9× and up to 4.7×
reduction on average absolute errors compared to PHY and ANN respectively. This
shows that my adaptive model fusion, working with Particle Filter structure, is
able to consistently determine whether physics guided model (PHY) or data driven
model (ANN) is better on different days, which have different traffic patterns. The
successful decision based on quality comparison between two models helps the system
optimize both accuracy and robustness.

Second, ANN shows 0.68PPM − 1.04PPM absolute error standard deviation,
which are up to 7.3× higher than my PGA and up to 6.6× PHY. This is because
the accuracy of ANN depends on the sensing coverage, which is highly time-variant.
In contrast, both PHY and my method shows much lower standard deviation, i.e.
higher robustness. This proves the stability of the physics guided model within a 24
hour period. My system also keeps the stability by integrating the physics guided
model.

Finally, compared to AirCloud, my method shows increased performance on both
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Figure 4.9: This figure shows the absolute
errors on different days of a week from my
method and three baselines. The average
values are shown at the top figure while the
standard deviations are shown at the bottom.
Compared to three baselines, my method con-
sistently shows lower average absolute errors
on different days of a week. Besides, my
method shows a lower or similar standard
deviation, i.e. higher robustness.

Figure 4.10: This figure shows average and
standard deviation of absolute errors at 5
monitoring stations and other non-station
areas. My method consistently has lower
values on averages and standard deviations
at all locations, which means higher accuracy
and robustness.

average and standard deviation of absolute errors. My method shows up to 2.1×
and 2.2× reduction on average and standard deviation compared to AirCloud, which
is a two stage method combining two data driven model, Artificial Neural Network
and Gaussian Process. This shows my PGA’s advantage over the state-of-the-art
method. The advantage comes from the combination of one physics guided model
and one data driven model.

Performance VS. Location: In order to evaluate how the four methods
perform over locations, I plot average and standard deviations of absolute error 5
government-run air pollution monitoring stations and other non-station locations in
Figure 4.10. All averages and standard deviations are obtained from 14 days by 24
hours.

My PGA method shows average of 0.39PPM−0.62PPM and standard deviation
of 0.31PPM − 0.50PPM , which have consistent advantages over three baselines at
all locations. Specifically, my method shows up to 9.2×, 3.7× and 2.0× reduction on
average errors, and up to 3.9×, 4.2× and 2.4× improvement on standard deviation,
compared to PHY, ANN and AirCloud respectively. This shows that my adaptive
scheme is able to consistently limit the absolute errors at different locations, which
leads to higher accuracy and robustness.
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I observe that PHY standard deviations in Figure 4.10 are higher than that in
Figure 4.9. This is because the standard deviations in Figure 4.10 are calculated
over different days while the standard deviations in Figure 4.9 are calculated within
one day. PHY has good short-term robustness, but the robustness drops in the
long-term.

Performance VS. Sensing Coverage: In order to see how sensing coverage
affects system performance, I plotted results of four methods under different sensing
coverage conditions in Figure 4.11. I select the time periods when the system collects
same amount of data, i.e. achieves same sensing coverage, then calculate the average
and standard deviation for absolute errors. The center of the bars show the average
absolute errors while the length of the bars show the standard deviation of absolute
errors.

When sensing coverage increases from 1% to 10%, my PGA’s average absolute error
drops from 0.59PPM to 0.11PPM and standard deviation drops from 0.26PPM

to 0.11PPM . Similar decreasing trends are also observed for other three baselines.
This shows that sensing coverage affects the system accuracy and reliability for all
methods.

ANN and AirCloud show large disparities on average and between highest sensing
coverage and lowest sensing coverage (0.78PPM for ANN and 0.54PPM for Air-
Cloud). The large disparities also show in standard deviation for ANN (0.44PPM)
and AirCloud (0.53PPM). In constrast, disparity is much smaller for PHY and PGA
on both average (0.2PPM for PGA and 0.2PPM for PHY) and standard deviation
(0.15PPM for PGA and 0.29PPM for PHY). This is because that both ANN and
AirCloud are data-driven methods, whose performance highly depends on sensing
coverage. In contrast, PHY does not rely on sensing coverage that much. PGA, as a
fusion of physics guided and data driven method, with the help of physics guided
model and adaptive scheme, has the capability to resist the performance variation
caused by sensing coverage variation.

My method has better accuracy and stability than three baselines under different
sensing coverage. Specifically, my method shows up to 10.5×, 5.0× and 1.8× accuracy
improvement over PHY, ANN and AirCloud respectively, as well as 3.0×, 8.0× and
3.7× stability improvement over PHY, ANN and AirCloud. AirCloud gets 0.46PPM

and 0.37PPM for average and standard deviation when sensing coverage is 10%.
My PGA achieves similar performance when sensing coverage is 2%. This means
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Figure 4.11: The figure shows the average and standard deviation of absolute error of
my method and three baselines at different sensing coverage conditions. At any sensing
coverage, my method maintains increased performance over the baselines. The performance
from all four methods deteriorate when sensing coverage becomes sparse, but my method
shows smaller differences in average absolute error between highest and lowest sensing
coverage.

that to achieve similar performance, my PGA requires 5× less sensor deployment
than AirClould and even less than other methods. The advantage comes from the
adaptive scheme’s ability to biase to the physics guided model and the data driven
model when sensing coverage is low and high respectively. This adaptation enables
the system to limit the error and error variation.

This section evaluates the accuracy and stability of my system and three baselines,
considering overall performance, time variance, location variance and coverage
variance. The results show that PHY has very large errors, since the errors of this
model accumulate over time. At time slice k, before estimating the air pollution,
the key parameters U [k] need to be estimated first. The quality of estimating U [k]

depends on the quality of air pollution estimation before k. As a result, the error of
PHY is accumulative. In contrast, the performances of ANN and AirCloud only rely
on the current data collection quality, which leads to high variance, i.e. low stability.
Finally, my PGA combines the physics guided model and data-driven model together
with an adaptive scheme. The physics guided model helps to lower the variance of
estimation with its temporal and spatial physical constraints, while the data-driven
model helps to prevent the error accumulation problem from PHY.

To summarize my system evaluation, I deploy self-designed air pollution sensing
hardware on 29 electric taxis in an area of 256km2 for 14 days. I compare my
system with a pure physics guided model (PHY), a pure data driven model (ANN)
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and a state-of-the-art method AirCloud in terms of estimation absolute error. The
evaluation covers overall performance, performance at different times, performance
at different locations and performance with different sensing coverage. my PGA
adaptively biases to the physics guided model when and where sensing coverage
is sparse and biases the data driven model when and where sensing coverage is
dense. The evaluation results show my system achieves up to 13.9×, 5.0× and 2.1×
reduction of average error and up to 3.9×, 8.0× and 3.7× improvement on robustness
compared to the pure physics guided model, ANN and AirCloud respectively. To
achieve similar performance, my PGA requires at least 5× less sensor deployment
than other approaches.

4.6 Related Work

This section discusses work related to this section. I first discuss different sensing
platforms for air pollution data collection. Then different methods for deriving,
estimating and inferring air pollution maps are discussed.

4.6.1 Air Pollution Sensing Platforms

Sensing platforms for air pollution can be categorized into three classes. Satellite-
based [114, 115, 116] monitoring station based on [92, 93] and mobile based [87, 88, 94].
Satellite-based and station-based approaches are expensive to build and maintain.
As a result, these methods tend to have very sparse sensing coverage. The low cost of
mobile sensing devices on vehicles and drones allows large scale deployment and high
mobility. This paper is also based on data collected with a mobile sensing platform.
Prior approaches are similar to my Gaussian Process baseline, and are sensitive to
data sparsity. Thus, high device penetration is needed.

4.6.2 Methods to Derive Pollution Map

Two major classical methods are commonly used to derive an air pollution map. One
is based on physical characteristics of air dispersion [97, 117], while another is a pure
data-driven method, such as interpolation and machine learning [87, 92].

Using physical relations to derive air pollution information has been studied
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considerably in both sensing domains and environmental monitoring domains [97, 117].
These models are mostly used to conduct numerical simulations on air dispersion
with known initial states and pollution sources [90, 91]. There are also works that
use a model to estimate pollution sources, which mostly require a known source’s
location, which is often not possible to obtain in a city [118]. They can achieve high
resolution based on the continuity of physical laws. However, the accuracy of these
model approaches relies on known parameters which are difficult to obtain a priori,
and often vary over time in non-simulated systems similar to the pure physics guided
model baseline. The model errors as well as the parameter estimation errors cause
inaccuracy and instability of these methods.

There are several data driven models focusing on deriving an air pollution map
with data collected by mobile sensing platforms [119, 120, 121, 122]. U-Air and Air
Cloud [87, 92] infer real-time and fine-grained air quality information throughout a
city using a machine learning approach. U-air requires a lot of information sources,
including meteorology, traffic flow, human mobility, structure of road networks and
points of interest. The information is difficult to obtain and contains a lot noise. The
large noise could lead to performance deterioration. Yidan Hu etc. [94] proposed a
3D probabilistic air pollution concentration estimated method to infer PM2.5 based
on Brownian motion. These methods rely on air quality data as reported by existing
monitor stations or mobile sensing platforms as well as a variety of data sources
observed in the city such as meteorology, traffic flow, human mobility, the structure
of road networks, and points of interest. These approaches can achieve high accuracy
given enough data. However, the performances of these methods are highly reliant
on the amount and coverage of the data collections.

Previous methods do not consider the highly time-variant changing sensing
coverage. In addition, these methods either do not combine models or combine two
data driven models. The advantage of a physics guided model is not considered. As
a result, the advantages of these two classical methods are not well exploited.

4.7 Conclusion

This chapter presents PGA, a physics guided and adaptive approach to derive a fine-
grained (500m by 500m by 1hour) air pollution map. The system is designed based
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on a Particle Filter structure since it offers the ability to combine the advantages
of a physics guided model and data driven model. 1) To address the challenge of
sparse sensing coverage, the system adopts the temporal and spatial relations of air
dispersion from a physics guided model to extract more information for reconstruction
(ST-PHY). The physics guided model is reformulated as the state evolution estimation
model in the Particle Filter structure. 2) To address the dynamic sensing coverage
challenge, the system adaptively trusts either the result directly from the physics
guided model or the result after correction through measurements generated from the
data driven model. The choice is made based on quality comparison of the estimate
by the physics guided model and the generated measurement by the data driven
model to optimize performance for each sub-area and each time slice (ST-SYS). To
evaluate the system, I deployed 29 taxis in the city of Shenzhen for 14 days, which
collected around 26.3 million data samples. The evaluation results show my system
achieves up to 13.9×, 5.0× and 2.1× reduction of average error and up to 3.9×, 8.0×
and 3.7× improvement on robustness compared to the pure physics guided model,
ANN and AirCloud respectively. To achieve similar performance, my PGA requires
at least 5× less sensor deployment than other approaches. All these validate the
effectiveness of applying spatiotemporal relationship on the large scale mobile CPS
for physical field estimation.
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Chapter 5

Actuation Planning for
Controllable Large Scale Mobile
CPS

This chapter introduces how to utilize spatiotemporal relationships to address the
challenge of inaccurate system status estimation for route planning in the controllable
system (MAV autonomous navigation), as described in Chapter 1. Compared to two
uncontrollable systems in Chapter 3 and 4, the controllable system has the ability to
plan routes for mobile devices. By dispatching the mobile devices to key locations,
the system is able to collect more informative data to understand the physical process
better. However, route planning in the controllable large scale mobile CPS is not
easy since route planning depends on both the estimation of system status and
planning strategy. Due to the constraints of cost, weight, size etc., each device only
has limited capabilities of sensing, computing, and communication, which makes
system status estimation challenging. In addition, since the system cannot always
ensure accurate estimation of system status, route planning has to adapt to the
quality of the estimation. To address the challenges, the spatiotemporal relationship
analysis layer improves the system status estimation of individual nodes at their
trajectory intersections according to similar radio signatures (ST-PHY-SYS). Based
on the quality of system status estimation at different times and locations (ST-SYS),
the system adaptively plans the routes .

The system overcomes limitations of individual devices by improving the system
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status estimation of individual nodes at their trajectory intersection according to
similar radio signatures (ST-PHY-SYS). The system utilizes the quality of system
status estimation at different times and locations (ST-SYS) to guide the adaptive
navigation.

I first motivate the problem in Section 5.1. Then section 5.2 gives a high level
overview of the architecture and operation of the system. Section 5.3 gives a detailed
technical description of the various algorithms presented in the paper. Section 5.4
evaluates and analyzes the system through extensive simulations and validates
assumptions through MAV testbed experiments. In Section 5.4.7, I describe related
work and discuss the state-of-the-art infrastructure-free navigation techniques in
context of MAV swarm deployment. Finally, I draw conclusions and summarize my
contributions in Section 5.5.

5.1 Problem Overview

In many hostile, dangerous, or otherwise inaccessible environments (such as urban
search and rescue, environmental monitoring, surveillance, etc.), situational awareness
is needed. However, in these dangerous scenarios, manual deployment of sensors is
often not feasible.

In such scenarios, autonomously navigating MAV swarms to a set of goal locations,
in accordance with the needs of domain experts, can provide significant benefit.
Further, utilizing a large number of low-cost, low-complexity mobile sensor nodes, as
opposed to using a limited number of sophisticated robots, can be more cost effective
and provide increased robustness through redundancy. In addition, small lightweight
mobile sensor nodes provide greater safety as the effects of their collisions with the
objects or persons in the indoor environment are inconsequential.

MAV swarms are an emerging class of networked mobile systems with widespread
applications in such domains. These swarms consist of miniature aerial sensor nodes
with limited individual sensing, computing and communication capabilities [123, 124].
Initial work in the operation of MAVs has focused on outdoor or highly instrumented
environments that rely on external sensors to control individual devices [125, 126].
However, such centralized sensing approaches are hampered in indoor environments
by obstructions (walls, furniture, etc.). At the same time, reliance on sensing
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infrastructure implies the requirement of a large deployment of support sensors
covering all the locations that a MAV may visit [127]. Thus these approaches are
only applicable in pre-surveyed locations.

This section presents DrunkWalk, a technique for cooperative and adaptive navi-
gation of swarms of micro-aerial sensors in environments not formerly preconditioned
for operation. The key focus behind this networked MAV swarm research is to
rely on collaboration to overcome limitations of individual nodes and efficiently
achieve system-wide sensing objectives. In addition, I also extend my algorithm to a
heterogeneous swarm structure, where advanced MAVs (with high accuracy sensors)
and basic MAVs (with low accuracy sensors work) collaboratively in a team.

In DrunkWalk, the MAV swarm self-establishes a temporary infrastructure of a
few landed MAV’s acting as radio beacons. Using radio signature or fingerprints
from beacon nodes, the algorithm detects intersections in trajectories of exploring
mobile MAV nodes. The algorithm combines noisy dead-reckoning measurements
from multiple MAVs at the detected intersections to improve the accuracy of the
MAVs’ location estimates. Most importantly, to adaptively plan trajectories of MAV
nodes according to the certainty of their location estimations – directing movement
to improve location estimates when certainty is low (exploration mode), and directing
MAV to the goal location when certainty of location estimates is high (navigation
mode). The adaptive strategy enables DrunkWalk to improve the location estimation
accuracy and success rate of navigation under given time and accuracy constraints.
In addition, DrunkWalk also considers the adaptation to a heterogeneous swarm
structure. By assigning different roles to MAVs through different settings according to
different sensing capabilities, DrunkWalk makes advanced MAVs stay in exploration
mode more to search the environment for the whole team.

The main contributions of this section are:

• An adaptive planning algorithm for navigation that enables the swarm to
collaboratively achieve up to 6× reduction in location estimation errors, and
as much as 3× improvement in navigation success rate under the given time
and accuracy constraints.

• A planning algorithm that determines the quality of location estimations and
uses it to adaptively plan node motion.
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Figure 5.1: This figure shows the architecture of spatiotemporal relationships aided large
scale controllable drone based CPS for estimating system status (MAV swarm localization)
and route planning (MAV swarm navigation).

• Real MAV testbed experiments and large scale physical feature based simula-
tions using radio signatures collected from the physical world and empirically
determined sensor noise models validating my assumptions. Drone swarms
with both homogeneous and heterogeneous structures are tested.

5.2 System Overview

Potential MAV swarm sensing applications require mobile sensors to autonomously
navigate to desired locations in operating environments with no localization infras-
tructure. In this section, I address the problem of how a network of mobile sensors
can be navigated to pre-determined positions under time and accuracy constraints.
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Figure 5.2: This figure shows the architecture of the spatiotemporal relationship analysis
layer , which 1) improves the system status estimation (MAV swarm localization) of
individual nodes at their trajectory intersections according to similar radio signatures
(ST-PHY-SYS), and 2) adaptively plans the routes (MAV swarm navigation) based on the
quality of system status estimation at different times and locations (ST-SYS).

5.2.1 Operation & Architecture

The system begins operation with a swarm of MAV’s being introduced into the
operating environment. I make the assumption that a coarse map of the building is
available and can be utilized by domain experts to pre-determine suitable placement
of sensors. This is a valid assumption in most scenarios, as emergency response
personnel have access to the rough floor-plans of buildings through city registries,
and thanks to increased availability of indoor maps tailored to location based services
(e.g., indoor Google maps).

The proposed system has 3 major operational phases: setup, estimation and
planning (the latter two proceed in conjunction):
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• Setup: The system autonomously establishes a transient infrastructure of
stationary MAV nodes acting as wireless beacons. These nodes land upon
being introduced into the area and remain stationary during the process. The
objective of the stationary nodes is to enable mobile MAV nodes to obtain
radio signatures or fingerprints of locations traversed on their paths. These
nodes use a simple dispersion algorithm [128, 129] that lets them spread out
in the environment without any estimation of their location.

• Location Estimation: The system then desires to estimate the locations of
nodes in order to guide them to their goal locations. To realize this, the system
first uses dead reckoning sensors such as an optical flow velocity sensor and
magnetometer (in my test MAV platform) to get a rough estimate of the motion
path of mobile nodes. Second, the system uses radio fingerprints, collected by
mobile nodes from the self-established wireless beacons, to determine snapshot
points, i.e. location points that were previously visited by other nodes or
by itself. Finally, the system uses the snapshot points to combine location
estimates from multiple nodes and collaboratively improve location estimations
of the entire swarm.

• Actuation Path Planning: Having estimated locations, the system plans
paths for each node that 1) leads to subsequent goal positions and 2) improves
location estimation accuracy. The quality of the planned path depends greatly
on the accuracy of the initial location estimate of nodes. A bad location
estimate will render any attempt to plan a deterministic path useless – when
the nodes don’t know where they are, they cannot plan a correct path to their
destination.

my system thus considers the quality of location estimation in planning node
paths. The path planner commands node movements such that they increase
the number of snapshot points and potentially improve location estimates when
the quality of their estimates is likely to be low. On the other hand, when the
location estimates are likely to be more accurate, the planner uses the map to
direct them to their designated goal locations.

Figure 5.1 shows the architecture of the system. Through a dispersion algorithm,
the system deploys Stationary MAV Nodes that act as wireless beacons. Mobile
MAV Nodes explore and obtain dead-reckoning measurements from their on-board
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sensors and radio RF-signatures from the stationary beacons. The information
sensing layer collects radio RF-signatures and the navigation sensor readings, which
are stored in the database. The information estimation layer calculates the dead-
reckoning measurements based on the navigation sensor readings in the database
and stores the results back to the database. The spatiotemporal relationship analysis
layer utilizes the radio RF-signature and the dead-reckoning measurements from the
database to conduct the DrunkWalk algorithm and output command to the device
actuation layer for MAV swarm navigation.

Figure 5.2 shows the details of the spatiotemporal relationship analysis layer . The
spatiotemporal relationship analysis layer utilizes radio RF-signatures to determine
snapshot points in node paths and apply corrections to their dead-reckoning estimates
(DrunkWalk Estimation). The corrected location estimates and a coarse map of the
environment are stored in the spatiotemporal relationship database, which are used
to command the subsequent movements of MAV nodes (DrunkWalk Planner). In
addition, in order to adapt to the heterogeneous MAV swarm structure, DrunkWalk
assigns different settings to different MAVs based on their sensing capabilities, which
causes MAVs with high accuracy stay in exploration mode more to search the
environment for the whole team.

5.2.2 Improving Location Estimation Through Swarms

The core idea behind my estimation approach is to use the relatively large number of
mobile sensors in the swarm to collaboratively reduce the error. This is achieved by
detecting when nodes move over the same space in the environment and combining
their individual location estimations at these points. Errors in dead reckoning
measurements are mainly due to noise in inertial sensors that are independent
across nodes and time [130]. Thus, combining estimates from multiple nodes and
propagating corrections to them improves their location estimations. Figure 5.3
illustrates the on-line process of determining snapshot point from radio measurements.

Determining Snapshot Points: The location estimation requires a node
to be able to determine when it visits a location previously visited by itself or
by another nodes - a snapshot. The snapshot point provides the opportunity to
combine estimations from multiple independent mobile nodes and improve location
estimations.
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The system determines a snapshot point using radio fingerprints collected by
mobile nodes from the self-established beacon nodes. The radio fingerprints are
collected in an online fashion, i.e., the nodes discover fingerprints as they explore
the space. These fingerprints are sent to the Base and matched with a database of
previously discovered signatures. If the signature matches an existing signature in
the database (decided by a cosine distance and a threshold), the point is classified as
a snapshot point and a correction can be applied to the current location estimation.
If the signature does not match any existing signatures, it is added to the database
as a new entry.

Combining Estimates at Snapshot Points: The process of combining loca-
tion estimations must be performed carefully. The naive approach would be to take
the average of all location estimates for a particular snapshot point. However, this
approach does not consider the nature of the underlying distribution of noise in
location estimations that often does not follow a normal distribution especially in
indoor environments.

Combining estimations is a chicken and egg problem that requires a snapshot
point to estimate and update its own location from visiting mobile nodes, and
subsequently, use the updated location to correct the estimates of the visiting mobile
nodes.

To achieve this, I employ a particle filter based approach. A particle filter [100] is
a Bayesian estimation method to estimate system state based on multiple noisy sensor
measurements. I use a particle filter to track the position and orientation of each mo-
bile node. Similarly, I use a particle filter to track the position of each snapshot point
as it is discovered and visited by the MAV nodes. Every visit to a snapshot point by
a mobile node results in the the mobile node correcting the estimation of the particles
of the snapshot point, which in turn corrects the estimations of the particles of the
mobile node. The various estimation algorithms are described in detail in Section 5.3.

5.2.3 Adaptive Path Planning

I described how a snapshot point between the paths of nodes can be utilized to
improve location estimates. Planning paths is thus the second chicken and egg
problem encountered in navigation. Better location estimates are needed by nodes
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Figure 5.3: The figure shows the process of determining snapshot points. (a) Node 1
moves and obtains a radio signature from stationary MAV. This is entered into the the Base
Signature DB as new signature. (b) When Node 2 visits the same location, its collected
radio signature matches existing signature and a correction can be performed at the Base.

to navigate to predetermined regions quickly. However, at the same time, achieving
better location estimations may require nodes to take detours (to find snapshot
points) costing time and energy. The planning component of my system seeks to
make a suitable trade-off between these aspects of navigation.

DrunkWalk: In order to reach the goal regions, I use an indoor layout with
known locations of walls and doors of the environment. It should be noted that
the algorithm does not require high quality maps with information of the position
of obstacles. Such rough maps are generally available or easy to obtain in most
application scenarios.

The rough map enables us to bias the direction of node movement towards
predetermined goal regions, if the current location of the node in the map can be
reasonably determined. However, due to noisy sensors, the location of individual
nodes cannot always be estimated correctly, which makes it difficult to consistently
plan correct paths. The system attempts to solve this by operating in two modes:

• Exploration: In this mode, the MAV node attempts to seek snapshot points
that can potentially improve the location estimates of the MAV node. This is
executed when the quality of location estimations (determined by the entropy
of the tracking particle filter distribution) is low.

• Navigation: In this mode, the MAV node attempts to follow the direction
of the bias from the graph using the estimated location from the DrunkWalk
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algorithm. This is executed when the quality of location estimates is high.

It is easy to see that the performance of the navigation step depends on the
outcome of exploration step. However, the exploration step requires extra use of
resources that increases the time of navigation. Therefore, the DrunkWalk algorithm
seeks to optimize this trade-off by adaptively switching between these two modes.

Adaptation to Heterogeneous MAV Swarm: DrunkWalk is originally de-
signed for homogeneous MAVs swarm, where all the MAVs have the same sensing
capabilities. However, heterogeneous MAV swarms are becoming more and more
popular, where advanced MAVs (with more accurate sensors) and basic MAVs (with
less accurate sensors) coexist. With such heterogeneous structure, advanced MAVs
should play more important roles than basic MAVs. In such a case, I assign different
settings to advanced MAVs and basic MAVs. The intuition here is to make advanced
MAVs stay in the Exploration mode more to help the team search the environment.
This is because advanced MAVs are equipped with more accurate sensors, so the
estimates based on their sensing data are more accurate. Therefore, having advanced
MAVs search the environment more improves the estimate and navigation accuracy
for the whole team.

5.3 Algorithm Design

This section provides a detailed description of the major components of the proposed
system. First, this section describes how the location and orientation of the MAVs
and the positions of the signatures are estimated over time using a set of particle
filters. A separate particle filter is associated to each MAV in the team and to each
RF-signature being localized in space. Therefore, particles estimating the position
and orientation of the MAVs include the components cx, cy, cφ, whereas particles
estimating the location of the signatures include components sx, sy for the position.
As described in Section 5.2, a base station exchanges information with the MAVs
(commands and measurements) and maintains a database of known signatures (see
Figure 5.2). Due to the limited on-board computational power on the MAV, my
current implementation performs all computations in the base.
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5.3.1 Particle Filter Background

A particle filter is a Bayesian estimation method using a finite number of elements (so
called particles) to represent a non-parametric probability density. It was introduced
in the fifties [99] and became popular in robotics in the last two decades [100].

As a specific implementation of a more general recursive Bayes filter under the
Markov assumption, it requires assumption of availability of two probabilistic models,
namely the state evolution model (often called motion model in mobile or robotic
applications) and the measurement model. Assuming the unknown state to be
estimated at time t is indicated by xt, the state evolution model provides

p(xt|xt−1, ut) (5.1)

where ut is the known command given to the system at time t. The measurement
model, instead, is given by

p(zt|xt) (5.2)

where zt is the measurement at time t. Due to the Markov assumption, xt is
conditionally independent from xk with k < t − 1 once xt−1 is known. Similarly,
given xt, the measurement zt is conditionally independent from any other variable.
Note that one does not need to commit to specific distributions in Eq. 5.1 and
Eq. 5.2, e.g., they do not have to be Gaussian distributions. The generic algorithm
to propagate a posterior using a particle filter is given in Algorithm 2, where I
mostly follow the notation presented in [100]. The algorithm starts with a set of M
particles X estimating the posterior of xt−1, i.e., the state x at time t − 1. Given
the latest command ut and measurement zt, it produces a new set of M particles
providing an updated posterior estimate for x at time t. The ith particle in Xt,
x

[i]
t , represents the ith possible hypothesis about the state at time t. Algorithm 2

shows the generic particle filter algorithm. The first for loop creates a new set of
M particles sampling the motion model from the set of existing particles, while the
second for loop implements the so-called importance resampling. The set of particles
provides a discrete approximation for the posterior.
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Algorithm 2: Generic particle filter algorithm
Data: Xt−1, ut, zt
Result: Xt

1 X ← ∅;
2 Xt ← ∅;
3 for i← 1 to M do
4 x

[i]
t ← sample ∼ p(xt|x[i]

t−1, ut);
5 w

[i]
t ← p(zt|x[i]

t );
6 X ← X ∪ {< x

[i]
t , w

[i]
t >};

7 end
8 for i← 1 to M do
9 draw j with probability α w

[j]
t ;

10 Xt ← Xt ∪ {x[j]
t };

11 end

5.3.2 MAV Location Tracking

In this subsection, I show how the generic particle filter estimator can be specialized
to estimate the location of the MAVs. To reduce the computational complexity,
rather than implementing a centralized particle filter jointly estimating the location
of all the MAVs, I associate a particle filter to each MAV. Assuming there are NM

MAVs involved in the navigation task, the system then creates and updates NM

particle filters. Each filter is initialized with M = 100 particles uniformly distributed
in the area. All computations take place on the base station.

Prediction from Motion Models: For the prediction step, it is necessary to
use a generative law to implement the particle creation in line 4 of Algorithm 2. To
this end, I use equations similar to the ones given in [129]. Let the command at
time t be ut = (vt, ωt), where vt is the translational velocity and ωt is the rotational
velocity. Note that the control system always generates commands in which only
one of the two components is different from 0, i.e., the MAV either translates or
rotates, but does not make both movements at the same time. Then, a new particle
is generated as
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cy

cφ


[i]

t

=

 cx

cy

cφ


[i]

t−1

+ δt

 vt cos(cφ
[i]
t−1)

vt sin(cφ
[i]
t−1)

ωt

 (5.3)

where δt is the time interval between two commands. The correctness of the equation
follows form the assumption that only one of vt and ωt can be different from 0. Noise
is added to the translational and rotational velocities as per the empirically obtained
actuation noise models p(nv) and p(nω) from my test MAV platform, but can be
specified as per the specific sensor or MAV platform used. Thus, v[i]

t and ω[i]
t are

obtained as:

v
[i]
t = vt + n[i]

v , n[i]
v is drawn from p(nv) (5.4)

ω
[i]
t = ωt + n[i]

ω , n[i]
ω is drawn from p(nω) (5.5)

where vt and ωt are the nominal commands. In my simulations, according to [129],
p(nv) and p(nω) are specified as normal distributions with µ = 0 and σ is expressed
as a percentage of the value of vt or ωt.

Correction from Measurements: The correction step hinges on the weights
assigned to the particles (line 5 in Algorithm 2). Each MAV is equipped with
a magnetometer sensor returning a measurement for its heading. Moreover, the
RF-signature snapshot provides another measurement. These two measurements are
asynchronous in the sense that, while the on-board heading sensor can be queried
after each command is executed, signature matching occurs only when revisiting a
location associated with a known signature. In the following, I therefore separately
describe how the two different weights are computed, given that they are generated
and used (via resampling) in separate stages.

The heading measurement is straightforward to integrate. According to former
experimental measures [131], the nominal heading returned by the sensor is affected
by Gaussian noise with a known variance σ2 (σ = 40 degrees to be precise). Therefore,
for the heading weight I set

p(zt|xt) = fN ,σ2(zt − cφ[i]
t ) (5.6)
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where fN ,σ2 is the density probability of a Gaussian with 0 mean and variance σ2,
and the argument zt − cφ[i]

t is normalized to account for the 2π period.

The process is substantially different for RF-signature snapshot points. In
this case, rather than computing p(zt|xt), I determine w

[i]
t through a two step

process. 1) When a signature is measured, the first step is to communicate with the
known signature’s database to determine whether the signature is new or has been
encountered already (either by the same MAVs or a different one). If the database
determines the signature is new, the MAV does not perform the second step and
does not compute weights (however, the signature is stored in the database and a
new particle filter is created; see section 5.3.3 for details.) 2) On the other hand, if
the database determines that a signature snapshot points is taking place, the second
step starts. First, on the database side, the particle filter estimating the position
of the signature being revisited is updated (see section 5.3.3 for details.) After the
RF-signature particle filter has been updated, each particle in the MAV particle
filter is assigned a weight as follows. A GMM is created starting from the particles
in the signature being matched. Such a GMM is a bidimensional probability density
function with the following equation:

fGMM(x, y) =
1

M

M∑
i=1

f iN ,Σ(x, y) (5.7)

where f iN ,Σ is a bidimensional Gaussian distribution with mean µ = [s
[i]
x s

[i]
y ]T and

covariance matrix Σ (a diagonal matrix with value 2 on the main diagonal). Then,
each particle is assigned the weight

w
[i]
t ← fGMM(cx

[i]
t , cy

[i]
t ). (5.8)

After all weights have been computed, resampling can take place as described in
Algorithm 2.

Adding Particles Using Coarse Map: Due to the unavoidable errors in
the estimation process, I implemented an additional step to counter the formerly
mentioned particle depletion problem. After the new set Xt has been created, I
determine the location with the highest number of particles. Let vd be this location,
and let N be the set of neighbor nodes according to the coarse map. Then, the
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25 particles with the lowest weight are discarded and replaced by an equal number
of particles generated using a random distribution over the space associated with
the nodes in N . The rationale behind this step is to generate particles to recover
errors due to the erroneous determination that a transition from a room to the next
effectively took place.

5.3.3 Particle Filter for Snapshot Points

I now describe how the spatial location of the signatures can be estimated using a
set of particle filters. For the MAVs case, I do not compute a centralized estimation,
but I rather associate a filter with each signature to be tracked. This estimation
process has two main differences from the position and orientation estimation for
the MAVs. First, the number of signature locations to be estimated is not known
upfront. So new filters need to be created on-the-fly when a new signature to be
localized is identified. Second, signatures do not move. Therefore the estimation
process does not include a prediction step, only a correction step. As for the MAVs,
each filter includes 100 particles.

Initialization from MAV Particles: As described in the previous subsection,
a new signature is generated when the known signatures database receives a query
from one of the MAVs with an RF-signature that cannot be matched to any of the
formerly discovered ones. In this case, a new entry in the database is created and a
new particles filter is instantiated. The initial set of particles for this new filter is
copied from the particles of the vehicle that discovered the feature, while discarding
the component related to heading because it is irrelevant for the signature estimation
process.

Correction from MAV Particle Filter: Correction happens when a MAV
queries the signature database with a signature that can be matched with one of the
entries already discovered. In this case, Algorithm 2 is executed for the signature
filter, with the exception of line 4, because no prediction takes place. The weight for
w

[i]
t for the ith particle is computed as follows. First, the position of the MAV that

generated the snapshot point is determined by taking the average of its particles.
Note that this average is implicitly weighted, because through the resampling process,
particles with higher weight will be included more often in the particle set (see line 9
in Algorithm 2). As a result, they will be counted multiple times when computing
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the average. Let x be the computed average position of the MAV generating the
match, and let s[i]

t−1 be the position of the ith particle in the signature particle filter at
time t− 1, and let di =

∥∥∥x̄− s[i]
t−1

∥∥∥
2
be the Euclidean distance between the expected

position of the MAV and the particle. The weight of each particle at time t is then
defined as

w
[i]
t = Fd,δ(K)− Fd,δ(−K) (5.9)

where Fd,δ is the cumulative density function of a Gaussian distribution with mean
d and variance δ. This formula is based on my experimental testbed showing that
revisits are correctly detected when the displacement between the original and the
new position is within K meters. The specific values for δ and K depend on the
number of anchors and are further described in Section 5.4.5. Once weights have
been computed, correction for the estimate of the signature particle filter can then
take place through resampling, as described in Algorithm 2.

Database of Fingerprints: In order to help location estimation correction with
snapshot points after each movement, the system maintains a database of fingerprints.
A fingerprint at a specific location is a set of RSSI values from different stationary
nodes measured by the MAV and stored in a dictionary data structure. When the
node arrives at a new location, it calculates the cosine similarity between the newly
discovered fingerprint and the fingerprints stored in the database. A pre-defined
threshold Tsig is used to decide whether it is a new or known fingerprint.

5.3.4 DrunkWalk Planning

In this section, I describe how the system plans the paths of MAV nodes with location
estimates of varying quality in order to deploy quickly. Figure 5.4 shows a flowchart
of the planning algorithm.

Coarse Map: The system uses the layout with location of walls and doors of
the environment to extract a coarse map. The doors are selected as the destination
where I navigate the MAVs.

The coarse map makes very few assumptions about the quality of the map but
provides a way to bias the motion of MAV nodes towards designated locations.

Entropy as Quality of Location Estimates: The entropy of a random
variable x can be defined as the expected information that the value of x carries. In
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Figure 5.4: The figure shows the flowchart of the DrunkWalk planning algorithm. The
planner adaptively changes between random walk and graph biased movement based on
the entropy of particle filters tracking respective MAV nodes.

the discrete case, it is given by

H(x) = E[− log2 p(x)] (5.10)

which represents the number of bits required to encode using an optimal encoding,
assuming that p(x) is the probability of observing x. The entropy can therefore be
used as an indication of the uncertainty of the estimate of a particle filter. The lower
the entropy the better the certainty of the location estimate is, and vice versa. For
the particle filter, I calculate the entropy [100] of the weights at time t as

Ht = −
M∑
i=1

w
[i]
t log2w

[i]
t . (5.11)

Exploration: When the entropy of the particle filter is high (> threshold TH),
the system seeks to primarily improve the location estimates. The intuition here is
that with an incorrect estimation of current location, using the bias from the graph
is likely to be incorrect. This also results in cases where the MAV may get stuck
and can potentially perform worse than a purely random deployment strategy.

With this in mind, the planner employs a random walk strategy to direct the
motion of MAV nodes. With random walk, the likelihood of nodes discovering
snapshot points increases and so does the likelihood of improving their location
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estimates. This is referred to as the exploration step.
Navigation: Correspondingly, when the uncertainty of location estimates is low

(Ht < TH), the planner commands the nodes to follow the bias indicated by the
coarse map. With a more accurate location, likelihood of nodes following the bias
and then reaching the intended destination increases.

A key point in choosing the directional bias from the graph is that it is sampled
based on the distribution of particles in the node’s particle filter. For example,
consider a node with 20 particles indicating its position as room 1 and therefore
requiring the node to go north-west to exit the room, while 80 particles indicate
the node is in room 2 and must move south. In this case, the planner samples the
movement direction according to the distribution of particles over the nodes of the
graph, i.e., the node has a 20% chance of being commanded to move north-west and
a 80% chance of receiving a south command.

Mode Configuration for Heterogeneous MAV Swarms: To adapt my
algorithm to heterogeneous MAV swarms, where advanced MAVs and basic MAVs
coexist, DrunkWalk also includes a heterogeneous mode configuration (HMC) module.
The goal of HMC is to have advanced MAVs (with higher accuracy sensors) search
the environment to improve the estimate and navigation accuracy for the whole
team. To achieve that, DrunkWalk assigns a higher entropy threshold for advanced
MAVs. As a result, advanced MAVs tend to enter the Exploration mode to help
the whole team to search the environment. Once most parts of the environment are
searched, the entropy threshold for advanced MAVs is set to the same value as basic
MAVs. At this period, advanced MAVs are easy to navigate to the destinations.

Collision Recovery Strategy: MAV platforms have very limited sensing ca-
pability and often do not employ sophisticated obstacle detection sensors. Proposed
MAV platforms [123] rely on their low weight and often use collisions themselves to
discover obstacles. However, a strategy is needed in dealing with collisions so as to
prevent MAV nodes from being stuck and enable them to back off from corners and
crevices and seek out openings. This is especially useful when location estimates are
inaccurate. The planner employs a random exponential back-off strategy, where nodes
move in a randomly chosen direction (uniformly from a discrete number of directions)
for a time duration that increases exponentially with the number of recent collisions.
This is implemented by keeping a counter for collisions in a certain time-window.
The counter is decremented with time if no new collisions are encountered.
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Figure 5.5: The figure shows the floor plan of 6 rooms with a hallway used for physical
feature based simulation and real testbed experiments. The MAVs start from the entrance
of the building and are navigated to different goal areas.

5.4 Evaluation

In this section, I evaluate the performance of my system in planning MAVs paths
through physical feature based simulation and real experiments on a MAV testbed.
Both simulation and real experiments are conducted in a building with multiple rooms
connected with a hallway as shown in Figure 5.5. The MAVs start from the entrance
and navigate to different goal areas (rooms). I first evaluate the system performance
with both real test and physical feature based simulation on a homogeneous MAV
swarm, where all the MAVs have the same sensing capabilities. Then, I test the
influence of different system settings. Finally, I evaluate the performance of my
system on a heterogeneous MAV swarm.

The evaluation focuses on the following aspects:
• Characterizing the performance of the system in terms of 1) navigation duration
and 2) average accuracy of location estimations in comparison to existing
navigation approach.

• Testing the influence of different settings on the system, such as number of
stationary MAV nodes, noise of navigational sensors, radio fingerprint accuracy,
and number of mobile MAV nodes.

• Validating the assumptions of the simulation experiments through real MAV
testbed experiments.

For both testbed experiments and simulation, I compare my DrunkWalk al-
gorithm to another online navigation strategy that does not require any location
infrastructure, Dead-Reckoning with Map Bias (DRMB). Dead-reckoning with Map
Bias is an infrastructure-free technique used to estimate a node’s location in unknown
environments [132]. This method uses measurements from motion sensors, optical
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Figure 5.6: The figure shows the average
and standard deviation of location estimation
errors at different flying durations heading
for the near destination using DrunkWalk
and DRMB from 5 experiments. DrunkWalk
achieves around 2m location estimation er-
rors on average and 1-1.5m standard devia-
tion.

Figure 5.7: The figure shows the cumula-
tive distribution function (CDF) of location
estimation errors to arrive at the near des-
tination using both DrunkWalk and DRMB
from a typical run.

flow and gyroscope, to estimate the change in position of the node. Having an
estimate of location, I then use the map to bias the direction of the node’s movement
similar to DrunkWalk.

5.4.1 Testbed Experiment Setup

To validate my system in a realistic setting, I implement my algorithm on a server
and the SensorFly [123] [133] MAV testbed. The SensorFly platform used in my test
has an 8-bit 16Mhz AVR AtMega128rfa1 micro-controller, a 3-axis accelerometer,
a 3-axis gyroscope, a 2-axis optical flow velocity sensor, a 3-axis magnetometers, a
ultrasonic altitude sensor and a XBee radio [134]. The platform has a flight time
of 6-10 minutes. The SensorFly nodes are capable of translational and rotational
motion directed by on-board PID control algorithms utilizing feedback from the
on-board sensors.

In my setup, I manually fly 8 MAVs on a 4m× 28m arena shown in Figure 5.5.
Six nodes are allowed to disperse and deploy as beacons at initialization, while 2
nodes fly to seek out the destinations. The nodes are introduced to the rooms at
the entrance and navigate to 3 kinds of goal destinations: near destination (room 2),
medium destination (right door of room 4) and far destination (room 5). In addition,
a laser range finder is used to track the location of the nodes as ground truth.
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5.4.2 Testbed Experiment Results

I utilize the MAV testbed to illustrate the location estimation errors from short to
long distances to compare performances and robustness of DrunkWalk with that of
DRMB.

Figure 5.6 compares the performance and robustness of DrunkWalk and DRMB
at different phases of navigation duration. I plot the average and standard deviation
of location estimation errors from 5 experiments at different % of navigation duration.
It is noted that I stop the experiments at 600 seconds even if the drones do not
arrive at the destination since this is the typical flying time of a SensorFly node. At
the first 20% of the navigation duration, DrunkWalk performs similarly as DRMB
due to lack of snapshot points to correct location estimation errors. After this initial
period, DrunkWalk’s snapshot point correction maintained location estimation errors
within the range of 1.5m to 2m. In contrast, the error of DRMB kept accumulating
to larger than 3m. This is because multiple measurements at snapshot points can
correct the location estimation errors in DrunkWalk. In addition, after 30% of the
navigation time, the standard deviation of DrunkWalk location estimation is also
30%− 60% smaller than DRMB approach. This shows DrunkWalk is more reliable
than DRMB.

Figure 5.7 shows cumulative distribution function (CDF) of location estimation
errors using DrunkWalk and DRMB from a typical experiment. In DrunkWalk,
corrections from snapshot points help keep errors within 2.5 meters. In comparison,
location estimation error of DRMB remains unbounded. More than 50% of the
time, DRMB has more than 3 meters error, compared to less than 1 meter error for
DrunkWalk.

To illustrate the performance of DrunkWalk and DRMB for medium and far
destinations, I use Figures 5.8 and 5.9 to show single run experiment results. I
further evaluate the performance through simulated results in section 5.4.3. Note
that except for the node using DRMB in the upper plot in Figure 5.9, the lines end
when nodes reach their destination. The mobile node 1 failed to arrive at the far
destination before 600 seconds when the battery was exhausted.

For both medium and far destinations, in the first 20 seconds, similar to navigation
to near destination, DrunkWalk has similar location estimation errors with DRMB.
After this initial period, adequate snapshot points help DrunkWalk to limit the
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Figure 5.8: The figure shows the location
estimation error over time using DrunkWalk
and DRMB to the medium destinations. Mo-
bile nodes with DrunkWalk arrive at the des-
tination earlier than those with DRMB due
to their capability to limit the location esti-
mation errors.

Figure 5.9: The figure shows the location
estimation error over time using DrunkWalk
and DRMB to the far destinations. It is
noted that I do not plot all the data for
mobile node 1 since it failed to arrive at the
destination before the battery was exhausted
(600 seconds).

location estimation errors while the error of DRMB keeps accumulating. This shows
that multiple measurements at snapshot points in DrunkWalk do help limit location
estimation errors. The higher location estimation accuracy from DrunkWalk leads to
shorter (around 50%) navigation duration. It should be also noted that when using
DRMB, mobile node 1 failed to arrive at the far destination before the battery died
(600 seconds) while mobile node 2 arrived at the destination in around 170 seconds.
This shows the unreliability of DRMB. On the other hand, both mobile nodes 1
and 2 with DrunkWalk arrived at the medium and far destination within similar
durations. This shows the stability of DrunkWalk with the help of snapshot points.

5.4.3 Physical Feature Based Simulation Environment

I implemented a MAV simulation environment [135] for the SensorFly MAV indoor
sensor swarm to evaluate my planning algorithms at large scale. The simulator
includes a realistic physical arena, as well as sensor noise models, MAV mobility
models and indoor radio signature collected from the testbed described earlier.

For my evaluations, I configure the simulator as follows:
• Arena – I use a multi-room indoor scenario shown in Figure 5.5, where nodes
are required to autonomously navigate to different goal areas. I collect the radio
fingerprints from the real arena and feed them into the simulation platform
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to evaluate my system. This represents a typical indoor apartment scenario
where such systems may be deployed in search and rescue applications. For
more complex maps, I concatenate on portions of the map in figure 5.5.

• Node Sensors – The sensor nodes in the simulation are modeled after the
SensorFly [123] MAV platform, which is also used in my testbed experiments
described in section 5.4.1. Each node has a XBee 802.15.4 radio and Dead-
Reckoning sensors – a gyroscope, an optical flow velocity sensor and an ul-
trasonic altitude measurement sensor. Noise models are obtained through
empirical measurements on the testbed MAV platform.

• Node Mobility – The MAV nodes can turn by a commanded angle and move
for a commanded time and velocity. I set the velocity to 1.0 m/s in accordance
with the testbed MAV parameters. The velocity of course varies in accordance
with the noisiness of the optical flow sensor that provides feedback to each
MAV’s control algorithm.

• Simulation Time-steps – The simulation time-step is chosen as 1sec that
enables nodes to cover a distance of 0.8m to 1.2m in one simulation tick.

• Radio – The simulation supports estimating received signal strength (RSS)
measurements between two nodes. The RSS is collected in the real scenario.

• Destination – I adopt the far destination (room 6) as the destination for
simulation since this is the hardest situation which shows the baseline of the
system performance and robustness.

All experiments were performed 25 times with 10 MAVs (6 stationary nodes and
4 mobile nodes) to evaluate both the performance and robustness of the system. I
run the simulation for a time period of 600 seconds (1̃0 minutes) corresponding to
the typical battery life of current generation MAV nodes.

5.4.4 System Performance

This section evaluates my system performance under different destination constraints
and time limitations. A successful navigation is achieved when the node can be
navigated to the destination within the given accuracy and time limitation. For
example, if the destination coordinates in meters are (4, 5), the required accuracy
is 1 meter and the time limit is 90 seconds, a successful navigation means that the
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Figure 5.10: The figure shows the naviga-
tion success rate under different destination
accuracy constraints within 90 seconds for
DrunkWalk and DRMB.

Figure 5.11: The figure shows the success
rate as a function of time limitation under
0.5m destination accuracy constraints, using
DrunkWalk and DRMB alone.

mobile node can arrive within a range of 1 meter from the destination (4, 5) within
90 seconds.

Figure 5.10 shows the navigation success rate within 90 seconds as a function of
destination accuracy constraints using DrunkWalk and DRMB. When the destination
accuracy is strict (0.5 meters), DrunkWalk achieves an acceptable success rate of
around 40% while DRMB shows less than 5%. This means that, under very strict
destination accuracy constraints, DRMB cannot achieve the required accuracy within
the time limitation, while DrunkWalk can still work. For less constrained destination
accuracies (1 to 2 meters), DrunkWalk shows consistently a 30% to 40% higher
success rate than DRMB. Futhermore, DrunkWalk achieves 100% success rate for
even looser destination accuracy constraints (2.5 meters) while DRMB achieves 84%
success rate. This is expected since above 2.5 meter range is more than one half of
the hallway width (4.0 meters), where even with high location estimation errors, the
mobile node can still arrive at the destinations simply by following the walls.

Figure 5.11 plots the success rate as a function of time limitation for both
DrunkWalk and DRMB under a 0.5m destination accuracy constraint. Under a
strict time limitation (60 seconds), even DrunkWalk only achieved an 8% success
rate since it was not able to get enough snapshot points to get accurate location
estimation on the way to the destination. When the time limitations are extended
(120 seconds to 300 seconds), DrunkWalk shows a 30% to 50% higher success rate
than DRMB. This is because DrunkWalk has enough time to get snapshot points to
correct the location estimation errors, while the error of DRMB keeps accumulating.
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After 300 seconds, DrunkWalk achieves 100% success rate, while the success rate of
DRMB becomes stable yet still below 80%. This means that even with loose time
constraints, DrunkWalk still gets more than 20% higher success rate than DRMB.

5.4.5 Influence of System Settings

In this section, I evaluate how different system settings affect the location estimation
errors under different system setups of both DrunkWalk and DRMB. I check the
variance on 1) number of stationary MAV nodes, 2) navigational sensor noise, 3)
radio fingerprint accuracy.

Number of Stationary MAV Nodes:

Figure 5.12 shows the location estimation errors for different numbers of stationary
MAV nodes, where Drunkwalk achieves 1.5× to 6× reduction for average error and
1.5× to 4× reduction for standard deviation compared to DRMB. This shows its
better capability and reliability to limit location estimation error. This can be
attributed to improvement by matching snapshots with a larger number of stationary
nodes broadcasting beacons. I can also see the decreasing trend for both average and
standard deviation in Drunkwalk when the number of stationary nodes increases,
which means that increasing the number of stationary nodes does help enhance
performance.

Navigational Sensor Noise: The noise in motion measurements due to Dead-
Reckoning with sensors is an important parameter in determining the eventual
performance of the algorithm. Different MAV platforms and operating environments
might have different amount of noise in their motion measurements, making it useful
to analyze the performance of the algorithm for varying levels of sensor noise. For
my simulations, in agreement with empirical measurements on my MAV platform,
I model noise as a normal distribution with a standard deviation proportional to
the sensor measurement [129], [131]. For the optical flow velocity sensor, a noise
corresponding to a normal distribution with 0 mean and standard deviation of
20% of the measured velocity value was added. For the magnetometer, a 30◦ noise
corresponds to a normal distribution with 0◦ mean and standard deviation of 30◦.
The resultant noise in DRMB location can be computed as per the motion update
equation [129], [131]. I apply sensor noise to both DRMB and DrunkWalk estimates.
Figure 5.13 and 5.14 show the location estimation error in DRMB and DrunkWalk
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Figure 5.12: The figure shows the loca-
tion estimation error with varying number
of stationary MAV nodes using DrunkWalk
and DRMB. DrunkWalk has an obvious de-
creasing trend when the number of stationary
MAV nodes increases. It is noted that DRMB
does not use stationary MAV and its perfor-
mance variance in the figure is due to noise
from sensors.

Figure 5.13: The figure shows location
estimation error as a function of optical
flow noise using DrunkWalk estimation and
DRMB alone. The noise per sensor is mod-
eled as a normal distribution with varying
standard deviation. The plot shows that
DrunkWalk is able to correct the DRMB er-
ror and maintain low standard deviation.

for 10 nodes at various sensor noise levels. In Figure 5.13, with optical flow noise
level increasing from 0 to 50%, the average location estimation error of DrunkWalk
increases from 2.5m - 5.5m while that of DRMB goes up very quickly to around
25 meters. The error increase is limited due to the corrections from the multiple
measurements at the same snapshot points. In Figure 5.14, a faster increasing
trend (from 0.5 to 7.5 meters) is observed with the magnetometer noise increase. In
addition, similar increasing trends are observed for both DrunkWalk and DRMB. This
indicates that high noise from the magnetometer weakens the correction capability
on location estimation errors. However, during operation, raw magnetometer noise
can be mitigated by gyroscope data.

Radio Fingerprint Accuracy: Location estimation error depends on the
resolution to identify snapshots on the node paths. This is accomplished by using
radio signatures from stationary MAV nodes deployed at the beginning. When a
radio signature collected by a node at a certain location is similar to a fingerprint in
the database: the system classifies it as a snapshot and performs the correction of
location estimates. Thus, the performance of DrunkWalk depends on the resolution of
the fingerprint matching, i.e., the area or distance within which two radio fingerprints
can be reliably classified as being at the same location. If the criteria is too loose,

100



Figure 5.14: The figure shows location es-
timation error as a function of magnetome-
ter noise using DrunkWalk estimation and
dead reckoning alone. The noise per sen-
sor is modeled as a normal distribution with
varying standard deviation. The plot shows
that DrunkWalk is able to correct the DRMB
error and maintain low standard deviation.

Figure 5.15: The figure shows location esti-
mation error as a function of signature match-
ing area for DrunkWalk and DRMB. To be
noticed, DRMB does not work with station-
ary MAV and noise from sensors cause the
performance variance.

incorrect points may be matched together, which leads to few snapshot points.
Figure 5.15 shows location estimation error as a function of signature matching

area for DrunkWalk and DRMB for 10 nodes. I observe that DrunkWalk offers an
improvement of over 3× compared to DRMB even for a poor matching resolution
of 6m2. In case of MAV navigation, where the low-cost of nodes makes it possible
to deploy a relatively large number of beacon nodes and attain high fingerprint
accuracies of around 1m2, DrunkWalk provides a much larger reduction in error.

5.4.6 Heterogeneous System Performance

This subsection evaluates how my DrunkWalk works with heterogeneous MAV swarms.
For simplicity but without loss of generality, I focus on swarms consisting of two
different MAVs: advanced MAVs (with more accurate sensors) and basic MAVs (with
less accurate sensors). In the default setting, I have 10 mobile MAVs in the swarm,
3 of which are advanced MAVs. I set the sensing noise of advanced MAVs at 20%
for optical flow noise and 20◦ for magnetometer noise. I set the sensing noise of
basic MAVs twice as that of advanced MAVs, i.e. 40% optical flow noise and 40◦

magnetometer noise. I check the system performance under variant 1) percentage
of basic MAVs in the swarm 2) noise level ratio between advanced MAVs and basic
MAVs 3) total number of mobile MAVs nodes.
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Figure 5.16: The figure shows the localiza-
tion estimation error of MAV swarms consist-
ing of different numbers of Advanced MAVs.
The total MAV number in the swarm is fixed
as 10.
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Figure 5.17: The figure shows the localiza-
tion estimation error as a function of noise
ratio between Advanced MAVs sensors and
Basic MAVs sensors, using DrunkWalk and
DRMB.

Number of Advanced MAVs: To check the influence of the number of Ad-
vanced MAVs on system performance, I plot the location estimation error in Fig-
ure 5.16. Since I fix the total number of mobile MAVs as 10, when the number of
advanced MAVs increases, the number of basic MAVs decreases. First, the errors
of both DrunkWalk and DRMB present descending trends when the number of
advanced MAVs increases. The error reduction of DrunkWalk comes from both
sensing accuracy improvement and collaboration, while the error reduction of DRMB
only comes from sensing accuracy improvement. Second, the error of DrunkWalk
decreases faster than that of DRMB. Specifically, from 0 advanced MAVs to 10
advanced MAVs, the error of DrunkWalk reduces 60% (from 3.75m to 1.5m), while
the error of DRMB reduces less than 20% (from 7.2m to 5.8m). This illustrates that
DrunkWalk can take advantage of heterogeneous MAV swarms to reduce location
estimation error. Finally, from 0 advanced MAVs to 10 advanced MAVs, the standard
deviation of DrunkWalk errors decreases more than 40% (1.7m to 1m), while DRMB
does not show too much difference on standard deviation of errors. This shows
the reliability of my DrunkWalk with heterogeneous MAV swarms. Both the error
reduction and reliability improvement come from DrunkWalk’s assigning different
roles to advanced MAVs and basic MAVs through different system configurations,
which causes better collaboration for reducing and limiting location estimation error.
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Noise Level Ratio Between Advanced MAVs and Basis MAVs: To
further investigate the heterogeneous system, I examine the location estimation error
when the noise of advanced MAVs varies. In this experiment, the noise of basic
MAVs sensors is fixed at default settings. Figure 5.17 shows the estimated error
with varying noise of advanced MAVs sensors. The x-axis represents the ratio of two
different kinds of noise. The errors of both DrunkWalk and DRBM decrease when
the sensors of advanced MAVs become more accurate. Specifically, from 1 to 0.2,
DrunkWalk error decreases more than 50% (from 3.3m to 1.5m), while DRMB error
decreases 33% (from 7.5m to 5m). This is because that DrunkWalk assigns different
roles to advanced MAVs and basic MAVs through different system configurations,
which causes better collaboration to improve location estimation accuracy.

Total Number of Mobile MAV Nodes: Figure 5.18 presents the location
estimation error with a varying total number of MAVs in a swarm. The noise levels
for advanced MAVs and basic MAVs are set as default and the portion of advanced
MAVs in the swarm is set as 30%. I increase the total number of mobile MAVs
from 10 to 30. With the total number of MAVs increased, error of DRMB does
not show too much difference, while error of DrunkWalk decreases 40% (from 2.3m
to 1.4m). In addition, the error standard deviation of DrunkWalk decreases 15%
(from 1.36m to 1.17m) and the error standard deviation of DRMB still does not have
obvious change. This is because DRMB does not adopt collaboration between MAVs.
As a result, increasing the total number of the MAV swarm does not help reduce
estimation error or improve stability. In contrast, my DrunkWalk not only adopts
collaboration between MAVs, but also assigns different roles to advanced MAVs and
basic MAVs through different system configurations, which helps to improve the
system performance on accuracy and reliability.

5.4.7 Related Work

Works related to DrunkWalk mainly fall into three domains: sensor networks, robotics
and mobile computing.

The sensor network domain has a number of works on deploying and navigating
mobile sensors [136, 137, 138, 139]. Howard et al. [140, 141] present techniques for
mobile sensor network deployment in an unknown environment. Their approach
constructs fields such that each node is repelled by both obstacles and by other

103



5 10 15 20 25 30 35

Total Number of MAVs

0

2

4

6

8

10

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r 
(m

)

Localization Error VS Total Number of MAVs

DRMB

DrunkWalk

Figure 5.18: The figure shows the localization estimation error as a function of total
number of MAVs in the swarm. The noise levels for advanced MAVs and baisc MAVs are
set as default and the portion of advanced MAVs in the swarm is set as 30%.

nodes, enabling the network to spread itself throughout the environment. Similarly,
Batalin et al. [142] present a deployment algorithm for robot teams without access
to maps or location. The robots are assumed to be equipped with vision sensors and
range finders and select a direction away from all their immediate sensed neighbors
and move in that direction. The algorithm does not require communication between
nodes but also does not allow nodes to be deployed at designated locations. The
domain experts have no control over the emergent deployment locations of the nodes.

The problem addressed in this section can also be seen as an instance of the
Simultaneous Localization And Mapping (SLAM) problem that has been extensively
studied in robotics [100, 143, 144, 145]. In fact, in the system I described multiple
MAVs try to localize themselves while at the same time trying to acquire a repre-
sentation of the spatial distribution of the radio signatures. In recent years there
have been copious research in SLAM using either methods based on Kalman filters
[146, 147, 148, 149] or particle filters [150, 151, 152, 153]. Both approaches, however,
have been mostly applied to solve instance of the SLAM problem where mobile
agents are equipped with sensors returning distances (e.g., laser range finders, or
sonars) or cameras (either monocular or stereo). Therefore, the ultimate objective
of these solutions to the SLAM problem was to map physical entities located in
the environment, like walls, obstacles, etc. Methods based on Kalman filters are
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not applicable for the scenario I consider because I am dealing with multimodal,
nonparametric probability distributions. Therefore, I opt for a solution based on
particle filters.

Approaches based on explicit perception and processing of radio signals have been
mostly aimed at implementing localization systems with the underlying assumption
that radio signals were preliminarily collected off-line to build so-called map signals
[154, 155, 156, 157]. A recent paper by Twigg et al. [158] discusses a system where
a robot autonomously discovers the area within which connectivity with an assigned
WiFi base station is ensured. Their solution, however, solves only the mapping side
of the problem because the robot is equipped with a laser range finder solving the
localization problem. In other words, RSS readings are mapped to the physical space
exploiting the availability of a different sensor providing reliable localization.

For people carrying mobile devices, SLAM-like approaches have recently been
proposed that fuse WiFi-based RSS and motion sensor data to simultaneously build
a sensor map of the environment and locate the user within this map. e.g. radio
fingerprint maps [159, 160, 161, 162], or organic landmark maps [163, 164]. These
approaches focus on the location estimation part of an orthogonal problem, where the
motion of users cannot be controlled and hence, does not involve motion planning or
deployment. Purohit et al. [129] present a system for infrastructure-free single room
sweep coverage with MAV sensor swarms. Their approach, however, does not involve
the concept of location estimation and navigation and does not support navigating
nodes to pre-assigned destinations.

To the best of my knowledge, this section presents the first attempt to solve
a SLAM problem using a swarm of MAVs that combines location estimation and
adaptive planning to improve the success rate and accuracy of navigation.

5.5 Conclusion

This chapter presents a system for collaborative and adaptive planning of resource-
constrained MAV sensing swarms to quickly and efficiently navigate to preassigned
locations. The system utilizes collaboration between nodes of the swarm to overcome
the sensing and computational limitations of MAV nodes, and the challenging oper-
ating environments. In addition, to extend my algorithm to heterogeneous drone
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swarms, my algorithm assigns different roles to advanced MAVs and basic MAVs
through different settings based on their sensing capabilities. I comprehensively eval-
uate the system through large-scale simulations and real MAV testbed experiments,
showing that DrunkWalk achieves up to 6× reduction in location estimation errors,
and as much as 3× improvement in navigation success rate under the given time
and accuracy constraints. All these results validate the effectiveness of applying
spatiotemporal relationships on controllable large scale mobile CPS for estimating
system status and route planning.
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Chapter 6

Actuation Planning for
Semi-Controllable Large Scale
Mobile CPS

This chapter introduces how to utilize spatiotemporal relationships to address the
challenge of route planning for semi-controllable systemsto achieve high sensing cov-
erage quality on the vehicle based CPS, as described in Chapter 1. Compared to the
controllable large scale mobile CPS in Chapter 5, route planning is more challenging
for semi-controllable systems, since their route planning involves estimation of both
system status and physical field. Along with the challenges of controllable large scale
mobile CPSs, semi-controllable systems have to face the problem of selecting which
mobile devices should be actuated in route planning and how to design routes for
the selected mobile devices.

The system predicts the vehicles’ mobility to help the system to choose the
"correct" vehicles to actuate (ST-PHY), and the ride requests over the city to help
lower the incentive cost (ST-SYS). The system combines information of mobility of
all the vehicles and the ride requests over the city to calculate an optimal solution
for route planning (ST-PHY-SYS).
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6.1 Problem Overview

The rapid growth of mobile devices with powerful sensing units has promoted
the development of mobile crowdsensing (MCS), in which spatially distributed
participants collectively sense and share data. The extracted information from
shared data can be used to measure, map, analyze, or estimate any processes of
interest, such as traffic conditions, air pollution, noise level, etc [165, 166]. MCS
brings many advantages to sensing systems, including low deployment cost, accessible
large scale, and easy maintenance [167].

Vehicle fleets are an important platform for MCS due to their high mobility and
large range. Especially, traditional taxis and new forms of taxis (Uber, Lyft and
Didi) operate throughout the city with long operational time. These fleets enable
large scale sensing data with high spatiotemporal coverage and make a lot of urban
sensing applications feasible [168].

Sensing coverage quality, which considers both amount and distribution of data
collection, is one of the key performance indices (KPI) of the MCS system that
influences the quality of the information collection [169]. Good quality data collection
requires both large and balanced coverage in the spatial and temporal domain [21].
Large coverage ensures sufficient information is collected, while balanced coverage
ensures informative data collection.

As non-dedicated sensing platforms, MCS systems using taxis do not guarantee
good sensing coverage quality even with large numbers of taxis. This is because most
taxis gather around busy areas, like central business districts (CBDs), while little
data are collected in other areas [17]. A lot of past work has been done to improve the
sensing coverage quality. Auction-based or game-theoretical mechanisms have been
proposed to actuate MCS participants [170, 171, 172, 173]. These approaches require
the participants to select and bid on the task. These approaches rely on a large
number of rational participants and incorporate all their preferences. As a result,
they are particularly sensitive to driver participation and attention. Furthermore,
they do not incorporate the future mobility of the unselected vehicles effect on the
overall sensing coverage quality, which brings a lot of uncertainty to the effectiveness
of the sensing coverage quality after actuation.

It is difficult to optimize sensing coverage quality in a vehicular MCS with a
limited budget due to two major challenges: high uncertainty on actuation
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effectiveness, and conflicting goals between the vehicle fleet and MCS
platform.

• High uncertainty on actuation effectiveness: With limited budget, only a small
percentage of the whole vehicle fleet can be actuated and the future mobility
of the rest of the vehicles is not considered. As a result, the effectiveness of
actuation is highly uncertain.

• Conflicting goals: As a non-dedicated sensing platform, taxis make individual
optimal decisions on looking for new ride requests (customers), which makes
them gather in the busy areas with more ride requests. This leads to much
fewer taxis showing up and less data being collected in other parts of the city.
As a result, simply actuating taxis without a monetary incentive causes high
actuation cost and low motivation [174].

This section answers the question: how can one efficiently actuate non-dedicated
sensing platforms (ride-based vehicles) to achieve optimal sensing coverage quality
with a limited budget? I present ASC, a system that actuates vehicular taxi fleets
for optimal sensing coverage quality by matching ride requests with taxis. ASC
determines routes for all the available taxis through two main steps. 1) The system
first adopts a mobility prediction model to forecast the near-future taxi destinations.
The prediction guides the system to decide which taxis to select for actuation to
achieve maximum sensing coverage quality improvement. The system intends to
spend its budget on taxis which are predicted to head for busy areas (instead of
those heading for sparse areas), and actuates them to sparse areas. As a result,
actuating one taxi brings more sensing quality improvement. 2) ASC includes a
ride request prediction model to predict near-future ride requests across the city.
Based on this prediction, the system chooses routes to actuate taxis, which aims to
improve the overall sensing coverage quality and match the ride requests with the
taxis. This not only lowers the cost of actuation but also improves the motivation
for the driver [174]. Utilizing these two key steps, the system sends the actuated
routes and corresponding monetary incentives to the selected taxis.
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6.2 Problem Definition

In this section, I discuss the problem of optimizing sensing coverage quality in
vehicular MCS. My actuation system is not dependent on the particular application
and can be used for any type of high-level vehicular MCS tasks. First some preliminary
definitions are given. Then I describe the goal of my system. Finally, I formulate
the problem of optimizing sensing coverage quality.

According to spatial and temporal resolution setup (ds and dt), the system
discretizes the focus rectangle area into nx by ny congruent grids (xi, yj) and time
slices tk. The longitude, latitude and time index are represented by xi, yj and tk

respectively. I note that according to the average taxi speed, ds and dt are set so
that a taxi covers at most ds within dt.

6.2.1 Key Definitions

Worker: Denoting a taxi’s fleet as C, each worker c ∈ C represents a taxi carrying
sensors for different applications. The worker drives within the map of the target
city and continues to collect data during its trajectory. The spatial coordinate of c
at time t is denoted as (xct , y

c
t ) and obtained by global positioning system(GPS).

Actuation period: The actuation period T = ndt denotes the time length for
the selected taxis to finish the actuation route. For simplicity but without loss of
generality, I set T = 5dt in this paper. The changing of n does not change the
problem and solution.

Actuation Task: An actuation task for a worker c refers to a route that a worker
is asked to cover within an actuation period T . The route consists of a sequence of
coordinates for each dt during the actuation period and expressed as

{
(xcτ , y

c
τ ), (x

c
τ+dt , y

c
τ+dt), ..., (x

c
τ+T , y

c
τ+T )

}
,

where (xcτ , y
c
τ ) is the original location of the taxi c when the actuation task starts

at time τ .
Actuation Availability: At the beginning of each actuation period T , each worker

c reports its actuation availability. An available worker means there is no passenger
in the taxi and the driver is willing to follow the assigned trajectory with the given
monetary incentive. A worker is called an "actuated worker" when it accepts an
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actuation task, and a "non-actuated worker" otherwise.

Budget & Monetary Incentive: The budget R is the total amount of money
available to actuate workers during each actuation period. When a worker c is
assigned an actuation task, a monetary incentive B(c) is also allocated. The total
monetary incentives do not exceed the given budget R.

Sensing Coverage: The sensing coverage A refers to the set of data points
collected by all workers during one actuation period T , including both "actuated"
and "non-actuated" workers.

6.2.2 Actuation Objective

The objective of actuation is to achieve optimal sensing coverage quality (a large
amount of well-balanced data) by actuating part of the vehicle fleets with given
limited budget. I define the sensing coverage quality φ(A) as a combination of the
total amount of sensed data and the "balance level:" the sensed data distribution
over the covered area. The balance level represents how uniformly the sensed data
are distributed in both the temporal and spatial domains. I quantify this using the
entropy of the sensed data distribution. Thus, the overall sensing coverage quality is
obtained by the weighted sum of the total amount of sensed data and the entropy of
their distribution.

Eq. 6.1 gives the mathematical formulation of φ(A), where E(A) is the entropy of
data distribution (data balance), and Q(A) is the number of data points. α ∈ (0, 1)

is tuned to be large when balancing the data distribution is the main focus of the
actuation task, and small when the main focus is collecting a large amount of data.

φ(A) = αE(A) + (1− α)logQ(A) (6.1)

6.2.3 Problem Formulation

To optimize the sensing coverage quality φ(A) with limited budget R, the system
needs to 1) select the "correct" taxis to actuate that efficiently utilize the budget
and 2) plan the actuation task routes for each selected taxi. Therefore, I give the
mathematical formulation of the actuation problem at time t as:
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max
I(ci),{(xtc,y

t
c),...,(x

t+T
c ,yt+Tc )}

φ(A) (6.2)

s.t. 0 ≤ xτci ≤ nxds, t ≤ τ ≤ t+ T, i = 1, ... |C| (6.3)

0 ≤ yτci ≤ nyds, t ≤ τ ≤ t+ T, i = 1, ... |C| (6.4)

|xτci − x
τ−dt
ci
| ≤ ds, t ≤ τ ≤ t+ T, i = 1, ... |C| (6.5)

|yτci − y
τ−dt
ci
| ≤ ds, t ≤ τ ≤ t+ T, i = 1, ... |C| (6.6)

|C|∑
i=1

B(ci) · I(ci) ≤ R (6.7)

I(ci) = 1 represents that worker ci is selected for actuation, and I(ci) = 0 that
worker ci is not selected. Eq. (3) and (4) constrain the system to only consider
workers’ mobility within the focus area. Eq. (5) and (6) constrain that each worker
cover at most ds within dt. Eq. (7) constrains that total monetary incentives must
not exceed the given budget R.

In my system, at the beginning of each actuation period T , taxis automatically
report their information including: taxi id, current location, and actuation availability
for the coming actuation period. Based on the reported information, tasks and
monetary incentives are calculated and assigned to selected available taxis. It is
assumed that taxis follow the actuation task routes until the end of the the actuation
period if they accept the monetary incentive.

6.3 System Design

This section introduces how I utilize spatiotemporal relationships to design the
actuation system to optimize sensing coverage quality. I first discuss how I integrate
the mobility prediction model (ST-SYS) and the ride request prediction model
(ST-PHY) into the system in Section 6.3.1. Then, I discuss how to design vehicles’
mobility prediction and ride request prediction in detail in Sections 6.3.2 and 6.3.3.
Finally, I discuss the design of the monetary incentives and multi-incentive algorithm
(ST-PHY-SYS) in Sections 6.3.4 and 6.3.5.
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Figure 6.1: The figure shows the architecture of a spatiotemporal relationship-aided large
scale mobile CPS implemented as a semi-controllable vehicle based CPS for route planning
(improving sensing coverage quality in MCS), which involves estimation on system status
and physical field.

6.3.1 System Overview

Figure 6.1 shows the high-level architecture of the semi-controllable vehicle based
CPS. The information sensing layer gets the sensing data, taxi status and trajectory
of vehicles and stores them in the database. The taxi status indicates whether the
taxi is available for actuation to ASC. Unavailability can occur for two reasons:
customers already riding in taxis, or drivers’ unwillingness to be actuated. The
information estimation layer processes the sensing data in the database and stores the
results back to the database for the application layer . The spatiotemporal relationship
analysis layer gets the status and trajectory data of taxis from the database and
calculates an optimal actuation solution for the device actuation layer for improving
sensing coverage quality.

To optimize sensing coverage quality, I design the actuation system based on
two key observations: 1) The cost of actuating one taxi depends on whether
the system can match a taxi with a ride request at the destination. If the
system matches the taxi with a ride request, the taxi driver is willing to accept a
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Figure 6.2: This figure shows the architecture of applying the spatiotemporal relationship
analysis layer on semi-controllable large scale mobile CPS (vehicle based CPS) for route
planning (improving sensing coverage quality in MCS), which involves estimation of system
status and physical field. The spatiotemporal relationship analysis layer predicts the
vehicles’ mobility to help the system choose the "correct" vehicles to actuate (ST-PHY),
and predicts the ride requests over the city to help lower the incentive cost (ST-SYS). The
system combines information about mobility of the vehicles and the ride requests over the
city to calculate an optimal solution for route planning (ST-PHY-SYS).

lower monetary incentive since they can earn money from the new rides [174]. 2)
The sensing coverage quality after actuation depends on selecting which
taxis to actuate. The system does not have to actuate taxis that plan to head
for sparse areas, as changing their trajectories would not significantly improve the
sensing coverage quality. On the other hand, changing the trajectories of those
that plan to head for busy areas and actuating them towards sparse areas improves
sensing coverage quality more.

Therefore, I integrate two prediction models into the system. The mobility
prediction model forecasts the mobility of taxis and offers guidance for the system to
wisely select which taxis to actuate. To be specific, the system selects taxis heading
for dense areas and actuates them to sparse areas, which leads to a higher sensing
coverage quality improvement. The ride prediction model forecasts the coming ride
requests over the city. When taxis are matched with ride requests, taxi drivers are
willing to accept a lower incentive. As a result, the cost of actuating a taxi is lowered
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and more taxis can be actuated for better sensing coverage quality with the same
budget.

Figure 6.2 shows how the system integrates the two prediction models for actuation.
Taxis report their real-time trajectory data and whether they are available for
actuation to ASC. Unavailability can occur for two reasons: customers already riding
in taxis, or drivers’ unwillingness to be actuated. ASC calculates 1) which taxis to
be actuated, 2) where they will be actuated to, 3) how much monetary incentive
they are paid, and potential ride requests at the actuation destination. The results
are sent back to the taxis, thus actuating them to achieve sensing coverage quality
optimization.

The Pre-Processing module discretizes the focus rectangle area of the city and
the time with the given spatial and temporal resolution (ds and dt). According to
the average taxi speed, ds and dt are set so that a taxi covers at most ds within dt.

The Vehicle Mobility Prediction module, which is trained by each taxi’s history
trajectory data, predicts taxi mobility. The prediction output is fed to the Multi-
Incentive Algorithm module to guide the system to wisely select the taxis to actuate,
which improves the effectiveness of the actuation. ASC allows different mobility
prediction models. For simplicity but without loss of generality, this
paper adopts a Markov based mobility prediction model. The details can
be found in Section 6.3.2.

The Ride Request Prediction module predicts ride requests over the city, whose
results are sent to the Multi-Incentive Algorithm module. Based on this prediction,
the Multi-Incentive Algorithm module selects routes for actuated taxis. The Ride
Request Prediction module uses historical ride request data, which can be derived
from taxi occupancy data, to train the ride request model. The system framework
allows for different ride request prediction models. For simplicity but without loss
of generality, this paper adopts a graph-based ride request prediction model, whose
details will be discussed in Section 6.3.3.

The Monetary Incentive Calculation module calculates the incentive based on the
selected routes from the Multi-Incentive Algorithm module and the prediction from
the Ride Request Prediction module. The results are sent back to the Multi-Incentive
Algorithm module for further optimization. The details can be found in Section 6.3.4.

The Multi-Incentive Algorithm module selects the taxis to be actuated and designs
trajectories for those taxis by collaboratively considering 1) taxi mobility predictions
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from the Vehicle Mobility Prediction module, 2) ride request predictions from the
Ride Request Prediction module and 3) monetary incentive from the Monetary
Reward Calculation module. The details will be discussed in Section 6.3.5.

6.3.2 Mobility Prediction Model

The mobility prediction model offers information used to guide the system to select
taxis for actuation. As I have introduced in the previous section, the trajectories I
build for each taxi are discrete in both the spatial and temporal domains. Therefore,
I adopt a Markov Chain (MC) model, which is widely used for modeling transitions
within discrete states [175]. In an MC model, each taxi corresponds to a transition
kernel P that describes its mobility pattern. The entry Pij represents the probability
that the taxi moves from location i to location j. Each row Pi of the transition
kernel represents the probability distribution of the taxi moving from location i to
its next location.

As for the training of an MC model, given a trajectory of the taxi, the maximum
posterior estimation of Pij is as follows:

P̂ij =
nij + β∑
j′ nij′ + β

, (6.8)

where nij represents the number of times the taxi moves from location i to location
j, and β is a smoothing coefficient to avoid dividing by zero.

Once the estimated transition kernel P̂ is acquired, it is used to predict the
taxi’s future movements. The process can be formulated as: given a taxi’s current
location −→x0, the estimated transition kernel P̂ , and a possible trajectory −→x (1:n), the
probability p(l) that the taxi moves along this trajectory in the future is calculated
as:

p(l) =
∏

i=1,2,..,n

P̂−→x i−1
−→x i (6.9)

However, the size of the transition kernel correlates with the number of distinct
locations visited by each taxi, which means the computation complexity drastically
increases. Also, I discovered that most transitions happen within two connected grids,
due to the speed limit in the city. Therefore, in order to reduce the computational
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Algorithm 3: Training Algorithm for Vehicular Mobility Prediction
1 Input: Trajectory X = x1, x2, ...xn, grid-to-area Map f(·).
2 Output: Direction Transition Kernel D.
3 Initialize:
4 Transfer X into transition directions d = {d1, d2, ..., dn−1}
5 Set each element of n← α

6 for i ∈ {1, ..., n− 1} do
7 Map grid ID into Area ID ai ← f(xi)
8 naidi ← naidi + 1

9 end
10 Calculate D using n based on (6.8)

work, I assume that each taxi either moves to an adjacent grid or stays in its current
grid. This assumption decreases the length of each row Pi of the transition kernel to
nine, representing the nine possible directions that a taxi can move to. I denote the
new transition kernel as the direction transition kernel D.

Moreover, I noticed that taxis within adjacent grids tend to follow similar mobility
patterns [176]. Thus, to further limit the computation complexity while keeping
the same spatial resolution, I first partitioned the city into several non-overlapping
sub-areas that are larger than a grid, and then let grids within the same area share
the same transition probability distributions, i.e. the same row of D.

The mobilitiy prediction module is based on this mobility model and has two
parts, namely training and predicting. In the training part, as shown in Alg. 3, a
function f(·) maps the grid ID into the sub− area ID. Then the training part takes
a taxi’s historical trajectory X = x1, x2, ...xn and the grid-to-sub-area map f(·) as
inputs, and generates the direction transition kernel D as output. For each location
of the trajectory, it maps the grid ID to the sub − area ID, and then counts the
transition direction in a count matrix n. Based on n, it uses Eq. 6.8 to estimate
the direction transition matrix D. In the prediction part, as shown in Alg. 4, the
probability that a taxi travels along a fixed trajectory l given its transition kernel D
and current location x0 is calculated. This probability is calculated as a product of
the probability of each single transition in the fixed trajectory.

117



Algorithm 4: Vehicular Mobility Prediction Algorithm
1 Input: Direction Transition Kernel D, Current location x0, Fixed trajectory

l = {x1, ..., xm},grid-to-area Map f(·)
2 Output: Probability p.
3 Initialize:
4 Transfer l into transition directions d = {d0, d1, ..., dm−1} (including current

location x0)
5 p = 1

6 for i ∈ {0, ...,m− 1} do
7 Map grid ID into area ID ai ← f(xi)
8 p← p ∗Daidi

9 end
10 Return p

6.3.3 Ride Request Prediction Model

My system requires a model to predict ride request numbers over locations and time
in a city. This prediction enables the system to match ride requests with taxis, which
makes taxi drivers willing to accept lower incentives. As a result, more taxis can be
actuated for better sensing coverage quality with the same budget.

The ride requests in the city can be predicted based on the discovery that spatial
and temporal ride request patterns tend to repeat on a weekly basis [177]. But
even for the same city, ride request numbers vary across different days in a week, at
different time periods in a day, and across different areas.

The ride request pattern in a city can be modeled as a time-evolving graph, called
a ride request graph (RRG). For each time interval, a directed graph is constructed
as follows. Each grid of the city containing the source or destination of a ride request
is considered a node. Each source-destination pair is connected by a directed edge.
The weight of the edge represents the ride request frequency between the same source
and destination nodes. For each time interval t, the number of edges e(t) and the
number of nodes n(t) follow the Densification Power Law (DPL):

e(t) = Kn(t)γ, (6.10)

where K and γ ∈ [1, 2] are constant. The number of edges grows linearly according
to the number of nodes if γ = 1.0, while the RRG becomes fully connected if γ = 2.0.
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To predict the ride requests over time and location with the RRG, the system
needs to learn two attributes: 1) the DPL factors (K and γ) which represent the
temporal evolution property and 2) the spatial distribution of nodes in the RRG. The
DPL factor can be calculated with the ride request history data used to construct
the RRG. The spatial property can be obtained with the help of OSM Points of
Interest (PoI) such as traffic signals, businesses, schools, hospitals etc [178], which
are used to infer the ride request popularity in different areas. This model has been
shown to be accurate in [177] by comparing it to real-world datasets. More details
can also be found in [177].

6.3.4 Monetary Incentive

The key idea of my monetary incentive design is to include the probability of getting a
second ride request at the actuated taxi’s planned destination. This can decrease the
monetary cost for actuating taxis by utilizing the underlying incentives of providing
taxis a higher chance to get passengers at the destination of their assigned task. In
this way, I could actuate more taxis and better utilize the budget to improve the
sensing coverage quality.

The difference between taxis’ distribution and the ride request distribution makes
it possible to provide taxis with a higher chance of finding passengers in sparsely
sensed areas. Therefore, if I could send the vehicles to the sparsely sensed areas with
greater ride request probabilities, the cost for actuating taxis would be decreased and
quality of sensing coverage would be improved. Meanwhile the utilities of the taxis
are ensured, and overall transportation efficiency is improved. Therefore I design the
monetary incentive B(c) offered to taxi c as follows

B(c) = max(rmax − ru ·Request(xTc , yTc , T ), rmin) (6.11)

where rmin and rmax are the minimum and maximum monetary incentive to
actuate one taxi respectively. This definition of the monetary incentive is based on
the following reasons. First, the maximum incentive rmax should equal the maximum
cost that the taxi incurs by following my route. Thus, I can find rmax from the
gas, time cost and passenger count of driving during the actuation period. I can
offer lower incentives, however, if taxis encounter ride requests while following my
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trajectories: taxis could then earn additional money from serving these requests,
which lowers their net cost from following my route. The Request(i, j, t) represents
the predicted ride request distribution in location of (i, j) at the t time interval, which
is estimated using the model introduced in Section 6.3.3. ru is the unit monetary
incentive for one ride request. Moreover, even with a high possibility of getting a
new ride request, each taxi still needs a minimum monetary incentive to motivate,
which is rmin.

6.3.5 Multi-Incentive Taxis and Trajectory Selection Algorithm

To solve the NP-hard optimization problem in Eq.(2) (7), I propose a fast, near-
optimal heuristic-based algorithm to find an approximate solution. The core idea
of my algorithm is to 1) find times and locations with many taxis passing through,
and 2) dispatch these taxis to different times and locations with very few taxis
passing through. This is because actuating the taxis in a sparse area does not
solve the problem of most taxis gathering in dense areas. The idea of the proposed
algorithm is based on the Complementary Constructive Procedure (CCP). I first
initialize a feasible solution S under the constraints, which is easy to implement
by selecting taxis until the budget is full. Then I keep updating the solution to
improve the objective function, which is the sensing quality. As Algorithm 5 shows,
in the initialized feasible solution, I can find the corresponding time and location
pair that contains maximum data points. I can also find the set Stmp of taxis that
pass through the location at the respective time. A key step is then that for taxis
belonging to the set Stmp, the expectation of the current trajectories is computed
based on the current data point distribution. In this way, I can have an overall
idea about which taxis passing through the maximum grid contribute the least to
the overall data distribution balance level. Then I rank this list of taxis from least
to most contribution in order to select taxis to dispatch to a new trajectory or
not actuate. Similarly, I first compute the expectation value of each prospective
trajectory, including random run without actuation, on the current data distribution.
Then the algorithm traverses the prospective trajectories according to descending
expectation value until the sensing coverage quality is improved. Finally, the solution
is updated based on the selected trajectory and taxi. With multiple iterations, the
solution keeps updating until the estimate of sensing coverage quality converges.
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Algorithm 5: Multi-Incentive Algorithm for Taxis and Trajectory Selection
1 Input: Current location x0, Budget R, Taxis availability, Ride request model

Request, Mobility prediction model P
2 Output: Actuated taxis ID, planned trajectory and monetary incentive for

actuated taxis
3 Initialize:
4 Select taxis and trajectory randomly until the budget is full
5 Output the initial feasible solution S based on actuated taxis and P for

non-actuated taxis
6 while φ converges do
7 Select the grid with maximum taxis passing through
8 Take out the set of taxis Stmp which pass through the maximum grid
9 Compute and rank the contribution of trajectories of taxis belonging to

Stmp
10 Select the taxi with minimum contribution and update its trajectory with

monetary incentive defined by Request
11 Keep updating the trajectory until the budget constraint R is satisfied
12 Update S and calculate the updated sensing quality φ
13 end
14 Return S? = S

6.4 Evaluation

In this section, I evaluate my system’s ability to achieve optimized sensing coverage
quality with the same type platform in Chapter 4. In addition, I also verify its ability
to match ride requests with taxis, which is an essential actuation motivation for taxis.
I first introduce how I design a simulation based on real historical taxi trajectory
data and real experiments on a taxi testbed for evaluation in Section 6.4.1. Then,
I present and analyze the simulation and experiment results in Sections 6.4.2 and
6.4.3 respectively.

The evaluation focuses on the following aspects:
• Validating the effectiveness of integrating the mobility prediction model and
ride request prediction model. This is done by comparing the performance of
my system with several baselines, which will be introduced in Section 6.4.1 and
analyzed in Section 6.4.2 and 6.4.3

• Evaluating the performance of the proposed algorithm on optimizing the
sensing coverage quality and matching ride request. This is shown by the
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Figure 6.3: I evaluate my system in the center area of Beijing, which occupies a size of
15km by 15km. The evaluation area is discretized into grids of 1km by 1km.

metric performance defined in Section 6.4.1.

• Characterizing the system performance under different system set ups. Two
key factors are discussed: budget amount (Figure 6.6 and 6.8) and total taxi
number (Figure 6.7 and 6.9).

6.4.1 Evaluation Setup

I evaluate my system on a taxi testbed as well as on a simulation based on real
historical taxi trajectory data in the center area of Beijing. The evaluation area
occupies a size of 15km by 15km, as shown in Figure 5.5. The major setup parameters
of the evaluations are listed below.

Real Taxi Testbed Experiment Setup: To test my system in a realistic
setting, I recruited taxis to run in the city of Beijing. I evaluate my system at four
different times of day six hours apart: 0:00am, 6:00am, 12:00pm and 6:00pm. In
addition, I also evaluate the system at 9:00am since it is a peak time in a day. I run
the taxis on routes calculated by my system. For each route, a researcher hailed a
taxi. The researcher suggested routes for the driver based on my system outputs. The
drivers are free to modify routes. During the whole process, as shown in Figure 6.4,
an Android App named GPS Logger was used to collect real-time GPS taxi data [1].
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Figure 6.4: I evaluate my system with a real taxi testbed. An Android app, GPS
Logger [1], is used to collect real-time GPS data.

In total, I collected traces from 230 actuated taxis over a period of 14 days. The
experiment was approved under the university IRB STUDY2017_00000342.

Historical Trajectory Data Description: I use the Beijing taxi trajectory
dataset for November 2015 [179] to conduct simulations based on real historical taxi
trajectory data. The dataset is formatted as follows: taxi id, time stamp, longitude,
latitude, occupancy flag. The occupancy flag represents whether the taxi is occupied
by customers. The temporal and spatial resolutions are 60 seconds and 1 meter
respectively. I extract the ride requests in the city according to the occupancy flag
transformations. A ride request is obtained when a taxi’s occupancy flag is turned
to occupied.

General System Setup: Every actuation period, I randomly select 500 active
taxis as the total vehicle fleet. I take temporal and spatial resolution as 2 minutes
and 1 km since the average taxi speed in Beijing is 30km/h, and at this speed 2
minutes covers 1 km, which is one grid. The incentive in my system is given in units
of US dollars (USD). I adopt ru = 2(USD), rmin = 2(USD) and rmax = 20(USD),
since 2 USD is the flag-down fare of Beijing Taxi and 20 USD is enough to cover the
cost for one trajectory (∼ 10km) in one incentive period under bad traffic conditions.
I take the first 3 weeks’ data to train mobility prediction and ride request prediction
and the final days of the month to test the system. I evaluate my system every six
hours, at 0:00am, 6:00am, 12:00pm and 6:00pm as well as at 9:00am. In the taxi
testbed, the actuated taxis run on real roads as described earlier. In the simulated
experimentation, I assume that the actuated taxis follow the planned trajectories at
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an average velocity and finish the tasks before the end of one incentive period.

Performance Metric: Two metrics are introduced to show the performance
of the algorithm in improving sensing coverage quality. The first one is the value
of sensing coverage quality (SCQ) φ, which is the objective of my problem as
shown in Eq 6.1.

Since it is difficult to understand whether the sensing coverage quality φ is
good or not with a value, I adopt the sensing coverage quality improvement
percentage (SCQIP ) compared to the upper bound of sensing coverage quality
as the performance metric. This metric evaluates how close the sensing coverage
quality is to the ideal-maximum sensing coverage quality given the sensing coverage
quality before actuation.

To be more specific, denoting the ideal-maximum sensing coverage quality as
φideal, the sensing coverage quality before actuation as φ0, and improved sensing
coverage quality obtained from current algorithm as φ?, the improvement percentage
of the current algorithm is

SCQIP =
φ? − φ0

φideal − φ0

(6.12)

φideal = α log(T ·Nlon ·Nlat) + (1− α) log(T · C) (6.13)

It is noticed that SCQIP cannot reach 100% since φideal is the quality of sensing
coverage in the ideal scenario. In the ideal case, the taxis’ distribution is exactly
uniform at each time point. However, because of limitations on initial locations of
vehicles, this ideal case is impossible to achieve in practice.

Another important evaluation metric is the ride request matching rate. Matching
ride requests for taxis is an essential factor in decide whether the drivers have enough
motivation for actuation tasks. A matched request means that there is a ride request
in the same grid square as the taxi destination once the taxi arrives. I define the
ride request matching rate (RRMR) RR to evaluate the performance of the
algorithm in improving ride request matching.

RR =
#Actuated vehicle matched passengers at time T

#Actuated Vehicle
(6.14)

RR indicates how many actuated free-load vehicles can find a passenger at their
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system-assigned destination. This performance metric evaluates the quality of the
overall ride request matching.

Baselines: I adopt different baselines to validate different parts of my system in
improving sensing coverage quality. These parts include mobility prediction model,
ride request prediction model and the core algorithm.

• No Actuation (NA): This method does nothing to actuate taxis or match ride
requests. All the taxis just follow their original trajectories. By comparing this
method with my ASC system, I can check the performance improvement of
my entire system.

• Random Actuation (RND): This method randomly selects taxis and routes
to actuate taxis within the given budget. RND always offers the maximum
monetary incentive. By comparing this method with my ASC system, I can
check the performance improvement caused by the two prediction models.

• Random Actuation with Ride Request Prediction (RND_RQ): This method
also randomly selects taxis and actuation routes within the given budget. At
the same time, RND_RQ tries to match ride requests with taxis. As a result,
the cost to actuate one taxi will be lower than Random Actuation (RND). By
comparing this method with RND, I can check the improvement caused by the
ride request model. By comparing this method with the ASC, I can check the
improvement caused by the mobility prediction model.

Figure 6.5 shows the statistics of ride requests and active taxis in one week
selected from my dataset. I calculate the number of ride requests and active taxis
every 10 minutes. The active taxi number is calculated from a subset of around 3000
taxis. Ride request and active taxi counts show similar daily trends, corresponding
to common supply and demand relations. Both show decreasing trends from 0:30am
- 5:00am, when most people are asleep. After that, an increasing trend appears until
11:30am, as people go to work and school, do some shopping, etc. Both ride requests
and active taxis maintain a high level from noon to midnight, which corresponds to
the most busy time in Beijing.
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(a) Ride requests within 10 minute time inter-
vals on different days in a week.

(b) 10-minutes active taxi number on different
days in a week.

Figure 6.5: This figure shows the temporal distribution of ride requests and active taxis
in a week. Active taxis have a similar trend as ride requests, which corresponds to human
daily activity pattern in Beijing.

6.4.2 Physical Feature Based Simulation Performance

I conduct extensive simulations based on real historical taxi trajectory data to
illustrate how my system optimizes sensing coverage quality and matches ride requests
with taxis respectively. As discussed in Section 6.4.1, the results are obtained from
average values of 5 time periods on 5 different days and compared with baselines.

I check the performance with two key factors: budget and total taxi number.
Budget decides the amount of taxis that can be actuated. A larger budget usually
means more actuated taxis for better sensing coverage quality. The total taxi number
decides the amount of searching space the system can use for actuation. A larger
total taxi number usually brings more candidate choices for the system to actuate,
which leads to better sensing coverage quality.

Sensing Coverage Quality VS Budget: In order to evaluate how budget
affects the sensing coverage quality with my ASC and baselines, I plot the sensing
coverage quality and its improvement percentage IP in Figure 6.6. First, for ASC,
RND and RND_RQ, sensing coverage quality improves with increasing budget.
Higher budgets allow for more actuated taxis, leading to better sensing coverage
quality. Second, my ASC always shows an advantage over the three baselines.
Especially when the budget is 4000 USD, my ASC achieves 61% IP while RND and
RND_RQ only give 22% and 20% IP over NA respectively. The 40% advantage of
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(a) Sensing Coverage Quality with Different Bud-
gets

(b) Sensing Coverage Quality Improvement with
Different Budgets

Figure 6.6: This figure shows the sensing coverage quality and its improvement with
different budgets. My ASC always shows up to 40% more improvement than RND and
RND_RQ. To achieve similar sensing coverage quality, My ASC needs 200 USD while RND
and RND_RQ need 2000 USD.

my ASC has several causes. The ride request prediction model helps my ASC lower
the incentive cost by matching ride requests with taxis. In addition, the mobility
prediction model guides my ASC to select taxis which bring more sensing coverage
quality improvement. Third, my ASC arrives at saturation point at 4000 USD while
other baselines still keep increasing even at 8000 USD. This shows that with the
help of two prediction models, my ASC is much more efficient at improving sensing
quality coverage. To achieve similar sensing coverage quality, my ASC needs 200
USD while RND and RND_RQ need 2000, which is 10× my expense. Finally,
although RND_RQ can lower incentive costs by matching more ride requests and
thus actuating more taxis, it still does not exceed the sensing coverage quality of
RND. This shows that even with more actuated taxis, randomly selecting taxis to
actuate does not bring sensing coverage quality improvement. The similar trend of
RND and RND_RQ validates the effect of my mobility prediction model.

Sensing Coverage Quality VS Number of Vehicles: The effect of vehicle
number on sensing coverage quality is investigated with a fixed budget of 1000 units
in simulation. Figure 6.7 shows the performance in improving sensing coverage
quality compared to the baseline algorithm. In Figure 6.7(a), our ASC algorithm
always performs better than baseline algorithms in all different numbers of vehicles.
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(a) Sensing Coverage Quality with Different Total
Car Numbers

(b) Sensing Coverage Quality Improvement with
Different Total Car Numbers

Figure 6.7: This figure shows the sensing coverage quality and its improvement with
different total car numbers. Our ASC consistently show advantages on sensing coverage
quality over baselines.

This proves that our ASC algorithm effectively selects "correct" vehicles with wise
trajectories to get better sensing coverage quality. In Figure 6.7(a), the green line
represents the increasing trend of sensing quality in the algorithm. Comparing the
different algorithms, I see ASC > RND ≈ RND_RQ > NA. It is also shown
that the sensing coverage quality increases with the number of vehicles under the
same budget. Recall the definition of sensing coverage quality φ(A), which is the
trade-off between the amount of collected data Q(A) and data distribution balance
level E(A). For the amount of data Q(A), more vehicles mean more collected data
points. From the definition of data distribution balance level E(A), intuitively, more
vehicles would increase supply over demand and cause competition between vehicles.
The competition forces some vehicles to drive to areas with fewer vehicles to increase
their probability of getting passengers. Thus, the distribution of vehicles becomes
more balanced and E(A) increases with vehicle count. Therefore in Figure 6.7(a), the
sensing coverage quality increases in both baseline algorithms and my algorithm. But
my ASC algorithm still outperforms the baseline algorithms, showing the robustness
of my algorithm under varying uncertainties in taxi availability.

Meanwhile, my ASC algorithm always achieves a higher improvement of sensing
coverage quality compared to the other algorithms. It is already shown that non-
actuation performs the worst in Figure 6.7(a). The non-actuation policy is taken as
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(a) Ride Request Matching Rate with Different
Budgets

(b) Actuated Taxi Number with Different Bud-
gets

Figure 6.8: This figure shows ride request matching rate and actuated taxi number with
different budget. My ASC consistently shows up to 20% matching rate than RND and
RND_RQ.

a reference to help evaluate how much better other algorithms perform in similar
conditions. In Figure 6.7(b), the x-axis is the number of vehicles, and the y-axis is the
improvement percentage (IP ) of sensing quality using new algorithms compared to
non-actuation. The green line represents my ASC algorithm. The red and black lines
represent the random actuation and ride request-based random actuation algorithms.
The ASC algorithm achieves up to 36.58% improvement with 200 vehicles, which is
5.12X and 4.96X higher than the performance of RND and RND_RQ algorithms
respectively.

Ride Request Matching VS Budget: To evaluate how budget affects the
ride request matching of different methods, I plot ride request matching rate and
actuated taxi number in Figure 6.8. First, a large budget leads to more actuated
taxis for all methods, but does not ensure large ride request matching rate, which is
different from sensing coverage quality. This is because the first priority of my ASC is
to improve sensing coverage quality. To ensure sensing coverage quality improvement,
ASC will sacrifice ride request matching. Second, for different budgets, my ASC has
up to a 20% larger ride request matching rate and than RND and RND_RQ. This
shows that even though my ASC sacrifices ride request matching rate to guarantee
sensing coverage quality improvement, it still keeps a higher matching rate than
other methods.
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(a) Ride Request Matching Rate with Different
Total Car Numbers

(b) Actuated Taxi Number with Different Total
Car Numbers

Figure 6.9: This figure shows ride request matching rate and actuated taxi number with
different total car numbers. My algorithm is robust to varying total vehicle numbers in
matching ride requests.

Ride Request Matching VS Number of Vehicle: The effect of the number
of vehicles on ride request matching rate and actuated taxi count is evaluated with a
fixed budget of 1000. The results are shown in Figure 6.9. Figure 6.9(a) shows that
my ASC algorithm achieves higher ride request matching rates with any number of
vehicles. Figure 6.9(b) shows that my ASC algorithm actuated more vehicles within
the same budget compared to other algorithms. Combining the results of these two
figures, the ASC algorithm does help more vehicles improve the possibility of finding
passengers. Figure 6.9(a) shows the variation of ride request matching rate under
different vehicle counts. The green line represents the results obtained from my ASC
algorithm. The blue, red, and black lines represent the results from non-actuation,
random actuation and ride request-based random actuation respectively. It is shown
that the ride request matching rate does not vary a lot with different vehicle counts
for all algorithms. My ASC algorithm achieves up to 73.82% ride request matching
rate with 500 vehicles, which is 11.59% and 13.71% higher than RND_RQ and RND.
My algorithm is also robust to varying the total number of vehicles in matching
ride requests. Figure 6.9(b) shows the actuated vehicle count under different total
numbers of vehicles. With a total vehicle count of 200, the number of actuated
vehicles is consistently higher using my ASC algorithm than with baseline algorithms.
This proves that my algorithm could actuate more vehicles by using the budget
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(a) Sensing Coverage Quality of Experiments at
Different Times

(b) Ride Request Matching Rate of Experiments
at Different Time

Figure 6.10: (a)The figure shows the sensing coverage quality from real experiment,
physical feature based simulation and non-actuation. Experiment results show improvements
similar to but slightly lower than simulation results. Both of them show advantages in sensing
coverage quality at different times; (b)The figure shows the ride request matching rate from
real experiments, physical feature based simulation, and non-actuation. Experiment results
are similar to simulation results.

in an efficient way. Furthermore, the number of actuated vehicles converges to
around 85 when the total number of vehicles equals 400 because of the limited
budget. Nonetheless, increasing the number of vehicles still improves data coverage
by providing more flexibility of vehicles and forcing the vehicles to run sparsely to
avoid competition.

6.4.3 Experiment Results

To check the performance of my system in real operational conditions, I conducted
experiments on a taxi based testbed at 5 representative time periods mentioned in
Section 6.4.1. My experimental evaluation accounts for real-time traffic patterns,
which the simulation does not. I compare the ASC experiment results with ASC
simulation results to illustrate that my system is practical. In addition, I also utilize
the taxi testbed to compare sensing coverage quality and ride request matching rates
between ASC simulation and real experiment results. In addition, I include the
non-actuation results as a baseline.

Figure 6.10(a) shows the sensing coverage quality from the real experiment,
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physical feature based simulation and non-actuation. At all representative times,
sensing coverage quality values from the experiment are similar to simulated values,
which shows that physical feature based simulation can be used to analyze system
operation in the real world. It is noticed that sensing coverage quality values
from the experiment are a little bit lower than those from the simulation. This
is because simulation results are theoretically near-optimal while real experiments
involve practical factors that prevent it from achieving simulation results. These
factors include traffic jams, temporary road closure, lack of direct routes to follow
the designed trajectories, etc. In addition, both simulation and experiment sensing
coverage quality show advantages over non actuation results. This proves that my
system improves sensing coverage quality in both the simulation and experiment.

Figure 6.10(b) shows the ride request matching rate from the real experiment,
physical feature based simulation and non-actuation. The similar ride request
matching rate at all representative times in both the experiment and simulation
proves that physical feature based simulation can be used to analyze system operations
in the real world. Unlike sensing coverage quality results, simulation results for
ride request matching rates are not always higher than experiment results. This
is because optimizing sensing coverage quality is the first priority of my system.
The optimal ride request matching rate cannot be achieved at the same time. In
addition, at 0:00am and 6:00am, the non-actuation scheme has higher ride request
matching rate than the ASC simulation and experiment results. When there are
not many ride requests in the area (0:00am and 6:00am), the system has to choose
the actuation routes that optimize sensing coverage quality but reduce ride request
matching. When there are many ride requests in the area (9:00am, 12:00pm and
6:00pm), the system is able to choose the actuation routes that optimize sensing
coverage quality as well as matching ride requests.

6.5 Related Work

In this section, I give a literature review of related work on two topics, i.e., taxi
behaviors & incentives and mobile crowdsensing.
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6.5.1 Taxi Behaviors and Incentives

Taxis play an irreplaceable role in a city’s transportation system by providing reliable
and customized travel services for passengers. Compared with other transportation
modes such as subway and bus services, taxis have no fixed routes, making them
flexible and accessible from almost every corner of a city.

For the safety of passengers, taxis are required to be equipped with GPS trackers by
law in many countries. Smart phones also make it easy to record the location of taxis.
These GPS trajectories can be regarded as digital footprints of human mobility. Based
on open taxi GPS datasets including Geolife [180], previous studies have addressed
various research topics, including road map making [181, 182], urban mobility
understanding [183, 184, 185, 186, 187], city region function identification [188, 189,
190], and location-based social networks [191].

Due to uncertain and time-variable traffic and ride request demand, mobility
prediction and ride request prediction are still two challenging tasks for researchers.
Human mobility is believed to have limits of predictability [192]. However, with
more available data and the usage of state-of-art machine learning and deep learning
models, the prediction accuracy of taxi mobility has been improved remarkably in the
past few years [193]. Previous studies have also shown that ride requests follow the
well-known densification power law, which may be used to predict or even synthesize
ride requests [177].

Because drivers prioritize individual profit, taxis are unevenly distributed in
different areas and overall efficiency is heavily harmed by competition in over-
supplied areas and supply-demand imbalance in under-supplied areas. To help to
improve the performance of taxi drivers and shorten the waiting time of passengers,
online taxi-hailing service [194] and dynamic taxi dispatch system [195] are proposed
to improve the scheduling efficiency of taxis. Ride-sharing services [196] are also
proposed to increase the delivery capacity.

6.5.2 Mobile Crowdsensing

Crowdsensing, also called participatory sensing or community sensing, is collectively
sharing data and extracting information to measure and map phenomena of common
interest by individuals with sensing and computing devices [17]. As smart phones
become more powerful and equipped with GPS trackers and accelerometers, crowd
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sensing is becoming widely adopted as a flexible and low-cost method of collecting
sensing data.

Usually the system’s objective is to maximize sensing quality, which might have
different metrics in different studies, (e.g., k-depth coverage [197]), and the system
may have different constraints, (e.g., budget of rewards for participants). Sensing
coverage is a major metric of evaluating sensing quality and has been used in
many previous studies, including place-centric crowdsensing [198] and people-centric
sensing [199]. While there are some previous studies that aim to maximize sensing
quality under budget constraints [200], they design the scheme from a systematic
view and do not consider the motivations of users, who have their own priorities and
may try to game the system.

Auction-based mechanisms and game-theoretical models, e.g., reverse auction [201]
and Stackelberg game [170], are used to fix this problem. Furthermore, budget-feasible
mechanisms [202] and proportional share rule-based compensation determination
schemes [203] are proposed to guarantee strategy-proofness and budget feasibility.
More discussion about auction-based mechanisms, as well as other incentive mecha-
nisms, which may include lotteries, trust and reputation systems, can be found in
previous surveys [165, 204, 205].

Auction-based incentive mechanisms can be well designed to possess desirable
theoretical properties. In real implementations, the strong assumptions of participants
being rational and strategic, the obscure theories, and the complex payment rules
make them less attractive and practical. The time sensitivity of allocating sensing
tasks also make it less likely that the participants will think about every possible
situation and give a bid that accurately reflects their utility.

6.6 Conclusion

This chapter presented ASC, a system based on three types of spatiotemporal
relationship that actuates vehicular taxi fleets for optimal sensing coverage quality
by matching ride requests with taxis. I proposed a near-optimal algorithm that
integrates 1) a mobility prediction model that guides the selection of which taxis to
actuate and 2) a ride request prediction model to help match ride requests with taxis,
lower incentive costs, and improve taxi drivers’ motivation. Extensive simulation and
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experiments on taxi testbeds show that ASC can achieve up to 40% improvement in
sensing coverage quality and up to a 20% higher ride request matching rate than the
baselines. Additionally, ASC can achieve similar sensing coverage quality as baseline
algorithms with only 10% of the budget requirement. All these results validate the
effectiveness of applying spatiotemporal relationships on the semi-controllable large
scale mobile CPS for route planning, which involves system status and physical field
estimation.
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Chapter 7

Conclusions

This thesis presents a spatiotemporal relationship-aided framework for large scale
mobile CPSs, as described in Cahpter 2, which includes an spatiotemporal relationship
analysis layer to improve both field estimation (system status & physical field) and
route planning on 3 types of systems. The improvement comes from three different
types of spatiotemporal relationships. 1) The spatiotemporal relationship of
physical field (ST-PHY): the evolution of the physical field over space and time,
determined by the laws of physics, indicates the relationship between values at
adjacent areas and time periods, such as air pollution levels in a city across a
day. 2) The spatiotemporal relationship of system status (ST-SYS): system
status changes continuously over time and space for the same device and the system
status of the same type of devices may have similar values at the same areas and
time periods. 3) The spatiotemporal relationship connecting physical field
and system status (ST-PHY-SYS): the physical field and system status are
interrelated through time and space because they both react to the physical world.
The research validates the proposed framework through prototypes of combinations
of the system task and the system type. Two prototypes are about system status
estimation (Chapter 3) and physical field estimation (Chapter 4) when the system
does not control the routes of mobile devices. Another two prototypes are about
route planning for controllable (Chapter 5) and semi-controllable (Chapter 6) systems
to improve density and evenness of data distribution. Four prototypes prove that the
spatiotemporal relationship analysis layer is able to address the challenges of sparse
coverage and uneven distribution of data collection, as described in Chapter 1. The
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thesis provides principles and guidelines in the design of uncontrollable, controllable
and semi-controllable large scale mobile CPSs.

In particular, as shown in Chapter 3, the thesis contributes to system status
estimation as follows.

• It is the first to investigate the context-aware App-usage prediction problem
over a large user population. It considers context information (time & location),
attribute information (mobile App type) and dynamic user preference.

• It finds that the relationships between App-location, App-time, and App-App
type are essential to prediction and proposes a heterogeneous graph embedding
algorithm to map them into one common comparable latent space. A user
profile with personal App usage & trajectory history affected by a time decay
factor is proposed to achieve a personalized prediction. Both the common
attribution of all users and individual user dynamic preferences are extracted
to ensure sufficient training data without losing personalization.

• It evaluates the system through a large-scale real-world dataset, which includes
more than 6 million mobile App usage records from 1788 individual users. CAP
demonstrates a significant improvement in the prediction accuracy compared
to baselines.

The thesis contributes to physical field estimation, as shown in Chapter 4, as follows.

• It reformulates a physics guided model for air dispersion state evolution esti-
mation and combines it with a data driven model.

• It proposes an adaptive scheme to correct estimates from a physics guided
model with estimates generated from a data driven model.

• It deploys and evaluates the system with using a Particle Filter structure on a
large-scale vehicular sensing platform for large-scale evaluation.

As shown in Chapter 5, the thesis contributes to the route planning of a control-
lable drone based CPS as follows.

• An adaptive planning algorithm for navigation enables the swarm to collabora-
tively achieve up to 6× reduction in location estimation errors, and as much as
3× improvement in navigation success rate under the given time and accuracy
constraints.
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• A planning algorithm determines the quality of location estimations and uses
it to adaptively plan node motion.

• Real MAV testbed experiments and large scale physical feature based simula-
tions are performed using radio signatures collected from the physical world
and empirically determined sensor noise models validating our assumptions.
Drone swarms with both homogeneous and heterogeneous structures are tested.

The thesis contributes to the route planning of a semi-controllable vehicle based
CPS (Chapter 6) as follows.

• It presents a system to optimize sensing coverage quality through collaboration
with matching ride requests with taxis, which solves the challenge of conflicting
goals between the vehicle fleet and MCS platform.

• It formulates the collaboration task and proposes a near-optimal algorithmic
solution, which integrates 1) a mobility prediction model to guide selecting taxis
to improve effectiveness on actuating and 2) a ride request prediction model to
help match ride requests with taxis, lower incentive costs and improved taxi
driver motivation, which solves both challenges.

• The system is evaluated with real city-scale deployment and history trajectory
data (46 actuated on average, 500 vehicles total) in the city of Beijing, China.

Both real deployed testbed experiments and extensive simulations with real world
collected data are adopted to validate the system design. As a part of the evaluation
for uncontrolled to controlled motion aspects of our system, air pollution sensors are
deployed on the taxi-based testbed to collect data in the city of Shenzhen for 2 years
in collaboration with Tsinghua University. In addition, a swarm of 8 micro aerial
vehicles are deployed in an indoor environment for autonomous navigation. The
results show that incorporating the spatiotemporal relationship analysis layer can
achieve 2.1× and 6× error reduction on physical field and system status estimation
and 3× improvement on route planning. This shows that the proposed framework
and algorithms have the potential to make large scale mobile CPSs more intelligent
in sensing estimation and route planning. The work should provide a foundation for
further research in the emerging area of large scale mobile CPSs.
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