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Dedicated to my brother,

“Because your own strength is unequal to the task, do
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anything is within the powers and province of man,

believe that it is within your own compass also.”
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the more human he is.”
Viktor Frankl

and my father.

“We make out of the quarrel with others, rhetoric,
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William Butler Yeats
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Abstract

Reliability is of the utmost importance for safety of electronic systems built for

the automotive, industrial, and medical sectors. In these systems, the embedded

memory is especially sensitive due to the large number of minimum-sized devices

in the cell arrays. Memory failures which occur after the manufacture-time burn-

in testing phase are particularly difficult to address since redundancy allocation is

no longer available and fault detection schemes currently used in industry generally

focus on the cell array while leaving the peripheral logic vulnerable to faults. Even

in the cell array, conventional error control coding (ECC) has been limited in its

ability to detect and correct failures greater than a few bits, due to the high latency

or area overhead of correction [43]. Consequently, improvements to conventional

memory resilience techniques are of great importance to continued reliable operation

and to counter the raw bit error rate of the memory arrays in future technologies at

economically feasible design points [11, 36, 37, 53, 56, 70].

In this thesis we examine the landscape of design techniques for reliability, and

introduce two novel contributions for improving reliability with low overhead.

To address failures occurring in the cell array, we have implemented an erasure-

based ECC scheme (EB-ECC) that can extend conventional ECC already used in

memory to correct and detect multiple erroneous bits with low overhead. An impor-

tant component of this scheme is the method for detecting erasures at runtime; we

propose a novel ternary-output sense amplifier design which can reduce the risk

of undetected read latency failures in small-swing bitline designs.

While most study has focused on the static random access memory (SRAM) cell

array, for high-reliability products, it is important to examine the effects of failures

on the peripheral logic as well. We have designed a wordline assertion compara-

tor (WLAC) which has lower area overhead in large cache designs than competing

techniques in the literature to detect address decoder failure.
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Chapter 1

Introduction

Microelectronics have become ubiquitous in modern society, and their functionality is rapidly

overtaking many of the tasks of which previously only humans were capable. While this de-

velopment promises to bring the exponential growth curve of Moore’s law1 [49, 50] to bear in

new environments, there is a challenge in designing computer systems for reliability. For safety-

critical tasks in the automotive, industrial, and medical sectors, both software and hardware must

be guaranteed to operate exactly according to the designers’ intent, or to fail safely with advance

warning. Many of these safety-critical systems can be classified as cyber-physical systems, which

are “engineered systems that are built from, and depend upon, the seamless integration of com-

putational algorithms and physical components.” [54]. Each component of the hardware design

must be designed for reliability to mitigate the risks inherent in systems which perform tasks

interacting with humans in their physical environment, such as self-driving cars, robotic assem-

bly equipment, or life-sustaining implantable medical devices. One important component of any

hardware design is its memory system, which stores and retrieves the instructions and data that

control the operation of the cyber-physical system.

In microprocessors and systems-on-a-chip (SoCs), the embedded memory system plays a

significant role in the overall system performance, area, and power. In modern microprocessors

1Gordon Moore originally predicted in 1965 that the number of transistors on a die would double every year;
this was revised by Moore in 1975 to a density-doubling period of 24 months with a performance-doubling period
of 18 months, and has held remarkably consistent up to the present day.
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and SoCs, the cache hierarchy is often in the critical path of the design, can utilize 25-50% of

the die area [1, 13, 20, 40, 62], and can consume an appreciable fraction of the total power.

Thus, the reliability and yield of the memory system is crucial to the reliability and yield of the

entire system. However, as process technologies scale, ensuring reliability is becoming increas-

ingly difficult due to a number of factors including process variability, susceptibility to energetic

particle strikes, and aging.

In this thesis, we examine the landscape of design techniques for reliability, and introduce

two novel contributions for improving reliability with low overhead, these being an erasure-based

error control coding (EB-ECC) scheme with runtime erasure detection, and address decoder fail-

ure detection by wordline assertion comparator. To better understand the practical implications

of these techniques, we have fabricated a prototype testchip containing early versions of EB-ECC

(including vertical parity protection [35, 45]) and address decoder failure detection.

First, we provide background on static random access memory (SRAM) and its role within

the memory hierarchy, the ways in which it can fail and the manner in which those failures man-

ifest in both the cell array and the peripheral circuitry. By so doing, we supply the groundwork

to evaluate our novel contributions for detecting and correcting these errors.

In Chapter 3 we present a review of conventional reliability/resiliency techniques. We focus

on the following techniques which have received wide industry acceptance: read/write bias assist,

6T/8T cell choice, cell sizing, error control coding (ECC), and redundancy. Since the novel

techniques developed by the thesis contributions are mostly orthogonal to these conventional

techniques, with the exception of the 8T cell which is incompatible with our designs for runtime

erasure detection, our discussion of them is qualitative in nature. In Chapter 4 we present our

work in cell array protection with EB-ECC. By identifying erasures, or the locations of bits

likely to be failing, we can double the number of bits correctable by the ECC being used. This is a

widely-known concept in communications, but to the best of our knowledge has not been realized

for the purpose of improving SRAM reliability in the literature. The challenge of using erasures

in SRAM is in their identification; we present low-cost solutions for both runtime detection and
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offline storage of erasures.

In Chapter 5 we discuss peripheral logic fault detection and present our wordline assertion

comparator (WLAC) design. We evaluate the differences between an existing technique and

our novel technique, generating enough information to allow designers to make a decision as to

which scheme is suitable for a memory with given array size and specifications. The WLAC

design has area overhead advantages over the current state-of-the-art address decoder failure

detection design of read-only memory (ROM) address storage for large SRAM sub-arrays.

Finally, in Chapter 6 we present a testchip implementation of a few of the above reliability

techniques on a 55nm bulk CMOS process. The fabricated testchip contains the first implemen-

tation of vertical parity and erasure coding in SRAM and thus represents an important step in the

understanding of the technique’s requirements and overheads at the circuit level. The testchip’s

erasure coding scheme is designed with two sources of erasures: an on-die content-addressable

memory (CAM) which can be loaded with detected erasure locations for offline erasure storage,

as well as full-swing bitline read latency failure detection circuits which provide run-time erasure

hints to the ECC decoder. All these separate options can be toggled via scan-chain-controlled

on-die built-in self-test (BIST).
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Chapter 2

Background

In the introduction, we provided motivation and context for the thesis; in this chapter, we dis-

cuss fundamental aspects of SRAM design, and the choices designers make to attain yield and

reliability. We cover the causes and ways in which memories can fail to provide the groundwork

to evaluate our novel contributions for detecting and correcting these errors. Classifications of

both types of failures and the various components of memories where these failures may occur

are presented.

2.1 Memory system

In computer systems, the memory system is organized in a hierarchy in order to maximize system

performance under cost constraints. The top level of this hierarchy is fast and small, while the

bottom level is slow and large. They work together to give the illusion of being both fast and

large by the process of caching, or keeping in the top levels of the cache hierarchy data which

will be used in the near future. The cache hierarchy is divided between on-chip (embedded) and

off-chip memory. The embedded memory space is currently dominated by SRAM because of

its logic process compatibility and low latency, while off-chip memory is dominated by dynamic

random access memory (DRAM) due to its density which reduces cost. Embedded dynamic

random access memory (eDRAM) is also a commonly-used on-chip memory type for last level
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caches due to its density advantages over SRAM, though it requires additional fabrication steps.

Recently, designers have had such strong demand for more capacity and bandwidth that they have

packaged a separate eDRAM die alongside the CPU connected through on-package IO [22, 40].

2.1.1 SRAM cell array

The fundamental element of SRAM is the cell, which contains bistable latching circuitry of

two cross-coupled inverters with two access transistors (Figure 2.1a). These cells are arranged

in two-dimensional arrays for compactness and simple access; a row of cells in the horizontal

dimension share a wordline, while a column of cells in the vertical dimension share two or more

bitlines (Figure 2.2). Under this arrangement, when the access devices of a row are turned on

via a single wordline being asserted, each cell on that wordline is exposed to the bitlines, and

can either perform a read or a write, depending on the state of the bitlines while the wordline is

asserted. To perform a read, the bitlines are reset to VDD prior to wordline assertion and then left

floating. Thus, one of the bitlines will be pulled down by the cell’s pulldown device and access

device. This voltage difference between the bitlines can then be sensed by peripheral circuits.

To perform a write, one bitline is driven to VDD while the other is driven to VSS by write drivers,

and the wordline is asserted. When the access devices turn on, the cell’s internal storage nodes

will be overwritten to match the voltages on the bitlines.

Many variants on this basic six-transistor (6T) design exist to satisfy various requirements

such as reliability, multiple-port access, or higher performance. Of these variants, we will focus

on the 8T cell (Figure 2.1b) as it is most commonly employed to improve reliability over the

6T cell while maintaining similar area efficiency or incurring a small area overhead [14, 28].

When using the 8T cell without column multiplexing and operating on a single word per cycle,

the read and write operations are separated and can be optimized separately, eliminating the 6T

cell’s conflict between improving read stability and writeability. Thus the original 6T portion

of the 8T cell can be optimized for writeability without the concern that a read will disturb

the value on the storage nodes. There are situations in which designers will still choose to
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(a) 6T cell with access device pair (left/right:
AL/AR), pullup PFET (PL/PR) and pulldown
NFET (NL/NR) pair forming bistable storage
nodes.

(b) 8T cell. Added devices are read access (RA) and read pulldown
(RN), while interconnect consists of write wordline (WWL) and
read wordline (RWL), as well as differential write (WBL/WBL)
and single-ended read (RBL) bitlines.

Figure 2.1: SRAM cells

Decoder

Wordline

Differential
bitlines

Cell I/O

Data In/Out

Cell array

Address

6T

Figure 2.2: Simplified flow diagram of SRAM. Central boxes represent memory cells. Bitline can be single-ended
or a pair of differential bitlines.
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use column multiplexing with an 8T cell, however, which restores the risk of a read disturb

on a write. In systems where the 8T cell’s multi-port functionality is used to support a read

and write in the same cycle, column muxing might be useful to the designer, particularly if the

application does not require high density. Reducing the device sizing in the 8T cell to attain high

density exacerbates the cell margins. The use of hot-carrier injection (HCI) techniques can make

column muxing with 8T cells more desirable [26], but such a scheme has (to the best of our

knowledge) yet to find commercial viability, perhaps due to the extra required manufacture-time

testing burden.

2.1.2 SRAM peripheral circuitry

The peripheral circuits mentioned earlier consist of all the circuitry required to access the cells.

We can categorize this logic into three paths: the address path, which drives the signals from the

input address to the wordlines; the data path, which drives the signals from the bitlines to the

input/output data ports; and the control path, which drives the command ports which indicate

a read or a write to the local arrays. Since a memory may consist of several arrays of cells,

an address decoder is required to determine which wordline in which array should be accessed

and assert it. The remaining ports of the cell are the bitlines, which are controlled at the array

periphery by reset devices, write drivers, and a sense amplifier to amplify the differential voltage

on the bitlines to a digital data output. In the case of a single-ended bitline design, the sense

amplifier may be replaced by an inverter.

Since the SRAM cell’s devices are near-minimum sized for density while the wordline driver’s

devices can be sized quite large, it is in the designers’ interest to minimize the bitline capacitance

to reduce latency, while the wordline capacitance is not as critical a node. Thus, to improve the

aspect ratio of the local cell array by reducing the bitline length while increasing the wordline

length, column interleaving/multiplexing is commonly employed. It has additional benefits as

well: it allows a relaxed 2, 4, or 8 cell pitch for shared bitline I/O circuits such as a large sense

amplifier which would otherwise be quite difficult to lay out in a single SRAM cell’s pitch. In

7



addition, interleaving the columns of the SRAM spreads the bits of a single word apart so that

an energetic particle strike of a certain radius is far less likely to upset multiple bits of the same

word. For instance, a particle strike which would impact 3 bits of a word in an array with-

out column interleaving would impact 1 bit in 3 separate words in an array with 4-way column

interleaving, which can be corrected by a low-cost single-bit error-correcting code.

2.2 Error mechanisms in memory

Errors in memory can be detected via testing when the product is manufactured; in the case of

these manufacture-time errors, there are multiple options. In situations where the error is minor,

only affecting a single bit cell in a row or column of the memory, the error can be repaired

by replacing it with a redundant row or column [24, 34]. If the error is sensitive to voltage

or timing, it may be possible to employ product binning, configuring it to operate at a higher

voltage, slower frequency, or even disabling portions of the memory so that the product can still

be sold as a lower-performance or lower-capacity, less expensive option. In the worst case, if

errors are caught at manufacture-time and cannot be dealt with through any other means, the

product can be discarded before it reaches the consumer.

Errors that occur after manufacture-time testing are more pernicious and there are fewer

options available to address them. BIST and built-in self-repair (BISR) mechanisms, or else

some means of prevention, must be implemented to handle these run-time failures. Techniques to

prevent failures, or to detect and correct them, provide a much-needed capability to the designer

of reliable memory systems.

The well-known bathtub curve (Figure 2.3) illustrates the phases of product lifetime and the

failure rate during those phases. Infant mortality failures in microelectronics are handled with

burn-in test, while errors at runtime which can be caused by particle strikes, aging and wearout

including HCI, negative-bias temperature instability (NBTI), electromigration, are handled with

BIST and ECC among other countermeasures.

Errors can be coarsely classified along two orthogonal axes as either permanent (hard) or
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Figure 2.3: The failure rate over the product lifecycle is frequently depicted by this “bathtub curve”. Broad cate-
gories of failure sources are shown above the curve, while lifecycle phases and conventional countermeasures are
shown below.

non-permanent (soft)1 and as occurring at either manufacture-time or during runtime [8]. We

classify some common causes of errors along with conventional countermeasures here.

2.2.1 Hard errors

Hard errors which occur at manufacture-time may be caused by variability; process or mask

defects such as particle/occlusion during fabrication which can cause bridge, stuck-at, or open

faults. Conventional countermeasures include redundancy, disabling, or post-silicon tuning. At

a lower level than these countermeasures, manufacturing defects are minimized by process en-

gineers who employ computational techniques such as optical proximity correction (OPC) and

tweak the design rules to limit the use of layout features which, during process characteriza-

tion, display poor yield [59, 64]. One example of design rule constraints in modern process

generations is that polysilicon gate direction is constrained to run in one direction in some de-

signs, and for memory circuits where matching is very important, polysilicon gate lengths have

1Non-permanent errors can be further classified as transient if their cause is environmental or intermittent if their
cause is non-environmental, but we do not make this distinction here.
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been constrained to the same value within the cell array. The number of these design rules has

been growing at a rapid pace in recent years as process engineers seek to simultaneously fully

exploit the next process node’s reduced-size geometry and limit the accompanying increase in

manufacture-time errors. Recent research has presented a path away from this increasing de-

sign rule complexity by proscribing a limited set of regular pattern constructs or templates with

which a wide variety of designs, including memory, can be synthesized. This differs from tradi-

tional standard-cell synthesized layouts in the way it minimizes the number of unique patterns,

effectively making logic gates as regular and printable as memory [29, 51].

Hard errors occurring at run-time may be caused by energetic particle strikes which induce

latch-up leading to thermal runaway, device aging/wearout including NBTI, time-dependent di-

electric breakdown (TDDB), HCI, electromigration, or other causes. Conventional countermea-

sures include BIST/BISR, and ECC.

2.2.2 Soft errors

Soft errors are generally regarded as a phenomena which becomes apparent at run-time – at

manufacture-time, if an error has occurred, is detected, and cannot be dealt with through one

of the countermeasures mentioned above, the faulty product should not be shipped. Run-time

soft errors may be caused by energetic particle strike including cosmic rays or α-particles; tem-

perature variation; leakage; noise including power supply voltage droop, electromagnetic inter-

ference, capacitive coupling, or thermal noise; hazards and races due to poor design of criti-

cal timing paths; variation/physical irregularity in circuitry due to line edge roughness, random

dopant fluctuation or other causes. Conventional countermeasures for these errors include bit

interleaving in memory, ECC, fault detection, and read/write assist.

The energetic particle strike failure mechanism deserves further attention because it can often

overcome designers’ attempts to address it through design solutions.
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Energetic particle strikes

When an energetic particle strikes the silicon substrate, it excites electrons, separating positively

charged ions and negatively charged electrons in the substrate via electronic stopping power.

The energetic particle can be an alpha particle, which consists of two protons and two neutrons

carrying a positive charge and represented by α or α2+; it may also be a neutron created through

the interaction of energetic cosmic rays with the Earth’s atmosphere [18, 19, 83]. Electronic

stopping power describes the energy loss of this energetic charged particle due to collisions with

bound electrons in the substrate [30]. In the absence of a significant electric field nearby, the

positive and negative charges will recombine. However, if this ionization occurs at a sensitive

location near a transistor’s channel, the electric field between the drain and body of the transistor

separates the positive and negative charge carriers, preventing the recombination; next, the charge

collected by the junction results in a transient current in the struck transistor from the substrate

to the drain node (Figure 2.4). This is known as a single event transient (SET). Eventually, the

charges dissipate and normal operation is restored, but the glitch may propagate if the disturbance

is large enough in voltage and time. If the SET causes an incorrect value to be latched at some

later node, it is then referred to as a single event upset (SEU). If an energetic particle were to

strike a latch or an SRAM cell directly, it could easily cause a SEU without requiring the glitch

to propagate through logic.

We present a study of particle strike locality in Section 5.1. Our investigation determines the

potential functional fault modes resulting from energetic particle strikes on the address decode

logic of an industrial design in the 40nm node. The study specifies the types of faults which will

occur given a particle strike in a particular area of the physical layout. The analysis serves to

guide our study of which techniques are the most effective at handling these faults given their

overhead.
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(a) Profile view of NFET and particle strike. When an energetic particle strikes the silicon
substrate, the electric field between the drain and body of the transistor separates the positive
and negative charge carriers, preventing recombination; next, the charge collected by the
junction results in a transient current in the struck transistor from the substrate to the drain
node.

(b) Layout view: yellow region indi-
cates particle strike
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(c) Circuit diagram showing model of particle
strike: switched capacitor between transistor drain
and body with initial condition of 0 V potential.

Figure 2.4: Energetic particle strike causing current to flow across nominally off NFET until charge dissipates.
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2.2.3 Parametric variability

One major contributing cause of both hard and soft errors in memory is the difference in pa-

rameters (such as threshold voltage Vt) of two identically designed transistors. The root causes

of these parametric variations include gate work function (GWF) or oxide thickness variation,

line-edge roughness (LER), and random dopant fluctuation (RDF) [16], which are exacerbated

as transistor area decreases [57, 58]. Specifically, Vt variation due to RDF in the channel has

been empirically shown to be inversely proportional to the square root of the channel area in the

well-known Pelgrom model [58], reproduced in Equation 2.1. Note that this form of the Pel-

grom model assumes two identically-drawn transistors in close proximity; devices farther from

each other will suffer further mismatch due to global phenomena. In this equation, σ(Vt) repre-

sents standard deviation of the device’s threshold voltage,AV t represents the area proportionality

constant specific to the process technology, and W and L refer to the device’s width and length.

σ(Vt) = AV t

(
1√
WL

)
(2.1)

A1

A1

B1

B1

Common Centroid Layout
(a) Systematic variation in horizontal
and vertical dimension minimized as
A1 and B1 will be equally affected.

A2 B2

Mirrored Layout
(b) Systematic variation in verti-
cal dimension minimized as A2
and B2 will be equally affected.

Figure 2.5: Careful layout including mirrored or common centroid configurations can minimize systematic varia-
tion, and is commonly employed in analog cells such as the sense amplifier.

This difference in parameters can cause the difference in latency between the worst and best
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cell to increase, and cause matching between devices in the cell to suffer and thus impact mem-

ory yield, reliability, and performance, since all these characteristics of a memory depend on

its worst cell (after redundancy replacement). Device matching depends also on relative loca-

tion; systematic variability sources may cause a gradient of a particular parameter across the die

or wafer leading one side of a nominally matched pair of transistors to be consistently higher

or lower in the parameter than the other. Careful layout including mirrored or common cen-

troid configurations (see Figure 2.5) can minimize this systematic variation, and is commonly

employed in analog cells such as the sense amplifier.

Additionally, researchers have proposed techniques for better matching of sensitive matched-

pair transistors in analog applications through post-silicon statistical element selection rather

than simple up-scaling of device sizing [4, 5, 31]. While incurring overheads due to the test-

ing/configurability and non-volatile storage requirements, this improves reliability and yield in

segments of the design which are highly sensitive to parametric variability.

We will describe the effects of parametric variability further in the next section, explaining

how errors manifest in SRAM.

2.3 Error manifestations and cell failure types

Given that the aforementioned error mechanisms afflict embedded memory, there are a number of

ways in which memory can fail. An understanding of these error manifestations is prerequisite to

preventing, detecting, or correcting them. As before, we separate our discussion into two areas:

the cell array and peripheral circuitry.

2.3.1 Cell array

There are four primary failure types associated with the cell and its local periphery: read disturb

failure, write failure, access failure, and retention (hold) failure [36, 37, 52, 76] (Figure 2.6).

In general, the bitline capacitance is much greater than the cell’s internal storage node ca-
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(a) Read disturb failure: Cell upsets when VL
drops to VSS .
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(VDD)

(b) Write failure: Cell fails to upset when VL
drops too slowly

(VDD)(VDD)

(VDD)

(c) Read latency failure: Cell fails to read when
BL drops too slowly

(d) Hold failure: Cell loses its value when VDD

drops too low and/or noise occurs at cell storage
nodes

Figure 2.6: 6T cell failure types. Mismatched transistors and/or another fault within a cell can cause failure in cell
operation (initialized as VL = VDD, VR = VSS).
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pacitance, so when the wordline turns on the access transistor and the current flows from the

bitline through the pulldown transistor, the internal storage node holding a 0 bumps up through

voltage division over the two transistors. A read disturb failure may occur if this voltage rises

far enough to turn on the opposite side’s pulldown transistor (see Figure 2.6a). In designs which

employ column multiplexing, a read disturb failure can occur during a write cycle, as there are

cells activated by the wordline which are not intended to be written. These cells are generally

referred to as “half-selected cells”, as they are selected by the same wordline as the word acti-

vated for a write, but their bitlines remain charged or are left to float, rather than being driven for

a write as those of the correctly column multiplexed bitlines. While there does not yet appear to

be a consensus on terminology for this event in the literature, in this thesis we will describe this

as a “half-select disturb failure”. It has also been referred to in the literature as a partial write

disturbance (PWD).

A write failure occurs when the cell retains its value instead of the expected behavior of

being overwritten by a wordline pulse with bitlines split (see Figure 2.6b). Prior to the wordline

assertion, the storage nodes are held at their values by the cross-coupled inverters. Normally, the

large capacitance ratio between the bitline capacitance and the internal storage node capacitance

and the low resistance of the activated access transistor is sufficient to overcome the drain current

of pullup device PL and pull down the internal storage node VL. However, if mismatch causes

the access device AL to have a higher resistance than average or the pullup device PL to have a

higher drain current than average, the node VL may not be pulled below the trip point of PR/NR

before the wordline is de-asserted and thus the cell’s value will not be overwritten.

A read latency failure, also known as an access failure, occurs when the cell’s read current

is insufficient to meet the design’s timing requirements (read latency) (see Figures 2.7 & 2.6c).

Within the cell which suffers from read latency failure, this may occur due to the access or

pulldown NFETs having lower drain current than average due to a number of causes (see Sec-

tion 2.2.1). But the failure cannot always be diagnosed as being caused solely due to variation

within the cell; at the level of a single column, the leakage of other cells on the bitline may
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reduce the bitline differential due to the access NFETs having higher leakage current than aver-

age. Finally, the sense amplifier measuring the bitline differential of the column may suffer from

mismatch in its nominally symmetrical structure causing input-referred offset.

In an equation, the requirement is shown in Equation 2.2, where N is the number of cells in

a column, TWL→SAE is the time between wordline assertion and sense amplifier enable assertion

(the time the 6T cell has to produce a voltage differential on the bitlines), and CBL is the bitline

capacitance.

|VSAoffset| <
(ION − (N − 1) ∗ IOFF ) ∗ TWL→SAE

CBL

(2.2)

Sense Amp
Enable

Wordline

Clock

Bitline

t

ΔV

WL

BL

Figure 2.7: Depiction of read latency and critical tWL→SAE delay. If ∆VBL < Voffset at the time of SAE, the
value on the bitlines is incorrectly sensed and a read latency failure will occur.

A hold failure, also known as a data retention failure, occurs when a cell loses its stored value

after a period of time in which it is not accessed (see Figure 2.6d). It is often precipitated by a

reduced cell supply voltage or noise on the internal storage nodes.

To quantify the manufacture-time yield of a memory design or the reliability of a cell during
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operation, we can measure cell metrics through simulation. Each metric indicates the magnitude

of event or disturbance from nominal behavior which would have to occur at a certain point

in the cell (or local to it) which would induce the failure type. For example, one commonly

cited cell metric is the static noise margin (SNM), which quantifies cell stability and can be

determined graphically by plotting the voltage transfer characteristics of the two cross-coupled

inverters and measuring the sides of the largest squares inscribed between them [69]. The smaller

of the two maximum squares’ sides represents the cell’s SNM. This plot is commonly known as

the butterfly curve (see Figure 2.8). The read static noise margin (RSNM) and hold static noise

margin (HSNM) describe versions of the SNM measured with the cell’s access transistors turned

on and off, respectively [52].
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(a) Circuit for SNM measurement
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(b) Butterfly curves illustrating SNM inscribed in squares

Figure 2.8: Static noise margin measurements [69]

The write margin (WM) can be determined in two ways. First, by setting both bitlines op-

posite the values stored at the cell’s storage nodes (in Figure 2.6, BL = VDD, BL = VSS) and

sweeping the wordline from VSS to VDD to find the voltage at which the cell upsets, and sub-

tracting this voltage from VDD (as a more writeable cell should have a higher margin) [21, 72].

Second, by initializing the wordline and both bitlines to VDD and sweeping the bitline on the side

of the storage node initialized to VDD to VSS to find the voltage at which the cell upsets [23, 84].
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This second measurement is also referred to as the write-trip point. Dynamic analysis of SRAM

cells has found that the former static method of determining write margin (by sweeping the

wordline from VSS to VDD) correlates best with the dynamic write time metric [74].

The metrics of RSNM, HSNM, and WM can be classified as functional noise margins; if any

are below 0 due to manufacture-time variation, or some run-time disturbance exceeds the margin,

the cell will fail to function due to read disturb failure, hold failure, or write failure. On the other

hand, performance metrics of the cell include read current and leakage current observed at the

bitline when the wordline is asserted or de-asserted. These are also significant to reliability, since

one cell’s poor read current can cause read latency failure, while an array’s large leakage current

may cause supply droop or exceed power requirements for the design. Measuring cell current is

an indirect way of measuring the read latency independent of cell array choices such as bitline

capacitance, which depends on column height and sense amplifier choice among other options.

These measurements, specifically the ratio of read current to leakage current or more directly the

read latency if the cell array choices are known, can generate a figure of merit which defines the

risk of an access failure.

Unlike functional metrics, performance metrics cannot determine a cell failure independent

of other array decisions and specifications. In order to conclude that a cell’s read current is

below the passing threshold and would suffer an access failure, a threshold must be established,

and sometimes this threshold can be adjusted at manufacture-time using product binning or after

manufacture-time using configurable self-timing [4]. But if a cell suffers a read disturb failure

(which upsets the stored value of the cell), this happens regardless of conventional array design

decisions.

The average value of each metric across process and mismatch variations can be determined

statistically for a given cell design and technology via Monte Carlo (MC) analysis. More impor-

tantly, the cumulative distribution function (CDF) of the metric can also be determined, allowing

designers to give an expected yield figure for a memory of a given size, provided that the model

files are accurate. MC analysis can estimate mean and standard deviation from a sample within
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a confidence interval given a certain number of samples. The 99.7% (3σ) confidence interval

for a sample drawn from a normally-distributed population is defined by Inequality 2.3, where

x̄, σ,N, µ are defined as the sample mean, sample standard deviation, sample size and population

mean, respectively [15, 65].

x̄− 3
σ√
N
≤ µ ≤ x̄+ 3

σ√
N

(2.3)

2.3.2 Peripheral circuitry

While most study has focused on the SRAM cell array, for high-reliability products, it is impor-

tant to examine the effects of failures on the peripheral logic as well. Unlike in the cell array,

where a failure in a storage element can cause immediate corruption of data, SEUs in the SRAM

peripheral logic aren’t generally able to cause an error in isolation. Rather, the effects of the SEU

depend on the location as well as state of the memory at the time of the upset.

Failures occurring in certain segments of the peripheral logic manifest in ways unlike those

which occur in the cell array. As classified in Section 2.1.2, the data path drives the signals

from the bitlines to the input/output data ports. A particle strike or other failure mode affecting

a portion of the data path would result in a disturbance to one or more bits of a word as opposed

to the entire word (see Figure 2.9a). In such a situation, the resulting failure effects resemble

those of a failure in the cell array. As such, these can be handled by the same techniques which

handle failures in the array itself, such as ECC. Of course, not all failures are preventable or even

detectable. The address path drives the signals from the input address to the wordlines/column

select. A particle strike or other failure mode affecting a portion of the address path may manifest

in a distinct way which is more challenging to detect. Since the final outputs of the address

decoder are wordline and column select signals, the failure manifestations generally involve

suppression of the intended wordline/column select signal and/or activation of an unintended

wordline/column select signal. Since these failure manifestations involve the entire word rather

than just a part of it, and could conceivably result in an undetectable failure (see Figure 2.9b).
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(a) Data path failure: one or more columns may have
their data corrupted, similar to a failure somewhere
in the cell array. These types of failures have conven-
tionally been handled using interleaving and ECC.
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(b) Address path failure: another wordline whose
data is opposite that of the intended wordline is as-
serted in error, potentially causing the entire word to
be read incorrectly, but since the data from the ag-
gressor wordline is a valid codeword, ECC will not
detect that an error has occurred.

Figure 2.9: Failures occurring in the data path may be detectable or correctable by ECC; failures occurring in the
address path are commonly neither detectable nor correctable by ECC and so must be dealt with through other
means.

21



WL1

WL0

1WL

WL2

WL3

Waveforms

(a) 1WL: Correct operation

WL1

WL0

0WL

WL2

WL3

Waveforms

(b) 0WL failure

WL1

WL0

2WL

WL2

WL3

Waveforms

(c) 2WL failure

WL1

WL0

FWL

WL2

WL3

Waveforms

(d) FWL failure

Figure 2.10: Address decoder failure types.
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The address decoder can fail in one of three ways:

1. 0WL failure (see Figure 2.10b): The desired wordline is not asserted, and no other word-

line is asserted. Essentially the assertion of the wordline is suppressed.

2. Wrong-row failure: The desired wordline is not asserted, but one or more other wordlines

is asserted. This type of failure has two sub-types depending on the proximity of the

desired wordline to the improperly asserted wordline. If the two wordlines are in the same

block, we term this a FWL (see Figure 2.10d). Otherwise, we term this a wrong-block

wordline (WBWL). Sometimes we also refer to a WBWL failure as a “1WL” failure when

we’re examining the failures within a single block. The “1WL” terminology indicates a

failure where the expected behavior was 0 wordlines in the block asserted but the actual

behavior was 1 wordline in the block asserted.

3. 2WL failure (see Figure 2.10c): The desired wordline is asserted, but one or more other

wordlines is asserted as well, which may cause contention on a read and data corruption

on a write.

For simplicity, the terms “row” and “wordline” are used to refer to the address decode path’s

output; it should also be noted that the column select suffers from the same failure types.

Information on fault modes potentially resulting from these SEUs and their relative likelihood

could guide designers in handling these faults using techniques which are most effective given

their overhead. We present a study of particle strike locality in an industrial address decoder

in Section 5.1. Additionally, we discuss conventional techniques for detecting peripheral logic

failure in Section 3.6 and propose a new technique with lower area overhead for large cache

designs in Section 5.2.

2.4 Summary

In this chapter we’ve discussed the basic structures of SRAM design: an overview of the 6T

and 8T cell options, the array structure, and the peripheral circuitry. Failure causes and symp-
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toms are examined, with a particular emphasis on failures which may occur at runtime, since

BIST/BISR is generally limited in scope compared to testing and repair which can be performed

at manufacture-time. The issues of parametric variability and functional noise margin are prob-

lems facing designers which cause difficulty maintaining strong guarantees of reliability. Next,

we discuss conventional reliability techniques in Chapter 3 and novel reliability techniques in

Chapters 4 and 5.
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Chapter 3

Conventional reliability techniques

There exist a multitude of published memory design techniques which are employed to improve

reliability/resiliency; of these, a subset have been adopted into wide commercial use. We discuss

six of the most common solutions; specific implementations of these solutions differ in their

overhead and efficacy so our discussion here is qualitative.

For the purposes of this thesis, what we consider to be a “reliability technique” is any circuit-

level design choice which reduces the likelihood of a failure condition (or improves reliability) at

the cost of some quantifiable increase in overhead, whether that be latency, area, or power. The

limitation of circuit-level choices ensures that these techniques can be employed by the designer

freely even after the technology decisions have been made relating to process steps which may

improve reliability such as the use of silicon on insulator (SOI) to limit the effects of energetic

particle strikes. These process-level choices are beyond the scope of this thesis.

3.1 Read/write bias assist techniques

Bias assist techniques modify one or more of the SRAM cell’s ports (VDD, VSS , VBL, VWL,

Vbody) in order to reduce overall cell failure probability or increase cell read or write margins.

Overcoming the inherent tradeoff between read stability/writeability generally requires designers

to carefully choose their assist ports in combination with cell array architecture, because most
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modifications that improve read stability hurt writeability and vice versa. This is not an issue in

single-ported cell arrays which have no column muxing/interleaving since in each cycle, only a

read or a write occurs in a given word, and thus the read bias assist can be limited to cells active

during a read, and similarly for the write bias assist.

To improve read latency and reduce failure rate, many designers have chosen to implement

a form of read assist circuitry which boosts cell supply voltage or under-drives the wordline to

limit cell upset during read [6, 60, 84].

Conversely, to improve write performance and reduce failure rate, many designers have cho-

sen to implement a form of write assist circuitry which collapses the cell supply voltage, boosts

the wordline voltage, or drives the low bitline voltage below ground, to ensure the cell is prop-

erly written [6, 79]. Often these two assist techniques go hand-in-hand; the same supply node is

chosen to be adjusted in opposite directions for a read or a write, or else one node is adjusted for

read assist while the other is adjusted adversely for write assist [32].

One potential limiting factor with using negative bitline (NBL) as a write assist technique is

that of a long-term reduction in reliability due to larger than VDD bias across the gate oxide,

leading to potential BTI and TDDB issues. However, recent work has asserted that this is not a

concern based on results of burn-in testing on VDDmin shift and standby leakage increase [17].

The only other caveat is a reported high energy overhead [85].

Body biasing has also been employed to reduce the impact of process variation, but it is

generally used as a process-calibration method to recenter a design whose transistors’ threshold

voltage is skewed far from the modeled value.

3.2 Cell choice (6T/8T)

While the 6T SRAM cell (Figure 3.1a) has become the de facto standard in traditional designs

(not including sub-threshold memory designs), in recent years the 8T SRAM cell (Figure 3.1b)

has been commonly used to reduce failures and thus increase reliability, as well as separating

the read and write paths in the cell so that optimization of read and write are no longer mutually
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(a) 6T cell: High density and differential read
bitlines, but inherent read stability/writeability
tradeoff in design.

(b) 8T cell: reduced vulnerability to read disturb.

Figure 3.1: SRAM cells

exclusive [14, 28]. The read stability failure mode (Figure 2.6a) is completely removed (rendered

identical to the hold stability failure mode) since the read bitline (RBL) no longer interacts with

the cell’s storage nodes. However, due to the risk of half-selected cells being upset on a write,

column muxing might not be desirable for designers when using 8T cells. There are situations

in which designers will still choose to use column multiplexing with an 8T cell, however, which

restores the risk of a read disturb on a write. In systems where the 8T cell’s multi-port function-

ality is used to support a read and write in the same cycle, column muxing might be useful to the

designer, particularly if the application does not require high density. Reducing the device sizing

in the 8T cell to attain high density exacerbates the cell margins. The use of HCI techniques can

make column muxing with 8T cells more desirable [26], but such a scheme has (to the best of our

knowledge) yet to find commercial viability, perhaps due to the extra required manufacture-time

testing burden.

3.3 Cell sizing

One simple method of diminishing error likelihood from several different sources is to increase

cell size by increasing transistor width, particularly access and pulldown transistors [33]; this

increases area and power overhead but may improve latency. As discussed in Section 2.2.3,
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since the standard deviation of the threshold voltage and thus performance of each transistor in

the cell is inversely related to its area [58], matching should improve as transistor size and thus

cell size increases. This reduces failures due to variability, which can be a major contributor to

failure even if it is not able to induce a failure by itself. However, increasing cell sizing limits

density and is thus an undesirable solution for on-die last-level caches where high density is

required.

3.4 Error control coding

The use of ECC allows a system to operate correctly in the presence of bit errors in the cell array.

In the context of embedded memory, which generally has lower latency than off-chip memory

and disk storage owing to its close proximity to the processing cores, the codes most frequently

used are linear block codes, which operate on a block of data at a time rather than operating on

a stream of bits, as is the case with cyclic codes. Block codes are thus more compatible with the

fixed word-length environment of SRAM. A code, along with its encoder and decoder, is defined

by its parameters (n, k, dmin), where n represents the length of the codeword, k represents the

length of the message word, and dmin represents the minimum Hamming distance, defined as the

distance between two codewords [43] (see Figure 3.2). The codeword is (n-k) bits larger than

the message word; these extra bits are generated algorithmically from the value of the message

word by the encoder, and are variously referred to as check bits or parity bits. The full codeword

including check bits is used by the decoder to determine whether or not there has been an error

and, if the number of bits in error is less than or equal to t, the corrected codeword. The rate of

the (n, k, dmin) code is defined by Equation 3.1; a higher rate indicates a lower burden of added

check bits and thus lower area penalty.

R =
k

n
≤ 1 (3.1)

The designer must choose the code strength and data word size to meet system require-
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Figure 3.2: Hamming spheres illustrate the limitations of error detection and correction. Each sphere, centered on a
codeword, contains a number of vectors which are a maximum Hamming distance t from it and are thus correctable.
Vectors outside the sphere are detectable as errors. Note that vectors which have more than t bits changed (distance)
from their correct codeword may fall in the wrong sphere and thus be miscorrected. This represents an undetected
error.

ments for error protection and circuit overheads. There is an inherent tradeoff between these

two measures. A strong code has a large minimum Hamming distance (dmin). For example, a

single-error-correcting Hamming code has a dmin of 3, which indicates that the least number of

bits differing between two codewords is 3 (see Figure 3.3). Practically, since all Hamming codes

have the all-zero codeword, this indicates the least number of 1’s in a non-zero codeword.

3.4.1 Conventional ECC overheads

The tradeoff when using ECC is primarily a sacrifice of latency for yield and reliability. There

is also an increase in area and power for the encode and decode logic as well as the storage of

parity bits, and these grow exponentially with larger numbers of correctable bits. The latency

overhead is generally higher for the decoder than the encoder in a code with dmin > 2. While the

encoder operates on a k-bit message word input and computes (n-k) check bits output in a series

of XOR operations, the decoder has multiple stages which begin with an n-bit codeword input
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Figure 3.3: Hamming sphere representation of ECC of various correction capacities. Black bits represent mes-
sage word bits, blue bits represent added parity bits, black circles represent codewords, black squares represent
correctable errors, red squares represent detectable errors, and the dotted circles represent decoding spheres whose
radius is t = b(dmin − 1)/2c. Comparison of (n, k) codes from dmin=2 to 4.
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and conclude with a corrected n-bit codeword output and flags indicating whether the error was

correctable or not.

Hsiao SECDED ECC is generally regarded as a de facto standard for error-correcting codes

employed in cache memory due to its minimal area/latency overhead [27, 66]. Double error cor-

recting, triple error detecting (DECTED) codes have been used in SRAM as well since at least

2009 for higher levels of cache with higher latency, but owing to their high overhead and variable

latency of correction, they are generally kept at or above last-level on-die cache [41, 63, 67, 68].

Codes with higher dmin and correction capability are rare in mass-production microprocessor de-

signs for the terrestrial environment. More frequently, companies with higher reliability/safety

requirements for their memory designs will employ array and component1 DMR or TMR to

protect against a larger number of potential failures, especially particle strikes. In DMR, two re-

dundant versions of a system operate in lock-step, declaring an error if they disagree; in contrast,

in TMR, three redundant versions of a system vote to decide the correct output. However, these

array-level or component-level redundancy schemes incur larger area penalties than redundancy

on the row or column level, increasing cost.

As shown in Figure 3.4, the (72, 64, 4) SECDED decoder consists of a syndrome generator

(27→1 XOR tree), a syndrome decoder (two-level NAND), and 72 XOR gates to perform the

correction of a single-bit error in the 72-bit word. The syndrome vector is an intermediate result

in the error correction process which uniquely identifies the error location for a single-error-

correcting code. For block codes which can correct multiple error bits per word (dmin > 4), the

syndrome decode logic requires a significantly higher latency and area.

3.4.2 Multi-bit ECC

Despite the potential of inline multi-bit ECC to increase memory resilience and yield, its over-

head, primarily due to the long latency of correction, has limited its use in the on-die memory

system. Prior work has employed cache line disabling [77] or bit-fix [76] to minimize the archi-

1By “component”, we refer to a large logic block of the memory such as the address pre-decoder or row decoder.
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Figure 3.4: Decoder for (72, 64) SECDED ECC, minimum Hamming distance dmin = 4

ECC unit
Hsiao SECDED DECTED
Latency Area Latency Area

(ns) (µm2) (ns) (µm2)
Encoder 0.7 1168 1.3 2546
Decoder 1.3 2681 3 42976

Table 3.1: ECC encoder/decoder latency and area overheads in IBM 90nm bulk CMOS process with 64-bit data
word, τFO4=39 ps, and λ=40 nm [53]

ECC unit
Hsiao SECDED DECTED
Latency Area Latency Area

(ns) (µm2) (ns) (µm2)
Encoder 0.56 657 1.03 1432
Decoder 1.03 1508 2.4 24174

Table 3.2: ECC encoder/decoder latency and area overheads estimated by scaling in ST 65nm bulk CMOS process
with 64-bit data word, τFO4=31 ps, and λ=30 nm [53]
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(a) Latency overheads

(b) Area overheads

Figure 3.5: Normalized overheads of ECC encoder/decoder: data from Table 3.1 [53]

33



Decoder

Cell I/O

Sub-array

ECC encode/decode

(a) (72, 64, 4) SECDED ECC: 12.5% check bit overhead
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(b) (79, 64, 6) DECTED ECC: 23.4% check bit overhead

Figure 3.6: Illustration of area overheads. ECC encode/decode logic has fixed area regardless of array size, whereas
parity/check bit storage has area overhead proportional to the array capacity and thus does not diminish in impor-
tance for a larger memory. Fixed area overheads and their relative area difference between SECDED and DECTED
logic not to scale (see Figure 3.5).

tectural impact of these long latencies by ensuring that the latency hit is suffered only once per

failure, after which the word is treated as unreliable, so it will not be corrected via long-latency

inline multi-bit ECC again. Previously proposed low-overhead multi-bit soft error protection

techniques perform poorly with randomly distributed hard errors because they assume either

clustering error patterns, as in the case of block coding [43], or low error rates [35].

The improvement in reliability gained by stronger error-correction capability is tempered by

an overhead of latency and area as shown in Tables 3.1 & 3.2. Scaling the area numbers generated

in a 90nm technology is done by multiplying the area by the ratio of the process parameter λ,

which is defined as half the minimum mask dimension or “feature size”, in this case the drawn

length of a transistor channel [75]. Similarly, scaling the latency numbers is done by multiplying

the delay by the ratio of the process performance parameter τFO4, or the delay of a fanout-of-4

inverter.
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Area65nm = Area90nm ∗
λ265nm
λ290nm

(3.2)

Latency65nm = Latency90nm ∗
τFO4(65nm)

τFO4(90nm)

(3.3)

3.4.3 Vertical parity

Researchers have previously proposed a low-overhead multi-bit ECC technique which uses two-

dimensional (2D) error coding (i.e., row-wise and column-wise) to provide both low VLSI over-

heads and high error coverage [35].
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Figure 3.7: 2D coding / vertical parity illustration. When the horizontal ECC detects an uncorrectable error, the
controller initiates a vertical parity recovery process. Note that the combination of a one-bit hard error and one-bit
soft error can both be corrected, allowing for use of a word with a manufacture-time failure or marginal operation
condition. [35]

Applying 2D error coding techniques to the on-die embedded memory system enables fast

common-case error-free operation. The key innovation in 2D error coding is the combination

of lightweight horizontal per-word error coding with vertical column-wise error coding. The

horizontal and vertical coding can either be error detecting codes or error correcting codes. In

our testchip implementation (see Chapter 6), the horizontal code is SECDED ECC, while the
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vertical code is a simple parity code which can only detect a single bit error (see Figure 3.7).

However, when used in combination, the horizontal SECDED ECC and vertical parity form a

single strong multi-bit ECC applied to the entire array. The vertical codes enable correction of

multi-bit errors along rows up to and including entire row failures. The vertical parity rows are

interleaved to increase coverage along the columns, with little impact on area, power, or delay.

Vertical parity update Before every write to a word in the array, that word must be read out to

update the vertical parity: the new value of each bit of the vertical parity word is a 3-input XOR

with the data read out of the array, the data written into the array, and the old value of the vertical

parity. The vertical update logic can be pipelined in parallel with normal memory operations to

mask this latency overhead. If a more complex code than vertical parity were used, instead of a

simple read-before-write operation, multiple reads would have to be performed corresponding to

every message word bit that goes into the parity computation which forms the vertical code word

which is updated. This architectural overhead is what limits us to vertical parity in practice.

Vertical parity correction When the horizontal code detects an uncorrectable error, the con-

troller initiates a vertical parity recovery process. The controller reads all data rows that share

a vertical parity row with the erroneous data row and XORs their values together. The result of

the XOR operation is the original value of the erroneous row, which is then written back to the

proper location.

3.5 Redundancy

Redundancy on the row, column, or block level has long been employed in SRAM design to mit-

igate the yield loss due to a single bad cell or peripheral logic component to an entire array [24].

However, using hardware redundancy alone to address yield loss due to variability has limited ef-

ficacy since an entire row or column must be re-allocated with a redundant spare if even a single

bit in that row or column fails. The advantage of using redundancy is that overhead in power and
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latency during normal operation is minimal. Redundancy replacement of a faulty memory cell

can be accomplished at manufacture-time or at run-time, though most implementations employ

fuses to store this configuration which are only configurable at manufacture-time. The replace-

ment procedure consists of three phases: the testing phase, where faulty cells are located; the

analysis phase, in which the rows and columns to be replaced are selected; and the repair phase,

in which the configuration is written into fuses or some other non-volatile storage elements so

that the replacement is preserved across power cycles. The area overhead therefore consists of

the spare rows and columns of memory, the non-volatile storage elements and muxes for redirec-

tion of faulty memory rows and columns to spare rows and columns, and optionally BIST logic

for testing to find faulty cells. In general, spare replacement using rows only, or columns only, is

less effective in preventing yield loss, but simpler in implementation, particularly in the analysis

phase [34].

Redundancy at higher levels has been used to meet high reliability requirements. Modular

redundancy is used to guarantee reliability by operating multiple versions of the same block

in parallel. In DMR, two redundant versions of a system operate in lock-step, declaring an

error if they disagree; in contrast, in TMR, three redundant versions of a system vote to decide

the correct output. These array-level or component-level redundancy schemes incur larger area

penalties than redundancy on the row or column level, increasing cost.

3.6 Peripheral logic fault detection

At present, industrial designs focus most of their effort in error control on the cell array. Often,

this decision is justified on the basis of fault likelihood; due to the large number of minimum-

sized devices in the cell arrays, they are highly vulnerable to both failures due to random mis-

match variability and failures due to energetic particle strikes. However, faults are not inconceiv-

able in the peripheral logic outside the cell array, and thus in high-reliability applications such

as those memories designed for the automotive, industrial, or medical sectors, it is no longer

feasible to design the address decode path and other peripheral logic without fault detection.

37



We previously discussed error manifestations in the peripheral logic in Section 2.3.2. Tradi-

tional methods of error control applied to the cell array are generally unsuitable for peripheral

logic failures since coverage will be poor if the data is not corrupted. For example, a failure in

the address decode logic could go undetected on a read where the wrong data word is fetched,

despite ECC protection, because the wrong data word will still be correctly encoded; rather than

a single-bit failure, the entire word has failed. Instead, address decode failures can be detected

through the addition of dynamic logic fault detection units to the address decode path and ROM

address bits to each wordline, at the cost of area [82] (Figure 3.8). A comparison of the output

ROM address bits to the input address bits will indicate definitively whether or not an address

decode failure occurred. We refer to this technique interchangeably as a wordline encoder or as

ROM address bits (ROM-ADDR).

WL63

WL62

WL1

WL0

A A_n

0 0 0 0 0 0

1 1 1 1 1 1

A[5:0]=

Figure 3.8: WL encoder enables detection of most common address decoder faults [82].

The wordline encoder is capable of detecting address path failure when combined with other

error checker (EC) circuits such as a wordline NOR checker, write enable NOR checker, bitline

and global bitline pre-charge checker, and replica columns for write and read checking. By stor-

ing both the true and complement forms of the address bits, aliasing due to multi-word failures is

prevented. We propose a novel design to detect similar failure modes with better area efficiency

for large caches in Section 5.2.
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3.7 Summary

In this chapter we have discussed a number of conventional reliability techniques for memory.

Read/write bias assists are commonly used to maintain high functional noise margins for the cell

as devices and supply voltage shrink due to scaling and system performance pressures. The 8T

cell is now widely used, especially in memories which place a higher emphasis on performance

and multi-port access than density or cost. It also offers a respite from the conflicting read

stability and writeability requirements, when used without column multiplexing. Up-sizing the

cell similarly reduces failure rates at the cost of density and power. Error control coding has

become routine in modern designs, although multiple-bit error correcting codes are still reserved

for higher levels of the cache hierarchy due to their latency requirements. Redundancy has long

been used as a yield-improvement technique. Finally, peripheral logic fault detection is a useful

technique for safety-critical designs to protect against the risk of energetic particle strikes and

other rare failure events.

In the following chapters we will present our novel reliability techniques, divided up into

those focusing on the cell array (Chapter 4) and those focusing on the peripheral circuitry (Chap-

ter 5).
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Chapter 4

Cell array protection

“. . . memory locations. . . are just

wires turned sideways in time.”

W. Daniel Hillis [25]

Following this metaphor, it should be possible to apply selected techniques for ensuring error-

free communications over noisy channels to ensure reliable memory system operation.

This chapter explores a novel way of extending the widely-used communications technique of

erasure coding to memory, and the overheads and benefits that can be realized. First, we discuss

the theory of error control coding and erasure coding. Next, we introduce the circuit techniques

which provide the erasure hints to the erasure coding logic, providing the means of doubling the

correction strength of the code. These techniques include read latency failure detection for full-

swing arrays via a bitline XNOR, and small-swing arrays using a ternary-output sense amplifier

(TOSA).

Since a memory consists of a very large number of identical storage cells, each holding

one bit of data, memory designers tend to be very conservative in their choices to minimize

the individual cell failure rate. For a reasonably-sized1 L2 cache of 8 Mb, a cell failure rate of

0.000057%2 would result in an overall array failure rate of 99.2% without redundancy replace-

1In the 65nm generation, L2 caches range from 2 Mb [71] to 32 Mb [61].
2This corresponds to the 5σ point of the probability distribution, indicating that the cell is robust out to 5 standard
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ment. While only 1 in 1.7 million bits will be in error given that cell failure rate, in an array

of over 8 million bits, the odds that a failure will occur somewhere in the array are very high.

Thus, in large arrays multiple means of dealing with erroneous or marginal cells are necessary.

The techniques discussed in Chapter 3 are becoming necessary for continued scaling of SRAM;

the erasure coding techniques we present in this chapter are largely compatible with the existing

techniques and confer additional benefits.

4.1 Erasure coding theory

In order to correct an error in a data word, we must know both the location of the erroneous bit

and the correct value. When a random error occurs in a data word, we know neither and must

rely on the ECC to find both the location and correct value. However, an erasure can also occur,

where we know the location of the erroneous bit, but do not know the correct value. Therefore,

the ECC must only determine the correct value of the bit. In the context of communications, this

concept of an erasure can be visualized as shown in Figure 4.1; if the signal’s slew rate is poor

or the sampling interval is timed at a point when the signal is still transitioning from one rail to

the other, the digital value cannot be reliably sensed and an erasure is detected.

0 1 1 X 0 1 1 0
Figure 4.1: Illustration of an erasure (denoted by X) in a serial data stream. The dotted vertical lines indicate
sampling intervals; when the signal’s slew rate is poor or the sampling interval is timed at a point when the signal is
still transitioning from one rail to the other, the digital value cannot be reliably sensed and an erasure is detected.

If we have an ECC with a minimum Hamming distance of dmin, the number of correctable

random errors (e) and correctable erasures (f ) must maintain the relationship: 2·e+f < dmin [48].

Thus, the number of correctable errors can be doubled using erasures. If we wish to add

deviations from the mean.
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Code
Correct Detect

Erasures Random Random
errors errors

TED 0 0 3
TEC 3 0 0

SECDED 0 1 +1
SECTED 1 0 +2
DECTED 2 0 +1

Table 4.1: Potential implementations of a Hamming code with minimum distance 4. The SECDED implementation
is commonly used, but with a source of erasure hints, two bits flagged as erasures can be corrected and an additional
random bit error detected.

additional error detection capability beyond that which is correctable, the formulation with addi-

tionally detectable errors (g) is: 2·e+ f + g < dmin.

The commonly used Bose-Chaudhuri-Hocquenghem (BCH) SECDED code has a dmin = 4

which is used to correct a single random error and detect an additional error (e = 1, f = 0, g =

1 → 2 ∗ 1 + 0 + 1 = 3 < 4). However, this discounts the possibility of erasures, which

could enhance the correction capabilities of a dmin = 4 code. Table 4.1 shows the possible

erasure and random error correction/detection capabilities of dmin = 4 codes. Of note is the

(e = 1, f = 1, d = 0) code which can correct two erroneous bit in a data word, as long as one

of them is an erasure, but eschews any additional detection capability. This code could be useful

in designs that never expect to see more than two erroneous bits in a word. Also of interest is

the (e = 0, f = 2, d = 1) code which can correct two erroneous bits as long as both of them are

erasures, and it maintains an additional bit of detection. This code could be useful if we expect a

small number of random soft errors and had an alternate method of correcting them as specified

in Section 4.3.

4.2 Erasure detection

In a memory array, a bit is considered erased when it cannot reliably be read, written, and/or hold

its data value. Detection of an erased bit can occur offline before the data access, thus providing

prior knowledge of the erasure location, or at the time of the data access, thus requiring runtime
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determination of the erasure location.

4.3 Erasure correction

Once one or more erasures are detected, whether offline or at runtime, correction is a simple

matter provided they do not exceed the code’s minimum Hamming distance dmin. The general

procedure for simultaneous correction of erasures and random errors is [48]:

1. Fill all erasure locations with 0’s and decode as normal.

2. Fill all erasure locations with 1’s and decode as normal.

3. Pick the corrected codeword with the smallest number of errors corrected as the correct

codeword. Provided 2·e+ f < dmin, the codeword will be correct.

SECDED ECC

Original data

Corrected data

SECDED ECC

ecc decoder mux

Correctable?

Uncorrectable
error

0 0 1 1

Erasure hints

Figure 4.2: Correction mechanism with erasures (number of random errors e = 0, number of erasures f = 2,
number of additional detectable errors g = 1) [37].

Figure 4.2 shows the hardware block diagram of the correction mechanism. Any errors oc-

curring in erasure locations will appear as 0 & 2, 1 & 1, or 2 & 0 bit errors after masking the

erasure locations to 00 and 11. These errors will be corrected by at least one of the SECDED

decoders. If an additional error occurs in a non-erasure location, the scenarios will be changed

to 1 & 3, 2 & 2 errors, or 3 & 1 errors. For 1 & 3 and 3 & 1 error patterns, both decoders will
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try to correct in non-erasure locations regardless of correctness. For 2 & 2 error pattern, neither

decoder can correct the error. These scenarios are reported as a rare uncorrectable error event

(e.g., soft error). In this way, this mechanism effectively works as a fast DECTED code; the

latency of this double erasure correcting code is only slightly higher than that of a conventional

SECDED code.

Figure 4.3 illustrates conceptually how a two-bit erasure pattern can reveal the correct code-

word on the left side of the diagram, while the right side of the diagram shows the mechanical

process of masking the erasures and muxing the properly corrected word to the corrected data

output. Figure 4.4 illustrates the complementary scenario where the erasure locations’ corrected

values are not both 0 or 1, thus the output of each SECDED is a 1-bit corrected word.

0000

0010

0000

1110

00100000

00100110

00X000X0

dmin=4

SECDED ECC

data[7:0]

corrected data

SECDED ECC

Mask erasures
to 0

Mask erasures
to 1

ecc decoder mux

Correctable?

00X000X0

00000000 00100010

0 2

0 0

(8,4) DECTED ECC DecoderBounds

uncorrectable

Figure 4.3: Correction of a two-bit erasure pattern: with the erasures masked to 0, the correct codeword is revealed
(0 bits in error are detected by the SECDED ECC unit); on the other hand, with the erasures masked to 1, 2 bits in
error are detected by the SECDED unit and thus the 0-masked word is muxed to the corrected data output.

4.4 Offline erasure detection

For offline erasure detection, the memory testing community has already developed an extensive

library of methods for detecting faulty storage cells, since this information is the basis for redun-
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0001

0010

0111

1110

00010110

00100110

001XX110

dmin=4

SECDED ECC

data[7:0]

corrected data

SECDED ECC

Mask erasures
to 0

Mask erasures
to 1

ecc decoder mux

Correctable?

uncorrectable

001XX110

00100110 00111110

1 1

0 0

(8,4) DECTED ECC DecoderBounds

Figure 4.4: Correction of a two-bit erasure pattern: with the erasures masked to 0, the SECDED corrects a single-bit
error. The same occurs with the erasure masked to 1, and so either output is the properly corrected data word.

dancy assignment. Redundant memory elements can be assigned at manufacture-time and/or in

the field during power-on self test (POST) [13]. These tests use tailored test vectors that target

specific error types, and in some cases, special test circuits that can find marginal cells. For ex-

ample, special testing-only weakened write circuits can be used to find cells that are marginal in

the write latency failure mode [2, 46].

Offline erasure detection requires storage of the erasure location and subsequent read out of

the erasure map on every read access. The erasure map can be stored on a per word basis, in

which case we must allocate a few additional bits of storage per word for the erasure pointer(s)

(log2(n) bits for an n-bit data word for each erasure). Alternately, the erasure map can be stored

globally in a searchable memory structure (e.g., a CAM that uses the memory address as the

key and the erasure vector as the data) which is accessed on every read to determine if the

read memory address contains any erasures. Which of these methods is optimal depends on the

memory parameters and error rate.
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4.5 Runtime erasure detection

Four cell failure types were introduced in Section 2.2; the ease of detection of these failure types

at runtime depends on whether the failure has an extrinsic manifestation outside of the cell and

on whether the time of the failure can be pinpointed.

The simplest cell failure type to detect at runtime is an access failure, also known as a read

latency failure, since it can be detected outside of the accessed cell (at the bitlines) and occurs at

the time of the read access. The other three failure types do not necessarily immediately manifest

at the time of occurrence, and thus are best detected through offline testing. A data retention fault,

which occurs while a cell is idle, is known to be particularly difficult to detect [80]. An XNOR

gate can be used to detect a read latency failure (Figure 4.5) for a full-swing bitline design. In

this scheme, we treat each of the differential bitlines as independent single-ended bitlines which

swing full rail (from VDD to VSS). On a proper read, one of the bitlines will be pulled to VSS

by the cell, and the other will remain precharged at VDD. However, if the accessed cell has

insufficient read current (e.g., due to device variability) neither bitline will fall below the logic

threshold of the sensing inverters, and both bitlines will remain high (output of both inverters

will be low). Alternately, if there is too much leakage on the bitline due to the unaccessed “off”

cells in the column, both bitlines will be pulled to VSS (one by the accessed cell, and the other

by the leaking cells), which is another detectable condition distinct from normal operation.

This technique described is suitable for full-swing bitlines, but an alternative design is re-

quired for small-swing bitlines. To determine whether a read latency failure has occurred at

runtime, we employ a pair of sense amplifiers to determine whether the bitline differential is

large enough to be an indication of a reliable read or whether it’s so small that the output value

cannot be determined reliably, in which case an erasure is declared.

4.5.1 Ternary-output sense amplifier

In this section, we demonstrate a method of runtime erasure detection which improves upon

the direct bitline XNOR technique which is only suitable for paired full-swing bitlines. Recall
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BL BL

DATA DATA

6T

. . .

ERASURE
(a) Circuit implementation

DATA DATA ERASURE Meaning

0 0 1 Read latency failure
0 1 0 Value = 0
1 0 0 Value = 1
1 1 1 Access failure due to leakage

(b) Description of behavior

Figure 4.5: Runtime erasure detection circuit for access/read latency failures [37]. This design is suitable for
full-swing bitlines.
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that the read latency failure mode occurs when the single on cell’s read current minus the off

cells’ leakage current is insufficient to create enough bitline differential to exceed the sense

amplifier’s input-referred offset. In an equation, this requirement is shown in Inequality 4.1,

where N is the number of cells in a column, TWL→SAE is the time between wordline assertion

and sense amplifier enable assertion (the time the 6T cell has to produce a voltage differential on

the bitlines), and CBL is the bitline capacitance.

|VSAoffset| <
(ION − (N − 1) ∗ IOFF ) ∗ TWL→SAE

CBL

(4.1)

Current solutions to this problem mainly involve minimizing the sense amplifier’s input-

referred offset through sizing or circuit techniques to improve the read current, but in some high-

reliability applications, detection of the failure mode may be almost as valuable as correction.

The concept of a ternary sense amplifier has been discussed in the literature [78], but we

believe our implementation of it to be unique in its low overhead and broad applicability for

reduction of read latency failures when used in conjunction with an erasure coding scheme for

error correction.

Building a ternary-output sense amplifier (TOSA) involves a modification of an existing sense

amplifier design which outputs 0 or 1 for the bitline data with one that outputs an erasure signal

as well, so that there are three possibilities for the output: 0, 1, or erasure (see Figure 4.11).

At the circuit level, this is actually two separate lines, data and erasure. One simple way to

build this concept using a small-swing differential sense amplifier as a building block is to al-

locate two sense amps, each with their input-referred offset skewed in opposite directions by

a nominal voltage Vskew, so that their outputs will only agree if the bitline differential exceeds

Vskew (in the nominal case absent variability). If they disagree, the erasure signal will be high,

indicating that the bitline differential is not large enough to be considered reliable. This skew-

ing can be accomplished by means of parallel device assist implementation (PDAI) for current-

latching/“StrongARM” sense amplifiers (CLSA) (see Figure 4.6) or capacitive resist implemen-

tation (CRI) for voltage-latching/“latch-style” sense amplifiers (VLSA) (see Figure 4.7) [5, 38].
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In the literature, this technique was used with kick structures on both sides of the sense amplifier

which could be turned on or off, depending on which direction the device mismatch pushed the

input-referred offset. In our incarnation, we allocated two sense amps with their inputs oppo-

site, so that the one-sided kick structure acts in a roughly equal amount in opposite directions.

We’ve simulated this design in a 65nm bulk CMOS process using voltage-latching sense ampli-

fier (VLSA) and a one-sided CRI “kick”, targeting an erasure range of 50 mV at nominal VDD

of 1.2 V; i.e., if the cell fails to develop 50 mV of bitline differential, the data from that col-

umn is considered to be an erasure by the ECC. Previous research has proposed using redundant

sense amplifiers but to the best of our knowledge a multiple-sense amp design involving soft

information to improve SRAM reliability has not been proposed [73].

VDD

SAE

BL BL

OUT OUT

(a) CLSA

VDD

SAE

BL BL

OUT OUT

VDD

(b) CLSA with PDAI kick structure

Figure 4.6: Current-latching sense amplifier and PDAI kick structure [5].

The device sizes shown in Figure 4.10 were chosen to minimize input-referred offset while

maintaining acceptable area for either 2x or 4x column mux pitch in 65nm. A low propagation

delay was also sought, as well as a high input common mode rejection ratio given an input com-

mon mode range from 0.7 V to 1.2 V. Over a 141,000-point MC analysis for mismatch variation,

for the VLSA with CRI kick, µ(Voffset) = 34.3mV, σ(Voffset) = 8.4mV at 90% VDD input
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VDD

SAE
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PUL

AR
PUR

PDL PDR

TAIL

OUT OUT
(a) VLSA

(b) VLSA input-referred offset PDF. VDD=1.08, µ(Voffset) = 0V, σ(Voffset) = 8mV at 90% VDD input
common mode.

Figure 4.7: Voltage-latching sense amplifier and offset PDF.
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VDD
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PDL PDR

TAIL
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CR

(a) VLSA with CRI kick structure

(b) VLSA with CRI: input-referred offset PDF. VDD=1.08, µ(Voffset) = 34mV, σ(Voffset) = 8mV at 90%
VDD input common mode.

Figure 4.8: Voltage-latching sense amplifier with CRI kick structure and offset PDF.
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+ -

BL BL

DOUT

Figure 4.9: Symbolic representation of VLSA with CRI kick in same configuration as Figure 4.8.

common mode (VDD=1.08 V, see Figure 4.8). Since the variation in input-referred offset is pri-

marily a result of mismatch between the nominally identical sides of the sense amplifier structure,

the results from a MC analysis for process and mismatch variation should show nearly identical

σ(Voffset). This was found to be the case: over a 14,000-point MC analysis for process and

mismatch variation, for the VLSA with CRI kick, µ(Voffset) = 34.2mV, σ(Voffset) = 8.5mV

at 90% VDD common mode. Information on the methodology of our simulation infrastructure is

provided in Appendix A.

Of course, since any sense amplifier has some variation in its input-referred offset, this era-

sure range will have per-column variation. We’ve shown input-referred offset voltage of each of

the two sense amplifiers at one design point (see Figure 4.14).

4.5.2 Overhead

Since the design is based on only a slight modification to a typical sense amplifier, it will double

the sense amp area, with the addition of an XNOR gate on the output; amortized over a 128-cell

column, this represents approximately 6% increased local array area overhead. Also, the added

sense amplifier increases the capacitance on the bitline, which reduces bitline differential voltage

developed by the cell, which may impact latency depending on the specific design parameters.
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(a) VLSA device sizing
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(b) VLSA with CRI kick device sizing

Figure 4.10: Sense amplifier sizing; all measurements in microns.
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BL BL

DOUT ERASURE

SA0 SA1

D0 D1

Figure 4.11: Ternary-output sense amplifier (TOSA) block diagram. Each sense amp’s input-referred offset is
“kicked” away from 0 in opposite directions.

4.5.3 Simulation methodology

Since read latency does not have a minimum threshold at 0 as static noise margins do, we must

establish constraints according to a canonical design which is chosen to be roughly similar to

published industry designs of the same process generation. At our chosen technology node

of 65nm, we establish the following targets: for L2 cache, 8 Mb capacity; for L3 cache, 100

Mb capacity. We disregard the L1 cache space in our analysis since there has been very little

headroom for reliability techniques which impact latency at that level of the cache hierarchy.

As is done commonly in industry, we pick a shared subarray size for both the L2/L3 cache

targets and use it as a building block for the much larger overall cache size. Our MC analysis

is performed at the cell level, and statistics are generated using the assumptions of a subarray

target size. The subarray target is 128 rows and 64 bits/word with 4-way column multiplexing

(thus 256 bits/row before ECC check bits). This will force the column output to be a small-swing

sense amplifier, which is common, although not required, in dense cache designs such as those

in L2/L3.

The frequency target is set at 2 GHz, which is comparable with Intel’s quad-core Itanium

65nm processor [71], and other processors of that generation. While large caches can pipeline
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their access, the wordline-to-bitline-to-digital data output interval cannot be pipelined, and thus

represents the minimum single-cycle delay. Thus we use the 2 GHz target to define a 500 ps

access latency for the 65nm subarray. Simulations show that for a 500 ps access latency, a limit

of 300 ps wordline-to-sense amplifier enable delay is appropriate, given the delay of other logic

in the critical path such as the row decoder, wordline driver, and sense amplifier output latch.

Using the overall cell failure probability, we can calculate memory yield based on the memory

capacity. Furthermore, it is reasonable to assume that run-time reliability would be proportionate

to manufacture-time yield as determined by the overall cell failure probability. Cells with poor

margins are more likely to fail at run-time, so improvements in parametric yield will also generate

cell arrays which have lower likelihood of failures due to marginal cells.

4.5.4 Results

Figures 4.12 & 4.15 illustrate the PDFs of the sense amplifier’s input-referred offset compared

with the bitline differential developed after 300 ps of wordline assertion by the worst-case (lowest

ION) cell in the 128-cell column. The bitline differential is computed by the right-hand-side of

Inequality 4.1; in this expression, TWL→SAE and CBL are optimistically considered constants3.

ION and IOFF are fit to distributions and sampled to form the combined distribution of ∆VBL.

The probability of undetectable error when using a conventional sense amplifier (SA) is

shown at the X=0 point of Figure 4.13; from calculations of the CDF value it is effectively 0

for both L2 and L3 array sizes. The probability of detectable erasure when using a TOSA is

shown at the X=0 point of Figure 4.16; it is 0.0011% for L2 array size and 0.014% for L3 array

size. An erasure occurs when the bitline differential developed by the 6T cell is less than the

input-referred offset of SA0, but greater than that of SA1. Up to two erasures per word can be

corrected using a SECDED code configured with erasure masking logic. Finally, the probability

of undetectable error when using a ternary-output sense amplifier is shown at the X=0 point of

Figure 4.17; it is effectively 0 for both L2 and L3 array sizes.

3We neglect the variability of bitline capacitance mismatch and of read self-timing, a complex system we choose
not to model here but which is well-studied in the literature [3, 4, 39, 55].
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An error only occurs when the bitline differential is so low and the SA1 input-referred offset is

so high that the bitline differential crosses both SA0 and SA1 offsets, leading DOUT to resolve

incorrectly and ERASURE to be 0. Note that the CDF in Figure 4.17 is shifted to the right

farther than the CDF in Figure 4.13. This indicates that the probability of undetectable error

is lower for the TOSA than for the SA; although calculations show effectively 0 error rate for

both SA and TOSA designs (though TOSA will have a very small rate of erasures which can be

corrected), the noise margin for TOSA is larger than for a conventional SA design, allowing for

safer operation through the system’s lifetime. Figures 4.18, 4.19 & 4.20 show direct comparisons

between a word, L2, and L3-sized array with SECDED ECC and a conventional SA or TOSA

which provides erasure hints to the ECC decoder. All three lines represent uncorrectable errors

where they cross the Y-axis (or an event overcomes their noise margin), but the blue line for

the probability of 3 detected erasures in a word still represents a detectable failure condition,

whereas the green and red lines represent undetectable failure conditions. Notice that there is

a broad safety band between the blue and red lines – this indicates that at run-time, it is highly

likely that read latency failures will be detectable by the TOSA in one or more columns. More

importantly, in the unlikely event of undetectable read latency failures in other columns, the

detectable failures will signal to the ECC decoder that the word is to be considered uncorrectable

so these undetectable failures will not silently corrupt the data.

An additional advantage of the use of TOSA for small-swing designs or bitline XNOR for

full-swing designs is that it can be used to aid manufacture-time testing in finding storage cells

which have marginal read latency. Some memory designs are built with configurable self-timing

for the read latency; this has been used to reduce the rate of read latency failures and improve

system yield [4, 55]. When a conventional SA is used, determining the minimum sense amplifier

enable timing at which a read latency failure occurs requires a standard test pattern to be per-

formed in which data written in is stored in an error-free memory elsewhere in the system and

compared against the data which is read out of the memory. If SECDED ECC is available, one or

two of these read latency failures per word can be detected without needing to resort to a standard
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ΔVBL-Voffset

Figure 4.12: PDF of the sense amplifier’s input-referred offset compared with the bitline differential developed after
300 ps of wordline assertion by the worst-case (lowest ION) cell in the 128-cell column. VDD=1.08V, T=27◦ C.

Figure 4.13: CDF of 6T cell bitline swing vs. sense amplifier offset, VDD=1.08V, T=27◦ C.
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Figure 4.14: Histogram of ternary output sense amplifier offsets, VDD=1.08V, T=27◦ C.

test pattern, but more failures than that may go undetected. Ideally, the read latency failure rate

could be determined transparently during operation rather than requiring a dedicated test to be

performed – this is made possible with the use of TOSA. Even without the use of ECC, the TOSA

or bitline XNOR can detect any number of read latency failures and declare them erasures; only

two of these can be corrected with SECDED ECC and thus higher bit failure counts will result in

lost data, but in systems built with support for architectural replay, the data which was erased can

be reconstructed after an exception is declared. This operates on the same principle as a similar

technique for in situ error detection and correction for sequential elements [7].

4.6 Summary

In this chapter we discussed the extension of the communications technique of erasure coding

to SRAM. We presented the design and simulation results of a novel technique for runtime era-

sure detection, the ternary-output sense amplifier. We evaluated the technique’s advantages and
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ΔVBL-VSA0-offset

ΔVBL-VSA1-offset

Figure 4.15: PDF of each of the TOSA’s input-referred offsets compared with the bitline differential developed
after 300 ps of wordline assertion by the worst-case (lowest ION) cell in the 128-cell column. Note that the mean
bitline differential is lower than in Figure 4.12 due to the increased capacitance on the bitline from the extra SA.
VDD=1.08V, T=27◦ C.

Figure 4.16: CDF of 6T cell bitline swing vs. TOSA offsets. This indicates the likelihood of detectable erasure.
VDD=1.08V, T=27◦ C.
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Figure 4.17: CDF of 6T cell bitline swing vs. TOSA offsets. This indicates the likelihood of undetectable error.
VDD=1.08V, T=27◦ C.

Figure 4.18: CDF of 6T cell bitline swing vs. SA and TOSA offsets. This indicates the likelihood of uncorrectable
error in a 72-bit word with SECDED ECC. VDD=1.08V, T=27◦ C.
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Figure 4.19: CDF of 6T cell bitline swing vs. SA and TOSA offsets. This indicates the likelihood of uncorrectable
error in an 8Mb L2 SRAM with SECDED ECC. VDD=1.08V, T=27◦ C.

Figure 4.20: CDF of 6T cell bitline swing vs. SA and TOSA offsets. This indicates the likelihood of uncorrectable
error in a 100Mb L3 SRAM with SECDED ECC. VDD=1.08V, T=27◦ C.
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estimated local array area overhead of 6% for a 128-cell column design in 65nm. In Chapter 5

we discuss peripheral logic failure detection circuits and present a novel technique of detecting

address decoder failures which has benefits for area overhead in large cell array designs.
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Chapter 5

Peripheral circuitry protection

While most study has focused on the SRAM cell array, for high-reliability products, it is impor-

tant to examine the effects of failures on the peripheral logic as well. Unlike in the cell array,

where a failure in a storage element can cause immediate corruption of data, single event upsets

(SEUs) in the SRAM peripheral logic aren’t generally able to cause an error in isolation. Rather,

the effects of the SEU depend on the location as well as state of the memory at the time of the

upset. Information on fault modes potentially resulting from these SEUs and their relative like-

lihood could guide designers in handling these faults using techniques which are most effective

given their overhead.

To this end, we have conducted an investigation into the potential functional fault modes

resulting from energetic particle strikes on the address decode logic of an industrial design in the

40nm node. The study specifies the types of faults which will occur given a particle strike in a

particular area of the physical layout. The analysis serves to guide our study of which techniques

are the most effective at handling these faults given their overhead.

5.1 Particle strike locality

We performed the analysis by writing a SKILL script to examine the layout of an industrial

SRAM row decoder for vulnerabilities to particle strikes in certain windows. Locally, a particle
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Layout proximity script

(SKILL)

Fault simulation using
scripted Verilog simulation

Sets of diffusion regions
in proximity (at risk of SET)

Controllable & observable
test vectors exercising faultsBehavioral netlist

(perl)

If the likely types of WL failure are known, 
the protection can be chosen to minimize overhead

Worst-case failure probabilities:

0WL failure: x
2WL failure: y

False WL failure: z

Figure 5.1: Particle strike effect study: Process.

strike can be pessimistically modeled as a stuck-at fault, which we chose to do to study the worst-

case functional effects of particle strikes on SRAM peripheral logic. The goal was to show the

possible consequences on decoder behavior of a particle strike in that window, or in other words,

the potential faults that could be the result of a SET due to a particle strike. The results of the

SKILL proximity script are then fed into a Verilog model of the decoder to determine through

fault simulation the results of each set (see Figure 5.1).

The address decoder can fail in one of three ways:

1. 0WL failure: The desired wordline is not asserted, and no other wordline is asserted.

Essentially the assertion of the wordline is suppressed.

2. Wrong-row failure: The desired wordline is not asserted, but one or more other wordlines

is asserted. This type of failure has two sub-types depending on the proximity of the

desired wordline to the improperly asserted wordline. If the two wordlines are in the

same block, we term this a FWL. Otherwise, we term this a WBWL. Sometimes we also

refer to a WBWL failure as a “1WL” failure when we’re examining the failures within

a single block. The “1WL” terminology indicates a failure where the expected behavior

was 0 wordlines in the block asserted but the actual behavior was 1 wordline in the block

asserted.

3. 2WL failure: The desired wordline is asserted, but one or more other wordlines is asserted

as well, which may cause contention on a read and data corruption on a write.
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For simplicity, the terms “row” and “wordline” are used to refer to the address decode path’s

output; it should also be noted that the column select suffers from the same failure types.

Figure 5.2: Fault simulation: example

The results of this study are shown in Figure 5.5. This demonstrates the relatively small like-

lihood of false wordline failures due to energetic particle strikes, at least in the chosen industrial

row decoder layout. This is intuitively understandable: each of the other failure types requires

only that a single logic path be asserted or de-asserted, while a FWL failure requires that the

desired wordline’s logic path be de-asserted and in addition that another wordline’s logic path be

asserted. While not inconceivable, the combination of these two events in a single particle strike

is less likely than either of them occurring independently.

This result shows us that if we could design a fault detection technique that would catch all

0WL, WBWL, and 2WL failures, we would be ensuring resiliency in almost all circumstances

against energetic particle strikes in the address decoder. We present such a technique in Sec-

tion 5.2.

In deciding which segment of the periphery is most vulnerable, we chose the latter portion

of the address path. Our reasoning for choosing this is that hardening techniques exist to secure

the address latches [12, 42], and a particle strike on a portion of the data path would result in a
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Figure 5.3: Layout proximity: number of unique sets, by number of nodes per set, found in each window size

Figure 5.4: Layout proximity: number of sets found in each window size
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Figure 5.5: Results of an examination of layout proximity in an industrial SRAM row decoder. 0.7 on y-axis of
unweighted graph indicates 70% of sets manifested the failure type on the x-axis. The weighted graph multiplies
this number by the proportion of failing patterns to total tested patterns, e.g., if 70% of sets manifested a 1WL failure
type and these sets on average demonstrated failure in 248/256 patterns, the weighted probability would be 0.68.

disturbance to one or more bits of a word as opposed to the entire word. These failures can be

handled by the same techniques which handle failures in the array itself, such as ECC.

5.2 Peripheral logic fault detection

We place the emphasis of our investigation on the address decode path for the reasons stated in

Section 5.1: a particle strike on a portion of the data path (including the column I/O circuitry)

would result in a disturbance to one or more bits of a word as opposed to the entire word, and

thus would introduce a similar failure pattern as that of a particle strike on the cell array. These

failures can be handled by the same techniques which handle failures in the array itself, such as

ECC. The exception to this is the column multiplexer decoder, which is technically part of the

address decoder, and thus its faults can be covered by the same method (re-encoding the address

from the decoded horizontal column mux lines) as those used to protect the wordline decoder in

the literature [82]. We will not discuss it further here.

Additionally, there has been significant work in the literature on protecting the sensitive stor-

age nodes of latches, such as those that might hold the address [12, 47, 81]. Since latches and
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other sequential elements generally represent a small portion of the overall memory area, an pro-

portionate increase in size in exchange for hardening against particle strikes is not a significant

overall cost as compared to the cost of hardening the SRAM cells or address decode logic.

We evaluate the differences between an existing technique and our novel technique, generat-

ing enough information to allow designers to make a decision as to which scheme is suitable for

a memory with given array size and specifications.

The wordline encoder discussed in Section 3.6 carries certain requirements: the ROM bitlines

must be full-swing and single-ended, and a column’s pitch is dependent on the column output

devices rather than the ROM cell itself. In a design whose data bitlines are single-ended static

sense [82], this may be suitable. But for last-level cache, where density is important, a large

number of cells on a long bitline may be desirable to maximize array efficiency (the ratio of cell

area to total area including peripheral logic). In this case, the number of address bits and thus the

area overhead of the ROM bitlines increases.

The local area overhead of the wordline encoder technique can be calculated using the as-

sumptions shown in Figure 5.6: a 32-row block would carry an overhead of 3.5% while a 512-row

block would carry an overhead of 6.2%. The total area overhead for all EC circuitry is reported

as < 15% of cache area [82].

M columns

N
 r

o
w

s

WLAC: M+1
ROM: M+2log2(N)/4
 - 32 rows: 2.5 cols
 - 512 rows: 4.5 cols

WLAC: RWL, SWL: N+2
ROM: SWL for 2WL testability: N+1

Figure 5.6: Local area overhead of both ROM address storage and wordline assertion comparator

An additional caveat of this technique is that it does not provide manufacture-time testa-

bility (demonstration of caught failures) without augmentation. We discuss additions to allow
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manufacture-time testability in Section 5.2.1.

5.2.1 Wordline assertion comparator

In response to the stated limitations of the ROM-ADDR technique we have designed a wordline

assertion comparator (WLAC) (Figure 5.7), which compares the combined assertion time of

the wordlines in the array against the assertion time of a reference wordline (RWL). In the ideal

case, the assertion time should be the same, which would indicate that exactly one wordline has

fired.

WL31

WL0

(Data cells)

RWL

Sense Amp Sense Amp

CBLC RBLC RBLFCBLF

Expected output: CBLC<RBLC CBLF>RBLF
Ceiling Floor

SWL

(a) Circuit diagram

RBLC

CBL

RBLF

Sense Enable t

V

WL

floor margin

(b) Waveform

Figure 5.7: WL assertion comparator enables detection of “no-row” or “multi-row” address decoder faults.

We propose an alternative scheme using a pair of sense amplifiers along with two pairs of

differential bitlines to ensure that only a single wordline has been asserted. We compare the

wordline assertion times by measuring the voltage of two pairs of bitlines which we designate

the check bitline (CBL) and the reference bitline (RBL). The check bitline is pulled down by

an NFET attached to the requested wordline (or whichever wordlines are asserted in the case of

an address decode failure), while the reference bitline is pulled down by an NFET attached to a

reference wordline.

The ceiling bitline pair are compared to verify that a 0WL failure has not occurred, while the

floor bitline pair are compared to verify that a 2WL failure has not occurred. Correct behavior is
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indicated when the check bitlines are below the reference ceiling and above the reference floor,

i.e., CBLC < RBLC and CBLF > RBLF. In other words, in the event of a no-row failure, the

voltage on CBLC will be higher than that of RBLC; in the event of a multi-row failure, the

voltage on CBLF will be lower than that of RBLF. Thus, this scheme addresses both the no-row

and multi-row failure modes.

Adapting the ceiling bitline pair to its purpose means sizing the reference bitline pull-down

device for a lower on-current than the lowest on-current (through mismatch variability simula-

tion) of a check bitline pull-down device. Adapting the floor bitline pair to its purpose means

sizing the reference pull-down device for a higher on-current than the highest on-current (through

mismatch variability simulation) of a check bitline pull-down device. Additionally, in both the

ceiling and floor pair, the design sizing of the check bitline pull-downs should be chosen such

that the nominal device brings the voltage of the check bitline to VDD/2 at the same time the

sense enable signal is asserted for the block or the bitline is otherwise read out. This is chosen so

as to balance the competing interests of maximum differential shown at the sense amplifiers and

ensuring that both check and reference bitline voltages do not reach 0 V, which would reduce the

reliability of the checking.

The sense amps which compare check bitline (CBL) to reference bitline (RBL) are asserted

by a control signal with timing similar to the sense enable signal but which asserts on both read

and write cycles.

For testability purposes, two new input pins (t 0wl and t 2wl) are added to the memory to

exercise the 0WL and 2WL failure modes. The 0WL failure mode is induced by adding an input

to an early stage of the per-array decode structure which is controlled by t 0wl, allowing the

decoders to effectively be turned off. The 2WL failure mode is induced by adding a “second

wordline” (SWL) which follows a replica path through the row decoder logic whose activation is

controlled by t 2wl. In the event of a false positive or false negative response during manufacture-

time test of the 0WL and 2WL failure modes, the WLAC is determined to be faulty, which would

increase yield loss. Thus it is of paramount importance that the WLAC design be robust against
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variation.

The local area overhead of the wordline assertion comparator block can be calculated using

the assumptions shown in Figure 5.6: a 32-row block would carry an overhead of 9.2% while a

512-row block would carry an overhead of 3.2%. Note that this includes the testability enhance-

ment of the SWL; if this enhancement is also included in the WL encoder/ROM address storage

scheme, its local area overhead increases to 6.7% for a 32-row block or 6.4% for a 512-row

block. The compact 32-row block would be better suited for L1 cache, while the dense 512-row

block would be better suited for last-level cache which emphasizes density over performance.

Thus, this technique is more beneficial at higher levels of cache with longer bitlines, but may not

be preferable to ROM-ADDR in all cases. The WLAC technique achieves 3% area improvement

over ROM address bits for a 512-row array.

Figure 5.8: Waveform showing correct operation detected by the WLAC. Correct behavior is indicated when the
check bitlines are below the reference ceiling and above the reference floor, i.e., CBLC < RBLC and CBLF >
RBLF. Legend: yellow = RWL, pink = CBLC, orange = RBLC, blue = CBLF, green = RBLF.

The wrong-row failure mode is addressed by the ROM address storage scheme but not by

WLAC. We showed in Section 5.1 that this failure mode is far less likely than 0WL or 2WL

failure modes. Furthermore, since both of these schemes are mainly of interest for high-reliability
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Figure 5.9: Waveform showing 0WL failure mode detected by the WLAC. The incorrect behavior is detected, as
the check bitlines are above the reference ceiling, i.e., CBLC > RBLC. Legend: yellow = RWL, pink = CBLC,
orange = RBLC, blue = CBLF, green = RBLF.

Figure 5.10: Waveform showing 2WL failure mode detected by the WLAC. The incorrect behavior is detected, as
the check bitlines are below the reference floor, i.e., CBLF < RBLF. Legend: yellow = RWL, pink = CBLC, orange
= RBLC, blue = CBLF, green = RBLF.
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memories, it is a fair assumption that some type of ECC would be used as well. For SECDED

ECC, codes are generally truncated to match the data word width rather than being used at the

optimal code length. Coding theory shows that for a code with m parity bits, the code word is

2m − 1 bits, and the data word is 2m −m− 1 bits. This corresponds to distance 3 codes of (31,

26), (62, 56), or (127, 120). An extra parity bit enables distance 4 codes of (32, 26), (63, 56), or

(128, 120); these codes can be used for SECDED. However, data words are frequently powers

of 2, so these codes would be truncated to (22, 16), (39, 32), or (72, 64). Thus, there is slack

in the word which can be used to encode protection for additional bits without adding overhead

of increased parity bits. These additional bits can be used to encode the address along with the

data, thus providing the capability of detection of a wrong-row access with only a slight increase

in ECC encoder/decoder area but no local array overhead.

To test the concept, the WLAC unit was designed in a 40nm bulk complementary metal-

oxide-semiconductor (CMOS) process on an industrial memory design 36 kb in size with 1024

words, 36-bit words, and 4-way column multiplexing. Simulations of the design across corners

and mismatch demonstrate that the technique can be employed with robust safety margins for

detecting SETs.

5.2.2 Results

The design was simulated at nominal corner (Figures 5.8, 5.9, & 5.10), across corners (Fig-

ure 5.11), and through MC analysis with process and mismatch variation (Figures 5.12 & 5.13).

In each of these analyses, negative margins were shown in simulations with failures in the ad-

dress decoder, while positive margins were shown in simulations with correct functionality of

the address decoder. The worst-case margins out to 4σ process/mismatch variation were -197

mV for the 0WL case, 92 mV and 35 mV for the ceiling and floor margins of the 1WL case, and

-43 mV for the 2WL case. These results demonstrate the robustness of the technique.
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Figure 5.11: Comparison of margins across corners

(a) Ceiling margin, 1WL (b) Floor margin, 1WL

Figure 5.12: WLAC margins: correct operation. Ceiling pair: µ = 213mV ;µ − 4σ = 92mV Floor pair: µ =
195mV ;µ− 4σ = 35mV
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(a) Ceiling margin, 0WL (b) Floor margin, 2WL

Figure 5.13: WLAC margins: failing operation. Ceiling pair: µ = −270mV ;µ + 4σ = −197mV Floor pair:
µ = −154mV ;µ+ 4σ = −43mV

5.3 Summary

In this chapter we evaluated a novel technique for detecting address decoder failures which has

benefits for area overhead versus a competing technique in large cell array designs. Our study of

particle strike locality in an industrial address decoder design demonstrates that the risk of 0WL,

2WL, or WBWL failures is much higher than the risk of FWL failures; thus, the structure of

the WLAC is amenable to addressing the most common error manifestations of particle strikes.

Additionally, through the augmentation of ECC by encoding both the address and the data, these

rare failure events may be detected as well. An illustration of the technique’s differences from

ROM-ADDR for certain memory sizes and specifications is shown in Section 5.2.1, with im-

proved area efficiency when used with large, dense memories. The WLAC technique achieves

3% area improvement over ROM address bits for a 512-row array.

In Chapter 6 we will explore the design and implementation of a testchip in a 55nm bulk

CMOS process containing multiple reliability-improvement techniques including vertical parity,

erasure coding using runtime read latency failure detection circuits and offline erasure storage in

CAM, and ROM address bits to detect address decoder failure.
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Chapter 6

Prototype testchip with erasure-based ECC

To address failures occurring in the cell array, we have implemented a novel multi-bit ECC

scheme based on erasure coding that can extend conventional ECC already used in memory to

correct and detect multiple erroneous bits with low latency, area, and power overheads. Our EB-

ECC scheme can correct two hard errors and detect one soft error per word without significantly

increasing memory access latency. When EB-ECC is combined with the existing low-overhead

soft error correction mechanism of vertical parity [35, 44], our scheme can correct two hard errors

and one soft error per word. This design is the maximum number of erasures correctable while

maintaining an extra bit of random error detection given a Hamming code of minimum distance

4 (see Table 4.1), though erasure coding could provide even greater multi-bit error correction

given a Hamming code with a higher minimum distance. Since correction would no longer be a

single-cycle low-area operation in this case, it was not implemented at this time.

The testchip, which was designed and fabricated on a 55nm bulk CMOS process, viewed

from a high level, contains a core SRAM, the novel EB-ECC modules, and BIST circuitry nec-

essary to test the functionality of the design (Figure 6.1) [45]. This 55nm technology was an

optical shrink from 65nm; the design and simulation was performed using 65nm models and all

cited measurements are taken from 65nm layout, however the testchip returned from fabrication

contained devices optically shrunk from 65nm to 55nm minimum feature size. Thus, simulation

and area data can be compared to other designs in the 65nm node while silicon testchip results
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should be compared to designs in the 55nm node.

650 μm

7
0

0
 μ

m
Core SRAM

64 Kb

ECC/BIST

Figure 6.1: Top-level layout of testchip on 55nm bulk CMOS process, containing a core SRAM, the novel EB-ECC
modules, and BIST circuitry necessary to test the functionality of the design.

6.1 Core memory

The core SRAM is a 64 kb array consisting of 16 sub-blocks, each 64 rows and 72 columns of

6T cells in size. The memory is designed for single-cycle access with a frequency of 800MHz

at 1.2V and completes an atomic read-before-write operation on the event of a write request,

which is required for updating the vertical parity bits in 2-D coding [35, 44]. The memory has

programmable self-timed circuitry for both the read and write paths. The VDD supply to the

core is decoupled from the rest of the logic. Independent control of the supplies can provide a

better understanding of memory errors as a function of supply voltages. This also creates various

conditions to assess the error correction capabilities of our design.
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Figure 6.2: Enlarged view of synthesized ECC, BIST logic, and supplemental memories.

Technology 55nm bulk CMOS
Nominal supply 1.2 V

Routing 4 metal layers
Area 0.46 mm2

Core array 0.23 mm2

ECC/BIST 0.23 mm2

Core array
42% area efficiency

1.06 µm2 6T cell
1.2 ns read latency
16 (64x72b) blocks

Table 6.1: Testchip detail
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The memory has a hierarchical bitline architecture with every local bitline shared across 32

rows. The memory word size is 64 bits, with 8 extra parity bits per word to store the SECDED

encoded bits. The vertical parity also requires marking each word as “valid” or “invalid” and

this is done using an extra specialized bit per word that marks the validity of the word, which is

always set to “valid” when a write cycle occurs on that particular word. Global invalidation is

an efficient 1-cycle operation that invalidates the entire memory. This per-word valid bit is used

during correction: only words which have deterministic values set after power-up are used in the

parity reconstruction of a corrupted data word. If there were no valid indicator, random data in

words from their power-up state would corrupt the vertical parity reconstruction. Another way of

handling this at an architectural level is to require a full array clear for both the vertical parity and

core arrays, to ensure consistency of the vertical parity with the contents of the memory array.

The valid bit structure eliminates this boot-up delay at the cost of one extra cell/word overhead

in area.

To enable runtime erasure detection of read latency failures, both bitlines are read as shown

in Figure 4.5.

During the read-before-write operation, the write starts after a delay that is controlled by a

global signal and programmed to be sufficient for a read. Each column has localized circuitry to

detect read completion and this extra time can be used to start the write operation. This slightly

increased time for write can prove crucial for cells that suffer from imbalances resulting in fast

read but slow write operation. Additionally, 8 configurations for varying read and write latency

are available.

6.2 ROM address bits

An additional fast check for the address decoding path is done by an array of ROM that has a

10-bit address-check word and shares the wordline with each 72-bit SRAM word. Each word

stores the 10-bit address that should activate that particular wordline. Address decoding errors

can be easily caught by comparing the ROM data out to the input address of each cycle. Our
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implementation of ROM address bits was done independently and without knowledge of a recent

publication of a design which provides the same functionality [82]. In the layout of our de-

sign, each DRC-compliant ROM cell was 0.45 µm wide while the DRC-compliant 6T cell was

1.85 µm wide, leading to a 3.4% local array area overhead for the 10-bit ROM address bits. The

ROM column pitch is primarily limited by two factors: the column output buffers and the metal

width/spacing. One advantage of the previously-published design [82] versus our implemen-

tation was its dual complementary structure (see Section 3.6). While this dual complementary

structure does not require any additional area for the pulldown transistor, it will require one extra

bitline per address bit, which increases the area overhead. Preserving the same bitline pitch of

0.3 µm (0.15 µm metal width, 0.15 µm spacing), transitioning to a dual complementary struc-

ture would increase the ROM cell width from 0.45 µm to 0.75 µm, and increase the local array

area overhead to 5.7%.

6.3 Supplemental memories

Four supplemental memories are implemented in this testchip. Two (vertical parity and CAM

for erasure storage) are needed for the error control coding techniques employed while two (log

storage and instruction vectors) are used in conjunction with the BIST logic to allow the test

modes described in Section 6.4. All memories with the exception of the CAM use the same 6T

cell as is used in the core array. The CAM uses a modified 9T cell for the address and the same

6T cell for the data. The 32-word size of the vertical parity memory was chosen to match the

number of cells on the local bitline; in the case of a failure causing corruption of one or more

entire columns of 32 bits of data in a single sub-block, the vertical interleaving of the vertical

parity array maps every cell of that column to a separate vertical parity word, and thus they all

can be reconstructed if the error is detected by the horizontal SECDED ECC.

• Vertical parity memory - A writethrough array with 32 words of 72 bits each.

• Erasure storage memory - A CAM with 32 words; the addressable content is an 10-bit
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address uniquely identifying a word in the core SRAM and a single valid bit, while the

retrieved data is a 72-bit offline erasure vector for the word identified by the address.

• Log storage memory - A single-port memory with 32 words of 93 bits: each word contains

a valid bit, two 10-bit addresses, and a 72-bit data word. The two addresses indicate

the requested core memory address of the command being logged and the core memory

address returned by the ROM address bits.

• Instruction vector memory - A single-port memory with 32 words of 85 bits: each word

contains a valid bit, read and write request bits, a 10-bit address, and a 72-bit data word.

6.4 Synthesized logic and test modes

The error control coding logic on this testchip includes two SECDED ECC decoders and one

SECDED encoder. These decoders are used along with the erasure locations as shown in Fig-

ures 4.2 & 6.4. The erasure locations are taken from either the runtime erasure detection or the

CAM, which stores erasures detected through external chip testing.

From simulation results, the core array latency is 1.2 ns, while the erasure storage CAM is

1.5 ns, and the ECC datapath is 0.6 ns. Thus, the latency overhead for single-cycle operation

using runtime erasure correction is 0.6 ns, while the latency overhead for single-cycle operation

using offline erasure correction (with erasure locations and vectors read out from the CAM) is

0.9 ns. For a larger core memory design than our 64 kb design, it would be reasonable to assume

pipelined operation. If this protection system were implemented in such a pipelined operation,

these overhead latencies would correspond to roughly 2 cycles at our target frequency for 65nm

of 2 GHz, which we defined in Section 4.5.1. Information on the methodology of our simulation

infrastructure is provided in Appendix A.

Built-in-self-test logic is incorporated into the testchip to allow scanned patterns to be applied

to the ECC logic and core SRAM (see Figure 6.3). Instructions scanned into the chip can be run

singly, repeated, or several instructions can be run in sequence from the supplied 32-word vector
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Figure 6.3: Testchip block diagram showing testing support logic and memories. The SECDED ECC decoder in
the shaded region is shown in greater detail in Figure 6.4.
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Figure 6.4: ECC datapath showing erasure masking and SECDED decoding circuits.
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memory. The intent in provisioning a vector and log storage memory was to be able to run up to

32 operations in sequence at-speed using the on-die clock generator, allowing for test of memory

failure patterns which we may not have anticipated during the design process.

Figure 6.5: PCB with socket and all components populated, disconnected from the DAQ board and power supplies.
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Area % of core array
Core array 215k µm2 100
Vert. parity 14k µm2 6.5

Erasure 11k µm2 5.1
Logic 182k µm2 85

Test setup Area % of core array
Log storage 10k µm2 4.7
Inst. vectors 9k µm2 4.3

Table 6.2: Area breakdown of testchip

6.5 System overheads

6.5.1 Area overhead of EB-ECC

The area overheads of various components on the testchip are shown in Table 6.2; to put these

overheads in perspective, we take as a baseline a design from industry of that generation, the Intel

Xeon 7100 dual-core (65nm) [13]. This design features a shared L2/L3 bitcell with area 0.624

µm2. Thus, for the L2 cache of size 8 Mb, we can estimate its area to be 7.5 mm2 assuming 70%

array efficiency. Similarly, for the L3 cache of size 128 Mb, we can estimate its area to be 120

mm2 assuming 70% array efficiency. Using these assumptions, a practical illustration of area

overheads is shown in Figure 6.6.

For the L2 cache, the EB-ECC scheme incurs a 2.4% area increase over conventional SECDED-

protected L2 array and 6.7% area savings when compared with a DECTED-protected L2 array.

For the L3 cache, the EB-ECC scheme incurs only a 0.15% area increase over conventional

SECDED-protected L3 array and 8.8% area savings when compared with a DECTED-protected

L3 array.

Certain components of the design have a fixed area overhead independent of the array size:

• ECC encoder, decoder

• Vertical parity, erasure storage arrays

• BIST logic for vertical parity, erasure

However, the parity bits’ area overhead is always proportional to the array size (see Fig-
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(a) L2 cache array: 8 Mb

(b) L3 cache array: 100 Mb

Figure 6.6: Practical area overhead for a typical L2 and L3 array. Sizes selected based on Intel Xeon 7100 dual-core
(65nm) [13].
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ure 3.6). Thus, the (72, 64) SECDED code incurs 12.5% overhead while the (79, 64) DECTED

code incurs 23.4% overhead, a wide gap which EB-ECC reduces.

It is important to note here that the prototype testchip contained early versions of EB-ECC

(including vertical parity protection [35, 45]) and address decoder failure detection; accordingly,

with the development of TOSA (see Section 4.5.1), it may be more appropriate to use TOSA

for runtime read latency erasure detection rather than the bitline XNOR for large, dense arrays

which may benefit from small-swing sensing. However, the area overhead of TOSA is higher

and partially proportional to the array size in a way that the bitline XNOR is not. Amortized

over a 128-cell column, the TOSA incurs approximately 6% increased local array area overhead.

Larger columns would incur lower local array area overhead. Even given these caveats, the EB-

ECC scheme is estimated to have area savings over DECTED protection (for columns of 128

cells or more).

6.5.2 Local array overhead

As implemented, the runtime read latency erasure detection scheme is accomplished by out-

putting the inverted versions of both bitlines and taking the XNOR to form the erasure globally;

this is done to reduce local array area overhead. The technique mainly incurs its overhead in

local routing; by increasing the number of vertically routed signals in M4 from 2 (DIN, DOUT)

to 3 (DIN, DOUT, DOUTB). However, this increase is transparent since the routing in M2 is

more congested (VDD, VSS, BL, BLB).

6.5.3 Architectural latency overhead

Increasing the memory’s read path latency by the use of erasure coding may or may not incur

system-level overhead. Whether this increase is transparent or not depends on the critical path

latency of the memory which is being protected. At 0.6 ns (19 FO4 in this 65nm technology),

the SECDED and EB-ECC overhead may fit within a single cycle’s latency, in which case its

system-level overhead would be comparable to SECDED ECC alone. Otherwise, the added

87



latency overhead will be on the critical path and thus not transparent to the architecture.

6.6 Testing

Tests have been run at an external clock frequency of 10 MHz through a data acquisition PCI

card. The experimental design called for the following tests:

1. Access main memory and verify read of 10-bit ROM address as well as 72-bit written data

word.

2. Access supplemental memories.

3. Enable SECDED ECC and demonstrate correction of single-bit errors.

4. Adjust main memory self-timing to reduce column I/O delays and drive read and write

operations past the point of latency failure, demonstrating failures (with ECC disabled)

and correction (with ECC enabled).

5. Enable vertical parity correction and demonstrate correction of two-bit errors.

6. Enable erasure protection and demonstrate correction of two-bit errors with error vector

mask in CAM.

7. Enable erasure protection and demonstrate correction of two-bit errors on-the-fly using

runtime erasure detection through XNOR of bitlines sampled at the end of the read-before-

write phase.

8. Enable on-chip/internal clock generator and determine maximum frequency of BIST con-

troller, using vector and log storage memories.

During testing of packaged chips, we have gained access to the main ECC-protected memory

(1) and each of the supplemental memories used for vertical parity (2). We verified correction of

single-bit errors in the main memory (3) and adjusted self-timing (4). However, no configuration

of self-timing has caused read latency failures to occur on any of the packaged chips, which

limits the ability to exercise the run-time erasure detection circuitry. Thus it is impossible to
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verify the functionality of the runtime read latency erasure detection circuits on the fabricated

design.

The vertical parity control (5) operates in two phases: during normal operation with vertical

parity enabled, every write to the protected SRAM is intercepted by the vertical parity controller

and the vertical parity memory is updated with the XOR of the written data, the read-before-write

value of the word that was written, and the current word in the vertical parity array1. This vertical

parity update has been observed to be functioning properly. On the event of an uncorrectable

error detected by the horizontal SECDED ECC, the vertical parity correction procedure is to

begin. The vertical parity controller is to read through each row with the same 5-bit low-order

address in the array, reconstructing the proper value of the word in error from the vertical parity

array and the protected SRAM array. At the conclusion of this sequence, the vertical parity

controller writes back the corrected data to the array. However, due to a high capacitance data

input node in the array which was improperly driven with a small buffer by the BIST logic, the

delay to properly charge the input nodes is high, and when the writeback cycle is reached, the

corrected data from the vertical parity controller is not written back correctly. This can be fixed

with a small adjustment to the driving gate of the data input nodes but was not noticed during

verification.

Furthermore, the proprietary internal clock generator supplied by Freescale has not responded

to configuration and thus we are limited to an external clock frequency of 10 MHz and have

limited ability to exercise the design at-speed. However, the efficacy and performance benefits

of the included ECC units are shown with overheads determined through design and simulation.

6.7 Summary

In this chapter we discussed a testchip implementation of multiple reliability improvement tech-

niques, including ROM address bits to detect address decoder failures, vertical parity, and erasure

1If the valid bit of the word written to is 0, then the XOR omits the previous read-before-write value in the
protected SRAM as its contents are assumed to be the zero vector, which is the initialized value of the vertical parity
array.
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coding with two sources of erasures (offline erasures from CAM and runtime erasures from bit-

line XNOR).
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Chapter 7

Conclusions and future work

Errors that occur at run-time are pernicious and there are fewer options available to address them

than those that are caught at time of manufacture. BIST and BISR mechanisms, or else some

means of prevention, must be implemented to handle these run-time failures. Techniques to

prevent failures, or to detect and correct them, provide a much-needed capability to the designer

of reliable memory systems.

7.1 Contributions

This thesis puts forward the following novel contributions.

• Extension of the widely-used communications technique of erasure coding to memory, and

a discussion of the overheads and benefits that can be realized.

• Design and test of prototype testchip in 55nm bulk CMOS containing an erasure-based

ECC system (EB-ECC) for reliable SRAM operation. To the best of our knowledge this

testchip represents the first implementation of vertical parity correction or erasure coding

for SRAM.

• A method of runtime erasure detection for small-swing bitlines using ternary-output sense

amplifiers which improves upon the bitline XNOR technique which is only suitable for
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paired full-swing bitlines.

• A robust method of address decoder failure detection using a wordline comparator, which

achieves 3% area improvement over ROM address bits for a 512-row array. Justification

for this method of address decoder failure detection is provided by a study of particle strike

locality in an industrial row decoder layout.

7.2 Future research directions

In this section, we discuss new research directions revealed by the work presented in this thesis,

which may be useful for future researchers.

7.2.1 Implications of erasure coding with multiple error correcting codes

Both the benefits and area/power overheads of erasure coding increase linearly with the use of

higher minimum Hamming distance codes. Latency overhead is only slightly increased ver-

sus the code itself. For those cache designs which already pay the overheads necessary for a

multiple error correction code, either multiple cycles latency or large area overhead, employing

erasure coding in addition to that multiple error correction code requires roughly a doubling in

area/power and a slight latency increase for the masking and erasure detection circuitry. In re-

turn for these overheads, the number of correctable erasures is double the number of random bit

errors correctable with the code itself. For example, while a DECTED code with dmin=6 can

correct two random bit errors, with the addition of erasure coding, the same code can correct

four erasures. The erasure locations are masked to all-zeros and all-ones and run through two

DECTED decoders in parallel. The output with fewer bits of error is correctable and is used as

the corrected output.
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7.2.2 Peripheral logic protection

A fuller examination of the potential effects of particle strikes on the peripheral logic would

involve fault simulation not using the pessimistic assumption that any particle strike causes a

stuck-at for a full cycle, but rather to perform transient simulations using a switched capacitor

holding a charge equivalent to the charge injected during the particle strike event. A flowchart

for this more complete study of particle strike locality is shown in Figure 7.1.

Layout proximity script

(SKILL)

Back-annotation with
switched capacitors

Fault simulation 
using scripted verilog
simulation

Sets of diffusion regions
in proximity (at risk of SET)

Controllable & observable
test vectors exercising faults

Extracted netlist with
injected particle strike

Analog simulation of
particle strike on memory
peripheral logic

Extracted netlist

Behavioral netlist

(perl)

0WL failure: x
2WL failure: y

False WL failure: z

If the likely types of WL failure are known, 
the protection can be chosen to minimize overhead

Failure probabilities:

Figure 7.1: Flowchart of full particle strike study

7.2.3 Soft-decision decoding beyond read latency erasures

The concept of erasures as discussed in Section 4.1 was explored in this thesis in the context of

read latency failures, since they are detectable at the moment they occur on the bitlines. The

other failure modes of read disturb failure, write failure, and hold disturb failure may occur

silently in existing cell designs, since they do not have an external manifestation and most SRAM

cells are inherently binary in nature. In the non-volatile memory world, there exist multi-level

cellss (MLCs) capable of storing more than a single bit of information; these cells fail in a

deterministic way and thus soft information regarding the possible failure is available for use

with certain decoders, such as those used for low-density parity check (LDPC) codes [9, 10]. It

may be possible to construct an SRAM cell which provides similar soft information in the form
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of erasures in the event of one or more of the three other failure modes which are not currently

detectable by the work of this thesis.
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Appendix A

Methodology

In the 65nm model files used for simulation of the designs in Chapters 4 & 6, the following

global and local parameters are defined for variation:

Process parameters affected by global variations (and modeled under the “process” category):

• Poly and active critical dimension (CD) for transistors and resistors (etching and lithogra-

phy variation)

• Oxide thickness for transistors and capacitors

• Threshold voltage for transistors and sheet resistances for resistors (implant variation)

• Junction capacitance (area, perimeter)

• Diode current

Local instance parameters affected by local variations (and modeled under the “mismatch”

category):

• Threshold voltage and mobility for transistors

• Sheet resistance for resistors
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